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Introduction

Choice under uncertainty

Knight (1921) first introduced the distinction between measurable uncertainty, in which prob-

abilities are known; and non measurable uncertainty, in which they are unknown. In both

cases, a decision maker has to choose between uncertain alternatives, whose consequences

depend on events that can possibly occur. The decision maker endorses a preference relation

over all the available actions. The normative principle of decision theory is that the decision

maker ought to undertake the best action with respect to his preferences. The model used to

predict the behavior will depend on the informational context confronting the decision maker

and account for the decision maker’s attitude given this context.

The benchmark of decision making under uncertainty is the case of risk. All the events

under consideration can be associated with objective probabilities and the decision maker

typically applies expected utility theory (von Neumann and Morgenstern, 1944). Allais (1953)

shook the predictive power of the theory by pointing out its descriptive limitations in the

presence of the certainty effect. Savage (1954) extended (objective) expected utility to infor-

mational contexts where the decision maker has no objective probabilistic information at his

disposal. Subjective expected utility assumes that the decision maker assigns subjective ad-

ditive probability on events. Then, the decision maker computes the expected utility of each

action with respect to his subjective probability and chooses the action associated with the
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higher subjective expected utility. If the decision maker more generally behaves in a way

that can be analyzed in terms of probabilities without necessarily conforming to the expected

utility rule, then he is defined as probabilistically sophisticated (Machina and Schmeidler,

1992). However, an underlying condition of models that are based on subjective probability is

that the decision maker effectively treats subjective probabilities as if he is dealing with objec-

tive probabilities, independent of the amount of information that leads to the formulation of

the personal probability. This condition is far from being respected for some specific choice

problems, notably those involving ambiguity.

Ambiguity defines decision contexts where no probabilities are available to (nor can be

subjectively revealed by) the decision maker to take one’s decision. Ellsberg (1961) proposed

thought experiments suggesting that the presence of ambiguity in decision making may affect

behavior in a way that deviates from subjective expected utility. He suggested that most peo-

ple prefer to bet on the color of a ball drawn from a risky urn with known composition (fifty

red, fifty black), rather than on the color of a ball drawn from a similar urn containing 100

balls with an unspecified composition. This behavior reveals that the probability of drawing

a red (or equivalently black) ball in the unspecified urn is less than one-half. Such a decision

maker violates subjective probabilities and (ex ante) probabilistic sophistication which predict

that the probabilities of drawing a red or a black ball should sum to one. Ellsberg concluded

that decision makers tend to avoid ambiguity, exhibiting what he termed ambiguity aversion.

Subsequently, a large experimental literature has empirically confirmed Ellsberg’s con-

tradicting examples, and a large theoretical literature has developed alternative models to

accommodate non neutral attitudes towards ambiguity. A pioneer approach generalizes sub-

jective expected utility to non additive probability measures (Schmeidler, 1989; Gilboa, 1987;

Tversky and Kahneman, 1992). The multiple prior approach (Gilboa and Schmeidler, 1989;

Ghirardato, Maccheroni, Marinacci, 2004) modelizes ambiguity through a set of probability
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measures. In a final two-stage approach, a decision maker formulates subjective beliefs (first

stage) over probability distributions (second stage) but does not necessarily reduce the two

stages (Klibanoff, Marinacci and Mukerji, 2005; Seo, 2008; Halevy and Ozdenoren, 2008).

All these models provided successful predictions of the behavior under ambiguity until a

recent contribution from Machina (2009). Machina proposed a slight modification of the Al-

lais1 and Ellsberg examples and predicted that the plausible preferences cannot be explained

by the most popular models accounting for these paradoxes, i.e., rank-dependent utility under

risk (Quiggin, 1982) and Choquet expected utility for ambiguity (Schmeidler, 1989).

The object of this thesis is to describe and analyze individual decision making in the

context of ambiguity. It is based on both Ellsberg and Machina paradoxes and mainly adopts

the experimental approach.

Contribution and outline of the thesis

This thesis aims to provide new insights to the understanding of decision behavior under

ambiguity. It is composed of three parts.

The first part is a survey of the literature on ambiguity. Chapter 1 presents the model-

ing of subjective uncertainty and ambiguity. Chapter 2 envisages ambiguity attitudes as a

consequence of the joint presence of objective and subjective sources of uncertainty.

The second part explores two specific approaches to the Ellsberg paradox. Different mod-

els might be appropriate in describing the individual behavior towards ambiguity, the di-

versity of approaches reflecting the heterogeneity of human cognitive processes. A common

feature of the approaches adopted here is that they allow one to analyze attitudes towards

ambiguity as likelihood-dependent. Chapter 3 reconciles ambiguity attitudes with probabilis-

tic sophistication in the Ellsberg two-urn problem. Ambiguity is viewed as a specific source of

1First draft of Machina’s paper: July, 2007.
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uncertainty (notably as opposed to risk). The method employs Chew and Sagi’s (2006, 2008)

exchangeability concept to define probabilistic sophistication within a source of uncertainty

while not requiring it between sources. It provides a quantitative measurement of behavior

through source functions, one for the risky urn and one for the ambiguous urn. The shapes

of these functions are found to be different, which empirically confirms the soundness of ap-

proaches based on sources of uncertainty (Tversky and Wakker, 1995), and at the same time,

reconciles non neutral attitudes towards ambiguity with probabilistic sophistication on con-

dition that exchangeability holds within each source of uncertainty. Chapter 4 adopts a quite

different, and perhaps, not contradictory perspective. It studies the idea that decision makers

assimilate ambiguity to compound risk. It further investigates a recent empirical finding that

establishes equivalence between reduction of compound lotteries and ambiguity neutrality

(Halevy, 2007). Our data confirm a link between ambiguity attitudes and compound risk

attitudes. However, it puts into perspective Halevy’s conclusion, since the equivalence does

not match the data: decision makers who fail to reduce compound lotteries are non neutral

to ambiguity but those who reduce compound lotteries are not necessarily ambiguity neutral

and are even prone to ambiguity aversion. This result does not support recent axiomatizations

(Halevy and Ozdenoren, 2008; Seo, 2008) that explicitly relate compound risk and ambiguity.

The third part is entirely based on a recent contribution by Mark Machina (2009). Machina

considers a slight modification of the Ellsberg original one-urn problem and convincingly

proves that the pattern of preferences that could emerge from his construction is not compat-

ible with Choquet expected utility (Schmeidler, 1989). Chapter 5 provides empirical evidence

for the thought experiment proposed by Machina and confirms the possibility of extending

the Ellsberg paradox to one of the major models that accounts for ambiguity aversion, i.e,

Choquet expected utility. At the same time, Chapter 6 empirically undermines such an exten-

sion of the Allais paradox to rank-dependent utility (Quiggin, 1982) in the context of risk. In
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Chapter 7, which is theoretical, it is proved that the conclusions of Machina are not restricted

to Choquet expected utility but can be extended to four other prominent models of ambiguity

as well. Notably, the class of models with sets of priors - including, Gilboa and Schmeidler’s

maxmin expected utility (1989), its extensions, α-maxmin expected utility and the variational

preferences - and the smooth model of ambiguity aversion (Klibanoff, Marinacci and Mukerji,

2005) are also contradicted by Machina’s paradox.

All chapters except those in Part 1 are self-contained in the sense that they are readable

independently. Consequently, notations and concepts may appear several times.

The experimental or theoretical results incorporated in this thesis correspond to the fol-

lowing research papers: Chapter 4 refers to a subpart of Abdellaoui, Baillon, Placido and

Wakker (2009a), Chapter 5 to Abdellaoui, Klibanoff and Placido (2009b), Chapter 6 and 7 to

L’Haridon and Placido (2008, 2009) and Chapter 8 to Baillon, L’Haridon and Placido (2009).
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Chapter 1

Modeling Subjective Uncertainty

1.1 Introduction

Standard economic modeling describes behavior under uncertainty by making the assump-

tion that a decision maker (henceforth, DM) always has either an objective probability at his

disposal (Von Neumann and Morgenstern: vNM, 1944) or can formulate subjective additive

probability (Savage, 1954) in any decision context. In both cases, the DM is assumed to com-

pute the expected utility of each possible decision with respect to the objective/subjective

probability and choose the decision associated with the highest objective/subjective expected

utility. However, Ellsberg (1961) remarks that such a rule no longer applies in a specific de-

cision context called ambiguity. This chapter aims at giving an overview of the literature on

subjective uncertainty including subjective expected utility and its generalizations to ambigu-

ity.

Section 1.2 presents the modeling of subjective uncertainty introduced by Savage (1954)

who first gave all the ingredients for obtaining a purely subjective decision model. Indeed,

both tastes - given by the utility function - and beliefs - given by the probability measure -

are subjective in the sense that they are simultaneously derived from the preference relation

18



1.2. SAVAGE’S APPROACH

over decisions. Section 1.3 describes the approach of Anscombe and Aumann (1963), which

reintroduces some objective elements to make the axiomatization closer to expected utility

for risk. Section 1.4 presents generalizations of subjective uncertainty based on probabilistic

sophistication. Section 1.5 focuses on ambiguity attitudes as a contradiction of the classic

modeling of subjective uncertainty (Ellsberg, 1961). Eventually, Section 1.6 presents models

that have been developed to take into account non neutral ambiguity attitudes.

1.2 Savage’s approach

Savage’s (1954) subjective expected utility (SEU) consists of an extension of vNM expected

utility to decision context where objective probabilities are not available. It provides a set of

technical and behavioral axioms that are sufficient to characterize both a utility function and

a probability measure. Because both are derived from conditions on preferences, the theory

is said to be fully subjective.

1.2.1 Framework and notations

Savage’s formulation is based on three elements: the state space that modelizes uncertainty,

the set of outcomes that describes the possible consequences a DM can undergo, and the set

of acts that relates the two, and on which the DM has a preference relation.

The state space

The state space (or the world) S is "the object about which the person is concerned” and

contains the states of the world. We assume S finite. A state of the world s is an element of S

and is "a description of the world, leaving no relevant aspect undescribed”. The resolution

of uncertainty relies on the properties of the states of the world: (i) exhaustive: a DM is able

to completely describe the world in which he lives (he can list all the states), (ii) mutually
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1.2. SAVAGE’S APPROACH

exclusive: two distinct states cannot simultaneously occur, (iii) only one state is true: "the state

that does in fact obtain” (Savage, p. 9).

Events Ei are subsets of S, and 2S is the set of all the subsets of S. The universal event S

is the event having every state of the world as element. The vacuous event ∅ has no state as

element. A collection of events {E1, . . . , En} with n belonging to the natural number, forms a

partition of the state space.

Conceptual and descriptive limitations. The main limitations of Savage’s state space are

due to the assumption of exogeneity that bears on it.

First, each state represents nature’s exogenous uncertainty. This implies that it should

be possible to reconstruct on the basis of a DM’s observed choices, the unique state space

underlying his decisions. However, as argued by Machina (2003), there is no guarantee that

the state space thus obtained corresponds to the state space that preexists and is observed, or

to an endogenous construction of the DM.

Second, the exhaustivity requirement imposes that the DM have a complete representation

of the word. As shown by Newcomb’s paradox (see Gilboa, 2003), evidence can lead the DM

to conclude that his initial image of the world is incomplete. More concretely, the exhaustivity

of the state space seems impossible to guarantee in practice due to objective complexity and

human cognitive limitation. As pointed out by Karni (2006): "the depiction of the relevant

state space is often unintuitive and too complex to be compatible with DMs’ perception of

choice problems”.

Third, exogeneity implicitly supposes that the DM is aware of all the states that can occur.

Consequently, the state space leaves no room for unforeseen contingencies, and at best "when

the DM has reason to ’expect the unexpected’ (. . . ) the best one can do is specify a final, catch-

all state, with a label like ’none of the above’, and a very ill-defined consequence” (Machina,

2003).
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1.2. SAVAGE’S APPROACH

Finally, exogeneity can be conceptually called into question for a theory that claims to

be subjectivist. Epstein and Zhang (2001) argue that a fully subjective theory should derive

both the domain and the subjective probability from preferences. They tend to remedy this

conceptual limitation by proposing an axiomatization that endogenously defines a domain on

which a DM has subjective probabilities from the rest of the world on which the DM ought

not to have such probabilities.

The two following remarks express more descriptive concerns since they point out behav-

ioral assumptions contained in Savage’s axioms. The realization of the state is independent

of the action undertaken by the DM. As argued by Karni (2006), this assumption seems un-

realistic and implies unconceivable fatalism. Eventually, the evaluation of a consequence is

independent on the state in which it is received (the utility is state independent).

These remarks reveal Savage’s construction to be conceptually limited and descriptively

inadequate for the representation of many decision problems. The literature provides some

extensions that aim to remedy to such limitations.

Extensions. Extensions have been provided that allow for a more flexible and realistic

description of the world. Indeed, a DM facing a decision problem is generally not provided

with the background structure.

Ghirardato (2001) envisages that events which are relevant for the result of the DM’s

choices may have been left out of the description of the state space and refers to ’unforeseen

contingencies’. The DM is aware of his ignorance and perceives the state space as under-

specified; this is formally represented by correspondences: each state s under consideration

is a collection of possible states, differing in aspects which have not been included in the

description of s.

In Dekel, Lipman and Rustichini (2001), the state space reflects the DM’s subjective under-

standing of the world. The DM’s uncertainty about the future can be measured by the size of
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his endogenously defined subjective state space.

Karni (2006) proposes a theory that dispenses with the state space and accommodates

both the presence of moral hazard considerations as well as the possibility that the evaluation

of the consequences of decisions are effect-dependent. He obtains subjective expected utility

with unique and action-dependent subjective probability.

Chew and Sagi (2008) points out that, although Savage envisaged a big world as defined

above, he, at the same time observed that decisions are generally made in smaller worlds,

which contain events summarizing the relevant aspects of the contingencies pertaining to

specific decision situations. In Savage ’s formulation, events in any small world are compara-

ble to events in any other small world and they all remain similar to the big world. Hence,

Savage implicitly assumes that the DM’s attitude is independent of the small world in which

the decision is taken. Chew and Sagi refine Savage’s small world approach, basing it on the

intuition of similarity among events. They introduce the concept of small world events domain

defined as a collection of comparable events; they provide consistency conditions that explain

the presence of distinct attitudes between small worlds.

The outcome space

To each event that occurs there follows a consequence, i.e., "anything that may happen to the

person”. The set of consequences X is finite and will refer to monetary outcomes, although

Savage defines more generally the "states of the person".

The choice space

Objects of choice are called acts. The set of acts is A = { f : S → X}, i.e., maps from the state

space to the outcome space. f (s) represents the consequence of choosing f if the state of the

world is s. An act h noted [ f on E; g on non E] means that h(s) = f for all s ∈ E and h(s) = g

22



1.2. SAVAGE’S APPROACH

otherwise. A constant act gives the same outcome over all the states the world ( f (s) = x

f or all s ∈ S) and is shortly designated by the unique outcome x it is associated with. We

assume that acts have only finite consequences. Hence, an act will be alternatively written [x1

on E1; . . . ; xn on En] with the understanding that xi is obtained if Ei is true. The DM has a

preference relation % over A. % denotes weak preference with � and ∼ the strict preference

and indifference, respectively (- denote the reverse preference).

E is a null event if indifference holds between all pairs of acts that only differ on E:

Definition 1 (Null event). E ⊆ S is a null event if for all f , g, h ∈ A,

[ f on E; h on non E] ∼ [g on E; h on non E].

Null events will turn to be those with zero probability.

1.2.2 Savage’s axiomatization

Savage provides a set of postulates for preference among acts. According to Savage, a rational

DM ought to satisfy these postulates and he shows that conforming to these postulates is

equivalent to agreeing with a ranking of acts in term of subjective expected utility.

P 1 (Ordering) The preference relation % is a weak order (complete and transitive)

P1 says that preferences should be transitive: if a DM prefers act f to act g, and act g

to act h, then he should prefer act f to act h. The transitivity condition is itself normatively

desirable and not controversial as a rationality requirement. However, as argued by Shafer

(1986), Savage goes one step further by making the assumption of completeness, that imposes

a DM should always have well-defined preferences between acts f , g and h. Imagine a DM

who actually does not have preferences between these particular three acts, in words, he is

indecisive; it comes from Savage’s P1 that the DM is obliged to construct these preferences.

Moreover, even if they exist, preferences are often unstable and non robust to procedural

invariance as emphasized by Tversky (1972):
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"When faced with a choice among several alternatives, people often experience

uncertainty and exhibit inconsistency. That is, people are often not sure which

alternative they should select, nor do they always make the same choice under

seemingly identical conditions.”

The three following axioms provide together the disentanglement between subjective

probabilities and the subjective values of consequences (utilities).

P 2 (Sure-thing principle) for all events E and for all acts f , g, h, h∗ ∈ A,

[ f on E; h on non E] % [ g on E; h on non E]⇒ [ f on E; h∗ on non E] % [ g on E; h∗ on non E]

P2 says that if two acts are equal on a given event non E, then the preference ranking over

these acts should not depend on what they are equal to on non E. In words, the DM does not

care about what is sure, h or h∗, when choosing between f and g. Intuitively, this condition

implies that preferences are separable on mutually exclusive events. The sure-thing principle

constitutes the weak point of Savage’s theory and is violated as soon as DMs exhibit non

neutral ambiguity attitudes (see Chapter 2).

