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Abstract

The development of driverless vehicles capable of moving on urban roads could pro-

vide important benefits in reducing accidents, in increasing life comfort and in pro-

viding cost savings. In this dissertation we discuss how to create a perception system

allowing robots to drive on roads, without the need to adapt the infrastructure, without

requiring previous visits, and considering possible the presence of pedestrians and cars.

We argue that the perception process is application specific and by nature needs to be

able to deal with uncertainties in the knowledge of the world. We analyse the particular

problem of perception for safe driving in the urban environments and propose a novel

solution where the perception process is essentially seen as an optimization process.

Also we propose that the perception process could benefit from collaboration between

nearby vehicles. We examine this problem and provide a solution adapted to the con-

straints encountered in the urban scenario. Here the core issue is formulated as a data

association problem.

Both the new perception and collaboration mechanisms were integrated into a full-

fledged driverless vehicle system. The results are supported by real world full scale

experiments on our automated electric vehicles, the Cycabs.

Figure 1: Two cybercars interacting
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Chapter 1

Introduction

1.1 Social context

There are three kinds of lies: lies, damned lies, and statistics.

Benjamin Disraeli

Humans seek happiness and they want to enjoy it for as long as possible. In the last

centuries the cultural evolution of the wealthiest countries has evolved up to the point

where the average lifespan surpasses 70 years (in 2006 world average was 67 years,

with the lowest per country being 35 years in Botswana and the highest 82 years in

Japan) [1, 2]. The current trends allow hope for a longer life expectancy worldwide.

As the age of death increases the causes of death change, figure 1.1 shows the probable

different causes of death as estimated in 2003 in the USA [3]. Current data indicates

that vehicle accidents are one of the main causes of accidental death in the modern

civilized world. The car seems to be one of the most deathly man-made objects used

in the civilized world.

In Europe alone road accidents claim about 40000 lives each year and leave more than

1.8 million people injured, representing estimated costs of 160 billion euros (according

to 2004 data [4]). Cars, motorcycles, pedestrians and bicycles account for 87% of these

deaths. One third of them occur in urban areas.

Worldwide the statistics indicate that around 1.2 million deaths per year are caused by

road accidents, making it the eleventh main cause of deaths. Also more than 30 million

people per year are injured in road accidents, making them the ninth main cause of

morbidity. Considering depression (fourth ranking), it can be seen as the second main

human-caused source of morbidity worldwide (higher than war) [5].

Aside from the accidents road transports have other undesirable side effects. They

are recognized as a significant source of air pollution and energy consumption [6].

Current trends in world population indicate that the urban environment is becoming

the predominant living environment [7]. Even with a restructuration of the productive

9
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Figure 1.1: Odds of dying in the USA during 2003
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system, transport in urban environment is an important function of the city. Addressing

the issues of safety, pollution (air, noise) and efficiency (energy consumption, space

consumption, peoples time consumption) is a major concern to ensure the quality of

life for current and future generations.

1.2 Solution proposal

Existing studies indicate that the human error is one of the main causes of road acci-

dents. It is commonly accepted that human error is involved in the vast majority of car

accidents (more than 90% of the accidents) [8].

We believe that the development of robots capable of driving is a viable solution to the

problems mentioned. A robot is free of distractions and capable of making objective

decisions at every moment in time, ensuring a higher degree of safety. A robot is

also capable of driving using quantitative measures of efficiency offering better driving

comfort and lower energy consumption. Finally, using telecommunication systems

multiple driving robots can have better coordination (at local and city-wide scales) than

the local non-verbal communication between human drivers, this would be particularly

useful to avoid traffic jams.

In this dissertation we use the term “driverless vehicles” for these robots capable of

driving.

1.3 Driverless vehicles

Driving robots now have more than 30 years of research history. In the 1970s the first

mobile robots were created, such as the robot “Shakey” by SRI. The first driverless car,

developed by the Tsukuba Mechanical Engineering Lab (Japan), was demonstrated in

1977. It ran at 30 [km/h] on a dedicated track. In the 1980s the driverless car cre-

ated by professor Ernst Dickmanns (working at Universität der Bundeswehr München,

Germany) was capable of high speed driving on highways. Since then major devel-

opments have followed with large European research initiatives such as PROMETEUS

(1987-1995), ARGO (1996-2001), Cybercars (2001-2004, 2006-2008). In the USA the

most notable developments come from the CMU Navlab team (1984-present) and the

DARPA military research programs DEMO (1991-2001) and Grand Challenge (2004-

2007).

In the 1970s the first driverless car appeared. As of 1995 the state of the art allowed

high speed driving on highways, over-passing other vehicles, automated parking [9]

and following other vehicles. In the 1998 the first fleet of commercial driverless vehi-

cles was put into operation at the Schiphol Amsterdam airport, driving on an dedicated

road using infrastructure based localization. The next year Siemens started deploying a

new optically-driven bus (following specific markings) where the steering is automated,

and the speed is controlled by a human driver. In 2001, Toyota, currently the world’s
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Figure 1.2: A driverless vehicle, winner of DARPA Challenge 2005

largest car manufacturer, introduced an automated bus system capable of driverless

driving on dedicated roads (and still developing it).

As of 2001 the DARPA research programs provided robots able of free driving in rough

outdoor terrains. As of 2003 the first driverless vehicle capable of avoiding pedestrian

was demonstrated [10]. Using light infrastructure and after a first visit of the area,

the vehicle is able to detect moving obstacles (slow speed cars and pedestrian) and

update its planned trajectory accordingly. In 2005 the DARPA Grand Challenge shown

vehicles capable of crossing 200 [km] of desert roads in a fully autonomous mode at

an average speed of 30 [km/h] [11].

In 2006 we designed and implemented a vehicle capable of avoiding moving obstacles

outdoors without infrastructure or previous visit of the environment [12]. The same

year were held the first demonstrations of vehicles capable of repeating a recorded

path without need of infrastructure modifications, the speed is automatically controlled

based on the presence of obstacles around the path [13]. Also, the first commercial

vehicle with “hands free capabilities” on highways was introduced by Honda.

In 2007 the DARPA Grand Challenge addressed the urban environment (without pedes-

trians, with low cars density), new commercial outdoor infrastructure based driverless

vehicles systems are being built (Ultra PRT at the London Heathrow Airport), and the

driver assistance systems still sophisticating.

1.4 Challenges of driverless vehicles in urban environ-

ment

Given the current state of the art, proposing the development of driverless vehicles as

a solution for the transportation of goods and persons does not seem impossible. The

research of the last years has developed enough technology to develop driving robots

in controlled outdoor environments, deserts and highways. How to build a robot able

to drive in a populated urban environment is still an open problem. How a group (small

or large) of driverless vehicles should behave is also still an open problem.
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Even when the feasibility of the robotic task has been demonstrated with a prototype,

defining the best methods to realize this task, with the lowest constraints and the lowest

costs remains a research question.

In this dissertation we will focus on the scenario of driverless vehicles in cities, since it

is the most challenging and the one with higher potential impact on daily life. Devel-

oping such a robot presents multiple technical challenges at different levels.

1.4.1 Mechanics

Figure 1.3: Toyota Prius uses a drive-by-wire system for the throttle and braking. Steer-

ing is automated during assisted parking manoeuvres

First come the mechanics of the robot. The current commercial cars technologies al-

low to have a thigh relation between the mechanics and the information signals level.

Most modern cars have sensors buses, local computers and some of them manage the

human commands passing trough a digital representation of the actuation (the so called

“drive-by-wire”, see figure 1.3). It is reasonable to consider that the mechanical and

automation problematics are already solved. Today the bigger challenges are at the

signal and information processing level.

1.4.2 People

Figure 1.4: A user requests a car from a mobile phone
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Independent of the business model employed the cars will be offered directly to the

individuals as a ubiquitous system. As such the service will be probably accessed via

mobile devices (see figure 1.4).

How to have ubiquitous access to a city sized distributed system?

This leads to the development and design of the hardware infrastructure, the software

layers and the communication systems required to accomplish such a task. The actual

state of the art where multimedia mobile devices have direct access to the Internet and

where web services are provided to thousand of persons simultaneously indicates that

creating such an interface is possible. The automatic cars are also mobile devices that

can profit from the existing communication infrastructure.

To complete a request for an automatic car it is necessary to specify the human-machine

encounter location.

Where is the user calling from?

Mobile devices can specify their location at the city level (which street) using GPS,

WiFi localization, by requesting the user to specify his location or by using inexpensive

data tags (e.g. 2D bar codes, RFID tags) installed in the city.

Providing access to a city wide driverless vehicles service seems to be feasible with

current technologies.

1.4.3 Cars in the city

Figure 1.5: Route planning in the city

The displacements of the automated vehicles in the city require a multilevel organiza-

tion. At the city level the core problem to solve is
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Which is the best path to reach point B from point A?

Depending on the situation “best” should be the fastest path or the most energy effi-

cient path. The problem is not trivial because it has to dynamically optimize the path

considering the geometric constraints and the traffic congestion in time (which can be

predicted based on historical data, current displacement requests and the online net-

work status).

How to predict the traffic flow?

Related to the path finding there are multiple related non trivial optimization problems

such as

Which vehicle should serve a request? When to refuel? Where to place non used

vehicles?

These logistic aspects are necessary to provide the service to the upper layer. The

current state of the art provides algorithms to obtain suboptimal solutions [14], however

defining cheaper ways to compute more effective solutions to these large optimization

problems remains an open problem.

1.4.4 Cars in the street

Figure 1.6: Trajectory planning in the street

At the city level the paths are defined as a sequences of streets to choice (i.e., route

planning). At the street level the specific trajectory (sequence of states in time) has to

be depicted in order to accomplish the objectives defined at the higher level. Trajectory

planning is a difficult problem. Safe trajectory planning of nonholonomic robots in

dynamic environments with uncertain data is a very difficult problem.

How to find a safe trajectory at real time in an uncertain dynamic environment?
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This topic is still a very active area of research, both for individual vehicle planning

and for collaborative multi-vehicles planning. As a starting point the reader can consult

[15].

In order to define a plan the robot has to be able to perceive its environment and it needs

to control its movements to follow the decided trajectory.

1.4.5 Perception

Figure 1.7: Example of complex unstructured scenes

The perception module transforms the sensors data into consistent and useful informa-

tion. The quality and richness of the obtained information will have a direct repercus-

sion over the performances of the control and planning modules. Some of the basic

questions that the perception modules has to answer (from the robot perspective) are:

Where I am? (localization)

What is around me? (exoperception, obstacles detection)

Are there indications on the road? (application specific perception)

The ultimate goal of the perception is scene understanding, i.e., identifying all the

objects, their location and assigning roles/objectives for each element, this would allow

accurate predictions of the future.

The actual state of the art lets us to implement SLAMMOT, Simultaneous Localiza-

tion, Mapping and Motion Objects Tracking. These systems are able to construct a

consistent map of the visited places, localize the robot in such maps and track moving

objects in the sensors coverage region around the robot [16, 17].

A key concept to remember is that the perception module does not only describes what

we know of the environment but also has to accurately describe the uncertainty of such

a representation of the world.

In the following chapters we will discuss in more details the needs of the perception

module and how to solve the underlying problems.
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1.4.6 Control

Figure 1.8: Control of a nonholonomic robot

In order to allow the cars displace themselves through the streets it is necessary to

have control loop to ensure that the robot follow the physical trajectory defined by the

planner.

How to control a car?

The four wheels steerable vehicles are nonholonomic the problem is not trivial.

The control module is tightly coupled to the perception and the trajectory planner.

Poor trajectories will be hard to execute, poor environment observation will lead to

divergence between the estimated state and the reality and can also force the planner to

realize abrupt changes in the trajectories.

It has been proved that classic linearization of non-linear models cannot be used to

control car-like systems satisfactorily, thus non-linear control method needs to be used

as a starting point the reader can consult [18, chapter 4]. Non linear control of non

holonomic robots is still an open problem for the general case, however satisfactory

solutions exist for the car-like robot case.

1.4.7 Vehicle to vehicle communication

Figure 1.9: Car to car communication illustrated
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Nowadays it exists a shared conjecture on the benefits of vehicle to vehicle communi-

cations. It is expected that vehicle to vehicle communications will enhance the safety

and efficiency of human driven vehicles. Multiple initiatives have been deployed to ex-

plore these ideas (Car2car, React, Com2React, WillWarn, Safespot, just to name some

European projects). If benefits are possible for human driven vehicles, the same applies

to driverless vehicle.

It is expected that by exchanging data the vehicles will increase their knowledge of

the situation, and that more information will allow better decisions. Vehicle to vehicle

communication for driverless vehicles can operate as an extension or replacement of

the driving rules for humans, which are mainly used to allow one human to predict

the behaviour of another human. The exchange of data could replace such rules based

predictions.

In order to deploy such a system, the first challenge to solve is

How to do vehicle to vehicle communications?

Current commercial communication systems do not provide the expected bandwidth,

latency or quality of service for this application. The development of new vehicle to

infrastructure or direct vehicle to vehicle communications are required to deploy such

ideas. “Network mobility” (NEMO), “Mobile ad-hoc networks” (MANET), “Viral

communications”, are some of the keywords in this area of research.

Even supposing infinite bandwidth and zero latency, it is still not clear which data will

be useful for the particular application. How much preprocessing is needed, which

application protocol use, etc.... Upon reception the data has to transformed back into

useful information, considering the space and time shift.

Which data to exchange?

How to process the exchanged data?

When trying to enhance the safety or the traffic efficiency, these questions remain

mainly unsolved. Even more, the overall conjecture has to be resolved by verifying

that the benefits compensate the communication and processing costs.

Such a communication system is likely to interact at multiple levels of the driverless

vehicle system.
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1.4.8 Integration

Figure 1.10: Main six areas of the automatic cars system

The described problematics generate six areas of research and development (see figure

1.10) that have to be mixed to generate a final functional and effective automatic cars

system.

From an engineering perspective the principal aspects that has to be considered in the

final design are:

• Safety and reliability

• Ergonomics

• Cost effectiveness

• Deployment issues

• Automatic cars business models

Each of the previously listed modules represent by itself a research area with a specific

vocabulary, history, a set of open challenges. Inventing solutions to these problems

is part of the research, designing a viable system based on existing solutions is an

engineering issue. Currently there is no known driverless vehicle capable of driving as

good as human do, and thus there is more research to be done.

1.5 Scope of the thesis

In this dissertation we are going to focus on the perception module required for robotic

driving and it interactions with the other modules.
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Setting The application scenario will be driving in populated urban environments

such as streets or open areas. We will use as little previous knowledge as possible

(assumptions on the scene structure, need of previous visits, etc...). Presence of other

cars, pedestrian, bicycles, animals or other mobile objects will be taken into account.

Intelligence and autonomy Some initiatives have declared that “driverless vehicles

already exist”, since we have automatic cars on highways, or automatic mobile vehicles

in industries, or driverless robots on outdoor parcels. Also it has been proposed as a

solution for “driverless vehicles in the city” the use of robots capable of repeating a

specific path and stopping as obstacles appear. This would be equivalent to a “robotic

immaterial trolley”. While such a robot is possibly a viable solution for transportation

in the cities, its capabilities are considerably more restricted than a “driving as humans”

robot. In this dissertation we will focus on developing a robot capable of moving freely

and choosing autonomously its motion in order to reach the desired destination while

avoiding collisions.

Driving rules We seek to have a robot with driving capabilities “as good as a hu-

man”, however we will not enforce the respect of driving rules imposed to humans.

We disregard them because they are specific to each world region and because it is not

clear that they provide advantages when applied to robotic systems (other than having

the robot behave “more like humans”). Including notions of safety, passenger comfort

and efficiency should be enough to obtain a behaviour “interpretable by humans” with-

out the need to adding specific ad-hoc rules. If needed respecting driving rules could

be added as an additional task of the system that we will describe.

Since the task of perception interacts with other modules we will discuss some of them.

We will not discuss mechanical aspects or any issue related to engineering, energy

sources, economic model or legal issues. All of this topic are of fundamental impor-

tance but beyond the scope of this dissertation.

Through this dissertation we will provide a discourse around the following thesis:

“Perception for driverless vehicles in urban roads can be done without specific

infrastructure”

This work is distributed in the following parts:

• Chapter 2 discusses the core issue of safety and how it influences the design of

the perception, planning and control algorithms.

• Chapter 3 provides a constructive overview of the techniques related to percep-

tion for mobile robots.

• Chapter 4 extends these notions to the particular case of driverless vehicles in ur-

ban environments and we describe in detail the new perception system proposed.
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• Chapter 5 describes the integration of the proposed perception method with state

of the art planning and control algorithms in order to drive an electric vehicle.

We present some experimental results.

• Chapter 6 explores how perception can be extended by the exchange of informa-

tion between nearby vehicles. We propose a method on how to achieve this.

Finally chapter 7 provides some conclusions and draw lines for future research.

The core contribution of this work is the design of a perception system that allows

a robot to drive move in an urban environment without requiring a detailed map, in-

stalling infrastructure or a previous visit.

The proposed solution uses a laser scanner as the main sensor, complemented with

some image processing for road detection, fusion with the odometry, inertial sensors

for robustness and GPS usage for global localisation. The proposed approach makes

no strong assumptions on the geometry of the observed objects (static or moving), but

assumes a locally planar road (due to laser scanner limitations).
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Chapter 2

Achievable safety of driverless

vehicles

Salus populi suprema lex esto.

The safety of the people is the supreme law.

Cicero

The main objective of a driverless vehicle is to move from a point A to a point B in the

city. It has to do so while ensuring the safety of the passengers and the vulnerable en-

tities in the surroundings. Surprisingly, the safety of mobile robots still is a fuzzy topic.

Since most classic robot systems evolve in uninhabited areas or in highly controlled

environments the issue of ensuring safety while moving in the city appears as a novel

problem to be addressed.

In this chapter we will show that safety depends on the design of the perception-

planning-control trio. We will discuss the safety guarantees that can be provided when

the robot evolves using its on board sensors, how to achieve this guarantees and which

constraints are then imposed over the perception, planning and control modules. This

constraints will be used in the design and implementation of the driverless vehicle de-

scribed in the chapter 5.

Safety relates to perception and perception relates to safety

A vehicle do harm when the wrong decisions are taken. Since the decisions are based

on the information provided by the perception module, understanding how to design a

harmless vehicle will help us understand what does the perception module needs to do.

We argue that most of existing works do not provide adequate safety guarantees for a

driverless ground vehicle evolving in environments such as a city. We will also show

that the usual notion of safety based on inevitable collision states (see definition 2.5)

does not apply when the vehicle plans based on its sensors input. We argue that in such

23
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a relevant case it is only possible to guarantee that the robot will not harm by action,

we cannot guarantee to be harmless through inaction.

The fundamental question underlying this chapter approach is: which the necessary

information that the robot requires to drive ? Driving from point A to B in a world free

of obstacles is easy. As we shall see, simply reacting (avoiding) to any apparition in

the sensors range is not enough. Then, which is the necessary minimum ?

During this chapter we will explain and argue an approach supporting the following

asseverations:

• Safety does not depend on the planning method used, but does depend on solving

the adequate planning problem,

• The perception module needs to provide a conservative prediction of the future,

• The main output of the perception module is a function estimating the harm of

hypothetical future states of the vehicle.

In section 2.1 we provide a definition of safety and the criteria required to evaluate if

an approach is safe or not. Section 2.2 defines the notions of uncertain and incomplete

world model. Section 2.3 explains the effect of uncertainty on safe planning and how to

manage it. In section 2.4 we analyze the safety of a vehicle planning with an incomplete

view of the world. Section 2.6 discusses the effects of extra sensorial data on the safety

guarantees. Finally section 2.8 offers some conclusions.

2.1 Safety

Mobiles robots, and especially driverless ground vehicles, are capable of harming

themselves and their surrounding environment (pedestrians, animals, other vehicles,

the streets’ infrastructure, etc...). Motion safety relates on how to mitigate and, if pos-

sible, avoid harmful contact with the environment.

Definition 2.1: (Safe motion) A robot is said to be safe if it can be guaranteed that its

motion will not harm himself or its surroundings.

For ground vehicles harm can be created in three different ways:

• Traversing unfit terrain at inadequate speeds can harm the vehicle itself (running

into water, holes, curbs, uneven or too inclined ground, etc... see figure 2.1),

• Colliding with objects (pedestrians, animals, other vehicles, walls, poles, trash

can, etc...),

• Pushing the vehicle out of its range of dynamic stability (overturn).
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Figure 2.1: Example of harm without collision

In any case harm will raise from setting the vehicle in the wrong state (position, speed,

etc...) at a given time. In order to avoid harm we need to define the state of the vehicle

in time. A sequence of states in time is named a trajectory. A trajectory is said feasible

if it exists a sequence of commands that allows the robot to reach such states in time.

Definition 2.2: (Vehicle motion planning problem) Given an initial state x(t0), a cost

measure c(π) over any trajectory π and a world model w, define a feasible sequence

of states in time π̂ that will generate a safe motion while minimizing the cost c(π̂).

The vehicle motion planning problem is an optimization problem with constraints. In

our setup, the cost function c(π) will measure how much we progress on the path de-

fined during route planning. The world model is a representation of the world built

from input data available to the robot (sensors, a priori information, communications,

etc...). In chapters 3 and 4 we explain how to build the world model. Since the plan-

ning relates to defining future states of the vehicle, the world model needs to provide

information about the future state of the world.

The safety of the motion does not only depends on the defined trajectory, but also on

how the world model is built and used, and how the vehicle executes in the real world

this trajectory. The safe motion of the robot is a propriety of the perception-planning-

control trio.

2.1.1 Safety criteria

In order to analyze the safety of robotic systems three criteria have been proposed [19]:

1. Considering the motion of the robot

2. Considering the motion of the surrounding environment

3. Considering an infinite time horizon
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The first criterion indicates that the limitation of the robot motion needs to be con-

sidered in the motion planning (maximum acceleration/deceleration, maximum speed,

adherence constraints, etc...).

The second criterion indicates that the presence of moving and static obstacles around

the vehicle has to be taken into account. The future position of surrounding objects

needs to be considered in order to predict the free space available.

The last criterion indicates that, since the relative motion of the robot cannot be changed

arbitrarily (first two criteria) at any point in the time the vehicle could be in course to an

inevitable collision. Without any particular assumption on the real world checking col-

lisions over a finite time horizon cannot guarantee that the robot is not in an inevitable

collision state [20]. It should be noted however that in many scenarios it is possible to

define a finite set of verifications (computations) that will guarantee harmless behaviour

over an infinite time horizon [21, 22, 23].

When evolving in a environment populated by static and moving obstacles all of the

traditional approaches to robot motion (nearest diagram, dynamic windows, velocity

obstacles) fail to respect such criteria, and thus, fail to ensure harmless motion [19].

This occurs even when supposing a perfect knowledge of the present and future of the

world.

Also, the traditional notion of time to collision is not an useful measure to verify safety

under the proposed criteria. Since the manoeuvrability of the vehicle depends on it cur-

rent velocity, two cars approaching at 15 [m/s] is not the same situation as approaching

a stopped vehicle at 30 [m/s]. The driverless vehicle needs to analyze situations in a

reference frame attached to the ground and not relative to the robot itself.

As an example we can analyze the system proposed in [24]. They suppose that the

world model built with their sensors is complete and that it correctly classify static ob-

stacles and pedestrian. With each new sensor measurement the world model is updated

and the vehicle updates its planned trajectory. The trajectory is generated from a set of

predefined kinodynamically feasible control commands sequences. For each element

of this set the collision with the world model is checked and a distance between the

final state and the desired future state is measured. Trajectories leading to collision

are disregarded and the sequence of commands leading nearest to the desired state (the

goal) is selected. While announced as an approach for “secure driving in dynamic

environments”, this method fails to consider the future motion of the pedestrians and

provides no guarantee that in the next iteration at least one trajectory free of collision

exists. Since it cannot guarantee that no collision will occur, it fails to respect definition

2.1 and should be considered as non safe.

2.2 Building a world model from sensors

In order to solve the robot motion problem (see definition 2.2) we need to be able

to evaluate two values. Let x(t) indicate a state of the vehicle and π be a candidate

trajectory starting from the initial state x(t0). Then c(π) is the value indicating how well
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π allow us to reach the desired goal, it is used to search the most desirable trajectory.

The second value h(x(t),w(t)) ∈ [0,1] evaluates the harm caused by setting the vehicle

in the state x(t) given a prediction of the world state at time t.

Definition 2.3: (Harm function) Given the state of the vehicle x(t) and an estimation

of the world state w(t) the function h(x(t),w(t)) ∈ [0,1] estimates the harm that would

be caused by setting the vehicle in such state x(t). Value zero indicate that no harm is

caused, value one indicate that a very important harm is caused. Intermediary values

provide a scale from minor to significant harm.

The notion of harm and its mapping to the function h(x(t),w(t)) are highly application

dependent. Passing over a car may be fatal for a car, but harmless for a tank. This

function h allows the motion planner to search for safe trajectories.

Based on the definition 2.1 we expect to be able to guarantee for a planned trajectory

π = {(x(t0), t0), (x(t1), t1), . . . , (x(∞),∞)} that h(x(ti),w(ti)) = 0 ∀(x(ti), ti) ∈ π .

Definition 2.4: (Traversable space in time) A point p in space is considered traversable

at time t if for any vehicle state x(t) that covers the point p the harm value h(x(t),w(t))
is zero.

Thus, one of the main concerns of a perception module, is estimating and predicting

the traversable space in time.

A usual notion used when concerned on safe trajectory planning is the concept of in-

evitable collisions state (ICS).

Definition 2.5: (Inevitable collision state) A state is considered in inevitable collision

if all trajectories resulting from the application of any the possible commands sequence

to this state, lead to a collision.

In our case, since we are also concerned on the good of the vehicle itself (and not only

on collisions), we will should speak of “inevitable damage state”. We will loosely use

both terms as exchangeable. Strictly, we are concerned on avoiding reaching states

where h(x(t),w(t)) #= 0 (which, depending on the application, may include more that

just collision states). In order to ensure safety the trajectory planner should, at least,

only produce trajectories are free of inevitable damage states.

2.2.1 Incompleteness

When using on board sensors the robot is fundamentally limited to access only an in-

complete and uncertain representation of the world. This means that some surrounding

areas will be left unobserved (due to sensing range or occlusions, see figure 2.2), that

the relative position of obstacles will be not necessarily known with precision (distribu-

tion of probability of collision over the space) and that the uncertainty in the prediction

of future positions of moving obstacles will grow monotonously (since we do not know

their future state). Beyond a certain point in the future nothing can be told about the

traversable space.



28 CHAPTER 2. ACHIEVABLE SAFETY OF DRIVERLESS VEHICLES

Figure 2.2: Illustration of observed and unobserved areas

Definition 2.6: (Incomplete world model) A world model w is considered incomplete

if h(x(t),w(t)) is not defined for every possible pair (t,x(t)).

Since h is not defined everywhere, an incomplete world model can lead to incomplete

or suboptimal plans.

2.2.2 Uncertainty

Sensors are corrupted by noise, thus relative distance measures to static obstacles will

be uncertain. Also the state estimate of moving obstacles will be noisy. Even if a de-

terministic model existed for the moving obstacles, the initial uncertainty in the current

state estimate will propagate in time. In many applications stochastic models are used

to predict the motion of moving obstacles (e.g. motion of pedestrians or drivers) and

thus position uncertainty grows in time. In an uncertain world model the traversability

of a point p at an instant t becomes a probability value.

Definition 2.7: (Uncertain world model) A world model w is considered uncertain

when h(x(t),w(t)) is not available but the probability distribution P(h(x(t),w(t))) is.

2.3 Uncertain world

Let us suppose by now that we have access to a complete but uncertain world model.

As previously mentioned, this means that a given vehicle state in time is associated

to a probability distribution of the harm value P(h(x(t),w(t))). Since we seek for

harmless motion (where h(x(t),w(t)) = 0) we are in particular interested in the value

P(h(x(t),w(t)) = 0).
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If any moving obstacle exists in the world it future position uncertainty will grow

monotonously in time. Supposing that the moving obstacles have a reachable space

that cover ours (think of pedestrian and human drivers), some point in the future the

whole world model will become uninformative: any traversable area may have become

non traversable. What sense does it makes then to verify that no collision will occur up

to infinity? Can we define an inevitable collision state in an uncertain world?

2.3.1 Cost function

a usual approach to safety consist on including it as part of the cost function c(π). On

an uncertain world model one could define such a cost component using the integral

of the vehicle trajectory over the probability distribution (in a spirit similar to [25]), as

described in the equation 2.1.

sa f ety_cost = ∑
(x(ti),ti)∈π

(P(h(x(ti),w(ti)) = 0)−0.5) (2.1)

Since defining a collision free trajectory up to infinity does not make sense, let us search

for the trajectory to infinity with the lowest probability of collision. This approach is

not suitable for multiple reasons. First we should remember that the primary aim of

motion planning is reaching a specific point. The cost function will trade off collision

risk with getting nearer to the goal, which undesirable if ensuring safety is a must. On

the other hand, if collision risk has a very important height compared to reaching the

goal, then generated trajectories will be unsatisfactory. When observing an empty area

the safest trajectory is to stop as soon as possible. Using directly the cost function

neither provides satisfactory safety nor satisfactory trajectories to reach the goal.

2.3.2 Probability threshold

Why should we use a conservative world model ?

In order to provide guarantees on safety, the probability distribution needs to be thresh-

olded in order to define a binary function over space time (in a spirit similar to [26],

for instance). Doing so is equivalent to providing a conservative estimation of the

traversable space (see figure 2.3). We want to ensure that if some area in space time is

predicted as traversable, it will be such in reality. By thresholding we ensure that the

vehicle will always evolve in areas were a collision is considered highly unlikely and

that the areas where a collision could occur will be left unvisited.

Definition 2.8: (Conservative world model) A world model w′ is considered a conser-

vative approximation of w if and only if h(x(t),w′(t)) = 0 ⇒ h(x(t),w(t)) = 0 ∀x(t)∀t.
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Figure 2.3: Predicting non traversable space in time. The region below the plane was

observed, the region on top is predicted

Thresholding P(h(x(t),w(t)) = 0) allows to convert an uncertain world model into a

certain world model by using the function h′ described in equation 2.2

h′(h((x(t),w(t))) = h(x(t),w′(t)) =

{
0, i f P(h(x(t),w(t)) = 0) < pthreshold ,

argmax P(h(x(t),w(t))), otherwise.

(2.2)

We expect h′ (and thus, the selected threshold) to provide a conservative approximation

of the real world (inaccessible through sensors).

When using a threshold over an incomplete and uncertain world model, it is likely that,

over time, the predicted world collapses into a completely non traversable area. In

this context the notion of inevitable collision states does not apply. This issue will be

discussed in section 2.4.

Pedagogic example

Why not using a conservative world model is a bad idea ?

The notion of using a conservative approximation for may cause some reluctance to

some readers. Conservative approximations seems, at first sight, to generate an unde-

sirable behaviour. In section 2.7 we will analyze in detail some relevant scenarios in

order to clarify this point.

The figure 2.4 presents a simple scenario that illustrate why not being conservative

is inadequate for our application. In this pedagogic example we suppose that at each

instant we have perfect knowledge of the present situation. Our vehicle movement
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Figure 2.4: Example used to illustrate why conservative prediction are needed. Vehicle

on the left may go straight or turn, with known a priori probabilities. The driverless

vehicle on the bottom wants to go to the top of the image. Should it adapt its speed to

be able to stop at point A, B or C?

is limited to a straight line upwards, we are only interested on controlling the speed

profile. As shown in the figure, there is a second vehicle in the scene. In this artificial

scenario we accept as a fact that the second vehicle can only follow two specific paths,

and that the probability of it choosing one or another is known before hand. We do not

know however its future speed profile, it may accelerate or decelerate in an unknown

fashion.

Then, as presented in the figure 2.4, we need to decide the planed speed for our vehicle.

We can choose a speed that allows to stop the vehicle at points A, B or C. Stopping at

point C means having a lower speed that stopping at point A.

Choosing to stop at point A is not a viable solution since this would mean to disregard

the fact that we do not know the speed profile of the incoming vehicle. Simply passing

through the intersection may put the second vehicle in an inevitable collision state.

From its perspective we will have entered abruptly into the intersection, it was not able

to slow down, we provoked a collision with him. This is not a safe choice, since we

can provide no guarantee about the harm caused.

Choosing to stop at point B seems to be a good trade off between not slowing down

too much and still avoiding collision in most of the cases. The problem is that, when

the incoming vehicle chooses to turn, given that our speed only allows to stop at B and

not before, we will not be able to slowdown in time to avoid the collision. Choosing

B guarantees to have a collision 5% of the times. Even if this was 1% we do have to

remember that we aim for large scale deployment. In a city full of driverless vehicle

running all day long, having one collision per each 100 intersection crossing equals to

have hundreds of accidents per day.
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Choosing C is the conservative option that will allow us to avoid collisions in any

considered situation. Adapting the speed so we can stop at C does not mean that we will

always stop at C. If the situation allow it, we will simply pass through it (because the

second vehicle went straight or passed on the collision area near C before we reached

it). Choosing C is to acknowledge that we have to consider all of the possible cases

and not just the most probable ones.

2.4 Incomplete world

Since the robot knows only a fraction of the world it is probable that it has not enough

information to define a single definitive plan from its current state to the goal. Even if

it did, as new information is acquired a better plan could be generated. This leads to

the notion of partial motion planning [27, 15]. The denomination “partial” indicates

that, unlike the usual approaches, the plan does not reach the goal (but, hopefully, leads

towards it). Using a best effort approach the robot initially computes a partial plan to

reach the goal. As the robots moves a new plan is computed to extend or enhance the

previous one.

The criteria mentioned in section 2.1 imply that while the plan may be “partial” in the

space dimension, it needs to be collision free over an infinite time horizon. To do so it

is only necessary to ensure that every state of the plan is collision free and that the last

state of the partial plan is not an inevitable collision state [28]. Verifying if a planned

state will generate or not an inevitable collision is not a trivial problem, since we need

to do verification over an infinite time horizon.

2.4.1 Static world

When the robot evolves in a static environment using a set of stop trajectories will

provide safety, since we know that the vehicle will be able to stop before colliding and

then no collision can occur (see figures 2.5 and 2.6). For this case, computing over a

finite time horizon provides a guarantee over an infinite time horizon. Considering that

a wall could appear at the frontier of the observed space, safety in an incomplete world

is guaranteed if the unobserved space is considered as non traversable [21].

Swerving Instead of stopping [29] proposed swerving the expected static obstacles,

thus allowing higher speeds with the same sensors range. This approach makes strong

assumptions on the maximum size and density of static obstacles, thus it is not suitable

for highway or city like environments since the presence of a traffic jam (total road

blockage) on a single direction road would generate a collision.
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Figure 2.5: Trajectories resulting from some stopping commands for a vehicle. Dots

are equidistant in time

2.4.2 Dynamic world

When the environment may include moving objects using stopping commands cannot,

by itself, ensure avoiding collisions.

Imitating manoeuvres Ideally one would desire to have access to the present and

future position of all the surrounding obstacles. When this information is available

the notion of “imitating manoeuvre” has been proposed as a collision free trajectory

over an infinite time [22]. However this approach is brittle since imitating a single

moving obstacle could lead to colliding with another obstacle, and thus is not desirable

in cluttered environments with arbitrary obstacles motions.

