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Abstract

In this thesis we have proposed several approaches to improve and optimize one of the most
popular technical analysis techniques - trading bmatkgies. Parts ldalh concentrate on the
optimization of the components of trading batigs:middle line (in the form of the moving
average) and bandlines. Part Il is dedicated to the improving of the decision-making process. In
Part | we proposed the use of kriging methodostajistical approach, for the optimization of

the moving average weights. The kriging method allows obtaining optimal estimates that depend
on the statistical characteristics of the data ra#fmeoththe historical data itself as in the case of

the simulation studies. Unlike other linear msthsdally used in finance, this method can be
applied to both equally spaced data (in our ¢pireditional time series) and data sampled at
unequal intervals of time or other axisabées. Part || proposes a method based on the
transformation of the data into a normal vijalwhich enables the definition of the extreme
values and, therefore, the bands’ values, withiestraining assumptions about the distribution
function of the residuals. Finally, Part Ill presémsapplication of disjunctive kriging method,
another geostatistical approach, for more i@ftorendecision making about the timing and the
value of a position. Disjunctive kriging allegtimating the probability of certain thresholds

being reached in the future. The results of the analysis prove that the proposed techniques can be
incorporated into successful trading strategies.



Cette these propose des approches pour ameiooptimiser un des instruments les plus
populaire d’analyse techniques — bandes de titaslingarties | et parties Il se concentrent sur
I'optimization des composantes des bandesadimg: ligne centrale (representée par la
moyenne mobile) et lignes des bandes. La Ipagts¢ dédiée a 'amélioration du processus de

prise de decision. Dans la partie | on proposes d'utilizer la méthode de krigeage, une approche
geostatistique, pour l'optimization des poidsnu®yennes mobiles. La methode de krigeage
permet d’obtenir I'estimateur optimal, qui incerpes characteristiques statistiques des donnees.
Contrarment aux methodes classiques, qui sont utilisées en finance, cette methode peux etre
appliquée a deux types des données: echantillaligtasce réguliere ovéguliere. La partie

Il propose une methode, basée sur la trandformdes données en une variable normale, qui
permet de definir les valeurs extremes et en consequence les valeurs des bandes sans impositio
des contraintes de la fonction de la distoibudes residus. Enfin, la partie 1l presente
I'application des methodes de krigeage clisjprune autre methode geostatistique, pour les
decision plus informative sur le timing et type de position. Le krigeage disjonctif permet d’estimer
les probabilités, que certain seuils seront attanis le futur. Les resultats d’analyse prouvent

gue les techniques proposées sont prometetigeuvent etre utilisées en pratique.



Resume

L’analyse technique consiste en I'ensemble des instruments, modéles
graphiques et regles de trading, quifsodées sur la hypothese que les prix
passés peuvent étre utilisés pour antlepg@rix futurs. Les regles et modéles
sont souvent developées par les traders-techniciens. L'analyse technique est
largement ignorée par les traders-fondamentalistes, qui définissent leurs
stratégies par les valeurs fondamentales (comme des macro- et micro-
indicateurs). Ses idées sont aussiéesj par la majorité de représentants
academique, qui n'acceptent pette capproche comme méthode pour la

prevision des prix futurs.

Les chercheurs ont des difficultés pour accepter cette methode pour la raison
suivante : L'analyse technique est fosaleéa hypothese que les prix passés
peuvent étre utilisés pour anticiper les prix futurs. Cette idée contredit
I'hypothése des marchés efficaces ¢ierffimarket hypothesis ») sur laquelle

la majorité des modeles financierssitjae est basée. L'autre probléeme avec
I'analyse technique est sa nature empirique: les regles de trading sont souvent
dérivées d’observations empiriques piuétde modéles mathématiques. En

plus, c’est plutét la régle que l'etiomppour les traders de déclarer que
certains parametres de certaines stratégies sont optimaux sans aucune référence
a des conditions, hypothéses et criteres d’optimization. Finalement, les
barriéres linguistiques crées par le jargon et la terminologie technique utilisée
par les traders et chercheurs compliquent encore le dialogue entre les deux
parties. En conséquence, ce sujet est insuffisamment développé dans les

recherches scientifiques, qui évoquerttde scepticisme que I'intérét. Notre
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motivation était donc de contribuer a la recherche pour essayer de combler le

fossé entre praticiens et scientifiques.

Cette these propose des approches pogliorer et optimiser un des
instruments les plus populaires de I' analyse technique, les bandes de trading.
La bande de trading est la lignedgdaautour de I'estimateur de tendance
centrale. Quatre composantes des bandes peuvent étre définis : (1) la série de
prix ; (2) la ligne centrale ; (3) la bande haute (supérieure) ; (4) la bande basse
(inférieure). Deux types de stratqupewwent étre définis pour cet instrument :

(1) «trend-following » ; et (2) «contrariant». Pour la strategie « trend-
following », les bandes servent de confirmations du signal de tendance établi.
Au contraire, les bandes définissestinstruments qui sont trop chers ou
moins chers pour la strategie « contrarigddértainment, les positions prise en
contexte de ces types de strategie sont opposeées.

Les traders utilisent différents types ll@ndes. Les classement des bandes
peut étre défini par les idées/hypothé&smceptuelles en ce qui concerne les

prix pour lesquels les bandes sont @éfiliar example, les bandes de trading,

les plus simples obtenues par le déplacement paralléle de la ligne centrale en
haut et en bas, supposent la vaéatdonstante des prix. Les bandes de
Bollinger essaient d’'incorporer la nature stochastique de la volatilité des prix.
Les autres types de bandes prennenbmpte la distribution statistique des

residus calculés sur la base de prix.

L’avantage de bandes de trading consiste en la possibilité d’optimiser
I'instrument par ses composantes. D’abord on peut optimiser la ligne centrale,
comme estimateur optimal de la tendance (la partie I). Ensuite les bandes sont

optimisées de facon a ce qu’elles contiel¥érdes résidus (la partie II).
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Enfin, la partie 1l est dédiée a l'doration du processus de prise de

decision.

Dans la these on considere trois types des bandes qui correspondent aux
groupes présentés plus haut. En premiere partie on estime la ligne centrale
optimale sous la forme de la moyenne mobile krigée (KMA), la deuxieme et la
troisieme parties utilisent respectiverteentoyenne mobile simple (SMA) et
moyenne mobile exponentielle (EMA) e ¢ae ligne centrale. La partie Il a
examiné les bandes définies par lextéastiques statistiques des données

(par exemple, variance). La partie Il a analysé les stratégies de trading pour les
bandes créées par le déplacement parallele de la ligne centrale en haut et en bas.
Le choix de différents types de layemme mobile (KMA et SMA) pour les

deux premiéeres parties est justifié par la nécessité d'éviter de mélanger des
effets de I'amélioration des bandesadting provoquées par les optimisations

de ses composants. Quant au choix des bandes en patrtie Il est expliqué par

I'énorme popularité de ce type de bandes chez les traders.

Dans la partie | "Optimisation de dicateur de la moyenne mobile: méthode

de krigeage" on propose d'utiliser le krigeage, une approche geostatistique,
pour l'optimisation des poids desysmnes mobiles (MA). Cette méthode
permet d'optimiser la structure des ppms une longueur prédéfinie de la
fenétre sur lequelle la moyenne mastecalculée. La méthode de krigeage
permet d'obtenir I'estimateur optimal, qui incorpore les -caractéristiques
statistiques des données, telles quedaianace (autocovariance). Cela permet
d'obtenir des estimateurs optimaux qui dépendent des -caractéristiques
statistiqgues des données plutbét quealesrs des données historiques comme

dans le cas des études de simulation. Contrairement aux méthodes classiques,

qui sont utilisées en finance, cette métipedx étre appliquée a deux types de
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données: échantillonées a distance régulie irreguliere. Cette approche
propose de définir le meilleur estimmatie la moyenne comme une somme
pondérée des observations dans un voismagmincide avec la définition de
la moyenne mobile. La méthode d’ogtton se base sur la minimisation de

la variance d’estimation.

Nous avons vu gue la meilleure moyenne mobile krigée (KMA), estimée sur les
données régulieres a une structure des poids spécifique pour certains modéles
de covariance: les plus grand poids sont attachés a la premiére et la derniere
observation, alors que tous les autres poids sont faibles. En conséquence,
KMA oscille autour de la courbe 8MA. La volatilité et I'amplitude des
oscillations est une fonction indirecte de la longueur du voisinage utilisé pour
le KMA : le KMA sur un voisinage plus long est moins volatile et coincide plus
avec la courbe de SMA. Par conséqdeststratégies de trend-following, qui

sont basées sur les KMA et SMA premniddes positions différentes pour des
voisinages courts et les méme positions pour des voisinages grands. La
structure des poids ne dépend pas loadaeur de la fenétre mais du modele

de covariance. Ce dernier a un impact sur les valeurs des coefficients de
pondération proches des bordures de la fenétre : le moins régulier est le
modele de variogramme a l'origingus les poids de KMA sont proches des
coefficients de pondération du SMA. &ample, le modele effet de pépite
améne aux poids optimaux qui correspdralenpoids de la moyenne mobile

simple.

La structure des poids des échantillonaibe irréguliére est plus variable, elle

dépend de I'écart entre les échantillons de la variable utilisée pour subordonner



les prix ou la distance entre les obsengade prix temporaires: plus |'écart

est grand, plus la structure des poids est volatile.

L’analyse du KMA en contexte det8gies de trading montre que le KMA
permet d'obtenir des résultats positifs et intéressants. Les résultats de
I'application de stratégies « trendwiollg » définie par les croisements de
moyenne mobile et de courbe des prontrent que pour la majorité des
instruments considérés KMA géneére des résultats plus élevés que les moyennes
mobiles simples ou exponentielles. En plus, le profit maximal etait obtenu pour
des KMA sur de petits voisinages h®yennes mobiles traditionnelles sur

des voisinages courts produisent normalement beaucoup de faux signaux et de
ce fait sont moins rentables. Malgréaractere volatile, KMA ne génere pas

plus de transactions que les moyemnekiles traditionnelles de méme
longueur. Par conséquent, il semble quatlae erratique de la courbe de

KMA ne conduit pas nécessairement a générer plus de faux signaux pour les

stratégies de trend-following.

L’application des stratégies de tragdmg les échantillons irréguliers montre
que les différents types de moyenrmsiles calculées sur I'échantillon ajusté
(pour avoir un échantillon régulier) pail conduire a des résultats moins
efficaces, que si on calcule la moyenne mobile optimale pour I'échantillon

irréegulier par la méthode de krigeage.

La deuxieme partie "Une alternative aux bandes de Bollinger: les bandes,
basées sur les données transformées”, propose une nouvelle approche pour

optimiser les bandes de trading.



Bandes de Bollinger ont été proposése au début des années 1980 et restent tres
populaires parmi les professionnels de nos jours. Bollinger a proposé d'utiliser

la moyenne mobile simple comme une ligne centrale:

——
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itnil
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t 10 - la prix,n- longeur de la fenetre.

avec P, 'dct\’

Les bandes sont définies par I' équation suivante :

h mrkl,

t

P SMA ?

avec |f tnt , k const!0- parametres de Bollinger.
n

Les conclusions suivantes peuvent étre dérivées pour les bandes de Bollinger :

1. Les bandes de Bollinger sontésspour la volatilité des prix, comme
la définition des bandes incorporaf®type, en tant que mesure de la
volatilité.

2. Les bandes supérieures et inférieures au méme moment de temps sont
placés a distance égale de la moyenne mobile, c'est-a-dire ces bandes
sont symétriques. Toutefois, cetlistance peut étre différente a
différents moments du temps, enomide I'évolution de la nature de
la volatilité des prix.

3. La distance entre les bandes se réduit avec la diminution de la volatilité
des prix et s’élargit avec 'augmentation de celle ci.

4. L'usage des SMA comme la ligne temtsajustifiée par le fait que le
SMA est la moyenne statistique des prix des sous-échantillons - la
méme valeur qui est utilisée pour les calculs de I'écart-type de prix. En

outre, certaines recherches montyemetla substitution de la SMA par
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la moyenne mobile plus rapide ne produit pas de résultats plus élevés
(Bollinger, 2002). Nous avons égatgnmontré dans la partie 1 qui
moyenne mobile optimale krigée (KMA), en moyenne, coincide avec la
SMA : KMA coincide avec le SMA pour les grandes longueurs de la
fenétre. L'intérét de l'introductide la moyenne mobile exponentielle
(EMA) au lieu du SMA pourrait consister en méthode récurrente de
son calcul (a I'heure actud®IA peut étre calculée comme une
somme pondérée du prix actuel et de la valeur précédente de I' EMA).
Toutefois, a cet égard SMA pégalement étre ggrammée avec des
formules récurrentes, mais il a besoin d’accumuler plus de données a

chaque instant que pour le calcul d'EMA.

La méthode traditionnelle de Bollingéstgistiquement justifiée pour les cas

de prix au minimum localement istataires et avec une distribution
symétrique. Les bandes, basées sdomeges transformées, fournissent un
moyen simple mais puissant pour I'optimisation des bandes. La méthode, est
basée sur la transformation des données en une variable normale, qui permet
de définir les valeurs extrémes etomisarjuence les valeurs des bandes sans
imposition des contraintes sur la famctie la distribution des résidus. Du

point de vue théorique les bandesnmgdes devraient contenir K% des
données (par exemple, K% = 90%); tolge®bservations qui se trouvent en
dehors des bandes sont considérés comme extrémes. Les bandes ne sont pas
faciles a définir pour la distributiograétrique ou multimodale et exigent un
temps considérable pour la procédimetimisation. Notre méthode permet
d'obtenir les bandes dans un cadre plus simple et moins intensif en termes de
calculs. Pour cette procédure, les éemnbrutes (résidus) sont d’abord

transformées en variables normales. Pour la variable normale la distribution est
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connue et bien definie ; en conséquence les intervalles qui corBrdesnt
données sont connus. Ensuite, les dmmubur les données brutes sont
obtenues par transformation de I'wafle (bandes) pour la distribution
normale en utilisant d'une fonction d’anamorphose calibrée précédemment.
Les DT bandes contiennent le méme pourcentage de données que l'intervalle

pour les données normales.

R,

Nous avons examiné notamment les resdus? SMA, SMA : .

S5k

iet n 1t> pour c@brer la fonction de transformation. Notre objectif

principal était de rester dans le contexte de la théorie des bandes de Bollinger
qui utilisent ces résidus pour le caleul'écart-type des données. En méme
temps, ces résidus provoquent la forme specifique de ces DT bandes: les
bandes forment un escalier qui change de marche si il ya une variation
importante de prix. Cependant, les DT bandes sont moins sensibles a des
mouvements non significatifs des moyennes mobiles. En plus, il semble que les
DT bandes peuvent etre utilisées pour définir d’autres signaux de trading

comme les vagues d’Elliot et niveaux Support/Resistance.

On a analysé des stratégies différentedadpadie Il. Les stratégies de bande

de Bollinger, comme toutes les stratégies contrariantes envoient de faux
signaux au cours de la tendance présente dans les données a cause des erreurs
gu'elles font dans la définition de laid!' valeur de I'instrument. Pendant les
tendances des marchés la «vraie» gafgmente ou diminue, par conséquent,

des signaux de "surévaluation" ou "seasiation” d’instrument sont fausses.
Statistiguement, cela implique que les parametres de nos bandes ne reflétent

pas la vraie distribution de probabilité, qui n‘est pas constante. En raison de ces
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faux signaux les traders ne se basent pas uniquement sur les signes envoyes par
les bandes de Bollinger, mais lesnament en combinaison avec d'autres
signaux d’analyse technique, dang leebconfirmer la sur-évaluation / sous-
évaluation ou de prédire les mouvements futurs des prix (par exemple,
inversion de tendance). Dans cette partie nous avons examiné le momentum,
comme l'un des signaux de confiromagiour les stratégies basées sur les
bandes de Bollinger. Le méme signal est utilisé pour la confirmation des
stratégies pour les DT bandes. Enegutpus utilisons aussi les signaux de

« Elliot » et « Support / Résistance » pour confirmer les signaux des DT
bandes. A la suite, quatre stratégies difésent analysées: (1) les stratégies

de base, qui se fondent uniqguemenlesusignaux envoyés par les bandes, (2)

les stratégies confirmées par le momer{8)ntes stratégies confirmées par les
signaux d’ « Elliot » ; et (4) les stratégies confirmées par les signaux d’ « Elliot »
et des « Support / Résistance ».

Les résultats de simulations trading pour quatre instruments différents
montrent que les DT bandes générarg gé profits que les bandes classiques

de Bollinger en stratégie confirmée par lindicateur de momentum; les
trajectoires de profil profits/pertestame pente plus positive et ascendante.

Les majorités des stratégies gagnantes incorporent les DT bandes. En
particulier, les stratégies marchent jpoem trois des quatre instruments. En

plus, la stratégie de DT bandes était encore rentable en présence des certains
colts de transaction et de slippagenElefs DT bandes pourraient étre utiles

dans la définition d'autres regles d/aaakchniques - les vagues d'Elliot et les
niveaux de support / résistance. En éguoence, les nouvelles DT bandes ne

sont pas seulement mieux justifiée d'un point de vue statistique et plus simples
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dans leur application, mais ellesnpdent également générer des profits plus

importants.