P 3 (Eventwise monotonicity) for all act f ∈ A, for all outcomes x, y ∈ X, for all non null

event E, [ x on E; f on non E] % [ y on E; f on non E]⇔ x % y

The DM who weakly prefers the sure consequence x to the sure consequence y will choose

the right act because the alternative yields less on the event on which the acts differ. This

axiom implies that the tastes concerning outcomes do not depend on the events under which

they are received. Hence, utility is not state dependent.

P 4 (Weak comparative probability) for all events E, F and outcomes x � y and x′ � y′,

[ x on E; y on non E] % [ x on F; y on non F]⇒ [ x′ on E; y′ on non E] % [ x′ on F; y′ on non F]

P4 says that, since x is more desirable than y, the first act is a win if E occurs and the

second is a win if F occurs. The first is weakly preferred to the second if event E is judged at

least as likely as event F. Then it should also be the case for the two last acts since x′ is more
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desirable than y′. In brief, beliefs on events do not depend on the consequences. P3 adds

that this ranking in term of likelihood does not depend on the consequences used. Thus, P4

allows to infer an ordering of events in terms of likelihood and is then crucial for the existence

of subjective probabilities.

P 5 (Non degeneracy) ∃ two outcomes x, y ∈ X such that x � y

P5 guarantees the existence of the probability measure. If this axiom is not true ( ∀ x, y ∈

X, x ∼ y), the DM is indifferent to all consequences so there is no longer a decision problem.

Note that it also means that S is not a null event.

P 6 (Small event continuity) For any acts f � g and outcome x ∈ X there exists a finite

set of events {E1, . . . , En} partitioning S such that ∀i ∈ {1, . . . , n}:

f � [ x on Ei; g on non Ei] and [ x on Ei; f on non Ei] � g

P6 implies that S can be partionned in sufficiently small events so that a modification

of each act (by putting the best or the worst outcome on one of these small events) is not

sufficient for reversing the original preference order.

Theorem 1 (Savage, 1954). Under P1-P6 there exists a unique finitely additive and non atomic

probability measure P(.) on 2S and a state-independent utility function u(.) on the set of outcomes X

such that the subjective expected value of act f is:

SEU( f ) = ∑
s∈S

P(s)u( f (s)) (1.1)

Moreover, u(.) is unique up to a positive linear transformation.

Act f is preferred to another act g if the expected utility calculated with respect to the

subjective probability measure P is higher for f than for g. The subjective measure P is

derived from the preference of the DM and is thus personal. Consequently, two DMs might

not to reveal the same subjective probability on the state space.
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1.3 Anscombe-Aumann’s approach

Anscombe and Aumann (1963) propose an alternative derivation of SEU. An act f is a map

from the state space to the set of lotteries over consequences (and no longer to the set of

consequences as in Savage).

1.3.1 Framework and notations

The preference relation % is defined on the set of acts F = { f : S→ L}, where L is the set of

simple lotteries (with finite support) on X. An element of L is a lottery l = (x1, p1; . . . ; xn, pn)

which gives the consequences xi with probability pi. Hence, each act f in F combines "horse

race lotteries” (i.e., Savagean acts) and "roulette lotteries” (i.e., objective lotteries) and can be

written in the following way [. . . ; (. . . ; xi, pi; . . . ) on Ej; . . . ]. f can be interpreted as a bet on

a horse race, but instead of receiving the winnings of the bet directly in money, the DM is

actually given a ticket for a lottery with objective probabilities.

The λ-mixture of acts f = (l1, . . . , ln) and g = (l′1, . . . , l′n) with λ ∈ [0, 1] noted λ f + (1−

λ)g yields λ f (i) + (1− λ)g(i) = λli + (1− λ)l′i on state i. Thanks to mixture, Anscombe-

Aumann’s axiomatization will be very similar to vNM’s.

1.3.2 Anscombe-Aumann’s axiomatization

A 1 (Weak order) The preference relation % is a weak order (transitive and complete)

Bewley (2002) proposes a theory of choice under subjective uncertainty that removes the

completeness axiom from the Anscombe-Aumann setting but he needs to introduce an inertia

assumption to deliver a representation theorem.

A 2 (Independence) for all f , g, h ∈ F , and for all λ ∈ [0, 1],

f % g⇒ λ f + (1− λ)h % λg + (1− λ)h
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A 3 (Jensen continuity) for all f , g, h ∈ F , if f � g � h, then ∃ λ, µ ∈]0, 1[ such that,

λ f + (1− λ)h � g � µ f + (1− µ)h

The lottery is only played after a particular state s ∈ S occurs; hence, axioms A1-A3

only deliver a state-dependent expected utility function Us : L → X and the preferences are

represented by:

A( f ) = ∑s∈S Us(ls)

Intuitively, for obtaining state independent expected utility we need something that says

that a preference between two lotteries l and l′ has to be preserved whatever the state is. First

we need to introduce one definition:

Definition 2 (Null state). s ∈ S is a null state if for all q, q′ ∈ L

(l1, . . . , ls−1, q, ls+1, . . . , ln) ∼ (l′1, . . . , l′s−1, q′, l′s+1, . . . , l′n).

If a DM is indifferent between these two acts, then effectively state s does not matter, i.e.

it is equivalent to stating that the DM believes s will never happen. It will be assumed that

there are at least some states that are non-null states. To establish this, the following axiom is

needed:

A 4 (Non degeneracy) ∃ f , g ∈ F such that f � g

A4 guarantees the existence of non-null states.

A 5 (State independence) s ∈ S is a non-null state and q, q′ ∈ L. If

(l1, . . . , ls−1, q, ls+1, . . . , ln) � (l′1, . . . , l′s−1, q′, l′s+1, . . . , l′n) then, for every non-null state t ∈ S,

(l1, . . . , lt−1, q, lt+1, . . . , ln) � (l′1, . . . , l′t−1, q′, l′t+1, . . . , l′n)

Theorem 2 (Anscombe-Aumann, 1963). Under A1 - A5 there exists of a unique probability measure

P(.) on S and a state-independent expected utility function U(.) on L such that act f is evaluated

through:

AA( f ) = ∑
s∈S

P(s)U(ls) (1.2)
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Moreover, U(.) is unique up to a positive linear transformation.

As in Savage, the subjective probabilities P(s) are derived from preferences over actions

and not imposed externally.

Savage and Anscombe-Aumann axiomatizations both result in expected utility functional

forms. In the following section, we present two derivations of subjective probabilities that do

not constrain to an expected utility form.

1.4 Probabilistic sophistication

Probabilistic sophistication (PS) is weaker than SEU since it assumes that the DMs formulate

probabilistic beliefs over events without requiring the expected utility form.

1.4.1 Machina and Schmeidler’s PS

Machina and Schmeidler (1992) abandon the expected utility form of Savage’s theory but

keep the idea that DMs should have subjective additive probabilistic beliefs. They establish

the conditions to obtain a probabilistically sophisticated non (necessarily) expected utility

maximizer. They remove P2 from the Savage settings and strenghten P4 in the following way:

P4* (Strong comparative probability). for all (disjoint) events E, F, for all f , g ∈ A and for

all consequences x � y and x′ � y′,

[ x on E; x′ on F; f on non (E ∪ F)] % [ x′ on E; x on F; f on non (E ∪ F)]

⇒ [ y on E; y′ on F; g on non (E ∪ F)] % [ y′ on E; y on F; g on non (E ∪ F)]

They find that P1, P3, P4*, P5 and P6 are equivalent to the existence of the preference

functionnal WPS(.) over acts which takes the form of a composition of a preference function

V(.) over lotteries and a subjective probability measure µ(.) over events as follows:

WPS( f (.)) = WPS([ x1 on E1; . . . ; xn on En]) = V(x1, µ(E1); . . . ; xn, µ(En))
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where V is a (non necessarily expected utility) preference function V(P) = V(x1, p1; . . . ; xn, pn)

over lotteries. Hence, a DM is said to be probabilistically sophisticated if her beliefs can be

completely summarized by a subjective probability µ(.) and she evaluates an act on the sole

basis of the implied probability distribution (x1, µ(E1); . . . ; xn, µ(En)) over the consequences.

1.4.2 Chew and Sagi’s PS

Chew and Sagi (2006) provide a derivation of probabilistic sophistication from event ex-

changeability. Let Σ be an algebra of events over S.

Definition 3 (Event Exchangeability). Two events E and F (disjoint) ∈ Σ are exchangeable (E ≈ F)

if for all x, y ∈ X and act f, [ x on E; y on F; f on S-(E ∪ F)] ∼[ y on E; x on F; f on S-(E ∪ F)].

A DM is always indifferent in permutting the payoffs between exchangeable events. Ex-

changeability results in equal likelihood: two exchangeable events are revealed equally likely

by the DM.

Definition 4 (Exchangeability-Based Comparative Likelihood). For any events E and F ∈ Σ, E

is ’at least at likely as’ F whenever E-F contains a subevent e ≈ (F-E).

The three following axioms imply that the state space can be partitionned into equally

likely events, in such a way that the DM is indifferent in betting on an event of two different

partitions with the constraint that these partitions contain the same number of elements.

EA (Event Archimedean Property). Any sequence of pairwise disjoint and non null events

{ei}∞
i=0 ⊆ Σ such that ei ≈ ei+1 for every i = 0, . . . is necessarily finite.

C (Completeness). Given any disjoint pair of events, one of the two must contain a

subevent that is exchangeable with the other.

N (Event Nonsatiation). For any pairwise disjoint events E, F, A ∈ Σ if E ≈ F and A non

null, no subevent of F is exchangeable with E ∪ A.
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EA, C and N are equivalent to the existence of a unique and finitely additive probability

measure on Σ that represents the ’at least as likely’ relation.

1.5 Ellsberg paradox

Ellsberg (1961) proposes two main thought experiments that disturbed the usual way of mod-

eling behavior under uncertainty. Notably, the following examples violate SEU and Machina

and Schmeidler’s PS.

1.5.1 Two-urn experiment

Imagine two urns; the known urn contains fifty red balls and fifty black balls; the unknown

urn contains 100 balls that can be red or black but the proportion is not specified. The state

space is S = {0, 1, . . . , 100} where s corresponds to the state in which exactly s balls are red.

The payments of the DM are described by the set of possible consequences X = {0, x}, with

x > 0.

Let us formalize Ellsberg paradox in the Anscombe-Aumann framework. The bet on red

(black) in the unknown urn is modeled through the horse race lottery f ( f ′) : S → L as fol-

lows: f (s) =
s

100
δx +

100− s
100

δ0 and f ′(s) =
100− s

100
δx +

s
100

δ0 with δx the degenerate lottery

that gives payoff x with certainty. The bet on red (black) in the known urn is represented

through g ( g′): g(s) =
1
2

δx +
1
2

δ0 and g′(s) =
1
2

δ0 +
1
2

δx. Ellsberg shows that, while being

indifferent between betting on red or black within each urn ( f ∼ f ′ and g ∼ g′), DMs may

reasonably prefer a bet on red (resp. black) in the known urn rather than a bet on red (resp.

black) in the unknown one ( g � f and g′ � f ′). This preference for known (risky) over

unknown (ambiguous) bets is referred to by Ellsberg as ambiguity aversion.

Suppose now that preferences are represented by a subjective probability P on S and a

utility function u and assume u(0) = 0 and u(x) = 1. Thus, f ∼ f ′ means ∑s∈S P(s)
s

100
=
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∑s∈S P(s)
100− s

100
which is equivalent to ∑s∈S P(s)

s
100

=
1
2

meaning f ∼ g. This contradicts

g � f .

Ellsberg preference cannot be represented with subjective additive probability. Thus, PS

and SEU are violated.

1.5.2 One-urn experiment

One urn contains 90 balls; 30 are known to be red and the remaining 60 are known to be black

or yellow but the information about the precise proportion is missing. Ellsberg shows that

a DM who prefers a bet that gives a positive amount of money on {red} to an identical bet

on {black} (i.e., who is ambiguity averse in the same way as in the two-urn experiment), will

however prefer a bet that wins on {black and yellow} to a bet that wins on {red and yellow}.

Indeed, adding a winning event yellow to the initial bets should not affect the ranking be-

tween them (by P2). Choices are again driven by ambiguity avoidance and violate SEU and PS.

Ellsberg’s examples show that SEU and Machina and Schmeidler’s PS are violated as soon

as DMs exhibit ambiguity attitudes. Ambiguity attitudes contradict the Bayesian approach

that makes no difference between probabilities that are based on objective information and

probabilities that are built on a default in information. As argued by Schmeidler (1989)

the main limitation of SEU is that "The probability attached to an uncertain event does not

reflect the heuristic amount of information that led to the assignement of that probability.”

The models presented in the next section provide extension of SEU in order to account for

ambiguity attitudes.
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1.6 The modeling of ambiguity

Ellsberg experiments (1961) rule out the possibility of modeling behavior under uncertainty

through consistent probability measures. The aim of this section is to present the models that

have been constructed in response to the paradox raised by Ellsberg. Each category of models

proposes a different way to solve the Ellsberg paradox. We distinguish four approaches in

the modeling of ambiguity.

The rank dependent approach, including Schmeidler (1989) and cumulative prospect the-

ory (Tversky and Kahneman, 1992), abandons subjective probabilities, allowing the proba-

bilities of events to be non-necessarily additive. The multiple prior approach preserves the

expected utility form but describes ambiguity through by means of a set of priors. The

multi-stage approach represents ambiguity as compound risk where the different stages of

the compound lottery are not necessarily reduced. The source of uncertainty approach en-

visages that each uncertainty subjectively covers different features and consequently, that all

uncertainties cannot be treated similarly in the decision process.

1.6.1 Choquet expected utility

The point of departure of the modeling of non additive probability is illustrated by the fol-

lowing example provided by Schmeidler (1989). Imagine a DM can bet on two coins. The

first coin has been extensively tested and was found to be fair. No information exists re-

garding the second coin. While the first coin carries enough evidence to be assigned with

a fifty-fifty distribution, the second will be naturally assigned the same distribution but by

invoking some other rule, typically Laplace’s principle of insufficient reason. The two distri-

butions, while being the same, feel different. Actually, the DM tends to consider that the two

bets are not equivalent, and he would be willing to bet less on the second coin (Gilboa et al.,

2008). Savage’s approach fails to distinguish between probabilities based on information and
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probabilities that result from the absence of information.

Schmeidler (1989) finds the conditions to extend SEU to non additive probabilities. He

keeps Anscombe-Aumann’s A1, A3 and A4 and introduces the comonotonic independence

axiom and a monotonicity axiom.

Definition 5 (Comonotonicity). Two acts f and g ∈ F are comonotonic if there are no states s and

s′ such that f (s) � f (s′) and g(s′) � g(s).

The following comonotonic independence condition replaces Anscombe-Aumann s’ A2.

A’2 (Comonotonic Independence) For all f , g, h ∈ F , if f � g, f and g are comonotononic

with h, then λ f + (1− λ)h � λg + (1− λ)h

A’ 5 (Monotonicity) for all f , g ∈ F , if f (s) % g(s) for all s ∈ S, then f % g

We need to introduce the definition of a non additive probability measure (also called

capacity):

Definition 6 (Capacity). The function ν : S→ [0, 1] is a capacity if

(i) ν(∅) = 0, ν(S) = 1 and (ii) E ⊆ F ⇒ ν(E) ≤ ν(F).

In the following representation, outcomes of act f = [x1 on E1; . . . ; xn on En] expressed in

monetary amounts are rank-ordered from worst to best x1 ≤ · · · ≤ xn. Note that the ranking

of outcomes imply that the partition {E1; . . . ; En} of S is also rank-ordered.

Theorem 3 (Schmeidler, 1989). Preferences satisfying axioms A1, A’2, A3, A4, A’5 have the follow-

ing Choquet Expected Utility (CEU) representation:

CEU( f ) =
n

∑
j=1

π(j)u(xj) (1.3)

where the decision weight π(j) is equal to ν(∪n
i=jEj)− ν(∪n

i=j+1Ej). Moreover, the capacity ν(.) on S

is unique and the utility u(.) is defined up to a positive linear transformation.
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The difference between CEU and SEU consists in the weights that precede utility when

evaluating an act. The weights P(Ej) under SEU are generated by an additive probability

measure on S while the weights π(j) under CEU are generated by a possible nonadditive

measure. The decision weight π(j) of event Ej depends on the event Ej and its ranking

position. Note that when ν(.) is additive, ν(∪n
i=jEj)− ν(∪n

i=j+1Ej) reduces to ν(Ej) and SEU

is obtained.

1.6.2 Multiple Prior models

The multiple prior approach assumes that the DM may not hold a unique belief on the states

of the world. Consequently, ambiguity is reflected by the multiplicity of priors. The extensions

of the original Maximin Expected utility (Gilboa and Schmeidler, 1989) consist in:

1. enlarging the attitudes towards ambiguity by allowing a continuum from extreme pes-

simism to extreme optimism in (i) combining the two extreme behaviors (min and max)

or (ii) adding an extraneaous ambiguity index.

