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Introdu
tion
Skeletal mus
le 
ontra
tion is a broad domain of s
ien
e that 
overs many areas,from biophysi
s and 
hemistry to me
hani
s. The foundations of the theory ofmus
le 
ontra
tion were built 50 years ago, when it was understood that it ismyosin �
ross-bridge�, linking adja
ent myosin and a
tin �laments, that generatesfor
e and motion. Sin
e that time many experimental advan
es have been made.These advan
es have not been always mat
hed by improvements in the building ofmathemati
al models.Mathemati
al approa
hes to mus
le 
ontra
tion are mainly based on the ideasproposed in the Huxley 1957 model [4℄ and Huxley and Simmons 1971 model [10℄,that dominated the �eld for the past half 
entury. Although they do not a

ountfor all observed phenomena, these models still represent the paradigm of 
hoi
e.The two models of Huxley 
an be seen as 
omplementary sin
e the Huxley 1957model des
ribes the atta
hment-deta
hment pro
ess and the events related to theslow time s
ale, while the Huxley and Simmons 1971 model des
ribes the powerstroke pro
ess and the events related to the fast time s
ale.In this Thesis we shall follow some re
ent insight and explore the possibilityto bring together these two type of pro
esses and to obtain a uni�ed model thatis able to des
ribe the whole 
ross-bridge 
y
le. Before the uni�
ation we �rstmodify the existing models to 
ast them into a fully me
hani
al framework. BothHuxley 1957 model [4℄ and Huxley and Simmons 1971 model [10℄, present ad ho
assumptions regarding the 
hemi
al rate 
onstants that drive the pro
esses. Similarassumptions were made in all re
ent models to �t the experimental data at theexpense of maintaining the link with me
hani
s.In Chapter 1 we des
ribe the physiology of mus
les and their me
hani
al be-havior, as well as the 
orresponding experimental pro
edures. There we also givethe details of the Huxley 1957 model and Huxley and Simmons 1971 model whi
hare important for the original development in the subsequent pages.In Chapter 2, we deal with the atta
hed state and reexamine the power strokeix



theory through the eyes of a me
hani
al engineer. It has been already observedin the literature [17℄ that the Huxley and Simmons 1971 model of power strokeen
ounters problems in mat
hing the observed time s
ale of tension relaxationwhen a realisti
 value of the sti�ness of the myosin head is taken. After a reviewof how the more re
ent models, whi
h in
orporate one or more aspe
ts of theoriginal Huxley and Simmons 1971 model, deal with these problems, we presentour modi�
ation of the theory whi
h pla
es the power stroke me
hanism entirelyin a me
hani
al framework. The novelty of our approa
h from the perspe
tive ofme
hani
s is that we deal with the me
hani
al behavior of a multi-stable systemin a Brownian domain, where the e�e
ts of thermal �u
tuations are important.We obtain an analyti
al des
ription of the behavior of our model at equilibriumand during the transients and show how the resulting modi�
ation of the Huxleyand Simmons 1971 model helps one to avoid the intrinsi
 problems of this modelindi
ated above. Finally we show that our model gives a new meaning to thepower stroke step, whi
h is in quantitative agreement with all re
ent experimentalobservations.In Chapter 3, we turn to the atta
hment-deta
hment pro
ess and review fromthe new, fully me
hani
al point of view the Huxley 1957 model. We show that thismodel 
an be viewed as belonging to a 
lass of models of Brownian rat
hets. Thesemodels, �rst developed in the early ′90s, have an important role in the des
riptionof mole
ular motors of whi
h the myosin II is an example. We are interested in theBrownian rat
hets theory be
ause it allows one to have a 
ompletely me
hani
alinterpretation of the mus
le 
ontra
tion pro
ess. We present di�erent types ofrat
hets representing the pro
ess of ATP hydrolysis. We modify one of these modelsby in
luding 
ooperative e�e
ts and adapt it to the des
ription of the slow timephase of the 
ontra
tion phenomenon. We also develop and test in this Chapter anumeri
al algorithm to solve the 
oupled system of sto
hasti
 di�erential equationswhi
h is later used for our numeri
al experiments.In Chapter 4, we 
ombine the power stroke model from Chapter 2 with themodel of a 
ooperative Brownian rat
het developed for the simulation of theatta
hment-deta
hment pro
ess in Chapter 3. We present di�erent ways of linkingtogether the two models and study both advantages and limitations of ea
h versionof the uni�ed model. We �nally 
ome up with a model 
apable of providing fullyme
hani
al des
ription of all four stages of the bio
hemi
al Lymn-Taylor 
y
le ofmus
le 
ontra
tion. The resulting model still has drawba
ks and we present someperspe
tives regarding how to resolve the remaining problems.



In the last Chapter 5 we 
olle
t the main new developments from ea
h Chapterand present a general dis
ussion and 
on
lusions. In Appendix we review somemathemati
al results regarding sto
hasti
 di�erential equations whi
h we used inthe Thesis.





Chapter 1Mus
le physiology and earlymodeling
1.1 Mus
le physiologyThe movements of a mus
le on a ma
ros
opi
 s
ale appear as the result of the
on
erted a
tion of millions of elemental units that work in unison. The moststudied mus
les are 
alled skeletal mus
les be
ause these mus
les are atta
hedto the skeleton. The 
ontra
tion of skeletal mus
les is under voluntary 
ontrol.They belong to the 
lass of striated mus
les whi
h are 
omposed of long, parallel,
ylindri
al �bers. Ea
h of these �bers is a multinu
leate 
ell, of 1 − 100 mm inlength and 10 − 100 µm in diameter. Fibers 
ontain myo�brils, also 
ylindri
al inshape with a diameter of 0.5 − 2 µm. Myo�brils are made of repeated segmentsea
h about 2.5 µm in length, that are 
alled sar
omeres (Fig. 1.1) [95℄.Sar
omere is the smallest element of a mus
le that 
an 
ontra
t. Being pla
edin series, sar
omeres generate the 
ontra
tion of the whole mus
le. Ea
h sar
omereis formed by an array of �laments of two di�erent types, whi
h intera
t with ea
hother: a thinner �lament, 
ontaining the protein A
tin, and a thi
ker �lament,
ontaining the protein Myosin. The sar
omere 
an be divided in zones: in Fig. 1.2we see a longitudinal and a transverse view of it. In the region where the �lamentsoverlap, six thin �laments are lo
ated around ea
h thi
k �lament (Fig. 1.2b).Thin �laments are an
hored to the Z-disk (from german zwis
hen, between) whi
h
onne
ts adja
ent sar
omeres. Thi
k �laments are an
hored to M-line (Mittel,middle of the sar
omere, not showed in Fig. 1.2) and also to the Z-disk via an elasti
element the giant protein titin. These repeating stru
tures, (A=anisotropi
 at thepolarizing mi
ros
ope, I=isotropi
, H=hell=
lear) observed under the mi
ros
ope,1



Chapter 1 Mus
le physiology and early modeling

Figure 1.1: Mus
le's anatomi
al mi
rostru
turegenerate the typi
al striated stru
ture that gives the name to this type of mus
les[19℄. A longitudinal view as it appears on a ele
tron mo
rograph is given in Fig.1.3.The sliding-�lament hypothesis was proposed �fty years ago. It assumes thatduring 
ontra
tion the thin �lament moves past the thi
k one, so that both the sar-
omere, and the mus
le, shorten without 
hanging the length of the two stru
tures.The hypothesis was based on the papers of Hugh Huxley and Jean Hanson [2℄ (usinga phase 
ontrast light mi
ros
opy) and of Andrew Huxley and Rolf Niedergerke [3℄(using a spe
ially developed interferen
e light mi
ros
ope) both published in 1954.Both works showed that when the mus
le 
ontra
ts the �laments keep a 
onstantlength, and the 
on
lusion was made that they must slide during shortening. Thishypothesis has not been immediately a

epted: the then 
urrent view was thatmyosin was a long negatively 
harged polypeptide without mu
h stru
ture thatshorten down due to the addition of Ca2+ [76℄. Later on, it be
ame 
lear that2



Mus
le physiology Se
tion 1.1

Figure 1.2: Longitudinal and transverse view of a sar
omere: (a) Longitudinal view of 3 sar-
omeres (sket
h). (b) Transverse view at 3 di�erent se
tion (sket
h). (
) Transverse view of 3sar
omeres (mi
ros
ope). From [97℄
Figure 1.3: Longitudinal view of a sar
omere as seen in ele
tron mi
rgraph. From [98℄the two �laments intera
t through the 
ross-bridges (later we use notation Xb);these are the globular portions, or heads, that emerge in regularly repeating 
ou-ples from the thi
k �lament formed by the polymerisation of the dimeri
 proteinmyosin II (Fig. 1.4). Ea
h head has a site with an a�nity for a
tin, and a sitewith an a�nity for a high energy mole
ule, 
alled ATP (adenosintriphosphate).The �rst site bounds an a
tin monomer while the se
ond site an ATP mole
ulewhi
h a
ts as the fuel for the mus
le motor. ATP is hydrolyzed by myosin inADP (adenosindiphosphate) and orthophosphate whi
h subsequently are disso
i-ated with release of 
hemi
al energy [9℄.A simpli�ed model of Xb 
y
le is shown in Fig. 1.5, where one 
an see four mostimportant states in whi
h Xb 
an exist. When atta
hed to a
tin (state 2 in the�gure), ea
h Xb uses its potential energy to pull the a
tin �lament through a powerstroke (state 3) whi
h, a

ording to 
rystallographi
 studies, 
onsists in a tilting ofthe lever arm portion of the head [33℄. The relative sliding of the �laments takes3
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le physiology and early modeling

Figure 1.4: Myosin �lament stru
ture. (a) Myosin mole
ule (
ouple). (b) Bundle of 
oupledmyosin mole
ules whi
h generate the thi
k �lament. From [100℄pla
e in one dire
tion (plus dire
tion), but due to the antiparallel arrangementof the two halves of the sar
omere, the two Z-disks are pulled towards the 
enterof the sar
omere, redu
ing its length. In this sense, the half-sar
omere, the zonebetween one Z-disk and the next M-line, 
an be seen as the smallest element that
an 
ontra
t. To go ba
k to its original 
on�guration (state 1) the Xb needs anotherATP to deta
h from a
tin and start another 
y
le (state 4). It then binds to anew a
tive site on the a
tin �lament (state 2) and the whole pro
ess starts again[64℄. This inner working is des
ribed in the bio-
hemi
al Lymn-Taylor model ofa 
ross-bridge 
y
le [9℄. The 
y
le in Fig. 1.5 is a simpli�ed four-states modelthat omits a number of intermediate states, nevertheless it des
ribes the essentialsteps of the pro
ess. An important general observation is that mus
le needs ATPfor both the 
ontra
tion and the relaxation; the unphysiologi
al depletion of ATPbelow a 
ertain 
on
entration will prevent the deta
hment of the heads from thea
tin �lament, whi
h 
auses rigor mortis [19℄.The stru
ture of the head 
an be resolved with a pre
ision of one nanometer [33℄,[87℄. It has been proved that the relative displa
ement of the �laments is mainlytaking pla
e during the power stroke (state 3). It is a
hieved by a rotation of thedistal part (C-terminal) of the head that a
ts like a lever arm. This me
hanismgives to the whole approa
h the name of swinging lever arm theory.Regulation of the 
ontra
tion is due to the fa
t that Xbs 
an bound a
tin onlywhen the 
on
entration of 
al
ium ions is high enough. The troponin is a protein4
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Figure 1.5: Simpli�ed Cross Bridge (Xb) 
y
le (see text). From [44℄that is atta
hed to the protein tropomyosin and lies within the groove between thetwo strand of the a
tin �lament in mus
le tissue. In a relaxed mus
le, tropomyosinprevent the intera
tion of myosin with the atta
hment site on a
tin, thus preventing
ontra
tion. When the mus
le 
ell is stimulated, 
al
ium 
hannels open in the sar-
oplasmi
 reti
ulum and release 
al
ium into the sar
oplasm. Some of this 
al
iumions atta
h to troponin, 
ausing a 
onformational 
hange that moves tropomyosinout of the way so that the Xbs 
an atta
h to a
tin and produ
e mus
le 
ontra
-tion. The ions Ca2+ are stored in the sar
oplasmati
 reti
ulum (SR) surroundingthe myo�laments. The a
tion potential originated at the neuromus
olar jun
tiontriggers the release of 
al
ium from the SR almost syn
hronously everywhere byindu
ing an in
rease in Ca2+ permeability of the SR membrane. The 
ontra
tionis maintained until the nerve 
ontinues to �re; when the train of a
tion potentialsstops, the Ca2+ permeability falls, while the Ca2+ pump brings ba
k the 
al
iuminto the SR. The de
rease of 
al
ium 
on
entration below the threshold ina
tivatesthe thin �lament and indu
es relaxation of mus
le [19℄ (Fig. 1.6).5
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Figure 1.6: Ex
itation 
ontra
tion 
oupling: s
hemati
 des
ription. From [97℄
We have given here a brief overview of the 
omplex events that lead to the 
on-tra
tion of skeletal mus
les. A 
omplete des
ription should take into 
onsiderationhow the ele
tri
al signal generates the bio
hemi
al pro
esses, with all their 
om-plexity, whi
h �nally leads to the me
hani
al for
e or displa
ement in sar
omeres.We would like to emphasize that in this work we shall 
onsider only the me
hani
alaspe
ts of the 
ontra
tion, avoiding the des
ription of proteins intera
tion through
hemi
al rate 
onstants. Despite some limitations in the physi
al interpretationof the �nal model, dis
ussed at the end of the thesis, this approa
h allows oneto produ
e a fully me
hani
al model of the 
ontra
tion in the sar
omere, openingthe way to the 
onstru
tion of arti�
ial mus
le type ma
hines. Moreover, as weshall show the new approa
h improves, in some aspe
ts, the predi
tive power ofthe model respe
t to the 
hemi
al approa
h.6



Me
hani
al experiments Se
tion 1.21.2 Me
hani
al experimentsThere exist di�erent experimental approa
hes to the study of the me
hani
s ofmus
le 
ontra
tion (see [76℄, [75℄, [78℄ and referen
es therein). The te
hnology usedin these experiments has been often highly innovative, leading to te
hnologi
alspin-o�. We have already mentioned di�erent mi
ros
opy te
hniques. Anotherte
hnique is the in vitro motility essay, where single myosin mole
ules atta
hed to abead trapped by a laser beam are used to measure the generated for
e. Di�erently,the IVMA measures the speed of sliding of a
tin �laments, atta
hed to a bead,gliding on a bed of myosins. Then the syn
hrotron radiation (an intense X-raysour
e) was developed to study the Xb movements in situ in whole mus
le orsingle �bres. Finally protein 
rystallography was applied to investigate the powerstroke in the myosin mole
ule at atomi
 resolution (see Fig. 1.7) [76℄.

Figure 1.7: Stru
ture of myosin S1 from 
hi
ken skeletal mus
le. From [33℄In this Thesis we approa
h the modeling of skeletal mus
les 
ontra
tion from ame
hani
al point of view. Therefore, we shall be mainly interested in a parti
ularset of experiments performed on the mus
le �bers or myo�brils. These experimentshave 
ommon aspe
ts with the usual me
hani
al measurements aimed at testingthe behavior of passive materials [19℄.A mus
le responds to a single stimulus with a single transient rise in tension,
alled twit
h. Two stimuli, generated after a suitable interval of time, produ
eidenti
al for
e transients. When the se
ond twit
h starts before the �rst one isover, the se
ond one develops a larger peak tension. With a train of stimulationsthe for
e rea
hes a steady state value, 
alled unfused tetanus, and 
hara
terizedby the os
illating behavior with the stimulation frequen
y (Fig. 1.8). At a higher7



Chapter 1 Mus
le physiology and early modelingfrequen
y the mean for
e rises to an almost 
onstant value: this situation is 
alledtetanus. The required frequen
y depends on the type of mus
les and on the tem-perature (50-60 Hz in mammalian mus
les at body temperature, not used in the�gure) [19℄. An experiments in whi
h we are interested have been made in thestate of tetanus, that 
an be viewed as a steady state 
ondition.

Figure 1.8: For
e generated at di�erent stimulation frequen
y. 1 pps 
orrespond to the singletwit
h, at 80 pps is rea
hed the tetanus. From [97℄The me
hani
al experiments, either on a �ber or on a myo�bril, are usuallyperformed with one end of the spe
imen �xed and the other linked to a lever witha 
at
h me
hanism and a transdu
er of for
e (Fig. 1.9). In this Se
tion we shallexplain in detail the three major proto
ols used in these type of experiments andpresent their main results.For
e-length 
urvesWhen the 
at
h me
hanism is �xed, the mus
le undergoes an isometri
 
ontra
tion.By imposing tetanization with the ends �xed one 
an register the tension generatedby the mus
le. By varying the initial length of the mus
le before the tetanization,a for
e-length 
urve 
an be 
onstru
ted [95℄.In Fig. 1.10 we show the s
hemati
 for
e length 
urve for the total for
e and forits two 
omponents: a
tive for
e and passive for
e. Passive for
e is the resistan
egenerated by elasti
 
omponents in parallel to the 
ontra
tile element, it be
omesrelevant when the sar
omeres are overstret
hed. The passive resistan
e is almostzero until a 
ertain 
riti
al elongation of the sar
omere, and then in
reases fastshowing nonlinear elasti
ity. Subtra
ting the passive for
e from the total isometri
for
e, we obtain the 
omponent of the for
e that a mus
le 
an generate a
tively.8
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Figure 1.9: Experimental devi
es (a,d), experimental 
urves(b,
) and one version of the Hill'smodel (e) (see Se
tion 1.3.1). (a) When the 
at
h me
hanism is a
ting the mus
le 
an be tetanizedat a 
onstant length, left part of (
), rea
hing the tetanus at T0 in (b). When the system is released(d), the isotoni
 
ontra
tion against a 
onstant load, T in (b), generates the length-time 
urve inthe right part of (
). From [19℄Di�erent types of mus
les have di�erent passive responses and so di�erent totalfor
es, but the a
tive for
e-length 
urve, for most of them, shows the same non-monotone behavior [7℄. This behavior (Fig. 1.11) is in agreement, with the fa
tthat the two �laments must overlap to generate for
e. In fa
t, the maximum a
tivefor
e is generated when the overlap between the two �laments is optimal, i.e. whenall the Xbs see an a
tin site where they 
an bound and, at the same time, there isno interferen
e between the two half parts of a sar
omere. When the initial lengthin the passive state is su
h that some Xbs, the ones near the M-line, do not haveany a
tive site to atta
h, the a
tive for
e starts to de
rease linearly with the totalnumber of Xbs available to intera
t with a
tin. For shorter initial lengths thanthose 
orresponding to the plateau of the for
e-length 
urve, two opposite a
tin�laments start to interfere with ea
h other, that again 
ontributes to a de
rease offor
e [7℄.An important thing to note is that the for
e-length (T-l) 
urve is 
reated pointby point: �rst we �x a length in the passive state, then we tetanize the mus
le andregister the for
e whi
h develops in isometri
 
ontra
tion. The T-l 
urve representstherefore a series of isometri
 a
tivations at di�erent initial passive lengths. Inparti
ular this 
urve does not represent the response of the mus
le to quasi-stati
stret
hing. 9
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Figure 1.10: Total, passive and a
tive for
e as a fun
tion of the length for two di�erent types ofmus
les. The passive for
e is analyzed stret
hing the mus
le in the passive state. The total for
eis analyzed tetanizing the mus
le from a 
onstant passive length. The a
tive for
e is derived bysubtra
tion. From [19℄

Figure 1.11: Upper �gure: A
tive tension generated by isometri
 tetanization from di�erentpassive lengths of the sar
omere. Lower �gure: relative positions of the thin �lament (bla
k line)and of the thi
k �lament (white body) at the points indi
ated in the upper �gure. From [19℄10



Me
hani
al experiments Se
tion 1.2For
e-velo
ity experimentsThe dynami
al behavior of skeletal mus
les is usually studied in a di�erent type ofexperiments [1℄, [67℄, [66℄, [93℄ aimed at 
onstru
ting the for
e-velo
ity 
urve. This
urve relates the load imposed to a 
ontra
ting mus
le to the velo
ity at whi
h themus
le shortens. It 
an be obtained, still point by point, within the experimentalsetup dis
ussed before [5℄: a mus
le is tetanized at a �xed passive length, thenthe lever is released, while a 
onstant load is applied. The length of the mus
le isplotted against time (Fig. 1.12). As soon as tension is redu
ed, the mus
le lengthde
reases: this typi
ally fast response shows the presen
e of an elasti
 elementwhose shortening takes pla
e before a slower time s
ale dynami
s of the Xb 
y
legets a
tivated. After this fast transient, the mus
le starts to shorten at 
onstantvelo
ity. Repeating the experiment with di�erent loads, one 
an 
onstru
t the
urve plotted in Fig. 1.13.

Figure 1.12: Shortening vs. time 
urves, for one load (A) and for di�erent loads (B). Length
hange axes refers to shortening. The os
illating regime is due to the me
hani
al apparatus.From [5℄As we 
an see, there is a maximum velo
ity v0 that the mus
le 
ontra
tion 
anrea
h under free (unloaded) shortening; this velo
ity is independent of the lengthof the mus
le in the passive state. There is also a load against whi
h the mus
leundergoes an isometri
 
ontra
tion at v = 0, this value is provided by the T-l 
urve.Applying a 
onstant load greater than this value gives the for
e velo
ity 
urve inlengthening (or e

entri
) portion. This latter range is mu
h less known than theshortening range be
ause of the higher dispersion of the experimental points. Ageneral feature is that above a 
ertain threshold, about 1.8 Fv=0, the velo
ity goes11
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Figure 1.13: For
e-velo
ity 
urve. In shortening the behavior 
an be des
ribed by an hyperbolawhi
h interse
ts the abs
issa at the maximum unloaded speed (normalized) and the ordinate atthe isometri
 tetani
 tension. The slope has a dis
ontinuity in the isometri
 point v = 0. Aplateau is observed at high lengthening velo
ities. From [99℄to in�nity. Moreover there is a dis
ontinuity in the derivative of the F −v 
urve atthe isometri
 point v = 0: in the e

entri
 portion the derivative of the 
urve is sixtime greater than in the shortening portion. In order to 
onstru
t the for
e-velo
ity
urve the steady shortening state must be rea
hed, whi
h happens in a typi
al times
ale of tens of millise
onds [93℄. The transient that pre
edes this state takes pla
ein a typi
al time s
ale of some millise
onds and 
an be analyzed also in a slightlydi�erent me
hanism, whi
h we introdu
e in the next Se
tion.Experiments on fast for
e re
overyThere is a third type of experiments with whi
h we shall mainly o

upy ourselvesin this Thesis. Imposing on a tetanized mus
le a small in
rement, say negative,of length δ generates a 
hange in tension as shown in Fig. 1.14(a) (see [10℄ andreferen
es below). There is an instantaneous (hundreds of mi
rose
onds) de
reasein tension to a new value 
alled T1, just as it would be if the thin and thi
k�laments were atta
hed to ea
h other by elasti
 springs. Almost immediately afterthis elasti
 stress drop, the tension rises and then for some time (millise
onds times
ale) remains 
lose to a plateau level (
alled T2) before �nally re
overing fullythe value it had had before the length 
hange (tens of millise
onds time s
ale).The 
hanges in length in these experiments are very small, about 4-10 nm perhalf sar
omere, and the time s
ales involved for T2 re
overy (millise
onds) are12



Me
hani
al experiments Se
tion 1.3su
h that it is realisti
 to assume that the number of atta
hed Xbs remains �xed.Imposing di�erent length in
rements, one obtains the relationship between theimposed length in
rements and the tensions T1 and T2 shown in Fig. 1.14(b).

(a) (b)Figure 1.14: Fast re
overy experiments. (a) A rapid small shortening is applied to the mus
le(upper tra
e) and the resulting tension history is measured (lower tra
e). (b) The 
urves T1 and
T2 vs. the imposed length in
rement for two di�erent values of initial length, normalized withrespe
t to the higher isometri
 tension T0. Symbols are de�ned in the text. From [19℄An important understanding that derives from this experiment is that the valuesof T1 at various shortenings lay pra
ti
ally on a straight line. Another importantresult is that the rate of re
overy of tension 
hanges with the step imposed in ahighly non linear manner (see Fig. 1.15). It tends to in
rease in an exponentialway from positive length steps to higher negative steps.The behavior exhibited by a mus
le in this set of experiments is an impor-tant sour
e of information about mus
le me
hani
s, be
ause at least the fast timeresponse produ
ing the fun
tions T1(δ) and T2(δ) appears to be independent ofthe atta
hment-deta
hment pro
ess. Sin
e the pioneering paper of Huxley andSimmons [10℄ these experiments have been repeated by many groups [14℄ [41℄ [43℄[67℄.The for
e-length, the for
e-velo
ity and the T1 and T2 vs. step-length 
urves arethe most important experimental results that deal dire
tly with the me
hanisms ofmus
le 
ontra
tion. We have given referen
es to some re
ent experiments revealingfor instan
e the history dependen
e in the me
hani
al response when mus
le isstret
hed after tetanization [52℄. Nevertheless, in what follows, we shall fo
us onthe explanation of only the main experimental fa
ts that are 
onsidered to be wellestablished. 13
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Figure 1.15: Rate 
onstant r of qui
k tension re
overy following a length in
rement of magnitude
y. Estimated as ln(3)/t1/3 where t1/3 is the time for re
overy from T1 to (2T2 +T1)/3. From [10℄1.3 Me
hani
al modelingIn this Se
tion we introdu
e several basi
 models aimed at explaining the me
han-i
al behavior of mus
les. They are: the Hill 1938 model, the Huxley 1957 modeland the Huxley and Simmons 1971 model. These models represent the basis onwhi
h the majority of more re
ent models are based. Some of this more re
entmodels are reviewed later in the Thesis.1.3.1 Hill 1938 modelAn analyti
al expression for the 
on
entri
 part of the for
e-velo
ity 
urve was ob-tained by Hill in 1938 [1℄. He used his own experiments fo
used on the energeti
s ofmus
le 
ontra
tion against a 
onstant for
e. First he observed that when the mus-
le is allowed to shorten, it liberates more energy (thermal and me
hani
al) thanduring isometri
 
ontra
tion. He divided the total energy rate E into three terms:the maintenan
e heat rate (A) liberated by a mus
le in isometri
 
ontra
tion, theshortening heat rate (H), that is the total heat liberated during the 
ontra
tionminus A, and the rate of work done (W ) equal to F · v where F is the 
onstantapplied for
e and v is the velo
ity uniquely related to it, as we have seen in our14



Me
hani
al modeling Se
tion 1.3dis
ussion of the for
e velo
ity 
urve. Hill wrote the energy balan
e in the form:
E = A +H +W ⇒ E − A = H +W. (1.1)By a very pre
ise measurement of the �rst term A and of the total energy rate

E, Hill observed empiri
ally the relation:
H +W = b(F0 − F ). (1.2)In the right hand side of (1.2) we see the di�eren
e between the for
e F appliedto the mus
le and the maximal for
e F0 exerted by it in an isometri
 
ontra
tionwhen v = 0. Independently Hill observed that H depends linearly on the velo
ityof 
ontra
tion, H = av. In this way we have:

H +W = av + Fv = b(F0 − F ). (1.3)By rearranging terms in (1.3), Hill obtained:
(a+ F )(v + b) = b(a + F0). (1.4)

Figure 1.16: For
e velo
ity relation. The 
ir
les represent the experimental observation (frogmus
le), the line 
orresponds to the 
urve (1.4). From [52℄In the F−v spa
e equation (1.4) des
ribes a hyperbola with asymptotes −a and
−b (see Fig. 1.16) [46℄. It �ts the experimental points very well (using appropriatesvalues of a and b) for a large variety of mus
les. In the free 
ontra
tion F = 0,the velo
ity be
omes maximal vmax and it has been observed that for many typeof mus
les a
ross spe
ies and temperatures [52℄:

a

F0
=

b

vmax
= 0.25. (1.5)15
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Figure 1.17: Hill 1938 model with with a series of a passive spring and a 
ontra
tile element,both in parallel with a se
ond passive spring. From [19℄With these results, Hill proposed a model (see Fig. 1.17) where the a
tivemus
le is represented by an elasti
 element SE in series with a 
ontra
tile elementCE whose fun
tion is to link the applied for
e to the velo
ity, in a bla
k box manner.Su

essively, to a

ount for passive elasti
ity, an elasti
 element PE was added inparallel with the CE and the SE (Fig. 1.17).In the passive state the CE 
an be stret
hed without any resistan
e. Duringthe 
ontra
tion, the total for
e generated by the system is F = kpu + ks(u − w).Here ks(u − w) = fCE [w
′

, l0], ks is the sti�ness of the SE and kp of the PE, u thetotal displa
ement, w the displa
ement of the CE, fCE is the for
e in the 
ontra
tileelement whi
h depends on the rate of 
hange of the displa
ement w′

= v. A

ordingto observations made by Hill, the CE exerts a for
e of the type
fCE =






0 ẇ 6 −F (l0)
b

a
F (l0)b+ aẇ

−ẇ + b
−F (l0)

b

a
6 ẇ 6 0

1.5F (l0) − 0.5
F (l0)b

′ − a
′

ẇ

ẇ + b
0 6 ẇ 6 F (l0)

b
′

a′

1.5F (l0) F (l0)
b
′

a′
6 ẇthat a

ounts also for the e

entri
 
ontra
tion. The isometri
 for
e F0 has adependen
e on the initial length of the mus
le l0, as shown by the for
e length
urve. The for
e is equal to zero for large negative values of w′ (shortening), whileit 
an be dire
tly obtained from (1.4) for smaller 
ontra
tion velo
ities. In thee

entri
 region, w′

> 0, the values are taken to mat
h the behavior observedexperimentally (see Fig. 1.13).The model leads to a di�erential equation that 
an be solved to obtain the16



Me
hani
al modeling Se
tion 1.3time dependen
e of the for
e for di�erent given proto
ols of stret
hes. Thus if weintrodu
e a parameter β to a

ount for the 
on
entration of 
al
ium, as in the �rstand third part of Fig. 1.18, we obtain:
F (l0, t) − kpu = βfCE

[(
1 +

kp
ks

)
u̇−

˙F (l0, t)

ks
, l0

] (1.6)where 0 < β < 1 modulates the for
e in the 
ontra
tile element fCE . Two examplesof loading programs are presented in Fig. 1.18. The elongation, equal for bothexperiments, is given by a ramp that in
reases the length of the mus
le, maintainsit 
onstant and then shortens it to the initial state. The a
tivation parameterswere di�erent. The experimental observations obtained for the given elongationhistory is shown in Fig. 1.19. The predi
tions of the model are in Fig. 1.20: thetwo responses are rather similar.For 50 years Hill 1938 model dominated the �eld. In this period many ideashave been added to the model in order to a

ommodate newly dis
overed fa
ts [52℄.Originally quite simple the model be
ame more and more 
ompli
ated and lost itsappeal; however the simplest version is still today used to simulate the me
hani
albehavior of mus
les.

Figure 1.18: Two di�erent experimental pro
edures for Hill's 1938 model. The response isillustrated in Fig. 1.20. From [52℄ 17
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Figure 1.19: Experimental results for the elongation history shown in Fig. 1.18. From [13℄

Figure 1.20: Response of the Hill's 1938 model for two di�erent pro
edures I (upper part ofFig. 1.18) and II (bottom part). From [52℄
18



Me
hani
al modeling Se
tion 1.3The main reason for the sear
h of di�erent 
on
epts in mus
le modeling wasthe following: Hill's model does not provide insights into the me
hanism of theprodu
tion of for
e. Its bla
k box nature is su�
ient to give a good �t to theexperimental 
urves, but it does not provide a tool for the understanding of theme
hanisms that operates at the mi
ro-s
ales whi
h are not visible in the standardme
hani
al experiments.1.3.2 Huxley 1957 modelBefore 1954, most theories of mus
le 
ontra
tion were based on the idea that short-ening and for
e produ
tion were the result of some kind of folding or 
oiling of largeprotein mole
ules. In 1954, HE Huxley and J Hansen [2℄ as well as AF Huxley andRM Niedergerke [3℄ demonstrated that mus
le 
ontra
tion is not asso
iated withany 
hange of length inside the mi
rostru
ture. These authors postulated that thefor
e is generated through the intera
tion of a
tin and myosin �laments.Based on this understanding, AF Huxley developed in 1957 a new theory ofmus
le 
ontra
tion [4℄. The thi
k myosin �lament is assumed to be �xed in spa
ewhile the thin �lament is assumed to slide parallel to myosin with 
onstant velo
ity
v. The movement is generated by a me
hani
al stru
ture (that is now known to bethe Xb) that 
an o

upy di�erent positions along the ba
kbone of a
tin, and whosemovement is limited by an elasti
 element (Fig. 1.21(a)). The model postulatesthat the number of a
tive Xbs is 
onstant and 
onsiders only the full a
tivation ofthe mus
le (tetani
 response).

Figure 1.21: Huxley 1957 model. (a) The myosin head M is elasti
ally 
oupled to the ba
kbone.The intera
tion between the �laments 
an be established when M rea
h the atta
hment site Aon the a
tin �lament. (b) hypotheses on the atta
hment and deta
hment fun
tions. From [4℄19



Chapter 1 Mus
le physiology and early modelingThe stru
ture in question 
an atta
h itself only to spe
i�
 sites on the a
tin�lament. When it is atta
hed, then there is a for
e between a
tin and myosin,whi
h depends on the position of Xb. To 
al
ulate the total for
e generated bythe mus
le one needs to know the total number of atta
hed Xbs at ea
h position
x relative to the referen
e position of the stru
ture, at every time t.As a result of thermal �u
tuations Xbs atta
h to the a
tin in a range of axialposition. They exert a for
e if they rea
h the atta
hed position where the elasti
element is stret
hed; noti
e that a sour
e of asymmetry is needed to generate a netfor
e in one parti
ular dire
tion [4℄. It is assumed that the probability f that adeta
hed Xb 
an atta
h and the probability g that an atta
hed Xb 
an deta
h, arefun
tions of the variable x, as showed in Fig. 1.21(b). The atta
hment probability
f(x) is assumed to be linear in x and is zero both beyond a maximum distan
e h,and for x < 0 (the Xb 
an not atta
h to an a
tive site when the elasti
 element is
ompressed). The deta
hment probability fun
tion g(x) is also linear for positive
x, the probability in
reases even beyond h, and is large and 
onstant for negative
x. If n(x, t) is the fra
tion of the total population of atta
hed Xbs whose distan
efrom the a
tive site is x at time t, then its time evolution 
an be found from a �rstorder kineti
 equation [4℄:

∂n(x, t)

∂t
− v

∂n(x, t)

∂x
= (1 − n(x, t))f(x) − n(x, t)g(x). (1.7)Huxley limited the analysis to steady state 
ase, when the solution is 
onstant intime, so the �rst term in the left is zero. The equation (1.7) allows the 
omputationof n(x) at di�erent v: at zero velo
ity n(x) rea
hes the 
onstant value f/(f + g).At higher values of velo
ity there are two fa
tors that redu
e its value: �rst there isless time for the Xbs to atta
h, se
ond the Xbs are brought faster towards negativevalues of x. The predi
tions of the model (1.7) are illustrated in Fig. 1.22. Theanalyti
al solution is given by:

n(x, v) =






f1

f1 + g1

[1 − exp(−φ/v)] exp(
xg2

v
) x 6 0

f1

f1 + g1

{
1 − exp

[(
x2

h2
− 1

)
φ

v

]}
0 6 x 6 h

0 x > h

(1.8)where
φ =

f1 + g1

2
h.Using this solution one 
an write an expli
it expression for the for
e velo
ity depen-den
e. Indeed, assume that ea
h Xb a
ts like a linear spring with elasti
 modulus20
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Figure 1.22: Relative distribution of Xbs at various velo
ities a

ording to Huxley 1957 model.From [4℄
k, generating a for
e proportional to its displa
ement kx. Then the total tension
an be written as:

T (v) = ρ
∫∞

−∞
kxn(x, v)dx =

ρk
f1 + g1

2

h2

2

{
1 − v

φ

(
1 − e−φ/v

) [
1 +

1

2

(
f1 + g1

g2

)
v

φ

]} (1.9)where ρ stands for the density of Xbs per unit volume. Optimizing the parametersto �t the Hill's data, Huxley obtained an ex
ellent �t as in Fig. 1.23. The isometri
tension be
omes C(f/(f + g)), where C depends on the number of Xbs presentin the segment of mus
le under 
onsideration and on the other parameters of themodel, for instan
e the elasti
 
onstant.In addition to the 
on
entri
 part of the for
e velo
ity 
urve the model predi
tsalso other features of the mus
le response, even if only qualitatively. For instan
e,the model predi
ts the e

entri
 part of the for
e velo
ity 
urve, showing both adi�erent slope of the 
urve at the isometri
 point and an asymptoti
 behavior ofthe for
e at high velo
ities. Both values however are highly overestimated. Themodel also overestimates the rate of heat release during lengthening, however thisproblem, as pointed out in [4℄, 
an be eliminated through the assumption that21
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Figure 1.23: Huxley's predi
tion for the for
e velo
ity 
urve (line) and experimental data(points). From 1.23during lengthening there is a me
hani
al breakdown of the Xbs, whi
h deta
hwithout ATP release. Many more re
ent developments have been done along theselines, see for instan
e [21℄, [22℄, [27℄, [58℄, [64℄. Overall, the Huxley 1957 modelrepresents an improvement over the Hill 1938 model be
ause it gives a pre
isemathemati
al des
ription of the mi
ros
opi
 events behind the bla
k box behaviorpostulated by Hill.1.3.3 Huxley and Simmons 1971 modelThe experimental response of mus
les to rapid length in
rements, des
ribed inSe
tion 1.2, 
annot be easily explained by the 1957 Huxley's model. The pioneeringexperiments of this type, made in [10℄, have lead to the development of anotherimportant mathemati
al model: Huxley and Simmons' model of 1971. This modelis not an expansion of the Huxley 1957 model, but is a quite di�erent model whi
hdeals only with for
e generated by the atta
hed Xbs. In parti
ular it does nottake into a

ount the deta
hment pro
ess. What brings the ne
essity of a newmodel is the fa
t that the rapid re
overy of for
e takes pla
e in the millise
ondstime s
ale, whi
h is di�
ult to explain in the framework of the slower atta
hment-deta
hment pro
ess, related to the time s
ale of tenth of a se
ond. The approa
hused by Huxley and Simmons, whi
h we shall des
ribe below, is the predominantidea even in the most re
ent models. This approa
h has re
ently re
eived further22
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on�rmation from the measurements of the axial motions of the myosin heads atangstrom resolution by X-ray interferen
e te
hnique [66℄.The parti
ular me
hanism suggested by Huxley and Simmons for the stru
tureof the Xbs is shown in Fig. 1.24. First of all, they assumed that the Xb 
ontains alinear elasti
 spring linked to the head of the myosin. When atta
hed to the a
tin�lament, the head of the myosin 
an be in two states, and 
an swit
h from onestate to another in a jump fashion. The ratio of the rates of jumps are 
ontrolledby the relative energy of the two states. The energy Uh of the head is a doublewell fun
tion of 
on�guration 
oordinate x, it is plotted in Fig. 1.25 together withthe paraboli
 energy of an elasti
 element. The swit
hing 
an stret
h or relax theelasti
 element, so we 
an refer to the states as a �low� for
e generating state anda �high� for
e generating state. The total potential energy Utot, given by the sumof the potential energy of the elasti
 element Us and the potential energy of the
hemi
al state Uh, is plotted in Fig. 1.26.

