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Résumé

La stabilité du tourbillon de jeu d’aubage dans les compresseurs est étudiée au travers d’un
modèle équivalent de paires de tourbillons. L’objectif consiste à contrôler ce tourbillon en
excitant ses instabilités hydrodynamiques, ce qui permettrait de le dissiper plus rapidement et
d’augmenter les performances des turbomachines.

La première partie est dédiée à l’étude théorique des instabilités dans les paires de tourbil-
lons. Un mode instable 2D du dipôle de Lamb-Chaplygin est d’abord présenté. On s’intéresse
ensuite aux instabilités 3D, et à leur contrôle. Les instabilités de Crow et de Widnall, notamment
avec champ de vitesse axial, sont calculées. L’utilisation d’un code de perturbation optimale
permet ensuite d’optimiser la croissance de ces instabilités, ce qui fait apparaître l’importance
des points de stagnation hyperbolique dans les croissances transitoires, et des possibilités de
contrôle prometteuses pour les sillages d’avion de transport.

Le tourbillon de jeu est ensuite étudié en soufflerie, grâce à un montage permettant, dans
une première configuration, de générer une paire de tourbillons tandis qu’une deuxième con-
figuration, grâce à l’introduction d’une plaque séparatrice, génère un tourbillon en interaction
avec la paroi. L’étude de l’écoulement moyen montre que la plaque plane modifie fortement le
comportement du tourbillon. En ce qui concerne les instationnarités, l’instabilité de Crow est
détectée dans le cas sans plaque mais pas dans le tourbillon avec plaque, ce qui semble indiquer
que la paroi inhibe cette instabilité.

Mots clés : turbomachine, tourbillon, jeu, stabilité hydrodynamique, Crow, Widnall, per-
turbation optimale, point hyperbolique, Particle Image Velocimetry, fil chaud, sonde de pression
7 trous, contrôle, soufflerie.

Abstract

The stability of the tip leakage vortex in compressors is investigated through the model
of vortex pairs. The goal is to control this vortex by boosting its hydrodynamic instabilities,
in order to mitigate it more rapidly with the surrounding flow and increase performances of
turbomachines.

The first part is dedicated to the theoretical study of instabilities in vortex pairs. A 2D
unstable mode of the Lamb-Chaplygin dipole is presented. We then focus on the 3D instabilities,
namely Crow and Widnall, with and without axial flow. An optimal perturbation algorithm
is used in order to optimize the growth rate of these instabilities. We find that the hyperbolic
stagnation points play a major role in the transient growth of energy, and that interesting
possibilities exist to control aircraft trailing vortices.

The tip leakage vortex is then investigated in a wind tunnel, with an apparatus enabling
two configurations. The first configuration produces two opposed and equal vortices while the
second one, with a splitter plate, produce one vortex that interacts with the wall. The study of
the mean flow shows that the wall modifies significantly the behaviour of the vortex. The Crow
instability is detected without the splitter plate only. This suggests that the wall prevents the
development of the Crow instability.

Keywords : turbomachinery, vortex, clearance, hydrodynamics stability, Crow, Widnall,
optimal perturbation, hyperbolic point, Particle Image Velocimetry, hot-wire, 7-hole pressure
probe, control, wind tunnel.
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Nomenclature vii

Nomenclature

x, y, z cartesian coordinates

ex, ey, ez Unitary vectors corresponding to the directions x, y and z

U velocity vector

Ux, Uy, Uz component of velocity along x, y, z

Ωx,Ωy, Ωz component of vorticity along x, y, z

u perturbation velocity vector

ux, uy, uz component of perturbation velocity along x, y, z

ωx, ωy, ωz component of perturbation vorticity along x, y, z

r, θ, z cylindrical coordinates

Ur, Uθ, Uz components of the velocity vector in cylindrical coordinates

ur, uθ, uz component of perturbation velocity in cylindrical coordinates

uxuy Reynolds stress

Ψ Streamfunction

τ gap size

U∞ free stream velocity

R Rotation rate in the axial direction z

c wing chord

Γ circulation

ReΓ =
Γ

ν
Reynolds based on circulation



viii Nomenclature

Rec =
U∞c

ν
Reynolds based on chord

I = (Iy, Ix) flow impulse

n unitary vector normal to a boundary

a vortex radius

b distance between the vortex centers in the vortex pair

a/b aspect ratio of the vortex pair

xc, yc vortex center

Udrift =
Γ

2πb
Inviscid drift velocity of the vortex pair

q =
Γ

2πa∆Uz
swirl number

tb =
2πb2

Γ
time scale for the cooperative instability

ta =
2πa2

Γ
time scale of the period of rotation of the vortex

tν =
2πa2

ν
time scale of the evolution of the vortex pair

fCrow frequency characteristic of the Crow instability

ff forcing frequency

fs String oscillations frequency

D Computational domain

∂D Boundary of the computational domain



1 General introduction

In the year 2000, the Advisory Council for Aeronautics Research in Europe (ACARE) pub-
lished "European aeronautics : a vision for 2020", in which a board of experts taken among the
top industrial European companies in aeronautics set challenging objectives for future aircrafts
in terms of safety, transport management systems and environmental impact. Concerning envi-
ronment one of the most ambitious goal was to reduce by 50% the fuel consumption compared
with a year-2000 baseline aircraft. As an illustration of the impact of such a reduction on a
real aircraft, let us consider the Airbus A380. Its total weight is 540 tons, which decomposes
as follows: empty weight (280 tons), payload (80 tons) and fuel (180 tons). A reduction by half
of the fuel consumption would lead to an impressive saving of 90 tons.

Ways of improvements are sought in a wide variety of domains, from aerodynamics to air
traffic management. Concerning aerodynamics, much research is done for drag reduction (e.g.
control of laminarity of the flow over lifting surfaces) and for more efficient jet engines. This
latter domain is the main concern of this thesis and the corresponding ACARE objective is a
reduction of 20% of the specific fuel consumption (see definition in the caption of figure 1.1.
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low bypass ratio

high bypass ratio
(mixed exhaust)

high bypass ratio

Figure 1.1: Thrust specific fuel consumption during cruising (elevation 10000m, speed 0.8Mach).
This quantity is defined as the mass of fuel burned by an engine in one hour divided by the
thrust that the engine produces. Bypass ratio is the ratio between bypass and core flows. The
color of the arrow changes from red to green to indicate improvement. The background color
changes from blue to green to indicate the change in specific consumption. Source: Snecma.

As shown in figure 1.1 the technology of turbofan for civilian airliners has greatly evolved over
the past 50 years. This figure retraces the history of these evolutions in terms of efficiency. First
jet engines were far less powerful than nowadays’ and consumed more. About 45% reduction of
fuel consumption have been achieved since 1960. If today’s mean specific consumption is 0.6,
the objective set by ACARE is to lower it to 0.5 by 2020. Nevertheless, if the current evolution
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is maintained, only 0.55 will be achieved at that time. This means that great technological
advances must be achieved in order to attain this objective.

A typical turbofan is shown in figure 1.2. The air entering the intake goes through the
fan from where part of it, the bypass flow, goes directly to the nozzle (or to the afterburner
in the case of a mixed exhaust engine) and the rest, the core flow, goes through the compres-
sor stages (Low Pressure, LP, and High Pressure, HP), being then heated in the combustion
chamber, passing through the turbine stages, and finally exiting at the nozzle. Turbines entrain
compressors and fans thanks to multiple shafts.

Figure 1.2: Schematic of a turbofan.

Figure 1.1 shows that the increase of bypass ratio (see the definition in the caption of the
figure) of turbofan has led to important increase in efficiency. High bypass turbofans rely on
the generation of thrust by large amount of air moving at speeds rather low compared to low
bypass engines that moves less air but at larger speeds. This allows for quieter and more efficient
engines at subsonic speeds. The increase of the bypass flow has led to a continuous increase
in the size of engines. For instance the Caravelle (Sud-Aviation) in the sixties was powered by
a Rolls-Royce Avon that was 1 meter of diameter and the GE90 engines that equips the new
Boeing 777 Airliner are three times larger. Bypass ratios of 8 : 1 are common nowadays.

The new generation of engines is illustrated in figure 1.3 featuring current and future engines
by the engines manufacturers CFM and Snecma. Figure 1.3(a) represents the CFM56 that
equips, among others, the A340. One of the future engine is the Leap-X shown in figure 1.3(b)
that is expected to save 15% of fuel by 2016 (source: Air and Cosmos, issue december 2008 ).
New architectures are also under way. One of these is the contra rotative fan, see figure 1.3(c),
that should improve the performances by as much as 20%. The most far reaching architecture
is the open rotor concept (CROR for contra rotative open rotor, see figure 1.3(d)) which could
decrease by 30% fuel consumption. However certification is expected in 2018 at best, and the
absence of casing is likely to make the issue of noise very important.

Along with these new architectures, there is a continuous effort in order to improve the
internal aerodynamics of jet engines. This thesis is concerned with the flow through axial
compressors. The goal of the compressor is to rise the pressure of the flow. This is accomplished
by basically converting the inertia of the incoming flow into static pressure. Compressors work
over a limited range of inlet mass flow rate. This is illustrated in figure 1.4 where the operating
line of the compressor is depicted as a function of the efficiency - the pressure ratio between the
inlet and the outlet - versus the inlet mass flow rate. The upper limit corresponds to the surge,
at which important aerodynamic instabilities take place. A compressor surge, typically, causes
an abrupt reversal of the airflow through the unit, as the pumping action of the aerofoils stalls
(akin to an aircraft wing stalling). Issues on the other side of the performance map - at large
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(a) (b) (c) (d)

Figure 1.3: Snecma and CFM jet engines. (a) CFM 56. (b) Leapx. (c) Contrarotative fan. (d)
Open rotor.

mass flow rate and usually lower efficiency - are less understood. This region is referred to as
the choke. It can be described by a marked, rapid loss of efficiency.

efficiency

mass flow rate

surge line

choke line

performance curve

design point

efficiency

mass flow rate

surge line

choke line

performance curve

design point

Figure 1.4: Performance map of a compressor. The mass flow rate is the mass of air going
through the compressor per unit of time.

1.1 Tip clearance vortex

1.1.1 Description

This thesis deals with the tip leakage vortex that forms at the tip of rotor blades in com-
pressors, as schematized in figure 1.5. As noted by several authors (see Storer[145], Chen[29]
and Lakshminarayana[88]), the mechanism of tip leakage vortex is primarily inviscid. It is the
static pressure field near the end of the blade which controls the chordwise distribution of the
flow across the tip. The overall magnitude of the tip leakage flow hence remains strongly related
to the aerodynamics loading of the blades. The tip leakage flow emerges at the suction side of
the blade, where the pressure difference between the pressure and suction sides is maximum,
in the form of a vortex sheet that rolls-up into a single vortex (Lakshminarayana[88]). In com-
pressors, the relative motion between casing and blade is such as to increase the tip leakage
vortex strength (Denton[38], Inoue[72]).

Being an important phenomenon in rotor dynamics, the tip leakage vortex has been the
subject of numerous studies. We point out first the great variety of experimental and numerical
tools that were found to be used in these investigations. On the experimental side, a frequently
encountered apparatus is the linear cascade. It is composed of several blades put side to
side and attached to a flat wall. Such an apparatus was used, among others, by Bae[10] and
Devenport[40]. In order to take into account the relative motion of the casing wall, a moving
belt is sometimes used (Ma[102]). Cascades have the advantage to allow easy measurement
in the flow. More realistic apparatus include single or multi-stage compressors and complete
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Figure 1.5: Schematic of the formation of the tip leakage vortex in a compressor stage. Taken
from Bae[10].

turbomachines, see for instance the work of Inoue[73]. However in these cases measurement
become difficult due to the increased complexity of the flow and of the geometries. On the
numerical part, most investigations encountered in the literature use Reynolds Averaged Navier-
Stokes (RANS) simulations (Yamada[157]). LES methods are also used (You[158]). Geometries
mimic the experimental settings, from linear cascades to complete compressor stages. Results
concerning the simulation of a full compressor stage obtained by Gourdain[54] are shown in
figure 1.6.

Figure 1.6: Example of numerical simulation. Taken from Gourdain[54].

The main influence parameter on the blade tip vortex is the clearance gap (You[158]. In
a given engine, tip clearance gap size varies due to wear and thermal effects. Values of 1%
to 3% are common in engineering practice. As noted by Storer[145], optimum performance is
obtained at clearance smaller than that dictated by mechanical constraints. The tip clearance
vortex is found to increase in size and strength as the tip clearance gap is increased (Storer[145],
You[158]) and its origin is also delayed further downstream.

Importantly, the existence of the tip leakage vortex is not always observed. Inoue[72] re-
ported that it is common that the vortex bursts before the trailing edge in compressors with
high loading. Lakshminarayana[89] found no evidence of its existence when investigating the
tip leakage flow in an axial compressor. This author observed that the tip leakage produced
intense shearing and flow separation by mixing with the main stream but did not roll-up into a
tip vortex. Storer[144] also evoked the ambiguity of the existence of the tip leakage in the case
of a tip smaller than 1% in a linear cascade. This author performed flow visualizations that did
not clearly show the vortex. However, if not all authors agree on the formation of a tip leakage
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vortex, it should be stressed that the shedding of axial vorticity in the wake of the blade is a
mandatory condition for the generation of lift. The ambiguity hence concerns the merging of
this vorticity into a coherent vortex.

The dynamics of the tip leakage vortex is also of great interest in problems of cavitation in
flow pumps. Cavitation occurs when the static pressure falls sufficiently far below the saturated
vapor pressure. This can cause important damages to structures. The low pressure levels in the
vortex core make it a preferred region for cavitation. An important issue is thus the prediction
of the pressure in the tip vortex core. For that purpose, much effort has been dedicated to a
better understanding of tip vortices. Boulon[22] investigated the effect of the tip clearance size
on the tip vortex dynamics, by using an experimental set-up which consisted of an hydrofoil set
perpendicularly to a flat wall. Using a complete turbomachine, Farrel[47] identified an optimal
gap that minimized the inception of cavitation. Gopalan[53] investigated the effect of the tip
gap size on the tip leakage flow and correlated the visual appearance of cavitation with high
amplitude noise in data obtained by accelerometers. Meandering of the tip vortex was also
observed (Boulon[22], Gopalan[53]) and its amplitude was shown to increase with gap size.
Rains[125] studied experimentally and theoretically the tip clearance flow in axial flow pumps
and noted the appearance of cavitation in the vortex core rather than on the blade surface.
You[158] showed that larger tip gap sizes were more likely to induce cavitation in the vortex
core due to lower pressure levels.

An interesting point of view on the tip leakage vortex is obtained by replacing the casing
wall by an image vortex, which renders the problem similar to that of aircraft trailing vortices,
see figure 1.7(a). This model is supported by the inviscid character of the roll-up of the vortex at
the tip. It was first introduced by Lakshminarayana[88] to investigate the effect of the gap size.
The apparatus used by this author consisted in a split wing in which a flat splitter plate could be
introduced to study the real tip leakage flow. Comparisons of the flow characteristics between
the two configurations showed good agreement. Bae[10], Boulon[22] and Chen[29] adopted this
same model in their studies. Bae[10], in particular, justified the existence of the Crow instability
in the tip leakage vortex based on this approach. As a result, the author showed that control by
periodic blowing at the Crow frequency exhibited an optimal response. Note that Sirakov[137]
found similar results. As we shall see later on, this suggested workability of the control of the
vortex by using Crow instability represents a major motivation for the present thesis.

(a) (b)

Figure 1.7: (a) Schematic of trailing vortices. (b) Dye visualization of the long (Crow) and
short wavelength (Widnall) instabilities in vortex pairs, from Leweke[98].

This image vortex model and the findings of Bae[10] support the idea that the tip leakage
vortex has many similarities with trailing vortices illustrated in figure 1.7(a). It is interesting to
note that there is a continuum between these two flows when the gap is varied from zero to very
large values. In this latter case the influence of the wall becomes strictly identical to that of the
image vortex. Interestingly, Lakshminarayana[88] distinguished different behaviors of the tip
leakage depending on the gap size. Following the work of Bae[10], the important contribution
that the research on the tip leakage flow can gain from the large literature on trailing vortices



6 General introduction

concerns the dynamics of vortex instabilities. In this respect, the works of Crow[34] on the long
wavelength instability of vortex pairs and that of Tsai[154] on the short-wavelength instability
are particularly relevant, see figure 1.7(b) in which the Crow and Widnall are visualized.

1.1.2 Losses

The tip clearance flow is one of the most detrimental features in turbomachine rotors.
As explained by Denton[38], losses result from entropy creation du to viscous effects, either in
boundary layer, mixing processes or shocks, and to heat transfers across temperature differences.
As we shall see in the course of this thesis, in incompressible flows, loss amounts to a decrease in
total stagnation pressure. The tip region is a major source of loss where several phenomena add
up: endwall boundary layer, tip leakage flow and subsequent vortex, and sometimes detached
flow. As a result, it is often difficult to separate the tip clearance loss from these other sources.

Storer[146], Bindon[20] found that the tip clearance loss is proportional to the clearance
size. For typical tip clearance sizes, Denton[38] evaluated the loss from the tip leakage to
be responsible for one third of the total loss, while Storer[146] claimed that this loss is often
overestimated, and closer to 10%. The main mechanism for loss production associated to the
tip leakage flow corresponds to the action of viscosity in the shear layer separating the leakage
flow and the mean stream (Storer[145], Crook[32]).
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Figure 1.8: (a) Impact of the tip clearance vortex on stator. (b) Peak pressure ratio versus
clearance size (Source: Bae[10]).

Because the tip leakage flow concentrates low momentum fluid, it is also responsible for
flow blockage in blade rows. In relation to this phenomenon, tip gap has a major effect on the
pressure rise capabilities of compressors (You[158]). Figure 1.8(b), taken from Bae[10], shows
that the peak pressure rise increases inversely to the tip gap size. This curve proves that one
solution for the alleviation of the effect of the tip clearance is to reduce the clearance to a
minimum. In practice, different techniques exist. Use of abrasive surfaces or control by thermal
dilatation of the casing are common practice in engine design.

1.1.3 Flow unsteadiness

Large tip clearance is known to be detrimental to the stability of compressors (Storer[145]).
The positive gradient pressure that exists in compressors makes the flow prone to separation
(Denton[38]). This phenomenon is amplified by the simultaneous reduction of the axial velocity
and increase of the tangential velocity in the endwall region, which together increase the angle
of attack of the flow at the tip of the blade and render the flow at the suction side sensible to
adverse pressure gradients.
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Highly loaded compressors are also very critical in the tip region. Hah[61] reported that
the tip clearance vortex oscillates substantially near stall. Gourdain[55][54] showed that the
leakage region exhibits the first signs of the rotating stall which is characterized by detached
flow occurring in a variable number of blade passages. As explained by Mailach[103], such
phenomena are responsible for blade vibrations and noise generation.

Flow unsteadiness also exists due perturbations coming from upstream and downstream,
and due to rotor/stator interactions. Graff [57] observed that the downstream stators imposed
a pulsating back pressure on the rotor flow. Ma[102] investigated the effect of upstream un-
steadiness generated by attaching vortex generators on the moving belt in a cascade facility.
Also, as shown in figure 1.8(a), the impact of the tip leakage vortex on downstream mechanical
structures generates mechanical wear and noise.

1.1.4 Control

The flow in the tip region induces penalties on the compressor in terms of efficiency, range of
operability, noise and mechanical wear. Flow control is thus a primary objective to be achieved.
Casing treatments have gained large interest for compressors as well for fans and turbines.
An exhaustive review in the field of passive endwall treatment is given by Hathaway[63]. As
illustrated in figure 1.9, these treatments consist in slots in the casing wall. According to
Crook[32], there are two principal effects. The first one is the suction of low total pressure and
high blockage fluid at the rear of the blade passage and the second one is the energizing of the
tip leakage flow in order to suppress the blockage at its source. Use of grooves or slots in the
endwall of a compressor can substantially increase the stability range of the machine (surge
is postponed) although generally with a reduction in the efficiency. The periodicity of the
slots seems to play an important role for the efficiency of the device. Jiang[79] (see figure 1.9)
investigated the effect of curved skewed slot casing treatments in an axial compressor and
showed that performances could be greatly increased if the frequency of the slots matched the
characteristic frequency of flow in the baseline configuration.

Figure 1.9: Example of casing treatment. From Jiang[79].

Other solutions rely on synthetic jets, which blow air in the clearance or along the trajectory
of the vortex like in the work of Bae[10]. The idea here is to reduce the blockage associated to
the tip vortex by injecting momentum in the direction of the vortex trajectory. Another idea
is to reduce the leakage by creating a fluidic barrier by blowing air perpendicularly to the gap
(Kang[82], Bae[10]). This is illustrated in figure 1.10. It is in this configuration that Bae[10]
reported the receptivity of Crow instability to the blowing frequency. However, as noted by
these authors, the efficiency of these solutions remains poor.

1.2 Objectives of the thesis

The objective of this thesis is to evaluate the possibility to control the tip leakage vortex
by using Crow instability. The investigation is based on the vortex pair model of the flow
introduced by Lakshminarayana[88] and later used by Bae[10]. Recall that in this model the
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Figure 1.10: Normal blowing in order to reduce leakage flow, see Bae[10]. PS: Pressure Side,
SS: Suction Side.

casing wall is replaced by an image vortex. The first goal is to find a way to control the
instabilities of vortex pairs. The second objective is to apply the obtained results to the case
of the real tip leakage vortex in interaction with the casing wall.

1.3 Approach

This thesis is based on theoretical investigations and wind tunnel experiments. The idea is
to use theory in order to investigate the stability and control of vortex pairs and to analyze the
experimental observations in the light of these findings. As a consequence the results obtained
in the course of this thesis are split in two parts:

i- Theoretical/Numerical part this part is dedicated to the theoretical study of insta-
bilities in vortex pairs based on a global stability analysis. We use direct numerical simu-
lations and solve matrix eigenvalue problems to compute global modes. We first retrieve
the Crow and the Widnall instabilities (growth rate, frequency) and then use an optimal
perturbation algorithm to find physical mechanisms able to increase the growth rate of
these instabilities. The global mode analysis is also applied to investigate the specificity
of thick vortex pairs, that are characterisitic of the tip leakage vortex.

ii- Experimental part this part is dedicated to the study of the tip leakage vortex with vary-
ing tip clearance size in a low speed wind tunnel at ONERA in Meudon. The apparatus
was specifically designed for the occasion, and can be set in two different configurations.
Like the apparatus used by Lakshminarayana[88], the first configuration (C1) consists
in a split wing set transversely to the free stream, in which the size of the gap can be
varied by reducing the wing span. This configuration produces a vortex pair. The second
configuration (C2) is obtained by materializing the symmetry plane of the vortex pair by
a flat plate, and produces a single vortex in interaction with the wall. In order to study
these flows, we first detail the mean properties of the vortices in each configuration and
then compare them. In a second step, we investigate the flow unsteadiness, in order to
verify the existence of the Crow instability suggested by the work of Bae[10]. This, in
particular, makes use of the findings obtained in the first part. In a last step, we make
an attempt to control Crow instability.

1.4 Organization of the thesis

The first chapter following this introduction is a review on the current knowledge on the
stability of single and pairs of vortices. The thesis then divides in three parts.
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The first part we present the methods of investigation. Chapter 3 deals with the details
of the numerical methods used for the theoretical work. Chapter 4 presents the experimental
set-up and some preliminary investigations of the flow characteristics.

The second part is dedicated to the theoretical results and comprises two chapters. The
first one, chapter 5, deals with the stability of thick dipoles, and presents a special case of 2D
instability that does not seem to have been studied before. The second one, chapter 6, deals
with mechanisms of transient growth of energy in vortex pairs, in relation to known instabilities
(Crow, Widnall).

The third part is dedicated to the experimental results and divides in two chapters. Chap-
ter 7 presents the mean properties of the flow obtained in the two configurations of the experi-
mental apparatus. Chapter 8 consists in an experimental study of the Crow instability, which
relies on the results obtained in chapter 6 to conduct theoretical comparisons.

Eventually chapter 9 gives a summary of the work along with concluding remarks concerning
the objectives of the thesis and recommendations for future investigations.





2 Review on the stability of vortices

In this chapter we present a review of the litterature on vortex dynamics, focusing in partic-
ular on vortex instabilities and on transient growth effects. We consider the case of the isolated
vortex and that of the pair of symmetric counter-rotating vortices. Some important aspects of
vortex dynamics, namely meandering, turbulence and vortex decay, that will be considered in
the experimental part of this work, are presented in the end.

2.1 Single vortices

2.1.1 Existing models

Here we detail some simple models of vortex corresponding to the velocity distributions
drawn in figure 2.1.

Rankine vortex

The Rankine model represents an inviscid vortex column surrounded by potential flow

Uθ(r) =



















Γ

2πa2
r if r ≤ a

Γ

2πr
if r > a

(2.1)

where Γ denotes the circulation of the vortex and a is its radius. The core region corresponds to
r < a. There, the flow is in solid body rotation, which is representative of most central regions
of swirling flows.

Lamb-Oseen vortex

The Lamb-Oseen (LO model) vortex models a two-dimensional vortex decaying by viscosity.
Its velocity distribution follows a Gaussian law of the form

Uθ(r) =
Γ

2πr

(

1 − e−r2/a2
)

(2.2)

The radius a depends upon time through a2(t) = a2
0 + 4νt.

Batchelor vortex

Whereas the two previous models describe purely 2D motions, the Batchelor vortex also
models the axial flow that usually exists in vortex cores. Batchelor [14] explains, by taking the
example of the roll-up of a vortex sheet, that a pressure drop occurs in the core of the trailing
vortex due to the curvature of the flow paths, which leads to an increase of the axial velocity.
Far from the vortex generator, the trailing vortex becomes symmetric and grows by viscous
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diffusion. The Batchelor vortex is a similarity solution which describes this far field solution.
Its velocity profile at first order is

Uθ(r) =
Γ

2πr

(

1 − e−r2/a2
)

Uz(r) = U∞ + ∆Uze
−r2/a2

(2.3)

where U∞ is the flow velocity in the far field and ∆Uz = Uz(r = 0) − U∞. Note that no
axial stretching is taken into account here since we retained only the leading order term of the
formulation originally given by Batchelor[14]. This vortex is also called q-vortex, which refers
to the swirl number

q =
Γ

2πa∆Uz
(2.4)

defined as the ratio of the azimuthal and axial velocities. This template flow has been thoroughly
used to study vortex breakdown.
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Figure 2.1: Distribution of tangential velocity uθ for the LO, Rankine and multiple scales
vortices. Γ = 2π, a = 1, a1 = 0.5, a2 = 5 and α = 0.5.

Multiple scales model

Other models of vortices exist that reproduce more closely the distribution of real-life vortices
(e.g. airplane trailing vortices, experimental vortices). The model with two radii was proposed
by Fabre[43]:

uθ(r) =











































Γr

2πa1+α
1 a1−α

2

if r ≤ a

Γ

2πa1−α
2 rα

if a1 < r < a2

Γ

2πr
if r ≥ a2

(2.5)

where α defines the intermediate region between the two radial scales a1 and a2. A second
version of this model was derived in order to regularize the transitions between the different
regions, see Fabre[43]. Velocity distributions of trailing vortices in wind tunnel may be correctly
fitted with such models.
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Figure 2.2: Oscillation frequency of Kelvin waves. (a) m = 0. (b) m = 1. Taken from
Fabre [130].

2.1.2 Stability

Kelvin waves (KW)

We know from Lord Kelvin[150] that a vortex column is prone to small oscillations in
the form of propagating waves, called Kelvin waves, when it is slightly perturbed. The wave
phenomenon is attributed to the restauring force in the rotational motion, as explained by
Tritton[152]. Suppose the vortex is perturbed initially in a given section. This will break the
radial equilibrium

U2
θ

r
=

dp

dr
(2.6)

between pressure and tangential velocity, that characterizes vortices. According to (2.6), the
modification of the velocity modifies the pressure, thereby causing a pressure difference in the
axial direction that will be responsible for the axial propagation of the initial deformation. The
solution of the initial value problem is a collection of Kelvin waves travelling along the axial
direction (see Arendt[7] and Melander[111]). These waves being damped by viscosity, the vortex
column returns to its steady state when the perturbation stops.

The existence of these waves has been proven both experimentally and numerically. Hopfin-
ger [69] and Maxworthy[107] gave nice visualizations of the oscillations of a vortex column.
Arendt[7] numerically showed how a straight vortex column evolves after an initial perturba-
tion. Fabre[46] gave a thorough description of the Kelvin waves of the LO vortex and of the
physics at play based on a normal mode analysis.

These waves are classically classified according to the azimuthal wave number m, see fig-
ure 2.3. For the Rankine vortex, see Saffman[130], the self-rotation rate of the oscillations is
given by

ωn = mR ±
2Rk

√

k2 + β2
(2.7)

where R is the angular velocity of the vortex, k the axial wavenumber defined as k = 2π/λ with
λ the wavelength and β is the solution of

1

βa

J ′

m(βa)

Jm(βa)
+

K ′

m(ka)

kaKm(ka)
∓

m
√

k2 + β2

ka2β2
= 0 (2.8)

where J and K are Bessel functions. Waves at m = 0 are called "sausaging modes" because
they produce periodic thickening and thinning of the vortex core, see figure 2.3. Waves with
|m| = 1 are bending modes because they displace the vortex center. Waves with |m| > 1 exhibit
complex shapes, including multiple helices. Waves that turn faster than the basic rotation are
called "cograde waves". Those turning slower are called "retrograde waves" and those turning in
the opposite direction are called "countergrade waves". At certain wavelengths these waves are
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stationary ("stationary waves"), meaning that they exactly cancel the basic rotation and remain
steady in the laboratory frame. Concerning Kelvin waves, it is important to keep in mind that

(a)

Figure 2.3: Schematic of the vortex deformation. From left to right : undeformed vortex, mode
m = 0 and mode m = 1.

the rotation in the vortex core has a stabilizing effect, transforming any initial perturbation
into a packet of travelling waves, the amplitude of which is finite and decreases due to visosity.

Centrifugal instability

Figure 2.4: Development of the Taylor-Couette instability between two coaxial cylinders.

The centrifugal force that acts on particles in the swirling motion is a source of instability
as was first shown by Lord Rayleigh [127] and later on by Chandrasekhar [27]. Rayleigh’s
criterion states that an inviscid rotating flow is stable to axisymmetric perturbations if the
angular momentum Rr2 constantly increases outwards and is unstable otherwise (R being the
angular velocity in the flow). The corresponding inviscid growth rate is

σ = −
1

r3

∂Γ2

∂r
(2.9)

The pressure imposes an azimuthal stratification like gravity does in a mass of fluid. Instability
occurs when this stratification reverses (lighter fluid under heavier fluid; angular momentum
decreasing outwards). An example is the confined flow between two coaxial cylinders: if the
external cylinder is at rest while the internal cylinder rotates at a speed R1, then the flow is
unstable, see figure 2.4. However viscosity has a stabilizing effect on the phenomenon and, in
practice, the instability develops above a certain threshold in Reynolds number only. Centrifugal
instability may also occur in turbulent trailing vortices that were shown (see Jacquin [76]) to
exhibit circulation overshoot due to the transport of tangential momentum by axial velocity
gradients.

Shear instabilities

A basic instability in shear flows is the Kelvin-Helmholtz (KH) instability. To present this
instability we use an inviscid model of 2D vortex sheet, as sketched in figure 2.5. The sheet is
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a sum of single vortices of equal strength that cause a velocity discontinuity in the flow. The
vortex strength corresponds to the velocity difference across the discontinuity. When the red
vortex in the figure 2.5(a) is moved up (dashed line) from its initial position (solid line), the
induction effect from the neighboring vortices displace the vortex to the right, and not to its
initial position. This traduces the instability of the system. The vortex moved to the right then
moves the next vortex (to the right) downward, thereby spreading the initial unstable dynamics
to the whole vortex sheet. The time sequence of the evolution of the KH instability is shown
in figure 2.5(b). Details on the KH can be found, for instance, in Huerre[70] and Gallaire[49].

(a) (b)

Figure 2.5: (a) Schematic of the vortex sheet. (b) Time sequence of the evolution of a free shear
layer and formation of the waves.

The growth rate of the instability reads

σ =
∆U

λ
(2.10)

The velocity difference is ∆U and λ is the wavelength of the perturbation.
The more general case corresponding to a continuous variation of the velocity between

the top and bottom regions is modelled by the spatial mixing layer. A necessary condition
for instability in this case is the existence of an inflection point in the velocity profile (see
Rayleigh[126]). The application of these results to the axisymmetric jet and azimuthal shear
layer is now detailled:

i- Axial shear Figure 2.6 shows a round jet at small and large Reynolds numbers. While
the first jet exhibits coherent structures in the form of KH waves, the second jet is fully
turbulent. This proves the importance of the Reynolds number in the study of shear flows.
The threshold in Reynolds number above which a jet becomes unstable is not known
precisely because the flow is highly sensible to external disturbances, see Danaila[36] for

a review on this topic. The flow is unstable if the quantity rU ′

z
(r)

m2+k2r2 has an inflection
point in the shear layer. Note that k is the axial wavenumber and m is the azimuthal
wavenumber. The related growth rate reads

σ = k
∆Uz

2
(2.11)

When the Reynolds is increased, the instability takes the form of an helical deformation.
Above Reynolds numbers of several thousands, the flow becomes essentially turbulent,
even though some large scale structures can still be observed.

ii- Azimuthal shear Azimuthal shear is S = r
∂ (Uθ/r)

∂r
. The flow is unstable, see

Gallaire[49], if the vorticity Ωθ =
∂ (rUθ)

r∂r
has a maximum in the shear layer. Instabilities
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(a) (b)

Figure 2.6: Example of jet flows. (a) KH instability in an axisymmetric jet. (b) Turbulent jet
out of an industrial chimney.

take the form of KH waves in the azimuthal direction. An approximation of the inviscid
growth rate is given by

σ ∼ m

a
∆Uθ (2.12)

where ∆Uθ is the tangential velocity jump, a the width of the shear layer and m the
azimuthal wavenumber.

Instabilities in the Batchelor vortex

The Batchelor vortex is useful to investigate the compound effect of the two above described
mechanisms. This flow encompasses a rich linear dynamics covering the case of a pure axisym-
metric jet/wake, that of a 2D vortex and that of the sum of axial and tangential flow, the ratio
of the two being adjusted by the swirl number (2.4). The dual nature of the flow led to inter-
esting investigations on the absolute/convective nature of the instabilities, see Olendraru[117],
which won’t be adressed here, since we limit our review to temporal instabilities.

i- Inviscid modes These modes were first discovered by Lessen[97]. This author
showed that inviscid instabilities occur for swirl numbers q < 1.5 in a large range of
Reynolds number. This study was later refined by Leibovitch[96], Mayer[108], Ash[8],
Stewartson[141][142] and more recently by Fabre[44] and Heaton[64]. A stability criterion
was derived by Leibovitch[96] for inviscid flows in the limit of large m that tends to prove
that the origin of this instability is a generalization of the centrifugal instability in presence
of axial flow (standard Rayleigh’s phenomenology is retrieved when Uz = 0). Heaton[64]
showed that there was an infinite number of inviscid unstable modes for q < 2.3. However,
when 1.5 < q < 2.3, the growth rate of these instabilities is small. The growth rate at
infinite Reynolds number and large azimuthal wavenumber is

σ|m|À1 = −uθ
dUθ/r

dr

(

dUθ/r

dr

dΓ

dr
+

(

dUz

dr

)2
)

(2.13)

ii- Viscous modes Khorrami[83] showed that viscosity was responsible for very weak in-
stabilities in the Batchelor vortex when q < 1.26. His results were later confirmed by
Mayer[108]. The particularity of these modes is that their growth rate increases with
viscosity as Re−1

Γ .

iii- Viscous center modes Fabre[44] found viscous instabilities in the form of perturbations
highly localized in the vortex core, as shown in figure 2.7. The growth rate scales as

Re
−1/3
Γ . This finding was preceded by those of Stewartson[143] and Olendraru[117] and
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(a) (b)

Figure 2.7: Structure of the viscous center modes at q = 2 and ReΓ = 104. The dotted circle
shows the basic vortex. Modes m = −1 and m = −2 at large wavelength. Taken from Fabre [44].

followed by the works of Le Dizès[93] and Heaton[64]. The latter investigated the transient
growth related to these instabilities. Viscous modes exist for all swirl numbers above a
certain threshold in Reynolds. They are also found in other types of swirling flows, see
Le Dizès[93]. However they have never been observed experimentally and their physics is
not understood.

Cooperation between instability mechanisms

i- KH/Centrifugal Martin[104] investigated the linear instabilities associated to the reso-
nance between the KH and centrifugal instabilities. The author finds that a centrifugal
stable base flow becomes unstable when short wavelength KH instabilities arise. The
non-linear evolution of these instabilities was investigated by the same author[105][106].
Snapshots of the axisymmetric and helical modes in their early evolution are shown in
figure 2.8.

(a) (b)

Figure 2.8: Nonlinear deformation of the swirling flow du to Centrifugal and KH instabilities.
(a) m = 0. (b) m = 1. Taken from Martin [105][106].

ii- KH/KW Loiseleux[100] investigated the linear stability of a Rankine vortex with a plug
axial flow. The author found that the KH instability developping in the axial shear led
to the formation of KW propagating along the vortex.

2.1.3 Transient growth

Up to now we have considered energy growth through the action of large time instabilities.
However most flows have a potential for transient growth of energy. This is important regarding
the problem of flow transition since transient growth can by-pass instabilities. A great deal of
theoretical work attached to what is called flow non-normality has been developed over the past
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decades. A thorough detail of the techniques and applications can be found in Schmid [133].
Here we illustrate the effect of non-normality by considering a simple example.

We first consider a dynamical system that is normal. It is described by

∂x

∂t
= Ax (2.14)

with A a diagonal matrix with A11 = a1 and A22 = a2 and x = (x, y)T the state vector. The
solution of this system reads

x = β1V1e
a1t + β2V2e

a2t (2.15)

where β1/2 are derived from the initial condition and V1/2 are the eigenvectors of A. These
eigenvectors being orthogonal, the stability of the system is dictated by the values of a1 and a2.
In this system, energy growth can occur only if it is unstable, i.e. if either a1 or a2 is positive.

(a) (b)

Figure 2.9: Axial vorticity of the optimal perturbation of the LO vortex. (a) Initial perturbation.
(b) Perturbation at optimal time. Perturbation m = 1 at ka = 1.35 and Re = 5000. Taken
from Antkowiak [4].

Now we consider the same system, but we make it non-normal by adding the term A21 = a3.
The solution of the evolution of the system becomes

x = β1V1e
a1t +

(

β2e
a2t +

a3β1

a1 − a2

(

ea1t − ea2t
)

)

V2 (2.16)

If the system is stable, for instance a1 = −1 and a2 = −2, then we can choose an initial
condition, for instance β1 = 1 and β2 = 0, for which the energy of the system E(t) = x(t)2+y(t)2

grows as soon as a3 is large enough. Figure 2.10 shows the transient growth obtained in the case
a3 = 10. Note that the maximum energy amplification increases with a3. The system being
non-normal, its eigenvectors are not orthogonal. Here V1 = (a1 − a2, a3)

T and V2 = (0, 1)T .
The scalar product equals a3 which shows the importance of this term in the dynamics of the
system. Non-normal systems hence exhibit transient growth, which results from the cooperation
between eigen modes.

Transient growth in the LO vortex was first investigated by Antkowiak[4] and later by
Pradeep[124]. Although stable, the LO vortex sustains strong transient growth at short time.
It was shown that helical perturbations |m| = 1 lead to the highest growth of energy. Optimal
perturbations exhibit spiral shapes surrounding the vortex core as shown in figure 2.9. More
recently, Heaton[65] investigated the effect of axial flow on the transient growth in the Batchelor
vortex. This work confirmed the dominance of bending modes m = 1 and showed that axial
flow led to additional gains of energy amplification.
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Figure 2.10: Non-normality in the system leading to transient growth of energy for a3 = 10.

2.2 Vortex pairs

2.2.1 Existing models

The effect of a small external strain upon a single vortex results in an elliptical deformation
of the vortex streamlines. This external strain models the influence of a second vortex placed
in the vicinity of the first one. Based on this, the dynamic of a vortex pair can be investigated
by the flow corresponding to a single vortex in a strain field, see Saffman [130]. The strain ε
must remain small compared to the rotation rate of the vortex (ε << Γ/πa2), which amounts to
vortex pairs in which vortices are far from each others (relatively to their width). The solution
of this flow is given by

Ur(r) = ε
f(r)

r
sin2θ (2.17)

Uθ(r) = Ūθ(r) + ε
f ′(r)

2
cos2θ (2.18)

(2.19)

where the tangential velocity Ūθ can be chosen among the models of single vortices and f is
defined by imposing that the strained flow is steady. This results in the following equation

d2f

r2
+

1

r

df

dr
−

(

3dR/dr + rd2R/dr2

rR
+

4

r2

)

f = 0 (2.20)

where R is the angular velocity of the vortex.

(a)

Figure 2.11: Example of experimental vortex pair drifting to the right.

Lamb-Chaplygin model

An exact solution of the Euler equations corresponding to a vortex pair is the Lamb-
Chaplygin dipole (LC dipole) and was derived by Lamb [90] and Chaplygin [28]. Meleshko[112]
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retraced the works of these two authors and gave the velocity field of this vortex pair

Ψ(r, θ) =
2ULCRLC

µ1J0(µ1)
J1

(

µ1
r

RLC

)

sin θ if r ≤ RLC (2.21)

(2.22)

Ψ(r, θ) = ULCr

(

1 − R2
LC

r2

)

sin θ if r ≥ RLC (2.23)

with a the radius of the pair, ULC the drift velocity of the dipole, µ1 a constant, and RLC the
size of the dipole. Importantly, as shown by Sipp[136], every type of antisymmetric vorticity
distribution seems to converge towards this dipole.

2.2.2 Stability

Cooperative instability

Figure 2.12: Schematic of the ingredients of the cooperative instability : strain ε (red), self
rotation ω (blue) and vortex (grey area). Dashed lines denote the axis of strain.

Cooperative instabilities occur in pair of vortices. This is visualized in figure 1.7(b) which
is taken from Leweke[98]. In this figure the basic vortices have equal strength and rotate in
opposite directions. We observe that they are deformed in a sinusoidal shape at two different
wavelengths. The short wavelength corresponds to the Widnall instability also refereed to as
the elliptical instability and was first investigated by Tsai[154]. The long wavelength is the
Crow instability, named in reference to the pioneering work of Crow[34]. The oscillations of the
short wave instability scales on the vortex radius a while those of the long wave instability scale
on the distance b between the vortices.

We know from previous sections that perturbation of vortices lead to the formation of KW.
Let us consider a bending wave that remains stationary in the laboratory frame (this corresponds
to the points in figure 2.2(b) where the curves and the abscissa cross). In a viscous medium
this wave is bound to decay. However if a strain field is superimposed as in figure 2.12, then
the oscillations of the vortex corresponding to the bending waves will be pulled outward by the
strain field, with an increasing amplitude. This growing perturbation of the vortex due to the
interaction of the KW with the external strain field is the physical mechanism responsible for
cooperative instabilities.