La partie 11l "Le krigeage disjonctif en finance: une nouvelle approche pour la
construction et I'évaluation des stratégies de trading» présente I'application des
méthodes de krigeage disjonctif (DK), pour des décisions plus informative en
termes de timing et type de position. Comme beaucoup des stratégies de
trading sont basées sur des sighauyémyaar la rupture de certains seuils,

ces probléeme demande plus dattention. Le krigeage disjonctif, une autre
approche géostatistique, permet d’estieseprobabilités, que certain seuils

seront atteints dans le futur.

En particulier, nous voulons prédire la probabilit¢é conditionnelle
PZ . zC|Z[,Z‘ enZym Sur la base des derniéres observations
disponibles dans certains voisinagespdint de vue statistique, nous avons
besoin de connaitre la distributiahT |ZD a (n+1)-dimensions, qui est

compliquée, voire impossible a estimer a partir de données empiriques. La

méthode de krigeage disjonctif implique seulement la connaissance de la
distribution bidimensionnelle /Zti Zt Oci jdn et
7T Z t 0 Ci j dn comme une condition nécessaire pour les calculs de

la prédiction d’une fonction non linédirg'agit d'une hypothése moins stricte

que la connaissance de la distribution a (n+1)-dimensions.
La méthode de krigeage disjonctif est basée sur I'hypothese qu’une fonction

non linéaire de certaines variables aléatoires peut étre développée en termes de

facteurs d’'un polynéme:
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QuandY t est une variable normale et les cou’E[Iaais Zt 0 d j dn

ont une distribution bivariable gaussienne, nous pouvons utiliser des
polyndmes orthogonaux d’Hermite pleudéveloppement de la function non-

linéaire. Grace a l'orthogonalité des polyndmes de Hermite, le krigeage
disjonctif de la fonction non linéaire est réduit au krigeage des polynémes de

Hermite.

Pourtant l'application de la métbode krigeage disjoncitif a données
financieres demande quelques ajustements en raison de la particularité de celles
ci. Un des problémes est la non-normalilé gariable analysée. En ce cas la
variable et les seuils sont transferre@ variables normales. Le principal
probléeme est pourtant la non-statiori@agui exige la ré-estimation des
parametres de la méthode, notammdenka fonction d’anamorphose. Nous

avons proposé la méthode qui permet tEajua fonction de transformation
principale (basique) a la volatilité locale des données.

Deux types de probabilités disjonstipeuvent étre définis et évalués. Les
probabilités disjonctives ponctuelles Bmprobabilités estimées par krigeage
disjonctif en des points particulier ; ils refletent la probabilité qu’un certain
seuil sera dépassé a un certain modeetémps. Cette probabilité peut étre
estimée, mais ne peut pas étre valide&rigeage disjonctif d’'un intervalle
refléte la probabilité qu’un certain seuil sera dépassé sur un intervalle de temps
futur. Ce type de probabilité peut éttalggar les fréquences empiriques - la

proportion des observations lorsque le prix a été au-dessous d’un certain seuil.

XVi



Ces probabilités ont été estimées puatre instruments différents. Les
résultats sont cohérents. L'intervalle @&babilité (calculé pour la fonction
d’anamorphose constamment ajustégadtlité locale) démontre une bonne
prédiction en termes de timing et des valeurs en comparaison avec les
fréquences empiriques. Nous avons égatenontré que seule la longueur de
I'intervalle pour lequel la prévision aféit@& et la longueur de I'échantillon
utilisé pour l'ajustement de la fametd’anamorphose ont un impact sur la

prévision par la méthode de krigeage disjonctif.

La pouvoir de la prédiction de la méthode de krigeage disjonctif a été évalué
aussi par la comparaison des resultatstrddegies de trading, qui incorporent
cette probabilité krigée. Noagons construit deux types des stratégies: (1)
stratégie de krigeage disjonctif, aletasion sur la position d’entrée est faite

sur la base des probabilités krigées, et (2) la stratégie aléatoire, ou la décision
sur la position d’entrée est faite au hasard (avec probabilité de 0.5). Notre étude
révele que la stratégie de krigeagmdli$jproduits des résultats positifs pour
I'intervalle continu des seuils. Lat&fia aléatoire produit les bénéfices a
nature aléatoire. La distribution de profit per transaction montre que le
krigeage disjonctif permet de diminuer le nombre de transactions avec les
pertes et augmenter la nombre de transaction avec les profits, si on compare
avec la distribution de la stratégéatalre, qui produit une distribution

symétrique pour les gains des transactions.

En conséquence, nous avons morwément cette meéthode peut étre

appliguée / ajustée pour les données financieres d’'une maniére continue que
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par rapport a la stratégie aléatoire, lggieade krigeage disjonctif améliore le

processus de prise de décision.

Dans ce travail, nous sommes concentrées sur des études d’application d’analyse
technique et ses stratégies a un seul instrument. Les recherches futures
devraient envisager [l'optimisation des stratégies pour un portefeuille
d'instruments. En particulier, une autréthode géostatistigue multivariable,

telle que cokrigeage peut étre utilgse l'estimation de la moyenne du

portefeuille et la prévision de sa valeur.

Afin de séparer les effets de é&homation de la ligne centrale (par
I'introduction de la KMA) et I'amélioration de bandes (par l'introduction de la
DT bandes), nous n‘avons pas examiné les DT bandes qui integrent la KMA
comme la ligne centrale. |l serait pdifiement intéressant d’analyser des

stratégies, fondées sur les DT bandes et KMA court.

L’approche des DT bandes indique les directions suivantes de recherche
seraient a envisager. L'ajustemefd éEnction d’anamorphose a la volatilité
locale, réalisée dans la partie Ill poumédthode de krigeage disjonctif, peut

étre appliquée a la définition des DT bandes.
L'étude de la relation entre la rentabililé daatégie et la valeur de paramétre
K% utilisée pour la définition des DT bandes permettra augmenter les profits

des stratégies définieslaurase de ces bandes.

Cette approche crée des nouvelles possibilités a l'amélioration d'autres

instruments et regles d'analyse techniRpreexemple, la stratégie confirmée
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par I'indicateur de momentum est fondée sur la définition des seuils optimaux
pour cet indicateur. Dans cette analygsedeils n’étaient pas optimisés, mais
I'approche de transformation des d@nmuitilisée pour la définition des DT
bandes peux étre utilisée pour défisirskuil de momentum. Cela pourrait
conduire a des seuils asymétriques de momentum. L'autre exemple est
I'application des DT bandes a la définition d'autres indicateurs techniques,

comme les vagues d'Elliot et de support / résistance.

Enfin, l'application de la méthode de krigeage disjonctif aux données
financieres peut encore étre améliorée par un meilleur ajustement de la
fonction cumulée de la distributioilise pour la transformation de données

aux changements de moyenne locale ou a I'asymétrie de distribution.
Les résultats d’analyse prouventlggi¢echniques proposées dans cette thése

sont prometteuses et peuvent étre utile@gsatique. Ils indiquent aussi de

nombreux domaines de recherche pour l'avenir.
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General introduction

Technical analysis is a hotly debated topic among researchers and traders. It has its devoted
supporters, so called technicians or technical analysts, as well as the opponents who do not
accept its methods. The debate takes placenhotbetween different groups of traders
(fundamentalists vs. technictanbut also between the representatives of academic circles and
traders (technicians). The discussion between different types of traders is explained by different
principles and relationships that are used foicpnedfuture prices. Fundamentalists base their
predictions and, thus, their strategies on thieetfandamentals, such as macro-indicators and
micro-indicators. Macro-indicators evaluaterglemgarket situation; inflation, interest rate,
unemployment rate, inventories, consuroafidence index, etc. are the examples of such
indicators. Micro-indicators represent the acianstics of an instrument, for which the
prediction is made; for example, for the prediofidhe price movements of a particular stock,

the traders analyze company’s revenues, assets, balance sheet, etc.

In their turn, technical analysts believe that prices incorporate all information available in the
market (i.e. macro-, micro-indicators, expectagtng, Therefore, arguably, it is sufficient to

use the existing price observations to mataictions about future price movements. Thus,
technical analysis techniques are predominantly based on the price data.

When it comes to the academic audiences, most Sfréfase to accept technical analysis as a
consistent price forecast method. As noteelt lab(2000), many academg@isearchers who easily

accept fundamental factors believe that “the difference between fundamental analysis and
technical analysis is not unlike the riffee between astronomy and astrolog@gking into

account that the technical analysis existsnfwe than 100 years, such resistance of the
researchers is quite puzzling, and we believe that there may be an explanation to this
phenomenon.

First, the technical analysis theory is base@ @sshmption that the past price observations can

be used to predict the future price moveme&his.assumption contradicts the efficient market
hypothesis (EMH)that is the cornerstone of the finiahtheory and on which many financial

models are based. At the same time many departures from EMH are observed in the real markets
due to over- or under-reaction, certain market aes(such as size effect), behavioral effects.
Bernard and Thomas (1990), Banz (1981),(F&B8), Chan, Jegadeesh, Lakonishok (1996),
Huberman and Regev (2001) are the examples of such research. Treynor, Ferguson (1984)
demonstrated theoretically that past pricesbioed with other information, can predict the

future price movements. Lo and MacKinaly (11988), showed that past prices can be used as

a forecast for future prices. Finally, Grosmargégtitz (1980) argue that mere presence of the
trading and investment activity and the possibility to earn profits in financial markets undermines
the credibility of EMH. Dedpi the existence of such anomalies, the supporters of EMH still
believe that the investment opportunities occur only in the short-term, and they are eliminated in

1 Nowadays pure technicians or améntalist among traders rarely exist. Technicians generally do follow the
financial news and the macro-indicators, while funddisteratpply some of the technical analysis techniques.

2 Some researchers though believkerprediction power of the technicahlgsis. Further we will provide these
works in general literature review.

3 Lo, A. W., Mamaysky, H. and J.Wang. 2000. “Fourdatiolechnical Analysi@omputational Algorithms,
Statistical Inference, aRthpirical ImplementationThe Journal of Finawake LV, #4 (August, 2000), pp.1705-
1765, p.1705.

4 The EMH states that the more efficient the markettharejore random the price movements in these markets
are. As a result, it is impossible to use the past foripesdict the future movements under this hypothesis.
Literature review on the EMH can be found in Lo (2007).



the long run. As a result,pesent there is no consensus regarding the validity of the EMH in
real markets.

The second point is that most technical analysis techniques have been developed on the basis of
the empirical observations, rather than derived or modeled mathematically. For example, the
majority of chart patterns, such as “Supposifance”, “Head-and-Shoulders”, etc. were the
results of regular observations of the pricevih&vidently, the experiment and observation

laid the foundation for many major inventions in physics, mechanics, chemistry and engineering.
The key difference between the scientists amoidiams appears to manifest itself in the way

they treat the observed results: contrary to igtists, technicians frequently do not bother to

prove or explain their observations, but take them for granted.

The third explanation is driven by the fact tt@ttechnical trading rules are often unjustifiably
presented as “optimal’. We can frequently segatiers making claims about “optimal” values
of certain technical parameters (for exam@entving average lengthithout any additional
support or explanations how and for what tigia (instrument, data frequency, etc.) these
values were obtained. Obviously, such stateramet$ots of skepticism from the scientists.

Finally, the “language barriers” created éyutage of the technical jargon on one side and
statistical terms and tests names on the other complicate the assimilation of the new ideas by
both sides (Lo et..aP000). In addition, the researchers frequently mistakenly believe that the
technical instruments are only about “charting&giisting the mathematical concepts that are

used in building the technical strategiegxtomple, moving average, momentum, etc.)

Thus, we can conclude that the absence of b®tcibntific representation of the method and

of a formal analysis of the method’s ptexdi power creates a misunderstanding between the
technical traders and academic researchers. rigl dsfiNeftci (1991), “technical analysis is a
broad class of prediction rules with unknown statistical properties, developed by practitioners
without reference to any formaliSm”

On our part, we believe that technical analysis should be viewed more as a “bank” of empirical
observations of the financial markets that cafurbeer used by the researchers to develop
models or well-defined statistical trading tqukei We also believe that all the academic
research performed to-date in this field, is a necessary input in narrowing the gap between the
theoretical and practical finance.

According to some researchers, technical analysis studies can be split into the following groups:

x Trend studies
This group represents the indicators that identify the trend and the trend breaks.
Among the most popular indicators areving averages, support and resistance
levels, etc.

x Directional studies
This group contains the indicators that define the length and strength of current
trend/forecast. Among these indicatord2dvi, Parabolics, range oscillator, etc.

X Momentum studies
This group concentrates on the measents of the velocity of the price
movements. The examples of such indicators are Stochastic, Momentum, Rate of

5 Neftci, S. N. “Naive Trading RulasFinancial Markets and Wiener-Kajmmv Predicition Theory: A study of
Technical AnalysisJpurnal of Businégssime 64, Issue 4 (October, 1991), pp. 549-571, p.549.



change, MACD, Trix and CCIl. Momenturstimments are frequently used for the
definition of the trend breaks that oftellow the slowness of the price velocity.

X Volatility studies
This group presents the trading rules that incorporate instruments’ volatility and the
notion of extreme values. The examplesidi rules are trading bands, among which
the most popular case is the Bollinger bands.

X Volume studies
In the context of the technical analysikjme is the secondfté price) important
data element that measures the trading activity in the markets. Volume itself as well as
the indicators that incorporate volumrimation (for example, volume weighted
moving averages) completes this group.

Each group of technical studies contains indicators and chart patterns. Indicators cover all
buy/sell rules that are formulated on the basis of the well-defined mathematical expressions (for
example, trading rules based on the moving average). In contrast, the charts cannot be explicitly
defined by formulas; they are the graphical pattefined subjectively by a trader. Therefore,

one trader can recognize a specific chart asilganpidce pattern, while the other trader would

see no pattern at all. The examples of such charts are Support/Resistance levels, Head and
Shoulders and Triangles. It should be noted that researchers try ho h@gtaart patterns by
algorithms and estimation methods (seet lah. 2000), however, the réswdf the chart pattern
recognition depends on the algorithm itself.

The financial literature that exists in téle fican be split into the following groups:

1. Development of the scientific framework and formalization of the technical analysis.

2. Evaluation of the prediction power of technical trading rules, as well as their comparison
with other prediction methods.

3. Analysis of the statistical propertigedtnical indicators and their trading outcomes.

4. Optimization of the existing indicatoresittrategies; their improving; development of

the new technical trading instruments.

For the first group of studfesthe cornerstone work is tipaper by Neftci (1991) “Naive
Trading Rules in Financial Markets and &¥iKnlmogorov Prediction Theory: A study of
Technical Analysis”. It proposes the generabagiprthat defines which technical rules can be
formalized and which cannot. According to ttamework, a well-defined rule should be a
Markov time, i.e. it should use only infation available up to current moment for its
constructioh Most of the prediction technique thatsed for financial market forecasts lies in

the Wiener-Kolmogorov prediction theory framework, according to which “time-varying vector
autoregressions (VARS) should yield the besta$tseof a stochastic process in the least square
error (MSE) sens&”However, this framework is not suitable for the forecast of the non-linear
series. For example, Neftci (1991) definesstttwo cases when linear models cannot produce
plausible forecasts such as (1) producing spbugdand sell signals (non-linear problem by its
nature); and (2) predicting some particplaiterns, such as stock exchange crashes.
Consequently, any other systems of forecastsathatedict non-linear time series can improve

the forecast proposed by the Wiener-Kolmmgframework. Similar conclusions are obtained

in Brock, Lakonishok and Lebaron (1992). AcaprirNeftci (1991), it may be the case that
technical analysis informally tries to analyze the information captured by the higher order
moments of asset prices. In fact the patterns and rules of the technical analysis can be

6 See also Rode, Friedman, Parikh, Kane (b®%&malization of the technical analysis.

7 The method will be presedtirther in more details.

8 Neftci, S. N. “Naive Trading RulasFinancial Markets and Wiener-Kajmmv Predicition Theory: A study of
Technical AnalysisJpurnal of Businégssime 64, Issue 4 (October, 1991), pp. 549-571, p.549.



characterized “by appropriate sequences of local minima and/or fakiataead to non-
linear prediction problems (Neftci, 1991). As thaltrehe believes that technical analysis can
improve the forecasts of the future price movements.

Another part of the formal academic research that can diminish the number of skeptics about the
technical analysis is the formalization oftebbnical indicators and instruments themselves.
While there is a lot of literatudevoted to the descriptionfidigon or calculations of the
technical indicators (Murphy, 1999; Achelis, 20663,are few works thetplain or justify the

method from theoretical standpoint; the gtasiare Bollinger (2002) on the Bollinger bands,
Ehlers ([38]) on moving average. Group of papeis explain the predability of the technical
indicators in the context of the microstructure theory through the relationship between technical
analysis and liquidity provisidihe researchers believe that the technical analysis may indirectly
provide information captured in limit-order books to make predictions about future price
movements. Osler (2003) provided the expdanaf the prediction power of such technical
trading rules as Support/Resistance, proving tbeifog hypothesis: the clusters of take-profit

and stop-loss orders are the reasons why theuateed in predicting future price movements.
Kavajecz, Odders-White (2004) related the moving average indicators (price moving averages of
different length) to the relative position of depth on the limit order book.

