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Introduction

Skeletal muscle contraction is a broad domain of science that covers many areas,
from biophysics and chemistry to mechanics. The foundations of the theory of
muscle contraction were built 50 years ago, when it was understood that it is
myosin “cross-bridge”, linking adjacent myosin and actin filaments, that generates
force and motion. Since that time many experimental advances have been made.
These advances have not been always matched by improvements in the building of

mathematical models.

Mathematical approaches to muscle contraction are mainly based on the ideas
proposed in the Huxley 1957 model [4] and Huxley and Simmons 1971 model [10],
that dominated the field for the past half century. Although they do not account
for all observed phenomena, these models still represent the paradigm of choice.
The two models of Huxley can be seen as complementary since the Huxley 1957
model describes the attachment-detachment process and the events related to the
slow time scale, while the Huxley and Simmons 1971 model describes the power
stroke process and the events related to the fast time scale.

In this Thesis we shall follow some recent insight and explore the possibility
to bring together these two type of processes and to obtain a unified model that
is able to describe the whole cross-bridge cycle. Before the unification we first
modify the existing models to cast them into a fully mechanical framework. Both
Huxley 1957 model [4] and Huxley and Simmons 1971 model [10], present ad hoc
assumptions regarding the chemical rate constants that drive the processes. Similar
assumptions were made in all recent models to fit the experimental data at the
expense of maintaining the link with mechanics.

In Chapter 1 we describe the physiology of muscles and their mechanical be-
havior, as well as the corresponding experimental procedures. There we also give
the details of the Huxley 1957 model and Huxley and Simmons 1971 model which

are important for the original development in the subsequent pages.

In Chapter 2, we deal with the attached state and reexamine the power stroke

1X



theory through the eyes of a mechanical engineer. It has been already observed
in the literature [17| that the Huxley and Simmons 1971 model of power stroke
encounters problems in matching the observed time scale of tension relaxation
when a realistic value of the stiffness of the myosin head is taken. After a review
of how the more recent models, which incorporate one or more aspects of the
original Huxley and Simmons 1971 model, deal with these problems, we present
our modification of the theory which places the power stroke mechanism entirely
in a mechanical framework. The novelty of our approach from the perspective of
mechanics is that we deal with the mechanical behavior of a multi-stable system
in a Brownian domain, where the effects of thermal fluctuations are important.
We obtain an analytical description of the behavior of our model at equilibrium
and during the transients and show how the resulting modification of the Huxley
and Simmons 1971 model helps one to avoid the intrinsic problems of this model
indicated above. Finally we show that our model gives a new meaning to the
power stroke step, which is in quantitative agreement with all recent experimental

observations.

In Chapter 3, we turn to the attachment-detachment process and review from
the new, fully mechanical point of view the Huxley 1957 model. We show that this
model can be viewed as belonging to a class of models of Brownian ratchets. These
models, first developed in the early '90s, have an important role in the description
of molecular motors of which the myosin II is an example. We are interested in the
Brownian ratchets theory because it allows one to have a completely mechanical
interpretation of the muscle contraction process. We present different types of
ratchets representing the process of ATP hydrolysis. We modify one of these models
by including cooperative effects and adapt it to the description of the slow time
phase of the contraction phenomenon. We also develop and test in this Chapter a
numerical algorithm to solve the coupled system of stochastic differential equations

which is later used for our numerical experiments.

In Chapter 4, we combine the power stroke model from Chapter 2 with the
model of a cooperative Brownian ratchet developed for the simulation of the
attachment-detachment process in Chapter 3. We present different ways of linking
together the two models and study both advantages and limitations of each version
of the unified model. We finally come up with a model capable of providing fully
mechanical description of all four stages of the biochemical Lymn-Taylor cycle of
muscle contraction. The resulting model still has drawbacks and we present some

perspectives regarding how to resolve the remaining problems.



In the last Chapter 5 we collect the main new developments from each Chapter
and present a general discussion and conclusions. In Appendix we review some
mathematical results regarding stochastic differential equations which we used in
the Thesis.






Chapter 1

Muscle physiology and early

modeling

1.1 Muscle physiology

The movements of a muscle on a macroscopic scale appear as the result of the
concerted action of millions of elemental units that work in unison. The most
studied muscles are called skeletal muscles because these muscles are attached
to the skeleton. The contraction of skeletal muscles is under voluntary control.
They belong to the class of striated muscles which are composed of long, parallel,
cylindrical fibers. Each of these fibers is a multinucleate cell, of 1 — 100 mm in
length and 10 — 100 pm in diameter. Fibers contain myofibrils, also cylindrical in
shape with a diameter of 0.5 — 2 um. Myofibrils are made of repeated segments
each about 2.5 pum in length, that are called sarcomeres (Fig. 1.1) |95].
Sarcomere is the smallest element of a muscle that can contract. Being placed
in series, sarcomeres generate the contraction of the whole muscle. Each sarcomere
is formed by an array of filaments of two different types, which interact with each
other: a thinner filament, containing the protein Actin, and a thicker filament,
containing the protein Myosin. The sarcomere can be divided in zones: in Fig. 1.2
we see a longitudinal and a transverse view of it. In the region where the filaments
overlap, six thin filaments are located around each thick filament (Fig. 1.2b).
Thin filaments are anchored to the Z-disk (from german zwischen, between) which
connects adjacent sarcomeres. Thick filaments are anchored to M-line (Mittel,
middle of the sarcomere, not showed in Fig. 1.2) and also to the Z-disk via an elastic
element the giant protein titin. These repeating structures, (A=anisotropic at the

polarizing microscope, I=isotropic, H=hell=clear) observed under the microscope,
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Figure 1.1: Muscle’s anatomical microstructure

generate the typical striated structure that gives the name to this type of muscles
[19]. A longitudinal view as it appears on a electron mocrograph is given in Fig.
1.3.

The sliding-filament hypothesis was proposed fifty years ago. It assumes that
during contraction the thin filament moves past the thick one, so that both the sar-
comere, and the muscle, shorten without changing the length of the two structures.
The hypothesis was based on the papers of Hugh Huxley and Jean Hanson [2] (using
a phase contrast light microscopy) and of Andrew Huxley and Rolf Niedergerke [3]
(using a specially developed interference light microscope) both published in 1954.
Both works showed that when the muscle contracts the filaments keep a constant
length, and the conclusion was made that they must slide during shortening. This
hypothesis has not been immediately accepted: the then current view was that
myosin was a long negatively charged polypeptide without much structure that

shorten down due to the addition of C'a®* |76]. Later on, it became clear that



Muscle physiology Section 1.1

Figure 1.2: Longitudinal and transverse view of a sarcomere: (a) Longitudinal view of 3 sar-
comeres (sketch). (b) Transverse view at 3 different section (sketch). (c) Transverse view of 3

sarcomeres (microscope). From [97]

e —

proteingin - just overlap zone Just myasin proteins
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filarment thick & thin filament - ho
filaments cross bridges

Figure 1.3: Longitudinal view of a sarcomere as seen in electron micrgraph. From [9§]

the two filaments interact through the cross-bridges (later we use notation Xb);
these are the globular portions, or heads, that emerge in regularly repeating cou-
ples from the thick filament formed by the polymerisation of the dimeric protein
myosin II (Fig. 1.4). Each head has a site with an affinity for actin, and a site
with an affinity for a high energy molecule, called ATP (adenosintriphosphate).
The first site bounds an actin monomer while the second site an ATP molecule
which acts as the fuel for the muscle motor. ATP is hydrolyzed by myosin in
ADP (adenosindiphosphate) and orthophosphate which subsequently are dissoci-

ated with release of chemical energy [9)].

A simplified model of Xb cycle is shown in Fig. 1.5, where one can see four most
important states in which Xb can exist. When attached to actin (state 2 in the
figure), each Xb uses its potential energy to pull the actin filament through a power
stroke (state 3) which, according to crystallographic studies, consists in a tilting of

the lever arm portion of the head [33]. The relative sliding of the filaments takes
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Myosin tails are arranged to point toward
the center of the sarcomere, and the heads
point to the sides of the myofilament band.

Myosin head ——
(b) Portion of a thick filament

5 BENJAMINGCUMMINGS

Figure 1.4: Myosin filament structure. (a) Myosin molecule (couple). (b) Bundle of coupled

myosin molecules which generate the thick filament. From [100]

place in one direction (plus direction), but due to the antiparallel arrangement
of the two halves of the sarcomere, the two Z-disks are pulled towards the center
of the sarcomere, reducing its length. In this sense, the half-sarcomere, the zone
between one Z-disk and the next M-line, can be seen as the smallest element that
can contract. To go back to its original configuration (state 1) the Xb needs another
ATP to detach from actin and start another cycle (state 4). It then binds to a
new active site on the actin filament (state 2) and the whole process starts again
|64]. This inner working is described in the bio-chemical Lymn-Taylor model of
a cross-bridge cycle [9]. The cycle in Fig. 1.5 is a simplified four-states model
that omits a number of intermediate states, nevertheless it describes the essential
steps of the process. An important general observation is that muscle needs ATP
for both the contraction and the relaxation; the unphysiological depletion of ATP
below a certain concentration will prevent the detachment of the heads from the

actin filament, which causes rigor mortis [19)].

The structure of the head can be resolved with a precision of one nanometer [33],
[87]. It has been proved that the relative displacement of the filaments is mainly
taking place during the power stroke (state 3). It is achieved by a rotation of the
distal part (C-terminal) of the head that acts like a lever arm. This mechanism

gives to the whole approach the name of swinging lever arm theory.

Regulation of the contraction is due to the fact that Xbs can bound actin only

when the concentration of calcium ions is high enough. The troponin is a protein
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Figure 1.5: Simplified Cross Bridge (Xb) cycle (see text). From [44]

that is attached to the protein tropomyosin and lies within the groove between the
two strand of the actin filament in muscle tissue. In a relaxed muscle, tropomyosin
prevent the interaction of myosin with the attachment site on actin, thus preventing
contraction. When the muscle cell is stimulated, calcium channels open in the sar-
coplasmic reticulum and release calcium into the sarcoplasm. Some of this calcium
ions attach to troponin, causing a conformational change that moves tropomyosin
out of the way so that the Xbs can attach to actin and produce muscle contrac-
tion. The ions Ca®" are stored in the sarcoplasmatic reticulum (SR) surrounding
the myofilaments. The action potential originated at the neuromuscolar junction
triggers the release of calcium from the SR almost synchronously everywhere by
inducing an increase in Ca2+ permeability of the SR membrane. The contraction
is maintained until the nerve continues to fire; when the train of action potentials
stops, the Ca2+ permeability falls, while the Ca2-+ pump brings back the calcium
into the SR. The decrease of calcium concentration below the threshold inactivates

the thin filament and induces relaxation of muscle [19] (Fig. 1.6).
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Figure 1.6: Excitation contraction coupling: schematic description. From [97]

We have given here a brief overview of the complex events that lead to the con-
traction of skeletal muscles. A complete description should take into consideration
how the electrical signal generates the biochemical processes, with all their com-
plexity, which finally leads to the mechanical force or displacement in sarcomeres.
We would like to emphasize that in this work we shall consider only the mechanical
aspects of the contraction, avoiding the description of proteins interaction through
chemical rate constants. Despite some limitations in the physical interpretation
of the final model, discussed at the end of the thesis, this approach allows one
to produce a fully mechanical model of the contraction in the sarcomere, opening
the way to the construction of artificial muscle type machines. Moreover, as we
shall show the new approach improves, in some aspects, the predictive power of

the model respect to the chemical approach.
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1.2 Mechanical experiments

There exist different experimental approaches to the study of the mechanics of
muscle contraction (see |76], [75], |78] and references therein). The technology used
in these experiments has been often highly innovative, leading to technological
spin-off. We have already mentioned different microscopy techniques. Another
technique is the in vitro motility essay, where single myosin molecules attached to a
bead trapped by a laser beam are used to measure the generated force. Differently,
the IVMA measures the speed of sliding of actin filaments, attached to a bead,
gliding on a bed of myosins. Then the synchrotron radiation (an intense X-ray
source) was developed to study the Xb movements in situ in whole muscle or
single fibres. Finally protein crystallography was applied to investigate the power

stroke in the myosin molecule at atomic resolution (see Fig. 1.7) [76].

upper SOK domain

regulatory light chain

,.
converter domain essential light chain

Figure 1.7: Structure of myosin S1 from chicken skeletal muscle. From [33]

In this Thesis we approach the modeling of skeletal muscles contraction from a
mechanical point of view. Therefore, we shall be mainly interested in a particular
set of experiments performed on the muscle fibers or myofibrils. These experiments
have common aspects with the usual mechanical measurements aimed at testing
the behavior of passive materials [19].

A muscle responds to a single stimulus with a single transient rise in tension,
called twitch. Two stimuli, generated after a suitable interval of time, produce
identical force transients. When the second twitch starts before the first one is
over, the second one develops a larger peak tension. With a train of stimulations
the force reaches a steady state value, called unfused tetanus, and characterized

by the oscillating behavior with the stimulation frequency (Fig. 1.8). At a higher
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frequency the mean force rises to an almost constant value: this situation is called
tetanus. The required frequency depends on the type of muscles and on the tem-
perature (50-60 Hz in mammalian muscles at body temperature, not used in the
figure) [19]. An experiments in which we are interested have been made in the

state of tetanus, that can be viewed as a steady state condition.

Muscle tension

~.1pps
I | g !
D 100 200 300 400
Time (msec)

Figure 1.8: Force generated at different stimulation frequency. 1 pps correspond to the single

twitch, at 80 pps is reached the tetanus. From [97]

The mechanical experiments, either on a fiber or on a myofibril, are usually
performed with one end of the specimen fixed and the other linked to a lever with
a catch mechanism and a transducer of force (Fig. 1.9). In this Section we shall
explain in detail the three major protocols used in these type of experiments and

present their main results.

Force-length curves

When the catch mechanism is fixed, the muscle undergoes an isometric contraction.
By imposing tetanization with the ends fixed one can register the tension generated
by the muscle. By varying the initial length of the muscle before the tetanization,
a force-length curve can be constructed [95].

In Fig. 1.10 we show the schematic force length curve for the total force and for
its two components: active force and passive force. Passive force is the resistance
generated by elastic components in parallel to the contractile element, it becomes
relevant when the sarcomeres are overstretched. The passive resistance is almost
zero until a certain critical elongation of the sarcomere, and then increases fast
showing nonlinear elasticity. Subtracting the passive force from the total isometric

force, we obtain the component of the force that a muscle can generate actively.
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Figure 1.9: Experimental devices (a,d), experimental curves(b,c) and one version of the Hill’s
model (e) (see Section 1.3.1). (a) When the catch mechanism is acting the muscle can be tetanized
at a constant length, left part of (c), reaching the tetanus at Ty in (b). When the system is released
(d), the isotonic contraction against a constant load, T' in (b), generates the length-time curve in

the right part of (c). From [19]

Different types of muscles have different passive responses and so different total
forces, but the active force-length curve, for most of them, shows the same non-
monotone behavior |7|. This behavior (Fig. 1.11) is in agreement, with the fact
that the two filaments must overlap to generate force. In fact, the maximum active
force is generated when the overlap between the two filaments is optimal, i.e. when
all the Xbs see an actin site where they can bound and, at the same time, there is
no interference between the two half parts of a sarcomere. When the initial length
in the passive state is such that some Xbs, the ones near the M-line, do not have
any active site to attach, the active force starts to decrease linearly with the total
number of Xbs available to interact with actin. For shorter initial lengths than
those corresponding to the plateau of the force-length curve, two opposite actin
filaments start to interfere with each other, that again contributes to a decrease of
force [7].

An important thing to note is that the force-length (T-1) curve is created point
by point: first we fix a length in the passive state, then we tetanize the muscle and
register the force which develops in isometric contraction. The T-1 curve represents
therefore a series of isometric activations at different initial passive lengths. In
particular this curve does not represent the response of the muscle to quasi-static

stretching.
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Figure 1.10: Total, passive and active force as a function of the length for two different types of
muscles. The passive force is analyzed stretching the muscle in the passive state. The total force

is analyzed tetanizing the muscle from a constant passive length. The active force is derived by

subtraction. From [19]
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Figure 1.11: Upper figure: Active tension generated by isometric tetanization from different
passive lengths of the sarcomere. Lower figure: relative positions of the thin filament (black line)

and of the thick filament (white body) at the points indicated in the upper figure. From [19]
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Force-velocity experiments

The dynamical behavior of skeletal muscles is usually studied in a different type of
experiments [1], [67], [66], [93] aimed at constructing the force-velocity curve. This
curve relates the load imposed to a contracting muscle to the velocity at which the
muscle shortens. It can be obtained, still point by point, within the experimental
setup discussed before [5]: a muscle is tetanized at a fixed passive length, then
the lever is released, while a constant load is applied. The length of the muscle is
plotted against time (Fig. 1.12). As soon as tension is reduced, the muscle length
decreases: this typically fast response shows the presence of an elastic element
whose shortening takes place before a slower time scale dynamics of the Xb cycle
gets activated. After this fast transient, the muscle starts to shorten at constant

velocity. Repeating the experiment with different loads, one can construct the

curve plotted in Fig. 1.13.

A

2

Length change (mm)

Length change (mm)
> -

0
— e e e 05
b /] / 2
L 1 1 1 J

Time (msec)

Figure 1.12: Shortening vs. time curves, for one load (A) and for different loads (B). Length

change axes refers to shortening. The oscillating regime is due to the mechanical apparatus.

From [5]

As we can see, there is a maximum velocity vy that the muscle contraction can
reach under free (unloaded) shortening; this velocity is independent of the length
of the muscle in the passive state. There is also a load against which the muscle
undergoes an isometric contraction at v = 0, this value is provided by the T-1 curve.
Applying a constant load greater than this value gives the force velocity curve in
lengthening (or eccentric) portion. This latter range is much less known than the
shortening range because of the higher dispersion of the experimental points. A

general feature is that above a certain threshold, about 1.8 F,_g, the velocity goes
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to infinity. Moreover there is a discontinuity in the derivative of the F'—wv curve at
the isometric point v = 0: in the eccentric portion the derivative of the curve is six
time greater than in the shortening portion. In order to construct the force-velocity
curve the steady shortening state must be reached, which happens in a typical time
scale of tens of milliseconds [93]|. The transient that precedes this state takes place
in a typical time scale of some milliseconds and can be analyzed also in a slightly

different mechanism, which we introduce in the next Section.

Experiments on fast force recovery

There is a third type of experiments with which we shall mainly occupy ourselves
in this Thesis. Imposing on a tetanized muscle a small increment, say negative,
of length § generates a change in tension as shown in Fig. 1.14(a) (see [10] and
references below). There is an instantaneous (hundreds of microseconds) decrease
in tension to a new value called T}, just as it would be if the thin and thick
filaments were attached to each other by elastic springs. Almost immediately after
this elastic stress drop, the tension rises and then for some time (milliseconds time
scale) remains close to a plateau level (called T,) before finally recovering fully
the value it had had before the length change (tens of milliseconds time scale).
The changes in length in these experiments are very small, about 4-10 nm per

half sarcomere, and the time scales involved for T, recovery (milliseconds) are

12
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such that it is realistic to assume that the number of attached Xbs remains fixed.
Imposing different length increments, one obtains the relationship between the

imposed length increments and the tensions 77 and T shown in Fig. 1.14(b).

Length, <
nm per half
1onm Tension, relative to isometric
14
i ——
L —]
—1
T " ln«ycmz
Tension '
Tn ke
o
—_
10 msec
Time y, filament displacement in each half-sarcomere (nm)
(a) (b)

Figure 1.14: Fast recovery experiments. (a) A rapid small shortening is applied to the muscle
(upper trace) and the resulting tension history is measured (lower trace). (b) The curves T} and
T5 vs. the imposed length increment for two different values of initial length, normalized with

respect to the higher isometric tension Tp. Symbols are defined in the text. From [19]

An important understanding that derives from this experiment is that the values
of T7 at various shortenings lay practically on a straight line. Another important
result is that the rate of recovery of tension changes with the step imposed in a
highly non linear manner (see Fig. 1.15). It tends to increase in an exponential
way from positive length steps to higher negative steps.

The behavior exhibited by a muscle in this set of experiments is an impor-
tant source of information about muscle mechanics, because at least the fast time
response producing the functions 77(0) and T5(J) appears to be independent of
the attachment-detachment process. Since the pioneering paper of Huxley and
Simmons |10] these experiments have been repeated by many groups [14] [41] [43]
[67].

The force-length, the force-velocity and the 77 and T5 vs. step-length curves are
the most important experimental results that deal directly with the mechanisms of
muscle contraction. We have given references to some recent experiments revealing
for instance the history dependence in the mechanical response when muscle is
stretched after tetanization [52]. Nevertheless, in what follows, we shall focus on

the explanation of only the main experimental facts that are considered to be well
established.

13
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Figure 1.15: Rate constant r of quick tension recovery following a length increment of magnitude

y. Estimated as In(3)/t;/3 where t; 3 is the time for recovery from T to (273 +71)/3. From [10]

1.3 Mechanical modeling

In this Section we introduce several basic models aimed at explaining the mechan-
ical behavior of muscles. They are: the Hill 1938 model, the Huxley 1957 model
and the Huxley and Simmons 1971 model. These models represent the basis on
which the majority of more recent models are based. Some of this more recent

models are reviewed later in the Thesis.

1.3.1 Hill 1938 model

An analytical expression for the concentric part of the force-velocity curve was ob-
tained by Hill in 1938 [1]. He used his own experiments focused on the energetics of
muscle contraction against a constant force. First he observed that when the mus-
cle is allowed to shorten, it liberates more energy (thermal and mechanical) than
during isometric contraction. He divided the total energy rate E into three terms:
the maintenance heat rate (A) liberated by a muscle in isometric contraction, the
shortening heat rate (H), that is the total heat liberated during the contraction
minus A, and the rate of work done (W) equal to F'- v where F' is the constant

applied force and v is the velocity uniquely related to it, as we have seen in our

14
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discussion of the force velocity curve. Hill wrote the energy balance in the form:
E=A+H+W=FE-A=H+W. (1.1)

By a very precise measurement of the first term A and of the total energy rate

E, Hill observed empirically the relation:
H+W =bF,—F). (1.2)

In the right hand side of (1.2) we see the difference between the force F' applied
to the muscle and the maximal force F exerted by it in an isometric contraction
when v = 0. Independently Hill observed that H depends linearly on the velocity

of contraction, H = av. In this way we have:
H+W =av+ Fv=>bF,—F). (1.3)
By rearranging terms in (1.3), Hill obtained:

(a+ F)(v+b) = bla+ Fp). (1.4)

Shortening Velocity [cm/s]

0 20 40 60 80
Load [g]

Figure 1.16: Force velocity relation. The circles represent the experimental observation (frog

muscle), the line corresponds to the curve (1.4). From [52]

In the F'—v space equation (1.4) describes a hyperbola with asymptotes —a and
—b (see Fig. 1.16) [46]. It fits the experimental points very well (using appropriates
values of a and b) for a large variety of muscles. In the free contraction F' = 0,
the velocity becomes maximal v,,,, and it has been observed that for many type

of muscles across species and temperatures |52]:

b
&2 095 (1.5)

F 0 Umaz
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Series Contractile
element element

— R

T tl— — T

— T Y

Parallel element

Figure 1.17: Hill 1938 model with with a series of a passive spring and a contractile element,

both in parallel with a second passive spring. From [19]

With these results, Hill proposed a model (see Fig. 1.17) where the active
muscle is represented by an elastic element SE in series with a contractile element
CE whose function is to link the applied force to the velocity, in a black box manner.
Successively, to account for passive elasticity, an elastic element PE was added in
parallel with the CE and the SE (Fig. 1.17).

In the passive state the CE can be stretched without any resistance. During
the contraction, the total force generated by the system is ' = kyu + ks(u — w).
Here ks(u —w) = fCE[w', lo], ks is the stiffness of the SE and k, of the PE, u the
total displacement, w the displacement of the CE, fog is the force in the contractile
element which depends on the rate of change of the displacement w' = v. According

to observations made by Hill, the CE exerts a force of the type

4 . b
0 w < —F(lo)—
. a
F(lo)b+aw —F(lo)é <w<0
o A F(l)b — d'i “y
1.5F (Iy) — 0.50wT 0 << F(ly)=
| 1.5F(lo) F(lo)% <

that accounts also for the eccentric contraction. The isometric force Fy has a
dependence on the initial length of the muscle [y, as shown by the force length
curve. The force is equal to zero for large negative values of w’ (shortening), while
it can be directly obtained from (1.4) for smaller contraction velocities. In the
eccentric region, w > 0, the values are taken to match the behavior observed
experimentally (see Fig. 1.13).

The model leads to a differential equation that can be solved to obtain the
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time dependence of the force for different given protocols of stretches. Thus if we

introduce a parameter 3 to account for the concentration of calcium, as in the first

and third part of Fig. 1.18, we obtain:
kY . Flo,t
(1 + k—”) i — (kf: ),10] (1.6)

where 0 < 3 < 1 modulates the force in the contractile element fog. Two examples

F(lo,t) — kpu = ffor

of loading programs are presented in Fig. 1.18. The elongation, equal for both
experiments, is given by a ramp that increases the length of the muscle, maintains
it constant and then shortens it to the initial state. The activation parameters
were different. The experimental observations obtained for the given elongation
history is shown in Fig. 1.19. The predictions of the model are in Fig. 1.20: the
two responses are rather similar.

For 50 years Hill 1938 model dominated the field. In this period many ideas
have been added to the model in order to accommodate newly discovered facts |52].
Originally quite simple the model became more and more complicated and lost its
appeal; however the simplest version is still today used to simulate the mechanical

behavior of muscles.

Activation
Parameter 3

T T T

O — T -~ Time [s]

1.0

Elongation « [mm]

104 /_\
. Time [s]

1.0

(a)

Activation
Parameter 3

Y B

— . . Time [s]

1.0
Elongation u [mm]

101 m

1.0

Time [s]

(b)

Figure 1.18: Two different experimental procedures for Hill’s 1938 model. The response is
illustrated in Fig. 1.20. From [52]
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Figure 1.19: Experimental results for the elongation history shown in Fig. 1.18. From [13]
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Figure 1.20: Response of the Hill’s 1938 model for two different procedures I (upper part of
Fig. 1.18) and II (bottom part). From [52]
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The main reason for the search of different concepts in muscle modeling was
the following: Hill’s model does not provide insights into the mechanism of the
production of force. Its black bor nature is sufficient to give a good fit to the
experimental curves, but it does not provide a tool for the understanding of the
mechanisms that operates at the micro-scales which are not visible in the standard

mechanical experiments.

1.3.2 Huxley 1957 model

Before 1954, most theories of muscle contraction were based on the idea that short-
ening and force production were the result of some kind of folding or coiling of large
protein molecules. In 1954, HE Huxley and J Hansen [2] as well as AF Huxley and
RM Niedergerke [3| demonstrated that muscle contraction is not associated with
any change of length inside the microstructure. These authors postulated that the
force is generated through the interaction of actin and myosin filaments.

Based on this understanding, AF Huxley developed in 1957 a new theory of
muscle contraction [4]. The thick myosin filament is assumed to be fixed in space
while the thin filament is assumed to slide parallel to myosin with constant velocity
v. The movement is generated by a mechanical structure (that is now known to be
the Xb) that can occupy different positions along the backbone of actin, and whose
movement is limited by an elastic element (Fig. 1.21(a)). The model postulates
that the number of active Xbs is constant and considers only the full activation of

the muscle (tetanic response).

A : !

Thick |r1lament

—54
s g ﬂ
—IJr T _rﬂﬂﬂ

0 ME
Thinilamen! -
|

=

.IF]. . R\
A . LTI AF A = —_—

-1.5 0 1.0 0.5 0 05 ;p 1.0 1.6

Figure 1.21: Huxley 1957 model. (a) The myosin head M is elastically coupled to the backbone.
The interaction between the filaments can be established when M reach the attachment site A

on the actin filament. (b) hypotheses on the attachment and detachment functions. From [4]
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The structure in question can attach itself only to specific sites on the actin
filament. When it is attached, then there is a force between actin and myosin,
which depends on the position of Xb. To calculate the total force generated by
the muscle one needs to know the total number of attached Xbs at each position
x relative to the reference position of the structure, at every time ¢.

As a result of thermal fluctuations Xbs attach to the actin in a range of axial
position. They exert a force if they reach the attached position where the elastic
element is stretched; notice that a source of asymmetry is needed to generate a net
force in one particular direction [4]. It is assumed that the probability f that a
detached Xb can attach and the probability g that an attached Xb can detach, are
functions of the variable x, as showed in Fig. 1.21(b). The attachment probability
f(z) is assumed to be linear in = and is zero both beyond a maximum distance h,
and for x < 0 (the Xb can not attach to an active site when the elastic element is
compressed). The detachment probability function g(z) is also linear for positive
x, the probability increases even beyond h, and is large and constant for negative
x. If n(xz,t) is the fraction of the total population of attached Xbs whose distance
from the active site is x at time ¢, then its time evolution can be found from a first

order kinetic equation [4]:

on(z,t) on(z,t)

o VT or (1 —n(z,1))f(z) — n(z,t)g(x). (1.7)

Huxley limited the analysis to steady state case, when the solution is constant in
time, so the first term in the left is zero. The equation (1.7) allows the computation
of n(x) at different v: at zero velocity n(x) reaches the constant value f/(f + g).
At higher values of velocity there are two factors that reduce its value: first there is
less time for the Xbs to attach, second the Xbs are brought faster towards negative
values of z. The predictions of the model (1.7) are illustrated in Fig. 1.22. The

analytical solution is given by:

Ji _ _ g2
fl}rgl [1 — exp( ¢/v2)]exp(£) <0
V) = 1 _ 4\ ® 1.8
R O B | R
0 z>=h
where
¢:f142-91h‘

Using this solution one can write an explicit expression for the force velocity depen-

dence. Indeed, assume that each Xb acts like a linear spring with elastic modulus
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Figure 1.22: Relative distribution of Xbs at various velocities according to Huxley 1957 model.
From [4]

k, generating a force proportional to its displacement kx. Then the total tension

can be written as:

T() =p [ kan(z,v)ds =

fHi+ah? v b/ 1/fi+an\v (1.9)
gt S [ (P2 5

where p stands for the density of Xbs per unit volume. Optimizing the parameters

to fit the Hill’s data, Huxley obtained an excellent fit as in Fig. 1.23. The isometric

tension becomes C'(f/(f + g)), where C depends on the number of Xbs present
in the segment of muscle under consideration and on the other parameters of the
model, for instance the elastic constant.

In addition to the concentric part of the force velocity curve the model predicts
also other features of the muscle response, even if only qualitatively. For instance,
the model predicts the eccentric part of the force velocity curve, showing both a
different slope of the curve at the isometric point and an asymptotic behavior of
the force at high velocities. Both values however are highly overestimated. The
model also overestimates the rate of heat release during lengthening, however this

problem, as pointed out in [4], can be eliminated through the assumption that
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Figure 1.23: Huxley’s prediction for the force velocity curve (line) and experimental data
(points). From 1.23

during lengthening there is a mechanical breakdown of the Xbs, which detach
without ATP release. Many more recent developments have been done along these
lines, see for instance |21|, [22], 27|, [58], [64]. Overall, the Huxley 1957 model
represents an improvement over the Hill 1938 model because it gives a precise
mathematical description of the microscopic events behind the black box behavior

postulated by Hill.

1.3.3 Huxley and Simmons 1971 model

The experimental response of muscles to rapid length increments, described in
Section 1.2, cannot be easily explained by the 1957 Huxley’s model. The pioneering
experiments of this type, made in [10], have lead to the development of another
important mathematical model: Huxley and Simmons’ model of 1971. This model
is not an expansion of the Huxley 1957 model, but is a quite different model which
deals only with force generated by the attached Xbs. In particular it does not
take into account the detachment process. What brings the necessity of a new
model is the fact that the rapid recovery of force takes place in the milliseconds
time scale, which is difficult to explain in the framework of the slower attachment-
detachment process, related to the time scale of tenth of a second. The approach
used by Huxley and Simmons, which we shall describe below, is the predominant

idea even in the most recent models. This approach has recently received further
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confirmation from the measurements of the axial motions of the myosin heads at
angstrom resolution by X-ray interference technique [66].