2. taking into account the prior information available to the DM.

A similar but not equivalent approach consists in considering probability intervals for

events. Eventually, multiple priors can be related to possible incomplete preferences.

Maxmin expected utility

Gilboa & Schmeidler (1989) establish the axiomatization of Wald’s (1950) idea of maxmin

expected utility (MEU). The idea is as follows: when no information is available, it may be

too difficult for the DM to formulate a unique prior. In a way, it is less demanding to allow

the DM to consider a set of priors. This set is subjectively defined. For instance, an extreme

case would be to envisage all the possible probability distributions: in Ellsberg’s two-urn

experiment it would correspond to all the possible compositions of the ambiguous urn.
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The axiomatic keeps Anscombe-Aumann’s A1, A3 and A4, adds A’5, replaces the inde-

pendence axiom (A2) by the certainty independence axiom (A"2) and adds an uncertainty

aversion axiom (A6).

FC is the set of constant acts, i.e, acts that give the same lottery whatever the state is;

elements of FC are indexed by c. A"2 is weaker than A2 since it requires that independence

holds whenever acts are mixed with a constant act hc.

A" 2 (Certainty-independence) for all f , g ∈ F and hc ∈ FC , and for all λ ∈]0, 1],

f � g⇔ λ f + (1− λ)hc � λg + (1− λ)hc

This following axiom captures the hedging phenomena. The DM should prefer a mixture

of two indifferent acts to each of these two acts.

A 6 (Uncertainty Aversion) for all f , g ∈ F and λ ∈]0, 1[, f ∼ g⇒ λ f + (1− λ)g % f

The mixture operation reduces the uncertainty separately born by each act. We observe

that this axiom ex ante imposes a constraint on the DM’s reaction to ambiguity and thus MEU

will be able to describe Ellsberg type behavior.

It is worth remarking that adding this axiom to the CEU theorem results in a nonadditive

probability ν that satisfies convexity, i.e., ν(E) + ν(F) ≤ ν(E ∪ F) + ν(E ∩ F). Conversely, if ν

is convex, then the CEU preference relation satisfies A6.

Theorem 4 (Gilboa and Schmeidler, 1989). Preferences satisfying axioms A1, A"2, A3, A4, A’5

and A6 have a the following MEU representation:

MEU( f ) = min
P∈C ∑

s∈S
P(s)u( f (s)) (1.4)

with u the utility function which is unique up to a positive linear transformation, and C the unique

(closed and convex) set of priors P. Uniqueness of C is given by A4.

A min expected utility maximizer ranking two acts computes the expected utility of each
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act for each prior probability distribution and then chooses the act that yields the highest

evaluation with respect to the worst prior distribution. We have seen that one prior distribu-

tion (the singleton set C = {P}, which corresponds to SEU) is not able to explain Ellsberg

preferences. However, we can see that a set of priors explains Ellsberg preferences. Take

the case where the set of priors C corresponds to L. With the usual normalization condi-

tions for utility (u(0) = 0 and u(x) = 1), Ellsberg preferences f ∼ f ′ and g ∼ g′ imply

MEU( f ) = MEU( f ′) = 0 and MEU(g) = MEU(g′) =
1
2

and these equalities are completely

consistent with g � f and g′ � f ′. It is worth noticing that the same result would be obtained

with a smaller set of priors (for instance, if C = {priors such that s ∈ 48, 49, 50}).

Maxmin is often viewed as associating the modeling of ambiguity to pessimism because of

the presence of the axiom of uncertainty aversion. However, nothing is said about the nature

of the set of beliefs that are revealed by the representation theorem. For instance, this set

may be assumed to comprise only optimistic probability distributions so that a DM who acts

pessimistically relative to his optimistic beliefs may finally behave in a less pessimistic way

than a true pessimist would have behaved. In short, behavioral traits that are not necessarily

due to ambiguity can be contained in the set C.

Moreover, it seems natural to interpret the size of C as a representation of the ambiguity

that the DM may perceive in the decision problem, but one problem with such interpretation

is the fact that the set C appears in Gilboa and Schmeidler’s analysis only as a result of

the assumption of ambiguity hedging. It therefore seems that the DM’s revealed ambiguity

cannot be disentangled from his behavioral response to such ambiguity. That is precisely

what α-MEU aims to achieve.
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α-MEU

Ghirardato, Maccheroni and Marinacci (2004) provide the axiomatization of the Hurwitz cri-

terion and extend MEU to allow for a more varied descriptions of ambiguity attitudes. α-MEU

combines both the maxmin and its extreme opposite maxmax (where the best probability is

considered) approaches. This combination permits us to account for all ambiguity attitudes

between maxmin and maxmax.

They distinguish between (i) the ambiguity perceived by the DM, which is given by a

set of probabilities C and (ii) the reaction of the DM to it, his ambiguity attitude, which is

captured by a unique coefficient α.

They first derive an "unambiguous preference” relation denoted by %∗ from the prefer-

ences of the DM that is built on a unanimity criterion: a DM unambiguously prefers (%∗) an

act f to an act g if the expected utility of act f is higher than the expected utility of g with re-

spect to every probability measure in the set C. The set C describes the DM’s revealed perception

of ambiguity1. A DM 1 perceives more ambiguity than a DM 2 if for all f , g f %∗1 g ⇒ f %∗2 g.

When C = {P} then %∗ is complete and corresponds to %. Hence, the DM 2 has a richer un-

ambiguous preference because she behaves as if she is better informed. Moreover, the size of

the set of priors gives information on the ambiguity attitude of a DM. Thus, in the previous

case, the DM 1 is more ambiguity averse than the second because she considers that more

probability distribution can occur (C1 is larger than C2).

In a second step, ambiguity attitudes are represented through a parameter that captures

ambiguity attitudes. The following axiom guarantees that the certainty equivalent of f with

respect to %∗ (noted E∗( f )) contains all the information the DM uses in evaluating f .

A 7 For every f , g ∈ L, E∗( f ) = E∗(g)⇒ f ∼ g

Theorem 5 (Ghirardato, Maccheroni, Marinacci, 2004). Preferences satisfying axioms A1, A"2,

1As in MEU, no objective meaning is attached to C.
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A3, A4, A’5 and A7 have the following α-MEU representation:

α−MEU( f ) = α min
P∈C ∑

S
u( f (s))dP(s) + (1− α) max

P∈C ∑
S

u( f (s))dP(s) (1.5)

Moreover, C is unique, u(.) is unique up to an affine transformation and α ∈ [0, 1] is unique if C is not

a singleton.

The DM’s reaction to ambiguity is captured by the ambiguity aversion coefficient α. The

set C is shown to be equal to the set of priors that Gilboa and Schmeidler derived in their

representation for α equal to 1. If α is equal to 0, maxmax is obtained. The set C yields

the smallest set of possible probability distributions that can be obtained, i.e, the closest

approximation of SEU.

Let us show that an ambiguity averse DM in the Ellsberg 90-ball urn experiment has an α

superior to 1/2. Let i defines the number of yellow balls and 60− i the number of black balls

in the urn. imin (resp. imax) is the minimum (resp. maximum) of i with respect to the set of

beliefs. A DM who prefers a bet on red (R) to a bet on yellow (Y) or similary black (B) reveals

(with the normalization conditions u(x) = 1 and u(0) = 0):

R � Y ⇒ 30
90

>
αimin

90
+

(1− α)imax

90

since the worth distribution is imin and

R � B⇒ 30
90

>
α(60− imax)

90
+

(1− α)(60− imin)
90

since the worth distribution is imax.

By definition imax ≥ imin. Ellsberg type preferences R � Y and R � B imply that imin = imax

is not possible. It follows that imin < imax then α > 1/2.
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Variational preferences

The variational preferences model (Maccheroni, Marinacci and Rustichini, 2006) is an alterna-

tive generalization of the multiple prior model.

The axiomatization conserves all MEU’s axioms except that the certainty independence

(A"2) is replaced by the weak certainty independence axiom (A2"’).

A 2”’ (Weak Certainty independence) if f , g ∈ F and hc, h′c ∈ Fc, and λ ∈]0, 1[ then,

λ f + (1− λ)hc % λg + (1− λ)hc ⇒ λ f + (1− λ)h′c % λg + (1− λ)h′c

The certainty independence axiom actually involves two types of independence: indepen-

dence relative to mixing with constant acts and independence relative to the weights used in

such mixing. A"’2 retains the first form of independence, but not the second one. They al-

low for preference reversals in mixing with constants unless the weights themselves are kept

constant.

Theorem 6 (Maccheroni, Marinacci and Rustichini, 2006). Preferences satisfying axioms A1, A”’2,

A3, A4, A’5, A6 are variational and have the following representation:

VP( f ) = min
P∈D

∫
S

u( f (s))dP(s) + b(P) (1.6)

where b is an ambiguity aversion index from D(Σ) to (0, +∞) where D(Σ) is the set of all probability

distributions on Σ, an algebra over S.

Variational preferences are ambiguity averse due to A6. The lower is b, the higher is the

ambiguity aversion exhibited by the DM. b associates a weight to each probability distribution

P. A relation %1 more ambiguity averse than %2 is equivalent to (u1 = u2 and b1 ≤ b2). MEU

with the set of priors C is a special case of the variational preferences where b(P) = 0 if P ∈ C

and b(P) = ∞ otherwise.
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Ambiguity as imprecise information

In the previous models, nothing is said about the informational structure of the decision prob-

lem and the models themselves do not envisage the case where the DM possesses objective

information in the sense where it does not explicitly appear in their construction. Informa-

tional aspects, if they exist, appear in the revealed set of beliefs as an output of the decision

process. However, in most decision situations data is often available to the DM even vague or

imprecise.

For instance, in Ellsberg’s three-color problem, the prior information is the set of proba-

bility distributions that admit the probability 1/3 on the event ’drawing a red ball’. Thus, the

DM has information since the probability interval for drawing a black or yellow ball is smaller

than the unit interval that would correspond to full ambiguity. Gajdos, Hayashi, Tallon and

Vergnaud (2008) specifically aim at modeling information as a part of ambiguity.

They describe the informational structure of a decision context by P that represents the

objective a priori information and r a reference prior also called anchor (r belongs to the

convex hull of P). For instance, in the three-color problem, the set of priors appropriate to

model available information is the set of all probability distributions that place 1/3 on red.

The reference prior of this set is the natural distribution (1/3, 1/3, 1/3) (by symmetry).

The concept of reference prior is central in this model since aversion towards imprecision

is built around it. Indeed, one situation is considered more imprecise than another if the set

of probability distributions considered possible in the second situation is included in the set

of the first. In Ellsberg’s two-color example, having one red and nighty-nine black is more

precise that no information about the proportion of the two colors, but it seems reasonable to

assume that a DM would prefer to bet on red in the ambiguous urn than in the more precise

known urn. Thus, a proper description of information requires a condition on anchor.

They define [P1, r1] as a weak center preserving increase in imprecision of [P2, r2] if (i) P1
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is more imprecise than P2 and (ii) r1 = r2 (they have the same center). For instance, in the

two-color problem, if there are two balls in the ambiguous urn, the information is described

by P1 = {(1, 0), (0, 1)} and the center is (1/2, 1/2); if there are three balls in the ambiguous

urn, the information P2 = {(1, 0), (2/3, 1/3), (1/3, 2/3), (0, 1)} has the same center (1/2, 1/2).

Hence, the imprecision of the two situations is the same (the number of balls considered as

immaterial).

In this model, the DM ’s preferences are defined on both act and information. The repre-

sentation theorem allows two acts to be compared in two different informational situations.

( f , [P1, r1]) % (g, [P2, r2])⇔

α min
p∈co(P1)

∫
S

u( f (s))dp1(s) + (1− α)
∫

S
u( f (s))dr1 ≥

α min
p∈co(P2)

∫
S

u(g(s))dp2(s) + (1− α)
∫

S
u(g(s))dr2

(1.7)

The functionnal form is a convex combination of the minimum expected utility with respect to

probability distributions in the set of objectively admissible probability distribution and of the

expected utility with respect to the anchor. The revealed set is a subset of the set of admissible

probability distributions. Hence, an extremely pessimistic DM will keep the entire initial set

of admissible priors. Conversely, a DM not affected by imprecision reduces any prior set of

probability distribution to the anchor distribution. α measures the degree of pessimism. If α

is equal to zero, the DM is EU with respect to the anchor, and if α is equal to one, he is MEU

with respect to all distributions compatible with information.

Ambiguity and indecision

For many authors, (Mandler 2005, among others), the completeness assumption - which re-

quires that any two acts are comparable (that is preferred to the other or equivalent in the
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preference ordering) - does not appear to be a condition of rationality. In certain cases, it

is even rational not to decide as argued by Gilboa, Maccheroni, Marinacci and Schmeidler

(2008):

”In the absence of information, it appears more rational to be silent than to pretend

to have knowledge that one does not have”.

Hence, a DM may stay indecisive when ambiguity is unbearable. While their paper deals

with the incompleteness of beliefs defined as the incompleteness of preferences that is due to

the absence of information (the DM does not know what the probabilities of various states

of the world are), they do not especially focus on ambiguity. However, a previous work of

Bewley could shed some light on the possible link between indecision and ambiguity.

Bewley (2002) removes the completeness assumption from the Anscombe and Aumman

formulation of Savage’s theory and introduces an extraneous inertia assumption. The iner-

tia hypothesis states that a person never accepts an uncertain alternative unless he prefers

acceptance to rejection. Inertia implies the determination of a status quo. The status quo is

the position that serves as comparison with another alternative. The inertia assumption is

necessary since it avoids the arbitrary selection between incomparable alternative, and in this

sense, contains a form of aversion to uncertainty. Bewley obtains a set of subjective proba-

bility distributions C and his decision rule requires the unanimity of priors as shown by the

following equation.

f � g⇔ ∑
s∈S

p(s)u( f (s)) > ∑
s∈S

p(s)u(g(s)) ∀p ∈ C (1.8)

f is more desirable than g if and only if the expected utility is higher for f than for g when

considering each and every prior in the set C. Bewley’s model is not considered as a response

to Ellsberg paradox since it cannot per se predict Ellserg preferences, but it is still compatible
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with Ellsberg type behavior.

Others approaches

In parallel research, ambiguity is assimilated to probability intervals. See for instance Budescu

and Wallsten (1987) for a review of this literature. Because it is essentially psychological,

no behavioral foundation underlies this approach. In the statistics field, uncertainty is also

modeled through imprecise probability (see Walley, 1991). Note that approaches based on

probability intervals are mathematically different from the multiple prior ones (Wakker ,

2008).

Limitations

Multiple prior models present certain limitations especially related to the problematic observ-

ability of the set of priors (Wakker, 2008). First, specifying the set of probability distributions

is more complex than specifying only one distribution. Until now, no assessment of the set of

priors exists in empirical literature which tends to confirm the robustness of this limitation.

An underlying difficulty related to the previous point is the above mentionned distinction

between probability measures that are contained in the set (subjectively considered as possi-

ble) and those which are not (subjectively considered as impossible). Because the underlying

decision process is selective, the sole observation of choice behavior is not sufficient to infer

the hidden set of priors the DM had in mind.

Finally, by construction, multiple priors models do not allow one to consider the plausible

cognitive state in which different probabilities are assigned to the different priors of the set.

An approach that envisages such a mental procedure is not far from the two-stage models we

present below.
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1.6.3 Multiple Stage models

The point of departure of multi-stage models is that DMs have a representation of uncertainty

in terms of compound risk and ambiguity attitudes are modeled through the non reduction

of multi-stage lotteries. This line of research has been initiated by Segal (1987) who assumes

that a DM formulates subjective probability over the possible probability distributions in the

second stage but does not impose the reduction of compound lotteries. A DM satisfies the

reduction of compound lotteries (ROCL) if her preferences depend only on the probability of

the final outcomes in a multi-stage lottery. DM who satisfies ROCL multiplies the probabilities

of the consequences between the different stages according to classic probability laws.

In the Ellsberg two-urn experiment, having a multi-stage representation of uncertainty

corresponds to having a belief over of the set of all the possible compositions of the ambiguous

urn.

Klibanoff, Marinacci and Mukerji (2005)

Preferences characterized by Klibanoff, Marinacci and Mukerji (2005) are represented by a

functional of double expectational form where the DM has a SEU preference on the set of

objective probability distributions.

KMM( f ) = ∑
D

Φ

(
∑
S

u( f (s))dP(s)

)
dµ (1.9)

The functional form allows distinguishing between ambiguity, that refers to the properties of

the DM’s subjective beliefs µ and ambiguity attitude contained in Φ. µ is the subjective prior

over D, the set of probability measures over S considered by the DM. µ can be thought as a

measure of the subjective relevance of a particular P(∈ D) to be the "right” probability. ROCL

corresponds to Φ linear. Concavity of Φ corresponds to ambiguity aversion: each expected
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utility with respect to a given probability measure P is reduced. Ambiguity aversion is thus

equivalent to aversion to mean preserving spread.