The second group of studies that measure #ukcpve properties of the technical analysis is

best represented in the financial literature. Tjogityaf the papers in this field are devoted to

the statistical (econometric) analysis of thdigtion power of the technical rules, while
comparing them with other (non-technical) prediotorariables. The early works in the field of

the technical analysis did not find the sup@urediction properties of the technical rules
comparing them with the Buy-and-Hold strat@gyhe result theseorks supported the EMH

theory (Alexander, 1961, 1964; Fama andeBlL®66; James, 1968; Van Horne and Parker,
1967; Jensen, Benington, 1970). More recentowdkken, Karjalainen (1999) and Ratner and

Leal (1999) has also found little evidence im &vihhe technical analysis. At the same time
other research provides the evidence in favor of the technical analysis. Brock, Lakonishok and
Lebaron (1992) showed that 26 technical traales) applied to Dow Jones Industrial Average

over 90 years over-perform the stratedgyolafing cash. Sullivan, Timmermann, White (1999)
shows that some of the technical rules considered indrat{d992) are actually profitable

even after using the bootstrap method to athushe data-snooping biases. Levich, Thomas
(1993) found that some moving average and filter rules were profitable in the foreign exchange
markets. Osler, Chang (1995) also founcevitence of the profitability of the “head-and-
shoulders” patterns in foreign exchange markets. Lo, Mamaysky, Wang (2000) showed that the
same technical charts provide incremental information about future price movements by
comparing unconditional distribution of the lstoeturns with the conditional distribution of

the returns (conditional on the presence of the chart pattern). Blume, Easley, O’Hara (1994)
demonstrated that the traders who use information contained in the market statistics such as
prices and volume do better than the one who daeseat. In this context, technical analysis is a
component of trader’s learnpigpcess. Blanchet-Scallient et al. (2005) compare the results of the
technical rules to the strategies, based on themaical model. Under certain assumptions
(prices follow one-dimensional Brownian moti@adet’s wealth utility is represented by the
logarithmic function) they show that MA rekn outperform the strategies based on the
mathematical models in case of severe misspecifications of the model parameters.

As for the third group of studies, Acar, Sat¢h@87) analyzed the statistical properties of the
returns from the trading rules, based on the moving averages of the length 2. They showed that

9 Neftci, S. N. “Naive Trading RulasFinancial Markets and Wiener-Kajmmv Predicition Theory: A study of
Technical AnalysisJpurnal of Businégssime 64, Issue 4 (October, 1991), pp. 549-571, p.550.



in the case when the asset price distributiarMarkovian process, the characteristic function
(and, therefore, the distribution function too) of the realized returns could be deduced.

The optimization of the technical trading rulesaherucial importance for the traders, who use

this approach in the construction of their strategies. Both researchers and traders contribute to
this field of studies. For some instrumentsareatmore popular, maagtimization approaches

exist, while for the other the niche is langetierdeveloped. For example, many works devoted

to the optimization of the rules based onmnttwing averages, momentum (Gray, Thomson,
1997). Certainly, the choice of the optinozaichniques largely depends on the type of the
technical indicator. However, there is one apptbatts applied to many different techniques —

a simulation of the trading strategy based on the available historic data samples. According to this
approach the optimal parameters correspotitetglobal/local maximum or minimum of the

trading outcomes (profit/losses, Sharpe ratimjber of trades, etc.). The example of such
optimization approach can be found in Williams (28@6pugh this approach is universal, as it

can be applied to all rules that are used in the trading strategies, the method has its drawbacks.
The outcomes are dependent on the historitaludad for optimization; thus, the parameters
optimal for the studied data set might be no longer optimal for a new data sample.

Finally, the development of the new instrumenis very dynamic field that is constantly
enlarging both with the new types of the existstiguments and totally new ones. For example,
Arm ([11], V.8:3) proposed the volume-we@jhmoving average, Chande ([28], V.10:3)
developed the volatility adjusted moving average, Chaikin azd iBrdweir time introduced
Bomar bands (Bollinger, 2002).

As we can see, the majority of the paperseifiglt of technical analysis are devoted to the
analysis of its prediction power within thetext of EMH. Despite a significant number of
papers on this topic, there is still no consensus whether teanalicsib has superior prediction
power over other prediction methods. Therefore, we will accept the hypothesis, similar to one in
Grosman and Stiglitz (1980), that survival detteical analysis among traders for the past 100
years can be considered a proof that it can beaiet# into profitable trading strategies, at least

for some patrticular instruments; otheswh® traders would have stopped using it.

At the same time, fewer researchers concentrate on the development of the theoretical
framework for the analysis and optimization of the technical rules, although there is a pool of
users (traders, technicians) who create the déonadhid type of research. Thus, in this thesis,

we want to concentrate on the optimizatioth éevelopment of the new trading techniques

based on the existing technical strategies. The technical indicators/rules chosen for the analysis
will be formalized and explained from the pointiew of the statisticéheory. Contrary to

many existing works in the field that use tgeglmulations to define the optimal parameters, we

want to use the optimization approaches, based on the statistical characteristics of the data in the
first place. We will use the trading simulatioai parts of this thesimainly to compare the
optimized indicator/strategy with other raptimal (in the context of this work)
indicators/strategies.

It is obvious that an exhaustive analysis of lafiitat rules is quasi-impossible: the set of trading
rules is extremely large and it expands constantly with the development of the new rules and
patterns. We decided to concentrate our anatysisch popular technical analysis techniques as
trading bands. While being part of the voladiiitgies, trading bands frequently incorporate (in

their constructions or their strategies) othéntqaes of the technical analysis from such group

of studies as trend and momentum (see dassiii above). Besides, we will prove that the



method itself is well defined within the framewdeveloped by Neft¢1991), briefly presented
further.

Trading bands are lines plotted around a measteetadl tendency, shdtby some percentage
up and down (upper and lower bands) (Bollinger, 2002). The schematic representation of the
concept is given in Figure 1.

Trading bands have four key components (see Figure 1):
(1) price (quotes),
(2) mid-line,
(3) upper band, and
(4) lower band.

The way these components are defined implies the existence of different bands types, such as
envelopes and channels (Boéin 2002, Murphy, 1999).

Central .
tendeny _, =~
-

Lower band

Figure 1.Schematic representation of trading bands

Despite the differences in constructing the bémelstrategies based on them are quite similar.
Touching/breaching upper/lower bands give trader information on the direction of price
movements or on relative price levels (whethenstrument is oversold or overbought), which
are used as signals in strategy constructioa.résult, both trend following and contrarian
strategies can be defined on the basis of the trading bands.

For example, let some moving average represent the mid-line in the bands. Suppose prices
crossed the upper band of the trading bands after continuous fluctuations within the
upper/lower bands and the mid-line crossing. For the trend following strategy, the bands are the
confirmation of an established trend: the figstasithat the upward trend had been established
happen at the crossover of theving average and price ctitv&herefore, a breach of the

10 Breaching the upper bands implies that the priceesbaspkeviously breaching the moving average line from
below.



upper band can be used as a confirmation signal of an upward trend. In this context, trading
bands allow to eliminate false signalgaedeoy the moving average trading rule.

Breaching the trading bands in the contexthef contrarian strategy confirms that the
instrument is mis-priced. Therefore, bnegchihe upper band means that currently the
instrument is overpriced and the price should return to its average (moving average line) in
future.

As the same trading bands can be used in the strategies that lead to the opposite trading
decision$, traders frequently use trading bandsombination with other technical trading
signals that confirm the presence or absence of a trend. In case of the trend-following strategy,
these extra rules give additional confirmation sitpadlthe trend has been established, while in

the case of the contrarian strategies they alloiding trending patterns, where contrarian
strategy sends false signals.

As have been mentioned already, it can berptbat some types of the trading bands are well
defined. According to Neftci (1991), technical trading rule is well defined if it is a Markov time.

Let X! be an asset prick;- sequences of information sets (sigma-algebras) generdted by
and other data sets observed up tottime

Definition 1

A random variabld is a Markov time if the eveAt /I

t isl,—measurable.

Simply speaking, it means that a rule/indicator is well defined if for making a decision or its
calculation it uses only information availableoupe current moment, but not the one that
anticipates the future. For example, the first moai¢ime when prices increase 20% from the
initial level at 0 is Markov time: on the basis of ab#ldistory of prices up to moment

we can determine whether this event has happenetd As a result, the Markov time approach
eliminates many technical rules that anticipate the future, among which many chart patterns.

The definition of a technical rule as a Markog implies (1) possibility to quantify the rule, (2)
feasibility of the rule, (3) possibility to investigde’s predictive power. However, the fact that
the rule is well defined cannot justify its udagerder to be used, a rule should produce
(buy/sell) signal at least once, i.e. the probabdityhe signal is generated at least once should
be equal to one (see Definition 2).

Definition 2
A Markov time | is finite if

PI f 1.

In addition, a rule should have at least the same predictive power as other well-defined
forecasting techniques. As a result, a tradingiveke a consistent forecast of the future price
movements if it is a finite Markov time thats h& least the same predictive power as more
formalized forecasting methods. For example, Neftci (1991) showed that the moving average
trading rules are finite Markov times and in stares have higher predictive power than the
linear forecast methods, such as AR or ARMA models.

11 The trading positions taken within each strategy would be the oppotitetrimd-following strategy a long
position is appropriate, while for the contrasieategy — a short pasit should be taken.



Further we provide the proof that the trading bands are Markov times.

Lets define Xt" as some random process that represents price timel sex$ea;sequences of
information sets (sigma-algebras) generated| land other data sets observed up to time
Trading band is defined as following:

X middle linem,;

x upper bandsn, &, & !0;

x lower bandsm &, & 0.

Proposition 1
Let functionsm,, &, & bel,-measurable. Lets define the following variables:

Z X% mo (1)
YWz, & @
Yo & z, @

Then, ‘
x generated timeS¥™

w inf tEmYY® v@ do, W™ 0, (4)
are Markov times.
x generated timeS¥* :

W inf t Wiz, z,,do, (5)

are Markov times.

Proof.
Note that Z,, Y,”, Y,? are |, -measurable. This implies that the produtsZ, , and

Y® Y@ are alsd,-measurablel®” and ' are defined as the first entry¥? Y,® and

Z Z,, in the interval f0 @ f respectively. Then, according to the Theorem (Shiryayev,
1985), which states that the first entry of the pro’oes\sin some defined interval is always
Markov time, thel®” and ¥ are Markov times.

Proposition 1 states that if estimates of tiddlmiine and trading bands are defined on the basis
of the information available up to momeénthe trading rules based on these trading bands is

well-defined. For example, moving avetdge : w X
il

line is 1, -measurable. Constant scalfirs ¢ together with thd,-measurable middle line

define bands, which arg -measurable. Finally, Bollinger bands, with the middle line

MA 1 : Xini and‘ t%; ‘ t@‘ k V, wherek ! 0some scalar), - experimental standard
i1

n

. . A
deviation of the X", . | 44>

that is often used as the middle

tni

AN

are alsa, -measurable.

Note that the trading strategy defined in Praoposlt is as follows: a position is opened when
the price breaches one of the bands; thisgosst closed, when the price crosses the middle
line.



Proposition 1 demonstrates that there are trading bands strategies that can be considered as well
defined. The question is now whether the signals they send are fifitdPe. f 1,

P W' f 1.Itis obvious that the distance betwiwe bands defines whether these trading
bands will send finite signals. In particuldheifdistance between the two bands is extremely
large the entry signal might never be generBitedentry signals will be generated for the
stationary proces¥ and unbiased estimator of its meanif the following inequality holds:

0 Pm & X m & 1 (8

The expression (6) can be considered as criteria for the choice of the‘djéﬁaﬁu@ﬁ‘

between the bands that can generate any @mayssiAs for the exit signals, Neftci (1991)
showed that the trading rules, based on ths-oves of price and MA curves, generate finite

signals in the case when price probé§§is stationary and-dependent price process.

The majority of the trading bands used byetsashcorporate moving average as middle line.
Moving average allows constructing well-detragling bands; therefore, we will narrow our
analysis to this particular type of bands. Such trading bands are the function of four different
parameters or vectors of parameters:

B fn'w . d,.d

wheren, WiAl dan - parameters of the moving averaggtheof the moving window and weights

attached to the price in the window (see Ch.1.1 for more details);

d,,d, - distance between moving average and upper and lower bands respectively. Note that
upper and lower distances can be different,lbasmesach distance itself can be a function of
time:d, zd_,d dt.

Despite the large number of the bands peteas) their optimization can be simplified:

1. Search for the optimal parameters for middle line and bands can be separated due to the
different roles that they play in the definitf the trading bands strategy. For example,
within the context of the camrian strategy moving avenaggeesents the mean value of
the instrument, while bands define the extreme values of the prices conditionally on the
current mean. We do not need to know the bands value in order to evaluate price mean,
while we need a current mean value (and probability distribution function) to define the
extreme values, and thus, bands. As a result, the band optimization problem can be split:
first, best middle line estimator (its peaters) is obtained, then optimal bands
parameters are searched for.

2. According to Proposition 3, the optimal moving average should be the best estimator to
the local mean (or trend). This allows choosing clearer and more objective optimization
criteria - minimization of the mean squared error:

~ 2 .
EM, m o0 min,
wherem, - true trend/meanl\?lt- estimator of the true mean.



As a result, the first part of the thesis will be devoted to optimization of the moving average,
while the second part will concentrate mmmethe development of the optimal bands
(distances).

Finally, it should be noted that optimization of the strategies, based on the technical analysis, is
frequently substituted by the problem & garameter optimization. However, the decision-
making around taking or exiting a pwmsitis a non-linear problem, while the parameter
optimization frequently involves linear methodkerefore, we will consider some non-linear
approaches to optimize the decision-making in addition to the optimization of the parameters of
the technical indicators.

Within the analysis of the trading bands, in addition to moving average we will also consider
some other technical analysis techniques such as MonMowumg, Average Convergence
Divergence (MACD), Bollinger bands, SuppudtResistance patterns and Elliot waves.

This thesis is split into three parts. Part | concentrates on the search of the optimal trend
estimator. Part Il proposes the approach to omifmands. Finally, Part 11l is devoted to the
optimal decision-making.

The first part “Optimization of the moving aage indicator: kriging method” considers kriging
as a method to estimate the mid-line in thesbadrdjing approach, a geostatistical technique,
defines the optimal mean estimator as a tediglum of the observations in some close
neighborhood; in this respect the kriged estinsatocides with the definition of the moving
average. Unlike other linear method usually usednie, this method can be applied to both
equally spaced data (in our context, traditiomalsieries) and data sampled at unequal intervals
of time or other axis variable. The latter ésdhse of the instruments that are not regularly
traded, or subordinated price processes aibthyechanging the time coordinate to other
random variable coordinate.

The kriging method is based on the statistical characteristics of data such as covariance
(autocovariance) function. This allows obtaining optimal estimates that depend on the statistical
characteristics of the data rather than on theib#édtdata itself as in the case of the simulation
studie¥. This method optimizes the weights strudtura given length of the moving window.

We will see that the optimal kriged movingageefKMA) estimated on the equally spaced data
sample has a specific weight structure for certain covariance models: the largest weights are
attached to the first and last observation, ahikle other weights are low. As a result, this

KMA coincides in lag with the simple moving average with all equal weights (further referred to
as SMA), but is more volatile. Moreover, these “border” weights values depend only on the
covariance model. The weights structure fauberdinated (unequally spaced) samples exhibits
non-stable patterns that largely depend on the discrepancy in the values of the variable used to
subordinate the price curve or the distance betiveéme-observations of price: the larger the
discrepancy — the more volatile the weights structure is.

The comparison of KMA with the traditional typ# moving averages returned interesting
results. The results of applying trading stratbgged on the crossovefsnoving average and

price curves show that for the majority of considered instruments KMA generates higher results
than simple or exponential moving avenrsigeeover, the global maxima of the KMA-based

12 Certainly, in real-life applicatitins results will still depend on the historical data used for the evaluation of the
statistical properties of the variaHawever, the results are more dependent on the estimation accuracy than on the
data itself.
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strategies are achieved at short lengths of thegwandow, where traditional moving averages
normally generate more false signals, and ssiprdditable. Despite its volatile nature, KMA
does not generate more transactions thanidreditnoving average tife same length, and
therefore, does not seems to generate more false signals.

The second part “An Alternative to Bollinger babata transformed bands” describes the new
approach to optimizing the bands. We progoseethod that enables the definition of the
extreme values and therefore bands valu#sput constraining assumptions about the
distribution function of the residuals. From theoretical standpoint the optimal bands should
contain K% of the price data (for example,=R®86); all data points that lie outside of the
bands are considered extreme. However, sucteasmliand, thus, bands are not easy to define

for asymmetrical or multimodal distribati and require time-consuming optimization
procedures. Our method allows obtaining the bands in a more straightforward and less-intensive
procedure. For this purpose the raw data \(eds)dare transformed first into standard normal
variable. For this distribution the intervals toatain K% of the data are known. Afterwards

the data-transformed bands (DT bands) are obtained by backward transformation of the interval
for normal distribution by the means of a ipugly calibrated transformation function. The
obtained DT bands exhibit a peculiar stair-like patter bands change the level only if there is

a significant price change. As for the traditgpmes, confirmed DT bands strategies generate
more profits than the classical Bollinger bands that are more monotonous and upward sloping.
As a result, the new DT bands are not only uetiéied from the statistical point of view and
straightforward in their application, but also they allow generating higher profits.

The third part “Disjunctive kriging in finanaenew approach to construction and evaluation of
trading strategies” presents the disjunctive gkmggthod for more informative decision making

about the timing and the value of a posittequently the traders would like to know in

advance that certain thresholds/bands woultréached. Disjunctive kriging (DK), another

geostatistical method, allows estimating the lplibb#&hat some thresholds will be reached in
the future. We demonstrate how this methodeaapplied/adjusted to the financial data on a
continuous basis and show that in comparistirettandom-walk hypothesis, DK improves the

trading decision-making.

