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Abstract 
 
In this thesis we have proposed several approaches to improve and optimize one of the most 
popular technical analysis techniques - trading bands strategies. Parts I and II concentrate on the 
optimization of the components of trading bands: the middle line (in the form of the moving 
average) and bandlines. Part III is dedicated to the improving of the decision-making process. In 
Part I we proposed the use of kriging method, a geostatistical approach, for the optimization of 
the moving average weights. The kriging method allows obtaining optimal estimates that depend 
on the statistical characteristics of the data rather than on the historical data itself as in the case of 
the simulation studies. Unlike other linear methods usually used in finance, this method can be 
applied to both equally spaced data (in our context, traditional time series) and data sampled at 
unequal intervals of time or other axis variables. Part II proposes a method based on the 
transformation of the data into a normal variable, which enables the definition of the extreme 
values and, therefore, the bands’ values, without constraining assumptions about the distribution 
function of the residuals. Finally, Part III presents the application of disjunctive kriging method, 
another geostatistical approach, for more informative decision making about the timing and the 
value of a position. Disjunctive kriging allows estimating the probability of certain thresholds 
being reached in the future. The results of the analysis prove that the proposed techniques can be 
incorporated into successful trading strategies. 
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Cette these propose des approches pour ameliorer et optimiser un des instruments les plus 
populaire d’analyse techniques – bandes de trading. Les parties I et parties II se concentrent sur 
l’optimization des composantes  des bandes de trading: ligne centrale (representée par la 
moyenne mobile) et lignes des bandes. La partie III est dédiée à l’amélioration du processus de 
prise de  decision. Dans la partie I on proposes d’utilizer la méthode de krigeage, une approche 
geostatistique, pour l’optimization  des poids des moyennes mobiles. La methode de krigeage 
permet d’obtenir l’estimateur optimal, qui incorpore les characteristiques statistiques des donnees. 
Contrarment aux methodes classiques, qui sont utilisées en finance, cette methode peux etre 
appliquée à deux types des données: echantillonées à distance  régulière  ou irrégulière. La partie 
II propose une methode, basée sur la transformation des données en une variable normale, qui 
permet de definir les valeurs extremes et en consequence les valeurs des bandes sans imposition 
des contraintes de la fonction de la distribution des residus. Enfin, la partie III presente 
l’application des methodes de krigeage disjonctif , une autre methode geostatistique, pour les 
decision plus informative sur le timing et type de position. Le krigeage disjonctif permet d’estimer 
les probabilités, que certain seuils seront atteints  dans le  futur. Les resultats d’analyse prouvent 
que les techniques proposées sont prometeuses et peuvent etre utilisées en pratique. 
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Resume 
 
L’analyse technique  consiste  en  l’ensemble des instruments, modèles 

graphiques et règles de trading, qui sont fondées sur la hypothese que les prix 

passés peuvent être utilisés pour anticiper les prix futurs. Les règles et modèles 

sont souvent developées par les traders-techniciens. L’analyse technique est 

largement ignorée par les traders-fondamentalistes, qui définissent leurs 

stratégies par les valeurs fondamentales (comme des macro- et micro-

indicateurs). Ses idées sont aussi rejetées par la majorité de représentants 

academique, qui n’acceptent pas cette approche comme méthode pour la 

prevision des prix futurs.  

 

Les chercheurs ont des difficultés pour accepter cette methode pour la raison 

suivante : L’analyse technique est fondée sur la hypothese que les prix passés 

peuvent être utilisés pour anticiper les prix futurs. Cette idée contredit 

l’hypothèse des marchés efficaces (« efficient market hypothesis ») sur laquelle 

la majorité des modèles financiers classique est basée. L’autre problème avec 

l’analyse technique est sa nature empirique: les règles de trading sont souvent 

dérivées d’observations empiriques plutôt que de modèles mathématiques. En 

plus, c’est plutôt la règle que l’exception pour les traders de déclarer que 

certains parametres de certaines stratégies sont optimaux sans aucune référence 

à des conditions, hypothèses et critères d’optimization. Finalement, les 

barrières linguistiques crées par le jargon et la terminologie technique utilisée 

par les traders et chercheurs compliquent encore le dialogue entre les deux 

parties. En conséquence, ce sujet est insuffisamment développé dans les 

recherches scientifiques, qui évoquent plutot le scepticisme que l’intérêt. Notre 
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motivation était donc de contribuer à la recherche  pour essayer  de combler le 

fossé  entre  praticiens et scientifiques. 

 

Cette thèse propose des approches pour améliorer et optimiser un des 

instruments les plus populaires de l’ analyse technique, les bandes de trading. 

La bande de trading est la ligne placée autour de l’estimateur de tendance 

centrale. Quatre composantes des bandes peuvent être définis : (1) la série de 

prix ; (2) la ligne centrale ; (3) la bande haute (supérieure) ; (4) la bande basse 

(inférieure).  Deux types de stratégies peuvent être définis pour cet instrument : 

(1) « trend-following » ; et (2) « contrariant ». Pour la strategie « trend-

following », les bandes servent de confirmations du signal de tendance établi. 

Au contraire, les bandes définissent les instruments qui sont trop chers ou 

moins chers pour la strategie « contrariant ». Certainment, les positions prise en 

contexte de ces types de strategie sont opposées. 

 

Les traders utilisent différents types des bandes. Les classement des bandes 

peut être défini par les idées/hypothèses conceptuelles en ce qui concerne les 

prix pour lesquels les bandes sont définies. Par example, les bandes de trading, 

les plus simples obtenues par le déplacement parallèle de la ligne centrale en 

haut et en bas, supposent la volatilité constante des prix. Les bandes de 

Bollinger essaient d’incorporer la nature stochastique de la volatilité des prix. 

Les autres types de bandes prennent en compte la distribution statistique des 

residus calculés sur la base de prix.  

 
L’avantage de bandes de trading consiste en la possibilité d’optimiser 

l’instrument par ses composantes. D’abord on peut optimiser la ligne centrale, 

comme  estimateur optimal de la tendance (la partie I). Ensuite les bandes sont 

optimisées de façon à ce qu’elles contiennent K% des résidus (la partie II). 
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Enfin, la partie III est dédiée à l’amélioration du processus de prise de  

decision. 

 

Dans la thèse on considère trois types des bandes qui correspondent aux 

groupes présentés plus haut. En première partie on estime la ligne centrale 

optimale sous la forme de la moyenne mobile krigée (KMA), la deuxième et la 

troisième parties utilisent respectivement la moyenne mobile simple (SMA) et 

moyenne mobile exponentielle (EMA) en tant que ligne centrale. La partie II a 

examiné les bandes définies par les caractéristiques statistiques des données 

(par exemple, variance). La partie III a analysé les stratégies de trading pour les 

bandes créées par le déplacement parallèle de la ligne centrale en haut et en bas. 

Le choix de différents types de la moyenne mobile (KMA et SMA) pour les 

deux premières parties est justifié par la nécessité d’éviter de mélanger des 

effets de l'amélioration des bandes de trading provoquées par les optimisations 

de ses composants. Quant au choix des bandes en partie III est expliqué par 

l'énorme popularité de ce type de bandes chez les traders. 

 
Dans la partie I "Optimisation de l’indicateur de la moyenne mobile: méthode 

de krigeage" on propose d’utiliser le krigeage, une approche geostatistique, 

pour l’optimisation des poids des moyennes mobiles (MA). Cette méthode 

permet d'optimiser la structure des poids pour une longueur prédéfinie de la 

fenêtre sur lequelle la moyenne mobile est calculée. La méthode de krigeage 

permet d’obtenir l’estimateur optimal, qui incorpore les caractéristiques 

statistiques des données, telles que la covariance (autocovariance). Cela permet 

d'obtenir des estimateurs optimaux qui dépendent des caractéristiques 

statistiques des données plutôt que des valeurs des données historiques comme 

dans le cas des études de simulation. Contrairement aux méthodes classiques, 

qui sont utilisées en finance, cette méthode peux être appliquée à deux types de 
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données: échantillonées à distance régulière ou irrégulière. Cette approche 

propose de définir le meilleur estimateur de la moyenne comme une somme 

pondérée des observations dans un voisinage, qui coïncide avec la définition de 

la moyenne mobile. La méthode d’optimisation se base sur la minimisation de 

la variance  d’estimation. 

 

Nous avons vu que la meilleure moyenne mobile krigée (KMA), estimée sur les 

données régulières a une structure des poids spécifique pour certains modèles 

de covariance: les plus grand poids sont attachés à la première et la dernière 

observation, alors que tous les autres poids sont faibles. En conséquence, 

KMA oscille autour de la courbe de SMA. La volatilité et l'amplitude des 

oscillations est une fonction indirecte de la longueur du voisinage utilisé pour 

le KMA : le KMA sur un voisinage plus long est moins volatile et coïncide plus 

avec la courbe de SMA. Par conséquent, des stratégies de trend-following, qui 

sont basées sur les KMA et SMA prendront des positions différentes pour des 

voisinages courts et les même positions pour des voisinages grands. La 

structure des poids ne dépend pas de la longueur de la fenêtre mais du modèle 

de covariance. Ce dernier a un impact sur les valeurs des coefficients de 

pondération proches des bordures de la fenêtre : le moins régulier est le 

modèle de variogramme à l’origine le plus les poids de KMA sont proches des 

coefficients de pondération du SMA. Par example, le modèle effet de pépite 

amène aux poids optimaux qui correspondent aux poids de la moyenne mobile 

simple. 

 

La structure des poids des échantillons à maille irrégulière est plus variable, elle 

dépend de l'écart entre les échantillons de la variable utilisée pour subordonner 
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les prix ou la distance entre les observations de prix temporaires: plus l'écart  

est grand, plus la structure des poids est volatile.  

 

L’analyse du KMA en contexte de stratégies de trading montre que le KMA 

permet d’obtenir des résultats positifs et intéressants. Les résultats de 

l'application de stratégies « trend-following » définie par les croisements de 

moyenne mobile et de courbe des prix montrent que pour la majorité des 

instruments considérés KMA génère des résultats plus élevés que les moyennes 

mobiles simples ou exponentielles. En plus, le profit maximal etait obtenu pour 

des KMA sur de petits voisinages. Les moyennes mobiles traditionnelles sur 

des voisinages courts produisent normalement beaucoup de faux signaux et de 

ce fait sont moins rentables. Malgré son caractère volatile, KMA ne génère pas 

plus de transactions que les moyennes mobiles traditionnelles de même 

longueur. Par conséquent, il semble que la nature erratique de la courbe de 

KMA ne conduit pas nécessairement à générer plus de faux signaux pour les 

stratégies de trend-following. 

 

L’application des stratégies de trading pour les échantillons irréguliers montre 

que les différents types de moyennes mobiles calculées sur l’échantillon ajusté 

(pour avoir un échantillon régulier) pourrait conduire à des résultats moins 

efficaces, que si on calcule la moyenne mobile optimale pour l’échantillon 

irrégulier par la méthode de krigeage. 

 

La deuxième partie "Une alternative aux bandes de Bollinger: les bandes, 

basées sur les données transformées", propose une nouvelle approche pour 

optimiser les bandes de trading.  
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Bandes de Bollinger ont été proposése au début des années 1980 et restent très 

populaires parmi les professionnels de nos jours. Bollinger a proposé d'utiliser 

la moyenne mobile simple comme une ligne centrale: 

n
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Les conclusions suivantes peuvent être dérivées pour les bandes de Bollinger :  

1. Les bandes de Bollinger sont ajustées pour la volatilité des prix, comme 

la définition des bandes incorpore l'écart-type, en tant que mesure de la 

volatilité.  

2. Les bandes supérieures et inférieures au même moment de temps sont 

placés à distance égale de la moyenne mobile, c'est-à-dire ces bandes 

sont symétriques. Toutefois, cette distance peut être différente à 

différents moments du temps, en raison de l'évolution de la nature de 

la volatilité des prix.  

3. La distance entre les bandes se réduit avec la diminution de la volatilité 

des prix et s’élargit avec l’augmentation de celle ci.  

4. L'usage des SMA comme la ligne centrale est justifiée par le fait que le 

SMA est la moyenne statistique des prix des sous-échantillons - la 

même valeur qui est utilisée pour les calculs de l'écart-type de prix. En 

outre, certaines recherches montrent que la substitution de la SMA par 
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la moyenne mobile plus rapide ne produit pas de résultats plus élevés 

(Bollinger, 2002). Nous avons également montré dans la partie 1 qui 

moyenne mobile optimale krigée (KMA), en moyenne, coïncide avec la 

SMA : KMA coïncide avec le SMA pour les grandes longueurs de la 

fenêtre. L'intérêt de l'introduction de la moyenne mobile exponentielle 

(EMA) au lieu du SMA pourrait consister en méthode récurrente de 

son calcul (à l'heure actuelle EMA peut être calculée comme une 

somme pondérée du prix actuel et de la valeur précédente de l’ EMA). 

Toutefois, à cet égard SMA peut également être programmée avec des 

formules récurrentes, mais il a besoin d’accumuler plus de données à 

chaque instant que pour le calcul d'EMA. 

 

La méthode traditionnelle de Bollinger est statistiquement justifiée pour les cas 

de prix au minimum localement stationnaires et avec une distribution 

symétrique. Les bandes, basées sur les données transformées, fournissent un 

moyen simple mais puissant pour l’optimisation des bandes. La méthode, est 

basée sur la transformation des données en une variable normale, qui permet 

de définir les valeurs extrêmes et en conséquence les valeurs des bandes sans 

imposition des contraintes sur la fonction de la distribution des résidus. Du 

point de vue théorique les bandes optimales devraient contenir K% des 

données (par exemple, K% = 90%); toutes les observations qui se trouvent en 

dehors des bandes sont considérés comme extrêmes. Les bandes ne sont pas 

faciles à définir pour la distribution asymétrique ou multimodale et exigent un 

temps considérable pour la procédure d’optimisation. Notre méthode permet 

d'obtenir les bandes dans un cadre plus simple et moins intensif en termes de 

calculs. Pour cette procédure, les données brutes (résidus) sont d’abord 

transformées en variables normales. Pour la variable normale la distribution est 
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connue et bien definie ; en conséquence les intervalles qui contiennent K% des 

données sont connus. Ensuite, les bandes pour les données brutes sont 

obtenues par transformation de l'intervalle (bandes) pour la distribution 

normale en utilisant d'une fonction d’anamorphose calibrée précédemment. 

Les DT bandes contiennent le même pourcentage de données que l’intervalle 

pour les données normales.  

 

Nous avons examiné notamment les résidus tii SMAPR ��� , �¦� 
i

it P
n

SMA
1

, 

 pour calibrer la fonction de transformation. Notre objectif 

principal était de rester dans le contexte de la théorie des bandes de Bollinger 

qui utilisent ces résidus pour le calcul de l'écart-type des données. En même 

temps, ces résidus provoquent la forme specifique de ces DT bandes : les 

bandes forment un escalier qui change de marche si il ya une variation 

importante de prix. Cependant, les DT bandes sont moins sensibles à des 

mouvements non significatifs des moyennes mobiles. En plus, il semble que les 

DT bandes peuvent etre utilisées pour définir d’autres signaux de trading 

comme les vagues d’Elliot et niveaux Support/Resistance. 

� >tnti ;1�����• � @

 

On a analysé des stratégies différentes dans la partie II. Les stratégies de bande 

de Bollinger, comme toutes les stratégies contrariantes envoient de faux 

signaux au cours de la tendance présente dans les données à cause des erreurs 

qu'elles font dans la définition de la "vraie" valeur de l’instrument. Pendant les 

tendances des marchés la «vraie» valeur augmente ou diminue, par conséquent, 

des signaux de "surévaluation" ou "sous-évaluation" d’instrument sont fausses. 

Statistiquement, cela implique que les paramètres de nos bandes ne reflètent 

pas la vraie distribution de probabilité, qui n'est pas constante. En raison de ces 
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faux signaux les traders ne se basent pas uniquement sur les signes envoyés par 

les bandes de Bollinger, mais les examinent en combinaison avec d'autres 

signaux d’analyse technique, dans le but de confirmer la sur-évaluation / sous-

évaluation ou de prédire les mouvements futurs des prix (par exemple, 

inversion de tendance). Dans cette partie nous avons examiné le momentum, 

comme l'un des signaux de confirmation pour les stratégies basées sur les 

bandes de Bollinger. Le même signal est utilisé pour la confirmation des 

stratégies pour les DT bandes. En outre, nous utilisons aussi les signaux de 

« Elliot » et « Support / Résistance » pour confirmer les signaux des DT 

bandes. À la suite, quatre stratégies différents sont analysées: (1) les stratégies 

de base, qui se fondent uniquement sur les signaux envoyés par les bandes, (2) 

les stratégies confirmées par le momentum, (3) les stratégies confirmées par les 

signaux d’ « Elliot » ; et (4) les stratégies  confirmées par les signaux d’ « Elliot » 

et des « Support / Résistance ». 

 

Les résultats de simulations trading pour quatre instruments différents 

montrent que les DT bandes génèrent plus de profits que les bandes classiques 

de Bollinger en stratégie confirmée par l’indicateur de momentum; les 

trajectoires de profil profits/pertes ont une pente plus positive et ascendante. 

Les majorités des stratégies gagnantes incorporent les DT bandes. En 

particulier, les stratégies marchent bien pour trois des quatre instruments. En 

plus, la stratégie de DT bandes était encore rentable en présence des certains 

coûts de transaction et de slippage. Enfin, les DT bandes pourraient être utiles 

dans la définition d'autres règles d’analyse techniques  - les vagues d'Elliot et les 

niveaux de support / résistance. En conséquence, les nouvelles DT bandes ne 

sont pas seulement mieux justifiée d'un point de vue statistique et plus simples 

 xiv



dans leur application, mais elles permettent également générer des profits plus 

importants. 

 

La partie III "Le krigeage disjonctif en finance: une nouvelle approche pour la 

construction et l'évaluation des stratégies de trading» présente l’application des 

méthodes de krigeage disjonctif (DK), pour des décisions plus informative en 

termes de timing et type de position. Comme beaucoup des stratégies de 

trading sont basées sur des signaux envoyés par la rupture de certains seuils, 

ces problème demande plus d’attention. Le krigeage disjonctif, une autre 

approche géostatistique, permet d’estimer les probabilités, que certain seuils 

seront atteints  dans le  futur. 

