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Introdution
Skeletal musle ontration is a broad domain of siene that overs many areas,from biophysis and hemistry to mehanis. The foundations of the theory ofmusle ontration were built 50 years ago, when it was understood that it ismyosin �ross-bridge�, linking adjaent myosin and atin �laments, that generatesfore and motion. Sine that time many experimental advanes have been made.These advanes have not been always mathed by improvements in the building ofmathematial models.Mathematial approahes to musle ontration are mainly based on the ideasproposed in the Huxley 1957 model [4℄ and Huxley and Simmons 1971 model [10℄,that dominated the �eld for the past half entury. Although they do not aountfor all observed phenomena, these models still represent the paradigm of hoie.The two models of Huxley an be seen as omplementary sine the Huxley 1957model desribes the attahment-detahment proess and the events related to theslow time sale, while the Huxley and Simmons 1971 model desribes the powerstroke proess and the events related to the fast time sale.In this Thesis we shall follow some reent insight and explore the possibilityto bring together these two type of proesses and to obtain a uni�ed model thatis able to desribe the whole ross-bridge yle. Before the uni�ation we �rstmodify the existing models to ast them into a fully mehanial framework. BothHuxley 1957 model [4℄ and Huxley and Simmons 1971 model [10℄, present ad hoassumptions regarding the hemial rate onstants that drive the proesses. Similarassumptions were made in all reent models to �t the experimental data at theexpense of maintaining the link with mehanis.In Chapter 1 we desribe the physiology of musles and their mehanial be-havior, as well as the orresponding experimental proedures. There we also givethe details of the Huxley 1957 model and Huxley and Simmons 1971 model whihare important for the original development in the subsequent pages.In Chapter 2, we deal with the attahed state and reexamine the power strokeix



theory through the eyes of a mehanial engineer. It has been already observedin the literature [17℄ that the Huxley and Simmons 1971 model of power strokeenounters problems in mathing the observed time sale of tension relaxationwhen a realisti value of the sti�ness of the myosin head is taken. After a reviewof how the more reent models, whih inorporate one or more aspets of theoriginal Huxley and Simmons 1971 model, deal with these problems, we presentour modi�ation of the theory whih plaes the power stroke mehanism entirelyin a mehanial framework. The novelty of our approah from the perspetive ofmehanis is that we deal with the mehanial behavior of a multi-stable systemin a Brownian domain, where the e�ets of thermal �utuations are important.We obtain an analytial desription of the behavior of our model at equilibriumand during the transients and show how the resulting modi�ation of the Huxleyand Simmons 1971 model helps one to avoid the intrinsi problems of this modelindiated above. Finally we show that our model gives a new meaning to thepower stroke step, whih is in quantitative agreement with all reent experimentalobservations.In Chapter 3, we turn to the attahment-detahment proess and review fromthe new, fully mehanial point of view the Huxley 1957 model. We show that thismodel an be viewed as belonging to a lass of models of Brownian rathets. Thesemodels, �rst developed in the early ′90s, have an important role in the desriptionof moleular motors of whih the myosin II is an example. We are interested in theBrownian rathets theory beause it allows one to have a ompletely mehanialinterpretation of the musle ontration proess. We present di�erent types ofrathets representing the proess of ATP hydrolysis. We modify one of these modelsby inluding ooperative e�ets and adapt it to the desription of the slow timephase of the ontration phenomenon. We also develop and test in this Chapter anumerial algorithm to solve the oupled system of stohasti di�erential equationswhih is later used for our numerial experiments.In Chapter 4, we ombine the power stroke model from Chapter 2 with themodel of a ooperative Brownian rathet developed for the simulation of theattahment-detahment proess in Chapter 3. We present di�erent ways of linkingtogether the two models and study both advantages and limitations of eah versionof the uni�ed model. We �nally ome up with a model apable of providing fullymehanial desription of all four stages of the biohemial Lymn-Taylor yle ofmusle ontration. The resulting model still has drawbaks and we present someperspetives regarding how to resolve the remaining problems.



In the last Chapter 5 we ollet the main new developments from eah Chapterand present a general disussion and onlusions. In Appendix we review somemathematial results regarding stohasti di�erential equations whih we used inthe Thesis.





Chapter 1Musle physiology and earlymodeling
1.1 Musle physiologyThe movements of a musle on a marosopi sale appear as the result of theonerted ation of millions of elemental units that work in unison. The moststudied musles are alled skeletal musles beause these musles are attahedto the skeleton. The ontration of skeletal musles is under voluntary ontrol.They belong to the lass of striated musles whih are omposed of long, parallel,ylindrial �bers. Eah of these �bers is a multinuleate ell, of 1 − 100 mm inlength and 10 − 100 µm in diameter. Fibers ontain myo�brils, also ylindrial inshape with a diameter of 0.5 − 2 µm. Myo�brils are made of repeated segmentseah about 2.5 µm in length, that are alled saromeres (Fig. 1.1) [95℄.Saromere is the smallest element of a musle that an ontrat. Being plaedin series, saromeres generate the ontration of the whole musle. Eah saromereis formed by an array of �laments of two di�erent types, whih interat with eahother: a thinner �lament, ontaining the protein Atin, and a thiker �lament,ontaining the protein Myosin. The saromere an be divided in zones: in Fig. 1.2we see a longitudinal and a transverse view of it. In the region where the �lamentsoverlap, six thin �laments are loated around eah thik �lament (Fig. 1.2b).Thin �laments are anhored to the Z-disk (from german zwishen, between) whihonnets adjaent saromeres. Thik �laments are anhored to M-line (Mittel,middle of the saromere, not showed in Fig. 1.2) and also to the Z-disk via an elastielement the giant protein titin. These repeating strutures, (A=anisotropi at thepolarizing mirosope, I=isotropi, H=hell=lear) observed under the mirosope,1



Chapter 1 Musle physiology and early modeling

Figure 1.1: Musle's anatomial mirostruturegenerate the typial striated struture that gives the name to this type of musles[19℄. A longitudinal view as it appears on a eletron morograph is given in Fig.1.3.The sliding-�lament hypothesis was proposed �fty years ago. It assumes thatduring ontration the thin �lament moves past the thik one, so that both the sar-omere, and the musle, shorten without hanging the length of the two strutures.The hypothesis was based on the papers of Hugh Huxley and Jean Hanson [2℄ (usinga phase ontrast light mirosopy) and of Andrew Huxley and Rolf Niedergerke [3℄(using a speially developed interferene light mirosope) both published in 1954.Both works showed that when the musle ontrats the �laments keep a onstantlength, and the onlusion was made that they must slide during shortening. Thishypothesis has not been immediately aepted: the then urrent view was thatmyosin was a long negatively harged polypeptide without muh struture thatshorten down due to the addition of Ca2+ [76℄. Later on, it beame lear that2



Musle physiology Setion 1.1

Figure 1.2: Longitudinal and transverse view of a saromere: (a) Longitudinal view of 3 sar-omeres (sketh). (b) Transverse view at 3 di�erent setion (sketh). () Transverse view of 3saromeres (mirosope). From [97℄
Figure 1.3: Longitudinal view of a saromere as seen in eletron mirgraph. From [98℄the two �laments interat through the ross-bridges (later we use notation Xb);these are the globular portions, or heads, that emerge in regularly repeating ou-ples from the thik �lament formed by the polymerisation of the dimeri proteinmyosin II (Fig. 1.4). Eah head has a site with an a�nity for atin, and a sitewith an a�nity for a high energy moleule, alled ATP (adenosintriphosphate).The �rst site bounds an atin monomer while the seond site an ATP moleulewhih ats as the fuel for the musle motor. ATP is hydrolyzed by myosin inADP (adenosindiphosphate) and orthophosphate whih subsequently are dissoi-ated with release of hemial energy [9℄.A simpli�ed model of Xb yle is shown in Fig. 1.5, where one an see four mostimportant states in whih Xb an exist. When attahed to atin (state 2 in the�gure), eah Xb uses its potential energy to pull the atin �lament through a powerstroke (state 3) whih, aording to rystallographi studies, onsists in a tilting ofthe lever arm portion of the head [33℄. The relative sliding of the �laments takes3
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Figure 1.4: Myosin �lament struture. (a) Myosin moleule (ouple). (b) Bundle of oupledmyosin moleules whih generate the thik �lament. From [100℄plae in one diretion (plus diretion), but due to the antiparallel arrangementof the two halves of the saromere, the two Z-disks are pulled towards the enterof the saromere, reduing its length. In this sense, the half-saromere, the zonebetween one Z-disk and the next M-line, an be seen as the smallest element thatan ontrat. To go bak to its original on�guration (state 1) the Xb needs anotherATP to detah from atin and start another yle (state 4). It then binds to anew ative site on the atin �lament (state 2) and the whole proess starts again[64℄. This inner working is desribed in the bio-hemial Lymn-Taylor model ofa ross-bridge yle [9℄. The yle in Fig. 1.5 is a simpli�ed four-states modelthat omits a number of intermediate states, nevertheless it desribes the essentialsteps of the proess. An important general observation is that musle needs ATPfor both the ontration and the relaxation; the unphysiologial depletion of ATPbelow a ertain onentration will prevent the detahment of the heads from theatin �lament, whih auses rigor mortis [19℄.The struture of the head an be resolved with a preision of one nanometer [33℄,[87℄. It has been proved that the relative displaement of the �laments is mainlytaking plae during the power stroke (state 3). It is ahieved by a rotation of thedistal part (C-terminal) of the head that ats like a lever arm. This mehanismgives to the whole approah the name of swinging lever arm theory.Regulation of the ontration is due to the fat that Xbs an bound atin onlywhen the onentration of alium ions is high enough. The troponin is a protein4
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Figure 1.5: Simpli�ed Cross Bridge (Xb) yle (see text). From [44℄that is attahed to the protein tropomyosin and lies within the groove between thetwo strand of the atin �lament in musle tissue. In a relaxed musle, tropomyosinprevent the interation of myosin with the attahment site on atin, thus preventingontration. When the musle ell is stimulated, alium hannels open in the sar-oplasmi retiulum and release alium into the saroplasm. Some of this aliumions attah to troponin, ausing a onformational hange that moves tropomyosinout of the way so that the Xbs an attah to atin and produe musle ontra-tion. The ions Ca2+ are stored in the saroplasmati retiulum (SR) surroundingthe myo�laments. The ation potential originated at the neuromusolar juntiontriggers the release of alium from the SR almost synhronously everywhere byinduing an inrease in Ca2+ permeability of the SR membrane. The ontrationis maintained until the nerve ontinues to �re; when the train of ation potentialsstops, the Ca2+ permeability falls, while the Ca2+ pump brings bak the aliuminto the SR. The derease of alium onentration below the threshold inativatesthe thin �lament and indues relaxation of musle [19℄ (Fig. 1.6).5
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Figure 1.6: Exitation ontration oupling: shemati desription. From [97℄
We have given here a brief overview of the omplex events that lead to the on-tration of skeletal musles. A omplete desription should take into onsiderationhow the eletrial signal generates the biohemial proesses, with all their om-plexity, whih �nally leads to the mehanial fore or displaement in saromeres.We would like to emphasize that in this work we shall onsider only the mehanialaspets of the ontration, avoiding the desription of proteins interation throughhemial rate onstants. Despite some limitations in the physial interpretationof the �nal model, disussed at the end of the thesis, this approah allows oneto produe a fully mehanial model of the ontration in the saromere, openingthe way to the onstrution of arti�ial musle type mahines. Moreover, as weshall show the new approah improves, in some aspets, the preditive power ofthe model respet to the hemial approah.6



Mehanial experiments Setion 1.21.2 Mehanial experimentsThere exist di�erent experimental approahes to the study of the mehanis ofmusle ontration (see [76℄, [75℄, [78℄ and referenes therein). The tehnology usedin these experiments has been often highly innovative, leading to tehnologialspin-o�. We have already mentioned di�erent mirosopy tehniques. Anothertehnique is the in vitro motility essay, where single myosin moleules attahed to abead trapped by a laser beam are used to measure the generated fore. Di�erently,the IVMA measures the speed of sliding of atin �laments, attahed to a bead,gliding on a bed of myosins. Then the synhrotron radiation (an intense X-raysoure) was developed to study the Xb movements in situ in whole musle orsingle �bres. Finally protein rystallography was applied to investigate the powerstroke in the myosin moleule at atomi resolution (see Fig. 1.7) [76℄.

Figure 1.7: Struture of myosin S1 from hiken skeletal musle. From [33℄In this Thesis we approah the modeling of skeletal musles ontration from amehanial point of view. Therefore, we shall be mainly interested in a partiularset of experiments performed on the musle �bers or myo�brils. These experimentshave ommon aspets with the usual mehanial measurements aimed at testingthe behavior of passive materials [19℄.A musle responds to a single stimulus with a single transient rise in tension,alled twith. Two stimuli, generated after a suitable interval of time, produeidential fore transients. When the seond twith starts before the �rst one isover, the seond one develops a larger peak tension. With a train of stimulationsthe fore reahes a steady state value, alled unfused tetanus, and haraterizedby the osillating behavior with the stimulation frequeny (Fig. 1.8). At a higher7



Chapter 1 Musle physiology and early modelingfrequeny the mean fore rises to an almost onstant value: this situation is alledtetanus. The required frequeny depends on the type of musles and on the tem-perature (50-60 Hz in mammalian musles at body temperature, not used in the�gure) [19℄. An experiments in whih we are interested have been made in thestate of tetanus, that an be viewed as a steady state ondition.

Figure 1.8: Fore generated at di�erent stimulation frequeny. 1 pps orrespond to the singletwith, at 80 pps is reahed the tetanus. From [97℄The mehanial experiments, either on a �ber or on a myo�bril, are usuallyperformed with one end of the speimen �xed and the other linked to a lever witha ath mehanism and a transduer of fore (Fig. 1.9). In this Setion we shallexplain in detail the three major protools used in these type of experiments andpresent their main results.Fore-length urvesWhen the ath mehanism is �xed, the musle undergoes an isometri ontration.By imposing tetanization with the ends �xed one an register the tension generatedby the musle. By varying the initial length of the musle before the tetanization,a fore-length urve an be onstruted [95℄.In Fig. 1.10 we show the shemati fore length urve for the total fore and forits two omponents: ative fore and passive fore. Passive fore is the resistanegenerated by elasti omponents in parallel to the ontratile element, it beomesrelevant when the saromeres are overstrethed. The passive resistane is almostzero until a ertain ritial elongation of the saromere, and then inreases fastshowing nonlinear elastiity. Subtrating the passive fore from the total isometrifore, we obtain the omponent of the fore that a musle an generate atively.8



Mehanial experiments Setion 1.2

Figure 1.9: Experimental devies (a,d), experimental urves(b,) and one version of the Hill'smodel (e) (see Setion 1.3.1). (a) When the ath mehanism is ating the musle an be tetanizedat a onstant length, left part of (), reahing the tetanus at T0 in (b). When the system is released(d), the isotoni ontration against a onstant load, T in (b), generates the length-time urve inthe right part of (). From [19℄Di�erent types of musles have di�erent passive responses and so di�erent totalfores, but the ative fore-length urve, for most of them, shows the same non-monotone behavior [7℄. This behavior (Fig. 1.11) is in agreement, with the fatthat the two �laments must overlap to generate fore. In fat, the maximum ativefore is generated when the overlap between the two �laments is optimal, i.e. whenall the Xbs see an atin site where they an bound and, at the same time, there isno interferene between the two half parts of a saromere. When the initial lengthin the passive state is suh that some Xbs, the ones near the M-line, do not haveany ative site to attah, the ative fore starts to derease linearly with the totalnumber of Xbs available to interat with atin. For shorter initial lengths thanthose orresponding to the plateau of the fore-length urve, two opposite atin�laments start to interfere with eah other, that again ontributes to a derease offore [7℄.An important thing to note is that the fore-length (T-l) urve is reated pointby point: �rst we �x a length in the passive state, then we tetanize the musle andregister the fore whih develops in isometri ontration. The T-l urve representstherefore a series of isometri ativations at di�erent initial passive lengths. Inpartiular this urve does not represent the response of the musle to quasi-statistrething. 9
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Figure 1.10: Total, passive and ative fore as a funtion of the length for two di�erent types ofmusles. The passive fore is analyzed strething the musle in the passive state. The total foreis analyzed tetanizing the musle from a onstant passive length. The ative fore is derived bysubtration. From [19℄

Figure 1.11: Upper �gure: Ative tension generated by isometri tetanization from di�erentpassive lengths of the saromere. Lower �gure: relative positions of the thin �lament (blak line)and of the thik �lament (white body) at the points indiated in the upper �gure. From [19℄10



Mehanial experiments Setion 1.2Fore-veloity experimentsThe dynamial behavior of skeletal musles is usually studied in a di�erent type ofexperiments [1℄, [67℄, [66℄, [93℄ aimed at onstruting the fore-veloity urve. Thisurve relates the load imposed to a ontrating musle to the veloity at whih themusle shortens. It an be obtained, still point by point, within the experimentalsetup disussed before [5℄: a musle is tetanized at a �xed passive length, thenthe lever is released, while a onstant load is applied. The length of the musle isplotted against time (Fig. 1.12). As soon as tension is redued, the musle lengthdereases: this typially fast response shows the presene of an elasti elementwhose shortening takes plae before a slower time sale dynamis of the Xb ylegets ativated. After this fast transient, the musle starts to shorten at onstantveloity. Repeating the experiment with di�erent loads, one an onstrut theurve plotted in Fig. 1.13.

Figure 1.12: Shortening vs. time urves, for one load (A) and for di�erent loads (B). Lengthhange axes refers to shortening. The osillating regime is due to the mehanial apparatus.From [5℄As we an see, there is a maximum veloity v0 that the musle ontration anreah under free (unloaded) shortening; this veloity is independent of the lengthof the musle in the passive state. There is also a load against whih the musleundergoes an isometri ontration at v = 0, this value is provided by the T-l urve.Applying a onstant load greater than this value gives the fore veloity urve inlengthening (or eentri) portion. This latter range is muh less known than theshortening range beause of the higher dispersion of the experimental points. Ageneral feature is that above a ertain threshold, about 1.8 Fv=0, the veloity goes11
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Figure 1.13: Fore-veloity urve. In shortening the behavior an be desribed by an hyperbolawhih intersets the absissa at the maximum unloaded speed (normalized) and the ordinate atthe isometri tetani tension. The slope has a disontinuity in the isometri point v = 0. Aplateau is observed at high lengthening veloities. From [99℄to in�nity. Moreover there is a disontinuity in the derivative of the F −v urve atthe isometri point v = 0: in the eentri portion the derivative of the urve is sixtime greater than in the shortening portion. In order to onstrut the fore-veloityurve the steady shortening state must be reahed, whih happens in a typial timesale of tens of milliseonds [93℄. The transient that preedes this state takes plaein a typial time sale of some milliseonds and an be analyzed also in a slightlydi�erent mehanism, whih we introdue in the next Setion.Experiments on fast fore reoveryThere is a third type of experiments with whih we shall mainly oupy ourselvesin this Thesis. Imposing on a tetanized musle a small inrement, say negative,of length δ generates a hange in tension as shown in Fig. 1.14(a) (see [10℄ andreferenes below). There is an instantaneous (hundreds of miroseonds) dereasein tension to a new value alled T1, just as it would be if the thin and thik�laments were attahed to eah other by elasti springs. Almost immediately afterthis elasti stress drop, the tension rises and then for some time (milliseonds timesale) remains lose to a plateau level (alled T2) before �nally reovering fullythe value it had had before the length hange (tens of milliseonds time sale).The hanges in length in these experiments are very small, about 4-10 nm perhalf saromere, and the time sales involved for T2 reovery (milliseonds) are12



Mehanial experiments Setion 1.3suh that it is realisti to assume that the number of attahed Xbs remains �xed.Imposing di�erent length inrements, one obtains the relationship between theimposed length inrements and the tensions T1 and T2 shown in Fig. 1.14(b).

(a) (b)Figure 1.14: Fast reovery experiments. (a) A rapid small shortening is applied to the musle(upper trae) and the resulting tension history is measured (lower trae). (b) The urves T1 and
T2 vs. the imposed length inrement for two di�erent values of initial length, normalized withrespet to the higher isometri tension T0. Symbols are de�ned in the text. From [19℄An important understanding that derives from this experiment is that the valuesof T1 at various shortenings lay pratially on a straight line. Another importantresult is that the rate of reovery of tension hanges with the step imposed in ahighly non linear manner (see Fig. 1.15). It tends to inrease in an exponentialway from positive length steps to higher negative steps.The behavior exhibited by a musle in this set of experiments is an impor-tant soure of information about musle mehanis, beause at least the fast timeresponse produing the funtions T1(δ) and T2(δ) appears to be independent ofthe attahment-detahment proess. Sine the pioneering paper of Huxley andSimmons [10℄ these experiments have been repeated by many groups [14℄ [41℄ [43℄[67℄.The fore-length, the fore-veloity and the T1 and T2 vs. step-length urves arethe most important experimental results that deal diretly with the mehanisms ofmusle ontration. We have given referenes to some reent experiments revealingfor instane the history dependene in the mehanial response when musle isstrethed after tetanization [52℄. Nevertheless, in what follows, we shall fous onthe explanation of only the main experimental fats that are onsidered to be wellestablished. 13
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Figure 1.15: Rate onstant r of quik tension reovery following a length inrement of magnitude
y. Estimated as ln(3)/t1/3 where t1/3 is the time for reovery from T1 to (2T2 +T1)/3. From [10℄1.3 Mehanial modelingIn this Setion we introdue several basi models aimed at explaining the mehan-ial behavior of musles. They are: the Hill 1938 model, the Huxley 1957 modeland the Huxley and Simmons 1971 model. These models represent the basis onwhih the majority of more reent models are based. Some of this more reentmodels are reviewed later in the Thesis.1.3.1 Hill 1938 modelAn analytial expression for the onentri part of the fore-veloity urve was ob-tained by Hill in 1938 [1℄. He used his own experiments foused on the energetis ofmusle ontration against a onstant fore. First he observed that when the mus-le is allowed to shorten, it liberates more energy (thermal and mehanial) thanduring isometri ontration. He divided the total energy rate E into three terms:the maintenane heat rate (A) liberated by a musle in isometri ontration, theshortening heat rate (H), that is the total heat liberated during the ontrationminus A, and the rate of work done (W ) equal to F · v where F is the onstantapplied fore and v is the veloity uniquely related to it, as we have seen in our14



Mehanial modeling Setion 1.3disussion of the fore veloity urve. Hill wrote the energy balane in the form:
E = A +H +W ⇒ E − A = H +W. (1.1)By a very preise measurement of the �rst term A and of the total energy rate

E, Hill observed empirially the relation:
H +W = b(F0 − F ). (1.2)In the right hand side of (1.2) we see the di�erene between the fore F appliedto the musle and the maximal fore F0 exerted by it in an isometri ontrationwhen v = 0. Independently Hill observed that H depends linearly on the veloityof ontration, H = av. In this way we have:

H +W = av + Fv = b(F0 − F ). (1.3)By rearranging terms in (1.3), Hill obtained:
(a+ F )(v + b) = b(a + F0). (1.4)

Figure 1.16: Fore veloity relation. The irles represent the experimental observation (frogmusle), the line orresponds to the urve (1.4). From [52℄In the F−v spae equation (1.4) desribes a hyperbola with asymptotes −a and
−b (see Fig. 1.16) [46℄. It �ts the experimental points very well (using appropriatesvalues of a and b) for a large variety of musles. In the free ontration F = 0,the veloity beomes maximal vmax and it has been observed that for many typeof musles aross speies and temperatures [52℄:

a

F0
=

b

vmax
= 0.25. (1.5)15
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Figure 1.17: Hill 1938 model with with a series of a passive spring and a ontratile element,both in parallel with a seond passive spring. From [19℄With these results, Hill proposed a model (see Fig. 1.17) where the ativemusle is represented by an elasti element SE in series with a ontratile elementCE whose funtion is to link the applied fore to the veloity, in a blak box manner.Suessively, to aount for passive elastiity, an elasti element PE was added inparallel with the CE and the SE (Fig. 1.17).In the passive state the CE an be strethed without any resistane. Duringthe ontration, the total fore generated by the system is F = kpu + ks(u − w).Here ks(u − w) = fCE [w
′

, l0], ks is the sti�ness of the SE and kp of the PE, u thetotal displaement, w the displaement of the CE, fCE is the fore in the ontratileelement whih depends on the rate of hange of the displaement w′

= v. Aordingto observations made by Hill, the CE exerts a fore of the type
fCE =






0 ẇ 6 −F (l0)
b

a
F (l0)b+ aẇ
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6 ẇthat aounts also for the eentri ontration. The isometri fore F0 has adependene on the initial length of the musle l0, as shown by the fore lengthurve. The fore is equal to zero for large negative values of w′ (shortening), whileit an be diretly obtained from (1.4) for smaller ontration veloities. In theeentri region, w′

> 0, the values are taken to math the behavior observedexperimentally (see Fig. 1.13).The model leads to a di�erential equation that an be solved to obtain the16



Mehanial modeling Setion 1.3time dependene of the fore for di�erent given protools of strethes. Thus if weintrodue a parameter β to aount for the onentration of alium, as in the �rstand third part of Fig. 1.18, we obtain:
F (l0, t) − kpu = βfCE

[(
1 +

kp
ks

)
u̇−

˙F (l0, t)

ks
, l0

] (1.6)where 0 < β < 1 modulates the fore in the ontratile element fCE . Two examplesof loading programs are presented in Fig. 1.18. The elongation, equal for bothexperiments, is given by a ramp that inreases the length of the musle, maintainsit onstant and then shortens it to the initial state. The ativation parameterswere di�erent. The experimental observations obtained for the given elongationhistory is shown in Fig. 1.19. The preditions of the model are in Fig. 1.20: thetwo responses are rather similar.For 50 years Hill 1938 model dominated the �eld. In this period many ideashave been added to the model in order to aommodate newly disovered fats [52℄.Originally quite simple the model beame more and more ompliated and lost itsappeal; however the simplest version is still today used to simulate the mehanialbehavior of musles.

Figure 1.18: Two di�erent experimental proedures for Hill's 1938 model. The response isillustrated in Fig. 1.20. From [52℄ 17
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Figure 1.19: Experimental results for the elongation history shown in Fig. 1.18. From [13℄

Figure 1.20: Response of the Hill's 1938 model for two di�erent proedures I (upper part ofFig. 1.18) and II (bottom part). From [52℄
18



Mehanial modeling Setion 1.3The main reason for the searh of di�erent onepts in musle modeling wasthe following: Hill's model does not provide insights into the mehanism of theprodution of fore. Its blak box nature is su�ient to give a good �t to theexperimental urves, but it does not provide a tool for the understanding of themehanisms that operates at the miro-sales whih are not visible in the standardmehanial experiments.1.3.2 Huxley 1957 modelBefore 1954, most theories of musle ontration were based on the idea that short-ening and fore prodution were the result of some kind of folding or oiling of largeprotein moleules. In 1954, HE Huxley and J Hansen [2℄ as well as AF Huxley andRM Niedergerke [3℄ demonstrated that musle ontration is not assoiated withany hange of length inside the mirostruture. These authors postulated that thefore is generated through the interation of atin and myosin �laments.Based on this understanding, AF Huxley developed in 1957 a new theory ofmusle ontration [4℄. The thik myosin �lament is assumed to be �xed in spaewhile the thin �lament is assumed to slide parallel to myosin with onstant veloity
v. The movement is generated by a mehanial struture (that is now known to bethe Xb) that an oupy di�erent positions along the bakbone of atin, and whosemovement is limited by an elasti element (Fig. 1.21(a)). The model postulatesthat the number of ative Xbs is onstant and onsiders only the full ativation ofthe musle (tetani response).

Figure 1.21: Huxley 1957 model. (a) The myosin head M is elastially oupled to the bakbone.The interation between the �laments an be established when M reah the attahment site Aon the atin �lament. (b) hypotheses on the attahment and detahment funtions. From [4℄19



Chapter 1 Musle physiology and early modelingThe struture in question an attah itself only to spei� sites on the atin�lament. When it is attahed, then there is a fore between atin and myosin,whih depends on the position of Xb. To alulate the total fore generated bythe musle one needs to know the total number of attahed Xbs at eah position
x relative to the referene position of the struture, at every time t.As a result of thermal �utuations Xbs attah to the atin in a range of axialposition. They exert a fore if they reah the attahed position where the elastielement is strethed; notie that a soure of asymmetry is needed to generate a netfore in one partiular diretion [4℄. It is assumed that the probability f that adetahed Xb an attah and the probability g that an attahed Xb an detah, arefuntions of the variable x, as showed in Fig. 1.21(b). The attahment probability
f(x) is assumed to be linear in x and is zero both beyond a maximum distane h,and for x < 0 (the Xb an not attah to an ative site when the elasti element isompressed). The detahment probability funtion g(x) is also linear for positive
x, the probability inreases even beyond h, and is large and onstant for negative
x. If n(x, t) is the fration of the total population of attahed Xbs whose distanefrom the ative site is x at time t, then its time evolution an be found from a �rstorder kineti equation [4℄:

∂n(x, t)

∂t
− v

∂n(x, t)

∂x
= (1 − n(x, t))f(x) − n(x, t)g(x). (1.7)Huxley limited the analysis to steady state ase, when the solution is onstant intime, so the �rst term in the left is zero. The equation (1.7) allows the omputationof n(x) at di�erent v: at zero veloity n(x) reahes the onstant value f/(f + g).At higher values of veloity there are two fators that redue its value: �rst there isless time for the Xbs to attah, seond the Xbs are brought faster towards negativevalues of x. The preditions of the model (1.7) are illustrated in Fig. 1.22. Theanalytial solution is given by:
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2
h.Using this solution one an write an expliit expression for the fore veloity depen-dene. Indeed, assume that eah Xb ats like a linear spring with elasti modulus20



Mehanial modeling Setion 1.3

Figure 1.22: Relative distribution of Xbs at various veloities aording to Huxley 1957 model.From [4℄
k, generating a fore proportional to its displaement kx. Then the total tensionan be written as:

T (v) = ρ
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]} (1.9)where ρ stands for the density of Xbs per unit volume. Optimizing the parametersto �t the Hill's data, Huxley obtained an exellent �t as in Fig. 1.23. The isometritension beomes C(f/(f + g)), where C depends on the number of Xbs presentin the segment of musle under onsideration and on the other parameters of themodel, for instane the elasti onstant.In addition to the onentri part of the fore veloity urve the model preditsalso other features of the musle response, even if only qualitatively. For instane,the model predits the eentri part of the fore veloity urve, showing both adi�erent slope of the urve at the isometri point and an asymptoti behavior ofthe fore at high veloities. Both values however are highly overestimated. Themodel also overestimates the rate of heat release during lengthening, however thisproblem, as pointed out in [4℄, an be eliminated through the assumption that21
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Figure 1.23: Huxley's predition for the fore veloity urve (line) and experimental data(points). From 1.23during lengthening there is a mehanial breakdown of the Xbs, whih detahwithout ATP release. Many more reent developments have been done along theselines, see for instane [21℄, [22℄, [27℄, [58℄, [64℄. Overall, the Huxley 1957 modelrepresents an improvement over the Hill 1938 model beause it gives a preisemathematial desription of the mirosopi events behind the blak box behaviorpostulated by Hill.1.3.3 Huxley and Simmons 1971 modelThe experimental response of musles to rapid length inrements, desribed inSetion 1.2, annot be easily explained by the 1957 Huxley's model. The pioneeringexperiments of this type, made in [10℄, have lead to the development of anotherimportant mathematial model: Huxley and Simmons' model of 1971. This modelis not an expansion of the Huxley 1957 model, but is a quite di�erent model whihdeals only with fore generated by the attahed Xbs. In partiular it does nottake into aount the detahment proess. What brings the neessity of a newmodel is the fat that the rapid reovery of fore takes plae in the milliseondstime sale, whih is di�ult to explain in the framework of the slower attahment-detahment proess, related to the time sale of tenth of a seond. The approahused by Huxley and Simmons, whih we shall desribe below, is the predominantidea even in the most reent models. This approah has reently reeived further22



Mehanial modeling Setion 1.3on�rmation from the measurements of the axial motions of the myosin heads atangstrom resolution by X-ray interferene tehnique [66℄.The partiular mehanism suggested by Huxley and Simmons for the strutureof the Xbs is shown in Fig. 1.24. First of all, they assumed that the Xb ontains alinear elasti spring linked to the head of the myosin. When attahed to the atin�lament, the head of the myosin an be in two states, and an swith from onestate to another in a jump fashion. The ratio of the rates of jumps are ontrolledby the relative energy of the two states. The energy Uh of the head is a doublewell funtion of on�guration oordinate x, it is plotted in Fig. 1.25 together withthe paraboli energy of an elasti element. The swithing an streth or relax theelasti element, so we an refer to the states as a �low� fore generating state anda �high� fore generating state. The total potential energy Utot, given by the sumof the potential energy of the elasti element Us and the potential energy of thehemial state Uh, is plotted in Fig. 1.26.