The general conclusions can be found in the last section of this thesis.
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Part |. Moving average optimization: kriging approach

Introduction

Prediction of future instruments value movemastsyell as estimation of a trend plays an
important role in the analysis of financial. dataditional approaches to trend estimations are
linear filters that can identify such features asdfreeasonality, noise, etc. A moving average
(MA) is an example of such filters, which id taethe identification @nextractions of series’
trends.

As for the trading applications, a MA is the masly used technical analysis techniques. Many
research works found that some moving average and filter rules are profitable (Brock,
Laconishok, Lebaron, 1992; Sullivan, Tmmaen, White, 1999; Levich, Thomas,1993).

By its construction method, the MA is a weighted average. Two principal parameters should be
identified before MA calculations: (1) the length of a sub-sample, for which the MA is estimated;
(2) the MA weights, attached to each observatitie sub-sample. In addition, the manner in

which the sub-sample is chosen should be denidelvance (for exarapit can precede the
estimation point, or it can include the estimation point, etc.). These parameters are responsible
for two characteristics of the MA: (1) its smoothaads(2) a lag, by which the MA is late in the
prediction of the price movements. As mlt#d trading rules are based on the relative
positioning of the price and MA curyebe smoothness of the MA curve is considered to be
have direct impact on the number of false signals generated by the rule: smoother MA sends less
false signals. For the same reason, the lapasnsibdle for the speed of the trading signal: for
smaller lag the signal about trend reversisenis more rapidly. The dilemma is that the
smoother MA implies larger lag between the price and MA curves and vice versa. The trade-off
between these characteristics lays in the basis of many MA optimization procedures.

The research in the field of the MA optimization can be split in the following groups:
(1) theoretical studies;
(2) simulation studies.

The first group of studies involves the search of optimal parameters, which is based on some
theoretical approach or existing relationships in the market. For example20@0ddeliéved

that the length of the MA should fitaleto-peak cycle of a security price movéménay,

Thomson (1997) used the compromise criterion between the smoothness and lag to optimize the
MA parameters. Ehlers (http://www.mesasoftwara/papers) proposed a method to calculate

the optimal weights for the MA as a function of the lag that a trader carf.t@letaigenzo,

Sciarretta (1996) also defined the optimal Ma&meders as a function of MA lag, which they
define at the level that minimizes the numbfisd signals generated by MA. As the result they
tried to develop adaptive moving averagddhkas into account the transaction costs and price
volatility. Chande ([28], V.10:3) developed a \éamalex dynamic average that also incorporate

the notion of stochastic volatility in the daéniof the exponential MA weights structure. Arms

([11], Vv.8:3) exploited the relationship between price and voluthesconstruction of a
volume-adjusted moving average. Arrington, YL6D:6) tried to incorporate data statistical
characteristics, such as extreme values, intiatefof the optimal MA length for a Variable

length moving average.

1 Detailed analysis of the linear filtersbeafound in Gengay, Selcuk, Whitcher (2002).
2 Some rules are based on the relativegmiisigiof the two MA of different lengths.

3 See Appendix Al for more details.

4 See Appendix A2 for more details.
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The simulation studies search for the optimapdameters through the simulation of a trading
strategy or a rule for the historic data and analysis of the trading outcomes. Then the MA
parameters that maximize these outcomes (astg&nerate profits) are considered as optimal.

The examples of such works are Williams (2006), Brock, Laconishok, Lebaron (1992), Sullivan,
Timmermann, White (1999). Besides, all the tgudgments” of traders regarding optimal MA

types or parameters most likely are based on the experimental applications of these indicators to
the historic data. The disadvantage of the agpi®¢hat the optimal parameters are conditional

on the trading rule and strategy for which the simulations were performed.

The objective of our analysis is to introducepéimisation method that takes into account the
statistical characteristics of the data. We wtaddike to concentrate more on the optimisation
of the MA weights, as many existing pajefsoth groups of studies are devoted to the
optimisation of the MA length. Optimisation a¢ A weights is more complicated task, as it
involves the search of interrelated values. We proposkriging method, a geostatistical
approach, to optimise the moving average weights.

The goal of geostatistics is to provide “quantitative descriptions of the natural variables
distributed in space or in time and spa&il properties or ore grades mineral deposit are

the examples of such natural variables. Tiheigal objective of the geostatistics is “the
reconstruction of a phenomenon over domain on the basis of values observed at limited number
of points™®. Kriging method is used for the trend estimation and can be applied to the problem
of MA optimisation. The kriged estimator dfemmd at some point is a weighted sum of the
values in the near neighbourhood to this point, which evolves the direct comparison with the
classical MA indicator. One of the objectivebekriging estimation procedure is to find the
optimal weights of the linear estimator of a variable mean.

There are several differences between financial and geostatistical riagd.dataais mainly
sampled in time. Financial data samples are largeh than the geostatistical data sets. The
objective of the financial analysis is maiatya reconstruction of the phenomenon, but a
prediction of the future price movementswbich the filtering of the trend is done.

For the time series data a formal analogy ohétleod that uses past values to predict future
one are AR, ARMA, ARIMA models. The references in the domain are Greene (2007), Box,
Jenkins, Reinsel (2008).

Financial data is usually treated as time-semewittavalues sampled at the at regular time
intervals as when data is unevenly spacedyitfostmethods used in the time signal processing
cannot be applied. However, in reality, finadaialis documented only at the moments when a
transaction takes place. As the result, for legshattaded instruments the data is not equally
spaced. The data sampled at very high frequency (for example, 1 second) will also most likely be
unequally spaced. Finally, when the time ocatedis changed to another variable coordinate

(for example, volume), the data subordinated to another process veblikieimde unevenly

spaced. In the case of the unevenly spaced financial data, the geostatistic methods will bring
better result than the classical time-series methods.

However, even for the equally spaced data the difference exists between kriging method and
time-series models: the kriging approach matedemand completely specified model of the

5 Chiles, J.-P. and P. Delfiner. “Geostatistics. Modeling Spatial UnceltdintyWiley and Sons188@, p. 1.
6 Chiles, J.-P. and P. Delfiner. “Geostatistics. Modeling Spatial UnceltdintWiley and Sons1899, p. 150.

13



process as in the case of the time series model; Only second-order properties are modelled for
linear kriging.

The analysis of the kriging method is made in the following way. First, we present a definition
and brief description of the MA as a trading instrument. Chapter 2 presents the kriging method.
Chapter 3 discusses the peculiarities of methbicbéipp to the financidata. Chapter 4, 5 and

6 analyse the results of the kriging methpticapon to the equally and unequally spaced
historic data. Chapter 7 summarizes the obtained results.

1 Moving average as a trading instrument

Moving averages (MAs) are one of the mostywided technical indicators by the traders. MAs
lay in the basis of the many technical rulesteatégies. They are also used to construct new
technical indicators, such as Moving AveZageergence Divergence (MACD). Further in the
Chapter 1 we present the definition and tydethe MA. The trading strategies, which
incorporate MA, are discussed in more details4n &£and 6 when applied to the historic data.

1.1 Definition of the MA

Let's xt" fd;f represent discrete time series (sampled at equal time intervalsq’;‘ y\m‘lq
are theobservedime series witN observationsx, represents the first observation aRd -
the last observation. A linear filter converts time-sgries,, , iNto y, |, ya, , PY SOMe linear
transformation (Gencay, Selguk, Whitcher, 2002). The o(y;p‘utis the result of the
convolution of the vectax,  with a coefficient veetar

f

¥oow S wx (.1.2)

i f
Many applications are not feasible foO as it implies the usage of futuyevalues. Therefore
some restrictions might be imposed with respepai@meter:
f
Yoo WX (1.1.2)
i 0

The filter (1.1.2) is calleccausal filtevhile (I.1.1) —aon-causal filter.

The other classifications are based on the impulse response of the filters:
1. Finite impulse response (FIR) filter
2. Infinite impulse response (IIR) filter

Further, we wil consider only FIR filters, defined as following:

— —

% WX, (L1.3)

il

The majority of the moving averages usechamde are the representatives of the group of
causal FIR filters. MAs can be constructearigrfinancial series. However, most frequently
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time-series x"*, ,,, , are either instrument prices or the indicators, derived from price (for
example, Momentum, Moving average conwaghivergence indicator, etc.). The example of
the simple MA, a particular type of the MA with all equal weightsl/q, wheren is the
length of the rolling window used for the MA calculations as in (1.1.3)) is given in Figure 1.1.

109.5

—price
109, — SMA!

108

107.5

price, SMA

=
S 5

S

105.4

%00 1500 2000 2500
observations

Figure 1.1Bund quotes (30/7/2003-7/12/2006, frequency -d@utes) and simpfaoving average of
the length n215 observations

From the expression (1.1.3), we can see thdtdglAvo parameters involved in its definition:
f n-size of the rolling windd\sub-sample) used for MA calculatiansn  1;t> @
f w", - vector of the weights for each observation in rolling window;

In all technical analysis applications the following two constraints are imposed on weights:

lw 1 (1.1.4)
i1l

w 10 (1.1.5)

None of these constraints are gelnfdters requirements, but they ba justified in some of the

cases. The constraint (I1.1.4), or universality condition, assures that the MA can be considered as
an unbiased estimator of an instrument mean, which is important when mean is unknown.
Positive weights (constraint (1.1.5)) assurghaflA, as an estimator of the mean of some
always positive variable (e.g. price), does notegative values; this might happen if negative
weights are attached to some extreme obsasatiote that while the universality condition

(1.1.4) is frequently applied by geostaticiansptistraint (1.1.5) is not used in the geostatistical
applications.

7 Further, the term “window” indicates the inteofalata used for a moving average calculations.
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MA defines a trend by smoothening the dataremoving the higher frequency components

from price data. Data smoothening of highegredeallows defining mocearly the existing
(long-term) trend in the data. However, the negatigeof the strong data smoothening is the
elimination of short-term trends together witlise. As the results, the filtered data lag the
original data. In financial applications thenkzan that MA does not anticipate the turning point

in the trend - the signal about the change in the trend comes after the trend reversal has actually
taken place. MA cannot predict local maxirouminimum of the price function, but only

confirm it. The smoother is the data, the largbeilag between MA and price curves. As have

been mentioned in the introduction, this d@raff lies in the basis of some optimization
approaches.

1.2 Types of the moving average

The weights vector defines the type of MA. Mamg typMAs exist in the financial applications.
We can split them in two large groups:

1. MA with fixed (constant) weights
2. MA with variable weights

MA with fixed weights assigns the same weights vector to all moving windows; weight value is
only a function of the position within moving windeyy: f i , whered — relative position of

the weight within estimation (rolling) window;1 corresponds to first observations in the
window, i n- to the last observations. Taking into account that the intendaln® is @1e

same for all time moments, the weights are eoedids fixed. The examples of the MAs with
fixed weights are given in Appendix B. The miolgly used examples of this MA group are:
f simple moving average (SMA):

where P, to-\price series) - length of the window;
f exponential moving average (EMA):

EMA [P 1 LEMA,

where P". - price series/ - parameter of the EMAD ZL n- length of the SMA
n

that has the same lag.

MA with variable weights assigns different wergbtsr in different time moments; weight is a
function of other variables (indicators) at moment t: f T, , whereT, - is the vector of
indicators dependent on momenthe traders try to adjust the MA to volatility, trading activity,
etc. Among these MAs are Volume Adjusted ndoXiverage, Variabledex dynamic average
(VIDYA), Variable-length moving average (VLN&&®e Appendix C for more details on these
MAS).
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2 Kriging method: Theory

Kriging is part of the geostatistics used tmasdivalues of a randorariable at some point,
where it is not observed. Kriging can also betasfine a trend in the data, deterministic or
random.

Matheron introduced the term “kriging” in 1914 method emerge as the improvement of the
moving average technique developed by D.@geKa South African mining engineer, for
estimating of gold grades; it was named fifter(Armstrong, 2004). Kriging is a linear
prediction method used to obtain unbiased and efficient (in terms of a variance) spatial

estimate/predictorZ x, or the mean of the random proceds from the available
observations: Z % ,Z X, ,...,Z X,

For example, in the mining context, the krigingead to find the grade at some chosen point of
space, taking into account the information about the grade available at the other points were the
sampling has been done (Matheron, 1970). Kriging method attributes the weights to the grades of
available sample deposit points, creating the weighted average estimate. The weights are choser
in a way that minimizes the estimation variance. The optimal weights take into account the
geometric form of the deposit, the positioning of the available samples. Intuitively, we might
assume that the sample points distant frompréaiction point should have less weight than the
closer one. However, there are more compiteomena in mining that in some cases
contradicts the intuition. Therefore, krigingnoetakes into account not only geometrical form

of the deposit and how the sampling points araquesit but also the statistical characteristics

of a random variablg, such as covariance (or variogram) functions.

The distinctive features of thégkng approach are the following:
1. Kriging method is used for spatial estimation. This implies the following data
peculiarities:
f data frequently cannot be defi as “past” and “future”;
f data is frequently unevenly sampled;
f data has “continuous rather thigcrete location indexing spéce”

2. Contrary to trend estimation methods tiesd the predefined deterministic function,
kriging estimates of the trend is based ®@stttistical characteristics of the data.

3. Besides deterministic trends, kriging can also estimate the random trend in the data.

4. The kriged estimates avoid systematic error, caused by the difference between samples
empirical and *“true” statistical charadtesis Matheron (1970) explains that the
histogram of the real grade of the depaosittains less extreme values and more
intermediate values than the experimerstaignam built on the analysed sample, which
often cause underestimation of a mean afapesit grade. The kriging procedure allows
avoiding the underestimation error.

The kriging approach is developed within the scope of second-order statistical models that use
only mean and covariance (or varioranodel. Contrary to other trend estimation methods,
kriging approach is subject to fewer constraints:

1. None assumption about distribution proge of the random variables are made.

2. Kriging does not define a prioe flunction that represents the trend.

8 Chiles, J.-P. and P. Delfiner. “Geostatistics. Modeling Spatial UnceltdintWiley and Sons1899, p. 151.
9 The term is presented in more details further in Ch.2.1.
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3. Some of the kriging types (universal gjigihows addressing the problem of random
trends.

4. Kriging allows representing trend in thienfof a weighted average that can be easily
translated into a MA.

5. Almost all kriging types provide not onlyestenates of the trend, but also the variance
of the estimators that allows building the confidence intervals for the estimators.

The following types of the kriging exist:
1. Simple kriging (SK).
Simple kriging is applied when the mearpod@ess is constant and known. The process
should be stationary; covariance model is used to derive the kriging estimates.

Z X rn(nown Y X
2. Ordinary kriging (OK).
Ordinary kriging is applied when the measomstant, but unknown. In this case the
process is intrinsf¢ variogram model is used to derive the kriging estimates.

ZX m YX
3. Universal kriging (UK)

Universal kriging is applied when meanrigbla and unknown. The variability of trend
can have either deterministic or random nature.

Zx mx Y x,mX)-deterministic trend
Zxw mxw Y xw, mxw)-random trend

The application of the simple kriging in our cangebmited due to a small amount of financial
instruments, which can be considered as stationary with known mean. The exceptions are the
technical indicators derived from the price data, such as Momentum or MACD that are
oscillators by nature and thus fluctuates around 0O-line.

Ordinary and universal kriging has much moieatypns possibilities as they can be applied to
both second-order stationary and non-stationary data.

Further we present each of the methods in more detafés start, however, this chapter with
the description of some of the geostatisiralinology and concepts, used further in kriging
applications.

2.1 Geostatistic instruments and terminology: short
overview

Kriging involves some common statistical defifikerstationarity, covariances, as well as some
instruments less known for a widgatistical community, such as intrinsic stationarity and
variograms.

10The term is presented in more details further in Ch.2.1.

11 Further the description of the theoretical approach is based on the G.Matheron’s book “La théorie de variables
régionalisées, et ses applinatid_es Cahiers du Centre de Morpholgigithématique de Faihebleau, Fascicule

5, 1970, pp.117-186, adjusted for notation to our particular case. We will avoid additional citations to simplify the
reading of the text.
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2.1.1 Stationary and intrinsic stationary functions

Any random variabl& can be characterized by its probability distribution. However, an
estimation of the probability distributionndtion is sometimes complicated and time-
consuming. Thus, statisticians frequently subgtitobability analysis by the calculations of the
statistical moments, such as mean and variance-covariance matrix.

Random functions are more complicated statistical entities, as they represented by the sets of

random variableZ t, ,Z t, ,...,Z t, . The main problem with the estimation of their statistical
characteristics lies in the lack of observatiomsalinife we often have a single realization for
each variablezt ,zt, ,...,zt, . Thus, in order to make somauable statistical inferences
about the random function from these realizatioisspfiten assumed that variable is stationary.

Stationarity imposes the invariance of a joint ppititpadensity function and, therefore, all its
moments under temporal (or spatial) shift (translation), i.e. for anyh valwbability

distribution of the variablesZzt ,Zt,,..,Zt, is the same as of the variables
Zt h,Zt, h,.,Zt, h.Forthe temporal data it means that all moments of the random

variable does not depend on the time at which the variables are observed, but only on the
distance between them. Simply speaking, “infomreaiout the process [is] the same no matter
where it is obtainetf:

However, even under stationarity assumptions a joint probability distribution is often difficult to
estimate; therefore, the statisticians has ingdddecond-order stationarity - the invariance of
the first and second moments under translation (see Definition 1.1).