 

En particulier, nous voulons prédire la probabilité conditionnelle 

� �mtttct ZZZzZP �����'�� �� ,...,, 1 � � sur la base des dernières observations 

disponibles dans certains voisinages. Du point de vue statistique, nous avons 

besoin de connaître la distribution �� �� �DZTZ  à (n+1)-dimensions, qui est 

compliquée, voire impossible à estimer à partir de données empiriques. La 

méthode de krigeage disjonctif implique seulement la connaissance de la 

distribution bidimensionnelle �� �� �� ���^ �` njitZtZ ji �d���d0,,  et 

� � � ��� ���^ �` njitZTZ j �d���d0,,  comme une condition nécessaire pour les calculs de 

la prédiction d’une fonction non linéaire. Il s'agit d'une hypothèse moins stricte 

que la connaissance de la distribution à (n+1)-dimensions.  

 

La méthode de krigeage disjonctif est basée sur l'hypothèse qu’une fonction 

non linéaire de certaines variables aléatoires peut être développée en termes de 

facteurs d’un polynôme: 
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Quand  est une variable normale et les couples � � � �tY �� �� �� ���^ �` njitZtZ ji �d���d0,,  

ont une distribution bivariable gaussienne, nous pouvons utiliser des 

polynômes orthogonaux d’Hermite pour le développement de la function non-

linéaire. Grace à l'orthogonalité des polynômes de Hermite, le krigeage 

disjonctif de la fonction non linéaire est réduit au krigeage des polynômes de 

Hermite. 

 
Pourtant l'application de la méthode de krigeage disjoncitif à données 

financières demande quelques ajustements en raison de la particularité de celles 

ci. Un des problèmes est la non-normalité de la variable analysée. En ce cas la 

variable et les seuils sont transformés en variables normales. Le principal 

problème est pourtant la non-stationnarité qui exige la ré-estimation des 

paramètres de la méthode, notamment de la fonction d’anamorphose. Nous 

avons proposé la méthode qui permet d’ajuster  la fonction de transformation 

principale (basique) à la volatilité locale des données. 

 

Deux types de probabilités disjonctives peuvent être définis et évalués. Les 

probabilités disjonctives ponctuelles sont les probabilités estimées par krigeage 

disjonctif  en des points particulier ; ils reflètent la probabilité qu’un certain 

seuil sera dépassé à un certain moment de temps. Cette probabilité peut être 

estimée, mais ne peut pas être validée. Le krigeage disjonctif d’un intervalle  

reflète la probabilité qu’un certain seuil sera dépassé sur un intervalle de temps  

futur. Ce type de probabilité peut être validé par les fréquences empiriques - la 

proportion des observations lorsque le prix a été au-dessous d’un certain seuil.  
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Ces probabilités ont été estimées pour quatre instruments différents. Les 

résultats sont cohérents. L'intervalle DK probabilité (calculé pour la fonction 

d’anamorphose constamment ajustée à la volatilité locale) démontre une bonne 

prédiction en termes de timing et des valeurs en comparaison avec les 

fréquences empiriques. Nous avons également montré que seule la longueur de 

l'intervalle pour lequel la prévision a été faite et la longueur de l'échantillon 

utilisé pour l'ajustement de la fonction d’anamorphose ont un impact sur la 

prévision par la méthode de krigeage disjonctif. 

 

La pouvoir de la prédiction de la méthode de krigeage disjonctif a été évalué  

aussi par la comparaison des résultats des stratégies de trading, qui incorporent 

cette probabilité krigée. Nous avons construit deux types des stratégies: (1) 

stratégie de krigeage disjonctif, où la décision sur la position d’entrée est faite 

sur la base des probabilités krigées, et (2) la stratégie aléatoire, où la décision 

sur la position d’entrée est faite au hasard (avec probabilité de 0.5). Notre étude 

révèle que la stratégie de krigeage disjonctif produits des résultats positifs pour 

l'intervalle continu des seuils. La stratégie aléatoire produit les bénéfices à 

nature aléatoire. La distribution de profit per transaction montre que le 

krigeage disjonctif permet de diminuer le nombre de transactions avec les 

pertes et augmenter la nombre de transaction avec les profits, si on compare 

avec la distribution de la stratégie aléatoire, qui produit une distribution 

symétrique pour les gains des transactions. 

 

En conséquence, nous avons montré comment cette méthode peut être 

appliquée / ajustée pour les données financières d’une manière continue que 
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par rapport à la stratégie aléatoire, la stratégie de krigeage disjonctif améliore  le 

processus de prise de décision.  

 

Dans ce travail, nous sommes concentrés sur des études d’application d’analyse 

technique et ses stratégies à un seul instrument. Les recherches futures 

devraient envisager l’optimisation des stratégies pour un portefeuille 

d'instruments. En particulier, une autre méthode géostatistique multivariable, 

telle que cokrigeage peut être utilisée pour l'estimation de la moyenne du 

portefeuille et la prévision de sa valeur. 

 

Afin de séparer les effets de l'amélioration de la ligne centrale (par 

l'introduction de la KMA) et l'amélioration de bandes (par l'introduction de la 

DT bandes), nous n'avons pas examiné les DT bandes qui intègrent la KMA 

comme la ligne centrale. Il serait particulièrement intéressant d’analyser des 

stratégies, fondées sur les DT bandes et KMA court.  

 

L’approche des DT bandes indique les directions suivantes de recherche 

seraient à envisager. L'ajustement de la fonction d’anamorphose à la volatilité 

locale, réalisée dans la partie III pour la méthode de krigeage disjonctif, peut 

être appliquée à la définition des DT bandes. 

 

L'étude de la relation entre la rentabilité de la stratégie et la valeur de paramètre 

K% utilisée pour la définition des DT bandes permettra augmenter les profits 

des stratégies définies sur la base de ces bandes.  

 

Cette approche crée des nouvelles possibilités à l'amélioration d'autres 

instruments et règles d'analyse technique. Par exemple, la stratégie confirmée 
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par l’indicateur de momentum est fondée sur la définition des seuils optimaux 

pour cet indicateur. Dans cette analyse les seuils n’étaient pas optimisés, mais 

l’approche de transformation des donnée utilisée pour la définition des DT 

bandes peux être utilisée pour définir les seuil de momentum. Cela pourrait 

conduire à des seuils asymétriques de momentum. L'autre exemple est 

l'application des DT bandes à la définition d'autres indicateurs techniques, 

comme les vagues d'Elliot et de support / résistance.  

 

Enfin, l'application de la méthode de krigeage disjonctif aux données 

financières peut encore être améliorée par un meilleur ajustement de la 

fonction cumulée de la distribution utilisée pour la transformation de données 

aux changements de moyenne locale ou à l’asymétrie de distribution.  

 

Les résultats d’analyse prouvent que les techniques proposées dans cette thèse 

sont prometteuses et peuvent être utilisées en pratique. Ils indiquent aussi  de 

nombreux domaines de recherche pour l'avenir.  
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General introduction 
 
Technical analysis is a hotly debated topic among researchers and traders. It has its devoted 
supporters, so called technicians or technical analysts, as well as the opponents who do not 
accept its methods. The debate takes place not only between different groups of traders 
(fundamentalists vs. technicians1), but also between the representatives of academic circles and 
traders (technicians). The discussion between different types of traders is explained by different 
principles and relationships that are used for predicting future prices. Fundamentalists base their 
predictions and, thus, their strategies on the market fundamentals, such as macro-indicators and 
micro-indicators. Macro-indicators evaluate general market situation; inflation, interest rate, 
unemployment rate, inventories, consumer confidence index, etc. are the examples of such 
indicators. Micro-indicators represent the characteristics of an instrument, for which the 
prediction is made; for example, for the prediction of the price movements of a particular stock, 
the traders analyze company’s revenues, assets, balance sheet, etc.  
 
In their turn, technical analysts believe that prices incorporate all information available in the 
market (i.e. macro-, micro-indicators, expectations, etc.). Therefore, arguably, it is sufficient to 
use the existing price observations to make predictions about future price movements. Thus, 
technical analysis techniques are predominantly based on the price data.  
 
When it comes to the academic audiences, most of them2 refuse to accept technical analysis as a 
consistent price forecast method. As noted Lo et al. (2000), many academic researchers who easily 
accept fundamental factors believe that “the difference between fundamental analysis and 
technical analysis is not unlike the difference between astronomy and astrology”3. Taking into 
account that the technical analysis exists for more than 100 years, such resistance of the 
researchers is quite puzzling, and we believe that there may be an explanation to this 
phenomenon.  
 
First, the technical analysis theory is based on the assumption that the past price observations can 
be used to predict the future price movements. This assumption contradicts the efficient market 
hypothesis (EMH)4 that is the cornerstone of the financial theory and on which many financial 
models are based. At the same time many departures from EMH are observed in the real markets 
due to over- or under-reaction, certain market anomalies (such as size effect), behavioral effects. 
Bernard and Thomas (1990), Banz (1981), Roll (1983), Chan, Jegadeesh, Lakonishok (1996), 
Huberman and Regev (2001) are the examples of such research. Treynor, Ferguson (1984) 
demonstrated theoretically that past prices, combined with other information, can predict the 
future price movements. Lo and MacKinaly (1988, 1999), showed that past prices can be used as 
a forecast for future prices. Finally, Grosman and Stiglitz (1980) argue that mere presence of the 
trading and investment activity and the possibility to earn profits in financial markets undermines 
the credibility of EMH. Despite the existence of such anomalies, the supporters of EMH still 
believe that the investment opportunities occur only in the short-term, and they are eliminated in 

                                                 
1 Nowadays pure technicians or fundamentalist among traders rarely exist. Technicians generally do follow the 
financial news and the macro-indicators, while fundamentalists apply some of the technical analysis techniques. 
2 Some researchers though believe in the prediction power of the technical analysis. Further we will provide these 
works in general literature review. 
3 Lo, A. W., Mamaysky, H. and J.Wang. 2000. “Foundations of Technical Analysis: Computational Algorithms, 
Statistical Inference, and Empirical Implementation”, The Journal of Finance, Vol. LV, #4 (August, 2000), pp.1705-
1765, p.1705. 
4 The EMH states that the more efficient the markets are, the more random the price movements in these markets 
are. As a result, it is impossible to use the past prices to predict the future movements under this hypothesis. 
Literature review on the EMH can be found in Lo (2007). 
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the long run. As a result, at present there is no consensus regarding the validity of the EMH in 
real markets. 
 
The second point is that most technical analysis techniques have been developed on the basis of 
the empirical observations, rather than derived or modeled mathematically. For example, the 
majority of chart patterns, such as “Support/Resistance”, “Head-and-Shoulders”, etc. were the 
results of regular observations of the price behavior. Evidently, the experiment and observation 
laid the foundation for many major inventions in physics, mechanics, chemistry and engineering. 
The key difference between the scientists and technicians appears to manifest itself in the way 
they treat the observed results: contrary to the scientists, technicians frequently do not bother to 
prove or explain their observations, but take them for granted.   
 
The third explanation is driven by the fact that the technical trading rules are often unjustifiably 
presented as “optimal”. We can frequently see the traders making claims about “optimal” values 
of certain technical parameters (for example, the moving average length) without any additional 
support or explanations how and for what data type (instrument, data frequency, etc.) these 
values were obtained. Obviously, such statements raise lots of skepticism from the scientists. 
 
Finally, the “language barriers” created by the usage of the technical jargon on one side and 
statistical terms and tests names on the other complicate the assimilation of the new ideas by 
both sides (Lo et al., 2000). In addition, the researchers frequently mistakenly believe that the 
technical instruments are only about “charting”, disregarding the mathematical concepts that are 
used in building the technical strategies (for example, moving average, momentum, etc.) 
 
Thus, we can conclude that the absence of both the scientific representation of the method and 
of a formal analysis of the method’s prediction power creates a misunderstanding between the 
technical traders and academic researchers. As defined by Neftci (1991), “technical analysis is a 
broad class of prediction rules with unknown statistical properties, developed by practitioners 
without reference to any formalism”5.  
 
On our part, we believe that technical analysis should be viewed more as a “bank” of empirical 
observations of the financial markets that can be further used by the researchers to develop 
models or well-defined statistical trading techniques. We also believe that all the academic 
research performed to-date in this field, is a necessary input in narrowing the gap between the 
theoretical and practical finance. 
 
According to some researchers, technical analysis studies can be split into the following groups: 

�x�� Trend studies 
This group represents the indicators that identify the trend and the trend breaks. 
Among the most popular indicators are moving averages, support and resistance 
levels, etc. 

�x�� Directional studies  
This group contains the indicators that define the length and strength of current 
trend/forecast. Among these indicators are DMI, Parabolics, range oscillator, etc. 

�x�� Momentum studies 
This group concentrates on the measurements of the velocity of the price 
movements. The examples of such indicators are Stochastic, Momentum, Rate of 

                                                 
5 Neftci, S. N. “Naïve Trading Rules in Financial Markets and Wiener-Kolmogorov Predicition Theory: A study of 
Technical Analysis”, Journal of Business, Volume 64, Issue 4 (October, 1991), pp. 549-571, p.549. 
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change, MACD, Trix and CCI. Momentum instruments are frequently used for the 
definition of the trend breaks that often follow the slowness of the price velocity. 

�x�� Volatility studies  
      This group presents the trading rules that incorporate instruments’ volatility and the 

notion of extreme values. The examples of such rules are trading bands, among which 
the most popular case is the Bollinger bands. 

�x�� Volume studies 
In the context of the technical analysis, volume is the second (after price) important 
data element that measures the trading activity in the markets. Volume itself as well as 
the indicators that incorporate volume information (for example, volume weighted 
moving averages) completes this group.  

 
Each group of technical studies contains indicators and chart patterns. Indicators cover all 
buy/sell rules that are formulated on the basis of the well-defined mathematical expressions (for 
example, trading rules based on the moving average). In contrast, the charts cannot be explicitly 
defined by formulas; they are the graphical patterns defined subjectively by a trader. Therefore, 
one trader can recognize a specific chart as particular price pattern, while the other trader would 
see no pattern at all. The examples of such charts are Support/Resistance levels, Head and 
Shoulders and Triangles. It should be noted that researchers try to program the chart patterns by 
algorithms and estimation methods (see Lo et al., 2000), however, the results of the chart pattern 
recognition depends on the algorithm itself. 
 
The financial literature that exists in the field, can be split into the following groups: 

1. Development of the scientific framework and formalization of the technical analysis. 
2. Evaluation of the prediction power of technical trading rules, as well as their comparison 

with other prediction methods. 
3. Analysis of the statistical properties of technical indicators and their trading outcomes. 
4. Optimization of the existing indicators/rules/strategies; their improving; development of 

the new technical trading instruments. 
 
For the first group of studies6, the cornerstone work is the paper by Neftci (1991) “Naïve 
Trading Rules in Financial Markets and Wiener-Kolmogorov Prediction Theory: A study of 
Technical Analysis”. It proposes the general approach that defines which technical rules can be 
formalized and which cannot. According to this framework, a well-defined rule should be a 
Markov time, i.e. it should use only information available up to current moment for its 
construction7. Most of the prediction technique that is used for financial market forecasts lies in 
the Wiener-Kolmogorov prediction theory framework, according to which “time-varying vector 
autoregressions (VARs) should yield the best forecasts of a stochastic process in the least square 
error (MSE) sense”8. However, this framework is not suitable for the forecast of the non-linear 
series. For example, Neftci (1991) defines at least two cases when linear models cannot produce 
plausible forecasts such as (1) producing sporadic buy and sell signals (non-linear problem by its 
nature); and (2) predicting some particular patterns, such as stock exchange crashes. 
Consequently, any other systems of forecasts that can predict non-linear time series can improve 
the forecast proposed by the Wiener-Kolmogorov framework. Similar conclusions are obtained 
in Brock, Lakonishok and Lebaron (1992). According to Neftci (1991), it may be the case that 
technical analysis informally tries to analyze the information captured by the higher order 
moments of asset prices. In fact the patterns and rules of the technical analysis can be 

                                                 
6 See also Rode, Friedman, Parikh, Kane (1995) for formalization of the technical analysis. 
7 The method will be presented further in more details. 
8 Neftci, S. N. “Naïve Trading Rules in Financial Markets and Wiener-Kolmogorov Predicition Theory: A study of 
Technical Analysis”, Journal of Business, Volume 64, Issue 4 (October, 1991), pp. 549-571, p.549. 
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characterized “by appropriate sequences of local minima and/or maxima”9, that lead to non-
linear prediction problems (Neftci, 1991). As the result, he believes that technical analysis can 
improve the forecasts of the future price movements. 
 
Another part of the formal academic research that can diminish the number of skeptics about the 
technical analysis is the formalization of the technical indicators and instruments themselves. 
While there is a lot of literature devoted to the description, definition or calculations of the 
technical indicators (Murphy, 1999;  Achelis, 2000), there are few works that explain or justify the 
method from theoretical standpoint; the examples are Bollinger (2002) on the Bollinger bands, 
Ehlers ([38]) on moving average. Group of papers try to explain the predictability of the technical 
indicators in the context of the microstructure theory through the relationship between technical 
analysis and liquidity provision. The researchers believe that the technical analysis may indirectly 
provide information captured in limit-order books to make predictions about future price 
movements. Osler (2003) provided the explanation of the prediction power of such technical 
trading rules as Support/Resistance, proving the following hypothesis: the clusters of take-profit 
and stop-loss orders are the reasons why the rules succeed in predicting future price movements. 
Kavajecz, Odders-White (2004) related the moving average indicators (price moving averages of 
different length) to the relative position of depth on the limit order book. 
  
The second group of studies that measure the predictive properties of the technical analysis is 
best represented in the financial literature. The majority of the papers in this field are devoted to 
the statistical (econometric) analysis of the prediction power of the technical rules, while 
comparing them with other (non-technical) predictors or variables. The early works in the field of 
the technical analysis did not find the superior prediction properties of the technical rules 
comparing them with the Buy-and-Hold strategy; as the result these works supported the EMH 
theory (Alexander, 1961, 1964; Fama and Blume, 1966; James, 1968; Van Horne and Parker, 
1967; Jensen, Benington, 1970). More recent work by Allen, Karjalainen (1999) and Ratner and 
Leal (1999) has also found little evidence in favor of the technical analysis. At the same time 
other research provides the evidence in favor of the technical analysis. Brock, Lakonishok and 
Lebaron (1992) showed that 26 technical trading rules applied to Dow Jones Industrial Average 
over 90 years over-perform the strategy of holding cash. Sullivan, Timmermann, White (1999) 
shows that some of the technical rules considered in Brock et al. (1992) are actually profitable 
even after using the bootstrap method to adjust for the data-snooping biases. Levich, Thomas 
(1993) found that some moving average and filter rules were profitable in the foreign exchange 
markets. Osler, Chang (1995) also found the evidence of the profitability of the “head-and-
shoulders” patterns in foreign exchange markets. Lo, Mamaysky, Wang (2000) showed that the 
same technical charts provide incremental information about future price movements by 
comparing unconditional distribution of the stocks returns with the conditional distribution of 
the returns (conditional on the presence of the chart pattern). Blume, Easley, O’Hara (1994) 
demonstrated that the traders who use information contained in the market statistics such as 
prices and volume do better than the one who do not use it. In this context, technical analysis is a 
component of trader’s learning process. Blanchet-Scallient et al. (2005) compare the results of the 
technical rules to the strategies, based on the mathematical model. Under certain assumptions 
(prices follow one-dimensional Brownian motion, trader’s wealth utility is represented by the 
logarithmic function) they show that MA rule can outperform the strategies based on the 
mathematical models in case of severe misspecifications of the model parameters. 
 