Like previously, we denote ε the strain field imposed by each vortex of the pair upon the
other and ω the self-rotation rate of the perturbation. As shown in Saffman [130], the dynamic
of the perturbation is described by

ẋ = (ε + ω) y (2.24)

ẏ = (ε − ω)x (2.25)
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where points denotes time derivative. The growth rate σ depends on ε and ω through
σ = ε2 − ω2. The solution of this system of equations writes

(

x
y

)

=

(

coshσt ε+ω
σ sinhσt

ε−ω
σ sinhσt coshσt

)(

x0

y0

)

(2.26)

A perturbation grows if the strain rate is large enough and the rotation of the perturbation
small enough. In this case, flow particles follow an outward trajectory, which denotes instability.
If the rotation rate is too large compared to the strain rate, vortex oscillations do not remain in
the direction of strain, and decay. In this case, the trajectories of the flow particles are elliptical.

45°45°

Figure 2.13: Schematic of the Crow instability.

Figure 2.13 shows the particular case of the Crow instability in the wake of an aircraft. The
growth rate of the instability is normalized on the inverse of

tb =
2πb2

Γ
(2.27)

which is the time scale of cooperative instabilities, and equals σ ' 0.8. The instability develops
after several wingspans (typically around 10) and deforms the vortices in planes inclined at
nearly 45o about the symmetry plane of the vortex pair. The wavelength of the oscillations
correspond to approximatively 10 wingspans. According to Spalart[138], time for vortex linking
is about 6tb.

2.3 Important problems of vortex dynamics

2.3.1 Vortex meandering

Meandering corresponds to a chaotic and sinuous displacement of vortices. An illustration
of this phenomenon is given in figure 2.14 which shows the seemingly aleatory displacement of
the vortex column made visible by condensation particles. Movements induced by meandering
have a long wavelength. As noted by Devenport[39] about 95% of the energy of the signal
taken in the vortex center lies in the low frequencies (fc/U∞ < 1 with c the wing chord). It is
noteworthy that the instabilities that develop in the same frequency range may be hidden by
meandering.

According to Bailey[11], there is a dominant wavelength of the meandering although many
other wavelengths are present. The amplitude of meandering is observed to increase with
downstream distance and with free stream turbulence whereas it decreases with larger vortex
circulation (strength) as also noted by Heyes[66]. Jacquin[75] successively evaluates wind tunnel
effects, turbulence and cooperative instabilities as an explanation for meandering and concludes
that none can reasonably be privileged. Antkowiak[5] also suggested that meandering could
result from transient growth of perturbations in vortices.

Note that a method to remove the effect of meandering in experimental measurement was
developed by Devenport [39]. The smoothing effect of meandering results in an overestimation
of the vortex width and in an underestimation of the tangential velocity. The method is based
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on a gaussian dispersion model of the vortex, characterized by σx, σy and e respectively the
dispersion in the x and y directions and the asymmetry between these directions.

Figure 2.14: Observation of the meandering of trailing vortices.

2.3.2 Turbulence

The are several possible origins of turbulence in vortices. First, concerning aircrafts, vortices
generally develop in a turbulent atmosphere, see Gerz[52], Tombach[151] and Han[62]. Vortices
can also accumulate turbulence from aircraft boundary layers[18][14][160]. Eventually turbu-
lence can also occur in vortices because of instabilities. For instance, along with the development
of cooperative instabilities, Devenport[41] noted increased level of turbulence.

Despite these numerous sources of turbulence, several studies showed that an isolated vor-
tex remains laminar in the far field (Zilliac[160], Devenport[39], Phillips[120], Jacquin[76],
Bandyopadhyay[13]). The main reason for this is the stabilizing effect of the rotation in the
vortex that tends to stabilize all the perturbations evoked in the previous paragraph.

Another issue concerning vortices at high Reynolds number is modelling (Govindaraju[56]).
Simple models like the LO and Rankine vortex do not fit experimental data, as noted by
Jacquin[75] and Spalart[138]. Models with multiple scales are shown to work better. Inversely,
experiments at low Reynolds number (see Leweke[98], Flor[48] and van Geffen[155]) show good
comparison to simple models.

The effect of free-stream turbulence on the development of cooperative instabilities has been
investigated by Spalart[139], Sarkpaya[132], Liu[99] and Risso[128]. They showed that the Crow
instability appeared if the turbulence was weak and was precluded when turbulence was strong.
In the latter case the evolution of the vortex was unclear. Some authors believed that a chaotic
motion takes place whereas others suggested that vortex bursting takes place. On a general
basis, strong turbulence leads to a profound destabilization of the vortex but this does not stem
from a single known phenomenon. At last, the occurrence of the Crow instability is shown to
favor the development of the Widnall instability in the region where the vortices of the pair get
closer[91][98].

2.3.3 Vortex decay

Vortex decay is of prime interest concerning the risk of vortex encounter at landing, take-off
and cruising. According to Spalart[138], most aircrafts are unable to counter the roll induced
by the angular momentum of a trailing vortex issued by a preceding aircraft. This is why
minimal separation distances between airplanes are imposed. Table 2.1 details the current
regulation rules. Aircrafts are divided into three categories, depending on their weight: small,
large and heavy. There are two additional categories for very large aircrafts, namely the A380
and the B747. For example an aircraft at departure after an A380 must wait three minutes if it
belongs to the heavy category and two minutes if it belongs to either the medium or the small
category. Systems aimed at detecting vortices above the runway (based on Lidar measurement)
are currently engineered and could allow an adjustement of the time delay depending on the
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observed dynamics of the trailing vortices. However, on the long term, a thorough understanding
of vortex decay seems necessary in order to find means to hasten it.

Generating aircraft
Separation distance for trailing aircraft, nmi
Small Large Heavy

Small 2.5 2.5 2.5
Large 4 2.5 2.5
Heavy 6 5 4
B747 5 4 4
A380 10 8 6

Table 2.1: Current FAA standards for aircraft separation under IFR conditions. Aircrafts are
sorted in three categories : small, medium and heavy. Specific rules apply for the B747 and
A380.

In addition, the definition of safe flying conditions in the presence of trailing vortices is not
obvious. Correlated to this problem is the definition of the vortex lifespan, see Spalart[139].
Vorticity can be rearranged but it never truly disappears. The expression "destruction of
vortices" as is sometimes used in the literature is thereby ambiguous. For instance, can we
consider vortex linking as a state that assures safe flight conditions? Details on this problem
are discussed by Gerz[52].
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3 Numerical method

In this chapter we present the theory and the numerical methods used to investigate the
linear dynamics of vortex pairs in chapter 5 and 6. The first section deals with the perturbation
theory. It includes a description of vortex pairs and a presentation of the equations of the base
flow and of the perturbations. The numerical implementation of these equations is detailed in
the second section. Finally we present the methods used to investigate some specific points
of the linear dynamics, namely normal modes, with a generalized eigenvalue problem solver,
and optimal perturbations, with an optimization algorithm. Note that the bulk of these tools
existed prior to this thesis. For this reason, much of the work described here consists in the
adaptation of the existing methods to the case of the vortex pair.

3.1 Perturbation theory

3.1.1 Description of the flow
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Figure 3.1: (a) Schematic view of the vortex pair, (b) point vortex model. The limiting stream-
line of the vortex pair, also known as Kelvin oval, is shown in thick solid line.

We consider a vortex pair such as the one depicted in figure 3.1. Cartesian coordinates
x, y and z are used, with z in the direction of the vortex axis and x and y the transverse
directions. Unitary vectors corresponding to these directions are ex, ey and ez. The vortex
pair is symmetric about the plane y = 0. At z = constant, the center of the top vortex is
(xc, yc), which is the barycenter of the axial vorticity Ωz, calculated according to

xc =

∫

y>0 Ωzxdxdy

Γ

yc =

∫

y>0 Ωzydxdy

Γ

(3.1)
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given the circulation Γ

Γ =

∫

y>0
|Ωz|dxdy (3.2)

The circulation of the (top) bottom vortex is (−)Γ, Γ being positive. The distance between the
vortex centers is

b = 2yc (3.3)

and the radius a is taken as the dispersion radius, given by

a2 =

∫

y>0

(

(x − xc)
2 + (y − yc)

2
)

Ωzdxdy

Γ
(3.4)

The aspect ratio of the vortex pair is taken as a/b, which is useful to compare the size of the
vortices compared to that of the pair. The Reynolds number of the flow is defined by

ReΓ =
Γ

ν
(3.5)

The velocity is U = (Ux, Uy, Uz) , P is the pressure, ρ is the density and ν is the kinematic
viscosity. The flow is supposed incompressible with uniform density. For this reason div (U) = 0.
Because of the velocity induced by each vortex upon the other, the pair moves to the left at a
drift velocity equal to

Udrift =
Γ

2πb
(3.6)

at first order (see appendix D for details). The dynamics of the flow is described by the Navier-
Stokes equations in the reference frame moving with the vortex pair

∂u

∂t
+ (u · ∇)u = −∇p +

1

ReΓ
∆u

div (u) = 0

u(x → ∞) = Udriftex

u(t = 0) = u0

(3.7)

The momentum equation describes the equilibrium between inertia and internal forces in the
flow (pressure and viscosity) in absence of external forces (none is taken into account here).

Kelvin oval

The Kelvin oval corresponds to the limiting streamline of the vortex pair. Figure 3.1 shows
the Kelvin oval and the streamlines of the vortex pair. There are open streamlines outside the
Kelvin oval and closed streamlines inside. In order to describe the oval, we use a superposition
of two point vortices and a uniform incoming flow of velocity Udrift given in (3.6). The stream
function of the resulting flow reads

Ψ =
Γ

4πyc

(

y + ln

(

x2 + (y + yc)
2

x2 + (y − yc)2

))

(3.8)

The horizontal and vertical extent of the vortex pair correspond to x = ±
√

3yc and y = ±2.09yc.
The equation of the oval is Ψ(x, y) = 0, the solution of which can be calculated numerically.
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3.1.2 Perturbation theory

The objective here being the investigation of the dynamics of small perturbations of the
vortex pair, an adequate approach is provided by the framework of the theory of small pertur-
bations. The full flow field is approximated by the sum in the small parameter ε

U = U0 + εU1 + ε2U2 + . . . (3.9)

The first term in this sum is called the base flow and the second term is the perturbation
flow. The base flow in the present situation is the vortex pair. The perturbation flow is three-
dimensional and takes the form of small sinusoidal variations of the base flow along the direction
z. An important assumption that gives us the right to use the tools of linear theory concerns
the steadiness of the base flow. Although vortex pairs are unsteady (due to viscous diffusion),
it is usual to consider that they are quasi-steady regarding the time scale of the evolution of
the perturbations. The time scale of the base flow evolution is

tν =
2πa2

ν
(3.10)

while that of the perturbations is tb (see definition (2.27)). The ratio between the two time
scales is tν/tb = ReΓ (a/b)2 >> 1 for the values of a/b = O(0.1) and ReΓ = O(103) investigated
here. For this reason the base flow remains steady on the time scale of the perturbations.

In the following we truncate (3.9) at the second order. The higher order terms are thereby
neglected, which precludes the investigation of the flow non-linear dynamics. Hereafter we note
U = (Ux, Uy, Uz) and P the velocity and pressure fields of the base flow and u = (ux, uy, uz)
and p the velocity and pressure fields of the perturbations. The related vorticity fields are Ωx,
Ωy and Ωz for the base flow and ωx, ωy and ωz for the perturbations. The decomposition of the
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Figure 3.2: Schematic of the flow decomposition.

flow field into the base flow and the perturbations is schematized in figure 3.2. An important
aspect shown by this figure is the computational domain used for the numerical investigations,
which comprises only one vortex, and uses a symmetry boundary condition at the symmetry
plane to account for the other vortex. Concerning perturbations, this leads to the definition of
two independent problems, depending on the symmetry of the perturbation. This is detailed in
the following.
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Base flow

Equations The Navier-Stokes equations for the base flow read

equations















































∂Ux

∂t
+ Ux

∂Ux

∂x
+ Uy

∂Ux

∂y
= −

∂P

∂x
+

1

ReΓ

(

∂2Ux

∂x2
+

∂2Ux

∂y2

)

∂Uy

∂t
+ Ux

∂Uy

∂x
+ Uy

∂Uy

∂y
= −

∂P

∂y
+

1

ReΓ

(

∂2Uy

∂x2
+

∂2Uy

∂y2

)

∂Uz

∂t
+ Ux

∂Uz

∂x
+ Uy

∂Uz

∂y
=

1

ReΓ

(

∂2Uz

∂x2
+

∂2Uz

∂y2

)

∂Ux

∂x
+

∂Uy

∂y
= 0

boundary conditions















U∂D1
= Udriftex

U∂D2
· n = 0

∇U∂D3
· n = 0

U∂D4
· n = 0

initial condition Ut=0 = U0

(3.11)
The computational domain used to describe the base flow is restricted to the upper region Ω, as
shown in figure 3.2. The symmetry of the base flow is accounted for by a symmetry boundary
condition applied at the frontier ∂D2, corresponding to Uy|∂D2

= 0. At the frontier ∂D3, an
outflow boundary condition of the Neumann type is applied. Physically, this means that the
right frontier must be placed far enough from the vortex pair for the flow to return to the far
field uniform conditions.

Axial flow The equation for the axial velocity Uz is the same as that for the axial vorticity

Ωz =
∂Uy

∂x
−

∂Ux

∂y
. This means that both the axial velocity and vorticity are simply convected

by the plane flow and diffused by viscosity. Moreover the existence of a uniform axial velocity
does not change the equations (it acts as a galilean transformation of the reference frame).
We can thus consider the sole variations of the axial flow ∆Uz in the region of the vortex pair.
Recall that the ratio of the tangential velocity to the axial velocity is parameterized by the swirl
number already introduced in (2.4). The value of the swirl is very important for the stability
of swirling flows as has been shown in the chapter 2.

Obtention of a vortex pair at a given aspect ratio a/b The base flow is initialized
by a pair of single vortices like the Rankine vortex, the LO vortex or the Batchelor vortex
(see chapter 2 for details on these models). It is shown by Sipp[136] that the initial distri-
bution has no influence on the final form of the vortex pair in the range of Reynolds number
2000 < ReΓ < 15000. The initial superposition is not a solution of the Navier-Stokes equations.
In order to get a realistic solution, we need to run a simulation that "regularizes" this initial
flow. Here we monitor this regularization with the aspect ratio ax/ay of the vortices of the pair,
where ax is the semi-width of the vortices in the x direction and ay that in the y direction,
given by

a2
x =

∫

y>0
(x − xc)

2 Ωzdxdy

Γ

a2
y =

∫

y>0
(y − yc)

2 Ωzdxdy

Γ

(3.12)

Figure 3.3 shows the evolution of this aspect ratio with time normalized on the rotation period

ta =
2πa2

Γ
(3.13)
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We observe oscillations for t < 5 and a smooth evolution later on. As explained by Sipp[136],
these initial oscillations indicate the adaptation of the initial superposition of single vortices to
the governing equations. The later stage indicates that the initial solution has been smoothed
by viscosity and has become a realistic solution. The aspect ratio a/b increases with time due
to viscous diffusion. The aspect ratio of the vortex pair can thereby be chosen by varying the
time of simulation and the initial aspect ratio of the vortex pair, provided the simulation time
is long enough for the adaptation to complete.

t

a x
/a

y

0 2 4 6 8 10
1

1.15

Figure 3.3: Aspect ratio of the vortices of the pair as a function of time normalized on ta.

Perturbation

Direct equations We note k = 2π/λ the axial wavenumber of the perturbation where λ is
the wavelength. In general, the wavenumber is a vector denoted k but, because the base flow
is planar, k = kez and we shall mainly consider k. However, when needed, we will use kx, ky

and kz the components of k along x, y and z. The perturbation flow is written in the following
form

(iux, iuy, uz, ip) eikz + c.c. (3.14)

where c.c. is the complex conjugate. Therein we note (u, p) = (ux, uy, uz, p) the complex
perturbation field and keep in mind that the axial velocity uz is out of phase compared to ux,
uy and p. Introducing the first order approximation in the Navier-Stokes equations gives the
linearized equations for the perturbations, which are also called direct equations

∂ux

∂t
+ Ux

∂ux

∂x
+ Uy

∂ux

∂y
= −ux

∂Ux

∂x
− uy

∂Ux

∂y
− ikUzux −

∂p

∂x
+

1

ReΓ

(

∂2ux

∂x2
+

∂2ux

∂y2
− k2ux

)

∂uy

∂t
+ Ux

∂uy

∂x
+ Uy

∂uy

∂y
= −ux

∂Uy

∂x
− uy

∂Uy

∂y
− ikUzuy −

∂p

∂y
+

1

ReΓ

(

∂2uy

∂x2
+

∂2uy

∂y2
− k2uy

)

∂uz

∂t
+ Ux

∂w

∂x
+ Uy

∂uz

∂y
= −iux

∂Uz

∂x
− iuy

∂Uz

∂y
− ikUzuz + ikp +

1

ReΓ

(

∂2uz

∂x2
+

∂2uz

∂y2
− k2uz

)

∂ux

∂x
+

∂uy

∂y
+ kuz = 0

(3.15)
The perturbation field being complex, every component has a real and an imaginary part. For
instance, take the velocity ux. We can write it as ux = uxR+iuxI . Therefore the set of equations
in (3.15) contains 4 equations in the complex plane but 7 equations in the real plane. Since it
is numerically quicker to solve two problems with N degrees of freedom each rather than one
single problem with 2N degrees of freedom, we solve separately the equations for the real and
imaginary part of the perturbation field. This gives the following set of equations in the real
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space

∂uxR/I

∂t
+ Ux

∂uxR/I

∂x
+ Uy

∂uxR/I

∂y
= −uxR/I

∂Ux

∂x
− uyR/I

∂Ux

∂y
± kUzuxI/R −

∂pR/I

∂x
+ VuxR/I

∂uyR/I

∂t
+ Ux

∂uyR/I

∂x
+ Uy

∂uyR/I

∂y
= −uxR/I

∂Uy

∂x
− uyR/I

∂Uy

∂y
± ikUzuyI/R −

∂pR/I

∂y
+ VuyR/I

∂uzR/I

∂t
+ Ux

∂uzR/I

∂x
+ Uy

∂uzR/I

∂y
= ±uxI/R

∂Uz

∂x
± uyI/R

∂Uz

∂y
± kUzuzI/R ∓ kpI/R + VuzR/I

∂uxR/I

∂x
+

∂uyR/I

∂y
+ kuzR/I = 0

(3.16)

where the viscous term is noted V = 1

ReΓ

(

∂2

∂x2 + ∂2

∂y2 − k2

)

. All the real and imaginary terms are

related through the imaginary terms of equations (3.15): the imaginary components influence
the real components and vice versa. A particular case is when no axial flow Uz exists. In
this case the equations for the real and imaginary components are identical and one needs
only to solve the 4 equations (3.15). Numerical simulations in this case require nearly half less
computational time than the case with axial flow.

Boundary conditions The set of perturbations can be split in two subsets, one containing
symmetric perturbations and the other containing antisymmetric perturbations. The symmetry
depends on the boundary condition at the frontier ∂D2, see figure 3.2.

i- Symmetric perturbations (S) entrains symmetric deformations of the vortices about the
symmetry plane of the vortex pair. Everything happens as if the perturbed vortices were
mirror images to each other. The perturbation axial vorticity ωz is odd about the middle
plane ωz(x,−y) = −ωz(x, y). Therefore the boundary condition is uy|∂D2

= 0 at ∂D2

(like in the case of the base flow),

ii- Antisymmetric perturbations (A) are characterized by odd axial vorticity about the
symmetry plane, i.e. ωz(x,−y) = ωz(x, y). The boundary condition at δΩ2 is ux|∂D2

=
uz|∂D2

= 0.

This decomposition corresponds to the following symmetries for the velocity and vorticity fields

A







































ωx(x,−y) = ωx(x, y)
ωy(x,−y) = −ωy(x, y)
ωz(x,−y) = ωz(x, y)
ux(x,−y) = −ux(x, y)
uy(x,−y) = uy(x, y)
uz(x,−y) = −uz(x, y)
p(x,−y) = −p(x, y)

S







































ωx(x,−y) = −ωx(x, y)
ωy(x,−y) = ωy(x, y)
ωz(x,−y) = −ωz(x, y)
ux(x,−y) = ux(x, y)
uy(x,−y) = −uy(x, y)
uz(x,−y) = uz(x, y)
p(x,−y) = p(x, y)

(3.17)

At the other frontiers, boundary conditions are the same for both subsets. A Dirichlet condition
is imposed at the boundary ∂D1, i.e. u|∂D1

= 0. At the top frontier ∂D4, a symmetry boundary
condition is applied, i.e. uy|∂D4

= 0. The frontier ∂D3 is where the flow exits the domain,
therefore an outflow boundary condition is imposed, i.e. p − 1

ReΓ
∇u|∂D3

· n = 0.
This distinction between the S and A perturbation allows us to keep on using the computa-

tional domain D (used for the base flow) for the perturbations. Even though that doubles the
case that need to be considered, it overall reduces the computational time needed thanks to a
smaller grid.

Adjoint equations Adjoint equations are derived later on in this chapter, in the presenta-
tion of the optimal perturbation algorithm. They are the counter-part of the direct linearized
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equations (3.15) and read

∂u+
x

∂t
− Ux

∂u+
x

∂x
− Uy

∂u+
x

∂y
= −u+

x

∂Ux

∂x
− u+

y

∂Uy

∂x
+ iu+

z

∂Uz

∂x
+ ikUzu

+
x −

∂p+

∂x

+
1

ReΓ

(

∂2u+
x

∂x2
+

∂2u+
x

∂y2
− k2u+

x

)

∂u+
y

∂t
− Ux

∂u+
y

∂x
− Uy

∂u+
y

∂y
= −u+

x

∂Uy

∂y
− u+

y

∂Ux

∂y
+ iu+

y

∂Uz

∂y
+ ikUzu

+
y −

∂p+

∂y

+
1

ReΓ

(

∂2u+
y

∂x2
+

∂2u+
y

∂y2
− k2u+

y

)

∂u+
z

∂t
− Ux

∂u+
z

∂x
− Uy

∂u+
z

∂y
= ikUzu

+
z + ikp+

+
1

ReΓ

(

∂2u+
z

∂x2
+

∂2u+
z

∂y2
− k2u+

z

)

∂u+
x

∂x
+

∂u+
y

∂y
+ ku+

z = 0

(3.18)

Note that the convection by the base flow is reversed compared to (3.15). For this reason, the
boundary conditions applied at ∂D1 and ∂D3 are switched compared to the boundary conditions
of the direct problem.

3.2 Numerical simulations

In this section we present the numerical resolution of the equations of the base flow and of
the perturbations. We use a finite element method provided by FreeFem++ which is a freely
available software. We start by describing the time scheme. This is done according to the
work of Kress[85]. Guided by the works of Pironneau[122] and Allaire[2], we then describe the
implementation of the time scheme in the finite element method.

3.2.1 Time scheme

We consider the full Navier-Stokes equations (3.11) written in the following form

∂U

∂t
+ N (U) + L (U , P ) = 0

∇ · U = 0
(3.19)

with N the non-linear terms representing the convection N (U) = (U · ∇)U and L (U , P ) =
∇P − Re−1

Γ
∆U the linear terms. The solution Un+1 and Pn+1 at time tn is calculated as a

function of previous solutions Un, Un−1, etc and Pn, Pn−1, etc, which qualitatively transforms
(3.19) into

1

∆t
Un+1 + L

(

Un+1, Pn+1
)

= fn
explicit (3.20)

where ∆t = tn+1−tn is the time step. In this relation, the non-linear termN is treated explicitly
and all the explicit terms are gathered in fn

explicit. The linear terms are treated semi-implicitly

α0 α1 α2 β1 β2

BDF1 1 -1 1
BDF2 3/2 -2 1/2 2 -1

Table 3.1: Coefficients for the BDFr methods, see Kress[85]. r is the order of the BDF scheme.

with the Backward Differentiation Formula scheme of order 2 (BDF2), which transforms (3.20)
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into
r

∑

j=0

αj

∆t
Un+1−j + L

(

Un+1, Pn+1
)

= −
r

∑

j=1

βjN
(

Un+1−j
)

∇ · Un+1 = 0

(3.21)

Coefficients used in this relation are detailed in table 3.1. The explicit term is obtained by
extrapolating N from time tn−r+1 up to tn with an (r − 1)th order polynomial. At order 1
the non-linear extrapolation corresponds to (Un · ∇)Un. The second order uses the next older
value of the velocity field Un−1. Concerning the discretization of the time derivative, at order
1 it reads

∂U

∂t
'

Un+1 − Un

∆t
(3.22)

while at order 2, it is given by

∂U

∂t
'

3Un+1 − 4Un + Un−1

2∆t
(3.23)

The integration is started at t0 with r = 1 and changes to r = 2 after t1. Finally, if, in (3.21),
we regroup the terms at n + 1 at the LHS and the other (explicit) at the RHS, we have

α0U
n+1 + ∆tL

(

Un+1, Pn+1
)

= −
r

∑

j=1

[

−αjU
n+1−j + ∆tβjN

(

Un+1−j
)]

∇ · Un+1 = 0

(3.24)

3.2.2 Space discretization

We use a finite element solver FreeFem++ (see Pironneau[122]) to solve (3.24). The finite el-
ement method is based on a variational formulation of the equations. We note X = [0, T ];H1 (Ω)
and M = [0, T ];L2 (Ω) the spaces of continuous function (and derivable for X ) in the physical
domain Ω. We suppose that the velocity field U and the pressure field P belongs respectively
to X 3 and M. We multiply these equations by test functions V ∈ (H1 (Ω))3 and Q ∈ L2 (Ω),
which gives after integration and application of the Green’s formula

∫

Ω

α0U
n+1 · V −

1

Re

∫

Ω

∇Un+1 · ∇V +

∫

Ω

Pn+1 (∇ · V )

=

∫

Ω

r
∑

j=1

[

−αjU
n+1−j · V + βj

(

Un+1−j · ∇
)

Un+1−j · V
]

∀ V ∈ X 3

∫

Ω

Q
(

∇ · Un+1
)

= 0 ∀ Q ∈ M

(3.25)
where

∇U · ∇V =
∑

i

∑

j

∂Ui

∂xj

∂Vi

∂xj
(3.26)

Then we write (3.25) into a more concise form

α0a(Un+1,V ) + 1

Reb(U
n+1,V ) + c(V , Pn+1) = (f , V ) ∀ V ∈ X 3

c(Un+1, Q) = 0 ∀ Q ∈ M
(3.27)
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with the explicit non-linear term noted f and

a (U , V ) =
∫

Ω
U · V

b (U , V ) =
∫

Ω
∇U · ∇V

c (U , P ) = −
∫

Ω
P (∇ · U)

(3.28)

The computational domain is divided into finite elements Xh for the velocity and Mh for the
pressure with I = dim (Xh) and J = dim (Mh). We consider Uh, Vh in X 3

h , Ph, Qh in Mh and
fh in Xh the discretized forms of the previous variables

Uh =
∑I

i=1
Ui(t)φi(x)

Ph =
∑J

i=1
Pi(t)ψi(x)

(3.29)

Introducing these forms in the previous relations gives

α0a
(

Un+1

h , Vh

)

+
∆t

Re
b
(

Un+1

h , Vh

)

+ ∆tc
(

Vh, Pn+1

h

)

= (fh, Vh)

c
(

Un+1

h , Qh

)

= 0

(3.30)

Finally we can use the following matrices A, B and C

Ai,j =
∫

Ω
φi · φj

Bi,j =
∫

Ω
∇φi · ∇φj

Ci,j =
∫

Ω
ψi (∇ · φj)

fh, i =
r

∑

j=1

∫

Ω

[

−αjU
n+1−j
i + βj

(

U
n+1−j
i · ∇

)

U
n+1−j
i

]

φ2
i

(3.31)

write D = α0A + 1

ReB and solve the following problem with an eigenvalue problem solver
(

D CT

C 0

)(

Un+1

h

Pn+1

h

)

=

(

fh

0

)

(3.32)

3.2.3 Finite elements

q1
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q2 q3
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q6q5
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Figure 3.4: Schematic of finite element P2 and P1 discretization. Nodes are denoted q.

We use Taylor Hood finite elements of second order P2 for the velocity components and of
first order P1 for the pressure. These elements are represented in figure 3.4. Every P2 element
has 6 degrees of freedom and every P1 element has 3 degrees of freedom. In total there are
Nf = 3I + J degrees of freedom in the problem. Typical values of Nf is 106.



36 Numerical method

3.2.4 Uzawa algorithm

An Uzawa method is used to solve (3.32). This algorithm proceeds iteratively:

i- Choose an arbitrary initial pressure P 0
h in L2 (Ω)

ii- Once Pn
h is known, calculate Un

h according to equation (3.32)

Un
h = D−1

(

fh − CT Pn
h

)

(3.33)

The inversion of the matrix D is achieved with UMFPACK (see Davis[37]).

iii- Define the new pressure Pn+1

h by

Phn + 1 = Pn
h + ρnBT Un

h (3.34)

and restart from i. The parameter ρn is a given constant for the time step n.

This method converges quite slowly and requires preconditioning. Here, the Cahouet Chabart
preconditioner is used.

3.2.5 Case of the linearized equations

The only difference between linear and non-linear simulations is the convection term. The
implementation of the linear equations modifies the fh in (3.32). In the linearized equations, the
convection term (u · ∇)u becomes U∇u+u∇U . The first term U∇ represents the convection
by the base flow and the second term ∇U is the deformation of the perturbation by the basic
strain. The base flow being frozen, these terms can be computed before the march in time of
the simulation. For this reason, linearized simulations are faster than non-linear simulations.

3.2.6 Implementation of the boundary conditions

The Dirichlet boundary condition of the type u = uboundary is imposed by affecting a very
large value δ (typically δ = 1030) in Dij of (3.32) and by setting fh, i = δuboundary(i) at the
nodes associated to this boundary.

3.3 Normal modes

3.3.1 Equations

Normal modes are elementary solution of the linearized equations in the form ûeσt where û

is the normal mode and σ = σR + iσI is a complex value, with σR the growth rate and σI the
temporal frequency. The mode is said unstable if σR is positive. After introduction into the
linearized equations (3.15) one gets the following equation in a matrix format

Aû = σBû (3.35)

with

A =











−∂Ux

∂x − ikUz − C + V −∂Ux

∂y 0 − ∂
∂x

−∂Uy

∂x −∂Uy

∂y − ikUz − C + V 0 − ∂
∂y

−i∂Uz

∂x −i∂Uz

∂y −ikUz − C + V −k
∂
∂x

∂
∂y −k 0











(3.36)

and

B =









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0









(3.37)
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in which C denotes the convection by the base flow and V viscous diffusion. Adjoint modes are
also defined in relation to the adjoint equations (3.18):

A+û+ = σ+Bû+ (3.38)

with

A+ =











−∂Ux

∂x − ikUz + C + V −∂Uy

∂x i∂Uz

∂x
∂
∂x

−∂Ux

∂y −∂Uy

∂y + ikUz + C + V i∂Uz

∂y
∂
∂y

0 0 ikUz + C + V −k
∂
∂x

∂
∂y −k 0











(3.39)

Every adjoint mode û+
j corresponds to the direct mode ûj such that σ+

j = σ∗

j , with j = 1, .., N

the number of normal modes. Every adjoint modes is normalized following
(

û+
j , ûj

)

= 1 where

the scalar product is defined by

(u1, u2) =

∫

Ω

u∗

1Bu2dS (3.40)

Note that the norm based on this scalar product is the kinetic energy of the perturbation. The
adjoint problem also verifies (Au1, u2) = (u1, A

+u2) whatever u1 and u2.

3.3.2 Arnoldi method

Equations (3.35) and (3.38) constitute generalized non-Hermitian eigenvalue matrix prob-
lems. The matrix A built in the finite element method is a sparse N × N matrix of very large
dimensions. A typical value for N is 106, and the sparsity is illustrated by the fact that only
about 107 entries are non-zero. The best algorithm known to date to compute eigen solutions
of such systems is the Implicitly Restarted Arnoldi Method (IRAM) for which a free software
ARPACK (see Lehoucq[95] for details) exists. Its use allowed us to calculate normal modes of
the linearized equations in different configurations of base flow, axial wavenumber, swirl number
and Reynolds. In the following we illustrate the basic ideas of the Arnoldi method and then
discuss the use of the IRAM method in our case.

Simple illustration of the method

The basic mechanisms of the Arnoldi method can be understood by considering the power
iteration method. Let us take a classical eigenvalue problem

Ax = λx (3.41)

and suppose the problem has N eigensolutions that can be sorted by decreasing order λ1 >
λ2 > ... > λN in terms of magnitude. The associated eigenvectors x1, x2, . . . form a basis for
the variable x

x = α1x1 + α2x2 + . . . + αNxN (3.42)

Then multiplying m times the previous relation by the matrix A leads to

Amx = α1A
mx1 + α2A

mx2 + . . . + αNAmxN

= α1λ
m
1 x1 + α2λ

m
2 x2 + . . . + αNλm

NxN

= λm
1

(

α1x1 + α2

λm
2

λm
1

x2 + . . . + αN
λm

N

λm
1

xN

)

(3.43)
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Therefore we have, if m and the difference between the two largest eigenvalues λ1 and λ2 are
large enough: Amx = λm

1 α1x1 from which the calculation of x1 can be achieved with the
Rayleigh quotient (∗ being the transpose conjugate)

λ1 =
x∗

1Ax1

x∗
1x1

(3.44)

The capacity of the sequence x, Ax, A2x, . . . to converge to the largest eigenvalue of Ax = λx

is used in the Arnoldi algorithm through the Krylov subspace

Kp = {b, Ab, . . . , Ap−1b} = {q1, q2, . . . , qp} (3.45)

where the initial vector b is chosen arbitrarily and p is the number of vectors. An orthogonal-
ization of the Krylov subspace by a Gram-Schmidt process leads to the orthonormal vectors
q1, q2, . . .. The calculation of these vectors is done iteratively at each addition of a new member
in the Krylov subspace. These vectors prove to be good approximations of the leading eigen-
vectors of A. The precision of this approximation increases with the number p. Therefore, to
have a good precision, one should do this process over large subspace. However this would be
computationally intensive and would cause storage problem.

To avoid such problems the idea of the IRAM is to restart the process before p is to large
by improving the initial vector b. A common habit is to take b as a linear combination of the
vector qi=1..p. One drawback of the IRAM is that there is no a priori limit of the number of
restarts needed to have a good convergence.

Shift and invert

This method can also be used to compute the smallest eigenvalue λN of A if A is inversible
by considering the eigenvalues λ−1

N > λ−1

N−1
> . . . of A−1. More generally, the method allows

to calculate any eigenvalue λj in the spectrum that is close to a guess value λg specified by the
user. This is done by transforming the initial matrix system into

(A − σgB) ûj = (σj − σg)Bûj (3.46)

and then
(A − σgB)−1 Bûj = λ̄jûj (3.47)

with

λj = λg +
1

λ̄j
(3.48)

which is similar to (3.41).

Use of the ARPACK drivers

Problems (3.35) and (3.38) being non-Hermitian, we use the complex driver zndrv4 of
ARPACK. The user specifies the following information for the driver:

i- type of eigenvalue search. We chose the "LM" mode corresponding to eigenvalues with
largest magnitude

ii- number of eigenvalues nev

iii- number of vectors in the basis p

iv- maximum number of iteration

v- guess value σg

In the particular case when the shift is real and there is no axial flow W , matrix A and A+,
defined in (E.20) and (E.22)) are real and one can use the real driver dndrv4, which is faster.
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3.4 Optimal perturbations

3.4.1 Energy of the perturbation

In incompressible flows the energy of perturbations is the kinetic energy contained in a
volume of length λ = k/2π (λ being the wavelength) and infinite transverse extension

E(t) =
k

2π

∫

R

∫

R

∫ k/2π

0

(

(

uxeikz
)2

+
(

uye
ikz

)2

+
(

uze
ikz

)2
)

dxdydz (3.49)

After a few manipulation, one gets

E(t) =
1

2

∫

S

(

u2
x + u2

y + u2
z

)

dxdy (3.50)

For simplicity, the term 1/2 is discarded hereafter.

3.4.2 Transient growth

The optimal perturbation of the base flow is the perturbation that, based on an initial
energy, and among all other possible initial perturbations, exhibits the largest gain of energy
during a given time topt. This perturbation is interesting in order to investigate transient
growth. Chapter 6 is dedicated to the study of optimal perturbations in the case of vortex
pairs. Different techniques exist to calculate the optimal perturbation. The one we use is based
on iterative direct/adjoint linearized simulations of (3.15) and (3.18). The operator A being
non-Hermitian (A 6= A+, A is also described as non-normal), direct and adjoint simulations
bring the iterative process toward a non trivial solution that describes the linear mechanisms
of energy growth in a given flow. Transient growth of energy is called algebraic. This term is
used by opposition with the large time modal growth that is called exponential.

3.4.3 Optimization method

Objective and Lagrangian

The objective of the optimization is to calculate the initial perturbation u0 that gives the
maximum energy gain G

G(t;u0) =
E(t)

E(0)
(3.51)

at the optimization time t = topt. The maximization process includes this objective and the
constraints that restrict the perturbation form and evolution, namely the linearized Navier-
Stokes equations. Writing the latter LNS(u) = 0 (it includes the boundary conditions) and
the initial condition u(t = 0) = u0, the following Lagrangian functional holds

L
(

u,u0, u
+, u+

0
; topt

)

= G(topt)− < LNS (u) , u+ > −
(

(u(t = 0) − u0) , u+
0

)

(3.52)

where

< u1, u2 >=

∫ topt

0

∫

S
u∗

1Bu2dtdS (3.53)

and (·, ·) is defined in (3.40). This problem is parameterized by topt, the properties of base flow
and the wavenumber k of the perturbations. The solution gives the initial perturbation u0 for
which G(topt; u0) is maximum. However the computational effort to achieve the optimization
over the parameter space spanned by topt, ReΓ, q, a/b and k is too demanding. Instead we will
calculate local optimal perturbations over specific values of k and q, and for a limited number
of base flows, ReΓ being fixed.
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Condition for the optimum

At the optimum uopt the derivative of the lagrangian (3.52) must cancel, which means that

∂L

∂u
= 0 ,

∂L

∂u0

= 0 ,
∂L

∂u+
= 0 ,

∂L

∂u+
0

= 0 (3.54)

Differentiation is achieved according to

∂L

∂u
= lim

ε→0

L
(

u + εδu, u0,u
+, u+

0

)

− L
(

u, u0, u
+,u+

0

)

εδu
(3.55)

The last two derivatives in (3.54) correspond respectively to the linearized Navier-Stokes equa-
tions (3.15) and to the initial condition u(t = 0) = u0. The first condition in (3.54) leads to the
adjoint equations already given in (3.18) (after an inversion of the time is introduced t → −t)
with the following initial condition

u+
0

=
u(topt)

E(0)
(3.56)

The second term in (3.54) leads to

∂L

∂u0

= −2
E(t)

E(0)2
u0 + u+(topt) (3.57)

Optimal perturbation algorithm

The optimization is achieved with the following iterative strategy

i- Start from an arbitrary initial perturbation u0
0

ii- At iteration n, compute the perturbation flow at topt by a direct simulation of (3.15).

iii- The perturbation un(topt) gives the initial condition for the adjoint u+n
0 thanks to rela-

tion (3.56).

iv- Compute the adjoint perturbation u+n(topt) at time topt by an adjoint simulation of (3.18)
started with u+n

0

v- Calculate the derivative of the Lagrangian about the initial perturbation un
0 with rela-

tion (3.57)

vi- Compute

(

∂L

∂u0

)n

(t = topt) by a direct simulation of (3.15) initialized by

(

∂L

∂u0

)n

(t = 0)

vii- Calculate the new perturbation un+1
0 = un

0 + α

(

∂L

∂u0

)n

(t = 0) where α is chosen in order

to maximize

Gn+1 =
‖un+1‖2

‖un+1
0 ‖2

=
‖un + α

(

∂L
∂u0

)n
(t = topt)‖

2

‖un
0

+ α
(

∂L
∂u0

)n
(t = 0)‖2

(3.58)

over α ∈ C, since the velocity field is complex. The algorithm used to achieve this
optimization is described in the next paragraph. When the new initial perturbation is
calculated, the iteration is started gain (note that we don’t need to do step (ii) since
un+1(topt) is already known). The convergence is achieved and the routine stopped when
|Gn+1 − Gn| is less than a prescribed small value.



3.4 Optimal perturbations 41

Optimal α

The variable coefficient α being complex, it can be written α = αR + iαI . The following
form of G(α) holds

G(α) =
u1 + α∆u1

u2 + α∆u2

=
A1 + B1αR + C1αI + D1

(

α2
R + α2

I

)

A2 + B2αR + C2αI + D2

(

α2
R + α2

I

) (3.59)

with
u1 = u1R + Iu1I

∆u1 = ∆u1R + I∆u1I

u2 = u2R + Iu2I

∆u2 = ∆u2R + I∆u2I

A1/2 = ‖u1/2‖
2

B1/2 = 2
∫

S

(

u1/2R · ∆u1/2R + u1/2I · ∆u1/2I

)

dS

C1/2 = 2
∫

S

(

u1/2I · ∆u1/2R − u1/2R · ∆u1/2I

)

dS

D1/2 = ‖∆u1/2‖
2

(3.60)

The optimal α is found by solving

∂G

∂αR
= 0 ,

∂G

∂αI
= 0 (3.61)

Writing these relation gives

(

B1A2 − B2A1 + αIB1C2 − αIB2C1 + α2
IB1D2 − α2

IB2D1

)

+2 (D1A2 − D2A1 + αID1C2 − αID2C1)αR + (D1B2 − D2B1)α2
R = 0

(

C1A2 − C2A1 + αRC1B2 − αRC2B1 + α2
RC1D2 − α2

RC2D1

)

+2 (D1A2 − D2A1 + αRD1B2 − αRD2B1)αI + (D1C2 − D2C1)α2
I = 0

(3.62)

The solution αR, αI is calculated by a recursive algorithm

i- Start from an arbitrary α0
I

ii- Calculate αn
R

iii- Calculate the new αn+1

I and restart the process until convergence

The required number of iteration for convergence is low.





4 Experimental set-up

This chapter deals with the presentation of the experimental apparatus. We first describe the
wind tunnel and the model. We then present the preliminary investigations we made to fix the
flow configuration and the experimental procedures. In the last part we present measurement
techniques used for the study.

4.1 Wind tunnel

4.1.1 Presentation

54321 54321

Figure 4.1: Schematic of the wind tunnel. 1-Axial fan 2-Diffuser 3-Test section 4-Contraction
5-Settling chamber. The flow is going from the right to the left.

