
HAL Id: pastel-00005275
https://pastel.hal.science/pastel-00005275

Submitted on 21 Jul 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Point-to-point shortest paths on dynamic
time-dependent road networks

Giacomo Nannicini

To cite this version:
Giacomo Nannicini. Point-to-point shortest paths on dynamic time-dependent road networks. Com-
puter Science [cs]. Ecole Polytechnique X, 2009. English. �NNT : �. �pastel-00005275�

https://pastel.hal.science/pastel-00005275
https://hal.archives-ouvertes.fr

Point-to-Point Shortest Paths
on Dynamic Time-Dependent

Road Networks

Thèse présentée pour obtenir le grade de

DOCTEUR DE L’ECOLE POLYTECHNIQUE

par

Giacomo Nannicini

Soutenue le 18 juin 2009 devant le jury composé de:

Dorothea Wagner Universität Karlsruhe, Karlsruhe Rapporteur
Roberto Wolfler-Calvo Université Paris Nord, Paris Rapporteur
Gilles Barbier DisMoiOù, Paris
Philippe Goudal Mediamobile, Ivry sur Seine
Frank Nielsen Ecole Polytechnique, Palaiseau
Leo Liberti Ecole Polytechnique, Palaiseau Directeur de thèse
Philippe Baptiste Ecole Polytechnique, Palaiseau Co-directeur de thèse
Daniel Krob Ecole Polytechnique, Palaiseau Co-directeur de thèse

2

3

Abstract

The computation of point-to-point shortest paths on time-dependent road
networks has many practical applications which are interesting from an indus-
trial point of view. Typically, users are interested in the path leading to their des-
tination which has the smallest travel time among all possible paths; it is nat-
ural to model the shortest paths problem on a time-dependent graph, where
the arc weights are travel times that depend on the time of day at which the
arc is traversed. We study both fully combinatorial methods and mathemat-
ical formulation based methods. From a combinatorial point of view, if we
impose some restrictions on the arc weights, the problem can be solved in
polynomial time with the well known Dijkstra’s algorithm. However, apply-
ing Dijkstra’s algorithm on a graph with several millions of vertices and arcs,
such as a continental road network, may require several seconds of CPU time.
This is not acceptable for real-time industrial applications; therefore, the need
for speedup techniques arises. Bidirectional search is a standard technique to
speed up computations on static (i.e. non time-dependent) graphs; however,
as the arrival time at the destination is unknown, the cost of time-dependent
arcs around the target node cannot be evaluated, thus bidirectional search can-
not be directly applied on time-dependent networks. We propose an algorithm
based on an asymmetric bidirectional search, which allows the extension to
the time-dependent case of hierarchical speedup techniques, well known for
static graphs. Our method deals efficiently with dynamic scenarios where arcs
weights can change, so that we can take into account real-time and forecast traf-
fic information as soon as it becomes available. We achieve average query times
for time-dependent shortest paths computations that were previously only pos-
sible on dynamic graphs with static arc costs. We discuss the integration of
our algorithm with an existing real-world industrial application. For general
arc weight functions, the problem is not polynomially solvable; we propose a
mathematical programming formulation which is a Mixed-Integer Linear Pro-
gram (MILP) if the time-dependent arc weights are linear or piecewise linear
functions, whereas it is a Mixed-Integer Nonlinear Program (MINLP) if the arc
weights are nonlinear functions. We study efficient algorithms for both classes
of problems, and test them on benchmark instances taken from the literature,
as well as shortest paths instances. We propose new branching strategies within
the context of a Branch-and-Bound algorithm for MILPs. Computational ex-
periments show that, by generating good branching decisions, we enumerate
on average half the nodes enumerated by traditional strategies. Our approach
is also competitive in terms of total computational time. Finally, we present a
general-purpose heuristic for MINLPs based on Variable Neighbourhood Search,
Local Branching, Sequential Quadratic Programming and Branch-and-Bound.
Experiments show the reliability of our heuristic with respect to methods pro-
posed in the literature.

4

Contents

1 Introduction 9
1.1 Motivation . 9
1.2 Definitions and Notation . 12

1.2.1 The FIFO property . 13
1.2.2 Choice of the cost functions 13

1.3 Mathematical Programming Formulations for the TDSPP 14
1.3.1 Definition of mathematical program 15
1.3.2 Formulation of the TDSPP 18
1.3.3 Analysis of the formulations 20

1.4 Related Work . 21
1.4.1 Early history . 21
1.4.2 Dijkstra’s algorithm . 23
1.4.3 Label-correcting algorithm 24
1.4.4 Hierarchical speedup techniques for static road networks . 26

1.4.4.1 Highway Hierarchies 26
1.4.4.2 Dynamic Node Routing 28
1.4.4.3 Contraction Hierarchies 30

1.4.5 Goal-directed search: A∗ . 31
1.4.5.1 The ALT algorithm 32

1.4.6 The SHARC algorithm . 33
1.5 Contributions . 35
1.6 Overview . 38

I Combinatorial Methods 41

2 Guarantee Regions 45
2.1 Definitions and main ideas . 46
2.2 Computing the node sets . 49
2.3 Query algorithm . 51
2.4 Implementation . 53

2.4.1 Storing node sets . 53
2.4.2 Computational analysis . 54

6 CONTENTS

2.4.3 Drawbacks of guarantee regions 57

3 Bidirectional A∗ Search on Time-Dependent Graphs 59
3.1 Algorithm description . 59
3.2 Correctness . 61
3.3 Improvements . 63
3.4 Dynamic cost updates . 66

4 Core Routing on Time-Dependent Graphs 69
4.1 Algorithm description . 69
4.2 Practical issues . 72

4.2.1 Proxy nodes . 72
4.2.2 Contraction . 73
4.2.3 Outputting shortest paths 74

4.3 Dynamic cost updates . 74
4.3.1 Analysis of the general case 75
4.3.2 Increases in breakpoint values 75
4.3.3 A realistic scenario . 76

4.4 Multilevel Hierarchy . 77

5 Computational Experiments 79
5.1 Input data . 79

5.1.1 Time-dependent arcs . 80
5.2 Contraction rates . 81
5.3 Random Queries . 85

5.3.1 Local Queries . 92
5.4 Dynamic Updates . 93

6 A Real-World Application 97
6.1 Description of the existing architecture 97
6.2 Description of the proposed architecture 99

6.2.1 Load balancing and fault tolerance 102
6.3 Updating the cost function coefficients 104

II Mathematical Formulation Based Methods 107

7 Improved Strategies for Branching on General Disjunctions 111
7.1 Preliminaries and notation . 112
7.2 A quadratic optimization approach 113

7.2.1 The importance of the norm of λ 117
7.2.2 Choosing the set Rk . 118
7.2.3 The depth of the cut is not always a good measure 119

7.3 A MILP formulation to generate split disjunctions 120

CONTENTS 7

7.3.1 Generating a pool of split disjunctions 124
7.4 Computational experiments: quadratic approach 126

7.4.1 Comparison of the different methods 127
7.4.2 Combination of several methods 132

7.5 Computational experiments: MILP formulation 139

8 A Good Recipe for Solving MINLPs 145
8.1 The basic ingredients . 146

8.1.1 Variable neighbourhood search 146
8.1.2 Local branching . 147
8.1.3 Branch-and-bound for cMINLPs 147
8.1.4 Sequential quadratic programming 148

8.2 The RECIPE algorithm . 149
8.2.1 Hyperrectangular neighbourhood structure 149

8.3 Computational results . 151
8.3.1 MINLPLib . 152
8.3.2 Optimality . 154
8.3.3 Reliability . 155
8.3.4 Speed . 155

9 Computational Experiments on the TDSPP 157
9.1 Input data . 157
9.2 Numerical experiments with the linear formulation 159

9.2.1 Formulation . 159
9.2.2 Computational results . 160

9.3 Numerical experiments with the nonlinear formulation 162
9.3.1 Formulation . 163
9.3.2 Modifications to RECIPE . 163
9.3.3 Computational results . 164

III Conclusions and Bibliography 167

10 Summary and Future Research 169
10.1 Summary . 169
10.2 Future research . 173

References 179

8 CONTENTS

Chapter 1

Introduction

1.1 Motivation

Route planners and associated features are increasingly popular among web
users: several web sites provide easy-to-use interfaces that allow users to select
a starting and a destination point on a map, and a path between the two points
satisfying one or more criteria is computed. Possible criteria are, for example:
minimize travel time, total path length or estimated travel cost. Similar capa-
bilities can be found in GPS devices; as these usually have a limited amount
of memory and CPU power, several devices now use different kinds of wireless
connections in order to query a web service, which computes the desired path
using more sophisticated algorithms than those available on the portable de-
vice.

Users are typically interested in the fastest path to reach their destination,
i.e. the shortest path in terms of travel time. However, usually only static infor-
mation is taken into account when computing this kind of shortest paths, while
it is well known that the travel time over a road segment depends on its conges-
tion level, which in turn is dependent on the time instant at which the road
segment is traversed. This implicitly requires complete knowledge of both real-
time and forecast traffic information over the whole road network, so that we
are able to compute the traversal time of a road segment for each time instant
in the future. This assumption is obviously unrealistic; nevertheless, several
statistical models exist which are able to predict to a certain degree of accuracy
the evolution of traffic. This kind of analysis is made possible by traffic sensors
(electromagnetic loops, cams, etc.) that are positioned at strategic places of
the road network and constantly monitor the traffic situation, providing both
high-level information such as the congestion level of a highway and low-level
information such as the travel time in seconds over a particular road segment.
Using a large database of historical traffic information and statistical analysis
tools we can compute speed profiles for the different road segments, i.e. cost
functions that associate the most probable travel speed (and thus travel time)

10 Introduction

over a road segment with the time instant at which the segment is traversed.
Typically there will be several classes of these speed profiles, e.g. one class of
profiles for weekdays and another one for holidays. A road network such that
the travel time over a road segment depends on the time instant at which the
segment is traversed is called time-dependent. One practical problem arises:
as road networks may be very large, traffic sensors cannot cover all road seg-
ments. In real-world scenarios, only a small part of the road network is con-
stantly monitored, while the remaining part is not covered by sensors and, as a
consequence, by speed profiles. However, the monitored part of the road net-
work corresponds to the most important road segments, e.g. motorways and
highways. For long distance paths, the traffic congestion status of these seg-
ments is the most important for determining the total travel time, and is also
the most significant from a user’s point of view: it is reasonable to assume that
a car driver which asks for the fastest path to reach the destination wants to
avoid traffic jams on high importance roads, which have a large influence on
the total travel time, while congestions at local level near the departure or the
destination point are less important, as well as more difficult (if not impossible)
to foresee. Thus, in a realistic situation only a part of the road network is pro-
vided with real-time and forecast traffic information, while the remaining part
is associated with static travel times.

This scenario is further complicated by the fact that the speed profiles may
not be the most accurate traffic information available. Indeed, it is clear that
real-time information, as detected by the traffic sensors, gives the best estima-
tion of travel times for the time instant at which it is gathered. Moreover, sev-
eral predictive models for short and mid-term traffic forecasting exist, which
are beyond the scope of this work and will not be discussed here; these mod-
els are based on the real-time information and capitalize on the temporal and
spatial locality of traffic jams, so that they are able to predict congestions with
a larger degree of accuracy with respect to speed profiles, which only take into
account historical data. In the end, the historical speed profiles are not the only
source of traffic information: they provide a good estimation of long term traf-
fic dynamics, but for short and mid-term forecasting more accurate dynamic
data is available. Therefore, the cost functions that associate travel times to
road segments and the time at which the segment is traversed should ideally
be dynamic, i.e. they should be based on historical speed profiles, but they
should be frequently updated in order to take into account both real-time traf-
fic information and short and mid-term traffic forecastings. In the following we
will assume that the time required for each shortest path computation is much
shorter than the time interval at which real-time traffic information (and thus
traffic forecastings) is updated, so that computations can always be carried out
before the cost functions are modified. This is realistic in industrial applica-
tions, since a shortest path should be computed very quickly (no more than a
second), whereas traffic information is typically updated every few minutes.

1.1 Motivation 11

Under reasonable assumptions, the problem of finding the shortest path in
terms of travel time on a time-dependent road network is theoretically solved
in polynomial time by Dijkstra’s algorithm (see Section 1.2.1 and Section 1.4.2).
However, an application of Dijkstra’s algorithm over a continental sized road
network may require several seconds of CPU time, and in several real-world
scenarios this may be too long. For instance, consider the web service scenario:
if we assume that there may be several shortest path queries per second, then
each shortest path computation should take no more than a few milliseconds.
This situation also arises in the case of GPS devices: real-time and forecast traf-
fic information may be difficult to deliver to limited capabilities devices for
several reasons (bandwidth, secrecy, etc.), so that the most efficient choice is
gathering the traffic information on a server machine with large computational
power, which should then quickly provide answers to shortest path queries to
all connected devices. This motivates our need for speedup techniques. It is
easy to develop heuristic strategies, e.g. for long distance paths we can restrict
the search to motorways after a few kilometers away from the starting point,
thus neglecting all less important roads. However, both from a theoretical and
a practical point of view we are more interested in exact methods, or at least
methods with a (small) approximation guarantee. While in other shortest paths
applications only exact solutions may be interesting, a small approximation fac-
tor is practically acceptable when dealing with road networks, since the input
data (i.e. travel times) is affected by measurement errors anyway, and traffic
forecasts may fail to be exact.

In the general case, i.e. without restrictions on the cost functions, the time-
dependent shortest path problem is NP-hard (see Section 1.2.1). For very large
networks, there is no hope of solving it to optimality within a short time; there-
fore, for real-time applications we are more interested in a restriction of the
problem which is polynomially solvable. However, the study of the general case
finds application as a mean to verify that the solutions to the polynomially solv-
able restriction of the problem are meaningful for the network users, even when
the restrictions are lifted. We model the time-dependent shortest path problem
in a general network through a mathematical program. The greatest advantage
of employing a mathematical program is the flexibility of the resulting model:
we can choose arbitrary cost function, and easily add complicating constraints
that would be difficult to satisfy with a Dijkstra-like approach. For instance,
taking into account prohibited turnings is straightforward within the mathe-
matical programming formulation that we propose. This program is a mixed-
integer linear program or a mixed-integer nonlinear program, depending on
the functions which model the travelling time over the arcs of the network. In-
stead of searching for specialized algorithms to solve the time-dependent short-
est path problem in the general case, we study general-purpose algorithms for
mixed-integer linear programs and mixed-integer nonlinear programs. This al-
lows us to improve the performance with respect to the literature of existing

12 Introduction

algorithms that solve very large classes of problems, one of which is the routing
problem that is the specific subject of this thesis.

1.2 Definitions and Notation

Consider an interval T = [0, P] ⊂ R and a function space F of positive functions
f : R

+ → R
+ with the property that ∀τ > P f(τ) = f(τ − kP), where k =

max{k ∈ N|τ − kP ∈ T }. This implies f(τ + P) = f(τ) ∀τ ∈ T ; in other
words, f is periodic of period P . We additionally require that f(x) + x ≤ f(y) +
y ∀f ∈ F, x, y ∈ R

+, x ≤ y; this ensures that our network respects the FIFO
property when the functions are interpreted as travel times (see Section 1.2.1).
The juxtaposition f ⊕ g of two functions f, g ∈ F is a function ∈ F defined as
(f ⊕ g)(τ) = f(τ) + g(f(τ) + τ) ∀τ ∈ R

+. Note that this operation is neither
commutative nor associative, and should be evaluated from left to right; that is,
f ⊕ g ⊕ h = (f ⊕ g) ⊕ h. The minimum min{f, g} of two functions f, g ∈ F is a
function ∈ F such that (min{f, g})(τ) = min{f(τ), g(τ)} ∀τ ∈ T . We define the
lower bound of f as f = minτ∈T f(τ), and the upper bound as f = maxτ∈T f(τ).

Consider a directed graph G = (V,A), where the cost of an arc (u, v) is a time-
dependent function given by a function c : A → F; for simplicity, we will write
c(u, v, τ) instead of c(u, v)(τ) to denote the cost of the arc (u, v) at time τ ∈ T .
We define λ, ρ : A → R

+ as λ = c and ρ = c, i.e. ∀(u, v) ∈ A λ(u, v) = c(u, v) and
ρ(u, v) = c(u, v); we assign their own symbol to these two functions because
they will be used very often in the following.

We denote the distance between two nodes s, t ∈ V with departure from s
at time τ0 ∈ T as d(s, t, τ). The distance function between s and t is defined as
d∗(s, t) : T → R

+, d∗(s, t)(τ) = d(s, t, τ). We denote by Gλ the graph G weighted
by the lower bounding function λ; the distance between two nodes s, t on Gλ is
denoted by dλ(s, t). Similarly, we denote the graph G weighted by ρ as Gρ.

Given a path p = (s = v1, . . . , vi, . . . , vj, . . . , vk = t), its time-dependent cost is
defined as γ(p) = c(v1, v2)⊕ c(v2, v3)⊕ · · · ⊕ c(vk−1, vk). Its time-dependent cost
with departure time at τ0 ∈ T is denoted as γ(p, τ0) = γ(p)(τ0). We denote the
subpath of p from vi to vj by p|vi→vj

. The concatenation of two paths p and q is
denoted by p + q.

We call G the reverse graph of G, i.e. G = (V,A) where A = {(u, v)|(v, u) ∈ A}.
For V ′ ⊂ V , we define A[V ′] = {(u, v) ∈ A|u ∈ V ′, v ∈ V ′} as the set of arcs
with both endpoints in V ′. Correspondingly, the subgraph of G induced by V ′ is
G[V ′] = (V ′, A[V ′]). We define the union between two graphs G1 = (V1, A1) and
G2 = (V2, A2) as G1 ∪G2 = (V1 ∪ V2, A1 ∪ A2).

We can now formally state the Time-Dependent Shortest Path Problem:

TIME-DEPENDENT SHORTEST PATH PROBLEM(TDSPP): given a directed
graph G = (V,A) with cost function c : A → F as defined above, a
source node s ∈ V , a destination node t ∈ V and a departure time

1.2 Definitions and Notation 13

τ0 ∈ T , find a path p = (s = v1, . . . , vk = t) in G such that its time-
dependent cost γ(p, τ0) is minimum.

We will assume that our problem is to find the fastest path between two
nodes with departure at a given time; the “backward” version of this problem,
i.e. finding the fastest path between two nodes with arrival at a given time, can
be solved with the same method (see (39)).

1.2.1 The FIFO property

The First-In-First-Out property states that for each pair of time instants τ, τ ′ ∈
T with τ ′ > τ :

∀ (u, v) ∈ A c(u, v, τ) + τ ≤ c(u, v, τ ′) + τ ′,

The FIFO property is also called the non-overtaking property, because it basi-
cally says that if T1 leaves u at time τ and T2 at time τ ′ > τ , T2 cannot arrive at
v before T1 using the arc (u, v). Note that our choice of the function space for
the time-dependent arc cost function in Section 1.2 ensures that the FIFO prop-
erty holds. Although FIFO networks are useful for the study of those means of
transportation where overtaking is rare (such as trains), modelling of car trans-
portation yields networks which do not necessarily have the FIFO property. For
the TDSPP, the FIFO assumption is usually necessary in order to mantain an
acceptable level of complexity: the SPP in time-dependent FIFO networks is
polynomially solvable (85), even in the presence of traffic lights (5), while it is
NP-hard in non-FIFO networks (117).

In Part I we will deal with time-dependent graphs for which the FIFO prop-
erty holds. This is motivated by the fact that the real-world time-dependent
data provided by the Mediamobile company1 consists in functions which sat-
isfy the FIFO property. However, at the beginning of this thesis this was not
clear because data gathering and manipulation was still in progress. Hence,
the parts of this work dealing with mathematical programming are motivated
by the study of non-FIFO networks. The original idea was to consider only FIFO
functions, so that the TDSPP is polynomially solvable, and to use a mathemati-
cal programming formulation of the TDSPP on non-FIFO networks in order to
verify the quality of the solutions found.

1.2.2 Choice of the cost functions

In order to implement an efficient algorithm for shortest paths computations
on time-dependent graphs we must be able to efficiently carry out several op-
erations between time-dependent functions, e.g.: computing the composition

1http://www.v-trafic.com

http://www.v-trafic.com

14 Introduction

and the minimum of two functions, obtaining lower and upper bounds (see Sec-
tion 1.4.3). Moreover, the functions should be as quick as possible to evaluate.
The practical difficulty of dealing with time-dependent cost function depends
on the complexity of the cost function (40). For real-time applications, we want
to keep this difficulty as low as possible; thus, a natural choice is to use piece-
wise linear functions to model arc costs, which allow for some flexiblity while
being simple to treat algorithmically. Furthermore, piecewise linear functions
have the advantage that the FIFO property can be easily enforced: it is straight-
forward to note that the condition f(x) + x ≤ f(y) + y ∀x ≤ y translates to
df(x)
dx
≥ −1.

Although all theoretical considerations are valid for general cost functions,
through the rest of this work when dealing with FIFO networks we will assume
that from a practical point of view the time-dependent cost functions on arcs
can be represented by piecewise linear functions. In particular, this holds through
Part I.

When lifting the restrictions on the arc costs, a reasonable model to take into
account perturbations due to traffic on an arc is to consider a constant cost,
which represents the travelling time in traffic-free conditions, plus a summa-
tion of Gaussian functions, each one centered on a traffic congestion. Formally,
for each arc (i, j) ∈ A we have:

c(i, j, τ) = cij +
h

∑

k=1

ake
−

(τ−µk)2

2σ2
k ,

where cij is the travelling time over arc (i, j) in uncongested hours, and h is
the number of traffic congestions over one day. Each congestion is centered
at time µk, and has in practice no effect more than 3σk away from the mean
µk. Note that this cost function is not necessarily FIFO, thus we cannot employ
Dijkstra-like algorithms. Therefore, we will deal with it through a mathematical
programming formulation.

1.3 Mathematical Programming Formulations for

the TDSPP

The TDSPP in FIFO networks can be efficiently solved in a combinatorial way,
as we will see in Part I. However, it can also be modeled as a mathematical pro-
gram, and solved with general-purpose methods for mathematical programs.
This will be the subject of Part II. In this section we define a mathematical pro-
gram that models the TDSPP with arbitrary cost functions.

The rest of this section is organized as follows. In Section 1.3.1 we give a
definition of mathematical program taken from the literature, identifying differ-
ent classes of mathematical programs. In Section 1.3.2 we give a mathematical

1.3 Mathematical Programming Formulations for the TDSPP 15

programming formulation for the TDSPP with arbitrary cost functions. In Sec-
tion 1.3.3 the size of the proposed formulations is analyzed, and a reasonable
model for the cost functions is proposed.

1.3.1 Definition of mathematical program

Wikipedia2 defines mathematical programming as:

[. . .] the study of problems in which one seeks to minimize or maxi-
mize a real function by systematically choosing the values of real or
integer variables from within an allowed set. This (a scalar real val-
ued objective function) is actually a small subset of this field which
comprises a large area of applied mathematics and generalizes to
study of means to obtain “best available” values of some objective
function given a defined domain where the elaboration is on the
types of functions and the conditions and nature of the objects in
the problem domain.

Typically, mathematical programs are cast in the form:

min f(x)
subject to:
∀j ∈M gj(x) ≤ 0

xL ≤ x ≤ xU

x ∈ X

(P)

where X is a cartesian product of continuous and discrete intervals. In this
case, we have a single objective function f , a set M of constraints gj , a vector of
variable lower and upper bounds xL, xU , not necessarily finite. The meaning of
the mathematical program (P) is that we seek, among all points x ∈ X which
satisfiy the constraints gj(x) ≤ 0 ∀j ∈ M , xL ≤ x ≤ xU , the one that yields the
smallest value of f(x).

A formal definition of mathematical program is given in (93; 94). The def-
inition is such that it easily translates into a data structure that can be imple-
mented on a computer. Let P be the set of all mathematical programs, and M

be the set of all matrices. We recall that, given a directed graph G = (V,A) and
a node v ∈ V , δ+(v) indicates the set of vertices u such that (v, u) ∈ A, and δ−(v)
denotes the set of vertices u such that (u, v) ∈ A. The definition of a mathemat-
ical program given in (93; 94) is as follows.

Definition 1.3.1. Given an alphabet L consisting of countably many alphanu-
meric names NL and operator symbols OL, a mathematical programming for-
mulation P is a 7-tuple (P ,V , E ,O, C,B, T), where:

2http://www.wikipedia.org

http://www.wikipedia.org

16 Introduction

• P ⊂ NL is the sequence of parameter symbols: each element p ∈ P is a
parameter name;

• V ⊂ NL is the sequence of variable symbols: each element v ∈ V is a variable
name;

• E is the set of expressions: each element e ∈ E is a DAG e = (Ve, Ae) such
that:

(a) Ve ⊂ L is a finite set

(b) there is a unique vertex re ∈ Ve such that δ−(re) = ∅ (such a vertex is
called the root vertex)

(c) vertices v ∈ Ve such that δ+(v) = ∅ are called leaf vertices and their set
is denoted by L(e); all leaf vertices are such that v ∈ P ∪V ∪R∪ P∪M

(d) ∀v ∈ Ve : δ+(v) 6= ∅ ⇒ v ∈ OL

(e) two weight functions χ, ζ : Ve → R are defined on Ve: χ(v) is the node
coefficient and ζ(v) is the node exponent of the node v; for any vertex
v ∈ Ve, we let τ(v) be the symbolic term of v: namely, v = χ(v)τ(v)ζ(v).

Elements of E are sometimes called expression trees; nodes v ∈ OL represent
an operation on the nodes in δ+(v), denoted by v(δ+(v)), with output in R;

• O ⊂ {−1, 1} × E is the sequence of objective functions; each objective func-
tion o ∈ O has the form (do, fo) where do ∈ {−1, 1} is the optimization
direction (−1 stands for minimization, +1 for maximization) and fo ∈ E ;

• C ⊂ E × S × R (where S = {−1, 0, 1}) is the sequence of constraints c of the
form (ec, sc, bc) with ec ∈ E , sc ∈ S, bc ∈ R:

c ≡

ec ≤ bc if sc = −1
ec = bc if sc = 0
ec ≥ bc if sc = 1;

• B ⊂ R
|V| × R

|V| is the sequence of variable bounds: for all v ∈ V let B(v) =
[Lv, Uv] with Lv, Uv ∈ R;

• T ⊂ {0, 1, 2}|V| is the sequence of variable types: for all v ∈ V , v is called
a continuous variable if T (v) = 0, an integer variable if T (v) = 1 and a
binary variable if T (v) = 2.

Given an expression tree DAG e = (Ve, Ae) with root node r(e) and whose leaf
nodes are elements of R or of M, the evaluation of e is the numerical output of
the operation represented by the operator node in node r applied to all nodes
adjacent to r. For leaf nodes belonging to P, the evaluation is not defined; the

1.3 Mathematical Programming Formulations for the TDSPP 17

mathematical program in the leaf node must first be solved and a relevant op-
timal value must replace the leaf. An algorithm to evaluate expression trees is
given in (94).

Definition 1.3.1 states that a mathematical program consists in a set of vari-
ables with an associated type and lower/upper bounds, a set of parameters, a
set of equality/inequality constraints, and a set of objective functions, each one
with an associated optimization direction (minimization/maximization).

Based on Definition 1.3.1, we distinguish several classes of mathematical
programs. In this thesis, we are interested in the following categories.

• Linear Programs: a mathematical programming problem P is a Linear
Program (LP) if |O| = 1, e is a linear form for all e ∈ E , and T (v) = 0
for all v ∈ V . In other words, a LP has only one objective value, linear
objective function and constraints, and all variables are continuous.

• Mixed-Integer Linear Programs: a mathematical programming problem
P is a Mixed-Integer Linear Program (MILP) if |O| = 1 and e is a linear
form for all e ∈ E . In other words, a MILP has only one objective value,
linear objective function and constraints, and variables can be both con-
tinuous and discrete.

• Nonlinear Programs: a mathematical programming problem P is a Non-
linear Program (NLP) if |O| = 1 and T (v) = 0 for all v ∈ V . In other
words, a NLP has only one objective value and all variables are contin-
uous, while the objective function and the constraints can be arbitrary
linear/nonlinear expressions.

• Mixed-Integer Nonlinear Programs: a mathematical programming prob-
lem P is a Mixed-Integer Nonlinear Program (MINLP) if |O| = 1. In other
words, a MINLP has only one objective value; variables can be both con-
tinuous and discrete, while the objective function and the constraints can
be arbitrary linear/nonlinear expressions.

Within the class of NLPs (respectively, MINLPs), we distinguish between con-
vex NLPs (MINLPs) if e represents a convex function for all e ∈ E , whereas it is
a nonconvex NLP (MINLP) otherwise. In general, solving LPs and convex NLPs
is considered easy, and solving MILPs, nonconvex NLPs and convex MINLPs
(cMINLPs) is considered difficult. Solving nonconvex MINLPs involves diffi-
culties arising from both nonconvexity and integrality, and it is considered the
hardest problem of all.

A mathematical program may also have multiple objective functions, which
adds to the complexity of the problem. In fact, in a mathematical sense it is not
clear how a solution can be optimal with respect to more than one objective
function, if these are conflicting. In this case, one is often interested in the
set of non-dominated solutions, i.e. the set of Pareto optima. Intuitively, this

18 Introduction

consists in the set of solutions such that each one is better than the other ones
for at least one of the considered optimization criteria. However, in this work
we are mainly interested in single objective optimization; we refer the reader to
(55) for an introduction to multi-objective optimization.

1.3.2 Formulation of the TDSPP

We seek to derive mathematical programming formulations for the TDSPP un-
der different assumptions. It is natural to start with a formulation for the short-
est paths problem on static graphs, and then add time-dependency into the
model. A classical formulation for the SPP (see (87)) is the following. Let M ∈
{−1, 0, 1}|V |×|A| be the incidence matrix of G, i.e., a matrix whose element mv

ij is:
+1 if v = i, i.e. if arc (i, j) is in the forward star of node v, -1 if v = j, and 0 other-
wise. Suppose cij is the cost of arc (i, j) ∈ A. We consider a network flow prob-
lem (4) with demands bv = 1 for v = s, bv = −1 for v = t and bv = 0 ∀v ∈ V \{s, t}:

min
∑

(i,j)∈A cijxij

∀v ∈ V
∑

(i,j)∈A mv
ijxij = bv

∀(i, j) ∈ A xij ∈ {0, 1}

(SPP)

This is equivalent to introducing one unit of flow at the source node, and requir-
ing that this unit reaches the destination while passing through arcs that mini-
mize the total cost. (SPP) is a linear program with both integer and continuous
variables. It is well known that, since the constraint matrix of (SPP) is unimod-
ular, then all solutions to the linear relaxation of (SPP) are integral, assuming
that the costs cij are integral. As a consequence, (SPP) is an easy problem. We
can extend the above formulation in order to model the TDSPP, by introducing
extra variables τv∀v ∈ V which represent the arrival time at node v.

min τt

∀v ∈ V
∑

(i,j)∈A mv
ijxij = bv

∀(i, j) ∈ A xij(τi + c(i, j, τi)) ≤ τj

∀(i, j) ∈ A xij ∈ {0, 1}
∀v ∈ V τi ≥ 0

(TDSPP)

In the above formulation, c(i, j, τi) represents the cost of arc (i, j) at time τi,
following the notation introduced in Section 1.2. (TDSPP) contains the flow
conservation constraints of a network flow problem, but has additional con-
straints that link the arrival time at node j with the departure time from node i,
if the arc (i, j) is chosen. It is immediate to notice that the constraint matrix is
no longer unimodular. By the FIFO property, and since we are minimizing the
arrival time τt at node t, for all arcs which are in the shortest path (i.e. xij = 1)
the corresponding arrival time definition constraints are satisfied at equality,
which implies τi + c(i, j, τi) = τj . This proves correctness.

1.3 Mathematical Programming Formulations for the TDSPP 19

The difficulty of solving (TDSPP) depends on the form of c(i, j, τi); we will
discuss this issue later in Section 1.3.3. (TDSPP) assumes that there is no wait-
ing at nodes, which is a necessary condition for optimal solutions to the TD-
SPP in FIFO networks. The model can be amended so as to yield the optimal
solution even in the non-FIFO case; we introduce variables dv to indicate the
departure time from node v. Note that, if the FIFO property is satisfied, we
have dv = τv, but equality does not necessarily hold in the general (non-FIFO)
scenario. The problem becomes:

min τt

∀v ∈ V
∑

(i,j)∈A mv
ijxij = bv

∀v ∈ V τv ≤ dv

∀(i, j) ∈ A xij(di + c(i, j, di)) ≤ τj

∀(i, j) ∈ A xij ∈ {0, 1}
∀v ∈ V τi ≥ 0

(GTDSPP)

The complicating constraint in (GTDSPP), as well as in (TDSPP), is the
definition of the arrival time at node j if arc (i, j) is in the shortest path: ∀(i, j) ∈
A xij(di + c(i, j, di)) ≤ τj . These constraints involve a product between the bi-
nary variable xij and the continuous variable di, which can be reformulated in
linear form by introducing extra variables and constraints (94), and the prod-
uct between xij and c(i, j, di), whose difficulty depends on the form of c(i, j, di).
Obviously, we would like to keep (GTDSPP) as easy as possible. If c(i, j, di) is
a piecewise linear function as assumed in Section 1.2.2, then c(i, j, di) can be
written in linear form by introducing extra binary variables, one for each break-
point. These binary variables serve the purpose of selecting which piece of the
piecewise linear function is active at the given point in which we want to cal-
culate the value of the function. Therefore, the constraints ∀(i, j) ∈ A xij(di +
c(i, j, di)) ≤ τj are linear constraints which involve products between binary
variables and continuous or binary variables. Following (94), all these prod-
ucts can be expressed in linear form by adding some variables and defining
constraints. Thus, (GTDSPP) is a MILP. However, it may also be interesting
to consider nonlinear cost functions c(i, j, di) (see Section 1.3.3). In this case,
(GTDSPP) is a (possibly nonconvex) MINLP.

The greatest advantage of a mathematical programming formulation for the
TDSPP is its flexibility. Not only we are able to consider arbitrary cost functions,
but we can also take into account additional complicating constraints which
would be very difficult to deal with when using Dijkstra-like algorithms. One
such example is prohibited turnings on the shortest path. Together with the
network G, we are also given a list of arc pairs (prohibited turnings) such that
the head of the first arc is the tail of the second; e.g. ((u, v), (v, w)). In this case,
we want to compute the shortest path between two nodes s and t such that the
path does not contain two consecutive arcs that represent a prohibited turn-
ing. In road network applications, this is useful to model road junctions where,

20 Introduction

for instance, a left-turn is forbidden. Dijkstra’s algorithm cannot be applied
in a straightforward manner if we want to take into account prohibited turn-
ings. The problem has been tackled in (14; 15) by computing label-constrained
shortest paths; however, this approach requires a significant amount of addi-
tional computations and slows down Dijkstra’s algorithm. Moreover, it implies
the definition of a regular language that does not accept prohibited turnings
and where each node of the graph is associated with a symbol of the alpha-
bet. On the other hand, prohibited turnings can be modeled in a very simple
way with the mathematical formulation (GTDSPP): it suffices to add the con-
straint xuv + xvw ≤ 1 for each prohibited turning ((u, v), (v, w)).

1.3.3 Analysis of the formulations

The size of the formulation (GTDSPP) depends on several factors. Clearly, the
size of the graph G plays a most important role, because some variables and
constraints are defined for each node and arc that appear in the network. In the
case of piecewise linear cost functions, the total number of breakpoints in the
network is also important, as extra variables and constraints have to be added
for each one of these breakpoints. If we assume that c(i, j, τi) is nonlinear, as is
the case if we use the summation of Gaussians model proposed in Section 1.2.2,
then solution algorithms for MINLPs (23; 131; 132) typically add extra variables,
depending on the expression of the cost function c. It is likely that, for a road
network with millions of nodes and arcs, the resulting formulation (GTDSPP)
would have several millions or billions of variables and constraints. Therefore,
there is no hope of solving it to optimality with existing exact algorithms within
the short time slots allowed by real-time applications. However, this formula-
tion may be useful for practical purposes as a mean to study networks which
are difficult to treat with Dijkstra’s algorithm, such as non-FIFO networks or
networks with general nonlinear time-dependent costs, possibly restricting the
size of the analyzed graph. This may allow to underline the differences between
FIFO and non-FIFO scenarios, as well as understanding which models are more
meaningful from a user point of view. We recall that at the beginning of this the-
sis it was not clear whether the real-world time-dependent data would satisfy
the FIFO property or not, and it was not clear if it would be highly nonlinear
or it could be modeled with piecewise linear functions. This is because data
gathering and manipulation was still in progress. Therefore, we wanted to have
the possibility of studying general non-FIFO networks as a mean to verify the
quality of the solutions found by simplifications of the problem. To do so, we
investigated efficient algorithms to quickly find good (hopefully, optimal) solu-
tions to both MILPs and MINLPs.

1.4 Related Work 21

1.4 Related Work

The Shortest Path Problem (SPP) is one of the best studied combinatorial opti-
mization problems in the literature (4; 128). Many ideas have been proposed
for the computation of point-to-point shortest paths on static graphs (see (133;
127) for a review), and there are algorithms capable of finding the solution in
a matter of a few microseconds (16); adaptations of those ideas for dynamic
scenarios, i.e. where arc costs are updated at regular intervals, have been tested
as well (46; 126; 134; 114). The time-dependent variant of the SPP has received
much less attention throughout the years. In this section we survey some of the
results in this field, as well as a few works on speedup techniques for the SPP
on static graphs which will be frequently referred to in the following. As some
of the ideas we will describe deal with static graphs (i.e. not time-dependent),
throughout this section we will denote by c(u, v) the cost of an arc (u, v) ∈ A in
the static case, and by d(u, v) the length of the shortest path between u and v in
the same scenario.

The rest of this section is organized as follows. In Section 1.4.1 we discuss
some pre-1980 studies on the TDSPP and seminal work on reoptimization tech-
niques for graphs with dynamic arc weights, which lead to insight on future
developments of the TDSPP. In Section 1.4.2 we describe Dijkstra’s algorithm,
which laid the foundations for all following shortest paths algorithms. In Sec-
tion 1.4.3 we report the main ideas of a label-correcting algorithm which com-
putes a cost function that gives the distance between two nodes for each time
instant on a time-dependent graph. In Section 1.4.4 we analyse some of the
most important hierarchical speedup techniques for the point-to-point SPP on
static graphs. In Section 1.4.5 we discuss the A∗ algorithm for goal-directed
search, and an A∗-based efficient algorithm for shortest paths computations
on road networks which is the basic ingredient for our main algorithm (see
Chapter 3). In Section 1.4.6 we review the recently developed SHARC algorithm,
which currently represents the state-of-the-art of unidirectional shortest paths
algorithms on time-dependent graphs.

1.4.1 Early history

One of the main direct application of shortest path type problems is in trans-
portation theory. A lot of early work (1950 – 1960) was carried out on related
topics at the RAND corporation, but it was mostly to do with transportation net-
work analysis (on dynamic networks where the capacities changed according to
traffic congestion) rather than the shortest path to be chosen by any individual
driver (21).

The first citation we could find concerning the TDSPP is (36) (a good review
of this paper can be found in (53), p. 407): a recursive formula is given to estab-
lish the minimum time to travel to a given target starting from a given source at

22 Introduction

time τ . It is shown that if travel times take on integer positive values then the
procedure terminates with the shortest path from all nodes to a given destina-
tion. Using the notation introduced in Section 1.2, let t ∈ V be the destination
node, and s the starting node. The procedure is based on the formula

d(s, t, τ) = min
v∈V :(s,v)∈A

{c(s, v, τ) + d(v, t, τ + c(s, v, τ))}

d(t, t, τ) = 0.

In (53), Dijkstra’s algorithm (49) (see Section 1.4.2) is extended to the dynamic
case, but the FIFO property (Section 1.2.1), which is necessary to prove that Di-
jkstra’s algorithm terminates with a correct shortest paths tree on time-dependent
networks, is not mentioned.

Early studies on general transportation networks were mostly motivated by
transportation planning, i.e. network analysis in order to optimize investments
to improve the current road network; see (75) for a survey. This required to
study the effect of modifying a link on the routes chosen by the network users.
A road network was modeled as a graph where each link had an associated trav-
elling time and a capacity, and nodes corresponded to entry points on the road
network of particular zones (75). Thus, only interzonal travelling times affected
the road network. The number of individuals that chose a particular source-
destination pair at each time of the day was supposed to be known by demo-
graphical studies or trip generation techniques, and routes were assigned com-
puting the shortest paths tree rooted at each node of the network. The first case
to be analysed is the shortening of a link (102; 107), i.e. the decrease of its asso-
ciated travelling time: it is observed that in this situation the length of the short-
est path between two nodes s, t will decrease only if the shortest path between
s, t passing through the affected arc is shorter than the previous solution. Thus,
if (u, v) is the link to be shortened, d(s, t) is the initial cost of the shortest path
between two nodes s, t, and c′(u, v) is the new cost of arc (u, v), the new shortest
path distances can be computed as d′(s, t) = min{d(s, t), d(s, u)+c′(u, v)+d(v, t)}.
The method of competing links (74) analysed the effect of an arbitrary change
in the cost of a link in a cutset: the graph was partitioned in two sets Z1, Z2, and
if we call C the set of arcs connecting the two node sets then the travelling time
between two nodes s ∈ Z1, t ∈ Z2 was computed as

min
(p,q)∈C

(d(s, p) + d(p, q) + d(q, t)),

where again d(i, j) is the cost of the shortest path from i to j. As only the costs of
arcs in the cutset C were allowed to change, the new shortest paths trees were
easily computed.

The first attempts to solving the SPP on dynamic graphs (i.e. arc costs are al-
lowed to change) relied on reoptimization techniques: in particular, (108) con-
siders the problem of finding the shortest path cost matrix when only one arc

1.4 Related Work 23

of the input graph changes its cost. The same problem was investigated a few
years later in (50). (63) addresses the SPP on dynamic graphs where either an
arc changes its cost or a different root node is selected, and lays the foundation
for future work; it proposes a procedure to reduce the complexity of Dial’s im-
plementation (48) of Dijkstra’s algorithm. The number of comparisons needed
by Dial’s implementation depends on the cost of the longest shortest path from
the root to all other nodes of the graph; in order to reduce this cost, (63) mod-
ifies the length of all arcs with the formula c′(i, j) = c(i, j) + πi − πj , where c′

is the new cost function, c is the old cost function, and πi ∀i ∈ V is a positive
integer such that c′(i, j) ≥ 0 ∀(i, j) ∈ A. It is noted that a transformation of this
kind does not modify which arcs appear on a shortest path, and was first pro-
posed in (115) in order to get non-negative arc costs on graphs with c(i, j) < 0
for some (i, j) ∈ A. This observation is of fundamental importance for the A∗

algorithm (see Section 1.4.5). The interpretation of the vector (π1, . . . , π|V |) as a
dual feasible solution to the SPP is due to (20).

1.4.2 Dijkstra’s algorithm

Dijkstra’s algorithm (49) solves the single source SPP in static directed graphs
with non-negative weights in polynomial time. The algorithm can easily be
generalized to the time-dependent case (53). Dijkstra’s algorithm is a so-called
labeling method.

The labeling method for the SPP (60) finds shortest paths from the source
to all vertices in the graph; the method works as follows: for every vertex v it
maintains its distance label ℓ[v], parent node p[v], and status S[v] which may
be one of the following: unreached, explored, settled . Initially ℓ[v] = ∞,
p[v] = NIL, and S[v] = unreached for every vertex v. The method starts by
setting ℓ[s] = 0 and S[s] = explored; while there are labeled (i.e. explored) ver-
tices, the method picks an explored vertex v, relaxes all outgoing arcs of v, and
sets S[v] = settled. To relax an arc (v, w), one checks if ℓ[w] > ℓ[v] + c(v, w) and,
if true, sets ℓ[w] = ℓ[v]+c(v, w), p(w) = v, and S(w) = explored. If the graph does
not contain cycles with negative cost, the labeling method terminates with cor-
rect shortest path distances and a shortest path tree. The algorithm can be ex-
tended to the time-dependent case on FIFO networks by a simple modification
of the arc relaxation procedure: if τ0 is the departure time from the source node,
we check if ℓ[w] > ℓ[v]+c(v, w, τ0+ℓ[v]) and, if true, set ℓ[w] = ℓ[v]+c(v, w, τ0+ℓ[v]),
p[w] = v, and S[w] = explored. The efficiency of the label-setting method de-
pends on the rule to choose a vertex to scan next. We say that ℓ[v] is exact if it is
equal to the distance from s to v; it is easy to see that if one always selects a ver-
tex v such that, at the selection time, ℓ[v] is exact, then each vertex is scanned at
most once. In this case we only need to relax arcs (v, w) where w is not settled,
and the algorithm is called label-setting. Dijkstra (49) observed that if the cost
function c is non-negative and v is an explored vertex with the smallest distance

24 Introduction

label, then ℓ[v] is exact; so, we refer to the labeling method with the minimum
label selection rule as Dijkstra’s algorithm. If c is non-negative then Dijkstra’s
algorithm scans vertices in nondecreasing order of distance from s and scans
each vertex at most once; for the point-to-point SPP, we can terminate the la-
beling method as soon as the target node is settled. The algorithm requires
O(|A| + |V | log |V |) amortized time if the queue is implemented as a Fibonacci
heap (62); with a binary heap, the running time is O((|E|+ |V |) log |V |).

One basic variant of Dijkstra’s algorithm for the point-to-point SPP is bidi-
rectional search; instead of building only one shortest path tree rooted at the
source node s, we also build a shortest path tree rooted at the target node t on
the reverse graph G. As soon as one node v becomes settled in both searches,
we are guaranteed that the concatenation of the shortest s → v path found in
the forward search and of the shortest v → t path found in the backward search
is a shortest s → t path. Since we can think of Dijkstra’s algorithm as explor-
ing nodes in circles centered at s with increasing radius until t is reached (see
Figure 1.1), the bidirectional variant is faster because it explores nodes in two
circles centered at both s and t, until the two circles meet (see Figure 1.2); the
area within the two circles, which represents the number of explored nodes, will
then be smaller than in the unidirectional case, up to a factor of two.

Dijkstra’s algorithm applied to time-dependent FIFO networks has been op-
timized in various ways (29; 31). We note here that in the time-dependent sce-
nario bidirectional search cannot be applied, since the arrival time at destina-
tion node is unknown. We also remark that all speedup techniques based on
finding shortest paths in Euclidean graphs (130) cannot be applied either, since
the typical arc cost function, the arc travelling time at a certain time of the day,
does not yield a Euclidean graph.

1.4.3 Label-correcting algorithm

On a time-dependent graph, we can use a label-correcting algorithm to com-
pute d∗(s, t) (Section 1.2) instead of d(s, t, τ) for τ ∈ T ; label-correcting implies
that the label of a node is not fixed even after the node is extracted from the
priority queue, in that a node may be reinserted multiple times, unlike Dijk-
stra’s algorithm. We refer to (40) for an excellent starting point on the efficient
implementation of TDSPP algorithms. We describe here a label-correcting al-
gorithm (40) to compute the cost function associated with the shortest path
between two nodes s, t ∈ V . Such an algorithm can be implemented similarly
to Dijkstra’s algorithm, but using arc cost functions instead of arc lengths. The
label ℓ(v) of a node v is a scalar for plain Dijkstra’s algorithm, whereas in this
case each label is a function of time. In particular, at termination we want
ℓ(v) = d∗(s, v). We initialize the algorithm assigning constant functions as la-
bels: ∀τ ∈ T ℓ(s)(τ) = 0 and ℓ(v)(τ) = ∞ ∀v ∈ V . At each iteration we ex-
tract the node u with minimum ℓ(u) from the priority queue, and relax adjacent

1.4 Related Work 25

Figure 1.1: Schematic representation of Dijkstra’s algorithm search
space

s t

Figure 1.2: Schematic representation of bidirectional Dijkstra’s algo-
rithm search space.

