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Grégoire, Dora, Mathieu, Miguel, Yiol, Gemma, Lois, Lionel, Nicolas, Mihai, Clèo, Slim,
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Aurélia, Julien, ainsi qu’aux plus jeunes : Brahim, Ismael, Thomas et Sarah qui m’ont
beaucoup aidée pendant la dernière ligne droite. Je remercie tout particulièrement Seb et
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Résumé

Les progrès récents dans le domaine des schémas de codage vidéo par ondelettes ont per-
mis l’apparition d’une nouvelle génération de codeurs vidéo scalables dont l’efficacité
est comparable à celle des meilleurs codecs hybrides. Ces schémas sont qualifiés de
t+2D et reposent sur l’utilisation d’une transformée en ondelettes appliquée le long du
mouvement des images afin d’exploiter leur redondance temporelle. Les sous-bandes
résultantes sont alors décomposées spatialement et encodées par un codeur entropique.

Grâce à la représentation multirésolution inhérente, les codeurs basés-ondelettes ont
la capacité de fournir une description scalable d’un signal. Ceci représente la raison
principale pour laquelle le choix du paradigme du codage lifting t+2D basé-ondelettes
s’impose comme cadre conceptuel de développement pour les travaux dans cette thèse.

L’objectif de ces travaux consiste en l’analyse et la conception d’un système de codage
vidéo scalable. Dans un premier temps, nous nous intéressons à la construction et l’optimi-
sation de nouvelles transformées temporelles compensées en mouvement, dans le but
d’augmenter l’efficacité objective et subjective du codage. En outre, nous décrivons une
meilleure représentation pour les sous-bandes temporelles en utilisant des décompositions
spatiales anisotropes. Enfin, nous proposons une methode d’amélioration du codage en-
tropique en concevant une solution basée sur la théorie des graphes, afin d’optimiser la
minimisation du Lagrangien débit-distorsion.

Abstract

The recent progress in wavelet-based video coding led to the emergence of a new gen-
eration of scalable video schemes, whose performance is comparable to that of the best
hybrid codecs. The t+2D subband coding methods exploit the temporal interframe re-
dundancy by applying an open-loop temporal wavelet transform over the frames of a
video sequence. The temporally-filtered subband frames are further spatially decom-
posed and entropy coded.

Due to their inherent multiresolution signal representation, wavelet-based coding
schemes have the potential to support temporal, spatial and SNR scalability. This is
the main reason for chosing the scalable lifting-based wavelet-coding paradigm as the
conceptual development framework for this thesis work.

The objective of this thesis consists of the analysis and design of an efficient scalable
video-coding system. In a first time, we are interested in the construction and optimiza-
tion of motion-compensated temporal coding schemes, in order to enhance both the ob-
jective and subjective coding quality. Moreover, we describe a better representation of the
temporal subbands by using anisotropic spatial decompositions. Finally, we improve the
entropy coding by designing a graph-cut solvable energy functional for the Lagrangian
rate-distortion optimization problem.
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Glossary

HD : High Definition.

4CIF : Four CIF – Resolution format made of 704×576 pixels.

CIF : Common Interchange Format – Resolution format made of 352×288 pixels.

QCIF : Quarter CIF – Resolution format made of 176×144 pixels.

DCT : Discrete Cosine Transform

Dyadic : Power of two.

EZBC : Embedded Zeroblock coding based on Context modeling – Image codec.

GOP/GOF : Group of Frames – Consecutive group of pictures/frames.

H.26X : Video coding algorithms normalized by ITU.

ISO : International Organization for Standardization – Standadization organism.

ITU : International Telecommunications Union – Standadization organism.

JPEG : Joint Photographic Experts Group – ISO expert group.

JPEG : Still image coding algorithm created by JPEG.

JPEG-2000 : Scalable still image coding algorithm created by JPEG.

JSVM : Joint Scalable Video Model – Reference software associated to SVC standardization.

Lifting : Invertible decomposition structure.

MC-EZBC : Motion-Compensated EZBC – Scalable video coding algorithm.

MCTF : Motion Compensated Temporal Filtering

MPEG : Moving Picture Experts Group – ISO expert group.

MPEG-X : Video coding algorithms normalized by MPEG.

PSNR : Peak Signal Noise Ratio

Wavelet : Function whose translations and dilatations provide a scalable representation

of another function.

Scalable : Can be represented with different precision levels.

Subband : The result of a filter bank decomposition.

SVC : Scalable Video Coding – Scalable extension of H.264 standard.

Vidwav : Wavelet research group inside MPEG community (denote also the reference

video coding algorithm developped by the Vidwav group).

YSNR : Signal to noise ratio of the luminance Y component of a frame in YUV format.
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Synthèse des travaux exposés dans le
manuscrit

Les progrès récents dans le domaine des schémas de codage vidéo par ondelettes ont
permis l’apparition d’une nouvelle génération de codeurs vidéo scalables dont l’efficacité
est comparable à celle des meilleurs codecs hybrides. Ces schémas sont qualifiés de t +
2D et reposent sur l’utilisation d’une transformée en ondelettes appliquée le long du
mouvement des images afin d’exploiter leur redondance temporelle. Les sous-bandes
résultantes sont alors décomposées spatialement et encodées par un codeur entropique.

Codage
temporelle

Transformation
spatiale

Transformation

mouvements
Estimateur de

Flux binaire

Vecteurs de mouvement

Images xt

Figure 1: Schéma générique d’un encodeur vidéo t+ 2D.

Grâce à la représentation multirésolution inhérente, les codeurs basés-ondelettes ont
la capacité de fournir une description scalable d’un signal. Ceci représente la raison
principale pour laquelle le choix du paradigme du codage lifting t + 2D basé-ondelettes
s’impose comme cadre conceptuel de développement pour les travaux dans cette thèse.

L’objectif de ces travaux consiste en l’analyse et la conception d’un système de codage
vidéo scalable. Plus exactement, nous nous intéressons particulièrement à :

⋆ la construction et l’optimisation de nouvelles transformées temporelles compensées
en mouvement, dans le but d’augmenter l’efficacité objective et subjective du codage;

⋆ une meilleure représentation des sous-bandes temporelles, en utilisant des décom-
positions spatiales anisotropes afin de capturer l’orientation spatiale de détails;

⋆ l’amélioration du codage entropique en concevant une solution basée sur la théorie
des graphes afin d’optimiser la minimisation du Lagrangien débit-distorsion.

Cette thèse s’inscrit dans le développement d’un codec visuel 3D basé-ondelettes pro-
posé par le groupe Vidwav dans le cadre MPEG [212]. Une partie de ce travail a été
soutenue par le 6éme programme-cadre de la Commission Européenne dans le projet
IST-FP6-507752 (Réseau d’Excellence MUSCLE).
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Introduction aux représentations multirésolution

La scalabilité caractèrise le fait qu’un objet ou un signal soit représentable sur plusieurs
niveaux de résolution ou de qualité. Une transformation sera ainsi dite scalable si elle est
en mesure de représenter un signal sur plusieurs niveaux de résolution ou de qualité.

La notion de scalabilité est en fait très générale et il existe plusieurs types de scala-
bilité. Dans le cas d’un signal monodimensionnel, on parlera de scalabilité en résolution
pour désigner le fait qu’un signal puisse être décrit par un nombre variable d’échantillons.
Dans le cas d’une image, la scalabilité spatiale qualifie la propriété de pouvoir représenter
une image sur plusieurs niveaux de résolution spatiale, comme illustré en Fig. 2.

(a)

(b)

(c)

Figure 2: Scalabilité spatiale. Exemples de facteurs de résolution dyadiques obtenus avec
le codec scalable JPEG-2000.

Il est aussi possible de représenter un signal sur différents niveaux de qualité, où
chaque échantillon ou coefficient peut être décrit avec une précision plus ou moins grande.
On parlera dans ce cas de scalabilité en qualité. Il existe d’autres types de scalabilité :
dans le cas d’une séquence vidéo, on parlera de scalabilité temporelle pour désigner la
propriété de pouvoir la représenter à plusieurs cadences temporelles, exprimées en nom-
bre d’images par seconde. D’autres types de scalabilité peuvent être définis comme la
scalabilité en complexité ou la scalabilité en délai, scalabilité orientée-objet etc.

Pourquoi des représentations scalables?

Avec l’explosion des applications multimédia et le besoin croissant de diffusion de con-
tenus à destination de récepteurs hétérogènes, la scalabilité est devenue indispensable
dans la conception d’un schéma de compression d’images ou de codage vidéo. Cette
propriété permet ainsi de pouvoir diffuser un unique flux vidéo compressé, capable d’être
adapté par les nœuds d’un réseau ou d’être décodé par une grande variété de récepteurs.

Il existe de nombreux cas d’utilisation nécessitant une description scalable et parci-
monieuse d’un contenu multimédia, relevant pour la plupart du domaine de l’adaptation
de contenu. Par exemple, les images présentes sur Internet sont souvent disponibles sous
deux voire trois résolutions (aperçu thumbnail, résolution moyenne et haute résolution)
en fonction de la façon dont elles sont visualisées. De plus, il est souvent nécessaire
de posséder un morceau de musique compressé à plusieurs débits, en fonction de la
qualité désirée et de la place disponible. Enfin, les opérateurs commerciaux de diffusion
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de contenus multimédia ont tout intérêt à utiliser un format scalable. Un opérateur de
téléphonie mobile pourra ainsi diffuser un flux vidéo TV destiné à un parc hétérogène de
récepteurs dont les écrans sont de tailles différentes.

De plus, la scalabilité est une propriété très utile lors de la diffusion de contenus mul-
timédia dans un environnement enclin aux erreurs de transmissions, comme les réseaux
IP sans fil. En effet, elle permet l’adaptation du débit du flux compressé en fonction de
la capacité du canal, susceptible de varier selon les conditions de transmission, et permet
l’augmentation de la robustesse d’un schéma de codage en cas de pertes, d’erreurs ou
d’encombrements.

L’analyse multirésolution et la transformée en ondelettes sont des outils mathémati-
ques capables de fournir une telle représentation scalable d’un signal. Nous rappelons
dans la section 1.2 les fondements mathématiques de ces outils. Il existe cependant
d’autres transformations capables de fournir une représentation scalable d’un signal.
La structure lifting, rappelée en section 1.3 permet d’étendre la théorie des ondelettes
dans un cadre non-linéaire et autorise simplement la construction de transformées non-
linéaires et inversibles.

Les travaux menés tout au long de cette thèse ont comme but la construction d’un
schéma de décomposition permettant la description scalable et parcimonieuse d’une séquen-
ce vidéo. Avant toutes choses, il est cependant nécessaire de dresser un inventaire des
schémas de codage vidéo scalable existants (voir chapitre 2).

Codage vidéo scalable

La majeure partie des codecs vidéos actuels, dont les célèbres MPEG-x et DivX, sont des
schémas de codage dits de type hybride. Capable d’offrir une scalabilité grossière en
couches, ce type de schéma constitue le socle de nombreux autres codecs. Les travaux
sur les schémas de codage vidéo par ondelettes sont plus récents. Ces derniers sont
intrinsèquement scalables et nous allons détailler la structure de codage la plus promet-
teuse : le schéma de codage t+2D, basé sur l’utilisation d’un filtrage temporel compensé
en mouvement, et utilisé dans ces travaux de thèse.

Codage vidéo hybride scalable

Le schéma générique d’un encodeur vidéo hybride est donné en Fig. 3. C’est une struc-
ture d’encodage en boucle fermée : un décodeur est intégré à l’encodeur et fournit les im-
ages reconstruites qui serviront à prédire l’image courante, constituant ainsi une boucle
de rétroaction. Les images d’entrée xt provenant d’une séquence vidéo sont lues et sont
transformées suivant les étapes suivantes.

Estimation de mouvement Avant la transformation des images d’entrée, on procède à
une estimation de mouvement. Cette estimation est généralement représentée par des
champs de blocs de taille fixe ou variable, dont la précision peut être sous-pixellique.
La connaissance du mouvement permet alors une réduction efficace de la redondance
temporelle présente entre les images d’une séquence vidéo.

Prédiction et soustraction de l’image prédite Le principe essentiel du schéma de codage
hybride réside dans la propriété suivante : les images courantes sont prédites par rapport
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Figure 3: Schéma générique d’un encodeur vidéo hybride avec boucle de rétroaction.

à des images reconstruites précédemment. Cette stratégie permet de simuler le com-
portement du décodeur afin d’éviter une quelconque dérive lors de la reconstruction de
la séquence mais implique la présence d’un décodeur intégré dans l’encodeur. L’image
prédite est alors soustraite à l’image courante et conduit à une image résultante nommée
résidu de prédiction ou DFD (Displaced Frame Difference). Il existe trois modes classiques
de codage des images dans une séquence vidéo. Les images dites intra (I) ne sont pas
prédites : elles sont assez volumineuses mais sont indépendantes des autres images. Les
images dites inter de type (P) sont prédites par rapport à une image précédente et sont
plus simples. Enfin, les images dites inter de type (B) sont prédites bidirectionnellement
par rapport à une (ou des) image(s) passée(s) et une (ou des) image(s) future(s), et sont
encore plus concises. Les images d’une séquence vidéo sont généralement encodées par
un motif de prédiction cyclique fixe, comme illustré en Fig 4.

Transformation spatiale et quantification Les images résiduelles de prédiction sont
transformées spatialement pour exploiter leur redondance spatiale. La transformée utili-
sée est généralement une transformée en blocs de type DCT 8×8, utilisée dans les normes
JPEG et MPEG ou ITU. Les coefficients résultants sont alors quantifiés par des tables, sous
le contrôle d’un paramètre de qualité Q lié au pas de quantification.

Codage entropique Après quantification, les coefficients des images sont encodés en
zig-zag, par un codeur de type RLE (Run-Length Encoding) et un codeur entropique, par
example, codeur d’Huffman ou arithmétique. Les champs de mouvement sont quant à
eux encodés sans perte au moyen de codes de longueur variable (VLC) (Variable Length
Coding).

Les schémas de codage vidéo hybride permettent de compresser efficacement une
séquence vidéo mais ne sont pas en mesure de fournir directement une représentation
scalable. Les codecs MPEG-2 et MPEG-4 Part 2 disposent cependant d’une structure
prédictive en couches, capable d’offrir une forme de scalabilité grossière, où chaque
couche représente une version de la séquence vidéo à une certaine résolution spatio-
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Figure 4: Agencement des modes de prédiction IBBPBBP d’un groupe d’images.

temporelle et un débit donné. En l’absence de cette structure en couches, il n’est pas
possible de modifier le débit, la résolution spatiale ou la fréquence temporelle d’une
séquence vidéo compressée sans procéder à un transcodage. Cette opération nécessite
un décodage et un réencodage complet de la séquence vidéo et est généralement très
coûteuse en temps et moyens de calcul. De nombreuses stratégies ont cependant été
mises au point [13, 140] pour diminuer sa complexité.

Codage vidéo scalable par ondelettes : schéma t + 2D

Parallèlement aux schémas de codage hybride, un nouveau paradigme de codage a été
développé : le codage scalable par ondelettes. Il est basé sur deux technologies princi-
pales : le filtrage temporel compensé en mouvement (Motion Compensated Temporal Fil-
tering - MCTF) et la transformation spatiale par ondelettes. Les schémas de compression
basés-ondelettes sont devenus de plus en plus importants, un exemple étant le standard
actuel de compression pour les images fixes JPEG2000 [8, 178].

En 1994, Taubman et Zakhor [177] ont proposé un schéma de codage vidéo par on-
delettes dans lequel une étape préalable d’alignement des images permettait de prendre
en compte un éventuel mouvement global de translation. Ce type de schéma ne peut
cependant pas modéliser finement les caractéristiques locales du mouvement et il re-
vient à Ohm [134] de décrire le premier schéma de codage vidéo, où un filtre temporel
est appliqué dans le sens du mouvement des images, avant que ces dernières ne soient
décomposées spatialement : c’est le schéma de codage vidéo t+2D. Ce schéma fait inter-
venir un filtre temporel compensé en mouvement et est à l’origine de nombreux travaux
sur le codage vidéo par ondelettes. Nous décrirons dans la suite le principe général de ce
schéma de codage et présenterons les filtres temporels les plus utilisés.

Principe général

Le principe du schéma de codage vidéo t+2D, illustré par la Fig. 1, repose sur l’utilisation
d’un filtre temporel compensé en mouvement, où l’on applique une transformée en on-
delettes dans le sens du mouvement des images, pour tirer bénéfice de la redondance
temporelle des trames. Les sous-bandes temporelles résultantes sont alors décomposées
spatialement pour exploiter leur redondance spatiale. Elles sont ensuite quantifiées et
codées de façon scalable par un codeur emboı̂té.

En parallèle du traitement des images, un estimateur de mouvement est placé en
amont du schéma et fournit les champs de mouvement utilisés lors de la transformée
temporelle. Ces champs sont alors encodés par un codeur sans perte puis intégrés au
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flux compressé. On remarquera que l’encodage est fait entièrement en boucle ouverte,
contrairement aux schémas généraux des codeurs hybrides présentés dans la section 2.2.
Il n’y a ainsi pas de rétroaction d’un décodeur assujeti à un débit donné et inclus dans
l’encodeur, permettant d’obtenir aisément un schéma de codage scalable en qualité.

Extraction et scalabilité

La scalabilité du schéma t + 2D est assurée par un composant annexe, l’extracteur, qui
permet de dégrader quasi-instantanément un flux compressé en un autre flux selon une
qualité, une résolution spatiale et une temporelle spécifiées par l’utilisateur. Il permet par
exemple d’obtenir une vidéo compressée à 128 kbits/s à partir d’une vidéo à 512 kbits/s
ou de réduire la résolution d’une séquence vidéo compressée. Ce composant donne ainsi
au schéma général les propriétés de scalabilité en qualité, temporelle et spatiale.

La structure même du flux compressé permet à l’extracteur de supprimer rapidement
les informations non nécessaires à la construction d’un nouveau flux de qualité inférieure.
Ce mécanisme est rendu possible par les propriétés de scalabilité dyadiques inhérentes
aux transformées temporelle et spatiale utilisées. La scalabilité temporelle permet ainsi
d’obtenir des séquences vidéos de fréquence temporelle réduite d’un facteur dyadique,
par suppression des sous-bandes temporelles de détail. La scalabilité spatiale permet
d’obtenir des séquences vidéos de résolution spatiale réduite d’un facteur dyadique et
est obtenue par suppression des sous-bandes spatiales de détail dans les sous-bandes
temporelles.

La scalabilité en qualité repose, quant à elle, sur la stratégie utilisée par le codeur
emboı̂té pour empaqueter les coefficients spatio-temporels. Ceux-ci étant organisés par
plans de bits (bitplanes) ordonnés, il suffit de supprimer les plans de poids faible pour
obtenir le débit souhaité. La scalabilité en qualité résultante est d’une granularité fine : il
est possible de générer un flux compressé à un débit précis au kilobit par seconde près.

Filtres temporels compensés en mouvement

Un des plus simples filtrages temporels est réalisé par le banc de filtres de Haar (Eq. 1).
Les opérations de base pour obtenir les sous-bandes passe-haut et passe-bas dans la
forme lifting sont les suivantes :





Ht = x2t+1 − P (
{
x2(t−k), v

2(t−k)
2t+1

}
k∈T p

k

)

Lt = x2t + U(
{
Ht−k, v

2(t−k)+1
2t

}
k∈T u

k

)
(1)

où vj
i est le vecteur de mouvement utilisé pour prédire la trame courante i de la trame de

référence j , T p
k (respectivement T u

k ) étant le domaine de définition pour l’operateur de
prediction (respectivement mise à jour) temporel.

Une vue d’ensemble des diverses structures de filtrage temporel compensé en mouve-
ment utilisées dans le codage visuel scalable peut être trouvée dans [137], et, dans [150],
quelques formulations intéressantes de ces décompositions temporelles en forme lifting
sont présentées.

Le schéma lifting presenté dans Fig. 5 permet ainsi la construction de transformées
temporelles plus longues, inversibles et dotées d’opérateurs bidirectionnels comme la
transformée 5/3 compensée en mouvement, décrite dans Eq. 2.
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Figure 5: Structure lifting temporelle compensée en mouvement





Ht(n) = x2t+1(n) − 1

2
(x2t(n− v2t

2t+1) + x2t+2(n− v2t+2
2t+1))

Lt(p) = x2t(p) +
1

4
(Ht−1(p+ v2t+1

2t ) +Ht(p+ v2t+1
2t+2))

(2)

Les codeurs basés MCTF fournissent une flexibilité élevée, en terme de type de scal-
abilité, pour le flux binaire à travers différentes résolutions temporelles, spatiales et de
qualité. En outre, elles fournissent une meilleure robustesse face aux erreurs que les
codeurs hybrides conventionnels. En fait, les codeurs basés ondelettes peuvent mieux
extraire l’information pertinente. Les sous-bandes temporelles passe-bas contiennent de
l’information consistante qui permet de mieux exploiter la redondance temporelle, ce qui
est non réalisable par les methodes hybrides classiques. Même si beaucoup d’éléments
dans le cadre du filtrage temporel compensé en mouvement basé lifting peuvent être con-
sidérés comme des prolongements des techniques prouvées dans les codeurs hybrides,
ce schéma de codage permet d’exposer un certain nombre d’options radicalement nou-
velles dans le codage visuel. Cependant, quand une transformation par ondelettes est
appliquée pour le codage des sous-bandes passe-bas et passe-haut résultant du processus
de filtrage temporel, la ressemblance avec l’approche des méthodes de codage basé on-
delette 2D est évidente. De nombreuses améliorations et optimisations ont ensuite été ap-
portées pour améliorer l’efficacité du codage de ces structures : nos travaux s’inscrivent
dans ces développements et sont détaillés dans les sections suivants.

Codage temporel

Comme cela a été dit dans la section précédente, les décompositions les plus utilisées
pour la décorrélation temporelle sont dyadiques, c’est à-dire les bancs de filtres Haar et
5/3. En règle générale, le filtrage uniforme part de l’hypothèse que les trames sont forte-
ment corrélées. Toutefois, cette hypothèse n’est plus vérifiée quand la vidéo rencontre
des coupures de scène, comme dans le cas des films d’action, des vidéo clips etc. Dans ce
cas, l’inefficacité de l’estimateur de mouvement conduit à une mauvaise prédiction/mise
à jour, qui, combinée avec l’implantation avec une fenêtre glissante du filtrage temporel,
conduit à la propagation des erreurs dans les niveaux de décomposition. Nous proposons
alors un filtrage temporel compensé en mouvement modifié, capable de surmonter ce
déficit en détectant et traitant les coupures de scènes qui peuvent survenir dans une
séquence vidéo.
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Traitement des coupures de scène dans le codage temporel compensé en mou-
vement

Une faiblesse des codecs vidéo t + 2D est liée à la façon dont le filtrage temporel se
comporte près des changements de scènes. Habituellement, la séquence vidéo est parti-
tionnée en GOPs (Group pf Pictures) et filtrée temporellement sans vérifier la corrélation
entre les trames du GOP. Lorsque le signal contient du mouvement de forte complexité
et surtout des coupures de scène, cela peut se traduire par l’inefficacité de l’opération de
prédiction/mise à jour, entraı̂nant une dégradation de la qualité des résultats et également
de la scalabilité temporelle.

Plusieurs tentatives pour éviter les artefacts liés à ces changements brusques ont déjà
été proposées pour le codage hybride, comme la détection de scènes et l’échantillonnage
basé sur le contenu de séquences vidéo [168] ou la segmentation en utilisant des données
liées au coût d’encodage [61], qui améliorent les performances, mais ne résolvent pas
complètement ce problème.

On a ainsi proposé de détécter les coupures de scènes, en utilisant un algorithme basé
sur l’étude de la variation d’énergie du résidu de prédiction (Displaced Frame Difference -
DFD), et d’encoder chaque série de trames entre deux scènes séparément, en adaptant le
filtrage temporel pour pouvoir traiter un nombre arbitraire de trames dans une séquence
vidéo. Si le résidu de prédiction entre deux trames consécutives est donné par :

dt = DFD(xt, xt+1) = xt+1 −F(xt,vt)

alors la variation relative de l’énergie de la DFD est calculée comme :

∆2t =
d2

2t

d2
2t−1

où F est l’operateur de prédiction. Lorsque le signal d’entrée est fortement corrélé, la
variation relative de l’énergie de la DFD tout au long de la séquence est presque con-
stante (i.e., ∆ ≈ 1). Nous affirmons qu’une coupure de scène est détectée lorsque la
variation relative de l’énergie présente un changement rapide. Pour des paramètres τ1
et τ2 correctement choisis, nous affirmons que le changement de scène survient après la
trame x2t+1 lorsque : {

|∆2t − 1| < τ1

|∆2t+1 − 1| > τ2

On peut noter que tout autre algorithme de détection de changement de scène présents
dans la littérature pourrait remplacer le critère DFD. Une fois la décision prise, nous pas-
sons à l’étape suivante, c’est à-dire l’encodage des trames précédant la coupure.

D’abord, le filtrage temporel doit être modifié afin de ne pas filtrer sur un change-
ment de scène. Une modification est alors effectuée à l’encodage du dernier GOP avant
la coupure de scène, où les opérateurs de prédiction et mise à jour doivent être modifiés
près de la fin de la première scène, comme l’illustre la Fig. 6. Pour les séquences trans-
formées temporellement de la meme manière, les sous-bandes résultant du codage MCTF
sont codées par GOPs de 2L trames, où L est le nombre de niveaux de décomposition
temporelle. Quand un changement de scène se produit dans une séquence, le GOP juste
avant le changement aura, en général, un nombre de trames different de 2L. En notant
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Figure 6: Traitement des coupures de scène sur 2 niveaux temporels.

An le nombre de ces trames et en exprimant ce nombre en représentation binaire :

An = (a0a1 . . . aL−1)2 =
L−1∑

l=0

al2
l,

on décompose le GOP en petits GOPs, par ordre de taille décroissante : al 2
l, où l ∈

{0, . . . , L − 1}, et al ∈ {0, 1}, qui seront filtrés et codés séparément. Cela revient aussi à
modifier le nombre de niveaux de décomposition temporelle et les opérations de lifting
pour ces sous-GOPs. En fait, nous pouvons faire seulement l niveaux de filtrage temporel
pour les sous-GOPs de taille 2l, l < L. En outre, la prédiction à travers la coupure de
scène n’est pas autorisée. Après le changement de scène, le filtrage normal avec fenêtre
glissante (ou au fil de l’eau) est relancé.

Comme l’illustrent les résultats expérimentaux presentés dans Fig. 7, notre méthode
donne un gain moyen d’environ 1.5 dB sur les séquences vidéo testées, et une meilleure
qualité visuelle pour les trames proches de la coupure de scène.

En suivant les idées principales concernant l’efficacité du codage obtenue avec des
filtres temporels plus longs proposés dans [218], nous passons à la présentation d’une
nouvelle tranformée temporelle compensée en mouvement, spécialement adaptée pour
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Figure 7: Performance débit-distorsion pour la séquence Erin Brockovich (HD
1920×1280, 60Hz) (SC dénote l’encodage avec traitement des changement de scène et
SC-MCTF existent dénote les resultats obtenues avec la mèthode proposée dans [209, 38]).

le codage des séquences de faibles mouvements et ayant une application directe dans la
vidéosurveillance.

Schéma 5-bandes compensé en mouvement

L’implantation lifting des codeurs basé ondelettes [173, 99] assure une complexité faible
qui fait d’elle l’approche la plus largement adopté pour le codage t+2D dans la littérature
[44, 134, 94]. Comme mentionné précédemment, les schémas lifting MCTF ont été soumis
à de nombreuses optimisations et améliorations, concernant, par exemple, les opérateurs
de prédiction/mise à jour [196, 145, 143, 144, 184] ou la précision de l’estimation de
mouvement [82, 94]. De plus, des schémas lifting M-bandes avec reconstruction par-
faite [41, 89] ou des décompositions temporelles 3-bandes [181, 180] ont été proposées,
permettant des facteurs de scalabilité flexibles, non-dyadiques.

L’intérêt pour plusieurs canaux peut être double. D’abord, pour permettre une liberté
complète dans le choix du facteur de scalabilité (par exemple, permettant un échantillon-
nage temporel avec des facteurs 5, pourquoi pas 7, et des combinaisons de ces facteurs).
Deuxièmement, cela permet la création des sous-bandes d’approximation en utilisant un
nombre réduit de décompositions temporelles.

Nous avons ainsi proposé un schéma lifting compensé en mouvement qui permet un
facteur de 5 en scalabilité temporelle. Selon les caractéristiques de la séquence vidéo,
le modèle de mouvement etc., cette structure peut fournir un codage plus performant.
En outre, selon la scalabilité temporelle désirée, cette structure particulière pourrait être
plus efficace. Elle permet une meilleure représentation des sous-bandes temporelles
d’approximation, et ainsi une meilleure scalabilité temporelle est obtenue.
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Figure 8: Schèma lifting 5-bandes avec opérateurs quelconques.

Par exemple, la structure lifting, donc inversible, du schèma 5-bandes entraı̂ne une
sous-bande d’approximation et 4 sous-bandes de détail (voir Fig. 8).

Les équations décrivant l’analyse sont :





h−1,t = x5t−1 − P−
1 ({x5t−2, x5t}t)

h+
1,t = x5t+1 − P+

1 ({(x5t+2, x5t}t)

h−2,t = x5t−2 − P−
2 ({x5t}t)

h+
2,t = x5t+2 − P+

2 ({x5t}t)

lt = x5t + U−(
{
h−1,t, h

−
2,t

}
t
) + U+(

{
h+

1,t, h
+
2,t

}
t
).

Comme on peut remarquer, il y a quatre opérateurs de prédiction, P−
1 /P+

1 et P−
2 /P+

2 ,
ainsi que deux opérateurs de mise à jour, U− et U+, utilisés pour obtenir les sous-bandes
temporelles. En raison de la symétrie du schèma, nous avons proposé d’utiliser des
opérateurs de prédiction symétriques pour générer les sous-bandes temporelles de détail
h−1,t/h

+
1,t et h−2,t/h

+
2,t :

P−
1 ({x5t−2, x5t}t) = αx5t−2 + (1 − α)x5t,

P+
1 ({(x5t+2, x5t}t) = αx5t+2 + (1 − α)x5t,

P−
2 ({x5t}t) = βx5t − (1 − β)x5t−5

P+
2 ({x5t}t) = βx5t − (1 − β)x5t+5.

Dans un premier cas, nous avons consideré les opérateurs de prédiction les plus sim-
ples pour les trames encadrant le GOP, c’est à-dire des opérateurs identité pour obtenir
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h−2,t/h
+
2,t et des opérateurs de prédiction bidirectionels pour les autres sous-bandes de

détail : 



h−1,t = x5t−1 −
1

2
(x5t−2 + x5t)

h+
1,t = x5t+1 −

1

2
(x5t+2 + x5t)

h−2,t = x5t−2 − x5t

h+
2,t = x5t+2 − x5t,

La sous-bande d’approximation est alors obtenue par :

lt = (1 − γ − 2δ)x5t + γx5t−1 + γx5t+1 + (δ − γ

2
)x5t−2 + (δ − γ

2
)x5t+2,

où δ et γ sont des paramètres dans l’intervalle (0, 1) qui peuvent être adaptés afin de
garantir l’existence du filtre passe-bas, c’est à dire L(−1) = 0, où L est la transformée en
z de lt.

Dans un deuxième cas, nous avons consideré une implantation avec une fenêtre glis-
sante (ou au fil de l’eau) pour la structure 5-bandes, c’est à-dire avec des opérateurs de
prédiction bidirectionnels pour toutes les trames de détail :





h−1,t = x5t−1 −
1

2
(x5t−2 + x5t)

h+
1,t = x5t+1 −

1

2
(x5t+2 + x5t)

h−2,t = x5t−2 −
1

2
(x5t + x5t−5)

h+
2,t = x5t+2 −

1

2
(x5t + x5t+5),

où les valeurs α = 1
2 et β = 1

2 correspondent ici au filtre passe-haut le plus selectif. La
sous-bande passe-bas est alors obtenue comme :

lt = (1 − γ − δ)x5t + γx5t−1 + γx5t+1 + (δ − γ

2
)x5t−2 + (δ − γ

2
)x5t+2 −

δ

2
x5t−5 −

δ

2
x5t+5.

La quantification étant appliquée de manière identique sur toutes les sous-bandes,
on a renormalisé les différentes sous-bandes temporelles pour être aussi proche que pos-
sible de la situation orthonormale. Les filtres normalisés ont été obtenus de la manière
suivante :

l̂t = kllt

ĥ−1,t = kh1h
−
1,t, ĥ+

1,t = kh1h
+
1,t

ĥ−2,t = kh2h
−
2,t, ĥ+

2,t = kh2h
+
2,t

Remarquons que nous considérons la même normalisation pour h−1,t/h
+
1,t et h−2,t/h

+
2,t, ceci

provenant de la symétrie des schémas de prédiction. Deux approches ont été considerées
pertinentes pour obtenir les constantes de normalisation pour les deux implantations
du schèma 5-bandes. D’un côté, nous avons cherché à préserver la norme unitaire des
réponses impulsionnelles des filtres intervenant dans la structure 5-bandes. D’un autre
côté, on veut préserver l’énergie de la séquence d’entrée. En particulier, si nous con-
sidérons l’erreur de quantification de chaque sous-bande d’approximation et de détail
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Figure 9: Courbes de débit-distorsion obtenues pour Hall monitor(CIF, 30Hz).

comme des variables indépendantes et identiquement distribuées, la somme des erreurs
de reconstruction de cinq trames consécutives doit être égale à la somme des erreurs de
quantification d’une sous-bande d’approximation et de quatre sous-bandes de détail :

σ2
x5t−2

+ σ2
x5t−1

+ σ2
x5t

+ σ2
x5t+1

+ σ2
x5t+2

= σ2
ľt

+ σ2
ĥ+
1,t

+ σ2
ĥ−

1,t

+ σ2
ĥ+
2,t

+ σ2
ĥ−

2,t

,

où σ2
a designe la variance de la trame a.

Comme illustré dans Fig. 9 et Fig. 10, le schéma proposé a des résultats semblables aux
bancs de filtres dyadiques de Haar et 5/3 et à la décomposition temporelle 3-bandes. En
outre, il offre une meilleure efficacité de codage pour les sous-bandes temporelles, con-
duisant alors à une meilleure scalabilité temporelle. Le schéma 5-bandes peut être utilisé
avec succès dans certaines applications, comme le codage des séquences de vidéosurveil-
lance, où l’activité est faible dans la plupart des cas.

Toutes les transformations temporelles proposées jusqu’à présent sont fondées sur
une approche linéaire du schéma lifting. Cependant, quand une séquence présente des
transitions complexes, cette hypothèse de linéarité ne se vérifie plus. Dans la suite, nous
allons présenter un schéma lifting de prédiction temporelle adaptative qui vise à atténuer
ce problème.

Schéma de prédiction adaptative pour le codage vidéo scalable

L’étape clé pour réduire la redondance temporelle est l’estimation de mouvement qui se
fait, généralement, par bloc. Même si une prédiction bidirectionnelle est appliquée, ou
des algorithmes puissants comme Hierarchical Variable Size Block Matching (HVSBM) [44]
sont utilisés, les effets de bloc sont encore présents. En outre, des effects de ringing sont
lisibles à bas débit et des artefacts peuvent être présents aussi bien dans les sous-bandes
passe-bas.

Afin d’éviter ces artefacts, des solutions ont été proposées pour la compensation
en mouvement, comme une mise à jour par moyenne pondérée [184] ou compensa-
tion en mouvement par chevauchement des blocs [211]. Dans la suite nous proposons
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Figure 10: Variation de YSNR pour les trames 26-50 de Hall monitor (CIF, 30Hz) à 192
kbs.

d’améliorer la prédiction des sous-bandes temporelles passe-haut en utilisant un banc de
filtres adaptatif.

Il y a divers filtres pour effectuer une decomposition adaptative des sous-bandes
[206, 92, 20]. Nous utilisons le filtre adaptatif à réponse impulsionelle finie basé sur
les moindres carrés (LMS) proposé dans [79]. Dans [79], le schéma d’adaptation est
proposé pour la compression d’images 2D. Dans la suite, nous proposons d’étendre la
méthode pour la prédiction temporelle compensée en mouvement dans un schéma de
codage vidéo t+ 2D .

Pour la trame x2t+1, un estimateur à réponse impulsionelle finie peut être conçu en
utilisant pour la prédiction un ensemble de pixels dans les trames voisines temporelle-
ment x2t et x2t+2 (à noter qu’aucune compensation en mouvement n’est impliquée à ce
point dans la prédiction) :

x̂2t+1(n) =
∑

k∈S
w2t,n,kx2t(n − k) +

∑

k′∈S′

w2t+2,n,kx2t+2(n − k
′) (3)

où les coefficients du filtre,w, sont trouvés de manière adaptative en utilisant l’algorithme
LMS [53]. Dans l’Eq. (3), les sommes sont menées dans le voisinage approprié, S et S ′,
dans les trames 2t et (2t+ 2), respectivement. L’estimateur adaptatif pour la sous-bande
de détail ht est illustré dans Fig. 11.

En considerant une compensation en mouvement, l’Eq. (3) devient:

x̂2t+1(n) =
∑

k

w2t,n,kx2t(n − k − v
+
t (n)) +

∑

k

w2t+2,n,kx2t+2(n − k − v
−
t (n)) (4)

Une grande souplesse pour le schéma d’adaptation est atteint par la variation du nom-
bre de pixels sélectionnés pour l’adaptation, comme l’illustre Fig. 12. Les résultats
expérimentaux illustrés dans Fig. 13 montrent que même pour une adaptation avec deux
pixels, la qualité objective donnée par le PSNR des trames reconstruites est améliorée.
Un compromis entre l’efficacité de compression et la complexité supplémentaire venant
d’une plus grande fenêtre d’adaptation peut être réalisé, selon l’application cible. Des
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Figure 11: Estimateur adaptatif.

Figure 12: Schéma d’adaptation avec 2, 10, 18 et 32 pixels.

améliorations du PSNR ont été obtenues pour les séquences avec un contraste élevé en-
tre divers segments dans la séquence et des conditions d’illumination variées.

Codage vidéo pour les séquences multitemporelles et multispectrales

On a vu dans les sections précédentes que les schémas de codage basé lifting sont très effi-
caces dans la compression des images [8] et de la vidéo [211]. Maintenant nous allons con-
centrer nos intérêts sur un autre type de données, les séquences satellitaires multispec-
trales et multitemporelles, comme actuellement, des capteurs optiques couvrent souvent
une région localisée plusieurs fois par an. Ainsi, il est indispensable de fournir des outils
qui soient capables de compresser ces séquences multispectrales et multitemporelles afin
de stocker de grandes quantités de données. La compression des images hyperspectrales
et multispectrales a été longement étudiée en utilisant plusieurs techniques, telles que le
codage par ondelettes [21, 76], adaptatif [10], DCT [85], DPCM [51, 159] ou par modèles
statistiques [66].
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Figure 13: Courbes de débit-distorsion obtenues pour la séquence Harbour (4CIF, 60 Hz).

Comme dans le cas de la compression vidéo, où on a réduit la redondance dans
le domaine temporel et spatial, les techniques de codage multispectral profitent de la
présence de deux sources de redondance : la corrélation spatiale entre les pixels voisins
dans la même bande spectrale et la corrélation spectrale entre les différentes bandes
dans la même localisation spatiale. Plusieurs stratégies peuvent alors être adoptées pour
exploiter séparément ou conjointement ces sources de redondance. La transformée de
Karhunen-Loève (KLT) est généralement préférée comme une première étape, en raison
de sa capacité de décorrelation, tandis que pour la deuxième étape, les transformées par
ondelletes ou DCT ont été largement étudiées. En particulier, l’état-de-l’art JPEG2000 [8]
peut être appliqué avec succès au codage intra-bande (spectrale), car il peut fortement
compresser les images générées par la KLT avec une distorsion visuelle négligeable.

On a évalué la performance du codeur d’images JPEG2000 [8] et d’un codeur vidéo
t + 2D basé ondelettes [210] pour la compression des séquences multispectrales et mul-
titemporelles aquises par SPOT 1, 2 et 4, où chaque image est composée de 3 bandes
spectrales. Une séquence a été construite avec des images de taille 3000 × 2000 pixels.
Pour l’approche par codage vidéo, nous avons effectué une decomposition t+2D dans le
domaine spatio-temporel, suivi par une décorrelation KLT dans le domaine spectral. A
noter que dans la dernière, même si aucun mouvement est estimé, l’algorithme de codage
exploite la nature 3D de la décomposition, tant dans la répartition du débit, qu’au cours
du codage entropique. Pour les expériences, nous avons utilisé pour le filtrage temporel
le banc de filtres biorthogonal 5/3 et la DCT, pour leur efficacité de codage. Chaque
pixel est codé sur 10 bits; par conséquent, la mesure de distorsion utilisée pour présenter
les résultats est légèrement différente de celle utilisée dans la compression d’images ou
vidéo, et on l’a défini comme suit :

PSNR = 10 log10

(
10242

MSE

)
,

où MSE est l’erreur quadratique moyenne (Mean Square Error).
Le codage intra avec EZBC surpasse EBCOT en termes de gain de codage dans le cas
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Débit (bpp) JPEG2000 + WT JPEG2000 + DCT t+2D (EZBC)

PSNR (dB) Lossless > 70 > 60

Bande 1 3.22 3.78 2.46

Bande 2 3.55 4.07 2.84

Bande 3 4.82 4.42 4.42

Total 11.59 12.27 9.72

Table 1: Taux de compression avec une décorrelation temporelle.

de la compression sans perte. En outre, il a été mis en évidence que les décorrelations tem-
porelles et spectrales peuvent être exploitées séparément ou conjointement afin d’augmen-
ter l’éfficacité de compression. Toutefois, le progrès réalisé par ces méthodes de décorrela-
tion ne diminue pas sensiblement le débit nécessaire pour encoder sans perte ces séquences.

Codage spatial

Dans un schéma de codage par ondelettes t+ 2D, après la réduction de redondance tem-
porelle par des techniques du type MCTF, les corrélations spatiales seront exploitées par
des transformées en ondelettes. Les schémas de codage fondés sur les décompositions
par ondelettes ont prouvé leur efficacité pour le codage spatial et ont été utilisées, par
exemple, dans le codeur d’images JPEG2000 [8]. L’application des transformées en on-
delettes pour le traitement spatial des sous-bandes temporelles est le plus souvent fondée
sur une décomposition séparable [125].

Les lignes et les colonnes dans les sous bandes temporelles sont traitées indépendam-
ment, et les fonctions de la base sont simplement des produits tensoriels des fonctions
unidimensionnelles correspondantes. Ces décompositions sont simples à construire et
ont une faible complexité de calcul, mais elles ne peuvent pas capturer toutes les pro-
priétés géometriques d’une trame texturée.

L’inefficacité des transformées en ondelettes 2D classiques réside principalement dans
leur isotropie spatiale. Cette isotropie se traduit par des opérations de filtrage et de sous-
échantillonage effectuées de la même manière selon les directions verticales et horizon-
tales à chaque échelle. En conséquence, les filtres obtenus par produit tensoriel de filtres
1D sont isotropiques à chaque échelle.

Selon une étude concernant la caractérisation des fréquences des sous- bandes tem-
porelles, les spectres fréquentiels des détails temporels suivent une distribution approx-
imativement uniforme, contrairement aux sous-bandes d’approximation. Comme le fil-
trage MCTF produit un nombre significatif de trames de détails en comparaison du nom-
bre total de trames, une représentation parcimonieuse est importante pour l’efficacité
globale du schéma de codage. Les paquets d’ondelettes constituent une solution pos-
sible pour la décorrelation des sous-bandes temporelles de détail. Cependant, le fait
d’avoir une décomposition différente pour chaque trame peut être très coûteux lors de
l’encodage, et également pour utiliser la décomposition dans le flux binaire compressé.

Nous proposons alors de trouver une représentation conjointe par paquets d’ondelet-
tes pour un ensemble de plusieurs trames. De plus, nous avons créé un algorithme peu
complexe pour le calcul de la meilleure base pour les décompositions biorthogonales.
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Représentation conjointe par paquets d’ondelettes pour le codage vidéo

Une faiblesse du codage vidéo basé MCTF provient du filtrage spatial. En effet, la plu-
part des schémas de codage t + 2D ne distinguent pas les caractéristiques des approx-
imations temporelles de celles des trames de détails et utilisent dans les deux cas une
décomposition dyadique. Il a été montré que le banc de filtres 9/7 donne de bons résultats
pour le codage d’images [19, 8], alors il paraı̂t naturel de l’utiliser pour la décomposition
spatiale des trames d’approximation. A cause de la grande quantité de fréquences hautes
et intermédiaires, les trames de détails ne sont pas adaptées pour être décomposées par
ondelettes.

Dans le paradigme du codage vidéo en sous-bandes, la proportion des trames de
détails en rapport avec le nombre total de trames est significative. Par conséquent, une
représentation spatiale efficace et parcimonieuse de ces trames est primordiale.

Les paquets d’ondelettes généralisent la décomposition dyadique utilisée dans les
schémas de codage classiques en itérant les décompositions sur les sous-bandes de détails.
Pour les images fortement texturées, ce type de décompositions adaptatives augmente
les performances débit-distorsion. L’idée d’utiliser des paquets d’ondelettes 3D pour la
compression vidéo a été développée dans des travaux de K. Ramchandran et al. [156]
et T. Schell [162]. Un codeur vidéo hybride utilisant des décompositions par paquets
d’ondelettes a été également proposé par Cheng, Li et Kuo [42], où les paquets sont
utilisés pour décomposer la DFD, dont les caractéristiques sont proches de celles obtenues
dans une décomposition temporelle. Nous proposons dans cette thèse une représentation
conjointe pour plusieurs images.

Comme dans le cas des images individuelles, le critère entropique de Wickerhauser
[208] peut être utilisé pour la sélection de la base de décomposition en paquets d’ondelettes
d’un ensemble de trames, grâce à sa propriéte d’additivité. Pour un groupe de trames Sj ,
il faut d’abord calculer l’entropie de la représentation dans l’ensemble des bases du GOP.
Dans le cas orthonormal, l’entropie associée peut simplement être trouvée par :

E(Sj) =

nj∑

i=1

E(fi,j) (5)

où fi,j , i ∈ {1 . . . nj} représentent les nj trames dans le GOP. Dans le cas biorthogonal, on
peut profiter des valeurs de l’entropie déjà calculées afin d’obtenir une formule récursive
pour le critère correspondant à l’union des bases :

E(s,
⋃

j′>j,m′

B∗
j′,m′) =

∑

j′,m′

E(s,B∗
j′,m′)

∑

j′,m′

Nj′,m′

+ ln(
∑

j′,m′

Nj′,m′) (6)

où Nj′,m′ est l’énergie des coefficients de la base B∗
j′,m′ .

Une fois que l’entropie correspondant à Sj est obtenue, un algorithme bottom-up est
utilisé pour la sélection de la meilleure base de décomposition [49]. Dans le cas dyadique,
au niveau j, on compare le coût associé à la meilleure base du nœud courant, Bj,m, avec
celui de ses successeurs, Q(s,B∗

j+1,2m) et Q(s,B∗
j+1,2m+1). Comme la fonction de coût est

considérée additive, si :

Q(s,Bj,m) ≤ Q(s,B∗
j+1,2m) + Q(s,B∗

j+1,2m+1), (7)
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Figure 14: Décomposition conjointe en paquets d’ondelettes par sous-bande temporelle.