Figure 1.24: Huxley and Simmons 1971 model. The myosin head S-1 is linked to the thi
k�lament through an elasti
 element S-2 and has two stable positions. From [19℄The model analyzes the distribution of Xbs in ea
h of the energy well in orderto obtain the total for
e generated by the mus
le. Be
ause in ea
h half sar
omerethe Xbs are arranged in parallel between an a
tin �lament and the relative myosin�lament, the total generated for
e is the sum of the for
es generated by ea
h Xb.It is assumed that when the mus
le is isometri
ally tetanized, the two states havethe same total energy.Due to the linearity of the elasti
 element:
Us =

1

2
Kl2 =

K

2
(y0 ±

h

2
+ y)2 (1.10)where l is the stret
h whi
h 
an be written as the sum of y0 ± h/2 (where y0 isa point lo
ated at equal distan
e from both wells, h is the distan
e between thewells) and y, the in
rement of length imposed on the mus
le. We re
all that Uh has23
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Figure 1.25: The potential energies in Huxley and Simmons 1971 model. (a) Elasti
 energy inisometri
 
ontra
tion (y = 0), after stret
h (y > 0) and after release of the mus
le (y < 0). (b)Con�gurational energy of the head, two stable states 1 and 2 are present. From [19℄

Figure 1.26: The total energy Utot = Uh +Us in Huxley and Simmons 1971 model as a fun
tionof the 
on�guration of a Xb in the isometri
 
ase (y = 0). From [19℄24



Me
hani
al modeling Se
tion 1.3two potential energy wells, 
orresponding to the two states 1 and 2. The heights ofthe potential energy barriers E1 and E2 in Fig. 1.25, are assumed to be the samefor both wells. Sin
e in the state of isometri
 
ontra
tion the two minima of thetotal potential energy have the same level when y = 0, the total number of Xbs inthe two 
on�gurations is the same. When a length in
rement is imposed, y 6= 0,there is a 
hange in Us (upper part of Fig. 1.25) and therefore in the total energy
Utot = Us + Uh, as shown in Fig. 1.27.Before giving the mathemati
al details, we des
ribe brie�y how the modelworks. The 
hange in the total length y �rst a�e
ts the tension in the linearspring, and is therefore responsible for the T1 for
e observed in the experiments.After the step, the levels of the energy in the two minima be
ome di�erent, anda 
hange in the total number of Xbs in ea
h state is generated. This adjustmentpro
ess follows kineti
s postulated for the jump pro
ess, and takes pla
e in a slowertime s
ale than the time s
ale responsible for the T1 response. The �nal steadystate is responsible for the value of for
e T2.To 
ompute the for
es T1 and T2, we need to know the relative number of Xb,
n1 and n2 in ea
h well, n1+n2 = 1. Under the assumption that the state of detailedbalan
e is rea
hed, the rate 
onstants k+, des
ribing transitions from position 1 toposition 2, and k−, des
ribing transition from 2 to 1, are related through:

k+

k−
= C exp

[
(B12 − B21)

kBT

]
, (1.11)where T is the absolute temperature, kB the Boltzmann 
onstant, C a 
onstant tobe determined and B12 and B21 the a
tivation energies for passing from state 1 tostate 2 and vi
e versa. In Fig. 1.27, we also see that k− is 
onstant sin
e B21 is a�xed quantity independent of the tension in the elasti
 element. Therefore we 
anwrite B21 = E1 and B12 = E1 + ∆Utot, where ∆Utot is given by

∆Utot = (E2 − E1) +
1

2
K

[(
y0 + y +

h

2

)2

−
(
y0 + y − h

2

)2
]

= (1.12)
kh(y0 + y) + (E2 − E1)Sin
e in isometri
 
ontra
tion the two states have the same energy:

∆Utot |y=0= 0 ⇒ −Khy0 = (E2 − E1), (1.13)the relation (1.11) be
omes:
k+

k−
= exp

(−Khy
kBT

)
. (1.14)25



Chapter 1 Mus
le physiology and early modeling

Figure 1.27: The di�erent behavior of Huxley and Simmons 1971 model: total energy in stret
h(y > 0, where the 
on�guration 1 is energeti
ally preferred) and in release (y<0, where the
on�guration 2 is energeti
ally preferred) modes. From [10℄The di�erential equation des
ribing the number of Xbs in the state 2 duringtransients is:
dn2(t)

dt
= k+n1(t) − k−n2(t) = −(k+ + k−)n2(t) + k+. (1.15)Due to the hypothesis of equal energies of the states during isometri
 
ontra
tionwe obtain that n2(0) = 1/2. We 
an now solve (1.15) and write:

n2(t) = n∞
2 + (0.5 − n∞

2 ) exp[−t(k+ + k−)] (1.16)where:
n∞

2 =
k+

k+ + k−
.One 
an see that the fra
tion of Xbs in state 2, starts at one-half and rises to thevalue n∞

2 exponentially with rate k+ + k−. To 
ompute the steady state tension,only the ratio of the rates 
onstants (1.14) is needed. The transient of tension 
an26



Me
hani
al modeling Se
tion 1.3be written as:
T (y, t) = n1(t)K

(
y0 + y − h

2

)
+ n2(t)K

(
y0 + y +

h

2

)

= K[y0 + y + (n2(t) − 0.5)h].The 
hara
teristi
 values of tension predi
ted by this model are T1(y) = T (y, 0) =

K(y0 + y) and T2(y) = T (y,∞) = K[y − 0 + y + (n∞
2 − 0.5)h].In order to 
ompute these fun
tions, one needs the elasti
 
onstant K. As itwas not known at that time, Huxley and Simmons used the data on the rate ofre
overy r(y) (Fig. 1.15). They obtained a �t:

r(y) = r0(1 + e−αy)with r0 = 0.2 ms−1 and α = 0.5 nm−1. As we have seen, the same 
urve 
an bepredi
ted from the model:
r(y) = k+ + k− = k−(1 + e−Kh/kBT y). (1.17)Huxley and Simmons used this formula to obtain the values of both k− and Kh =

α kBT . Then they 
ould 
ompute the equilibrium for
e:
T2(y) =

αkBT

h

(
y0 + y − h

2
tanh

αy

2

) (1.18)whi
h is shown in Fig. 1.28. The resulting 
urves T1(y) and T2(y) exhibit the same

Figure 1.28: Predi
tion of the Huxley and Simmons 1971 model. From [10℄general features as the experimental 
urves shown in Fig. 1.14(b). The resulting27



Chapter 1 Mus
le physiology and early modelingvalue for the sti�ness be
omes K ≃ 0.2 pN/nm, however a value of one order ofmagnitude greater [35℄ [38℄ [36℄ [80℄ [92℄ was proven later. We shall 
ome ba
k onthe importan
e of this value extensively in Chapter 2, however we mention herethat the more realisti
 value K = 2 pN/nm a�e
ts dramati
ally the predi
tion ofthe model. First, we see immediately from (1.17) that the r(δ) dependen
e will behighly overestimated, be
ause it depends on K exponentially. Se
ond, the T2(δ)
urve is more in�e
ted with the higher value of the parameter K, thus it shows anegative slope at δ = 0 whi
h is in 
ontrast with the experimental result.There were several re
ent attempts to improve the quantitative predi
tions ofthe theory [18℄ [43℄ [48℄ [59℄ [73℄ [96℄, however nothing fundamentally new has beenadded to the model. The most attra
tive feature of the Huxley and Simmons1971 model is that it attempts to link bio
hemistry to me
hani
s. Not only in themore re
ent models this link was not improved, but, on the 
ontrary, it was almostlost. In the next Chapter we shall give a brief review of some of these models andpropose a new one where the link is improved and further quanti�ed.

28



Chapter 2Power Stroke
2.1 Introdu
tionThe spe
ial 
hara
ter of the me
hani
al response of skeletal mus
les des
ribedin Chapter 1, allows one to 
lassify them as a
tive materials, be
ause they 
anadapt to external stimuli. The advan
es in te
hnology are often linked to thedevelopment of su
h materials that 
an provide a
tive fun
tioning, like sensing anda
tuation. In the past, a
tive response was a
hieved through organizing elements,with passive response at the mi
ro-level, into 
omplex stru
tures with multipleequilibrium states. However modern te
hnologies require that su
h me
hanismsfun
tion at mi
rometer and even nanometer s
ales, so traditional solutions be
omeuna

eptable, and there is a demand for materials where the 
omplex behavior isrealized already at the mole
ular level. An example of su
h materials is given byshape memory alloys, where the multi-stability of the system at the mole
ular levelis due to phase transformation whi
h does not require di�usion, and 
an be indu
edby stress, temperature or ele
tro-magneti
 �eld. The analysis and modeling of su
ha
tive materials has rea
hed a level of pre
ision that one would want to a
hievein the des
ription of skeletal mus
les, given some similarity of the behavior of thetwo types of systems. The similarity is based on the idea of multi-stability of themi
ros
opi
 elements of the system.As we have seen in Chapter 1 the model of Huxley and Simmons (HS71) 
andes
ribe fast response of skeletal mus
les assuming the presen
e of bi-stable ele-ments with double well energy. In this model the energy lands
ape is degeneratebe
ause the wells are in�nitely narrow. This leads to a des
ription in terms ofa jump pro
ess, whi
h requires the knowledge of 
hemi
al rate 
onstants. In theHS71 model, the de�nition of the energy for the states between the minima is29



Chapter 2 Power Strokenot needed: the Xb swit
hes between the states instead of 
ontinuously movingbetween them. This makes the pre
ise analyti
al 
omparison of this model withme
hani
al models of shape memory alloys di�
ult. Despite these apparent dis-tin
tions, the main ingredients in both types of models are similar whi
h leavesa possibility to link the Huxley and Simmons model to the 
ontinuum theory ofmartensiti
 transformations in a
tive materials.We re
all that, the main di�eren
e between the multi-stable and 
onventionallinear elasti
 elements is that the energy of the former is non-
onvex. As it wasshown in the pioneering work of Eri
ksen [11℄, this non 
onvexity is of fundamen-tal importan
e for the interpretation of the behavior experimentally exhibited byshape memory alloys, whi
h is related to the presen
e of multiple stable mi
ro-
on�gurations. Eri
ksen 
onsidered the behavior of a 
ontinuum 1-D problem fora material with a non-
onvex energy under slowly varying load showing that amathemati
al model based on bi-stability 
an explain hysteresis. After that, athorough study of the problem was performed, in parti
ular a pre
ise des
riptionof the mi
ros
opi
 events was obtained by dis
retizing the 1-D 
ontinuum problemand viewing it as a 
hain of bi-stable elements [11℄, [16℄, [29℄, [62℄.In this Chapter we reformulate the original Huxley and Simmons 1971 modelin this pre
ise mathemati
al framework. We show that this reformulation 
anprodu
e a pi
ture whi
h avoids some drawba
ks of the original HS71 model. Westart by brie�y des
ribing the way in whi
h other re
ent models have dealt withthese drawba
ks. Then we introdu
e our new me
hani
al model aimed �rst atmodeling the power stroke only and present a quantitative analysis of this modelin
luding the 
omparison with experimental 
urves.2.2 Re
ent ModelsAlready in 1978 [17℄ it was realized that the Huxley and Simmons 1971 model
an not predi
t 
orre
t time s
ale of tension relaxation, if a realisti
 value of thesti�ness of the elasti
 element is used. The quantitative resolution of this and otherproblems of the HS71 model, already mentioned in Se
tion 1.3.3, will be given laterin this Chapter, while now we would like to brie�y review the main approa
hesused to 
ir
umvent these problems. In parti
ular we show that the way 
hosen bythe authors of the re
ent models to deal with the drawba
ks of the HS71 model,leads to almost 
omplete loss of 
oupling between the two aspe
ts of the problem:me
hani
al and bio
hemi
al. The goal of these models was not only to resolve the30



Re
ent Models Se
tion 2.2un
orre
t time s
ale predi
ted by the HS71, however here we shall fo
us only onthis aspe
t of the problem.Eisenberg and Hill modelAn early modi�
ation of the original HS71 model was proposed in 1978 by Eisen-berg and Hill [17℄. The model was extended in 1980 on a more quantitative basis[18℄. It is based on the observation that by assuming two very narrow energy wells,Huxley and Simmons made impli
itly the hypothesis that the transition betweenthe states takes pla
e only after a Xb had 
olle
ted the total amount of energyneeded to over
ome the barrier.Eisenberg and Hill proposed to make the wells wider in order to allow thetransition to start at lower energy. They also linked the for
e generated by the Xbin ea
h state with the �rst derivative of the free energy, instead of the stret
h ofthe elasti
 element, that has now been formally eliminated. Without the elasti
element, the 
oordinate x of the Xb is 
ontrolled by the imposed length of thesar
omere, a
tually the 
oordinate x has be
ome a measure of axial position of theparti
ular a
tin site at whi
h the Xb is atta
hed. The origin x = 0 was 
hosenin su
h a way that the Xb in the pre-power stroke state is in its resting position.At every value of x the Xbs 
an be in four di�erent states whose free energieswere postulated to have an x-dependen
e shown in Fig. 2.1. Here AM ‡DD isthe a
tin-myosin 
omplex in the pre-power stroke state and AMD is the a
tin-myosin 
omplex in the post-power stroke state, (phases 2 and 3 in Fig. 1.5).Similarly M∗∗D and M ‡D are two deta
hed states, the refra
tory state and thenon-refra
tory state, respe
tively (phases 4 and 1 in Fig. 1.5). The di�erent anglesof the lever arm in the two atta
hed states are re�e
ted by the di�erent positionsof the minima in the relative energies. The 
hange of state is assumed to be a jumppro
ess, allowing the Xb to follow the entire Xb-
y
le as shown by the arrows inFig. 2.1.In de�ning the rate 
onstants of the individual jump pro
esses, Eisenberg andHill used the hypothesis of detailed balan
e whi
h imposes one 
ondition for theratio of ea
h pair of rate 
onstants. In the most general form this 
ondition 
an bewritten as:
kjm(x)/kmj(x) = exp

(
Gj(x) −Gm(x)

kBT

) (2.1)The elasti
 element is present in this model through the x-dependen
e of the ener-gies Gi(x). What is important to note is that nothing in this setting is said about31



Chapter 2 Power Stroke

Figure 2.1: Free energies for two atta
hed states and two deta
hed states in the Eisenberg andHill model. The state M∗∗D +D is shifted with respe
t to M∗∗D + T by an amount of energygiven by the ATP hydrolyzation. The arrows show a possible Xb 
y
le. From [17℄the shape of the energy barrier between the states at a given x. That leaves forea
h transition one of the rate 
onstants kij as a free parameter. In the Huxleyand Simmons 1971 model the dependen
ies of both rate 
onstants on the step xwere 
ompletely de�ned by the shape of the total energy. Instead in Eisenbergand Hill model these 
onstants retain some freedom (used in Fig. 2.2), sin
e onlyone 
ondition, equations (2.1), is imposed. To our knowledge, the EH78 modelwas �rst to abandon the me
hani
al transparen
y of the HS71 model even thoughsome features of the HS71 model were preserved. In a sense the bio
hemi
al in-terpretation of dynami
s has over
ome the me
hani
al basis of the HS71 model.The freedom left by the EH78 model was used to 
hoose the k(x) dependen
iesphenomenologi
ally in order to �t the experimental observations almost perfe
tly.

Figure 2.2: Hypothesis on the 
onstants for the EH78 model. From [17℄32



Re
ent Models Se
tion 2.2Piazzesi and Lombardi modelThe model of Piazzesi and Lombardi developed in 1995 [43℄, deals with the entire
y
le of the Xb, and is able to predi
t both the for
e velo
ity 
urve and the behaviorof the mus
le subje
ted to rapid in
rements in the total length as well as the �uxof energy and the e�
ien
y of the 
ontra
tion. There are two deta
hed states,D1 and D2, and three atta
hed states, A1, A2 and A3 in Fig. 2.3 A. Moreoverthere are two distin
t paths in whi
h Xbs 
an split ATP to generate for
e. Twoa
tive states, A1 and A2, are 
ommon for the two paths, as shown in Fig. 2.3(a).From A2 there is a long path, whi
h 
ontains a se
ond a
tive state A3 before thedeta
hment of the head D1. This path 
an 
ompete with the short one, where thehead deta
hes immediately after A2 into D2. The long path generates larger for
ebut it has a lower rea
tion rate, about 20/se
ond. The rea
tion rate for the shortpath is about 100/se
ond. The 
orresponding rate 
onstants satisfy the detailedbalan
e equation (2.1). As in the Eisenberg and Hill model, the fun
tions kjm(x)and kmj(x) depend on the imposed step, and this dependen
e 
an be 
hosen to �tthe experimental data. The spe
i�
 
hoi
e of the authors is shown in Fig. 2.3(b-e). The system of di�erential equations governing the distribution of the numberof Xbs in various states, a1, a2, a3 and d1, d2, generalizes the equation proposedby Huxley in 1957. Without going in all details we just mention that the system
onsists of the equations of the type:
∂a1(x, t)

∂t
= k1(x)d1(x) + k−2(x)a2(x) + k6(x)d2(x)−

(k−1(x) + k2(x) + k−6(x))a1(x, t) − v
∂a1(x, t)

∂x

(2.2)for ea
h of the �ve possible states and is solved numeri
ally.Small length in
rements bring the Xb in the region where the short 
y
le isfavored and, being rapid, it 
an explain the behavior observed experimentally atmoderate shortening velo
ities. For higher length step the long 
y
le is preferred,leading to the possibility to �t the 11 nm power stroke. In this way the modelis able to predi
t both for
e-velo
ity 
urve (
omputed 
onsidering the 
onstant
urvature of the free energy Gi(x) as in the EH78 model and shown in Fig. 2.4(a))and �step in length� type experiments (Fig. 2.4(b)).Huxley and Tideswell modelHuxley and Tideswell proposed in 1996 a model whi
h was expli
itly developed toover
ome the drawba
ks of the original HS71 model [48℄. This new model is based33



Chapter 2 Power Stroke

Figure 2.3: General s
heme and rate 
onstants for the Piazzesi and Lombardi model. A: (Left)S
heme of the PL95 model, A=atta
hed, D=deta
hed. (Right) Basi
 free energy of ea
h state.B-E: Fun
tions expressing the dependen
e of the rate 
onstants on x. From [43℄
34



Re
ent Models Se
tion 2.2

(a) (b)Figure 2.4: Comparison between simulations (lines) and experimental results (points) of thePL95 model. (a) For
e-velo
ity 
urve. (b) Modeling of T1 and T2. From [43℄on the same idea as the HS71 model, however new features were added. Amongthem, the most important for our approa
h are that, �rst, three atta
hed states
A1, A2, and A3 are 
onsidered, with two 
onstant power strokes between themof 5.4 nm and 4.5 nm. Se
ond, the rate 
oe�
ients for ea
h of the four possiblerea
tions A1 → A2, A2 → A1, A2 → A3, and A3 → A2, are given by the expression

A/(1 + exp[B(x− C)])where x is related to the stret
h of the elasti
 element and A, B and C are di�erentfor ea
h transition, so that 12 parameter have to be spe
i�ed. Observe that as inthe previous models, there is an x-dependen
e of the rate 
onstants. In order torespe
t the 
ondition (2.1) some 
onstraints are added, however, no expli
it shapeof the free energy was pres
ribed, whi
h means weaker me
hano
hemi
al 
ouplingthan in HS71 model. Finally, to mimi
 the in
ommensurability of the spa
ing ofthe a
tive sites on the a
tin �lament with respe
t to the spa
ing of the heads alongthe myosin �lament, �ve populations of Xbs were equally spa
ed relative to thea
tive sites. The authors observed that with the last assumption the tension T2(δ)ends up averaged over the range of spa
ing of the a
tive sites (see also Se
tion2.7.2). Under the assumption that this spa
ing is equal to 5.5 nm, the diameter ofthe a
tin monomer, the 
omputed T2(δ) 
urve 
ontains a �at region around δ = 0even with K = 2 pN/nm. This solves the �rst in
oheren
e of the HS71 model(Se
tion 1.3.3). 35



Chapter 2 Power StrokeDespite this su

ess the single stroke size of 5.5 nm was too small to justifyother experimental observations, and for this reason the authors were for
e to adda se
ond a
tive state in the model. The behavior of the model was analyzed numer-i
ally, and a rather good �t of the experimental data regarding the rate of re
overywas rea
hed. The results are shown in Fig. 2.5, together with unsatisfa
tory pre-di
tions of HS71 model. This solved even the se
ond problem of the original 1971model.

Figure 2.5: Re
ipro
al of half-time of tension re
overy vs. imposed length step. Solid line:experimental values from [14℄. Points: Huxley and Tideswell model predi
tion. Dotted line:Huxley and Simmons model predi
tionWe emphasize, however, that the pri
e of a larger number of possible states wasa larger number of free parameters, and that the pre
ise relation between the rate
onstants and the shape of the total energy used in HS71 model has been partiallylost. We should mention though that, the hypothesis that the rate 
onstants varyexponentially with the work done in stret
hing of the elasti
 element, was preserved(see [39℄). As the authors have observed, this represents a di�eren
e between theirmodel and the Eisenberg and Hill model, where the authors used, as a typi
alrea
tion rate, �an arbitrary fun
tion adjusted to obtain agreement�.Smith et al. modelAs a last example, we dis
uss a very re
ent and the most 
omplete model of mus
le
ontra
tion, published in August 2008 [96℄. This model is able to reprodu
e almost36



Re
ent Models Se
tion 2.2all known experimental observations related to isotoni
 and isometri
 
ontra
tionsof skeletal mus
les. In fa
t it is the �rst attempt to produ
e a 
omprehensivetheory, and its key features are shown in Fig. 2.6. The entire Xb 
y
le is modeledin
luding an intermediate state between the pre-power stroke state (5 in the �gure)and the post-power stroke state (8 in the �gure). Two paths are available to
omplete the 
y
le (through 6 or 7 in the �gure). Again, the rate �
onstants� for theatta
hment and deta
hment pro
esses depend on the pre-power stroke strain x in aphenomenologi
al semi-empiri
al way. Although the model is able to predi
t a largenumber of �ne features observed in experiments, its me
hano
hemi
al 
oupling israther poor and is surely weaker than in the Huxley and Simmons model. Hereresides the interest of a new model with a detailed me
hano
hemi
al 
oupling.

Figure 2.6: Key features of the model of Smith et al. : a) The 
y
le of the Xb, b) Free energyof the states 
) e d) dependen
ies of the rate 
onstants on the pre-power stroke position. From[96℄Con
lusionsIn the rest of this Chapter we shall explore how far a rather simple me
hani
almodel of the atta
hed Xbs 
an des
ribe the experimental fa
ts without invokingad ho
 assumptions 
on
erning the stret
h dependen
e of the 
onstants of 
hemi
alrea
tions. Instead, we turn to the mi
ro-s
ale and introdu
e expli
itly a featurewhi
h is very important for the me
hani
s of mus
les but is usually dealt withonly impli
itly in the bio-
hemi
al framework: the me
hani
al intera
tion of the37



Chapter 2 Power Strokesystem with random for
es (Brownian motion). The presen
e of a thermal reservoirallows ea
h me
hani
al unit to explore the whole energy lands
ape mu
h beyondthe global or lo
al minima. Our approa
h is not 
ompletely new in me
hani
s, forinstan
e, it has been used for the des
ription of rubber type elasti
ity of shapememory alloys in [81℄. The introdu
tion of random for
es in�uen
es dramati
allythe behavior of the multi-stable me
hani
al system and be
ause of this, our modelis interesting also from a purely me
hani
al point of view.2.3 New model of a power strokeThe half-sar
omere is formed by a number of identi
al Xb arranged in parallelbetween the two �laments. If all Xbs are syn
hronized, we may assume that thefor
e produ
ing behavior of a half-sar
omere is simply that of ea
h Xb times thetotal number of atta
hed Xbs. We represent ea
h single Xb as a linear spring inseries with a bi-stable 
ontra
tile element (Fig: 2.7). The energy of the 
ontra
tileelement will be non 
onvex with two asymmetri
 energy wells. As an extension ofthe Huxley and Simmons 1971 model, here we in
lude into the model the elasti
ityinside ea
h well whi
h allows a dire
t use of the me
hani
al theory of bi-stableelasti
 elements. The limiting 
ase of the new model, when the elasti
 moduli tendin�nity, should produ
e the same results as the Huxley and Simmons model. A
u u u0 1 2 u
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Figure 2.7: The model of an atta
hed Xb: an elasti
 element in series with a bi-stable elementpoint that has to be made 
lear is that at this stage of the analysis, and throughoutall this Chapter, the atta
hment-deta
hment will be suppressed, and only the Xbsthat are atta
hed to the a
tin �lament will be 
onsidered.2.3.1 General shape of the energyThe fa
t that the energy of the 
ontra
tile element has two wells means that theXb 
an be in two states whi
h we shall be 
alling �long� and �short� phase. The38



New model of a power stroke Se
tion 2.3for
e generated by a single Xb will depend on the phase: at a given total length,the long phase will keep the elasti
 element in the low stress state while the shortphase will ne
essarily generate higher for
e (Fig. 2.8). Be
ause all the Xbs aresupposed to be equal and a
t in parallel, the total for
e generated by the halfsar
omere will depend on the relative number of Xbs in ea
h of the two states.
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Figure 2.9: First derivatives of the elasti
 and of the 
ontra
tile energies and the graphi
alsolution of the equilibrium equationsLet us introdu
e u0, u1, u2, the displa
ements of the points A, B, and C inFig. 2.7: u0 
an be assumed equal to zero and u2 is equal to the imposed totaldispla
ement. The symbols with an apex zero refer to the referen
e state. We 
ande�ne εe = (u1 − u0
1) and εc = (u2 − u1 − u0

2 + u0
1) the elongations of the elasti
element and of the 
ontra
tile element, respe
tively. The total energy of a Xb will39



Chapter 2 Power Strokebe the sum of the energy of the 
ontra
tile element and the energy of the elasti
element:
ET (εc, εe) = Ec(εc) + Ee(εe). (2.3)The total elongation of the half sar
omere is δ = (u2 − u0

2). In the experimentsthat we shall be 
onsidering δ will be the 
ontrol parameter (length 
lamp devi
e).In this situation, the strains of the two elements are related:
εe + εc = δ. (2.4)Consider �rst an isometri
 experiment where the total length of the mus
le u0

2is imposed in the passive state and then maintained 
onstant after tetanization(δ = 0). The strain of the spring will be equal to the inverse of the strain ofthe 
ontra
tile element εe = −εc = −x. In this 
ase the total energy ET (x) =

Ec(x) +Ee(−x) will be a fun
tion of x only, whi
h 
an then be viewed as the onlyinternal 
oordinate. The minima of the total energy 
an be 
omputed from theequilibrium equation
dET (x)

dx
= 0,whi
h 
an be rewritten as:

fc(x) = fe(−x). (2.5)Here f = ∂E/∂x is the tension whi
h must be equal in both elements. We 
anillustrate the solution of the equilibrium equation (2.5) graphi
ally. Due to thelinearity of the elasti
 element, we 
an represent the solution as an interse
tion ofa 
urve fc(x) and a straight line shown in Fig. 2.9, where the points ε− and ε+
orrespond to the two minima of the total energy ET (x). As in the Huxley andSimmons model, we assume that in the state of isometri
 
ontra
tion the minimahave the same value of the total energy. This 
ondition 
an be written as:
∆Etot = (Ec(ε−) + Ee(−ε−)) − (Ec(ε+) + Ee(−ε+)) = 0or ∫ ε−

ε+

fcdx =

∫ ε−

ε+

fedx. (2.6)We therefore obtained the �equal area 
onstru
tion� saying that at δ = 0 the twosigned areas A and B, in �gure 2.9, must be equal.Consider how solution of equilibrium equation (2.5) is 
hanging in response tothe in
rement δ. In this 
ase εe + εc = δ and we 
an write εc = x, εe = −x + δ.The fe in Fig. 2.9 line will be shifted by δ in su
h a way that it will interse
t the40
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Figure 2.10: The e�e
t of a length step δ on the elasti
 energy: fe is shifted on the left 
hangingthe ratio of the areas A and Babs
issa in x = +δ; we re
all that δ in Fig. 2.10, is 
hosen to be positive. The areaB be
ome larger than the area A, and so the energy in the lo
al minimum ε−(δ) islarger than the one in the global minimum ε+(δ).2.3.2 Double paraboli
 approximationTo pro
eed analyti
ally 
onsider a spe
ial 
ase when the energy of the 
ontra
tileelement 
an be represented by two parabolas with a minima in the points 0 and a.In these points the energy has the values 0 and d, respe
tively (see Fig. 2.11(a)).The highly simpli�ed double paraboli
 approximation for the energy is not ne
-essary, but will be 
onvenient for two reasons. First the bi-quadrati
 form of theenergy will allow some analyti
al transparen
y of the results. Se
ond, the pie
ewisequadrati
 approximation will give us 
ertain advantages in the quantitative �ttingof the experimental data, be
ause it makes possible an analyti
al treatment of themodel. We remark that the general predi
tions of the model do not depend on theexa
t shape of the energy.At this point it is not so important to spe
ify the value of x where the in-terse
tion between the two parabola takes pla
e: we temporally assume that thetransition from one parabola to the other takes pla
e exa
tly between the minima,say at a/2. If the parabolas have di�erent moduli, this will bring a dis
ontinuityinto the energy fun
tion, however at this stage it does not 
reate any problem.In fa
t, a third parabola will be added to reprodu
e the maximum of the energy,however for the moment we 
an stay with bi-quadrati
 approximation. We 
an41



Chapter 2 Power Strokewrite:
Ec(x) =






1

2
k2(x− a)2 + d x ≤ a

2
1

2
k1(x)

2 x >
a

2

(2.7)where the 
urvatures of the wells k1 and k2 
an be di�erent. The elasti
 energy ofthe series spring with sti�ness K is:
Ee(x, δ) =

1

2
K(x− l0 − δ)2. (2.8)As we see, its relaxed state is rea
hed in x = l0.We 
an now 
ompute the lo
ation of the minima of the total energy at δ = 0:






a1 =
Kl0

k1 +K

a2 =
Kl0 + k2a

k2 +K

(2.9)Graphi
ally, Fig. 2.9 now be
omes Fig. 2.11(b). Obviously, the values of the
E ,E

c e

xl 0
a 0

d (a)
2

a a 
1

l
0

f  ,fc e
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(b)Figure 2.11: S
hemati
 des
ription of the energy and tension for the double parabola approxi-mation. (a) Bi-quadrati
 energy. (b) Minima in the bi-linear 
aseparameters have to be su
h that a2 < a/2 < a1. We 
an see that in the Huxleyand Simmons model, where k2 = k1 = ∞, the minima are a and 0, no matter what
K and δ are, as in Fig. 2.11(b). The 
ondition (2.6) ensuring the same value ofenergy in the minima, gives the expression for d:

d = −1

2

k2K

k2 +K
(l0 − a)2 +

1

2

k1K

k1 +K
l20. (2.10)42



Deterministi
 
ase: global minimum Se
tion 2.42.4 Deterministi
 
ase: global minimumAs we have already explained the 
ontra
tion of mus
les takes pla
e in a Browniandomain where the temperature T 6= 0 and e�e
t of the sto
hasti
 external for
e isnot negligible. However to understand the working of the model it is instru
tiveto start with the deterministi
 
ase when T = 0. In this 
ase we assume that theobserved value of x must 
orrespond to the global minimum of the total energy.When δ = 0 the energies of the two states 
orresponding to the global minimumare equal and the two states (2.9) are equally probable.2.4.1 One 
ross-bridgeWe begin by analyzing the behavior of a single Xb assuming that an in
rementis imposed on its length. In the me
hani
al experiments des
ribed in Chapter 1,the observable is typi
ally the for
e generated at one end of the spe
imen. Sin
e,in the proposed model, the for
e at equilibrium is equal in both 
ontra
tile andelasti
 elements, it 
an be 
omputed as the produ
t of the elasti
 
onstant K andthe strain of the elasti
 element. The for
e generated by the single Xb 
an haveeither the �low� value:
F1 = −K(a1 − l0), (2.11)or the �high� value:
F2 = −K(a2 − l0), (2.12)as we show in Fig. 2.9. Those values 
an be linked to the low for
e generatingstate (pre-power stroke) and the high for
e generating state (post-power stroke)expe
ted in the Xb 
y
le (see Chapter 1).When a 
hange in length is imposed (δ 6= 0), the minima of the total energyshift to: 





a1 =
K(l0 + δ)

k1 +K

a2 =
K(l0 + δ) + k2a

k2 +K
.

(2.13)When the elasti
 moduli in the wells are in�nite as in the HS71 model, theminima remain always at a1 = 0 and a2 = a no matter what the value of δ is. Inthis 
ase we 
an see graphi
ally from Fig. 2.12, that the di�eren
e of the energy inthe two minima after the step δ is ET (a1) −ET (a2) = Kδa. Sin
e we have 
hosen
a < 0, we see that δ < 0 shift the global minimum into the se
ond well.43
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Figure 2.12: Lengthening in the pie
ewise linear 
ase. The verti
al lines represent the Huxleyand Simmons model. In this last 
ase, the dashed area is equivalent to ET (0)) − ET (a)In our 
ase, by inserting (2.13) into ET , we obtain:
ET (a1) =

1

2

k1K

k1 +K
(l0 + δ)2, (2.14)and, analogously,

ET (a2) =
1

2

k2K

k2 +K
(l0 + δ − a)2 + d. (2.15)Comparing the two values we 
an write:

∆ET (δ) = ET (a1) −ET (a2) = (2.16)
1

2
δ2

(
k1K

k1 +K
− k2K

k2 +K

)
+

k1K

k1 +K
δl0 −

k2K

k2 +K
δ(l0 − a).In the ∆ET−δ plane, equation (2.16) gives a parabola and as expe
ted ∆ET (0) = 0.Using the numeri
al values obtained later in the Thesis by means of quantitative�tting of the experimental 
urves (Tab. 2.1), we obtain k1 > k2 and

d∆ET (δ)

dδ
|δ=0=

(
k1K

k1 +K
− k2K

k2 +K

)
l0 +

k2K

k2 +K
a < 0. (2.17)Therefore the sign of ET (a1)−ET (a2) is the opposite of the sign of δ and, exa
tlyas in the HS71 model, shortening makes preferable the global minimum in a2 whilestret
hing makes preferable the minimum in a1. When δ 6= 0 the tension generatedby the Xb is given by the formulas:






F1(δ) = −K
(
K(l0 + δ)

k1 +K
− l0 − δ

)
δ > 0

F2(δ) = −K
(
K(l0 + δ) + k2a

k2 +K
− l0 − δ

)
δ < 0.

(2.18)44



Deterministi
 
ase: global minimum Se
tion 2.4These equations take into a

ount both the displa
ement of the referen
e positionfor the elasti
 element and the shift of the minima. The tension given by (2.18)is the zero-temperature analog of the tension T2 generated by the mus
le in thesteady state after an in
rement in length. We obtain that, sin
e ∆ET (0) = 0, thede�nitions of the tetanized tension T0 and of tension T1, are ambiguous in the 
aseof one Xb. Therefore we need to take into a

ount many Xb.2.4.2 N 
ross-bridgesIn order to establish a 
omplete relation to experiments, we 
onsider now one half-sar
omere 
omposed by NXb heads, that work in parallel, as in Fig. 2.13. If one
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Figure 2.13: The model of NXb atta
hed Xbsknows the number of atta
hed Xbs in ea
h state, one 
an 
ompute the total for
eas:
T (δ) = N1(δ)F1(δ) +N2(δ)F2(δ) = NXb(n1(δ)F1(δ) + n2(δ)F2(δ)) (2.19)where N1(δ) and N2(δ) are the number of elements in ea
h state, and






nδ1 = N1(δ)/NXb

nδ2 = N2(δ)/NXb

(2.20)are the 
orresponding fra
tions. 45



Chapter 2 Power StrokeWhen the mus
le is tetanized at δ = 0 the two minima are at the same level andthe position of ea
h Xb depends on the initial 
onditions imposed on the system.The isometri
 tension 
an be 
omputed as:
T0 = −KNXb(n

0
1a1(0) + n0

2a2(0) − l0) (2.21)where the apex zero, in the relative number of Xbs in ea
h minima ni, indi
atesthat they are 
al
ulated at δ = 0.The fun
tion T1(δ) des
ribes the instantaneous response. One may think that
T1(δ) 
an be 
omputed supposing that during the fast response the elasti
 ele-ment undergoes deformation δ while the myosin head, embedded in a vis
ous �uid,maintains its position o

upied before the step. In this 
ase, if we 
all x1 and
x2 the positions of the Xbs just after the step, we should impose x1 = a1(0) and
x2 = a2(0), obtaining

T1(δ) = −KNXb(n
0
1x1 + n0

2x2 − l0 − δ), (2.22)or, in other word:
T1(δ) = T0 +KNXbδ. (2.23)A
tually, this may not be the 
ase in the real experiments. Indeed a realisti
value of the drag 
oe�
ient η for the myosin head, is 60 − 90 pN ns/nm, and themagnitude of the elasti
 
onstant is about 1 pN/nm. Therefore the 
hara
teristi
time for the head to relax inside its well after the imposed step is of the orderof 0.1µs [64℄, while the time s
ale of the observations is typi
ally one order ofmagnitude larger [67℄. In view of this estimates, a more realisti
 approximation for

T1 is given by the formula:
T1(δ) = −KNXb(n

0
1a1(δ) + n0

2a2(δ) − l0) +KNXbδ. (2.24)We see that its value is determined not only by the 
hange in length of the elasti
element, but also by the shift of the minima of the total energy.The relative 
hange in tension T1/T0 
an now be written as:
T1(δ)

T0

= 1 +

(
n0

1k1/(k1 +K) + n0
2k2/(k2 +K)

n0
1l0k1/(k1 +K) + n0

2k2(l0 − a)/(k2 +K)

)
δ. (2.25)The tension T1 does not represent equilibrium. Suppose now that instead thesystem follows global minimum of the total energy. When even a small in
rementis imposed, a global minimum be
omes non-degenerate, and all the Xbs jump intoone energy well. Be
ause of (2.16), the relative numbers of Xbs in the two minima46



Deterministi
 
ase: global minimum Se
tion 2.5will swit
h from n0
1, n0

2 to n1 = 0 n2 = 1 (or n1 = 1 n2 = 0) and the �nal tension
T2 will be:

T2(δ) = −KNXb(a2(δ) − l0 − δ) (2.26)for δ < 0, and:
T2(δ) = −KNXb(a1(δ) − l0 − δ) (2.27)for δ > 0. The relative tension in the equilibrium state is:

T2(δ)

T0
=

(k2/(k2 +K))δ + k2(l0 − a)/(k2 +K)

n0
1l0k1/(k1 +K) + n0

2k2(l0 − a)/(k2 +K)
(2.28)for δ < 0, and:

T2(δ)

T0

=
k1(l0 + δ)/(k1 +K)

n0
1l0k1/(k1 +K) + n0

2k2(l0 − a)/(k2 +K)
(2.29)for δ > 0.The predi
ted 
urves T1/T0 and T2/T0 vs. δ are linear in δ, with di�erentslopes if k1 6= k2. Figure 2.14 represents typi
al shape of tension-displa
ement forrepresentative values of the parameters. The system after the instantaneous elasti
response T1 rea
hes the steady state tension T2. The bold line, whi
h representsthe global minimum in the steady state, shows a jump whi
h is not observed inexperiments. To avoid this pathologi
al behavior and to produ
e a smoother 
urve,we 
an follow the idea of the Huxley and Simmons and introdu
e a probabilitydistribution of the Xbs in di�erent phases. This approa
h is pertinent sin
e thethermal di�usion is important at su
h s
ales.