26 Introduction

s t

Figure 1.3: Schematic representation of a hierarchical speedup tech-
nique search space

edges: for each (u, v) ∈ A, a temporary label t(v) = ℓ(u)⊕c(u, v) is created. Then
if t(v)(τ) ≥ ℓ(v)(τ) for all τ ∈ T does not hold, the arc (u, v) yields an improve-
ment for at least one time instant. Hence, we update ℓ(v) = min{ℓ(v), t(v)}. The
algorithm can be stopped as soon as we extract a node u such that ℓ(u) ≥ ℓ(t).
An interesting observation from (40) is that the running time of this algorithm
depends on the complexity of the cost functions associated with arcs.

1.4.4 Hierarchical speedup techniques for static road

networks

Many hierarchical speedup techniques have been developed for the SPP on
static graphs. The main idea is to preconstruct a graph hierarchy where each
level is smaller then the previous one, i.e. it has fewer nodes; shortest paths
queries start at the bottom level and are then carried out exploring the hier-
archy levels in ascending order, so that most of the search is carried out on
the topmost level. Since the number of nodes at each level shrinks rapidly as
we progress upwards into the hierarchy, the total number of explored nodes is
considerably smaller than in a plain appplication of Dijkstra’s algorithm (see
Figure 1.3). Due to the inherent bidirectional nature of these algorithms, these
approaches only work on static graphs.

1.4.4.1 Highway Hierarchies

The Highway Hierarchies algorithm (HH) (129; 124; 125) is a fast, hierarchy-
based shortest paths algorithm which works on static directed graphs. HH is
specially suited to efficiently finding shortest paths in large-scale networks, and

1.4 Related Work 27

has been the first algorithm to report average query times of a few milliseconds
on continental sized road networks.

A set of shortest paths is canonical if, for any shortest path p in the set,
p = (u1, . . . , ui, . . . , uj, . . . , uk), the canonical shortest path between ui and uj is a
subpath of p. Dijkstra’s algorithm can easily be modified to output a canonical
shortest paths tree (129).

The HH algorithm works in two stages: a time-consuming pre-processing
stage to be carried out only once, and a fast query stage to be executed at each
shortest path request. Let G0 = G. During the first stage, a highway hierarchy
is constructed, where each hierarchy level Gl, for 1 ≤ l ≤ L, is a modified sub-
graph of the previous level graph Gl−1 such that no canonical shortest path in
Gl−1 lies entirely outside the current level for all sufficiently distant path end-
points: this ensures that all queries between far endpoints on level l − 1 are
mostly carried out on level l, which is smaller, thus speeding up the search.
Each shortest path query is executed by a multi-level bidirectional Dijkstra al-
gorithm: two searches are started from the source and from the destination,
and the query is completed shortly after the search scopes have met; at no time
do the search scopes decrease hierarchical level. Intuitively, path optimality is
due to the fact that by hierarchy construction there exist no canonical short-
est path of the form (a1, . . . , ai, . . . , aj, . . . , ak, . . .), where ai, aj, ak ∈ A and the
search level of aj is lower than the level of both ai, ak; besides, each arc’s search
level is always lower or equal to that arc’s maximum level, which is computed
during the hierarchy construction phase and is equal to the maximum level l
such that the arc belongs to Gl. The speed of the query is due to the fact that
the search scopes occur mostly on a high hierarchy level, with fewer arcs and
nodes than in the original graph. A heuristic extension of the HH algorithm
to dynamic static graphs with a detailed experimental evaluation can be found
in (109).

Hierarchy construction. As the construction of the highway hierarchy is the
most complicated part of HH algorithm, and also the most interesting to gain
insight on how the algorithm works, we endeavour to explain its main traits in
more detail. For simplicity, in this paragraph we will assume that the graph is
undirected; therefore, we will denote the set of edges by E. An extension to
directed graphs is easy to derive (125; 109). Given a local extensionality param-
eter H (which measures the degree at which shortest path queries are satisfied
without stepping up hierarchical levels) and the maximum number of hierar-
chy levels L, the iterative method to build the next highway level l + 1 starting
from a given level graph Gl is as follows:

1. For each v ∈ V , build the neighbourhood N l
H(v) of all vertices reached

from v with a simple Dijkstra search in the l-th level graph up to and in-
cluding the H-st settled vertex. This defines the local extensionality of

28 Introduction

each vertex, i.e. the extent to which the query “stays on level l”.

2. For each v ∈ V :

(a) Build a partial shortest path tree B(v) from v, assigning a status to
each vertex. The initial status for v is “active”. The vertex status is in-
herited from the parent vertex whenever a vertex is reached or settled.
A vertex w which is settled on the shortest path (v, u, . . . , w) (where
v 6= u 6= w) becomes “passive” if

|N l
H(u) ∩N l

H(w)| ≤ 1. (1.1)

The partial shortest path tree is complete when there are no more
active reached but unsettled vertices left.

(b) From each leaf t of B(v), iterate backwards along the branch from t
to v: all arcs (u,w) such that u 6∈ N l

H(t) and w 6∈ N l
H(v), as well as their

adjacent vertices u,w, are raised to the next hierarchy level l + 1.

3. Select a set of bypassable nodes on level l + 1; intuitively, these nodes
have low degree, so that the benefit of skipping them during a search out-
weights the drawbacks (i.e., the fact that we have to add shortcuts to pre-
serve the algorithm’s correctness). Specifically, for a given set Bl+1 ⊂ V l+1

of bypassable nodes, we define the set Sl+1 of shortcut edges that bypass
the nodes in Bl+1: for each path p = (s, b1, b2, . . . , bk, t) with s, t ∈ V l+1 \
Bl+1 and bi ∈ Bl+1, 1 ≤ i ≤ k, the set Sl+1 contains an edge (s, t) with
c(s, t) = c(p). The core Gl+1

C = (V l+1
C , El+1

C) of level l + 1 is defined as:
V l+1

C = V l+1 \Bl+1, El+1
C = (El+1 ∩ (V l+1

C × V l+1
C)) ∪ Sl+1.

The result of the contraction is the contracted highway network Gl+1
C , which

can be used as input for the following iteration of the construction procedure.
It is worth noting that higher level graphs may be disconnected even though
the original graph is connected.

1.4.4.2 Dynamic Node Routing

Separator-based multi-level methods for the SPP have been used by many au-
thors; we refer to (81) for the basic variant. The main idea behind separator-
based methods is to define, given a subset of the vertex set V ′ ⊂ V , the shortest
path overlay graph G′ = (V ′, A′) with the property that A′ is a minimal set of
edges such that ∀u, v ∈ V ′ the shortest path length between u and v in G′ is
equal to the shortest path length between u and v in G. In other words, there
is an arc (u, v) ∈ A′ if and only if for any shortest path from u to v in G then no
internal node of the paths (i.e. all nodes except u and v) belongs to V ′. It can be
shown that G′ is unique (81). Usually, the set of separator nodes V ′ is chosen in
such a way that the subgraph induced by V \ V ′ consists of small components

1.4 Related Work 29

of similar size. In a bidirectional query algorithm, the components containing
source and target node are wholly searched, but starting from the separator
nodes only edges of the overlay graph G′ are considered. This approach can be
generalized and applied in a hierarchical way, building several levels of overlay
graphs with node sets V = V0 ⊇ V1 ⊇ · · · ⊇ VL so that the following property is
mantained: ∀l ≤ L−1, for all node pairs s, t ∈ Vl the part of the shortest path be-
tween s and t that lies outside the level l components to which s and t belong is
entirely included in the level l + 1 overlay graph. As the overlay graphs become
smaller with the increasing level in the hierarchy, a shortest path computation
becomes faster because most of the search for a long-distance s, t path takes
place on the highest hierarchy level, and thus fewer nodes are explored. A path
on the original graph can then be reconstructed, because each arc at level l has
a unique decomposition as level l − 1 arcs.

In (126), an arbitrary subset V ′ = V ′(V) of V is considered instead of sep-
arator nodes; in practice, the set is chosen in such a way that it contains the
most important nodes, i.e. those that appear “more often” on shortest paths.
This yields a smaller set V ′, more uniformly distributed over the whole graph,
and thus G′ will be smaller, resulting in a smaller space consumption and a
faster query algorithm. However, since in this case V \ V ′ is no longer made of
small isolated components, the query algorithm is not as simple as in canonical
separator-based methods. From a theoretical point of view the same principle
holds: we might want to explore nodes from source and target until the queue
in Dijkstra’s algorithm only contains nodes that are covered by V ′ (i.e. there is
at least one node v ∈ V ′ on the shortest path from the root to any leaf of the cur-
rent partial shortest path tree), and then switch to the overlay graph G′, or to a
higher level in the overlay graph hierarchy in the case of a multi-level approach.
This, however, does not yield good results in practice, because we cannot tell in
advance how many nodes we will have to explore until the whole partial short-
est path tree is covered by V ′. The main challenge is therefore to compute the
set of all covering nodes for the partial shortest path tree T rooted at s as quickly
as possible.

Many possible strategies are suggested in (126), including an aggressive vari-
ant which stops the search whenever a node in V ′ is encountered, and which
yields a superset of the covering nodes. Some other analysed possibilities may
require a greater computational effort, while finding the minimal set of cover-
ing nodes. Once the set (or a superset) of all covering nodes for a given level of
the overlay graph has been computed, the search can switch to the next level,
until the shortest path is found, which is guaranteed to happen at the topmost
level. The choice of level node sets V = V0, V1, . . . , VL, where Vi = V ′(Vi−1) for
all i > 0, is critical for query times: these nodes should correspond to nodes
that appear very often on shortest paths, i.e. road network junctions with high-
importance, such as highway access points. The Highway Hierarchies algo-
rithm (Section 1.4.4.1) is employed in (126) to choose the node sets.

30 Introduction

The main advantage of this approach is that overlay graphs can be com-
puted in a very short time because they only require the application of Dijk-
stra’s algorithm on limited parts of the graph; besides, if a few arc costs change
there is no need to recompute the whole overlay graphs, but only a small part
of them — the part which is affected by the change. Certainly, if the changed
arc does not belong to the partial shortest path tree of a given node, the con-
struction phase from that node need not be repeated. In particular, during the
pre-processing phase, we can build for each node v a list of all nodes that can
be affected if the cost of one of the outgoing arcs from v changes. If these lists
are kept in memory, then one knows exactly which parts of the overlay graphs
are affected by the change and must be recomputed. The construction phase
is repeated only when necessary. After the update step the bidirectional query
algorithm correctly computes shortest paths.

1.4.4.3 Contraction Hierarchies

One of the main concepts used in the Highway Hierarchies algorithm (Section
1.4.4.1) is that of contraction: bypassable nodes are selected and then iteratively
removed from the input graph, adding shortcuts (i.e. new arcs) in order to pre-
serve distances with respect to the original graph. The Contraction Hierarchies
algorithm (64) is a speedup technique for Dijkstra’s algorithm on static graphs
which is based solely on contraction: all nodes are ordered by some importance
criterion, and then a hierarchy is generated by iteratively contracting the least
important node. Thus, the query algorithm is extremely simple: a bidirectional
Dijkstra search is started, where the forward search from the source only relaxes
arcs leading to more important nodes, while the backward search from the des-
tination only relaxes arcs coming from more important nodes. The Contraction
Hierarchies algorithm is remarkably simple, yet it is very effective, yielding large
speedups with respect to Dijkstra’s algorithm and a very small space occupation
of the preprocessed data. Indeed, if one is interested only in computing short-
est path distances (i.e. the sequence of edges that form the shortest path on the
original graph is not needed), then the preprocessed graph occupies less space
than the original input (64).

Clearly, the node ordering criterion is the crucial part of the algorithm, as it
determines the order in which nodes are contracted and thus the quality of the
final hierarchy. (64) analyses several different criteria and their combination.
One of the most important factors in computing a node’s importance is the
arc difference, i.e. the number of shortcuts that would be created if the node
is bypassed minus the number of incoming and outgoing arcs of that node.
This quantity has an influence on both the space overhead and query perfor-
mance; it is easy to see that nodes with small arc difference are more appealing
for contraction, as their removal yields a graph with a smaller number of arcs.
Another important factor is uniformity: it seems to be a good idea to contract

1.4 Related Work 31

nodes everywhere in the graph, instead of repeatedly contracting nodes in the
same small region. Other tested criteria include estimations of the contraction
cost and of query performance. Combinations of several criteria with different
weights are possible. Since the contraction of a node may influence the node
ordering of neighbouring nodes, three strategies are tested:

1. the priority of adjacent nodes is recomputed after each contraction step,

2. the priority of all nodes is recomputed periodically,

3. the priority of the node chosen for contraction is recomputed before the
contraction, so that if its priority increases and the node is no longer the
minimum element then it is skipped and reinserted into the priority queue
with the new value.

An estension of Contraction Hierarchies to the time-dependent case is de-
scribed in (17); the authors report the main ideas, but there are no computa-
tional experiments. Therefore, it is difficult to analyse the performance of an
approach based on contraction only in practice. Interestingly, the ideas in (17)
are similar to those described in Chapter 4 of our work, although they have
been developed indipendently. We discuss some of the problems that may have
arised during the implementation of time-dependent Contraction Hierarchies
in Section 4.4.

1.4.5 Goal-directed search: A∗

A∗ (80) is an algorithm for goal-directed search which is very similar to Dijk-
stra’s algorithm (Section 1.4.2). The difference between the two algorithms lies
in the priority key. For A∗, the priority key of a node v is made up of two parts:
the length of the tentative shortest path from the source to v (as in Dijkstra’s
algorithm), and an underestimation of the distance to reach the target from v.
Thus, the key of v represents an estimation of the length of the shortest path
from s to t passing through v, and nodes are sorted in the priority queue ac-
cording to this criterion. The function which estimates the distance between a
node and the target is called potential function π; the use of π has the effect of
giving priority to nodes that are (supposedly) closer to target node t. If the po-
tential function is such that π(v) ≤ d(v, t) ∀v ∈ V , where d(v, t) is the distance
from v to t, then A∗ always finds shortest paths (80); otherwise, it becomes a
heuristic. A∗ is equivalent to Dijkstra’s algorithm on a graph where arc costs
are the reduced costs wπ(u, v) = c(u, v) − π(u) + π(v) (82). From this, it can be
easily seen that if π(v) = 0 ∀v ∈ V then A∗ explores exactly the same nodes as
Dijkstra’s algorithm, whereas if π(v) = d(v, t) ∀v ∈ V only nodes on the shortest
path between s and t are settled, as arcs on the shortest path have zero reduced
cost. A∗ is guaranteed no more nodes than Dijkstra’s algorithm. In particular, if

32 Introduction

π(v) is a good approximation from below of the distance to target, A∗ efficiently
drives the search towards the destination node, i.e. the search space is not a
circle centered at s, but an ellipse directed towards t (see Figure 1.4). A∗ can be
easily applied on a time-dependent graph with the FIFO property, as long as the
potential function π(v) is a valid lower bound for d(v, t, τ) ∀τ ∈ T ; an analysis of
this scenario can be found in (32).

ts

Figure 1.4: Schematic representation of A∗ algorithm search space

1.4.5.1 The ALT algorithm

On a road network, Euclidean distances can be used to compute the poten-
tial function, possibly dividing by the maximum allowed speed if arc costs are
travelling times instead of distances. This obviously holds true even for the
time-dependent case. On static graphs, a significant improvement over Eu-
clidean potentials can be achieved using landmarks (67). The main idea is to
select a small set of nodes in the graph, sufficiently spread over the whole net-
work, and precompute all distances between these nodes (which we call land-
marks) and any node of the vertex set. Then, by triangle inequalities, it is pos-
sible to derive lower bounds to the distance between any two nodes. Suppose
we have selected a set L ⊂ V of landmarks, and we have stored all distances
d(v, ℓ), d(ℓ, v)∀v ∈ V, ℓ ∈ L; the following triangle inequalities hold: d(u, t) +
d(t, ℓ) ≥ d(u, ℓ) and d(ℓ, u) + d(u, t) ≥ d(ℓ, t). Therefore πf (u) = maxℓ∈L{d(u, ℓ)−
d(t, ℓ), d(ℓ, t) − d(ℓ, u)} is a lower bound for the distance d(u, t), and it can be
used as a valid potential function for the forward search (67). Bidirectional
search can be applied: a forward search is started on G from the source using
a potential function πf which estimates the distance to reach the target, and
a backward search is started on the reverse graph G from the destination us-
ing a potential function πb which estimates the distance to reach the source
(on G). The two potential function must be consistent (68), which means that
∀(u, v) ∈ A the reduced cost for the forward search wπf

(u, v) on G is equal
to the reduced cost for the backward search wπb

(v, u) on Ḡ. This translates to
πf (v) + πb(v) = κ ∀v ∈ V for some constant κ.

Bidirectional A∗ with the potential function described above is called ALT;

1.4 Related Work 33

an experimental evaluation on static graphs can be found in (68). It is straight-
forward to observe that, if arc costs can only increase with respect to the origi-
nal value used to compute distances to and from landmarks, then the potential
function associated with landmarks yields valid lower bound, even on a time-
dependent graph. In (46) this idea is applied to a real road network in order to
analyse the algorithm’s performance both in the case of arc cost updates and of
time-dependent cost functions, but in the latter scenario the ALT algorithm is
applied in an unidirectional way.

The size of the search space greatly depends on how landmarks are posi-
tioned over the graph, as it severely affects the quality of the potential func-
tion. Several heuristic selection strategies have been proposed; there is usually
a trade off between preprocessing time and quality of the landmark choice. So
far no optimal strategy with respect to random queries has been found, i.e. no
strategy guarantees to yield the smallest search spaces with respect to shortest
path computations where source and destination nodes are chosen at random.
Commonly used selection criteria are avoid and maxCover (70).

1.4.6 The SHARC algorithm

The SHARC algorithm (18), which employs a multi-level partition approach
combined with goal-directed search via arc flags (106), allows fast unidirec-
tional shortest path calculations in large scale networks; it has been recently ex-
tended in (41) to compute optimal paths even on time-dependent graphs, and
represents the fastest known algorithm so far for exact time-dependent short-
est paths computations.

SHARC is a clever combination of well known techniques for the SPP on
static graphs, which are then extended to the time-dependent case (41). In par-
ticular, SHARC is largely based on the concept of arc flags (106): the graph is
partitioned into cells C0, . . . , Ck and each arc is attached to a sequence of k bits
such that if there is a shortest path from u to any node w ∈ Ci which starts with
arc (u, v) then the i-th flag of (u, v) ∈ A is set to 1. This is a necessary condition;
arc flags ensure correctness if more flags than strictly necessary are 1, i.e. there
are false positives, but in this case the size of the search space may increase.
In the time-dependent case, the i-th flag of (u, v) is 1 if there is a shortest path
from u to any node w ∈ Ci which starts with (u, v) for at least one departure time
τ ∈ T . This idea can be extended to a multi-level partition: we consider a fam-
ily of partitions C0, . . . , Cl such that for each i < l and Ci

n ∈ C
i a cell Ci+1

m ∈ Ci+1

exists with Ci
n ⊂ Ci+1

m . In this case we say that Ci+1
m is the supercell of Ci

n, and
we define the supercell of any level l cell as the whole vertex set V . Shortest
paths can then be computed with a modified Dijkstra’s algorithm: whenever a
node v is settled, let i be the lowest level on which both v and the target t are
in the same supercell, i.e. v and t are in different level i cells but they are in the
same level i + 1 supercell. Then, when relaxing arcs from a node v, the query

34 Introduction

algorithm relaxes only those which have the level i arc flag corresponding to the
target cell (i.e. the cell which contains the target) set to 1. The advantage of a
multi-level partition is that using the same number of arc flags we can allow a
larger number of cells, thus the cells at the lowest level are smaller, leading to
a reduced search space. The partition is computed by local optimization of an
initial partition obtained from SCOTCH (121); in order to yield good speedups,
a partition should fulfill several requirements: the cells must be connected, the
size of the cells should be balanced, and the number of boundary nodes should
be low.

The basic concept of arc flags is then augmented introducing shortcuts, i.e.,
by iteratively removing nodes and adding new arcs to preserve distances. In
the time-dependent case, distances are preserved by computing each short-
cut’s cost function with a label-correcting algorithm (Section 1.4.3) between
the shortcut’s endpoints. The selection criteria for removed nodes are similar
to those described for Contraction Hierarchies (Section 1.4.4.3). Additionally,
the contraction routine takes into account a hop-limit, i.e. maximum number
of arcs of the original graph that a shortcut can represent, and, in the time-
dependent case, a limit on the number of interpolation points of each shortcut.
The latter issue will be discussed in more detail in Chapter 4. Inserted short-
cuts have their arc flags set automatically. The preprocessing phase of SHARC
has several successive phases that try to refine arc flags: the number of false
positive flags is decreased so as to reduce the search space. Also, some cells are
pruned: if one cell has all its neighboring cells contained in the same supercell,
then all arcs inside the cell which do not have any flag set to 1 (except the flag
corresponding to the cell to which they belong, the so called own-cell flag) can
be deleted from the graph used as input for the preprocessing of higher levels
of the hierarchy.

An interesting application of SHARC is the multi-metric query scenario, that
is, a scenario where shortest paths queries are run on the same graph but can
use one of several available cost functions (metrics), instead of only one as we
usually assume. To this end, the graph partition is the same for all metrics, but
arc flags are computed independently for each one of them. In a final prepro-
cessing step, all arc flags are merged with a bitwise binary OR operation, so
that a flag is set to 1 if it is 1 for at least one metric. This idea is based on the
assumption that the metrics are related, therefore the number of nonzero arc
flags should not increase by a large amount during the final merging.

The SHARC algorithm has been developed to yield a very large speedup
when applying unidirectional search. As such, it is applicable to those scenarios
where bidirectional search is typically not possible, including time-dependent
networks. Note that on static graphs SHARC can be used in a bidirectional man-
ner, yielding even larger speedups. Originally, SHARC allowed only subopti-
mal queries with no appproximation guarantee on time-dependent graphs (18);
however, it could be used in an exact way to compute shortest path on time-

1.5 Contributions 35

expanded timetable information networks (see (123) for a discussion on effi-
cient ways to model timetable information with graphs). Later, in a very recent
paper at the time of writing this thesis (41) SHARC has been extended to com-
pute optimal solutions even on time-dependent networks, and currently rep-
resents the state-of-the-art of time-dependent shortest path algorithms, with
average query time of a few dozens millliseconds on continental sized road net-
works. However, due to the intensive use of arc flags, SHARC does not work in a
dynamic scenario: whenever an arc cost function changes, arc flags should be
recomputed, even though the graph partition need not be updated. Moreover,
the preprocessing phase takes several hours on large-scale road networks.

1.5 Contributions

From a theoretical point of view, the TDSPP on FIFO networks is well solved by
Dijkstra’s algorithm (see Section 1.4.2 for a description of the algorithm). How-
ever, if the road network is very large then Dijkstra’s algorithm may be too slow
for several interesting industrial applications that need point-to-point compu-
tations. Moreover, the practical applications that we described in Section 1.1
have some characteristics that are worth underlining.

• The application has to answer all shortest paths queries on the same road
network: unlike other applications, in this case there is a fixed network
which is given as input, and then only arc costs can possibly change. Thus,
we have to repeatedly and quickly solve similar problems on the same in-
put. However, shortest paths trees reoptimization techniques (119; 120)
are not effective in this case, as the source and destination nodes may
be positioned in completely different parts of the network in consecutive
queries. Therefore it makes sense to invest a large amount of resources
(computational time and memory space) in a preprocessing phase which
serves the purpose of speeding up all successive shortest paths compu-
tations. As the input network does not change, this preprocessing phase
can be done once and for all.

• Dijkstra’s algorithm computes more shortest paths than needed: indeed,
at its termination we have the shortest path from the source node to all
other nodes in the graph, even though early stopping criteria exist. How-
ever, for point-to-point shortest paths computations only one path need
be computed, that is the shortest path between the source and the desti-
nation. An efficient algorithm should try to disregard other paths as much
as possible, and focus on the fast computation of the desired answer.

• Road networks have structural similarities: although road networks with
travel times as arc weights are not necessarily Euclidean, they still share a

36 Introduction

hierarchical structure, so that there are local roads and progressively more
important roads such that important roads appear more often on long
shortest paths. This is easy to see if we consider the real-world networks
that are represented: for long distance travels, the shortest (i.e. fastest)
path will almost always pass through motorway segments. Besides, road
networks are very sparse: the average degree of a node is usually between
2 and 3. This structural properties could be exploited to develop ad-hoc
algorithms.

A large number of very fast algorithms has been developed for point-to-point
shortest path computations on static graphs using the hierarchical structure
of road networks and by directing the search towards the destination (see Sec-
tion 1.4). The main problem for their application on time-dependent graphs is
that these techniques are intrinsically bidirectional, i.e. they start a search from
both the source and destination until the two search scopes meet. Bidirectional
search is not only useful because it cuts down the search space (Section 1.4.2),
but it is sometimes necessary in order for hierarchical speedup techniques to
work (Section 1.4.4). Consider a road network with an associated road hier-
archy (we will not give a formal definition here — we rely on intuition), and
suppose that we want to compute the shortest path between two distant nodes.
Intuitively, it is reasonable to assume that the shortest path search can be re-
stricted to the highest level of the hierarchy when we are “in the middle” of
the path. However, while switching to a higher level in the hierarchy is easy,
descending to a lower level is more difficult. We give a real-world example to
clarify this concept. When driving a car to a distant destination, as soon as we
meet an access point to the highway network we will usually want to enter it,
i.e. we switch to a higher level in the hierarchy. Then we stay on the highway
network until we reach an exit point near to the destination; at that point we
get off the highway network and continue our path on local roads. In order
to identify the exit/entrance point of the highway network which is closest to
the destination we implicitly start a backward search from the target, which al-
lows us to determine where we have to leave the highway network, i.e. descend
to a lower level of the hierarchy. Thus, the algorithm is bidirectional. Given a
source/destination pair, on a static graph the shortest path between the two
points is unique, therefore the entrance points to the highway network that
appear on the shortest path are fixed; however, this is not the case on time-
dependent graphs, as the shortest path depends on the departure time. More-
over, a backward search from the destination cannot be started as we do not
know which time instant should be used to compute the time-dependent arc
costs, the arrival time at the destination being unknown (we would need the
optimal solution for this).

In this work we propose a general approach for bidirectional search on large-
scale time-dependent graphs. We explain the main ideas and prove that the al-
gorithm is correct if used in conjunction with Dijkstra’s algorithm or A∗. The al-

1.5 Contributions 37

gorithm is based on running a time-independent search from the destination in
order to bound the set of nodes that have to be explored by the time-dependent
forward search from the source. We discuss several theoretical improvements
of the basic idea: in particular, we study methods to improve the bounds used
by the backward search in order for it to terminate faster. An experimental eval-
uation shows that this idea alone is able to cut down the search space. More-
over, our bidirectional algorithm allows us to easily generalize the concepts
used for hierarchical speedup techniques on static graphs, so that we are able
to efficiently build a two-levels hierarchy on the time-dependent road network.
The use of a hierarchy yields a large improvement in query times, and also re-
quired preprocessing time and space decrease. Our method is developed with
the dynamic time-dependent scenario in mind; thus, we propose an approach
which allows the time-dependent arc cost functions to change, while requir-
ing only a small computational overhead in order to restore optimality of the
hierarchy. We analyse the experimental performance of the proposed method
in several respects, and show that it yields an improvement over other known
speedup techniques. In particular, our implementation of this algorithm is the
first which is capable of dealing with the dynamic time-dependent scenario
while having average query times in the order of a few milliseconds. If we are
willing to accept a small approximation constant, it is also the fastest known
method for time-dependent large-scale road networks (i.e. not necessarily dy-
namic) at the moment of writing this thesis. We discuss the practical integra-
tion of an efficient C++ implementation of the proposed algorithm within an
existing industrial C# platform that manages a path computing web service, re-
ceives real-time traffic updates and deals with traffic forecastings.

The TDSPP can also be modeled through a mathematical programming for-
mulation, which allows for more freedom in choosing the cost functions (which
may become nonlinear) and for dropping the assumption of the FIFO prop-
erty. Complicating constraints such as prohibited turnings are also easy to take
into account within a mathematical formulation. This is useful as a mean to
study the behaviour of shortest paths on non-FIFO networks. We propose a
mathematical program that models the TDSPP in general non-FIFO networks
with arbitraty cost functions. Depending on the expression of the cost func-
tion, computing a shortest path reduces to solving a Mixed-Integer Linear Pro-
gram (MILP) or a Mixed-Integer Nonlinear Program (MINLP). In this work, we
study efficient general-purpose algorithms for both classes of problems. We
test these algorithms on benchmark instances taken from the literature to as-
sess their quality on a large group of problems, as well as for shortest paths
computations.

Within the context of solving MILPs by a Branch-and-Bound algorithm, we
propose a new strategy for branching based on a quadratic optimization ap-
proach. Computational experiments show that, on the majority of our test in-
stances, this approach enumerates fewer nodes than traditional branching, and

38 Introduction

is competitive in terms of speed. On average, the number of nodes in the enu-
meration tree is reduced by a factor two, while computing time is comparable.
On a few instances, the improvements are of several orders of magnitude in
both number of nodes and computing time. Moreover, we propose a mathe-
matical program that models the problem of finding a split disjunction closing
a large integrality gap at each node of a branch-and-cut algorithm. This for-
mulation is a MILP for which we find feasible solutions using general heuris-
tics and a local branching algorithm. Although an implementation of this ap-
proach is not competitive in practice with the quadratic optimization method
discussed above, because of the required computational effort, we believe that
it is interesting for future research.

Finally, we present a general-purpose heuristic for MINLPs based on Vari-
able Neighbourhood Search, Local Branching, Sequential Quadratic Program-
ming and Branch-and-Bound. We test the proposed approach on the MINLPLib,
discussing optimality, reliability and speed. It turns out that our method, act-
ing on the whole MINLPLib, is able to find optima equal to or better than those
reported in the literature for 55% of the instances, ranking first under this re-
spect among known methods. The closest competitor is a branch-and-bound
approach (SBB + CONOPT) that finds putative global optima for 37% of the
testset. We improve the best known solutions in 7% of the cases.

1.6 Overview

The rest of this work is organized as follows.

In Part I we present novel combinatorial approaches to the solution of the
time-dependent shortest path problem. In Chapter 2 we discuss a method
based on defining guarantee regions for the shortest path computations, that
is, small subgraphs that can be quickly explored and provide an approximation
guarantee. In Chapter 3 we describe the main ideas for bidirectional search
on time-dependent graphs, prove correctness of our approach and discuss sev-
eral theoretical improvements that are important for the practical implemen-
tation. In Chapter 4 we introduce a two-levels hierarchical setup called core
routing for our main search algorithm, discuss methods to restore optimality
of the hierarchy in the dynamic scenario where arc cost functions are allowed
to change, and study the difficulties of a multi-level hierarchical approach. In
Chapter 5 we give a detailed experimental evaluation of both Dijkstra’s algo-
rithm and A∗ within the bidirectional search approach that we presented. We
also test the dynamic scenario and analyse the tradeoff between query speed
and hierarchy update speed. Finally, in Chapter 6 we discuss the integration
of our efficient implementation of the bidirectional search algorithm with an
existing real-world industrial application which gathers traffic information and
provides a path computing web service.

1.6 Overview 39

In Part II we discuss general-purpose solution methods for mathematical
programs with integer variables, such as the mathematical programming for-
mulation of the TDSPP that we discussed in Section 1.3.2. We focus on two
classes of problems: Mixed-Integer Linear Programs and Mixed-Integer Non-
linear Programs. In Chapter 7 we propose new strategies for branching within
the context of solving MILPs by a a Branch-and-Bound algorithm; we propose
a mathematical formulation for the problem of finding a split disjunction clos-
ing a large integrality gap at each node of the Branch-and-Bound tree, and a
fast heuristic strategy for the same problem, discussing computational results.
Chapter 8 presents a general-purpose heuristic for MINLPs based on Variable
Neighbourhood Search, Local Branching, Sequential Quadratic Programming
and Branch-and-Bound. We provide extensive computational experiments on
a set of benchmark instances to show that our method is very reliable in terms
of the quality of the solution found, and also improves the best known solutions
in some of the cases. Chapter 9 reports computational results for the solution of
the time-dependent shortest path problem with the mathematical formulation
based methods that we presented.

Finally, Chapter 10 draws the conclusions of this work and discusses future
research.

40 Introduction

Part I

Combinatorial Methods

43

On FIFO networks, Dijkstra’s algorithm (Section 1.4.2) is typically the algo-
rithm of choice for the solution of the TDSPP. Dijkstra’s algorithm is a fully com-
binatorial method, in the sense that it does not work with a mathematical pro-
gramming representation of the problem, but tries to construct the optimum
by explicitly exploring the graph on which it is applied. As discussed in Chap-
ter 1, Dijkstra’s algorithm is too slow for our needs; therefore, we would like to
develop more efficient methods. The main purpose of this part is to devise algo-
rithms which explore fewer nodes than Dijkstra’s algorithm; that is, combinato-
rial methods that work on the graph representation, and “move” from node to
node touching the smallest possible number of vertices until the shortest path
between the source and the destination is found. This scenario is made difficult
by the fact that arc costs are time-dependent.

At the beginning of this thesis, no efficient speedup techniques for the TD-
SPP were known, although there was a lot of ongoing work on static graphs (see
Section 1.4); we believed that fast computations for the TDSPP were possible
only if we accepted approximated solutions. In this chapter we will present
our work in chronological order, to see how we developed an exact algorithm
for the TDSPP that deals very efficiently with dynamic scenarios. The first ap-
proach that we propose (Chapter 2) is based on computing approximated so-
lutions to the TDSPP, by exploring pre-computed subgraphs instead of the full
network. Its theoretical description provides interesting idea, but the method’s
implementation suffers from a too large memory occupation when applied to
continental sized road networks. However, some of the basic ideas are behind
our framework for bidirectional search presented in Chapter 3. The extension
of bidirectional search from static graphs to time-dependent graphs is a very
useful tool, that yields a reduction of the search space, as well as the means nec-
essary to apply hierarchical speedup techniques on time-dependent networks.
We will discuss hierarchical methods on time-dependent graphs in Chapter 4.
The detailed experimental evaluation provided in Chapter 5 assesses the useful-
ness of our approach. Finally, in Chapter 6 we present a real-world industrial
application of our algorithm, as one of the main components of the website of
the Mediamobile company.

44

Chapter 2

Guarantee Regions

Consider an application scenario with a server machine that answers shortest
paths queries provided by connected clients; this is exactly the type of applica-
tion that we had in mind for this thesis. In this case, assuming that the average
number of shortest paths queries that have to be answered in a given time inter-
val is known, we would like to guarantee that each computation can be carried
out in the allotted time frame. This motivates our study of an algorithm capa-
ble of providing an upper bound on computational times. In this section, we
propose a method with a preprocessing phase that provides an upper bound
on the number of nodes that have to be explored during a shortest path com-
putation; this can be translated into an upper bound to the maximum compu-
tational time, using an upper bound on the time spent per node and on the
time for each priority queue operation. All computations are parameterized by
an approximation constant K that determines the quality of the solution with
respect to the optimum. By increasing the value of the approximation constant
that is used throughout the whole method, one is able to decrease this upper
bound on the number of explored nodes (up to a certain degree), so that the
desired time requirements can be met.

The rest of this section is organized as follows: in Section 2.1 we define a
guarantee region with an approximation property for the point-to-point short-
est path problem on an unclustered graph; then we extend those concepts to
a clustered graph, so as to make them useful in practice. In Section 2.2 we
describe the preprocessing algorithm, whereas in Section 2.3 we describe the
query algorithm. In Section 2.4, we discuss practical issues, such as how to ef-
fectively store guarantee regions, give some computational results, and analyze
the drawbacks of this method.

46 Guarantee Regions

2.1 Definitions and main ideas

Given a source node s and a destination node t, the main idea behind guarantee
regions is to compute the shortest path p∗ between s and t on Gρ, which gives
an upper bound on the shortest path cost for that node pair over all possible
departure times. By means of this upper bound ρ(p∗) one can determine, in a
preprocessing phase, all nodes that have to be explored when computing the
shortest path from s to t in order to obtain a K-approximate solution, where
K is a given constant. This can be done in polynomial time by identifying all
nodes lying on a path p (from s to t) whose λ-weighted cost is strictly lower than
ρ(p∗)/K. Formally:

Definition 2.1.1. Let K > 1, s, t ∈ V and p be a path from s to t. We define the
guarantee region between s and t as:

R(K, p) =

{

v ∈ V |(v ∈ p) ∨ (v ∈ p = (s, v1, . . . , vn, t) : λ(p) <
1

K
ρ(p)

}

.

The approximation guarantee is ensured by the following proposition.

Proposition 2.1.2. Let K > 1, s, t ∈ V , and p∗ be the shortest path between s and
t on Gρ. Let r∗ be the shortest path between s and t with departure time τ0 on the
graph G[R(K, p∗)]. Then γ(r∗, τ0) ≤ Kd(s, t, τ0) for any departure time τ0.

Proof. Let q be the shortest path from s to t with departure time τ0. Suppose
γ(r∗, τ0) > Kγ(q, τ0); therefore, q contains a node v 6∈ R(K, p∗). Let q∗ be the
shortest s → t path on Gρ[R(K, p∗)]. We have the chain λ(q) ≤ γ(q, τ0) <
1
K

γ(r∗, τ0) ≤
1
K

γ(q∗, τ0) ≤
1
K

ρ(q∗) ≤ 1
K

ρ(p), which implies that all nodes of q
are inR(K, p∗) by definition, including v, which is a contradiction.

It is straightforward to note that the above proposition holds true in the case
where R(K, p) is defined in terms of a generic s → t path, and not necessarily
the shortest path in Gρ. This is because the upper bound on the cost of the
shortest path from s to t for any departure time can be obtained from any s→ t
path weighted by ρ. However, it makes sense to choose the shortest path be-
tween s and t on Gρ, as in Definition 2.1.1, so as to minimize ρ(p)/K and have a
smaller guarantee region.

Proposition 2.1.3. Let p∗ be the shortest s → t path in Gρ, and p be another
(different) s→ t path. If p∗ ⊂ R(K, p) thenR(K, p∗) ⊆ R(K, p).

Proof. By definition, for all v ∈ R(K, p∗) either v ∈ p∗ or there is a path q from s
to t such that v ∈ q and λ(q) < 1

K
ρ(p∗) ≤ 1

K
ρ(p). In the first case v ∈ R(K, p) by

hypothesis; in the second case v ∈ R(K, p) by its own definition.

2.1 Definitions and main ideas 47

Although the result only holds if p∗ ⊂ R(K, p), Prop. 2.1.3 is useful because it
states that choosing the initial path p as the shortest path in Gρ is a good choice,
even if it is not necessarily the best one.

As long as guarantee regions depend on each node pair (s, t), this approach
is largely impractical. It turns out, however, that the computations can be car-
ried out for a set of departure nodes and a set of arrival nodes, while still man-
taining the desired approximation constant. The only difference is that the
guarantee region should be valid for any choice of s and t in the respective sets.
Thus, the resulting guarantee region will have to be somehow “larger”. In prac-
tice, the graph is covered with connected node sets V1, . . . , Vk, which are called
clusters, and a central node ci is defined for each of them.

Definition 2.1.4. A covering V1, . . . , Vk of V is valid if for all i ≤ k there is a vertex
ci such that for all other vertices v ∈ Vi there is a path between ci and v entirely
contained in Vi. We call ci the center of cluster i.

For all i ≤ k let:

σi = max
v∈Vi

min
p=(v,...,ci)

ρ(p)

and:

δi = max
v∈Vi

min
p∈(ci,...,v),p⊂Vi

ρ(p)

be, respectively, the cost of the longest shortest path in Gρ from v to ci over all
v ∈ Vi and the cost of the longest shortest path in Gρ entirely contained in Vi

from ci to v over all v ∈ Vi. These values are finite because we assumed that G is
strongly connected, and Definition 2.1.4 ensures that a path entirely contained
in Vi from the central node ci to all other vertices in Vi exists.

To define guarantee regions that are valid for any two nodes in the source
and destination cluster, we will proceed in the same way as before; in order
to compute a valid upper bound on the cost of the shortest path between any
node in the source cluster Vi and any node in the destination cluster Vj , we
will have to consider not only the cost of a path between the centers of the two
clusters, but also the radii σi and δj .

Definition 2.1.5. Given a valid covering V1, . . . , Vk of V , let K > 1 and p be a path
from ci to cj , i 6= j ≤ k. We define the guarantee region between Vi and Vj as:

Rij(K, p) =

{

v ∈ V |v ∈ p ∪ Vj ∨ (v ∈ q = (ci, v1, . . . , vn, cj) :

λ(q) <
1

K
(ρ(p) + σi + δj))

}

,

A similar approach is presented in (103): the vertex set is partitioned in clus-
ters, and precomputed cluster distances are used to accelerate a Dijkstra search;

48 Guarantee Regions

the authors state that their method can be used in a time-dependent scenario,
but they do not provide experimental results for this case.

An approximation guarantee is given by Theorem 2.1.6, which is analogous
to Prop. 2.1.2, but considers guarantee regions between clusters. One difficulty
arises: in this case, we can no longer simply consider the shortest path between
two nodes restricted to the corresponding guarantee region; we have to select
the departure cluster dynamically, depending on which cluster center is the
closest to s at time τ0.

Theorem 2.1.6. Given a valid covering V1, . . . , Vk of V , let s, t in V , K > 1, and
let i = arg minn=1,...,k{d(s, cn, τ0)}, j : t ∈ Vj ; suppose i 6= j. Let p be the shortest
path from ci to cj in Gρ; for any node v ∈ V , let qv be the shortest path from s to v
with departure time τ0, and let rv be the shortest path from v to t on G[Rij(K, p)]
with departure time γ(qv, τ0). Then

min
v∈Rij(K,p)

{γ(qv + rv, τ0)|γ(qv, τ0) ≤ d(s, ci, τ0)} ≤ Kd(s, t, τ0)

for any departure time τ0.

Proof. Let p∗ be the shortest s→ t path with departure time τ0,

M = {v ∈ Rij(K, p)|d(s, v, τ0) ≤ d(s, ci, τ0)} , (2.1)

and note that ci ∈M , so M 6= ∅; suppose

min
v∈M
{γ(qv + rv, τ0)} > Kd(s, t, τ0) = Kγ(p∗, τ0).

Let
m = arg min

v∈M
{γ(qv + rv, τ0)} , (2.2)

and let us define the following paths: q∗ the shortest path from s to m with
departure time τ0, r∗ the shortest path from m to t in G[Rij(K, p)] with departure
time γ(q∗, τ0), x∗ the shortest path from s to m in Gρ, y∗ the shortest path from
m to t in Gρ[Rij(K, p)]. Note that 2.1 and 2.2 imply that γ(x∗, τ0) ≤ d(s, ci, τ0) ≤
σi; then by 2.2 and by optimality of y∗ we have λ(p∗) ≤ γ(p∗, hτ0) < 1

K
(γ(q∗ +

r∗, τ0)) ≤
1
K

(γ(x∗+y∗, τ0)) ≤
1
K

(ρ(x∗+y∗)) ≤ 1
K

(σi + δj +ρ(p)), which means that
every node of p∗ is inRij(K, p) by Definition 2.1.5. This also implies that s ∈M ,
and thus, by optimality of p∗,

min
v∈M
{γ(qv + rv, τ0)} = γ(p∗, τ0)

which is a contradiction.

Theorem 2.1.6 suggests a query algorithm to compute valid paths between
two nodes; the idea is to find, from the source node, the closest cluster cen-
ter assuming departure time τ0, and then “hop on” a guarantee region at that

2.2 Computing the node sets 49

Figure 2.1: The label of each arc (u, v) is [λ(u, v), ρ(u, v)].

center. That is, if i is the index of the cluster whose center is the closest to s
assuming departure time τ0, and j is the index of the cluster which contains t,
then after settling ci we constrain the search to explore only nodes in the guar-
antee region between Vi and Vj . Note that the computed shortest path does not
necessarily pass through ci, but the search is restricted to the guarantee region
only after ci is settled. The query algorithm is described in Section 2.3.

A result similar to Prop. 2.1.3 holds for Rij(K, p∗) when p∗ ∈ P ∗ρ (ci, cj), and
serves as a hint to choose our initial path. Unfortunately, guarantee regions
defined this way may fail to be minimal.

Proposition 2.1.7. Given a valid covering V1, . . . , Vk of V , for i, j ≤ k, i 6= j let p∗

be the shortest path between ci and cj in Gρ, and p be another (different) ci → cj

path. If p∗ ⊂ Rij(K, p) thenRij(K, p∗) ⊆ Rij(K, p).

Example 2.1.8. We give an example of the fact that guarantee regions may fail to
have minimal size. We consider s = A, t = E,K = 6

5
in the graph of Fig. 2.1. Since

the shortest path from A to E in Gρ is p∗ = (A,B,D,E), those nodes are included
in R(6/5, p∗). Furthermore, since ρ(A,B,D,E) = 270, and since the path p =
(A,B,C,E) in Gλ has cost λ(p) = 224 < 5

6
270 = 225, we have that R(6/5, p∗) =

{A,B,C,D,E}. However, it is easy to see that the set R′ = {A,B,D,E} has a
smaller size and is enough to guarantee the approximation property.

2.2 Computing the node sets

By Definition 2.1.1 and Definition 2.1.5, it is clear that the most difficult (and
expensive) part during the computation of guarantee regions is determining all
paths q between s and t with λ-cost λ(q) < H, where H is a given value. H de-
pends whether we are in the unclustered or in the clustered case. Computing H
itself is not computationally expensive: by Definition 2.1.5, we are interested in
H = 1

K
(ρ(p)+σi+δj) where p is the shortest path between ci and cj on Gρ. There-

fore, p can be obtained with an application of Dijkstra’s algorithm; similarly, σi

and δj can be calculated by growing shortest path trees from ci (respectively, cj)
on Ḡρ (respectively, Gρ).

50 Guarantee Regions

We now propose an algorithm to compute the set of all nodes that belong
to a path from a node s to a node t with total cost < H, adding some lines
to Dijkstra’s algorithmm and applying it on the reverse graph (note that, with
straightforward changes, the same holds on the original graph). Let us define
the limited-width shortest paths tree Tu,L from a given node u of width L as the
shortest paths tree that contains all nodes v such that dλ(u, v) < L. We call
ℓ[v] Dijkstra’s algorithm label of a node v ∈ Ts,L computed on the direct graph,
i.e. ℓ[v] = dλ(u, v), and ℓ[v] Dijkstra’s algorithm label of a node v computed on
the reverse graph, i.e. ℓ[v] = dλ(v, u). We assume to set ℓ[v] = ∞ if v /∈ Ts,L, and
ℓ[v] =∞∀v ∈ V . Algorithm 1 computes the desired set.

Algorithm 1 Find all nodes on a path with total λ-cost < H from a node s to
a node t

1: Build Ts,H on graph Gλ

2: Q← {t}
3: ℓ[t]← 0
4: S ← ∅
5: E ← ∅
6: stop = false

7: if ℓ[t] 6=∞ then
8: while Q 6= ∅ ∧ ¬stop do
9: extract u← arg minq∈Q{ℓ[q]}

10: E ← E ∪ {u}
11: if ℓ[u] + ℓ[u] < H then
12: S ← S ∪ {u}
13: if ℓ[u] ≥ H then
14: stop = true

15: for all arcs (v, u) ∈ A do
16: if v /∈ E then
17: if v /∈ Q then
18: ℓ[v]← ℓ[u] + λ(v, u)
19: Q← Q ∪ {v}
20: else if ℓ[u] + λ(v, u) < ℓ[v] then
21: ℓ[v]← ℓ[u] + λ(v, u)
22: return S

Proposition 2.2.1. Algorithm 1 returns all nodes on a path p from s to t such that
λ(p) < H.