The particular mechanism suggested by Huxley and Simmons for the structure
of the Xbs is shown in Fig. 1.24. First of all, they assumed that the Xb contains a
linear elastic spring linked to the head of the myosin. When attached to the actin
filament, the head of the myosin can be in two states, and can switch from one
state to another in a jump fashion. The ratio of the rates of jumps are controlled
by the relative energy of the two states. The energy U, of the head is a double
well function of configuration coordinate z, it is plotted in Fig. 1.25 together with
the parabolic energy of an elastic element. The switching can stretch or relax the
elastic element, so we can refer to the states as a “low” force generating state and
a “high” force generating state. The total potential energy U,,, given by the sum
of the potential energy of the elastic element U, and the potential energy of the
chemical state Uy, is plotted in Fig. 1.26.

Thick filament —I

Figure 1.24: Huxley and Simmons 1971 model. The myosin head S-1 is linked to the thick

filament through an elastic element S-2 and has two stable positions. From [19]

The model analyzes the distribution of Xbs in each of the energy well in order
to obtain the total force generated by the muscle. Because in each half sarcomere
the Xbs are arranged in parallel between an actin filament and the relative myosin
filament, the total generated force is the sum of the forces generated by each Xb.
It is assumed that when the muscle is isometrically tetanized, the two states have
the same total energy.

Due to the linearity of the elastic element:

1., K oo
Us = 5K = S (yo £ 5 +) (1.10)

where [ is the stretch which can be written as the sum of yo + h/2 (where yq is
a point located at equal distance from both wells, A is the distance between the

wells) and y, the increment of length imposed on the muscle. We recall that U, has
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y>0: strefch

Figure 1.25: The potential energies in Huxley and Simmons 1971 model. (a) Elastic energy in
isometric contraction (y = 0), after stretch (y > 0) and after release of the muscle (y < 0). (b)
Configurational energy of the head, two stable states 1 and 2 are present. From [19]

-h/2 I—— X h/2

Figure 1.26: The total energy Ut = Uy + Uy in Huxley and Simmons 1971 model as a function

of the configuration of a Xb in the isometric case (y = 0). From [19]
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two potential energy wells, corresponding to the two states 1 and 2. The heights of
the potential energy barriers £ and FE5 in Fig. 1.25, are assumed to be the same
for both wells. Since in the state of isometric contraction the two minima of the
total potential energy have the same level when y = 0, the total number of Xbs in
the two configurations is the same. When a length increment is imposed, y # 0,
there is a change in U (upper part of Fig. 1.25) and therefore in the total energy
Uit = Us + Uy, as shown in Fig. 1.27.

Before giving the mathematical details, we describe briefly how the model
works. The change in the total length y first affects the tension in the linear
spring, and is therefore responsible for the 7T; force observed in the experiments.
After the step, the levels of the energy in the two minima become different, and
a change in the total number of Xbs in each state is generated. This adjustment
process follows kinetics postulated for the jump process, and takes place in a slower
time scale than the time scale responsible for the T response. The final steady
state is responsible for the value of force T5.

To compute the forces T} and 75, we need to know the relative number of Xb,
ny and ngy in each well, n;+ny = 1. Under the assumption that the state of detailed
balance is reached, the rate constants k., describing transitions from position 1 to
position 2, and k_, describing transition from 2 to 1, are related through:

ky (Bi2 — Bor)
= Cexp [ KT ] ; (1.11)

where T is the absolute temperature, kg the Boltzmann constant, C' a constant to
be determined and By, and Bs; the activation energies for passing from state 1 to
state 2 and vice versa. In Fig. 1.27, we also see that k_ is constant since Bs; is a
fixed quantity independent of the tension in the elastic element. Therefore we can
write By = E; and By = Ey + AUy, where AUy, is given by

(yo+y+g)2—<yo+y—g)2] = (1.12)

kh(yo+y) + (Ey — Ey)

1
AUtOt — (E2 - El) + §K

Since in isometric contraction the two states have the same energy:
AUt |y=0= 0= —Khyo = (Ez — E1), (1.13)

the relation (1.11) becomes:

k'+ . —Kh'g
L =P < T ) : (1.14)
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Figure 1.27: The different behavior of Huxley and Simmons 1971 model: total energy in stretch
(y > 0, where the configuration 1 is energetically preferred) and in release (y<0, where the

configuration 2 is energetically preferred) modes. From [10]

The differential equation describing the number of Xbs in the state 2 during

transients is:

= ko (t) — k_na(t) = — (k. + k_)na(t) + ks (1.15)

Due to the hypothesis of equal energies of the states during isometric contraction

we obtain that ne(0) = 1/2. We can now solve (1.15) and write:

na(t) = n5® + (0.5 — n®) exp[—t(ky + k)] (1.16)
where:
ny = ke
2 k4 ko

One can see that the fraction of Xbs in state 2, starts at one-half and rises to the
value n5° exponentially with rate ky + k_. To compute the steady state tension,

only the ratio of the rates constants (1.14) is needed. The transient of tension can
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be written as:

T(y,t) = m(HK (yo +y - g) +na(t) K <y0 +y+ g)

= Klyo + y + (nao(t) — 0.5)A].

The characteristic values of tension predicted by this model are T’ (y) = T'(y,0) =
K(yo +y) and Tr(y) = T(y,00) = K[y — 0+ y + (n3” — 0.5)A].

In order to compute these functions, one needs the elastic constant K. As it
was not known at that time, Huxley and Simmons used the data on the rate of
recovery 7(y) (Fig. 1.15). They obtained a fit:

r(y) =ro(1+e )

with 79 = 0.2 ms™ and o = 0.5 nm~!. As we have seen, the same curve can be

predicted from the model:
r(y) = ky + k- = k_(1 + e Kh/ksT y) (1.17)

Huxley and Simmons used this formula to obtain the values of both k_ and Kh =

a kgT. Then they could compute the equilibrium force:

akgT h «
Ty(y) = ]f (yo+y—§tanh7y) (1.18)

which is shown in Fig. 1.28. The resulting curves T} (y) and T5(y) exhibit the same

104
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Figure 1.28: Prediction of the Huxley and Simmons 1971 model. From [10]

general features as the experimental curves shown in Fig. 1.14(b). The resulting
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value for the stiffness becomes K ~ 0.2 pN/nm, however a value of one order of
magnitude greater |35] [38] [36] [80] [92] was proven later. We shall come back on
the importance of this value extensively in Chapter 2, however we mention here
that the more realistic value K = 2 pN/nm affects dramatically the prediction of
the model. First, we see immediately from (1.17) that the () dependence will be
highly overestimated, because it depends on K exponentially. Second, the T5(0)
curve is more inflected with the higher value of the parameter K, thus it shows a
negative slope at 6 = 0 which is in contrast with the experimental result.

There were several recent attempts to improve the quantitative predictions of
the theory 18] [43] |48] [59] |73] [96], however nothing fundamentally new has been
added to the model. The most attractive feature of the Huxley and Simmons
1971 model is that it attempts to link biochemistry to mechanics. Not only in the
more recent models this link was not improved, but, on the contrary, it was almost
lost. In the next Chapter we shall give a brief review of some of these models and

propose a new one where the link is improved and further quantified.
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Chapter 2

Power Stroke

2.1 Introduction

The special character of the mechanical response of skeletal muscles described
in Chapter 1, allows one to classify them as active materials, because they can
adapt to external stimuli. The advances in technology are often linked to the
development of such materials that can provide active functioning, like sensing and
actuation. In the past, active response was achieved through organizing elements,
with passive response at the micro-level, into complex structures with multiple
equilibrium states. However modern technologies require that such mechanisms
function at micrometer and even nanometer scales, so traditional solutions become
unacceptable, and there is a demand for materials where the complex behavior is
realized already at the molecular level. An example of such materials is given by
shape memory alloys, where the multi-stability of the system at the molecular level
is due to phase transformation which does not require diffusion, and can be induced
by stress, temperature or electro-magnetic field. The analysis and modeling of such
active materials has reached a level of precision that one would want to achieve
in the description of skeletal muscles, given some similarity of the behavior of the
two types of systems. The similarity is based on the idea of multi-stability of the
microscopic elements of the system.

As we have seen in Chapter 1 the model of Huxley and Simmons (HS71) can
describe fast response of skeletal muscles assuming the presence of bi-stable ele-
ments with double well energy. In this model the energy landscape is degenerate
because the wells are infinitely narrow. This leads to a description in terms of
a jump process, which requires the knowledge of chemical rate constants. In the

HS71 model, the definition of the energy for the states between the minima is
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not needed: the Xb switches between the states instead of continuously moving
between them. This makes the precise analytical comparison of this model with
mechanical models of shape memory alloys difficult. Despite these apparent dis-
tinctions, the main ingredients in both types of models are similar which leaves
a possibility to link the Huxley and Simmons model to the continuum theory of
martensitic transformations in active materials.

We recall that, the main difference between the multi-stable and conventional
linear elastic elements is that the energy of the former is non-convex. As it was
shown in the pioneering work of Ericksen [11], this non convexity is of fundamen-
tal importance for the interpretation of the behavior experimentally exhibited by
shape memory alloys, which is related to the presence of multiple stable micro-
configurations. Ericksen considered the behavior of a continuum 1-D problem for
a material with a non-convex energy under slowly varying load showing that a
mathematical model based on bi-stability can explain hysteresis. After that, a
thorough study of the problem was performed, in particular a precise description
of the microscopic events was obtained by discretizing the 1-D continuum problem
and viewing it as a chain of bi-stable elements 11|, [16], [29], |62].

In this Chapter we reformulate the original Huxley and Simmons 1971 model
in this precise mathematical framework. We show that this reformulation can
produce a picture which avoids some drawbacks of the original HS71 model. We
start by briefly describing the way in which other recent models have dealt with
these drawbacks. Then we introduce our new mechanical model aimed first at
modeling the power stroke only and present a quantitative analysis of this model

including the comparison with experimental curves.

2.2 Recent Models

Already in 1978 |17| it was realized that the Huxley and Simmons 1971 model
can not predict correct time scale of tension relaxation, if a realistic value of the
stiffness of the elastic element is used. The quantitative resolution of this and other
problems of the HS71 model, already mentioned in Section 1.3.3, will be given later
in this Chapter, while now we would like to briefly review the main approaches
used to circumvent these problems. In particular we show that the way chosen by
the authors of the recent models to deal with the drawbacks of the HS71 model,
leads to almost complete loss of coupling between the two aspects of the problem:

mechanical and biochemical. The goal of these models was not only to resolve the
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uncorrect time scale predicted by the HS71, however here we shall focus only on

this aspect of the problem.

Eisenberg and Hill model

An early modification of the original HS71 model was proposed in 1978 by Eisen-
berg and Hill [17]. The model was extended in 1980 on a more quantitative basis
[18]. It is based on the observation that by assuming two very narrow energy wells,
Huxley and Simmons made implicitly the hypothesis that the transition between
the states takes place only after a Xb had collected the total amount of energy
needed to overcome the barrier.

Eisenberg and Hill proposed to make the wells wider in order to allow the
transition to start at lower energy. They also linked the force generated by the Xb
in each state with the first derivative of the free energy, instead of the stretch of
the elastic element, that has now been formally eliminated. Without the elastic
element, the coordinate = of the Xb is controlled by the imposed length of the
sarcomere, actually the coordinate x has become a measure of axial position of the
particular actin site at which the Xb is attached. The origin x = 0 was chosen
in such a way that the Xb in the pre-power stroke state is in its resting position.
At every value of x the Xbs can be in four different states whose free energies
were postulated to have an z-dependence shown in Fig. 2.1. Here AM*DD is
the actin-myosin complex in the pre-power stroke state and AMD is the actin-
myosin complex in the post-power stroke state, (phases 2 and 3 in Fig. 1.5).
Similarly M**D and M*D are two detached states, the refractory state and the
non-refractory state, respectively (phases 4 and 1 in Fig. 1.5). The different angles
of the lever arm in the two attached states are reflected by the different positions
of the minima in the relative energies. The change of state is assumed to be a jump
process, allowing the Xb to follow the entire Xb-cycle as shown by the arrows in
Fig. 2.1.

In defining the rate constants of the individual jump processes, Eisenberg and
Hill used the hypothesis of detailed balance which imposes one condition for the
ratio of each pair of rate constants. In the most general form this condition can be

written as:

kjm(x) [ kmj(x) = exp (Gj(x>k;fm(x)) (2.1)

The elastic element is present in this model through the x-dependence of the ener-

gies G;(x). What is important to note is that nothing in this setting is said about
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Figure 2.1: Free energies for two attached states and two detached states in the Eisenberg and
Hill model. The state M**D + D is shifted with respect to M**D + T by an amount of energy
given by the ATP hydrolyzation. The arrows show a possible Xb cycle. From [17]

the shape of the energy barrier between the states at a given z. That leaves for
each transition one of the rate constants k;; as a free parameter. In the Huxley
and Simmons 1971 model the dependencies of both rate constants on the step x
were completely defined by the shape of the total energy. Instead in Eisenberg
and Hill model these constants retain some freedom (used in Fig. 2.2), since only
one condition, equations (2.1), is imposed. To our knowledge, the EH78 model
was first to abandon the mechanical transparency of the HS71 model even though
some features of the HS71 model were preserved. In a sense the biochemical in-
terpretation of dynamics has overcome the mechanical basis of the HS71 model.
The freedom left by the EH78 model was used to choose the k(x) dependencies

phenomenologically in order to fit the experimental observations almost perfectly.
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£ ~ S 5
S 400l AMD-M"D | i .
g : 3 AMTD--AMD
S 10 g %0
£ 2 25 AMD—AMFD
= 10 . 5

S —110A 0 x—
(45%) (90°) _ (45% (90%)

Figure 2.2: Hypothesis on the constants for the EH78 model. From [17]
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Piazzesi and Lombardi model

The model of Piazzesi and Lombardi developed in 1995 [43], deals with the entire
cycle of the Xb, and is able to predict both the force velocity curve and the behavior
of the muscle subjected to rapid increments in the total length as well as the flux
of energy and the efficiency of the contraction. There are two detached states,
D1 and D2, and three attached states, A1, A2 and A3 in Fig. 2.3 A. Moreover
there are two distinct paths in which Xbs can split ATP to generate force. Two
active states, Al and A2, are common for the two paths, as shown in Fig. 2.3(a).
From A2 there is a long path, which contains a second active state A3 before the
detachment of the head D1. This path can compete with the short one, where the
head detaches immediately after A2 into D2. The long path generates larger force
but it has a lower reaction rate, about 20/second. The reaction rate for the short
path is about 100/second. The corresponding rate constants satisfy the detailed
balance equation (2.1). As in the Eisenberg and Hill model, the functions k., (x)
and k,,;(z) depend on the imposed step, and this dependence can be chosen to fit
the experimental data. The specific choice of the authors is shown in Fig. 2.3(b-
e). The system of differential equations governing the distribution of the number
of Xbs in various states, ai, as, ag and dy, ds, generalizes the equation proposed
by Huxley in 1957. Without going in all details we just mention that the system
consists of the equations of the type:
Oay (z,t)
ot
(k_1(x) + ka(x) + k_g(x))as(x,t) — v

= ky(x)dy(z) + k_a(x)as(z) + ke(x)d2(z)—
Oay(z,t)
Ox

for each of the five possible states and is solved numerically.

(2.2)

Small length increments bring the Xb in the region where the short cycle is
favored and, being rapid, it can explain the behavior observed experimentally at
moderate shortening velocities. For higher length step the long cycle is preferred,
leading to the possibility to fit the 11 nm power stroke. In this way the model
is able to predict both force-velocity curve (computed considering the constant
curvature of the free energy G;(x) as in the EH78 model and shown in Fig. 2.4(a))
and “step in length” type experiments (Fig. 2.4(b)).

Huxley and Tideswell model

Huxley and Tideswell proposed in 1996 a model which was explicitly developed to

overcome the drawbacks of the original HS71 model [48|. This new model is based
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Figure 2.3: General scheme and rate constants for the Piazzesi and Lombardi model. A: (Left)
Scheme of the PL95 model, A=attached, D=detached. (Right) Basic free energy of each state.

B-E: Functions expressing the dependence of the rate constants on x. From [43]
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Figure 2.4: Comparison between simulations (lines) and experimental results (points) of the
PL95 model. (a) Force-velocity curve. (b) Modeling of T1 and T2. From [43]

on the same idea as the HS71 model, however new features were added. Among
them, the most important for our approach are that, first, three attached states
Ay, Ay, and As are considered, with two constant power strokes between them
of 5.4 nm and 4.5 nm. Second, the rate coefficients for each of the four possible

reactions Ay — As, Ay — Ay, Ay — Az, and A3 — Ay, are given by the expression
A/(1+ exp[B(x — C)])

where x is related to the stretch of the elastic element and A, B and C' are different
for each transition, so that 12 parameter have to be specified. Observe that as in
the previous models, there is an z-dependence of the rate constants. In order to
respect the condition (2.1) some constraints are added, however, no explicit shape
of the free energy was prescribed, which means weaker mechanochemical coupling
than in HS71 model. Finally, to mimic the incommensurability of the spacing of
the active sites on the actin filament with respect to the spacing of the heads along
the myosin filament, five populations of Xbs were equally spaced relative to the
active sites. The authors observed that with the last assumption the tension 75(d)
ends up averaged over the range of spacing of the active sites (see also Section
2.7.2). Under the assumption that this spacing is equal to 5.5 nm, the diameter of
the actin monomer, the computed 75(J) curve contains a flat region around 6 = 0
even with K = 2 pN/nm. This solves the first incoherence of the HS71 model
(Section 1.3.3).
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Despite this success the single stroke size of 5.5 nm was too small to justify
other experimental observations, and for this reason the authors were force to add
a second active state in the model. The behavior of the model was analyzed numer-
ically, and a rather good fit of the experimental data regarding the rate of recovery
was reached. The results are shown in Fig. 2.5, together with unsatisfactory pre-

dictions of HS71 model. This solved even the second problem of the original 1971

model.

Reciprocal of half-time

-6 -3 0 3 nm

Step amplitude per half-sarcomere

Figure 2.5: Reciprocal of half-time of tension recovery vs. imposed length step. Solid line:

experimental values from [14]. Points: Huxley and Tideswell model prediction. Dotted line:

Huxley and Simmons model prediction

We emphasize, however, that the price of a larger number of possible states was
a larger number of free parameters, and that the precise relation between the rate
constants and the shape of the total energy used in HS71 model has been partially
lost. We should mention though that, the hypothesis that the rate constants vary
exponentially with the work done in stretching of the elastic element, was preserved
(see [39]). As the authors have observed, this represents a difference between their
model and the Eisenberg and Hill model, where the authors used, as a typical

reaction rate, “an arbitrary function adjusted to obtain agreement”.

Smith et al. model

As a last example, we discuss a very recent and the most complete model of muscle

contraction, published in August 2008 [96]. This model is able to reproduce almost
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all known experimental observations related to isotonic and isometric contractions
of skeletal muscles. In fact it is the first attempt to produce a comprehensive
theory, and its key features are shown in Fig. 2.6. The entire Xb cycle is modeled
including an intermediate state between the pre-power stroke state (5 in the figure)
and the post-power stroke state (8 in the figure). Two paths are available to
complete the cycle (through 6 or 7 in the figure). Again, the rate “constants” for the
attachment and detachment processes depend on the pre-power stroke strain x in a
phenomenological semi-empirical way. Although the model is able to predict a large
number of fine features observed in experiments, its mechanochemical coupling is
rather poor and is surely weaker than in the Huxley and Simmons model. Here

resides the interest of a new model with a detailed mechanochemical coupling.
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Figure 2.6: Key features of the model of Smith et al. : a) The cycle of the Xb, b) Free energy
of the states c) e d) dependencies of the rate constants on the pre-power stroke position. From
[96]

Conclusions

In the rest of this Chapter we shall explore how far a rather simple mechanical
model of the attached Xbs can describe the experimental facts without invoking
ad hoc assumptions concerning the stretch dependence of the constants of chemical
reactions. Instead, we turn to the micro-scale and introduce explicitly a feature
which is very important for the mechanics of muscles but is usually dealt with

only implicitly in the bio-chemical framework: the mechanical interaction of the
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system with random forces (Brownian motion). The presence of a thermal reservoir
allows each mechanical unit to explore the whole energy landscape much beyond
the global or local minima. Our approach is not completely new in mechanics, for
instance, it has been used for the description of rubber type elasticity of shape
memory alloys in [81|. The introduction of random forces influences dramatically
the behavior of the multi-stable mechanical system and because of this, our model

is interesting also from a purely mechanical point of view.

2.3 New model of a power stroke

The half-sarcomere is formed by a number of identical Xb arranged in parallel
between the two filaments. If all Xbs are synchronized, we may assume that the
force producing behavior of a half-sarcomere is simply that of each Xb times the
total number of attached Xbs. We represent each single Xb as a linear spring in
series with a bi-stable contractile element (Fig: 2.7). The energy of the contractile
element will be non convex with two asymmetric energy wells. As an extension of
the Huxley and Simmons 1971 model, here we include into the model the elasticity
inside each well which allows a direct use of the mechanical theory of bi-stable
elastic elements. The limiting case of the new model, when the elastic moduli tend

infinity, should produce the same results as the Huxley and Simmons model. A

Figure 2.7: The model of an attached Xb: an elastic element in series with a bi-stable element

point that has to be made clear is that at this stage of the analysis, and throughout
all this Chapter, the attachment-detachment will be suppressed, and only the Xbs

that are attached to the actin filament will be considered.

2.3.1 General shape of the energy

The fact that the energy of the contractile element has two wells means that the

Xb can be in two states which we shall be calling “long” and “short” phase. The
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force generated by a single Xb will depend on the phase: at a given total length,
the long phase will keep the elastic element in the low stress state while the short
phase will necessarily generate higher force (Fig. 2.8). Because all the Xbs are
supposed to be equal and act in parallel, the total force generated by the half

sarcomere will depend on the relative number of Xbs in each of the two states.
E.(6
E:(®

\/ 3

Figure 2.8: Elastic and contractile energy

fc(s)

m n

Figure 2.9: First derivatives of the elastic and of the contractile energies and the graphical

solution of the equilibrium equations

Let us introduce ug, uy,us, the displacements of the points A, B, and C in
Fig. 2.7: uy can be assumed equal to zero and us is equal to the imposed total
displacement. The symbols with an apex zero refer to the reference state. We can
define e, = (u; — u?) and €. = (ug — u; — ud + uf) the elongations of the elastic

element and of the contractile element, respectively. The total energy of a Xb will
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be the sum of the energy of the contractile element and the energy of the elastic
element:

Er(ee,ee) = Eo(ee) + Eelee). (2.3)

The total elongation of the half sarcomere is § = (uy — u9). In the experiments
that we shall be considering § will be the control parameter (length clamp device).

In this situation, the strains of the two elements are related:
€+ E.=0. (2.4)

Consider first an isometric experiment where the total length of the muscle u$
is imposed in the passive state and then maintained constant after tetanization
(0 = 0). The strain of the spring will be equal to the inverse of the strain of
the contractile element e, = —e, = —x. In this case the total energy Ep(z) =
E.(x) + E.(—x) will be a function of = only, which can then be viewed as the only
internal coordinate. The minima of the total energy can be computed from the

equilibrium equation

de
which can be rewritten as:
fe(x) = fo(—m). (2.5)

Here f = OE/Ox is the tension which must be equal in both elements. We can
illustrate the solution of the equilibrium equation (2.5) graphically. Due to the
linearity of the elastic element, we can represent the solution as an intersection of
a curve f.(z) and a straight line shown in Fig. 2.9, where the points ¢_ and e
correspond to the two minima of the total energy Ep(z). As in the Huxley and
Simmons model, we assume that in the state of isometric contraction the minima

have the same value of the total energy. This condition can be written as:

AEi = (Ee(e-) + Ee(—¢-)) = (Ee(eq) + Ee(—e4)) = 0

/a " fdr— / " Ldn. (2.6)

We therefore obtained the “equal area construction” saying that at 6 = 0 the two

or

signed areas A and B, in figure 2.9, must be equal.
Consider how solution of equilibrium equation (2.5) is changing in response to
the increment 6. In this case €, + €. = 0 and we can write ¢, = x, €, = —x + 0.

The f. in Fig. 2.9 line will be shifted by 0 in such a way that it will intersect the
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Figure 2.10: The effect of a length step d on the elastic energy: f. is shifted on the left changing
the ratio of the areas A and B

abscissa in © = +0J; we recall that ¢ in Fig. 2.10, is chosen to be positive. The area
B become larger than the area A, and so the energy in the local minimum _(9) is

larger than the one in the global minimum e (9).

2.3.2 Double parabolic approximation

To proceed analytically consider a special case when the energy of the contractile
element can be represented by two parabolas with a minima in the points 0 and a.
In these points the energy has the values 0 and d, respectively (see Fig. 2.11(a)).
The highly simplified double parabolic approximation for the energy is not nec-
essary, but will be convenient for two reasons. First the bi-quadratic form of the
energy will allow some analytical transparency of the results. Second, the piecewise
quadratic approximation will give us certain advantages in the quantitative fitting
of the experimental data, because it makes possible an analytical treatment of the
model. We remark that the general predictions of the model do not depend on the

exact shape of the energy.

At this point it is not so important to specify the value of x where the in-
tersection between the two parabola takes place: we temporally assume that the
transition from one parabola to the other takes place exactly between the minima,
say at a/2. If the parabolas have different moduli, this will bring a discontinuity
into the energy function, however at this stage it does not create any problem.
In fact, a third parabola will be added to reproduce the maximum of the energy,

however for the moment we can stay with bi-quadratic approximation. We can
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write:
1
§k2(x—a)2+d xﬁ%
—ky(z)? z >
2™ 2

where the curvatures of the wells k1 and ko can be different. The elastic energy of

the series spring with stiffness K is:
1 2
E.(x,0) = §K(:E—l0 —9)°. (2.8)

As we see, its relaxed state is reached in z = [.

We can now compute the location of the minima of the total energy at 6 = 0:

L _ Kl
a _Kl(]—i‘]{iga ’
27k + K

Graphically, Fig. 2.9 now becomes Fig. 2.11(b). Obviously, the values of the

f .f
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d
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Figure 2.11: Schematic description of the energy and tension for the double parabola approxi-

mation. (a) Bi-quadratic energy. (b) Minima in the bi-linear case

parameters have to be such that ay < a/2 < a;. We can see that in the Huxley
and Simmons model, where ky = k; = 00, the minima are a and 0, no matter what
K and ¢ are, as in Fig. 2.11(b). The condition (2.6) ensuring the same value of

energy in the minima, gives the expression for d:

L LK e 1 kK
T 2k K 2k + K

2. (2.10)
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2.4 Deterministic case: global minimum

As we have already explained the contraction of muscles takes place in a Brownian
domain where the temperature 7" # 0 and effect of the stochastic external force is
not negligible. However to understand the working of the model it is instructive
to start with the deterministic case when 7" = 0. In this case we assume that the
observed value of x must correspond to the global minimum of the total energy.
When § = 0 the energies of the two states corresponding to the global minimum

are equal and the two states (2.9) are equally probable.

2.4.1 One cross-bridge

We begin by analyzing the behavior of a single Xb assuming that an increment
is imposed on its length. In the mechanical experiments described in Chapter 1,
the observable is typically the force generated at one end of the specimen. Since,
in the proposed model, the force at equilibrium is equal in both contractile and
elastic elements, it can be computed as the product of the elastic constant K and
the strain of the elastic element. The force generated by the single Xb can have

either the “low” value:

F1 = —K(a1 — lo), (211)

or the “high” value:
F2 = —K(CLQ — lo), (212)

as we show in Fig. 2.9. Those values can be linked to the low force generating
state (pre-power stroke) and the high force generating state (post-power stroke)
expected in the Xb cycle (see Chapter 1).

When a change in length is imposed (6 # 0), the minima of the total energy
shift to:

v — K(ly+6)
=Ty
ki+ K
o — K(lp+6) + kea (2.13)
2 by + K

When the elastic moduli in the wells are infinite as in the HS71 model, the
minima remain always at a; = 0 and as = a no matter what the value of § is. In
this case we can see graphically from Fig. 2.12, that the difference of the energy in
the two minima after the step d is Er(a;) — Er(as) = Kda. Since we have chosen

a < 0, we see that 6 < 0 shift the global minimum into the second well.
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f f
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Kda

Figure 2.12: Lengthening in the piecewise linear case. The vertical lines represent the Huxley

and Simmons model. In this last case, the dashed area is equivalent to E7(0)) — Er(a)

In our case, by inserting (2.13) into Er, we obtain:

1 kK

E =_ 2 2.14
() = 5 (o ) (214)
and, analogously,
Er(as) = 225 05— a2 1 d (2.15)
T oy + K ' '
Comparing the two values we can write:
AE7(6) = Er(a;) — Er(ag) = (2.16)
1 k‘lK k‘gK k‘lK k2K
—5? — oly — 0l — a).
2 <k:1+K k:2+K) b+ K k2+K(° @)

In the A E7—§ plane, equation (2.16) gives a parabola and as expected AE7(0) = 0.
Using the numerical values obtained later in the Thesis by means of quantitative
fitting of the experimental curves (Tab. 2.1), we obtain k; > ks and

dAET(5)| (MK RE Y kK
6 TN T K mt k)0 T K

<0. (2.17)

Therefore the sign of Er(a;) — E7(ag) is the opposite of the sign of § and, exactly
as in the HS71 model, shortening makes preferable the global minimum in ay while
stretching makes preferable the minimum in a;. When § # 0 the tension generated

by the Xb is given by the formulas:

Ko+ 6
Fl(é):—K(%—lo—é) 5> 0

l0—|—5)+k2a
ko + K

(2.18)

Fg(é):—K(K( —zo—(s) 5<0.
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These equations take into account both the displacement of the reference position
for the elastic element and the shift of the minima. The tension given by (2.18)
is the zero-temperature analog of the tension 75 generated by the muscle in the
steady state after an increment in length. We obtain that, since AE7(0) = 0, the
definitions of the tetanized tension 7 and of tension 77, are ambiguous in the case

of one Xb. Therefore we need to take into account many Xb.

2.4.2 N cross-bridges

In order to establish a complete relation to experiments, we consider now one half-

sarcomere composed by Nx; heads, that work in parallel, as in Fig. 2.13. If one

— VNN — 0 Ny,

A B C 1
€, | €,
U u: u,

Figure 2.13: The model of Nx; attached Xbs

knows the number of attached Xbs in each state, one can compute the total force

as:
T(0) = N1(0)F1(8) + No(6)F(6) = Nxp(n1(0)F1 () + na(6) Fo(6)) (2.19)
where Np(0) and No(0) are the number of elements in each state, and

ng = Ni(8)/Nxs (2.20)
nj = N(8)/Nxs

are the corresponding fractions.
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When the muscle is tetanized at 6 = 0 the two minima are at the same level and
the position of each Xb depends on the initial conditions imposed on the system.

The isometric tension can be computed as:
T() = —KNXb(n?al(O) + ngag(()) — lo) (221)

where the apex zero, in the relative number of Xbs in each minima n;, indicates
that they are calculated at o = 0.

The function 77(§) describes the instantaneous response. One may think that
T1(9) can be computed supposing that during the fast response the elastic ele-
ment undergoes deformation ¢ while the myosin head, embedded in a viscous fluid,
maintains its position occupied before the step. In this case, if we call x; and
xo the positions of the Xbs just after the step, we should impose z; = a1(0) and

xy = az(0), obtaining
T1(8) = —K Nxp(nlzy + ndzy — Iy — 6), (2.22)

or, in other word:

Ty(6) = Ty + K Ny, (2.23)

Actually, this may not be the case in the real experiments. Indeed a realistic
value of the drag coefficient 7 for the myosin head, is 60 — 90 pN ns/nm, and the
magnitude of the elastic constant is about 1 pN/nm. Therefore the characteristic
time for the head to relax inside its well after the imposed step is of the order
of 0.1us |64], while the time scale of the observations is typically one order of
magnitude larger [67]. In view of this estimates, a more realistic approximation for

T} is given by the formula:
Tl((S) = —KNXb(n(l)al(5) + ngag(é) - lo) + KNXb(S. (224)

We see that its value is determined not only by the change in length of the elastic
element, but also by the shift of the minima of the total energy.
The relative change in tension 77 /Ty can now be written as:

T(6) nky/ (k1 4 K) + ndky/ (ks + K) )
T, (n?zokl/(k:l + K) 4 nSks(lo — a)/ (ko + K>) '

(2.25)

The tension 77 does not represent equilibrium. Suppose now that instead the
system follows global minimum of the total energy. When even a small increment
is imposed, a global minimum becomes non-degenerate, and all the Xbs jump into

one energy well. Because of (2.16), the relative numbers of Xbs in the two minima
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will switch from n?, nd to ny = 0 ny =1 (or ny = 1 ny = 0) and the final tension

T5 will be:
Ty(6) = —K Nxy(as(6) — lo — 0) (2.26)

for 6 <0, and:
TQ((S) = —KNXb(CLl((S) — lo — 5) (227)

for 6 > 0. The relative tension in the equilibrium state is:

15(0)  (ka/(k2 + K))6 + ka(lo — a)/ (k2 + K)

Ty mloks /(b + 5) + nlka(lo — a)/ (ks + K) (2.28)
for 6 < 0, and:
T(5) _ i ki(lo +0)/ (ki + K) (2.29)
Ty nlok1/ (k1 + K) + ndka(ly — a)/ (k2 + K)
for 6 > 0.