Figure 1.24: Huxley and Simmons 1971 model. The myosin head S-1 is linked to the thik�lament through an elasti element S-2 and has two stable positions. From [19℄The model analyzes the distribution of Xbs in eah of the energy well in orderto obtain the total fore generated by the musle. Beause in eah half saromerethe Xbs are arranged in parallel between an atin �lament and the relative myosin�lament, the total generated fore is the sum of the fores generated by eah Xb.It is assumed that when the musle is isometrially tetanized, the two states havethe same total energy.Due to the linearity of the elasti element:
Us =

1

2
Kl2 =

K

2
(y0 ±

h

2
+ y)2 (1.10)where l is the streth whih an be written as the sum of y0 ± h/2 (where y0 isa point loated at equal distane from both wells, h is the distane between thewells) and y, the inrement of length imposed on the musle. We reall that Uh has23
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Figure 1.25: The potential energies in Huxley and Simmons 1971 model. (a) Elasti energy inisometri ontration (y = 0), after streth (y > 0) and after release of the musle (y < 0). (b)Con�gurational energy of the head, two stable states 1 and 2 are present. From [19℄

Figure 1.26: The total energy Utot = Uh +Us in Huxley and Simmons 1971 model as a funtionof the on�guration of a Xb in the isometri ase (y = 0). From [19℄24



Mehanial modeling Setion 1.3two potential energy wells, orresponding to the two states 1 and 2. The heights ofthe potential energy barriers E1 and E2 in Fig. 1.25, are assumed to be the samefor both wells. Sine in the state of isometri ontration the two minima of thetotal potential energy have the same level when y = 0, the total number of Xbs inthe two on�gurations is the same. When a length inrement is imposed, y 6= 0,there is a hange in Us (upper part of Fig. 1.25) and therefore in the total energy
Utot = Us + Uh, as shown in Fig. 1.27.Before giving the mathematial details, we desribe brie�y how the modelworks. The hange in the total length y �rst a�ets the tension in the linearspring, and is therefore responsible for the T1 fore observed in the experiments.After the step, the levels of the energy in the two minima beome di�erent, anda hange in the total number of Xbs in eah state is generated. This adjustmentproess follows kinetis postulated for the jump proess, and takes plae in a slowertime sale than the time sale responsible for the T1 response. The �nal steadystate is responsible for the value of fore T2.To ompute the fores T1 and T2, we need to know the relative number of Xb,
n1 and n2 in eah well, n1+n2 = 1. Under the assumption that the state of detailedbalane is reahed, the rate onstants k+, desribing transitions from position 1 toposition 2, and k−, desribing transition from 2 to 1, are related through:

k+

k−
= C exp

[
(B12 − B21)

kBT

]
, (1.11)where T is the absolute temperature, kB the Boltzmann onstant, C a onstant tobe determined and B12 and B21 the ativation energies for passing from state 1 tostate 2 and vie versa. In Fig. 1.27, we also see that k− is onstant sine B21 is a�xed quantity independent of the tension in the elasti element. Therefore we anwrite B21 = E1 and B12 = E1 + ∆Utot, where ∆Utot is given by
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kh(y0 + y) + (E2 − E1)Sine in isometri ontration the two states have the same energy:

∆Utot |y=0= 0 ⇒ −Khy0 = (E2 − E1), (1.13)the relation (1.11) beomes:
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Figure 1.27: The di�erent behavior of Huxley and Simmons 1971 model: total energy in streth(y > 0, where the on�guration 1 is energetially preferred) and in release (y<0, where theon�guration 2 is energetially preferred) modes. From [10℄The di�erential equation desribing the number of Xbs in the state 2 duringtransients is:
dn2(t)

dt
= k+n1(t) − k−n2(t) = −(k+ + k−)n2(t) + k+. (1.15)Due to the hypothesis of equal energies of the states during isometri ontrationwe obtain that n2(0) = 1/2. We an now solve (1.15) and write:

n2(t) = n∞
2 + (0.5 − n∞

2 ) exp[−t(k+ + k−)] (1.16)where:
n∞

2 =
k+

k+ + k−
.One an see that the fration of Xbs in state 2, starts at one-half and rises to thevalue n∞

2 exponentially with rate k+ + k−. To ompute the steady state tension,only the ratio of the rates onstants (1.14) is needed. The transient of tension an26



Mehanial modeling Setion 1.3be written as:
T (y, t) = n1(t)K
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= K[y0 + y + (n2(t) − 0.5)h].The harateristi values of tension predited by this model are T1(y) = T (y, 0) =

K(y0 + y) and T2(y) = T (y,∞) = K[y − 0 + y + (n∞
2 − 0.5)h].In order to ompute these funtions, one needs the elasti onstant K. As itwas not known at that time, Huxley and Simmons used the data on the rate ofreovery r(y) (Fig. 1.15). They obtained a �t:

r(y) = r0(1 + e−αy)with r0 = 0.2 ms−1 and α = 0.5 nm−1. As we have seen, the same urve an bepredited from the model:
r(y) = k+ + k− = k−(1 + e−Kh/kBT y). (1.17)Huxley and Simmons used this formula to obtain the values of both k− and Kh =

α kBT . Then they ould ompute the equilibrium fore:
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) (1.18)whih is shown in Fig. 1.28. The resulting urves T1(y) and T2(y) exhibit the same

Figure 1.28: Predition of the Huxley and Simmons 1971 model. From [10℄general features as the experimental urves shown in Fig. 1.14(b). The resulting27



Chapter 1 Musle physiology and early modelingvalue for the sti�ness beomes K ≃ 0.2 pN/nm, however a value of one order ofmagnitude greater [35℄ [38℄ [36℄ [80℄ [92℄ was proven later. We shall ome bak onthe importane of this value extensively in Chapter 2, however we mention herethat the more realisti value K = 2 pN/nm a�ets dramatially the predition ofthe model. First, we see immediately from (1.17) that the r(δ) dependene will behighly overestimated, beause it depends on K exponentially. Seond, the T2(δ)urve is more in�eted with the higher value of the parameter K, thus it shows anegative slope at δ = 0 whih is in ontrast with the experimental result.There were several reent attempts to improve the quantitative preditions ofthe theory [18℄ [43℄ [48℄ [59℄ [73℄ [96℄, however nothing fundamentally new has beenadded to the model. The most attrative feature of the Huxley and Simmons1971 model is that it attempts to link biohemistry to mehanis. Not only in themore reent models this link was not improved, but, on the ontrary, it was almostlost. In the next Chapter we shall give a brief review of some of these models andpropose a new one where the link is improved and further quanti�ed.

28



Chapter 2Power Stroke
2.1 IntrodutionThe speial harater of the mehanial response of skeletal musles desribedin Chapter 1, allows one to lassify them as ative materials, beause they anadapt to external stimuli. The advanes in tehnology are often linked to thedevelopment of suh materials that an provide ative funtioning, like sensing andatuation. In the past, ative response was ahieved through organizing elements,with passive response at the miro-level, into omplex strutures with multipleequilibrium states. However modern tehnologies require that suh mehanismsfuntion at mirometer and even nanometer sales, so traditional solutions beomeunaeptable, and there is a demand for materials where the omplex behavior isrealized already at the moleular level. An example of suh materials is given byshape memory alloys, where the multi-stability of the system at the moleular levelis due to phase transformation whih does not require di�usion, and an be induedby stress, temperature or eletro-magneti �eld. The analysis and modeling of suhative materials has reahed a level of preision that one would want to ahievein the desription of skeletal musles, given some similarity of the behavior of thetwo types of systems. The similarity is based on the idea of multi-stability of themirosopi elements of the system.As we have seen in Chapter 1 the model of Huxley and Simmons (HS71) andesribe fast response of skeletal musles assuming the presene of bi-stable ele-ments with double well energy. In this model the energy landsape is degeneratebeause the wells are in�nitely narrow. This leads to a desription in terms ofa jump proess, whih requires the knowledge of hemial rate onstants. In theHS71 model, the de�nition of the energy for the states between the minima is29



Chapter 2 Power Strokenot needed: the Xb swithes between the states instead of ontinuously movingbetween them. This makes the preise analytial omparison of this model withmehanial models of shape memory alloys di�ult. Despite these apparent dis-tintions, the main ingredients in both types of models are similar whih leavesa possibility to link the Huxley and Simmons model to the ontinuum theory ofmartensiti transformations in ative materials.We reall that, the main di�erene between the multi-stable and onventionallinear elasti elements is that the energy of the former is non-onvex. As it wasshown in the pioneering work of Eriksen [11℄, this non onvexity is of fundamen-tal importane for the interpretation of the behavior experimentally exhibited byshape memory alloys, whih is related to the presene of multiple stable miro-on�gurations. Eriksen onsidered the behavior of a ontinuum 1-D problem fora material with a non-onvex energy under slowly varying load showing that amathematial model based on bi-stability an explain hysteresis. After that, athorough study of the problem was performed, in partiular a preise desriptionof the mirosopi events was obtained by disretizing the 1-D ontinuum problemand viewing it as a hain of bi-stable elements [11℄, [16℄, [29℄, [62℄.In this Chapter we reformulate the original Huxley and Simmons 1971 modelin this preise mathematial framework. We show that this reformulation anprodue a piture whih avoids some drawbaks of the original HS71 model. Westart by brie�y desribing the way in whih other reent models have dealt withthese drawbaks. Then we introdue our new mehanial model aimed �rst atmodeling the power stroke only and present a quantitative analysis of this modelinluding the omparison with experimental urves.2.2 Reent ModelsAlready in 1978 [17℄ it was realized that the Huxley and Simmons 1971 modelan not predit orret time sale of tension relaxation, if a realisti value of thesti�ness of the elasti element is used. The quantitative resolution of this and otherproblems of the HS71 model, already mentioned in Setion 1.3.3, will be given laterin this Chapter, while now we would like to brie�y review the main approahesused to irumvent these problems. In partiular we show that the way hosen bythe authors of the reent models to deal with the drawbaks of the HS71 model,leads to almost omplete loss of oupling between the two aspets of the problem:mehanial and biohemial. The goal of these models was not only to resolve the30



Reent Models Setion 2.2unorret time sale predited by the HS71, however here we shall fous only onthis aspet of the problem.Eisenberg and Hill modelAn early modi�ation of the original HS71 model was proposed in 1978 by Eisen-berg and Hill [17℄. The model was extended in 1980 on a more quantitative basis[18℄. It is based on the observation that by assuming two very narrow energy wells,Huxley and Simmons made impliitly the hypothesis that the transition betweenthe states takes plae only after a Xb had olleted the total amount of energyneeded to overome the barrier.Eisenberg and Hill proposed to make the wells wider in order to allow thetransition to start at lower energy. They also linked the fore generated by the Xbin eah state with the �rst derivative of the free energy, instead of the streth ofthe elasti element, that has now been formally eliminated. Without the elastielement, the oordinate x of the Xb is ontrolled by the imposed length of thesaromere, atually the oordinate x has beome a measure of axial position of thepartiular atin site at whih the Xb is attahed. The origin x = 0 was hosenin suh a way that the Xb in the pre-power stroke state is in its resting position.At every value of x the Xbs an be in four di�erent states whose free energieswere postulated to have an x-dependene shown in Fig. 2.1. Here AM ‡DD isthe atin-myosin omplex in the pre-power stroke state and AMD is the atin-myosin omplex in the post-power stroke state, (phases 2 and 3 in Fig. 1.5).Similarly M∗∗D and M ‡D are two detahed states, the refratory state and thenon-refratory state, respetively (phases 4 and 1 in Fig. 1.5). The di�erent anglesof the lever arm in the two attahed states are re�eted by the di�erent positionsof the minima in the relative energies. The hange of state is assumed to be a jumpproess, allowing the Xb to follow the entire Xb-yle as shown by the arrows inFig. 2.1.In de�ning the rate onstants of the individual jump proesses, Eisenberg andHill used the hypothesis of detailed balane whih imposes one ondition for theratio of eah pair of rate onstants. In the most general form this ondition an bewritten as:
kjm(x)/kmj(x) = exp

(
Gj(x) −Gm(x)

kBT

) (2.1)The elasti element is present in this model through the x-dependene of the ener-gies Gi(x). What is important to note is that nothing in this setting is said about31



Chapter 2 Power Stroke

Figure 2.1: Free energies for two attahed states and two detahed states in the Eisenberg andHill model. The state M∗∗D +D is shifted with respet to M∗∗D + T by an amount of energygiven by the ATP hydrolyzation. The arrows show a possible Xb yle. From [17℄the shape of the energy barrier between the states at a given x. That leaves foreah transition one of the rate onstants kij as a free parameter. In the Huxleyand Simmons 1971 model the dependenies of both rate onstants on the step xwere ompletely de�ned by the shape of the total energy. Instead in Eisenbergand Hill model these onstants retain some freedom (used in Fig. 2.2), sine onlyone ondition, equations (2.1), is imposed. To our knowledge, the EH78 modelwas �rst to abandon the mehanial transpareny of the HS71 model even thoughsome features of the HS71 model were preserved. In a sense the biohemial in-terpretation of dynamis has overome the mehanial basis of the HS71 model.The freedom left by the EH78 model was used to hoose the k(x) dependeniesphenomenologially in order to �t the experimental observations almost perfetly.

Figure 2.2: Hypothesis on the onstants for the EH78 model. From [17℄32



Reent Models Setion 2.2Piazzesi and Lombardi modelThe model of Piazzesi and Lombardi developed in 1995 [43℄, deals with the entireyle of the Xb, and is able to predit both the fore veloity urve and the behaviorof the musle subjeted to rapid inrements in the total length as well as the �uxof energy and the e�ieny of the ontration. There are two detahed states,D1 and D2, and three attahed states, A1, A2 and A3 in Fig. 2.3 A. Moreoverthere are two distint paths in whih Xbs an split ATP to generate fore. Twoative states, A1 and A2, are ommon for the two paths, as shown in Fig. 2.3(a).From A2 there is a long path, whih ontains a seond ative state A3 before thedetahment of the head D1. This path an ompete with the short one, where thehead detahes immediately after A2 into D2. The long path generates larger forebut it has a lower reation rate, about 20/seond. The reation rate for the shortpath is about 100/seond. The orresponding rate onstants satisfy the detailedbalane equation (2.1). As in the Eisenberg and Hill model, the funtions kjm(x)and kmj(x) depend on the imposed step, and this dependene an be hosen to �tthe experimental data. The spei� hoie of the authors is shown in Fig. 2.3(b-e). The system of di�erential equations governing the distribution of the numberof Xbs in various states, a1, a2, a3 and d1, d2, generalizes the equation proposedby Huxley in 1957. Without going in all details we just mention that the systemonsists of the equations of the type:
∂a1(x, t)

∂t
= k1(x)d1(x) + k−2(x)a2(x) + k6(x)d2(x)−

(k−1(x) + k2(x) + k−6(x))a1(x, t) − v
∂a1(x, t)

∂x

(2.2)for eah of the �ve possible states and is solved numerially.Small length inrements bring the Xb in the region where the short yle isfavored and, being rapid, it an explain the behavior observed experimentally atmoderate shortening veloities. For higher length step the long yle is preferred,leading to the possibility to �t the 11 nm power stroke. In this way the modelis able to predit both fore-veloity urve (omputed onsidering the onstanturvature of the free energy Gi(x) as in the EH78 model and shown in Fig. 2.4(a))and �step in length� type experiments (Fig. 2.4(b)).Huxley and Tideswell modelHuxley and Tideswell proposed in 1996 a model whih was expliitly developed tooverome the drawbaks of the original HS71 model [48℄. This new model is based33



Chapter 2 Power Stroke

Figure 2.3: General sheme and rate onstants for the Piazzesi and Lombardi model. A: (Left)Sheme of the PL95 model, A=attahed, D=detahed. (Right) Basi free energy of eah state.B-E: Funtions expressing the dependene of the rate onstants on x. From [43℄
34



Reent Models Setion 2.2

(a) (b)Figure 2.4: Comparison between simulations (lines) and experimental results (points) of thePL95 model. (a) Fore-veloity urve. (b) Modeling of T1 and T2. From [43℄on the same idea as the HS71 model, however new features were added. Amongthem, the most important for our approah are that, �rst, three attahed states
A1, A2, and A3 are onsidered, with two onstant power strokes between themof 5.4 nm and 4.5 nm. Seond, the rate oe�ients for eah of the four possiblereations A1 → A2, A2 → A1, A2 → A3, and A3 → A2, are given by the expression

A/(1 + exp[B(x− C)])where x is related to the streth of the elasti element and A, B and C are di�erentfor eah transition, so that 12 parameter have to be spei�ed. Observe that as inthe previous models, there is an x-dependene of the rate onstants. In order torespet the ondition (2.1) some onstraints are added, however, no expliit shapeof the free energy was presribed, whih means weaker mehanohemial ouplingthan in HS71 model. Finally, to mimi the inommensurability of the spaing ofthe ative sites on the atin �lament with respet to the spaing of the heads alongthe myosin �lament, �ve populations of Xbs were equally spaed relative to theative sites. The authors observed that with the last assumption the tension T2(δ)ends up averaged over the range of spaing of the ative sites (see also Setion2.7.2). Under the assumption that this spaing is equal to 5.5 nm, the diameter ofthe atin monomer, the omputed T2(δ) urve ontains a �at region around δ = 0even with K = 2 pN/nm. This solves the �rst inoherene of the HS71 model(Setion 1.3.3). 35



Chapter 2 Power StrokeDespite this suess the single stroke size of 5.5 nm was too small to justifyother experimental observations, and for this reason the authors were fore to adda seond ative state in the model. The behavior of the model was analyzed numer-ially, and a rather good �t of the experimental data regarding the rate of reoverywas reahed. The results are shown in Fig. 2.5, together with unsatisfatory pre-ditions of HS71 model. This solved even the seond problem of the original 1971model.

Figure 2.5: Reiproal of half-time of tension reovery vs. imposed length step. Solid line:experimental values from [14℄. Points: Huxley and Tideswell model predition. Dotted line:Huxley and Simmons model preditionWe emphasize, however, that the prie of a larger number of possible states wasa larger number of free parameters, and that the preise relation between the rateonstants and the shape of the total energy used in HS71 model has been partiallylost. We should mention though that, the hypothesis that the rate onstants varyexponentially with the work done in strething of the elasti element, was preserved(see [39℄). As the authors have observed, this represents a di�erene between theirmodel and the Eisenberg and Hill model, where the authors used, as a typialreation rate, �an arbitrary funtion adjusted to obtain agreement�.Smith et al. modelAs a last example, we disuss a very reent and the most omplete model of musleontration, published in August 2008 [96℄. This model is able to reprodue almost36



Reent Models Setion 2.2all known experimental observations related to isotoni and isometri ontrationsof skeletal musles. In fat it is the �rst attempt to produe a omprehensivetheory, and its key features are shown in Fig. 2.6. The entire Xb yle is modeledinluding an intermediate state between the pre-power stroke state (5 in the �gure)and the post-power stroke state (8 in the �gure). Two paths are available toomplete the yle (through 6 or 7 in the �gure). Again, the rate �onstants� for theattahment and detahment proesses depend on the pre-power stroke strain x in aphenomenologial semi-empirial way. Although the model is able to predit a largenumber of �ne features observed in experiments, its mehanohemial oupling israther poor and is surely weaker than in the Huxley and Simmons model. Hereresides the interest of a new model with a detailed mehanohemial oupling.

Figure 2.6: Key features of the model of Smith et al. : a) The yle of the Xb, b) Free energyof the states ) e d) dependenies of the rate onstants on the pre-power stroke position. From[96℄ConlusionsIn the rest of this Chapter we shall explore how far a rather simple mehanialmodel of the attahed Xbs an desribe the experimental fats without invokingad ho assumptions onerning the streth dependene of the onstants of hemialreations. Instead, we turn to the miro-sale and introdue expliitly a featurewhih is very important for the mehanis of musles but is usually dealt withonly impliitly in the bio-hemial framework: the mehanial interation of the37



Chapter 2 Power Strokesystem with random fores (Brownian motion). The presene of a thermal reservoirallows eah mehanial unit to explore the whole energy landsape muh beyondthe global or loal minima. Our approah is not ompletely new in mehanis, forinstane, it has been used for the desription of rubber type elastiity of shapememory alloys in [81℄. The introdution of random fores in�uenes dramatiallythe behavior of the multi-stable mehanial system and beause of this, our modelis interesting also from a purely mehanial point of view.2.3 New model of a power strokeThe half-saromere is formed by a number of idential Xb arranged in parallelbetween the two �laments. If all Xbs are synhronized, we may assume that thefore produing behavior of a half-saromere is simply that of eah Xb times thetotal number of attahed Xbs. We represent eah single Xb as a linear spring inseries with a bi-stable ontratile element (Fig: 2.7). The energy of the ontratileelement will be non onvex with two asymmetri energy wells. As an extension ofthe Huxley and Simmons 1971 model, here we inlude into the model the elastiityinside eah well whih allows a diret use of the mehanial theory of bi-stableelasti elements. The limiting ase of the new model, when the elasti moduli tendin�nity, should produe the same results as the Huxley and Simmons model. A
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Figure 2.7: The model of an attahed Xb: an elasti element in series with a bi-stable elementpoint that has to be made lear is that at this stage of the analysis, and throughoutall this Chapter, the attahment-detahment will be suppressed, and only the Xbsthat are attahed to the atin �lament will be onsidered.2.3.1 General shape of the energyThe fat that the energy of the ontratile element has two wells means that theXb an be in two states whih we shall be alling �long� and �short� phase. The38



New model of a power stroke Setion 2.3fore generated by a single Xb will depend on the phase: at a given total length,the long phase will keep the elasti element in the low stress state while the shortphase will neessarily generate higher fore (Fig. 2.8). Beause all the Xbs aresupposed to be equal and at in parallel, the total fore generated by the halfsaromere will depend on the relative number of Xbs in eah of the two states.
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Figure 2.9: First derivatives of the elasti and of the ontratile energies and the graphialsolution of the equilibrium equationsLet us introdue u0, u1, u2, the displaements of the points A, B, and C inFig. 2.7: u0 an be assumed equal to zero and u2 is equal to the imposed totaldisplaement. The symbols with an apex zero refer to the referene state. We ande�ne εe = (u1 − u0
1) and εc = (u2 − u1 − u0

2 + u0
1) the elongations of the elastielement and of the ontratile element, respetively. The total energy of a Xb will39



Chapter 2 Power Strokebe the sum of the energy of the ontratile element and the energy of the elastielement:
ET (εc, εe) = Ec(εc) + Ee(εe). (2.3)The total elongation of the half saromere is δ = (u2 − u0

2). In the experimentsthat we shall be onsidering δ will be the ontrol parameter (length lamp devie).In this situation, the strains of the two elements are related:
εe + εc = δ. (2.4)Consider �rst an isometri experiment where the total length of the musle u0

2is imposed in the passive state and then maintained onstant after tetanization(δ = 0). The strain of the spring will be equal to the inverse of the strain ofthe ontratile element εe = −εc = −x. In this ase the total energy ET (x) =

Ec(x) +Ee(−x) will be a funtion of x only, whih an then be viewed as the onlyinternal oordinate. The minima of the total energy an be omputed from theequilibrium equation
dET (x)

dx
= 0,whih an be rewritten as:

fc(x) = fe(−x). (2.5)Here f = ∂E/∂x is the tension whih must be equal in both elements. We anillustrate the solution of the equilibrium equation (2.5) graphially. Due to thelinearity of the elasti element, we an represent the solution as an intersetion ofa urve fc(x) and a straight line shown in Fig. 2.9, where the points ε− and ε+orrespond to the two minima of the total energy ET (x). As in the Huxley andSimmons model, we assume that in the state of isometri ontration the minimahave the same value of the total energy. This ondition an be written as:
∆Etot = (Ec(ε−) + Ee(−ε−)) − (Ec(ε+) + Ee(−ε+)) = 0or ∫ ε−

ε+

fcdx =

∫ ε−

ε+

fedx. (2.6)We therefore obtained the �equal area onstrution� saying that at δ = 0 the twosigned areas A and B, in �gure 2.9, must be equal.Consider how solution of equilibrium equation (2.5) is hanging in response tothe inrement δ. In this ase εe + εc = δ and we an write εc = x, εe = −x + δ.The fe in Fig. 2.9 line will be shifted by δ in suh a way that it will interset the40
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Chapter 2 Power Strokewrite:
Ec(x) =






1

2
k2(x− a)2 + d x ≤ a

2
1

2
k1(x)

2 x >
a

2

(2.7)where the urvatures of the wells k1 and k2 an be di�erent. The elasti energy ofthe series spring with sti�ness K is:
Ee(x, δ) =

1

2
K(x− l0 − δ)2. (2.8)As we see, its relaxed state is reahed in x = l0.We an now ompute the loation of the minima of the total energy at δ = 0:






a1 =
Kl0

k1 +K

a2 =
Kl0 + k2a

k2 +K

(2.9)Graphially, Fig. 2.9 now beomes Fig. 2.11(b). Obviously, the values of the
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(b)Figure 2.11: Shemati desription of the energy and tension for the double parabola approxi-mation. (a) Bi-quadrati energy. (b) Minima in the bi-linear aseparameters have to be suh that a2 < a/2 < a1. We an see that in the Huxleyand Simmons model, where k2 = k1 = ∞, the minima are a and 0, no matter what
K and δ are, as in Fig. 2.11(b). The ondition (2.6) ensuring the same value ofenergy in the minima, gives the expression for d:

d = −1

2

k2K

k2 +K
(l0 − a)2 +

1

2

k1K

k1 +K
l20. (2.10)42



Deterministi ase: global minimum Setion 2.42.4 Deterministi ase: global minimumAs we have already explained the ontration of musles takes plae in a Browniandomain where the temperature T 6= 0 and e�et of the stohasti external fore isnot negligible. However to understand the working of the model it is instrutiveto start with the deterministi ase when T = 0. In this ase we assume that theobserved value of x must orrespond to the global minimum of the total energy.When δ = 0 the energies of the two states orresponding to the global minimumare equal and the two states (2.9) are equally probable.2.4.1 One ross-bridgeWe begin by analyzing the behavior of a single Xb assuming that an inrementis imposed on its length. In the mehanial experiments desribed in Chapter 1,the observable is typially the fore generated at one end of the speimen. Sine,in the proposed model, the fore at equilibrium is equal in both ontratile andelasti elements, it an be omputed as the produt of the elasti onstant K andthe strain of the elasti element. The fore generated by the single Xb an haveeither the �low� value:
F1 = −K(a1 − l0), (2.11)or the �high� value:
F2 = −K(a2 − l0), (2.12)as we show in Fig. 2.9. Those values an be linked to the low fore generatingstate (pre-power stroke) and the high fore generating state (post-power stroke)expeted in the Xb yle (see Chapter 1).When a hange in length is imposed (δ 6= 0), the minima of the total energyshift to: 





a1 =
K(l0 + δ)

k1 +K

a2 =
K(l0 + δ) + k2a

k2 +K
.

(2.13)When the elasti moduli in the wells are in�nite as in the HS71 model, theminima remain always at a1 = 0 and a2 = a no matter what the value of δ is. Inthis ase we an see graphially from Fig. 2.12, that the di�erene of the energy inthe two minima after the step δ is ET (a1) −ET (a2) = Kδa. Sine we have hosen
a < 0, we see that δ < 0 shift the global minimum into the seond well.43



Chapter 2 Power Stroke
Kδa
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Figure 2.12: Lengthening in the pieewise linear ase. The vertial lines represent the Huxleyand Simmons model. In this last ase, the dashed area is equivalent to ET (0)) − ET (a)In our ase, by inserting (2.13) into ET , we obtain:
ET (a1) =

1

2

k1K

k1 +K
(l0 + δ)2, (2.14)and, analogously,

ET (a2) =
1

2

k2K

k2 +K
(l0 + δ − a)2 + d. (2.15)Comparing the two values we an write:

∆ET (δ) = ET (a1) −ET (a2) = (2.16)
1

2
δ2

(
k1K

k1 +K
− k2K

k2 +K

)
+

k1K

k1 +K
δl0 −

k2K

k2 +K
δ(l0 − a).In the ∆ET−δ plane, equation (2.16) gives a parabola and as expeted ∆ET (0) = 0.Using the numerial values obtained later in the Thesis by means of quantitative�tting of the experimental urves (Tab. 2.1), we obtain k1 > k2 and

d∆ET (δ)

dδ
|δ=0=

(
k1K

k1 +K
− k2K

k2 +K

)
l0 +

k2K

k2 +K
a < 0. (2.17)Therefore the sign of ET (a1)−ET (a2) is the opposite of the sign of δ and, exatlyas in the HS71 model, shortening makes preferable the global minimum in a2 whilestrething makes preferable the minimum in a1. When δ 6= 0 the tension generatedby the Xb is given by the formulas:






F1(δ) = −K
(
K(l0 + δ)

k1 +K
− l0 − δ

)
δ > 0

F2(δ) = −K
(
K(l0 + δ) + k2a

k2 +K
− l0 − δ

)
δ < 0.

(2.18)44



Deterministi ase: global minimum Setion 2.4These equations take into aount both the displaement of the referene positionfor the elasti element and the shift of the minima. The tension given by (2.18)is the zero-temperature analog of the tension T2 generated by the musle in thesteady state after an inrement in length. We obtain that, sine ∆ET (0) = 0, thede�nitions of the tetanized tension T0 and of tension T1, are ambiguous in the aseof one Xb. Therefore we need to take into aount many Xb.2.4.2 N ross-bridgesIn order to establish a omplete relation to experiments, we onsider now one half-saromere omposed by NXb heads, that work in parallel, as in Fig. 2.13. If one
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Figure 2.13: The model of NXb attahed Xbsknows the number of attahed Xbs in eah state, one an ompute the total foreas:
T (δ) = N1(δ)F1(δ) +N2(δ)F2(δ) = NXb(n1(δ)F1(δ) + n2(δ)F2(δ)) (2.19)where N1(δ) and N2(δ) are the number of elements in eah state, and






nδ1 = N1(δ)/NXb

nδ2 = N2(δ)/NXb

(2.20)are the orresponding frations. 45



Chapter 2 Power StrokeWhen the musle is tetanized at δ = 0 the two minima are at the same level andthe position of eah Xb depends on the initial onditions imposed on the system.The isometri tension an be omputed as:
T0 = −KNXb(n

0
1a1(0) + n0

2a2(0) − l0) (2.21)where the apex zero, in the relative number of Xbs in eah minima ni, indiatesthat they are alulated at δ = 0.The funtion T1(δ) desribes the instantaneous response. One may think that
T1(δ) an be omputed supposing that during the fast response the elasti ele-ment undergoes deformation δ while the myosin head, embedded in a visous �uid,maintains its position oupied before the step. In this ase, if we all x1 and
x2 the positions of the Xbs just after the step, we should impose x1 = a1(0) and
x2 = a2(0), obtaining

T1(δ) = −KNXb(n
0
1x1 + n0

2x2 − l0 − δ), (2.22)or, in other word:
T1(δ) = T0 +KNXbδ. (2.23)Atually, this may not be the ase in the real experiments. Indeed a realistivalue of the drag oe�ient η for the myosin head, is 60 − 90 pN ns/nm, and themagnitude of the elasti onstant is about 1 pN/nm. Therefore the harateristitime for the head to relax inside its well after the imposed step is of the orderof 0.1µs [64℄, while the time sale of the observations is typially one order ofmagnitude larger [67℄. In view of this estimates, a more realisti approximation for

T1 is given by the formula:
T1(δ) = −KNXb(n

0
1a1(δ) + n0

2a2(δ) − l0) +KNXbδ. (2.24)We see that its value is determined not only by the hange in length of the elastielement, but also by the shift of the minima of the total energy.The relative hange in tension T1/T0 an now be written as:
T1(δ)

T0

= 1 +

(
n0

1k1/(k1 +K) + n0
2k2/(k2 +K)

n0
1l0k1/(k1 +K) + n0

2k2(l0 − a)/(k2 +K)

)
δ. (2.25)The tension T1 does not represent equilibrium. Suppose now that instead thesystem follows global minimum of the total energy. When even a small inrementis imposed, a global minimum beomes non-degenerate, and all the Xbs jump intoone energy well. Beause of (2.16), the relative numbers of Xbs in the two minima46



Deterministi ase: global minimum Setion 2.5will swith from n0
1, n0

2 to n1 = 0 n2 = 1 (or n1 = 1 n2 = 0) and the �nal tension
T2 will be:

T2(δ) = −KNXb(a2(δ) − l0 − δ) (2.26)for δ < 0, and:
T2(δ) = −KNXb(a1(δ) − l0 − δ) (2.27)for δ > 0. The relative tension in the equilibrium state is:

T2(δ)

T0
=

(k2/(k2 +K))δ + k2(l0 − a)/(k2 +K)

n0
1l0k1/(k1 +K) + n0

2k2(l0 − a)/(k2 +K)
(2.28)for δ < 0, and:

T2(δ)

T0

=
k1(l0 + δ)/(k1 +K)

n0
1l0k1/(k1 +K) + n0

2k2(l0 − a)/(k2 +K)
(2.29)for δ > 0.The predited urves T1/T0 and T2/T0 vs. δ are linear in δ, with di�erentslopes if k1 6= k2. Figure 2.14 represents typial shape of tension-displaement forrepresentative values of the parameters. The system after the instantaneous elastiresponse T1 reahes the steady state tension T2. The bold line, whih representsthe global minimum in the steady state, shows a jump whih is not observed inexperiments. To avoid this pathologial behavior and to produe a smoother urve,we an follow the idea of the Huxley and Simmons and introdue a probabilitydistribution of the Xbs in di�erent phases. This approah is pertinent sine thethermal di�usion is important at suh sales.