An advantage of KMM is that it allows for smooth rather than kinked preferences; thus

comparative statics should be used to study the effects of a change in ambiguity or ambiguity

attitude ceteris paribus.

Seo (2008)

Seo (2008) provides a characterization of second-order subjective expected utility (SOSEU)

in an Anscombe-Aumann framework. He shows that the Anscombe-Aumann approach im-

plicitly assumes a reversal of order property according to which a DM is indifferent between

mixtures of acts before and after a realization of a state. He points out that mixing, before

or after the state is realized, results alternatively in ambiguous or non ambiguous prospects.

Relaxing the reversal of order axiom permits us to accommodate Ellsberg type behavior.

Halevy & Ozdenoren (2008)

Halevy and Ozdenoren (2008) define preferences of DMs on a domain that includes both

Savagean acts and compound lotteries. They define second-order probabilistic sophistication

(SOPS) that generalizes PS to two-stage lotteries, and allows for behaviors that are non-neutral

with respect to ambiguity. DM’s preferences satisfy SOPS if there exists a set of probability

measures over the state space, and a single probability measure over the measures in this set

(representing the DMs belief over the measures), such that the DM is indifferent to acts that

induce the same compound lottery. Hence, DMs who satisfy SOPS reduce all uncertainty to

compound risk. Moreover, DMs who reduce all uncertainty to simple risk are PS.
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Ergin & Gul (2009)

Ergin & Gul (2009) construct a theory in which a DM identifies an uncertain prospect with

subjective compound lotteries. They introduce the issue preference assumption according to

which a DM may not be indifferent among gambles that yield the same probability distribu-

tion if they depend on different issues. They assume two issues in an Ellsbergian framework:

the first issue concerns the uncertainty regarding the identity of the ball drawn; the second is-

sue concerns the uncertainty about the composition of the urn. They assume the second issue

is resolved first. A DM who is indifferent between acts that imply one or both issues treats

the uncertainty as risk and is second order probabilistically sophisticated. Hence, Ellsberg

paradox is a consequence of a greater aversion to the risk associated with the composition of

the urn, also called second order risk (which resolves the first stage of a compound lottery).

1.6.4 Sources of uncertainty

A series of contributions admit there can be source preference (Tversky and Wakker, 1995;

Tversky and Fox, 1995). Source preference argues that behavior cannot be exclusively ex-

plained on the basis of likelihood and payoff considerations. The events that bear the un-

certainty are themselves a source of preference. Hence, distinguishing between sources of

uncertainty allows us to envisage DMs’ attitudes as source-dependent.

The two following approaches aim to endogenously determine domains of events (sources)

that are consistent with probabilistic sophistication.

Epstein and Zhang (2001)

Epstein and Zhang’s (2001) approach consists in identifying events on which the DM is prob-

abilistically sophisticated (called unambiguous events) from those on which he is not (called

ambiguous). They propose the following preference-based definition of an unambiguous
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event:

Definition 7 (Unambiguous event). An event T is unambiguous if for all E and F in non T, acts f,

and outcomes x, x∗, y, y′∈ X,

(i) [x∗ on E; x on F; f (s) on non T -(E ∪ F), y on T] % [x on E; x∗ on F; f (s) on non T -(E ∪ F), y on

T] ⇒ [x∗ on E; x on F; f (s) on non T -(E ∪ F), y’ on T] %[x on E; x∗ on F; f (s) on non T -(E ∪ F),

y’ on T],

(ii) The condition (i) is also true when replacing T by non T.

They end up with a unique source of "subjectively unambiguous events" consistent with

probabilistic sophistication.

Source dependence and small worlds

This approach goes further than Epstein and Zhang’s mere distinction between un/ambiguous

events and, contrary to the latter, allows to accomodate Ellsberg two-urn paradox.

Chew and Sagi (2008) use PS based on exchangeability of events (Chew and Sagi, 2006)

to define self-contained groups of events. So-called small world events domains each modelizes

a single and subjectively determined source of uncertainty. Each small world events domain

corresponds to a subjectively distinct source of uncertainty. Hence, their approach allows

them to model behavior as source dependent. Hence, Ellsberg behavior is interpreted as a

difference of attitudes between two small worlds (the risky and the ambiguous urn) on the

condition that PS holds within each source. However, PS is not necessarily required between

small worlds.
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Chapter 2

Sources of Uncertainty and Ambiguity

Attitudes

2.1 Introduction

A source of uncertainty refers to a group of events that are generated by a common mechanism

of uncertainty. Classic modeling of subjective uncertainty makes the implicit assumption of

source neutrality, i.e., a decision maker (DM) is indifferent to the mechanism that generates

the uncertainty. Subjective expected utility (SEU: Savage 1954) reduces all uncertainties to

risk by supposing each DM can formulate subjective probabilities in any decision context.

Probabilistic sophistication (PS: Machina and Schmeidler, 1992) imposes that a DM ought

to be indifferent between decisions that imply the same subjective probability distribution on

consequences, independently of the mechanisms that govern the resolution of the uncertainty.

In these models, subjective probabilities share the same strong features: first, they have to be

additive; second, they are not corrected by the (possible absence of) objective information on

which they are based, neither by the subjective degree of confidence they are associated with.

However, literature provides substantial evidence in favour of source preference. A DM
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exhibits a preference for source Sa over source Sb when she is indifferent between a gamble

that gives a positive payoff on an event a belonging to Sa and a gamble giving it on an event

b belonging Sb, and has an higher evaluation of the gamble that gives the same payoff on

S − a than the one giving it on S − b (Tversky and Fox, 1995; Tversky and Wakker, 1995).

For instance, DMs may prefer bets on events generated by a chance mechanism over events

associated with no information, revealing ambiguity aversion (Ellsberg, 1961); conversely,

DMs may prefer bets on events for which they feel more competent, to bets involving pure

chance, exhibiting ambiguity loving (Heath and Tversky, 1991). Hence, ambiguity attitudes

can be envisaged as a result of non neutrality towards sources of uncertainty.

More specifically, this chapter examines ambiguity attitudes as a consequence of the pres-

ence of two basic sources of uncertainty: (i) source of objective uncertainty, which refers to the

part of the decision problem that is formulated in terms of exogenous probabilities; the mech-

anism generating the uncertainty is objective because it depends on an extraneous chance

device (like casino games) and (ii) source of subjective uncertainty, which refers to the part of

the decision problem which deals with events, i.e., eventualities that do not contain enough

information or give rise to enough confidence to be definitely formulated is terms of proba-

bilities.

A DM who respects source neutrality is indifferent between the two above sources and is

said to be ambiguity neutral1. While it is admitted that DMs are generally neutral to different

sources of objective uncertainty (the throw of a coin or the draw of a ball in a fifty-fifty two-

color urn), DMs need not to be neutral between different sources of subjective uncertainty.

It is worth noticing that while sources of subjective uncertainty can, most of the time, be

clearly identified by an outside observer (for instance, "the temperature tomorrow" versus

1Literature proposes two alternative definitions of an ambiguity neutrality. Being ambiguity neutral is equiva-
lent to SEU according to Ghirardato and Marinacci (2002); being ambiguity neutral is equivalent to PS according
to Esptein and Zang (2001).
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"the evolution of the Nikkei"), identifying more subtle sources is ultimately a subjective affair:

an american expert of the stock market will consider "the evolution of the Dow Jones" and

"the evolution of the Nikkei" as two distinct sources of uncertainty while an european expert

will probably not operate such a fine distinction and will indistinctly consider "the evolution

of the foreign stock market" in general.

In this chapter, we show how paradoxes of behavior under uncertainty are due to non

neutrality towards sources of uncertainty. The examples presented in this chapter show that

the joint presence (juxtaposition or combination) of both objective and subjective sources of

uncertainty in decision contexts generates (non neutral) ambiguity attitudes, attitudes that are

precisely at the inciption of the paradoxes2. We distinguish between two majors contributions

that are particularly relevant for the analysis of ambiguity attitudes, namely the Ellsberg

(1961) and Machina (2009b) paradoxes.

Bringing ambiguity attitudes to light through separate sources of uncertainty . . .

In his two-urn example, Ellsberg (1961) juxtaposes a source of objective uncertainty (repre-

sented by an 100-ball urn with a fifty-fifty proportion of black and red balls) and a source

of subjective uncertainty (represented by a similar urn with no proportion prespecified) and

simply highlights the existence of ambiguity attitudes, i.e., a preference for the former over

the latter. This example is particularly convenient since it enables us to define ambiguity

attitudes in a clear-cut and comparative manner: two separate sources of uncertainty - objec-

tive and subjective - are sufficient for the existence of ambiguity attitudes. With regards to

the modeling of uncertainty, the two-urn paradox provides the first falsification3 of SEU and

2The Allais paradox (1953), which exclusively deals with objective uncertainty, is consequently excluded from
this chapter.

3The term ’falsification’ has to be understood in its Popperian meaning: a theory can be falsified if at least one
example can be found that cannot be explained by the theory. Hence, ’falsification’ does not endorse a pejorative
meaning; on the contrary, the (experimental) possibility of falsifying theories is a guarantee of their scientism.
Conversely, validating theory would be neither constructive nor scientific from a methodological perspective.
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the ex ante falsification of Machina and Schmeidler’s PS. The discovery of the existence of

ambiguity attitudes has initiated the development of a new range of models sufficiently so-

phisticated to account for it, such as for instance Choquet Expected Utility (CEU: Schmeidler,

1989).

Section 2.2 focuses on the existence of ambiguity attitudes as resulting from the presence

of separate sources of uncertainty; it is shown that non neutral ambiguity attitudes contradict

classic models of subjective uncertainty; different interpretations of the existence of ambiguity

attitudes are reviewed.

. . . and playing with them via mixed sources of uncertainty

Ellsberg (1961) and Machina (2009b) one-urn examples are more complex because they en-

tail a salient informational structure: they combine objective and subjective uncertainties. The

resulting mixed source is a good candidate for ambiguity attitudes since the nature of cer-

tain events or group of events can be modified (from objective to subjective and vice versa)

through simple manipulations of consequences. The key point is that such manipulations

are permitted by the models that these examples end up by contradicting. Ellsberg’s one-urn

paradox provides the simplest framework to explain outcome-manipulation effects, however

it does not reveal more than the already known violations of SEU and PS.

A contrario, Machina’s one-urn paradox provides a falsification of CEU4. Unexpectedly,

as soon as more complex mixtures between sources are envisaged, ambiguity attitudes fail to

be correctly predicted by ambiguity models.

Section 2.3 focuses on ambiguity attitudes in mixed sources problems and shows how

paradoxes become ad hoc when mixed sources are properly separated.

4It has been proved that maxmin expected utility, alpha-maxmin expected utility, the variational preference
and the smooth model of ambiguity are also falsified by Machina’s example (Baillon et al., 2009).
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Notations

Preferences are described as usual with % designating the weak preference; � is the strict

preference and ∼ the indifference (- denotes the reverse preference); preferences are defined

on bets. For decisions implying a source of objective uncertainty, bets are entirely identified

by the probability distribution P = (. . . , pi, . . . ) on payoffs (. . . , xi, . . . ) with xi ≥ 0; the

corresponding lotteries are designated by brackets (. . . ; xi, pi; . . . ). For decisions implying a

source of subjective uncertainty, bets are identified by acts that associate payoffs (. . . , xi, . . . )

to a partition of events {. . . , Ei, . . .}; such subjective acts are designated by brackets [. . . ; xi on

Ei; . . . ]. For decisions implying a mixed uncertainty, [. . . ; (. . . ; xi, pi; . . . ) on Ej; . . . ] denotes

a subjective act with lotteries as consequences (an Anscombe-Aumann act) while (. . . ; [. . . ; xi

on Ei; . . . ], pj; . . . ) denotes a lottery with subjective acts as consequences.

2.2 Separate sources of uncertainty

There has been much debate about the nature of probability (Hacking, 1975), especially as

regards the distinction between objective probabilities which are based on empirical frequency

or mathematical calculus, and subjective probabilities which are based on another, less reliable

kind of evidence. Ellsberg (1961) provides a design that juxtaposes two sources of uncertainty

- objective and subjective - and shows a preference for objective probabilities that result in

DMs exhibiting ambiguity attitudes. Throughout this section, interpretations of ambiguity

attitudes and implications for the modeling of behavior are discussed.

2.2.1 Ellsberg two-urn paradox

The existence of ambiguity attitudes is simply highlighted in Ellsberg’s two-color paradox. A

DM faces the two urns represented in Figure 2.1. The known urn (K) has a known composition
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of 50 red (R) and 50 black (B) balls. The unknown5 urn (U) contains 100 red and black balls

in an unknown proportion. One ball is randomly drawn from each urn. We designate by CS

the event "the ball drawn from urn S is of color C", S ∈ {K, U}.

 100

50 50

(a) Known urn

100

? 

100-n n 

(b) Unknown urn

Figure 2.1: Separate sources of uncertainty

The DM chooses between the four bets of Table 2.1. The bet e1 (e2) gives the payoff 100 on

event RK (BK) and nothing otherwise. The bet e3 (e4) gives the payoff 100 on event RU (BU)

and nothing otherwise.

50 balls 50 balls

red black

e1 100 0

e2 0 100

100 balls

red black

e3 100 0

e4 0 100

Table 2.1: Separate objective and subjective bets

Ellsberg suggests that the DM may reasonably be indifferent between a bet on red and a

bet on black when considering each urn separately (e1 ∼ e2 and e3 ∼ e4). However, he may

also reasonably express a strict preference for a bet on red (resp. black) in the known urn over

a bet on red (resp. black) in the unknown urn, i.e., e1 � e3 (resp. e2 � e4).

5In literature, this urn is often termed ’ambiguous’. However, due to the absence of unanimity with regards
to what is called "ambiguity", we prefer to focus on ambiguity attitudes as a result of the presence of different
sources of uncertainties. For instance, it is difficult to refer to this urn as ambiguous because it is not perceived as
different from the other by an ambiguity neutral DM.
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The preference e3 ∼ e4 can be written [100 on RU ; 0 on BU ] ∼ [0 on RU ; 100 on BU ]. Under

subjective expected utility, this indifference implies the following equality: P(RU)u(100) +

P(BU)u(0) = P(BU)u(100) + P(RU)u(0) where u is the utility of the consequences and P(.)

the subjective probability measure. With the standard normalization conditions u(100) = 1

and u(0) = 0 it follows that P(RU) = P(BU): the DM reveals that events RU and BU are

equally likely.

However, when considering cross-choice between bets on the two urns, the preferences

e1 � e3 and e2 � e4 rewritten as follows: [100 on RK; 0 on BK] � [100 on RU ; 0 on BU ] and [100

on BK; 0 on RK] � [100 on BU ; 0 on RU ] respectively implies under SEU,
1
2

= P(RK) > P(RU)

and
1
2

= P(BK) > P(BU). These inequalities reveal that the subjective probability of drawing

a red ball in the unknown urn is less than the subjective probability of drawing a red ball

in the known urn, and, at the same time, that the subjective probability of drawing a black

ball in the unknown urn is less than the subjective probability of drawing a black ball in the

known urn. The paradox arises because the sum in terms of subjective probability of events

BU and RU is less than one (1 > P(RU) + P(BU)), although BU and RU are complementary

events.

The preference for bets implying known probabilities over bets implying unknown prob-

abilities was termed "ambiguity aversion” by Ellsberg. Ambiguity averse preferences (e1 � e3

and e2 � e4) violate additivity in probability, hence SEU and PS.

Becker and Brownson (1964), Slovic and Tversky (1974) and MacCrimmon and Larsson

(1979) find strong support for ambiguity avoidance. Ambiguity avoidance is also confirmed

for sophisticated subjects (Hogarth and Kunreuther, 1989) as well as in experimental market

settings (Sarin and Weber, 1993). It is worth noticing that ambiguity loving, as well as ambi-

guity neutral, behavior exists, although minoritary. Moreover, ambiguity attitudes are found

to depend on the likelihood of events; DMs tend to be ambiguity lovers for events associated
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with small likelihood levels and ambiguity averse for events associated with middle and high

levels of likelihood (Hogarth and Einhorn, 1990; Abdellaoui et al., 2009a).

2.2.2 Common interpretations

The diversity of interpretations with regards to the existence of ambiguity attitudes may be

viewed as reflecting the heterogeneity of its causes. It also corresponds to a variety of ways

to incorporate ambiguity attitudes in the modeling.

Interpretation in terms of missing information

This interpretation explains ambiguity attitudes in terms of a difference in completeness of the

information on which subjective probabilities are based. Frish and Baron (1988) highlight that

the information contained in the unknown urn could be known. Hence, ambiguity aversion is

simply due to the awareness that there is some missing information that would be relevant for

the decision. The underlying dynamic approach lies in the previous ’would’. Indeed, contrary

the objective, subjective probability is not immune to revision and could be reformulated on

the basis on new information.

The theoretical limitation pointed out by this interpretation is that subjective probabilities,

as defined in SEU, do not incorporate the amount of evidence that leads to their formulation.