The predicted curves T1/Ty and To/Ty vs. ¢ are linear in 0, with different
slopes if k1 # ko. Figure 2.14 represents typical shape of tension-displacement for
representative values of the parameters. The system after the instantaneous elastic
response 717 reaches the steady state tension 75. The bold line, which represents
the global minimum in the steady state, shows a jump which is not observed in
experiments. To avoid this pathological behavior and to produce a smoother curve,
we can follow the idea of the Huxley and Simmons and introduce a probability
distribution of the Xbs in different phases. This approach is pertinent since the

thermal diffusion is important at such scales.

1

T

19

Figure 2.14: T5/Ty and Ty /Ty vs. & curves (arbitrary units) in the elastic-global minimum

respounse (k1 = ko)
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Chapter 2 Power Stroke

2.5 Stochastic case: N cross-bridges at finite tem-

perature

In order to make the curve T5(J) smoother, Huxley and Simmons made an addi-
tional assumption regarding the distribution of the Xbs. Instead of considering
the deterministic behavior in which all the Xbs are in the global minimum, they
assumed that their positions can be described by steady state solution of the equa-
tion describing a stochastic process. This assumption comes from the understand-
ing that thermal fluctuations can not be neglected at this scale. Taking thermal
motion into consideration is crucial for cellular mechanics because the chemical
reactions that drive biological processes have the energetic barriers that are only
a little higher than the thermal energy, given by the Boltzmann constant times
the temperature kpT'[64]. Since thermal forces are randomly directed and uncor-
related, the resulting motion can be modeled by diffusion. Huxley and Simmons
approached the problem from the point of view of a jump process, because the cur-
vatures of their energy wells were infinite and as a result their diffusion process was
degenerate. It is worthwhile to note that every jump process can be viewed as an
approximation of the diffusion process, even if the contrary is not always true (see
Section A.7). In their description, Huxley and Simmons have defined the kinetic
constants of reaction that describes the passage between the two states for each
Xb. In both, the jump process and the diffusion process, the rate constants must
satisfy the detailed balance condition in order to correctly describe the equilibrium
state.

The condition of detailed balance can be understood in terms of a canonical
distribution (see Section A.6.2):

o—E/kpT

The subscript s indicates equilibrium steady state and F is the energy of the state.
Suppose that the relative number of Xb in two sharp wells, n; and ns, satisfy

the canonical distribution. Then:

Eo—FE
Z_j — o T (2.31)

The same expression for the steady state probability distribution is derived
in Section A.6.1 in a different way; we briefly sketch here the derivation because

it introduces the diffusion process which will be important from now on. The
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equation of motion of a particle, subjected to a potential E7(z) and to a thermal

noise can be written in the over-dumped case as (Langevin equation):
ni(t) + Ep(z) = T'(t), (2.32)

where I'(t) is a white noise. Since this is a stochastic differential equation, the
path of the particle is different in every realization, even under the same initial
conditions. A way to study the behavior of such a system is trough the associ-
ated differential equation for the evolution of probability distribution p(x,t). This
function gives the probability to find a particle in the position x at time ¢. The
equation for p(z,t) is called Fokker-Plank equation (see Section A.5). For the case
(2.32) it can be written as:

Op(z,t) N 0S(z,t)
ot Ox

—0 (2.33)

where we introduced the probability current S:

_Bie) T 0p

= n Ox

(2.34)

The steady state is defined as S = const, and if Er(x) goes to infinity for
|r] — oo, the boundary conditions require that S = 0. In this case, equation
(2.33) has the following solution:

e_ET(xv(S)/kBT

_ _ A/—1_—Ep(z,8)/kT
ps(x,0) = T =N"'e (2.35)

where N is a normalization constant and the dependence on ¢ was inserted to
remind that in our case the total energy depends on the step length imposed. We

can now define the quantities n; and n, as:

nd = [, ps(x,0)dx

(2.36)
nd = ffgps(x,é)dx.

Here we use the same symbols as in (2.20) because even with these new definitions
Nxpng represents the mean number of Xbs in the first state. We recover (2.30)
from (2.35) in the limit when the curvatures of the energy wells go to infinity.
Then p,(z,t) approaches two d-functions and the rate nj/n{ assumes the value as
in equation (2.31).

The rest of this Chapter is devoted to the discussion of our attempts to use

the framework in order to fix the drawbacks of the Huxley and Simmons 1971
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Chapter 2 Power Stroke

model. In particular we show how the introduction of the elasticities of the wells,
integrated into the diffusion theory, allow one to avoid some of the problems while
preserving strong relation between the mechanical and the chemical aspect of the

phenomenon.

2.6 Variable power stroke size

The Huxley and Simmons 1971 model suggests the mechanism behind the fast
recovery of tension, and forms the basis on which almost all more recent models
have been constructed. Despite this fact, the model has some difficulties with the
reproduction of the experimental behavior. As discussed in Section 1.3.3, almost all
of these problems come from the value used for the stiffness of the elastic element
K. It was not known at the time of the creation of the Huxley and Simmons’ model
and they used an indirectly estimated value of K = 0.2 pN/nm. Unfortunately,
according to modern data |36], |55] the value of K should be at least one order
of magnitude higher. In what follows we shall show how the introduction of the
elasticity effects into the structure of the energy wells removes the inconsistency.
The question was first raised by Eisenberg and Hill in the 1978, however, to the
author’s knowledge, this is the first time that the incoherency is resolved in a
quantitative way with the use of elasticity in the wells.

After the pioneering work of Huxley and Simmons, the experiments showing
fast recovery of tension, were redone several times (see e.g. [14], [20], [41]). More-
over, one can say that it is still today the major protocol used in the study of
the mechanics of muscles (e.g. [43|, [67]). The reason is that this type of experi-
ments give important information about the behavior of the Xbs in the attached
state. The new, more precise experiments become possible because of the huge
improvement in the measurement and loading techniques. For example, Huxley
and Simmons imposed an increment of the total length because they “were not
able to impose a change in tension sharply enough to distinguish the component of
length change that is truly synchronous with the tension change from that which
lags behind the tension change”. Today, such tension change can be made in tens
of microseconds and the time resolution can be of 1 microsecond [67]. It was shown
that in the length clamp experiments [43] and in the load clamp experiments [67],
the corresponding tension vs. deformation curves are almost identical, as shown
in Fig. 2.15. What became clear with the improvement of the techniques, is that

the curve T5(0) at large values of § has a slope different from the one of the curve
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T1(5) (see Fig. 2.15): the former is more shallow than the latter.

L ] "--; 1.4
O T| b ]
¢ L "
& 1006 o0
” &
&
G #0.6
e L
L .
e v
4 -l 0.2
o i
e T T T I'i_':'Q’l:)‘ T =1
-12 -10 -8 6 4 2 0 2

Figure 2.15: Experimental behavior of the T /Ty an T5/T, curves: length clamp device (T,
open symbols), tension clamp device (L, filled symbols). From [67]

We recall that the linear part of the decreasing 75 — 6 curve corresponds to
the situation when all the Xbs are in the second well. In this situation further
shortenings only decrease the tension generated by the elastic element since further
jumps of Xbs are impossible. We also recall that because the location of the minima
is fixed in Huxley and Simmons model, the slope of the 75 — ¢ and T} — 6 curves will
be the same. Indeed, in this situation the subsequent decrease in tension relaxes
the elastic element, but does not create additional jumps of Xbs. The model will
predict the same slope for both 77— and 75 — ¢ curves at large 9, which is uniquely
related to the elasticity modulus K. We can therefore conclude that the difference
in slopes originates from the features of the Xbs which are not described by the
Huxley and Simmons 1971 model. To generate a different size of the power stroke
at different loads (which is what was experimentally observed in [67]), the model
must be changed. Since the size of the power stroke is prescribed by the distance
between the energy minima, it does not depend on 9, if the wells are infinitely
narrow. Therefore the wells should be delocalized.

In the model with quadratic wells, the probability distribution in the steady
state, given by equation (2.35), is almost Gaussian inside the wells. If the energy

barrier is higher than the thermal energy, in our case if for the second well
ET(CL/Q) — ET(CLQ) > ]fBT (237)
then p,(x,d) goes to zero quite fast away from the energy minima. In this case we
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Chapter 2 Power Stroke

can make some simplifications in (2.35) and other similar relation, which will be
later confirmed by our numerical test. For instance, considering the second well,

we can define:

1 1
ET, 2(.]7, 5) = (51{}2(25 — CL)2 +d+ iK(l’ — l() — 5)2) s (238)
and write
a/2 a/2
/ wps(x,8)dr = N1 / g~ Pr@O/kET gy ~ (2.39)

NE /OO xe Er. 2@0)/ksT g7

Now, multiplying the right hand side by

fa/2 e~ Er, 2(2,8)/kBT ],

fZ"’ B G EaT ~1, (2.40)
we can write:
a/2
/ xp,(z,8)dr = ndas. (2.41)

The analogous results can be obtained for the first well. In this computation
we made an assumption that the integral of f(x)ps(z) from x = —o0 to z =
a/2, can be replaced by the integral extended to an infinite interval. Within this
approximation, the power stroke is again determined by the distance between the
minima. This distance controls the shift between the linear segments of the curves
T1(9) /Ty and T5(6) /T and is constant if and only if the derivatives T7(d) and T5(J)
are equal.

To show analytically how the curvatures of the wells affect the slopes of the
curves T1(0) and T5(d) we first notice that all equations obtained for the case
when the temperature 7" = 0, are still valid at temperatures T # 0 because of the
assumption (2.37). For instance, we can write:

Ty = Ny, / K (apa(,0) — Io)da ~ — Ny K (nay (0) + nlas(0) — lo)  (2.42)

and similarly:

[e.9]

Ty(6) = Nx / (=K (2ps(2,6) — Iy — 8)) dv ~ — Ny, K (nfa;(8) +nas(8) —lo —J)

- (2.43)

Now, recall that by using considerations from Section 2.4.2 we can write the tension
T1(9):

T1(8) ~ —Nxp K (nla; (8) + nday(8) — lp — 6). (2.44)
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Here the relative number of Xbs in each well is taken to be the same as before
the step. Equation (2.44) can be obtained rigorously from the Kramers’ theory
whose fundamental hypothesis is that relaxation within each well is much faster
than the equilibration between the wells (see Section A.7). We shall be using this
approximation extensively later in this Chapter.

We can make use of the obtained formulas for 77(J) and 75(J) to compute
the slopes of the corresponding curves at large negative 0. We recall that at
large ¢ all Xbs are in the second minimum. We can then use the following linear
approximation:

T5(8) = —Nxp K (az(d) — lo — 9). (2.45)

From this relation and from relations (2.36) and (2.13) we obtain:

do TO n(l)lokl/(lﬁ + K) + ngkg(lo — a)/(k:g + K) ’
and

ds Ty nlloki/(ky + K) + n3ka(lo — a)/ (ks + K)

The value of the shortening at which 75 (d) = 0 can be calculated from equation
(2.45). We obtain

Scrg—o) = a — lo. (2.48)

At this value of 9, all Xbs are symmetrically distributed around = = a, the relaxed
position of the elastic element. To specify the numerical value of 0(z;_,), we can use
the experimental data obtained in the length clamp experiment shown in Fig. 2.15
(open symbols). More specifically, we shall perform a linear fitting of the points
that represent the T(0)/Ty curve and of those points that represent the linear
decreasing part of the T5(0)/Ty curve. The values of parameters are reported in
Table (2.1). In particular, we obtain the value y_, = —10.8 nm. The curve
T1(6)/T} crosses the abscissa at 0, —o) = —3.87 nm. This gives d(71(0)/T5)/d(d) =
0.258 nm~'. The linear fitting of the Ty (d) curve, gives the slope 0.138 nm™!, so
the ratio of the slopes is 1.87. These are the values that we would like to fit. From
equation (2.48) we can set

a=—10.8+ 1y nm. (2.49)

The value of [y will be found from other data.

Comparing equations (2.46) and (2.47), we see that if ky = ko the two slopes
d
—T5(9) and —T3(0), are the same. This is the reason why the Huxley and

do? do
Simmons model predicts the same slope for both curves. We can also see that
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the slope of T5(d) will be smaller than the slope of T71(9) if k1 > ko. One might
think that the difference will increase when k; > ko, but we have to remember
that an increase in k; will also decrease n?, reducing this effect.

Now, we make again use of the hypothesis (2.37). We observe that in this
approximation the integral ffﬁ exp|—Er(z,d)/kpT|dx can be approximated by
[ exp[—Er, o(x,0)/kgT)dz. This allows a simplification of the expression for
the functions n;(J) and ns(0) given by equation (2.36). For instance, at 6 = 0 we

obtain
~ N7 exp[—Er, o(,0)/kTdx =
Var P 2kl (2.50)
N K+ ks
kgT
Similarly,
. [ Kk 2 }
Xp
V2
n(l] ~ ™ 2(K + kl kBT (2_51)

N \/Tkl
kgT
For the particular value of d from (2.10), the nominators in both (2.50) and (2.51)

are the same and we can write:

0~ Vs + K
YT Vet K+ VR + K
0 Vi + K
T VE+ K+ VEk+ K

(2.52)

n

here the normalization constant N is eliminated imposing n? + n = 1.
We can now use the condition that the derivative of 77(9)/7, must be 1.87
times the derivative of 75 (d)/Tp. Using equations (2.46) and (2.47), we obtain the

condition:

dTy(5)/ds VEka /K + 1 kK (kK +1) (2.53)
dT3(0)/d6 [k /K + 1+ \/ka/K + 1 ko/K(k1/K +1) '

Vi /K+1 B 187

VK + 1+ kK +1 slope =

One can see that this ratio does not depend on either a or [y, but only on the elas-
ticities ky, ko and K. Moreover, the three moduli enter in only two dimensionless
combinations: ki/K and ko/K. The contours dgpe = const in the (ky/K ky/K)

plane are shown in Fig. 2.16. By increasing the ratio of k; to ko we obtain a higher
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08 |
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Figure 2.16: Contour plot showing the ratio of the slopes (2.53) as a function of the relative
curvatures k1 /K and ko/K

value of dgope. Analytically we can write the following relation between k; /K and

ko/ K ensuring that the slope ratio is equal to dggpe:

o (ks K2 — 200 K P+ (o K )]
[1 4 3ky/ K — 2ks/ Kdgiope + 2(ka/ K)*dsiope — 2(ka/ K)*d2,pe £ /10 (k2/ K))].
(2.54)
Here
(0 (%) =1+ 6% +9 (%) +4 (%) (2.55)

ko ko \ ko)
_4?d8l0p6 -8 <?) dslope —4 (?) dslope

One can see that for dg,pe = 1.87 the value of k; /K is real only if k3 / K < 0.294.
In the Huxley and Simmons model the value of k5 is chosen to be infinite. Following
their reasoning, we choose for ks the largest possible value compatible with the
condition dgpe = 1.87, ko/ K = 0.294. This gives ky = 4.17K. We would like to
keeps the values of ko as large as possible to maintain the link with experiment.
Indeed, the higher is the compliance and the smaller is the step of the power stroke.
Our relatively low value of the ks, results from the hypothesis that the filaments
are rigid. In fact, one can think that the compliance of the second well also includes
this extra-compliance of the filaments. In general with the increase of k; the ratio

of the slopes first increases up to a maximum, but then it decreases because the
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population in the first well becomes lower. The characteristic behavior is shown in

Fig. (2.17) for a representative value of ko /K.

Ratio

k1l

’ 20 40 60 80

Figure 2.17: Ratio of the slopes of T7(d) and T»(d) as a function of the parameter k1. Abscissa
in pN/nm

Now, we can use the expression (2.47), and the approximation (2.52), to match
the values of both slopes dT7(0)/dé and dT5(5)/dd with those observed experimen-

tally. We can write
d (Ts(9)
il - 2.
a5 ( T ) (2:56)

kiv/ (k2 + K)3lo N Vi + K
kovki+ K(Vke + K+Vki+ K)  VE+K+Vk+K

(lo —a)] =s

where we have assumed that [ — a = 10.8 nm. We can obtain an analytical

[k /K +1 [ky/ K +1
R ROV N g R VN §
V/E+1| | T\ /K1 (lo Q)S]
ky (ko ko/ K + 1 ’
224
% ()
1

L RR T

In Fig. 2.18 we show how [y depends on ky/ K for the given value s = 0.138 nm ™',
and under the assumption that k;/K is determined by (2.54). The solution (2.57)
exists up to ky/ K = 0.294, where [y = 0.05 nm.

As we have shown above our model is able to reproduce the linear segments
of both curves, T1(d) and T5(d). To test the validity of the adopted analytical
approximation, (see (2.37)) we can make direct numerical integration in the for-
mulas (2.42), (2.44), (2.43). These formulas represent the exact solution for the

expression for [y(s):

k1 ko
(?*QE

lo(s) = (2.57)

S

tensions after a given incremental step. In Fig. 2.19(a) we show superimposed: the
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Figure 2.18: [y (in nm) as a function of ko/K for s = 0.138 nm ™" and dsjppe = 1.85

experimental data (points), their linear fitting (straight dashed lines), the direct
numerical integration of (2.44), (2.43) (continuous lines) and the functions 75(9) /75
generated by the approximate model (2.52) (curved dashed line). As we see, our
approximation for T5(d) is very good, especially for large values of §. The slope
of the curve T3(9)/T) is slightly overestimated. Since also the slope of T5(0) /Ty
ended up slightly overestimated, we used the values of parameters obtained above
(see Table 2.1) only as an initial guess and then made a careful fit to the exact
experimental data. Regarding the figures shown in this Section, only the ratio
ks/K had to be changed. Thus from now on we use ky/K = 0.310 instead of the
previous value ky /K = 0.294. The new fit of the experimental data is shown in Fig.
2.19(b). The final set of parameters is collected in the column Analytical values of
Table (2.1).

In Fig. 2.19(b) we can see an important feature of the curve 75(0) which will be
discussed in the next Section: the presence of a region where the slope d75(9)/dd
is negative. This feature has not been observed in direct experiments. The same
problem resurfaces in the original Huxley and Simmons model if the realistic values
of the coefficient K is used [48] (see Section 1.3.3).

2.7 Negative slope of the T,(d) curve

Our analysis has been so far focussed on the slope of the curve T3(d) at large
negative values of . Now we concentrate on the behavior of this function near
0 = 0. As we have seen the value of the parameter K does not affect the linear
behavior of T3(0) at large ¢, however it notably affects the slope of the curve T5()
at small . To compute the function T5(5) when n$ # 1, the exact values of n$ and

n$ are needed. They can be taken either from the approximate expression (2.52),
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T1/TO and T2/TO tensions

Ste
5 p

T1/TO and T2/TO tensions
1.75+¢

Ste
5 p

Figure 2.19: Fitting of data. Points: experimental data from [43]. Straight dashed lines: linear
best fitting of the experimental data. Solid lines: prediction from the model of T»(d)/Ty and
T1(8)/To from direct integration of (2.44), (2.43). Curved dashed line: prediction using the
approximations (2.52). (a) ko/K = 0.294 (b) ko/K = 0.310. Abscissa units: nm
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or from the direct numerical integration of the formulas (2.36).

We have already seen that d75(0)/dé = —oo if the concentration of Xbs is found
from the condition of global minimum of the energy (Fig. 2.14).Let us also recall
how the Huxley and Simmons model deals with the problem of the negative slope
of the T5(0) curve at 6 ~ 0. Using their notations, and the particular shape of
their chemical energy we obtain that the steady state population of Xbs can be
computed as n{ = 1 —n3, n§ = 1/(1 + k_/k,), where ki are the rate constants
that regulate kinetics of the jumps between the energy wells. In the Huxley and
Simmons model it is assumed that ky/k_ = e ’“gT, equation (1.14). We recall
that their y and h are the analogues of our 6 and a. In their case, the value of
n$ is known when one knows the numerical values of the coefficient Kh/kgT. In
Huxley and Simmons model the value of K was obtained from an independent set
of data on the rate of recovery for the tension. They observed that the value of h
“has to be chosen to give the right shape of the curve of Ty against y. |...| lower
values give a less inflected curve and higher values give a curve with a region of
negative slope”. This behavior is illustrated in Fig. 2.20 where different values of
the product K'h/kgT have been used. The global minimum behavior mentioned
above correspond to the case of either K = oo or 7" = 0. By tailoring the value
of Kh/kgT asin Fig. 2.20 Huxley and Simmons avoided the negative slope of the
T5(d) curve; they used Kh/kgT =5 nm.

Figure 2.20: The curves T5(8)/To and T3 (0)/Tp in the HS71 model computed at different values
of Kh/kgT

The important criticism raised against the Huxley and Simmons 1971 model,
was that while h = 8 nm was chosen to be compatible with experiments, the
stiffness of the elastic element had to be at the unrealistically low level of K =
0.2 pN/nm. With the realistic value of K, say K = 2 pN/nm, the curve T5(0)

predicted by the Huxley and Simmons model necessarily shows a negative slope at
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6 =0.

Below, we show how the assumption of finite elasticity of the wells can decrease
the negative slope of the 75(0) at 6 = 0 even though it can not eliminate this effect
completely.

The approximate expression for the function 75(¢d), which describes its behavior
at small 0, is given by equation (2.43). In this approximation, we have already
computed the values of n? and n) (equation (2.52)). To compute the function
T»(8), we need the values of n$ and n when & # 0. In this case the exponential
terms in the expressions (2.51) and (2.50) will not be equal. For n$ we obtain the

following expression:
— —1
0 — 1+ 7@ +Kef(6)

2.58
S BN (29

where:

o) =~ kT (ki + K)(ks + K) ' (2.59)

For n = 1 — ng an equivalent expression can be written.

From (2.58) (2.59) it is not straightforward to see how the parameter K influ-
ences the slope of the curve T5(9). Let us first concentrate on the exponential term
in (2.58): this term’s § dependence is the principal cause of the negative slope of
the function 73(0) at § = 0. In what follows we limit our analysis to the negative
values of §. We would like to maintain the value of n$ as low as possible for small
negative d, therefore f(6) should be small. We observe that when k; = ky = k,
f(8) = —(ad/kpT) (Kk/(K + k)), so nj will increase faster at larger Ks. The
term Kk/(K + k) is equal to K when k = oo, and decreases if elasticity of the
wells is taken into consideration & < co. This also decreases the negative slope of
T5(5). We emphasize that within our model we essentially redefine the meaning
of the elasticity of the Xb. In fact, the Xb is represented as an elastic spring, in
series with another elastic bi-stable snap spring, so the stiffness of the Xb is the
global stiffness of the system. More precisely we can use the formula for two elastic
elements in series, Kegecrive = Kk1/2/(K + k1/2), where we have to choose ky and
ko for the first and the second well respectively.

Next we observe that, if k; > ks, as required by the condition on the relative
slopes of T5(9) and T7(d), then the higher is the k; (or the ly) the smaller is the
slope of T5(0) at 0 = 0. This fact is illustrated in Fig. 2.21. The value of [, can not
be too high, because there is no evidence that the Xbs can generate considerable

force in both states. As explained in the previous Section, the values of k; and
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Figure 2.21: Effects of k1 and lp on the curve T5(8)/To , when all the Xbs have the same
attached sites. a) Effect of k;. Increasing the stiffness of the first well, decrease the negative
slope of the curve around zero. The decrease is less marked at higher values of k1. b) Effect of

lo. An increase in the value of [j have the same effect as the increase of kq

lo are tightly linked to the two parameter ks and K, because of a constraint that
must be imposed on their relative value. More specifically to reproduce the ratio
of the slopes for T5(d) and T} (6) curves at large negative ¢, the value of ky must be
necessarily lower than a certain value. In addition, we would like to maintain the
global stiffness at the same order of magnitude as experimentally observed. We
can now identify the global stiffness with ko K'/(ko+ K) if the stiffness of the Xbs is
measured in rigor |55], where ny = 1. Since ky > ko this value represent the lower
bound for the global stiffness. We therefore impose that ko K /(ko+K) > 1 pN/nm,
which implies ky > K /(K —1) pN/nm. The constraint ko /K < 0.3 found in Section
2.6, gives K/(K — 1) < ky < 0.3K so necessarily K 2 4 pN/nm.

We can now consider the effect of K on the slope of the curve T5(0) at § = 0
(see Fig. 2.22, where the curves T5(0) are plotted for increasing value of K).
We see that, to have a non-negative slope, the value of K should be lower than
1 pN/nm, which is incompatible with our other constraints. From now on, we
choose the value for the global stiffness, 1p/N/nm which fixes completely all other
parameters of the model. From Fig. 2.22 one can see that the slope d75(0)/dé
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remains negative. The resolution of this last incompatibility with the experiment

will be our main preoccupation in the rest of the present Section 2.7.

TT,
—K=0.8
—K=2
K=4
K=6
Sem) 2

Figure 2.22: The effect of the increasing value of the stiffness of the elastic element K on the
negative slope of the curve T»(d) at § = 0. We change K from 0.8 pN/nm to 6 pN/nm. The

linear segment of the curve T5(d) at large negative ¢ is unaffected by K

The problem can be approached in two different ways. One option is to con-
sider a potential inhomogeneity inside the fiber, viewed as a chain of sarcomeres.
Another option is to assume a nontrivial distribution of attachment points for

different Xbs inside the half sarcomere.

2.7.1 Inhomogeneity in a chain of sarcomeres

Suppose now that the behavior of a single half-sarcomere is given by our model
describing several identical Xbs that act in parallel. As we have seen, the half-
sarcomere acts like a single contractile element with a non monotone tension-
deformation curve T5(4). The actual experiments are made not on a single half-
sarcomere but on myofibril. We may then assume that a chain of our half-sarcomere
in series should be used as a model describing the observed behavior of a myofibril
during contraction. The negative slope in a response of a single element, should
lead to a global inhomogeneity in the system. When a small perturbation is im-
posed on a system with d75(0)/dé < 0, the sarcomere that is shorter than its
neighbors, will generate more force. As a consequence, it will shorten further and,
since the total length is fixed, its neighbor will be stretched with a subsequent
decrease of the force [62], [73], until the rise of the force in the parallel elasticity
brings the sarcomere in equilibrium. This process, anyway, leads to development
of inhomogeneity that can explain the flattening of the global tension elongation

curve.
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The mechanical problem for a series of bi-stable elastic springs at temperature
T = 0, was studied in |62], where an analytical solution for the tri-parabolic model
was found. This analytical solution is available only for unrealistically simple
energies of the elements producing piece-wise linear tension-deformation curves.
Below we extend this approach to the case of realistic T5(d) curves generated by

our model of half-sarcomere.

Series connection of N half sarcomeres

We begin with a review of the results obtained in [62]. Consider first a chain of
2 half sarcomeres, representing the simplest case of the general theory N=2 (Fig.

2.23). Suppose that each half-sarcomere is characterized by a piecewise parabolic

Figure 2.23: Model of two half-sarcomeres in series. Each half-sarcomere is formed by Nx, in

parallel
energy
( %(5 +1)? § < —t
1
w(d) = 5([(1 —tHP+(1-t)] —t<i<t (2.60)
1
50— 1) t<9

\

It is a smooth function formed by three parabola, two downward and one upward,
as shown in Fig. 2.24(a), where the phases are I and III have positive curvatures,
and phase II has negative curvature. The corresponding tension-deformation curve
is trilinear as shown in Fig. (2.24(b)). This shape roughly approximates the T5(J)
curve obtained in Section 2.6. The number of elements in each phase can be
expressed as a vector (k,l,m), where k, [ and m are the numbers of elements in phase
I, IT and III, respectively. When N=2, the classes of solutions corresponding to the
homogeneous phases I, IT and III, are (2,0,0), (0,2,0) and (0,0,2), while solutions
(1,1,0), (1,0,1) and (0,1,1) corresponds to inhomogeneous microstructures.

The equilibrium problem at 7" = 0 can be reduced to finding the critical points
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Figure 2.24: (a) Energy function for a single element. (b) Tension deformation curve for a

single element

of the total energy

N
W(o,...,0n) =Y _w(é) (2.61)
i=1
where due to the global isometric constrain
N
> 6 =Né (2.62)
i=1

The system of equilibrium equations takes the form
w'(6)=0c i=1,...,N (2.63)

where o is the tension in the chain, which is equal for all elements.
With the simple w(d) defined in (2.60), it is possible to find the equilibrium

strain-force relation explicitly. To this end we need to invert the relation:
NS:k51(0)+l511(0)+m5]]](0') (264)

where d7(0), 6;7(0) and 0777(0) are the linear strain force relations corresponding
to phases I, Il and III respectively. In this way we obtain the global force-strain
relation for the whole cycle, and can also compute analytically the equilibrium

energy of the entire chain. Defining the “volume fractions”
r=k/N, y=I1/N, z=m/N (2.65)
where z +y + 2z = 1, one can obtain

5(6) = B(§ — d) (2.66)
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where we have defined the effective elastic modulus along the corresponding branch
(z,y,2) as

E=[1-y(1-t)"", (2.67)

and the reference strain

(50 =Z—X. (268)

Correspondingly, the overall equilibrium energy for the tri-linear chain can be writ-

ten

w@)zMUuwo:%E@—ﬁ@?+%M1—w. (2.69)

Here a is the reference length of each half-sarcomere. The curves w(0) and & (9)
are shown in Fig. 2.25 (from [62] where & = §)

The above solution is also suitable for our problem where a myofibril is in-
terpreted as a chain of half-sarcomeres with non-monotone tension-deformation
relations. In our case, the explicit expression of the tension-deformation curve of
a unit is not as simple as (2.60) even in the approximate version, however some
useful insight can be derived by the analyses developed in [62| and [73].

Let us first examine how the curvatures of the wells affect the stability of the
inhomogeneous configuration. For instance, in the case N=2, one can question the
stability of the configuration (1,1,0). In the tri-linear case we know that [62] if the
absolute value of the (negative) modulus of phase II is greater than the two equal

(positive) moduli of phases I and III, so that
tt—1>1 (2.70)

where ¢ is defined by (2.60), then the configuration (1,1,0) is not stable and the
configuration (2,0,0) “snaps” at some value of § into the configuration (1,0,1). The
global tension elongation curve will not show any region with negative slope, but
will instead show points of discontinuity (see Fig. 2.25).

We can explain this result graphically by using a realistic T5(d) curve. We recall
that for N = 2 the total deformation constrain can be written as d; + s = 25. We
can, therefore, represent at a given & the tension-deformation curve for the second

half-sarcomeres T3 (d5), in the form
T3(61) = T5(20 — 1) (2.71)

The relations Ty (6;) and T§(d;) are plotted in Fig. 2.26 and in Fig. 2.27 for T5(9)

obtained in Section 2.6. The T} (d;) curve is always centered in the origin, while the
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ol
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Figure 2.25: Overall energy-strain relation and force strain relation for the case N=2 and
t=1 —1>1. From [62]

T2(25 —6;) curve gets shifted to the left for increasing values of 5. The equilibrium

solution corresponds to points where

AW (51,8)  d(wi(61) + wy(25 — &1))

— =T,(6,) —T3(20 — &) = 2.72
d(Sl d(Sl 2(51) 2( 5 51) 0? ( 7 )

meaning again that tensions are the same in both elements. Graphically it is the
point of intersection of the curves T3 (d;) and T%(d;). A point of equilibrium is

stable when 3 B
PW(01,8) _ dTH6)  dT3(25 = b)
doe?  do do,

> 0. (2.73)

Graphically this means that the configuration is stable when the T3 (d;) curve
crosses the T2(20 — d1) curve from below, and is unstable if it crosses from above.
One can see that the configuration (0,2,0) is always unstable. When the maximum
of the absolute value of the modulus in phase II is smaller than the moduli in phases
I and IIT as in Fig. 2.26, the two configurations (1,1,0) and the symmetric (0,1,1)
are stable (shallow spinodal region). When the negative modulus is sufficiently
larger, as in Fig. 2.27, the stable configurations are (2,0,0) and (1,0,1), while the
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configuration (1,1,0) is unstable. The corresponding equilibrium curve o(0) for the
overall chain is continuous as in Fig. 2.28(a) for the first case. For the second
case, shown in Fig. 2.28(b) the tension changes suddenly when one of the half-

sarcomeres jumps from one stable configuration to the other. In what follows the

| \ /
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Figure 2.26: Tension-deformation curves for the chain with two elements in series. The case of
shallow spinodal region (t>1/2), S=stable, U=unstable. The system presents a stable configura-

tion with one element in the spinodal region

absence of the negative slope in the global tension deformation curves will be used
to explain the experimentally observed positive slope of the T5(9) curve. However,
to make the resulting pictures more realistic we need to increase the number of

element in the chain.