Τ0

Τ1

Τ2

Τ1

Τ2

δFigure 2.14: T2/T0 and T1/T0 vs. δ urves (arbitrary units) in the elasti-global minimumresponse (k1 = k2) 47



Chapter 2 Power Stroke2.5 Stohasti ase: N ross-bridges at �nite tem-peratureIn order to make the urve T2(δ) smoother, Huxley and Simmons made an addi-tional assumption regarding the distribution of the Xbs. Instead of onsideringthe deterministi behavior in whih all the Xbs are in the global minimum, theyassumed that their positions an be desribed by steady state solution of the equa-tion desribing a stohasti proess. This assumption omes from the understand-ing that thermal �utuations an not be negleted at this sale. Taking thermalmotion into onsideration is ruial for ellular mehanis beause the hemialreations that drive biologial proesses have the energeti barriers that are onlya little higher than the thermal energy, given by the Boltzmann onstant timesthe temperature kBT [64℄. Sine thermal fores are randomly direted and unor-related, the resulting motion an be modeled by di�usion. Huxley and Simmonsapproahed the problem from the point of view of a jump proess, beause the ur-vatures of their energy wells were in�nite and as a result their di�usion proess wasdegenerate. It is worthwhile to note that every jump proess an be viewed as anapproximation of the di�usion proess, even if the ontrary is not always true (seeSetion A.7). In their desription, Huxley and Simmons have de�ned the kinetionstants of reation that desribes the passage between the two states for eahXb. In both, the jump proess and the di�usion proess, the rate onstants mustsatisfy the detailed balane ondition in order to orretly desribe the equilibriumstate.The ondition of detailed balane an be understood in terms of a anonialdistribution (see Setion A.6.2):
ps =

e−E/kBT

Σe−E/kBT
. (2.30)The subsript s indiates equilibrium steady state and E is the energy of the state.Suppose that the relative number of Xb in two sharp wells, n1 and n2, satisfythe anonial distribution. Then:

n2

n1
= e

−
E2−E1

kBT . (2.31)The same expression for the steady state probability distribution is derivedin Setion A.6.1 in a di�erent way; we brie�y sketh here the derivation beauseit introdues the di�usion proess whih will be important from now on. The48



Stohasti ase: N ross-bridges at �nite temperature Setion 2.5equation of motion of a partile, subjeted to a potential ET (x) and to a thermalnoise an be written in the over-dumped ase as (Langevin equation):
ηẋ(t) + E ′

T (x) = Γ(t), (2.32)where Γ(t) is a white noise. Sine this is a stohasti di�erential equation, thepath of the partile is di�erent in every realization, even under the same initialonditions. A way to study the behavior of suh a system is trough the assoi-ated di�erential equation for the evolution of probability distribution p(x, t). Thisfuntion gives the probability to �nd a partile in the position x at time t. Theequation for p(x, t) is alled Fokker-Plank equation (see Setion A.5). For the ase(2.32) it an be written as:
∂p(x, t)

∂t
+
∂S(x, t)

∂x
= 0 (2.33)where we introdued the probability urrent S:

S = −E
′
T (x)

η
p− kBT

η

∂p

∂x
(2.34)The steady state is de�ned as S = onst, and if ET (x) goes to in�nity for

|x| → ∞, the boundary onditions require that S = 0. In this ase, equation(2.33) has the following solution:
ps(x, δ) =

e−ET (x,δ)/kBT

∫∞

−∞
e−ET (x,δ)/kBTdx

= N−1e−ET (x,δ)/kBT (2.35)where N is a normalization onstant and the dependene on δ was inserted toremind that in our ase the total energy depends on the step length imposed. Wean now de�ne the quantities n1 and n2 as:
nδ1 =

∫∞

a/2
ps(x, δ)dx

nδ2 =
∫ a/2
−∞

ps(x, δ)dx.
(2.36)Here we use the same symbols as in (2.20) beause even with these new de�nitions

NXbn
δ
1 represents the mean number of Xbs in the �rst state. We reover (2.30)from (2.35) in the limit when the urvatures of the energy wells go to in�nity.Then ps(x, t) approahes two δ-funtions and the rate nδ2/nδ1 assumes the value asin equation (2.31).The rest of this Chapter is devoted to the disussion of our attempts to usethe framework in order to �x the drawbaks of the Huxley and Simmons 197149



Chapter 2 Power Strokemodel. In partiular we show how the introdution of the elastiities of the wells,integrated into the di�usion theory, allow one to avoid some of the problems whilepreserving strong relation between the mehanial and the hemial aspet of thephenomenon.2.6 Variable power stroke sizeThe Huxley and Simmons 1971 model suggests the mehanism behind the fastreovery of tension, and forms the basis on whih almost all more reent modelshave been onstruted. Despite this fat, the model has some di�ulties with thereprodution of the experimental behavior. As disussed in Setion 1.3.3, almost allof these problems ome from the value used for the sti�ness of the elasti element
K. It was not known at the time of the reation of the Huxley and Simmons' modeland they used an indiretly estimated value of K = 0.2 pN/nm. Unfortunately,aording to modern data [36℄, [55℄ the value of K should be at least one orderof magnitude higher. In what follows we shall show how the introdution of theelastiity e�ets into the struture of the energy wells removes the inonsisteny.The question was �rst raised by Eisenberg and Hill in the 1978, however, to theauthor's knowledge, this is the �rst time that the inohereny is resolved in aquantitative way with the use of elastiity in the wells.After the pioneering work of Huxley and Simmons, the experiments showingfast reovery of tension, were redone several times (see e.g. [14℄, [20℄, [41℄). More-over, one an say that it is still today the major protool used in the study ofthe mehanis of musles (e.g. [43℄, [67℄). The reason is that this type of experi-ments give important information about the behavior of the Xbs in the attahedstate. The new, more preise experiments beome possible beause of the hugeimprovement in the measurement and loading tehniques. For example, Huxleyand Simmons imposed an inrement of the total length beause they �were notable to impose a hange in tension sharply enough to distinguish the omponent oflength hange that is truly synhronous with the tension hange from that whihlags behind the tension hange�. Today, suh tension hange an be made in tensof miroseonds and the time resolution an be of 1 miroseond [67℄. It was shownthat in the length lamp experiments [43℄ and in the load lamp experiments [67℄,the orresponding tension vs. deformation urves are almost idential, as shownin Fig. 2.15. What beame lear with the improvement of the tehniques, is thatthe urve T2(δ) at large values of δ has a slope di�erent from the one of the urve50



Variable power stroke size Setion 2.6
T1(δ) (see Fig. 2.15): the former is more shallow than the latter.

Figure 2.15: Experimental behavior of the T1/T0 an T2/T0 urves: length lamp devie (T,open symbols), tension lamp devie (L, �lled symbols). From [67℄We reall that the linear part of the dereasing T2 − δ urve orresponds tothe situation when all the Xbs are in the seond well. In this situation furthershortenings only derease the tension generated by the elasti element sine furtherjumps of Xbs are impossible. We also reall that beause the loation of the minimais �xed in Huxley and Simmons model, the slope of the T2−δ and T1−δ urves willbe the same. Indeed, in this situation the subsequent derease in tension relaxesthe elasti element, but does not reate additional jumps of Xbs. The model willpredit the same slope for both T1−δ and T2−δ urves at large δ, whih is uniquelyrelated to the elastiity modulus K. We an therefore onlude that the di�erenein slopes originates from the features of the Xbs whih are not desribed by theHuxley and Simmons 1971 model. To generate a di�erent size of the power strokeat di�erent loads (whih is what was experimentally observed in [67℄), the modelmust be hanged. Sine the size of the power stroke is presribed by the distanebetween the energy minima, it does not depend on δ, if the wells are in�nitelynarrow. Therefore the wells should be deloalized.In the model with quadrati wells, the probability distribution in the steadystate, given by equation (2.35), is almost Gaussian inside the wells. If the energybarrier is higher than the thermal energy, in our ase if for the seond well
ET (a/2) − ET (a2) ≫ kBT (2.37)then ps(x, δ) goes to zero quite fast away from the energy minima. In this ase we51



Chapter 2 Power Strokean make some simpli�ations in (2.35) and other similar relation, whih will belater on�rmed by our numerial test. For instane, onsidering the seond well,we an de�ne:
ET, 2(x, δ) =

(
1

2
k2(x− a)2 + d+

1

2
K(x− l0 − δ)2

)
, (2.38)and write

∫ a/2

−∞

xps(x, δ)dx = N−1

∫ a/2

−∞

xe−ET (x,δ)/kBTdx ≃ (2.39)
N−1

∫ ∞

−∞

xe−ET, 2(x,δ)/kBTdx.Now, multiplying the right hand side by
∫ a/2
−∞

e−ET, 2(x,δ)/kBTdx
∫∞

−∞
e−ET, 2(x,δ)/kBTdx

≃ 1, (2.40)we an write: ∫ a/2

−∞

xps(x, δ)dx = nδ2a2. (2.41)The analogous results an be obtained for the �rst well. In this omputationwe made an assumption that the integral of f(x)ps(x) from x = −∞ to x =

a/2, an be replaed by the integral extended to an in�nite interval. Within thisapproximation, the power stroke is again determined by the distane between theminima. This distane ontrols the shift between the linear segments of the urves
T1(δ)/T0 and T2(δ)/T0 and is onstant if and only if the derivatives T ′

1(δ) and T ′
2(δ)are equal.To show analytially how the urvatures of the wells a�et the slopes of theurves T1(δ) and T2(δ) we �rst notie that all equations obtained for the asewhen the temperature T = 0, are still valid at temperatures T 6= 0 beause of theassumption (2.37). For instane, we an write:

T0 = NXb

∫ ∞

−∞

−K(xps(x, 0) − l0)dx ≃ −NXbK(n0
1a1(0) + n0

2a2(0) − l0) (2.42)and similarly:
T2(δ) = NXb

∫ ∞

−∞

(−K(xps(x, δ) − l0 − δ)) dx ≃ −NXbK(nδ1a1(δ)+n
δ
2a2(δ)− l0−δ)(2.43)Now, reall that by using onsiderations from Setion 2.4.2 we an write the tension

T1(δ):
T1(δ) ≃ −NXbK(n0

1a1(δ) + n0
2a2(δ) − l0 − δ). (2.44)52



Variable power stroke size Setion 2.6Here the relative number of Xbs in eah well is taken to be the same as beforethe step. Equation (2.44) an be obtained rigorously from the Kramers' theorywhose fundamental hypothesis is that relaxation within eah well is muh fasterthan the equilibration between the wells (see Setion A.7). We shall be using thisapproximation extensively later in this Chapter.We an make use of the obtained formulas for T1(δ) and T2(δ) to omputethe slopes of the orresponding urves at large negative δ. We reall that atlarge δ all Xbs are in the seond minimum. We an then use the following linearapproximation:
T ∗

2 (δ) = −NXbK(a2(δ) − l0 − δ). (2.45)From this relation and from relations (2.36) and (2.13) we obtain:
d

dδ

T1(δ)

T0
=

n0
1k1/(k1 +K) + n0

2k2/(k2 +K)

n0
1l0k1/(k1 +K) + n0

2k2(l0 − a)/(k2 +K)
(2.46)and

d

dδ

T ∗
2 (δ)

T0

=
k2/(k2 +K)

n0
1l0k1/(k1 +K) + n0

2k2(l0 − a)/(k2 +K)
. (2.47)The value of the shortening at whih T ∗

2 (δ) = 0 an be alulated from equation(2.45). We obtain
δ(T∗

2 =0) = a− l0. (2.48)At this value of δ, all Xbs are symmetrially distributed around x = a, the relaxedposition of the elasti element. To speify the numerial value of δ(T∗

2 =0), we an usethe experimental data obtained in the length lamp experiment shown in Fig. 2.15(open symbols). More spei�ally, we shall perform a linear �tting of the pointsthat represent the T1(δ)/T0 urve and of those points that represent the lineardereasing part of the T2(δ)/T0 urve. The values of parameters are reported inTable (2.1). In partiular, we obtain the value δ(T∗

2 =0) = −10.8 nm. The urve
T1(δ)/T0 rosses the absissa at δ(T1=0) = −3.87 nm. This gives d(T1(δ)/T0)/d(δ) =

0.258 nm−1. The linear �tting of the T ∗
2 (δ) urve, gives the slope 0.138 nm−1, sothe ratio of the slopes is 1.87. These are the values that we would like to �t. Fromequation (2.48) we an set

a = −10.8 + l0 nm. (2.49)The value of l0 will be found from other data.Comparing equations (2.46) and (2.47), we see that if k1 = k2 the two slopes
d

dδ
T ∗

2 (δ) and d

dδ
T1(δ), are the same. This is the reason why the Huxley andSimmons model predits the same slope for both urves. We an also see that53



Chapter 2 Power Strokethe slope of T ∗
2 (δ) will be smaller than the slope of T1(δ) if k1 > k2. One mightthink that the di�erene will inrease when k1 ≫ k2, but we have to rememberthat an inrease in k1 will also derease n0

1, reduing this e�et.Now, we make again use of the hypothesis (2.37). We observe that in thisapproximation the integral ∫ a/2
−∞

exp[−ET (x, δ)/kBT ]dx an be approximated by
∫∞

−∞
exp[−ET, 2(x, δ)/kBT ]dx. This allows a simpli�ation of the expression forthe funtions n1(δ) and n2(δ) given by equation (2.36). For instane, at δ = 0 weobtain

n0
2 ≃ N−1

∫∞

−∞
exp[−ET, 2(x, 0)/kT ]dx =

=

√
2π

N

exp

[
−2d+ (Kk2(a− l0)

2)/(K + k2)

2kBT

]

√
K + k2

kBT

.
(2.50)Similarly,

n0
1 ≃

√
2π

N

exp

[
− Kk1l

2
0

2(K + k1)kBT

]

√
K + k1

kBT

. (2.51)For the partiular value of d from (2.10), the nominators in both (2.50) and (2.51)are the same and we an write:





n0
1 ≃

√
k2 +K√

k2 +K +
√
k1 +K

n0
2 ≃

√
k1 +K√

k2 +K +
√
k1 +K

,

(2.52)here the normalization onstant N is eliminated imposing n0
1 + n0

2 = 1.We an now use the ondition that the derivative of T1(δ)/T0 must be 1.87times the derivative of T ∗
2 (δ)/T0. Using equations (2.46) and (2.47), we obtain theondition:

dT1(δ)/dδ

dT ∗
2 (δ)/dδ

=

√
k2/K + 1√

k1/K + 1 +
√
k2/K + 1

k1/K(k2/K + 1)

k2/K(k1/K + 1)
+ (2.53)

√
k1/K + 1√

k1/K + 1 +
√
k2/K + 1

= dslope = 1.87.One an see that this ratio does not depend on either a or l0, but only on the elas-tiities k1, k2 and K. Moreover, the three moduli enter in only two dimensionlessombinations: k1/K and k2/K. The ontours dslope = onst in the (k1/K k2/K)plane are shown in Fig. 2.16. By inreasing the ratio of k1 to k2 we obtain a higher54



Variable power stroke size Setion 2.6

Figure 2.16: Contour plot showing the ratio of the slopes (2.53) as a funtion of the relativeurvatures k1/K and k2/Kvalue of dslope. Analytially we an write the following relation between k1/K and
k2/K ensuring that the slope ratio is equal to dslope:

k1

K
= [2((k2/K)2 − 2(k2/K)2dslope + (k2/K)2d2

slope)]
−1

[1 + 3k2/K − 2k2/Kdslope + 2(k2/K)2dslope − 2(k2/K)2d2
slope ±

√
ψ(k2/K))].(2.54)Here
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k2

K

)
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(
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K

)2
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(
k2

K

)3 (2.55)
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k2

K
dslope − 8

(
k2

K

)2

dslope − 4

(
k2

K

)3

dslopeOne an see that for dslope = 1.87 the value of k1/K is real only if k2/K < 0.294.In the Huxley and Simmons model the value of k2 is hosen to be in�nite. Followingtheir reasoning, we hoose for k2 the largest possible value ompatible with theondition dslope = 1.87, k2/K = 0.294. This gives k1 = 4.17K. We would like tokeeps the values of k2 as large as possible to maintain the link with experiment.Indeed, the higher is the ompliane and the smaller is the step of the power stroke.Our relatively low value of the k2, results from the hypothesis that the �lamentsare rigid. In fat, one an think that the ompliane of the seond well also inludesthis extra-ompliane of the �laments. In general with the inrease of k1 the ratioof the slopes �rst inreases up to a maximum, but then it dereases beause the55



Chapter 2 Power Strokepopulation in the �rst well beomes lower. The harateristi behavior is shown inFig. (2.17) for a representative value of k2/K.

Figure 2.17: Ratio of the slopes of T1(δ) and T2(δ) as a funtion of the parameter k1. Absissain pN/nmNow, we an use the expression (2.47), and the approximation (2.52), to maththe values of both slopes dT1(δ)/dδ and dT ∗
2 (δ)/dδ with those observed experimen-tally. We an write

d

dδ

(
T2(δ)

T0

)
= (2.56)

[
k1

√
(k2 +K)3l0

k2

√
k1 +K(

√
k2 +K +

√
k1 +K)

+

√
k1 +K√

k2 +K +
√
k1 +K

(l0 − a)

]−1

= swhere we have assumed that l0 − a = 10.8 nm. We an obtain an analytialexpression for l0(s):
l0(s) =

(
k1

K
+ 1

)
k2

K

[
1 +

√
k1/K + 1

k2/K + 1

][
1 +

√
k2/K + 1

k1/K + 1
− (l0 − a)s

]

k1

K

(
k2

K
+ 1

)[
1 +

√
k2/K + 1

k1/K + 1

]
s

. (2.57)In Fig. 2.18 we show how l0 depends on k2/K for the given value s = 0.138 nm−1,and under the assumption that k1/K is determined by (2.54). The solution (2.57)exists up to k2/K = 0.294, where l0 = 0.05 nm.As we have shown above our model is able to reprodue the linear segmentsof both urves, T1(δ) and T2(δ). To test the validity of the adopted analytialapproximation, (see (2.37)) we an make diret numerial integration in the for-mulas (2.42), (2.44), (2.43). These formulas represent the exat solution for thetensions after a given inremental step. In Fig. 2.19(a) we show superimposed: the56
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Figure 2.18: l0 (in nm) as a funtion of k2/K for s = 0.138 nm−1 and dslope = 1.85experimental data (points), their linear �tting (straight dashed lines), the diretnumerial integration of (2.44), (2.43) (ontinuous lines) and the funtions T2(δ)/T0generated by the approximate model (2.52) (urved dashed line). As we see, ourapproximation for T2(δ) is very good, espeially for large values of δ. The slopeof the urve T1(δ)/T0 is slightly overestimated. Sine also the slope of T2(δ)/T0ended up slightly overestimated, we used the values of parameters obtained above(see Table 2.1) only as an initial guess and then made a areful �t to the exatexperimental data. Regarding the �gures shown in this Setion, only the ratio
k2/K had to be hanged. Thus from now on we use k2/K = 0.310 instead of theprevious value k2/K = 0.294. The new �t of the experimental data is shown in Fig.2.19(b). The �nal set of parameters is olleted in the olumn Analytial values ofTable (2.1).In Fig. 2.19(b) we an see an important feature of the urve T2(δ) whih will bedisussed in the next Setion: the presene of a region where the slope dT2(δ)/dδis negative. This feature has not been observed in diret experiments. The sameproblem resurfaes in the original Huxley and Simmons model if the realisti valuesof the oe�ient K is used [48℄ (see Setion 1.3.3).2.7 Negative slope of the T2(δ) urveOur analysis has been so far foussed on the slope of the urve T2(δ) at largenegative values of δ. Now we onentrate on the behavior of this funtion near
δ = 0. As we have seen the value of the parameter K does not a�et the linearbehavior of T2(δ) at large δ, however it notably a�ets the slope of the urve T2(δ)at small δ. To ompute the funtion T2(δ) when nδ2 6= 1, the exat values of nδ1 and
nδ2 are needed. They an be taken either from the approximate expression (2.52),57
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Negative slope of the T2(δ) urve Setion 2.7or from the diret numerial integration of the formulas (2.36).We have already seen that dT2(0)/dδ = −∞ if the onentration of Xbs is foundfrom the ondition of global minimum of the energy (Fig. 2.14).Let us also reallhow the Huxley and Simmons model deals with the problem of the negative slopeof the T2(δ) urve at δ ≃ 0. Using their notations, and the partiular shape oftheir hemial energy we obtain that the steady state population of Xbs an beomputed as nδ1 = 1 − nδ2, nδ2 = 1/(1 + k−/k+), where k± are the rate onstantsthat regulate kinetis of the jumps between the energy wells. In the Huxley andSimmons model it is assumed that k+/k− = e
−

yKh
kBT , equation (1.14). We reallthat their y and h are the analogues of our δ and a. In their ase, the value of

nδ2 is known when one knows the numerial values of the oe�ient Kh/kBT . InHuxley and Simmons model the value of K was obtained from an independent setof data on the rate of reovery for the tension. They observed that the value of h�has to be hosen to give the right shape of the urve of T2 against y. [. . . ℄ lowervalues give a less in�eted urve and higher values give a urve with a region ofnegative slope�. This behavior is illustrated in Fig. 2.20 where di�erent values ofthe produt Kh/kBT have been used. The global minimum behavior mentionedabove orrespond to the ase of either K = ∞ or T = 0. By tailoring the valueof Kh/kBT as in Fig. 2.20 Huxley and Simmons avoided the negative slope of the
T2(δ) urve; they used Kh/kBT = 5 nm.

Figure 2.20: The urves T2(δ)/T0 and T1(δ)/T0 in the HS71 model omputed at di�erent valuesof Kh/kBTThe important ritiism raised against the Huxley and Simmons 1971 model,was that while h = 8 nm was hosen to be ompatible with experiments, thesti�ness of the elasti element had to be at the unrealistially low level of K =

0.2 pN/nm. With the realisti value of K, say K = 2 pN/nm, the urve T2(δ)predited by the Huxley and Simmons model neessarily shows a negative slope at59



Chapter 2 Power Stroke
δ = 0.Below, we show how the assumption of �nite elastiity of the wells an dereasethe negative slope of the T2(δ) at δ = 0 even though it an not eliminate this e�etompletely.The approximate expression for the funtion T2(δ), whih desribes its behaviorat small δ, is given by equation (2.43). In this approximation, we have alreadyomputed the values of n0

1 and n0
2 (equation (2.52)). To ompute the funtion

T2(δ), we need the values of nδ1 and nδ2 when δ 6= 0. In this ase the exponentialterms in the expressions (2.51) and (2.50) will not be equal. For nδ2 we obtain thefollowing expression:
nδ2 =

[
1 +

√
k2 +K√
k1 +K

ef(δ)

]−1 (2.58)where:
f(δ) = −δK[δK(k1 − k2) + 2a(k1 +K)k2 + 2K(k1 − k2)l0]

2kBT (k1 +K)(k2 +K)
. (2.59)For nδ1 = 1 − nδ2 an equivalent expression an be written.From (2.58) (2.59) it is not straightforward to see how the parameter K in�u-enes the slope of the urve T2(δ). Let us �rst onentrate on the exponential termin (2.58): this term's δ dependene is the prinipal ause of the negative slope ofthe funtion T2(δ) at δ = 0. In what follows we limit our analysis to the negativevalues of δ. We would like to maintain the value of nδ2 as low as possible for smallnegative δ, therefore f(δ) should be small. We observe that when k1 = k2 = k,

f(δ) = −(aδ/kBT ) (Kk/(K + k)), so nδ2 will inrease faster at larger Ks. Theterm Kk/(K + k) is equal to K when k = ∞, and dereases if elastiity of thewells is taken into onsideration k < ∞. This also dereases the negative slope of
T2(δ). We emphasize that within our model we essentially rede�ne the meaningof the elastiity of the Xb. In fat, the Xb is represented as an elasti spring, inseries with another elasti bi-stable snap spring, so the sti�ness of the Xb is theglobal sti�ness of the system. More preisely we an use the formula for two elastielements in series, Ke�etive = Kk1/2/(K + k1/2), where we have to hoose k1 and
k2 for the �rst and the seond well respetively.Next we observe that, if k1 > k2, as required by the ondition on the relativeslopes of T2(δ) and T1(δ), then the higher is the k1 (or the l0) the smaller is theslope of T2(δ) at δ = 0. This fat is illustrated in Fig. 2.21. The value of l0 an notbe too high, beause there is no evidene that the Xbs an generate onsiderablefore in both states. As explained in the previous Setion, the values of k1 and60
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Figure 2.21: E�ets of k1 and l0 on the urve T2(δ)/T0 , when all the Xbs have the sameattahed sites. a) E�et of k1. Inreasing the sti�ness of the �rst well, derease the negativeslope of the urve around zero. The derease is less marked at higher values of k1. b) E�et of
l0. An inrease in the value of l0 have the same e�et as the inrease of k1

l0 are tightly linked to the two parameter k2 and K, beause of a onstraint thatmust be imposed on their relative value. More spei�ally to reprodue the ratioof the slopes for T2(δ) and T1(δ) urves at large negative δ, the value of k2 must beneessarily lower than a ertain value. In addition, we would like to maintain theglobal sti�ness at the same order of magnitude as experimentally observed. Wean now identify the global sti�ness with k2K/(k2 +K) if the sti�ness of the Xbs ismeasured in rigor [55℄, where n2 = 1. Sine k1 > k2 this value represent the lowerbound for the global sti�ness. We therefore impose that k2K/(k2+K) ≥ 1 pN/nm,whih implies k2 ≥ K/(K−1) pN/nm. The onstraint k2/K . 0.3 found in Setion2.6, gives K/(K − 1) ≤ k2 . 0.3K so neessarily K & 4 pN/nm.We an now onsider the e�et of K on the slope of the urve T2(δ) at δ = 0(see Fig. 2.22, where the urves T2(δ) are plotted for inreasing value of K).We see that, to have a non-negative slope, the value of K should be lower than
1 pN/nm, whih is inompatible with our other onstraints. From now on, wehoose the value for the global sti�ness, 1pN/nm whih �xes ompletely all otherparameters of the model. From Fig. 2.22 one an see that the slope dT2(0)/dδ61



Chapter 2 Power Strokeremains negative. The resolution of this last inompatibility with the experimentwill be our main preoupation in the rest of the present Setion 2.7.

Figure 2.22: The e�et of the inreasing value of the sti�ness of the elasti element K on thenegative slope of the urve T2(δ) at δ = 0. We hange K from 0.8 pN/nm to 6 pN/nm. Thelinear segment of the urve T2(δ) at large negative δ is una�eted by KThe problem an be approahed in two di�erent ways. One option is to on-sider a potential inhomogeneity inside the �ber, viewed as a hain of saromeres.Another option is to assume a nontrivial distribution of attahment points fordi�erent Xbs inside the half saromere.2.7.1 Inhomogeneity in a hain of saromeresSuppose now that the behavior of a single half-saromere is given by our modeldesribing several idential Xbs that at in parallel. As we have seen, the half-saromere ats like a single ontratile element with a non monotone tension-deformation urve T2(δ). The atual experiments are made not on a single half-saromere but on myo�bril. We may then assume that a hain of our half-saromerein series should be used as a model desribing the observed behavior of a myo�brilduring ontration. The negative slope in a response of a single element, shouldlead to a global inhomogeneity in the system. When a small perturbation is im-posed on a system with dT2(0)/dδ < 0, the saromere that is shorter than itsneighbors, will generate more fore. As a onsequene, it will shorten further and,sine the total length is �xed, its neighbor will be strethed with a subsequentderease of the fore [62℄, [73℄, until the rise of the fore in the parallel elastiitybrings the saromere in equilibrium. This proess, anyway, leads to developmentof inhomogeneity that an explain the �attening of the global tension elongationurve. 62



Negative slope of the T2(δ) urve Setion 2.7The mehanial problem for a series of bi-stable elasti springs at temperature
T = 0, was studied in [62℄, where an analytial solution for the tri-paraboli modelwas found. This analytial solution is available only for unrealistially simpleenergies of the elements produing piee-wise linear tension-deformation urves.Below we extend this approah to the ase of realisti T2(δ) urves generated byour model of half-saromere.Series onnetion of N half saromeresWe begin with a review of the results obtained in [62℄. Consider �rst a hain of2 half saromeres, representing the simplest ase of the general theory N=2 (Fig.2.23). Suppose that eah half-saromere is haraterized by a pieewise paraboli
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Figure 2.23: Model of two half-saromeres in series. Eah half-saromere is formed by NXb inparallelenergy
w(δ) =






1

2
(δ + 1)2 δ ≤ −t

1

2
([(1 − t−1)δ2 + (1 − t)] −t ≤ δ ≤ t

1

2
(δ − 1)2 t ≤ δ

(2.60)It is a smooth funtion formed by three parabola, two downward and one upward,as shown in Fig. 2.24(a), where the phases are I and III have positive urvatures,and phase II has negative urvature. The orresponding tension-deformation urveis trilinear as shown in Fig. (2.24(b)). This shape roughly approximates the T2(δ)urve obtained in Setion 2.6. The number of elements in eah phase an beexpressed as a vetor (k,l,m), where k, l andm are the numbers of elements in phaseI, II and III, respetively. When N=2, the lasses of solutions orresponding to thehomogeneous phases I, II and III, are (2,0,0), (0,2,0) and (0,0,2), while solutions(1,1,0), (1,0,1) and (0,1,1) orresponds to inhomogeneous mirostrutures.The equilibrium problem at T = 0 an be redued to �nding the ritial points63
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(a) (b)Figure 2.24: (a) Energy funtion for a single element. (b) Tension deformation urve for asingle elementof the total energy
W (δ1, . . . , δN) =

N∑

i=1

w(δi) (2.61)where due to the global isometri onstrain
N∑

i=1

δi = Nδ (2.62)The system of equilibrium equations takes the form
w′(δi) = σ i = 1, . . . , N (2.63)where σ is the tension in the hain, whih is equal for all elements.With the simple w(δ) de�ned in (2.60), it is possible to �nd the equilibriumstrain-fore relation expliitly. To this end we need to invert the relation:

Nδ = kδI(σ) + lδII(σ) +mδIII(σ) (2.64)where δI(σ), δII(σ) and δIII(σ) are the linear strain fore relations orrespondingto phases I, II and III respetively. In this way we obtain the global fore-strainrelation for the whole yle, and an also ompute analytially the equilibriumenergy of the entire hain. De�ning the �volume frations�
x = k/N, y = l/N, z = m/N (2.65)where x+ y + z = 1, one an obtain

σ(δ) = E(δ − δ0) (2.66)64



Negative slope of the T2(δ) urve Setion 2.7where we have de�ned the e�etive elasti modulus along the orresponding branh
(x, y, z) as

E = [1 − y(1 − t)−1]−1, (2.67)and the referene strain
δ0 = z − x. (2.68)Correspondingly, the overall equilibrium energy for the tri-linear hain an be writ-ten

w(δ) ≡W/(Na) =
1

2
E(δ − δ0)

2 +
1

2
y(1 − t). (2.69)Here a is the referene length of eah half-saromere. The urves w(δ) and σ(δ)are shown in Fig. 2.25 (from [62℄ where ε = δ)The above solution is also suitable for our problem where a myo�bril is in-terpreted as a hain of half-saromeres with non-monotone tension-deformationrelations. In our ase, the expliit expression of the tension-deformation urve ofa unit is not as simple as (2.60) even in the approximate version, however someuseful insight an be derived by the analyses developed in [62℄ and [73℄.Let us �rst examine how the urvatures of the wells a�et the stability of theinhomogeneous on�guration. For instane, in the ase N=2, one an question thestability of the on�guration (1,1,0). In the tri-linear ase we know that [62℄ if theabsolute value of the (negative) modulus of phase II is greater than the two equal(positive) moduli of phases I and III, so that

t−1 − 1 > 1 (2.70)where t is de�ned by (2.60), then the on�guration (1,1,0) is not stable and theon�guration (2,0,0) �snaps� at some value of δ into the on�guration (1,0,1). Theglobal tension elongation urve will not show any region with negative slope, butwill instead show points of disontinuity (see Fig. 2.25).We an explain this result graphially by using a realisti T2(δ) urve. We reallthat for N = 2 the total deformation onstrain an be written as δ1 + δ2 = 2δ. Wean, therefore, represent at a given δ the tension-deformation urve for the seondhalf-saromeres T 2
2 (δ2), in the form

T 2
2 (δ1) = T 2

2 (2δ − δ1) (2.71)The relations T 1
2 (δ1) and T 2

2 (δ1) are plotted in Fig. 2.26 and in Fig. 2.27 for T2(δ)obtained in Setion 2.6. The T 1
2 (δ1) urve is always entered in the origin, while the65
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Figure 2.25: Overall energy-strain relation and fore strain relation for the ase N=2 and
t−1 − 1 > 1. From [62℄
T 2

2 (2δ−δ1) urve gets shifted to the left for inreasing values of δ. The equilibriumsolution orresponds to points where
dW (δ1, δ)

dδ1
=
d(w1(δ1) + w2(2δ − δ1))

dδ1
= T 1

2 (δ1) − T 2
2 (2δ − δ1) = 0, (2.72)meaning again that tensions are the same in both elements. Graphially it is thepoint of intersetion of the urves T 1

2 (δ1) and T 2
2 (δ1). A point of equilibrium isstable when

d2W (δ1, δ)

dδ2
1

=
dT 1

2 (δ1)

dδ1
− dT 2

2 (2δ − δ1)

dδ1
> 0. (2.73)Graphially this means that the on�guration is stable when the T 1

2 (δ1) urverosses the T 2
2 (2δ − δ1) urve from below, and is unstable if it rosses from above.One an see that the on�guration (0,2,0) is always unstable. When the maximumof the absolute value of the modulus in phase II is smaller than the moduli in phasesI and III as in Fig. 2.26, the two on�gurations (1,1,0) and the symmetri (0,1,1)are stable (shallow spinodal region). When the negative modulus is su�ientlylarger, as in Fig. 2.27, the stable on�gurations are (2,0,0) and (1,0,1), while the66



Negative slope of the T2(δ) urve Setion 2.7on�guration (1,1,0) is unstable. The orresponding equilibrium urve σ(δ) for theoverall hain is ontinuous as in Fig. 2.28(a) for the �rst ase. For the seondase, shown in Fig. 2.28(b) the tension hanges suddenly when one of the half-saromeres jumps from one stable on�guration to the other. In what follows the

Figure 2.26: Tension-deformation urves for the hain with two elements in series. The ase ofshallow spinodal region (t>1/2), S=stable, U=unstable. The system presents a stable on�gura-tion with one element in the spinodal regionabsene of the negative slope in the global tension deformation urves will be usedto explain the experimentally observed positive slope of the T2(δ) urve. However,to make the resulting pitures more realisti we need to inrease the number ofelement in the hain.In the ase of N elements one an show that no more than one element in thespinodal region (in phase II) an be present in a stable on�guration. Indeed if werewrite the total energy of the hain with N elements as a funtion of N-1 variables:
W (δ1, . . . , δN−1) = W

(
δ1, . . . , δN−1, Nδ −

N−1∑

i=1

δi

) (2.74)we obtain that the equilibrium on�guration δi(δ) is a loal minimum of this energy67
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Figure 2.27: Tension-deformation urves for the hain with two elements in series. The aseof steep spinodal region (t<1/2). The system does not present a stable on�guration with oneelement in the spinodal region

(a) (b)Figure 2.28: Overall tension-deformation urve for a hain with two elements superimposed onthe T2 − δ/2 urves for a single element (dashed). (a) Shallow spinodal region (t>1/2) (b) Steepspinodal region (t<1/2)
68



Negative slope of the T2(δ) urve Setion 2.7if the Hessian matrix is positive de�niteH =





E1 + EN EN . . . EN

EN E2 + EN . . . EN

. . . . . . . . . . . .