YSNR (dB) for Harbour (4CIF, 60Hz) sequence

Bitrate (kbs) 1536 1780 2048 2560 3072

5-lev. dyadic Wavelet 30.834 31.228 31.726 32.489 33.035

Ortho.WP/TS 31.068 31.474 31.968 32.718 33.296

Ortho.WP/GOP 31.111 31.476 31.969 32.733 33.312

Biorthog.WP/TS 31.220 31.732 32.191 32.803 33.381

Biorthog.WP/GOP 31.303 31.941 32.235 32.836 33.448

Table 2: Tableau débit-distorsion pour la séquence Harbour(4CIF, 60Hz).

on peut alors conclure que la meilleure base pour le nœud (j,m) est B∗
j,m = Bj,m, et donc

les nœuds (j + 1, 2m) et (j + 1, 2m+ 1) seront supprimés dans l’arbre de décomposition.
En revanche, ils sont gardés dans cet arbre si l’Eq. (7) n’est pas vérifiée.

Nous avons proposé deux possibilités pour utiliser les paquets d’ondelettes dans la
décomposition spatiale de sous-bandes temporelles de détail. La première approche est
d’utiliser une décomposition conjointe par paquets d’ondelettes pour toutes les trames
appartenant à un niveau de décomposition temporelle donné (comme illustré dans Fig. 14).
Cette méthode provient de l’hypothèse que les trames appartenant à un certain niveau de
décomposition ont, plus ou moins, les mêmes caractéristiques fréquentielles. La deuxième
approche est d’avoir une description conjointe en paquets d’ondelettes pour chaque unité
de codage ; c’est à dire, une base unique pour toutes les trames de détail dans un GOP
(comme il peut être vu dans Fig. 15).

Il peut être facilement remarqué (Tab. 2) que dans tous les cas la décomposition des
trames temporelles de détail en utilisant les paquets d’ondelettes donne des meilleurs
résultats, en ayant un gain entre 0.1 et 0.9 dB sur le filtrage dyadique classique. En
outre, on peut observer que l’utilisation d’une décomposition biorthogonale par paquets
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d’ondelettes améliore légèrement les résultats par rapport à la base orthogonale (un gain
moyen autour de 0.1 dB). Les petites différences entre les résultats obtenus avec la base
de paquets d’ondelettes appliquée sur chaque niveau de sous-bandes temporelles et sur
chaque groupe de trames dans un GOP peuvent être expliquées par le débit supplémen-
taire nécessaire dans le premier cas pour décrire l’arbre de décomposition à chaque niveau.

Toutefois, trouver la meilleure représentation en paquets d’ondelettes, même pour
une seule base par groupe de trames, peut être une tâche coûteuse en complexité. Les
décompositions spatiales en ondelettes et paquets d’ondelettes entièrement séparables
qui seront présentées dans la section suivante préservent la simplicité de la transformée
ondelette dyadique classique et fournissent une meilleure représentation des disconti-
nuités dans les sous-bandes temporelles de détail.

L’application de la transformée en ondelettes et paquets d’ondelettes entièrement
séparables dans le codage vidéo

Beaucoup de décompositions anisotropes ont été proposées comme solution au problème
du codage des textures qui ont une répartition homogène d’énergie, comme les ban-
delettes [114], les wedgelettes [64], les curvelettes [63], les contourlettes [62] etc. Cepen-
dant, l’implantation de telles transformées nécessite souvent un suréchantillonage et a
une plus grande complexité comparée aux transformées en ondelettes classiques. Nous
avons proposé de séparer complétement les transformées verticales et horizontales de
la transformée en ondelette classique, en obtenant donc un représentation fréquentielle
fortement anisotrope qui permet une reconstruction parfaite.

Figure 15: Décomposition conjointe en paquets d’ondelettes par GOP.
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En règle générale, dans le codage des images, une décomposition 2D isotrope est
utilisée. Cela résulte du produit tensoriel à chaque niveau de la décomposition de bases
1D ayant la forme :

{φJ,k(t), k ∈ Z} ∪
⋃

j≤J

{ψj,k(t), k ∈ Z} , (8)

où J est le nombre maximal de niveaux de décomposition. Cette alternance entre les
décompositions horizontales et verticales à chaque niveau entraı̂ne des sous-bandes car-
rées, c’est à dire la décomposition de Mallat [125]. Ainsi, pour une sous-bande, le nombre
de niveaux de décomposition dans la direction horizontale est le même que le nombre de
niveaux de décomposition dans la direction verticale. Ce processus est justifiée par les
propriétés naturelles des images réelles : les caractéristiques de leur texture sont souvent
très semblables dans toutes les directions.
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Figure 16: Trois niveaux de décomposition spatiale pour la séquence Mobile (CIF, 30Hz)
: la transformée en ondelettes dyadique (WT) (a) et son arbre quaternaire (b); la trans-
forméé en ondelettes entièrement séparable (FSWT) (c) et ses deux arbres binaires (la
décomposition verticale est représenté par ligne continue et l’horizontale par ligne inter-
rompue)(d).

La construction de la transformée en ondelettes dyadique 2D et son arbre quaternaire
correspondant est illustrée en Fig. 16(a, b). Les sous-bandes résultant de la décomposition
quaternaire sont notées à chaque niveau par LF, LH, HL et HH. Fig. 16(c, d) représente
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la décomposition en ondelettes entièrement séparable (Fully Separable Wavelet Transform -
FSWT) et son arbre binaire, correspondant à la concaténation des arbres de décompositions
horizontales et verticales. Les sous-bandes passe-bas et passe-haut résultant de la trans-
formée en ondelettes 1D (filtrage horizontal ou vertical) sont notées par L et H, respec-
tivement.

Une base d’ondelettes 2D entièrement séparable (BFS) est donnée par les produits
tensoriels de toutes les paires d’ondelettes et fonctions d’échelle :

BFS =
(
{φJ,k(x)}k ∪ {ψj,k(x)}j≤J,k

)
⊗
(
{φJ,k(y)}k ∪ {ψj,k(y)}j≤J,k

)

= {φJ,k1(x)φJ,k2(y)}k1,k2
∪
⋃

j1≤J

{ψj1,k1(x)φJ,k2(y)}k1,k2
∪

⋃

j2≤J

{φJ,k1(x)ψj2,k2(y)}k1,k2
∪

⋃

j1,j2≤J

{ψj1,k1(x)ψj2,k2(y)}k1,k2

(9)

Cela signifie qu’on peut trouver la FSWT simplement par l’exploitation de chaque
axe séparément en utilisant une transformée unidimensionnelle. En revanche, une base
d’ondelettes (B) est donnée par les produits tensoriels de toutes les paires d’ondelettes et
fonctions d’échelle à la même échelle :

B = {φJ,k1(x)φJ,k2(y)}k1,k2
∪
⋃

j≤J

{ψj,k1(x)φj,k2(y), φj,k1(x)ψj,k2(y), ψj,k1(x)ψj,k2(y)}k1,k2

(10)

(a) (b)

Figure 17: Quatre niveaux de décomposition spatiale pour les trames de détail dans la
séquence Bus(CIF, 30Hz) : (a) la transformée en paquets d’ondelettes (WPT); (b) la trans-
formée en paquets d’ondelettes entièrement séparable (FSWPT).

La sélection de la meilleure base de décomposition en paquets d’ondelettes entièrement
séparables est réalisée à l’aide d’un algorithme bottom-up. Après une décomposition de
l’image en suivant les deux orientations spatiales, l’algorithme bottom-up est d’abord ap-
pliqué sur la direction horizontale et la sélection de la meilleure base pour chaque nœud
est faite en comparant les fonctions de coût dans l’arbre binaire de la décomposition H ,
entre le nœud courant et ses descendants :

Q(f,BFS
j1,j2,k1,k2) ≤ Q(f, B̃FS

j1+1,j2,2k1,k2
∪ B̃FS

j1+1,j2,2k1+1,k2
),∀j2 (11)
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Figure 18: Courbes débit-distorsion pour la séquence Mobile (CIF, 30Hz) avec deux
niveaux de décomposition spatiale.

Une fois que la meilleure base pour la direction horizontale B̃FS est obtenue, on passe
à la sélection de la meilleure base pour la direction verticale, tout en gardant fixe l’arbre
horizontal optimal et en utilisant le même critère de coût pour l’arbre vertical. Ainsi si :

Q(f, B̃FS
j1,j2,k1,k2

) ≤ Q(f,
˜̃B

FS

j1,j2+1,k1,2k2
∪ ˜̃B

FS

j1,j2+1,k1,2k2+1),∀j1 (12)

on peut conclure que la meilleure base pour le nœud (j1, j2, k1, k2) est B̃FS =
˜̃B

FS

.
Comme montré par les résultats experimentaux de la Fig. 18, la séparation fréquencielle

2D la plus fine donnée par les transformées entièrement séparables permet de mieux
saisir l’orientation des détails spatiaux, tout en entraı̂nant une meilleure représentation
de la texture vidéo, en comparaison avec les décompositions dyadiques classiques.

Optimisation débit-distorsion en utilisant

des coupures de graphes

Les algorithmes de coupure minimale sur graphes sont apparus comme un outil de
plus en plus utile pour résoudre des problèmes d’optimisation dans le traitement du
signal. Habituellement, l’utilisation de coupures de graphes est due à l’une des deux
raisons suivantes. Premièrement, les coupures de graphe permettent une interprétation
géométrique : dans certaines conditions une coupure sur un graphe peut être vue comme
une hypersurface dans l’espace N×D. Ainsi, de nombreuses applications dans la vi-
sion par ordinateur utilisent les algorithmes de coupure minimale comme des outils
pour le calcul des hypersurfaces optimales. Deuxièmement, les coupures de graphe
sont également utilisées comme un outil puissant dans les problèmes de minimisation
d’énergie pour une classe assez large d’énergies binaires et non-binaires qui surviennent
fréquemment en vision. Dans certains cas, les coupures de graphe produisent des solu-
tions globalement optimales.
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Figure 19: Trois niveaux de décomposition en contourlets (a) et la répartition des quan-
tificateurs par sous-bandes donnée par la coupure de graphe (b).

Pour optimiser l’allocation de débit dans les problemes de compression d’images,
nous avons modélisé une fonctionelle lagrangienne de débit-distorsion qui peut être min-
imisée par des coupures de graphe. Pour la minimisation d’une fonctionnelle correspon-
dant à des décompositions non-orthogonales, nous avons étudié trois solutions possibles,
par la modélisation de plusieurs aspects des interactions de l’énergie. Les résultats sont
présentés dans le contexte de la compression d’images par sous-bandes, mais la méthode
d’optimisation pourrait également être utilisée conjointement avec les algorithmes de
codage vidéo.

Minimisation d’énergie en utilisant les coupures de graphes

Comme décrit dans [107, 30, 31], quelques problèmes dans le traitement du signal peu-
vent être exprimés naturellement en termes de minimisation d’énergie. Chacune de ces
méthodes consiste à modéliser un graphe pour un type d’énergie, telles que la coupure
minimale minimise globalement ou localement cette fonctionnelle d’énergie. Générale-
ment, ces constructions graphiques sont denses et complexes, et modélisent la fonction
d’énergie au niveau du pixel. Par exemple, dans [34, 29], la coupure de graphe fournit
une formulation propre, souple, pour la segmentation des images. Le graphe fournit
donc une manière commode de représenter les décisions locales pour la segmentation et
permet un ensemble de mécanismes informatiques puissants pour extraire la segmenta-
tion globale de ces similitudes simples, locales entre les pixels. Des bons résultats dans
l’optimisation d’énergie en utilisant les coupures de graphes ont été également obtenus
dans la restauration des images [155, 55, 56], ainsi que dans le traitement de la vidéo
stéréo [32], la segmentation du mouvement [163], la synthèse des textures des images et
de la vidéo [112, 219] etc.

Nous proposons d’utiliser le mécanisme de coupures de graphes pour la minimi-
sation de la fonction de débit-distorsion. Dans ce but, nous avons conçu un graphe
spécialisé capable de représenter une décomposition multirésolution et prendre en con-
sidération les corrélations entre les sous-bandes dans une réprésentation pas forcement
orthogonale.

Généralement, pour un graphe G = (V,E,W ), où V /E/W répresente la série de
sommets/arêtes et W représente les capacités des arêtes, et qui a 2 sommets spéciaux
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(terminaux), q1, q2 ∈ V , une coupure q1 − q2 est définie comme la partition de sommets
de V dans deux sous-ensembles disjoints Q1 et Q2 tels que q1 ∈ Q1 et q2 ∈ Q2. Le coût de
la coupure est donnée par la somme des capacités w de toutes les arêtes reliant Q1 à Q2,
i.e. :

C(Q1, Q2) =
∑

u∈Q1,v∈Q2,(u,v)∈E

w(u, v) (13)

La coupure minimale est ainsi trouvée comme la coupure ayant le coût minimal. Il y a
des méthodes d’implantation rapides, polynomiales en temps, pour trouver la coupure
minimale, notamment l’algorithme de Ford et Fulkerson [75].

On va considérer maintenant le graphe G = (V,E,W ) avec les capacités W , mais
qui n’a pas seulement deux, mais un ensemble de nœuds (sommets) terminaux, Q ∈ V .
Un sous-ensemble d’arêtes EC ∈ E est appelé une coupure multiple (multiway cut) si les
nœuds terminaux sont complètement séparés dans le graphe induit G(EC) = (V,E −
EC ,W ) et aucun sous-ensemble de EC ne sépare les terminaux en EC . Si C est le coût
de la coupure multiple, trouver la coupure minimale multiple est équivalent à trouver
la coupure avec le coût minimal. En [33], Y. Boykov et al. trouvent la coupure minimale
dans un graphe avec terminaux multiples en trouvant succesivement la coupure min-
imale entre chaque terminal et le reste des terminaux. Cette méthode d’approximation
garantit une minimisation locale de l’énergie, très proche de la solution optimale pour les
énergies concaves, et donne une solution globale pour la minimisation des fonctionnelles
convexes. Comme le Lagrangien débit-distorsion réside sur une courbe convexe (c’est à
dire D(R)), nous proposons d’utiliser cette méthode pour son optimisation.

Minimisation du Lagrangien débit-distorsion pour la compression d’images

Prenons maintenant le problème de codage d’une image à un débit donné Rmax, avec
une distorsion minimale D. Chaque image est constituée d’un nombre fixe d’unités de
codage,X (par exemple, sous-bandes spatiales ou les blocs dans les sous-bandes), chacun
d’entre eux codé avec un quantificateur qi, qi ∈ Q, oùQ est l’ensemble de quantificateurs.
On note par Di(qi) la distorsion de la sous-bande i quand celle-là est quantifiée avec qi,
et par Ri(qi) le nombre de bits requis pour son codage. Le problème peut maintenant
être formulé comme : trouver min

∑
iDi(qi), tels que

∑
iRi(qi) = R ≤ Rmax. Dans

la formulation lagrangienne, ce problème d’optimisation peut être écrit dans la forme
équivalente :

min
X∑

i=1

(Di(qi) + λRi(qi)) , R ≤ Rmax (14)

où le choix de λ mesure l’importance relative de la distorsion, respectivement du débit
pour l’optimisation, et dont une valeur optimale peut être déterminée par une recherche
binaire. L’avantage de la formulation du problème dans Eq. (14) est que la somme et
l’opérateur minimum peuvent être échangés :

X∑

i=1

min (Di(qi) + λRi(qi)) , R ≤ Rmax (15)

Cette formulation révèle évidemment que l’optimisation globale peut maintenant être
menée indépendamment pour chaque unité de codage, en rendant possible une mise en
œuvre efficace.
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Modélisation du graphe avec une distorsion de prémier ordre

La distorsion D entre l’image originale x, et l’image quantifiée x̂ peut être écrite comme
la norme L2, c’est à dire : D = ‖x − x̂‖2. Pour les transformées orthonormales, cette
norme peut être estimée de manière équivalente dans le domaine de la transformée.
Toutefois, pour une transformée arbitraire (biorthogonale, redondante, non-linéaire etc.)
cette propriété n’est plus vérifiée. Dans la suite, on va montrer comment la distorsion
peut être approximée, et ensuite estimée dans le domaine spatial, tout en permettant une
modélisation graphique des interactions entre les sous-bandes. Si, dans l’image recon-
struite x̂, on souligne la contribution de chaque sous-bande, x̂ =

∑
i x̂i, où x̂i est la con-

tribution par sous-bande (i.e., l’image reconstruite où seule la i-ème sous-bande est quan-
tifiée et les autres sous-bandes sont mises à zéro), alors nous pouvons aussi écrire l’image
de la même façon, x =

∑
i xi. Toutefois, ici xi est complètement arbitraire. Pour une base

linéaire, il peut devenir xi =
∑

k 〈x, ẽk,i〉 ek,i, où ẽk,i, ek,i sont les éléments d’analyse,
respectivement de synthèse, de la base biorthogonale. Alors, on a :

D =

∥∥∥∥∥
∑

i

(x̂i − xi)

∥∥∥∥∥

2

=
∑

i,i′

〈x̂i − xi, x̂i′ − xi′〉 (16)

Dans une première approche, on peut se limiter aux termes diagonaux, i.e. :

DI
∼=
∑

i

‖xi − x̂i‖2 =
∑

i

Di(qi) (17)

ce qui revient à estimer la distorsion entre la contribution à l’image et à l’image quantifiée
de seulement la i-ème sous-bande. Cela signifie que nous pouvons reconstruire l’image
à partir des seuls coefficients de la i-ème sous-bande (les autres étant fixés à zéro) pour
obtenir xi, et des seuls coefficients quantifiés de la i-ème sous-bande pour obtenir x̂i.

Dans [33] sont présentés deux algorithmes utilisant les coupures des graphes et capa-
bles de minimiser une fonctionelle d’énergie ayant la forme :

E(f) = Edata(f) + Esmooth(f) (18)

où Esmooth est une contrainte de lissage, tandis que Edata mesure la distorsion introduite
par la répartition des quantificateurs f entre les sous-bandes. Parce queEdata peut être ar-
bitrairement choisi, avec seulement une contrainte de positivité, on va le définir comme:

Edata =
∑

i

(Di(qi) + λRi(qi)). (19)

On peut définir :

Esmooth =
∑

n1,n2∈N
Vn1,n2(qn1 , qn2) (20)

où N représente le système de voisinage des nœuds, et Vn1,n2(qn1 , qn2) mesure le coût
d’attribution des quantificateurs qn1 , qn2 aux nœuds adjacents n1, n2. On définit V comme
la pénalité d’interaction de Potts, i.e. :

V = βT (qn1 6= qn2) (21)

où T est un opérateur booléen (par exemple, sa valeur équivaut 1 si son argument est
vrai et 0 autrement), et β est une constante qui enforce ou diminue le lissage. Comme
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il peut être vu, la définition de Esmooth est consistante, comme pour deux sous-bandes
fortement corrélées le même quantificateur est imposé.

Un modèle simple de graphe G = (V,E) pour cette fonctionnelle d’énergie peut
être obtenu si on définit les sommets normaux (réguliers) comme les sous-bandes de la
décomposition (X), et qui sont reliés entre eux en fonction de leur position géométrique
dans le plan 2D (donc (E −XQ)-liens réguliers). Chaque nœud terminal q ∈ Q peut être
lié à tous les sommets non-terminaux (donc (XQ)-liens terminaux potentiels) (Fig. 19
montre l’attribution des quantificateurs d’après la coupure, c’est à dire, la sortie de l’algo-
rithme). Pour un lien terminal (i.e., un lien entre un quantificateur q et un sommet
régulier i correspondant à une unité de codage), le coût ( la capacité) est donné par la
distorsion apportée par ce quantificateur à la distorsion totale de l’image et le nombre de
bits nécessaires pour transmettre la sous-bande quantifiée i, i.e. : Di(qi) + λRi(qi). Pour
un lien régulier (i.e., un lien entre deux sommets réguliers voisins), le coût est 0 si les
deux nœuds sont quantifiés avec le même quantificateur ou β autrement. En outre, ce
coût est dynamiquement calculé pour chaque partitionnement possible f du graphe.

Modélisation du graphe avec une distorsion de corrélation croisée

Dans une première approche, nous avons consideré que les terms diagonaux dans l’appro-
ximation de la distorsion D entre l’image originale, x, et l’image quantifiée, x̂ :

D ∼= DI =
∑

i

‖xi − x̂i‖2 . (22)

Dans une deuxième approche, on peut aussi considérer les termes de la corrélation croisée,
i.e. :

D ∼= DI +
∑

i

∑

i′∈N (i)

〈x̂i − xi, x̂i′ − xi′〉 (23)

où N (i) est le voisinage de la sous-bande i, contenant les sous-bandes fortement corrélées
avec la sous-bande i. En effet, étant donné le support fini des ondelettes, plus les sous-
bandes sont proches en amplitude et en fréquence, plus la corrélation entre elles est forte.
Eq. (23) peut s’écrire comme :

D =
∑

i

‖xi − x̂i‖2

︸ ︷︷ ︸
Di

+
∑

i

∑

i′∈N (i)

〈x̂i − xi, x̂i′ − xi′〉︸ ︷︷ ︸
Di,i′

(24)

Le deuxième terme est le plus complexe (la transformée inverse plus les produits entre
les images d’erreur), qui peut toutefois être divisé par deux, notant que Di,i′ = Di′,i et
donc :

D ∼=
∑

i

(
Di + 2

∑

i>i′

Di,i′

)
(25)

Pour Di,i′ on a besoin de calculer l’erreur entre l’image reconstruite à partir de la i-ème
sous-bande (xi) et celle reconstruite à partir de la i-ème sous-bande quantifiée (x̂i) (de
même pour la sous-bande voisine i′) et ensuite calculer le produit croisé.

La minimisation de la fonction d’énergie définie ci-dessus est équivalente à trou-
ver la meilleure répartition des quantificateurs par sous-bandes. Le graphe que nous
avons conçu pour résoudre ce problème a comme sommets réguliers l’ensemble des sous-
bandes spatiales et l’ensemble des quantificateurs en tant que nœuds terminaux, où les
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Figure 20: Modélisation de graphe par blocs : (a) deux niveaux de décomposition spatiale
en ondelettes avec quatre blocs par sous-bande et (b) modélisation du réseau de nœuds
réguliers.

sous-bandes sont liées par le système de voisinage N . Chaque nœud terminal peut être
lié à tous les nœuds non-terminaux, vu toutes les possibilités de quantification pour les
sous-bandes spatiales (c’est à dire, G = (V,E), où V = X ∪ Q et E = EN ∪ EQ, EN

dénotant les arêtes régulieres entre les sommets réguliers dans le système de voisinage
N et EQ les liaisons entre les nœuds réguliers et les quantificateurs). On peut distinguer
deux types de connexions : EN et EQ. On définit les capacités pour les liens des quan-
tificateurs EQ en termes de coût débit-distorsion; ainsi, le coût associé à l’arête reliant la
sous-bande x au quantificateur q est défini comme wx,q = Dx(q) + Rx(q). Pour un lien
appartenant à l’ensemble EN , le coût associé est donné par la distorsion de corrélation
croisée, c.-à-d. : wxi,xi′

= 〈x̂i − xi, x̂i′ − xi′〉, i′ ∈ N (i).
Ainsi la fonction que nous voulons minimiser peut être écrite sous la forme :

min
∑

i



‖xi − x̂i‖2 + λR(i)︸ ︷︷ ︸

Edata(i)

+
∑

i′∈N (i)

〈x̂i − xi, x̂i′ − xi′〉

︸ ︷︷ ︸
Esmooth(i)




(26)

Maintenant on établit la correspondance entre notre graphe et la coupure multiple.
Dans la Fig. 19 est illustré le graphe induit G(EC) = (V,E − EC) correspondant à une
coupure multiple EC sur G. On peut remarquer que dans le graphe induit, il devrait y
avoir exactement un lien terminal pour chaque nœud régulier d’une sous-bande.

Modélisation du graphe avec une distorsion de corrélation croisée au niveau des blocs

Dans la suite, nous proposons d’estimer la distorsion au niveau des blocs (Fig. 20). Ce
changement vient naturellement, en sachant que plus l’unité de codage est petite, plus
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ses coefficients sont corrélés en amplitude. Au niveau des blocs, Eq. (26) devient :

min
X∑

i=1

Nb∑

j=1

‖xi,j − x̂i,j‖2 + λR(i, j)︸ ︷︷ ︸
Edata(i,j)

+

∑

i′∈N (i)

〈
x̂i,j − xi,j , x̂i′,j − xi′,j

〉
+

∑

j′∈N (j)

〈
x̂i,j − xi,j , x̂i,j′ − xi,j′

〉

︸ ︷︷ ︸
Esmooth(i,j)

(27)

où X , respectivement Nb représentent le nombre de sous-bandes, respectivement les
blocs dans chaque sous-bande; xi,j est l’image reconstruite en considerant uniquement
le bloc j de la sous-bande i;

〈
x̂i,j − xi,j , x̂i′,j − xi′,j

〉
représente la distorsion de corrélation

croisée induite par le bloc j dans les sous-bandes voisines i′ ∈ N (i);
〈
x̂i,j − xi,j , x̂i,j′ − xi,j′

〉

mesure la corrélation entre les blocs voisins dans une sous-bande donnée i, avec j′ ∈
N (j).

Notre graphe aura cette foisB = X×Nb sommets réguliers. Le système de voisinage,
N , contient maintenant deux types de liens réguliers entre les blocs : ENM

(c’est à dire,
liens de corrélation entre les mêmes blocs placés dans des sous-bandes voisines dans la
décomposition multirésolution) et ENG

(c’est à dire, liens entre les blocs voisins dans la
même sous-bande). Le modèle géométrique peut être décrit comme : G = (V,E) où
V = B ∪Q et E = EN ∪EQ, EN = ENM

∪ENG
et Q/EQ représente l’ensemble des quan-

tificateurs/ les liens entre les nœuds réguliers donnés par les blocs et les quantificateurs.
Pour les liens terminaux, EQ, les capacités sont données par les coûts directs en termes
de distorsion et de débit introduits par la quantification (c’est à dire, le lien entre le bloc b
et le quantificateur q, (b, q), a le coût associé wb,q = Db(q)+Rb(q)). La capacité entre deux
blocs réguliers voisins ((bi, bi′) ∈ ENM

ou (bj , bj′) ∈ ENG
) est définie par la distorsion de

corrélation croisée induite par la quantification courante de ces blocs.

Application à la compression d’images par sous-bandes

Les modèles de minimisation en utilisant les coupures de graphe proposés pour l’optimi-
sation du Lagrangien débit-distorsion ont été appliqués à la compression d’images par
sous-bandes.

Notre méthode semble faire mieux face à des décompositions biorthogonales telles
que le schéma de pondération classique, basé sur les caractéristiques du banc de filtres
de synthèse (Fig. 21), effectué par JPEG2000. Les résultats expérimentaux montrent que
l’algorithme d’allocation débit-distorsion basé sur les coupures de graphes peut coder
efficacement les coefficients de la transformée contourlet à bas débit (Fig. 22), tout en
améliorant la qualité visuelle et numérique (PSNR). Par ailleurs, la méthode proposée
peut être aussi employée avec des quantificateurs vectoriels.
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Figure 21: Courbes de débit-distorsion pour Barbara avec une décomposition en on-
delettes 5/3.
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Figure 22: Courbes de débit-distorsion pour Mandrill avec une décomposition en con-
tourlets.

Conclusion et perspectives

Cette thèse s’est inscrite dans le développement d’un codec vidéo t+2D basé ondelettes.
Plus spécifiquement, notre recherche a été focalisée sur la construction et l’optimisation
des transformées temporelles compensées en mouvement, l’analyse de différentes méthodes
de décomposition spatiale pour mieux représenter les sous-bandes temporelles afin d’aug-
menter la qualité objective et subjective des trames reconstruites, et enfin, l’amélioration
du codage entropique en concevant des fonctions d’énergie minimisables par des coupures
de graphe visant à optimiser l’allocation débit-distorsion dans la compression.
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Synthèse des travaux

I—Optimisation et nouvelles méthodes pour le filtrage temporel

Traitement des coupures de scène dans le codage temporel compensé en mouvement

Généralement, les décompositions classiques le plus souvent utilisées pour la décorrélati-
on temporelle sont les bancs de filtres dyadiques de Haar et 5/3. Le filtrage temporel est
donc fait sur l’hypothèse que les trames sont fortement corrélées. Cependant, cette sup-
position n’est plus vérifiée quand la vidéo implique des changements de scènes, comme
c’est le cas dans les films d’action, les clips vidéo etc. L’inefficacité de l’estimateur de
mouvement mène à de mauvaises prédictions/mises à jour, qui, combinées avec l’implan-
tation avec fenêtre glissante de ces filtres temporels, propage les erreurs de prédiction /
mise à jour au travers les niveaux de décomposition.

Nous avons donc proposé une optimisation du filtrage temporel compensé en mou-
vement, capable de détecter et traiter les coupures de scène qui apparaissent dans les
séquences visuelles. La structure lifting des filtres a été modifiée telle que le filtrage ne
chevauche pas le changement de scène. D’ailleurs, les unités de codage ont été réduites
près de la coupure de scène pour mieux s’adapter à ce changement. Sa mise en place
au sein du codec vidéo MC-EZBC [210] permet d’atteindre des gain en PSNR atteignant
environ 1.5 dB par rapport au filtrage classique.

Schéma 5-bandes compensé en mouvement

Grâce à leur efficacité de codage, les filtres plus longs sont préférés pour la décomposition
temporelle. Cependant, quand les filtres sont trop longs, il est très probable qu’ils chevau-
chent plusieurs (et donc différentes) scènes et qu’ils perdent, ainsi, leur efficacité de
décorrélation. D’ailleurs, plus le filtre temporel est long, plus le nombre de niveaux de
décomposition temporelle nécessaires pour obtenir les trames clés d’approximation (si
utiles pour la recherche de la vidéo dans les bases de données) est faible.

Nous avons ainsi proposé une structure lifting compensé en mouvement 5-bandes,
qui permet d’obtenir des facteurs de scalabilité temporelle flexibles dans un codeur vidéo
basé MCTF. Pour la structure proposée, nous avons développé deux schémas d’implanta-
tion : un premier utilisant la méthode de réflexion (et donc le filtre 5-bandes ne chevauche
pas les autres GOPs) et un deuxième utilisant la technique de fenêtre glissante. Les
deux implantations 5-bandes ont été intégrées au sein du codec vidéo basé ondelettes
3D MSRA [212]. Le banc de filtres proposé permet d’obtenir des resultats semblables à
ceux obtenus avec les filtres dyadiques de Haar et 5/3, et à ceux donnés par le schéma
3-bandes compensé en mouvement. En outre, la décomposition 5-bandes donne une
meilleure efficacité de codage pour les sous-bandes temporelles d’approximation, tout
en améliorant la scalabilité temporelle. Ce schéma peut être utilisé avec succès dans
certaines applications, telles que le codage des séquences de vidéo-surveillance, où le
mouvement est faible dans la plupart des cas.

Schéma de prédiction adaptative

Dans le codage vidéo, la méthode la plus utilisée pour l’estimation du mouvement est
faite par blocs, et même si une prédiction temporelle bidirectionnelle est employée, les
artefacts des blocs sont encore présents. Afin d’éviter de tels artefacts, des solutions pour
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la compensation en mouvement, comme une mise à jour par moyenne pondérée [184] ou
une compensation en mouvement par chevauchement des blocs [211] ont été proposées.

Nous avons donc proposé ici une prédiction adaptative basée sur les moindres carrés
(LMS) pour l’étape temporelle de prédiction dans un schéma lifting de codage vidéo scal-
able. Les pixels des trames temporelles sont prédits de façon optimale en utilisant un en-
semble de pixels dans les trames temporellement voisines. On a illustré notre proposition
sur un schéma lifting bidirectionnel, mais l’ensemble de pixels utilisés dans l’adaptation
peut être choisi selon un nombre variable de trames impliquées dans une prédiction avec
un support temporel plus long. La méthode proposée a été développée et mise en place
dans le codeur vidéo MSRA. Les résultats expérimentaux montrent que, même pour une
adaptation avec seulement deux pixels, la qualité visuelle des trames reconstruites est
améliorée. Un compromis entre l’efficacité de compression et la complexité additionnelle
venant d’une plus grande fenêtre d’adaptation peut être fait, selon l’application cible. Un
gain significatif en PSNR a été obtenu pour les séquences avec un contraste élevé entre
les divers segments et dans des conditions d’illumination variables.

Codage vidéo des séquences multitemporelles et multispectrales

L’efficacité de codage basé MCTF est fortement liée à la corrélation des données traitées.
Nous avons donc testé les principes de codage vidéo t+ 2D sur les séquences multitem-
porelles et multispectrales. Les séquences multitemporelles et multispectrales profitent
de la présence de deux sources de redondance : la corrélation spatiale entre les pixels
dans la même bande spectrale et la corrélation temporelle entre les différentes bandes à
la même localisation spatiale.

Nous avons ainsi proposé d’évaluer les performances de compression sur les séquences
SPOT (1, 2 et 4) du codeur d’images JPEG2000 et des techniques de codage vidéo t+ 2D
basé-ondelettes. On a observé que le codage intra avec EZBC [210] surpasse EBCOT [8]
en termes de gain en débit dans le cas de la compression sans perte. En outre, nous
avons montré que les décorrelations temporelles et spectrales peuvent être exploitées
séparément ou conjointement afin d’améliorer l’efficacité de codage.

II—Optimisation et nouvelles méthodes pour le filtrage spatial

Représentation conjointe par paquets d’ondelettes

Les propriétés spectrales des sous-bandes temporelles de détail ont l’information spec-
trale répartie presque uniformément dans toutes les sous-bandes. Ce fait suggère que les
ondelettes dyadiques, qui sont très éfficace dans le codage spatial des images naturelles
ou des sous-bandes temporelles d’approximation, ne représentent pas la meilleure solu-
tion pour la décorrélation spatiale des sous-bandes temporelles de détail.

Nous avons ainsi proposé une méthode de représentation conjointe en paquets d’onde-
lettes pour des groupes de trames. Le choix de la meilleure-base de décomposition a
été adapté dans ce but et la méthode a été dévélopée pour le codage basé MCTF. La
méthode a été mise en place au sein du codeur vidéo MSRA, les meilleurs résultats étant
obtenus quand une seule décomposition en paquets d’ondelettes est considérée pour
la décorrelation spatiale de toutes les sous-bandes de détail dans un GOP. Nous avons
également proposé et mis en œuvre les modifications algorithmiques pour le choix de la
meilleure base pour les décompositions biorthogonales.
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La transformée en ondelettes et paquets d’ondelettes entièrement séparables pour le

codage vidéo

Trouver la meilleure représentation conjointe en paquets d’ondelettes, même pour des
GOPs, peut être un procès complexe. Nous avons ainsi présenté une évaluation de la
transformée en ondelettes et paquets d’ondelettes entièrement séparables pour la représen-
tation des textures 2D dans le codage vidéo compensé en mouvement. La séparation
fréquentielle 2D plus fine donnée par les décompositions entièrement séparables permet
une meilleure capture de l’orientation pour les détails spatiaux, ayant comme résultat une
meilleure représentation visuelle de la texture par rapport aux décompositions dyadiques
classiques.

III—Optimisation de l’allocation débit-distorsion en utilisant les
coupures de graphe

Beaucoup de problèmes d’optimisation dans le traitement du signal peuvent être for-
mulés en termes de minimisation d’énergie. Nous avons ainsi conçu une fonctionnelle
d’énergie minimisable par des coupures de graphes afin d’optimiser l’allocation de débit
dans le codage par sous-bandes des systèmes non nécessairement orthogonaux. Nous
avons présenté trois solutions possibles, en modelisant plusieurs aspects des interactions
d’énergie pour la minimisation d’une fonctionnelle correspondant à une décomposition
non-orthogonale. La méthode présentée a une forte efficacité de codage particulièrement
à bas débits, tout en améliorant la qualité visuelle et PSNR des images reconstruites.

Perspectives

Dans cette thèse, nous avons étudié et proposé plusieurs opérateurs spatio-temporels ca-
pables de donner une représentation multirésolution parcimonieuse pour les séquences
vidéo. Néanmoins, on peut identifier un certain nombre de sujets qui exigent davantage
de recherche, et qui peuvent améliorer le schéma de codage t+ 2D. Ceux-ci incluent :

⋆ Les opérateurs temporels adaptatifs, tels que la mise à jour adaptative, où le système
visuel humain est employé pour évaluer l’impact en termes de qualité visuelle aux
sous-bandes passe-bas, puisque, dans le MCTF, le résidu de la compensation en
mouvement est encore employé dans l’étape de mise à jour des trames temporelles
d’approximation et peut donc causer des artefacts fantôme si l’estimation de mou-
vement est imprécise.

⋆ L’application et l’optimisation de la compensation en mouvement par pixel pour le
codage temporel adaptatif. Un algorithme pel-récursif d’estimation de mouvement
peut être employé ainsi que la prédiction temporelle adaptative basée LMS pour
obtenir un flux de mouvement plus cohérent au niveau des pixels et donc réduire
plus d’artefacts sur les contours des objets.

⋆ Un schéma lifting avec la mise à jour comme première étape devrait être considéré
pour la prédiction adaptative basée-LMS. Puisque l’étape adaptative a lieu à la
prédiction, et les sous-bandes passe-haut sont encore employées dans le schéma
lifting pour renforcer le signal dans les sous-bandes passe-bas, certaines erreurs de
prédiction peuvent passer facilement d’un niveau de décomposition à l’autre. En
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changant l’ordre des étapes du lifting, les erreurs de prédiction ne se propagent plus
dans l’arbre de décomposition.

De plus, la description conjointe par paquets d’ondelettes qui caractérise les pro-
priétes spatio-temporelles d’un GOP peut être exploitée comme critére dans la classifi-
cation et la recherche des séquences vidéo dans les bases de données.

Egalement, la méthode d’allocation de débit en utilisant les coupures de graphe pour-
rait être employée conjointement avec les algorithmes déjà existants de codage entropique
dans un codeur vidéo t + 2D. D’ailleurs, la méthode d’évaluation de débit pourrait être
remplacée par un algorithme entropique plus évolué ou avec une vraie évaluation du
débit, ainsi une amélioration des résultats pour les systèmes orthogonaux peut être en-
visagée.

Néanmoins, des algorithmes basés sur les coupures de graphe peuvent être envis-
agables pour l’optimisation des champs de vecteurs de mouvement, où le meilleur vecteur
de mouvement est obtenu par la minimisation en termes de distorsion et de débit (comme
classiquement fait), mais également par la corrélation avec le voisinage, qui pourrait être
donnée par : la distance entre des vecteurs de mouvement adjacents, la distorsion in-
troduite par les artefacts ou la différence de débit nécessaire pour coder les vecteurs de
mouvement.
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Introduction

The transmission of multimedia content over IP networks such as the Internet and wire-
less networks has been growing steadily over the past years. Moreover, multimedia
streaming and the set of applications that rely on streaming are expected to continue
growing. Meanwhile, the current quality of streamed multimedia content in general, and
video in particular, still needs a great deal of improvement before IP-based video stream-
ing can be widely deployed. To achieve this level of acceptability and proliferation of IP
video, there are many technical challenges that have to be addressed in the areas of video
coding and networking. A framework that addresses both video coding and networking
challenges associated with IP-based video streaming is scalability. From a video-coding
point of view, scalability plays a crucial role in delivering the best possible video quality
over unpredictable, best-effort1 networks. Bandwidth variation is one of the primary
characteristics of best-effort networks, and current IP networks are a prime example of
such networks. Therefore, video scalability enables an application to adapt the streamed
video quality to changing network conditions (and specifically to bandwidth variation)
and device complexities [197]. From the networking point of view, scalability is needed
to enable a large number of users to view any desired video stream, at anytime and from
anywhere.

Scalable techniques try to avoid simulcast solutions in which several encoders are
run in parallel. The simulcast solution would require the knowledge about the network
and decoder capabilities in order to select in advance the optimum encoding parame-
ters. Since different streams are multiplexed, this may lead to network overload and
restriction to a small number of possible bitstreams for multiplexing. Even though point-
to-multipoint connections are enabled by the simulcast solution, there is a clear loss in
efficiency. Consequently, any scalable video-coding solution has to enable a very simple
and flexible streaming framework; hence, it must meet the following requirements:

⋆ The solution must enable a streaming server to perform minimal real-time process-
ing and rate control when outputting a very large number of simultaneous unicast
(on-demand) streams.

⋆ The scalable video-coding approach over IP networks has to be highly adaptable
to unpredictable bandwidth variations due to heterogeneous access technologies of
the receivers (e.g., analog modem, cable modem, xDSL, wireless mobile and wire-
less LANs, etc.) or due to dynamic changes in network conditions (e.g., congestion
events).

⋆ The video-coding solution must enable low-complexity decoding and low-memory

1In a best-effort network, all users obtain best-effort service, meaning that they obtain unspecified variable
bit rate and delivery time, depending on the current traffic load.
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requirements to provide to common receivers (e.g., set-top boxes, digital televisions
or mobile devices), in addition to powerful computers, the opportunity to stream
and decode any desired Internet video content.

⋆ The streaming framework and the related scalable video-coding approach should
be able to support both multicast and unicast applications. Generally, this elimi-
nates the need for coding the content in different formats to serve different types of
applications.

⋆ The scalable bitstream must be resilient to packet-loss events which are quite com-
mon over IP networks.

The above requirements were the primary drivers behind the design of the existing
and emerging scalable video-coding schemes. There are three key factors which play
an important role in the achievement of the above requirements for video coding; these
are spatial, temporal, and quality (or SNR) scalabilities, allowing full/partial decoding.
In a spatial-scalable scheme, full decoding leads to high spatial resolution, while partial
decoding leads to reduced spatial resolutions (reduction of the format). In a temporal-
scalable scheme, partial decoding provides lower decoded frame rates (temporal resolu-
tions). In an SNR-scalable scheme, temporal and spatial resolutions could be fixed and
the video quality (SNR) varies upon how much of the bitstream is decoded. This is the
main reason for chosing the scalable lifting-based wavelet-coding paradigm as the con-
ceptual development framework for the contributions of this thesis.

The objectives of this thesis consist of the analysis and design of new and efficient
spatio-temporal-SNR scalable video-coding systems. More exactly, our research interests
have been focused on:

⋆ construction and optimization of motion-compensated temporal-filtering (MCTF)
schemes in order to enhance both the objective and subjective coding quality;

⋆ better representation of the temporal subbands by using anisotropic spatial decom-
positions in order to capture the orientation of spatial details.

⋆ improvement of entropy coding by designing a graph-cut solvable energy func-
tional for the Lagrangian rate distortion optimization problem.

During this thesis, we have contributed to the development of the wavelet-based
video codec proposed by the AdHoc Vidwav MPEG group [212]. Part of this work was
supported by the 6th Framework Programme of European Commission under the grant
number IST-FP6-507752 (MUSCLE Network of Excellence) and has been realized in col-
laboration with Bilkent University.
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Thesis organization

This thesis is organized into two parts: the first part is an overview of wavelet basics
and scalable video-coding strategies. The second part encapsulates the thesis work by
presenting the contributions following the above-mentioned research directions.

Wavelet basics and scalable video coding overview

Chapter 1: Wavelet basics This chapter reviews the relevant wavelet issues required
in the development of this thesis work and introduces the lifting mechanism used for
wavelet construction and implementation.

Chapter 2: Scalable video coding This chapter presents scalability requirements and
the general structure of a video codec to finally present an overview of scalability tech-
niques from predictive to wavelet-based coding strategies.

Design of a scalable video coder

Chapter 3: Temporal video processing This chapter presents contributions to the MCTF
stage in video coding. It starts by describing a modified MCTF scheme able to detect and
correctly process scene-cuts that may occur in a video sequence. A 5-band temporal-
lifting scheme, which has been designed for low-motion video sequences and which has
a direct application to video surveillance, is presented. Moreover, an adaptive temporal
predictor, able to remove motion estimation artefacts to thereby enhance both the visual
and SNR quality of the decoded sequence, is described. Further, knowing the coding
efficiency of the MCTF-based schemes for video sequences, a comparative study of the
3D-wavelet coding approach and JPEG2000 on multi-temporal and multispectral satellite
sequences ends this chapter.

Chapter 4: Spatial video processing Several research studies regarding the properties
of the temporal-decomposition subbands have concluded that the separable wavelet de-
compositions are not the most appropriate for representing the residual temporal sub-
bands. In this chapter, a joint wavelet-packet representation for the detail temporal sub-
bands is presented, as well as an improved and efficient best-basis algorithm for biorthog-
onal wavelets. Moreover, fully separable wavelet and wavelet-packet transforms have
been studied for the spatial decorrelation of the temporal subbands, these decomposi-
tions leading to a better video-texture representation due to the capture of the orientation
of spatial details.

Chapter 5: Rate-distortion optimization using graph-cuts The geometric features of
images such as edges are difficult to represent. When a redundant transform is used for
their extraction, the compression challenge is even more difficult. This chapter presents
the design of a graph-cut-solvable energy functional for Lagrangian rate-distortion opti-
mization in subband image coding. It applies to any kind of decomposition, including
biorthogonal or redundant transforms. Three graph-based solutions are described, by
modeling several aspects of energy interactions for the minimization of a non-orthogonal
system. In this way optimal rate-distortion truncation of scalable streams is achieved, in-
cluding trade-offs at various rates.
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Appendix A: Joint source-channel coding This appendix presents thesis work on joint
source-channel coding, published in two journal papers, which is slightly outsite the
principal focus of this dissertation. A robust joint source-channel coding scheme for the
transmission of video sequences over Gaussian channels using uncoded and coded index
assignment via Reed-Muller codes is decribed in a first part, continued by the presenta-
tion of a coding system designed for the video transmission over flat Rayleigh-fading
channels. Our contribution to these papers has been the design and implementation of
a subband-based unequal protection scheme with RCPC codes for the prominent MCTF-
based MC-EZBC codec [210].
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Part I

Wavelet basics and scalable video
coding overview
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Chapter 1

Wavelet basics

Wavelets and wavelet theory have generated much interest during the last decades. More-
over, wavelet-based compression schemes have become increasingly important and gained
widespread acceptance, an example being the JPEG2000 still image compression stan-
dard [8, 178]. In this chapter we review the relevant wavelet issues required in the de-
velopment of this thesis work, and we introduce the lifting mechanism used for wavelets
construction and implementation. Section 1.2 starts with an introduction to multiresolu-
tion analysis and the discrete wavelet transform. The connection between wavelets, filter
banks and subband coding is presented. Section 1.3 introduces the lifting scheme and
describes its use and advantages in coding algorithms.

1.1 Introduction to wavelet theory

The main idea behind wavelet analysis is to decompose a signal f using a basis of func-
tions ψi:

f =
∑

i

aiψi

To have an efficient representation of the signal f using only a few coefficients ai, it is
very important to use a suitable family of functions ψi. The functions ψi should match the
features of the data we want to represent. Usually, signals have the following features:
they are both limited in time 1 and in frequency. What we need is a compromise between
the pure time-limited and band-limited basis functions, a compromise that combines the
best of both worlds: wavelets.

The main feature of wavelets which is important for coding applications is good
decorrelation. Wavelets are localized in both the space/time and scale/frequency do-
mains. Hence they can easily detect local features in a signal. Moreover, wavelets are
based on a multiresolution analysis. A wavelet decomposition allows thus the analysis
of a signal at different resolution levels (or scales). Also, as we will show in 1.2, wavelets
are smooth, which can be characterized by their number of vanishing moments. A func-
tion defined on the interval [a, b] has n vanishing moments if:

∫ b

a
f(x)xidx = 0, ∀i ∈ {0 . . . n− 1}

1Space-limited in the case of images
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As one can observe, the higher the number of vanishing moments, the higher the
degree of polynomials whose wavelet coefficients are null.

We will give in the following a brief presentation of discrete wavelet functions, by
firstly introducting multiresolution analysis.

1.2 Multiresolution analysis

Consider the L2 space, which is the Hilbert space of square integrable functions in R:

L2 =

{
f :

∫ +∞

−∞
f2(x)dx <∞

}
.

In a multiresolution analysis [125], the L2 space is decomposed in nested subspaces
Vj , i.e.:

. . . ⊆ V2 ⊆ V1 ⊆ V0 ⊆ V−1 ⊆ V−2 ⊆ . . .

such that the closure of their union is L2:

+∞⋃

j=−∞
Vj = L2

and their intersection contains only the zero-function:

+∞⋂

j=−∞
Vj = {0} .