In the case of N elements one can show that no more than one element in the
spinodal region (in phase II) can be present in a stable configuration. Indeed if we

rewrite the total energy of the chain with N elements as a function of N-1 variables:
Nl

W(b1,...,0n_1) =W (51, oo, NO =Y 52-) (2.74)
i=1

we obtain that the equilibrium configuration §;(d) is a local minimum of this energy
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Figure 2.27: Tension-deformation curves for the chain with two elements in series. The case
of steep spinodal region (t<1/2). The system does not present a stable configuration with one

element in the spinodal region

Ty Lz

.10 2.0.0)

(a) (b)
Figure 2.28: Overall tension-deformation curve for a chain with two elements superimposed on

the T5 — §/2 curves for a single element (dashed). (a) Shallow spinodal region (t>1/2) (b) Steep
spinodal region (t<1/2)
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if the Hessian matrix is positive definite

_E1+EN Ey Ey
E Es+En .. E
H— N 2 N N >0
i Ey Ey EN—l‘l'EN_

Here E; = w"(0;), the tangential elastic moduli in the wells. To insure the positive

definiteness of this matrix, we must require

A;j>0, j=1,...,N—1 (2.75)

) 279

With the definition of k, [, m given above, we observe that stability depends

where

J J E
A= (HE) <1+Z EN
i=1 i=1 "

are the principal minors of the Hessian matrix.

only on [, the number of elements in the spinodal region. Thus if [ = 0 we have
E;>0foralli=1,...,N, and the matrix H(5) is obviously positive definite. In
the case [ > 2, one can always regroup the elements in such a way that the first
and the last elements are in the spinodal region. In this case, we have E; < 0 and
En < 0 and so also A; < 0. Therefore, every configuration with more than one
element in the spinodal region is unstable. Now, consider configurations with one
element in the spinodal region. Suppose that this element is in the N-1 position.

Then A; > 0 for j =1,..., N — 2 and stability depends on the sign of

v ({17 (£2) .

i=1
We can rewrite this expression as:

k ) m
(61) " E(0rr) " E(5m)> (2.78)

Now, since E(d;7) < 0, the necessary and sufficient condition for stability is:

k 1 m
E(67) - E(dr1) * E(0r1r)

The elements are connected in series, so the effective elastic modulus can be written

-1
o7 11
i=1 ¢

69

Ay-1 = (BOD)* (E@m) (B@rm)" (E

<0 (2.79)
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and the stability condition for [ = 1 says that the overall modulus of the corre-
sponding equilibrium branch must be negative.

For tri-linear element, the overall tension-deformation curve in the case of N
half-sarcomeres, was obtained analytically in [62]. The stable branch are shown
in Fig. 2.29 for the case of sufficiently steep spinodal region. There are two
thresholds formulated in terms of overall strain ¢ (Z in figure) outside which the
system behaves like a chain of springs with convex energies. Here we have the
so-called Cauchy-Born solutions, the homogeneous trivial configurations in which
the elements are equally deformed. Inside these thresholds, the overall tension de-
formation curve does not show any regions with negative slope, however the global
minimum solution (Maxwell path, see Fig. 2.29) presents a series of discontinuities
in the tension due to the tension jumps as the elements transform from one phase
to the other.

mi

al

-

Figure 2.29: Absolute minimizer for the chain with ten trilinear springs. Maxwell path: bold
line. From [62]

In the above consideration we have made implicitly a hypothesis that the ki-
netics of the transformation inside individual Xbs is much faster than the rate of

the overall deformation. In this case, at each d we can deal only with one value of
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tension. Even in this approximation, we have been dealing so far only with global
minimum strategy corresponding to the assumption that the temperature 7' = 0,
but the system can still overcome the barriers between the states with equal energy.
In the next section we drop some of those assumptions and present a more realistic

approach which takes into consideration a stochastic nature of the problem.

Stochastic dynamics in a chain of half-sarcomeres

In order to construct a more realistic path for the chain of half-sarcomeres, we can
use the stochastic dynamics method proposed in [73]. The method is based on the
algorithm generated by Gillespie in the 1977 [15], to simulate efficiently systems of
chemical reactions using limited computational power.

Consider a chain of N half-sarcomeres, each one represented by Nx; cross-
bridges acting in parallel. Each Xb can be in two configurations, one generating
the high force (2.12) and another one generating the low force (2.11). For each Xb
the passage from one configuration to the other is considered a stochastic event.

For simplicity, we shall assume that the change of configuration for each Xb is
described by a jump process [73|. As in the original HS71 model, the rate constants
are related through (1.14) and depend on the total length of the half-sarcomere.
At every switching event (which represent the power stroke of one Xb), the tension
generated by the half sarcomere under consideration changes and a new mechanical
equilibrium is reached before the next event takes places. The new mechanical
equilibrium affects the length of all the half-sarcomeres in the chain. The present
mechanical configuration defines the probability of the subsequent switching event
(see Section A.9). The resulting system follows a particular set of local minima of
the total energy instead of the global minimum.

We did not explore with this method our global model presented in Section
2.3, where both chemical rate constants k. and k_ depend on the stretch of the
half sarcomere (see later in Section 2.8). Instead, to roughly capture the elasticity

inside the wells, we have made the following choice of the constants:

—Kdé/2

ki =K°(e k8T ) (2.81)
Kd§/2

k_ = K%(e*sT)

where the constant k% = 1000s~!. In this way we guarantee that both rate con-
stants are affected by a change in the length of the half-sarcomere, still assuring

that their ratio satisfies equation (1.14). A different choice was made in [73]| where
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(to mimic the hypothesis made by Huxley and Simmons in [10]) k_ was made to be
constant and k; was defined by (1.14). However, despite this change, the results
are similar.

With the Gillespie method one can create, point by point, the overall T, — 0
curve, imposing a value of the total deformation ¢ and following the time evolution
of the tension up to the steady state. In this way we can simulate the “real”
stochastic behavior, obtaining a particular sequence of local minima chosen by our
dynamics.

In Fig. 2.30 and Fig. 2.31 we show two numerical tests, with four and six-
teen half sarcomeres. We can see that the analytical requirement excluding half-
sarcomeres in the spinodal region is respected. Overall we obtained jumps and
only positive slope of the overall T5(d) curve. By increasing the number of half

sarcomere, we approach a curve with a flat portion in the central region.

%0 -10 \/ 10 20

Figure 2.30: Tension deformation curve for four half-sarcomeres. Simulation (points) and T%(d)

curve for a single half sarcomere (solid line)

Notice that in real experiments, because of the large number of sarcomeres,
it is not possible to see the jumps in the 75(d) curve associated with the pop-
ping of individual half-sarcomeres. However, a non-homogenous distribution of
the sarcomere’s lengths should be possible to observe in the myofibril. While some
experiments indeed show such an inhomogeneity, at least in some regions of the
tension-length curve [24], [89], it is not clear whether this mechanism is really
operative in the muscle fibers [90].

To summarize, the method described above can potentially reproduce the flat
portion of the T5(d) curve under the assumption that different half-sarcomeres
can be viewed as following different paths. A fully mechanical description of the

energy landscape can be obtained only for rather simple shape of the T5(d) curve
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\

-60 -40 -20 \/o 4o 60

Figure 2.31: Tension deformation curve for sixteen half-sarcomeres. Simulation (points) and

T>(6) curve for a single half sarcomere (solid line)

describing individual half-sarcomeres. In order to proceed in the general case when
the temperature T # 0, the stochastic dynamics methods appear to be necessary.
The Gillespie method requires introduction of a chemical reaction and of the related
rate constants. This is, however, against our main idea of staying with a fully
mechanical model of muscle contraction. Simulation of a large scale continuous
stochastic dynamics for the whole chain does not appear doable at the moment.
Therefore, in the next Section, we focus on another way to capture the plateau of
the T5(0) curve.

2.7.2 Distribution of the attachment positions

Another way to obtain the flat plateau of the T5(d) curve is to assure inhomogeneity
already at the level of individual Xbs [48]. We recall that the basic element of every
model of muscle contraction is the presence of thermal fluctuations. Even if these
fluctuations small, compared to the scale of the power stroke, they can influence
significantly the level of the stretch of the elastic element in the state of attachment
to the actin filament. In the presence of thermal fluctuations we must also consider
the possibility that the head attaches to actin site when its elastic element is away
from its reference state. This will lead to a situation in which some Xbs have the
elastic element stretched more than others, or even compressed. As a result we
loose the uniformity of the population of Xbs. As it was observed in [48] where
this mechanism has been proposed for the first time, this leads to the averaging of
the ordinates of 75(0) over the distribution of the attachment sites.

Let us first show how the distribution of the attached sites affects the formu-

las obtained in Section 2.6. The dispersion in the attachment positions can be
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mimicked by a nontrivial distribution of the values of l5. Assume that for the ¢-th
Xb:
=1+ (2.82)

where 9" is a random variable uniformly distributed in the finite interval of possible
attachment sites. This range was postulated to be £5.5/2 nm in [48|, because
5.5 nm is the diameter of the monomer of actin. This will also be the value used
in the present work (Ij € [lo — 2.75 nm,ly + 2.75 nm]). The assumed dispersion
affects directly the steady state probability distribution given by equation (2.35).

Thus, we can write:

e—ET(x,é,zpi)/kBT

ps(x7 6) 'QZ) ) = ffooo e—ET(x@W)/kBde . (283)
The total energy depends on 9" only through the elastic energy
E.(z,0,¢") = =K(x — Iy — " — )% (2.84)

The total tension in the steady state is then given by:

Nxp Nxp

)= > Ti0) Z/ K (apa(, 0,07 — (o +07) = 8)) dz (2.8)

At a given ¢ the tension T3(d) for the i-th Xb is equal to the tension generated by
the Xb with ¢* = 0 additionally stretched (or compressed) by §° = ¢ + ¢*. The
overall relative tension 75(d) when the imposed increment is 0 is then the average

of the values given by (2.29) over the range [§ — 2.75 nm, J + 2.75 nm)|

Nxp

— Z Ty(6") (2.86)

Similar formulas can be obtained for T} (6).

A nontrivial dispersion, compatible with the assumed distribution has been
confirmed by X-ray interference studies in [88]. The authors used a high-resolution
small angle X-ray scattering to study X-ray interference effects generated by the
arrays of myosin Xbs in contracting muscle to obtain sub-nanometer resolution
of the movements of the Xb during contraction. The observations show that in
isometric contraction the lever arm angles are dispersed through +(20° — 25°) on
either side of the mean orientation [88]. Also, it is shown that, during quick release,
the Xbs move towards the new conformation in synchronized fashion, with constant

dispersion.
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An indirect evidence of the attachment site non-uniformity can be obtained
from the multi-exponential fitting of the tension-time curves obtained in the ex-
periments with sudden total length increment (see [49], [14], [86]). To explain this
idea it is sufficient to recall that in the Huxley and Simmons 1971 model the rate
of tension recovery r was given by:

() = ky + k= k_(1 + ¢ FoT) (2.87)
where, again, their y is our 0. If all Xbs have the same attachment distance [y,

then the tension vs. time curve for the half-sarcomere is:
T(t,0) = (T1(6) — To(8))e " @ + Ty(6). (2.88)

In the case when this assumption is valid, the experimental curve should be de-
scribed by one exponential function. If we consider two equal populations of Xbs,
with two different distances from the attachment site, say Iy + ¢ and [y — 1, there
appear two different rates (9) which we shall denote by r(§ + ) and (6 — ). In

this case the tension vs. time curve is given by:

T(t,6) = 2T+ 0) + (L6 +0) = BO+ ) M (2.89)

0035 )+ (35— ) — o5 — )0

One can see a sum of two exponential terms instead of one. The steady state value
of the total tension is the average of the two values of T5(d) of the corresponding
populations. If more populations are present, a multi-exponential fitting would be
needed to represent the resulting tension-time curve. In general, the dispersion
implies that each Xb has its own level of pre-stretch and therefore the total energy
is different for different elements. The global recovery can then be fit by a sum of
exponential terms with different exponents. in the next Section we show that this
is exactly what follows from experimental observation.

Therefore we can accept that the attachment sites are dispersed and, by per-
forming a direct integration in the formulas for the tension (see, for instance, equa-
tion (2.85)), obtain the curves shown in Fig. 2.32(a). As we see, if one includes the
distribution of attachment sites, averaging out the tension in the central region,
one obtains a rather realistic behavior of the T5(9) curve with negative slope flat-
tened around ¢ ~ 0. The dispersion also affects the slopes of the linear segments of
the T5(9) curve and the 77(0) curve. For instance, by maintaining the same values

of parameters as in Fig. 2.19(b) but adding the dispersion of the attachment sites,
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we obtain the curves shown in Fig. 2.32(a), where the curves with no dispersion
are also shown for comparison. The remaining quantitative inconsistency leads to
the necessity to slightly changing the values of parameters. The T1(0) and T5(J)
curves obtained by the best fit (values reported in Table 2.1, column Best fitting)
are shown in Fig. 2.32(b).

One can see that the predictions of the resulting model are in rather good
agreement with experiments. While the optimal fitting should also depend on the
elasticity of the filaments, which is not considered here, the basic features of the fast
muscle response appear to be captured by the model with only two conformational
states. This is most remarkable in view of the fact that we did not impose any

phenomenological dependence of the rates of transitions on the length increment

J.

Table 2.1: Values and meaning of the main parameters used for the numerical simulations and

analytical computation for the purely Huxley and Simmons type model

Description Analytical value Best fitting value
Intercept of T5/Ty with the abscissa O(ry1=0) = 10.8 nm -
Intercept of T1 /Ty with the abscissa Oy =0y = —3.87 nm -
Slope of the Ty /Tp vs. § curve 0.138 nm~1! -
Slope of the Ty /Ty vs. § curve 0.258 nm~1! -
Rate of the slopes 1.87 -
Total stiffness ko K/ (ko + K) 1 pN/nm -
Elasticity of the elastic element K 4.4 pN/nm 4.03 pN/nm
Elasticity of the low force generating state k1 18.17 pN/nm 11.4 pN/nm
Elasticity of the high force generating state ko 1.29 pN/nm 1.33 pN/nm
Ratio kqo/ K 0.294 (0.310) 0.330
Curvature of the maximum k3 -8 103 pN/nm 8 103 pN/nm
Position of the maximum b - a1(0) — (a9 —a3)/5
Pre-stretch in low force generation state [y 0.05 nm 0.39 nm
Distance between the chemical minima a 10.75 nm 10.41 nm
Thermal energy kT 4.14 pNnm -
Drag coefficient of the Xb 7 60 — 90 pNns/nm -

2.8 Rate of fast tension recovery

In the Huxley and Simmons 1971 paper three features of the fast tension recovery
were highlighted: the linear decrease in tension T} (¢), the nonlinearity of the steady
state tension T5(d) and the particular kinetics behind the transition from T} () to

T5(5). In this Section we consider in more detail this last feature and show how
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T1/TO and T2/TO tensions
1.75¢

Step

T1/TO and T2/TO tensions
1.75+¢

Step

-10 -8 -6

Figure 2.32: Fitting of the experimental data in the model with nonuniform distribution of
the attachment sites. Points: experimental data. Straight dashed line: Linear best fitting of the
experimental data. (a) T1(0)/Ty and T2(0)/Ty predicted without dispersion of attachment site
(continuous lines) and with dispersion (dashed lines), ko/K = 0.294 (b) T1(0)/To and T>(8)/To

with a dispersion of attachment site, ko /K = 0.310. Abscissa units: nm
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our modification of the Huxley and Simmons model matches the peculiarities of
the kinetics of force recovery.

We recall that after the imposed length step, the tension quickly reaches the
value T7(6) and then follows an almost exponential time trajectory before reaching
the final value 75(0) (see Fig. 1.14(a)). Some authors used a multi exponential
fitting to describe this curve and as a result had to deal with several characteristic
times [49] [14] [86], while others have simply taken as a characteristic scale the time
needed to reach the value Ty + (7, — 71)/2. This last approach is equivalent to

approximating the tension-time curve with a single exponential function of time:
T(t,6) ~ (Ty — Ty)e ™™ + Ty. (2.90)

One can then define the resulting parameter r as the characteristic rate of the
process: indeed r~! is the time needed to reach the (1 — 1/e) = 64% of the total
recovery.

In experiments it takes several milliseconds to reach the value T5. After short-
ening the final tension 75 is reached after a shorter time, less than one millisecond
for high negative length increment. In general the rate of recovery r varies with 0.
Thus we already know that r(d) is low at high stretch step and increases almost
exponentially as one passes to higher shortening steps (see Fig. 1.15). Huxley and

Simmons fitted the experimental dependence r(§) with the function:

r(y) =ro(1+e)

with ro = 0.2 ms™" and a = 0.5 nm™'.

The particular shape of the experimentally measured function r(¢) affected
considerably the structure of the Huxley and Simmons 1971 theory. Thus, the
choice of very narrow energy wells in this model was directly linked to the necessity
to reproduce the particular slow recovery at large positive stretching steps.

To explain this statement we recall that the Huxley and Simmons 1971 model
predicts that r(J) = k4 + k_, where the k’s are the reaction constants controlling
the rate of transition from one conformational state to the other. The condition
of detailed balance in our notations (@ is negative in our model) requires that
ky/k_ = exp[—0K(—a)/kgT]. Given this condition one still has the freedom to
modify the constants at different values of § in order to fit the experimental data.
In the Huxley and Simmons model this freedom is essentially absent because the
energy landscape, even if degenerate, is given. By putting a very narrow well

in the post-power stroke state, Huxley and Simmons put the maximum and the
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minimum at the same value of x. In this case every change in the stretch of the
elastic element affects both the “well” and the “barrier” in the same way. The
condition k_ = const is guaranteed by this choice, and consequently r goes to zero

at high positive increments according to
r(6) =ky + k- =k_(1+exp[—0K(—a)/kgT]). (2.91)

Under this assumption the fitting of the experimental rate recovery curve be-
comes possible and it gives the values of both k_ and Ka. We recall that the
value of Ka obtained in this way by Huxley and Simmons turned out to be grossly
underestimated.

Before discussing quantitative effects of the elasticity of the wells, we observe
that by dropping the hypothesis of infinitely steep wells, we loose the strong asym-
metry of the function r(J) for lengthening (6 > 0) and shortening (6 < 0). Indeed,
in this case, k_ is no longer constant and increases with § (this also justifies the
assumption (2.81)).

In our general case we can quantify the dependence of the kinetic constants on
the structure of the energy landscape by using Kramers’ theory (see Section A.7,
we also refer to [74]). The recovery of tension is a non-equilibrium process, and
the canonical distribution does not allow one to compute the tension transients.
We should instead solve directly the Fokker-Plank equation and obtain the time
dependent probability distribution p(z,t). We recall that Kramers’ theory (see
Section A.7) is based on the the hypothesis that, in a double well potential, the
time needed to relax inside each of the wells is much shorter than the mean time of
the transition between the wells. This is true for the case of muscle with realistic
values of parameters and correct geometry of the myosin heads [64]. Thus, if the
drag coefficient of the particle is 60 — 90 pNns/nm, the characteristic time to relax
inside each minima is of the order of 7yn/K ~ 0.1us. The mean exit time should
be comparable to the time scale of the recovery process giving 7 ~ 1ms. Now, it
is easy to check 7 > 7 as required, and one can approximate the diffusion process

by a jump process. Defining the fraction of Xbs in each well during the transient

as:
ni(t) = [, p(z,d,t)dx
' o (2.92)
() = [ ple, 8, t)da,
and the corresponding quantities at the steady state (2.36), one can write:
-9 -9 -9 -9 -6
R(t) = () = —k () + kA = ko — (ks AR (293)
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In the Kramers’ theory the “chemical” rate constants are fully determined by the

shape of the energy landscape. Thus for k_ we obtain:

k- = (ksT/n)[n} / " (e, 8) ] (2.94)

az

which gives for the rate of recovery:

ksT/n
)=~k k_ = . 2.95
T( ) ++ n({ng fac;1 ps(x,é)—ldx ( )

Here pg(z,d) in (2.94) and (2.95) is a function of the energy landscape which can
be found from equation (2.35). Fitting of the experimentally observed rate of
recovery 0 dependence will then pose a constraint. We shall view this constraint
as a restriction on the height of the energy barrier between the wells.

Observe that since ks # oo it is no longer true that k_ = const as in the
Huxley and Simmons case. From equation (2.95) we can see that the leading term
is inversely proportional to n{n3, and when § is positive and large, we expect that
n$ ~ 0 and n ~ 1. Therefore r(J) must increase for high positive values of ¢ which

is in contradiction with observations.

~
Rate recovery

Figure 2.33: Increasing rate of recovery for high stretches and related chemical energy. (a)

Chemical energy (b) Rate of recovery vs §

One way to avoid this behavior at large 0 > 0 is to make the maximum of the
energy (the barrier height) dependent on the imposed step. To this end we can

consider a piecewise parabolic energy, with the third parabola placed upside down
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between the two conventional parabolic wells:

(}k x2 >
o =0
1
Ee(x) = §k3(x—b)2+e by < < by (2.96)
1
§k2(x—a)2+d $<b2

Here, as postulated, k; > 0, ko > 0 and k3 < 0. The function (2.96) is shown in Fig.
2.33(a), where the height of the energy is denoted by e. The parameters can always
be chosen in such a way that the total energy is a continuous function of x, even if its
first derivative is not. The smoothness of the energy is not important for computing
the integrals in the formula for p(x,d). If the maximum is constant the rate of
recovery shown behavior discussed before, as shown with a numerical simulation
in Fig. 2.33(b). Suppose now that the local maximum of E.(x) representing the
barrier is a monotonically increasing function of §, e = e(J) as in Fig. 2.34(a).
In this case we can reduce the rate of recovery in stretching tests, obtaining a
realistic behavior as in Fig. 2.34(b). Indeed, with the increase in e the weight of
the integral term in (2.95) also increases which can in principle balance the term

nng and ensure the desired shape of 7(d). This is however not the choice that we

>
& [
@ ]
o (5]
2 °
2
&

0
S S R
a 0 -8 -6 -4 -2 0 2 4 6 8
X & (nm)
(a) (b)

Figure 2.34: Variable barrier in the chemical energy. (a) Shape of E; for three values of §, the

maximum e is a function of §. (b) Rate of recovery when e(d)

make in the rest of the Thesis.
We decided instead to simply omit the stretching part of the curve r(¢), for

the following reasons. First, recent studies show that in the stretching experiments
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mechanisms other than simple power stroke may be important in generating the
tension recovery |91]. Till now we always considered that, even if the skeletal mus-
cle’s myosin has two heads, only one head is involved in the power stroke process.
If, on the other hand, the steric effect due to the stretch allows the second head to
be attached contemporarily, a change in the total number of Xb has to be intro-
duced, probably as a function of the stretch itself. Second, the experimental time
scale of tension recovery after stretch is so slow (tens of milliseconds [49]) that
the attachment-detachment process may become important. Both mechanisms,
getting the second head involved and activating the attachment-detachment mech-
anism, are neglected in the Huxley and Simmons model. We also omitted them
in the present study which only aims at describing the effect of elasticity in the
wells. In what follows we shall be mostly preoccupied with the physiological range
of behavior of muscles, which means with the shortening range. In this case we

can avoid introducing questionable e(§) behavior.

With this limitations in mind, we can still deal quantitatively with the two
other defects of the Huxley and Simmons 1971 model. We recall that already in
the 1978 |17] it was observed that the hypothesis of narrow potential wells leads to
an unrealistic time scale of the transition process. Indeed, the rate of transition is
slower at 0 = 0, where the Xb has to be stretched up to a in order to jump, than at
0 = a, where it can jump without being stretched at all. Huxley and Simmons did
not know the elastic energy associated with this stretch, because K was unknown,
but they associated the difference in the values of E.(x) in the bottoms of the wells
with the ATP consumption needed to change the configuration. More specifically,
they assumed that the energy needed to stretch a Xb up to a is 18kgT, which is
the free energy liberated by the ATP as known at that time. Because the rate of
recovery is changing exponentially with the AE/kgT, they deduced that the ratio
of the rates in the cases § = 0 and § = a has to be equal to e = 1078, a value
much higher than experimentally observed. Huxley came back to this problem
in 1996 [48|, showing that indeed at realistic values of K, the rate of recovery is

unrealistically fast (see Fig. 2.5).

Regarding the second problem with the HS71 model, we have to reiterate again
that Huxley and Simmons used a jump process to simulate the change in configu-
ration, and that k_ was used as a free parameter whose value could be imposed to
fit the experimental data. In a more realistic model (2.96) the Xb has to stretch
the elastic element to overcome the energy barrier F,,,, = d. In the Langevin

equation setting for a single quadratic energy well we can estimate the mean first

82



Rate of fast tension recovery Section 2.8

passage time (see Section A.6.3), obtaining:

lk = U/K\/ﬂ-/ll\/kBT/Emax €xp [Emam/kBT] ~1s (297)

Here we used n = 90 pNns/nm, K = 1 pN/nm, kgT = 4.14 pNnm? and E, ., =
80%AG arp = 20kpT.

This rough estimate is obviously not compatible with the observed time scale
of the process. The non-zero curvatures of the wells help, however, to avoid the
problem. The equation (2.97) shows that the time needed to overcome the barrier
is related only to its height. With our first double parabolic energy model (2.7)

and, with [y = 0, the energy barrier is equal to:

ak(K + ko)? — /@R + T2 4 2K k1 + Fika) |
(b — F) (K + ko) ‘

1

(2.98)
One can see that AEp approaches asymptotically the value 1/2Ka? when ky goes
to infinity. For finite values of ky the barrier is lower than that as shown in Fig.
2.35 for given values of K and k;. In the case of narrower wells the Xb that is in
the well on the right does not feel the presence of the second well till it reaches
the maximum, which for ks = oo is in © = a, therefore this value of x has to
be reached only through thermal diffusion in a quadratic potential with curvature
K + k;. Within the hypothesis of elastic wells, thermal fluctuations must stretch
the elastic element only till an intermediate configuration because afterwards the
system will be driven by the drift forces. Mathematically this means that the
value of tx (2.97) has to be computed with the lower value of AEr obtained from
equation (2.98).
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Figure 2.35: Effect of the lowering of k2 on the size of the energetic barrier. k; and K are

assumed constant. The figure is a sketch where the third parabola is not considered
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To summarize, introduction of the elasticities in the wells affects the first mean
passage time and allow the fitting of (0). To reproduce the whole curve r(d) in the
shortening regime, we need to consider the third parabola as in (2.96). In order
to affect as less as possible the results obtained for the steady state, we choose
to make this third parabola as narrow as possible. In this way we can match the
continuity condition without affecting the bottom areas of the minima.

The Kramers’ theory (see Section A.7) gives an analytical expression for the
dependence of the rate of recovery on ¢ (equation (2.95)). It can be simplified
further when the asymptotic approximation, described in equations (2.41), is valid.

In this case we obtain (see [74] for a formal derivation):

r(6)~! = (2.99)

2ET(b) — ET(al) — ET(CQ)
2kpT

27 lnang]? || Ep(b) |72 Ey(a;)”1(Ef(as)) %] exp

Here we have used the hypothesis concerning the narrow structure of the third
parabola, allowing us to approximate the value of the variable © = x,,,, (where

the total energy reaches its maximum) by b. Indeed, because K/ks ~ 0,

K[k +b

mar — 1 | 1.-/7  — b 2100
v 1+ Kk (2.100)

Within this approximation, the presence of the third parabola gives rise to a con-

stant multiplier (pre-exponential factor) in (2.99) of the form

1
| EL) |2 exp {

=

This constant value has been used to fit r(0).

With all the approximation made, the analytical expressions needed to analyze
the influence on r(0) of the parameters of the model are too complex, due to the
presence in equation (2.99) of the terms n; and ny. Therefore, instead of using the
analytical solution we can as well turn to direct numerical integration in the formula
(2.95). We assume that we are in the framework of the distributed attachment sites
model as in Section 2.7.2. Then for each attachment site we obtain its own value of
r(d). To replace them by a single function of r(9) allowing one to make comparison

with experiments, we plot the curve

Nexp
1

Feap(t) = et (2.101)

Teap i
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and then perform one-exponential fitting of this curve. The resulting function 7(9)
is strongly controlled by the choice of the parameter b and we used this remaining
freedom to fit the experimental curve. In fact, this parameter can be viewed as
a kind of opposite to the one used in Huxley and Simmons 1971 to fit the same
curve: shifting b to the left, makes the dependence of k. on § weaker, because the
local maximum at b and the local minimum in the first well, become closer.

The overall predictions of the model are compared with experimental data in
Fig. 2.36 for the set of parameters reported in Table 2.1, column Best fitting. This
set of parameters works rather well for both the rate of recovery and the steady
state behavior (see Fig. 2.32(b)).

r(5) (mS‘lj

Figure 2.36: Rate of the tension recovery at different length steps 6. Comparison of the predicted
values (solid line) at the values of parameters shown in table (2.1), and the experimental points
(from [10], [14], [67], adapted to be consistent)

2.9 Discussion

We would like to make some final comments regarding the description of the overall
elasticity, since its value have previously generated problems for the Huxley and
Simmons 1971 model. The introduction of the elasticities in the wells, makes
ambiguous the definition of the total stiffness of the Xb. This stiffness is represented
by two elastic elements in series and does not depends on K only. It also depends
on the state of the bi-stable element. If the experimental rigidity is measured
in rigor, where ny = 1 and n; = 0, it should assume the value koK /(ks + K).

We choose the parameters ky and K to ensure that this total stiffness is equal
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to 1pN/nm. This value is lower than the values obtained in experiments, but we
should remember that the elasticities of the filaments have been neglected in our
analysis. The experimentally measured value of total elasticity does not take into
account the compliance of the filaments, while the data that we have used are
obtained from the whole structure: cross-bridge and filaments. Thus, the value
assumed for total elasticity in our model is 1pN/nm, which must be interpreted as
the elasticity of the cross-bridge and the filaments connected in series. This makes
this “seemingly” low value realistic.

In this Chapter we have obtained a quantitative description of the power stroke
in a fully mechanical framework. We model the other part of the Xb cycle, the

attachment-detachment process, in the next Chapter.
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Chapter 3

The attachment-detachment process

3.1 Introduction

The physiological shortening of skeletal muscles can vary over a wide range of
lengths, reaching up to several centimeters. Since the sarcomeres in the myofibril
are distributed in series, such huge contraction is achieved by means of a much
smaller shortening of each half-sarcomere. The series structural organization allows
each half-sarcomere to maintain its length in the plateau interval of the relation
force-length F'—1[ described in Chapter 1. This helps to stabilize muscle mechanical
behavior and optimize the force generated. In the experiments of interest the
sarcomere, having a physiological length of 2.2 um, can shorten in the range of
tenths of a micrometer [67]. A single myosin motor produces a force of 5 pN [92]
and due to the parallel distribution of the contractile units inside the sarcomere,
the tension generated in each actin filament can be two orders of magnitude larger.