Finite time horizon Knowing the motion from now to infinity of all the moving

obstacles does not provide by itself a tractable way of detecting inevitable collisions

states. Even if the vehicle can stop without having a collision with any moving or static

obstacle, nothing prevents that a few seconds later a moving obstacle collide with the

stopped vehicle. Defining a time horizon beyond which the vehicle is guaranteed to be

collision free is an open problem in the general case. If it is possible to define a time

tl in the future beyond which no moving obstacle will approach the stopped vehicle,

then verifying a collision of the stopping trajectory until the vehicle stops and beyond

tl is enough to ensure safety. This is approach used by [23] where it is supposed that

the world is only populated by static obstacles and driverless vehicles, and the partial

plan of every vehicle is perfectly known. At each re-planning step the trajectories of

every vehicle are verified to be collision free with the previously planned ones and

the re-planned ones. Since both the previous and the new partial plans finish with the

vehicles stopped, it is possible to guarantee that the system is safe.

Best effort Unless proof of the contrary an moving obstacles may be present at the

frontier of the observed space. If we only have a partial knowledge of the surrounding

environment a conservative world model needs to suppose the presence of moving
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(a) stop in front of wall (b) stop in front of moving

obstacle

(c) both moving obstacles

apply the same safety logic

Figure 2.6: Multiple scenarios of two obstacles in one space dimension. Blue and red

lines are obstacles in time

obstacles at the frontiers of the unobserved area. Without information about the non

observed moving obstacle we cannot compute an avoidance trajectory. The best effort

consists then in ensuring that the vehicle is able to stop without colliding. By itself,

this does not ensure avoiding collisions, a moving obstacle could collide the vehicle

immediately after it stops. Using stopping commands in this case can ensure that we

will not harm by action, but only by inaction (“car on a railroad” scenario). This is the

approach used in [28, 12].

In this approach we need to make assumptions about the moving objects that will ap-

pear, we need a model. This model predicts the possible (not the likely) presence of

obstacles in time. The simplest possible model consist on “any obstacle, anywhere, in

any direction” but with a bounded maximum speed. Depending on the specific appli-

cation the model can become arbitrarily complex. For instance, in an urban scenario it

could be reasonable to consider that no vehicle drives against the defined circulation di-

rections. Doing so limits the possible appearance of moving obstacles and thus allows

for planning higher speeds within the incomplete world model.

Theorem 2.1: If every moving obstacle uses a conservative world model and plans to

stops before entering in a harmful state then no collision would occur and the overall

system can be considered safe (see figure 2.6).

PROOF: Let a and b be sensing moving objects. Both objects have a conservative

world model with respect to the real world. The policy indicates that, since the world

models are conservative, as soon as a detects b it has a trajectory allowing it to stop

without colliding b or any other object. Conversely as soon as b detects a it already

has a trajectory allowing to stop without colliding. Both a and b can stop without

colliding, and the same applies to any couple of moving objects in the world. By

induction since every moving object can stop without colliding, when one object is

stopped, it is guaranteed that no other object will collide it, and thus it is a safe state

over an infinite time horizon. !

If we ensure that the vehicle is able to stop given the possible appearance of an obstacle

with a given maximum speed vm and an obstacle appears coming faster than expected,
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then the vehicle will not be able to stop before the collision. Depending on the ma-

noeuvrability of the vehicle, the clutter of the scene and the speed of the re-planning

algorithm the vehicle may or may not be able to avoid the obstacles. The safety guar-

antees are as good as the model (safety depends not only on the planning algorithm

but also on perception and control modules). If the predicted traversable space is not

available, the guarantees that the motion of the vehicle will be harmless are lost.

2.5 Safe planning

Based on the discussion of the previous sections we obtain the following definition.

Definition 2.9: (Safe trajectory for driverless cars) In an incomplete and uncertain

world model of a dynamic environment a trajectory is considered safe if:

• Each state is collision free with respect to a conservative prediction of the traversable

space in time,

• The sequence of states respects the vehicle capabilities,

• Its last state has speed zero.

With the information available and without doing strong assumptions on the non ob-

served areas, this is approach will ensure that no harm by action is done.

Please note that while the safe trajectory leads to stopping, it does not mean that the

vehicle will necessarily stop. As the vehicle starts moving, the new sensors measure-

ments will extend its world model. This allows it to replace the current trajectory (in

execution) with a new safe trajectory. By doing so repeatedly the vehicle will drive

continuously towards the goal and will not stop unless necessary (blocking obstacle).

When using this approach the vehicle will automatically adapt its speed and behaviour

to the surrounding environment, considering both the observed and unobserved space.

It will drive slowly in cluttered and uncertain situation, and faster on uncluttered certain

environments.

2.5.1 Unexpected events

Whatever are the passive or active measures taken, in the real world accidents will

occur (e.g. “falling crane” scenario). Even using a conservative approach unexpected

events will happen. As previously mentioned, if an area predicted as traversable is

discovered as non traversable the harmless motion guarantee is lost. Maybe the vehicle

will be able to avoid the collision. If not, it is important to be able to consider the cost

of a collision. Crashing towards a trash can creates less harm than crashing a wall.

Crashing an animal is better tolerated than crashing persons. If a collision becomes

inevitable, it is desirable that the robot does not treat each possible smash equally.
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This means that the perception system needs at least to localize the vehicle with respect

to the planning goal (for planning) and to the plan currently in execution (for control

purposes), to estimate the traversable space in time and to constantly monitor the cost

of possible collisions.

When planning over a conservative world model, the planner expects that the robot

will follow exactly the computed trajectory. Failing to do so would nullify any safety

guarantee. This imply that the control module needs to provide a predictable bound

on its tracking error. This bound is integrated in the planning stage to ensure that the

trajectory is safe even with errors on the control. If the control unexpectedly fails to

respect the predicted bound leave the robot in a situation equivalent to a violation of

the conservative property of the world model, and a collision may or may not occur.

2.5.2 Safe perception-planning-control

Most of the previous works in the field will fail to respect the definition 2.9. For

instance [26] proposed a planning method in dynamic environments able to deal with

an incomplete and uncertain world model. However they do not take into account

the unobserved area of the environment (non conservative estimation), and provide no

guarantee that the vehicle will not collide if their probabilistic re-planning method fails.

In [30] a perception-planning duo was proposed to move in an incomplete and uncertain

world model. The approach is similar to the one described here. However their algo-

rithm restricts the movement of obstacle to constant speed vectors. This approximation

is non conservative over the obstacles considered in their work (cars intersection) and

can be considered a violation of the safety criteria and the definition 2.9.

In chapter 4 (and sections 5.3.1, 5.3.2) we present a solution consistent with definition

2.9 (solution initially presented in [12]). It is explained how the vehicle can efficiently

estimate its movement, map static obstacles, detect and track moving obstacles, plan

safe trajectories and execute them. All of it was integrated in a real world vehicle as a

proof of concept prototype.

More efficient and effective algorithms may be designed. Application specific models

may provide more information about the future. Better sensors will provide larger ob-

servation areas and less uncertainty, allowing higher speeds. However we believe that

safety cannot be enhanced beyond the discussed limits. Real world safety is bounded

by how good is the robot at estimating the possible futures.

2.6 Complemented world

In the previous section we discussed safe motion of a robot using its on board sensors, a

model of its sensor, a model of itself and a model of the existing moving objects. For the

design of a mobile robot it is relevant to understand how other sources of information

may affect the safety. When the robot completes the information observable from its

point of view with other sources, we say it estimates a “complemented world model”.
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Are other sources of information helpful ?

2.6.1 Maps

There is the usual belief that high precision map will help robots navigation. These

maps are of little use when concerned about safety. In populated environments such as

the cities, if an area was seen as traversable a few hours ago, little can be said about if

it is currently obstructed or not. Maps of the static environment are not able to provide

reliable information of the future. Maps can be built to model the usual behaviour of

moving objects in a region [31]. This information can then be used to provide tighter

predictions of the moving objects. Using this maps is still a delicate issue. Being built

from observations it is hard to assess their completeness. Failing to predict a possible

path for an obstacle, will lead to violations of the model and thus to a potential collision.

Even worse, in the city the behaviour of pedestrians (for instance) not only depends on

space but also on time (e.g. the Sunday street market) making it less likely to have a

complete and reliable map of moving objects paths in space time.

2.6.2 Fixed path

A possible future for driverless vehicles in urban environment is the deployment of

“immaterial tramways” [13, 32, 33]. Restricting the movement of the vehicle to a fixed

path seems to be perceived by humans as a safer option.

In this configuration the planning is mainly concerned with speed control, a reduced

set of commands ease the planning computation. However the needs for perception

(building the world model) remain the same (with respect to range coverage or predic-

tion capabilities). Knowing the path may provide a thin enhancement in the localization

computation cost and in the collision cost estimate.

With a fixed path the exact same logic discussed in this dissertation applies. The safety

issue is not relevantly modified.

2.6.3 Traffic rules

The use of traffic rules between humans seems to be a factor enhancing the safety on

the roads. Supposing that other vehicles respect the rules, constraint their possible

future movements and thus it is useful information to predict the traversable space.

The use of traffic rules per se does not enhance the safety (since it depends on other

vehicles respect of such rules), however it allows the vehicle to be less cautious in some

situations (e.g. not slowing down at an intersection, because we have the priority).
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2.6.4 Vehicle to vehicle communications

The use of vehicle to vehicle communication could enhance the safety in multiple

ways. First, more measurements of the environment provides more information and

thus probably larger observed areas and less uncertainty. Second, when the surround-

ing moving obstacles are driverless vehicles too, it would be possible to obtain their

current plans, thus providing much tighter bounds than a naive worst case model [23].

If should be noted that the use of vehicle to vehicle communications requires to solve

a relative positioning problem between the communicating vehicles. How to solve this

problem in an unmodified city remains an open question. Even if a reasonable solution

is provided, the relative positions will have a certain degree of uncertainty that will

then be propagated over the transmitted data, reducing the benefits of the exchange.

We discuss this issue in more details in chapter 6.

2.7 Example scenarios

When respecting a safety constraint the behaviour of the vehicle depends on its percep-

tion capabilities and model. Previous works discussed the need for a wide and depend-

able sensory coverage of the surroundings of the vehicle in order to provide enough

information to avoid collisions [34, 35]. In [36, 37] the required detection ranges for

typical roads manoeuvres are discussed (u-turns, overtakes, intersection crossing). It

is relevant then to understand which perception capabilities relates to which desired

behaviour. Let us illustrate this relation through some particular examples.

2.7.1 Open field

Static world

The simplest non trivial scenario consists of a single vehicle moving over a large

traversable surface where a single static obstacle exists.

Let us consider a maximal acceleration and deceleration rate amax of 3 [m/s2] (which

stays in the comfort zone of human drivers [38]). In urban environment, the maximal

legal speed vmax is around 14 [m/s]. Then the maximum stopping distance dstopmax is

dstopmax = td · vmax +
v2

max

2 ·amax

(2.3)

where td is the delay between an event and the reaction of the robot. For simplicity we

will consider td = 0 [s] in this analysis. In our example dstopmax = 33 [m]. Then in order

to attain safely the designed speed vmax the sensors range should reach at least 33 [m]
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(a) Full 360° visibility (b) All but rear visibility (c) Front visibility

Figure 2.7: Top of view of the open field scenario. White indicates observed space,

gray indicates non observed space.

in front of the vehicle. Shorted coverage ranges will limit the maximum safe speed of

the vehicle.

The different ranges of visibility illustrated in figure 2.7, relate with more or less limited

capabilities of the vehicle. For instance, without a rear view the robot is not able to run

backwards (for parking manoeuvres for instance).

Dynamic world

If we consider a scenario where no moving obstacles exist and that the vehicle cannot

move to the side, then having only a front view is equivalent to an all but rear view.

However if arbitrary moving obstacles may be present, a front view is not enough to

provide safe turns since an obstacle may be moving alongside the vehicle. Turning

with an obstacle moving at the side would generate an unforeseen collision.

In a static world, supposing the presence of static obstacles anywhere in the non ob-

served area provides a conservative approximation (respecting the definition 2.8). In a

dynamic world, moving objects may be present in the open field. A conservative ap-

proximation consist on supposing that at the frontier of the observed traversable space

lay a wall of moving obstacles approaching aggressively. Supposing that the vehicle

move in a straight trajectory, the worst case to analyze consist on a moving objects

moving frontally. We come back then to the scenario presented in figure 2.6, from

stopping in front of a wall, to stopping in front of a moving obstacle.

In this example we suppose that the current vehicle speed is v0 and that other moving

obstacles have a maximum speed limited by law at vmax. Then, we require the vehicle

to be able to stop before colliding with the suspected moving obstacle, as illustrated

in figure 2.8. Using equation 2.3 it can be shown that the required sensors observation

range dsensor range(v0) would be

dsensor range(v0) = td · v0 +
v2

0

2 ·amax

+
v0 · vmax

amax

(2.4)
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Figure 2.8: Stopping in front of a moving obstacle that appears at the frontier of the

observed space

(a) Highway (b) Two directions street (c) Simple intersection

Figure 2.9: Top of view of the highway scenario. White indicates observed traversable

space, black indicates observed non traversable areas, gray indicates non observed

space, yellow lines indicate lanes

This means that in a totally conservative approach,the robot needs are sensing range

of 100 [m] to evolve at maximum speed v0 = vmax in a populated urban environment.

The equation 2.4 also provides the inverse relation, given a visibility range (limited by

sensors or occlusions), which is the maximum safe speed.

In chapter 4 we discuss how the precision of the sensors (besides their detection range)

also influences the final behaviour of the vehicle.

2.7.2 Streets

In contrast to the open field scenario, when in the city the regions where vehicles can

circulate are constrained. The apparition of vehicles is then limited to specific regions

of the visibility frontier, and the possible path to avoid obstacles is limited. In particu-

lar, when circulating on the roads cars are forced to have closer interactions than in the

previous scenario, where the vehicle could run wherever it pleases.

Figure 2.9 illustrates some common scenes in which vehicles interact.
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(a) An unseen car could come

from the opposite lane

(b) Space time diagram of the obstacle and

the robot

Figure 2.10: In a two lanes road, a non seen car may aggressively approach our lane.

Pink areas indicate reachable space of the moving obstacle, some paths are highlighted,

see also caption of figure 2.9

Two directions street

For analysis purposes a highway is similar to a street where every lane goes in the same

direction (since lanes with different directions are usually separated by a barrier). We

will focus on the more generic case of a two direction street.

In the urban context we expect different classes of moving objects to have different

capabilities. In the limits of the detected roads we expect objects to appear with maxi-

mum speed vcar
max while on the sideways objects have a different limited speed v

pedestrian
max .

Different hypotheses on where and how different moving may appear radically affects

the final behaviour of the vehicle, and are highly application dependent.

Possibly the most dangerous situation a car has typically to manage is crossing a car

in a two directions street. A slight change in the trajectory of the approaching vehicle

could lead to a high energy frontal collision. Let us analyze this particular case. For

analysis purposes we will disregard the presence of pedestrians (which are comparable

to small cars with lower maximum speed passing on the sides).

There are two cases to analyze, when no other car is detected and when one car is

coming on the reverse lane.

If no car is seen, then a conservative approximation of the future will suppose that a

car is about to appear in the opposite lane. Even worse, this car is moving towards our

lane with maximum speed vmax. This worst case scenario, illustrated in figure 2.10 is

essentially a variant of the open field case previously discussed. While being a two

dimensional scenario, we can analyze the “shortest possible time to collision” to the

planned trajectory, supposing that the robot stays on its current lane. Said in other

words, we define the uni-dimensional curve defining “the shortest time in which the

moving obstacle can reach any point along my lane”. As shown on figure 2.10 this

curve will always be superior in time than the frontal case discussed on section 2.7.1,

the same logic applies.
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(a) A car pass on the oposite lane (b) Space time diagram of the obstacle and the robot

Figure 2.11: In a two lanes road, a car approaches. At any given moment it could take

a sudden turn. See also caption of figure 2.10

When a vehicle approaches us, at some point it will be detected and tracked. Then

comes the question of the model used for prediction. The worst case scenario would

consider an aggressive vehicle, we would then fall into case a similar, but not identical,

to the previous one. It takes time to pass from one lane to another. For analysis purpose

we consider a slightly less pessimistic case, let us suppose that the approaching vehicle

could at any time make a sudden turn and block our lane, as illustrated in figure 2.11.

In the space-time graph we present the moving obstacle as a particle, to consider its

geometry it suffices to overlap the curve of each extreme of the object and consider the

worst case (shortest time to collision).

Analyzing the presented case we see that robot will decelerate considerably when

crossing another vehicle in a side lane, but it will not stop. In the proposed approach,

a vehicle only stops if it cannot find any other option. Having a vehicle slowing down

notoriously each time it crosses another one seems disappointing, but is the correct

action to take when you imagine that all the other vehicles may suddenly invade your

lane.

For a more “humans like behaviour” we propose to use an hypothesis on the perception

range of other vehicles. If we detect a vehicle it means that it probably can see us too.

Under a certain, predefined, distance we will assume that it has detected us too and it

supposes that we will stick to our lane, thus not invading it arbitrarily. By doing so, we

redefine a bound on the lowest speed reached when crossing another car.

Please note, that to use this approach is not necessary that the vehicle is actually capable

of detecting lanes. Using the detected traversable space (road) and an a priori on the

size of cars it is possible to define lanes on the streets accurately enough.

Small intersection

In figure 2.9 we present the scenario if a simple intersection. This case follows the

same logic described until now, the movement of other vehicles being restricted to the

detected roads (and lanes direction, if defined).
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(a) Obstacle plans EW

and robot has a partial

SN plan

(b) Both vehicles are

pushed towards a cor-

ner

(c) Both vehicles

cannot move forward

anymore

(d) Pink indicates the

"non stop area”

Figure 2.12: A deadlock appearing in a simple intersection, and how to avoid it. See

also caption of figure 2.9

With the proposed approach, the “vehicle stopping in a railway” situation may be a

concern. This is, the vehicle stops in the middle of intersection, letting itself being

collided (harm by inaction). First, as shown in theorem 2.1, if the “train” respected

the safety guidelines no collision would actually occur. Second, even if the vehicle

actually plans to stop in the intersection, as the vehicle moves its observed area evolves

and thus the plan is updated to actually cross the intersection. The vehicle will only

stop in the middle of the intersection if no other safe plan is found or if that is it actual

target pose.

When no other vehicle approaches the intersection the robot will slowdown it speed

considering the apparition of cars at the limits of it detection range. This case follows

again the same logic of the open space scenario.

The only inconvenient situation that could arises with the proposed approach (and did

arise in the simulations of chapter 6) occurs when another vehicle approach the inter-

section. It is possible that the robot will engage the intersection with a partial plan,

that allow it to stop safely and but not to cross the intersection. As the second car ap-

proaches, the robot may find itself cornered and not able to find any new plan allow to

move, as illustrated in figure 2.12. This kind of behaviour may lead to a dead lock in

an intersection, which is obviously a highly undesirable (but harmless) situation.

We propose as a solution to introduce into the planning the notion of “non stop areas”.

If a new plan ends in a non stop area we do not update the current plan (we keep as it is).

Non stop areas, are road regions we believe to be a resource shared between multiple

lanes. Applying this simple logic the vehicle will stop before entering the crossing and

will only cross it once it has a plan to “escape from it”. This solves the dead locks on

simple intersections and the “car on the railway” problems.

The different example scenarios discussed show that the proposed approach to safety

is viable, even with conservative assumptions. They also illustrate how, when ensuring

safety, the final behaviour depends on the hypotheses used when predicting the future

of the world.
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2.8 Conclusion

Safety is a critical issue for driverless vehicles, however it remains a fuzzy aspect in

many proposals. All of the classic planning methods and most of the previous works

on driverless vehicles are arguably unsafe. We reviewed the safety issue and how the

safety apply to an incomplete and uncertain world model.

From the analysis developed we can assert:

• The safety of the vehicle does not depend on the actual planning method em-

ployed, it only matters that the provided solutions respect definition 2.9.

• To ensure safety it is required that the control module provide and respect a

bound on the trajectory tracking error.

• In order to obtain a safe motion the perception module needs to provide a conser-

vative prediction of the traversable space in time and an estimate of the current

state of the vehicle. These estimations need to be done with respect to a reference

frame attached to the ground and not relative to the vehicle itself.

• The range and precision of the sensors does not affect safety as long as they are

correctly modeled. They will however influence the final behaviour of the robot,

in section 2.7 we provide some reference values for design.

• In order to manage safe motion and unexpected collisions, it is necessary to be

able to quantify the future harm by defining the function h(x(t),w(t)).

We have shown that when the perception-planning-control trio respects these con-

straints it is possible to ensure that, within the limits of the used world model, the

vehicle will not actively harm. The final behaviour obtained by a robot following the

suggested approach will be as safe as humanly possible.



Chapter 3

Perception

I can live with doubt and uncertainty and not knowing. I think it is

much more interesting to live not knowing than to have answers that might

be wrong.

Richard Feynman

In chapter 4 we will describe a system that allows the robot to:

• localize itself in the city

• build a local map of the static obstacle

• detect and track the surrounding moving obstacles

• localize itself on the local map

This functions will be used to build a world model satisfying the needs described in the

chapter 2 (see section 2.8).

In this chapter we will define what a perception system is, describe the underlying core

problem, and show how a single approach encompasses sensing, sensors fusion, local-

ization, simultaneous localization and mapping (SLAM) and the SLAM with moving

objects detection and tracking problem (SLAMMOT). Solving the SLAMMOT prob-

lem corresponds to effectively be able to do the four tasks listed.

This chapter presents a brief but extensive view of the state of the art on the subject

of robots perception in the context of indoor, urban and suburban environments. The

review of the existing techniques and their interrelation will provide the foundations

for the system proposed in chapter 4.

Readers familiar with SLAM and moving objects tracking techniques may move for-

ward in this chapter and only focus on sections 3.5.1 and 3.7.

45
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This chapter follows a bottom up approach (raw sensors at the bottom, SLAMMOT

output at the top) in order to review the underlying difficulties and existing alternatives

that lead to design a SLAMMOT system. Sections 3.1 and 3.2 define the perception

problem for a ground mobile robot. Section 3.3 reviews existing sensors. Section

3.4 explains how to uses multiple measures to build a single world model, the no-

tions of Bayesian programming, Bayesian networks and sequential Bayesian filtering

are introduced. Section 3.5 presents the localization problem and its underlying data

association and data representation problems. It is shown that the localization prob-

lem can be formulated as a sequential Bayesian filtering problem. Section 3.6 presents

the SLAM problem and briefly review existing solutions. It is shown that the SLAM

problem builds up on the localization problem by sharing the data association and data

representation elements and extending the filtering problem to a larger one. Section

3.7 presents the rather novel SLAMMOT problem that further extends the filtering

problem by including the moving objects detection and tracking. Finally section 3.8

presents some though on how to further extend the perception capabilities of mobile

robots and section 3.9 review the nuclear ideas presented during the chapter.

3.1 What is “perception” ?

Every robotic system can be seen as a composed by three modules: sensing, planning

and acting. In most of the cases the robot will be interacting with the physical world.

Machines only have access to this world through the measures provided by sensors.

Interpreting the measured values in order to take decisions about our future actions is

what perception is all about. Without perception the robot would not be able to take

decisions, and thus to fill its purpose.

Unfortunately in English the word “perception” refers to the process of perceiving, the

way of perceiving, the representation of what is perceived and the knowledge gained

by perceiving. This ambiguity leads to multiple confusions. In this dissertation we

will stick to the usage of perception as the process of perceiving. The representation

of what is perceived will be called world model. The way of perceiving is defined by

an instance of the perception system. The knowledge gained by perceiving will be

referred with loose terms such as “information” or “knowledge of the robot”.

A short definition of perception as a process is [39]

sensing, perception -- (becoming aware of something via

the senses)

As any language definition, it is incomplete (what “aware” means?). In the rest of this

chapter we will discuss in more detail what perception is, in the context of ground

mobile robotics, and which are the existing techniques to solve this problem.
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3.2 Problem definition

For robotics purpose, a more precise definition is

Perception is the process of transforming measurements into a world model

The model built has to be useful to take decisions, either by humans or by another

algorithm.

Starting from this definition the perception problem becomes threefold:

• What to measure?

• Which model to build?

• How to transform the measures into the desired model?

None of this question have one single answer since perception depends on the specific

application. In this dissertation we will focus on the problems related to ground mobile

robots, however much of the discussed methods can be directly used other application

domains (medical, air, underwater, etc.).

Independent of their specific purpose mobile robots need to ensure their mobility capa-

bilities. Thus they are likely to have some or all of the modules mentioned in section

1.4. Each decision module impose it own requirements on the information that the

perception module should provide.

Perception ◮ Control In order to control its movements the robot needs to estimate

its state, this can be done using propioperceptive sensors (internal) and/or exopercep-

tive sensors (looking around). Which are the components of the state vector to estimate

depends on the specific robot and on the control method employed.

Perception ◮ Trajectory planning In order to define a trajectory for its future move-

ments the robot needs to know which areas of the surrounding space can be traversed

and which not. This usually involves detecting the surrounding obstacles, but also

includes detecting banned areas or areas where the vehicle cannot move (e.g. cleaner

robot should not enter the elevators, or go into the stairs). If the presence of moving ob-

stacles in the surroundings is envisaged, estimating their future movement is necessary

to avoid future collisions.

Perception ◮ Route planning In order to decide the route, a routes network is used.

This information can be constructed from previous visits of the robot (large scale map-

ping problem). Once this information is provided the robot needs to know his position

such roads network. Given the change of scale the precision required and methods used

are probably different from the one used for control.
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Application specific tasks may include for instance, detailed maps building, site recog-

nition, persons detection, persons recognition, human commands recognition.

In any of the previous examples, essentially, the perception task is a state estimation

problem, ranging from simple single values estimation (e.g. estimating a temperature)

to extremely large states description (e.g. colourised voxel representation of the visited

areas). For mobile robots, the world model to estimate will usually include the state of

the world surrounding the robot and the position of the robot in this world.

Knowledge #= Certainties It is important to understand that knowledge about the

world does not mean certainties about it. Knowledge of the real world is always un-

certain due to noise in the measures and errors (or simplifications) in the models. A

correct representation of the knowledge acquired has to include the uncertainty of the

state vector (positions, sizes, class of the objects, number of objects, etc.). When posi-

tions have uncertainties, measures in different reference frames are not equivalent. For

instance, having high precision local positioning (street level) does not ensure accurate

global positioning (city level).

The presence of noise and uncertainties is one of the reason that lead to the use of the

probabilities as a sound mathematical framework to manipulate the low level data.

Defining the parametric form of the world model, the observations made and method to

estimate the parameter from this observations considering the limited resources avail-

able (computing and measurement capabilities per time unit) is the core problem of

perception.

3.3 Sensors

Sensors are the basic element of the perception, they transform physical signals into

signals understandable by the machine. The data obtained by the sensors is the basis

of the perception system and thus it is also what defines its limits.

The choice of the sensors for a particular task is non trivial, criteria for their selection

are cost, precision, range of measures, energy consumption, effect over the environ-

ment.

For our presentation we will separate the sensors in three classes: passive, active and

infrastructure based. Passive sensors receive environment energetic signals and trans-

form them (e.g. video cameras). Active sensors emits signals to then analyze the

response of the environment to them (e.g. radar, ladar, structured light). Infrastruc-

ture based sensors require a previous intervention of the environment to insert tags,

transponders or emitters which are later used by the sensor to construct its output (e.g.

electromagnetic tags, GPS, IR reflectors).

In urban areas the cost of infrastructure installations can be considerable and it restricts

flexibility to the perception system (limited areas of operation). Active sensors have to



3.3. SENSORS 49

be designed in order to not disturb the normal operation of the city (no disturb for hu-

mans, animals or previously deployed systems). In the past most work has been limited

to applications where the use of infrastructure or active sensors are not restrictive, the

state of the art research try to obtain better results while reducing the intrusive nature

of the robot.

For the perception process it is important to understand the capabilities and limitations

of a sensor and to be able to model its behaviour, i.e., the relation between the elements

to be measured and the sensor output. Such a model will be the base for an accurate use

of the provided data. Accurate modelling of the sensors will lead to better perception

systems.

In the following subsections we will briefly present existing sensors with respect to our

desired application and discuss the selection criteria. In sections 3.3.2 and 3.3.3 we

introduce some of the notions required to use the measurements information.

3.3.1 Internal measures

Using measures of its internal state and a model of its dynamics the vehicle is able

to estimate its displacement. For this task measures of wheels rotation (differential

encoder), steering angle (absolute encoders), motor control signals (via voltmeters or

digital control buses), speeds (based on wheels rotations and gyroscopes), accelerations

(using accelerometers, measures of the acceleration command) etc. are used. The

measurements of this low level instrumentation, common in industrial electronics, is

then introduced in an inference machine to estimate the actual state of the vehicle

(position, orientation, speed, etc.). The design and implementation of such an inference

machine is discussed in the section 3.4.

Modern cars include from the factory instruments that measures most of the internal

state variables, and such data is accessible in real time via a local data bus (usually a

CAN bus [40]).

In order to estimate the actual state of the system, both measurements and a model of

the system are required. Errors in the estimated displacement are induced essentially

by noise in the measurements and errors in the models. For car like systems the cor-

rect use of internal sensors leads to a good estimation of the displacement for straight

lines trajectories (less than 1% errors). However when realizing curves the sliding ef-

fect of the wheels, habitually omitted in the models, introduce important errors in the

orientation, that finally degrade the total Cartesian displacement estimation.

Independent of the quality of the model and precision of the measures the presence of

noise in the measurements and in the dynamic system are inevitable. This noise causes

a continuous divergence, the uncertainty grow is constant and unbounded. This essen-

tial limitation makes necessary to always use external measures to relocate the vehicle

in the space, correcting the executed path estimation and reducing its uncertainty.

It is also obvious that internal measures are a poor element for perception because they

only give proprioceptive information and no knowledge of the external world which is

a requirement in almost any application.
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Figure 3.1: Gaussian distribution G (0,1)

Since internal captors are cheap and almost always available (because of the internal

control loops of the system) internal measures are commonly employed, at least to

compute a rough initial estimate of the ego-motion.

3.3.2 Noise model

For mathematical and computational simplicity the most commonly used noise model

is the white Gaussian noise. The measures of the physical magnitudes are supposed

to be corrupted by a white noise signal whose distribution can be approximated by the

Gaussian distribution (also called normal distribution), is illustrated in the figure 3.1 .

The distribution of the signal is supposed to have a zero mean value and a variance to

be determined experimentally.

The correct modelling of the noise that affects the signals will have a direct impact on

the quality of the information extracted from them.

In most of the cases the white Gaussian noise is simply a rough but useful approxima-

tion. However this approximation should be verified, because wrong noise modelling

(wrong assumption) can lead to large errors in the estimation of real world objects.

The so called “white noise” is a noise signal that is not correlated in time, i.e., its actual

value give no information about the next value. Not every physical noise signal is

white, not even in general.

The univariate Gaussian distribution is a function of two parameters, the mean value µ
and the standard deviation σ . Thus the probability density function is

p(x) =
1√

2π ·σ
· exp

(
− (x−µ)2

2σ2

)
∼ exp

(
− (x−µ)2

2σ2

)

Thus if a noise signal X can be described by a Gaussian we write X ∼ G (µ,σ) or,

alternatively, X ∼ N (µ,σ).
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In general the noise of a system will be described by the presence of noise vectors.

Then a multivariate Gaussian distribution is employed. This multivariate distribution

is parametrized by a mean vector !µ of dimension d and a covariance matrix Σ of di-

mension d ×d. The expression of the probability density function is then

p(!x) = 1

(2π)
d
2 ·|Σ|

1
2

· exp
(
− 1

2
· (!x− µ̃)tΣ−1(!x− µ̃)

)

∼ exp
(
− 1

2
· (!x− µ̃)tΣ−1(!x− µ̃)

)

Commonly the vector notation is omitted as the univariate case G (µ,σ) is unambigu-

ous respect to the multivariate case G (µ,Σ).

An important concept associated to the standard deviation is the “confidence interval”.

These intervals define ranges of values where we have a given confidence that the real

value of the variable resides into. It can be calculated that the range ±σ contains 68%

of the instances of the modeled event, ±2σ contains 95% of the instances and ±3σ
correspond to 99,7% of the instances.

Thus having a good estimate of the variance (σ or Σ) it is possible to bound up to a

99% of certainty the range where the real value of interest is placed. This principle is

commonly used to pass from probabilistic description, to non-probabilistic descriptions

(using a threshold for the certainty).

3.3.3 A simple car model

As we will see in section 3.4.4 in order to use the inertial measures it is necessary to

also have a model of the system itself. Let us then introduce such a model.

Cars and car-like vehicles have complex dynamics, including combustion processes,

mechanical connections, torsion of materials, fluid dynamics (fuel in then tank, air

friction, wheels model), friction and sliding with the road, etc... From an external point

of view and with the interest of modelling the motion of the vehicle as a particle, very

simple models are used.

The simplest model utilized (which is the most employed) does not consider friction or

slipperiness, it supposes that an internal control loop is able to regulate the dynamics

and only consider the non-holonomic capabilities of the automobile [41, 42]. Discard-

ing the slipperiness of the road allows to collapse the wheels (see figure 3.2), thus this

model is sometimes called the “bicycle model”.

All the simplifications lead us to a nonlinear kinematic1 model of the form (3.1) where

the state of the vehicle is represented by a vector in R
4. This vector is composed by:

x,y Cartesian coordinates of the middle point between the rear wheels,

1“Kinematics is the branch of mechanics concerned with the motions of objects without being concerned

with the forces that cause the motion. In this latter respect it differs from dynamics, which is concerned with

the forces that affect motion.” [43]
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Figure 3.2: The bicycle model: a simplified kinematic model of a car

θ vehicle orientation (with respect to the Cartesian plane) and

φ steering angle of the front wheels (which are supposed to be parallel).

(ẋ, ẏ, θ̇ , φ̇)t = f ( (x,y,θ ,φ)t , (u1,u2)
t , η) (3.1)

The input that affects the state vector is a bi-dimensional vector composed by

u1 driving velocity (mean value of the rear wheels) and

u2 steering velocity.

Finally the model has two parameters the intrinsic noise vector η and the length of the

vehicle L measured between one wheels axis and the other, as presented in the figure

3.2.

The equation 3.2 establish the nonlinear relation between the presented magnitudes.




ẋ

ẏ

θ̇
φ̇


 =




cosθ
sinθ

1
L
· tanφ

0


 ·u1 +




0

0

0

1


 ·u2 +η (3.2)

Clearly this model is the simplest one, after the punctual mass, and it is useful for our

task because it integrates the limitation in the displacement and discard all the other

spurious elements. Models with the same objective but with incremented complexity

are the bi-steerable model presented in [44, 45] and the four wheels presented models

at [46].
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3.3.4 Satellite based positioning systems

After the internal sensors, the second most used sensor are the infrastructure based

satellite global positioning systems (such as the American GPS, Russian GLONASS,

Chinese Beidou or European Galileo [47]). Developed in order to locate objects (boats,

cars, planes, satellites) all around the world in a common reference frame these systems

are today part of the daily life of individuals in the developed world.

The precision of a cheap commercial receptor is measured in various meters (five, ten

meters). With the help of a city map the GPS measures can be good enough to local-

ize a vehicle in a specific street, but not to localize the vehicle inside this street (lane,

distance to intersection, etc.) [48, 49]. The standard GPS resolution can be enhanced

by diverse methods [50], requiring local infrastructure. Through these methods cen-

timetric resolutions can be achieved (few centimeters of uncertainty). However these

methods are strictly limited to local regions since they use ground infrastructure. They

are normally used as ground truth to compare with other localization methods (see [51]

for a good introduction on the subject).

Together with a measure of the position the GPS (and the other systems) provides

to the receptor a precise measure of the time (which is used internally to calculate

the position). Between two close GPS receptors that observe the same satellites, the

relative time measure error is in the order of a few milliseconds (or lower).