Definition 1.1
A random functionZ t" is étationary of order two if its mean and covariance do not depend on
time, but only on the distant between the variablet,te.
(Zzt>m @ (.22
Covzt Zt h@(: ztzt h@n? Ch (1.2.2)

The covariance (1.2.2) has the following properties:
1. CO0 \2-variance of the random variable
2. Ch C h
3. |[Ch|dCO
Note that the covariance for stationary variable or order two is bounded.

Unfortunately, the group of the second-orderosgty processes is notywéarge. In financial
applications these processes are even mar€oaexample, standard Brownian motion does
not belong to the group of second-order statyopeocess. Therefore larger group of the
random functions was introduced to enlargegtioup of random processes for which many
geostatistical methods, including krigiag, be applied. This group consiststoinsic functions
(see Definition 1.2).

Definition 1.2
A random functionZ t” is intrinsic if its increments are stationary; t,&.

(Zt h zZt> 0 (1.40B)

12 Anselin L. “Variogram analysis”, presentation
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VarZt h zZt> (Zt h zZt? 2J0@ (1.2.4)

The group of the intrinsic processes is significangler. In particular, it contains the group of

the stationary processes of order two, i.e. #atbnary process of order two is intrinsic
stationary (see Box 1.1. for the proof); but not every intrinsic stationary process is stationary of
order two (see Box 1.2. for the example).

Box 1.1
The proof that each process, stationary of order two is intrinsic stationary process

Suppose some proceéé(t te 0T>s stati@ary of order two. Then this implies the following
equalities:
(X m
Var X, V°
CovX, X,, Ch.

Lets consider its incrementst! 0, h!10: X, X,. Then the following equalities hold:
( Xt h X’[ O
VarX. X VarX, VarX 2CovX,,X 2V 2Ch Jh

AN

Therefore, X, ,t ¢ O,T5 is intrir@c.

Box 1.2
Intrinsic stationary proce§&tandard Brownian motion

A random procesd\, ,t o O,T5 is a sta@a\rd Brownian motion if:
1. t 0 s!l0O:W, W vNOs (normally distributed with 0-mean an s - variance)
2. tt 0, s!0:W , W, isindependent d,.
3. W, is a continuous function of time aAg 0.

As we can see from definition the in@etm of the standard Brownian motjon
tt 0, s!0O:W , W, are stationary of order 2:

L (W, W> 0 @
2. VarW, W> s @
3. Cow, WW> 0 @

Therefore, W, ,t 0,T2is intrin@: ‘stationary. However, we know that covariance of the dmtcéss

EWW,_2 mint, | @ time-dependent. Thus, the process itWIft e 0T @ not stationary af

order 2. As the result, we have showed that an intrinsic process is not necessary a stationary process of
order two.

Intrinsic random functions of ordé&r (IRF-k) are the generalization of the intrinsic functions.
“The IRF-k is a random function with stationary increments of &rtfér IRF-0 is the intrinsic
function with stationary increments. IREnlarge the group of the processes for which the
kriging method can be appliégthe analogy of these functiongha time series is the ARIMA

13 Chiles, J.-P. and P. Delfiner. “Geostatistics. Modeling Spatial UnceltdintWiley and Sons1 989, p. 245.
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processes: ARIMA of orded is, in fact, IRFd 1. There are still differences between

ARIMA and IRFkmodels. Firstly, ARIMA modelseadiscrete, while IRF can be both
continuous and discrete. Secondly, ARIMA models are completely specified, while IRF should
only be second-order model. Finally, ARIMAoaedimensional, while IFR can be defined in

R".

In this work we concentrate mainly on statiomad IRF-O models. Although IRF-k models

allow working with non-stationary data, theperience has shown that in the practical
applications too much information about variable is lost when the estimation procedures use its
stationary increments. Similar conclusiong wer incentive for the development of
cointegration.

2.1.2 Variogram

Definition of the intrinsic functions is basedtba variance of increments. This variance is
called variogram, a concept widely used in geostatistics.

Definition 1.3
The following function. h is called semi-variogram, or less formally variogram:

Jh %Vath h Zt> %(:Zt h zt 2@ @.25)

Expression (1.2.5) indicates a significant aayardf the variogram over the covariance: its
definition does not involve variable mean that is usually unknown and should be estimated.

For stationary variables the following relationship'ékistaeen variogram and covariance:
Jh CO Ch V Ch (1.2.6)

This relationship is represented graphically in Figure 1.2.

A variogram has the following characteristics:
1. .0 O.
2. It can be discontinuous just after origin (so called nugget effect).
3. Variogram is bounded for the stationarabias of order two and tend to be increasing
for non-stationary variable.

Several parameters characterize a variograrfigeee 1.3). Sill is a level, by which the
variogram is bounded. A lag, at which the vanogs stabilized around the sill level, called
range. The range indicates the lag at whach th no more correlation between samples (no
autocorrelation for the time dependent randonctions). If discontinuity is present at the
origin, it is called nugget effect.

14The formulae (1.2.5) can be rewritten as following:

Jh —;( Zt h Zt2>%( zt h d ozt @2zt h mzt m>

%200 2Ch> V Ch Q@
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Appendix D presents the méstquently used variogram$ and covarianc€ h models.
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Figure 1.2. Relationship between variogram and covariance for stationary variable

. sill
Variance

nugget
effect | range

0

Figure 1.3. Variogram parameters
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According to Chilés, Delfiner (1999), theee taro ways of fitting model to the empirical
variogram:

1. Manual fitting

2. Automatic fitting
Frequently geostatistician fit the model marasalgriograms are non-linear in their parameters,
such as range (Matheron, 1968). Automdtiiegfican be performed by the least square
technique: ordinary least square, generalizeshleast or weighted least square (Cressie, 1991).
As many observations are available, furthbeiapplications we will use manual approach to
variogram fitting.

It should be stressed that missing observatam®t be ignored in a variogram estimations. If
data is missed due to a regular absence wadeg activity (for example, week-ends or night
hours) this missing data can be ignored. In twr@oid an overnight effect (the absence of the
overnight data) an empirical variogram camsubstituted by the average daily variogram.
However, if data is missing due to the irregularity (for example, holiday), the missing data
should be treated as non-available and difesremahe variogram formulae that incorporate
these observations should not be taken into account.

2.2 Simple Kriging: prediction of the process with zero
mean

The kriged estimatot., is the orthogonal projection of tNg, on a Hilbert spaceéd s , i.e.
Y, is a unique element of thé s , such thaty, Y, , is orthogonal to all othéf « H's .

n n

In our case, the Hilbert spates represents the linear span of the available known points.

Let's consider some random functdn with zero expectation({Y t @O) and variance-
covariance matrid,, covYu,Yv>® LetY,be realiz8tions of the random variable at
some experimental poirttg ti"1 4+ LE€ts represent the kriged estimator ofvthe at point
t, , as a linear combinationof:

Yet, &, Qv (1.2.7)

il

The weights vecto minimizes the estimation varianee Y, Y @ ( iYn LY e

15 The variable can be a function of amialke (time, volume, etc.). We use indleattcorresponds to the time
coordinate, as this is the case rofieh addressed by the technical d@eakiswever all kriging methods can be
applied to other cases.

Notethat( Yt Y, t> 0 tand @
(X Y (% 2ev. @ % o2 avy 1T @y,
i1 i1l
2 o V1 @y,
n 1 —n 1i 11 i 1,]
il ilj1
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(Y % w2l o, @ ey (12.8)

i j 1

Taking partial derivatives of the function (1.2.8) with respect to the weights@egitars the
following system atequations with-unknowns:

OB Vo1, (1.2.9)

wherei-th equation is:

The system (1.2.9) is regular and have unique solution if matisstrictly positive definite,
which is usually assumed for theoretical variance-covariance matrix.

Kriging variance, defined in (1.2.8) takes the following’form

(Y, v o b @210

2.3 Simple kriging: prediction for the process with
known mean

Let Z be some random function with known mga@ m and variance-covariance matrix
L, covZ,Z, .

j
Lets define some new random variatas following:

Y Z (Z Z m

Y has zero mean ant| variance-covariance matrix.
Then the optimal estimator &ft, , is the kriged estimat@r, of the following form:
2, mY, m gz, m (.211)

where @ are the kriged weights that satisfies kriging system (1..9) for

The variance of kriging is the same as in (2.10)

n

n n

17 The equation (1.2.9) implies that,” OQ) PV, . or : : )4 : QY ;. Then
P11 i1

substituting this expression in (1.2.8) leads to (1.2.10).
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¢z, 290 (v, v 2@ 0o, 0212
2.4 Ordinary kriging: prediction of the process with
unknown mean

Ordinary kriging is applied to the random funciigrwhen its mean is unknown. Suppodge
is stationary, i.e. its meam is unknown, but constant 'zt @m. 1, covZu,Zv>

uv

represents its variance-covariance matrixZ | dte realizations of the random variabte at
some experimental poirttg ti"lm;. A kriged estimator of th8 t at pointt, , is a linear

combination ofZ ,;:

Zot., @z, | @ (12.13)

The optimal weights(Z should minimize the estimation variamae Zt , Z,t , @as

mean is unknown the kriged vaKfe, should be an unbiased estimator ofzhg, , i.e. the
mean of the estimation error should be zero:

(Zt, Zyt,, >0 (1.@14)

— —

Taking into account tha¢ Zt,;, mand ( Z, t, m  @condition (1.2.14) takes the

following form: -
(Zt, Z.t,> m% iil Q% 0 (215 @
The equality (1.2.15) holds onlynf 0 (the case of simple kriging), or
jl © 1 (.2.16)

Condition (1.2.16) is called an universality condition.

As the result, the kriging problem can be reformulated as the following optimization problem:

18 The equation (.2.11) implies that( Z, m; therefore (:an Zf, 0 and

var z,, z,> (z,, zt,°. @
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;ménvar Zt,, Zgt,,? @
n 1.2.17
1o R

i1

If  universality condition (2.16) holds then(.Zt,, Z.t, . @o and
var Zt,, ZKtnl> (:Ztnl ZKtan' @

With respect to this we can rewrite (1.2.17) as following:

-8,
min
o

®©n

v 2l o ey
o R (1.2.18)
01

il

The solution to the problem (1.2.18) should satisfy the following system of equations:
@' (1.2.19)

where / - is a Lagrange multiplier.

The variance of krigingis

cviv Pl 220

i1l

2.5 Ordinary Kriging: Estimation of the unknown
mean

Let Zt be some random function, stationary of order two. Its meas unknown, but
constant: ( Zt> m. Lu@ cov Z u,Z v> represe@@s its variance-covariance matrixz Let

be realizations of the random varighbte at some experimental poins t" . . According

to Matheron (1970) the estimator of theas a linear combination of the available observations

Z,

n

mo @z, | oz (1.2.21)

il

19 The expression follows from (1.2.19)7 © ,QO0V° QW
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Note that the weights vecto€] is not the same as vector weiglfls used to define the
predictor of the functioZ t .

In order to assure the unbiased mean estimator, we impose the universality condition:

To obtain the efficient estimator, we minimize the variance of the estimation error:

. a2 ) m
var m m 2 varm @ :@ "y (1.2.22)

i1j1

As the result, the search of the optimal estimator (1.2.21) is reduced to the following optimization
problem:

- §n n .
i 11 m
min. |1 v, .
® @ﬁ' 1 (1.2.23)
. lon
ill

The optimal weightg should satisfy the following system of equations:

oy R
bt (1.2.24)

;91
i1

oo 1

P o@

where / - is a Lagrange multiplier.
The corresponding kriging variané® is

b (1.2.25)

m

2.6 Kriging non-stationary variable

There are several approaches in the geostatigtie kriging of a non-stationary variable:
1. Universal kriging
2. Kriging an intrinsic function IRF-0.
3. Kriging an intrinsic function IRF-k.

20 Note that the following expression follows from (1.2.24):"QpV . A @ P.

b
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We will further present only first two approaches. As have been mentioned already in Ch.2.1.1,
the kriging of the IRF-k leads to the loss ofesmmformation about the principal non-stationary
variable. In addition, the main objective of amdysts to define a drift of our (non-stationary
process). The problem is that in genEk-k has “no uniquely definable dfift’for the

exception of the case when the analyzed pr@a&sscan be represented as the stationary

processy,, x plus some polynomial drift:

Zx Y, X ; Ax' (1.2.26)
This representation (1.2.26) coincides with thensaivkriging model with random coefficients
(Chiles, Delphiner, 1999).

2.6.1 Universal kriging: trend estimation

Let Zt # be some random function, which is non-stationary with unknown mean
l, covZu,Zv> represef@ its variance-covariance matrix:

- (zt> mt @
Qztzt> mymt, w0 (2.27)

The universal kriging (UK) provide the best linear estimator of therirend Z t >. \N@can
consider the functiomt to be regular and continues orgular and a random variable itself.

There are the following hypothesis on which the estimation method is based:
1. Themt function is estimated locally and it can be approximated by the following
expression:
|
| I0
where f' t a function, chosen a priori and fixesbugh all applications (for example,
time polynomial)a, - unknown coefficient correspondingl#mnction (might be a

function of t.

mt af't,

2. We suppose that the covarea(variogram) between two pgiot time can be estimated
locally as Jt,,t, Z.J|t2 t1| and it is deforming slowly. The parameters of the

covariance (variogram) function should be estimated and further controlled, which is
quite complicated task. However, to simiilifygs, we suppose that the parameters are
known a priori.

3. Zt is some random non-stationary functi@at satisfy conditions (1.2.27). Izt be

the realization of the random variable at some experimental poibfs t, dc;.

Suppose thaZ t can be represented as the following process:

21 Chiles, J.-P. and P. Delfiner. “Geostatistics. Modeling Spatial UnceltdintWiley and Sons1889, p. 270.
22 \We define the universal method for the tmardinate, though as in the previous defintion of the kriging t-
variable can be sulbsted by the spatigicoordinates.
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Ztw Ytw mtw, (1.2.28)

where mt,w - trend of the series, random functidht,w - random function, such that
EY t> 0, sof@ are correlated.

Although it is not necessary, lets assumeythat and mt,w are independent, in order to
divide the structural effects on procgds from each of them. Furthermoma,t,w should by
its nature have much more larger effect onZthe and much more smaller volatility than
Y t,w . The regularity and continuity of timg, w is attained by the following assumption:

|
mtw g wf't :qfit,t-v,fc’t 1 (1.2.29)
i0

where a w are random variables that reflect the coefficients of the tfertd; are
polynomials of the ordéthat defines the form of the teriets assume for simplicity reason
that the trend is described by the linear function:

mitw g w a wtteV (1.2.30)

For the trend estimation, lets assume Zhaare the values & t at the experimental points
t,* S «V, withS bounded.

Lets assume that theiesmtor of the trendn(t) at one point «V is the following:

Mt @Zg oozt oot !oant, (1.2.31)

ieD ieD je

The optimal weights vectag}, minimizes the estimation variance:

EM; m® Wy, ! ey, (1.2.32)
- D

 iom
with |, cov Yit, Yt EYt Yt
The universality constrain for the minimization problem (1.2.32) is:

Qf, 1, (1.2.33)

|
D
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Let 6 represent variance covariance matriX ofvith the elementsl, ; F - the vector of

3t t7 ..°

- it € ..

simple functions in the forrh: 1 t t*..., F ) 2 2 z
P

4 t, t, ..y,

Then the minimization problem (1.2.32)- (1.2.33) in matrix representation is:

a6 F oaO) ao o
fcolZAL S, 7,

The UK variance of the mean estimator:
G (M, m °  Pf, f, F'6'F

(1.2.34)

1

f, (1.2.35)

It should be mentioned here that for a finiedhe UK model could be regarded as a linear
regression model with the correlated residuale ébltbwing (matrix) form (Chilés, Delphiner,
1999):

Z Fa'Y

Then the generalized least square (GLS) solutite foptimal (unbiased, efficient) estimator of
the coefficients vectar will be:

a FG6F 'F6'Z
The covariance of the estimated residuals is:

(Z Fa z Fa ; 6 FFG'F 'Fc (1.2.36)

A

The expression (1.2.36) shows that the covaérice estimated residuals is a biased estimate
of the covariance of the true residiyals

2.6.2 Kiriging intrinsic function IRF-0

The problem with the intrinsic function IRF-0 iatttihe constant term of the drift coefficient
a, cannot be determined, since the random funistidetermined by its increments (variogram).
In order to avoid this problem, we can suppaseadbver some limited domain (for example,
time-interval) for some very largk !0, function A .h represent the covariance.

Substituting the new covariance into the otz problem (2.32)-(3)3we will obtain similar
equation system that does not depend on A:

ax FO&O ao (0]

1.2.37
ool fp 0

30



where * LDE‘ is the variogram matrix., which is strictly conditionally negative definite. This
condition is met for a valid variogram models.

Contrary to the UK approach with covarianae ktiging variance of the mean estimate cannot
be defined.

3 Peculiarities of the kriging method applications in
finance

As have been mentioned already kriging metdesgtietoped to confront the spatial data. In this
chapter we discuss how the difference in the financial and spatial data might have impact on the
financial applications of the kriging method.

Mean value of geostatistic data is estimatsedrfee sample that forms a close neighbourhood to
the estimation point. For the financial data, pasf observations are available, therefore the
close neighbourhood is formed by the sub-sathpt precedes the estimation point. If we
choose some—value for the length of the sub-saartpht precedes and contain the estimation
point and consider it as the “close neighbourhaloei, the kriged estimator of a variable mean
at each moment of time will coincide withdefinition of the weighted MA in the (1.1.3).

There are two principal peculiarities of the financial data:
1. The majority of financial samples are noisaay due to the presence of trends in the
data.
2. Many financial variables are sampled at equal distances. This is true in particular for a low
frequency data (for example, daily, monthly, annual observations).