As described in Chapter 2, the typical size of the power stroke is of the order of
ten nanometers [84] and the distribution of the Xbs in parallel limits the maximum
power-stroke related shortening of a half-sarcomere to this value. The larger global
shortening (tenths of a micrometer) is generated by a cyclic interaction of the Xbs
with the active sites on the actin filament. During this process a detachment in
the post-power stroke configuration of Xb is needed before the next attachment
in the pre-power stroke configuration takes place. As explained in Chapter 1, the
corresponding cycle was first proposed in 1971 |9], it is now called Lymn-Taylor
cycle. The description of this cyclic attachment-detachment process can be found
neither in the HS71 model nor in the model described in Chapter 2, because both
neglect the attachment-detachment process. In order to have a comprehensive

mechanical model of muscle contraction a new component has to be added.
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A first model of cyclic interaction between actin and myosin was already pre-
sented in Huxley 1957 model [4] described in Chapter 1. Its first essential feature is
that each Xb contains an elastic element which allows for Brownian oscillations be-
fore the attachment and which generates a force after the attachment. The second
essential feature is that the rate constants for the attachment-detachment process
depend on the stretching of the elastic element and are asymmetric around the
unstressed configuration. As we show, these are the two fundamentals hypotheses
behind the so-called Brownian ratchet idea which is the main subject of the present
Chapter. Recently Brownian ratchets have been used to model the behavior of var-
ious molecular motors (see 68| for a comprehensive review), a family of proteins

that transform chemical energy into mechanical work.

Skeletal muscle myosin II, the main protein of the contraction mechanism, be-
longs to the superfamily of a motor proteins found in eukaryotic tissues. Motor
proteins generate motion inside the cell which is faster than diffusion: the com-
plex structure and the dimension of the eucaryotic cells make the diffusion process
too slow to supply the needed transport velocities of nutrients, waste, protein etc.
An increase in the size of the cell by a factor of 10 should be slowing down the
diffusional transport by a factor of 100 (see Section A.4 in Appendix). Instead
motor proteins can transport cargos at constant speed by walking along either the

microfilaments (actin) or microtubules.

The most prominent example of actin motors is myosin II, while kinesin and
dyneins are microtubule motors. Two important aspects common to all cytoskele-
ton filaments have been observed experimentally: first they exhibit periodicity with
the period of the order of 10nm; second they are polar, so it is possible to define
a “positive” direction for the motion (see [50] and references therein). Modeling
of the motion of actin motors must take into consideration that the acting con-
figurational forces are only few times kgT', and therefore the escape times for the
energy wells is finite. Therefore molecular motors are microscopic objects that live
in Brownian domain. Since they move along one dimensional periodic structures

they can be modeled as Brownian ratchets [40], [32], [51].

We start by introducing a simple non Brownian mechanical model of a ratchet
which furnishes the desired extension of the model proposed in Chapter 2 but which
is not compatible with the idea that the motor is powered by the hydrolysis of ATP.
Therefore we reintroduce fluctuations and review the particle motion in a tilted
periodic potential subjected to thermal noise. Then we move to Brownian motors,

exhibiting the variety of their types and explaining the way in which they are able
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to rectify the external noise using an appropriate structure of the potential and a
source of colored noise which maintains the system out of equilibrium. In particular
we describe in some detail two important types of Brownian ratchets that can be
useful in muscle mechanics. Next we modify one of these models and adapt it to the
physiology of muscle contraction. We then consider several interacting motors and
introduce the system of stochastic differential equations governing their collective
dynamics. The analytical treatment of such type of systems does not appear
feasible and to analyze different relevant regimes we develop a numerical method
allowing one to simulate the behavior of the proposed model. Some qualitative
results obtained in the course of our numerical experiments are discussed at the
end of the Chapter.

3.2 A model of frictional motor

The model of Huxley and Simmons is able to mimic the steady state tension devel-
oped by the muscle in the isometric case (Tp). This tension however is maintained
without consumption of energy, which violates physiological experience. As we
have seen in Section 1.3.1, where we described the experiments made by A.V. Hill
in 1938, during isometric contraction skeletal muscles constantly produce heat (see
the maintenance heat rate term in (1.1)). This fact indicates that cyclic actomyosin
interaction requiring energy source is present even during macroscopically steady
isometric contraction. In Section 3.1, we discussed the need of a new component
in the model in order to describe the large observed shortening of muscles. Now
we see that such extension of the model is needed even to describe the steady state
force generation in the isometric case.

To understand this better we may think in terms of an analogy with a car that
is kept steady on an uphill road. We can reach this situation in two ways, either by
activating the mechanical breaks, where no energy is required, or by maintaining
the engine working and producing a forward force that balances exactly the back-
ward force. Obviously, in the latter situation the clutch is constantly generating
heat and therefore the energy has to be constantly consumed. Despite the losses
this situation is more flexible allowing the driver to adapt quickly to change in the
external conditions (e.g. green light replacing red light).

We can use this intuitive analogy to try to mimic the attachment-detachment
cycle responsible for a constant force and a constant heat rate in tetanized muscle.

Consider the following mechanical model. Suppose that a body with weight P is
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placed on a belt which is moving with a speed v. The belt is characterized by a
coefficient of dynamic friction py and the load is attached to a spring of rigidity K
(see Fig. 3.1(a)). The equation of motion for a continuously sliding body can be

written as

mi(t) + Kx(t) + paP = 0. (3.1)

The body reaches the steady state £ = & = 0 at the position x where —Kx = puyP.
Observe that the constant force that the model produce is exerted on the external
wall. In order to produce this constant force, a certain amount of energy must be
spent to maintain motion of the belt. If we substitute the elastic element with a
constant force T', the body will moves only when 7" = p,P, but at this value the
velocity can not be determined by this model (Fig. 3.1(a)) The problem with this

T
K
© —V ©
X X
(a)
y(X) T
K
o —V ©
X X

(b)

Figure 3.1: Mechanical models for a constant heat production. (a) Friction belt. (b) Rugged

rail

model is that the force does not depend on the velocity. In order to relate the
generated force with the velocity we can replace the frictional belt by a rugged
landscape as in Fig. 3.1(b). Using a bit oversimplified approach, we can view the

particle z as moving on a two-dimensional rail y(x). Suppose for simplicity that
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the rail is piecewise linear:
+tan(a)(z —n/2) n<zr<n+1/2
y(l’) = |n| =0,1,--- (32)
—tan(a)(z —n/2) n+1/2<zx<n+1
Suppose that the rail is moving in the negative direction at a constant speed v so
that y(x,t) = y(z + vt). Suppose also that the particle is embedded in a viscous
fluid which provide in this model a dissipative mechanism. Finally, we place a
spring which links the particle to a fixed position x = 0. In the overdamped

regime, the equation of motion of the particle takes the form

K
[1 + tan®(a)]@(t) + —z(t) + vtan®*(a) = 0. (3.3)
n
The solution can be written as:
() = —% tan?(a)[L — e~ 7« (3.4)

It is not difficult to see that the switch from one branch in (3.2) to the other does
not change the reaction force acting on the particle due to the rail. The position
of the particle reaches the steady state z = —(vn/K)tan?(«) exponentially fast.
As we see the higher is the velocity of the belt the larger is the force acting on the
spring. The motion of the belt here is mimicking the effect of the ATP hydrolysis.

If we switch from the isometric condition to an isotonic one, removing the spring
and applying to the particle a constant external force F,;, we can construct the

force velocity curve:
#(t) = — cos?(a)[Fupe/n + vtan®(a)]. (3.5)

One can see (Fig. 3.1(b)) that the velocity depends on F.,; linearly. The main
problem with this model is however elsewhere. Thus it is clear that the isotonic
energy release due to hydrolysis of ATP can not be represented by the unidirectional
force generated by the moving belt. The way to overcome this problem is to replace

a mechanical ratchet by a Brownian ratchet.

3.3 Brownian ratchets

When thermal fluctuation are not negligible, the equation of an overdamped motion
of a particle in a potential V' (z) takes the form (Langevin equation, see Section
A.3):

ni(t) = =V'(z) + /nksTT(t). (3.6)
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The random term I'(¢) corresponds to white noise and has the following proprieties:

< F(tl) >= / xlpp(xl,tl)dxl = O, (37)

—00

where pr(z,t) is the probability that I assumes the value = at time ¢, and
<I(t)l(t2) >= / / T12pr (21, b T, to)dridry = 0(t; — to). (3.8)

In what follows for every function f(x) of a stochastic variable x whose probability
density function is p(z), the brackets < f(x) > will stand for its average value

computed as: o
<f@)>= [ fplar (3.9
Now suppose that V' (x) is a double Woeoll potential. Then, as it was explained in
Chapter 2, equation (3.6) describes the Huxley and Simmons type model (see equa-
tion (2.32)). The corresponding Fokker-Plank equation has the following steady
state solution:
ps(x) = Nexp[—V(x)/(kgT)]. (3.10)
The crucial condition for (3.10) to be admissible is that the probability current
_V’(:E)p _kgTop

5= n n O0r

0. (3.11)

We recall that in the steady state we must have S(z) = const. When we know ad-
ditionally that the energy V' (x) goes to infinity at the boundaries, we can conclude
that S = 0.

When we consider a periodic potential V' (z), the condition S(x) = 0 is no longer
true, and the most important part of the analysis is to compute the constant S for
the steady state. The constant S is a function of the parameters of the potential
V(z). In Appendix (Section A.8) we show that the constant probability current
S is related to the mean velocity v (drift velocity) of the particle through the
following relation:

<v>=< i(t) >= 27185 (3.12)

An important observation concerning the periodic potential V' (z) was obtained
by Risken [23]. He showed that in a periodic potential V(x) of period L which
is tilted by a constant force F, i.e. V(x + L) = V(x) + F, the steady state drift
velocity is given by:

nv=mn<i(t) >=
21D (1 — e~ 27F/P)

fozﬂ eV(@)/D ]y fozﬂ e~V@)/Ddg — (1 — e=27F/D) f027f eV@/Ddy [ eV(m’)/Ddf/ |
3.13
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where D = kgT'/n is the diffusion coefficient. We immediately see that < & ># 0
if and only if F' # 0 despite an asymmetry of the potential. This excludes the
possibility of constructing a motor which is able to extract work from a source of
thermal fluctuations. The basic idea behind this result can be traced back to a
conference talk by Smoluchowski in Miinster 1912 which was elaborated on later
in Feynman’s Lectures on Physics |6]. Both authors considered a device, shown in
Fig. 3.2, which consists of an asymmetric gear known as a ratchet, which rotates
freely in one direction but is prevented from rotating in the opposite direction by
a pawl. The ratchet is connected by a massless and frictionless rod to a paddle
wheel that is immersed in a bath of molecules at a given temperature. Each time a
molecule collides with a paddle, it imparts an impulse that exerts a torque on the
ratchet (the mechanism is imagined to be small enough that this tiny force could
move it). Because the pawl only allows the motion in one direction, the net effect of
many such random collisions should allow the ratchet to rotate continuously in that
direction. The ratchet’s rotation can then be used to do work on other systems,
for example for lifting a weight against gravity. The energy necessary to do this

work apparently would come from the heat bath, without any heat gradient.

Equation (3.13) is in contradiction with this seemingly intuitive result, because
necessarily v = 0 when no external force F' is acting on the system. Actually this
intuition is wrong. Indeed, in the Smoluchowski and Feynman’s Gedankenexperi-
menten the pawl must be extremely soft to admit a rotation even in the forward
direction, and as pointed out already by Smoluchowski, it is also subjected to
a non-negligible random thermal fluctuations. The flux in one direction is only

possible if the two parts of the system are kept at different temperatures.

Now observe that only when the constant S in equation (3.12) is different from
zero do we have a net flux of particles in the steady state. To have such a flux
the system must be either affected by a directional force F' or be maintained by
external actions in out of equilibrium state. In the case of muscles, this external
action is provided by the ATP splitting, which gives the required energy to bias the
motion. the question is how to imitate mechanically the presence of the resulting
non-equilibrium noise.

The transport phenomena in spatially periodic systems that are out of ther-
mal equilibrium have been recently reviewed in [68|. In very general terms, thermal
ratchet is a mechanical system which is subjected to an asymmetric periodic poten-
tial V(x,t), is affected by an external force F(t) with zero average, and is exposed

to thermal fluctuations, modeled as a white noise I'(¢). Under the action of these
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Figure 3.2: The ratchet (left) is connected by an axle with the paddles (right) and with a spool
(center), which may lift a load. From [68]

forces the probability distribution can reach the steady state ps(x) with a non-zero
flux.

Thermal ratchets have been used to describe different physical systems. A
systematic classification of different ratchet models can be based on the type of
external action, |68]. The basic working model in the overdamped situation can

be written as:

ne(t) = =V (x(t), f(t)) + F(t) + T'(t) (3.14)

where I'(t) is the thermal noise, not necessarily white. Another term can be added
to account for a passive external force F,.;(x): if the system is carrying a cargo as
in the load clamp device, then F..;(z) = const, if it is stretching a spring, as in
the length clamp device, then F..(z) = Kx.

The condition F'(t) = 0 distinguishes the class of pulsating ratchets whose two

important subgroups are the traveling potential ratchets with:

Vi((t), f(1) =V (z = f(#)) (3.15)

and different assumptions on f(t), and the fluctuating potential ratchets where:

Vi(x(t), f(t)) = V(z) [L+ f(B)]. (3.16)

In this last class, when f(t) takes only the values 1 or —1, we have the so-called
on-off ratchet.

The second main group of Brownian ratchets is called tilting ratchets. Then
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f(t) =0 and F(t) is either a periodic function with zero mean:

% /T F(t)dt =0 (3.17)

as in rocking ratchets, or a unbiased stationary random process, as in fluctuating
force ratchets. As we have seen in our discussion of purely mechanical ratchets,
if F'(t) has a non-zero mean, we can have a non zero flux even if the potential is
symmetric. Finally, it is possible to brake thermal equilibrium by considering a
space or time dependent temperature distribution (temperature or Seebeck ratchet)
or a non-trivial viscosity profile (friction ratchets).

Two simplest models from this catalogue can be used as the principal basis for
the description of contracting muscles. The first one is the model of Magnasco
proposed in 1993 [32]. It is the simplest tilting ratchet with a time periodic force
(rocking ratchet). The second model was developed by Prost and collaborators
around the same time [40] (see also |28]) and is the simplest fluctuating potential
ratchet.

3.3.1 Magnasco model

Magnasco [32] showed that, if the periodic potential is asymmetric, an external
force, which is periodic in time and have zero mean, can generate a net flux in
one direction. The magnitude of the flux depends on the shape of the potential.

Magnasco considered the following Langevin equation:
z(t) = =V'(x) + F(t) + T'(¢). (3.18)
The associated FPE, can be written as:

(3.19)
J = —kgTOp+ (=V'(z) + F(t))p

As we have already mentioned, Risken |23] obtained an analytical solution for
the flux J in the case when the force F' is constant (equations (3.12) and (3.13)).
Magnasco computed it explicitly in the case of a piecewise linear potential as in
Fig. 3.3: here A\; and A, are the fractions of the total period (A = A;+A3) where the
potential has constant derivatives, @ /\; and —@Q /Ao, correspondingly, A = \; — \s.
The analytic form of this potential is the following:

Q

)\—(x—nA) nA<x <n\A+ X\
V(ZU) = Ql)\ Q |n| =0,1,--- (3‘20)
)\——)\—(m—n)\) nA+ A <x<(n+1)A
2 2
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X

Figure 3.3: Piecewise linear potential adapted from [32]. The arrow indicates the direction of

the probability current J. The preferred direction is the one towards lower |V ()]

By using (3.20), the probability current J can be written as:
P} sinh [\F/2kpT)|

2\ 2 Q— AF A\F A . A
kgT (@) {cosh {7]{53T } — cosh [2kBT] } — §P1P2 sinh [QkBT]

N —AYF
4 Q

ne(-50) - ()
(3.21)

Using this result one can compute the average probability current J for the

J(F) =

P =A+

case when the fluctuations of the force are slow enough to justify the use of a

parameterized steady state solution. Then:

LL:E/TNFQ»ﬁ (3.22)

p

where p is the period of oscillations of the force F'(t). Suppose F(t) is represented

by a square wave of amplitude A:

A np<t<(n+1l)p
F(t) = n=0,2- (3.23)
—A (n+l)p<t<(n+2)p

Then one can write:

Jz%UM}+ﬂ—ML (3.24)

where J(A) is given by equation (3.21). The analytical solution obtained in this

way is unaffected by the frequency of oscillations 1/p. This is the consequence of
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the hypothesis that the steady state J = const is reached immediately after the
force changes its sign.

The behavior of the probability current J as a function of the amplitude A of
the fluctuating force is illustrated in Fig. 3.4 adapted from [32]. We see that while
the force F'(t) has zero average the flux is non-zero, due to the asymmetry of the
potential. Actually, the flux may be non-zero even without thermal fluctuations:
in the zero temperature limit the system works as a mechanical ratchet. The
problem is that for the zero-temperature case 7' = 0 there is a threshold value of
A below which the particle can not overcome the potential barriers. Starting from
this value of A there is an interval of amplitudes in which the particle can climb
the potential on one side but not on the other. The flux increases with A till the
second threshold is reached. Afterwards the particle can climb both barriers, but
with different rates. Starting from this second critical value of A, the flux J starts
to decrease and tends asymptotically to zero because the relative importance of
the asymmetry of the barriers diminishes as the amplitude of the tilting force F
tends to infinity.

When the temperature is different from zero, the flux J # 0 for every value
of A because thermal fluctuations help crossing the barriers. More precisely, an
increase in temperature decreases the effective threshold where the flux becomes

observable (see Fig. 3.4). Since the motor is able to move in a viscous environment,

1.6

Figure 3.4: Plot of J as a function of the amplitude A at low (solid line) and high (dashed line)

temperature. From [32]

it is also able to generate a force and move a cargo, if an external device is added.
In what follows, we shall add to equation (3.18) a term F,;(x) to mimic the force

production in the muscle.
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3.3.2 Prost et al. model

Another relevant motor model is an on-off ratchets proposed by Prost et al. [40].
This type of ratchets appears to be natural choice for modeling of the Xb cycle.
Once the Xb reaches the post-power stroke state, it detaches from the actin fila-
ment, and then comes back to the pre-power stroke state. In this state it fluctuates
until it can attach to another active site and generate another power stroke. What-
ever chemical or physical reasons govern the attachment process, the search for the
attachment site by the Xb in the attached state can be described as diffusion in
a periodic asymmetric potential. In the fully detached state similar motion can
be viewed as a diffusion in a flatter potential. In both cases, a parabolic poten-
tial may be added to describe the elastic element that links the Xb to the myosin
filament, however such elastic spring has not been taken in consideration in the
original Prost et al. 1994 paper. In this work equation (3.14) was specialized only

for the abstract on-off ratchet.

ni(t) = =V (z(t), f(1)) + T'(t) (3.25)

The authors proposed a model for V(z, f) = V(z) f(t) assuming that the particle
can exist in two states with different potentials Wi (z) and Wa(z), shown in Fig. 3.5.
Their analytical descriptions are similar to the one given by equation (3.20). The
two potentials have the same periodicity p = a + b, but different maxima W, and
Ws. The amplitude of the modulation f(t) is given by a symmetric dichotomous
noise, i.e. by a stochastic process that switches back and forth between two values
with transition probabilities w;(x) and ws(x).

The coupled master equations for the densities P;(z,t) and Ps(x,t) describing

the probability of a particular particle location in each of the potentials have the

form:
8tP1 + 890J1 = —wl(x)Pl + CUQ(LU)PQ
(3.26)
8tP2 + 890J2 = +W1($)P1 - w2(x)P2.
Here the fluxes are given by:
Jl = —D1 [Pl(a:)ﬁx(Wl/kBT) + QcPl]
(3.27)

J2 = —Dg [P2(x)8m(W2//€BT) + 8mP2]

The diffusion constants D, and D, can be in general different, for instance due to
different temperatures in the two states. The derivation of the two source terms in

the right hand side of the two equations in (3.27) is completely analogous to the
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Figure 3.5: Three periods of the sawtooth potentials Wi (z) and Wa(z), adapted from [40]. The
arrow indicates the direction of the probability current J. The preferred direction is the one with
higher |V'(z)|

derivation of the standard one particle Fokker-Planck equation (see Section A.5).
The two source terms in (3.26) are loss and gain contributions due to the switch
between the two potential with probability wi(x) and wa(x) (see [68]).

By direct substitution in equations (3.27), one can show that Boltzmann dis-
tribution (3.10) with V(x) = Wi(z) and V(z) = Wa(x) are the solutions of the
equation J; = 0 and Jy = 0 respectively. Moreover, if detailed balance is respected
and the transition rates satisfy the equilibrium equation:

i—; = exp [(W(x) — Wa(x)) /k5T], (3.28)

then the Boltzmann distributions (3.10) are the solutions describing the steady
state 0;P; = 0 for the entire system and the total particle current becomes J =
Ji+ Jy=0.

After observing these facts the authors of [40] explore what happens if an
external action drives wi/wy out of the detailed balance given by (3.28). They
conjecture that this effect can represent a compound like ATP, which biases one
state over the other. They supposed that wy has a constant value, and that w; is

given by the relation:
wi(z) = woexp [(Wi(x) — Wa(z))/ksT]| + Q(z) (3.29)

where Q(x) is the external source of non-equilibrium, which in the first approx-
imation can be taken to be equal to a constant. Now limit the analysis to the
steady state situation and define the total density P(z) = Pi(z) + Py(z) and the
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two functions A\ (z) and Ao(z):

M(z) = P(x)/Pi(x) (3.30)

Ao(z) = P(x)/ Py(x).

Using these representations, it is possible to demonstrate that P(x) obeys a single

Fokker-Plank equation with probability current:
J=J1+Jy=—-D[P0, W/kgT) + 0, P] (3.31)

where D = A\ D1+ Ay D5 is the effective diffusion coefficient and W is the effective

potential:

D D
W(z) — W(0) = /0 1)\10:0W12; 9X20, Wo

dz + kT [in(D)]: (3.32)

Since the effective potential W does not depend on time, the analysis can be
reduced to the one done by Risken. The steady state solution is again described
by (3.13). The total flux is different from zero if and only if W(x + p) # W (x),
in which case the system acts as if it was subjected to an asymmetric potential
tilted in average by a force F' = —[W (z+p) — W (x)]/p. Notice that if the detailed
balance condition (3.28) is satisfied, the integrand in (3.32) is the derivative of :

_kBT lIl[Dl eXp(—Wl/kBT) + D2 eXp(—Wg/k’BT)] (333)

and W is periodic (not tilted). This shows that deviation from equilibrium is
indeed necessary to produce a net flux.

If a non-equilibrium condition of the type (3.29) is satisfied, a non-zero flux ap-
pears. Some numerical illustrations originating from direct solution of the Langevin
equation associated with (3.26) and (3.27), are presented in [40].

We comment here on two interesting results in order to emphasize the main
differences between Prost et al. and Magnasco models. First, the direction of the
flux in the Prost et al. model, shown by the arrow in Fig. 3.5, is opposite with
respect to the one predicted by the Magnasco model (see Fig. 3.3) given the same
asymmetry of the potentials. The reason is that the flux in the Prost et al. model
is generated because a # b. Indeed, in the attached state the particle reaches fast
the minimum of the well in the potential Wi (z) (relaxation inside the well). When
the potential changes to Ws(x), the particle diffuses in a flatter potential from the
same point x. If it moves a distance greater than a, but smaller than b, before the

potential switches again, there is a larger probability that the particle will be in
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the well located to the right than the one located to the left of the original well.
This leads to generating a net flux.

Second, the effect of ATP is more explicitly linked to the physics of hydrolysis
in the model of Prost et al. than in Magnasco model. Although the Prost et al.
model deal with an abstract ratchet, an explicit application of it to the molecular
motors and also to muscle mechanics was briefly proposed in [40], in particular the
authors observed that “Although “attached” and “detached” correspond to complex
and various underlying behaviors, an essential feature for motion generation is
the existence of these two states”. They also observed how the model allows, for
instance, to analyze different effects due to different choices of the function Q(x).
In particular the model predicts saturation of the average velocity V' as a function
of the excitation amplitude €2, as shown in Fig. 3.6, where it was assumed that
Q(z) = QO(x) where 6(z) is different from zero only near the wells of W;(x).
Such saturation behavior is typical for the motor velocity as a function of ATP

concentration across the broad range of motor protein assemblies [34].
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Figure 3.6: Average velocity as a function of the external action 2 showing saturation (see
text). From [40]

3.3.3 Cooperative and non-cooperative motors

Both approaches discussed above, the Magnasco ratchet and the Prost et al.
ratchet, can explain the motion of a particle in an asymmetric potential when
it is subjected to thermal fluctuations. If the system includes a number of parti-

cles, as in the case of N myosin heads on one thick filament, the main conclusions
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are still valid given that the particles are not interacting with each other. The mean
velocity will then be the average velocity of the population. However, by ignoring
cooperativity the resulting models are only marginally related to the mechanics of
contraction in skeletal muscles.

In the next Section we show how the interaction between particles can be in-
cluded and developed the corresponding numerical approach. Before doing this, it
is instructive to discuss two examples in which the models of the type described
above are quantitatively applied to kinesin and to a single myosin head. In general
molecular motors can be divided into two main groups depending on whether they
are designed to operate in groups (cooperative) or individually (processive). Ki-
nesin and some myosin proteins, such as myosin V, belong to the processive motor
category, while myosin Il is a cooperative motor. What differentiates the two types
of motors is the living time for the attached state. In processive motors, it is high
enough to work with only two heads. Thus when the first head is attached, the sec-
ond one oscillates around its mean position and due to the asymmetry of the track
attaches preferentially along the ‘plus” direction of the microtubule. At this point,
the latter can detach and repeat the same process; with this “step by step” motion,
kinesin can make several moves before both heads detach from the microtubule.
The living time of the attached state for myosin II is not enough to produce this
motion however the link to the thick filament allows for the cooperation effect with
others Xbs.

Kinesin model

A quantitative analysis of a kinesin motion was presented in [45] where two heads
were assumed to be linked trough a linear “active” spring. This means that the
spring can use the ATP splitting energy to change its reference length. The model
is described in Fig. 3.7(a). The two particles start from the same well (upper
figure). When the reference length of the spring switches form zero to 8 nm, it
pushes the two heads in the opposite directions. Because of the asymmetry of
the potential, only one head makes a forward step of 8 nm relaxing the spring
(middle figure). This unstrained situation is perturbed by a second change in the
reference length of the spring that comes back to zero. Now the two heads are
pulled together and end up again in the same well because the asymmetry of the
potential facilitates the forward step of the second head (bottom figure).

Even if this model predicts an inchworm motion, while a hand over hand motion

has been later proven to be the case for the kinesin and myosin V (see for instance
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[70]), we describe it here, because it shows, in an instructive way, how the Brownian
ratchets theory can be quantitatively applied to the processive motors. The motion

of the heads is described by the system of coupled Langevin equations:

T]j,’l = —8xV(LU1) — and + K[l’g — X — l(t)] + 2]€BT/77F(t)
(3.34)

T]j,’g = —8xV(LU2) — and + K[l’l — X9 — l(t)] + \/ 2]€BT/77F(t)
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Figure 3.7: Kinesin model and numerical results. (a) Schematic picture of the potential and
subsequent steps of the heads. (b) Force-velocities curves for individual kinesin molecule at

different ATP concentrations (points: experiment, line: prediction of the model). From [45]

One can see that the motor is transporting a load (Fj.eq). The out of equilib-
rium condition is imposed through the oscillation of the rest length of the spring
[(t) which changes from zero to 8 nm imitating the hydrolysis of one ATP molecule.
The system proceeds in a step by step motion in one direction, and shows differ-
ent velocities at different external loads: the comparison of the model predictions
(lines) with experiments (points) is shown in Fig. 3.7(b). One can see that the
model shows a rather good agreement with experiments. Kinesin motion is a very
active field and Brownian ratchet theory is applied with success (see [68] and ref-

erences therein).
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Single head model

Now let us turn to the examples where both Magnasco and Prost et al. models were
applied to the myosin II directly and where certain agreement with experiments
have been reported. This is the situation when the interaction of a single head
with an actin substrate could be the subject of study. An experimental trace
of the movements of a single myosin head was recorded in [60] by using original
manipulation technique having nanometer accuracy. The displacements of the head
in time, and the corresponding model predictions are shown in Fig. 3.8 and Fig.
3.9.

In the theoretical analysis, breaking of the detailed balance was simulated in
different ways. First a constant load was added to an asymmetric potential creating
the tilted ratchet described by Risken (equation (3.13)). Second different types of
flashing fluctuations of the potential amplitude were tried, including a square wave

(as in the Prost et al. model) and a sinusoid wave.
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Figure 3.8: Stochastic movement of myosin. (a) Experimental traces of the movement and

picture of the model. (b) Periodic saw-tooth shaped potential used in [60]. From [71]
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The experimental method developed in [60] for measuring the displacement of
the myosin head by using a scanning probe allows one to obtain an excellent signal
to noise ratio. The myosin head rigidly attached to the relatively large scanning
probe could steadily interact with actin without diffusing away from the filament.
The basic features of the experiment, summarized in |71], are as follows: i) The
size of each step is 5.5 nm, similar to the diameter of the actin monomer, ii) Steps
occur occasionally in the backward direction even if the motion is preferentially
directed towards one ends of the actin filament; iii) On applying a load to the
myosin, the number of steps decreased. The movement of myosin was also simu-

lated numerically using the corresponding overdamped Langevin equation:
nt = —V'(x,t) + /2ksgT/nL(t). (3.35)
The results for different types of motors are given in Fig. 3.9.
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Figure 3.9: Simulations of the myosin head: (a) Tilted potential (b) Flashing potential. From
[71]

This last example is one of the few cases where application of the theory of
Brownian motors to myosin II was attempted. We reiterate however that it was

a case of a single attached head. The analysis of the cooperativity effects due to
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many heads was initiated in the Jiilicher-Prost paper [42]| (see also |50] [54] and
|65]). The authors consider a rigid backbone with rigidly connected motors (see
Fig. 3.10). The resulting system is characterized by only one degree of freedom.
The way the motor cooperate is through the total force which is a sum of forces

exerted by individual motors. Some interesting effects have been found in this sys-

Figure 3.10: Representation of two state many-motor system. The particles are rigidly attached
to a common backbone and can stay in two different states. The “attached” potential is periodic

and asymmetric. From [54]

tem, for instance, a dynamic phase transition leading to spontaneous oscillations.
The authors demonstrated the existence of a critical value of the parameter €2 in
(3.29), above which three velocities correspond to one external force. This leads to
situations in which the motors might either go in one direction or in its opposite
for the same value of F.,;, which generates the oscillatory behavior. This effect
is observed in muscle cells under suitable condition (|50] and references therein).
The Jiilicher-Prost model has also been modified and applied to study the behavior
of other cooperative motors [51], but always under an assumptions of a rigid link
between motors and backbone. See also [94] for a recent analysis of the effect of
the geometry on the cooperation between myosins in muscle. In this Section we
develop a model of elastically cooperative Brownian motors.

To summarize, none of the models presented in literature, which use the Brow-
nian ratchet theory to explain muscle contraction, deal with a detailed description
of the Xb cycle. The effect of the ATP hydrolysis is mainly to destroy the detailed
balance, while the power stroke is hidden somewhere in the force generated by the
periodic potential. Later in this and in the next Chapter we propose some new
ideas of how cooperativity can be integrated into the model of Brownian ratchet
in an attempt to construct a detailed model of the whole Xb cycle. As a novelty,
we consider an elastic link between the backbone and the heads. Only a Magnasco

type model for the Brownian ratchet will be used to simulate the attachment-
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detachment process. To justify this choice, in view of the fact that the Prost et
al. type models are apparently more faithful to the physics of the phenomenon, we
recall that our main aim is to give a purely mechanical description of the contrac-
tion phenomenon. The fluctuating ratchets of Prost et al. require a definition of
the transition rates between states 1 and 2, given by the functions wy(z) and wy(x)
in equation (3.27). Introducing these functions is similar, in a sense, to imposing
particular dependencies of the attachment detachment rates on x in the Huxley
1957 model. We have shown in Chapter 2 how this arbitrariness can be avoided in
the fully mechanical description where the chemical transition rates are not defined
but computed as, for instance, in the Huxley and Simmons 1971 model. Now we
would like to extend the same approach to a set of interacting Xbs (inside one

half-sarcomere), which can attach and detach from an actin filament.