The standard GPS is a good tool to localize a vehicle in the large, however in urban ar-

eas it tends to be unreliable because it require lines of sight with at least three satellites.

In dense urban areas the surrounding buildings commonly interfere in the electromag-

netic waves propagation, blocking the access to the satellites and thus to new location

estimations. Another factor of unreliability is caused by the trajectory of the satellites.

As the GPS satellites are orbiting around the earth, at the same location but in differ-

ent time the GPS measures can become unavailable. Experimental results show that in

dense urban areas reception regions can cover as little as 50% of the total surface [52].

The low cost of the GPS receivers (with respect to a vehicle) and the possibility to

use them for global positioning make them a common sensor for vehicles perception.

However the mentioned limitations do not allow to use them as the solely localization

system and, similarly to odometry, they have to be used in combination with other

methods.

The habitual model for the GPS is to suppose that data will be reliable and that the

measures are corrupted by Gaussian noise G (0,σ). The standard deviation σ is ad-

justed to the values that the manufactured indicate (e.g. ±5 [m] at 95% of certainty).

The Gaussian assumption is more or less correct, however a common mistake is to

suppose the GPS measure error as a white noise signal. The measurement errors are

principally associated to the position of the satellites with respect to the receptor and to

the characteristics of the communications channel (atmospheric, multiple paths, etc.).

Both of these variables evolves smoothly in the time, and those the noise signal has an

important component correlated in the time.

Applying filtering methods that supposes white noise (as Kalman filtering does) will
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Table 3.1: Comparison of external sensors

Name Range± precision Rate Robust- Applicability

[m, degrees] [Hz] ness for driverless vehicle

Sonar 5±0.1, 0º ±10º 20 − Very poor performance

Short range radar 50±2, 50º ±1º [55] 20
√√√

Poor for pedestrians

Long range radar 150±0.5, 20º ±0.7 [56] 10
√√√

Poor for pedestrians

Ladar 100 ±0.05, 240º ±0.5º [57] 20
√√

Fragile and expensive

Velodyne 100 ±0.05, 360º ±0.1º [58] 15
√√

Fragile and expensive

Solid state ladar 20±1, 50º ±1º [59] 50
√

Good, but unavailable

Mono vision - , 40º ±0.25º (variable) 30 − Complex image processing

Stereo vision (distance2) , (variable) 20 − Noisy, no error model

Omnidirectional - , 360º ±0.5º 30 − Complex image processing

Structured light (distance2), (variable) [60] 1
√

None (in visible spectrum)

Infrared - , (variable) 30 − Complex image processing

lead to considerable errors or even divergence. For this kind of signals H∞ filtering

seems to be a more appropriate method [53, 54].

3.3.5 Comparing external sensors

Up to now we have discussed the user of internal and global positioning sensors. None

of these provide information about what is around us, yet this is the most critical infor-

mation that allows us to build the harm function estimate and thus decide the actions to

take.

A detailed review of existing sensors and their technology seems out of the scope of

this dissertation. Instead we present two condensed tables. In table 3.1 we present

representative values of the performance of external sensors used in commercial cars

and robotics applications. Then in table 3.2 we present a sample of research work

related to different perception functions implemented using specific sensors.

From the results in the tables ladar and vision seems to be more promising sensors.

Radars are commercially used in modern cars but offer technical limitations to their use

on driverless vehicles. Ladar sensors (see figure 3.3) seems to be the more promising

solution, with good solutions today and better ones being developed (see figures 3.4

and 3.5).

Vision is probably the ideal solution. Through passive sensing with comparatively

cheap sensors it provides very rich information. However, unlike the ladar, it does

not provide direct access to the distance to obstacles information. Despite extensive

research, correctly estimating the distance to obstacles (and its error) has proven to be

a very difficult problem in the general case.

In the short term laser based sensors are probably going to prevail in robotic applica-

tions, but in long term vision based perception is the best known solution.
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Table 3.2: Use of sensors for different perception tasks. “Common use” indicates

that solutions are provided by commercial companies. The referenced works are an

arbrirary sample of the large corpus of existing related research

Name Localization Displacement Obstacles Mapping

estimation detection (SLAM)

Sonar Poor Poor Common use [61, 62, 63]

Radar No No Common use [64]

Ladar Yes Yes [65] Common use

Solid state ladar Yes Yes [66, 59] [67, 68]

Mono vision [69, 70] [71, 72] [73, 74, 75] [76, 77, 78]

Stereo vision Possible [79, 80] [81, 82, 83] [84, 85]

Omnidirectional [86, 87] [88] Possible [89, 90]

Structured light Possible Possible Possible [60]

Infrared Possible Possible [91] Possible

Figure 3.3: Laser-scanner schema. From [65]

Figure 3.4: Velodyne high definition 360° lidar output. From [58]
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Figure 3.5: Depth measures from a state of the art active vision system. Left side, the

real scene, right side, the depth map. From [92]

Figure 3.6: Sensor data processing stages

3.4 Sensors fusion

As seen in the previous section no single sensor is able to give all the required informa-

tion of the world. Most of the time different sensors gives complementary information

of the environment, when redundant overlapping measures are available it is possible

to enhance the resolution exceeding the sensor intrinsic resolution.

Sensor fusion deal with the merge of different sources to obtain a consistent unique

representation of the world.

It has to be noticed that fusion can be done at the different levels of processing and

that the output of different algorithms applied to one same sensor are also subject to be

fused. This lead to the more generic concept of data fusion.

Data fusion at different level can be lead up to fusing heterogeneous decisions over one

situation. In this text we will center the focus on the fusion systems at the perception

level.

3.4.1 Sensor fusion stages

At the perception layer the data is acquired and processed in a sequence of operations.

A possible sequence is presented in the figure 3.6 [93].

First the obtained data is reconstructed at the adequate scale and put in the correct

reference frame (example: laser scan binary packets are transformed into point in the

space). Then the raw points are transformed to match the internal representation (see
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section 3.5.1 for an overview of different data representations). In this stage raw data

is analyzed and used to construct map of features, or to feed a grid of evidence, for

example. This representation is then processed to extract objects (as defined in the

world model) that will be classified (assignation of a model for a specific objects) and

whose state will be estimated (state of the dynamic model selected).

Of course this schema is just a generic representation and has to be adapted to specific

cases. The interesting point is to observe that the heterogeneity of sources can be

helpful at every stage of the processing, passed the reconstruction level.

To be able to fusion the data from different sensor all the reconstructions have to be

made on the same unique reference frame. This means that a previous calibration step

is required in order to reconstruct the data in the same spatial referential and that the

measures of different sensors have to be tagged with the same time counter. Sometimes

omitted this aspect is crucial in practice.

The diversity of sensors, data transfer protocols, calibration procedures and the re-

quirement of common calibration and synchronized timestamping is creating pressure

for the development of a common sensors framework in the automotive automation

market and for the robotics domain in general [93].

Having mentioned these practical issues it is time to discuss more conceptual as-

pects. At the most basic level it is not trivial how to merge heterogeneous informa-

tion, how different sources will lead to only one decision. Even more sensor measures

are imprecise and can be incoherent with respect to other captors. Different theories

and algorithms have been employed for sensor fusion (fuzzy logic, decision theory,

Dempster-Shafer theory), however in this dissertation we will stick to only one ap-

proach. Bayesian probabilities seems to be the more principled, sound and popular

theory to manage the uncertainty [94] and thus is the best candidate for sensor fusion.

In this text we will use the Bayesian approach as a conducting line through the incre-

mental complexity of the problematics and to show the relationship between them.

3.4.2 Bayesian programming and Bayesian networks

Many works have been done in robotic perception and in probabilistic robotic percep-

tion. Such a proliferation of works has scrambled their interrelation due to different

nomenclatures and different presentations.

In order to make this dissertation coherent and structured we will present the different

probabilistic approaches using two tools : Bayesian programs and Bayesian networks.

Bayesian programs are a simple but clear and powerful formalism to present Bayesian

models (probabilistic description of the interrelation between a set of variables and

the attributes of these variables). On their side Bayesian networks are a special kind

of graphical models that allow to represent graphically Bayesian models. Bayesian

programs are a more powerful and auto-contained presentation of Bayesian models

that the Bayesian networks. In this dissertation we will use Bayesian networks as a

complementary (and voluntarily redundant) visual support for the Bayesian programs.
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Figure 3.7: Structure of a Bayesian program

In the rest of this subsection we will do a very brief introduction to these representa-

tions. The reader is invited to consult [95] and [96] for a more pedagogic and complete

presentation of these tools.

Bayesian programs

A Bayesian program is composed by a description of a Bayesian model and a question

over it. The description itself presents :

• the variables involved,

• a structure in the joint distribution of the variables, that lead to a specific decom-

position

• the form (family of distributions) of the different component of the joint distri-

bution

• the method of identification (of parametrized or non-parametrized forms)

The graphical representation of these elements is illustrated in the figure 3.7. We will

exemplify this figure with the sensor fusion example.

Bayesian networks

Bayesian networks are a specific kind of graphic model. This drawing encodes in a di-

rected graph the dependencies between random variables. The independence between

variables allow to decompose a joint distribution into a product of lower order joint

distributions, which is commonly the information presented in the decomposition field

of a Bayesian program.

Continuous variables are represented by circle nodes, discrete variables are represented

by square nodes, observable variables are grey and dependence relations are repre-

sented by directed edges, as shown in the figure 3.8.

The careful reader will have noticed that Bayesian networks encodes dependencies

while inference computation is lightened by independence conditions. The indepen-

dence conditions are available in the graph but are non trivial to read (we have to play

Bayes ball), see [96] for an introduction on the subject.
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Figure 3.8: Variable B depends on A

Figure 3.9: A Bayesian network for sensor fusion

3.4.3 Bayesian sensor fusion

From the Bayesian perspective the essential sensor fusion problem is a quite simple

one. We will employ it to exemplify the formalisms presented in the subsection 3.4.2.

Let us suppose that an event Φ occurs at a given instant. This event is measured by

three sensors, retrieving observations O0, O1 and O2. The values of the observation

variables Oi depends on the value of the event Φ. This relation is encoded visually in

the Bayesian network of the figure 3.9. The nodes of the observations are grey because

their value is accessible, while the node of the event is non grey because its value is

unknown.

Having access to the observations, the purpose of the sensor fusion is to employ the

information contained in the different measures to obtain the best possible estimation

of Φ, the value of the event. This is illustrated in the figure 3.10 under the formalism

of Bayesian programs.

The decomposition of the joint distribution P(Φ O0 . . .ON) can be deduced from the

Bayesian network, and vice versa. It is also relevant to emphasize that the Bayesian

program sets up a problem, but does not pretend to give an explicit solution to it. The

factorization of the joint distribution is a technique to reduce the computation of the

Bayesian inference problem (that is NP hard in the general case, i.e., intractable).

In sensor fusion the question is

P(Φ|O0 . . .ON) =?

Applying Bayes theorem over the joint distribution P(Φ O0 . . .ON), we can write
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P(Φ|O0 . . .ON)

Figure 3.10: Sensor fusion as a Bayesian program

P(Φ|O0 . . .ON) = P(O0 . . .ON |Φ) · P(Φ)

P(O0 . . .ON)

Then applying the conditional independence (expressed in the decomposition and in

the Bayes network)

P(O0 . . .ON |Φ) =
N

∏
i=1

P(Oi|Φ) ⇒ P(Φ|O0 . . .ON) =
N

∏
i=1

P(Oi|Φ) · P(Φ)

P(O0 . . .ON)

Commonly the distribution P(Φ) is assumed uniform, thus it corresponds to a fixed

coefficient. On the other hand it has to be noticed that the distribution of interest

P(Φ|O0 . . .ON) corresponds to a function f (Φ) over the range of Φ. Then, the factor

P(O0 . . .ON) corresponds to a fixed value, independent of Φ. These two observations

allow us to write

P(Φ|O0 . . .ON) ∝
N

∏
i=1

P(Oi|Φ) (3.3)

The proportionality factor is unknown and depends on the actual observation measures.

However this is not important since it can be deduced from the restriction that the

integral of a probability density function has to be equal to one. The important fact

from equation 3.3 is that it shows that the solution from the sensor fusion problem is

the multiplication of known probability distributions, where P(Oi|Φ) corresponds to

the model of each sensor i.

One of the favourite forms for the distribution P(Oi|Φ) is the Gaussian distribution.

When two Gaussian distributions G (µ1,Σ1), G (µ2,Σ2) are multiplied the resulting

Gaussian distribution G (µ3,Σ3) has a mean vector and a covariance matrix defined

by
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Figure 3.11: Dynamic Bayesian network of the observation of an evolving system

K = Σ1 · (Σ1 +Σ2)
−1

µ3 = µ1 +K · (µ2 −µ1)
Σ3 = (I −K) ·Σ1

From these expressions it can be seen that the fusion of multiple measures (ruled by

Gaussian distributions) will consistently reduce the variance of the result, thus enhanc-

ing the precision of the estimation of the value of Φ.

3.4.4 Sequential Bayesian filtering

Multiple simultaneous observations of an event give more information about it. Mul-

tiple observations in the time of a time invariant element is equivalent to the multiple

simultaneous observations. Sequential observations of a system evolving in time give

more information about its actual state that a single observation of it. This is the core

idea behind the sequential Bayesian filtering.

Bayesian filtering allows to use past and present measures to enhance the estimation of

the actual state of a system. Such measures can be originated from a single source or

from a diversity of sources, leading to the sensor fusion case.

The figure 3.11 presents a Bayesian network that shows the evolution of a discrete sys-

tem and the observations made from it. The associated Bayesian program is presented

in the figure 3.12.

As the Bayesian networks presents the relation between variables evolving in the time,

it is commonly named as a “Dynamic Bayesian network”. Notice that the presented

graph illustrates the Markov assumption, i.e., the current state depends only on the past

one.

The presented Bayesian network is the simplest one related to a Bayesian filtering

problem. In general we will have more that one observation of the state, or multiple

partial observations of it. Also some applications will have measures depending of two

states or access to inputs of the system. All those cases will be managed with the same

unifying approach.
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Prog




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


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

Variables

x0, . . . ,xt State vectors in time

o0, . . . ,ot State observations in time

Decomposition

P(x0 . . .xt o0 . . .ot) =
P(x0)P(o0|x0)

t

∏
i=1

[P(xi|xi−1)P(oi|xi)]

Forms : any

Identification : any

Question :

P(xt |o0 . . .ot)

Figure 3.12: Bayesian Filtering

Figure 3.13: Sequential Bayesian filtering

For the sake of completeness it worth mentioning that the Bayesian program of the

figure 3.12 is specific for Bayesian Filtering. When the question is P(xt+k|o0 . . .ot) then

such a task is called Bayesian Prediction, and when the question is P(xt−k|o0 . . .ot) it

is called Bayesian Smoothing (k is a positive integer).

An important property of the Bayesian Filtering problem is that it can be solved through

an iterative algorithm. The recursive relation is presented in the equation 3.4, see [95]

for its derivation.

P(xt |o0 . . .ot) = P(ot |xt) · ∑
xt−1

[P(xt |xt−1) ·P(xt−1|o0 . . .ot−1)] (3.4)

This algorithm can be interpreted as transformations over distributions of probability.

Using the evolution model P(xt |xt−1) we obtain a distribution P(xt |o0 . . .ot−1) prior of

the new measurement (this distribution is commonly called “the prior”). Then intro-

ducing the new measure we obtain the desired result P(xt |o0 . . .ot) (commonly called

“the posterior”). This process is illustrated in the figure 3.13.
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In order to compute the sequential Bayesian filter a definition of P(ot |xt) and P(xt |xt−1)
is required. P(ot |xt) corresponds to the sensor model and is commonly known in ad-

vance. P(xt |xt−1) is a description of the dynamic of the system. A parametric model

of the system dynamics can be estimated (online or offline) from previous samples or

known a priori.

For any implementation solving an inference problem the description of the probability

density functions has to be chosen. Common choices are unimodal Gaussian distribu-

tions, mixture of Gaussian distributions and set of particles. Also it has been proposed

the use of binary trees [97], splines and wavelets.

Kalman filter and variants When the sensor model is Gaussian and the dynamic

model is linear with Gaussian noise then the sequential Bayesian filtering algorithm

leads to the well know Kalman filter (KF) [98, 99, 100]. When the dynamic models

are not linear, Kalman filter cannot be applied directly (since a Gaussian posterior at

t − 1 uncertainty becomes non a Gaussian prior at time t). An approximation of the

Bayes Filter, called Extended Kalman filter (EKF), consists on linearizing the model at

the current state estimate (a linear projection of Gaussian distribution stays a Gaussian

distribution). A better way to approximate, named Unscented Kalman Filtering (UKF)

[101], projects the Gaussian distribution through the non linear model and then estimate

the first and second moments of the output (instead of using a projection over the first

derivative).

Particles filter A classical method to deal with non linear systems and arbitrary prob-

ability distributions is the so called Particles Filter [102]. Instead of representing the

probability density function by a parametric function, it is represented by a group of

particles that sample its surface. The more particle, the better represented will be prob-

ability function. The core idea of the particle filter is to manage the set of particles in

order to keep them on the areas of maximum likelihood.

Particles filtering is a very powerful method that can manage any distribution (notably

multi modal ones) and any non linear function. Defining the good number of particles

required and ensuring that they still sampling correctly the high likelihood regions is in

general not well defined. However they are used over many practical problems using a

“high enough” number of particles.

Presenting in details all of this Bayesian Filtering instances requires lengthy equations.

As this are classical methods we refer the reader to the previous citations to explore

each method in detail.

A classical application of data fusion and sequential filtering are the GPS + Odometry

global localization systems. Noisy measures of the robot position and displacement

are available and the use of fusion and filtering dramatically enhance the positioning

precision. The reader can consult [103, 104] for a detailed discussion on both the

theoretical and practical aspects of this application.
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3.5 Localization

Mobiles robots to localize themselves to follow a defined path, attain a specified objec-

tive, or to put in context its measures of the surrounding area.

As seen previously, there exist technical solutions to implement global localization

system (e.g. GPS). Fusing the information of others sensors with a global localization

system the uncertainty in the position with respect to a global reference framework can

be reduced by a factor 5 or more.

Without a global positioning system integrating the measures of the vehicle (know as

“dead reckoning”) will lead to growing unbounded errors. The core idea that allows

to bound the errors in position is to put in relation the actual observations with past

observations. When relating current observations with a prior map we talk about local-

ization, when relating current observations with past observations using a method to

bound the error, we talk about SLAM (see section 3.6).

Matching observations with a prior map is a common problem in various domain, it

is a pattern recognition problem where many possible patterns are available (some-

what like biometric systems), in medical applications sparse measures are matched to

organs/bones models, it is similar to recognize a figure in a video sequence, etc...

The localization problem itself is commonly separated in two problems: to find out the

global location in a map without prior knowledge about the actual pose (also know as

the “hijacked robot problem” or the “lost robot problem”), to correct the global location

in a map using a previous valid approximation (e.g. the last know pose).

Imagine yourself in an foreign city with only a map where there are no tags in the

streets and where you can ask to no one your location. To find your position you need

to explore the streets and match the observed portion of the city with the map until you

can pinpoint unambiguously your location. Using this method the “lost robot” problem

can be solved, but clearly it is a non sense to do so for city sized localization. In this

text we will suppose that for outdoor problems a rough global localization is available

through user input, GPS measures, or, via messages passing between localized cars and

disoriented vehicles.

Data association, data representation The localization is essentially a data associ-

ation problem. How to put in relation (associate) the actual measures with the a priori

information (the map) ? The answer to this is closely related to how the map is defined.

In order to solve the localization problem we need to address the related data repre-

sentation problem, i.e., how to represent the rough measure and prior maps in order to

manipulate more easily the data. Depending on how we represent the knowledge the

data association can be more or less easy, robust and effective. The data representation

problem is also common to the SLAM and SLAMMOT topics because they also deal

with manipulation of maps and association of new measures.

In general, to localize globally from one observation is very unlikely, even in such a

case repeated observations allow to enhance the location precision. Commonly, a prob-
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abilistic approach is employed to estimate the location from the group of past obser-

vations, posing the problem in a Bayes filter formulation. In the following subsections

we will present the different data representation options, the algorithms used to relate

the measures to such representations and then the different methods to estimate the

location using this association.

3.5.1 Data representation

The data representation is an important topic in the localization, SLAM and SLAM-

MOT problems. The choice of a representation is related with both in theoretical as-

pects (setting assumptions) and practical aspects (defining computational requirements

and implementation complexity). In practice the data representation will affect the ef-

ficiency (meeting of real-time requirements, memory usage) and efficacy (more or less

valid assumption) of the methods and thus is a strong differentiating element.

We now present a list of the different data representations found in the literature and

the basic concepts behind each one.

Localized features In the simplest case the world is described by a set of precise, lo-

calized, and uniquely identifiable tags (vision features, laser, sonar or IR tags, etc). This

is a common supposition of mathematical formulations of SLAM. If tags are uniquely

identifiable there is no data association problem and then the localization is trivial. Us-

ing a Bayes filter allow to reduce the uncertainty associated to the tags measures or to

reject false measures.

If the tags are measurable but not uniquely identifiable then special methods have to be

employed to solve the localization with unknown data association problem. Such com-

mon features are image point of interest, detected corners, specific objects detectors

(e.g. posts or semaphores), scanned objects, etc...

The localized features method has a very compact representation of the world. How-

ever this method supposes that such tags are available which commonly requires special

installations or strong suppositions on the environment. Localization methods based on

features map are sensible to errors in the features recognition.

Geometric descriptions This corresponds to the common maps that represent the

world as sets of lines, circles or other basic geometric constructs. Robots measures are

analysed to estimate basic geometric forms that are correlated to the topological map.

This representation is conceptually similar to the localized features with unknown data

association. Maps of buildings are commonly available in this form, however there is

no guarantee that the robot will be available to measure the described objects (this is

different to the localized features that are defined as measurable). Through range scans

the robot can estimate surfaces to correlate with the map.
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a) Raw data b) Geometric description c) Features d) Occupancy grid

e) Sampled f) Sum of gaussians g) Grid of gaussians

h) Occupancy grid map i) Probabilistic quadtree map j) Multi resolution grid map

Figure 3.14: Some representations of the static environment
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This method is not very good because it is limited to environment composed uniquely

by simple geometric objects, and the analysis of the measures is troublesome and not

very robust.

Occupancy grids This is one of the most common approaches. The explorable space

is discretized in a finite grid of cells (habitually rectangular cells) where each cell stores

a probability of occupancy. Probability 0.5 reflects no information about the cell, prob-

ability 0 indicates absolute certainty that the cell is free of obstacles and probability 1

the opposite (see figure 3.14).

In this representation it is easier to integrate uncertain measures to construct maps, and

it is possible to correlate measures (using sensors models) to existent maps.

This method presents some limitations due to the extensive use of memory to store

regions with good enough resolutions. Also the discretization of the space introduce

artifacts in the correlation, specially when estimating the orientation of the robot.

Introduced fifteen years ago [105], this simple and clear method still is an interesting

option for real world implementations. Occupancy grids are sometimes appealed as

“occupancy maps” or “evidence grids”.

Quadtree One the main drawbacks of the occupancy grids is their large memory use,

even when most of the region are not accessible. To solve this situation a “probabilistic

quadtree” approach was proposed [106]. Instead of decomposing the space in a regular

tree it is divided in a sequence of regular area subdivision. This sequence of subdivi-

sions is stored in a tree where each node corresponds to a division and each leaf to a

final area (see figure 3.14). Storing the probability of occupancy of each leaf leads a to

representation similar to occupancy grids but with a more efficient memory usage. Non

measured regions are kept non divided and thus the large “blind areas” are compacted.

The gain in memory space is evident, however it is not clear how efficient is to employ

such a structure to, for instance, correlate measures to the map.

Multiresolution pyramid Another limiting aspect of the occupation grids is the reg-

ularity in the discretization of the space. For scans correlations this is not troublesome,

but when using the map for robot planning a multiresolution approach is more ade-

quate. In [107] the author propose a representation with a pyramidal series of mul-

tiresolution maps. The use of different resolutions allow to enhance the calculation of

trajectories and to solve an important flaw of rigid cells. In rigid cells if an object is not

detected when far measures are realized this will add evidence of free space. However

it is possible that the sensor is not able to detect small objects up to when they are

near. Using different grids (with different resolutions) to store measures in different

distances ranges solves this important issue.

The computation cost of this representation is not much higher, however the increase

in memory usage is considerable. The important issue it solves, the ease for navigation
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and the fact that multiresolution of maps is usually required anyway (for higher level

analysis) make it an interesting option for real world implementations.

Graphs Geographical information systems commonly represent roads information as

a graph. At the city level the space is described by nodes and edges that describe both

a logical network and a macroscopic geometrical description of the streets. This rep-

resentation are mainly used with satellite based positioning systems since it is difficult

(but not impossible) to put in relation the robot measures with this world representation.

Former research at indoor localization, when computational resource were scarce, used

a graph representation of indoor corridors. In that representation each node represents

a distinguishable place and some measures associated to it, and the edges represents

the existence of connecting paths. Such a graph could be useful to relocate the robot

when reaching one point to another. This method is not very used today because more

dense representations allow better localization.

Raw data If city graphs is the most abstract map, raw data storage is the least one.

When measures correspond to high resolution range and angle acquisitions it is possible

to represent the measure by a set of points. Thus a map can be constructed by the simple

aggregation of measured points. Of course this is a simplistic brute force approach,

because the amount of data recollected can grow very fast creating fat maps.

Anyway this concept can be used as a starting point. Having a cloud of points it is

possible to correlate measures to the cloud and thus localize the robot. Also, the cloud

of point can be analysed for decimation or transformation.

Of course the important memory usage and the lack of a precise representation of the

uncertainty in the measures do not make this approach very popular.

Sampled Environment Map A manner to represent the uncertainty of a punctual

measure is to use samples of the probability density function of the sensor error. Pro-

jecting all the samples of the successive measures in a plane creates a sampled distribu-

tion of the spatial occupancy’s probability density function [108]. Even if the memory

usage can be considerable (depends on the number of samples per measure and the

number of measures) this technique leads to an accurate representation of the detected

objects, in the sense that it correctly represents the uncertainties of their localization.

Furthermore this data can be analysed to construct other, more compact representations

(e.g. segment representations [109]).

One the most obvious problems of this representation is that the amount of data to

realize the correlations is too important for practical online applications. The memory

usages seems to be simply wasteful and more compact options have to be evaluated.
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Sum of gaussians An idea to reduce the amount of data of sampled environment

map is to approximate the sampled distribution by a Gaussian one (i.e., approximate

the measure error by a Gaussian distribution). The aggregation of sampled points in

the plane is represented in a “sum of gaussians” form [110]. This representation leads

to a more controlled memory usage and to efficient correlation methods (because the

local gradient can be computed directly).

In the same work the author suggests to divide the sum of gaussians maps into different

objects that can be used as local features, transforming thus the kind of representation

(scans are matched to objects, thus recuperating their position and orientation). This

idea is interesting when the environment is composed by clearly separable objects,

which is not the common case in urban areas.

Unfortunately this work left open the problem of merging multiple scans to avoid the

grow of stored gaussians. This limits the accuracy of the maps or make grow the

computational cost during the correlations.

Grids of gaussians Recently a new data representation approach named “Normal

distributions transform” has been proposed in [111]. This method is closely related to

the works presented in the last two subsections. The core idea is to represent the envi-

ronment with a fixed density of overlapping gaussians. The set of previous measures

are used to estimate local and overlapping gaussians creating a smooth and accurate

representation of the spatial occupation probability.

Fixing the density allow to control the precision of the representation and to limit the

memory usage. It is also possible use optimized correlations methods (because lo-

cal gradient can be calculated) to provide real-time performances in localization and

mapping.

This data representation concept merge many interesting properties making it one of

the best candidates for real world deployment.

Hierarchical representation It is possible to group all the qualities of the presented

data representations using a hierarchical representation [112] where different methods

are used at different levels of abstraction.

In [112] the representation is divided in three classes: feature based, grid based and

direct methods. Having noticed that non of the class of representation is good enough

for the pretended application (city sized SLAM) the design of a hierarchical method

is proposed. [112] uses direct methods to correlate successive scans (estimate the ve-

hicle displacement), grid maps to construct successive local maps and a feature based

representation for the construction of global maps (composed by the local maps).

The stratification of the representation (and the associated information processing meth-

ods) simplify the analysis of the problem and make large scale systems tractable.
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3.5.2 Data association

Data association is one of the important issues to solve in the development of perception

systems. This issue appears at different levels. During sensor fusion it is required to

associate different measures to the same source, in localization current measures have

to be associated to data in the map, in SLAM current measures are related to past

measures and in SLAMMOT there is additionally the association of measure to the

tracked objects (which can be cluttered or changing its dynamic).

In this section we will present data association methods employed for localization

which are also pertinent for the SLAM problem. The data association of multiple

moving objects (targets) is a more complex problem that will be discussed in section

3.7.

When using a feature based data representation if the features are uniquely identifiable

then the association problem is trivial. In the other case we will talk about the “features

association” problem. When using dense measures data representation the problem has

a different nature and we will call it the “scan matching” problem.

Features association

When detecting features in the environment each new observation can be classified as:

• the measure of an already observed feature (a landmark li)

• a new feature that entered in the field of view

• a spurious measurement

The feature association is then essentially a classification problem. Many techniques

have been proposed to solve it.

In the worst case feature association is an exponential problem where all the possible

combinations are tracked during the time required to reduce the uncertainty down to

an acceptable level. In the simplest case landmarks are very sparse in relation to the

measurement error and one to one association can always be done, then the problem is

trivial. The characteristics of the problem depends of the particular case.

Nearest neighbour The most naive approach to data association is to choose the

nearest measure to the expected landmark place, without considering exclusivity be-

tween measures and landmark (one measure could be associated to more than one

landmark). This naive approach will fail when a measure from a landmark miss.



3.5. LOCALIZATION 71

Gating To cope this case the common approach is to allow only near measures as

valid. This is named “gating”. Having a distance measure d, being µli the expected

location of the landmark li and being zk one of the point measured in the environment,

then zk will be associated to li only if

d(zk,µli) ≤ G

where G is the gate parameter. If two or more measures are in the acceptable region

then the nearest one is chosen or a weighed average is taken as the valid result.

The distance measure used is arbitrary, in general a good choice is the Mahalanobis

distance (distance that weighs the dimensions) between the measure and the gaussian

G (µli ,Σli) that describe the uncertain knowledge of the landmark location. The dis-

tance measure becomes:

d2(z) = (z−µli)
T Σ−1(z−µli)

Then the gate G can be calculated to cover an arbitrary percentage of cases (e.g. 95%

of all the correct cases). The gate for d2 corresponds to a χ2 distribution.

It is also possible to define a distance that includes both the uncertainty in the expected

position and the measure uncertainty.

Even if gating can be seen as a simplistic approach it is very used because of it prin-

cipled simplicity. It is also always used in more complicated approaches to purge the

very improbable cases.

The concepts presented up to now can be found under the name of “nearest neighbour”,

“gating”, “strongest-nearest neighbour”, “probabilistic nearest neighbour”, “maximum

likelihood data association”.

PDAF When more than a measure is accepted by the gating, another method (known

as “probabilistic data association” or “all-neighbours approach”) prefers to collapse

the measures into one unique result, combining both the location of the measures and

the uncertainty associated to them. Tracking a single object in movement when the

measures are collapsed using this approach is called “probabilistic data association

filter” (PDAF).

The classic reference on the data association (for single and multiple target tracking)

are the works of Bar-Shalom [113, 114].

For localization in feature-based maps these simple methods are good enough most of

the practical cases. There are more sophisticated approaches, that can be applied in

more difficult scenarios, for instance, when tracking simultaneously multiple moving

objects. We will see these more advanced methods in the section 3.7.2.
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Scan matching

When the measures of a range and direction sensor are dense measures (a scan) then

the data association problem is called “scan matching”. A scan has to be matched to a

prior map of obstacle or two scans have to be matched between them. The association

process returns the relative location and orientation of the scan with respect to the

reference (map of previous scan).

The scan matching problem is a common problematic in 3D reconstruction and some

medical applications (registration of a patient model with respect to a real-time mea-

sure). Methods from such domains are applied to the robot localization and conversely.

ICP The most classic algorithm for scan matching is called ICP, Iterative Closest

Point, and was originally developed for 3D reconstruction applications [115]. An

equivalent algorithm was used for first time in the robotic domain by Zhang [116] (in

this domain it also know as Iterative Point Matching or Iterative Dual Correspondence

algorithm).

The most valuable characteristic of the ICP algorithm is its simplicity. Starting with

two clouds of points, an initial guess of the relative transformation (translation and

rotation) and a stopping criterion the algorithm iterate over the following operations:

1. Associate the points of one scan to the points of the second one (using a nearest

neighbour criterion)

2. Estimate an optimal translation and rotation to minimize a cost function (mean

square)

3. Transform the points using the estimated parameters

4. Iterate (re-associate the points, search new displacement, etc...)

This simple algorithm generated a big number of variants where each step was tweaked

to some purpose. Authors proposed methods to reduce the number of points considered

(trying to select only relevant points in order to accelerate the computation), alterna-

tives to the point matching step (simple distance, adding robustness to outlier, using

slope information, forcing one to one association, etc...), to the cost function (weight-

ing the points under a goodness criterion), introduced steps to enhance the robustness,

and applied domain knowledge to accelerate the convergence during the optimization.

A good compendium of variant methods can be found in [117].

All these alternatives are interesting and some of them provides considerable speed and

robustness enhancement over the original algorithm (see for instance [118]). However

their assumptions are not well adapted to the robotic case. The most evident flaw

is that the measurement uncertainty is not taken in consideration. This is specially

evident in long distance measures (some meters) where the angular resolution introduce

a considerable effect in the measure uncertainty. This omission in the noise modelling



3.5. LOCALIZATION 73

Figure 3.15: Sampling based uncertainty estimation . Left: randomly generated initial

transformation samples (translation and rotation). Right: the transformation estimates

after applying the registration algorithm. From [17]

affects the robustness, precision and speed of convergence of the matching method,

however it does not prohibit to use this method in the robotic domain, where it remains

one of the most used algorithms.

Matching as argmax Another popular approach consists to setup the matching prob-

lem as a maximum likelihood problem [119, chapter 2]. Having an occupation map mt ,

a previous robot pose xt−1 and a scan measure zt , the question is to search most proba-

ble actual pose x̂t that would better explain the measure zt . This can be written as

x̂t = argmax(xt){P(zt |xt ,mt) ·P(xt |xt−1)} (3.5)

The probability is then maximized using a hill climbing algorithm. This method is

more principled and can be faster because it does not require the point to point asso-

ciation steps. However it supposes that the initial guess is within the global maximum

region and the result gives no clue about the uncertainty in the resulting value x̂t . This

is the approach commonly employed when occupancy grids are employed for data rep-

resentation. In this case an additional limitation appears do to the spatial discretization

of the grid and its effect on the estimation process.

Uncertainty estimation In order to estimate the uncertainty in the result of the ICP

algorithm or variants, it has been proposed [17] to use the large computational power

available to execute N time the ICP algorithms with the same scans but using different

initial guessed for xt . Sampling a normal distribution around the best prior guess, the N

results obtained will permit to quantify the input sensibility of the output, and thus the

uncertainty in the most probable result x̂t (see figure 3.15). Of course this method is

computationally intensive, but with today computers it is possible to implement it for

real-time applications.