Figure 4.1 shows a schematic view of the wind tunnel that is used in the present thesis.
It is a low speed, open circuit wooden wind tunnel with a circular test section. The propeller
generates a free stream velocity ranging from approximately 20 to 40m/s going from the right
to the left in the figure. The turbulence level is 0.2%. From right to left, the wind tunnel
comprises

i- The entrance of the wind tunnel: a filter to avoid particles can be placed there. However
it was not used in the present experiment because it was shown to increase the level of
turbulence in the test section by about a factor 2. Moreover it reduced significantly the
free stream velocity (by about 20%).

ii- The settling chamber: a honeycomb made of square cells of 10cm2 is placed at the entrance
of the settling chamber. Honeycomb are effective for making the flow uniform and reducing
residual turbulence by removing swirl and lateral mean velocity variations.

iii- The contraction: there, the flow is accelerated to the desired velocity. A pitot tube is
placed downstream of the contraction to measure the stagnation pressure Pi0. A thermo-
couple is placed at the entrance of the contraction to measure the stagnation temperature
Ti0.

iv- Test section: it is about 1m in diameter and 2m long. It has vertical glass windows at its
sides that cover almost its entire length. A pressure tap at the entrance of the test section
is used to measure the static pressure and the velocity, based on the measurement of the
stagnation pressure Pi0.
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v- The diffuser: it is a gradually-expanding duct in which the flow velocity decreases and
the pressure rises. The recovery of pressure from kinetic energy reduces the power needed
to drive the wind tunnel. Note that the angle of expansion must remain small (< 7o) in
order to avoid flow separation in the diffuser boundary layer.

vi- The axial fan has a power of 15.5kW (this is comparable to a small car). The power of
the fan must be adequate to cope with the resistive components such as the friction on
the wind tunnel walls or the pressure losses associated with the model.

Details on the design of low speed wind tunnels can be found in Mehta[110].

4.1.2 Experimental model
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Figure 4.2: (a) Side view and (b) top view of the model in the test section. The model is made
of one wing split in its middle section. Each part is adjustable in incidence. A splitter plate
modelling the casing wall of a compressor can be installed in order to split the test section in
two equal parts.

The model consists of one aluminium wing split in two parts at its middle section, see
figure 4.2 and 4.3. Cartesian coordinates are used, as indicated in figure 4.2. The longitudinal
direction is z, x is the horizontal axis and y is the vertical axis (wing is vertical). The origin of
the longitudinal direction z is set at the wing trailing edge (TE). The leading edge is denoted
LE. The free stream velocity is U∞. It is set at 38m/s if not otherwise stated. Distances are
normalized on the wing chord c and time is normalized on c/U∞. The Reynolds number based
on the chord is Rec = cU∞/ν = 4.8.105. The size of the gap between the two wing tips is
2τ . The gap size τ is varied by variation of the wing span. A summary of the flow and wing
characteristics is given in table 4.1. The wing section is that of a NACA0012. It can be set

Table 4.1: Main characteristics of the apparatus.

Airfoil NACA0012
Chord, c 0.2m
Span 0.4m
Rec 2.105 to 5.105

Incidence, α −15o to 15o

Gap τ 0 to 25mm

at angles of attack up to ±15 degrees. The gap τ can be adjusted between 0 to 25mm. Each
part of the wing is equipped with 38 static pressure taps of 1mm diameter located along the
mid-span section. The wing is attached to two metallic walls that fill the bottom and the top
of the test section over a few centimeters as shown in figure 4.3(a) and 4.3(b). Importantly the
model can be set into two different configurations depending on the presence or not of a splitter
plate:

i- Without splitter plate (C1) the model consists in a split wing, like in
Lakshminarayana[88]. The two wing tips serve as a vortex pair generator. In this study
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we always set the two parts of the wing at the same angle of attack. The flow down-
stream is thereby symmetric. Pictures of the apparatus in this configuration are shown
in figure 4.3.

(a) (b) (c)

Figure 4.3: Picture of the model without splitter plate.

ii- With splitter plate (C2) the splitter plate plays the role of the casing wall in compres-
sors. It materializes the symmetry plane of the vortex pair. The flow produced in the
gap between the wing tip and the plate is similar to the flow produced at blade tips of
compressors. In this configuration the distance between the wing tip and the plate is τ .

The model is located close to the entrance of the test section in order to dedicate the
largest part of the test section to the measurement of the wake. Measurement in the wake and
close to the wing, including the gap, were achieved. Carborandum grains (these are similar
to sand grains) of size 80µm were placed at 17% of the wing leading edge to ensure boundary
tripping and a fully turbulent boundary layer downstream. The transition was controlled by oil
visualizations (see figure 4.5).

4.1.3 Flow separation over the wing

The incidence at which separation of the flow at the suction side of the wing occurs was
looked for by sticking nylon tufts and using a UV light generator. It was shown that the flow
separates when α > 10o. In this study the angle of attack is set at 8o. This angle of attack is
low enough to prevent flow separation but large enough to have a strong tip vortex.

(a) α = 8
o (b) α = 10

o (c) α = 11
o (d) α = 12

o

Figure 4.4: Nylon tufts attached at the suction side of the wing without splitter plate when
τ = 0 and for several angles of attack.
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Figure 4.4 presents long time exposure pictures of the nylon tufts at the suction side of the
wing at different angles of attack. In this figure the flow goes from right to left. Movements of
the nylon tufts are evidenced thanks to the time of exposure of the camera. Up to 10o the tufts
do not move which means that no separation occurs. Above 11o the tufts clearly move, which
suggests that the flow separates.

In figure 4.5 we show oil flow visualizations on the suction surface at 8o and 15o angle of
attack. The technique used for the oil flow visualization is the following: we first cover the
entire suction surface downstream of the transition line with colored oil. We then turn on the
wind tunnel. The oil is displaced under the action of the wall shear stress and is evacuated
after reaching the trailing edge if the flow is attached, which is the case for α = 8o. Note that
at α = 8o the trailing edge region is characterized by an incipient flow separation, oil being
not completely evacuated there. At the end most of the initial oil has disappeared (torn by
the flow) and the rest indicates the wall flow. In practice, the duration of the process depends
on the free stream velocity and the oil mixture viscosity. The pictures shown in figure 4.5 was
obtained after several minutes.

(a) α = 8
o (b) α = 15

o

Figure 4.5: Oil visualization at gap τ = 0. Recall that wing is vertical.

Figure 4.5 proves that the flow at 8o is 2D. Moreover by comparing oil flow visualization with
and without boundary layer tripping, we observed more rapid oil removal at the wing surface
with the boundary layer tripping. This corresponds to more intense shearing, and confirmed the
turbulent state of the boundary layer. At 15o, the oil flow pattern has become completely 3D
under the combined effects of gravity (remember that the wing is vertical) and flow separation.

4.1.4 Data acquisition

The data acquisition system is composed of the following elements, see figure 4.6:

i- Probes. A Pitot tube located at the entrance of the test section controls the free stream
velocity U∞. Additional probes, seven hole probe, boundary layer probes or hot-wire
probes, connected to the data acquisition system, are moved in the test section thanks to
a 3D traversing system.

ii- Absolute sensor for the pressure: we use a DPI145 sensor that is directly connected to
the stagnation pressure tap Pi0 of the Pitot tube.

iii- Pressure sensors. We use differential pressure sensors with a range of 0.5PSI or 68.9mbar.
The reference pressure is the stagnation pressure Pi0 measured by a Pitot tube placed at
the entrance of the test section.

iv- Thermocouple. The temperature in the flow is controled by means of a type K thermo-
couple located in the settling chamber.
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v- Signal conditioning. Data issuing from the various sensors is conditionned by means of
amplifiers and analog filters.
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Figure 4.6: Schematic of the data acquisition system.

vi- Analog/digital converter. A 32 channels, 15 bits resolution is used for the analog/digital
conversion. The system is sensible to voltage variation as low as 0.06mV (±10V divided
by the bit resolution 215).

vii- Computer. The computer acquires the digital data from the converter through a dedicated
software and PC card. In addition, it controls the traversing system and acquires the
reference pressure Pi0 through the DPI145 device.

Note that pressure are normalized on the dynamic pressure at the upstream uniform condi-
tions, which leads to the definition of two pressure coefficients:

Cpi=
Pi, 0 − Pi

0.5ρU2
∞

Cps=
Ps − P0

0.5ρU2
∞

(4.1)

named respectively the stagnation and static pressure coefficient. The static pressure PO is
tapped at the entrance of the test section.

4.1.5 Boundary layer on the splitter plate

In figure 4.7(b) we show the configuration of the model with splitter plate. This plate is
10mm thick. It extends over 2 chords upstream of the leading edge of the wing and over 5
chords downstream of the trailing edge. Boundary layer tripping is achieved by carborundum
grains located at 0.25c downstream of the leading edge of the plate.

The boundary layer at the wall is measured with a dedicated probe shown in figure 4.7(a)
that includes a flattened pitot tube and a static tap. Measurement were achieved along the
dashed line shown in figure 4.7(b). The evolution of the boundary layer thickness δ0.99 with the
distance z is depicted in figure 4.8(a). A theoretical prediction corresponding to the growth of
a turbulent boundary layer is also included for comparison

δ0.99 =
0.37z

Re
1/5
z

(4.2)
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Figure 4.7: (a) Boundary layer probe rake. It includes a flattened Pitot tube for the stagnation
pressure at the left and a static tap at the right. (b) Splitter plate (in grey) seen from above. The
boundary layer tripping is located 0.25 downstream of the leading edge of the wall. Distances
in figure (b) are normalized on the chord c.

where Rez = zU∞/ν. There is a fair agreement between experiment and prediction. The
value of the form factor H = δ∗/θ (δ∗ being the displacement thickness, and θ the momentum
thickness) at each of the measured point is found to be almost constant, close to H ' 1.4, which
means that the boundary layer is turbulent.

The mean velocity profile of the boundary layer at z = 2.5 is shown in figure 4.8(b) in wall
units U+ and y+, with:

U+ =
Uz

Uτ
, y+ =

yUτ

ν
with Uτ =

√

ν

(

∂Uz

∂y

)

y=0

(4.3)

Agreement with boundary layer theory is satisfactory. In particular we can distinguish the
laminer sub-layer close to the wall, the buffer zone, and the turbulent layer where the velocity
is proportional to the logarithm of the distance to the wall. Note that Reθ = θU∞/ν = 2000 at
z = −1.
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Figure 4.8: (a) Longitudinal evolution of the boundary layer thickness. 2 experiment, line:
model. Distances in the figure are normalized on the chord c. (b) Boundary layer profile at
z = 2.5. 1 - Laminar sub-layer. 2 - Buffer zone. 3 - Turbulent layer.

4.1.6 Control of the angle of attack

The angle of attack of the wing was adjusted with a help of a vernier attached to the test
section. However because of the misadjustment between the test section and the rest of the
wind tunnel, we had to control the real angle of attack of the incoming flow by comparing the
distribution of Cp at mid span of the wing to numerical predictions obtained by a freely available
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software called Xfoil. The pressure coefficient is defined in (4.1). In Xfoil the position of the
boundary layer tripping can be specified (0.17c downstream of the leading edge). In figure 4.9
we present this comparison for the angle of attack 8o. The measurements compare favorably
with the numerical prediction.

z
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0 0.2 0.4 0.6 0.8 1
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-2

0

2

Figure 4.9: Distribution of Cp at mid chord of the two parts of the wing at α = 8o. Comparison
with the numerical results obtained with Xfoil. N wing y < 0. 2 wing y > 0. Line: numerics
(Xfoil).

4.2 Measurement techniques

4.2.1 Seven hole pressure probe

(a) (b)

Figure 4.10: Pictures of the seven hole pressure probe (a) without and (b) with holder.

We use a seven hole pressure probe to measure the time averaged properties of the flow in
planes transverse to the free stream. The probe is shown in figure 4.10. It has a diameter of
1.5mm. A presentation of the calibration method used for the probe is given in appendix B.
The seven pressure sensors are located outside the test section and connected to the probe by
vinyl tubes (in orange in figure 4.10). The seven hole pressure probe gives accurate results:
Payne[119] reports errors of 1o for the flow angle at low angles and 3.5o at high angles, and a
maximum error between 4% and 6.4% for the pressure coefficients depending on the flow angle
of attack and sideslip.
A potential problem concerning probe measurements is the negative influence that the probe

can have upon the flow. In the case of vortex flows, this influence was shown to be negligible
providing the probe is small, see Devenport[39], as is the case here. In flows where the axial
velocity in the vortex core is high, any probe induced perturbations can cause vortex bursting,
see Payne[119]. But the critical conditions wherein this may occur are not met in the present
experiment.
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Characterization of the velocity field requires a small enough spatial resolution. In practice,
we first interpolate the flow velocity and pressure provided by the seven hole pressure probe on
a coarse mesh (∆x, y = 0.05) that allows rapid identification of the regions of interest (namely
the tip vortex). In a second step, a finer mesh (∆x, y = 0.01) is used.
Adequate positioning of the probe to the measurement location (wing vicinity, wake) and

to the model configuration (gap size, presence of the splitter plate) was achieved by using a set
of three different probe holders. A three axis traversing system makes for the displacement of
the holder along the x, y and z directions, as described in figure 4.6.

(a)

α

β

α

β

(b)

αα

(c)

Figure 4.11: Schematic of the holder used for the probe. (a) straight. (b) pre-angled. (c) double
holder with angle of attack.

i- The straight holder, shown in figure 4.11(a), allows the positioning of the probe in the
direction of the free stream. It is used in regions where the angle of attack and side slip
of the flow is in the range accepted by the probe (about 70o), typically in the wake.

ii- The second type of holder, see figure 4.11(b), is used when the flow angle is too large for
the probe. It allows a preliminary setting of an angle of attack α and a side slip angle
β. It was mainly used to measure the flow in the regions close to the wing, and in the
splitter plate configuration.

iii- The third type of holder, see figure 4.11(c), is designed to hold both a seven hole pressure
probe and a single hot-wire. It allows the successive measurement of the mean velocity
and pressure (with the seven hole probe) and of the unsteady component of velocity (with
a hot-wire). This guaranties an excellent positioning of the hot-wire relatively to the seven
hole pressure probe.

4.2.2 Hot-wire

The hot-wire anemometry technique is, together with the laser doppler anemometry, the
best tool to measure turbulence in air flows. It is made (see figure 4.12) of a very thin wire
(in general tungsten) of diameter d ∼ 0.5 to 5µm and small length (length l ∼ 0.3 to 1mm,
see Comte-Bellot[31]). Hot-wires work on a heat/convection correlation principle. Air flowing
past the wire has a cooling effect on the wire. As the temperature of the wire changes, so does
the electrical resistance. Most hot-wire are operated in a constant-temperature mode (constant
temperature anemometer). That means that the electrical intensity is varied by means of a
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feedback amplifier in order to keep the temperature of the hot-wire constant. Data acquisition
with the hot-wire relies on a modelling of the relation between the flow velocity and the electrical
voltage needed to make for constant temperature.
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W
R

VS
R

W
R

V

(b)

Figure 4.12: (a) Picture of a single hot-wire, (b) Wheatstone bridge used for the constant
temperature technique.

Here we give some details on this model, based on the document of Haertig[60]. We first
introduce the Reynolds number based on the diameter d of the wire

Red =
Uwd

ν
(4.4)

We denote Q the rate of heat transfer between the wire and the ambient flow. Physical con-
siderations suggest that it depends upon the temperature T0 of the wire without flow, the
temperature Tw of the wire in operating conditions, and upon the thermal conductivity of the
air, denoted by the coefficient k.
The electrical resistance of the hot-wire at temperature Tw is noted Rw. If the electrical

intensity is I, then the electrical power dissipation is RwI2. The temperature of the hot-wire
will hence change due to (i) electrical heating and (ii) flow cooling. This is readily expressed by

Cw
dTw

dt
= RwI2 − Q (4.5)

where Cw is the wire capacity at temperature Tw (in J/K).
Following Hinze[67], we introduce the Nusselt number

Nu =
Q

πl (Tw − T0) k
(4.6)

to characterize thermal exchange and suppose that the relation between flow velocity and heat
transfer is in the form

Nu = a + b
√

Re (4.7)

Using (4.4) to (4.7) , one gets

a + b

√

Uwd

ν
=

(

RwI2 − Cw
dTw

dt

)

1

Tw − T0

1

πlk
(4.8)

In the constant temperature mode, Tw (and thus Rw) is kept constant, which simplify the
previous relation (4.8) into

a + b
√

Uw =
Rw

Tw − T0

I2 (4.9)

If Tw and T0 are close enough to a reference temperature Tref (which is the case in most practical
situations), one can consider that the resistance of the wire depends linearly upon temperature:
R = Rref (1 + αr (T − Tref )) with αr a given coefficient for the wire. Therefore

Rw

Tw − T0

= αr
Rref

1 − R0/Rw
(4.10)
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The ratio n = Rw/R0 being kept constant and set to an optimal value given by the manufacturer
of the hot-wire, we thus end up with

a + b
√

Uw = I2 (4.11)

The constant temperature anemometer is composed of a Wheatstone bridge and of an elec-
trical circuit that adjusts the output voltage to make for constant Rw, a resistance placed at
one branch of the bridge, see figure 4.12(b). The current I being related to the resistances in
the bridge through the output voltage V = I (Rw + RS), we eventually have the direct relation
between the flow velocity Uw and the voltage V measured by the anemometer

U1/m
w = k

(

V 2 − V 2

0

)

(4.12)

According to (4.11), m is equal to 2.
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U
w
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Figure 4.13: Calibration of the hot-wire at T0 = 294.1K. The law is Uw = K
(

V 2 − V 2
0

)m
with

m = 1.83, K = 0.05 and V0 = 2.755V .

The rate of turbulence can be calculated, based on this relation. If we denote V̄ the mean

value of V and Veff =
√

(

V̄ − V
)2
the mean deviation, one gets

√

(

U − Ū
)2

Ū
=

2mV̄ Veff

V̄ 2 − V 2
0

(4.13)

At last, we show in figure 4.13 a typical calibration curve for a hot-wire of type P11 which
is the one we used in the present work. The curve is in good concordance with (4.12).

4.2.3 Temperature sensor

T1 T2

Figure 4.14: Schematic of the thermocouple. The two points represent the junction between
the two metals.

The stagnation temperature Ti in the flow is measured with the thermocouple technique
which is briefly recalled here. As shown in figure 4.14 a thermocouple is made of two metal parts
connected by two junctions that are at temperature T1 and T2. Due to the Seebeck effect, the
thermocouple produces a voltage that depends upon the temperature difference ∆T = T1 − T2

∆T = αV (4.14)
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with α = 24.39oC/V for a type K thermocouple. The type K is made of chromel and alumel
and can measure temperature in the range −200o to +1350o. By measuring the output voltage
V, we hence have the value of T2 once T1 is maintained at a known temperature.

4.2.4 PIV

The velocity field has also been characterized by means of the stereoscopic Particle Image
Velocimetry (PIV) technique. The PIV device is equipped with two pulsed Nd:Yag lasers and
two cameras. The tracer particles are generated by a generator of special effect smoke. The
whole setting is shown in figure 4.15. It allows the measurement of the three components of the
velocity along x, y and z. Depending on the location of the measurement plane, cameras are
either positioned at the left or at the right of the laser sheet. The PIV system acquires data at
4Hz therefore it is suitable for measuring ensemble averaged statistics of the velocity field. No
time resolved signals can be obtained by this system.

LASERCAMERA LASERCAMERA

Figure 4.15: Setting of the laser and cameras for the stereo PIV. The green line corresponds to
the laser sheet.

As explained by Jensen[77], the principle of PIV is to calculate the fluid velocity by mea-
suring the displacement d of particles seeded in the flow from two closely recorded images of
the interrogation volume illuminated by the laser sheet and dividing that displacement by the
time interval ∆t between the two pulses. The images are divided into small subsections called
interrogation areas Ia. Each interrogation area corresponds to one velocity vector of the com-
plete velocity field. Therefore the size of the interrogation area dictates the spatial resolution
of the data. In order to measure the mean displacement d of the particles in each interrogation
area Ia, the cross-correlation C between I, the image at time t, and I ′, that at time t + ∆t, is
performed, according to

C(s) =

∫

Ia

I(x)I ′(x + s)dx (4.15)

where s is the separation vector and I(x) is the pixel value at the point x in the image plane.
The principle of the correlation is the following. The interrogation area I ′a is translated by
the vector s and the cross-product of all the pixel of the overlapping surface of Ia and I ′a is
computed. This is repeated for several s smaller than the interrogation area size. The value
of C exhibits a peak at the translation s corresponding to the best match between Ia and I ′a.
This value gives the mean displacement d of the particles in the interrogation area. In practice,
the calculation of C is computationally intense and a Fourier Transform is used in order to
accelerate the process.

4.2.5 Tomoscopy

Tomoscopy is an interesting visualization tool for qualitative flow analysis. With image post-
processing it can also give valuable quantitative information. In tomoscopy experiments, the
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flow is seeded with tracer particles, the plane where the analysis is performed being illuminated
with a laser sheet, like in the PIV method. The light scatter by the smoke particles is then
recorded with a high speed camera. Images of the vortices formed in the experiment without

(a) (b)

Figure 4.16: Tomoscopy results in planes transverse to the free stream (a) at the trailing edge
of the wing, (b) downstream of the model.

splitter plate are shown in figure 4.16. The flow is entrained in the vortices from the left and in
between the vortices. The center of the vortices appears as a black hole where only few particles
are present due to the centrifugal forces that expels them outward.

4.2.6 Effect of the adjustment of the apparatus on the data

Adjustment of the apparatus, which comprises the model and the traversing system, influ-
ences the quality of the seven hole pressure probe measurement. The following parameters lead
to sligh uncertainties :

i- The size τ of the gap between the two parts of the wing. This distance is controlled with
a wedge,

ii- The angle of attack: its value can slightly vary when the apparatus is manipulated,

iii- The origin position of the traversing system in the cartesian coordinate system attached
to the test section. In this study the origin is taken as the intersection of the trailing edge
of the wing y < 0 with the wing tip. The process is controlled visually.

iv- The probe holder. Its adjustment includes angular and longitudinal positioning.

In order to evaluate the influence of these parameters on the measurement obtained with the
seven hole pressure probe, we repeated 10 times the same measure in the same configuration of
the apparatus and derived statistical results. Every time the adjustment of the model and of
the traversing system was restarted from scratch.
Confidence intervals were determined for the configuration without splitter plate at τ = 3%c.

The dispersion of the measures is shown in table 4.2. Assuming a Gaussian dispersion of
the result, 95% of the results are contained within 2σ(A) where A is a given variable. This
investigation does not take into account the uncertainties due to the data-reduction of the
seven-hole pressure probe (see appendix B for details). The results show that the adjustment
of both the model and the probe does not influence greatly the raw data, i.e. the velocity and
the stagnation pressure (see U and Cpi in the table) exhibit small errors. The vortex radius
exhibits however larger uncertainties.
Note that this investigation of the accuracy of the system is valid for the seven hole probe

measurement only. In particular, PIV does not have these errors, as no traversing system is
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variables U Cpi Cps Ωz Γ a
σ(A)/Ā (%) 4 2 14 14 8 6

Table 4.2: Estimation of the uncertainties for various flow variables.

used, but it is affected by others (positioning and adjustment of the laser and cameras for
example).





Part II

Theoretical results





5 Two-dimensional instability of

vortex pairs

In this chapter, we show that the Lamb-Chaplygin dipole (noted LC dipole in chapter 2)
is unstable for zero to very small wavenumbers k = 2π/λ (λ is the wavelength). This 2D
instability will be described through its linear and non-linear evolutions. Existence of such a
2D instability in vortex dipoles remains a matter of controversy so it is useful to make first a
short review of the situation.
Available publications on the stability of counter-rotating vortex pairs may be split in two

categories. A first group is based on a simplified approach of the dipolar flow in which the
influence of one of the two vortices of the dipole on the other is reduced to an imposed strain
field. In a second group the two vortices of the dipole are fully taken into account. In both
groups, the vorticity field is taken either as uniform (patched) or continuous (the vorticity
distribution is everywhere derivable). Some examples of uniform patches are the Rankine and
Kirchhoff vortices. Some examples of continuous solutions are the Lamb-Oseen vortex, the
translating vortex pairs of Pierrehumbert[121], or the LC dipole. The parameters used to define
the geometry of the vortex pair are given in figure 5.1.
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Figure 5.1: Definition of the different parameters used to define a pair of vortices which belong
to the first group.

The works of Moore & Saffman[115] and Robinson & Saffman[129] show that a uniform
vortex patch in a strain field is unstable to 2D perturbations. The instability takes the form of
a m = 1 mode (m being the azimuthal wavenumber) that translates the patch along the axis
of positive strain. The growth rate of the instability is equal to the strain rate ε. There is a
limit for the existence of such strained vortices. Saffman[130] showed that a steady ellipse exists
when the ratio θ = ay/ax < 2.9 where ax and ay are the small and large axis of the ellipse, see
figure 5.1. This condition is equivalent to the condition ε/ω0 < 0.15 with ω0 the vorticity in
the patch. Moore & Saffman[115] noted that the vortices overlap before this limit is reached.
The question of the stability for the second group (vortex pair) was first investigated by

Kamm[81] in the case of uniform patches but the author did not have enough confidence in his
results to publish them. We believe that this failure reveals a real difficulty associated to this
2D instability. In Saffman[130] one reads that "the stability of counter-rotating vortex patches
to infinitesimal 2D disturbances does not seem to have been studied in detail, but it is believed
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that they are stable" (note that Saffman writes "counter-rotating" instead of "co-rotating"
several times). This is however in contradiction with other studies.
First Dritschel[42] considered the stability of the equilibrated opposite signed vortex patches

and eventually proved the existence of a 2D instability. His main results are reproduced in
figure 5.2. The stability of the flow is described in figure 5.2(a) as function of α the area ratio
of the two vortices (equivalent to the ratio of the circulation of the two vortices) and δ the
ratio of the size of the smaller vortex to the external dimension of the dipole (equivalent to the
aspect ratio a/b of the dipole where a is the radius and b the distance between the vortices),
see figure 5.1. The shapes of the steady solutions have been added in the left side of the figure.
We are concerned by the case α = 1 (equilibrated pair). Figure 5.2(a) shows that the flow
becomes unstable for large aspect ratios (thick vortices). The growth rate, as indicated in
Dritschel’s paper, is σr ∼ 0.1. Its non-linear evolution has also been investigated by the author,
see figure 5.2(b). This reveals the occurrence of an asymmetric instability which evacuates some
vorticity from one vortex. This removed vorticity, actually a patch, in turn pulls out vorticity
from the second vortex under the form of thin filaments. This filamentation is then regularized
by a specific numerical filtering technique. In the end, a new steady flow emerges that is similar
to the initial flow. The distinction between linear and non-linear mechanisms was not made by
Dritschel[42]. We will describe quite similar results in the following.
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Figure 5.2: (a) Stability of a counter-rotating vortex patch of uniform vorticity. (b) Non-linear
evolution of the instability in the case α = 1. Taken from Dritschel[42]. See figure 5.1 for the
definition of α and δ.

Saffman & Szeto[131] also commented the stability of the equilibrated pair of opposed patch
vortices with regards to the symmetry of the perturbation about the mid-plane of the vortex pair.
As we will do below, the authors categorized the perturbation in symmetric and antisymmetric
perturbations. Their analysis suggests that the vortex pair is in general only unstable to 2D
antisymmetrical perturbations. Our results will infirm this finding by showing that an instability
exists for both symmetries.
As for the case of non-uniform vorticity distribution this has not been treated in the liter-

ature. We found for instance no work on the stability to 2D perturbations of the Lamb-Oseen
vortex in an external strain field. However Meleshko & van Heijst[112] evoked the concomitant
findings of Lamb and Chaplygin on the LC model claiming that the "Chaplygin dipole is es-
sentially unstable". But no detail nor reference were given in order to understand the meaning
of this unstability.
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To sum up, the 2D instability is proven for the cases of uniform patches of vorticity but not
in the case of non uniform vorticity like the LC dipole or the Lamb-Oseen vortex in a strain
field. As will be seen in the course of this thesis, the effect of the non-uniformity of the vorticity
distribution is important regarding stability. However several examples taken in the literature
exist for which the flow is unstable whatever the type of vorticity distribution. For instance, in
the case of the elliptic instability, see Tsai & Widnall[154], results for both type of distribution
agree. The results of Brion[23] on the Crow instability of a realistic dipole (at a/b = 0.18) also
compares well with Crow’s results[34] based on vortex filaments. As a consequence it is puzzling
that in the numerical simulations of 2D dipoles (see Sipp[136], Lacaze[86]), the authors do not
address the 2D stability of their flow.
The existence of a 2D instability such as that described by Dritschel[42], see figure 5.2, could

play an important role in the 2D decay of a vortex pair. For instance, in the case of the trailing
vortices shed by an airplane, the circulation of the vortices starts to decrease significantly when
the two vortices touch. The regime of vortex overlapping seems important to understand the
decay. The subject is also reminiscent of the difficulty to numerically obtain the LC dipole
by performing two-dimensional numerical simulation initialized by two Lamb-Oseen vortices
although the link between the two vortices was strongly suggested by Sipp[136]. The viscous
evolution in time of the LC dipole was investigated by van Geffen and van Heijst [155] by
numerical simulations. Their work shows the formation of a tail of vorticity and the fact that
the LC dipole (also called the Lamb dipole) is a very stable structure. In particular the 2D
steady flow condition ω = −k2Ψ remains true despite viscous diffusion.
Another important application of the two-dimensional stability of the LC dipole concerns

geophysical flows. Large-scale planetary motions are described by the barotropic vorticity equa-
tion (the Hasegawa-Mima equation in plasma physics) which corresponds to the 2D Euler equa-
tions in a rotating frame. Dipole vortices, also called modons, are evenly relevant to several
other geophysical situations as explained by Holton [68]. In this domain the numerical simula-
tions by Nycander [116] show that an atmospheric westward travelling dipole vortex is unstable.
His article also shows that proofs of the stability of modons given by preceding authors were
wrong.
The chapter is decomposed in the following way. The first section presents the two-

dimensional linear instability and the numerical set-up used to march the linearized equations
in time. The next section describes the instability by means of a normal mode decomposition of
the linearized problem and an eigenvalue search algorithm. Influence of the Reynolds number
and of the axial wavenumber is analyzed. In the third section we describe the non-linear evolu-
tion of the instability. In appendix, first we discuss a tricky aspect of 2D instability in system
of two point vortices. Second, we give a validation of our normal mode calculation against the
result of Billant et al. [19] and present a complete map of the 3D instabilities of the LC dipole
with a description of the corresponding unstable modes.

5.1 Methodology

5.1.1 Base flow

The LC dipole is a solution of the incompressible Euler equations which is described by its
stream function Ψ :
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)

sin θ if r ≥ RLC

(5.1)

We use ReΓ = Γ/ν where Γ is the circulation of each vortex. The value of RLC is set to 1
and ULC = 0.91982. The analytical expression is given in polar coordinate although in practice
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we will use the cartesian coordinates with x spanning the horizontal direction parallel to the
separating line between the two vortices, y the perpendicular direction in the plane and z
the axial direction, see figure 5.3. Both the plane velocity U = (Ux, Uy), the stream lines Ψ
constant (U = ∇ × (Ψez)) and vorticity are presented in this figure. Note that there is a
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Figure 5.3: Lamb-Chaplygin dipole a/b = 0.45. (a) Streamlines in dashed lines and contours of
iso-velocity ‖U‖ (solid line). (b) Iso-contour of axial vorticity Ωz (solid lines: positive values,
dashed lines: negative values).

substantial azimuthal asymmetry of the velocity field around the two vortex centers. We point
out the existence of two types of stagnation points in the flow: two elliptical stagnation point
corresponding to the vortex centers and two hyperbolic stagnation points at the right and left
of the dipole.
Using the two length scales a and b, one gets two time scales: ta = 2πa2/Γ ∼ 0.17, which is

a measure of the rotational period in each vortex, and tb = 2πb2/Γ ∼ 0.85 (therefore tb/ta = 5),
which measures the strain rate induced by each vortex on the other.

5.1.2 Numerical simulation

The numerical part of the work is carried out by a finite element solver freely available
FreeFem++[122]. We will solve the incompressible Navier-Stokes (NS) equations in three dif-
ferent forms: linearized, non-linear with frozen base flow, and fully non-linear. The starting
point is the NS equations in two-dimensions with (U , P ) the velocity and pressure fields:

∇ · U = 0
∂U

∂t
+ U∇U = −∇P +

1

ReΓ

∆U
(5.2)

The linearized velocity field is U +ueikz where (U , P ) is the base flow, (u, p) is the perturbation
(u ¿ U) and k is the axial wavenumber. The perturbation verifies the linearized version of the
NS equations

∇ · u = 0
∂u

∂t
+ U∇u = −u∇U −∇p +

1

ReΓ

∆u
(5.3)

In these equations the base flow does not depend upon time and all the terms in O(u2) have
been ruled out. A convenient approach to study the effect of non-linearities is to keep the O(u2)
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terms in these equations, while maintaining the base flow frozen. The system becomes:

∇ · u = 0
∂u

∂t
+ U∇u = −u∇u − u∇U −∇p +

1

ReΓ

∆u
(5.4)

The three sets of equations, (5.2), (5.3) and (5.4), will be computed in the following. The
time scheme is based on a second order algorithm while the spatial numerical model makes use
of P2 and P1 elements for the velocity and the pressure. The boundary conditions consist in a
Dirichlet condition at the inlet (the left side of the computational domain), symmetry at the top
and bottom boundaries and p − 1/ReΓ∇u · n = 0 at the outlet. The computational domain is
20Rx20R, which was shown to be enough to exclude the possible influence of the image vorticity
by the upper and lower boundaries. A particular attention was dedicated to the mesh. We use a
symmetric mesh about the mid plane of the dipole in order to respect the symmetry of the base
flow. By doing so we are sure that the numerical model does not introduce any dissymmetry.

5.2 Stability analysis

5.2.1 Linearized simulation with white noise

The reaction of the base flow to an initial random noise is shown in figure 5.4 through the
iso-contours of the vorticity ωz of the perturbation at several time steps. The divergence of
the initial random noise being non-zero, the first step of the simulation automatically enforces
incompressibility. The early stage of the evolution which is noisy is not shown.
The first snapshot of the perturbation flow is taken at t = 58.2 (top left of figure 5.4). We

identify a tripolar vorticity structure which is symmetric about the mid plane of the base flow.
Further evolution of the perturbation indicates that the structure evolves in time. It rotates
in each vortex in a direction opposite to the base flow. At t = 90 (see also t = 140) vorticity
separates in two parts, one at the front and the other at the rear of the dipole. Afterwards an
opposite signed tripolar structure reforms and the motion repeats periodically. In addition to
the rotation of this tripolar structure, we observe an ejection of the perturbation vorticity which
forms a tail behind the dipole. This occurs at the end of the transition from a tripolar structure
to its opposite. This trailing vorticity changes sign periodically. Behind the base flow we see this
succession of opposite signed vorticity regions that eventually leave the computational domain.
These observations proves the existence of a 2D global mode in the LC dipole and they suggest
that the linear dynamics comprises two main elements: a dominant unsteady tripolar mode
whose structure changes sign periodically and an evacuation of vorticity at the rear stagnation
point.
Figure 5.5 shows the evolution of the energy of the perturbation with time:

E(t) =

∫

S
‖u‖2dxdy (5.5)

where S is the computational domain. The time steps considered in the snapshots of figure 5.4
are depicted in figure 5.5. The frequency σ = σr + iσi of the instability with σr the growth rate
and σi the time frequency may be determined from this figure by considering, for instance, the
time duration between two local minima of the curve. This gives

σi =
π

∆t

σr =
1

2∆t
ln

‖u(t + ∆t)‖2

‖u(t)‖2

(5.6)

Applying this relations, we get σ = 0.21 + i0.32 (σ being normalized on t−1

b ).
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Figure 5.4: Time sequence showing the evolution of the LC dipole subjected to a white noise
perturbation imposed to the base flow at k = 0. A global instability develops with a periodi-
cally evolving structure. Time is non-dimensionalized by ta and subscript refers to figure 5.5.
Contours show perturbation vorticity ωz. The same values of the contour levels are used for all
snapshots in order to capture the low level vorticity shed in the tail of the dipole. The growth
of the perturbation explains the apparition of blanked regions within the dipole.

5.2.2 Normal mode approach

To further investigate the instability we perform a classical normal mode decomposition
u = ûeσt in which û is the global mode . Introducing this form into the linearized equation (5.3)
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Figure 5.5: Energy E(t) = ‖u‖2 of the perturbation as a function of time non-dimensionalized
by ta (top axis) and tb (bottom axis). Elements used to calculate the frequency σ of the
unsteadiness are also shown. Case k = 0.

and using a matrix format gives the following problem

σBû = Aû (5.7)

The solution to this problem is given by a shift and invert technique based on an Arnoldi
decomposition and a LU inversion. Determination of the unstable mode by this method is
accomplished by setting the shift at the value of σ given by the previous linearized simulation.
The axial vorticity of the real and imaginary parts of the mode are shown in figure 5.6. The
evolution of the perturbation is a linear combination of these two components.

u = R[(ûR + iûI)(cos(σit + kz) + isin(σit + kz))eσrt] (5.8)

where R denotes the real part. There is a good agreement between the frequency σ found by the
normal mode decomposition compared to that determined above but the global mode approach
is more accurate since no time scheme is involved. It is also faster as there is no need to wait
for the appearance of the large time dynamics in the linearized simulation.

(a) (b)

Figure 5.6: Vorticity ωz of the unstable mode calculated by the Arnoldi method. (a) real part
ωR. (b) imaginary part ωI . Case k = 0. The eigenvalue of the mode is σ = 0.23 + i0.31
(normalized on t−1

b . The streamline Ψ = 0 of the base flow is indicated by the thick line.
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It should be noted here that the result of the calculation produces many spurious modes
with positive growth rate.

5.2.3 Comparison of the growth rate with previous work

We can compare our results to those obtained by Robinson[129] and Dritschel[42]. Remem-
ber that these two authors used uniform patches of vorticity in a strain field to demonstrate
their results. Robinson[129] used one elliptical patch in a strain field and Dritschel[42] used a
pair of opposite patches. Robinson[129] gives the growth rate of the 2D instability for θ (see
figure 5.1) varying between 1.1 and 2.9 while Dritschel[42] gives the marginal growth rate as a
function of α and δ.

For comparison with Robinson[129], we need to assimilate the two vortices which compose
the LC dipole with ellipses defined by radii ax and ay along respectively the x and y axis,
defined by

a2
x =

∫

D
(x − xc)

2 Ωzdxdy

Γ

a2
y =

∫

D
(y − yc)

2 Ωzdxdy

Γ

(5.9)

Doing so gives θLC = ay/ax ∼ 1.6. For this value of θ the instability found by Robinson[129] is
characterized by σRtb ∼ 0.5. The comparison with Dritschel[42] is done at α = 1 and δ = 0.45.
For these parameters the dipole of Dritschel[42] is stable. The marginal instability starts at
δ = 0.55 and equals σRtb = 0.5 at maximum. We see that this value agrees well with that of
Robinson[129].

In the present case, σRtb = 0.2 which is notably lower than the value found by the previous
authors. The difference may be attributed to the difference in base flow (patch versus distributed
vorticity) and to the effect of viscosity.

5.2.4 Effect of k and Re

Figure 5.7(a) presents the variation of the growth rate of the instability with the axial
wavenumber. It proves that the range 0 ≤ k ≤ 0.5 is unstable, the greatest amplification
occurring for k = 0. As a consequence the 2D instability belongs to a family of unstable modes
in the region of very long wavelengths.
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Figure 5.7: Growth rate σ = σR + iσI of the instability normalized on t−1

b . (a) Effect of k. (b)
Effect of Re.

The effect of the viscosity upon the growth rate and the frequency is depicted in figure 5.7(b).
Interestingly, the growth rate decreases with decreasing viscosity. This suggests that the two-
dimensional instability is viscous. The resolution at higher values of the Reynolds number would
require a different numerical method therefore we could not know if an asymptote is reached in



5.2 Stability analysis 67

the limit of inviscid flow. It is also observed that the frequency of the mode decreases with the
Reynolds number.

5.2.5 Discussion

In this part we explore the physics of the instability described above. The 2D instability
induces the growing displacement of the vortices of the pair about their initial positions. This
dynamics is supported by displacement modes corresponding to |m| = 1 and n = 0 (m is the
azimuthal wavenumber and n the number of radial nodes of the vorticity in the radial direction)
Kelvin waves at k = 0 in each vortex.

The dynamics of Kelvin waves in single vortices has been largely documented in the past,
see Saffman[130] for the theory. In a viscous medium Kelvin waves correspond to decaying oscil-
lations of the vortex core. In the presence of an external strain such as the one induced by each
vortex upon the other in a pair of vortices, such oscillations become unstable for several ranges
of wavenumbers. This is the triadic resonance mechanism that explains the short-wavelength
instabilities in vortex pairs, see Sipp[135], Lacaze[86], Billant[19] and Robinson[129]), and the
Crow instability, see Crow[34] and Bristol[24]. The resonance between the displacement mode
in the vortices and the strain is the basis of the present 2D instability as we will now see.

A preliminary remark about the 2D instability concerns the question of the conservation of
the impulse of the vortices. On a general basis, this principle prevents the displacement of an
isolated vortex, which may seem in contradiction with the physics of the 2D instability. However
the displacement mode having a non-zero self-rotation, the mean position of the vortices is not
changed by this instability. This situation is illustrated in figure 5.8. The initial disturbed
position of the vortices corresponds to the smallest circle. The growth of the perturbation is
represented by an enlargement of the circle. The vortices move in the same direction along y
and in an opposite direction along x. This respects the conservation of the impulse

∫

D

yΩzdxdy = 0 (5.10)

Figure 5.8: Schematic view of the movement of the vortices perturbed by the 2D instability.

Importantly one notes in figure 5.6 that the upper and lower regions of the perturbation
vorticity are squeezed against the dividing streamline of the dipole. As a consequence these
regions are characterized by large vorticity gradient normal to the streamline. Whereas the
latter is impermeable in the inviscid limit, viscosity allows a diffusion of the vorticity outside
the Kelvin oval. This is clearly observed in figure 5.4. Afterwards, vorticity is entrained by
the external flow from the sides of the dipole to the rear and downstream towards the limit of
the computational domain. This loss of vorticity by viscous detrainment occurs only when the
displacement mode is oriented in the direction of strain (see instants t1−3 and t6−8 in figure 5.4)
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because there, the strain displaces the vorticity outward and intensifies its gradients. On the
contrary when the mode is in the direction where it is subjected to a compression (see instants
t4−5 and t9−10 in figure 5.4), the vorticity is drawn inward and the gradients are decreased.
There, expulsion of vorticity is stopped.