3.4 Direct simulation of a set of stochastic equa-

tions

We recall that the motion of a single particle in a sawtooth potential V' (z) tilted
by an external force, Fiarp(t), which mimics the effect of the ATP and whose sign
changes periodically in time, is described by the associated Langevin equation. In

the overdamped case we can write:

nt = —V'(x) + Farp(t) + /nkpTT(t) (3.36)
where
<I'(t;)) >=0 (3.37)
and

We have shown that, under certain assumption, the associated steady state
Fokker-Plank equation can be solved analytically. The mathematical difficulty
that arises when several particles are interacting with each other forces one to turn
to a direct numerical simulation of a coupled set of stochastic ODE.

The direct numerical approach reduces to solving the Langevin equations of
the motion for a particular realization of the random process. Instead of using
the probability distribution given by the associated Fokker-Plank equation, this
method consists in generating of a certain number of realizations starting from the

same initial conditions. After these individual trajectory are obtained, one can
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compute the mean value for the variable of interest. To solve stochastic differential

equation, we use the simplest Euler algorithm [74]. In the case of a single particle

we first follow the time path z(¢) by solving (3.36), and then repeat the experiment

for a population in order to construct the probability distribution of a single Xbs.
The Euler algorithm for the equation (3.36) can be written:

1 VnkgT
n

x(t + Tstep) = x(t) o ;(V/(I(t)) + FATP(t>>Tstep + TStGPw(O’ 1) (3'39)

where w(0,1) is a normally distributed random variable with zero mean
<w>=0 (3.40)

and the variance

< WiWo >= 512. (341)

We would like to give an idea why parameter 7., appears under the square root
n (3.39), a rigorous derivation can be found in [30] and [63]. First of all, we notice

that, by neglecting the non-thermal forces in (3.39) (purely diffusion case), we can

—y/ = hpT / t)dt'. (3.42)

Now from (3.38), we see that ['(¢) has the dimension ¢~%/2] 5o its time integral has

write:

the dimension of t'/2. Therefore,

kpT
D) Tatep (3.43)

2(t + Tstep) 7 x(t) — p

in contrast to the classical Euler method for the deterministic differential equations.
From the properties of I" detailed in (3.37) and (3.38), we obtain instead that [23]

the function
t+7—step
W) = Wt + Taey) — W(E) = / I (), (3.44)
t

is a random variable which is normally distributed with zero mean and variance

Tstep- 1 herefore, we can write
w(Tstep> ~ Tstepw(07 1) (3.45)

where w(0,1) was defined by (3.40) and (3.41). A general rule is that when a
potential is acting on the particle, 7., represents the interval of time during which

the actual V(x,t) potential can be substituted by the constant potential V(z,?)
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frozen at time ¢ just before the time step. To simulate properly the physics of the
phenomenon, the time step has to be much shorter than the typical time scale of
the process: normally two orders of magnitude difference is enough. In the case of
piecewise linear potential, the typical time scale is:
_ L

- Vil

(3.46)

T

a:c|

where 7 is the drag coefficient, L the typical length of the potential and |V,
the maximum force acting on the particle. We can make an estimate of 7 by
using the values of parameters given in Tab. 2.1 of Chapter 2. The condition
Tstep <K T limits 74, to tens of picoseconds and the time scale of the attachment-
detachment process is in the range of tenths of seconds. This implies that in order
to obtain a quantitative description of the system, the simulations must contains
at least 10'° time steps for each particle of the analyzed population. Since this
type of computations can easily become too heavy, we abandon the idea to obtain
quantitative results and from now limit ourselves to only a qualitative analysis.
This means that we describe the system by using the values of parameters that are

sometimes grossly exaggerated.

3.5 Thermal ratchet

Before describing and analyzing in detail our way of modeling the cooperative
motors, we can try to use the numerical method introduced in Section 3.4 to
describe the behavior of a simplest thermal ratchet which is somewhat similar to
the Feynman’s ratchet and pawl model. As we have already mentioned, the only
way to induce a net flux in one direction is to maintain the ratchet and the pawl
at two different temperatures.

The interest in the analysis of such a model is not only historical. Thus, Vale
and Oosawa in 1990 |25] proposed a Feynman’s type model to explain the di-
rectional motion of molecular motors, with explicit reference to myosin II. They
argued that the hydrolyzation of the ATP molecule could convert a certain amount
of chemical energy into heat, generating locally the temperature anomaly and dis-
torting the equilibrium character of the thermal fluctuations. If this is true, we can
have all the ingredients of a temperature ratchet. Despite being very intuitive, this
model was later proved to be unrealistic due to quantitative estimates summarized
in [26], [37], |[47]. According to the authors, the temperature variations, in regard

to both amplitude and duration, may not be sufficient to generate quantitatively
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measured speed of motion. Magnasco and Stolovitzky came back to the study of
the Feynman ratchet in 1998 [56], however, not in the molecular motors framework.
Here we would like to show numerically how a simple thermal ratchet can predict
a net motion in one direction and generate a position vs. time path similar to the
one observed in |71] (see Fig. 3.8).

Consider a system of two particles x; and x5 subjected to two different temper-
atures 77 and T,. The particle z; moves in a periodic asymmetric potential as in
(3.20) and its motion is described by the Langevin equation (3.6). The particle x5
is linked to x; through a spring of rigidity K, but it is otherwise free. The system

of equations describing the model is the following

niy = —V'(x1) — K(x, — 23) + /nkgTiT1(t)

771"3 = K(l’l — 1’3) + ﬁk?BTgrg(t)

(3.47)

The correlations of the functions I'y (¢) and I'y(¢) describing thermal fluctuations are
given again by (3.37) and (3.38). Both, difference in temperatures and asymmetry
of the potential V' (z) are needed in order to make the system move.

Performing the analysis for a large number (100) of systems (3.47) we can show
that the mean position of x3 shifts in time in one preferred direction (see Fig.
3.11). The average motion is a linear function of time. A representative picture
of the particle trajectory z;(t) is given in Fig. 3.12, where we can see that while
the average stochastic motion shifts the particle in one preferential directions, the

individual jumps in the opposite direction can also takes place. Adding an external

<x3(t)>

Time

Figure 3.11: Mean displacement of the thermal ratchet (3.47)
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X,

Time

Figure 3.12: Sample trajectory z1(t) of a thermal ratchet (3.47)

force F,,; acting at the particle x3 we can slow down and even invert its motion.
A force-velocity curve could have been plotted for this “toy” model, however this
is not necessary in view of its oversimplified nature. We shall perform this type
of analysis only for the system presented in the next Section, which is especially

designed to model cooperative motors, responsible for muscle contraction.

3.6 Cooperative Magnasco model

3.6.1 Governing equations

Here we study the behavior of a set of interacting Magnasco motors. Consider a
population containing Ny, cross-bridges subjected to thermal fluctuations, each

moving in a piecewise linear potential V' (x) whose derivative is described by:

Vinaz /(ML) nL <x <nL+ ML
Vi(z) = (3.48)
- max/()\2L) nL + )\1L << (n + 1)L

Here parameters \; and A\ characterize the asymmetry of the potential with period
L and V4, is the maximum value of the potential, see Fig. 3.13. Index n describes
a particular well in which the particle is currently located. We now add a rigid
backbone which is coupling individual particles, as in a real half-sarcomere. To
simulate the effect of a backbone we introduce another variable, x3, which describes

its position. The position of each Xb will be given by z% where i = 1,--- , Nx;.The
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ML AL

Figure 3.13: Model of a family of interacting cooperative motors. The particles move to the

left which mimics shortening experiments

system of coupled differential equations for z(¢) and x3(¢) can be written as:

miy = =V'(x}) + Farp(t) — K(2} — x5) +/mkgTl(t) i=1,--- Ny,

Nxbp

N3ty = Fear + 3 (K (2% — 2%)) + /n3kpTTs(t)
. (3.49)
Notice that x4 = z} + (i — 1)l = z3 + (i — 1)l where the variable z3 describes the
position of the backbone and the length [ is the distance between the attachment
sites of two successive heads. The position of attachment site on the backbone
are x4, where, again i = 1,--- , Nx;. As in the Magnasco model, the ATP related

periodic force is given by:

+FATP mAtATp <t< (m + 1)AtATp
Farp(t) = m=0,1,--- (3.50)

—Furp (m + 1)AtATp <t < (m + Q)AtATp

The system (3.49) is able to mimic the force-clamp device if an external force
F..; is applied to the rigid backbone. The same system can also describe the

isometric contractions if we substitute the last equation in (3.49) with:

By imposing condition (3.51) in (3.49) and averaging the noise term we obtain the

expression for the force generated in the system:

Nxup

Frot = —Z —a})) (3.52)

Now, suppose that L = [. Then due to periodicity of the potential V(x), we
can introduce now variables 78 = 2¢ — (i — 1)L and absorb the parameter L into

the potential without affecting the behavior of the system. The resulting numerical
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algorithm for solving (3.49) is then

i i i Tste Tste
Ty (t+ Tstep) = 21 (1) — e/ff(zzl(t%f?»(t)a t) ntlp + \/kBT ;lpwl(a 1)
Nx 7_step 7_step
23(t + Tatep) = w3(t) + | Fear + Z (K (3 (t) — 3(t))) m T ws(0,1)

(3.53)
where the effect of the actin potential V(z), of the ATP force Farp(t) and of the

elastic element that links the head to the myosin filament are all combined in the

effective potential
Cpp(@1(t), 23(t), Farp(t)) = V' (21) — Farp(t) + K (a1 — x3). (3.54)

We recall that w(0, 1) is a random variable normally distributed with zero mean
and unit variance. The larger size of the rigid backbone with respect to the Xb

head is represented by a higher value of the corresponding drag coefficient n3 > n,.

3.6.2 Benchmark problem: K =0

The numerical computations at K = 0 give the independent path followed by each
Xb and given by x¢(t) and the path of the backbone given by x3(t). The typical
solution for 2 (¢) is shown in Fig. 3.14: the head stays in the well for a finite amount
of time, then jumps forward or backward very fast, as predicted by the Kramers’
theory discussed in Chapter 2. If the potential contains an asymmetry, then the
jumps will take place preferentially in one direction. We recall that as in the original
Magnasco model, we use the stepwise periodic ATP force with zero mean (3.23).
The value of the period p is important because there is a threshold for p below
which the particle does not jump during the time of simulation. This threshold
value depends on the time scale of the process, and since here our intention is to
present only qualitative results, the value of p was chosen to be sufficiently above
the threshold to be able to observe the jumps. This value must be simultaneously

small enough to let F47p change sign several times between two successive jumps.

Let us first demonstrate the importance of the asymmetry of the potential.
Thus, if the potential is symmetric (A\; = Ag) then distribution of particles is
expected to evolve in time as a Gaussian distribution with zero mean and with
variance which increases linearly with time. When the time scale is such that
the period L is much smaller than the diffusing distance, as in Fig. 3.15(a), then

the system does not see the periodicity of the potential and the corresponding
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Figure 3.14: Typical trajectory of a single head in an asymmetric tilted potential with K = 0.
The trajectory is representative also for K # 0

probability density function p(z,t), can be approximated by (see (A.35) in Section
A4):
Nspla, t) = ——Xb__ =575 (3.55)
VArksT [t
In the computation the time is just the number of iterations multiplied by 7gep.
In Fig. 3.15(a) the distribution of Xbs is shown at three different fractions of
the total time, t = t74/10,t701/2, 1o and is superimposed with the distribution

given by (3.55). If an asymmetry is added to the potential (A\; # A3) then a net
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Figure 3.15: Distribution of a population of Nx; = 800 cross-bridges, with K =0 and L =1, at

different fractions of the final time t7,¢. (a) Symmetric periodic tilting potential (b) Asymmetric
periodic tilting potential

flux in one direction will take place. The distribution of particles is again almost
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Gaussian with variance that increases linearly with time and with mean that now
also varying linearly with time (see Fig. 3.15(b)).

The effect of the level of noise and of the amplitude Farp on the steady state
flux, obtained in direct numerical simulation, can be compared to the analytical
solution of Magnasco. The comparison shows identical behavior of the numerically
and analytically obtained functions J(Farp) (see Fig. 3.16 and Fig. 3.4 taken
from [32]).

Net flux

Fatp amplitude

Figure 3.16: Steady state probability flux obtained from numerical simulation with and without

noise

The system (3.49) can also generate force, which can be measured if a bead
is attached to a particle. In this way one can describe the motion of a motor
protein transporting a cargo (this problem is analyzed in [85] with a Prost et al.
model). By putting a constant external force F.,; instead of the term —K (z} —x3)

in equation (3.49) we obtain
miy = —V'(21) + Farp(t) — Feur + /mkpTT1(2). (3.56)

The presence of the external force reduces the mean displacement of the particle.
The resulting force velocity curve is shown in Fig. 3.17. Its non-linearity is a
somewhat non intuitive result from the point of view of purely mechanical ratchet
operating at " = 0. Indeed suppose that the effect of the motor reduces to gener-
ating a mean constant force F),,,. Then the total force Fr acting on the particle
can be written as Fpr = F,,4. — F.p:. This shows that in a viscous environment the
force velocity relation should be linear because Fr = nv. As we have seen from
Fig. 3.17 the situation at 7" # 0 is much more complex. Here we do not attempt

to make quantitative comparison of computed and experimentally measured force
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velocity curves, however it is clear that the qualitative behavior is well captured
by the model.

ext

Velocity \Y

Figure 3.17: Force vs. velocity curve for a pure Magnasco model K = 0

It is of interest to compute numerically the stall force, F},.., which is a particular
value of F,,; that brings the mean displacement to zero. The mean trajectories
of particles for different values of F.,; are shown in Fig. 3.18(a). Observe that
having a zero mean flux at F.,; = F,. does not prevent each particle to move.
In fact the stall value of the force creates a situation which is analogues to a case
of pure diffusion, when the mean-square displacement increases linearly with time.
In our simulations of an isometric contraction we checked that two neighboring
particles (at time ¢ = 0) can move arbitrary far apart after a certain amount of
time (see Fig. 3.18(b)). This behavior is not compatible with what one expects in
the case of cooperative motors. Indeed when the isometric conditions are imposed
it is known that all the Xbs, attached or detached, remain close to their original
positions. This happens because they are linked to a fixed thick filament through
elastic elements with K # 0. We therefore conclude that the model with K = 0
has to be discarded.

3.6.3 Cooperative Magnasco model with K # 0

To take the backbone into consideration, we assume that K # 0. Interestingly
certain questions become simpler in the case when K # 0 than in the case when
K = 0. Thus while in the original Magnasco model we had to change F,,; to find the
stall force F},.., now its value is immediately determined imposing the condition
(3.51) and waiting until the force (3.52) generated by the tilting reaches its steady

value. we now proceed with performing several types of numerical experiments.
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Figure 3.18: The behavior of the Magnasco model (K = 0): (a) Mean displacement vs. time
of a population of particles at different values of external forces between 0 and 1.2F,,,, (see text

for the definition of F,q.. (b) Displacement vs. time for two particles at the stall force

Tetanization

Starting from a delta function type distribution of particle positions at ¢ = 0, we
can turn on the ratchet and try to reconstruct the tension time curve until the
force reaches a constant value. Later we shall be using the limiting distribution of
particle positions obtained in this experiment as the initial condition in order to
study the behavior of the system in other loading devices.

When the particles are interacting with the backbone, the instant in which
Farp(t) changes sign becomes important for the global behavior. We observe that
if there is a synchronicity among the Xbs, meaning that all particles feel the value
+Farp or the value —F47p at the same time ¢, then the tension vs. time curve
for isometric tetanization shows oscillatory behavior as in Fig. 3.19(a). Similar
oscillatory behavior has been observed in other models [50] and linked to some
experimental observations obtained in non-physiological condition [53|. However,
in these model the oscillations are generated by different phenomena, while the
synchronicity can be viewed as unphysical, because the effect of the ATP on each
head should be random and therefore unsynchronized. To simulate this effect, a

dispersion has been added to the switch times of the tension:

. +Farp mAtarp <t+ @' < (m+1)Atarp
Flrp(t) = m=0,2,4,
—Furp (m+ 1)AtATp < t—|—¢i < (m+2)AtATP
(3.57)
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Here ¢' is randomly distributed variable between zero and At, i = 1,---, Nxy.
In this way, each Xb is affected by the same force Fyrp for a time At, but asyn-
chronously for different elements. Under these assumption the tension vs. time
curve approaches the steady state without oscillations as shown in Fig. 3.19(b). We
observe that the curve in Fig. 3.19(b) looks rather realistic in terms of experiments
[52].
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Figure 3.19: Tension time curve describing isometric tetanization for a system with a backbone.
(a) Normalized tension vs. time in synchronous tilting. (b) Normalized tension vs. time in

asynchronous tilting

Isotonic loading: experiments

As we have already mentioned, the Huxley and Simmons model and its proposed
modifications analyzed in Chapter 2, can not deal with the entire Xb cycle shown in
Fig. 1.5 of Chapter 1, because they are based on the hypothesis that the population
of attached Xb is fixed, meaning that no new Xb can attach and that all the
attached Xbs stay attached during the test. Since the model from Chapter 2 has
all the same ingredients, it can not show total recovery in isometric experiments
and can not generate a constant velocity of shortening when a constant load is
applied. The maximum shortening predicted by this model will be limited by the
value @ ~ 11 nm (see Table 2.1). On the contrary, the model presented in the
present Chapter misses the fast phases of recovery but it is adequate to simulate
the protocol that leads to the construction of the force-velocity curve.

Recall that when a muscle fiber with fixed length is stimulated to produce

fused tetani (say of 1 s duration as in [67]) it generates an isometric tetanic force
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corresponding to the plateau level 7j. This has been reproduced in the simulations
shown in Fig. 3.19(b). After reaching this level of tension, the control can be
shifted from fixed-end mode to force clamp mode, first, at the same level of tension
Ty. This will keep the length of the muscle fixed. Suppose now that after 20 ms a
rapid change in the external force completed in 150 us is imposed, as in experiments
|67]. If the applied tension after the change is lower than Tp, one can recognize
four phases of the relaxation process shown in Fig. 3.20. First, half-sarcomeres
shorten by few nanometers, coincidentally with the force drop (phase 1). Then
there is a phase of slower but still rapid shortening (phase 2). It is then followed
by a phase of reduced speed of contraction (phase 3). Finally the phase is reached
during which the shortening takes place at a steady velocity V' (phase 4).

There is a clear relation between phase 1 and the undamped relaxation of
the elastic element and between phases 2 and 3 and the working of a bi-stable
mechanism inside the myosin heads, described in Chapter 2. A strong evidence of
such a relation is given in [67] where the shortening just after phases 1 (L;) and
2 (L), has been studied for various values of the imposed tension. The authors
plotted L; and Ls on the tension-length plane and superimposed the experimental
results for 77 and 75 obtained from the length clamp experiments (see Fig. 2.15).
One can see that the resulting points are almost identical. As we have already
seen in the isometric contraction, the power strokes takes place asynchronously (at
different times) in different Xbs. On the contrary, phases 2 and 3 can be explained
by a synchronization of the power strokes generated by the attached Xbs just after
the step on the external force. While the phases 2 and 3 are out of read for the
model discussed here, the subsequent process of attachment-detachment, which is
responsible for the phase 4 where muscle produces a constant velocity of shortening,
will be simulated in the next Section. One would expect that this constant velocity
increases when the external force decreases as in the experimentally measured force

velocity relation described in Chapter 1.

Isotonic loading: simulations

Now we show that the model developed in this Chapter (see (3.49), (3.53)) can
simulate the relaxational behavior associated to phases 1 and 4. In our numerical
experiments we shall follow the time path of x3 given by (3.53), starting from
initial condition z}(0) = x3(0) = 0. We start with rising tension in the course of
isometric contraction x3(t) = 0 up to the moment when the force reaches a constant

value F),q;. Then, at a moment that we call ¢;,,,,, we change the external force
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Figure 3.20: Experimental traces of a shortening muscle contracting against constant loads.
From [67]

in (3.53) to Fopr = aFpe with 0 < a < 1. In Fig. 3.21(a) we show the computed
trajectory x3(t) at different values of a. One can see that the experimental behavior
is reproduced both in phase 1 and in phase 4. As we have already mentioned, the
well reproduced phase 1 is related, but it is not completely defined, by the value
of K, since this fast shortening results from both the shortening of the elastic
element and the relaxation of the particles inside each well. One can see that the

description of phase 4 also looks rather realistic.
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Figure 3.21: Simulation results in the case of force clamp simulation. The values of parameters
are reported in table 3.1. (a) Simulated traces of a shortening muscle contracting against constant

loads. (b) Simulated force vs. velocity curve for 0 < o < 1.2

From the analysis of phase 4 at different o we can construct the force velocity

curve (see Fig. 3.21(b)). This curve shows expected non-linear relation between
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Table 3.1: Values and meaning of the main parameters used for the numerical simulations for

the original and cooperative Magnasco type model of (3.49)

Description Numerical values
Periodicity L 1 nm
Asymmetry A\ 0.3
Maximum of the potential Vi,qz 10kgT
ATP force modulus |Farp| 1.2 Vipaz /A2 L
Drag coefficient of x1, m1 102 pNns/nm
Drag coefficient of x3, 13 103 pNns/nm
Time between oscillations t a7 p 103Tst€p
Asynchronisation ¢° i-tarp/Nxp fori=1,--- Nxy
Noise term kgT 4.14 pNnm
Elastic constant K 0 or 30 pN/nm

the external force and the velocity of isotonic contraction. The model does not
predict a change in the slope of the force-velocity curve at the isometric (v = 0)
point, which is observed experimentally (see Fig. 1.13). The main drawback of
the model however is the absence of the phases 2 and 3. This can be seen in a

zoom to the first moment after the jump (Fig. 3.22). More precisely, after the fast

Shortening
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Figure 3.22: Detailed analysis of the elastic relaxation after the jump in load, F.,+ = 0.5Tp. A

more detailed behavior in the first phase is shown in the box. The phase 3 is not present

shortening related to phase 1, which looks diffused as in experiments, the backbone
starts immediately to shorten with a constant velocity since 73 < 7;. The absence
of phase 2 and 3 is obviously due to the fact that we dropped the bi-stable elements
whose power step can be fostered by the step in F.,;. This observation bring us
to the next Chapter, where we try to link the two models, described in Chapter

2 and in Chapter 3, together. These two models have been so far very successful
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in describing of two different sets of experimental data. Now we would like to link

them together in an unified model in order to describe the full Xb-cycle.

122



Chapter 4

Full cross-bridge cycle

4.1 Introduction

The model proposed in Chapter 2 deals only with a swinging lever arm dynamics
which is supposed to explain the power stroke in active muscle. The model proposed
in Chapter 3 describes the cyclic aspects of isometric contraction. We have seen
that the model from Chapter 2 is related to phases 2 and 3 in Fig. 1.5, where the
head is attached to the actin filament, while the model from Chapter 3 is related
to phases 1 and 4 in the same figure, where the head detaches the filament and
then reattaches again. The model from Chapter 3 does not capture fast recovery
of tension after a small increment of length, which is related to the power stroke,
while the model from Chapter 2 can not describe the steady state shortening of a
muscle subjected to a constant load.

In the current literature, the analogues of our two models are viewed more as
antagonistic than complementary. Thus Esaki and collaborators [71] say explicitly
that there are two major classes of models dealing with conversion by the myosin
IT motor of the chemical energy into mechanical energy. The lever-arm swinging
model belongs to the first class, which they call “deterministic” and “mechanicistic”.
The Brownian ratchet models belong to the second class, which they call “stochas-
tic”. In this Chapter we attempt a unification of these two types of models. We
begin by showing that their differences are more subtle than it can appear at a
first glance. This has already been pointed out, for instance, in [68| and [69].

Since the necessity of thermal noise to ensure motion is the main difference
between deterministic and stochastic models we shall first discuss the role of tem-
perature in the models described so far in the Thesis. Thus, in the Eisenberg and

Hill’s type models [17], |[43], the power stroke is linked to the production of force.
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The existence of two detached states is needed to have a cyclical path and the
jumps between states are only marginally related to the Brownian environment
in which the process takes place. Thus, while the chemical reaction that mim-
ics the jumps is indeed frozen at 7" = 0, the chemical rate constants are defined
phenomenologically with no reference to the actual diffusion process. The thermal
noise has an indirect effect on the rate constants, but the mechanical behavior
leading to the production of force is basically analogues to what one expects in the

deterministic case.

On the other hand, as we have already explained, Magnasco model even at
T = 0 acts like a macroscopic mechanical ratchet, generating net flux in one
direction in a semi-infinite interval of the fluctuating force amplitudes Farp. The
thermal fluctuations increase the flux in a section of this range, while reducing it
in another section, the one corresponding to higher levels of forces amplitudes (see
Fig. 3.4). In this sense we are having an essential Brownian ratchet only at certain
values of the parameter Fyrp. To emphasize the difference between mechanical
ratchet and thermal ratchet, Wang and Oster [69] proposed a flashing ratchet
where the periodic potentials ¢;(x) and ¢o(x) are such that ¢o(z) = ¢1(x + L/2),
where L is the period for both of them. In this case, the particles can show a net
flux even without thermal fluctuations. Its motion is driven only by the periodic
chemical cycle and the mechanical relaxation inside each minima is deterministic
as it is clear from Fig. 4.1. Despite this, Jiilicher and collaborators observed how
this type of potential does not generate motion if the transition rates obey detailed
balance [50]. In this case, in fact, we are in the same situation described in the
Prost et al. model (see Section 3.3). Vale and Oosawa [25] have been the first to
pose the crucial question regarding the relative importance of thermal fluctuation
['(t) versus conformational changes powered by chemical driving forces, including

the ones involved in the power stroke (see [68]).

It is perhaps worthwhile to observe that even the Huxley and Simmons 1971
model, which introduced the power stroke in order to explain the fast generation
of force, operates with chemical energy landscape that is actually both periodic
and tilted by a constant force (see Fig. 1.25). The effect of ATP can be viewed in
this model as responsible for this tilt in the potential. Thermal fluctuations then
make chemical transitions between the states possible. The tilt acts only in one
direction, which allows for a net flux. In this sense the power stroke model and

the ratchet model are not so different.

To summarize, the power stroke approach and the Brownian ratchet approach
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L2

Figure 4.1: Fluctuating ratchet that creates a non-zero flux without thermal fluctuation

must be related in order to describe one major process: the muscle contraction.
In this last Chapter of the Thesis we make a first attempt to place both models
in the same framework allowing one to describe the entire Xb-cycle in a purely
mechanical language.

Notice that the new model of power stroke proposed in Chapter 2 is based on
the theory of thermal diffusion which is exactly the same setting as the theory
of Brownian ratchets described in Chapter 3. This unification was achieved due
to abandoning of the jump process approach which is normally assumed for the
description of the power stroke. In this common framework a direct link can be
built between our power stroke model and the ratchet theory described in Chapter
3. As we show later in this Chapter, building such an unified theory is not a
straightforward task. Moreover our analysis shows some serious limitations of
this whole approach. However, on a qualitative level we have been successful in
providing a consistent mechanical interpretation of the whole body of experimental

behavior.

4.2 Numerical implementation of the power stroke

model

4.2.1 Isometric case

We recall that the analytical results presented in Chapter 2 were obtained by
using the Kramers’ ansatz for the time dependent probability distribution p(z,t)

and from the explicit representation of the steady distribution ps(z). Both results
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were obtained from the Fokker-Plank equation which is equivalent to the solution
of the stochastic equation of motion (Langevin equation). Thus for each head x4 (t)

we considered the equation:
Moda(t) = —E(7a(t)) — K(22(t) — 23(t)) + V/n2kpTT(2) (4.1)

where we have explicitly written the force contributions from the two terms forming
the total energy Ep(z): the chemical energy E.(x) and the energy of the elastic
element. Equation (4.1) also shows the dependence of the elastic force on the

position of the backbone z3(¢) which, in the isometric contraction case is given by:
x3(t) = lo + 1. (4.2)

Here v is the distribution of the attachment sites described in Section 2.7.2, which
will be used later in the modeling of a population of Xbs.

We begin by reformulating our modified Huxley and Simmons model presented
in Chapter 2 in the framework of the Brownian ratchet model described in Chapter

3. We recall that the noise is characterized by the following relations:
<I'(t1) >=0 (4.3)

The Euler algorithm for equation (4.1) reads:

To(t + Tarep) = 22(t) = nl (Ee(w2(t)) = K(2a(t) = 25(1))) Totep

T?@T (4.5)

4+ ——— /Tstepw(0, 1).
s tep ( )

Since equation (4.5) is stochastic, in order to simulate the average of z5(t) we have
to follow the trajectory of a population of N, particles each corresponding to a
different realization of the noise term. Each particle also has a different value of ¢
from (4.2).

A typical behavior generated by the model when the backbone is in its resting
position x3(t) = lp (isometric contraction) is shown in Fig. 4.2(a). We see that
the head jumps back and forth between the energy wells because the two phases
have the same total energy and there is no preferred state. To ensure this, we
impose condition (2.10), as in Chapter 2. The fact that in the isometric case the

two phases have the same total energy is then strictly true only for the Xb with

b = 0.
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As we see in Fig. 4.2(a), particles explore all the energy landscape spending in
each of the wells a time that is proportional to the corresponding probability. The
amplitude of oscillations is inversely proportional to the stiffness of the wells. Thus
in the figure the elastic modulus of the well centered near zero is higher than the one
for the well describing the “short” phase. The histogram showing the probability
distribution of the position x5(¢) during the total time of the simulation, has locally
Gaussian structure around the two minima of the energy, as it has been predicted
by the associated FPE. The same is true for the probability distribution of Xbs at

a given time, shown in Fig. 4.2(b).

4.2.2 Length clamp device

According to (3.52), the tension in the numerical experiment simulating the length

clamp can be calculated as:

Nxp
T(t) =Y [~K(ah(t) — 25(1))] (4.6)
i=1
where x3 are given by:

S+l + 0" > tiump

In Fig. 4.3 we present T'(t) curve for negative values of §. The direct numerical
simulation confirm the analytically predicted response of the system and allows
one to extract the values T7(0) and T5(d) as well as the parameter characterizing
the rate of recovery.

To verify the quantitative accuracy of our numerical scheme and the validity of
Kramers’ approximation used in Chapter 2, we can compare the results of the two
approaches applied to the length clamp experiment using the set of parameters
reported in Tab. 4.1. The kinetics of tension recovery for a particular value of ¢ is
illustrated in Fig. 4.4(a). The corresponding multi-exponential curve (see Section
2.8) obtained from the approximate theory, is superimposed. To plot this curve,
Nexp (= 10) exponential contribution are computed from the Kramers’ theory based
on Ny, populations of Xbs with different attachment positions 1. The tension T,

is computed from the formula:

Nexp
1

Temp(niter) = e_ainiter (48)
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Figure 4.2: Numerical simulation of isometric contraction. (a) Time path of a Xb in a double

well potential. (b) Histogram describing the population of Xbs
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t]

Time

Figure 4.3: Simulation of the force vs. time relation at different applied length steps

where 1., is the number of effective time steps from the time ¢;,,,/ Tstep till end of
the simulation ¢y / Ttep, Tstep 15 the effective time step, ¢y, the value of ¢ when the
increment in length is applied, t7,, the total time of the simulation, o is the i-th
exponent computed from equation (2.95) with 1) = ¢*. The tension is normalized
by 7} and shifted vertically to ensure that 75 = 0. One can see that the kinetic
curves obtained by the two methods, analytical and numerical, are similar, except
for the very fast components. For those the relaxation inside the minima is also

important and the Kramers’ approximation fails.

Table 4.1: Main parameters used in the comparison of the behavior predicted by the Kramers’

theory and the numerical simulations based on (4.1) and (4.7)

Description Numerical values
Distance between the minima a 10.8 nm
Elasticity of the elastic element K 2 pN/nm
Elasticity of the low force generating state ky 4 K
Elasticity of the high force generating state ko K
Curvature of the maximum k3 —20 pN/nm
Drag coefficient of xa, 12 60 pNns/nm
Dispersion of the attachment sites ¥ +2.75 nm
Noise term kT 4.14 pNnm

As far as the steady state tension T5(d) is concerned, we remark that in nu-
merical experiments the curve T5(J) has to be constructed by points, as in real
experiments. In Fig. 4.4(b) we superimposed the analytical curve obtained from

equation (2.43) and the points obtained from the simulations; the two methods
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predicts exactly the same behavior. The numerical code is therefore verified and

we can use it in the next Section to simulate the whole Xb cycle.