Searching more principled approaches and trying to bypass the difficulties of the ICP or

grid map approaches Bailey [110] proposed the usage of sum of gaussians to represent

both the reference map and the current scan. Using this representation the matching

problem becomes a problem of maximum likelihood of the cross correlation of two
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sums of gaussians [120]. The computation of the cross-correlation (and the search of

its maximum) is potentially computer intensive, however some simple optimization and

minor approximation make it tractable. This sounder approach allow to correlate the

scans without using point to point association or quantizing the space, which is clearly

an advantage. Also this method allow to estimate a Gaussian distribution around the

maximum likelihood result, allowing to use it in probabilistic mapping methods. How-

ever this method has the problem that, as mentioned in the previous sections, the sum

of gaussian is not a suitable representation for map building, and the maximum likeli-

hood computation, even if tractable it can threaten real time implementations. It worth

mentioning that as any maximum likelihood approach, this method is sensible to mul-

timodal distributions, that can be commonly found in the computed cross-correlation.

The original author proposes a particle filter method to cope this issue [110].

When using the “Normal distribution transform” [121, 111] for data representation

(see “Grids of gaussians” in the section 3.5.1) a similar approach to correlation of sum

of gaussians can be used. The problem of equation 3.5 can be then formulated as a

convex optimization problem solved through a gradient descent. This approach is of

course very effective, in [121] the author report a time between 4 and 20 milliseconds

for aligning two scans.

All the mentioned scan matching algorithms suppose only rigid transformations be-

tween the scans (as it is common case in urban scenarios). When this assumption is not

true (as could occur in medical applications) more free parameters have to be consid-

ered in the optimization process. [122] proposes an extension of the ICP algorithm for

non rigid objects matching, applied to the registration of 3D objects (human bodies in

particular).

It exists a relation between the scan matching methods and the data representation

chosen. This aspect has to be considered when choosing the representation. Having a

data representation and a data association method, it is possible to localize the robot in

the map, and to extend maps with the measures of the robot.

3.5.3 Indoor and outdoor localization

Having a previous map (in a chosen data representation) and being able to correlate the

robot measures with this map (data association), then the localization problem becomes

a Bayesian estimation problem. Notice that this perspective is generic, independent

of the kind of map, the kind of features detected or the kind of sensor available, the

localization remains modeled in the same way.

Composing positions

To realize the data association the robot first estimates the location of its observation in

the global map compounding the uncertainty of its actual position and the uncertainty

of its measure.
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Figure 3.16: Compounding location uncertainty and measure uncertainty. When pass-

ing from the vehicle reference frame to the global reference frame the uncertainty on

the position of the observed feature augments

Using the notation introduced by Smith [123] and employed by Lu, Milios and Wang

[124, 17], we will denote this compounding operation as

landmark_estimation = robot_position⊕observation

using a more orthodox notation, related to the figure 3.16, we can write

xac = xab ⊕ xbc

As the robot position xab and the observation xbc both contain uncertainties in their

value, it would be more adequate to rewrite this in a probabilistic notation. The den-

sity of probability of the position xb with respect to the reference xa can be wrote as

P(xb|xa), which is the probabilistic notation for the deterministic vector xab. The com-

pounding operation can be written in terms of densities of probability, resulting

P(xc|xa) = ∑
xb

P(xb|xa) ·P(xc|xb) (3.6)

This generic relation allow us to compound arbitrary distributions. As illustrated in

the figure 3.16 the uncertainty of the observation with respect to the global reference is

always bigger than with respect to the robot.

Using the landmark position estimate P(xc|xa) a data association method is used to

associate it with a specific, already mapped, landmark li. The position of the identified

landmark has an uncertainty P(xli |xa) which is related to the precision of the map used.

Anyway this uncertainty is expected to be low because the map was constructed from

multiple measures or with higher precision sensors.

Once data association was done, using the measure P(xc|xb) and the landmark posi-

tion P(xli |xa) it is possible to estimate the robot position in the global reference frame

P(xb|xa). Using the position algebra notation we can do this using the compounding

operator ⊕ and the inverse relation operator ⊖ (see figure 3.17). Then we can write
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Figure 3.17: Deducing the robot position from one observation of an identified land-

mark. Once data association is done, the vehicle position uncertainty in the global

reference frame results from compounding the global position of the feature and the

relative measure position

xab = xali ⊕ xlib = xali ⊕ (⊖xbli)

or in plain English

robot_pose_estimation = landmark_position⊕ (⊖observation)

The results of the compositions (that could also be written in probabilities notation)

gives a new estimate of the robot position P(xb|xa) that can be used as a measure in a

Bayesian filtering process (see section 3.4.4). Even when the sensor precision is low

or the landmark position uncertainty is considerable the important thing is that this

estimate provides a bounded uncertainty measure of the robot position.

Integrating repeated measures allows to have a good estimation of its position (as long

as the sensor has zero mean error). In the limit (infinite measures) the error of the robot

position will be the one of the landmark in the map, P(xli |xa).

In practice the uncertainties are usually represented as gaussians, the position operators

corresponds to trigonometric transformations. The reader can consult [123] and [17,

section 2.1] for the detailed equations. As a side note, we should mention that gaussians

can be rotated exactly using nonlinear equations [125, appendix A], however most of

the time this transformation is simply linearized, introducing additional error in the

estimates.

When the map and the measures are based on range scans instead of features poses,

the position estimation is used to collect an area of the map (or a set of previous scans)

that could match the actual scan and a simple scan matching is realized. Then again

the merge of the previous map uncertainty with the scan matching uncertainty leads to

a position estimation, and thus data fusion can be applied.

The important result from the analysis presented is that once the data association is re-

alized and the previous information is used the localization becomes a data fusion prob-

lem. It is important to realize that localization contains a Bayesian filtering problem
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Figure 3.18: Markov localization Bayesian network

and that Bayesian filtering problem contains a data fusion problem. This hierarchical

relations repeats all along this chapter.

Markov localization

Simple localization use prior data and data matching to reduce the localization problem

to a data fusion one in order to estimate the actual state of the robot (pose and orien-

tation). Common measures, apart from the one matched to the map, are odometry and

GPS (as seen in the previous sections). Another useful information commonly avail-

able is the command ut applied to the robot. This command indicates how we want to

displace the robot and thus give important information about its probable next position.

When considering the command the robot model becomes P(xt+1|xt ut).

When including this information in the Bayesian filtering the localization method is

called “Markov localization”, however it is only a specific case. We present in fig-

ure 3.18 the dynamic Bayesian graph related to this case, and the iterative solution in

equation 3.7. The Bayesian program can be deduced from this two elements.

P(xt |o0 . . .ot u0 . . .ut−1)= αt ·P(ot |xt)· ∑
xt−1

P(xt |xt−1 ut−1)·P(xt−1|o0 . . .ot−1 u0 . . .ut−2)

(3.7)

Monte Carlos localization

Notice that a fusion based approach supposes that we have a prior estimate about the

robot location. To solve the “hijacked robot” problem, a simple idea would be to im-

pose a uniform prior in all the explored area.

In the common applications the distributions of probability are represented by uni-

modal gaussians and the observation and evolution models approximated using simple
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linearization or sigma-point approximations (unscented transform) [101, 104]. Since

normally only one observation does not lead to a unique position in the whole map, the

unimodal representation of the probable location of the robot does not allow to solve

the “hijacked robot” problem. Using multimodal distributions increments the computa-

tion, but allows to manage various hypotheses until the information collected indicates

a notably more probable location than previous hypotheses. Classic multimodal im-

plementations of Bayesian filtering are mixture of gaussians and particle filters. When

applying particle filters for localization is called “Monte Carlo localization” (since a

particle filters is a “Sequential Monte Carlo method”). A good tutorial of particle filter

for robot localization can be found at [102].

Selection criteria

The Bayesian approach to localization is very generic and essentially indifferent of

the nature of the environment. What makes a method suitable or not for outdoor or

urban areas are the suppositions employed to make tractable the computation, the data

representation chosen and the robustness of the data association methods.

Simplistic approaches would approximate every density of probabilities by unimodal

normal densities, linearize every non linear function, use corner detection features as

data representation and use nearest neighbor for data association. Of course such sim-

plifications will be not usable outside static, simple indoor corridors.

Robust approaches would use particle filters for density distributions and estimation

considering nonlinear models, occupancy grids or grids of gaussians for representation

and sampled correlations to estimate the density of probability of the data association.

Of course such an approach is extremely computer intensive (both in memory and

computation length).

A review of the different variants (data representation, data association, filtering method)

of the Bayesian localization and some experimental results about them can be found at

[126, 127] and [128, 129].

3.6 SLAM

Mobile robots are supposed to automatically displace themselves in order to accom-

plish a task. To decide the movements to execute and to close the control loop during

their execution the robot needs to constantly know which obstacles surround it, and

where it is located on the space with respect to its planned path.

Localization is based on the use of current robot’s measures and a previously existing

map. In most of the real world cases maps of the environment to explore do not exist,

are not accurate enough for the task, or simply represent information that the robot can-

not use efficaciously. Expecting to have precise and adequate maps of the environment

before robots deployments is a constraining requirement.
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In human modified environments robots should be able to construct their own maps.

This has two clear advantages: it is not required to provide a previous map and the map

constructed by the robot is already well adapted for its tasks. Usually maps created by

robots can also be interpreted by humans.

As we will explain in the next paragraphs the SLAM acronym : “Simultaneous Lo-

calization And Mapping”, stands for the problem of constructing a map of the envi-

ronment starting from measures. While constructing the map, the robot also obtains

information about its localization. The SLAM problem is also sometime called CML

or “Concurrent Localization and Mapping”.

In the context of the SLAM problematic it is supposed that the environment is static

and immutable. Dealing with moving obstacles is discussed in section 3.7. Dealing

with changing environments remains an open problem [130]. Having accepted this

basic assumption we will discuss the resting difficulties, how the SLAM problem can

be formalized and which are the existing approaches to solve it.

3.6.1 Core issues

Imagine a noise free, deterministic, perfectly measurable and perfectly modeled world.

In this world the robot does measures of the objects around it and measures its dis-

placement.

As the world is noise free and the deterministic robot dynamic is perfectly modeled we

know exactly where the robot is located with respect to its previous location (movement

in the Cartesian plane and change of the orientation). Then simply superposing the

different measures would create a map as accurate as the environment sensor (supposed

perfect).

In such an imaginary world simultaneous localization and mapping, is not a problem.

Displacement measure noise Let suppose now that the estimation of the robot dis-

placement has a considerable amount of uncertainty (imperfect models, finite precision

of measures, noise in the physical phenomenas), however the environment measures

remains almost perfect.

In this new scenario the robot needs to analyse its data in order to accomplish its local-

ization and mapping task successfully. Simply using the displacement measures would

lead to a continuous unbounded increment in the localization error, which will also

affect the quality of the map.

In order to keep a bounded estimation of its current position the robot needs to relate

previous environment measures with the actual one. If the robot is able to make a data

association between previous environment measures and actual measures it is able to

estimate its displacement. Thus successive measures associations allow the robot to

have successive estimation of its position, and at the same time allow it to interconnect

the different environment views, i.e., to construct a map of its environment.
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If the measures of the environment are precise enough for the application, data associa-

tion is a core issue for successful localization and map construction. It is also necessary

to have correct uncertainty models of the robot displacements and the measures to cre-

ate good hypotheses about the possible data association targets.

Notice that localization and map construction are entangled. Solving one problem lead

to the solution of the other one, and conversely. SLAM is not two problems, but one

problem with two dual forms.

Environment measure noise If the displacement estimations are precise but the en-

vironment measures are not, for a while the robot will be able to construct a rough map.

However if data association between environment measures is not made, the error in

the position estimation will grow slowly but without bounds, leading finally to unac-

ceptable errors. Data association between various measures of the same point allows

to fusion them reducing the uncertainty in the position of the point and thus allowing

to construct more precise maps. Of course the possibility of repeating measures of the

same point in the space will depend on the kind of sensor and signal processing used.

When both displacement and environment measures are imprecise the data association

between successive observations becomes harder since more configurations will seem

plausible. Accurate representation of the uncertainty, pruning of low probability hy-

potheses, and detection of wrong decisions are key elements for the success of SLAM

in noisy conditions.

Even when data association between successive measures is made with success, a small

error in the estimated displacement still existing (related to the limitations of the en-

vironment sensor, the data association method, and the number of fused measures).

This small error is accumulated in time (just like odometry integration) making more

difficult to associate the actual position with previously observed areas if no correction

is made during a long period. This difficulty is called the “loop closing” problem, or

“data association in the large”.

Each time a data association is made a relation is established between different land-

marks. This geometric relation is corrupted by the measurements noise. As the robot

explore the environment different landmarks are observed and the relation between

them is established. As the construction of the relation set is incremental, the position

of the first landmark is somehow related to the position of the last landmark. If a cor-

rection over the position of the first landmark is made, then the position of the last one

should be also modified. This relation is valid for every landmark in the map. Thus if

when a new observation is made the ideal computational cost would be O(N) where

N is the number of landmarks in the map. Supposing an homogeneous distribution of

landmarks in the space, the cost of map updating would be in the best case, linear with

the size of the map. Trivially, the memory usage of any SLAM algorithm should also

be O(N).

As we will see in the next sections achieving O(N) algorithms was for a long time

a utopian target. Common algorithms use O(N2) for memory and computation, or

even O(N3) computation time in some initial approaches. The quadratic aspect of the
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SLAM solution appears because, as mentioned, the position of a landmark is related

to the position of all the other ones. Thus, managing explicitly these relations creates

algorithms with O(N2) complexity. A deeper insight into the SLAM problem structure

allows today to propose algorithm with O(N), O(log N) or even O(1) complexity when

some approximations and trade-off are made.

Achieving acceptable computation complexity in SLAM algorithms is a non trivial

issue. Even if computational complexity is low, time of computation in real implemen-

tations can be high. Thus, in general, the computation cost of the SLAM algorithm is

a major concern for real time implementations.

In this section we presented the core issues of the SLAM problem:

• Uncertainty management (modelling, data representation, sensor fusion)

• Data association (in the small, in the large)

• Computational cost

In the next sections we will present a more formal view of the problem and the different

approaches to solve it.

An important idea to keep in mind: it exists a duality between localization and map

construction, this duality is the essence of the SLAM problem.

3.6.2 Problem formulation

From a conceptual point of view the SLAM problem is a “most probable explanation”

problem (MPE problem). Given all the observations, the robot try to deduce the most

probable path and the most probable map (deciding one fix the other).

As the robot moves its state xt evolves in the time, its internal sensors allows it to do

measures mt of its displacement and its external sensors allow it to do measures of the

environment zt . Of course, the current observation zt will depend of the environment

real map M and of actual robot pose described by xt . The SLAM problem consist

on estimating the real map M and the current robot position xt using only the avail-

able measures m1...t and z0...t . In the figures 3.19 and 3.20 we present the associated

Bayesian Network and the Bayesian program, respectively.

The robot command signal u1...t was omitted to lighten the nomenclature, and be-

cause is not relevant in the discussion. It inclusion changes the term P(xi|xi−1) by

P(xi|xi−1 ui) allowing to reduce the uncertainty of the robot position prior to measure-

ments inclusion.

To denote the reconstructed map at time t we will use the notation Mt .

Mt = p(M| z0...t m1...t)
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Figure 3.19: The SLAM dynamic Bayesian network. Notice that the environment does

not change in the time

Prog





Desc





Spec





Variables

x0, . . . ,xt = x0...t Robot state vectors in time

m1, . . . ,mt = m1...t Robot motion measures in time

z0, . . . ,zt = z0...t Measures of the environment in time

M Map of the environment

Decomposition :

P(x0...t M m1...t z0...t) =
P(x0)P(z0|x0 M)

t

∏
i=1

[P(xi|xi−1)P(mi|xi xi−1)P(zi|xi M)]

Forms : any

Identification : any

Question :

P(xt M|m1...t z0...t)

Figure 3.20: The SLAM problem
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The Bayesian program of the figure 3.20 is a very general description of the SLAM

problem. It does not specify how the map M will be represented and gives no clue

about how its estimation is supposed to be done. In the next section we will present

an overview of the most relevant solutions to the SLAM problem and discuss their

representation and resolution methods.

3.6.3 Solving the SLAM problem

Why solving the SLAM problem matters ?

As mentioned in the introduction of this chapter solving the SLAM problem is a key-

stone for mobile robots technology. Understanding the existing solutions serve us as

a foundation when approaching the SLAMMOT problem. Both problems have shared

difficulties, shared solution elements and are part of the same area of exploration.

Why solving the SLAM problem does not matter ?

Much of the focus on the SLAM community has been to build large, precise and con-

sistent maps. However, as discussed in section 2.6.1 the availability of such maps is of

limited use for our application.

Most of the existing work is focused on how to optimize a map given a sequence

of associated measures and dismiss the fact that doing the association is comparably

difficult. For the work that does account for possible errors in the data association, the

relevant corrections are obtained when the robot revisits a place (“closing the loop”),

but not while the robot simply move forward (as in our application).

When only concerned on local maps (short term SLAM) simple solutions based on

good matching methods and error management work fine enough.

State of the art

Variety of solutions There exist a considerable amount of methods proposed to

solve the SLAM problem, resulting from fifteen years of research on this topic. Much

creativity have been applied to solve this problem and also to name the solutions (Rat-

Slam, FastSlam, ScanSlam, SpMap, TreeMap, D-Slam, DP-Slam, IPSlam, CpeSlam,

CEKFSlam, GMapping, TORO, etc.). The diversity of solutions creates a complex

fauna of approaches, methods, vocabularies and results. One solution is different of

the other ones in diverse ways.

Different solutions uses different models for the constructed map (see subsection 3.5.1).

They also make different hypotheses about the environment (indoor, outdoor, mines,

structured, with a defined density of specific features, flat, locally flat), about the avail-

able measures (type of sensors, noise model) or about the robot dynamics. Most works
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suppose that data association was already carried successfully but some others inte-

grate this critical element into the proposed method. Each work proposes a specific

algorithm to construct the map itself, sometimes incrementally (online) or using batch

computation (offline), sometimes providing exact solutions at each iteration or provid-

ing approximate partial solutions during the processing. Finally, different algorithms

result in different computational complexities and different computational costs.

Between all the different works it does not exist a clear comparison method, a standard

benchmark or a formal evaluation of the robustness of each method. The most common

comparison elements used are the base assumptions, the computational complexity or

cost, and the length of the largest closed loop. To help the comparison between different

methods some data sets were published [131] and some implementation provided as

open source [132], however their usage is not widespread and the evaluation remains

qualitative.

Taxonomy Historically the SLAM algorithms have been differentiated by their rep-

resentation. There was a first stream using feature based representation [133, 123] and

another one using the poses based representation [124]. The feature based approach

emphasize the fact that the robot moves in the environment and try to maps specific

features (landmarks) found on it, the poses based representation use the robot trajec-

tory (its poses at specific instants) as the landmarks themselves.

It can be shown that both approaches are somewhat equivalent since the robot poses can

be considered as landmarks by themselves and that the measures of different features

in the environment can be used to construct a sequence of poses. The core point is

to understand that the SLAM problem relates with a set of local spatial relations, the

robot try to get a global figure from a set of local observations. The precise nature of

the points related (robot position or feature positions) is not relevant for the analysis

since the procedure for solution will be same ones.

The seminal papers [124] and [133, 123] defined the exploration line for most of the

SLAM research done in the last years. In this text we will try to present the SLAM

algorithms from a slightly different point of view than the common reviews. Following

the spirit of the analysis of Udo Frese [134] we propose to group the different SLAM

algorithms in simply three groups: the algorithms based on the Covariance Matrix,

the algorithms based on the Information Matrix and the algorithms based on Particles.

This classification is based on the representation of the uncertainty. As we will see the

covariance matrix is the inverse of the information matrix and both classes correspond

to the approaches proposed in the mentioned seminal papers. The algorithms based on

particles correspond to a more recent approach which finds its best representative in

the works of Montemerlo [135].

For the sake of brevity we will not review all of the existing methods in detail. We

will content ourselves to succinctly explain the different groups of algorithms, make

references to some of their relevant variants and highlight the one we consider most

relevant.
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Algorithms using the Covariance matrix

As seen in the dynamic Bayesian network of the figure 3.19, the SLAM problem has a

time evolving dimension. Thus a natural choice to solve the problem consists to take

a Bayesian filtering approach, where the observations are used to estimate unobserved

variables (robot position and map). In order to make the Bayesian filtering tractable

some simplifications about the model of the system and the probabilities distributions

have to be made.

Kalman SLAM One of the simplest approaches consists to solve the SLAM problem

using a Kalman filter [133, 123]. The approach is very natural, it provides incremental

solutions and for linear models with Gaussian noise it is known to be optimal (in the

sense that it computes the best estimation possible).

For Kalman SLAM the state of the world is represented by a state vector Wt that con-

tains information about the robot pose and the landmarks pose. As new landmarks are

discovered the state vector is expanded consequently. If the number of landmarks at

time t is defined as n(t) then we define the state vector as

Wt =




!xt

!l1,t
!l2,t

...
!ln(t),t




In order to sequentially estimate Wt as new observations are realized this method uses

linear models with Gaussian noise for the measure relations P(zt |xt M), P(mi|xi xi−1)
and for the evolution relation P(xi|xi−1). It also maintain a covariance matrix ΣWt that

represent the uncertainty of each value in Wt and the correlation between them. For the

formulation details the read is invited to consult [123].

The covariance matrix stores the relation between each state variable, it is of size N2

where N is the number of estimated variables (dimension of the state of the landmarks

time the number of landmark plus the dimension of the robot state). In general the

update the state estimation has a computation cost O(N2).

Having a quadratic computational cost is the principal limitation of this method. In

practice the areas mapped will be strictly limited by the computing power available.

Current implementations can update maps with one hundred landmarks in a few mil-

liseconds.

Another clear limitation of the approach is the use of linear models which are quite

unrealistic. For instance, features are commonly detected using range and bearing

sensors, where the sensor noise is modeled as independent zero-mean Gaussian over

the distance component and over the angle component. Once projected on the Cartesian

coordinates the sensor noise does not correspond to a Gaussian.
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Relaxing the linear model constraint A simple solution to overcome this limita-

tion is to use first order approximations of the non linear models. This approach is

called Extended Kalman Filtering and is commonly used (EKF Slam). However the

linearization process introduce errors proportional to the error of the linearization point

estimate. If the initial estimate is not good enough the systematic error introduced can

make the estimation non convergent [136, 137, 138].

A possible solution would be to recompute the linearization for at each new estimation

of the state (this method is named Iterated EKF), however the computational cost is

increased. Another approach to deal with nonlinear models is to use a more robust

approximation. The Unscented Kalman Filtering [101] use an approximation based on

the first and second moments preservation (instead of using a projection over the first

derivative), this approximation introduces less error [139].

Reducing the computational burden A common strategy proposed to reduce the

quadratic computation time consist on decomposing the state estimation problem into

multiple sub-maps estimation one and the composing them together to recreate the full

map (N2 > (N/2)2 +(N/2)2). This decomposition introduces a reduced convergence

rate or a conservative uncertainty representation, however they allow building larger

maps.

The idea of decomposing a large map into a set of sub-maps, where a separate estima-

tion is made for each sub-map and a global process merge all the maps together, has

been proposed explicitly numerous times [140, 141, 142, 143, 144, 145, 146]. All of

these works play with a trade off between discarding information, delaying information

propagation and having accurate results. Delaying or discarding information allow to

reduce the computation at each iteration, but creates suboptimal solutions. Many of

these works try to ensure the consistency of their solution (convergence to a near op-

timal result), however it has to be kept in mind that data association is realized using

current estimations of the world. Having suboptimal estimates creates more ambigu-

ity for data association of new measures and thus, in practice, put in risk successful

localization and mapping.

Algorithms using the Information matrix

The covariance matrix approach came from viewing the SLAM problem as an esti-

mation problem. An opposite view was proposed by Lu and Milios [124], where the

SLAM problem can be interpreted as an optimization problem.

This come from directly taking the SLAM formulation as a maximum likelihood prob-

lem.

Ŵt = argmaxWt
P(Wt |m1...t z0...t) (3.8)

After defining the observation model and the uncertainty model the problem becomes

a pure optimization one. This formulation provides a solution based on every past
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measures; it uses a batch computing and thus does not provide incremental updates of

the state estimate Ŵt . However, when the optimization achieves the global minimum,

this formulation provides the ground truth of the best estimation possible.

Linear formulation When using Gaussian noise with a linear (or linearized) mea-

surement model the optimization problem becomes a quadratic optimization problem

of the form

argminxt
f (xt) = xT

t ·A · xt + xT
t ·b+ c (3.9)

Here xt is a state vector that includes every robot pose and every landmark position,

and thus can be considered as an extended version of the state vector Wt . The ma-

trix A contains the relations between the elements of xt , vectors b and c contain the

measurements’ information.

The equation 3.9 has its minimum at xt = A−1 · b/2, which is found by solving the a

large set of linear equations

A · xt = b/2 (3.10)

A strategy to deal with non linear measurement models consist on iteratively lineariz-

ing, solving and repeating until convergence.

Relation between ΣWt , Σ−1
Wt

, A, and A−1 The interesting point is that it exists a rela-

tion between the matrix A and the covariance matrix ΣWt . Indeed the covariance matrix

ΣWt used in Kalman filtering corresponds to a sub-matrix of the inverse of the ma-

trix A used when solving the optimization problem (see figure 3.21). Thus there exist

a link between all the optimization based approaches and the Kalman filtering based

approaches.

The matrix A stores the relations between all the robot poses and the landmarks, and

thus grows as the robot moves (not only when the map grows). If N is the number

of landmarks in the map and t is the number of robot poses, then solving 3.10 takes

O((N + t)3) in the general case. It should be noted that A is exactly sparse since it

encodes directly the uncertainty from the measures, which is bounded and local. Using

the sparseness property the computation cost of equation 3.10 is O((N + t)2).

The reader can notice that the matrix A does not grow proportionally to the map but

proportionally to the path of the robot. This can be quite inconvenient when the robot

revisit places because the computation will grow when the map does not. To avoid this

the previous robot poses can be marginalized out from the matrix A. This is equivalent

to computing a Schur complement over the matrix A. The resulting (smaller) matrix

will be named Σ−1
Wt

. This reduced matrix corresponds to the inverse of the covariance

matrix.
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Figure 3.21: Relation between different uncertainty matrices. From [134]

When marginalizing the past robot positions the resulting matrix is not sparse anymore

since the different landmarks become increasingly linked as illustrated in the figure

3.22. The entries in the Σ−1
Wt

matrix represents how much information one variables

provides about the other ones. Because the relation between measures decays expo-

nentially with the distance except when closing a loop the matrix Σ−1
Wt

will become

nearly sparse (most of the off diagonal elements have near zero values). Figure 3.23

illustrates a covariance matrix ΣWt for a real map and its corresponding inverse Σ−1
Wt

.

The matrix Σ−1
Wt

is called the information matrix. It exist a dual formulation of the

Kalman filter (which uses ΣWt ) named the Information Filter that can be applied directly

over Σ−1
Wt

.

Variations of the linear formulation Multiple variations on the naive formulation

of equation 3.9 exist. We have seen that Σ−1
Wt

is a reduced form of A. A naive appli-

cation of the Information Filter implies a cost of O(N3) per update. Thrun [148] and

Paskin [149] propose methods to sparsify the information matrix in order to reduce the

computation time towards O(N · logN) or even O(1) at the cost of information loss.

Eustice [147] proposes another variant for A that includes explicitly the robot poses in

order to construct a strictly sparse matrix and obtain O(N) and O(1) update cost. Wang

[150] instead propose to separate A in two sparse matrices, one for the landmarks and

another for the robot positions, obtaining then O(N) update time. All of this method

differ in the kind of approximations used to reach memory and computation scalability.

Enhancing the optimization procedure Instead of modifying the optimization prob-

lem, some works have focused their effort on enhancing the optimization procedure.
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Figure 3.22: Illustration explaining why the information matrix is dense. xt corre-

sponds to the robot pose at time t and Li corresponds to the pose of landmark i. From

[147]

Figure 3.23: On the left size the values of the covariance matrix ΣWt are shown. On the

right the equivalent information matrix Σ−1
Wt

is shown. From [148]
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Konolige [151] uses preconditioning methods over the sparse matrix A in order to trans-

form the O(N2) cost into O(N · logN). Using these methods maps including 60 thou-

sand poses are optimized in a few minutes. On a different approach, Duckett [152]

suggests using a relaxation based algorithm to solve the non linear optimization prob-

lem 3.8 instead of using an iterative linearization algorithm. This approach has the

advantage of considering directly the non linear problem, being extremely simple to

understand and it allows a total control of the computation cost. While O(N2) oper-

ations are theoretically required to find the optimal solution, using only O(N) have

shown to provide good enough experimental results. Frese [153] extends this approach

towards a multi-resolution scheme, thus lowering the constant factor in the computa-

tion cost. With this multi-resolution method maps with one thousand poses can be

updated in a few centiseconds. Finally the use of stochastic gradient descent methods

[154] has been proposed to solve the SLAM problem [155, 156, 157]. This method

provides the best state of the art result for large map optimizations.

Lazy data association Up to now, we have visited various different ways to solve

the SLAM problem. All of them have strong mathematical relations and corresponds

to different approaches over the same mathematical object. It has to be noticed however

that all of these methods supposes that the data association between different landmarks

has been realized successfully. It is known that data association is a non trivial task and

it is critical for the creation of a consistent map. Most of the methods provides un-

certainty measures over the actual landmarks in order to compute the probability of

each data association choice. Commonly three options arise: choose the more likely

data association at each step (this is what is almost always done), track multiple hy-

potheses (requires computing in parallel N hypothetical maps) or use retroactive data

association. This last option, also named “lazy data association” [158], evaluates at

each update the likelihood of the current map. If new measures make drop this like-

lihood under a predefined threshold then alternative maps (corrections over the data

association) are evaluated, and the most likely map is kept. This lazy approach has

the advantage of explicitly dealing with errors and reducing the computation cost by

evaluating alternatives only when it is needed.

Algorithms based on covariance matrix and the ones based on information matrix cor-

respond to duals. Methods of one class directly relates to the other one. In the next

section we will see a different way to solve the SLAM problem that is more dissimilar.

Algorithms using Particles

As previously discussed SLAM can be seen as a Bayesian filtering process. Usually,

for computational issues, the models are approximated as linear and with Gaussian

noise. When such approximations are not good enough, the second most common

option is to represent the probability density functions by a set of particles that samples

the function. The objective is to make evolve the particles in such a way that a defined

portion of them stay on high probable estimation of the true state. Using particles
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filtering we can estimate any probability density function and make it evolve under any

nonlinear dynamic model.

In the SLAM problem each new pose (feature or robot pose) adds a dimension to the

joint distribution, this create an exponential explosion in the size of the exploration

space. In order to provide good results it is required to keep the number of particles

proportional to the exploration space. Applying particle filtering directly to the SLAM

problem is clearly intractable.

Particle Filters SLAM A first proposal to use particles filtering from SLAM was

presented by Thrun [159]. The idea is to use incremental maximum likelihood (choose

the most probable alternative at each step) to construct the map of the explored area and

use particle filtering to estimate the current position of the robot in the map (like when

doing Monte Carlo localization, section 3.5.3). The particles are used to estimate the

current robot pose (not the map) and to close loops in the map. The particles are used

as initial guesses to perform data association between the actual measure and previous

measures on the map. Once a new loop closing is detected an optimization method is

applied to propagate the correction over all the map. Doing such a propagation has a

quadratic cost but all the other operations have constant update time.

FastSLAM The method that popularized the use of particle filtering for SLAM was

created by Montemerlo [135, 160] and it has the fancy “FastSLAM” appellation. In

this method each particle represents a path of the vehicle. Due to the duality between

mapping and localization; estimating the distribution of paths of the vehicle is equiva-

lent to estimating the possible maps. Using this conditional independence property it

is possible to estimate the most probable map with a cost of O(p · logN) per measure.

N corresponds to the number of landmarks in the map and p is the number of particles

used in the algorithm.

The main drawback of this method is that there is no defined procedure to determine

the sufficient number of particles p. On the other hand, this method manages explicitly

the non linear models, does manage errors in data association and has been shown to

be fast enough in practice.

Originally formulated for landmark-based maps, it has also been applied to maps of

laser scan matches [161, 162] as illustrated in figure 3.24.

Highlighted solutions

As we have seen that many different solutions for the SLAM problem exist. The basic

requirements of consistency and linear time, linear memory usage have been achieved

by some algorithms, yet no one offers the perfect solution and different trade off have

to be made.

Three methods seems particularly interesting:
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Figure 3.24: Loop closing in FastSLAM applied to laser scans. From [119]

• The relaxation based method [152] offers a very simple implementation, control

over the computation cost, explicit use of non linear observation model and has

been shown to be good enough for real world applications. It seems to be a good

trade-off between simplicity, efficacy and efficiency.

• The stochastic gradient descent methods [155] are more complex to implement

but they provide state of the art efficiency.

• Finally the lazy data association approach [158] is one of the few who actually

put emphasis on the robustness of the result with respect to data association

errors, thus enhacing the efficacy.

As the SLAM solutions acquire more maturity the researches focuses on more am-

bitious objectives. The logical extension is to consider a non static environment, as

discussed in the next section.

3.7 SLAMMOT

To navigate, a robot needs to know what surrounds it: which is the geometry of the

buildings, which mobiles exists and how they are moving. The Simultaneous Localiza-

tion, MApping and Moving Objects Tracking (SLAMMOT) task pretends to provide

this information.

Up to now we have supposed that the environment is static and thus data association

and map building can be made without special considerations. Urban areas are, by def-

inition, populated of moving objects. The presence of a moving objects will corrupt the

measures introducing noise during the data association and adding spurious elements

on the constructed maps.

Being able to separate moving objects from static objects during the SLAM process

allows to enhance the results. On the other hand being able to do SLAM while track-

ing objects allows to estimate better their global speed and position and thus to better

estimate their trajectory.
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In this section we will first present the SLAMMOT from a mathematical formulation

and discuss why it is a difficult problem. Next we will present some elements of the

subtopic of moving objects tracking. Finally we will present the works realized on

SLAMMOT. First publications on SLAMMOT are less than six years old, which means

that this topic remains very young and on the cutting edge of the state of the art.

3.7.1 Problem formulation

The SLAMMOT problem integrates a SLAM and a moving objects tracking problem.

At each new acquisition the measures have to be classified as observations of static

objects or of dynamic objects. Static objects measures will be used to refine the robot

localization estimate, and the dynamic objects measures will be used to refine the dy-

namic state estimate of the moving objects around the robot.

From a Bayesian perspective the SLAM inference problem is incremented in an addi-

tional dimension. In SLAM robot motion measures and environment observations are

used to simultaneously estimate the actual state of the robot and of the static environ-

ment. If the static environment is described by a set of landmarks then estimating the

state of the environment corresponds to defining the pose of the landmarks in a global

reference system.

For presentation purpose we will assume that the world is composed by geometrically

bounded “objects”. In the extreme cases objects can be a corpuscular simplification

(landmarks) or on the other hand a regular decomposition of the geometry of the objects

(building blocks).

What differentiates SLAMMOT from SLAM is that the objects that compose the en-

vironment can be static objects or moving objects. Estimating the state of the envi-

ronment corresponds to estimate the state of each compounding object. The state of

the objects can be described by a discrete and a continuous component. The discrete

component ζ i
t classify the object i as static or moving at the discrete time instant t,

the continuous component si
t defines the parameters related to the object position, its

speed, etc...2 The motion mode ζ i
t can be “static”, “moving at constant speed”, “accel-

erating”, “stopped”, “random movement”, etc... The set of motion modes will depend

on the application.

The dynamic Bayesian network corresponding to the presented setup is illustrated in

the figure 3.25 and the related Bayesian program is presented in the figure 3.26.

This SLAMMOT approach was called “SLAM with Generic Objects” when first pre-

sented by Wang [17], in this text however we will call it “SLAMMOT using Generic

Objects” to avoid out-of-context confusions.