This viscous depletion of the mode may explain the rotation of the 2D instability. This
rotation is in contradiction with the modal dynamics of the Rankine vortex in which the dis-
placement mode m = 1, n = 0 does not rotate at k = 0, see Saffman[130]. This displacement
mode is an equilibrium solution of the linear dynamics (in the inviscid limit) that results from
the competition of the Coriolis, pressure, and centrifugal forces in the core of the Rankine vor-
tex. We have seen that it is this same mode that participates in the 2D instability of the LC
dipole. But unlike the Rankine vortex, in the vortices of the LC dipole, there is the additional
action of the viscosity at the upper and lower downstream regions of the limiting streamline
of the dipole that modifies the previous equilibrium. This additional effect of the viscosity can
be modelled by a tangential force acting at the boundaries of the vortex core that induces the
rotation of the displacement mode. The evolution of the frequency of the 2D instability with
the Reynolds number in figure 5.7(b) sustains this explanation by showing that the rotation
of the mode decreases with decreasing viscosity. In the inviscid limit it could happen that the
mode does not rotate anymore, a situation that we cannot confirm due to computational lim-
itations. Incidentally the instability also becomes weaker (its growth rate decreases). In fact
with less viscosity, less depletion of vorticity occurs at the dividing streamline and the period
during which the mode remains in the strain and in the compression regions tend to balance
each others. Therefore a viscosity decrease induces a decay of the mode and the instability may
happen to disappear in the limit of large Reynolds number. The energy curve of the pertur-
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Figure 5.9: (a) Vorticity ωz of the symmetric mode at k = 0. The growth rate is σR = 0.016t−1

b .
(b) Growth rate σR normalized on t−1

b versus ReΓ.

bation depicted in figure 5.5 reflects the mechanism just described. The growth lasts longer
than the decrease and the expulsion of vorticity occurs when the perturbation is in the strain.
The tail of vorticity that forms downstream of the dipole changes sign periodically. The above
described instability would correspond to an interesting mechanism that dynamically reduces
the circulation contained in the vortices by viscous depletion. The time scale of this instability
being tb, and that of the viscous diffusion tν = 2πa2/ν, the ratio of the two equals a2/b2ReΓ

which shows that at moderate to high Reynolds number, the decrease of the circulation by the
instability is much higher than by viscous diffusion. Our analysis suggests that the instability
introduces a new length scale for the action of the viscosity, which is the width of the shear layer
of the mode in the vicinity of the dividing streamline. This length being much smaller than a,
viscosity is allowed to act on a much smaller time scale. This suggests that the mechanism of
the 2D instability is potentially interesting for the decay of vortex pairs.
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5.2.6 Symmetric instability

The existence of a symmetric displacement mode is a matter of interrogation. The arguments
given above to explain the two-dimensional instability do not exclude this possibility. The
linear simulation described above selects the most amplified mode which is the antisymmetric
displacement mode. In fact, an exploration of the symmetric case proves that such a mode
exists. Its vorticity is depicted in figure 5.9(a). This mode is stationary. Its growth rate is
much smaller than the antisymmetric one (see figure 5.7(a)) but it increases with the Reynolds
number, see figure 5.9(b). Unlike the antisymmetric instability, its nature is hence inviscid.

5.3 Non-linear evolution

5.3.1 Fully non-linear

The non-linear evolution of the 2D antisymmetric instability is now investigated. The initial
condition consists in the superposition of the LC dipole with the 2D instability mode. The
ratio of the energy of the perturbation E to the energy of the base flow Eb is controlled by the
parameter ε′ = E/Eb. We performed three simulations, at ε′ = 0, ε′ = 0.05 and ε′ = 0.15. On
the account that the energy of the perturbation in the second simulation is small, we compare it
with the first simulation at ε′ = 0 by looking at the difference between the two vorticity fields at
every time step. The results of this comparison are shown in figure 5.10. On the left frame we
show two snapshots of the vorticity fields for ε′ = 0 (top) and ε′ = 0.05 (bottom). On the right
frame we show the vorticity field (top) and the energy (bottom) of the perturbation. The third
simulation allows us to investigate the non-linear saturation of the instability. The evolution of
the vorticity field of the flow for this case is plotted in figure 5.11.
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Figure 5.10: Non-linear evolution of the perturbed LC dipole. (a) Vorticity field of the flow at
ε′ = 0 and (b) ε′ = 0.05. (c) Evolution of the perturbation in terms of vorticity and (d) energy.
The perturbation is taken as the difference between the flows at ε′ = 0 and ε′ = 0.05.

Figure 5.10 on the left shows that the effect of the perturbation is to slow down the drifting
motion of the dipole and to make it slightly rotate. Difference between these two flows, see
on the right frame (d), shows that the energy of the perturbation increases at first and then
saturates. The form and duration of the growth is in qualitative accordance with the linear
dynamics described before but the growth rate is notably smaller than the linear one. The
evolution of the vorticity field of the perturbation exhibits also a different behavior. These
observations suggest that the decrease of the energy after t = 40 is not the consequence of
the periodicity of the linear instability but rather that of a non-linear disruption of the linear
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Figure 5.11: Time sequence of the evolution of the flow at ε′ = 0.15 and k = 0. Contours of the
vorticity ωz. Time is given in ta units.

dynamics. To support this view the snapshots of the perturbation vorticity field in (c) show
that, unlike the linear dynamics, the tripolar structure moves in a solid body rotation that
we suggest is the result of the entrainment of the outer part of the vorticity (negative) by the
inner part (positive). This entrainment is the consequence of the non-linear term (u · ∇)u

representing the self-convection of the perturbation. This effect does not exist in the linear
dynamics as it is supposed small and discarded from the equations. The non-linear simulation
shows that this term rapidly becomes non negligible.

The substraction method cannot be used anymore when the two flows are too different.
Therefore we investigate the further evolution of this non-linear dynamics by looking at the
simulation at ε′ = 0.15 in figure 5.11. The first snapshot of the flow shows that even though the
energy of the perturbation is small, the total flow is significantly marked by the instability due
to the offset of the vorticity maximum in the unstable mode compared to the base flow. This
creates an isolated zone of vorticity at the bottom of the dipole that is subsequently displaced
along the bottom boundary of the dipole and finally ejected. We observe that the entire dipole
rotates simultaneously to this ejection, which is mandatory to conserve angular momentum of
the flow. Note that the rotation of the dipole depends upon the phase of the initial unstable
mode. The final snapshot of the flow shows the ejected vorticity downstream of the dipole.
Interestingly, if we compare the relation Ψ = f (Ωz) (not shown), we see that the dipole has
regained its original LC dipole shape.

The sum of these non-linear simulations show that the 2D instability does not survive to
the non-linearities but modifies significantly the flow. Concerning the perturbation, we have
seen that the linear mechanism is rapidly stopped by the non-linear term corresponding to the
convection of the perturbation by itself and that the perturbation is then ejected out of the
dipole. Concerning the LC dipole, we have seen that disturbing it with the unstable mode
induces its rotation in response to the ejection of angular momentum. The identification of
this behavior is important because it means that in a turbulent environment the LC dipole will
continuously be moved by the turbulent structures even if they are weak.
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5.3.2 Frozen base flow

To verify this scenario we performed a non-linear simulation initialized by the LC dipole
perturbed by a white noise that models turbulence. In order to reduce the computational cost of
the simulation, we adopt the frozen base flow model described by the set of equations (5.4). This
means that the perturbation evolves non-linearly on a non-diffusing base flow. The simulation
is performed with ε′ = 0.005 hence simulating weak turbulence. The evolution of the total
flow is plotted in figure 5.12 and the evolution of the energy of the perturbation is shown in
figure 5.13.

t=3 t=18.5 t=34
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Figure 5.12: Time sequence of the contours of the total vorticity showing the non-linear evolution
of the flow when the frozen base flow is disturbed with the 2D instability mode and ε′ = 0.005.
Time is given in ta units. Case k = 0.

The first stage of the evolution agrees well with the linear dynamics. The growth of the
perturbation is linear and the dipole is seen to oscillate in rotation and to leave vorticity at its
left boundary by viscous perspiration through the limiting streamline. However the frequency
and the growth rate are slightly smaller than linearly predicted, which means, as expected from
the previous non-linear study, that non-linearities modifies the linear dynamics. After t = 70
the energy reaches an asymptote and the dipole is seen to rotate permanently, thus indicating
the non-linear rotation of the perturbation and its ejection which is visible downstream of the
dipole.
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Figure 5.13: Energy of the perturbation as a function of time in ta units for the non-linear with
frozen base flow simulation at k = 0.
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Conclusion

In this chapter we have investigated the 2D instability of the LC dipole. In the introduction
we first reviewed the existing literature. It emerged that the existence of this instability had
not received much attention since its demonstration by Robinson[129]. More importantly there
seemed to be a misunderstanding pertaining to the different models used to investigate the sta-
bility of counter-rotating vortex pairs that resulted in the ignorance of this instability by several
authors. This review hence helped clarify the knowledge in this field. We then investigated the
linear evolution of the 2D instability in the LC dipole by means of a normal mode approach.
This instability takes the form of a displacement mode in each vortex of the dipole. It was
shown to belong to a thin band of unstable modes in the region of ultra long wavelengths. Our
analysis suggests that the instability mechanism is monitored by viscosity which moves vortic-
ity from the inside of the dipole to the outside by diffusion through the limiting streamline.
Non-linearly, the instability is seen to grow in the LC dipole and to be quickly disrupted by
it self-rotation before being ejected outside of the dipole in the form of trailing vorticity. By
conservation of angular momentum, this disruption entrains the rotation of the entire dipole.
This suggests that the 2D instability might play an important role in the dynamics of vortex
pairs in turbulent flows. Therefore it would be interesting for future investigations to look for
experimental or real life (in geophysical flows for instance) manifestation of this instability.

Appendix

Note on the dynamics of two point vortices

It is useful to make mention here to a specificity of the flow formed by two point vortices.
Systems of several points vortices becomes chaotic when there are more than three vortices, see
Moffatt[113]. In particular, systems of two point vortices are intrinsically stable. Surprisingly
we show in the following that the system of two point vortices is linearly unstable. In order to
do so, we first consider a point vortex placed at the origin. The velocity of a particle at a point
x, y is

ux = −
Γy

2π(x2 + y2)

uy =
Γx

2π(x2 + y2)

(5.11)

Now we assume that the particle is in (x, 0) and it is slightly displaced by the translation
(δx, δy). The velocity at the new position is obtained by linearizing the relations (5.11).

ux(x + δx, δy) = −εδy
uy(x + δx, δy) = −εδx

(5.12)

where ε = Γ/2πx2 is the rate of strain imposed by the vortex at the position of the parti-
cle. Considering a rotation of 45o of the axis and the following variables η± = δx ± δy, it is
straightforward to see that η± = η0e

±εt. Therefore the position of the particle is unstable and
its motion will grow with a rate ε dictated by the strain imposed by the vortex.

There is, in fact, no contradiction between this linear instability and the stable character of
the system of two point vortices. This stability means that the the linear instability does not
survive non-linearly. The displacement of one vortex of the pair only rearranges the direction
of travel of the pair, but does not disorganize the system, unlike systems of three or more point
vortex. For this reason the flow is trivially stable. This tricky pattern is interesting because it
highlights the phenomenological difficulties pertaining to 2D flows.
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Figure 5.14: Validation of our result with the data of Billant[19] concerning the value of the
growth rate σR normalized on t−1
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present results.

Validation

The calculation were first verified against the results of Billant[19] for Re = 2732 which
corresponds to Reb = 400 the Reynolds number used by Billant[19]. We see that the agreement
between the two spectra is very good. The figure contains both antisymmetric (ωz(x,−y) =
ωz(x, y) ) and symmetric (ωz(x,−y) = −ωz(x, y)) modes.
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Figure 5.15: Three-dimensional spectrum of the LC dipole: growth rate normalized on t−1

b

as a function of the axial wavenumber. (a) Antisymmetric modes ωz(x,−y) = ωz(x, y). (b)
Symmetric modes ωz(x,−y) = −ωz(x, y).

Figures 5.15(a) and 5.15(b) show the full map of 3D antisymmetric and symmetric instabil-
ities of the LC dipole at Re = 4000. The matrix method presented in 5.1.2 is used over a range
of guess values that covers a large part of the parameter space σ of interest. These calculations
were achieved on a half mesh compared to the mesh used in the core of the study in order to
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Figure 5.16: Antisymmetric modes. Contours of axial perturbation vorticity ωz. The light grey
lines show the streamlines of the base flow.

reduce the computational cost of the investigation. The mesh thus comprises only the top vor-
tex and models the influence of the bottom one by a symmetry or an antisymmetry boundary
condition depending on the type of mode that is looked for. The results were compared to
the results obtained with the fine mesh used in the core of the study for several modes which
showed good agreement.
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Figure 5.17: Antisymmetric modes. Contours of axial perturbation vorticity ωz.

The matrix method allows the calculation of a large part of the spectrum, including the
modes that are not the most unstable. This is not the case of the method based on linearized
simulations that was used by Billant[19] and in 5.2.1 since it gives only the most unstable mode.
The matrix approach is also interesting when two equally amplified modes exist. It happens at
k = 2 in the antisymmetric subset (see figure 5.15(a)). It is possible that such a situation makes
linearized simulations unstable and prevent the calculation of the modes by such a method.

Description of the modes

The leading modes of the branches shown in the spectra 5.15(a) and 5.15(b) are depicted
in figures 5.16, 5.17, 5.18 and 5.19 in terms of the axial perturbation vorticity ωz. Figures 5.16
and 5.17 represents antisymmetric modes and figures 5.18 and 5.19 represents symmetric modes.
Each mode is numbered according to the numbering adopted in the plots of the spectra 5.15.

The spectra 5.15 contain modes that are oscillatory and modes that are not. Non-oscillatory
modes are contained in branches 4, 5, 6, 7 and 8 for the antisymmetric subset and 9, 11, 12,
13 and 14 for the symmetric subset. The branch 9 corresponds to the Crow instability (see
Crow[34]). The other branches exhibit modes that resemble to the modes of the Widnall
instability (see Tsai[154] and Sipp[135]). Two types of distribution can be distinguished among
these modes. Modes that are localized in the core of the vorticity of the dipole and modes that
span the entire region of the dipole, with vorticity that extends up to the limiting streamline of
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Figure 5.18: Symmetric modes. Contours of axial perturbation vorticity ωz.
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Figure 5.19: Symmetric modes. Contours of axial perturbation vorticity ωz.

the recirculating base flow. The radial structure of these modes, characterized by n the number
of the zeros of the axial vorticity in the radial direction, exhibits increasing value with increasing
k.

The oscillatory modes are contained in branches 1,2 and 3 for the antisymmetric subset and
10 for the symmetric subset. Billant[19] was the first to find these modes. The branch of the
2D instability has a small temporal frequency but branches 2,3 and 10 have large frequencies.
The instability in these cases rotates more rapidly than the base flow (in absolute value of the
rotational velocity). This is very surprising from the viewpoint of the oscillating modes of an
isolated vortex for this azimuthal periodicity (m = 0 in the core of the vortex and m = 2
in the outer region) because these high oscillation rates are generally observed for large axial
wavenumber ka À 1, see the case of the Rankine vortex already discussed and presented by
Saffman[130], whereas here they are seen at ka ∼ 1.





6 Optimal perturbations in vortex

pairs

This chapter deals with linear mechanisms of energy growth in counter-rotating vortex
pairs with axial flow. It is based on the calculation of the optimal linear perturbations of the
flow depending on the perturbation wavenumber k and the swirl number q (see (2.4)). The
method relies on an optimization code described in chapter 3, which itself proceeds through
iterative simulations of the direct and adjoint linearized equations, (3.15) and (3.18). Results
of the optimal perturbation analysis are discussed in the light of those obtained by solving two
different eigenvalue problems corresponding to the dynamics at short and large times.

Previous works in the field of transient growth analysis of vortex flows concern the isolated
Lamb-Oseen (LO) and the Batchelor vortex. Antkowiak[5][6] and Pradeep[124] investigated the
mechanisms of transient growth in the LO vortex. It was already said in chapter 2 that the
LO vortex is exponentially stable. However these authors showed that this vortex exhibits a
potential for transient energy growth due to the non-normality of the linearized Navier-Stokes
equations. The effect of non-normality is detailed in Schmid[133]. Perturbations characterized
by |m| = 1 (m being the azimuthal wavenumber of the perturbation) exhibit the strongest
transient growth over all other m. Two mechanisms of transient growth were identified. The
first one is a shearing mechanism which is an analog of the Orr mechanism in plane shear flows.
In the case of the isolated vortex, it takes the form of thin spirals coiled at the edge of the vortex
core. The uncoiling of these spirals leads to transient growth of energy. The second mechanism
applies for 3D perturbations and corresponds to the tilting and stretching of radial vorticity into
the tangential direction by the basic differential rotation. This mechanism leads subsequently to
induction of a core dynamics (in the form of Kelvin waves) by the tangential vorticity located in
the potential region of the vortex. An interesting characteristic of this mechanism is a selection
of the radius of the initial perturbation by a resonant effect between (i) the rotation of the
base flow and (ii) the angular rotation speed of the Kelvin wave induced in the last stage of
the transient dynamics. Transient 3D perturbation result from the combination of the shearing
and induction mechanisms. In the first mechanism, growth arrest is the consequence of the
uncoiling of the initial spirals of vorticity while in the second mechanism, it is the consequence
of the stability of the core dynamics. Viscosity in both cases reduces the strength of transient
growth.

Heaton[65] investigated transient growth in the Batchelor vortex and its possible connection
with vortex breakdown. The author showed that the mechanisms at work are similar to those
governing transient growth in the LO vortex. He observed resonance for |m| = 1 perturba-
tions and showed that stronger growth is possible in the presence of axial flow. Heaton[64] also
investigated the competition between transient growth and the effect of viscous center modes
(identified by Fabre[44]) at large Reynolds number and large swirl. Transient growth is domi-
nated by center modes instabilities at large time. The transition towards this regime leads to
higher levels of energy contained in the center modes. In the present case of vortex pairs, we
will also have to balance the effects of transient growth and those of instabilities.

Velocity gradients in vortex pairs exhibit several regions of interest where energy growth is
possible. These comprise the vortex centers where each vortex imposes a finite strain upon the



78 Optimal perturbations in vortex pairs

other, causing cooperative instabilities by resonance with Kelvin waves, the region surrounding
the hyperbolic stagnation points upstream and downstream of the Kelvin oval (the words "up-
stream" and "downstream" refer to the drifting motion of the vortex), and the vortex core where
differential rotation and axial velocity can contribute to perturbation growth. Understanding
cooperation between these ingredients for energy growth is the main objective of this study.

The organization of the chapter is the following. The first section is dedicated to the
methods used for the optimal perturbation analysis and details the characteristics of the vortex
pair. Note that more details on these topics can be found in chapter 3 and that this short section
is included here for the overall coherence of the chapter. The next section details the results
obtained in the case of the vortex pair without axial flow. Analysis of the results are carried out
by solving eigenvalue problems and looking at the basic velocity gradients. The effect of axial
flow is then discussed. In particular we suggest the existence of a general resonant effect for
optimal perturbation at large time. Concluding remarks are given in the last section. Note that
the part of this work corresponding to the optimization of the Crow instability is the object of
a dedicated publication[23] that is given in appendix F.

6.1 Method

6.1.1 Steady state

The steady state used in the perturbation analysis is a pair of two counter-rotating vortices
of equal strength with axial flow in their cores. A description of this flow is given in figure 6.1.
Figure 6.1(a) shows the vorticity field, along with the streamlines and a vertical profile of
the axial velocity. Figure 6.1(b) shows a schematic view and details important designations,
like the elliptic and hyperbolic stagnation points, the Kelvin oval that separates the internal
recirculating flow and the external flow and the symmetry plane of the pair. The velocity field
is noted (Ux, Uy, Uz) in cartesian coordinates x, y, z. Note that due to the velocity induction
of each vortex upon the other, the vortex pair moves in the direction −x. In the following,
we work in the reference frame attached to the vortex pair. The vortex pair is obtained by
numerical simulations started from a flow composed of two Batchelor vortices (see chapter 3 for
details).

The vortex pair is characterized by the radius a (see (3.4)) of the vortices, their circulation
±Γ, the distance b (see (3.3)) between the vortex centers and the swirl number q of the flow in
the cores. The aspect ratio of the vortex pair is a/b. The center of the top vortex is denoted
(xc, yc) (see (3.1)). In the following a/b = 0.25, if not otherwise stated. Recall that the swirl
number defined in (2.4) reads

q =
Γ

2πa∆Uz

(6.1)

The axial flow Uz is concentrated in the vortex cores, as depicted in figure 6.1(a). The effect
of viscosity is controlled by the Reynolds number ReΓ = Γ/ν (already given in (3.5)). Unless
otherwise stated ReΓ = 4000 throughout this chapter. The two length scales of the problem
are a and b. Time is normalized on tb (see (2.27)), and distances are normalized on a. We will
use ta (given in (3.13)) to normalize the strain rate and frequencies.

6.1.2 Perturbations

Equations

We suppose that the flow departs little from the base flow. We hence consider a perturbation
field in the form u = (iux, iuy, uz, ip)eikz + c.c. where c.c. denotes the complex conjugate and
k is the axial wavenumber. The corresponding vorticity field is (ωx, ωy, iωz) with

ωx =
∂uz

∂y
+ kuy , ωy = −kux −

∂uz

∂y
, ωz =

∂uy

∂x
−

∂ux

∂y
(6.2)
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Figure 6.1: Base flow a/b = 0.25 in a plane z = constant as a function of x and y. (a) Color
contours represent the axial vorticity Ωz. The (bottom) top vortex turns (anti) clockwise. Plain
and dashed lines represent streamlines (dashed lines correspond to negative Ψ). Dotted dashed
lines correspond to the axial velocity profile Uz. Note that, for illustration purpose, it is depicted
in the x, y plane, although it is directed along the z axis. (b) Schematic view of the flow.

Perturbations are split into symmetric (ωz(x,−y) = −ωz(x, y)) and antisymmetric (ωz(x,−y) =
ωz(x, y)) perturbations. The perturbations must verify the linearized Navier-Stokes equations

∂u

∂t
+ U · ∇u = −u · ∇U −∇p +

1

ReΓ

∆u (6.3)

∇ · u = 0 (6.4)

In these equations the base flow does not depend on time. This approach is supported by the
fact that perturbations evolve on a time scale of the order of tb whereas the base flow evolves by
viscous diffusion on a time scale tν (see (3.10)). The ratio of the two time scales equals a2/b2Re
which is a large value since ReΓ = 4000 and a/b = O(0.1). The linearized equations can now
be written in a matrix format

Au = B
∂u

∂t
(6.5)

with A and B given in (3.36) and (3.37).

Normal modes

Perturbations are decomposed into a set of normal modes in the following way

u =
∑

j

αj ûj eσj t + c.c. (6.6)

In this expression, ûj is the normal mode and σj a complex value associated to the eigenvalue
problem

Aûj = σjBûj (6.7)

The real part σR of the eigenvalue σ is the growth rate of the mode and its imaginary part σI

is its temporal frequency. Coefficients αj in (6.6) are defined by

αj =
(

û
+

j , Bu0

)

(6.8)

Here we make use of the scalar product (u1,u2) =

∫

S

u
∗

1Bu2dS (∗ denoting the complex con-

jugate and S the computational domain) and û
+

j denotes adjoint modes, solution of the adjoint
eigenvalue problem

A+
û

+ = σ+Bû
+ (6.9)
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The decomposition is hence achieved by a projection of the initial perturbation on the set of

direct modes. The adjoint modes are normalized following
(

û
+

j , Bûj

)

= 1. Adjoint eigenvalues

are the complex conjugate of the direct eigenvalues, meaning that σ+ = σ∗.

6.1.3 Optimal perturbation

In an incompressible open flow with no heat transfer, the energy of the flow varies through
the kinetic energy of the perturbations, given by

E(t) =

∫

S

u
∗Bu dS (6.10)

In this chapter we analyze the possibility of transient growth in the vortex pair as a function
of the wavenumber k and the swirl number q. To this end, we look for initial perturbations u0

that exhibit maximum energy amplification between t = 0 and topt. In mathematical terms,
this can be expressed as follows

max
u0

G(u0; topt, k, q) (6.11)

where

G(t) =
E(t)

E(0)
(6.12)

is the energy gain. This is a classical optimization problem that we solve by a gradient method.
The recursive routine starts from an arbitrary u0 and iterates until convergence. We observed
that the number of iterations for convergence increases when topt decreases. Instead of spanning
the entire parameter space (topt, k, q), which would be computationally intense, we focus on a
limited range of k at q = ∞ and on a few values of k at q = 2, in order to investigate the effect
of axial flow. The value of topt is varied up to 6tb.

6.2 Results

6.2.1 2D vortex pair

(a) Antisymmetrical perturbations (b) Symmetrical perturbations

Figure 6.2: Contour levels of optimal amplification G as a function of k and t in the (a)
antisymmetric and (b) symmetric cases. The lower axis shows time normalized on tb while the
upper axis shows time normalized on ta, and k is normalized on a−1. Note that iso-contour
levels follow an exponential distribution.

In figure 6.2 we show the map of optimal gains as a function of k and topt in the case
q = ∞ for symmetric and antisymmetric perturbations. These results were obtained by meshing
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uniformly the parameter space (topt, k) with ∆k = 0.2 for 0.1 < k < 2.5 and ∆topt = 0.8 for
0.4 < topt < 6. Overall the map shows increasing energy amplification with time, except in
the region 0.5 < k < 1.5 where energy increases at first and is then constant or decreasing
depending on the symmetry. Maximum amplification is obtained at large time in the region of
1.5 < k < 2.5 for both symmetries and 0 < k < 0.5 for symmetric perturbations. This result is
not surprising since the vortex pair is exponentially unstable. As we shall see in the following
part, the top region of large growth corresponds to the Widnall instability and the bottom one
to the Crow instability. The figure shows that the antisymmetric Widnall instability is more
amplified than its symmetric counter part.

The influence of these instabilities on the energy growth dominates for topt > 2. At earlier
optimization times, the evolution of the energy amplification is seen to evolve little with k. We
observe that the amplification is slower in the region 0.5 < k < 1 for both symmetries. In the
following we detail first the exponential instabilities and then the optimal perturbations in the
case of the Crow and Widnall instabilities, as well as in the stable case k = 1.

Exponential instabilities
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Figure 6.3: Growth rate σR normalized on t−1

b of the unstable mode of the vortex without axial
flow versus k for three different values of a/b. Band 1 corresponds to the Crow instability and
bands 2 and 3 to the first and second Widnall instabilities. (a) Crow and Widnall instabilities
with k normalized on a−1. (b) Crow instability with k normalized on b−1.

The unstable modes of Widnall and Crow are calculated by the normal mode approach
presented in chapter 3. Figure 6.3(a) shows the growth rate of these instabilities as a function
of the axial wavenumber k for three values of a/b. The first band of instability, denoted 1,
corresponds to the Crow instability. The second one corresponds to the first Widnall instabil-
ities, whose maximum is attained at k = 2.26 and the third band corresponds to the second
Widnall instability, whose maximum is at k = 3.8. These maxima agree well with known results
(Sipp[135]) and with figure 6.2. Note that σI = 0 for these instabilities, which means that they
are stationary.

The Crow instability is only slightly modified when the aspect ratio is increased. Fig-
ure 6.3(b) shows that the range of wavelengths of the Crow instability does not change with k
when k is normalized on b−1 (recall that b characterizes the length scale of these instabilities,
see Fabre[45]). We see that the maximum growth rate is always obtained at kb = 1, which cor-
responds to ka = a/b. As expected, we observe that this maximum increases steadily with a/b
over the range investigated. Concerning the Widnall instabilities, we see that the main effect
of the increasing aspect ratio is to widen the range of unstable wavelengths. In particular it is
interesting to note that at a/b = 0.3 no cut-off occurs between the first and the second Widnall
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instabilities. This shows that instabilities occur over a wider range of wavelengths when the
aspect ratio is increased. This was already apparent in the stability of the LC dipole, which is
unstable over a wide range of wavelengths (see chapter 5).

Some unexplained variations are observed between the curves corresponding to different
values of a/b, in particular in the case of the Crow instability where the shape of the curve
changes significantly. In addition the evolution of the maximum of amplification of the Widnall
instability is non monotonous with a/b. As will be proven later on, with the satisfactory
agreement between our results and those of Lacaze[86], the mesh convergence of the results
is good and thus does not explain these variations. Instead we suggest that it is the method
used to obtain the vortex pair at a given a/b that is at stake. Indeed the process (described in
chapter 3) that involves the non-linear simulations of the base flow, and the completion of an
adaptation period, is complex. However no further investigation was achieved to validate this
hypothesis.

An additional remark concerns the antisymmetric 2D instability discussed in chapter 5. It is
this instability that is responsible for the strong amplification observed in the vicinity of k = 0
in the antisymmetric case in figure 6.2. The form of the related final perturbation supports this
finding. However we do not discuss this instability in the following.

The axial vorticity ωz of the perturbation of the Crow and Widnall instabilities are depicted
in figure 6.4 in the symmetric case. These instabilities correspond to |m| = 1 Kelvin modes.

(a) k = 0.2 (b) k = 2.26 S (c) k = 3.8 S

Figure 6.4: Axial vorticity ωz of the Crow and Widnall instabilities at a/b = 0.25 and q = ∞.
Dashed lines indicate negative vorticity. A few streamlines of the base flow are indicated for
clarity. k is normalized on a−1.

The Kelvin mode that participates in the Crow instability is characterized by n = 0 where n is
the number of radial nodes in the vorticity distribution. The value of n is 1 for the first Widnall
mode and 2 for the second one.

6.2.2 Optimal perturbation at the Crow wavelength

Figure 6.5 shows the energy growth of several initial symmetrical and antisymmetrical per-
turbations at the Crow wavelength. The long dashed line corresponds to the direct mode of the
Crow instability. The growth of this instability being exponential, the increase is linear in log
scale. Symbols correspond to the energy of the optimal perturbations as a function of the opti-
mization time topt. The solid line corresponds to the adjoint modes of perturbation associated
to the Crow instability and the small dashed line corresponds to the optimal perturbation at
large time of the stable antisymmetric mode. Finally the dot-dashed and the dot-dot-dashed
lines correspond respectively to the optimal perturbation at short time and at topt = 0.4 in the
symmetric case.
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Figure 6.5: Energy growth with different initial perturbation at k = 0.25 as a function of time
in log-lin scale. Plain curves show the adjoint growth rate. Symbols show the optimal solu-
tion computed by the optimization algorithm. N (dashed lines) correspond to antisymmetrical
perturbations. 2 (solid lines) correspond to symmetrical perturbations. t is normalized on tb.

At large time, all symmetric perturbations evolve towards the Crow instability. This is
shown by the fact that all perturbation amplification end up following the growth rate of the
direct mode of the Crow instability. The antisymmetric normal mode at the wavelength of Crow
being stable, the corresponding curve (small dashed line) shows a damping of the associated
energy growth at large time. However at short time, energy growth is similar to that of the
symmetric perturbations. This suggests that the transient growth at the Crow wavelength does
not depend upon the symmetry of the perturbation. In the following we analyze separately the
short time and large time dynamics.

Short time dynamics

Effect of the strain In order to analyze the short time dynamics, we resort to the following
equation that relates the instantaneous energy growth rate to the linearized operator A

1

E

dE(t)

dt
=

((A + A+)u, u)

(u, Bu)
(6.13)

A similar expression is given in Schmid[133]. The solution of this problem is obtained by solving
the eigenproblem given by A + A+ and B. This solution is derived by adapting the numerical
method used to solve the eigenproblem defined by A and B. The additional step consists in the
calculation of the transpose conjugate of A and in the subsequent sum of A and A+. The leading
eigenvalue λI of (A + A+)uI = λIBuI corresponds to the largest possible instantaneous energy
growth rate over all perturbations. The perturbation that allows this maximum growth rate is
the associated eigenmode uI . As a consequence the energy of this perturbation grows linearly
G(t) = λIt.

It is important to note that neglecting viscosity and pressure terms, A + A+ reduces to the
deformation tensor D = ∇U + ∇U

T . This means that, at short time, energy growth occurs
in the regions where the basic velocity gradients are the strongest. In order to localize these
regions, we calculate the strain rate S and the direction V of the strain in the vortex pair. In
the vortex pair without axial flow, these quantities are given by

S2 =

(

∂Ux

∂x

)2

+
1

4

(

∂Uy

∂x
+

∂Ux

∂y

)2

Uy =











S +
∂Ux

∂x

1

2

(

∂Ux

∂x
+

∂Uy

∂y

)











(6.14)
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Figure 6.6(a) shows S and V for the vortex pair at a/b = 0.25. This figure illustrates the
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Figure 6.6: Basic strain field. Colored vectors indicate the direction of strain V and colors
indicate the strain rate S associated to the color map. Strain S is normalized on t−1

a . Several
streamlines of the base flow are depicted. Velocity profiles correspond to the tangential velocity.
(a) Vortex pair at a/b = 0.25, (b) LO vortex.

complexity of the flow generated by the vortex pair, as was evoked in the introduction. Lines
in the figure indicate the direction of strain while color indicates the strain rate. Regions
corresponding to the upstream and downstream hyperbolic stagnation points are characterized
by pure straining flows (aligned with the streamlines). Regions around the vortex centers are
characterized by strong shearing like in the case of the LO vortex, shown in a similar fashion
in figure 6.6(b). An important difference in the case of the vortex pair is that these regions
are not axisymmetric. Finally there is a finite strain rate at the vortex centers which is exactly
oriented at 45o about the x axis (this is not clearly visible in the figure due to the small size of
the associated regions). Regions of maximum strain correspond to the shearing regions in the
vicinity of the vortex centers. As a result, we expect that the perturbation uI for maximum
instantaneous growth rate should be localized in this region. Note that larger values of the
strain rate are found in the vortex pair.

Figure 6.7(a) shows uI along with the strain field. As expected the perturbation axial
vorticity is located in the region of maximum strain. This vorticity is organized in a succession
of spirals of opposite sign in the left region of maximum strain.

Previous works In order to analyze the mechanism at play in the short time dynam-
ics, we first detail the case of the isolated vortex following the findings of Antkowiak[5] and
Pradeep[124]. In this case, the relation of the energy growth (6.13) takes the following form

dE

dt
= −

∫

V

uruθ

(

r
∂

∂r

(

Uθ

r

))

dV (6.15)

where Uθ is the tangential basic velocity and uθ and ur are the tangential and radial velocities of

the perturbation. This equation relates the growth of energy with the strain rate S = r
∂

∂r

(

Uθ

r

)

induced by the base flow. Since S ≥ 0, energy growth occurs whenever uruθ < 0. This
configuration of planar velocity is illustrated in figure 6.7(c) and corresponds to negative tilt
streamlines. Perturbation with (positive) negative tilt streamlines are characterized by (anti-
)clockwise spiralling iso-contours of axial vorticity (starting from the vortex center). Considering
figure 6.6(b), we see that this corresponds to iso-contours of axial vorticity that are oriented
perpendicular to the direction of strain, see figure 6.6. The growth mechanism, similar to the
Orr mechanism in plane shear flows, consists in a concentration of the axial vorticity ωz by the
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Figure 6.7: (a) Axial vorticity ωz of the initial perturbation that maximizes the growth of
energy at short time (uI) and, (b) at large time. k = 0.25. Dashed lines indicate negative
vorticity. In (a) color indicate iso-contours of the strain rate S normalized on t−1

a , which was
already depicted in figure 6.6(a). In both frames the base flow is shown with a few streamlines.
(c) Schematic of streamline tilt for a single vortex (black disc) rotating clockwise. Reproduced
from Pradeep[124].

base flow, which results in a transient increase of the kinetic energy of the perturbation. As
shown by Pradeep[124], the stretching induced by the basic differential rotation progressively
modifies the perturbation into positive tilt uruθ > 0, which arrests the energy growth.

Application to the vortex pair In order to apply these results to the case of the vortex pair,
we look at the evolution of the product uruθ of the perturbation uI which gives the maximum
instantaneous amplification. Note that the streamlines of the base flow in the vortex core are
not circles therefore the use of ur and uθ is rigorously not correct. However the ellipticity of
the streamlines in the vortex core remains small. Indeed it is of the order of the strain at the
vortex centers S(xc, yc) (imposed by each vortex of the pair upon the other), which is equal to
(a/b)2 = 0

(

10−2
)

since a/b = 0.25.
The curve of the energy growth corresponding to uI as initial condition is shown in figure 6.5

(dash dotted line). As expected, the initial energy growth generated by this perturbation is in
agreement with λI and with the optimal energy growth (2). The growth stops at t = 0.25. For
0.25 < t < 1.5 the energy decreases. After t = 1.5 it increases again due to the occurrence of
the Crow instability.

(a) t = 0.07 (b) t = 0.25 (c) t = 0.7

(d) t = 1.5 (e) t = 2.8 (f) t = 3.5

Figure 6.8: Iso-contours of uruθ at different times of the optimal perturbation uI at k = 0.25.
Negative values are dashed. t is normalized on tb.
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In figure 6.8 we show snapshots of uruθ at different times. At t = 0.07, uruθ < 0, which
allows the initial energy growth. At t = 0.25 we see that positive and negative uruθ balance
each other, which corresponds to the arrest of the energy growth. Between t = 0.25 and
t = 1.5 when the minimum of energy amplification is reached, the part of the positive uruθ

dominates and increases, resulting in the decrease of the energy. At later times, snapshots show
the development of the Crow instability in the vortex core in the form of a quadripolar and
steady structure. Comparing dE/dt at t = 3.5 and t = 4.2 (not shown) with (6.15), and using
E ∼ eσt, we retrieve σ ∼ 0.8, in fair agreement with the growth rate of the Crow instability
σCrow ∼ 0.7 (see figure 6.3(b)). Qualitatively, although the Crow pattern shown in figure 6.8(f)
is an equilibrated quadripole, energy growth occurs because the regions where uruθ < 0 are
characterized by a strain rate S which is larger than the strain characterizing the regions where
uruθ > 0, as evidenced in figure 6.6(a).

Large time dynamics

In the following we analyze the dynamics at large time with the help of the adjoint mode. We
first show that the adjoint mode is the optimal perturbation at large time. To do this, we con-
sider the leading eigenmode ûm associated to the eigenvalue σm = maxj (σj). Following equa-
tion 6.6, the solution of the initial value problem becomes u(t) = (û+

m, Bu0) ûmeσmt +c.c.. The
amplification of kinetic energy (6.12) produced by this perturbation equals (û+

m, Bu0)
2
e2σmt

and is maximum when the initial perturbation is chosen as u0 = û
+
m. In physical terms, that

means that the adjoint perturbation is the initial perturbation u0 that generates the maximum
amplification of the energy contained in the leading eigenmode at large time.

The energy growth corresponding to the adjoint mode of the Crow instability was depicted
in figure 6.5 and we saw that the energy growth generated by this perturbation remains close to
the optimal (2) at all times. Strong transient growth occurs before t = 2 and the subsequent
evolution results from the development of the Crow instability. The axial vorticity ωz of the
adjoint mode has been shown in figure 6.7(b). Because of the small value of the wavenumber
k of the Crow instability, the axial vorticity dominates by more than one order of magnitude
the transverse components of the perturbation vorticity (indeed ωz ∼ k−1ωx, y). The figure
shows that the adjoint perturbation is localized on the streamline Ψ = 0 of the base flow. More
precisely the perturbation axial vorticity is located in the region of the upstream stagnation
point. This suggests that this point plays an important role in the energy growth generated by
the adjoint perturbation.

In order to analyze this energy growth, we investigate the evolution of this perturbation at
different times up to t = 2 (where the transient stage stops). Snapshots of the axial vorticity ωz

(black lines) and planar vorticity
√

ω2
x + ω2

y (colored contours) fields are displayed in figure 6.9.

For t < 0.4 the initial perturbation is convected along the symmetry plane of the vortex pair
to the linear flow region surrounding the upstream stagnation point. In this region the planar
vorticity is oriented in the y direction. For 0.4 < t < 1.4, the perturbation experiences strong
straining in the y direction in agreement with the results of Lagnado[87]. Following this author,
hyperbolic stagnation points are able to sustain energy growth for well suited initial pertur-
bations. We illustrate his results for a hyperbolic stagnation point oriented like the upstream
stagnation point. For a given initial perturbation ω0 =

(

ω0
x, ω0

y , ω
0
z

)

, the solution at later times
t of the perturbation has the form

ω = e−i(eStkxx+e−Stkyy+kzz)−π(a/b)2

SRe (k2
x(e2St−1)+k2

y(1−e−2St)−2Sk2
zt)
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(6.16)
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(a) t = 0.07 (b) t = 0.27 (c) t = 0.4 (d) t = 0.7

(e) t = 1.07 (f) t = 1.4 (g) t = 1.6 (h) t = 2

Figure 6.9: Snapshots of the axial vorticity ωz (black lines) and planar vorticity
√

ω2
x + ω2

y

(colored contours) of the perturbation initialized by the adjoint mode of the Crow instability
at k = 0.25. Streamlines of the base flow are included. t is normalized on tb.

where the wavenumber k is normalized on b and is decomposed in its three components along
x, y and z. The strain rate at the stagnation point is S > 0. The strain is oriented in the y

direction. According to this expression, exponential growth occurs if kx = 0 and kz <
SReΓ

2π (a/b)2
.

This last condition corresponds to kza < 8 in the vortex pair at a/b = 0.25 and is hence verified
by all the perturbations considered here. In this case this means that the viscous decay of the
initial perturbation is dominated by the stretching of the ωy vorticity. Note however that the
condition kx = 0 implies that this exponential growth is possible only if the initial perturbation
is uniformly distributed along the entire range of the x axis. This being not possible physically,
the growth at the stagnation point is only transient. However (6.16) indicates that the initial
growth of energy in the region of the hyperbolic stagnation point follows an exponential law of
exponent S.

Stretching also occurs at the downstream stagnation point. There, part of the initial per-
turbation that was on the dividing streamline Ψ = 0 of the vortex pair, which consists in planar
vorticity aligned in the x direction, experiences stretching. However this vorticity in the up-
stream hyperbolic region, cannot be amplified by stretching and it decays by viscosity. At time
t > 1.07 the vorticity that has been amplified at the upstream stagnation point is convected by
the base flow along the dividing streamline of the vortex pair. Meanwhile we observe that the
perturbation grows in the vortex core, although it was not present initially. At t = 2 this core
vorticity corresponds to the Crow instability already depicted in figure 6.4(a).

The evolution described above suggests that the amplification of energy produced by the
adjoint mode first relies on (i) the amplification at the upstream and downstream stagnation
points, with a dominant implication of the upstream one, (ii) a subsequent transfer of the energy
produced there to the vortex core, and (iii) an exponential increase of energy occuring through
the effect of the Crow instability. In order to elucidate this transfer of energy between the outer
and inner parts of the vortices, we follow the approach proposed by Antkowiak[5] and write
the equation for the axial vorticity in the cylindrical coordinate frame attached to one of the
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vortices
∂ωz

∂t
+

Uθ

r

∂ωz

∂θ
= −ur

∂R

∂r
+ kRuz + ν∆ωz (6.17)

where R is the basic angular velocity. The second term in the LHS corresponds to the convection
of the axial vorticity by the base flow. The first two terms in the RHS lead to the increase of
the axial vorticity by an induction mechanism. Indeed the planar vorticity that is amplified
along the dividing streamline of the dipole consists of nearly tangential vorticity. This vorticity
induces ur and uz in the vortex core which in turn interacts with the basic angular velocity R
to increase ωz. This mechanism of induction amounts to a transfer of energy from the outer to
the inner regions of the vortices. Therefore the Crow instability develops with an initial energy
obtained by a transient amplification at the stagnation points which is significantly higher than
the initial energy contained in the direct mode of the instability. This explains the offset of the
adjoint amplification compared to the direct amplification in figure 6.5.

Optimal perturbation

(a) topt = 0.4 (b) topt = 1.15 (c) topt = 1.9 (d) topt = 2.7 (e) topt = 4.2

Figure 6.10: Axial vorticity ωz of the symmetrical optimal perturbation at several values of topt

at the Crow wavenumber k = 0.25. topt is normalized on tb.