Τ0

Τ1

Τ2

Τ1

Τ2

δFigure 2.14: T2/T0 and T1/T0 vs. δ 
urves (arbitrary units) in the elasti
-global minimumresponse (k1 = k2) 47



Chapter 2 Power Stroke2.5 Sto
hasti
 
ase: N 
ross-bridges at �nite tem-peratureIn order to make the 
urve T2(δ) smoother, Huxley and Simmons made an addi-tional assumption regarding the distribution of the Xbs. Instead of 
onsideringthe deterministi
 behavior in whi
h all the Xbs are in the global minimum, theyassumed that their positions 
an be des
ribed by steady state solution of the equa-tion des
ribing a sto
hasti
 pro
ess. This assumption 
omes from the understand-ing that thermal �u
tuations 
an not be negle
ted at this s
ale. Taking thermalmotion into 
onsideration is 
ru
ial for 
ellular me
hani
s be
ause the 
hemi
alrea
tions that drive biologi
al pro
esses have the energeti
 barriers that are onlya little higher than the thermal energy, given by the Boltzmann 
onstant timesthe temperature kBT [64℄. Sin
e thermal for
es are randomly dire
ted and un
or-related, the resulting motion 
an be modeled by di�usion. Huxley and Simmonsapproa
hed the problem from the point of view of a jump pro
ess, be
ause the 
ur-vatures of their energy wells were in�nite and as a result their di�usion pro
ess wasdegenerate. It is worthwhile to note that every jump pro
ess 
an be viewed as anapproximation of the di�usion pro
ess, even if the 
ontrary is not always true (seeSe
tion A.7). In their des
ription, Huxley and Simmons have de�ned the kineti

onstants of rea
tion that des
ribes the passage between the two states for ea
hXb. In both, the jump pro
ess and the di�usion pro
ess, the rate 
onstants mustsatisfy the detailed balan
e 
ondition in order to 
orre
tly des
ribe the equilibriumstate.The 
ondition of detailed balan
e 
an be understood in terms of a 
anoni
aldistribution (see Se
tion A.6.2):
ps =

e−E/kBT

Σe−E/kBT
. (2.30)The subs
ript s indi
ates equilibrium steady state and E is the energy of the state.Suppose that the relative number of Xb in two sharp wells, n1 and n2, satisfythe 
anoni
al distribution. Then:

n2

n1
= e

−
E2−E1

kBT . (2.31)The same expression for the steady state probability distribution is derivedin Se
tion A.6.1 in a di�erent way; we brie�y sket
h here the derivation be
auseit introdu
es the di�usion pro
ess whi
h will be important from now on. The48



Sto
hasti
 
ase: N 
ross-bridges at �nite temperature Se
tion 2.5equation of motion of a parti
le, subje
ted to a potential ET (x) and to a thermalnoise 
an be written in the over-dumped 
ase as (Langevin equation):
ηẋ(t) + E ′

T (x) = Γ(t), (2.32)where Γ(t) is a white noise. Sin
e this is a sto
hasti
 di�erential equation, thepath of the parti
le is di�erent in every realization, even under the same initial
onditions. A way to study the behavior of su
h a system is trough the asso
i-ated di�erential equation for the evolution of probability distribution p(x, t). Thisfun
tion gives the probability to �nd a parti
le in the position x at time t. Theequation for p(x, t) is 
alled Fokker-Plank equation (see Se
tion A.5). For the 
ase(2.32) it 
an be written as:
∂p(x, t)

∂t
+
∂S(x, t)

∂x
= 0 (2.33)where we introdu
ed the probability 
urrent S:

S = −E
′
T (x)

η
p− kBT

η

∂p

∂x
(2.34)The steady state is de�ned as S = 
onst, and if ET (x) goes to in�nity for

|x| → ∞, the boundary 
onditions require that S = 0. In this 
ase, equation(2.33) has the following solution:
ps(x, δ) =

e−ET (x,δ)/kBT

∫∞

−∞
e−ET (x,δ)/kBTdx

= N−1e−ET (x,δ)/kBT (2.35)where N is a normalization 
onstant and the dependen
e on δ was inserted toremind that in our 
ase the total energy depends on the step length imposed. We
an now de�ne the quantities n1 and n2 as:
nδ1 =

∫∞

a/2
ps(x, δ)dx

nδ2 =
∫ a/2
−∞

ps(x, δ)dx.
(2.36)Here we use the same symbols as in (2.20) be
ause even with these new de�nitions

NXbn
δ
1 represents the mean number of Xbs in the �rst state. We re
over (2.30)from (2.35) in the limit when the 
urvatures of the energy wells go to in�nity.Then ps(x, t) approa
hes two δ-fun
tions and the rate nδ2/nδ1 assumes the value asin equation (2.31).The rest of this Chapter is devoted to the dis
ussion of our attempts to usethe framework in order to �x the drawba
ks of the Huxley and Simmons 197149



Chapter 2 Power Strokemodel. In parti
ular we show how the introdu
tion of the elasti
ities of the wells,integrated into the di�usion theory, allow one to avoid some of the problems whilepreserving strong relation between the me
hani
al and the 
hemi
al aspe
t of thephenomenon.2.6 Variable power stroke sizeThe Huxley and Simmons 1971 model suggests the me
hanism behind the fastre
overy of tension, and forms the basis on whi
h almost all more re
ent modelshave been 
onstru
ted. Despite this fa
t, the model has some di�
ulties with thereprodu
tion of the experimental behavior. As dis
ussed in Se
tion 1.3.3, almost allof these problems 
ome from the value used for the sti�ness of the elasti
 element
K. It was not known at the time of the 
reation of the Huxley and Simmons' modeland they used an indire
tly estimated value of K = 0.2 pN/nm. Unfortunately,a

ording to modern data [36℄, [55℄ the value of K should be at least one orderof magnitude higher. In what follows we shall show how the introdu
tion of theelasti
ity e�e
ts into the stru
ture of the energy wells removes the in
onsisten
y.The question was �rst raised by Eisenberg and Hill in the 1978, however, to theauthor's knowledge, this is the �rst time that the in
oheren
y is resolved in aquantitative way with the use of elasti
ity in the wells.After the pioneering work of Huxley and Simmons, the experiments showingfast re
overy of tension, were redone several times (see e.g. [14℄, [20℄, [41℄). More-over, one 
an say that it is still today the major proto
ol used in the study ofthe me
hani
s of mus
les (e.g. [43℄, [67℄). The reason is that this type of experi-ments give important information about the behavior of the Xbs in the atta
hedstate. The new, more pre
ise experiments be
ome possible be
ause of the hugeimprovement in the measurement and loading te
hniques. For example, Huxleyand Simmons imposed an in
rement of the total length be
ause they �were notable to impose a 
hange in tension sharply enough to distinguish the 
omponent oflength 
hange that is truly syn
hronous with the tension 
hange from that whi
hlags behind the tension 
hange�. Today, su
h tension 
hange 
an be made in tensof mi
rose
onds and the time resolution 
an be of 1 mi
rose
ond [67℄. It was shownthat in the length 
lamp experiments [43℄ and in the load 
lamp experiments [67℄,the 
orresponding tension vs. deformation 
urves are almost identi
al, as shownin Fig. 2.15. What be
ame 
lear with the improvement of the te
hniques, is thatthe 
urve T2(δ) at large values of δ has a slope di�erent from the one of the 
urve50
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tion 2.6
T1(δ) (see Fig. 2.15): the former is more shallow than the latter.

Figure 2.15: Experimental behavior of the T1/T0 an T2/T0 
urves: length 
lamp devi
e (T,open symbols), tension 
lamp devi
e (L, �lled symbols). From [67℄We re
all that the linear part of the de
reasing T2 − δ 
urve 
orresponds tothe situation when all the Xbs are in the se
ond well. In this situation furthershortenings only de
rease the tension generated by the elasti
 element sin
e furtherjumps of Xbs are impossible. We also re
all that be
ause the lo
ation of the minimais �xed in Huxley and Simmons model, the slope of the T2−δ and T1−δ 
urves willbe the same. Indeed, in this situation the subsequent de
rease in tension relaxesthe elasti
 element, but does not 
reate additional jumps of Xbs. The model willpredi
t the same slope for both T1−δ and T2−δ 
urves at large δ, whi
h is uniquelyrelated to the elasti
ity modulus K. We 
an therefore 
on
lude that the di�eren
ein slopes originates from the features of the Xbs whi
h are not des
ribed by theHuxley and Simmons 1971 model. To generate a di�erent size of the power strokeat di�erent loads (whi
h is what was experimentally observed in [67℄), the modelmust be 
hanged. Sin
e the size of the power stroke is pres
ribed by the distan
ebetween the energy minima, it does not depend on δ, if the wells are in�nitelynarrow. Therefore the wells should be delo
alized.In the model with quadrati
 wells, the probability distribution in the steadystate, given by equation (2.35), is almost Gaussian inside the wells. If the energybarrier is higher than the thermal energy, in our 
ase if for the se
ond well
ET (a/2) − ET (a2) ≫ kBT (2.37)then ps(x, δ) goes to zero quite fast away from the energy minima. In this 
ase we51



Chapter 2 Power Stroke
an make some simpli�
ations in (2.35) and other similar relation, whi
h will belater 
on�rmed by our numeri
al test. For instan
e, 
onsidering the se
ond well,we 
an de�ne:
ET, 2(x, δ) =

(
1

2
k2(x− a)2 + d+

1

2
K(x− l0 − δ)2

)
, (2.38)and write

∫ a/2

−∞

xps(x, δ)dx = N−1

∫ a/2

−∞

xe−ET (x,δ)/kBTdx ≃ (2.39)
N−1

∫ ∞

−∞

xe−ET, 2(x,δ)/kBTdx.Now, multiplying the right hand side by
∫ a/2
−∞

e−ET, 2(x,δ)/kBTdx
∫∞

−∞
e−ET, 2(x,δ)/kBTdx

≃ 1, (2.40)we 
an write: ∫ a/2

−∞

xps(x, δ)dx = nδ2a2. (2.41)The analogous results 
an be obtained for the �rst well. In this 
omputationwe made an assumption that the integral of f(x)ps(x) from x = −∞ to x =

a/2, 
an be repla
ed by the integral extended to an in�nite interval. Within thisapproximation, the power stroke is again determined by the distan
e between theminima. This distan
e 
ontrols the shift between the linear segments of the 
urves
T1(δ)/T0 and T2(δ)/T0 and is 
onstant if and only if the derivatives T ′

1(δ) and T ′
2(δ)are equal.To show analyti
ally how the 
urvatures of the wells a�e
t the slopes of the
urves T1(δ) and T2(δ) we �rst noti
e that all equations obtained for the 
asewhen the temperature T = 0, are still valid at temperatures T 6= 0 be
ause of theassumption (2.37). For instan
e, we 
an write:

T0 = NXb

∫ ∞

−∞

−K(xps(x, 0) − l0)dx ≃ −NXbK(n0
1a1(0) + n0

2a2(0) − l0) (2.42)and similarly:
T2(δ) = NXb

∫ ∞

−∞

(−K(xps(x, δ) − l0 − δ)) dx ≃ −NXbK(nδ1a1(δ)+n
δ
2a2(δ)− l0−δ)(2.43)Now, re
all that by using 
onsiderations from Se
tion 2.4.2 we 
an write the tension

T1(δ):
T1(δ) ≃ −NXbK(n0

1a1(δ) + n0
2a2(δ) − l0 − δ). (2.44)52



Variable power stroke size Se
tion 2.6Here the relative number of Xbs in ea
h well is taken to be the same as beforethe step. Equation (2.44) 
an be obtained rigorously from the Kramers' theorywhose fundamental hypothesis is that relaxation within ea
h well is mu
h fasterthan the equilibration between the wells (see Se
tion A.7). We shall be using thisapproximation extensively later in this Chapter.We 
an make use of the obtained formulas for T1(δ) and T2(δ) to 
omputethe slopes of the 
orresponding 
urves at large negative δ. We re
all that atlarge δ all Xbs are in the se
ond minimum. We 
an then use the following linearapproximation:
T ∗

2 (δ) = −NXbK(a2(δ) − l0 − δ). (2.45)From this relation and from relations (2.36) and (2.13) we obtain:
d

dδ

T1(δ)

T0
=

n0
1k1/(k1 +K) + n0

2k2/(k2 +K)

n0
1l0k1/(k1 +K) + n0

2k2(l0 − a)/(k2 +K)
(2.46)and

d

dδ

T ∗
2 (δ)

T0

=
k2/(k2 +K)

n0
1l0k1/(k1 +K) + n0

2k2(l0 − a)/(k2 +K)
. (2.47)The value of the shortening at whi
h T ∗

2 (δ) = 0 
an be 
al
ulated from equation(2.45). We obtain
δ(T∗

2 =0) = a− l0. (2.48)At this value of δ, all Xbs are symmetri
ally distributed around x = a, the relaxedposition of the elasti
 element. To spe
ify the numeri
al value of δ(T∗

2 =0), we 
an usethe experimental data obtained in the length 
lamp experiment shown in Fig. 2.15(open symbols). More spe
i�
ally, we shall perform a linear �tting of the pointsthat represent the T1(δ)/T0 
urve and of those points that represent the linearde
reasing part of the T2(δ)/T0 
urve. The values of parameters are reported inTable (2.1). In parti
ular, we obtain the value δ(T∗

2 =0) = −10.8 nm. The 
urve
T1(δ)/T0 
rosses the abs
issa at δ(T1=0) = −3.87 nm. This gives d(T1(δ)/T0)/d(δ) =

0.258 nm−1. The linear �tting of the T ∗
2 (δ) 
urve, gives the slope 0.138 nm−1, sothe ratio of the slopes is 1.87. These are the values that we would like to �t. Fromequation (2.48) we 
an set

a = −10.8 + l0 nm. (2.49)The value of l0 will be found from other data.Comparing equations (2.46) and (2.47), we see that if k1 = k2 the two slopes
d

dδ
T ∗

2 (δ) and d

dδ
T1(δ), are the same. This is the reason why the Huxley andSimmons model predi
ts the same slope for both 
urves. We 
an also see that53



Chapter 2 Power Strokethe slope of T ∗
2 (δ) will be smaller than the slope of T1(δ) if k1 > k2. One mightthink that the di�eren
e will in
rease when k1 ≫ k2, but we have to rememberthat an in
rease in k1 will also de
rease n0

1, redu
ing this e�e
t.Now, we make again use of the hypothesis (2.37). We observe that in thisapproximation the integral ∫ a/2
−∞

exp[−ET (x, δ)/kBT ]dx 
an be approximated by
∫∞

−∞
exp[−ET, 2(x, δ)/kBT ]dx. This allows a simpli�
ation of the expression forthe fun
tions n1(δ) and n2(δ) given by equation (2.36). For instan
e, at δ = 0 weobtain

n0
2 ≃ N−1

∫∞

−∞
exp[−ET, 2(x, 0)/kT ]dx =

=

√
2π

N

exp

[
−2d+ (Kk2(a− l0)

2)/(K + k2)

2kBT

]

√
K + k2

kBT

.
(2.50)Similarly,

n0
1 ≃

√
2π

N

exp

[
− Kk1l

2
0

2(K + k1)kBT

]

√
K + k1

kBT

. (2.51)For the parti
ular value of d from (2.10), the nominators in both (2.50) and (2.51)are the same and we 
an write:





n0
1 ≃

√
k2 +K√

k2 +K +
√
k1 +K

n0
2 ≃

√
k1 +K√

k2 +K +
√
k1 +K

,

(2.52)here the normalization 
onstant N is eliminated imposing n0
1 + n0

2 = 1.We 
an now use the 
ondition that the derivative of T1(δ)/T0 must be 1.87times the derivative of T ∗
2 (δ)/T0. Using equations (2.46) and (2.47), we obtain the
ondition:

dT1(δ)/dδ

dT ∗
2 (δ)/dδ

=

√
k2/K + 1√

k1/K + 1 +
√
k2/K + 1

k1/K(k2/K + 1)

k2/K(k1/K + 1)
+ (2.53)

√
k1/K + 1√

k1/K + 1 +
√
k2/K + 1

= dslope = 1.87.One 
an see that this ratio does not depend on either a or l0, but only on the elas-ti
ities k1, k2 and K. Moreover, the three moduli enter in only two dimensionless
ombinations: k1/K and k2/K. The 
ontours dslope = 
onst in the (k1/K k2/K)plane are shown in Fig. 2.16. By in
reasing the ratio of k1 to k2 we obtain a higher54
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Figure 2.16: Contour plot showing the ratio of the slopes (2.53) as a fun
tion of the relative
urvatures k1/K and k2/Kvalue of dslope. Analyti
ally we 
an write the following relation between k1/K and
k2/K ensuring that the slope ratio is equal to dslope:

k1

K
= [2((k2/K)2 − 2(k2/K)2dslope + (k2/K)2d2

slope)]
−1

[1 + 3k2/K − 2k2/Kdslope + 2(k2/K)2dslope − 2(k2/K)2d2
slope ±

√
ψ(k2/K))].(2.54)Here

ψ

(
k2

K

)
= 1 + 6

k2

K
+ 9

(
k2

K

)2

+ 4

(
k2

K

)3 (2.55)
−4

k2

K
dslope − 8

(
k2

K

)2

dslope − 4

(
k2

K

)3

dslopeOne 
an see that for dslope = 1.87 the value of k1/K is real only if k2/K < 0.294.In the Huxley and Simmons model the value of k2 is 
hosen to be in�nite. Followingtheir reasoning, we 
hoose for k2 the largest possible value 
ompatible with the
ondition dslope = 1.87, k2/K = 0.294. This gives k1 = 4.17K. We would like tokeeps the values of k2 as large as possible to maintain the link with experiment.Indeed, the higher is the 
omplian
e and the smaller is the step of the power stroke.Our relatively low value of the k2, results from the hypothesis that the �lamentsare rigid. In fa
t, one 
an think that the 
omplian
e of the se
ond well also in
ludesthis extra-
omplian
e of the �laments. In general with the in
rease of k1 the ratioof the slopes �rst in
reases up to a maximum, but then it de
reases be
ause the55



Chapter 2 Power Strokepopulation in the �rst well be
omes lower. The 
hara
teristi
 behavior is shown inFig. (2.17) for a representative value of k2/K.

Figure 2.17: Ratio of the slopes of T1(δ) and T2(δ) as a fun
tion of the parameter k1. Abs
issain pN/nmNow, we 
an use the expression (2.47), and the approximation (2.52), to mat
hthe values of both slopes dT1(δ)/dδ and dT ∗
2 (δ)/dδ with those observed experimen-tally. We 
an write

d

dδ

(
T2(δ)

T0

)
= (2.56)

[
k1

√
(k2 +K)3l0

k2

√
k1 +K(

√
k2 +K +

√
k1 +K)

+

√
k1 +K√

k2 +K +
√
k1 +K

(l0 − a)

]−1

= swhere we have assumed that l0 − a = 10.8 nm. We 
an obtain an analyti
alexpression for l0(s):
l0(s) =

(
k1

K
+ 1

)
k2

K

[
1 +

√
k1/K + 1

k2/K + 1

][
1 +

√
k2/K + 1

k1/K + 1
− (l0 − a)s

]

k1

K

(
k2

K
+ 1

)[
1 +

√
k2/K + 1

k1/K + 1

]
s

. (2.57)In Fig. 2.18 we show how l0 depends on k2/K for the given value s = 0.138 nm−1,and under the assumption that k1/K is determined by (2.54). The solution (2.57)exists up to k2/K = 0.294, where l0 = 0.05 nm.As we have shown above our model is able to reprodu
e the linear segmentsof both 
urves, T1(δ) and T2(δ). To test the validity of the adopted analyti
alapproximation, (see (2.37)) we 
an make dire
t numeri
al integration in the for-mulas (2.42), (2.44), (2.43). These formulas represent the exa
t solution for thetensions after a given in
remental step. In Fig. 2.19(a) we show superimposed: the56
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Figure 2.18: l0 (in nm) as a fun
tion of k2/K for s = 0.138 nm−1 and dslope = 1.85experimental data (points), their linear �tting (straight dashed lines), the dire
tnumeri
al integration of (2.44), (2.43) (
ontinuous lines) and the fun
tions T2(δ)/T0generated by the approximate model (2.52) (
urved dashed line). As we see, ourapproximation for T2(δ) is very good, espe
ially for large values of δ. The slopeof the 
urve T1(δ)/T0 is slightly overestimated. Sin
e also the slope of T2(δ)/T0ended up slightly overestimated, we used the values of parameters obtained above(see Table 2.1) only as an initial guess and then made a 
areful �t to the exa
texperimental data. Regarding the �gures shown in this Se
tion, only the ratio
k2/K had to be 
hanged. Thus from now on we use k2/K = 0.310 instead of theprevious value k2/K = 0.294. The new �t of the experimental data is shown in Fig.2.19(b). The �nal set of parameters is 
olle
ted in the 
olumn Analyti
al values ofTable (2.1).In Fig. 2.19(b) we 
an see an important feature of the 
urve T2(δ) whi
h will bedis
ussed in the next Se
tion: the presen
e of a region where the slope dT2(δ)/dδis negative. This feature has not been observed in dire
t experiments. The sameproblem resurfa
es in the original Huxley and Simmons model if the realisti
 valuesof the 
oe�
ient K is used [48℄ (see Se
tion 1.3.3).2.7 Negative slope of the T2(δ) 
urveOur analysis has been so far fo
ussed on the slope of the 
urve T2(δ) at largenegative values of δ. Now we 
on
entrate on the behavior of this fun
tion near
δ = 0. As we have seen the value of the parameter K does not a�e
t the linearbehavior of T2(δ) at large δ, however it notably a�e
ts the slope of the 
urve T2(δ)at small δ. To 
ompute the fun
tion T2(δ) when nδ2 6= 1, the exa
t values of nδ1 and
nδ2 are needed. They 
an be taken either from the approximate expression (2.52),57
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(b)Figure 2.19: Fitting of data. Points: experimental data from [43℄. Straight dashed lines: linearbest �tting of the experimental data. Solid lines: predi
tion from the model of T2(δ)/T0 and
T1(δ)/T0 from dire
t integration of (2.44), (2.43). Curved dashed line: predi
tion using theapproximations (2.52). (a) k2/K = 0.294 (b) k2/K = 0.310. Abs
issa units: nm58



Negative slope of the T2(δ) 
urve Se
tion 2.7or from the dire
t numeri
al integration of the formulas (2.36).We have already seen that dT2(0)/dδ = −∞ if the 
on
entration of Xbs is foundfrom the 
ondition of global minimum of the energy (Fig. 2.14).Let us also re
allhow the Huxley and Simmons model deals with the problem of the negative slopeof the T2(δ) 
urve at δ ≃ 0. Using their notations, and the parti
ular shape oftheir 
hemi
al energy we obtain that the steady state population of Xbs 
an be
omputed as nδ1 = 1 − nδ2, nδ2 = 1/(1 + k−/k+), where k± are the rate 
onstantsthat regulate kineti
s of the jumps between the energy wells. In the Huxley andSimmons model it is assumed that k+/k− = e
−

yKh
kBT , equation (1.14). We re
allthat their y and h are the analogues of our δ and a. In their 
ase, the value of

nδ2 is known when one knows the numeri
al values of the 
oe�
ient Kh/kBT . InHuxley and Simmons model the value of K was obtained from an independent setof data on the rate of re
overy for the tension. They observed that the value of h�has to be 
hosen to give the right shape of the 
urve of T2 against y. [. . . ℄ lowervalues give a less in�e
ted 
urve and higher values give a 
urve with a region ofnegative slope�. This behavior is illustrated in Fig. 2.20 where di�erent values ofthe produ
t Kh/kBT have been used. The global minimum behavior mentionedabove 
orrespond to the 
ase of either K = ∞ or T = 0. By tailoring the valueof Kh/kBT as in Fig. 2.20 Huxley and Simmons avoided the negative slope of the
T2(δ) 
urve; they used Kh/kBT = 5 nm.

Figure 2.20: The 
urves T2(δ)/T0 and T1(δ)/T0 in the HS71 model 
omputed at di�erent valuesof Kh/kBTThe important 
riti
ism raised against the Huxley and Simmons 1971 model,was that while h = 8 nm was 
hosen to be 
ompatible with experiments, thesti�ness of the elasti
 element had to be at the unrealisti
ally low level of K =

0.2 pN/nm. With the realisti
 value of K, say K = 2 pN/nm, the 
urve T2(δ)predi
ted by the Huxley and Simmons model ne
essarily shows a negative slope at59



Chapter 2 Power Stroke
δ = 0.Below, we show how the assumption of �nite elasti
ity of the wells 
an de
reasethe negative slope of the T2(δ) at δ = 0 even though it 
an not eliminate this e�e
t
ompletely.The approximate expression for the fun
tion T2(δ), whi
h des
ribes its behaviorat small δ, is given by equation (2.43). In this approximation, we have already
omputed the values of n0

1 and n0
2 (equation (2.52)). To 
ompute the fun
tion

T2(δ), we need the values of nδ1 and nδ2 when δ 6= 0. In this 
ase the exponentialterms in the expressions (2.51) and (2.50) will not be equal. For nδ2 we obtain thefollowing expression:
nδ2 =

[
1 +

√
k2 +K√
k1 +K

ef(δ)

]−1 (2.58)where:
f(δ) = −δK[δK(k1 − k2) + 2a(k1 +K)k2 + 2K(k1 − k2)l0]

2kBT (k1 +K)(k2 +K)
. (2.59)For nδ1 = 1 − nδ2 an equivalent expression 
an be written.From (2.58) (2.59) it is not straightforward to see how the parameter K in�u-en
es the slope of the 
urve T2(δ). Let us �rst 
on
entrate on the exponential termin (2.58): this term's δ dependen
e is the prin
ipal 
ause of the negative slope ofthe fun
tion T2(δ) at δ = 0. In what follows we limit our analysis to the negativevalues of δ. We would like to maintain the value of nδ2 as low as possible for smallnegative δ, therefore f(δ) should be small. We observe that when k1 = k2 = k,

f(δ) = −(aδ/kBT ) (Kk/(K + k)), so nδ2 will in
rease faster at larger Ks. Theterm Kk/(K + k) is equal to K when k = ∞, and de
reases if elasti
ity of thewells is taken into 
onsideration k < ∞. This also de
reases the negative slope of
T2(δ). We emphasize that within our model we essentially rede�ne the meaningof the elasti
ity of the Xb. In fa
t, the Xb is represented as an elasti
 spring, inseries with another elasti
 bi-stable snap spring, so the sti�ness of the Xb is theglobal sti�ness of the system. More pre
isely we 
an use the formula for two elasti
elements in series, Ke�e
tive = Kk1/2/(K + k1/2), where we have to 
hoose k1 and
k2 for the �rst and the se
ond well respe
tively.Next we observe that, if k1 > k2, as required by the 
ondition on the relativeslopes of T2(δ) and T1(δ), then the higher is the k1 (or the l0) the smaller is theslope of T2(δ) at δ = 0. This fa
t is illustrated in Fig. 2.21. The value of l0 
an notbe too high, be
ause there is no eviden
e that the Xbs 
an generate 
onsiderablefor
e in both states. As explained in the previous Se
tion, the values of k1 and60
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Figure 2.21: E�e
ts of k1 and l0 on the 
urve T2(δ)/T0 , when all the Xbs have the sameatta
hed sites. a) E�e
t of k1. In
reasing the sti�ness of the �rst well, de
rease the negativeslope of the 
urve around zero. The de
rease is less marked at higher values of k1. b) E�e
t of
l0. An in
rease in the value of l0 have the same e�e
t as the in
rease of k1

l0 are tightly linked to the two parameter k2 and K, be
ause of a 
onstraint thatmust be imposed on their relative value. More spe
i�
ally to reprodu
e the ratioof the slopes for T2(δ) and T1(δ) 
urves at large negative δ, the value of k2 must bene
essarily lower than a 
ertain value. In addition, we would like to maintain theglobal sti�ness at the same order of magnitude as experimentally observed. We
an now identify the global sti�ness with k2K/(k2 +K) if the sti�ness of the Xbs ismeasured in rigor [55℄, where n2 = 1. Sin
e k1 > k2 this value represent the lowerbound for the global sti�ness. We therefore impose that k2K/(k2+K) ≥ 1 pN/nm,whi
h implies k2 ≥ K/(K−1) pN/nm. The 
onstraint k2/K . 0.3 found in Se
tion2.6, gives K/(K − 1) ≤ k2 . 0.3K so ne
essarily K & 4 pN/nm.We 
an now 
onsider the e�e
t of K on the slope of the 
urve T2(δ) at δ = 0(see Fig. 2.22, where the 
urves T2(δ) are plotted for in
reasing value of K).We see that, to have a non-negative slope, the value of K should be lower than
1 pN/nm, whi
h is in
ompatible with our other 
onstraints. From now on, we
hoose the value for the global sti�ness, 1pN/nm whi
h �xes 
ompletely all otherparameters of the model. From Fig. 2.22 one 
an see that the slope dT2(0)/dδ61



Chapter 2 Power Strokeremains negative. The resolution of this last in
ompatibility with the experimentwill be our main preo

upation in the rest of the present Se
tion 2.7.

Figure 2.22: The e�e
t of the in
reasing value of the sti�ness of the elasti
 element K on thenegative slope of the 
urve T2(δ) at δ = 0. We 
hange K from 0.8 pN/nm to 6 pN/nm. Thelinear segment of the 
urve T2(δ) at large negative δ is una�e
ted by KThe problem 
an be approa
hed in two di�erent ways. One option is to 
on-sider a potential inhomogeneity inside the �ber, viewed as a 
hain of sar
omeres.Another option is to assume a nontrivial distribution of atta
hment points fordi�erent Xbs inside the half sar
omere.2.7.1 Inhomogeneity in a 
hain of sar
omeresSuppose now that the behavior of a single half-sar
omere is given by our modeldes
ribing several identi
al Xbs that a
t in parallel. As we have seen, the half-sar
omere a
ts like a single 
ontra
tile element with a non monotone tension-deformation 
urve T2(δ). The a
tual experiments are made not on a single half-sar
omere but on myo�bril. We may then assume that a 
hain of our half-sar
omerein series should be used as a model des
ribing the observed behavior of a myo�brilduring 
ontra
tion. The negative slope in a response of a single element, shouldlead to a global inhomogeneity in the system. When a small perturbation is im-posed on a system with dT2(0)/dδ < 0, the sar
omere that is shorter than itsneighbors, will generate more for
e. As a 
onsequen
e, it will shorten further and,sin
e the total length is �xed, its neighbor will be stret
hed with a subsequentde
rease of the for
e [62℄, [73℄, until the rise of the for
e in the parallel elasti
itybrings the sar
omere in equilibrium. This pro
ess, anyway, leads to developmentof inhomogeneity that 
an explain the �attening of the global tension elongation
urve. 62



Negative slope of the T2(δ) 
urve Se
tion 2.7The me
hani
al problem for a series of bi-stable elasti
 springs at temperature
T = 0, was studied in [62℄, where an analyti
al solution for the tri-paraboli
 modelwas found. This analyti
al solution is available only for unrealisti
ally simpleenergies of the elements produ
ing pie
e-wise linear tension-deformation 
urves.Below we extend this approa
h to the 
ase of realisti
 T2(δ) 
urves generated byour model of half-sar
omere.Series 
onne
tion of N half sar
omeresWe begin with a review of the results obtained in [62℄. Consider �rst a 
hain of2 half sar
omeres, representing the simplest 
ase of the general theory N=2 (Fig.2.23). Suppose that ea
h half-sar
omere is 
hara
terized by a pie
ewise paraboli
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Figure 2.23: Model of two half-sar
omeres in series. Ea
h half-sar
omere is formed by NXb inparallelenergy
w(δ) =






1

2
(δ + 1)2 δ ≤ −t

1

2
([(1 − t−1)δ2 + (1 − t)] −t ≤ δ ≤ t

1

2
(δ − 1)2 t ≤ δ

(2.60)It is a smooth fun
tion formed by three parabola, two downward and one upward,as shown in Fig. 2.24(a), where the phases are I and III have positive 
urvatures,and phase II has negative 
urvature. The 
orresponding tension-deformation 
urveis trilinear as shown in Fig. (2.24(b)). This shape roughly approximates the T2(δ)
urve obtained in Se
tion 2.6. The number of elements in ea
h phase 
an beexpressed as a ve
tor (k,l,m), where k, l andm are the numbers of elements in phaseI, II and III, respe
tively. When N=2, the 
lasses of solutions 
orresponding to thehomogeneous phases I, II and III, are (2,0,0), (0,2,0) and (0,0,2), while solutions(1,1,0), (1,0,1) and (0,1,1) 
orresponds to inhomogeneous mi
rostru
tures.The equilibrium problem at T = 0 
an be redu
ed to �nding the 
riti
al points63
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(a) (b)Figure 2.24: (a) Energy fun
tion for a single element. (b) Tension deformation 
urve for asingle elementof the total energy
W (δ1, . . . , δN) =

N∑

i=1

w(δi) (2.61)where due to the global isometri
 
onstrain
N∑

i=1

δi = Nδ (2.62)The system of equilibrium equations takes the form
w′(δi) = σ i = 1, . . . , N (2.63)where σ is the tension in the 
hain, whi
h is equal for all elements.With the simple w(δ) de�ned in (2.60), it is possible to �nd the equilibriumstrain-for
e relation expli
itly. To this end we need to invert the relation:

Nδ = kδI(σ) + lδII(σ) +mδIII(σ) (2.64)where δI(σ), δII(σ) and δIII(σ) are the linear strain for
e relations 
orrespondingto phases I, II and III respe
tively. In this way we obtain the global for
e-strainrelation for the whole 
y
le, and 
an also 
ompute analyti
ally the equilibriumenergy of the entire 
hain. De�ning the �volume fra
tions�
x = k/N, y = l/N, z = m/N (2.65)where x+ y + z = 1, one 
an obtain

σ(δ) = E(δ − δ0) (2.66)64



Negative slope of the T2(δ) 
urve Se
tion 2.7where we have de�ned the e�e
tive elasti
 modulus along the 
orresponding bran
h
(x, y, z) as

E = [1 − y(1 − t)−1]−1, (2.67)and the referen
e strain
δ0 = z − x. (2.68)Correspondingly, the overall equilibrium energy for the tri-linear 
hain 
an be writ-ten

w(δ) ≡W/(Na) =
1

2
E(δ − δ0)

2 +
1

2
y(1 − t). (2.69)Here a is the referen
e length of ea
h half-sar
omere. The 
urves w(δ) and σ(δ)are shown in Fig. 2.25 (from [62℄ where ε = δ)The above solution is also suitable for our problem where a myo�bril is in-terpreted as a 
hain of half-sar
omeres with non-monotone tension-deformationrelations. In our 
ase, the expli
it expression of the tension-deformation 
urve ofa unit is not as simple as (2.60) even in the approximate version, however someuseful insight 
an be derived by the analyses developed in [62℄ and [73℄.Let us �rst examine how the 
urvatures of the wells a�e
t the stability of theinhomogeneous 
on�guration. For instan
e, in the 
ase N=2, one 
an question thestability of the 
on�guration (1,1,0). In the tri-linear 
ase we know that [62℄ if theabsolute value of the (negative) modulus of phase II is greater than the two equal(positive) moduli of phases I and III, so that

t−1 − 1 > 1 (2.70)where t is de�ned by (2.60), then the 
on�guration (1,1,0) is not stable and the
on�guration (2,0,0) �snaps� at some value of δ into the 
on�guration (1,0,1). Theglobal tension elongation 
urve will not show any region with negative slope, butwill instead show points of dis
ontinuity (see Fig. 2.25).We 
an explain this result graphi
ally by using a realisti
 T2(δ) 
urve. We re
allthat for N = 2 the total deformation 
onstrain 
an be written as δ1 + δ2 = 2δ. We
an, therefore, represent at a given δ the tension-deformation 
urve for the se
ondhalf-sar
omeres T 2
2 (δ2), in the form

T 2
2 (δ1) = T 2

2 (2δ − δ1) (2.71)The relations T 1
2 (δ1) and T 2

2 (δ1) are plotted in Fig. 2.26 and in Fig. 2.27 for T2(δ)obtained in Se
tion 2.6. The T 1
2 (δ1) 
urve is always 
entered in the origin, while the65
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Figure 2.25: Overall energy-strain relation and for
e strain relation for the 
ase N=2 and
t−1 − 1 > 1. From [62℄
T 2

2 (2δ−δ1) 
urve gets shifted to the left for in
reasing values of δ. The equilibriumsolution 
orresponds to points where
dW (δ1, δ)

dδ1
=
d(w1(δ1) + w2(2δ − δ1))

dδ1
= T 1

2 (δ1) − T 2
2 (2δ − δ1) = 0, (2.72)meaning again that tensions are the same in both elements. Graphi
ally it is thepoint of interse
tion of the 
urves T 1

2 (δ1) and T 2
2 (δ1). A point of equilibrium isstable when

d2W (δ1, δ)

dδ2
1

=
dT 1

2 (δ1)

dδ1
− dT 2

2 (2δ − δ1)

dδ1
> 0. (2.73)Graphi
ally this means that the 
on�guration is stable when the T 1

2 (δ1) 
urve
rosses the T 2
2 (2δ − δ1) 
urve from below, and is unstable if it 
rosses from above.One 
an see that the 
on�guration (0,2,0) is always unstable. When the maximumof the absolute value of the modulus in phase II is smaller than the moduli in phasesI and III as in Fig. 2.26, the two 
on�gurations (1,1,0) and the symmetri
 (0,1,1)are stable (shallow spinodal region). When the negative modulus is su�
ientlylarger, as in Fig. 2.27, the stable 
on�gurations are (2,0,0) and (1,0,1), while the66



Negative slope of the T2(δ) 
urve Se
tion 2.7
on�guration (1,1,0) is unstable. The 
orresponding equilibrium 
urve σ(δ) for theoverall 
hain is 
ontinuous as in Fig. 2.28(a) for the �rst 
ase. For the se
ond
ase, shown in Fig. 2.28(b) the tension 
hanges suddenly when one of the half-sar
omeres jumps from one stable 
on�guration to the other. In what follows the

Figure 2.26: Tension-deformation 
urves for the 
hain with two elements in series. The 
ase ofshallow spinodal region (t>1/2), S=stable, U=unstable. The system presents a stable 
on�gura-tion with one element in the spinodal regionabsen
e of the negative slope in the global tension deformation 
urves will be usedto explain the experimentally observed positive slope of the T2(δ) 
urve. However,to make the resulting pi
tures more realisti
 we need to in
rease the number ofelement in the 
hain.In the 
ase of N elements one 
an show that no more than one element in thespinodal region (in phase II) 
an be present in a stable 
on�guration. Indeed if werewrite the total energy of the 
hain with N elements as a fun
tion of N-1 variables:
W (δ1, . . . , δN−1) = W

(
δ1, . . . , δN−1, Nδ −

N−1∑

i=1

δi

) (2.74)we obtain that the equilibrium 
on�guration δi(δ) is a lo
al minimum of this energy67



Chapter 2 Power Stroke

Figure 2.27: Tension-deformation 
urves for the 
hain with two elements in series. The 
aseof steep spinodal region (t<1/2). The system does not present a stable 
on�guration with oneelement in the spinodal region

(a) (b)Figure 2.28: Overall tension-deformation 
urve for a 
hain with two elements superimposed onthe T2 − δ/2 
urves for a single element (dashed). (a) Shallow spinodal region (t>1/2) (b) Steepspinodal region (t<1/2)
68
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urve Se
tion 2.7if the Hessian matrix is positive de�niteH =





E1 + EN EN . . . EN

EN E2 + EN . . . EN

. . . . . . . . . . . .