In the dyadic case1, a function f(x) that belongs to one of these subspaces Vj has the
following properties:

f(x) ∈ Vj ⇔ dilation f(2x) ∈ Vj−1 (1.1)

f(x) ∈ V0 ⇔ translation f(x+ 1) ∈ V0 (1.2)

If we can find a function φ(x) ∈ V0 such that the set of functions including φ(x) and
its integer translates {φ(x− k)}k∈Z

form a basis for the V0 space, we will call it a scaling
function. For the other subspaces Vj (j 6= 0), we define:

φj,k(x) = 2j/2φ(2jx− k)

Because the subspaces Vj are nested, i.e.: Vj ∈ Vj−1, we can decompose Vj−1 in Vj and
Wj , the orthonormal complement of Vj in Vj−1:

Vj ⊕Wj = Vj−1, Wj⊥Vj .

The direct sum of subspaces Wj is equal to L2:

+∞⋃

j=−∞
Vj =

+∞⊕

j=−∞
Wj = L2

1In the dyadic case, each subspace Vj is twice as large as Vj+1
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This means that Vj is a coarse-resolution representation of Vj−1, while Wj carries the
high-resolution difference information between Vj−1 and Vj .

Now, if we can find a function ψ(x) ∈ W0 that obeys the translation property (1.2),
i.e.:

ψ(x) ∈W0 ⇔ translation ψ(x+ 1) ∈W0 (1.3)

such that the set of functions consisting of ψ(x) and its integer translates {ψ(x− k)}k∈Z

form a basis for the W0 space, we will call it a wavelet function. For the other subspaces
Wj (j 6= 0) we define:

ψj,k(x) = 2j/2ψ(2jx− k).

Because both V0 and W0 are subspaces of V−1, i.e. V0 ⊂ V−1 and W0 ⊂ V−1, we can
express φ(x) and ψ(x) in terms of the basis functions of V−1:





φ(x) = 2
∑

k

hkφ(2x− k),

ψ(x) = 2
∑

k

gkφ(2x− k).

Due to multiresolution analysis, these relations are also valid between Vj−1, Vj , and
Wj for arbitrary j. We will call thus hk and gk the filter coefficients that uniquely define
the scaling function φ(x) and the wavelet function ψ(x).

Since Vj−1 = Vj ⊕Wj , we can thus express a function f(x), which is initially written
in terms of the basis functions of Vj−1, in terms of the basis functions of Vj and Wj :

f(x) =
∑

k

λj−1,kφj−1,k(x) =
∑

l

λj,lφj,l(x) +
∑

l

γj,lψj,l(x)

where the transform coefficients λj,l and γj,l are defined as:

λj,l =
√

2
∑

k

hk−2lλj−1,k,

γj,l =
√

2
∑

k

gk−2lλj−1,k.

This operation is known as the Fast Wavelet Transform (FWT). It has a linear complexity,
i.e. O(n), the amount of work being proportional to the signal length. The filter hk is a
low-pass filter, while gk is a high-pass filter. The inverse wavelet transform is obtained in
a similar manner. A 2-tap one-level filter-bank decomposition is shown in Fig. 1.1.

The subspaces Vj are nested, and each of them can be split into two subspaces, Vj+1

and Wj+1. If we start with the highest available resolution subspace V0, and we recur-
sively perform the following decompositions:

V0 =V1 ⊕W1,

=V2 ⊕W2 ⊕W1,

=V3 ⊕W3 ⊕W2 ⊕W1,

...

we obtain a decomposition tree as shown in Fig. 1.2. As one can observe, the amount
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Figure 1.1: The filter-bank algorithm for orthogonal wavelets: the signal S is filtered and
downsampled to get a low-pass signal (LP) and a high-pass signal (HP). It can be recon-
structed by upsampling and filtering with the correct filters.

Figure 1.2: Example of wavelet decomposition tree.

(a)

HHLL HLLH

I

HHHLLHLL

HHHLLHLL

(b)

Figure 1.3: Three-level wavelet spatial decomposition for Mobile(CIF, 30Hz) sequence:
wavelet transform (WT) (a) and its decomposition quadtree (b).
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Figure 1.4: The two-dimensional wavelet transform: separable and fully separable ap-
proach.

of data to transform is halved at each resolution level, the total complexity of the full
wavelet decomposition still being O(n).

The above wavelets were defined on R, i.e. on a one-dimensional domain. In the
2D case, we get a decomposition as shown in Fig. 1.3 for three spatial wavelet-filtering
levels. In order to create wavelets on higher-dimentional domains, we can perform the
wavelet transform independently on each dimension. Because the wavelet transform can
be written as a multiplication with wavelet transform matrix, and, due to the associativity
of the matrix product, the exact order is not an issue. Moreover, we can alternate the
wavelet transform in each dimension at each resolution level or fully decorrelate in one
dimension at a time (see Fig. 1.4) obtaining thus the so called separable [125, 123, 124] and
fully separable wavelet transforms [188, 147]. The fully separable wavelet transform will
be developed in Section 4.3, where we will use it for spatial decorrelation in a subband
wavelet video-coding approach.

Due to the subsampling in the filter-bank approach, a wavelet transform is not trans-
lation invariant; that is, if a signal is delayed or advanced, its wavelet transform is not
simply a delayed or advanced version of the wavelet transform of the original signal.
Only if the delay is a multiple of 2n, where n is the number of transform levels, the
wavelet transform will be a delayed or advanced version of the original transformed sig-
nal, as shown in Fig. 1.5. In the 2D case, this condition needs to be true in both horizontal
and vertical directions.

1.2.1 Orthogonal wavelets

If φj,k(x) and ψj,k(x) are orthonormal, that is :

Vj⊥Wj ,〈
φj,l, φj,l′

〉
= δl−l′ ,〈

ψj,l, ψj′,l′
〉

= δj−j′δl−l′ ,
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Figure 1.5: Translation variance of wavelet transform: when delaying the input signal (a)
by one step, the resulting wavelet transform is completely different (b), while a delay of
the input signal with two steps (c) results in a delayed version (by one step at the coarser
level) of the original transformed signal.

where δi is the Kronecker symbol, i.e.:

δi =

{
1, i = 0

0, otherwise,

then we can calculate the coefficients of the decomposition:

f(x) =
∑

l

λj,lφj,l(x) +
∑

l

γj,lψj,l(x)

by taking the inner products with the scaling and wavelet functions, i.e.:

λj,l = 〈f, φj,l〉 ,
γj,l = 〈f, ψj,l〉 .

The decomposition into the wavelet basis is guaranteed to be stable: if the function
f(x) is slightly changed, there will be only a slight change of the coefficients λj,l and γj,l.
For an orthonormal decomposition, the energy of the original signal is preserved in the
transform domain, i.e. Parseval’s identity holds:

‖f‖2 =
∑

k

λ2
j−1,k =

∑

l

λ2
j,l +

∑

l

γ2
j,l. (1.4)

An example of orthogonal wavelets is the family of orthogonal wavelets constructed
by Daubechies [59]. The scaling function φ(x) and the wavelet function ψ(x) with two
vanishing moments (also known as D4 because the corresponding wavelet filters h and
g have 4 taps) are shown in Fig. 1.6.
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Figure 1.6: Daubechies orthogonal (a) scaling φ(x) and (b) wavelet ψ(x) functions with
two vanishing moments.

Figure 1.7: Two-band perfect-reconstruction biorthogonal filter-bank.

1.2.2 Biorthogonal wavelets

Recall that the dilations and translations of the scaling function φj,k constitute a basis for
Vj and, similarly, ψj,k for Wj . In the biorthogonal case, a dual multiresolution analysis

with dual subspaces, Ṽj and W̃j , generated from a dual scaling function φ̃j,k and a dual

wavelet function ψ̃j,k, respectively, is defined. The biorthogonality conditions:

Ṽj⊥Wj ,

Vj⊥W̃j

imply:

〈
φ̃j,k, φj,l′

〉
= δl−l′ ,

〈
ψ̃j,k, ψj′,l′

〉
= δj−j′δl−l′ .

Because the biorthogonal wavelets form a Riesz basis, i.e.:

A ‖f‖2 ≤
∑

l

λ2
j,l +

∑

l

γ2
j,l ≤ B ‖f‖2 , (1.5)
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Figure 1.8: Scaling φ(x) and wavelet ψ(x) functions for the Cohen-Daubechies-Feauveau
(2,2) biorthogonal wavelets: (a) analysis, (b) synthesis.

with A and B positive constants1, the biorthogonal wavelet decomposition is still stable,
the decomposition coefficients λj,l and γj,l being calculated as inner products with the
dual basis functions:

λj,l =
〈
f, φ̃j,l

〉
, γj,l =

〈
f, ψ̃j,l

〉
.

We can still use the filter-bank algorithm if we use the analysis filter pair (h1, g1) for
the decomposition and the synthesis filter pair (h0, g0) for the reconstruction, as shown
in Fig. 1.7. An example of biorthogonal wavelets is the family of biorthogonal wavelets
constructed by Cohen, Daubechies and Feauveau [47]. The analysis/synthesis scaling
and wavelet functions with two vanishing moments are shown in Fig. 1.8, and a three-
level decomposition of Lenna (512×512) image using this filter is shown in Fig. 1.9.

A biorthogonal wavelet decomposition extends the orthogonal one, it is more flexible,
and generally easier to design. The advantages of a biorthogonal system with respect to
an orthogonal one are:

⋆ in the case of FIR filter-banks, the orthogonal filters must be of the same length, and
the length must be even; this restriction is relaxed for biorthogonal systems.

⋆ biorthogonal wavelets may be symmetric, and thus, filter frequency response may
have a linear phase; on the other hand, there are no two-band orthogonal trans-
forms with more than two non-zero coefficients having FIR linear phase.

⋆ in a biorthogonal decomposition, the analysis and synthesis filters may be switched
and the resulting decomposition can still give good results. Therefore, the appro-
priate arrangement may be chosen for the application at hand. For example, in
image compression, it has been observed that the use of the smoother filter in the
reconstruction of the coded image leads to better visual appearance.

Biorthogonal decompositions have also some disadvantages:

1In the orthogonal case A = B = 1, i.e. Parsevals’s identity.
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Figure 1.9: Three level Cohen- Daubechies-Feauveau (2,2) biorthogonal wavelet decom-
position of the Lenna (512×512) image.

⋆ Parseval’s theorem no longer holds for biorthogonal wavelets. This means that the
energy of the coefficients is not the same as the energy of the images being spanned.
Many design efforts have been devoted for making near-orthogonal systems.

⋆ White noise remains white after an orthogonal transform, but becomes correlated
after a non-orthogonal transform. This may be considered when biorthogonal sys-
tems are employed in estimation or detection applications.

1.2.3 Redundant wavelets

We have mentioned in section 1.2 that the wavelet transform is not translation invari-
ant. The idea behind the redundant wavelet transform (or overcomplete wavelet transform)
[131] is to solve this problem by removing the subsampling step. This is important for
the applications that can suffer from translation variance (see Fig. 1.5), like features de-
tection, denoising or motion-vector estimation in MCTF-based in-band video coding, as
we will see in section 2.3.1.6.

In the redundant wavelet transform one gets rid of the decimation step, causing all
the subbands to have the same size as the size of the input signal. At each resolution level,
the filters have to be upsampled 1 in order to keep a consistent multiresolution analysis.
Because all the subbands have the same size, the computational complexity is no longer
O(n) but O(kn), where k ≤ logn is the number of decomposition levels.

1A filter is upsampled by putting zeros between the succesive filter coefficients.
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Figure 1.10: 2D full wavelet-packet decomposition.

1.2.4 Wavelet packets

In a separable wavelet decomposition, at each transform level the low-frequency data is
split into a low- and a high-frequency part, as shown in Fig. 1.2. In a wavelet-packet
transform, the high-frequency part may also be split into a low and a high frequency part
[50]. For two-dimensional signals, this produces a decomposition as shown in Fig. 1.10
and leads to a redundant tree of possible basis functions. A wavelet-packet transform
can be calculated with a complexity of O(n logn), compared to O(n) as in the case of a
dyadic wavelet transform.

The aim of wavelet-packet analysis is to choose the best basis1, i.e. to find the set
of functions that best decorrelates the input data and which form a subset of the basis
functions in the decompostion tree [208]. The selection of the best basis is equivalent to
the answer to the question: do we best split this part into a low and a high frequency
part or not? We can make these decisions by starting at the bottom level of the tree and
comparing the cost of two (1D) respectively four (2D) neighboring child subbands in this
level (i.e. j) with the cost of the parent subband in the lower level (i.e. j − 1). The
cost is usually a measure for the number of bits we would need to store the data in the
corresponding basis, i.e. a measure for the achieved decorrelation. We retain the cheapest

1Generally speaking, a wavelet-packet decomposition is any subset of the full decomposition tree. Some-
times, one does not necessarily have to search for the best basis: a fixed wavelet-packet decomposition might
work well.
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decomposition for this current level and proceed in the same way with the lower level,
until we arrive at the first level (i.e. V0). The basis functions that correspond to the
retained level decompositions form the best basis.

For the cost computation of a wavelet-packet coefficient matrix v = [vi,j ], there are
several possibilities. We mention a few of them:

⋆ 1-Norm based cost function: the cost of storing a matrix is proportional the the 1-
norm of the matrix:

cost =
∑

i,j

|vi,j |

⋆ First-order Shannon entropy-based cost function: the first-order entropy is given by
the number of bits per symbol needed to encode a string of symbols, by considering
individual symbols:

cost = −
∑

i,j

vij log |vij |

⋆ Logarithm of energy-based cost function:

cost =
∑

i,j

log(vij)
2

which is equivalent to:

cost =
∑

i,j

log |vij |

this being a variant of first-order Shannon entropy.

A pruning algorithm used for the computation of the best basis for orthogonal wavelet
transforms will be presented in section 4.2.1.1. Moreover, in section 4.2.1.2 we will present
an efficient best-basis algorithm for finding the best wavelet-packet decomposition of a
biorthogonal wavelet transform. In the following we will introduce the lifting scheme,
an efficient mechanism for implementing wavelet tranforms.

1.3 Lifting scheme

The lifting scheme, formally introduced by Sweldens [173, 174, 175], enables an easy
and efficient construction of wavelet transforms. A very important feature of the lifting
scheme is that every filter bank based on lifting automatically satisfies perfect recon-
struction properties. The lifting scheme starts with a set of well known filters, whereafter
lifting steps are used in an attempt to improve (lift) the properties of a corresponding
wavelet decomposition.

1.3.1 Lifting steps: predict and update

As seen in section 1.2, the wavelet transform of a one-dimensional signal is a multires-
olution representation of that signal where the wavelets are the basis functions which,
at each resolution level, decorrelate the signal. Thus, at each level, the (low-pass part of
the) signal is split into a high-pass and a low-pass part. These high-pass and low-pass
parts are obtained by applying corresponding wavelet filters. In general, these filters are
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coupled if certain conditions are to be fulfilled, like, for example, perfect reconstruction:
there have to exist filters to perform the inverse transform without any data loss.

The lifting scheme is an efficient implementation of these filtering operations at each
level when computing a discrete wavelet transform. So suppose that the low-resolution
part of a signal at level j− 1 is given and that it consists of a data set which we denote by
λj−1. This set is transformed into two other sets at level j: the low-resolution part λj and
the high-resolution part γj . This is obtained first by just splitting the data set λj−1 into
two separate data subsets. Traditionally this is done by separating the set of even samples
and the set of odd samples. Such a splitting is sometimes referred to as the lazy wavelet
transform. Doing just this of course does not improve our representation of the signal.
Therefore, the next step is to recombine these two sets in several subsequent lifting steps
which decorrelate the two signals.

The lifting steps usually come in pairs of a primal and a dual lifting step. A dual lifting
step can be seen as a prediction: the data γj are predicted from the data in the subset λj .
When the signals are still highly correlated, such a prediction will usually be very good,
and thus we do not have to keep this information in both signals. That is why we can
store only the part of γj that differs from its prediction (the prediction error). Thus γj is
replaced by γj − P (λj), where P represents the prediction operator. This represents the
real decorrelating step.

However, the new representation has lost certain basic properties which one usually
wants to keep, for example the mean value of the signal. Moreover, the simply subsam-
pled λj data may suffer from Gibbs (ringing) artefacts. To restore these properties, one
needs a primal lifting step, whereby the set λj is updated with data computed from the
(new) subset γj . Thus λj is replaced by λj + U(γj), where U is an updating operator.

In general, several such lifting steps can be applied in sequence to go from level j − 1
to level j. To summarize, let us consider a simple lifting scheme with only one pair of
lifting steps to go from level j − 1 to level j.

⋆ Splitting (lazy wavelet transform) Partition the data set λj−1 into two distinct data
sets λj and γj .

⋆ Predict (dual lifting) Predict the data in the set γj by the data set λj and replace γj

with the prediction error:

γj = γj − P (λj).

⋆ Update (primal lifting) Update the data in the set λj by the data in set γj :

λj = λj + U(γj).

These steps can be repeated by iterating on λj , thus creating a multi-level transform
or multiresolution decomposition.

One of the great advantages of the lifting-scheme implementation (see Fig. 1.11) of
a wavelet transform is that it decomposes the wavelet filters into extremely simple ele-
mentary steps, and each of these steps is very easily invertible. As a result, the inverse
wavelet transform can always be obtained immediately from the forward transform. The
inversion rules are obvious: revert the order of the operations, invert the signs in the lift-
ing steps, and replace the splitting step by a merging step. Thus, inverting the three step
procedure above results in:
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Figure 1.11: One-level lifting scheme for 1-D signals.

⋆ Undo Update

λj = λj − U(γj).

⋆ Undo Predict

γj = γj + P (λj).

⋆ Merge

λj−1 = λj ∪ γj .

1.3.2 Lifting advantages

Some of the advantages of the lifting wavelet implementation with respect to the classical
wavelet transform are:

⋆ simplicity: it is easier to understand and implement.

⋆ the inverse transform is obvious to find and has exactly the same complexity as the
forward transform.

⋆ the in-place lifting computation avoids auxiliary memory requirements since lift-
ing outputs from one channel may be saved directly in the other channel. Such
implementation considerations are explained in [178].

⋆ FIR decomposition: in [60] is shown that every biorthogonal wavelet transform
with FIR filters can be decomposed into a finite number of lifting steps, followed
by possible multiplication constants1.

⋆ can be used on arbitrary geometries and irregular samplings.

Because the wavelets inherently provide a hierarchical representation of the analyzed
content and also have proved very attractive for spatial and quality scalability in still im-
age coding, an intense effort has been deployed in the last years to extend these decom-
positions in the temporal direction. Moreover, the implementation simplicity through
lifting and the improvements brought to this scheme made possible the rapid evolution
of the MCTF-based coding methods, as it will be shown in section 2.3.1. As during this

1Filter normalization factors, for which two computation methods will presented in section 3.2.2.
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Figure 1.12: Haar wavelet.

thesis dissertation we will use the lifting implementations of Haar, Le Gall’s 5/3 [78]
and Daubechies 9/7 [19, 47] filter banks, we present in the following their corresponding
lifting steps.

1.3.3 Lifting implementations of some wavelet filter banks

As mentioned above, in this thesis we will be using mainly three filters: Haar, Le Gall’s
5/3 [78] and Daubechies 9/7 [19, 47]. Their corresponding lifting steps for one transform
level of a discrete one-dimensional signal x = {xk} are presented in the following. The
splittting step is the same for all the filters to present:

⋆ Split the signal x (i.e. λj−1) into even samples (i.e. λj) and odd samples (i.e. γj):

sj [n] = xj−1[2n]

dj [n] = xj−1[2n+ 1]

Haar analysis lifting steps:

⋆ Predict:

dj [n] =

√
2

2
(dj [n] − sj [n])

⋆ Update:

sj [n] =
√

2sj [n] + dj [n]

Le Gall’s 5/3 analysis lifting steps:

⋆ Predict:

dj [n] = dj [n] − 1

2
(sj [n] + sj [n+ 1])

⋆ Update:

sj [n] = sj [n] +
1

4
(dj [n− 1] + dj [n])



1.3. LIFTING SCHEME 65

−0.4 −0.2 0 0.2 0.4
−3

−2

−1

0

1

2

3

4

Figure 1.13: Le Gall’s 5/3 wavelet.
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Figure 1.14: Daubechies 9/7 wavelet.

Scaling:

sj [n] =
√

2sj [n]

dj [n] =

√
2

2
dj [n]

Daubechies 9/7 analysis lifting steps: One level wavelet decomposition using the Daubechies
9/7 contains two lifting stages each of each consisting a predict and update operation

⋆ Predict1:

dj [n] = dj [n] + α(sj [n] + sj [n+ 1])

⋆ Update1:

sj [n] = sj [n] + β(dj [n− 1] + dj [n])

⋆ Predict2:

dj [n] = dj [n] + γ(sj [n] + sj [n+ 1])
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⋆ Update2:
sj [n] = sj [n] + δ(dj [n− 1] + dj [n])

Scaling:

sj [n] = ζsj [n]

dj [n] =
1

ζ
dj [n]

α = −1.586134342

β = −0.05298011854

γ = 0.8829110762

δ = 0.4435068522

ζ = 1.149604398

1.4 Conclusion

In this chapter we have reviewed the basic concepts of multiresolution analysis and
wavelets. Moreover, we have introduced the lifting mechanism, which provides a frame-
work for implementing the classical wavelet transforms. It has several advantages over
the classical filter bank schemes and provides additional features, like implementation
simplicity and in-place computation, and it will be the instrument used for wavelets im-
plementation during this thesis work. We propose in the following to review scalable
video-coding concepts by presenting some recent developments in both predictive and
MCTF-based scalable-coding strategies.
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Chapter 2

Scalable video coding

The developments in networking technologies and video coding over the last decade
have enabled the broadcasting of video signals over various networks. Internet, mobile
wireless, broadcast, video-on-demand and other potential applications and clients have
different demands on video quality and different conditions for video receiving and de-
coding. A conventional video-coding system for storage purposes encodes a video se-
quence at a desired, fixed bitrate which is adequate for a given application. Serving
different clients generally requires transcoding the given video sequence. Furthermore,
some particular applications, like the transmission over the Internet, can even change
demands on video bitrate during a single video-sequence transmission. Scalable video
coding provides a straightforward solution for a universal video-coding system that can
serve a broad range of applications. Over the last decades, intensive research activities on
diverse algorithms for scalable video coding were undertaken and have finally reached
their mature phase. In this chapter an overview of the requirements and the current sta-
tus of scalable video coding are given.

2.1 Video coding scalability degrees

There are several types of scalability which should be supported by a scalable video cod-
ing system. However, a set of basic scalability types can be defined:

⋆ spatial or resolution scalability

⋆ temporal or framerate scalability

⋆ SNR or quality scalability

Scalable coding should support combinations of basic scalabilities, i.e. combined scal-
ability, which we denote as full scalability (see Fig. 2.1). Moreover, scalable video coders
may include:

⋆ complexity scalability

⋆ region of interest scalability

⋆ object based scalability
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and other features such as: support for both progressive and interlaced material, sup-
port for various colour depths (including component scalability) and robustness to dif-
ferent types of transmission errors. We propose in the following to define and exemplify
each of these three key factors in scalable video coding.

2.1.1 Spatial scalability

Spatial scalability represents the ability of a media file or picture image to reduce or vary
the image geometry (i.e., height and width) without significantly changing the quality of
the image.

(a)

(b)

(c)

Figure 2.2: City frame in: (a) 4CIF format (704x576 pixels), (b) CIF format (352x288 pixels)
and (c) QCIF format (174x144 pixels).

As shown in Fig. 2.2, a video sequence can be represented in several resolution for-
mats. With a spatially scalable codec, this can be obtained by simply encoding a video
sequence at the highest resolution level and extracting the bitstream corresponding to a
certain level of spatial scalability in function of user constaints (i.e., display format).

Spatial scalability has many applications. It may be used in certain HDTV1 systems
to maintain compatibility with standard definition TV. For transmitting video over dual-
priority networks, we can transmit a low-resolution version of the video over the high-
priority channel and an enhancement layer over the low-priority channel. Also, one
solution for video transmission over bandwidth-constrained channels is to transmit a
low-resolution version of the video. For browsing a remote video database, it would be
more economical to send low-resolution versions of the video clips to the user, and then,
depending on his or her interest, progressively enhance the resolution.

2.1.2 Temporal scalability

Temporal scalability is the ability of a streaming media program or moving-picture file
to reduce or vary the number of images or data elements representing that media file for
a particular time period (temporal segment) without significantly changing the quality
or resolution of the media over time. In other words, for a video sequence, it consists
in decreasing / increasing the temporal frequency from the encoded bitstream (i.e., the

1High Definition Television
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ability of encoding a sequence such that it can be extracted at different frame rates). In
Fig. 2.3, an initial temporal frequency for the City sequence (8Hz) is decreased at 4Hz by
simply decoding one frame out of two.

Figure 2.3: Temporal scalability example: framerate reduction from 8Hz (left) to 4Hz
(right)

Because the human visual system is less sensitive to temporal details and more sensi-
tive to spatial details when a video recording depicts a stationary scene, if a video encoder
supports temporal scalability, we can decide to lower the frame rate in exchange for an
increase of the bitrate and hence, we obtain an improvement in the spatial quality of the
remaining frames. This way an optimal scalability tradeoff is achieved with satisfactory
results for the user. Together with the spatial frexibility, the frame rate can be varied in
order to fullfill the bandwidth-constrained transmision channels or for browsing mostly
static video surveillance sequences.

2.1.3 Quality scalability

Quality or SNR scalability consists of the ability to reconstruct a signal with a different
amount of information. In video coding, this can be translated to the ability of a system
to encode a sequence once and to extract the encoded bitstream at different bitrate con-
straints. This can be done by simply varying gradually the pixel representation precision
or bitplane coding.

In Fig. 2.4 an example of variable SNR is drawn for the City (CIF@30Hz) video se-
quence, where the initial bitstream was truncated at 750, 350 and 180 kbs respectively
.

2.2 Scalable predictive coding

We have seen in Section 2.1 the principles and requirements of scalable video coding. In
the following, we propose to continue with the scalable hybrid-coding field, by recalling
the guiding principles of hybrid video-coding, which is the basis for MPEG and ITV1

codecs. Starting from the general structure of a hybrid codec, passing through a short
overview of scalability in previous standards, we shall finally present the current status
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Figure 2.4: City frame (352×288) at: (a) original , (b) 750 kbs, (c) 350 kbs and (d) 180 kbs.

of scalable predictive coding.

2.2.1 General structure of a hybrid codec

Current standards, such as H.263 [7], H.264 [1], MPEG-2 [4] and MPEG-4 [2] (both part 2
and part 10) are based on a predictive video-coding scheme (see Fig. 2.5).

The predictive coding is made in a closed loop: a decoder is integrated at the encoder
side such that the reconstructed frames are used for prediction of the current frames, lead-
ing thus to a closed-loop structure (the part enclosed in the red rectangle in Fig. 2.5). The
usual encoding process has three main stages, namely the temporal processing and spa-
tial decorrelation stages, both reducing the temporal and spatial redundancy in a video
shot respectively, and finally an entropy codec. In the following, we propose to review
the main functionalies of each stage.

2.2.1.1 Temporal processing

The temporal decorrelation of a video sequence is generally a two-step process described
by motion estimation and compensation. To achieve compression, the temporal redun-
dancy between adjacent frames can be exploited. That is, a frame is selected as a refer-
ence, and subsequent frames are predicted from the reference using a technique known

1Internet TeleVision
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Figure 2.5: Predictive (hybrid) video coding scheme.

as motion estimation. This is the process of finding optimal or near-optimal motion vectors
(MVs).

In block-based motion estimation (BME), the frames are partitioned in blocks of pixels
(blocks of 8×8 or macroblocks of 16×16 pixels for example). Each block is predicted from
a block of equal size in the reference frame. The blocks are not transformed in any way
apart from being shifted to the position of the predicted block. This shift is represented by
the motion vector. The amount of prediction error for a block is often measured using the
mean squared error (MSE), the sum of absolute differences (SAD) or the mean absolute
error (MAE) between the predicted and actual pixel values over all pixels of the motion-
compensated region. To find optimal motion vectors, one basically has to calculate the
prediction error for each motion vector within a certain search range and pick the one that
has the best compromise between the amount of error and the number of bits needed for
the motion-vector data. The motion-estimation technique of simply exhaustively testing
all possible motion representations to perform such an optimization is called full search.
Because the motion-estimation process is the most expensive from computational point
of view, faster methods, which are near-optimal with respect to rate-distortion criterion
are developed, by using a coarse search grid for a first approximation and refining the
grid in the surrounding of this approximation in further steps. Several techniques have
been proposed in an effort to reduce the motion estimation complexity, such as the Three-
Step Search (TSS) [106], New Three Step Search (NTSS) [116], Diamond Search (DS) [220],
Motion Vector Field Adaptive Search Technique (MVFAST) [122] or Predictive Motion
Vector Field Adaptive Search Technique (PMVFAST) [187], all being block-based motion-
estimation methods.

For overlapped block motion estimation (OBME) [115], the prediction errors of a
block and its overlapping neighbouring blocks have to be weighted and summed ac-
cording to a window function before being squared. As in the process of successively
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finding/refining motion vectors some neighbouring MVs are not known yet, the corre-
sponding prediction errors can be ignored (not added) as a sub-optimal solution. The
major disadvantage of OBME is the increased computational complexity and the fact
that prediction errors and, thus, also the optimal motion vectors depend on neighbouring
blocks/motion vectors. Therefore, there is no algorithm with polynomial computational
complexity that guarantees optimal motion vectors. However, there are near-optimal it-
erative and non-iterative methods with acceptable computational complexity. Moreover,
the motion-estimation process is the most computation-intensive part of an encoder and
can cause visual artefacts when subject to errors.

Once the motion-estimation process is finished and the motion-vector fields are know,
the reference frames are compensated in the direction of the motion flow. This process,
known as motion compensation, consists of the prediction of one frame from previous or
next frames, such that only the motion vectors and the prediction error are coded. In a
predictive codec, the current frames are predicted from the previous coded and recon-
structed frames, in order to minimize the drift effect caused by the quantization process.
When a previous frame is used as a reference, the prediction is referred to as forward
prediction, and, in hybrid coding, the predicted frame is called an inter-P (predictive)
frame. If the reference frame is a future frame, then the prediction is referred to as back-
ward prediction. Backward prediction is typically used with forward prediction, and this
is referred to as bidirectional prediction (i.e., inter-B (bidirectional) frame). There are also
frames which are not motion-compensated. In predictive coding, they are denoted as I
(intra) frames and are used for the prediction of the inter-P and B frames. Usually the
prediction chain (the frames between two intra I frames) has a fixed length, as can be
seen in Fig. 2.6. For example, AVC/H.264 [1] offers the possibility of choosing from mul-
tiple reference frames for motion estimation, meaning that the codec can decide whether
simply to refer to the previous frame or even to a frame before that. Because of that (usu-
ally, a P -Frame can refer to a frame before the latest I-frame), a new frametype had to
be introduced: IDR-frames, which are a special type of I-frame to which no following
frame is allowed to refer to. Thus, scene cutting is possible only at the IDR-frames.

I B B B B PP

Figure 2.6: Video-shot prediction chain in hybrid coding

2.2.1.2 Spatial processing

The prediction residual images are spatially decorrelated in order to exploit their spatial
redundancy. In hybrid coding, the employed transform is generally an 8×8 block-based
Discrete Cosine Trasform (DCT) or a 4×4 and 8×8 block-based Hadamard transform.
Starting with the second version of H.263 (or H.263+ [7]), before applying a spatial trans-
form, a spatial-domain prediction is used for improving the efficiency of intra video cod-
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Figure 2.7: Intra-prediction modes for a 4 × 4 block in H.264.

ing. Basically the scheme predicts and generates the pixel values from adjacent pixel
values that have already been encoded. H.264 [1] provides nine modes for luminance
signal prediction and four modes for color, designed in a directional manner, as shown
in Fig. 2.7. The key point of the effective improvement is to select the proper prediction
mode for each block, and this is done based on a rate-distortion criterion.

2.2.1.3 Entropy coding

After the spatial-coding module, the resulting coefficients are passed to a quantizer. By
quantization, they suffer some loss of information. The quantization consists of dividing
the spatial coefficients matrix by another, called quantization matrix, which contains co-
efficients selected by the coder, depending on a quality control parameter, Q. The goal
is to attenuate the high frequencies, i.e. those to which the human eye is less sensitive.
The quantized coefficients are then zig-zag parsed following their magnitude and finally
coded using an entropy coder, such as Run-Length Coding (RLC) [130], Huffman coding
[102], Context-based Adaptive Variable-Length Coding (CAVLC) [119] or Context-based
Adaptive Binary Arithmetic Coding (CABAC) [128]. The motion-vector fields are loss-
lessly coded, using the Variable Length Coding (VLC) [90] method.

The hybrid video-coding strategies can achieve high compression rates, but they are
not able to provide a direct scalable representation. However, both MPEG-2 and MPEG-
4 (part 2) have a layered predictive structure, able to supply a coarse scalability form,
where each layer represents a version of the video sequence to a time-space resolution
and a given flow. In the absence of this layered structure, it is not possible to modify
the flow, the space resolution, or the temporal frequency of a compressed video sequence
without transcoding. This operation requires the complete decoding and a re-encoding
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of the whole video sequence and is generally very expensive from the computational
complexity point of view. Many strategies [13, 140] have been developed however in
order to decrease this computational burden.

2.2.2 Scalability evolution through standardization

In early video compression standards such as ITU-T H.261 [6] and ISO/IEC MPEG-1 [3],
no scalability mechanisms were provided. One reason for this was the dedicated design
for specific applications such as conversational services or storage which did not require
scalability. In fact, scalability can nevertheless be achieved by providing different bit-
streams targeting at different decoded resolutions: the method of simulcast ties together
two or several streams for the purpose of parallel transmission. Parallel storage could
also be implemented. ISO/IEC MPEG-2 [4], which is identical to ITU-T H.262, was the
first general-purpose video compression standard which also included a number of tools
providing scalability. One of the reasons was the desire for forward compatibility with
MPEG-1, where eventually base information could be encoded and decoded by the old
standard, while higher-quality enhancement information is processed by the new stan-
dard [138]. MPEG-2 was the first standard to include implementations of layered coding,
where the standalone availability of enhancement information (without the base layer)
is useless, because differential encoding is performed with reference to the base layer.
All dimensions of scalability as mentioned above are supported (spatial, temporal, SNR);
however, the number of scalable bitstream layers is generally restricted to a maximum
of three in any of the existing MPEG-2 profiles. In addition, data partitioning allows
the separation of the bitstream into different layers, according to the importance of the
underlying elements for the quality of the reconstructed signal.

The video codec of the ISO/IEC MPEG-4 standard [2] provides even more flexible
scalability tools, including spatial and temporal scalability within a more generic frame-
work, but also SNR scalability with fine granularity and scalability at the level of (even-
tually semantic) video objects. In Simple Profile (SP) mode, MPEG-4 video is equivalent
to the ITU-T H.263 [7] baseline codec, which provides no scalability. Extensions of H.263
define spatial, temporal and SNR scalabilities as well. Advanced Video Coding (AVC), as
defined as part 10 of the MPEG-4 standard [1], aka ITU-T H.264 AVC, can, in principle,
be run in different temporal scalability modes, due to its flexibility in the definition of
prediction frame references.

The basic idea in MPEG-4 (part-2) Fine Granularity Scalability (FGS) is to encode a
video sequence into a non-scalable base layer and a scalable enhancement layer. The
MPEG-4 Advanced Simple Profile (ASP) provides a subset of non-scalable video-coding
tools to achieve high coding efficiency for the base layer. The bitrate of the base layer
is the lower bound of a bitrate range that FGS supports. The base layer is typically en-
coded at a very low bitrate. The FGS profile is used to obtain the enhancement layer for
achieving optimized video quality with a single stream for a wide range of bitrates. More
precisely, each frame residue (i.e., the difference between the original frame and the corre-
sponding frame reconstructed from the base layer) is encoded for the enhancement layer
in a scalable manner: DCT coefficients of the residue are compressed bitplane-wise from
the most significant bit to the least significant bit. For a temporal enhancement frame
which does not have a corresponding frame in the base layer, the bitplane coding is ap-
plied to the entire DCT coefficients of the frame. This is called FGS temporal scalability
(FGST). FGST can be encoded using either forward or bidirectional prediction from the
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base layer. MPEG-4 FGS provides very fine grain scalability to allow near RD-optimal
bitrate reduction. More details about FGS can be found in [118, 5].

Nevertheless, it must be noted that any of the video-coding standards existing so far
restricts scalability at the bitstream level to a predefined number of layers which must be
known at the time of encoding. Even if the MPEG-4 FGS provides a scalable bitstream,
a problem of drifting may emerge due to differences in the reference frames used in the
encoder and decoder. In general, the bitrate of the base-layer is low enough to fit in
the minimum network bandwidth. Therefore, the base layer is always available at the
decoder. However, since the high-quality references in FGS comprise part of the DCT
coefficients encoded in the enhancement layers, more bandwidth is needed to transmit
them to the decoder. When channel bandwidth somehow drops, the decoder may par-
tially or completely loose the high-quality references. In this case, the decoder has to use
the low-quality references instead, which would inevitably cause the drifting error in the
enhancement layer. In the following, we examine the specifications of the scalable video
coding (SVC) extention of the current MPEG-4 AVC standard which intends to overcome
the drifting issue present in MPEG-4 FGS.

2.2.3 Scalable Extension of AVC: H.264/MPEG-4 SVC

To serve different needs of users with different displays connected through different net-
work links by using a single bitstream, a single coded version of the video should provide
spatial, temporal and quality scalability. MPEG and ITU standardization organizations
launched a joint call for proposals [12] in 2003 aiming at the creation of a new standard
for scalable video coding: the SVC standard (Scalable Video Coding) [164]. This will be
standardized as an amendment to MPEG-4 Part 10 AVC/ITU-T H.264.

As a distinctive feature, SVC allows generation of an H.264 /MPEG-4 AVC compliant,
i.e., backwards-compatible, base layer and one, or several, enhancement layer(s). Each
enhancement layer can be turned into an AVC-compliant standalone (and not anymore
scalable) bitstream, using built-in SVC tools. The base-layer bitstream corresponds to
a minimum quality, frame rate, and resolution (e.g., QCIF video), and the enhancement-
layer bitstreams represent the same video at gradually increased quality and/or increased
resolution (e.g., CIF) and/or increased frame rate. The texture coefficients are initially en-
coded with a coarse quantization step, the resulting quantization error being re-quantized
with a finer step, and so on in a progressive way, thus allowing a medium-grain quality
scalability. Moreover, there is a mechanism of prediction between the various enhance-
ment layers, allowing the reuse of textures and motion-vector fields obtained in preced-
ing layers.

The basic SVC design can be classified as a layered video codec. In general, the coder
structure, as well as the coding efficiency, depends on the scalability space that is required
by an application. For illustration, Fig. 2.8 shows a typical coder structure with two
spatial layers. In each spatial, or coarse-grain, SNR layer, the basic concepts of motion-
compensated prediction and intra prediction are employed as in H.264/MPEG4-AVC.
The redundancy between different layers is exploited by additional inter-layer prediction
concepts that include prediction mechanisms for motion parameters as well as texture
data (intra and residual data). A base representation of the input pictures of each layer is
obtained by transform coding similar to that of H.264/MPEG4-AVC, the corresponding
NAL 1 units contain motion information and texture data. The NAL units of the lowest

1Network Abstraction Layer
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Figure 2.8: H.264/MPEG-4 SVC coding scheme.

layer are compatible with single-layer H.264/MPEG4-AVC [1].

The reconstruction quality of these basic representations can be improved by an addi-
tional coding of so-called progressive-refinement slices. In contrast to all other slice-data
NAL units, the corresponding NAL units can be arbitrarily truncated in order to support
fine grain quality scalability or flexible bit-rate adaptation.

An important feature of the SVC design is that scalability is provided at the bitstream
level. Bitstreams for a reduced spatial and/or temporal resolution can be simply obtained
by discarding NAL units (or network packets) from a global SVC bitstream that are not
required for decoding the target resolution. NAL units of progressive refinement slices
can additionally be truncated in order to further reduce the bitrate and the associated
reconstruction quality. In order to assist easy bitstream manipulations, the one-byte NAL
unit header of H.264/MPEG4-AVC was extended by 2 bytes for SVC NAL units. These
additional bytes signal whether the NAL unit is required for decoding a specific spatio-
temporal resolution and quality (or bitrate), as well as whether the NAL unit can be
truncated.

Coding efficiency of SVC depends on the application requirements but the goal is to
achieve a rate-distortion performance that is comparable to non-scalable H.264 / MPEG-4
AVC. The design of the scalable H.264/MPEG4-AVC extension and promising applica-
tion areas are pointed out in [164].

2.3 Scalable lifting-based wavelet coding

In parallel with the hybrid-coding schemes, a new coding paradigm has been developed:
the scalable lifting-based wavelet (subband) coding. The general structure for a scalable
interframe wavelet-based video-coding system is presented in Fig. 2.9. It is based on two
key technologies: motion compensated temporal filtering (MCTF) and spatial wavelet
transform. The wavelet-based compression schemes have become increasingly impor-
tant and gained widespread acceptance, an example being the JPEG2000 still image com-
pression standard [8, 178]. Because of their inherent multiresolution signal representa-
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Figure 2.9: Encoder structure of scalable interframe wavelet-based video-coding system

tion, wavelet-based coding schemes have the potential to support temporal, spatial and
SNR scalability. This is the reason for which we have chosen the scalable lifting-based
wavelet-coding paradigm as the conceptual development framework for this thesis.

In MCTF-based codecs, instead of performing temporal decorrelation along the direct
temporal-axis of the input video, the temporal filtering is performed along the motion
trajectories in order to remove the temporal redundancy. In this way, the energy of the
temporal highpass subbands decreases substantially. Fewer motion artefacts will also
increase coding efficiency. So motion compensated temporal filtering plays an essential
role in motion compensated t+2D subband/wavelet coding. It will influence the coding
efficiency and temporal scalability features.

In the following we will introduce the MCTF concept as well as several MCTF schemes,
and we will finally present the interesting family of wavelet-based coders.

2.3.1 Motion-Compensated Temporal Filtering

The idea of temporal extensions of subband decompositions appeared in the late 80’s,
with the works of Karlsson and Vetterli [101] and Kronander [109]. In these works, the
classical temporal closed-loop prediction scheme was replaced by a temporal subband
decomposition, which, at that time, did not take into account any motion compensa-
tion. However, it was shown [135] that the prediction in the motion direction leads to
important energy reduction in the temporal detail subbands, thus a much better com-
pression performance and visual quality. Consequently, there has been significant inter-
est in motion-compensated temporal filtering in which the temporal transform follows
the motion trajectories. MCTF plays an essential role in motion compensated t+ 2D sub-
band/wavelet coding, influencing both the coding efficiency and the temporal scalability.

The current 3D wavelet video-coding schemes involving MCTF can be divided into
two main categories. The first one performs MCTF on the input video sequence directly
in the full-resolution spatial domain before spatial transform, is often referred to as spatial
domain or classical MCTF, and is usually denoted by t+ 2D subband coding. The second
one performs MCTF in wavelet subband domain generated by the spatial transform, be-
ing often referred to as in-band or wavelet domain MCTF and is generally denoted by
2D + t. Fig. 2.16 illustrates a general framework for the above-mentioned schemes. We
propose to review in the following several MCTF-based coding schemes, starting with
the classical ones where the temporal decomposition is firstly performed in the spatial
domain (t+2D) and finishing with the wavelet-domain MCTF (2D+ t(+2D)). Before in-
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troducing the motion-compensated prediction/update methods, we propose to overview
several motion-estimation strategies, which are adapted to the MCTF setting.

2.3.1.1 Some motion-estimation strategies

The key step in removing the temporal redundancy is motion estimation, where a motion
vector is predicted between the current frame and a reference frame, based on some error
minimization criterion (e.g. mean square error (MSE), sum of absolute difference (SAD),
mean absolute error (MAE)). Following motion estimation, a motion-compensation stage
is applied to obtain the residual image, i.e. the pixel differences between the current
frame and the predicted frame. As the result of motion estimation is directly reflected by
the energy of the residual frames, it is important to have a good motion estimator. The
traditional motion estimation algorithm uses a Full Search (FS), where every possible
displacement within a search region is searched, but this is computationally expensive.
Since, in most cases, motion estimation constitutes roughly 70% of the computational
load of a video encoder, there is a need for fast, simple and efficient motion-estimation
algorithms. Many fast algorithms were proposed in order to diminish the computational
complexity. Some fast search methods based on rectangular patterns and some geometric
or shape-based patterns have been proposed so far. There are three main types of motion-
estimation algorithms, namely the pel-based, block-based and object-based methods. A
description and a performance comparison between these algorithms for video compres-
sion can be found in [126].

In the framework of wavelet-based video coders, several motion-estimation algo-
rithms [68, 36, 15, 146, 139] have been developed. The block matching algorithms (BMA)
are widely used to estimate the motion vectors because of their relatively simple imple-
mentation. However, since the boundaries of the moving objects do not usually coin-
cide with the boundaries of the blocks used for the BMA, objects having different types
of motion can exist in a block. In this case, the block can not be adequately compen-
sated by employing a single motion vector. Hence, variable block size (VBS) motion-
estimation techniques [154, 172] have been proposed to improve the performance of
motion-compensated transform coding (MCTC). In VBS, the block size for estimating
the motion is adapted according to the type of motion in the block. The VBS tech-
nique is known to be very effective for areas containing complex motions. In the con-
ventional VBS motion estimation, like the Hierarchical Variable Size Block Matching
(HVSBM) algorithm proposed by Choi and Woods in [44], various decision rules are used
to form the VBS motion for quadtree structures. However, the problem with the conven-
tional VBS technique lies in encoding the motion vectors efficiently with entropy coding
[103, 172, 45] since the motion vectors within a block are observed to be quite different
from each other.

The work in this thesis is partially implemented in the framework of MC-EZBC [210]
and respectively Vidwav MSRA [211] video coders, which use as motion-estimation strat-
egy the Hierarchical Variable Size Block Matching algorithm [44] and a multi-layered
adaptive block-size motion alignment [213] respectively.

2.3.1.2 Connected and unconnected pixels

In block-based motion-compensated prediction, the same area in the reference frame can
be used to predict several areas in the current frame, while some parts of the reference
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Figure 2.10: Motion compensated prediction: unconnected and multiple-connected areas

frame may not be used at all for prediction. This gives rise to multiple connected and
unconnected pixels. With moving objects, some pixels in the first frame are covered in
the second frame, but some pixels in the second frame are uncovered. This is called the
occlusion effect [108]. The best matched pixels for the second frame are certainly not
present in the to-be-covered pixels of the first frame; in other words, only a subset of
the first frame should be used as the reference for the second frame. On the other hand,
uncovered pixels in the second frame are not present in the first frame. It should be
noted that the phrase are not present does not mean there do not exist pixels with the same
luminance and chrominance components in the first frame, but it indicates that specific
pixels, indicating real motion of objects, do not exist in the first frame. So connections
between pixels in two frames are not one-to-one, and, thus, at some lattice sites, the
motion field is not defined. Clearly, backward motion estimation should be turned off for
uncovered pixels due to the lack of temporal coherence, but forward motion estimation
should be turned on. It is an important task in MCTF to properly distinguish and handle
covered and uncovered pixels including newly appearing objects in the scene.

In existing MCTF methods [135, 44] (see Fig. 2.10), the placement of unconnected
pixels is related to the scan order. Furthermore, no test of motion-vector accuracy is
used, so that the motion field is defined for each block of the second frame, even though
some of these blocks may not have a true match in the first frame. These poor, or sim-
ply wrong, connections lead to faulty classification of connected and unconnected pixels.
Hence, both the motion estimates and the decision of unconnected pixels are question-
able. Sometimes the positions selected by such methods may be totally different from the
real occurrence of the occlusion effect.