The evolution of the form of the optimal perturbation with topt in the symmetric case is
shown in figure 6.10. We observe that, with increasing topt, the optimal perturbation ωz is
progressively displaced outward. This is in continuity with the asymptotic cases discussed just
before (short and large time). An analysis, not described here, similar to the one performed on
the optimal instantaneous perturbation, shows that the initial perturbation at t = 0.4 exhibits
energy growth by the same shearing mechanism. At large time, topt > 2, contours of ωz are
similar to the adjoint mode, indicating energy growth by tilting/stretching at the hyperbolic
regions and induction of the core dynamics. At intermediate time, there is a trade-off between
the short time mechanism and the large time mechanism. This means that, with increasing topt

the short time mechanism is less important while the large time mechanism plays an increasing
role. We will see later on that the induction mechanism is piloted by a resonant effect. In
particular, this will explain why the initial perturbation tends towards the streamline Ψ = 0
surrounding the vortex pair with increasing topt.

6.2.3 Optimal perturbation at the Widnall wavelength

Figure 6.11 shows the optimal gain obtained at the wavenumber k = 2.26 corresponding
to the first Widnall instability. Antisymmetric perturbations beneficiate from a larger energy
increase. We observe that the transient regime stops at t = 1.5. At later times, all perturbations
converge toward the growth rate of the Widnall instability. Optimal perturbations at several
topt including the asymptotic solutions at short and large time are shown in figure 6.12 in the
antisymmetric case.

At short time, the optimal perturbation grows thanks to the shearing mechanism, as can
be inferred from the negative tilt streamlines localized in the region where S is large. At large
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Figure 6.11: Energy growth with different initial perturbation at k = 2.26 as a function of
time in log-lin scale. Same axis details as figure 6.5 are used to ease comparisons. Plain
curves show the adjoint growth rate. Symbols show the optimal solution computed by the
optimization algorithm. N (dashed lines) correspond to antisymmetric perturbations. 2 (solid
lines) correspond to symmetric perturbations. t is normalized on tb.

time, the optimal perturbation looks like the adjoint mode of Crow, which suggests that the
mechanism of amplification relies on the stretching at the upstream and downstream stagnation
regions and induction of the core dynamics by tangential vorticity located at the dividing
streamline of the vortex pair. There is a significant difference however in the fact that the
Widnall instability exists initially in the velocity field of the optimal perturbation, which was
not the case concerning the Crow instability. We believe that this explains the smaller offset
between the curve of the adjoint growth and the curve of the direct growth compared to the
Crow case. At intermediate times, the optimal perturbation evolves continuously from the form
at short time to that at large time, indicating the same trade-off as in the Crow case between
the large time and short time mechanisms.

(a) short time (b) topt = 0.4 (c) topt = 1.15 (d) topt = 1.9 (e) large time

Figure 6.12: Axial vorticity of the optimal antisymmetric perturbation at several values of topt

at the Widnall wavenumber k = 2.26. t is normalized on tb.

Optimal perturbation at k = 1

Figure 6.13 shows the optimal amplification curves at k = 1. This configuration is stable but
exhibits transient growth. The energy amplification corresponding to the optimal perturbation
at large time t = 5.8 is close to the optimal at all times.

Figure 6.14 shows the axial vorticity ωz of the optimal perturbation at different optimization
times in the antisymmetric case. Like in the cases of Crow and Widnall, the optimal at short
time is localized in the region of strong strain and corresponds to perturbation with negative tilt.
At large time, the optimal perturbation is localized on the streamline Ψ = 0 which suggests
the occurrence of the mechanism of stretching/induction by the upstream and downstream
stagnation points.
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Figure 6.13: Energy growth with different initial perturbation at k = 1 as a function of time
in log-lin scale. Same axis details as figure 6.5 are used to ease comparisons. The solid and
dashed lines correspond to the optimal perturbation at topt = 5.8. Symbols show the optimal
solution computed by the optimization algorithm. N (dashed lines) correspond to antisymmetric
perturbations. 2 (solid lines) correspond to symmetric perturbations.

(a) short time (b) topt = 0.4 (c) topt = 1.15 (d) topt = 1.9 (e) topt = 5.8

Figure 6.14: Axial vorticity ωz of the optimal perturbation at several values of topt at k = 1 in
the antisymmetric case.

An interesting point concerns the effect of the symmetry of the perturbation on the role
played by the upstream and downstream stagnation points on the energy amplification. Com-
paring the adjoint of the Crow instability (symmetric) in figure 6.7(b), that of the symmetric
and antisymmetric Widnall instability in figures 6.15(a) and 6.12(e), and that of the symmetric
and antisymmetric optimal perturbation at large time at k = 1 in figures 6.15(b) and 6.14(e),
we observe that (anti)symmetric optimal perturbations at large time rather rely on the (down-
stream) upstream stagnation point.

This is explained by the amplification properties of the hyperbolic stagnation point. Recall
that the optimal perturbation in the stagnation point region takes the form of vorticity aligned
in the direction of strain and distributed as uniformly as possible along the direction of compres-
sion. Concerning the upstream stagnation point, this imposes vorticity in the y direction while
at the downstream stagnation point, this imposes vorticity in the x direction. Considering the
symmetry of the vorticity field, symmetric perturbations should experience small amplification
at the downstream stagnation point since ωx must be zero at y = 0. Therefore symmetric
perturbation should rather take advantage of the upstream stagnation point, in agreement with
the observations. The argument reverses for antisymmetric perturbations and agree again with
our results.
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(a) (b)

Figure 6.15: Axial vorticity ωz in the symmetric case. (a) Adjoint mode at the Widnall
wavenumber k = 2.26, (b) optimal perturbation at topt = 5.8 at k = 1.

6.2.4 Effect of the axial flow

Normal modes

In order to investigate the effect of axial flow we consider the eigenmodes of the vortex pair
found by Lacaze[86] at q = 2. In the presence of an axial flow, resonance between Kelvin modes
and external strain occurs at non zero frequency. This effect is similar to a Doppler frequency
shift. Lacaze[86] calculated the most unstable instabilities of the dipole at a/b = 0.25 and

ReΓ = 20000 ReΓ = 4000
Mode Lacaze[86] Comparison
(m1,m2, [n1, n2]) k σR σI σR (symmetric) σI (symmetric) σR (symmetric)

(2,0,1) 1.88 1.23 0.26 1.26 (1.23) 0.29 (0.29) 1.130 (1.100)
(2,0,[2,1]) 2.6 0.71 0.22 0.80 (0.77) 0.21 (0.21) 0.560 (0.510)
(3,1,1) 3.23 1.05 0.61 1.09 (1.09) 0.61 (0.58) 0.700 (0.700)
(3,1,[2,1]) 3.85 0.69 0.60 0.80 (0.80) 0.52 (0.53) 0.310 (0.310)
(4,2,1) 4.57 0.80 1.04 0.94 (0.94) 0.99 (0.99) 0.098 (0.094)

Table 6.1: Eigenvalues for selected modes at q = 2, a/b = 0.25 and ReΓ = 20000. Results
are compared with Lacaze[86]. Note that antisymmetrical and symmetrical perturbations are
distinguished (Lacaze[86] did not need to do this distinction as he used a computational do-
main including the two vortices of the pair). σR is normalized on t−1

b and σI on t−1
a . m is the

azimuthal wavenumber of the perturbation and n the number of radial nodes of the axial vor-
ticity distribution. Subscripts 1 and 2 refer to the two Kelvin modes playing in the cooperative
instability.

ReΓ = 20000. His results are given in table 6.1. We used these results in order to validate our
code and to investigate the effect of the axial flow on the growth of energy in the vortex pair.
The agreement between our results and those of Lacaze[86] at ReΓ = 20000 are good overall.
The growth rate and frequency of these unstable modes at ReΓ = 4000 are also given in the
table and will be used later on. Unlike the growth rate σR, σI is not modified by the Reynolds
number and is therefore not included in the table for the case ReΓ = 4000. Note that the
positiveness of m and σI means that all these modes rotate in the same direction as the base
flow.

Figure 6.16 shows the axial vorticity ωz of these modes. Here again the agreement with the
findings of Lacaze[86] is good. These modes exhibit the azimuthal periodicity m1. The rotation
of each mode in the laboratory frame is given by σI/m1. This means that, depending on the
value of m1, a mode with large σI does not necessarily rotate fast. For example the case of the
most unstable mode at k = 4.57 has a rotation rate 0.25 which is slightly higher than that of
the mode at k = 1.88 that rotates at 0.12.



92 Optimal perturbations in vortex pairs

(a) k = 1.88 (b) k = 2.6 (c) k = 3.23 (d) k = 3.85 (e) k = 4.57

Figure 6.16: Axial vorticity ωz of the real part of the antisymmetric direct modes at q = 2. k
is normalized on a−1

Optimal perturbation

The energy growth of the optimal perturbations at q = 2 are depicted in figure 6.17. We
observe that the large time dynamics, which corresponds to the linear amplification of the energy
with the growth rate of the instability, arises at different times depending on the instability
considered. In the case k = 1.88 the transient regime corresponds to t < 2 whereas at k = 3.85
it stops at t = 4. The case at k = 1.88 resembles the cases of Crow and Widnall in the sense
that the adjoint growth is almost optimal. However in the case at larger wavenumber k = 3.23,
k = 3.85 and k = 4.57 the energy of the adjoint is much lower than the optimal at short time.

Short time dynamics In the following we show that the short time dynamics is not strongly
modified by the axial flow at q = 2 since for this swirl number the flow is mainly tangential. In
presence of axial flow, the deformation tensor becomes
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(6.18)

In the second relation, we distinguish the effect of the plane flow (Ux, Uy) and the effect of the
axial flow Uz. In order to understand the effect of the axial flow, we isolate the second term in
(6.18) and calculate the associated strain rate and direction

S2 =
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(6.19)

The direction of strain is 3D and the strain rate S depends only on the axial velocity gradients.
Figure 6.18 shows the strain field in the vortex pair at a/b = 0.25. In the case of the Batchelor
vortex, the strain induced by the axial flow is axisymmetric (not shown). Concerning the vortex
pair the axial flow generates large strain above and below the vortex centers. The comparison
between this figure and figure 6.6(a) shows that the magnitude of the strain rate induced by
the axial flow is larger than that induced by the plane flow.

In order to see how the axial velocity gradients influence the optimal perturbation at short
time, we focus on the case k = 1.88 and calculate uI at several values of q. Results are shown
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Figure 6.17: Energy growth with different initial perturbations for several wavenumbers at
q = 2. Symbols: optimal. Lines: adjoint. N (dashed lines) correspond to antisymmetrical
perturbations . 2 (solid lines) correspond to symmetrical perturbations. The case k = 4.57 is
not shown because curves in this case are very similar to the case k = 3.85.

in figure 6.19 in terms of axial vorticity ωz. As q decreases the initial perturbation is more and
more localized in the region of strong strain induced by the axial flow. However at q = 2 the
effect of the axial flow is small and the initial perturbation looks like the one which is obtained
at q = ∞. This is not surprising since at q = 2 the flow is dominated by the swirl. The effect
of axial flow becomes dominant when q < 1 but this range of swirl is not encompassed by this
study.

Large time dynamics In figure 6.20 we show the antisymmetric adjoint modes corresponding
to the instabilities at q = 2 listed in table 6.1. The overall structure of the vorticity distribution
resembles that at q = ∞ but the complexity is significantly larger. We suggest that this is due
to the higher azimuthal periodicity of the Kelvin waves that participate in the instabilities.

Like at q = ∞, the axial vorticity of the adjoint modes take the form of spirals. However
these spirals are not necessarily located on the streamline Ψ = 0. In particular we observe
that they get closer to the vortex centers when σI is larger. In the following we propose an
interpretation of this observation in terms of a resonant effect which could explain why the
Crow and Widnall optimal perturbations at large time are located on the dividing streamline
Ψ = 0.

Resonance The works of Antkowiak[5], Pradeep[124] and Heaton[65] on the optimal pertur-
bation of a columnar vortex showed the existence of a resonant mechanism at |m| = 1 between
(i) the rotation rate R of the initial perturbation by the base flow and (ii) the rotation rate ωI



94 Optimal perturbations in vortex pairs

.5

.4

.2

0

Figure 6.18: Contours of strain rate S normalized on t−1
a induced by the axial flow for the

vortex pair at a/b = 0.25. Vectors indicate the axial flow Uz.
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Figure 6.19: Axial vorticity ωz of the antisymmetrical optimal perturbation at short time for
several values of q at k = 1.88.

of the Kelvin waves induced by the initial perturbation. According to these authors, the initial
perturbation takes the form of negative tilt spirals located at a radius rr where R(rr) = ωI ,
R being the angular velocity of the base flow. This resonance was also shown to occur in the
presence of axial flow (Heaton[65]).

The resonant effect is different from the critical-layer phenomenon. Modal perturbations
of the vortex are critical at points rc that satisfy ωI = mR(rc) + kUz(rc), meaning that the
rotation of the mode equals the rotation rate R of the base flow, see Le Dizès[92]. The critical
layer is a resonant effect between the perturbation and the base flow. Here the resonant effect
is different. Although the previous authors did not identify the resonant effect at values of |m|
different from 1, we suggest, from the location of the initial perturbation in figure 6.20, that
the resonant effect exists at all m. Following this hypothesis the resonant radius rr must verify

R(rr) =
ωI

m1

(6.20)

In order to verify relation (6.20) we compare the rotation of the base flow at the location of
the initial vorticity with the rotation rate ωI/m1 of the instability. We first need to evaluate
the rotation rate R of the base flow. In the case of the axisymmetric vortex, the rotation
rate of a particle at a radius r is simple: R = Uθ(r)/2πr. The case of the vortex pair is more
complicated because the streamlines are not circles, especially outside the vortex core. The form
of the streamlines change with the distance from the vortex centers. To evaluate the rotation
rate we first evaluate the period of rotation for one particle on a given streamline. Note that the
position is no longer referenced by the radius but by the stream function therefore relation 6.20
now reads

R(Ψr) =
ωI

m
(6.21)

The generalization of the rotation period T stems from the axisymmetric case

T =

∮

C

U · dl

‖U‖2
(6.22)
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(a) k = 1.88 (b) k = 2.6 (c) k = 3.23 (d) k = 3.85 (e) k = 4.57

Figure 6.20: Real part of the axial vorticity ωz of the antisymmetrical adjoint modes corre-
sponding to the instabilities listed in table 6.1.

where C is a closed streamline. Thanks to the Green theorem, previous relation transforms into

T =
{

S

rot

(

U

‖U‖2

)

· ndS (6.23)

which is more convenient to compute since this relation relies on an integral that is easily
calculated numerically. Note that n denotes the normal to the computational domain. The
angular velocity of the base flow corresponding to T is R = 2π/T .

In the bottom of figure 6.21 we show R as a function of the stream function Ψ. Only the
closed streamlines have been taken into account. As expected R decreases away from the vortex
centers up to the dividing streamline enclosing the vortex pair. The rest of the figure shows
the distribution of ωz of the Crow mode and the modes at q = 2 as a function of Ψ. The
streamline Ψr that verifies (6.21) is reported on the curve R versus Ψ in these different cases.
Comparing the location of the initial perturbation and the streamline predicted by (6.21), we
observe the good trend (Ψr increases with ωI/m). Moreover in every case the arrows match
with a part of the axial vorticity distribution of the perturbation. However this distribution
being large, it is difficult to select one single streamline to characterize the position of the
initial perturbation. These results support well the existence of a resonant effect. However the
discrepancies between the initial distribution and the prediction suggest that additional effects
apply. Therefore it would be worth investigating in greater depth this aspect of the optimal
perturbation in future works.

Now coming back to the Crow and Widnall instability, we see that the resonant mechanism
explains why the optimal perturbation at large times is located on the streamline Ψ = 0.
Indeed at this location the rotation rate is minimum and close to zero, which agrees well with
the stationarity of these instabilities. Axial flow allowed the existence of ωI 6= 0 for which we
could see variations in the location of the initial optimal perturbation at large time.

Conclusion

In this chapter we have analyzed the transient growth of energy in vortex pairs. We first
analyzed the case of the 2D vortex pair without axial flow and characterized the optimal energy
amplification for k < 2.5 and topt < 6. This proved the existence of transient energy amplifica-
tion at short time that either led to stronger growth rates of the Crow and Widnall instabilities
or to energy decay in the stable range of wavelengths. Two mechanisms were identified, one
that dominates the short time dynamics and that relies on energy amplification in the region
of maximum strain and the second that dominates the large time dynamics and that relies on
the stretching of vorticity in the hyperbolic regions and on the induction of a core dynamics in
the vortices. In the second part of this chapter, we analyzed the effect of the axial flow on the
optimal perturbation by focusing on several instabilities with non zero frequency that were first
found by Lacaze[86] at q = 2. We found that at short time, the mechanism of energy growth
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Figure 6.21: illustration of the resonant effect. The curve represents the rotation rate R as a
function of the stream function of the basic state Ψ for the vortex pair at a/b = 0.25. The
contour plots corresponds to the adjoint modes at different k and q. They show the axial
vorticity of perturbation as a function of the stream function Ψ. The circles indicate the
condition of resonance. The axis for the stream function encompasses the inside of the Kelvin
oval of the dipole (closed streamlines).

is not strongly modified by the addition of axial flow since the plane velocity gradients domi-
nate. At large time, we described a resonant effect between the location of the initial optimal
perturbation and the frequency of the final instability.
Note that the optimal perturbation of Crow instability at large time, which corresponds to

the adjoint mode of this instability, will be the basis of the design of a control device of the
tip leakage vortex in appendix A. Moreover, in appendix E, we investigate transient growth
in a plane vortex sheet that rolls-up into two distinct vortices and show that this additional
dynamics provides further possibilities to increase the growth rate of the Crow instability.



Part III

Experimental results





7 Time-averaged properties of the

vortices

This chapter deals with the time-averaged properties of the tip leakage vortex obtained
in the wind tunnel. We recall that the experimental apparatus can be set in two different
configurations:

i- C1 consists of a split wing producing two symmetric counter-rotating vortices

ii- C2 consists of a single wing with a splitter plate materializing the symmetry plane, iso-
lating one vortex of the pair.

The velocity and pressure fields have been surveyed with a seven-hole pressure probe (details
on the probe are given in chapter 4 and appendix B) in cross sections normal to the free stream
at different longitudinal positions −0.75 ≤ z ≤ 2.5. Recall that z = 0 at the wing trailing edge.
Variations of the gap size such as 1% ≤ τ ≤ 12.25% have been considered. The wing is set at
α = 8o throughout the study. The free stream velocity is set at U∞ = 38m/s which corresponds
to Rec = 4.8.105.
The vortices produced by configurations C1 and C2 are described in the two first sections.

We then analyze the loss mechanisms related to these flows.

7.1 Flow in C1

7.1.1 Formation of the vortex at large gap
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Figure 7.1: Mean axial vorticity Ωz as a function of z (conf. C1). Gap size: τ = 12.25%.
Positive vorticity is dashed. PS stands for Pressure Side and SS for Suction Side.

Figure 7.1 shows the mean axial vorticity Ωz at τ = 12.25% in transverse planes cutting
the airfoil (corresponding to −1 < z < 0). The plots show the region y > 0 corresponding to
negative axial vorticity. The vorticity field resulting from the second wing tip located at y < 0
does not appear here. Note that the cross section of the wing is included for clarity.
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We observe an important evolution of the vorticity field with z. At mid-chord (z = −0.5) the
vorticity field is composed of three regions (1, 2 and 3). Bailey[12] investigated the vortex roll-
up at the tip of an isolated NACA12 wing and concluded on the existence of several vortices
at the tip that eventually merge into a single vortex. This work suggests that each of the
marked region corresponds to a distinct vortex. At z = −0.3 only one vortex remains at the
wing tip surface (4). It is not clear whether there is a continuum between vortex 4 and the
two previous vortices 2 and 3. Vortex 4 still exists at z = −0.1 but disappears downstream
where only vortex 1 remains. These observations suggest that the final tip vortex results from
the merging of several initial vortices. This is supported by figures 7.1(b) and 7.1(c) where the
vorticity contours indicate vorticity going from region 2, 3 and 4 to region 1, probably due to
the entrainment produced by this latter vortex.

7.1.2 Driving mechanism of the leakage flow

As mentioned in the introduction 1, the leakage flow through the gap has been the sub-
ject of numerous investigations. The inviscid nature of the leakage flow was advocated by
Rains[125], who showed that the driving mechanism for the leakage flow is the pressure differ-
ence ∆Cp = PPS − PSS between the pressure side and the suction side of the wing. This leads
to a flow velocity Ut(z) normal to the chord

Ut(z)

U∞

=
√

∆Cp(z) (7.1)

This flow modifies in turn the pressure at the wing tip. The resulting leakage flow is an
equilibrium between the longitudinal momentum generating∆Cp and the transverse momentum
through the gap that modifies ∆Cp in the vicinity of the wing tip.
As explained by Rains[125], an additional element in this equilibrium is the viscous friction

at the wing surface. If e denotes the thickness of the wing, and supposing the flow is laminar,
for small ratio τ/e, the flow through the gap can be modelled as a channel flow. On that basis,
viscosity at the wall induces an adverse pressure gradient equal to

∆p

1/2ρU2
∞

=
24νe

τ2U∞

Ut

U∞

(7.2)

Following Rains[125], this introduces a Reynolds number Ree =
τ2U∞

24νe
which evaluates the

influence of viscosity in the transverse flow through the gap. The gap at which the pressure
difference imposed by the wing lift and the counter pressure gradient imposed by viscosity
balance each other is τ = 0.1%. That means that the effect of the wall viscous friction can be
neglected in all cases investigated here since τ > 1%.

7.1.3 Characteristics of the tip vortex

Vortex parameters

The vortex is defined by its strength Γ, its radius a, its swirl number q and the coordinates
(xc, yc) of its center in the transverse plane. The vortex center is taken at the maximum of axial
vorticity Ωz. The vortex radius a is taken as the averaged distance between the vortex center
and the maximum of tangential velocity. The circulation is calculated by integrating the axial
vorticity over a disc centered on (xc, yc) and truncated at the symmetry line y = 0. The swirl
q is defined in (2.4). Recall that it is given by

q =
Γ

2πa∆Uz

(7.3)

where ∆Uz = Uz (xc, yc) − U∞. In addition we use the distance b = 2yc corresponding to the
distance between the two vortices either in the vortex pair (C1) or in the vortex image (C2)
model.
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Figure 7.2: Mean axial vorticity Ωz at several values of τ and several axial positions (configu-
ration C1). From left to right: z = −0.5, z = 0, z = 1 and z = 2. Same iso-contours are used
in all the frames. No sensing within the gap is done at τ = 1% due to the lack of space (note
that the probe diameter is 0.75% of the chord).
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Initial position

Figure 7.2 shows the axial vorticity field for different τ in several transverse planes corre-
sponding to −0.5 ≤ z ≤ 2. Note that the same contour levels are used in all the frames of the
figure in order to ease comparisons.
We first look at the flow in the transverse plane at z = −0.5 where the position of the

tip vortex 1 is seen to vary significantly with τ . At small gaps the leakage flow is nearly
perpendicular to the chord. This suggests that the flow through the gap is channelled by the
gap, in agreement with the channel flow model discussed earlier for small τ . The vortex forms
far from the wing in the x direction and close to the tip in the y direction. At larger gaps, the
opposite occurs: the vortex forms closer to the wing in the x direction and further from the tip
in the y direction. These observations agree with those of Lakshminarayana[88].

Longitudinal evolution

The evolution of the vortex downstream of the trailing edge shown in figure 7.2 indicates a
clear distinction between the vortex generated at small and large gaps. At small gap the vorticity
is seen to decrease rapidly downstream, as indicated by the loss of contour levels whereas at
large gap the vorticity is conserved. Another remarkable evolution is the displacement of the
vortex in the x direction and almost zero displacement in the y direction. In order to visualize
this displacement, the range in x is kept constant in every column of the figure, with only one
exception at τ = 7.5% and z = 2. In this case the transverse displacement is too large compared
to the other cases and need an adjustment. In the following we investigate this "drifting" motion
of the vortex.

Drifting motion
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Figure 7.3: Trajectory of the tip vortex in the (x, z) plane for the different τ (conf. C1). 2

τ = 1%. M τ = 2%. O τ = 3%. � τ = 4%. � τ = 5%. ¦ τ = 7.5%. # τ = 10%. ¥ τ = 12.25%.

The motion of the vortex pair results from the induced velocity imposed by each vortex of
the pair upon the other. For two point vortices, this drift velocity reads

Udrift =
Γ

2πb
(7.4)

Figure 7.3 shows the trajectory of the vortex in the plane (x, z) for several τ . Note that in
this chapter the vortex center (xc, yc) in transverse planes corresponds to the maximum of axial
vorticity Ωz. As observed in figure 7.2 maximum drift occurs at τ = 7.5%. Figure 7.4 shows
the prediction of the drift velocity, based on (7.4) and on the measurement of Γ and b. This
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Figure 7.4: Drift velocity at z = 2, prediction based on the inviscid formula Udrift = Γ/2πb. 2:
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figure confirms the maximum drift at τ = 7.5%. This maximum results from the decrease of
the vortex circulation Γ at large gaps and of the simultaneous increase of b. Measurement of
these quantities are shown in the next paragraph. At small gaps, the drift increases with the
gap because b remains almost constant whereas Γ increases linearly.
Appendix D is dedicated to the calculation of the impulse of a vortex in the vicinity of a

wall and gives important results concerning the time variations of the vortex parameters such
as the circulation Γ and the vortex center (xc, yc). It gives a demonstration of relation (7.4),
which is well known. However when viscosity is taken into account, the complete relation for
the drift velocity of the vortex reads (see appendix D)

ΓUdrift = −

∫

+∞

−∞

u2
x

2
|y=0dx − ν

∫

+∞

−∞

x
∂ω

∂y
|y=0dx (7.5)

The first term in the RHS corresponds to the inviscid value of the drift velocity when ν → 0.
The second term in the RHS corresponds to the viscous diffusion of vorticity at the mid-plane
of the vortex pair. Its sign is positive since the axial vorticity decreases when y > 0. This term
leads to a decrease of the drift velocity of the vortex compared to the inviscid case. In table 7.1

Table 7.1: Drift velocities at z = 2: comparison between the measurement and the inviscid
prediction in C1 and C2. Percentages relate the measured value to the inviscid value.

C1 C2

τ measurement Γ/2πb measurement Γ/2πb
1% 0.06 (70%) 0.086 0.045 (65%) 0.070

7.5% 0.21 (65%) 0.320 0.080 (65%) 0.125
10% 0.20 (75%) 0.27 0.080 (67%) 0.120

we evaluate this reduction for three values of τ . As predicted by (7.5), the measured drift is
always smaller than the inviscid prediction (7.4). This reduction represents approximately 30%
of the inviscid value.

Vortex characteristics

The evolution of the characteristics of the vortex are investigated in the (τ, z) parameter
space. Results are shown in figure 7.5. The evolution of the circulation Γ shown in figure 7.5(a)
reveals two main trends. First, as noted by previous investigations of the tip leakage vortex
(see Ma[102] and You[158]), Γ increases with τ . This is however not true at the two largest
gaps. The increase is directly related to the increase in leakage mass flow rate when τ increases.
The decrease at large gap is due to the decrease in Γ which results from the reduction of the
wingspan. Lakshminarayana[88] shows that the lift does not change significantly when the gap
is below τ ∼ 6%, which explains why this reduction of wingspan does not affect the small τ
regime. However at larger gaps, the present results suggest that the reduction of the wingspan
becomes significant and reduces the vortex strength.
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Figure 7.5: Vortex properties as a function of τ and z (conf. C1). � z = −0.5. � z = 0. N

z = 1. 2 z = 2. (a) Vortex circulation, (b) radius a. (c) distance between vortex centers b, (d)
vortex aspect ratio a/b.

Secondly, at constant τ , we observe that Γ increases at first and then slightly decreases in
the axial direction, except at τ ≥ 10%. The initial increase corresponds to the rolling-up regime
of the vortex during which axial vorticity is continuously added to the tip vortex. There are
two hypothesis to explain the subsequent decrease. The first one is based on viscous diffusion
at the symmetry plane of the vortex pair, the equation for the time variation of Γ being, in 2D
flows (see again appendix D)

dΓ

dt
= −ν

∫

+∞

−∞

∂ω

∂y
dx (7.6)

This effect certainly explains part of the decrease, especially at small gaps, however the Reynolds
number being large (Rec >> 1), it is unlikely to explain the variations observed in the figure.
The existence of the Crow instability in the flow put forward in chapter 8 suggests that the
disruption of the vortices by this instability might explain these variations.
The evolution of the vortex radius a is shown in figure 7.5(b). The radius increases rapidly

with z at large gaps, which is not the case at small gaps. Moreover, at the last axial position,
there is a continuous decrease of a with τ . These variations correspond to two different regimes,
that are analyzed further below.
The evolution of b is plotted in figure 7.5(c). As could be expected, b increases monotonously

with τ . Slight deviations from linearity are observed though. In particular, b remains almost
constant for 4% < τ < 8%. In the longitudinal direction, b increases significantly upstream of
the trailing edge, especially at small τ , and becomes constant downstream.
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The evolution of a/b is depicted in figure 7.5(d). Since b increases with τ , and because a is
either constant or decreasing, the aspect ratio decreases as τ increases. Its value remains above
0.2 in all cases which is a large value in comparison to usual values found in single wing wakes
(a/b ∼ 0.1, see Fabre[43]).

7.1.4 Large/small gap regimes
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Figure 7.6: Comparison between τ = 12.25% (¥) and τ = 1% (2) as a function of the axial
coordinate (conf. C1). (a) Maximum of transverse velocity of the flow emerging from the gap.
(b) Circulation Γ of the tip vortex.

The previous observations suggest that two asymptotic regimes exist depending on τ . The
formation of the tip vortex at large gap resembles the formation of a trailing vortex at the tip
of an isolated wing (see Bailey[12]). At small gap our results suggest that the vortex is formed
by a mechanism analog to the roll-up of a jet in cross flow. A detailed characterization of such
a flow is given by Jacquin[74]. This analysis is supported by several arguments based on the
evolution of the flow at τ = 1% and τ = 12.25%. First, figure 7.6(a) shows that the transverse
velocity Ut evolves quite differently at τ = 1% and τ = 12.25%. At τ = 1% there is a strong
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Figure 7.7: Vortex trajectory (conf. C1): comparison between τ = 12.25% (¥) and τ = 1%
(2).

transverse velocity close to the leading edge that then decreases monotonously downstream
while at τ = 12.25% the transverse velocity is lower and almost constant along the chord. This
suggests that the vortex at τ = 1% forms earlier than at τ = 12.25%. This was confirmed
by looking at the vorticity field in a transverse plane at z = −0.75 (not shown) in which the
vortex at τ = 1% appears stronger than at τ = 12.25%, suggesting an earlier formation. This
difference can be explained as follows: at small gap the pressure difference ∆Cp between the two
sides of the wing is less modified than at large gap because less fluid is entrained into the gap.
The peak ∆Cp over a NACA12 airfoil is very close to the leading edge (see part 4), therefore the
leakage is very strong at this location when τ is small. We see that this results in a transverse
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Figure 7.8: Mean axial vorticity at several values of τ and several axial locations (conf. C2).
From left to right: z = −0.5, z = 0, z = 1 and z = 2. Same iso-contours as 7.2 are used in all
the frames.
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velocity about 20% larger than the free stream velocity. At large gap, the distribution of ∆Cp

is significantly smoothed at the tip because of the large deviation of the streamlines in the
wing tip regions. Therefore the leakage is more uniform which explains the low variation of the
transverse velocity in this case.
The trajectories of the vortex in the two extreme cases τ = 1% and τ = 12.25% are depicted

in figure 7.6. Jacquin[74] shows that the trajectory of the vortices issued from a jet in cross-flow
follows a power law of exponent 1/3. This compares favorably with the experimental results at
τ = 1%. Conversely, the trajectory of a trailing vortex (see relation (7.4)) follows a linear law
with the axial distance and we see that the experimental results follow this trend. Looking at
the evolution of the circulation Γ in figure 7.6(b), we see that at the larger gap the circulation
increases up to the trailing edge and then becomes constant whereas at the smaller gap the
vorticity also increases but starts decreasing as soon as it is free of the wing influence. This
decrease is in satisfactory agreement with the power law of exponent −1/3 given by Jacquin[74].

7.2 Influence of the splitter plate

7.2.1 Evolution of the vorticity

Figure 7.8 shows the evolution of the vorticity in the flow in C2. The flow bears similar
trends with the flow in C1. Indeed we observe a rapid decrease of the vorticity contained in
the tip leakage vortex when τ decreases. At large gaps, the vorticity is conserved and there is
a drifting motion of the vortex in the transverse direction. Concerning the initial position of
the vortex, we see that at small gaps the vortex forms far from the wing and close in the y
direction, again. Also, opposite trends are obtained at large gaps. However we can point out
several important differences:

i- The drifting motion is attenuated by the splitter plate

ii- There is formation of secondary vorticity at the wall that is rolled-up by the tip vortex.

In the following we analyze these differences

7.2.2 Drifting motion
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Figure 7.9: Trajectory of the tip vortex (conf. C2). Same legend as figure 7.3.

Figure 7.9 shows the trajectories of the tip vortex with the splitter plate. We observe
that, compared to configuration C1, the drifting motion is strongly attenuated. This results
in trajectories that are very similar when τ varies. Replacing the wall by an image vortex
(see appendix D), we can use (7.4) to evaluate the drift velocity of the vortex. This is done
in figure 7.4, in which the curve confirms the observation of the vortex trajectory, with, in
particular, a maximum drift occurring at τ = 7.5%. We shall see in the next section that b
is large in C2 due to a rebound effect, which, based on (7.4), explains why the drift is small
in C2. Viscous friction at the wall reduces further the drift, which accounts for the difference
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between the measured drift and that predicted by (7.4), which is illustrated in table 7.1 for
three different τ . Like in C1, the reduction amounts to about 30% of the inviscid value.

7.2.3 Vortex rebound

Γ

center of rotation

Figure 7.10: Schematic of the rebound effect induced by secondary vorticity at the wall.

The no-slip boundary condition at the wall provokes the creation of a transverse boundary
layer with opposite signed axial vorticity (here again, details are given in appendix D). This
secondary vorticity develops downstream of the wing for all values of τ . We observe in figure 7.8
that it is rolled-up by the tip vortex. The resulting flow is schematized in figure 7.10. The center
of rotation of the vorticity being at the right of the tip vortex, the whole vorticity is entrained
in the upper left direction, which corresponds to the rebound of the vortex.

7.2.4 Vortex characteristics
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Figure 7.11: Vortex properties as a function of τ and z (conf. C2). � z = −0.5. � z = 0. N

z = 1. 2 z = 2. (a) Vortex circulation, (b) radius a. (c) distance between vortex centers b, (d)
vortex aspect ratio a/b.
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The characteristics of the vortex in C2 are described in figure 7.11. The evolution of the
circulation Γ is shown in figure 7.11(a). Downstream of the wing trailing edge, the circulation
increases steadily with τ , as a result of the increased mass flow rate through the gap. As a
function of z, the maximum circulation is obtained at z = 1. The formation of secondary
vorticity at the wall may explain the subsequent reduction between z = 1 and z = 2. In
chapter 8 we will see that the flow in C2 is less unsteady than C1 (in particular, the Crow
instability does not occur) therefore the disruption of the flow can not be hypothesized to
explain the decrease of the circulation.
In figure 7.11(b) showing a, two regimes can be distinguished. For τ < 4%, the vortex

radius increases with z and decreases with τ . In this range of τ the wing tip is immersed in
the boundary layer of the splitter plate (δ0.99 = 4% of chord at the wing LE). The increase
in a could come from the contribution of the horse shoe vortex which must form at the LE
of the wing after tilting of the boundary layer vorticity, even when the gap is not completely
closed (this horse shoe vortex is observed when the gap is completely closed). The strength of
this horse shoe vortex would a priori increase as τ is decreased. If this is true then the vortex
observed in the transverse planes may be the horse shoe vortex or the merging of the tip leakage
vortex with the horse shoe vortex, which could thereby explain the radius variations. However,
this hypothesis was not further investigated. A second regime corresponds to τ > 4%. In this
case, the radius a increases for 0 < z < 1 and then decreases. A monotonic increase is found
as a function of τ . This probably results from the larger leakage mass flow when the gap is
enlarged. The decrease of a with z remains however a matter of controversy. It is suggested
that it may be related to the interaction with the secondary vorticity during the rebound.
The evolution of b depicted in figure 7.11(c) agrees well with the description of the rebound

of the vortex since b increases at all τ . Moreover the parallelism of the curves corresponding
to the different z suggests that the rebound is proportional to the initial distance from the
wall. The simultaneous increase of a and b results in an aspect ratio of the dipole formed by
the tip leakage vortex and its image about the splitter plate almost constant with τ and z, see
figure 7.11(d). This mean value is a/b ∼ 0.2.

7.3 Comparison between C1 and C2

7.3.1 Vortex properties

Figure 7.12 compares the vortex properties between C1 and C2 at z = 2. Figure 7.12(a)
shows that the difference in vortex circulation increases with τ , the vortex in C1 being slightly
stronger than in C2. At τ = 1% the two vortex are equally strong, which may again be related
to the possible formation of a horse-shoe vortex. The existence of this vortex is supported by
the subsequent evolution when τ is increased since up to τ = 4%, which corresponds to the
value of δ0.99 at the wing LE, the difference between C1 and C2 remains small. For τ > 4% the
vortex in C1 becomes however significantly stronger than in C2.
Figure 7.12(b) presents the comparison of a. The vortex width is smaller in C2 when τ is

small but becomes similar when τ is large. At small τ the interaction between the vortex and the
splitter plate, especially the induced boundary layer, may explain these differences. However,
as was said earlier, this interaction is not well understood. At large gap, the similarity between
the two flows results from the weaker influence of the splitter plate.
The comparison of b, shown in figure 7.12(c), which exhibits larger value in C2 than in C1,

traduces the effect of the vortex rebound. Interestingly, the effect of the rebound is felt even at
large gaps. This results in the absence of convergence of the results in this limit. Finally, as a
consequence of the evolution of a and b, the aspect ratio of the vortex pair is also lower in C2
than in C1, see figure 7.12(d).
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Figure 7.12: Comparison of the vortex properties between C1 and C2 as a function of τ at
z = 2. 2: C1, ¥: C2. (a) Circulation, (b) vortex radius, (c) distance b, (d) vortex aspect ratio.

7.3.2 Flow stability

Axial flow

As seen in chapter 3, an important parameter for the stability of vortices is the swirl number
q (see definition in (2.4). In figure 7.13(b) we present the evolution of the inverse of q as a
function of τ in C1 and C2 at z = 2. In these two configurations the swirl number increases
with τ up to τ = 7.5% and then decreases. Figure 7.13(a) shows the corresponding difference of
axial velocity between the vortex center and the free stream. When τ < 7.5% the axial velocity
in the core is wake-like and becomes jet-like for larger τ .
Vortices are known to be unstable to strong inviscid instabilities for q−1 > 0.6 (see chapter 2).

This limit is depicted in the figure. The flow C1 at τ < 3% and the flow C2 at τ < 6% are
prone to develop such instabilities. It is possible that the strong decrease of the vortex at small
gap might be explained by this unstable mechanisms.

Cooperative instabilities

Figure 7.13(c) shows the time scale tb (see definition (2.27)) of the cooperative instabilities
(Crow, Widnall) as a function of τ at z = 2. Multiplying tb by c/U∞ transforms time into
longitudinal distance (in chord c). Cooperative instabilities are likely to develop in the tip
vortex due to the presence of a second vortex in configuration C1 and due to the influence
of the splitter plate in configuration C2. The mean values of tb in the two configurations are
respectively tb ∼ 1.2 and tb ∼ 2.5 so that cooperative instabilities are more likely to develop
in C1 than in C2. The larger value of b obtained in C2 due to the rebound effect and the fact
that b is squared in (2.27) explain this difference. The development of the Crow instability is
investigated in great details in chapter 8.
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Figure 7.13: Comparison of the vortex properties regarding stability between C1 and C2 as a
function of τ at z = 2. 2: C1, ¥: C2. (a) axial velocity difference ∆Uz = Uz(xc, yc) − U∞, (b)
inverse of the swirl number. The horizontal line corresponds to the neutral condition q−1 = 0.6.
(c) Time scale tb of cooperative instabilities.

7.4 Losses due to the tip leakage flow

7.4.1 Governing equation

Loss is commonly defined as an increase of entropy, see Denton[38]. Variations of entropy
are described by the following relation

Tids = dHi −
1

ρ
dPi (7.7)

with hi = e+ 1

2
u2 = CpTi the enthalpy, and subscript i indicating stagnation quantities. Sources

of entropy in incompressible flows are viscous effects in regions where velocity gradients are non-
zero (boundary layers, flow mixing) and heat transfers across temperature differences as shown
by the following relation derived from the second law of thermodynamics and the conservation
of mass and internal energy

ρ
ds

dt
= −div

( q

T

)

+
2µd : d

T
−

q · grad T

T 2
(7.8)

Here q is the heat flux across the flow domain (remember that for two tensors A and B,

A : B =
∑

i

∑

j

AijBji) and d is the deformation tensor. Note that this relation is classical and

is usually found in manuals. The first term in the RHS of (7.8) describes the heat exchanged
between the fluid particles and the surroundings. The second term is the creation of entropy
by viscous friction and the third term corresponds to heat production by temperature gradients
inside the flow.
To evaluate the losses corresponding to the tip leakage flow, we integrate (7.7) over a portion

of a stream tube between an upstream section S1 transverse to the free stream where far field
conditions apply and a downstream transverse section S2, at a given z. Assuming that there is
no heat transfer at the boundaries (hence dhi = 0), one has

Tids = −
1

ρ
dPi (7.9)

After integration, using mass conservation between S1 and S2, one gets

Ti

∫

S2

Uz∆sdxdy = −
1

ρ

∫

S2

Uz (P i 0 − P i) dxdy (7.10)

Writing this expression in terms of mass averaged quantities finally gives

Ti

1/2U2
∞

∆sm = Cm
pi (7.11)
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where the superscript m denotes the mass averaged quantity

Am =

∫

S
UzAdxdy

∫

S
Uzdxdy

(7.12)

and Cpi =
P i 0 − P i

1/2ρU2
∞

is the stagnation pressure coefficient. Relation (7.11), well known in

internal flows (see Greitzer[59]), states that the loss of entropy is readily evaluated by the mass
averaged stagnation pressure loss coefficient.