Proof. First, we note that this algorithm is a modification of Dijkstra’s algorithm
which adds some lines that do not interfere with the correctness of Dijkstra’s
algorithm; there is one additional terminating condition on the main loop: the
algorithm stops if it has settled a node u with ℓ[u] > H.

2.3 Query algorithm 51

First part: Algorithm 1 returns all nodes on a path p from s to t such that
λ(p) < H. Suppose there is a node u /∈ S, u ∈ q where q is an s→ t path such that
λ(q) < H; since there is a path from s to t with cost < H, we have dλ(u, t) < H,
so node u is scanned because the additional terminating condition on the main
loop does not apply. Also, we have that dλ(s, u) + dλ(u, t) ≤ λ(q) by optimality.
Thus, when the node is scanned, the test on line 11 holds since ℓ[u] + ℓ[u] =
dλ(s, u) + d(u, t) ≤ λ(q) < H, and u is added to S, which is a contradiction.

Second part: Algorithm 1 returns only nodes on a path p from s to t such that
λ(p) < H. Suppose there is a node u ∈ S such that 6 ∃q = (s, v1, . . . , vn, t) such
that λ(q) < H, u ∈ q. Since u ∈ S, then it has been added on line 12; therefore,
ℓ[u] + ℓ[u] < H. In this case, by definition of ℓ[u] and l[u], we can concatenate
the shortest paths from s to u and from u to t to build a s → t path with cost
ℓ[u] + ℓ[u] < H. The contradiction follows.

Time requirements for Algorithm 1 are equivalent to applying two times Di-
jkstra’s algorithm on the original graph, thus O(|A|+|V | log |V |) with Fibonacci’s
heaps, but each application can be stopped as soon as we reach a distance of H
from source node. Hence, effective running time greatly depends on H, which
in turns depends on the choice of K and graph’s topology: the higher K, the
lower the execution time. Space requirements are linear in |V |: in addition
to Dijkstra’s algorithm linear space requirements, we only need to store each
node’s label in the direct search before applying the reverse search. Note that
keeping track of the whole shortest paths trees is not needed.

2.3 Query algorithm

Given a valid covering V1, . . . , Vk for V , Theorem 2.1.6 points at a way to com-
pute a K-approximated time-dependent path between any pair of nodes s, t ∈
V . Suppose we have already computed Rij(K, p∗) ∀i 6= j, 1 ≤ i, j ≤ k, and
for p∗ is the shortest path between ci and cj in Gρ; let us define Rii(K, p∗) =
V ∀i, 1 ≤ i ≤ k. We will use a slightly modified version of time-dependent
Dijkstra’s algorithm, where we will call ℓ[v] Dijkstra’s algorithm label of a node
v ∈ V , and we denote by p[v] the parent node for node v. We assume to set
ℓ[v] :=∞, p[v] := nil ∀v ∈ V . Algorithm 2 respects the theorem’s conditions.

Proposition 2.3.1. Algorithm 2 computes a path p from s to t such that γ(p, τ0) ≤
Kd(s, t, τ0).

Proof. First, note that Algorithm 2 is a modification of the time-dependent Di-
jkstra’s algorithm, with an early termination condition which is known to be
correct: the algorithm stops as soon as the sink t has been settled, instead of
waiting for the queue to be empty. We have to prove that the modifications do
not interfere with the algorithm’s correctness.

52 Guarantee Regions

Algorithm 2 Compute a K-approximation of the time-dependent shortest
path from a node s to a node t

1: Let j : t ∈ Vj

2: Q← {s}
3: ℓ[s]← 0
4: S ← ∅
5: stop ← false

6: phase ← 1
7: i ← 0
8: while ¬stop do
9: extract u← arg minq∈Q{ℓ[q]}

10: S ← u
11: if u = t then
12: stop ← true

13: if phase = 1 ∧ ∃n : u = cn then
14: i ← n
15: phase ← 2
16: for all arcs (u, v) ∈ A do
17: if phase = 1 ∨ v ∈ Rij(K, p∗) then
18: if v /∈ S then
19: if v /∈ Q then
20: ℓ[v]← ℓ[u] + c((u, v), τ0 + ℓ[u])
21: p[v]← u
22: Q← Q ∪ {v}
23: else if ℓ[u] + c((u, v), τ0 + ℓ[u]) < ℓ[v] then
24: ℓ[v]← ℓ[u] + c((u, v), τ0 + ℓ[u])
25: p[v]← u
26: return t, p[t], p[p[t]], . . . , s

As long as phase = 1, the algorithm is exactly the same as Dijkstra’s algo-
rithm; the critical point is the assignment phase ← 2 on line 15. The test on line
13 is verified as soon as the closest cluster center from the source node s is set-
tled; at this point, the index i is set to be the index of that cluster, and phase ← 2.
If i = j it is easy to verify that the algorithm is exactly the same as Dijkstra’s
algorithm because the test on line 17 is always true forRii(K, p∗) = V , therefore
Algorithm 2 computes the shortest path. Otherwise, when phase ← 2 all nodes
in the set M of Theorem 2.1.6 have already been explored and thus added to the
queue, and for each of those the shortest time-dependent path from the source
has already been computed via Dijkstra’s algorithm. Since phase = 2, the test on
line 17 ensures that only nodes belonging to the guarantee regionRij(K, p∗) are
explored (i.e. added to the queue); this means, by Dijkstra’s algorithm correct-
ness, that we are computing shortest time-dependent paths restricted to that

2.4 Implementation 53

node set. However, these are exactly the conditions of Theorem 2.1.6, and thus
when node t is settled we have computed a path which is the optimum of

min
v∈Rij(K,p)

{γ(qv + rv, τ0)|γ(qv, τ0) ≤ d(s, ci, τ0)} ≤ Kd(s, t, τ0)

for any departure time τ0.

In order to provide an upper bound on the computational time of each short-
est path computation, we have to provide an upper bound on the number of
nodes that are explored. The required upper bound on computational time can
then be derived considering the maximum time spent per node (i.e. while set-
tling the node with maximum degree in the graph) and the maximum time for
a priority queue operation. It is straightforward to note that, once Algorithm
2 has switched to phase 2, then the number of nodes that can be explored is
bounded from above by |Rij(K, p∗)| + |Vj|, where i and j are, respectively, the
index of the source and of the destination cluster. We have to provide a bound
on the number of nodes explored before switching to phase 2: in order to do so
we note that, if we restrict the algorithm in phase 1 to explore only nodes within
Vi, where s ∈ Vi, then the approximation guarantee is still valid, although the
solution quality may decrease. Thus we require that, if b nodes have already
been explored in phase 1, then the algorithm is restricted to explore only nodes
in Vi, until it switches to phase 2. It is easy to prove correctness of this approach.
An upper bound on the number of explored nodes is then

b + |Vi|+ |Rij(K, p∗)|+ |Vj|. (2.3)

The size ofRij(K, p∗) can be decreased by increasing K.

2.4 Implementation

To validate the practical usefulness of this approach, we implemented it in the
C++ programming language. It turns out that performance is not fully satisfy-
ing. In this section we report our results.

2.4.1 Storing node sets

Once all guarantee regions have been computed with the algorithm described
in Section 2.2, we have to store them efficiently in memory for a fast access. This
issue is crucial for performance, since the query algorithm has to test, for each
node, whether it belongs to a given guarantee region or not, and thus the algo-
rithm’s efficiency depends on how quickly this answer can be given and how
accurately node sets are stored. Assuming that we know each node’s position

54 Guarantee Regions

Figure 2.2: Graphical representation of a guarantee region on a plane.
Gray circled dots represent source and destination node, while small

black square dots represent nodes within the guarantee region.

on a plane, a natural way to store node sets would be to define a geometric con-
tainer for each guarantee region, e.g. an ellipse; however, with this approach
the routine which tests if a node belongs to a given guarantee region yields too
many false positive answers, which is due to the fact that guarantee regions are
an union of paths, and thus their shape is not necessarily easy to model (see
Figure 2.2). Our approach to solve this problem is to associate, with each node,
a bit table, or bit flags, which are used to determine if a node belongs to the
guarantee region between clusters i and j for given i 6= j. Suppose we have
covered V with k clusters V1, . . . , Vk; then we associate a table T of k × (k − 1)
bits each with each node v, with the property that the j-th bit of the i-th row of
T is 1 if and only if: v ∈ Rij(K, p∗) if j < i, or v ∈ Ri(j+1)(K, p∗) if j ≥ i. Since
Rii(K, p∗) = V , the corresponding information does not have to be stored, thus
each row can have only k − 1 elements.

2.4.2 Computational analysis

To validate our approach with a prototype, we used a subgraph of France’s road
network, corresponding to Île-de-France (i.e. Paris and surroundings), This
subgraph has≈ 400000 vertices and≈ 800000 arcs. Time-dependent costs were
modeled as piecewise linear functions of time (expressed in seconds); that is,
on each edge we stored 24 breakpoint values, one for each hour over a day,
and the arc cost for a given second τ was computed via a linear interpolation
of the breakpoints preceding and following τ . For a subset of arcs (8374 arcs
in total, all of them corresponding to highways or high importance roads) we
used real historical data to compute the breakpoint values for weekdays (see
Section 5.1.1); for all remaining arcs we generated breakpoint values using the
traffic-free speed value for that arc over a day, and then generating two bend-

2.4 Implementation 55

ings in the speed profile so as to slow the arc down by a factor of 1.5–3 during
peak hours, with each drop lasting 3-5 hours and centered at 8 AM or 6 PM.
This empirical way to generate time-dependent costs was not meant to be com-
pletely realistic, but at least it should provide “reasonable” data. Then, for each
query, we randomly generated with a uniform distribution a departure time in
seconds between 7 AM and 7 PM, so that the optimal time-dependent solution
has a very high probability of being different than the traffic-free static solution.

To validate the clustered approach we generated a k-center clustering over
V , with k = 100 clusters, using k′-oversampling with k′ = 200 (see (103)); that is,
we picked 200 random nodes, we connected them to a “dummy” central node,
and we grew clusters of neighbouring nodes around each of the 200 centers.
Then, when all nodes had been assigned to a cluster, we progressively deleted
the smallest remaining cluster, i.e. the one with the smallest radius, allowing
other clusters to grow into the deleted one. We iterated this procedure until
100 clusters were left. We compared the number of explored and settled nodes
between a Dijkstra search and Algorithm 2, where source and destination node
were chosen at random. We also compared the results with respect to the naive
algorithm of computing the shortest path in the static traffic-free graph, i.e. Gλ,
and then applying time-dependent costs. Results are reported in Table 2.1. For
each value of K (first column), we indicate the average number of settled nodes
in 1000 Dijkstra searches on the full graph, the average number of settled nodes
with Algorithm 2 and the same source-destination pairs, the average percent-
age increase P of the naive solution value with respect to the optimum (that
is, if p∗ is the optimal solution and p is the naive solution, the average value
of (1− γ(p, τ0)/γ(p∗, τ0))), the average percentage increase of the approximated
solution value with respect to the optimum, the average CPU time savings of
Algorithm 2 in percentage of the CPU times saved with respect to the exact al-
gorithm (0% means as slow as the exact algorithm; a negative value means that
there is an increase in CPU time, while a positive value means that CPU time de-
creased), and the percentage of shortest path computations where the approxi-
mated a solution had a cost smaller or equal than the cost of the naive solution.
We do not provide exact query times because those are highly dependent on
the implementation, and in this case our implementation was not fine-tuned;
what is most interesting, here, is the speed-up with respect to plain Dijkstra’s
algorithm in terms of number of settled nodes and of relative CPU time. The
number of settled nodes for the naive approach is not relevant: many speed-
up techniques exist for the static case (see Section 1.4), so we can assume that
it is a fast computation. While for low values of K computational times could
increase, due to the overhead for constraining the Dijkstra search within the
boundaries of the guarantee region, for high enough values of the approxima-
tion constant the savings in CPU time are significant, with a small average de-
crease of the solution quality with respect to the optimum. For K ≤ 3, there is
no speedup in the computation. Therefore, this method requires a very large

56 Guarantee Regions

MAX # SETTLED NODES SOLUTION COST INCREASE CPU TIME IMPROVED

K DIJKSTRA APPROX NAIVE APPROX SAVINGS PATHS

3 185514 60045 4.56% 1.10% 53.99% 91.8%
3.5 194640 35561 4.43% 4.91% 74.66% 74.5%

4 190077 15597 4.58% 9.27% 87.69% 53.2%
4.5 193240 9943 4.46% 16.51% 91.51% 38.2%

3.5∗ 188988 29341 4.38% 1.75% 78.22% 76.4%
4∗ 184327 17256 4.79% 4.54% 86.28% 67.2%

4.5∗ 190944 12675 4.40% 5.40% 91.72% 58.2%

Table 2.1: Computational results on clustered graph: average values. A
∗ in the first column indicates that the value for K has been adaptively
chosen, and we report the starting value, which is also the maximum

one.

approximation constant to bring practical benefits, although the solution qual-
ity is in practice significantly closer to the optimum than the approximation
constant would allow. We note, however, that the naive solution has a better
average behaviour than our approximated solution for values of K ≥ 3.5. We
tried to investigate the reason behind this. We can see that, for K = 3.5, in
74.5% of the shortest path computations the approximated solution is better
than the naive one, but in the remaining cases the approximated solution is
very far from the optimum, while the naive one isn’t. This is due to the fact that,
if K is too large, then the guarantee region between two clusters i and j may
consist of only the shortest path between ci and cj on Gµ. Any approximated
solution between those two clusters will pass through that path, which leads
to poor performance. For K = 3, in 91.8% of the shortest path computations
the approximated solution has a cost which is smaller than the cost of the naive
solution, so the average behaviour of the approximated solution is satisfying.
However, the computation is only 54% faster than a full (unconstrained) Dijk-
stra search.

To deal with this issue, we adaptively chose the value of the approximation
constant K as follows: for each cluster pair, we started with the maximum
value for K (Kcurr ← Kmax), and if the computed guarantee region included
only the path between the cluster centers we decreased the current K by 10%
(Kcurr ← 0.9Kcurr). We iterated until the guarantee region for that cluster pair
had a cardinality which was greater than the number of nodes on the shortest
path on Gµ between the cluster centers. Results for this approach are reported
in Table 2.1, on the rows with a ∗ in the first column.

With this modification in the guarantee region generation process, we see
that the solution quality significantly increases, while still yielding a speed-up
in computational time. Moreover, we are able to obtain a better average be-

2.4 Implementation 57

MAX # SETTLED NODES SOLUTION COST INCREASE CPU TIME IMPROVED

NODES DIJKSTRA APPROX NAIVE APPROX SAVINGS PATHS

50000 189994 23238 3.77% 3.98% 81.91% 74.8%
65000 190698 27159 3.73% 3.13% 78.54% 77.0%
80000 196529 37771 3.72% 2.71% 71.32% 81.4%

Table 2.2: Computational results on clustered graph with a maximum
number of settled nodes for each computation: average values.

haviour than the naive approach for larger values of K that allow for an in-
creased speed-up factor, which is a necessary requirement to state that our
approach can be useful in practice. We can also see that, if we compare the
number of paths where the approximated solution is better than the naive one,
there is an improvement with respect to the basic version of the algorithm. Al-
though for K = 3.5 the naive solution will be better than the one computed
with our algorithm almost 25% of the times, from a practical point of view the
approximated solution has much more value with respect to the naive one, be-
cause it changes dynamically reflecting traffic changes; on the other hand, the
naive solution between two points is always fixed regardless of the time of the
day, which is negatively perceived by users.

We also tested the performance of the approach described in Section 2.3
with a maximum number of settled nodes for each point-to-point computation.
In order to do this, we initially set K = 3, and if necessary we increase its value
until all regions comprise a number of nodes smaller than a given threshold. In
(2.3), we set b = 4000. Results are reported in Table 2.2 (same columns as in
previous tables). We can easily observe that the algorithm’s performance does
not decrease, and if we are willing to settle up to 65000 nodes for each shortest
path computation then our method finds a path which is on average better than
the naive solution, while still yielding a speed-up factor of almost 5 with respect
to plain Dijkstra’s algorithm. However, the starting value of K is still too large
for industrial applications.

2.4.3 Drawbacks of guarantee regions

The most evident drawback of the algorithm presented in this section is that
we must use a very large approximation constant K in order to achieve a sig-
nificant speedup during the computations. We have seen that in practice the
solution quality does not deteriorate as much as K would allow, but from an
industrial point of view an approximation guarantee≥ 3 is not appealing.

There is one additional major drawback, which is difficult to overcome: the
space consumption to store guarantee regions is very large. Associating bit flags
to each node is very expensive: elementary calculations show that, for a graph

58 Guarantee Regions

with 18M nodes such as the European road network (Section 5.1), 8GB of mem-
ory would allow only ≈ 60 clusters in the graph covering. In this case, each
cluster would be very large, hence performance would significantly decrease.
More efficient methods for identifying nodes belonging to a guarantee region
could be devised, but, as discussed in Section 2.4.1, one has to be careful not
to introduce too many false positives. In the end, we decided to try a different
approach, in which the set of nodes to be explored is not predetermined and
stored in memory, but is computed “on-the-fly” for each shortest path query.
This way, there is no additional space consumption for the storage of guaran-
tee regions.

Chapter 3

Bidirectional A∗ Search on
Time-Dependent Graphs

Bidirectional search is an important tool for the development of speedup tech-
niques for the SPP on static graphs; however, it cannot be directly applied on
time-dependent graphs. In this section we propose a novel algorithm for the
TDSPP based on a bidirectional A∗ algorithm. Since the arrival time is not
known in advance (so c cannot be evaluated on the arcs adjacent to the des-
tination node), our backward search occurs on the graph weighted by the lower
bounding function λ. This is used for bounding the set of nodes that will be
explored by the forward search.

The rest of this chapter is organized as follows. In Section 3.1 we describe
the foundations of our idea, and present an adaptation of the ALT algorithm
based on it. In Section 3.2 we formally prove our method’s correctness. In Sec-
tion 3.3 we propose some modifications that improve the performance of our
algorithm, and prove their correctness. In Section 3.4 we discuss the dynamic
case, where arc cost functions are allowed to change under weak conditions.

3.1 Algorithm description

We propose a general approach for bidirectional search based on restricting the
scope of a time-dependent A∗ search from the source using a set of nodes de-
fined by a time-independent A∗ search from the destination, i.e. the backward
search is a reverse search in Gλ. This idea is related to the guarantee regions dis-
cussed in Chapter 2: in that case we predetermined the set of nodes that had
to be explored for each shortest path computation, while this approach tries
to identify such nodes “on-the-fly”, depending on the source and destination
node. Note that Dijkstra’s algorithm is equivalent to A∗ with a zero potential
function; thus, in the following we could use Dijkstra’s algorithm instead of A∗.
However, as A∗ already yields a reduced search space with respect to Dijkstra’s

60 Bidirectional A∗ Search on Time-Dependent Graphs

s t

(a) Phase 1

s t

(b) From Phase 1 to Phase 2

s t

(c) Phase 2

s t

(d) Phase 3

Figure 3.1: Schematic representation of the TDALT algorithm search
space

algorithm, we will assume that the first algorithm is used, even though all theo-
retical properties also hold for Dijkstra’s algorithm.

Given a graph G = (V,A) and source and destination vertices s, t ∈ V , the al-
gorithm for computing the shortest time-dependent cost path p∗ works in three
phases.

1. A bidirectional A∗ search occurs on G, where the forward search is run
on the graph weighted by c, and the backward search is run on the graph
weighted by the lower bounding function λ. All nodes settled by the back-
ward search are included in a set M . Phase 1 terminates as soon as the
two search scopes meet.

3.2 Correctness 61

2. Suppose that v ∈ V is the first vertex in the intersection of the heaps of the
forward and backward search; then the time dependent cost µ = γ(pv, τ0)
of the path pv going from s to t passing through v is an upper bound to
γ(p∗, τ0). In the second phase, both search scopes are allowed to proceed
until the backward search queue only contains nodes whose associated
key exceeds µ. In other words: let β be the key of the minimum element of
the backward search queue; phase 2 terminates as soon as β > µ. Again,
all nodes settled by the backward search are included in M .

3. Only the forward search continues, with the additional constraint that
only nodes in M can be explored. The forward search terminates when
t is settled.

If the ALT algorithm (Section 1.4.5.1) is used for the A∗ search, i.e. we use land-
mark potential functions, then we call this algorithm TIME-DEPENDENT ALT
(TDALT). The pseudocode is given in Algorithm 3. Note that we use the symbol
↔ to indicate either the forward search (↔=→) or the backward search (↔=←):
as a consequence, −→π is the potential function for the forward search, while←−π
is the potential function for the backward search. Similarly for all other iden-

tifiers. We denote by
−→
A the set of arcs for the forward search, i.e.

−→
A = A, and

by
←−
A the set of arcs for the backward search, i.e.

←−
A = A. A typical choice is

to alternate between the forward and the backward search at each iteration of
the algorithm during the first two phases. Through the rest of this work we will
always alternate between the two searches at each iteration.

We give a sketch of the algorithm in Figure 3.1. In Figure 3.1(a) the algorithm
is in Phase 1: a forward search starts on the time-dependent graph and a back-
ward search starts on the same graph weighted by the lower bounding function
λ. As soon as the two search scopes meet (Figure 3.1(b)), we compute an upper
bound µ on the cost of optimal solution by evaluating the time-dependent cost
of an s → t path, and switch to Phase 2. In Figure 3.1(c) the algorithm is in
Phase 2: both searches continue until the condition β > µ is verified, where β
is the minimum element of the backward search priority queue. When the con-
dition holds, the algorithm switches to Phase 3 (Figure 3.1(d)): the backward
search stops, and the forward search continues until the target node is settled,
but the forward search is allowed to explore only nodes already settled by the
backward search.

3.2 Correctness

We prove correctness of our approach for the computation of both optimal so-
lutions and suboptimal solutions with an approximation guarantee.

Theorem 3.2.1. Algorithm 3 computes the shortest time-dependent path from s
to t for a given departure time τ0.

62 Bidirectional A∗ Search on Time-Dependent Graphs

Algorithm 3 TDALT: Compute the shortest time-dependent path from s to t
with departure time τ0
−→
Q.insert(s, 0);

←−
Q.insert(t, 0); M := ∅; µ := +∞; done := false; phase := 1.

while ¬done do
if (phase = 1) ∨ (phase = 2) then
↔∈ {→,←}

else
↔:=→

u :=
←→
Q .extractMin()

if (u = t) ∧ (↔=→) then
done := true

continue
if (phase = 1) ∧ (u.dist→ + u.dist← <∞) then

µ := u.dist→ + u.dist←

phase := 2
if (phase = 2) ∧ (↔=←) ∧ (µ < u.key←) then

phase := 3
continue

for all arcs (u, v) ∈
←→
A do

if↔=← then
M.insert(u)

else if (phase = 3) ∧ (v /∈M) then
continue;

if (v ∈
←→
Q) then

if u.dist↔ + c(u, v, u.dist↔) < v.dist↔ then
←→
Q .decreaseKey(v, u.dist↔ + c(u, v, u.dist↔) +←→π (v))

else
←→
Q .insert(v, u.dist↔ + c(u, v, u.dist↔) +←→π (v))

return t.dist→

Proof. The forward search of Algorithm 3 is exactly the same as the unidirec-
tional version of the A∗ algorithm during the first 2 phases, and thus it is correct;
we have to prove that the restriction applied during phase 3 does not interfere
with the correctness of the A∗ algorithm.

Let µ be an upper bound on the cost of the shortest path; in particular, this
can be the cost γ(pv, τ0) of the s→ t path passing through the first meeting point
v of the forward and backward search. Let β be the smallest key of the backward
search priority queue at the end of phase 2. Suppose that Algorithm 3 is not
correct, i.e. it computes a sub-optimal path. Let p∗ be the shortest path from s
to t with departure time τ0, and let u be the first node on p∗which is not explored
by the forward search; by phase 3, this implies that u /∈ M , i.e. u has not been
settled by the backward search during the first 2 phases of Algorithm 3. Hence,

3.3 Improvements 63

we have that β ≤ πb(u) + dλ(u, t); then we have the chain γ(p∗, τ0) ≤ µ < β ≤
πb(u)+ dλ(u, t) ≤ dλ(s, u)+ dλ(u, t) ≤ d(s, u, τ0)+ d(u, t, τ0 + d(s, u, τ0)) = γ(p∗, τ0),
which is a contradiction.

Theorem 3.2.2. Let p∗ be the shortest path from s to t. If the condition to switch
to phase 3 is µ < Kβ for a fixed parameter K, then Algorithm 3 computes a path
p from s to t such that γ(p, τ0) ≤ Kγ(p∗, τ0) for a given departure time τ0.

Proof. Suppose that γ(p, τ0) > Kγ(p∗, τ0). Let u be the first node on p∗ which
is not explored by the forward search; by phase 3, this implies that u /∈ M ,
i.e. u has not been settled by the backward search during the first 2 phases
of Algorithm 3. Hence, we have that β ≤ πb(u) + dλ(u, t); then we have the
chain γ(p, τ0) ≤ µ < Kβ ≤ K(πb(u) + dλ(u, t)) ≤ K(dλ(s, u) + dλ(u, t)) ≤
K(d(s, u, τ0)+d(u, t, τ0 +d(s, u, τ0))) = Kγ(p∗, τ0) < γ(p, τ0), which is a contradic-
tion.

3.3 Improvements

Performance of the basic version of the algorithm can be improved with the
results that we describe in this section, whose purpose is to reduce further the
size of the search space.

Theorem 3.3.1. Let p be the shortest path from s to t with departure time τ0. If
all nodes u on p settled by the backward search are settled with a key smaller or
equal to d(s, u, τ0) + d(u, t, τ0 + d(s, u, τ0)), then Algorithm 3 is correct.

Proof. Let Q be the backward search queue, let key(u) be the key for the back-
ward search of node u, let β = minu∈Q{key(u)} be the smallest key in the back-
ward search queue, which is attained at a node v (i.e. v = arg minu∈Q{key(u)}),
and let µ the best upper bound on the cost of the solution currently known. To
prove correctness, using the same arguments as in the proof of Theorem 3.2.1
we must make sure that, when the backward search stops at the end of phase
2, then all nodes on the shortest path from s to t that have not been explored
by the forward search have been added to M . The backward search stops when
µ < β.

In an A∗ search, the keys of settled nodes are non-decreasing. So every node
u which at the current iteration has not been settled by the backward search
will be settled with a key key(u) ≥ key(v), which yields d(s, u, τ0) + d(u, t, τ0 +
d(s, u, τ0)) ≥ key(v) = β > µ ∀u ∈ Q. Thus, every node which has not been
settled by the backward search cannot be on the shortest path from s to t, and
Algorithm 3 is correct.

64 Bidirectional A∗ Search on Time-Dependent Graphs

This allows the use of larger lower bounds during the backward search: the
backward A∗ search does not have to compute shortest paths on the graph Gλ,
but it should in any case guarantee that when a node u is settled then its key is
an underestimation of the time-dependent cost of the time-dependent shortest
path between s and t passing through u. The next proposition is of fundamental
practical importance.

Proposition 3.3.2. In phase 2 of Algorithm 3, nodes that have already been set-
tled by the forward search do not have to be explored by the backward search.

Proof. Let db(v) be the distance from a node v to node t computed by the back-
ward search if we do not explore any node already explored by the forward
search. Obviously we have db(v) ≥ dλ(v, t). We will prove that, when a node
v on the shortest path from s to t with departure time τ0 is settled by the back-
ward search, then db(v) ≤ d(v, t, τ0 + d(s, v, τ0)) ∀τ0 ∈ T . By Theorem 3.3.1, this
is enough to prove our statement.

Consider a node v settled by the backward search, but not by the forward
search; let q be the shortest path from s to v with departure time τ0, let q′ be
the shortest path from v to t with departure time tau0 + γ(q, τ0). Suppose that
q′ does not pass through any node already settled by the forward search. Then
db(v) ≤ λ(q′) ≤ d(v, t, τ0 + d(s, v, τ0)).

Suppose now that q′ passes through a node w already settled by the forward
search. Let p be the shortest path from s to w with departure time τ0, and let p′

be the shortest path from w to t with departure time τ0+γ(p, τ0); clearly v cannot
be on p, because otherwise it would have been settled by the forward search. By
optimality of p we have γ(p, τ0) ≤ γ(q+q′|v→w, τ0) = γ(q, τ0)+γ(q′|v→w, τ0+γ(q, τ0)).

Thus, by the FIFO property, we have the chain γ(p + p′, τ0) = γ(p, τ0) + γ(p′, τ0 +
γ(p, τ0)) ≤ γ(q, τ0) + γ(q′|v→w, τ0 + γ(q, τ0)) + γ(q′|w→t, τ0 + γ(q, τ0) + γ(q′|v→w, τ0 +

γ(q, τ0))) = γ(q + q′, τ0), which means that v does not have to be explored and
added to the set M by the backward search, because we already have a better
path passing through w. Thus, even if key(v) > d(s, v, τ0) + d(v, t, τ0 + d(s, v, τ0))
Algorithm 3 is correct.

By Theorem 3.3.1, we can take advantage of the fact that the backward search
is used only to bound the set of nodes explored by the forward search. This
means that we can tighten the bounds used by the backward search, even if
doing so would result in an A∗ backward search that computes suboptimal dis-
tances. To derive some valid lower bounds we need the following lemma and
propositions.

Lemma 3.3.3. Let v be a node, and u its parent node in the shortest path from s
to v with departure time τ0. Then d(s, u, τ0) + πf (u) ≤ d(s, v, τ0) + πf (v).

Proof. Suppose that ℓ is the active landmark, i.e. the landmark in our landmarks
set that currently gives the best bound; we have that either πf (u) = dλ(u, ℓ) −
dλ(t, ℓ) or πf (u) = dλ(ℓ, t)− dλ(ℓ, u).

3.3 Improvements 65

First case: πf (u) = dλ(u, ℓ)− dλ(t, ℓ). We have d(s, u, τ0) + πf (u) = d(s, u, τ0) +
dλ(u, ℓ)− dλ(t, ℓ) ≤ d(s, u, τ0) + dλ(u, v) + dλ(v, ℓ)− dλ(t, ℓ) ≤ d(s, u, τ0) + λ(u, v) +
dλ(v, ℓ)− dλ(t, ℓ) ≤ d(s, v, τ0) + πf (v).

Second case: πf (u) = dλ(ℓ, t)−dλ(ℓ, u). We have d(s, u, τ0)+πf (u) = d(s, u, τ0)+
dλ(ℓ, t)− dλ(ℓ, u); by triangular distance, dλ(ℓ, v) ≤ dλ(ℓ, u) + dλ(u, v) ≤ dλ(ℓ, u) +
λ(u, v), which yields −dλ(ℓ, u) ≤ −dλ(ℓ, v) + λ(u, v). So d(s, u, τ0) + dλ(ℓ, t) −
dλ(ℓ, u) ≤ d(s, u, τ0) + dλ(ℓ, t)− dλ(ℓ, v) + λ(u, v) ≤ d(s, v, τ0) + πf (v).

Proposition 3.3.4. At a given iteration, let v be the last node settled by the for-
ward search. Then, for each node w which has not been settled by the forward
search, d(s, v, τ0) + πf (v)− πf (w) ≤ d(s, w, τ0).

Proof. There are two possibilities for w: either it has been explored (but not
settled) by the forward search, or it has not been explored. Let Q be the set
of nodes in the forward search queue. If w has been explored, then w ∈ Q,
and clearly d(s, v, τ0) + πf (v) ≤ d(s, w, τ0) + πf (w) because v has been extracted
before w, which proves our statement. Otherwise, there is a node u ∈ Q on the
shortest path from s to w with departure time τ0 which has been explored but
not settled. We have that d(s, v, τ0) + πf (v) ≤ d(s, u, τ0) + πf (u) because v has
been extracted while u is still in the queue, and by Lemma 3.3.3, if we examine
the nodes u = u1, u2, . . . , uk = w on the shortest path from s to w with departure
time τ0, we have that d(s, u1, τ0)+πf (u1) ≤ · · · ≤ d(s, uk, τ0)+πf (uk), from which
our statement follows.

Let v be as in Proposition 3.3.4, and w a node which has not been settled by
the forward search. Proposition 3.3.4 suggests that we can use

π∗b (w) = max{πb(w), d(s, v, τ0) + πf (v)− πf (w)} (3.1)

as a lower bound to d(s, w, τ0) during the backward search. However, we have
to make sure that the bound is valid at each iteration of Algorithm 3.

Lemma 3.3.5. If the key of the forward search used to compute the potential
function π∗b defined by (3.1) is fixed, then we have π∗b (v) ≤ π∗b (u) + λ(u, v) for
each arc (u, v) ∈ A.

Proof. By definition we have π∗b (v) = max{πb(v), α − πf (v)}, where with α we
denoted the key of a node settled by the forward search, which is fixed by hy-
pothesis. Consider the case π∗b (v) = πb(v); then, since the landmark potential
functions πb and πf are consistent, we have π∗b (v) = πb(v) ≤ πb(u) + λ(u, v) ≤
π∗b (u) + λ(u, v). Now consider the case π∗b = α − πf (v); then we have π∗b (v) =
α−πf (v) ≤ α−πf (u)+λ(u, v) ≤ π∗b (u)+λ(u, v), which completes the proof.

This is enough to prove correctness of our algorithm with tightened bounds,
as stated in the next theorem.

66 Bidirectional A∗ Search on Time-Dependent Graphs

Theorem 3.3.6. If we use the potential function π∗b defined by (3.1) as potential
function for the backward search, with a fixed value of the forward search key,
then Algorithm 3 is correct.

Proof. Let db(u) be the distance from a node u to node t computed by the back-
ward search. We will prove that, when a node u on the shortest path from s to
t is settled by the backward search, db(u) ≤ d(u, t, τ0 + d(s, u, τ0)) ∀τ0 ∈ T . By
Proposition 3.3.4 and Theorem 3.3.1, this is enough to prove our statement.

Let q∗ = (v1 = u, . . . , vn = t) be the shortest path from u to t on Gλ. We
proceed by induction on i : n, . . . , 1 to prove that each node vi is settled with
the correct distance on Gλ, i.e. db(vi) = dλ(vi, t). It is trivial to see that the nodes
vn and vn−1 are settled with the correct distance on Gλ. For the induction step,
suppose vi is settled with the correct distance db(vi) = dλ(vi, t). By Lemma 3.3.5,
we have db(vi) + π∗b (vi) ≤ db(vi) + λ(vi−1, vi) + π∗b (vi−1) = dλ(vi−1, t) + π∗b (vi−1) ≤
db(vi−1) + π∗b (vi−1), hence vi is extracted from the queue before vi−1. This means
that vi−1 will be settled with the correct distance db(vi−1) = dλ(vi−1, t), and the
induction step is proven.

Thus, u will be settled with distance db(u) = dλ(u, t) ≤ d(u, t, τ0 + d(s, u, τ0)),
which proves our statement.

By Theorem 3.3.6, Algorithm 3 is correct when using π∗b only if we assume
that the node v used in (3.1) is fixed at each backward search iteration. Thus, in
practice we do the following: we set up kmax ∈ N checkpoints during the query;
when a checkpoint is reached, the node v used to compute (3.1) is updated,
and the backward search queue is flushed and filled again using the updated
π∗b . This is enough to guarantee correctness. The checkpoints are computed
comparing the initial lower bound ∆ = πf (t) and the current distance from the
source node, both for the forward search: the initial lower bound is divided by
kmax and, whenever the current distance from the source node exceeds k∆/kmax

with k ∈ {1, . . . , kmax}, π∗b is updated.

3.4 Dynamic cost updates

Up to now, time-dependent routing algorithms assumed complete knowledge
of the time-dependent cost functions on arcs. However, since the speed profiles
on which these functions are based are generated using historical data gathered
from sensors (or cams), it is reasonable to assume that also real-time traffic in-
formation is available through these sensors. Moreover, other technologies ex-
ist to be aware of traffic jams even without having access to real-time speed in-
formation (e.g., TMC1). In the end, a procedure to update the time-dependent
cost functions depending on real-time traffic information would be desirable
for practical applications.

1http://www.tmcforum.com/

http://www.tmcforum.com/

3.4 Dynamic cost updates 67

The input required by the TDALT algorithm (Section 3.1) consists of the
graph G with the associated arc cost functions and the distances to and from
landmarks. As landmark distances are computed using the lower bounding
function λ, it is clear that the preprocessing information, i.e. landmark distances,
remain valid as long as λ = c, that is, λ bounds c from below. On road networks,
computing a lower bounding function which is necessarily valid can be easily
done: it suffices to divide the length of the road segment that an arc represents
by the maximum speed allowed on that type of road. Thus, as long as λ = c,
the time-dependent cost functions can be updated with no additional required
effort.

68 Bidirectional A∗ Search on Time-Dependent Graphs

Chapter 4

Core Routing on Time-Dependent
Graphs

Hierarchical speedup techniques have been successfully used for the SPP on
static graphs (Section 1.4.4), hence in this section we generalize these tech-
niques to the time-dependent scenario and analyse performance of a two-level
hierarchical setup (core routing) for the TDSPP. The idea behind core routing
is to shrink the original graph in order to get a new graph (core) with a smaller
number of vertices. Most of the search is then carried out on the core, yielding
a reduced search space. We combine core routing with the bidirectional goal-
directed algorithm TDALT.

The rest of this section is organized as follow. In Section 4.1 we describe
core routing on static graphs and generalize it to the time-dependent case. In
Section 4.2 we discuss several issues that arise during the practical implemen-
tation of a core-based algorithm, and propose solutions. In Section 4.3 we anal-
yse under which conditions core optimality can be rapidly restored in the case
of updates in the cost functions, and propose an algorithm for this task. Finally,
in Section 4.4 we discuss the extension of a two-levels approach to a multilevel
hierarchy.

4.1 Algorithm description

Core-based routing is a powerful approach which has been widely and success-
fully used for shortest paths algorithms on static graphs (Section 1.4.4. The
main idea is to use contraction (Section 1.4.4.3): a routine iteratively removes
unimportant nodes and adds edges to preserve correct distances between the
remaining nodes, so that we have a smaller network where most of the search
can be carried out. Note that in principle we can use any contraction routine
which removes nodes from the graph and inserts edges to preserve distances.
When the contracted graph GC = (VC , AC) has been computed, it is merged

70 Core Routing on Time-Dependent Graphs

with the original graph to obtain GF = GC ∪G = (V,A ∪ AC) since VC ⊂ V .
Suppose that we have a contraction routine which works on a time-dependent

graph: that is, ∀u, v ∈ VC , for each departure time τ0 ∈ T there is a shortest path
between u and v in GC with the same cost as the shortest path between u and v
in G with the same departure time. We propose the following query algorithm.

1. Initialization phase: start a Dijkstra search from both the source and the
destination node on GF , using the time-dependent costs for the forward
search and the time-independent costs λ for the backward search, prun-
ing the search (i.e. not relaxing outgoing arcs) at nodes ∈ VC . Add each
node settled by the forward search to a set S, and each node settled by
the backward search to a set T . Iterate between the two searches until: (i)
S ∩ T 6= ∅ or (ii) the priority queues are empty.

2. Main phase:

• (i) If S ∩ T 6= ∅, then start an unidirectional Dijkstra search from the
source on GF until the target is settled.

• (ii) If the priority queues are empty and we still have S ∩ T = ∅,
then start TDALT on the graph GC , initializing the forward search
queue with all leaves of S and the backward search queue with all
leaves of T , using the distance labels computed during the initializa-
tion phase. The forward search is also allowed to explore any node
v ∈ T , throughout the 3 phases of the algorithm. Stop when t is set-
tled by the foward search.

In other words, the forward search “hops on” the core when it reaches a
node u ∈ S∩VC , and “hops off” at all nodes v ∈ T ∩VC . Again, since Dijkstra’s al-
gorithm is equivalent to A∗ with a zero potential function, we can use Dijkstra’s
algorithm in case (ii) during the main phase. It is interesting to note that, in-
dependently from our work, this approach to apply hierarchical speed up tech-
niques to time-dependent road networks has also been proposed in (17), in an
effort to generalize the Contraction Hierarchies algorithm (Section 1.4.4.3) to
the time-dependent case. However, no computational results are given. Next,
we prove that this core routing approach is correct.

Proposition 4.1.1. The core routing algorithm for time-dependent graphs is cor-
rect.

Proof. Suppose that, during the initialization phase (i.e. when we build the two
sets S and T), the two search scopes meet, thus S∩T 6= ∅. In this case, we switch
to unidirectional Dijkstra’s algorithm on the original graph (plus added short-
cuts), and correctness follows. Now suppose that the two search scopes do not
meet: the two priority queues are empty and S ∩T = ∅, thus the shortest path p

4.1 Algorithm description 71

between s and t with departure time τ0 passes through at least one node belong-
ing to the core VC . Let p = (s, . . . , u, . . . , v, . . . , t), where u and v are, respectively,
the first and the last node ∈ VC on the path. If u = v then the proof is trivial;
suppose u 6= v. Since the initialization phase explores all non-core nodes reach-
able from s and t, u ∈ S and v ∈ T . By definition of v, p|v→t passes only through
non-core nodes; by the query algorithm, T contains all non-core nodes that can
reach t passing only through non-core nodes. It follows that all nodes of p|v→t

are in T . Thus p|u→t is entirely contained in GC ∪ G[T] = (VC ∪ T,AC ∪ A[T]).
By correctness of Dijkstra’s algorithm, the distance labels for nodes in S are ex-
act with respect to the time-dependent cost function. Initializing the forward
search queue with the leaves of S and applying A∗ on GC ∪G[T] then yields the
shortest path p by correctness of A∗.

We immediately observe that for case (ii) of the main phase we can use any
algorithm that guarantees correctness when applied on GC∪G(T). In particular,
the distance labels for nodes in T are correct distance labels for the backward
search on the graph weighted by λ, so they fulfill the requirements for TDALT
(Section 3.1). Note that, in a typical core-routing setting for the ALT algorithm,
landmark distances are computed and stored only for vertices in VC (see (19)),
since the initialization phase on non-core nodes uses Dijkstra’s algorithm only.
This means that the landmark potential function cannot be used to apply the
forward A∗ search on the nodes in T . However, in order to combine TDALT with
a core-routing framework we can use the backward distance labels computed
with Dijkstra’s algorithm during the initialization phase. Those are correct dis-
tance labels for the lower bounding function λ, thus they yield valid potentials
for the forward search. We call this algorithm TIME-DEPENDENT CORE-BASED

ALT (TDCALT).
We give a skeatch of the TDCALT algorithm search space in Figure 4.1. In

Figure 4.1(a), the algorithm is initialized: a forward search is started from the
source using time-dependent costs and a backward search is started from the
target using the static costs λ, but arcs in the outstar of core nodes are not re-
laxed. The leaves of the shortest paths trees rooted at the source and the desti-
nation are the access points to the core. If the two search spaces do not inter-
sect during the initialization phase, then the TDALT algorithm restricted to the
core is applied (Figure 4.1(b)), using the previously computed access points to
initialize the forward and backward search queue. As the core comprises a sig-
nificantly smaller number of nodes and arcs with respect to the original space,
the search space shrinks by a large factor. The forward search is then allowed to
explore non-core nodes reachable from the access points near the destination
(Figure 4.1(c)), until the target is settled and the algorithm terminates.

72 Core Routing on Time-Dependent Graphs

s t

(a) Initialization

s t

(b) Core phase

s t

(c) Termination

Figure 4.1: Schematic representation of the TDCALT algorithm
search space

4.2 Practical issues

There are still several missing pieces before a full description of a practical im-
plementation of the algorithm described in Section 4.1 can be given. Namely,
we should describe a way to compute the potential function for nodes in V \
(VC ∪ T), discuss the contraction routing, and give an algorithm to retrieve the
full shortest path on the original graph when the computations are done on the
contracted graph.

4.2.1 Proxy nodes

Since landmark distances are available only for nodes in VC , the ALT poten-
tial function cannot be used “as is” whenever the source or the destination
node do not belong to the core. In order to compute valid lower bounds to
the distances from s or to t, proxy nodes have been introduced in (69) and
used for the CALT algorithm (i.e. core-based ALT on a static graph) in (19).
See also (71) for a description. We report here the main idea: on the graph
G weighted by λ, let t′ = arg minv∈VC

{d(t, v)} be the core node closest to t. By

4.2 Practical issues 73

triangle inequalities it is easy to derive a valid potential function for the for-
ward search which uses landmark distances for t′ as a proxy for t: πf (u) =
maxℓ∈L{d(u, ℓ) − d(t′, ℓ) − d(t, t′), d(ℓ, t′) − d(ℓ, u) − d(t, t′)}. The same calcula-
tions yield the potential function for the backward search πb using a proxy node
s′ for the source s and the distance d(s′, s).

4.2.2 Contraction

For the contraction phase, i.e. the routine which selects which nodes have to be
bypassed and then adds shortcuts to preserve shortest paths, we use the algo-
rithm proposed in (41). We define the expansion (69) of a node u as the quotient
between the number of added shortcuts and the number of edges removed if
u is bypassed, and the hop-number of a shortcut as the number of edges that
the shortcut represents. We iterate the contraction routine until the expansion
of all remaining nodes exceeds a limit C or the hop-number exceeds a limit
H. Note that, in the case of piecewise linear cost functions, the composition
of two functions yields an increase in the number of breakpoints; indeed, if
two functions f, g ∈ F have, respectively, B(f) and B(g) breakpoints, then the
composition f ⊕ g may have up to B(f) + B(g) breakpoints in the worst case.
As these points have to be stored in memory, the space consumption may be-
come unpractical if we add too many long shortcuts. Thus, we also enforce a
limit I on the maximum number of breakpoints that each shortcut may have:
if a shortcut which exceeds this limit would be created, we simply skip it.

In order to choose which node has to be bypassed at each step of the con-
traction routine, we mantain a heap of all nodes sorted by a function value
(bypassability score) which favours nodes whose bypassing creates fewer and
shorter shortcuts, and extract the minimum element at each iteration. The by-
passability score of a node u is defined as a linear combination of: the expan-
sion of u, the hop-number of the longest shortcut that would be created if u is
bypassed, and the largest number of interpolation points of the shortcuts that
would be created if u is bypassed. Note that the contraction of u may influence
the bypassability score of adjacent nodes, so these scores must be recomputed
after a node is chosen. As suggested by (41), we give a larger importance to
the expansion of a node when determining its bypassability score, thus using
a coefficient of 10 for this factor in the linear combination, whereas the other
two factors are added with unitary coefficient. At the end of the contraction
routine, we perform an edge-reduction step which removes unnecessary short-
cuts from the graph. In particular, for each node of the core u ∈ VC we check
whether for each arc (u, v) ∈ AC there is a path p from u to v which does not
use the arc (u, v) and such that γτ (p) < c(u, v, τ) ∀τ ∈ T . This step can be per-
formed by computing the cost function d∗(u, v) on the graph (VC , AC \ {(u, v)})
with a label-correcting algorithm (Section 1.4.3) and comparing d∗(u, v) with
c(u, v). If d∗(u, v)(τ) < c(u, v, τ) ∀τ ∈ T , then the arc (u, v) is not necessary, as

74 Core Routing on Time-Dependent Graphs

there is a shorter path between u and v for all possible departure times (see also
(41)). Whenever a shortcut between two nodes u, v ∈ V is added, its cost for
each time instant of the time interval is computed running a label-correcting
algorithm between u and v (Section 1.4.3).