EN EN . . . EN−1 + EN




> 0Here Ei = w′′(δi), the tangential elasti moduli in the wells. To insure the positivede�niteness of this matrix, we must require

Aj > 0, j = 1, . . . , N − 1 (2.75)where
Aj ≡

(
j∏

i=1

Ei

)(
1 +

j∑

i=1

EN
Ei

) (2.76)are the prinipal minors of the Hessian matrix.With the de�nition of k, l, m given above, we observe that stability dependsonly on l, the number of elements in the spinodal region. Thus if l = 0 we have
Ei > 0 for all i = 1, . . . , N , and the matrix H(δ) is obviously positive de�nite. Inthe ase l ≥ 2, one an always regroup the elements in suh a way that the �rstand the last elements are in the spinodal region. In this ase, we have E1 < 0 and
EN < 0 and so also A1 < 0. Therefore, every on�guration with more than oneelement in the spinodal region is unstable. Now, onsider on�gurations with oneelement in the spinodal region. Suppose that this element is in the N-1 position.Then Aj > 0 for j = 1, . . . , N − 2 and stability depends on the sign of

AN−1 =

(
N∏

i=1

Ei

)(
N∑

i=1

1

Ei

)
. (2.77)We an rewrite this expression as:

AN−1 = (E(δI))
k (E(δII))

l (E(δIII))
m

(
k

E(δI)
+

l

E(δII)
+

m

E(δIII)

) (2.78)Now, sine E(δII) < 0, the neessary and su�ient ondition for stability is:
k

E(δI)
+

1

E(δII)
+

m

E(δIII)
< 0 (2.79)The elements are onneted in series, so the e�etive elasti modulus an be writtenas:

∂σ

∂δ
=

(
1

N

N∑

i=1

1

Ei

)−1 (2.80)69



Chapter 2 Power Strokeand the stability ondition for l = 1 says that the overall modulus of the orre-sponding equilibrium branh must be negative.For tri-linear element, the overall tension-deformation urve in the ase of Nhalf-saromeres, was obtained analytially in [62℄. The stable branh are shownin Fig. 2.29 for the ase of su�iently steep spinodal region. There are twothresholds formulated in terms of overall strain δ (ε in �gure) outside whih thesystem behaves like a hain of springs with onvex energies. Here we have theso-alled Cauhy-Born solutions, the homogeneous trivial on�gurations in whihthe elements are equally deformed. Inside these thresholds, the overall tension de-formation urve does not show any regions with negative slope, however the globalminimum solution (Maxwell path, see Fig. 2.29) presents a series of disontinuitiesin the tension due to the tension jumps as the elements transform from one phaseto the other.

Figure 2.29: Absolute minimizer for the hain with ten trilinear springs. Maxwell path: boldline. From [62℄In the above onsideration we have made impliitly a hypothesis that the ki-netis of the transformation inside individual Xbs is muh faster than the rate ofthe overall deformation. In this ase, at eah δ we an deal only with one value of70



Negative slope of the T2(δ) urve Setion 2.7tension. Even in this approximation, we have been dealing so far only with globalminimum strategy orresponding to the assumption that the temperature T = 0,but the system an still overome the barriers between the states with equal energy.In the next setion we drop some of those assumptions and present a more realistiapproah whih takes into onsideration a stohasti nature of the problem.Stohasti dynamis in a hain of half-saromeresIn order to onstrut a more realisti path for the hain of half-saromeres, we anuse the stohasti dynamis method proposed in [73℄. The method is based on thealgorithm generated by Gillespie in the 1977 [15℄, to simulate e�iently systems ofhemial reations using limited omputational power.Consider a hain of N half-saromeres, eah one represented by NXb ross-bridges ating in parallel. Eah Xb an be in two on�gurations, one generatingthe high fore (2.12) and another one generating the low fore (2.11). For eah Xbthe passage from one on�guration to the other is onsidered a stohasti event.For simpliity, we shall assume that the hange of on�guration for eah Xb isdesribed by a jump proess [73℄. As in the original HS71 model, the rate onstantsare related through (1.14) and depend on the total length of the half-saromere.At every swithing event (whih represent the power stroke of one Xb), the tensiongenerated by the half saromere under onsideration hanges and a new mehanialequilibrium is reahed before the next event takes plaes. The new mehanialequilibrium a�ets the length of all the half-saromeres in the hain. The presentmehanial on�guration de�nes the probability of the subsequent swithing event(see Setion A.9). The resulting system follows a partiular set of loal minima ofthe total energy instead of the global minimum.We did not explore with this method our global model presented in Setion2.3, where both hemial rate onstants k+ and k− depend on the streth of thehalf saromere (see later in Setion 2.8). Instead, to roughly apture the elastiityinside the wells, we have made the following hoie of the onstants:
k+ = k0(e

−Kdδ/2
kBT ) (2.81)

k− = k0(e
Kdδ/2
kBT )where the onstant k0 = 1000s−1. In this way we guarantee that both rate on-stants are a�eted by a hange in the length of the half-saromere, still assuringthat their ratio satis�es equation (1.14). A di�erent hoie was made in [73℄ where71



Chapter 2 Power Stroke(to mimi the hypothesis made by Huxley and Simmons in [10℄) k− was made to beonstant and k+ was de�ned by (1.14). However, despite this hange, the resultsare similar.With the Gillespie method one an reate, point by point, the overall T2 − δurve, imposing a value of the total deformation δ and following the time evolutionof the tension up to the steady state. In this way we an simulate the �real�stohasti behavior, obtaining a partiular sequene of loal minima hosen by ourdynamis.In Fig. 2.30 and Fig. 2.31 we show two numerial tests, with four and six-teen half saromeres. We an see that the analytial requirement exluding half-saromeres in the spinodal region is respeted. Overall we obtained jumps andonly positive slope of the overall T2(δ) urve. By inreasing the number of halfsaromere, we approah a urve with a �at portion in the entral region.
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Figure 2.30: Tension deformation urve for four half-saromeres. Simulation (points) and T2(δ)urve for a single half saromere (solid line)Notie that in real experiments, beause of the large number of saromeres,it is not possible to see the jumps in the T2(δ) urve assoiated with the pop-ping of individual half-saromeres. However, a non-homogenous distribution ofthe saromere's lengths should be possible to observe in the myo�bril. While someexperiments indeed show suh an inhomogeneity, at least in some regions of thetension-length urve [24℄, [89℄, it is not lear whether this mehanism is reallyoperative in the musle �bers [90℄.To summarize, the method desribed above an potentially reprodue the �atportion of the T2(δ) urve under the assumption that di�erent half-saromeresan be viewed as following di�erent paths. A fully mehanial desription of theenergy landsape an be obtained only for rather simple shape of the T2(δ) urve72



Negative slope of the T2(δ) urve Setion 2.7
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Figure 2.31: Tension deformation urve for sixteen half-saromeres. Simulation (points) and
T2(δ) urve for a single half saromere (solid line)desribing individual half-saromeres. In order to proeed in the general ase whenthe temperature T 6= 0, the stohasti dynamis methods appear to be neessary.The Gillespie method requires introdution of a hemial reation and of the relatedrate onstants. This is, however, against our main idea of staying with a fullymehanial model of musle ontration. Simulation of a large sale ontinuousstohasti dynamis for the whole hain does not appear doable at the moment.Therefore, in the next Setion, we fous on another way to apture the plateau ofthe T2(δ) urve.2.7.2 Distribution of the attahment positionsAnother way to obtain the �at plateau of the T2(δ) urve is to assure inhomogeneityalready at the level of individual Xbs [48℄. We reall that the basi element of everymodel of musle ontration is the presene of thermal �utuations. Even if these�utuations small, ompared to the sale of the power stroke, they an in�uenesigni�antly the level of the streth of the elasti element in the state of attahmentto the atin �lament. In the presene of thermal �utuations we must also onsiderthe possibility that the head attahes to atin site when its elasti element is awayfrom its referene state. This will lead to a situation in whih some Xbs have theelasti element strethed more than others, or even ompressed. As a result weloose the uniformity of the population of Xbs. As it was observed in [48℄ wherethis mehanism has been proposed for the �rst time, this leads to the averaging ofthe ordinates of T2(δ) over the distribution of the attahment sites.Let us �rst show how the distribution of the attahed sites a�ets the formu-las obtained in Setion 2.6. The dispersion in the attahment positions an be73



Chapter 2 Power Strokemimiked by a nontrivial distribution of the values of l0. Assume that for the i-thXb:
li0 = l0 + ψi (2.82)where ψi is a random variable uniformly distributed in the �nite interval of possibleattahment sites. This range was postulated to be ±5.5/2 nm in [48℄, beause

5.5 nm is the diameter of the monomer of atin. This will also be the value usedin the present work (li0 ∈ [l0 − 2.75 nm, l0 + 2.75 nm]). The assumed dispersiona�ets diretly the steady state probability distribution given by equation (2.35).Thus, we an write:
pis(x, δ, ψ

i) =
e−ET (x,δ,ψi)/kBT

∫∞

−∞
e−ET (x,δ,ψi)/kBTdx

. (2.83)The total energy depends on ψi only through the elasti energy
Ee(x, δ, ψ

i) =
1

2
K(x− l0 − ψi − δ)2. (2.84)The total tension in the steady state is then given by:

T2(δ) =

NXb∑

i=1

T i2(δ) =

NXb∑

i=1

∫ ∞

−∞

(
−K(xps(x, δ, ψ

i) − (l0 + ψi) − δ)
)
dx (2.85)At a given δ the tension T i2(δ) for the i-th Xb is equal to the tension generated bythe Xb with ψi = 0 additionally strethed (or ompressed) by δi = δ + ψi. Theoverall relative tension T2(δ) when the imposed inrement is δ is then the averageof the values given by (2.29) over the range [δ − 2.75 nm, δ + 2.75 nm]

T2(δ) =

NXb∑

i=1

T2(δ
i) (2.86)Similar formulas an be obtained for T1(δ).A nontrivial dispersion, ompatible with the assumed distribution has beenon�rmed by X-ray interferene studies in [88℄. The authors used a high-resolutionsmall angle X-ray sattering to study X-ray interferene e�ets generated by thearrays of myosin Xbs in ontrating musle to obtain sub-nanometer resolutionof the movements of the Xb during ontration. The observations show that inisometri ontration the lever arm angles are dispersed through ±(20◦ − 25◦) oneither side of the mean orientation [88℄. Also, it is shown that, during quik release,the Xbs move towards the new onformation in synhronized fashion, with onstantdispersion. 74



Negative slope of the T2(δ) urve Setion 2.7An indiret evidene of the attahment site non-uniformity an be obtainedfrom the multi-exponential �tting of the tension-time urves obtained in the ex-periments with sudden total length inrement (see [49℄, [14℄, [86℄). To explain thisidea it is su�ient to reall that in the Huxley and Simmons 1971 model the rateof tension reovery r was given by:
r(δ) = k+ + k− = k−(1 + e

−
yKh
kBT ) (2.87)where, again, their y is our δ. If all Xbs have the same attahment distane l0,then the tension vs. time urve for the half-saromere is:

T (t, δ) = (T1(δ) − T2(δ))e
−r(δ)t + T2(δ). (2.88)In the ase when this assumption is valid, the experimental urve should be de-sribed by one exponential funtion. If we onsider two equal populations of Xbs,with two di�erent distanes from the attahment site, say l0 + ψ and l0 − ψ, thereappear two di�erent rates r(δ) whih we shall denote by r(δ+ψ) and r(δ−ψ). Inthis ase the tension vs. time urve is given by:

T (t, δ) =
NXb

2
[T2(δ + ψ) + (T1(δ + ψ) − T2(δ + ψ))e−r(δ+ψ)t]+ (2.89)

NXb

2
[T2(δ − ψ) + (T1(δ − ψ) − T2(δ − ψ))e−r(δ−ψ)t]One an see a sum of two exponential terms instead of one. The steady state valueof the total tension is the average of the two values of T2(δ) of the orrespondingpopulations. If more populations are present, a multi-exponential �tting would beneeded to represent the resulting tension-time urve. In general, the dispersionimplies that eah Xb has its own level of pre-streth and therefore the total energyis di�erent for di�erent elements. The global reovery an then be �t by a sum ofexponential terms with di�erent exponents. in the next Setion we show that thisis exatly what follows from experimental observation.Therefore we an aept that the attahment sites are dispersed and, by per-forming a diret integration in the formulas for the tension (see, for instane, equa-tion (2.85)), obtain the urves shown in Fig. 2.32(a). As we see, if one inludes thedistribution of attahment sites, averaging out the tension in the entral region,one obtains a rather realisti behavior of the T2(δ) urve with negative slope �at-tened around δ ≃ 0. The dispersion also a�ets the slopes of the linear segments ofthe T2(δ) urve and the T1(δ) urve. For instane, by maintaining the same valuesof parameters as in Fig. 2.19(b) but adding the dispersion of the attahment sites,75



Chapter 2 Power Strokewe obtain the urves shown in Fig. 2.32(a), where the urves with no dispersionare also shown for omparison. The remaining quantitative inonsisteny leads tothe neessity to slightly hanging the values of parameters. The T1(δ) and T2(δ)urves obtained by the best �t (values reported in Table 2.1, olumn Best �tting)are shown in Fig. 2.32(b).One an see that the preditions of the resulting model are in rather goodagreement with experiments. While the optimal �tting should also depend on theelastiity of the �laments, whih is not onsidered here, the basi features of the fastmusle response appear to be aptured by the model with only two onformationalstates. This is most remarkable in view of the fat that we did not impose anyphenomenologial dependene of the rates of transitions on the length inrement
δ.Table 2.1: Values and meaning of the main parameters used for the numerial simulations andanalytial omputation for the purely Huxley and Simmons type modelDesription Analytial value Best �tting valueInterept of T2/T0 with the absissa δ(T21=0) = 10.8 nm -Interept of T1/T0 with the absissa δ(T1=0) = −3.87 nm -Slope of the T2/T0 vs. δ urve 0.138 nm−1 -Slope of the T1/T0 vs. δ urve 0.258 nm−1 -Rate of the slopes 1.87 -Total sti�ness k2K/(k2 +K) 1 pN/nm -Elastiity of the elasti element K 4.4 pN/nm 4.03 pN/nmElastiity of the low fore generating state k1 18.17 pN/nm 11.4 pN/nmElastiity of the high fore generating state k2 1.29 pN/nm 1.33 pN/nmRatio k2/K 0.294 (0.310) 0.330Curvature of the maximum k3 −8 103 pN/nm 8 103 pN/nmPosition of the maximum b - a1(0) − (a0

1
− a0

2
)/5Pre-streth in low fore generation state l0 0.05 nm 0.39 nmDistane between the hemial minima a 10.75 nm 10.41 nmThermal energy kBT 4.14 pNnm -Drag oe�ient of the Xb η 60 − 90 pNns/nm -

2.8 Rate of fast tension reoveryIn the Huxley and Simmons 1971 paper three features of the fast tension reoverywere highlighted: the linear derease in tension T1(δ), the nonlinearity of the steadystate tension T2(δ) and the partiular kinetis behind the transition from T1(δ) to
T2(δ). In this Setion we onsider in more detail this last feature and show how76



Rate of fast tension reovery Setion 2.8
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(b)Figure 2.32: Fitting of the experimental data in the model with nonuniform distribution ofthe attahment sites. Points: experimental data. Straight dashed line: Linear best �tting of theexperimental data. (a) T1(δ)/T0 and T2(δ)/T0 predited without dispersion of attahment site(ontinuous lines) and with dispersion (dashed lines), k2/K = 0.294 (b) T1(δ)/T0 and T2(δ)/T0with a dispersion of attahment site, k2/K = 0.310. Absissa units: nm
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Chapter 2 Power Strokeour modi�ation of the Huxley and Simmons model mathes the peuliarities ofthe kinetis of fore reovery.We reall that after the imposed length step, the tension quikly reahes thevalue T1(δ) and then follows an almost exponential time trajetory before reahingthe �nal value T2(δ) (see Fig. 1.14(a)). Some authors used a multi exponential�tting to desribe this urve and as a result had to deal with several harateristitimes [49℄ [14℄ [86℄, while others have simply taken as a harateristi sale the timeneeded to reah the value T1 + (T2 − T1)/2. This last approah is equivalent toapproximating the tension-time urve with a single exponential funtion of time:
T (t, δ) ≃ (T1 − T2)e

−rt + T2. (2.90)One an then de�ne the resulting parameter r as the harateristi rate of theproess: indeed r−1 is the time needed to reah the (1 − 1/e) = 64% of the totalreovery.In experiments it takes several milliseonds to reah the value T2. After short-ening the �nal tension T2 is reahed after a shorter time, less than one milliseondfor high negative length inrement. In general the rate of reovery r varies with δ.Thus we already know that r(δ) is low at high streth step and inreases almostexponentially as one passes to higher shortening steps (see Fig. 1.15). Huxley andSimmons �tted the experimental dependene r(δ) with the funtion:
r(y) = r0(1 + e−αy)with r0 = 0.2 ms−1 and α = 0.5 nm−1.The partiular shape of the experimentally measured funtion r(δ) a�etedonsiderably the struture of the Huxley and Simmons 1971 theory. Thus, thehoie of very narrow energy wells in this model was diretly linked to the neessityto reprodue the partiular slow reovery at large positive strething steps.To explain this statement we reall that the Huxley and Simmons 1971 modelpredits that r(δ) = k+ + k−, where the k's are the reation onstants ontrollingthe rate of transition from one onformational state to the other. The onditionof detailed balane in our notations (a is negative in our model) requires that

k+/k− = exp[−δK(−a)/kBT ]. Given this ondition one still has the freedom tomodify the onstants at di�erent values of δ in order to �t the experimental data.In the Huxley and Simmons model this freedom is essentially absent beause theenergy landsape, even if degenerate, is given. By putting a very narrow wellin the post-power stroke state, Huxley and Simmons put the maximum and the78



Rate of fast tension reovery Setion 2.8minimum at the same value of x. In this ase every hange in the streth of theelasti element a�ets both the �well� and the �barrier� in the same way. Theondition k− = onst is guaranteed by this hoie, and onsequently r goes to zeroat high positive inrements aording to
r(δ) = k+ + k− = k−(1 + exp[−δK(−a)/kBT ]). (2.91)Under this assumption the �tting of the experimental rate reovery urve be-omes possible and it gives the values of both k− and Ka. We reall that thevalue of Ka obtained in this way by Huxley and Simmons turned out to be grosslyunderestimated.Before disussing quantitative e�ets of the elastiity of the wells, we observethat by dropping the hypothesis of in�nitely steep wells, we loose the strong asym-metry of the funtion r(δ) for lengthening (δ > 0) and shortening (δ < 0). Indeed,in this ase, k− is no longer onstant and inreases with δ (this also justi�es theassumption (2.81)).In our general ase we an quantify the dependene of the kineti onstants onthe struture of the energy landsape by using Kramers' theory (see Setion A.7,we also refer to [74℄). The reovery of tension is a non-equilibrium proess, andthe anonial distribution does not allow one to ompute the tension transients.We should instead solve diretly the Fokker-Plank equation and obtain the timedependent probability distribution p(x, t). We reall that Kramers' theory (seeSetion A.7) is based on the the hypothesis that, in a double well potential, thetime needed to relax inside eah of the wells is muh shorter than the mean time ofthe transition between the wells. This is true for the ase of musle with realistivalues of parameters and orret geometry of the myosin heads [64℄. Thus, if thedrag oe�ient of the partile is 60−90 pNns/nm, the harateristi time to relaxinside eah minima is of the order of τ1η/K ≃ 0.1µs. The mean exit time shouldbe omparable to the time sale of the reovery proess giving τ2 ≃ 1ms. Now, itis easy to hek τ2 ≫ τ1 as required, and one an approximate the di�usion proessby a jump proess. De�ning the fration of Xbs in eah well during the transientas:

nδ1(t) =
∫∞

a/2
p(x, δ, t)dx

nδ2(t) =
∫ a/2
−∞

p(x, δ, t)dx,
(2.92)and the orresponding quantities at the steady state (2.36), one an write:

ṅ
δ

1(t) = −ṅδ2(t) = −k+ṅ
δ

1(t) + k−ṅ
δ

1(t) = k− − (k+ + k−)ṅ
δ

1(t). (2.93)79



Chapter 2 Power StrokeIn the Kramers' theory the �hemial� rate onstants are fully determined by theshape of the energy landsape. Thus for k− we obtain:
k− = (kBT/η)[n

δ
2

∫ a1

a2

ps(x, δ)
−1dx]−1 (2.94)whih gives for the rate of reovery:

r(δ) = k+ + k− =
kBT/η

nδ1n
δ
2

∫ a1
a2
ps(x, δ)−1dx

. (2.95)Here ps(x, δ) in (2.94) and (2.95) is a funtion of the energy landsape whih anbe found from equation (2.35). Fitting of the experimentally observed rate ofreovery δ dependene will then pose a onstraint. We shall view this onstraintas a restrition on the height of the energy barrier between the wells.Observe that sine k2 6= ∞ it is no longer true that k− = onst as in theHuxley and Simmons ase. From equation (2.95) we an see that the leading termis inversely proportional to nδ1nδ2, and when δ is positive and large, we expet that
nδ2 ≃ 0 and nδ1 ≃ 1. Therefore r(δ) must inrease for high positive values of δ whihis in ontradition with observations.
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(b)Figure 2.33: Inreasing rate of reovery for high strethes and related hemial energy. (a)Chemial energy (b) Rate of reovery vs δOne way to avoid this behavior at large δ > 0 is to make the maximum of theenergy (the barrier height) dependent on the imposed step. To this end we anonsider a pieewise paraboli energy, with the third parabola plaed upside down80



Rate of fast tension reovery Setion 2.8between the two onventional paraboli wells:
Ec(x) =






1

2
k1x

2 x ≥ b1

1

2
k3 (x− b)2 + e b2 ≤ x < b1

1

2
k2(x− a)2 + d x < b2

(2.96)
Here, as postulated, k1 > 0, k2 > 0 and k3 < 0. The funtion (2.96) is shown in Fig.2.33(a), where the height of the energy is denoted by e. The parameters an alwaysbe hosen in suh a way that the total energy is a ontinuous funtion of x, even if its�rst derivative is not. The smoothness of the energy is not important for omputingthe integrals in the formula for ps(x, δ). If the maximum is onstant the rate ofreovery shown behavior disussed before, as shown with a numerial simulationin Fig. 2.33(b). Suppose now that the loal maximum of Ec(x) representing thebarrier is a monotonially inreasing funtion of δ, e = e(δ) as in Fig. 2.34(a).In this ase we an redue the rate of reovery in strething tests, obtaining arealisti behavior as in Fig. 2.34(b). Indeed, with the inrease in e the weight ofthe integral term in (2.95) also inreases whih an in priniple balane the term
nδ1n

δ
2 and ensure the desired shape of r(δ). This is however not the hoie that we
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(b)Figure 2.34: Variable barrier in the hemial energy. (a) Shape of Et for three values of δ, themaximum e is a funtion of δ. (b) Rate of reovery when e(δ)make in the rest of the Thesis.We deided instead to simply omit the strething part of the urve r(δ), forthe following reasons. First, reent studies show that in the strething experiments81



Chapter 2 Power Strokemehanisms other than simple power stroke may be important in generating thetension reovery [91℄. Till now we always onsidered that, even if the skeletal mus-le's myosin has two heads, only one head is involved in the power stroke proess.If, on the other hand, the steri e�et due to the streth allows the seond head tobe attahed ontemporarily, a hange in the total number of Xb has to be intro-dued, probably as a funtion of the streth itself. Seond, the experimental timesale of tension reovery after streth is so slow (tens of milliseonds [49℄) thatthe attahment-detahment proess may beome important. Both mehanisms,getting the seond head involved and ativating the attahment-detahment meh-anism, are negleted in the Huxley and Simmons model. We also omitted themin the present study whih only aims at desribing the e�et of elastiity in thewells. In what follows we shall be mostly preoupied with the physiologial rangeof behavior of musles, whih means with the shortening range. In this ase wean avoid introduing questionable e(δ) behavior.With this limitations in mind, we an still deal quantitatively with the twoother defets of the Huxley and Simmons 1971 model. We reall that already inthe 1978 [17℄ it was observed that the hypothesis of narrow potential wells leads toan unrealisti time sale of the transition proess. Indeed, the rate of transition isslower at δ = 0, where the Xb has to be strethed up to a in order to jump, than at
δ = a, where it an jump without being strethed at all. Huxley and Simmons didnot know the elasti energy assoiated with this streth, beause K was unknown,but they assoiated the di�erene in the values of Ec(x) in the bottoms of the wellswith the ATP onsumption needed to hange the on�guration. More spei�ally,they assumed that the energy needed to streth a Xb up to a is 18kBT , whih isthe free energy liberated by the ATP as known at that time. Beause the rate ofreovery is hanging exponentially with the ∆E/kBT , they dedued that the ratioof the rates in the ases δ = 0 and δ = a has to be equal to e−18 = 10−8, a valuemuh higher than experimentally observed. Huxley ame bak to this problemin 1996 [48℄, showing that indeed at realisti values of K, the rate of reovery isunrealistially fast (see Fig. 2.5).Regarding the seond problem with the HS71 model, we have to reiterate againthat Huxley and Simmons used a jump proess to simulate the hange in on�gu-ration, and that k− was used as a free parameter whose value ould be imposed to�t the experimental data. In a more realisti model (2.96) the Xb has to streththe elasti element to overome the energy barrier Emax = d. In the Langevinequation setting for a single quadrati energy well we an estimate the mean �rst82



Rate of fast tension reovery Setion 2.8passage time (see Setion A.6.3), obtaining:
tK = η/K

√
π/4
√
kBT/Emax exp[Emax/kBT ] ≃ 1 s (2.97)Here we used η = 90 pNns/nm, K = 1 pN/nm, kBT = 4.14 pNnm2 and Emax =

80%∆GATP = 20kBT .This rough estimate is obviously not ompatible with the observed time saleof the proess. The non-zero urvatures of the wells help, however, to avoid theproblem. The equation (2.97) shows that the time needed to overome the barrieris related only to its height. With our �rst double paraboli energy model (2.7)and, with l0 = 0, the energy barrier is equal to:
∆ET =

1

2
(k1 +K)

[

−ak2(K + k2)
2 −

√
a2k2

2(K + k2)2(K2 + 2Kk1 + k1k2)

(k1 − k2)(K + k2)

]2

.(2.98)One an see that ∆ET approahes asymptotially the value 1/2Ka2 when k2 goesto in�nity. For �nite values of k2 the barrier is lower than that as shown in Fig.2.35 for given values of K and k1. In the ase of narrower wells the Xb that is inthe well on the right does not feel the presene of the seond well till it reahesthe maximum, whih for k2 = ∞ is in x = a, therefore this value of x has tobe reahed only through thermal di�usion in a quadrati potential with urvature
K + k1. Within the hypothesis of elasti wells, thermal �utuations must streththe elasti element only till an intermediate on�guration beause afterwards thesystem will be driven by the drift fores. Mathematially this means that thevalue of tK (2.97) has to be omputed with the lower value of ∆ET obtained fromequation (2.98).
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Chapter 2 Power StrokeTo summarize, introdution of the elastiities in the wells a�ets the �rst meanpassage time and allow the �tting of r(0). To reprodue the whole urve r(δ) in theshortening regime, we need to onsider the third parabola as in (2.96). In orderto a�et as less as possible the results obtained for the steady state, we hooseto make this third parabola as narrow as possible. In this way we an math theontinuity ondition without a�eting the bottom areas of the minima.The Kramers' theory (see Setion A.7) gives an analytial expression for thedependene of the rate of reovery on δ (equation (2.95)). It an be simpli�edfurther when the asymptoti approximation, desribed in equations (2.41), is valid.In this ase we obtain (see [74℄ for a formal derivation):
r(δ)−1 = (2.99)

2π[n1n2]
1
2 [| E ′′

T (b) |− 1
2 E ′′

T (a1)
− 1

4 (E ′′
T (a2))

− 1
4 ] exp

[
2ET (b) − ET (a1) − ET (c2)

2kBT

]
.Here we have used the hypothesis onerning the narrow struture of the thirdparabola, allowing us to approximate the value of the variable x = xmax (wherethe total energy reahes its maximum) by b. Indeed, beause K/k3 ≃ 0,

xmax =
K/k3δ + b

1 +K/k3

≃ b. (2.100)Within this approximation, the presene of the third parabola gives rise to a on-stant multiplier (pre-exponential fator) in (2.99) of the form
| E ′′

T (b) |
−

1

2 exp

[
ET (b)

kBT

]
.This onstant value has been used to �t r(0).With all the approximation made, the analytial expressions needed to analyzethe in�uene on r(δ) of the parameters of the model are too omplex, due to thepresene in equation (2.99) of the terms n1 and n2. Therefore, instead of using theanalytial solution we an as well turn to diret numerial integration in the formula(2.95). We assume that we are in the framework of the distributed attahment sitesmodel as in Setion 2.7.2. Then for eah attahment site we obtain its own value of

r(δ). To replae them by a single funtion of r(δ) allowing one to make omparisonwith experiments, we plot the urve
fexp(t) =

1

nexp

nexp∑

i=1

e−α
it (2.101)84



Disussion Setion 2.9and then perform one-exponential �tting of this urve. The resulting funtion r(δ)is strongly ontrolled by the hoie of the parameter b and we used this remainingfreedom to �t the experimental urve. In fat, this parameter an be viewed asa kind of opposite to the one used in Huxley and Simmons 1971 to �t the sameurve: shifting b to the left, makes the dependene of k+ on δ weaker, beause theloal maximum at b and the loal minimum in the �rst well, beome loser.The overall preditions of the model are ompared with experimental data inFig. 2.36 for the set of parameters reported in Table 2.1, olumn Best �tting. Thisset of parameters works rather well for both the rate of reovery and the steadystate behavior (see Fig. 2.32(b)).