7.4.2 Observation of the pressure losses

Contours of Cpi at several transverse planes and different τ are depicted in figures 7.14
and 7.15 for configurations C1 and C2, respectively. These measurements allow us to identify
the following regions where losses occur
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Figure 7.14: Cpi at several τ and different axial locations (conf. C1). From left to right:
z = −0.5, z = 0, z = 1 and z = 2. The same iso-contours are used in all the frames.

i- At the wing trailing edge, the two boundary layers formed at the surfaces of the wing
merge and form a zone of low stagnation pressure. In addition there is a base pressure at
the TE due to the non zero thickness of the geometry there that likely increases loss (see
Greitzer[59]).
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ii- Flow separation occurs at the wing tip surface due to the sharp corners of the geometry.
Large values of the stagnation pressure coefficient are found there.

iii- In configuration C2, entropy is also generated in the splitter plate boundary layer.
The existence of this loss is the main difference between the two configurations C1 and
C2. In figure 7.15, one can observe that the losses are large close to the surface and
decrease upward. Right below the tip vortex, the stagnation pressure decreases due to
flow acceleration. When the gap increases, the vortex strengthens and entrains the high
stagnation pressure fluid contained in boundary layer. This shows that there is a strong
coupling between the loss from the tip vortex and the loss from the boundary layer.

iv- The shear layer between the leakage flow and the mainstream causes strong pressure
loss. This shear layer rolls-up into the tip vortex. At large gaps, loss contained in the
tip vortex is transported downstream. At small gaps it is strongly diffused by viscosity.

It is interesting to look at the evolution of Cpi in the vortex core. We observe in figure 7.14
and 7.15 a decrease of Cpi with z at small gaps and an increase at large gaps. In the following
we show that these variations are correlated to the jet-like or wake-like form of the axial velocity
profile in the core. We start from the equation for the z-component of velocity in cylindrical
coordinates at the vortex center

ρUz
∂Uz

∂z
= −

∂P

∂z
+ ν

(

1

r

∂

∂r

(

r
∂Uz

∂r

)

+
∂2Uz

∂z2

)

(7.13)

Introducing P i = P + 1/2ρU2
z in this relation shows that the evolution of Cpi at the vortex

center is ruled by viscous diffusion. This diffusion term can be simplified by neglecting the axial
variations in front of the radial one, as in the Batchelor vortex model (Batchelor[14]). This
gives

∂Pi

∂z
= ν

1

r

∂

∂r

(

r
∂Uz

∂r

)

= −ν
1

r

∂

∂r
(rΩθ) (7.14)

where Ωθ denotes the azimuthal mean vorticity. This equation states that the axial variations
of the total pressure depends only upon the sign of the variations of rΩθ. In a jet (wake)
type vortex, Ωθ is positive (negative) and nil at the axis. The derivative is hence positive
(negative) and the stagnation pressure decreases (increases). These variations are confirmed by
the experiments, see figure 7.16(a), where the values of Cpi are plotted as a function of ∆Uz.
The scatter mainly occupies the upper right and lower left quadrants, thus relating increase
(decrease) of Cpi with jet (wake) flow.

The physics of this evolution is the following. The Cpi of flow particles at the vortex axis
varies due to viscous friction in the core of the flow. In the case of a jet, the flow in the core
entrains the surrounding fluid, which results in a loss of energy corresponding to an increase of
Cpi. In the case of the wake, it is the surrounding fluid that entrains the core axial flow which
therefore receives energy and exhibits a decrease of Cpi.

7.4.3 Influence of τ on the mass-averaged loss

Large gaps are known to be detrimental in terms of loss. This was proven in particular by
Bae[10] and Storer[147]. These authors show that Cm

pi increases linearly with τ .
The evaluation of the stagnation pressure loss coefficient Cm

pi at z = 2 is depicted in fig-
ure 7.16(b). The domain of integration is the same for all τ and includes the tip vortex and
the boundary layer at the splitter plate. We see that Cm

pi increases linearly when τ ≤ 5%,
in agreement with the studies of Bae[10] and Storer[147]. The fact that the increase is linear
suggests that the primary mechanism of loss is the mixing of the leakage flow with the main-
stream. A simple model of mixing concerning injected flow with a mainstream flow proposed
in Greitzer[59] shows that the increase in pressure loss is linear with the mass flow rate of the
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Figure 7.15: Cpi at several τ and different axial locations (conf. C2). From left to right:
z = −0.5, z = 0, z = 1 and z = 2. The same iso-contours as in figure 7.14 are used in all the
frames.

injected flow, providing this mass flow rate remains small. This condition is fullfilled here since
at small gap the leakage mass flow rate remains small. Moreover the linear increase of the leak-
age mass flow rate with τ , although not proven here, seems reasonable and the other sources of
loss identified earlier (boundary layer, corner separation, base pressure) are not expected to be
strongly modified when the gap is varied. As a consequence the increase in leakage mass flow
rate is the primary mechanism leading to increased loss.

When 5% < τ < 8% losses decrease however. This evolution is not documented in the
literature, because usual gap sizes considered are those found in turbo machineries (τ ∼ 1% −

4%). The most probable scenario for this decrease, based on the previous analysis at small gaps
implying mixing as a dominant mechanism, is that the leakage mass flow rate does not increase
anymore when τ > 5% and even decreases. This is supported by the fact that, when τ increases,
part of the gap region becomes occupied by the mainstream. Moreover the modification of the
pressure distribution at the tip may also lead to a decrease in the leakage mass flow rate. The
fact that the decrease is much smaller in C2 than in C1 is likely the consequence of the additional
loss produced by the entrainment of the induced boundary by the vortex in C2.

Figure 7.16(b) also shows that a constant difference exists between the loss measured with
splitter plate and that measured without, in the small gap regime. Losses with the splitter plate
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Figure 7.16: (a) Stagnation pressure coefficient versus the jet/wake axial velocity profile. open
symbols: C1. plain symbols: C2, (b) mass averaged stagnation pressure loss Cm

pi versus τ at
z = 2. 2: C1. N: C2. O boundary layer correction in conf. C2.

includes those produced by the boundary layer so, in order to compare the two configurations
C1 and C2 on a similar basis, we must evaluate the loss corresponding to the boundary layer
in C2 and subtract it from the total loss. Entropy production in boundary layers is related to
a dimensionless parameter called the dissipation coefficient Cd, see Denton[38]. This parameter
varies with the Reynolds number Reθ based on the momentum thickness as

Cd = 0.0056Re
−1/6

θ (7.15)

This law is a good approximation for Reθ > 1000 for a constant pressure boundary layer. Here
Reθ = 2000 at the wing leading edge so this law is adequate. According to the formula given
in Denton[38], the mass averaged pressure loss coefficient associated to the boundary layer is

Cm
pi, bl = 2Cd∆x∆z (7.16)

where ∆x is the transverse length of the boundary layer taken into account and ∆z is the
length over which the boundary layer develops. The curve corrected by this effect is shown in
figure 7.16(b). There is a good agreement of the corrected curve with the curve of the flow in C1
at small τ . This is interesting because it shows that, at small gaps, the effect of the boundary
layer on loss production is linear, and can hence be substracted from the total loss to isolate
the contribution of the vortex, whereas at large gaps, the contribution of the boundary layer is
non-linear and produces additional loss by cooperation with the vortex (mainly entrainment of
the boundary layer around the vortex).

Conclusion

The tip leakage vortex was investigated by means of an experimental apparatus comprising
two configurations. The effect of the gap size was investigated in order to describe the vortex
mean properties. At small gap the vortex decays rapidly downstream while it is conserved at
large gaps. Comparing the two configurations, we found that C1 produces a vortex pair of
large aspect ratio, which exhibits an important drifting velocity. The vortex in configuration
C2 is characterized by a smaller drift and rebounds at the surface of the splitter plate. It is
also slightly weaker than the vortex in C1. In the end we evaluated the stagnation pressure
loss downstream of the tip clearance gap and found a linear increase in the range of small gaps,
and a stagnation/decrease at larger gaps. For the continuation of the present work, we also
evaluated tb in C1 and C2 and showed that cooperative instabilities are more likely to develop
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in C1. Therefore in the following chapter 8 dedicated to the study of the Crow instability, we
focus on the flow in C1.



8 Experimental analysis of the Crow

instability

This chapter deals with the investigation of the Crow instability in the tip vortex. According
to the mean value of tb (see definition (2.27)) obtained at z = 2 in chapter 7 (see figure 7.13(c)),
it was shown that the vortex in C1 (no splitter plate) is more likely to develop the Crow
instability than the vortex in C2 (with splitter plate). This difference is explained by an
increase of b obtained in C2 due to the vortex rebound phenomenon, which results in larger tb.
We also showed that in C1, the case τ = 7.5% was the most favorable. We chose this case for
the present investigation.

Table 8.1: Previous works on the Crow instability in which the instability was observed. De-
tails of the experimental apparatus as well as characteristics of the instability, when they are
available, are provided. The present apparatus is included for comparison. We distinguish the
split wing apparatus and others. Frequency is normalized on U∞/c and time on c/U∞ if not
otherwise stated.

Split wing apparatus Rec, ReΓ tb a/b
Detection
time

frequency

Present study
τ < 12%
α = 8o

Rec ∼ 105 < 3 > 0.2 1.5tb 0.75

Devenport[41]
τ = 15.5%
α = 5o

Rec ∼ 105 10.8 0.2 2.8tb 0.36

Pailhas[118]
τ = 12.5%
α = 5.45o

Rec ∼ 105 4.5 0.15 1.3tb
0.38
kb = 0.75

Bearman[16][17]
τ = 17.5%
α = 8o

Rec ∼ 105 24.6 0.2

Other apparatus

Bae[10]

linear
compressor
cascade
τ < 4%
α = 5o

Rec ∼ 105 1 0.3 0.04tb 0.75

Leweke[98]
vortex pair
generator

ReΓ ∼ 103 0.2

Thomas[149]
rotating
plate

ReΓ ∼ 104 1s 0.2
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The experimental method used here includes tomoscopy, hot-wire and PIV measurements.
The tomoscopy provides preliminary and qualitative information on the evolution of the flow
unsteadiness with streamwise distance. Hot-wire allows the determination of energy spectra,
from which noteworthy frequencies and energy levels can be derived. Finally PIV allows to
characterize spatial properties of the unsteady flow field. Note that, like in chapter 7, velocities
and distances are normalized on U∞ and c, respectively. The Reynolds number Rec = U∞c/ν
is still fixed at 4.8.105 (U∞ = 38m/s) and the wing angle of attack, at α = 8o.

In table 8.1 we present previous experimental investigations of the Crow instability.
Devenport[41], Pailhas[118] and Bearman[16] used an apparatus similar to ours but with larger
gaps. Since the growth rate of the Crow instability varies as the inverse of b2, large gaps means
that instability becomes mature far downstream of the wing. The work of Leweke[98] and
Thomas[149] relied on specific experimental set-up installed in water. These authors also ob-
served the Crow instability. Eventually Bae[10] observed the Crow instability in the tip leakage
vortex at a distance downstream very close to the trailing edge of the blade. The author noted
a good agreement of the frequency and of the growth rate with the prediction of Crow[34]. This
result is surprising because it is the first time that the Crow instability is observed so close to the
point where the vortex is generated. The hot-wire measurements of Bae[10] were reproduced in
our experiment at the corresponding axial position but did not show the existence of the Crow
instability. These results shall be discussed in the conclusion 9.

The chapter is organized as follows: we first qualitatively describe the longitudinal evolution
of the flow unsteadiness. In a second part we show the procedure and the results concerning the
detection of the Crow instability in the flow C1 at τ = 7.5%. We then use PIV measurements
to investigate the effect of the Crow instability on the velocity fields in planes transverse to the
free stream and analyze the displacement of the vortex center. Effects of τ and that of insertion
of the splitter plate are analyze in a last part. We end up with concluding remarks.

8.1 A first glimpse of the flow unsteadiness

(a) (b) (c)

Figure 8.1: Snapshots of the vortex pair taken at three different times at z = 0.5. Acquisition
frequency is set at 800Hz.

The longitudinal evolution of the vortex pair unsteadiness is first investigated with to-
moscopy visualizations recorded with a high speed camera. Several snapshots extracted from
the movies are shown in figure 8.1 and 8.2 at z = 0.5 and z = 2.5. The vortex pair is visible
in the first figure (straight lines in the snapshots are caused by laser sheet inhomogeneities).
Note that the (bottom) top vortex rotates (anti)clockwise. The snapshots show the typical flow
pattern of a vortex pair, including vortex centers, which appear as black regions due to the
centrifugal effect, surrounded by a uniform white region, the limiting streamline corresponding
to the Kelvin oval and the incoming smoke from the right. The three snapshots at z = 0.5
suggest that the vortex pair unsteadiness is low at this position.
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(a) (b) (c)

Figure 8.2: Snapshots of the vortex pair taken at three different times at z = 2.5. Acquisition
frequency is set at 2000Hz.

On the contrary, at z = 2.5 the flow patterns look significantly unsteady. One sees in
particular that the interface separating the pair from the ambient flow is very smoothed. This
evolution is not attributable to viscous effects only, and suggests the existence of stronger
unstable dynamics. Based on the available knowledge on vortices, we can mention that this is a
possible consequence of either the axial flow in the core, meandering, or cooperative instabilities.

If cooperative instability is at work, it is possible that the latest stage of evolution of the
vortex pair is linking of the two vortices. Note that Bearman[16][17] performs PIV measurement
of the vortex pair produced by a wing and finds that vortices sometimes disappear from the
measurement plane. The author attributes this phenomenon to vortex break-up, a term that
corresponds to the apparition of vortex linking and the subsequent formation of vortex rings. No
evidence of the disappearance of the vortices was found in the high frequency movies obtained
by tomoscopy up to z = 2.5. However PIV measurements, some of which are shown in a later
section, shall also suggest this possibility.

8.2 Detection of the Crow instability

8.2.1 Comparison between experiments and theory

0

2

4

6

8

0

0 .2 .4 .6 .8 1

r = 1

r = 3

hot-wire

||u||

(a)

x

y

0

2

4

6

8

0

r = 1

r = 3
48.5

o

(b)

Figure 8.3: Crow mode at a/b = 0.2 and ReΓ = 4000: a hot-wire is materialized by a small
segment, (a) perturbation velocity field of the mode (plane velocity vectors in color, iso-contours
of axial velocity in solid lines), (b) axial vorticity. The arrow shows the direction of displacement
of the vortex center due to Crow instability. The orientation is 48.5o about the x axis. Positions
r = a and r = 3a are shown by two dashed circles .

The Crow instability was computed by using the perturbation method detailed in chapter 3.
It is described as a global mode û which evolves spatially with a wavenumber k ∈ R oriented
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in the axial direction and temporally with a growth rate σ ∈ R. Figure 8.3(b) plots the
corresponding axial vorticity field. The dipolar shape induces an oscillation of the vortex in
the direction of the arrow outlined in the figure. This mode being a linear perturbation to the
mean flow U , the complete flow field corresponding to the vortex pair perturbed by the Crow
instability reads

U + ûcos(kz)eσt (8.1)

with û << U . Another important point is that, in the theoretical model, this flow is described in
the reference frame moving at U∞ (hereafter called the instability frame), where the instability
grows uniformly with time. The experimental flow is however investigated in the reference frame
attached to the laboratory (hereafter called the laboratory frame). The axial coordinate z′ in
the instability frame is related to z in the laboratory frame by

z′ = z + U∞t (8.2)

This means that the probe used in the experiment moves at a speed −U∞ in the instability
frame. The temporal growth rate of the instability in the instability frame becomes a spatial
growth rate in the laboratory frame and the axial periodicity in the instability frame introduces
a time periodicity in the laboratory frame. Therefore, in the laboratory frame the flow reads

U + ucos(kz + kt)eσz (8.3)

This relation shows that k is evaluated by sensing the flow at a fixed position in z while σ is
obtained by sensing the flow at different z.

8.2.2 Location for the observation of the Crow instability
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Figure 8.4: Location of the hot-wire measurement and iso-contours of axial vorticity Ωz in
dashed lines. The circles indicate the vortex radius. Location denoted 1 corresponds to the
vortex core and location 2 corresponds to r = 3a above the vortex (left). Spectra obtained in
the regions 1/2 as specified in the left frame (right). f is normalized on c/U∞.

Figure 8.4 shows the spectra determined by hot-wire in two different subsets, denoted 1 and
2, of the data. Subset 1 corresponds to the vortex core and subset 2 corresponds to the region
located at r = 3a above the vortex center. The first region exhibits large energy levels at low
frequency that suggest the presence of important meandering.
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In the second region, the energy levels are substantially lower. We note however the existence
of a peak at the two longitudinal locations. This peak was hardly distinguishable at z = 1 and
completely absent more upstream (not shown here). The appearance of this peak after some
distance downstream suggests the development of a growing instability in the flow. Because the
peak is found outside the vortex, it is not straightforward to attribute its origin to the vortex
pair dynamics. In order to check this hypothesis, we repeated these measurements at z = 2.75
for different values of τ , in particular at τ = 0% which is interesting for the discrimination since
no vortex exist in the flow. The results are shown in figure 8.5. We see that the peak disappears
at τ = 0%, which proves that it is the consequence of the vortex pair dynamics only.
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Figure 8.5: (a) Power spectral density of u normalized on the peak value at r = 3a above the
vortex for different τ at z = 2.75. (b) Effect of the normalization of the frequency by the Crow
frequency fCrow on the Power spectral density of u. In the two figures, the dashed line indicate
the position of the peak. Note that the same y range is used in all frames. in (a) f is normalized
on c/U∞.

Secondly we observe that the frequency of the peak decreases with τ . The growth rate
of the Crow instability versus the axial wavenumber k predicted by the theory is plotted in
figure 8.7(a). Amplification is maximum at kb = 1. This corresponds to the frequency

fCrow =
1

2πb
(8.4)

In this relation fCrow is normalized on c/U∞. This relation means that the frequency of the
peak must increase when the gap decreases, since b varies almost linearly with τ . In figure 8.7(b)
we compare the measured value of fCrow with the value predicted by (8.4), based on the value of
b obtained in chapter 7. Measurements and theory agree within 20% (the frequency of the peak
is slightly higher than that predicted). In addition, normalizing the frequency on fCrow, see
figure 8.5(b), confirms that the peak occurs at the same normalized frequency at the three values
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τ investigated, and that this frequency agrees well with the Crow frequency since f ' fCrow as
indicated by the dashed line in the figure.

Evaluation of the growth rate
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Figure 8.6: (a) Power spectral density of u at r = 3a above the vortex for different axial
positions, (b) schematic of the measurement location in transverse planes, (c) locations of
the hot-wire measurements along the trajectory of the vortex, (d) Energy of the fluctuation
u corresponding to the peak as a function of z. f is normalized on c/U∞. Recall that z is
normalized on c and that z = 0 at the wing trailing edge.

The growth rate of the instability is evaluated by measuring the energy of the peak at
various locations along the trajectory of the vortex, maintaining the distance r = 3a in the
y > 0 direction from the vortex center, as schematized in figure 8.6(b). The resulting spectra
are shown in figure 8.6(a). In figure 8.6(c), the trajectory of the vortex is depicted along with
the location of the hot-wire measurement. The measurement locations are uniformly distributed
between z = 1 and z = 3. At z = 1 the peak corresponding to the Crow instability is almost
unnoticeable but it grows continuously downstream down to the last measurement location.
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Figure 8.7: Growth rate σ of the Crow instability (normalized on t−1

b ) versus the wavenumber
k (normalized on b−1) for a/b = 0.2 and ReΓ = 4000, (b) frequency fCrow normalized on U∞/c
of the Crow instability at z = 2. 2 : prediction of fCrow with the values of Γ and b measured
in chapter 7. N : measured frequency.

The Power Spectral Density corresponding to the peak is plotted in figure 8.6(d) as a function
of the axial distance z. Note that the vertical axis is set in log scale. The data points are
well fitted by an exponential law of exponent β = 1.2. The growth rate of perturbation which
corresponds to this exponent is given by

σ = β
1

2
tb

U∞

c
∼ 0.5 (8.5)

where σ is normalized on t−1

b . The 1/2 term is included because the Power Spectral Density
is O

(

u2
)

and we consider the growth of the perturbation u. In this relation, the value of tb
is 0.8c/U∞ which is the average of the values of tb calculated at z = 0, z = 1, z = 2 and
z = 2.5 thanks to the values of Γ and b obtained in chapter 7. In figure 8.7(a) we plot the
growth rate of the Crow instability as a function of the axial wavenumber k for a vortex pair
a/b = 0.2, taken from appendix F. The experimental growth rate is about 30% lower than
the theoretical maximum, and the wavenumber is 10% higher. The agreement between the
experimetal point and the theoretical maximum is very satisfactory considering the differences
between the theoretical and experimental flows. Indeed, the experimental flow exhibits strong
turbulent effects, as well as longitudinal non uniformity (in particular, tb varies along the axial
direction), and probably differs in terms of vortex structure.

8.2.3 Discussion

We have presented many arguments which support the occurrence of the Crow instability
in the flow. The fact that the Crow instability is found outside the vortex core is however
intriguing. Signature of the Crow instability outside the vortex core was already noted by
Bae[10]. The absence of the peak of Crow instability in the spectra measured in the core
region is believed to be the consequence of the meandering (whose presence is suggested by
figure 8.13 representing the dispersion of the vortex centers obtained by PIV measurements).
Devenport[39] showed that meandering exists at all axial positions and results in spectra that
have 95% of the energy lying at frequency below f = 1, with no distinguishable peak. The
location of the Crow instability within the range of the meandering frequencies may explain
why the phenomenon can not be discriminated in the vortex core. Moreover the axial locations
investigated encompass the early development of the instability for which the energy associated
is expected to be low. Another mechanism that could be responsible for strong fluctuations
in the core region is the shear resulting from the axial velocity profile. However the frequency
associated to this instability mechanism is f ' ∆Uz/a, which corresponds to f ' 6U∞/c at
z = 2, and is of no interest for the present investigation.
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Figure 8.8: Decrease of the fluctuation associated to the Crow instability (N) and to other
sources (2). r is normalized on a, the vortex radius.

In the following, we call "core fluctuations" the fluctuations contained in the core, whose
spectra are shown in figures 8.4(a) and 8.4(b). As noted previously, the origin of these fluctu-
ations is not known for sure. However it is clear that these fluctuations decrease outward and
that the fluctuations associated to the Crow instability dominate at r = 3a. Based on these
radial evolutions of the fluctuations associated to the "core fluctuations" on one side and that
associated to the Crow instability on the other side, it is interesting to confirm with the theory
that the Crow instability can not be observed in the vortex core. Crow theory, see figure 8.3(a),
provides the spatial evolution of the associated fluctuations. For instance, at r = 3a fluctua-
tions are only 10% of the maximum, which occurs at the vortex center. Figure 8.8 shows the
comparison between the radial evolution of the "core fluctuations" and that of the fluctuations
due to the Crow instability. Fluctuations from the "core fluctuations" are measured in the
spectra of figure 8.4(a) while fluctuations associated to the Crow instability are calculated by
the theory, and initialized with the energy of the peak measured at r = 3a in figure 8.4(a). This
comparison shows that the Crow fluctuations decrease at a slower rate than those of the "core
fluctuations" which explains why it is not observed at the core, but dominates outside.

In addition, while the previous paragraph confirms the agreement between theory and ex-
periment concerning the detection of the Crow instability at r = 3a above the vortex center,
it is not clear why this detection occurs when x < xc and not when x > xc, see figures 8.4(a)
and 8.4(b). Our hypothesis here is that this is the consequence of the orientation of the single
hot-wire along the x axis. This orientation plays as a filter on the velocity vectors that can be
measured. More specifically, the signal f measured by the hot-wire depends upon the vector
product of the velocity vector U with the vector Vhw representing the hot-wire. This reads

f(U) = U × Vhw (8.6)

For instance, no measure can be obtained with the hot-wire if it is oriented parallel to the
stream. The direction of the velocity vectors of the Crow instability, see figure 8.3(a), for optimal
sensing with the hot-wire, is the upper left region, because there the velocity vector is almost
perpendicular to the wire, which is not the case elsewhere. This confirms the observations.

8.3 Statistical analysis of unsteady flow field

8.3.1 Comparison between experiments and theory

Turbulent stress field uxuy and preferred direction of vortex oscillations

Crow instability is now investigated by means of PIV. In the following we analyze the
correlation between the orientation of the oscillations of the vortex and the uxuy field in the
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(a) (b) (c) (d) (e)

Figure 8.9: Effect of the oscillation of the vortex in a preferred direction α on the uxuy field:
(a) Crow instability. (b) α = 0o, (c) α = −45o, (d) α = 90o, (e) no preferred direction. Dashed
lines correspond to negative values.

light of Crow theory. Note that

uxuy =
1

T

∫ T

O
ux(t)uy(t)dt '

1

N

∑

N

uxiuyi (8.7)

corresponds to a time average, which, in PIV, amounts to the calculation of the mean value
over N realizations of the variables. Figure 8.9(a) shows the uxuy field of to Crow instability
presented in figure 8.3(a). The oval shape oriented at about −45o stems from the oscillation of
the vortex in the direction oriented at 48.5o about the x axis, see figure 8.9(a). This must be
compared to figures 8.9(b) to 8.9(e) which correspond to the case of vortex displacement with
preferred direction at, respectively, 0o, −45o, 90o and without preferred direction. Note that
the shape of the uxuy field depends upon the reference frame.

8.3.2 Results

The iso-contours of the Reynolds stress uxuy are depicted in figure 8.10 for different axial
positions. The shape of this field is quadripolar at z = 0.5. At z = 1.5 it becomes organized
like in the case of the Crow instability. At z = 2.5 this structure is conserved but with larger
levels. Between z = 0.5 and z = 2.5 the value of uxuy at the mean vortex center increased
continuously. At z = 4 the levels have considerably decreased, the vortex cores being now
completely disorganized.

Based on the correlation between the uxuy structure and the preferred orientation of the
vortex displacement illustrated in figure 8.9, the previous observations suggest the following
analysis. At z = 0.5 the vortices sustain slight meandering. At z = 1.5 and z = 2.5 meandering
becomes oriented, presumably due to the occurrence of the Crow instability. At z = 4 the
structure of the Crow instability has disappeared which, in addition to the significant decrease
in turbulent levels, suggests that some non-linearities have modified the flow. As in Bearman[16],
it is possible that vortex linking occurs, here between z = 2.5 and z = 4. This mechanism will
be considered further in the next section.

8.3.3 Vortex displacement

Vortex identification Γ2 criterion

Identification of the vortices (center, radius) from instantaneous flow field is delicate. In
particular, tracking of the vortex center with time becomes difficult in the presence of small
scale turbulence. This makes the use, as was done in previous chapters, of the instantaneous
vorticity Ωz to detect vortex centers inadequate. Self-similar decay of the turbulent motion is

characterized by a vorticity
(

ε/l2
)1/3

where ε is the rate at which energy is transferred from
large to small scales and l is the typical size of the turbulent eddies. This relations shows
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close-up view

(a) z = 0.5 (b) z = 1.5 (c) z = 2.5 (d) z = 4

Figure 8.10: Iso-contours of uxuy at several axial position. The close-up view magnifies the
region of the top vortex core in frame (a). Dashed lines corresponds to negative value. Circles
corresponds to r = a the vortex radius, and points show vortex centers (none is shown when it
interferes with the uxuy field).

that the levels of vorticity detected in instantaneous PIV snapshots strongly vary with spatial
resolution. High levels of vorticity may be reached within the whole turbulent regions of the
instantaneous flow.
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Figure 8.11: (a) Schematic of the Γ2 criterion. (b) Truncation of the window if P is less than
r0 away from boundaries.

In order to identify the vortex core in the instantaneous flow field, we thus need a different
criterion. Several criteria (λ2, Q, ∆ or Nk) exist that are based on invariants of the velocity
gradient tensor, see Jeong[78]. However unlike numerical simulations, the evaluation of the
velocity gradients in experimental data may be hazardous due to the lack of spatial resolution.
It is preferable instead to use criteria based on the sole velocity field, like the Γ2 criterion
which was proposed by Graftieux[58] to localize vortex centers in PIV data. The Γ2 criterion
mimics the intuitive idea one can have of a vortex: a homogeneous region close to symmetric
rotation. At every point P of the measured plane, this criterion evaluates how well the point
P is the center of rotation of the surrounding flow by a quantity Γ2(P ) in the range 0 to 1.
If Γ2(P ) = 1 this means that all the particles in the vicinity of P rotate around P . On the
contrary, Γ2(P ) = 0 means that no rotational motion exists around P . Experimental values are
always in between due to numerous factors (spatial resolution, turbulence). The mathematical
expression for this criterion is given by

Γ2 (P ) =
1

S

∫

M∈S

PM ×
(

UM − ŪP

)

‖PM‖ · ‖UM − ŪP ‖
dS (8.8)

where S is the interrogation windows around the point P as depicted in figure 8.11(a) and where

ŪP =

∫

S UdS

S
(8.9)
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is the mean velocity vector of the flow in the region S. This makes the criterion Γ2 invariant by
Galilean transformation. The selection of the size of the flow region interrogated is the radius
r0 of the interrogation window S. Hence r0 plays the role of a low pass filter. According to
Graftieux[58], the vortex radius corresponds to

|Γ2(r = a)| =
2

π
(8.10)

In figure 8.12 we have plotted Γ2 corresponding to the mean flow at z = 1.5 (figure 8.12(a))

z = 1.5
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Figure 8.12: Γ2 for (a) the mean flow, (b) an instantaneous snapshot at z = 1.5, (c) instan-
taneous snapshot at z = 4. Dashed lines denotes negative values. Circles indicate the vortex
radius a corresponding to |Γ2(r = a)| = 2/π and points correspond to maximum of |Γ2|. Vortex
characteristics (a, b and xc, yc) are indicated in (a). Grids indicate spatial resolution.

and to instantaneous snapshots at z = 1.5 (figure 8.12(b)) and z = 4 (figure 8.12(c)). The
top (bottom) vortex corresponds to positive (negative) Γ2. The vortex radius corresponds to
Γ2 = 2/π and the vortex center are determined by the maximum of |Γ2| over the grid vertices.
The mean radius obtained by application of the method to the mean flow, as in figure 8.12(a), is
used to get the size of the window for the calculation of the instantaneous fields. Note that the
Γ2 criterion is calculated even in the boundary regions, by truncating the window S as shown
in figure 8.11(b).

Results

Results of the detection of the instantaneous positions of the vortices deduced from PIV
data by applying the Γ2 criterion are shown in figure 8.13. Every point denotes the passage
of the vortex center and the color indicates the passage frequency. The orientation of the data
is determined qualitatively. The dispersion of the data increases longitudinally. A preferred
orientation appears at z = 1.5, persists at z = 2.5 and disappears downstream. At z = 0.5 the
dispersion is small and the histogram is almost symmetric in each vortex core, denoting small
displacement of the vortices and no preferred direction. The preferred orientation observed
downstream is about 30o, which is notably lower than the theoretical orientation of the Crow
instability. However, like the theory, the orientations of the displacement of the two vortices are
symmetric about the symmetry plane of the vortex pair. At z = 4 the dispersion has increased
significantly, along with the mean radii of the vortices. There, in several snapshots, the distance
b was found to be smaller than the mean radius a of the vortices, which suggests the possibility
that vortex linking occurs before z = 4.
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Figure 8.13: Histograms of the vortex center position at several axial position. Color indicates
the passage frequency at a given grid vertex. Circles indicate the vortex radius.

8.3.4 Effect of the gap and the wall

Influence of the gap

(a) z = 0.5 (b) z = 1.5 (c) z = 2.5

levels x 10
-5

(d) z = 4

Figure 8.14: Iso-contours of uxuy at several axial position and τ = 3%. Circles indicate the
vortex radius. Note that levels of uxuy in (d) have been multiplied by 105 in order to make
iso-contours visible.

Iso-contours of uxuy at τ = 3% are shown in figure 8.14. Comparing this figure with
figure 8.10 which corresponds to τ = 7.5% shows that the Reynolds stress at τ = 3% exhibit
the same characterization, but earlier. In particular the uxuy pattern of the Crow instability is
already present at z = 0.5. Levels of uxuy have already decreased at z = 1.5 and this continues
down to z = 4, for which a normalization of levels had to be performed in order to make the
contours visible.

The histograms of the vortex positions shown in figure 8.15 confirm that at z = 0.5 the vortex
is displaced in a direction close to that prescribed by the Crow instability. Downstream the
dispersion becomes very important and the preferred direction is lost. These results suggest that
at τ = 3% the Crow instability occurs earlier than at τ = 7.5%. A more rapid disorganization
of the vortices is also observed.

Figure 8.16 shows uxuy at z = 1.5 for several values of τ . The figure confirms the trends
noted previously: Crow instability develops earlier with smaller τ . The patterns of uxuy show
that the flow is already in the latest stage of evolution at τ = 1% whereas high uxuy corre-
sponding to the Crow instability pattern develops in the vortex core as τ increases.

Effect of the splitter plate

Figures 8.17 show uxuy in C2 (with the splitter plate) at τ = 7.5%. At all axial positions
the pattern corresponds to vortex displacements without preferred direction. Meandering in
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Figure 8.15: Histograms of the vortex center position at several axial positions and τ = 3%.
Same color map as in figure 8.13. Circles indicate the vortex radius.

(a) τ = 1% (b) τ = 3% (c) τ = 4% (d) τ = 5% (e) τ = 7.5%

Figure 8.16: Contours of uxuy for several values of τ . Circles indicate the vortex radius.

the tip leakage vortex has already been observed by Devenport[39]. This suggests that the wall
prevents the early occurrence of the Crow instability and confirms the prediction based on the
values of tb that was given in chapter 7. We may conclude that the splitter plate tends to
stabilize the flow.

(a) z = 0.5 (b) z = 1.5 (c) z = 2.5 (d) z = 4

Figure 8.17: Iso-contours of uxuy at several axial position and τ = 7.5%, in C2 (with the splitter
plate). Circles indicate the vortex radius.

Conclusion

In this chapter we showed that the Crow instability develops in the flow in C1. The detection
of the instability is done outside the vortex core, because the vortex core is dominated by other
fluctuations, which are possibly due to meandering. The Crow instability seems to appear
earlier when τ decreases. The flow unsteadiness is strongly reduced when the splitter plate is
inserted and the Crow instability is not detected.
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The reduction of the unsteadiness by the splitter plate is surprising because it contradicts
the results of Bae[10] who predicted the occurrence of the Crow instability in the tip leakage
vortex. There are two hypothesis that may explain why it does not appear in the present
situation.

Firstly, the time scale of the appearance of the Crow instability in C2 is larger than in C1.
For this reason, it is possible that the instability appears further downstream after the test
section. However no measurement could be achieved there to confirm this hypothesis.
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Figure 8.18: Iso-contours of perturbation velocity corresponding to Crow instability.

Secondly, the symmetry, about the symmetry plane of the vortex pair, of the perturbation
corresponding to the Crow instability is not compatible with the no-slip boundary condition
at the splitter plate. Figure 8.18 shows the ux, uy and uz fields corresponding to the Crow
instability computed in chapter 6. We see that the Crow instability exhibits non-zero ux and uz

at the symmetry plane. Therefore, on a theoretical basis, the wall must prevent the formation
of Crow instability, by cancelling velocity fluctuations along the wall. It is interesting to note
that a similar result of instability prevented by a splitter plate was observed by Bearman[15] in
the case of vortex shedding in the wake of the blunt trailing edge.
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9.1 Summary of the results

i- Theory: stability of vortices. We reviewed the current knowledge on the stability of
single and pairs of vortices. Vortices are highly unstable at low swirl number (q < 1.5) due
to the occurrence of strong inviscid instabilities. Above this threshold, a single vortex is in
general considered stable even though weak instabilities exist (center modes). This stable
character is however broken when an additional vortex is introduced, thereby forming a
vortex pair. The strain mutually induced by each vortex upon the other entrains the
destabilization of the pair by cooperative instabilities (Crow, Widnall).

ii- Theory: thick dipoles. The stability of vortex pairs is now well understood. However,
the aspects covered by literature mainly concern dipoles of small aspect ratio. We thus
presented a map of the 3D instabilities of the Lamb-Chaplygin dipole which was used as
a paragon of thick dipoles. We showed the existence of a 2D instability which has never
been described before and which might occur in dipoles with smaller aspect ratio as well.

iii- Theory: optimal perturbation. The search for perturbations able to destabilize the
vortex pair more rapidly than what is naturally achieved by cooperative instabilities led
us to investigate transient growth of energy in vortex pairs. This was done for the Crow
and Widnall instabilities and for instabilities at finite swirl numbers. We proved that
strong transient effects can be expected in vortex pairs. An important mechanism for this
transient growth was found to be the destabilization of the vortex cores by perturbation
vorticity stretched and amplified in the hyperbolic stagnation regions of the flow. A
resonance mechanism relating the initial radial location of the perturbation and the final
frequency of the instability has been proposed.

iv- Experiment: mean flow. The tip leakage flow has been explored experimentally by
means of a setup producing a vortex pair and a single vortex when the symmetry plane is
materialized with a splitter plate. The mean flow obtained with a 7-hole pressure probe
showed differences in the kinematics of the tip vortex between the two configurations.
The splitter plate provokes a reduction of the drift of the vortex and its rebound. It
also modifies its mean properties (circulation, radius, aspect ratio). As for the vortex
dynamics, the evaluation of the time scale of the cooperative instabilities showed that the
splitter plate delays the occurrence of cooperative instabilities.

v- Experiment: detection of the Crow instability. We focused on the unsteady prop-
erties of the vortex pair without splitter plate. Tomoscopy and PIV measurement showed
that unsteadiness in this flow is significantly stronger than that with splitter plate. The
results confirmed the development of the Crow instability. Interestingly, we show that the
detection of the Crow instability by means of hot-wire measurements is possible outside
the vortex core, but not inside, due to the dominating influence of strong perturbations
of different origins in the vortex core. Moreover the splitter plate is shown to prevent the
Crow instability.
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9.2 Issues for practical applications

Our motivations were based initially on the idea that knowledge on tip clearance vortices
could benefit from recent research on the stability and control of trailing wake vortices. Re-
search works at MIT (Bae[10]) illustrated the interest in the subject by the turbo machinery
community. They demonstrated the need to take into account the Crow instability to control
the tip leakage flow with normal synthetic jets. In the context of trailing wake vortices, inves-
tigations for the control of the Crow instability had started earlier, and strategies had already
been developed (Fabre[45], Crouch[33]). However, open questions remained. In particular, al-
though the physics of the Crow instability had been known for quite a long time (Crow[34]),
its numerical computation in realistic vortex pairs posed problems. The subject of instabilities
in thick vortex pairs, partially investigated by Billant[19], was also a matter of interrogation.

Concerning the tip leakage flow, we needed to carefully describe the mean properties of
the tip vortex (circulation, radius, aspect ratio) produced by a blade, in particular through
the variation of the gap size. Concerning flow unsteadiness, we had to confirm that the Crow
instability was a dominant unsteady mechanism and we wanted to evaluate the possibility to
control it.

Our theoretical investigations allowed a better understanding of cooperative instabilities in
vortex pairs, and proved that there are possibilities to augment the associated energy growth.
The vortex pair formed by the tip leakage vortex and its image about the casing wall being thick
like the one formed in the far field of an aircraft wake, we also investigated the linear dynamics
of thick vortex pairs and found new instabilities. On the experimental side, the decision was
taken to proceed gradually, namely by introducing the casing wall in a second step, expecting
this would allow a better discrimination of the specific effect of the wall boundary layer on the
flow dynamics. This showed that the vortex with the casing wall differs from that in the wall
free situation, mainly as a consequence of the induced boundary layer. This results in a lower
vortex circulation, in a rebound of the vortex at the casing wall and in a strong damping of the
drifting motion. We could also confirm the increase of energy loss with increasing gap size.

What are the outcomes of the present findings for turbo machinery? Importantly, the
result of Bae[10] showing the presence of the Crow instability in the tip leakage vortex was
not confirmed by our analysis. We provide solid indications that the vortex unsteadiness is
strongly mitigated by the casing wall (compared to the wall free situation). On a theoretical
basis, our work suggests that the instability is prevented by the wall due to the no-slip boundary
condition. On an experimental basis, the rebound of the vortex and the lower circulation delays
the time of appearance of the Crow instability (tb is larger).

As for now, the contradiction between our results and those of Bae[10] remains a matter of
controversy. Bae’s dissertation is convincing but it lacks important details about the way the
Crow instability was detected. This contradiction could however stem from the specificity of
our respective experimental set-ups. Bae used a cascade of compressor blades in which multiple
blade passages could favour the Crow instability by cooperation between tip vortices or with
elements of the secondary flow, rather than between the tip vortex and its image about the
casing wall.

In the absence of the Crow instability in the tip clearance vortex, there is obviously no need
to control the tip leakage vortex by acting on this physical mechanism specifically. However
we showed that this type of control was possible in the wall free situation. We have tested, in
particular, a simple device inspired by the results of chapter 6 (see appendix A). Our results are
very preliminary, but such a research work could interest several applications where cooperative
instabilities remain an important mechanism that could be exploited for accelerating vortex
dissipation, e.g. aircraft wake, open rotors.
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9.3 Recommendation for future works

i- The contradiction between Bae’s results and ours deserves further inveestigation. In
particular, it would be interesting to study a cascade similar to that of Bae’s in order to,
firstly, vary the number of blades and discriminate the effect of the other tip vortices and,
secondly, to modify the boundary layer thickness and investigate the effect of secondary
vorticity.

ii- The theoretical analysis of the Crow instability must be pursued in order to understand
the influence of the no-slip boundary condition at the wall and of the subsequent formation
of secondary vorticity there. For that purpose, one would need to perform 3D simulations
of the interactions of a vortex with a wall. Existing studies in this field only concern the
interaction of a vortex pair approaching a wall, see for instance Luton[101], and show the
occurrence of the Crow instability in the secondary vortex formed at the wall.

iii- The experimental apparatus in the wall free configuration generates a mature Crow in-
stability within the length of the test section. This represents a good basis for further
experimental analysis of this instability. In particular we showed, in chapter 8, that track-
ing of the vortex center with PIV data gives valuable information on the instability. It
would be interesting to have a time resolved tracking of the vortex center in order to bet-
ter understand the displacement of the vortex and, based on spectral analysis, to analyse
the contribution of the Crow instability. This is now possible with time resolved PIV.
Concerning control, the apparatus used in appendix A showed encouraging results that
deserve further investigations. There is, in particular, a need for a control apparatus that
better matches the theoretical properties of the optimal perturbation described in chap-
ter 6. Finally, we did not investigate the Widnall instability in the course of this study
although some hot-wire data suggested its presence. It would therefore be interesting to
do this investigation and to compare the frequency and the growth rate of this instability
with theory.
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A Control of the Crow instability

This appendix deals with the control of the Crow instability in the experimental vortex
pair obtained without splitter plate. The control is achieved with an apparatus consisting of
a forced oscillating string. In chapter 6 we presented theoretical results concerning, for some
part, the optimization of the Crow instability in vortex pairs. Let us first recap our findings.
Optimal amplification of the Crow instability is obtained by a perturbation whose vorticity is
located in the vicinity of the upstream stagnation point. The y component of the vorticity is
first stretched at the upstream stagnation point and rolled-up on the dividing streamline of the
vortex pair. There, this vorticity induces the oscillations of the vortices corresponding to the
Crow instability. Overall these results show that there is a potential for increasing the growth
rate of the Crow instability. This can be accomplished by disturbing the vortex pair at the
symmetry plane with y oriented vorticity.

In addition in chapter 8 we showed that the Crow instability occurs in the experimental
flow in C1. The instability is detected by hot-wire measurements performed outside the vortex
core. Moreover PIV allowed a characterization of the associated properties of the flow field.