4.2.3 Outputting shortest paths

Shortcuts are added to the graph in order to accelerate queries. However, as for
all shortcut-based speedup techniques, those shortcuts have to be expanded if
we want to retrieve the complete shortest path and not only the distance. Our
contraction routine for time-dependent graphs is an augmented version of the
one introduced for Highway Hierarchies (124). In (45), an efficient unpacking
routine based on storing all the arcs a shortcut represents is introduced: since
arc identifiers may be several bytes long, for each arc (u, v) on the path that the
shortcut represents we store the difference between its index and the index of
the first outgoing arc of u. As the outstar of each node is stored contiguously in
memory for obvious spatial locality reasons, and the outdegree of nodes is tipi-
cally small, this difference can be represented in a small number of bits. How-
ever, in the static case a shortcut represents exactly one path because between
any two nodes we only need to keep track of the shortest arc that connects them,
whereas in the time-dependent case the shortest arc between two nodes may
be different for each different traversal time. We solve this problem by allow-
ing multi-edges: whenever a node is bypassed, a shortcut is inserted to repre-
sent each pair of incoming and outgoing edges, even if another edge between
the two endpoints already exists. Thus, multiple shortcuts between the same
endpoints are not merged. With this modification each shortcut represents ex-
actly one path, so we can directly apply the unpacking routine from (45). In
our experimental evaluation the additional computational time to output a full
representation of the shortest path is≈ 1 millisecond (see Chapter 5).

4.3 Dynamic cost updates

Modifications in the cost functions can be easily taken into account under weak
assumptions if shortcuts have not been added to the graph (see Section 3.4).
However, a two-levels hierarchical setup is significantly more difficult to deal
with, exactly because of shortcuts: since a shortcut represents the shortest path
between its two endpoints for at least one departure time, if some arc costs
change then the shortest path which is represented may also be subject to changes.
Thus, a procedure to restore optimality of the core is needed. We first analyse
the general case for modifications in the breakpoint values; then we focus on
the simpler case of increasing breakpoint values, and finally propose an algo-

4.3 Dynamic cost updates 75

rithmic framework to deal with general cost changes under some restrictive as-
sumptions which are acceptable in practice.

4.3.1 Analysis of the general case

Let (VC , AC) be the core of G. Suppose that the cost function of one arc a ∈ A is
modified; the set of core nodes VC need not change, as long as AC is updated in
order to preserve distances with respect to the uncontracted graph G = (V,A)
with the new cost function. There are two possible cases: either the new val-
ues of the modified breakpoints are smaller than the previous ones, or they are
larger. In the first case, all arcs on the core AC must be recomputed by running
a label-correcting algorithm between the endpoints of each shortcut, as we do
not know which shortcuts the updated arc may contribute to. This requires a
significant computational effort, and should be avoided if we want to perform
fast updates for real-time applications. In the second case, the cost function
for core arcs may change for all those arcs a′ ∈ AC such that a′ contains a in its
decomposition for at least one time instant τ . In other words, if a contributed
to a shortcut a′, then the cost of a′ has to be recomputed. As the cost of a has
increased, then a cannot possibly contribute to other arcs, thus we can restrict
the update only to the shortcuts that contain the arc. We now analyse this case
in further detail.

4.3.2 Increases in breakpoint values

To perform fast updates in the case that breakpoint values increase, we store
for each a ∈ A the set S(a) of all shortcuts that a contributes to. Then, if one or
more breakpoints of a have their value changed, we do the following.

Let [τ1, τn−1] be the smallest time interval that contains all modified break-
points of arc a. If the breakpoints preceding and following [τ1, τn−1] are, respec-
tively, at times τ0 and τn the cost function of a changes only in the interval [τ0, τn].
For each shortcut a′ ∈ S(a), let a′0, . . . , a

′
d, with a′i ∈ A∀i, be its decomposition in

terms of the original arcs, let λj =
∑j−1

i=0 λ(a′i) and ρj =
∑j−1

i=0 ρ(a′i). If a is the arc
with index j in the decomposition of a′, then a′may be affected by the change in
the cost function of a only if the departure time from the starting point of a′ is in
the interval [τ0 − ρj, τn − λj]. This is because a can be reached from the starting
node of a′ no sooner than λj , and no later than ρj . Thus, in order to update the
shortcut a′, we need to run a label-correcting algorithm between its two end-
points only in the time interval [τ0−ρj, τn−λj], as the rest of the cost function is
not affected by the change. In practice, if the length of the time interval [τ0, τn] is
larger than a given threshold we run a label-correcting algorithm between the
shortcut’s endpoints over the whole time period, as the gain obtained by run-
ning the algorithm over a smaller time interval does not offset the overhead due
to updating only a part of the profile with respect to computing from scratch.

76 Core Routing on Time-Dependent Graphs

4.3.3 A realistic scenario

The procedure described in Section 4.3.2 is valid only when the value of break-
points increases. In a typical realistic scenario, this is often the case: the ini-
tial cost profiles are used to model normal traffic conditions, and cost updates
occur only to add temporary slowdowns due to unexpected traffic jams. When
the temporary slowdowns are no longer valid we would like to restore the initial
cost profiles, i.e. lower breakpoints to their initial values, without recomputing
the whole core. If we want to allow fast updates as long as the new breakpoint
values are larger than the ones used for the initial core construction, without
requiring that the values can only increase, then we have to manage the sets
S(a)∀a ∈ A accordingly. We provide an example that shows how problems
could arise.

Example 4.3.1. Given a ∈ A, suppose that the cost of its breakpoint at time τ ∈ T
increases, and all shortcuts ∈ S(a) are updated. Suppose that, for a shortcut
a′ ∈ S(a), a does not contibute to a′ anymore due to the increased breakpoint
value. If a′ is removed from S(a) and at a later time the value of the breakpoint at
τ is restored to the original value, then a′would not be updated because a′ 6∈ S(a),
thus a′ would not be optimal.

Our approach to tackle this problem is the following: for each arc a ∈ A, we
update the sets S(a) whenever a breakpoint value changes, with the additional
constraint that elements of S(a) after the initial core construction phase cannot
be removed from the set. Thus, S(a) contains all shortcuts that a contributes
to with the current cost function, plus all shortcuts that a contributed to dur-
ing the initial core construction. As a consequence we may update a shortcut
a′ ∈ S(a) unnecessarily, if a contributed to a′ during the initial core construction
but ceased contributing after an update step; however, this guarantees correct-
ness for all changes in the breakpoint values, as long as the new values are not
strictly smaller than the values used during the initial graph contraction. From
a practical point of view, this is a reasonable assumption.

Since the sets S(a)∀a ∈ A are stored in memory, the computational time
required by the core update is largely dominated by the time required to run
the label-correcting algorithm between the endpoints of shortcuts. Thus, we
have a trade-off between query speed and update speed: if we allow the con-
traction routine to build long shortcuts (in terms of number of bypassed nodes,
i.e. “hops”, as well as travelling time) then we obtain a faster query algorithm,
because we are able to skip more nodes during the shortest path computations.
On the other hand, if we allow only limited-length shortcuts, then the query
search space is larger, but the core update is significantly faster as the label-
correcting algorithm takes less time. In Chapter 5 we provide an experimental
evaluation for different scenarios.

4.4 Multilevel Hierarchy 77

4.4 Multilevel Hierarchy

In principle, the hierarchical query algorithm described in Section 4.1 could be
generalized to a multilevel hierarchy. The idea is the following: for each level ex-
cept the topmost one, we apply Dijkstra’s algorithm, using the time-dependent
costs c for the forward search, and the static costs λ for the backward search.
At each level, we do not relax outgoing arcs for nodes that belong to a higher
level in the hierarchy, and, as soon as both priority queues are empty, we use
all leaves of the Dijkstra search trees as access points to the upper level. Goal
directed search (i.e. the TDALT algorithm) is applied only to the topmost level
L, assuming that the forward and backward search scopes do not meet before
reaching the topmost level. If this is the case, let l < L be the level at which
the two search scopes meet; then there are two possibilities: either we switch
to a plain Dijkstra search on level l, or we apply TDALT on level l. The latter
option has the drawback of requiring landmark distances to be available for
level l, while typically they are computed only for the topmost level L to save
preprocessing time and space.

We can formalize this as follows. Let Gl
C = (V l

C , Al
C) for l = 0, . . . , L be a

hierarchy of graphs such that V l
C ⊂ V l+1

C ∀l = 0, . . . , L − 1 and G0
C = G. Again,

we assume that ∀l = 0, . . . , L,∀u, v ∈ V l
C , for each departure time τ0 ∈ T there is

a shortest path between u and v in Gl
C with the same cost as the shortest path

between u and v in G with the same departure time. A path can be computed
with the following algorithm.

1. Initialization: set l = 0, S = {s}, T = {t}.

2. Level selection phase: start a Dijkstra search from both the source and
the destination node on Gl

C , initializing the forward search queue with all
leaves of S and the backward search queue with all leaves of T , using the
time-dependent costs for the forward search and the time-independent
costs λ for the backward search. The search must be pruned (i.e. outgoing
arcs should not be relaxed) at nodes ∈ V l+1

C . Add each node settled by the
forward search to a set S, and each node settled by the backward search
to a set T . Iterate between the two searches until: (i) S ∩ T 6= ∅ or (ii) the
priority queues are empty.

3. Main phase:

• (i) If S ∩ T 6= ∅, then start an unidirectional Dijkstra search from the
source on GF until the target is settled.

• (ii) If the priority queues are empty with S ∩ T = ∅, then if l < L,
set l = l + 1 and return to 2. Otherwise, start TDALT on the graph
GL

C , initializing the forward search queue with all leaves of S and the
backward search queue with all leaves of T , using the distance labels

78 Core Routing on Time-Dependent Graphs

computed during the initialization phase. The forward search is also
allowed to explore any node v ∈ T , throughout the 3 phases of the
algorithm. Stop when t is settled by the foward search.

Note that, at each iteration of step 2 (level selection phase), more nodes are
added to the two sets S and T are modified, or, in other words, the two shortest
paths trees associated with S and T grow; therefore, the leaves of the two sets
are different at each iteration. The correctness proof is almost identical to the
one for Proposition 4.1.1, hence we omit it.

In static graphs, multilevel hierarchical methods have shown very good re-
sults in practice(see Section 1.4.4). However, this does not seem to be true
for the time-dependent case. Computational experiments (Chapter 5) indicate
that the complexity of shortcuts grows rapidly if we apply a strong contraction
to the original graph. Even for a two-levels hierarchical setup, space consump-
tion for the interpolation points of shortcuts may easily become unpractical.
Moreover, our experiments have shown that the dynamic scenario (i.e. updates
in the time-dependent cost functions) can be dealt with efficiently only if the
shortcuts are not too long, both in terms of number of original arcs that they
represent and of travel time weighted by λ. A multilevel hierarchical approach
further increases the length of shortcuts, as the contraction of each level above
level 0 has to combine several of them together, instead of simply combining
original arcs. Besides, it is not clear whether more levels in the hierarchy would
bring an advantage in terms of reduced query times, as having more levels in-
creases the possibility that the forward and backward search scopes meet be-
fore reaching the topmost level, in which case the algorithm’s behaviour is not
optimal. (17) describes a multilevel approach, but does not provide compu-
tational experiments to show its feasibility in practice. For all these reasons, it
does not seem a good idea in practice to use a multilevel setup, thus we decided
to test only a two-levels hierarchy in the following.

Chapter 5

Computational Experiments

The TDALT and TDCALT algorithms have been implemented and tested in
practice, using two different road networks: the European road network, which
is used as a common benchmark to compare with other algorithms in the litera-
ture, and the French road network, for which we have real time-dependent data
available. We performed a large number of computational experiments in order
to evaluate the impact of each component of our algorithm in determining the
final speed. This gives us insight for the comparison with other existing algo-
rithms. Then we designed experiments for the dynamic scenario, so to prove
that our method can indeed be used for real-world applications.

The rest of this section is organized as follows. In Section 5.1 we provide
details on the input data and the machines used for our experiments. In Sec-
tion 5.2 we report experiments on the different contraction rates, and discuss
the results. In Section 5.3 we provide a large experimental evaluation of the
query algorithm with different parameters, compare it with existing algorithms,
and analyse the different factors that contribute to its speed. Section 5.4 studies
the dynamic scenario, and concludes this section.

5.1 Input data

We tested our algorithms on the road network of Western Europe provided by
PTV AG for scientific use, which has 18 029 721 vertices and 42 199 587 arcs. A
travelling time in uncongested traffic situation was assigned to each arc using
that arc’s category (13 different categories) to determine the travel speed. Time-
dependent data for this instance is not available, thus we generated it (see Sec-
tion 5.1.1). This road network is commonly used as a benchmark for routing al-
gorithms, and it allows us to compare with the results reported in the literature.
Tests on the US road network show very similar results for all the experiments,
as confirmed by many works (e.g. (112; 46)), hence we do not report them.

The algorithms were also tested on another real-world instance, provided

80 Computational Experiments

by the Mediamobile company for our research, which models the road network
of France alone. This graph comprises 7 265 051 vertices and 16 200 683 arcs; it
is generated directly from the TeleAtlas 2006 Q1 data (116).

Our implementation is written in C++ using solely the STL. As priority queue
we use a binary heap. For the European road network, our tests were executed
on one core of an AMD Opteron 2218 running SUSE Linux 10.3. The machine
is clocked at 2.6 GHz, has 16 GB of RAM and 2 × 1 MB of L2 cache. For the
French road network, we used one core of an Intel Xeon X3553, clocked at 2.6
Ghz, with 16 GB of RAM and 2× 6 MB of L2 cache. The program was compiled
with GCC 4.1, using optimization level 3. Unless otherwise stated, we use 32
avoid landmarks (67), computed on the core of the input graph using the lower
bounding function λ to weight edges, and we use the tightened potential func-
tion π∗b (3.1) as potential function for the backward search, with 10 checkpoints.

5.1.1 Time-dependent arcs

Unfortunately, we are not aware of a large publicly available real-world road
network with time-dependent arc costs. We therefore used artificially gener-
ated costs for the European instance. In order to model the time-dependent
costs on each arc, we developed a heuristic algorithm, based on statistics gath-
ered using real-world data on a limited-size road network; we used piecewise
linear cost functions, with one breakpoint for each hour over a day. Arc costs are
generated assigning, at each node, several random values that represent peak
hour (i.e. hour with maximum traffic increase), duration and speed of traffic in-
crease/decrease for a traffic jam; for each node, two traffic jams are generated,
one in the morning and one in the afternoon. Then, for each arc in a node’s arc
star, a speed profile is generated, using the traffic jam’s characteristics of the cor-
responding node, and assigning a random increase factor between 1.5 and 3 to
represent that arc’s slowdown during peak hours with respect to uncongested
hours. We do not assign speed profile to arcs that have both endpoints at nodes
with level 0 in a pre-constructed Highway Hierarchy (Section 1.4.4.1), because
they are supposed have low importance in the road hierarchy. Excluding those
arcs, we assign a speed profile to the remaining 5% most important edges in
the graph, where importance is determined with the provided arc categories,
and for each arc we use the traffic jam values associated with its endpoint with
smallest ID. All arcs which are not assigned a speed profile have the same trav-
elling time value throughout the day, equal to their static travelling time. This
method to generate time-dependent speed profiles was developed to ensure
spatial coherency between traffic increases, i.e. if a certain arc is congested at
a given time, then it is likely that adjacent arcs will be congested too. This is a
basic principle of traffic analysis (86).

For the French road network, the Mediamobile company provided real-world
time-dependent data for 8374 arcs, in the form of piecewise linear functions

5.2 Contraction rates 81

with one breakpoint for each hour of the day, and realistic travelling time over
all non time-dependent arcs.

The breakpoints of speed profiles are stored in memory as a multiplication
factor with respect to the speed in uncongested hours. The travelling time of
an arc at time τ is computed via linear interpolation of the two breakpoints that
precede and follow τ . The breakpoints are stored in an additional array, ordered
by the edges they are assigned to. Similarly to an adjacency array graph data
structure (37), each arc has a pointer to the first of its assigned breakpoints.

5.2 Contraction rates

In this section we analyse the effect of the contraction parameters on the perfor-
mance of TDCALT and on the required preprocessing time and space. Results
are reported in Table 5.1 for the European road network and in Table 5.2 for the
French road network.

To measure the preprocessing effort, we report the percentage of nodes of
the original graph which are not bypassed, i.e. nodes which are in the core, the
time and additional space required by the preprocessing phase, the increase
in number of edges and interpolation points of the merged graph with respect
to the original graph. To analyse the speed of the shortest path computations
with respect to the contraction parameters, we report the average size of the
search space and CPU time to compute exact solutions and approximatd solu-
tions to 10 000 random queries. For the approximated solutions, we fix the ap-
proximation constant of the algorithm K to 1.15, which experiments confirmed
to be a good compromise between speed and quality of computed paths (see
Section 5.3). As the performed queries may compute approximated results in-
stead of optimal solutions when K > 1, we record three different statistics to
characterize the solution quality: error rate, average relative error, maximum
relative error. By error rate we denote the percentage of computed suboptimal
paths over the total number of queries. By relative error on a particular query
we denote the relative percentage increase of the approximated solution over
the optimum, computed as ω/ω∗ − 1, where ω is the cost of the approximated
solution computed by our algorithm and ω∗ is the cost of the optimum com-
puted by Dijkstra’s algorithm. We report average and maximum values of this
quantity over the set of all queries. Note that contraction parameters of C = 0.0
and H = 0 yield a pure TDALT setup, i.e. there is no contraction, hence no hi-
erarchy is build, and the TDALT algorithm is applied directly on the original
graph (instead of applying it only on the core). We fix the maximum number
of interpolation points for all shortcuts to I = 200, as suggested in (41), and
analyse the performance of the algorithm as we vary the remaining contraction
parameters: the maximum expansion of a bypassed node C, and the hop limit
of added shortcuts H (see Chapter 4 for more details).

8
2

C
o

m
p

u
ta

ti
o

n
a

l
E

x
p

e
ri

m
e

n
ts

CORE PREPROCESSING EXACT QUERY APPROX. QUERY (K = 1.15)
param. core time space increase in #settled time error relative error #settled time
C H nodes [min] [B/n] #edges #points nodes [ms] rate avg. max nodes [ms]

0.0 0 100.0% 28 256 0.0% 0.0% 2 931 080 2 939.3 40.1% 0.303% 10.95% 250 248 188.2
0.5 10 35.6% 15 99 9.8% 21.1% 1 165 840 1 224.8 38.7% 0.302% 11.14% 99 622 78.2
1.0 20 6.9% 18 41 12.6% 69.6% 233 788 320.5 34.7% 0.288% 10.52% 19 719 21.7
2.0 30 3.2% 30 45 9.9% 114.1% 108 306 180.0 34.9% 0.287% 10.52% 9 974 13.2
2.5 40 2.5% 39 50 9.1% 138.0% 84 119 149.7 34.1% 0.275% 8.74% 8 093 11.4
3.0 50 2.0% 50 56 8.7% 161.2% 70 348 133.2 32.8% 0.267% 9.58% 7 090 10.3
3.5 60 1.8% 60 61 8.5% 181.1% 60 636 122.3 33.8% 0.280% 8.69% 6 227 9.2
4.0 70 1.5% 88 74 8.5% 223.1% 52 908 115.2 32.8% 0.265% 8.69% 5 896 8.8
5.0 100 1.2% 134 89 8.6% 273.5% 45 020 110.6 32.6% 0.266% 8.69% 5 812 8.4

Table 5.1: Performance of TDCALT for different contraction rates on
the European road network. C denotes the maximum expansion of
a bypassed node, H the hop-limit of added shortcuts. The third col-
umn records how many nodes have not been bypassed applying the
corresponding contraction parameters. Preprocessing effort is given
in time and additional space in bytes per node. We also report the
increase in number of edges and interpolation points of the merged

graph compared to the original input.

5.2 Contraction rates 83

We focus on the European road network first (Table 5.1). As expected, in-
creasing the contraction parameters has a positive effect on query performance.
Interestingly, the space overhead first decreases from 256 bytes per node to 41
(C = 1.0, H = 20), and then increases again. The reason for this is that the
core shrinks very quickly, hence we store landmark distances only for 6.9% of
the nodes. On the other hand, the number of interpolation points for short-
cuts increases by up to a factor ≈ 4 with respect to the original graph. Stor-
ing these additional points is expensive and explains the increase in space con-
sumption. In particular, we observe that increasing the contraction parame-
ters from C = 0, H = 0 to C = 2.0, H = 30 yields a reduction of the number
of nodes in the core of a factor ≈ 33, while passing from C = 2.0, H = 30 to
C = 4.0, H = 70 leads to a further reduction of only a factor ≈ 2; similarly,
the search spaces for exact queries shrink by a factor ≈ 30 in the first case, but
only by a factor≈ 2 in the second case. There is the same behaviour for approxi-
mate queries. Thus, we clearly observe that there are diminishing returns when
increasing the contraction parameters. Moreover, the number of interpolation
points that have to be stored in memory rapidly becomes large and offsets the
space saved by not storing landmark distances for non-core nodes. Preprocess-
ing time increases as well, because performing operations on long shortcuts
involves a large amount of floating point computations, and is as such very ex-
pensive. This justifies our choice of limiting the number of interpolation points
of all shortcuts to I = 200, to avoid the explosion of required preprocessing
space.

In terms of speed of the shortest path computations, increasing the contrac-
tion parameters always brings an advantage, albeit very small if C and H are
large enough. For exact computations, TDCALT with contraction parameters
C = 5, H = 100 yields a reduction of the average search space of up to a factor
65 with respect to TDALT (i.e., C = 0, H = 0). The reduction in terms of average
CPU time is of a factor 26. This demonstrates the effectiveness of hierarchical
speedup techniques on road networks, even in the time-dependent case.

The same behaviour can be observed for approximate queries, although the
reduction in terms of the size of the search space is smaller. It is also interesting
to note that if we allow more and longer shortcuts to be built, then the error
rate decreases, as well as the maximum and average relative error. We believe
that this is due to a combination of factors. First, long shortcuts decrease the
number of settled nodes and have large costs, so at each iteration of TDCALT
the key of the backward search priority queue β increases by a large amount. As
the algorithm switches from phase 2 to phase 3 when µ/β < K, and β increases
by large steps, phase 3 starts with a smaller maximum approximation value for
the current query µ/β. This is especially true for short distance queries, where
the value of µ is small. Second, the core becomes very small for large contrac-
tion parameters. This increases the chance that the subpath of the shortest
path which passes through the core has a small number of arcs (possibly, only

8
4

C
o

m
p

u
ta

ti
o

n
a

l
E

x
p

e
ri

m
e

n
ts

CORE PREPROCESSING EXACT QUERY APPROX. QUERY (K = 1.15)
param. core time space increase in #settled time error relative error #settled time
C H nodes [min] [B/n] #edges #points nodes [ms] rate avg. max nodes [ms]

0.0 0 100.0% 13 256 0.0% 0.0% 136 202 81.1 15.1% 0.255% 15.88% 99 005 57.7
0.5 10 25.8% 5 70 12.3% 12.5% 45 449 29.5 12.2% 0.201% 12.96% 31 190 19.9
1.0 20 5.6% 10 41 12.6% 12.4% 10 351 8.2 9.4% 0.153% 12.60% 7 077 5.7
2.0 30 3.2% 196 11 9.1% 9.8% 5 491 4.9 7.7% 0.128% 13.63% 3 912 3.5
2.5 40 2.2% 272 9 8.0% 8.8% 4 449 4.1 6.9% 0.115% 11.62% 3 211 2.9
3.0 50 1.8% 307 7 7.3% 8.1% 3 815 3.5 7.4% 0.116% 12.75% 2 780 2.6
3.5 60 1.5% 307 6 6.8% 7.5% 3 753 3.4 6.8% 0.097% 12.05% 2 817 2.6
4.0 70 1.3% 307 5 6.4% 7.2% 3 484 3.1 6.4% 0.103% 13.13% 2 675 2.3
5.0 100 0.9% 310 4 5.6% 6.4% 3 988 3.2 6.6% 0.091% 13.43% 3 319 2.5

Table 5.2: Performance of TDCALT for different contraction rates on
the French road network. Same column labels as in Table 5.1.

5.3 Random Queries 85

one); as shortcuts represent optimal distances, the chance of computing a sub-
optimal path decreases. Summarizing, large contraction parameters require
more preprocessing time and space, but yield better results in terms of size of
the search space and query speed. On the other hand, experiments on the dy-
namic cost updates (Section 5.4) show that the length of shortcuts should be
limited, if we want to perform cost updates in reasonable time.

Slightly different results are obtained on the French road network (Table 5.2).
In this case, increasing contraction parameters always yields a decrease in re-
quired preprocessing space. The reason for this is that time-dependent arcs
are found only in one region of the graph (namely, Paris and its surroundings),
and the number of arcs is relatively small. Therefore, for increasing C and H
we essentially contract more static arcs, which have only one associated break-
point (the static arc travelling time). This does not bring the explosion of the
number of breakpoints, as observed on the European road network. As a con-
sequence, required preprocessing space keeps decreasing. We can also see that
the percentage of nodes in the core is typically smaller with respect to the Euro-
pean road network with the same contraction parameters. We explain this by
observing that the limit on the maximum number of interpolation points that
would appear on new shortcuts does not apply on this road network, because
the number of interpolation points is small. Hence, more contraction is carried
out. The decrease in size of the search spaces and query times tails off after
C ≥ 2.5 and H ≥ 40. The same applies for error rate and relative error.

5.3 Random Queries

In this section we analyse the performance of TDCALT for different values of
the approximation constant K, using the European road network as input. In
this experiment we used contraction parameters C = 3.5 and H = 60, i.e. we al-
low long shortcuts to be built so to favour query speed. We did not use larger val-
ues for the contraction parameters because the reduction in terms of CPU time
is small, and the dynamic cost updates become unpractical (see Section 5.4).
Results are recorded in Table 5.3 for the European road nework, and are gath-
ered over 10 000 queries with source and destination nodes picked at random.
For comparison, we also report the results on the same road network for the
time-dependent versions of Dijkstra, unidirectional ALT, TDALT and the time-
dependent SHARC algorithm (Section 1.4.6). In particular, Dijkstra’s algorithm
is used as a baseline to measure speedup factors, while SHARC currently rep-
resents the state-of-the-art for time-dependent shortest paths algorithms, al-
though it is not able to deal with dynamic scenarios. Results for the French
road network are reported in Table 5.5.

We report the amount of preprocessing time (in minutes) and space (in ad-
ditional bytes per node) required by each algorithm. Besides, the performed

86 Computational Experiments

queries may compute approximated results instead of optimal solutions, de-
pending on the value of K; thus, as in Section 5.2 we record three different
statistics to characterize the solution quality: error rate, average relative error,
maximum relative error. We recall that error rate is the percentage of computed
suboptimal paths, and relative error on a particular query is the relative per-
centage increase of the approximated solution over the optimum. We report
average and maximum values of the relative error over the set of all queries. We
also record the average number of nodes settled at the end of the computation
by each different algorithm, as well as the average CPU time in milliseconds.

In the following, we restrict ourselves to the scenario where only distances
— not the complete paths — are required. However, our shortcut expansion
routine for TDCALT (Section 4.2.3) needs less than 1 ms to output the whole
path; the additional space overhead is≈ 4 bytes per node.

We focus on the European road network first, which is the largest instance,
hence the most interesting. In terms of preprocessing space, TDCALT with con-
traction parameters C = 3.5, H = 60 is the algorithm requiring less memory:
only 61 additional bytes per node, while SHARC requires 118. Both TDALT and
unidirectional ALT store landmark distances for all nodes in the graph, thus
occupying 256 additional bytes per node. Algorithms which do not employ
a hierarchical structure require a shorter preprocessing time: 28 minutes for
TDALT and unidirectional ALT, which is the time to select 32 landmarks with
the avoid heuristic and compute landmark distances. The contraction phase
takes longer: 60 minutes for TDCALT, which only has to compute landmark
distances for the core after the graph contraction, while SHARC takes 392 min-
utes because of the computation of arc-flags.

We now analyse the size of the search spaces and query times for the differ-
ent algorithms. We restrict our attention to exact algorithms, i.e. K = 1. In our
comparison, the algorithm with the largest average search space is Dijkstra’s al-
gorithm, with ≈ 8.8 millions nodes, and represents our baseline. The TDALT
algorithm yields a reduction of a factor 3 with respect to the baseline. Inter-
estingly, unidirectional ALT settles 4.31 fewer nodes with respect to Dijkstra’s
algorithm, thus it has a smaller search space than the bidirectional TDALT al-
gorithm. This is easily explained if we consider that the bidirectional algorithm
described in Chapter 3 may explore twice all nodes in the search space of the
backward search. The SHARC algorithm only needs to settle 132.69 times fewer
nodes than Dijkstra’s algorithm, and TDCALT yields a further reduction, with
a search space which is 145.76 smaller than the baseline. Thus, hierarchical
methods are considerably more efficient in terms of number of settled nodes
with respect to algorithms that only deal with a plain graph, as confirmed by
many studies on static road networks (e.g. (19)).

If we consider the average number of settled nodes per millisecond, we ob-
tain the following ranking:

1. Dijkstra’s algorithm: 1688.6

5.3 Random Queries 87

Table 5.3: Performance on the European road network of time-
dependent Dijkstra, unidirectional ALT, SHARC, TDALT and TDCALT

with different approximation values K.

PREPROC. ERROR QUERY

time space relative # settled time
technique K [min] [B/n] rate av. max nodes [ms]

Dijkstra - 0 0 0.0% 0.000% 0.00% 8 877 158 5 757.4
uni ALT - 28 256 0.0% 0.000% 0.00% 2 056 190 1 865.4
SHARC - 392 118 0.0% 0.000% 0.00% 66 908 78.1

TDALT 1.00 28 256 0.0% 0.000% 0.00% 2 931 080 2 953.3
1.05 28 256 3.4% 0.013% 4.16% 1 516 710 1 409.5
1.07 28 256 7.0% 0.033% 6.82% 1 038 030 924.8
1.10 28 256 19.6% 0.108% 7.88% 561 253 464.2
1.12 28 256 29.3% 0.188% 10.52% 381 854 299.9
1.15 28 256 40.1% 0.303% 10.95% 250 248 184.4
1.20 28 256 48.5% 0.498% 12.05% 164 419 111.1
1.25 28 256 51.0% 0.603% 21.64% 134 911 86.1
1.30 28 256 52.0% 0.669% 21.64% 122 024 75.3
1.35 28 256 52.6% 0.712% 21.64% 116 090 70.3
1.50 28 256 52.8% 0.734% 21.64% 113 040 68.1
1.75 28 256 52.9% 0.737% 30.49% 112 827 67.9
2.00 28 256 52.9% 0.737% 30.49% 112 826 68.0

TDCALT 1.00 60 61 0.0% 0.000% 0.00% 60 961 121.4
1.05 60 61 2.7% 0.010% 3.94% 32 405 62.5
1.07 60 61 6.5% 0.030% 4.29% 22 633 42.1
1.10 60 61 16.6% 0.093% 7.88% 12 777 21.9
1.12 60 61 24.5% 0.158% 7.88% 9 132 14.9
1.15 60 61 33.0% 0.259% 8.69% 6 365 9.2
1.20 60 61 39.8% 0.435% 12.37% 4 707 6.4
1.25 60 61 42.0% 0.549% 15.52% 4 160 5.4
1.30 60 61 43.0% 0.611% 16.97% 3 943 5.0
1.35 60 61 43.4% 0.649% 18.78% 3 843 4.9
1.50 60 61 43.7% 0.679% 20.73% 3 786 4.8
1.75 60 61 43.7% 0.682% 27.61% 3 781 4.8
2.00 60 61 43.7% 0.682% 27.61% 3 781 4.8

2. unidirectional ALT: 1102.5

3. TDALT: 992.6

4. SHARC: 856.7

5. TDCALT: 502.1

88 Computational Experiments

As expected, Dijkstra’s algorithm performs the smallest number of operations
per node, hence it is able to settle more than 3 times the amount of nodes set-
tled by TDCALT in the same amount of time. With respect to this criterion, the
slowest algorithms are SHARC and TDCALT; both exploit an hierarchical setup,
thus they have shortcuts. Therefore, both approaches need to relax more edges
per node. In addition, since shortcuts have complicated cost function which
are generated by operations on the original arc cost functions, their evaluation
is computationally expensive, and explains the smaller number of settled nodes
per millisecond. Moreover, bidirectional search introduces an additional over-
head per node, as can be seen by comparing TDALT to unidrectional ALT. We
suppose that this is due to the following facts: in the bidirectional approach,
one has to check at each iteration if the current node has been settled in the
opposite direction, and during phase 2 of the algorithm the upper bound µ has
to be updated from time to time. The cost of these operations, added to the
phase-switch checks, is probably not negligible.

If we only observe average query times for the different exact algorithms, we
see that the fastest method is SHARC, which is 73.8 times faster than Dijkstra’s
algorithm. Second best is TDCALT, with a speedup of 47.6. Note that these
speedup factors are significantly smaller than the search space reduction that
the algorithms achieve, since Dijkstra’s algorithm settles more nodes per unit
of time. Unidirectional ALT is faster than TDALT: the speedups with respect to
the baseline are, respectively, 3.1 and 1.95.

Next, we analyse the performance of TDALT and TDCALT when increasing
the value of the approximation constant K. We immediately notice that the
quality of the computed paths improves when using TDCALT with respect to
TDALT for fixed K. As observed in Section 5.2, we believe that this is due to the
presence of long shortcuts. The errors decrease in all respects: error rate, aver-
age relative error and maximum relative error. It is also interesting to note that
the maximum relative error is very close to the theoretical allowed maximum
(i.e. K− 1) if K is small, whereas for larger values the approximation in practice
is much smaller than the theoretical guarantee. When K is very large, phase 2
of the algorithm is very short and we immediately switch to phase 3, comput-
ing a path which passes necessarily through the first meeting point of the two
search scopes. However, although this solution may be far from the optimum, it
cannot be completely wrong, because the landmark potentials efficiently drive
the two searchs towards their destination; thus, a path passing through the first
meeting point is still a reasonable solution from a practical point of view. This
explains why, even for large K, computed solutions are not suboptimal by a
large factor. Search space sizes and query times greatly benefit from a value of
K strictly larger than 1. In Figure 5.1 we compare query times of TDALT and
TDCALT with respect to the value of the approximation constant. It is clear
from the plot that a very small increase in the value of K initially brings a large
saving in CPU time, whereas if K is already large enough then no further bene-

5.3 Random Queries 89

 10

 100

 1000

 1 1.2 1.4 1.6 1.8 2

Q
ue

ry
 ti

m
es

 [m
se

c]

Approximation constant K

TDALT
TDCALT

Figure 5.1: Comparison of the query times of TDALT and TDCALT
with respect to the value of the approximation constant K. The y-axis

has a logarithmic scale.

 100000

 1e+06

 1 1.2 1.4 1.6 1.8 2

S
iz

e
of

 th
e

se
ar

ch
 s

pa
ce

Approximation constant K

TDALT with tightned bounds
TDALT only landmarks

Figure 5.2: Comparison of the search space of TDALT with and with-
out the tightened potential function π∗

b
with respect to the value of the

approximation constant K. The y-axis has a logarithmic scale.

90 Computational Experiments

Table 5.4: Performance on the European road network of time-
dependent Dijkstra, unidirectional ALT, TDALT with and without the

tightened potential function (3.1).

PREPROC. ERROR QUERY

time space relative # settled time
technique K [min] [B/n] rate av. max nodes [ms]

TDALT 1.00 28 128 0.0% 0.000% 0.00% 3 009 320 2 842.0
1.05 28 128 3.1% 0.012% 3.91% 1 574 750 1 379.2
1.07 28 128 6.6% 0.034% 6.06% 1 098 470 915.4
1.10 28 128 18.2% 0.106% 7.79% 622 466 481.9
1.12 28 128 26.2% 0.181% 10.57% 444 991 325.0
1.15 28 128 35.6% 0.292% 10.57% 311 209 214.2
1.20 28 128 43.3% 0.485% 19.40% 225 557 145.3
1.25 28 128 45.7% 0.589% 21.64% 196 581 122.3
1.30 28 128 46.7% 0.655% 21.64% 184 143 111.6
1.35 28 128 47.2% 0.703% 21.64% 178 410 107.4
1.50 28 128 47.4% 0.722% 21.64% 175 468 105.3
1.75 28 128 47.4% 0.725% 30.49% 175 248 105.3
2.00 28 128 47.4% 0.725% 30.49% 175 247 105.4

TDALT− 1.00 28 128 0.0% 0.000% 0.00% 3 763 990 3 291.6
1.05 28 128 3.4% 0.023% 4.87% 3 238 120 2 683.5
1.07 28 128 5.4% 0.046% 6.94% 2 874 500 2 290.7
1.10 28 128 12.1% 0.122% 9.45% 2 201 870 1 619.2
1.12 28 128 20.1% 0.237% 10.92% 1 772 080 1 218.4
1.15 28 128 32.1% 0.474% 14.34% 1 345 930 842.0
1.20 28 128 44.4% 0.787% 19.41% 1 079 290 618.3
1.25 28 128 50.5% 0.993% 24.56% 996 631 553.2
1.30 28 128 53.3% 1.104% 24.56% 972 294 531.5
1.35 28 128 54.7% 1.166% 24.56% 962 950 524.7
1.50 28 128 56.1% 1.248% 28.16% 953 704 526.4
1.75 28 128 56.3% 1.261% 39.34% 952 947 518.2
2.00 28 128 56.3% 1.262% 39.41% 952 933 518.9

fit is achieved. The best tradeoffs between path quality and speed are obtained
for K ∈ [1, 1.15].

Finally, we observe that TDCALT is at least one order of magnitude faster
than TDALT on average. If we can accept a maximum approximation factor
K ≥ 1.05 then TDCALT is also faster than SHARC, by one order of magnitude
for K ≥ 1.20.

We now measure the impact of the tightened potential function π∗b (3.1) on
the search space reduction. To do so, we test on the European road network two
different algorithms: TDALT with and without the tightened potential function.

5.3 Random Queries 91

Therefore, the latter will only use the landmark potential functions; we call this
algorithm TDALT−. In this setup, we used 16 landmarks generated with the
maxCover heuristic (70). Results are reported in Table 5.4.

We observe that the tightened potential function reduces both the size of the
search space and query times by a large factor. For exact queries, the average
number of settled nodes is reduced by a factor 1.25, and query times by a factor
1.16. As we increase K, the impact of the π∗b rapidly becomes larger: for K = 1.1,
the search space reduction is of a factor 3.53, 4.39 for K = 1.15, up to a maxi-
mum of 5.43 for K = 1.5 and above. Figure 5.2 plots the size of the search space
of TDALT and TDALT− with respect to the value of K, and supports our anal-
ysis. A similar behaviour is observed for query times. Moreover, the error rate
decreases when using the tightened potential function, as well as both average
and maximum error rate. This is not a trivial result: since TDCALT− explores a
significantly larger amount of nodes, one would expect that it would find better
solutions. This observation leads us to think that the tightened potential func-
tion not only reduces the number of settled nodes in general, but also prunes
the search at nodes which cannot appear on good solutions, therefore yielding
a more efficient exploration of the graph.

We now consider results obtained on the French road network, and reported
in Table 5.5. We note that all reported values are subject to very small changes,
if any at all, for K ≥ 1.10. We give the following explanation: since the ma-
jority of arcs in this instance is static, the cost lower bounds given by λ which
are used to compute landmark distances are equal to the costs used through
the shortest paths computations, leading to near-optimal performance of land-
mark potentials. Therefore, there is not much room for improvement in terms
of size of the search space. The only value which is affected by large values of
K is the maximum relative error: the search stops sooner by a small amount of
nodes, as indicated by the average size of the search space, but the maximum
error increases by significant amounts. This suggests that important nodes are
sometimes skipped during the search. Overall, it does not seem profitable in
practice to set K ≥ 1.10.

In terms of query speed, Unidirectional ALT is one order of magnitude faster
than Dijkstra’s algorithm. TDALT yields an additional CPU time saving of a
factor two. TDCALT is on average one order of magnitude faster than TDALT,
therefore almost three orders of magnitude faster than Dijkstra’s algorithm. Sim-
ilar considerations can be done with respect to the size of the search spaces.
Error related values also decrease when switching from TDALT to TDCALT, as
observed on the European instance. Summarizing, the analysis carried out on
the road network of Western Europe is also valid for the road network of France,
with the exception of the different behaviour of preprocessing time and space –
which is discussed in Section 5.2.

92 Computational Experiments

Table 5.5: Performance on the French road network of time-
dependent Dijkstra, unidirectional ALT, TDALT and TDCALT with dif-

ferent approximation values K.

PREPROC. ERROR QUERY

time space relative # settled time
technique K [min] [B/n] rate av. max nodes [ms]

Dijkstra - 0 0 0.0% 0.000% 0.00% 3 615 670 1 723.4
uni ALT - 13 256 0.0% 0.000% 0.00% 290 178 140.5

TDALT 1.00 13 256 0.0% 0.000% 0.00% 136 202 81.4
1.05 13 256 14.1% 0.166% 4.96% 100 884 59.0
1.07 13 256 14.6% 0.205% 7.00% 100 013 58.4
1.10 13 256 15.0% 0.234% 9.89% 99 303 58.0
1.12 13 256 15.0% 0.243% 12.00% 99 156 57.9
1.15 13 256 15.1% 0.255% 14.02% 99 062 57.8
1.50 13 256 15.2% 0.260% 32.44% 98 970 57.7
2.00 13 256 15.2% 0.260% 32.44% 98 969 57.7

TDCALT 1.00 307 6 0.0% 0.000% 0.00% 3 790 3.5
1.05 307 6 6.0% 0.064% 4.89% 2 876 2.6
1.07 307 6 6.5% 0.085% 6.36% 2 848 2.6
1.10 307 6 6.8% 0.107% 9.55% 2 832 2.5
1.12 307 6 6.9% 0.114% 10.07% 2 830 2.5
1.15 307 6 7.0% 0.119% 12.43% 2 828 2.5
1.50 307 6 7.1% 0.122% 16.62% 2 826 2.5
2.00 307 6 7.1% 0.122% 16.62% 2 826 2.5

5.3.1 Local Queries

For random queries, TDCALT is one order of magnitude faster than TDALT on
average. TDCALT is significantly faster than unidirectional ALT, while TDALT
is faster than the unidirectional version of the algorithm only for K ≥ 1.05. In
order to gain insight whether these speedups derive from small or large dis-
tance queries, Fig. 5.3 reports the query times with respect to the Dijkstra rank,
obtained on the European road network. For an s-t query, the Dijkstra rank of
node t is the number of nodes settled before t is settled: thus, it is some kind of
distance measure. These values were gathered on the European road network
instance, using contraction parameters as in Table 5.3, i.e. c = 3.5 and h = 60.

Note that we use a logarithmic scale due to the fluctuating query times. The
figure clearly indicates that both speedup techniques pay off only for long dis-
tance queries. If the source and destination node are close to each other, then
unidirectional ALT is faster than TDCALT by an order of magnitude in some
cases. This is expected, since for small distances TDCALT may result in a sim-
ple application of Dijkstra’s algorithm, with no speedup techniques. For suffi-
ciently long distances, however, the median of TDCALT is almost two orders

5.4 Dynamic Updates 93

Dijkstra Rank

Q
ue

ry
 T

im
e

[m
s]

26 27 28 29 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

0.
01

0.
1

1
10

10
0

10
00

unidirectional ALT
ALT (K=1.15)
CALT (K=1.15)

Figure 5.3: Comparison of unidirectional ALT, TDALT and TDCALT
using the Dijkstra rank methodology (124). The results are represented
as box-and-whisker plot: each box spreads from the lower to the up-
per quartile and contains the median, the whiskers extend to the min-
imum and maximum value omitting outliers, which are plotted indi-

vidually.

of magnitude faster than unidirectional ALT. TDALT is typically positioned be-
tween unidirectional ALT and TDCALT: for small distance queries it is faster
than TDCALT because it does not have to resort to a plain Dijkstra search, but
for large distances it is one order of magnitude slower. It also interesting to note
that some outliers of TDALT may be slower than unidirectional ALT for large
Dijkstra ranks, whereas outliers of TDCALT are always faster than the median
of unidirectional ALT.

Summarizing, the proposed speedup techniques are particularly effective
for long distance queries, which are the most difficult cases to deal with in prac-
tice, hence the most interesting.

5.4 Dynamic Updates

In order to evaluate the performance of the core update procedure (see Section
4.3) we generated several traffic jams as follows: for each traffic jam, we select
a path in the network covering 4 minutes of uncongested travel time on motor-
ways. Then we randomly select a breakpoint between 6AM and 9 PM, and for all
edges on the path we multiply the corresponding breakpoint value by a factor
5. As also observed in (46), updates on motorway edges are the most difficult
to deal with, since those edges are the most frequently used during the shortest
path computations, thus they contribute to a large number of shortcuts.

9
4

C
o

m
p

u
ta

ti
o

n
a

l
E

x
p

e
ri

m
e

n
ts

traffic jam single breakpoint
cont. limit space single[ms] batch[ms] single[ms] batch[ms] query
C H [min] [B/n] av. max av. max av. max av. max [ms]

0.0 0 – 256 0.0 0 0 0 0.0 0 0 0 188.2

0.5 10 5 123 0.4 28 372 488 0.1 5 97 166 81.5
10 121 0.7 49 619 799 0.1 12 183 383 85.2
15 119 0.7 49 707 1 083 0.1 11 202 407 74.2
20 119 0.7 49 820 1 200 0.2 59 291 459 73.8

1.0 20 5 82 7.8 229 7 144 8 090 1.8 78 1 853 2 041 34.5
10 72 21.2 778 20 329 22 734 5.8 371 5 957 9 266 27.1
15 68 32.1 2 226 27 327 33 313 7.2 427 7 291 11 522 25.4
20 66 37.0 2 231 30 787 39 470 8.8 1 197 8 476 11 426 22.8

2.0 30 5 88 17.4 290 16 293 17 493 5.7 283 5 019 6 017 33.7
10 82 90.5 3 868 79 092 85 259 27.6 1 894 24 943 27 501 22.8
15 79 171.0 4 604 120 018 142 455 49.4 2 451 46 237 58 936 19.7
20 77 219.7 5 073 187 595 206 569 63.3 5 510 60 940 65 954 16.4

Table 5.6: CPU time required to update the core for different contrac-
tion parameters and limits for the length of shortcuts.

5.4 Dynamic Updates 95

In Table 5.6 we report average and maximum required time over 1000 runs
to update the core in case of a single traffic jam, applying different contrac-
tion parameters. We also report the corresponding figures for a batch update of
1000 traffic jams (computed over 100 runs), in order to reduce the fluctuations
and give a clearer indication of required CPU time when performing multiple
updates. Besides, we measured the average and maximum time required to up-
date the core when modifying a single breakpoint on a motorway arc selected
uniformly at random; we also record the corresponding values when modifying
1000 single breakpoints on random motorway arcs (computed over 100 runs).
As there is no spatial locality when updating a single breakpoint over random
arcs, this represents a worst-case scenario. Note that in this experiment we
limit the length of shortcuts in terms of uncongested travel time (as reported
in the third column). This is because in the dynamic scenario the length of
shortcuts plays the most important role when determining the required CPU
effort for an update operation, and if we allow the shortcuts length to grow in-
definitely we may have unpractical update times. Hence, we also report pre-
processing space in terms of additional bytes per node, and query times with
K = 1.15. We remark that Table 5.6 only considers the CPU time required to
update the core, and does not take into account the computational effort to
modify the cost functions for arcs at level 0 in the hierarchy, i.e. not belonging
to the core. However, this effort is negligible in practice, because the modifi-
cation of a breakpoint of an arc outside the core has an influence only on the
arc itself. Therefore, the update is carried out by simply modifying the corre-
sponding breakpoint value, whereas the core update is considerably more time-
consuming (see Section 4.3).