4.3 Whole cycle models

In the previous Sections we reformulated the models for the power stroke and for
the attachment-detachment process by using the same framework. This allows
us to construct a unified model allowing one to describe the whole Xb cycle and
to study its different features. The considerations below will be based on the
Magnasco type model proposed in Chapter 3, however similar conclusion can be
made if other type of Brownian ratchets are used as building blocks. We begin by
describing the behavior of a model of unification which assumes that the chemical

energy describing the power stroke is extended periodically.

4.3.1 Extended Huxley and Simmons potential

When a small increment of the length is imposed, the HS71 model [10] allows each
head to explore only two wells of the chemical energy landscape. However, the
idea of the authors was that this chemical energy is periodically extended (see
Fig. 1.25). In this case an isotonic experiment should in principle be able to show
several jumps of each head. Thus, even in the rapid length increment experiment
described in [10], the heads, after a fast recovery of tension 75, must evolve towards
a new equilibrium state reaching in the long term, again the tension 7, (Section
1.2).To simulate this behavior we introduce a periodic potential which, as in the
HS71 model, is tilted in one direction.

In this new model every well of the resulting ratchet, has two smaller sub-wells,
as shown in Fig. 4.5. We suppose that the energy landscape is piecewise linear

with a derivative given by:
(

WWQS)L nL <z < [n+ MM+ A\)]L

% [n+ A+ ML < 2 < n(A? + \9)L

yoronr [t AL <z < [n+ (A +X5) + AT (AT + A])L

4+ A+ A3 + XN+ ML <2 <n(L+1)

__—-H
CASAT+A3)L
(4.9)

Here index n describes a particular well. We refer to Fig. 4.5 for the meaning of

the parameters.
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-1.2%— I I I I I
0
Time
(a)

T2
TO

Figure 4.4: Length clamp experiment. Analytical results from Kramers’ theory compared to
numerical simulations. (a) Kinetics of the recovery of tension (rugged line: simulation, dashed

line: Kramers’ theory). (b) T2(d) curve (solid line: Kramers’ theory, points: simulation)
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We observe that the original Huxley and Simmons’ model is able to describe
constant tension Ty generated in isometric contraction. When a muscle is isometri-
cally tetanized, T} is maintained while each Xb goes through all four phases shown
in Fig. 1.5, so that in average the number of heads in each phase remains ap-
proximatively constant. When §(¢) = 0, the HS71 model implicitly assumes that
for each Xb that detaches, another replaces it in the same position, which leaves
Ty constant. In the similar way, jumps between larger wells mimic in this model
the attachment-detachment process. The implicit assumption is that for each head
that detaches from the post-power stroke state, another head immediately attaches
in the pre-power stroke state.

We assume that the difference in the energy levels of the two sub-wells is equal
to K (A +A3), (see condition (2.10)). The jump between these sub-wells represents
the power stroke. After every attachment-detachment process, the particle x; is in
the pre-power stroke state, and can change the configuration again, switching to
the post-power stroke state, in order to pull the myosin backbone. We suppose that
all the particles are attached to the backbone through a spring, the jump between
the post-power stroke state toward the next pre-power stroke state stretches this
elastic element. Formally, this stretch is zero in the Xb cycle, and here can be here

reduced assuming A + A5 < A9 + ).

V(X)

Figure 4.5: Potential of the periodically extended HS71 model, where the bi-stable element is

incorporated into the ratchet potential

To implement this model numerically we assume that all the Xbs (all the par-

ticles) evolve in the piecewise linear potential (4.9). The resulting system of equa-
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tions reads: backbone x3 reads:

mit = =V'(2}) + Farp — K(2} — x3) +/mkpTT1(t) i=1,--- Nx,

Nx» ) (4.10)
M3z = Fepr + Y (K(2) — x3)) + vn3kpTT3(t)

=1

In order to simulate the constantly tilted potential of Fig. 1.25, we have added
to (3.49) a constant force Furp. In this way < Farp(t) ># 0 and we have an
asymmetrically tilted ratchet (see also [68]). We shall come back to the meaning of
Farp later in this Chapter.

A numerical study of this model is rather heavy in terms of the time needed
to generate a quantitative response curves. The reason is that in order to provide
two different time scales, one for the power stroke and another for the attachment-
detachment processes, we need to impose a constraint H > h (separating the scales
of e relative height of the barriers, see Fig. (4.9)). We recall that also A} + A5 has
to be small; these two requirements together make the ratio n; (A} + \3)L/H also
small which limits the maximum 7., as described in Section 3.4.

We turn now to the discussion of the simulated force time curve showing the
response to a given length step (Fig. 4.6). One can see that both fast and slow time
scales have been resolved. The force tends towards the steady value 7. Before
that, a rapid increment in the total length (§ < 0) generates a drop in the tension
due to the elastic element which links z; to the backbone, but then jumps between
the sub-wells rise the value of the tension up to 75. This last state is no longer a
steady state, as in the model of Chapter 2 where the chemical energy was going to
infinity at the boundary of the two-well region. In a larger time scale the variable
x1 can overcome the higher barrier and make it into another two-well region. This
increases the tension applied to the backbone and bring it back to its original value
Th.

Despite the fact that this picture looks rather realistic, the model is not sat-
isfactory because we used an explicit tilting force in order to break the detailed
balance. In the next section we show how such purely mechanical bias can be
avoided and how the Xb cycle can be described by an oscillating Brownian ratchet

without permanently tilting forces.

4.3.2 Chemical-Spring-Motor model (CSM)

As a first attempt to couple the models presented in Chapters 2 and 3, we con-

sider a system with two particles x; and x5, moving in the potentials V' (z;) and
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Figure 4.6: Tension vs. time curve showing fast and slow time scale for the periodically extended
HS71 model. Parameters are taken from Table 4.2. Tension: arbitrary units. Time scales:

3
10 Tstep

E.(z3) respectively. Here V() is an asymmetric periodic piecewise linear potential
described in Chapter 3 (equations (3.48)):

Viaz/ (ML nL <z <nL+ ML

V'(z) = [ ' (4.11)
—Viaz/ (ML) nL+ML<z<(n+1)L

and FE.(r) is a piecewise quadratic double well potential described in Chapter 2

(equations (2.96)). Due to the total length constrained, the energy E.(x) can be

written in terms of the variable z3:
Sk (o — 3)? Ty > by(z3)
Ee(wg,w3) = Lks (20 — 25 — b’ +e by(xs) < xy < by(xs) (4.12)

%k’g(l’g — T3 — Cl)2 + d To < bg(l’g)

The two particles z; and x5 are assumed to be linked by a linear elastic element with
stiffness K. The coordinate x3 can be viewed as the position of a backbone (myosin)
attached to the controlling loading device. The coordinate x; is then the position
of the myosin head along the actin filament. The actin filament is represented by
the periodic potential V(x1). The coordinate x5 describes the swinging lever-arm
portion of the head that can be in two configurations described by the energy
E.(z3). These notations will be operative throughout this Chapter. The model is
graphically illustrated in Fig. 4.7.

We assume that the particles are embedded in a viscous environment and that
their respective drag coefficients 7; are different, reflecting the fact that their geome-

tries are different. Finally, the whole system is subjected to an external random
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Table 4.2: The main parameters used for the numerical simulations of the periodically extended
HS71 model.

Description Numerical values
Periodicity A¢ + A$ + A} + A 1.1 nm
Width lower peak A + A3 1 nm
Width higher peak A} + \§ 0.1 nm
Internal asymmetry A§ 0.8 nm
External asymmetry A\’ 0.05 nm
Noise term kT 1pNnm
Drag coefficient of 1, m 1 pNns/nm
Higher peak potential H 5kpT
Lower peak potential h 4kpT
ATP force modulus |Farp] 0.8 h/A{L
Dispersion of the attachment sites ¥ +0.5 nm

X3 E X2 K X1 \Y

Figure 4.7: CSM model for a single Xb: series connection of a bi-phase element, an elastic

element and a motor element

force represented by a white noise. To complete the description of a ratchet, a
piecewise constant tilting force Farp(t) with zero mean < Farp(t) >= 0, is added

to the periodic potential V' (x):

+Farp nlAtarp <t < (n + 1)AtATP
Farp(t) = (4.13)
—Furp (n + 1)AtATP <t< (n + Q)AtATP.

In addition an external force F,,; can be applied to the backbone x5 (load clamp
device) or its position can be prescribed by a length clamp device. In the case
of load clamp device the system of stochastic ordinary differential equation for a
single Xb can be written as:

(
ma1(t) = =V (21(¢)) + K(xa(t) — 21(t)) + Furp(t) + VmiksTL(t)

 i2(t) = —Ei(22(t) — w3(t)) — K(za2(t) — 21(¢)) + VipkpTT () (4.14)

| Ms83(t) = Eg(22(t) — 23(t)) + Fear + VsksTT(t).

Conditions (4.7) replace the third equation in the case of a length clamp device.
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Extensive numerical experiments have been performed for the model (4.14).
We have found that the model can reproduce the T5(d) curve in the fast regime,
however it fails to reproduce the peculiarities of kinetics of the process leading to
the steady state at high values of §. The fast branch of the typical tension vs.
time curve is shown in Fig. 4.8, where we see no elastic response (no 7; phase) is
present. This negative result eliminates the necessity to discuss the slow relaxation
predicted by the model.

To explain the result we first observe that since the particles are embedded in
a viscous environment only potential F, is shifted when a 0 increment is instanta-
neously imposed on x3 in a length clamp device. In the meantime the particle x,
remains where it had been before the step. If the shift of the potential (i.e. the
value of §) is larger than the distance between the minima, all the particles z¢ end
up after the step in one well, and the steady state tension is recovered due to fast
relaxation within this well. There is no subsequent change of configuration which

leads to the absence of the characteristic fast recovery stage.

A

Time

Figure 4.8: Tension vs. time curve predicted by the CSM model in a clamp device

This analysis suggests that we must also consider differently designed configu-

rations of the basic elements: a spring, a snap-spring and a motor.

4.3.3 Spring-Chemical-Motor model (SCM)

A more detailed look at the cross bridge structure is needed to proceed further.
Recent observations (see for instance [72]) have characterized with high precision
the structure of the myosin head and of its two sites with the affinity for the actin
and for the ATP, respectively. For the purpose of designing only a prototypical

model (we refer to |72] and references therein for a complete scheme) it is enough to
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assume that the myosin head has three major sub-structures: the first one attaches
to actin filament, the second one can rotate with respect to the first one generating
the power stroke, and finally the third one couples the second one with the myosin
backbone (see Fig. 4.9). Normally, the elastic component is identified with the

third structure, however this is not universally accepted.

[ |Phase 2 § [ |Phase 1

[ |Phase 4

\Z// Third structure

Second structure

" |Phase 3

-

First struuure

Figure 4.9: Cross bridge cycle with emphasized sub-structure of the myosin head. The phases
1 to 4 are added to the original figure to relate it with Fig. 1.5. From [72]

A consideration of the molecular structure of the Xb suggests another way
of coupling the elements. Thus we can assume that the lever arm of the Xb,
represented by the coordinate xo, is linked to the clamp device (ultimately the
myosin thick filament, the coordinate x3) through an elastic element of stiffness
K. The lever arm can be in two different states and the corresponding chemical

energy F.(xs, 1) takes the form:

%kl(@ —11)? xy > by(xy)
Ee(wg, 1) = ¢ ks (20 — 21 — b’ +e by(x1) < wy < by(x) (4.15)
%kQ(ZQ — I —a)2+d To < bg(ﬂ?l)
This potential is affected by the attachment position of the myosin head (attach-

ment site, coordinate x1) which is moving on the actin filament itself and therefore

feels a periodic asymmetric potential V' (z1). Regarding the motion of x(t), we
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stress that the time it spends in the bottom of the well of V(z1) before the jump
into the neighboring well must be much longer than the time needed for the jump
itself (see Section A.6.3). The resulting model is schematically depicted in Fig.
4.10.

X3 K X2 E X1 \Y
— (Il o @ e

Figure 4.10: SCM model for one Xb: series connection of an elastic element, a biphasic chemical

element and of a motor element

In this new arrangement of elements changing of the location of the attachment
site affects directly the relative conformational state of the chemical energy repre-
sented by the variable x9 — x;. The set of stochastic equations for a single head
can now be written as:

(

iy = [~V (21(t) + Fup(t) + E(xo(t) — z1(t) — )] + VmksTT(t)
Moiry = —E!(2a(t) — 21(t) — V) — K(z9(t) — x3(t)) + V/noksTT(t) (4.16)

\7]35(“73 = K(l’g(t) — l’g(t)) + Fewt + \/ﬁngTF(t)

To reproduce the isometric tension experiment we start with the initial con-
dition z1(0) = 0, 22(0) = 0 and 23(0) = 0. As it has been already noted, the
reference lengths in the numerical code can be set equal to zero without loss of
generality. By imposing the condition x3(¢) = 0, we let the system (4.16) evolve

while we record the tension generated by the system
T(t) = —Kuxy(t). (4.17)

The probability distribution associated with z; in the steady state T' = T}, which
affects the stretch of the elastic element, can no longer be found analytically. As a
consequence, we can not compute from equation (2.10) the value of d in E,., which
is necessary to assure that the Xbs in the isometric contraction can jump back
and forth between the energy wells as in the original HS71 model. To resolve this
problem, we associate the steady value T reached by (4.17) with F,,.0r = To and

impose a particular pre-stretch on the elastic element z3(0) = [y such that:
1 1
_iK(al — lo) — iK(CLQ — lo) = Fmotor- (418)
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In the left hand side of this equation we see the mean tension generated at < x; >=
0. This follows from (2.19) under the assumption that the Xb spends half of the
analyzed time t7, in each well of the chemical energy E¢ (a; and ay are the two

minima given by (2.9)). Substituting (2.9) in (4.18) we obtain

Finotor — aky / 2K+k:1Jr K
K ky + K K+k k+K

where a is the distance between the minima of E.. During the isometric contrac-
tion with x3(t) = lp, we now have < x; >= 0 because the effect of the motor
is compensated by the pre-stretch. With the value of d computed from (2.10),
(4.19) we can be sure that the conformational transition is not biased and that Xb

oscillates between equivalent states during isometric contraction.

"Position

Figure 4.11: Position vs. time curves for the particles z1, zo and z3 in a force clamp experiment

In Fig. 4.11 we show the response of the system (4.16) to the sudden switch at
the time ¢y, from isometric contraction, x3(t) = ly, to isotonic contraction with
Fept = 0.5T5. In the interval 0 < ¢ < tjy,, we see that () lies near zero while
the bi-stable element, the lever-arm represented by z(t), oscillates between two
states. At ¢ > €y, the variable x3 moves towards negative values which relaxes

the elastic element. The smaller elastic force acting on x5 allows the bi-stable
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element to shift toward the high force generation phase, which is now representing
the global minimum of the energy (see Chapter 2). This power stroke shifts x5
in the same direction and after a fast relaxation, the force acting on x; starts to
oscillate around the imposed value F,; = 0.5T. Since Ty = F},.t0r is the force that
maintained, in the isometric case, the variable x; in the original well of the periodic
potential, it now starts moving in the direction imposed by the motor. This motion
takes place at a longer time scale that phenomena described above. In Fig. 4.11 we
see only one jump of xy. This jump mimics the attachment-detachment process of
the head. It leads to a shift of E.(z2, x1) through (4.16) and results in the identical
displacement of xo and x3. In experiments (see Fig. 3.20) the shortening of the
muscle, represented here by the time history of z3(t), does not exhibit jumps. Since
the model presented here predicts a stepwise motion for x3 we still need to average
the results over the effect of several Xbs acting on the same myosin backbone. This

suggests another modification of the model.

4.3.4 Spring-Chemical-Motor model with a backbone (SCM1)

In experiments the total length of the muscle changes in a smooth way because
the myosin filament is affected by a population of Xbs which act asynchronously.
The effect of each power stroke is averaged out due to the existence of the common
backbone. To simulate this effect we consider a model in which the coordinate
x3 is common to the whole population of Xbs which are posed in parallel. The

configuration is illustrated in Fig. 4.12.
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Figure 4.12: SCM1 model with a common z3 for the Xbs
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The set of stochastic equations for this model can be written as follows:
¢ . —

mT1 = [=V'(T1 (1)) + Fapp(t) + EL(T2(t) = T (t) — )] + VmksTT (1)

Ty = —E(To(t) = T1(t) — ) — K(T2(t) — 23(t)) + VikpTT(t) (4.20)

Nxp

Mty = LK (@3(t) = @5(t)) + Fewr + V/1skpTT(t)

\

where the chemical energy is defined in (4.15), the periodic potential is defined in
(4.11) and Farp is given by (4.13). The overlined quantities are vectors of length
Ny, say T = (2%) = (21,22, -+, 2™%%), and the difference between a vector and a

scalar is computed as:

Tr— T3 = (Il - $3>ZB2 — X3, >$§b - 553)- (4-21)

In order to understand this model, we analyze below the response of the system
first in a length clamp device and then in a force clamp device. As we are going
to see, the predictions for z3(t) are in qualitatively agreement with experiments.
While for a population of Xb, due to averaging over the z%(t)’s, even the SCM
model predicts qualitatively similar smooth curves, the SCM1 model has a clear
advantage. In this model the actual position of x3(¢), not only the mean value <
x3(t) > as in SCM model, is only weakly sensitive to the positions of the individual
x4 (t). This is important because in the second equation of (4.16) the variables x%(t)

affect the behavior of the corresponding x}(t) directly.

Length clamp device

If we prescribe the motion of the backbone z3(t) as in equation (4.7) and average

out the noise term, the third equation of the system (4.20), becomes:
0= NXbK(< Tg(t) — Ig(t) >) + Fogt. (422)

This means that the external force, is proportional to the mean stretch of the
elastic element times the number of Xbs connected in parallel. The relation (4.22)
will be used in the simulations to compute the force in the length clamp protocol.

In Fig.4.13 we plot the tension F..(t) produced by the system in response to a
single shortening step. This time we are interested in what happens at both short
and long time scales. In Fig. 4.13(b) we see that the rapid tension recovery matches
qualitatively well the exponential relaxation characterizing the fast stage up to the

plateau. In Fig. 4.13(a) the typical simulation for long times is reported. Here
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we see the slower recovery of the force towards the original tension 7Ty, exactly as
in experiments. The corresponding force velocity curve is also in accordance with
experiments: the curve F' — v is qualitatively similar to the one presented in the
end of Chapter 3 (see Fig. 3.21(b)).

L

Tension

4
)

step

Tension

5000 5100 _. 5(200 5300 5400
Time rstep)

Figure 4.13: Long (a) and short (b) time scale behavior of the SCM1 model in response to a

shortening step

While the overall behavior very nicely conforms with macroscopic experimental
observations. A more detailed analysis of the short time scale response shows some
details which also agree with observation. Thus in our numerical experiments, the
expected level of tension T3(0) does not form a perfect horizontal plateau. In
experiments the relaxed stredd T5(d) also does not always appear in the form of

a real plateau and represents instead just a region with a low speed of recovery
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[43]. Within this indeterminacy in the exact interpretation of the T5(9) level,
the general difference between reaching 75(d) and the more slow recovery of the
isometric tension 71 due to the attachment-detachment process is well defined in

both numerical and physical experiments.

Force clamp device

To show in more detail the working of the model we return to the load clamp sim-
ulations and compare them with the corresponding experiments. To the author’s
knowledge, the load clamp experiments are made with higher precision than the
length clamp experiments [43], [67]. We refer to Fig. 3.20 where 4 distinct phases,
already described in Chapter 3, are clearly visible. In particular, even if no plateau
is present, the phases 2, 3 and 4 are well defined. Then a period of reduced rate
(phase 3) is observed before the beginning of phase 4, when the rate of shortening
becomes constant. As we discussed in Section 3.6.3, phases 2 and 3 are believed to

be due to synchronization of the power strokes exhibiting by the attached Xbs.

0.1r

0 T jump
Time

Figure 4.14: Load clamp simulation with in the SCM1 model

In all models discussed so far the motor component worked independently of
the conformational state of the lever-arm and the associated shortening was always
present. Obviously, this shortening is negligible during the relaxation of the elastic
element (phase 1) and should not play any role during the rapid shortening due to
the power stroke. When these process terminate, it is phase 4 which dominates. In
our experiments we have not been able to reproduce the phase with lower rate than
phase 4 (the definitive feature of phase 3). This is clearly seen in the simulation of
the load clamp device, reported in Fig. 4.14. Such behavior should be common to

all models where Brownian motor component works independently of the bi-stable
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Chapter 4 Full cross-bridge cycle

element. The reason is that the minimal velocity of shortening due to ratchet which
is characteristic of phase 4, will be always present even during phase 3. One way
to obtain a distinct phase 3 would be to let the motor part know when all the Xbs
are in the second well, through a “phenomenological” component in the definition
of Farp(t), however we leave this option outside the scope of this Thesis. Instead
we would like to maintain our fully mechanical framework for as long as possible
without imposing any phenomenological relations between the state of the motor

and the chemical driving force determining the power stroke.

As we have seen, the global behavior of the system in the load clamp case,
described by the function x3(t), is basically in accord with experiments, but it is also
instructive to look at the macroscopically invisible relative displacement xo — 7.
To show the insufficient coordination between the motor part, which simulates the
attachment detachment process, and the bi-stable elements, exhibiting the power
stroke, we can follow simultaneously the evolution of one of the particles x5 and

the corresponding particle z;.

We expect that the jump of the variable x; from one well to another on the
left side would stimulate the conformational transformation from the “short” phase
to the “long” phase of the bi-stable element. In this case a new power stroke
can be generated in order to move the backbone continuously. The response of
the model is shown in Fig. 4.15, where the relative position of the lever arm in
E. can be traced from the difference x5 — x; together with the position of the
elements x; and x3. We observe that after the switch from isometric to isotonic
contraction at t = t;ymp, the fast mechanism indeed generates a power stroke and
the variable xo — x; jumps into the “short” well of the bi-stable potential. In terms
of the macroscopic evolution (of z3) this leads to phases 1 and 2. After this, in a
longer time scale, the particle x; has to move a distance L to the left to allow for
continuous contraction. However, as we see in the figure, after the first jump the
variable x5 — 21 has no reason to return back to the “long” well. In fact in this test,
it remains for the entire period of observations in the “short” well of the bi-stable
potential. This well is always energetically preferred because x3 is continuously
moving left relaxing the elastic element. One can see that, in the present form, the

model fails to reproduce the entire Xb cycle.

To fix this problem we observe that an important role in the behavior described
above was played by the ratio L/a linking the period of the motor potential V' (z)
(4.11) with the distance between the wells in the chemical energy E. (4.13). This

ratio has been so far chosen to be small (L/a = 0.5 in Table 4.3, i.e. a step of
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Figure 4.15:

The graph of position vs. time for a particular z; and the associated evolution of

the variable o2 — 1 and the variable 3. Period L = 0.5a. Only one change of phase of the lever

arm zo — x1 is observed while three changes in the attachment position z; takes place

Table 4.3: The main parameters used for the numerical simulations of the models CSM, SCM-N,

and SCM1

Description

Numerical values

Distance between the minima a
Noise term kT
Drag coefficient of xs, 1o
Elasticity of the elastic element K
Elasticity of the low force generating state ki
Elasticity of the high force generating state ko
Curvature of the maximum k3
Periodicity L
Asymmetry Aq
Maximum of the potential V40
ATP force modulus |Farp|
Ratio 72 /m
Ratio 72 /73
Time between oscillations tarp
Asynchronisation ¢°

Dispersion of the attachment sites v

1 nm
1pNnm
1 pNns/nm
32 pN/nm
5 K
2K
—102 pN/nm
05a-2a
0.3
15ksT
1.3 Vinaz /A2 L
0.1
0.01
1037'Step
i-tarp/Nxpfori=1,---
+2.75 nm

aNXb
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Chapter 4 Full cross-bridge cycle

the motor equals one half of the maximum power stroke). The justification of
this value comes from the fact that the actin monomer has a diameter of 5.5 nm,
while the maximum power stroke, observed at low external forces, is about 11 nm
(see Chapter 2). Higher values of the ratio L/a, could result from taking into
consideration the helical twist of the actin filament that allows only particular
monomers to serve as active sites for the myosin head.

With this consideration in view we can assume that, for instance, L/a = 2.
Then the model generates similar macroscopic (variable x3) but different micro-
scopic (variables z; and x3) behavior. Because the jump of z; is now longer, it is
sufficient to stretch the elastic element to the degree that makes again the “long”
well of the bi-stable element energetically preferable. Then during each attachment-
detachment event the variable x5 — x; returns into the pre-power stroke state, as

shown in Fig. 4.16. Following the time trajectories of the points we observe two

Power strokes

“long” well
~—
s

“short” well
g —

: -"1 : :,_:: .

- ¥

Power stroke
recoveries

- Change of attachment
site (x,)

Time

Figure 4.16: The graph of position vs. time of a particular variable x; and the associated
evolution of the variable xo —z1. Period L = 2a. When the variable x; jumps into the neighboring
well, the lever arm x9 — x; comes back to the “long” configuration. After a proper amount of

time a new power stroke takes place

jumps of the variable x; marked by the two vertical lines. After every jump we

see that zo — 1 is shifted back to the “long” well where it can remain for a certain
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amount of time before generating a new power stroke.

We conclude that the representation of the whole Xb cycle has been achieved.
The variable x5 — x; comes back to the “long” well because of purely mechanical
reasons: the elastic element becomes over-stretched after the jump of ;. To show
this we plot in Fig. 4.17 the configuration of the elastic element zo — x3 together
with the evolution of the variable x;. The first vertical line shows the moment
in which, at a given x;, the bi-stable element changes its state and stretches the
spring, as in the power stroke of the Xb cycle. The second vertical line shows
the moment in which z; changes well; it appears that the stretch of the spring
increases before the changing of the attachment site of z, and at a certain level of

stretch, the spring pulls back the variable x5 — z; into the “long” state. The high

Stretch of the
elastic element (x,-x,)

Power stroke
Power stroke

Phase of the lever recovery
“long”{ arm (Xz'Xl \\ gy |

=k

22 l N

well

“short’{
well {

Change of attachment
site (x,)

Time

Figure 4.17: The graph of position vs. time for a particular variable z7 and the associated
evolution of the variables x5 — 1 and the stretch of the spring z3 — x2. Period L = 2a. The
first vertical line shows the moment in which the bi-stable element changes state and the stretch
takes place in the spring. The second vertical line shows the moment in which the variable z;

changes attachment site

tension in the elastic element is relaxed as soon as the bi-stable element assumes
its “long” configuration. The macroscopic effect of this little peak on the backbone

can be considered negligible. To summarize, we can say that the model is able to
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Chapter 4 Full cross-bridge cycle

reproduce all the elements of the basic Xb-cycle.

Despite its success, our model, raises again the question regarding the definition
of power stroke. Formally we have been defining the power stroke as the change
in the configuration of the bi-stable element. Now we see that the attachment-
detachment mechanism can also generate force in the muscle, i.e. can stretch the
elastic element. We conclude that the change of the attachment site can also be
considered as phase of the power stroke. In other words our model contains inside
itself two power strokes. This, fundamental observation, has nothing to do with
the two power stroke in the attached state proposed by several other authors based

on completely different observations (see [10], [43], [96]).
p y ) )

4.3.5 Discussion

The problem of two different power stroke shows how different conceptually have
been so far the models of Brownian ratchets and of the power stroke. The difference
resides principally in the interpretation of the role of ATP. In the Eisenberg and
Hill model [17], which is based on the same idea of the Huxley and Simmons’
model, there is an explicit link between the change of configuration of the lever
arm and the consumption of ATP. This link has been made explicit because the
authors associated the difference in the level of the minima of the chemical energy
with the free energy liberated by the ATP hydrolysis, AG arp. We are not aware
of any work questioning this interpretation of the chemical driving force in the
power stroke type models. An experimental prove that the conformational change
in the myosin head is not simply a mechanical effect and that it actually needs
the AG arp, is in the different response of the muscles placed in the length clamp
device while in rigor and in tetanus |55]. If the ATP is needed only to switch the
Xb into the state in which it can perform the power stroke, and if the transition
is governed only by mechanical forces, the two experiments should give similar
results. Instead the tension recovery T5(9) in rigor is much smaller than in tetanus
[55]. In rigor, the state characterized by the depletion of ATP, all the Xbs are
attached to the actin filament and do not have the possibility to detach; moreover
the power stroke appears to be almost irreversible. Hence one can conclude that
even in the power stroke models, the ATP activity is needed to keep the different
level of the minima of the chemical energy E..

In the Brownian ratchets, the role of ATP is different and is mainly to de-

stroy thermal equilibrium. In general we know that the non-equilibrium forcing
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together with the asymmetry of the potential, ensures that the particle drifts in
one direction. In detail, however the Magnasco type models represent ATP as a
force (see Fuarp (4.13)) which acts directly on the particle and allows it to climb
preferentially only the smaller slope of the potential V'(x) (see (3.20)). While Prost
et al. model represents ATP as breaking the detailed balance in the rates of the
attachment-detachment process without seemingly generating a direct force on the
particle, its action can also be reduced to the coloring of the external noise. To
summarize, ATP appears in two different roles: as a static bias of one of the wells
and as a dynamic agent destroying the detailed balance. These two different rep-
resentations of ATP have been preserved in our models, however, we believe that
they have not been fully reconciled.

To match fast and slow time scale events during muscle contraction, a unified
interpretation of the physical effect of ATP is necessary. We have made a step in
the direction of treating both mechanism from the common point of view, but more
work is needed to make them fully coherent. Despite the remaining difficulties in
linking the two sides of the contraction phenomenon, the power stroke and the
attachment-detachment, the idea of reaching a fully mechanical interpretation of
the entire Xb cycle appears now quite feasible. A fully mechanical model, able
to reproduce all the features of the muscle’s contraction, is of interest first of all
in relation to the possibility of artificially creating the devices exhibiting active

elasticity.
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Chapter 5
Conclusions

In this work our goal was to construct a fully mechanical description for the micro-
scopic mechanism of contraction in skeletal muscles. Every mathematical model
that aims at describing quantitatively the whole variety of related physical phe-
nomena has to face at least two problems. First, there is a high variability of the
experimental results, not only linked to the different muscle types or even animal’s
species, but also related to a certain number of external factors that are normally
easy to control in the classical mechanical tests. Just as an example, frog’s muscle
experiments show more uniform results between October and March due to sea-
sonal variations in metabolism (G. Piazzesi, personal communication). The second
problem is that some physiological and anatomical details of the contraction phe-
nomenon are not even well established in the biological community. Thus, while
the main steps of the Xb cycle are widely accepted, some intermediate states exists

only as hypotheses that are under debate.

The formulation of a model that describes the contraction of skeletal mus-
cles in a purely mechanical framework is intrinsically affected by these problems.
We reviewed previous important contributions aimed at building a comprehensive
multi-disciplinary models coupling mechanics with chemistry. A good qualitative
agreement with experiments has been reached in these model assuming that some
phases of the process can be modeled as purely mechanical while others as non-
equilibrium chemical reactions, whose phenomenological description preserve some
freedom needed to fit the data. As we have shown, the phenomenological nature
of these models limits their predictive power. Even if some chemical stages are
likely to be needed as a shortcut for micro-mechanical processes, a description of
the entire process should be strongly related to the physics and mechanics of the

force producing mechanisms.
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We have achieved two main results in this Thesis. First, we have shown that a
fully mechanical model with only two configurational states for the Xb can describe
the fast recovery of tension quantitatively. Second, we have shown that one can use
the Brownian ratchet theory to link qualitatively the main elements of the entire

Xb cycle, including both fast and slow stages.

In the first part of the Thesis we concentrated on the analysis of the power
stroke mechanism in the attached myosin head. We have shown that the known
problems of the classical Huxley and Simmons 1971 formulation can be resolved if
the elasticity of the bi-stable configuration is taken into consideration. More recent
models have taken the path abandoning the strong physical relation between the
rate constants and the stretch of the elastic element. We have improved the Hux-
ley and Simmons model by not only maintaining this relation but even making
it stronger through introducing a diffusion process instead of a jump process to
model the change in configuration of the myosin head. We have provided a de-
tailed analytical description of the model and demonstrated complete quantitative

agreement with experimental mesurements.