Figure 2.36: Rate of the tension reovery at di�erent length steps δ. Comparison of the preditedvalues (solid line) at the values of parameters shown in table (2.1), and the experimental points(from [10℄, [14℄, [67℄, adapted to be onsistent)
2.9 DisussionWe would like to make some �nal omments regarding the desription of the overallelastiity, sine its value have previously generated problems for the Huxley andSimmons 1971 model. The introdution of the elastiities in the wells, makesambiguous the de�nition of the total sti�ness of the Xb. This sti�ness is representedby two elasti elements in series and does not depends on K only. It also dependson the state of the bi-stable element. If the experimental rigidity is measuredin rigor, where n2 = 1 and n1 = 0, it should assume the value k2K/(k2 + K).We hoose the parameters k2 and K to ensure that this total sti�ness is equal85



Chapter 2 Power Stroketo 1pN/nm. This value is lower than the values obtained in experiments, but weshould remember that the elastiities of the �laments have been negleted in ouranalysis. The experimentally measured value of total elastiity does not take intoaount the ompliane of the �laments, while the data that we have used areobtained from the whole struture: ross-bridge and �laments. Thus, the valueassumed for total elastiity in our model is 1pN/nm, whih must be interpreted asthe elastiity of the ross-bridge and the �laments onneted in series. This makesthis �seemingly� low value realisti.In this Chapter we have obtained a quantitative desription of the power strokein a fully mehanial framework. We model the other part of the Xb yle, theattahment-detahment proess, in the next Chapter.
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Chapter 3The attahment-detahment proess
3.1 IntrodutionThe physiologial shortening of skeletal musles an vary over a wide range oflengths, reahing up to several entimeters. Sine the saromeres in the myo�brilare distributed in series, suh huge ontration is ahieved by means of a muhsmaller shortening of eah half-saromere. The series strutural organization allowseah half-saromere to maintain its length in the plateau interval of the relationfore-length F−l desribed in Chapter 1. This helps to stabilize musle mehanialbehavior and optimize the fore generated. In the experiments of interest thesaromere, having a physiologial length of 2.2 µm, an shorten in the range oftenths of a mirometer [67℄. A single myosin motor produes a fore of 5 pN [92℄and due to the parallel distribution of the ontratile units inside the saromere,the tension generated in eah atin �lament an be two orders of magnitude larger.As desribed in Chapter 2, the typial size of the power stroke is of the order often nanometers [84℄ and the distribution of the Xbs in parallel limits the maximumpower-stroke related shortening of a half-saromere to this value. The larger globalshortening (tenths of a mirometer) is generated by a yli interation of the Xbswith the ative sites on the atin �lament. During this proess a detahment inthe post-power stroke on�guration of Xb is needed before the next attahmentin the pre-power stroke on�guration takes plae. As explained in Chapter 1, theorresponding yle was �rst proposed in 1971 [9℄, it is now alled Lymn-Tayloryle. The desription of this yli attahment-detahment proess an be foundneither in the HS71 model nor in the model desribed in Chapter 2, beause bothneglet the attahment-detahment proess. In order to have a omprehensivemehanial model of musle ontration a new omponent has to be added.87



Chapter 3 The attahment-detahment proessA �rst model of yli interation between atin and myosin was already pre-sented in Huxley 1957 model [4℄ desribed in Chapter 1. Its �rst essential feature isthat eah Xb ontains an elasti element whih allows for Brownian osillations be-fore the attahment and whih generates a fore after the attahment. The seondessential feature is that the rate onstants for the attahment-detahment proessdepend on the strething of the elasti element and are asymmetri around theunstressed on�guration. As we show, these are the two fundamentals hypothesesbehind the so-alled Brownian rathet idea whih is the main subjet of the presentChapter. Reently Brownian rathets have been used to model the behavior of var-ious moleular motors (see [68℄ for a omprehensive review), a family of proteinsthat transform hemial energy into mehanial work.Skeletal musle myosin II, the main protein of the ontration mehanism, be-longs to the superfamily of a motor proteins found in eukaryoti tissues. Motorproteins generate motion inside the ell whih is faster than di�usion: the om-plex struture and the dimension of the euaryoti ells make the di�usion proesstoo slow to supply the needed transport veloities of nutrients, waste, protein et.An inrease in the size of the ell by a fator of 10 should be slowing down thedi�usional transport by a fator of 100 (see Setion A.4 in Appendix). Insteadmotor proteins an transport argos at onstant speed by walking along either themiro�laments (atin) or mirotubules.The most prominent example of atin motors is myosin II, while kinesin anddyneins are mirotubule motors. Two important aspets ommon to all ytoskele-ton �laments have been observed experimentally: �rst they exhibit periodiity withthe period of the order of 10nm; seond they are polar, so it is possible to de�nea �positive� diretion for the motion (see [50℄ and referenes therein). Modelingof the motion of atin motors must take into onsideration that the ating on-�gurational fores are only few times kBT , and therefore the esape times for theenergy wells is �nite. Therefore moleular motors are mirosopi objets that livein Brownian domain. Sine they move along one dimensional periodi struturesthey an be modeled as Brownian rathets [40℄, [32℄, [51℄.We start by introduing a simple non Brownian mehanial model of a rathetwhih furnishes the desired extension of the model proposed in Chapter 2 but whihis not ompatible with the idea that the motor is powered by the hydrolysis of ATP.Therefore we reintrodue �utuations and review the partile motion in a tiltedperiodi potential subjeted to thermal noise. Then we move to Brownian motors,exhibiting the variety of their types and explaining the way in whih they are able88



A model of fritional motor Setion 3.2to retify the external noise using an appropriate struture of the potential and asoure of olored noise whih maintains the system out of equilibrium. In partiularwe desribe in some detail two important types of Brownian rathets that an beuseful in musle mehanis. Next we modify one of these models and adapt it to thephysiology of musle ontration. We then onsider several interating motors andintrodue the system of stohasti di�erential equations governing their olletivedynamis. The analytial treatment of suh type of systems does not appearfeasible and to analyze di�erent relevant regimes we develop a numerial methodallowing one to simulate the behavior of the proposed model. Some qualitativeresults obtained in the ourse of our numerial experiments are disussed at theend of the Chapter.3.2 A model of fritional motorThe model of Huxley and Simmons is able to mimi the steady state tension devel-oped by the musle in the isometri ase (T0). This tension however is maintainedwithout onsumption of energy, whih violates physiologial experiene. As wehave seen in Setion 1.3.1, where we desribed the experiments made by A.V. Hillin 1938, during isometri ontration skeletal musles onstantly produe heat (seethe maintenane heat rate term in (1.1)). This fat indiates that yli atomyosininteration requiring energy soure is present even during marosopially steadyisometri ontration. In Setion 3.1, we disussed the need of a new omponentin the model in order to desribe the large observed shortening of musles. Nowwe see that suh extension of the model is needed even to desribe the steady statefore generation in the isometri ase.To understand this better we may think in terms of an analogy with a ar thatis kept steady on an uphill road. We an reah this situation in two ways, either byativating the mehanial breaks, where no energy is required, or by maintainingthe engine working and produing a forward fore that balanes exatly the bak-ward fore. Obviously, in the latter situation the luth is onstantly generatingheat and therefore the energy has to be onstantly onsumed. Despite the lossesthis situation is more �exible allowing the driver to adapt quikly to hange in theexternal onditions (e.g. green light replaing red light).We an use this intuitive analogy to try to mimi the attahment-detahmentyle responsible for a onstant fore and a onstant heat rate in tetanized musle.Consider the following mehanial model. Suppose that a body with weight P is89



Chapter 3 The attahment-detahment proessplaed on a belt whih is moving with a speed v. The belt is haraterized by aoe�ient of dynami frition µd and the load is attahed to a spring of rigidity K(see Fig. 3.1(a)). The equation of motion for a ontinuously sliding body an bewritten as
mẍ(t) +Kx(t) + µdP = 0. (3.1)The body reahes the steady state ẍ = ẋ = 0 at the position x where −Kx = µdP .Observe that the onstant fore that the model produe is exerted on the externalwall. In order to produe this onstant fore, a ertain amount of energy must bespent to maintain motion of the belt. If we substitute the elasti element with aonstant fore T , the body will moves only when T = µdP , but at this value theveloity an not be determined by this model (Fig. 3.1(a)) The problem with this
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Brownian rathets Setion 3.3the rail is pieewise linear:
y(x) =






+ tan(α)(x− n/2) n < x < n + 1/2

− tan(α)(x− n/2) n + 1/2 < x < n+ 1

|n| = 0, 1, · · · (3.2)Suppose that the rail is moving in the negative diretion at a onstant speed v sothat y(x, t) = y(x + vt). Suppose also that the partile is embedded in a visous�uid whih provide in this model a dissipative mehanism. Finally, we plae aspring whih links the partile to a �xed position x = 0. In the overdampedregime, the equation of motion of the partile takes the form
[1 + tan2(α)]ẋ(t) +

K

η
x(t) + v tan2(α) = 0. (3.3)The solution an be written as:

x(t) = −vη
K

tan2(α)[1 − e−
K
η

cos2(α)t] (3.4)It is not di�ult to see that the swith from one branh in (3.2) to the other doesnot hange the reation fore ating on the partile due to the rail. The positionof the partile reahes the steady state x = −(vη/K) tan2(α) exponentially fast.As we see the higher is the veloity of the belt the larger is the fore ating on thespring. The motion of the belt here is mimiking the e�et of the ATP hydrolysis.If we swith from the isometri ondition to an isotoni one, removing the springand applying to the partile a onstant external fore Fext, we an onstrut thefore veloity urve:
ẋ(t) = − cos2(α)[Fext/η + v tan2(α)]. (3.5)One an see (Fig. 3.1(b)) that the veloity depends on Fext linearly. The mainproblem with this model is however elsewhere. Thus it is lear that the isotonienergy release due to hydrolysis of ATP an not be represented by the unidiretionalfore generated by the moving belt. The way to overome this problem is to replaea mehanial rathet by a Brownian rathet.3.3 Brownian rathetsWhen thermal �utuation are not negligible, the equation of an overdamped motionof a partile in a potential V (x) takes the form (Langevin equation, see SetionA.3):
ηẋ(t) = −V ′(x) +

√
ηkBTΓ(t). (3.6)91



Chapter 3 The attahment-detahment proessThe random term Γ(t) orresponds to white noise and has the following proprieties:
< Γ(t1) >=

∫ ∞

−∞

x1pΓ(x1, t1)dx1 = 0, (3.7)where pΓ(x, t) is the probability that Γ assumes the value x at time t, and
< Γ(t1)Γ(t2) >=

∫ ∞

−∞

∫ ∞

−∞

x1x2pΓ(x1, t1; x2, t2)dx1dx2 = δ(t1 − t2). (3.8)In what follows for every funtion f(x) of a stohasti variable x whose probabilitydensity funtion is p(x), the brakets < f(x) > will stand for its average valueomputed as:
< f(x) >=

∫ ∞

−∞

f(x′)p(x′)dx′. (3.9)Now suppose that V (x) is a double well potential. Then, as it was explained inChapter 2, equation (3.6) desribes the Huxley and Simmons type model (see equa-tion (2.32)). The orresponding Fokker-Plank equation has the following steadystate solution:
ps(x) = N exp[−V (x)/(kBT )]. (3.10)The ruial ondition for (3.10) to be admissible is that the probability urrent
S = −V

′(x)

η
p− kBT

η

∂p

∂x
= 0. (3.11)We reall that in the steady state we must have S(x) = const. When we know ad-ditionally that the energy V (x) goes to in�nity at the boundaries, we an onludethat S = 0.When we onsider a periodi potential V (x), the ondition S(x) = 0 is no longertrue, and the most important part of the analysis is to ompute the onstant S forthe steady state. The onstant S is a funtion of the parameters of the potential

V (x). In Appendix (Setion A.8) we show that the onstant probability urrent
S is related to the mean veloity v (drift veloity) of the partile through thefollowing relation:

< v >=< ẋ(t) >= 2πS (3.12)An important observation onerning the periodi potential V (x) was obtainedby Risken [23℄. He showed that in a periodi potential V (x) of period L whihis tilted by a onstant fore F , i.e. V (x + L) = V (x) + F , the steady state driftveloity is given by:
ηv = η < ẋ(t) >=

2πD(1 − e−2πF/D)
∫ 2π

0
eV (x)/Ddx

∫ 2π

0
e−V (x)/Ddx− (1 − e−2πF/D)

∫ 2π

0
e−V (x)/Ddx

∫ x
0
eV (x′)/Ddx′(3.13)92



Brownian rathets Setion 3.3where D = kBT/η is the di�usion oe�ient. We immediately see that < ẋ > 6= 0if and only if F 6= 0 despite an asymmetry of the potential. This exludes thepossibility of onstruting a motor whih is able to extrat work from a soure ofthermal �utuations. The basi idea behind this result an be traed bak to aonferene talk by Smoluhowski in Münster 1912 whih was elaborated on laterin Feynman's Letures on Physis [6℄. Both authors onsidered a devie, shown inFig. 3.2, whih onsists of an asymmetri gear known as a rathet, whih rotatesfreely in one diretion but is prevented from rotating in the opposite diretion bya pawl. The rathet is onneted by a massless and fritionless rod to a paddlewheel that is immersed in a bath of moleules at a given temperature. Eah time amoleule ollides with a paddle, it imparts an impulse that exerts a torque on therathet (the mehanism is imagined to be small enough that this tiny fore ouldmove it). Beause the pawl only allows the motion in one diretion, the net e�et ofmany suh random ollisions should allow the rathet to rotate ontinuously in thatdiretion. The rathet's rotation an then be used to do work on other systems,for example for lifting a weight against gravity. The energy neessary to do thiswork apparently would ome from the heat bath, without any heat gradient.Equation (3.13) is in ontradition with this seemingly intuitive result, beauseneessarily v = 0 when no external fore F is ating on the system. Atually thisintuition is wrong. Indeed, in the Smoluhowski and Feynman's Gedankenexperi-menten the pawl must be extremely soft to admit a rotation even in the forwarddiretion, and as pointed out already by Smoluhowski, it is also subjeted toa non-negligible random thermal �utuations. The �ux in one diretion is onlypossible if the two parts of the system are kept at di�erent temperatures.Now observe that only when the onstant S in equation (3.12) is di�erent fromzero do we have a net �ux of partiles in the steady state. To have suh a �uxthe system must be either a�eted by a diretional fore F or be maintained byexternal ations in out of equilibrium state. In the ase of musles, this externalation is provided by the ATP splitting, whih gives the required energy to bias themotion. the question is how to imitate mehanially the presene of the resultingnon-equilibrium noise.The transport phenomena in spatially periodi systems that are out of ther-mal equilibrium have been reently reviewed in [68℄. In very general terms, thermalrathet is a mehanial system whih is subjeted to an asymmetri periodi poten-tial V (x, t), is a�eted by an external fore F (t) with zero average, and is exposedto thermal �utuations, modeled as a white noise Γ(t). Under the ation of these93



Chapter 3 The attahment-detahment proess

Figure 3.2: The rathet (left) is onneted by an axle with the paddles (right) and with a spool(enter), whih may lift a load. From [68℄fores the probability distribution an reah the steady state ps(x) with a non-zero�ux.Thermal rathets have been used to desribe di�erent physial systems. Asystemati lassi�ation of di�erent rathet models an be based on the type ofexternal ation, [68℄. The basi working model in the overdamped situation anbe written as:
ηẋ(t) = −V ′ (x(t), f(t)) + F (t) + Γ(t) (3.14)where Γ(t) is the thermal noise, not neessarily white. Another term an be addedto aount for a passive external fore Fext(x): if the system is arrying a argo asin the load lamp devie, then Fext(x) = const, if it is strething a spring, as inthe length lamp devie, then Fext(x) = Kx.The ondition F (t) = 0 distinguishes the lass of pulsating rathets whose twoimportant subgroups are the traveling potential rathets with:

V (x(t), f(t)) = V (x− f(t)) (3.15)and di�erent assumptions on f(t), and the �utuating potential rathets where:
V (x(t), f(t)) = V (x) [1 + f(t)] . (3.16)In this last lass, when f(t) takes only the values 1 or −1, we have the so-alledon-o� rathet.The seond main group of Brownian rathets is alled tilting rathets. Then94



Brownian rathets Setion 3.3
f(t) = 0 and F (t) is either a periodi funtion with zero mean:

1

T

∫ T

0

F (t)dt = 0 (3.17)as in roking rathets, or a unbiased stationary random proess, as in �utuatingfore rathets. As we have seen in our disussion of purely mehanial rathets,if F (t) has a non-zero mean, we an have a non zero �ux even if the potential issymmetri. Finally, it is possible to brake thermal equilibrium by onsidering aspae or time dependent temperature distribution (temperature or Seebek rathet)or a non-trivial visosity pro�le (frition rathets).Two simplest models from this atalogue an be used as the prinipal basis forthe desription of ontrating musles. The �rst one is the model of Magnasoproposed in 1993 [32℄. It is the simplest tilting rathet with a time periodi fore(roking rathet). The seond model was developed by Prost and ollaboratorsaround the same time [40℄ (see also [28℄) and is the simplest �utuating potentialrathet.3.3.1 Magnaso modelMagnaso [32℄ showed that, if the periodi potential is asymmetri, an externalfore, whih is periodi in time and have zero mean, an generate a net �ux inone diretion. The magnitude of the �ux depends on the shape of the potential.Magnaso onsidered the following Langevin equation:
ẋ(t) = −V ′(x) + F (t) + Γ(t). (3.18)The assoiated FPE, an be written as:

∂tp+ ∂xJ = 0

J = −kBT∂xp+ (−V ′(x) + F (t))p
(3.19)As we have already mentioned, Risken [23℄ obtained an analytial solution forthe �ux J in the ase when the fore F is onstant (equations (3.12) and (3.13)).Magnaso omputed it expliitly in the ase of a pieewise linear potential as inFig. 3.3: here λ1 and λ2 are the frations of the total period (λ = λ1+λ2) where thepotential has onstant derivatives, Q/λ1 and −Q/λ2, orrespondingly, ∆ = λ1−λ2.The analyti form of this potential is the following:

V (x) =






Q

λ1

(x− nλ) nλ < x < nλ+ λ1

Qλ

λ2

− Q

λ2

(x− nλ) nλ+ λ1 < x < (n + 1)λ
|n| = 0, 1, · · · (3.20)95



Chapter 3 The attahment-detahment proess

Figure 3.3: Pieewise linear potential adapted from [32℄. The arrow indiates the diretion ofthe probability urrent J . The preferred diretion is the one towards lower |V ′(x)|By using (3.20), the probability urrent J an be written as:
J(F ) =

P 2
2 sinh [λF/2kBT ]

kBT

(
λ

Q

)2{
cosh

[
Q− ∆F

kBT

]
− cosh

[
λF

2kBT

]}
− λ

Q
P1P2 sinh

[
λF

2kBT

] ,

P1 = ∆ +
λ2 − ∆2

4

F

Q
,

P2 =

(
1 − ∆F

2Q

)2

−
(
λF

2Q

)2

. (3.21)Using this result one an ompute the average probability urrent J for thease when the �utuations of the fore are slow enough to justify the use of aparameterized steady state solution. Then:
J =

1

p

∫ p

0

J(F (t))dt (3.22)where p is the period of osillations of the fore F (t). Suppose F (t) is representedby a square wave of amplitude A:
F (t) =






A np < t < (n + 1)p

−A (n + 1)p < t < (n+ 2)p

n = 0, 2, · · · (3.23)Then one an write:
J =

1

2
[J(A) + J(−A)] , (3.24)where J(A) is given by equation (3.21). The analytial solution obtained in thisway is una�eted by the frequeny of osillations 1/p. This is the onsequene of96



Brownian rathets Setion 3.3the hypothesis that the steady state J = const is reahed immediately after thefore hanges its sign.The behavior of the probability urrent J as a funtion of the amplitude A ofthe �utuating fore is illustrated in Fig. 3.4 adapted from [32℄. We see that whilethe fore F (t) has zero average the �ux is non-zero, due to the asymmetry of thepotential. Atually, the �ux may be non-zero even without thermal �utuations:in the zero temperature limit the system works as a mehanial rathet. Theproblem is that for the zero-temperature ase T = 0 there is a threshold value of
A below whih the partile an not overome the potential barriers. Starting fromthis value of A there is an interval of amplitudes in whih the partile an limbthe potential on one side but not on the other. The �ux inreases with A till theseond threshold is reahed. Afterwards the partile an limb both barriers, butwith di�erent rates. Starting from this seond ritial value of A, the �ux J startsto derease and tends asymptotially to zero beause the relative importane ofthe asymmetry of the barriers diminishes as the amplitude of the tilting fore Ftends to in�nity.When the temperature is di�erent from zero, the �ux J 6= 0 for every valueof A beause thermal �utuations help rossing the barriers. More preisely, aninrease in temperature dereases the e�etive threshold where the �ux beomesobservable (see Fig. 3.4). Sine the motor is able to move in a visous environment,

Figure 3.4: Plot of J as a funtion of the amplitude A at low (solid line) and high (dashed line)temperature. From [32℄it is also able to generate a fore and move a argo, if an external devie is added.In what follows, we shall add to equation (3.18) a term Fext(x) to mimi the foreprodution in the musle. 97



Chapter 3 The attahment-detahment proess3.3.2 Prost et al. modelAnother relevant motor model is an on-o� rathets proposed by Prost et al. [40℄.This type of rathets appears to be natural hoie for modeling of the Xb yle.One the Xb reahes the post-power stroke state, it detahes from the atin �la-ment, and then omes bak to the pre-power stroke state. In this state it �utuatesuntil it an attah to another ative site and generate another power stroke. What-ever hemial or physial reasons govern the attahment proess, the searh for theattahment site by the Xb in the attahed state an be desribed as di�usion ina periodi asymmetri potential. In the fully detahed state similar motion anbe viewed as a di�usion in a �atter potential. In both ases, a paraboli poten-tial may be added to desribe the elasti element that links the Xb to the myosin�lament, however suh elasti spring has not been taken in onsideration in theoriginal Prost et al. 1994 paper. In this work equation (3.14) was speialized onlyfor the abstrat on-o� rathet.
ηẋ(t) = −V ′ (x(t), f(t)) + Γ(t) (3.25)The authors proposed a model for V (x, f) = V (x)f(t) assuming that the partilean exist in two states with di�erent potentialsW1(x) andW2(x), shown in Fig. 3.5.Their analytial desriptions are similar to the one given by equation (3.20). Thetwo potentials have the same periodiity p = a + b, but di�erent maxima W 1 and

W 2. The amplitude of the modulation f(t) is given by a symmetri dihotomousnoise, i.e. by a stohasti proess that swithes bak and forth between two valueswith transition probabilities ω1(x) and ω2(x).The oupled master equations for the densities P1(x, t) and P2(x, t) desribingthe probability of a partiular partile loation in eah of the potentials have theform: 




∂tP1 + ∂xJ1 = −ω1(x)P1 + ω2(x)P2

∂tP2 + ∂xJ2 = +ω1(x)P1 − ω2(x)P2.

(3.26)Here the �uxes are given by:





J1 = −D1 [P1(x)∂x(W1/kBT ) + ∂xP1]

J2 = −D2 [P2(x)∂x(W2/kBT ) + ∂xP2]

(3.27)The di�usion onstants D1 and D2 an be in general di�erent, for instane due todi�erent temperatures in the two states. The derivation of the two soure terms inthe right hand side of the two equations in (3.27) is ompletely analogous to the98



Brownian rathets Setion 3.3

Figure 3.5: Three periods of the sawtooth potentialsW1(x) andW2(x), adapted from [40℄. Thearrow indiates the diretion of the probability urrent J . The preferred diretion is the one withhigher |V ′(x)|derivation of the standard one partile Fokker-Plank equation (see Setion A.5).The two soure terms in (3.26) are loss and gain ontributions due to the swithbetween the two potential with probability ω1(x) and ω2(x) (see [68℄).By diret substitution in equations (3.27), one an show that Boltzmann dis-tribution (3.10) with V (x) = W1(x) and V (x) = W2(x) are the solutions of theequation J1 = 0 and J2 = 0 respetively. Moreover, if detailed balane is respetedand the transition rates satisfy the equilibrium equation:
ω1

ω2
= exp [(W1(x) −W2(x)) /kBT ] , (3.28)then the Boltzmann distributions (3.10) are the solutions desribing the steadystate ∂tPi = 0 for the entire system and the total partile urrent beomes J =

J1 + J2 = 0.After observing these fats the authors of [40℄ explore what happens if anexternal ation drives ω1/ω2 out of the detailed balane given by (3.28). Theyonjeture that this e�et an represent a ompound like ATP, whih biases onestate over the other. They supposed that ω2 has a onstant value, and that ω1 isgiven by the relation:
ω1(x) = ω2 exp [(W1(x) −W2(x))/kBT ] + Ω(x) (3.29)where Ω(x) is the external soure of non-equilibrium, whih in the �rst approx-imation an be taken to be equal to a onstant. Now limit the analysis to thesteady state situation and de�ne the total density P (x) = P1(x) + P2(x) and the99



Chapter 3 The attahment-detahment proesstwo funtions λ1(x) and λ2(x):





λ1(x) = P (x)/P1(x)

λ2(x) = P (x)/P2(x).

(3.30)Using these representations, it is possible to demonstrate that P (x) obeys a singleFokker-Plank equation with probability urrent:
J = J1 + J2 = −D [P∂x (W/kBT ) + ∂xP ] (3.31)where D = λ1D1 + λ2D2 is the e�etive di�usion oe�ient and W is the e�etivepotential :

W (x) −W (0) =

∫ x

0

D1λ1∂xW1 +D2λ2∂xW2

D
dx+ kBT [ln(D)]x0 (3.32)Sine the e�etive potential W does not depend on time, the analysis an beredued to the one done by Risken. The steady state solution is again desribedby (3.13). The total �ux is di�erent from zero if and only if W (x + p) 6= W (x),in whih ase the system ats as if it was subjeted to an asymmetri potentialtilted in average by a fore F = −[W (x+p)−W (x)]/p. Notie that if the detailedbalane ondition (3.28) is satis�ed, the integrand in (3.32) is the derivative of :

−kBT ln[D1 exp(−W1/kBT ) +D2 exp(−W2/kBT )] (3.33)and W is periodi (not tilted). This shows that deviation from equilibrium isindeed neessary to produe a net �ux.If a non-equilibrium ondition of the type (3.29) is satis�ed, a non-zero �ux ap-pears. Some numerial illustrations originating from diret solution of the Langevinequation assoiated with (3.26) and (3.27), are presented in [40℄.We omment here on two interesting results in order to emphasize the maindi�erenes between Prost et al. and Magnaso models. First, the diretion of the�ux in the Prost et al. model, shown by the arrow in Fig. 3.5, is opposite withrespet to the one predited by the Magnaso model (see Fig. 3.3) given the sameasymmetry of the potentials. The reason is that the �ux in the Prost et al. modelis generated beause a 6= b. Indeed, in the attahed state the partile reahes fastthe minimum of the well in the potentialW1(x) (relaxation inside the well). Whenthe potential hanges to W2(x), the partile di�uses in a �atter potential from thesame point x. If it moves a distane greater than a, but smaller than b, before thepotential swithes again, there is a larger probability that the partile will be in100



Brownian rathets Setion 3.3the well loated to the right than the one loated to the left of the original well.This leads to generating a net �ux.Seond, the e�et of ATP is more expliitly linked to the physis of hydrolysisin the model of Prost et al. than in Magnaso model. Although the Prost et al.model deal with an abstrat rathet, an expliit appliation of it to the moleularmotors and also to musle mehanis was brie�y proposed in [40℄, in partiular theauthors observed that �Although �attahed� and �detahed� orrespond to omplexand various underlying behaviors, an essential feature for motion generation isthe existene of these two states�. They also observed how the model allows, forinstane, to analyze di�erent e�ets due to di�erent hoies of the funtion Ω(x).In partiular the model predits saturation of the average veloity V as a funtionof the exitation amplitude Ω, as shown in Fig. 3.6, where it was assumed that
Ω(x) = Ωθ(x) where θ(x) is di�erent from zero only near the wells of W1(x).Suh saturation behavior is typial for the motor veloity as a funtion of ATPonentration aross the broad range of motor protein assemblies [34℄.

Figure 3.6: Average veloity as a funtion of the external ation Ω showing saturation (seetext). From [40℄3.3.3 Cooperative and non-ooperative motorsBoth approahes disussed above, the Magnaso rathet and the Prost et al.rathet, an explain the motion of a partile in an asymmetri potential whenit is subjeted to thermal �utuations. If the system inludes a number of parti-les, as in the ase of N myosin heads on one thik �lament, the main onlusions101



Chapter 3 The attahment-detahment proessare still valid given that the partiles are not interating with eah other. The meanveloity will then be the average veloity of the population. However, by ignoringooperativity the resulting models are only marginally related to the mehanis ofontration in skeletal musles.In the next Setion we show how the interation between partiles an be in-luded and developed the orresponding numerial approah. Before doing this, itis instrutive to disuss two examples in whih the models of the type desribedabove are quantitatively applied to kinesin and to a single myosin head. In generalmoleular motors an be divided into two main groups depending on whether theyare designed to operate in groups (ooperative) or individually (proessive). Ki-nesin and some myosin proteins, suh as myosin V, belong to the proessive motorategory, while myosin II is a ooperative motor. What di�erentiates the two typesof motors is the living time for the attahed state. In proessive motors, it is highenough to work with only two heads. Thus when the �rst head is attahed, the se-ond one osillates around its mean position and due to the asymmetry of the trakattahes preferentially along the `plus� diretion of the mirotubule. At this point,the latter an detah and repeat the same proess; with this �step by step� motion,kinesin an make several moves before both heads detah from the mirotubule.The living time of the attahed state for myosin II is not enough to produe thismotion however the link to the thik �lament allows for the ooperation e�et withothers Xbs.Kinesin modelA quantitative analysis of a kinesin motion was presented in [45℄ where two headswere assumed to be linked trough a linear �ative� spring. This means that thespring an use the ATP splitting energy to hange its referene length. The modelis desribed in Fig. 3.7(a). The two partiles start from the same well (upper�gure). When the referene length of the spring swithes form zero to 8 nm, itpushes the two heads in the opposite diretions. Beause of the asymmetry ofthe potential, only one head makes a forward step of 8 nm relaxing the spring(middle �gure). This unstrained situation is perturbed by a seond hange in thereferene length of the spring that omes bak to zero. Now the two heads arepulled together and end up again in the same well beause the asymmetry of thepotential failitates the forward step of the seond head (bottom �gure).Even if this model predits an inhworm motion, while a hand over hand motionhas been later proven to be the ase for the kinesin and myosin V (see for instane102



Brownian rathets Setion 3.3[70℄), we desribe it here, beause it shows, in an instrutive way, how the Brownianrathets theory an be quantitatively applied to the proessive motors. The motionof the heads is desribed by the system of oupled Langevin equations:





ηẋ1 = −∂xV (x1) − Fload +K[x2 − x1 − l(t)] +
√

2kBT/ηΓ(t)

ηẋ2 = −∂xV (x2) − Fload +K[x1 − x2 − l(t)] +
√

2kBT/ηΓ(t)

(3.34)

(a) (b)Figure 3.7: Kinesin model and numerial results. (a) Shemati piture of the potential andsubsequent steps of the heads. (b) Fore-veloities urves for individual kinesin moleule atdi�erent ATP onentrations (points: experiment, line: predition of the model). From [45℄One an see that the motor is transporting a load (Fload). The out of equilib-rium ondition is imposed through the osillation of the rest length of the spring
l(t) whih hanges from zero to 8 nm imitating the hydrolysis of one ATP moleule.The system proeeds in a step by step motion in one diretion, and shows di�er-ent veloities at di�erent external loads: the omparison of the model preditions(lines) with experiments (points) is shown in Fig. 3.7(b). One an see that themodel shows a rather good agreement with experiments. Kinesin motion is a veryative �eld and Brownian rathet theory is applied with suess (see [68℄ and ref-erenes therein). 103



Chapter 3 The attahment-detahment proessSingle head modelNow let us turn to the examples where both Magnaso and Prost et al. models wereapplied to the myosin II diretly and where ertain agreement with experimentshave been reported. This is the situation when the interation of a single headwith an atin substrate ould be the subjet of study. An experimental traeof the movements of a single myosin head was reorded in [60℄ by using originalmanipulation tehnique having nanometer auray. The displaements of the headin time, and the orresponding model preditions are shown in Fig. 3.8 and Fig.3.9.In the theoretial analysis, breaking of the detailed balane was simulated indi�erent ways. First a onstant load was added to an asymmetri potential reatingthe tilted rathet desribed by Risken (equation (3.13)). Seond di�erent types of�ashing �utuations of the potential amplitude were tried, inluding a square wave(as in the Prost et al. model) and a sinusoid wave.

Figure 3.8: Stohasti movement of myosin. (a) Experimental traes of the movement andpiture of the model. (b) Periodi saw-tooth shaped potential used in [60℄. From [71℄104



Brownian rathets Setion 3.3The experimental method developed in [60℄ for measuring the displaement ofthe myosin head by using a sanning probe allows one to obtain an exellent signalto noise ratio. The myosin head rigidly attahed to the relatively large sanningprobe ould steadily interat with atin without di�using away from the �lament.The basi features of the experiment, summarized in [71℄, are as follows: i) Thesize of eah step is 5.5 nm, similar to the diameter of the atin monomer, ii) Stepsour oasionally in the bakward diretion even if the motion is preferentiallydireted towards one ends of the atin �lament; iii) On applying a load to themyosin, the number of steps dereased. The movement of myosin was also simu-lated numerially using the orresponding overdamped Langevin equation:
ηẋ = −V ′(x, t) +

√
2kBT/ηΓ(t). (3.35)The results for di�erent types of motors are given in Fig. 3.9.