As expected, the effort to update the core becomes more expensive with
increasing contraction parameters. First, we consider the scenario where we
generate 1000 traffic jams over motorway arcs, and modify the cost functions
accordingly. For C = 0.5, H = 10 the updates are very fast, even if we allow long
shortcuts (i.e. 20 minutes of uncongested travel time). The average CPU time
for an update of 1000 traffic jams is always smaller than 1 second, therefore
we are able to deal with a large number of breakpoint modifications in a short
time. This is confirmed by the very small average time required to update the
core after modifying a random breakpoint on a random motorway arc, which
is smaller than 0.2 milliseconds. As we increase the contraction parameters, dy-
namic updates take longer to deal with. A larger number of long shortcuts is
created, therefore update times grow rapidly, requiring several seconds. The
average time to update the core after adding 1000 traffic jams with contraction
parameters C = 1, H = 20 is at least one order of magnitude larger than the re-
spective values with parameters C = 0.5, H = 10. Very large updates are feasible
in practice only if we limit the length of shortcuts to 5 minutes of uncongested
travel time; for most practical applications, however, updates are not very fre-
quent, therefore adding 1000 traffic jams in ≈ 30 seconds is reasonably fast. If

96 Computational Experiments

we consider contraction parameters C = 2, H = 30, then the updates for this
scenario may require several minutes; however, limiting the length of shortcuts
helps.

Next, we analyse update times for modifications of a single breakpoint over
random motorway arcs. We observe that they confirm the analysis for the pre-
vious scenario (adding 1000 traffic jams). For small contraction parameters (or
if we limit shortcuts to a small length in terms of uncongested travelling time),
updating the core after modifying one breakpoint requires on average less than
10 milliseconds, whereas if we modify 1000 breakpoints we need less than 10
seconds. For C = 0.5, H = 10 we can carry out the updates in less than 0.5 sec-
onds. If we allow shortcuts to grow, then updates may require several seconds.

If we compare the time required to update the core after adding 1000 traffic
jams with respect to modifying 1000 breakpoints, we see that our update rou-
tine greatly benefits from spatial locality of the modified arcs: the first scenario
is only ≈3-4 times slower than the second, but the number of modified arcs is
larger, because each traffic jam extends over several motorway arcs. However,
this is expected: as each shortcut is updated only once, modifications on con-
tiguous arcs may require no additional effort, if all modified arcs belong to the
same shortcut. In real world applications, traffic jams typically occur on con-
tiguous arcs (86), therefore our update routine should behave better in practice
than in worst case scenarios.

Summarizing, we observe a clear trade off between query times and update
times depending on the contraction parameters, so that for those applications
which require frequent updates we can minimize update costs while keeping
query times < 100 ms, and for applications which require very few or no up-
dates we can minimize query times. If most of the arcs have their cost changed
we can rerun the core arcs computation, i.e. recomputing all arcs on the core
from scratch, which only takes a few minutes.

Chapter 6

A Real-World Application

One of the main objective of this thesis was to develop an algorithm capable
of answering several shortest path queries per second, so that a real-time path
computing service taking into account both real-time traffic and traffic fore-
castings could be proposed on the website of the Mediamobile company. In
this section we describe the existing industrial platform of this company, and
the architecture of a new platform which integrates the algorithm described
above with the existing components.

The rest of this section is organized as follows. In Section 6.1 we briefly de-
scribe the existing components in the architecture where we wish to integrate
our implementation of the TDCALT algorithm. In Section 6.2 we give a de-
scription of how this integration was carried out. In Section 6.3 we give a math-
ematical formulation for the problem of computing the updated cost function
breakpoint values, so as to adapt the function to real-time traffic information
and forecastings.

6.1 Description of the existing architecture

Mediamobile is a company whose primary purpose is to gather, aggregate and
redistribute real-time traffic information. Several services are built on top of
this basic function. The main component of their architecture is the traffic in-
formation server SDT (Serveur De Trafic, “traffic server” in French), which gath-
ers real-time traffic information from various sources and treats them so as to
make them directly utilizable for other services. In particular, the SDT is also
the provider of traffic forecast information, and, as such, is the only source of
traffic information which is necessary for our needs.

Real-time traffic information is obtained through different means: the most
reliable information is measured directly on-site by local administrations, usu-
ally by means of electromagnetic loops or cams that are capable of determining
the speed of passing vehicles. Another important source is represented by Float-

98 A Real-World Application

ing Car Data: cars driving in a fleet are equipped with GPS devices that con-
stantly monitor their position and speed, therefore providing information on
the congestion status of road segments that some vehicles have recently gone
through. Real-time traffic information is updated every few minutes (tipically,
two minutes). Real-time traffic information is then used to feed different pre-
diction models, so that traffic forecasts are generated. Forecasts are divided
into three different categories, depending on the time horizon after the predic-
tion is made that they address:

1. short-term forecasts: a few seconds to 10-20 minutes,

2. mid-term forecasts: 10-20 minutes to 4-5 hours,

3. long-term forecasts: 4-5 hours to several months.

Long-term forecasts rest on aggregated historical data, and represent the speed
profiles which were referred to throughout this thesis. Short- and mid-term
forecasts are updated every few minutes, as a consequence of changes in the
real-time traffic information, whereas long-term forecasts may be updated once
every several months or even years, thus they can be considered as static infor-
mation.

The SDT provides an API that allows other services to query and obtain traf-
fic information; among these services, the one that is relevant for this thesis is
the one that provides the main features of the site www.v-trafic.com, which al-
lows web users to see the real-time traffic status over all France. This service
runs on a Windows machine and exposes a web service towards the web site.
In the following, we will refer to the C# application run by this machine as the
paths computation service. A screenshot of the web site with the route planning
module can be found in Figure 6.1. Note that, at the moment of writing this the-
sis, the only front-end for the integrated path computation platform described
in this section is the web site, but it would be easy to allow any device with in-
ternet connection capabilities to query the platform. In particular, this could
be implemented for GPS devices, so as to allow an internet-connected service
where the GPS need not know real-time traffic information and forecasts over
the whole network: it suffices to send a path query to the path computation
platform, which utilizes all the available traffic information up-to-date, and dis-
play the path which answers the query. Our objective is to integrate our C++
implementation of TDCALT with the C# paths computation service, so as to
provide users with the possibility of calculating the optimal path between two
points. The paths computation service has an internal graph representation of
the French road network, since it must be able to project points on the road
network (i.e. find the node which is closer to given cohordinates) and draw on
the map, in order to indicate the traffic congestion status on monitored road
segments and highlight the computed path after a shortest path query. These
capabilities are implemented using the Google Maps API (73). Moreover, this

www.v-trafic.com

6.2 Description of the proposed architecture 99

Figure 6.1: The Mediamobile web site with the route planning mod-
ule. The screenshot has been taken on the beta version of the web
site, which employs the TDCALT algorithm through the platform dis-

cussed in this section.

machine is directly connected to the SDT and refreshes real-time traffic infor-
mation and traffic forecasts after every update of the SDT. The paths computa-
tion service also implements a time-dependent Dijkstra’s algorithm which uses
the most accurate real-time and forecast traffic information available; however,
this implementation may take several seconds of CPU time if applied on the
whole French road network, thus it is not suitable for answering user queries
in real-time. In the following, we will refer to the C# application run by this
machine as the paths computation service.

6.2 Description of the proposed architecture

We describe now the architecture that we implemented to integrate path com-
puting capabilities using TDCALT within the existing platform.

100 A Real-World Application

Internet

Internet

Floating Car Data Electromagnetic rings

Cams

Path
computation
web service

Traffic

TDCALT
server

Sources
of traffic
information

information
server
(SDT)

Figure 6.2: Schematic representation of the proposed architecture.

One of the first difficulties that we had to deal with is the fact that the exist-
ing paths computation service is coded in C# and runs on Windows, whereas
our TDCALT implementation is coded in C++ and runs on Linux. Thus, both
applications could not run on the same machine. We decided to run the TD-
CALT implementation on a separate machine, which is only accessible through
the paths computation service, and whose only purpose is to compute the paths
between two points with starting time at a given time of the day. A sketch of this
architecture can be seen in Figure 6.2.

The TDCALT server has an internal graph representation which uses differ-
ent node and arc identifiers; the reason behind this is that identifiers provided

6.2 Description of the proposed architecture 101

by mapping companies (e.g. NavTeq, TeleAtlas) are typically unpractical to deal
with, due to excessive length, whereas our C++ implementation needs integer
identifiers for both arc and nodes which are contiguous and start from zero.
Thus, we compute a mapping between the graph representation available on
the paths computation service and the one used by the TDCALT server. The
paths computation service in C# is responsible for the following tasks:

• expose a web service towards the web site;

• obtain the updated traffic information from the SDT, process it and send
it to the TDCALT server;

• translate external arc/node identifiers into the identifiers used by the TD-
CALT server, and vice-versa;

• manage the queue of pending queries;

• compute and display the road map on the web site after a path has been
computed.

The processing of updated traffic information, i.e. the update of the coefficients
of the piecewise linear cost functions, is described in more detail in Section 6.3.
Communication towards and from the TDCALT server is carried out through
TCP/IP with binary encoded messages.

The TDCALT server accepts incoming TCP packets on two different ports.
The first one is dedicated to the computation of shortest paths: a query packet
contains the internal identifier of the source and destination nodes, as trans-
lated by the C# paths computation service through the available mapping, and
the departure time; the machine carries out the calculations, and returns back
the list of arcs on the shortest path, as well as its cost. Shortest paths compu-
tations cannot be done in parallel, since the nodes are labeled with one of the
different statuses: unreached, explored, settled (see Section 1.4.2), and for
each query the labels must be initialized. The second port is dedicated to the
cost function updates. Whenever the cost function should be updated, the C#
service sends to the TDCALT server the data containing arc identifiers and new
breakpoint values through this port. When an update is pending, the TDCALT
server does not accept path queries anymore; if there is a shortest path compu-
tation in progress, then that computation is carried out. As soon as there are no
path computations in progress, the update phase starts: the set of all shortcuts
that must be updated is split equally among all available CPUs, and the proce-
dure discussed in Section 4.3 is applied. Since each shortcut can be updated
independently from the others, this routine can be run in parallel with no addi-
tional effort. When the update procedure is complete, the path computations
resume normally.

102 A Real-World Application

Additionally, we run an instance of the TDCALT server without real-time
traffic information. This serves the purpose of answering shortest paths queries
whose departure time is not in the near future with respect to the instant at
which the query is received. Typically, this happens when users want to com-
pute a shortest route using statistical information for a particular day of the
week. To this end, Mediamobile provides 4 different speed profiles, that cor-
respond to different combinations between subsets of days in the week and
holiday/working day. We run an instance of the TDCALT which manages all 4
profiles, and answers to shortest paths queries using the most appropriate one.

The TDCALT server is run on a machine equipped with a Quad-Core AMD
Opteron 2354 processor and 16 GB of RAM. Summarizing, this machine runs
an instance of the server with real-time traffic information on one core, and an
instance without real-time traffic information and 4 different speed profiles on
another core; as these instances are run separately, they can be used in parallel.
The first instance takes approximately 1.6 GB of RAM, the second one 4 GB. The
two remaining CPU cores are used only for the profile update.

6.2.1 Load balancing and fault tolerance

We implemented a simple fault tolerance scheme to increase the availability of
the path computation service. At the same time, this scheme provides a load
balancing mechanism. The scheme is illustrated in Figure 6.3, and works as fol-
lows. Both the machine that runs the C# path computation service and the C++
TDCALT server are duplicated, so that there are two perfectly equal platforms
to answer a shortest path query. A load balancer is put in the layer between
users (e.g. the website) and the C# path computation service, and dispatches
requests to the machine with the smallest work load. Similarly, a load balancer
represents the layer between the two machines that run che C# path computa-
tion service and the C++ TDCALT server. Requests are dispatched to the first
available machine. The two load balancers also implement a fault tolerance
scheme: whenever one of the queried machines is down, queries are automati-
cally sent to its duplicate. All messages are exchanged as short TCP packets and
each TCP connection is valid for one shortest path query only; therefore, the
load balancer can connect a C# path computation service to a C++ TDCALT
server by simply forwarding the TCP packet containing the query. Note that, in
terms of performance, it would be better to keep the connection between the
C# path computation server and the TDCALT server always open, so that we
do not have to waste resources on establishing the connection. However, with
such a scheme we would not be able to implement the fault tolerance and load
balancing mechanism.

It can be seen that this architecture provides a natural way to deal with real-
time traffic information updates: whenever one of the two real-time TDCALT
servers is running an update (and is therefore unvailable for shortest paths com-

6.2 Description of the proposed architecture 103

Internet

Path
computation
web service

Load
balancer

Load
balancer

TDCALT
server

Figure 6.3: Schematic representation of the load balancing and fault
tolerance scheme.

putations), the load balancer forwards all queries to the duplicate machine,
which will update the profiles only when the first one has finished the update.
This way, at least one of the two machines is always available.

The load balancer is able to tell the status of each TDCALT server by query-
ing a monitoring service via TCP. The monitoring service is a thread spawned by
the main TDCALT process, which therefore shares the same address space and
is able to detect if the main program has encountered errors. The monitoring
thread listens for TCP connection on a different port than the main TDCALT
process, and, whenever it receives a message, sends back one of the following
two-characters ASCII encoded strings:

1. OK: the server is alive and working;

2. KO: the server is alive but has encountered problem that prevent it from
answering to queries (e.g. network related problems);

3. UP: the server is alive but is currently updating profiles.

104 A Real-World Application

Obviously, if the monitoring thread does not answer or does not accept the con-
nection, the main TDCALT process is considered to be dead or unreachable.
Since the load balancer queries the TDCALT server status every second, it may
take up to one second to propagate the status information to the load balancer.
Therefore, when a TDCALT server wants to perform an update of its cost func-
tions, it first sets its status to UP, then waits for one second (while still accepting
and answering incoming path queries), and finally starts the update. This way
we avoid sending shortest path queries to a TDCALT server which is perform-
ing an update.

6.3 Updating the cost function coefficients

Through this section, we assume that for each time instant there is no overlap-
ping traffic information, i.e. we only have one of the following:

1. real-time information,

2. short-term forecasts,

3. mid-term forecasts,

4. long-term forecasts,

taken in order of accuracy. For a given arc, each information is represented
as point (τ, f(τ)) where τ represents the time instant and f(τ) is the travelling
time over that arc starting the traversal at time τ . Whenever one of the different
sources of traffic information is updated, we would like to compute the piece-
wise linear function that best fits the new information, so that the correspond-
ing arc cost function can be updated. Since this task must be carried out often,
it should have a small computational cost. Hence, it is natural to solve this prob-
lem using a least squares estimation of the cost function. We state the problem
formally as follows.

We are given a set of points (xi, yi), i = 1, . . . , n where xi ∈ [0, P] ∀i = 1, . . . , n
and a set of breakpoint positions r1 = 0, . . . , rm+1 = P with ri ∈ [0, P] ∀i =
1, . . . ,m + 1 such that [0, P] can be partitioned into m intervals [ri, ri+1] i = 1, . . . ,m.
We want to compute a continuous piecewise linear function f : [0, P]→ R,

f(x) = aix + bi if x ∈ [ri, ri+1), (6.1)

periodic of period P , that minimizes the sum of the quadratic errors:

∆ =
n

∑

i=1

(f(xi)− yi)
2. (6.2)

6.3 Updating the cost function coefficients 105

In order for f to be continuous, the condition

airi+1 + bi = ai+1ri+1 + bi+1 (6.3)

must hold ∀i = 1, . . . ,m− 1; since f is periodic, we also have

b1 = amrm+1 + bm. (6.4)

Constraints (6.3) allow us to express bi for i = 2, . . . ,m in terms of the remaining
variables, while (6.4) expresses am in terms of b1 and bm. With simple algebraic
calculations we obtain

bi =
i

∑

j=2

(aj + aj−1)rj + b1 ∀i = 2, . . . ,m, (6.5)

and

am = −

∑m

j=2(aj + aj−1)rj

P
. (6.6)

Thus, we need to optimize over the m variables b1, a1, . . . , am−1. This is a convex
problem which can be solved by vanishing the derivatives of (6.2) with respect
to the variables. We obtain:

d∆

db1

=
∑

xj∈[0,r2]

(a1xj + b1 − yj) +
m

∑

i=2

∑

xj∈[ri,ri+1]

(aixj +
i

∑

h=2

(ah + ah−1)rh + b1 − yj)

d∆

da1

=
∑

xj∈[r1,r2]

(a1xj + b1 − yj)xj +

+
m

∑

i=2

∑

xj∈[ri,ri+1]

(aixj +
i

∑

h=2

(ah + ah−1)rh + b1 − yj)(r2 + r1)

...

d∆

dak

=
∑

xj∈[rk,rk+1]

(akxj +
k

∑

h=2

(ah + ah−1)rh + b1 − yj)xj +

+
m

∑

i=k+1

∑

xj∈[ri,ri+1]

(aixj +
i

∑

h=2

(ah + ah−1)rh + b1 − yj)(rk+1 + rk)

...

d∆

dam−1

=
∑

xj∈[rm−1,rm]

(am−1xj +
m−1
∑

h=2

(ah + ah−1)rh + b1 − yj)xj +

+
∑

xj∈[rm,P]

(−

∑m

h=2(ah + ah−1)rh

P
xj +

m
∑

h=2

(ah + ah−1)rh + b1 − yj)(P + rm−1).

106 A Real-World Application

Solving this m×m linear system yields the optimal coefficients ai, bi i = 1, . . . ,m,
which define the updated cost function (6.1).

Not all coefficients ai, bi i = 1, . . . ,m must be modified at each update step.
The main purpose of this procedure is to take into account real-time traffic in-
formation and forecasts in order to provide a reliable path to those users which
are interested in computing a path with departure time close to the time instant
at which the path is queried (via the web service). Obviously, it does not make
sense to request paths with departure time in the past. Thus, we only update
coefficients “in the future” with respect to the time at which the update is made.
Formally, we are given a set of points (xi, yi), i = 1, . . . , n such that (f(xi) −
yi)/f(xi) ≥ T , where T is a given threshold; this means that the current piece-
wise linear function f(x) does not fit the points (xi, yi), i = 1, . . . , n, hence we
need to update its coefficients. Let [rL, rU] be an interval with endpoints defined
as: L = arg maxj∈{1,...,m+1}{rj|rj ≤ xi, i = 1, . . . , n}, U = arg minj∈{1,...,m+1}{rj|rj ≥
xi, i = 1, . . . , n}. Then we update the coefficients ai, bi only in [rL, rU], that is, we
compute and modify only ai, bi i = L, . . . , U . It is straightforward to obtain the
modified values of the breakpoints from the variables ai, bi i = L, . . . , U , so that
they can be directly used as input for the update procedure (Section 4.3).

The update algorithm described in Section 4.3 requires the new breakpoint
values to be larger than the ones used during the preprocessing phase. How-
ever, if we use the long-term traffic forecast information (i.e. speed profiles)
to derive cost functions, then we are not guaranteed that the breakpoints can
only increase with respect to their initial values. To obviate this problem, dur-
ing the preprocessing phase we use specially computed time-dependent cost
functions which represent, over an arc, the minimum travel time observed on
that arc over one year of aggregated historical data. These functions provide
a reasonable guarantee that the breakpoint values always stay above their ini-
tial values. In case the piecewise linear function fitting procedure computes a
breakpoint value which is smaller than the initial value, then we use the latter.
For those arcs where historical data is not available, we use a constant time-
dependent cost function equal to the lower bounding function λ for all time
instants. The drawback of this approach is that the lists of shortcuts which may
be affected by the change on an arc (and thus need be recomputed) may grow
(see Section 4.3), but since the update procedure is run in parallel on several
CPUs the gain by parallelism can offset the loss due to the increased number of
recomputed shortcuts, and keep the CPU time required for an update down to
reasonable values (two seconds at most).

Part II

Mathematical Formulation Based
Methods

109

The algorithms presented in Part I are able to find solutions to the TDSPP
in a few milliseconds, even on continental sized road networks; however, the
price for this rapidity are the restrictive assumptions on the form of the time-
dependent arc cost functions, which must be piecewise linear and satisfy the
FIFO property (Section 1.2.1). Moreover, we do not take into account additional
constraints, such as prohibited turnings. From an industrial point of view, these
problems are largely offset by the speed of the calculations, which makes real-
time applications possible. However, we are also interested in the study of
networks with no restrictions on the cost functions, possibly with some addi-
tional constraints that should be satisfied by the solution. This study has sev-
eral purposes; mainly, it is useful to analyse the practical relevance of solutions
obtained by lifting all the restrictions applied in Part I. We presented a mathe-
matical programming formulation of the TDSPP in Section 1.3.2. In this chap-
ter, we will study general-purpose algorithms towards the solution of Mixed-
Integer Linear Programs and Mixed-Integer Nonlinear Programs. As these are
very large classes of mathematical programs, the methods studied through the
next chapters can be applied to an enormous number of practically relevant
problems. Their importance is not limited to the specific problem of shortest
paths; hence, we test our ideas on large sets of benchmark instances taken from
the literature, in order to compare with other works and assess the usefulness
of our approaches.

The rest of this part is organized as follows. In Chapter 7, we propose a mod-
ification in the branching rules of Branch-and-Bound algorithms for Mixed-
Integer Linear Programs. We present two methods to generate good disjunc-
tions of the feasible set, and report computational experiments to show that
branching on these disjunctions yields better results with respect to traditional
branching rules. In Chapter 8 we present an effective heuristic for Mixed-Integer
Nonlinear Programs. Our heuristic is based on Variable Neighbourhood Search,
and puts together several ingredients to create a very fast method that shows
good performance on a large collection of test problems. Finally, in Chapter 9
we report computational results on solving time-dependent shortest paths in-
stances with the methods that we discuss in this chapter.

110

Chapter 7

Improved Strategies for Branching
on General Disjunctions

Mixed Integer Linear Programs (MILPs) arise in several real-life applications; in
Section 1.3.2 we presented a mathematical program which models the time-
dependent shortest path problem on generic (i.e. non-FIFO) networks with
linear or piecewise linear arc cost functions. Typically, MILPs are solved via a
Branch-and-Bound (88) or Branch-and-Cut algorithm such as that implemented
by Cplex (83) or CBC (33), where the node bound is obtained by solving a Lin-
ear Programming (LP) relaxation of the MILP. Usually, branching occurs on the
domain of integer variables in the form xj ≤ k on one branch and xj ≥ k + 1
on the other branch, where k is an integer. However, this need not be so: any
disjunction not excluding points that are feasible in the original MILP can be
used for branching. We use the term branching on general disjunctions to mean
a branching strategy where the disjunctions are two disjoint halfspaces of the
form πx ≤ β0, πx ≥ β1 with β0 < β1. Branching on a general disjunction is con-
sidered impractical because of the large computational effort needed to find a
suitable branching direction π. A recent paper (84) proposes branching on gen-
eral disjunctions arising from Gomory Mixed-Integer Cuts (GMICs). GMICs can
be viewed as intersection cuts (10). At each node there is a choice of possible
GMICs from which to derive the branching disjunction. The branching strategy
suggested in (84) is based on the distance cut off by the corresponding intersec-
tion cut as a quality measure for the choice of disjunction. The improvement
in objective function value that occurs after branching is at least as large as the
improvement obtained after adding the corresponding intersection cut. In this
chapter, we propose a modification in the class of disjunctions used for branch-
ing; instead of simply computing the disjunctions that define GMICs at the op-
timal basis, we try to generate a new set of disjunctions in order to increase the
distance cut off by the corresponding intersection cut. By combining branch-
ing on simple disjunctions and on general disjunctions we obtain an improve-
ment over traditional branching rules on the majority of test instances. More-

112 Improved Strategies for Branching on General Disjunctions

over, we propose a mathematical program that models the problem of finding
a split disjunction that closes a large integrality gap as a MILP. At each node
of the enumeration tree we solve this problem through heuristics and a local
branching strategy in order to obtain several feasible solutions that represent
split disjunctions. We apply strong branching to select one disjunction from
this pool. Computational experiments show that on several instances of our
test set we are able to reduce the number of required nodes by a large factor, al-
though in terms of computational times, this approach is not competitive with
the quadratic approach.

The rest of this section is organized as follows. In Section 7.1 we introduce
our notation and the preliminaries which are necessary for the following. In
Section 7.2 we propose a heuristic procedure, based on a quadratic formula-
tion, that tries to generate good disjunctions by computing combinations of
the rows of the simplex tableau. In Section 7.3 we give a mathematical formu-
lation that models the problem of finding a split disjunction closing a large gap,
and we discuss a local search algorithm that starts with a set of violated dis-
junctions and attempts to enlarge this set. In Section 7.4 we provide extensive
computational experiments to test the heuristic approach, then we propose a
combination of branching on general disjunctions and on single variables, and
test the effectiveness in practice of this approach. In Section 7.5 we discuss the
implementation of the mathematical formulation that models the problem of
finding a split disjunction closing a large gap, and give computational results.

7.1 Preliminaries and notation

In this chapter we consider the Mixed Integer Linear Program in standard form:

min c⊤x
Ax = b

x ≥ 0
∀j ∈ NI xj ∈ Z,

P (7.1)

where c ∈ R
n, b ∈ R

m, A ∈ R
m×n and NI ⊂ N = {1, . . . , n}. The LP relaxation

of (7.1) is the linear program obtained by dropping the integrality constraints,
and is denoted by P̄ . The Branch-and-Bound algorithm makes an implicit use
of the concept of disjunctions (11): whenever the solution of the current relax-
ation is fractional, we divide the current problem P into two subproblems P1

and P2 such that the union of the feasible regions of P1 and P2 contains all fea-
sible solutions to P . Usually, this is done by choosing a fractional component
x̄i (for some i ∈ NI) of the optimal solution x̄ to the relaxation P̄ , and adding
the constraints xi ≤ ⌊x̄i⌋ and xi ≥ ⌈x̄i⌉ to P1 and P2 respectively.

Within this chapter, we take the more general approach whereby branching
can occur with respect to a direction π ∈ R

n by adding the constraints πx ≤ β0,

7.2 A quadratic optimization approach 113

πx ≥ β1 with β0 < β1 to P1 and P2 respectively, as long as no integer feasible
point is cut off. Owen and Mehrotra (118) generated branching directions π
where πj ∈ {−1, 0, +1} for all j ∈ NI and showed that using such branching
directions can decrease the size of the enumeration tree significantly. Aardal et
al. (1) used basis reduction to find good branching directions for certain classes
of difficult integer programs. Karamanov and Cornuéjols (84) proposed using
disjunctions arising from GMICs generated directly from the rows of the opti-
mal tableau. Given B ⊂ N an optimal basis of P̄ , and J = N rB, i.e. J is the set
of nonbasic variables, the corresponding simplex tableau is given by

xi = x̄i −
∑

j∈J

āijxj ∀i ∈ B. (7.2)

For j ∈ J , let rj ∈ R
n be defined as

rj
i =

−āij if i ∈ B
1 if i = j
0 otherwise.

(7.3)

These vectors are the extreme rays of the cone {x ∈ R
n | Ax = b ∧ ∀j ∈ J (xj ≥

0)}with apex x̄. Let D(π, π0) define the split disjunction π⊤x ≤ π0∨π⊤x ≥ π0 +1,
where π ∈ Z

n, π0 ∈ Z, πj = 0 for i /∈ NI , π0 =
⌊

π⊤x̄
⌋

. By integrality of (π, π0), any
feasible solution of P satisfies every split disjunction. Let ǫ(π, π0) = π⊤x̄ − π0

be the violation by x̄ of the first term of D(π, π0). Assume that the disjunction
D(π, π0) is violated by x̄, i.e. 0 < ǫ(π, π0) < 1. Balas (10) defines the intersection
cut associated with a basis B and a split disjunction D(π, π0) as

∑

j∈J

xj

αj(π, π0)
≥ 1, (7.4)

where for all j ∈ J we define

αj(π, π0) =

− ǫ(π,π0)
πT rj if πT rj < 0

1−ǫ(π,π0)
πT rj if πT rj > 0

+∞ otherwise.

(7.5)

The Euclidean distance between x̄ and the cut defined above is (see (12)):

δ(B, π, π0) =

√

1
∑

j∈J
1

αj(π,π0)2

. (7.6)

7.2 A quadratic optimization approach

Assume that the optimal solution x̄ to the LP relaxation P̄ is not feasible to P .
We would like to generate a good branching disjunction D(π, π0). In (84) it is

114 Improved Strategies for Branching on General Disjunctions

shown that the gap closed by branching on a disjunction D(π, π0) is at least as
large as the improvement in the objective function obtained by the correspond-
ing intersection cut. Thus, it makes sense to attempt to increase the value of
the distance δ(B, π, π0) as much as possible. It is easy to see from (7.6) that this
means increasing the value of αj(π, π0) for all j ∈ J , which in turn corresponds
to decreasing the coefficient of the intersection cut (7.4). (84) considered inter-
section cuts (7.4) obtained directly from the optimal tableau (7.2) as GMICs for
i ∈ B ∩NI such that x̄i 6∈ Z.

In this section we consider split disjunctions arising from GMICs generated
from linear combinations of the rows of the simplex tableau (7.2):

∑

i∈B

λixi = x̃−
∑

j∈J

ãjxj, (7.7)

where
x̃ =

∑

i∈B λix̄i

ãj =
∑

i∈B λiāij for j ∈ J.
(7.8)

Note that in order to generate a GMIC we need x̃ 6∈ Z and therefore λ 6= 0. For
i ∈ B, it will be convenient to define ãi = λi. The GMIC associated with (7.7) is
the inequality

∑

j∈N

xj

αj

≥ 1 (7.9)

where

αj =

max
(

x̃−⌊x̃⌋
ãj−⌊ãj⌋

, ⌈x̃⌉−x̃

⌈ãj⌉−ãj

)

if j ∈ NI

max
(

x̃−⌊x̃⌋
ãj

, ⌈x̃⌉−x̃

−ãj

)

if j ∈ N \NI .
(7.10)

By convention, αj is equal to +∞when one of the denominators is zero in (7.10).
Note that the GMIC (7.9) may not cut off x̄ when λi is not integer for i ∈ B ∩NI

or λi 6= 0 for i ∈ B \ NI . On the other hand, when λ is integral for i ∈ B ∩ NI

and λi = 0 for i ∈ B \ NI the GMIC (7.9) is of the form (7.4) since all the basic
variables have a zero coefficient 1/αj . In this case, the distance cut off is given
by (7.6). For this reason, we restrict ourselves to nonzero integral multipliers λ.
In this case, the split disjunction D(π, π0) that defines the GMIC associated to
(7.7) can be computed as (see (10; 72)):

πj =

⌊ãj⌋ if j ∈ NI ∩ J and ãj − ⌊ãj⌋ ≤ x̃i − ⌊x̃⌋
⌈ãj⌉ if j ∈ NI ∩ J and ãj − ⌊ãj⌋ > x̃− ⌊x̃⌋
λj if j ∈ NI ∩B
0 otherwise,

π0 =
⌊

π⊤x̃
⌋

.

(7.11)

It is easy to check that if we plug (7.11) into αj(π, π0) as defined in (7.5) we get
exactly αj as defined in (7.10) for j ∈ J . Since 1/αj = 0 for j ∈ B, this shows that
the GMIC (7.9) is an intersection cut.

7.2 A quadratic optimization approach 115

In this section we study a method for decreasing 1/αj for j ∈ J . By (7.6),
this yields a disjunction with a larger value of δ(B, π, π0), which is thus likely
to close a larger gap. To achieve this goal, we choose an integral vector λ that
defines (7.7), which we have seen to have an influence on both the numerators
and the denominators of (7.10) through (7.8). It seems difficult to optimize αj

for j ∈ J ∩ NI because both terms of the fraction are nonlinear. Furthermore,
for j ∈ NI , 1/αj is always between 0 and 1 independent of the choice of λ. For
j ∈ J \ NI the coefficient 1/αj is not bounded, therefore we concentrate on
these coefficients. From (7.10) we see that the denominator of αj for j ∈ J \NI

is a linear function of λ through (7.8), whereas the numerator is a nonlinear
function of λ and is always between 0 and 1. For this reason we attempt to
minimize ãj for j ∈ J \ NI over integral vectors λ. More specifically, we would
like to minimize ‖d̃‖, where

d̃ = (ãj)j∈J\NI
. (7.12)

Let BI = B ∩ NI , JC = J \ NI ; apply a permutation to the simplex tableau
in order to obtain BI = {1, . . . , |BI |}, JC = {1, . . . , |JC |}, and define the matrix
D ∈ R

|BI |×|JC |, dij = āij . Minimizing ‖d̃‖ can be written as

min
λ∈Z

|BI |\{0}
‖

∑

i∈BI

λidi‖. (7.13)

This is a shortest vector problem in the additive group generated by the rows of
D. If these rows are linearly independent, the group defines a lattice, and we
have the classical shortest vector problem in a lattice, which is NP-hard under
randomized reductions (6).

Andersen, Cornuéjols and Li (8) proposed a heuristic for (7.13) based on a
reduction algorithm which cycles through the rows of D and, for each such row
dk, considers whether summing an integer multiple of some other row yields a
reduction of ‖dk‖. If this is the case, the matrix D is updated by replacing dk with
the shorter vector. Note, however, that this method only considers two rows at
a time.

Our idea is to use, for each row dk of D, a subset Rk ⊂ BI of the rows of the
simplex tableau with dk ∈ Rk, in order to reduce ‖dk‖ as much as possible with
a linear combination with integer coefficients of dk and di for all i ∈ Rk \ {k}.
This is done by defining, for each row dk that we want to reduce, the convex
minimization problem:

min
λk∈R

|Rk|,λk
k
=1
‖

∑

i∈Rk

λk
i di‖, (7.14)

and then rounding the coefficients λk
i to the nearest integer

⌊

λk
i

⌉

. There are
several reasons for imposing λk

k = 1. One reason is that not only do we want
to solve the shortest vector problem, but it is also important to find a vector
λk with small norm. We will come back to this issue in Section 7.2.1. Another

116 Improved Strategies for Branching on General Disjunctions

reason is that we must avoid the zero vector as a solution. Yet another is to get
different optimization problems for k = 1, . . . , |BI |, thus increasing the chance
of obtaining different branching directions. Vanishing the partial derivatives of
‖

∑

i∈Rk
λk

i di‖ with respect to λk
i for all i, we obtain an |Rk| × |Rk| linear system

that yields the optimal (continuous) solution. We formalize our problem: for
k = 1, . . . , |BI |we solve the linear system

Akλk = bk,

where Ak ∈ R
|Rk|×|Rk| and bk ∈ R

|Rk| are defined as follows:

Ak
ij =

1 if i = j = k
0 if i = k or j = k but not both
∑|JC |

h=1 dihdjh otherwise,

bk
i =

{

1 if i = k

−
∑|JC |

h=1 dihdkh otherwise.

(7.15)

The form of the linear system guarantees λk
k = 1 in the solution.

Once these linear systems are solved and we have the optimal coefficients
λk ∈ R

|Rk| for all k ∈ {1, . . . , |BI |}, we round them to the nearest integer. Then,
we consider the norm of

∑

i∈Rk

⌊

λk
i

⌉

di. If ‖
∑

i∈Rk

⌊

λk
i

⌉

di‖ < ‖dk‖, then we have
an improvement with respect to the original row of the simplex tableau; in this
case, we use

∑

i∈Rk

λk
i xi =

∑

i∈Rk

λk
i x̄i −

∑

j∈J

∑

i ∈ Rkλ
k
i āijxj, (7.16)

instead of row āk in order to compute a GMIC, and consider the possibly im-
proved disjunction for branching.

Example 7.2.1. Suppose we have the following matrix D:

D =

3 1 8 2 3 2 3
1 −2 0 12 −2 −4 −5
0 −1 4 1 4 5 −1
1 1 1 1 0 0 2

and we apply the reduction algorithm to the first row d1. Following (7.15), we
obtain the linear system:

1 0 0 0
0 194 −9 1
0 −9 60 2
0 1 2 8

λ1
1

λ1
2

λ1
3

λ1
4

1
4
−52
−20

,

7.2 A quadratic optimization approach 117

whose solution is λ1 = (λ1
1, λ

1
2, λ

1
3, λ

1
4)
⊤

= (1,−0.0042,−0.7906,−2.3018)⊤. Round-

ing each component to the nearest integer and computing ⌊λ1⌉
⊤
D we obtain the

row:
[

1 0 2 −1 −1 −3 0
]

,

whose L2 norm is 4, as opposed to the initial norm of d1, which is 10. Thus, we
compute the corresponding row of the simplex tableau with the same coefficients
λ1, and consider the possibly improved disjunction for branching.

On the other hand, if we apply the reduction algorithm to the second row of
D, we obtain the linear system:

100 0 52 20
0 1 0 1
52 0 60 2
20 0 2 8

λ2
1

λ2
2

λ2
3

λ2
4

4
1
9
−1

,

whose solution is λ2 = (λ2
1, λ

2
2, λ

2
3, λ

2
4)
⊤

= (−0.0627, 1, 0.2050,−0.0196)⊤. Round-

ing each component to the nearest integer and computing ⌊λ2⌉
⊤
D gives the orig-

inal row d2, hence the reduction algorithm did not yield an improvement.

7.2.1 The importance of the norm of λ

Although solving the shortest vector problem (7.13) is important for finding a
deep cut, it is not the only consideration when trying to find a good branching
direction. In the space B ∩ NI , the distance between the two hyperplanes that
define a split disjunction D(π, π0) is related to the norm of λ, and is in fact equal
to 1/‖λ‖ as can be seen from (7.11). Therefore, in this space disjunctions that
cut off a larger volume will have a small ‖λ‖. We illustrate this with an example.

Example 7.2.2. Consider the following tableau, where x1, x2 are binary variables
and y1, y2 are continuous:

{

x1 = 1/3 + 98y1 + y2

x2 = 1/3− 99y1 − 1.01y2
(7.17)

The solution to the shortest vector problem (7.13) is given by the integer multi-
pliers λ1 = 99, λ2 = 98 which yield the shortest vector in the lattice (0, 0.02) and
the disjunction 99x1 + 98x2 ≤ 65 ∨ 99x1 + 98x2 ≥ 66. Our heuristic method
computes the continuous multipliers λ1 = 1, λ2 = 98/99 which are rounded to
λ1 = 1, λ2 = 1, that correspond to the disjunction x1 +x2 ≤ 0∨x1 +x2 ≥ 1. It easy
to verify that the distance between these two hyperplanes is roughly ten times
larger than in the first case. Therefore, in the unit square, the disjunction ob-
tained through our heuristic method dominates the one computed through the
exact solution of the shortest vector problem. Figure 7.1 gives a picture of this.

118 Improved Strategies for Branching on General Disjunctions

x1 + x2 ≤ 0

∨ x1 + x2 ≥ 1

99x1 +98x2 ≤ 65
∨ 99x1 +98x2 ≥ 66

Figure 7.1: Representation of the disjunctions discussed in Exam-
ple 7.2.2.

7.2.2 Choosing the set Rk

The choice of each set Rk ⊂ BI for all k has an effect on the performance of the
norm reduction algorithm. Although using Rk = BI is possible, in that case two
problems arise: first, the size of the linear systems may become unmanageable
in practice, and second, if we add up too many rows then the coefficients on
the variables with indices in J ∩ NI may deteriorate. In particular, we may get
more nonzero coefficients. Thus, we do the following. We fix a maximum cardi-
nality M|Rk|; if M|Rk| ≥ |BI |, we set Rk = BI . Otherwise, for each row k that we
want to reduce, we sort the remaining rows by ascending number of nonzero
coefficients on the variables with indices in {i ∈ J ∩NI |āki = 0}, and select the
first M|Rk| indices as those in Rk. The reason for this choice is that, although the
value of the coefficients on the variables with indices in J ∩NI is bounded, we
would like those that are zero in row āk to be left unmodified when we compute
∑

j∈Rk

⌊

λk
j

⌉

āj. As zero coefficients on those variables yield a stronger cut, we
argue that this will yield a stronger split disjunction as well. During the sorting
operation, to keep computational times to a minimum we use the row number
as a tie breaker.

7.2 A quadratic optimization approach 119

7.2.3 The depth of the cut is not always a good measure

As stated earlier, the improvement in the objective function given by a GMIC is a
lower bound on the improvement obtained by branching on the corresponding
disjunction. We give an example showing that this lower bound may not be
tight and in fact the difference between these two values can be arbitrarily large.

Example 7.2.3. Consider the integer program:

min −x1 − x2

x1 ≤ 1.5
x2 ≤ 1

x1/m− x2 ≥ 1.5/m− 1.25
mx1 − x2 ≤ 1.5m− 0.75

x1, x2 ∈ Z,

P (7.18)

where m > 1 is a given parameter close to 1. The solution to the LP relaxation is
(1.5, 1), with an objective value of −2.5. The intersection cut obtained from the
disjunction x1−x2 ≤ 0∨x1−x2 ≥ 1 is x1+x2 ≤ 2, which gives an objective value of
−2. Now suppose we branch on x1−x2 ≤ 0∨x1−x2 ≥ 1. We obtain two children
P1 and P2, which are both feasible. One can verify that optimal solution of P1 is
(1.5−1.25m

1−m
, 1.5−1.25m

1−m
) with objective value −21.5−1.25m

1−m
, and the optimal solution of

P2 is (1.5m−1.75
m−1

, 0.5m−0.75
m−1

) with objective value −2m−2.5
m−1

. Therefore, the gap closed
by branching is:

max{−2
1.5− 1.25m

1−m
,−

2m− 2.5

m− 1
} − 2.5,

which can be made arbitrarily large when m tends to 1 from above. At the same
time, the intersection cut associated with the same disjunction closes a gap of 0.5
regardless of m. We give a picture of the situation for m = 1.1 in Figure 7.2.

Example 7.2.3 suggests that we should not choose the branching direction
by relying on the distance cut off by the intersection cut only, even though the
quality of the underlying intersection cut gives an indication of the strength of
a disjunction and can guide us towards generating better disjunctions. There-
fore, in our computational experiments (see Section 7.4) we employed strong
branching to select a disjunction among those computed with the procedure
described so far.

120 Improved Strategies for Branching on General Disjunctions

cost function

x1/m− x2 ≥ 1.5/m−1.25

mx1− x2 ≤ 1.5m−0.75

x1 + x2 ≤ 2

x1 ≤ 1.5

x2 ≤ 1

Figure 7.2: Representation of Example 7.2.3 for m = 1.1.

7.3 A MILP formulation to generate split

disjunctions

For j ∈ J let the intersection points between the ray rj and a split disjunction
D(π, π0) be:

xj = x̄ + αj(π, π0)r
j (7.19)

LetP1,P2 be the problems at the children nodes defined by the split disjunction,
and x̄1 and x̄2 be the corresponding linear relaxation optima (if Pk is infeasible
then x̄k =∞ for k ∈ {1, 2}).

Lemma 7.3.1. min
j∈J

c⊤xj ≤ min(c⊤x̄1, c⊤x̄2).

Proof. Let F1 = P ∩ {x ∈ R
n : π⊤x ≤ π0} and F2 = P ∩ {x ∈ R

n : π⊤x ≥ π0 + 1}
be the feasible regions of, respectively, P1 and P2; we have x̄1 = arg min{c⊤x :
c ∈ F1}, x̄2 = arg min{c⊤x : c ∈ F2}. Let F r

1 = P (B) ∩ {x ∈ R
n : π⊤x ≤ π0}

7.3 A MILP formulation to generate split disjunctions 121

and F r
2 = P (B) ∩ {x ∈ R

n : π⊤x ≥ π0 + 1}. By the definition of the points
xj ∀j ∈ J , we have that minj∈J{c

⊤x} = min{c⊤x : x ∈ F r
1 ∪ F r

2 }. Since P ⊆ P (B),
min{c⊤x : x ∈ F r

1 ∪ F r
2 } ≤ min{c⊤x : x ∈ F1 ∪ F2} = min(c⊤x̄1, c⊤x̄2), which

completes the proof.

Therefore, in order to generate children nodes that have tight LP relaxations,
it makes sense to try to maximize the lower bound given in Lemma 7.3.1. In
other words, we want to maximize the gap closed optimizing over the set of
split disjunctions. This problem can be formalized as follows.

max
(π, π0) ∈ Z

n+1

π0 =
¨

π⊤x̄
˝

πi = 0∀i ∈ N \NI

min
j∈J

c⊤(x̄ + αj(π, π0)r
j). (7.20)

This is a nonconvex Mixed Integer Nonlinear Problem (MINLP) where the com-
plicating constraints are π0 =

⌊

π⊤x̄
⌋

as well as the definition of αj (for all j ∈ J).
We use the same simplification given in (8) and assume that αj’s numerator (see
Eq. (7.5)) is fixed; for simplicity, we assume its value to be 1. Since it is the only
term where π0 appears, we can discard π0 from the problem altogether. Further-
more, the constant c⊤x̄ can also be discarded:

max
π∈Zn

πi=0∀i∈N\NI

min
j∈J

αj(π, π0)c
⊤rj. (7.21)

Since π⊤rj = 0 means that there is no intersection between the split disjunction
and the ray rj , we can safely assume that π⊤rj 6= 0. For all j ∈ J , we introduce
variables αj and constraints

αj =
1

|π⊤rj|
. (7.22)

The “max min” objective function is easily reformulated to:

maxπ y
∀j ∈ J y ≤ αjc

⊤rj

∀j ∈ J αj = 1
|π⊤rj |

∀i ∈ N \NI πi = 0
π ∈ Z

n.

(7.23)

By (7.22), αj > 0 for all j ∈ J , so (7.23) can be rewritten as:

maxπ y
∀j ∈ J y

αj
≤ c⊤rj

∀j ∈ J |π⊤rj| = 1
αj

∀i ∈ N \NI πi = 0
π ∈ Z

n.

122 Improved Strategies for Branching on General Disjunctions

Remark 7.3.2. Shifting |π⊤rj| from the denominator to a numerator implicitly
removes the constraint π⊤rj 6= 0.

Next, we introduce variables wj to replace the expression 1
αj

for all j ∈ J ,

obtaining:

maxπ y
∀j ∈ J wjy ≤ c⊤rj

∀j ∈ J |π⊤rj| = wj

∀i ∈ N \NI πi = 0
π ∈ Z

n.

We reformulate the absolute value as follows:

maxπ y
∀j ∈ J wjy ≤ c⊤rj

∀j ∈ J wj ≥ −π⊤rj

∀j ∈ J wj ≥ π⊤rj

∀i ∈ N \NI πi = 0
π ∈ Z

n.

(7.24)

This is a bilinear problem of a special kind, namely one of the sets of variables
involved in the products only contains the single decision variable y. It is easy
to see that wj > 0 for all j (it follows from the assumption π⊤rj 6= 0).

Lemma 7.3.3. For any y feasible in (7.24) we have y ≥ 0.

Proof. By the optimality conditions on x̄, c⊤rj ≥ 0 (i.e. the optimization direc-
tion−c makes an non-acute angle with each of the rays rj), hence any y feasible
in (7.24) is such that y ≥ 0.

The case y = 0 being uninteresting (there is no guarantee of any closed gap),
we restrict our attention to y > 0. This allows us to divide the constraints wjy ≤
c⊤rj through by y, obtaining:

∀j ∈ J wj ≤
1

y
c⊤rj. (7.25)

We now introduce a positive variable z = 1
y

to linearize (7.25):

∀j ∈ J wj ≤ zc⊤rj. (7.26)

This transforms the objective function in max 1
z

; since this is a monotonically
decreasing univariate function, it can be reformulated as min z. The problem

7.3 A MILP formulation to generate split disjunctions 123

now becomes a MILP:

min z
∀j ∈ J wj ≤ zc⊤rj

∀j ∈ J wj ≥ −π⊤rj

∀j ∈ J wj ≥ π⊤rj

∀i ∈ N \NI πi = 0
π ∈ Z

n

z ≥ 0.