As noticed by Peirce (1932):

"To express the proper state of belief, not one number but two are requisite, the first

depending on the inferred probability, the second on the amount of knowledge on

which that probability is based.”

Hence, as a Bayesian theory of choice, subjective expected utility does not take the weight

of evidence into account (Cohen, 1977) and only considers the subjective probability given

what it is known.
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Interpretation in terms of a two-stage representation of uncertainty

The two-stage interpretation of ambiguity attitudes is based on the assumption that ambigu-

ity can be cognitively assimilated to compound risk. Compound risk designates situations in

which the consequences of a lottery are themselves lotteries. Segal (1987) defined an ambigu-

ous lottery in the following way:

"The ambiguous lottery [x on E; 0 on non E] (ambiguous in the sense that the

individual does not known the probability of E) should be considered as a two-

stage lottery, where the first, imaginary stage, is over the possible values of the

probability of E.”

Ambiguity attitudes stem from the non reduction of compound lotteries principle (Segal,

1987; Klibanoff, Marinacci and Mukerji, 2005; Halevy and Ozdenoren, 2008). The reduction of

compound lottery principle states that a two-stage lottery and the single-stage lottery obtained

by the former through the conventional laws of probability calculus are equal in preference.

Intuitively, the reduction of the two stages may not hold since a different source of uncertainty

is at play at each stage, as will be discussed below.

As an illustration, let us consider a (r+b)-ball urn which contains r red balls and b black

balls and define urn(r, b) as the lottery that gives the payoff 100 if a red ball is drawn (with

probability r/r+b) and nothing otherwise (with probability b/r+b). Figure 2.2. describes

different two-stage representations of ambiguity.

60



2.2. SEPARATE SOURCES OF UNCERTAINTY

0 
1 

1/2 

1/2 

x 

(a) Lottery degenerated
in the first stage

1/2 

1/2 

urn(100,0) 

urn(0,100) 

(b) Lottery degenerated in
the second stage

1/101 

1/101 

1/101 

1/101 

urn(100,0) 
urn(99,1) 

urn(1,99) 
urn(0,100) 

(c) Uniform distribution on the
compositions of the urns

0 

P(RU) 

P(BU) 

x 

(d) Ambiguous bet

Figure 2.2: Examples of two-stage representations of ambiguity

Lottery (a) is a compound lottery which gives with certainty the lottery with a fifty-fifty

chance of getting a red ball; because all the uncertainty is resolved in the second stage, this

lottery is said to be degenerated in the first stage. Lottery (b) is a compound lottery that gives

a full red urn or a full black urn with fifty-fifty chance; because all the uncertainty is resolved

in the first stage, this lottery is said to be degenerated in the second stage. Lottery (c) is a

compound lottery that assigns a uniform distribution over all the possible compositions of

the unknown urn. The lotteries (a), (b) and (c) should be equivalent in terms of preference for

an DM who respects the reduction of compound lottery principle.

(d) represents the ambiguous bet without any probability of events specified. A DM who

identifies ambiguity with compound risk, and who is furthermore ambiguity neutral, should

consider lotteries (a), (b) and (c) equivalent to the ambiguous lottery (d) in terms of preference.

DMs who do not reduce compound lotteries exhibit ambiguity attitudes. For instance,

ambiguity aversion may result from an underevaluation of the second stage in lottery (c)

leading to reject it in favor of its equivalent simple risk lottery (x, 1/2; 0, 1/2).

When considering the potential complexity of the reduction operation, failures in reduc-

tion are possibly more frequent for more complex compound lotteries. Hence, a DM who

does not reduce compound lottery may exhibit an increasing ambiguity aversion while he

perceives a higher dispersion of outcomes/probabilities in his two-stage representation of
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ambiguity. Conversely, the desirability of a two-stage lottery increases as the two stages be-

come more degenerate. For instance (a) and (b) may be associated to less ambiguity aversion

than (c).

However, it is worth noticing that the first stage, because "imaginary" (it could be for

instance (a) for one DM and (b) for another), is not necessarily a uniform probability distribu-

tion on all the eventualities of the second stage, as a Bayesian DM would have imagined (c);

hence, the first stage is of subjective nature while the second stays objective. Consequently,

ambiguity attitudes stem more from a non reduction between the two sources of uncertainty

than from a mere violation of the reduction of compound lotteries principle. DMs might re-

duce compound objective lotteries but they also may not want to reduce a compound lottery

that entails an objective and a subjective part.

Halevy (2007) finds that individuals who correctly reduce compound lotteries are neutral

to ambiguity and that failures in reduction are associated with non neutral ambiguity atti-

tudes. In Chapter 4, we proceed to a further examination of this link. We confirm the link

between attitude toward ambiguity and attitude toward compound risk, but observe that even

DMs who respect the reduction axiom tend to exhibit ambiguity attitudes. Hence, ambiguity

attitudes cannot be entirely explained by the inability of DMs to reduce compound lotteries.

Uniform sources interpretation

The interpretation based on uniform sources argues that ambiguity attitudes may be consis-

tent with PS in the two-urn paradox. As argued by Keynes (1921), who considered a similar

Ellsberg two-urn problem few years ago, DMs a priori believe that the proportion between

black and red in each urn are the same.

"In the first case we know that the urn contains black and red balls in equal pro-

portions; in the second case the proportion of each color is unknown, and each
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ball is as likely to be black as red. It is evident that in either case the probability

of drawing a red ball is 1/2, but that the weight of the argument in favor of this

conclusion is greater in the first case.”

The observation that DMs are willing to exchange bets on different colors within a single

urn, but reluctant to exchange bets on the same color between the two urns, suggests that

events pertaining to the unknown urn (RU and BU) share different features compared to

events belonging to the known urn (RK and BK). Consequently, there is no objective reason

for comparing attitudes that rely on different sources as emphasized by Fellner (1961) :

"I will suggest, as does Ellsberg, that subjective probability judgements relating to

various processes are not strictly comparable.”

Intuitively, each urn constitutes a source of uncertainty. A source is defined as uniform if

probabilistic sophistication entails a uniform degree of ambiguity within the source (Wakker,

2008). Probabilistic sophistication based on the concept of exhangeability can be defined

within the unknown urn. Exchangeability has been shown to be (together with two other

technical conditions) sufficient for probabilistic sophistication (Chew and Sagi, 2006). Two

disjoint events E1 and E2 are exchangeable if the preference does not change when permuting

the payoffs between these two events. A partition of exchangable events results in equal

likelihood. Exchangeability in Ellsberg’s two-urn paradox corresponds to [x on RU , y on

BU ] ∼ [y on RU , x on BU ] and results in equally likely events P(RU) = P(BU) = 1/2. Then,

source functions capture ambiguity attitudes with respect to these subjective probabilities

revealed in the ambigous urn. Chapter 3 details this approach.

Ellsberg type preferences no longer constitute a violation of probabilistic sophistication.

Let us recall that Machina and Schmeidler (1992)’s PS implies that a DM ought to be indif-

ferent between two bets that imply the same probability distribution. With the generalization
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of probabilistic sophistication (its restriction to each source of uncertainty) provided by Ab-

dellaoui et al. (2009a), a DM ought to be indifferent between two bets that imply the same

probability distribution only if these bets are restricted on a single and uniform source of

uncertainty. Hence, the so-called within-source probabilistic sophistication requires that proba-

bilistic sophistication holds within a well-defined source but not necessarily between different

sources of uncertainty.

The distinction between sources was recently supported by neurological studies that show

that risk and ambiguity pertain to two distinct neuronal processes. Huettel et al. (2006)

provided fMRI evidence and noticed that:

"This novel double dissociation indicates that decision making under ambiguity

does not represent a special, more complex case of risky decision making; instead,

these two forms of uncertainty are supported by distinct (neuronal) mechanisms.”

2.2.3 Psychological causes of ambiguity aversion

Psychologists have shown that ambiguity attitudes may have subtle psychological causes.

Notably, ambiguity attitudes have been found to vary with (i) social factors: exposure of

one’s choice to others, the impact of others’ comparative knowledge and (ii) the way the

decision problem is framed: the lack of information is rendered more obvious by a direct or

a sequential comparison with the risky context.

Social factors

The competence hypothesis. Heath and Tversky (1991) showed that individuals prefer to bet

in a context in which they consider themselves knowledgeable or competent than in a context

in which they feel ignorant or uninformed. Hence, ambiguity aversion increases with the

perception that others are more competent or more knowledgeable. Information about the
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composition of the ambiguous urn is knowable but unknown to DMs; they consequently

feel less knowledgeable and less competent, which reduces the attractivity of the ambiguous

bet. Conversely, people are more willing to bet on their own judgment over an equiprobable

chance event when they consider themselves as knowledgeable.

Unknown vs Unknowable uncertainties. Chow and Sarin (2002) suggest that DMs do not

treat all forms of uncertainty in the same way. They establish a distinction between unknown

uncertainty and unknowable uncertainty. A DM faces unknown uncertainty when informa-

tion is available to someone else and unknowable uncertainty when information is available to

nobody (for example, an unopened bag of candies). The authors conclude from their experi-

ment that "People are likely to prefer, ceteris paribus, the known uncertainty to the unknown

uncertainty with the unknowable uncertainty somewhere in-between”. In the unknown case,

one tends to feel ignorant as compared to others, and therefore less confident in one’s choice.

By contrast, in the unknowable case, one does not feel a particular information disadvantage.

In this respect, Chow and Sarin’s approach is consistent with the comparative ignorance hy-

pothesis. Thus, the Ellsberg context can be viewed as the better case for obtaining ambiguity

aversion since the experimenter has private information (she filled the urn).

Fear of negative evaluation by others. Issues of blame, responsibility and regret are partic-

ularly salient under ambiguity. Such effects arise because information becomes available after

a decision is made: an individual is often evaluated by others as if she should have known

the information, even if it was not actually available at the time of the decision (Baron and

Hershey, 1988). As an application of the competence hypothesis, Curley, Yates and Abrams

(1986) find that increasing the number of people watching a decision enhances ambiguity

aversion. The idea is as follows: if an individual chooses an ambiguous option and receives a

bad outcome, then she fears criticism from others. Such criticism is easier to counter after a

risky choice, since in that case a bad outcome is more easily explained by bad luck. Trautman
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(2009) finds that a reduction in social evaluation reduces ambiguity aversion, and that ambi-

guity aversion disappears when choices become private information, i.e., when the possibility

of blame is eliminated.

Framing effects

The comparative ignorance hypothesis. Fox and Tversky (1995) conducted a series of studies

to investigate the hypothesis that ambiguity aversion holds in a comparative context, but is

reduced or eliminated in a noncomparative context. A subject faces a comparative condition

when she evaluates both clear and vague prospects; she faces a non comparative condition

when she evaluates only one of these prospects in isolation. More specifically, the authors

replicate Ellsberg two-urn’s example in a both within- and between-subject design. They find

that subjects are willing to pay significantly more for the clear bet than for the vague bet

in a comparative context, while there is no trace of ambiguity aversion (subjects appear to

pay slightly less for the clear bet than for the vague bet) in the noncomparative condition.

They conclude that the contrast between states of knowledge is the predominant source of

ambiguity aversion, hence that the Ellsberg phenomenon is intrinsically a comparative effect.

However, Chow and Sarin (2001) replicate Ellsberg’s two and three-color examples and show

that ambiguity aversion persists in a between-subject comparaison (even if the difference is

smaller).

Order effects. Fox and Weber (2002) replicate Fox and Tversky (1995)’s design by focusing

on the order in which subjects face the two urns. If order effects are at play, the decision

context can no longer be considered as a fully comparative one. The urn presented first has to

be considered as non comparative, while the second urn becomes mechanically comparative

with regard to the first one. Hence, a context which is initially non comparative may become

comparative. Fox and Weber (2002) find that the ambiguous urn receives a better evaluation
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when evaluated first (thus in a non comparative condition) than when evaluated after the

risky one. A contrario, the risky urn receives a better evaluation when evaluated after the

ambiguous one (than when evaluated first) because it is likely to benefit from a comparative

effect.

However, as pointed out by Fox and Tversky (1995), the comparative nature of an experi-

ment cannot be reduced to its pure design:

"There is no guarantee that subjects in a comparative condition actually perform

the suggested comparison, or that subjects in a non comparative condition did not

independently generate a comparison.”

Thus, the comparative/non comparative nature of ambiguity attitudes refers more to a

cognitive disposal of the subject than to a manipulation of the experimental framework. In

this respect, comparative ignorance and subsequent ambiguity aversion could be due to two

kinds of framing effects: an objective framing effect meaning that the comparison is generated

and explicit in the experimental design; and a cognitive framing effect meaning that the

comparison is cognitively and implicitly performed by the subject. Discriminating between

these two kinds of framing is impossible on the sole basis of observed choices.

2.3 Mixed sources of uncertainty

For normative reasons, it would be desirable to admit that all probabilities are subjective. First,

it would make it possible to combine information from a variety of different sources. Second,

a single decision rule could be applied in all situations. However, the one-urn Ellsberg and

Machina paradoxes show that such combinations of sources of uncertainty, because mixing

uncertainties of a different nature, tend to generate ambiguity attitudes that are inconsistent

with two standard decision rules, respectively Savage and Choquet expected utility.
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2.3.1 Ellsberg one-urn paradox

The three-color paradox (Ellsberg, 1961) represents the first decision problem in which objec-

tive and subjective uncertainty are mixed. The paradox starts from a 90-ball urn, in which 30

are known to be red and the remaining 60 are distributed between yellow and black through

an unknown process. A ball is drawn from the urn represented in Figure 2.3.

Figure 2.3: Ellsberg one-urn paradox

The nature of mixed uncertainty can be grasped through the following observation. The

urn entails an hybrid partition {red, black, yellow}. Indeed, the event {red} involves only

objective uncertainty while events {yellow} and {black} involve both objective and subjective

uncertainty because they are each a subevent of an objective event {black, yellow} the proba-

bility of which is 2/3. These subevents are referred to by Machina (2009a) as hybrid events.

The paradoxes presented in this section are essentially due to the presence of such hybrid

events that turn out to be non hybrid when grouped together. Indeed, the preference of DMs

for non hybrid events is in conflict with the normative requirement that a transformation

of a hybrid into a non hybrid event through outcome-manipulations should not affect the

decision.

Bets are described in Table 2.2. The DM’s choices involve two pairs of bets f1 vs f2 and

f3 vs f4. Acts f3 and f4 are respectively obtained from acts f1 and f2 by simply replacing
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the common consequence 0 by 100 on the event {yellow}. The nature - hybrid or not - of the

bets depends on the nature - hybrid or not - of the partition on which they are built. More

specifically, the nature of the partition depends on the way payoffs are distributed under their

events within each bet. Hence, f2 and f3 are hybrid bets. f1 and f4 are known bets (lotteries)

because they are based on the non hybrid union {black, yellow} of two hybrid events {black}

and {yellow}.

30 balls 60 balls

Acts red black yellow

f1 100 0 0

f2 0 100 0

f ′2 0 0 100

f3 100 0 100

f4 0 100 100

Table 2.2: Ellsberg bets

Ellsberg preferences f1 � f2 ∼ f ′2 and f4 � f3 are, as in the previous section, explained

by the preference for known over unknown probabilities or, alternatively, by the preference

for non hybrid bets over hybrid ones. We can show that, in this paradox, ambiguity averse

preferences violate PS and SEU.

The preference for f1 over f2 reveals subjective probabilities P(red)>P(black) while the

preference for f4 over f3 reveals subjective probability P(black)>P(red), which violates prob-

abilistic sophistication. Moreover, bets f3 and f4 are respectively obtained from bets f1 and

f2 by replacing the common outcome 0 by the common outcome 100 on the event {yellow}.

Consequently, preferences f1 � f2 and f4 � f3 imply respectively P(red)>P(black) and P(red

∪ yellow)<P(black ∪ yellow) which contradict each other; indeed, the sure-thing principle

(axiom P2 in chapter 1) - which assumes that DMs’ preferences should not be sensitive to a
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change of a common outcome - is violated; hence SEU.

However, such preferences are consistent with CEU which was precisely built to account

for possible ambiguity averse preferences. With the normalization condition u(0)=0 and

u(100)=1, CEU implies:

f1 � f2⇒ ν(red) > ν(black) and

f4 � f3⇒ ν(red ∪ yellow) < ν(black ∪ yellow)

with ν being a non additive measure. It follows that these inequalities are fully consistent

with CEU.