A consequence of poor pixel classification is the appearance of visual artefacts in the
temporal low frame-rate video, as illustrated by Fig. 2.11, which shows an object in the
first frame moving to the right. Here the covered background region in the first frame
becomes uncovered in the second frame. Using backward motion estimation, the motion
vectors of the uncovered region and the object may both point to the object in the first
frame. Then according to the scan-order rule introduced earlier, the uncovered region in
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Figure 2.11: Wrong pixel classification on temporal approximation frames

the second frame will be connected with the object in the first frame, while the moving
object is left unconnected. So the uncovered region will wrongly take part in temporal fil-
tering, which will likely cause the temporal low-frequency frame to have visual artefacts,
as we will also see in Section 3.1.1.

In a temporal scalable coder using MCTF, the most natural choice for the low frame-
rate data is the MCTF output. Therefore, it is important for it to be artefact free and
visually pleasant. Note that this is in contrast with the usual choice for the low frame-
rate data in the case of hybrid coders, which is the sub-sampled frames themselves.

Chen et al. propose in [38] a simple way to detect uncovered pixels by doing backward
and forward motion estimation for each block in the second frame. If forward motion es-
timation has a smaller displaced frame difference (DFD), then this block will be classified
as uncovered. But since there are scene-illumination changes and noise, some blocks in
the second frame will choose forward motion estimation, even though there are matched
blocks in the first frame. Since those matched blocks in the first frame will not be used
as reference, pixels in those blocks will be processed as unconnected pixels. For blocks
in the second frame using forward motion estimation, their pixels will also be processed
as unconnected. This will generate many more unconnected pixels in bidirectional as
compared with unidirectional MCTF.

In order to avoid such problems, other motion models, such as meshes can be em-
ployed [166]. However, when the percentage of multiple connected or unconnected pix-
els is too high, a scene-cut adapted MCTF [189] can be used for processing the uncorre-
lated shots of the video sequence. Such scheme will be introduced in Section 3.1.

2.3.1.3 Classical MCTF: Haar and 5/3 MC lifting transforms

The simplest temporal wavelet transform is the Haar filter bank (Eq. 2.1), performing
sums and differences on pairs of frames (x(2t), x(2t+1)) to obtain the approximation (Lt)
and the detail (Ht) subbands. A Haar temporal decomposition is illustrated in Fig. 2.12
on a GOP (Group of Pictures) of eight frames, which allows a dyadic decomposition over
a maximum three levels.

The basic operations for obtaining the high-pass and low-pass subbands in lifting
form are as follows:
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Figure 2.12: Motion compensated temporal decomposition of a 8-frames GOP using Haar
wavelet.




Ht(n) = x2t+1(n) − x2t(n)

Lt(n) = x2t(n) +
1

2
Ht(n)

(2.1)

An overview of various MCTF structures for scalable video coding can be found in
[137], and, in [150], some interesting lifting formulations of these temporal decomposi-
tions are presented.

Due to the two-tap low-pass and high-pass filters and the downsampling being made
by a factor of 2, no boundary problems appear when decomposing a GOP of size 2L into
a number of up to L resolution levels. Moreover, if motion estimation and compensation
is performed between pairs of successive frames, without overlapping, the number of
operations and the number of motion vector fields are the same as for coding the same
number of frames in a predictive scheme (and thus equal to 2L − 1). However, as the
pairs of pixels have to be processed in successive frames in order to obtain the coefficients
of the approximation and detail frames, motion invertibility becomes a very important
problem.

In the temporal decomposition, motion estimation is first performed between input
frames and the motion vector fields (denoted by v in Fig. 2.13) are used for motion-
compensated operations in both the predict and update steps. An important remark
is that the predict operator can use all the even-indexed input frames (denoted by x2t)
to perform the motion-compensated prediction of the odd-indexed frames (denoted by
x2t+1), while the update operator can use all the detail frames (Ht) thus computed in
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Figure 2.13: General lifting-based MCTF scheme

order to obtain the approximation-subband frames (Lt). Both predict and update opera-
tors involve the motion vectors used to match corresponding positions. Therefore, in the
t+ 2D framework, they actually become spatio-temporal operators:





Ht = x2t+1 − P (
{
x2(t−k), v

2(t−k)
2t+1

}
k∈T p

k

)

Lt = x2t + U(
{
Ht−k, v

2(t−k)+1
2t

}
k∈T u

k

)
(2.2)

where vj
i is the motion vector field used to predict the current frame i from the reference

frame j , T p
k (respectively T u

k ) being the support of the temporal predict (respectively
update) operator.

Considering the motion-estimation and according to Eq.(2.2), the Haar multiresolu-
tion analysis equations (2.1) become:




Ht(n) = x2t+1(n) − x2t(n− v2t

2t+1)

Lt(p) = x2t(p) +
1

2
Ht(p+ v2t+1

2t )
(2.3)

It has been shown in [84] that longer filters are more efficient from the temporal pre-
diction point of view. Among these, the biorthogonal 5/3 filter bank [218] has been the
most studied. In this case, both forward and backward motion vectors need to be used
for a bidirectional prediction. Thus, the analysis equations of the 5/3 filter-bank have the
form: 




Ht(n) = x2t+1(n) − 1

2
(x2t(n− v2t

2t+1) + x2t+2(n− v2t+2
2t+1))

Lt(p) = x2t(p) +
1

4
(Ht−1(p+ v2t+1

2t ) +Ht(p+ v2t+1
2t+2))

(2.4)

We can see that this scheme needs motion estimation between every consecutive pair
of motion vectors as opposed to every other pair for 2-tap Haar filters (see Fig. 2.14 (a)).
As we have mentioned previously, no boundary problems appear when decomposing a
GOP of size 2L into a number of up to L resolution levels with the Haar filter bank. In
the case of 5/3 temporal filtering, we could process one GOP at a time with symmetric
extension of the motion trajectories at the boundaries (see Fig. 2.14 (b)). Even though this
is essential for perfect reconstruction, it produces a PSNR drop at the GOP boundaries
especially at the starting frames where the temporal high-subband is at the boundary.

In order to avoid such artefacts, Zhan et al. proposes in [218] (and one year later, Gol-
welkar in [84]) the sliding window implementation for the bidirectional temporal filters.
The sliding window approach uses actual data at both GOP ends, instead of a symmetric
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extension (see Fig. 2.14 (c)). This means that one has to look ahead, causing a certain
amount of delay at the receiver. If we are using a 2M(n) + 1 tap filter at stage n, we
will need the future M(n) frames at each temporal level. Hence the longer the filter, the
longer the delay. For k levels of temporal resolution, this delay can be evaluated as:

D(k) =
k−1∑

n=0

2nM(n).

If the 5/3 filter bank is used at each stage, the coefficientM(n) equals 2, and we will need
30 frames on both sides for a 4 stage MCTF in order to get perfect reconstruction.

As it has been shown in Fig. 2.14, for the bidirectional 5/3 decomposition the number
of motion-vector fields is double that compared to the Haar decomposition, and, there-
fore, the coding of this information may represent an important part of the bitstream
at low bitrates. Efficient algorithms are thus needed to further exploit redundancies be-
tween motion-vector fields at the same temporal decomposition level or at different levels
[23, 196].

The energy distributed update (EDU) proposed in [214, 74] is an update scheme
which tries to avoid a second set of motion vectors, or complex and inaccurate inver-
sion of the motion information, as used in the traditional update step. The basic idea
consists of the correlation of the predict/update steps, that is, to perform the update only
where predict was made, by distributing high-pass signals to the low-pass frame. Mean-
while, it provides further coding-efficiency gain, as implemented by the Vidwav-MSRA
3D scalable video coding scheme [211].
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Figure 2.14: One level MCTF using: (a) Haar filtering, (b) 5/3 symmetrical implementa-
tion and (c) 5/3 sliding window implementation (v−/v+ denote the forward/backward
motion vectors)
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Figure 2.15: Three-band lifting scheme

2.3.1.4 MCTF extentions: Unconstrained-MCTF, 3-Bands

The concept of unconstrained MCTF (UMCTF) introduced by van der Schaar et al. in
[195, 198] allows very useful extensions of MCTF. By selecting the temporal filter coef-
ficients appropriately, multiple reference frames and bidirectional prediction can be in-
troduced in the motion-compensated wavelet framework, such as in H.264/AVC. No
update step is used, however, which makes this scheme comparable with an open-loop
multiresolution predictive structure. We can adaptively change the number of reference
frames, the relative importance attached to each reference frame, the extent of bidirec-
tional filtering, and so on.

UMTCF mechanism provides adaptive temporal filtering through:

⋆ variable number of temporal decomposition levels based on the video content or
desired complexity level.

⋆ adaptive choice of filters enabling different temporal-filtering enhancements.

⋆ adaptive choice of filters, within and between temporal- and spatial-decomposition
levels.

⋆ variable number of successive H frames within and between levels, for flexible
(non-dyadic) temporal-scalability and temporal-filtering enhancemements.

⋆ different temporal-decomposition structures.

These filters can be adapted across the different frames and between temporal levels, as
well as within a frame, on a block or region level. Through appropriate choice of filters
and decomposition structures, many different improvements to MCTF become possible.
For instance, predictive-coding options such as subpixel accuracies, bidirectional predic-
tion, multiple reference frames etc., may easily be introduced into the MCTF framework.
Simultaneously, variable decomposition structures, such as modifying the number of de-
composition levels, the number of successive H frames, decomposing H frames etc., can
also be introduced. Therefore, with this filter choice, the efficient compensation strate-
gies of conventional predictive coding can be obtained by UMCTF, while preserving the
advantages of conventional MCTF.
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Other extensions of the temporal transform are aimed at providing non-dyadic scal-
ability factors. This can be achieved by M -band filter banks. In particular, a three-band
filter bank in lifting form was proposed by Tillier et al. in [180] and is illustrated in
Fig. 2.15. For simplicity, Fig. 2.15 shows only the predict and update blocks; however,
as in the dyadic case, they involve motion estimation/compensation. Following the fig-
ure notations, the analysis equations, which lead to one approximation and two detail
subbands, are:





H+
t (n) = x3t+1(n) − P+({x3t}t∈N )

H−
t (n) = x3t−1(n) − P−({x3t}t∈N )

Lt(p) = x3t(p) + U+(
{
H+

t

}
t∈N ) + U−(

{
H−

t

}
t∈N )

(2.5)

Note that in this scheme all the frames indexed by multiples of three are used by the
two prediction operators. For example, by choosing frames x3t and x3t+3 for the pre-
diction of frame x3t+1, and likewise choosing frames x3t−3 and x3t for predicting frame
x3t−1, a structure similar to the classical IBBP . . . can be obtained.

However, the simplest choice, corresponding to a Haar-like transform, is to have iden-
tity predict and linear update operators. In this case, the analysis equations become:





H+
t (n) = x3t+1(n) − x3t(n− v3t

3t+1)

H−
t (n) = x3t−1(n) − x3t(n− v3t

3t−1)

Lt(p) = x3t(p) + α(H+
t (p+ v3t

3t+1) +H−
t (p+ v3t

3t−1))

(2.6)

with α = 1
4 found using the low-pass filter-existence constraint, L(−1) = 0. More com-

plex lifting-like schemes have been proposed in [183], as well as other possible M -band
motion-compensated temporal structures, like the 5-band temporal lifting scheme that
we have introduced in [192] and that we will develop in Section 3.2. For example, these
structures allow a framerate adaptation from 30Hz to 10Hz or from 30Hz to 6Hz. Flexible
framerate changes can also be achieved by cascading dyadic and M -band filter banks.
Another direction for the extension of spatio-temporal transforms is to replace the 2D
wavelet decomposition by other representations, such as wavelet packets [141]. Joint
wavelet packets [191] describing a unique best-basis representation for several frames,
rather than one basis per frame as is classically done, will be introduced in Section 4.2.
General filter banks, such as the fully separable wavelet and wavelet-packet transform
[188] will be presented in Section 4.3. Also, flexible spatial scalability factors are allowed
by the method proposed in [142].

2.3.1.5 Transforms switching: t+ 2D and 2D + t

The interframe wavelet video-coding schemes presented in Sections 2.3.1.3 and 2.3.1.4
employ MCTF before the spatial wavelet decomposition. As mentioned in Section 2.3.1,
we refer to this class of interframe wavelet video-coding schemes as t + 2D MCTF. De-
spite their good coding efficiency performance and low complexity, these types of MCTF
structures have also several drawbacks:

⋆ Limited motion-estimation efficiency. The t+2D MCTF schemes are inherently limited
by the quality of the matches provided by the employed motion-estimation algo-
rithm. For instance, discontinuities in the motion boundaries are represented as
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high frequencies in the wavelet subbands, and the intra/inter mode switch for mo-
tion estimation is not very efficient in t+ 2D MCTF schemes, as the spatial wavelet
transform is applied globally and cannot encode the resulting discontinuities ef-
ficiently. Moreover, the motion-estimation accuracy, motion model, and adopted
motion-estimation block size are fixed for all spatial resolutions, thereby leading to
sub-optimum implementations compared with non-scalable coding that can adapt
the motion-estimation accuracy based on the encoded resolution. Also, because
the motion vectors are not spatially scalable in t + 2D MCTF, there is necessary to
decode a large set of vectors even at lower resolutions.

⋆ Limited efficiency of spatial scalability. If the motion reference during t + 2D MCTF
is, for example, at HD (high-definition, 1920×1080 pels) resolution and decoding is
performed at a low resolution (e.g., QCIF 176×144 pels), this leads to subsampling
phase drift for the low-resolution video.

⋆ Limited spatio-temporal decomposition structures. In t+ 2D MCTF, the same temporal-
decomposition scheme is applied for all frames. Hence, the same level of temporal
scalability is provided independent of the spatial resolution.

A possible solution for the above mentioned drawbacks is to employ in-band temporal
filtering schemes, where the order of motion estimation and compensation and that of the
spatial wavelet transform (2D-DWT) are interchanged (i.e., 2D + t MCTF schemes). The
spatial wavelet transform for each frame is entirely (or partially in a 2D + t+ 2D coding
scheme) performed first and multiple separate motion-compensation loops are used for
the various spatial wavelet bands in order to exploit the temporal correlation present in
the video sequence. MCTF can now also be applied to spatial wavelet high-pass bands.

The t+2DMCTF schemes (Fig. 2.16(a)) can be easily modified into 2D+t or 2D+t+2D
MCTF (Fig 2.16(b)). More specifically, in 2D + t MCTF, the video frames are spatially
decomposed into multiple subbands using wavelet filtering, and the temporal correla-
tion within each subband is removed using MCTF (see [149, 148]). The residual texture
after the MCTF is coded subband by subband using any desired texture-coding tech-
nique (DCT-based, wavelet-based, matching pursuit, etc.). Also, all the recent advances
in MCTF can be employed for the benefit of 2D+ t schemes, which have been developed
in [217, 18, 16].

2.3.1.6 Overcomplete MCTF

Overcomplete MCTF is an extention of the in-band (2D + t) coding scheme. Due to the
decimation procedure in the spatial wavelet transform (see Section 1.2.3), the wavelet co-
efficients are not shift invariant with respect to the original signal resolution. Thus the
translational motion in the spatial domain cannot be accurately estimated and compen-
sated from the wavelet coefficients, thereby leading to a significant coding efficiency loss.
To avoid this inefficiency, motion estimation and compensation should be performed in
the overcomplete wavelet domain rather than in the critically sampled domain.

As shown in Section 1.2.3, the overcomplete (redundant) discrete wavelet data (ODWT)
can be obtained through a process similar to the critically sampled discrete wavelet sig-
nals (DWT) by omitting the subsampling step. Consequently, the ODWT generates more
samples than DWT, but enables accurate wavelet-domain motion compensation for the
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(a)

(b)

Figure 2.16: Framework for 3D wavelet video coding: (a) t+ 2D scheme (pre-spatial de-
composition is avoided); (b) case for the 2D+ t(+2D) scheme (pre-spatial decomposition
exists, optional post-spatial decomposition).

high-frequency components, and the signal does not bear frequency-inversion alias com-
ponents. Despite the fact that ODWT generates more samples, an ODWT-based encoder
needs to encode only the critically sampled coefficients. This is because the overcomplete
transform coefficients can be generated locally within the decoder. Moreover, when the
motion shift is known before the analysis and synthesis stages, it is necessary to com-
pute only those samples of the overcomplete representation that correspond to the actual
motion shift. Several in-band motion-compensated video coders involve overcomplete
wavelet transforms, like the ones proposed in [18, 16] or [165, 17, 205].

2.3.2 Three-dimensional (3D) wavelet coefficient coding

After 3D (t + 2D or 2D + t) wavelet analysis, a video sequence will be decomposed
into a certain number of 3D subbands. For example, in Fig. 2.17, a three-level motion-
compensated wavelet decomposition is performed in the temporal direction, followed
by a three-level 2D spatial dyadic decomposition within each of the resulting temporal
bands.

The next step in 3D wavelet video coding is to encode the transformed 3D wavelet
coefficients in each subband efficiently. Since the subband structure in 3D wavelet de-
composition for video sequence is very similar to the subband structure in 2D wavelet
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Figure 2.17: Separable 3D wavelet transform: Three-level dyadic temporal (motion-
compensated) wavelet decomposition, followed by three-level 2D spatial dyadic decom-
position.

decomposition for image, it is natural to extend many existing 2D wavelet-based image
coding techniques, such as SPIHT [161], EBCOT [176], and EZBC [93], to the 3D case. As
a matter of fact, almost all the existing 3D wavelet coefficients coding schemes use one
form of these 3D extensions, such as 3D-SPIHT [104], ESCOT [117] or the 3D extension of
EBCOT and 3D-EZBC [44, 210].

Generally speaking, after 3D (motion-compensated) wavelet decomposition, there is
not only spatial similarity inside each frame across different scales, but also temporal
similarity between two frames at the same temporal scale. Furthermore, the temporal
coefficients typically show more correlation along the motion trajectory. An efficient 3D
wavelet coefficient coding scheme should exploit these properties as much as possible.
Several algorithms for texture coding in 3D wavelet schemes have been developed. We
propose to review in the following three of these wavelet-based entropy coders, namely
the 3D-SPIHT [104], ESCOT [117] and 3D-EZBC [210].

2.3.2.1 3D-SPIHT

3D-SPIHT is an extension of SPIHT (Set Partitioning in Hierarchical Trees) still-image
coding to 3D video coding. The SPIHT algorithm takes advantage of the nature of en-
ergy clustering of subband/wavelet coefficients in frequency and space and exploits the
similarity between subbands. It utilizes three basic concepts:

⋆ searching for sets in spatial-orientation trees in a wavelet transform,

⋆ partitioning the wavelet-transform coefficients in these trees into sets defined by the
level of the highest significant bit in a bitplane representation of their magnitudes,

⋆ coding and transmitting bits associated with the highest bitplanes first.

The 3D-SPIHT scheme can be easily extended from 2D-SPIHT, with the following
three similar characteristics:

⋆ partial magnitude ordering of the 3D wavelet coefficients with a 3D set-partitioning
algorithm,
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Figure 2.18: Parent-offspring relationship in a spatio-temporal decomposition.

⋆ ordered bitplane transmission of refinement bits,

⋆ exploitation of self-similarity across spatio-temporal orientation trees.

For the 3D wavelet coefficients, a new 3D spatio-temporal orientation tree and its parent-
offspring relationships are defined. For pure dyadic wavelet decomposition with an al-
ternate separable wavelet transform in each dimension, a straightforward extension from
the 2D case is to form a node in 3D-SPIHT as a block with eight adjacent pixels, two in
each dimension, hence forming a node of 2 × 2 × 2 pixels. The root nodes (at the highest
level of the pyramid) have one pixel with no descendants and the other seven pointing
to eight offspring in a 2 × 2 × 2 cube at corresponding locations at the same level. For
non-root and non-leaf nodes, a pixel has eight offspring in a 2×2×2 cube one level below
in the pyramid. For non-dyadic decomposition similar to the 2D wavelet-packet decom-
position case, the 2× 2× 2 offspring nodes are split into pixels in these smaller subbands
at the corresponding orientation in the nodes at the original level. For the common t+2D
type of wavelet decomposition the parent-offspring relationship is shown in Fig.2.18.

With such defined 3D spatio-temporal trees, the coefficients can be compressed into
a bitstream by feeding the 3D data structure to the 3D SPIHT coding kernel. The 3D-
SPIHT kernel will sort the data according to the magnitude along the spatio-temporal
orientation trees (sorting pass) and refine the bitplane by adding necessary bits (refine-
ment pass).

2.3.2.2 MC-EZBC

MC-EZBC [44] (Motion-Compensated Embedded Zero Block Coding) is an extension of
the EZBC image coder [93], allowing the encoding of the 3D wavelet coefficients. The
concept of EZBC is inspired by the success of two popular embedded image-coding tech-
niques: zero tree-block coding, such as SPIHT [161], and context modeling of the sub-
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band/wavelet coefficients, such as EBCOT [176]. As shown in Section 2.3.2.1, the zero
tree-block coding takes advantage of the natural energy clustering of subband/wavelet
coefficients in frequency and in space and exploits the similarity between subbands.
Moreover, instead of all pixels, only a small number of elements in the lists [161] need
to be processed in individual bitplane coding passes. Thus, processing speed for this
class of coders is very fast. However, in the context-model based coders [176], individual
samples of the wavelet coefficients are coded bitplane-by-bitplane using context-based
arithmetic coding to effectively exploit the strong correlation of subband/wavelet coef-
ficients within and across subbands. Nevertheless, unlike zero tree-block coders, these
algorithms need to scan all subband/wavelet coefficients at least once to finish coding of
a full bitplane, with an implied higher computation cost.

The EZBC algorithm combines the advantages of these two coding techniques, i.e.,
low computational complexity and effective exploitation of the correlation of subband
coefficients, using both zero-blocks of subband/wavelet coefficients and context model-
ing. Similar to EZBC for image coding, 3D-EZBC is based on quadtree representations of
the individual subbands and frames. The bottom quadtree level, or pixel level, consists
of the magnitude of each subband coefficient. Each quadtree node of the next-higher
level is then set to the maximum value of its four corresponding nodes at the current
level. In the end, the top quadtree node corresponds to the maximum magnitude of all
the coefficients from the same subband. As in EZBC, 3D-EZBC uses this quadtree-based
zero-block coding approach for hierarchical set-partitioning of the subband coefficients
to exploit the strong statistical dependency in the quadtree representation of the decom-
posed subbands. Furthermore, to code the significance of the quadtree nodes, context-
based arithmetic coding is used. The context includes eight first-order neighboring nodes
of the same quadtree level and the node of the parent subband at the next-lower quadtree
level. Experiments have shown that including a node in the parent subband in the inter-
band context model is very helpful in predicting the current node, especially at higher
levels of a quadtree. Like SPIHT and other hierarchical bitplane coders, lists are used for
tracking the set-partitioning information. However, the lists in 3D-EZBC are separately
maintained for nodes from different subband and quadtree levels. Therefore, separate
context models are allowed to be built-up for the nodes from different subbands and
quadtree levels. In this way, statistical characteristics of quadtree nodes from different
orientations, subsampling factors, and amplitude distributions are not mixed up. This
ensures a resolution scalable bitstream while maintaining the desirable low complexity
feature of this class of coders.

2.3.2.3 3D-EBCOT (ESCOT)

As mentioned in Section 2.3.2.1, 3D-SPIHT [104] provides natural SNR scalability due
to the efficient bitplane representation. However, it is difficult to provide temporal or
spatial scalabilities due to the inherent spatio-temporal tree structure. Even with extra
effort, it can provide only partial temporal or spatial scalabilities by modifying the de-
coder or encoder [93]. However, the 3D extension of EBCOT [176], ESCOT [117], can
provide full rate (SNR), temporal and spatial scalabilities by constraining the encoding
of wavelet coefficients independently within each subband. Meanwhile, the R-D opti-
mized bitstream-truncation process after encoding guarantees a bitstream with the best
video quality given a bitrate constraint.

The ESCOT scheme is in principle very similar to EBCOT in the JPEG-2000 stan-
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Figure 2.19: Immediate neighbors of a sample in 3D-ESCOT coding.

dard [8], which offers high compression efficiency and other functionalities (e.g., error
resilience and random access) for image coding. By extending the 2D-EBCOT algorithm
to 3D-ESCOT, a different coding structure is used to form a new set of 3D contexts for
arithmetic coding, which makes the algorithm very suitable for scalable video compres-
sion. Specifically, each subband is coded independently in the extended coding struc-
ture. The advantage of doing so is that each subband can be decoded independently to
achieve flexible spatial/temporal scalability. The user can mix an arbitrary number of
spatio-temporal subbands in any order to obtain the desired spatial or temporal resolu-
tion. Unlike the EBCOT encoder in JPEG2000, the ESCOT encoder takes a subband as a
whole entity. There are two reasons for this:

⋆ normally a video frame has lower resolution than a still image; not splitting a
subband further into many small 3D blocks brings better coding efficiency of the
context-based adaptive arithmetic coder.

⋆ taking a subband as a whole entity is also convenient for incorporating the possible
motion model in the coding process, since within the same 3D subband, the motion
vector may point from any coefficient on a temporal plane to any other coefficient
on other temporal planes.

As in the 2D-EBCOT case, the contexts for 3D-ESCOT are also formed from immediate
neighbors in the same subband. The difference is that the immediate neighbors are now
in three directions instead of two: horizontal, vertical, and temporal (see Fig. 2.19). In
addition, the temporal neighbors may be not only spatially collocated in different frames,
but also neighbors pointed to by motion vectors across frames with a certain motion
model [117].

The encoding of the 3D wavelet coefficients in the 3D-ESCOT scheme is done bitplane
by bitplane. For each bitplane, the coding procedure consists of three distinct passes:
Significance Propagation, Magnitude Refinement, and Normalization, which are applied
in turn. Each pass processes a fractional bitplane. In each pass, the scanning order is
along the horizontal direction first, the vertical direction second, and finally the temporal
direction. In the Significance Propagation pass, the samples that are not yet significant
but have a preferred neighborhood are processed. A sample has a preferred neighborhood
if and only if the sample has at least a significant immediate diagonal neighbor for a
HHH (high frequency in three directions) subband or a significant immediate horizontal,
vertical or temporal neighbor for the other types of subbands. In the Magnitude Refinement
pass, the samples that have been significant in the previous bitplanes are encoded. In the
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Normalization pass, those samples that have not yet been coded in the previous two passes
are coded.

In the previous stage, each subband is coded separately up to a specific precision and
each forms an independent bitstream. The objective of optimal bitstream truncation is to
construct a final bitstream that satisfies the bitrate constraint and minimizes the overall
distortion. As in the EBCOT algorithm [176], the end of each pass at each fractional bitplane
is a candidate truncation point with a pre-calculated R-D value pair for that subband. A
straightforward way to achieve R-D optimized truncation is to find the convex hull of
the R-D pairs at the end of each fractional bit plane and truncate only at the candidate
truncation points that are on the convex hull. To achieve quality scalability, a multilayer
bitstream may be formed, where each layer represents a quality level. Depending on
the available bandwidth and the computational capability, the decoder can choose to
decode up to the layer it can handle. The fractional bitplane coding ensures that the
bitstream is finely embedded. Since each subband is independently coded, the bitstream
of each subband is separable. The encoder can choose to construct a bitstream favoring
spatial scalability or temporal scalability. Also, the decoder can easily extract only a few
subbands and decode only these subbands. Therefore, the implementation of resolution
scalability and temporal scalability is natural and easy.

2.4 Conclusion

In this chapter we have briefly introduced scalable video coding concepts. As it has been
shown in Section 2.3, MCTF-based coders provide high flexibility in bitstream scalabil-
ity across different temporal, spatial, and quality resolutions. In addition, they provide
better error resilience than conventional (prediction-based) coders. In fact, MCTF-based
coders are better able to separate relevant from irrelevant information. The temporal
low-pass bands highlight information that is consistent over a large number of frames,
establishing a powerful means for exploiting multiple frame redundancies not achiev-
able by conventional frame-to-frame or multiframe prediction methods. Moreover, noise
and quickly changing information that cannot be handled by motion compensation ap-
pear in the temporal, high-pass bands, which can supplement the low-pass bands for
more accurate signal reproduction whenever desirable, provided that a sufficient data
rate is available. Hence, the denoising process that is often applied as a preprocessing
step before conventional video compression is an integral part of scalable MCTF-based
coders. Due to a non-recursive structure, higher degrees of freedom are possible for both
encoder and decoder optimization. In principle, a decoder could integrate additional sig-
nal synthesis elements whenever the received information is incomplete, such as fram-
erate up-conversion, film-grain noise overlay or other elements of texture and motion
synthesis, which could be integrated easily as part of the MCTF-synthesis process with-
out losing any synchronization between encoder and decoder. From this point of view,
even though many elements of MCTF in the lifting interpretation can be regarded as ex-
tensions of proven techniques from motion-compensated prediction-based coders, this
framework exhibits and enables a number of radically new options in video encoding.
However, when a wavelet transform is applied for encoding of the low-pass and high-
pass frames resulting from the MCTF process, the commonalities with 2D wavelet coding
methods are obvious.

If the sequence of spatial and temporal filtering is exchanged (2D+ t instead of t+2D
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wavelet transform), MCTF can be interpreted as a framework for further interframe com-
pression of (intra-frame restricted) 2D wavelet representations such as JPEG2000. From
this point of view, a link between the previously separate worlds of 2D wavelet coding
with their excellent scalability properties and compression-efficient motion-compensated
video-coding schemes is established by MCTF. This shows the high potential for future
developments in the area of motion-picture compression, even allowing seamless tran-
sition between intra-frame and inter-frame coding methods, depending on the applica-
tion requirements for flexible random access, scalability, high compression, and error
resilience. Furthermore, scalable protection of content, allowing access management for
different resolution qualities of video signals, is a natural companion of scalable com-
pression methods. This is why we have chosen the scalable MCTF-based wavelet coding
paradigm as conceptual development framework for this thesis work.

All the contributions of the thesis work have the common aim of improving several
aspects of t + 2D wavelet-based video coding. Following the natural processing order
of the chosen framework, we will introduce in Chapter 3 several MCTF schemes in a
t + 2D lifting-based coding approach which will improve certain aspects of temporal
decorrelation following the motion-field direction.
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Chapter 3

Temporal processing of video
sequences

We have seen in section 2.3 that three-dimensional (3D) subband/wavelet coding via a
motion-compensated temporal filter (MCTF) is a very effective structure for highly scal-
able video coding. In this chapter we will present some of our contributions to the im-
provement of the MCTF coding approach.

As discussed in section 2.3.1, the most-used decompositions for temporal decorrela-
tion are dyadic, i.e. Haar and 5/3 two-tap filter banks. Generally, uniform filtering is
made on the assumption that the frames are highly correlated. However, this assump-
tion no longer holds when the video shot encounters scene-cuts, as in the case of action
movies, music video clips etc. As mentioned in section 2.3.1.3, the inefficiency of the
motion estimator in this case leads to poor predict/update stages, which, combined with
the sliding window implementation (see section 2.3.1.3) of the temporal filters, leads to
prediction/update error propagation through the decomposition levels. In section 3.1,
we propose an adaptive motion-compensated temporal coding scheme able to overcome
this deficit by detecting and adequately processing the scene-cuts that may occur in a
video sequence.

In section 2.3.1.3, and also in 2.3.1.4, we mentioned that the longer filters are preferred
for temporal decompositions for their efficiency in removing the temporal redundancy.
However, when the filters are too long, it is very likely that they will encompass several
(different) scenes and, thus, lose their decorrelation efficiency. A question can be risen
here: in which situations could we use long temporal filters without having the motion-
complexity problem? A simple answer would be: for video surveillance, where there is at
least a 50%-50% chance for smooth motion transitions (during night period, for example).
Moreover, the longer the temporal filter, the fewer temporal decomposition levels needed
in order to obtain some key (approximation) frames useful for video database search and
storage. This is one of the reasons for proposing the 5-band temporal lifting scheme,
presented in section 3.2.

Since the most-used method for motion estimation is block-based (see section 2.3.1.1),
even with a bidirectional temporal prediction, block artefacts are still present. In order
to avoid such artefacts, motion-compensation solutions such as weighted-average update
operator [83, 182] or overlapped block motion-compensation [211] have been proposed in
order to alleviate this problem. In section 3.3 we propose to improve the prediction of the
high-frequency temporal subband frames by using an adaptive filter bank. The proposed
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LMS based adaptive prediction can be applied to any temporal-prediction scheme.

MCTF-based coding efficiency is strongly related to the correlation of the data being
processed. Based on this assumption, we have thought that the t + 2D video-coding
principles can be applied also to multispectral data sequences, which are 3D sequences,
the third dimention being given by the frequency spectrum, not the time as in the case
of common video sequences. In order to achieve data compression, coding techniques
applied to multispectral data take advantage of the presence of two redundancy sources:
spatial correlation among neighboring pixels in the same spectral band and spectral cor-
relation among different bands at the same spatial location. In section 3.4, we propose to
evaluate the performance on SPOT (1,2 and 4) sequences of still-image (JPEG2000) and
video (t+ 2D) compression techniques based on wavelet tools.

3.1 Scene-cut processing in motion-compensated temporal filter-

ing

It has been shown in section 2.3.1 that the t + 2D subband schemes exploit the tempo-
ral interframe redundancy by applying an open-loop temporal wavelet transform over
the frames of a video sequence. A weakness of the existing t + 2D video codecs is re-
lated to the way the temporal filtering behaves near scene changes. Usually, the input
video signal is partitioned into GOPs and temporally filtered without checking the cor-
relation between the GOP frames. Moreover, the sliding window implementation [218]
of the temporal filtering is done using frames from adjacent GOPs in the processing of
the current GOP. When the input signal involves complex motion transitions and espe-
cially scene-cuts, this can translate into inefficient prediction/update operations, leading
to poor-quality results and also to reduced temporal-scalability capabilities.

Several attempts to avoid the artefacts related to these abrupt changes have already
been proposed for hybrid coding, such as the scene-cut detection and content-based sam-
pling of video sequences [168] or video segmentation using encoding-cost data [61], alle-
viating, but not completely solving, this problem.

This section presents a MCTF coding scheme specially adapted to the detection and
processing of uncorrelated shots of the input video sequence. The method was presented
in the proceedings of the ACIVS’05 conference [189].

Once the scene-cuts are detected, we propose to encode each set of frames between
two consecutive scenes separately, by adapting the temporal filtering to cope with an ar-
bitrary number of frames in a shot. An advantage of the proposed scheme is that once
the scene-cuts are eliminated, MCTF efficiency is maximal, as for highly-correlated video
signals. The problem is related to border effects and is therefore much easier to deal with
in the case of Haar MCTF. However, as mentioned in section 2.3.1.3 and in [218, 136, 195],
the use of longer bidirectional filters, like the 5/3 filter bank, can take better advantage
of the temporal redundancy between frames. Existing methods for adaptive GOP struc-
ture in the MCTF framework [209, 38] basically detect changes and limit the number
of temporal decomposition levels based on a measure of unconnected pixel percentage.
However, compared to our approach, this technique does not make a strict correspon-
dence between the scene-cut and the GOP boundary. Our proposed approach varies the
GOP size only on the frames previous to the transition, and these frames are encoded in
several GOPs of sizes of a power of two. In this way, the scene cut does not span any
GOP. We present in the following our scene-cut processing method in the framework of
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5/3 MCTF, but the proposal can be adapted to other temporal filters.

3.1.1 Scene-cut detection

The MCTF approach consists of a hierarchical open-loop subband motion-compensated
decomposition (see section 2.3.1.3). Let us denote by xt the original frames, t being the
time index, and by ht and lt the high-frequency (detail) and low-frequency (approxi-
mation) subband frames, respectively. Let us recall the lifting-form implementation of
the 5/3 filterbank, where the operators allowing computation of the decomposition sub-
bands are bidirectional, and the equations have the form (see also Fig. 3.1):





ht = x2t+1 −
1

2

(
F(x2t,v

+
t ) + F(x2t+2,v

−
t )
)

lt = x2t +
1

4

(
F−1(ht−1,v

−
t−1) + F−1(ht,v

+
t )
) (3.1)

where F(xt,vt) is the motion-prediction operator, compensating the frame xt by projec-
tion in the direction of the motion-vector field vt, and v

+
t , v−

t are respectively the forward
and backward motion vectors predicting x2t+1. The notation F−1(ht,vt) corresponds to
the compensation of the ht frame in the opposite direction of the motion vector field vt.
Indeed, in general, the motion prediction is not an invertible operator. Unconnected and
multiple connected pixels are processed as detailed in [184].

When the input sequence involves complex motion transitions, this can translate to
inefficient prediction/update operations, leading to poor-quality results and temporal-
scalability capabilities, as illustrated in Fig. 3.2. One can remark, in particular, the energy
of the detail frames to be encoded and also the poor visual quality of the approximation
frame, very detrimental to temporal scalability.

Several criteria for scene-cut detection have been proposed in the literature, such as:
the variation of the relative energy of the displaced frame difference (DFD) along the
sequence [194], the energy and angle distribution of the motion-vector fields in consecu-
tive frames [152], by keeping track of the percentage of the unconnected pixels given by

x2t x2t+1 x2t+2

v−
t−1

x2t−1

ht−1 lt lt+1ht

v+
t

v−t

Figure 3.1: MCTF with bidirectional predict and update lifting steps.
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(a)

(b)

(c)

(d)

Figure 3.2: Approximation (a) and detail (b) frames in a GOP without scene-cut. Approx-
imation (c) and detail (d) frames when the GOP contains a scene-cut (first part: Foreman
(CIF, 30Hz) sequence, second part: Mobile (CIF, 30Hz) sequence).

motion estimation [108], or using unsupervised segmentation and object tracking [40].

3.1.1.1 Variation of relative energy

We have chosen as detection criterion the variation of the relative energy of the DFD
along the sequence, mainly because of its reduced complexity, coupled with a good de-
tection capability. If the DFD between two successive frames is computed as:

dt = DFD(xt, xt+1) = xt+1 −F(xt,vt) (3.2)

then the variation of the relative energy of the DFD is computed as:

∆2t =
d2

2t

d2
2t−1

(3.3)
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When the input signal is highly correlated, the variation of the relative energy of the DFD
along the sequence is almost constant (i.e., ∆ ≈ 1). We say a scene-cut is detected when
the variation of relative energy has a rapid change. For appropriately chosen parameters
τ1 and τ2, we say that the scene-cut occurs after the frame x2t+1 when:

{
|∆2t − 1| < τ1

|∆2t+1 − 1| > τ2
(3.4)

Note that any other scene-change detection algorithm present in the literature could
replace the DFD criterion. Once the scene-cut decision has been made, we pass to the
next step, namely the processing of the frames preceding the cut.

3.1.2 Scene-cut processing

Before introducing our method for processing the frames between two scene changes,
we propose to review Chen’s alternative solution [209, 38] for MCTF-based coders using
adaptive GOP structures.

3.1.2.1 Adaptive GOP structure

Existing methods for adaptive GOP structure in the MCTF framework [209, 38] basically
detect changes and limit the number of temporal decomposition levels based on a mea-
sure of unconnected pixel percentage (see section 2.3.1.2). MCTF is performed in each
temporal level. Such filtering makes sense only when the motion information is reliable
at that level. The variable-size block-matching motion estimation used in MC-EZBC [93]
is based on the assumption of a rigid-motion and affine-transformation motion model.
When the video sequence presents editing effects such as fade-in, fade-out, and dissolve,
the motion-estimation and compensation algorithms will fail, by introducing multiple
local motions, even though there is still temporal correlation. In these cases, smaller GOP
sizes or even intraframe coding are preferred.

Based on the percentage of unconnected pixels at one temporal level, the decision is
taken whether to proceed with motion-compensated filtering at the next temporal level,
i.e., next-lower frame rate. In this way, an adaptive GOP size structure is achieved with
a varying number of temporal decomposition levels.

3.1.2.2 Proposed method

First, temporal filtering needs to be changed in order not to filter over a scene-cut. The
second modification is related to the encoding of the last group of frames (GOP) before
the scene-cut. To this end, both the predict and update steps have to be modified near
the end of the first scene, as illustrated in Fig. 3.3.

For homogeneously processed sequences, the temporal subbands resulting from the
MCTF are encoded by GOPs of 2L frames, where L is the number of temporal decompo-
sition levels that are performed, as mentioned in section 2.3.1.3. When a scene-cut occurs
in a sequence, the GOP just before the change will have, in general, a different number
of frames. If we denote its number of frames by An and write this number in a binary
representation as:
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An = (a0a1 . . . aL−1)2 =
L−1∑

l=0

al2
l,

then we shall decompose the GOP into smaller GOPs, in decreasing order of their size:
al 2

l, l ∈ {0, . . . , L − 1}, al ∈ {0, 1}, which will be filtered and encoded separately. This
also corresponds to changing the number of temporal-decomposition levels and filtering
operations for these sub-GOPs.

Indeed, we can do only l temporal decomposition levels for a sub-GOP of size 2l, l <
L. Moreover, the prediction across the scene-cut is not allowed, as well as the usage of the
reverse motion-vector field over the same transition, during the update step. After the
scene-cut, the normal filtering with sliding window (or on-the-fly) is started, the effect
of the scene cut being only a slight modification of the filters to take into account the
induced border effects.

Gop0 Gop1 Gop3

h h

lh hhl

ll ll

Scene-cut

h h h

Figure 3.3: Scene-cut processing over two temporal levels of a 10-frame video shot.

Chen’s adaptive GOP structure presented above and described in [38] in comparison
to our approach does not make a strict correspondence between the scene-cut and the
GOP boundary. Our proposed method varies the GOP size only on the frames previous
to the transition, and these frames are encoded in several GOPs of power-of-two size. In
this way, the scene cut does not span any GOP.
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3.1.3 Experimental results

For the simulations, we have considered a high-definition video sequence (HD format:
1920×1280, 60 Hz) from the Erin Brockovich movie, containing 180 frames and 3 scene-
cuts: after the 44th, the 80th and respectively, the 161th frame. Moreover, in order to work
on a representative set of test sequences, we have also built-up several test sequences
obtained by concatenating parts of some standard CIF sequences at 30 Hz: Foreman and
Mobile (i.e.: MF 18×16 - video file containing the first 18 frames from Mobile and the next
16 frames from Foreman, FM 16 × 16 - with the first 16 frames from Foreman, followed
by the first 16 frames from Mobile).

The aim was to test all possible configurations for the number of frames in the GOP
previous to the scene-cut. In order to detect the abrupt scene transitions, the values of τ1
and τ2 in Eq.(3.4) were empirically determined as being equal to 0.1 and 0.4, respectively.
These parameters ensured that all the scene-cuts were detected and no false alarms ap-
peared for the considered sequences. Sequences with fade or dissolve transitions can
be processed with the described MCTF scheme, but the detection method should be re-
placed with an appropriate one, as described in [193].

The target number of decomposition levels for motion-compensated 5/3 temporal
filtering is L = 4. The coding procedure is based on the MC-EZBC codec [210] and the
motion-estimation algorithm used is Hierarchical Variable Size Block Matching (HVSBM)
[44]. The motion vectors have been estimated with 1/8th pixel accuracy and the temporal
subbands were spatially decomposed over 4 levels with the biorthogonal 9/7 wavelets.
The encoding of the entire YUV sequence was performed, but the results are further
expressed only in terms of average YSNR.

YSNR (dB) 6000 kbs 8000 kbs 12000 kbs

SC-MCTF 36.4227 36.8639 37.6387

MCTF 34.9281 35.7519 36.5217

Table 3.1: PSNR results of 5/3 MCTF with and without scene-cut processing for Erin
Bronckovich - (HD, 60Hz,180 frames).

MF 18x16 sequence (30Hz)

YSNR (dB) 512 kbs 768 kbs 1024 kbs 1536 kbs

SC-MCTF 30.1185 32.3141 33.7612 35.6489

MCTF 23.9811 28.5192 30.4135 32.8334

FM 16x16 sequence (30Hz)

YSNR (dB) 512 kbs 768 kbs 1024 kbs 1536 kbs

SC-MCTF 30.3151 32.7043 34.1021 35.9510

MCTF 26.4706 30.3061 31.8275 33.8650

Table 3.2: PSNR results of 5/3 MCTF with and without scene-cut processing for
MF 18x16 and FM 16x16 sequences.

The importance of correctly processing the scene-cuts is illustrated in Fig. 3.4, Fig. 3.6,
as well as in Tab. 3.1 and Tab. 3.2, where the rate-distortion performances for 5/3 MCTF
with (denoted in these tables by SC-MCTF) and without (simply denoted by MCTF)
scene-cut processing are compared. Moreover, the quality of the reconstructed frames
prior and after the cut is enhanced, as it can be observed in Fig. 3.5.
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Figure 3.4: Rate-distortion curves for 180-frames Erin Brockovich (HD 1920×1280, 60Hz)
sequence (SC stands for scene-cut processing and SC-MCTF existent refers to the method
proposed in [209, 38]).

(a) (b)

Figure 3.5: Reconstructed frame from Erin Brockovich (HD 1920×1280, 60Hz) sequence:
(a) homogeneous processing, (b) scene-cut processing using the proposed method.
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It can be noticed easily that, in all the cases, our scheme performs better, achieving a
gain between 0.5 and 2.0 dB over classical MCTF. Results in Fig. 3.4 indicate that reducing
the GOP size (from 16 to 8 frames) can alleviate the problem of scene-cuts by decreasing
their influence, but a correct processing of these zones allows us both to take advantage
of the temporal correlation in homogeneous shots and to increase the coding efficiency.
It can also be observed that our proposed technique outperforms the one described in
[209, 38].

3.1.4 Conclusion

We have presented in this section an improved version of the 5/3 MCTF coding scheme,
able to detect and process scene-cuts appearing in video sequences. The lifting structure
of the filter bank has been modified such that the filtering does not encompass the scene-
cut. Moreover, the coding units were reduced to accommodate this change. As can be
observed from the experimental results, our method gives an average YSNR gain of about
1.5 dB on the tested video sequences and higher for frames close to the scene-cut.

Following the leading ideas regarding the coding efficiency of the longer temporal
filters discussed in section 2.3.1.4 and proposed in [218], we present in the next section a
new motion-compensated temporal lifting scheme, specially adapted for the encoding of
low-motion sequences and having a direct application in video surveillance.

3.2 5-band motion compensated temporal lifting scheme

As mentioned in section 2.3, the wavelet-based video-coding schemes are well known for
high coding efficiency and spatio-temporal scalability, high energy compaction of sub-
band transforms for efficient video compression and resilience to transmission errors.
These are key factors for multimedia applications over heterogeneous networks.

The lifting [173, 99] implementation of these subband-coding schemes insures low
complexity which makes it the most widely adopted approach to 3D subband wavelet
coding in the literature [44, 134, 94]. As previously mentioned, the dyadic MCTF schemes
were subject to numerous optimizations and improvements, concerning, for example, the
lifting predict/update operators [196, 145, 143, 144, 184] or precision of motion estima-
tion [82, 94]. Moreover, as shown in section 2.3.1.4, M-band lifting schemes with perfect
reconstruction [41, 89] or 3-band temporal decomposition [181, 180] were proposed, al-
lowing non-dyadic scalability factors. Using a method similar to that introduced for the
3-band motion-compensated temporal structures, we can extend this decomposition to
several channels.

The interest for more channels can be two-fold. First, to allow complete freedom in
the choice of the scalability factor (e.g. allowing temporal subsampling with factors of 5,
7, and combinations of such factors: for example, a 3-band scheme followed by a 5-band
scheme leads to a reduction of a factor 15 in the framerate). Second, this enables the cre-
ation of approximation subbands using a reduced number of temporal decompositions.

We will introduce in this section a new lifting-based method of temporal decompo-
sition which provides a scalability factor of 5 in a motion-compensated subband video-
coding scheme. This work has been presented in the proceedings of the MMSP’06 [192]
and NSIP’07 [190] conferences.