(7.27)

By Remark 7.3.2, π = w = 0 and z = 0 is a feasible solution of (7.27) that is
however infeasible in the original problem (7.20). We also have to make sure
that the solution of (7.27) is a violated disjunction, i.e. π⊤x̄ is fractional. To this
end, we add another integer variable π0, and impose the constraints that π⊤x̄−
π0 ≥ η and π0 + 1 − π⊤x̄ ≥ η, where η is a small positive tolerance. As for each
vector (π, π0) the symmetric one (−π,−π0 − 1) represents the same disjunction,
we eliminate some symmetric solutions of the problem by imposing π0 ≥ 0. We
obtain:

min z
∀j ∈ J wj ≤ zc⊤rj

∀j ∈ J wj ≥ −π⊤rj

∀j ∈ J wj ≥ π⊤rj

∀i ∈ N \NI πi = 0
π⊤x̄− π0 ≥ η

π0 + 1− π⊤x̄ ≥ η
(π, π0) ∈ Z

n+1

π0 ≥ 0
z ≥ 0.

(7.28)

In order to reduce the size of the search space and speed up the solution pro-
cess, we add a constraint on the 1-norm of π, such as

∑

i∈N |πi| ≤ K. This con-
straint can be reformulated in linear form by introducing two positive variables

124 Improved Strategies for Branching on General Disjunctions

π+
i and π−i such that πi = π+

i − π−i ∀i ∈ N . Finally (7.28) becomes:

min z
∀j ∈ J wj ≤ zc⊤rj

∀j ∈ J wj ≥ −π⊤rj

∀j ∈ J wj ≥ π⊤rj

∀i ∈ N \NI πi = 0
∀i ∈ N π+

i − π−i = πi
∑

i∈N(π+
i + π−i) ≤ K

π⊤x̄− π0 ≥ η
π0 + 1− π⊤x̄ ≥ η

(π, π0) ∈ Z
n+1

(π+, π−) ∈ Z
2n
+

π0 ≥ 0
z ≥ 0.

(7.29)

7.3.1 Generating a pool of split disjunctions

The MILP (7.29) is a linear approximation of the original problem (7.20), thus
solving it to optimality does not guarantee to give the disjunction which maxi-
mizes the lower bound in Lemma 7.3.1. Besides, in Section 7.2.3 we provided
an example to show that we should not rely on the distance cut off only to evalu-
ate the strength of a disjunction. Therefore, we are interested in finding several
feasible solutions to (7.29), so as to have a large pool of split disjunctions which
can be evaluated via strong branching to obtain the closed gap:

min(c⊤x̄1, c⊤x̄2)− c⊤x̄.

Some feasible solutions are typically found during the exploration of the branch-
and-bound tree while solving (7.29). We repeatedly employ a local branching
approach (56) from different starting points in order to increase the number
of feasible solutions to (7.29) computed in a short time. We now endeavour to
explain in more detail this approach.

Local branching was proposed by Fischetti and Lodi (56) as an effective
heuristic for MILPs. The original idea only takes into account 0-1 variables,
but the authors give an extension to case of general integer variables. Local
branching consists in exploring the neighbourhood of a starting feasible solu-
tion by adding a local branching constraing, which limits the number of binary
variables allowed to change their value with respect to the starting solution to
at most a given parameter K. K is then the size of the neighbourhood. If the
value of K is small, the neighbourhood is rapidly explored by MILP solvers, of-
ten leading to a better solution then the original one, as shown by the compu-
tational experiments in (56).

7.3 A MILP formulation to generate split disjunctions 125

We are interested in using a local branching paradigm as a mean to rapidly
obtain more feasible solutions to (7.29), possibly also improving the objective
function value. Suppose we already have a branching direction π̄ ∈ Z

n as start-
ing solution. The space of vectors π ∈ Z

n such that π is obtained from π̄ by
adding or subtracting 1 to one component can be explored by adding to (7.29)
a constraint that forces at least one variable π+

i or π−i to increase by 1. We call
this space the +/-1 neighbourhood of π̄. Note that it is possible to obtain the
initial disjunction if both π+

i and π−i for a given i ∈ N increase by one, therefore
we exclude this case by allowing exactly one variable to increase. The resulting
problem is:

min z
∀j ∈ J wj ≤ zc⊤rj

∀j ∈ J wj ≥ −π⊤rj

∀j ∈ J wj ≥ π⊤rj

∀i ∈ N \NI πi = 0
∀i ∈ N π+

i − π−i = πi

∀i ∈ N π̄+
i ≤ π+

i ≤ π̄+
i + 1

∀i ∈ N π̄−i ≤ π−i ≤ π̄−i + 1
∑

i∈N(π+
i − π̄+

i + π−i − π̄−i) = 1
π⊤x̄− π0 ≥ η

π0 + 1− π⊤x̄ ≥ η
(π, π0) ∈ Z

n+1

(π+, π−) ∈ Z
2n
+

π0 ≥ 0
z ≥ 0.

(7.30)

We repeatedly solve problem (7.30), each time with a different starting vector
π̄. Let obj(π) be the value of the objective function of the problem (7.29) as-
sociated with a feasible solution π. We apply the following neighbourhood
search algorithm. The algorithm tries to generate new feasible solutions to
(7.29) and terminates only when there are at least M disjunctions in the dis-
junction pool or there are no more solution neighbourhoods to explore. As the
solution space of each problem (7.30) solved by Algorithm 4 is small, its applica-
tion requires a very small computational time if compared to the problem with-
out local branching constraints (7.29). At each iteration of the neighbourhood
search algorithm, we avoid finding solutions already included in the current
set of split disjunctions D′ by fixing some variables. In particular, when solving
(7.30) with a given starting point π̄ we check whether there is one (or more) vec-
tor π′ ∈ D′ in the +/ − 1 neighbourhood of π̄, and, if this is the case, we fix the
variable π+

i or π−i that transforms π̄ into π′, so that π′ cannot be obtained from
(7.30).

126 Improved Strategies for Branching on General Disjunctions

Algorithm 4 The neighbourhood search algorithm.

INPUT: A set D of split disjunctions;
maximum number of split disjunctions M .

OUTPUT: A set D′ of split disjunctions such that |D′| ≥ |D|.
Set D′ ← D, stop← false

while |D′| ≤M ∧ ¬stop do
if ∃π ∈ D′ : π never used as starting solution then

Set π̄ ← arg min{obj(π)|π ∈ D′ ∧ π never used as starting solution }
else

Set stop← true

if ¬stop then
Solve problem (7.30) with π̄ as starting solution
Add all new solutions to D′

7.4 Computational experiments: quadratic

approach

To assess the usefulness of our approach, we implemented within the Cplex
11.0 Branch-and-Bound framework the following branching methods:

• branching on single variables (Simple Disjunctions, SD),

• branching on split disjunctions after the reduction step that we proposed
in Section 7.2 (Improved General Disjunctions, IGD),

• branching on the split disjunctions that define the GMICs at the current
basis (General Disjunctions, GD), in order to compare with the work of
Karamanov and Cornuéjols (84),

• branching on split disjunctions after the application of the Reduce-and-
Split reduction algorithm (Reduce-and-Split, RS), in order to compare with
the work of Andersen, Cornuéjols and Li (8),

• a combination of the SD and IGD method (Combined General Disjunc-
tion, CGD), which is described in Section 7.4.2.

In each set of experiments we applied only the methods that were meaningful
for that particular experiment. We applied strong branching in order to choose
the best branching decision. When not otherwise stated, the best branching
decision is considered to be the one that generates the smallest number of fea-
sible children, or, in the case of a tie, the one that closes more gap, computed
as min{c⊤x̄1, c⊤x̄2} where x̄1, x̄2 are the optimal solutions of the LP relaxations
of the children nodes. If a branching decision generates only one feasible child
at the current node, one side of the disjunction (i.e. the feasible one) can be

7.4 Computational experiments: quadratic approach 127

considered as a cutting plane; when several disjunctions of this kind are discov-
ered, we add all these cutting planes. This leads to only one feasible child, but
with possibly a larger closed gap with respect to the case where we add only
one disjunction as branching constraint. Unless otherwise stated, our testbed
is the union of miplib2.0, miplib3 and miplib2003, after the removal of all in-
stances that can be solved to optimality in less than 10 nodes by all algorithms1,
and the instances where one node cannot be processed in less than 30 minutes
(including strong branching) by the SD algorithm2. In total, the set consists in
96 heterogeneous instances. The node selection strategy was set to best bound,
and the value of the optimal solution was given as a cutoff value for all those in-
stances where the optimum is known3. These choices were meant to reduce as
much as possible the size of the enumeration tree, and to minimize the effect
of heuristics and of other uncontrollable factors (such as the time to find the
first integer solution) in order to get a more stable indication of the algorithm
performance on branching.

The rest of this section is divided as follows. In Section 7.4.1 we consider
the different branching algorithms separately, and compare them in several re-
spects. In Section 7.4.2 we capitalize on the insight gained with the different
experiments of the previous section, and we combine the methods into a sin-
gle branching algorithm, which we test in a Branch-and-Cut framework. All
averages reported in the following are geometric averages; to compute the geo-
metric average of a set of values not necessarily greater than zero, we summed
1 to all values before computing the mean, and subtracted 1 from the result.

7.4.1 Comparison of the different methods

The first set of experiments involves branching at root node in order to evalu-
ate the amount of integrality gap closed; we compute the relative closed inte-

grality gap as closed gap
initial gap

for those instances where the optimal solution is known,

while for other instances we simply compare the absolute closed gap. In this
set of experiments we evaluated all possible branching decisions via strong
branching: that is, for SD we branched on all fractional integer variables, for
GD we branched on the split disjunctions computed from the rows of the sim-
plex tableau where the associated basic variable is a fractional integer variable,
and for IGD we branched on all the split disjunctions obtained after the reduc-
tion step described in Section 7.2 applied to all rows of the simplex tableau
where the associated basic variable is a fractional integer variable. For IGD, the
maximum number of rows considered in each reduction step was set to 50 (i.e.

1The instances are: air01, air02, air03, air06, misc04, stein09.
2The instances are: atlanta-ip, ds, momentum1, momentum2, momentum3, msc98-ip,

mzzv11, mzzv42z, net12, rd-rplusc-21, stp3d.
3See the miplib2003 web site: http://miplib.zib.de/miplib2003.php.

http://miplib.zib.de/miplib2003.php

128 Improved Strategies for Branching on General Disjunctions

M|Rk| = 50∀k). The experiments were made in a bare Branch-and-Bound set-
ting; that is, presolving, cutting planes and heuristics were disabled. In these
experiments, we chose the branching decision that closed the largest gap, re-
gardless of the number of feasible children. In Table 7.1 we give a summary of
the results for this experiment. We report the average relative integrality gap

Average closed gap
(on instances with known optimum)

Simple disjunctions (SD): 4.27%
General disjunctions (GD): 6.71%
Improved general disjunctions (IGD): 6.56%

Number of instances with largest closed gap

Simple disjunctions (SD): 58
General disjunctions (GD): 64
Improved general disjunctions (IGD): 70

Number of instances with one child

Simple disjunctions (SD): 10
General disjunctions (GD): 29
Improved general disjunctions (IGD): 27

Table 7.1: Results after branching at root node

closed by each method, the number of instances where each method closes
at least the same absolute gap as the other two methods, and the number of
instances where the disjunction that closes the largest gap generates only one
feasible child. For the first criterion we only considered instances where the
optimal solution is known, so that we could compute the relative amount of in-
tegrality gap close; for the remaining criteria, we also considered the instances
with unknown optimum. We immediately observe that branching on general
disjunctions instead of single variables yields a significantly larger amount of
closed integrality gap. In our experiments, the GD method closes more gap on
average than the other two methods, and both GD and IGD clearly outperform
SD under this criterion. Not only GD and IGD close more gap, but they also
more frequently generate only one feasible child node; the number of children
was not taken into account when choosing the branching decision in this set of
experiments, but it is interesting to note that with GD and IGD we often have
disjunctions that close a large amount of gap and also do not increase the size
of the enumeration tree. Although the GD method closes slightly more gap on
average than IGD on the instances with known optimum, if we compare the
number of instances where each method closes at least the same amount of

7.4 Computational experiments: quadratic approach 129

gap as the other two methods then IGD ranks first with 70 instances over 96 in
total.

For many reasons, applying strong branching on all possible branching de-
cisions is impractical, as it requires a very large computational effort which is
not counterbalanced by the reduction of the size of the enumeration tree. In
the remaining experiments we evaluated the performance of the branching al-
gorithms in a framework where strong branching is applied only to the most
promising branching decisions. The number of branching decisions evaluated
with strong branching was set to 10. In the case of SD, we picked the 10 integer
variables with the largest fractionary part (i.e. closer to 0.5). For GD and IGD,
we picked the 10 split disjunctions associated with the 10 GMICs that have the
largest cut off distance (equation (7.6), see (84)), where for IGD the distance was
computed after the reduction step.

In the next two experiments, we solved up to 1000 nodes in the enumera-
tion tree. We reverted back to the original branching decision selection method
that favours those disjunctions which generate a smaller number of feasible
children. Having a smaller number of children is a considerable advantage as
we are able to progress further in depth of the enumeration tree, thus possi-
bly leading to a larger closed gap. The evaluation criterion was the percentage
of the integrality gap closed after 1000 nodes, or, if the instance was solved in
less than 1000 nodes, the number of nodes required to solve to optimality. For
this set of experiments, 7 instances4 were excluded from the testbed, as solv-
ing 1000 nodes required more than 12 hours. To choose the number of rows
M|Rk| that defines the size of the linear system at each iteration of the reduction
step for the IGD method, we compared three different values: 10, 20 and 50;
we included in the comparison the Reduce-and-Split (RS) coefficient improve-
ment method introduced by Andersen, Cornuéjols and Li (8), in order to test
whether their algorithm to generate good cutting planes was also suitable for
branching. For fairness, we used for RS the same procedure as for the IGD meth-
ods: we picked the 10 split disjunctions associated with the 10 GMICs that have
the largest cut off distance after the reduction step, and applied strong branch-
ing. We followed the implementation of the RS reduction algorithm given in
the CGL library (34). A summary of the results is given in Table 7.2. It can be
seen that IGD using 20 or 50 rows for the reduction step yields very similar re-
sults in terms of average closed gap on instances not solved by any method,
and both choices close more gap than IGD with M|Rk| = 10 or RS on the un-
solved instances. The average number of nodes is smaller for M|Rk| = 50. In
particular IGD outperforms RS for branching. To investigate the reason for this,
we recorded the average norm of the disjunction chosen for branching at each
node of the enumeration tree; recall (Section 7.2.1) that the norm depends on
the coefficients λ generated by the disjunction improvement algorithm. The

4The instances are: dano3mip, fast0507, manna81, mitre, protfold, sp97ar, t1717.

130 Improved Strategies for Branching on General Disjunctions

Number of solved instances

RS: 36
IGD with M|Rk| = 10 (IGD10): 43
IGD with M|Rk| = 20 (IGD20): 42
IGD with M|Rk| = 50 (IGD50): 42

Average number of nodes
on instances solved by all methods

RS: 55.7
IGD with M|Rk| = 10 (IGD10): 38.4
IGD with M|Rk| = 20 (IGD20): 40.4
IGD with M|Rk| = 50 (IGD50): 36.5

Average gap closed
on instances not solved by any method

RS: 10.04%
IGD with M|Rk| = 10 (IGD10): 13.60%
IGD with M|Rk| = 20 (IGD20): 14.51%
IGD with M|Rk| = 50 (IGD50): 14.32%

Number of instances with largest closed gap

RS: 57
IGD with M|Rk| = 10 (IGD10): 62
IGD with M|Rk| = 20 (IGD20): 61
IGD with M|Rk| = 50 (IGD50): 64

Table 7.2: Results after 1000 solved nodes

average norms (computed through a geometric mean over the whole set of in-
stances) are as follows:

• Reduce-and-Split: 8.55;

• IGD with M|Rk| = 10: 6.15;

• IGD with M|Rk| = 20: 6.09;

• IGD with M|Rk| = 50: 6.24.

Therefore, our heuristic procedure generates smaller λ’s with respect to RS, which
results in disjunctions that cut off a larger volume. This has a positive effect on
the size of the enumeration tree. We give another possible reason for the su-
periority of IGD with respect to RS for branching. One of the advantages of

7.4 Computational experiments: quadratic approach 131

RS for cut generation is that the reduction algorithm generates several split dis-
junctions, trying to increase the distance cut off by each one of the associated
cutting planes. As several cuts are generated at each round, this approach is
effective (8). However, at each node of a Branch-and-Bound tree only one dis-
junction is chosen for branching, so a method which tries to compute only one
strong disjunction is more fruitful than one that generates a set of several pos-
sibly weaker ones. This, combined with smaller coefficient λ’s at the end of the
reduction procedure, may explain why the algorithm described in Section 7.2
seems to be more effective than RS for branching. We decided to use IGD with
M|Rk| = 50 in all following experiments. We did not test larger values of the pa-
rameter, since solving the linear system would take too much time in practice.

A summary of the comparison between SD, GD and IGD with M|Rk| = 50
can be found in Table 7.3. The increase in the gap per node that can be closed

Number of solved instances

Simple disjunctions (SD): 35
General disjunctions (GD): 42
Improved general disjunctions (IGD): 42

Average number of nodes
on instances solved by all methods

Simple disjunctions (SD): 92.7
General disjunctions (GD): 52.9
Improved general disjunctions (IGD): 43.2

Average gap closed
on instances not solved by any method

Simple disjunctions (SD): 9.36%
General disjunctions (GD): 13.78%
Improved general disjunctions (IGD): 14.15%

Number of instances with largest closed gap

Simple disjunctions (SD): 55
General disjunctions (GD): 56
Improved general disjunctions (IGD): 63

Table 7.3: Results after 1000 solved nodes

by branching on general disjunctions with respect to branching on single vari-
ables is large. This is confirmed by the results in (84). Besides, the IGD method
seems to be on average superior in all respects to the other two methods, as it

132 Improved Strategies for Branching on General Disjunctions

closes more gap for the unsolved instances under 1000 nodes, and requires less
nodes for the solved instances. This is also evident if we compare the number of
instances where each method closes at least the same absolute gap as the other
two methods: IGD ranks first with 63 instances over the 89 instances in the test-
set. However, there are two instances where branching on simple disjunctions
is more profitable than branching on general disjunctions: the air04 and air05

instances are solved by the SD method in 225 and 139 nodes respectively, while
GD and IGD do not manage to solve them in 1000 nodes. All other instances
which are solved by SD are also solved by GD and IGD.

7.4.2 Combination of several methods

Results in Table 7.3 suggest that IGD is indeed capable of closing more gap per
node on a large number of instances; however, a more detailed analysis of the
results shows that there are a few instances where branching on general dis-
junctions is not profitable, and thus both GD and IGD perform poorly. This
may also happen, for example, in zero gap instances, where the enumeration
of nodes with SD is usually more effective. Thus, we decided to combine both
the SD and the IGD method into a single branching algorithm which tries to de-
cide, for each instance, if it is more effective to branch on simple disjunctions
or on general disjunctions. First we describe the ideas and the practical consid-
erations behind the algorithm, and then we will describe how we implemented
it.

The most evident drawback of branching on general disjunctions is that it is
slower than using simple disjunctions. It is slower in several respects: the first
reason is that the computations at each node take longer. This is because we
have to compute the distance cut off by the GMIC associated with each row of
the simplex tableau, and the reduction step that we propose involves the solu-
tion of an M|Rk|×M|Rk| linear system for each row which is improved, where we
chose M|Rk| = 50. All these computations are carried out several times, thus the
overhead per node with respect to branching on simple disjunctions is signifi-
cant. The second reason is that, by branching on general disjunction, we add
one (or more) rows to the formulation of children nodes, which may result in
a slowdown of the LP solution process. On the other hand, branching on sim-
ple disjunctions involves only a change in the bounds of some variables, thus
the size of the LP does not increase. This suggests that branching on general
disjunctions should be used only if it is truly profitable, which in turn requires
a measure of profit. We decided to use the amount of closed gap as a measure
of profit. Besides, since the computational overhead per node is significant
when considering general disjunctions for branching, we would like to consider
them only if it brings an improvement in the solution time. Thus, if on a given
instance general disjunctions are never used because simple disjunctions are
more profitable, we would like to disable their computation as soon as possible

7.4 Computational experiments: quadratic approach 133

Algorithm 5 CGD branching algorithm

Initialization: ActiveGDCounter ← 3, FailedActivation ← 0, NodeCounter ←
0
while branching do

if root node then
NumGD ← 20, NumSD ← 20

else
if ActiveGDCounter > 0 then

NumGD ← 7, NumSD ← 3
else

NumGD ← 0, NumSD ← 10
generate NumGD general disjunctions
generate NumSD simple disjunctions
for all branching decisions do

apply strong branching
choose a disjunction D(π, π0)
if ActiveGDCounter > 0 then

if D(π, π0) has support > 1 then
ActiveGDCounter ← 10
FailedActivation← 0

else
ActiveGDCounter ← ActiveGDCounter − 1
if ActiveGDCounter = 0 then

FailedActivation← FailedActivation + 1
else

NodeCounter ← NodeCounter + 1
if FailedActivation < 10 ∧NodeCounter = 100 then

ActiveGDCounter ← 1
NodeCounter ← 0

in the enumeration tree. As the polyhedron underlying a problem may signifi-
cantly change in different parts of the branching tree, it may be a good idea to
test branching on general disjunctions periodically even if it has been disabled,
in order to verify whether it has become profitable.

We implemented a branching algorithm based on the above considerations
in the following way: at each node, branching on general disjunctions can be
active or not. If it is active, we test 10 possible branching decisions with strong
branching: 7 general disjunctions, and 3 simple disjunctions. General disjunc-
tions are picked only if they generate a smaller amount of children nodes, or
(in case of a tie) if the amount of closed gap is at least 50% larger. As a conse-
quence, at all nodes where we do not manage to close any gap we always prefer
simple disjunctions if they generate the same number of children as general

134 Improved Strategies for Branching on General Disjunctions

disjunctions. At the beginning of the enumeration tree, branching on general
disjunctions is active for the first 3 nodes; moreover, we put an increased ef-
fort at root node, where we consider up to 20 simple disjunctions and 20 gen-
eral disjunctions. Whenever a general disjunction is chosen for branching, then
branching on general disjunctions is activated for the following 10 nodes. Oth-
erwise, when it is disactivated (because of simple disjunctions being preferred
to general disjunctions for a given number of consecutive nodes, i.e. 3 at the
beginning of the enumeration tree, 10 otherwise), it is reactivated again after
100 nodes, but only for one node, in order to test whether in that part of the
enumeration tree general disjunctions are worthwhile. If a general disjunction
is chosen, then branching on general disjunctions is reactivated for the follow-
ing 10 nodes. After 10 consecutive unfruitful activations, i.e. general disjunc-
tions are not chosen after being activated for 10 consecutive times, branching
on general disjunctions is permanently disabled. When performing the reduc-
tion step described in Section 7.2, in order to save time we do not consider all
rows for reduction, but only the most promising ones. We do this by looking
at the GMIC associated with each row where the basic integer variable is frac-
tional, and sorting them by the corresponding distance cut off (7.6). The 10
rows (20 at root node) with the largest distance are modified with the reduction
step of Section 7.2. Since only 7 have to be selected for strong branching, we
recompute the distances and pick the 7 largest ones. We give a description of
this algorithm in Algorithm 5.

To assess the practical usefulness of this approach, we compared this branch-
ing algorithm, which we will call Combined General Disjunctions (CGD), with
SD. In order to evaluate the same number of branching decisions via strong
branching with both methods at each node, we modified SD in order to con-
sider, at root node, the branching decisions corresponding to the 40 integer
variables with largest fractional part, and then reverting back to the usual 10 for
the following nodes. We let Cplex 11.0 apply cutting planes at root node with
the default parameters, and then branched for two hours. Again, preprocessing
and heuristics were disabled. In Table 7.4 we compare the number of solved
instances within the two hours limit, the average closed gap on instances not
solved by either method, the average number of nodes and average CPU time
on instances solved by both methods. The results clearly indicate that the CGD
is able to combine the potential of the IGD method to close more gap with the
rapidity of branching on simple disjunctions when general disjunctions are not
worth the additional required time. Not only CGD solves all instances solved
by SD, but it solves 3 more: 10teams in 273.46 seconds of CPU time, gesa2 o in
2616.2 seconds, and rout in 2540.74 seconds. On the instances which have not
been solved by either of the two methods, the average integrality gap closed by
CGD is 31% larger in relative terms than the one closed by SD. This result is even
more important if we consider that CGD is slower: in the 2 hours limit CGD
solved only half as many nodes as SD on average, thus the gap closed per node

7.4 Computational experiments: quadratic approach 135

Number of solved instances

Simple disjunctions (SD): 67
Combined general disjunctions (CGD): 70

Average number of nodes
on instances solved by both methods

Simple disjunctions (SD): 195.1
Combined general disjunctions (CGD): 98.0

Average number of nodes
on instances not solved by either method

Simple disjunctions (SD): 35796.0
Combined general disjunctions (CGD): 15075.7

Average gap closed
on instances not solved by either method

Simple disjunctions (SD): 5.35%
Combined general disjunctions (CGD): 7.03%

Average CPU time [sec]
on instances solved by both methods

Simple disjunctions (SD): 3.03
Combined general disjunctions (CGD): 3.35

Table 7.4: Results in a Branch-and-Cut framework with a two hours
time limit

is significantly larger for CGD. These average values only take into account the
instances with known optimum value.

We report a full table of results on the instance that have not been solved
in less than two hours by the SD method in Table 7.5. If we consider the 5
instances for which the optimal solution value is not known, then on the liu

instance both methods close the same absolute gap, on dano3mip CGD closes
more gap, and on the remaining 3 instances (sp97ar, t1717, timtab2) SD closes
more gap. However, on all 5 instances CGD solves a smaller amount of nodes

since it is slower, and the relative difference (i.e. absolute gap SD
absolute gap CGD

− 1) in closed

gap on the 3 instances where SD closes more gap is small: on timtab2, the dif-
ference is only 0.13%, but CGD requires 4 times fewer nodes; on sp97ar the
difference is 4.95% in favour of SD, but CGD requires 13 times fewer nodes. The
difference increases on the t1717 instance: SD closes in relative terms 12.99%

136 Improved Strategies for Branching on General Disjunctions

SD ALGORITHM CGD ALGORITHM GAP

CLOSED GAP CLOSED GAP CLOSED

INSTANCE ABS. REL. NODES ABS. REL. NODES BY CUTS

10teams∗ 0 0% 11775 2 28.5% 398 71.3%
a1c1s1 337.58 3.21% 5340 371.423 3.54% 2578 62.29%
aflow40b 36.854 22.7% 20398 25.8243 15.9% 5477 57.3%
arki001 88.0556 6.83% 3612 580.27 45% 4000 28.27%
dano3mip 0.322586 - 8 0.374207 - 6 0%
danoint 0.310476 10.2% 5547 0.286139 9.44% 4790 2%
fast0507 0.262111 14.1% 587 0.0561795 3.03% 96 0%
gesa2 o∗ 84644.7 27.9% 195797 147352 48.5% 13181 51.4%
glass4 3293.85 0% 84369 3104.73 0% 79050 0%
harp2 199205 43.9% 74255 215937 47.5% 12565 32.6%
liu 214 - 108162 214 - 100347 0%
markshare1 0 0% 11027872 0 0% 2540405 0%
markshare2 0 0% 8606987 0 0% 2431791 0%
mas74 859.296 65.2% 2405902 641.509 48.7% 800207 4.6%
mkc 2.92749 6.1% 14486 6.52824 13.6% 8663 5.7%
noswot 0 0% 3192040 0 0% 1598812 0%
nsrand-ipx 158.293 6.82% 3932 222.726 9.6% 1431 49.08%
opt1217 0 0% 409010 1.33599 33.2% 316821 17%
protfold 2.32009 21.2% 140 2.14092 19.5% 150 3.6%
roll3000 127.615 7.12% 3083 293.192 16.4% 1406 40.68%
rout∗ 55.1337 57.6% 189312 94.9211 99.2% 28137 0.8%
set1ch 977.236 4.34% 120033 1355.82 6.02% 41034 86.06%
seymour 1.44368 7.54% 1251 1.09335 5.71% 688 41.66%
sp97ar 1.489e+06 - 4231 1.419e+06 - 318 0%
swath 28.3223 21.3% 20831 15.7973 11.9% 4724 34.9%
t1717 785.581 - 76 695.249 - 31 0%
timtab1 108754 14.8% 130014 103832 14.1% 35760 62.2%
timtab2 531157 - 50595 530454 - 12461 0%
tr12-30 183.374 0.158% 17852 691.388 0.594% 6883 99.142%

Table 7.5: Results in a Branch-and-Cut framework on the instances
unsolved in two hours by the SD method. Instances with a ∗ have been

solved by the CGD method.

7.4 Computational experiments: quadratic approach 137

more gap than CGD, solving twice as many nodes in the two hours limit.
On a few instances, CGD performs strikingly better than SD. Examples are

the arki001 and opt1217 instances, which are difficult instances of miplib2003.
For arki001, branching with CGD closes 45% of the gap, whereas branching
with SD only closes 6.83%. Similarly, for opt1217 CGD closes 33.2%, versus
0% for SD. The arki001 instance was first solved to optimality only recently
by Balas and Saxena (13): they invest a large computational effort in order to
generate rank-1 split cuts that close 83.05% of the integrality gap, and then use
Cplex’s Branch-and-Bound algorithm to close the remaining gap (16.95%) in
643425 nodes. We report that, if we run CGD on arki001 without time limits,
28.27% of the integrality gap is closed by Cplex’s cutting planes with default pa-
rameters, while the remaining 71.73% is closed by our branching algorithm in
925738 nodes. Note that Balas and Saxena used the preprocessed problem as
input, while in this chapter we always work with the original instances (i.e. with-
out preprocessing). 10teams, gesa2 o, harp2, rout and tr12-30 are five other in-
stances where CGD greatly outperforms SD. Among examples that were solved
by both algorithms (see Table 7.6), bell3a required 15955 nodes using SD ver-
sus only 20 using CGD, bell5 required 773432 nodes using SD versus 24 using
CGD, and gesa2 required 38539 nodes using SD versus 140 using CGD. There
is also an improvement in computing time by several orders of magnitude on
these three instances.

On those instances which are solved by both methods, CGD requires on av-
erage only half the nodes needed by SD, and the average CPU time is very close
for both methods (with a slight advantage for SD). Full results are reported in
Table 7.6.

Summarizing, in our experiments the combination between SD and IGD,
which we have called CGD, seems clearly superior to the traditional branch-
ing strategy that is represented by branching on single variables. Moreover, as
Cplex’s callable library is not optimized for branching on general disjunctions,
the implementation of CGD could be made faster.

GAP CLOSED SD ALGORITHM CGD ALGORITHM

BY CUTS BY BRANCHING TIME TIME

INSTANCE ABS. REL. NODES [SEC] NODES [SEC]

aflow30a 65.9% 59.6358 34.1% 1813 77.886 1725 99.839
air04 17.9% 494.084 82.1% 181 164.972 203 683.874
air05 15.1% 421.787 84.9% 209 105.902 241 133.679
bell3a 70.8% 4638.26 29.2% 15955 11.822 20 0.047
bell3b 89.6% 39855.3 10.4% 1206 2.177 526 5.512
bell4 91.93% 44957.8 8.07% 9091 24.177 3636 24.242
bell5 85.6% 51456.8 14.4% 773432 553.703 24 0.128
blend2 23.2% 0.524858 76.8% 539 5.321 454 9.920
bm23 24.8% 10.0974 75.2% 119 0.272 78 0.364
cap6000 37.6% 113.47 62.4% 289 30.176 236 111.553
dcmulti 68.5% 1323.83 31.5% 41 1.050 56 2.853

138 Improved Strategies for Branching on General Disjunctions

GAP CLOSED SD ALGORITHM CGD ALGORITHM

BY CUTS BY BRANCHING TIME TIME

INSTANCE ABS. REL. NODES [SEC] NODES [SEC]

dsbmip 100% 0 0% 15 1.666 23 2.754
egout 35.7% 568.101 64.3% 1 0.009 1 0.011
fiber 91.83% 20400.8 8.17% 153 3.944 28 4.025
fixnet3 97.98% 227.43 2.02% 5 0.300 5 0.421
fixnet4 87.7% 573.738 12.3% 33 1.438 52 8.526
fixnet6 83.4% 461.791 16.6% 1087 20.417 1365 52.859
flugpl 11.8% 30286.3 88.2% 199 0.074 16 0.021
gen 100% 112313 0% 0 0.021 0 0.026
gesa2 74.9% 76271.3 25.1% 38539 1232.150 140 28.490
gesa3 69.3% 48425.7 30.7% 51 2.149 63 4.016
gesa3 o 70.9% 45960.5 29.1% 89 3.934 34 9.955
gt2 91.65% 643.634 8.35% 236 0.412 43 0.139
khb05250 99.9336% 7317.49 0.0664% 5 0.106 2 0.105
l152lav 30.1% 65.4949 69.9% 552 15.614 149 16.251
lp4l 76% 5.875 24% 3 0.059 3 0.160
lseu 68.1% 91.0289 31.9% 61 0.181 46 0.349
manna81 100% 0 0% 0 0.143 0 0.147
mas76 4.2% 1065.02 95.8% 309659 651.702 377398 2608.890
misc01 44.5% 281.057 55.5% 251 3.836 274 7.151
misc02 56.6% 295.312 43.4% 19 0.148 10 0.191
misc03 9.8% 1308.17 90.2% 255 3.73 496 11.875
misc05 45.2% 29.3913 54.8% 103 1.658 33 0.823
misc06 26.5% 6.83269 73.5% 17 1.110 17 2.365
misc07 5.8% 1313.75 94.2% 12139 462.649 25940 1536.48
mitre 100% 0 0% 15 4.394 15 10.759
mod008 21.9% 12.5493 78.1% 345 0.937 13 0.095
mod010 28% 11.5 72% 25 0.567 2 0.440
mod011 68.2% 2.40503e+06 31.8% 707 2633.340 250 3539.000
mod013 30.1% 17.4348 69.9% 115 0.317 107 0.422
modglob 73.7% 81583 26.3% 1879 48.692 2387 75.699
nw04 9.1% 501.358 90.9% 83 75.879 48 109.610
p0033 99.9159% 0.478261 0.0841% 3 0.005 3 0.007
p0040 100% 62027 0% 0 0.002 0 0.001
p0201 46% 400 54% 69 1.147 50 1.635
p0282 96.99% 2458.44 3.01% 23 0.218 12 0.261
p0291 48.5% 5223.75 51.5% 0 0.017 0 0.018
p0548 99.9274% 6.08471 0.0726% 9 0.076 6 0.157
p2756 98.49% 6.56956 1.51% 7 0.364 13 1.205
pipex 63.5% 5.30334 36.5% 19 0.041 12 0.050
pk1 0% 11 100% 243317 956.355 189740 1468.170
pp08aCUTS 87.1% 240.666 12.9% 711 12.363 658 18.583
pp08a 94.38% 258.537 5.62% 392 4.633 372 4.481
qiu 0% 798.766 100% 19399 2780.000 19399 2901.890
qnet1 71% 509.709 29% 53 3.156 74 26.939
qnet1 o 85.1% 585.272 14.9% 17 1.267 13 3.826
rentacar 51% 759381 49% 11 12.047 11 14.973
rgn 15.9% 28.0903 84.1% 2089 2.143 1703 3.826
sample2 46.5% 68.4556 53.5% 35 0.092 33 0.103
sentoy 24.9% 50.6089 75.1% 52 0.175 53 0.266

7.5 Computational experiments: MILP formulation 139

GAP CLOSED SD ALGORITHM CGD ALGORITHM

BY CUTS BY BRANCHING TIME TIME

INSTANCE ABS. REL. NODES [SEC] NODES [SEC]

set1al 99.9521% 2.2619 0.0479% 5 0.056 6 0.145
set1cl 34.7% 6484.25 65.3% 0 0.021 0 0.023
stein15 0% 2 100% 42 0.058 44 0.068
stein27 0% 5 100% 1628 3.785 1537 3.721
stein45 0% 8 100% 29676 218.862 28882 215.015
vpm1 89.1% 0.5 10.9% 17 0.092 17 0.107
vpm2 77% 0.888645 23% 1299 15.646 477 5.723

Table 7.6: Results in a Branch-and-Cut framework on the instances
solved by both the SD and the CGD method.

7.5 Computational experiments: MILP

formulation

We implemented a branching scheme based on the formulation described in
Section 7.3 with the neighbourhood search algorithm of Section 7.3.1 within
Cplex 11.0 (83). In this section we provide preliminary computational experi-
ments.

We modified Cplex’s branching algorithm so to execute, at each node of the
numeration tree, the following steps:

1. Set up the auxiliary problem (7.29) using the optimal basis of the LP relax-
ation at the current node

2. Solve the auxiliary problem (7.29) with Cplex’s branch-and-cut algorithm
for a limited number of nodes, emphasizing the use of heuristics, to ob-
tain an initial set of solutions

3. Apply Algorithm 4 to generate more solutions via local search

4. Apply strong branching to all candidates to select the best disjunction
with respect to a given criterion

We set K = 10 and η = 0.05 in (7.29). We recall that K is an upper bound
on the 1-norm of the disjunctions, and η is the minimum amount by which
each disjunction should be violated. At step 2), we limit the solution process
to 60 seconds or 1000 nodes, whichever comes first. The maximum number of
disjunctions generated by Algorithm 4 was set to M = 20. Let x1, x2 be the
optimal solutions to the LP relaxations of the children that would be gener-
ated by branching on a disjunction; we select the disjunction that maximizes
min(c⊤x̄1, c⊤x̄2) among all candidates.

140 Improved Strategies for Branching on General Disjunctions

In the formulation of the auxiliary problem (7.29), some changes can help
decreasing the computational burden. First, since ∀i ∈ N \ NI we must have
πi = 0, we can drop the variables πi for i ∈ N \NI . Next, the variables πi, i ∈ NI

can be dropped and replaced by π+
i − π−i . Finally, the variables wj∀j ∈ J can

be dropped, and the constraints ∀j ∈ J wj ≤ zc⊤rj,∀j ∈ J wj ≥ −π⊤rj,∀j ∈
J wj ≥ π⊤rj can be replaced with ∀j ∈ J zc⊤rj ≥ −π⊤rj,∀j ∈ J zc⊤rj ≥ π⊤rj .

In the following, we apply different branching methods to a set of 78 hetero-
geneous instances taken from miplib2.0, miplib3, miplib2003. Cutting planes
and heuristics are disabled; thus, we apply a pure branch-and-bound scheme
for 1000 nodes, and compare the amount of integrality gap closed after 1000
nodes or, in case the instance is solved before this limit, the number of nodes
in the enumeration tree. The split disjunctions are generated with three dif-
ferent methods: the one described above based on the formulation of Section
7.3, which we call the MILP method; the heuristic procedure with a quadratic
formulation described in Section 7.4.2, which we call the IGD method; the tra-
ditional branching scheme of selecting integer variables with fractional values
in the current solution, and considering the corresponding simple disjunction,
which we call the SD method.

Table 7.7 summarizes the results; details can be found in Table 7.8. All av-
erages are geometric. For the SD method, strong branching was applied to all
integer variables with fractional value. As confirmed by Section 7.4, the average
values clearly indicate that branching on general disjunctions is very effective
if compared to branching on simple disjunctions. The number of nodes for
the instances solved by all methods is significantly smaller for the IGD method,
which in general seems to perform better than SD and MILP. In particular, IGD
solves 3 more instances with respect to MILP; these are the bell instances,
where MILP does not perform as well as IGD. Moreover, IGD requires signifi-
cantly fewer nodes than SD and MILP on the instances which are solved by all
methods. On the other hand, MILP ranks first in terms of gap closed on the un-
solved instances, which suggests that MILP shows good results on the difficult
instances. MILP also ranks first if comparing the number of instances on which
each method closes an absolute gap which is at least as large as the gap closed
by the other two methods. Indeed, MILP closes more gap than IGD and SD
on the following instances with medium to hard difficulty: a1c1s1, arki001,

fixnet3, fixnet6, gesa2, gesa2 o, mkc, pp08aCUTS, pp08a, tr12-30. How-
ever, MILP requires significantly more time: on average, on the instances which
are unsolved in less than 1000 nodes by neither MILP nor IGD, MILP requires
4700 seconds of CPU time, whereas IGD requires only 45. We note that, al-
though the neighbourhood search phase should ideally iterate until M = 20
split disjunctions are generated, the arithmetic average number of disjunctions
generated each node is 16.36. This indicates that the neighbourhood search al-
gorithm often terminates because of lack of starting solutions.

7.5 Computational experiments: MILP formulation 141

Number of solved instances

MILP formulation: 35
IGD with M|Rk| = 50: 38
SD full strong branching: 30

Average number of nodes
on instances solved by all methods

MILP formulation: 86.19
IGD with M|Rk| = 50: 44.97
SD full strong branching: 105.07

Average gap closed
on instances not solved by any method

MILP formulation: 13.37%
IGD with M|Rk| = 50: 11.10%
SD full strong branching: 11.71%

Number of instances with largest closed gap

MILP formulation: 52
IGD with M|Rk| = 50: 50
SD full strong branching: 43

Table 7.7: Results after 1000 solved nodes

MILP FORMULATION (MILP) SIMPLE DISJUNCTIONS (SD) QUADRATIC FORMULATION (IGD)
GAP % GAP NODES TIME GAP % GAP NODES TIME GAP % GAP NODES TIME

a1c1s1 1177.15 11.2% 1000 8294.63 598.96 5.7% 1000 884.044 174.912 1.66% 1000 6806.43
aflow30a 59.8128 34.2% 1000 13381.3 75.0668 42.9% 1000 83.7643 76.8047 43.9% 1000 158.725
arki001 681.547 58.7% 1000 20938.6 521.32 46.3% 1000 4395.55 102.853 13.9% 1000 1718.05
bell3a 7330.31 90% 1000 609.854 5238.26 76.8% 1000 0.754885 8915.19 100% 33 0.063991
bell3b 45866.2 94.9% 1000 733.798 61748.2 99% 1000 4.47032 65378.7 100% 84 0.895863
bell4 28850.5 93.8% 1000 677.617 41535.9 96% 1000 7.54185 28297.7 93.7% 1000 11.9222
bell5 59979.6 100% 185 61.4357 50302.4 97.3% 1000 1.61875 59979.6 100% 33 0.229965
blend2 0.677565 100% 274 630.595 0.677565 100% 354 5.57815 0.677565 100% 210 13.7489
bm23 13.4291 100% 92 43.5834 13.4291 100% 85 0.076988 13.4291 100% 43 0.106984
cap6000 166.325 100% 305 45681.4 176.325 100% 434 48.8776 178.325 100% 356 171.701
danoint 0.111858 3.69% 1000 25424.8 0.117069 3.86% 1000 3025.65 0.100749 3.32% 1000 1854.24
dcmulti 2589.02 100% 599 550.045 2589.02 100% 643 3.65744 437.92 48.8% 1000 54.6597
dsbmip 0 100% 31 306.658 0 100% 23 53.8688 0 100% 26 34.1718
egout 211.412 100% 894 589.382 157.219 87% 1000 1.06584 174.833 91.3% 1000 1.78673
fiber 142909 57.7% 1000 23727.3 106741 43.2% 1000 46.8629 248717 100% 463 57.0363
fixnet3 3338.5 30.2% 1000 1922.01 2674.62 24.3% 1000 47.9247 2075.4 19% 1000 116.819
fixnet4 944.888 20.2% 1000 3258.89 956.65 20.4% 1000 60.4988 426.406 9.11% 1000 125.82
fixnet6 719.252 25.9% 1000 3840.7 346.772 12.5% 1000 66.9868 241.936 8.7% 1000 122.595
flugpl 33624.8 100% 137 28.6606 33624.8 100% 931 0.331949 33624.8 100% 21 0.019997
gen 84.7312 100% 26 27.8918 84.7312 100% 138 2.37364 84.7312 100% 11 0.742887
gesa2 260466 85.8% 1000 2562.12 164794 54.3% 1000 96.8013 52017.3 17.1% 1000 281.627
gesa2 o 217878 71.8% 1000 4494.92 164794 54.3% 1000 93.6328 48627.8 16% 1000 288.23
gesa3 157410 100% 572 1481.36 157410 100% 258 31.5362 157410 100% 591 122.873

142 Improved Strategies for Branching on General Disjunctions

MILP FORMULATION (MILP) SIMPLE DISJUNCTIONS (SD) QUADRATIC FORMULATION (IGD)
GAP % GAP NODES TIME GAP % GAP NODES TIME GAP % GAP NODES TIME

gesa3 o 157410 100% 432 2031.91 157410 100% 286 29.0646 157410 100% 958 181.184
glass4 7.987e-06 0% 1000 6069.47 1100 0% 1000 41.3407 7.987e-06 0% 1000 35.0307
gt2 7705.77 100% 193 425.666 7705.77 100% 99 0.164974 7705.77 100% 34 0.153976
harp2 180686 46% 1000 102603 203908 51.1% 1000 36.4025 123485 33.4% 1000 121.588
khb05250 1.102e+07 100% 921 1022.84 1.102e+07 100% 723 10.6674 1.102e+07 100% 611 17.7793
liu 214 - 1000 21114.4 214 - 1000 284.748 0 - 1000 723.5
lp4l 5.18831 100% 4 94.5356 5.18831 100% 4 0.098984 5.18831 100% 2 0.086986
lseu 285.318 100% 828 922.694 171.462 60.1% 1000 1.11083 285.318 100% 64 0.364945
manna81 1 0.751% 1000 85790.8 1.5 1.13% 1000 6193.58 0.5 0.376% 298 14436.2
markshare1 0 0% 1000 2070.21 0 0% 1000 0.670898 0 0% 1000 8.66268
markshare2 0 0% 1000 3715.36 0 0% 1000 0.894863 0 0% 1000 11.9542
mas74 172.912 13.1% 1000 6548.5 200.418 15.2% 1000 6.32704 221.672 16.8% 1000 13.9729
mas76 193.882 17.4% 1000 5344.13 180.767 16.3% 1000 4.42533 244.732 22% 1000 10.8833
misc01 506.5 100% 111 171.165 506.5 100% 137 0.85387 506.5 100% 83 1.3138
misc02 680 100% 16 7.2159 680 100% 15 0.045993 680 100% 11 0.096985
misc03 1450 100% 159 558.287 1450 100% 138 2.97655 1450 100% 188 7.15491
misc05 53.6 100% 22 18.6892 53.6 100% 72 0.942856 53.6 100% 44 1.50777
misc06 9.17135 100% 43 58.8371 9.17135 100% 20 0.492925 9.17135 100% 16 1.36079
misc07 215.714 15.5% 1000 16089.5 51.6667 3.7% 1000 203.662 119.167 8.54% 1000 155.163
mkc 39.38 82% 1000 87308.4 38.43 80% 1000 404.27 30 62.5% 1000 3764.3
mod008 16.0689 100% 361 1877.13 9.865 61.4% 1000 1.16782 16.0689 100% 17 0.061991
mod010 15.9167 100% 9 1122.47 15.9167 100% 23 1.08083 15.9167 100% 3 0.45993
mod013 24.9333 100% 185 149.338 24.9333 100% 227 0.177972 24.9333 100% 54 0.141979
modglob 131127 42.3% 1000 1608.1 131595 42.5% 1000 51.8241 85446.9 27.6% 1000 41.4137
noswot 0 0% 1000 944.83 0 0% 1000 3.17852 0 0% 1000 12.2511
opt1217 0.272819 6.78% 1000 80674.2 0 0% 1000 13.47 1.92367 47.8% 1000 51.3492
p0033 568.428 100% 143 69.2525 568.428 100% 261 0.06399 568.428 100% 21 0.016997
p0040 225.618 100% 6 2.76158 225.618 100% 31 0.009999 225.618 100% 2 0.002
p0201 740 100% 106 602.537 740 100% 70 1.40979 740 100% 40 1.15882
p0282 81543.5 100% 72 77.1203 81543.5 100% 42 0.162975 81543.5 100% 57 0.478928
p0291 2994.65 100% 18 13.9899 2994.65 100% 21 0.050992 2994.65 100% 12 0.047993
p0548 8136.34 100% 762 2550.91 8136.34 100% 784 4.17037 8136.34 100% 121 2.25266
p2756 3.21948 3.08% 1000 31487.3 2.19718 2.85% 1000 87.2827 3.52113 3.15% 1000 292.204
pipex 14.5119 100% 71 62.9474 14.5119 100% 325 0.167974 14.5119 100% 13 0.029996
pk1 0 0% 1000 2695.28 0 0% 1000 7.61684 0 0% 1000 23.2875
pp08aCUTS 680.439 36.4% 1000 2422 612.248 32.7% 1000 61.4507 417.95 22.4% 1000 45.8
pp08a 1332.14 28.9% 1000 901.196 1236 26.9% 1000 13.7629 1128.5 24.5% 1000 23.1855
rgn 33.4 100% 847 816.246 33.4 100% 859 0.898863 33.4 100% 568 1.44878
rout 14.7457 15.4% 1000 27213.4 19.8707 20.8% 1000 92.168 53.4079 55.8% 1000 116.207
sample2 128 100% 157 46.4479 128 100% 93 0.054991 128 100% 87 0.105984
sentoy 67.278 100% 63 60.4588 67.278 100% 54 0.072989 67.278 100% 35 0.122982
set1al 364.408 17.3% 1000 1513.83 423.136 18.6% 1000 147.961 312.342 16.2% 1000 260.723
set1ch 2102.43 23.1% 1000 2664.5 1842.41 22% 1000 147.174 1244.09 19.3% 1000 174.753
set1cl 359.619 18.1% 1000 1311.85 356.628 18% 1000 113.272 300.171 16.9% 1000 259.563
stein15 2 100% 38 7.61984 2 100% 44 0.069989 2 100% 31 0.066989
stein27 2 40% 1000 294.986 3 60% 1000 4.03639 5 100% 865 3.42748
stein45 1 12.5% 1000 788.01 2.33333 29.2% 1000 39.0691 2.09804 26.2% 1000 23.8184
timtab1 53915 7.32% 1000 3395.07 119678 16.3% 1000 29.0176 123309 16.8% 1000 58.1322
timtab2 14394 - 1000 7475.45 83794 - 1000 92.131 93552 - 1000 211.767
tr12-30 3666.48 6.51% 1000 3079.88 3014.82 5.95% 1000 1169.3 1289.27 4.47% 1000 958.276
vpm1 4.58333 100% 21 26.9529 1.15 25.1% 1000 6.46402 4.58333 100% 25 0.259961
vpm2 1.39564 39.6% 1000 2057.29 1.34673 38.3% 1000 14.6928 1.50242 42.4% 1000 27.2479

Table 7.8: Results after 1000 solved nodes: full results

Several reasons suggest that MILP may be better used to generate cutting
planes, instead of branching decisions. The neighbourhood search algorithm
generates a pool of solutions, but then lacks new starting solutions to continue

7.5 Computational experiments: MILP formulation 143

the search. This problem could be avoided by adding to the original problem
the intersection cuts associated to the generated split disjunctions, and resolv-
ing the LP. Moreover, the observation of the solution process with Cplex suggest
that the MILP formulation works better at the beginning of the branching tree,
because the auxiliary problem (7.29) which we have to solve at each node grows
in size as we progress in the enumeration. The analysis of the strength of the
cutting planes as we spend more time in finding good solutions to the auxliary
problem (7.29), and the effect of changing the parameter η, are interesting sub-
jects for future research.