The second-order uncertainty aversion interpretation

Ellsberg preferences can be explained using a two-stage interpretation as in the two-color

paradox. In this case, however, the source of uncertainty corresponding to each stage can be

clearly identified. Consider the following simplified version of Ellsberg three-color paradox

proposed by Ergin and Gul (2009). It involves a three-ball urn, that contains a red ball and

each of the two remaining balls can be either yellow or black. The four possible compositions

of the urn are given in Table 2.3:

Y Y B B ball 1
Y B Y B ball 2
R R R R ball 3
yy yb by bb

Table 2.3: Three-ball urn

The representation in Table 2.3 shows that two kinds of uncertainty are combined. Row-

uncertainty (called issue a) concerns the identity of the drawn ball (numbered by 1, 2 and

3). Column-uncertainty (issue b) concerns the composition of the urn, which depends on

the color of balls 1 and 2. If row and column uncertainties are independent, and if the DM
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considers each column/row as equally likely, then ambiguity aversion stems from a two-

stage representation of the decision problem. If the column-uncertainty is resolved before

the row-uncertainty, a bet on {red} is a degenerate lottery which gives the payoff 100 with

probability one-third ((100, 1/3); 1), so it reduces to a bet on which ball will be drawn. On

the other hand, a bet on {yellow} (or {black}) becomes a bet on (i) which ball is drawn and

(ii) which is the number of the yellow (or black) ball in the urn; it can be represented by

the compound lottery ((100, 0), 1/4; (100, 1/3), 1/2; (100, 2/3), 1/4). The DM who does not

reduce uncertainty, does not equate his chance of winning for this compound lottery to 1/3;

she is averse to the compound lottery and has a preference for a one-third probability of

winning for sure, i.e., for a bet on {red}.

Hence, the DM is likely to prefer lotteries that depend only on issue a to equivalent

lotteries that depend on both issues a and b. To some extent, she may prefer decision settings

that involve a small number of sources of uncertainty. In this framework, ambiguity aversion

is a consequence of greater aversion associated with column-uncertainty (also referred to as

second-order risk).

Separating sources in mix decision problems

Machina (2009a) proves that a proper representation of Ellsberg one-urn paradox based on a

separation between sources of uncertainties allows us to reconcile Ellsberg’s one-urn paradox

with SEU, but not with PS, surprisingly 6.

Machina (2009a)’s method consists in a diagramatic approach that ’orthogonalize’ the two

sources of uncertainty contained in the Ellsberg urn. The first step consists in identifying

6Even if they differ in the method adopted, the orthogonalized method proposed by Machina (2009a) shares
conceptual similarities with the uniform source method presented in the previous section. The examination of
the Ellsberg two-urn paradox with the uniform source method has allowed to reconcile it with PS whenever the
different sources of uncertainty are properly identified and separated. It is worth noticing that the uniform source
method cannot be easily implemented for Ellsberg one-urn design since it recovers mixed sources of uncertainty.
Hence, Machina’s proposal has to be considered as an interesting alternative.
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these two independent sources of uncertainty and the second step in separating them. The

source of subjective uncertainty is the uncertainty regarding the composition of the urn, i.e.,

the number of balls of each color. The source of objective uncertainty refers to the identity of

the ball that is drawn7. The partition of Ellsberg’s urn (adapted, with 2 red balls and 4 black

and yellow balls in unknown proportion) can be represented as in Table 2.4:

6 Y Y Y Y B
5 Y Y Y B B
4 Y Y B B B
3 Y B B B B
2 R R R R R
1 R R R R R

0 1 2 3 4

Table 2.4: Orthogonalized representation of the three-color partitions

The columns describe the number of black balls in the urn (0 to 4). The rows desig-

nate each of the six balls present in the urn. Consequently, the column perspective gives

bets represented as subjective acts with objective lotteries as consequences while the row per-

spective gives bets represented as objective lotteries with subjective acts over {E0, . . . , E4} as

consequences.

The orthogonalization of the bet f1 (see Table 2.5, left matrix) should be read as follows.

Intersection between column and row gives the payoff received, contingent on the number

of black balls present in the urn and on the ball considered. Balls 1 and 2 are basically the

red balls. Hence, whatever the number of black balls, 100 can be won if a red ball is drawn

(ball 1 or 2). Note that numbering the balls does not imply any order: red balls could be

alternatively designated by rows 3 and 4 as represented in Table 2.7, left matrix, or by rows 5

and 6 as represented in Table 2.7, right matrix. An advantage of such a static representation

is that it excludes dynamic effects (like those highlighted by multiple-stage approaches) from

the analysis.
7The sources thus identified are similar to Ergin and Gul (2009)’s.
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6 0 0 0 0 0
5 0 0 0 0 0
4 0 0 0 0 0
3 0 0 0 0 0
2 100 100 100 100 100
1 100 100 100 100 100
f1 0 1 2 3 4

6 0 0 0 0 100
5 0 0 0 100 100
4 0 0 100 100 100
3 0 100 100 100 100
2 0 0 0 0 0
1 0 0 0 0 0
f2 0 1 2 3 4

6 100 100 100 100 0
5 100 100 100 0 0
4 100 100 0 0 0
3 100 0 0 0 0
2 0 0 0 0 0
1 0 0 0 0 0
f ′2 0 1 2 3 4

Table 2.5: Orthogonalized representation of acts f1, f2 and f ′2

6 100 100 100 100 0
5 100 100 100 0 0
4 100 100 0 0 0
3 100 0 0 0 0
2 100 100 100 100 100
1 100 100 100 100 100
f3 0 1 2 3 4

6 100 100 100 100 100
5 100 100 100 100 100
4 100 100 100 100 100
3 100 100 100 100 100
2 0 0 0 0 0
1 0 0 0 0 0
f4 0 1 2 3 4

Table 2.6: Orthogonalized representation of acts f3 and f4

6 0 0 0 0 0
5 0 0 0 0 0
4 100 100 100 100 100
3 100 100 100 100 100
2 0 0 0 0 0
1 0 0 0 0 0
f R
1 0 1 2 3 4

6 0 0 0 0 0
5 0 0 0 0 0
4 100 100 100 100 100
3 100 100 100 100 100
2 100 100 100 100 100
1 100 100 100 100 100
f R
4 0 1 2 3 4

Table 2.7: Rearranged acts f R
1 and f R

4 from f1 and f4

When restricting attention on the sole subjective source of uncertainty (columns), Ellsberg

preference for f1 over f ′2 does not imply a precise order between f3 and f4. Indeed, f1 =

[(100,
2
6
) on E0; . . . ; (100,

2
6
) on E4] and f2 = [(100, 1) on E0; 100,

1
6
) on E1(100,

2
6
) on E2(100,

3
6
)

on E3; (100,
4
6
) on E4]. f1 and f2 share the common lottery-outcome (100,

2
6
) on the event E2; it

is replaced by the common lottery-outcome (100,
4
6
) in f3 and f4: f3 = [(100, 1) on E0; 100,

5
6
)
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on E1(100,
4
6
) on E2(100,

3
6
) on E3; (100,

2
6
) on E4] and f4 = [(100,

4
6
) on E0; . . . ; (100,

4
6
) on

E4]. However, such a change does not contradict the sure-thing principle since it would have

imposed that the two pairs of acts differ only by this replacement. A representation of Ellsberg

acts in a two-dimensional and additive space renders non additive consideration ad hoc8; the

paradox as well.

When looking at the objective source of uncertainty (rows), acts f4 and f3 are obtained

from f ′2 and f1 by replacing the common 1/3 probability of act [0 if E0, . . . , 0 if E4] by the

common 1/3 probability of act [100 if E0, . . . , 100 if E4]. Hence, the independence axiom is

consistent and implies the Ellsberg preferences ( f1 � f ′2 and f4 � f3). Similarly, ambiguity

loving ( f ′2 � f1 and f3 � f4) and ambiguity neutrality ( f1 ∼ f ′2 ∼ f3 ∼ f4) are consistent with

the independence axiom.

However, when considering the mix objective/subjective uncertainty we observe that PS

implies f1 ∼ f ′2 ∼ f2 and f3 ∼ f4 because the probability of outcomes is the only determinant

of preferences between bets. In this way, PS is always violated by Ellsberg preferences.

Machina (2009a) provides the extension of the above results to the 90-ball urn. Results

regarding the existence of a paradox depend on the source on which it is focused. Ellsberg

preferences are found to be completely consistent with the sure-thing principle and even

implied by the independence axiom when separating the sources of objective and subjective

uncertainty; because each of these two properties can be associated with only one dimension

in the diagram, they no longer appear as a limitation of Ellsberg’s paradox. However, PS

has to be studied by preserving the two dimensions ; because PS considers mixed sources, it

remains violated.
8By representing Ellsberg acts as the product of two sources of uncertainty, Machina considers a larger space

than the initial Ellsberg one; separation of sources restores additivity in each dimension in some sense; Gilboa
and Schmeidler (1994) shows that functions on a space bearing a non additive measure turn out to be additive
when considering larger space.
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2.3.2 The reflection paradox

Machina (2009b) proposes an urn that mixes one objective with two subjective sources of

uncertainty but in a fully symetric way. He shows that some natural symmetry requirement

(present in both the urn and the bets) that correspond to ambiguity averse preferences are not

consistent with the predictions of CEU.

A 100-ball urn contains 50 balls that are known to be green (n) or black (50-n) and 50 balls

that are known to be yellow (m) or red (50-m). This urn contains two sources of uncertainty,

each bearing informational symetry: first, objective informational symmetry because it gives

an equiprobable lottery on the two non hybrid groups of subevents {black, green} and {yel-

low,red}; second, subjective informational symmetry since there is no information regarding

the proportion of the two colors within each group.

Figure 2.4: Machina’s urn

The symmetry is also salient when looking at the bets described in Table 2.8. Bets g4

(g3) are an informationally symmetric reflection of bets g1 (g2). Hence, it seems natural to

be indifferent between g1 and g4 and between g2 and g3. Ambiguity averse preferences are

g2 � g1 and g3 � g4.
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50 balls 50 balls

Acts red yellow black green

g1 4000 8000 4000 0

g2 4000 4000 8000 0

g3 0 8000 4000 4000

g4 0 4000 8000 4000

Table 2.8: The Machina bets

A fine analysis distinguishes between two criteria that lead to define preferences as am-

biguity averse (Machina, 2009b). An ambiguity averse DM as usual prefers bets that involve

known probabilities, i.e., g2 and g3. Conversely, an ambiguity averse DM may prefer to mini-

mize his exposure to ambiguity by choosing bets that minimize the concentration of missing

information, i.e, g1 and g4; in other words, he prefer bets that spread ambiguity over a greater

number of hybrid events. These two kinds of ambiguity averse preferences correspond to the

two pattern of informationally symmetric preferences. Ambiguity averse preferences will be

found to be the most frequent pattern of choice in Chapter 5. Machina shows that ambiguity

averse preferences are not compatible with CEU except if indifference holds between all the

bets.

To see why this reflection poses a problem for CEU, we will assume that utility of 0 is 0,

and consider the ambiguity averse pair of choices g1 � g2 and g4 � g3 . Substitution of CEU

(Chapter 1, eq: 1.3) gives:

g1 � g2⇒ ν(yellow)u(8000) + [ν(yellow ∪ black ∪ red)− ν(yellow)]u(4000) >

ν(black)u(8000) + [ν(yellow ∪ black ∪ red)− ν(black)]u(4000)

and

g4 � g3⇒ ν(black)u(8000) + [ν(yellow ∪ black ∪ green)-ν(black)]u(4000) >
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ν(yellow)u(8000) + [ν(yellow ∪ black ∪ green)-ν(yellow)]u(4000)

Consequently,

g1 � g2⇒ν(yellow) > ν(black) (1)

g4 � g3⇒ν(black) > ν(yellow) (2)

Because the revealed beliefs (1) and (2) are contradictory, CEU is violated. A CEU DM who

choose g1 (resp. g2) in the first pair of bets should choose g3 (g4) in the second one.

2.4 Conclusion

The question we addressed in the first section is whether two natural sources of uncertainty

are treated differently by DMs. We concluded that although separate, the simultaneous

presence of sources of uncertainties of a different nature generates ambiguity attitudes, phe-

nomenon that contradicts the classic modeling of subjective uncertainty, SEU and PS.

The second section has focused on ambiguity attitudes as resulting from a combination

of two sources of uncertainty. When sources are mixed, ambiguity attitudes stem essentially

from manipulations of consequences that change the nature of the bets. In Ellsberg’s one-urn

paradox, two outcomes are sufficient to create preference reversals under SEU. In Machina’s

one-urn paradox, three outcomes and a further source of subjective uncertainty are needed

to create preference reversals under CEU. These observations point out that ever more com-

plex decision contexts are needed to challenge normative models of decision making under

uncertainty. The complexity resides in an increasing number of outcomes and sources, and

in rendering their combination more fallacious. However, such paradoxes are useful to ques-

tion the relevance of specific conditions that are hidden by prima facie innocuous functional

forms.
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Chapter 3

The Source of Uncertainty Approach

In 1961, Ellsberg’s thought experiments suggested that the individual behavior could de-

viate from probabilistic beliefs and consequently from Subjective Expected Utility (Savage

1954). In this chapter, we provide an experimental study that reconciles Ellsberg’s two-

urn problem with a local form of probabilistic sophistication. The approach adopted here

is based on sources of uncertainty. Sources of uncertainty are groups of events that are

generated by the same mechanism of uncertainty, which implies that they share similar

characteristics. Using Chew and Sagi (2008)’s concept of exchangeability, we can define

choice-based probabilities locally (within particular sources) even though probabilistic so-

phistication does not hold globally (between sources). We elicit source functions that

convert subjective choice-based probabilities into willingness to bet for each urn.

Our data establish that : (i) attitudes towards outcomes (utilities) do not depend on the

urn; (ii) subjects do not depart from (local) probabilistic sophistication when facing Ells-

berg urns; (iii) subjects exhibit distinct attitudes towards probability in each urn, more

precisely, they are less sensitive to likelihood and more pessimistic in the ambiguous urn

than in the risky one. Together, these results support the source of uncertainty approach

for Ellsberg’s two-urn problem.

84



3.1. INTRODUCTION

3.1 Introduction

The simplest statement of ambiguity aversion as a challenge to Subjective Expected Utility

(SEU: Savage, 1954), the standard model of decision under uncertainty in economics, was

provided by Ellsberg (1961). Using thought experiments, he convincingly shows in his two-

color famous example that, due to ambiguity aversion, most people prefer to bet on the color

of a ball drawn from a 50-50 balls (two-color) urn, called the known urn, rather than on the

color of a ball drawn from a similar urn containing 100 balls with unknown composition,

the unknown urn. The preference suggested by Ellsberg are not consistent with probabilistic

sophistication and consequently with SEU. Moreover, while Ellsberg’s conclusion deeply in-

fluenced the subsequent theoretical investigations on ambiguity and generalizations of SEU,

its experimental confirmation stays fundamentally qualitative: merely stating the presence or

absence of ambiguity aversion in n-color experiments (n ≥ 2).

This chapter proposes to go one step further in the direction of a tractable analysis of at-

titudes towards uncertainty. We implement an experiment in which uncertainty attitudes are

quantitatively analyzed by means of source functions defined on the probability interval. The

analysis combines two concepts, the sources of uncertainty (Tversky and Fox, 1995; Tversky

and Wakker, 1995) and exchangeability (Chew and Sagi, 2006).

Chew and Sagi (2006) define two events as exchangeable if the DM is always indifferent to

permuting their corresponding outcomes. The notion of equal likelihood in the Savagean set-

up expresses a particular case of exchangeability. Taking into account the above definition,

a thought experiment can easily show that permuting the payoffs assigned to two given

colors from the n-color unknown urn will likely keep the DM’s preference unchanged. Such

a conclusion is trivially true for gambles generated from the known urn. Chew and Sagi

(2006)’s exchangeability allows us to reveal the existence of a uniform subjective probability
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distribution on the unknown urn.

Once the unknown urn endowed with a (subjective) probability measure, we can see

the willingness to bet assigned to a specific event as an urn-dependent transformation of

the probability of that event. More precisely, each urn can be viewed as a source of uncer-

tainty. Sources of uncertainty are groups of events that are generated by the same mechanism

of uncertainty, which implies that they share similar characteristics. We can define choice-

based probabilities locally (within particular sources) even though Machina and Schmeidler’s

(1992) probabilistic sophistication does not hold globally (between sources). We use three

components to describe decision under uncertainty: (i) utility of outcomes; (ii) choice-based

probabilities for each source of uncertainty; (iii) the source functions.

Hence, a mere comparison of the source functions will reveal relative ambiguity aver-

sion/seeking across urns. For instance, in the two-color Ellsberg’s example, the preference

to bet on a specific color in the known urn corresponds to a higher transformation of the

probability of 1/2 in this urn. The relative behavior of such transformation functions on

the unit interval allows for a richer spectrum of attitudes towards uncertainty in the two

urns. Needless to insist that such a set-up allows to investigate ambiguity aversion/seeking

as probability-dependent. Intuitively, the DM is expected to clearly prefer betting on an un-

ambiguous event when its probability is in the second half of the unit interval than if it is in

the first half.

The model we used allows for a more sophisticated treatment of probabilities in each urn.

An elevated source function will be shown to reflect DM’s optimism. Hence, pessimism will

result in a less elevated source function. If ambiguity aversion dominates behavior whatever

the considered probability, we can expect the known urn source function to be globally more

elevated than for the unknown urn. The local slope of the source function reflects the DM’s

capacity to discriminate between probabilities (in that region of the unit interval). Intuitively, a
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global predominance of ambiguity in the unknown urn should result in a flater corresponding

source function. In other terms, an increase in probability should have less impact in the

unknown urn than in the known one.