As for the third group of studies, Acar, Satchell (1997) analyzed the statistical properties of the 
returns from the trading rules, based on the moving averages of the length 2. They showed that 
                                                 
9 Neftci, S. N. “Naïve Trading Rules in Financial Markets and Wiener-Kolmogorov Predicition Theory: A study of 
Technical Analysis”, Journal of Business, Volume 64, Issue 4 (October, 1991), pp. 549-571, p.550. 
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in the case when the asset price distribution is a Markovian process, the characteristic function 
(and, therefore, the distribution function too) of the realized returns could be deduced.  
 
The optimization of the technical trading rules has a crucial importance for the traders, who use 
this approach in the construction of their strategies. Both researchers and traders contribute to 
this field of studies. For some instruments that are more popular, many optimization approaches 
exist, while for the other the niche is largely underdeveloped. For example, many works devoted 
to the optimization of the rules based on the moving averages, momentum (Gray, Thomson, 
1997). Certainly, the choice of the optimization techniques largely depends on the type of the 
technical indicator. However, there is one approach that is applied to many different techniques – 
a simulation of the trading strategy based on the available historic data samples. According to this 
approach the optimal parameters correspond to the global/local maximum or minimum of the 
trading outcomes (profit/losses, Sharpe ratio, number of trades, etc.). The example of such 
optimization approach can be found in Williams (2006). Although this approach is universal, as it 
can be applied to all rules that are used in the trading strategies, the method has its drawbacks. 
The outcomes are dependent on the historical data used for optimization; thus, the parameters 
optimal for the studied data set might be no longer optimal for a new data sample. 
 
Finally, the development of the new instruments is a very dynamic field that is constantly 
enlarging both with the new types of the existing instruments and totally new ones. For example, 
Arm ([11], V.8:3) proposed the volume-weighted moving average, Chande ([28], V.10:3) 
developed the volatility adjusted moving average, Chaikin and Brogan in their time introduced 
Bomar bands (Bollinger, 2002). 
 
As we can see, the majority of the papers in the field of technical analysis are devoted to the 
analysis of its prediction power within the context of EMH. Despite a significant number of 
papers on this topic, there is still no consensus whether technical analysis has superior prediction 
power over other prediction methods. Therefore, we will accept the hypothesis, similar to one in 
Grosman and Stiglitz (1980), that survival of the technical analysis among traders for the past 100 
years can be considered a proof that it can be integrated into profitable trading strategies, at least 
for some particular instruments; otherwise the traders would have stopped using it. 
 
At the same time, fewer researchers concentrate on the development of the theoretical 
framework for the analysis and optimization of the technical rules, although there is a pool of 
users (traders, technicians) who create the demand for this type of research. Thus, in this thesis, 
we want to concentrate on the optimization and development of the new trading techniques 
based on the existing technical strategies. The technical indicators/rules chosen for the analysis 
will be formalized and explained from the point of view of the statistical theory. Contrary to 
many existing works in the field that use trading simulations to define the optimal parameters, we 
want to use the optimization approaches, based on the statistical characteristics of the data in the 
first place. We will use the trading simulations in all parts of this thesis, mainly to compare the 
optimized indicator/strategy with other non-optimal (in the context of this work) 
indicators/strategies. 
 
It is obvious that an exhaustive analysis of all technical rules is quasi-impossible: the set of trading 
rules is extremely large and it expands constantly with the development of the new rules and 
patterns. We decided to concentrate our analysis on such popular technical analysis techniques as 
trading bands. While being part of the volatility studies, trading bands frequently incorporate (in 
their constructions or their strategies) other techniques of the technical analysis from such group 
of studies as trend and momentum (see classification above). Besides, we will prove that the 
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method itself is well defined within the framework developed by Neftci (1991), briefly presented 
further. 
 
Trading bands are lines plotted around a measure of central tendency, shifted by some percentage 
up and down (upper and lower bands) (Bollinger, 2002). The schematic representation of the 
concept is given in Figure 1.  
 
Trading bands have four key components (see Figure 1):  

(1) price (quotes),  
(2) mid-line,  
(3) upper band, and  
(4) lower band.  

 
The way these components are defined implies the existence of different bands types, such as 
envelopes and channels (Bollinger, 2002, Murphy, 1999). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Upper band

Lower band

Central 
tendency 

 
Figure 1. Schematic representation of trading bands 
 
Despite the differences in constructing the bands, the strategies based on them are quite similar. 
Touching/breaching upper/lower bands give trader information on the direction of price 
movements or on relative price levels (whether the instrument is oversold or overbought), which 
are used as signals in strategy construction. As a result, both trend following and contrarian 
strategies can be defined on the basis of the trading bands.  
 
For example, let some moving average represent the mid-line in the bands. Suppose prices 
crossed the upper band of the trading bands after continuous fluctuations within the 
upper/lower bands and the mid-line crossing. For the trend following strategy, the bands are the 
confirmation of an established trend: the first signal that the upward trend had been established 
happen at the crossover of the moving average and price curve10. Therefore, a breach of the 

                                                 
10 Breaching the upper bands implies that the price has been previously breaching the moving average line from 
below. 
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upper band can be used as a confirmation signal of an upward trend. In this context, trading 
bands allow to eliminate false signals generated by the moving average trading rule. 
 
Breaching the trading bands in the context of the contrarian strategy confirms that the 
instrument is mis-priced. Therefore, breaching the upper band means that currently the 
instrument is overpriced and the price should return to its average (moving average line) in 
future. 
 
As the same trading bands can be used in the strategies that lead to the opposite trading 
decisions11, traders frequently use trading bands in combination with other technical trading 
signals that confirm the presence or absence of a trend. In case of the trend-following strategy, 
these extra rules give additional confirmation signals that the trend has been established, while in 
the case of the contrarian strategies they allow avoiding trending patterns, where contrarian 
strategy sends false signals. 
 
As have been mentioned already, it can be proven that some types of the trading bands are well 
defined. According to Neftci (1991), technical trading rule is well defined if it is a Markov time. 
 
Let  be an asset price; - sequences of information sets (sigma-algebras) generated by  
and other data sets observed up to time t. 

� t̂X � ` tI tX

 
Definition 1 
A random variable �W is a Markov time if the event �^ �`tAt ��� �W  is –measurable. tI
 
Simply speaking, it means that a rule/indicator is well defined if for making a decision or its 
calculation it uses only information available up to the current moment, but not the one that 
anticipates the future. For example, the first moment of time when prices increase 20% from the 
initial level at  is Markov time: on the basis of available history of prices up to moment , 
we can determine whether this event has happened or not. As a result, the Markov time approach 
eliminates many technical rules that anticipate the future, among which many chart patterns.  

0� t t

 
The definition of a technical rule as a Markov time implies (1) possibility to quantify the rule, (2) 
feasibility of the rule, (3) possibility to investigate rule’s predictive power. However, the fact that 
the rule is well defined cannot justify its usage. In order to be used, a rule should produce 
(buy/sell) signal at least once, i.e. the probability that the signal is generated at least once should 
be equal to one (see Definition 2).  
  
Definition 2 
A Markov time �W is finite if 

�� �� 1� �f���WP . 
 
In addition, a rule should have at least the same predictive power as other well-defined 
forecasting techniques. As a result, a trading rule gives a consistent forecast of the future price 
movements if it is a finite Markov time that has at least the same predictive power as more 
formalized forecasting methods. For example, Neftci (1991) showed that the moving average 
trading rules are finite Markov times and in some cases have higher predictive power than the 
linear forecast methods, such as AR or ARMA models. 
 
                                                 
11 The trading positions taken within each strategy would be the opposite: for the trend-following strategy a long 
position is appropriate, while for the contrarian strategy – a short position should be taken. 
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Further we provide the proof that the trading bands are Markov times. 
  
Lets define � ^  as some random process that represents price time series;  as a sequences of 

information sets (sigma-algebras) generated by  and other data sets observed up to time t. 
Trading band is defined as following:  

� `tX tI

tX

�x�� middle line: ; tm

�x�� upper bands: , ; )1(
ttm �G�� 0)1( �!t�G

�x�� lower bands: , . )2(
ttm �G�� 0)2( ��t�G

 
Proposition 1 
Let functions , ,  be -measurable. Lets define the following variables: tm )1(

t�G )2(
t�G tI

ttt mXZ ���       (1) 
)1()1(

ttt ZY �G���      (2)        

ttt ZY ��� )2()2( �G     (3) 
Then, 

�x�� generated times �^ �`entry
i�W : 

�> �@0:inf )2()1(
1 �d�˜�!� �� tt

entry
it

entry
i YYt �W�W , ,     (4) 00 � entry�W

are Markov times. 
�x�� generated times �^ �`exit

i�W : 

�> �@0:inf 1 �d�˜�!� ��tt
entry
it

exit
i ZZt �W�W ,       (5) 

are Markov times. 
 
Proof. 
Note that , ,  are -measurable. This implies that the products  and 

 are also -measurable.  and  are defined as the first entry of  and 

 in the interval ��  respectively.  Then, according to the Theorem (Shiryayev, 

1985), which states that the first entry of the process 

tZ )1(
tY )2(

tY tI 1���˜ tt ZZ
)2()1(

tt YY �˜ tI entry
i�W exit

i�W )2()1(
tt YY �˜

1���˜ tt ZZ �@�ƒ�•�f�� 0;

�^ �`tX  in some defined interval is always 

Markov time, the  and  are Markov times. entry
i�W exit

i�W
 
Proposition 1 states that if estimates of the middle line and trading bands are defined on the basis 
of the information available up to moment t , the trading rules based on these trading bands is 

well-defined. For example, moving average  that is often used as the middle 

line is -measurable. Constant scalars ,  together with the -measurable middle line 
define bands, which are -measurable. Finally, Bollinger bands, with the middle line 

�¦
� 

����� 
n

i
intit XwMA

1

tI )1(
t�G )2(

t�G tI

tI

�¦
� 

����� 
n

i
intt X

n
MA

1

1
 and ttt k�V�G�G � � )2()1( , where some scalar, 0�!k t�V  - experimental standard 

deviation of the � ^ � ` , are also -measurable. tintiX �d�d���� 1 tI
 
Note that the trading strategy defined in Proposition 1 is as follows: a position is opened when 
the price breaches one of the bands; this position is closed, when the price crosses the middle 
line. 
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Proposition 1 demonstrates that there are trading bands strategies that can be considered as well 
defined. The question is now whether the signals they send are finite, i.e. �� �� 1� �f��entryP �W , 

�� �� 1� �f��exitP �W . It is obvious that the distance between the bands defines whether these trading 
bands will send finite signals. In particular, if the distance between the two bands is extremely 
large the entry signal might never be generated. The entry signals will be generated for the 
stationary process  and unbiased estimator of its mean , if the following inequality holds: � t̂X � ` tm
 

�� �� 10 )1()2( ������������ ttttt mXmP �G�G        (6) 
 
The expression (6) can be considered as criteria for the choice of the distance � � � � �� ��21

tt �G�G ��  

between the bands that can generate any entry signals. As for the exit signals, Neftci (1991) 
showed that the trading rules, based on the cross-over of price and MA curves, generate finite 
signals in the case when price process �^ �`tX  is stationary and m-dependent price process. 
 
The majority of the trading bands used by traders incorporate moving average as middle line. 
Moving average allows constructing well-defined trading bands; therefore, we will narrow our 
analysis to this particular type of bands. Such trading bands are the function of four different 
parameters or vectors of parameters: 
 

�^ �`�� ��LUnii ddwnfTB ,,, 1 �d�d� , 
 

where  - parameters of the moving average: length of the moving window and weights 
attached to the price in the window (see Ch.1.1 for more details); 

� ^ � `niiwn �d�d1,

LU dd , - distance between moving average and upper and lower bands respectively. Note that 
upper and lower distances can be different, as well as each distance itself can be a function of 
time: , LU dd �z � � � � �� ��tdd � . 
 
Despite the large number of the bands parameters, their optimization can be simplified: 

1. Search for the optimal parameters for middle line and bands can be separated due to the 
different roles that they play in the definition of the trading bands strategy. For example, 
within the context of the contrarian strategy moving average represents the mean value of 
the instrument, while bands define the extreme values of the prices conditionally on the 
current mean.  We do not need to know the bands value in order to evaluate price mean, 
while we need a current mean value (and probability distribution function) to define the 
extreme values, and thus, bands. As a result, the band optimization problem can be split: 
first, best middle line estimator (its parameters) is obtained, then optimal bands 
parameters are searched for. 

2. According to Proposition 3, the optimal moving average should be the best estimator to 
the local mean (or trend). This allows choosing clearer and more objective optimization 
criteria - minimization of the mean squared error:  

�� �� minˆ 2
�o�� tt mME , 

where - true trend/mean, - estimator of the true mean. tm tM̂
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As a result, the first part of the thesis will be devoted to optimization of the moving average, 
while the second part will concentrate more on the development of the optimal bands 
(distances). 
 
Finally, it should be noted that optimization of the strategies, based on the technical analysis, is 
frequently substituted by the problem of the parameter optimization. However, the decision-
making around taking or exiting a position is a non-linear problem, while the parameter 
optimization frequently involves linear methods.  Therefore, we will consider some non-linear 
approaches to optimize the decision-making in addition to the optimization of the parameters of 
the technical indicators. 
 
Within the analysis of the trading bands, in addition to moving average we will also consider 
some other technical analysis techniques such as Momentum, Moving Average Convergence 
Divergence (MACD), Bollinger bands, Support and Resistance patterns and Elliot waves. 
 
This thesis is split into three parts. Part I concentrates on the search of the optimal trend 
estimator. Part II proposes the approach to optimize bands. Finally, Part III is devoted to the 
optimal decision-making.  
 
The first part “Optimization of the moving average indicator: kriging method” considers kriging 
as a method to estimate the mid-line in the bands. Kriging approach, a geostatistical technique, 
defines the optimal mean estimator as a weighted sum of the observations in some close 
neighborhood; in this respect the kriged estimator coincides with the definition of the moving 
average. Unlike other linear method usually used in finance, this method can be applied to both 
equally spaced data (in our context, traditional time series) and data sampled at unequal intervals 
of time or other axis variable. The latter is the case of the instruments that are not regularly 
traded, or subordinated price processes obtained by changing the time coordinate to other 
random variable coordinate.  
 
The kriging method is based on the statistical characteristics of data such as covariance 
(autocovariance) function. This allows obtaining optimal estimates that depend on the statistical 
characteristics of the data rather than on the historical data itself as in the case of the simulation 
studies12. This method optimizes the weights structure for a given length of the moving window. 
 
We will see that the optimal kriged moving average (KMA) estimated on the equally spaced data 
sample has a specific weight structure for certain covariance models: the largest weights are 
attached to the first and last observation, while all the other weights are low. As a result, this 
KMA coincides in lag with the simple moving average with all equal weights (further referred to 
as SMA), but is more volatile. Moreover, these “border” weights values depend only on the 
covariance model. The weights structure for the subordinated (unequally spaced) samples exhibits 
non-stable patterns that largely depend on the discrepancy in the values of the variable used to 
subordinate the price curve or the distance between the time-observations of price: the larger the 
discrepancy – the more volatile the weights structure is.  
 
The comparison of KMA with the traditional types of moving averages returned interesting 
results. The results of applying trading strategies based on the crossovers of moving average and 
price curves show that for the majority of considered instruments KMA generates higher results 
than simple or exponential moving average. Moreover, the global maxima of the KMA-based 

                                                 
12 Certainly, in real-life applications the results will still depend on the historical data used for the evaluation of the 
statistical properties of the variable. However, the results are more dependent on the estimation accuracy than on the 
data itself. 
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strategies are achieved at short lengths of the moving window, where traditional moving averages 
normally generate more false signals, and thus, less profitable. Despite its volatile nature, KMA 
does not generate more transactions than traditional moving average of the same length, and 
therefore, does not seems to generate more false signals. 
 
The second part “An Alternative to Bollinger bands: Data transformed bands” describes the new 
approach to optimizing the bands. We propose a method that enables the definition of the 
extreme values and therefore bands values, without constraining assumptions about the 
distribution function of the residuals. From theoretical standpoint the optimal bands should 
contain K% of the price data (for example, K%=90%); all data points that lie outside of the 
bands are considered extreme. However, such an interval and, thus, bands are not easy to define 
for asymmetrical or multimodal distribution and require time-consuming optimization 
procedures. Our method allows obtaining the bands in a more straightforward and less-intensive 
procedure. For this purpose the raw data (residuals) are transformed first into standard normal 
variable. For this distribution the intervals that contain K% of the data are known. Afterwards 
the data-transformed bands (DT bands) are obtained by backward transformation of the interval 
for normal distribution by the means of a previously calibrated transformation function. The 
obtained DT bands exhibit a peculiar stair-like pattern; the bands change the level only if there is 
a significant price change. As for the trading outcomes, confirmed DT bands strategies generate 
more profits than the classical Bollinger bands that are more monotonous and upward sloping. 
As a result, the new DT bands are not only more justified from the statistical point of view and 
straightforward in their application, but also they allow generating higher profits. 
 
The third part “Disjunctive kriging in finance: a new approach to construction and evaluation of 
trading strategies” presents the disjunctive kriging method for more informative decision making 
about the timing and the value of a position. Frequently the traders would like to know in 
advance that certain thresholds/bands would be breached. Disjunctive kriging (DK), another 
geostatistical method, allows estimating the probability that some thresholds will be reached in 
the future. We demonstrate how this method can be applied/adjusted to the financial data on a 
continuous basis and show that in comparison to the random-walk hypothesis, DK improves the 
trading decision-making. 
 
The general conclusions can be found in the last section of this thesis. 
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Part I. Moving average optimization: kriging approach 
 
Introduction 
Prediction of future instruments value movements, as well as estimation of a trend plays an 
important role in the analysis of financial data. Traditional approaches to trend estimations are 
linear filters1 that can identify such features as trend, seasonality, noise, etc. A moving average 
(MA) is an example of such filters, which is used for the identification and extractions of series’ 
trends.  
 
As for the trading applications, a MA is the most widely used technical analysis techniques. Many 
research works found that some moving average and filter rules are profitable (Brock, 
Laconishok, Lebaron, 1992; Sullivan, Timmermann, White, 1999; Levich, Thomas,1993). 
 