144 Improved Strategies for Branching on General Disjunctions

Chapter 8

A Good Recipe for Solving MINLPs

In Section 1.3.2 we proposed a model of the time-dependent shortest path prob-
lem on possibly non FIFO networks with arbitrary arc cost functions, which
turns out to be a MINLP. If we model the effect of traffic congestions on trav-
elling times as a summation of Gaussian functions, then that formulation is
nonconvex (see Section 1.3.3. From the modelling point of view, nonconvex
MINLPs are the most expressive mathematical programs. It stands to reason
that general-purpose MINLP solvers should be very useful. Currently, optimal
solutions of MINLPs in general form are obtained by using the spatial Branch-
and-Bound (sBB) algorithm (3; 92; 131; 132); but guaranteed optima can only
be obtained for relatively small-sized MINLPs. Realistically-sized MINLPs can
often have thousands (or tens of thousands) of variables (continuous and inte-
ger) and nonconvex constraints. With such sizes, it becomes a hard challenge
to even find a feasible solution, and sBB algorithms become almost useless.
Some good solvers targeting convex MINLPs exist in the literature (2; 24; 26;
57; 58; 90); although they can all be used on nonconvex MINLPs as well (forsak-
ing the optimality guarantee), in practice their mileage varies wildly with the
instance of the problem being solved, resulting in a high fraction of “false neg-
atives” (i.e. feasible problems for which no feasible solution was found). The
Feasibility Pump (FP) idea was recently extended to convex MINLPs (25), but
again this does not work so well when applied to nonconvex MINLPs unmodi-
fied (101).

In this section, we propose an effective and reliable MINLP heuristic, called
the Relaxed-Exact Continuous-Integer Problem Exploration (RECIPE) algorithm.
The MINLPs we address are cast in the following general form:

min
x∈Rn

f(x)

s.t. l ≤ g(x) ≤ u
xL ≤ x ≤ xU

xi ∈ Z ∀ i ∈ Z

(8.1)

In the above formulation, x are the decision variables (xi is integer for each

146 A Good Recipe for Solving MINLPs

i ∈ Z and continuous for each i 6∈ Z, where Z ⊆ {1, . . . , n}). f : R
n → R is a

possibly nonlinear function, g : R
n → R

m is a vector of m possibly nonlinear
functions (assumed to be differentiable), l, u ∈ R

m are the constraint bounds
(which may be set to±∞), and xL, xU ∈ R

n are the variable bounds.
RECIPE puts together a global search phase based on Variable Neighbour-

hood Search (VNS) (76) and a local search phase based on a Branch-and-Bound
(BB) type heuristic. The VNS global phase rests on neighbourhoods defined as
hyperrectangles for the continuous and general integer variables (95) and by Lo-
cal Branching (LB) for the binary variables (56). The local phase employs a BB
solver for convex MINLPs (58), and applies it to (possibly nonconvex) MINLPs,
making therefore effectively a heuristic. A local NLP solver, which implements
a Sequential Quadratic Programming (SQP) algorithm (66), supplies an initial
constraint-feasible solution to be employed by the BB as starting point. RECIPE
is an efficient, effective and reliable general-purpose algorithm for solving com-
plex MINLPs of small and medium scale.

The rest of this section is organized as follows. In Section 8.1 we describe the
basic component algorithms on which RECIPE is based. Section 8.2 presents
the overall approach. In Section 8.3 we discuss computational results obtained
over MINLPLib, focusing on optimality, reliability and speed.

8.1 The basic ingredients

This section describes the four main components used in RECIPE, which are:

• the global search phase: Variable Neighbourhood Search;

• the binary variable neighbourhood definition technique: Local Branch-
ing;

• the constraint and integral feasibility enforcing local solution algorithm:
Branch-and-Bound for cMINLPs;

• the constraint feasibility enforcing local solution algorithm: Sequential
Quadratic Programming.

8.1.1 Variable neighbourhood search

VNS relies on iteratively exploring neighbourhoods of growing size to identify
better local optima (76; 77; 78). More precisely, VNS escapes from the current
local minimum x∗ by initiating other local searches from starting points sam-
pled from a neighbourhood of x∗ which increases its size iteratively until a local
minimum better than the current one is found. These steps are repeated until
a given termination condition is met. This can be based on CPU time, number
of non-improving steps and other configurable parameters.

8.1 The basic ingredients 147

VNS has been applied to a wide variety of problems both from combinato-
rial and continuous optimization (9; 27; 52; 89; 96; 97; 122). Its early applica-
tions to continuous problems were based on a particular problem structure. In
the continuous location-allocation problem, the neighbourhoods are defined
according to the meaning of problem variables (assignments of facilities to cus-
tomers, positioning of yet unassigned facilities and so on) (27). In bilinearly
constrained bilinear problems the neighbourhoods are defined in terms of the
applicability of the successive linear programming approach, where the prob-
lem variables can be partitioned so that fixing the variables in either set yields
a linear problem; more precisely, the neighbourhoods of size k are defined as
the vertices of the LP polyhedra that are k pivots away from the current ver-
tex (76). The first VNS algorithm targeted at problems with fewer structural re-
quirements, namely, box-constrained nonconvex NLPs, was given in (105) (the
paper focuses on a particular class of box-constrained NLPs, but the proposed
approach is general). Its implementation is described in (51). Since the prob-
lem is assumed to be box-constrained, the neighbourhoods arise naturally as
hyperrectangles of growing size centered at the current local minimum x∗. The
same neighbourhoods were used in (95), an extension of VNS to constrained
NLPs.

8.1.2 Local branching

LB is an efficient heuristic for solving difficult Mixed-Integer Linear Program-
ming (MILP) problems (56); see also Section 7.3.1. Given an integer k > 0, the
LB search explores k-neighbourhoods of the incumbent x∗ by allowing at most
k of the integer variables to change their value; this condition is enforced by
means of the local branching constraint:

∑

i∈S̄

(1− xi) +
∑

i6∈S̄

xi ≤ k, (8.2)

where S̄ = {i ≤ n | i ∈ Z ∧ x∗i = 1}, which defines a neighbourhood of ra-
dius k with respect to the binary variables of (8.1), centered at a binary solution
with support S̄. LB updates the incumbent as it finds better solutions. When
this happens, the LB procedure is called iteratively with S̄ relative to the new
incumbent. We remark that LB was successfully used in conjunction with VNS
in (79).

8.1.3 Branch-and-bound for cMINLPs

Solving cMINLPs (i.e. MINLPs where the objective function and constraints are
convex — the terminology is confusing as all MINLPs are actually nonconvex
problems because of the integrality constraints) is conceptually not much more

148 A Good Recipe for Solving MINLPs

difficult than solving MILPs: as the relaxed problem is convex, obtaining lower
bounds is easy. The existing tools, however, are still far from the quality attained
by modern MILP solvers. The problem is usually solved by BB, where only the
integer variables are selected for branching. A restricted (continuous) convex
NLP is formed and solved at each node, where the variable ranges have been
restricted according to the node’s definition. Depending on the algorithm, the
lower bounding problem at each node may either be the original problem with
relaxed integrality constraints (35; 58) (in which case the BB becomes a recur-
sive search for a solution that is both integer feasible and a local optimum in
continuous space), or its linear relaxation by outer approximation (2; 24; 54; 57).
In the former case, the restricted NLP is solved to optimality at each node by us-
ing local NLP methods (which converge to the node’s global optimum when the
problem is convex) such as SQP (see Sect. 8.1.4), in the latter it is solved once in
a while to get good incumbent candidates.

Another approach to solving MINLPs, which can be applied to convex and
pseudoconvex objective and constraints alike, is taken in (135; 136; 137), where
a cutting planes approach is blended in with a sequence of MILP subproblems
(which only need to be solved to feasibility).

These approaches guarantee an optimal solution if the objective and con-
straints are convex, but may be used as a heuristic even in presence of noncon-
vexity. Within this section, we employ these methods in order to find local op-
tima of general (nonconvex) MINLPs. The problem of finding an initial feasible
starting point (used by the BB local NLP subsolver) is addressed by supplying
the method with a constraint feasible (although not integer feasible) starting
point found by an SQP algorithm (see Sect. 8.1.4).

8.1.4 Sequential quadratic programming

SQP methods find local solutions to nonconvex NLPs. They solve a sequence of
quadratic approximations of the original problem subject to a linearization of
its constraints. The quadratic approximation is obtained by a convex model of
the objective function Hessian at a current solution point, subject to a lineariza-
tion of the (nonlinear) constraints around the current point. SQP methods are
now at a very advanced stage (66), with corresponding implementations being
able to warm- or cold-start. In particular, they deal with the problem of infeasi-
ble linear constraints (this may happen as the linearization around a point of a
set of feasible nonlinear constraints is not always feasible), as well as the feasi-
bility of the starting point with respect to the nonlinear constraints. This case
is dealt with by elastic programming (65). In particular, SNOPT does a good
job of finding a constraint feasible point out of any given initial point, even for
reasonably large-scale NLPs. By starting a local MINLP solver from a constraint
feasible starting point, there are better chances that an integer feasible solution
may be found.

8.2 The RECIPE algorithm 149

8.2 The RECIPE algorithm

Our main algorithm is a heuristic exploration of the problem solution space by
means of an alternating search between the relaxed NLP and the exact MINLP.
This is a two-phase global optimization method. Its local phase consists in us-
ing the SQP algorithm for solving relaxed (nonconvex) NLPs locally; next, the
BB algorithm is used for solving exact (nonconvex) MINLPs to feasibility. The
global phase of the algorithm is given by a Variable Neighbourhood Search us-
ing two separate neighbourhoods for continuous and general integer variables
and for binary variables. The former neighbourhoods have hyper-rectangular
shape; the latter are based on a LB constraint involving all binary variables.

We consider a (nonconvex) MINLP P given by formulation (8.1), with its
continuous relaxation P̄ . Let B = {i ∈ Z | xL

i = 0 ∧ xU
i = 1} be the set of

indices of the binary variables, and B̄ = {1, . . . , n} \ B the set of indices of oth-
ers, including general integer and continuous variables. Let Q(x̄, k, kmax) be its
reformulation obtained by adding a local branching constraint

∑

i∈B

(x̄i(1− xi) + (1− x̄i)xi) ≤

⌈

k
|B|

kmax

⌉

, (8.3)

where x̄ is a (binary) feasible solution (e.g. obtained at a previous iteration),
kmax ∈ N and k ∈ {1, . . . , kmax}. At each VNS iteration (with a certain associated
parameter k), we obtain an initial point x̃, where x̃i is sampled in a hyperrect-
angular neighbourhood of radius k for i ∈ B̄ (rounding where necessary for
i ∈ Z \ B) and x̃i is chosen randomly for i ∈ B. We then solve the continuous
relaxation P̄ locally by means of an SQP method using x̃ as a starting point, and
obtain x̄ (if x̄ is not feasible with respect to the constraints of P , then x̄ is re-set
to x̃ for want of a better choice). We then use a BB method for cMINLPs in order
to solve Q(x̄, k, kmax), obtaining a solution x′. If x′ improves on the incumbent
x∗, then x∗ is replaced by x′ and k is reset to 1. Otherwise (i.e. if x′ is worse than
x∗ or if Q(x̄, k, kmax) could not be solved), k is increased in a VNS-like fashion.
The algorithm is described formally in Alg. 6.

8.2.1 Hyperrectangular neighbourhood structure

We discuss here the neighbourhood structure for Nk(x) for the RECIPE algo-
rithm.

Consider hyperrectangles Hk(x), centered at x ∈ R
n and proportional to the

hyperrectangle xL ≤ x ≤ xU given by the original variable bounds, such that
Hk−1(x) ⊂ Hk(x) for each k ≤ kmax. More formally, let Hk(x

∗) be the hyperrect-

150 A Good Recipe for Solving MINLPs

Algorithm 6 The RECIPE algorithm.

INPUT: Neighbourhoods Nk(x) for x ∈ R
n;

maximum neighbourhood radius kmax;
number L of local searches in each neighbourhood.

OUTPUT: Best solution found x∗.
Set x∗ = xL/2 + xU/2
while (!time-based termination condition) do

Set k ← 1
while (k ≤ kmax) do

for (i = 1 to L) do
Sample a random point x̃ from Nk(x

∗).
Solve P̄ using an SQP algorithm from initial point x̃ obtaining x̄
if (x̄ is not feasible w.r.t. the constraints of P) then

x̄ = x̃
Solve Q(x̄, k, kmax) using a BB algorithm from initial point x̄ obtaining
x′

if (x′ is better than x∗) then
Set x∗ ← x′

Set k ← 0
Exit the FOR loop

Set k ← k + 1.

angle yL ≤ x ≤ yU where, for all i 6∈ Z,

yL
i = x∗i −

k

kmax

(x∗i − xL
i)

yU
i = x∗i +

k

kmax

(xU
i − x∗i),

for all i ∈ Z \B,

yL
i = ⌊x∗i −

k

kmax

(x∗i − xL
i) + 0.5⌋

yU
i = ⌊x∗i +

k

kmax

(xU
i − x∗i) + 0.5⌋,

and for all i ∈ B, yL = 0 and yU = 1.
We let Nk(x) = Hk(x)\Hk−1(x). This neighbourhood structure defines a set

of hyperrectangular nested shells with respect to continuous and general inte-
ger variables. Let τ be the affine map sending the hyperrectangle xL ≤ x ≤ xU

into the unit L∞ ball (i.e., hypercube) B centered at 0, i.e., B = {x : |xi| ≤ 1∀i}.
Let rk = k

kmax
be the radii of the balls Bk (centered at 0) such that τ(Hk(x)) = Bk

for each k ≤ kmax. In order to sample a random vector x̃ in Bk\Bk−1 we proceed
as in Alg. 7.

8.3 Computational results 151

Algorithm 7 Sampling in the shell neighbourhoods.

INPUT: k, kmax.
OUTPUT: A point x̃ sampled in Hk(x)\Hk−1(x).
Sample a random direction vector d ∈ R

n

Normalize d (i.e., set d← d
||d||∞

)

Let rk−1 = k−1
kmax

, rk = k
kmax

Sample a random radius r ∈ [rk−1, rk] yielding a uniformly distributed point
in the shell
Let x̃ = τ−1(rd)

The sampled point x̃ will naturally not be feasible in the constraints of (8.1),
but we can enforce integral feasibility by rounding x̃j to the nearest integer for
j ∈ Z, i.e. by setting x̃j ← ⌊x̃j + 0.5⌋. This will be rather ineffective with the
binary variables xj , which would keep the same value x̃j = x∗j for each k ≤ kmax

2
.

Binary variables are best dealt with by solving the LB reformulation Q in Alg. 6.

8.3 Computational results

Alg. 6 presents many implementation difficulties: the problem must be refor-
mulated iteratively with the addition of a different LB constraint at each itera-
tion; different solvers acting on different problem formulations must be used.
All this must be coordinated by the outermost VNS at the global level. We chose
AMPL (61) as a scripting language because it makes it very easy to interface to
many external solvers. Since AMPL cannot generate the reformulation Q of P it-
eratively independently of the problem structure, we employed a C++ program
that reads an AMPL output .nl file in flat form (92) and outputs the required
reformulation as an AMPL-readable .mod file.

The minlp bb solver (90) was found to be the MINLP solver that performs
best when finding feasible points in nonconvex MINLPs (the comparison was
carried out with the default-configured versions of filMINT (2) and BonMin (26)).
The SQP solver of choice was snopt (65), found to be somewhat more reliable
than filtersqp (59): on the analysed test set, snopt achieves, on average, bet-
ter results at finding feasible solution in a short CPU time. All computational
results have been obtained on an Intel Xeon 2.4 GHz with 8 GB RAM running
Linux.

RECIPE rests on three configurable parameters: kmax (the maximum neigh-
bourhood radius), L (the number of local searches starting in each neighbour-
hood) and the maximum allowed user CPU time (not including the time taken
to complete the last local search). After some practical experimentation on a re-
duced subset of instances, we set kmax = 50, L = 15 and the maximum CPU time
to 10h. These parameters were left unchanged over the whole test set, yielding

152 A Good Recipe for Solving MINLPs

good results without the need for fine-tuning.

8.3.1 MINLPLib

The MINLPLib (30) is a collection of Mixed Integer Nonlinear Programming
models which can be searched and downloaded for free. Statistics for the in-
stances in the MINLPLib are available from:

http://www.gamsworld.org/minlp/minlplib/minlpstat.htm.

The instance library is available at:

http://www.gamsworld.org/minlp/minlplib.htm.

The MINLPLib is distributed in GAMS (28) format, so we employed an auto-
matic translator to cast the files in AMPL format.

At the time of downloading (Feb. 2008), the MINLPLib consisted of 265 MINLP
instances contributed by the scientific and industrial OR community. These
were all tested with the RECIPE algorithm implementation described above.
We had 20 unsuccessful runs due to some AMPL-related errors (the model con-
tained some unusual AMPL operator not implemented by some of the solvers
or reformulators employed in RECIPE). The instances leading to AMPL-related
failure were:

blendgap, dosemin2d, dosemin3d, fuzzy, hda, meanvarxsc, pb302035,
pb302055, pb302075, pb302095, pb351535, pb351555, pb351575, pb351595,
water3, waterful2, watersbp, waters, watersym1, watersym2.

The performance of RECIPE was evaluated on the 245 runs that came to
completion. The results are given in Tables 8.1, 8.2 (solved instances) and 8.3
(unsolved instances). Table 8.1 lists results where the best solution found by
RECIPE was different by at least 0.1% from that listed in MINLPLib. The first
column contains the instance name, the second contains the value f ∗ of the ob-
jective function found by the RECIPE algorithm and the third the correspond-
ing CPU usage measured in seconds of user time; the fourth contains the value
f̄ of the objective function reported in the official MINLPLib table and the fifth
contains the name of corresponding GAMS solver that found the solution. The
fourth and fifth columns were generated using the data available from the MINLPLib
website, updated with some improved results obtained by AlphaECP (137) that
are not yet listed on the MINLPLib web page. Table 8.2 lists instance names
where the best values found by RECIPE and listed in MINLPLib are identical.

Instance RECIPE Known solution
f∗ CPU f̄ Solver

csched2a -165398.701331 75.957500 -160037.701300 BonMin
eniplac -131926.917119 113.761000 -132117.083000 SBB+CONOPT
ex1233 160448.638212 3.426480 155010.671300 SBB+CONOPT

http://www.gamsworld.org/minlp/minlplib/minlpstat.htm
http://www.gamsworld.org/minlp/minlplib.htm

8.3 Computational results 153

Instance RECIPE Known solution
f∗ CPU f̄ Solver

ex1243 118489.866394 5.329190 83402.506400 BARON
ex1244 211313.560000 7.548850 82042.905200 SBB+CONOPT
ex1265a 15.100000 9.644530 10.300000 BARON
ex3 -53.990210 1.813720 68.009700 SBB+CONOPT
ex3pb -53.990210 1.790730 68.009700 SBB+CONOPT
fo7 2 22.833307 23.710400 17.748900 AlphaECP
fo7 24.311289 25.423100 20.729700 AlphaECP
fo9 38.500000 46.296000 23.426300 AlphaECP
fuel 17175.000000 1.161820 8566.119000 SBB+CONOPT
gear4 1.968201 9.524550 1.643400 SBB+CONOPT2
lop97ic 4814.451760 3047.110000 4284.590500 -
lop97icx 4222.273030 1291.510000 4326.147700 SBB+CONOPT
m7 220.530055 17.275400 106.756900 AlphaECP
minlphix 209.149396∗ 4.849260 316.692700 SBB+snopt
nuclear14b -1.119531 7479.710000 -1.113500 SBB+CONOPT
nuclear24b -1.119531 7483.530000 -1.113500 SBB+CONOPT
nuclear25 -1.120175 1329.530000 -1.118600 SBB+CONOPT
nuclearva -1.008822 167.102000 -1.012500 SBB+CONOPT2+snopt
nuclearvb -1.028122 155.513000 -1.030400 SBB+CONOPT2+snopt
nuclearvc -1.000754 176.075000 -0.998300 SBB+CONOPT2+snopt
nuclearvd -1.033279 202.416000 -1.028500 SBB+CONOPT2+snopt
nuclearve -1.031364 193.764000 -1.035100 SBB+CONOPT2+snopt
nuclearvf -1.020808 200.154000 -1.017700 SBB+CONOPT2+snopt
nvs02 5.964189 1.925710 5.984600 SBB+CONOPT3
nvs05 28.433982 4.215360 5.470900 SBB+CONOPT3
nvs14 -40358.114150 2.070690 -40153.723700 SBB+CONOPT3
nvs22 28.947660 4.849260 6.058200 SBB+CONOPT3
o7 2 125.907318 23.262500 116.945900 AlphaECP
o7 160.218617 24.267300 131.649300 AlphaECP
oil -0.006926 389.266000 -0.932500 SBB+CONOPT(fail)
product -1971.757941 2952.160000 -2142.948100 DICOPT+CONOPT3/CPLEX

st e13 2.236072 0.548916 2.000000 BARON
st e40 52.970520 0.930858 30.414200 BARON
stockcycle 120637.913333 17403.200000 119948.688300 SBB+CONOPT
super3t -0.674621 38185.500000 -0.685965 SBB+CONOPT
synheat 186347.748738 3.534460 154997.334900 SBB+CONOPT
tln7 19.300000 1000.640000 15.000000 BARON
risk2b −∞∗ 45.559100 -55.876100 SBB+CONOPT3
risk2bpb −∞∗ 48.057700 -55.876100 SBB+CONOPT3

Table 8.1: Computational results on MINLPLib. Values denoted by ∗

mark instances with unbounded values in the solution.

alan ex1224 gbd nvs06 parallel st e32 tln2

batchdes ex1225 gear2 nvs07 prob02 st e36 tln4

batch ex1226 gear3 nvs08 prob03 st e38 tln5

cecil 13 ex1252a gear nvs09 prob10 st miqp1 tln6

contvar ex1252 gkocis nvs10 procsel st miqp2 tloss

csched1a ex1263a hmittelman nvs11 pump st miqp3 tls2

csched1 ex1263 johnall nvs12 qap st miqp4 util

csched2 ex1264a m3 nvs13 ravem st miqp5

du-opt5 ex1264 m6 nvs15 ravempb st test1

du-opt ex1265 meanvarx nvs16 sep1 st test2

enpro48 ex1266a nuclear14a nvs17 space25a st test3

enpro48pb ex1266 nuclear14 nvs18 space25 st test4

enpro56 ex4 nuclear24a nvs19 spectra2 st test6

enpro56pb fac1 nuclear24 nvs20 spring st test8

ex1221 fac2 nuclear25a nvs21 st e14 st testgr1

ex1222 fac3 nuclear25b nvs23 st e15 st testph4

ex1223a feedtray2 nvs01 nvs24 st e27 synthes1

154 A Good Recipe for Solving MINLPs

ex1223b feedtray nvs04 oaer st e29 synthes2

ex1223 gastrans nvs03 oil2 st e31 synthes3

Table 8.2: Instances for which RECIPE’s optima are the same as those
reported in the MINLPLib.

8.3.2 Optimality

RECIPE found feasible solutions for 163 instances out of 245 (66%). Relative to
this reduced instance set, it found the best known solution for 121 instances
(74%), gave evidence of the unboundedness of 3 instances (1%), and improved
the best known objective value for 12 instances (7%). In the other cases it found
a local optimum that was worse than the best known solution.

Improved solutions were found for the following instances:

csched2a: f ∗ = −165398.701331 (best known solution: −160037.701300)
ex3: f ∗ = −53.990210 (best known solution: 68.009700)
ex3pb: f ∗ = −53.990210 (best known solution: 68.009700)
lop97icx: f ∗ = 4222.273030 (best known solution: 4326.147700)
minlphix: f ∗ = 209.149396 (best known solution: 316.692700)
nuclear14b: f ∗ = −1.119531 (best known solution: −1.113500)
nuclear24b: f ∗ = −1.119531 (best known solution: −1.113500)
nuclear25: f ∗ = −1.120175 (best known solution: −1.118600)
nuclearvc: f ∗ = −1.000754 (best known solution: −0.998300)
nuclearvd: f ∗ = −1.033279 (best known solution: −1.028500)
nuclearvf: f ∗ = −1.020808 (best known solution: −1.017700)
nvs02: f ∗ = 5.964189 (best known solution: 5.984600)
nvs14: f ∗ = −40358.114150 (best known solution: −40153.723700)
risk2b: f ∗ = −∞ (best known solution: −55.876100)
risk2bpb: f ∗ = −∞ (best known solution: −55.876100).

All new best solutions were double-checked for constraint, bounds and in-
tegrality feasibility besides the verifications provided by the local solvers, and
were all found to be integral feasible; 11 out of 12 were constraint/bound feasi-
ble to within a 10−5 absolute tolerance, and 1 (csched2a) to within 10−2. The 3
instances marked by ∗ in Table 8.1 (minlphix, risk2b, risk2bpb) gave solutions
x∗ with some of the components at values in excess of 1018. Since minlphix min-
imizes a fractional objective function and there are no upper bounds on several
of the problem variables, the optimum is attained when the variables appear-
ing in the denominators tend towards +∞. We solved risk2b and risk2bpb sev-
eral times, setting increasing upper bounds to the unbounded variables: this
yielded decreasing values of the objective function, suggesting that these in-
stances are really unbounded (hence the−∞ in Table 8.1).

8.3 Computational results 155

4stufen eg int s fo8 ar4 1 m7 ar4 1 nuclear10a o9 ar4 1 super3 waste

beuster elf fo8 ar5 1 m7 ar5 1 nuclear10b ortez tln12 water4

deb10 fo7 ar2 1 fo9 ar2 1 mbtd nuclear49 product2 tls12 waterx

deb6 fo7 ar25 1 fo9 ar25 1 no7 ar2 1 nuclear49a qapw tls4 waterz

deb7 fo7 ar3 1 fo9 ar3 1 no7 ar25 1 nuclear49b saa 2 tls5 windfac

deb8 fo7 ar4 1 fo9 ar4 1 no7 ar3 1 o7 ar2 1 space960 tls6

deb9 fo7 ar5 1 fo9 ar5 1 no7 ar4 1 o7 ar25 1 st e35 tls7

detf1 fo8 gasnet no7 ar5 1 o7 ar3 1 st test5 tltr

eg all s fo8 ar2 1 m7 ar2 1 nous1 o7 ar4 1 st testgr3 uselinear

eg disc2 s fo8 ar25 1 m7 ar25 1 nous2 o7 ar5 1 super1 var con10

eg disc s fo8 ar3 1 m7 ar3 1 nuclear104 o8 ar4 1 super2 var con5

Table 8.3: Instances unsolved by RECIPE.

On 82 instances out of 245 listed in Table 8.3, RECIPE failed to find any local
optimum within the allotted time limit. Most of these failures are due to the dif-
ficulty of the continuous relaxation of the MINLPs: there are several instances
where the SQP method (snopt) does not manage to find a feasible starting point,
and in these cases the convex MINLP solver (minlp bb) also fails. On a smaller
number of instances, minlp bb is not able to find integral feasible solutions even
though constraint feasible solutions are provided by snopt.

8.3.3 Reliability

One interesting feature of RECIPE is its reliability: in its default configuration
it managed to find solution with better or equal quality than those reported
in the MINLPLib on 136 instances over 245 (55%) and at least a feasible point
in a further 11% of the cases. On the same set of test instances, the closest
competitor is SBB+CONOPT, which matches or surpasses the best solutions in
MINLPLib in 37% of the cases, followed by BARON with 15% and by AlphaECP
with 14%. These percentages were compiled in June 2008 by looking at:

http://www.gamsworld.org/minlp/minlplib/points.htm.

8.3.4 Speed

The total time taken for solving the whole MINLPLib (including the unsolved
instances, where the VNS algorithm terminates after exploring the neighbour-
hoods up to kmax or when reaching the 10 hours time limit, whichever comes
first) is roughly 4 days and 19 hours of user CPU time. RECIPE’s speed is very
competitive with that of sBB approaches: tests conduced using the ooOPS solver
(91; 92; 100) as well as BARON on some complex MINLPs showed that sBB meth-
ods may take a long time to converge. Naturally, the trade-off for this speed is
the lack of an optimality guarantee.

http://www.gamsworld.org/minlp/minlplib/points.htm

156 A Good Recipe for Solving MINLPs

Chapter 9

Computational Experiments on the
TDSPP

Throughout this part, we tested our methods on common benchmark instances
taken from the literature, so that we could compare with other works. We now
revert our attention back to the time-dependent shortest paths problem. In this
chapter we test the most efficient algorithms proposed so far on shortest path
instances, using a combination of real-world and synthetic data.

The rest of this chapter is organized as follows. In Section 9.1 we discuss
the input data for our numerical tests. In Section 9.2 we test the linear formula-
tion of the TDSPP with a Branch-and-Bound algorithm which uses the branch-
ing rules proposed in Chapter 7. In Section 9.3 we apply the VNS algorithm of
Chapter 8 to the MINLP formulation of the TDSPP.

9.1 Input data

For our numerical experiments, we extracted several subnetworks of increasing
size from the road network of Rome. The original graph is available from the
web page of the 9th DIMACS Challenge – Shortest Paths:

http://www.dis.uniroma1.it/~challenge9/.

There are 3353 vertices and 8870 oriented arcs in the road network; however,
our formulation (GTDSPP) contains one (integer) variable for each arc and
two variables for each node of the graph, as well as additional variables needed
to model arc costs. Therefore, to keep computational times down to acceptable
levels, we considered subnetworks extracted from this graph instead of the full
size graph. In particular, we tested our methods on networks with the charac-
teristics reported in Table 9.1. Due to the large number of variables and con-
straints that arise in the formulations (both linear and nonlinear), we were not
able to carry out computational experiments in reasonable time on instances
with more arcs and nodes than those reported in Table 9.1.

http://www.dis.uniroma1.it/~challenge9/

158 Computational Experiments on the TDSPP

NAME NODES ARCS

R-8 8 14
R-30 30 62
R-60 60 144

R-120 120 296
R-200 200 504

Table 9.1: Size of the test instances.

Time-dependent costs were generated following some simple guidelines. For
piecewise linear cost functions, we considered 3 breakpoints on each arc. Al-
though this may seem like a small number, the trouble lies in the fact that each
breakpoint introduces additional variables. Moreover, our approach is based
on the consideration that, instead of assigning to each arc a cost profile for a
full day and using a nonzero departure times for each shortest path computa-
tion, we can consider the departure time to be always zero and “shift” the cost
profiles accordingly. That is, the 3 breakpoints can be considered as the first 3
breakpoints on the cost profile after the desired departure time. If the time hori-
zon covered by the 3 breakpoints is sufficiently large, this approach is equiva-
lent to considering the full cost profiles, but requires significantly less effort.
Breakpoints were positioned randomly within a time horizon of 3 hours, and
their value for arc (u, v) was selected uniformly at random in [λ(u, v), 20λ(u, v)],
where, as usual, λ(u, v) is the travelling time over (u, v) in traffic free situation.
Note that we did not enforce the FIFO property when generating arc costs.

For the nonlinear model, we used the cost functions proposed in Section
1.2.2 involving a summation of Gaussians. We set the number of cost perturba-
tions to two, i.e. each cost function is of the form

c(i, j, τ) = cij +
2

∑

k=1

ake
−

(τ−µk)2

2σ2
k ,

We used the same idea of “shifting” cost profiles described above. Therefore,
the departure time of each shortest path is considered to be always zero, and
the cost perturbations that correspond to traffic jams are centered within a
time horizon of 3 hours. The mean µk for each gaussian is picked uniformly
at random in the time interval between 0 and 3 hours (rounding to the nearest
second), whereas the standard deviation σk is always 900 (we remark that time
is expressed in seconds). Each Gaussian function on arc (u, v) is multiplied by
a factor ak that is chosen uniformly between [λ(u, v), 20λ(u, v)].

9.2 Numerical experiments with the linear formulation 159

9.2 Numerical experiments with the linear

formulation

In this section we discuss the computational experiments carried out on the
MILP formulation for the TDSPP. First, we give more details on the formulation;
then, we analyse the computational results.

9.2.1 Formulation

Consider the formulation (GTDSPP) presented in Section 1.3:

min τt

∀v ∈ V
∑

(i,j)∈A mv
ijxij = bv

∀v ∈ V τv ≤ dv

∀(i, j) ∈ A xij(di + c(i, j, di)) ≤ τj

∀(i, j) ∈ A xij ∈ {0, 1}
∀v ∈ V τi ≥ 0

(GTDSPP)

In this section, we consider c(i, j, di) to be a piecewise linear function for all arcs
(i, j) ∈ A. We are given a set of breakpoint positions brpk

ij, k = 1, . . . , h and a set
of corresponding breakpoint values brvk

ij, k = 1, . . . , h for each arc (i, j). We add
binary variables δk

ij that select which piece of the piecewise linear function on
(i, j) is active for a given departure time τi from node i. Note that, for simplicity,
we considered each arc cost function expressed as a sum between a fixed (static)
cost cij and a piecewise linear function, described as above. This way, for all
time instants following the last breakpoint brph

ij , the cost of an arc is given by its
fixed cost only. Therefore, the formulation becomes:

min τt

∀v ∈ V
∑

(i,j)∈A mv
ijxij = bv

∀v ∈ V τv ≤ dv

∀(i, j) ∈ A xij(di + cij

∑h−1
k=1 δk

ij(
di−brpk

ij

brpk+1
ij −brpk

ij

(brvk+1
ij − brvk

ij) + brvk
ij)) ≤ τj

∀(i, j) ∈ A
∑h−1

k=1 δk
ijbrp

k
ij + δh

ijM ≥ di

∀(i, j) ∈ A
∑h

k=2 δk
ijbrp

k−1
ij ≤ di

∀(i, j) ∈ A
∑h

k=1 δk
ij = 1

∀(i, j) ∈ A xij ∈ {0, 1}
∀(i, j) ∈ A δk

ij ∈ {0, 1}
∀v ∈ V τi ≥ 0.

The third constraint is the complicating one: it involves the product between
a binary variable and a continuous variable, and between two binary variables
and a continuous variable. All these products can be formulated exactly with
linear terms, introducing additional variables (see e.g. (94)).

160 Computational Experiments on the TDSPP

The resulting MILP has a weak LP relaxation, due to the product reformula-
tions which are known to be weak. Therefore, solving large instances to proven
optimality is a very difficult task. However, our aim is to compare on this class
of problems traditional branching rules with the methods studied in this thesis.
We note that, if no path between the source node and the target node exists,
then this is detected at root node, since the LP relaxation is infeasible because
of the flow conservation constraints.

9.2.2 Computational results

In Table 9.2 we report the number of variables and of constraints for all test in-
stances with the MILP formulation described Section 9.2.1, before preprocess-
ing. Although the number of variables and constraints is large, the constraint
matrix is sparse, hence the number of nonzeroes is small; this is because the
flow conservation constraints have only two nonzeroes per row. Note that the
size of the formulation grows rapidly with the size of the network; a great deal of
this growth is due to the complexity of modeling the arc cost functions, which
requires several variables and constraints for each arc of the network.

NAME # VARIABLES # CONSTRAINTS

R-8 142 282
R-30 618 1238
R-60 1342 2780

R-120 2734 5666
R-200 4396 9976

Table 9.2: Number of variables and of constraints of the MILP formu-
lation for the TDSPP.

The setup for numerical experiments is as follows: we compare the CGD and
SD branching algorithms discussed in Chapter 7 on the instances described in
Section 9.1. For each instance, we selected 100 unique source/target pairs at
random, and used our implementations of CGD and SD. For the smallest in-
stance (R-8), instead of selecting 100 source/target pairs at random, we tested
all possible source/target pairs. We allow Cplex’s cutting planes and preprocess-
ing at root node, with default parameters; time limit is set to two hours, whereas
there is no limit on the number of nodes. Since the value of the optimum is not
known in advance, heuristics were not disabled, in contrast to the experiments
in Chapter 7.

We report, for each instance, average values over all the shortest paths com-
putations. Source/destination pairs that are solved in less than two nodes by
both methods are not considered when computing the averages. We report the
following values (in the order in which they appear as columns):

9.2 Numerical experiments with the linear formulation 161

• percentage of instances solved to optimality by SD within the two hours
time limit;

• percentage of instances solved to optimality by CGD within the two hours
time limit;

• average number of nodes enumerated by SD on instances which are solved
by both methods;

• average CPU time (in seconds) of SD on instances which are solved by
both methods;

• average number of nodes enumerated by CGD on instances which are
solved by both methods;

• average CPU time (in seconds) of CGD on instances which are solved by
both methods;

• average number of nodes enumerated by SD on instances which are un-
solved by either method;

• average relative integrality gap left by SD on instances unsolved by either
method, computed as (ub−lb)/ub where ub is the best known upper bound
(i.e. primal feasible solution) and lb the best known lower bound after two
hours;

• average number of nodes enumerated by CGD on instances which are un-
solved by either method;

• average relative integrality gap left by CGD on instances unsolved by ei-
ther method, computed as (ub − lb)/ub where ub is the best known upper
bound and lb the best known lower bound after two hours.

All averages are geometric, computed as in Section 7.4. Note that, since we
do not known the optimal solution a priori, we record the amount of relative
integrality gap left, i.e. not closed; therefore, optimality is attained when this
value becomes 0%. On all instances, Cplex’s heuristics were able to find at least
one feasible solution. The first feasible solution is typically discovered at root
node in almost all cases.

Table 9.3 shows that CGD consistently performs better than SD on average.
On the smallest road network (R-8), all shortest path computations are solved
to optimality at root node; therefore, CGD and SD perform equally. As the size
of the road network increases, which corresponds to a larger number of vari-
ables and constraints, CGD closes a larger amount of gap per node. Instances
which are solved by both methods require fewer nodes and less CPU time on
average when employing our improved branching strategy CGD; similarly, on

162 Computational Experiments on the TDSPP

NUM. SOLVED UNSOLVED

SOLVED SD CGD SD CGD

SD CGD nodes time nodes time nodes gap nodes gap

R-8 100% 100% 0 0.02 0 0.02 - - - -

R-30 98% 93% 2508 345.95 80 34.15 - - - -

R-60 55% 60% 845 82.95 74 22.75 57133 87.7% 30792 70.4%

R-120 40% 40% 317 62.39 53 48.50 23991 83.6% 13405 75.8%

R-200 23% 42% 1349 701.08 378 433.46 8599 97.4% 4385 93.7%

Table 9.3: Comparison of the SD and CGD branching algorithms on
the MILP formulation for the time-dependent shortest paths problem.

instances which are unsolved by either method we close a larger integrality gap,
even though we enumerate fewer nodes in the 2 hours time limit. Although
it may look counterintuitive that the number of nodes (and CPU time for un-
solved instances) decreases as the size of the instance increases, this depends
on the way the average values are computed. In fact, results are computed on
instances that are solved by both methods, and on instances that are unsolved
by either method. As the size of the instances grows, only very easy shortest
path computations are carried out to optimality; therefore, there is a decrease
in the number of nodes required on average on solved instances, but the num-
ber of such instances also decreases (which can be seen in the second and third
column). Similarly, we enumerate fewer nodes in two hours on the unsolved
instances, because the LP relaxation becomes more expensive. We note that,
for moderate size instances already, not all shortest path computations can be
carried out to optimality within the time limit; this is due to the large number
of variables and constaints, and to the weakness of the LP relaxation, which
makes increasing the lower bound very difficult. In order to deal with full city-
sized road networks, it would probably be necessary to give up some accuracy
in the network modeling, so as to have a manageable number of variables and
constraints. However, the most effective branching strategy proposed in Chap-
ter 7 shows an improvement over traditional branching rules on shortest path
instances too, assessing its practical usefulness.

9.3 Numerical experiments with the nonlinear

formulation

In this section we discuss the computational experiments carried out on the
MINLP formulation for the TDSPP. As for the linear case, we give more details
on the formulation; then, we discuss the modifications that we applied to the
RECIPE algorithm (Chapter 8) to increase its performance on this particular
kind of problems. Finally, we present computational results.

9.3 Numerical experiments with the nonlinear formulation 163

9.3.1 Formulation

We tested our VNS-based heuristic algorithm for MINLPs on the following math-
ematical formulation:

min τt

∀v ∈ V
∑

(i,j)∈A mv
ijxij = bv

∀v ∈ V τv ≤ dv

∀(i, j) ∈ A xij(di + cij +
∑2

k=1 ake
−

(di−µk)2

2σ2
k) ≤ τj

∀(i, j) ∈ A xij ∈ {0, 1}
∀v ∈ V τi ≥ 0.

In the third constraint, we reformulated the product between xij and di intro-
ducing an additional variable for each product and additional linear constraints
(94).

9.3.2 Modifications to RECIPE

The RECIPE algorithm is a general purpose VNS-based heuristic for nonconvex
MINLPs. However, in this section we are focusing on a particular class of prob-
lems, that share a common structure. Therefore, we slightly modified RECIPE
to increase its performance on the problem at hand. The modifications affect
the initialization phase of the algorithm. Recall that RECIPE is basically a mul-
tistart algorithm until a first feasible solution is found; only then, the main part
of the algorithm enters into play. In the general purpose algorithm described in
Chapter 8, the initialization phase alternates between a continuous NLP solver
and a (convex) MINLP solver, with different starting points, until the first fea-
sible solution is found. For the shortest paths problem, we introduced a more
complex initialization phase, that always provides a feasible solution (if one ex-
ists) by applying a simple heuristic.

The new initialization phase works as follows. First, we compute the short-
est path between source and target node on the graph with static costs cij . This
is done very quickly because it only requires solving a linear program, and pro-
vides a feasible path p between the source and the target. Then, we set the de-
parture time from the source node to 0, and follow the path p until we reach the
target. For each arc (i, j) that we encounter on the path, we have already com-
puted a feasible departure time di from i. We calculate the time-dependent cost
c(i, j, di) of arc (i, j) at time di, and set τj and dj equal to di + c(i, j, di). This yields
a feasible assignment of all the variables, and can be done in linear time in the
number of arcs. Note that this step can be carried out regardless of the form of
c(i, j, di).

The modified initialization phase provides an initial feasible solution in a
very short time. We employ Cplex to solve the linear program that yields the ini-
tial feasible path p; in our experiments, this always required less than a second

164 Computational Experiments on the TDSPP

of CPU time. Although the solution that we compute through this heuristic may
be far from the optimum, it still provides a starting point for our VNS-based al-
gorithm. An additional advantage is that we are able to detect immediately if
there is no path between the source and the destination node, i.e. if no feasible
solution exists.

9.3.3 Computational results

Numerical experiments were run as follows: for each instance described in Sec-
tion 9.1, we generated 100 distinct source/destination pairs at random, and em-
ployed the RECIPE algorithm that is discussed in Chapter 8 with the modifica-
tions presented in Section 9.3.2. For the smallest instance (R-8), instead of se-
lecting 100 source/target pairs at random, we tested all possible source/target
pairs.

We ran some preliminary tests with different solvers employed on this for-
mulation within RECIPE (minlp bb and bonmin (26)), as well as the exact Branch-
and-Bound solver couenne for nonconvex MINLPs (see (23; 22)). All these solvers
experienced severe numerical difficulties due to the summation of Gaussian
functions, which turned out to be very difficult to treat: in several cases, the con-
tinuous relaxation of the problem is not solved to feasibility by the NLP solvers
employed within minlp bb, bonmin and couenne, even though a feasible solution
exists. Therefore, we decided to replace each Gaussian function G(µk, σk) with
its Taylor series up to the fourth term, centered at µk, for all time instants less
than 3σk away from the mean. The contribution of each Gaussian was consid-
ered to be zero for τ ∈ T : |τ − µk| ≥ 3σk. To truncate the power series, we used
a binary variable for each Gaussian term, which indicates whether the function
is active or not. Note that the feasibility heuristic described in Section 9.3.2 can
still be applied: we compute a feasible assignment of the binary variables that
determine whether a Gaussian function on arc (i, j) is active or not (depend-
ing on the departure time di from node i), then we compute the cost of the arc
defined through the Taylor series.