Depending on the sequence characteristics, motion model etc., this structure can pro-
vide higher coding performance. Also, depending on the desired framerates/temporal
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Figure 3.6: PSNR for the MF 18x16 (a) and FM 16x16 (b) sequences, with and without
scene-cut processing. Scene-change after the 18th and respectively, 16th frame.
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scalabilities a particular structure could be more efficient. It provides better coding effi-
ciency of the temporal subband approximation frames, so an improved temporal scalabil-
ity is obtained. This feature benefits certain applications, for example video-surveillance
sequences, where the motion activity is very low in most cases. Moreover, scalable
video-coding schemes have been successfully used in multiple video-surveillance sys-
tems [221], such as metropolitan transportation networks, airports or other public places,
such systems being in considerable growth over the past years.

3.2.1 5-band MCTF structure

Let us denote by xt the original frames, t being the time index, and by ht and lt the high-
frequency (detail) and low-frequency (approximation) subband frames, respectively.

As an example, a typical 5-band lifting (and therefore, invertible) scheme could result
in one approximation subband and 4 detail subbands (see Fig. 3.7).

The corresponding equations describing the analysis part are:




h−1,t = x5t−1 − P−
1 {x5t−2, x5t}t

h+
1,t = x5t+1 − P+

1 {(x5t+2, x5t}t

h−2,t = x5t−2 − P−
2 {x5t}t

h+
2,t = x5t+2 − P+

2 {x5t}t

lt = x5t + U−
{
h−1,t, h

−
2,t

}
t
+ U+

{
h+

1,t, h
+
2,t

}
t
.

(3.5)

As one can remark, there are four prediction operators, P−
1 / P+

1 and P−
2 / P+

2 , as
well as two updates, U− and U+, used for obtaining the temporal subbands. Due to
the symmetry of the scheme, we propose to use symmetrical predict operators for the
generation of detail subbands h−1,t/h

+
1,t and h−2,t/h

+
2,t. We will pass in the following to the

presentation of the 5-band scheme both without and with motion compensation.

3.2.1.1 General 5-band filter bank

A possible embodiment for the case when no ME/MC is considered is:

P−
1 {x5t−2, x5t}t = αx5t−2 + (1 − α)x5t,

P+
1 {(x5t+2, x5t}t = αx5t+2 + (1 − α)x5t,

P−
2 {x5t}t = βx5t − (1 − β)x5t−5

P+
2 {x5t}t = βx5t − (1 − β)x5t+5.

This corresponds to:





h−1,t = x5t−1 − αx5t−2 − (1 − α)x5t

h+
1,t = x5t+1 − αx5t+2 − (1 − α)x5t

h−2,t = x5t−2 − βx5t − (1 − β)x5t−5

h+
2,t = x5t+2 − βx5t − (1 − β)x5t+5,

(3.6)

where α, β ∈ (0, 1] are weighting factors. Denoting by H−(z), resp. H+(z), the z-
transform of the previous defined filters, one can remark that, for any α, β ∈ (0, 1], we
have H−(1) = H+(1) = 0, meaning that we have indeed four highpass filters:
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Figure 3.7: Five-band motion-compensated temporal lifting scheme.





H−
1 (z) = z−1 − αz−2 − (1 − α)

H+
1 (z) = z − αz2 − (1 − α)

H−
2 (z) = z−2 − β − (1 − β)z−5

H+
2 (z) = z2 − β − (1 − β)z5

(3.7)

The parameters α and β can be tuned, for example, to take into account the irregularities
along motion trajectories.

For the temporal approximation subband, a very simple choice is:

lt = x5t + γ(h−1,t + h+
1,t) + δ(h−2,t + h+

2,t), (3.8)

where δ and γ are parameters in (0, 1) which can be tuned in order to ensure the low-
pass characteristics of the filter, i.e. L(−1) = 0, where L is the z-transform of lt. Using the
expressions of the temporal detail subbands in Eq. (3.6), Eq. (3.8) becomes:

lt = [1 − 2γ(1 − α) − 2δβ]x5t + γx5t−1 + γx5t+1

+(δ − γα)x5t−2 + (δ − γα)x5t+2 − δ(1 − β)x5t−5 − δ(1 − β)x5t+5
(3.9)

and its z-transform is given by:

L(z) = [1 − 2γ(1 − α) − 2δβ] + γz−1 + γz

+(δ − γα)z−2 + (δ − γα)z2 − δ(1 − β)z−5 − δ(1 − β)z5
(3.10)

From the low-pass constraint on the above expression (i.e., L(−1) = 0), we get the fol-
lowing relation between the update parameters:

1 − 4γ − 4δβ + 4δ = 0 (3.11)
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3.2.1.2 Simple implementation approach

In a simple implementation approach, we can set α = 1
2 and β = 1, these values respect-

ing the high-pass filter existence condition, i.e. H−(1) = H+(1). When no ME/MC is
considered, this leads to the following predictors:

P−
1 (x5t−2, x5t) =

1

2
(x5t−2 + x5t),

P+
1 (x5t+2, x5t) =

1

2
(x5t+2 + x5t),

P−
2 (x5t−2) = Id, P+

2 (x5t+2) = Id.

and corresponds to:





h−1,t = x5t−1 −
1

2
(x5t−2 + x5t)

h+
1,t = x5t+1 −

1

2
(x5t+2 + x5t)

h−2,t = x5t−2 − x5t

h+
2,t = x5t+2 − x5t,

(3.12)

In this case, Eq. (3.9) becomes:

lt = (1 − γ − 2δ)x5t + γx5t−1 + γx5t+1 + (δ − γ

2
)x5t−2 + (δ − γ

2
)x5t+2, (3.13)

and its z-transform is given by:

L(z) = (1 − γ − 2δ) + γz−1 + γz + (δ − 0.5γ)z−2 + (δ − 0.5γ)z2 (3.14)

A pair of values satisfying the constraint in Eq.(3.11) and which minimizes the total re-
construction error is γ = δ = 1/4, which yields the following five-tap filter:

lt =
1

8

(
x5t−2 + 2x5t−1 + 2x5t + 2x5t+1 + x5t+2

)
.

Motion estimation and compensation is done as shown in Fig. 3.8; in this case, the
analysis equations become:





h−1,t =x5t−1 −
1

2

(
F(x5t−2, v

−
1,t−

) + F(x5t, v
+
1,t−

)
)

h+
1,t =x5t+1 −

1

2

(
F(x5t+2, v

−
1,t+

) + F(x5t, v
+
1,t+

)
)

h−2,t =x5t−2 −F(x5t, v2,t−)

h+
2,t =x5t+2 −F(x5t, v2,t+)

lt =x5t +
1

4

(
F−(h−1,t, v

+
1,t−

) + F−(h−2,t, v2,t−)
)

+
1

4

(
F−(h+

1,t, v
−
1,t+

) + F−(h+
2,t, v2,t+)

)

(3.15)
where F(xt, vt) is the motion-prediction operator, compensating the frame xt by projec-
tion in the direction of the motion-vector field vt, v2,t−/v2,t+ are the forward / backward
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Figure 3.8: Temporal prediction using the simple implementation approach.

Haar-like motion vectors predicting x5t−2 / x5t+2, and (v−
1,t−

,v+
1,t−

) and (v−
1,t+

,v+
1,t+

) are

the 5/3-like pair of motion vectors predicting x5t−1 and respectively x5t+1. The notation
F−1(ht, vt) corresponds to the compensation of the ht frame in the opposite direction of
the motion vector field vt.

3.2.1.3 Sliding-window implementation

Another set of satisfactory values for the existence of the high-pass filter in Eq. (3.6) (i.e.
H−(1) =H+(1) = 0) and corresponding to the most selective filter, as illustrated in Fig. 3.9,
is given by α = β = 1

2 , values which will be considered for the sliding-window imple-
mentation, i.e.:





h−1,t = x5t−1 −
1

2
(x5t−2 + x5t)

h+
1,t = x5t+1 −

1

2
(x5t+2 + x5t)

h−2,t = x5t−2 −
1

2
(x5t + x5t−5)

h+
2,t = x5t+2 −

1

2
(x5t + x5t+5),

(3.16)

For the temporal approximation subband, using the expressions of the temporal detail
subbands in Eq. (3.16), Eq. (3.8) becomes:

lt = (1 − γ − δ)x5t + γx5t−1 + γx5t+1 + (δ − γ

2
)x5t−2 + (δ − γ

2
)x5t+2 −

δ

2
x5t−5 −

δ

2
x5t+5

(3.17)

and its z-transform is given by:
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Figure 3.9: Frequency response of high-pass filters for different values of β.

L(z) = 1 − γ − δ + γz−1 + γz1 + (δ − γ

2
)z−2 + (δ − γ

2
)z2 − δ

2
z−5 − δ

2
z5. (3.18)

For the new high-pass filter coefficients, the low-pass constraint derived in Eq. (3.11)
becomes:

2δ − 4γ + 1 = 0 (3.19)

Motion estimation and compensation is done as shown in Fig. 3.10; in this case, the
analysis equations become:





h−1,t =x5t−1 −
1

2
(F(x5t−2, v

−
1,t−

) + F(x5t, v
+
1,t−

))

h+
1,t =x5t+1 −

1

2
(F(x5t+2, v

−
1,t+

) + F(x5t, v
+
1,t+

))

h−2,t =x5t−2 −
1

2
(F(x5t, v

+
2,t−

) + F(x5t−5, v
−
2,t−

))

h+
2,t =x5t+2 −

1

2
(F(x5t, v

−
2,t+

) + F(x5t+5, v
+
2,t+

))

(3.20)

One can remark that when there is a scene-cut, one of the predictions will be mean-
ingless and is not used. This amounts to setting α or/and β to 0. Moreover, it requires
the detection of scene-cuts and, possibly, the segmentation of the video sequence into
homogeneous groups of pictures (GOP) (or spatial parts of a GOP), as detailed in [189]
and in section 3.1. This means that an adaptive prediction can be realized in this manner.
Note that this kind of adaptive behaviour is not yet implemented in the current version
of our temporal lifting method, as it entails a more complex coding strategy.

The update operators U−/U+ should also be applied along the motion trajectory.
So, even though the structural property of the lifting scheme is that all the information
available from the predict step (high-frequency frames) can be used for the update, the
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Figure 3.10: Temporal prediction using the sliding window implementation approach.

most useful information will be in the neighborhood of the pixels on the same trajectory
[74]. This feature can be exploited in different ways to improve the temporal filtering
in critical areas like, for example, the occlusion zones. Thus, the motion-compensated
temporal approximation subband is obtained as:

lt = x5t + γ
[
F−(h−1,t, v

+
1,t−

) + F−(h+
1,t, v

−
1,t+

) + δ
[
F−(h−2,t, v

+
2,t−

) + F−(h+
2,t, v

−
2,t+

)
]

(3.21)

As in the case of the simple implementation, the problem rising from unconnected or
multiple-connected pixels is treated as described in [83, 182].

3.2.2 Normalization factors

Let us now consider the filter normalization:

l̂t = kllt

ĥ−1,t = kh1h
−
1,t, ĥ+

1,t = kh1h
+
1,t

ĥ−2,t = kh2h
−
2,t, ĥ+

2,t = kh2h
+
2,t

Two conditions could be relevant to the goal we consider [183]. On one hand, we would
like to preserve the unit norm for the impulse responses of the filters involved in the
5-band structure. On the other hand, an orthonormal structure preserves the energy of
an input sequence. In particular, by considering the quantization error in each detail
and approximation frame as i.i.d. random variables, the sum of reconstruction errors
of the five consecutive frames should be equal to the sum of quantization errors of the
approximation and detail frames:

σ2
x5t−2

+ σ2
x5t−1

+ σ2
x5t

+ σ2
x5t+1

+ σ2
x5t+2

= σ2
ľt

+ σ2
ĥ+
1,t

+ σ2
ĥ−

1,t

+ σ2
ĥ+
2,t

+ σ2
ĥ−

2,t

, (3.22)

where σ2
a denotes the variance of the frame a.
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3.2.2.1 Simple implementation approach

According to the unit norm preservation criterion, from the system:





k2
h1x

2
5t−1 +

k2
h1

4
x2

5t +
k2

h1

4
x2

5t−2 = 1

k2
h1x

2
5t+1 +

k2
h1

4
x2

5t +
k2

h1

4
x2

5t+2 = 1

k2
h2x

2
5t−2 + k2

h2x
2
5t = 1

k2
h2x

2
5t+2 + k2

h2x
2
5t = 1

k2
l

16

(
x2

5t + x2
5t−1 + x2

5t+1

)
+
k2

l

64

(
x2

5t−2 + x2
5t+2

)
= 1

(3.23)

the normalization constants for the first 5-band filter bank implementation are:

kh1 =

√
2

3
, kh2 =

√
2

2
, kl =

8√
14
.

On the other hand, according to the energy-presenvation criterion, we can write the sys-
tem:





x5t =
l̂t
kl

−
ĥ+

1,t + ĥ−1,t

4kh1
−
ĥ+

2,t + ĥ−2,t

4kh2

x5t−1 =
l̂t
kl

−
ĥ+

1,t − 3ĥ−1,t

4kh1
−
ĥ+

2,t − ĥ−2,t

4kh2

x5t+1 =
l̂t
kl

+
3ĥ+

1,t − ĥ−1,t

4kh1
+
ĥ+

2,t − ĥ−2,t

4kh2

x5t−2 =
l̂t
kl

−
ĥ+

1,t + ĥ−1,t

4kh1
−
ĥ+

2,t − 3ĥ−2,t

4kh2

x5t+2 =
l̂t
kl

−
ĥ+

1,t + ĥ−1,t

4kh1
+

3ĥ+
2,t − ĥ−2,t

4kh2

(3.24)

and, applying Eq. (3.22), we get:





σ2
x5t

=
σ2

l̂t

k2
l

−
σ2

ĥ+
1,t

+ σ2
ĥ−

1,t

16k2
h1

−
σ2

ĥ+
2,t

+ σ2
ĥ−

2,t

16k2
h2

σ2
x5t−1

=
σ2

l̂t

k2
l

−
σ2

ĥ+
1,t

− 9σ2
ĥ−

1,t

16k2
h1

−
σ2

ĥ+
2,t

− σ2
ĥ−

2,t

16k2
h2

σ2
x5t+1

=
σ2

l̂t

k2
l

+
9σ2

ĥ+
1,t

− σ2
ĥ−

1,t

16k2
h1

+
σ2

ĥ+
2,t

− σ2
ĥ−

2,t

16k2
h2

σ2
x5t−2

=
σ2

l̂t

k2
l

−
σ2

ĥ+
1,t

+ σ2
ĥ−

1,t

16k2
h1

−
σ2

ĥ+
2,t

− 9σ2
ĥ−

2,t

16k2
h2

σ2
x5t+2

=
σ2

l̂t

k2
l

−
σ2

ĥ+
1,t

+ σ2
ĥ−

1,t

16k2
h1

+
9σ2

ĥ+
2,t

− σ2
ĥ−

2,t

16k2
h2

(3.25)
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which leads to the following normalization constants:

kh1 =
√

266/12, kh2 = 1, kl = 1/
√

5.

3.2.2.2 Sliding-window implementation

For the sliding-window implementation, in order to compute the normalization factors,
we should also find the update parameters, γ and δ. Three conditions are considered for
their setup: one is given by the low-pass condition in Eq. (3.19); the second one is given
by the minimization of the total reconstruction error ET , where:

ET = σ2
x5t−2

+ σ2
x5t−1

+ σ2
x5t

+ σ2
x5t+1

+ σ2
x5t+2

. (3.26)

The third condition is given by the preservation of the unit norm of the impulses re-
sponses of the filters involved in the 5-band structure.

From the system:





x5t =lt − γ(h−1,t + h+
1,t) − (2γ − 1

2
)(h−2,t + h+

2,t)

x5t+2 =
1

2
(lt + lt+1) −

γ

2
(h−1,t + h+

1,t + h−1,t+1 + h+
1,t+1)−

(γ − 1

4
)(h−2,t + h−2,t+1 + h+

2,t+1) − (γ − 5

4
)h+

2,t

x5t−2 =
1

2
(lt + lt−1) −

γ

2
(h−1,t + h+

1,t + h−1,t−1 + h+
1,t−1)−

(γ − 1

4
)(h+

2,t + h−2,t−1 + h+
2,t−1) − (γ − 5

4
)h−2,t

x5t+1 =
3lt + lt+1

4
−

3γh−1,t

4
− (

3γ

4
− 1)h+

1,t−
γ

4
(h−1,t+1 + h+

1,t+1) − (
3γ

2
− 3

8
)h−2,t−

(
3γ

2
− 7

8
)h+

2,t − (
γ

2
− 1

8
)(h−2,t+1 + h+

2,t+1)

x5t−1 =
3lt + lt−1

4
−

3γh+
1,t

4
− (

3γ

4
− 1)h−1,t−

γ

4
(h−1,t−1 + h+

1,t−1) − (
3γ

2
− 3

8
)h+

2,t−

(
3γ

2
− 7

8
)h−2,t − (

γ

2
− 1

8
)(h−2,t−1 + h+

2,t−1)

(3.27)

and Eq. (3.26) and under the hypothesis of decorrelated quantization errors, we get:

ET =
13σ2

kl

4k2
l

+

(
13γ2

2
− 3γ + 2

)
σ2

kh1

k2
h1

+

(
26γ2 − 20γ +

46

8

)
σ2

kh2

k2
h2

(3.28)

where σ2
kl
, σ2

kh1
, σ2

kh2
represent the variation of the subband quantization error. The third

condition, i.e. preservation of the unit norm of the impulse responses of the filters in-
volved in the 5-band structure reads:
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



k2
h1x

2
5t−1 +

k2
h1

4
x2

5t +
k2

h1

4
x2

5t−2 = 1

k2
h1x

2
5t+1 +

k2
h1

4
x2

5t +
k2

h1

4
x2

5t+2 = 1

k2
h2x

2
5t−2 +

k2
h2

4
x2

5t +
k2

h2

4
x2

5t−5 = 1

k2
h2x

2
5t+2 +

k2
h2

4
x2

5t +
k2

h2

4
x2

5t+5 = 1

k2
l

(
−3γ +

3

2

)2

x2
5t + k2

l γ
2
(
x2

5t−1 + x2
5t+1

)
+ k2

l

(
3γ

2
− 1

2

)2 (
x2

5t−2 + x2
5t+2

)
+

k2
l

(
1

4
− γ

)2 (
x2

5t−5 + x2
5+5

)
= 1

(3.29)

According to this criterion, the normalization constants for the temporal detail subbands
are:

kh1 = kh2 = 0.8165.

Considering equal variation for the temporal detail subbands and minimizing the ET

expression in Eq. (3.28) with respect to γ, we obtain:

γ =
23

65
.

Replacing the value of γ in Eq. (3.19) and respectively Eq. (3.29), we get δ = 27
130 and,

respectively, kl = 1.4647.
According to the energy-preservation approach described in Eq.(3.22), the system:





x5t =
l̂t
kl

−
23ĥ+

1,t + 23ĥ−1,t

65kh1
−

27ĥ+
2,t + 27ĥ−2,t

130kh2

x5t−1 =
l̂t−1 + 3l̂t

4kl
−

23ĥ+
1,t−1 + 23ĥ−1,t−1 + 69ĥ+

1,t − 191ĥ−1,t

260kh1
− . . .

. . .−
27ĥ+

2,t−1 + 27ĥ−2,t−1 + 81ĥ+
2,t − 179ĥ−2,t

520kh2

x5t+1 =
3l̂t + l̂t+1

4kl
−

−191ĥ+
1,t + 69ĥ−1,t + 23ĥ+

1,t+1 + 23ĥ−1,t+1

260kh1
− . . .

. . .−
−179ĥ+

2,t + 81ĥ−2,t + 27ĥ+
2,t+1 + 27ĥ−2,t+1

520kh2

x5t−2 =
l̂t−1 + l̂t

2kl
−

23ĥ+
1,t−1 + 23ĥ−1,t−1 + 23ĥ+

1,t + 23ĥ−1,t

130kh1
− . . .

. . .−
27ĥ+

2,t−1 + 27ĥ−2,t−1 + 27ĥ+
2,t − 233ĥ−2,t

260kh2

x5t+2 =
l̂t + l̂t+1

2kl
−

23ĥ+
1,t + 23ĥ−1,t + 23ĥ+

1,t+1 + 23ĥ−1,t+1

130kh1
− . . .

. . .−
−233ĥ+

2,t + 27ĥ−2,t + 27ĥ+
2,t+1 + 27ĥ−2,t+1

260kh2

(3.30)
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Figure 3.11: Rate-distortion comparison for the sequence Hall monitor(CIF, 30Hz).

yields:
kh1 = 0.9692, kh2 = 1.0375, kl = 1.8028.

3.2.3 Experimental results

For the experiments, we have considered three low-motion sequences: Hall monitor (CIF
format at 30 Hz), Bridge (close) monitor (CIF format at 30 Hz) and Apple (QCIF format
at 7.5 Hz).

The tests have been made in the framework of the MSRA [212] video codec. For our
simulations we have used only the t+2D video approach. Motion estimation is block-
based and the motion-vector fields have been estimated with 1/4 pixel accuracy. All
video sequences used in our tests have been decomposed with a 4-level 9/7 spatial filter.
The spatio-temporal approximation and detail subband wavelet coefficients have been
encoded using the 3D-ESCOT [216] algorithm. The bitrate test-points for the sequences
used in our simulations correspond to those defined for the MPEG standardization [215].

In the simulations, we have chosen two levels of temporal subband decomposition
with the proposed filtering scheme due to the length of the filters. The GOP size is thus
composed of 25 frames. For three levels (125-frame GOP), the correlation between the
frames is too weak to ensure a good motion compensation of the detail frames.

In Fig. 3.11 and Fig. 3.12, we have compared the results obtained for the Hall monitor
(CIF, 30 Hz) and Bridge (close) monitor (CIF, 30 Hz) sequences using the following filters
for temporal subband decomposition :

⋆ 5-band filter with sliding-window implementation (”5Bbid”).

⋆ 5-band filter with simple implementation (”5B”).

⋆ 3-band filter (”3B”).

⋆ dyadic 5/3 filter-bank(”5/3”).
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Figure 3.12: Rate-distortion comparison for Bridge (close) monitor (CIF, 30Hz) sequence.
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Figure 3.13: YSNR variation of the frames 26-50 of Hall monitor (CIF, 30Hz) sequence at
192 kbs.
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⋆ dyadic Haar filter-bank (”Haar”).

The tests have been run for different numbers of decomposition levels in order to ensure
an almost equivalent number of approximation frames in the encoded bitstream. As can
be seen in Fig. 3.11, the quality in YSNR obtained with two temporal levels of decompo-
sition with the 5-band filter is comparable with that obtained by four and, respectively,
five levels of decomposition of the dyadic filters Haar and 5x3 (i.e., GOPs formed by 16
and 32 frames, respectively) and three levels of decomposition (27-frame GOP) of the 3-
band filter. The same conclusion can be drawn from Fig. 3.12 and Fig. 3.15, where the
results for the Bridge (close) monitor (CIF, 30 Hz) and Apple (QCIF, 7.5 Hz) sequences
are presented.

(a)

(c)

(b)

(d)

Figure 3.14: Approximation frames from Hall monitor (CIF, 30Hz) sequence: (a) 5 decom-
position levels with Haar filter (YSNR = 37.88 dB); (b) 5 decomposition levels with 5x3
filter (YSNR = 38.14 dB); (c) two decomposition levels with 5-band filter (YSNR = 38.75
dB) ; (d) original frame.

We have chosen two levels of temporal subband decomposition with the proposed
filtering scheme due to the length of the filter; for three levels (125-frame GOP), the cor-
relation between the frames is too weak to assure a good motion-compensation of the
detail frames.

In Fig. 3.13 we analyse the YSNR variation of 25 frames from Hall monitor sequence
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Figure 3.15: Rate-distortion comparison for Apple (QCIF, 7.5 Hz) sequence.

(subsequence made of the frames between 26-50 positions in the original sequence) at
192 kbs, for five temporal decomposition levels of Haar and 5/3 filters and 2 levels of 5-
band filter with 4 (”5Bbid”) and, respectively, 2 (”5B”) bidirectional predictors. In order
to have a reference for comparing the quality of the approximation subbands, we have
to process the test sequence from different starting frames for the different filters. The
results in Fig. 3.13 are obtained with an approximation subband synchronized with the
50th frame in the original sequence Hall monitor sequence. One can see that the YSNR
value obtained with the 5-band filter bank for the approximation subband is approxi-
mately 1 dB greater than those obtained with the dyadic decompositions. Moreover, the
sliding-window implementation of the 5-band filter bank shows an improved quality of
the temporal detail subbands in comparison with the simple implementation.

3.2.4 Conclusion

We have presented in this section a 5-band temporal lifting structure, allowing flexible
scalability factors of order five in a MCTF video codec. As it can be seen from the experi-
mental results, the proposed scheme has similar performance with the dyadic Haar and
5/3 filters and the 3-band temporal decomposition. Also, it gives better coding efficiency
for the temporal approximation subbands leading then to an improved temporal scala-
bility. It can be successfully used in certain applications, such as the encoding of video
surveillance sequences, where the motion activity is weak in most cases.

All the temporal-processing contributions of this thesis presented till now are based
on a linear approach to the lifting scheme. However, when a sequence presents complex
motion transitions, this linearity assumption no longer holds. In the following, we will
present an adaptive temporal prediction scheme which attempts to alleviate this problem.



120 3. TEMPORAL PROCESSING OF VIDEO SEQUENCES

3.3 LMS-based adaptive prediction for scalable video coding

Recall that MCTF exploits the temporal interframe redundancy by applying an open-
loop temporal wavelet transform along the motion trajectories of the frames in a video
sequence (see section 2.3.1). As explained in section 2.3.1.1, generally a block-matching
algorithm is used for motion estimation. Even though a bidirectional prediction and
mode selection can be used, and powerful algorithms such as Hierarchical Variable Size
Block Matching (HVSBM) [44] or differential coding of motion vectors [196], blocking
artefacts are still present. In addition, ringing artefacts appear at low bitrates and ghost-
ing artefacts can be present as well in the approximation subbands.

In order to avoid such artefacts, motion-compensation solutions such as weighted-
average update operator [184] or overlapped block motion compensation [211] have been
proposed, alleviating, but not completely solving, this problem. In the following we
propose to improve the prediction of the high-frequency temporal subband frames by
using an adaptive filter bank. This proposal has been presented in the proceedings of the
ICAASP’06 [186] and EUSIPCO’06 [185] conferences and represents a joint-work between
Bilkent University and Telecom Paris.

There are various subband adaptive-filter structures which perform adaptive filtering
in the subbands [206, 92, 20]. We will use the least mean squares (LMS) type FIR based
adaptive filters proposed in [79]. In [79], the adaptation scheme is developed for 2D
image compression. In the following, we propose to extend the adaptation scheme to the
motion-compensated t+ 2D video coding case.

The proposed LMS-based adaptive prediction is used in the temporal prediction step
in the lifting framework. Note, however, that it can as well be applied to any temporal
prediction scheme. The detail subband-frame pixels are predicted using a set of pixels
from the neighbouring previous and future frames. This way, the spatio-temporal fil-
ters are adapted to better take into account the changing input conditions, in particular
moving objects having high contrast with the background or illumination variations. In
such cases, fixed coefficient filter structures result in poor image quality with low PSNR
values. The proposed scheme substantially improves the image quality while increasing
the PSNR, as the number of pixels used for the adaptation is increased. Moreover, a spe-
cial edge (contrast)-sensitive adaptation methodology is developed for the two-pixel case
which introduces a low-cost alternative to adaptation with a larger number of pixels as
in [80].

3.3.1 Adaptive prediction

As in the previous sections, we denote by xt the original frames, t being the time index, by
ht and lt the high-frequency (detail) and low-frequency (approximation) subband frames,
respectively, and by n the spatial index inside a frame. For the purpose of illustration,
we have used in our experiments a biorthogonal 5/3 filter bank for the temporal decom-
position (see section 2.3.1.3). The temporal motion-compensated filtering in this case is
illustrated in Fig. 3.16, where v

+
t (n) denotes the forward motion vector (MV) predicting

the position n in the (2t+1)th frame from the 2tth frame, and v
−
t (n) denotes the backward

MV predicting the same position in the (2t+ 1)th frame from the (2t+ 2)th frame.
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Figure 3.16: MCTF with bidirectional lifting steps.

3.3.1.1 Adaptive filter-bank structure

We first introduce an FIR estimator for x2t+1(n) by using for prediction a set of pixels
from the neighboring x2t(n) and x2t+2(n) frames (note that no motion compensation is
involved at this point in the prediction):

x̂2t+1(n) =
∑

k∈S
w2t,n,kx2t(n − k) +

∑

k′∈S′

w2t+2,n,kx2t+2(n − k
′) (3.31)

where the w filter coefficients are adaptively tuned using an LMS-type algorithm [53]. In
the above equation, summations are carried out over appropriate spatial neighborhoods,
S and S ′, in the 2tth and (2t+ 2)th image frames, respectively. The adaptive estimator for
ht(n) is illustrated in Fig. 3.17.

The FIR normalized LMS adaptation is performed in a conventional manner as fol-
lows:

ŵ(n + 1) = ŵ(n) + µ
x̃t(n)e(n)

||x̃t(n)||2 (3.32)

where ŵ(n) is the filter coefficient vector at image location n, and the vector x̃t(n) con-
tains the pixels within the chosen neighborhoods at the 2tth and (2t + 2)th frames. The
vector 1 in Eq.(3.32) represents a unit increment in the image index. The scalar µ de-
termines the step size of the adaptive algorithm. It is well known that the convergence
speed is low when µ is small, but the steady-state error is smaller. For large values of
µ, the opposite happens, and the convergence speed increases with a higher steady-state
error. There are various methods to change the value of µ during adaptation in the LMS
algorithm [113, 11]. Usually the value of µ can be set to a number between 1 and 2 ini-
tially, as depicted in Eq. (3.33):

µ =





0.4, ∆x̃ < 10

0.6, 10 ≤ ∆x̃ < 30

0.8, 30 ≤ ∆x̃ < 80

1.0, 80 ≤ ∆x̃ < 200

1.2, 200 ≤ ∆x̃ < 256

(3.33)
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where:

∆x̃ = max(x̃(n)) −min(x̃(n)) (3.34)

and it can be gradually decreased to a smaller value between 0 and 1. In our case, compu-
tational cost can be reduced by omitting the normalization with ||x̃t(n)||2 and selecting a
µ close to zero.

The detail frame ht is given by

ht(n) = x2t+1(n) − x̂2t+1(n) (3.35)

and

e(n) = ht(n) = x2t+1(n) − x̃
T
t (n)ŵ(n) (3.36)

When only two pixels (one from the 2tth and another one from the (2t + 2)th frame) are
used for estimation, an edge-sensitive and/or motion-sensitive strategy is followed. In
this case, input pixel values are compared to each other as well as to x2t+1(n). If one of
the input pixel values is significantly different from x2t+1(n), then it is not used during
the prediction process. This approach provides robustness against motion-compensation
errors as well.

Figure 3.17: Adaptive estimator.

3.3.1.2 Motion-compensated adaptive predictor

In order to take into account the temporal filtering, as illustrated in Fig. 3.18, we rewrite
the prediction Eq. (3.31) using the pixels matched to n by the motion-estimation process:

x̂2t+1(n) =
∑

k

w2t,n,kx2t(n − k − v
+
2t+1(n)) +

∑

k

w2t+2,n,kx2t+2(n − k − v
−
2t+1(n))

(3.37)

A great flexibility for the adaptation scheme is achieved by varying the number of
pixels in the selected neighborhood, as illustrated in Fig. 3.19. Lighter pixels in the left
and right images are the corresponding motion-compensated pixels of the pixel n at the
(2t + 1)th subband frame. The adaptation window is extended to the darker pixels to
enhance the robustness of the proposed algorithm.
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Figure 3.18: Adaptive MCTF with bidirectional lifting steps.

3.3.2 Experimental results

For the simulations, we have considered four representative test video sequences: Fore-
man (CIF, 30 Hz), Mobile (CIF, 30 Hz), Harbour (4CIF, 60 Hz) and Crew (4CIF, 60 Hz),
which have been selected for their different motion, contrast and texture characteristics.
The tests have been made in the framework of the MSRA [9] video codec. For our sim-
ulations, we have used only the t + 2D video coding capability of this codec. The ex-
periments have been run for 5 temporal decomposition levels, considering both MC and
MCless (i.e., without motion compensation) temporal filtering for the CIF sequences and
only MCless mode for the 4CIF ones. For the MC case, the motion estimation is block-
based, and the motion-vector fields have been estimated with 1/4 pixel accuracy. For
comparisons, the video sequences used in our tests have been decomposed with a 5-level
5/3 temporal decomposition. The temporal approximation subbands have been spatially
decomposed over 5 levels with biorthogonal 9/7 wavelets for both adaptive LMS and 5/3
filtering schemes.

Rate-distortion curves for Harbour and Crew sequences are presented in Fig. 3.20 and
Fig. 3.21, respectively. In the Harbour sequence, several foreground objects move while
occluding the contrasting background. Similarly, in the Crew sequence, sudden flashes
of light reflect from the crew, resulting in a high contrast between successive frames.
For these two situations, the adaptation scheme yields significantly higher PSNR values
compared to the no adaptive case.

The average YSNR values in Tab. 3.3 and Tab. 3.4 are computed on slightly smaller
frames to reduce the inaccuracies due to frame boundaries. There is a relatively small
increase in YSNR values for the two-pixel adaptation method when compared to the no-
adaptation case. However, the quality of the image frames is substantially improved,
especially for those segments of the video sequences where there is high contrast be-
tween moving objects and the background (see Fig. 3.22 (a), (b) and (c)). Indeed, there
is a high contrast between the black moving train and the white calendar. The ghosts
around the tunnel and edges of the train are removed even with a 2-pixel adaptation.
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Figure 3.19: Adaptation scheme with 2, 10, 18 and 32 pixels.

YSNR
Mobile sequence

CIF QCIF
30 Hz 15 Hz 15 Hz 7.5 Hz

BitRate(kbps) 384 256 128 64 48

NoAdapt.(dB) 29.52 28.63 25.84 24.14 23.63

Adapt.2px(dB) 30.38 29.11 26.22 24.42 23.77

Adapt.10px(dB) 31.17 30.17 26.93 24.98 24.03

Adapt.18px(dB) 32.02 31.23 27.44 25.39 24.40

Adapt.32px(dB) 33.12 32.20 28.01 25.88 24.86

Table 3.3: Rate-distortion results for Mobile (CIF, 30Hz) sequence.

YSNR
Foreman sequence

CIF QCIF
30 Hz 15 Hz 15 Hz 7.5 Hz

BitRate(kbps) 256 192 96 48 32

NoAdapt.(dB) 35.06 34.51 31.83 30.21 29.60

Adapt.2px(dB) 35.71 34.96 32.11 30.36 29.67

Adapt.10px(dB) 36.54 35.67 32.49 30.69 29.82

Adapt.18px(dB) 37.31 36.21 33.04 30.93 30.05

Adapt.32px(dB) 38.16 36.92 33.82 31.48 30.36

Table 3.4: Rate-distortion results for Foreman (CIF, 30Hz) sequence.

The improvement increases for larger adaptation neighborhood. The same situation can
be remarked in Fig. 3.23, where the quality of the frames is improved by the nonlinear
filter-based prediction.

All the YSNR values reported in the tables and figures mentioned above are obtained
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Figure 3.20: Rate-distortion comparison for Harbour (4CIF, 60 Hz) sequence.

by the adaptation method with the filter coefficients obtained from open-loop MCTF. As
one can remark, the results obtained with only 2-pixels adaptation are in general 0.5 dB
higher than those obtained when no adaptation is performed, as shown in Tab. 3.3 and
Tab. 3.4.

3.3.3 Conclusion

We have presented in this section an LMS-based adaptive-prediction method and used it
in the temporal prediction step for scalable video coding. The pixels of temporal detail
subband frames are optimally predicted by using a set of pixels from the neighbouring
subband frames. We have illustrated our proposed approach on a bidirectional predic-
tion scheme, but the set of pixels for adaptation can be chosen from any number of frames
involved in a longer-term prediction. Experimental results show that even for two-pixel
adaptation case, the visual quality of the reconstructed frames is improved. A trade-off
between compression efficiency and additional complexity coming from a larger adapta-
tion window can be done, according to the target application. Significant PSNR improve-
ments have been obtained for sequences with high contrast between various segments
within the sequence and varying illumination conditions.

As mentioned in section 2.3 and seen so far from the previous sections, the t + 2D
wavelet video-coding schemes [177], [134, 44] provide a high coding performance. We
propose in the following to use the MCTF-based video-coding principles for the com-
pression of multispectral-satellite sequences. This proposal is pertinent, as t+ 2D-based
coding efficiency is strongly related to the correlation of the data being processed and
starting from the assumption of a spectral correlation, we propose to decorrelate it using
lifting-based methods inspired from temporal processing.
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Figure 3.21: Rate-distortion comparison for Crew (4CIF, 60 Hz) sequence.

3.4 Video compression for multispectral satellite sequences

We have seen in section 2.3 that the lifting-based coding schemes are succesfully used
for image [8] and video [211] coding. Now we will focus our interest on another type of
data, namely multispectral and multitemporal satellite sequences, as nowadays, optical
sensors cover often a localized area several times a year. Thus, it is essential to provide
tools that are able to compress these multispectral and multitemporal sequences in order
to store large amounts of data. This problem is starting to be adressed since remote-
sensing data is significantly increasing.

As an example, one multispectral image taken by the Thematic Mapper (TM) sensor
from the Landsat V satellite has the a size greater than 200 MB. New sensors have been
built in order to achieve higher radiometric precision and also better spatial and spectral
resolutions. Images composed of tens, or even hundreds, of spectral bands are very im-
portant due to the information they provide on the nature of the ground, but they are
very hard to handle, because of the huge storage resources they require. These problems
can be significantly reduced by using some form of data compaction or data compression
[133]. Lossless coding is a reversible process in which the original data can always be
recovered from the encoded data without any loss of information. This type of coding
takes advantage of the statistical redundancy of data only and, as a result, the achieved
compression ratio rarely exceeds 3 : 1, which cannot solve many data-storage issues.
A higher compaction is assured by lossy coding, which very often reaches compression
ratios of 10 : 1 and even more. However, in this case, we have to accept some loss of
information in order to take advantage of the increased efficiency: the compression ratio
is inversely proportional to the image quality.

Compression of hyperspectral and multispectral images has been extensively studied
using several techniques, such as wavelet coding [21, 76], adaptive coding [10], DCT
coding [85], DPCM [51, 159] or statistical models [66].

As in the case of video compression, where, in order to achieve data compression,
one has to take advantage of redundancy in the temporal and spatial domains, the cod-
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(a)

(b)

(c)

Figure 3.22: Detail from the Mobile (CIF, 30Hz) sequence at 128 kbs: (a) no adaptation,
(b) 2-pixels adaptation, (c) 10-pixels adaptation.
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(a)

(b)

(c)

Figure 3.23: Frame extracted from Foreman (CIF, 30Hz) sequence: (a) original, (b) 5/3
filter-bank temporal prediction and (c) nonlinear temporal prediction using a 10-pixel
adaptation scheme.

ing techniques applied to multispectral data take advantage of the presence of two re-
dundancy sources: spatial correlation among neighboring pixels in the same spectral
band and spectral correlation among different bands at the same spatial location. Several
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strategies can be adopted to separately or jointly exploit these sources of redundancy, but
a cascade of spectral and spatial decorrelation is usually preferred, as in the case of three
dimensional transform coding [98], which is based on the combination of two transforms
that successively exploit inter-band and intra-band correlation. The Karhunen-Loève
Transform (KLT) is usually preferred as a first step, due to its decorrelation capability,
while for the second step, the Discrete Wavelet Transform and Discrete Cosine Transform
(DCT) have been widely studied, also on account of their important role in international
image-coding standards. In particular, the state-of-the-art JPEG2000 [8] standard can be
successfully applied to intra-band coding, since it can heavily compress the less signifi-
cant image planes generated by the KLT (i.e., those associated with smaller eigenvalues)
with a negligible visual distortion. These planes are in fact characterized by very low dy-
namics, and their number usually increases with the number of bands, thus making the
use of multidimensional transform coding attractive in high spectral-resolution imagery.
Also, in [67], Principal Component Analysis (PCA) is deployed in JPEG2000 in order to
provide spectral decorrelation, as well as spectral dimensionality reduction. However,
when a multitemporal sequence of satellite images is available, as in our case, the corre-
lation in the temporal direction also needs to be exploited.

In the following we propose to evaluate the performance of still-image (JPEG2000
[8]) and t + 2D video [210] compression (based on wavelet tools) on SPOT 1, 2 and
4 sequences. The results of this study have been presented in the proceedings of the
IEEE ISSCS’05 [87] conference. For the video approach, our framework supposes t+ 2D
wavelet decomposition in the tempo-spatial domain and KLT decorrelation in the spec-
tral domain. For the experiments, we have used the 5/3 biorthogonal filter bank and
DCT for the temporal filtering, due to their good compression efficiency.

3.4.1 Spectral decorrelation

Each multispectral image is composed of several bands that are correlated. The SPOT
1, 2, and 4 images exhibit some correlation among spectral bands. Instead of processing
the bands separately, the interband correlation should be exploited to improve the com-
pression. In our scheme, we propose the KLT for spectral decorrelation of multispectral
images.

The KLT is applied among the spectral components taking each pixel of the scene
as N -dimensional vector (N being the number of spectral bands). Let X be the column
vector containing the N components for a given pixel and U be the mean vector U =
E[X]. The covariance matrix Cx is defined as:

Cx = E[(X − U)(X − U)t] (3.38)

The KLT (T ) is defined as the matrix that diagonalizes Cx in the following way:

Cy = TCxT
t = Λ (3.39)

Cy being the covariance of the transformed vector (Y ) and Λ the diagonal matrix repre-
senting the eigenvalues of Cx. Y can then be obtained by the equation:

Y = T (X − U) (3.40)

Since the transform diagonalizes the covariance matrix between spectral bands, the
spectral correlation of the components is removed. The images in the transformed do-
main are sorted by decreasing order of importance (value of the eigenvalues). This energy
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Figure 3.24: First component (highest energy) of the KLT.

Figure 3.25: Second component of the KLT.

compaction along the spectral axis is suitable for the selection of the main spectral com-
ponents for analysis as well as for image compression. Figs. 3.24, 3.25, and 3.26 present
one example of components obtained after applying the KLT.

3.4.2 Temporal decorrelation

We consider a sequence of multispectral images that are supposed perfectly registered.
The registration [22] is done in order to have precise and constant location for each pixel
at any moment. Therefore, we can consider that no displacement between successive
images remains in the sequence. In this approach, we treat the spectral bands indepen-
dently, so there will be as many sequences as the number of spectral bands. Since after
registration there is no displacement between successive input images, we may also con-
sider that the sequences form a hyperspectral image [52].

In the following, the use of a t + 2D wavelet decomposition is proposed for each
spectral-band sequence in order to exploit both temporal and spatial redundancies as il-
lustrated in Fig. 3.27. Due to the previous registration of the satellite sequences, the tem-
poral transform is applied without performing motion estimation. It is already known
[218] that long bidirectional filters, like the 5/3 wavelet transform, perform better, in
terms of compression efficiency, than the shorter ones (i.e. Haar filter bank). Therefore,
we shall use in the following a temporal decomposition based on the 5/3 biorthogonal
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Figure 3.26: Third component of the KLT.

Figure 3.27: Spatio-temporal wavelet transform applied on a spectral-band sequence.
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wavelets.
We denote by x2t−1, x2t, x2t+1, x2t+2 the frames positioned in time at 2t− 1, 2t, 2t+ 1

and respectively 2t+ 2 moments. As explained in section 2.3.1.3, in the 5/3 filtering, the
detail frame ht is predicted from its two neighbours, i.e., x2t and x2t+2; in a similar way
the approximation frame lt is obtained from the frames ht−1, ht by the so-called update
step. Recall that for one temporal level, the 5/3 temporal filtering has the following form:





ht[n,m] = x2t+1[n,m] − 1

2
(x2t[n,m] + x2t+2[n,m])

lt[n,m] = x2t[n,m] +
1

4
(ht−1[n,m] + ht[n,m])

(3.41)

Once the temporal subbands are obtained in the above described manner, they are further
spatially decomposed with the 9/7 biorthogonal filter bank (Fig. 3.27) and coded using
an embedded zero-tree algorithm [210].

3.4.3 Joint spectral and temporal decorrelation

In the sections 3.4.1 and 3.4.2, separate spectral and temporal correlations have been
highlighted. However, it is essential to jointly take into consideration both types of cor-
relation. Hence, the idea is to first transform each group of three spectral images at a
given temporal moment with the KLT and then the temporal decorrelation is achieved
via wavelet or DCT on the sequences formed by these spectrally decorrelated compo-
nents. The results of this methods are shown in Tab. 3.9.

3.4.4 Experimental results

The data to be compressed are sequences of SPOT images acquired by SPOT 1, 2 and
4. The data have been provided by CNES (Centre National d’Etudes Spatiales, France).
Each image is composed of 3 spectral bands (the 4th band of SPOT4 images is not treated
here). The sequence has been extracted from images of size 3000 × 2000. We have re-
duced by cropping the size of images in order to consider that the signal is stationnary
for transforms such as the KLT. The size of images is 300× 200 and there are 35 images in
the considered temporal sequence.

A radiometric correction, a sensing intercalibration, and a registration have been ap-
plied to the sequence. The sequence represents the reflectivity of a geographical location
(the countryside at south-east of Bucharest) at several times irregularly sampled over one
year. The reflectivity is between 0 and 1 and coded on 10 bits. Consequently, the distor-
tion measure used for the presented results is slightly different from the usual one used
in image compression, and we define it as follows:

PSNR = 10 log10

(
10242

MSE

)
,

where MSE is the mean square quantization error.
We have performed the comparisons based on the compression results given by the

state-of-the-art still image codec, JPEG2000 [8] and the Motion Compensated Embedded
Zero-Tree Block-based (MC-EZBC) [210] video codec. Note that in the last one, even
though no motion is estimated, the coding algorithm exploits the 3D nature of the de-
composition, both in the bitrate allocation and during the entropy coding step.
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Rate (bpp) no transform spectral KLT

Image 10 12.10 11.32

Image 15 10.32 9.99

Image 24 10.30 9.94

Image 34 11.75 11.32

Table 3.5: JPEG2000: comparison of lossles compression efficiency with and without com-
ponent decorrelation.
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Figure 3.28: Rate comparison for spectral decorrelation transform over the multitemporal
sequence.

After the spectral decorrelation, each of the three components of the multiband se-
quence is processed for compression using JPEG2000, based on EBCOT coding scheme
[176] or using the MC-EZBC algorithm.

In Tab. 3.5, one can see that the rate of compression is 1:3 by using JPEG2000 in a
lossless mode. One can observe that the KLT decorrelation decreases this rate by aprox-
imatively 0.5 bpp. In Fig. 3.28, this gain in terms of rate is depicted for 16 images taken
from the 35 frames sequence. A possible explanation of the reduced influence of the
KLT is that satellite images are highly non-stationary. Indeed, in Tab. 3.6, while the size
of image decreases, the gain in terms of rate increases. This is an indicator of the non-
stationarity which cannot be exploited by a global KLT. The non-stationary effects are
noticeable in the spectral joint histogram between the second and the third band (Fig.
3.29), in which one can see three modes of correlation. In Tab. 3.7, each band is processed
separately, and no time decorrelation is applied. One can see that EZBC provides better
results than EBCOT (2 bpp gain) for our images. However, JPEG2000 performs a lossless

Image size no transform spectral KLT gain

100 × 100 11.52 10.56 0.96

500 × 500 10.17 9.75 0.42

1000 × 1000 10.14 9.74 0.40

Table 3.6: Image size influence on KLT and bitrate (bpp).
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Rate (bpp) JPEG2000 Intra Video Coding

PSNR (dB) Lossless > 60

Sequence Band1 3.25 2.44

Sequence Band2 3.60 2.84

Sequence Band3 5.27 4.65

Total 12.12 9.93

Table 3.7: Sequence compression without time decorrelation (JPEG2000 lossless vs.
EZBC).