Figure 3.9: Simulations of the myosin head: (a) Tilted potential (b) Flashing potential. From[71℄This last example is one of the few ases where appliation of the theory ofBrownian motors to myosin II was attempted. We reiterate however that it wasa ase of a single attahed head. The analysis of the ooperativity e�ets due to105



Chapter 3 The attahment-detahment proessmany heads was initiated in the Jüliher-Prost paper [42℄ (see also [50℄ [54℄ and[65℄). The authors onsider a rigid bakbone with rigidly onneted motors (seeFig. 3.10). The resulting system is haraterized by only one degree of freedom.The way the motor ooperate is through the total fore whih is a sum of foresexerted by individual motors. Some interesting e�ets have been found in this sys-

Figure 3.10: Representation of two state many-motor system. The partiles are rigidly attahedto a ommon bakbone and an stay in two di�erent states. The �attahed� potential is periodiand asymmetri. From [54℄tem, for instane, a dynami phase transition leading to spontaneous osillations.The authors demonstrated the existene of a ritial value of the parameter Ω in(3.29), above whih three veloities orrespond to one external fore. This leads tosituations in whih the motors might either go in one diretion or in its oppositefor the same value of Fext, whih generates the osillatory behavior. This e�etis observed in musle ells under suitable ondition ([50℄ and referenes therein).The Jüliher-Prost model has also been modi�ed and applied to study the behaviorof other ooperative motors [51℄, but always under an assumptions of a rigid linkbetween motors and bakbone. See also [94℄ for a reent analysis of the e�et ofthe geometry on the ooperation between myosins in musle. In this Setion wedevelop a model of elastially ooperative Brownian motors.To summarize, none of the models presented in literature, whih use the Brow-nian rathet theory to explain musle ontration, deal with a detailed desriptionof the Xb yle. The e�et of the ATP hydrolysis is mainly to destroy the detailedbalane, while the power stroke is hidden somewhere in the fore generated by theperiodi potential. Later in this and in the next Chapter we propose some newideas of how ooperativity an be integrated into the model of Brownian rathetin an attempt to onstrut a detailed model of the whole Xb yle. As a novelty,we onsider an elasti link between the bakbone and the heads. Only a Magnasotype model for the Brownian rathet will be used to simulate the attahment-106



Diret simulation of a set of stohasti equations Setion 3.4detahment proess. To justify this hoie, in view of the fat that the Prost etal. type models are apparently more faithful to the physis of the phenomenon, wereall that our main aim is to give a purely mehanial desription of the ontra-tion phenomenon. The �utuating rathets of Prost et al. require a de�nition ofthe transition rates between states 1 and 2, given by the funtions ω1(x) and ω2(x)in equation (3.27). Introduing these funtions is similar, in a sense, to imposingpartiular dependenies of the attahment detahment rates on x in the Huxley1957 model. We have shown in Chapter 2 how this arbitrariness an be avoided inthe fully mehanial desription where the hemial transition rates are not de�nedbut omputed as, for instane, in the Huxley and Simmons 1971 model. Now wewould like to extend the same approah to a set of interating Xbs (inside onehalf-saromere), whih an attah and detah from an atin �lament.3.4 Diret simulation of a set of stohasti equa-tionsWe reall that the motion of a single partile in a sawtooth potential V (x) tiltedby an external fore, FATP (t), whih mimis the e�et of the ATP and whose signhanges periodially in time, is desribed by the assoiated Langevin equation. Inthe overdamped ase we an write:
ηẋ = −V ′(x) + FATP (t) +

√
ηkBTΓ(t) (3.36)where

< Γ(t1) >= 0 (3.37)and
< Γ(t1)Γ(t2) >= δ(t1 − t2). (3.38)We have shown that, under ertain assumption, the assoiated steady stateFokker-Plank equation an be solved analytially. The mathematial di�ultythat arises when several partiles are interating with eah other fores one to turnto a diret numerial simulation of a oupled set of stohasti ODE.The diret numerial approah redues to solving the Langevin equations ofthe motion for a partiular realization of the random proess. Instead of usingthe probability distribution given by the assoiated Fokker-Plank equation, thismethod onsists in generating of a ertain number of realizations starting from thesame initial onditions. After these individual trajetory are obtained, one an107



Chapter 3 The attahment-detahment proessompute the mean value for the variable of interest. To solve stohasti di�erentialequation, we use the simplest Euler algorithm [74℄. In the ase of a single partilewe �rst follow the time path x(t) by solving (3.36), and then repeat the experimentfor a population in order to onstrut the probability distribution of a single Xbs.The Euler algorithm for the equation (3.36) an be written:
x(t+ τstep) = x(t) − 1

η
(V ′(x(t)) + FATP (t))τstep +

√
ηkBT

η

√
τstepw(0, 1) (3.39)where w(0, 1) is a normally distributed random variable with zero mean

< w >= 0 (3.40)and the variane
< w1w2 >= δ12. (3.41)We would like to give an idea why parameter τstep appears under the square rootin (3.39), a rigorous derivation an be found in [30℄ and [63℄. First of all, we notiethat, by negleting the non-thermal fores in (3.39) (purely di�usion ase), we anwrite:

x(t) = x(0) −
√
kBT

η

∫ t

0

Γ(t′)dt′. (3.42)Now from (3.38), we see that Γ(t) has the dimension t−1/2, so its time integral hasthe dimension of t1/2. Therefore,
x(t+ τstep) 6= x(t) −

√
kBT

η
Γ(t)τstep (3.43)in ontrast to the lassial Euler method for the deterministi di�erential equations.From the properties of Γ detailed in (3.37) and (3.38), we obtain instead that [23℄the funtion

w(τstep) = W (t+ τstep) −W (t) =

∫ t+τstep

t

Γ(t′)dt′, (3.44)is a random variable whih is normally distributed with zero mean and variane
τstep. Therefore, we an write

w(τstep) ∼ √
τstepw(0, 1) (3.45)where w(0, 1) was de�ned by (3.40) and (3.41). A general rule is that when apotential is ating on the partile, τstep represents the interval of time during whihthe atual V (x, t) potential an be substituted by the onstant potential V (x, t̃)108



Thermal rathet Setion 3.5frozen at time t̃ just before the time step. To simulate properly the physis of thephenomenon, the time step has to be muh shorter than the typial time sale ofthe proess: normally two orders of magnitude di�erene is enough. In the ase ofpieewise linear potential, the typial time sale is:
τ =

ηL

|V ′
max|

(3.46)where η is the drag oe�ient, L the typial length of the potential and |V ′
max|the maximum fore ating on the partile. We an make an estimate of τ byusing the values of parameters given in Tab. 2.1 of Chapter 2. The ondition

τstep ≪ τ limits τstep to tens of pioseonds and the time sale of the attahment-detahment proess is in the range of tenths of seonds. This implies that in orderto obtain a quantitative desription of the system, the simulations must ontainsat least 1010 time steps for eah partile of the analyzed population. Sine thistype of omputations an easily beome too heavy, we abandon the idea to obtainquantitative results and from now limit ourselves to only a qualitative analysis.This means that we desribe the system by using the values of parameters that aresometimes grossly exaggerated.3.5 Thermal rathetBefore desribing and analyzing in detail our way of modeling the ooperativemotors, we an try to use the numerial method introdued in Setion 3.4 todesribe the behavior of a simplest thermal rathet whih is somewhat similar tothe Feynman's rathet and pawl model. As we have already mentioned, the onlyway to indue a net �ux in one diretion is to maintain the rathet and the pawlat two di�erent temperatures.The interest in the analysis of suh a model is not only historial. Thus, Valeand Oosawa in 1990 [25℄ proposed a Feynman's type model to explain the di-retional motion of moleular motors, with expliit referene to myosin II. Theyargued that the hydrolyzation of the ATP moleule ould onvert a ertain amountof hemial energy into heat, generating loally the temperature anomaly and dis-torting the equilibrium harater of the thermal �utuations. If this is true, we anhave all the ingredients of a temperature rathet. Despite being very intuitive, thismodel was later proved to be unrealisti due to quantitative estimates summarizedin [26℄, [37℄, [47℄. Aording to the authors, the temperature variations, in regardto both amplitude and duration, may not be su�ient to generate quantitatively109



Chapter 3 The attahment-detahment proessmeasured speed of motion. Magnaso and Stolovitzky ame bak to the study ofthe Feynman rathet in 1998 [56℄, however, not in the moleular motors framework.Here we would like to show numerially how a simple thermal rathet an predita net motion in one diretion and generate a position vs. time path similar to theone observed in [71℄ (see Fig. 3.8).Consider a system of two partiles x1 and x3 subjeted to two di�erent temper-atures T1 and T2. The partile x1 moves in a periodi asymmetri potential as in(3.20) and its motion is desribed by the Langevin equation (3.6). The partile x3is linked to x1 through a spring of rigidity K, but it is otherwise free. The systemof equations desribing the model is the following





ηẋ1 = −V ′(x1) −K(x1 − x3) +
√
ηkBT1Γ1(t)

ηẋ3 = K(x1 − x3) +
√
ηkBT3Γ3(t).

(3.47)The orrelations of the funtions Γ1(t) and Γ2(t) desribing thermal �utuations aregiven again by (3.37) and (3.38). Both, di�erene in temperatures and asymmetryof the potential V (x) are needed in order to make the system move.Performing the analysis for a large number (100) of systems (3.47) we an showthat the mean position of x3 shifts in time in one preferred diretion (see Fig.3.11). The average motion is a linear funtion of time. A representative pitureof the partile trajetory x1(t) is given in Fig. 3.12, where we an see that whilethe average stohasti motion shifts the partile in one preferential diretions, theindividual jumps in the opposite diretion an also takes plae. Adding an external
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Figure 3.11: Mean displaement of the thermal rathet (3.47)110



Cooperative Magnaso model Setion 3.6
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Figure 3.12: Sample trajetory x1(t) of a thermal rathet (3.47)fore Fext ating at the partile x3 we an slow down and even invert its motion.A fore-veloity urve ould have been plotted for this �toy� model, however thisis not neessary in view of its oversimpli�ed nature. We shall perform this typeof analysis only for the system presented in the next Setion, whih is espeiallydesigned to model ooperative motors, responsible for musle ontration.3.6 Cooperative Magnaso model3.6.1 Governing equationsHere we study the behavior of a set of interating Magnaso motors. Consider apopulation ontaining NXb ross-bridges subjeted to thermal �utuations, eahmoving in a pieewise linear potential V (x) whose derivative is desribed by:
V ′(x) =






Vmax/(λ1L) nL < x < nL+ λ1L

−Vmax/(λ2L) nL+ λ1L < x < (n+ 1)L.

(3.48)Here parameters λ2 and λ1 haraterize the asymmetry of the potential with period
L and Vmax is the maximum value of the potential, see Fig. 3.13. Index n desribesa partiular well in whih the partile is urrently loated. We now add a rigidbakbone whih is oupling individual partiles, as in a real half-saromere. Tosimulate the e�et of a bakbone we introdue another variable, x3, whih desribesits position. The position of eah Xb will be given by xi1 where i = 1, · · · , NXb.The111
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1L L2Figure 3.13: Model of a family of interating ooperative motors. The partiles move to theleft whih mimis shortening experimentssystem of oupled di�erential equations for xi1(t) and x3(t) an be written as:





η1ẋ
i
1 = −V ′(xi1) + FATP (t) −K(xi1 − xi3) +

√
η1kBTΓ1(t) i = 1, · · · , NXb

η3ẋ3 = Fext +
NXb∑
i=1

(K(xi1 − xi3)) +
√
η3kBTΓ3(t) (3.49)Notie that xi3 = x1

3 + (i − 1)l = x3 + (i− 1)l where the variable x3 desribes theposition of the bakbone and the length l is the distane between the attahmentsites of two suessive heads. The position of attahment site on the bakboneare xi3, where, again i = 1, · · · , NXb. As in the Magnaso model, the ATP relatedperiodi fore is given by:
FATP (t) =






+FATP m∆tATP < t < (m+ 1)∆tATP

−FATP (m+ 1)∆tATP < t < (m+ 2)∆tATP

m = 0, 1, · · · (3.50)The system (3.49) is able to mimi the fore-lamp devie if an external fore
Fext is applied to the rigid bakbone. The same system an also desribe theisometri ontrations if we substitute the last equation in (3.49) with:

x3(t) = x3(0). (3.51)By imposing ondition (3.51) in (3.49) and averaging the noise term we obtain theexpression for the fore generated in the system:
Fext = −

NXb∑

i=1

(
K(xi1 − xi3)

)
. (3.52)Now, suppose that L = l. Then due to periodiity of the potential V (x), wean introdue now variables xi1 = xi1 − (i − 1)L and absorb the parameter L intothe potential without a�eting the behavior of the system. The resulting numerial112



Cooperative Magnaso model Setion 3.6algorithm for solving (3.49) is then





xi1(t+ τstep) = xi1(t) − V ′
eff(x

i
1(t), x3(t), t)

τstep
η1

+

√
kBT

τstep
η1

w1(0, 1)

x3(t+ τstep) = x3(t) +

[
Fext +

NXb∑
i=1

(K(xi1(t) − x3(t)))

]
τstep
η3

+

√
kBT

τstep
η3

w3(0, 1)(3.53)where the e�et of the atin potential V (x), of the ATP fore FATP (t) and of theelasti element that links the head to the myosin �lament are all ombined in thee�etive potential
V ′
eff (x

i
1(t), x3(t), FATP (t)) = V ′(xi1) − FATP (t) +K(xi1 − x3). (3.54)We reall that w(0, 1) is a random variable normally distributed with zero meanand unit variane. The larger size of the rigid bakbone with respet to the Xbhead is represented by a higher value of the orresponding drag oe�ient η3 ≫ η1.3.6.2 Benhmark problem: K = 0The numerial omputations at K = 0 give the independent path followed by eahXb and given by xi1(t) and the path of the bakbone given by x3(t). The typialsolution for xi1(t) is shown in Fig. 3.14: the head stays in the well for a �nite amountof time, then jumps forward or bakward very fast, as predited by the Kramers'theory disussed in Chapter 2. If the potential ontains an asymmetry, then thejumps will take plae preferentially in one diretion. We reall that as in the originalMagnaso model, we use the stepwise periodi ATP fore with zero mean (3.23).The value of the period p is important beause there is a threshold for p belowwhih the partile does not jump during the time of simulation. This thresholdvalue depends on the time sale of the proess, and sine here our intention is topresent only qualitative results, the value of p was hosen to be su�iently abovethe threshold to be able to observe the jumps. This value must be simultaneouslysmall enough to let FATP hange sign several times between two suessive jumps.Let us �rst demonstrate the importane of the asymmetry of the potential.Thus, if the potential is symmetri (λ1 = λ2) then distribution of partiles isexpeted to evolve in time as a Gaussian distribution with zero mean and withvariane whih inreases linearly with time. When the time sale is suh thatthe period L is muh smaller than the di�using distane, as in Fig. 3.15(a), thenthe system does not see the periodiity of the potential and the orresponding113
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NXbp(x, t) =

NXb√
4πkBT/ηt

e
− x2

4tkBT/η (3.55)In the omputation the time is just the number of iterations multiplied by τstep.In Fig. 3.15(a) the distribution of Xbs is shown at three di�erent frations ofthe total time, t = tTot/10, tTot/2, tTot and is superimposed with the distributiongiven by (3.55). If an asymmetry is added to the potential (λ1 6= λ2) then a net
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Cooperative Magnaso model Setion 3.6Gaussian with variane that inreases linearly with time and with mean that nowalso varying linearly with time (see Fig. 3.15(b)).The e�et of the level of noise and of the amplitude FATP on the steady state�ux, obtained in diret numerial simulation, an be ompared to the analytialsolution of Magnaso. The omparison shows idential behavior of the numeriallyand analytially obtained funtions J(FATP ) (see Fig. 3.16 and Fig. 3.4 takenfrom [32℄).
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Figure 3.16: Steady state probability �ux obtained from numerial simulation with and withoutnoiseThe system (3.49) an also generate fore, whih an be measured if a beadis attahed to a partile. In this way one an desribe the motion of a motorprotein transporting a argo (this problem is analyzed in [85℄ with a Prost et al.model). By putting a onstant external fore Fext instead of the term −K(xi1−x3)in equation (3.49) we obtain
η1ẋ1 = −V ′(x1) + FATP (t) − Fext +

√
η1kBTΓ1(t). (3.56)The presene of the external fore redues the mean displaement of the partile.The resulting fore veloity urve is shown in Fig. 3.17. Its non-linearity is asomewhat non intuitive result from the point of view of purely mehanial rathetoperating at T = 0. Indeed suppose that the e�et of the motor redues to gener-ating a mean onstant fore Fmax. Then the total fore FT ating on the partilean be written as FT = Fmax−Fext. This shows that in a visous environment thefore veloity relation should be linear beause FT = ηv. As we have seen fromFig. 3.17 the situation at T 6= 0 is muh more omplex. Here we do not attemptto make quantitative omparison of omputed and experimentally measured fore115



Chapter 3 The attahment-detahment proessveloity urves, however it is lear that the qualitative behavior is well apturedby the model.
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maxFigure 3.17: Fore vs. veloity urve for a pure Magnaso model K = 0It is of interest to ompute numerially the stall fore, Fmax, whih is a partiularvalue of Fext that brings the mean displaement to zero. The mean trajetoriesof partiles for di�erent values of Fext are shown in Fig. 3.18(a). Observe thathaving a zero mean �ux at Fext = Fmax does not prevent eah partile to move.In fat the stall value of the fore reates a situation whih is analogues to a aseof pure di�usion, when the mean-square displaement inreases linearly with time.In our simulations of an isometri ontration we heked that two neighboringpartiles (at time t = 0) an move arbitrary far apart after a ertain amount oftime (see Fig. 3.18(b)). This behavior is not ompatible with what one expets inthe ase of ooperative motors. Indeed when the isometri onditions are imposedit is known that all the Xbs, attahed or detahed, remain lose to their originalpositions. This happens beause they are linked to a �xed thik �lament throughelasti elements with K 6= 0. We therefore onlude that the model with K = 0has to be disarded.3.6.3 Cooperative Magnaso model with K 6= 0To take the bakbone into onsideration, we assume that K 6= 0. Interestinglyertain questions beome simpler in the ase when K 6= 0 than in the ase when

K = 0. Thus while in the originalMagnaso model we had to hange Fext to �nd thestall fore Fmax, now its value is immediately determined imposing the ondition(3.51) and waiting until the fore (3.52) generated by the tilting reahes its steadyvalue. we now proeed with performing several types of numerial experiments.116
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+FATP or the value −FATP at the same time t, then the tension vs. time urvefor isometri tetanization shows osillatory behavior as in Fig. 3.19(a). Similarosillatory behavior has been observed in other models [50℄ and linked to someexperimental observations obtained in non-physiologial ondition [53℄. However,in these model the osillations are generated by di�erent phenomena, while thesynhroniity an be viewed as unphysial, beause the e�et of the ATP on eahhead should be random and therefore unsynhronized. To simulate this e�et, adispersion has been added to the swith times of the tension:
F i
ATP (t) =






+FATP m∆tATP < t+ φi < (m+ 1)∆tATP

−FATP (m+ 1)∆tATP < t+ φi < (m+ 2)∆tATP

m = 0, 2, 4, · · ·(3.57)117



Chapter 3 The attahment-detahment proessHere φi is randomly distributed variable between zero and ∆t, i = 1, · · · , NXb.In this way, eah Xb is a�eted by the same fore FATP for a time ∆t, but asyn-hronously for di�erent elements. Under these assumption the tension vs. timeurve approahes the steady state without osillations as shown in Fig. 3.19(b). Weobserve that the urve in Fig. 3.19(b) looks rather realisti in terms of experiments[52℄.
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Cooperative Magnaso model Setion 3.6orresponding to the plateau level T0. This has been reprodued in the simulationsshown in Fig. 3.19(b). After reahing this level of tension, the ontrol an beshifted from �xed-end mode to fore lamp mode, �rst, at the same level of tension
T0. This will keep the length of the musle �xed. Suppose now that after 20 ms arapid hange in the external fore ompleted in 150 µs is imposed, as in experiments[67℄. If the applied tension after the hange is lower than T0, one an reognizefour phases of the relaxation proess shown in Fig. 3.20. First, half-saromeresshorten by few nanometers, oinidentally with the fore drop (phase 1). Thenthere is a phase of slower but still rapid shortening (phase 2). It is then followedby a phase of redued speed of ontration (phase 3). Finally the phase is reahedduring whih the shortening takes plae at a steady veloity V (phase 4).There is a lear relation between phase 1 and the undamped relaxation ofthe elasti element and between phases 2 and 3 and the working of a bi-stablemehanism inside the myosin heads, desribed in Chapter 2. A strong evidene ofsuh a relation is given in [67℄ where the shortening just after phases 1 (L1) and2 (L2), has been studied for various values of the imposed tension. The authorsplotted L1 and L2 on the tension-length plane and superimposed the experimentalresults for T1 and T2 obtained from the length lamp experiments (see Fig. 2.15).One an see that the resulting points are almost idential. As we have alreadyseen in the isometri ontration, the power strokes takes plae asynhronously (atdi�erent times) in di�erent Xbs. On the ontrary, phases 2 and 3 an be explainedby a synhronization of the power strokes generated by the attahed Xbs just afterthe step on the external fore. While the phases 2 and 3 are out of read for themodel disussed here, the subsequent proess of attahment-detahment, whih isresponsible for the phase 4 where musle produes a onstant veloity of shortening,will be simulated in the next Setion. One would expet that this onstant veloityinreases when the external fore dereases as in the experimentally measured foreveloity relation desribed in Chapter 1.Isotoni loading: simulationsNow we show that the model developed in this Chapter (see (3.49), (3.53)) ansimulate the relaxational behavior assoiated to phases 1 and 4. In our numerialexperiments we shall follow the time path of x3 given by (3.53), starting frominitial ondition xi1(0) = x3(0) = 0. We start with rising tension in the ourse ofisometri ontration x3(t) = 0 up to the moment when the fore reahes a onstantvalue Fmax. Then, at a moment that we all tjump, we hange the external fore119



Chapter 3 The attahment-detahment proess

Figure 3.20: Experimental traes of a shortening musle ontrating against onstant loads.From [67℄in (3.53) to Fext = αFmax with 0 ≤ α ≤ 1. In Fig. 3.21(a) we show the omputedtrajetory x3(t) at di�erent values of α. One an see that the experimental behavioris reprodued both in phase 1 and in phase 4. As we have already mentioned, thewell reprodued phase 1 is related, but it is not ompletely de�ned, by the valueof K, sine this fast shortening results from both the shortening of the elastielement and the relaxation of the partiles inside eah well. One an see that thedesription of phase 4 also looks rather realisti.

−6

−5

−4

−3

−2

−1

0

Time

S
ho

rt
en

in
g

0.8 T
0

0.7 T
00.5 T

0
0.3 T

00.1 T
0 (a) 0

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Velocity

T
/T

0

V
max(b)Figure 3.21: Simulation results in the ase of fore lamp simulation. The values of parametersare reported in table 3.1. (a) Simulated traes of a shortening musle ontrating against onstantloads. (b) Simulated fore vs. veloity urve for 0 < α < 1.2From the analysis of phase 4 at di�erent α we an onstrut the fore veloityurve (see Fig. 3.21(b)). This urve shows expeted non-linear relation between120



Cooperative Magnaso model Setion 3.6Table 3.1: Values and meaning of the main parameters used for the numerial simulations forthe original and ooperative Magnaso type model of (3.49)Desription Numerial valuesPeriodiity L 1 nmAsymmetry λ1 0.3Maximum of the potential Vmax 10kBTATP fore modulus |FATP | 1.2 Vmax/λ2LDrag oe�ient of x1, η1 102 pNns/nmDrag oe�ient of x3, η3 103 pNns/nmTime between osillations tATP 103τstepAsynhronisation φi i · tATP /NXb for i = 1, · · · , NXbNoise term kBT 4.14 pNnmElasti onstant K 0 or 30 pN/nmthe external fore and the veloity of isotoni ontration. The model does notpredit a hange in the slope of the fore-veloity urve at the isometri (v = 0)point, whih is observed experimentally (see Fig. 1.13). The main drawbak ofthe model however is the absene of the phases 2 and 3. This an be seen in azoom to the �rst moment after the jump (Fig. 3.22). More preisely, after the fast
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Chapter 3 The attahment-detahment proessin desribing of two di�erent sets of experimental data. Now we would like to linkthem together in an uni�ed model in order to desribe the full Xb-yle.
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Chapter 4Full ross-bridge yle
4.1 IntrodutionThe model proposed in Chapter 2 deals only with a swinging lever arm dynamiswhih is supposed to explain the power stroke in ative musle. The model proposedin Chapter 3 desribes the yli aspets of isometri ontration. We have seenthat the model from Chapter 2 is related to phases 2 and 3 in Fig. 1.5, where thehead is attahed to the atin �lament, while the model from Chapter 3 is relatedto phases 1 and 4 in the same �gure, where the head detahes the �lament andthen reattahes again. The model from Chapter 3 does not apture fast reoveryof tension after a small inrement of length, whih is related to the power stroke,while the model from Chapter 2 an not desribe the steady state shortening of amusle subjeted to a onstant load.In the urrent literature, the analogues of our two models are viewed more asantagonisti than omplementary. Thus Esaki and ollaborators [71℄ say expliitlythat there are two major lasses of models dealing with onversion by the myosinII motor of the hemial energy into mehanial energy. The lever-arm swingingmodel belongs to the �rst lass, whih they all �deterministi� and �mehaniisti�.The Brownian rathet models belong to the seond lass, whih they all �stohas-ti�. In this Chapter we attempt a uni�ation of these two types of models. Webegin by showing that their di�erenes are more subtle than it an appear at a�rst glane. This has already been pointed out, for instane, in [68℄ and [69℄.Sine the neessity of thermal noise to ensure motion is the main di�erenebetween deterministi and stohasti models we shall �rst disuss the role of tem-perature in the models desribed so far in the Thesis. Thus, in the Eisenberg andHill's type models [17℄, [43℄, the power stroke is linked to the prodution of fore.123



Chapter 4 Full ross-bridge yleThe existene of two detahed states is needed to have a ylial path and thejumps between states are only marginally related to the Brownian environmentin whih the proess takes plae. Thus, while the hemial reation that mim-is the jumps is indeed frozen at T = 0, the hemial rate onstants are de�nedphenomenologially with no referene to the atual di�usion proess. The thermalnoise has an indiret e�et on the rate onstants, but the mehanial behaviorleading to the prodution of fore is basially analogues to what one expets in thedeterministi ase.On the other hand, as we have already explained, Magnaso model even at
T = 0 ats like a marosopi mehanial rathet, generating net �ux in onediretion in a semi-in�nite interval of the �utuating fore amplitudes FATP . Thethermal �utuations inrease the �ux in a setion of this range, while reduing itin another setion, the one orresponding to higher levels of fores amplitudes (seeFig. 3.4). In this sense we are having an essential Brownian rathet only at ertainvalues of the parameter FATP . To emphasize the di�erene between mehanialrathet and thermal rathet, Wang and Oster [69℄ proposed a �ashing rathetwhere the periodi potentials φ1(x) and φ2(x) are suh that φ2(x) = φ1(x+ L/2),where L is the period for both of them. In this ase, the partiles an show a net�ux even without thermal �utuations. Its motion is driven only by the periodihemial yle and the mehanial relaxation inside eah minima is deterministias it is lear from Fig. 4.1. Despite this, Jüliher and ollaborators observed howthis type of potential does not generate motion if the transition rates obey detailedbalane [50℄. In this ase, in fat, we are in the same situation desribed in theProst et al. model (see Setion 3.3). Vale and Oosawa [25℄ have been the �rst topose the ruial question regarding the relative importane of thermal �utuation
Γ(t) versus onformational hanges powered by hemial driving fores, inludingthe ones involved in the power stroke (see [68℄).It is perhaps worthwhile to observe that even the Huxley and Simmons 1971model, whih introdued the power stroke in order to explain the fast generationof fore, operates with hemial energy landsape that is atually both periodiand tilted by a onstant fore (see Fig. 1.25). The e�et of ATP an be viewed inthis model as responsible for this tilt in the potential. Thermal �utuations thenmake hemial transitions between the states possible. The tilt ats only in onediretion, whih allows for a net �ux. In this sense the power stroke model andthe rathet model are not so di�erent.To summarize, the power stroke approah and the Brownian rathet approah124



Numerial implementation of the power stroke model Setion 4.2
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Chapter 4 Full ross-bridge ylewere obtained from the Fokker-Plank equation whih is equivalent to the solutionof the stohasti equation of motion (Langevin equation). Thus for eah head x2(t)we onsidered the equation:
η2ẋ2(t) = −E ′

c(x2(t)) −K(x2(t) − x3(t)) +
√
η2kBTΓ(t) (4.1)where we have expliitly written the fore ontributions from the two terms formingthe total energy ET (x): the hemial energy Ec(x) and the energy of the elastielement. Equation (4.1) also shows the dependene of the elasti fore on theposition of the bakbone x3(t) whih, in the isometri ontration ase is given by:

x3(t) = l0 + ψ. (4.2)Here ψ is the distribution of the attahment sites desribed in Setion 2.7.2, whihwill be used later in the modeling of a population of Xbs.We begin by reformulating our modi�ed Huxley and Simmons model presentedin Chapter 2 in the framework of the Brownian rathet model desribed in Chapter3. We reall that the noise is haraterized by the following relations:
< Γ(t1) >= 0 (4.3)

< Γ(t1)Γ(t2) >= δ(t1 − t2) (4.4)The Euler algorithm for equation (4.1) reads:
x2(t+ τstep) = x2(t) −

1

η2
(E ′

c(x2(t)) −K(x2(t) − x3(t))) τstep

+

√
η2kBT

η2

√
τstepw(0, 1).

(4.5)Sine equation (4.5) is stohasti, in order to simulate the average of x2(t) we haveto follow the trajetory of a population of NXb partiles eah orresponding to adi�erent realization of the noise term. Eah partile also has a di�erent value of ψfrom (4.2).A typial behavior generated by the model when the bakbone is in its restingposition x3(t) = l0 (isometri ontration) is shown in Fig. 4.2(a). We see thatthe head jumps bak and forth between the energy wells beause the two phaseshave the same total energy and there is no preferred state. To ensure this, weimpose ondition (2.10), as in Chapter 2. The fat that in the isometri ase thetwo phases have the same total energy is then stritly true only for the Xb with
ψ = 0. 126



Numerial implementation of the power stroke model Setion 4.2As we see in Fig. 4.2(a), partiles explore all the energy landsape spending ineah of the wells a time that is proportional to the orresponding probability. Theamplitude of osillations is inversely proportional to the sti�ness of the wells. Thusin the �gure the elasti modulus of the well entered near zero is higher than the onefor the well desribing the �short� phase. The histogram showing the probabilitydistribution of the position x2(t) during the total time of the simulation, has loallyGaussian struture around the two minima of the energy, as it has been preditedby the assoiated FPE. The same is true for the probability distribution of Xbs ata given time, shown in Fig. 4.2(b).4.2.2 Length lamp devieAording to (3.52), the tension in the numerial experiment simulating the lengthlamp an be alulated as:
T (t) =

NXb∑

i=1

[
−K(xi2(t) − xi3(t))

] (4.6)where x3 are given by:
xi3(t) =





l0 + ψi t ≤ tjump

δ + l0 + ψi t > tjump
(4.7)In Fig. 4.3 we present T (t) urve for negative values of δ. The diret numerialsimulation on�rm the analytially predited response of the system and allowsone to extrat the values T1(δ) and T2(δ) as well as the parameter haraterizingthe rate of reovery.To verify the quantitative auray of our numerial sheme and the validity ofKramers' approximation used in Chapter 2, we an ompare the results of the twoapproahes applied to the length lamp experiment using the set of parametersreported in Tab. 4.1. The kinetis of tension reovery for a partiular value of δ isillustrated in Fig. 4.4(a). The orresponding multi-exponential urve (see Setion2.8) obtained from the approximate theory, is superimposed. To plot this urve,

nexp (= 10) exponential ontribution are omputed from the Kramers' theory basedon nexp populations of Xbs with di�erent attahment positions ψ. The tension Texpis omputed from the formula:
Texp(niter) =

1

nexp

nexp∑

i=1

e−α
initer (4.8)127
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(b)Figure 4.2: Numerial simulation of isometri ontration. (a) Time path of a Xb in a doublewell potential. (b) Histogram desribing the population of Xbs
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Numerial implementation of the power stroke model Setion 4.2
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Figure 4.3: Simulation of the fore vs. time relation at di�erent applied length stepswhere niter is the number of e�etive time steps from the time tjump/τstep till end ofthe simulation ttot/τstep, τstep is the e�etive time step, tjump the value of t when theinrement in length is applied, tTot the total time of the simulation, αi is the i-thexponent omputed from equation (2.95) with ψ = ψi. The tension is normalizedby T1 and shifted vertially to ensure that T2 = 0. One an see that the kinetiurves obtained by the two methods, analytial and numerial, are similar, exeptfor the very fast omponents. For those the relaxation inside the minima is alsoimportant and the Kramers' approximation fails.Table 4.1: Main parameters used in the omparison of the behavior predited by the Kramers'theory and the numerial simulations based on (4.1) and (4.7)Desription Numerial valuesDistane between the minima a 10.8 nmElastiity of the elasti element K 2 pN/nmElastiity of the low fore generating state k1 4 KElastiity of the high fore generating state k2 KCurvature of the maximum k3 −20 pN/nmDrag oe�ient of x2, η2 60 pNns/nmDispersion of the attahment sites ψ ±2.75 nmNoise term kBT 4.14 pNnmAs far as the steady state tension T2(δ) is onerned, we remark that in nu-merial experiments the urve T2(δ) has to be onstruted by points, as in realexperiments. In Fig. 4.4(b) we superimposed the analytial urve obtained fromequation (2.43) and the points obtained from the simulations; the two methods129



Chapter 4 Full ross-bridge ylepredits exatly the same behavior. The numerial ode is therefore veri�ed andwe an use it in the next Setion to simulate the whole Xb yle.4.3 Whole yle modelsIn the previous Setions we reformulated the models for the power stroke and forthe attahment-detahment proess by using the same framework. This allowsus to onstrut a uni�ed model allowing one to desribe the whole Xb yle andto study its di�erent features. The onsiderations below will be based on theMagnaso type model proposed in Chapter 3, however similar onlusion an bemade if other type of Brownian rathets are used as building bloks. We begin bydesribing the behavior of a model of uni�ation whih assumes that the hemialenergy desribing the power stroke is extended periodially.4.3.1 Extended Huxley and Simmons potentialWhen a small inrement of the length is imposed, the HS71 model [10℄ allows eahhead to explore only two wells of the hemial energy landsape. However, theidea of the authors was that this hemial energy is periodially extended (seeFig. 1.25). In this ase an isotoni experiment should in priniple be able to showseveral jumps of eah head. Thus, even in the rapid length inrement experimentdesribed in [10℄, the heads, after a fast reovery of tension T2, must evolve towardsa new equilibrium state reahing in the long term, again the tension T0 (Setion1.2).To simulate this behavior we introdue a periodi potential whih, as in theHS71 model, is tilted in one diretion.In this new model every well of the resulting rathet, has two smaller sub-wells,as shown in Fig. 4.5. We suppose that the energy landsape is pieewise linearwith a derivative given by:
V ′(x) =






h
λa
1(λa

1+λa
2)L

nL < x < [n + λa1(λ
a
1 + λa2)]L

−(h−d)
λa
2(λa

1+λa
2)L

[n+ λa1(λ
a
1 + λa2)]L < x < n(λa1 + λa2)L

H−d
λb
1(λb

1+λb
2)L

[n+ (λa1 + λa2)]L < x < [n+ (λa1 + λa2) + λb1(λ
b
1 + λb2])L

−H
λb
2(λb

1+λb
2)L

[n+ (λa1 + λa2) + λb1(λ
b
1 + λb2)]L < x < n(L+ 1) (4.9)Here index n desribes a partiular well. We refer to Fig. 4.5 for the meaning ofthe parameters. 130



Whole yle models Setion 4.3

0   
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

Time

T
(t

)/
T

0

 

 

Simulation
Predicted multi−exponential(a)

-10 -8 -6 -4 -2
∆

0.2

0.4

0.6

0.8

1

T2
�������
T0

(b)Figure 4.4: Length lamp experiment. Analytial results from Kramers' theory ompared tonumerial simulations. (a) Kinetis of the reovery of tension (rugged line: simulation, dashedline: Kramers' theory). (b) T2(δ) urve (solid line: Kramers' theory, points: simulation)
131



Chapter 4 Full ross-bridge yleWe observe that the original Huxley and Simmons' model is able to desribeonstant tension T0 generated in isometri ontration. When a musle is isometri-ally tetanized, T0 is maintained while eah Xb goes through all four phases shownin Fig. 1.5, so that in average the number of heads in eah phase remains ap-proximatively onstant. When δ(t) = 0, the HS71 model impliitly assumes thatfor eah Xb that detahes, another replaes it in the same position, whih leaves
T0 onstant. In the similar way, jumps between larger wells mimi in this modelthe attahment-detahment proess. The impliit assumption is that for eah headthat detahes from the post-power stroke state, another head immediately attahesin the pre-power stroke state.We assume that the di�erene in the energy levels of the two sub-wells is equalto K(λa1 +λa2), (see ondition (2.10)). The jump between these sub-wells representsthe power stroke. After every attahment-detahment proess, the partile x1 is inthe pre-power stroke state, and an hange the on�guration again, swithing tothe post-power stroke state, in order to pull the myosin bakbone. We suppose thatall the partiles are attahed to the bakbone through a spring, the jump betweenthe post-power stroke state toward the next pre-power stroke state strethes thiselasti element. Formally, this streth is zero in the Xb yle, and here an be hereredued assuming λb1 + λb2 ≪ λa1 + λa2.
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Figure 4.5: Potential of the periodially extended HS71 model, where the bi-stable element isinorporated into the rathet potentialTo implement this model numerially we assume that all the Xbs (all the par-tiles) evolve in the pieewise linear potential (4.9). The resulting system of equa-132