In Table 9.4 we report the number of variables and of constraints for all
test instances with the MINLP formulation described above, before preprocess-
ing. Again, the flow conservation constraints have only two nonzeroes per row,
therefore part of the constraint matrix is very sparse. We were not able to solve
instances larger than R-60 in a reasonable amount of time; in particular, the
convex MINLP solver minlp bb employed during the local search phase by our
RECIPE algorithm is not able to provide a solution within the 3 hours time
limit for instances larger than R-60. The same applies to couenne, whose pri-
mal heuristics fail due to the size of the problem, and no feasible solution is
found within the time limit.

Since the NLP relaxations encountered during the solution process are ex-
pensive, and we did not want to invest too much time on each shortest path

9.3 Numerical experiments with the nonlinear formulation 165

NAME # VARIABLES # CONSTRAINTS

R-8 142 142
R-30 308 308
R-60 696 696

Table 9.4: Number of variables and of constraints of the MINLP for-
mulation for the TDSPP.

computation, we used different parameters than those reported in Chapter 8:
we set kmax = 30, L = 5, and 3 hours as maximum CPU time. We compare our
results with the solution obtained with the nonconvex MINLP solver couenne,
setting a 3 hours time limit. We report the following statistics, listed in the order
in which they appear as columns:

• percentage of instances on which RECIPE finds a better feasible solution
with respect to couenne (with a relative improvement of at least 1% in the
value of the objective function);

• percentage of instances on which couenne finds a better feasible solution
with respect to RECIPE (with a relative improvement of at least 1% in the
value of the objective function);

• average relative integrality gap left by RECIPE, computed as (ub − lb)/ub
where ub is the best feasible solution found and lb the best known lower
bound provided by couenne after the two hours time limit;

• average relative integrality gap left by couenne, computed as (ub − lb)/ub
where ub is the best feasible solution found and lb the best known lower
bound after the two hours time limit;

• average relative improvement of the solution computed by RECIPE with
respect to the best solution provided by couenne, computed as:

|f ∗RECIPE − f ∗couenne|/f
∗
RECIPE;

• average CPU time required by RECIPE (in seconds);

• average CPU time required by couenne (in seconds).

All averages are geometric.
The results reported in Table 9.5 assess the reliability of our VNS-based heuris-

tic with respect to exact solution methods such as the one implemented by
couenne. The feasible solution provided by RECIPE is always at least as good
as the one provided by couenne in all runs. On the smallest instance (R-8),
RECIPE and couenne always find the same solution, which is proven to be op-
timal. RECIPE takes slightly longer before termination because it starts several

166 Computational Experiments on the TDSPP

BETTER SOL. INTEGRALITY GAP IMPR. CPU TIME

RECIPE couenne RECIPE couenne RECIPE couenne

R-8 0% 0% 0% 0.0% 0.0% 9.8 2.0

R-30 53% 0% 82.3% 88.4% 2.3% 6189.2 10848.6

R-60 80% 0% 99.5% 100.0% 28.5% 8514.0 10788.4

Table 9.5: Comparison of RECIPE and couenne on the MINLP formu-
lation for the time-dependent shortest paths problem.

local searches, whereas couenne is able to prove optimality in a very short time.
Overall, on such a small instance using an exact method such as couenne seems
like a better option, because we have a guarantee of optimality and running
times are short. However, if we increase the size of the underlying road net-
work, then RECIPE becomes more appealing with respect to couenne: on aver-
age, the solution quality increases by a factor that becomes larger as the size of
the instances grows. Correspondigly, the amount of integrality not closed de-
creases. Note that for the R-60 instance the amount of integrality gap left is al-
most 100%, because on most instances couenne is not able to increase the lower
bound to a value larger than zero; but the improvement in the objective value
of the solution found by RECIPE with respect to couenne is significant. More-
over, RECIPE is fast: on several instances, an application of RECIPE terminates
before the 3 hours time limit, whereas couenne hits the time limit on almost all
instances (which is shown by an average running time close to 3 hours). Sum-
marizing, our heuristic algorithm performs on average very well on these short-
est path instances, finding better solutions than the exact Branch-and-Bound
solver couenne within the allotted time frame; the only exception is given by
very small instances, where RECIPE and couenne always find the same optimal
solution, but couenne is slightly faster. Unfortunately, we were not able to ap-
ply RECIPE to larger instances because of the failure of the local solvers when
dealing with too many variables and constraints, but we have no reasons to be-
lieve that RECIPE would not scale well if the local solvers were able to deal with
larger problem sizes.

Part III

Conclusions and Bibliography

Chapter 10

Summary and Future Research

10.1 Summary

We considered the problem of finding the shortest path between two nodes
on a large-scale time-dependent graph, which has many interesting practical
applications. The problem is theoretically solved in an efficient way by Dijk-
stra’s algorithm under the FIFO property, but there are many real-time applica-
tions where employing Dijkstra’s algorithm would take too much time. Thus,
we analysed speedup techniques for this algorithm. Moreover, we proposed a
mathematical programming formulation for the point-to-point shortest path
problem, starting from a classical formulation for static graphs and modifying
it in order to take into account time-dependency in non-FIFO networks and
possibly nonlinear time-dependent cost functions. We analyzed the resulting
formulation, which is a MILP if the arc cost functions are linear or piecewise lin-
ear, whereas it is a MINLP if they are arbitrary nonlinear functions. We studied
algorithms for both classed of problems, and tested them on both benchmark
instances taken from the literature and shortest path instances.

First, we reviewed existing speedup techniques, both for static graphs and
for time-dependent graphs. This allowed us to underline that the fastest al-
gorithms typically rely on hierarchical approaches, sometimes combined with
goal directed search. However, hierarchical methods are inherently bidirec-
tional, and bidirectional search cannot be directly applied on time-dependent
graphs. Therefore, we tried to overcome this problem. We discussed a method
based on defining small node sets with an approximation guarantee; Dijkstra
searches are constrained to explore only nodes in these precomputed sets, hence
the number of touched nodes decreases. We analyzed advantages and draw-
backs of this approach. We developed a general framework for bidirectional
search on time-dependent graphs; the main idea is to run a time-dependent
forward search, and a time-independent backward search whose purpose is
to bound the set of nodes explored by the forward search. Following this ap-
proach, we are able to improve the efficacy of the ALT algorithm, which is a

170 Summary and Future Research

clever application of the well known A∗ algorithm to road networks; part of
this improvement is due to the strengthening of the lower bounds to distances
within the graph which are used throughout the algorithm. We proved correct-
ness of the proposed method, and also proposed several enhancements. As
a consequence, we were able to apply a two-levels hierarchical approach on
time-dependent graphs. This is based on the idea of selecting a small subnet-
work which contains important arcs; then, most of the calculations are carried
out on the subnetwork, so that fewer nodes have to be explored. In analogy
with the real world, this can be viewed as the motorway network, which is a
subset of the original road network: when planning the route between two suffi-
ciently distant points, local roads are considered only in a small radius centered
on the departure and the destination point, but most of the path relies on mo-
torway segments. From a theoretical point of view, our two-levels hierarchical
approach could be extended to a multi-level hierarchy. However, our compu-
tational experiments, as well as numerical experiences reported in the litera-
ture, suggest that multi-level hierarchies do not work well for time-dependent
graphs as they do for static graphs. Therefore, we only considered at most two
levels.

One of the advantages of our method is its straightforward extension to dy-
namic scenarios, that is, scenarios where the cost functions on arcs are not
fixed, but can be updated from time to time. This is a practical problem which
has been previously described in the literature for the static case, but which had
not been tackled in the time-dependent case. It turns out that we only need a
small computational overhead to restore optimality of the hierarchy whenever
some cost functions are updated. The amount of necessary work depends on
the number and the position of the updated arcs: our algorithm benefits from
spatial locality; therefore, if several contiguous arcs have their cost changed, we
can run the update in an efficient way. We remark that, for real world applica-
tions, this is often the case: traffic jams typically extend over several adjacent
road segments.

We provided extensive computational experiments to show the effective-
ness of our approach on real world data. We tested the algorithm on two differ-
ent road networks: the road network of Western Europe with generated time-
dependent data, which is commonly used as a benchmark in the literature, and
the road network of France with real world time-dependent data. We analysed
the performance of our algorithm taking into account different criteria, and
comparing with other existing methods. The main improvement of our ap-
proach with respect to the existing algorithms is the significant reduction (two
orders of magnitude, if comparing to Dijkstra’s algorithm or unidirectional ALT)
of the average number of settled nodes for a path computation, which leads to
average query times of a few milliseconds. Only the recently developed SHARC
algorithm is faster than our method; however, SHARC cannot deal with the dy-
namic scenario. Moreover, our method can also compute approximated solu-

10.1 Summary 171

tions, with approximation guarantee defined at query time; if we are willing
to accept a maximum approximation of 5%, then our algorithm is faster than
SHARC. Optimality of the hierarchy after modifications in the cost functions
can be restored very quickly, if the algorithm is parameterized to do so; indeed,
there is a trade off between query speed and update speed, which depends on
the values of the parameters for the preprocessing phase. We analysed the al-
gorithm performance for several values of these parameters, so as to provide
enough information to strike a good balance for real world applications.

We described a real world application: we integrated an implementation of
our algorithm in C++ within an existing industrial platform which collects, gath-
ers and treats real-time traffic information and traffic forecasts. Our aim was to
provide a path computation service for the website of the Mediamobile com-
pany, which deals with traffic information and, as such, required an algorithm
capable of answering several shortest path queries per second taking into ac-
count the most recent available traffic forecasts. To this end, we proposed a
least squares algorithm to modify the arc cost functions, so as to fit the traffic
forecasts as much as possible at each update.

Within the context of solving MILPs with Branch-and-Bound, we proposed
two methods to generate good split disjunctions for branching: a heuristic ap-
proach that solves a quadratic optimization problem, and a mathematical for-
mulation that models the problem of finding a split disjunction closing a large
gap at the current node. Computational experiments show that both methods
are able to close more gap with respect to the traditional branching rule, which
consists in branching on a single variable with fractional value. We proposed a
combination of the heuristic procedure based on a quadratic formulation with
branching on single variables, and showed that the resulting branching algo-
rithm, which we called CGD, is very effective in practice. Indeed, on a large
set of test instances, CGD performs better than branching on single variables
only, both in terms of size of the enumeration tree and in terms of computing
time. Moreover, we are able to solve one very difficult instance, which is typi-
cally not solved by commercial software. We implemented a branching scheme
based on the mathematical formulation that models the problem of finding a
split disjunction closing a large gap, and we tested it on several heterogeneous
instances. This method is indeed capable of closing more gap with respect to
branching on single variables on the majority of test instances, but it requires
considerably more time, which does not seem to be worth the extra effort. If
compared to the heuristic procedure based on a quadratic formulation, this
approach seems to work better on the difficult instances, but the heuristic pro-
cedure is significantly faster.

Finally, we described a heuristic approach to solving nonconvex MINLPs.
Our method, called RECIPE, combines several existing exact, approximate and
heuristic techniques: the global search phase is cohordinated by the VNS meta-
heuristic, whereas the local search employs both continuous NLP and convex

172 Summary and Future Research

MINLP solvers, with a neighbourhood structure defined through hyperrectan-
gles and local branching. This results in an algorithm that can successfully solve
many difficult MINLPs without hand-tuned parameter configuration. Such a
reliable solver would be particularly useful in industrial applications where the
optimum quality is of relative importance and the optimization layer is hidden
from user intervention and is therefore “just supposed to work”. Over a large
collection of benchmark instances taken from the literature, not only we find
the best known solution for the majority of the test problems, but in some cases
we improve over the best known objective value, while requiring very low com-
putational times.

The mathematical programming formulation that we proposed for the time-
dependent shortest paths problem on non-FIFO networks turned out to be
very challenging for MILP and MINLP solvers; one of the difficulties is given
by the large number of variables and constraints that arise in the formulation
and are necessary to model arc costs. Computational experiments on short-
est path instances showed that, on the MILP formulation, the branching rules
discussed in this thesis achieved good results, cutting down the number of re-
quired nodes by a significant factor on average. CPU times also benefited from
the proposed approach. Despite developing a specially tailored initialization
phase for RECIPE on this particular kind of shortest paths instances, we could
only solve the MINLP formulation on small networks; numerical troubles af-
fect both our heuristic VNS-based algorithm and exact solvers for nonconvex
MINLPs. On the instances that we were able to solve, RECIPE showed good
results, finding near-optimal solutions for almost all instances in a short CPU
time.

Summarizing, we reviewed the most successfull algorithms for the point-
to-point shortest path problem on static road networks, which rely on two dif-
ferent approaches, often mixed together: goal directed search and hierarchi-
cal routing. Our aim was to apply the same techniques on time-dependent
road networks. To do so, we improved an existing algorithm for goal directed
search in the time-dependent case, and we developed a framework for bidi-
rectional search, that allowed an easy generalization of hierarchical routing to
time-dependent networks. Computational experiments confirmed the efficacy
in practice of our ideas. Moreover, our algorithm is the first method which is
able to deal in an efficient way with dynamic time-dependent scenarios, that
is, applications where the time-dependent arc cost functions are not fixed and
known a priori, while still yielding a speedup of more than two orders of mag-
nitude with respect to Dijkstra’s algorithm. We proposed a mathematical pro-
gramming formulation for the TDSPP. We studied improvements for the widely
used Branch-and-Bound algorithm for MILPs, resulting in an average reduc-
tion of the number of enumerated nodes by a factor of two and an excellent
perfomance on some well known hard instances. These improvements rely on
the selection of a branching decision which is different from the standard rule

10.2 Future research 173

of branching on a single variable. We presented a general purpose heuristic for
nonconvex MINLPs, which combines several off-the-shelf components into an
effective and fast solver for this difficult class of problems. We tested the pro-
posed approach on the mathematical formulation for the TDSPP, analyzing the
computational results.

10.2 Future research

Even if the speed and versatility showed by the shortest paths algorithm pro-
posed in this thesis should be sufficient for most practical applications, there is
still much room for research in the field. For some applications, it would be de-
sirable to have very fast query times and no additional overhead when changing
the cost functions. Examples of this are route planners which use different cost
functions depending on the vehicle type that is querying the path computing
service. Although this seems an impossible challenge, it is still an interesting
subject of research, maybe assuming some restrictions on the cost functions to
simplify the problem. If the cost functions are similar, the SHARC algorithm
discussed in Section 1.4.6 has showed promising result. Another interesting di-
rection for future research is multicriteria optimization. Routing applications
in general networks (not necessarily road networks) often have to deal with sev-
eral objective functions that the user would like to minimize; e.g., travelling
time and number of connections for railway routing, or travelling time and mo-
torway fees for road networks. How to formalize this problem is unclear. Some
approaches rely on finding all the Pareto optima, and let the user choose among
them. However, computing all the Pareto optima is a difficult task, and could
greatly benefit from speedup techniques. We believe that the techniques pre-
sented in this thesis could be used as a building brick for efficient algorithms
in the multiobjective case. At the moment of finalizing this thesis, we are aware
that an extension of the SHARC algorithm shows very good preliminary results
(42). The greatest drawbacks of SHARC are its long preprocessing time and the
capability of dealing with static scenarios only. It would be interesting to hy-
bridize SHARC with the techniques proposed in this work, so as to be able to
perform efficient multicriteria optimization on dynamic networks.

Concerning the computation of split disjunctions to be employed as branch-
ing decisions in MILPs, one of the main questions which still has to answered
is: given a good disjunctions, is it more profitable to branch on it or to use it to
generate a cutting plane? So far, the answer is not clear, and the question pro-
vides an interesting challenge to the integer programming community. Devis-
ing fast and efficient heuristics to generate strong disjunctions is another field
which is currently studied by several research groups. It is important to note
that at the moment it is not known how much benefit could be brought by a
“perfect” branching strategy: for cutting planes, some studies have underlined

174 Summary and Future Research

that there is still a large gap between the performance obtained by commonly
implemented cutting planes and the theoretically achievable maximum. But it
is difficult to undertake the same study for branching decisions. It is known that
a decrease of the number of nodes of at least a factor of two can be obtained by
carefully choosing a branching disjunction; if this result could be achieved with
a very small computational effort, branching on general disjunctions would
become interesting for commercial solvers as well. We believe that our work
moves some steps in that direction.

Finally, heuristic approaches to the solution of nonconvex MINLPs have the
potential to play an important role in the near future. Some very large problems
can probably be solved only through heuristics, but what is more interesting is
that Branch-and-Bound solvers for MINLPs are trying to reach a maturity level
similar to those for MILPs, and one of the main differences between the two is
the number of available primal heuristics. Obviously, obtaining good feasible
solutions is critical for the performance of a Branch-and-Bound, and to this end
commercial MILP codes have sometimes tens of fast heuristics. This trend has
increased in recent years, and nonconvex MINLP solvers should probably fol-
low the same steps if they want to be perceived as reliable and effective as their
linear counterparts. Our VNS algorithm could be used within a Branch-and-
Bound solver as a primal heuristic. There is of course room for improvement
in the algorithm itself. It would be desirable to be able to find a first feasible
solution as soon as possible; currently, we rely on a convex Branch-and-Bound
solver used in a heuristic way to perform this task. The starting point provided
to the solver determines the chances of finding such a solution. We believe
that employing constraint programming techniques to round to the nearest in-
teger as many fractional integer variables as possible, while still maintaining
constraint feasibility, could greatly help. We also plan to test different solvers
to evaluate performance as a stand-alone heuristic, and to reduce the number
of parameters of the algorithm; preliminary tests show that a different combi-
nation of solvers through the main phase of the algorithm yields significantly
better solution quality, although at the expense of a longer CPU time.

Acknowledgements

First of all, I want to thank Leo Liberti for giving me the possibility of working
on this thesis: he always encouraged me to try harder, and much of this work
would not have been done if it were not for him. I could not hope for a better
advisor.

But he is not the only one who deserves credit. Philippe Baptiste, Philippe
Goudal and Daniel Krob played an important part in advising me, although
with different roles, and so did all the people I often worked with, especially:
Benjamin Becquet, Gerard Cornuéjols, Daniel Delling, Nenad Mladenović, Do-
minik Schultes. They made this thesis possible. I also want to thank everyone
at Mediamobile for always being helpful and friendly, and Tapio Westerlund for
carefully checking through some misprints on the MINLPLib website.

Last but not least, the only people I could always count on, despite many
difficulties: my family and my friends. I will not name each and every one of
you, but you know who you are. Thanks for everything.

176

Disclaimer

Parts of this thesis have appeared, or are going to appear, in the following works:
(38; 43; 44; 99; 109; 110; 111; 112; 113; 114). Copyright is held by the editors,
where applicable.

178

References

[1] K. Aardal, R. E. Bixby, C. A. J. Hurkens, A. K. Lenstra, and J. W. Smeltink.
Market split and basis reduction: Towards a solution of the Cornuéjols-
Dawande instances. INFORMS Journal on Computing, 12(3):192–202,
2000.

[2] K. Abhishek, S. Leyffer, and J. Linderoth. Filmint: An outer-
approximation based solver for nonlinear mixed-integer programs. Tech-
nical Report ANL/MCS-P1374-0906, Argonne National Laboratory, 2007.

[3] C. Adjiman, I. Androulakis, and C. Floudas. Global optimization of
MINLP problems in process synthesis and design. Computers & Chem-
ical Engineering, 21:S445–S450, 1997.

[4] R. Ahuja, T. Magnanti, and J. Orlin. Network flows: theory, algorithms,
and applications. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1993.

[5] R. Ahuja, J. Orlin, S. Pallottino, and M. Scutellà. Dynamic shortest paths
minimizing travel times and costs. Networks, 41(4):197–205, 2003.

[6] M. Ajtai. The shortest vector problem in l2 is NP-hard for randomized
reductions. In Proceedings of the 30th Annual ACM Symposium on Theory
of Computing, Dallas, TX, 1998.

[7] Proceedings of the 8th Workshop on Algorithm Engineering and Experi-
ments (ALENEX 06), Lecture Notes in Computer Science. Springer, 2006.

[8] K. Andersen, G. Cornuéjols, and Y. Li. Reduce-and-split cuts: Improving
the performance of mixed integer Gomory cuts. Management Science,
51(11):1720–1732, 2005.

[9] M. Aouchiche, J. Bonnefoy, A. Fidahoussen, G. Caporossi, P. Hansen,
L. Hiesse, J. Lacheré, and A. Monhait. VNS for extremal graphs 14: The
AGX 2 system. In Liberti and Maculan (98), pages 281–308.

[10] E. Balas. Intersection cuts - a new type of cutting planes for integer pro-
gramming. Operations Research, 19(1):19–39, 1971.

180 REFERENCES

[11] E. Balas. Disjunctive programming. Annals of Discrete Mathematics, 5:3–
51, 1979.

[12] E. Balas, S. Ceria, and G. Cornuéjols. Mixed 0-1 programming by
lift-and-project in a branch-and-cut framework. Management Science,
42(9):1229–1246, 1996.

[13] E. Balas and A. Saxena. Optimizing over the split closure. Mathematical
Programming, 113(2):219–240, 2008.

[14] C. Barrett, K. Bisset, M. Holzer, G. Konjevod, M. Marathe, and D. Wag-
ner. Engineering label-constrained shortest-path algorithms. In AAIM
’08: Proceedings of the 4th international conference on Algorithmic Aspects
in Information and Management, pages 27–37, Berlin, Heidelberg, 2008.
Springer-Verlag.

[15] C. Barrett, R. Jacob, and M. Marathe. Formal language constrained path
problems. SIAM Journal of computing, 30(3):809–837, 2001.

[16] H. Bast, S. Funke, P. Sanders, and D. Schultes. Fast routing in road net-
works with transit nodes. Science, 316(5824):566, 2007.

[17] V. Batz, R. Geisberger, and P. Sanders. Time dependent contrac-
tion hierarchies — basic algorithmic ideas. Technical report, Uni-
versität Karlsruhe (TH), 2008. Available from World Wide Web:
http://arxiv.org/abs/0804.3947.

[18] R. Bauer and D. Delling. SHARC: Fast and Robust Unidirectional Rout-
ing. In Proceedings of the 10th Workshop on Algorithm Engineering and
Experiments (ALENEX 08), pages 13–26. SIAM, 2008.

[19] R. Bauer, D. Delling, P. Sanders, D. Schieferdecker, D. Schultes, and
D. Wagner. Combining hierarchical and goal-directed speed-up tech-
niques for dijkstra’s algorithm. In McGeoch (104), pages 303–318.

[20] M. S. Bazaraa and R. W. Langley. A dual shortest path algorithm. SIAM
Journal on Applied Mathematics, 26(3):496–501, 1974.

[21] M. Beckmann, C. McGuire, and C. Winsten. Studies in the economics of
transportation. Technical Report RM-1488, RAND Corporation, 1955.

[22] P. Belotti. Couenne, an open-source solver for mixed-integer nonconvex
problems. In preparation.

[23] P. Belotti, J. Lee, L. Liberti, F. Margot, and A. Wäcther. Branching
and bounds tightening techniques for non-convex MINLP. Techni-
cal Report RC24620, IBM, 2008. Available from World Wide Web:
http://www.optimization-online.org/DB_HTML/2008/08/2059.html.

http://arxiv.org/abs/0804.3947
http://www.optimization-online.org/DB_HTML/2008/08/2059.html

REFERENCES 181

[24] P. Bonami, L. Biegler, A. Conn, G. Cornuéjols, I. Grossmann, C. Laird,
J. Lee, A. Lodi, F. Margot, N. Sawaya, and A. Wächter. An algorithmic
framework for convex Mixed Integer Nonlinear Programs. Technical Re-
port RC23771, IBM Corporation, 2005.

[25] P. Bonami, G. Cornuéjols, A. Lodi, and F. Margot. A feasibility pump for
Mixed Integer Nonlinear Programs. Technical Report RC23862 (W0602-
029), IBM Corporation, 2006.

[26] P. Bonami and J. Lee. BONMIN user’s manual. Technical report, IBM Corpo-
ration, June 2007.

[27] J. Brimberg and N. Mladenović. A variable neighbourhood algorithm for
solving the continuous location-allocation problem. Studies in Location
Analysis, 10:1–12, 1996.

[28] A. Brook, D. Kendrick, and A. Meeraus. Gams, a user’s guide. ACM
SIGNUM Newsletter, 23(3-4):10–11, 1988.

[29] L. Buriol, M. Resende, and M. Thorup. Speeding up dynamic
shortest path algorithms. INFORMS Journal on Computing,
accepted for publication. Available from World Wide Web:
http://www.research.att.com/~mgcr/doc/dspa.pdf.

[30] M. R. Bussieck, A. S. Drud, and A. Meeraus. MINLPLib — a collection of
test models for Mixed-Integer Nonlinear Programming. INFORMS Jour-
nal on Computing, 15(1), 2003.

[31] I. Chabini. Discrete dynamic shortest path problems in transportation
applications: complexity and algorithms with optimal run time. Trans-
portation Research Records, 1645:170–175, 1998.

[32] I. Chabini and S. Lan. Adaptations of the A∗ algorithm for the compu-
tation of fastest paths in deterministic discrete-time dynamic networks.
IEEE Transactions on Intelligent Transportation Systems, 3(1):60–74, 2002.

[33] Coin-or branch-and-cut. Available from World Wide Web:
https://projects.coin-or.org/Cbc.

[34] Coin-or cut generation library. Available from World Wide Web:
https://projects.coin-or.org/Cgl.

[35] A. Consulting and Development. SBB Release Notes, 2002.

[36] K. Cooke and E. Halsey. The shortest route through a network with time-
dependent internodal transit times. Journal of Mathematical Analysis
and Applications, 14:493–498, 1966.

http://www.research.att.com/~mgcr/doc/dspa.pdf
https://projects.coin-or.org/Cbc
https://projects.coin-or.org/Cgl

182 REFERENCES

[37] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms. MIT Press, second edition, 2001.

[38] G. Cornuéjols, L. Liberti, and G. Nannicini. Improved strate-
gies for branching on general disjunctions. Technical Report
2071, Optimization Online, 2008. Available from World Wide Web:
http://www.optimization-online.com.

[39] C. Daganzo. Reversibility of time-dependent shortest path prob-
lem. Technical report, Institute of Transportation Studies, Univer-
sity of California, Berkeley, 1998. Available from World Wide Web:
http://repositories.cdlib.org/its/reports/UCB-ITS-RR-98-14.

[40] B. C. Dean. Continuous-time dynamic shortest path algorithms. Master’s
thesis, Massachussets Institute of Technology, 1999.

[41] D. Delling. Time-Dependent SHARC-Routing. In Proceedings of the 16th
Annual European Symposium on Algorithms (ESA’08), volume 5193 of Lec-
ture Notes in Computer Science, pages 332–343. Springer, Sept. 2008.

[42] D. Delling. Engineering and Augmenting Route Planning Algorithms.
PhD thesis, Fakultät für Informatik, Universität Fridericiana zu Karlsruhe
(TH), Germany, Feb. 2009.

[43] D. Delling and G. Nannicini. Bidirectional Core-Based Routing in Dy-
namic Time-Dependent Road Networks. In S.-H. Hong, H. Nagamochi,
and T. Fukunaga, editors, Proceedings of the 19th International Sympo-
sium on Algorithms and Computation (ISAAC 08), volume 5369 of Lecture
Notes in Computer Science, pages 813–824. Springer, 2008.

[44] D. Delling and G. Nannicini. Core routing on dynamic time-dependent
road networks. Technical Report 2156, Optimization Online, 2008. Avail-
able from World Wide Web: http://www.optimization-online.com.

[45] D. Delling, P. Sanders, D. Schultes, and D. Wagner. Highway Hierarchies
Star. In C. Demetrescu, A. V. Goldberg, and D. S. Johnson, editors, Shortest
Paths: Ninth DIMACS Implementation Challenge, DIMACS Book. Ameri-
can Mathematical Society, 2008. accepted for publication, to appear.

[46] D. Delling and D. Wagner. Landmark-based routing in dynamic graphs.
In Demetrescu (47), pages 52–65.

[47] C. Demetrescu, editor. 6th Workshop on Experimental Algorithms, vol-
ume 4525 of LNCS, New York, 2007. Springer.

[48] R. B. Dial. Algorithm 360: shortest-path forest with topological ordering
[h]. Communications of the ACM, 12(11):632–633, 1969.

http://www.optimization-online.com
http://repositories.cdlib.org/its/reports/UCB-ITS-RR-98-14
http://www.optimization-online.com

REFERENCES 183

[49] E. Dijkstra. A note on two problems in connexion with graphs. Nu-
merische Mathematik, 1:269–271, 1959.

[50] R. Dionne. Étude et extension d’un algorithme de Murchland. INFOR,
16:132–146, 1978.

[51] M. Dražic, V. Kovačević-Vujčić, M. Čangalović, and N. Mladenović. Glob
— a new VNS-based software for global optimization. In Liberti and Mac-
ulan (98), pages 135–154.

[52] M. Drazić, C. Lavor, N. Maculan, and N. Mladenović. A continuous VNS
heuristic for finding the tridimensional structure of a molecule, 2004.

[53] S. Dreyfus. An appraisal of some shortest-path algorithms. Operations
Research, 17(3):395–412, 1969.

[54] M. Duran and I. Grossmann. An outer-approximation algorithm for a
class of mixed-integer nonlinear programs. Mathematical Programming,
36:307–339, 1986.

[55] G. Fandel and T. Gal, editors. Multiple Criteria Decision Making – Theory
and Applications, volume 177 of Lecture Notes in Economics and Mathe-
matical Systems. Springer Verlag, Berlin, 1980.

[56] M. Fischetti and A. Lodi. Local branching. Mathematical Programming,
98:23–37, 2003.

[57] R. Fletcher and S. Leyffer. Solving Mixed Integer Nonlinear Programs by
outer approximation. Mathematical Programming, 66:327–349, 1994.

[58] R. Fletcher and S. Leyffer. Numerical experience with lower bounds for
MIQP branch-and-bound. SIAM Journal of Optimization, 8(2):604–616,
1998.

[59] R. Fletcher and S. Leyffer. User manual for filter. Technical report, Uni-
versity of Dundee, UK, Mar. 1999.

[60] L. R. Ford and D. R. Fulkerson. Modern Heuristic Techniques for Combi-
natorial Problems. Princeton University Press, Princeton, NJ, 1962.

[61] R. Fourer and D. Gay. The AMPL Book. Duxbury Press, Pacific Grove, 2002.

[62] M. Fredman and R. Tarjan. Fibonacci heaps and their use in improved
network optimization algorithms. Journal of the ACM, 34(3):596–615,
1987.

[63] G. Gallo. Reoptimization procedures in shortest path problems. Rivista
di Matematica per le Scienze Economiche e Sociali, 3:3–13, 1980.

184 REFERENCES

[64] R. Geisberger, P. Sanders, D. Schultes, and D. Delling. Contraction hier-
archies: Faster and simpler hierarchical routing in road networks. In Mc-
Geoch (104), pages 319–333.

[65] P. Gill. User’s guide for SNOPT version 7. Systems Optimization Labora-
tory, Stanford University, California, 2006.

[66] P. Gill, W. Murray, and M. Saunders. Snopt: An sqp algorithms for large-
scale constrained optimization. SIAM Journal of Optimization, 12(4):979–
1006, 2002.

[67] A. Goldberg and C. Harrelson. Computing the shortest path: A∗ meets
graph theory. In Proceedings of the 16th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA 2005), pages 156–165, Philadelphia, 2005.
SIAM.

[68] A. Goldberg, H. Kaplan, and R. Werneck. Reach for A∗: Efficient point-to-
point shortest path algorithms. In goldberg (7), pages 129–143.

[69] A. Goldberg, H. Kaplan, and R. Werneck. Better landmarks within reach.
In Demetrescu (47), pages 38–51.

[70] A. Goldberg and R. Werneck. Computing point-to-point shortest paths
from external memory. In C. Demetrescu, R. Sedgewick, and R. Tamassia,
editors, Proceedings of the 7th Workshop on Algorithm Engineering and
Experimentation (ALENEX 05), pages 26–40, Philadelphia, 2005. SIAM.

[71] A. V. Goldberg, H. Kaplan, and R. F. Werneck. Reach for A*: Shortest
Path Algorithms with Preprocessing. In C. Demetrescu, A. V. Goldberg,
and D. S. Johnson, editors, Shortest Paths: Ninth DIMACS Implementa-
tion Challenge, DIMACS Book. American Mathematical Society, 2008. ac-
cepted for publication, to appear.

[72] R. E. Gomory. An algorithm for integer solutions to linear programs. In
P. Wolfe, editor, Recent Advances in Mathematical Programming, pages
269–302. McGraw-Hill, New York, 1963.

[73] Google maps API. Available from World Wide Web:
http://code.google.com/apis/maps/.

[74] A. Halder. The method of competing links. Transportation Science, 4:36–
51, 1970.

[75] A. Halder. Some new techniques in transportation planning. Operational
Research Quarterly, 21:267–278, 1970.

http://code.google.com/apis/maps/

REFERENCES 185

[76] P. Hansen and N. Mladenović. Variable neighbourhood search: Principles
and applications. European Journal of Operations Research, 130:449–467,
2001.

[77] P. Hansen and N. Mladenović. Variable neighbourhood search. In
P. Pardalos and M. Resende, editors, Handbook of Applied Optimization.
Oxford University Press, Oxford, 2002.

[78] P. Hansen and N. Mladenović. Variable neighbourhood search. In
F. Glover and G. Kochenberger, editors, Handbook of Metaheuristics.
Kluwer, Dordrecht, 2003.

[79] P. Hansen, N. Mladenović, and D. Urošević. Variable neighbourhood
search and local branching. Computers and Operations Research,
33(10):3034–3045, 2006.

[80] E. Hart, N. Nilsson, and B. Raphael. A formal basis for the heuristic deter-
mination of minimum cost paths. IEEE Transactions on Systems, Science
and Cybernetics, SSC-4(2):100–107, 1968.

[81] M. Holzer, F. Schulz, and D. Wagner. Engineering multi-level overlay
graphs for shortest-path queries. In wagneroverlay (7), pages 156–170.

[82] T. Ikeda, M. Tsu, H. Imai, S. Nishimura, H. Shimoura, T. Hashimoto,
K. Tenmoku, and K. Mitoh. A fast algorithm for finding better routes by
ai search techniques. In Proceedings for the IEEE Vehicle Navigation and
Information Systems Conference, pages 291–296, 2004.

[83] ILOG. ILOG CPLEX 11.0 User’s Manual. ILOG S.A., Gentilly, France, 2007.

[84] M. Karamanov and G. Cornuéjols. Branching on general disjunctions.
Technical report, Carnegie Mellon University, 2005. Available from World
Wide Web: http://integer.tepper.cmu.edu.

[85] D. E. Kaufman and R. L. Smith. Fastest paths in time-dependent networks
for intelligent vehicle-highway systems application. Journal of Intelligent
Transportation Systems, 1(1):1–11, 1993.

[86] B. S. Kerner. The Physics of Traffic. Springer, Berlin, 2004.

[87] J. Krarup and M. N. Rorbech. Lp formulations of the shortest path tree
problem. 4OR, 2:259–274, 2004.

[88] A. H. Land and A. G. Doig. An automatic method of solving discrete pro-
gramming problems. Econometrica, 28(3):497–520, 1960.

http://integer.tepper.cmu.edu

186 REFERENCES

[89] C. Lavor, L. Liberti, and N. Maculan. Computational experience with the
molecular distance geometry problem. In J. Pintér, editor, Global Opti-
mization: Scientific and Engineering Case Studies. Springer, Berlin, 2006.

[90] S. Leyffer. User manual for MINLP BB. Technical report, University of
Dundee, UK, March 1999.

[91] L. Liberti. Reformulation and Convex Relaxation Techniques for Global
Optimization. PhD thesis, Imperial College London, UK, Mar. 2004.

[92] L. Liberti. Writing global optimization software. In Liberti and Maculan
(98), pages 211–262.

[93] L. Liberti. Reformulations in mathematical programming: Definitions
and systematics. RAIRO Operations Research, to appear.

[94] L. Liberti, S. Cafieri, and F. Tarissan. Reformulations in mathematical pro-
gramming: A computational approach. In A. Abraham, A.-E. Hassanien,
and P. Siarry, editors, Global Optimization: Theoretical Foundations and
Applications, Studies in Computational Intelligence. Springer, New York,
to appear.

[95] L. Liberti and M. Dražic. Variable neighbourhood search for the global
optimization of constrained NLPs. In Proceedings of GO Workshop, Alme-
ria, Spain, 2005.

[96] L. Liberti, C. Lavor, and N. Maculan. Double VNS for the molecular dis-
tance geometry problem. In Proc. of Mini Euro Conference on Variable
Neighbourhood Search, Tenerife, Spain, 2005.

[97] L. Liberti, C. Lavor, N. Maculan, and F. Marinelli. Double variable neigh-
bourhood search with smoothing for the molecular distance geometry
problem. Journal of Global Optimization, accepted for publication.

[98] L. Liberti and N. Maculan, editors. Global Optimization: from Theory to
Implementation. Springer, Berlin, 2006.

[99] L. Liberti, G. Nannicini, and N. Mladenović. A good recipe for solving
MINLPs. In V. Maniezzo, T. Stuetze, and S. Voss, editors, MATHEURIS-
TICS: Hybridizing metaheuristics and mathematical programming, Oper-
ations Research/Computer Science Interface Series. Springer, 2008.

[100] L. Liberti, P. Tsiakis, B. Keeping, and C. Pantelides. ooOPS. Centre for Pro-
cess Systems Engineering, Chemical Engineering Department, Imperial
College, London, UK, 2001.

[101] A. Lodi. Personal communication, 2007.

REFERENCES 187

[102] P. Loubal. A network evaluation procedure. Highway Research Record,
205:96–109, 1967.

[103] J. Maue, P. Sanders, and D. Matijevic. Goal directed shortest path queries
using precomputed cluster distances. In C. Alvarez and M. J. Serna, ed-
itors, WEA 2006, volume 4007 of LNCS, pages 316–327, New York, 2006.
Springer.

[104] C. McGeoch, editor. Proceedings of the 8th Workshop on Experimental Al-
gorithms (WEA 2008), volume 5038 of Lecture Notes in Computer Science,
New York, 2008. Springer.

[105] N. Mladenović, J. Petrović, V. Kovačević-Vujčić, and M. Čangalović. Solv-
ing a spread-spectrum radar polyphase code design problem by tabu
search and variable neighbourhood search. European Journal of Oper-
ations Research, 151:389–399, 2003.

[106] R. H. Möhring, H. Schilling, B. Schütz, D. Wagner, and T. Willhalm. Parti-
tioning graphs to speed up dijkstra’s algorithm. In S. E. Nikoletseas, editor,
WEA, volume 3503 of Lecture Notes in Computer Science, pages 189–202.
Springer, 2005.

[107] J. D. Murchland. The effect of increasing or decreasing the length of a
single arc on all shortest distances in a graph. London Businness School,
Transport Network Theory Unit, 1967.

[108] J. D. Murchland. A fixed matrix method for all shortest distances in a di-
rected graph and for the inverse problem. PhD thesis, University of Karl-
sruhe, 1970.

[109] G. Nannicini, P. Baptiste, G. Barbier, D. Krob, and L. Liberti. Fast paths
in large-scale dynamic road networks. Computational Optimization and
Applications, 2008.

[110] G. Nannicini, P. Baptiste, D. Krob, and L. Liberti. Fast computation of
point-to-point paths on time-dependent road networks. In B. Yang, D.-Z.
Du, and C. Wang, editors, Proceedings of the 2nd International Conference
on Combinatorial Optimization and Applications (COCOA 08), volume
5165 of LNCS, pages 225–234, Berlin, 2008. Springer.

[111] G. Nannicini, P. Baptiste, D. Krob, and L. Liberti. Fast paths in dynamic
road networks. In A. Quillot and P. Mahey, editors, Proceedings of ROADEF
08, Clermont-Ferrand, 2008. Université Blaise Pascal.

[112] G. Nannicini, D. Delling, L. Liberti, and D. Schultes. Bidirectional A∗

search for time-dependent fast paths. In McGeoch (104), pages 334–346.

188 REFERENCES

[113] G. Nannicini, D. Delling, L. Liberti, and D. Schultes. Bidirectional
A∗ search on time-dependent road networks. Technical Report
2154, Optimization Online, 2008. Available from World Wide Web:
http://www.optimization-online.com.

[114] G. Nannicini and L. Liberti. Shortest paths on dynamic graphs. Interna-
tional Transactions in Operational Research, 15:551–563, 2008.

[115] G. Nemhauser. A generalized permanent label setting algorithm for the
shortest path between specified nodes. Journal of Mathematical Analysis
and Applications, 38:328–334, 1972.

[116] T. NV. Tele Atlas Multinet ShapeFile 4.3.1 Format Specifications. TeleAtlas
NV, May 2005.

[117] A. Orda and R. Rom. Shortest-path and minimum delay algo-
rithms in networks with time-dependent edge-length. Journal of
the ACM, 37(3):607–625, 1990. Available from World Wide Web:
citeseer.ist.psu.edu/orda90shortestpath.html.

[118] J. Owen and S. Mehrotra. Experimental results on using general disjunc-
tions in branch-and-bound for general-integer linear program. Compu-
tational Optimization and Applications, 20:159–170, 2001.

[119] S. Pallottino and M. Scutellà. Dual algorithms for the shortest path tree
problem. Networks, 29:125–133, 1997.

[120] S. Pallottino and M. Scutellà. A new algorithm for reoptimizing shortest
paths when the arc costs change. Operations Research Letters, 31(2):149–
160, 2003.

[121] F. Pellegrini. SCOTCH 5.0 user guide. Technical report, Laboratoire Bor-
delais de Recherche en Informatique, 2007. Available from World Wide
Web: http://www.labri.fr/perso/pelegrin/scotch/.

[122] J. Puchinger and G. Raidl. Relaxation guided variable neighbourhood
search. In Proc. of Mini Euro Conference on Variable Neighbourhood
Search, Tenerife, Spain, 2005.

[123] E. Pyrga, F. Schulz, D. Wagner, and C. Zaroliagis. Efficient Models for
Timetable Information in Public Transportation Systems. ACM Journal
of Experimental Algorithmics, 12:Article 2.4, 2007.

[124] P. Sanders and D. Schultes. Highway hierarchies hasten exact shortest
path queries. In G. Stølting Brodal and S. Leonardi, editors, 13th Annual
European Symposium on Algorithms (ESA 2005), volume 3669 of Lecture
Notes in Computer Science, pages 568–579. Springer, 2005.

http://www.optimization-online.com
citeseer.ist.psu.edu/orda90shortestpath.html
http://www.labri.fr/perso/pelegrin/scotch/

REFERENCES 189

[125] P. Sanders and D. Schultes. Engineering highway hierarchies. In ESA
2006, volume 4168 of Lecture Notes in Computer Science, pages 804–816.
Springer, 2006.

[126] P. Sanders and D. Schultes. Dynamic highway-node routing. In Deme-
trescu (47), pages 66–79.

[127] P. Sanders and D. Schultes. Engineering fast route planning algorithms.
In Demetrescu (47), pages 23–36.

[128] A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency.
Springer, Berlin, 2003.

[129] D. Schultes. Fast and exact shortest path queries using highway hierar-
chies. Master Thesis, Informatik, Universität des Saarlandes, June 2005.

[130] R. Sedgewick and J. Vitter. Shortest paths in euclidean graphs. Algorith-
mica, 1(1):31–48, 1986.

[131] E. Smith and C. Pantelides. A symbolic reformulation/spatial branch-
and-bound algorithm for the global optimisation of nonconvex MINLPs.
Computers & Chemical Engineering, 23:457–478, 1999.

[132] M. Tawarmalani and N. Sahinidis. Global optimization of mixed integer
nonlinear programs: A theoretical and computational study. Mathemat-
ical Programming, 99:563–591, 2004.

[133] D. Wagner and T. Willhalm. Speed-up techniques for shortest-path com-
putations. In W. Thomas and P. Weil, editors, 24th Annual Symposium
on Theoretical Aspects of Computer Science (STACS 2007), volume 4393 of
LNCS, pages 23–36, New York, 2007. Springer.

[134] D. Wagner, T. Willhalm, and C. Zaroliagis. Geometric containers for effi-
cient shortest-path computation. ACM Journal of Experimental Algorith-
mics, 10:1–30, 2005.

[135] T. Westerlund. Some transformation techniques in global optimization.
In Liberti and Maculan (98), pages 45–74.

[136] T. Westerlund and R. Pörn. Solving pseudo-convex mixed integer opti-
mization problems by cutting plane techniques. Optimization and Engi-
neering, 3:235–280, 2002.

[137] T. Westerlund, H. Skrifvars, I. Harjunkoski, and R. Pörn. An extended cut-
ting plane method for a class of non-convex MINLP problems. Comput-
ers & Chemical Engineering, 22(3):357–365, 1998.

	Introduction
	Motivation
	Definitions and Notation
	The FIFO property
	Choice of the cost functions

	Mathematical Programming Formulations for the TDSPP
	Definition of mathematical program
	Formulation of the TDSPP
	Analysis of the formulations

	Related Work
	Early history
	Dijkstra's algorithm
	Label-correcting algorithm
	Hierarchical speedup techniques for static road networks
	Highway Hierarchies
	Dynamic Node Routing
	Contraction Hierarchies

	Goal-directed search: A
	The ALT algorithm

	The SHARC algorithm

	Contributions
	Overview

	I Combinatorial Methods
	Guarantee Regions
	Definitions and main ideas
	Computing the node sets
	Query algorithm
	Implementation
	Storing node sets
	Computational analysis
	Drawbacks of guarantee regions

	Bidirectional A Search on Time-Dependent Graphs
	Algorithm description
	Correctness
	Improvements
	Dynamic cost updates

	Core Routing on Time-Dependent Graphs
	Algorithm description
	Practical issues
	Proxy nodes
	Contraction
	Outputting shortest paths

	Dynamic cost updates
	Analysis of the general case
	Increases in breakpoint values
	A realistic scenario

	Multilevel Hierarchy

	Computational Experiments
	Input data
	Time-dependent arcs

	Contraction rates
	Random Queries
	Local Queries

	Dynamic Updates

	A Real-World Application
	Description of the existing architecture
	Description of the proposed architecture
	Load balancing and fault tolerance

	Updating the cost function coefficients

	II Mathematical Formulation Based Methods
	Improved Strategies for Branching on General Disjunctions
	Preliminaries and notation
	A quadratic optimization approach
	The importance of the norm of
	Choosing the set Rk
	The depth of the cut is not always a good measure

	A MILP formulation to generate split disjunctions
	Generating a pool of split disjunctions

	Computational experiments: quadratic approach
	Comparison of the different methods
	Combination of several methods

	Computational experiments: MILP formulation

	A Good Recipe for Solving MINLPs
	The basic ingredients
	Variable neighbourhood search
	Local branching
	Branch-and-bound for cMINLPs
	Sequential quadratic programming

	The RECIPE algorithm
	Hyperrectangular neighbourhood structure

	Computational results
	MINLPLib
	Optimality
	Reliability
	Speed

	Computational Experiments on the TDSPP
	Input data
	Numerical experiments with the linear formulation
	Formulation
	Computational results

	Numerical experiments with the nonlinear formulation
	Formulation
	Modifications to RECIPE
	Computational results

	III Conclusions and Bibliography
	Summary and Future Research
	Summary
	Future research

	References