3.1 Data non-stationarity

As have been shown in Chapter 2, all grigipproaches are based on the second-order
moments of the procegs or residualy that supposed to be known. In real life, however, the
covariance (variogram) should be estimated first\zadid model should be fit to the estimates.

In the case of the stationary instrumentrake variogram can be easily estimated and fitted.
However, the presence of a drift in the datadaces a bias into the estimates of the raw
variogram. Therefore, in order to obtain the fpp@stible estimate of the true variogram the drift
should be removed from data and the variogfatime residuals should be estimated (Chiles,
Delphiner, 1999).

The problem is that the trend is usually unknown; thus, its estimates should be used to define
residuals. Let say the realizations of a random furigtign are available at the experimental

points X ,. This process is represented as following:
ZX mx YX (1.3.1)

Lets define the residuaRx, Z x, mx, , wheremx, is the trend estimator at points
X . Lets consider a variogram of the residuals:
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1 n o 1 ~ “
Eoxex S0 x X J ¥ x CovZpZpm M, Svarfg m, (132

2
The expression (1.3.2) can be simplified if onky is an optimal linear trend estimator x .
Then:

L X % JIX: % %VarrﬁE m, (1.3.3)

Expression (1.3.3) shows that even if the optrerad estimator is chosen the residual variogram
might still underestimate the true variogram. ®bd gews is that this bias is small at short
distances, but can be significantly increasadye distances (Chiles, Delfiner, 1999).

Chiles, Delphiner (1999) belieat thespite the presence of a tiemglalways possible to return
to the standard structural analysis @fstationary case. For example, if trend is mild, than

the estimated empirical variogram& obn several data sub-sampl#isnot differ significantly
at the short distances. As kriging often iseappd rather close neighbourhood of data, the
empirical variogram can be acceptedjasdaestimate of the true variogram.

At the situation when we can assuneestiationarity of the residual teMrx and at some
sufficiently large sub-sample of the availatiservations the trend is equal to zero:
mx, 0,X,*X,, then the empirical variogram estimated on this sub-sample can again be
accepted as a good estimate of the true variogram.

As the result, we have the following solutions to address data non-stationarity:
1. Assume that a procedscan be represented as in (1.3.1) with stationary reMduals
Then the covariance/variogram can be estimated by using one of the two approaches:
a. Estimate and eliminate present trertlerdata; then use the variogram of the
residuals as an estimate of the true variogram.
b. Estimate the empirical raw variogran the sub-sample, where no trend is
observed.
2. Assume that proceZs is non-stationary; use intringiodel to fit the raw variograms
and apply approach 2.6.1 to obtain the optimal weights estimates.

As for the solution (1a), the estimation of adtsdrould be done before the application of the
kriging method. As have been shown in (1.3.8)der to minimize the error when accepting the
empirical residuals variogram for the true yarnggwe should apply the linear method to the
trend estimation. For example, line or polynomidbedit to the data by least square methods.
However, curve fit will demand the subjectiwécehof the polynomial. We propose to estimate
trend as a moving average of predefinethleimgparticular, we propose to subtract EMA of

predefined (medium) lengtBNIA ;) and evaluate the variogram model for the price residuals

( R:R P EMA‘,, ,,.,) The method is not optimal in statistical term, but it has the

following advantages:

1. EMA is the Markov time indicator in the sense that only available historic data is used for
its calculations.

2. EMA, as most popular technical indicatantrisduced in many trading software making
them very easy to use.

3. EMA has only one parameter to chooseleniggh. Our main criterion is to choose such
length, which guarantees the convergentieeakesiduals variogram at some not very
large range values. From the trading pbimtew, EMA should reflect a medium-term
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trend. The EMA length certainly depends erdtta frequency and traders time horizon.
For example, for 1-second frequency anadayrtrader medium term can correspond to
the two hours (2*60*60=7200) window tangvhile for the 30-minutes frequency it
might corresponds to one week MA length.

We also propose to use only one simple fundtfonl in the trend, implying constant (within

moving window) unknown trend. In the empirical geostatistical applications the number of
functions in the trend is usually limited to one or two, as more functions were not improving
significantly the results.

3.2 Data sampling peculiarities

The way the financial data is sampled hest diffect on the results of the kriging method
application. On one hand, non-regular sampjpigal for instruments that are not traded
frequently, or for subordinated processes, jadtiteusage of the kriging approach at the place
of the usual filtering methods. On the other leaqnal-space sampling has an interesting impact
on the structure of the optimal kriging weights.

In fact, Castelier, Laurenge (1993) showeadirththe case of regular sampling the optimal
weights for the mean estimator has quite sibgl@aviour. Under assumption of one simple
function in the trend, we have relatively hgights for first and last observations in the
window, and relatively low in the absolute terms (sometimes negative) the rest of the weights.
They have derived the following close-form solution for the case of the exponential variogram
model:

1
o
0 q N N 2b
1 b . .
- - ix1 i N, 1.3.4
QNNZb (134)
1
b e

where N is a length of the window (length of Hanple of observations used in the kriging
h .

procedure)a - range parameter of the variograin | 1 e
© E

The expression (1.3.4) shows that optimal wéighiesthe same structure independently on the

length of the samph or the variogram parameters; they have impact only on the absolute

values of the weights.

The examples of the weights structures for different types of the variogram models are proposed
in Figures 1.4-1.8. The foliog models are considered:

8 [
Stable model:.)h .1 e'®
© i

Fractal model: h V2|7 ;
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- § 3 .
, % 3—h . ,h da
Sphericalmodel/ h  ® @a 2a°, ;

— |2, otherwise

All figures 1.4-1.8 show similasulés: concentration of the principal weights for the first and last
observations in the sub-sample window, with adatipely lower and relatively stable other
weights.

The weights structures for the stable model flerelht parameters ar@ei in Figures 1.4-1.6.
Figures 1.4-1.5 represent the impact of the range parameténe weights values, while fixing

L at two levels:/, 1 and L, !1. Figure 1.4 shows the increased weights volatility with

increase in the range parameter for 05: very high range values corresponds to very high
“border” weights (their sum is close to 2), warehcompensated with relatively large negative
weights (#2 and #9) and more or less stable and small (negative or positive) other weights.
Figure 1.5 presents much smoother parabolic weights structure, convexity of which increases
with the increase in the range parameters“lfthvder” weights also increases with range
parameter). Figure 1.6 show the transformatittre efeights structure from the volatile type (as

in Figure 1.4) to the parabolic typer(@&gure 1.5) with the increase/ofparameter from 0 to

2%,

12 ‘
T — a1
—a=b |
a=10
—a=15
0. a=20
(0] _
=]
©
>
%]
c
(@)]
‘o
=
| | | | | | | |
2 3 4 5 6 7 8 9 10

weights # (#10 corresponds to most recent observation)

Figure 1.4.Weights, which correspond to differentvariable in stable model: window length=10,
L 15.

2 For the range parameter ! 1 for the unit sampling frequency, the oscillation of the weights for the gaussian
model or L 2 is much more severe. S€astelier, LaurendE903) for more examples.
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Figure 1.5.Weights, which correspond to differemvariable in stable model: window length=10,
L 05.
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Figure 1.6.Weights, which correspond to differeft variable in stable model: window length=10,
a 1.
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weights value

13 2 3 4 5 6 7 8 9 10
weights # #10 corresponds to most recent observation

Figure 1.7.Weights, which correspond to differeht variable in fractal model: window length=10,
a 1.

Figure 1.7 presents the weights structurethi® fractal variogram model. Fractal model
corresponds to the IRF-k functions. The weights structure resembles the case of stable model for

L 1.

Figure 1.8 considers the case ofpherscal variogram model. The case veheth implies the
optimal MA in the form of the simple moving awerag data is considered to be sampled at unit
distancea 1 implies the absence of the correlationt@dloseness of the data to the white
noise. For the other range values, the samst@ars of the large weights for first and last
observation in window is observed.
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Figure 1.8.Weights, which correspond to differanvariable in spherical model: window length=10.

As the result, we can see that independently of the window size and variogrdmkngpett|s

MAs are not significantly different from SMAha term of lag, while some of them are less
smooth (more volatile). In fact relative volatility of the weights depends only on the variogram
model (not on the length of the window), inipaldr on the regularity of the variogram model

at the origin. Varying parametér(in stable or fractal models) has impact on the form of the
weights curve and adds significantly to the vglafilihe kriged MA. We can expect that kriged

MA for stable and spherical models are more or less smooth; at the same time the kriged MA for
fractal model supposed to be very volatile and unstable (both “borders” weights are larger than
1).

As the result, we can conclude that in tse o& regular sampling (one-dimension), kriging
optimal weights have the similar structure: faexbeptions of the border weights (first and last
observation), other weights are quite low in the absolute terms. The «border» behavior of the
weights in its turn is defined by the coveeastructure of the variable and depends on the
regularity of the variogram at the origin, i.e. by the presence of the range. Pure nugget model
gives arithmetic average; spheric and exponential models produced more important oscillations
around arithmetic weights, while gaussian maudklqger violent oscillations (Castelier, Laurenge,
1993).

Further we present examples of the kriging metpplications to the different set of data. In
Ch.4 and 5 we present the case of the instrureamigled at equal intervals. Chapter 4 consider
non-stationary examples ofcps, while Chapter 5 concentrateshe MACD indicators with
bounded paths without distinctive trends. Ch&ppeesents the examples of the application of
the kriging method to the case & ttata, sampled at uneven intervals.

24 At least three classical model considdrede and in Castelier, Laurenge (1993).
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4 Kriging results: Non-stationary, evenly spaced time-
series data

This chapter analyses the application of thedrig four different instruments: (1) Bund; (2)
DAX; (3) Brent; (4) X instruméntThe analysis of the Bund is presented in details, while only
trading outcomes are presented for other instruments.

4.1 Variogram analysis and optimal kriging weights:
Bund

The Bund sample represents the qgtfdi@sthree different contraétslue March 8, June 8 and
September 8, 2006, sampled at one-secomgeriy. The data is sampled at very high
frequency, therefore, even for Bund, an acthagling instrument, the data is not available at

each point of time. In order to obtain equally spaced data, missed data is interpolated at the levels
of the last available data. Example of the Btiod path for the contract due on March 8, 2006

is given in Figure 1.8. Othamtracts can be find in Figures E1, E2 in the Appendix E. All
figures indicate the presence of trends in tlze Mreover the trends are clearly non-linear.
Figure 1.9 supports the hypothesis of the naon+staty with the unboued price variograms
evaluated for the Bund contracts.

Linear variogram implies the price processlddme modelled as #RF-0. We have fit the
following linear model to the variogriamthe March 8, 2006 Bund contraah(seconds):

Jh 09370 °fh|

The optimal weights estimated fieB600s under assumptiorathocal covariance & . h
for some very largé ! 0 have similar structure than the weights considered in the Chapter 3
(Figure 1.7):¢  Ggo 05, ¢ ... (g9 O.

The analysis of the variograms for the residuals is more complicated.

25 Due to the confidentiality reason we canreggnt detailed description of the instrument.

26 The Bund quotes, used for vaiogram and kriging calwylatie in fact the index built on the basis of different
Bund prices (quotes). Dueth@ confidentiality reason we cannot provide the formulae.

27Bund is a futures contract.
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Figure 1.8. Bund (December 9, 2005 - March 8, 2006, frequency — 1 sec)
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Figure 1.9.Variograms for different Bund contracts due at different dates in 2006 (December 9, 2005 -
March 8, 2006, March 9 — June 8, 2008)-Remember 8, 2006, frequency — 1 sec)
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As have been discussed already in Chaptesr8eirto obtain the estitea of true covariance,

the trend should be eliminated from the data. Further we provide the analysis of how different
EMAs (the trend estimator) can affect the fofnthe variogram/covariance used in kriging
applications. Moreover, we would like to analystherhcovariance structure of the residuals is
stable over different contracts.

It is obvious that different lengths of the &Adviused for trend subtraction, will have impact on
the parameters of the variogram (at least it&#@igtive length of the EMA defines how close
the EMA is approaching the price curve and bBmooth it is; longer EMA length implies
smaller distance between two curves and smédtlfecurve. As the result, the variance of the
residuals will increase with the increase @&Ntfes length. Figure 1.10 presents the variograms,
estimated for September 8, 2006 contract, whiokspond to seven different EMA lengths. As
expected, the sill of the variograms is@easing function of the EMA length.

0.03
Variances: — 1800
'n=1800" 0.001 — 3600
0.025 'n=3600" 0.002 n=7200 |
=720 0.004 ——n=14400
'1=14400": 0.007 n=39600
0.02 '"=39600: 0.019 — I
'n=r79200": 0.039 . n_zgggg‘
'N=198000: 0.084 n= i
(@]
50015 :
>
0.01 8
0.005 -
| | |
0 0.5 1 15 2 25
lag (in 10s) %14

Figure 1.10Bund (June9-September 8, 2006, frequetizpec): Variograms for Bund (8 September
contract) residuals, which corresponds to EMAs of different length

The impact of the EMA lengtlos the range of the variograms is though unclear from the
Figure 1.10. Therefore, we propose to confidevariograms, normalized by their respective
sill (see Figure 1.11). From Figure 1.11 we edheseanges of the variograms also depend on
the length of EMA, used for the trend subtractiba:longer is the EMA — the larger is the
variogram range.

The analysis of the residuals over diffex@mttacts shows whether the covariance structure is
the same over the time. Figutek2 and E3-E4 in the Appendixshow the examples of the
variograms for the residuals for different Bund contracts, obtained by the subtraction of the

EMA of the following lengthsn, 1800sec (30 minutes)n, 7200sec (2 hours),
n, 79200sec (2 days) respectively. We cannot denftlom the observed variograms about
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residuals stationarity. All the variograms stabéipedd some sills. However, these sills are all

well below the estimated variances.

1.
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ALY A AN
0.8 ~ ]
©
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n=7200
04 —n=14400}
n=39600
0 n=79200
Ny —n=19800(
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Figure 1.11Bund (June9-September 8, 2006, frequensgc): Normalized vagrams for Bund
residuals, which corresponds to EMAs of different length
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Figure 1.12Bund (December 9, 2005 - March 8, 2006, Marclune 8, 2006, June9-September 8, 2006,

September 9 — December 8, 2006, frequency —\las@grams for Bund residuals (n(EMA)=1800 sec)
for different contracts
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Stabilization of the variograms below variangésrpersistent autocorrelation (correlation is no

longer = 0 at large lags). Hoeewexplanations for this phenomena can lay also in the data
peculiarities such as non-constant volatility €dyseuch events as overnight jump of the

prices, high volatility «after 14:30 hours» esseTévents can cause an overestimation of the

true variance. Therefore, calculation of tleeage variogram over the periods that does not
include these effects can be one of the solditiotigs problem. For example, the estimation of

the average «daily» variogram can help to define whether overnight effect can be a cause for these
types of the variograms that we have observed.

Estimation of the average variogr@and average variance) alkeavailable (non-0) days for
three different contracts can be daceording to the following formulas:

N(days)
KL
il

N
Nday3
: var Bund

( var Bund 1 N (1.4.2)

( Jh (1.4.1)

For these estimations we take only days with complete series of prices. Our maximum lag is
certainly constrained by 1 day (in reality, lbg hoaver value). Figure 1.13 shows the estimated
average variograms for three Bund contractsvartegrams show that daily variograms have
stabilized around estimated variance. Newmatst variance is lower than the variances
estimated over the 3 months sub-sample. Thisstkat the presence of the overnight effects

can be the cause for variance overestimatierfofith of the average variogram is smooth and
«model-like», which will facilitate significantly the variogram modeling.

The variogram range is approximately equal for all contracts, while the sill is different. Therefore,
we can expect the same weights for the optimal MA forecast, but different variance of the
estimator for different Bund contracts.

As the result of the analysis, we can see thafirige parameter of the residuals variogram is
constant over time (does not depend ondh&act), however its value depends directly on the
EMA length used for the residuals construction. The residuals variance is time-dependent and
also depends on the EMA length.

In order to obtain the kriging equation systeah ithnon-singular, a model should be fitted to

the empiric covariance estimates, which valagtee positive definiteness of the variance-
covariance matrix. We choose to model thegeédaily” variogram in Figure 1.13 for the

March 8, 2006 contract. It means that we use the EMA of the 1-hour (3600 seconds) length as a

h
a

§ :
trend estimator. Figure 1.14 propdbesfit of the exponential modelh 1.1 e '? . with
© kS
the parametera 1900, |/ 0002.
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Figure 1.13Bund (December 9, 2005 - March 8, 2006 hN®arcJune 8, 2006, June9-September 8, 2006,
frequency — 1 sec): Average variograms oxelagrfor Bund residsgh(EMA)=3600s (1 hour))
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From Chapter 3 we know that equally spacedesawifi produce the optimal kriging weights of
the particular form. In particular, for the exmbiaé variogram model, these weights values can
be even calculated analytically according to the formula (1.3.4) (n=7200s):

(G, 01728,
© 909*10 | G, 23..7199

The optimal weights are presented in Figure 1.15. The kriged avevage (KMA), which
corresponds to these weights is given in FigiBeAs can be observed at this length KMA is
very close to SMA of the same length, butsies®th. More volatile nature of the KMA is
demonstrated in Figure 1.17 for a shorteh 8l KMA. We can notice that KMA oscillates
around SMA and has much less smooth nature.