Whole yle models Setion 4.3tions reads: bakbone x3 reads:





η1ẋ
i
1 = −V ′(xi1) + FATP −K(xi1 − x3) +

√
η1kBTΓ1(t) i = 1, · · · , NXb

η3ẋ3 = Fext +
NXb∑
i=1

(K(xi1 − x3)) +
√
η3kBTΓ3(t)

(4.10)In order to simulate the onstantly tilted potential of Fig. 1.25, we have addedto (3.49) a onstant fore FATP . In this way < FATP (t) > 6= 0 and we have anasymmetrially tilted rathet (see also [68℄). We shall ome bak to the meaning of
FATP later in this Chapter.A numerial study of this model is rather heavy in terms of the time neededto generate a quantitative response urves. The reason is that in order to providetwo di�erent time sales, one for the power stroke and another for the attahment-detahment proesses, we need to impose a onstraintH ≫ h (separating the salesof e relative height of the barriers, see Fig. (4.9)). We reall that also λb1 + λb2 hasto be small; these two requirements together make the ratio η1(λ

b
1 + λb2)L/H alsosmall whih limits the maximum τstep as desribed in Setion 3.4.We turn now to the disussion of the simulated fore time urve showing theresponse to a given length step (Fig. 4.6). One an see that both fast and slow timesales have been resolved. The fore tends towards the steady value T0. Beforethat, a rapid inrement in the total length (δ < 0) generates a drop in the tensiondue to the elasti element whih links x1 to the bakbone, but then jumps betweenthe sub-wells rise the value of the tension up to T2. This last state is no longer asteady state, as in the model of Chapter 2 where the hemial energy was going toin�nity at the boundary of the two-well region. In a larger time sale the variable

x1 an overome the higher barrier and make it into another two-well region. Thisinreases the tension applied to the bakbone and bring it bak to its original value
T0. Despite the fat that this piture looks rather realisti, the model is not sat-isfatory beause we used an expliit tilting fore in order to break the detailedbalane. In the next setion we show how suh purely mehanial bias an beavoided and how the Xb yle an be desribed by an osillating Brownian rathetwithout permanently tilting fores.4.3.2 Chemial-Spring-Motor model (CSM)As a �rst attempt to ouple the models presented in Chapters 2 and 3, we on-sider a system with two partiles x1 and x2, moving in the potentials V (x1) and133



Chapter 4 Full ross-bridge yle

Figure 4.6: Tension vs. time urve showing fast and slow time sale for the periodially extendedHS71 model. Parameters are taken from Table 4.2. Tension: arbitrary units. Time sales:
103 τstep

Ec(x2) respetively. Here V (x) is an asymmetri periodi pieewise linear potentialdesribed in Chapter 3 (equations (3.48)):
V ′(x) =





Vmax/(λ1L) nL < x < nL+ λ1L

−Vmax/(λ2L) nL+ λ1L < x < (n+ 1)L
(4.11)and Ec(x) is a pieewise quadrati double well potential desribed in Chapter 2(equations (2.96)). Due to the total length onstrained, the energy Ec(x) an bewritten in terms of the variable x3:

Ec(x2, x3) =






1
2
k1(x2 − x3)

2 x2 ≥ b1(x3)

1
2
k3 (x2 − x3 − b)2 + e b2(x3) ≤ x2 < b1(x3)

1
2
k2(x2 − x3 − a)2 + d x2 < b2(x3)

(4.12)The two partiles x1 and x2 are assumed to be linked by a linear elasti element withsti�nessK. The oordinate x3 an be viewed as the position of a bakbone (myosin)attahed to the ontrolling loading devie. The oordinate x1 is then the positionof the myosin head along the atin �lament. The atin �lament is represented bythe periodi potential V (x1). The oordinate x2 desribes the swinging lever-armportion of the head that an be in two on�gurations desribed by the energy
Ec(x2). These notations will be operative throughout this Chapter. The model isgraphially illustrated in Fig. 4.7.We assume that the partiles are embedded in a visous environment and thattheir respetive drag oe�ients ηi are di�erent, re�eting the fat that their geome-tries are di�erent. Finally, the whole system is subjeted to an external random134



Whole yle models Setion 4.3Table 4.2: The main parameters used for the numerial simulations of the periodially extendedHS71 model. Desription Numerial valuesPeriodiity λa
1

+ λa
2

+ λb
1

+ λb
2

1.1 nmWidth lower peak λa
1

+ λa
2

1 nmWidth higher peak λb
1

+ λb
2

0.1 nmInternal asymmetry λa
1

0.8 nmExternal asymmetry λb
1

0.05 nmNoise term kBT 1pNnmDrag oe�ient of x1, η1 1 pNns/nmHigher peak potential H 5kBTLower peak potential h 4kBTATP fore modulus |FATP | 0.8 h/λa
1
LDispersion of the attahment sites ψ ±0.5 nm
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Figure 4.7: CSM model for a single Xb: series onnetion of a bi-phase element, an elastielement and a motor elementfore represented by a white noise. To omplete the desription of a rathet, apieewise onstant tilting fore FATP (t) with zero mean < FATP (t) >= 0, is addedto the periodi potential V (x):
FATP (t) =






+FATP n∆tATP < t < (n+ 1)∆tATP

−FATP (n+ 1)∆tATP < t < (n + 2)∆tATP .

(4.13)In addition an external fore Fext an be applied to the bakbone x3 (load lampdevie) or its position an be presribed by a length lamp devie. In the aseof load lamp devie the system of stohasti ordinary di�erential equation for asingle Xb an be written as:





η1ẋ1(t) = −V ′ (x1(t)) +K(x2(t) − x1(t)) + Fatp(t) +
√
η1kBTΓ(t)

η2ẋ2(t) = −E ′
c(x2(t) − x3(t)) −K(x2(t) − x1(t)) +

√
η2kBTΓ(t)

η3ẋ3(t) = E ′
c(x2(t) − x3(t)) + Fext +

√
η3kBTΓ(t).

(4.14)Conditions (4.7) replae the third equation in the ase of a length lamp devie.135



Chapter 4 Full ross-bridge yleExtensive numerial experiments have been performed for the model (4.14).We have found that the model an reprodue the T2(δ) urve in the fast regime,however it fails to reprodue the peuliarities of kinetis of the proess leading tothe steady state at high values of δ. The fast branh of the typial tension vs.time urve is shown in Fig. 4.8, where we see no elasti response (no T1 phase) ispresent. This negative result eliminates the neessity to disuss the slow relaxationpredited by the model.To explain the result we �rst observe that sine the partiles are embedded ina visous environment only potential Ec is shifted when a δ inrement is instanta-neously imposed on x3 in a length lamp devie. In the meantime the partile x2remains where it had been before the step. If the shift of the potential (i.e. thevalue of δ) is larger than the distane between the minima, all the partiles xi1 endup after the step in one well, and the steady state tension is reovered due to fastrelaxation within this well. There is no subsequent hange of on�guration whihleads to the absene of the harateristi fast reovery stage.
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Figure 4.8: Tension vs. time urve predited by the CSM model in a lamp devieThis analysis suggests that we must also onsider di�erently designed on�gu-rations of the basi elements: a spring, a snap-spring and a motor.4.3.3 Spring-Chemial-Motor model (SCM)A more detailed look at the ross bridge struture is needed to proeed further.Reent observations (see for instane [72℄) have haraterized with high preisionthe struture of the myosin head and of its two sites with the a�nity for the atinand for the ATP, respetively. For the purpose of designing only a prototypialmodel (we refer to [72℄ and referenes therein for a omplete sheme) it is enough to136



Whole yle models Setion 4.3assume that the myosin head has three major sub-strutures: the �rst one attahesto atin �lament, the seond one an rotate with respet to the �rst one generatingthe power stroke, and �nally the third one ouples the seond one with the myosinbakbone (see Fig. 4.9). Normally, the elasti omponent is identi�ed with thethird struture, however this is not universally aepted.

Figure 4.9: Cross bridge yle with emphasized sub-struture of the myosin head. The phases1 to 4 are added to the original �gure to relate it with Fig. 1.5. From [72℄A onsideration of the moleular struture of the Xb suggests another wayof oupling the elements. Thus we an assume that the lever arm of the Xb,represented by the oordinate x2, is linked to the lamp devie (ultimately themyosin thik �lament, the oordinate x3) through an elasti element of sti�ness
K. The lever arm an be in two di�erent states and the orresponding hemialenergy Ec(x2, x1) takes the form:

Ec(x2, x1) =






1
2
k1(x2 − x1)

2 x2 ≥ b1(x1)

1
2
k3 (x2 − x1 − b)2 + e b2(x1) ≤ x2 < b1(x1)

1
2
k2(x2 − x1 − a)2 + d x2 < b2(x1)

(4.15)This potential is a�eted by the attahment position of the myosin head (attah-ment site, oordinate x1) whih is moving on the atin �lament itself and thereforefeels a periodi asymmetri potential V (x1). Regarding the motion of x1(t), we137



Chapter 4 Full ross-bridge ylestress that the time it spends in the bottom of the well of V (x1) before the jumpinto the neighboring well must be muh longer than the time needed for the jumpitself (see Setion A.6.3). The resulting model is shematially depited in Fig.4.10.
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η1ẋ1 = [−V ′(x1(t)) + Fatp(t) + E ′
c(x2(t) − x1(t) − ψ)] +

√
η1kBTΓ(t)

η2ẋ2 = −E ′
c(x2(t) − x1(t) − ψ) −K(x2(t) − x3(t)) +

√
η2kBTΓ(t)

η3ẋ3 = K(x2(t) − x3(t)) + Fext +
√
η3kBTΓ(t)

(4.16)To reprodue the isometri tension experiment we start with the initial on-dition x1(0) = 0, x2(0) = 0 and x3(0) = 0. As it has been already noted, thereferene lengths in the numerial ode an be set equal to zero without loss ofgenerality. By imposing the ondition x3(t) = 0, we let the system (4.16) evolvewhile we reord the tension generated by the system
T (t) = −Kx2(t). (4.17)The probability distribution assoiated with x1 in the steady state T = T0, whiha�ets the streth of the elasti element, an no longer be found analytially. As aonsequene, we an not ompute from equation (2.10) the value of d in Ec, whihis neessary to assure that the Xbs in the isometri ontration an jump bakand forth between the energy wells as in the original HS71 model. To resolve thisproblem, we assoiate the steady value T0 reahed by (4.17) with Fmotor = T0 andimpose a partiular pre-streth on the elasti element x3(0) = l0 suh that:

−1

2
K(a1 − l0) −

1

2
K(a2 − l0) = Fmotor. (4.18)138



Whole yle models Setion 4.3In the left hand side of this equation we see the mean tension generated at < x1 >=

0. This follows from (2.19) under the assumption that the Xb spends half of theanalyzed time tTot in eah well of the hemial energy EC (a1 and a2 are the twominima given by (2.9)). Substituting (2.9) in (4.18) we obtain
l0 =

[
2
Fmotor
K

− ak2

k2 +K

]
/

[
2K + k1

K + k1
+

K

k2 +K

] (4.19)where a is the distane between the minima of Ec. During the isometri ontra-tion with x3(t) = l0, we now have < x1 >= 0 beause the e�et of the motoris ompensated by the pre-streth. With the value of d omputed from (2.10),(4.19) we an be sure that the onformational transition is not biased and that Xbosillates between equivalent states during isometri ontration.

Figure 4.11: Position vs. time urves for the partiles x1, x2 and x3 in a fore lamp experimentIn Fig. 4.11 we show the response of the system (4.16) to the sudden swith atthe time tjump from isometri ontration, x3(t) = l0, to isotoni ontration with
Fext = 0.5T0. In the interval 0 < t < tjump we see that x1(t) lies near zero whilethe bi-stable element, the lever-arm represented by x2(t), osillates between twostates. At t > tjump, the variable x3 moves towards negative values whih relaxesthe elasti element. The smaller elasti fore ating on x2 allows the bi-stable139



Chapter 4 Full ross-bridge yleelement to shift toward the high fore generation phase, whih is now representingthe global minimum of the energy (see Chapter 2). This power stroke shifts x3in the same diretion and after a fast relaxation, the fore ating on x1 starts toosillate around the imposed value Fext = 0.5T0. Sine T0 = Fmotor is the fore thatmaintained, in the isometri ase, the variable x1 in the original well of the periodipotential, it now starts moving in the diretion imposed by the motor. This motiontakes plae at a longer time sale that phenomena desribed above. In Fig. 4.11 wesee only one jump of x1. This jump mimis the attahment-detahment proess ofthe head. It leads to a shift of Ec(x2, x1) through (4.16) and results in the identialdisplaement of x2 and x3. In experiments (see Fig. 3.20) the shortening of themusle, represented here by the time history of x3(t), does not exhibit jumps. Sinethe model presented here predits a stepwise motion for x3 we still need to averagethe results over the e�et of several Xbs ating on the same myosin bakbone. Thissuggests another modi�ation of the model.
4.3.4 Spring-Chemial-Motor model with a bakbone (SCM1)In experiments the total length of the musle hanges in a smooth way beausethe myosin �lament is a�eted by a population of Xbs whih at asynhronously.The e�et of eah power stroke is averaged out due to the existene of the ommonbakbone. To simulate this e�et we onsider a model in whih the oordinate
x3 is ommon to the whole population of Xbs whih are posed in parallel. Theon�guration is illustrated in Fig. 4.12.
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Figure 4.12: SCM1 model with a ommon x3 for the Xbs140



Whole yle models Setion 4.3The set of stohasti equations for this model an be written as follows:





η1ẋ1 =
[
−V ′(x1(t)) + Fatp(t) + E ′

c(x2(t) − x1(t) − ψ)
]
+
√
η1kBTΓ(t)

η2ẋ2 = −E ′
c(x2(t) − x1(t) − ψ) −K(x2(t) − x3(t)) +

√
η2kBTΓ(t)

η3ẋ3 =
NXb∑
i=1

K(xi2(t) − x3(t)) + Fext +
√
η3kBTΓ(t)

(4.20)
where the hemial energy is de�ned in (4.15), the periodi potential is de�ned in(4.11) and FATP is given by (4.13). The overlined quantities are vetors of length
NXb, say x = (xi) = (x1, x2, · · · , xNXb), and the di�erene between a vetor and asalar is omputed as:

x− x3 = (x1 − x3, x
2 − x3, · · · , xNXb − x3). (4.21)In order to understand this model, we analyze below the response of the system�rst in a length lamp devie and then in a fore lamp devie. As we are goingto see, the preditions for x3(t) are in qualitatively agreement with experiments.While for a population of Xb, due to averaging over the xi3(t)'s, even the SCMmodel predits qualitatively similar smooth urves, the SCM1 model has a learadvantage. In this model the atual position of x3(t), not only the mean value <

x3(t) > as in SCM model, is only weakly sensitive to the positions of the individual
xi2(t). This is important beause in the seond equation of (4.16) the variables xi3(t)a�et the behavior of the orresponding xi2(t) diretly.Length lamp devieIf we presribe the motion of the bakbone x3(t) as in equation (4.7) and averageout the noise term, the third equation of the system (4.20), beomes:

0 = NXbK(< x2(t) − x3(t) >) + Fext. (4.22)This means that the external fore, is proportional to the mean streth of theelasti element times the number of Xbs onneted in parallel. The relation (4.22)will be used in the simulations to ompute the fore in the length lamp protool.In Fig.4.13 we plot the tension Fext(t) produed by the system in response to asingle shortening step. This time we are interested in what happens at both shortand long time sales. In Fig. 4.13(b) we see that the rapid tension reovery mathesqualitatively well the exponential relaxation haraterizing the fast stage up to theplateau. In Fig. 4.13(a) the typial simulation for long times is reported. Here141



Chapter 4 Full ross-bridge ylewe see the slower reovery of the fore towards the original tension T0, exatly asin experiments. The orresponding fore veloity urve is also in aordane withexperiments: the urve F − v is qualitatively similar to the one presented in theend of Chapter 3 (see Fig. 3.21(b)).
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Figure 4.13: Long (a) and short (b) time sale behavior of the SCM1 model in response to ashortening stepWhile the overall behavior very niely onforms with marosopi experimentalobservations. A more detailed analysis of the short time sale response shows somedetails whih also agree with observation. Thus in our numerial experiments, theexpeted level of tension T2(δ) does not form a perfet horizontal plateau. Inexperiments the relaxed stredd T2(δ) also does not always appear in the form ofa real plateau and represents instead just a region with a low speed of reovery142



Whole yle models Setion 4.3[43℄. Within this indeterminay in the exat interpretation of the T2(δ) level,the general di�erene between reahing T2(δ) and the more slow reovery of theisometri tension T0 due to the attahment-detahment proess is well de�ned inboth numerial and physial experiments.Fore lamp devieTo show in more detail the working of the model we return to the load lamp sim-ulations and ompare them with the orresponding experiments. To the author'sknowledge, the load lamp experiments are made with higher preision than thelength lamp experiments [43℄, [67℄. We refer to Fig. 3.20 where 4 distint phases,already desribed in Chapter 3, are learly visible. In partiular, even if no plateauis present, the phases 2, 3 and 4 are well de�ned. Then a period of redued rate(phase 3) is observed before the beginning of phase 4, when the rate of shorteningbeomes onstant. As we disussed in Setion 3.6.3, phases 2 and 3 are believed tobe due to synhronization of the power strokes exhibiting by the attahed Xbs.
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Figure 4.14: Load lamp simulation with in the SCM1 modelIn all models disussed so far the motor omponent worked independently ofthe onformational state of the lever-arm and the assoiated shortening was alwayspresent. Obviously, this shortening is negligible during the relaxation of the elastielement (phase 1) and should not play any role during the rapid shortening due tothe power stroke. When these proess terminate, it is phase 4 whih dominates. Inour experiments we have not been able to reprodue the phase with lower rate thanphase 4 (the de�nitive feature of phase 3). This is learly seen in the simulation ofthe load lamp devie, reported in Fig. 4.14. Suh behavior should be ommon toall models where Brownian motor omponent works independently of the bi-stable143



Chapter 4 Full ross-bridge yleelement. The reason is that the minimal veloity of shortening due to rathet whihis harateristi of phase 4, will be always present even during phase 3. One wayto obtain a distint phase 3 would be to let the motor part know when all the Xbsare in the seond well, through a �phenomenologial� omponent in the de�nitionof FATP (t), however we leave this option outside the sope of this Thesis. Insteadwe would like to maintain our fully mehanial framework for as long as possiblewithout imposing any phenomenologial relations between the state of the motorand the hemial driving fore determining the power stroke.As we have seen, the global behavior of the system in the load lamp ase,desribed by the funtion x3(t), is basially in aord with experiments, but it is alsoinstrutive to look at the marosopially invisible relative displaement x2 − x1.To show the insu�ient oordination between the motor part, whih simulates theattahment detahment proess, and the bi-stable elements, exhibiting the powerstroke, we an follow simultaneously the evolution of one of the partiles x2 andthe orresponding partile x1.We expet that the jump of the variable x1 from one well to another on theleft side would stimulate the onformational transformation from the �short� phaseto the �long� phase of the bi-stable element. In this ase a new power strokean be generated in order to move the bakbone ontinuously. The response ofthe model is shown in Fig. 4.15, where the relative position of the lever arm in
Ec an be traed from the di�erene x2 − x1 together with the position of theelements x1 and x3. We observe that after the swith from isometri to isotoniontration at t = tjump, the fast mehanism indeed generates a power stroke andthe variable x2 −x1 jumps into the �short� well of the bi-stable potential. In termsof the marosopi evolution (of x3) this leads to phases 1 and 2. After this, in alonger time sale, the partile x1 has to move a distane L to the left to allow forontinuous ontration. However, as we see in the �gure, after the �rst jump thevariable x2−x1 has no reason to return bak to the �long� well. In fat in this test,it remains for the entire period of observations in the �short� well of the bi-stablepotential. This well is always energetially preferred beause x3 is ontinuouslymoving left relaxing the elasti element. One an see that, in the present form, themodel fails to reprodue the entire Xb yle.To �x this problem we observe that an important role in the behavior desribedabove was played by the ratio L/a linking the period of the motor potential V (x)(4.11) with the distane between the wells in the hemial energy Ec (4.13). Thisratio has been so far hosen to be small (L/a = 0.5 in Table 4.3, i.e. a step of144



Whole yle models Setion 4.3

Figure 4.15: The graph of position vs. time for a partiular x1 and the assoiated evolution ofthe variable x2 − x1 and the variable x3. Period L = 0.5a. Only one hange of phase of the leverarm x2 − x1 is observed while three hanges in the attahment position x1 takes plaeTable 4.3: The main parameters used for the numerial simulations of the models CSM, SCM-N,and SCM1 Desription Numerial valuesDistane between the minima a 1 nmNoise term kBT 1pNnmDrag oe�ient of x2, η2 1 pNns/nmElastiity of the elasti element K 32 pN/nmElastiity of the low fore generating state k1 5 KElastiity of the high fore generating state k2 2 KCurvature of the maximum k3 −102 pN/nmPeriodiity L 0.5 a - 2 aAsymmetry λ1 0.3Maximum of the potential Vmax 15kBTATP fore modulus |FATP | 1.3 Vmax/λ2LRatio η2/η1 0.1Ratio η2/η3 0.01Time between osillations tATP 103τstepAsynhronisation φi i · tATP /NXb for i = 1, · · · , NXbDispersion of the attahment sites ψ ±2.75 nm145



Chapter 4 Full ross-bridge ylethe motor equals one half of the maximum power stroke). The justi�ation ofthis value omes from the fat that the atin monomer has a diameter of 5.5 nm,while the maximum power stroke, observed at low external fores, is about 11 nm(see Chapter 2). Higher values of the ratio L/a, ould result from taking intoonsideration the helial twist of the atin �lament that allows only partiularmonomers to serve as ative sites for the myosin head.With this onsideration in view we an assume that, for instane, L/a = 2.Then the model generates similar marosopi (variable x3) but di�erent miro-sopi (variables x1 and x3) behavior. Beause the jump of x1 is now longer, it issu�ient to streth the elasti element to the degree that makes again the �long�well of the bi-stable element energetially preferable. Then during eah attahment-detahment event the variable x2 − x1 returns into the pre-power stroke state, asshown in Fig. 4.16. Following the time trajetories of the points we observe two

Figure 4.16: The graph of position vs. time of a partiular variable x1 and the assoiatedevolution of the variable x2−x1. Period L = 2a. When the variable x1 jumps into the neighboringwell, the lever arm x2 − x1 omes bak to the �long� on�guration. After a proper amount oftime a new power stroke takes plaejumps of the variable x1 marked by the two vertial lines. After every jump wesee that x2 − x1 is shifted bak to the �long� well where it an remain for a ertain146



Whole yle models Setion 4.3amount of time before generating a new power stroke.We onlude that the representation of the whole Xb yle has been ahieved.The variable x2 − x1 omes bak to the �long� well beause of purely mehanialreasons: the elasti element beomes over-strethed after the jump of x1. To showthis we plot in Fig. 4.17 the on�guration of the elasti element x2 − x3 togetherwith the evolution of the variable x1. The �rst vertial line shows the momentin whih, at a given x1, the bi-stable element hanges its state and strethes thespring, as in the power stroke of the Xb yle. The seond vertial line showsthe moment in whih x1 hanges well; it appears that the streth of the springinreases before the hanging of the attahment site of x1, and at a ertain level ofstreth, the spring pulls bak the variable x2 − x1 into the �long� state. The high

Figure 4.17: The graph of position vs. time for a partiular variable x1 and the assoiatedevolution of the variables x2 − x1 and the streth of the spring x3 − x2. Period L = 2a. The�rst vertial line shows the moment in whih the bi-stable element hanges state and the strethtakes plae in the spring. The seond vertial line shows the moment in whih the variable x1hanges attahment sitetension in the elasti element is relaxed as soon as the bi-stable element assumesits �long� on�guration. The marosopi e�et of this little peak on the bakbonean be onsidered negligible. To summarize, we an say that the model is able to147



Chapter 4 Full ross-bridge ylereprodue all the elements of the basi Xb-yle.Despite its suess, our model, raises again the question regarding the de�nitionof power stroke. Formally we have been de�ning the power stroke as the hangein the on�guration of the bi-stable element. Now we see that the attahment-detahment mehanism an also generate fore in the musle, i.e. an streth theelasti element. We onlude that the hange of the attahment site an also beonsidered as phase of the power stroke. In other words our model ontains insideitself two power strokes. This, fundamental observation, has nothing to do withthe two power stroke in the attahed state proposed by several other authors basedon ompletely di�erent observations (see [10℄, [43℄, [96℄).4.3.5 DisussionThe problem of two di�erent power stroke shows how di�erent oneptually havebeen so far the models of Brownian rathets and of the power stroke. The di�ereneresides prinipally in the interpretation of the role of ATP. In the Eisenberg andHill model [17℄, whih is based on the same idea of the Huxley and Simmons'model, there is an expliit link between the hange of on�guration of the leverarm and the onsumption of ATP. This link has been made expliit beause theauthors assoiated the di�erene in the level of the minima of the hemial energywith the free energy liberated by the ATP hydrolysis, ∆GATP . We are not awareof any work questioning this interpretation of the hemial driving fore in thepower stroke type models. An experimental prove that the onformational hangein the myosin head is not simply a mehanial e�et and that it atually needsthe ∆GATP , is in the di�erent response of the musles plaed in the length lampdevie while in rigor and in tetanus [55℄. If the ATP is needed only to swith theXb into the state in whih it an perform the power stroke, and if the transitionis governed only by mehanial fores, the two experiments should give similarresults. Instead the tension reovery T2(δ) in rigor is muh smaller than in tetanus[55℄. In rigor, the state haraterized by the depletion of ATP, all the Xbs areattahed to the atin �lament and do not have the possibility to detah; moreoverthe power stroke appears to be almost irreversible. Hene one an onlude thateven in the power stroke models, the ATP ativity is needed to keep the di�erentlevel of the minima of the hemial energy Ec.In the Brownian rathets, the role of ATP is di�erent and is mainly to de-stroy thermal equilibrium. In general we know that the non-equilibrium foring148



Full ross-bridge yletogether with the asymmetry of the potential, ensures that the partile drifts inone diretion. In detail, however the Magnaso type models represent ATP as afore (see FATP (4.13)) whih ats diretly on the partile and allows it to limbpreferentially only the smaller slope of the potential V (x) (see (3.20)). While Prostet al. model represents ATP as breaking the detailed balane in the rates of theattahment-detahment proess without seemingly generating a diret fore on thepartile, its ation an also be redued to the oloring of the external noise. Tosummarize, ATP appears in two di�erent roles: as a stati bias of one of the wellsand as a dynami agent destroying the detailed balane. These two di�erent rep-resentations of ATP have been preserved in our models, however, we believe thatthey have not been fully reoniled.To math fast and slow time sale events during musle ontration, a uni�edinterpretation of the physial e�et of ATP is neessary. We have made a step inthe diretion of treating both mehanism from the ommon point of view, but morework is needed to make them fully oherent. Despite the remaining di�ulties inlinking the two sides of the ontration phenomenon, the power stroke and theattahment-detahment, the idea of reahing a fully mehanial interpretation ofthe entire Xb yle appears now quite feasible. A fully mehanial model, ableto reprodue all the features of the musle's ontration, is of interest �rst of allin relation to the possibility of arti�ially reating the devies exhibiting ativeelastiity.
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Chapter 5
Conlusions
In this work our goal was to onstrut a fully mehanial desription for the miro-sopi mehanism of ontration in skeletal musles. Every mathematial modelthat aims at desribing quantitatively the whole variety of related physial phe-nomena has to fae at least two problems. First, there is a high variability of theexperimental results, not only linked to the di�erent musle types or even animal'sspeies, but also related to a ertain number of external fators that are normallyeasy to ontrol in the lassial mehanial tests. Just as an example, frog's musleexperiments show more uniform results between Otober and Marh due to sea-sonal variations in metabolism (G. Piazzesi, personal ommuniation). The seondproblem is that some physiologial and anatomial details of the ontration phe-nomenon are not even well established in the biologial ommunity. Thus, whilethe main steps of the Xb yle are widely aepted, some intermediate states existsonly as hypotheses that are under debate.The formulation of a model that desribes the ontration of skeletal mus-les in a purely mehanial framework is intrinsially a�eted by these problems.We reviewed previous important ontributions aimed at building a omprehensivemulti-disiplinary models oupling mehanis with hemistry. A good qualitativeagreement with experiments has been reahed in these model assuming that somephases of the proess an be modeled as purely mehanial while others as non-equilibrium hemial reations, whose phenomenologial desription preserve somefreedom needed to �t the data. As we have shown, the phenomenologial natureof these models limits their preditive power. Even if some hemial stages arelikely to be needed as a shortut for miro-mehanial proesses, a desription ofthe entire proess should be strongly related to the physis and mehanis of thefore produing mehanisms. 151



ConlusionsWe have ahieved two main results in this Thesis. First, we have shown that afully mehanial model with only two on�gurational states for the Xb an desribethe fast reovery of tension quantitatively. Seond, we have shown that one an usethe Brownian rathet theory to link qualitatively the main elements of the entireXb yle, inluding both fast and slow stages.In the �rst part of the Thesis we onentrated on the analysis of the powerstroke mehanism in the attahed myosin head. We have shown that the knownproblems of the lassial Huxley and Simmons 1971 formulation an be resolved ifthe elastiity of the bi-stable on�guration is taken into onsideration. More reentmodels have taken the path abandoning the strong physial relation between therate onstants and the streth of the elasti element. We have improved the Hux-ley and Simmons model by not only maintaining this relation but even makingit stronger through introduing a di�usion proess instead of a jump proess tomodel the hange in on�guration of the myosin head. We have provided a de-tailed analytial desription of the model and demonstrated omplete quantitativeagreement with experimental mesurements.Two preditions of the model an be diretly ompared to experiments. First,we have shown that in our model, the plateau in the T2(δ) urve an be obtainedwith only two stable onformations of the myosin head. In ontrast, in other modelsat least three states have been postulated to ahieve this result, see for instane[48℄. The existene of a third intermediate state between the pre-power stroke andthe post-power stroke states is still under debate. Seond, we have onstruted aquantitative model of kinetis whih predits realisti rate of reovery r(δ). In away we managed to irumvent the two main drawbaks of the original Huxley andSimmons model.The main result of the �rst part of this Thesis is that the size of the powerstroke is not �xed, not even for a single Xb. Our model predits that, similar toexperiments, it hanges ontinuously with varying tension in the elasti element.This understanding an give a new insight onerning the interpretation of theexperimental observations obtained with X-ray interferene in [84℄. These experi-ments learly show that the size and the speed of the power stroke depend on theload. Our model predits that the large power stroke of about 10 nm projetedfrom rystallographi studies [61℄ is atually possible only when the loads atingon the elasti element are su�iently low, i.e. when the imposed step in lengthrelaxes the elasti element almost ompletely. This result follows from the fat thatin the new model the loation of the minima of the total energy depends on the152



Conlusionsapplied length step. We an therefore onfront the laims that the energy requiredto streth the elasti element should be larger than the free energy available fromthe ATP hydrolysis. It is this problem with ATP that has lead some researher topostulate three or more onformational states for the Xb whih are all ativatedduring the power stroke (see for instane [67℄).The idea of onsidering additional elastiity in eah hemial state oupiedby a Xb has been previously put forward in [12℄, [17℄, [18℄, and used in severallater models. However, in all these models, the elastiity of the Xb has beenadded at the expense of the elasti element in series. We have shown that in thissetting, an independent phenomenologial de�nition of the hemial rate onstantsassoiated with the transition from one state to another beomes neessary. Evenif the ratio of these onstants is well de�ned by the di�erene of the free energiesof the states, nothing is known about the shape of the energy between the statesand this information has to be smuggled into the theory impliitly. This is doneby exploiting a freedom in hoosing the dependene of the rate onstants on theimposed step. We have shown that this freedom has often been used to �t theexperimental behavior, and that the resulting phenomenologial models have norelation to atual mirosopi mehanism of the transition between the states.In this sense the model proposed in Chapter 2 is atually loser to the originalHuxley and Simmons' model where the step dependene of the hemial onstants isuniquely de�ned by the shape of the energy than most of the reent improvements ofthis model. Sine we managed to preserve a transparent mehanial interpretationof the fore produing mehanism, our model opens the way to reprodue theunderlying mahinery arti�ially.In the seond part of the Thesis we have made a �rst attempt to develop apurely mehanial interpretation of the entire Xb-yle. Sine we have �rst givena mehanial interpretation of the power stroke part of the yle, allowing one toplae it in a di�usion framework, a natural hoie to omplete the model was touse the ideas of the Brownian rathet theory whih have already been applied tomodel the di�usion of a partile in an asymmetri periodi potential representingthe atin �lament.In Chapter 3 we revisited the theory of Brownian rathet and applied it diretlyto musle ontration. Our hoie of using a Magnaso type model to simulatethe attahment-detahment proess allowed us to maintain the model in a purelymehanial framework, avoiding the use of jump proesses. We have adapted thismodel to our purpose and developed a ooperative version where the partiles are153