The theoretical potential for optimizing the Crow instability and the existence of the Crow
instability in the experiment constitute the motivation for the following attempt to control the
Crow instability. We focus on the configuration C1 (no splitter plate) at τ = 7.5%. Note that
since the Crow instability was not observed in configuration C2, the following control apparatus
is of no interest for the tip leakage vortex in compressors. However it is hope to bring useful
information for the general understanding of the control of vortex pairs.

Due to time and technical constraints the control apparatus used in the following study does
not comply with all the requirements of the theory. The idea here is to disturb the vortex pair at
its symmetry plane, but no consideration is made on the form of the perturbation. A discussion
on this latter aspect will be made in the end. The control apparatus is a string stretched in
between the two vortices of the pair. When it is set into the flow, the string produces vortex
shedding at a frequency given by StU∞/d where d is the diameter of the string and St is the
Strouhal number. The Strouhal number of vortex shedding is St = 0.2. The Reynolds number
based on the string diameter φ = 1mm is ReΓ = 4000. In this regime laminar separation occurs
at the rear of the string and vortices are shed at fv ' 9U∞/c. There is an order of magnitude
of difference between this frequency and that of the Crow instability. Using this frequency for
the control is therefore not possible. Ensuring the equality of the two frequencies would require
a string at least ten times bigger, which is not conceivable given the dimensions of the model.
Hence it was decided that the string would be oscillated at a frequency ff by playing on the
self-oscillations fs of the string and using an actuator to maintain these oscillations.

The description of the natural oscillations of a string is a basic problem of mechanics. If ys

is the amplitude of the oscillations and xs spans the string axis, the evolution of ys versus xs is
obtained by solving the equation

∂2ys

∂x2
s

=
1

ν2
s

∂2ys

∂t2
(A.1)

where νs =
√

Ts/µs, Ts being the tension of the string and µs the linear mass. The frequency
of the oscillations at the wavelength λ is fs = νs/λ. The first mode of oscillation occurring in
the experiment is the one corresponding to λ = 2L where L is the spanwise dimension of the
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test section. It results into oscillations whose nodes are at the two ends of the string. Overtones
add up at multiples of the fundamental frequency.

The shedding frequency being much larger than that of the string, we expect that the
oscillations of the string will induce the oscillation of the vortex shedding. No study could
be found in the literature on the effect of an oscillating string in a free stream. Most studies
investigate the problem of vortex induced oscillations of flexible cylinder in relation to the
structural problems that occur in offshore and thermal power engineering applications (see
Balckburn[21] and Chen[30]). In Blackburn[21] the authors investigate the peculiar regime
when fv ' fs by forcing the oscillation of a cylinder at fs. The control of these oscillations is
an important matter, see Chen[30].

Another flow in which the effect of a cylinder is of interest is the open cavity flow. An
example is the design of non damaging weapons bays for military aircrafts. Open cavities
exhibit acoustic resonances which provoke high acoustic and pressure variations as explained by
Illy[71], Stanek[140] and Cattafesta[26]. These fluctuations result in high loads that can damage
the mechanical parts contained in the cavity. A real-life experience of this acoustic resonance
is the unpleasant beating air pressure provoked by the opening of a window in a car. Cavity
modes are known as Rossiter modes. One solution to suppress these modes is to put a cylinder
upstream of the cavity at a certain distance from the wall. This was done first by McGrath[109]
and later detailed by Illy[71]. The rod acts as a stabilizer of the flow. Stanek[140] suggests
that the vortex shedding downstream of the rod induces an acceleration of the turbulent energy
cascade by excitation of the high frequencies in the dissipation range. This in return decreases
the energy at the lower frequencies where the Rossiter modes operate. This explanation follows
the one given by Wiltse and Glezer [156] corresponding to the response of a jet to high frequency
forcing.

The organization of the chapter is the following. The first section deals with the presentation
and the properties of the control apparatus. The results are then detailed, first in case when
the string is set still and then when it is oscillated. The last part is dedicated to concluding
remarks and to recommendations for future works.

A.1 Details of the apparatus

The control apparatus is made of an oscillating string such as those used in musical instru-
ments. The string spans the test section of the wind tunnel, as shown in figure A.1. At rest
the string is at y = 0 and aligned with the x direction. The left end of the string is attached to
the inside of the test section while the right end is attached to a point outside the test section.
The side window of the test section comprises a vertically elongated hole through which the
string passes and is allowed to move. The oscillations of the string are maintained by a periodic
excitation imposed by a rotating disc that has four rods attached to it at the same radius and
uniformly distributed along the perimeter. Every rod acts as a plectrum. The string is thus hit
four times at every rotation of the disc.

The motor is attached to an horizontal plane at the right side of the test section. The tension
of the string (and consequently, its natural frequency) can be varied by a specific mechanism
placed where the string is attached at the right end. The string and its actuator can be set
at different longitudinal z positions. However only one position was investigated, at z = 0.1
downstream of the wing trailing edge. The diameter of the string was varied between 0.3mm
to 2.3mm. However only diameters below 1mm could be oscillated, because the motor was not
powerful enough to move string of larger diameter.

The adjustment of the system is based on the coincidence between the natural frequency of
the string and the frequency of the passing rods. When these frequencies are equal, the whole
system is in harmony. This regime is characterized by nice oscillations of the string in the plane
(x, y) that is transverse to the free stream, as illustrated by the dashed lines in figure A.1.
Moreover the belly of the oscillation is at the middle of the string. Without harmony, the
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Figure A.1: Schematic of the control apparatus. The string is set perpendicular to the free
stream at z = 0.1. Dashed lines indicate the oscillations of the string. The actuator at the right
is used to maintain the oscillations. The right side of the test section has a hole through which
the string passes.

oscillations of the string are disorganized, which is evidenced by the existence of multiple nods
and bellies.
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Figure A.2: (a) Schematic of the vortex (represented by the circle) and location of the mea-
surement with the hot-wire. Longitudinal position is z = 2.5, (a) power spectral density of u
measured at this location.

The frequency of the oscillations is measured by a hot-wire located at z = 2.5 and at a
distance 3a above the vortex center, as schematized in figure A.2(a). This is the location where
the Crow instability was detected in chapter 8. The oscillations of the string are convected
there by the flow and appear as a very narrow peak in the spectrum shown in figure A.2(b).
Harmonics containing strong energy also appear in this data. In practice, the adjustment of
the forcing frequency is done in the following way

i - The motor is switched on. In general the frequency of the passing rod is not equal to the
string natural frequency,

ii - The tension of the string is adjusted so that its natural frequency matches that of the
passing rod,

iii - The string oscillation frequency is measured in real time with a spectral analyzer,
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v - The forcing frequency is then progressively adjusted by modifying repeatedly the motor
rotation speed and the string tension until harmony is reached. At every step the forcing
frequency is controlled with the spectral analyzer.
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Figure A.3: (a) Amplitude A of the string oscillations as a function of the forcing frequency. A
is normalized on 2τ the distance between the wing tips. (b) Oscillation velocity us of the string
normalized on W∞ versus the forcing frequency.

Several difficulties arise from the use of an oscillating string for flow control. First the
amplitude A of the oscillations changes with frequency. Figure A.3(a) shows that the amplitude
increases with frequency. Secondly the range of forcing frequencies allowed by the string is
limited. The maximum frequency is 100Hz. At ReΓ = 4.8.105 the frequency of the Crow
instability is fCrow = 140Hz. Therefore no forcing can be achieved at this Reynolds number.
This forced us to operate the wind tunnel at a lower free stream velocity corresponding to
ReΓ = 2.105. This reduced the Crow frequency down to fCrow ' 68Hz, in adequation with
the control range of frequencies. Thirdly the amplitude A of the string oscillations represents
between 40% to 70% of the size of the gap as shown in figure A.3(a). Although this is less
than the gap, it is somehow too large to fully comply with the requirements of the linear theory
which imposes small perturbation of the mean flow. If we model the string oscillations as a
sinusoidal displacement, then the maximum velocity us induced by the string is us = 2πAf .
Values of us versus ff are given in figure A.3(b). Perturbation velocities us imposed by the
control represent a significant percentage of the free stream velocity. At the frequency of the
Crow instability fCrow = 0.75 (normalized on U∞/c), the induced velocity is about 50% of the
free stream and the amplitude of the oscillations represents 50% of the gap.

A.2 Results

A.2.1 Effect of the string diameter

Figure A.4(a) shows the influence of the diameter of the string upon the spectrum of the
signal obtained with the hot wire at z = 2.5 and at a distance 3a from the top vortex of the
pair (where the Crow instability was detected, see chapter 8). We observe that smaller than
1mm diameters have no effect on the signal. Modifications appear when the diameter is reads
φ = 2.15 and 2.3mm. In these cases the energy of the signal is increased in the high frequencies.

To confirm the absence of influence of the string when φ ≤ 1mm, we repeated the measure-
ment with the 1mm string oscillated at the Crow frequency. Results are plotted in figure A.4(b)
and compared to the baseline case with no string. We see that the two curves almost superpose,
meaning that below 1mm the string, either oscillating or not, has no effect on the instability
at the location where the signal is measured. These results point out the need for φ > 1mm.
However, as noted earlier, the motor can not force the oscillation for such large string diameters.
In order to address this problem we decided to thicken only the portion of the string which is
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Figure A.4: Power density spectra of u. (a) Effect of the string diameter φ (in mm) on the
spectrum. (b) Effect of the oscillation of the φ = 1mm string at ff = fCrow. f is normalized
on U∞/c.

in the region of the vortex pair. Therefore overall the rigidity of the string is not modified
and the motor can still generate the oscillations. In practice we used a string with diameter
φ = 0.55mm and slid a vinyl of diameter φ = 2.15mm over the prescribed portion.

Figure A.5 shows the comparison of the spectrum between the new string at rest and the
baseline case. There is a subsequent change in the form of the spectrum with the addition of
the string. Energy of fluctuations at frequencies greater than f = 1 (normalized on U∞/c)
are significantly increased whereas larger scale fluctuations are slightly reduced. The frequency
of the vortex shedding produced by the string is indicated. No peak of energy associated to
this shedding is seen in the spectrum. According to Wiltse[156], the direct excitation of the
small scales in a free shear flow alters the dynamics of the energy cascade which results in an
enhanced transfer of energy between the large and small scales. The situation here is similar
to that described by Wiltse[156]. There is a high frequency generated by vortex shedding
downstream of the string and a low frequency of the flow generated by the Crow instability.
This analogy suggests that this forcing in the high frequency may be responsible for the increase
of the energy cascade and thereby for the reduction of the energy of small scale fluctuations
f < 1 (normalized on U∞/c) and the increase of that of large scale fluctuations f < 1.
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Figure A.5: Power spectral density of u. Comparison between the baseline and the case when
the string φ = 2.15mm is a rest. f is normalized on U∞/c.
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Figure A.6: Power spectral density of u for various forcing frequencies ff . (a) Log-lin plot, (b)
Lin-log plot. f is normalized on U∞/c.

A.2.2 Effect of the forcing frequency

Figure A.6 shows the modification of the spectrum when the string is oscillated for three
different forcing frequencies: ff < fCrow, ff = fCrow and ff > fCrow. An interesting observa-
tion is that the spectrum corresponding to f > 1 (normalized on U∞/c) is the same with and
without oscillations, as is evidenced by the exact superposition of the curve corresponding to
the oscillating string and to the string at rest. Therefore high frequencies are not influenced by
the oscillations of the string at the tested forcing frequencies. Inversely the part of the spectrum
corresponding to f < 1 is modified by the oscillations. In the case ff < fCrow, no modification
is observed. When ff = fCrow a slight increase of the energy is observed. The increase is larger
for ff > fCrow.

In order to evaluate the effect of the forcing frequency, we compare the energy E contained
in the peak corresponding to the Crow instability with the baseline after removal of the energy
contained in the ray of the forcing frequency. Results are reported in table A.1. We see that
the introduction of the string without oscillations impacts unfavorably the energy of the peak.
This is again the case when the string is oscillated at ff < fCrow (blue line). However when
it is oscillated at ff = fCrow (light grey line) or ff > fCrow (red line), there is a net gain of
energy. Surprisingly, this gain is the greatest at the highest forcing frequency although it is not
perfectly in resonance. This, as well as the loss when the frequency is lowered, may result from
the increase of the amplitude of the oscillation with forcing frequency. Although it is difficult
to distinguish the effect of the frequency and that of the amplitude, these results show that it
is possible to increase the amplification of the Crow instability.

Forcing frequency ∆E (%)

f = 0 −6
f < fCrow −2.3
f = fCrow +8.5
f > fCrow +25

Table A.1: Difference of energy content in the Crow instability between several forcing fre-
quencies and the baseline case.
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Conclusion

A preliminary control apparatus was designed in order to perturb the vortex pair in the
symmetry plane as suggested by our results on the optimal amplification of the Crow instabil-
ity. The properties of the apparatus were first described. Hot-wire measurements were then
performed at the location where the Crow instability was detected in chapter 8. It is shown
that the spectrum of the velocity is significantly modified when a string of diameter φ > 2mm
is set at rest, on the symmetry line of the vortex pair. The energy content of the high frequen-
cies increases while it slightly decreases at low frequencies, suggesting a mechanism of energy
transfer from the large scales to the small scale as in Wiltse[156]. When the string is oscillated
at the right frequency or higher, it is shown that the peak corresponding to the Crow instability
is increased. Gains up to 10% are observed when ff ≥ fCrow.

This method presents several drawbacks however. First, the string oscillations amplitude
A increases with ff and cannot be controlled. Secondly, the high velocity induced by the
string oscillations does not agree with the assumption of small perturbation corresponding to
the linear analysis. At last, the apparatus does not produce the right distribution of vorticity.
The string sheds vorticity oriented along the x axis, as shown in figure A.7(a), but his does
not corresponds to the vorticity field of the optimal perturbation described in the introduction
of this chapter and in chapter 6. The optimal perturbation must be composed of y oriented
vorticity periodically distorted along the z direction, as shown in figure A.7(b). The y vorticity
must be moreover symmetric about the symmetry plane of the vortex pair and applied in the
vicinity of the upstream stagnation point. The apparatus able to generate such a perturbation
is yet to be defined.
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Figure A.7: Vorticity induced by the control. (a) Present control. (b) Ideal control.





B Calibration of multi-hole pressure

probes

Contrarily to other measurement techniques, in particular optical velocimetry (PIV, LDV),
multi-hole pressure probes have the advantage that they provide a measure of the pressure
for a wide range of flow angles. This information is particularly important for internal flows
(turbomachines, nozzle, etc). The internal flow approach contrasts with that of most external
flow investigations for which the sole measurement of the flow velocities and of the pressure at
the walls allow the computation of the aerodynamic loads (lift, drag, and moments). The probe
can also be advantageous in situations when the flow varies widely in magnitude and direction
(see Babu[9]) as it accepts large flow angles (up to 80o).

Most multi-hole pressure probes have nonetheless the inconvenient that they only give time-
averaged quantities. Because of the small size of the probe (typically a few millimeters, so
probe disturbances are small), it is difficult to include pressure sensors into the core of the
probe. Sensors are in general located far from the probe and connected to it by vinyl tubes.
The length and the inertia of the air contained in the tubes limit the bandwidth of the signal that
gets to the sensors. If we suppose that the tubes are infinitely rigid then we can approximate
that the pressure travels in the tube at the speed of sound a (in this part, a does not denote
the vortex radius). If the tube length is L, the maximum frequency of the signal transported
by the tube is fc = a/L. For L = 2m the cut-off frequency is 70Hz. For a bandwidth of about
10kHz, this law imposes L ∼ 30cm. Note that the account of the flexibility of the tube causes
additional reduction of the frequency cut-off.

The first probes were used with a sideslip nulling technique and they were calibrated in
incidence, only. The sideslip was found by looking for the orientation of the probe that cancelled
the differences between the opposed pressure external ports. As discussed by Pisasale[123], the
inconvenient of this method is that it induces large flow blockages due to the sideslip adjusting
mechanism in the wind tunnel test section.

Because of these short-comings non-nulling techniques that require no adjustment of the
orientation of the probe in the test section were privileged. These techniques are based on a full
calibration of the probe response against variations of the velocity vector and total pressure. The
idea of the calibration is to subject the probe to flows of known flow direction and intensity and
to use this data to build an interpolation map for the probe. In practice, two main techniques
exist : the curve-fit method of Gallington[50] and the look-up table method of Zilliac[159]. Both
were shown to give comparable results. A novel method based on Artificial Neural Network
(ANN) also exists, see Kinser[84].

The number of data points needed for the calibration can be large. Gerner[51] uses 560
data points for a complete calibration in incompressible flow. Probe calibration is an important
problem because it is expensive and time consuming. Every probe needs its own calibration
which accounts for its own defects. Therefore methods that allow less calibration points are of
primary interest.

Before proceeding further, we need to explain first how the pressure information delivered
by the probe is related to the flow angle and magnitude. Consider for instance a seven hole
pressure probe and label 7 the central port and from 1 to 6 the side ports dispatched every
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60o around the central port. A schematic of the probe head with the repartition of the holes
is given in figure B.1. The flow incidence can be obtained by taking the difference between the
ports 1 and 4.

C1−4 =
P1 − P4

P̄
(B.1)

Equivalently the side-slip relates to C2−5 and C3−6. The pressure at the denominator is the
mean pressure based on the side ports

P̄ =
6

∑

i=1

Pi

6
(B.2)

At low flow angles P̄ approximates the static pressure while the total pressure is measured at
the central port P7. Therefore the dynamic pressure can be evaluated by the difference between
P̄ and P7. Of course all this is true at very low angles but in essence the principle is the same
at higher flow angles.

The angular domain (angle of attack α, sideslip β) encompassed by the probe depends on
the number of pressure ports. The angular domain increases with the number of ports. For
example, a five hole probe (see Gerner[51]) can measure velocity vector up to 40o. A seven holes
probe will go up to 75o. The reason for this runs in the fact that above certain angles, the flow
detaches above downstream ports, which decouple the pressure information from the velocity
vector. If less than two pressure ports give non detached flow information in one direction of
angle then this angle can not be determined. Increasing the number of holes hence reduces this
drawback and augments the limiting angle.

This detached flow phenomenon determines two regions for the probe: low angles and
high angles. In the low angle regime the flow is attached over all pressure ports and the
maximum pressure is measured at the central port. Typically, the angular domain of this
regime corresponds to the cone angle of the probe that is generally between 30o and 45o. The
high angle regime is defined for angles above these limits. In this regime the flow is detached
over at least one port. In the case of the seven-hole pressure probe, seven sub regions can be
defined depending on the side port that receives the highest pressure. Calibration techniques
often use this subdivision in angular domains by applying different interpolation laws in each
of them.

One fear about using probes is the interference it can provoke with the flow. It was shown by
Devenport[39] that, in general, the probe does not modify the flow. An example for which the
presence of a probe can be detrimental is that of vortex bursting. Using a probe in this condition
is to be avoided. The vortices we investigate are however not concerned by this limitation.

The typical precision of a multi-hole pressure probe is illustrated in table B.1 from the work
of Sumner[148]. It should be kept in mind that it is difficult to precisely assess the uncertainty
on the measure delivered by a pressure probe. This is commonly done by testing several points
outside the calibration data set. However this does not take into account parameters like the
uncertainty of the calibration apparatus. Another difficulty arises when one uses the probe in
a highly turbulent environment because the calibration is generally achieved in a low turbulent
flow, see Tropea[153]. The effect of turbulence is therefore not accounted for in the calibration
and is likely to bring large uncertainties on the measure.

Pitch angle Yaw angle Total pressure Dynamic pressure Velocity magnitude
3% 1.5% 5% 5% 3%

Table B.1: Typical precision of a seven-hole pressure probe.

This annex is devoted to a presentation of the calibration method of the seven hole pressure
probe used in our wind tunnel tests only. This method is an in house method that was developed
by Lesant[94]. More details can be found in this latter reference.
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B.1 Data processing

B.1.1 Definition

A schematic of a seven holes pressure probe is given in figure B.1. The central hole is
numbered 7 and the other at the side are numbered from 1 to 6 starting from the top. The
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1
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6

Figure B.1: Schematic of the seven holes probe and numbering of the holes.

direction of the probe being noted X, the transverse directions coplanar with the side holes
are Y and Z. The velocity vector in these cartesian coordinates is U = (Ux, Uy, Uz). Two
other systems of coordinates can be usefully defined, see figure B.2. The one that is used in the
calibration apparatus detailed later is the polar system (‖U‖, θ, φ) where θ is the pitch angle
and φ is the roll angle. Velocity components in cartesian coordinates are related to those in
polar coordinates by the following relations

Ux = ‖U‖cos(θ)
Uy = ‖U‖sin(θ)sin(φ)
Uz = ‖U‖sin(θ)cos(φ)

(B.3)

Similarly, as a function of the angle of attack α and sideslip β, we have

Ux = ‖U‖cos(α)cos(β)
Uy = −‖U‖sin(β)
Uz = ‖U‖sin(α)cos(β)

(B.4)
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Figure B.2: Parameters for the angular orientation of the probe.
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B.1.2 Calibration

In this part we detail the calibration method used for a seven holes probe. However the
same method applies to a probe with a different number of holes. We first define the following
17 composite values:

i- C1 to C7 are the pressure at the ports. C7 is the pressure at the central port.

ii- C8 to C10 are the difference of pressure between opposed side ports. For example C8 =
C1 − C4

iii- C11 to C15 are the pressure difference between adjacent side ports. For example C11 =
C2 − C3.

iv- C16 is the pressure at the central port minus the mean value taken over the external ports

v- C17 is the mean values over all ports.

Composites C8→10 correspond to the flow angle. The composite C16 corresponds to the velocity
magnitude and C17 corresponds to the total pressure.

The probe is a sensor for which the input is the velocity vector (magnitude ‖U‖ and angles φ
and θ, see figure B.2) and the outputs are the pressure at the ports. If we write the 17 relations
between the inputs and outputs as fk then we have

Ck = fk (‖U‖, θ, φ) for k = 1, ..., 17 (B.5)

The objective of the data processing is to inverse this relation in order to determine the velocity
vector from measurement of the pressure at the ports. Figure B.3 shows the typical evolution

port 7

port 4

port 1

port 6 port 2

port 3port 5

Figure B.3: Pressure at the ports as a function of φ. φ varies from 0o to 360o by 15o increments.

of C1→7 with the roll angle φ for a given pitch angle θ for a regular probe. The signal C7 at
the central port does not vary as expected and the plots for the C1 to C6 are identical by a
translation of π/3. One sees variation of the pressure over the angular range of the probe is
complex. More specifically, relations fk (B.5) are not single valued functions.

In the present method these curves are approximated locally by parabola. Every fk is
modelled by a second order polynomial function defined by parts that is valid only locally. The
domain of validity is defined by (‖U‖, θ, φ) in ‖U‖ ± δ‖U‖, θ ± δθ, φ ± δφ.

Ck = fk(‖U‖, φ, θ) = ak0

+ ‖U‖
(

ak1 + ak2φ + ak3θ + ak4φ
2 + ak5θ

2 + ak6φθ
)

+ ‖U‖2
(

ak7 + ak8φ + ak9θ + ak10φ
2 + ak11θ

2 + ak12φθ
)

(B.6)
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The entire domain S is divided into N sub-domains

S(i) = [‖U‖, θ, φ ∈ (φ(i) ± δφ, θ(i) ± δθ, ‖U‖(i) ± δ‖U‖)] (B.7)

centered on N points φ(i), θ(i), ‖U‖(i) with i = 1, .., N . We have that S =
⋃

i S(i). Every sub-
domain S(i) corresponds to an interpolation function fk(i) that models the relation between
the pressure at the ports and the velocity vector and the total pressure. There is only one
constraint on the local domain S(i): the parabolic approximation needs to remain valid. Thus
the domain S(i) can not be "too large".
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Figure B.4: Open jet facility for probe calibration.

The determination of the 13 values akj(i) is done by writing that Ck(i) = fk(i) for at
least 13 points in S(i) where Ck and (‖U‖, θ, φ) are simultaneously known. The relation fk is
completely determined by the coefficients akj(i) for every i and k.

The inversion of the relation is performed by a Levenberg-Marquardt algorithm based on
the minimization of the distance between the measured Ck and the curve fk(i) for i = 1..N

B.1.3 Calibration points and determination of the interpolation coefficients

The domain S is meshed with N calibration points, N being equal to Nθ ×Nφ ×N‖U‖. For
a given velocity magnitude, Nθ values of θ are measured and for every value of θ, Nφ values
of φ are measured. This is repeated N‖U‖ times, the number of velocity magnitudes that is
tested. Every domain S(i) is centered at the point φ(i), θ(i), ‖U‖(i) and spans ‖U‖(i − 1) to
‖U‖(i + 1), θ(i− 1) to θ(i + 1) and φ(i− 1) to φ(i + 1). The interpolation is hence achieved in
cubes that comprise three mesh points in each direction ‖U‖, θ and φ. A specific treatment is
applied at the boundary of the domain (lower order interpolation).

(a) Front view (b) Side view

Figure B.5: Front and side pictures of a seven-hole probe.
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B.2 Illustration

B.2.1 Calibration facility

The open jet wind tunnel used for multi-hole probe calibration at ONERA-DAFE is shown in
figure B.4. The probe is hardly visible because of its small diameter. The mechanical apparatus
that holds the probe allows its adjustment (variations of θ, φ). The jet blows (from the right to
the left) over a wide range of velocity and total pressure from incompressible to compressible
flows.

B.2.2 Probes

Figure B.5 shows front and side views of a seven hole pressure probe. The probe diameter
is 2mm. We see that the surface of the probe have several irregularities that explain why it is
unique and why every probe needs to be calibrated separately.



C Optimal perturbation of vortex

pairs based on a reduced order model

In this appendix we present the numerical implementation and the application of a reduced
order model (ROM) based on linear global modes for the calculation of the optimal perturbation
of the vortex pair at the Crow wavelength. The results are compared to the optimal perturbation
results obtained in chapter 6.

C.1 Model reduction

C.1.1 Method

We consider the linearized form of the Navier-Stokes equations for the perturbation flow
(u, p) = (iux, iuy, uz, ip) eikz:

∂u

∂t
+ ∇u · U = −∇p + ∇U · u +

1

ReΓ

4u (C.1)

that we write in a matrix format Au = B ∂u

∂t
with A the matrix of the linearized operator and B

the projection of the perturbation field on the velocity field. This equation admits normal modes
solutions in the form ûje

σjt that form a basis. Suppose we approximate a given perturbation
by selecting N modes in this basis, the perturbation field is then given by

u =
N

∑

j=1

ajûje
σjt (C.2)

The N selected modes constitute the reduced order model for the perturbation. If N is large
enough we expect that the dynamics described by the reduced order model agrees with the full
simulation. With increasing N, the solution must converge towards the real perturbation. The
linear combination of the modes with coefficients aj can be usefully written in a matrix format

u = V eσt
a where V =

(

û1 û2 û3 . . . ûN

)

, a =















a1

a2

a3

...
aN















and eσt =















eσ1t

eσ2t

eσ3t

. . .

eσN t















(C.3)

where the matrix V contains the normal modes and eσt is the matrix exponential describing
the temporal evolution of these modes.
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The objective of the optimization is to calculate the optimal perturbation. The optimal
perturbation maximizes the kinetic energy of the initial perturbation u0 at topt among all other
possible initial perturbations. The energy of the perturbation is

E(t) =< u, Bu >=

∫

S

u
∗BudS (C.4)

where S is the computational domain and ∗ is the complex conjugate. The notation < ·, · > is
the scalar product. The gain of energy is the ratio of the energy at time t to the initial energy.
That’s the quantity that we want to maximize. By using the matrix format and the reduced
order model, we can write the energy gain like

G(t) =
< V eλt

a, BV eλt
a >

< V a, BV a >
(C.5)

and with further transformation

G(t) =
< a, eσt∗

V
∗BV eσt

a >

< a, V ∗BV a >
(C.6)

Let us write Qt = eσt∗
V

∗BV eσt. The optimization amounts to finding the maximum eigenvalue
αmax and its corresponding eigenvector amax of the following eigenvalue problem

Qta = αQt=0a (C.7)

To solve this problem, one need to do the following steps:

i- Calculate N normal modes uj of the base flow U and their complex frequency σj

ii- Calculate the matrix Qt of the scalar products between the N modes

iii- Compute the eigenvalues of problem (C.7)

In practice an important question when building a reduced order model concerns the choice
of the modes. In the present case, it seems legitimate to take the N most amplified modes.
However other solutions could be adopted. For instance, a filtering of the modes can first be
applied to evacuate certain modes that would not be appropriate based on either numerical or
physical arguments.

C.1.2 Numerical implementation

Once the N modes are calculated and selected, a list is created in which the modes are
ordered by decreasing growth rate. The cross-products between modes are then calculated in
order to build the matrix Qt=0. This matrix being hermitian, only the upper right triangle is
calculated. At this point we use the zheev routine of the LAPACK library (see Anderson[3]) to
check that the eigenvalues of the matrix Qt=0 are real (a hermitian matrix is characterized by
real eigenvalues). The matrix Qt is eventually calculated by multiplying Qt=0 by the exponential
matrix eσt and its transpose conjugate.

The resolution of the matrix eigenproblem is achieved by the routine zggev in LAPACK
that computes the eigenvalues and eigenvectors of a complex nonsymmetric matrix problem.
This is preferred to the routine zhegv that deals with a Hermitian definite eigenproblem that
should in principle be used since the matrix Qt is hermitian positive. The zggev routine is more
robust in case numerical difficulties arise (for instance numerical precision can deteriorate the
differences between certain modes and render the matrix Qt non hermitian). It gives complex
eigenvalues which imaginary part is zero if the matrix Qt is hermitian and deviate from zero
otherwise. Therefore the imaginary part gives a useful estimate of the quality of the reduced
order model and of the numerics.
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Figure C.1: Spectrum of the normal mode frequencies.

C.2 Results

C.2.1 Spectrum

The method was applied to the case of the Crow instability in the vortex pair at a/b = 0.2,
k = 0.18 at infinite swirl number and ReΓ = 4000 and topt = 6. In this case, we already have the
optimal curve that was obtained by using the adjoint in chapter 6. This result is the baseline
result against which the results delivered by the reduced order model is to be compared. In
the absence of axial flow in the core of the vortices, every normal mode of frequency σ has a
corresponding mode of frequency σ∗. Therefore only one half of the spectrum corresponding
to σI > 0 was computed. The method used to compute the normal modes is described in
chapter 3. Figure C.1 shows the spectrum of the normal mode frequencies. The Crow mode is
the only one that has a positive growth rate. Note that the growth rate σR is normalized on tb
(see (2.27)) and the temporal frequency σI is normalized on ta.

C.2.2 Optimal gain

The optimal gain was calculated for N = 400 and N = 796 modes. We observe that the
two curves are very close to each other but there is no convergence towards the optimal result
obtained with the adjoint mode.
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Figure C.2: Optimal amplification G as a function of time normalized on tb for topt = 6.
Comparison between the results obtained with the ROM and that obtained with the adjoint
mode (result detailed in chapter 6).
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C.3 Conclusion

This section described an optimization technique based on a reduced order model for the
perturbations in the vortex pair at the wavelength of the Crow instability. We first presented
the method and its numerical implementation. The results were then detailed. Although a
relatively large number of modes were used, the convergence is not attained. However the
shape of the optimal curve is retrieved.

The failure of the reduced order model to converge with a low number of modes may be a
sign that the normal modes may not be an adequate basis. This idea is supported by the fact
that normal modes are not modes based on an energetic criterion, but modes that describe the
dynamics contained in the linear equations. This failure may be a hint that ROM should be
built on different basis. Alternatives exist: POD, balanced POD for example.



D Impulse of a vortex in the vicinity

of a wall

In this part we investigate the moment of the vorticity distribution in the semi-plane schema-
tized in figure D.1, bounded by a wall at y = 0 and containing one vortex placed at (xc, yc).
This plane is denoted by V and its frontier is ∂V .
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Figure D.1: Schematic of the vortex in the vicinity of a wall. The grey disk denotes the vortex,
placed at (xc, yc). The wall is represented by the thick line at y = 0.

The goal here is to explain the effect of the wall on the dynamics of the vortex, in particular
its drifting motion.

D.1 Definition

D.1.1 Circulation

The circulation Γ is given by

Γ =

∫

∂V
u · ndl =

∫

∞

−∞

∫

∞

0

ωdxdy (D.1)

where n is the local direction of the curve enclosing V .

D.1.2 Impulse

The impulse of the fluid contained in V is a vector denoted I and defined by

I =

∫

V
x × ωdxdy =











∫

V
yωdxdy

−

∫

V
xωdxdy











(D.2)



156 Impulse of a vortex in the vicinity of a wall

We use the following notation for the x and y components of the impulsion:

Ix =

∫

V
xωdxdy

Iy =

∫

V
yωdxdy

(D.3)

The barycenter (xc, yc) of the vorticity is deduced from the previous quantities

xc =
Ix

Γ

yc =
Iy

Γ

(D.4)

D.2 Time variation

The circulation Γ, and the impulse components Ix and Iy are conserved for a domain en-
closing isolated vorticity. This is not true anymore in the presence of a wall because the wall
induces losses of vorticity by friction. We have from the equation of axial vorticity

∂ω

∂t
+ (u · ∇)ω = ν∆ω (D.5)

This equation states that vorticity is a planar transported scalar that diffuses by viscosity.

D.2.1 Circulation

The time derivative of the circulation is

dΓ

dt
=

∫

V

∂ω

∂t
dxdy (D.6)

Using (D.5), we have
dΓ

dt
=

∫

V

(

−ux
∂ω

∂x
− uy

∂ω

∂y
+ ν∆ω

)

dxdy (D.7)

Using the continuity
∂u

∂x
+

∂v

∂y
= 0 equation, the first term in the RHS of (D.7) can be trans-

formed in the following way

∫

V

(

−ux
∂ω

∂x
− uy

∂ω

∂y

)

dxdy =

∫

V

(

−
∂uω

∂x
−

∂vω

∂y

)

dxdy = −

∫

∂V
n ·

(

uxω
uyω

)

ds (D.8)

while the second term in the RHS of (D.7) gives

∫

V
∆ωdxdy =

∫

∂V
(n · ∇)ωds =

∫ +∞

−∞

∂ω

∂y
|y=0dx (D.9)

Finally we see that the circulation is decreased due to the viscous friction at the wall

dΓ

dt
= −ν

∫ +∞

−∞

∂ω

∂y
|y=0dx (D.10)
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D.2.2 Variation of the impulse

Following the same method, we have that the variation of the y component of the impulse
is

dIx

dt
=

∫

V
x

∂ω

∂t
dxdy (D.11)

Using (D.5), we have

dΓ

dt
=

∫

V

(

−xux
∂ω

∂x
− xuy

∂ω

∂y
+ νx∆ω

)

dxdy (D.12)

The following relation holds

∫

V

(

−xux
∂ω

∂x
− xuy

∂ω

∂y

)

dxdy =

∫ +∞

−∞

u2
x

2
|y=0dx (D.13)

This term vanishes if no slip boundary condition holds at y = 0. We finally get

dIx

dt
= −

∫ +∞

−∞

u2
x

2
|y=0dx − ν

∫ +∞

−∞

x
∂ω

∂y
|y=0dx (D.14)

The variation of the x component of the impulse is given by

dIy

dt
=

∫

V
y
∂ω

∂t
dxdy (D.15)

Using the same artifact as previously, one obtains

dIy

dt
= −ν

∫ +∞

−∞

ω|y=0dx (D.16)

D.2.3 Inviscid limit

For an inviscid medium the previous results write

dΓ

dt
= 0

dIx

dt
= 0

dIy

dt
= −

∫ +∞

−∞

u2
x

2
|y=0dx

(D.17)

The velocity u induced by the dipole at y = 0 is

ux =
Γyc

π (x2 + y2
c )

(D.18)

and the integral of the u2/2 term being

∫ +∞

−∞

u2
x

2
|y=0dx =

Γ2

2π2yc

∫ +∞

−∞

dx

(x2 + 1)2
=

Γ2

2πb
(D.19)

We have that
dxc

dt
=

Γ

4πyc
(D.20)

In an inviscid medium, the dipole hence drifts steadily at a velocity Udrift =
Γ

2πb
.
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D.2.4 Effect of the viscosity

For a viscous fluid, from (D.10), (D.14) and (D.16), it comes

dΓ

dt
= ν

∫ +∞

−∞

∂2ux

∂y2
|y=0dx

dIx

dt
= ν

∫ +∞

−∞

x
∂2ux

∂y2
|y=0dx

dIy

dt
= ν

∫ +∞

−∞

∂ux

∂y
|y=0dx

(D.21)

where we have used the relation between the vorticity and the velocity. The barycenter of the
vorticity (xc, yc) moves according to the following relations

dxc

dt
=

1

Γ

dIx

dt
−

xc

Γ

dΓ

dt

dxc

dt
=

1

Γ

dIx

dt
−

xc

Γ

dΓ

dt

(D.22)

The motion parallel to the wall is described by the first equation, which gives

dxc

dt
=

ν

Γ

∫ +∞

−∞

(x − xc)
∂2ux

∂y2
|y=0dx (D.23)

At the wall y = 0 the Navier-Stokes equation for the x direction reduces to the equilibrium
between the pressure gradient and viscous diffusion, namely:

0 = −
1

ρ

∂p

∂x
+ ν

∂2ux

∂y2
(D.24)

so that (D.23) becomes:
dxc

dt
=

1

ρΓ

∫ +∞

−∞

(x − xc)
∂p

∂x
dx (D.25)

Figure D.2(a) schematizes how pressure varies in the vicinity of the vortex, the latter being
a low pressure region. We see that ∂p/∂x is positive (negative) for x positive (negative), so
that the sign of the integral in (D.25) is dictated solely by the sign of Γ. Therefore for a
positive (negative) circulation, the vortex drifts to the right (left). This is in agreement with
the observed motion.

The pressure induced by the vortex is hardly modified by the wall. A good model of the
pressure variations is obtained by considering the velocity u induced by the vortex pair at its
mid-plane, which was already given in (D.18). Using Bernoulli’s formula, pressure at the wall
is

p = p∞ −
1

2
ρu2

x (D.26)

and
∂p

∂x
=

4ρΓy2
c

π2

x − xc
(

y2
c + (x − xc)

2
)3

(D.27)

Finally, (D.25) leads to
dxc

dt
=

2Γ

π2yc

∫ +∞

−∞

x2

(1 + x2)3
dx =

Γ

2πb
(D.28)
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The inviscid value of the drift velocity is retrieved, which shows that, concerning the drift
velocity, the effect of the wall is exactly the same as that of an image vortex.

Note that vorticity of sign opposite to that of the vortex is induced at the wall by the no-
slip boundary condition. This is schematized in figure D.2(b). Qualitatively, this vorticity also
explains the drifting motion of the vortex. As is observed in chapter 7, this wall vorticity is
entrained upward by the vortex and causes its rebound.

Γp+

p-

p+

∇p < 0 ∇p > 0

(a)

Γ

ω
wall
< 0

(b)

Figure D.2: (a) Pressure gradients induced by the vortex. (b) Schematic of the vorticity layer
induced at the wall by the no-slip boundary condition.





E Optimal perturbation of a vortex

sheet for fast destabilization of the

trailing vortices

The following study is based on the optimal perturbation analysis corresponding to chap-
ter 6. The difference is that we now consider the roll-up of the vortex sheet issuing from a
lifting wing as the base flow. This work was presented in the AIAA conference that took place
in Seattle in 2008.

Abstract

In this paper we investigate by numerical simulations the evolution of
three-dimensional perturbations on a rolling-up vortex sheet produced by
a wing that flies at constant speed. The objective is to find mechanisms of
energy growth that allow large amplification of energy at the wavelength
of the Crow instability in the far field of the wake of aircrafts. A direct
two-dimensional simulation of the vortex sheet shows that the flow spirals
into two opposite trailing vortices. We first evaluate the end of the roll-
up stage by comparing the distribution of vorticity in the vortices to that
of a Lamb-Oseen vortex. Then a stability analysis of the steady trailing
vortices indicates that the flow is unstable to the Crow instability. An
optimal perturbation is used to investigate the mechanisms of energy
growth in the rolling-up vortex sheet at the wavelength of previously
characterized Crow instability. A mechanism at short time is found
that corresponds to an Orr mechanism which is related to the mean
shear in the vortex sheet and a large time mechanism is also observed
that is related to the optimal amplification of the Crow instability by
initial vorticity in the middle plane of the wake already investigated by
Brion [23].

Nomenclature

x, y, z Cartesian coordinates

Γ Circulation

l Semi-span of the vortex sheet

d Thickness of the vortex sheet

S Computational domain

U, V, P Base flow velocity and pressure

u, v, w, p Perturbation velocity and pressure

ν Kinematic viscosity

Re Reynolds number

E(t) Energy of the perturbation
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Pi Snapshot of the base flow at time ti

E.1 Introduction

The security of air traffic depends on several parameters, one of great importance being the
wake vortex hazard issue. The use of large aircrafts has increased the necessity to alleviate
the danger associated by the trailing vortices. As no solution has been found so far, the safety
of air traffic especially at landing relies on separation rules between following aircrafts, with
great penalty for the largest. With this issue as a motivation, many scientific studies have
looked into the dynamics of these trailing vortices in the past century. Although very stable
coherent structures, trailing vortices were shown to be unstable to two types of three-dimensional
instabilities : the Crow and Widnall instabilities, that are respectively characterized by large
and short wavelengths. These discoveries marked the beginning of plans to use these instabilities
to destroy the trailing vortices. In this view, Fabre[43] and Crouch[33] showed that four vortex
systems can increase significantly the growth rate of the Crow instability. Recent experiments
using real aircrafts equipped with flapping devices tend to prove the validity of such systems
(private communication). The work of Brion[23] showed the more general result that the Crow
instability can be amplified optimally by perturbing the trailing vortices in their middle plane
by vertically distributed axial vorticity at the wavelength of Crow. Such initial vorticity is
amplified at the lower hyperbolic stagnation point of the vortex pair and induces the Crow
instability at least twice faster than in the case when no initial perturbation is applied.

Although of considerable interest, these approaches neglect one important phenomenon on
the practical point of view. The near field of the aircraft wake sees the formation of the trailing
vortices by the roll-up of the initial wake produced at the wing trailing edge. As the control of
the wake can only be performed from the body of the aircraft (distant actuation like plasma
remains science fiction for this kind of application), it implies that the effect of the roll-up
needs to be evaluated in order to correctly design such systems. This observation is the main
motivation of the present work. The idea is to model a wing flying at constant velocity by a
vortex sheet and to study the evolution of three-dimensional perturbations imposed to the flow.

As explained by Saffman [130] the vortex sheet is not an equilibrium solution and spirals due
to the infinite velocity at the tips into a pair of counter rotating vortices. The evolution of the
vortex sheet is described by the Birkhoff-Rott equation. Among others, Moore [114], Kaden [80]
and Schwartz [134] worked on the solution of this equation in the case of the semi-infinite one-
dimensional vortex sheet and derived important laws to describe the roll-up. Although an
important matter, the effect of three-dimensional perturbation on finite vortex sheets seems
to have never been investigated before, see Saffman [130]. Abid[1] look at the stability of a
vortex sheet roll-up at the Kelvin Helmholtz instability but the sheet they consider is infinitely
periodic.