Section 3.2 provides the theoretical framework. Section 3.3 describes the experiment and

Section 3.4 gives the results. Section 3.5 discusses.

3.2 Framework

3.2.1 Notations

S is the state space. The outcome set is R+, designating nonnegative amounts of money. An

act xEy gives outcome x if event E occurs and y otherwise. - denotes the preference relation

of a decision maker (henceforth, DM) over the set of acts (∼ and � are defined as usual).

Subjective expected utility (SEU) holds if there exist a utility function u from R+ to R and a

probability measure P on S such that xEy 7→ P(E)u(x) + (1− P(E))u(y).

3.2.2 Ellsberg paradox

The Ellsberg paradox is an intuitive experiment that shows how DM’s choices may contradict

subjective expected utility. A DM is presented with two urns: a known urn (K) contains 50 red

balls and 50 black balls and an unknown urn (U), which will also be called ambiguous, contains

100 balls red or black in unknown proportions. A ball is randomly drawn from each urn. We

designate by RS (BS) events "drawing a red (black) ball in urn S". A DM who is asking to bet

on a color typically exhibits the following preferences:

xRK0 � xRU0 SEU⇒ P(RK) > P(RU)

xBK0 � xBU0 SEU⇒ P(BK) > P(BU)
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Most people would rather bet on red balls in the known urn than in the unknown urn, and

thus under SEU, they would reveal that they have a greater subjective probability of drawing

a red ball in the known urn than in the unknown urn. A similar result is obtained for black

balls. It thus induces that subjective probabilities of drawing a red ball or a black ball in the

unknown urn are both less than one-half, which violates the additivity property of probability

measure. Many empirical studies provide evidence of people’s reluctance to bet on ambigu-

ous events in the two-urn version of the Ellsberg paradox (Raiffa, 1961; Becker and Brownson,

1964; Yates and Zukowski, 1976; Kahn and Sarin, 1988; Curley and Yates, 1989; Eisenberger

and Weber, 1995). A common interpretation of this paradox is that people may fail to assign

subjective (additive) probability to events and therefore, deviate from probabilistic beliefs.

3.2.3 A general biseparable model

Ghirardato and Marinacci (2001) showed that a biseparable model agrees with a wide class

of usual models, including Schmeidler’s (1989) Choquet Expected Utility, Gilboa and Schmei-

dler’s (1989) Multiple priors, Kahneman and Tversky’s (1979, 1992) Prospect theory when

restricted to positive binary acts. For an act xEy such that y ≤ x, this model is given by:

xEy 7→W(E).u(x) + (1−W(E).u(y))

W denotes the weighting function that may be non additive, and u the utility function.

This model generalizes SEU and encompasses the Ellsberg paradox through the non addi-

tivity of the weighting function. Indeed, the Ellsberg paradox only means that W(RU) +

W(BU) ≤ W(RK) + W(BK). However, we do not know yet whether the weighting function

is not additive because of the non additivity of beliefs or because of a non additivity of the

attitude component. The next subsection introduces a tool to discriminate between these two

possibles explanations.
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3.2.4 Probabilistic sophistication

Decision makers are said to be probabilistic sophisticated if their choices are consistent with

probabilistic belifefs. Formally, there exists a probability measure P such that for each prospect

(x1, E1; . . . ; xn, En) the only relevant aspect regarding preferences is the probability distribu-

tion (x1, p1; . . . ; xn, pn) that it generates over the outcomes, where pj = P(Ej) for all j (Machina

and Schmeidler, 1992). It follows that two different prospects generating the same probabil-

ity distribution over the outcomes are equivalent in terms of preferences. A key step of our

approach is to make probabilistic sophistication in the ambiguous urn observable. Chew and

Sagi (2006) give particularly weak preference conditions for probabilistically sophistication

based on Ramsey (1926) and de Finetti’s (1937) exchangeability. Two events E, F are said

exchangeable if the preference value does not change when permuting payoffs between these

events. Consequently, a DM who exhibits indifference xEy ∼ xFy (no matter what the out-

comes x and y are) reveals that events E and F are subjectively equally likely. Chew and

Sagi (2008) use this tool to define small worlds, i.e., domains of events such that an individ-

ual is probabilistically sophisticated within each domain. In the present chapter, we restrict

probabilistic sophistication to two sets of events, namely, the known and the unknown urns:

DMs’ choices among bets in a specific urn should be consistent with probability sophistication

while it can be violated when comparing bets between urns. Hence, probabilistic sophistica-

tion holds locally, within sources, but not necessarily globally, between sources. The so-called

within-source probabilistic sophistication (Abdellaoui et al., 2009) generalizes Machina and

Schmeidler’s (1992) probabilistic sophistication by restricting it on well-defined sources.

3.2.5 Source functions

In each urn, the above mentionned restricted probabilistic sophistication can be combined

with the biseparable model in order to decompose the attitude towards uncertainty into a
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belief component and an attitude component. We will elicit the following model in each urn:

xEy 7→ w(P[E]).u(x) + (1− w(P[E])).u(y) with (y ≤ x)

In this representation, w(P[E]) and (1− w(P[E])) are decision weights. w is a source function

that transforms probabilities into decision weights and the subjective probability of event E,

P[E] is

• a choice-based probability derived from exchangeability in the ambiguous urn,

• equal to the objective probability of winning outcome x in the risky urn.

The comparaison of beliefs, source functions and utility functions across urns will enable

us to better understand the Ellsberg Paradox. As an illustration, imagine that a DM has the

same utility function for risk and ambiguity and also the same beliefs (P(RU) = P(BU) =

P(RK) = P(BK) =
1
2
), but he envisages the two urns as two distinct sources of uncertainty,

i.e.„ source functions for risk and ambiguity differ. Then if she exhibits the following Ellsber-

gian preferences:

xRK0 � xRU0

xBK0 � xBU0,

she only reveals that she does not treat the probability one-half in the same way: the source

function wK( 1
2 ) for the known urn is higher than the source function wU( 1

2 ) for the unknown

urn. Because the non additivity resides in the attitude and not in subjective beliefs, Ellsbergian

preferences is in this way reconciled with (local) probabilistic sophistication.

3.2.6 A focus on source functions

Figure 3.1 below displays some typical features of the expected source functions. (a) rep-

resents the common findings about attitude towards risk, i.e., an inverse-S shaped function:
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small probabilities are overweighed while medium and large probabilities are underweight-

ing. This pattern comes from the combination of a low likelihood sensitivity (a weak discrim-

inability between likelihood levels for intermediate probabilities) and pessimism (prospects are

perceived as weakly attractive).

If ambiguity generates a lower likelihood sensitivity, then the source function under am-

biguity should be more inverse-S shaped than under risk (b): discriminatimg between like-

lihood levels is indeed harder when probabilities are unknown than where they are known.

In addition, DMs are often ambiguity averse: they feel more pessimistic when probabilities are

unknown or equivalently, ambiguous prospects appear less attractive (c). (d) represents what

could be expected as a result of the aforementioned effects.
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(a) (b)

(c) (d)

Figure 3.1: Shape of the weighting functions under risk and ambiguity

The next section describes the design and the results of the experiment which measure the

model presented above. It empirically provides a disentanglement between utilities, beliefs

and source-attitudes for the Ellsberg paradox.

92



3.3. EXPERIMENT

3.3 Experiment

3.3.1 Experimental design

Participants

Sixty-seven students (20 females, 47 males) at two French engineering schools (Ecole des

Travaux Publics and Ecole Nationale Supérieure d’Arts et Métiers) participated in this exper-

iment. The sample was recruited through posters and internet-based registration. They were

all acquainted with probability theory but most of them had never heard of decision theory.

They were told that they could win up to e25 for their participation.

Two decision contexts

Subjects faced two Ellsberg-like urns (see Figure 3.7 in Appendix). More precisely, they were

successively confronted with the known urn and the unknown urn. In the known urn, sub-

jects were told, and could observe, that it contained eight balls, each one a different color (red,

blue, yellow, black, green, purple, brown, cyan). In the unknown urn, they could observe that

there were also eight balls but they could not distinguish their colors. They knew that only the

above-mentioned colors were available. Neither the subject nor the experimenter knew the

true composition of the unknown urn, and it was emphasized that a new unknown urn was

generated for each participant. This avoided communication between subjects concerning the

composition of the unknown urn. For both urns, each ball was equally likely to be drawn.

Hereafter, elementary events are denoted RS, BS, YS, KS, GS, PS, NS, CS for S ∈ {K, U}.

Measuring indifferences

The experiment consisted of individual interviews using a computer. Subjects had to make

choices, which were entered by the experimenter. Approximatively five minutes were de-
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voted to training and explanations. During the training, the subject faced the two different

choice contexts. Subjects faced a twenty-six series of choice tasks; one series involved a choice

between a prospect and an ascending range of sure payments. Our elicitation method is very

similar to the iterative multiple price list procedure proposed by Andersen et al. (2006), i.e.,

a second list refines the choice where subjects switched in the first list (see Figure 3.8 in the

Appendix). We introduced a third step in the choice list procedure, corresponding to the

choice list that would have been generated by refining every possible switching point from

the first list. In the first step we had divided the range into 5 categories and in the second

step into 10 categories. Hence, in the third step we divided the domain into 50 categories.

The list had been pre-filled based on the answers given and assuming monotonicity, and was

presented to the subject for validation. The program also allowed respondents to backtrack

if they felt regret in a previous series of choices. The experiment took about 20 minutes per

subject.

The procedure allows us to finely determine a certainty equivalent for each prospect that

is, the average between the lowest value the subject had rejected and the highest value he

accepted. With the three-step process, we obtain certainty equivalents with a precision of 1%

of the distance between the highest and the lowest outcomes of the prospect.

Order treatments

Two treatments were implemented: in the KU treatment, subjects faced and completed the

choice concerning the known urn and then dealt with the unknown urn; in the UK treatment,

subjects began with the unknown urn. It is worth noticing that subjects were aware of the

existence of the two kinds of urn from beginning and that we deliberately put them in a

comparative context.
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Incentive mechanism

At the beginning of the experiment, subjects were told that one of their choices would be

randomly drawn from the third list and played for real. This way, the system is incentive

compatible and not subject to strategic behavior. If, in the randomly drawn choice, a subject

had preferred the sure amount, then they received the corresponding payoff. On the contrary,

if the subject preferred to play the prospect, then this prospect was played for real in the

corresponding urn (specific software was created for applying the incentive mechanism).

To make things clearer for the subject, this mechanism was precisely explained and fic-

tively applied at the end of the training session (but the payment was fictive) to make them

conscious it was in their interest to choose what they really preferred. The completed choice,

which was played for real, was always drawn from the series associated with the risky urn,

in order to give no information about the composition of the unknown urn.

3.3.2 Elicitation technique

Testing exchangeability

Chew and Sagi (2006) propose exchangeability as a tool to derive probabilistic sophistication

within a specific source of uncertainty. Two events are said to be exchangeable when permut-

ing the payoff of these two events does not change the preference value of the prospect for the

subject. We implement this idea to test if the elementary events (RU ,BU ,YU ,KU ,GU ,PU ,NU ,CU)

are exchangeable. Similar tests are also implemented on two-fold and four-fold unions of

elementary events. Intuitively, if two elementary events (or two unions of two or four elemen-

tary events) are exchangeable, then they should be revealed equally likely. Furthermore, if n

exchangeable events partition the state space, then their probability must be 1/n.
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Elicitation of the utility function

To elicit the utility function we apply the method proposed by Abdellaoui, Bleichrodt and

L’Haridon (2008) to estimate the power functional form

u(x) = (
x

25
)α,

where 25 is the maximum outcome under consideration. Their method consists in eliciting

the certainty equivalents of binary prospects with a fix probability (or event) and changing

outcomes. Then a non-linear estimation is performed in order to get two parameters: the

power α and the decision weights associated with the probability (event).

Decision weights

We elicited subjects’ certainty equivalents for prospects that yield e25 if the union of i given

elementary events occur and nothing otherwise (i from 1 to 7). Such unions of events are

obviously associated to objective probability i/8 in the risky urn, and to subjective probability

i/8 in the ambiguous urn according to exchangeability. With u normalized such that u(0) = 0

and u(25) = 1, the model implies that w(i/8) = xα where x is the corresponding certainty

equivalent.

Parametric fitting of the source functions

We use the parametric specification of Goldstein and Einhorn (1987) to infer the shape of the

source functions at an individual level. The general specification is as follow:

w(p) =
(δpγ)

(δpγ + (1− p)γ)
.

This specification is useful because each parameter precisely captures one aspect of the

shape of the transformation function. δ catches the elevation and thus refers to subjects’
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pessimism, while γ is the curvature coefficient and reveals the DM’s likelihood sensitivity. If

urn K is more attractive than urn U, δ should be higher in K than in U. Similarly, if individuals

have more ability to discriminate in K than in U, γ should also be higher in K than in U. Thus,

we can obtain a precise quantitative measurement of subjects’ behavior in the two contexts of

choice.

Indexes

To finely analyze ambiguity attitudes, we use linear indexes of pessimism and likelihood

sensitivity. These indexes are inspired by Kilka and Weber (2001) and Fox and Tversky (1995)

and consist in a linear regression of the transformation function on the (0,1) interval; it is

defined as follows :

p 7→ c + s.p

with c the intercept and s the slope. Then we can posit as in Abdellaoui et al. (2009):

a = 1− s

is the sensitivity index and

b = 1− s− 2c

is the pessimism index. These indexes can be viewed as what would be induced by the

capacities being neoadditive (Chateauneuf, Eichberger and Grant, 2007).

3.4 Results

3.4.1 Exchangeability

One of the main novelties of this research is that it does not exclude the existence of subjective

probabilities, even if the Ellsberg paradox holds. This is why three tests of exchangeability
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were performed, in order to know whether or not the participants did act consistently with

respect to the most likely subjective probability distribution, i.e., a uniform distribution. We

saw that in a given context, participants should be indifferent to bet on any equally likely

event. In other words, their certainty equivalents should not differ whatever the color they

have to bet on.

We asked several series of questions to test exchangeability and to check that individuals

were indifferent to the color of the ball. The first set of three certainty equivalents concerns

elementary events (RU , BU , YU , KU , GU , PU , NU , CU). More precisely, certainty equivalents for

three different events were elicited for each subject. An ANOVA for repeated measure shows

that the hypothesis that the colors are revealed equally likely cannot be rejected (p=0.335).

Then, four certainty equivalents dealt with events two-fold unions of elementary events. Each

subject faced the same four couples of colors. An ANOVA for repeated measure again shows

that we cannot reject that the couple of colors are equally likely (p=0.245). Last the certainty

equivalents of two events but now referring to four colors were elicited. The hypothesis that

these two events are equally likely is not rejected according to a paired t-test (p=0.824).

Hereafter, a uniform subjective probability distribution is therefore assumed, because none

of the previous tests was able to reject this hypothesis. However, since it constitutes one of

the main assumptions of the remainder of the study, we carefully studied the data at the

individual level. Subject 52, who exhibited strong variations in her certainty equivalents for

the different colors, is now removed from the sample. Throughout the five next subsections,

the mean certainty equivalent is used in the estimation, i.e., when we will need a certainty

equivalent associated with one elementary event in urn U, the average of the three elicited

ones will be considered.
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3.4.2 Utility

The utility function is elicited through the semi-parametric method introduced by Abdellaoui,

Bleichrodt and L’Haridon (2008). We elicited certainty equivalents in each urn for seven lot-

teries, whose were based on the same four-fold unions of elementary events (i.e.,subjective

probability equal to 1/2) but with different outcomes. Then, a nonlinear least-square estima-

tion enables us to get the power of the utility function and the decision weight associated to

the event, for each urn1.

First of all, some outliers make the means (1.429 in K and 1.960 in U) difficult to interpret

and strongly different from the median (1.048 in K and 1.131 in U), on which we are thus

going to focus. Two main features are noteworthy: the median is not significantly different

from 1 for both urns according to sign-test (p-values are equal to 0.003 and 0.017 in K and

U respectively). This is totally consistent with the theoretical arguments of Rabin (2000) and

Safra and Segal (2006) for such small amounts. Moreover, a sign-test shows that the utility

does not significantly differ across urns (p=0.712) (but the decision weights are (as we will see

in the next subsection). This result means that ambiguity does not seem to influence attitude

towards outcomes, but mainly attitudes towards probability. Because we cannot reject that

the two utilities are the same, we will see that ambiguity attitude is fully capture by the

decision weights. Hence, we will hereafter interpret the differences among decision weights

as differences in ambiguity attitude.