By its construction method, the MA is a weighted average. Two principal parameters should be 
identified before MA calculations: (1) the length of a sub-sample, for which the MA is estimated; 
(2) the MA weights, attached to each observation in the sub-sample. In addition, the manner in 
which the sub-sample is chosen should be decided in advance (for example, it can precede the 
estimation point, or it can include the estimation point, etc.). These parameters are responsible 
for two characteristics of the MA: (1) its smoothness; and (2) a lag, by which the MA is late in the 
prediction of the price movements. As many MA trading rules are based on the relative 
positioning of the price and MA curves2, the smoothness of the MA curve is considered to be 
have direct impact on the number of false signals generated by the rule: smoother MA sends less 
false signals. For the same reason, the lag is responsible for the speed of the trading signal: for 
smaller lag the signal about trend reversion is sent more rapidly.  The dilemma is that the 
smoother MA implies larger lag between the price and MA curves and vice versa. The trade-off 
between these characteristics lays in the basis of many MA optimization procedures.  
 
The research in the field of the MA optimization can be split in the following groups: 

(1) theoretical studies; 
(2) simulation studies. 

 
The first group of studies involves the search of optimal parameters, which is based on some 
theoretical approach or existing relationships in the market. For example, Achelis (2000) believed 
that the length of the MA should fit peak-to-peak cycle of a security price movement3. Gray, 
Thomson (1997) used the compromise criterion between the smoothness and lag to optimize the 
MA parameters. Ehlers (http://www.mesasoftware.com/papers) proposed a method to calculate 
the optimal weights for the MA as a function of the lag that a trader can tolerate4. Di Lorenzo, 
Sciarretta (1996) also defined the optimal MA parameters as a function of MA lag, which they 
define at the level that minimizes the number of false signals generated by MA. As the result they 
tried to develop adaptive moving average that takes into account the transaction costs and price 
volatility. Chande ([28], V.10:3) developed a Variable index dynamic average that also incorporate 
the notion of stochastic volatility in the definition of the exponential MA weights structure. Arms 
([11], V.8:3) exploited the relationship between price and volumes in the construction of a 
volume-adjusted moving average. Arrington, [16], V.10:6) tried to incorporate data statistical 
characteristics, such as extreme values, into definition of the optimal MA length for a Variable 
length moving average.  
                                                 
1 Detailed analysis of the linear filters can be found in Gençay, Selçuk, Whitcher (2002). 
2 Some rules are based on the relative positioning of the two MA of different lengths. 
3 See Appendix A1 for more details. 
4 See Appendix A2 for more details. 
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The simulation studies search for the optimal MA parameters through the simulation of a trading 
strategy or a rule for the historic data and analysis of the trading outcomes. Then the MA 
parameters that maximize these outcomes (or at least generate profits) are considered as optimal. 
The examples of such works are Williams (2006), Brock, Laconishok, Lebaron (1992), Sullivan, 
Timmermann, White (1999). Besides, all the “expert judgments” of traders regarding optimal MA 
types or parameters most likely are based on the experimental applications of these indicators to 
the historic data. The disadvantage of the approach is that the optimal parameters are conditional 
on the trading rule and strategy for which the simulations were performed. 
 
The objective of our analysis is to introduce an optimisation method that takes into account the 
statistical characteristics of the data. We would also like to concentrate more on the optimisation 
of the MA weights, as many existing papers in both groups of studies are devoted to the 
optimisation of the MA length. Optimisation of the MA weights is more complicated task, as it 
involves the search of n interrelated values. We propose a kriging method, a geostatistical 
approach, to optimise the moving average weights. 
 
The goal of geostatistics is to provide “quantitative descriptions of the natural variables 
distributed in space or in time and space”5. Soil properties or ore grades in a mineral deposit are 
the examples of such natural variables. The principal objective of the geostatistics is “the 
reconstruction of a phenomenon over domain on the basis of values observed at limited number 
of points”6. Kriging method is used for the trend estimation and can be applied to the problem 
of MA optimisation. The kriged estimator of a trend at some point is a weighted sum of the 
values in the near neighbourhood to this point, which evolves the direct comparison with the 
classical MA indicator. One of the objectives of the kriging estimation procedure is to find the 
optimal weights of the linear estimator of a variable mean. 
 
There are several differences between financial and geostatistical data. Financial data is mainly 
sampled in time. Financial data samples are much larger than the geostatistical data sets. The 
objective of the financial analysis is mainly not a reconstruction of the phenomenon, but a 
prediction of the future price movements, for which the filtering of the trend is done.  
 
For the time series data a formal analogy of the method that uses past values to predict future 
one are AR, ARMA, ARIMA models. The references in the domain are Greene (2007), Box, 
Jenkins, Reinsel (2008). 
 
Financial data is usually treated as time-series data with values sampled at the at regular time 
intervals as when data is unevenly spaced, most of the methods used in the time signal processing 
cannot be applied. However, in reality, financial data is documented only at the moments when a 
transaction takes place. As the result, for less-actively traded instruments the data is not equally 
spaced. The data sampled at very high frequency (for example, 1 second) will also most likely be 
unequally spaced. Finally, when the time coordinate is changed to another variable coordinate 
(for example, volume), the data subordinated to another process would most likely be unevenly 
spaced. In the case of the unevenly spaced financial data, the geostatistic methods will bring 
better result than the classical time-series methods. 
 
However, even for the equally spaced data the difference exists between kriging method and 
time-series models: the kriging approach does not demand completely specified model of the 

                                                 
5 Chiles, J.-P. and P. Delfiner. “Geostatistics. Modeling Spatial Uncertainty”, John Wiley and Sons, Inc., 1999, p. 1. 
6 Chiles, J.-P. and P. Delfiner. “Geostatistics. Modeling Spatial Uncertainty”, John Wiley and Sons, Inc., 1999, p. 150.  
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process as in the case of the time series model; Only second-order properties are modelled for 
linear kriging.  
The analysis of the kriging method is made in the following way. First, we present a definition 
and brief description of the MA as a trading instrument. Chapter 2 presents the kriging method. 
Chapter 3 discusses the peculiarities of method application to the financial data. Chapter 4, 5 and 
6 analyse the results of the kriging method application to the equally and unequally spaced 
historic data. Chapter 7 summarizes the obtained results. 
 

1 Moving average as a trading instrument 
 

Moving averages (MAs) are one of the most widely used technical indicators by the traders. MAs 
lay in the basis of the many technical rules and strategies. They are also used to construct new 
technical indicators, such as Moving Average Convergence Divergence (MACD). Further in the 
Chapter 1 we present the definition and types of the MA. The trading strategies, which 
incorporate MA, are discussed in more details in Ch.4, 5 and 6 when applied to the historic data. 

 
1.1 Definition of the MA 

 
Let’s  represent discrete time series (sampled at equal time intervals); while � ^ � `  

are the 

� ^ � �̀f�d�d�f�� ttx 10 ���d�d Nttx

observed time series with N observations:  represents the first observation and  - 

the last observation. A linear filter converts time-series 
0x 1��Nx

�^ �` 10 ���d�d Nttx  into �^ �` 10 ���d�d Ntty  by some linear 

transformation (Gençay, Selçuk, Whitcher, 2002). The output �^ �`ty  is the result of the 

convolution of the vector  with a coefficient vector : tx tw
 

�¦
�f

���f� 
��� � 

i
itittt xwxwy �$           (I.1.1) 

 
Many applications are not feasible for 0��i  as it implies the usage of future  values. Therefore 
some restrictions might be imposed with respect to i-parameter: 

tx

 

�¦
�f

� 
��� 

0i
itit xwy                          (I.1.2) 

 
The filter (I.1.2) is called a causal filter, while (I.1.1) – a non-causal filter. 
 
The other classifications are based on the impulse response of the filters: 

1. Finite impulse response (FIR) filter 
2. Infinite impulse response (IIR) filter 

 
Further, we wil consider only FIR filters, defined as following: 
 

�¦
� 

����� 
n

i
intit xwy

1

     (I.1.3) 

 
The majority of the moving averages used in finance are the representatives of the group of 
causal FIR filters. MAs can be constructed for any financial series. However, most frequently 

 14



time-series  are either instrument prices or the indicators, derived from price (for 
example, Momentum, Moving average convergence divergence indicator, etc.). The example of 
the simple MA, a particular type of the MA with all equal weights (

� ^ � ` 10 ���d�d Nttx

nwi 1� , where n is the 
length of the rolling window used for the MA calculations as in (I.1.3)) is given in Figure 1.1. 
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Figure 1.1. Bund quotes (30/7/2003-7/12/2006, frequency – 30 minutes) and simple moving average of 
the length n=115 observations 
 
From the expression (I.1.3), we can see that MA has two parameters involved in its definition: 

�ƒ�� n – size of the rolling window7 (sub-sample) used for MA calculations: � > � @ tnt ;1����
�ƒ�� - vector of the weights for each observation in rolling window; � ^ � `niiw �d�d1

 
In all technical analysis applications the following two constraints are imposed on weights: 
 

�¦
� 

� 
n

i
iw

1

1                (I.1.4) 

0�!iw                     (I.1.5) 
 
None of these constraints are general filters requirements, but they can be justified in some of the 
cases. The constraint (I.1.4), or universality condition, assures that the MA can be considered as 
an unbiased estimator of an instrument mean, which is important when mean is unknown. 
Positive weights (constraint (I.1.5)) assure that the MA, as an estimator of the mean of some 
always positive variable (e.g. price), does not reach negative values; this might happen if negative 
weights are attached to some extreme observations. Note that while the universality condition 
(I.1.4) is frequently applied by geostaticians, the constraint (I.1.5) is not used in the geostatistical 
applications. 
 
                                                 
7 Further, the term “window” indicates the interval of data used for a moving average calculations. 
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MA defines a trend by smoothening the data, i.e. removing the higher frequency components 
from price data. Data smoothening of higher degree allows defining more clearly the existing 
(long-term) trend in the data. However, the negative side of the strong data smoothening is the 
elimination of short-term trends together with noise. As the results, the filtered data lag the 
original data.  In financial applications the lag mean that MA does not anticipate the turning point 
in the trend - the signal about the change in the trend comes after the trend reversal has actually 
taken place. MA cannot predict local maximum or minimum of the price function, but only 
confirm it. The smoother is the data, the larger is the lag between MA and price curves. As have 
been mentioned in the introduction, this trade-off lies in the basis of some optimization 
approaches. 

 
1.2 Types of the moving average 
 

The weights vector defines the type of MA. Many types of MAs exist in the financial applications. 
We can split them in two large groups: 
 

1. MA with fixed (constant) weights 
2. MA with variable weights 

 
MA with fixed weights assigns the same weights vector to all moving windows; weight value is 
only a function of the position within moving window: �� ��ifw ti � , , where i – relative position of 

the weight within estimation (rolling) window; 1� i  corresponds to first observations in the 
window, - to the last observations. Taking into account that the interval  is the 
same for all time moments, the weights are considered as fixed. The examples of the MAs with 
fixed weights are given in Appendix B. The most widely used examples of this MA group are: 

ni � � >ni :1�• � @

�ƒ�� simple moving average (SMA): 
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where - price series; - length of the window; � ^ � `0�tiiP n
�ƒ�� exponential moving average (EMA): 
 

�� �� 11 ������� ttt EMAPEMA �D�D  

where - price series; � ^ � `0�tiiP �D- parameter of the EMA: 
n��

� 
2

2
�D , - length of the SMA 

that has the same lag. 

n

 
MA with variable weights assigns different weights vector in different time moments; weight is a 
function of other variables (indicators) at moment t: �� ��tti Tfw � , , where  - is the vector of 

indicators dependent on moment t. The traders try to adjust the MA to volatility, trading activity, 
etc. Among these MAs are Volume Adjusted Moving Average, Variable index dynamic average 
(VIDYA), Variable-length moving average (VLMA) (see Appendix C for more details on these 
MAs). 

tT
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2 Kriging method: Theory 
 

Kriging is part of the geostatistics used to estimate values of a random variable at some point, 
where it is not observed. Kriging can also be used to define a trend in the data, deterministic or 
random.  
 
Matheron introduced the term “kriging” in 1970. The method emerge as the improvement of the 
moving average technique developed by D.G. Krige, a South African mining engineer, for 
estimating of gold grades; it was named after him (Armstrong, 2004).  Kriging is a linear 
prediction method used to obtain unbiased and efficient (in terms of a variance) spatial 
estimate/predictor �� ��0xZ  or the mean of the random process Z , from the available 

observations: � � � ��� � � � �� � � �nxZxZxZ ,...,, 21 � �. 
 
For example, in the mining context, the kriging is used to find the grade at some chosen point of 
space, taking into account the information about the grade available at the other points were the 
sampling has been done (Matheron, 1970). Kriging method attributes the weights to the grades of 
available sample deposit points, creating the weighted average estimate. The weights are chosen 
in a way that minimizes the estimation variance. The optimal weights take into account the 
geometric form of the deposit, the positioning of the available samples. Intuitively, we might 
assume that the sample points distant from the prediction point should have less weight than the 
closer one. However, there are more complex phenomena in mining that in some cases 
contradicts the intuition. Therefore, kriging method takes into account not only geometrical form 
of the deposit and how the sampling points are positioned, but also the statistical characteristics 
of a random variable Z , such as covariance (or variogram) functions. 
 
The distinctive features of the kriging approach are the following: 

1. Kriging method is used for spatial estimation. This implies the following data 
peculiarities: 

�ƒ�� data frequently cannot be defined as “past” and “future”; 
�ƒ�� data is frequently unevenly sampled; 
�ƒ�� data has “continuous rather than discrete location indexing space”8. 

2. Contrary to trend estimation methods that need the predefined deterministic function, 
kriging estimates of the trend is based on the statistical characteristics of the data. 

3. Besides deterministic trends, kriging can also estimate the random trend in the data. 
4. The kriged estimates avoid systematic error, caused by the difference between samples 

empirical and “true” statistical characteristics. Matheron (1970) explains that the 
histogram of the real grade of the deposit contains less extreme values and more 
intermediate values than the experimental histogram built on the analysed sample, which 
often cause underestimation of a mean of the deposit grade. The kriging procedure allows 
avoiding the underestimation error. 

 
The kriging approach is developed within the scope of second-order statistical models that use 
only mean and covariance (or variogram9) model. Contrary to other trend estimation methods, 
kriging approach is subject to fewer constraints: 

1. None assumption about distribution properties of the random variables are made. 
2. Kriging does not define a priori the function that represents the trend. 

                                                 
8 Chiles, J.-P. and P. Delfiner. “Geostatistics. Modeling Spatial Uncertainty”, John Wiley and Sons, Inc., 1999, p. 151. 
9 The term is presented in more details further in Ch.2.1. 
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3. Some of the kriging types (universal kriging) allows addressing the problem of random 
trends. 

4. Kriging allows representing trend in the form of a weighted average that can be easily 
translated into a MA. 

5. Almost all kriging types provide not only the estimates of the trend, but also the variance 
of the estimators that allows building the confidence intervals for the estimators. 

 
The following types of the kriging exist: 

1. Simple kriging (SK). 
Simple kriging is applied when the mean of a process is constant and known. The process 
should be stationary; covariance model is used to derive the kriging estimates. 
 

�� �� �� ��xYmxZ known ���  
2. Ordinary kriging (OK). 

Ordinary kriging is applied when the mean is constant, but unknown. In this case the 
process is intrinsic10; variogram model is used to derive the kriging estimates. 
 

�� �� �� ��xYmxZ ���  
3. Universal kriging (UK) 

Universal kriging is applied when mean is variable and unknown. The variability of trend 
can have either deterministic or random nature. 
 

� � � � �� �� �� ��xYxmxZ ��� , - deterministic trend )(xm
� � � ��� �� �� ��wxYwxmwxZ ,,, ��� , - random trend ),( wxm

 
The application of the simple kriging in our context is limited due to a small amount of financial 
instruments, which can be considered as stationary with known mean. The exceptions are the 
technical indicators derived from the price data, such as Momentum or MACD that are 
oscillators by nature and thus fluctuates around 0-line. 
 
Ordinary and universal kriging has much more applications possibilities as they can be applied to 
both second-order stationary and non-stationary data.  
 
Further we present each of the methods in more details11. We start, however, this chapter with 
the description of some of the geostatistical terminology and concepts, used further in kriging 
applications. 
  

2.1 Geostatistic instruments and terminology: short 
overview 

 
Kriging involves some common statistical definition like stationarity, covariances, as well as some 
instruments less known for a wider statistical community, such as intrinsic stationarity and 
variograms.  
 

                                                 
10 The term is presented in more details further in Ch.2.1. 
11 Further the description of the theoretical approach is based on the G.Matheron’s book “La théorie de variables 
régionalisées, et ses applications”, Les Cahiers du Centre de Morphologie Mathématique de Fontainebleau, Fascicule 
5, 1970, pp.117-186, adjusted for notation to our particular case. We will avoid additional citations to simplify the 
reading of the text. 
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2.1.1 Stationary and intrinsic stationary functions 
Any random variable Z  can be characterized by its probability distribution. However, an 
estimation of the probability distribution function is sometimes complicated and time-
consuming. Thus, statisticians frequently substitute probability analysis by the calculations of the 
statistical moments, such as mean and variance-covariance matrix.  
Random functions are more complicated statistical entities, as they represented by the sets of 
random variables: . The main problem with the estimation of their statistical 
characteristics lies in the lack of observations: in real life we often have a single realization for 
each variable: . Thus, in order to make some valuable statistical inferences 
about the random function from these realizations, it is often assumed that variable is stationary.  

� � � � � � � � � � � �ntZtZtZ ,...,, 21

� � � � � � � � � � � �ntztztz ,...,, 21

 
Stationarity imposes the invariance of a joint probability density function and, therefore, all its 
moments under temporal (or spatial) shift (translation), i.e. for any value h, probability 
distribution of the variables � � � ��� �� �� ��ntZtZtZ ,...,, 21  is the same as of the variables 

� � � � � � � ��� ��htZhtZhtZ n ������ ,...,, 21 . For the temporal data it means that all moments of the random 
variable does not depend on the time at which the variables are observed, but only on the 
distance between them. Simply speaking, “information about the process [is] the same no matter 
where it is obtained”12.  
 
However, even under stationarity assumptions a joint probability distribution is often difficult to 
estimate; therefore, the statisticians has introduced second-order stationarity - the invariance of 
the first and second moments under translation (see Definition 1.1). 
 
Definition 1.1 
A random function �� ��� ^tZ � ` is stationary of order two if its mean and covariance do not depend on 
time, but only on the distant between the variable, i.e. ht,�� : 

�� ��� > � @mtZ � �(                 (I.2.1) 

� � � � � � � ��> �@ �� �� �� ���> �@ �� ��hCmhtZtZhtZtZCov � �����(� �� 2,        (I.2.2) 
 
The covariance (I.2.2) has the following properties: 

1. - variance of the random variable � � � � 20 �V� C
2.  � � � � � � � �hChC ��� 

3. � � � � � � � �0ChC �d  
Note that the covariance for stationary variable or order two is bounded. 
 