Rate (bpp) JPEG2000 + WT JPEG2000 + DCT t+2D (EZBC)

PSNR (dB) Lossless > 70 > 60

Sequence Band1 3.22 3.78 2.46

Sequence Band2 3.55 4.07 2.84

Sequence Band3 4.82 4.42 4.42

Total 11.59 12.27 9.72

Table 3.8: Sequence compression with time decorrelation.

coding while EZBC does a nearly-lossless coding.
In Tab. 3.8, the t + 2D wavelet decomposition is applied. The t + 2D wavelet cod-

ing procedure based on the MC-EZBC codec has here one decomposition level for the
5/3 filter, and the temporal subbands are spatially decomposed over five levels with
the biorthogonal 9/7 wavelets. In the first column, the lossless decorrelation transform
proposed in JPEG2000 is applied along the temporal direction. Compared to the results
without any time decorrelation, the gain in terms of rate is higher for EBCOT. Never-
theless, the DCT increases the rate unlike it was expected. Last, the results of JPEG2000
coding of temporally and spectrally decorrelated sequence are displayed in Tab.3.9. The
use of temporal DCT and spectral KLT provides the best results in terms of bitrate reduc-
tion. One reason can be that the kernel of the temporal wavelet transform that was used
is shorter than the support of the DCT, not allowing a good energy compaction.

3.4.5 Conclusion

In this section, we have performed a comparison between still-image and video approach
for the compression of the images acquired by SPOT 1, 2, and 4. As it results from our
experiments, EZBC intra-coding outperforms EBCOT in terms of rate gain in the case
of nearly lossless compression. Also, it has been pointed out that lossless compression
provides comparable results compared to lossy compression realized in the manner de-

Rate (bpp) KLT KLT and DCT KLT and WT

PSNR (dB) > 70 > 70 > 70

Sequence Band1 4.43 3.71 4.68

Sequence Band2 3.37 2.65 3.61

Sequence Band3 3.66 3.47 4.19

Total 11.46 9.83 12.48

Table 3.9: Sequence compression with time and spectral decorrelation.
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Figure 3.29: Joint histogram between the second and third components.

scribed above. In addition, it has been highlighted that temporal and spectral decorre-
lations can be exploited separately or jointly to improve the compression ratio. As ex-
pected, the combination of spectral and temporal decorrelation provides the best results
in terms of bitrate reduction. However, the improvement achieved by these decorrelation
methods does not decrease the rate significantly.

3.5 Conclusion

In this chapter, we have presented several of our contributions to the improvement of the
temporal processing part of a t+ 2D lifting-based video-coding scheme. Firstly we have
proposed a modified MCTF scheme able to detect and correctly process the scene-cuts
that may occur in a video sequence. Moreover, based on the proven efficiency of longer
temporal filters, we have introduced a 5-band temporal lifting scheme which has shown
its efficiency especially in the encoding of video-surveillance sequences. However, both
contributions mentioned above are based on a linear lifting scheme. When the video se-
quences encounter complex motion transitions, these will be reflected in high-frequency
bands, due to the inefficiency of the motion-estimation and compensation operations. So
the next step of our research was to implement an adaptive temporal predictor, which
has proven its efficiency in removing the motion-estimation artefacts. Further, knowing
the coding efficiency of the MCTF-based schemes for video sequences, we have tested the
t+ 2D coding approach on multispectral and multitemporal image sequences, obtaining
good results for nearly lossless compression.

Once the redundancy in the temporal direction of a video shot has been reduced using
the above-mentioned methods, the next stage of the classical MCTF-based video codec
consists of spatial decorrelation, in which the 2D redundancy will be reduced. We shall
pass in the following to the presentation of our contributions to the spatial (2D) domain
of the t+ 2D video-coding framework.
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Chapter 4

Spatial processing of video
sequences

In a t + 2D wavelet-based coding scheme, after reducing the temporal redundancy by
MCTF-based techniques as presented in section 2.3.1 and chapter 3, the spatial correla-
tion will be exploited through wavelet decompositions. Wavelet-based coding schemes
have proven their efficiency for spatial coding, the most prominent example being the
current still-image coder JPEG2000 [8]. The application of the wavelet transform for
spatial processing of temporal subbands is most frequently based on a separable con-
struction [125]. Lines and columns in the temporal subband are treated independently,
and the basis functions are simply tensor products of the corresponding 1D functions.
Such methods keep simplicity in design and computation but are not capable of properly
capturing all the properties of a textured frame.

The reason for the inefficiency of the typical 2D wavelet transform resides mainly in
the spatial isotropy of its construction; that is, filtering and subsampling operations are
applied equally along the horizontal and vertical directions at each scale. As a result, the
corresponding filters, obtained as the direct products of the 1D filters, are isotropic at all
scales. The study regarding the frequency characteristics of the temporal subbands that
we propose in section 4.1 concludes that, contrary to the approximation subbands, spec-
tral information of temporal details is distributed almost uniformly over the frequency
spectrum. As the MCTF process leads to a significant number of detail frames with re-
spect to the total number of frames, an effective and parcimonious spatial representation
of these frames is important for the overall coding efficiency. Wavelet packets are a poten-
tial solution for describing the high-pass temporal subbands; however, having a different
decomposition for each frame could be very expensive from an encoding point of view.

In section 4.2, based on the above-mentioned study results, we propose to find a joint
wavelet-packet representation for groups of frames, allowing a unique best-basis repre-
sentation for several frames. Moreover, a computationally efficient best-basis algorithm
(BBA) for biorthogonal decompositions is deduced for an entropy-based criterion.

Many anisotropic decompositions were proposed as a solution for coding textures
with homogeneous energy distribution, such as bandelets [114], wedgelets [64], curvelets
[63], contourlets [62] and other edge driven oriented wavelet transforms [100]. However,
the implementation of these transforms usually requires oversampling and has higher
complexity compared to the standard wavelet transform. In section 4.3, we propose to
fully separate horizontal and vertical transforms of the classical WT. The decomposition
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inherits the simplicity of processing and filter design from the standard WT, allowing
perfect reconstruction and providing a highly anisotropic frequency representation.

4.1 Frequency characteristics of temporal subband frames

In this section, we make a comparative study of the spectral properties of the temporal
detail and approximation subband frames. Such a study could be beneficial, as far as it
helps us find a transform that can represent the temporal subbands better than the dyadic
wavelets. Our study will be done in three stages: initially, we will analyze the behavior
of the power-spectrum partition for temporal subband frames. Then, we will locate the
maximum amount of energy inside the subbands, to finally characterize the distribution
of spectral information in the various frequential subbands.

4.1.1 Estimation of power-spectrum density

We considered for our study two video sequences: Mobile and Foreman in CIF format
(352 × 288) at 30 Hz, both decomposed over four temporal levels. Let us recall that a
temporal decomposition over four levels of a sequence provides us 4 detail subband
sequences (one for each temporal decomposition level) and a sequence containing the
approximation subbands. Our spectral study was done then on these five sequences, in
addition to the original sequence. Generally, frames belonging to the same level of tem-
poral wavelet decomposition have close spectral properties. Thus, analyzing the spec-
trum of a sequence obtained on a certain level of decomposition amounts to looking at
the average spectrum of all the frames belonging to this same sequence. In practice, we
consider the power-spectrum densities (PSD) of a sequence by averaging the PSD of the
frames belonging to that sequence in time.

Thus, for each level of temporal decomposition j, it is enough to consider the follow-
ing function:

ln(
∑

fij∈Sj

|FT (fij)|2) (4.1)

where:
Sj : level j temporal decomposition subband sequence.
fij : ith frame in Sj sequence.
FT : spatial Fourier Transform.

For the Mobile (CIF, 30Hz) subband sequences, the PSD estimation provided us the
curves presented in Fig. 4.1: One can notice that the spectral information reached its
maximum, for each subband sequence, at low-pass frequencies. Also, in comparison to
original and approximation subbands sequences, the amplitude decrease for the detail
subbands is relatively slow. This means that the spectral information for these subbands
is not localised only at low frequencies but is also present at high frequencies. Similar
results were found in the study of Foreman (CIF, 30Hz) sequence (see Fig. 4.2).

4.1.2 Maximal spectral-information localization

In section 4.1.1 we have noted that spectral information, in the case of detail subband
sequences, is not located only at low frequencies.
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Figure 4.1: PSD estimation pour Mobile (CIF, 30Hz): original sequence (a), detail sub-
bands for one temporal decomposition level (b), temporal approximation (c) and detail
subbands (d) for 4 decomposition levels.

In the second stage of our study, we pursue locations which cover 90% of spectral
energy. With this intention, we perform a zigzag scan (see Fig.(4.3)) of the positive space
frequency quarter (because of the symmetries in the Fourier transform of real images)
of the estimated PSD matrix for each temporal subband sequence, and then we plot the
energy according to a scanning parameter l, where l has as maximum value lmax = 256 ∗
257/2 = 32896.

From Tab. 4.1 and Tab. 4.2 one can remark that:

⋆ for the temporal-approximation subband sequences as well as for the original se-
quence, the maximum to 90 % of energy is located in the spatial low-frequency
subbands.

⋆ for the temporal-detail subband sequences, the maximum of energy is reached both
in the spatial high- and low-frequency subbands.

For the Mobile (CIF, 30Hz) sequence, which is more textured than Foreman (CIF,
30Hz), the energy is distributed on more spectral coefficients (80 % instead of 70 %).
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Figure 4.2: PSD logaritmic estimation pour Foreman (CIF, 30Hz) video sequence: orig-
inal sequence (a), detail subbands for one temporal decomposition level (b), temporal
approximation (c) and detail subbands (d) for 4 decomposition levels.

Mobile l90%/lmax (i, j)90%
Original 3.34 ∗ 10−4 (2, 3)

1st Level Details 83.34 (79, 156)

2nd Level Details 81.65 (173, 60)

3rd Level Details 80.50 (86, 145)

4th Level Details 81.18 (140, 92)

4th Level Approximations 3.43 ∗ 10−4 (1, 5)

Table 4.1: Indices of maximum to 90% spectral energy covering for Mobile (CIF, 30Hz).

This illustrates quantitatively the graphs that we presented in section 4.1.1 concerning
the PSD of various temporal sequences.
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Figure 4.3: Zig-zag scanning of the estimated PSD matrix.

Foreman l90%/lmax (i, j)90%
Original 2.73 ∗ 10−4 (2, 3)

1st Level Details 76.69 (29, 197)

2nd Level Details 70.69 (182, 35)

3rd Level Details 66.70 (206, 4)

4th Level Details 70.51 (190, 26)

4th Level Approximations 2.43 ∗ 10−4 (3, 2)

Table 4.2: Indices of maximum to 90% spectral energy covering for Foreman (CIF, 30Hz).

4.1.3 Distribution of spectral information

In order to better localize the spectral information, we have divided the spectrum of the
temporal sequences into 4, 9, and finally 16 frequency bands, and we have calculated,
each time, the quantities of energy present in the various subbands.

For Mobile (CIF, 30Hz) sequence, the distribution of spectral information over 4, 9,
and respectively 16 subbands is presented in Tab. 4.3, Tab. 4.4, and Tab. 4.5 respectively.

fh \ fv [0, 1
4 [ [14 ,

1
2 ]

[0, 1
4 [ 99.35% 0.34%

[14 ,
1
2 ] 0.27% 0.05%

(a)
fh \ fv [0, 1

4 [ [14 ,
1
2 ]

[0, 1
4 [ 48.29% 24.21%

[14 ,
1
2 ] 19.58% 7.92%

(b)

fh \ fv [0, 1
4 [ [14 ,

1
2 ]

[0, 1
4 [ 52.91% 19.58%

[14 ,
1
2 ] 20.85% 6.67%

(c)
fh \ fv [0, 1

4 [ [14 ,
1
2 ]

[0, 1
4 [ 99.29% 0.38%

[14 ,
1
2 ] 0.28% 0.05%

(d)

Table 4.3: Average spectral-energy partition over 4 subbands for Mobile (CIF, 30Hz) se-
quence: original sequence (a), detail subbands for one temporal decomposition level (b),
temporal detail (c) and approximation subbands (d) for 4 decomposition levels.
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fh \ fv [0, 1
6 [ [16 ,

1
3 [ [13 ,

1
2 ]

[0, 1
6 [ 98.56% 0.45% 0.09%

[16 ,
1
3 [ 0.58% 0.21% 0.03%

[13 ,
1
2 ] 0.06% 0.02% 0%

(a)
fh \ fv [0, 1

6 [ [16 ,
1
3 [ [13 ,

1
2 ]

[0, 1
6 [ 23.29% 17.59% 7.72%

[16 ,
1
3 [ 20.03% 17.01% 5.33%

[13 ,
1
2 ] 4.68% 3.45% 0.9%

(b)

fh \ fv [0, 1
6 [ [16 ,

1
3 [ [13 ,

1
2 ]

[0, 1
6 [ 28.72% 15.07% 6.76%

[16 ,
1
3 [ 20.73% 12.70% 4.54%

[13 ,
1
2 ] 6.84% 3.64% 1%

(c)
fh \ fv [0, 1

6 [ [16 ,
1
3 [ [13 ,

1
2 ]

[0, 1
6 [ 98.48% 0.46% 0.12%

[16 ,
1
3 [ 0.53% 0.22% 0.04%

[13 ,
1
2 ] 0.06% 0.02% 0%

(d)

Table 4.4: Average spectral energy-partition over 9 subbands for Mobile (CIF, 30Hz) se-
quence: original sequence (a), detail subbands for one temporal decomposition level (b),
temporal detail (c) and approximation subbands (d) for 4 decomposition levels.

fh \ fv [0, 1
8 [ [18 ,

1
4 [ [14 ,

3
8 [ [38 ,

1
2 ]

[0, 1
8 [ 98.07% 0.40% 0.18% 0.04%

[18 ,
1
4 [ 0.65% 0.22% 0.11% 0.01%

[14 ,
3
8 [ 0.17% 0.07% 0.04% 0.01%

[38 ,
1
2 ] 0.03% 0% 0% 0%

(a)
fh \ fv [0, 1

8 [ [18 ,
1
4 [ [14 ,

3
8 [ [38 ,

1
2 ]

[0, 1
8 [ 14.42% 9.76% 9.09% 3.36%

[18 ,
1
4 [ 13.18% 10.93% 9.26% 2.50%

[14 ,
3
8 [ 9.59% 7.28% 5.71% 1.25%

[38 ,
1
2 ] 1.56% 1.16% 0.76% 0.20%

(b)
fh \ fv [0, 1

8 [ [18 ,
1
4 [ [14 ,

3
8 [ [38 ,

1
2 ]

[0, 1
8 [ 18.80% 10% 7.13% 3.27%

[18 ,
1
4 [ 14.91% 9.20% 6.65% 2.50%

[14 ,
3
8 [ 9.71% 6.09% 4.12% 1.21%

[38 ,
1
2 ] 3.30% 1.75% 1.05% 0.29%

(c)
fh \ fv [0, 1

8 [ [18 ,
1
4 [ [14 ,

3
8 [ [38 ,

1
2 ]

[0, 1
8 [ 97.99% 0.40% 0.19% 0.05%

[18 ,
1
4 [ 0.66% 0.23% 0.12% 0.02%

[14 ,
3
8 [ 0.18% 0.07% 0.04% 0.01%

[38 ,
1
2 ] 0.03% 0.01% 0% 0%

(d)

Table 4.5: Average spectral energy-partition over 16 subbands for Mobile (CIF, 30Hz)
sequence: original sequence (a), detail subbands for one temporal decomposition level
(b), temporal detail (c) and approximation subbands (d) for 4 decomposition levels.

The results confirm those presented in the previous two studies. One can remark
from Tab. 4.3- 4.5 ((b),(c)) that the spectral information is far from being localised only at
low frequencies. Indeed, in comparison with the situation for temporal approximation
(d) and original (a) sequences where more than 98% of energy is distributed in low-pass
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bands, the quantity of energy captured at these frequencies does not exceed 30% of total
energy for the temporal detail subband sequences.

Similar results were obtained for Foreman (CIF, 30Hz) sequence, where the average
spectral energy repartition over 4, 9, and 16 subbands is presented in Tab. 4.6, Tab. 4.7,
and Tab. 4.8 respectively.

fh \ fv [0, 1
4 [ [14 ,

1
2 ]

[0, 1
4 [ 99.84% 0.03%

[14 ,
1
2 ] 0.12% 0%

(a)
fh \ fv [0, 1

4 [ [14 ,
1
2 ]

[0, 1
4 [ 60.64% 6.85%

[14 ,
1
2 ] 27.94% 4.57%

(b)
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1
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1
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(c)
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4 [ [14 ,
1
2 ]

[0, 1
4 [ 99.84% 0.03%

[14 ,
1
2 ] 0.12% 0%

(d)

Table 4.6: Average spectral energy-partition over 4 subbands for Foreman (CIF, 30Hz)
sequence: original sequence (a), detail subbands for one temporal decomposition level
(b), temporal detail (c) and approximation subbands (d) for 4 decomposition levels.

fh \ fv [0, 1
6 [ [16 ,

1
3 [ [13 ,

1
2 ]

[0, 1
6 [ 99.71% 0.06% 0.01%

[16 ,
1
3 [ 0.14% 0.01% 0%
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1
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(a)
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1
2 ]

[0, 1
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[16 ,
1
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[13 ,
1
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(b)

fh \ fv [0, 1
6 [ [16 ,

1
3 [ [13 ,

1
2 ]

[0, 1
6 [ 50.50% 10.38% 3.38%

[16 ,
1
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[13 ,
1
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(c)
fh \ fv [0, 1

6 [ [16 ,
1
3 [ [13 ,

1
2 ]

[0, 1
6 [ 99.71% 0.05% 0.01%

[16 ,
1
3 [ 0.14% 0.01% 0%

[13 ,
1
2 ] 0.07% 0.01% 0%

(d)

Table 4.7: Average spectral energy-partition over 9 subbands for Foreman (CIF, 30Hz)
sequence: original sequence (a), detail subbands for one temporal decomposition level
(b), temporal detail (c) and approximation subbands (d) for 4 decomposition levels.

4.1.4 Conclusion

In this section, we have studied the spectral properties of the subbands obtained by the
wavelet temporal decomposition. We noticed that, contrary to the approximation sub-
bands, spectral information of temporal details is distributed almost uniformly over the
subbands, thus, far from being localized in the low frequencies. These differences sug-
gest that the classical dyadic wavelet, which could be powerful for the spatial encoding
of still images or temporal approximation subbands, would not be the best decorrelation
scheme for the temporal detail subbands.

These observations motivate us to investigate the use of wavelet packets, whose fre-
quency - selectivity properties are more suited to decomposition of the detail frames.
We propose thus to pass in the following to the presentation of a wavelet-packet-based
spatial decomposition.
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fh \ fv [0, 1
8 [ [18 ,
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3
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Table 4.8: Average spectral energy-partition over 16 subbands for Foreman (CIF, 30Hz)
sequence: original sequence (a), detail subbands for one temporal decomposition level
(b), temporal detail (c) and approximation subbands (d) for 4 decomposition levels.

4.2 Joint wavelet packets for video coding

As mentioned in the introduction of this chapter, a weakness in the existing MCTF video
codecs is related to the way the spatial filtering is done. Most of the coding schemes
do not differentiate between the characteristics of the temporal approximation and detail
frames and use for both of them a dyadic wavelet decomposition. It has been shown
that the 9/7 filters give very good results in the case of still-image coding [19, 8], and it
appears obvious to use them for the spatial decomposition of the approximation frames.
Due to their significant amount of intermediate and high frequencies, the detail frames
are, however, not suited to be decomposed with wavelets. Because, in the temporal sub-
band coding paradigm, the proportion of detail frames with respect to the total number of
frames is significant, an effective and parcimonious spatial representation of these frames
is important.

Wavelet-packet subband structures [207] generalize the dyadic decomposition used
by most classical wavelet-based coding schemes by iterating the decompositions on the
high-pass subbands as well. Especially for images with highly textured content, the rate-
distortion performance of adaptively generated wavelet-packet subband structures is su-
perior to classical wavelet one.



4.2. JOINT WAVELET PACKETS FOR VIDEO CODING 145

Figure 4.4: An example of wavelet packet decomposition tree.

Best-basis algorithms [49] are the most computationally efficient techniques to find
wavelet-packet subband structures for a given image. This can be done by optimizing
rate-independent information cost functions operating in the transform domain which
provides suboptimal rate-distortion performance only. Techniques involving rate- dis-
tortion -based optimization have also been introduced [156, 162], often at a higher com-
putational cost.

The idea of using 3D wavelet packets for video compression has been developed
in some previous work [95, 179, 110]. Also, a hybrid video coder using the wavelet
packet transform and motion compensation has been proposed by Cheng, Li and Kuo
[42], where wavelet packets are used to represent the displaced frame differences (DFD),
whose features are close to those of the detail frames in a temporal subband decomposi-
tion.

In this section, we will introduce joint wavelet packets for groups of frames, providing
a unique best-basis representation for several frames, and not one basis per frame, as is
classically done. Two main advantages are expected from this joint representation. On
the one hand, bitrate is spared, since a single-tree description is sent instead of 31 per
group of frames (GOP) - when a GOP contains, for example, 32 frames. On the other
hand, this common description can characterize the spatio-temporal features of the given
video GOP and this way can be exploited as a valuable feature for video classification and
video-database searching.

Moreover, we provide insight into the modifications necessary in the best-basis al-
gorithm (BBA) in order to cope with biorthogonal decompositions. A computationally
efficient algorithm is deduced for an entropy-based criterion. This section work has been
subject to publication into the SPIE-VCIP’05 [191] conference proceedings.

4.2.1 Wavelet packets

In t + 2D/2D + t subband video coding [104, 117, 93], wavelet decompositions are used
both in the temporal and spatial dimensions, being spatio-temporal operators, as we have
named them in section 2.3.1.3. Wavelet packets are a generalized family of multiresolu-
tion bases that include wavelets (see section 1.2.4). The idea is to choose the best-basis
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by some criterion such as entropy [49], rate-distortion [156, 127, 167, 158], or other mea-
sure adapted to the application at hand. This method should provide results at least as
good as, or better than, the dyadic wavelet basis for the chosen cost function. In this
case, both low-frequency (approximations) and high-frequency (details) components are
decomposed. In Fig. 4.4 an example of such a decomposition is shown. This type of anal-
ysis allows an image to be decomposed in 4J different manners, where J is the maximal
analysis depth. In order to define which is the best decomposition from the point of view
of the least cost, an entropy criterion is frequently used [49].

4.2.1.1 Orthogonal wavelet packets. Best basis algorithm

Orthogonal wavelets generate orthonormal bases ofL2(R2) as shown in section 1.2.1, and
separable compactly supported wavelets are commonly used in image coding. There are
several families of commonly used wavelets, such as Daubechies [58, 57] and Coifman
[49]. In these decompositions, the length of the filter is related to the smoothness and
regularity of the wavelet. For building wavelet packets, the same families of functions can
be used, but the tree structure will be adapted to the input content in order to maximize
an energy- or entropy-compaction criterion. The basis selection in each node of the tree
has therefore to be done according to this criterion. For this, consider the projection of
a signal s(t) into two orthonormal bases B and B′. If, for any real concave function J
defined on R+, we have:

Q(s,B) =
K∑

k=1

J (|sk|2) ≤
K∑

k=1

J (
∣∣s′k
∣∣2) = Q(s,B′) (4.2)

where Q is the chosen cost function and sk, s
′
k the coefficients into B,B′ respectively,

k ∈ {1 . . .K}, we say that the best decomposition of the signal is B. One cost function or
criterion usually used in the selection of the best basis is the entropy, given by J (u) =
−u ln(u). For a decomposition of a discrete signal in one of these bases, the entropy (also
called Wickerhauser entropy) is:

E(s,B) = −
K∑

k=1

s2k∑K
k=1 s

2
k

ln(
s2k∑K

k=1 s
2
k

) (4.3)

A bottom-up pruning algorithm is used for the selection of the best orthogonal de-
composition [49]. In the case of dyadic decomposition, on level j, we compare the
cost associated to the best basis of the current node, Bj,m, with that of its successors,
Q(s,B∗

j+1,2m) and Q(s,B∗
j+1,2m+1). As the considered cost function is additive, if

Q(s,Bj,m) ≤ Q(s,B∗
j+1,2m) + Q(s,B∗

j+1,2m+1), (4.4)

we can conclude that the best basis for the node (j,m) is B∗
j,m = Bj,m, so the nodes

(j + 1, 2m) and (j + 1, 2m + 1) are pruned from the decomposition tree. Note that they
are kept in this tree if the opposite relation holds in Eq. (4.4).

4.2.1.2 Biorthogonal wavelet packets. Modified best-basis algorithm

One disadvantage of orthogonal wavelets is their asymmetry, which is related to the use
of nonlinear phase filters. When the orthogonality or compact-support restrictions are
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relaxed, symmetry can be obtained, as is the case with biorthogonal wavelets discussed
in section 1.2.2. In this case, the quadrature mirror filters used to calculate the discrete
wavelet transform (DWT) are not an orthogonal pair, although they are orthogonal to an-
other pair used to calculate the inverse DWT. In this manner, perfect reconstruction is pre-
served. Different types of biorthogonal filters have been developed [174] and have shown
[201] superior performance compared to orthonormal decompositions in still-image cod-
ing. The use of biorthogonal pairs in JPEG2000 [8], for both lossless and lossy coding,
also represents a strong motivation for developing a best-basis algorithm for biorthogo-
nal wavelet-packet bases.

In the case of biorthogonal decompositions, we go back to Eq. (4.4), which can be
written, in the most general case, as:

Q(s,Bj,m) ≤ Q(s,B∗
j+1,2m ∪ B∗

j+1,2m+1) (4.5)

This relation amounts to comparing the criterion in the father node with the criterion
computed on the union of bases of its sons. Once the decision is taken, the algorithm
iterates with the comparison of the criterion in the upper node with the criterion corre-
sponding to all the leaves remaining under it in the bottom-up pruning process:

Q(s,Bj,m) ≤ Q(s,
⋃

j′>j,m′

B∗
j′,m′) (4.6)

where the index m′ corresponds to all the leaves under the node (j,m) kept in the tree at
this step.

This means that, at each step of the algorithm, one has to recompute the criterion
corresponding to all the leaves considered in Eq. (4.6) in the union of bases of these leaves.
This is a computationally intensive task. Hopefuly, in the case of the entropy criterion
(see Eq. (4.3)), one can take advantage of the entropy values already computed in the
previous steps in order to obtain a recursive formula for the criterion corresponding to
the union of leaves:

E(s,
⋃

j′>j,m′

B∗
j′,m′) =

∑

j′,m′

E(s,B∗
j′,m′)

∑

j′,m′

Nj′,m′

+ ln(
∑

j′,m′

Nj′,m′) (4.7)

where Nj′,m′ is the energy of the coefficients in the basis B∗
j′,m′ . Note that, for the sake of

simplicity, we wrote the above relations in the case of a binary tree (corresponding to the
decomposition of a one-dimensional signal), but they can be extended to quadtrees (for
image decomposition) in an obvious manner.

4.2.2 Joint Wavelet Packets

In video coding, wavelet-packet decompositions can be successfully applied on the tem-
poral detail frames, which are the most appropriate from the frequency-partition point of
view as shown by the results in section 4.1. In the following, we present an approach for
finding the best basis for a group of frames, as well as two possibilities for its application
to motion-compensated temporal filtering (MCTF) video coding.
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Figure 4.5: Joint wavelet-packet decomposition per temporal subband.

4.2.2.1 Joint Best Basis Algorithm

In section 4.2.1.1, we showed how the best decomposition tree can be found for a single
image in the case of orthogonal wavelets. Now, we propose to extend the presented al-
gorithm in order to find the best basis for a group of frames. For simplicity, we detail the
algorithm for orthonormal bases, but an obvious extension to biorthogonal decomposi-
tions can be done by using the results presented in section 4.2.1.2.

As in the case of still images, the Wickerhauser entropy criterion can be used for the
selection of the wavelet-packet decomposition of a group of frames, due to its additivity
property and its ability to represent the sparsity of the signal. For a group of frames Sj ,
we need to compute the entropy of the representation in the union of bases of the GOP.
In the orthonormal case, the associated entropy can simply be found by:

E(Sj) =

nj∑

i=1

E(fi,j) (4.8)

where fi,j , i ∈ {1 . . . nj} are the nj frames in the GOP. In the biorthogonal case, the
formula in Eq. (4.7) can be used. Once we obtain the entropy corresponding to Sj , we can
apply the best-basis algorithm explained previously in the orthonormal or biorthogonal
case.

In the following, we present two possibilities for using the wavelet packets for the
spatial decomposition of the temporal detail frames. The first approach is to use a dif-
ferent best-basis decomposition for all the frames belonging to a given level of temporal
decomposition (as illustrated in Fig. 4.5). This method issues from the assumption that
the frames belonging to a specific decomposition level present, more or less, the same
frequency characteristics. The second approach is to have one wavelet-packet basis for



4.2. JOINT WAVELET PACKETS FOR VIDEO CODING 149

each encoding unit; i.e., a unique basis for all detail frames in a GOP (as it can be seen in
Fig. 4.6).

For each frame fi,j of the sequence Sj , the relative representation error when de-
composing the frame in the joint basis, normalised with respect to the optimal entropy
obtained if the frame is represented in its own best basis, is given by:

RelativeRepresentationError(fi,j) =
JointEntropy(fi,j) −OptimalEntropy(fi,j)

OptimalEntropy(fi,j)
(4.9)

An average relative error over the jointly encoded frames is:

AverageRepresentationError(Sj) =

∑
fi,j∈Sj

RelativeRepresentationError(fi,j)

nj

(4.10)
Moreover, it is interesting to have also the maximal representation error, found as:

MaximalRepresentationError(Sj) = max
fi,j∈Sj

(RelativeRepresentationError(fi,j))

(4.11)
In Tabs. 4.9-4.11, we present the mentioned representation errors, as well as the av-

erage joint entropies for both approaches (one basis per temporal level or one per GOP),
for the Foreman (CIF, 30Hz), Mobile (CIF, 30Hz) and Harbour (4CIF, 60Hz) sequences.

As it can be seen, the error representations are relatively small, especially when a joint
representation per temporal level is chosen. We can conclude that using a joint wavelet

Figure 4.6: Joint wavelet-packet decomposition per GOP.
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Foreman (CIF, 30Hz) Level 1 Level 2 Level 3 Level 4 Level 5 GOP
Average Joint Entropy 108.33 66.05 55.99 67.07 47.48 87.02

Average Representation Error 4.2% 2.1% 0.7% 0.3% 0.1% 6.1%
Maximal Representation Error 42.1% 16.4% 9.3% 3.5% 2.4% 80.1%

Table 4.9: Average joint entropies and representation errors for the sequence Foreman
(CIF, 30Hz).

Mobile (CIF, 30Hz) Level 1 Level 2 Level 3 Level 4 Level 5 GOP
Average Joint Entropy 111.60 99.70 73.59 58.88 52.49 95.29

Average Representation Error 1.4% 3.4% 4.4% 1.9% 1.2% 5.7%
Maximal Representation Error 14.7% 28.5% 28.4% 15.7% 13.8% 73%

Table 4.10: Average joint entropies and representation errors for the sequence Mobile
(CIF, 30Hz).

Harbour (4CIF, 60Hz) Level 1 Level 2 Level 3 Level 4 Level 5 GOP
Average Joint Entropy 232.67 140.35 117.25 121.64 115.91 183.21

Average Representation Error 2.4% 0.9% 1.3% 0.5% 0.9% 4.8%
Maximal Representation Error 64.9% 12.2% 15.9% 8.2% 11.7% 80.4%

Table 4.11: Average joint entropies and representation errors for the sequence Harbour
(4CIF, 60Hz).

packet decomposition for all the detail frames belonging to a given temporal level, or
to a group of frames, does not change dramatically compared to the best basis of the
individual frame.

4.2.3 Experimental results

For simulations, we have considered three representative video sequences: Foreman (CIF,
30 Hz), Mobile (CIF, 30 Hz) and Harbour (4CIF, 60 Hz), which have been selected for their
different motion and texture characteristics. The tests have been made in the framework
of the MSRA [117] video codec. For our simulations, we have used only the t + 2D cod-
ing approach. Motion estimation is block-based and the motion-vector fields have been
estimated with 1/4-pixel accuracy. All video sequences used in our tests have been de-
composed with a 5-level 5/3 temporal decomposition which supports block-prediction
modes. Temporal approximation and detail subband wavelet coefficients have been en-
coded using the 3D-ESCOT [117] algorithm which supports both wavelet and wavelet-
packet spatial decompositions.

In our experiments, the temporal approximation subbands have been spatially de-
composed over 5 levels with the biorthogonal 9/7 wavelet. For the spatial decomposition
of the temporal detail frames, we have compared the following representations:

⋆ dyadic biorthogonal wavelets with 9/7 filter banks (Wavelet).

⋆ orthonormal wavelet packets using symmlet functions (Ortho.WP).

⋆ biorthogonal wavelet packets using 9/7 filter banks (Biorthog.WP).

For the last two cases, in a first approach, we have run the simulations having a joint
wavelet-packet decomposition for each of the 5 levels of temporal filtering. In a second
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YSNR (dB) for Foreman (CIF, 30Hz) sequence

Bitrate (kbs) 128 160 192 224 256

5-lev. dyadic Wavelet 31.331 32.325 33.098 33.784 34.337

Ortho.WP/TS 31.514 32.499 33.283 33.991 34.494

Ortho.WP/GOP 31.578 32.667 34.342 34.101 34.548

Biorthog.WP/TS 31.548 32.584 34.296 34.106 34.557

Biorthog.WP/GOP 31.591 32.689 34.462 34.179 34.635

Table 4.12: Rate-distortion comparison for the sequence Foreman (CIF, 30Hz). Or-
tho/Biorthog stands for an orthonormal/biorthogonal decomposition, respectively and TS
for temporal subband.

YSNR (dB) for Mobile (CIF, 30Hz) sequence

Bitrate (kbs) 192 224 256 320 384

5-lev. dyadic Wavelet 24.968 25.678 26.285 27.308 28.096

Ortho.WP/TS 25.317 26.063 26.728 27.698 28.473

Ortho.WP/GOP 25.321 26.114 26.764 27.704 28.484

Biorthog.WP/TS 25.728 26.311 27.242 28.117 29.102

Biorthog.WP/GOP 25.891 26.532 27.521 28.268 29.271

Table 4.13: Rate-distortion comparison for the sequence Mobile (CIF, 30Hz). Or-
tho/Biorthog stands for an orthonormal/biorthogonal decomposition, respectively and TS
for temporal subband.

approach, we have constructed a wavelet-packet basis for all the detail frames in a GOP.
In Tabs. 4.12-4.14, we compare the YPSNR results for the three sequences. The bitrate
test-points for the sequences used in our simulations correspond to those defined for the
MPEG standardization [215].

The obtained results confirm the remarks make in section 4.1. Due to their signif-
icant amount of medium and high frequencies, the most appropriate representation of
the detail frames is not based on dyadic wavelets.

It can be easily noticed that in all the cases the decomposition of the temporal detail
frames with wavelet packets performs better, achieving a gain between 0.1 and 0.9 dB
over the classical dyadic filtering. Also, we can observe that the use of a biorthogonal
wavelet-packet basis slightly improves the results as compared to the orthonormal basis

YSNR (dB) for Harbour (4CIF, 60Hz) sequence

Bitrate (kbs) 1536 1780 2048 2560 3072

5-lev. dyadic Wavelet 30.834 31.228 31.726 32.489 33.035

Ortho.WP/TS 31.068 31.474 31.968 32.718 33.296

Ortho.WP/GOP 31.111 31.476 31.969 32.733 33.312

Biorthog.WP/TS 31.220 31.732 32.191 32.803 33.381

Biorthog.WP/GOP 31.303 31.941 32.235 32.836 33.448

Table 4.14: Rate-distortion comparison for the sequence Harbour (4CIF, 60Hz). Or-
tho/Biorthog stands for an orthonormal/biorthogonal decomposition, respectively and TS
for temporal subband.
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(a) (b)

Figure 4.7: Reconstructed frame from Mobile (CIF, 30Hz) sequence at 384 kbs: (a) 5-level
9/7 spatial decomposition, (b) 5-level joint 9/7 spatial decomposition at GOP level.

(we obtain a average gain around 0.1 dB over the results obtained with an orthonormal
basis). The small differences between the results obtained with the wavelet-packet basis
applied on each temporal subband and on each group of frames can be explained by the
additional rate necessary in the former case needed to describe the decomposition tree at
each level.

4.2.4 Conclusion

In this section, we have presented a method for building a joint wavelet-packet rep-
resentation for groups of frames. The best-basis selection algorithm was adapted to
this goal, and the method was illustrated by simulation results in the framework of
motion-compensated temporal filtering coding. Best results were obtained when a sin-
gle wavelet-packet basis was considered for coding all the detail frames in a GOP. We
also highlighted the algorithmic modifications for the selection of the best basis when
biorthogonal bases are used.

However, finding the best wavelet-packet representation, even for a single basis per
group of frames, can be a computationally expensive task. This remark suggests a new
direction: finding a simpler decomposition in line the observations presented in section
4.1. The fully separable wavelet and wavelet packet-based spatial decompositions that
will be presented in the next section preserve the simplicity of the classical dyadic wavelet
transform and provide a sparse representation of the discontinuities in temporal high-
pass subband frames.

4.3 Fully separable wavelets and wavelet packets

As mentioned in section 4.1, the dyadic spatial wavelet transform (WT) may not be the
most appropriate for exploiting the spatial redundancy of the detail subbands, since very
often the power spectral density of these frames is not as concentrated at low frequencies
as in the case of natural images.
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Wavelet-packet [156, 191] transforms (WPT) may represent a solution for the decorre-
lation of such textures as they generalize the dyadic decomposition used by most classical
t + 2D video-coding schemes. For highly textured content, the rate-distortion perfor-
mance of adaptively generated wavelet packets is superior to that of the classical dyadic
wavelet. As shown in section 4.2, best-basis algorithms (BBA) are the computationally
most efficient techniques for finding wavelet-packet subband structures for a given im-
age. This can be done not only by optimizing rate-independent information-cost func-
tions operating in the transform domain (like entropy), which provides suboptimal rate-
distortion performance only, but also by exploiting rate-distortion objective functions in
the BBA [157].

Moreover, anisotropic decompositions were proposed as a solution for coding tex-
tures with homogeneous energy distribution. In [200], a lattice-based, perfect- recon-
struction, critically sampled anisotropic multi-directional wavelet transform, called di-
rectionlet is presented, preserving the simplicity of computations and filter design from
the dyadic wavelet transform and providing a sparse representation of the discontinu-
ities in images. This transform was successfully applied both for still-image compression
and denoising [65]. The 3D anisotropic wavelet-packet bases proposed by Kutil [111] for
video coding come as an extension of the directionlets mentioned above. He introduces
the bush decomposition, based on the idea that video data has different characteristics in
time and spatial dimensions, and anisotropic processing can represent shapes and fea-
tures with different properties in different directions. In a 3D bush, any of the horizontal,
vertical, or quadtree transform is allowed at each decomposition level. Continuing in
this direction, in [100] an anisotropic multidirectional representation is proposed for ori-
ented textures, which can be successfully used for coding the high-frequency temporal
subbands .

In the following, we propose to fully separate the horizontal and vertical transforms
of the classical wavelet decomposition, thus the decorrelation description for a texture
will be accomplished by two concatenated binary trees. Moreover, this decomposition
inherits the simplicity of processing and filter design from the dyadic wavelet transform
and presents perfect reconstruction. This decomposition retains 1D filtering and subsam-
pling operations but can provide a highly anisotropic frequency representation. Indeed,
the concatenation of two uni-directional decompositions is not equivalent to the dyadic
(quadtree) classical decomposition, where the separability is applied at each level. Gen-
erally, the finer 2D frequency separation allows to better capture the orientation of the
spatial details. The Fully Separable Wavelet Transform (FSWT) (see section 1.2, Fig. 1.4)
may extend both classical dyadic wavelet or wavelet-packet decompositions, preserving
at the same time its low-complexity characteristics. The contributions of this section have
been presented in the proceedings of the SPIE-VCIP’06 [188] conference.

4.3.1 Fully separable wavelet transform

Generally, in the processing of still images, an isotropic 2D wavelet decomposition is
used. It results from the tensor product of 1D wavelet bases of the form:

{φJ,k(t), k ∈ Z} ∪
⋃

j≤J

{ψj,k(t), k ∈ Z} , (4.12)

where J is the maximum number of decomposition levels. This alternation between hor-
izontal and vertical decompositions at each level leads to square subbands, i.e. the mul-
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tiresolution decomposition of Mallat [125]. Thus, for one given subband, the number of
decomposition levels in the horizontal direction is the same as the number of decompo-
sition levels in the vertical direction. This process is justified by the properties of natural
still images: their texture features are often quite similar in all directions.

The construction of the dyadic 2D WT and its corresponding quadtree is shown in
Fig. 4.8 (a,b). The resulting subbands from the quadtree decomposition are denoted at
each level by LL, LH, HL, HH. Fig. 4.8 (c,d) represent the FSWT and its corresponding
concatenated binary horizontal and vertical trees. The low-pass and high-pass subbands
resulting from the 1D transform (horizontal or vertical filtering) are denoted by L and H,
respectively.
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Black lines: horizontal decomposition

Dashed red lines: vertical decomposition

(d)

Figure 4.8: Three level spatial-decomposition scheme for Mobile(CIF, 30Hz) sequence:
dyadic wavelet transform (WT) (a) and its decomposition quadtree (b); fully separable
wavelet transform (FSWT) (c) and the two decomposition binary trees (vertical decom-
position represented by full-line and the horizontal one by dashed-line)(d).

A 2D fully separable wavelet basis (BFS) consists of tensor products of all possible
pairs of wavelets and scaling functions, i.e.:
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BFS =
(
{φJ,k(x)}k ∪ {ψj,k(x)}j≤J,k

)
⊗
(
{φJ,k(y)}k ∪ {ψj,k(y)}j≤J,k

)

= {φJ,k1(x)φJ,k2(y)}k1,k2
∪
⋃

j1≤J

{ψj1,k1(x)φJ,k2(y)}k1,k2
∪

⋃

j2≤J

{φJ,k1(x)ψj2,k2(y)}k1,k2
∪

⋃

j1,j2≤J

{ψj1,k1(x)ψj2,k2(y)}k1,k2

(4.13)

This means that one can find the FSWT expansion of a multidimensional function by
simply operating on each coordinate axis separately, using a one-dimensional wavelet
transform. In contrast, a multiresolution wavelet basis (B) consists of tensor products of
all possible pairs of wavelet and scaling functions at the same scale:

B = {φJ,k1(x)φJ,k2(y)}k1,k2
∪
⋃

j≤J

{ψj,k1(x)φj,k2(y), φj,k1(x)ψj,k2(y), ψj,k1(x)ψj,k2(y)}k1,k2

(4.14)

(a) (b)

Figure 4.9: Four level spatial-decomposition scheme on temporal detail frames for Bus
(CIF, 30Hz) sequence: (a) wavelet-packet transform (WPT); (b) fully separable wavelet-
packet transform (FSWPT).

4.3.2 Fully separable wavelet packet transform

As mentioned in section 4.2.1, wavelet packets are a generalized family of multiresolu-
tion bases that includes dyadic wavelets. In this case, both the low-frequency (approxi-
mations) and the high-frequency (details) components are decomposed (see Fig. 4.9 (a)).
The selection of the best-basis decomposition for the fully separable wavelet packet trans-
form is performed similary to the algorithm presented in section 4.2.1.2. After a full de-
composition of the image following the two spatial directions, the bottom-up pruning
BBA is first applied on the horizontal direction and the selection of the best-basis for each
node is done according to the following comparison of the cost functions on the binary
tree of the H decomposition, between the node and its children nodes:
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Q(f,BFS
j1,j2,k1,k2) ≤ Q(f, B̃FS

j1+1,j2,2k1,k2
∪ B̃FS

j1+1,j2,2k1+1,k2
),∀j2 (4.15)

Once the best-basis B̃FS for the horizontal direction is obtained, we proceed with a
BB selection in the vertical direction, keeping fixed the optimal horizontal tree and using
the same cost criterion for the vertical tree pruning. Thus if:

Q(f, B̃FS
j1,j2,k1,k2

) ≤ Q(f,
˜̃B

FS

j1,j2+1,k1,2k2
∪ ˜̃B

FS

j1,j2+1,k1,2k2+1),∀j1 (4.16)

we can conclude that the best-basis for the node (j1, j2, k1, k2) is B̃FS =
˜̃B

FS

.
The result of this algorithm is illustrated in Fig. 4.9 (b). Concerning the computational

complexity of these fully separable transforms, it was shown in [147] that they have linear
complexity, O(N), as in the case of the classical dyadic transform.

4.3.3 Experimental results

For the experiments, we have considered three representative video sequences: Mobile
(CIF, 30 Hz), Bus (CIF, 30 Hz) and City (4CIF, 60 Hz). The tests have been made in the
framework of the Vidwav [212] video codec. Motion estimation is block-based and the
motion-vectors field have been estimated with 1/4-pixel accuracy. All video sequences
used in our tests have been temporally decorrelated with a 5-level motion-compensated
5/3 decomposition. Spatio-temporal wavelet coefficients have been encoded using the
3D-ESCOT [216] algorithm which supports classical dyadic wavelet and wavelet-packet
spatial decompositions. The bitrate test points for the sequences used in our simulations
correspond to those defined for the MPEG standardization [215].

YSNR (dB) for Bus (CIF, 30Hz) sequence

Filter/Bit rate 256 320 384 448 512

9/7 27.47 28.38 29.19 29.86 30.50

FS-9/7 27.55 28.45 29.27 29.92 30.53

5/3 27.26 28.28 28.99 29.67 30.30

FS-5/3 27.29 28.26 29.08 29.69 30.31

JWPT-9/7 27.56 28.46 29.26 29.93 30.60

JFSWPT-9/7 27.61 28.56 29.39 30.06 30.73

JWPT-5/3 27.45 28.50 29.23 29.91 30.52

JFSWPT-5/3 27.47 28.55 29.24 29.93 30.54

Table 4.15: Rate-distortion comparison for the sequence Bus (CIF, 30Hz).

In the experimental framework, the temporal approximation subbands have been
spatially decomposed over 5 levels with the biorthogonal 9/7 and 5/3 filter banks. For
the spatial decomposition of the temporal frames, we have compared the following rep-
resentations:

⋆ dyadic WT with 9/7 and 5/3 filter banks (9/7 and 5/3).

⋆ FSWT with 9/7 and 5/3 filter banks (FS-9/7 and FS-5/3).

⋆ joint wavelet packets [191] using 9/7 and 5/3 filter banks (JWPT-9/7 and JWPT-
5/3).
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YSNR (dB) for City (4CIF, 60Hz) sequence

Filter Bit rate 1024 1280 1536 1792 2048

9/7 34.25 34.65 35.08 35.48 35.77

FS-9/7 34.38 34.74 35.19 35.61 35.89

5/3 34.07 34.44 34.86 35.15 35.43

FS-53 34.19 34.47 34.87 35.28 35.55

JWPT-9/7 34.31 34.70 35.14 35.54 35.85

JFSWPT-9/7 34.32 34.70 35.14 35.54 35.84

JWPT-5/3 34.10 34.46 34.89 35.16 35.44

JFSWPT-5/3 34.11 34.44 34.89 35.16 35.43

Table 4.16: Rate-distortion comparison for the sequence City (4CIF, 60Hz).

⋆ joint fully separable wavelet packets using 9/7 and 5/3 filter banks (JFSWPT-9/7
and JFSWPT-5/3).