EN EN . . . EN−1 + EN




> 0Here Ei = w′′(δi), the tangential elasti
 moduli in the wells. To insure the positivede�niteness of this matrix, we must require

Aj > 0, j = 1, . . . , N − 1 (2.75)where
Aj ≡

(
j∏

i=1

Ei

)(
1 +

j∑

i=1

EN
Ei

) (2.76)are the prin
ipal minors of the Hessian matrix.With the de�nition of k, l, m given above, we observe that stability dependsonly on l, the number of elements in the spinodal region. Thus if l = 0 we have
Ei > 0 for all i = 1, . . . , N , and the matrix H(δ) is obviously positive de�nite. Inthe 
ase l ≥ 2, one 
an always regroup the elements in su
h a way that the �rstand the last elements are in the spinodal region. In this 
ase, we have E1 < 0 and
EN < 0 and so also A1 < 0. Therefore, every 
on�guration with more than oneelement in the spinodal region is unstable. Now, 
onsider 
on�gurations with oneelement in the spinodal region. Suppose that this element is in the N-1 position.Then Aj > 0 for j = 1, . . . , N − 2 and stability depends on the sign of

AN−1 =

(
N∏

i=1

Ei

)(
N∑

i=1

1

Ei

)
. (2.77)We 
an rewrite this expression as:

AN−1 = (E(δI))
k (E(δII))

l (E(δIII))
m

(
k

E(δI)
+

l

E(δII)
+

m

E(δIII)

) (2.78)Now, sin
e E(δII) < 0, the ne
essary and su�
ient 
ondition for stability is:
k

E(δI)
+

1

E(δII)
+

m

E(δIII)
< 0 (2.79)The elements are 
onne
ted in series, so the e�e
tive elasti
 modulus 
an be writtenas:

∂σ

∂δ
=

(
1

N

N∑

i=1

1

Ei

)−1 (2.80)69



Chapter 2 Power Strokeand the stability 
ondition for l = 1 says that the overall modulus of the 
orre-sponding equilibrium bran
h must be negative.For tri-linear element, the overall tension-deformation 
urve in the 
ase of Nhalf-sar
omeres, was obtained analyti
ally in [62℄. The stable bran
h are shownin Fig. 2.29 for the 
ase of su�
iently steep spinodal region. There are twothresholds formulated in terms of overall strain δ (ε in �gure) outside whi
h thesystem behaves like a 
hain of springs with 
onvex energies. Here we have theso-
alled Cau
hy-Born solutions, the homogeneous trivial 
on�gurations in whi
hthe elements are equally deformed. Inside these thresholds, the overall tension de-formation 
urve does not show any regions with negative slope, however the globalminimum solution (Maxwell path, see Fig. 2.29) presents a series of dis
ontinuitiesin the tension due to the tension jumps as the elements transform from one phaseto the other.

Figure 2.29: Absolute minimizer for the 
hain with ten trilinear springs. Maxwell path: boldline. From [62℄In the above 
onsideration we have made impli
itly a hypothesis that the ki-neti
s of the transformation inside individual Xbs is mu
h faster than the rate ofthe overall deformation. In this 
ase, at ea
h δ we 
an deal only with one value of70
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urve Se
tion 2.7tension. Even in this approximation, we have been dealing so far only with globalminimum strategy 
orresponding to the assumption that the temperature T = 0,but the system 
an still over
ome the barriers between the states with equal energy.In the next se
tion we drop some of those assumptions and present a more realisti
approa
h whi
h takes into 
onsideration a sto
hasti
 nature of the problem.Sto
hasti
 dynami
s in a 
hain of half-sar
omeresIn order to 
onstru
t a more realisti
 path for the 
hain of half-sar
omeres, we 
anuse the sto
hasti
 dynami
s method proposed in [73℄. The method is based on thealgorithm generated by Gillespie in the 1977 [15℄, to simulate e�
iently systems of
hemi
al rea
tions using limited 
omputational power.Consider a 
hain of N half-sar
omeres, ea
h one represented by NXb 
ross-bridges a
ting in parallel. Ea
h Xb 
an be in two 
on�gurations, one generatingthe high for
e (2.12) and another one generating the low for
e (2.11). For ea
h Xbthe passage from one 
on�guration to the other is 
onsidered a sto
hasti
 event.For simpli
ity, we shall assume that the 
hange of 
on�guration for ea
h Xb isdes
ribed by a jump pro
ess [73℄. As in the original HS71 model, the rate 
onstantsare related through (1.14) and depend on the total length of the half-sar
omere.At every swit
hing event (whi
h represent the power stroke of one Xb), the tensiongenerated by the half sar
omere under 
onsideration 
hanges and a new me
hani
alequilibrium is rea
hed before the next event takes pla
es. The new me
hani
alequilibrium a�e
ts the length of all the half-sar
omeres in the 
hain. The presentme
hani
al 
on�guration de�nes the probability of the subsequent swit
hing event(see Se
tion A.9). The resulting system follows a parti
ular set of lo
al minima ofthe total energy instead of the global minimum.We did not explore with this method our global model presented in Se
tion2.3, where both 
hemi
al rate 
onstants k+ and k− depend on the stret
h of thehalf sar
omere (see later in Se
tion 2.8). Instead, to roughly 
apture the elasti
ityinside the wells, we have made the following 
hoi
e of the 
onstants:
k+ = k0(e

−Kdδ/2
kBT ) (2.81)

k− = k0(e
Kdδ/2
kBT )where the 
onstant k0 = 1000s−1. In this way we guarantee that both rate 
on-stants are a�e
ted by a 
hange in the length of the half-sar
omere, still assuringthat their ratio satis�es equation (1.14). A di�erent 
hoi
e was made in [73℄ where71



Chapter 2 Power Stroke(to mimi
 the hypothesis made by Huxley and Simmons in [10℄) k− was made to be
onstant and k+ was de�ned by (1.14). However, despite this 
hange, the resultsare similar.With the Gillespie method one 
an 
reate, point by point, the overall T2 − δ
urve, imposing a value of the total deformation δ and following the time evolutionof the tension up to the steady state. In this way we 
an simulate the �real�sto
hasti
 behavior, obtaining a parti
ular sequen
e of lo
al minima 
hosen by ourdynami
s.In Fig. 2.30 and Fig. 2.31 we show two numeri
al tests, with four and six-teen half sar
omeres. We 
an see that the analyti
al requirement ex
luding half-sar
omeres in the spinodal region is respe
ted. Overall we obtained jumps andonly positive slope of the overall T2(δ) 
urve. By in
reasing the number of halfsar
omere, we approa
h a 
urve with a �at portion in the 
entral region.

-20 -10 10 20

5000

6000

7000

8000

Figure 2.30: Tension deformation 
urve for four half-sar
omeres. Simulation (points) and T2(δ)
urve for a single half sar
omere (solid line)Noti
e that in real experiments, be
ause of the large number of sar
omeres,it is not possible to see the jumps in the T2(δ) 
urve asso
iated with the pop-ping of individual half-sar
omeres. However, a non-homogenous distribution ofthe sar
omere's lengths should be possible to observe in the myo�bril. While someexperiments indeed show su
h an inhomogeneity, at least in some regions of thetension-length 
urve [24℄, [89℄, it is not 
lear whether this me
hanism is reallyoperative in the mus
le �bers [90℄.To summarize, the method des
ribed above 
an potentially reprodu
e the �atportion of the T2(δ) 
urve under the assumption that di�erent half-sar
omeres
an be viewed as following di�erent paths. A fully me
hani
al des
ription of theenergy lands
ape 
an be obtained only for rather simple shape of the T2(δ) 
urve72
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Figure 2.31: Tension deformation 
urve for sixteen half-sar
omeres. Simulation (points) and
T2(δ) 
urve for a single half sar
omere (solid line)des
ribing individual half-sar
omeres. In order to pro
eed in the general 
ase whenthe temperature T 6= 0, the sto
hasti
 dynami
s methods appear to be ne
essary.The Gillespie method requires introdu
tion of a 
hemi
al rea
tion and of the relatedrate 
onstants. This is, however, against our main idea of staying with a fullyme
hani
al model of mus
le 
ontra
tion. Simulation of a large s
ale 
ontinuoussto
hasti
 dynami
s for the whole 
hain does not appear doable at the moment.Therefore, in the next Se
tion, we fo
us on another way to 
apture the plateau ofthe T2(δ) 
urve.2.7.2 Distribution of the atta
hment positionsAnother way to obtain the �at plateau of the T2(δ) 
urve is to assure inhomogeneityalready at the level of individual Xbs [48℄. We re
all that the basi
 element of everymodel of mus
le 
ontra
tion is the presen
e of thermal �u
tuations. Even if these�u
tuations small, 
ompared to the s
ale of the power stroke, they 
an in�uen
esigni�
antly the level of the stret
h of the elasti
 element in the state of atta
hmentto the a
tin �lament. In the presen
e of thermal �u
tuations we must also 
onsiderthe possibility that the head atta
hes to a
tin site when its elasti
 element is awayfrom its referen
e state. This will lead to a situation in whi
h some Xbs have theelasti
 element stret
hed more than others, or even 
ompressed. As a result weloose the uniformity of the population of Xbs. As it was observed in [48℄ wherethis me
hanism has been proposed for the �rst time, this leads to the averaging ofthe ordinates of T2(δ) over the distribution of the atta
hment sites.Let us �rst show how the distribution of the atta
hed sites a�e
ts the formu-las obtained in Se
tion 2.6. The dispersion in the atta
hment positions 
an be73
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ked by a nontrivial distribution of the values of l0. Assume that for the i-thXb:
li0 = l0 + ψi (2.82)where ψi is a random variable uniformly distributed in the �nite interval of possibleatta
hment sites. This range was postulated to be ±5.5/2 nm in [48℄, be
ause

5.5 nm is the diameter of the monomer of a
tin. This will also be the value usedin the present work (li0 ∈ [l0 − 2.75 nm, l0 + 2.75 nm]). The assumed dispersiona�e
ts dire
tly the steady state probability distribution given by equation (2.35).Thus, we 
an write:
pis(x, δ, ψ

i) =
e−ET (x,δ,ψi)/kBT

∫∞

−∞
e−ET (x,δ,ψi)/kBTdx

. (2.83)The total energy depends on ψi only through the elasti
 energy
Ee(x, δ, ψ

i) =
1

2
K(x− l0 − ψi − δ)2. (2.84)The total tension in the steady state is then given by:

T2(δ) =

NXb∑

i=1

T i2(δ) =

NXb∑

i=1

∫ ∞

−∞

(
−K(xps(x, δ, ψ

i) − (l0 + ψi) − δ)
)
dx (2.85)At a given δ the tension T i2(δ) for the i-th Xb is equal to the tension generated bythe Xb with ψi = 0 additionally stret
hed (or 
ompressed) by δi = δ + ψi. Theoverall relative tension T2(δ) when the imposed in
rement is δ is then the averageof the values given by (2.29) over the range [δ − 2.75 nm, δ + 2.75 nm]

T2(δ) =

NXb∑

i=1

T2(δ
i) (2.86)Similar formulas 
an be obtained for T1(δ).A nontrivial dispersion, 
ompatible with the assumed distribution has been
on�rmed by X-ray interferen
e studies in [88℄. The authors used a high-resolutionsmall angle X-ray s
attering to study X-ray interferen
e e�e
ts generated by thearrays of myosin Xbs in 
ontra
ting mus
le to obtain sub-nanometer resolutionof the movements of the Xb during 
ontra
tion. The observations show that inisometri
 
ontra
tion the lever arm angles are dispersed through ±(20◦ − 25◦) oneither side of the mean orientation [88℄. Also, it is shown that, during qui
k release,the Xbs move towards the new 
onformation in syn
hronized fashion, with 
onstantdispersion. 74



Negative slope of the T2(δ) 
urve Se
tion 2.7An indire
t eviden
e of the atta
hment site non-uniformity 
an be obtainedfrom the multi-exponential �tting of the tension-time 
urves obtained in the ex-periments with sudden total length in
rement (see [49℄, [14℄, [86℄). To explain thisidea it is su�
ient to re
all that in the Huxley and Simmons 1971 model the rateof tension re
overy r was given by:
r(δ) = k+ + k− = k−(1 + e

−
yKh
kBT ) (2.87)where, again, their y is our δ. If all Xbs have the same atta
hment distan
e l0,then the tension vs. time 
urve for the half-sar
omere is:

T (t, δ) = (T1(δ) − T2(δ))e
−r(δ)t + T2(δ). (2.88)In the 
ase when this assumption is valid, the experimental 
urve should be de-s
ribed by one exponential fun
tion. If we 
onsider two equal populations of Xbs,with two di�erent distan
es from the atta
hment site, say l0 + ψ and l0 − ψ, thereappear two di�erent rates r(δ) whi
h we shall denote by r(δ+ψ) and r(δ−ψ). Inthis 
ase the tension vs. time 
urve is given by:

T (t, δ) =
NXb

2
[T2(δ + ψ) + (T1(δ + ψ) − T2(δ + ψ))e−r(δ+ψ)t]+ (2.89)

NXb

2
[T2(δ − ψ) + (T1(δ − ψ) − T2(δ − ψ))e−r(δ−ψ)t]One 
an see a sum of two exponential terms instead of one. The steady state valueof the total tension is the average of the two values of T2(δ) of the 
orrespondingpopulations. If more populations are present, a multi-exponential �tting would beneeded to represent the resulting tension-time 
urve. In general, the dispersionimplies that ea
h Xb has its own level of pre-stret
h and therefore the total energyis di�erent for di�erent elements. The global re
overy 
an then be �t by a sum ofexponential terms with di�erent exponents. in the next Se
tion we show that thisis exa
tly what follows from experimental observation.Therefore we 
an a

ept that the atta
hment sites are dispersed and, by per-forming a dire
t integration in the formulas for the tension (see, for instan
e, equa-tion (2.85)), obtain the 
urves shown in Fig. 2.32(a). As we see, if one in
ludes thedistribution of atta
hment sites, averaging out the tension in the 
entral region,one obtains a rather realisti
 behavior of the T2(δ) 
urve with negative slope �at-tened around δ ≃ 0. The dispersion also a�e
ts the slopes of the linear segments ofthe T2(δ) 
urve and the T1(δ) 
urve. For instan
e, by maintaining the same valuesof parameters as in Fig. 2.19(b) but adding the dispersion of the atta
hment sites,75



Chapter 2 Power Strokewe obtain the 
urves shown in Fig. 2.32(a), where the 
urves with no dispersionare also shown for 
omparison. The remaining quantitative in
onsisten
y leads tothe ne
essity to slightly 
hanging the values of parameters. The T1(δ) and T2(δ)
urves obtained by the best �t (values reported in Table 2.1, 
olumn Best �tting)are shown in Fig. 2.32(b).One 
an see that the predi
tions of the resulting model are in rather goodagreement with experiments. While the optimal �tting should also depend on theelasti
ity of the �laments, whi
h is not 
onsidered here, the basi
 features of the fastmus
le response appear to be 
aptured by the model with only two 
onformationalstates. This is most remarkable in view of the fa
t that we did not impose anyphenomenologi
al dependen
e of the rates of transitions on the length in
rement
δ.Table 2.1: Values and meaning of the main parameters used for the numeri
al simulations andanalyti
al 
omputation for the purely Huxley and Simmons type modelDes
ription Analyti
al value Best �tting valueInter
ept of T2/T0 with the abs
issa δ(T21=0) = 10.8 nm -Inter
ept of T1/T0 with the abs
issa δ(T1=0) = −3.87 nm -Slope of the T2/T0 vs. δ 
urve 0.138 nm−1 -Slope of the T1/T0 vs. δ 
urve 0.258 nm−1 -Rate of the slopes 1.87 -Total sti�ness k2K/(k2 +K) 1 pN/nm -Elasti
ity of the elasti
 element K 4.4 pN/nm 4.03 pN/nmElasti
ity of the low for
e generating state k1 18.17 pN/nm 11.4 pN/nmElasti
ity of the high for
e generating state k2 1.29 pN/nm 1.33 pN/nmRatio k2/K 0.294 (0.310) 0.330Curvature of the maximum k3 −8 103 pN/nm 8 103 pN/nmPosition of the maximum b - a1(0) − (a0

1
− a0

2
)/5Pre-stret
h in low for
e generation state l0 0.05 nm 0.39 nmDistan
e between the 
hemi
al minima a 10.75 nm 10.41 nmThermal energy kBT 4.14 pNnm -Drag 
oe�
ient of the Xb η 60 − 90 pNns/nm -

2.8 Rate of fast tension re
overyIn the Huxley and Simmons 1971 paper three features of the fast tension re
overywere highlighted: the linear de
rease in tension T1(δ), the nonlinearity of the steadystate tension T2(δ) and the parti
ular kineti
s behind the transition from T1(δ) to
T2(δ). In this Se
tion we 
onsider in more detail this last feature and show how76



Rate of fast tension re
overy Se
tion 2.8
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(b)Figure 2.32: Fitting of the experimental data in the model with nonuniform distribution ofthe atta
hment sites. Points: experimental data. Straight dashed line: Linear best �tting of theexperimental data. (a) T1(δ)/T0 and T2(δ)/T0 predi
ted without dispersion of atta
hment site(
ontinuous lines) and with dispersion (dashed lines), k2/K = 0.294 (b) T1(δ)/T0 and T2(δ)/T0with a dispersion of atta
hment site, k2/K = 0.310. Abs
issa units: nm
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Chapter 2 Power Strokeour modi�
ation of the Huxley and Simmons model mat
hes the pe
uliarities ofthe kineti
s of for
e re
overy.We re
all that after the imposed length step, the tension qui
kly rea
hes thevalue T1(δ) and then follows an almost exponential time traje
tory before rea
hingthe �nal value T2(δ) (see Fig. 1.14(a)). Some authors used a multi exponential�tting to des
ribe this 
urve and as a result had to deal with several 
hara
teristi
times [49℄ [14℄ [86℄, while others have simply taken as a 
hara
teristi
 s
ale the timeneeded to rea
h the value T1 + (T2 − T1)/2. This last approa
h is equivalent toapproximating the tension-time 
urve with a single exponential fun
tion of time:
T (t, δ) ≃ (T1 − T2)e

−rt + T2. (2.90)One 
an then de�ne the resulting parameter r as the 
hara
teristi
 rate of thepro
ess: indeed r−1 is the time needed to rea
h the (1 − 1/e) = 64% of the totalre
overy.In experiments it takes several millise
onds to rea
h the value T2. After short-ening the �nal tension T2 is rea
hed after a shorter time, less than one millise
ondfor high negative length in
rement. In general the rate of re
overy r varies with δ.Thus we already know that r(δ) is low at high stret
h step and in
reases almostexponentially as one passes to higher shortening steps (see Fig. 1.15). Huxley andSimmons �tted the experimental dependen
e r(δ) with the fun
tion:
r(y) = r0(1 + e−αy)with r0 = 0.2 ms−1 and α = 0.5 nm−1.The parti
ular shape of the experimentally measured fun
tion r(δ) a�e
ted
onsiderably the stru
ture of the Huxley and Simmons 1971 theory. Thus, the
hoi
e of very narrow energy wells in this model was dire
tly linked to the ne
essityto reprodu
e the parti
ular slow re
overy at large positive stret
hing steps.To explain this statement we re
all that the Huxley and Simmons 1971 modelpredi
ts that r(δ) = k+ + k−, where the k's are the rea
tion 
onstants 
ontrollingthe rate of transition from one 
onformational state to the other. The 
onditionof detailed balan
e in our notations (a is negative in our model) requires that

k+/k− = exp[−δK(−a)/kBT ]. Given this 
ondition one still has the freedom tomodify the 
onstants at di�erent values of δ in order to �t the experimental data.In the Huxley and Simmons model this freedom is essentially absent be
ause theenergy lands
ape, even if degenerate, is given. By putting a very narrow wellin the post-power stroke state, Huxley and Simmons put the maximum and the78



Rate of fast tension re
overy Se
tion 2.8minimum at the same value of x. In this 
ase every 
hange in the stret
h of theelasti
 element a�e
ts both the �well� and the �barrier� in the same way. The
ondition k− = 
onst is guaranteed by this 
hoi
e, and 
onsequently r goes to zeroat high positive in
rements a

ording to
r(δ) = k+ + k− = k−(1 + exp[−δK(−a)/kBT ]). (2.91)Under this assumption the �tting of the experimental rate re
overy 
urve be-
omes possible and it gives the values of both k− and Ka. We re
all that thevalue of Ka obtained in this way by Huxley and Simmons turned out to be grosslyunderestimated.Before dis
ussing quantitative e�e
ts of the elasti
ity of the wells, we observethat by dropping the hypothesis of in�nitely steep wells, we loose the strong asym-metry of the fun
tion r(δ) for lengthening (δ > 0) and shortening (δ < 0). Indeed,in this 
ase, k− is no longer 
onstant and in
reases with δ (this also justi�es theassumption (2.81)).In our general 
ase we 
an quantify the dependen
e of the kineti
 
onstants onthe stru
ture of the energy lands
ape by using Kramers' theory (see Se
tion A.7,we also refer to [74℄). The re
overy of tension is a non-equilibrium pro
ess, andthe 
anoni
al distribution does not allow one to 
ompute the tension transients.We should instead solve dire
tly the Fokker-Plank equation and obtain the timedependent probability distribution p(x, t). We re
all that Kramers' theory (seeSe
tion A.7) is based on the the hypothesis that, in a double well potential, thetime needed to relax inside ea
h of the wells is mu
h shorter than the mean time ofthe transition between the wells. This is true for the 
ase of mus
le with realisti
values of parameters and 
orre
t geometry of the myosin heads [64℄. Thus, if thedrag 
oe�
ient of the parti
le is 60−90 pNns/nm, the 
hara
teristi
 time to relaxinside ea
h minima is of the order of τ1η/K ≃ 0.1µs. The mean exit time shouldbe 
omparable to the time s
ale of the re
overy pro
ess giving τ2 ≃ 1ms. Now, itis easy to 
he
k τ2 ≫ τ1 as required, and one 
an approximate the di�usion pro
essby a jump pro
ess. De�ning the fra
tion of Xbs in ea
h well during the transientas:

nδ1(t) =
∫∞

a/2
p(x, δ, t)dx

nδ2(t) =
∫ a/2
−∞

p(x, δ, t)dx,
(2.92)and the 
orresponding quantities at the steady state (2.36), one 
an write:

ṅ
δ

1(t) = −ṅδ2(t) = −k+ṅ
δ

1(t) + k−ṅ
δ

1(t) = k− − (k+ + k−)ṅ
δ

1(t). (2.93)79



Chapter 2 Power StrokeIn the Kramers' theory the �
hemi
al� rate 
onstants are fully determined by theshape of the energy lands
ape. Thus for k− we obtain:
k− = (kBT/η)[n

δ
2

∫ a1

a2

ps(x, δ)
−1dx]−1 (2.94)whi
h gives for the rate of re
overy:

r(δ) = k+ + k− =
kBT/η

nδ1n
δ
2

∫ a1
a2
ps(x, δ)−1dx

. (2.95)Here ps(x, δ) in (2.94) and (2.95) is a fun
tion of the energy lands
ape whi
h 
anbe found from equation (2.35). Fitting of the experimentally observed rate ofre
overy δ dependen
e will then pose a 
onstraint. We shall view this 
onstraintas a restri
tion on the height of the energy barrier between the wells.Observe that sin
e k2 6= ∞ it is no longer true that k− = 
onst as in theHuxley and Simmons 
ase. From equation (2.95) we 
an see that the leading termis inversely proportional to nδ1nδ2, and when δ is positive and large, we expe
t that
nδ2 ≃ 0 and nδ1 ≃ 1. Therefore r(δ) must in
rease for high positive values of δ whi
his in 
ontradi
tion with observations.
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(b)Figure 2.33: In
reasing rate of re
overy for high stret
hes and related 
hemi
al energy. (a)Chemi
al energy (b) Rate of re
overy vs δOne way to avoid this behavior at large δ > 0 is to make the maximum of theenergy (the barrier height) dependent on the imposed step. To this end we 
an
onsider a pie
ewise paraboli
 energy, with the third parabola pla
ed upside down80



Rate of fast tension re
overy Se
tion 2.8between the two 
onventional paraboli
 wells:
Ec(x) =






1

2
k1x

2 x ≥ b1

1

2
k3 (x− b)2 + e b2 ≤ x < b1

1

2
k2(x− a)2 + d x < b2

(2.96)
Here, as postulated, k1 > 0, k2 > 0 and k3 < 0. The fun
tion (2.96) is shown in Fig.2.33(a), where the height of the energy is denoted by e. The parameters 
an alwaysbe 
hosen in su
h a way that the total energy is a 
ontinuous fun
tion of x, even if its�rst derivative is not. The smoothness of the energy is not important for 
omputingthe integrals in the formula for ps(x, δ). If the maximum is 
onstant the rate ofre
overy shown behavior dis
ussed before, as shown with a numeri
al simulationin Fig. 2.33(b). Suppose now that the lo
al maximum of Ec(x) representing thebarrier is a monotoni
ally in
reasing fun
tion of δ, e = e(δ) as in Fig. 2.34(a).In this 
ase we 
an redu
e the rate of re
overy in stret
hing tests, obtaining arealisti
 behavior as in Fig. 2.34(b). Indeed, with the in
rease in e the weight ofthe integral term in (2.95) also in
reases whi
h 
an in prin
iple balan
e the term
nδ1n

δ
2 and ensure the desired shape of r(δ). This is however not the 
hoi
e that we
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(b)Figure 2.34: Variable barrier in the 
hemi
al energy. (a) Shape of Et for three values of δ, themaximum e is a fun
tion of δ. (b) Rate of re
overy when e(δ)make in the rest of the Thesis.We de
ided instead to simply omit the stret
hing part of the 
urve r(δ), forthe following reasons. First, re
ent studies show that in the stret
hing experiments81



Chapter 2 Power Strokeme
hanisms other than simple power stroke may be important in generating thetension re
overy [91℄. Till now we always 
onsidered that, even if the skeletal mus-
le's myosin has two heads, only one head is involved in the power stroke pro
ess.If, on the other hand, the steri
 e�e
t due to the stret
h allows the se
ond head tobe atta
hed 
ontemporarily, a 
hange in the total number of Xb has to be intro-du
ed, probably as a fun
tion of the stret
h itself. Se
ond, the experimental times
ale of tension re
overy after stret
h is so slow (tens of millise
onds [49℄) thatthe atta
hment-deta
hment pro
ess may be
ome important. Both me
hanisms,getting the se
ond head involved and a
tivating the atta
hment-deta
hment me
h-anism, are negle
ted in the Huxley and Simmons model. We also omitted themin the present study whi
h only aims at des
ribing the e�e
t of elasti
ity in thewells. In what follows we shall be mostly preo

upied with the physiologi
al rangeof behavior of mus
les, whi
h means with the shortening range. In this 
ase we
an avoid introdu
ing questionable e(δ) behavior.With this limitations in mind, we 
an still deal quantitatively with the twoother defe
ts of the Huxley and Simmons 1971 model. We re
all that already inthe 1978 [17℄ it was observed that the hypothesis of narrow potential wells leads toan unrealisti
 time s
ale of the transition pro
ess. Indeed, the rate of transition isslower at δ = 0, where the Xb has to be stret
hed up to a in order to jump, than at
δ = a, where it 
an jump without being stret
hed at all. Huxley and Simmons didnot know the elasti
 energy asso
iated with this stret
h, be
ause K was unknown,but they asso
iated the di�eren
e in the values of Ec(x) in the bottoms of the wellswith the ATP 
onsumption needed to 
hange the 
on�guration. More spe
i�
ally,they assumed that the energy needed to stret
h a Xb up to a is 18kBT , whi
h isthe free energy liberated by the ATP as known at that time. Be
ause the rate ofre
overy is 
hanging exponentially with the ∆E/kBT , they dedu
ed that the ratioof the rates in the 
ases δ = 0 and δ = a has to be equal to e−18 = 10−8, a valuemu
h higher than experimentally observed. Huxley 
ame ba
k to this problemin 1996 [48℄, showing that indeed at realisti
 values of K, the rate of re
overy isunrealisti
ally fast (see Fig. 2.5).Regarding the se
ond problem with the HS71 model, we have to reiterate againthat Huxley and Simmons used a jump pro
ess to simulate the 
hange in 
on�gu-ration, and that k− was used as a free parameter whose value 
ould be imposed to�t the experimental data. In a more realisti
 model (2.96) the Xb has to stret
hthe elasti
 element to over
ome the energy barrier Emax = d. In the Langevinequation setting for a single quadrati
 energy well we 
an estimate the mean �rst82



Rate of fast tension re
overy Se
tion 2.8passage time (see Se
tion A.6.3), obtaining:
tK = η/K

√
π/4
√
kBT/Emax exp[Emax/kBT ] ≃ 1 s (2.97)Here we used η = 90 pNns/nm, K = 1 pN/nm, kBT = 4.14 pNnm2 and Emax =

80%∆GATP = 20kBT .This rough estimate is obviously not 
ompatible with the observed time s
aleof the pro
ess. The non-zero 
urvatures of the wells help, however, to avoid theproblem. The equation (2.97) shows that the time needed to over
ome the barrieris related only to its height. With our �rst double paraboli
 energy model (2.7)and, with l0 = 0, the energy barrier is equal to:
∆ET =

1

2
(k1 +K)

[

−ak2(K + k2)
2 −

√
a2k2

2(K + k2)2(K2 + 2Kk1 + k1k2)

(k1 − k2)(K + k2)

]2

.(2.98)One 
an see that ∆ET approa
hes asymptoti
ally the value 1/2Ka2 when k2 goesto in�nity. For �nite values of k2 the barrier is lower than that as shown in Fig.2.35 for given values of K and k1. In the 
ase of narrower wells the Xb that is inthe well on the right does not feel the presen
e of the se
ond well till it rea
hesthe maximum, whi
h for k2 = ∞ is in x = a, therefore this value of x has tobe rea
hed only through thermal di�usion in a quadrati
 potential with 
urvature
K + k1. Within the hypothesis of elasti
 wells, thermal �u
tuations must stret
hthe elasti
 element only till an intermediate 
on�guration be
ause afterwards thesystem will be driven by the drift for
es. Mathemati
ally this means that thevalue of tK (2.97) has to be 
omputed with the lower value of ∆ET obtained fromequation (2.98).
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t of the lowering of k2 on the size of the energeti
 barrier. k1 and K areassumed 
onstant. The �gure is a sket
h where the third parabola is not 
onsidered83



Chapter 2 Power StrokeTo summarize, introdu
tion of the elasti
ities in the wells a�e
ts the �rst meanpassage time and allow the �tting of r(0). To reprodu
e the whole 
urve r(δ) in theshortening regime, we need to 
onsider the third parabola as in (2.96). In orderto a�e
t as less as possible the results obtained for the steady state, we 
hooseto make this third parabola as narrow as possible. In this way we 
an mat
h the
ontinuity 
ondition without a�e
ting the bottom areas of the minima.The Kramers' theory (see Se
tion A.7) gives an analyti
al expression for thedependen
e of the rate of re
overy on δ (equation (2.95)). It 
an be simpli�edfurther when the asymptoti
 approximation, des
ribed in equations (2.41), is valid.In this 
ase we obtain (see [74℄ for a formal derivation):
r(δ)−1 = (2.99)

2π[n1n2]
1
2 [| E ′′

T (b) |− 1
2 E ′′

T (a1)
− 1

4 (E ′′
T (a2))

− 1
4 ] exp

[
2ET (b) − ET (a1) − ET (c2)

2kBT

]
.Here we have used the hypothesis 
on
erning the narrow stru
ture of the thirdparabola, allowing us to approximate the value of the variable x = xmax (wherethe total energy rea
hes its maximum) by b. Indeed, be
ause K/k3 ≃ 0,

xmax =
K/k3δ + b

1 +K/k3

≃ b. (2.100)Within this approximation, the presen
e of the third parabola gives rise to a 
on-stant multiplier (pre-exponential fa
tor) in (2.99) of the form
| E ′′

T (b) |
−

1

2 exp

[
ET (b)

kBT

]
.This 
onstant value has been used to �t r(0).With all the approximation made, the analyti
al expressions needed to analyzethe in�uen
e on r(δ) of the parameters of the model are too 
omplex, due to thepresen
e in equation (2.99) of the terms n1 and n2. Therefore, instead of using theanalyti
al solution we 
an as well turn to dire
t numeri
al integration in the formula(2.95). We assume that we are in the framework of the distributed atta
hment sitesmodel as in Se
tion 2.7.2. Then for ea
h atta
hment site we obtain its own value of

r(δ). To repla
e them by a single fun
tion of r(δ) allowing one to make 
omparisonwith experiments, we plot the 
urve
fexp(t) =

1

nexp

nexp∑

i=1

e−α
it (2.101)84



Dis
ussion Se
tion 2.9and then perform one-exponential �tting of this 
urve. The resulting fun
tion r(δ)is strongly 
ontrolled by the 
hoi
e of the parameter b and we used this remainingfreedom to �t the experimental 
urve. In fa
t, this parameter 
an be viewed asa kind of opposite to the one used in Huxley and Simmons 1971 to �t the same
urve: shifting b to the left, makes the dependen
e of k+ on δ weaker, be
ause thelo
al maximum at b and the lo
al minimum in the �rst well, be
ome 
loser.The overall predi
tions of the model are 
ompared with experimental data inFig. 2.36 for the set of parameters reported in Table 2.1, 
olumn Best �tting. Thisset of parameters works rather well for both the rate of re
overy and the steadystate behavior (see Fig. 2.32(b)).