Unfortunately, the group of the second-order stationary processes is not very large. In financial 
applications these processes are even more rare. For example, standard Brownian motion does 
not belong to the group of second-order stationary process. Therefore, the larger group of the 
random functions was introduced to enlarge the group of random processes for which many 
geostatistical methods, including kriging, can be applied. This group consists of intrinsic functions 
(see Definition 1.2). 
 
Definition 1.2 
A random function �� ��� ^tZ � ` is intrinsic if its increments are stationary; i.e. ht,��  

� � � ��� ��� > 0� @� �����( tZhtZ           (I.2.3) 

                                                 
12 Anselin L. “Variogram analysis”, presentation 
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� � � � � � � �� > � @�� �� �� ���� ���> �@ �� ��htZhtZtZhtZVar �J22 � �����(� ����        (I.2.4) 
 
The group of the intrinsic processes is significantly larger. In particular, it contains the group of 
the stationary processes of order two, i.e. each stationary process of order two is intrinsic 
stationary (see Box 1.1. for the proof); but not every intrinsic stationary process is stationary of 
order two (see Box 1.2. for the example).  
 
Box 1.1 
The proof that each process, stationary of order two is intrinsic stationary process 
Suppose some process � > � @�^ �`TtXt ,0, �• is stationary of order two. Then this implies the following 
equalities: 

�� �� mXt � �(  

�� �� 2vXVar t �                          

�� �� �� ��hCXXCov htt � ��, . 
 
Lets consider its increments: tht XXht ���!���!�� ��:0,0 . Then the following equalities hold: 

�� �� 0� ���( �� tht XX  

� � � � � � � ��� �� �� � � � � � �hhCvXXCovXVarXVarXXVar thtthttht �J� ��� ����� �� ������ 22,2 2 � � � � 
 
Therefore,  is intrinsic. � > � @� ^ � `TtXt ,0, �•
 
Box 1.2 
Intrinsic stationary process: Standard Brownian motion 
A random process � > � @� ^TtWt ,0, � `�• is a standard Brownian motion if: 

1. �� ��sNWWst tst ,0:0,0 �v���!���!�� �� (normally distributed with 0-mean an s - variance) 

2.  is independent of . tst WWst ���!���!�� ��:0,0 tW

3.  is a continuous function of time and tW 00 � W . 
 
As we can see from definition the increments of the standard Brownian motion 

 are stationary of order 2: tst WWst ���!���!�� ��:0,0

1.  � > � @0� ���( �� tst WW

2. � > � @sWWVar tst � ����  

3.  � > � @0, � ���� ttst WWWCov
 
Therefore, is intrinsic stationary. However, we know that covariance of the process � > � @� ^TtWt ,0, �• � ` �^ �`tW , 

� > � @� �� ��W�W ,min tWWE t �  is time-dependent. Thus, the process itself �> �@�^ �`TtWt ,0, �• is not stationary of 
order 2. As the result, we have showed that an intrinsic process is not necessary a stationary process of 
order two. 
 
Intrinsic random functions of order  (IRF- ) are the generalization of the intrinsic functions. 
“The IRF-k  is a random function with stationary increments of order ”

k k
k 13. IRF-0 is the intrinsic 

function with stationary increments. IRF-enlarge the group of the processes for which the 
kriging method can be applied. The analogy of these functions in the time series is the ARIMA 

k

                                                 
13 Chiles, J.-P. and P. Delfiner. “Geostatistics. Modeling Spatial Uncertainty”, John Wiley and Sons, Inc., 1999, p. 245. 
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processes: ARIMA of order  is, in fact, IRF-d �� ��1��d . There are still differences between 
ARIMA and IRF- models. Firstly, ARIMA models are discrete, while IRF can be both 
continuous and discrete. Secondly, ARIMA models are completely specified, while IRF should 
only be second-order model. Finally, ARIMA are one-dimensional, while IFR can be defined in 

k

nR . 
 
In this work we concentrate mainly on stationary and IRF-0 models. Although IRF-k models 
allow working with non-stationary data, the experience has shown that in the practical 
applications too much information about variable is lost when the estimation procedures use its 
stationary increments. Similar conclusions were the incentive for  the  development of 
cointegration. 
 

2.1.2 Variogram 
 

Definition of the intrinsic functions is based on the variance of increments. This variance is 
called variogram, a concept widely used in geostatistics. 
 
Definition 1.3 
The following function � � � �h�J  is called semi-variogram, or less formally variogram: 
 

� � � � � � � � � � � �� > � @� � � � � � � �� �� ��> �@2

2
1

2
1

tZhtZtZhtZVarh �����(� ����� �J          (I.2.5) 

Expression (I.2.5) indicates a significant advantage of the variogram over the covariance: its 
definition does not involve variable mean that is usually unknown and should be estimated. 
 
For stationary variables the following relationship exists14 between variogram and covariance: 
 

� � � � � � � ��� �� �� ��hChCCh ��� ��� 20 �V�J                 (I.2.6) 
 
This relationship is represented graphically in Figure 1.2. 
 
A variogram has the following characteristics: 

1. � � � �00 � �J . 
2. It can be discontinuous just after the origin (so called nugget effect). 
3. Variogram is bounded for the stationary variables of order two and tend to be increasing 

for non-stationary variable. 
 
Several parameters characterize a variogram (see Figure 1.3). Sill is a level,  by which the 
variogram is bounded. A lag, at which the variogram is stabilized around the sill level, called 
range. The range indicates the lag at which there is no more correlation between samples (no 
autocorrelation for the time dependent random functions). If discontinuity is present at the 
origin, it is called nugget effect. 
 
                                                 
14 The formulae (I.2.5) can be rewritten as following: 

� � � � � � � � � � � �� � � �� > � @� � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � �� > � @

� � � � � � � �� > � @� � � �hChCC

mtZmhtZmtZmhtZtZhtZh

��� ��� 

� �����������������(� �����(� 

2

222
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2
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2
2
1

2
1
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Appendix D presents the most frequently used variograms �� ��h�J  and covariance  models.  � � � �hC
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Figure 1.2. Relationship between variogram and covariance for stationary variable. 
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Figure 1.3.  Variogram parameters 
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According to Chilès, Delfiner (1999), there are two ways of fitting model to the empirical 
variogram: 

1. Manual fitting 
2. Automatic fitting 

Frequently geostatistician fit the model manually as variograms are non-linear in their parameters, 
such as range (Matheron, 1968). Automatic fitting can be performed by the least square 
technique: ordinary least square, generalized least square or weighted least square (Cressie, 1991). 
As many observations are available, further in the applications we will use manual approach to 
variogram fitting. 
 
It should be stressed that missing observations cannot be ignored in a variogram estimations. If 
data is missed due to a regular absence of the trading activity (for example, week-ends or night 
hours) this missing data can be ignored. In order to avoid an overnight effect (the absence of the 
overnight data) an empirical variogram can be substituted by the average daily variogram. 
However, if data is missing due to the irregular activity (for example, holiday), the missing data 
should be treated as non-available and differences in the variogram formulae that incorporate 
these observations should not be taken into account. 

 

2.2 Simple Kriging: prediction of the process with zero 
mean 
 
The kriged estimator  is the orthogonal projection of the  on a Hilbert space , i.e. 

 is a unique element of the , such that  is orthogonal to all other 

K
nY 1�� 1��nY � � � �sH

K
nY 1�� � � � �sH 11 ���� �� n

K
n YY �� ��sHY�• . 

In our case, the Hilbert space  represents the linear span of the available known points. � � � �sH
 
Let’s consider some random function �� ��tY  with zero expectation ( �� ���> �@0� �( tY ) and variance-
covariance matrix � � � � � � � �� > � @vYuYuv ,cov� �V 15. Let  be realizations of the random variable �DY �� ��tY  at 

some experimental points . Lets represent the kriged estimator of the  at point 

 as a linear combination of : 

� ^ � ǹiitt �d�d� 1�D � � � �tY

1��nt �DY
 

� � � � �¦
� 

�� � � 
n

i
iiKKnK YYtY

1
,1 �O�O�D

�D                             (I.2.7) 

 
The weights vector  minimizes the estimation variance �D�OK �� ���> �@ � � � ��> �@2

11var KnKn YYYY ���(� �� ����
16: 

 

                                                 
15 The variable can be a function of any variable (time, volume, etc.). We use index t that corresponds to the time 
coordinate, as this is the case most often addressed by the technical analysis. However all kriging methods can be 
applied to other cases. 
16 Note that � � � � �� ��� � � �� > � @ttYtY K ��� ���( ,0  and 
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������ ����� ���(               (I.2.8) 

 
Taking partial derivatives of the function (I.2.8) with respect to the weights vector  gives the 
following system of n-equations with n-unknowns: 

�D�OK

 

1, ��� nK �D�D�E
�E �V�V�O ,               (I.2.9) 

 
where i-th equation is: 

in

n

j
jij ,1

1
, ��

� 

� �¦ �V�V�O  

 
The system (I.2.9) is regular and have unique solution if matrix �D�E�V  is strictly positive definite, 

which is usually assumed for theoretical variance-covariance matrix. 
 
Kriging variance, defined in (I.2.8) takes the following form17: 
 

� � � �� > � @�¦
� 

������ ��� ���(� 
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2 �V�O�V�V             (I.2.10) 

 

2.3 Simple kriging: prediction for the process with 
known mean 

 
Let Z  be some random function with known mean �� �� mZ � �(  and variance-covariance matrix 

�> �@jiij ZZ ,cov� �V . 
 
Lets define some new random variable Y as following: 
 

�� �� mZZZY ��� �(���  
 

Y  has zero mean and ij�V  variance-covariance matrix.  
 
Then the optimal estimator of  is the kriged estimator  of the following form: � �1��ntZ � � K

nZ 1��
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where  are the kriged weights that satisfies kriging system (I.2.9) for �D�OK Y . 
 
The variance of kriging is the same as in (I.2.10)18: 

                                                 

17 The equation (I.2.9) implies that: , or . Then 

substituting this expression in (I.2.8) leads to (I.2.10). 
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 2.4 Ordinary kriging: prediction of the process with 
unknown mean 
 

Ordinary kriging is applied to the random function Z , when its mean is unknown. Suppose �� ��tZ  
is stationary, i.e. its mean  is unknown, but constant: m �� ���> �@mtZ � �( . � � � ��� ��� > � @vZuZuv ,cov� �V  

represents its variance-covariance matrix. Let  be realizations of the random variable �DZ �� ��tZ  at 

some experimental points . A kriged estimator of the � ^ � ǹiitt �d�d� 1�D �� ��tZ  at point  is a linear 

combination of : 
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The optimal weights  should minimize the estimation variance �D�OK � � � � � � � ��� ���> �@11var ���� �� nKn tZtZ . As 

mean is unknown the kriged value  should be an unbiased estimator of the , i.e. the 
mean of the estimation error should be zero: 

K
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Taking into account that  and condition (I.2.14) takes the 

following form: 
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The equality (I.2.15) holds only if  (the case of simple kriging), or 0� m
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Condition (I.2.16) is called an universality condition.  
 
As the result, the kriging problem can be reformulated as the following optimization problem: 
 

                                                                                                                                                         
18 The equation (I.2.11) implies that �� �� mZK
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If universality condition (2.16) holds then �� � � � � � ��� ���> �@011 � ���( ���� nKn tZtZ  and 
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With respect to this we can rewrite (I.2.17) as following: 
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The solution to the problem (I.2.18) should satisfy the following system of equations: 
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where �P - is a Lagrange multiplier. 
 
The variance of kriging is19: 
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 2.5 Ordinary Kriging: Estimation of the unknown 
mean 
 
Let  be some random function, stationary of order two. Its mean  is unknown, but 
constant: . 

� � � �tZ m
� � � �� > � @mtZ � �( � � � ��� ��� >vZuZuv ,cov� � @�V  represents its variance-covariance matrix. Let  

be realizations of the random variable 
�DZ

�� ��tZ  at some experimental points . According 
to Matheron (1970) the estimator of the  as a linear combination of the available observations 

: 
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19 The expression follows from  (I.2.19): . �P�V�O�O�P�V�O�V�O�O �D
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Note that the weights vector  is not the same as vector weights , used to define the 

predictor of the function . 

�D�Om
�D�OK

� � � �tZ
 
In order to assure the unbiased mean estimator, we impose the universality condition: 
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To obtain the efficient estimator, we minimize the variance of the estimation error: 
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As the result, the search of the optimal estimator (I.2.21) is reduced to the following optimization 
problem: 
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The optimal weights  should satisfy the following system of equations: �D�Om
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where m�P  - is a Lagrange multiplier. 
 
The corresponding kriging variance is20: 
 

mK �P�V �             (I.2.25) 
 
 

2.6 Kriging non-stationary variable 
 
There are several approaches in the geostatistics to the kriging of a non-stationary variable: 

1. Universal kriging 
2. Kriging an intrinsic function IRF-0. 
3. Kriging an intrinsic function IRF-k. 

 

                                                 

20 Note that the following expression follows from  (I.2.24): . mm �P�O�P�V�O�O
�D

�D�D�E
�E�D � � �¦
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We will further present only first two approaches. As have been mentioned already in Ch.2.1.1, 
the kriging of the IRF-k leads to the loss of some information about the principal non-stationary 
variable. In addition, the main objective of out study is to define a drift of our (non-stationary 
process). The problem is that in general IRF-k has “no uniquely definable drift”21, for the 
exception of the case when the analyzed process �� ��xZ  can be represented as the stationary 
process  plus some polynomial drift:  � � � �xYst
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l
lst xAxYxZ       (I.2.26) 

This representation (I.2.26) coincides with the universal kriging model with  random coefficients 
(Chilès, Delphiner, 1999). 
 

2.6.1 Universal kriging: trend estimation 
 
Let 22� � � �tZ  be some random function, which is non-stationary with unknown mean . m

� � � � � � � �� >vZuZuv ,cov� � @�V  represents its variance-covariance matrix:  
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The universal kriging (UK) provide the best linear estimator of the trend . We can 

consider the function 

� � � �� >tZmt �(� � @
�� ��tm  to be regular and continues or irregular and a random variable itself. 

 
There are the following hypothesis on which the estimation method is based: 

1. The  function is estimated locally and it can be approximated by the following 
expression: 

� � � �tm
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, 

where  a function, chosen a priori and fixed through all applications (for example, 
time polynomial);  - unknown coefficient corresponding to l-function (might be a 
function of t. 

� � � �tf l

la

 
2. We suppose that the covariance (variogram) between two points of time can be estimated 

locally as � � � �� �12021, tttt ��� �Z�J�J � � and it is deforming slowly. The parameters of the 
covariance (variogram) function should be estimated and further controlled, which is 
quite complicated task. However, to simplify things, we suppose that the parameters are 
known a priori.  

3.  is some random non-stationary function that satisfy conditions (I.2.27). Let  be 

the realization of the random variable 

� � � �tZ �DZ

�� ��tZ  at some experimental points . � ^ � ǹiitt �d�d� 1�D

 
Suppose that  can be represented as the following process: � � � �tZ
 

                                                 
21 Chiles, J.-P. and P. Delfiner. “Geostatistics. Modeling Spatial Uncertainty”, John Wiley and Sons, Inc., 1999, p. 270. 
22 We define the universal method for the time coordinate, though as in the previous defintion of the kriging t-
variable can be substituted by the spatial x-coordinates. 

 28



� � � � � � � ��� ��wtmwtYwtZ ,,, ��� ,                         (I.2.28) 
 
where  - trend of the series, random function; � �wtm , � � �� ��wtY ,  - random function, such that 

, some Y are correlated. � � � �� > � @0� tYE
 
Although it is not necessary, lets assume that �� ��wtY ,  and �� ��wtm ,  are independent, in order to 
divide the structural effects on process �� ��tZ  from each of them. Furthermore,  should by 
its nature have much more larger effect on the 

� �wtm , � �
�� ��tZ  and much more smaller volatility than 

. The regularity and continuity of the � �wtY , � � �� ��wtm ,  is attained by the following assumption: 
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where  are random variables that reflect the coefficients of the trend;  are 
polynomials of the order l that defines the form of the trend. Lets assume for simplicity reason 
that the trend is described by the linear function: 
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For the trend estimation, lets assume that  are the values of �DZ �� ��tZ  at the experimental points 

, with S bounded. VSt �•�•�D

 
Lets assume that the estimator of the trend  at one point )(tm Vt �•  is the following: 
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The optimal weights vector  minimizes the estimation variance: �D�OUK
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with � � � ��� ���� �� � � � ��� ���� ��jijiij tYtYEtYtY �˜� � ,cov�V   
 
The universality constrain for the minimization problem (I.2.32) is: 
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Let  represent variance covariance matrix of �6 Y , with the elements ij�V ; - the vector of 

simple functions in the form:
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Then the minimization problem (I.2.32)- (I.2.33) in matrix representation is: 
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The UK variance of the mean estimator: 
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It should be mentioned here that for a finite case the UK model could be regarded as a linear 
regression model with the correlated residuals of the following (matrix) form (Chilès, Delphiner, 
1999): 
 

YFaZ ���  
  

Then the generalized least square (GLS) solution for the optimal (unbiased, efficient) estimator of 
the coefficients vector a  will be: 
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The covariance of the estimated residuals is: 
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The expression (I.2.36) shows that the covariance of the estimated residuals is a biased estimate 
of the covariance of the true residuals Y . 
 

2.6.2 Kriging intrinsic function IRF-0 
 
The problem with the intrinsic function IRF-0 is that the constant term of the drift coefficient 

cannot be determined, since the random function is determined by its increments (variogram). 
In order to avoid this problem, we can suppose that over some limited domain (for example, 
time-interval) for some very large , function 

0a

0�!A �� ��hA �J��  represent the covariance. 
Substituting the new covariance into the optimization problem (2.32)-(2.33) we will obtain similar 
equation system that does not depend on A: 
 

�»
�¼

�º
�«
�¬

�ª
� �»

�¼

�º
�«
�¬

�ª
�»
�¼

�º
�«
�¬

�ª
�c

�*

0

0

0 fF

F

�P
�O

     (I.2.37) 

 

 30



where �> �@�D�E�J� �*  is the variogram matrix., which is strictly conditionally negative definite. This 

condition is met for a valid variogram models. 
 
Contrary to the UK approach with covariance, the kriging variance of the mean estimate cannot 
be defined. 
 
 

3 Peculiarities of the kriging method applications in 
finance 

 
As have been mentioned already kriging method is developed to confront the spatial data. In this 
chapter we discuss how the difference in the financial and spatial data might have impact on the 
financial applications of the kriging method. 
 