Clearly the SLAMMOT problem inherits all the difficulties of SLAM and increment

them by expanding the dimensionality of the joint distribution involved in the predic-

tion step of the Bayesian Filter solution formulation. This dimensionality expansion

2ζ is called “zeta”
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Figure 3.25: SLAMMOT using generic objects Bayesian network. Scenario composed

by two objects. Circles correspond to continuous variables and squares to discrete

variables

Prog





Desc





Spec





Variables

x0, . . . ,xt Robot state vectors in time

m1, . . . ,mt Robot motion measures in time

z0, . . . ,zt Measures of generic objects in time

s0, . . . ,st States of generic objects in time

ζ0, . . . ,ζt Motion modes of generic objects in time

Decomposition

P(x0 . . .xt m1, . . . ,mt z0, . . . ,zt s0, . . . ,st ζ0, . . . ,ζt) =
P(x0)P(z0|x0 s0)P(s0|ζ0)

t

∏
i=1

[P(xi|xi−1)P(mi|xi xi−1)P(zi|xi si)P(si|si−1 ζi)P(ζi|ζi−1)]

Forms : any

Identification : any

Question :

P(xt st ζt |m1, . . . ,mt z0, . . . ,zt)

Figure 3.26: SLAMMOT using Generic Objects
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is related to a computational explosion that put a direct, generic solution of Bayesian

SLAMMOT problem out of the actual capabilities. As for the SLAM problem approx-

imations and restricted base hypotheses can reduce the general SLAMMOT problem

up to a tractable one.

The core idea of SLAMMOT is to obtain a mutual benefit from SLAM map construction

and moving objects tracking.

In the following sections we will discuss the techniques developed for moving objects

detection, moving objects tracking and finally tractable solutions for SLAMMOT im-

plementations.

3.7.2 Moving objects detection and tracking

Moving objects tracking is a classic problematic in radar systems and video surveil-

lance.

When using features as data representation the SLAM problem becomes a sort of mov-

ing objects tracking, because from the robot perspective, the static landmarks are mov-

ing.

The urban scenario has particular difficulties with respect to classic tracking applica-

tions. First we do not know a priori the background of a scene. Radar applications

commonly do not have background (air medium), video surveillance systems suppose

that they have a capture of the empty scene. Mobile robots in urban scenes do not know

the background a priori, worst, from their perspective all the objects are moving and it

is difficult to distinguish static buildings from persons or cars transitorily stopped. Our

application require to make an explicit distinction. Another difficulty is that the objects

do not behave in the same way, the dynamic of a car, a person, a dog, a motorcycle or

a bicycle are notoriously different, and thus each case has to be identified and treated

separately. Additionally pedestrians and vehicles tend to create groups of coordinated

behaviour (specially at high density) and suddenly detach from these groups. This

creates the effect of sudden apparitions of individuals on a scene.

In the following subsections we will review some of the most common techniques to

do tracking, starting from simple moving objects detection, tracking of single targets

and tracking of multiple targets.

Moving objects detection

Many tracking works supposes that the measures correspond uniquely to moving ob-

jects and then focuses on data association problems. However most of the real appli-

cations include spurious elements in the measures or presence of static objects. Radar

application have ground noise (climatic perturbations, floor of the sea), video images

have non stable backgrounds (trees on the wind, changing light conditions, moving

camera), ladar measures includes non moving targets or spurious floor measures.
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Detecting correctly the moving objects is a critical aspect of a moving objects tracking

system. In particular for SLAMMOT in urban environment using a ladar separating

moving objects from static objects is key point in order to reduce the computation

down to a tractable scale.

In the following paragraphs we will discuss different techniques developed to detect

moving objects in the particular case of SLAMMOT with ladar measures.

The simplest approach consist to detect moving objects using specific heuristics. In-

door pedestrians can be recognised by their geometry [163] or because they enter on

previously free areas [164]. This method can be useful on restricted environments, but

it is clearly not well suited for outdoor conditions (where a tree is similar to a pedes-

trian).

Using simple geometric observations it is possible to define a consistency based mov-

ing objects detection (see [165] and [17, section 6.2]). This method can be resumed in

three simple rules:

• If an object is detected on a location previously observed as free space, the object

is moving;

• If free space is detected on a location previously occupied by an object, that

object was moving;

• If an object appears in a previously not observed location, then we can say noth-

ing about that object;

Until evidence demonstrates the opposite, we will suppose that new objects are static.

This approach is simple, clear and can be implemented in real-time.

Haehnel [166, 119, chapter 4] proposes a more robust approach using likelihood max-

imization. He defines a likelihood function that includes discrete terms that classify

each measures as observing static or moving objects. Using expectation maximization

it resolves the optimization problem for a group of scans. This method can accurately

separate the static objects map and the moving objects map. However the computa-

tional cost involved limit its application to offline post-processing. Also this method

does not cares about identifying specific objects or defining their trajectory.

Wolf [167] proposes a grid map alternative that allow on-line construction of moving

objects grid map and static objects grid map. The static objects grid map is updated

depending on the new observations and previous grid state. The probability that a cell

contains a static object augments when:

• The location was not previously observed and the measure indicates the presence

of an object

• The location was previously observed as occupied and the measure indicates the

presence of an object
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In any other case the probability of occupancy by a static object will decrease.

The moving objects grid map update its values from previous values of it, of the static

objects maps and of new measures. When a new measure indicates that a cell is occu-

pied, but the previous static objects map indicates that cell was free then the probability

the cell is occupied by a moving objects is incremented. In any other case it is decre-

mented.

This simple set of rules allow a real-time update of both static and moving objects grid

map allowing to rapidly increment static map, detect moving objects and correct invalid

statics maps. As any grid based approach this method suffers from spatial discretization

and the memory usage associated to fine grained grids. With the online detection of

moving objects enables, with a subsequent processing, the tracking of different objects.

The core idea to detect moving objects in ladar measures is to put in relation the static

objects maps, the non observed areas map, the new measures and the knowledge about

actual moving objects.

Moving object tracking

Once moving objects are detected and measures of their position are done it is desir-

able to track them. Tracking objects allows to aggregate measures in order to enhance

the estimation of their state, and a better estimation of their current state allows a better

prediction of their future position. The state vector can include position, speed, acceler-

ation, its geometric description, a classification of its sort, etc... Tracking is essential to

have good estimates of the moving objects and to realize predictions of their behaviour.

Tracking consists of two sub-problems: Bayesian Filtering and data association. In the

following paragraphs we will discuss the models commonly employed and the methods

used to solve the data association. Most of the presentation here is based on the work

of Maskell [100], we refer the reader to it for a more formal and in depth discussion of

the topic.

Moving objects models

During tracking the state vector of the moving objects will be estimated. The structure

of such a state vector is defined by the model we attach to the entity.

It exists a trade off between the model complexity and the accuracy of the estimation.

The more precise is our model, the best it will describe the behaviour of the moving

object and then it will be possible to estimate its future trajectory more accurately. If

the model is more complex, it will include more parameters to estimate online. For

a fixed number of measures, the more parameters to estimate the less accurate the

estimation will be. Because of this simpler dynamic models are preferred. The com-

mon models used are, stationary pose, pose perturbed by random noise (also known as

Brownian motion), constant velocity perturbed by random acceleration, constant accel-

eration perturbed by random changes, constant acceleration with random changes for a

bicycle model [168, 17].
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In order to provide the better estimate at any time the moving objects can be modeled

as having changing behaviours, for instance: stopped, running, accelerating, turning,

etc... Multiple models are used over one same object and at each time step the best fit is

selected. Using this multiple models approaches the best estimate is available at each

time since the complex models are used only if they provide a better prediction of the

objects movement than the simpler models.

State estimation

When a single model is used to approximate the dynamics of a mobile objects then the

state can be estimated using filtering algorithms such as the Kalman filter, Extended

KF, Unscented KF, Particles filter, etc...

When multiples models are used the state estimation becomes more delicate. The

system model has a discrete part, that evolves in times indicating the actual behaviour

(stopped, moving, accelerating, etc...), and a continuous part that indicates the current

state vector of the dynamic system. Hybrid models are sometimes called switching

modes models. An illustration of the dynamic Bayesian network can be found in the

figure 3.25, as a Generic Object strip.

Unfortunately the state estimate for the hybrid model cannot be reduced to an iterative

equation as in the Bayesian filtering case. Estimating the current state require eval-

uating exponential possibilities and marginalizing from all the past measures, which

means that the estimation becomes intractable in just a few steps. Again, approxima-

tions and simplifications are the key to get a tractable option.

If the model supposes linear models and Gaussian noise then the exact result for

P(st |z0...t) is a mixture of gaussians, where the number of gaussians in the mixture

grows exponentially in the time.

A common approximation is the so called Generalized Pseudo Bayesian method. This

method tries to approximate the result by collapsing the mixture into only one gaussian,

depending on the “degree” this collapse is done sooner or later.

The Generalized Pseudo Bayesian method of first degree (GPB1) keeps only one gaus-

sian to estimate the actual state. After making an update for the k motion modes the

new estimation is a mixture of k gaussians which are collapsed into only one, so the

next iteration can start.

The GPB method of second degree (GPB2) keeps the current estimate a mixture of k

gaussians. After each new estimate k2 gaussians are available, which are again col-

lapsed into only k estimates.

IMM The most commonly used method, named Interacting Multiple Model (IMM).

Provides a trade off between GPB1 and GPB2. It only compute k gaussians as in

GPB1 but it has as output a mixture of k gaussians as in GPB2. The reader can look at

[168, 17] for the detailed equations of these methods.
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Another common approximation method consist to choose the most probable alterna-

tives instead of collapsing all of them into one Gaussian. Then Multiple Hypothesis

Tracking can be used to track a set of possible modes transitions. As parallel alterna-

tives are keep the implementation cost is somewhat higher than IMM. Particle Filter

can also be used in a similar fashion, since each particle is a probable alternative and

we keep viable options alive.

In the context of single target tracking, data association focuses on distinguishing a real

measure from a spurious one. The methods employed essentially correspond to the one

mentioned in the section 3.5.2; nearest neighbour and “probabilistic data association

filter” (collapsing in one Gaussian the set of candidates, similar to GPB1).

Of course the scenario where one and only one target exists in the environment is purely

theoretical. In practice multiple targets will be found and tracked simultaneously.

Multiple objects tracking

Multiple objects tracking is essentially the same problem that with one target, however

the complexity to manage data association is considerably incremented. With multiple

objects there is more occlusion, it can be difficult to distinguish one target from the

other one, and the complexity to solve data association grows exponentially with the

number of targets in the scene. Of course, this last parameter is also unknown and has

to be deduced from the observations.

Multiple targets data association The data association for multiple targets consist

to define if each measure corresponds to an already known object being tracked, to a

spurious measure or to a new objects in the scene that will be started to be tracked.

A first approach consists on using one Kalman filter per target and solve data associ-

ation independently for each track, using the methods previously mentioned (nearest

neighbour, gating, probabilistic data association). This method is simple and direct,

but it does not provide guaranties that a single measure will be associated over differ-

ent targets.

To avoid this “one measure to many targets” effect the different data association possi-

bilities have to be evaluated. The mapping of possible associations between the set of

measures and the set of possible target grows exponentially with the number of targets

(and measures). Thus exhaustive evaluation of the probability of each mapping has a

computational cost that grows exponentially.

GNN Searching for the optimal data association (mapping between measures and tar-

gets) can be done in polynomial time instead of exponential time if a search algorithm

such as Hungarian, auction, JVC, or Munkres are used [114, 169]. Independent of the

employed algorithm this approach is called Global Nearest Neighbour, since as for the

single target case it search the optimal data association.
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JPDAF When more than one option is plausible the Global Nearest Neighbour will

only choice the best one, without reflecting the ambiguity in the choice. The multiple

targets equivalent to the probabilistic data association is the the joint probabilistic data

association which assign the observations and their uncertainty considering not only

their match over the predicted position but also joint relations as coherence (one target

one measure) and exclusion (one measure one target). An enhanced version of Joint

Probabilistic Data Association Filter (JPDAF), named Joint Likelihood Filter, has been

proposed [170] to cope with its independence and homogeneity hypotheses.

MHT A third possible approach is to implement Multi Hypothesis Tracking. Instead

of keeping the best option or reflecting in the uncertainties the ambiguity in the choices,

we can keep a set of filters for the N most probable alternatives. This method is quite

simple and provides good results.

Particles Filter All the method that are applied to Gaussian distributions have been

generalized for particles representation, the reader can consult [171, 172] to see some

examples of such variants. Particles filters, are more adequate to represent the multi-

modal uncertainty of this problem, and to cope with the nonlinear issues. However the

use of large number of particles can sometime generate a high computational cost.

All the previous methods supposes that the number of existing targets is known. How-

ever knowing this value is not trivial. The most pragmatic approach uses the gating

around the uncertainty in the target poses to decide if a measure corresponds to a new

object or not and then expand the filter accordingly. More sophisticated approaches try

to include the uncertainty of the number of targets directly in the filtering process (see

[100, section 2.7]).

The multi-target tracking problem has been a topic of research for many years, specially

for military application. As such many sophisticated, complex and expensive methods

have been proposed. However in the practice simple ones have proved to be quite

effective [17, 173].

Since we have discussed about SLAM (section 3.6) and Multiple Objects Tracking

(section 3.7.2), now we are able to introduce the works done to solve the SLAMMOT

problem.

3.7.3 Simultaneous localization, mapping and moving objects track-

ing

As previously mentioned a SLAMMOT system is the minimal requirement for au-

tonomous mobile robots in urban areas. In order to reach its objective the mobile robot

needs to know in real time the presence of static obstacle, of mobile obstacles, and how

such mobile objects will behave in the future.

Up to date very little work has been done on SLAMMOT. Much of the last years

efforts have been focused on solving the underlying core issues related to sensor fusion,
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Figure 3.27: state of the art SLAMMOT system. From [17]

robot localization, SLAM in static indoor areas, SLAM in outdoor areas, and tracking

moving objects. As SLAM techniques are maturating the research are slowly shifting

to SLAM on dynamic environments problematics, and we can expect in the next year

the growing apparition of works on SLAMMOT design, development and applications.

Probably one the first teams that identified the need for SLAMMOT was the Prassler

group [174]. In their work about automated wheel chairs they developed the first sys-

tem for static and dynamic objects detection, tracking and avoidance. They explicitly

specified the need for such a system and developed the first prototypes.

Some years latter Haehnel [119] presented a method for pedestrian tracking and extrac-

tion during 2D and 3D SLAM models reconstruction [175], and a Maximum Likeli-

hood approach for offline static objects map construction with detection moving objects

[166]. Event if not able to provide on-line information, or predicting moving objects

behaviour, Haehnel proposed a theoretically sound method for separating moving and

static objects.

Wang [17] was the first researcher to develop outdoor real-time city sized SLAMMOT.

Indeed he coined the term. First called “SLAM with Detection And Tracking of Mov-

ing Objects” [176], Wang studied the core issues related to SLAMMOT and developed

a functional prototype for urban environments [17] (see figure 3.27).

One of the most recent works related to SLAMMOT was presented by a Montesano

[164] and is dedicated to wheel chairs automation. They implement a real-time SLAM-

MOT system for indoor areas that exploits the moving objects information when match-

ing the laser scans. Objects detection is made using a simple heuristic and the tracking

via constant speed Kalman filters. In despite of the simplified environment, they present

the first work that relates a real time SLAMMOT system with a planner module for a

mobile robot.
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Obviously SLAMMOT systems are just in their infancy. There is still many room

for improvements and exploration. As computational power increases less simplified

methods will be used, enhancing robustness and precision. Long term execution issues

have not yet been well studied, how to continuously enhance/rectify the constructed

map, and how to do the best use of the collected data. There will always be room for

incremental enhancements through the inclusion of the latest advances on the underly-

ing problematics of SLAM, MOT and sensors fusion.

3.8 Scene understanding

In the context of perception for mobile vehicles, scene understanding relates to the

capacity of the perception to explain what causes the movement of the dynamic objects

in relation to the static objects.

The aim of scene understanding is to assign a “purpose” or “role” to each moving

object in order to predict as well as possible their future trajectory. Some instance of

urban scenes understanding are “the group of children will cross the street to enter at

the school”, “there is a car that wants to enter into the parking place”, “the person A

wants to cross the street because his mate B already crossed it”, “the static person A

wants to cross the street because he looks at the cars arriving”.

Humans are naturally capable of interpreting with high success the intentions of other

persons. This seems to be an important factor of decision while driving a car, and thus

automated system should try to extract this information too. For a machine, interpreting

the intentions of human beings is a very difficult task.

Being at the higher level of complexity for a perception system this is one the least

explored aspects of the perception systems for mobile vehicles.

A first approach can be done specifying a finite set of possible actions and relations for

the objects in the world and posing the scene understanding problem as a classification

problem [177]. Of course this approach is error prone when non predefined cases

appears, when the set of possible actions is too big, or simply because even in finite

sets, the classification problem of possible behaviour is a difficult one.

A more tractable approach consist to define a set of probable paths for a target and es-

timate the actual probability of being following one of thus or not. This approach does

not consider specific interrelations between objects (young persons with educational

institutions, for instance) and thus reduces the problem complexity. Under this per-

spective scene understanding consists on assigning a set of probable path to an object.

In the ideal case one path will become highly probable and thus its future trajectory

will be predicted with high certainty.

Since urban moving objects tends to repeat similar paths (specially cars), the set of

probable future paths can be estimated from previous observations. Multiple works

[178, 179, 180, 181] show that, when enough statistics are available, this idea can

give surprisingly good results. The mix of this kind of approaches with a SLAMMOT

system still to be done.
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When robots are interacting in the same scene, the use of communications can help

the scene understanding, since each robot may be able to exchange its current goal and

plan. This idea is discussed in chapter 6. Human driven cars using navigation systems

could also exchange their current route.

Future advances in scene understanding probably will be generated by a better un-

derstanding of the human perception process and/or by the exponential grow of the

computational power available for real world applications.

3.9 Conclusion

In this chapter we have reviewed the perception process from the direct sensorial input

up to the high level understanding of an urban scene. In the middle we have presented

a considerable number of methods and algorithms developed to resolve the different

problematics encountered. From this wide view some core ideas have to be recapitu-

lated.

It is a fact that every observation of the world will be uncertain. The existence of this

uncertainty is not a problem by itself, the real problem is quantifying the uncertainty

from the measures and through all the state of processing, up to the moment of taking

a decision.

From the review it can be noticed that the perception problems have a hierarchical

structure. Each problem includes the preceding one explicitly. Scene understanding

includes SLAMMOT which includes SLAM which includes Bayesian Filtering which

includes Sensor Fusion which includes sensing.

Dealing with uncertainty is a difficult problem. Most of the non trivial tasks are con-

fronted to explosive computational cost. This particularity constrains many applica-

tions and is one of the principal research motivations. In order to overcome the compu-

tational burden it is necessary to make simplifications. Then, the art consists on finding

to the adequate approximations that will lead to a tractable and effective solution for

the particular problem attacked.

Nowadays dealing with the uncertainty is recognized as one of the core elements in

robotics. Because of this, the usage of statistics and probabilities tools is omnipresent

on the domain. This fact is seen as part of a major trend in robotics, the so called

Probabilistic Robotics [182].

In the next chapter we propose a new system to meet the specific needs of a perception

module for robotic driving in urban roads and some experimental results.
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Chapter 4

Perception for urban driverless

vehicles

Clearly, then, the city is not a concrete jungle, it is a human zoo.

Desmond Morris

In this chapter we will present the design of a perception system suitable for the safe

navigation of robots in urban roads, discuss the underlying problems, propose suitable

solutions to these problems and present some experimental work. In chapter 5 we will

use this perception system to compose a driverless vehicle.

The urban environment is a challenging environment for robotic applications. The

robot is not physically bounded to a specific area, and the expected length of itineraries

can be count in tens of kilometers. Even if the cities have some elementary structure

(buildings, space for humans, space for transports) they present a large diversity in

shape, colors, textures and local architecture. The general aspect of a street vary largely

between different cities and can vary largely even inside one same city. An important

notion to keep in mind is that cities are a living space that is constantly changing, new

buildings appear, different objects are installed on the road sides, underground works

are done, streets are modified, etcetera. At last but not least, the city is inhabited by

persons and animals generating a large set of moving objects around the robot.

4.1 Problem definition

As discussed in the chapter 3, the design of a perception module for a specific applica-

tion needs to answer three questions: what to measure, which model to build, and how

to transform the measures into the desired model?

In the last years most work on mobile ground robotics has been focused on the SLAM

problem. As discussed in section 2.6 the availability of maps built with SLAM are of

105
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no use for safe navigation in urban areas. Since the robot evolves in unknown envi-

ronments with moving objects we need to design an application specific SLAMMOT

system.

Let us review again the needs that the three decision modules mentioned in section 3.2

impose over the perception module, in the context for urban roads.

4.1.1 Perception for route planning

To decide the best route it is necessary to have a graph of roads where the vehicle

can pass, a prediction of the traffic on the road network traffic, the position of the

destination and the current position of the vehicle on the roads graph. Of these, the

only information that the vehicle can provide by itself is its localization in the known

graph of roads.

Since the roads in the city are usually largely inter spaced a history of position measures

of ±10 [meters] precision over a few hundred meters should be enough to localize the

vehicle on a specific road.

Using GPS, a cheap inertial sensors and filtering (see section 3.5), current commercial

navigation products are able to provide a successful localization in most conditions.

Coupled with odometry or with exoperceptive motion estimation methods current tech-

nology is be able to provide a good enough localization for routing. So, essentially,

perception for route planning is a solved problem.

If dependency on satellites is not desired, existing solutions for visual place recogni-

tion [183] or WiFi based localization [184] are able to provide precise enough mea-

surements to use as replacement for the GPS.

Creating the roads graph is usually done using aerial image processing and ground

measurements. How to apply robotic methods to lower the cost of building and up-

dating such a map is out of the scope of this dissertation. WiFi or image information

enrichment of current maps can be done using a GPS based system.

There is a second issue related to perception and route planning. Once the route has

been defined, it provides short term goals for the trajectory planner. However route

position has low precision, while goal precision needs to be high precision. How to

pass from one to another will be discussed in chapter 5.

4.1.2 Perception for trajectory planning

Just as many work focuses on SLAM to enable mobility, many work seem to focus on

detecting obstacles as the key element to allow trajectory planning. Such approaches

fail to consider one important element, the time dimension.

In chapter 2 we defined the requirements on the perception system to allow the com-

putation of safe trajectories. In the particular, we need a world model w capable of
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providing a conservative approximation of the harm function h(x(t),w(t)). Since tra-

jectory planning consists on defining a sequence of future states for the vehicle, the

world model needs to provide predictions. Even more, as discussed in chapter 2, the

world model needs to provide conservative predictions.

We need a SLAMMOT system capable of:

• Defining the current traversability of the surrounding space

• Detecting and tracking moving objects (in order to predict their movement)

• Estimating the state of the vehicle with respect to the ground

• Evaluate the harm function h

The current traversability will be given by the mapping of static obstacles and the

analysis of the ground surface (supposed immutable). The future traversability will be

based on the moving objects state estimation and the use of a priori behaviour models.

In order to provide a conservative approximation, the uncertainty of the current world

model estimate needs to be correctly estimated.

The evaluation of the harm function will be based on the classification of different

objects (e.g. low value for holes and vegetation, medium value for walls and trees,

high value for other cars and animals, very high value for humans).

Sensing range and precision

How much ? In chapter 2 we discussed how the visibility range of the sensors used

by the robot limits its behaviour. A perception system should ideally be able to do

measurements all around the vehicle (360 degrees of coverage).

How far ? Based on the discussions of chapter 2 and visibility range between ~30 to

~100 meters would allow maximum speeds of ~50 [km/h]. Seeing less will lower the

maximum reachable safe speed.

Which precision ? The precision of the sensors will affect the uncertainty of the

traversable space estimation. When using a conservative approximation larger uncer-

tainty imply smaller traversable space.

Considering a straight road of 4 meters wide, a vehicle 2 meters wide, a stopping

distance dstop = 30 [m] then the vehicle needs to be able to distinguish at dstop meters

of distance obstacles with a precision of at least ±1[m] in order to not being slowed

down by insufficient precision on its sensors. At shorter distances a higher precision is

desired in order to be able to perform tight manoeuvres.
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How often ? Given a conservative approximation of the world and a safe plan-

ning method, arbitrarily low sensors updates are acceptable. Even if the sensors are

abruptly stopped the vehicle will still have a harmless behaviour. A refresh rate around

∼ 10 [Hertz] seems to be enough for an agile behaviour of the vehicle.

Since the perception system is expected to run online in an embedded platform (the

robot), the implementation needs to respect computing constraints on CPU and mem-

ory usage while ensuring a real time execution.

4.1.3 Perception for control

The planning module will have defined a sequence of states to track. In order track

them the control module needs to estimate the current state of the vehicle. Since the

trajectory is defined with respect to the local environment, the state estimation con-

sist on measuring the speed, orientation and position of the vehicle on local reference

frame. As previously discussed in section 3.6, creating a local map and estimating

the local displacement are the same problem. Thus the needs for control are already

covered by the needs for trajectory planning.

The planning needs to consider the vehicle geometry and the possible errors on the

tracking. Due of its prevenient nature, the planning needs to assume a guaranteed

bound on the maximum tracking error of the controller. This means indirectly that over

the horizon of a planned trajectory the localization error needs to have a known bound.

4.2 Proposed solution

4.2.1 Assumptions

The approach we use needs some assumptions to be considered valid:

• Sensor fusion of internal sensors of the vehicles is good enough to allow little

errors on the scan matching,

• A computational power of 1 gigaflops, 1 gigabytes (as orders of magnitude) is

available on board,

• Using a locally planar world model for navigation is a “good enough” approxi-

mation,

• Measures of moving objects observed in urban scenarios are easily separable

between them,

• At the city level GPS is uniformly available on 50% of a path.
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4.2.2 What to measure ?

As discussed in §4.1 the main quality that the robot needs to quantify is the traversabil-

ity of the surroundings.

In outdoor mobile robotics, the sensors commonly employed to observe the surrounds

are video cameras, radars and laser scans (see section 3.3 and [34]). We choose the

last one as the main sensor due to its larger range (more than 180° and 40 meters) and

high precision (±1° and ±0.1 meters). Notice that the laser scanner measures provide

information about the presence of obstacles and the existence of free space. Since we

are supposing that urban environments are locally planar and a 2D representation of

the environment is good enough for navigation purposes.

Due to its 2D nature the laser scanner is not able to provide all the required information.

Any obstacle lower than the height of the laser scanner risk to be missed, the same goes

for holes. Even a full 3D map of the world may be not enough to classify traversable

areas, e.g. grass areas may not be distinguishable in a 3D map. Due to this intrinsic

limitations we propose to complement the laser scanner measurements with a visible

spectrum vision system.

In addition to this two sensors, we will use the usual battery of commercial grade

odometry sensors, IMU, GPS receiver and magnetic compass.

4.2.3 Which model to build ?

We build the model associated with the SLAMMOT problem (see figure 3.26). The

laser scanner measurements will be used to estimate the displacement, the free space

and the presence of static and moving obstacles. The traversability of the static part of

the world will be also fed by the output of the vision algorithm.

4.2.4 How to transform measurements into the model ?

Section 4.3 describes a novel SLAMMOT formulation that allows a model estimation

with few assumptions about the world, and with low computation footprint (CPU and

memory).

Section 4.5 describes a complementary process focused on estimating the traversability

of static elements of the world based on vision.

4.3 Efficient SLAMMOT

For a description of the SLAMMOT problem and existing methods, please consult

section 3.7. The following text will describe a new solution tailored to fit the particular

needs described in §4.1.
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Figure 4.1: Laser based SLAMMOT algorithm succinct diagram. The outputs are the

static map and the tracked moving objects.

Key idea

The key idea of our approach consist on realizing that, since the vehicle only cares

about the information in its surrounding, using an Incremental Maximum Likelihood

approach and correctly managing the errors in the map is a good enough solution.

We use an adequate data representation that allows to build such a map rapidly and

implement over it a moving objects detection method. The results of the moving objects

detection are used to do moving objects tracking. The predictions of this last module

are fed back into the map building method in order to gain robustness and have a single

coherent SLAMMOT solution. See figure 4.1.

The key ingredients of our proposal are the data representation of static obstacles, the

laser scan matching method that allow the displacement estimation and the method for

detecting and tracking moving objects.

4.3.1 Data representation

We propose to use the grid of gaussians representation (see section 3.5.1) and adapt it

to allow moving objects detection. This dense representation has three key advantages:

• It correctly manages the uncertainty related to the sensor, the 2D structure, the

displacement error;

• At similar discretization levels, it provides a more accurate description than a

traditional occupancy grid;

• It allows a fast scan matching and incremental map updates.

As previously mentioned the grid of gaussians representation split the space in over-

lapping cells where the occupancy evidence is stored. Then inside each cell a Gaussian

distribution is estimated, as illustrated in figure 4.2.
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a) b)

Figure 4.2: a) Diagram of gaussians in a four intersections grid. Dots are measure

points and dashed ellipses are 90% contour of the Gaussian distributions b) Example

of raw data and the resulting grid of gaussians representation. Darker pixels indicate

higher occupancy probability

Having a Gaussian distribution per cell instead of a uniform distribution as in the usual

occupancy grid makes all the difference. For the same cell size the occupancy distribu-

tion is better approximated. Since the distribution is estimated from the accumulated

data this distribution embeds the occupancy, the sensor noise and the localization er-

rors.

Since the Gaussian distribution parameters can be updated incrementally with each

measure, given a set of l measures updating the occupancy grid has a cost O(l).

4.3.2 Incremental computation of the grid of gaussians

Given a localised laser scan measurement, its impact points are positioned over the

grid of overlapping cells. Each time an impact point is added to a cell its associated

Gaussian distribution is updated.

As mentioned in section 3.3.2 a 2D Gaussian distribution is defined by its mean vector

mean vector!µ of dimension 2 and a symmetric covariance matrix Σ with three informa-

tive elements. We search then to be able to incrementally compute the mean elements

µx,µy and the covariance matrix elements σ ²xx,σ ²xy,σ ²yy. To do this we use a simple

recursive formulation that employs the helper variables n and nσ ²xx,nσ ²xy,nσ ²yy.

Given an impact point at coordinates (px, py) we compute:

δx = (px −µx)/(n+1)
δy = (py −µy)/(n+1)
µx = µx +δx

µy = µy +δy

nσ ²xx = nσ ²xx +n ·δx ·δx +(px −µx) · (px −µx)
nσ ²xy = nσ ²xy +n ·δx ·δy +(px −µx) · (py −µy)
nσ ²yy = nσ ²yy +n ·δy ·δy +(py −µy) · (py −µy)

n = n+1
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All values are initialized to zero. Then at any time we can retrieve !µ and Σ by simply

computing:

µx = µx

µy = µy

σ ²xx = nσ ²xx/n

σ ²xy = nσ ²xy/n

σ ²yy = nσ ²yy/n

If n < 3 the estimated values are considered non valid.

The first laser scan provides an initial set of valid Gaussian distributions, constituing an

initial estimate of the grid of gaussian. This map will be used to estimate the displace-

ment of the second laser scan before using the laser impacts to incrementally update

the gaussians in the grid.

4.3.3 Displacement estimation

The traditional method to estimate the displacement consist on matching successive

scans between them (using a method like ICP, see section 3.5.2). The use of the grid

of gaussians representation allows to use a better alternative. Instead of matching two

clouds of points, the laser scan is matched over a distribution of probabilities indicating

the probable presence of an object at each point of the space. This approach avoids

the expensive closest point search, provides more robust results and has a quadratic

convergence rates instead of linear rates of the traditional ICP [185].

As it names indicate the Grid of Gaussians is composed by a set of overlapping Gaus-

sian distributions. Each bi-dimensional Gaussian is defined by its mean vector q and

its covariance matrix Σ. A laser scan measure is defined as a set of l points xi. Let g

be the number of Gaussian distributions in the grid. The score function between a scan

and the occupancy distribution can be written as equation 4.1.

score = s(p) =
l

∑
i=1

g

∑
j=1

exp

(
−1

2
· (x′i −q

j
i )

T Σ
j−1
i (x′i −q

j
i )

)
(4.1)

q
j
i , Σ

j
i are the mean and covariance of the gaussian j. Due to the locality of the esti-

mated gaussians, the ones with little or no influence can be detected using their position

in the grid and omitted to accelerate the score evaluation.

The term x′i describes the scan point xi in the map reference frame, translated using

p = (px, py, pφ ) the current scan pose estimate and the rigid transform function T :

R
2 → R

2 defined in equation 4.2

x′i = T (p,xi) =

(
cos pφ −sin pφ

sin pφ cos pφ

)
· xi +

(
px

py

)
(4.2)
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a) b) c) d)

Figure 4.3: Illustration of the scan-to-map matching process. a) Map from previous

measures is available (blue dots). New measures (red dots) are put at the initial po-

sition estimate (T (p0,xi)). b) For each point the gradient (and Hessian) is directly

computable. c) Scan position p is updated, iterate back to (b) until convergence. d)

Matching result after convergence

The objective of scan matching is to search the position p̂ of the scan that optimizes

the score of (4.5), p̂ = argmaxps(p). The derivatives of the score function s(p) can be

written explicitly and are cheap to evaluate thus optimization methods such as gradient

descent and Newton’s can be applied directly.

Let pn be the current estimate of p̂, then the Newton’s method defines pn+1as

pn+1 = pn − γ · (H s(pn))
−1 ·∇s(pn) (4.3)

where γ is the descent step size (γ ≈ 1), H s(pn) is the Hessian matrix containing

the second partial derivatives of s(p) evaluated at pn and ∇s(pn) the gradient vector

containing the first partial derivatives of s(p) evaluated at pn. Both H s(pn) and ∇s(pn)
can be defined explicitly. The figure 4.3 illustrates this iterative procedure.

Computation cost One iteration of the equation 4.3 requires one evaluation of (cos pφ , sin pφ )
and l × g evaluations of exp(·) plus some multiplications and additions. On current

computers, equation 4.3 can be computed at ~1 [KHz] when l×g = 1000, considering

that convergence is usually obtained under 20 iterations then the scan matching speed

is ~50 [Hz].

We initialize pn with pn−1 composed with the odometry displacement estimate, after

matching, we have a new measure of the displacement. This measure in introduced

into an UKF filter which uses the vehicle model and the commands input. Finally, we

update the map with the new scan using the resulting filtered position.

Displacement estimate uncertainty In order to use the matching position p̂ in a

sequential Bayesian filter, its uncertainty needs to be estimated. It can be shown [186]
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that equation 4.4 provides a conservative estimate of the position p̂ uncertainty.

covariance(p̂) ≈ 2 · s(p̂)

l ·g−3
· (H s(p̂))−1

(4.4)

Having a direct access to the scan matching uncertainty is one of the comparative ad-

vantages of using the Grid of Gaussians representation with respect to plain ICP.

Using moving objects prediction When estimating the displacement we want to use

only the laser scan measures of static obstacles. Let wi = P(xi is static | previous measures)
be probability of point xi being the measure of a static obstacle, then the equation 4.1

can be rewrote as equation 4.5. When considering the a priori on static or moving ob-

jects measures the displacement estimation and static obstacles map building becomes

robust to the presence of moving objects.

score = s(p) =
l

∑
i=1

g

∑
j=1

wi · exp

(
−1

2
· (x′i −q

j
i )

T Σ
j−1
i (x′i −q

j
i )

)
(4.5)

In the next subsection we will show how to merge the grid of gaussians representation

with a moving objects detection method. The detection of moving objects will allow

their tracking, prediction, and thus to estimate the a priori P(xi is static | previous measures).