Figure 2.36: Rate of the tension re
overy at di�erent length steps δ. Comparison of the predi
tedvalues (solid line) at the values of parameters shown in table (2.1), and the experimental points(from [10℄, [14℄, [67℄, adapted to be 
onsistent)
2.9 Dis
ussionWe would like to make some �nal 
omments regarding the des
ription of the overallelasti
ity, sin
e its value have previously generated problems for the Huxley andSimmons 1971 model. The introdu
tion of the elasti
ities in the wells, makesambiguous the de�nition of the total sti�ness of the Xb. This sti�ness is representedby two elasti
 elements in series and does not depends on K only. It also dependson the state of the bi-stable element. If the experimental rigidity is measuredin rigor, where n2 = 1 and n1 = 0, it should assume the value k2K/(k2 + K).We 
hoose the parameters k2 and K to ensure that this total sti�ness is equal85



Chapter 2 Power Stroketo 1pN/nm. This value is lower than the values obtained in experiments, but weshould remember that the elasti
ities of the �laments have been negle
ted in ouranalysis. The experimentally measured value of total elasti
ity does not take intoa

ount the 
omplian
e of the �laments, while the data that we have used areobtained from the whole stru
ture: 
ross-bridge and �laments. Thus, the valueassumed for total elasti
ity in our model is 1pN/nm, whi
h must be interpreted asthe elasti
ity of the 
ross-bridge and the �laments 
onne
ted in series. This makesthis �seemingly� low value realisti
.In this Chapter we have obtained a quantitative des
ription of the power strokein a fully me
hani
al framework. We model the other part of the Xb 
y
le, theatta
hment-deta
hment pro
ess, in the next Chapter.
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Chapter 3The atta
hment-deta
hment pro
ess
3.1 Introdu
tionThe physiologi
al shortening of skeletal mus
les 
an vary over a wide range oflengths, rea
hing up to several 
entimeters. Sin
e the sar
omeres in the myo�brilare distributed in series, su
h huge 
ontra
tion is a
hieved by means of a mu
hsmaller shortening of ea
h half-sar
omere. The series stru
tural organization allowsea
h half-sar
omere to maintain its length in the plateau interval of the relationfor
e-length F−l des
ribed in Chapter 1. This helps to stabilize mus
le me
hani
albehavior and optimize the for
e generated. In the experiments of interest thesar
omere, having a physiologi
al length of 2.2 µm, 
an shorten in the range oftenths of a mi
rometer [67℄. A single myosin motor produ
es a for
e of 5 pN [92℄and due to the parallel distribution of the 
ontra
tile units inside the sar
omere,the tension generated in ea
h a
tin �lament 
an be two orders of magnitude larger.As des
ribed in Chapter 2, the typi
al size of the power stroke is of the order often nanometers [84℄ and the distribution of the Xbs in parallel limits the maximumpower-stroke related shortening of a half-sar
omere to this value. The larger globalshortening (tenths of a mi
rometer) is generated by a 
y
li
 intera
tion of the Xbswith the a
tive sites on the a
tin �lament. During this pro
ess a deta
hment inthe post-power stroke 
on�guration of Xb is needed before the next atta
hmentin the pre-power stroke 
on�guration takes pla
e. As explained in Chapter 1, the
orresponding 
y
le was �rst proposed in 1971 [9℄, it is now 
alled Lymn-Taylor
y
le. The des
ription of this 
y
li
 atta
hment-deta
hment pro
ess 
an be foundneither in the HS71 model nor in the model des
ribed in Chapter 2, be
ause bothnegle
t the atta
hment-deta
hment pro
ess. In order to have a 
omprehensiveme
hani
al model of mus
le 
ontra
tion a new 
omponent has to be added.87



Chapter 3 The atta
hment-deta
hment pro
essA �rst model of 
y
li
 intera
tion between a
tin and myosin was already pre-sented in Huxley 1957 model [4℄ des
ribed in Chapter 1. Its �rst essential feature isthat ea
h Xb 
ontains an elasti
 element whi
h allows for Brownian os
illations be-fore the atta
hment and whi
h generates a for
e after the atta
hment. The se
ondessential feature is that the rate 
onstants for the atta
hment-deta
hment pro
essdepend on the stret
hing of the elasti
 element and are asymmetri
 around theunstressed 
on�guration. As we show, these are the two fundamentals hypothesesbehind the so-
alled Brownian rat
het idea whi
h is the main subje
t of the presentChapter. Re
ently Brownian rat
hets have been used to model the behavior of var-ious mole
ular motors (see [68℄ for a 
omprehensive review), a family of proteinsthat transform 
hemi
al energy into me
hani
al work.Skeletal mus
le myosin II, the main protein of the 
ontra
tion me
hanism, be-longs to the superfamily of a motor proteins found in eukaryoti
 tissues. Motorproteins generate motion inside the 
ell whi
h is faster than di�usion: the 
om-plex stru
ture and the dimension of the eu
aryoti
 
ells make the di�usion pro
esstoo slow to supply the needed transport velo
ities of nutrients, waste, protein et
.An in
rease in the size of the 
ell by a fa
tor of 10 should be slowing down thedi�usional transport by a fa
tor of 100 (see Se
tion A.4 in Appendix). Insteadmotor proteins 
an transport 
argos at 
onstant speed by walking along either themi
ro�laments (a
tin) or mi
rotubules.The most prominent example of a
tin motors is myosin II, while kinesin anddyneins are mi
rotubule motors. Two important aspe
ts 
ommon to all 
ytoskele-ton �laments have been observed experimentally: �rst they exhibit periodi
ity withthe period of the order of 10nm; se
ond they are polar, so it is possible to de�nea �positive� dire
tion for the motion (see [50℄ and referen
es therein). Modelingof the motion of a
tin motors must take into 
onsideration that the a
ting 
on-�gurational for
es are only few times kBT , and therefore the es
ape times for theenergy wells is �nite. Therefore mole
ular motors are mi
ros
opi
 obje
ts that livein Brownian domain. Sin
e they move along one dimensional periodi
 stru
turesthey 
an be modeled as Brownian rat
hets [40℄, [32℄, [51℄.We start by introdu
ing a simple non Brownian me
hani
al model of a rat
hetwhi
h furnishes the desired extension of the model proposed in Chapter 2 but whi
his not 
ompatible with the idea that the motor is powered by the hydrolysis of ATP.Therefore we reintrodu
e �u
tuations and review the parti
le motion in a tiltedperiodi
 potential subje
ted to thermal noise. Then we move to Brownian motors,exhibiting the variety of their types and explaining the way in whi
h they are able88



A model of fri
tional motor Se
tion 3.2to re
tify the external noise using an appropriate stru
ture of the potential and asour
e of 
olored noise whi
h maintains the system out of equilibrium. In parti
ularwe des
ribe in some detail two important types of Brownian rat
hets that 
an beuseful in mus
le me
hani
s. Next we modify one of these models and adapt it to thephysiology of mus
le 
ontra
tion. We then 
onsider several intera
ting motors andintrodu
e the system of sto
hasti
 di�erential equations governing their 
olle
tivedynami
s. The analyti
al treatment of su
h type of systems does not appearfeasible and to analyze di�erent relevant regimes we develop a numeri
al methodallowing one to simulate the behavior of the proposed model. Some qualitativeresults obtained in the 
ourse of our numeri
al experiments are dis
ussed at theend of the Chapter.3.2 A model of fri
tional motorThe model of Huxley and Simmons is able to mimi
 the steady state tension devel-oped by the mus
le in the isometri
 
ase (T0). This tension however is maintainedwithout 
onsumption of energy, whi
h violates physiologi
al experien
e. As wehave seen in Se
tion 1.3.1, where we des
ribed the experiments made by A.V. Hillin 1938, during isometri
 
ontra
tion skeletal mus
les 
onstantly produ
e heat (seethe maintenan
e heat rate term in (1.1)). This fa
t indi
ates that 
y
li
 a
tomyosinintera
tion requiring energy sour
e is present even during ma
ros
opi
ally steadyisometri
 
ontra
tion. In Se
tion 3.1, we dis
ussed the need of a new 
omponentin the model in order to des
ribe the large observed shortening of mus
les. Nowwe see that su
h extension of the model is needed even to des
ribe the steady statefor
e generation in the isometri
 
ase.To understand this better we may think in terms of an analogy with a 
ar thatis kept steady on an uphill road. We 
an rea
h this situation in two ways, either bya
tivating the me
hani
al breaks, where no energy is required, or by maintainingthe engine working and produ
ing a forward for
e that balan
es exa
tly the ba
k-ward for
e. Obviously, in the latter situation the 
lut
h is 
onstantly generatingheat and therefore the energy has to be 
onstantly 
onsumed. Despite the lossesthis situation is more �exible allowing the driver to adapt qui
kly to 
hange in theexternal 
onditions (e.g. green light repla
ing red light).We 
an use this intuitive analogy to try to mimi
 the atta
hment-deta
hment
y
le responsible for a 
onstant for
e and a 
onstant heat rate in tetanized mus
le.Consider the following me
hani
al model. Suppose that a body with weight P is89



Chapter 3 The atta
hment-deta
hment pro
esspla
ed on a belt whi
h is moving with a speed v. The belt is 
hara
terized by a
oe�
ient of dynami
 fri
tion µd and the load is atta
hed to a spring of rigidity K(see Fig. 3.1(a)). The equation of motion for a 
ontinuously sliding body 
an bewritten as
mẍ(t) +Kx(t) + µdP = 0. (3.1)The body rea
hes the steady state ẍ = ẋ = 0 at the position x where −Kx = µdP .Observe that the 
onstant for
e that the model produ
e is exerted on the externalwall. In order to produ
e this 
onstant for
e, a 
ertain amount of energy must bespent to maintain motion of the belt. If we substitute the elasti
 element with a
onstant for
e T , the body will moves only when T = µdP , but at this value thevelo
ity 
an not be determined by this model (Fig. 3.1(a)) The problem with this

x

P K
v

T

x
.(a)

y(x)

x
v

K

T

x
.(b)Figure 3.1: Me
hani
al models for a 
onstant heat produ
tion. (a) Fri
tion belt. (b) Ruggedrailmodel is that the for
e does not depend on the velo
ity. In order to relate thegenerated for
e with the velo
ity we 
an repla
e the fri
tional belt by a ruggedlands
ape as in Fig. 3.1(b). Using a bit oversimpli�ed approa
h, we 
an view theparti
le x as moving on a two-dimensional rail y(x). Suppose for simpli
ity that90



Brownian rat
hets Se
tion 3.3the rail is pie
ewise linear:
y(x) =






+ tan(α)(x− n/2) n < x < n + 1/2

− tan(α)(x− n/2) n + 1/2 < x < n+ 1

|n| = 0, 1, · · · (3.2)Suppose that the rail is moving in the negative dire
tion at a 
onstant speed v sothat y(x, t) = y(x + vt). Suppose also that the parti
le is embedded in a vis
ous�uid whi
h provide in this model a dissipative me
hanism. Finally, we pla
e aspring whi
h links the parti
le to a �xed position x = 0. In the overdampedregime, the equation of motion of the parti
le takes the form
[1 + tan2(α)]ẋ(t) +

K

η
x(t) + v tan2(α) = 0. (3.3)The solution 
an be written as:

x(t) = −vη
K

tan2(α)[1 − e−
K
η

cos2(α)t] (3.4)It is not di�
ult to see that the swit
h from one bran
h in (3.2) to the other doesnot 
hange the rea
tion for
e a
ting on the parti
le due to the rail. The positionof the parti
le rea
hes the steady state x = −(vη/K) tan2(α) exponentially fast.As we see the higher is the velo
ity of the belt the larger is the for
e a
ting on thespring. The motion of the belt here is mimi
king the e�e
t of the ATP hydrolysis.If we swit
h from the isometri
 
ondition to an isotoni
 one, removing the springand applying to the parti
le a 
onstant external for
e Fext, we 
an 
onstru
t thefor
e velo
ity 
urve:
ẋ(t) = − cos2(α)[Fext/η + v tan2(α)]. (3.5)One 
an see (Fig. 3.1(b)) that the velo
ity depends on Fext linearly. The mainproblem with this model is however elsewhere. Thus it is 
lear that the isotoni
energy release due to hydrolysis of ATP 
an not be represented by the unidire
tionalfor
e generated by the moving belt. The way to over
ome this problem is to repla
ea me
hani
al rat
het by a Brownian rat
het.3.3 Brownian rat
hetsWhen thermal �u
tuation are not negligible, the equation of an overdamped motionof a parti
le in a potential V (x) takes the form (Langevin equation, see Se
tionA.3):
ηẋ(t) = −V ′(x) +

√
ηkBTΓ(t). (3.6)91



Chapter 3 The atta
hment-deta
hment pro
essThe random term Γ(t) 
orresponds to white noise and has the following proprieties:
< Γ(t1) >=

∫ ∞

−∞

x1pΓ(x1, t1)dx1 = 0, (3.7)where pΓ(x, t) is the probability that Γ assumes the value x at time t, and
< Γ(t1)Γ(t2) >=

∫ ∞

−∞

∫ ∞

−∞

x1x2pΓ(x1, t1; x2, t2)dx1dx2 = δ(t1 − t2). (3.8)In what follows for every fun
tion f(x) of a sto
hasti
 variable x whose probabilitydensity fun
tion is p(x), the bra
kets < f(x) > will stand for its average value
omputed as:
< f(x) >=

∫ ∞

−∞

f(x′)p(x′)dx′. (3.9)Now suppose that V (x) is a double well potential. Then, as it was explained inChapter 2, equation (3.6) des
ribes the Huxley and Simmons type model (see equa-tion (2.32)). The 
orresponding Fokker-Plank equation has the following steadystate solution:
ps(x) = N exp[−V (x)/(kBT )]. (3.10)The 
ru
ial 
ondition for (3.10) to be admissible is that the probability 
urrent
S = −V

′(x)

η
p− kBT

η

∂p

∂x
= 0. (3.11)We re
all that in the steady state we must have S(x) = const. When we know ad-ditionally that the energy V (x) goes to in�nity at the boundaries, we 
an 
on
ludethat S = 0.When we 
onsider a periodi
 potential V (x), the 
ondition S(x) = 0 is no longertrue, and the most important part of the analysis is to 
ompute the 
onstant S forthe steady state. The 
onstant S is a fun
tion of the parameters of the potential

V (x). In Appendix (Se
tion A.8) we show that the 
onstant probability 
urrent
S is related to the mean velo
ity v (drift velo
ity) of the parti
le through thefollowing relation:

< v >=< ẋ(t) >= 2πS (3.12)An important observation 
on
erning the periodi
 potential V (x) was obtainedby Risken [23℄. He showed that in a periodi
 potential V (x) of period L whi
his tilted by a 
onstant for
e F , i.e. V (x + L) = V (x) + F , the steady state driftvelo
ity is given by:
ηv = η < ẋ(t) >=

2πD(1 − e−2πF/D)
∫ 2π

0
eV (x)/Ddx

∫ 2π

0
e−V (x)/Ddx− (1 − e−2πF/D)

∫ 2π

0
e−V (x)/Ddx

∫ x
0
eV (x′)/Ddx′(3.13)92



Brownian rat
hets Se
tion 3.3where D = kBT/η is the di�usion 
oe�
ient. We immediately see that < ẋ > 6= 0if and only if F 6= 0 despite an asymmetry of the potential. This ex
ludes thepossibility of 
onstru
ting a motor whi
h is able to extra
t work from a sour
e ofthermal �u
tuations. The basi
 idea behind this result 
an be tra
ed ba
k to a
onferen
e talk by Smolu
howski in Münster 1912 whi
h was elaborated on laterin Feynman's Le
tures on Physi
s [6℄. Both authors 
onsidered a devi
e, shown inFig. 3.2, whi
h 
onsists of an asymmetri
 gear known as a rat
het, whi
h rotatesfreely in one dire
tion but is prevented from rotating in the opposite dire
tion bya pawl. The rat
het is 
onne
ted by a massless and fri
tionless rod to a paddlewheel that is immersed in a bath of mole
ules at a given temperature. Ea
h time amole
ule 
ollides with a paddle, it imparts an impulse that exerts a torque on therat
het (the me
hanism is imagined to be small enough that this tiny for
e 
ouldmove it). Be
ause the pawl only allows the motion in one dire
tion, the net e�e
t ofmany su
h random 
ollisions should allow the rat
het to rotate 
ontinuously in thatdire
tion. The rat
het's rotation 
an then be used to do work on other systems,for example for lifting a weight against gravity. The energy ne
essary to do thiswork apparently would 
ome from the heat bath, without any heat gradient.Equation (3.13) is in 
ontradi
tion with this seemingly intuitive result, be
ausene
essarily v = 0 when no external for
e F is a
ting on the system. A
tually thisintuition is wrong. Indeed, in the Smolu
howski and Feynman's Gedankenexperi-menten the pawl must be extremely soft to admit a rotation even in the forwarddire
tion, and as pointed out already by Smolu
howski, it is also subje
ted toa non-negligible random thermal �u
tuations. The �ux in one dire
tion is onlypossible if the two parts of the system are kept at di�erent temperatures.Now observe that only when the 
onstant S in equation (3.12) is di�erent fromzero do we have a net �ux of parti
les in the steady state. To have su
h a �uxthe system must be either a�e
ted by a dire
tional for
e F or be maintained byexternal a
tions in out of equilibrium state. In the 
ase of mus
les, this externala
tion is provided by the ATP splitting, whi
h gives the required energy to bias themotion. the question is how to imitate me
hani
ally the presen
e of the resultingnon-equilibrium noise.The transport phenomena in spatially periodi
 systems that are out of ther-mal equilibrium have been re
ently reviewed in [68℄. In very general terms, thermalrat
het is a me
hani
al system whi
h is subje
ted to an asymmetri
 periodi
 poten-tial V (x, t), is a�e
ted by an external for
e F (t) with zero average, and is exposedto thermal �u
tuations, modeled as a white noise Γ(t). Under the a
tion of these93
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Figure 3.2: The rat
het (left) is 
onne
ted by an axle with the paddles (right) and with a spool(
enter), whi
h may lift a load. From [68℄for
es the probability distribution 
an rea
h the steady state ps(x) with a non-zero�ux.Thermal rat
hets have been used to des
ribe di�erent physi
al systems. Asystemati
 
lassi�
ation of di�erent rat
het models 
an be based on the type ofexternal a
tion, [68℄. The basi
 working model in the overdamped situation 
anbe written as:
ηẋ(t) = −V ′ (x(t), f(t)) + F (t) + Γ(t) (3.14)where Γ(t) is the thermal noise, not ne
essarily white. Another term 
an be addedto a

ount for a passive external for
e Fext(x): if the system is 
arrying a 
argo asin the load 
lamp devi
e, then Fext(x) = const, if it is stret
hing a spring, as inthe length 
lamp devi
e, then Fext(x) = Kx.The 
ondition F (t) = 0 distinguishes the 
lass of pulsating rat
hets whose twoimportant subgroups are the traveling potential rat
hets with:

V (x(t), f(t)) = V (x− f(t)) (3.15)and di�erent assumptions on f(t), and the �u
tuating potential rat
hets where:
V (x(t), f(t)) = V (x) [1 + f(t)] . (3.16)In this last 
lass, when f(t) takes only the values 1 or −1, we have the so-
alledon-o� rat
het.The se
ond main group of Brownian rat
hets is 
alled tilting rat
hets. Then94



Brownian rat
hets Se
tion 3.3
f(t) = 0 and F (t) is either a periodi
 fun
tion with zero mean:

1

T

∫ T

0

F (t)dt = 0 (3.17)as in ro
king rat
hets, or a unbiased stationary random pro
ess, as in �u
tuatingfor
e rat
hets. As we have seen in our dis
ussion of purely me
hani
al rat
hets,if F (t) has a non-zero mean, we 
an have a non zero �ux even if the potential issymmetri
. Finally, it is possible to brake thermal equilibrium by 
onsidering aspa
e or time dependent temperature distribution (temperature or Seebe
k rat
het)or a non-trivial vis
osity pro�le (fri
tion rat
hets).Two simplest models from this 
atalogue 
an be used as the prin
ipal basis forthe des
ription of 
ontra
ting mus
les. The �rst one is the model of Magnas
oproposed in 1993 [32℄. It is the simplest tilting rat
het with a time periodi
 for
e(ro
king rat
het). The se
ond model was developed by Prost and 
ollaboratorsaround the same time [40℄ (see also [28℄) and is the simplest �u
tuating potentialrat
het.3.3.1 Magnas
o modelMagnas
o [32℄ showed that, if the periodi
 potential is asymmetri
, an externalfor
e, whi
h is periodi
 in time and have zero mean, 
an generate a net �ux inone dire
tion. The magnitude of the �ux depends on the shape of the potential.Magnas
o 
onsidered the following Langevin equation:
ẋ(t) = −V ′(x) + F (t) + Γ(t). (3.18)The asso
iated FPE, 
an be written as:

∂tp+ ∂xJ = 0

J = −kBT∂xp+ (−V ′(x) + F (t))p
(3.19)As we have already mentioned, Risken [23℄ obtained an analyti
al solution forthe �ux J in the 
ase when the for
e F is 
onstant (equations (3.12) and (3.13)).Magnas
o 
omputed it expli
itly in the 
ase of a pie
ewise linear potential as inFig. 3.3: here λ1 and λ2 are the fra
tions of the total period (λ = λ1+λ2) where thepotential has 
onstant derivatives, Q/λ1 and −Q/λ2, 
orrespondingly, ∆ = λ1−λ2.The analyti
 form of this potential is the following:

V (x) =






Q

λ1

(x− nλ) nλ < x < nλ+ λ1

Qλ

λ2

− Q

λ2

(x− nλ) nλ+ λ1 < x < (n + 1)λ
|n| = 0, 1, · · · (3.20)95
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Figure 3.3: Pie
ewise linear potential adapted from [32℄. The arrow indi
ates the dire
tion ofthe probability 
urrent J . The preferred dire
tion is the one towards lower |V ′(x)|By using (3.20), the probability 
urrent J 
an be written as:
J(F ) =

P 2
2 sinh [λF/2kBT ]

kBT

(
λ

Q

)2{
cosh

[
Q− ∆F

kBT

]
− cosh

[
λF

2kBT

]}
− λ

Q
P1P2 sinh

[
λF

2kBT

] ,

P1 = ∆ +
λ2 − ∆2

4

F

Q
,

P2 =

(
1 − ∆F

2Q

)2

−
(
λF

2Q

)2

. (3.21)Using this result one 
an 
ompute the average probability 
urrent J for the
ase when the �u
tuations of the for
e are slow enough to justify the use of aparameterized steady state solution. Then:
J =

1

p

∫ p

0

J(F (t))dt (3.22)where p is the period of os
illations of the for
e F (t). Suppose F (t) is representedby a square wave of amplitude A:
F (t) =






A np < t < (n + 1)p

−A (n + 1)p < t < (n+ 2)p

n = 0, 2, · · · (3.23)Then one 
an write:
J =

1

2
[J(A) + J(−A)] , (3.24)where J(A) is given by equation (3.21). The analyti
al solution obtained in thisway is una�e
ted by the frequen
y of os
illations 1/p. This is the 
onsequen
e of96



Brownian rat
hets Se
tion 3.3the hypothesis that the steady state J = const is rea
hed immediately after thefor
e 
hanges its sign.The behavior of the probability 
urrent J as a fun
tion of the amplitude A ofthe �u
tuating for
e is illustrated in Fig. 3.4 adapted from [32℄. We see that whilethe for
e F (t) has zero average the �ux is non-zero, due to the asymmetry of thepotential. A
tually, the �ux may be non-zero even without thermal �u
tuations:in the zero temperature limit the system works as a me
hani
al rat
het. Theproblem is that for the zero-temperature 
ase T = 0 there is a threshold value of
A below whi
h the parti
le 
an not over
ome the potential barriers. Starting fromthis value of A there is an interval of amplitudes in whi
h the parti
le 
an 
limbthe potential on one side but not on the other. The �ux in
reases with A till these
ond threshold is rea
hed. Afterwards the parti
le 
an 
limb both barriers, butwith di�erent rates. Starting from this se
ond 
riti
al value of A, the �ux J startsto de
rease and tends asymptoti
ally to zero be
ause the relative importan
e ofthe asymmetry of the barriers diminishes as the amplitude of the tilting for
e Ftends to in�nity.When the temperature is di�erent from zero, the �ux J 6= 0 for every valueof A be
ause thermal �u
tuations help 
rossing the barriers. More pre
isely, anin
rease in temperature de
reases the e�e
tive threshold where the �ux be
omesobservable (see Fig. 3.4). Sin
e the motor is able to move in a vis
ous environment,

Figure 3.4: Plot of J as a fun
tion of the amplitude A at low (solid line) and high (dashed line)temperature. From [32℄it is also able to generate a for
e and move a 
argo, if an external devi
e is added.In what follows, we shall add to equation (3.18) a term Fext(x) to mimi
 the for
eprodu
tion in the mus
le. 97



Chapter 3 The atta
hment-deta
hment pro
ess3.3.2 Prost et al. modelAnother relevant motor model is an on-o� rat
hets proposed by Prost et al. [40℄.This type of rat
hets appears to be natural 
hoi
e for modeling of the Xb 
y
le.On
e the Xb rea
hes the post-power stroke state, it deta
hes from the a
tin �la-ment, and then 
omes ba
k to the pre-power stroke state. In this state it �u
tuatesuntil it 
an atta
h to another a
tive site and generate another power stroke. What-ever 
hemi
al or physi
al reasons govern the atta
hment pro
ess, the sear
h for theatta
hment site by the Xb in the atta
hed state 
an be des
ribed as di�usion ina periodi
 asymmetri
 potential. In the fully deta
hed state similar motion 
anbe viewed as a di�usion in a �atter potential. In both 
ases, a paraboli
 poten-tial may be added to des
ribe the elasti
 element that links the Xb to the myosin�lament, however su
h elasti
 spring has not been taken in 
onsideration in theoriginal Prost et al. 1994 paper. In this work equation (3.14) was spe
ialized onlyfor the abstra
t on-o� rat
het.
ηẋ(t) = −V ′ (x(t), f(t)) + Γ(t) (3.25)The authors proposed a model for V (x, f) = V (x)f(t) assuming that the parti
le
an exist in two states with di�erent potentialsW1(x) andW2(x), shown in Fig. 3.5.Their analyti
al des
riptions are similar to the one given by equation (3.20). Thetwo potentials have the same periodi
ity p = a + b, but di�erent maxima W 1 and

W 2. The amplitude of the modulation f(t) is given by a symmetri
 di
hotomousnoise, i.e. by a sto
hasti
 pro
ess that swit
hes ba
k and forth between two valueswith transition probabilities ω1(x) and ω2(x).The 
oupled master equations for the densities P1(x, t) and P2(x, t) des
ribingthe probability of a parti
ular parti
le lo
ation in ea
h of the potentials have theform: 




∂tP1 + ∂xJ1 = −ω1(x)P1 + ω2(x)P2

∂tP2 + ∂xJ2 = +ω1(x)P1 − ω2(x)P2.

(3.26)Here the �uxes are given by:





J1 = −D1 [P1(x)∂x(W1/kBT ) + ∂xP1]

J2 = −D2 [P2(x)∂x(W2/kBT ) + ∂xP2]

(3.27)The di�usion 
onstants D1 and D2 
an be in general di�erent, for instan
e due todi�erent temperatures in the two states. The derivation of the two sour
e terms inthe right hand side of the two equations in (3.27) is 
ompletely analogous to the98
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tion 3.3

Figure 3.5: Three periods of the sawtooth potentialsW1(x) andW2(x), adapted from [40℄. Thearrow indi
ates the dire
tion of the probability 
urrent J . The preferred dire
tion is the one withhigher |V ′(x)|derivation of the standard one parti
le Fokker-Plan
k equation (see Se
tion A.5).The two sour
e terms in (3.26) are loss and gain 
ontributions due to the swit
hbetween the two potential with probability ω1(x) and ω2(x) (see [68℄).By dire
t substitution in equations (3.27), one 
an show that Boltzmann dis-tribution (3.10) with V (x) = W1(x) and V (x) = W2(x) are the solutions of theequation J1 = 0 and J2 = 0 respe
tively. Moreover, if detailed balan
e is respe
tedand the transition rates satisfy the equilibrium equation:
ω1

ω2
= exp [(W1(x) −W2(x)) /kBT ] , (3.28)then the Boltzmann distributions (3.10) are the solutions des
ribing the steadystate ∂tPi = 0 for the entire system and the total parti
le 
urrent be
omes J =

J1 + J2 = 0.After observing these fa
ts the authors of [40℄ explore what happens if anexternal a
tion drives ω1/ω2 out of the detailed balan
e given by (3.28). They
onje
ture that this e�e
t 
an represent a 
ompound like ATP, whi
h biases onestate over the other. They supposed that ω2 has a 
onstant value, and that ω1 isgiven by the relation:
ω1(x) = ω2 exp [(W1(x) −W2(x))/kBT ] + Ω(x) (3.29)where Ω(x) is the external sour
e of non-equilibrium, whi
h in the �rst approx-imation 
an be taken to be equal to a 
onstant. Now limit the analysis to thesteady state situation and de�ne the total density P (x) = P1(x) + P2(x) and the99



Chapter 3 The atta
hment-deta
hment pro
esstwo fun
tions λ1(x) and λ2(x):





λ1(x) = P (x)/P1(x)

λ2(x) = P (x)/P2(x).

(3.30)Using these representations, it is possible to demonstrate that P (x) obeys a singleFokker-Plank equation with probability 
urrent:
J = J1 + J2 = −D [P∂x (W/kBT ) + ∂xP ] (3.31)where D = λ1D1 + λ2D2 is the e�e
tive di�usion 
oe�
ient and W is the e�e
tivepotential :

W (x) −W (0) =

∫ x

0

D1λ1∂xW1 +D2λ2∂xW2

D
dx+ kBT [ln(D)]x0 (3.32)Sin
e the e�e
tive potential W does not depend on time, the analysis 
an beredu
ed to the one done by Risken. The steady state solution is again des
ribedby (3.13). The total �ux is di�erent from zero if and only if W (x + p) 6= W (x),in whi
h 
ase the system a
ts as if it was subje
ted to an asymmetri
 potentialtilted in average by a for
e F = −[W (x+p)−W (x)]/p. Noti
e that if the detailedbalan
e 
ondition (3.28) is satis�ed, the integrand in (3.32) is the derivative of :

−kBT ln[D1 exp(−W1/kBT ) +D2 exp(−W2/kBT )] (3.33)and W is periodi
 (not tilted). This shows that deviation from equilibrium isindeed ne
essary to produ
e a net �ux.If a non-equilibrium 
ondition of the type (3.29) is satis�ed, a non-zero �ux ap-pears. Some numeri
al illustrations originating from dire
t solution of the Langevinequation asso
iated with (3.26) and (3.27), are presented in [40℄.We 
omment here on two interesting results in order to emphasize the maindi�eren
es between Prost et al. and Magnas
o models. First, the dire
tion of the�ux in the Prost et al. model, shown by the arrow in Fig. 3.5, is opposite withrespe
t to the one predi
ted by the Magnas
o model (see Fig. 3.3) given the sameasymmetry of the potentials. The reason is that the �ux in the Prost et al. modelis generated be
ause a 6= b. Indeed, in the atta
hed state the parti
le rea
hes fastthe minimum of the well in the potentialW1(x) (relaxation inside the well). Whenthe potential 
hanges to W2(x), the parti
le di�uses in a �atter potential from thesame point x. If it moves a distan
e greater than a, but smaller than b, before thepotential swit
hes again, there is a larger probability that the parti
le will be in100



Brownian rat
hets Se
tion 3.3the well lo
ated to the right than the one lo
ated to the left of the original well.This leads to generating a net �ux.Se
ond, the e�e
t of ATP is more expli
itly linked to the physi
s of hydrolysisin the model of Prost et al. than in Magnas
o model. Although the Prost et al.model deal with an abstra
t rat
het, an expli
it appli
ation of it to the mole
ularmotors and also to mus
le me
hani
s was brie�y proposed in [40℄, in parti
ular theauthors observed that �Although �atta
hed� and �deta
hed� 
orrespond to 
omplexand various underlying behaviors, an essential feature for motion generation isthe existen
e of these two states�. They also observed how the model allows, forinstan
e, to analyze di�erent e�e
ts due to di�erent 
hoi
es of the fun
tion Ω(x).In parti
ular the model predi
ts saturation of the average velo
ity V as a fun
tionof the ex
itation amplitude Ω, as shown in Fig. 3.6, where it was assumed that
Ω(x) = Ωθ(x) where θ(x) is di�erent from zero only near the wells of W1(x).Su
h saturation behavior is typi
al for the motor velo
ity as a fun
tion of ATP
on
entration a
ross the broad range of motor protein assemblies [34℄.

Figure 3.6: Average velo
ity as a fun
tion of the external a
tion Ω showing saturation (seetext). From [40℄3.3.3 Cooperative and non-
ooperative motorsBoth approa
hes dis
ussed above, the Magnas
o rat
het and the Prost et al.rat
het, 
an explain the motion of a parti
le in an asymmetri
 potential whenit is subje
ted to thermal �u
tuations. If the system in
ludes a number of parti-
les, as in the 
ase of N myosin heads on one thi
k �lament, the main 
on
lusions101



Chapter 3 The atta
hment-deta
hment pro
essare still valid given that the parti
les are not intera
ting with ea
h other. The meanvelo
ity will then be the average velo
ity of the population. However, by ignoring
ooperativity the resulting models are only marginally related to the me
hani
s of
ontra
tion in skeletal mus
les.In the next Se
tion we show how the intera
tion between parti
les 
an be in-
luded and developed the 
orresponding numeri
al approa
h. Before doing this, itis instru
tive to dis
uss two examples in whi
h the models of the type des
ribedabove are quantitatively applied to kinesin and to a single myosin head. In generalmole
ular motors 
an be divided into two main groups depending on whether theyare designed to operate in groups (
ooperative) or individually (pro
essive). Ki-nesin and some myosin proteins, su
h as myosin V, belong to the pro
essive motor
ategory, while myosin II is a 
ooperative motor. What di�erentiates the two typesof motors is the living time for the atta
hed state. In pro
essive motors, it is highenough to work with only two heads. Thus when the �rst head is atta
hed, the se
-ond one os
illates around its mean position and due to the asymmetry of the tra
katta
hes preferentially along the `plus� dire
tion of the mi
rotubule. At this point,the latter 
an deta
h and repeat the same pro
ess; with this �step by step� motion,kinesin 
an make several moves before both heads deta
h from the mi
rotubule.The living time of the atta
hed state for myosin II is not enough to produ
e thismotion however the link to the thi
k �lament allows for the 
ooperation e�e
t withothers Xbs.Kinesin modelA quantitative analysis of a kinesin motion was presented in [45℄ where two headswere assumed to be linked trough a linear �a
tive� spring. This means that thespring 
an use the ATP splitting energy to 
hange its referen
e length. The modelis des
ribed in Fig. 3.7(a). The two parti
les start from the same well (upper�gure). When the referen
e length of the spring swit
hes form zero to 8 nm, itpushes the two heads in the opposite dire
tions. Be
ause of the asymmetry ofthe potential, only one head makes a forward step of 8 nm relaxing the spring(middle �gure). This unstrained situation is perturbed by a se
ond 
hange in thereferen
e length of the spring that 
omes ba
k to zero. Now the two heads arepulled together and end up again in the same well be
ause the asymmetry of thepotential fa
ilitates the forward step of the se
ond head (bottom �gure).Even if this model predi
ts an in
hworm motion, while a hand over hand motionhas been later proven to be the 
ase for the kinesin and myosin V (see for instan
e102



Brownian rat
hets Se
tion 3.3[70℄), we des
ribe it here, be
ause it shows, in an instru
tive way, how the Brownianrat
hets theory 
an be quantitatively applied to the pro
essive motors. The motionof the heads is des
ribed by the system of 
oupled Langevin equations:





ηẋ1 = −∂xV (x1) − Fload +K[x2 − x1 − l(t)] +
√

2kBT/ηΓ(t)

ηẋ2 = −∂xV (x2) − Fload +K[x1 − x2 − l(t)] +
√

2kBT/ηΓ(t)

(3.34)

(a) (b)Figure 3.7: Kinesin model and numeri
al results. (a) S
hemati
 pi
ture of the potential andsubsequent steps of the heads. (b) For
e-velo
ities 
urves for individual kinesin mole
ule atdi�erent ATP 
on
entrations (points: experiment, line: predi
tion of the model). From [45℄One 
an see that the motor is transporting a load (Fload). The out of equilib-rium 
ondition is imposed through the os
illation of the rest length of the spring
l(t) whi
h 
hanges from zero to 8 nm imitating the hydrolysis of one ATP mole
ule.The system pro
eeds in a step by step motion in one dire
tion, and shows di�er-ent velo
ities at di�erent external loads: the 
omparison of the model predi
tions(lines) with experiments (points) is shown in Fig. 3.7(b). One 
an see that themodel shows a rather good agreement with experiments. Kinesin motion is a verya
tive �eld and Brownian rat
het theory is applied with su

ess (see [68℄ and ref-eren
es therein). 103



Chapter 3 The atta
hment-deta
hment pro
essSingle head modelNow let us turn to the examples where both Magnas
o and Prost et al. models wereapplied to the myosin II dire
tly and where 
ertain agreement with experimentshave been reported. This is the situation when the intera
tion of a single headwith an a
tin substrate 
ould be the subje
t of study. An experimental tra
eof the movements of a single myosin head was re
orded in [60℄ by using originalmanipulation te
hnique having nanometer a

ura
y. The displa
ements of the headin time, and the 
orresponding model predi
tions are shown in Fig. 3.8 and Fig.3.9.In the theoreti
al analysis, breaking of the detailed balan
e was simulated indi�erent ways. First a 
onstant load was added to an asymmetri
 potential 
reatingthe tilted rat
het des
ribed by Risken (equation (3.13)). Se
ond di�erent types of�ashing �u
tuations of the potential amplitude were tried, in
luding a square wave(as in the Prost et al. model) and a sinusoid wave.

Figure 3.8: Sto
hasti
 movement of myosin. (a) Experimental tra
es of the movement andpi
ture of the model. (b) Periodi
 saw-tooth shaped potential used in [60℄. From [71℄104



Brownian rat
hets Se
tion 3.3The experimental method developed in [60℄ for measuring the displa
ement ofthe myosin head by using a s
anning probe allows one to obtain an ex
ellent signalto noise ratio. The myosin head rigidly atta
hed to the relatively large s
anningprobe 
ould steadily intera
t with a
tin without di�using away from the �lament.The basi
 features of the experiment, summarized in [71℄, are as follows: i) Thesize of ea
h step is 5.5 nm, similar to the diameter of the a
tin monomer, ii) Stepso

ur o

asionally in the ba
kward dire
tion even if the motion is preferentiallydire
ted towards one ends of the a
tin �lament; iii) On applying a load to themyosin, the number of steps de
reased. The movement of myosin was also simu-lated numeri
ally using the 
orresponding overdamped Langevin equation:
ηẋ = −V ′(x, t) +

√
2kBT/ηΓ(t). (3.35)The results for di�erent types of motors are given in Fig. 3.9.