0.18

0.16 a

0.14 |

0.12 1

0.r a

weights value

0.06 1

0.04 a

0.02 |

0, |
| | | | | | |
-1000 0 1000 2000 3000 4000 5000 6000 7000 8000
# of the weights (#7200 for the most recent observation)
Figure 1.15. Bund (December 9, 2005 - March 8, 2@@fiefrcy — 1 sec): thpal weights (mean

h| .
estimator) calculated for the theoretical exponential variogthm 00021 e 1904 s

© 1
window=7200s.

As we can see the weights structure is the same whether we use residuals covariance or IRF-0
model variogram. As the result we propose futtiee analysis within stationary framework
(residuals covariance model), as we can expect the trading outcomes to be approximately the
same.
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Figure 1.16. Bund (December 9, 2005 - March 8, #806ency — 1 sec, observations aprox. 7201-
200000): Price, KMA and SMA (window length =7200s)
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Figure 1.17. Bund (December 9, 2005 - March 8, #@Q6ency — 1 sec, observations aprox. 1801-
20000): Price, KMA and SMA (window length =1800s)

As we can see, the optimal MA weights, which take into account the auto-covariance of the
instruments value results in the MA, which ie dgghe lag to the SMBut has more volatile
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structure. The question is whether trading strategies based on KMA can bring higher outcomes
than SMA.

4.2 Trading results: KMA versus SMA

The following sub-chapter 4.2 analyzes tracdsngs,eobtained for the simulation of strategies,
based on KMA and SMA for such instrumastBund, DAX, Brent and X instrument.

We apply simple trading strategy, based on the crossovers of the price and MA lines (in this case,
SMA and KMA). The long position should beralesd the short position should be closed)

when the price crosses the MA curve from beWneh is a confirmation of the upward trend;

the short position should be taken (and the long position should be closed) when the price
crosses the MA curve from above, which @nérmation of the downward trend. Thus, the
strategy is defined as following:

Trend-following strategy (1.4.3)

Trading costs are 0. Profits are defined in quot&s units

Lets definlR P MA.

The initial trading positidPog, 0; trading outcome8, 0.

The first tradeRos ,i ! 0) is undertaken at the first crossovers of the MA and price
lines, i.e. under following condition:

if RR, 0 andR, O:Pos LR, P,3 O

if RR,c0andR,!'0:Pos 1,R,, R,3 O

otherwisePos 0, 3, O

5. Afterwards, at the new trading signalvdgsicrossovers) the following trades are
executed:

if RR,d0 and R, O:
f exit (previously taken) positiShortPos, 1):Pos O,R,, P
f entry position Lonfos 1, R, R
f cumulative trading outcom8, 3,, Pos, P PR,

if RR, d0 and R, !0:
f exit (previously taken) positioong Pos, 1):Pos O,P, P
f entry position Shokos  1,R,,, R

f trading outcome for this operatiod;, 3,, Pos, R P,
otherwise,Pos Pos,,3, 3,, Pos, R R,

A wDhPR

The results of the strategy (1.4.3) simulatiandifferent instruments and different lengths of

KMA and SMA are presented in Table 1.1. ExXoephe Bund case, we use different samples

for the variogram estimation and trading simulations. Each sample (DAX, Brent, X instrument)
is split into two sub-samples of approximately the same length; the first sub-sample is used for
the variogram estimation, and second sub-sample - for the trade simulations.

28 Instruments values are usually quoted in ticks, not in currency equivalents.
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Note that the trading results can be compared only within particular instrument due to the
difference in the length of the sample, its frequency and value of the quotes for different
instruments: we cannot compare Bund to DAX, but only the DAX results for the strategies,
based on KMA and SMA.

Table 1.1
The outcomes of the simulated trading strategies

Optimal length Max profit (in quotes) Number of

Instrument Frequency (obs) trades
KMA SMA KMA SMA KMA SMA
Bund 1sec 1740 660 1.71 1.89 689 1037
DAX 30min 45 118 1736 1525 614 350
Brent 30min 45 49 14.13 9.45 124 140
X instrument 1 hour 20 11 -10.52 -6.32 254 404

Table 1.1 shows that KMA are steadily more g#eattishort lengths, while the optimal length

of the SMA is varying from short to long. Inagal at short MA lengths, KMA generates fewer
trades than the SMA (see Brent case). Besidpsofi per trade was higher for the KMA for

Bund and Brent instruments. Further we analyze how results of the strategies, based on the
different MAs depend on their length, as wdilae a look at the P&L paths for the optimal

MA lengths for KMA and SMA to see whethely exhibit monotone and positive trend.

4.2.1 Bund

Figure 1.18 gives the end-ofipercumulative outcomes for the trading strategies based on the
KMA and SMA of the different lengths. KMAedonot show better results than the SMA,
though it still works better at short lengtten in long. Similar outcomes for long SMAs and
KMAs are explained by the fact that at longttes both curves almost coincides. Shorter KMA

are more volatile than SMA and oscillates with larger amplitudes around SMA leading to the
difference in the trading outcomes.

SMA-based trading strategy accumulates fewer trades than KMA (see Figure 1.19).

The KMA and SMA paths, which correspond w&rthespective optimal lengths, are given in
Figure 1.20. We can see that both pathgbiexpositive trend. Moreover, after 60000
observations their behavior is synchronizddcirihe end-of-period difference in the outcomes
for both MA is caused by better performanceeoSMA periods at the beginning of the sample.
From Figure 1.16 we can see that the price pafteathe 60000 observations is characterized
by the trendless period; so it seems like @MAO their more smooth nature perform better
during time, when markets are not trending.
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Figure 1.18. Bund (December 9, 2005 - March 8, 28Q6@efrcy — 1 sec, obsdions 1-200000): End-
of-period outcomes for the strategies, based on KMA and SMA of the different lengths
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Figure 1.19. Bund (December 9, 2005 - March 8, 26Q6efrcy — 1 sec, obhssions 1-200000): End-
of-period total trade number for the strategies, based on KMA and SMA of the different lengths
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Figure 1.20. Bund (December 9, 2005 - March 8, 2@@fiiency — 1 sec, observations 1-200000):
Optimal P&L paths for #hstrategies, based on KMA (lendff40 observations) and SMA (length=660
observations)

4.2.2 DAX

Short description of the DAX sample, as wellaasgram used in the kriging applications is
given in Appendix F.

Figure 1.21 presents the end-of-period cunailatitcomes for the trading strategies, based on
the KMA and SMA of different lengths. It sedkesKMA is more effective than SMA at short
lengths (between approx. 30-60 observationg)nd\iengths SMA leads to higher outcomes,
though the results for both MAs are compar&itailar trading outcomes for the long SMAs
and KMAs are explained by the fact that twoesuaimost coincide at these lengths. Shorter
KMAs are more volatile than respective SMAg:dhcillate with larger amplitudes around SMA
leading to the difference in trading outcomes.

Contrary to Bund case, the KMA accumulates feads than the SMA almost for all window
length (see Figure 1.22). It means that evemghanare erratic nature, and therefore, higher
probability of sending false signals, KMA crosgmsqurve less frequently than the SMA curve.

The KMA and SMA paths that correspond to their respective optimal?fermgthgjiven in
Figure 1.23. We can see thahpaiths exhibit positive trend.

29 We choose the KMA optimal length at the level thatnbegnerate the global P&laximum, but fells within
the interval of optimal KMA lengths.

49



2000

3

end-of-period outcome

g

-1000 | | | | | |
O%’O 40 60 80 100 120 140 160
window length

Figure 1.21.DAX (30/7/2003-7/12/2006, frequency 30 maies, observations 10086-20171): End-of-
period outcomes for the strategies, based on KMA and SMA of the different lengths
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Figure 1.22.DAX (30/7/2003-7/12/2006, frequency 30 mies, observations 10086-20171): End-of-
period total trades number for the strategies, based on KMA and SMA of the different lengths
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Figure 1.23. DAX (30/7/2003-7/12/2006, frequency 3Gues, observations 10086-20171): Optimal
P&L paths for the strategies, based on KMA (length=45 observations) and SMA (length=118
observations)

4.2.3 Brent

Short description of the Brent sample, as welraggram used in the kriging applications are
given in Appendix F.

Figure 1.24 presents the end-of-period cunailatitcomes for the trading strategies, based on
the KMA and SMA of different lengths. Agaie, shorter length of the KMA leads to higher
outcomes than the longer length, though agnteathe DAX case no superiority over SMA
results are observed.

As in the case of DAX instrument, the KMA accumulates fewer trades than the SMA for short
and medium lengths, but slightly higher numbeades for the long length (see Figure 1.25).
For shorter lengths KMA sends less false signals than SMA.

The KMA and SMA paths, which correspond w&rthespective optimal lengths, are given in

Figure 1.26. Contrary to the RA&ase, KMA path exhibit steeper trend than the optimal SMA
path that is more random.
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Figure 1.24.Brent (17/12/04-27/01/06,frequency 30 minutesbservations 2515-5029): End-of-period
outcomes for the strategies, based on KMA and SMA of the different lengths
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Figure 1.25Brent (17/12/04-27/01/06, frequency 30 minutgsservations 2515-5029): End-of-period total
trades number for the strategies, based on KMA and SMA of the different lengths
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Figure 1.26 Brent (17/12/04-27/01/06frequency 30 minutesbservations 2515-5029): Optimal P&L paths
for the strategies, based on KMA (length=45 observations) and SMA (length=49 observations)

4.2.4 X instrument

Short description of the X instrument samgée well as variogram, used in the kriging
applications are given in Appendix G.

Figure 1.27 presents the end-of-period cunailatitcomes for the trading strategies, based on

the KMA and SMA of different lengths. Contrarythe other instruments, none of the MAs
provides the profitable trading strategy. One of the possible explanations might be that the X
instrument has mean-reverting nature in therlongherefore, trenilowing strategies might

not work for this instrument.

As for the DAX and Brent cases, KMA generates fewer trades than SMA (see Figure 1.28).
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Figure 1.27.X instrument (frequency — 1 hoolyservations 2372-4743). Engpefiod outcomes for the
strategies, based on KMA and SMA of the different lengths
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Figure 1.28X instrument (frequency — 1 hoahservations 2372-4743): End-efiqgd total trades number
for the strategies, based on Kki#l SMA of the different lengths
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Comparing the performance of the KMA andASM the same length for the considered
instruments, we can conclude that at shagtHe KMA performs better than SMA, producing
fewer trades; at long lengths the differem the performance is less pronounced. The
explanation to this phenomenon lays in the behavior of both curves. KMA is more volatile than
the SMA and it oscillates arodhd SMA curve. The volatility and amplitude of the oscillations

is the indirect function of the KMlength: the longer the KMAdHhess it is volatile and it
coincides more with the SMA curve.

KMA seems to perform better chgitrending periods and worse during trendless periods than

the SMA of the same length. The explanatiorigdalys in the weight structure of the MAs. As
markets are trending, KMA is more sensitive to the last large price changes, than SMA as it
assigns larger weight to the last available obséfvdlioring the trendless periods such
structure makes the KMA more erratic than thA,Sfslusing more false signals, and thus, less
profit. This might be an expltion why the trading results floe X instruments are so poor.

For trending price patterns KMA produces fewer trades than the SMA of the same length even
having a more erratic nature. Taking into account non-zero transaction costs in real-life
applications, fewer trades end up at lower trading costs.

5 Kriging results: Bounded, evenly spaced time-series
data

The previous Chapter 4 shows the results of ifiackmethod application to the estimation of
the price mean for series that are normallystadionary due to the presence of trend. This
chapter analyzes the case of the datdy istbhounded and has mean-reverting nature.

5.1 Moving Average Convergence/Divergence
indicator (MACD) and trading strategies

Moving Average Convergence/Divergence indigsl&CD) is a technical indicator, developed
by G. Appel (Murphy, 1999).

Definition 1.4
MACD is the difference between two exponiemitaing averages of different length:

MACD, EMA Ln EMA, Ln, , (15.1)

whereEMA ; - exponential moving average at the moment ot time
L n, - parameter of the EMA, afuaction of its effective length

Figure 1.29 presents the example of th€EM#dicator for the effective lengthsmpf 12 and
n, 26 days estimated for the sample of Bund (1991-2006) with daily frequency.

30 KMA optimal structure also assigns nwegght to the first observation ir thindow, but due to the presence of
the trend this value, depending on the trend directiomids smaller or much bigger than the last available
observation; therefore its weighted imisasinaller on the mean value than for the last observation in the window.
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Figure 1.29Bund (1991-2006, frequency=1day), MAGD (12, n, 26 days)

Moving Average Convergence/Divergence indicator (MACD) belongs to the group of trading
oscillators. As long as the choice of the EMAstefé lengths in (1.5.1) implies the crossover of
both EMA curves, the MACD oscillates arouridvel. The amplitude and frequency of the
oscillation depend on the choice of then, values (see Figure I1 in the Appendix | for the
examples of the MACD indicator calculated for the Bund sample).

From the statistical point of view, the major tyualithe MACD indicator is its mean-reverting
nature; therefore it is more likeljp#ostationary than the price series.

Different trading rules are defined on the basis of the MACD values (Murphy, 1999). One
strategy coincides with the technical rule, bastt @nossovers of the two MAs of different
lengti: when MACD line crosses the zero-line abtve buy signal is generated (point #1 in
Figure 1.29), when MACD line crosses the zerbdilow - the sell signal is generated (point #2

in Figure 1.29).

Another rule is based on the crossovers oMRED line with its signal line. Signal line is
defined by MA (for example EMA), which is toiesed on the basis of the MACD values. The
crossing of the MACD line above the signal litteei®uy signal (point #3 in Figure 1.29); the
crossing of the MACD line below the signal diaeerates the sell signal (point #4 in Figure
1.29).

31 The trading rule based on the two MAlifferent length states the following:
f Buy signal: Shorter moving average aiseve the longer moving average;
f Sell signal: Shorter moving averdbbdiw the longer moving average.
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A contrarian strategy is constructed on tisés lud the extreme MACD values, which suggest
that prices have gone too far too fast amdetbre, are subjects for some corrections: an
overbought conditions are present when the MACD is too far above the zero line (point #5 in
Figure 1.29), while the oversold conditions are present when the MACD is too far away below
the zero line.

Finally, a rule is constructed on the conmeegdivergence of the price and MACD trends.
Negative divergence takes place when the MIREs well above the zero line and starts the
negative trend at the time when prices exhibit positive trend; in this case, the sell signal is
generated. The positive divergence happens when the MACD line is well below the zero-line and
starts exhibiting the positive trend earlier tih@nprice line does; then, the buy signal is
generated.

We choose for evaluation and optimisation theegly, based on the crossovers of MACD and
signal lines. This will allow defining the optimal signal line as a kriged MA.

5.2 MACD strategy: optimal signal line

A strategy, based on the crossovers of MACD and signal lines has at least three parameters to
optimise:n;, n, - the lengths of the EMAs amg - the length of the MA chosen as a signal line.
Taking into account that the goal of this sub-chapter is to find the optimal MA for the stationary
data, we choose to optimise only the valuewhile accepting some default values for the

lengths n;,n, involved in MACD calculations. Fraime empirical variogram in Figure H2

(Appendix I) we have chosen default parameferd?2 andn, 26 for MACD calculations,

which represent some average variogram for the MACD indicator for the Bund instrument (see
Figure 1.30).

Figure 1.30 presents the empirical vanodoa MACD(12-26) and the combination of two
theoretical models fitted to these values. Theliwadeis fitted to the data is a sum of the

8 hf* h
gaussian modelh  1».1 e'® :and damped cosines moddi 1.1 e #a

. § %D'
CcO
© i © a

5.
1

2

.Jh 0051 e . 0041 e 1@ co%— . (1.5.2)

The optimal weights for the KMA estimates are presented in Figure 1.31 (window=50
observations). Figure 1.32 represents the MACD and two signal lines - KMA and SMA of the
same length. We can see again that KMA isvalatge than the SMA and oscillates around it.

32The kriging weights that corresptmthe variogram model (1.5.2).
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Figure 1.30.Bund (1991-2006, frequency = 1 day): Erapivariogram of the MACD indicator
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Figure 1.31. Bund (1991-2006, frequency = 1 day): Optiamhts for the MA estimate for MACD
indicator i, 12 andn, 26), variogram model
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Further in Chapter 5.3 we compare the tramlibgpmes for the trading strategies, based on the
crossovers of MACD curve and the signaklisuch as KMA, SMA and EMA of the same
length. The analysis will be conducted for four instruthéhyBund; (2) DAX; (3) Brent; (4) X
instrument. The default parameters of the MACD indicators are chosen at levels specific for each
instrument taken into account its frequency.

5.3 Results of the trading strategy, based on the
MACD indicator and its signal lines

Suppose P, is an instrument's prices aBWA ,EMA,, are the exponential MAs of the
lengthn,,n,:
EMA, LR 1 LEMA, D 2
; n
Then MACD indicator isMACD", ., : MACD, ‘EMALt EMA,, .