4.3.4 Moving objects detection

In section 3.7.2 we discussed existing methods for moving objects detection from a

mobile platform. Here we will discuss how to implement such a function when using

a grid of gaussians representation.

The core notion to detect moving objects is the inconsistencies between observed free

space and observed occupied space [167]. If free space appears where a static object

was observed, then it probably moved. If measures appear in areas previously seen as

free, then these measures probably correspond to moving objects.

Let be P(Sx
t ) the static obstacles’ occupancy probability at the point x and the instant

t. Instead of updating the occupancy probability P(Sx
t ) using only the last observation

value ot , the update depends both of the observation value ot and of the last occupancy

estimate P(Sx
t−1).

The probability of occupancy is divided in three ranges Free, Unknown and Occupied.

Then the relation P(Sx
t | Sx

t−1, ot) enforcing the coherence between free and occupied

space observations can be illustrated as shown in table 4.1. The case when the last ob-

servation gives no information about the occupancy probability, P(Sx| ot) = Unknown,

is omitted. The distribution P(Sx| ot) is constructed based on the sensor characteristics,

while P(Sx
t | Sx

t−1, ot) is a design variable.
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Table 4.1: Inverse observation model for the static occupancy probability

P(Sx
t−1) P(Sx| ot) P(Sx

t | Sx
t−1, ot)

Free Free Low

Unknown Free Low

Occupied Free Low

Free Occupied Low

Unknown Occupied High

Occupied Occupied High

The occupancy probability update is then written as in equation 4.6.

odds(x) = P(x)/(1−P(x)),
odds(Sx

t | o1...t , Sx
1...t−1) =

odds(Sx
t | ot , Sx

1...t−1) ·odds(Sx)−1 ·odds(Sx
t−1).

(4.6)

In order to merge this approach with the grid of gaussians representation we propose

to separate the storage of occupancy measures Oocc and the free space measures O f ree,

as defined in 4.7.

Oocc = {o| P(Sx|o) = Occupied and o ∈ o1...t}
O f ree = {o| P(Sx|o) = Free and o ∈ o1...t} (4.7)

Since odds(Sx
t |o1...t , Sx

1...t−1) is estimated from a multiplication series (equation 4.6),

this series can be split and reduced in two separate factors, defined at (4.8). The fac-

tor oddsx
occ accounts the occupancy estimation based in occupied space measures and

the second factor oddsx
f ree accounts the occupancy estimation based in free space mea-

sures.

oddsx
occ = odds(Sx

t | Oocc, Sx
1...t−1)

oddsx
f ree = odds(Sx

t | O f ree, Sx
1...t−1)

(4.8)

Occupancy probability can be retrieved at any moment multiplying the two values, as

shown by the equation 4.9.

odds(Sx
t | o1...t , Sx

1...t−1) = oddsx
f ree ·oddsx

occ (4.9)

When doing this separation the grid of gaussians can be used directly as part of the

detection of static obstacles and moving obstacles.

If points are added to a gaussian only when P(Sx
t−1) = Occupied then the Gaussian

distribution evaluated at x can be used as an approximation for oddsx
occ. This means

that the grid of gaussians provides an estimate of the static obstacles in the environ-

ment. Because of the dynamic nature of the environment, a previously static object
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a) b)

Figure 4.4: Illustration of the oddx
f ree representation used. a) The values of oddx

f ree are

computed only at the points on the intersection of the grid of gaussians cells (see figure

4.2). b) The interior values are interpolated simply using a bi-linear interpolation

(a) Occupied space evidence (b) Free space evidence (c) Occupancy probability

Figure 4.5: Static occupancy probability scalar field approximation using a grid of

gaussians for occupied space (a) and bi-linear interpolation for free space (b). Cells

size is 1 [m]. A vehicle and its past trajectory are also shown in the resulting map (c).

In (c) white indicates free space, black occupied space and grey areas have non zero

occupancy probability. Figure (c) an output of the software described in §4.4

can start moving. In order to clean the gaussians that correspond to space that is no

more occupied it is necessary to keep an estimate of the occupancy probability at its

mean value qi (we suppose that the shift of mean point during gaussians parameters

updates does not invalidate the occupancy probability estimate). When P(Sqi
t ) = Free

the corresponding gaussian is erased.

Representing oddx
f ree The factor oddx

f ree is a function over space that can be esti-

mated using any representation (including coarse or fine grids). In our implementation

we use a bi-linear interpolation between the corners of a cell of the grid of gaussians

(the use of the same grid is only for memory usage efficiency, any other grid is possible

too). At each corner of this grid an estimate of oddx
f ree is kept based on the accumu-

lated measures. The values of oddx
f ree at other locations is obtained by using a bi-linear

interpolation between the nearest point, as illustrated in figure 4.4.
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An illustration of the resulting occupancy probability scalar field can be seen at figure

4.5. The proposed method still is an approximation (just as grid methods), however

separating occupancy and free area factors allows to better control the approximation

error. More precise approaches would consider updating the gaussian parameters when

portions of it pass into free regions.

Retrieving the moving objects measures At the end of the scan matching, each

point x′i has already been evaluated over its corresponding gaussians, thus odd
x′i
occ is

available. Computing the odds
x′i
f ree allows to estimate P(S

x′i
t ). Points where P(S

x′i
t ) =

Free are considered as moving objects measures.

4.3.5 Moving objects tracking

Once we are able to detect moving objects we need to track them in order to estimate

their state and predict their behaviour (since the prediction will be used for the planning

stage). Tracking multiple moving objects is a classical problem (see section 3.7.2). In

the general case this problem is very hard, however it has been shown experimentally

that simple methods are good enough to cope with urban scenarios [173, 17].

Based on these results we use a simplistic approach where moving objects are defined

as clusters of nearby points. The clusters are defined by a fixed distance threshold

between consecutive laser points (0.3 [m] for instance). Each cluster is then tracked

separately and classified according to their size, speed and geometry. The object class

is used to adapt the model used for tracking, the prediction model and to define the

harm value of a potential collision with it.

4.3.6 Moving objects prediction

In the driverless vehicle context, safety is associated to collision free trajectories. Since

the world model provided by the perception module is the only information available

for the planning we have to ensure that the trajectories without collisions generated in

the predicted world, will remain free of collisions during their realization in the real

world. To ensure this the world model needs to do consistent predictions: predicted

free space has to be effectively free in the real world future.

The future observations of the moving obstacles need to be inside the predicted occu-

pied area. Integrating adequately the model error into the predictions allows to have

consistent predictions. However, too loose predictions (large models errors) will gen-

erate large banned areas forcing the planning to be too much conservative. Figure 4.6

illustrates the notion of consistent and conservative predictions for one obstacle.

In order to have a consistent prediction, we do not only have to deal with the measured

moving obstacles, but also with not yet observed ones. At the unobserved limits of the

field of view frontier we have to assume the possible appearance of moving obstacles.
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Figure 4.6: Illustration of the conservative prediction of a car position in time. Time

grows from left to right. Pink areas indicate the reachable space of the car. White areas

are free space

To ensure trajectories free of collisions, we need to suppose the worst case, i.e. the

presence of obstacles moving directly toward the current robot position at the maxi-

mum expected speed. Creating such virtual obstacles will force the planning module

to generate a trajectory conservative enough to deal with the sudden apparition of new

obstacles. If the length of the unobserved limit portion allows it the appearance of cars

will be supposed, if not only pedestrians will be assumed.

For the pedestrians, we use a Brownian motion model for the prediction. For cars,

we use a maximum steering, maximum acceleration prediction model. Unknown ob-

jects are supposed to have constant speed (since they usually correspond to spurious

measures, see section 4.4).

The uncertainty of the odometry displacement is composed with the prediction of the

currently observed moving obstacles is composed in order to estimate the weight-

ing factor P(xi is static | previous measures) that is fed back into the scan matching

method.

4.3.7 Evaluating the harm function

The world model built up to now (named w(t0) ) includes the constructed the map of the

free occupied and unobserved space, the detected and tracked the moving objects and

their associated conservative prediction models (see figure 4.7). Once these elements

are available estimating the harm function h(x(t),w(t)) described in chapter 2 is fairly

easy.

Depending on the available a priori information, the frontier between free and unob-

served space will be considered as a static wall or as a wall of incoming moving objects.

Then, given a state x(t1) to check, the current world model w(t0) is extrapolated until

t1. Static objects and unobserved space stay as they are, and a conservative prediction

of the moving object occupancy space is used to estimate the traversable space at t1.

Using this prediction, we check if x(t1) is in collision, and assign the harm value de-

pending on the kind of object. Ordered from highest to lower harm we have pedestri-

ans, cars, and static obstacles. Unobserved areas should be unreachable without first

colliding with a static or moving element in the model. Free space causes zero harm.
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(a) occupied space (b) free space

(c) detected moving object and conservative pre-

diction

(d) SLAMMOT output

Figure 4.7: Illustration of the components of the internal representation of our SLAM-

MOT algorithm and the actual output of the implemented software (bigger version at

4.10)

A more sophisticated implementation may consider the relative speed at the time of

collision.

4.3.8 Algorithm

Our laser scanner based SLAMMOT algorithm (summarized in figure 4.1) can then

described using the pseudo code presented in figure 4.8.

The tuple (vehicle_state, occupied_map, free_map, tracked_moving_objects) consti-

tutes our current world model w(t0) and is the information used to predict h(x(t),w(t)).
Figure 4.7 illustrates the elements used to build the world model.

EstimateStaticMeasuresAPriori and UpdateTrackerMovingObjects are provided by the

moving objects tracker described in section 4.3.5. PredictVehiclePosition and Updat-
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Recursive function LaserSimpleSLAMMOT

Require: (vehicle_state, occupied_map, f ree_map, tracked_moving_ob jects)

1: laser_scan ← AcquireNewScan()
2: scan_weights ← EstimateStaticMeasuresAPriori(tracked_moving_ob jects,

laser_scan)
3: predicted_vehicle_position ← PredictVehiclePosition(vehicle_state)
4: corrected_vehicle_position←EstimateDisplacement(predicted_vehicle_position,

new_scan, scan_weights)
5: moving_ob jects_measures, static_ob jects_measures ←

DetectMovingObjectsMeasures(occupied_map, f ree_map,
laser_scan, corrected_vehicle_position)

6: tracked_moving_ob jects ← UpdateTrackerMovingObjects(
moving_ob jects_measures, tracked_moving_ob jects)

7: occupied_map, f ree_map ← UpdateMaps(corrected_vehicle_position,
laser_scan, occupied_map, f ree_map)

8: vehicle_state ← UpdateVehicleState(vehicle_state, corrected_vehicle_position)
9: return (vehicle_state, occupied_map, f ree_map, tracked_moving_ob jects)

Figure 4.8: SLAMMOT algorithm pseudo code

eVehicleState are provided by an Unscented Kalman filter (see section 3.4.4). Esti-

mateDisplacement is provided by the scan matching algorithm described in §4.3.3.

DetectMovingObjectsMeasures corresponds to the method described in section 4.3.4.

Finally UpdateMaps corresponds to the incremental update of the Gaussian distribu-

tions used to estimate oddsx
occ and of the punctual values used to estimate oddx

f ree as

mentioned in §4.3.1 and §4.3.4.

Bounded online computation The described displacement estimation algorithm is

based on an optimization procedure. Fixing an maximum number of optimization steps

allows to bound his computation time (currently set to 20 steps). In theory cost of

tracking moving obstacles grows quadratically with the number of moving objects,

however even for more than ten obstacles the computation time related to this task

is negligible compared to the optimization step of the scan matching. Updating the

maps and the state of the vehicle is done in constant time (proportional to number of

measures and the area they cover).
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Figure 4.9: SLAMMOT implementation interface. The cross platform application

presents to the user the current measure, the vehicle state, its past path, the local map

(including free space, static and moving obstacle) and the aggregate of local maps

4.4 SLAMMOT Results

4.4.1 Implementation details

The SLAMMOT algorithms was implemented in C++. Figure 4.9 presents a screenshot

of the user interface, showing the current 2D map of the surroundings. In order to re-

duce the CPU load the interface produces a simplified drawing of the current map, and

generates high resolution images (such as figure 4.10) only on demand. The lightweight

drawing for the user interface takes an amount of time comparable to the processing

time of each new laser measure.

For a local map of 80x80 meters and a grid cell of 1 meters, the memory usage is near 4

Mb per local map, and the computation time to integrate a laser scanner measurements

is ~30 [ms] on a modern computer.

4.4.2 Evaluation methodology

In order to evaluate a SLAMMOT algorithm one would like to be able to compare the

reconstructed world model with the real world, in order to verify the precision of the

reconstructed static elements map, the precision of the vehicle trajectory, the correct

detection of moving objects and the precision of their state estimation (speed vector,

class, geometric description, etc.).
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The problem is that having the ground truth information (of static and moving objects)

is costly and difficult to realize in all but very simple or restricted scenarios.

Using a simulator such as the one presented in section 5.5 it would be possible to gen-

erate a sequence of measures to feed the algorithm while having access to the ground

truth. This would allow to verify the geometric reconstruction and moving objects

detection in a set of predefined scenarios.

Even when including the appropriate noise levels on the simulated sensors, this ap-

proach provides very limited information since the simulator is based on the same

hypothesis than the designed algorithm. In our experience other than validating the im-

plementation and validating the expected behaviour in known situations the simulator

is of little use.

Even more, there is a flaw on this evaluation logic. As discussed in chapter 2, for

our application we not focus necessarily in precision, but much rather in consistency.

Which means that more than having low errors, we want a conservative estimation of

such errors.

We used the simulator of section 5.5 to validate the implementation of our SLAMMOT

algorithm in simple scenarios, however for evaluation purposes we prefer to present

results based on real world measurements.

4.4.3 Recorded data experiment

Setup As a baseline for evaluation we use the data recordings provided by Wang

[17, 16]. He uses a fully equiped car (CMU Navlab11) running in the existing traffic

flow in the streets nearby the university campus in Pittsburgh, USA.

In order to evaluate the quality and efficiency of the scan matching method no odometry

or GPS data is used and no vehicle dynamics model is disregarded (no state filter).

Results A representative example of the results of the algorithm is presented in figure

4.10. It should be noted that on other areas some failure modes are observed. When

there is not enough geometric information (such as in corridors) the vehicle trajectory is

incorrectly estimated. In these areas the moving objects still correctly detected but their

ground speed and trajectory is not. This situation is corrected when using odometry

information.

Analysis The result shows that when enough geometric information is available the

scan matching alone provides an accurate reconstruction of the vehicle trajectory. It

can also be seen that on a horizon of more than 50 meters no noticeable deformation

of the incremental map appears despite the 90° turn. This is due partially because

of the quality of modern laser scanners and partially because in the proposed method

the scan matching is done with the current map instead of just with the previous scan

(as commonly done). Figure 4.10 also shows how occupied free space is correctly

estimated. It can be also noticed that moving obstacles are detected and tracked.
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Figure 4.10: SLAMMOT output example. The box represents the current vehicle posi-

tion, the curved line behind its past path. The circle surrounds a moving obstacle being

tracked, the line escaping from it is proportional to the estimated speed vector. White

indicates free space, gray unknown, and black occupied by a static obstacles. On top

of the static obstacles the accumulation of laser scan measurements is shown
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Figure 4.11: SLAMMOT result example. Left: image of the current scene, seen from

the vehicle. Right: the current map, including the robot position and past trajectory,

the moving pedestrian (and its estimated direction), the stopped vehicle and a spurious

measure. See legend of figure 4.10

4.4.4 On board experiment

Setup Using our platform (described in §5.1) and its installed laser scanner we tested

our algorithm on our campus. In this case the algorithm is running online using the em-

bedded computing power. Our campus presents a suburban environment with smooth

slopes.

When running on our platform, odometry and IMU measurements are available to cope

with areas where geometric cues are insufficient to estimate the displacement solely

from the scan matching.

Results Outdoor trials on our campus has shown satisfactory results comparable to

the ones on recorded data.

In figure 4.11 we present a representative result when running on board the vehicle in

our campus. Large, medium and small size obstacles are correctly mapped, the vehicle

trajectory reconstructed and the surrounding moving pedestrian and car correctly de-

tected and tracked. Note that this case also presents a failure mode of the laser scanner

were one the walls is repeatedly measured at an incorrect distance. This generates a

spurious unknown object that has zero speed.

Analysis The only notorious change between the results based on Wang recording

and the runs on our vehicle is the presence of obstacles that laser scanner sees as semi

transparent. Non modeled, absent on Wang recordings, they are abundant on our cam-

pus. From the laser scanner’s perspective thin bushes and metallic grids appear as semi
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Figure 4.12: Illustration of landmarks detection. From a method similar to [187]

transparent objects. In the proposed SLAMMOT method this objects will be inter-

preted as moving objects with null speed and thus they do not have a major impact in

the system behaviour. Moving objects with null speed are equivalent to static obstacles

except they are not used in the movement estimation. Future work on SLAMMOT

should explore how to integrate explicitly semi transparent objects in the world model

in order to exploit better the available information.

The spurious measurement that appears in figure 4.11 is a rare case (that falls on the

very low probability region of the sensor model). In this case the information of

traversable ground provided by the vision processing would avoid (see section 4.5)

generating unsafe trajectories.

4.5 Traversability estimation using vision

There are four general strategies we can depict for estimating the traversability of a

region based on vision:

• Man made landmarks detection (figure 4.12). Urban roads follows specific con-

ventions, usually they are delimited with special painting on the floors. Detecting

this marks and supposing that the convention is respected should provide the re-

quired traversable area. This approach is straightforward and robust, but brittle

since landmarks may not be available everywhere and it requires to manually

design the detection method.

• Learning (figure 4.13). Examples of traversable regions of the image are pro-

vided to a machine learning algorithm that will then infer the rules that allow do

detect traversable regions of an image [188]. This method allows to manage dif-

ferent type of markings and avoid the need of manually designing a detector of

landmarks. Its main drawbacks are that it will not necessarily behave correctly in

front of situations not similar to the training examples and that it is very difficult

to guarantee that the learned examples are “enough”.

• Dense stereo (figure 4.14). In order to get rid of specific landmarks or learned

rules, one could imagine to use vision to obtain a full 3D reconstruction of the

environment using stereo vision. Then, any large smooth horizontal region and

horizontal would be considered as traversable, and any discontinuity or steep

slope would be considered non traversable surface. This method fails in three
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Figure 4.13: Example of machine learning based ground detection. From [188]

Figure 4.14: Example of dense stereo traversability estimate. Left: an example

stereo pair and its depth estimate. Right: height map built from a sequence of

dense stereo depth estimates. From [189] and [84]

different ways. First even with a full 3D model it may be not possible to distin-

guish the traversable space (water, sand, grass). Second the resolution of the 3D

reconstruction depends on the resolution of the 2D sensors, the relative distance

of the two sensors, and the reconstruction method employed. For standard se-

tups the height curb may be simply not noticed. Finally, despite many years of

research the stereo methods have robustness issues when employed in the real

world, specially when large homogeneous regions are present.

• Model based (figure 4.15). Instead of using a stereo pair to have a full 3D recon-

struction and then search the traversable regions in the 3D space, a model based

approach will directly search the traversable areas in the images space [190].

By verifying which pixels match the traversable regions model the computation

burden is reduced and the robustness enhanced.

4.5.1 Learning to recognize traversable space

We believe that the model based approaches are the most reliable and versatile ones.

In the particular areas where we expect to use our driverless vehicle, the sidewalk is

almost at the same level than the road and it is surrounded by grass that is not correctly

treated by model or dense stereo methods (due to its repetitive pattern). We need a com-



4.5. TRAVERSABILITY ESTIMATION USING VISION 127

Figure 4.15: Example results of model based ground detection. From [190]

Figure 4.16: Examples of the machine learning train set (used to obtain the results in

figure 4.17)

plementary layer to indicate allowed areas and prohibited areas, then we implemented

a simple machine learning approach.

Supervised machine learning is a field with a good degree of maturity and multiple

methods can be used as black boxes with high effectivity (we suggest [191] as an in-

troduction on the topic). For our application we evaluated using the classic SVM [191]

(“support vector machine”, based on the statistical learning theory), the IVM [192]

(“informative vector machine”) and the RVM [193, 194] (“relevance vector machine”,

both based on sparse Bayesian learning approaches). All three methods can use the

so called “kernel trick” to estimate non linear functions, but only IVM and RVM can

automatically define the parameters of the kernel (without having to do cross validation

as usually done with the SVM).

The a priori information is introduced through some labeled images, such as the one

presented in figure 4.16. We solve the problem of segmenting the image into traversable

or not regions by transforming it into a classification problem. We use the classical

“divide + compute feature vector + classify” setup.

We use a simple rectangular grid in the image space to divide the image into sub-

regions (could also be done on the inverse projection of the ground floor, “the top

view”). A feature vector is computed for each sub-region. The feature vector to build
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is application specific and need to capture discriminative information with respect to

the desired classification task. Our strategy consists on first computing a large set of

features (~40, based on the features used in [195]) and then use a features selection

method to keep only the relevant ones. Choosing only the relevant features allows to

accelerate the online execution. We use an “automatic relevance determination” (ARD)

kernel with the IVM as a feature selection method. For our road examples, the relevant

features are less than ten (the average YCrCb color, and a subset of the Law’s masks

and the directional gradient masks).

After learning we use the classifier to convert the input image into a binary image and

select the largest blob that touches the bottom of the image as the road. Using the cali-

bration of the camera (intrinsic and extrinsic parameters) this blob can be projected to

the ground in order to feed an “traversability grid” (like occupancy grid, but estimat-

ing the traversability) that will fuse multiple measures in order to build a traversability

map. The laser scanner provides the local position at each image acquisition so no ad-

ditional matching needs to be done between the measure and the “traversability grid”.

The frontier of the traversable space is fed as a wall of obstacles into the world model

(see 4.18). This frontier obstacles will have a low harm value, since it imply only a

minor damage to the car without involving other vulnerable beings.

In this work we suppose that the orientation of the camera with respect to the floor

stays constant. In applications where the tilt of the vehicle is important, the external

parameters of the camera with respect to the floor surface should be estimated online.

4.5.2 Fusion with SLAMMOT

The classification of the regions of the image provides to estimate the traversable space.

The SLAMMOT algorithm uses the free space measured by the laser to detect moving

objects. The traversable space cannot be integrated into the static part of the SLAM-

MOT algorithm. The static world output of each algorithm has to be merged into a

separate map, using a simple “and” merging criterion (surface is traversable if both

methods indicate so). The relative position between the camera and the laser scanner

(that allows the transform of coordinates of one map to another) is supposed known

and constant.

The traversable regions that touches the frontiers of the observed space with the laser

scanner can be used to estimate the possible appearance of vehicles. Cars are unlikely

to appear on the frontiers of the observed space frontiers covering a region observed as

non traversable.

4.6 Vision results

4.6.1 Setup

The algorithm described in section 4.5 was implemented in C++ and integrated with the

SLAMMOT, planning and control software. The learning process in done offline using
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different tools (C libraries, Python scripts and R scripts), depending on the selected

machine learning and the classification is done online with the mentioned C++ code.

For mono vision task our platform (described in §5.1) is equiped with commercial

grade firewire camera (Fire-i from Unibrain). This camera provides 24 bits RGB im-

ages with a resolution of 640x480 pixels at 30 frames per second.

The default camera lens provide a field of view that is too narrow to estimate the

traversable space. We would like that the images include at least the expected width of

a lane a few decimetres in front of the vehicle, and to allow to decide if a turn can be

taken or not a few meters away. In order to enlarge the field of view a wide angle lens

was installed. The images in figures 4.16 shows clearly the lens distortion (notice the

shape of the horizon line). We do not use any kind of calibration or correction of the

lens distortion during the classification stage (we use the calibration for the projection

from the image to the ground).

As explained in section 4.5.1 the approach is based on decomposing the images in small

pieces, selecting the best features and then learn to classify based on these features.

We tested splitting the images in squares with a size between 5x5 pixels to 25x25 pixels.

We manually acquired and tagged 25 representative images (all from the desired roads,

as dissimilar between them as possible). We used 7 images for the training set (used

to learn) and 18 images for the test set (used to evaluate the quality of the method).

For a size of 15x15 pixels on 640x480 images this corresponds to ~10000 samples for

training and ~25000 samples to testing.

4.6.2 Results

All three methods (SVM, IVM and RVM) provided similar classification results over

the test set. their classification error (false positives + false negatives) is inferior to 5%

when using a radial basis function kernel with the best configuration of features set and

squares size.

The best squares of size was 15x15 pixels, this is dependent of the camera setup. The

best features set contained the x,y position of the square, its average YCrCb compo-

nents, and 6 convolution filters (this means using only 11 of the ~40 features initially

provided). The features set is dependent on the training set.

SVM provided a very fast learning stage (a few seconds, thus allowing larger training

sets) and resulted in a classifier with a few hundreds of support vectors, good classifica-

tion results where obtained with the default kernel parameters. The number of support

vectors is directly proportional to the classification time and thus to the processing time

of each frame.

IVM provided slower learning (a few minutes), but allows to automatically estimate

the optimal kernel parameters. It resulted in a classifier with comparable performances

with less support vectors (around one hundred).

Finally RVM, while having the slowest learning stage (some tens of minutes) is the

method that provided the lighter classifier (a few tens of support vectors) while still
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Figure 4.17: Examples of the machine learning method results. The last two images

on the bottom-right show some of the failure modes

providing classification errors comparable to the SVM result. With the same classifica-

tion errors the RVM provides a classifier almost one of magnitude faster than the SVM

one.

A selection of the results obtained with the test set are presented in figure 4.17.

For the selected features and patch size, the features computation, RVM classification,

polygon detection and projection to the ground plane takes around 1 second on the non

optimized C++ code.

4.6.3 Analysis

The general results are quite good (5% of test set error, and given the observations

made when running online), even when operating under different light conditions. We

observe two failure modes that are intrinsic to the approach:

• When using a small window only local information is available to classify the

texture, in some cases local information may not be enough since two similar

textures correspond respectively to traversable and non traversable space. This

can be countered by the use of larger features vectors using information not only

from the local window, but also from its surroundings [196, 195].

• Secondly, even with a high success rate on the test set it is not possible to guar-

antee the result of the classification when encountered to the real world. New

elements may not be correctly classified, even if the machine learning methods

offer theoretical guarantees on the generalization capabilities of the learnt clas-

sifier. This is a fundamental limitation that can only be countered by the use of

large and diverse train sets, by keeping that the vehicle operates in conditions
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Figure 4.18: Example of obstacles avoidance based on vision. Left: the acquired

image. Right: the processed image, resulting obstacles map and safe planning

similar to the training set. Both IVM and RVM are able to provide uncertainty

estimates on their classification1, the class of feature vectors far from the training

examples are considered more uncertain. This estimate could be used to provide

conservative estimates when confronted to novel situations.

By its own the traversability estimation using vision provides all the required informa-

tion to safely navigate in a static environment. It is possible then to use the perception-

planning-control system described in section 5 only with vision. The displacement

estimate is based solely on odometry estimates, the planning includes the growing lo-

calization error [197], and the control operates using the odometry estimate as refer-

ence. In the figure 4.18 we illustrate how safe planning in a static environment is done

based solely on the vision system.

4.7 Conclusion and perspectives

In this chapter, we proposed a perception system capable of satisfying the needs for

safe navigation while imposing zero constraints on the environment and requiring the

strict minimum a priori knowledge.

The perception algorithm described provides a data representation with better uncer-

tainty management, coupled with faster data association and the detection of moving

obstacles. Putting aside the locally flat world approximation and examples based learn-

ing step, this algorithm makes no strong assumptions on the environment infrastructure

or in the moving obstacles’ geometry.

It is also worth noticing that the described approach is generic, behind able to directly

work with additional sensors, different sensors, or different vehicle model.

Despite the nice properties of the proposed system there still large room for improve-

ments in the quest of a perception system “as good as humans, and better”.

1although the RVM method has a fundamental flaw causing overconfident predictions
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During the chapter we discussed the need to provide conservative predictions. In

some situations the lack of additional information forces the system to provide over-

conservative predictions, specially for the yet non observed moving obstacles. Humans

make a large use of “seeing through the obstacles” to judge the sudden appearance of

moving obstacles, for instance, behind a row of parked cars. The current laser based

solution is unable to provide such a kind of observation, leading to an over-conservative

driving behaviour.

One of the intrinsic limitations of the moving obstacles detection method proposed, is

that if an object is never seen moving, it is considered as static; its predicted position

will be immutable. However, humans are able to distinguish a parked car from a car

waiting behind a semaphore. To manage this situation some level of a priori knowledge

is required (“cars contain humans; if on the driver sit, then the car may move”, “how

do cars look like ?”, “how do driving humans look like ?”). Since this issue affects the

safety of the system it is worth exploring.

From the used assumptions, the locally flat world assumption is probably the most

constraining one (think about cities likes San Francisco or Valparaiso). How to better

deal with a non flat world ?

Given the humans example, it is known that driving using only sound and image sensors

is possible. Laser scanners being pricey active sensors, there is an interest on exploring

an all vision system (see discussion in §7.2.1).

In the next chapter we will show how this perception method is integrated in to a full

driverless vehicle system.



Chapter 5

System implementation

Philosophers have only interpreted the world in various ways, but the

real task is to alter it.

Karl Marx

The purpose of this work is to provide a solution for the perception problem related

to driverless vehicle in urban environment. To verify this claim and to explore the

interactions between the different components, we integrated the solution described in

§4.2 into a complete driverless vehicle solution.

During this chapter we will depict the vehicle employed (section 5.1), describe how

the different elements are implemented and interact between them (section 5.2). In

section 5.3 we present in more detail the design of the planning and control modules

that accompany the perception module. In section 5.5 we present the simulation tool

we used to test our system, and finally section 5.6 presents some experimental results.

The author imagined, designed and directly coded or conducted the coding of the soft-

ware described in this chapter.

5.1 Platform

The vehicle used for our experiments is denominated “Cycab”. It is an electric vehi-

cle with two seats designed for experimentation and small scale demonstrations. The

vehicle has four motors (one per wheel) and two steering plunger (both front and back

wheels can steer). The vehicle has been equipped with diverse sensors, computing and

communication capabilities as shown in figure 5.1.

The maximum speed of the vehicle surrounds ~5 [m/s] (~20 [km/h]) however in prac-

tice it is manipulated at much lower speeds ~1 [m/s] (comparable to a walking pedes-

trian).

133
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Figure 5.1: Extruded view of the Cycab

5.2 System Integration

We desire to develop the software capable of driving a city vehicle from a point A to

a point B automatically as discussed in chapter 1. The general software architecture is

presented in figure 5.2. This architecture is a reflection of the six modules presented in

the figure 1.10.

The diagram of figure 5.2 includes the main software components, the data exchange

between them, and the used vehicle sensors and actuators.

The nucleus perception, planning, control was implemented into a single cross-platform

multi-threaded C++ application running in the vehicle on a standard 3.3 [GHz] dual

core PC under Windows XP.

5.2.1 Human machine interface

A screenshot of the final user interface is shown on figure 5.3. Using the software

Google Earth [198] the user can access geographically referenced content, including

the road network, the current vehicle position and its planned route. Through this

interface it is possible to request the vehicle to reach one of the specified stations. This

interface can be accessed directly inside the vehicle or through the wireless network

from a remote location.
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Figure 5.2: Driverless vehicle system architecture

Figure 5.3: Left: route planner interface. Right: illustrating a user doing a request for

the vehicle.
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5.2.2 Route planning

The route planner is implemented as a server (programmed in Python), providing the

content for the human machine interface (serving Google Earth KML files and related

content) and exchanging data with the vehicle (using XML-RPC) in order to know its

current position and provide its next desired position.

The route planner uses the simple Dijkstra’s algorithm to find the shortest path between

the current position and the requested position.

5.2.3 Trajectory planning

Given the next desired position received from the route planner and world model pro-

vided by the perception module, the planning will compute a trajectory that respects

the vehicle limitations, avoids collisions and moves towards the goal.

We use a Partial Motion Planning approach to solve this problem. The planner is by

nature any time interruptible, which means that it respects the real time constraint, but

also means that there no bound on much computation is desirable.

Current C++ code implements different exploration methods, all of them running as

partial motion planners. Almost 50% of the CPU is dedicated to this task. Using a

standard PC, a retrieving a trajectory at 2 [Hz], the planner is able to provide a trajectory

of a few tens of meters in common scenarios.

For more details on the planning problem and solution the reader can consult the section

5.3.1.

5.2.4 Control

Given the trajectory defined by the planner and the constant state updates from the

perception, the control commands the actuators in order to track the trajectory.

The electric vehicle already includes low level controllers for each of the controlling

motors. At the application level we are only concerned on setting the reference steering

and speed values. We suppose that the low level closed loop response is much faster

than our desired high level commands change rate.

An initial implementation based on a simple proportional control proved unsatisfac-

tory to ensure a bound on the tracking error. Currently we use a sophisticated control

method called “dynamic feedback”. The car model defined in 3.2 is a non linear, non

holonomic system. By extending the state of the system and using a non linear map-

ping it is possible to transform it into a linear system and then apply a linear control

over it. For more details on the control method the reader can consult the section 5.3.2.

When implemented in C++ the computation time of this method is negligible with

respect to the computation cost of perception and planning.
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Figure 5.4: Main two logic parallel execution loops

5.2.5 Communication

The vehicle has a wireless networking gateway capable of establishing ad hoc vehicle to

vehicle communications between nearby vehicles [199]. The communication module

allows them to exchange information related to the perceived world model and the

planned trajectory. The issues and solutions related to collaboration between vehicles

is detailed in chapter 6.

5.2.6 Execution flow

Both perception and planning algorithms are designed to incrementally and iteratively

construct a solution which enables an efficient and simple interweaving. Current im-

plementation profits from the parallel processing of modern processors.

Each of the sensor and processing modules, the communication, the planning modules

run in parallel threads. The code has two main parallel logic loops, as illustrated in

figure 5.4.

Perception - control

The fastest loop on the software is associated with the control loop. The world model

is updated at a frequency fcontrol that can be set up between 10 and 20 [Hz]. The fastest

this loop runs the easier will be to estimate the displacement of the vehicle and the

better will be the tracking of the planned trajectory. At each iteration the map of static

and moving obstacles is updated, the vehicle states is updated and transmitted to the

control module which will then send a new command to the motors of the vehicle.

Inside the perception module the vision processing runs separately from the laser pro-

cessing, in an asynchronous manner. This the traversability of the road surface is sup-

posed a static element there is no strong constraint on the update frequency of the

image processing. Current implementation process the images in a low priority thread.
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Observed output rates are near 1 [Hz]. Since this module runs in its own thread, adding

one more core to the processor could provide a ten fold increase on the throughput of

the images processing.

Perception-Route planning-Planning-Control

This second loops runs at a frequency fplanning and is currently setup at 0.5 [Hz]. This

loop defines the refresh rate of the plan that the control module executes. Depending

on the desired trajectory update rate a trade-off is made between reactivity and plan-

ning horizon. At each iteration the new trajectory is passed to the control module, the

perception provides an updated world model to the planner, the route planner updates

the desired goal, and the planner starts a new search for an optimal safe trajectory.

Due to the partial motion planning approach, at the time t0 the planner provides a plan

for t ∈ (t0, t0 +1/ fplanning] and starts computing a new plan for t ∈ (t0 +1/ fplanning, t0 +
2/ fplanning]. This imply that the world model estimated at t0 will be used to estimate

h(x(t),w(t)), t ∈ (t0 +1/ fplanning,∞).