Mean value of geostatistic data is estimated for some sample that forms a close neighbourhood to 
the estimation point. For the financial data, only past observations are available, therefore the 
close neighbourhood is formed by the sub-sample that precedes the estimation point. If we 
choose some n –value for the length of the sub-sample that precedes and contain the estimation 
point and consider it as the “close neighbourhood”, then the kriged estimator of a variable mean 
at each moment of time will coincide with the definition of the weighted MA in the (I.1.3).  
 
There are two principal peculiarities of the financial data: 

1. The majority of financial samples are non-stationary due to the presence of trends in the 
data. 

2. Many financial variables are sampled at equal distances. This is true in particular for a low 
frequency data (for example, daily, monthly, annual observations). 

 

 3.1 Data non-stationarity 
 

As have been shown in Chapter 2, all kriging approaches are based on the second-order 
moments of the process Z  or residuals Y that supposed to be known. In real life, however, the 
covariance (variogram) should be estimated first and a valid model should be fit to the estimates.  
 
In the case of the stationary instrument, the raw variogram can be easily estimated and fitted. 
However, the presence of a drift in the data introduces a bias into the estimates of the raw 
variogram. Therefore, in order to obtain the best possible estimate of the true variogram the drift 
should be removed from data and the variogram of the residuals should be estimated (Chilès, 
Delphiner, 1999).  
 
The problem is that the trend is usually unknown; thus, its estimates should be used to define 
residuals. Let say the realizations of a random function �^ �` 0�tiZ  are available at the experimental 

points . This process is represented as following: �Dx
 

� � � � �� �� �� ��xYxmxZ ���             (I.3.1) 
 

Lets define the residuals � � � � � � � ��� ���D�D�D xmxZxR ˆ��� , where �� ���Dxm̂  is the trend estimator at points 

. Lets consider a variogram of the residuals: �Dx
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The expression (I.3.2) can be simplified if only �� ��xm̂  is an optimal linear trend estimator �� ��xm* . 
Then: 
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Expression (I.3.3) shows that even if the optimal trend estimator is chosen the residual variogram 
might still underestimate the true variogram. The good news is that this bias is small at short 
distances, but can be significantly increased at large distances (Chiles, Delfiner, 1999). 
 
Chiles, Delphiner (1999) believe that despite the presence of a trend it is always possible to return 
to the standard structural analysis of the stationary case. For example, if trend  is mild, than 
the estimated empirical variograms of 

� � � �xm
Z  on several data sub-samples will not differ significantly 

at the short distances. As kriging often is applied to rather close neighbourhood of data, the 
empirical variogram can be accepted as a good estimate of the true variogram. 
 
At the situation when we can assume the stationarity of the residual term  and at some 
sufficiently large sub-sample of the available observations the trend is equal to zero: 

, then the empirical variogram estimated on this sub-sample can again be 
accepted as a good estimate of the true variogram. 

� � � �xY
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As the result, we have the following solutions to address data non-stationarity: 

1. Assume that a process Z  can be represented as in (I.3.1) with stationary residuals Y . 
Then the covariance/variogram can be estimated by using one of the two approaches: 

a. Estimate and eliminate present trend in the data; then use the variogram of the 
residuals as an estimate of the true variogram. 

b. Estimate the empirical raw variogram on the sub-sample, where no trend is 
observed. 

2. Assume that process Z  is non-stationary; use intrinsic model to fit the raw variograms 
and apply approach 2.6.1 to obtain the optimal weights estimates.  

 
As for the solution (1a), the estimation of a trend should be done before the application of the 
kriging method. As have been shown in (I.3.3), in order to minimize the error when accepting the 
empirical residuals variogram for the true variogram, we should apply the linear method to the 
trend estimation. For example, line or polynomial can be fit to the data by least square methods. 
However, curve fit will demand the subjective choice of the polynomial. We propose to estimate 
trend as a moving average of predefined length. In particular, we propose to subtract EMA of 
predefined (medium) length ( ) and evaluate the variogram model for the price residuals 

(� ^ ). The method is not optimal in statistical term, but it has the 
following advantages:  

TtEMA,

� `tintiiii EMAPRR �d�d������� 1:

1. EMA is the Markov time indicator in the sense that only available historic data is used for 
its calculations. 

2. EMA, as most popular technical indicator, is introduced in many trading software making 
them very easy to use. 

3. EMA has only one parameter to choose – its length. Our main criterion is to choose such 
length, which guarantees the convergence of the residuals variogram at some not very 
large range values. From the trading point of view, EMA should reflect a medium-term 
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trend. The EMA length certainly depends on the data frequency and traders time horizon. 
For example, for 1-second frequency and intraday trader medium term can correspond to 
the two hours (2*60*60=7200) window length; while for the 30-minutes frequency it 
might corresponds to one week MA length. 

 
We also propose to use only one simple function  in the trend, implying constant (within 
moving window) unknown trend. In the empirical geostatistical applications the number of 
functions in the trend is usually limited to one or two, as more functions were not improving 
significantly the results. 

10 � f

 

 3.2 Data sampling peculiarities 
 

The way the financial data is sampled has direct effect on the results of the kriging method 
application. On one hand, non-regular sampling typical for instruments that are not traded 
frequently, or for subordinated processes, justifies the usage of the kriging approach at the place 
of the usual filtering methods. On the other hand equal-space sampling has an interesting impact 
on the structure of the optimal kriging weights. 
 
In fact, Castelier, Laurenge (1993) showed that in the case of regular sampling the optimal 
weights for the mean estimator has quite similar behaviour. Under assumption of one simple 
function in the trend, we have relatively high weights for first and last observations in the 
window, and relatively low in the absolute terms (sometimes negative) the rest of the weights. 
They have derived the following close-form solution for the case of the exponential variogram 
model: 
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where is a length of the window (length of the sample of observations used in the kriging 

procedure), a  - range parameter of the variogram 
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The expression (I.3.4) shows that optimal weights have the same structure independently on the 
length of the sample N or the variogram parameters; they have impact only on the absolute 
values of the weights. 
 
The examples of the weights structures for different types of the variogram models are proposed 
in Figures 1.4-1.8. The following models are considered: 

���� Stable model: � � � � �¸
�¸
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���� Fractal model: � � � � �D�V�J hh 2�  ; 
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���� Spherical model: � � � �
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All figures 1.4-1.8 show similar results: concentration of the principal weights for the first and last 
observations in the sub-sample window, with comparatively lower and relatively stable other 
weights.  
 
The weights structures for the stable model for different parameters are given in Figures 1.4-1.6. 
Figures 1.4-1.5 represent the impact of the range parameter a  on the weights values, while fixing 
�D at two levels: 11 ���D  and 12 �!�D . Figure 1.4 shows the increased weights volatility with 
increase in the range parameter for 5.0� �D : very high range values corresponds to very high 
“border” weights (their sum is close to 2), which are compensated with relatively large negative 
weights (#2 and #9) and more or less stable and small (negative or positive) other weights. 
Figure 1.5 presents much smoother parabolic weights structure, convexity of which increases 
with the increase in the range parameters (the “border” weights also increases with range 
parameter). Figure 1.6 show the transformation of the weights structure from the volatile type (as 
in Figure 1.4) to the parabolic type (as in Figure 1.5) with the increase of �D-parameter from 0 to 
223. 
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Figure 1.4. Weights, which correspond to different a  variable in stable model: window length=10, 

5.1� �D . 

                                                 
23 For the range parameter  for the unit sampling frequency, the oscillation of the weights for the gaussian 
model or 

1�!a
2� �D  is much more severe. See Castelier, Laurenge (1993) for more examples. 
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Figure 1.5. Weights, which correspond to different avariable in stable model: window length=10, 

5.0� �D . 
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Figure 1.6. Weights, which correspond to different �D variable in stable model: window length=10, 

. 1� a
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Figure 1.7. Weights, which correspond to different �D variable in fractal model: window length=10, 

. 1� a
 
Figure 1.7 presents the weights structure for the fractal variogram model. Fractal model 
corresponds to the IRF-k functions. The weights structure resembles the case of stable model for 

11 ���D . 
 
Figure 1.8 considers the case of the spherical variogram model. The case when  implies the 
optimal MA in the form of the simple moving average; as data is considered to be sampled at unit 
distance  implies the absence of the correlation and the closeness of the data to the white 
noise. For the other range values, the same persistence of the large weights for first and last 
observation in window is observed. 

1� a

1� a
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Figure 1.8. Weights, which correspond to different  variable in spherical model: window length=10. a
 
As the result, we can see that independently of the window size and variogram models24, kriged 
MAs are not significantly different from SMA in the term of lag, while some of them are less 
smooth (more volatile). In fact relative volatility of the weights depends only on the variogram 
model (not on the length of the window), in particular on the regularity of the variogram model  
at the origin. Varying parameter �D (in stable or fractal models) has impact on the form of the 
weights curve and adds significantly to the volatility of the kriged MA. We can expect that kriged 
MA for stable and spherical models are more or less smooth; at the same time the kriged MA for 
fractal model supposed to be very volatile and unstable (both “borders” weights are larger than 
1).  
 
As the result, we can conclude that in the case of regular sampling (one-dimension), kriging 
optimal weights have the similar structure: for the exceptions of the border weights (first and last 
observation), other weights are quite low in the absolute terms. The «border» behavior of the 
weights in its turn is defined by the covariance structure of the variable and depends on the 
regularity of the variogram at the origin, i.e. by the presence of the range. Pure nugget model 
gives arithmetic average; spheric and exponential models produced more important oscillations 
around arithmetic weights, while gaussian model produce violent oscillations (Castelier, Laurenge, 
1993). 
 
Further we present examples of the kriging method applications to the different set of data. In 
Ch.4 and 5 we present the case of the instruments, sampled at equal intervals. Chapter 4 consider 
non-stationary examples of prices, while Chapter 5 concentrates on the MACD indicators with 
bounded paths without distinctive trends. Chapter 6 presents the examples of the application of 
the kriging method to the case of the data, sampled at uneven intervals. 
  
 

                                                 
24 At least three classical model considered above and in Castelier, Laurenge (1993). 
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4 Kriging results: Non-stationary, evenly spaced time-
series data  
 
This chapter analyses the application of the kriging to four different instruments: (1) Bund; (2) 
DAX; (3) Brent; (4) X instrument25. The analysis of the Bund is presented in details, while only 
trading outcomes are presented for other instruments. 

 

4.1 Variogram analysis and optimal kriging weights: 
Bund 
 

The Bund sample represents the quotes26 for three different contracts27 due March 8, June 8 and 
September 8, 2006, sampled at one-second frequency. The data is sampled at very high 
frequency, therefore, even for Bund, an actively trading instrument, the data is not available at 
each point of time. In order to obtain equally spaced data, missed data is interpolated at the levels 
of the last available data. Example of the Bund price path for the contract due on March 8, 2006 
is given in Figure 1.8. Other contracts can be find in Figures E1, E2 in the Appendix E. All 
figures indicate the presence of trends in the data. Moreover the trends are clearly non-linear. 
Figure 1.9 supports the hypothesis of the non-stationarity with the unbounded price variograms 
evaluated for the Bund contracts. 
 
Linear variogram implies the price process  could be modelled as an IRF-0. We have fit the 
following linear model to the variogram for the March 8, 2006 Bund contract (h in seconds): 
 

�� �� hh 61093.0 ���˜� �J  
 

The optimal weights estimated for n=3600s under assumption that local covariance is �� ��hA �J��  
for some very large  have similar structure than the weights considered in the Chapter 3 
(Figure 1.7): 

0�!A
5.036001 � � �O�O , 0... 29992 � � � �O�O . 

 
The analysis of the variograms for the residuals is more complicated. 

                                                 
25 Due to the confidentiality reason we cannot present detailed description of the instrument. 
26 The Bund quotes, used for vaiogram and kriging calculations, are in fact the index built on the basis of different 
Bund prices (quotes). Due to the confidentiality reason we cannot provide the formulae. 
27 Bund is a futures contract. 
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Figure 1.8. Bund (December 9, 2005 - March 8, 2006, frequency – 1 sec) 
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Figure 1.9. Variograms for different Bund contracts due at different dates in 2006 (December 9, 2005 - 
March 8, 2006, March 9 – June 8, 2006, June9-September 8, 2006, frequency – 1 sec) 
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As have been discussed already in Chapter 3, in order to obtain the estimates of true covariance, 
the trend should be eliminated from the data. Further we provide the analysis of how different 
EMAs (the trend estimator) can affect the form of the variogram/covariance used in kriging 
applications. Moreover, we would like to analyse whether covariance structure of the residuals is 
stable over different contracts. 
 
It is obvious that different lengths of the EMAs, used for trend subtraction, will have impact on 
the parameters of the variogram (at least its sill). Effective length of the EMA defines how close 
the EMA is approaching the price curve and how smooth it is; longer EMA length implies 
smaller distance between two curves and smoother EMA curve. As the result, the variance of the 
residuals will increase with the increase of the EMAs length. Figure 1.10 presents the variograms, 
estimated for September 8, 2006 contract, which correspond to seven different EMA lengths. As 
expected, the sill of the variograms is an increasing function of the EMA length.  
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Variances:         
'n=1800': 0.001   
'n=3600': 0.002   
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Figure 1.10. Bund (June9-September 8, 2006, frequency – 10 sec): Variograms for Bund (8 September 
contract) residuals, which corresponds to EMAs of different length 
 
The impact of the EMA lengths on the range of the variograms is though unclear from the 
Figure 1.10.  Therefore, we propose to consider the variograms, normalized by their respective 
sill (see Figure 1.11). From Figure 1.11 we can see the ranges of the variograms also depend on 
the length of EMA, used for the trend subtraction: the longer is the EMA – the larger is the 
variogram range. 
 
The analysis of the residuals over different contracts shows whether the covariance structure is 
the same over the time. Figures 1.12 and E3-E4 in the Appendix E show the examples of the 
variograms for the residuals for different Bund contracts, obtained by the subtraction of the 
EMA of the following lengths: 18001 � n sec (30 minutes), 72002 � n sec (2 hours), 

sec (2 days) respectively. We cannot conclude from the observed variograms about 792003 � n
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residuals stationarity. All the variograms stabilized around some sills. However, these sills are all 
well below the estimated variances.  
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Figure 1.11. Bund (June9-September 8, 2006, frequency – 1 sec): Normalized variograms for Bund   
residuals, which corresponds to EMAs of different length 
 

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

7

8x 10
-4

lag (in 10s)

V
ar

io

 

 

Variances:    
March 8=0.0009
June 8=0.0011 
Sept 8=0.0008 

March 8
June 8
Sept 8

 
Figure 1.12. Bund (December 9, 2005 - March 8, 2006, March 9 – June 8, 2006, June9-September 8, 2006, 
September 9 – December 8, 2006, frequency – 1 sec): Variograms for Bund residuals (n(EMA)=1800 sec) 
for different contracts 
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Stabilization of the variograms below variance implies persistent autocorrelation (correlation is no 
longer = 0 at large lags). However, explanations for this phenomena can lay also in the data 
peculiarities such as non-constant volatility caused by such events as overnight jump of the 
prices, high volatility «after 14:30 hours» etc. These events can cause an overestimation of the 
true variance. Therefore, calculation of the average variogram over the periods that does not 
include these effects can be one of the solutions for this problem. For example, the estimation of 
the average «daily» variogram can help to define whether overnight effect can be a cause for these 
types of the variograms that we have observed. 
 
Estimation of the average variogram (and average variance) over all available (non-0) days for 
three different contracts can be done according to the following formulas: 
 

� � � �� � � �
� � � �

N
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daysN
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1

var
var               (I.4.2) 

 
 

For these estimations we take only days with complete series of prices. Our maximum lag is 
certainly constrained by 1 day (in reality, by more lower value). Figure 1.13 shows the estimated 
average variograms for three Bund contracts. The variograms show that daily variograms have 
stabilized around estimated variance. New estimated variance is lower than the variances 
estimated over the 3 months sub-sample. This means that the presence of the overnight effects 
can be the cause for variance overestimation. The form of the average variogram is smooth and 
«model-like», which will facilitate significantly the variogram modeling. 
 
The variogram range is approximately equal for all contracts, while the sill is different. Therefore, 
we can expect the same weights for the optimal MA forecast, but different variance of the 
estimator for different Bund contracts. 
 
As the result of the analysis, we can see that the range parameter of the residuals variogram is 
constant over time (does not depend on the contract), however its value depends directly on the 
EMA length used for the residuals construction. The residuals variance is time-dependent and 
also depends on the EMA length. 
 
In order to obtain the kriging equation system that is non-singular, a model should be fitted to 
the empiric covariance estimates, which will guarantee positive definiteness of the variance-
covariance matrix. We choose to model the average “daily” variogram in Figure 1.13 for the 
March 8, 2006 contract. It means that we use the EMA of the 1-hour (3600 seconds) length as a 

trend estimator. Figure 1.14 proposes the fit of the exponential model � � � �
�¸
�¸

�¹

�·
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Figure 1.13. Bund (December 9, 2005 - March 8, 2006, March 9 – June 8, 2006, June9-September 8, 2006, 
frequency – 1 sec):  Average variograms over one day for Bund residuals (n(EMA)=3600s (1 hour)) 
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Figure 1.14. Bund (December 9, 2005 - March 8, 2006, frequency – 1 sec):  Empirical average “daily’ 
variogram for Bund residuals (n(EMA)=3600s (1 hour)) and theoretical model 
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From Chapter 3 we know that equally spaced samples will produce the optimal kriging weights of 
the particular form. In particular, for the exponential variogram model, these weights values can 
be even calculated analytically according to the formula (I.3.4) (n=7200s): 
 

1728.072001 � � �O�O , 

7199,...,3,2,010*09.9 5 � �|� �� ii�O  
 

The optimal weights are presented in Figure 1.15. The kriged moving average (KMA), which 
corresponds to these weights is given in Figure 1.16. As can be observed at this length KMA is 
very close to SMA of the same length, but less smooth. More volatile nature of the KMA is 
demonstrated in Figure 1.17 for a shorter SMA and KMA. We can notice that KMA oscillates 
around SMA and has much less smooth nature. 
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Figure 1.15. Bund (December 9, 2005 - March 8, 2006, frequency – 1 sec): Optimal weights (mean 

estimator) calculated for the theoretical exponential variogram � � � �
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window=7200s. 
 