In Tabs. 4.15-4.16 we compare the YPSNR results for the Bus (CIF, 30Hz) and City
(4CIF, 60Hz) sequences. For the same tree depth, we observe generally better results for a
fully separable decomposition than for the dyadic wavelet representation. Moreover, this
difference is more visible for a reduced number of decomposition levels (see Fig. 4.10),
where the finer 2D frequency separation allows better capture of the orientation of the
spatial details, achieving an average gain of 0.25 dB over their dyadic counterparts. For a
higher number of decomposition levels, there is not very much information in the highest
frequency subbands.

4.3.4 Conclusion

We have presented in this section an evaluation of fully separable wavelet and wavelet
packet transforms for texture encoding in a motion-compensated subband video codec.
As shown by the simulations results, the finer 2D frequency separation given by the
fully separable transforms allows better capture of the orientation of the spatial details,
resulting in a better representation of the video texture, in comparison to classical dyadic
decompositions.
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Figure 4.10: Rate-distortion comparison for 2-level spatial decomposition for the Mobile
(CIF, 30Hz) sequence.

4.4 Conclusion

In this chapter, we have presented our contributions to the spatial processing stage of
the t + 2D video coding framework. Following the study regarding the properties of
the temporal decomposition subbands, we have concluded that the dyadic wavelet de-
compositions are not the most appropriate for representing the residual temporal sub-
bands. We have thus proposed a joint wavelet-packet representation for the detail tem-
poral subbands, as well as an improved and efficient best-basis algorithm for biorthog-
onal wavelets. This way, a unique best basis representation is found for several frames,
and not one basis per frame, as classically done. Moreover, fully separable wavelet and
wavelet-packet transforms have been studied for spatial decorrelation of the temporal
subbands, these decompositions leading to a better video-texture representation, due to
an efficient capture of spatial detail orientation.

After the spatial-coding module, the resulting coefficients are passed to a quantizer.
We present in the following the design of a graph-cut solvable energy functional for the
Lagrangian rate-distortion optimization problem. Three graph-based solutions are de-
scribed, by modelling several aspects of energy interactions for the minimization of a
non-orthogonal system. This way optimal rate-distortion truncation of scalable streams
is achieved, including trade-offs at various rates.
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Chapter 5

Rate distortion optimization using
graph cuts

Min-cut algorithms on graphs emerged as an increasingly useful tool for problems in
vision. Typically, the use of graph cuts is motivated by one of the following two reasons.
Firstly, graph cuts allow geometric interpretation: under certain conditions a cut on a
graph can be seen as a hypersurface in the N-D space embedding the corresponding
graph. Thus, many applications in vision and graphics use min-cut algorithms as a tool
for computing optimal hypersurfaces. Secondly, graph cuts also work as a powerful
energy minimization tool for a fairly wide class of binary and non-binary energies that
frequently occur in early vision. In some cases, graph cuts produce globally optimal
solutions.

More generally, there are iterative graph-cut techniques that produce provably good
approximations which have been empirically shown to correspond to high-quality solu-
tions in practice. Thus, another large group of applications use graph-cuts as an opti-
mization technique for low-level vision problems based on global-energy formulations.

This chapter starts by explaining the general theoretical properties that motivate the
use of graph cuts by giving some examples of graph-cut solutions already existing in
computer graphics (section 5.1). In a second part (section 5.2), we design a graph-cut-
solvable energy functional for the Lagrangian rate-distortion-optimization problem. More-
over, we study three possible solutions by modeling several aspects of energy interac-
tions for the minimization of a non-orthogonal functional. We present our results in the
context of subband image compression; although, the proposed graph-cut rate distortion
optimization method could also be jointly used with existing coding algorithms for video
compression.

5.1 Graph-cuts in computer vision

Many computer-vision problems can be formulated in terms of energy minimization.
In the last few years, minimum cut/maximum network-flow algorithms [107, 30] have
emerged as an elegant and increasingly useful tool for exact or approximate energy min-
imization. In the following, we review several concepts from graph theory and intro-
duce the graph-cut energy-minimization technique. We also present several examples of
graph-cut solutions for some signal-processing applications.
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5.1.1 Graph representation

In the following, we present a short overview of graph-based algorithms, and we intro-
duce the graph-cut and multiway min-cut definitions.

5.1.1.1 Definition

A graph is a mathematical representation that is useful for solving many kinds of prob-
lems. Fundamentally, a graph consists of a set of vertices and a set of edges, where an
edge is a link between two vertices in the graph. Generally, a graph G is given by a pair
(V,E), where V is a finite set, and E is a binary relation on V . V is called a vertex set
whose elements are called vertices or graph nodes. E is a collection of edges, where an
edge is a pair (u, v) with u, v ∈ V . In a directed graph, edges are ordered pairs, connect-
ing a source vertex to a target vertex. In an undirected graph, edges are unordered pairs
and connect two vertices in both directions, hence in an undirected graph (u, v) and (v, u)
are two ways of writing the same edge (symmetry).

(a)

z

a

y

v

b

x

(b)

z

a

y

v

b

x

Figure 5.1: Example of: (a) directed and (b) undirected graph.

This graph definition is purely abstract; it does not say what a vertex or edge rep-
resents. They could be cities with connecting roads, or web pages with hyperlinks, or
pixels. These details are left out of the definition of a graph for an important reason;
they are not a necessary part of the graph abstraction. By leaving out the details, we can
construct a theory that is reusable that can help us solve a number of different kinds of
problems.

The primary property of a graph to consider when deciding which data-structure
representation to use is sparsity, the number of edges relative to the number of vertices
in the graph. A graph where E is close to V 2 is a dense graph, whereas a graph where
E = αV with α much smaller than V is a sparse graph. For dense graphs, the adjacency-
matrix representation is usually the best choice, whereas for sparse graphs, the adjacency-
list representation is a better choice. Also the edge-list representation is a space efficient
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choice for sparse graphs that is appropriate in some situations.

5.1.1.2 Graph-based algorithms

Breadth-First Search Breadth-first search (BFS) is a traversal through a graph that tou-
ches all the vertices reachable from a particular source vertex. In addition, the order
of the traversal is such that the algorithm will explore all of the neighbors of a vertex
before proceeding to the neighbors of its neighbors (level search). One way to think of
breadth-first search is that it expands like a wave emanating from a stone dropped into a
pool of water. Vertices in the same wave are at the same distance from the source vertex.
A vertex is considered discovered the first time it is encountered by the algorithm. It
becomes visited after all its level neighbors have been are explored.

Depth-First Search A depth-first search (DFS) visits all the vertices in a graph. When
choosing which edge to explore next, this algorithm always chooses to go deeper into
the graph. That is, it will pick the next adjacent unvisited vertex until reaching a vertex
that has no unvisited adjacent vertices. The algorithm will then backtrack to the previous
vertex and continue along any as-yet unexplored edges from that vertex. After DFS has
visited all the reachable vertices from a particular source vertex, it chooses one of the
remaining undiscovered vertices and continues the search. This process creates a set of
depth-first trees which together form the depth-first forest.

Minimum Spanning Tree For a weighted graph G = (V,E,W ), where W is the set of
weights associated to the graph edges, the minimum-spanning-tree problem is defined
as follows: find an acyclic subset T , T ∈ E that connects all of the vertices in the graph
and whose total weight is minimized, where the total weight is given by:

w(T ) =
∑

(u,v)∈T

w(u, v)

where w(u, v) is the weight on the edge (u, v). T is called the minimum spanning tree.

Shortest-paths algorithms One of the classic problems in graph theory is to find the
shortest path between two vertices in a graph. Formally, a path is a sequence of vertices
(v0, v1, ..., vk) in a graph G = (V,E) such that each vertex is connected to the next vertex
in the sequence (so the edges (vi, vi+1) for i = 0, 1, ..., k − 1 are in the edge set E). In the
shortest-path problem, each edge is given a real-valued weight. We can therefore talk
about the weight of a path:

w(p) =
k∑

i=1

w(vi−1, vi)

Usually, the weights are given by heuristics, in order to speed-up the search process.
For example, a weight or cost for passing from vertex u to v could be:

δ(u, v) = minw(p) if ∃(u→ v)

δ(u, v) = ∞ otherwise.

where (u → v) means that there is a path from u to v. A shortest path is thus any path
whose weight is equal to the shortest path weight.
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There are several variants of the shortest-path problem. Above, we defined the single-
pair problem, but there is also the single-source problem (all shortest paths from one
vertex to every other vertex in the graph), the equivalent single-destination problem, and
the all-pairs problem.

Network-flow algorithms A flow network is a directed graph G = (V,E) with a source
vertex s and a sink vertex t. Each edge has a positive real-valued capacity function c, and
there is a flow function f defined over every vertex pair. The flow function must satisfy
three contraints:

f(u, v) ≤ c(u, v), ∀(u, v) ∈ V × V (Capacity constraint)

f(u, v) = −f(v, u) ∀(u, v) ∈ V × V (Skew symmetry)
∑

v∈V

f(u, v) = 0 ∀u ∈ V − {s, t} (Flow conservation)

The flow of the network is the net flow entering the sink vertex t (which is equal to
the net flow leaving the source vertex s).

|f | =
∑

u∈V

f(u, t) =
∑

v∈V

f(s, v)

The maximum-flow problem is to determine the maximum possible value for |f | and
the corresponding flow values for every vertex pair in the graph.

5.1.1.3 Maximum-flow / minimum-cut problem equivalence

The s− tminimum-cut problem is intimately related to the maximum-flow problem. The
input is the same as for the maximum-flow problem. The goal is to find a partition of the
nodes that separates the source and sink so that the total capacity of edges going from
the source side to the sink side is minimum. Formally, we define an s − t cut [S, T ] to be
a partition of the nodes V = S ∪ T such that s ∈ S and t ∈ T . The cost of a cut is defined
to be the sum of the capacities of ”forward” arcs in the cut:

C[S, T ] =
∑

u∈S,v∈T

c(u, v)

The goal is to find an s − t cut of minimum capacity. It is easy to see that the value
of any flow is less than or equal to the capacity of any s − t cut. Any flow sent from s to
t must pass through every s − t cut, since the cut disconnects the terminal nodes s from
t. Since flow is conserved, the value of the flow is limited by the capacity of the cut. A
max-flow min-cut equivalence demonstration as well as a simple algorithm for finding
the min-cut are given by Ford and Fulkerson in [75].

5.1.1.4 Multiway minimum cut

Given an undirected graphG = (V,E) with non-negative edge costs and a set of T special
nodes in the graph (called terminals, T ⊂ V ), the multiway minimum cut is given by
the cheapest multiway cut, i.e., a subset of the edges whose removal disconnects each
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Figure 5.2: Three-way graph cut example: (a) initial graph, (b) induced three-way cut
graph (cut-edges in dashed gray lines, terminal nodes in orage, non-terminal nodes in
blue).

terminal from the rest (Fig. 5.2). This is one of several generalizations of the classical
undirected s− t cut problem.

Dahlhaus et al. [54] initiated the study of multiway cut. For T = 2, the problem
is identical to the undirected version of the extensively studied s− t min-cut problem of
Ford and Fulkerson [75] and thus has polynomial-time algorithms (see, e.g. [14]). Prior to
this method, the best approximation algorithm for T ≥ 3 was due to the above mentioned
paper [54]. For fixed T in planar graphs, the problem is solvable in polynomial time [121].
For trees, there are linear-time algorithms [46].

5.1.2 Energy minimization using graph-cuts

After the above review of the graph-cut definition, we present in the following the prob-
lem statement for energy minimization, as well as several signal-processing applications
involving graph-cut optimizations.

5.1.2.1 Binary energy function model

We show in the following that the minimum-graph-cut algorithm is a powerful opti-
mization tool which is inherently binary. This is particularly useful in vision applications
because it can be used for enforcing piecewise coherence.

Recall that a graph cut is a partition of all non-terminal nodes into two sets, S and T .
Let each non-terminal node v ∈ V represent a binary variable, and let us associate 0 with
the source s and 1 with the sink t (Fig. 5.3). Then we can identify any cut with a particular
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Figure 5.3: Binary energy graph cut example: (a) initial graph, (b) induced min cut on
graph.

assignment to binary variables (i.e. nodes) as follows: if node v ∈ S then its binary value
is 0, and if node v ∈ T then its binary value is 1. This procedure establishes a one-to-one
correspondence between the set of all variable assignments and the set of graph cuts. In
Fig. 5.3(b), we label each node with the binary value corresponding to the given cut. If N
is the number of non-terminal nodes in the graph, then there are 2N possible graph cuts.
The cost of a given cut is:

C[S, T ] =
∑

u∈S,v∈T

c(u, v)

and this cost can be used as the objective function to evaluate the quality of the partition
S ∪ T = V or, equivalently, as the energy of the variables assigned to the non-terminal
nodes. Then, the minimum cut corresponds to the optimal variable assignment for the
nodes. Thus, the power of the graph-cut algorithm is that it can search efficiently through
the exponential space of solutions and find the optimal solution in polynomial time. In
this sense, graph cuts are similar to dynamic programming which also can find the opti-
mum in an exponential space of solutions in polynomial time. The significant disadvan-
tage of dynamic programming is that it can be applied only to tree graphs, while graph
cuts can be applied to arbitrary graphs.

5.1.2.2 Multi-terminal energy-function model

Previously, we have seen that graph cuts provide an inherently binary optimization. In
the following, we will show that they can also be used for multi-label or multi-terminal
energy minimization. This minimization is sometimes exact, but usually it is approxi-
mate.

Many problems in vision can be formulated as labeling problems. We have already
seen an example of a binary-labeling problem in section 5.1.2.1. We now state it in a more
general form. In a labeling problem, we have a set of units X which can represent pixels,
voxels, or any other set of entities. We also have a finite set of labels T which is now
allowed to be of size larger than 2. Labels can represent any property that we wish to
assign to units, for example intensity, stereo disparity, motion vectors, and so on. The
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goal is to find a labeling f which is a mapping fromX to labels T . Let us use fn to denote
the label assigned to unit n and f to denote the collection of such assignments for all units
in X .

For each problem, one can derive a set of constraints which should be respected as
much as possible by the optimal labeling f . Usually these constraints are derived from
the observed data and from a priori knowledge. The data constraints are typically ex-
pressed as individual preferences of each unit n ∈ X for labels in T . To formalize them,
for each unit n, we use a function Dn(t) : T → R. D being part of the functional we want
to minimize, the smaller the value of Dn(t), the more likely is the label t for unit n. If
for some n, Dm

n = mint∈T Dn(t) < 0, then we subtract Dm
n from Dn(t) for all t ∈ T . This

does not change our energy formulation. Thus, from now on, we assume, without loss of
generality, that Dn(t) > 0, for all n, t.

The a priori knowledge can be generally complex, but in graph-cut-based optimiza-
tion, we are esentially limited to constraints which impose different types of spatial
smoothness on the labeling f . In order to enforce these smoothness constraints, we de-
fine a neighborhood system N on the units X . A neighborhood system contains pairs of
units which are immediate neighbors. The simplest example of a neighborhood system is
the four-connected grid. We consider a function Vn1,n2(tn1 , tn2) which assigns a positive
cost if the neighbour units n1, n2 are given different labels tn1 , tn2 . Different choices of V
lead to different assumed types of smoothness.

Now we are ready to formulate the labeling problem in terms of energy minimization.
The optimal labeling f is the one which minimizes the following energy function:

E(f) =
∑

n∈X

Dn(fn) +
∑

n1,n2∈N
Vn1,n2(fn1 , fn2) (5.1)

As mentioned in 5.1.1.4, there are several algorithms for computing the minimum
multiway cut and thus minimizing a functional like Eq. (5.1). Sometimes the global
minimum is reached [32, 86, 121], in other cases a local minimum within a known factor
of the global is found [33].

Label-expansion algorithm One of the most effective algorithms for minimizing discon-
tinuity- preserving energy functions is the expansion-move algorithm introduced in [33].
This algorithm can be used whenever V is a metric on the space of labels T . V is called a
metric on the space of labels T if it satisfies:

V(α, β) = 0 ⇔ α = β

V(α, β) = V(β, α) ≥ 0

V(α, β) ≤ V(α, γ) + V(γ, β)

for any labels α, β, γ ∈ T .
Consider a labeling f and a particular label α. A new labeling f ′ is defined to be an

α-expansion move from f if f ′n 6= α implies f ′n = fn. This means that the set of units
assigned to the label α has increased when going from f to f ′.

The expansion-move algorithm cycles through the labels in a certain order (fixed or
random) and finds the lowest energy α-expansion move from the current labeling via
graph cut. If this expansion move has lower energy than the current labeling, then it
becomes the current labeling. The algorithm terminates with a labeling that is a local
minimum of the energy with respect to expansion moves; more precisely, there is no
α-expansion move, for any label α, with lower energy.
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Label-swap algorithm When V is a semimetric on the labels space T , that is ∀α, β ∈ T :

V(α, β) = 0 ⇔ α = β

V(α, β) = V(β, α) ≥ 0

an α− β label-swap algorithm is proposed [33].
Consider now a possible labeling f and all the pairs of labels (α, β); f ′ is defined

to be an α − β-swap from f if fn1 = α, fn2 = β swaps to fn1 = β, fn2 = α, where
the f ′ label assignment implies a lower energy that f . As in the expansion-move, the
algorithm parses all the label pairs and finds the best α − β partitioning via graph cuts.
The algorithm ends when no label exchange in the current partitioning can assure a lower
energy.

It has been proven [33] that both the label-expansion and label-swap algorithms finish
in O(|T |) cycles. Generally, they assure a local minimum with respect to the swap or
expansion space for a general label space. If the label space can be linearly ordered, the
global minimum can be reached [31].

5.1.2.3 Graph-cut applications in computer vision

Many computer-vision problems require energy minimization. Each of these methods
consists in modeling a graph for an energy type such that the minimum cut minimizes
globally or locally that functional. We present in the following several fields in which
graph-cut energy minimization has been applied.

Image segmentation Image segmentation consists in grouping similar pixels together
to form a set of coherent image regions given a single image. Pixel similarity can be
measured in terms of location, intensity, color, or texture. Graph-cuts seem to be a natural
mechanism for segmentation as graph-cuts imply data partitioning. The basic idea of this
approach is the following:

⋆ each image pixel is viewed as a vertex of a graph;

⋆ the similarity between two pixels is viewed as the edge weight between these two
vertices;

⋆ segmentation is achieved by cutting edges in the graph to form a good set of dis-
connected components.

Good image-segmentation results obtained via graph-cuts results were presented in
[34, 29, 170]. Fig. 5.4(b) illustrates the result of the graph-cut segmentation algorithm
presented in [199] on the ”Peppers” (128×128) image.

Motion segmentation The motivation of the motion-segmentation problem is given by
the fact that motion regions (pixels with similar motion) usually correspond to distinct
objects in the scene.

Motion-vector fields are obtained by establishing pixel correspondences between im-
ages. Based on the motion vectors, the pixels are then grouped into motion regions, thus
producing a segmentation of the image (Fig. 5.5). In [163, 204], moving object segmenta-
tion is considered as an image-labeling process. All pixels grouped together by the same
label and geometrical neighbours are considered to describe a moving object which is
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(a) (b)

Figure 5.4: Image segmentation example [199]: (a) original image, (b) segmentation in-
duced by graph-cuts.

extracted from the scene. As in the case of image segmentation, each image pixel is con-
sidered a vertex in the graph, the labels/terminals being given by the possible motion
vectors so that pixels are assigned labels corresponding to their motion flow between
consecutive frames.

Image restoration Many applications (i.e. satellite imaging, medical imaging, astro-
nomical imaging, etc.) require image quality better than that of the initial date, since
images are often distortioned due to aquisition or transmission constraints. The goal of
image restoration is to ameliorate image quality.

Good image-restoration results obtained via graph-cuts results were recently pre-
sented in [55, 56]. Moreover, in [33, 155], a pixel-labeling solution for image restoration
was proposed. The graph is constructed in grid manner according to pixel positions
where the weights between neighbours are directly proportional to the degree of similar-
ity between pixels (i.e., similar intensities, small weight value and different intensities,
high weight value). The labels are given by an intensity-value set. Fig. 5.6(b) illustrates
the result of a graph-cut denoising algorithm, where the pixel-interaction energy is mod-
eled in a discontinuity-preserving way [33].

Stereo video In stereo-video applications, one problem is to find pixels in images of
different cameras (for example, the input images of Fig. 5.7(a,b)), that correspond to the
same 3D point of the observed scene. The goal of most stereo-matching algorithms is
to compute one disparity estimate for each pixel in a reference image, often chosen as
the left input image. These disparity estimates are often interpreted as the inverse dis-
tances to observed objects (the ground-truth data in Fig. 5.7(c)). The disparity of a pixel in
the reference image describes the distance, measured in pixels, between the pixel under
consideration and its corresponding pixel in the other input image.
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Figure 5.5: Motion segmentation example [163] on Taxi video sequence.

Figure 5.6: Image restoration example [33]: (a) noisy image; (b) restored image using
graph-cuts.

Figure 5.7: Tsukuba benchmark stereo pair [32]: (a) the left input image; (b) the right
input image; (c) ground truth data, where the intensity represents the disparity, meaning
that lighter gray represents objects closer to the cameras.
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Figure 5.8: Texture synthesis example: (a) original image; (b) new image obtained by
texture synthesis using graph-cuts [112].

Traditionally, most methods for finding correspondences between images from two
cameras are based on correlation of local windows or on matching of sparse features.
These global methods often optimise an energy function describing a relationship be-
tween image measurements and a prior model of the observed world. The energy func-
tion may, for example, include a matching cost for assigning a pixel a certain depth value,
and a smoothness cost for assigning different depth values to neighbouring pixels. The
first method using graph cuts to solve the stereo correspondence problem was intro-
duced by Roy and Cox [160]. Their result was a local coherence constraint that suggests
that, locally, a disparity map is smooth, which means that pixels close to each other in
any direction have similar disparities. Later Ishikawa and Geiger [97] solve the problem
using a discontinuity-preserving function for neighbour pixels. Another approach for
solving the correspondence problem as the maximum flow in a directed graph is taken
by Boykov, Veksler and Zabih [32], where the correspondence is modeled using a Potts
model for each pair of neighbouring pixels.

Texture synthesis Texture-synthesis techniques are used to reproduce the pattern con-
tained in a sample image into either a larger 2D image or a surface in 3D. A variety of
techniques have been employed for 2D image-texture synthesis. For example, in Fig. 5.8,
given the input image (a), a good texture-synthesis algorithm should be able to generate
more of the texture in order to create an image like (b). The example was created through
graph-cut texture synthesis [112] which uses patches of texture to create its output image.

The overlapping region between two patches is set up as a graph where each pixel in
the overlap is represented by a node, the weights being intensity-based functions. Graph-
cut algorithms for texture synthesis were succesfully used in both the image- and video-
processing fields [112, 219].
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5.2 Still-image compression using graph cuts

Nowadays, the majority of image-compression algorithms use wavelet transforms, at-
tempting to exploit all the signal redundancy that can appear within and across the
different subbands of a spatial decomposition. However, efficiency of a coding scheme
highly depends on bit allocation. A general subband-based image-compression scheme
has three major modules: a spatial-decorrelation module, in which the spatial image re-
dundancy is reduced; a quantization module, in which the best quantizers in terms of
rate-distortion optimization are selected such that the bitstream matches the bandwidth
capacity; and an entropy-coding module.

In this section we present a rate-distortion optimization based on graph cuts, which
can compress efficiently the coefficients of a critically sampled or even redundant, non-
orthogonal transform. As shown in section 5.1.2.3, good energy-optimization results
based on graph cuts were obtained in image restoration [155, 33], as well as in stereo
video [32], motion segmentation [163], texture synthesis in image and video [112, 219],
etc. We propose to use the graph-cut mechanism for the minimization of the rate-distortion
Lagrangian function and thus find the optimal set of quantizers satisfying the imposed
constraints. To this aim, we have designed a specialized graph able to represent a sub-
band decomposition taking into consideration the correlations between subbands in a
multiresolution approach.

In the following, we express the Lagrangian functional as a discrete sum accumulat-
ing the contribution of each coding unit (subband or block) in terms of rate and distortion
induced by the quantization. Moreover, the graph model is planar1 [121], and the energy
function we intend to optimize is convex, so the minimum graph cut can be found in
polynomial time. As it will be shown by the experimental results, the method gives
good compression results compared to the state-of-the-art JPEG2000 codec, as well as an
improvement in visual quality.

5.2.1 Graph design

Consider the graph G = (V,E,W ) with positive edge weights W , which have not only
two, but a set of terminal nodes, Q ∈ V . Recall that a subset of edges EC ∈ E is called a
multiway cut if the terminal nodes are completely separated in the induced graphG(EC) =
(V,E − EC ,W ) and no proper subset of EC separates the terminals in EC . If C is the cost
of the multiway cut, then the multi-terminal min-cut problem is equivalent to finding the
minimum-cost multiway cut. For our optimization problem, the terminals are given by
a set of quantizers Q, and the coding units give the rest of the vertices V −Q. The edges
and their weights/capacities will be defined in the following depending on the coding
strategy (subband or block coding) and the distortion functional.

In [33], Y. Boykov et al. find the minimal multiway cut by succesively finding the
min-cut between a given terminal and the other terminals. This approximation guar-
antees a local minimization of the energy function that is close to the optimal solution
for both concave and convex energy functionals. As the rate-distortion Lagrangian lies
on a convex-decreasing curve (i.e. D(R)), we propose to use the method in [33] for its
optimization.

1A planar graph is a graph that can be drawn so that no edges intersect in the plane.
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Figure 5.9: Two-level spatial decomposition (a) and the corresponding graph-cut parti-
tion for two quantizers (b) (q1 partition in blue, q2 partition in orange, where the regular
edges are with full lines and the terminal edges with dashed ones).

5.2.2 Lagrangian rate-distortion functional

Consider the problem of coding an image at a maximal rate Rmax with a minimal dis-
tortion D. Each image consists of a fixed number of coding units (spatial subbands or
blocks of coefficients), each of them coded with a different quantizer qi, qi ∈ Q ( Q being
the quantizers set). Let Di(qi) be the distortion of the coding unit i when quantized with
qi, and let Ri(qi) be the number of bits required for its coding. The problem can now be
formulated as: find min

∑
iDi(qi), such that

∑
iRi(qi) = R ≤ Rmax.

In the Lagrange-multiplier framework, this constrained optimization is written as the
equivalent problem:

min
∑

i

(Di(qi) + λRi(qi)) , R ≤ Rmax (5.2)

where the choice of λ measures the relative importance between distortion and rate for
the optimization and which can be determined using a binary search. The advantage
of problem formulation in Eq. (5.2) is that the sum and the minimum operator can be
exchanged to: ∑

i

min (Di(qi) + λRi(qi)) , R ≤ Rmax (5.3)

This formulation obviously reveals that the global optimization can now be carried out
independently for each coding unit, making an efficient implementation feasible.

5.2.2.1 Rate estimation

For the rate estimation of the quantized coding units we consider a non-contextual arith-
metic coder [132], which uses a zero-order entropy model, where in the M quantized
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coefficients of a given coding unit are random i.i.d. variables following a Gaussian dis-
tribution. Thus, the zero-order entropy (H) estimation in bits/variable (i.e., coefficient)
is obtained as:

H = −
M∑

i=1

pi log2 pi, (5.4)

where pi is the probability of the ith coefficient. The resulting entropy estimate per coding
unit is weighted by the size of the coding unit in order to obtain the total entropy of the
quantized image.

5.2.2.2 Distortion estimation

The distortion D between the original image x and the quantized one, x̂ is estimated in
the following as the L2 norm, i.e. :

D = ‖x − x̂‖2 . (5.5)

This model will be futher developed, in order to obtain a good distortion estimate in the
spatial domain, rather than in the transform domain, as is usually done for orthonormal
transforms.

5.2.3 Multiresolution-based graph modeling

In the following, two distortion models for our graph-cut based rate-distortion Lagrangian
minimization are proposed, both methods being developed with the aim of encoding the
coefficients of a critically sampled, or even redundant, non-orthogonal transform. In the
first approach, we consider a first-order approximation model for the distortion, to fi-
nally represent it more accurately in the second approach which takes into consideration
the cross-correlation distortion terms in a more complicated case. We show how the dis-
tortion can be approximated and then estimated in the spatial domain, allowing a graph
modeling of the subband interactions. Moreover, in a third approach, the graph design
is developed to model the coding units at a finer level of representation.

5.2.3.1 Graph design with first-order distortion at the subband level

As previously mentioned, the distortion D between the original image x, and the quan-
tized image x̂ can be written as the L2 norm, i.e. D = ‖x − x̂‖2. For orthonormal trans-
forms, this norm can be equivalently estimated in the transform domain. However, for
arbitrary transforms (biorthogonal, redundant, non-linear etc.) this property does not
hold any more. In the following, we focus on this more complicated case and show how
the distortion can be approximated and then estimated in the spatial domain, allowing a
graph modeling of the subband interactions.

If, in the reconstructed image x̂, we highlight the contribution of each subband, x̂ =∑
i x̂i, where x̂i is the contribution per subband (i.e., the reconstructed image when only

the ith subband is quantized and the other subbands are set to zero), then we can also
write the image in a similar way, x =

∑
i xi. However, here xi is completely arbitrary.
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In the case of a linear basis, it may become xi =
∑

k 〈x, ẽk,i〉 ek,i, where ẽk,i, ek,i are the
analysis, respectively synthesis, elements of the biorthogonal basis. Then we have:

D =

∥∥∥∥∥
∑

i

(x̂i − xi)

∥∥∥∥∥

2

=
∑

i,i′

〈x̂i − xi, x̂i′ − xi′〉 (5.6)

In a first approximation, we can consider only the diagonal terms of the above devel-
opment, i.e.:

DI
∼=
∑

i

‖xi − x̂i‖2 =
∑

i

Di(qi) (5.7)

which amounts to estimating the distortion between the contribution to the image and to
the quantized image of only the ith subband. This means we can reconstruct the image
only from ith subband coefficients (the others being set to zero) to get xi and from the
quantized coefficients of the ith subband to get x̂i.

In [33] are presented two graph-cut based algorithms able to reach a minimum for an
energy function of the form:

E(f) = Edata(f) + Esmooth(f) (5.8)

whereEsmooth is a smoothness constraint, whileEdata measures the distortion introduced
by the f partitioning with respect to the original data. Without taking into consideration
a rate constraint, one can easily associate Edata with D (i.e., Edata = D). Because Edata

can be arbitrarily chosen, with only a positivity constraint, we add to it the rate factor,
that is:

Edata =
∑

i

(Di(qi) + λRi(qi)) (5.9)

We can define:
Esmooth =

∑

n1,n2∈N
Vn1,n2(qn1 , qn2) (5.10)

where N represents the 2D neighborhood system of the nodes and Vn1,n2(qn1 , qn2) mea-
sures the cost of assigning the quantizers qn1 , qn2 to the adjacent nodes n1, n2. We define
V as the Potts interaction penalty, i.e. :

V = βT (qn1 6= qn2) (5.11)

where T is a boolean operator (e.g., its value equals 1 if its argument is true and 0 oth-
erwise), and β is a real constant which enforces or diminishes the smoothing. As can be
seen, the definition of Esmooth is consistent, as for two strongly correlated subbands the
same quantizer choice is imposed. Moreover, it is a metric on the quantizer space, so the
α-expansion algorithm [33] can be used for minimizing E.

A simple graphG = (V,E) model for this energy functional can be obtained by seeing
as the regular (planar) vertices the decomposition subbands (X), which are connected
between them following their 2D geometrical position (thus (E−XQ)-regular links), and
each terminal node q ∈ Q being connected to all the non-terminal vertices (thus (XQ)-
terminal links) (Fig. 5.9 shows the quantizer asigmenment after the cut, i.e., the output
of the algorithm). So one can distinguish two connection types: one between regular
vertices and the other one between the terminal nodes and the regular vertices. For a
terminal-node edge (i.e., link between a quantizer q and a given coding unit vertex i), the
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cost is given by the distortion induced by that quantizer to the image and the number of
bits needed to transmit the quantized subband i, Di(qi)+λRi(qi). For a regular edge (i.e.,
a link between two neighbor vertices), the cost is 0 if the two nodes are quantized with
the same quantizer or β otherwise. Moreover, this cost is dynamically computed for each
possible partitioning f of the graph.

5.2.3.2 Graph design with cross-correlation distortion

Recall that we have written the distortionD between the original image, x, and the quan-
tized one, x̂, as the L2 norm, i.e. D = ‖x − x̂‖2. In a first approximation, we have consid-
ered only the diagonal terms, i.e.:

DI
∼=
∑

i

‖xi − x̂i‖2 (5.12)

which amounts to estimating the distortion between the contribution to the image and to
the quantized image of only the ith subband.

In a second approximation, one can also consider the cross-correlation terms, i.e.:

D ∼= DI +
∑

i

∑

i′∈N (i)

〈x̂i − xi, x̂i′ − xi′〉 (5.13)

where N (i) is a neighborhood of i, containing closely correlated subbands. Indeed, given
the limited support of the wavelets, the closer in scale and frequency are the subbands,
the higher the correlation among them. In practice, this neighborhood is described by the
geometrical position of the subbands in a multiresolution decomposition, where only the
vertical and horizontal directions are considered (for example, in Fig. 5.9 and Fig. 5.10,
the neighborhood relations are indicated by the black-marked edges in the graph). Eq.
(5.13) can be written as:

D =
∑

i

‖xi − x̂i‖2

︸ ︷︷ ︸
Di

+
∑

i

∑

i′∈N (i)

〈x̂i − xi, x̂i′ − xi′〉︸ ︷︷ ︸
Di,i′

(5.14)

The second term involves the highest complexity (inverse transforms plus inner pro-
ducts between error images), which can however be divided by two, noting that Di,i′ =
Di′,i and therefore:

D ∼=
∑

i

(
Di + 2

∑

i>i′

Di,i′

)
(5.15)

For Di,i′ we need to calculate the error between the image reconstructed from the ith

subband (xi) and its equivalent reconstructed from the quantized ith subband (x̂i), the
same from a neighboring subband i′ and then compute the inner product.

The minimization of the energy function defined above is equivalent to the best par-
tition of quantizers per subbands. The graph we have designed for solving this problem
has as vertices the set of spatial subbands and the set of quantizers as terminal nodes,
where the subbands are linked following the neighborhood system N . Each terminal
node is connected to all non-terminal nodes, considering all quantization possibilities for
the spatial subbands. (i.e., G = (V,E), where V = X ∪Q and E = EN ∪EQ, EN denoting
the regular edges between subband vertices in the neighbourhood system N and EQ the
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Figure 5.10: Contourlet decomposition with three levels (left) and three-way graph-cut
repartition (right) (q1 partition in blue, q2 partition in green, q3 partition in red, where the
regular edges are with full black lines, terminal links in colors and the cut-edges in gray
dash-lines).

terminal links between subband nodes and quantizers). One can distinguish two con-
nextion types: EN and EQ. We define the weights for the quantizers links EQ in terms
of the rate-distortion cost; so, the weight associated to the edge connecting subband x to
quantizer q is defined as wx,q = Dx(q) + Rx(q). For a EN link, the associated weight is
given by the cross-correlation distortion, i.e.: wxi,xi′

= 〈x̂i − xi, x̂i′ − xi′〉, i′ ∈ N (i). So
the function we want to minimize can be written as:

min
∑

i



‖xi − x̂i‖2 + λR(i)︸ ︷︷ ︸

Edata(i)

+
∑

i′∈N (i)

〈x̂i − xi, x̂i′ − xi′〉

︸ ︷︷ ︸
Esmooth(i)




(5.16)

Now we establish the correspondence between our graph and the multiway cut. In
Fig. 5.10 is illustrated an induced graphG(EC) = (V,E−EC) corresponding to a multiway
cut EC on G. One can remark that it should be exactly one terminal link to each subband
node in the induced graph.
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Figure 5.11: Block graph design: (a) two-level wavelet decomposition with four-blocks
subband division and (b) regular vertices network design.

5.2.3.3 Graph design with cross-correlation distortion at the block level

In the following, we propose to extend the subband level distortion estimation presented
in section 5.2.3.2 to the block level (Fig. 5.11). This extension comes naturally, as the
smaller the coding unit, the more correlated in amplitude are the coefficients within it.
At block level, Eq. (5.16) becomes:

min
X∑

i=1

Nb∑

j=1

‖xi,j − x̂i,j‖2 + λR(i, j)︸ ︷︷ ︸
Edata(i,j)

+

∑

i′∈N (i)

〈
x̂i,j − xi,j , x̂i′,j − xi′,j

〉
+

∑

j′∈N (j)

〈
x̂i,j − xi,j , x̂i,j′ − xi,j′

〉

︸ ︷︷ ︸
Esmooth(i,j)

(5.17)

where X , respectively Nb represents the number of subbands, respectively blocks in each
subband, xi,j denotes the image reconstucted only from the jth block of the ith subband,〈
x̂i,j − xi,j , x̂i′,j − xi′,j

〉
represents the cross-correlation distortion induced by the block

j in neighbour subbands i′ ∈ N (i) and
〈
x̂i,j − xi,j , x̂i,j′ − xi,j′

〉
measures the correlation

between neighbour blocks in a given subband i, j′ ∈ N (j).
As expected, our graph will have this time B = X × Nb regular vertices. The neigh-

bourhood system, N , contains now both multiresolution correlation linksENM
(i.e., edges

between same positioned blocks in neighbour subbands as defined in section 5.2.3.2)
as well as position correlation links ENG

(i.e., edges between neighbour blocks in a 4-
connected subband grid). The geometrical model can be described as: G = (V,E) where
V = B ∪ Q and E = EN ∪ EQ, EN = ENM

∪ ENG
and Q/EQ represent the quantiz-
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ers set/the links between block nodes and quantizers. For the terminal links, EQ, the
weights are given by the direct costs in terms of distortion and rate induced by the quan-
tization (i.e., the edge between block b and quantizer q, (b, q), has the associated weight
wb,q = Db(q)+Rb(q)). The capacity between two regular neighbour blocks ((bi, bi′) ∈ ENM

or (bj , bj′) ∈ ENG
) is defined as the cross-correlation distortion induced by the current

quantization of these blocks.

5.2.4 Application to subband image compression

In the following, we propose to apply the proposed graph-cut minimization models to
subband image compression. Some results are drawn in the framework of classical sepa-
rable wavelet image coding, as well as for a geometrical transform, namely the contourlet
decomposition [62]. Note that the method can be applied to almost any existing decom-
position (subbands, blocks, critically sampled / redundant etc.).

5.2.4.1 Wavelet subband image compression

Due to their energy compaction efficiency, the biorthogonal filter banks are the most used
in image compression [8]. This is the reason for which we consider in our simulation
framework both the 5/3 and 9/7 filter banks for the spatial decomposition.

Experimental results For our simulations, we have considered two representative test
images: Barbara (512x512 pixels) and Mandrill (512x512 pixels), which have been selected
for the difficulty to encode their texture characteristics.

We have used dead-zone scalar quantization, with q ∈ {20, . . . , 210}. The dead-zone
has twice the width of the other quantization intervals. All the images have been decom-
posed over five spatial levels with the floating-point 5/3 and 9/7 filter banks. Note that
for rate estimation in the allocation algorithm we have used a simple (non-contextual)
arithmetic coder [132], while JPEG2000 codec [8] uses a highly optimized contextual
coder.

As it can be remarked from Fig. 5.12 and Fig. 5.13, the results obtained with the 9/7
wavelet subband decompostion of JPEG2000 are between 0.5 and 1.5 dB higher than those
obtained with the proposed graph-cut rate-distortion algorithm. This situation can be
explained by the fact that the 9/7 filter bank is very close, from an energy partition point
of view, to an orthonormal decomposition while the 5/3 filter bank is quite far from this
situation. As illustrated in Fig. 5.14 and Fig. 5.15, our method seems to better cope with
such non-orthogonal decompositions than the classical weighting, based on the synthesis
filter-bank characteristics, performed in JPEG2000.

One can remark that distortion approximation at subband level taking into account
the cross-correlation among subbands always leads to better results than the simple model
without cross-correlation terms, by using a more realistic correlation model. Moreover,
the finer level of represention for the coding units, the higher the correlation among these
units, as it can be remarked from stated results, having an average gain of 0.25 dB over
the preceeding rate-distortion curve obtained with a subband-based cross-correlated dis-
tortion model.
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Figure 5.12: Rate-distortion comparison for Mandrill image with 9/7 wavelet subband
decomposition

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
22

23

24

25

26

27

28

29

30

31
Barbara (512x512)

Bitrate (bpp)

P
S

N
R

 (
dB

)

GCC−Simple distortion
GCC−Cross−correlated distortion
GCC−Block cross−correlated distortion
9/7 JPEG2000

Figure 5.13: Rate-distortion comparison for Barbara image with 9/7 wavelet subband
decomposition

5.2.4.2 Contourlet subband image compression

The drawback of separable wavelets is the limited orientation selectivity, as they fail to
capture the geometry of the image edges. In order to overcome the problem of edge rep-
resentation, Minh N. Do and Martin Vetterli have defined a new family of geometrical
wavelets, called contourlets [62]. With contourlets, one can represent the class of smooth
images with discontinuities along smooth curves in a very efficient and sparse way. The
theory of geometrical wavelets has progressed in many directions, giving the definitions
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Figure 5.14: Rate-distortion comparison for Mandrill image with 5/3 wavelet subband
decomposition
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Figure 5.15: Rate-distortion comparison for Barbara image with 5/3 wavelet subband
decomposition

of wedgelets [64], beamlets [96], curvelets [63], directionlets [200] and others [48, 151],
as well as their corresponding fast transforms. All these new decompositions have been
successfully used in image segmentation and noise removal, as well as in image com-
pression: as shown in [203], the codec based on wedgelets gives better performance in
image compression than the JPEG2000 standard at very low rate.

The contourlet transform [62] preserves the interesting features of classical wavelets,
namely multiresolution and local characteristics of the signal, and, at the expense of a
spatial redundancy, it better represents the directional features of the image. As shown
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Figure 5.16: Contourlet filter bank

in Fig. 5.16, the transform is a multiscale and directional decomposition using a combi-
nation of a Laplacian pyramid (LP) and a directional filter bank (DFB). Bandpass images
from the LP are passed to a DFB so that directional information can be retrieved. As its
redundancy is given only by the LP transform, it has an upper limit on the redundancy of
4/3, which makes the scheme more appropriate for compression than other geometrical
transforms. Another reason for which we have considered this scheme is that contourlets
can be approximated with fewer coefficients than wavelets; that is, for a contourlet basis,
the approximation error for keeping only the M most significant coefficients is:

‖f − fMcontourlet
‖ = O((logM)3M−2) (5.18)

which is smaller than that obtained on a separable wavelet basis:

‖f − fMwavelet
‖ = O(M−1). (5.19)

As shown in [37], the efficiency of the pyramidal directional filterbank (PDBF) with re-
spect to classical wavelets tends to decrease on natural images when the number of co-
efficients increases. Because at low decomposition levels a better energy compaction is
needed, we have decided to use in our simulation framework a hybrid approach for spa-
tial decorrelation.

Experimental results For our simulations, we have considered four representative test
images: Zoneplate (512x512 pixels), Circles (512x512 pixels), Barbara (512x512 pixels)
and Mandrill (512x512 pixels), which have been selected for the difficulty to encode
their texture characteristics. We have used dead-zone scalar quantization, with q ∈
{20, . . . , 210} and a 5-level contourlet where the coarsest three decomposition levels con-
sist of a 9/7 separable wavelet transform (i.e., 3 directions), and the finest two levels are
represented with a 16- and 32-band biorthogonal directional filter. The efficiency of this
hybrid scheme has been proved in [37] and in [25].

Fig. 5.17 presents the Zoneplate image compressed at 0.2 bpp with JPEG2000 and
the graph-cut allocation algorithm using the simple distortion approach coupled with
contourlet decomposition. One can remark that both numerical and visual quality are
improved. For the same transmission rate, our method surpasses JPEG2000 by more than
1.5 dB, even though it employs a redundant transform. Similar results are also depicted
in Fig. 5.18 for the Mandrill image.
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(a) (b)

Figure 5.17: Zoneplate (512x512) image compressed at 0.2 bpp: (a) JPEG2000 compression
(PSNR = 11.12dB), (b) 1st graph-cut rate allocation method (PSNR = 12.66dB).
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Figure 5.18: Rate-distortion comparison for Mandrill image with contourlet subband de-
composition

Fig. 5.21 illustrates the compression results obtained with the subband-based graph-
cut allocation methods and JPEG2000 at 0.1 bpp. Our allocation is based on the contourlet
subband decomposition. One can note better visual quality results of both graph-cut
compression methods with respect to JPEG2000. Moreover, a 0.5 dB PSNR improvement
due to the cross-correlation distortion approach with respect to the simple distortion ap-
proach can be noticed. Note that, for rate estimation in the allocation algorithm, we have
used a simple (non-contextual) arithmetic coder [132], while JPEG2000 codec uses highly
optimized contextual coder.
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Figure 5.19: Rate-distortion comparison for Barbara image with contourlet subband de-
composition
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Figure 5.20: Rate-distortion comparison for Zone-plate image with contourlet subband
decomposition

5.3 Conclusion

In this chapter we have presented a graph-cut method for rate-distortion optimization in
image coding using decompositions which are not necessarily orthonormal. As shown
by experimental results, it can efficiently encode contourlet coefficients at low bitrates,
improving both the visual and numerical quality. Moreover, the proposed method can
be further used with vector quantizers.



5.3. CONCLUSION 183

(a)

(c)

(b)

(d)

Figure 5.21: Circles (512x512) image at 0.1 bpp: (a) original, (b) JPEG2000 compression
(PSNR=14.19 dB), (c) simple-distortion graph-cut method (PSNR=14.64 dB) , (d)cross-
correlation distortion graph-cut method (PSNR=15.13 dB).
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Conclusion and perspectives

This work contributes to the development of a t + 2D wavelet-based video codec. More
specifically, our research focused on the construction and optimization of MCTF schemes,
the analysis of different spatial decomposition methods for better representing the tem-
poral subbands in order to enhance both the objective and subjective quality of recon-
structed sequences, and, last but not least, the improvement of entropy coding by design-
ing graph-cut-solvable energy functionals for the rate-distortion-optimization problem.
Below we summarize the contributions of the thesis work, and then we propose some
directions for future research.

Synthesis of thesis contributions

I—Temporal video processing

Scene-cut processing in MCTF

Typical decompositions for temporal decorrelation are dyadic ones and use Haar and
5/3 filter banks. Generally, the same filtering is made along the sequence based on the
assumption that the frames are highly correlated. However, this assumption no longer
holds when the video involves scene changes, as in the case of action movies, music-
video clips etc. The inefficiency of the motion estimator leads to poor predict/update
stages, which, combined with the sliding-window implementation of the temporal filters,
propagates the prediction/update errors through the decomposition levels.

We have proposed an improved version of the 5/3 MCTF coding scheme able to de-
tect and process the scene-cuts appearing in video sequences. The lifting structure of
the filters has been modified such that the filtering does not encompass the scene-cut.
Moreover, the coding units were reduced near the scene-cut to accommodate this change.
The experiments made in the framework of MC-EZBC video codec [210] show that our
method gives an average YSNR gain of about 1.5 dB on several test video sequences and
higher for frames close to the scene-cut.

A 5-band MCTF lifting scheme

Longer filters are preferred for temporal decomposition due to their efficiency in remov-
ing temporal redundancy. However, when the filters are too long, it is very likely that
they will encompass several (different) scenes and, thus, loose their decorrelation effi-
ciency. Moreover, the longer the temporal filter, the fewer the temporal decomposition
levels needed to obtain some key (approximation) frames so useful for video database
search and storage.
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We have thus introduced a 5-band temporal-lifting structure allowing flexible scala-
bility factors by multiples of five in a MCTF video codec. For the proposed structure, we
have developed two implementation schemes: one using the mirroring method (so that
the filter bank does not span other GOPs) and the other one using a sliding window. Both
5-band schemes have been implemented and integrated into the framework of the MSRA
3D-wavelet video codec [212]. The proposed method has similar performance to that of
the dyadic Haar and 5/3 filters and the non-linear 3-band decomposition scheme. Also,
it gives better coding efficiency for the temporal approximation subbands leading then
to an improved temporal scalability. It can be used successfully in certain applications,
such as the encoding of video-surveillance sequences where the motion activity is weak
in most cases and few approximation frames are needed for long-term storage.