Conlusionselastially attahed to a ommon bakbone simulating the thik �lament. We alsodeveloped a numerial algorithm to study the behavior of our stohasti system anddemonstrate that the resulting model an predit a realisti fore veloity urve.Then we applied these ideas to the modeling of the whole Xb yle. Theresulting approah is original beause the desription of the power stroke in termsof the di�usion proess is new and beause we propose a new way of insertingthe power stroke into a Brownian rathet model. By using the new ooperativemodel we have ahieved some enouraging results being able to reprodue themain qualitative features of the whole Xb yle. In our model the power strokeof the head strethes the elasti element whih in turn pulls the myosin bakboneand auses ontration. In the meantime a slower proess allows the myosin headto ome bak to the pre-power stroke state to reharge, leaving the tension inelasti element almost onstant. Finally, due to the motion of the myosin bakbonegenerated by other heads, the �rst head generates another power stroke and theyle repeats itself. one of the main advantages of the ensuing uni�ed model ofthe power stroke and the attahment-detahment phenomenon is its simpliity andanalytial traspareny. While we have not made a thorough analysis of the newmodel, we were able to demonstrate onviningly the main e�ets.We disussed limitations of our new interpretation of the Xb yle and made animportant general observation, regarding the need to give a more lear interpreta-tion of the very meaning of the power stroke. In this perspetive a muh strongerollaboration with biophysiists, biohemists and physiologists beomes ruial.
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Appendix A
Appendix
A.1 Brownian motionMarosopi movements of the body originate from the mirosopi movements ofsmall proteins (myosin) at distanes of few nanometers. These movements if prop-erly oordinated result, at a marosopi sale, in the ontration of the musles.At the miro-sale thermal �utuations of the proteins due to interation with thepartiles of the surrounding �uids an not be ignored. We review in this Appendixthe mathematial desription of suh �utuations, starting form the basi oneptsof probability needed to introdue the random motion of a free protein in a �uid(Langevin equation). We then reall the link between its mobility and the dif-fusion oe�ient (Einstein's relation). Then, we derive the stohasti di�erentialequation whih desribes the probability distribution in the ase of a system evolv-ing in an external potential (Fokker-Plank equation). We speialize it to the highfrition limit whih is, of main interest in musle mehanis. Finally we reviewthe Kramers' theory and the onept of the �rst passage time adapted to a doublewell potential. we onlude with the analysis of di�usion of a partile in periodipotential. A more detailed disussion of the related onept an be �nd in [74℄ and[23℄.
A.2 ProbabilityFor onveniene of the reader we begin by mentioning some basi onept of theprobability theory. First of all, there are three axioms desribing the probability155



Appendix
P of a set of events A, P (A):

P (A) ≥ 0 ∀A; (A.1)
P (Ω) = 1, (A.2)where Ω is the set of all events, and

Ai ∩Aj = ⊘; ∀i 6= j ⇒ P (∪iAi) =
∑

i

P (Ai). (A.3)Next we need the de�nition of onditional probability. The probability of A ata given B is equal to:
P (A | B) = P (A ∩B)/P (B). (A.4)If Bi is a olletion of non-overlapping sets whose union is the total spae Ω, weobtain: ∑

i

P (A ∪Bi) = P (A). (A.5)If a random variable ξ is ontinuous we an de�ne its probability density p(ξ).The probability of ξ to be between the values ξ0 and ξ0 + dξ0, is then p(ξ0)dξ0 =

P (ξ0 ≤ ξ ≤ ξ0 + dξ0). The equation (A.5) an now be rewritten as:
p(x) =

∫ ∞

−∞

p(x | y)p(y)dy. (A.6)A physial way to onstrut pξ(x) (the probability that a stohasti variable ξassumes the value between x and x+ dx), is to measure a large number of valuesof ξ and to de�ne:
pξ(x) = lim

N→∞

1

N

N∑

n=1

(δ(x− ξn)). (A.7)The mean value of a funtion of random variable f(ξ) will be indiated by thebrakets < > and omputed as following:
< f(ξ) >=

∫
f(x)pξ(x)dx. (A.8)When f(ξ) = ξn, formula (A.8) generates the moment of degree n of a stohastivariable ξ.If we onsider two stohasti variables, ξ and η, the joint probability density isde�ned by the expression:

pξ,η(x, y)dxdy = Pξ,η(x ≤ ξ ≤ x+ dx; y ≤ η ≤ y + dy) (A.9)156



The Langevin Equation Setion A.3The mean value of f(ξ, η) will then be a double integral:
< f(ξ, η) >=

∫ ∫
f(x, y)pξ,η(x; y)(x)dxdy. (A.10)We will also need the harateristi funtion of the stohasti variable ξ:

Cξ(u) =< eiuξ >=

∫
eiuξpξ(x)dx. (A.11)If Cξ(u) is known the moment of grade n an be omputed by di�erentiation:

Mn =< ξn >=
1

in
dnCξ(0)

dun
. (A.12)Inversely, if all moments are known we an write:

Cξ(u) = 1 +

∞∑

n=1

(iu)nMn/n! (A.13)The last formula will be used in the derivation of the Fokker-Plank equation.A.3 The Langevin EquationAt �nite temperature, a partile of mass m embedded in a visous �uid will besubjeted to a series of hits from the muh smaller partiles of the �uid, that atlike a random fore reservoir. We all this fore Γ(t). The equation of overdampedmotion for the partile in the absene of other external fores an be written as:
v̇(t) + γv(t) = Γ(t) (A.14)where γ = η/m and η is the drag oe�ient haraterizing the size and the shapeof the partile. Equation (A.14) is alled the Langevin Equation. Here Γ(t) isa stohasti funtion, whih mean that at a given t, Γ(t) represents a stohastivariable. The values Γ(t1) and Γ(t2) represent two distint stohasti variables if

t1 6= t2. We shall be onsidering a one-dimensional problem and impose on Γ tworestritions. First, it must have zero average:
< Γ(t1) >=

∫
x1pΓ(x1, t1)dx1 = 0 (A.15)where pΓ(x, t) is the probability that Γ assumes the value x at time t. Seond theremust be no orrelation in time:

< Γ(t1)Γ(t2) >=

∫ ∫
x1x2pΓ(x1, t1; x2, t2)dx1dx2 = qδ(t1 − t2). (A.16)157



AppendixThe Langevin fore with orrelations desribed by (A.15) and (A.16), is alled awhite noise. From equation (A.14), we an write:
v(t) = v0 exp[−γt] +

∫ t

0

exp[−γ(t− t′)]Γ(t′)dt′ (A.17)where v0 is the value of v at t = 0, whih we assume to be zero from now on. Todetermine the value of q, we an ompute:
< v(t1)v(t2) >=

〈∫ t1

0

∫ t2

0

exp[−γ(t1 + t2 − t′1 − t′2)]Γ(t′1)Γ(t′2)dt
′
1dt

′
2

〉 (A.18)whih gives:
< v(t1)v(t2) >=

q

2γ
exp[−γ|t1 − t2|] −

q

2γ
exp[−γ(t1 + t2)]. (A.19)In the long time limit γt1 ≫ 1 and γt2 ≫ 1 only the �rst term in the right-handside of equation survives

< v(t1)v(t2) >=
q

2γ
exp[−γ|t1 − t2|]. (A.20)Now, realling that in the state of thermal equilibrium the equipartition law oflassial statistial mehanis must be satis�ed, we an write:

< E >=
1

2
kBT =

1

2
m < [v(t)]2 >=

1

2
m
q

2γ
. (A.21)From (A.21) we obtain for q the following expression:

q =
2γkBT

m
. (A.22)Observe that while we did not give the omplete desription of the probabilitydistribution for Γ(t), the linearity of (A.14) allowed us to ompute the two-timeorrelation < v(t1)v(t2) > by using only a limited information (A.15) and (A.16).Similarly, we an also ompute the mean square displaement < (x(t))2 > of aposition of the partile,

< (x(t))2 >=

〈[∫ t

0

v(t1)dt1

]2
〉

=

〈∫ t

0

v(t1)dt1

∫ t

0

v(t2)dt2

〉 (A.23)
=

∫ t

0

∫ t

0

< v(t1)v(t2) > dt1dt2Now from (A.19):
< (x(t))2 >=

∫ t

0

∫ t

0

q

2γ
exp[−γ|t1 − t2|] −

q

2γ
exp[−γ(t1 + t2)]dt1dt2 (A.24)158



Di�usion of a partile in a �uid Setion A.4
x+ 2∆ x xx x+∆ x

P=1/2 P=1/2

Figure A.1: Di�usion of a partileSo that:
< (x(t))2 >=

q

γ2
t− q

2γ

(1 − exp[−γt])2

γ2
− q

γ3
(1 − exp[−γt])2. (A.25)Again in a long time limit (γt≫ 1) the leading term an be simpli�ed:

< (x(t))2 >= 2
q

2γ2
t = 2

kBT

mγ
t = 2Dt. (A.26)The relation (A.26) is alled the Einstein's relation. In order to see why D isalled the di�usion oe�ient we need to introdue a ontinuum desription forthe movement of a partile in a visous �uid.A.4 Di�usion of a partile in a �uidThe analysis in the previous setion allowed us to ompare the mean square dis-plaement of a partile with mass m in a visous �uid subjeted to a random forewith zero mean and orrelations proportional to a δ funtion. The analysis wasmade for a single partile and at a mirosopi level. Now we would like to desribethe evolution of an ensemble of N partiles in a �uid, reasoning in terms of theonentration of the partiles and the �ux of matter. In this sense the desriptionwill be marosopi.Without saying anything regarding the physial mehanisms of the motion, weassume that the partile in a position x an move to positions x±∆x during time

∆t with equal probabilities as shown in Fig. A.1.The number of partiles that will pass through the setion x+ ∆x in time ∆tan be related to the number of partiles between x and x+ ∆x, whih is equal to
c(x)∆x, where c(x) is the onentration. The number of partiles between x+ ∆xand x+ 2∆x, is c(x+ ∆x)∆x, therefore

∆tJ(x+ ∆x) =
1
2
(c(x) − c(x+ ∆x))

∆x
∆x2 (A.27)159



Appendixwhere J(x) the �ux of partiles trough x. De�ning D as the ratio between 1
2
∆x2and ∆t (whih we suppose to be �nite), we obtain:

J(x, t) = −D∂c(x, t)
∂x

(A.28)This formula gives the Fik's law of di�usion.A non zero gradient in the �ux trough the area A will hange the loal onen-tration. We an write the following equation of mass balane:
∆c(x, t) =

A(J(x, t) − J(x+ ∆x, t))∆t

A∆x
⇒ ∂c(x, t)

∂t
= −∂J(x, t)

∂x
(A.29)If we now use the Fik's law, we obtain the following PDE for the onentration:

∂c(x, t)

∂t
= D

∂2c(x, t)

∂x2
. (A.30)For the probability distribution of the position x for one partile p(x, t) = c(x, t)/N ,we an similarly write:

∂p(x, t)

∂t
= D

∂2p(x, t)

∂x2
. (A.31)To solve equation (A.31), we introdue the Fourier transform of p(x, t) in x

p̂(ω, t) =

∫ ∞

−∞

e(−iωx)p(x, t)dx. (A.32)Computing derivative in time we obtain:
∂p̂(x, t)

∂t
= D

∫ ∞

−∞

e(−iωx)
∂2p(x, t)

∂x2
dx (A.33)Finally, integrating by parts and letting the probability p(x, t) tend to zero as xgoes to in�nity, we obtain:

∂p̂(x, t)

∂t
= −Dω2p̂(x, t). (A.34)To illustrate the meaning of oe�ients, we an solve this di�erential equationwith an initial ondition given by a delta funtion entered in the origin. Thenomputing the inverse Fourier transform, we obtain the probability distribution ofthe position of a partile at time t in the form:

p(x, t) =
1√

4πDt
e−

x2

4Dt . (A.35)With this expression of p(x, t), we an ompute the mean value for every fun-tion of the stohasti variable x. In partiular, the mean value of x2 beomes:
< x2 >=

∫ ∞

−∞

x2 1√
4πDt

exp

[
− x2

4Dt

]
]dx = 2Dt. (A.36)160



The Fokker-Plank equation Setion A.5We an now identify the oe�ient D in (A.36) with the D in (A.26). From thisonsiderations one an relate the marosopi di�usion oe�ient to the miro-sopi information regarding the mehanial motion of a partile. Equation (A.31)is a partiular example of a lass of equations known as Fokker-Plank equation,whose general derivation will be the subjet of the next Setion.A.5 The Fokker-Plank equationWe reall that pξ(x, t)dx is the probability that a random variable ξ assumes avalue between x and x+ dx at time t. In the time dependent ase, equation (A.6)an be rewritten as:
p(x, t+ τ) =

∫
p(x, t+ τ | x′, t)p(x′, t)dx′. (A.37)To obtain a di�erential equation for p(x, t) we suppose to know all the moments

Mn of p(x, t+ τ | x′, t) with respet to x′:
Mn(x

′, t, τ) =< (ξ(t+ τ) − x′)n > (A.38)Then, the funtion p(x, t+ τ) is equal to the inverse Fourier transform of its har-ateristi funtion (see (A.11)). Therefore:
p(x, t+ τ) =

1

2π

∞∑

n=0

(∫ ∞

−∞

exp[−i(x− x′)u]
(iu)n

n!
du

)
Mn(x

′, t, τ). (A.39)By using the identity
1

2π

∫ ∞

−∞

exp[−i(x− x′)u](iu)ndu =

(
∂

∂x

)n
δ(x− x′) (A.40)we an write:

p(x, t+ τ | x′, t) =

[

1 +

∞∑

n=1

1

n!

(
∂

∂x

)n
Mn(x, t, τ)

]

δ(x− x′). (A.41)Inserting the last equation into (A.37) we obtain an expression for the �rst deriva-tive of the probability distribution p(x, t):
p(x, t+ τ)− p(x, t) =

∂p(x, t)

∂t
τ +O(τ 2) =

∞∑

n=1

(
− ∂

∂x

)n
Mn(x, t, τ)

n!
p(x, t) (A.42)Now, expanding Mn(x, t, τ) in τ and dropping the terms that go to zero with

τ we obtain:
∂p(x, t)

∂t
=

∞∑

n=1

(
− ∂

∂x

)n
Dn(x, t)p(x, t), (A.43)161



Appendixwhere Mn(x, t, 0) = 0 beause no jumps take plae, and
Dn(x, t) =

1

n!
lim
τ→0

Mn(x, t, τ)

τ
. (A.44)By trunating this equation at n = 2, we obtain the Fokker-Plank equation:

∂p(x, t)

∂t
= − ∂

∂x
(D1(x, t)p(x, t)) +

∂2

∂x2
(D2(x, t)p(x, t)) (A.45)One an show that if the noise Γ in the Langevin equation (A.14) an be desribedby a Gaussian distribution, all the moments Mn with n > 3 are equal to zero. Inthis ase, the probability distribution p(x, t) satis�ed the Fokker-Plank equation(A.45) exatly. From (A.14) we an ompute:

D1 = lim
τ→0

〈v(t+ τ) − v(t)〉
τ

= lim
τ→0

1

τ

∫ t+τ

t

〈−γv(t′) + Γ(t′)〉 dt′ = −γv(t) (A.46)and in a similar way:
D2 =

1

2
lim
τ→0

〈(v(t+ τ) − v(t))2〉
τ

= (A.47)
1

2
lim
τ→0

1

τ

〈∫ t+τ

t

−γv(t′) + Γ(t′)dt′
∫ t+τ

t

−γv(t′′) + Γ(t′′)dt′′
〉

=

1

2
lim
τ→0

1

τ

∫ t+τ

t

∫ t+τ

t

〈
γ2v(t′)v(t′′)

〉

+ 〈−γv(t′)Γ(t′′) − γv(t′′)Γ(t′)〉 + 〈Γ(t′′)Γ(t′)〉 dt′dt′′With τ → 0 the �rst term in the integral above goes to zero as τ 2 and the seondterm has a zero average. Therefore we an write:
D2 =

q

2
(A.48)where q was de�ned in (A.22). To summarize, for the proess desribed in (A.14),the probability distribution for veloity, satis�es the following partial di�erentialequation:

∂p(v, t)

∂t
= γv

∂p(v, t)

∂v
+
q

2

∂2p(v, t)

∂v2
(A.49)This equation an also be written as:

∂p

∂t
+
∂S

∂v
= 0 (A.50)where we de�ned the probability �ux S

S =

[
−γv − q

2

∂

∂v

]
p. (A.51)162



High frition limit Setion A.6From this expression for the �ux we an immediately obtain the steady statedistribution. Indeed the boundary ondition S(±∞) = 0 ensures that S = 0.Therefore:
p(v) =

√
m

2πkBT
exp

[
− mv2

2kBT

]
. (A.52)whih is known as the Maxwell distribution.A.6 High frition limitIf we ouple the Langevin equation (A.14) with the equation for the partile posi-tion:

∂x

∂t
= v(t) (A.53)It leads to a Fokker-Plank equation for two variables: position and veloity. Wethen write:

Dx = lim
τ→0

〈x(t+ τ) − x(t)〉
τ

= lim
τ→0

1

τ

∫ t+τ

t

〈v(t′)〉 dt′ = v(t) (A.54)and:
Dxx = Dxv = Dvx = 0 (A.55)We therefore obtain:

∂p(x, v, t)

∂t
=

[
−∂v
∂x

− ∂

∂v
(−γv) +

∂2

∂v2
(
γkBT

m
)

]
p(x, v, t) (A.56)Now, we an expet that solving equation (A.56) for p(x, v, t) and integratingit in v we obtain the distribution of the partile position p(x, t). equation (A.56)ontains a full desription of the inertial e�ets due to �nite mass m. As we havealready seen the inertial e�ets an be negleted if t is su�iently large. In theopposite limit, when t is small visosity is not important and the partile moves ata onstant veloity. Using realisti values of onstants, one an onlude that theinertial desription is relevant only for times of the order of t = 10−13s and for thedisplaements of the order of 0.01nm, less than the diameter of the water moleulethat hits the partile. For these reasons in what follows we limit our attention tothe high frition limit, in whih the mass of the partile has a negligible e�et.A.6.1 The Fokker-Plank equation in the high-frition limitNegleting the e�et of mass, we shall instead fous on the e�et of an externalfore, desribed by a potential U(x). In this ase, we obtain a Langevin Equation163



Appendixof the type:
ηẋ(t) + U ′(x) = Γ(t). (A.57)To respet the dimensionality the Γ(t) in (A.57), must be equivalent to the Γ(t)used in (A.14) time the mass. Therefore we an write:

< Γ(t1) >= 0 (A.58)and:
< Γ(t1)Γ(t2) >= qm2δ(t1 − t2) = 2

ηkBT

m2
m2δ(t1 − t2) = 2ηkBTδ(t1 − t2) (A.59)Following the derivation of the Fokker-Plank equation in the general ase (equa-tions (A.46))-((A.47)), and using (A.59) we obtain:

D1(t) = −U
′(x(t))

η
. (A.60)From (A.59) we also obtain that:

D2(t) =
ηkBT

η2
=
kBT

η
. (A.61)Unifying all these ingredients we �nally obtain the Fokker-Plank equation relatedto equation (A.57) in the form:

∂p(x, t)

∂t
=

1

η

∂

∂x

(
U ′(x)p(x, t) + kBT

∂p(x, t)

∂x

)
. (A.62)We an also rewrite equation (A.62) in the form:

∂p

∂t
+
∂S

∂x
= 0. (A.63)where:

S =

[
D1 −

∂

∂x
D2

]
p = −U

′(x)

η
p− kBT

η

∂p

∂x
(A.64)is the �ux of probability. In the stationary state ∂p

∂t
= 0 is onstant and S = const.The value of S in the stationary state is given by the boundary onditions.In the ase of a re�eting barrier, a partile reahing the boundary is re�etedbak and the net �ux S is zero. Sine the �ux is onstant in the stationary state,

S = 0 means automatially that both boundaries must be re�eting. Anothertype of boundary is the absorbing boundary. In this ase the partile reahing theboundary disappears (and is eventually brought to the other boundary to preservethe normalization ondition). The probability to �nd a partile on the absorbingboundary is equal to zero. 164



High frition limit Setion A.6In the stationary state, with re�eting boundaries, we an solve (A.64) andobtain:
ps(x) = N exp

[−U(x)

kBT

] (A.65)Here N is determined by the normalization ondition ∫ ps(x) = 1.A.6.2 Canonial distributionEquation (A.65) known as Canonial distribution and is derived diretly in equi-librium statistial mehanis. The fundamental postulate of statistial mehanisasserts that, in equilibrium the system A is likely to be found in any one of thestates aessible to it, for instane the probability P to �nd the system betweenthe energy E and E+δE is proportional to the number of states Ω(E) with energy
E

p(E) = CΩ(E) (A.66)The onstant C, independent of E, is given by the normalization ondition C−1 =
∑

E Ω(E). We an de�ne the temperature by
1/kBT = ∂ ln Ω(E)/∂Ewhere kB = 1.381·10−23J/K is the Boltzmann onstant. The distribution (A.66) isalled miroanonial. When two systems, A and A′, are in equilibrium, the totalprobability ptot(E) that the system A has the energy E is given by the produt

CΩ(E)Ω′(E ′) = CΩ(E)Ω′(E0 −E) where E0 is the total energy and E ′ the energyof the seond system. We an write the equilibrium ondition in the form:
∂ ln ptot(E)

∂E
= 0 (A.67)whih gives T (E) = T ′(E ′), so the temperatures of the two system must be equal.Now, if we onsider a single Xb in equilibrium with a heat reservoir. Theprobability that the Xb has the energy Er, is equal to the probability that the heatreservoir has the energy E0 − Er: ps = C ′Ω′(E0 − Er). Beause Er ≪ E0 it ispossible to expand the logarithm of Ω′ as:

ln Ω′(E0 − Er) = ln Ω′(E0) −
[
∂ ln Ω′

∂E ′

]

0

Er (A.68)Then
Ω′(E0 − Er) = Ω′(E0)e−Er/kBT (A.69)165



Appendixand therefore:
ps =

e−Er/kBT

Σre−Er/kBT
. (A.70)where the onstant C ′ has been again de�ned by the normalization. The subsript

s indiates equilibrium or steady state. This distribution (A.70) is alled anoni-al. Knowledge of this distribution is su�ient to derive the ondition of detailedbalane imposed by Huxley and Simmons on the ratio of the kineti onstants,
k+/k− (equation (1.14)).A.6.3 The First passage timeIn the high frition limit one an ompute the time needed for a partile to exitfrom a region bound by ertain potential barriers. We an start with the simplestase of a Langevin equation (A.14), when there is no external potential term and
D1 is zero.Consider a region with a re�eting boundary on the left and an absorbingboundary on the right. As we have already mentioned, one should remove thepartiles on the right and put them bak on the left, in order to have a steadystate and to maintain the normalization of the ps(x). In this ase we have aonstant �ux equal to the number of partiles per unit of time that intersets agiven ross setion. The mean �rst passage time is de�ned as the inverse of this�ux beause it is the time needed for a partile starting from the left boundary toreah the right boundary. The Fokker-Plank equation redues to:

∂p

∂x
= const. (A.71)This equation must be supplemented by the boundary ondition:

p(x0) = 0 (A.72)and the normalization ondition:
∫ x0

0

p(x) = 1. (A.73)We obtain:
ps(x) =

−2x

x0
+

2

x0
⇒ J(x0) = −Ddp

dx
=

2D

x2
0

(A.74)and therefore, the mean �rst passage time is:
tk =

x2
0

2D
. (A.75)166



Kramers' approximation Setion A.7Not surprisingly, this is the same result whih we obtained (A.36) when we on-sidered the average distane traveled by a partile in a given time.More interesting is the ase of a partile subjeted to a fore whih is derivedfrom a potential. Suppose J0 is the onstant value of the �ux. We an multiply(A.64) by exp[−U(x0)/kBT ] and integrate between x and x0 (where p(x0) = 0),obtaining:
p(x) =

J0

kBT/η
exp [−U(x)/kBT ]

∫ x0

x

exp [U(x)/kBT ] dx. (A.76)Integrating again between 0 and x0, an interval over whih the total probabilitymust be equal to one, we an represent the inverse of the �ux as:
tk =

η

kBT

∫ x0

0

(
exp [−U(x′)/kBT ]

∫ x0

x′
exp [U(x′′)/kBT ] .dx′′

)
dx′. (A.77)This integral an be omputed expliitly when the external fore is onstant and

U(x) = −Fx. We obtain:
tk = 2(ηx2

0/2kBT )(kBT/Fx0)
2 [exp(−Fx0/kBT ) − 1 + Fx0/kBT ] . (A.78)In the harmoni ase U(x) =
Kx2

2
, an approximate analytial solution an beobtained in the approximation U(x0) ≫ kBT [64℄:

tk =
η

K

π

4

kBT

U(x0)
exp

[
U(x0)

kBT

]
. (A.79)Equation (A.79) gives the mean time needed for a partile to exit a paraboli well.A.7 Kramers' approximationIn 1940, Kramers onsidered the problem of an esape from a well in relations tokinetis of moleular transformations. He introdued an ansatz whih is now alledthe Kramers' approximation and solved the problem with a double well potential(see Fig. A.2). By using this approximation one an show the relation between thekineti equation (1.15) used by Huxley and Simmons and the original Fokker-Plankequation assoiated with a general double well potential with minima in x = a and

x = c and the maximum (the energeti barrier) in x = b.We begin by de�ning:
M(x, t) =

∫ x
−∞

p(x′, t)dx′

Na(t) = 1 −Nc(t) = M(b, t)

N0(t) = (c− a)p(x0, t).

(A.80)167



Appendix

Figure A.2: a) Double welled potential U(x) b) Stationary distribution ps(x) ) Mean �rstpassage time. From [74℄Here x0 is a generi point between a and c. The orresponding stationary quantitiesare:
na = 1 − nc =

∫ b
−∞

ps(x
′)dx′

n0 = (c− a)ps(x0)
(A.81)From the FPE (A.62) we obtain:

∂

∂t

∫ x0

a

M(x, t)

ps(x)
dx = D

[
p(x0, t)

ps(x0)
− p(a, t)

ps(a)

] (A.82)where D is de�ned in (A.61).The Kramers' approximation assumes rapid relaxation within eah well om-pared to the time sale of a well to well transition. Therefore one an assume thatin eah well the distribution p(x, t) is well approximated by the stationary distri-bution ps(x) orreted by the orresponding weights. More preisely, the funtion
p(x, t) is approximated by:

p(x, t) =






ps(x)
Na(t)

na
x < b

ps(x)
Nc(t)

nc
x > b

(A.83)Now we an write, from (A.82):





κ(x0)Ṅa(t) = D

[
N0(t)

n0

− Na(t)

na

]

µ(x0)Ṅc(t) = D

[
N0(t)

n0
− Nc(t)

nc

]
,

(A.84)Here
κ(x0) ≃

∫ x0

a

ps(x)
−1dx, (A.85)168



Brownian motion in a periodi potential Setion A.8and
µ(x0) ≃

∫ c

x0

ps(x)
−1dx. (A.86)Sine −Ṅa(t) = Ṅc(t) we an sum both equations (A.84), and write:

Ṅa(t) = −Ṅc(t) = −raNa(t) + rcNc(t) = rc − (ra + rc)Na(t). (A.87)Here:
ra = D

[
na

∫ c

a

ps(x)
−1dx

]−1 (A.88)
rc = D

[
nc

∫ c

a

ps(x)
−1dx

]−1 (A.89)Equation (A.87), is the so alled master equation desribing the proess inwhih the partiles an jump between the two wells with rate onstants ra and rc.Solving for Na(t), we obtain an exponential solution desribing relaxation to thesteady state. The relaxation time is given by:
τ−1
r = ra + rc =

(na + nc)D

(nanc)
∫ c
a
ps(x)−1dx

. (A.90)Equation (A.87), is equivalent to equation (1.15) used by Huxley and Simmons.In general, it is possible to show that a FPE an always be approximated by ajump proess (master equation) 1 but not vie-versa. Notie that in the Kramers'approximation the rate onstants are not phenomenologial and have a preisemehanial origin.A.8 Brownian motion in a periodi potentialUntil now, we have been onsidering potentials in whih the partiles were on-strained in a �nite region. In this ase, the �ux in the stationary state was equal tozero. This ondition allowed us to obtain the expliit expression for the stationarydistribution ps(x) (see (A.65)).Another type of stationary solution, when the total probability �ux is not zero,an be found in the ase when a partile is moving in a periodi potential [23℄. Theorresponding equation of motion an be written in the form:
γẋ = F − f ′(x) + Γ(t) (A.91)1The general linear master equation for the probability density is

∂pn

∂t
=
∑

m

[p(m→ n)p(m) − p(n→ m)p(n)]169
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Figure A.3: Periodi energy landsapewhere f is the periodi potential, F is a onstant fore and Γ(t) is a white noiseimitating thermal �utuations. The orresponding FPE is
∂p

∂t
=

1

γ

∂

∂x

[
f ′ − F +D

∂

∂x

]
p = −∂S

∂x
(A.92)In the steady state, the probability urrent S is onstant, so:

γS = (F − f ′)p−D
∂p

∂x
(A.93)The solution of this equation an be written as:

p(x) = exp [−V (x)/D]

(
N − γ

S

D

∫ x

0

exp [V (x′)/D] dx′
) (A.94)with the e�etive potential V (x) de�ned by:

V (x) = f(x) − Fx (A.95)(see Fig. A.3). To fully de�ne the steady state solution, we need to obtain thevalues of S and N , from the boundary ondition and the normalization ondition.To apply the boundary ondition in the speial ase of a periodi potential, we an�rst write (assuming 0 ≤ x < 2π):
∫ 2πn+x

0

eV (x′)/Ddx′ =

∫ 2π

0

eV (x′)/Ddx′+· · ·+
∫ 2πn

2π(n−1)

eV (x′)/Ddx′+

∫ 2πn+x

2πn

eV (x′)/Ddx′(A.96)Realling that V (x+ 2πn) = V (x) − 2πnF , and de�ning:
I =

∫ 2π

0

eV (x′)/Ddx′ (A.97)170



Brownian motion in a periodi potential Setion A.8we an shift the integration variables in equation (A.97) to obtain
∫ 2πn+x

0

eV (x′)/Ddx′ = I + Ie−2πF/D + · · · + Ie−2π(n−1)F/D +

∫ x

0

eV (x′)/Ddx′e−2πnF/D(A.98)
= I

1 − e−2πnF/D

1 − e−2πF/D
+ e−2πnF/D

∫ x

0

eV (x′)/Ddx′.Introduing this result in (A.94), we obtain:
p(x+ 2πn) = e−V (x)/D

[
N − γSI

D(1 − e−2πF/D)

]
e2πnF/D (A.99)

+e−V (x)/D

[
γSI

D(1 − e−2πF/D)
− γ

S

D

∫ x

0

eV (x′)/Ddx′
]We an now require that p(x) is bounded for large x (our boundary onditionin the ase of periodi potential). Then the �rst braket on the right hand side of(A.99) must vanish at n → +∞ for F > 0 (or at n → −∞ for F < 0). Hene weobtain the �rst ondition between N and S:

γSI = DN(1 − e−2πF/D). (A.100)Next we reall that in the steady state:
p(x+ 2π) = p(x) (A.101)meaning that the probability distribution is periodi. Beause of the periodiity,it is possible to normalize the distribution in only one interval. In this ase weobtain the seond ondition on N :
∫ 2π

0

p(x)dx = 1. (A.102)We remark that in the problem on the entire real axis with loalized initial data,the probability p(x, t) never reahes a steady state (see [68℄), instead p(x,∞) → 0.It is, however, possible to de�ne a redued probability density p̂(x, t) as:
p̂(x, t) =

+∞∑

n=−∞

p(x+ 2nπ, t) (A.103)
∫ 2π

0

p̂(x, t)dx = 1 (A.104)171



Appendixand the orresponding probability �ux:
Ŝ(x, t) =

+∞∑

n=−∞

S(x+ 2nπ, t). (A.105)Then, due to the linearity of the FPE, it an be rewritten in �redued� variable as
∂p̂

∂t
= −∂Ŝ

∂x
. (A.106)The advantage of this rewriting is that now the redued probability density

p̂(x, t) subjeted to the periodi boundary onditions indeed tends toward a mean-ingful time independent limit.With the two onditions (A.100) and (A.102), we an obtain the relation be-tween the mean veloity of the partile and the applied fore F in the form:
< v >=< ẋ >= γ−1 < F − f ′(x) + Γ(t) >

= γ−1 < F − f ′(x) >= γ−1
∫ 2π

0
(F − f ′(x))p(x)dx

= γ−1
∫ 2π

0
(γS +D∂p/∂x)dx = 2πS

(A.107)The drift veloity is then given by the formula whih we used in the body of theThesis
γ < v >= (A.108)

2πD(1 − e−2πF/D)
∫ 2π

0
eV (x)/Ddx

∫ 2π

0
e−V (x)/Ddx− (1 − e−2πF/D)

∫ 2π

0
e−V (x)/Ddx

∫ x
0
eV (x′)/Ddx′

.A.9 Gillespie methodThe Gillespie method was developed in 1977 [15℄. Mathematially it belongs to theategory Kinetis Monte Carlo methods, and an simulate the behavior of a systemwith known rate onstants. The method is used in Setion 2.7.1 to predit whihXb hange on�guration at every instant of time in a hain of half-saromeres eahformed by NXb Xbs. The length of eah half-saromeres a�ets the rate onstantsof the hange of on�guration as in the HS71 model. The main features of thealgorithm are:0. Set the time t = 01. Form a list of all possible rates in the system ki(δi), that in our ase area funtion of the length of the half-saromere δi, given in the �rst step as initialonditions. 172



Gillespie method Setion A.92. Calulate the umulative funtion for
Ri =

i∑

j=1

ki(δi) (A.109)for i = 1, · · · , N where N is the total number of transitions. Denote R = RN .3. Get a uniform random number u ∈ [0, 1].4. Find the event to arry out i by �nding the i for whih Ri−1 < uR ≤ Ri.5. Carry out event i and update the new values of δi.6. Realulate all rates ki(δi) whih may have hanged due to the transition.Update N and the list of events aordingly.7. Get a new uniform random number u ∈ [0, 1].8. Update the time with t = t+ ∆t where ∆t = − log u/R.9. Return to step 2.For a more detailed desription of the model see [15℄.
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