As we can see the weights structure is the same whether we use residuals covariance or IRF-0 
model variogram. As the result we propose further the analysis within stationary framework 
(residuals covariance model), as we can expect the trading outcomes to be approximately the 
same. 
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Figure 1.16. Bund (December 9, 2005 - March 8, 2006, frequency – 1 sec, observations aprox. 7201-
200000): Price, KMA and SMA (window length =7200s) 
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Figure 1.17. Bund (December 9, 2005 - March 8, 2006, frequency – 1 sec, observations aprox. 1801-
20000): Price, KMA and SMA (window length =1800s) 
 
As we can see, the optimal MA weights, which take into account the auto-covariance of the 
instruments value results in the MA, which is close by the lag to the SMA, but has more volatile 
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structure. The question is whether trading strategies based on KMA can bring higher outcomes 
than SMA.  
 

4.2 Trading results: KMA versus SMA 
 

The following sub-chapter 4.2 analyzes trading results, obtained for the simulation of strategies, 
based on KMA and SMA for such instruments as Bund, DAX, Brent and X instrument. 
 
We apply simple trading strategy, based on the crossovers of the price and MA lines (in this case, 
SMA and KMA). The long position should be taken (and the short position should be closed) 
when the price crosses the MA curve from below, which is a confirmation of the upward trend; 
the short position should be taken (and the long position should be closed) when the price 
crosses the MA curve from above, which is a confirmation of the downward trend.  Thus, the 
strategy is defined as following:  
 

Trend-following strategy               (I.4.3) 
 
1. Trading costs are 0. Profits are defined in quotes units28. 
2. Lets define . iii MAPR ��� 

3. The initial trading position 00 � Pos ; trading outcome 00 � �3 . 

4. The first trade ( ) is undertaken at the first crossovers of the MA and price 
lines, i.e. under following condition: 

0, �!iPosi

if  � � � �01 �d��ii RR  and : � � � �01 ����iR 1� iPos , ientry PP � , 0� �3i  

if   � � � �01 �d��ii RR  and : � � � �01 �!��iR 1��� iPos , ientry PP � , 0� �3i  

otherwise, ,  0� iPos 0� �3i

5. Afterwards, at the new trading signals (curves crossovers) the following trades are 
executed: 
if  and :  � � � �01 �d��tt RR � � � �01 ����tR

�ƒ�� exit (previously taken) position Short ( 11 ��� ��tPos ): ,  0� tPos texit PP � 

�ƒ�� entry position Long: 1� tPos , tentry PP �  

�ƒ�� cumulative trading outcome: �� ��111 ������ �����3� �3 ttttt PPPos  

if  and :  � � � �01 �d��tt RR � � � �01 �!��tR

�ƒ�� exit (previously taken) position Long ( 11 � ��tPos ): ,  0� tPos texit PP � 

�ƒ�� entry position Short: 1��� tPos , tentry PP �  

�ƒ�� trading outcome for this operation: � � � �111 ������ �����3� �3 ttttt PPPos  

     otherwise, ,1��� tt PosPos �� ��111 ������ �����3� �3 ttttt PPPos  
 
The results of the strategy (I.4.3) simulations for different instruments and different lengths of 
KMA and SMA are presented in Table 1.1. Except for the Bund case, we use different samples 
for the variogram estimation and trading simulations. Each sample (DAX, Brent, X instrument) 
is split into two sub-samples of approximately the same length; the first sub-sample is used for 
the variogram estimation, and second sub-sample - for the trade simulations. 
 

                                                 
28 Instruments values are usually quoted in ticks, not in currency equivalents. 
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Note that the trading results can be compared only within particular instrument due to the 
difference in the length of the sample, its frequency and value of the quotes for different 
instruments: we cannot compare Bund to DAX, but only the DAX results for the strategies, 
based on KMA and SMA.  
 
Table 1.1 
The outcomes of the simulated trading strategies 

Optimal length 
(obs) 

Max profit (in quotes) Number of 
trades Instrument Frequency 

KMA SMA KMA SMA KMA SMA 
Bund 1 sec 1740 660 1.71 1.89 689 1037 
DAX 30 min 45 118 1736 1525 614 350 
Brent 30 min 45 49 14.13 9.45 124 140 

X instrument 1 hour 20 11 -10.52 -6.32 254 404 
 
Table 1.1 shows that KMA are steadily more effective at short lengths, while the optimal length 
of the SMA is varying from short to long. In general at short MA lengths, KMA generates fewer 
trades than the SMA (see Brent case). Besides the profit per trade was higher for the KMA for 
Bund and Brent instruments. Further we analyze how results of the strategies, based on the 
different MAs depend on their length, as well as have a look at the P&L paths for the optimal 
MA lengths for KMA and SMA to see whether they exhibit monotone and positive trend. 
 

 4.2.1 Bund 
 
Figure 1.18 gives the end-of-period cumulative outcomes for the trading strategies based on the 
KMA and SMA of the different lengths. KMA does not show better results than the SMA, 
though it still works better at short lengths than in long. Similar outcomes for long SMAs and 
KMAs are explained by the fact that at long lengths both curves almost coincides. Shorter KMA 
are more volatile than SMA and oscillates with larger amplitudes around SMA leading to the 
difference in the trading outcomes. 
 
SMA-based trading strategy accumulates fewer trades than KMA (see Figure 1.19). 
 
The KMA and SMA paths, which correspond to their respective optimal lengths, are given in 
Figure 1.20. We can see that both paths exhibit positive trend. Moreover, after 60000 
observations their behavior is synchronized, in fact the end-of-period difference in the outcomes 
for both MA is caused by better performance of the SMA periods at the beginning of the sample. 
From Figure 1.16 we can see that the price pattern up to the 60000 observations is characterized 
by the trendless period; so it seems like SMA due to their more smooth nature perform better 
during time, when markets are not trending. 
 

 47



0 1000 2000 3000 4000 5000 6000 7000 8000
-0.5

0

0.5

1

1.5

2

window length

en
d-

of
-p

er
io

d 
ou

tc
om

e

 

 

KMA
SMA

 
Figure 1.18. Bund (December 9, 2005 - March 8, 2006, frequency – 1 sec, observations 1-200000): End-
of-period outcomes for the strategies, based on KMA and SMA of the different lengths 
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Figure 1.19. Bund (December 9, 2005 - March 8, 2006, frequency – 1 sec, observations 1-200000): End-
of-period total trade number for the strategies, based on KMA and SMA of the different lengths 
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Figure 1.20. Bund (December 9, 2005 - March 8, 2006, frequency – 1 sec, observations 1-200000): 
Optimal P&L paths for the strategies, based on KMA (length=1740 observations) and SMA (length=660 
observations) 
 

4.2.2 DAX 
 

Short description of the DAX sample, as well as variogram used in the kriging applications is 
given in Appendix F.  
 
Figure 1.21 presents the end-of-period cumulative outcomes for the trading strategies, based on 
the KMA and SMA of different lengths. It seems like KMA is more effective than SMA at short 
lengths (between approx. 30-60 observations). At long lengths SMA leads to higher outcomes, 
though the results for both MAs are comparable. Similar trading outcomes for the long SMAs 
and KMAs are explained by the fact that two curves almost coincide at these lengths. Shorter 
KMAs are more volatile than respective SMAs: they oscillate with larger amplitudes around SMA 
leading to the difference in trading outcomes. 
 
Contrary to Bund case, the KMA accumulates fewer trades than the SMA almost for all window 
length (see Figure 1.22). It means that even having more erratic nature, and therefore, higher 
probability of sending false signals, KMA crosses price curve less frequently than the SMA curve.  
 
The KMA and SMA paths that correspond to their respective optimal lengths29, are given in 
Figure 1.23. We can see that both paths exhibit positive trend. 
 

                                                 
29 We choose the KMA optimal length at the level that does not generate the global P&L maximum, but fells within 
the interval of optimal KMA lengths. 
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Figure 1.21. DAX (30/7/2003-7/12/2006, frequency 30 minutes, observations 10086-20171): End-of-
period outcomes for the strategies, based on KMA and SMA of the different lengths 
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Figure 1.22. DAX (30/7/2003-7/12/2006, frequency 30 minutes, observations 10086-20171): End-of-
period total trades number for the strategies, based on KMA and SMA of the different lengths 
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Figure 1.23. DAX (30/7/2003-7/12/2006, frequency 30 minutes, observations 10086-20171): Optimal 
P&L paths for the strategies, based on KMA (length=45 observations) and SMA (length=118 
observations) 
 

4.2.3 Brent 
 

Short description of the Brent sample, as well as variogram used in the kriging applications are 
given in Appendix F.  
 
Figure 1.24 presents the end-of-period cumulative outcomes for the trading strategies, based on 
the KMA and SMA of different lengths. Again, the shorter length of the KMA leads to higher 
outcomes than the longer length, though contrary to the DAX case no superiority over SMA 
results are observed.  
 
As in the case of DAX instrument, the KMA accumulates fewer trades than the SMA for short 
and medium lengths, but slightly higher number of trades for the long length (see Figure 1.25). 
For shorter lengths KMA sends less false signals than SMA. 
 
The KMA and SMA paths, which correspond to their respective optimal lengths, are given in 
Figure 1.26. Contrary to the DAX case, KMA path exhibit steeper trend than the optimal SMA 
path that is more random. 
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Figure 1.24. Brent (17/12/04-27/01/06, frequency 30 minutes, observations 2515-5029): End-of-period 
outcomes for the strategies, based on KMA and SMA of the different lengths 
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Figure 1.25. Brent (17/12/04-27/01/06, frequency 30 minutes, observations 2515-5029): End-of-period total 
trades number for the strategies, based on KMA and SMA of the different lengths 
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Figure 1.26. Brent (17/12/04-27/01/06, frequency 30 minutes, observations 2515-5029): Optimal P&L paths 
for the strategies, based on KMA (length=45 observations) and SMA (length=49 observations) 
 

4.2.4 X instrument 
 

Short description of the X instrument sample as well as variogram, used in the kriging 
applications are given in Appendix G.  
 
Figure 1.27 presents the end-of-period cumulative outcomes for the trading strategies, based on 
the KMA and SMA of different lengths. Contrary to the other instruments, none of the MAs 
provides the profitable trading strategy. One of the possible explanations might be that the X 
instrument has mean-reverting nature in the long run, therefore, trend-following strategies might 
not work for this instrument. 
 
As for the DAX and Brent cases, KMA generates fewer trades than SMA (see Figure 1.28). 
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Figure 1.27. X instrument (frequency – 1 hour, observations 2372-4743): End-of-period outcomes for the 
strategies, based on KMA and SMA of the different lengths 
 

0 50 100 150
100

150

200

250

300

350

400

450

window length

en
d-

of
-p

er
io

d 
to

ta
l t

ra
de

s 
nu

m
be

r

 

 

KMA
SMA

 
Figure 1.28. X instrument (frequency – 1 hour, observations 2372-4743): End-of-period total trades number 
for the strategies, based on KMA and SMA of the different lengths 
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Comparing the performance of the KMA and SMA of the same length for the considered 
instruments, we can conclude that at short lengths KMA performs better than SMA, producing 
fewer trades; at long lengths the difference in the performance is less pronounced. The 
explanation to this phenomenon lays in the behavior of both curves. KMA is more volatile than 
the SMA and it oscillates around the SMA curve. The volatility and amplitude of the oscillations 
is the indirect function of the KMA length: the longer the KMA the less it is volatile and it 
coincides more with the SMA curve.  
 
KMA seems to perform better during trending periods and worse during trendless periods than 
the SMA of the same length. The explanation to this lays in the weight structure of the MAs. As 
markets are trending, KMA is more sensitive to the last large price changes, than SMA as it 
assigns larger weight to the last available observation30. During the trendless periods such 
structure makes the KMA more erratic than the SMA, causing more false signals, and thus, less 
profit. This might be an explanation why the trading results for the X instruments are so poor.  
 
For trending price patterns KMA produces fewer trades than the SMA of the same length even 
having a more erratic nature. Taking into account non-zero transaction costs in real-life 
applications, fewer trades end up at lower trading costs. 
 
 

5 Kriging results: Bounded, evenly spaced time-series 
data  

 
The previous Chapter 4 shows the results of the kriging method application to the estimation of 
the price mean for series that are normally non-stationary due to the presence of trend. This 
chapter analyzes the case of the data, which is bounded and has mean-reverting nature. 
 

5.1 Moving Average Convergence/Divergence 
indicator (MACD) and trading strategies 

 
Moving Average Convergence/Divergence indicator (MACD) is a technical indicator, developed 
by G. Appel (Murphy, 1999). 
 
Definition 1.4 
MACD is the difference between two exponential moving averages of different length: 
  

�� ���� �� �� ���� ��2,21,1 nEMAnEMAMACD ttt �D�D ��� ,          (I.5.1) 
 

where  - exponential moving average at the moment of time t ;  tiEMA,

� � � �in�D  - parameter of the EMA, as a function of its effective length .  in
 
Figure 1.29 presents the example of the MACD indicator for the effective lengths of  and 

 days estimated for the sample of Bund (1991-2006) with daily frequency. 
121 � n

262 � n
 

                                                 
30 KMA optimal structure also assigns more weight to the first observation in the window, but due to the presence of 
the trend this value, depending on the trend direction, is much smaller or much bigger than the last available 
observation; therefore its weighted impact is smaller on the mean value than for the last observation in the window. 
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Figure 1.29. Bund (1991-2006, frequency=1day), MACD (121 � n , 262 � n  days) 
 
Moving Average Convergence/Divergence indicator (MACD) belongs to the group of trading 
oscillators. As long as the choice of the EMAs effective lengths in (I.5.1) implies the crossover of 
both EMA curves, the MACD oscillates around 0-level. The amplitude and frequency of the 
oscillation depend on the choice of the  values (see Figure I1 in the Appendix I for the 
examples of the MACD indicator calculated for the Bund sample).  

21,nn

 
From the statistical point of view, the major quality of the MACD indicator is its mean-reverting 
nature; therefore it is more likely to be stationary than the price series.  
 
Different trading rules are defined on the basis of the MACD values (Murphy, 1999). One 
strategy coincides with the technical rule, based on the crossovers of the two MAs of different 
length31: when MACD line crosses the zero-line above - the buy signal is generated (point #1 in 
Figure 1.29), when MACD line crosses the zero-line below - the sell signal is generated (point #2 
in Figure 1.29). 
 
Another rule is based on the crossovers of the MACD line with its signal line. Signal line is 
defined by MA (for example EMA), which is constructed on the basis of the MACD values. The 
crossing of the MACD line above the signal line is the buy signal (point #3 in Figure 1.29); the 
crossing of the MACD line below the signal line generates the sell signal (point #4 in Figure 
1.29).  
 

                                                 
31 The trading rule based on the two MA of different length states the following: 

�ƒ�� Buy signal: Shorter moving average rises above the longer moving average; 
�ƒ�� Sell signal: Shorter moving average fall below the longer moving average. 
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A contrarian strategy is constructed on the basis of the extreme MACD values, which suggest 
that prices have gone too far too fast and therefore, are subjects for some corrections: an 
overbought conditions are present when the MACD is too far above the zero line (point #5 in 
Figure 1.29), while the oversold conditions are present when the MACD is too far away below 
the zero line.  
 
Finally, a rule is constructed on the convergence/divergence of the price and MACD trends. 
Negative divergence takes place when the MACD line is well above the zero line and starts the 
negative trend at the time when prices exhibit positive trend; in this case, the sell signal is 
generated. The positive divergence happens when the MACD line is well below the zero-line and 
starts exhibiting the positive trend earlier than the price line does; then, the buy signal is 
generated. 
 
We choose for evaluation and optimisation the strategy, based on the crossovers of MACD and 
signal lines. This will allow defining the optimal signal line as a kriged MA. 
 

5.2 MACD strategy: optimal signal line 
 

A strategy, based on the crossovers of MACD and signal lines has at least three parameters to 
optimise:  - the lengths of the EMAs and - the length of the MA chosen as a signal line. 
Taking into account that the goal of this sub-chapter is to find the optimal MA for the stationary 
data, we choose to optimise only the value , while accepting some default values for the 

lengths  involved in MACD calculations. From the empirical variogram in Figure H2 
(Appendix I) we have chosen default parameters 

21,nn Sn

Sn

21,nn
121 � n  and 262 � n  for MACD calculations, 

which represent some average variogram for the MACD indicator for the Bund instrument (see 
Figure 1.30). 
 
Figure 1.30 presents the empirical variogram for MACD(12-26) and the combination of two 
theoretical models fitted to these values. The model that is fitted to the data is a sum of the 

gaussian model � � � � �¸
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The optimal weights32 for the KMA estimates are presented in Figure 1.31 (window=50 
observations). Figure 1.32 represents the MACD and two signal lines - KMA and SMA of the 
same length. We can see again that KMA is more volatile than the SMA and oscillates around it.  
 

                                                 
32 The kriging weights that correspond to the variogram model (I.5.2). 
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Figure 1.30. Bund (1991-2006, frequency = 1 day): Empirical variogram of the MACD indicator 
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Figure 1.31.  Bund (1991-2006, frequency = 1 day): Optimal weights for the MA estimate for MACD 
indicator (  and ), variogram model  121 � n 262 � n
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Figure 1.32. Bund (1991-2006, frequency = 1 day), MACD and its signal lines represented by KMA and 
SMA of the same length (50 observations) 
 
Further in Chapter 5.3 we compare the trading outcomes for the trading strategies, based on the 
crossovers of MACD curve and the signal lines such as KMA, SMA and EMA of the same 
length. The analysis will be conducted for four instruments33: (1) Bund; (2) DAX; (3) Brent; (4) X 
instrument. The default parameters of the MACD indicators are chosen at levels specific for each 
instrument taken into account its frequency. 
 

5.3 Results of the trading strategy, based on the 
MACD indicator and its signal lines 
 
Suppose  is an instrument’s prices and  are the exponential MAs of the 

length :  

� ^ � `0�!iiP tt EMAEMA ,2,1 ,

21,nn

�� �� 1, 1 ������� tititi EMAPEMA �D�D , 
i

i n��
� 

2
2

�D . 

Then MACD indicator is � ^ � `: tiiMACD �d��0 ttt EMAEMAMACD ,2,1 ��� . 

 
The trading strategy based on MACD can be formulated as following: 

1. Trading costs are 0. Profits are defined in quotes units34. 
2. On the basis of the history of estimated MACD indicators �^ �` tiiMACD �d��0  for each 

moment  we construct the signal line in the form of MA of the length : t Sn �^ �`
0, �!iiSMA . 

The following are the types of the MA used as a signal line: 

                                                 
33 Note that DAX, Brent and X instrument samples are the same as in Chapter 4, while we consider new sample for 
Bund instrulent. 
34 Instruments values are usually quoted in ticks, not in currency equivalents. 
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���� Exponential moving average:  
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3. Lets define iSii MAMACDR ,��� . 