The trading strategy based on MACD can be formulated as following:
1. Trading costs are 0. Profits are defined in quoté4 units

2. On the basis of the history of estimated MACD indicdACD ., for each

momentt we construct the signal linethie form of MA of the lengtim, : /MASi ;!0.
The following are the types of the MA used as a signal line:

33 Note that DAX, Brent and X instrument samples are the aa in Chapter 4, white consider new sample for
Bund instrulent.
34|nstruments values are usually quoted in ticks, not in currency equivalents.
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Exponential moving average:
EMA;, [MACD, 1 [EMA,, A 5 2 ;
nS

Kriged moving average:

Ng

KMA, | @MACD

|
Simple moving average:

|
SMA, =

Lets defineR  MACD,  MA, .
The initial trading positidPos, 0; trading outcome3, O.
The first tradeRos ,i ! 0) is undertaken at the first crossovers of the MA and MACD
lines, i.e. under following condition:
if RR,c0andR, O:Pos L, PR, P,3 O
f RR,c0andR,'0:Pos 1,P,, R,3 O
otherwisePos 0, 3, O
Afterwards, for the new trading signalsvésucrossovers) the following trades are

executed:

if RR,d0 and R, O:
f exit (previously taken) posit®hortPos, 1):Pos O,P, P
f entry position Lonfos 1, R, R
f cumulative trading outcom8; 3,, Pos, R PR,

if RR, d0 and R, !0:
f exit (previously taken) positioong Pos, 1):Pos O,R, P
f entry position Shokos 1,P,, R

f trading outcome for this operatiod;, 3,, Pos, R P,
otherwise,Pos Pos,,3, 3,;, Pos, P R,

This trading strategy was applied to four diffelaat samples of diffetdrequency. For DAX,

Brent and X instrument the sadata samples are ussdn the Chapter Bor Bund instrument

we chose the new sample of the daily freguéor Bund case the variogram model (1.5.2)
estimated on the whole sample, that is alsdardedjing applications. For the DAX, Brent and

X instrument we have divided each sample in two sub-samples: the first sub-sample is used for
the variogram estimations and the second subesarigplthe simulation of the trading activity.

The results of the application of the tradingtesjy, described above are summarized in Table
1.2. The following general conclusions can be made:

1. The optimal signal line defined by KNS much shorter length than the optimal
SMA and EMA. (The only exception is the X instrument, but these results are not
representative as optimal SMA and EM#Aact bring minimal losses not maximum
profits).

2. KMA leads to higher absolute profits for all four instruments.
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3. For Bund and Brent instruments, the efficiency of trades (profits per trade) is the
lowest for KMA.

Table 1.2
The outcomes of the simulated trading strategies, based on MACD indicator
Optimal length (obs) Max profit (in quotes) Number of trades
Instrument  Frequency —ia—SyMA EMA  KMA ~ SMA  EMA  KMA SMA EMA
Bund 1 day 18 37 103 45.65 39.48 43.79 195 127 112
DAX 30 min 36 145 102 1587 623 680 264 134 161
Brent 30 min 49 97 85 32.63 28.93 29.45 45 29 31
X 1 hour 37 35 21 9.18 -19.71 -40.39 57 53 73

instrument

Further we consider the results of the strategy simulation for each instrument in more details.

5.3.1 Bund

For the simulation of the trading strategy we use the sample of daily observations for Bund
(1991-2006) analyzed in Chapters 5.1 and 5CD 4Adefined as the difference of the EMAS

of the lengthsy, 12 andn, 26; the estimated variogram follows model (1.5.2).

Figure 1.30 and 1.31 compare the profits andrtuswleer for different length and types of the

signal line. The MACD strategy leads to the postudis for all types and length of the signal

lines (Figure 1.30). The usage of the KMA amal $ine leads to the highest possible profits,
although the trading outcomes are more volatile than for other signal lines. The optimal lengths
of the KMA lay between 10 — 25 observatioagsjd EMA shows more consistent results: for
longer EMASs the strategy brings high and less volatile outcomes than the other signal lines.
Figure 1.31 shows that except for very shagthle 10-20 observations, KMA leads to relatively
lower trades number than the signal linkesedeby SMA and EMA of the same lengths.

N
Q

end-of-period outcome
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Figure 1.30. Bund (1991-2006, frequency = 1 day): End-of-period outcomes for the strategies, based on
MACD (n, 12, n, 26) and signal lines (KMA, SMA dalllA) of the different lengths.
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Figure 1.31Bund (1991-2006, frequency = 1 day): End-afeptmtal trades number for the strategies,
based on KMA, SMA and EMA of the different lengths

As for the optimal P&L paths (see Figure 1.32), all signal lines types leads to the paths that
exhibits positive trends.
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Figure 1.32. Bund (1991-2006, frequency = 1 day): Opt&hepaths for the strategies, based on KMA
(length=18 observations), SMA (length=37 ehtiens) and EMA (Igth=103 observations)
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5.3.2 DAX

The description of the DAX data samplegigen in Appendix FMACD indicator was
constructed as the differerdehe EMAs of the lengths, 40 andn, 80 (see Figure E4).
The MACD variogram model (see Figure F3hen Appendix F) that is used in kriging

applications is:
§ ‘12 ' § 0_3‘£ h .
Jh 1231 e™ > 1231 e ® co%f .
© 1 © 8015

The trading outcomes generated for differentneraj the signal line defined by KMA, SMA
and EMA are presented in Figure 1.33. ContrdBynd case, some signal lines lead to losses.
The strategy based on the KMA signal line desdhe highest possible profits; however, its
outcomes are volatile. The optimal KMA lengtisng to the interval of low values 20-40
observations; EMA optimal lengths lay between 80-150 observations.

The number of the total trades for the KMA-bastestegy is higher foha@t lengths; at long
lengths it is similar to the number of tradeergéed by other types of the signal lines (see
Figure 1.34).

As for the monotonicity of the optimal P&L path&igure 1.35, they do not exhibit constantly
the patterns with positive trend and are quite volatile for ally types of the signal line.
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Figure 1.33 DAX (30/7/2003-7/12/2006, frequency 3finutes, observations 10085-20170): End-of-
period outcomes for the strategies, based on MACD 40, n, 80) and signal lines (KMA, SMA
and EMA) of the different lengths.
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Figure 1.34. DAX (30/7/2003-7/12/2006, frequency rBihutes, observatis 10085-20170): End-of-

period total trades number for the strategies, based on MACD40Q, n, 80) and signal lines

(KMA, SMA and EMA) of the different lengths.
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Figure 1.35. DAX (30/7/2003-7/12/2006, frequency Binutes, observations 10085-20170): optimal
P&L for the strategies, based on MACGD (40, n, 80) and optimal signal lines (KMA, SMA and
EMA)
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5.3.3 Brent

Brent data sample is briefly presented in Appendix G. The MACD indicator was constructed as
the difference of the EMAS of the lengths 40, n, 80 (see Figure G4 in the Appendix G).
The following variogram model (see also Figure G5) is used in the kriging applications:

§ & 8 odf |n|
Jh 0121 e™ - 011 e ™ co% ,)

Trading profits/losses and trades numbers generated for different lengths of the signal lines are
presented in Figure 1.36 and Figure de8@ectively. As in the previous cases the KMA
generates the highest possible profits, whilettsnoes are quite volatile (see Figure 1.36). The
optimal lengths of the KMA belong to the inteofdahe low values between 20-70 observations.
Again SMA and EMA perform better as ¢ignal line at the long distances.

As for the total number of trades the KMA gates fewer trades than respective EMA, except
for the short lengths up to approximately 30 observations (see Figure 1.37).

Finally the optimal P&L path for the KMA sgrdine exhibits the steepest positive trend
comparatively to the SMA or EMA signal lines (see Figure 1.38).
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Figure 1.36. Brent (17/12/04-27/01/06, frequency 30 minutes, observations 2515-5029): End-of-period
outcomes for the strategies, based on MAgGD @0, n, 80) and signal lines (KMA, SMA and
EMA) of the different lengths.
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Figure 1.37. Brent (17/12/04-27/01/06, frequency 30 minutes, observations 2515-5029). End-of-period
total trades number for the strategies, based on MACD40, n, 80) and signal lines (KMA, SMA
and EMA) of the different lengths.
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Figure 1.38. Brent (17/12/04-27/01/06, frequency 3@utes, observations 2515-5029): optimal P&L
for the strategies, based on MACGD ( 40, n, 80) and optimal signal lines (KMA, SMA and EMA).
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5.3.4 X instrument

The data sample used for the analysis of the X instrument is presented in Appendix H. The
MACD indicator was constructed as the differebetween EMAs of the following lengths:

n, 40, n, 80 (see Figure H4 in the Appendix H). The following model is fit to the empirical

variogram estimates (see Figure H5 inaphendix H) and usedrtiver in the kriging
applications:

8§ |nh[ - 8§ ‘ﬁ :
Jh 071 e* - 031 e'® .
© 1 © :

Figure 1.39 shows that only one strategy bashd BIMA of the length 37 observations as the
signal line generates some positive profitheAdither MACD strategies generate losses. Due to
this fact we do not provide the optimal P&L paths for this instrument.

As in the previous cases, KMA generates higher trades number at short lengths and relatively
lower trades number at long lengths comparatively to the SMA and EMA.
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Figure 1.39. X instrument (frequency - 1 hayr, 40, n, 80, obs. 2372-4743): End-of-period

outcomes for the strategies, based on MAGD @0, n, 80) and signal lines (KMA, SMA and
EMA) of the different lengths.
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Figure 1.40. X instrument (frequency - 1 hayr, 40, n, 80, obs. 2372-4743): End-of-period total

trades number for the strategies, based on MACD 40, n, 80) and signal lines (KMA, SMA and
EMA) of the different lengths.

As the result, we can see that application of the kriging approach to the parameter optimization
of the trading strategy, based on MACD indicator leads to similar results as in Chapter 4. KMA
also leads to the absolute maximum profitshi® majority of the instruments. The optimal
lengths of the KMA coincide with the low vakm#rary to optimal EMA and SMA signal lines.

KMA generates higher trades number at short lengths, but lower trades number at long lengths
relatively to the EMA and SMA of the same length.

We can conclude that KMA improves the MAEdaling strategy under zero-transaction-costs
hypothesis. Moreover it works better at stistances, which is unlikely for the majority of
other MAs that generates more false signals at these lengths.

6 Kriging results: unevenly spaced data

As have been shown in Chapter 3, for the equally spaced samples of the financial data the
optimal KMA, defined by the kriging methods haspecific weight structure; KMA is close in

the lag to the SMA, calculated on the samewjrizlit might have higher volatility. Moreover

the optimal weights are the same throughout the time, as the same diSfE2cas (1)

between the moment of tinte where the MA is calculated and observations in the moving
window of the lengtim that precedes this moment are used to define these weights.

However, frequently the sampling of the finandialisianot done at equal distances, due to the

fact that the price/quote is documented #& thansaction is undertaken. Other case of the
unequal sampling appears when an instrumenésigconsidered as a function of other than
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time variable, for example volume. Such approach can be presented as a change of the
coordinates. In this case the price can be considered as a subordinat&€d Theassange of
coordinates helps to smooth the jumps in tloe griocess, frequently associated with the large
changes in the traded volume.

The incorporation of the volume into the pescef decision-makingght improve the trading

results. Blume, Easley, O'Hara (1994) demonstrated that the traders who use information
contained in market statistics such as prices and volume do better than the one that do not. The
other articles that analyzed the importanceoloime for the price prediction are Lo, Wang
(2000), Campbell, Grossman and Wand.(,19€rris and Raviv (1991), Wang (1991).

Taking into account that the kriging methozbants for the difference in the distance between

the points through the covariance/variogram madsn be used to construct the optimal MA

for the unevenly spaced data. In this chapter we present the examples of such method
applications.

In order to analyse the KMAs in more details we have also simulated trend-following strategy,
based on the crossovers of the price andci@es. The same strategy, based on the SMA
curve, is considered as a benchmark for thésresaoiparison. The crossovers of the price and

MA lines (SMA and KMA) define the strategy entry/exit signals. Lets define variable

R P MA. Then the strategy is formulated in the following way.

Trend-following strategy
1. Trading costs are O.

2. The initial trading positidros, 0; trading outcome3, O.
3. The first tradeRos,i ! 0) is undertaken under following condition:
if RR, 0 andR, O:Pos LR, P,3 O
if RR,c0andR,!0:Pos 1,R, PR, 3
otherwisePos 0, 3, O
4. Afterwards, if the trading signals anerg¢ed the following trades are executed:
if RR,d0 and R, O:
f exit (previously taken) posit®hortPos, 1):Pos O,P, P
f entry position Lonfos 1, R, R
f cumulative trading outcom8; 3,, Pos, R PR,
if RR, d0 and R, !0:
f exit (previously taken) positioong Pos, 1):Pos O,RP,, P
f entry position Shokos 1,P,, R

f trading outcome for this operatioB; 3,, Pos, R P,
otherwise,Pos Pos,,3, 3,;, Pos, P R,

0

As the result Chapter 6 is organized in the following way. Chapter 6.1 presents the case of
unevenly spaced time-dependent data chysi® missed observations when no transaction
takes place. We show how to construct KMAcanapare its results with the traditional SMA,

35 From the statistical point of view the change of the time coordinates to the volume-based (or other variable-based)
axe introduce the subordinated processes for price.
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estimated on the same sample. We also analgter the adjustment of the sample to the
regular spaced one by an interpolation of enidsservations can produce better KMA. Chapter
6.2 presents the kriged volume weighted mavemrgge (KVWMA) constructed for the irregular
spaced sample due to the change of the psatedrom time to volume. We also analyse the
trading outcomes of the trend-following strategy, based on this KVWMA.

6.1 Unevenly spaced time dependent price series

In this chapter we present application of the kriging method to the Bund data sampled at 1
second-frequency for the day of April 18, 2006. The frequercy Egh, therefore even for

Bund that is traded very actively, many gaps are present in the data. Some of these gaps count uf
to minutes. Figure 1.41 presents the sampdaldime coordinate (in seconds); O correspond to
9:00:00, #300 — to 9:05:00, etc.
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Figure 1.41Bund (April 18, 2006, frequencyed)squotes (unevg spaced data)

In order to analyse how these gaps might impact the estimation of the optimal MAs, we propose
to consider two samples:
(1) irregular sample: raw data at available time points of time
(2) regular sample: the sample obtaindilibyg the gaps in the data by the same
values available in the previous mondise. Such approach is based on the
assumption that the when there is no trading the price stays at the level
corresponding to the last transaction.

Figure 1.42 presents two variograms estimattebsm samples. As we can see, the adjustment
of sample to the regular sampling changes significantly the form of the variogram.
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Figure 1.42. Bund (April 18, 2006, frequency 1 sec):raam®dor unevenly and evenly spaced price

samples

Two different models were fit to the empirical variograms:

§ |-
(1) irregular samplelh 00071 e 3004 .

© E
(2) regular sampleJh  1.110°Jh.

The weights structure corresponding to thesegvam models are given in Figures 1.43 and
1.45. Figure 1.43 presents thamgte of the weights for the irregular sample. It should be
stressed that although the distribution of thehtgeig the same (the largest weights are assigned
to the first and last observation), the weights will differ from window to window as they are
defined also by the distance from the estimption to other point in the window, which are
irregular. This observation is support by the Figdrethat presents the first weight estimated

for each window. We can see that while thenaigtht (and the last) values contained in the
interval between 0.4 and 0.5, they almost never constant.

As for the regular sample, the same weight structure that corresponds to the linear model
preserves through time: ¢, | 05, ¢, , | O (see Figure 1.45).

The examples of the KMA and SMA, estimated on the basis of irregular sample and KMA,
estimated on the basis of regular sample ssain@ed at the points of irregular sample, are
presented in Figure 1.46. Notattthe effective lengths of thi&s estimated on the regular and
irregular samples are different.
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Figure 1.43. Bund (April 18, 2006, frequency 1 sec): Exaftpke optimal weightor the KMA for the
data sampled irregular (window beginning at 3050 observation)
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Figure 1.44. Bund (April 18, 2006, frequency 1 sec): Value of the first/last weights for the optimal KMA
as a function of the window used for its estimations
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Figure 1.45. Bund (April 18, 2006, frequency 1 secppkimeal weights for the KMA for the data re-
sampled regularly
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Figure 1.46. Bund (April 18, 2006, frequency 1 sec,26D8-3500s): Price and different MA types
(window=80 observations)
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As we can see for this particular length KMifnated on the irregular sample generate less false
signals than the SMA and KMA estimated onmdfelar sample. For example, between 2900-
3000 seconds the SMA, estimated on the irregular sample and KMA, estimated on the regular
sample send false signals by crossing sewesathie price curve, while the KMA estimated on

the irregular sample crosses it only once.

Table 1.2 and Figure 1.47 summarize thanuaxiprofits generated by the trend-following
strategy, based on the different MA t/pes

Table 1.2

Optimal outcomes of the trend-following strategy, based on the different MA types
Outcomes KMA (irregular) SMA (irregular) KMA (regular)

MA length 80 300 260

Cumulative value 0.4078 0.4218 0.395

Number of trades 256 103 279

As we can see the highest outcome is achieved for the strategy, based on the SMA. The KMA,
estimated for irregular samples generates comparable profits at much shorter lengths. At the
same time, we can notice that the KMA calculated on the adjusted regular sample and resample
for the irregular points, generate more fadg®lsi than the KMA estimated on the irregular
sample; at the same time it generates some stable profits for different MA lengths.

O.Ajk /\ “ N |
S~

(<)
>
T
>
[¢}]
201 |
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Eo [ =
(&)
0. N
02 —KMA (irregular) |
i —e—-SMA (irregular)
0 | | | | | KMA(reguIar)
' 100 150 200 250 300 350 400

MA length

Figure 1.47. Bund (April 18, 2006, frequency 1 sec): Eratioftgumulative value of the strategy for
different types of the MAs and data samples

36|t should be noted that the MA oftlength considered in the analysis are too short and less likely to be used for
the data with 1-second fregog in the real-life applications. We though propose to consgertiues and data
as some general example.
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