Figure 3.9: Simulations of the myosin head: (a) Tilted potential (b) Flashing potential. From[71℄This last example is one of the few 
ases where appli
ation of the theory ofBrownian motors to myosin II was attempted. We reiterate however that it wasa 
ase of a single atta
hed head. The analysis of the 
ooperativity e�e
ts due to105



Chapter 3 The atta
hment-deta
hment pro
essmany heads was initiated in the Jüli
her-Prost paper [42℄ (see also [50℄ [54℄ and[65℄). The authors 
onsider a rigid ba
kbone with rigidly 
onne
ted motors (seeFig. 3.10). The resulting system is 
hara
terized by only one degree of freedom.The way the motor 
ooperate is through the total for
e whi
h is a sum of for
esexerted by individual motors. Some interesting e�e
ts have been found in this sys-

Figure 3.10: Representation of two state many-motor system. The parti
les are rigidly atta
hedto a 
ommon ba
kbone and 
an stay in two di�erent states. The �atta
hed� potential is periodi
and asymmetri
. From [54℄tem, for instan
e, a dynami
 phase transition leading to spontaneous os
illations.The authors demonstrated the existen
e of a 
riti
al value of the parameter Ω in(3.29), above whi
h three velo
ities 
orrespond to one external for
e. This leads tosituations in whi
h the motors might either go in one dire
tion or in its oppositefor the same value of Fext, whi
h generates the os
illatory behavior. This e�e
tis observed in mus
le 
ells under suitable 
ondition ([50℄ and referen
es therein).The Jüli
her-Prost model has also been modi�ed and applied to study the behaviorof other 
ooperative motors [51℄, but always under an assumptions of a rigid linkbetween motors and ba
kbone. See also [94℄ for a re
ent analysis of the e�e
t ofthe geometry on the 
ooperation between myosins in mus
le. In this Se
tion wedevelop a model of elasti
ally 
ooperative Brownian motors.To summarize, none of the models presented in literature, whi
h use the Brow-nian rat
het theory to explain mus
le 
ontra
tion, deal with a detailed des
riptionof the Xb 
y
le. The e�e
t of the ATP hydrolysis is mainly to destroy the detailedbalan
e, while the power stroke is hidden somewhere in the for
e generated by theperiodi
 potential. Later in this and in the next Chapter we propose some newideas of how 
ooperativity 
an be integrated into the model of Brownian rat
hetin an attempt to 
onstru
t a detailed model of the whole Xb 
y
le. As a novelty,we 
onsider an elasti
 link between the ba
kbone and the heads. Only a Magnas
otype model for the Brownian rat
het will be used to simulate the atta
hment-106



Dire
t simulation of a set of sto
hasti
 equations Se
tion 3.4deta
hment pro
ess. To justify this 
hoi
e, in view of the fa
t that the Prost etal. type models are apparently more faithful to the physi
s of the phenomenon, were
all that our main aim is to give a purely me
hani
al des
ription of the 
ontra
-tion phenomenon. The �u
tuating rat
hets of Prost et al. require a de�nition ofthe transition rates between states 1 and 2, given by the fun
tions ω1(x) and ω2(x)in equation (3.27). Introdu
ing these fun
tions is similar, in a sense, to imposingparti
ular dependen
ies of the atta
hment deta
hment rates on x in the Huxley1957 model. We have shown in Chapter 2 how this arbitrariness 
an be avoided inthe fully me
hani
al des
ription where the 
hemi
al transition rates are not de�nedbut 
omputed as, for instan
e, in the Huxley and Simmons 1971 model. Now wewould like to extend the same approa
h to a set of intera
ting Xbs (inside onehalf-sar
omere), whi
h 
an atta
h and deta
h from an a
tin �lament.3.4 Dire
t simulation of a set of sto
hasti
 equa-tionsWe re
all that the motion of a single parti
le in a sawtooth potential V (x) tiltedby an external for
e, FATP (t), whi
h mimi
s the e�e
t of the ATP and whose sign
hanges periodi
ally in time, is des
ribed by the asso
iated Langevin equation. Inthe overdamped 
ase we 
an write:
ηẋ = −V ′(x) + FATP (t) +

√
ηkBTΓ(t) (3.36)where

< Γ(t1) >= 0 (3.37)and
< Γ(t1)Γ(t2) >= δ(t1 − t2). (3.38)We have shown that, under 
ertain assumption, the asso
iated steady stateFokker-Plank equation 
an be solved analyti
ally. The mathemati
al di�
ultythat arises when several parti
les are intera
ting with ea
h other for
es one to turnto a dire
t numeri
al simulation of a 
oupled set of sto
hasti
 ODE.The dire
t numeri
al approa
h redu
es to solving the Langevin equations ofthe motion for a parti
ular realization of the random pro
ess. Instead of usingthe probability distribution given by the asso
iated Fokker-Plank equation, thismethod 
onsists in generating of a 
ertain number of realizations starting from thesame initial 
onditions. After these individual traje
tory are obtained, one 
an107



Chapter 3 The atta
hment-deta
hment pro
ess
ompute the mean value for the variable of interest. To solve sto
hasti
 di�erentialequation, we use the simplest Euler algorithm [74℄. In the 
ase of a single parti
lewe �rst follow the time path x(t) by solving (3.36), and then repeat the experimentfor a population in order to 
onstru
t the probability distribution of a single Xbs.The Euler algorithm for the equation (3.36) 
an be written:
x(t+ τstep) = x(t) − 1

η
(V ′(x(t)) + FATP (t))τstep +

√
ηkBT

η

√
τstepw(0, 1) (3.39)where w(0, 1) is a normally distributed random variable with zero mean

< w >= 0 (3.40)and the varian
e
< w1w2 >= δ12. (3.41)We would like to give an idea why parameter τstep appears under the square rootin (3.39), a rigorous derivation 
an be found in [30℄ and [63℄. First of all, we noti
ethat, by negle
ting the non-thermal for
es in (3.39) (purely di�usion 
ase), we 
anwrite:

x(t) = x(0) −
√
kBT

η

∫ t

0

Γ(t′)dt′. (3.42)Now from (3.38), we see that Γ(t) has the dimension t−1/2, so its time integral hasthe dimension of t1/2. Therefore,
x(t+ τstep) 6= x(t) −

√
kBT

η
Γ(t)τstep (3.43)in 
ontrast to the 
lassi
al Euler method for the deterministi
 di�erential equations.From the properties of Γ detailed in (3.37) and (3.38), we obtain instead that [23℄the fun
tion

w(τstep) = W (t+ τstep) −W (t) =

∫ t+τstep

t

Γ(t′)dt′, (3.44)is a random variable whi
h is normally distributed with zero mean and varian
e
τstep. Therefore, we 
an write

w(τstep) ∼ √
τstepw(0, 1) (3.45)where w(0, 1) was de�ned by (3.40) and (3.41). A general rule is that when apotential is a
ting on the parti
le, τstep represents the interval of time during whi
hthe a
tual V (x, t) potential 
an be substituted by the 
onstant potential V (x, t̃)108



Thermal rat
het Se
tion 3.5frozen at time t̃ just before the time step. To simulate properly the physi
s of thephenomenon, the time step has to be mu
h shorter than the typi
al time s
ale ofthe pro
ess: normally two orders of magnitude di�eren
e is enough. In the 
ase ofpie
ewise linear potential, the typi
al time s
ale is:
τ =

ηL

|V ′
max|

(3.46)where η is the drag 
oe�
ient, L the typi
al length of the potential and |V ′
max|the maximum for
e a
ting on the parti
le. We 
an make an estimate of τ byusing the values of parameters given in Tab. 2.1 of Chapter 2. The 
ondition

τstep ≪ τ limits τstep to tens of pi
ose
onds and the time s
ale of the atta
hment-deta
hment pro
ess is in the range of tenths of se
onds. This implies that in orderto obtain a quantitative des
ription of the system, the simulations must 
ontainsat least 1010 time steps for ea
h parti
le of the analyzed population. Sin
e thistype of 
omputations 
an easily be
ome too heavy, we abandon the idea to obtainquantitative results and from now limit ourselves to only a qualitative analysis.This means that we des
ribe the system by using the values of parameters that aresometimes grossly exaggerated.3.5 Thermal rat
hetBefore des
ribing and analyzing in detail our way of modeling the 
ooperativemotors, we 
an try to use the numeri
al method introdu
ed in Se
tion 3.4 todes
ribe the behavior of a simplest thermal rat
het whi
h is somewhat similar tothe Feynman's rat
het and pawl model. As we have already mentioned, the onlyway to indu
e a net �ux in one dire
tion is to maintain the rat
het and the pawlat two di�erent temperatures.The interest in the analysis of su
h a model is not only histori
al. Thus, Valeand Oosawa in 1990 [25℄ proposed a Feynman's type model to explain the di-re
tional motion of mole
ular motors, with expli
it referen
e to myosin II. Theyargued that the hydrolyzation of the ATP mole
ule 
ould 
onvert a 
ertain amountof 
hemi
al energy into heat, generating lo
ally the temperature anomaly and dis-torting the equilibrium 
hara
ter of the thermal �u
tuations. If this is true, we 
anhave all the ingredients of a temperature rat
het. Despite being very intuitive, thismodel was later proved to be unrealisti
 due to quantitative estimates summarizedin [26℄, [37℄, [47℄. A

ording to the authors, the temperature variations, in regardto both amplitude and duration, may not be su�
ient to generate quantitatively109



Chapter 3 The atta
hment-deta
hment pro
essmeasured speed of motion. Magnas
o and Stolovitzky 
ame ba
k to the study ofthe Feynman rat
het in 1998 [56℄, however, not in the mole
ular motors framework.Here we would like to show numeri
ally how a simple thermal rat
het 
an predi
ta net motion in one dire
tion and generate a position vs. time path similar to theone observed in [71℄ (see Fig. 3.8).Consider a system of two parti
les x1 and x3 subje
ted to two di�erent temper-atures T1 and T2. The parti
le x1 moves in a periodi
 asymmetri
 potential as in(3.20) and its motion is des
ribed by the Langevin equation (3.6). The parti
le x3is linked to x1 through a spring of rigidity K, but it is otherwise free. The systemof equations des
ribing the model is the following





ηẋ1 = −V ′(x1) −K(x1 − x3) +
√
ηkBT1Γ1(t)

ηẋ3 = K(x1 − x3) +
√
ηkBT3Γ3(t).

(3.47)The 
orrelations of the fun
tions Γ1(t) and Γ2(t) des
ribing thermal �u
tuations aregiven again by (3.37) and (3.38). Both, di�eren
e in temperatures and asymmetryof the potential V (x) are needed in order to make the system move.Performing the analysis for a large number (100) of systems (3.47) we 
an showthat the mean position of x3 shifts in time in one preferred dire
tion (see Fig.3.11). The average motion is a linear fun
tion of time. A representative pi
tureof the parti
le traje
tory x1(t) is given in Fig. 3.12, where we 
an see that whilethe average sto
hasti
 motion shifts the parti
le in one preferential dire
tions, theindividual jumps in the opposite dire
tion 
an also takes pla
e. Adding an external

0
Time

<
x 3(t

)>

Figure 3.11: Mean displa
ement of the thermal rat
het (3.47)110
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Figure 3.12: Sample traje
tory x1(t) of a thermal rat
het (3.47)for
e Fext a
ting at the parti
le x3 we 
an slow down and even invert its motion.A for
e-velo
ity 
urve 
ould have been plotted for this �toy� model, however thisis not ne
essary in view of its oversimpli�ed nature. We shall perform this typeof analysis only for the system presented in the next Se
tion, whi
h is espe
iallydesigned to model 
ooperative motors, responsible for mus
le 
ontra
tion.3.6 Cooperative Magnas
o model3.6.1 Governing equationsHere we study the behavior of a set of intera
ting Magnas
o motors. Consider apopulation 
ontaining NXb 
ross-bridges subje
ted to thermal �u
tuations, ea
hmoving in a pie
ewise linear potential V (x) whose derivative is des
ribed by:
V ′(x) =






Vmax/(λ1L) nL < x < nL+ λ1L

−Vmax/(λ2L) nL+ λ1L < x < (n+ 1)L.

(3.48)Here parameters λ2 and λ1 
hara
terize the asymmetry of the potential with period
L and Vmax is the maximum value of the potential, see Fig. 3.13. Index n des
ribesa parti
ular well in whi
h the parti
le is 
urrently lo
ated. We now add a rigidba
kbone whi
h is 
oupling individual parti
les, as in a real half-sar
omere. Tosimulate the e�e
t of a ba
kbone we introdu
e another variable, x3, whi
h des
ribesits position. The position of ea
h Xb will be given by xi1 where i = 1, · · · , NXb.The111
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1L L2Figure 3.13: Model of a family of intera
ting 
ooperative motors. The parti
les move to theleft whi
h mimi
s shortening experimentssystem of 
oupled di�erential equations for xi1(t) and x3(t) 
an be written as:





η1ẋ
i
1 = −V ′(xi1) + FATP (t) −K(xi1 − xi3) +

√
η1kBTΓ1(t) i = 1, · · · , NXb

η3ẋ3 = Fext +
NXb∑
i=1

(K(xi1 − xi3)) +
√
η3kBTΓ3(t) (3.49)Noti
e that xi3 = x1

3 + (i − 1)l = x3 + (i− 1)l where the variable x3 des
ribes theposition of the ba
kbone and the length l is the distan
e between the atta
hmentsites of two su

essive heads. The position of atta
hment site on the ba
kboneare xi3, where, again i = 1, · · · , NXb. As in the Magnas
o model, the ATP relatedperiodi
 for
e is given by:
FATP (t) =






+FATP m∆tATP < t < (m+ 1)∆tATP

−FATP (m+ 1)∆tATP < t < (m+ 2)∆tATP

m = 0, 1, · · · (3.50)The system (3.49) is able to mimi
 the for
e-
lamp devi
e if an external for
e
Fext is applied to the rigid ba
kbone. The same system 
an also des
ribe theisometri
 
ontra
tions if we substitute the last equation in (3.49) with:

x3(t) = x3(0). (3.51)By imposing 
ondition (3.51) in (3.49) and averaging the noise term we obtain theexpression for the for
e generated in the system:
Fext = −

NXb∑

i=1

(
K(xi1 − xi3)

)
. (3.52)Now, suppose that L = l. Then due to periodi
ity of the potential V (x), we
an introdu
e now variables xi1 = xi1 − (i − 1)L and absorb the parameter L intothe potential without a�e
ting the behavior of the system. The resulting numeri
al112
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o model Se
tion 3.6algorithm for solving (3.49) is then





xi1(t+ τstep) = xi1(t) − V ′
eff(x

i
1(t), x3(t), t)

τstep
η1

+

√
kBT

τstep
η1

w1(0, 1)

x3(t+ τstep) = x3(t) +

[
Fext +

NXb∑
i=1

(K(xi1(t) − x3(t)))

]
τstep
η3

+

√
kBT

τstep
η3

w3(0, 1)(3.53)where the e�e
t of the a
tin potential V (x), of the ATP for
e FATP (t) and of theelasti
 element that links the head to the myosin �lament are all 
ombined in thee�e
tive potential
V ′
eff (x

i
1(t), x3(t), FATP (t)) = V ′(xi1) − FATP (t) +K(xi1 − x3). (3.54)We re
all that w(0, 1) is a random variable normally distributed with zero meanand unit varian
e. The larger size of the rigid ba
kbone with respe
t to the Xbhead is represented by a higher value of the 
orresponding drag 
oe�
ient η3 ≫ η1.3.6.2 Ben
hmark problem: K = 0The numeri
al 
omputations at K = 0 give the independent path followed by ea
hXb and given by xi1(t) and the path of the ba
kbone given by x3(t). The typi
alsolution for xi1(t) is shown in Fig. 3.14: the head stays in the well for a �nite amountof time, then jumps forward or ba
kward very fast, as predi
ted by the Kramers'theory dis
ussed in Chapter 2. If the potential 
ontains an asymmetry, then thejumps will take pla
e preferentially in one dire
tion. We re
all that as in the originalMagnas
o model, we use the stepwise periodi
 ATP for
e with zero mean (3.23).The value of the period p is important be
ause there is a threshold for p belowwhi
h the parti
le does not jump during the time of simulation. This thresholdvalue depends on the time s
ale of the pro
ess, and sin
e here our intention is topresent only qualitative results, the value of p was 
hosen to be su�
iently abovethe threshold to be able to observe the jumps. This value must be simultaneouslysmall enough to let FATP 
hange sign several times between two su

essive jumps.Let us �rst demonstrate the importan
e of the asymmetry of the potential.Thus, if the potential is symmetri
 (λ1 = λ2) then distribution of parti
les isexpe
ted to evolve in time as a Gaussian distribution with zero mean and withvarian
e whi
h in
reases linearly with time. When the time s
ale is su
h thatthe period L is mu
h smaller than the di�using distan
e, as in Fig. 3.15(a), thenthe system does not see the periodi
ity of the potential and the 
orresponding113
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Figure 3.14: Typi
al traje
tory of a single head in an asymmetri
 tilted potential with K = 0.The traje
tory is representative also for K 6= 0probability density fun
tion p(x, t), 
an be approximated by (see (A.35) in Se
tionA.4):
NXbp(x, t) =

NXb√
4πkBT/ηt

e
− x2

4tkBT/η (3.55)In the 
omputation the time is just the number of iterations multiplied by τstep.In Fig. 3.15(a) the distribution of Xbs is shown at three di�erent fra
tions ofthe total time, t = tTot/10, tTot/2, tTot and is superimposed with the distributiongiven by (3.55). If an asymmetry is added to the potential (λ1 6= λ2) then a net
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(b)Figure 3.15: Distribution of a population of NXb = 800 
ross-bridges, with K = 0 and L = 1, atdi�erent fra
tions of the �nal time tTot. (a) Symmetri
 periodi
 tilting potential (b) Asymmetri
periodi
 tilting potential�ux in one dire
tion will take pla
e. The distribution of parti
les is again almost114
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o model Se
tion 3.6Gaussian with varian
e that in
reases linearly with time and with mean that nowalso varying linearly with time (see Fig. 3.15(b)).The e�e
t of the level of noise and of the amplitude FATP on the steady state�ux, obtained in dire
t numeri
al simulation, 
an be 
ompared to the analyti
alsolution of Magnas
o. The 
omparison shows identi
al behavior of the numeri
allyand analyti
ally obtained fun
tions J(FATP ) (see Fig. 3.16 and Fig. 3.4 takenfrom [32℄).
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Figure 3.16: Steady state probability �ux obtained from numeri
al simulation with and withoutnoiseThe system (3.49) 
an also generate for
e, whi
h 
an be measured if a beadis atta
hed to a parti
le. In this way one 
an des
ribe the motion of a motorprotein transporting a 
argo (this problem is analyzed in [85℄ with a Prost et al.model). By putting a 
onstant external for
e Fext instead of the term −K(xi1−x3)in equation (3.49) we obtain
η1ẋ1 = −V ′(x1) + FATP (t) − Fext +

√
η1kBTΓ1(t). (3.56)The presen
e of the external for
e redu
es the mean displa
ement of the parti
le.The resulting for
e velo
ity 
urve is shown in Fig. 3.17. Its non-linearity is asomewhat non intuitive result from the point of view of purely me
hani
al rat
hetoperating at T = 0. Indeed suppose that the e�e
t of the motor redu
es to gener-ating a mean 
onstant for
e Fmax. Then the total for
e FT a
ting on the parti
le
an be written as FT = Fmax−Fext. This shows that in a vis
ous environment thefor
e velo
ity relation should be linear be
ause FT = ηv. As we have seen fromFig. 3.17 the situation at T 6= 0 is mu
h more 
omplex. Here we do not attemptto make quantitative 
omparison of 
omputed and experimentally measured for
e115
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hment-deta
hment pro
essvelo
ity 
urves, however it is 
lear that the qualitative behavior is well 
apturedby the model.

0 
Velocity

F
ex

t

F
max

V
maxFigure 3.17: For
e vs. velo
ity 
urve for a pure Magnas
o model K = 0It is of interest to 
ompute numeri
ally the stall for
e, Fmax, whi
h is a parti
ularvalue of Fext that brings the mean displa
ement to zero. The mean traje
toriesof parti
les for di�erent values of Fext are shown in Fig. 3.18(a). Observe thathaving a zero mean �ux at Fext = Fmax does not prevent ea
h parti
le to move.In fa
t the stall value of the for
e 
reates a situation whi
h is analogues to a 
aseof pure di�usion, when the mean-square displa
ement in
reases linearly with time.In our simulations of an isometri
 
ontra
tion we 
he
ked that two neighboringparti
les (at time t = 0) 
an move arbitrary far apart after a 
ertain amount oftime (see Fig. 3.18(b)). This behavior is not 
ompatible with what one expe
ts inthe 
ase of 
ooperative motors. Indeed when the isometri
 
onditions are imposedit is known that all the Xbs, atta
hed or deta
hed, remain 
lose to their originalpositions. This happens be
ause they are linked to a �xed thi
k �lament throughelasti
 elements with K 6= 0. We therefore 
on
lude that the model with K = 0has to be dis
arded.3.6.3 Cooperative Magnas
o model with K 6= 0To take the ba
kbone into 
onsideration, we assume that K 6= 0. Interestingly
ertain questions be
ome simpler in the 
ase when K 6= 0 than in the 
ase when

K = 0. Thus while in the originalMagnas
o model we had to 
hange Fext to �nd thestall for
e Fmax, now its value is immediately determined imposing the 
ondition(3.51) and waiting until the for
e (3.52) generated by the tilting rea
hes its steadyvalue. we now pro
eed with performing several types of numeri
al experiments.116
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(b)Figure 3.18: The behavior of the Magnas
o model (K = 0): (a) Mean displa
ement vs. timeof a population of parti
les at di�erent values of external for
es between 0 and 1.2Fmax (see textfor the de�nition of Fmax. (b) Displa
ement vs. time for two parti
les at the stall for
eTetanizationStarting from a delta fun
tion type distribution of parti
le positions at t = 0, we
an turn on the rat
het and try to re
onstru
t the tension time 
urve until thefor
e rea
hes a 
onstant value. Later we shall be using the limiting distribution ofparti
le positions obtained in this experiment as the initial 
ondition in order tostudy the behavior of the system in other loading devi
es.When the parti
les are intera
ting with the ba
kbone, the instant in whi
h
FATP (t) 
hanges sign be
omes important for the global behavior. We observe thatif there is a syn
hroni
ity among the Xbs, meaning that all parti
les feel the value
+FATP or the value −FATP at the same time t, then the tension vs. time 
urvefor isometri
 tetanization shows os
illatory behavior as in Fig. 3.19(a). Similaros
illatory behavior has been observed in other models [50℄ and linked to someexperimental observations obtained in non-physiologi
al 
ondition [53℄. However,in these model the os
illations are generated by di�erent phenomena, while thesyn
hroni
ity 
an be viewed as unphysi
al, be
ause the e�e
t of the ATP on ea
hhead should be random and therefore unsyn
hronized. To simulate this e�e
t, adispersion has been added to the swit
h times of the tension:
F i
ATP (t) =






+FATP m∆tATP < t+ φi < (m+ 1)∆tATP

−FATP (m+ 1)∆tATP < t+ φi < (m+ 2)∆tATP

m = 0, 2, 4, · · ·(3.57)117



Chapter 3 The atta
hment-deta
hment pro
essHere φi is randomly distributed variable between zero and ∆t, i = 1, · · · , NXb.In this way, ea
h Xb is a�e
ted by the same for
e FATP for a time ∆t, but asyn-
hronously for di�erent elements. Under these assumption the tension vs. time
urve approa
hes the steady state without os
illations as shown in Fig. 3.19(b). Weobserve that the 
urve in Fig. 3.19(b) looks rather realisti
 in terms of experiments[52℄.
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(b)Figure 3.19: Tension time 
urve des
ribing isometri
 tetanization for a system with a ba
kbone.(a) Normalized tension vs. time in syn
hronous tilting. (b) Normalized tension vs. time inasyn
hronous tiltingIsotoni
 loading: experimentsAs we have already mentioned, the Huxley and Simmons model and its proposedmodi�
ations analyzed in Chapter 2, 
an not deal with the entire Xb 
y
le shown inFig. 1.5 of Chapter 1, be
ause they are based on the hypothesis that the populationof atta
hed Xb is �xed, meaning that no new Xb 
an atta
h and that all theatta
hed Xbs stay atta
hed during the test. Sin
e the model from Chapter 2 hasall the same ingredients, it 
an not show total re
overy in isometri
 experimentsand 
an not generate a 
onstant velo
ity of shortening when a 
onstant load isapplied. The maximum shortening predi
ted by this model will be limited by thevalue a ≃ 11 nm (see Table 2.1). On the 
ontrary, the model presented in thepresent Chapter misses the fast phases of re
overy but it is adequate to simulatethe proto
ol that leads to the 
onstru
tion of the for
e-velo
ity 
urve.Re
all that when a mus
le �ber with �xed length is stimulated to produ
efused tetani (say of 1 s duration as in [67℄) it generates an isometri
 tetani
 for
e118
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o model Se
tion 3.6
orresponding to the plateau level T0. This has been reprodu
ed in the simulationsshown in Fig. 3.19(b). After rea
hing this level of tension, the 
ontrol 
an beshifted from �xed-end mode to for
e 
lamp mode, �rst, at the same level of tension
T0. This will keep the length of the mus
le �xed. Suppose now that after 20 ms arapid 
hange in the external for
e 
ompleted in 150 µs is imposed, as in experiments[67℄. If the applied tension after the 
hange is lower than T0, one 
an re
ognizefour phases of the relaxation pro
ess shown in Fig. 3.20. First, half-sar
omeresshorten by few nanometers, 
oin
identally with the for
e drop (phase 1). Thenthere is a phase of slower but still rapid shortening (phase 2). It is then followedby a phase of redu
ed speed of 
ontra
tion (phase 3). Finally the phase is rea
hedduring whi
h the shortening takes pla
e at a steady velo
ity V (phase 4).There is a 
lear relation between phase 1 and the undamped relaxation ofthe elasti
 element and between phases 2 and 3 and the working of a bi-stableme
hanism inside the myosin heads, des
ribed in Chapter 2. A strong eviden
e ofsu
h a relation is given in [67℄ where the shortening just after phases 1 (L1) and2 (L2), has been studied for various values of the imposed tension. The authorsplotted L1 and L2 on the tension-length plane and superimposed the experimentalresults for T1 and T2 obtained from the length 
lamp experiments (see Fig. 2.15).One 
an see that the resulting points are almost identi
al. As we have alreadyseen in the isometri
 
ontra
tion, the power strokes takes pla
e asyn
hronously (atdi�erent times) in di�erent Xbs. On the 
ontrary, phases 2 and 3 
an be explainedby a syn
hronization of the power strokes generated by the atta
hed Xbs just afterthe step on the external for
e. While the phases 2 and 3 are out of read for themodel dis
ussed here, the subsequent pro
ess of atta
hment-deta
hment, whi
h isresponsible for the phase 4 where mus
le produ
es a 
onstant velo
ity of shortening,will be simulated in the next Se
tion. One would expe
t that this 
onstant velo
ityin
reases when the external for
e de
reases as in the experimentally measured for
evelo
ity relation des
ribed in Chapter 1.Isotoni
 loading: simulationsNow we show that the model developed in this Chapter (see (3.49), (3.53)) 
ansimulate the relaxational behavior asso
iated to phases 1 and 4. In our numeri
alexperiments we shall follow the time path of x3 given by (3.53), starting frominitial 
ondition xi1(0) = x3(0) = 0. We start with rising tension in the 
ourse ofisometri
 
ontra
tion x3(t) = 0 up to the moment when the for
e rea
hes a 
onstantvalue Fmax. Then, at a moment that we 
all tjump, we 
hange the external for
e119
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Figure 3.20: Experimental tra
es of a shortening mus
le 
ontra
ting against 
onstant loads.From [67℄in (3.53) to Fext = αFmax with 0 ≤ α ≤ 1. In Fig. 3.21(a) we show the 
omputedtraje
tory x3(t) at di�erent values of α. One 
an see that the experimental behavioris reprodu
ed both in phase 1 and in phase 4. As we have already mentioned, thewell reprodu
ed phase 1 is related, but it is not 
ompletely de�ned, by the valueof K, sin
e this fast shortening results from both the shortening of the elasti
element and the relaxation of the parti
les inside ea
h well. One 
an see that thedes
ription of phase 4 also looks rather realisti
.
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max(b)Figure 3.21: Simulation results in the 
ase of for
e 
lamp simulation. The values of parametersare reported in table 3.1. (a) Simulated tra
es of a shortening mus
le 
ontra
ting against 
onstantloads. (b) Simulated for
e vs. velo
ity 
urve for 0 < α < 1.2From the analysis of phase 4 at di�erent α we 
an 
onstru
t the for
e velo
ity
urve (see Fig. 3.21(b)). This 
urve shows expe
ted non-linear relation between120



Cooperative Magnas
o model Se
tion 3.6Table 3.1: Values and meaning of the main parameters used for the numeri
al simulations forthe original and 
ooperative Magnas
o type model of (3.49)Des
ription Numeri
al valuesPeriodi
ity L 1 nmAsymmetry λ1 0.3Maximum of the potential Vmax 10kBTATP for
e modulus |FATP | 1.2 Vmax/λ2LDrag 
oe�
ient of x1, η1 102 pNns/nmDrag 
oe�
ient of x3, η3 103 pNns/nmTime between os
illations tATP 103τstepAsyn
hronisation φi i · tATP /NXb for i = 1, · · · , NXbNoise term kBT 4.14 pNnmElasti
 
onstant K 0 or 30 pN/nmthe external for
e and the velo
ity of isotoni
 
ontra
tion. The model does notpredi
t a 
hange in the slope of the for
e-velo
ity 
urve at the isometri
 (v = 0)point, whi
h is observed experimentally (see Fig. 1.13). The main drawba
k ofthe model however is the absen
e of the phases 2 and 3. This 
an be seen in azoom to the �rst moment after the jump (Fig. 3.22). More pre
isely, after the fast

0   
−12

−10

−8

−6

−4

−2

0

Time

S
ho

rt
en

in
g

−2

−1

0

T
1

Figure 3.22: Detailed analysis of the elasti
 relaxation after the jump in load, Fext = 0.5T0. Amore detailed behavior in the �rst phase is shown in the box. The phase 3 is not presentshortening related to phase 1, whi
h looks di�used as in experiments, the ba
kbonestarts immediately to shorten with a 
onstant velo
ity sin
e η3 ≪ η1. The absen
eof phase 2 and 3 is obviously due to the fa
t that we dropped the bi-stable elementswhose power step 
an be fostered by the step in Fext. This observation bring usto the next Chapter, where we try to link the two models, des
ribed in Chapter2 and in Chapter 3, together. These two models have been so far very su

essful121



Chapter 3 The atta
hment-deta
hment pro
essin des
ribing of two di�erent sets of experimental data. Now we would like to linkthem together in an uni�ed model in order to des
ribe the full Xb-
y
le.

122



Chapter 4Full 
ross-bridge 
y
le
4.1 Introdu
tionThe model proposed in Chapter 2 deals only with a swinging lever arm dynami
swhi
h is supposed to explain the power stroke in a
tive mus
le. The model proposedin Chapter 3 des
ribes the 
y
li
 aspe
ts of isometri
 
ontra
tion. We have seenthat the model from Chapter 2 is related to phases 2 and 3 in Fig. 1.5, where thehead is atta
hed to the a
tin �lament, while the model from Chapter 3 is relatedto phases 1 and 4 in the same �gure, where the head deta
hes the �lament andthen reatta
hes again. The model from Chapter 3 does not 
apture fast re
overyof tension after a small in
rement of length, whi
h is related to the power stroke,while the model from Chapter 2 
an not des
ribe the steady state shortening of amus
le subje
ted to a 
onstant load.In the 
urrent literature, the analogues of our two models are viewed more asantagonisti
 than 
omplementary. Thus Esaki and 
ollaborators [71℄ say expli
itlythat there are two major 
lasses of models dealing with 
onversion by the myosinII motor of the 
hemi
al energy into me
hani
al energy. The lever-arm swingingmodel belongs to the �rst 
lass, whi
h they 
all �deterministi
� and �me
hani
isti
�.The Brownian rat
het models belong to the se
ond 
lass, whi
h they 
all �sto
has-ti
�. In this Chapter we attempt a uni�
ation of these two types of models. Webegin by showing that their di�eren
es are more subtle than it 
an appear at a�rst glan
e. This has already been pointed out, for instan
e, in [68℄ and [69℄.Sin
e the ne
essity of thermal noise to ensure motion is the main di�eren
ebetween deterministi
 and sto
hasti
 models we shall �rst dis
uss the role of tem-perature in the models des
ribed so far in the Thesis. Thus, in the Eisenberg andHill's type models [17℄, [43℄, the power stroke is linked to the produ
tion of for
e.123
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y
leThe existen
e of two deta
hed states is needed to have a 
y
li
al path and thejumps between states are only marginally related to the Brownian environmentin whi
h the pro
ess takes pla
e. Thus, while the 
hemi
al rea
tion that mim-i
s the jumps is indeed frozen at T = 0, the 
hemi
al rate 
onstants are de�nedphenomenologi
ally with no referen
e to the a
tual di�usion pro
ess. The thermalnoise has an indire
t e�e
t on the rate 
onstants, but the me
hani
al behaviorleading to the produ
tion of for
e is basi
ally analogues to what one expe
ts in thedeterministi
 
ase.On the other hand, as we have already explained, Magnas
o model even at
T = 0 a
ts like a ma
ros
opi
 me
hani
al rat
het, generating net �ux in onedire
tion in a semi-in�nite interval of the �u
tuating for
e amplitudes FATP . Thethermal �u
tuations in
rease the �ux in a se
tion of this range, while redu
ing itin another se
tion, the one 
orresponding to higher levels of for
es amplitudes (seeFig. 3.4). In this sense we are having an essential Brownian rat
het only at 
ertainvalues of the parameter FATP . To emphasize the di�eren
e between me
hani
alrat
het and thermal rat
het, Wang and Oster [69℄ proposed a �ashing rat
hetwhere the periodi
 potentials φ1(x) and φ2(x) are su
h that φ2(x) = φ1(x+ L/2),where L is the period for both of them. In this 
ase, the parti
les 
an show a net�ux even without thermal �u
tuations. Its motion is driven only by the periodi

hemi
al 
y
le and the me
hani
al relaxation inside ea
h minima is deterministi
as it is 
lear from Fig. 4.1. Despite this, Jüli
her and 
ollaborators observed howthis type of potential does not generate motion if the transition rates obey detailedbalan
e [50℄. In this 
ase, in fa
t, we are in the same situation des
ribed in theProst et al. model (see Se
tion 3.3). Vale and Oosawa [25℄ have been the �rst topose the 
ru
ial question regarding the relative importan
e of thermal �u
tuation
Γ(t) versus 
onformational 
hanges powered by 
hemi
al driving for
es, in
ludingthe ones involved in the power stroke (see [68℄).It is perhaps worthwhile to observe that even the Huxley and Simmons 1971model, whi
h introdu
ed the power stroke in order to explain the fast generationof for
e, operates with 
hemi
al energy lands
ape that is a
tually both periodi
and tilted by a 
onstant for
e (see Fig. 1.25). The e�e
t of ATP 
an be viewed inthis model as responsible for this tilt in the potential. Thermal �u
tuations thenmake 
hemi
al transitions between the states possible. The tilt a
ts only in onedire
tion, whi
h allows for a net �ux. In this sense the power stroke model andthe rat
het model are not so di�erent.To summarize, the power stroke approa
h and the Brownian rat
het approa
h124
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xFigure 4.1: Flu
tuating rat
het that 
reates a non-zero �ux without thermal �u
tuationmust be related in order to des
ribe one major pro
ess: the mus
le 
ontra
tion.In this last Chapter of the Thesis we make a �rst attempt to pla
e both modelsin the same framework allowing one to des
ribe the entire Xb-
y
le in a purelyme
hani
al language.Noti
e that the new model of power stroke proposed in Chapter 2 is based onthe theory of thermal di�usion whi
h is exa
tly the same setting as the theoryof Brownian rat
hets des
ribed in Chapter 3. This uni�
ation was a
hieved dueto abandoning of the jump pro
ess approa
h whi
h is normally assumed for thedes
ription of the power stroke. In this 
ommon framework a dire
t link 
an bebuilt between our power stroke model and the rat
het theory des
ribed in Chapter3. As we show later in this Chapter, building su
h an uni�ed theory is not astraightforward task. Moreover our analysis shows some serious limitations ofthis whole approa
h. However, on a qualitative level we have been su

essful inproviding a 
onsistent me
hani
al interpretation of the whole body of experimentalbehavior.4.2 Numeri
al implementation of the power strokemodel4.2.1 Isometri
 
aseWe re
all that the analyti
al results presented in Chapter 2 were obtained byusing the Kramers' ansatz for the time dependent probability distribution p(x, t)and from the expli
it representation of the steady distribution ps(x). Both results125
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ross-bridge 
y
lewere obtained from the Fokker-Plank equation whi
h is equivalent to the solutionof the sto
hasti
 equation of motion (Langevin equation). Thus for ea
h head x2(t)we 
onsidered the equation:
η2ẋ2(t) = −E ′

c(x2(t)) −K(x2(t) − x3(t)) +
√
η2kBTΓ(t) (4.1)where we have expli
itly written the for
e 
ontributions from the two terms formingthe total energy ET (x): the 
hemi
al energy Ec(x) and the energy of the elasti
element. Equation (4.1) also shows the dependen
e of the elasti
 for
e on theposition of the ba
kbone x3(t) whi
h, in the isometri
 
ontra
tion 
ase is given by:

x3(t) = l0 + ψ. (4.2)Here ψ is the distribution of the atta
hment sites des
ribed in Se
tion 2.7.2, whi
hwill be used later in the modeling of a population of Xbs.We begin by reformulating our modi�ed Huxley and Simmons model presentedin Chapter 2 in the framework of the Brownian rat
het model des
ribed in Chapter3. We re
all that the noise is 
hara
terized by the following relations:
< Γ(t1) >= 0 (4.3)

< Γ(t1)Γ(t2) >= δ(t1 − t2) (4.4)The Euler algorithm for equation (4.1) reads:
x2(t+ τstep) = x2(t) −

1

η2
(E ′

c(x2(t)) −K(x2(t) − x3(t))) τstep

+

√
η2kBT

η2

√
τstepw(0, 1).