The objective of the study is to find linear mechanisms of amplification of the energy of the
perturbations imposed to the rolling-up vortex sheet at the wavelength of the Crow instability
that affects the final trailing vortices. Considering aircraft wakes, such mechanisms could help
destabilizing the trailing vortices. The investigation is performed by numerical tools that include
direct simulations by a finite element method and an optimal perturbation algorithm based an
adjoint approach.

The study of linear mechanisms of energy amplification has been related to a modal approach
of the linearized dynamics for a long time. Yet the insufficiency of this approach resulted in the
study of transient growth of energy which has lead to important advances in the past decade
(see Schmid [133]). The identification of the lift-up and Orr mechanisms in plane shear flows
(see Butler and Farrel [25]) as well as the recent discovery of transient energy growth in single
vortices by Antkowiak[5] and Pradeep[124] allow for a better comprehension of the transition
of many types of flow. Transient analysis are based on optimal perturbation algorithms. The
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specificity here is that the base flow varies in time, contrarily to most perturbation analysis. We
will see that the unsteadiness of the base flow brings up specific problems for the calculation of
the perturbations.

The paper is organized as follows. First the evolution of the vortex sheet is described along
with the numerical method. We then explain the mathematical framework of the perturbation
analysis and the optimal perturbation algorithm. In the third part we discuss the results
obtained by the former analysis.

E.2 The vortex sheet
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Figure E.1: Roll-up of the vortex sheet produced by a wing (left) and computational domain
S = {(y, z)|y > 0} (right).

A three-dimensional wing set in motion in an incompressible fluid with constant velocity
is represented by a two dimensional vortex sheet of strength ω(y, z) normal to the direction
of motion as schematized in figure E.1. Cartesian coordinates are used throughout the study
with x the axial direction of motion, y the span wise direction and z the vertical direction. The
length of the initial vortex sheet is 2l and its strength is Γ. For numerical reasons, we decided to
model the wake of a cusped that has a vanishing chord at its tip which results in zero vorticity
at the tips of the vortex sheet. Therefore we circumvent the problem of dealing with infinite
tip vorticity like in the case of the elliptical loading. The case of the cusped wing was examined
by Schwartz [134] who gives the following shape for the vorticity distribution along the span

ω(y, z) = y/l
(

1 − y2/l2
)3/2

e−
z
2

d2 , Γ =
∫

S ω(y, z)dydz (E.1)

where ω is the axial vorticity along x. Compared to the formula given in the article, we add

the term e−
z
2

d2 where d is the thickness of the vortex sheet. A ratio d/l = 0.05 is used. The
integration domain S corresponds to positive values of y. Thinner vortex sheet would have been
preferred for better realism but as the thinness increases the refinement of the mesh, it is the
limited computing resources that drove our choice.

The span of the wing serves as the reference length scale. The time reference is the turn
over time of the initial vortex sheet is equal to t∗ = 4l2

Γ
which is the mean time a particle of fluid

needs do one revolution in the initial vortex sheet. The Reynolds number is Re = Γ

ν where ν is
the kinematic viscosity of the fluid. In the study, we set Re = 4000. The flow is described by the
velocity and pressure field (U, V, 0, P ) and evolves according to the incompressible Navier-Stokes
equations in cartesian coordinates and constant density :

∂tU + U∇U = −∇P + 1

Re∆U

∇ · U = 0
U(t = 0) = U0

(E.2)
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The solution of these equations is obtained by numerical computations that are carried out
throughout the study by a finite element method. We use P2-P1 Taylor-Hood elements for space
discretization (P2 for the velocity and P1 for the pressure) and a second order time scheme. The
numerical solver has been validated in previous studies [23]. The computational domain shown
in figure E.1 is rectangular with dimensions of the following extent {y = 0, 5l; z = −3l, 3l} to
ensure independence to wall effects. Only half of the vortex sheet is computed, the other half
influence being modelled by a symmetry boundary condition at the y = 0 boundary (S2). The
vortex sheet moves downward under self induction. To keep the vortical region in the fine mesh
in the center of the domain, we impose the inlet velocity Γ/4πl at the bottom boundary S1
and a Neumann condition at the top boundary S3. The boundary condition at the side S4
is also a symmetry condition. The convergence of the numerical discretization was controlled

t = 0.25

t = 0.1

t = 0

t = 2

t = 1

t = 0.5

Figure E.2: Contours of the axial vorticity of the base flow between t = 0 and t = 2. The initial
vortex sheet rolls-up into two opposite vortices. Dashed line indicate negative vorticity. The
minimum contour value is always at least an order of magnitude smaller than the maximum.

by comparing the results with those obtained by doubling either the size of the computational
domain or the refinement. The variation of the circulation Γ did not exceed 1% in all simulations
and the value of

∫

S yωdS did not show variations greater than 4%.
The evolution of the vortex sheet computed numerically from time 0 to time 3.75 is shown in

figure E.2. The sheet is flat at the beginning and spirals quickly until t = 2 when two opposite
axisymmetric vortices are clearly formed. We characterize these vortices by their aspect ratio
a/b where is a is their radius (taken at the maximum of tangential velocity) and b the distance
between the centers of vorticity (taken at the maximum of vorticity). It is found that a/b = 0.15
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at final time t = 3.75. As a Lamb-Oseen vortices, these vortices of small aspect ratio evolve
mainly through viscous diffusion which increases their core size. The viscous time scale in this
study is tν = 4l2/ν and is much smaller than t∗ as t∗/tν = 1/Re. Two periods of the evolution
of the vortex sheet can hence be distinguished. The first period until t = 2 is the roll-up and
the second period from t = 2 corresponds to the slow diffusion of the vortices.
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Figure E.3: Profile of the axial vorticity (left axis) at t = 0.5 (dashed line), t = 1 (thin line)
and t = 2 (thick line) and comparison (dotted line) ω − ωLamb−Oseen of the profile at t = 2 to
that of a Lamb-Oseen given by ωLamb−Oseen = Γ/πa2e−r2/a2

where a and Γ are identical that
to the flow at t = 2. Note that the profiles of vorticity have been extracted along direction
where variations were the greatest.

To check the end of the roll-up period at t = 2, we plot in figure E.3 the radial profiles of
vorticity about the maximum of vorticity at t = 0.5, 1, 2. The profiles at t = 0.5 and t = 1
exhibit bumps of vorticity outside the core region which correspond to the filaments of vorticity
that spiral around the core at these snap shots. At t = 2 these bumps of vorticity become
negligible in the profile and the difference with the Lamb-Oseen becomes very small (less than
4% as shown by the dotted line). All the vorticity of the wake is confined into the vortices after
t = 2.

E.3 Perturbation analysis

The evolution of small perturbations u(y, z, t)eikx superimposed on the base flow U(y, z, t)
with k the axial wavenumber, u = (u, v, w, p) the three-dimensional perturbations and U(t) =
(0, V, W, P ) the time dependent base flow is described by the incompressible linearized Navier-
Stokes equations

∂tu + U(t)∇u = −∇p − u∇U(t) + 1

Re∆u

∇ · u = 0
u(t = 0) = u0

(E.3)

where n is the normal vector at the boundary of S and u0 is the initial perturbation. The
solution of these equations are obtained by the finite element method described earlier. The
base flow represents the evolution of the vortex sheet from t = 0 to t = 7.5. It description
is given in figure E.4. Between t = 0 and t = 2, the vortex sheet spirals. At t = 2 the two
trailing vortices are formed and evolves by diffusion until t = 3.75. Between t = 3.75 and
t = 7.5 the base flow is frozen in order to save computational time in the computation of the
linearized equations. This choice is legitimated by the fact that the time scale ttv = 2πa2/ν of

Initial sheet Vortex pair Vortex pair

0

roll−up
−−−−−→

3.75

freeze
−−−−→

7.5

Figure E.4: Description of the base flow for the linear study.
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the trailing vortices is very large compared to the time scale tpert = 2πb2/Γ of the perturbations
as tν/tpert = Re(a/b)2 ' 102. It can be considered that the perturbations evolve on a steady
base flow when the trailing vortices are formed. The stability of this final stage of the base
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Figure E.5: (a) Growth rate σ of the most unstable mode at time t = 3.75 as a function of the
wavenumber. (b) Contours of the axial vorticity corresponding to the Crow instability.

flow evolution is investigated by the method presented in Brion [23] which solves a generalized
eigenvalue problem Aû = σBû, where A represents the direct linearized equations with the
steady trailing vortices. The wavenumber of the perturbations is varied in order to find the
most amplified perturbation. Figure E.5 shows the growth rate of the leading eigenmode (these
modes are steady). The structure of the most unstable mode at k = 0.48 displayed in the right
represents the displacement of the vortices in a plane at about 45 degrees about the horizontal
which characterizes the Crow instability. We use the usual (see Crow [34]) normalization in the
right and top axis lines in order to check the validity of the computations. The adjoint mode
of the Crow instability obtained by solving A+

û = σBû where A+ is the adjoint matrix is also
computed.

The base flow after roll-up is unstable at the wavelength of Crow. Therefore if the initial
vortex sheet is perturbed at this wavelength, the Crow instability will naturally grow in the
trailing vortices. However the time when the Crow instability will appear depends on the initial
perturbation. We already know that large amplification of perturbation energy is possible in
vortical flows (see Antkowiak [5] and Brion [23]). We expect it to be the case here. Therefore
a well chosen perturbation should be able to boost the Crow instability in the base flow. To
find such an initial perturbation we use an optimization algorithm that maximizes the energy
of the perturbation at time t given a unitary initial energy

E(t) = ‖u‖2 given E(0) = 1 (E.4)

and the algorithm solves
max
u0

E(t) (E.5)

The energy is based on the following scalar product

< u1, u2 >=

∫

Ω

(u∗

1u2 + v∗1v2 + w∗

1w2) dydz (E.6)

where ∗ denotes the complex conjugate. The algorithm used for t ∈ [0, 7.5] gives the curve of
the optimal energy gain as a function of the time of optimization and the corresponding optimal
perturbation u0. The details of the algorithm are given in the appendix. It relies on a gradient
method based on adjoint linearized simulations which equations write

∂tu
+ − U(T − t)∇u

+ = −∇p+ − u
+∇U

T (T − t) + 1

Re∆u
+

∇ · u+ = 0
u

+(t = 0) = u
+
0

(E.7)
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where T denotes the transpose matrix. These equations are solved backward in time which
make the adjoint equations more difficult to solve than the direct equations as the base flow
depends on time in the linearized equations. To solve the direct set one can solve the equations
of the base flow along the direct equations and obtain the full dynamics. Yet to solve the adjoint
equations, one would need to solve the set of base flow equations backward in time which is
impossible. To solve this problem we chose to keep snapshots of the evolution of the base flow
and then use an interpolation scheme to have the base flow at any time between the recorded
snapshots. The number of snapshot that one can keep depends on the available memory in the
computer. We call n the number of snapshots Pi of the base flow that are taken at times ti
for i = 0..n with t0 = 0 and tn = 7.5. We note ∆ti(i) = ti+1 − ti for i = 1..n − 1 which in a
general case does not have to be constant. Here though we chose a constant ∆ti = ∆tnum the
numerical time step which is the minimum value one can take when the base flow is obtained
numerically. If the flow was known experimentally, the minimum time step could be imposed
by technical properties of the photographic equipment for instance. Therefore it always has a
minimum value.

Given the set of records Pi=0..n, the picture of the base flow P (t) is computed by a spline
interpolation

P (t) = ait
3 + bit

2 + cit + di for ti ≤ t ≤ ti+1 , i ∈ 0..n − 1

and a0 = an−1 = 0
(E.8)

Note that the interpolation is second order at the first and last intervals. There are 4n − 2
unknowns ai, bi and ci to determine in order to define the interpolation scheme, which requires
an equal number of relations. For every interval i = 0..n− 1, we have the following constraints

ait
3
i + bit

2
i + citi + di = P (ti)

ait
3
i+1 + bit

2
i+1 + citi+1 + di = P (ti+1)

(E.9)

Also the derivatives have to be continuous between intervals, which can be written for every
interval i = 2..n − 2

dP (ti)
dt = 3ait

2
i + 2biti + ci = Pi+1−Pi−1

2δt

dP (ti+1)
dt = 3ait

2
i+1 + 2biti+1 + ci = Pi+2−Pi

2δt

(E.10)

The derivatives at every record point is taken as the slope between the adjacent recorded
snapshots. There are 4 relations for every interval except the last and the first for which we have
3 relations. In total, we hence have the required number of relations to compute the constant of
the interpolation scheme. The simulation of the base flow required 7500 iterations. Given 2.5Mb
per snapshot, the total memory requirement amounts to 20Gb. This imposes severe constraints
on the size of the mesh used in the computations. It was found by preliminary investigations
that interpolation schemes that don’t respect the continuity of the derivative of the flow at the
record points systematically caused divergence of the linearized simulations. The interpolation
scheme was implemented in the numerical method. The influence of the time step ∆ti/∆tnum

was investigated by performing direct numerical simulations for values of this parameter ranging
from 1 to 100 and by comparing the evolution of the perturbation energy in every cases. The
reference case corresponds to the minimum value of this parameter which is 1. This means
that we use all the snapshots taken during the simulation of the base flow. Values up to 30
showed the same results than the reference case but greater values showed diverging results.
The divergence is caused by the loss of important information in the evolution of the base flow
that changes rapidly in the beginning of the roll-up. Figure E.6 indeed shows by evaluating the
variation of the vorticity field between every numerical time step that the variations are much
larger before t = 2.
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Figure E.6: Variation ∆ω = ‖ω(t + ∆tnum)− ω(t)‖1/2 of the vorticity during the simulation of
the vortex sheet.

E.4 Results

Figure E.7 displays the energy amplification of the perturbation as a function of time. The
plain line is the envelope of the possible energy gain. It is obtained by fitting the results of the
optimal algorithm at different optimization times (shown by the circle symbols) with a spline
curve. The thin line corresponds to the energy gain obtained by the optimal perturbation at
t = 7.5. The dashed line is the energy amplification of the adjoint mode put on the frozen
trailing vortices at initial time. Two parts can be distinguished in the optimal curve. The
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Figure E.7: Energy gain as a function of time for three initial conditions. (thick plain) envelope
of the possible energy gain, (thin plain) optimal perturbation at t = 7.5, (dashed) adjoint of
the final vortex pair.

energy grows significantly at the beginning and reaches a peak E (t = 0.5) = 120. It decreases
afterwards until t = 1 and then increases again, until final time. The interval of time of the
first peak corresponds to the time of the roll-up t = 2 already noticed in the study of the
evolution of the vortex sheet while the continuous increase of energy after t = 2 corresponds to
the time period of the trailing vortices. Therefore it seems that there is a first mechanism of
amplification that is related to the roll-up of the vortex sheet and a second mechanism related
to the trailing vortices.

The optimal perturbation leading to the first peak of energy gain is depicted in figure E.8.
The large amplification is visualized by the intensification of the contour levels. The perturba-
tion is initially inside the vortex sheet and remains there during the roll-up. We remark that
the structure has a span wise pseudo periodicity of wavenumber α ' 30 reminiscent of the Orr
mechanism which is a two dimensional mechanism of energy growth in shear flows (see Butler
and Farrel [25]). Suppose a base flow with velocity V = V (z)ey and two-dimensional perturba-
tions u = (0, v, w, p) in the system of coordinates used here. The inviscid rate of energy growth
is given by

dE

dt
= −

∫ ∞

−∞

∂V

∂z
vwdz (E.11)

The energy of the perturbations can grow by extraction of energy from the mean shear through
the Reynolds stress vw. In the left side of figure E.8 we plot the profiles of V (z) and vw in
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a vertical section of the initial vortex sheet. The situation is characterized by V ′(z) < 0 and
positive vw therefore there seems indeed to be a local production of energy corresponding to
the Orr mechanism in the vortex sheet at the beginning of its evolution.
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Figure E.8: Contours perturbation vorticity of the optimal perturbation for the optimization
time 0.5 at times (a) t = 0 and (b) t = 0.5. Negative vorticity is dashed. Axis range have
been adapted for better clarity. The black line marks the structure of the base flow axial
vorticity. The vertical profile through the vortex sheet at y = 0.65 of span wise basic velocity
and perturbation Reynolds stress vw are shown (left) in the middle frame in which Top and
bottom labels correspond respectively to V (z) and vw.

To validate this scenario, we consider the entire flow instead of one profile. We notice that
the peak of energy gain results from a steep slope dE/dt of the optimal curve at initial time.
From the definition of the energy and by using the properties of the adjoint operator, the rate
of increase of energy can be written

dE(t)

dt
=< u,

(

A + A+
)

u > (E.12)

where A and A+ are the direct and adjoint matrix of the linear dynamics and depend on
time. As the convection is reversed in the adjoint dynamics contained in A+ compared to
the direct dynamics contained in A, it is found that A + A+ = −2D + 2V + 2C where D =
1/2

(

∇U + ∇U
T
)

is the two dimensional (in the plane (y, z)) deformation tensor of the base
flow, V is the viscous diffusion and C is the continuity equation. Note that the pressure terms
disappear in the addition of the matrices as the flow is supposed incompressible. To investigate
the effect of the deformations on the initial perturbations, we compute the eigenvectors V1 and
V2 in the plane (0, y, z) and the eigenvalues ε1 and ε2 of D. The first (second) eigenvalue ε1 (ε2)
corresponds to the stretching (compression) term in the direction of V1 (V2). It is found that
ε1,2 = ±ε have opposite values at all times like in linear flows. Given a perturbation u that is
incompressible, the inviscid rate of energy growth equals to

dE

dt
= −2

∫

S
ε
(

u2
1 − u2

2

)

dydz (E.13)

where u1 and u2 are the components of perturbation velocity respectively along V1 and V2.
The contours of ε

(

u2
1 − u2

2

)

are displayed in figure E.9 and are strictly negative which results in
production of energy. The orientation of the eigenvectors schematized by arrows in the figure
and that of the initial perturbation correspond to the Orr mechanism. The perturbation is
initially oriented in the compression direction. The final perturbation shows that the region of
positive vw have been rotated in the direction of the stretching by the mean shear flow therefore
producing energy by the Orr mechanism. An approximation of the inviscid rate of energy gain
produced by this mechanism can be obtained by the computing the integral of −2ε

(

u2
1 − u2

2

)

over the entire domain. Such operation gives dE/dt ' 500 which gives E ' 250 at t = 0.5. This
is to be compared with the value E = 120 obtained by the optimization process. The difference
lies in the effect of the viscosity that reduces the gain of energy. The span wise wavenumber non
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Figure E.9: Contours of density of inviscid rate of energy growth. Arrows show the directions
of stretching and compression in the vortex sheet.

dimensionalized by the thickness of the vortex sheet gives αd = 1.5 which compares well with
the result found by Butler and Farrel [25] in a Poiseuille flow. It is thought that parameters like
the extent of the vortex sheet and the vorticity distribution greatly influence the appearance of
the Orr mechanism and its potential increase of energy. In particular, thinner vortex sheet are
expected to give higher V ′(z) and higher energy gains by the Orr mechanism.

Figure E.10 shows the modification of the mean shear by the roll-up of the vortex sheet.
The shear is very strong in the initial flow and quickly decreases during the roll-up. After t = 1,
the maximum of shear is smaller by an order of magnitude. The decrease of energy after the
first peak in figure E.7 corresponds to the loss of coherence of the shear region in which the Orr
mechanism operates. Therefore the end of the roll-up stops the primary growth of energy.

0 3 7 10 13 17 20 23

t = 0

t =0.1

t = 0.25

t = 0.5

t = 1

t = 2

Figure E.10: ε at different snap shots of the vortex sheet evolution.

The optimal perturbation for final time t = 7.5 is displayed in figure E.11. The initial
perturbation is located in the middle plane of the initial flow, which is the analog of the result
found by Brion [23] for the optimal amplification of the Crow instability in a pair of opposite
vortices. The final perturbation is the Crow instability presented earlier. The energy growth of
the initial perturbation is shown in figure E.7 by the thin line. The dashed line represents the
energy amplification of the adjoint of the Crow instability in the vortex pair. The two curves
show great similarity which proves that the mechanism of the optimal amplification of the Crow
instability also operates in the case of the roll-up. The perturbation is not influenced by the first
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mechanism of energy growth. Therefore the two mechanisms do not cooperate. Nonetheless the
effect of the roll-up is positive to fasten the Crow instability as a larger gain is obtained with
roll-up than without.

The fact that the initial optimal perturbation is the same with and without roll-up show that
the mechanism of optimal amplification of the Crow instability does not depend on the form
of the distribution of basic vorticity. As the optimal perturbation is initially in the potential
region, it is only weakly influenced by the roll-up.

E.5 Conclusion

In this paper, we focused our attention on the linear evolution of perturbations on a rolling-
up vortex sheet. We first analyze the roll-up of the vortex sheet and showed that after t = 2
the flow is completely rolled-up into two trailing vortices. We then investigated the evolution
of small perturbations on the base flow that includes the roll-up of the vortex sheet and the
frozen trailing vortices. The results of the optimal perturbation showed that two mechanisms of
energy amplification operate. Energy can be amplified during the roll-up by the Orr mechanism
while after the roll-up stops it the mechanism of the amplification of the Crow instability that
produces energy. It is found that the two mechanisms do not cooperate. The whole study shows
that the roll-up process does not preclude the Crow instability and is even beneficial in terms
of energy gains.

-.5 0 .5 1
-.7

-.2

(a) Initial perturbation

-.5 0 .5 1-.2

.3

(b) Final perturbation

Figure E.11: Iso-contours of perturbation axial vorticity of the optimal perturbation at final
time. (a) Initial perturbation. (b) final perturbation. Negative vorticity is dashed.

The method presented in the paper can be applied to more realistic aircraft wakes with for
instance inclusion of the effect of flaps, exhaust jet and axial velocity. Also the study was limited
to perturbations at the wavelength of the Crow instability. As it is a very long wavelength close
to a two-dimensional flow, we observed the appearance of the Orr mechanism in the optimal
perturbation analysis. Further efforts would be needed to investigate the mechanism of energy
amplification at other wavelengths. We may in particular wonder about the possibility of having
the lift-up mechanism in the vortex sheet for shorter wavelengths. The lift-up mechanism is well
described by Butler [25] who shows among other details that the lift-up mechanism is about
ten times slower than the Orr mechanism. Considering the rapidity of the roll-up of the vortex
sheet, we are tempted to answer that the lift-up does not have time to operate. Another point
of importance is whether the roll-up allows the appearance of the short wavelengths Widnall
instabilities in the trailing vortices. Eventually it has to be stressed that no experimental data
exists to compare with the numerical simulations. This also rises the question of the applicability
of the control based on the mechanisms of energy amplification highlighted here.
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Appendix

Optimization technique

The search for the initial perturbation that gives the highest gain of energy at time T
is achieved by an adjoint based gradient method. The cost functional is the objective to be
maximized.

J (u0, u) =
E(t)

E(0)
(E.14)

The perturbations should verify the set of equations and the boundary conditions (E.3). There-
fore these conditions are applied by lagrange multipliers u

+ in a lagrangian operator that writes

L
(

u, u0, u
+,u+

0

)

= J(u,u0) − 〈u+, (Au − B∂tu)〉 − 〈u+
0 , u − u0〉 (E.15)

The optimal corresponds to the point u0 where ∇L = 0 which gives the following relations

∇L · u+ = 0 →

{

Au = B∂tu

u(t = 0) = u0

(E.16)

∇L · u = 0 →

{

A+
u

+ = B∂tu
+

u(t = T ) = 2Bu(T )
E(0)

(E.17)

∇L · u0 = 0 →
{

∇L · u0 = −2 E(T )
E(0)2

Bu0 + Bu
+
0 (E.18)

where the derivative ∇L · u is defined by

lim
ε→0

L(u + εδu,u0, u
+, u+

0 ) − L
(

u, u0,u
+, u+

0

)

εδu
(E.19)

and A and A+ are the direct and adjoint operators

A=









−C + V 0 0 −k
0 −∂yV − C + V −∂yW −∂x

0 −∂zV −∂zW − C + V −∂z

−k ∂y ∂z 0









(E.20)

(E.21)

A+=









C + V 0 0 k
0 −∂yV + C + V −∂zV ∂x

0 −∂yW −∂zW + C + V ∂z

−k ∂y ∂z 0









(E.22)

with C the convection by the base flow and V the viscous diffusion. Starting from an arbitrary
initial condition u0, the following procedure is applied iteratively in order to calculate the
optimal perturbation :

1- compute u(T ) by solving the direct equations (E.3)

2- compute the adjoint u
+(T ) with relation (E.17)

3- solve the adjoint equation backward in time to obtain u
+(0)

3- compute the gradient (∇L · u0)0

4- solve equations (E.3) initialized by (∇L · u0)0 so as to obtain (∇L · u0)T at time T

5- The new initial perturbation is u0NEW
= u0 +α(∇L ·u0)0 and the new final perturbation

is uTNEW
= u(T ) + α(∇L · u0)T . α is set so that J is maximum (this require to solve a

second order quadratic equation).

4- From the value of α, compute the new u0NEW
and uTNEW

7- Iterate from 2 until convergence is reached ‖u0NEW
− u0‖ ≤ 10−3



F Optimal amplification of the Crow

instability

The following work is a publication (Brion[23]) based on the optimal perturbation analysis
of vortex pairs contained in chapter 6.

Abstract

A mechanism for promoting the Crow instability in a counter-rotating
vortex pair is presented within the framework of linear dynamics. It
consists in (1) the creation of a periodic array of vortex rings along the
length of the vortices by stretching of vorticity at the leading hyperbolic
point of the dipole and (2) the deformation of the vortices by the vortex
rings leading to the Crow instability. A reduction of the characteristic
time of the Crow instability by a factor of roughly 2 can be obtained by
this mechanism.

Vortex hazard caused by aircraft trailing vortices has gained much attention these past
decades with the advent of jumbo jets. In certain situations, vortex wakes collapse through
a chain process including deformation of columnar vortices by the Crow instability, vortex
linking, and turbulence [138]. One way to alleviate vortex hazard is to accelerate the process
by exciting the intrinsic instabilities of the wake. This is the idea developed in this article
in which we optimize the energy of the Crow perturbation by means of an appropriate initial

x

y

-1 0 1

-2

-1.5

-1

-0.5

0

0.5

1

trailing hyperbolic point

leading hyperbolic point

a/b=0.2

outflow
inflow

Figure F.1: Streamlines of the basic counter-rotating vortex pair (arrows indicate the direction
of the flow). Right side : disturbance ω̃z of the Crow mode at k = 0.9. Left side : disturbance
ω̃x of the adjoint of the Crow mode. ωz is odd and ω̃x is even about the symmetry plane of the
dipole. Note that the figure has been enlarged in the x-direction for clarity.
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perturbation. The growth rate of the Crow instability was first derived by Crow [34]. Vortices
of the pair deform by mutual induction and oscillate in a plane inclined at approximately 45◦

about the horizontal. The oscillations grow exponentially in amplitude until the point when
the two vortices touch each other, leading to final collapse. Several studies like the one of Crow
and Bate[35] showed that exciting the vortex pair at the wavelength of the mutual induction
instability could be efficient in accelerating the chain process. Other studies like the ones of
Crouch [33] and Fabre, Jacquin and Loof [45] showed by a vortex filament method that systems
of four vortices exhibit much larger amplification rates than the Crow instability. While these
previous studies arbitrarily specify the structure of the perturbation as vortex filaments, in
this letter we use a global stability method based on a finite element discretization with a high
number of degrees of freedom which presupposes no particular shape for the initial perturbation.
In the case of a single Lamb-Oseen vortex, Antkowiak and Brancher [5] and Pradeep and
Hussain [124] have already reported that the optimal perturbation takes the form of spirals of
vorticity outside the vortex core, which suggests that a similar mechanism of amplification can
be expected in the case of the dipole as far as the two vortices are not too close to each other.
Yet this suggestion is partially hindered by the presence of two hyperbolic stagnation points
(hereafter simply referred as hyperbolic points, "hyperbolic" standing for the hyperbolicity of
the streamlines in the vicinity of these points, see figure F.1) in the flow that are also known [87]
to behave as energy amplifiers. The main objective of the study is to understand the roles that
these two dynamics (the one of the vortex and the one of the hyperbolic point) play in the
optimal amplification of the Crow instability.

Base flow The basic flow is a two-dimensional pair of counter-rotating vortices symmetric
with respect to x = 0 which may [136] be characterized by the aspect ratio a/b of the dipole
(see figure F.1). Cartesian coordinates (x, y, z) are used throughout the study. Let us define
S the computational domain, ∂S the far field boundaries, and S+ = S|x≥0 the right domain.
These definitions allow us to define a as the radius of the vortices by Γa2 =

s
S+ Ωz‖x −

xC‖2dS with xC = (xC , yC) = 1/Γ
s

S+ ΩzxdS the center of the right vortex, Γ =
s +

S ΩzdS its
circulation, b = 2xC the distance between the vortex centers and Ωz the axial basic vorticity. We
consider a dipole at a/b = 0.2 obtained by a two-dimensional DNS started with an initial dipole
characterized by a/b(t = 0) = 0.1 and composed of two Lamb-Oseen vortices. This procedure
produces a dipole which is a solution of the 2D incompressible steady Navier-Stokes equations
(which is not the case initially) in the reference frame attached to the dipole (the pair drifts
at a velocity of approximately 2πb/Γ under mutual velocity induction). The computational
domain is S+ and a symmetry boundary condition is used at the symmetry plane of the dipole
to account for the left vortex. Streamlines of the flow are drawn in figure F.1. During the
simulation the two vortices basically diffuse under the effect of viscosity with a viscous time
scale Tν = 2πa2/ν and adapt under the strain mutually induced by one vortex onto the other.
The time scale T3d = 2πb2/Γ of the three-dimensional perturbations is much smaller than Tν ,
as Tν/T3d = Re (a/b)2 and Re = Γ/ν = 3600. The base flow can consequently be considered
as quasi-steady for the forthcoming stability analysis. We note (U, P ) the basic state (where
U = (U, V, 0)) which is assumed homogeneous in the axial direction z. In the following T3d and
b are used as reference time and length scales. Time t = 1 is the time needed to have order 1
deformation of the vortices by the Crow instability.

Stability theory In order to study the linear behavior of the dipole, we superimpose a
small disturbance q = (u, p) where u = (u, v, w) onto the background flow (U, P ). Considering
a Fourier decomposition of the form q(x, y, t) = (ũ, ṽ, iw̃, p̃) (x, y, t)eikz + c.c. where k is the
axial wavenumber, the evolution of q̃ = (ũ, ṽ, w̃, p̃) is given by the initial value problem (F.1)
derived from the incompressible Navier-Stokes equations linearized about the basic state (U, P ).

B∂tq̃ = Aq̃ , q̃(t = 0) = q̃0 , q̃|∂S = 0 (F.1)
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A=









−∂xU − C + V −∂yU 0 −∂x

−∂xV −∂yV − C + V 0 −∂y

0 0 −C + V −k
∂x ∂y −k 0









(F.2)

We noted C = U∂x + V ∂y the convection of the perturbation by the base flow, V =
2π/Re

(

∂xx + ∂yy − k2
)

the viscous term and B = diag(1, 1, 1, 0). If we consider a normal
mode decomposition of the form q̃(x, y, t) = q̂(x, y)eσt with σ = σR + iσI a complex number,
the equation yields the eigen problem

Aq̂ = σBq̂ , q̂|∂S = 0 (F.3)

The eigenmodes q̂ of the eigen problem (F.3) are called direct modes. An adjoint problem can
similarly be defined with a continuous adjoint operator A+ given by the relation (q̃1, Aq̃2) =
(A+q̃1, q̃2) whatever q̃1,2 where the scalar product is given by (q̃1, q̃2) =

s
S q̃∗

1 ·q̃2dS and where
∗ denotes the conjugate. The eigenmodes q̂+ of A+, called the adjoint modes, are solution of a
generalized eigen problem similar to (F.3) given by

A+q̂+ = σ+Bq̂+ , q̂+
|∂S = 0 (F.4)

A+=









−∂xU + C + V −∂xV 0 ∂x

−∂yU −∂yV + C + V 0 ∂y

0 0 C + V k
∂x ∂y −k 0









(F.5)

In comparison to the direct problem described by A, the convection in A+ is reversed and
the off-diagonal terms −∂xV and −∂yU are exchanged. Any direct mode has a corresponding
adjoint mode and their eigenvalues are conjugate to each other.

A finite element method with P2 space discretization for the velocity and P1 for the pressure
is used to discretize the sparse matrices A, A+ and B (size 5.105). Problems (F.3) and (F.4)
are then solved by an Arnoldi method based on a shift and invert strategy (ARPACK package).
The matrix inverse is solved thanks to a direct sparse LU solver (UMFPACK package). Once
calculated, the direct and adjoint eigenmodes are normalized so that (q̂i, Bq̂i) = 1,

(

q̂+
i , Bq̂i

)

=
1 and the bi-orthogonality condition

(

q̂+
i , Bq̂j

)

= 0 if i 6= j is verified.

Energy gain The dynamics of (F.1) will always be driven by the most unstable direct
eigenmode at large time. It can be shown (see Schmid and Henningson [133]) that a specific
initialization which consists in the adjoint mode q̂+

max of the most unstable direct mode q̂max
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Figure F.2: Computed (filled points) growth rate σR of the Crow instability as a function of
the axial wavenumber compared to the theory of Crow (line). Empty squares show the non
normal gain ‖q̂+

max‖
2. Note that the Crow eigenmodes are non-oscillating (σI = 0). Re = 3600,

a/b = 0.2.
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will yield the perturbation with the maximum energy at large time. Defining the energy gain
of a perturbation q̃(t) by

G(t) = ‖q̃(t)‖2/‖q̃(0)‖2 (F.6)

where the norm ‖ · ‖ is based on the scalar product (·, B·), it may be shown that the maximum
energy gain is Gmax(t) = ‖q̂+

max‖
2e2σmaxt obtained for q̃(0) = q̂+

max. The non-normal gain
‖q̂+

max‖
2 is the increase in amplification achieved by an initialization with the adjoint mode

compared to an initialization with the direct mode.
Figure F.2 reports the variation of the growth rate and the non-normal gain of the Crow

instability with the wavenumber k. The most unstable Crow mode occurs for k = 0.9. The
related direct mode is depicted in the right side of figure (F.1) and the adjoint in the left side
(the reason for showing ω̂x will be apparent later). The numerical code is validated against the
theoretical inviscid growth rate given by Crow [34] and Saffman [130]. It is to our knowledge
the first time the growth rate of Crow is calculated so successfully by a global method.

According to figure F.2, the non-normal gain is greater as the growth rate is smaller. The
minimum which equals 36 is reached for the most unstable mode at k = 0.9. This means
that disturbing the dipole with the adjoint of the most unstable Crow mode gives an ampli-
fication 36 times greater at large time than a modal disturbance by the direct mode. The
potential acceleration of the Crow instability related to this gain amounts to an interesting
log (36) / (2σmax) ' 2.5 time units. This non-normal gain can even be higher, i.e. 103 to 104 if
the disturbance is chosen at a wavenumber k corresponding to lower growth rates. The influ-
ences of the Reynolds number and of the aspect ratio a/b of the dipole on the non-normal gain
were also explored. Note that ‖q̂+

max‖
2 increases slowly with Re (‖q̂+

max‖
2 = 44 for Re=9000)

and decreases slowly with a/b (‖q̂+
max‖

2 = 53 for a/b = 0.17). These results clearly state the
high potential of the adjoint approach.

Linearized simulations The sole value of the non-normal gain is not enough to conclude
on the efficiency of the adjoint disturbance as the time needed to reach it is not known. There-
fore linearized simulations solving the problem (F.1) in time were launched with the different
initializations evoked earlier (legend refers to figure F.3) : the direct mode at k = 0.9 (long
dash), the adjoint mode at k = 0.9 (thick solid), the adjoint at k = 0.2 (short dash) and the
adjoint at k = 1.4 (dot) (note that the remaining curve is discussed at the end of the paper).
The previously described finite element method is used with a time discretization carried out
by a 2nd order Lagrange-Galerkin method.

In figure F.3 we see that the curve of the adjoint mode at k = 0.9 reaches an asymptote
parallel to the modal growth (a straight line in the logscale). This shows that after t = 1.5
the adjoint perturbation has reached the direct modal structure and is amplified accordingly.
The associated increase of amplification amounts to 36 as predicted by the non-normal gain,
while in terms of time difference the value 2.5 obtained earlier is approximately recovered. This
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Figure F.3: Comparison between modal energy growth at k = 0.9 (long dash), adjoint energy
growth at k = 0.9 (thick solid), energy growth induced by a perturbation (thin solid) containing
ω̃x on the symmetry axis, and most unstable perturbations at k = 0.2 (short dash) and k = 1.4
(dot). Re = 3600, a/b = 0.2.
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implies that once the transient period of amplification t = 1.5 is over, the disturbance of the
dipole by the adjoint perturbation provides an amplitude perturbation identical to that of the
natural Crow instability on a time scale reduced by 2.5. Sparlart [138] and Crow and Bate [35]
note a time period of 5 to 6 for the lifespan of trailing vortices. This means that a reduction
of 2.5 shrinks by almost a half this characteristic lifespan, which could be of great interest for
the aeronautical industry. Energy amplification corresponding to initial perturbation by the
adjoint modes at k = 0.2 and k = 1.4 do not exhibit the expected strong energy gains quick
enough, i.e. the transient period is greater than t = 5. This renders these cases useless and
justifies that we only focus on the case k = 0.9 of the most unstable Crow mode.

Optimal mechanism Figure F.4 shows the steps leading to the optimal amplification of
the Crow instability. The mechanism basically consists in amplification of ω̃x at the leading
hyperbolic point region (upper row, a-c) followed by the induction of the Crow instability in
the vortex cores (lower row, c-d). As shown by Lagnado et al. [87] transient energy growth at
hyperbolic points occurs for initial vorticity parallel to the stretching direction. Indeed, at the
leading hyperbolic point (figure F.1) the equation for vorticity perturbation reduces to

∂tω̃x = γω̃x + 2π/Re 4 ω̃x (F.7)

∂tω̃y = −γω̃y + 2π/Re 4 ω̃y (F.8)

∂tω̃z = 2π/Re 4 ω̃z (F.9)

where γ = ∂xU = −∂yV ∼ +1.7 is the strain rate in the vicinity of the hyperbolic point. As
a result, the initial perturbation with ω̃x experiences a strong amplification as it passes in the
vicinity the leading hyperbolic point due to the stretching along the outflow streamline.

As the streamline bends up, ω̃x is tilted (b) leading to formation of ω̃y. Together ω̃x and
ω̃y form a partial vortex ring around the dipole (c). This vortex ring creates axial and radial
velocities within the dipole by the Biot Savart law and eventually induces axial vorticity in the
regions where Ωz is strong thanks to the production terms in the linearized equation of ω̃z

∂tω̃z + Uθ/r∂θω̃z
︸ ︷︷ ︸

convection

= −ũr∂rΩz + kΩzũz
︸ ︷︷ ︸

production

+ ν 4 ω̃z
︸ ︷︷ ︸

diffusion

(F.10)

As in the case of a single vortex [5] [124], the previous description of the optimal mechanism
suggests that bending modes of the vortices are optimally induced by vortex rings which partially
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Figure F.4: Streamlines of the base flow and contours of perturbation vorticity through time
evolution of the adjoint Crow mode (a-c: t = 0.046; 0.41; 0.94) at k = 0.9. Column d represents
the final Crow mode (a-c contour and d contour levels are different). Contours (a-d) of ω̃z are
10 times smaller than those of ω̃x and ω̃y to allow the use of the same contour levels. Re = 3600,
a/b = 0.2.
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Figure F.5: Initial perturbation containing ω̃x and ω̃z and no ω̃y at k = 0.9. Note that ω̃x also
represents f̃y as ω̃x = −f̃y/k.

circles the rotational flow. Following this idea, the question of the optimal perturbation reduces
to the question of how to optimally produce such partial vortex rings. While in the case of the
single vortex, it is the unrolling [5] [124] of the spirals of vorticity around the vortex that forms
them, in the case of the dipole, it is the leading hyperbolic point which plays that role. The
results of these two configurations (dipole and single vortex) tend to suggest that the way to
optimally disturb any compact distribution of vorticity is to create one or several partial vortex
rings around it. Such a generalization could be investigated in a future study.

A question arises about the lack of a role for the trailing hyperbolic point. If it was to play a
role, it would need an initial ω̃y distribution located at its inflow streamline that would then be
amplified along x = 0 between the two vortices. But due to the symmetry of the perturbation,
it appears that only the leading hyperbolic point can be efficiently used for vorticity stretching.
Indeed non zero ω̃x can be located on the stretching line of the leading hyperbolic point whereas
ω̃y being anti-symmetric is zero on the stretching line of the trailing hyperbolic point. Moreover
because of the resultant dipolar distribution of ω̃y, only a weak velocity induction in the vortex
core could take place, which would less efficiently induce the Crow instability.

Optimal forcing While defining a practical method to trigger this amplification in real
flows is out of the scope of this letter, it is still interesting to study theoretically the effect
of control devices or background turbulence by modelling them by forces in the linearized
equations. Solving an initial value problem initialized by q̃0 = (ũ0, p̃0) is equivalent to applying
a force F̃δ(t) (δ is the Dirac function) to a flow field at rest [130]. Integrating the equation for
the perturbation vorticity ω̃ over an infinitesimal time interval leads to ω̃0 = ∇× F̃. The initial
velocity field corresponding to the initial forcing is thus given by ũ0 = F̃+∇h̃ where h̃ satisfies
a Poisson equation ∇ · F̃ = −4h̃ (with homogeneous Dirichlet boundary conditions on ∂S and
a Neumann boundary condition on the symmetry plane) as ∇· ũ0 = 0 . An initial perturbation
can hence be interpreted in terms of a force acting initially in the momentum equation. As a
result, the optimal perturbation is also to be interpreted as the optimal force for destabilizing the
dipole. The control needed to have ω̃x at the central plane of the dipole can consist in applying
a vertical force F̃ = (0, f̃y, 0) at the same location. This leads to ω̃0 = (−kf̃y, 0, ∂xf̃y) as desired
(no ω̃y). We chose an analytical expression for F̃ with f̃y = (1+cos(x/ax))(1+cos((y−y0)/ay)
for |x| ≤ πax and |y − y0| ≤ πay (y0, ax and ay which control the location and the form of the
distribution are y0 = −0.8, ax = 0.05, ay = 0.7 for k = 0.9) and zero everywhere else as shown
in figure F.5. The corresponding initial velocity field ũ0 is obtained by solving the preceding
Poisson equation. Only 2% of the energy contained in F̃ is lost in the projection process as
‖ũ0‖/‖F̃‖ = 0.98 (‖F̃‖ =

∫

S
(f̃2

x + f̃2
y + f̃2

z )dS). Figure F.3 shows the gain in energy obtained
by this forcing (thin solid line) and it is clear that the amplification, although not optimal, is
significant. A similar perturbation with initial ω̃y and ω̃z and no ω̃x (generated by f̃x instead
of f̃y) leads to no non-normal gain (not shown here). This confirms the physical mechanism
involving ω̃x as a necessary ingredient for optimal destabilization of the dipole and the fact that
it is possible to create this quasi optimal perturbation with a force having a simple distribution.
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These results clearly open new perspectives and challenges for controlling vortex pairs in real
flows.
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