4. The initial trading position 00 � Pos ; trading outcome 00 � �3 . 

5. The first trade ( ) is undertaken at the first crossovers of the MA and MACD 
lines, i.e. under following condition: 

0, �!iPosi

if  � � � �01 �d��ii RR  and : � � � �01 ����iR 1� iPos , ientry PP � , 0� �3i  

if   � � � �01 �d��ii RR  and : � � � �01 �!��iR 1��� iPos , ientry PP � , 0� �3i  

otherwise, ,  0� iPos 0� �3i

6. Afterwards, for the new trading signals (curves crossovers) the following trades are 
executed: 

if  and :  � � � �01 �d��tt RR � � � �01 ����tR

�ƒ�� exit (previously taken) position Short ( 11 ��� ��tPos ): ,  0� tPos texit PP � 

�ƒ�� entry position Long: 1� tPos , tentry PP �  

�ƒ�� cumulative trading outcome: �� ��111 ������ �����3� �3 ttttt PPPos  

if  and :  � � � �01 �d��tt RR � � � �01 �!��tR

�ƒ�� exit (previously taken) position Long ( 11 � ��tPos ): ,  0� tPos texit PP � 

�ƒ�� entry position Short: 1��� tPos , tentry PP �  

�ƒ�� trading outcome for this operation: � � � �111 ������ �����3� �3 ttttt PPPos  

     otherwise, ,1��� tt PosPos �� ��111 ������ �����3� �3 ttttt PPPos  
 
This trading strategy was applied to four different data samples of different frequency. For DAX, 
Brent and X instrument the same data samples are used as in the Chapter 4. For Bund instrument 
we chose the new sample of the daily frequency. For Bund case the variogram model (I.5.2) 
estimated on the whole sample, that is also used for kriging applications. For the DAX, Brent and 
X instrument we have divided each sample in two sub-samples: the first sub-sample is used for 
the variogram estimations and the second sub-sample – for the simulation of the trading activity.  
 
The results of the application of the trading strategy, described above are summarized in Table 
1.2. The following general conclusions can be made: 

1. The optimal signal line defined by KMA has much shorter length than the optimal 
SMA and EMA. (The only exception is the X instrument, but these results are not 
representative as optimal SMA and EMA in fact bring minimal losses not maximum 
profits). 

2. KMA leads to higher absolute profits for all four instruments. 
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3. For Bund and Brent instruments, the efficiency of trades (profits per trade) is the 
lowest for KMA.  

 
Table 1.2 
The outcomes of the simulated trading strategies, based on MACD indicator 

Optimal length (obs) Max profit (in quotes) Number of trades Instrument Frequency 
KMA SMA EMA KMA SMA EMA KMA SMA EMA

Bund 1 day 18 37 103 45.65 39.48 43.79 195 127 112 
DAX 30 min 36 145 102 1587 623 680 264 134 161 
Brent 30 min 49 97 85 32.63 28.93 29.45 45 29 31 

X 
instrument 

1 hour 37 35 21 9.18 -19.71 -40.39 57 53 73 

 
Further we consider the results of the strategy simulation for each instrument in more details. 
 

 5.3.1 Bund 
For the simulation of the trading strategy we use the sample of daily observations for Bund 
(1991-2006) analyzed in Chapters 5.1 and 5.2. MACD is defined as the difference of the EMAs 
of the lengths  and ; the estimated variogram follows model (I.5.2).  121 � n 262 � n
 
Figure 1.30 and 1.31 compare the profits and trade number for different length and types of the 
signal line. The MACD strategy leads to the positive results for all types and length of the signal 
lines (Figure 1.30). The usage of the KMA as a signal line leads to the highest possible profits, 
although the trading outcomes are more volatile than for other signal lines. The optimal lengths 
of the KMA lay between 10 – 25 observations (days).  EMA shows more consistent results: for 
longer EMAs the strategy brings high and less volatile outcomes than the other signal lines. 
Figure 1.31 shows that except for very short lengths 10-20 observations, KMA leads to relatively 
lower trades number than the signal lines defined by SMA and EMA of the same lengths. 
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Figure 1.30. Bund  (1991-2006, frequency = 1 day): End-of-period outcomes for the strategies, based on 
MACD ( , ) and signal lines (KMA, SMA and EMA) of the different lengths. 121 � n 262 � n
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Figure 1.31. Bund  (1991-2006, frequency = 1 day): End-of-period total trades number for the strategies, 
based on KMA, SMA and EMA of the different lengths 
 
As for the optimal P&L paths (see Figure 1.32), all signal lines types leads to the paths that 
exhibits positive trends. 
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Figure 1.32. Bund  (1991-2006, frequency = 1 day): Optimal P&L paths for the strategies, based on KMA 
(length=18 observations), SMA (length=37 observations) and EMA (length=103 observations) 
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 5.3.2 DAX 
The description of the DAX data sample is given in Appendix F. MACD indicator was 
constructed as the difference of the EMAs of the lengths 401 � n  and  (see Figure E4). 
The MACD variogram model (see Figure F5 in the Appendix F) that is used in kriging 
applications is: 

802 � n

� � � �
�¸
�¸

�¹

�·

�¨
�¨

�©

�§
�����¸

�¸

�¹

�·

�¨
�¨

�©

�§
��� 

����

80
cos11231123 80

3.0
50

2

h
eeh

hh

�J . 

  
The trading outcomes generated for different lengths of the signal line defined by KMA, SMA 
and EMA are presented in Figure 1.33. Contrary to Bund case, some signal lines lead to losses. 
The strategy based on the KMA signal line generates the highest possible profits; however, its 
outcomes are volatile. The optimal KMA lengths belong to the interval of low values 20-40 
observations; EMA optimal lengths lay between 80-150 observations. 
 
The number of the total trades for the KMA-based strategy is higher for short lengths; at long 
lengths it is similar to the number of trades generated by other types of the signal lines (see 
Figure 1.34). 
 
As for the monotonicity of the optimal P&L paths in Figure 1.35, they do not exhibit constantly 
the patterns with positive trend and are quite volatile for ally types of the signal line. 
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Figure 1.33. DAX (30/7/2003-7/12/2006, frequency 30 minutes, observations 10085-20170): End-of-
period outcomes for the strategies, based on MACD (401 � n , 802 � n ) and signal lines (KMA, SMA 
and EMA) of the different lengths. 
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Figure 1.34. DAX (30/7/2003-7/12/2006, frequency 30 minutes, observations 10085-20170): End-of-
period total trades number for the strategies, based on MACD (401 � n , ) and signal lines 
(KMA, SMA and EMA) of the different lengths. 

802 � n

 

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2

x 10
4

-1000

-500

0

500

1000

1500

2000

observations

P
&

L

 

 

KMA (n=36 obs)
SMA (n=145 obs)
EMA (n=102 obs)

KMA

EMA

SMA

 
Figure 1.35. DAX (30/7/2003-7/12/2006, frequency 30 minutes, observations 10085-20170): optimal 
P&L for the strategies, based on MACD ( 401 � n , 802 � n ) and optimal signal lines (KMA, SMA and 
EMA) 
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 5.3.3 Brent 
 
Brent data sample is briefly presented in Appendix G. The MACD indicator was constructed as 
the difference of the EMAs of the lengths 401 � n , 802 � n  (see Figure G4 in the Appendix G). 
The following variogram model (see also Figure G5) is used in the kriging applications: 
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Trading profits/losses and trades numbers generated for different lengths of the signal lines are 
presented in Figure 1.36 and Figure 1.37 respectively. As in the previous cases the KMA 
generates the highest possible profits, while its outcomes are quite volatile (see Figure 1.36). The 
optimal lengths of the KMA belong to the interval of the low values between 20-70 observations. 
Again SMA and EMA perform better as the signal line at the long distances. 
 
As for the total number of trades the KMA generates fewer trades than respective EMA, except 
for the short lengths up to approximately 30 observations (see Figure 1.37). 
 
Finally the optimal P&L path for the KMA signal line exhibits the steepest positive trend 
comparatively to the SMA or EMA signal lines (see Figure 1.38). 
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Figure 1.36. Brent (17/12/04-27/01/06, frequency 30 minutes, observations 2515-5029): End-of-period 
outcomes for the strategies, based on MACD (401 � n , 802 � n ) and signal lines (KMA, SMA and 
EMA) of the different lengths. 
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Figure 1.37. Brent (17/12/04-27/01/06, frequency 30 minutes, observations 2515-5029): End-of-period 
total trades number for the strategies, based on MACD (401 � n , 802 � n ) and signal lines (KMA, SMA 
and EMA) of the different lengths. 
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Figure 1.38. Brent (17/12/04-27/01/06, frequency 30 minutes, observations 2515-5029): optimal P&L 
for the strategies, based on MACD ( , 401 � n 802 � n ) and optimal signal lines (KMA, SMA and EMA). 
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 5.3.4 X instrument 
 
The data sample used for the analysis of the X instrument is presented in Appendix H. The 
MACD indicator was constructed as the difference between EMAs of the following lengths: 

,  (see Figure H4 in the Appendix H). The following model is fit to the empirical 
variogram estimates (see Figure H5 in the appendix H) and used further in the kriging 
applications: 

401 � n 802 � n
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Figure 1.39 shows that only one strategy based on the KMA of the length 37 observations as the 
signal line generates some positive profits. All the other MACD strategies generate losses. Due to 
this fact we do not provide the optimal P&L paths for this instrument. 
 
As in the previous cases, KMA generates higher trades number at short lengths and relatively 
lower trades number at long lengths comparatively to the SMA and EMA. 
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Figure 1.39. X instrument (frequency - 1 hour, 401 � n , 802 � n , obs. 2372-4743): End-of-period 

outcomes for the strategies, based on MACD (401 � n , 802 � n ) and signal lines (KMA, SMA and 
EMA) of the different lengths. 
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Figure 1.40. X instrument (frequency - 1 hour, 401 � n , 802 � n , obs. 2372-4743): End-of-period total 

trades number for the strategies, based on MACD (401 � n , 802 � n ) and signal lines (KMA, SMA and 
EMA) of the different lengths. 
 
As the result, we can see that application of the kriging approach to the parameter optimization 
of the trading strategy, based on MACD indicator leads to similar results as in Chapter 4. KMA 
also leads to the absolute maximum profits for the majority of the instruments. The optimal 
lengths of the KMA coincide with the low values contrary to optimal EMA and SMA signal lines. 
KMA generates higher trades number at short lengths, but lower trades number at long lengths 
relatively to the EMA and SMA of the same length. 
 
We can conclude that KMA improves the MACD trading strategy under zero-transaction-costs 
hypothesis. Moreover it works better at short distances, which is unlikely for the majority of 
other MAs that generates more false signals at these lengths. 
 
 

6 Kriging results: unevenly spaced data 
 

As have been shown in Chapter 3, for the equally spaced samples of the financial data the 
optimal KMA, defined by the kriging method, has a specific weight structure; KMA is close in 
the lag to the SMA, calculated on the same window, but might have higher volatility. Moreover 
the optimal weights are the same throughout the time, as the same distances (1,...,2,1,0 ��n ) 
between the moment of time t , where the MA is calculated and observations in the moving 
window of the length  that precedes this moment are used to define these weights.  n
 
However, frequently the sampling of the financial data is not done at equal distances, due to the 
fact that the price/quote is documented if the transaction is undertaken. Other case of the 
unequal sampling appears when an instrument’s price is considered as a function of other than 
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time variable, for example volume. Such approach can be presented as a change of the 
coordinates. In this case the price can be considered as a subordinated process35. The change of 
coordinates helps to smooth the jumps in the price process, frequently associated with the large 
changes in the traded volume.  
 
The incorporation of the volume into the process of decision-making might improve the trading 
results. Blume, Easley, O’Hara (1994) demonstrated that the traders who use information 
contained in market statistics such as prices and volume do better than the one that do not. The 
other articles that analyzed the importance of volume for the price prediction are Lo, Wang 
(2000), Campbell, Grossman and Wang (1991), Harris and Raviv (1991), Wang (1991). 
 
Taking into account that the kriging method accounts for the difference in the distance between 
the points through the covariance/variogram model, it can be used to construct the optimal MA 
for the unevenly spaced data. In this chapter we present the examples of such method 
applications.  
 
In order to analyse the KMAs in more details we have also simulated trend-following strategy, 
based on the crossovers of the price and MA curves. The same strategy, based on the SMA 
curve, is considered as a benchmark for the results comparison. The crossovers of the price and 
MA lines (SMA and KMA) define the strategy entry/exit signals. Lets define variable 

. Then the strategy is formulated in the following way. iii MAPR ��� 
 

Trend-following strategy   
1. Trading costs are 0. 
2. The initial trading position 00 � Pos ; trading outcome 00 � �3 . 

3. The first trade ( ) is undertaken under following condition: 0, �!iPosi

if  � � � �01 �d��ii RR  and : � � � �01 ����iR 1� iPos , ientry PP � , 0� �3i  

if   � � � �01 �d��ii RR  and : � � � �01 �!��iR 1��� iPos , ientry PP � , 0� �3i  

otherwise, ,  0� iPos 0� �3i

4. Afterwards, if the trading signals are generated the following trades are executed: 
if  and :  � � � �01 �d��tt RR � � � �01 ����tR

�ƒ�� exit (previously taken) position Short ( 11 ��� ��tPos ): ,  0� tPos texit PP � 

�ƒ�� entry position Long: 1� tPos , tentry PP �  

�ƒ�� cumulative trading outcome: �� ��111 ������ �����3� �3 ttttt PPPos  

if  and :  � � � �01 �d��tt RR � � � �01 �!��tR

�ƒ�� exit (previously taken) position Long ( 11 � ��tPos ): ,  0� tPos texit PP � 

�ƒ�� entry position Short: 1��� tPos , tentry PP �  

�ƒ�� trading outcome for this operation: � � � �111 ������ �����3� �3 ttttt PPPos  

     otherwise, ,1��� tt PosPos �� ��111 ������ �����3� �3 ttttt PPPos  
 
As the result Chapter 6 is organized in the following way. Chapter 6.1 presents the case of 
unevenly spaced time-dependent data caused by the missed observations when no transaction 
takes place. We show how to construct KMA and compare its results with the traditional SMA, 

                                                 
35 From the statistical point of view the change of the time coordinates to the volume-based (or other variable-based) 
axe introduce the subordinated processes for price.  
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estimated on the same sample. We also analyse whether the adjustment of the sample to the 
regular spaced one by an interpolation of missed observations can produce better KMA. Chapter 
6.2 presents the kriged volume weighted moving average (KVWMA) constructed for the irregular 
spaced sample due to the change of the coordinate from time to volume. We also analyse the 
trading outcomes of the trend-following strategy, based on this KVWMA.  
 

 6.1 Unevenly spaced time dependent price series 
 
In this chapter we present application of the kriging method to the Bund data sampled at 1 
second-frequency for the day of April 18, 2006. The frequency is very high, therefore even for 
Bund that is traded very actively, many gaps are present in the data. Some of these gaps count up 
to minutes. Figure 1.41 presents the sample at real time coordinate (in seconds); 0 correspond to 
9:00:00, #300 – to 9:05:00, etc. 
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Figure 1.41. Bund (April 18, 2006, frequency 1 sec): quotes (unevenly spaced data) 
 
In order to analyse how these gaps might impact the estimation of the optimal MAs, we propose 
to consider two samples:  

(1) irregular sample: raw data at available time points of time 
(2) regular sample: the sample obtained by filling the gaps in the data by the same 

values available in the previous moments of time. Such approach is based on the 
assumption that the when there is no trading the price stays at the level 
corresponding to the last transaction. 

 
Figure 1.42 presents two variograms estimated on these samples. As we can see, the adjustment 
of sample to the regular sampling changes significantly the form of the variogram. 
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Figure 1.42. Bund (April 18, 2006, frequency 1 sec): variograms for unevenly and evenly spaced price 
samples 
 
Two different models were fit to the empirical variograms: 

(1) irregular sample: � � � �
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(2) regular sample : � � � � hh -6101.1�˜� �J . 
 
The weights structure corresponding to these variogram models are given in Figures 1.43 and 
1.45. Figure 1.43 presents the example of the weights for the irregular sample. It should be 
stressed that although the distribution of the weights is the same (the largest weights are assigned 
to the first and last observation), the weights will differ from window to window as they are 
defined also by the distance from the estimation point to other point in the window, which are 
irregular. This observation is support by the Figure 1.44 that presents the first weight estimated 
for each window. We can see that while the first weight  (and the last) values contained in the 
interval between 0.4 and 0.5, they almost never constant.  
 
As for the regular sample, the same weight structure that corresponds to the linear model 
preserves through time: 0,5.0 11 �|�|� ���� NiN �O�O�O  (see Figure 1.45). 
 
The examples of the KMA and SMA, estimated on the basis of irregular sample and KMA, 
estimated on the basis of regular sample and re-sampled at the points of irregular sample, are 
presented in Figure 1.46. Note that the effective lengths of the MAs estimated on the regular and 
irregular samples are different. 
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Figure 1.43. Bund (April 18, 2006, frequency 1 sec): Example of the optimal weights for the KMA for the 
data sampled irregular (window beginning at 3050 observation) 
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Figure 1.44. Bund (April 18, 2006, frequency 1 sec): Value of the first/last weights for the optimal KMA 
as a function of the window used for its estimations 
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Figure 1.45. Bund (April 18, 2006, frequency 1 sec): The optimal weights for the KMA for the data re-
sampled regularly 
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Figure 1.46. Bund (April 18, 2006, frequency 1 sec, obs. 2600-3500s): Price and different MA types 
(window=80 observations) 
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As we can see for this particular length KMA estimated on the irregular sample generate less false 
signals than the SMA and KMA estimated on the regular sample. For example, between 2900-
3000 seconds the SMA, estimated on the irregular sample and KMA, estimated on the regular 
sample send false signals by crossing several times the price curve, while the KMA estimated on 
the irregular sample crosses it only once. 
 
Table 1.2 and Figure 1.47 summarize the maximum profits generated by the trend-following 
strategy, based on the different MA types36. 
 
Table 1.2 
Optimal outcomes of the trend-following strategy, based on the different MA types 

Outcomes KMA (irregular) SMA (irregular) KMA (regular) 
MA length 80 300 260 
Cumulative value 0.4078 0.4218 0.395 
Number of trades 256 103 279 
 
As we can see the highest outcome is achieved for the strategy, based on the SMA. The KMA, 
estimated for irregular samples generates comparable profits at much shorter lengths. At the 
same time, we can notice that the KMA calculated on the adjusted regular sample and resample 
for the irregular points, generate more false signals than the KMA estimated on the irregular 
sample; at the same time it generates some stable profits for different MA lengths. 
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Figure 1.47. Bund (April 18, 2006, frequency 1 sec): End-of-period cumulative value of the strategy for 
different types of the MAs and data samples 
 

                                                 
36 It should be noted that the MA of the length considered in the analysis are too short and less likely to be used for 
the data with 1-second frequency in the real-life applications. We though propose to consider these values and data 
as some general example. 
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