(4.5)Sin
e equation (4.5) is sto
hasti
, in order to simulate the average of x2(t) we haveto follow the traje
tory of a population of NXb parti
les ea
h 
orresponding to adi�erent realization of the noise term. Ea
h parti
le also has a di�erent value of ψfrom (4.2).A typi
al behavior generated by the model when the ba
kbone is in its restingposition x3(t) = l0 (isometri
 
ontra
tion) is shown in Fig. 4.2(a). We see thatthe head jumps ba
k and forth between the energy wells be
ause the two phaseshave the same total energy and there is no preferred state. To ensure this, weimpose 
ondition (2.10), as in Chapter 2. The fa
t that in the isometri
 
ase thetwo phases have the same total energy is then stri
tly true only for the Xb with
ψ = 0. 126



Numeri
al implementation of the power stroke model Se
tion 4.2As we see in Fig. 4.2(a), parti
les explore all the energy lands
ape spending inea
h of the wells a time that is proportional to the 
orresponding probability. Theamplitude of os
illations is inversely proportional to the sti�ness of the wells. Thusin the �gure the elasti
 modulus of the well 
entered near zero is higher than the onefor the well des
ribing the �short� phase. The histogram showing the probabilitydistribution of the position x2(t) during the total time of the simulation, has lo
allyGaussian stru
ture around the two minima of the energy, as it has been predi
tedby the asso
iated FPE. The same is true for the probability distribution of Xbs ata given time, shown in Fig. 4.2(b).4.2.2 Length 
lamp devi
eA

ording to (3.52), the tension in the numeri
al experiment simulating the length
lamp 
an be 
al
ulated as:
T (t) =

NXb∑

i=1

[
−K(xi2(t) − xi3(t))

] (4.6)where x3 are given by:
xi3(t) =





l0 + ψi t ≤ tjump

δ + l0 + ψi t > tjump
(4.7)In Fig. 4.3 we present T (t) 
urve for negative values of δ. The dire
t numeri
alsimulation 
on�rm the analyti
ally predi
ted response of the system and allowsone to extra
t the values T1(δ) and T2(δ) as well as the parameter 
hara
terizingthe rate of re
overy.To verify the quantitative a

ura
y of our numeri
al s
heme and the validity ofKramers' approximation used in Chapter 2, we 
an 
ompare the results of the twoapproa
hes applied to the length 
lamp experiment using the set of parametersreported in Tab. 4.1. The kineti
s of tension re
overy for a parti
ular value of δ isillustrated in Fig. 4.4(a). The 
orresponding multi-exponential 
urve (see Se
tion2.8) obtained from the approximate theory, is superimposed. To plot this 
urve,

nexp (= 10) exponential 
ontribution are 
omputed from the Kramers' theory basedon nexp populations of Xbs with di�erent atta
hment positions ψ. The tension Texpis 
omputed from the formula:
Texp(niter) =

1

nexp

nexp∑

i=1

e−α
initer (4.8)127
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(b)Figure 4.2: Numeri
al simulation of isometri
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tion. (a) Time path of a Xb in a doublewell potential. (b) Histogram des
ribing the population of Xbs
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Figure 4.3: Simulation of the for
e vs. time relation at di�erent applied length stepswhere niter is the number of e�e
tive time steps from the time tjump/τstep till end ofthe simulation ttot/τstep, τstep is the e�e
tive time step, tjump the value of t when thein
rement in length is applied, tTot the total time of the simulation, αi is the i-thexponent 
omputed from equation (2.95) with ψ = ψi. The tension is normalizedby T1 and shifted verti
ally to ensure that T2 = 0. One 
an see that the kineti

urves obtained by the two methods, analyti
al and numeri
al, are similar, ex
eptfor the very fast 
omponents. For those the relaxation inside the minima is alsoimportant and the Kramers' approximation fails.Table 4.1: Main parameters used in the 
omparison of the behavior predi
ted by the Kramers'theory and the numeri
al simulations based on (4.1) and (4.7)Des
ription Numeri
al valuesDistan
e between the minima a 10.8 nmElasti
ity of the elasti
 element K 2 pN/nmElasti
ity of the low for
e generating state k1 4 KElasti
ity of the high for
e generating state k2 KCurvature of the maximum k3 −20 pN/nmDrag 
oe�
ient of x2, η2 60 pNns/nmDispersion of the atta
hment sites ψ ±2.75 nmNoise term kBT 4.14 pNnmAs far as the steady state tension T2(δ) is 
on
erned, we remark that in nu-meri
al experiments the 
urve T2(δ) has to be 
onstru
ted by points, as in realexperiments. In Fig. 4.4(b) we superimposed the analyti
al 
urve obtained fromequation (2.43) and the points obtained from the simulations; the two methods129
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lepredi
ts exa
tly the same behavior. The numeri
al 
ode is therefore veri�ed andwe 
an use it in the next Se
tion to simulate the whole Xb 
y
le.4.3 Whole 
y
le modelsIn the previous Se
tions we reformulated the models for the power stroke and forthe atta
hment-deta
hment pro
ess by using the same framework. This allowsus to 
onstru
t a uni�ed model allowing one to des
ribe the whole Xb 
y
le andto study its di�erent features. The 
onsiderations below will be based on theMagnas
o type model proposed in Chapter 3, however similar 
on
lusion 
an bemade if other type of Brownian rat
hets are used as building blo
ks. We begin bydes
ribing the behavior of a model of uni�
ation whi
h assumes that the 
hemi
alenergy des
ribing the power stroke is extended periodi
ally.4.3.1 Extended Huxley and Simmons potentialWhen a small in
rement of the length is imposed, the HS71 model [10℄ allows ea
hhead to explore only two wells of the 
hemi
al energy lands
ape. However, theidea of the authors was that this 
hemi
al energy is periodi
ally extended (seeFig. 1.25). In this 
ase an isotoni
 experiment should in prin
iple be able to showseveral jumps of ea
h head. Thus, even in the rapid length in
rement experimentdes
ribed in [10℄, the heads, after a fast re
overy of tension T2, must evolve towardsa new equilibrium state rea
hing in the long term, again the tension T0 (Se
tion1.2).To simulate this behavior we introdu
e a periodi
 potential whi
h, as in theHS71 model, is tilted in one dire
tion.In this new model every well of the resulting rat
het, has two smaller sub-wells,as shown in Fig. 4.5. We suppose that the energy lands
ape is pie
ewise linearwith a derivative given by:
V ′(x) =






h
λa
1(λa

1+λa
2)L

nL < x < [n + λa1(λ
a
1 + λa2)]L

−(h−d)
λa
2(λa

1+λa
2)L

[n+ λa1(λ
a
1 + λa2)]L < x < n(λa1 + λa2)L

H−d
λb
1(λb

1+λb
2)L

[n+ (λa1 + λa2)]L < x < [n+ (λa1 + λa2) + λb1(λ
b
1 + λb2])L

−H
λb
2(λb

1+λb
2)L

[n+ (λa1 + λa2) + λb1(λ
b
1 + λb2)]L < x < n(L+ 1) (4.9)Here index n des
ribes a parti
ular well. We refer to Fig. 4.5 for the meaning ofthe parameters. 130
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s of the re
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urve (solid line: Kramers' theory, points: simulation)
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ross-bridge 
y
leWe observe that the original Huxley and Simmons' model is able to des
ribe
onstant tension T0 generated in isometri
 
ontra
tion. When a mus
le is isometri-
ally tetanized, T0 is maintained while ea
h Xb goes through all four phases shownin Fig. 1.5, so that in average the number of heads in ea
h phase remains ap-proximatively 
onstant. When δ(t) = 0, the HS71 model impli
itly assumes thatfor ea
h Xb that deta
hes, another repla
es it in the same position, whi
h leaves
T0 
onstant. In the similar way, jumps between larger wells mimi
 in this modelthe atta
hment-deta
hment pro
ess. The impli
it assumption is that for ea
h headthat deta
hes from the post-power stroke state, another head immediately atta
hesin the pre-power stroke state.We assume that the di�eren
e in the energy levels of the two sub-wells is equalto K(λa1 +λa2), (see 
ondition (2.10)). The jump between these sub-wells representsthe power stroke. After every atta
hment-deta
hment pro
ess, the parti
le x1 is inthe pre-power stroke state, and 
an 
hange the 
on�guration again, swit
hing tothe post-power stroke state, in order to pull the myosin ba
kbone. We suppose thatall the parti
les are atta
hed to the ba
kbone through a spring, the jump betweenthe post-power stroke state toward the next pre-power stroke state stret
hes thiselasti
 element. Formally, this stret
h is zero in the Xb 
y
le, and here 
an be hereredu
ed assuming λb1 + λb2 ≪ λa1 + λa2.
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Figure 4.5: Potential of the periodi
ally extended HS71 model, where the bi-stable element isin
orporated into the rat
het potentialTo implement this model numeri
ally we assume that all the Xbs (all the par-ti
les) evolve in the pie
ewise linear potential (4.9). The resulting system of equa-132



Whole 
y
le models Se
tion 4.3tions reads: ba
kbone x3 reads:





η1ẋ
i
1 = −V ′(xi1) + FATP −K(xi1 − x3) +

√
η1kBTΓ1(t) i = 1, · · · , NXb

η3ẋ3 = Fext +
NXb∑
i=1

(K(xi1 − x3)) +
√
η3kBTΓ3(t)

(4.10)In order to simulate the 
onstantly tilted potential of Fig. 1.25, we have addedto (3.49) a 
onstant for
e FATP . In this way < FATP (t) > 6= 0 and we have anasymmetri
ally tilted rat
het (see also [68℄). We shall 
ome ba
k to the meaning of
FATP later in this Chapter.A numeri
al study of this model is rather heavy in terms of the time neededto generate a quantitative response 
urves. The reason is that in order to providetwo di�erent time s
ales, one for the power stroke and another for the atta
hment-deta
hment pro
esses, we need to impose a 
onstraintH ≫ h (separating the s
alesof e relative height of the barriers, see Fig. (4.9)). We re
all that also λb1 + λb2 hasto be small; these two requirements together make the ratio η1(λ

b
1 + λb2)L/H alsosmall whi
h limits the maximum τstep as des
ribed in Se
tion 3.4.We turn now to the dis
ussion of the simulated for
e time 
urve showing theresponse to a given length step (Fig. 4.6). One 
an see that both fast and slow times
ales have been resolved. The for
e tends towards the steady value T0. Beforethat, a rapid in
rement in the total length (δ < 0) generates a drop in the tensiondue to the elasti
 element whi
h links x1 to the ba
kbone, but then jumps betweenthe sub-wells rise the value of the tension up to T2. This last state is no longer asteady state, as in the model of Chapter 2 where the 
hemi
al energy was going toin�nity at the boundary of the two-well region. In a larger time s
ale the variable

x1 
an over
ome the higher barrier and make it into another two-well region. Thisin
reases the tension applied to the ba
kbone and bring it ba
k to its original value
T0. Despite the fa
t that this pi
ture looks rather realisti
, the model is not sat-isfa
tory be
ause we used an expli
it tilting for
e in order to break the detailedbalan
e. In the next se
tion we show how su
h purely me
hani
al bias 
an beavoided and how the Xb 
y
le 
an be des
ribed by an os
illating Brownian rat
hetwithout permanently tilting for
es.4.3.2 Chemi
al-Spring-Motor model (CSM)As a �rst attempt to 
ouple the models presented in Chapters 2 and 3, we 
on-sider a system with two parti
les x1 and x2, moving in the potentials V (x1) and133
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Figure 4.6: Tension vs. time 
urve showing fast and slow time s
ale for the periodi
ally extendedHS71 model. Parameters are taken from Table 4.2. Tension: arbitrary units. Time s
ales:
103 τstep

Ec(x2) respe
tively. Here V (x) is an asymmetri
 periodi
 pie
ewise linear potentialdes
ribed in Chapter 3 (equations (3.48)):
V ′(x) =





Vmax/(λ1L) nL < x < nL+ λ1L

−Vmax/(λ2L) nL+ λ1L < x < (n+ 1)L
(4.11)and Ec(x) is a pie
ewise quadrati
 double well potential des
ribed in Chapter 2(equations (2.96)). Due to the total length 
onstrained, the energy Ec(x) 
an bewritten in terms of the variable x3:

Ec(x2, x3) =






1
2
k1(x2 − x3)

2 x2 ≥ b1(x3)

1
2
k3 (x2 − x3 − b)2 + e b2(x3) ≤ x2 < b1(x3)

1
2
k2(x2 − x3 − a)2 + d x2 < b2(x3)

(4.12)The two parti
les x1 and x2 are assumed to be linked by a linear elasti
 element withsti�nessK. The 
oordinate x3 
an be viewed as the position of a ba
kbone (myosin)atta
hed to the 
ontrolling loading devi
e. The 
oordinate x1 is then the positionof the myosin head along the a
tin �lament. The a
tin �lament is represented bythe periodi
 potential V (x1). The 
oordinate x2 des
ribes the swinging lever-armportion of the head that 
an be in two 
on�gurations des
ribed by the energy
Ec(x2). These notations will be operative throughout this Chapter. The model isgraphi
ally illustrated in Fig. 4.7.We assume that the parti
les are embedded in a vis
ous environment and thattheir respe
tive drag 
oe�
ients ηi are di�erent, re�e
ting the fa
t that their geome-tries are di�erent. Finally, the whole system is subje
ted to an external random134
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tion 4.3Table 4.2: The main parameters used for the numeri
al simulations of the periodi
ally extendedHS71 model. Des
ription Numeri
al valuesPeriodi
ity λa
1

+ λa
2

+ λb
1

+ λb
2

1.1 nmWidth lower peak λa
1

+ λa
2

1 nmWidth higher peak λb
1

+ λb
2

0.1 nmInternal asymmetry λa
1

0.8 nmExternal asymmetry λb
1

0.05 nmNoise term kBT 1pNnmDrag 
oe�
ient of x1, η1 1 pNns/nmHigher peak potential H 5kBTLower peak potential h 4kBTATP for
e modulus |FATP | 0.8 h/λa
1
LDispersion of the atta
hment sites ψ ±0.5 nm
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Figure 4.7: CSM model for a single Xb: series 
onne
tion of a bi-phase element, an elasti
element and a motor elementfor
e represented by a white noise. To 
omplete the des
ription of a rat
het, apie
ewise 
onstant tilting for
e FATP (t) with zero mean < FATP (t) >= 0, is addedto the periodi
 potential V (x):
FATP (t) =






+FATP n∆tATP < t < (n+ 1)∆tATP

−FATP (n+ 1)∆tATP < t < (n + 2)∆tATP .

(4.13)In addition an external for
e Fext 
an be applied to the ba
kbone x3 (load 
lampdevi
e) or its position 
an be pres
ribed by a length 
lamp devi
e. In the 
aseof load 
lamp devi
e the system of sto
hasti
 ordinary di�erential equation for asingle Xb 
an be written as:





η1ẋ1(t) = −V ′ (x1(t)) +K(x2(t) − x1(t)) + Fatp(t) +
√
η1kBTΓ(t)

η2ẋ2(t) = −E ′
c(x2(t) − x3(t)) −K(x2(t) − x1(t)) +

√
η2kBTΓ(t)

η3ẋ3(t) = E ′
c(x2(t) − x3(t)) + Fext +

√
η3kBTΓ(t).

(4.14)Conditions (4.7) repla
e the third equation in the 
ase of a length 
lamp devi
e.135
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ross-bridge 
y
leExtensive numeri
al experiments have been performed for the model (4.14).We have found that the model 
an reprodu
e the T2(δ) 
urve in the fast regime,however it fails to reprodu
e the pe
uliarities of kineti
s of the pro
ess leading tothe steady state at high values of δ. The fast bran
h of the typi
al tension vs.time 
urve is shown in Fig. 4.8, where we see no elasti
 response (no T1 phase) ispresent. This negative result eliminates the ne
essity to dis
uss the slow relaxationpredi
ted by the model.To explain the result we �rst observe that sin
e the parti
les are embedded ina vis
ous environment only potential Ec is shifted when a δ in
rement is instanta-neously imposed on x3 in a length 
lamp devi
e. In the meantime the parti
le x2remains where it had been before the step. If the shift of the potential (i.e. thevalue of δ) is larger than the distan
e between the minima, all the parti
les xi1 endup after the step in one well, and the steady state tension is re
overed due to fastrelaxation within this well. There is no subsequent 
hange of 
on�guration whi
hleads to the absen
e of the 
hara
teristi
 fast re
overy stage.

Time

F
or

ce

T
0

T
2

Figure 4.8: Tension vs. time 
urve predi
ted by the CSM model in a 
lamp devi
eThis analysis suggests that we must also 
onsider di�erently designed 
on�gu-rations of the basi
 elements: a spring, a snap-spring and a motor.4.3.3 Spring-Chemi
al-Motor model (SCM)A more detailed look at the 
ross bridge stru
ture is needed to pro
eed further.Re
ent observations (see for instan
e [72℄) have 
hara
terized with high pre
isionthe stru
ture of the myosin head and of its two sites with the a�nity for the a
tinand for the ATP, respe
tively. For the purpose of designing only a prototypi
almodel (we refer to [72℄ and referen
es therein for a 
omplete s
heme) it is enough to136
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y
le models Se
tion 4.3assume that the myosin head has three major sub-stru
tures: the �rst one atta
hesto a
tin �lament, the se
ond one 
an rotate with respe
t to the �rst one generatingthe power stroke, and �nally the third one 
ouples the se
ond one with the myosinba
kbone (see Fig. 4.9). Normally, the elasti
 
omponent is identi�ed with thethird stru
ture, however this is not universally a

epted.

Figure 4.9: Cross bridge 
y
le with emphasized sub-stru
ture of the myosin head. The phases1 to 4 are added to the original �gure to relate it with Fig. 1.5. From [72℄A 
onsideration of the mole
ular stru
ture of the Xb suggests another wayof 
oupling the elements. Thus we 
an assume that the lever arm of the Xb,represented by the 
oordinate x2, is linked to the 
lamp devi
e (ultimately themyosin thi
k �lament, the 
oordinate x3) through an elasti
 element of sti�ness
K. The lever arm 
an be in two di�erent states and the 
orresponding 
hemi
alenergy Ec(x2, x1) takes the form:

Ec(x2, x1) =






1
2
k1(x2 − x1)

2 x2 ≥ b1(x1)

1
2
k3 (x2 − x1 − b)2 + e b2(x1) ≤ x2 < b1(x1)

1
2
k2(x2 − x1 − a)2 + d x2 < b2(x1)

(4.15)This potential is a�e
ted by the atta
hment position of the myosin head (atta
h-ment site, 
oordinate x1) whi
h is moving on the a
tin �lament itself and thereforefeels a periodi
 asymmetri
 potential V (x1). Regarding the motion of x1(t), we137
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y
lestress that the time it spends in the bottom of the well of V (x1) before the jumpinto the neighboring well must be mu
h longer than the time needed for the jumpitself (see Se
tion A.6.3). The resulting model is s
hemati
ally depi
ted in Fig.4.10.
E c

K V

F ATP

����������

X 1

���������� ��������

��
��
��
��

��
��
��
��

��
��
��
��
��

��
��
��
��
��

X 2

��
��
��
��

��
��
��
��

X 3
��������Figure 4.10: SCM model for one Xb: series 
onne
tion of an elasti
 element, a biphasi
 
hemi
alelement and of a motor elementIn this new arrangement of elements 
hanging of the lo
ation of the atta
hmentsite a�e
ts dire
tly the relative 
onformational state of the 
hemi
al energy repre-sented by the variable x2 − x1. The set of sto
hasti
 equations for a single head
an now be written as:






η1ẋ1 = [−V ′(x1(t)) + Fatp(t) + E ′
c(x2(t) − x1(t) − ψ)] +

√
η1kBTΓ(t)

η2ẋ2 = −E ′
c(x2(t) − x1(t) − ψ) −K(x2(t) − x3(t)) +

√
η2kBTΓ(t)

η3ẋ3 = K(x2(t) − x3(t)) + Fext +
√
η3kBTΓ(t)

(4.16)To reprodu
e the isometri
 tension experiment we start with the initial 
on-dition x1(0) = 0, x2(0) = 0 and x3(0) = 0. As it has been already noted, thereferen
e lengths in the numeri
al 
ode 
an be set equal to zero without loss ofgenerality. By imposing the 
ondition x3(t) = 0, we let the system (4.16) evolvewhile we re
ord the tension generated by the system
T (t) = −Kx2(t). (4.17)The probability distribution asso
iated with x1 in the steady state T = T0, whi
ha�e
ts the stret
h of the elasti
 element, 
an no longer be found analyti
ally. As a
onsequen
e, we 
an not 
ompute from equation (2.10) the value of d in Ec, whi
his ne
essary to assure that the Xbs in the isometri
 
ontra
tion 
an jump ba
kand forth between the energy wells as in the original HS71 model. To resolve thisproblem, we asso
iate the steady value T0 rea
hed by (4.17) with Fmotor = T0 andimpose a parti
ular pre-stret
h on the elasti
 element x3(0) = l0 su
h that:

−1

2
K(a1 − l0) −

1

2
K(a2 − l0) = Fmotor. (4.18)138
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y
le models Se
tion 4.3In the left hand side of this equation we see the mean tension generated at < x1 >=

0. This follows from (2.19) under the assumption that the Xb spends half of theanalyzed time tTot in ea
h well of the 
hemi
al energy EC (a1 and a2 are the twominima given by (2.9)). Substituting (2.9) in (4.18) we obtain
l0 =

[
2
Fmotor
K

− ak2

k2 +K

]
/

[
2K + k1

K + k1
+

K

k2 +K

] (4.19)where a is the distan
e between the minima of Ec. During the isometri
 
ontra
-tion with x3(t) = l0, we now have < x1 >= 0 be
ause the e�e
t of the motoris 
ompensated by the pre-stret
h. With the value of d 
omputed from (2.10),(4.19) we 
an be sure that the 
onformational transition is not biased and that Xbos
illates between equivalent states during isometri
 
ontra
tion.

Figure 4.11: Position vs. time 
urves for the parti
les x1, x2 and x3 in a for
e 
lamp experimentIn Fig. 4.11 we show the response of the system (4.16) to the sudden swit
h atthe time tjump from isometri
 
ontra
tion, x3(t) = l0, to isotoni
 
ontra
tion with
Fext = 0.5T0. In the interval 0 < t < tjump we see that x1(t) lies near zero whilethe bi-stable element, the lever-arm represented by x2(t), os
illates between twostates. At t > tjump, the variable x3 moves towards negative values whi
h relaxesthe elasti
 element. The smaller elasti
 for
e a
ting on x2 allows the bi-stable139
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leelement to shift toward the high for
e generation phase, whi
h is now representingthe global minimum of the energy (see Chapter 2). This power stroke shifts x3in the same dire
tion and after a fast relaxation, the for
e a
ting on x1 starts toos
illate around the imposed value Fext = 0.5T0. Sin
e T0 = Fmotor is the for
e thatmaintained, in the isometri
 
ase, the variable x1 in the original well of the periodi
potential, it now starts moving in the dire
tion imposed by the motor. This motiontakes pla
e at a longer time s
ale that phenomena des
ribed above. In Fig. 4.11 wesee only one jump of x1. This jump mimi
s the atta
hment-deta
hment pro
ess ofthe head. It leads to a shift of Ec(x2, x1) through (4.16) and results in the identi
aldispla
ement of x2 and x3. In experiments (see Fig. 3.20) the shortening of themus
le, represented here by the time history of x3(t), does not exhibit jumps. Sin
ethe model presented here predi
ts a stepwise motion for x3 we still need to averagethe results over the e�e
t of several Xbs a
ting on the same myosin ba
kbone. Thissuggests another modi�
ation of the model.
4.3.4 Spring-Chemi
al-Motor model with a ba
kbone (SCM1)In experiments the total length of the mus
le 
hanges in a smooth way be
ausethe myosin �lament is a�e
ted by a population of Xbs whi
h a
t asyn
hronously.The e�e
t of ea
h power stroke is averaged out due to the existen
e of the 
ommonba
kbone. To simulate this e�e
t we 
onsider a model in whi
h the 
oordinate
x3 is 
ommon to the whole population of Xbs whi
h are posed in parallel. The
on�guration is illustrated in Fig. 4.12.
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ommon x3 for the Xbs140



Whole 
y
le models Se
tion 4.3The set of sto
hasti
 equations for this model 
an be written as follows:





η1ẋ1 =
[
−V ′(x1(t)) + Fatp(t) + E ′

c(x2(t) − x1(t) − ψ)
]
+
√
η1kBTΓ(t)

η2ẋ2 = −E ′
c(x2(t) − x1(t) − ψ) −K(x2(t) − x3(t)) +

√
η2kBTΓ(t)

η3ẋ3 =
NXb∑
i=1

K(xi2(t) − x3(t)) + Fext +
√
η3kBTΓ(t)

(4.20)
where the 
hemi
al energy is de�ned in (4.15), the periodi
 potential is de�ned in(4.11) and FATP is given by (4.13). The overlined quantities are ve
tors of length
NXb, say x = (xi) = (x1, x2, · · · , xNXb), and the di�eren
e between a ve
tor and as
alar is 
omputed as:

x− x3 = (x1 − x3, x
2 − x3, · · · , xNXb − x3). (4.21)In order to understand this model, we analyze below the response of the system�rst in a length 
lamp devi
e and then in a for
e 
lamp devi
e. As we are goingto see, the predi
tions for x3(t) are in qualitatively agreement with experiments.While for a population of Xb, due to averaging over the xi3(t)'s, even the SCMmodel predi
ts qualitatively similar smooth 
urves, the SCM1 model has a 
learadvantage. In this model the a
tual position of x3(t), not only the mean value <

x3(t) > as in SCM model, is only weakly sensitive to the positions of the individual
xi2(t). This is important be
ause in the se
ond equation of (4.16) the variables xi3(t)a�e
t the behavior of the 
orresponding xi2(t) dire
tly.Length 
lamp devi
eIf we pres
ribe the motion of the ba
kbone x3(t) as in equation (4.7) and averageout the noise term, the third equation of the system (4.20), be
omes:

0 = NXbK(< x2(t) − x3(t) >) + Fext. (4.22)This means that the external for
e, is proportional to the mean stret
h of theelasti
 element times the number of Xbs 
onne
ted in parallel. The relation (4.22)will be used in the simulations to 
ompute the for
e in the length 
lamp proto
ol.In Fig.4.13 we plot the tension Fext(t) produ
ed by the system in response to asingle shortening step. This time we are interested in what happens at both shortand long time s
ales. In Fig. 4.13(b) we see that the rapid tension re
overy mat
hesqualitatively well the exponential relaxation 
hara
terizing the fast stage up to theplateau. In Fig. 4.13(a) the typi
al simulation for long times is reported. Here141
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lewe see the slower re
overy of the for
e towards the original tension T0, exa
tly asin experiments. The 
orresponding for
e velo
ity 
urve is also in a

ordan
e withexperiments: the 
urve F − v is qualitatively similar to the one presented in theend of Chapter 3 (see Fig. 3.21(b)).
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Figure 4.13: Long (a) and short (b) time s
ale behavior of the SCM1 model in response to ashortening stepWhile the overall behavior very ni
ely 
onforms with ma
ros
opi
 experimentalobservations. A more detailed analysis of the short time s
ale response shows somedetails whi
h also agree with observation. Thus in our numeri
al experiments, theexpe
ted level of tension T2(δ) does not form a perfe
t horizontal plateau. Inexperiments the relaxed stredd T2(δ) also does not always appear in the form ofa real plateau and represents instead just a region with a low speed of re
overy142
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tion 4.3[43℄. Within this indetermina
y in the exa
t interpretation of the T2(δ) level,the general di�eren
e between rea
hing T2(δ) and the more slow re
overy of theisometri
 tension T0 due to the atta
hment-deta
hment pro
ess is well de�ned inboth numeri
al and physi
al experiments.For
e 
lamp devi
eTo show in more detail the working of the model we return to the load 
lamp sim-ulations and 
ompare them with the 
orresponding experiments. To the author'sknowledge, the load 
lamp experiments are made with higher pre
ision than thelength 
lamp experiments [43℄, [67℄. We refer to Fig. 3.20 where 4 distin
t phases,already des
ribed in Chapter 3, are 
learly visible. In parti
ular, even if no plateauis present, the phases 2, 3 and 4 are well de�ned. Then a period of redu
ed rate(phase 3) is observed before the beginning of phase 4, when the rate of shorteningbe
omes 
onstant. As we dis
ussed in Se
tion 3.6.3, phases 2 and 3 are believed tobe due to syn
hronization of the power strokes exhibiting by the atta
hed Xbs.
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Figure 4.14: Load 
lamp simulation with in the SCM1 modelIn all models dis
ussed so far the motor 
omponent worked independently ofthe 
onformational state of the lever-arm and the asso
iated shortening was alwayspresent. Obviously, this shortening is negligible during the relaxation of the elasti
element (phase 1) and should not play any role during the rapid shortening due tothe power stroke. When these pro
ess terminate, it is phase 4 whi
h dominates. Inour experiments we have not been able to reprodu
e the phase with lower rate thanphase 4 (the de�nitive feature of phase 3). This is 
learly seen in the simulation ofthe load 
lamp devi
e, reported in Fig. 4.14. Su
h behavior should be 
ommon toall models where Brownian motor 
omponent works independently of the bi-stable143



Chapter 4 Full 
ross-bridge 
y
leelement. The reason is that the minimal velo
ity of shortening due to rat
het whi
his 
hara
teristi
 of phase 4, will be always present even during phase 3. One wayto obtain a distin
t phase 3 would be to let the motor part know when all the Xbsare in the se
ond well, through a �phenomenologi
al� 
omponent in the de�nitionof FATP (t), however we leave this option outside the s
ope of this Thesis. Insteadwe would like to maintain our fully me
hani
al framework for as long as possiblewithout imposing any phenomenologi
al relations between the state of the motorand the 
hemi
al driving for
e determining the power stroke.As we have seen, the global behavior of the system in the load 
lamp 
ase,des
ribed by the fun
tion x3(t), is basi
ally in a

ord with experiments, but it is alsoinstru
tive to look at the ma
ros
opi
ally invisible relative displa
ement x2 − x1.To show the insu�
ient 
oordination between the motor part, whi
h simulates theatta
hment deta
hment pro
ess, and the bi-stable elements, exhibiting the powerstroke, we 
an follow simultaneously the evolution of one of the parti
les x2 andthe 
orresponding parti
le x1.We expe
t that the jump of the variable x1 from one well to another on theleft side would stimulate the 
onformational transformation from the �short� phaseto the �long� phase of the bi-stable element. In this 
ase a new power stroke
an be generated in order to move the ba
kbone 
ontinuously. The response ofthe model is shown in Fig. 4.15, where the relative position of the lever arm in
Ec 
an be tra
ed from the di�eren
e x2 − x1 together with the position of theelements x1 and x3. We observe that after the swit
h from isometri
 to isotoni

ontra
tion at t = tjump, the fast me
hanism indeed generates a power stroke andthe variable x2 −x1 jumps into the �short� well of the bi-stable potential. In termsof the ma
ros
opi
 evolution (of x3) this leads to phases 1 and 2. After this, in alonger time s
ale, the parti
le x1 has to move a distan
e L to the left to allow for
ontinuous 
ontra
tion. However, as we see in the �gure, after the �rst jump thevariable x2−x1 has no reason to return ba
k to the �long� well. In fa
t in this test,it remains for the entire period of observations in the �short� well of the bi-stablepotential. This well is always energeti
ally preferred be
ause x3 is 
ontinuouslymoving left relaxing the elasti
 element. One 
an see that, in the present form, themodel fails to reprodu
e the entire Xb 
y
le.To �x this problem we observe that an important role in the behavior des
ribedabove was played by the ratio L/a linking the period of the motor potential V (x)(4.11) with the distan
e between the wells in the 
hemi
al energy Ec (4.13). Thisratio has been so far 
hosen to be small (L/a = 0.5 in Table 4.3, i.e. a step of144
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Figure 4.15: The graph of position vs. time for a parti
ular x1 and the asso
iated evolution ofthe variable x2 − x1 and the variable x3. Period L = 0.5a. Only one 
hange of phase of the leverarm x2 − x1 is observed while three 
hanges in the atta
hment position x1 takes pla
eTable 4.3: The main parameters used for the numeri
al simulations of the models CSM, SCM-N,and SCM1 Des
ription Numeri
al valuesDistan
e between the minima a 1 nmNoise term kBT 1pNnmDrag 
oe�
ient of x2, η2 1 pNns/nmElasti
ity of the elasti
 element K 32 pN/nmElasti
ity of the low for
e generating state k1 5 KElasti
ity of the high for
e generating state k2 2 KCurvature of the maximum k3 −102 pN/nmPeriodi
ity L 0.5 a - 2 aAsymmetry λ1 0.3Maximum of the potential Vmax 15kBTATP for
e modulus |FATP | 1.3 Vmax/λ2LRatio η2/η1 0.1Ratio η2/η3 0.01Time between os
illations tATP 103τstepAsyn
hronisation φi i · tATP /NXb for i = 1, · · · , NXbDispersion of the atta
hment sites ψ ±2.75 nm145
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lethe motor equals one half of the maximum power stroke). The justi�
ation ofthis value 
omes from the fa
t that the a
tin monomer has a diameter of 5.5 nm,while the maximum power stroke, observed at low external for
es, is about 11 nm(see Chapter 2). Higher values of the ratio L/a, 
ould result from taking into
onsideration the heli
al twist of the a
tin �lament that allows only parti
ularmonomers to serve as a
tive sites for the myosin head.With this 
onsideration in view we 
an assume that, for instan
e, L/a = 2.Then the model generates similar ma
ros
opi
 (variable x3) but di�erent mi
ro-s
opi
 (variables x1 and x3) behavior. Be
ause the jump of x1 is now longer, it issu�
ient to stret
h the elasti
 element to the degree that makes again the �long�well of the bi-stable element energeti
ally preferable. Then during ea
h atta
hment-deta
hment event the variable x2 − x1 returns into the pre-power stroke state, asshown in Fig. 4.16. Following the time traje
tories of the points we observe two

Figure 4.16: The graph of position vs. time of a parti
ular variable x1 and the asso
iatedevolution of the variable x2−x1. Period L = 2a. When the variable x1 jumps into the neighboringwell, the lever arm x2 − x1 
omes ba
k to the �long� 
on�guration. After a proper amount oftime a new power stroke takes pla
ejumps of the variable x1 marked by the two verti
al lines. After every jump wesee that x2 − x1 is shifted ba
k to the �long� well where it 
an remain for a 
ertain146
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y
le models Se
tion 4.3amount of time before generating a new power stroke.We 
on
lude that the representation of the whole Xb 
y
le has been a
hieved.The variable x2 − x1 
omes ba
k to the �long� well be
ause of purely me
hani
alreasons: the elasti
 element be
omes over-stret
hed after the jump of x1. To showthis we plot in Fig. 4.17 the 
on�guration of the elasti
 element x2 − x3 togetherwith the evolution of the variable x1. The �rst verti
al line shows the momentin whi
h, at a given x1, the bi-stable element 
hanges its state and stret
hes thespring, as in the power stroke of the Xb 
y
le. The se
ond verti
al line showsthe moment in whi
h x1 
hanges well; it appears that the stret
h of the springin
reases before the 
hanging of the atta
hment site of x1, and at a 
ertain level ofstret
h, the spring pulls ba
k the variable x2 − x1 into the �long� state. The high

Figure 4.17: The graph of position vs. time for a parti
ular variable x1 and the asso
iatedevolution of the variables x2 − x1 and the stret
h of the spring x3 − x2. Period L = 2a. The�rst verti
al line shows the moment in whi
h the bi-stable element 
hanges state and the stret
htakes pla
e in the spring. The se
ond verti
al line shows the moment in whi
h the variable x1
hanges atta
hment sitetension in the elasti
 element is relaxed as soon as the bi-stable element assumesits �long� 
on�guration. The ma
ros
opi
 e�e
t of this little peak on the ba
kbone
an be 
onsidered negligible. To summarize, we 
an say that the model is able to147
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lereprodu
e all the elements of the basi
 Xb-
y
le.Despite its su

ess, our model, raises again the question regarding the de�nitionof power stroke. Formally we have been de�ning the power stroke as the 
hangein the 
on�guration of the bi-stable element. Now we see that the atta
hment-deta
hment me
hanism 
an also generate for
e in the mus
le, i.e. 
an stret
h theelasti
 element. We 
on
lude that the 
hange of the atta
hment site 
an also be
onsidered as phase of the power stroke. In other words our model 
ontains insideitself two power strokes. This, fundamental observation, has nothing to do withthe two power stroke in the atta
hed state proposed by several other authors basedon 
ompletely di�erent observations (see [10℄, [43℄, [96℄).4.3.5 Dis
ussionThe problem of two di�erent power stroke shows how di�erent 
on
eptually havebeen so far the models of Brownian rat
hets and of the power stroke. The di�eren
eresides prin
ipally in the interpretation of the role of ATP. In the Eisenberg andHill model [17℄, whi
h is based on the same idea of the Huxley and Simmons'model, there is an expli
it link between the 
hange of 
on�guration of the leverarm and the 
onsumption of ATP. This link has been made expli
it be
ause theauthors asso
iated the di�eren
e in the level of the minima of the 
hemi
al energywith the free energy liberated by the ATP hydrolysis, ∆GATP . We are not awareof any work questioning this interpretation of the 
hemi
al driving for
e in thepower stroke type models. An experimental prove that the 
onformational 
hangein the myosin head is not simply a me
hani
al e�e
t and that it a
tually needsthe ∆GATP , is in the di�erent response of the mus
les pla
ed in the length 
lampdevi
e while in rigor and in tetanus [55℄. If the ATP is needed only to swit
h theXb into the state in whi
h it 
an perform the power stroke, and if the transitionis governed only by me
hani
al for
es, the two experiments should give similarresults. Instead the tension re
overy T2(δ) in rigor is mu
h smaller than in tetanus[55℄. In rigor, the state 
hara
terized by the depletion of ATP, all the Xbs areatta
hed to the a
tin �lament and do not have the possibility to deta
h; moreoverthe power stroke appears to be almost irreversible. Hen
e one 
an 
on
lude thateven in the power stroke models, the ATP a
tivity is needed to keep the di�erentlevel of the minima of the 
hemi
al energy Ec.In the Brownian rat
hets, the role of ATP is di�erent and is mainly to de-stroy thermal equilibrium. In general we know that the non-equilibrium for
ing148



Full 
ross-bridge 
y
letogether with the asymmetry of the potential, ensures that the parti
le drifts inone dire
tion. In detail, however the Magnas
o type models represent ATP as afor
e (see FATP (4.13)) whi
h a
ts dire
tly on the parti
le and allows it to 
limbpreferentially only the smaller slope of the potential V (x) (see (3.20)). While Prostet al. model represents ATP as breaking the detailed balan
e in the rates of theatta
hment-deta
hment pro
ess without seemingly generating a dire
t for
e on theparti
le, its a
tion 
an also be redu
ed to the 
oloring of the external noise. Tosummarize, ATP appears in two di�erent roles: as a stati
 bias of one of the wellsand as a dynami
 agent destroying the detailed balan
e. These two di�erent rep-resentations of ATP have been preserved in our models, however, we believe thatthey have not been fully re
on
iled.To mat
h fast and slow time s
ale events during mus
le 
ontra
tion, a uni�edinterpretation of the physi
al e�e
t of ATP is ne
essary. We have made a step inthe dire
tion of treating both me
hanism from the 
ommon point of view, but morework is needed to make them fully 
oherent. Despite the remaining di�
ulties inlinking the two sides of the 
ontra
tion phenomenon, the power stroke and theatta
hment-deta
hment, the idea of rea
hing a fully me
hani
al interpretation ofthe entire Xb 
y
le appears now quite feasible. A fully me
hani
al model, ableto reprodu
e all the features of the mus
le's 
ontra
tion, is of interest �rst of allin relation to the possibility of arti�
ially 
reating the devi
es exhibiting a
tiveelasti
ity.
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Chapter 5
Con
lusions
In this work our goal was to 
onstru
t a fully me
hani
al des
ription for the mi
ro-s
opi
 me
hanism of 
ontra
tion in skeletal mus
les. Every mathemati
al modelthat aims at des
ribing quantitatively the whole variety of related physi
al phe-nomena has to fa
e at least two problems. First, there is a high variability of theexperimental results, not only linked to the di�erent mus
le types or even animal'sspe
ies, but also related to a 
ertain number of external fa
tors that are normallyeasy to 
ontrol in the 
lassi
al me
hani
al tests. Just as an example, frog's mus
leexperiments show more uniform results between O
tober and Mar
h due to sea-sonal variations in metabolism (G. Piazzesi, personal 
ommuni
ation). The se
ondproblem is that some physiologi
al and anatomi
al details of the 
ontra
tion phe-nomenon are not even well established in the biologi
al 
ommunity. Thus, whilethe main steps of the Xb 
y
le are widely a

epted, some intermediate states existsonly as hypotheses that are under debate.The formulation of a model that des
ribes the 
ontra
tion of skeletal mus-
les in a purely me
hani
al framework is intrinsi
ally a�e
ted by these problems.We reviewed previous important 
ontributions aimed at building a 
omprehensivemulti-dis
iplinary models 
oupling me
hani
s with 
hemistry. A good qualitativeagreement with experiments has been rea
hed in these model assuming that somephases of the pro
ess 
an be modeled as purely me
hani
al while others as non-equilibrium 
hemi
al rea
tions, whose phenomenologi
al des
ription preserve somefreedom needed to �t the data. As we have shown, the phenomenologi
al natureof these models limits their predi
tive power. Even if some 
hemi
al stages arelikely to be needed as a short
ut for mi
ro-me
hani
al pro
esses, a des
ription ofthe entire pro
ess should be strongly related to the physi
s and me
hani
s of thefor
e produ
ing me
hanisms. 151



Con
lusionsWe have a
hieved two main results in this Thesis. First, we have shown that afully me
hani
al model with only two 
on�gurational states for the Xb 
an des
ribethe fast re
overy of tension quantitatively. Se
ond, we have shown that one 
an usethe Brownian rat
het theory to link qualitatively the main elements of the entireXb 
y
le, in
luding both fast and slow stages.In the �rst part of the Thesis we 
on
entrated on the analysis of the powerstroke me
hanism in the atta
hed myosin head. We have shown that the knownproblems of the 
lassi
al Huxley and Simmons 1971 formulation 
an be resolved ifthe elasti
ity of the bi-stable 
on�guration is taken into 
onsideration. More re
entmodels have taken the path abandoning the strong physi
al relation between therate 
onstants and the stret
h of the elasti
 element. We have improved the Hux-ley and Simmons model by not only maintaining this relation but even makingit stronger through introdu
ing a di�usion pro
ess instead of a jump pro
ess tomodel the 
hange in 
on�guration of the myosin head. We have provided a de-tailed analyti
al des
ription of the model and demonstrated 
omplete quantitativeagreement with experimental mesurements.Two predi
tions of the model 
an be dire
tly 
ompared to experiments. First,we have shown that in our model, the plateau in the T2(δ) 
urve 
an be obtainedwith only two stable 
onformations of the myosin head. In 
ontrast, in other modelsat least three states have been postulated to a
hieve this result, see for instan
e[48℄. The existen
e of a third intermediate state between the pre-power stroke andthe post-power stroke states is still under debate. Se
ond, we have 
onstru
ted aquantitative model of kineti
s whi
h predi
ts realisti
 rate of re
overy r(δ). In away we managed to 
ir
umvent the two main drawba
ks of the original Huxley andSimmons model.The main result of the �rst part of this Thesis is that the size of the powerstroke is not �xed, not even for a single Xb. Our model predi
ts that, similar toexperiments, it 
hanges 
ontinuously with varying tension in the elasti
 element.This understanding 
an give a new insight 
on
erning the interpretation of theexperimental observations obtained with X-ray interferen
e in [84℄. These experi-ments 
learly show that the size and the speed of the power stroke depend on theload. Our model predi
ts that the large power stroke of about 10 nm proje
tedfrom 
rystallographi
 studies [61℄ is a
tually possible only when the loads a
tingon the elasti
 element are su�
iently low, i.e. when the imposed step in lengthrelaxes the elasti
 element almost 
ompletely. This result follows from the fa
t thatin the new model the lo
ation of the minima of the total energy depends on the152