5.3 Completing the trinity

In section 5.2 we described how the general systems is implemented and how the com-

ponents interact. The core components that provide the autonomous function to the

vehicle are the perception, planning and control modules. In chapter 4 we provided a

detailed description of the perception module. While not a core contribution by them-

selves, the implemented planning and control algorithms are based on non trivial state

of the art solutions. Since their implementation is also a key element for the success of

the system implementation we consider meaningful providing a deeper presentation.

Readers not interested in the details of planning or control algorithms may jump di-

rectly to the section 5.5.

5.3.1 Motion planning

The purpose of driverless vehicles is to move people and goods, thus motion planning is

the main decision module of our mobile robot. Motion planning is a classical problem

in robotics and years of work exist on the topic, we invite the reader to consult [200]

for a presentation of the classic approaches. While motion planning of industrial robots

is considered a problem with good enough solutions, the problem of safe planning for

non holonomic robots in unknown dynamic environments remains an active area of

research.

Since the purpose of the perception system is to provide information for decision mak-

ing, it is relevant to have an understanding of the motion planning process in order to

define the needs over the perception process.
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In this chapter we will present the approach we used to solve the motion problem.

It is based on the works on partial motion planning with inevitable collision states

verification [15].

Problem definition

The purpose of motion planning is to define a plan that upon execution will safely move

the robot from its initial position to its desired position.

As mentioned in chapter 1 for our application this problem can be split into two levels:

route planning and trajectory planning.

Route planing Route planning will define the sequence of roads to use to reach the

desired position from the current position. If a map of the road network is provided,

and the current and desired position in map are known, then the route planning for a

single vehicle becomes the classic problem of finding the shortest path on a directed

graph. The issues of route planning when considering the current and future traffic, or

when the roads map is incomplete or incorrect are important research problems beyond

the scope of this dissertation.

Current navigation systems integrated in commercial vehicles show that route planning

for a single vehicle can be considered a solved problem. The output of the route planner

is a sequence of positions (inflection points on the roads) that the vehicle needs to reach.

For route planning and execution the perception system needs to be able to localize the

vehicle in the known roads map (current street segment and bearing).

Trajectory planning Trajectory planning will define the state of the vehicle in space

and time in order to transit each of the streets defined by the route planner.

As discussed in previous chapters, in praxis the vehicle has only access to an incom-

plete and uncertain model of the world. This model is constantly being updated as

new measurements are acquired. Since the robot does not have information off all the

streets ahead, and that the world model is constantly being updated, only a partial plan

can be computed at any instant. This plan needs to be regularly updated to take into

account the new information.

The trajectory planning problem can be seen as an optimization problem with con-

straints. Starting from the current state find the sequence of states that approaches the

goal, with the following constraints:

• Computation time: the optimization algorithm needs to have a bound on the

computation time, in order to provide a solution with a controlled periodicity.

• Feasibility: the computed trajectory needs to be feasible by the robot. Using the

a control algorithm the robot should be able to track the sequences of states in

time with a known bound on the tracking error.



140 CHAPTER 5. SYSTEM IMPLEMENTATION

• Safety: we need to provide guarantees that the robot motion will be harmless.

• Reaching: it is expected that the solution, while respecting the previous con-

straints, allows the vehicle to approach the final goal.

The solution method should be able to do this online (as the robot moves), and to

deal with the non trivial situations encountered in the city (pedestrians, moving cars,

incorrectly parked cards, stopped trucks, etc.).

Tractability The space of the solutions is defined by all the possible sequence of

states. Finding the optimal sequence that respects the feasibility and safety constraints

while reaching the nearest state to the goal is in general intractable through exhaustive

approaches. Also the problem is non convex so classical optimization methods are not

viable.

Related previous works As discussed in chapter 2, the safety constraint alone rule

out the classic methods. Other than our proposal we could mention two relevant dif-

ferent approaches for driverless vehicles. The first is one [201] will try to do a plan

discarding the feasibility, safety, and will focus on finding (and updating) efficiently a

coarse path. In a second step, the vehicle will use a best effort approach to follow that

path and check safety. This two stages approach is unsatisfactory. The best path for

a holonomic vehicle is likely not the best path for a non holonomic vehicle, or worse,

it could be non feasible at all. Viable in simple situations, this approach will tend to

fail on cluttered scenes. Second, in their proposal the actual safety verification are un-

satisfactory with respect to the criteria mentioned in chapter 2. A second interesting

work is focused on planning for human driver assistance [38]. While the application

is different, they propose a full state-time trajectory planning taking into account both

the vehicle, the environment (highway situations) and human comfort constraints. In

this work the problem is carefully formulated as a very large optimization problem and

then special optimization methods are used to find the best solution. While proposed

in a non robotic context, this method is apparently fast enough for online execution on

robots. It is however unclear how this optimization methods will behave in cluttered or

complex environments, if the computation time can be bounded, and if the optimization

procedure still find adequate solutions.

Our approach provides good enough solution at any time while respecting all the con-

straints of the problem, it is similar to [202, 21, 203, 15].

Trajectory planning in dynamic environment

A usual trade off for this kind of large problems is to trade an intractable optimization

problem searching for the best solution, for a search problem seeking a good solution.

Following the description from [204, 205] a search problem is a structure containing

four fields: “states” (describing space of solutions exploration), “operators” (transition
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Algorithm GenericSearch

given (problem, initial_state, queue_up)

candidates ← MakeCandidatesQueue( problem, initial_state )

while candidates is not empty do

candidate ← RemoveFront( candidates )

if GoalTest( candidate ) then return candidate

new_candidates ← Operators( candidate )

candidates ← queue_up( problem, candidates, new_candidates )

end while

return failure

Figure 5.5: Generic search algorithm

between states), “goal test”, and a “path cost” (defines the cost over a sequence of

states).

One can define a generic search algorithm, as described in figure 5.5, given a search

problem, an initial state and a queuing function this algorithm will either provide a

solution that reaches the goal or will exit in a failure mode. This form can be used to

describe most of the classic search methods such as depth-first, breadth-first, greedy,

beam, hill climbing, A*, among others. In our context each candidate contains a se-

quence of states in time. Operators allows to extend a sequence with a new state, and

the queue_up function defines the priority on which the candidates should be expanded.

Let us now see how we will adapt this algorithm to manage each of the constraints of

our particular problem.

Computation time Clearly the generic search algorithm does not provide any bound

on the time used to find a solution. Even worse it may even not provide any solution.

In the context of a moving vehicle suddenly not knowing “what do next” could lead to

disastrous situations. In order to solve this, the generic search algorithm is modified

into an algorithm that can be interrupted at any time, as described in figure 5.6.

Anytime access to best effort solution In general this algorithm may never return,

but will provide a solution as soon as it is interrupted. When interrupted it will provide

the best solution found up to now. This solution may or may not satisfy the GoalTest

condition. We have trade guarantees on reaching the goal for guarantees on computa-

tion time. However, as previously discussed in chapter 2, in our setup the reaching the

goal is probably not possible anyway. Actually, we trade off finding the best existing

solution to finding the best computable solution in the given time slot. Even if the com-

putation time is long enough to find a solution that satisfy GoalTest, the algorithm will
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Algorithm AnyTimeSearch

given (problem, initial_state, previous_candidates, queue_up)

candidates ← MakeCandidateQueue( problem, initial_state, previ-

ous_candidates )

do

best_candidate ← FindBest( candidates )

if Interrupted() then break

candidate ← RemoveFront( candidates )

new_candidates ← Operators( candidate )

candidates ← queue_up( problem, candidates, new_candidates )

while more that one candidates

return (best_candidate, candidates)

Figure 5.6: Search algorithm that can be interrupted at any time

continue to explore search for better alternatives to reach the goal. The algorithm will

stop by itself if all the alternatives to the best candidate are determined as non worth of

being continued (a candidate generate an empty new_candidates set).

In failure mode this algorithm will return the initial state. Such a failure could occur

only if the time slot is suddenly shortened or if the conservative property of the world

model are violated. This conditions are considered highly unlikely in our setup. If such

a situation would arise an alternative plan should be executed (defined in the past, or as

the result of a parallel planner considering collision costs, for instance).

Notice that the algorithm of figure 5.6 takes as input an initial set of candidates, allow-

ing to reuse previously explored options when resuming computation after an interrup-

tion. Also notice that since the problem may have been updated (“path cost” related to

the world model, “goal test” related to the desired position of the robot), it is likely that

previous solution candidate are not viable anymore and MakeCandidateQueue needs

to do a purge.

For details on how this computation scheme is integrated in the overall system, the

reader may consult chapter 5.

Feasibility In order to ensure the feasibility of the resulting trajectory the search is

not done on the vehicle in the states space, but in the vehicle commands space. Then

the result of the search algorithm will be a sequence of commands in time. A model

of the vehicle dynamics is used to integrate this commands over the initial state in

order to retrieve the desired sequence of states in time that will be feed to the vehicle

controller. The search algorithm will use this model of the vehicle to predict the future

states of each commands set candidate and verify that they respect safety and reaching

constraints.

As a side effect the motion planning provides a sequence of command for open loop

motion of the vehicle. This information may also be used for by the controller module
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Figure 5.7: Example of different metrics to measure the distance between two vehicle

states. In black the continuous curvature metric, in red the 2D euclidean distance. The

circles indicate the maximum curvature of the vehicle path

(as initial conditions for an online model based control approach, for instance).

As long as the model adequately describe the vehicle capabilities, this dual space search

ensures the feasibility of the resulting states in time sequence.

Safety Safety is at the core of our application. Chapter 2 discuss this issue. We need

to ensure that the result will respect the proposed criteria. Since the algorithm can

be interrupted at any time, each new candidate could immediately become the returned

best trajectory. Consequently we have to ensure that every candidate generated through

Operators respects definition 2.9.

In praxis, and given our anytime search in the commands space, this means that we

use a conservative prediction to ensure that no harm will be done by action, and that

each candidate trajectory finish in state with zero speed. Please consult chapter 2 for a

justification of this approach.

Reaching The reaching of the goal is obtained on a best effort basis. The results

strongly depends on the specific algorithm employed. The elements queue_up and the

“path cost”1(used in FindBest) play a key role. The reader can consult the section 5.3.1

for some instances of such elements.

With respect to reaching we can mention that usually the “path cost” will include a

measure of distance between the last state of the trajectory and the desired goal. When

measuring the distance between two vehicles it has been shown that the use of an ad-

equate metric have an important influence on the resulting robot motion [206]. Figure

5.7 illustrate some examples, comparing the standard euclidean distance with the con-

tinuous curvature metric [207, 208]. The continuous curvature metric evaluates the

length of the shortest path between two cars configurations, and thus it is an adequate

metric for planning the motion of non holonomic vehicles.

1“path” in the search space of the optimization, not in the geometric space of the vehicle
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Specific algorithms

Given the presented framework, multiple search algorithms are possible. Actually,

most of the existing methods can be adapted to this approach. Once adapted all of

them will respect the constraints presented in section 5.3.1. In the next paragraphs we

present a few some of the methods explored.

Reactive behaviour The most trivial approach consist on a pure reactive behaviour.

Following the notation of [23], let p(dt) be a plan. A plan is sequence of timed com-

mands for the vehicle: p(dt) = {(u1,dt1),(u2,dt2), . . . ,(un,dtn)}, where dt = ∑i dti.

When a plan p(dt) is executed at state x(t) the vehicle will follow the trajectory

π(x(t), p(dt)). When a second plan p′(dt ′) is concatenated to π we will write π ′(
π(x(t), p(dt)), p′(dt ′) ).

Let S = {p1(∞), p2(∞), . . .} be a subset of all the possible plans, which guarantee that

the vehicle will reach speed zero (stop) in a finite time horizon. For our application we

define S as a small group of fixed decelerating commands, keeping the current direction

or steering at different rates. Since all of our plans have a constant deceleration, they

will stop the vehicle in a finite time.

Now, let Ũ be a finite set of commands for the vehicle. A reactive planning method will

provide at each invocation the next command to execute. In our case this command will

be chosen from Ũ2. In this particular implementation the function Operators always re-

turns an empty set, at each invocation the AnyTimeSearch will return a best_candidate

containing a single command.

The best command is selected as indicated in the algorithm of figure 5.8. For each

command we verify that one of the stop plans in S allow to stop without collisions, and

then for thus who do we select the one which leads nearest to the goal.

When taking into account all the constraints of the system, reactive planning can be

safe. Its main drawback however, is that since it consider only one step ahead it is prone

to get stuck in local minima (“cul de sac” scenario). The logical extension consist then

in modifying the algorithm to incrementally build a plan.

Mixed greedy and random exploration The idea is to use the classic greedy and

rapid-exploring random tree (RRT) methods to generate new candidates plans. This

two methods are well known and described in detail [200].

In a greedy approach the reactive planning previously mentioned is recursively applied

to generate a sequence of commands that will go straight to the goal. The method

will detect the presence of a dead end if the vehicle stops in front of static obstacles

before reaching the goal. When this situation arise, the last command of the plan will

be tagged as “leading to a dead end” and an alternative will be explored (the next best

2In order to ease the implementation of the safety management, the commands in S should be contained

in Ũ
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FindBest ← ReactiveFindBest

function ReactiveFindBest(candidates)

safe_candidates ← {c ∈ candidates | IsSafe(c,S) = True}

if safe_candidates is empty then

return failure

else

return FindNearestToGoal(safe_candidates)

end if

end function

function IsSafe(candidate_command, plans)

foreach plan in plans

trajectory ←π ′(π(initial_state, candidate_command), plan)

if trajectory is collision free then

return True

end foreach

return False

end function

function FindNearestToGoal(candidates)

return argmin PathCost(π(initial_state, candidate)), candi-

date ∈candidates

end function

Operators ← ReactiveOperators

function ReactiveOperators(candidates)

return None

end function

Figure 5.8: Reactive planning variant of AnyTimeSearch
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(a) Greedy planning (b) Mixed greedy and random

planning

Figure 5.9: Greedy planning versus mixed greedy and RRT planning. Both cases are

given the same computation time. The vehicle at the bottom wants to reach to top of

the image, black indicate obstacles

choice). If no path to the goal exists and the algorithm is given infinite computation

time, the initial command will be tagged as “leading to a dead end”. If a path exists,

then it will be found, through a greedy exploration of all possible cases.

The greedy exploration is straightforward and effective, but has low efficiency. A typ-

ical failure mode is presented in figure 5.9. When confronted to a wall, the greedy

method will explore thousands of plans that lead to a straight collision with the wall.

Is only after verifying all of collision plans that an escape plan will be found.

It is well known that random search methods tend to provide surprisingly good re-

sults. However in our application it will tend to provide wobbling trajectories, possibly

largely suboptimal. Thus we use a mixed approach. Each time a dead end is reached

two consecutive binary choices are made: we either select the current best plan or a ran-

dom plan and we either extend the selected plan towards the goal or to another random

point (in an area that could later lead to the goal). Then the selected plan is greedily

extended towards the selected goal, until a new dead end is reached. By adjusting the

probabilities of this two Bernoulli trials, we control how much the method will diverge

from the greedy method. The presence of the random factor avoid the need of exhaust-

ing the plans colliding with an obstacle before finding an alternative to surround it.

Including a random factor, reduces the computation required to reach the goal. Typical

results are presented in figures 5.9 and 5.10.

Another way to reduce the computation is to reuse the set of candidates available at

the last interruption of the algorithm. Since the world model may have changed since

the last call, the safety of every plan needs to be checked again. However we avoid

recomputing the full integration of the plans to obtain the trajectories (required when

doing safety checking). Also since the world model has only incremental changes, it

is likely that the previous candidates contains already good plans that can be reused
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Figure 5.10: Illustrating the planned and executed path resulting from the trajectory

planning. Time evolves from left to right. Notice the used model assume that any

existing moving obstacle is already observed (academic case)

directly. Then for the same amount of time, more of it is dedicated finding better plans.

5.3.2 Control

As first mentioned in section 1 the automatic control of the vehicle is one of the chal-

lenges to be solved. It takes particular importance when taking in consideration the

safety constraints, as discussed in chapters 2 and 4, since guarantees on the control are

needed to ensure the harmless behaviour of the robot.

In the proposed approach the control problem is casted as a tracking problem. The tra-

jectory planning module computes a sequence of desired states qdt0...t1and the control

module is expected to drive the vehicle trying to minimize the error between the actual

state qt and the desired state for that instant qdt .

The bicycle model presented in the equation 3.1 is the simplest model that captures the

movement constraints of the car. A system with two inputs u1,2and a state vector q of

four dimensions, as shown in equation 5.1.

q̇ =




ẋ

ẏ

θ̇
φ̇


 =




cosθ
sinθ

1
L
· tanφ

0


 ·u1 +




0

0

0

1


 ·u2 (5.1)

When confronted to such a non linear model multiple control strategies are possible:

linearization of the model, model predictive control, sliding mode, feedback lineariza-

tion; to mention a few.

In [209] a simple non linear control law was proposed. [210] explored the use of

sliding mode control for path following. The works of [211, 212] shown that it is pos-

sible to separate lateral and longitudinal control through the use of dynamic feedback

linearization. Multiple works show dynamic feedback linearization as a theoretically
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satisfactory strategy for trajectory tracking [213, 18, 45, 42]. It should be also men-

tioned that the partial motion planning strategy can be interpreted and used as model

predictive control method. We can mention [214] as an application of model predictive

control of a car like robot.

In the next sections we will present the controller proposed by [209] and used in [12],

and then the more sophisticated control by dynamic feedback linearization.

Naive proportional controller

For many stable systems with a smooth non linearity a simple proportionally feedback

control law may be sufficient to achieve the control objectives. For our vehicle system,

[209] proposed control law described in equation 5.2.

u1 = v = vre f · (1− k1 ·∆x)
u2 = φ̇ = φ − (k2 ·∆y + k3 · sin∆θ )

(5.2)

The value vre f is the reference velocity given by the open loop trajectory calculated by

the planning module. The parameters k1, k2and k3 are tuning coefficients of the con-

trol law. These parameters are tuned through trial and error, during these experiments

a bound is defined on the probable tracking error. This bound is then used during the

planning stage in order to consider the collision risk associated to tracking errors. Dur-

ing execution the tracking error is monitored and a failure mode is raised if this error

exceed the predefined bound.

This simple proportional control method provide asymptotic convergence to the desired

state. However, as shows in section 5.3.2, when the state evolves in time, the error does

not converge to zero. Since the vehicle moves according to a predefined trajectory that

is feasible by design, such a constant tracking error is avoidable. In section 5.3.2 we

present how this can be achieved through dynamic feedback linearization and in section

5.3.2 we compare both methods.

Feedback linearization

The feedback linearization method is an approach used to transform non linear system

into linear ones. Then a linear control can be applied over a transformed non linear

system.

Let us suppose a system with the following form:

ẋ = f (x)+g(x) ·u
y = h(x)

(5.3)
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Both x ∈ R
nand y are variables evolving in time, x = x(t) and y = y(t). Thus one can

compute

ẏ = y(1) =
∂y

∂ t
=

∂h(x(t))

∂ t
=

∂h(x)

∂x
· ∂x

∂ t
=

∂h(x)

∂x
f (x)+

∂h(x)

∂x
·g(x) ·u (5.4)

Using the Lie derivatives notation one can write

L f h(x) =
∂h(x)

∂x
f (x)

then equation 5.4 can be wrote as

ẏ = y(1) = L f h(x)+Lgh(x) ·u

Accordingly we can define the following sequence of equations:

y(0) = h(x)

y(1) = L f h(x)+Lgh(x) ·u
y(2) = L2

f h(x)+LgL f h(x) ·u
...

y(n) = Ln
f h(x)+LgLn−1

f h(x) ·u

An important property of the non linear system to be controlled is the so called “relative

degree r”. This is the lowest degree r ∈ N : 1 ≤ r ≤ n where

LgLk
f h(x) = 0 ∀k ∈ N : k < r−1 and LgLr−1

f h(x) #= 0

Then we can define a transform

T (x) =




z1(x)
z2(x)

...

zr(x)


 =




y(0)(x)

y(1)(x)
...

y(r−1)(x)


 =




h(x)
L f h(x)

...

Lr−1
f h(x)


 = T (y) (5.5)

and obtain a new fully observable dynamic system

ż1 = y(1)(x) = L1
f h(x)

ż2 = y(2)(x) = L2
f h(x)

...
...

żr = y(r)(x) = Lr
f h(x)+LgLr−1

f h(x) ·u
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Figure 5.11: Feedback linearization control illustration

Defining a new control variable v such as

u(v) =

(
v−Lr

f h(x)
)

LgLr−1
f h(x)

(5.6)

we finally obtain a linearized system based on the transforms 5.5 and 5.6

ż1 = z2

ż2 = z3

...

żr = v

(5.7)

which can be controlled using a simple proportional feedback. An illustration of the

linearization is presented in figure 5.11.

Dynamic feedback linearization of the bicycle model Clearly the model 5.1 fits

the form 5.3. Given the movement constraints of a car defining a sequence of (x,y)
coordinates uniquely defines a sequence of (x,y,θ ,φ) states.

Let us focus on x(t). From 5.1 we know

ẋ = x(1) =
∂x

∂ t
= cosθ ·u1

In the definition ẋ the input u1 already appears, however the second component u2 is

not present, thus we need to search for a higher degree.

x(2) = cosθ · u̇1 − sinθ · θ̇ ·u1

x(3) = cosθ · ü1 −2 · sinθ · θ̇ · u̇1 − cosθ · θ̇ 2 ·u1 − sinθ · θ̈ ·u1
(5.8)

Expanding θ̈ = θ (2)

θ̈ = θ (2) = ∂
∂ t

(
1
L
· tanφ ·u1

)

= 1
L
· tanφ · u̇1 + u1·φ̇

L·cos2 φ
= θ̇

u1
· u̇1 + u1·u2

L·cos2 φ

(5.9)
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Then inserting 5.9 into 5.8 we obtain

x(3) = cosθ · ü1 −3 · sinθ · θ̇ · u̇1 − cosθ · θ̇ 2 ·u1 − sinθ ·u2
1 ·

u2

L · cos2 φ
(5.10)

Notice that now both u1 and u2 appear but it is not possible to define a separation of the

form x(3) = f1(q)+ f2(q) ·u. In order to solve this situation we will redefine the input

as µ = (µ1,µ2)
T and extend the state of the system using a dynamic compensator such

as

u̇1 = p1, ṗ1 = ü1 = µ1

The extended state vector χ = (x,y,θ ,φ ,u1, p1) now includes both the system state

and the dynamic compensator state (which is simply a double integrator on the speed

command). On its side µ2 = u2.

We can now rewrite 5.10 as

x(3) = −3 · sinθ · 1
L
· tanφ ·u1 · p1 − cosθ · 1

L2 · tan2 φ ·u3
1

+cosθ ·µ1 − sinθ ·u2
1

L·cos2 φ
·µ2

= αx(χ)+ρx(χ) ·µ

Then following the logic of section 5.3.2 we define the transform

T (χ) = Z(χ) =




z1(χ)
z2(χ)
z3(χ)
z4(χ)
z5(χ)
z6(χ)




=




x(0)(χ)

x(1)(χ)

x(2)(χ)

y(0)(χ)

y(1)(χ)

y(2)(χ)




=




x

cosθ ·u1

cosθ · p1 − sinθ ·
(

1
L
· tanφ

)
·u1

y

sinθ ·u1

sinθ · p1 + cosθ ·
(

1
L
· tanφ

)
·u1




and we can write the linearized system

ż1 = z2 = x(1)

ż2 = z3 = x(2)

ż3 = v1 = x(3) = αx(χ)+ρx(χ) ·µ

ż4 = z5 = y(1) =

ż5 = z6 = y(2) =

ż6 = v2 = y(3) = αy(χ)+ρy(χ) ·µ

In this particular case the parallel of equation 5.6 is

µ(v) = v = ρ−1(χ) ·
((

v1

v2

)
−α(χ)

)
= ρ−1(χ) ·δv
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with

α(χ) =

(
αx(χ)
αy(χ)

)
=

( −3 · sinθ · 1
L
· tanφ ·u1 · p1 − cosθ · 1

L2 · tan2 φ ·u3
1

3 · cosθ · 1
L
· tanφ ·u1 · p1 − sinθ · 1

L2 · tan2 φ ·u3
1

)

ρ−1(χ)=

(
ρx(χ)
ρy(χ)

)2

=


 cosθ − sinθ ·u2

1

L·cos2 φ

sinθ
cosθ ·u2

1

L·cos2 φ




−1

=

(
cosθ sinθ

− sinθ ·L·cos2 φ

u2
1

cosθ ·L·cos2 φ

u2
1

)

Notice that ρ−1(χ) is ill defined when u1 = 0 making the command µ2 undefined. This

happens since u1is the vehicle speed and µ2 affects the steering φ . When the vehicle

does not move (u1 = 0) it does not matter which steering we choose, the error will

not decrease. When u1 = 0, µ2 = φ̇ = 0 is a good choice. When u1 ≈ 0 the numerical

implementation will certainly have problems computing correctly the value for µ2. Our

proposed solution is

µ2(v) =





0 if u1 = 0

[0 1] ·ρ−1(χ) ·δv if |u1| > uthreshold

kµ2
· sign

((
−sinθ cosθ

)
·δv

)
if 0 < |u1| < uthreshold

Where kµ2
and uthreshold are suitable values.

In order to obtain an exponentially decreasing error the commands (v1,v2) of the lin-

earized system are set

v1 = x
(3)
d − kx2

· (x(2) − x
(2)
d )− kx1

· (x(1) − x
(1)
d )− kx0

· (x(0) − x
(0)
d )

v2 = y
(3)
d − ky2

· (y(2) − y
(2)
d )− ky1

· (y(1) − y
(1)
d )− ky0

· (y(0) − y
(0)
d )

Where the coefficients kxi
,kyi

i ∈ {2,1,0} are the parameters that define the roots rx,ry

of the closed loop system. Usually the designer will use rx = ry, thus the controller has

only one free parameter to define.

Reference state interpolation In the proposed scheme the trajectory planning mod-

ule will generate a sequence of reference state qd = (xd ,yd ,θd ,φd)
T . However the

controller discussed in section 5.3.2 requires a sequence of reference states zd .

zd = (x
(0)
d ,x

(1)
d ,x

(2)
d ,x

(3)
d ,y

(0)
d ,y

(1)
d ,y

(2)
d ,y

(3)
d )

A second implementation issue is that the planning module will generate a discrete

reference trajectory with a different sampling rate that the control sampling rate. The

planner will use the lowest sampling rate that allows a correct computation of the col-

lisions (low sampling rate mean larger distances between states), while the control
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module will use the highest useful sampling rate given the actuators’ bandwidth and

the state observer update rate.

In order to use the planned reference trajectory for control we need to estimate and

interpolate the first and second derivatives of the (x,y). Let us focus on the variable x.

Given δc the sampling rate of controller and δp the sampling rate of the planner output.

At a given time t1 = n · δc, n ∈ N we will choose from the reference trajectory four

values.

xk = xd

(⌊
t1

δp

⌋
+(k−1) ·δp

)
k = {1,2,3,4}

The desired value xd(t1) resides between the values x1 and x2. In order to estimate

x
(i)
d (t1), i ∈ {0,1,2,3} we will estimate a third degree polynomial f (t). Then

x
(0)
d (t1) ≈ f (0)(ts) = ax · t3

s +bx · t2
s + cx · ts +dx

x
(1)
d (t1) ≈ f (1)(ts) = ax ·3 · t2

s +bx ·2 · ts + cx

x
(2)
d (t1) ≈ f (2)(ts) = ax ·6 · ts +bx ·2

x
(3)
d (t1) ≈ f (3)(ts) = ax ·6

(5.11)

The four parameters (ax,bx,cx,dx) can be estimated using a linear regression. Even

more, since we can choose arbitrarily the time position of the samples xiin the f (t f )
function we can define

xi = f (i ·δp) i = {1,2,3,4} (5.12)

and then




ax

bx

cx

dx


 = M−1 ·




x1

x2

x3

x4




where M is a constant matrix

M−1 =




(1 ·δp)
3 (1 ·δp)

2 (1 ·δp)
1 (1 ·δp)

0

(2 ·δp)
3 (2 ·δp)

2 (2 ·δp)
1 (2 ·δp)

0

(3 ·δp)
3 (3 ·δp)

2 (3 ·δp)
1 (3 ·δp)

0

(4 ·δp)
3 (4 ·δp)

2 (4 ·δp)
1 (4 ·δp)

0




−1

=




−1
6·δ 3

p

1
2·δ 3

p

−1
2·δ 3

p

1
6·δ 3

p
3

2·δ 2
p

−4
δ 2

p

7
2·δ 2

p

−1
δ 2

p
−13
3·δ 1

p

19
2·δ 1

p

−7
δ 1

p

11
6·δ 1

p
4

δ 0
p

−6
δ 0

p

4
δ 0

p

−1
δ 0

p




Finally given the choice at 5.12 we have
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Table 5.1: Controller simulations parameters

Parameter Value Units

Vehicle length 1.5 [m]

Max steering 20 · π
180

[rad]

Max speed 5 [m/s]

Max steering rate 2 ·max_steering [rad/s]

Reference sampling 1/2 [Hz]

Control sampling 1/8 [Hz]

Vehicle length error 0.1 [m]

Observer noise (0.1,0.1,0.01,0.5 · π
180

)/2.0 [m,m,rad,rad]

Initial position error 0.5 [m]

Reference turning radius 1.5 · vehicle_length

tan(max_steering) [m]

Reference max speed 1.0 [m/s]

k1, k2, k3 0.5, 2.5, 1.5 ·
rx, ry −1+0 · i, −1+0 · i ·

ts = δp +

(
t1 −

⌊
t1

δp

⌋
·δp

)

Using the same procedure we can estimate (ay,by,cy,dy) and compute y
(i)
d (t1), i =

{0,1,2,3}.

Simulation results

The controllers proposed in sections 5.3.2 and 5.3.2 are evaluated using simulations

in Scilab [215]. The parameters of the simulations are summarized in the table 5.1.

The parameters of both controllers where tuned by trial an error in order to obtain the

lowest error.

In figure 5.12 we compare both controllers when the trajectory describes a speed ramp

defined in over a straight line and no noise is present. The trajectory speed starts at

zero and linearly increase until reaching the maximum value indicated in table 5.1. As

expected both controllers correct the initial error and smoothly converge towards a zero

error state.

In figure 5.13 we compare both controllers when following an “S” shaped trajectory,

with the same speed ramp as previous example. We can see that when the direction

changes in time, the naive controller does not converge to zero error anymore while

the dynamic feedback controller does. It can also be appreciated that both controllers

present a non exponentially decreasing error (there is a “rebound effect”). This is due

to the saturation of the steering angle (that is not considered in the control method),
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Figure 5.12: Comparison of the two controllers when following a trajectory with lin-

early increasing speed and constant direction. Top shows the resulting paths, bottom

shows tracking error in time

when the error is low enough to avoid saturation (second part of the path) this effect

does not appear.

Finally we realize the same simulation but including realistic model error and observa-

tion noise (see table 5.1). The overall behaviour is comparable to the perfect case.

Observing the simulation results we can see that the dynamic feedback control method

provides a better behaviour when following a curved trajectory under noisy conditions

than the naive method. It is also theoretically sounder and much easier to calibrate

(only one free parameter).

5.4 Validation methodology

When developing a software that will command a large, expensive and fragile object

such as a car, it is very important to be able to validate it without endangering the

platform.

Control The control design is first validated using simulations such as the ones pre-

sented in section 5.3.2. Then the actual implementation can be validated by interfacing

the C++ code with the simulation environment.
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Figure 5.13: Comparison of the two controllers when following an “S” shaped tra-

jectory with linearly increasing speed. Top shows the resulting paths, bottom shows

tracking error in time

Figure 5.14: Comparison of the two controllers when following an “S” shaped trajec-

tory with linearly increasing speed. Considering model and observation noise.
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Perception The perception module can be validated by evaluating the quality of re-

construction of the world model based on a known sequence of measurements. This is

discussed in section 4.4.2.

Route planning The implemented route planning is simple enough to be evaluated

simply based on human expectations over the output.

Trajectory planning Being the main decision component, this module is fairly crit-

ical. All of its decisions are based on an instantaneous estimation of a world model

with predictive capabilities (i.e., it includes moving objects). It can then be tested over

different predefined scenarios where the input world model is fixed. Given a partial

world view it should be verified that the trajectory planner makes a satisfactory choice.

The decisions based on a single partial world view are the one that define the behaviour

of the robot when a sequence of measures is used to update online the world model.

The portion of world that is observed is dependent of the previously planned trajec-

tory. Previous plans affect future plans. Thus it is desirable to also verify the online

behaviour of the vehicle using a simulator such as the one described in section 5.5. For

this validation test the perception and control modules should be bypassed, using the

simulator to provide a perfectly conservative partial world model and perfect trajectory

tracking.

Control & Perception When validating the control on its own we assume that the

vehicle state estimation is perfect, or respect a defined noise model. This has to be

validated with the actual perception module state estimation. To do so, we execute

perception and control modules online in the vehicle, but using a fixed predefined tra-

jectory. The vehicle will move and we are able to check that the perceived control error

is lower that a defined bound.

Any error software during this integration phase will lead to erratic movements of

the vehicles. It is then desirable to first run this test in a simulated environment (see

section5.5) before engaging in the physical vehicle.

Trajectory planning & Perception In order to check that the integration of this two

modules is working as expected, the software can be executed in a manual mode. The

vehicle will not follow the defined trajectory but the online effectiveness of perception

and trajectory planning modules can be assessed.

In order to better emulate the relation between past trajectories and observed world, it

is recommended to have the manual driver follow the computed trajectory (playing the

role of the control module).
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Route planning & Trajectory planning When executing the “Trajectory planning

& Perception” validation, enabling the route planning allows to verify it corrects in-

tegration with the perception and trajectory modules. As the vehicle moves around

the roads, the goal of the trajectory planning should move accordingly to the relative

position to the desired destination.

Safety Once the previous steps have been executed, the integration of route plan-

ning, trajectory planning, perception and control will provide a vehicle moving au-

tonomously. The key issue becomes then to know if this vehicle is moving safely or

not.

Basic tests such as staying in the road, avoiding some obstacles and stopping in front of

a road blockage provide an intuition of the correct behaviour. However safety cannot

be verified by tests.

Just as software security is not guaranteed by hours of uncorrupted operation, robot safe

behaviour is not guaranteed by hours of execution without harm. Safety is a property

that is not guaranteed by providing showcases, but rather that by verifying that the

design follows the guidelines of chapter 2.

One of the testable properties of a safe driverless vehicle is the fact that it slows down

when approaching unobserved areas (in order to cope with the possible appearance of

moving objects).

5.5 Simulator

In order to be able to test and debug our software without risking the vehicle we de-

veloped an in house simulator [216]. Its use is particularly critical when considering

scenarios with multiple automated vehicles, as discussed in chapter 6.

The purpose of the simulator is to be able to test the code that will run embedded in the

vehicle. Consequently, the simulator only simulates the vehicle physics and the sensors

measurements. All the perception, planning, control and communication processing is

done in real time using the code that runs on the vehicle.

From the software point of view, accessing a simulated vehicle or accessing a real world

vehicle is transparent. When running in the vehicle the software access the sensors and

actuators through multiple data buses (CAN, ArcNet, serial ports, USB, etc...), when

running with the simulator, all the sensor data and actuators commands are exchanged

with the simulator server through a TCP/IP connection over the network. The simulator

server supports having multiple clients connected simultaneously and provides a 3D

visualisation of the current situation.