Two predictions of the model can be directly compared to experiments. First,
we have shown that in our model, the plateau in the T5(J) curve can be obtained
with only two stable conformations of the myosin head. In contrast, in other models
at least three states have been postulated to achieve this result, see for instance
[48]. The existence of a third intermediate state between the pre-power stroke and
the post-power stroke states is still under debate. Second, we have constructed a
quantitative model of kinetics which predicts realistic rate of recovery r(d). In a
way we managed to circumvent the two main drawbacks of the original Huxley and

Simmons model.

The main result of the first part of this Thesis is that the size of the power
stroke is not fixed, not even for a single Xb. Our model predicts that, similar to
experiments, it changes continuously with varying tension in the elastic element.
This understanding can give a new insight concerning the interpretation of the
experimental observations obtained with X-ray interference in [84]. These experi-
ments clearly show that the size and the speed of the power stroke depend on the
load. Our model predicts that the large power stroke of about 10 nm projected
from crystallographic studies [61] is actually possible only when the loads acting
on the elastic element are sufficiently low, i.e. when the imposed step in length
relaxes the elastic element almost completely. This result follows from the fact that

in the new model the location of the minima of the total energy depends on the
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applied length step. We can therefore confront the claims that the energy required
to stretch the elastic element should be larger than the free energy available from
the ATP hydrolysis. It is this problem with ATP that has lead some researcher to
postulate three or more conformational states for the Xb which are all activated

during the power stroke (see for instance |67]).

The idea of considering additional elasticity in each chemical state occupied
by a Xb has been previously put forward in [12], [17], [18], and used in several
later models. However, in all these models, the elasticity of the Xb has been
added at the expense of the elastic element in series. We have shown that in this
setting, an independent phenomenological definition of the chemical rate constants
associated with the transition from one state to another becomes necessary. Even
if the ratio of these constants is well defined by the difference of the free energies
of the states, nothing is known about the shape of the energy between the states
and this information has to be smuggled into the theory implicitly. This is done
by exploiting a freedom in choosing the dependence of the rate constants on the
imposed step. We have shown that this freedom has often been used to fit the
experimental behavior, and that the resulting phenomenological models have no
relation to actual microscopic mechanism of the transition between the states.
In this sense the model proposed in Chapter 2 is actually closer to the original
Huxley and Simmons’ model where the step dependence of the chemical constants is
uniquely defined by the shape of the energy than most of the recent improvements of
this model. Since we managed to preserve a transparent mechanical interpretation
of the force producing mechanism, our model opens the way to reproduce the

underlying machinery artificially.

In the second part of the Thesis we have made a first attempt to develop a
purely mechanical interpretation of the entire Xb-cycle. Since we have first given
a mechanical interpretation of the power stroke part of the cycle, allowing one to
place it in a diffusion framework, a natural choice to complete the model was to
use the ideas of the Brownian ratchet theory which have already been applied to
model the diffusion of a particle in an asymmetric periodic potential representing

the actin filament.

In Chapter 3 we revisited the theory of Brownian ratchet and applied it directly
to muscle contraction. Our choice of using a Magnasco type model to simulate
the attachment-detachment process allowed us to maintain the model in a purely
mechanical framework, avoiding the use of jump processes. We have adapted this

model to our purpose and developed a cooperative version where the particles are
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elastically attached to a common backbone simulating the thick filament. We also
developed a numerical algorithm to study the behavior of our stochastic system and
demonstrate that the resulting model can predict a realistic force velocity curve.

Then we applied these ideas to the modeling of the whole Xb cycle. The
resulting approach is original because the description of the power stroke in terms
of the diffusion process is new and because we propose a new way of inserting
the power stroke into a Brownian ratchet model. By using the new cooperative
model we have achieved some encouraging results being able to reproduce the
main qualitative features of the whole Xb cycle. In our model the power stroke
of the head stretches the elastic element which in turn pulls the myosin backbone
and causes contraction. In the meantime a slower process allows the myosin head
to come back to the pre-power stroke state to recharge, leaving the tension in
elastic element almost constant. Finally, due to the motion of the myosin backbone
generated by other heads, the first head generates another power stroke and the
cycle repeats itself. one of the main advantages of the ensuing unified model of
the power stroke and the attachment-detachment phenomenon is its simplicity and
analytical trasparency. While we have not made a thorough analysis of the new
model, we were able to demonstrate convincingly the main effects.

We discussed limitations of our new interpretation of the Xb cycle and made an
important general observation, regarding the need to give a more clear interpreta-
tion of the very meaning of the power stroke. In this perspective a much stronger

collaboration with biophysicists, biochemists and physiologists becomes crucial.
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Appendix

A.1 Brownian motion

Macroscopic movements of the body originate from the microscopic movements of
small proteins (myosin) at distances of few nanometers. These movements if prop-
erly coordinated result, at a macroscopic scale, in the contraction of the muscles.
At the micro-scale thermal fluctuations of the proteins due to interaction with the
particles of the surrounding fluids can not be ignored. We review in this Appendix
the mathematical description of such fluctuations, starting form the basic concepts
of probability needed to introduce the random motion of a free protein in a fluid
(Langevin equation). We then recall the link between its mobility and the dif-
fusion coefficient (Einstein’s relation). Then, we derive the stochastic differential
equation which describes the probability distribution in the case of a system evolv-
ing in an external potential (Fokker-Plank equation). We specialize it to the high
friction limit which is, of main interest in muscle mechanics. Finally we review
the Kramers’ theory and the concept of the first passage time adapted to a double
well potential. we conclude with the analysis of diffusion of a particle in periodic
potential. A more detailed discussion of the related concept can be find in |74] and
[23].

A.2 Probability

For convenience of the reader we begin by mentioning some basic concept of the

probability theory. First of all, there are three axioms describing the probability
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P of a set of events A, P(A):

where (2 is the set of all events, and

AiNA; = 3Vi# j = P(UA;) = ) P(A). (A.3)

Next we need the definition of conditional probability. The probability of A at
a given B is equal to:
P(A|B)=P(ANB)/P(B). (A.4)

If B; is a collection of non-overlapping sets whose union is the total space €2, we

obtain:

Y P(AUB;) = P(A). (A.5)

If a random variable £ is continuous we can define its probability density p(&).
The probability of £ to be between the values &, and & + d&p, is then p(&y)d&y =
P(& < & <&+ d&). The equation (A.5) can now be rewritten as:

oo

p(x) = / p(x | y)p(y)dy. (A.6)

—00

A physical way to construct pe(x) (the probability that a stochastic variable £
assumes the value between = and = + dx), is to measure a large number of values
of £ and to define:

1
pwwzgggﬁggxx—@» (A7)

The mean value of a function of random variable f(&) will be indicated by the

brackets < > and computed as following:

<ﬂ®>=/ﬂ@m@ﬂm (A.5)

When f(§) = £, formula (A.8) generates the moment of degree n of a stochastic
variable &.
If we consider two stochastic variables, £ and 7, the joint probability density is

defined by the expression:

Pen(z,y)drdy = Pey(x <& <z +drjy <n<y+dy) (A.9)
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The mean value of f(&,n) will then be a double integral:

< fEm) > //fxypsnl’y)( \dzdy. (A.10)

We will also need the characteristic function of the stochastic variable &:

Celu) =< ¢ = [ epg(o)d (A11)

If C¢(u) is known the moment of grade n can be computed by differentiation:

1dr
M, =< " >= _—075(0). (A.12)
" dum
Inversely, if all moments are known we can write:
Ce(u) =1+ E (tu)" M, /n! (A.13)

The last formula will be used in the derivation of the Fokker-Plank equation.

A.3 The Langevin Equation

At finite temperature, a particle of mass m embedded in a viscous fluid will be
subjected to a series of hits from the much smaller particles of the fluid, that act
like a random force reservoir. We call this force I'(¢). The equation of overdamped

motion for the particle in the absence of other external forces can be written as:
0(t) +vyu(t) =T1(¢t) (A.14)

where v = n/m and 7 is the drag coefficient characterizing the size and the shape
of the particle. Equation (A.14) is called the Langevin Equation. Here I'(t) is
a stochastic function, which mean that at a given ¢, I'(f) represents a stochastic
variable. The values I'(t;) and I'(Z3) represent two distinct stochastic variables if
t1 # to. We shall be considering a one-dimensional problem and impose on I' two

restrictions. First, it must have zero average:
< F(tl) >= /Ilpp(l'l,t1>dl’1 =0 (A15)

where pr(z,t) is the probability that I assumes the value = at time ¢. Second there

must be no correlation in time:
F(tl)F //l’ll’gpr xy, t17 l’g,tz)d!)ﬁldﬂfg = qé(tl — tg) (A16)
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The Langevin force with correlations described by (A.15) and (A.16), is called a

white noise. From equation (A.14), we can write:

v(t) = vo exp[—7t] + /Ot exp[—y(t — )T (t")dt’ (A.17)

where vy is the value of v at ¢ = 0, which we assume to be zero from now on. To

determine the value of ¢, we can compute:

o(t)o(ty) >= < /0 " /0 ® exploAt + 1y — 1! —t;)]r(t;)r(tg)dtgdt;> (A.18)

which gives:

< u(t)v(ts) >= L exp—r|t: — ta|] — L exp|—y(t, + t)]. (A.19)
2y 2y
In the long time limit y¢; > 1 and vt; > 1 only the first term in the right-hand

side of equation survives
q
<w(t)u(t) >= 2 exp[—[t1 — ta]. (A.20)

Now, recalling that in the state of thermal equilibrium the equipartition law of

classical statistical mechanics must be satisfied, we can write:

1 1 1 ¢
E>=—kpT == ]2 >= ~m—. A21
<E>=gks 2m<[v()]> 2m27 ( )

From (A.21) we obtain for ¢ the following expression:

g= 2T (A.22)
m

Observe that while we did not give the complete description of the probability
distribution for I'(¢), the linearity of (A.14) allowed us to compute the two-time
correlation < v(t;)v(ty) > by using only a limited information (A.15) and (A.16).
Similarly, we can also compute the mean square displacement < (z(t))?> > of a

position of the particle,

< (1)) >= <U0tv(t1)dt1r> - </Otv(t1)dt1 /Otv(tg)dt2> (A.23)

t t
= / / < U(tl)’U(tg) > dtidt,
0 JO
Now from (A.19):

< (z(t))? >= /0 /0 %exp[—'ﬂtl—tgﬂ—%exp[—v(tljttg)]dtldtg (A.24)
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P=1/2 P=1/2

X X+A X X+ 2Ax X
Figure A.1: Diffusion of a particle
So that:
1 — exp[—~t])?
< ()2 >= Ly LAzl (1 - exp[—1))*. (A.25)

7?2y 7 g
Again in a long time limit (y¢ > 1) the leading term can be simplified:

T
4y ok, opy (A.26)
272 my

< (z(t)* >=2
The relation (A.26) is called the Einstein’s relation. In order to see why D is
called the diffusion coefficient we need to introduce a continuum description for

the movement of a particle in a viscous fluid.

A.4 Diffusion of a particle in a fluid

The analysis in the previous section allowed us to compare the mean square dis-
placement of a particle with mass m in a viscous fluid subjected to a random force
with zero mean and correlations proportional to a 0 function. The analysis was
made for a single particle and at a microscopic level. Now we would like to describe
the evolution of an ensemble of N particles in a fluid, reasoning in terms of the
concentration of the particles and the flux of matter. In this sense the description
will be macroscopic.

Without saying anything regarding the physical mechanisms of the motion, we
assume that the particle in a position x can move to positions x + Az during time
At with equal probabilities as shown in Fig. A.1.

The number of particles that will pass through the section x + Ax in time At
can be related to the number of particles between x and x + Ax, which is equal to
c(x)Ax, where ¢(x) is the concentration. The number of particles between x + Ax
and = + 2Az, is ¢(z + Ax)Az, therefore
(c(z) — c(x + Ax))

Ax

N[

AtJ(z+ Az) = Az® (A.27)
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where J(z) the flux of particles trough x. Defining D as the ratio between %A:ﬁ
and At (which we suppose to be finite), we obtain:

Oc(x,t)

Ja,t) = —D=5

(A.28)

This formula gives the Fick’s law of diffusion.
A non zero gradient in the flux trough the area A will change the local concen-

tration. We can write the following equation of mass balance:

A(J(x,t) = J(z + Az, t))At  Oc(x,t)  OJ(x,t)

Ac(x,t) = N R T (A.29)

If we now use the Fick’s law, we obtain the following PDE for the concentration:
oc(x,t) Dazc(x,t)

o or?

For the probability distribution of the position x for one particle p(z,t) = ¢(x,t)/N,

(A.30)

we can similarly write:

op(x,t) _  Opla,t)
=D : A3l
ot 0x? (A.31)
To solve equation (A.31), we introduce the Fourier transform of p(x,t) in x
Blwt) = / ) (2 ) d (A.32)

Computing derivative in time we obtain:

8p (x,1) (i) 82 x,t)
- D / axz It (A.33)

Finally, integrating by parts and letting the probability p(z,t) tend to zero as z
goes to infinity, we obtain:
Ip(, 1)
ot

To illustrate the meaning of coefficients, we can solve this differential equation

= —Dw’p(x, t). (A.34)

with an initial condition given by a delta function centered in the origin. Then
computing the inverse Fourier transform, we obtain the probability distribution of
the position of a particle at time ¢ in the form:
1 _ a2
p(z,t) = \/me 4Dt (A.35)

With this expression of p(x,t), we can compute the mean value for every func-

tion of the stochastic variable z. In particular, the mean value of 22 becomes:

00 1 12
< 2? >= 2 dx = 2Dt. A.36
x /_OO:L’ \/mexp[ 4Dt]] x ( )
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We can now identify the coefficient D in (A.36) with the D in (A.26). From this
considerations one can relate the macroscopic diffusion coefficient to the micro-
scopic information regarding the mechanical motion of a particle. Equation (A.31)
is a particular example of a class of equations known as Fokker-Plank equation,

whose general derivation will be the subject of the next Section.

A.5 The Fokker-Plank equation

We recall that pe(x,t)dz is the probability that a random variable £ assumes a
value between = and x + dx at time ¢. In the time dependent case, equation (A.6)

can be rewritten as:
plx,t+71) = /p(x,t +7 |2 t)p(a, t)da'. (A.37)

To obtain a differential equation for p(z,t) we suppose to know all the moments

M, of p(x,t+ 7 | 2/, t) with respect to x’:
M, (' t,7) =< (£(t+T1) —2')" > (A.38)

Then, the function p(x,t+ 7) is equal to the inverse Fourier transform of its char-

acteristic function (see (A.11)). Therefore:

plat+7) = % g < /_ Z exp|—i(z — 2')] (izl)ndu> Myt 7). (A39)

By using the identity
1 o
2 J_ o

exp[—i(z — 2" )u](iv)"du = (%) o(x — ') (A.40)

we can write:

ple,t+7|2t)=

1+ ; % (a%) M, (z, 1, T)] 5z —a'). (A.41)

Inserting the last equation into (A.37) we obtain an expression for the first deriva-

tive of the probability distribution p(x,t):

pz,t+7)—p(x,t) = 8p(82;, t)7‘+ O(r?) = Z <—%) Wp(z, t) (A.42)

Now, expanding M, (z,t,7) in 7 and dropping the terms that go to zero with

7 we obtain:

8}95;, t) _ ; (_%) Doz, )p(a, 1), (A.43)
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where M, (z,t,0) = 0 because no jumps take place, and

M, (x,t,
D, (2.4) = '1 OM'
n: T— T

(A.44)

By truncating this equation at n = 2, we obtain the Fokker-Plank equation:

2

% = —%(Dl(az p(z,t)) + %(Dﬂx t)p(z,t)) (A.45)
One can show that if the noise I' in the Langevin equation (A.14) can be described
by a Gaussian distribution, all the moments M,, with n > 3 are equal to zero. In
this case, the probability distribution p(z,t) satisfied the Fokker-Plank equation
(A.45) exactly. From (A.14) we can compute:
(it +71)—ov@) . 1 [T

T =0T

Dl = lim
7—0
and in a similar way:

1. ((w(t+7)—v(t)?) (A.47)

s [ / SRQIC
+ (=)L) — (")) + (L") dt'dt”

With 7 — 0 the first term in the integral above goes to zero as 72 and the second

term has a zero average. Therefore we can write:
_4q
Dy = 5 (A.48)

where g was defined in (A.22). To summarize, for the process described in (A.14),
the probability distribution for velocity, satisfies the following partial differential

equation:
Op(v, ) Op(v.t)  q0°p(v,t)
pum— - A..4
o o T2 a2 (A.49)
This equation can also be written as:
dp 0S
=0 A.50
o o (4.50)
where we defined the probability fluz S
q 0
=|—v—=—]|p. A5l
s=|-w-215]s (A51)
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From this expression for the flux we can immediately obtain the steady state
distribution. Indeed the boundary condition S(+oo0) = 0 ensures that S = 0.

Therefore: )
m mov

= — ) A .52

) =\ 2kt eXp{ QkBT] (A4.52)

which is known as the Maxwell distribution.

A.6 High friction limit

If we couple the Langevin equation (A.14) with the equation for the particle posi-

tion: 5
x
— =t A.53
=t (4.53)
It leads to a Fokker-Plank equation for two variables: position and velocity. We
then write:
t _ t 1 t+7
D, = lim &l Zalth) 1 )y dt' = v(t) (A.54)
7—0 T =0T J,
and:
Dy,=D,=D,, =0 (A.55)

We therefore obtain:

op(z,v,t) [ ov 0 0? vkpT
Ta e a7 aal

)} p(z,v,t) (A.56)

Now, we can expect that solving equation (A.56) for p(x,v,t) and integrating
it in v we obtain the distribution of the particle position p(z,t). equation (A.56)
contains a full description of the inertial effects due to finite mass m. As we have
already seen the inertial effects can be neglected if ¢ is sufficiently large. In the
opposite limit, when ¢ is small viscosity is not important and the particle moves at
a constant velocity. Using realistic values of constants, one can conclude that the
inertial description is relevant only for times of the order of ¢ = 107135 and for the
displacements of the order of 0.01nm, less than the diameter of the water molecule
that hits the particle. For these reasons in what follows we limit our attention to

the high friction limit, in which the mass of the particle has a negligible effect.

A.6.1 The Fokker-Plank equation in the high-friction limit

Neglecting the effect of mass, we shall instead focus on the effect of an external

force, described by a potential U(x). In this case, we obtain a Langevin Equation
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of the type:
nz(t) + U'(z) = [(t). (A.57)
To respect the dimensionality the I'(¢) in (A.57), must be equivalent to the I'(t)

used in (A.14) time the mass. Therefore we can write:
<I'(t;)) >=0 (A.58)

and:

nkBT

< F(tl)r(tg) >= qm25(t1 — tg) = 2777125(151 — tg) = anBT(S(tl — tg) (A59)

Following the derivation of the Fokker-Plank equation in the general case (equa-
tions (A.46))-((A.47)), and using (A.59) we obtain:

Di(t) = — U'(Z ®). (A.60)

From (A.59) we also obtain that:

. ﬁk?BT . kBT
Uk n
Unifying all these ingredients we finally obtain the Fokker-Plank equation related

Dy (1) (A.61)

to equation (A.57) in the form:

Opla,t) 10 (., Op(x,1t)
o nor (U (x)p(x,t) + kT pe . (A.62)
We can also rewrite equation (A.62) in the form:
dp 0SS
5 T o =0 (A.63)

where:

U,(LL’) _]{IBT@
n Ox

0

is the flux of probability. In the stationary state % = 0 is constant and S = const.

The value of S in the stationary state is given by the boundary conditions.
In the case of a reflecting barrier, a particle reaching the boundary is reflected
back and the net flux S is zero. Since the flux is constant in the stationary state,
S = 0 means automatically that both boundaries must be reflecting. Another
type of boundary is the absorbing boundary. In this case the particle reaching the
boundary disappears (and is eventually brought to the other boundary to preserve
the normalization condition). The probability to find a particle on the absorbing

boundary is equal to zero.
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In the stationary state, with reflecting boundaries, we can solve (A.64) and
obtain:
—U(z)

pu(@) = Nexp [k—T] (A.65)

Here NV is determined by the normalization condition [ ps(z) = 1.

A.6.2 Canonical distribution

Equation (A.65) known as Canonical distribution and is derived directly in equi-
librium statistical mechanics. The fundamental postulate of statistical mechanics
asserts that, in equilibrium the system A is likely to be found in any one of the
states accessible to it, for instance the probability P to find the system between
the energy F and E 4+ FE is proportional to the number of states Q(F) with energy
E

p(E) = CQ(E) (A.66)

The constant C, independent of E, is given by the normalization condition C~! =
> 5 QUE). We can define the temperature by

1/kpT = dInQ(E)/OE

where kg = 1.381-10723J/K is the Boltzmann constant. The distribution (A.66) is
called microcanonical. When two systems, A and A’, are in equilibrium, the total
probability p,;(F) that the system A has the energy E is given by the product
CQE)Y(E') = CQE)Y(E°— E) where E° is the total energy and E’ the energy

of the second system. We can write the equilibrium condition in the form:

0 ln ptot(E)

op =0 (A.67)

which gives T'(E) = T'(E’), so the temperatures of the two system must be equal.

Now, if we consider a single Xb in equilibrium with a heat reservoir. The
probability that the Xb has the energy F,, is equal to the probability that the heat
reservoir has the energy E° — E,: p, = C"QY(E° — E,). Because E, < E° it is
possible to expand the logarithm of 2" as:

OB — B) = m (%) — | 2] g (A.68)
IE" |,
Then
Q(E° - E,) = Q(E%)e Er/ksT (A.69)
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and therefore:
o—Br/kpT

ps = S o BT (A.70)
where the constant C” has been again defined by the normalization. The subscript
s indicates equilibrium or steady state. This distribution (A.70) is called canoni-
cal. Knowledge of this distribution is sufficient to derive the condition of detailed
balance imposed by Huxley and Simmons on the ratio of the kinetic constants,

ki /k_ (equation (1.14)).

A.6.3 The First passage time

In the high friction limit one can compute the time needed for a particle to exit
from a region bound by certain potential barriers. We can start with the simplest
case of a Langevin equation (A.14), when there is no external potential term and
D is zero.

Consider a region with a reflecting boundary on the left and an absorbing
boundary on the right. As we have already mentioned, one should remove the
particles on the right and put them back on the left, in order to have a steady
state and to maintain the normalization of the ps(z). In this case we have a
constant flux equal to the number of particles per unit of time that intersects a
given cross section. The mean first passage time is defined as the inverse of this
flux because it is the time needed for a particle starting from the left boundary to
reach the right boundary. The Fokker-Plank equation reduces to:

Op

e const. (A.71)

This equation must be supplemented by the boundary condition:
p(zo) =0 (A.72)
and the normalization condition:
Zo
/ p(z) = 1. (A.73)
0

We obtain:

—2xr 2 dp 2D
_ S p A.74
pS(ZE) Zo + Zo = J(:L’o) dr l% ( 7 )

and therefore, the mean first passage time is:

e (A.75)
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Not surprisingly, this is the same result which we obtained (A.36) when we con-
sidered the average distance traveled by a particle in a given time.

More interesting is the case of a particle subjected to a force which is derived
from a potential. Suppose Jy is the constant value of the flux. We can multiply
(A.64) by exp[—U(xy)/kgT] and integrate between = and z, (where p(zy) = 0),

obtaining:

ksT/n
Integrating again between 0 and z(, an interval over which the total probability

p(x) exp [-U(z)/kgT) /900 exp [U(x)/kpT] dz. (A.76)

must be equal to one, we can represent the inverse of the flux as:

e [ (exp U)o |

xT

zo

exp [U(2")/kpT)] .d:)s”) dx'. (A.77)

I

This integral can be computed explicitly when the external force is constant and
U(x) = —Fz. We obtain:

te = 2(nzs )2k T) (kT /Fxo)? [exp(—Fxo/kpT) — 1 4+ Fxo/kgT). (A.78)
2
In the harmonic case U(z) = —5 an approximate analytical solution can be
obtained in the approximation U(xg) > kgT [64]:

_nm kT . U(xo)
TR AU(w) P kT |

Equation (A.79) gives the mean time needed for a particle to exit a parabolic well.

(A.79)

A.7 Kramers’ approximation

In 1940, Kramers considered the problem of an escape from a well in relations to
kinetics of molecular transformations. He introduced an ansatz which is now called
the Kramers’ approximation and solved the problem with a double well potential
(see Fig. A.2). By using this approximation one can show the relation between the
kinetic equation (1.15) used by Huxley and Simmons and the original Fokker-Plank
equation associated with a general double well potential with minima in x = a and
x = ¢ and the maximum (the energetic barrier) in z = b.

We begin by defining:
Mz,t) = [*_pla!, t)ds’
Na(t) =1 — N(t) = M(b, 1) (A.80)
No(t) = (¢ — a)p(zo, t).
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(a) (b) (c)

Ux) Psix) Tla~x)|

a /—)
b
a

X X X

Figure A.2: a) Double welled potential U(x) b) Stationary distribution ps(z) c¢) Mean first

passage time. From [74]

Here xq is a generic point between a and c¢. The corresponding stationary quantities

are: ,
g =1-n.= [__ ps(z')dz’
/ (A.81)
no = (C - CL)pS<SC0)

From the FPE (A.62) we obtain:

a o M('Iat) |ip<x07t) p(a7t):|

— dr =D — A.82

ot J, ps(x) ps(o)  ps(a) ( )

where D is defined in (A.61).

The Kramers’ approximation assumes rapid relaxation within each well com-
pared to the time scale of a well to well transition. Therefore one can assume that
in each well the distribution p(z,t) is well approximated by the stationary distri-
bution ps(z) corrected by the corresponding weights. More precisely, the function

p(z,t) is approximated by:

=" (A9
plz,t) = i .83
ps(x)N:L—(t) x>b

Now we can write, from (A.82):

no Ng

N(1) _Nc_m],

k() N(t) = D [No@ _ Na<t>]

(A.84)

no Ne

e N(t) = D |

Here

k(o) =~ /1‘0 ps(x) da, (A.85)
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and

(o) ~ /Cps(x)_ldx. (A.86)

zo

Since —N,(t) = N,(t) we can sum both equations (A.84), and write:
No(t) = =N(t) = =1gNo(t) + 1No(t) = 1 — (rq + 1e) No(t). (A.87)

Here:

re =D [na /acps(x)_ldx} B (A.88)

c -1
re=2D [nc/ ps(at)_ld:r} (A.89)
a
Equation (A.87), is the so called master equation describing the process in
which the particles can jump between the two wells with rate constants r, and r..
Solving for N,(t), we obtain an exponential solution describing relaxation to the
steady state. The relaxation time is given by:

e e (ng + ne)D
" O (nane) facps(x)—ldx'

Equation (A.87), is equivalent to equation (1.15) used by Huxley and Simmons.

(A.90)

In general, it is possible to show that a FPE can always be approximated by a
jump process (master equation) ' but not vice-versa. Notice that in the Kramers’
approximation the rate constants are not phenomenological and have a precise

mechanical origin.

A.8 Brownian motion in a periodic potential

Until now, we have been considering potentials in which the particles were con-
strained in a finite region. In this case, the flux in the stationary state was equal to
zero. This condition allowed us to obtain the explicit expression for the stationary
distribution ps(z) (see (A.65)).

Another type of stationary solution, when the total probability flux is not zero,
can be found in the case when a particle is moving in a periodic potential [23]. The

corresponding equation of motion can be written in the form:

vi=F — f'(x) + T(¢) (A.91)
!The general linear master equation for the probability density is
Opn
5 = > [p(m — n)p(m) — p(n — m)p(n)]

m
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27

Figure A.3: Periodic energy landscape

where f is the periodic potential, F' is a constant force and I'(¢) is a white noise

imitating thermal fluctuations. The corresponding FPE is

oap 10 [, o] _ 08
ot yox [f F+D8x} P= "o (4.92)

In the steady state, the probability current S is constant, so:

dp

S=(F—-fp—-D— A.93
7S =(F~f)p—Dg (A.93)

The solution of this equation can be written as:

S ’ / /

o) = e (V@)D (N =5 [T Viyplar) (a0

0

with the effective potential V (x) defined by:

V(z) = f(z) — Fx (A.95)

(see Fig. A.3). To fully define the steady state solution, we need to obtain the
values of S and N, from the boundary condition and the normalization condition.
To apply the boundary condition in the special case of a periodic potential, we can

first write (assuming 0 < x < 2m):

2mn+x 2 2mn 2mn+x
/ eV(m’)/Ddl,/ — / €V(xl)/Dd$l—|—"'+/ 6V(m’)/Ddx/_'_/‘ eV(:v’)/Ddx/
0 0 2

w(n—1)
(A.96)

2mn

Recalling that V(x + 27n) = V(z) — 2nnF, and defining:

2T
I:/ eV @)D dy! (A.97)
0
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we can shift the integration variables in equation (A.97) to obtain

2mn+x T
/ eV(x’)/Dd$l = I+ [6—27TF/D 44 ]6—27r(n—1)F/D + / 6V(ac’)/Dd:l;,/e—27rnF/D
0 0

(A.98)
1— 6—27rnF/D x ,
Y e —27rnF/D/ V(z )/Dd /'
1 — c2F/D +e ; e x
Introducing this result in (A.94), we obtain:
Vi VST ™
p(x + 2mn) = e~ V@/D [N D= e—QWF/D)} e E/D (A.99)

—V(z)/D vS1 _ E/x V(@)/D gq!
+e |iD(1_€_2ﬂ-F/D) 'yD ; e T

We can now require that p(z) is bounded for large x (our boundary condition
in the case of periodic potential). Then the first bracket on the right hand side of
(A.99) must vanish at n — 400 for F' > 0 (or at n — —oo for F' < 0). Hence we
obtain the first condition between N and S:

ST = DN(1 — e~ #"F/P), (A.100)
Next we recall that in the steady state:
p(x + 27) = p(x) (A.101)

meaning that the probability distribution is periodic. Because of the periodicity,
it is possible to normalize the distribution in only one interval. In this case we

obtain the second condition on N:

/ o) = 1. (A.102)

We remark that in the problem on the entire real axis with localized initial data,
the probability p(x,t) never reaches a steady state (see [68|), instead p(z, 00) — 0.
It is, however, possible to define a reduced probability density p(x,t) as:

+oo

plx,t) = Z p(x + 2nm,t) (A.103)
/% plz,t)de =1 (A.104)
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and the corresponding probability flux:

S(x,t) = +f S(x + 2nm, t). (A.105)

n=—oo

Then, due to the linearity of the FPE, it can be rewritten in “reduced” variable as

op S
_— = ——. A.106
ot ox ( )
The advantage of this rewriting is that now the reduced probability density
p(z,t) subjected to the periodic boundary conditions indeed tends toward a mean-
ingful time independent limit.
With the two conditions (A.100) and (A.102), we can obtain the relation be-

tween the mean velocity of the particle and the applied force F' in the form:

<v>=<i>=y'<F—fl(z)+T(t) >
=y V< F — fl(a) >=~"" [IT(F — f'(z))p(x)dz (A.107)
=~ [Z(yS + DAp/dx)dx = 278

The drift velocity is then given by the formula which we used in the body of the
Thesis

27rD(1 — e~ 20/ D)
f027f eV(@)/Dy f027f e~ V@/Ddy — (1 — e=27F/D) fo% e~V @/Ddy [¥ V(@) /Dy

A.9 Gillespie method

The Gillespie method was developed in 1977 [15|. Mathematically it belongs to the
category Kinetics Monte Carlo methods, and can simulate the behavior of a system
with known rate constants. The method is used in Section 2.7.1 to predict which
Xb change configuration at every instant of time in a chain of half-sarcomeres each
formed by Ny, Xbs. The length of each half-sarcomeres affects the rate constants
of the change of configuration as in the HS71 model. The main features of the
algorithm are:

0. Set the time t =0

1. Form a list of all possible rates in the system k;(d;), that in our case are
a function of the length of the half-sarcomere 9;, given in the first step as initial

conditions.
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2. Calculate the cumulative function for

Ri=> ki(0) (A.109)
j=1
fort=1,---, N where N is the total number of transitions. Denote R = Ry.

3. Get a uniform random number u € [0, 1].

4. Find the event to carry out ¢ by finding the ¢ for which R, ; < uR < R;.

5. Carry out event 7 and update the new values of d;.

6. Recalculate all rates k;(d;) which may have changed due to the transition.
Update N and the list of events accordingly.

7. Get a new uniform random number u € [0, 1].

8. Update the time with ¢t =t + At where At = —logu/R.

9. Return to step 2.

For a more detailed description of the model see [15].
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