Con
lusionsapplied length step. We 
an therefore 
onfront the 
laims that the energy requiredto stret
h the elasti
 element should be larger than the free energy available fromthe ATP hydrolysis. It is this problem with ATP that has lead some resear
her topostulate three or more 
onformational states for the Xb whi
h are all a
tivatedduring the power stroke (see for instan
e [67℄).The idea of 
onsidering additional elasti
ity in ea
h 
hemi
al state o

upiedby a Xb has been previously put forward in [12℄, [17℄, [18℄, and used in severallater models. However, in all these models, the elasti
ity of the Xb has beenadded at the expense of the elasti
 element in series. We have shown that in thissetting, an independent phenomenologi
al de�nition of the 
hemi
al rate 
onstantsasso
iated with the transition from one state to another be
omes ne
essary. Evenif the ratio of these 
onstants is well de�ned by the di�eren
e of the free energiesof the states, nothing is known about the shape of the energy between the statesand this information has to be smuggled into the theory impli
itly. This is doneby exploiting a freedom in 
hoosing the dependen
e of the rate 
onstants on theimposed step. We have shown that this freedom has often been used to �t theexperimental behavior, and that the resulting phenomenologi
al models have norelation to a
tual mi
ros
opi
 me
hanism of the transition between the states.In this sense the model proposed in Chapter 2 is a
tually 
loser to the originalHuxley and Simmons' model where the step dependen
e of the 
hemi
al 
onstants isuniquely de�ned by the shape of the energy than most of the re
ent improvements ofthis model. Sin
e we managed to preserve a transparent me
hani
al interpretationof the for
e produ
ing me
hanism, our model opens the way to reprodu
e theunderlying ma
hinery arti�
ially.In the se
ond part of the Thesis we have made a �rst attempt to develop apurely me
hani
al interpretation of the entire Xb-
y
le. Sin
e we have �rst givena me
hani
al interpretation of the power stroke part of the 
y
le, allowing one topla
e it in a di�usion framework, a natural 
hoi
e to 
omplete the model was touse the ideas of the Brownian rat
het theory whi
h have already been applied tomodel the di�usion of a parti
le in an asymmetri
 periodi
 potential representingthe a
tin �lament.In Chapter 3 we revisited the theory of Brownian rat
het and applied it dire
tlyto mus
le 
ontra
tion. Our 
hoi
e of using a Magnas
o type model to simulatethe atta
hment-deta
hment pro
ess allowed us to maintain the model in a purelyme
hani
al framework, avoiding the use of jump pro
esses. We have adapted thismodel to our purpose and developed a 
ooperative version where the parti
les are153



Con
lusionselasti
ally atta
hed to a 
ommon ba
kbone simulating the thi
k �lament. We alsodeveloped a numeri
al algorithm to study the behavior of our sto
hasti
 system anddemonstrate that the resulting model 
an predi
t a realisti
 for
e velo
ity 
urve.Then we applied these ideas to the modeling of the whole Xb 
y
le. Theresulting approa
h is original be
ause the des
ription of the power stroke in termsof the di�usion pro
ess is new and be
ause we propose a new way of insertingthe power stroke into a Brownian rat
het model. By using the new 
ooperativemodel we have a
hieved some en
ouraging results being able to reprodu
e themain qualitative features of the whole Xb 
y
le. In our model the power strokeof the head stret
hes the elasti
 element whi
h in turn pulls the myosin ba
kboneand 
auses 
ontra
tion. In the meantime a slower pro
ess allows the myosin headto 
ome ba
k to the pre-power stroke state to re
harge, leaving the tension inelasti
 element almost 
onstant. Finally, due to the motion of the myosin ba
kbonegenerated by other heads, the �rst head generates another power stroke and the
y
le repeats itself. one of the main advantages of the ensuing uni�ed model ofthe power stroke and the atta
hment-deta
hment phenomenon is its simpli
ity andanalyti
al trasparen
y. While we have not made a thorough analysis of the newmodel, we were able to demonstrate 
onvin
ingly the main e�e
ts.We dis
ussed limitations of our new interpretation of the Xb 
y
le and made animportant general observation, regarding the need to give a more 
lear interpreta-tion of the very meaning of the power stroke. In this perspe
tive a mu
h stronger
ollaboration with biophysi
ists, bio
hemists and physiologists be
omes 
ru
ial.
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Appendix A
Appendix
A.1 Brownian motionMa
ros
opi
 movements of the body originate from the mi
ros
opi
 movements ofsmall proteins (myosin) at distan
es of few nanometers. These movements if prop-erly 
oordinated result, at a ma
ros
opi
 s
ale, in the 
ontra
tion of the mus
les.At the mi
ro-s
ale thermal �u
tuations of the proteins due to intera
tion with theparti
les of the surrounding �uids 
an not be ignored. We review in this Appendixthe mathemati
al des
ription of su
h �u
tuations, starting form the basi
 
on
eptsof probability needed to introdu
e the random motion of a free protein in a �uid(Langevin equation). We then re
all the link between its mobility and the dif-fusion 
oe�
ient (Einstein's relation). Then, we derive the sto
hasti
 di�erentialequation whi
h des
ribes the probability distribution in the 
ase of a system evolv-ing in an external potential (Fokker-Plank equation). We spe
ialize it to the highfri
tion limit whi
h is, of main interest in mus
le me
hani
s. Finally we reviewthe Kramers' theory and the 
on
ept of the �rst passage time adapted to a doublewell potential. we 
on
lude with the analysis of di�usion of a parti
le in periodi
potential. A more detailed dis
ussion of the related 
on
ept 
an be �nd in [74℄ and[23℄.
A.2 ProbabilityFor 
onvenien
e of the reader we begin by mentioning some basi
 
on
ept of theprobability theory. First of all, there are three axioms des
ribing the probability155



Appendix
P of a set of events A, P (A):

P (A) ≥ 0 ∀A; (A.1)
P (Ω) = 1, (A.2)where Ω is the set of all events, and

Ai ∩Aj = ⊘; ∀i 6= j ⇒ P (∪iAi) =
∑

i

P (Ai). (A.3)Next we need the de�nition of 
onditional probability. The probability of A ata given B is equal to:
P (A | B) = P (A ∩B)/P (B). (A.4)If Bi is a 
olle
tion of non-overlapping sets whose union is the total spa
e Ω, weobtain: ∑

i

P (A ∪Bi) = P (A). (A.5)If a random variable ξ is 
ontinuous we 
an de�ne its probability density p(ξ).The probability of ξ to be between the values ξ0 and ξ0 + dξ0, is then p(ξ0)dξ0 =

P (ξ0 ≤ ξ ≤ ξ0 + dξ0). The equation (A.5) 
an now be rewritten as:
p(x) =

∫ ∞

−∞

p(x | y)p(y)dy. (A.6)A physi
al way to 
onstru
t pξ(x) (the probability that a sto
hasti
 variable ξassumes the value between x and x+ dx), is to measure a large number of valuesof ξ and to de�ne:
pξ(x) = lim

N→∞

1

N

N∑

n=1

(δ(x− ξn)). (A.7)The mean value of a fun
tion of random variable f(ξ) will be indi
ated by thebra
kets < > and 
omputed as following:
< f(ξ) >=

∫
f(x)pξ(x)dx. (A.8)When f(ξ) = ξn, formula (A.8) generates the moment of degree n of a sto
hasti
variable ξ.If we 
onsider two sto
hasti
 variables, ξ and η, the joint probability density isde�ned by the expression:

pξ,η(x, y)dxdy = Pξ,η(x ≤ ξ ≤ x+ dx; y ≤ η ≤ y + dy) (A.9)156



The Langevin Equation Se
tion A.3The mean value of f(ξ, η) will then be a double integral:
< f(ξ, η) >=

∫ ∫
f(x, y)pξ,η(x; y)(x)dxdy. (A.10)We will also need the 
hara
teristi
 fun
tion of the sto
hasti
 variable ξ:

Cξ(u) =< eiuξ >=

∫
eiuξpξ(x)dx. (A.11)If Cξ(u) is known the moment of grade n 
an be 
omputed by di�erentiation:

Mn =< ξn >=
1

in
dnCξ(0)

dun
. (A.12)Inversely, if all moments are known we 
an write:

Cξ(u) = 1 +

∞∑

n=1

(iu)nMn/n! (A.13)The last formula will be used in the derivation of the Fokker-Plank equation.A.3 The Langevin EquationAt �nite temperature, a parti
le of mass m embedded in a vis
ous �uid will besubje
ted to a series of hits from the mu
h smaller parti
les of the �uid, that a
tlike a random for
e reservoir. We 
all this for
e Γ(t). The equation of overdampedmotion for the parti
le in the absen
e of other external for
es 
an be written as:
v̇(t) + γv(t) = Γ(t) (A.14)where γ = η/m and η is the drag 
oe�
ient 
hara
terizing the size and the shapeof the parti
le. Equation (A.14) is 
alled the Langevin Equation. Here Γ(t) isa sto
hasti
 fun
tion, whi
h mean that at a given t, Γ(t) represents a sto
hasti
variable. The values Γ(t1) and Γ(t2) represent two distin
t sto
hasti
 variables if

t1 6= t2. We shall be 
onsidering a one-dimensional problem and impose on Γ tworestri
tions. First, it must have zero average:
< Γ(t1) >=

∫
x1pΓ(x1, t1)dx1 = 0 (A.15)where pΓ(x, t) is the probability that Γ assumes the value x at time t. Se
ond theremust be no 
orrelation in time:

< Γ(t1)Γ(t2) >=

∫ ∫
x1x2pΓ(x1, t1; x2, t2)dx1dx2 = qδ(t1 − t2). (A.16)157



AppendixThe Langevin for
e with 
orrelations des
ribed by (A.15) and (A.16), is 
alled awhite noise. From equation (A.14), we 
an write:
v(t) = v0 exp[−γt] +

∫ t

0

exp[−γ(t− t′)]Γ(t′)dt′ (A.17)where v0 is the value of v at t = 0, whi
h we assume to be zero from now on. Todetermine the value of q, we 
an 
ompute:
< v(t1)v(t2) >=

〈∫ t1

0

∫ t2

0

exp[−γ(t1 + t2 − t′1 − t′2)]Γ(t′1)Γ(t′2)dt
′
1dt

′
2

〉 (A.18)whi
h gives:
< v(t1)v(t2) >=

q

2γ
exp[−γ|t1 − t2|] −

q

2γ
exp[−γ(t1 + t2)]. (A.19)In the long time limit γt1 ≫ 1 and γt2 ≫ 1 only the �rst term in the right-handside of equation survives

< v(t1)v(t2) >=
q

2γ
exp[−γ|t1 − t2|]. (A.20)Now, re
alling that in the state of thermal equilibrium the equipartition law of
lassi
al statisti
al me
hani
s must be satis�ed, we 
an write:

< E >=
1

2
kBT =

1

2
m < [v(t)]2 >=

1

2
m
q

2γ
. (A.21)From (A.21) we obtain for q the following expression:

q =
2γkBT

m
. (A.22)Observe that while we did not give the 
omplete des
ription of the probabilitydistribution for Γ(t), the linearity of (A.14) allowed us to 
ompute the two-time
orrelation < v(t1)v(t2) > by using only a limited information (A.15) and (A.16).Similarly, we 
an also 
ompute the mean square displa
ement < (x(t))2 > of aposition of the parti
le,

< (x(t))2 >=

〈[∫ t

0

v(t1)dt1

]2
〉

=

〈∫ t

0

v(t1)dt1

∫ t

0

v(t2)dt2

〉 (A.23)
=

∫ t

0

∫ t

0

< v(t1)v(t2) > dt1dt2Now from (A.19):
< (x(t))2 >=

∫ t

0

∫ t

0

q

2γ
exp[−γ|t1 − t2|] −

q

2γ
exp[−γ(t1 + t2)]dt1dt2 (A.24)158



Di�usion of a parti
le in a �uid Se
tion A.4
x+ 2∆ x xx x+∆ x

P=1/2 P=1/2

Figure A.1: Di�usion of a parti
leSo that:
< (x(t))2 >=

q

γ2
t− q

2γ

(1 − exp[−γt])2

γ2
− q

γ3
(1 − exp[−γt])2. (A.25)Again in a long time limit (γt≫ 1) the leading term 
an be simpli�ed:

< (x(t))2 >= 2
q

2γ2
t = 2

kBT

mγ
t = 2Dt. (A.26)The relation (A.26) is 
alled the Einstein's relation. In order to see why D is
alled the di�usion 
oe�
ient we need to introdu
e a 
ontinuum des
ription forthe movement of a parti
le in a vis
ous �uid.A.4 Di�usion of a parti
le in a �uidThe analysis in the previous se
tion allowed us to 
ompare the mean square dis-pla
ement of a parti
le with mass m in a vis
ous �uid subje
ted to a random for
ewith zero mean and 
orrelations proportional to a δ fun
tion. The analysis wasmade for a single parti
le and at a mi
ros
opi
 level. Now we would like to des
ribethe evolution of an ensemble of N parti
les in a �uid, reasoning in terms of the
on
entration of the parti
les and the �ux of matter. In this sense the des
riptionwill be ma
ros
opi
.Without saying anything regarding the physi
al me
hanisms of the motion, weassume that the parti
le in a position x 
an move to positions x±∆x during time

∆t with equal probabilities as shown in Fig. A.1.The number of parti
les that will pass through the se
tion x+ ∆x in time ∆t
an be related to the number of parti
les between x and x+ ∆x, whi
h is equal to
c(x)∆x, where c(x) is the 
on
entration. The number of parti
les between x+ ∆xand x+ 2∆x, is c(x+ ∆x)∆x, therefore

∆tJ(x+ ∆x) =
1
2
(c(x) − c(x+ ∆x))

∆x
∆x2 (A.27)159



Appendixwhere J(x) the �ux of parti
les trough x. De�ning D as the ratio between 1
2
∆x2and ∆t (whi
h we suppose to be �nite), we obtain:

J(x, t) = −D∂c(x, t)
∂x

(A.28)This formula gives the Fi
k's law of di�usion.A non zero gradient in the �ux trough the area A will 
hange the lo
al 
on
en-tration. We 
an write the following equation of mass balan
e:
∆c(x, t) =

A(J(x, t) − J(x+ ∆x, t))∆t

A∆x
⇒ ∂c(x, t)

∂t
= −∂J(x, t)

∂x
(A.29)If we now use the Fi
k's law, we obtain the following PDE for the 
on
entration:

∂c(x, t)

∂t
= D

∂2c(x, t)

∂x2
. (A.30)For the probability distribution of the position x for one parti
le p(x, t) = c(x, t)/N ,we 
an similarly write:

∂p(x, t)

∂t
= D

∂2p(x, t)

∂x2
. (A.31)To solve equation (A.31), we introdu
e the Fourier transform of p(x, t) in x

p̂(ω, t) =

∫ ∞

−∞

e(−iωx)p(x, t)dx. (A.32)Computing derivative in time we obtain:
∂p̂(x, t)

∂t
= D

∫ ∞

−∞

e(−iωx)
∂2p(x, t)

∂x2
dx (A.33)Finally, integrating by parts and letting the probability p(x, t) tend to zero as xgoes to in�nity, we obtain:

∂p̂(x, t)

∂t
= −Dω2p̂(x, t). (A.34)To illustrate the meaning of 
oe�
ients, we 
an solve this di�erential equationwith an initial 
ondition given by a delta fun
tion 
entered in the origin. Then
omputing the inverse Fourier transform, we obtain the probability distribution ofthe position of a parti
le at time t in the form:

p(x, t) =
1√

4πDt
e−

x2

4Dt . (A.35)With this expression of p(x, t), we 
an 
ompute the mean value for every fun
-tion of the sto
hasti
 variable x. In parti
ular, the mean value of x2 be
omes:
< x2 >=

∫ ∞

−∞

x2 1√
4πDt

exp

[
− x2

4Dt

]
]dx = 2Dt. (A.36)160



The Fokker-Plank equation Se
tion A.5We 
an now identify the 
oe�
ient D in (A.36) with the D in (A.26). From this
onsiderations one 
an relate the ma
ros
opi
 di�usion 
oe�
ient to the mi
ro-s
opi
 information regarding the me
hani
al motion of a parti
le. Equation (A.31)is a parti
ular example of a 
lass of equations known as Fokker-Plank equation,whose general derivation will be the subje
t of the next Se
tion.A.5 The Fokker-Plank equationWe re
all that pξ(x, t)dx is the probability that a random variable ξ assumes avalue between x and x+ dx at time t. In the time dependent 
ase, equation (A.6)
an be rewritten as:
p(x, t+ τ) =

∫
p(x, t+ τ | x′, t)p(x′, t)dx′. (A.37)To obtain a di�erential equation for p(x, t) we suppose to know all the moments

Mn of p(x, t+ τ | x′, t) with respe
t to x′:
Mn(x

′, t, τ) =< (ξ(t+ τ) − x′)n > (A.38)Then, the fun
tion p(x, t+ τ) is equal to the inverse Fourier transform of its 
har-a
teristi
 fun
tion (see (A.11)). Therefore:
p(x, t+ τ) =

1

2π

∞∑

n=0

(∫ ∞

−∞

exp[−i(x− x′)u]
(iu)n

n!
du

)
Mn(x

′, t, τ). (A.39)By using the identity
1

2π

∫ ∞

−∞

exp[−i(x− x′)u](iu)ndu =

(
∂

∂x

)n
δ(x− x′) (A.40)we 
an write:

p(x, t+ τ | x′, t) =

[

1 +

∞∑

n=1

1

n!

(
∂

∂x

)n
Mn(x, t, τ)

]

δ(x− x′). (A.41)Inserting the last equation into (A.37) we obtain an expression for the �rst deriva-tive of the probability distribution p(x, t):
p(x, t+ τ)− p(x, t) =

∂p(x, t)

∂t
τ +O(τ 2) =

∞∑

n=1

(
− ∂

∂x

)n
Mn(x, t, τ)

n!
p(x, t) (A.42)Now, expanding Mn(x, t, τ) in τ and dropping the terms that go to zero with

τ we obtain:
∂p(x, t)

∂t
=

∞∑

n=1

(
− ∂

∂x

)n
Dn(x, t)p(x, t), (A.43)161



Appendixwhere Mn(x, t, 0) = 0 be
ause no jumps take pla
e, and
Dn(x, t) =

1

n!
lim
τ→0

Mn(x, t, τ)

τ
. (A.44)By trun
ating this equation at n = 2, we obtain the Fokker-Plank equation:

∂p(x, t)

∂t
= − ∂

∂x
(D1(x, t)p(x, t)) +

∂2

∂x2
(D2(x, t)p(x, t)) (A.45)One 
an show that if the noise Γ in the Langevin equation (A.14) 
an be des
ribedby a Gaussian distribution, all the moments Mn with n > 3 are equal to zero. Inthis 
ase, the probability distribution p(x, t) satis�ed the Fokker-Plank equation(A.45) exa
tly. From (A.14) we 
an 
ompute:

D1 = lim
τ→0

〈v(t+ τ) − v(t)〉
τ

= lim
τ→0

1

τ

∫ t+τ

t

〈−γv(t′) + Γ(t′)〉 dt′ = −γv(t) (A.46)and in a similar way:
D2 =

1

2
lim
τ→0

〈(v(t+ τ) − v(t))2〉
τ

= (A.47)
1

2
lim
τ→0

1

τ

〈∫ t+τ

t

−γv(t′) + Γ(t′)dt′
∫ t+τ

t

−γv(t′′) + Γ(t′′)dt′′
〉

=

1

2
lim
τ→0

1

τ

∫ t+τ

t

∫ t+τ

t

〈
γ2v(t′)v(t′′)

〉

+ 〈−γv(t′)Γ(t′′) − γv(t′′)Γ(t′)〉 + 〈Γ(t′′)Γ(t′)〉 dt′dt′′With τ → 0 the �rst term in the integral above goes to zero as τ 2 and the se
ondterm has a zero average. Therefore we 
an write:
D2 =

q

2
(A.48)where q was de�ned in (A.22). To summarize, for the pro
ess des
ribed in (A.14),the probability distribution for velo
ity, satis�es the following partial di�erentialequation:

∂p(v, t)

∂t
= γv

∂p(v, t)

∂v
+
q

2

∂2p(v, t)

∂v2
(A.49)This equation 
an also be written as:

∂p

∂t
+
∂S

∂v
= 0 (A.50)where we de�ned the probability �ux S

S =

[
−γv − q

2

∂

∂v

]
p. (A.51)162



High fri
tion limit Se
tion A.6From this expression for the �ux we 
an immediately obtain the steady statedistribution. Indeed the boundary 
ondition S(±∞) = 0 ensures that S = 0.Therefore:
p(v) =

√
m

2πkBT
exp

[
− mv2

2kBT

]
. (A.52)whi
h is known as the Maxwell distribution.A.6 High fri
tion limitIf we 
ouple the Langevin equation (A.14) with the equation for the parti
le posi-tion:

∂x

∂t
= v(t) (A.53)It leads to a Fokker-Plank equation for two variables: position and velo
ity. Wethen write:

Dx = lim
τ→0

〈x(t+ τ) − x(t)〉
τ

= lim
τ→0

1

τ

∫ t+τ

t

〈v(t′)〉 dt′ = v(t) (A.54)and:
Dxx = Dxv = Dvx = 0 (A.55)We therefore obtain:

∂p(x, v, t)

∂t
=

[
−∂v
∂x

− ∂

∂v
(−γv) +

∂2

∂v2
(
γkBT

m
)

]
p(x, v, t) (A.56)Now, we 
an expe
t that solving equation (A.56) for p(x, v, t) and integratingit in v we obtain the distribution of the parti
le position p(x, t). equation (A.56)
ontains a full des
ription of the inertial e�e
ts due to �nite mass m. As we havealready seen the inertial e�e
ts 
an be negle
ted if t is su�
iently large. In theopposite limit, when t is small vis
osity is not important and the parti
le moves ata 
onstant velo
ity. Using realisti
 values of 
onstants, one 
an 
on
lude that theinertial des
ription is relevant only for times of the order of t = 10−13s and for thedispla
ements of the order of 0.01nm, less than the diameter of the water mole
ulethat hits the parti
le. For these reasons in what follows we limit our attention tothe high fri
tion limit, in whi
h the mass of the parti
le has a negligible e�e
t.A.6.1 The Fokker-Plank equation in the high-fri
tion limitNegle
ting the e�e
t of mass, we shall instead fo
us on the e�e
t of an externalfor
e, des
ribed by a potential U(x). In this 
ase, we obtain a Langevin Equation163



Appendixof the type:
ηẋ(t) + U ′(x) = Γ(t). (A.57)To respe
t the dimensionality the Γ(t) in (A.57), must be equivalent to the Γ(t)used in (A.14) time the mass. Therefore we 
an write:

< Γ(t1) >= 0 (A.58)and:
< Γ(t1)Γ(t2) >= qm2δ(t1 − t2) = 2

ηkBT

m2
m2δ(t1 − t2) = 2ηkBTδ(t1 − t2) (A.59)Following the derivation of the Fokker-Plank equation in the general 
ase (equa-tions (A.46))-((A.47)), and using (A.59) we obtain:

D1(t) = −U
′(x(t))

η
. (A.60)From (A.59) we also obtain that:

D2(t) =
ηkBT

η2
=
kBT

η
. (A.61)Unifying all these ingredients we �nally obtain the Fokker-Plank equation relatedto equation (A.57) in the form:

∂p(x, t)

∂t
=

1

η

∂

∂x

(
U ′(x)p(x, t) + kBT

∂p(x, t)

∂x

)
. (A.62)We 
an also rewrite equation (A.62) in the form:

∂p

∂t
+
∂S

∂x
= 0. (A.63)where:

S =

[
D1 −

∂

∂x
D2

]
p = −U

′(x)

η
p− kBT

η

∂p

∂x
(A.64)is the �ux of probability. In the stationary state ∂p

∂t
= 0 is 
onstant and S = const.The value of S in the stationary state is given by the boundary 
onditions.In the 
ase of a re�e
ting barrier, a parti
le rea
hing the boundary is re�e
tedba
k and the net �ux S is zero. Sin
e the �ux is 
onstant in the stationary state,

S = 0 means automati
ally that both boundaries must be re�e
ting. Anothertype of boundary is the absorbing boundary. In this 
ase the parti
le rea
hing theboundary disappears (and is eventually brought to the other boundary to preservethe normalization 
ondition). The probability to �nd a parti
le on the absorbingboundary is equal to zero. 164



High fri
tion limit Se
tion A.6In the stationary state, with re�e
ting boundaries, we 
an solve (A.64) andobtain:
ps(x) = N exp

[−U(x)

kBT

] (A.65)Here N is determined by the normalization 
ondition ∫ ps(x) = 1.A.6.2 Canoni
al distributionEquation (A.65) known as Canoni
al distribution and is derived dire
tly in equi-librium statisti
al me
hani
s. The fundamental postulate of statisti
al me
hani
sasserts that, in equilibrium the system A is likely to be found in any one of thestates a

essible to it, for instan
e the probability P to �nd the system betweenthe energy E and E+δE is proportional to the number of states Ω(E) with energy
E

p(E) = CΩ(E) (A.66)The 
onstant C, independent of E, is given by the normalization 
ondition C−1 =
∑

E Ω(E). We 
an de�ne the temperature by
1/kBT = ∂ ln Ω(E)/∂Ewhere kB = 1.381·10−23J/K is the Boltzmann 
onstant. The distribution (A.66) is
alled mi
ro
anoni
al. When two systems, A and A′, are in equilibrium, the totalprobability ptot(E) that the system A has the energy E is given by the produ
t

CΩ(E)Ω′(E ′) = CΩ(E)Ω′(E0 −E) where E0 is the total energy and E ′ the energyof the se
ond system. We 
an write the equilibrium 
ondition in the form:
∂ ln ptot(E)

∂E
= 0 (A.67)whi
h gives T (E) = T ′(E ′), so the temperatures of the two system must be equal.Now, if we 
onsider a single Xb in equilibrium with a heat reservoir. Theprobability that the Xb has the energy Er, is equal to the probability that the heatreservoir has the energy E0 − Er: ps = C ′Ω′(E0 − Er). Be
ause Er ≪ E0 it ispossible to expand the logarithm of Ω′ as:

ln Ω′(E0 − Er) = ln Ω′(E0) −
[
∂ ln Ω′

∂E ′

]

0

Er (A.68)Then
Ω′(E0 − Er) = Ω′(E0)e−Er/kBT (A.69)165



Appendixand therefore:
ps =

e−Er/kBT

Σre−Er/kBT
. (A.70)where the 
onstant C ′ has been again de�ned by the normalization. The subs
ript

s indi
ates equilibrium or steady state. This distribution (A.70) is 
alled 
anoni-
al. Knowledge of this distribution is su�
ient to derive the 
ondition of detailedbalan
e imposed by Huxley and Simmons on the ratio of the kineti
 
onstants,
k+/k− (equation (1.14)).A.6.3 The First passage timeIn the high fri
tion limit one 
an 
ompute the time needed for a parti
le to exitfrom a region bound by 
ertain potential barriers. We 
an start with the simplest
ase of a Langevin equation (A.14), when there is no external potential term and
D1 is zero.Consider a region with a re�e
ting boundary on the left and an absorbingboundary on the right. As we have already mentioned, one should remove theparti
les on the right and put them ba
k on the left, in order to have a steadystate and to maintain the normalization of the ps(x). In this 
ase we have a
onstant �ux equal to the number of parti
les per unit of time that interse
ts agiven 
ross se
tion. The mean �rst passage time is de�ned as the inverse of this�ux be
ause it is the time needed for a parti
le starting from the left boundary torea
h the right boundary. The Fokker-Plank equation redu
es to:

∂p

∂x
= const. (A.71)This equation must be supplemented by the boundary 
ondition:

p(x0) = 0 (A.72)and the normalization 
ondition:
∫ x0

0

p(x) = 1. (A.73)We obtain:
ps(x) =

−2x

x0
+

2

x0
⇒ J(x0) = −Ddp

dx
=

2D

x2
0

(A.74)and therefore, the mean �rst passage time is:
tk =

x2
0

2D
. (A.75)166



Kramers' approximation Se
tion A.7Not surprisingly, this is the same result whi
h we obtained (A.36) when we 
on-sidered the average distan
e traveled by a parti
le in a given time.More interesting is the 
ase of a parti
le subje
ted to a for
e whi
h is derivedfrom a potential. Suppose J0 is the 
onstant value of the �ux. We 
an multiply(A.64) by exp[−U(x0)/kBT ] and integrate between x and x0 (where p(x0) = 0),obtaining:
p(x) =

J0

kBT/η
exp [−U(x)/kBT ]

∫ x0

x

exp [U(x)/kBT ] dx. (A.76)Integrating again between 0 and x0, an interval over whi
h the total probabilitymust be equal to one, we 
an represent the inverse of the �ux as:
tk =

η

kBT

∫ x0

0

(
exp [−U(x′)/kBT ]

∫ x0

x′
exp [U(x′′)/kBT ] .dx′′

)
dx′. (A.77)This integral 
an be 
omputed expli
itly when the external for
e is 
onstant and

U(x) = −Fx. We obtain:
tk = 2(ηx2

0/2kBT )(kBT/Fx0)
2 [exp(−Fx0/kBT ) − 1 + Fx0/kBT ] . (A.78)In the harmoni
 
ase U(x) =
Kx2

2
, an approximate analyti
al solution 
an beobtained in the approximation U(x0) ≫ kBT [64℄:

tk =
η

K

π

4

kBT

U(x0)
exp

[
U(x0)

kBT

]
. (A.79)Equation (A.79) gives the mean time needed for a parti
le to exit a paraboli
 well.A.7 Kramers' approximationIn 1940, Kramers 
onsidered the problem of an es
ape from a well in relations tokineti
s of mole
ular transformations. He introdu
ed an ansatz whi
h is now 
alledthe Kramers' approximation and solved the problem with a double well potential(see Fig. A.2). By using this approximation one 
an show the relation between thekineti
 equation (1.15) used by Huxley and Simmons and the original Fokker-Plankequation asso
iated with a general double well potential with minima in x = a and

x = c and the maximum (the energeti
 barrier) in x = b.We begin by de�ning:
M(x, t) =

∫ x
−∞

p(x′, t)dx′

Na(t) = 1 −Nc(t) = M(b, t)

N0(t) = (c− a)p(x0, t).

(A.80)167



Appendix

Figure A.2: a) Double welled potential U(x) b) Stationary distribution ps(x) 
) Mean �rstpassage time. From [74℄Here x0 is a generi
 point between a and c. The 
orresponding stationary quantitiesare:
na = 1 − nc =

∫ b
−∞

ps(x
′)dx′

n0 = (c− a)ps(x0)
(A.81)From the FPE (A.62) we obtain:

∂

∂t

∫ x0

a

M(x, t)

ps(x)
dx = D

[
p(x0, t)

ps(x0)
− p(a, t)

ps(a)

] (A.82)where D is de�ned in (A.61).The Kramers' approximation assumes rapid relaxation within ea
h well 
om-pared to the time s
ale of a well to well transition. Therefore one 
an assume thatin ea
h well the distribution p(x, t) is well approximated by the stationary distri-bution ps(x) 
orre
ted by the 
orresponding weights. More pre
isely, the fun
tion
p(x, t) is approximated by:

p(x, t) =






ps(x)
Na(t)

na
x < b

ps(x)
Nc(t)

nc
x > b

(A.83)Now we 
an write, from (A.82):





κ(x0)Ṅa(t) = D

[
N0(t)

n0

− Na(t)

na

]

µ(x0)Ṅc(t) = D

[
N0(t)

n0
− Nc(t)

nc

]
,

(A.84)Here
κ(x0) ≃

∫ x0

a

ps(x)
−1dx, (A.85)168



Brownian motion in a periodi
 potential Se
tion A.8and
µ(x0) ≃

∫ c

x0

ps(x)
−1dx. (A.86)Sin
e −Ṅa(t) = Ṅc(t) we 
an sum both equations (A.84), and write:

Ṅa(t) = −Ṅc(t) = −raNa(t) + rcNc(t) = rc − (ra + rc)Na(t). (A.87)Here:
ra = D

[
na

∫ c

a

ps(x)
−1dx

]−1 (A.88)
rc = D

[
nc

∫ c

a

ps(x)
−1dx

]−1 (A.89)Equation (A.87), is the so 
alled master equation des
ribing the pro
ess inwhi
h the parti
les 
an jump between the two wells with rate 
onstants ra and rc.Solving for Na(t), we obtain an exponential solution des
ribing relaxation to thesteady state. The relaxation time is given by:
τ−1
r = ra + rc =

(na + nc)D

(nanc)
∫ c
a
ps(x)−1dx

. (A.90)Equation (A.87), is equivalent to equation (1.15) used by Huxley and Simmons.In general, it is possible to show that a FPE 
an always be approximated by ajump pro
ess (master equation) 1 but not vi
e-versa. Noti
e that in the Kramers'approximation the rate 
onstants are not phenomenologi
al and have a pre
iseme
hani
al origin.A.8 Brownian motion in a periodi
 potentialUntil now, we have been 
onsidering potentials in whi
h the parti
les were 
on-strained in a �nite region. In this 
ase, the �ux in the stationary state was equal tozero. This 
ondition allowed us to obtain the expli
it expression for the stationarydistribution ps(x) (see (A.65)).Another type of stationary solution, when the total probability �ux is not zero,
an be found in the 
ase when a parti
le is moving in a periodi
 potential [23℄. The
orresponding equation of motion 
an be written in the form:
γẋ = F − f ′(x) + Γ(t) (A.91)1The general linear master equation for the probability density is

∂pn

∂t
=
∑

m

[p(m→ n)p(m) − p(n→ m)p(n)]169



Appendix
�
�
�
�

x

f

2 π

F

Figure A.3: Periodi
 energy lands
apewhere f is the periodi
 potential, F is a 
onstant for
e and Γ(t) is a white noiseimitating thermal �u
tuations. The 
orresponding FPE is
∂p

∂t
=

1

γ

∂

∂x

[
f ′ − F +D

∂

∂x

]
p = −∂S

∂x
(A.92)In the steady state, the probability 
urrent S is 
onstant, so:

γS = (F − f ′)p−D
∂p

∂x
(A.93)The solution of this equation 
an be written as:

p(x) = exp [−V (x)/D]

(
N − γ

S

D

∫ x

0

exp [V (x′)/D] dx′
) (A.94)with the e�e
tive potential V (x) de�ned by:

V (x) = f(x) − Fx (A.95)(see Fig. A.3). To fully de�ne the steady state solution, we need to obtain thevalues of S and N , from the boundary 
ondition and the normalization 
ondition.To apply the boundary 
ondition in the spe
ial 
ase of a periodi
 potential, we 
an�rst write (assuming 0 ≤ x < 2π):
∫ 2πn+x

0

eV (x′)/Ddx′ =

∫ 2π

0

eV (x′)/Ddx′+· · ·+
∫ 2πn

2π(n−1)

eV (x′)/Ddx′+

∫ 2πn+x

2πn

eV (x′)/Ddx′(A.96)Re
alling that V (x+ 2πn) = V (x) − 2πnF , and de�ning:
I =

∫ 2π

0

eV (x′)/Ddx′ (A.97)170



Brownian motion in a periodi
 potential Se
tion A.8we 
an shift the integration variables in equation (A.97) to obtain
∫ 2πn+x

0

eV (x′)/Ddx′ = I + Ie−2πF/D + · · · + Ie−2π(n−1)F/D +

∫ x

0

eV (x′)/Ddx′e−2πnF/D(A.98)
= I

1 − e−2πnF/D

1 − e−2πF/D
+ e−2πnF/D

∫ x

0

eV (x′)/Ddx′.Introdu
ing this result in (A.94), we obtain:
p(x+ 2πn) = e−V (x)/D

[
N − γSI

D(1 − e−2πF/D)

]
e2πnF/D (A.99)

+e−V (x)/D

[
γSI

D(1 − e−2πF/D)
− γ

S

D

∫ x

0

eV (x′)/Ddx′
]We 
an now require that p(x) is bounded for large x (our boundary 
onditionin the 
ase of periodi
 potential). Then the �rst bra
ket on the right hand side of(A.99) must vanish at n → +∞ for F > 0 (or at n → −∞ for F < 0). Hen
e weobtain the �rst 
ondition between N and S:

γSI = DN(1 − e−2πF/D). (A.100)Next we re
all that in the steady state:
p(x+ 2π) = p(x) (A.101)meaning that the probability distribution is periodi
. Be
ause of the periodi
ity,it is possible to normalize the distribution in only one interval. In this 
ase weobtain the se
ond 
ondition on N :
∫ 2π

0

p(x)dx = 1. (A.102)We remark that in the problem on the entire real axis with lo
alized initial data,the probability p(x, t) never rea
hes a steady state (see [68℄), instead p(x,∞) → 0.It is, however, possible to de�ne a redu
ed probability density p̂(x, t) as:
p̂(x, t) =

+∞∑

n=−∞

p(x+ 2nπ, t) (A.103)
∫ 2π

0

p̂(x, t)dx = 1 (A.104)171



Appendixand the 
orresponding probability �ux:
Ŝ(x, t) =

+∞∑

n=−∞

S(x+ 2nπ, t). (A.105)Then, due to the linearity of the FPE, it 
an be rewritten in �redu
ed� variable as
∂p̂

∂t
= −∂Ŝ

∂x
. (A.106)The advantage of this rewriting is that now the redu
ed probability density

p̂(x, t) subje
ted to the periodi
 boundary 
onditions indeed tends toward a mean-ingful time independent limit.With the two 
onditions (A.100) and (A.102), we 
an obtain the relation be-tween the mean velo
ity of the parti
le and the applied for
e F in the form:
< v >=< ẋ >= γ−1 < F − f ′(x) + Γ(t) >

= γ−1 < F − f ′(x) >= γ−1
∫ 2π

0
(F − f ′(x))p(x)dx

= γ−1
∫ 2π

0
(γS +D∂p/∂x)dx = 2πS

(A.107)The drift velo
ity is then given by the formula whi
h we used in the body of theThesis
γ < v >= (A.108)

2πD(1 − e−2πF/D)
∫ 2π

0
eV (x)/Ddx

∫ 2π

0
e−V (x)/Ddx− (1 − e−2πF/D)

∫ 2π

0
e−V (x)/Ddx

∫ x
0
eV (x′)/Ddx′

.A.9 Gillespie methodThe Gillespie method was developed in 1977 [15℄. Mathemati
ally it belongs to the
ategory Kineti
s Monte Carlo methods, and 
an simulate the behavior of a systemwith known rate 
onstants. The method is used in Se
tion 2.7.1 to predi
t whi
hXb 
hange 
on�guration at every instant of time in a 
hain of half-sar
omeres ea
hformed by NXb Xbs. The length of ea
h half-sar
omeres a�e
ts the rate 
onstantsof the 
hange of 
on�guration as in the HS71 model. The main features of thealgorithm are:0. Set the time t = 01. Form a list of all possible rates in the system ki(δi), that in our 
ase area fun
tion of the length of the half-sar
omere δi, given in the �rst step as initial
onditions. 172



Gillespie method Se
tion A.92. Cal
ulate the 
umulative fun
tion for
Ri =

i∑

j=1

ki(δi) (A.109)for i = 1, · · · , N where N is the total number of transitions. Denote R = RN .3. Get a uniform random number u ∈ [0, 1].4. Find the event to 
arry out i by �nding the i for whi
h Ri−1 < uR ≤ Ri.5. Carry out event i and update the new values of δi.6. Re
al
ulate all rates ki(δi) whi
h may have 
hanged due to the transition.Update N and the list of events a

ordingly.7. Get a new uniform random number u ∈ [0, 1].8. Update the time with t = t+ ∆t where ∆t = − log u/R.9. Return to step 2.For a more detailed des
ription of the model see [15℄.
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