The figure 5.15 illustrates the processing flow when two clients are connected to the

simulator. Since all the computation is done in real time, having n clients running in

practice means to have n machines running the driverless vehicle software. In practice

we would be able to run the software in the vehicles but connected to the simulator
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Figure 5.15: Two clients connected to the simulator. The grey boxes are components

not used during real world execution. The “com” boxes indicate the communication

modules. As depicted, the communication between clients it not done through the

server, but using separated communication channels. For each connected vehicle the

simulator takes as input the vehicle commands, and provides as output updated sensors

measurements

server instead of the actual vehicle sensors and actuators, this allowed us to check up

the on board computing power.

Current implementation of the simulator provides simulated odometry, GPS, compass

and laser scanner sensors, and receives as input the same speed and steering commands

that the real vehicle.

Figure 5.16 presents a screenshot of the 3D rendering provided for visualization pur-

poses. Aside from the connected clients (the simulated vehicles), the simulator sce-

nario can include static objects (buildings, trees) and objects moving through simple

piecewise linear paths (pedestrians, dummy cars).

5.6 Experimental results

After following the steps pointed out in section 5.4 an integrated system was achieved.

As mentioned the system correct behaviour cannot be garuanteed through showcases,

however in the next sections we present some experimental results that provide an

intuition of the system behaviour.

5.6.1 Simulated experiment

Setup We use the simulator to create a simple 90º intersection scenario, with walls

all around the roads. The target of the driverless vehicle is to cross the road. Moving
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Figure 5.16: Simulator example scenario

objects traverse the perpendicular road and the intersection area.

In order to make the example less trivial we also added two static obstacles on the

driverless vehicle’s road.

Results In figure 5.17 we present an example of perception and planning coupling.

The figure presents a visualization of the built world model and the currently planned

trajectory. Darker areas represent higher occupancy probability of static obstacles.

Moving obstacles are represented by a circle, and the protruding line indicates the

estimate direction. These results do not include the estimation of unobserved obstacles.

The dark rectangle describes the current vehicle pose. The destination goal is at the top

of the image. The executed trajectory is behind the vehicle and the planned partial

trajectory is represented in front of it.

Analysis It can be seen that the world model is correctly estimated, including the past

vehicle trajectory, the crossing area, the static obstacles and the moving ones.

The mismatch between the begining of the planned trajectory and the end of the esti-

mated trajectory indicates that the tracking error is small enough.

The fact that the planned trajectory seems to collide with a moving obstacle indicates

that it is correctly considering its predicted movement. Stopping before entering the

unobserved area indicates a safe behaviour, as discussed in chapter 2.
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Figure 5.17: Example of safe planning in a perceived environment. See details in

§5.6.1
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5.6.2 Field experiments

Setup We present two small experiments realized in two different locations, but with

a similar setup. The vehicle is asked to move to a nearby goal in an unknown environ-

ment. The surroundings of the vehicle are mainly locally planar, some static obstacles

are present and a few pedestrians move around crossing themselves in front of the

vehicle.

Given the cluttered nature of the environment, the speed of vehicle during the experi-

ments is quite low, around 2 [m/s]. The actual speed is fixed by the planning algorithm

that takes into account the “collision free stop” constraint.

Results In figure 5.18, we present the result of an early experiment. The top of the

pictures are snapshots of the world model constructed online during the experiment.

The bottom of the pictures show the corresponding scenes in the real world. The world

model pictures nomenclature is the same as in section 5.6.1 with the addition of the

desired position represented as a light green rectangle on the top right of the images.

Figure 5.19 presents a sequence of snapshots from a similar experiment. Here the goal

is located at the camera position.

Analysis These experiments show that the proposed architecture is functional and

provides the expected behaviour. The vehicle is able to incrementally construct a map

of approximately 50 square meters, define a safe partial trajectory towards the goal

over some tens of meters and follow it, all in real time.

Observed execution times indicate the processing resources are roughly split in 40%

for the laser based perception, 40% for planning and 20% for graphical output (control

and tracking costs are negligible). Profiting the multi core capability of the on board

processor the “perception + control + graphic output” loop runs at 20 [Hz], while the

trajectory is computed in parallel and refreshed each 0.5 [s] (as explained in section

5.2.6). Notice that in practice the trajectories found provides a solution for a time

horizon much larger than 500 [ms] (around 20 times larger in the presented scenario).

Since the robot is capable of distinguishing moving from static obstacles we use differ-

ent strategies to avoid them. In the second field experiment, instead of turning to the

left to avoid the pedestrian that appears, the planner will slow down until the pedes-

trian move away. On the other hand, the planner actively search for trajectories that

will avoid the static obstacles.

In the figure 5.18 we notice that a wall initially detected as a static obstacle progres-

sively becomes a large set of moving objects. This is due to the presence of semi trans-

parent objects (in this cased case a row of bushes), as discussed in section 4.4.4. As

previously mentioned, the bushes are detected as moving objects but with zero speed.

As such, they are only a minor inconvenience for the trajectory planner.
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(a) start tracking the first trajec-

tory

(b) braking in front a pedestrian

(c) avoiding obstacle and pedes-

trian

(d) continuing after avoiding the

hedge and another pedestrian

Figure 5.18: Experiment results (using unsafe planning). See §5.6.2 for details
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(a) starts exploring an unknown environment (b) avoids known obstacles and adapts speed to

posible obstacles

(c) stops in front of pedestrian (d) continue moving

Figure 5.19: Experiment results (using safe planning). See §5.6.2 for details
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5.7 Conclusion

The integration of the perception module of chapter 4 with the planning and control

methods of section 5.3, have provided a first of its kind driverless vehicle system. While

most of the previous works have focused the safety concerns on the trajectory planning,

we have also discussed how this concerns affect the perception requirements and its

integration with the planning algorithm.

The proposed efficiency aware algorithms are able to run all at once on a single com-

puter and still respect the real time constraints. Up to the author knowledge this is the

first vehicle capable of driving in urban environment taking into account the dynamics

of the vehicle and the dynamic of the environment without the need of modifications of

the environment or an initial hand driven visit. This is a distinctive characteristic with

respect to previous works such as [217, 164, 11, 218].

We believe that the presented framework provides a generic approach for safe planning

in dynamic environments. It is able to manage situations of arbitrary complexity while

respecting all the constraints of the problem. The same framework can be applied

to different vehicle models (cars, buses, trucks, etc...) and enhanced through more

sophisticated (or application specific) methods.

In the next chapter we are going to point out the limitations of the proposed approach

in a multiple vehicles’ context and discuss how nearby vehicles can benefit from each

other.
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Chapter 6

Collaborative perception

Tous pour un, un pour tous, c’est notre devise.

Alexandre Dumas

In the previous chapter we presented a solution to allow a single driverless vehicle to

perceive its environment and based on its observations and previous knowledge safely

navigate from a point A to a point B in the city. Logically, in a real world deployment

we would like to have many driverless vehicles filling the streets. As the presence of

automated vehicles grows, encounters between them will become more frequent, thus

some kind of interaction between the driverless vehicles will be established.

The driverless vehicles have the inherent capability of integrating the communication

as part of their cognitive process. Automated cars have the possibility of transfering

useful information between them, this provides a potentially important opportunity to

behave “better than humans”. This communication channel open various possibilities

at each level of the system described in chapter 1.

Collaboration ◮ Perception

Integrating the data from diverse vehicles allows to precise the relative localization

and to have a more complete representation of the near environment. The exchange

of global maps or measures of surrounding areas enhance the consistency of the maps

and the anticipatory capabilities of the vehicle. Integrating the data from a multitude

of vehicles allows to have more vali.e.imates of the four dimensional representation of

the city.

Collaboration ◮ Trajectory planning

Since the collaboration between driverless vehicles enhance the quality of their world

model, it allows to choose better trajectories. Near vehicles can negotiate the choice
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of the trajectories in order to realise coordinated manoeuvres, in order to improve effi-

ciency (avoid unnecessary stops) and efficacy (avoid deadlocks).

The safety aspect was previously discussed in section 2.6.4.

Collaboration ◮ Control

In chapter 5 we presented a system where trajectory planning defines the reference

state for the control. However other strategies can be envisaged, where the desired

state is a function of other cars states. A typical case is the car following scenario (so

called “platooning”). In such a case instead of only estimating the state of the front

vehicle from observations, it is also possible to receive information directly from the

front vehicle. More information allows to enhance the state observer and thus enhance

the control quality [219].

There is a specific community dedicated to the platooning problem. They use lower

level, application specific, solutions. These techniques are considered out of the scope

of this dissertation.

Collaboration ◮ Route planning

Being able to communicate between them, the collection of automated vehicles circu-

lating in the street can be considered as a sensor network. The information of the routes

status can be collected to choice the best route. Also, exchanging the planned routes

traffic jams can be anticipated and avoided.

This ideas are beginning to be deployed in commercial systems [220].

Collaboration ◮ Service layer

At the service layer the collaboration between the vehicles open the possibility to dis-

tribute the load of the infrastructure and to obtain more responsive and reliable dis-

tributed systems.

Supposing the availability of vehicle to vehicle (V2V) and vehicle to infrastructure

communications (V2I), it is possible to ideate distributed mechanisms for data collec-

tion, traffic jam avoidance, users requests management and anticipation, for instance.

Some work has been made in the recent years to explore these possibilities, never less

the topic of multi robot systems continues being a wide area to explore, both on the

theoretical and the implementation aspects.

On this dissertation we will focus on the use of data exchange between near vehicles

to enhance the perception. Section 6.1 will argue that the core problem behind collab-

orative perception is a relative positioning problem. In §6.2 we will propose a solution

to this particular problem. Section 6.3 presents some experimental results and section

6.4 provides the conclusion and suggest future works.
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6.1 Problem definition

Most interactions require communication between the driverless vehicles. During this

communication one driverless vehicle will refer to elements in the environment that

other driverless vehicles need to recognize in order to take decisions. Such elements

can be for instance, objects of the scene, a specific area, one of the vehicles, etc... The

problem of data association between the data that one vehicle receives from others and

the data that it measures is usually avoided by using special markers or supposing that

each vehicle has a high precision localization in a shared reference frame.

One of the advantages of using a probabilistic formulation of the perception problem,

such as described in chapters 3 and 4, is that fusing multiple sources of information

can be done in a methodical manner.

It has been shown [221, 222] that receiving measures from other robots is, essentially,

just like integrating a past measure from our own robot. Measure are in the past due

to the communication delays. Given the transformation between the position of the

remote vehicle reference frame to the local vehicle reference frame, the fusion of the

received information is possible.

The particular problem arises from the fact that we do not want to use special markers

on the environment or over the vehicles themselves. Installing special markers on

the environment would impose an important cost on the deployment of such robotic

systems. Requiring special markers over the vehicles would limit the possibility of

having heterogeneous driverless vehicles interacting.

We are also supposing that the vehicles do not have a high precision global localiza-

tion mechanism. Global localization are usually maps based or satellite based. Using

precise maps in an urban environment is usually a brittle approach since by nature it

is a changing scenario. The best invariants candidates for localization are the visible

parts of the buildings. Constructing such a map still require a considerable amount

of effort, and the precision of such a method is not guaranteed to be sub-metric in all

areas [183]. Satellite based positioning systems is the most commonly method used

for global positioning, unfortunately inside the urban canyon the coverage can be quite

low [52] and thus the positioning error will be large (5~10 meters).

Since the global positioning error is high, the relative positioning error obtained when

exchanging the global positions is also high. One meter of global positioning error

in outdoor environment is usually considered a high precision localization. However

the relative positioning error between two vehicles will be of 2 meters, which is the

difference between having a driverless car passing by the side or having a front crash.

While global positioning will probably have gross error, relative measures between the

vehicle and its surrounding can be much more precise. Typical laser scanners will pro-

vide an error of ~10 centimeters at distances of tens of meters. Vision methods will not

provide such accurate measures (since the error grows quadratically with the distance)

but they can provide accurate bearing measures and sub-metric distance measures on a

short range.
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When global positioning has high uncertainty, and relative measures have high preci-

sion, then the relative positioning problems becomes a data association problem, be-

tween the high uncertainty candidates received via the communication channel and the

higher precision candidates observed using the driverless vehicle sensors.

6.1.1 What exists?

Previous works on teams of mobile robots have addressed the problem of relative po-

sitioning in different ways. We provide here a brief overview of some representative

approaches.

The RoboCup championship [223] requires having multiple robots achieving thigh co-

ordination in a dynamic environment. One some categories game rules allow to have an

external global view of the scene, rendering the relative positioning issue trivial. More

advanced categories require full autonomy of the robots (no third party), while robot

to robot communication is allowed. Some teams design coordination strategies able

to work with high positioning uncertainty. A more sophisticated approach consists on

exchanging the robot measures to enhance the positioning. Goehring [224] proposes

to use the observations of known element in the scene in order to allow the tracking

of the game ball and of the players robots. This positioning approach is based on the

previous knowledge of the game field and the identification of the specific tags on it.

Another well known application where robots relative positioning is needed is the

multi-robot mapping task. The usual solution consists on installing externally visi-

ble identification tags over the robots, as done in [221] (see figure 6.1). Other works

suppose that the robots evolve on the same environment before cooperating [222], thus

one robot will localize in the map constructed by a second one, before interacting with

it. In order to obtain a non ambiguous localization the robot needs a considerable dis-

placement. Also, we need to verify that the first robot is actually evolving the area

mapped by the second one and not in a similar but distant area. More recently, in the

context of the Centibots project, another solution was proposed. The robots are able to

detect in the environment the presence of other robots. When a robot detects a possible

candidate, in order to resolve the data association it requires the remote robot to realize

a specific action (e.g. “go to meeting point”). If the observed robot responds to the

request as expected, then the data association is resolved, if not, then the candidate is

discarded [225].

A third example of robots localization for tasks realization is the coordination between

ground and air robots being deployed in urban environments [226]. Here the global

view of the air robot and the relative measures of the ground robots is used to enhance

the localization of each element and thus to enhance the chances of achieving the ex-

ploration task.
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Figure 6.1: Example of tagged robots used in collaborative indoor mapping. From

[221]

6.1.2 What does not exist?

When two driverless vehicles are near, there seems to be a benefit in being able to

exchange data, to enhance the range of perception, to have a better coordination [227]

or to enhance the global localization [228], for instance. All of these activities require

a precise enough relative localization in order to extract useful information from the

exchanged data.

As seen in the previous sections some solutions already exists, however none of them

can be considered desirable for our application, since they suppose the use of special

tags (on the vehicles or the environment) or the presence of a third party observer

(top view of the scene). The idea of using a shared map [222] is not applicable when

two driverless vehicles encounter front to front (opposite direction lanes, arrival at

an intersection) since their maps cover different areas, however a similar idea can be

applied for front to back encounters (the same direction lanes), as discussed in §6.2.2.

Summarizing the proposed formulation, data fusion between data from remote vehicles

is a problem of relative positioning. Exchanged data is referenced to a global reference

frame with high uncertainty, relative measurement of surrounding cars provides low

uncertainty relative positions. Then the problem becomes a data association problem:

who is sending which data?

A secondary problem related to collaborative perception is considering a limited band-

width between the vehicle. Then it is necessary to decide which data to send, in which

order, which format?

For the purpose of this work we will suppose that vehicle to vehicle wireless link is

available and that the point to point channel has a latency inferior to 100 [ms] and a

bandwidth superior to 1 [Mbits/s]. This values are similar to what can be expected in

real world experiments.
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6.2 Proposed solution

As explained in the previous section, the main problem to solve is the data association

between observed vehicles and communicating vehicles. In order to do this we propose

a method based on the analysis of the coherence between local observations (from the

vehicle) and remote observations (from other vehicles and communicated via a wireless

link).

Each vehicle has a world model describing it surroundings. In this world model the

objects positions are measured with respect to the vehicle, and the vehicle is able to es-

timate its position with respect to a global reference frame, shared between the vehicles

(e.g. a Global Navigation Satellite System).

The driverless vehicles will transmit information about its view of the world. Then,

each vehicle will do individually its decision about the data association problem by

verifying the coherence between the observed vehicles, the received data and the pos-

sibly present but non observed vehicles.

6.2.1 Front to front encounter

Let Wi be the world model of vehicle i. The world model is composed by a description

of the static obstacles surrounding the vehicle, the moving obstacles around the vehicle

and a geometric description of the vehicle itself (i.e. the output of a SLAMMOT pro-

cess, see §3.7 and §4.2). Additionally we are supposing that the vehicle is capable of

classifying the moving obstacles as vehicles or not. Let ri
j be the data received by the

vehicle i from the vehicle with identifier j and Ri the set of data received by the vehicle

i. Ovi = {ovi
1, . . . , ovi

n} is the set of vehicles observed from vehicle i (and thus part of

Wi).

Data association methods in the context of multi-objects tracking or in features based

SLAM usually try to estimate the maximum a posteriori probable association. In our

application the results of the data association will be used for decision making, thus we

do not search for the most probable explanation but for high certainty associations.

For each pair (ovi
k, ri

j) we are going to estimate

Ωi
k j = P( j is ovi

k| Wi, Ri)

And we are also going to estimate

Ωi
0 j = P( j /∈ Ovi| Wi, Ri)

Then the association between the observed vehicle ovi
k and the received data ri

j is going

to be done only if

Ωi
k j

n

∑
l=0

Ωi
l j

> pt (6.1)
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where pt is a threshold value associated to the confidence level related to the safety

requirements of the application. The instantaneous data association result can be mod-

eled as a Markov process and then extended to the time dimension, thus allowing more

robust results.

The core idea to estimate Ωi
k j is illustrated in figure 6.2. When we use only the vehi-

cle’s observations and the global position received from the remote vehicle j there is a

high uncertainty in the data association (figure 6.2(a) ). To reduce this uncertainty we

propose to use the vehicle’s j measures Ov j in order to cross-validate the hypothesis

Ωi
k j. The figure 6.2(a) shows a simplified one dimensional scenario. The red (left) ve-

hicle has one mobile object observation and received one remote vehicle position with

the identifier j. As expected the precision of the local observation is higher than the

received remote position (once put on the red vehicle reference frame). Does the local

measure corresponds to the remote vehicle? Using only the transmitted vehicle posi-

tion both situations (b) and (c) of figure 6.2 seem plausible for the blue (right) vehicle.

Since both vehicles are facing face to face, and assuming that they are in the range of

mutual detection, if vehicle k detects the vehicle j then necessarily the converse is true.

Using Ov j to search a matching measure allows to disambiguate the two situations

presented in figure 6.2 and thus to provide a more accurate estimation of Ωi
k j. Please

notice that this estimation takes in consideration both the observed obstacles and the

observed free space to verify the coherence between both vehicles measures.

The extension of this idea to the 2D case is simple. The estimation of the relative

orientation between the vehicles becomes a relevant parameter since it will impact

considerably the uncertainty of the relative measures matching. Fortunately it can be

shown that the orientation of the vehicle can be estimated with good precision even

when the global position is uncertain[229]. Also cheap sensors are available to directly

measure the local magnetic field of the earth, providing a direct measure of the vehicle

orientation a global reference frame [230]. In the 2D case each vehicle i needs to

transmit its current position on the global reference frame xo→i, a 2D description of

its geometry gi (in our case, a rectangle) and the set of observed vehicles around it

Ovi, i.e., ri = (xo→i, gi, Ovi). The matching between an observed vehicle ovi and the

geometry of a received vehicle candidate g j is done in a similar manner than [173],

where observations can be only a consistent partial observation of the true geometry

g j.

The value of Ωi
0 j is estimated using the information about the free space, the occupied

space and unobserved space. Defining the function over the space

unobserved(y) =

{
1 i f position y was not observed

0 i f position y was observed

then we can write.

Ωi
0 j =

∫
P(xi→ j = y) ·unobserved(y) dy
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(a) Red car perspective

(b) Blue car perspective, case 1

(c) Blue car perspective, case 2

Figure 6.2: Illustrating disambiguation by cross-validation. Continuous line Gaussian

indicate a direct measure, dot line Gaussian indicate a received position, underline ar-

rows indicate the mean value of the Gaussian. All figures drawn in the red car reference

frame. Case 1 and 2 are plausible under information of figure (a)
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In practice Ωi
0 j will be estimated using a discrete approximation of unobserved(y) and

doing an integral only in the surroundings of xi→ j (the position of the vehicle j in the

reference frame of vehicle i, estimated using the global positioning information).

Using the cross validation approach two vehicles approaching each other will be able to

enhance their relative positioning using their relative measures oviand ov j(which can be

fused) as soon as they are in the mutual detection range and the available information

provides a non ambiguous data association. We expect this solution to be useful for

vehicles interacting in a double direction lane or arriving at an intersection.

This method does not require special tags, installations or third party observers. The

capabilities of detecting and classifying moving obstacles, as well as estimating the

observed and unobserved areas, are already required for the basic driverless behaviour

[12]. The only additional requirements are the repeated transmission of the data ri and

the ability to relate the observations ovk with a geometric description g j. Depending on

the available sensors this description can be the shape of the vehicle, some kind of color

description, a radar signature or any informative element that could help to narrow the

range of possibilities.

It is worth noticing that the mutual detection range requirement is flawed for one typical

case: when two cars are moving in the same direction. It is very likely that the driverless

vehicle has only long range sensors on its front, the lack of back measures limits the

usage of the proposed cross validation method. In the next section we will explain how

to deal with this common case.

6.2.2 Front to back encounter

When one car follows the another one, we cannot rely on the mutual observation idea.

Instead we propose to match the sequence of observations of static obstacles in order

to do the data association between the observed vehicles Ovi and the received data Ri.

Let denote ovi
k,t a vehicle observation from a vehicle i at current time t. Tracking the

moving vehicle in time will provide a track ovi
k,ta...t , i.e., a sequence of observations.

This time we search to estimate

Ωi
k j = P( j is ovi

k,t | Wi, Ri,ta...tb)

To do so we a going to extend the content of the transmitted data r j,t to include infor-

mation about the static obstacles surrounding the vehicle, that we will denote as so j,t

(part of Wj). Thus we redefine r j,t as r j,t = (xo→ j,t , g j, Ov j,t , so j,t).

Using its ego-motion estimate the vehicle i is able to retrieve for any time tc ∈ [ta, t] an

estimate of the tracked vehicle position ovi
k,tc

with respect to its current position xo→i,t .

Conversely, it is able to retrieve for the current position the nearest observed position

ovi
k,td

∈ ovi
k,ta...t . Estimating Ωi

k j consists on comparing the current observation of the

surrounding static obstacles soi,twith the one provided by r j,td (received data with the

timestamp of ovi
k,td

). Using ovi
k,td

the measure so j,td can be put in the same reference
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frame than soi,t with a precision as good as the sum of the relative measures error and

the ego-motion estimation error.

In order to validate the data association we expect to have a sequence of measures

passing the criterion of equation 6.1. Comparing the sequence of static measures taken

by two vehicles at two different times is essentially equivalent to compare two maps

built by the different vehicles [222]. There is however one important condition that the

sequence of measures used to do the data association needs to meet. We need to ensure

that the sequence is not repetitive. More precisely, we need it to be not repetitive over

the length of the xi→ j position uncertainty (composition of xo→i with xo→ j) mapped

over the path of the tracked candidate ovi
k,ta...t . When the sequence respects this condi-

tion we can ensure with high certainty that the data association is correct. This means

however that if no discriminative feature appears in the environment or if the vehicles

have no view over static elements of the environment, then data association is delayed

even if the vehicles have been following each other for a considerable amount of time.

As in §6.2.1 we have proposed a new method for data association between following

vehicles that does not require special tags or third party observers. The only special

needs are the capabilities of detecting static elements of the environment (that a fol-

lowing car is likely to see again) and matching two observations. These are already

the standard requirements for SLAM, that driverless vehicles need to do to achieve a

correct planning and ego-motion estimation.

6.3 Results

6.3.1 Platform

The solution described in §6.2.1 was implemented in C++ and integrated into the sys-

tem described in chapter 5 (code able to run both on the vehicles and in the simulator).

The module “communication” of the figure 5.2 broadcasts periodically the information

collected by the world model and receives it. Each time new data is received the equa-

tion 6.1 is evaluated and if the data association confidence is high enough, the received

data will be integrated into the world model.

The communication is ensured by a WiFi 802.11b/g transceiver installed in the vehicle

(see figure 5.1). Data is exchanged using a binary serialization sent into multicast UDP

IPv6 packets.

The data exchanged between the vehicles includes the current GPS position and time,

the observed free space, the detected moving obstacles and the planned trajectory.

6.3.2 Simulations

The purpose of the initial simulations was to verify the interest of having an enhanced

relative positioning when dealing with intersections crossing. We use the simulator

described in section 5.5.
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We suppose that two vehicles arriving at an intersection are able to communicate their

trajectories (states in time). These trajectories are computed repeatedly on real time,

considering the current perceived world model and the trajectories received from the

other vehicles.

When exchanging trajectories without enhanced positioning one of the vehicle is forced

to stop at a considerable distance from the path of the second one. Without commu-

nication each vehicle sees the other one as a free moving car. Figure 6.3(a) shows a

snapshot of the world model of one the vehicles in such a situation. The blue circles

indicate the conservative prediction of the observed car over a finite time horizon and

the green line in front of the vehicle its planned trajectory. When no communication

is used each car will try to avoid the other one, since they have a symmetric behaviour

the situation is not resolved correctly, finishing with both vehicles inter-blocked. When

using communication with an enhanced relative positioning each vehicle has a precise

information of the others one plan, only the necessary avoidance is done and the situa-

tion is correctly resolved. Figure 6.3(b) shows clearly how the vehicle is aware that the

second one is planning to avoid it and thus has only a slightly modified its plan.

A more obvious situation where enhanced relative positioning is desirable is for front

to front encounters between vehicles. Seen as a free moving obstacle, the front vehicle

could potentially make a turn at any moment, thus forcing the driverless vehicle to slow

down considerably during the encounter. Using communication without enhanced po-

sitioning would block both vehicles since the positioning uncertainty will be probably

be as large as the width of the road. Figure 6.3(c) shows how the enhanced positioning

allows to decide which vehicle passes using which side.

The simulations show that having an enhanced positioning while exchanging vehicles

trajectories allows to solve a number of interesting situation without having to impose

ad hoc, case per case management logic. The same approach can be extended for more

complex situations by adding a generic priorities management system [227].

6.4 Conclusions and perspectives

It is clear that driverless vehicles in urban environment will have frequent interactions

with other mobile robots. We have shown that the core issue to allow collaboration with

other driverless vehicles is the relative localization between vehicles. This problem is

usually trivial when doing small scale indoor robotics, but becomes a non trivial issue

in the scenario of urban driverless vehicles. This chapter attempted to point out the

related difficulties and proposes a solution under realistic assumptions. The proposed

method will allow tight interactions between driverless vehicles without requiring high

precision absolute positioning, modifications of the infrastructure or special markings

on the vehicles.

An interesting question left to explore is the interest of propagating the data association

results between vehicles in order to make use of data coming from vehicles not directly

observed. How to do solve this enlarged problem is non trivial. The benefits of solving
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(a) Crossing without communi-

cation

(b) Crossing with communica-

tion

(c) Front encounter with commu-

nication

Figure 6.3: Simulation results, world view from one of the vehicles. See §6.3.2 for de-

tails. Red circles indicate static obstacles, blue circles indicate the evolution of moving

obstacles in time. The dark rectangle indicate the current vehicle position, the green

rectangle the desired position of the vehicle. The vehicle is moving from the bottom of

the image to the top. The line behind the vehicle is the realized path, the green line in

front of it, is the planned trajectory
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this problem are not self evident since the time delay affects considerably the relative

positioning uncertainty between moving vehicles, it is possible that the increase infor-

mation obtained by the additional measurements is lots due to increased time delay

caused by the multi-hop messages passing. This is question is worth to be explored in

more detail.
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Chapter 7

Conclusion

I came to the conclusion that I am not a fiction writer.

Tim LaHaye

7.1 Present

All along this dissertation we have provided a discussion around perception for ground

mobile robots. We have focused on issues such as uncertainty management, tractability,

safety requirements, and explored the notion of collaborative perception.

Through these discussions we attempted to provide arguments and experimental evi-

dence to show that “Perception for driverless vehicles in urban environments without

specific infrastructure can be done”.

In particular we claim the following contributions:

• Chapter 2 presents a novel analysis on safety for driverless vehicles,

• Chapter 4 presents a novel perception method that satisfy the described require-

ments,

• Chapter 5 describes a practical full scale demonstration of the feasibility of the

suggested solution for driverless vehicles,

• Finally, chapter 6 discuss the infant concept of “collaborative perception”, points

out the insufficiency of existing solutions and proposes a new method.

We believe that this are promising results going one step forwards the deployment of

driverless vehicles inside tomorrow’s cities.
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7.2 Future

The field of robotics has become very active in the latter years. Much of this devel-

opment has been driven by the advances in electronics, allowing new kind of sensors,

lower cost on embedded systems and a remarkable increase on the computing power

available. The increase in computing power allow to process more data at higher rates,

and to formulate some problem as optimization problems previously considered in-

tractable.

The next years of research on perception should provide more maturity on the design of

world models and new methods for their efficient estimation. The latest trends focuses

on having larger models taking a more explicit consideration of the generative nature of

the measurements (e.g. processing images as 3D to 2D projections instead of analysing

the 2D space) and considering more interaction between different cues (e.g. [231,

188]).

The advances in the field of machine learning will also provide important tools for the

developments in robotic perception, with expected technical and theoretical progresses

on classification, (online) learning, time signal processing and large scale optimization.

In the recent years this community has raised a noticeable interest towards robotics

related problems and applications.

At the end most of the machine learning problems, and the probabilistic formulations of

the perception problem end being instances of optimization problems. Both of them are

likely to obtain a net benefit on the recent parallelization trend of the silicon processor.

In the next years we can expect that advances in electronics will allow the populariza-

tion of 3D sensors such as the one described in the section 3.3.5. Such sensors will

switch the nature of the problem (from 2D to 3D processing) and enable new applica-

tions of robotic systems.

7.2.1 Vision

It is worth noticing that even if solid state dense 3D sensors exist, as they use the same

underlying technology than passive vision sensors (currently, CMOS), the latter will

always be cheaper because of the wider market, and the absence of the active emitter.

In some applications active sensors are not desired or effective (e.g. subject sensible to

IR emissions, required power beyond eyes safety).

Also, there is the question of feasibility. It is known that human are able to interpret and

act in the world using their stereo vision as the main sensor. Since it is known possible,

how to reproduce such capabilities in a robot is a relevant question. In the context of

this dissertation, the question would be: how to have a robotic driving system solely

based on vision is the question?

Currently computing capabilities certainly prohibit an embedded solution respecting

the real time constraint. But as long as the solving algorithm is parallelizable, this is a

minor issue considering the current trend on computer power increase.
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State of the art works on vision show that it possible to learn to classify the main

elements of a scene [188], estimate accurately the movement of the vehicle [80, 232],

build features based map [233], build occupancy maps [84], detect obstacles and free

areas [75, 232, 231]. With such advances it becomes increasingly clear that an all

vision perception system for driverless vehicles is around the corner.

An interesting related question is the need or not of a “learning before driving” stage.

It could be envisaged that the vehicle is able to judge which parts of the near scene

is traversable or not using a 3D geometry reconstruction approach, and then extrap-

olate the local appearance to far areas of the scene where an accurate 3D geometry

reconstruction is not yet possible. This could be integrated into an online learning

mechanism allowing a vehicle to drive without requiring to harvest large amounts of

a priori learning examples. This approach would enable the vehicle to confront new

situations correctly.

7.2.2 Open questions

Through this dissertation we covered a large area of research related to ground mobile

robots, and proposed solutions to the specific application of driverless vehicles in urban

environment. Yet some interesting questions are left open.

For instance, as discussed in chapter 4, it is necessary to assume the appearance of

moving obstacles in the unobserved areas. The probability of appearance depends on

space and time. Is there a better way than just assume worst case scenarios? Most

solution would involve either learning the relations between the environment and the

moving obstacles or creating a space time city map for moving obstacles (this is related

to the notions of “city 4D maps” and “4D GIS”). How to learn such relations? How to

create and use such maps?

In chapter 6 we discussed how the perception of one vehicle could benefit from data

from another one. This also applies to the planning module. Distributed multi robot

planning is still a hard problem to be solved. Which would be good a solution for

this problem? How to provide deadlock free plans given the perceived world? How

planning for multiple vehicles can include or affect the collaborative perception?

Despite the lengthy amount of existing research presented in chapter 3, the basic ques-

tions for robot perception (measurements, model, transformation) remain open. New

ideas will emerge on world models and measurements to model transforms. At least

we can expect a maturation on the equivalences and relations between the different

approaches (e.g. SLAM and Structure from Motion) and tighter relations with other

research communities (vision, machine learning).

An evolution from generic to specific will try to define which is the best design that will

allow a real world deployment of a driverless vehicles system of the kind described in

chapter 1.

An evolution from specific to generic will try to define how a robot can learn and use

generic physics principles from observations. “If robots were physicist” they would
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be able to observe the world, generate models, correct them to explain the new obser-

vations, and then use these models to predict the world. Understanding how to build

such a system would probably provide answers for most of the robots applications.

Being the support for decision making, robot perception is a key element for the di-

versification of robot’s applications domains. The field of machine learning for robotic

perception is still in its infancy.

The big picture of the work discussed all along this dissertation is the notion of “model-

based computing”. Instead of focusing the effort on defining the input output behaviour

of the robots, the focus is put on building models and using such models. This idea

is related to artificial intelligence ideas such as the memory-prediction theory of J.

Hawkins [234] and span over a large domain of information processing applications.

Hopefully the ideas presented here will motivate the next generation of students to

explore these questions.
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Perception pour véhicule urbain sans conducteur:
conception et implémentation

Enjeux Le développement de véhicules sans conducteur capables de se déplacer sur

des routes urbaines pourrait offrir des avantages importants dans la diminution des

accidents, le confort et la réduction des coûts de déplacements. Ce document traite de

la manière de créer un système de perception permettant à un robot de conduire sur des

routes sans devoir adapter l’infrastructure, sans avoir besoin de visites préalables, et en

prenant en compte la présence de piétons et d’autres voitures.

Positionnement du sujet Nous affirmons que le processus de perception est spéci-

fique à l’application visée et que, par nature, il doit être capable de gérer les incertitudes

dans la connaissance du monde.

Nous analysons le problème de perception pour une conduite sûre dans les environ-

nements urbains et proposons une solution où le processus de perception est formulé

comme un processus d’optimisation.

Résultats Une première contribution de la thèse étudie l’aspect incertain des mod-

èles reconstruits à partir d’un robot et leur relation avec la tâche de planification de

mouvement. Ainsi, des principes généraux de sécurité de mouvement sont définis.

Cette approche est l’une des premières à prendre explicitement en compte la relation

perception-planification pour la sécurité.

Pour résoudre le problème de perception abordé, nous avons conçu un nouvel algo-

rithme de SLAMMOT basé sur laser. Cet algorithme permet la localisation, la création

de cartes, la détection et le suivit d’objets en mouvement, de façon simultanée, en re-

spectant les contraintes de temps de calcul et sans faire d’hypothèses contraignantes

sur la géométrie ou la nature de l’environnement.

Ce système de perception fut ensuite couplé avec un planificateur sûr et un contrôleur

sophistiqué pour réaliser des expérimentations à pleine échelle sur notre véhicule élec-

trique automatisé, le Cycab. Cette réalisation est parmi les premières à mettre en place

un véhicule capable de naviguer de façon sûre en milieux dynamiques inconnus.

Transferts des résultats vers l’industrie Les principes étudiés et le système conçu

peuvent se décliner dans une multiplicité d’applications. Ces idées peuvent être em-

ployées pour la conception de systèmes d’aide à la conduite, de sécurité active, de

stationnement automatique, ou directement dans la conception d’autres robots mobiles

qui doivent évoluer de façon sûre en milieux dynamiques et inconnus.

Mots clés SLAMMOT, perception, planification, sécurité, véhicule sans conducteur,

robotique