LMS-based adaptive prediction for scalable video coding

In wavelet video coding, the most used method for motion estimation is block-based, and
even with a bidirectional temporal prediction, block artefacts are still present. In order to
avoid such artefacts, motion-compensation solutions, such as weighted average update
operator or overlapped block motion compensation, have been proposed to alleviate this
problem.

We have proposed an LMS-based adaptive prediction for the temporal prediction step
in scalable video coding. Pixels of temporal detail subband frames are optimally pre-
dicted using a set of pixels from the neighbouring subband frames. We have illustrated
our proposal on bidirectional prediction, but the set of pixels for adaptation can be chosen
from any number of frames involved in a longer-term prediction. The proposed method
has been developed in the framework of the MSRA 3D-wavelet based video coder. The
experimental results show that, even for two-pixel adaptation, visual quality of the recon-
structed frames is improved. A trade-off between compression efficiency and additional
complexity coming from a larger adaptation window can be done according to the tar-
get application. Significant PSNR improvements have been obtained for sequences with
high contrast between various segments within the sequence and more particularly for
varying illumination conditions.

Video compression for multi-temporal and multispectral satellite sequences

MCTF coding efficiency is strongly related to the correlation of the data being processed.
Based on this assumption, we tested t + 2D video coding principles on multi-temporal
and multispectral data sequences. In order to achieve data compression, coding tech-
niques applied to multi-temporal and multispectral data take advantage of the presence
of two redundancy sources: spatial correlation among neighboring pixels in the same
spectral band and temporal correlation among different bands at the same spatial loca-
tion.

We have thus proposed to evaluate the performance on SPOT (1, 2 and 4) sequences
using still image (JPEG2000) and video (t + 2D) compression techniques based on wavelet
tools. As it results from the experiments, EZBC intra-coding outperforms EBCOT in
terms of rate gain in the case of nearly lossless compression. Also, it has been pointed out
that lossless compression provides comparable results with lossy compression realized
in the manner described above. In addition, it has been highlighted that temporal and
spectral decorrelations can be exploited separately or jointly to improve the compression
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ratio. As expected, the combination of spectral and temporal decorrelation provides the
best results in terms of bitrate reduction.

II—Spatial processing of video sequences

Joint wavelet packets

The results of a study regarding the spectral properties of the subbands obtained by the
wavelet temporal decomposition have shown that, contrary to the approximation sub-
bands, frequency information of temporal details is distributed almost uniformly over
the subbands, that is, far from being localized in the low frequencies. These differences
suggest that dyadic wavelets, which are powerful for spatial encoding of still images or
temporal approximation subbands, would not be the best decorrelation scheme for the
temporal detail subbands. These observations have motivated us to investigate the use
of wavelet packets, whose frequency selectivity properties are more suited to decompose
the detail frames.

We have thus proposed a method for building a joint wavelet-packet representation
for several frames. A best-basis selection was adapted to this goal and the method has
been illustrated by simulation results in the framework of MCTF coding for the entire
GOPs and for the detail frames at a given temporal level. The method has been imple-
mented in the framework of the MSRA 3D-wavelet video codec, the best results being
obtained when a single wavelet-packet basis was considered for coding all the detail
frames in a group of frames. We have also proposed and implemented the algorithmic
modifications for the selection of the best basis when biorthogonal bases are used.

Fully separable wavelets and wavelet packets

Finding the best wavelet-packet representation, even for groups of frames, can be a com-
putationally expensive task. This remark has led us to look for a simpler spatial decom-
position of the temporal subbands.

We have thus presented an evaluation of fully separable wavelet and wavelet-packet
transforms for texture encoding in a motion-compensated subband video codec. The
finer 2D frequency separation given by the fully separable transforms allows better cap-
ture of the orientation of the spatial details, resulting in better representation of the video
texture in comparison to classical quadtree decompositions.

III—Rate-distortion optimization using graph-cuts

Many computer-vision problems can be formulated in terms of energy minimization. On
one hand, in the last few years, minimum-cut/maximum-network-flow algorithms have
emerged as an elegant and increasingly useful tool for exacting or approximating energy-
minimization problems. On the other hand, the majority of compression algorithms that
use wavelet transforms try to exploit all the signal redundancy that can appear inside,
and, across the different subbands of a spatial decomposition. However, the efficiency of
a coding scheme highly depends on rate allocation.

We have thus designed a graph-cut-solvable energy functional for Lagrangian rate-
distortion optimization for subband coding of non-orthogonal systems. Moreover, we
have presented three possible solutions by modeling several aspects of energy interac-
tions for the minimization of a non-orthogonal functional. The presented method has
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good coding efficiency especially at low bitrates, improving both the visual and numeri-
cal quality of the reconstructed images.

Perspectives

In this thesis work, we have studied and proposed several spatio-temporal operators
able to give a parcimonious multiresolution representation of the video sequences. Nev-
ertheless, a number of topics can be identified that still require further investigation, and
may lead to even better compression performance for the t + 2D class of video-coding
algorithms. These include:

⋆ Adaptive temporal operators, such as adaptive update step, where the Human Vi-
sual System is used to evaluate the impact in terms of visual quality at the low-
pass subbands, since, in MCTF, the predicted residue is further used to update the
temporal low-pass frames and may cause annoying ghost artefacts if the predicted
residues are generated by inaccurate motion prediction.

⋆ Application and optimization of non-block-based motion compensation for adap-
tive temporal-lifting schemes. A pel-recursive motion-estimation algorithm can be
used together with the LMS-based adaptive temporal prediction to obtain a more
coherent motion flow at pel-level and thus reduce more of the blocking artefacts.
The LMS-adaptive prediction can also be combined with revertible schemes op-
timizing the update step, such as the weighted average update operator or the
OBMC.

⋆ An update-first method should be considered for the LMS-based prediction strat-
egy. Because the adaptive step takes place at prediction, and the high-pass sub-
bands are further used in the lifting scheme for reinforcing the signal in the low-
pass bands, the eventual prediction errors can pass easily from one decomposition
level to another. By inversing the lifting-scheme steps, the prediction errors do not
propagate through the decomposition tree.

Additionally, the common description which characterizes the spatio-temporal fea-
tures of a video GOP given by the proposed joint wavelet-packet transforms can be ex-
ploited as a valuable feature for video classification and video-database searching. Also,
the fewer temporal decomposition levels needed by the 5-band filter bank for obtaining
some high-quality key (approximation) frames are very useful for fast video-database
search and storage, and together with the joint description of the temporal subbands
provided in the proposed joint wavelet-packet scheme, could be seen as a starting point
for a fast indexing system for video sequences.

Moreover, the efficiency of the 5-band motion compensated lifting scheme can be
substantially improved if the scene-cut detection and processing algorithm is jointly con-
sidered in the temporal decorrelation stage, as the longer the temporal filter, the greater
the probability of encompassing several uncorrelated video shots.

As the proposed graph-cut rate-distortion optimization gives promising results for
the coding of non-orthogonal wavelet decompositions, it could be used jointly with ex-
isting coding algorithms for rate allocation between spatio-temporal subbands in a video
codec. Moreover, the rate estimation method could be replaced with a higher-order
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entropy-based algorithm or a real (dummy) estimation of the rate, so an improvement
of the results for orthogonal systems can be expected.

Nevertheless, graph-cut-based algorithms can be conceivable for the optimization of
the motion-vector fields, where the best motion vector is obtained by the minimization in
terms of distortion and rate (as classically done), and also by the neighbourhood coher-
ence which could be given by: the distance between adjacent motion vectors, the distor-
tion introduced by blocking artefacts or, moreover, the rate difference needed to encode
the motion vector.
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Appendix A

Joint Source-Channel Coding

This annexe presents the thesis work on joint source-channel coding described in two
journal papers. A robust joint source-channel coding scheme for transmission of video
sequences over Gaussian channels using uncoded and coded index assignment via Reed-
Muller is decribed in a first part [70], continued by the presentation of a coding system
designed for the video transmission over flat Rayleigh fading channels [69].
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A.1 Joint Source - Channel Coding with Partially Coded Index

Assignment

A.1.1 Introduction

Shannon’s separability theorem is often used to justify the independent design of source-
and channel-coding subsystems. However, in real-time video systems, the separability
principle may not be applicable due to the high complexity for both the source and chan-
nel coders potentially entailed by the theorem. Consequently, there has been increasing
interest in joint source-channel coding (JSCC) to provide efficient performance with com-
plexity lower than tandem schemes.

Many prior JSCC techniques can be partitioned into two main categories: 1) source-
optimized channel coding, wherein channel coding is optimized with respect to the source;
and 2) channel-optimized source coding, wherein source coding is optimized with respect to
the channel. In source-optimized channel coding, a quantizer—most generally, a vector
quantizer—is designed for a noiseless channel. In the absence of explicit channel cod-
ing, vector quantization (VQ) can be made robust by applying a good index assignment
(IA) to map quantization indices to channel codewords so as to minimize the impact of
channel noise (e.g., [153]). On the other hand, when an explicit channel coding is used,
careful attention is paid to optimally partition given resources between the source and
channel coder (e.g., [35, 169, 43, 91]). In channel-optimized source coding, the VQ and IA
are simultaneously optimized for a specific channel such that very efficient clean-channel
performance is obtained while providing robustness in the presence of noise (e.g., [77]).

In both the source-optimized channel coding and channel-optimized source coding
categories of JSCC, the traditional approach is to cascade the channel code after the source
code, such that the channel code adds redundancy to the transmission to combat channel
errors and effectively increases the end-to-end transmission rate. An alternative category
of JSCC, which can be considered to be channel-constrained source coding, was introduced
in [171]. In such an approach, VQ is trained for minimum quantization distortion under
constraints arising from the channel. The main result is that the channel distortion of a
binary symmetric channel (BSC) is minimized if the source codebook can be expressed
as a linear transform [105], that is, if the IA labeling is linear. Such linear IA includes
direct mapping of VQ indices to channel codewords as well as coded IA wherein the
VQ indices are mapped through a channel code. The use of the channel code in this
latter approach effectively constrains the VQ source codewords to reside in the space
of channel codewords. This marks a substantial departure from the traditional use of
channel coding to add redundancy—and, consequently, increased transmission rate—as
is the case in schemes that concatenate source and channel coding (e.g., [35, 169, 43, 91]).

In [26], linear transforms constructed from lattice constellations with “maximum com-
ponent diversity” were used to build structured VQ codebooks which minimized simul-
taneously the source and channel distortions for Gaussian sources. In this paper, we
develop a JSCC scheme in the channel-constrained source-coding category for the cod-
ing of video wherein the source distribution is not Gaussian. Specifically, we describe
a scalable video-coding system constructed from t + 2D motion-compensated tempo-
ral filtering (MCTF) coupled with JSCC using the structured VQ of [26]. The VQ in-
dices are mapped to channel codewords either directly in an uncoded form, or through
coded IA based on Reed-Muller codes, with the encoder adaptively deciding between
the coded and uncoded IA on a subband-by-subband basis. Consequently, with coded
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IA, the source codewords themselves are constrained to belong to the channel code, and
there is no rate increase due to the incorporation of the channel code. We compare our
proposed coding scheme to a source-optimized channel-coding technique featuring un-
structured VQ of MCTF coefficients coupled with the IA mapping of [153], as well as
to the more traditional approach to error resilience consisting of concatenating a source
coder (the prominent MCTF-based coder MC-EZBC [39]) with a channel coder (convolu-
tional codes). We find that the proposed JSCC system consistently outperforms the other
two schemes as the channel noise level increases.

A.1.2 Index Assignment for Gaussian Sources

Let vector xxx be the input to a vector quantizer which produces an n-bit binary code-
word, the quantization index of the vector. The source codebook can then be viewed as

a function of bbb =
[
b1 · · · bn

]T ∈ {+1,−1}n, where bbb represents the IA of xxx. Under the
assumption of a maxentropic quantizer, the total distortion is D = Ds +Dc, where Ds is
the source distortion due to quantization, and Dc is the channel distortion dependent on
the IA.

In [105], the channel distortion of a BSC is proved to be minimized by IA in the
form of a linear labeling, while, in [26], a linear labeling that minimizes simultaneously
the source and channel distortions is constructed. In the case of a zero-mean Gaussian
source, this linear labeling is constructed using a subset of lattice constellations with
”maximum component diversity”. Specifically, let UUUn be an n × n generator matrix of
a maximum-component-diversity lattice constellation as described in [81]. Its construc-
tion is based on number-field theory, and it is expressed by the standard embeddings in
RRRn of the ideal ring of the totally real subfield of cyclotomic fields. The rows and the
columns of UUUn are denoted by Lin and Cnj , respectively, where 1 ≤ i, j ≤ n. If J is
some subset of {1, . . . , n}, then Cnj(J) is the jth column of UUUn(J), which is a matrix of
only the rows of UUUn corresponding to the indices in J . Using UUUn, one can linearly map
BPSKn = {−1,+1}n onto a new set UUUn · BPSKn. Allowing n to increase while J re-

mains fixed, we get a codebook Sn(J) with codewords yyy(l), yyy(l) =
∑n

j=1 b
(l)
j Cnj(J), where

bbb(l) =
[
b
(l)
1 · · · b

(l)
n

]T
∈ BPSKn, and 1 ≤ l ≤ 2n. In order to obtain a family of matrices

UUUn such that Sn(J) is an asymptotically Gaussian source dictionary that minimizes Ds

as n → ∞, UUUn must be orthogonal with coefficients going uniformly to 0 as n → ∞ [26].
In this case, the linear mapping bbb ∈ BPSKn →

(
GGGd,nbbb ∈ Sn(J)

)
, where d × n matrix

GGGd,n = UUUn(J), d = |J |, allows the construction of a source dictionary that is asymptot-
ically Gaussian. Similar properties are achieved by selecting columns of the matrix UUUn,
and we shall denote the n× r matrices constructed this way asGGG′

n,r, where r ≤ n.

The above discussion assumes that the uncoded IA bbb is transmitted directly on the
channel. In the alternative case that an error-correcting code is used, bbb ranges in mmm(ccc)
where ccc is one of the 2k possible binary codewords belonging to the (n, k) linear code

C. The function mmm(·) maps ccc =
[
c1 · · · cn

]T
onto mmm(ccc) =

[
m(c1) · · · m(cn)

]T
, where

m(0) = 1 and m(1) = −1. The codebook for this coded case has codevectors yyy(l) given by
yyy(l) =GGGd,nbbb

(l), where bbb(l) =mmm(ccc(l)), ccc(l) ∈ C, and 1 ≤ l ≤ 2k.
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A.1.3 Coding of Spatio-Temporal Subbands

We now apply the JSCC scheme described above to a scalable video coder. The result-
ing system first applies t + 2D MCTF in the form of a motion-compensated temporal
wavelet transform applied to a group of frames (GOF) followed by a spatial wavelet
transform of the temporal subbands. Next, an optimal bit-allocation procedure allocates
rate between the spatio-temporal subbands, after which the spatio-temporal coefficients
are vector quantized. Finally, a linear IA mapping between the source codebook and the
coded symbols sent on the channel is applied to provide resilience to channel noise.

A.1.3.1 Index Assignment for non-Gaussian Sources

Due to the fact the coefficients of the t+2D MCTF subbands are not Gaussian, the coding
scheme of Sec. A.1.2 cannot be applied directly. However, the marginal distribution of the
subband coefficients has been shown to be well-modeled by a mixture of two Gaussians
[73]; thus, we classify vectors drawn from the spatio-temporal subbands into two vector
classes and apply the IA approach of Sec. A.1.2 to each class independently.

For vectors from the temporally lowpass (approximation) frames, it was observed
in [73] that classification according to vector magnitude, such that the vectors are parti-
tioned into a low-variance and a high-variance class, results in an approximately Gaus-
sian distribution within each class. Similarly, vectors from the temporal highpass (detail)
frames are classified into two classes using the stochastic model of spatio-temporal de-
pendencies introduced in [73]. This permits accurate classification based on only the
coefficients already decoded, without requiring transmission of side information. Fol-
lowing this model, we assume that the conditional probability of a coefficient is Gaus-
sian with variance depending on a set of its spatio-temporal neighbors; i.e., the condi-

tional probability of coefficient x is f(x|σ2
x) = 1√

2πσx
exp

(
− x2

2σ2
x

)
, where the variance is

σ2
x =

∑
iwi |pi(x)|2 + α, such the pi(x) are coefficients neighboring x in the same spatio-

temporal subband, wi are weight parameters, and α is an offset parameter. The spatio-
temporal neighborhood is a set of causal coefficients that will have already been received
by the decoder when the current coefficient is decoded. Estimation of the parameters (wi

and α) of this model is done as in [73].

A.1.3.2 Quantization and Bit Allocation

For each vector class described above, we design a VQ codebook by minimizing cost

γ = E
[
minl

∥∥xxx − βGGGd,nbbb
(l)
∥∥2]

, where, in the case that the IA is uncoded, bbb(l) ranges over
the set of 2n possible codewords of a BPSKn, and, in the case that the IA includes an
error-correcting code, bbb(l) ranges over the set of 2k possible codewords of an (n, k) code
C. β is a parameter which scales the lattice constellation GGGd,n to the source dynamics.
In order to find β, as well as the codebook with vectors yyy(l) = βGGGd,nbbb

(l), an iterative
optimization algorithm (similar to that of shape-gain VQ) is used. A similar optimization
is applied when using the matrixGGG′

n,r for VQ; in this case, an (r, k) code C′ is used for the
coded IA.

The channel distortion Dc is minimized due to the linearity of the IA labeling, and its
value is fixed for a given channel-noise variance. Consequently, an iterative bit-allocation
algorithm is applied to allocate VQ rate between the spatio-temporal subbands in an op-
timal fashion. This bit-allocation algorithm, which originates in [72], takes into account
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a nonnegativity constraint on the rate allocated to each subband. The algorithm indi-
cates the size of the GGGd,n or GGG′

r,n matrix which minimizes the end-to-end distortion. The
choices of GGGd,n or GGG′

r,n are, however, limited in practice by computational-complexity
issues and dependences between the spatio-temporal coefficients. That is, it is known
that the spatio-temporal coefficients exhibit strong correlation with their spatial or spatio-
temporal neighbors; thus, in order to exploit these relationships, the dimensions d inGGGd,n

or n inGGG′
n,r should be a power of 4. However, in order to attain high or low coding rates,

we permit these values to be 2 if need be. In addition,to keep the complexity low, we
limit the dimensions n inGGGd,n and r inGGG′

n,r to be no greater than 16.

A.1.3.3 Partially Coded Index Assignment

We initially applied the VQ and IA described above in an uncoded fashion, i.e., without
the use of any error-correcting codes in the IA mapping. However, when transmitting
over a Gaussian channel with low SNR, we remarked that for some subbands, especially
those with high energy, the total distortion D was very high compared to the source
distortion Ds obtained for when the channel was noiseless. We conclude that, in this
situation, the channel distortionDc must be dominant. In order to improve performance,
we replace the uncoded IA with coded IA incorporating an error-correcting code for these
subbands. We choose Reed-Muller codes due to their symmetry, their widespread use in
lattice construction, and their error-correcting capability.

For coded IA, we restrict the mapping space to be the space of the binary vectors
belonging to the Reed-Muller code. We additionally constrain the source-coding rate
to be the same rate as dictated by the bit-allocation algorithm in the uncoded case. We
then choose the (η, k) Reed-Muller code in light of the trade-off between the following
considerations: 1) the error-correction capability of the code; 2) the blocklength η of the
code must be η = n of GGGd,n, or η = r of GGG′

n,r, as appropriate, in order that the bitrate
does not increase; and 3) the dimension of the code k should be close to n or r so that
the number of 2k possible codewords is close to the 2n or 2r possible codewords of the
uncoded case, in order to minimize the increase to the source distortion. In this way, the
end-to-end distortion decreases without changing either the source-coding rate of the
uncoded case or the total bitrate.

The encoding algorithm consists of the following steps. In each subband, we calculate
Ds in a noiseless environment as well as the end-to-end distortion D for the given noisy
channel as it would be obtained with an uncoded IA. If the difference between D and
Ds is high (which means that Dc is significant), we restrict the IA to be codewords of a
Reed-Muller code selected in regard to the considerations discussed above. Otherwise,
the IA maps directly to uncoded codewords. At the decoder side, soft-decision decoding
via the Viterbi algorithm with the BCJR trellis [129] is applied to the coded codewords,
while hard-decision decoding is applied to the uncoded codewords. We note that the
encoder sends a small amount of side information to the decoder (β and the sizes ofGGGd,n

and GGG′
n,r for each vector class for each subband, as well as the coded/uncoded state for

each subband); it is assumed that this side information is highly protected so as to arrive
at the decoder uncorrupted.
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Figure A.1: (a) Foreman, channel SNRs of ∞ (solid lines) and 6.75 dB (dashed lines);
(b) Foreman, channel SNRs of 4.33 dB (solid lines) and 3.00 dB (dashed lines); (c) Hall
Monitor, channel SNRs of ∞ (solid lines) and 6.75 dB (dashed lines); (d) Hall Monitor,
channel SNRs of 4.33 dB (solid lines) and 3.00 dB (dashed lines).
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A.1.4 Experimental results

To experimentally evaluate the effectiveness of the system described in the previous sec-
tion, we perform simulations using CIF test sequences at 30 fps. The video-coding system
uses a Haar MCTF decomposition applied on GOFs of 16 frames, with 4 temporal and 2
spatial resolution levels. The spatial transform uses the popular biorthogonal 9/7 filters.

As we remarked in Sec. A.1.3.3, a Reed-Muller code is incorporated into the IA for
subbands of high energy. Our bit-allocation algorithm dictates that these high-energy
subbands are coded using GGGd,16 or GGG′

n,16. Thus, in consideration of the three trade-offs
discussed in Sec. A.1.3.3, we choose the RM{2, 4} with η = 16 and k = 11. However,
compared to the uncoded case, we expect the source distortion to increase, as now the
dimension of the mapping space has decreased to 211 possible codewords, instead of 216

as in the uncoded case. On the other hand, the end-to-end distortion of the entire scheme
in a noisy environment will decrease significantly compared to the uncoded case, and the
total bitrate remains the same.

We compare our proposed scheme (which we denote as ”JSC+RM”) to two other
video coders using the same scalable MCTF transform structure. The first technique be-
longs to the class of source-optimized channel coding. In this scheme, a VQ source coder
is designed to minimize source distortion for the noiseless channel, while a good, albeit
suboptimal, IA is applied to increase the error resiliency of the quantizer. For the VQ
source coder, we apply the locally optimal generalized Lloyd algorithm (GLA) to pro-
duce unstructured VQ codebooks with locally minimal source distortion Ds. The GLA
VQ codebooks are of the same dimensions as dictated by the bit-allocation algorithm of
our proposed scheme.We then follow with the Minimax Cover Algorithm (MCA) [153],
which is an IA using a minimax error criterion that is designed against worst-case per-
formance without sacrificing average performance. We refer to this coder as “MCA.”

The second video coder to which we compare corresponds to an implementation of
MCTF concatenated with traditional error-control coding. We employ the prominent
MC-EZBC [39] coder, and, to provide error resilience, we packetize the MC-EZBC bit-
stream while applying rate punctured convolutional (RPC) codes to the resulting pack-
ets. Specifically, each packet contains the information corresponding to a single spatial
resolution level from a single temporal subband frame. Hence, the packets have unequal
length and are coded unequally by RPC codes. If the decoder fails to decode a received
packet, the packet is dropped. The RPC codes have Rp = 2/3, 3/4, and 7/8 with memory
m = 6 and mother code R = 1/2 [88]. The most important information is protected by
2/3 codes, the medium spatio-temporal frequencies by 3/4 codes, and the finest details
by 7/8 punctured codes. We refer to this second coder as “MC-EZBC.”

Fig. A.1 presents the results obtained using the three different coding schemes for the
”Hall monitor” and ”Foreman” sequences at different bitrates over a Gaussian channel
with four different channel-noise levels. Note that, for the noiseless channel, the IA is
entirely uncoded for our JSC+RM scheme. In Fig. A.1 we observe that both MCA and
MC-EZBC yield performance superior to JSC+RM when the channel is noiseless. This is
as expected, as these two algorithms are designed for noiseless channels. In particular,
we expect MCA to outperform JSC+RM due to the unstructured nature of the codebooks
generated by GLA, whereas the JSC+RM codebooks are highly structured. On the other
hand, when the channel becomes very noisy (e.g., channel SNRs of 4.33 dB and 3 dB), the
performances of MCA and MC-EZBC drop dramatically while JSC+RM remains quite
close to its noiseless performance. Indeed, JSC+RM consistently outperforms both MCA
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and MC-EZBC for the very noisy channel.

A.1.5 Conclusion

In this paper, we presented an approach to the JSC coding of scalable MCTF video. The
proposed system is based on structured VQ coupled with linear IA in the form of un-
coded IA, or coded IA via Reed-Muller codes. We compared the performance of the pro-
posed system to that of a source-optimized channel coding using unstructured VQ code-
books without an explicit channel coder, as well as to that of the prominent MCTF-based
MC-EZBC coder protected unequally with RPC codes, in the more traditional paradigm
of concatenated source and channel codes. As the channel noise increases, the proposed
coding system retains end-to-end distortion performance close to that of the noiseless
channel as well as consistently outperforms the other two schemes for very low channel
SNR.

As a final observation, we note that, at the encoder, the complexity of our scheme is
similar to that of the unstructured-VQ coder, except we avoid the IA post processing of
[153] in the creation of VQ codebooks. No additional encoder complexity occurs due to
the use of coded IA, since the VQ source codewords belong to the space of channel code-
words, unlike concatenated source-channel schemes that require subsequent channel-
coding processing. On the other hand, at the decoder, the complexity of our proposed
scheme is comparable to that of concatenated schemes as Viterbi decoding is required in
both cases.



200 A. JOINT SOURCE-CHANNEL CODING

A.2 Rotated Constellations for Transmission over Rayleigh Fad-

ing Channels

A.2.1 Introduction

Video transmission over fading channels may suffer substantial quality degradation due
to the nature of the channel. On a fading channel, errors occur in reception when the
channel attenuation is large. However, if the receiver can be supplied with several repli-
cas of the same information signal transmitted over independently fading channels, the
probability that all the signal components fade simultaneously is reduced considerably.
Several strategies for such diversity reception have been developed, including frequency
diversity, time diversity, and diversity techniques based on multiple antennas; an exam-
ple of the latter class applied to video is [120]. In addition to these common diversity
approaches, we can also speak of modulation diversity [27] wherein special multidimen-
sional signal constellations having lattice structure are used. Such constellations provide
the receiver with an order of diversity dependent on the number of dimensions of the sig-
nal constellation. The diversity order, L, of a signal set of dimension n is the minimum
number of distinct components between any two constellation points. Given a Z

n-lattice
constellation, the desired modulation diversity is obtained by applying a suitable rota-
tion using algebraic number-theoretical tools [27, 24]. In this letter, we consider rotated
Z

n-lattices with full diversity (i.e., L = n) in order to achieve reliable transmission over
flat Rayleigh fading channels.

Previously, we have used such rotated Z
n-lattices as the basis of joint source-channel

coding (JSCC). In [26], it is shown that structured vector quantization (VQ) resulting from
these rotated lattices combined with linear labeling simultaneously minimizes the chan-
nel and the source distortion for Gaussian sources. In [72], we extended this coding
scheme, originally devised for Gaussian sources, to video sequences whose source dis-
tribution is decidedly not Gaussian. Specifically, we developed a scalable video-coding
system constructed from t + 2D motion-compensated temporal filtering (MCTF) cou-
pled with the structured VQ of [26] with several modifications to accommodate the non-
Gaussianity of the spatiotemporal subbands. In [70], we coupled this JSCC video coder
with partially coded index assignment for robust transmission over a binary symmetric
channel, and, in [71], we paired the coder with rate-compatible punctured convolutional
(RCPC) codes for the flat Rayleigh channel with independent fadings. This latter system
was shown to be robust in the presence of fading; however, a trade-off was required be-
tween the compression efficiency and the added redundancy. Additionally, it was clear
that the performance of a BPSK constellation without protection drops dramatically over
a fading channel.

In this letter, we apply modulation diversity to our JSCC video coder and demonstrate
that, by rotating the given constellation in order to increase its diversity order, we achieve
robustness to fading without adding redundancy. In addition, we compare the proposed
JSCC scheme to the more traditional approach to error resilience consisting of concate-
nating a state-of-the-art source coder (the prominent MCTF-based coder MC-EZBC [39])
with a channel coder (RCPC codes) applied optimally for unequal error protection (UEP).
Whereas performance of this latter MC-EZBC coder degrades quickly as channel fading
increases, the proposed JSCC coder maintains performance close to that of the noiseless
channel.
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A.2.2 JSCC for Video

A.2.2.1 JSCC via VQ and Linear Labeling

Let a d-dimensional vector xxx be the input to a vector quantizer producing an n-bit binary
codeword bbb which is the index of the vector used for signal reconstruction at the receiver.

The source codebook can be viewed as a function of bbb =
[
b1 · · · bn

]T ∈ {+1,−1}n =
BPSKn representing a VQ index assignment. Under the assumption of a maxentropic
quantizer, the total distortion is the sum of a source distortion due to quantization and a
channel distortion dependent on the index assignment. In [105], it is proved that, for a
binary symmetric channel, the channel distortion is minimized by an index assignment
in the form of a linear labeling; additionally, in [26], a linear labeling that minimizes the
source distortion was constructed. This labeling is fully described by a d× n matrixGGGd,n

which, in essence, transforms an identically distributed random variable into a random
variable (the source codebook) which mimics the source distribution.

LetUUUn be an n×n square matrix andGGGd,n be any combination of d rows of the matrix
UUUn. In order to construct codebook Sn with codewords yyy(l) =GGGd,nbbb

(l) where bbb(l) ∈ BPSKn,
1 ≤ l ≤ 2n, such that Sn is an asymptotically Gaussian source dictionary which minimizes
the source distortion as n → ∞, it is shown in [26] that UUUn must be orthogonal with
coefficients going uniformly to 0 as n → ∞. The mapping bbb ∈ BPSKn → (GGGd,nbbb ∈
Sn) is then linear and allows the building of a source dictionary which is asymptotically
Gaussian.

In [26], it is shown that matrix UUUn being the generator matrix of full-diversity ro-
tated Z

n-lattice constellations satisfies the above conditions. This generator matrix is
constructed by the canonical embeddings of the ideal ring of the maximal real cyclo-
tomic fields [24]. Similar properties are achieved when selecting r columns of the matrix
UUUn, and we shall denote the n×r matrices constructed in this manner asGGG′

n,r. The reader
is referred to [26] and also [28] for more detail.

A.2.2.2 JSCC of Spatiotemporal Subbands

The JSCC video system we proposed in [72] couples a t + 2D MCTF wavelet decompo-
sition with the JSCC scheme described above. The MCTF decomposition permits spatial
and temporal resolution scalability; however, since the resulting spatiotemporal wavelet
coefficients are not Gaussian, the JSCC scheme cannot be applied directly. Thus, in order
to take into account the non-Gaussianity of the video source, we classify the spatiotem-
poral coefficients in each subband into two classes and adapt the quantizer to each class.

Specifically, in the temporal lowpass (approximation) frames, subband vectors are
classified according to the norm of the uncoded vectors. On the other hand, in the tem-
poral highpass (detail) frames, the classification is based on a stochastic model of the
spatiotemporal dependencies between coefficients. Following this model, we consider
the conditional probability of the coefficients in a given subband to be Gaussian with
variance depending on the set of spatiotemporal neighbors. The spatiotemporal neigh-
borhood consists of coefficients that have already been received by the decoder when the
current coefficient has to be decoded; as a consequence the same procedure is applied at
the decoder, and no side information is required to indicate the class of each vector.

For each class, we design a VQ codebook by minimizing cost
γ = minl E

[
||xxx− βGGGd,nbbb

(l)||2
]
, where bbb(l) ranges over the set of 2n possible codewords

of BPSKn, and β is a parameter which scales the lattice constellation GGGd,n to the source
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dynamics. In order to find β, as well as the codebook with vectors yyy(l) = βGGGd,nbbb
(l), an

iterative optimization algorithm (similar to that of shape-gain VQ) is used. A similar
optimization is applied when using the matrixGGG′

n,r for VQ

Based on the fact that the channel distortion is minimized with a linear labeling, we
use an iterative bit-allocation algorithm which takes into account a nonnegativity con-
straint on the rate and optimally distributes the available bits among the spatiotempo-
ral subbands. This bit-allocation algorithm indicates the size of the GGGd,n or GGG′

n,r ma-
trix which minimizes the end-to-end distortion, under certain constraints dictated by
computational-complexity issues and dependencies among the spatiotemporal coeffi-
cients. For more details, see [72].

A.2.3 JSCC using a Rotation Matrix Prior to the Fading channel

In [71], it was seen that transmitting the codewords bbb ∈ BPSKn on a fading channel
without protection resulted in reconstructed sequences of rather poor quality. Thus, we
employed RCPC codes, resulting in, unfortunately, a significantly increased bitrate due to
the added redundancy. Here, we consider an alternative solution wherein no redundancy
is added, and the robustness is achieved due to modulation diversity offered by rotated
constellations.

The design of matrices that can rotate a Z
n-lattice so as to produce a full-diversity

signal constellation suitable for modulation diversity is a difficult task, and practical con-
structions have been provided only by Bayer-Fluckiger el al. [24] and Belfiore et al. [26].
However, the structured VQ codebooks we already use in our JSCC video-coding system
(GGGd,n orGGG′

n,r) are derived from rows or columns of the n× n generator matrix UUUn devel-
oped in [26]. Since this UUUn is capable of rotating a Z

n-lattice to produce a full-diversity
constellation, we can use it as the rotation matrix for modulation diversity in addition to
its role in quantization-codebook generation.

Thus, to achieve modulation diversity, we can proceed as follows. Assuming quanti-
zation with GGGd,n, prior to transmission through the channel, we apply the matrix UUUn as
a rotation, producing uuu = UUUT

nbbb, where bbb ∈ BPSKn. uuu is a vector of real values, uuu ∈ R
n;

additionally, uuu belongs to the n-dimensional cubic lattice Zn,L=n with generator matrix
UUUn and full diversity L = n. Lattice Zn,L=n is a rotation of Z

n guaranteeing a maximum
degree of diversity. In the case of quantization viaGGG′

n,r, the rotation matrix is r×r matrix

UUU r, uuu = UUUT
r bbbwith bbb ∈ BPSKr, and uuu belongs to the r-dimensional cubic lattice Zr,L=r with

generator matrix UUU r and full diversity L = r.

Decoding is based on a maximum-likelihood (ML) decoding algorithm, the sphere
decoder [202]. In this fashion, we obtain the benefit of the increased diversity due to the
rotation simultaneously with the benefit of an ML decoding method at the decoder.

The operation of the system is depicted in Fig. A.2. In this figure, xxx is a vector of spa-
tiotemporal wavelet coefficients that is quantized and indexed by a vector bbb through the
matrix GGGd,n or GGG′

n,r using the classification and the bit-allocation procedures described
above in Sec. A.2.2.2. uuu is a vector of real values obtained by applying the appropriate ro-
tation matrix,UUUn orUUU r. The channel is a flat fading Rayleigh channel, and we assume that
channel-state information is known at the receiver. The assumption of independent fad-
ings is approached in practical systems through the use of an interleaver/deinterleaver.
Thus, the received vector after deinterleaving is given by ûuu = aaa ∗ uuu + zzz, where aaa is a
vector of the random fading coefficients with Rayleigh distribution, and E[a2

i ] = 1; zzz is
a noise vector with Gaussian-distributed independent random variables with zero mean
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Figure A.2: System model including a rotation matrix prior to the transmission on a flat
Rayleigh fading channel.

Figure A.3: Reconstructed frames after transmission on a flat Rayleigh fading channel,
both with (right) and without (left) a rotation matrix. Channel SNR is 8.0 dB.

and variance N0; and ∗ denotes a component-wise product. We extract, using the sphere

decoder, the corresponding b̂bb vector, and, through a simple multiplication with GGGd,n or
GGG′

n,r, the vector x̂xx of reconstructed wavelet coefficients.

As a final note, we observe that we use a rotation matrix with size matched to the
dimension of the vector quantizer employed (i.e., UUUn is used for VQ with GGGd,n; UUU r is
used for VQ withGGG′

n,r). In general, it is possible to use a rotation matrix with dimension
greater than or equal to that of the vector at the output of the quantizer, and the higher the
dimensionality chosen for the rotation matrix, the higher will be the order of diversity.
However, the computational complexity of the decoder increases significantly with the
dimensionality of the rotation matrix; for this reason, we restrict the dimensionality of
the rotation matrix to match that of the quantizer in the simulations presented below.

A.2.4 Experimental results

We consider a temporal Haar decomposition applied on GOFs of 16 frames, with 4 tem-
poral and 2 spatial resolution levels. The spatial multiresolution analysis uses biorthog-
onal 9/7 filters, while the temporal decomposition includes motion compensation via
block matching with full-pixel accuracy. The global rates tested in bits per pixel (bpp)
are 0.1 bpp, 0.16 bpp, 0.33 bpp, and 0.48 bpp. Consequently, in accordance with these
coding rates, the possible rotation matrices are U16, U8, U4 and U2. As noted above, we
match the dimension of the rotation matrix to that of quantizer output in order to reduce
complexity at the decoder. Moreover, we restrict the dimension to be less than or equal to
16 thereby permitting use of the sphere decoder of [202], which is limited to dimensions
no greater than 32 for complexity reasons.
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Figure A.4: Performance for ”Hall monitor” for channel of SNR = noiseless (solid lines),
11.0 dB (dashed lines), and 8.0 dB (dash-dot lines).

200 400 600 800 1000 1200 1400 1600

20

25

30

35

40

45

50

Bitrate (kbps)

A
ve

ra
ge

 P
S

N
R

 (
dB

)

Without rotation
MC−EZBC+RCPC
Without rotation
JSCC+rotation
MC−EZBC+RCPC
Without rotation
JSCC+rotation
MC−EZBC+RCPC

Figure A.5: Performance for ”Foreman” for channel of SNR = noiseless (solid lines),
11.0 dB (dashed lines), and 8.0 dB (dash-dot lines).
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For our experiments, we consider CIF (352 × 288) test sequences at 30 fps. Fig. A.3
illustrates a reconstructed frame of the sequence “foreman” after transmission over a flat
Rayleigh fading channel for the two cases of coding with a rotation matrix prior to the
transmission and without rotation.

We compare our rotation-based JSCC scheme (which we denote “JSCC+rotation”) to a
second video coder which corresponds to an implementation of MCTF concatenated with
traditional error-control coding. We employ the prominent MC-EZBC [39] coder which
provides state-of-the-art MCTF coding performance, and, to provide error resilience, we
packetize the MC-EZBC bitstream while applying RCPC codes to the resulting packets
(we denote the resulting system as “MC-EZBC+RCPC”). Specifically, each packet con-
tains the information corresponding to a single spatial resolution level from a single tem-
poral subband frame. Hence, the packets have unequal length and are protected with a
UEP arrangement of RCPC codes. If the decoder fails to decode a received packet, the
packet is dropped. The RCPC codes have Rp = 2/3, 3/4, and 7/8 with memory m = 6
and mother code R = 1/2 [88]. The UEP arrangement of RCPC puncturing rates is deter-
mined by an exhaustive-search procedure that examines all possible combinations of the
three Rp rates applied to the packets, under the constraint that the puncturing rate for a
given packet cannot be greater than that applied to packets from higher spatiotemporal
resolution levels. For each particular combination of RCPC protection, the source rate
of each subband is decreased appropriately to maintain a fixed global bitrate in accor-
dance with the original MC-EZBC rate-allocation scheme in which each subband is allo-
cated source rate proportional to the subband variance. The UEP combination yielding
the maximum end-to-end PSNR as averaged over 100 noise realizations is then selected.
Although this exhaustive-search procedure is clearly impractical, it couples the state-of-
the-art MCTF source coder with UEP channel protection optimal under the constraints,
and provides a reasonable best-case alternative to which to compare.

Figs. A.4 and A.5 present the average PSNR for the “hall-monitor” and “foreman”
sequences obtained by the three coding schemes at different bitrates after transmission
on a flat Rayleigh channel for both moderate (11.0 dB) and low (8.0 dB) channel SNR; In
all cases, PSNR figures are averaged over 100 noise realizations. In these results, “with-
out rotation” refers to JSCC+rotation without the rotation matrix applied, which is, in
essense, the coder of [72].

We observe that the MC-EZBC+RCPC coding scheme yields superior performance
under noiseless channel conditions; this is as expected since MC-EZBC itself performs
significantly better than does our VQ-based source coder for a noiseless channel. Conse-
quently, as the channel noise increases, we expect that MC-EZBC+RCPC will continue to
outperform the proposed scheme, as long as the channel remains “close” to being noise-
less. However, as the channel SNR becomes increasingly worse, the Rayleigh fading
channel imposes rather difficult conditions, and the performance of MC-EZBC+RCPC
falls off rather precipitously. In this case, classical protection in the form of RCPC codes
does not work as well as the proposed modulation-diversity approach to JSCC. In fact,
the JSCC+rotation coding scheme remains quite close to its noiseless performance and
outperforms MC-EZBC+RCPC for most cases of low channel SNR.

A.2.5 Conclusion

In this letter, we presented a robust joint source-channel video-coding scheme for trans-
mission over a flat Rayleigh fading channel. The proposed system combines an MCTF-
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based spatiotemporal wavelet decomposition, structured VQ with linear labeling, and
modulation diversity in the form of a rotation matrix with maximum diversity such that
robustness is achieved without the addition of redundancy. In experimental results, we
compared the proposed system to the prominent MCTF-based MC-EZBC coder protected
unequally with RCPC codes, representing the more traditional alternative of concatenat-
ing source and channel codes. As the channel fading increases, the proposed system re-
tains end-to-end distortion performance close to that of the noiseless channel, while the
MC-EZBC coder suffers from a dramatic decrease in performance. As a consequence, the
proposed system achieves superior performance for almost all instances of low channel
SNR.
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12 Schéma d’adaptation avec 2, 10, 18 et 32 pixels. . . . . . . . . . . . . . . . . 25
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16 Décomposition spatiale pour la séquence Mobile(CIF, 30Hz) . . . . . . . . 31

17 Décomposition spatiale des trames de détail pour Bus(CIF, 30Hz) . . . . . 32
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22 Courbes de débit-distorsion pour Mandrill . . . . . . . . . . . . . . . . . . 40

1.1 Two-band perfect reconstruction orthogonal filter-bank . . . . . . . . . . . 54

1.2 Example of wavelet decomposition tree . . . . . . . . . . . . . . . . . . . . 54

1.3 Wavelet spatial decomposition for Mobile(CIF, 30Hz) sequence . . . . . . 54

1.4 The two-dimensional wavelet transform . . . . . . . . . . . . . . . . . . . . 55

1.5 Translation variance of wavelet transform . . . . . . . . . . . . . . . . . . . 56

1.6 Daubechies-4 scaling and wavelet functions . . . . . . . . . . . . . . . . . . 57

1.7 Two-band perfect-reconstruction biorthogonal filter-bank . . . . . . . . . . 57

1.8 Cohen- Daubechies-Feauveau (2,2) scaling and wavelet functions . . . . . 58

1.9 Three-level wavelet decomposition of Lenna image . . . . . . . . . . . . . 59

1.10 Example of 2D full wavelet-packet decomposition . . . . . . . . . . . . . . 60

1.11 One-level lifting scheme for 1-D signals . . . . . . . . . . . . . . . . . . . . 63

1.12 Haar wavelet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

1.13 Le Gall’s 5/3 wavelet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

1.14 Daubechies 9/7 wavelet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65



218 LIST OF FIGURES

2.1 Global structure of a layered scalable video-coding scheme . . . . . . . . . 68
2.2 Spatial scalability example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.3 Temporal scalability example . . . . . . . . . . . . . . . . . . . . . . . . . . 70
2.4 SNR scalability example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
2.5 Predictive coding scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
2.6 Video-shot prediction chain in hybrid coding . . . . . . . . . . . . . . . . . 73
2.7 Intra-prediction modes in H.264 . . . . . . . . . . . . . . . . . . . . . . . . . 74
2.8 H.264/MPEG-4 SVC coding scheme . . . . . . . . . . . . . . . . . . . . . . 77
2.9 General structure of wavelet-based video encoder . . . . . . . . . . . . . . 78
2.10 Unconnected and multiple-connected ares . . . . . . . . . . . . . . . . . . . 80
2.11 Wrong pixel classification on temporal approximation frames . . . . . . . 81
2.12 MCTF of a 8-frames GOP using Haar wavelet . . . . . . . . . . . . . . . . . 82
2.13 General lifting-based MCTF scheme . . . . . . . . . . . . . . . . . . . . . . 83
2.14 One level MCTF: Haar, symmetrical 5/3 and sliding window 5/3 . . . . . 84
2.15 Three-band lifting scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
2.16 Framework for 3D wavelet video coding . . . . . . . . . . . . . . . . . . . . 88
2.17 Separable 3D wavelet transform . . . . . . . . . . . . . . . . . . . . . . . . 89
2.18 Parent-offspring relationship in a spatio-temporal decomposition . . . . . 90
2.19 Immediate neighbors of a sample in 3D-ESCOT coding . . . . . . . . . . . 92

3.1 MCTF with bidirectional predict and update lifting steps. . . . . . . . . . . 99
3.2 Example of GOP with and without scene-cut . . . . . . . . . . . . . . . . . 100
3.3 Scene-cut processing of a video shot . . . . . . . . . . . . . . . . . . . . . . 102
3.4 Rate-distortion for Erin Brockovich (HD 1920×1280, 60Hz) sequence . . . 104
3.5 Reconstructed frame from Erin Brockovich sequence . . . . . . . . . . . . . 104
3.6 PSNR for MF 18x16(a) / FM 16x16(b) sequences . . . . . . . . . . . . . . . 106
3.7 Five-band motion-compensated temporal lifting scheme. . . . . . . . . . . 108
3.8 Temporal prediction (simple implementation approach) . . . . . . . . . . . 110
3.9 Frequency response of high-pass filters for different values of β . . . . . . 111
3.10 Temporal prediction (sliding window implementation approach) . . . . . 112
3.11 Rate-distortion for Hall monitor (CIF, 30Hz) . . . . . . . . . . . . . . . . . . 116
3.12 Rate-distortion for Bridge (close) monitor (CIF, 30Hz) . . . . . . . . . . . . 117
3.13 YSNR of the frames 26-50 of Hall monitor (CIF, 30Hz) . . . . . . . . . . . . 117
3.14 Example of approximation frames from Hall monitor(CIF, 30Hz) . . . . . 118
3.15 Rate-distortion comparison for Apple (QCIF, 7.5 Hz) . . . . . . . . . . . . . 119
3.16 MCTF with bidirectional lifting steps . . . . . . . . . . . . . . . . . . . . . . 121
3.17 Adaptive estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
3.18 Adaptive MCTF with bidirectional lifting steps . . . . . . . . . . . . . . . . 123
3.19 Adaptation scheme with 2, 10, 18 and 32 pixels. . . . . . . . . . . . . . . . . 124
3.20 Rate-distortion comparison for Harbour sequence . . . . . . . . . . . . . . 125
3.21 Rate-distortion comparison for Crew sequence . . . . . . . . . . . . . . . . 126
3.22 Detail from the Mobile (CIF, 30Hz) sequence . . . . . . . . . . . . . . . . . 127
3.23 Frame extracted from Foreman (CIF, 30Hz) sequence . . . . . . . . . . . . 128
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