3.4.3 Sources functions

One interesting property of our method is that sources functions can be directly observed and

compared. Events referring to different numbers of colors enabled us to vary the probability

level (from 1/8 to 7/8). Applying the utility functions on the associated certainty equivalents

1If the algorithm (Levenberg-Marquadt) does not converge, we estimate the power under expected utility i.e.,
fixing the decision weights to 1/2. It happened in 4 cases, among the 132 estimations.
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gave us the source functions, displayed in table 3.1.

w Median Mean t-tests (w(p) = p) t-tests (wU = wK)

1/8 K 0.193 0.255 0.000
0.235

U 0.193 0.220 0.000

2/8 K 0.305 0.336 0.001
0.203

U 0.270 0.297 0.080

3/8 K 0.439 0.438 0.013
0.164

U 0.397 0.399 0.360

4/8 K 0.499 0.507 0.744
0.050

U 0.489 0.461 0.107

5/8 K 0.640 0.635 0.661
0.003

U 0.582 0.560 0.014

6/8 K 0.749 0.741 0.661
0.000

U 0.684 0.642 0.000

7/8 K 0.944 0.881 0.722
0.000

U 0.818 0.758 0.000

Table 3.1: Source functions

First of all, some source functions are significantly different from the identity function (at

1/8, 2/8 and 3/8 for urn K, and at 1/8, 5/8, 6/8 and 7/8 for urn U). We can conclude that

SEU cannot accomodate the data, which is consistent with usual findings (e.g. Hey, Lotito

and Maffioletti, 2007). Figure 3.2 displays the mean source functions (mean decision weights).
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Figure 3.2: Mean source functions

We can see that the curves tend to be inverse S-shaped, but that the inverse S is more

pronounced for U than for K. Furthermore, it is worth noting that the values of the source

function at high probabilities (≥ 0.5) are significantly lower in urn U than in urn K. This

means that ambiguity attitude depends on the probability: the higher the probability is, the

higher the difference between the source functions is and therefore the more ambiguity averse

the subjects were.

3.4.4 Parametric fitting of source functions

A nonlinear estimation based on decision weights gives us the parameters of the source func-

tions. As expected, the results about γ (the curvature) confirm that the curves are inverse-S

shaped, but according to t-tests, this is not significant in the known urn (mean=0.932, me-

dian=0.815, p=0.284) while the curvature parameter is significantly different from 1 in the

unknown urn (mean=0.785, median=0.696, p=0.000). Moreover, the source function is more

inverse-S shaped under ambiguity than under risk (a paired t-test gives p=0.029): the am-

biguous urn decreases the participants’ ability to discriminate between likelihood levels.
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(a) Parameter γ (b) Parameter δ

Figure 3.3: Cumulative Distributions of parameters γ and δ

Like the utility parameter, the elevation parameter is strongly sensitive to the presence

of outliers and has a minimum equal to 0 but has no upper-boundary. That is why the

means (1.901 and 1.488 in K and U respectively) differ from the median (1.092 and 0.909 in

K and U respectively). Moreover, large variances make t-tests non significant. Again, we

are going to focus on the medians, which are not influenced by the presence of outliers.

Sign-tests highlight that δ is never significantly different from 1 (p=0.175 and p=0.268 in U

and K respectively) and is not influenced by the urns (p=0.175). However, Figure 3.3.b is

consistent with more pessimism under ambiguity than under risk. Figure 3.4 displays the

source functions based on the median parameters.
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Figure 3.4: Median Weighting Function

3.4.5 Indexes

The sensitivity index is based on the slope of a straight line that goes through the elicited

decision weights. If the source function is the identity function, then the index is equal to 0.

It is positive for an inverse-S shaped source function. The sensitivity indexes are significantly

positive for both curves (mean values are 0.176 for K and 0.296 for U and p-values of t-tests are

0.000 for both) and they are significantly different according to a paired t-test (p=0.005). Fig-

ure 3.5.a displays the cumulative distribution functions of the sensitivity indexes and clearly

shows these features.
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(a) Parameter a (b) Parameter b

Figure 3.5: Cumulative Distributions of parameters a and b

The pessimism index (the elevation of the straight line) is positive when participants ex-

hibit pessimism, and negative if participants exhibit optimism. Paired t-tests indicate that

optimism is significant in urn K (the mean is -0.083 and the p-value is 0.029) but that there is

a non-significant pessimism in U (the mean is 0.047 and the p-value 0.308). Above all, a paired

t-test tells us that the pessimism index does depend on the urn (p=0.005). Figure 3.5.b clearly

represents this phenomenon through the cumulative distribution function of the pessimism

indexes.

3.4.6 Heterogeneity

Until now, we have focused on mean and median results. Nevertheless, there is a wide

range of different behaviors in our sample and this should not be neglected. The following

figure displays the source functions of 9 subjects we selected among those whose data do

not exhibit too much noise. The decision weights are represented by diamonds and circles,

and the estimated source functions by a continuous line and a ’dash-dot’ line, for K and U

respectively. In the Appendix, Table 3.2 reports the parameters of the source functions.
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(a) Subject 2 (b) Subject 8 (c) Subject 26

(d) Subject 33 (e) Subject 44 (f) Subject 57

(g) Subject 60 (h) Subject 61 (i) Subject 66

Figure 3.6: Interindividual Heterogeneity

Subjects 2, 33 and 57’s curves display the common features, i.e., an inverse-S shaped

source function in urn K and both more pessimism and less discriminability in U than in K.

Some subjects (8, 26 and 61) are globally optimistic under risk, exhibiting a convex source

function in K. Nevertheless their attitudes under ambiguity differ: subject 26’s likelihood

sensitivity decreases, while subject 61 becomes strongly pessimistic (concave source function).
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Both phenomena are present in subject 8’s source function under ambiguity. Subject 44,

whose attitude under risk is mostly characterized by a low discriminability, is ambiguity

averse, his source function being shifted downward by ambiguity. On the contrary, subject

66 is ambiguity seeking; the source function in urn U is above the source function in K

(and displays the same curvature). Subject 60 is also mainly an ambiguity seeker but he

becomes ambiguity averse for very high probabilities: ambiguity seems to bring a lower

discriminability but also more optimism to this subject.

3.5 Discussion and further results

3.5.1 Qualitative features and statistical methods

Ambiguity is often (and maybe too often) associated with ambiguity aversion. This latter

is even used as an axiom in models (Gilboa and Schmeidler, 1989). However, according to

our results, ambiguity aversion depends on the probability level. This must be related to the

fourfold pattern of risk attitudes (Tversky and Kahneman, 1992), i.e., risk seeking for small

probabilities of gains and large probabilities of losses and risk aversion for large probabilities

of gains and small probabilities of losses. The fact that ambiguity aversion might depend on

the probability level was already highlighted by Hogarth and Einhorn (1990).

These results were obtained using nonlinear least-squares regressions at the individual

level. However, we can confirm them through a global maximum likelihood analysis: in this

new analysis, we use the 2212 elicited certainty equivalents to get the values of the parameters

of a representative agent. The error term includes both the between-subject heterogeneity and

the individual errors. Hence, we correct for the error being potentially correlated by cluster-

ing them (through the specific option cluster of Stata; see Harrison, 2007). Each parameter (α,

γ and δ) is estimated and decomposed into a constant, plus a term that takes into account
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the impact of the urn. The key features are the following (see Table 3.3 in the Appendix): the

utility function tends to be convex. This comes from the fact that a lot of subjects were not

interested in winning less that e5. We can also remark that the curvature coefficient is signif-

icantly different from 1, which shows that this main property of non-expected utility model

plays a major role in explaining our data. Moreover, ambiguity has a significant impact only

on this curvature coefficient and the variance of errors. Ambiguity decreases participants’ dis-

criminability and increases the heterogeneity between subjects and/or the individual errors.

Moreover, Table 3.4 (in the Appendix) reports the results of a similar nonlinear maximum

likelihood estimation, in which the Goldstein and Einhorn source function is replaced by a

straight line, whose parameters are the two (sensitivity and pessimism) indexes. The power

of the utility function is not significantly different from 1 and the representative agent exhibits

significant insensitivity and optimism. Furthermore, the urn still has no impact on the utility

but on all the other parameters: more insensitivity, more pessimism, more errors. Last, we

must note that the log pseudolikelihood of this estimation is higher than the previous one

and that the results totally confirm what we found in the previous section.

We can conclude that likelihood effects are particularly robust, whatever the analysis we

conduct on the data: ambiguity has an impact on the sensitivity parameter, which is the

parameter that makes attitude depend on probability. This is how probability matters.

3.5.2 Order effects and the comparative ignorance hypothesis

To control for order effects, we introduced two treatments (KU and UK), switching the first

urn the participants had to deal with. Table 3.5 in the Appendix reports the p-values of t-test

between two samples: the 31 subjects that faced treatment KU and the 35 subjects having

answered to treatment UK. It is noteworthy that none of them is significant. However, if we

conducted the same analysis as in section 3.4 but within each treatment, we would see that
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the sensitivity index differs across urns only for treatment UK (p-value=0.023) but that the

pessimism index differs across urns only for treatment KU (p-value=0.012), α, γ and δ never

significantly differing across urns for both treatments. This last result can be explained by the

fact that assessing certainty equivalents in urn K and then in urn U increases the participants’

ambiguity aversion (even if they knew since the training session that the two urns existed).

According to the comparative ignorance hypothesis, ambiguity aversion is produced by

comparaison with less ambiguous events. Conversly, the discrepancy between evaluation

disappears (Fox and Tversky, 1995), or at least is reduced (Chow and Sarin, 2001), when a

person evaluates only one of the urn in isolation. In our experiment, subjects have been put

in a comparative context since they had to evaluate both the known and the unknown urn

and because they were informed of the existence of the two urns since the training phase.

Our results show that in our particular study, the comparative context does not necessary

bring ambiguity aversion. Ambiguity aversion only appears when the subject evaluates the

known urn before the unknown. Such an order effect has already been highlighted by Fox

and Weber (2002). An interpretation of this asymetry of reaction in a comparative context

is that the risky urn can be viewed as a kind of informational reference point and that, to a

certain extent, ambiguity aversion could be related to aversion to a loss of information.

3.5.3 Ambiguity and asset prices

According to our results, ambiguity aversion is tighly associated with the likelihood of events.

This result can have concrete economic implications in particular on asset prices and portfolio

holdings in financial market.

The literature on asset pricing shows that ambiguity aversion leads to a reluctance to hold

an ambiguous portfolio. Specifically, Dow and Werlang (1992) obtain that for an ambiguity

averse (MEU-)investor would be willing to buy an ambiguous asset at a strictly lower price
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than (s)he would be willing to sell, meaning that there exists an interval of prices within which

the investor would neither buy nor sell the asset. This implies portefolio inertia. Mukerji and

Tallon (2004) generalizes this result, without assuming CEU or MEU preferences.

The shape of source functions we obtained could be used to shed a new light on in-

vestment decision. More specifically, we could reaffine usual pricing predictions. A main

implication of our results is that ambiguity generates aversion but has also an impact on dis-

criminability, i.e., the curvature of the source function. Some very recent results show that

curvature of the source function may induce that the skewness of an asset can be priced. These

results are derived for cumulative prospect theory, a model that is equivalent to our model

when restricted to binary positive prospects. According to De Giorgi, Hens, and Levy (2003),

pricing of (normally distributed) asset prices through the CAPM still holds when investors

are CPT maximizer.

However, Barberis and Huang (2008) prove that a positively skewed asset (like a simple

lottery ticket with a low probability of winning a high amount) can be overpriced, a CPT-

maximizer investor overweighting small probabilities of large gains. For instance, Spalt (2007)

applied this result to stock options (an option is a typical skewed asset) and concludes that

employees can overvalue stock options and a risk neutral firm can take advantage of this

psychological bias. As a consequence, a higher curvature under ambiguity than under risk

makes positively skewed ambiguous assets more attractive than unambiguous ones.

In other words, the depreciation of an ambiguous asset implied by ambiguity aversion can

be partly compensated by the value associated to its skewness. Moreover, specific investors

that are ambiguity seeker for small probabilities (for instance subjects 2, 8 or 33; see subsection

4.6) may strictly prefer an ambiguous positively skewed asset to an unambiguous one (with

the same distribution), whereas a uniformly ambiguity averse investor (e.g. subjects 44 and

61) will always prefer a risky asset to a ambiguous one (with the same outcome distribution).
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3.5.4 Sources of uncertainty

As advanced by Tversky and Kahneman (1992) (see also Tversky and Wakker, 1995) and

empirically highlighted by numerous studies (Abdellaoui et al., 2009; Dolan and Jones, 2004;

Fox and Tversky, 1995, 1998; Hsu et al., 2006; Kilka and Weber, 2001; Tversky and Fox,

1995), preferences among prospects do not only depend on the probabilities of events but

also on their sources, e.g. investors disliking some foreign stocks relative to some domestic

stocks (Fox and Tversky, 1995). But source dependency does not only mean that a source is

more attractive than the other. It may also implies that likelihood sensitivity depends on the

source. Ambiguity typically decreases DM’s discriminability between likelihood levels. Our

results are totally consistent with this literature, except that only two extreme cases (risk and

ambiguity) were considered here. Abdellaoui et al. (2009) extend the source of uncertainty

approach to natural uncertainties: sources are CAC 40, the temperature in Paris, and the

temperature in a random foreign country. For each of these sources, they endogeneously

decompose the state space in order to obtain a uniform subjective probability measure. Then,

they elicit sources functions for each natural uncertainty.

3.5.5 Ellsberg one-urn paradox

The Ellsberg one-urn paradox is the replication of a similar phenomenon to the two-urn

problem: an urn contains 90 balls. 30 balls are red, and the remaining 60 are yellow or black.

Most people would rather bet on red balls (probability 1/3) than on black balls (unknown

probability) but rather bet on black or yellow balls (probability 2/3) than on red or yellow

balls (unknown probability). Such preferences reveal that black balls are less likely than red

balls but more likely if both are associated with yellow balls. One could think that in this urn,

the three events are not exchangeable and thus, that no probabilitic belief exists. However,

Chew and Sagi (2008) argue that this urn is the mixture of two sources: the known source (red
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or not red) and the unknown one (black or yellow). In the unknown source, the two events

are likely to be exchangeable, and thus must have the same probability. As a consequence,

the three colors (red, black and yellow) are equally likely, but source functions can explain the

paradox, as they did for the two-urn paradox. Applying our method to this interpretation is

left for future research.

3.5.6 Conclusion

In this study, we experimentally reconciled Ellsberg two-urn’s paradox with local probabilistic

sophistication by eliciting source functions that depict behavior towards different sources

of uncertainty. We find that the attitude towards outcome (captured by utility functions)

does not differ between urns and that probabilistic sophistication holds within both urns

(trivialy for the known urn); hence, the source function entirely captures the attitude towards

a well-defined type of uncertainty. Moreover, each source of uncertainty influences subjects’

likelihood sensitivity and prospects’ attractiveness differently. This observation leads us to

conclude that Ellsberg two-urn’s paradox is due to a difference in attitudes towards distinct

sources of uncertainty and not to a violation of probabilistic beliefs as widely assumed by

literature.
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Appendix

γ δ

K U K U

Subject 2 0.826 0.436 0.501 0.372

Subject 8 0.814 0.550 2.073 1.376

Subject 26 0.773 0.556 1.732 1.598

Subject 33 0.883 0.520 0.783 0.598

Subject 44 0.498 0.703 0.777 0.197

Subject 57 0.640 0.382 0.891 0.582

Subject 60 0.962 0.418 0.817 1.221

Subject 61 0.789 1.053 1.323 0.292

Subject 66 0.385 0.356 0.319 0.495

Table 3.2: Individual parameters

Coef. Robust Std. Err. z P > |z| 95% Conf. Interval

α constant 1.237 0.112 11.01 0.000 1.017 1.458

urn -0.0763 0.094 -0.81 0.418 -0.261 0.108

δ constant 1.027 0.147 7.00 0.000 0.740 1.315

urn -0.072 0.140 -0.51 0.607 -0.347 0.203

γ constant 0.800 0.037 21.39 0.000 0.727 0.873

urn -0.176 0.035 -5.06 0.000 -0.244 -0.108

σ constant 0.119 0.007 17.29 0.000 0.106 0.133

urn 0.039 0.011 3.50 0.000 0.017 0.060

Log pseudolikelihood = 1137.970
The line ’urn’ of each parameter is the impact of urn U with respect to urn K, i.e., the impact of ambiguity. σ

represents the standard deviation parameter of the errors.

Table 3.3: Representative agent with the Goldstein and Einhorn parametric function
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Coef. Robust Std. Err. z P > |z| 95% Conf. Interval

α constant 1.065 0.084 12.72 0.000 0.901 1.229

urn 0.067 0.089 0.75 0.453 -0.108 0.241

a constant 0.178 0.029 6.21 0.000 0.122 0.235

urn 0.126 0.032 3.89 0.000 0.062 0.189

b constant -0.098 0.042 -2.33 0.020 -0.181 -0.016

urn 0.092 0.044 2.11 0.035 0.007 0.178

σ constant 0.119 0.007 17.09 0.000 0.105 0.133

urn 0.039 0.011 3.51 0.000 0.017 0.061

Log pseudolikelihood = 1140.837

Table 3.4: Representative agent with a linear source function

α a b γ δ

K U K U K U K U K U

t-test KU=UK 0.789 0.076 0.820 0.306 0.455 0.898 0.676 0.479 0.559 0.732

Table 3.5: Impact of order treatment

(a) Risky Urn (b) Ambiguous Urn

Figure 3.7: Ellsbergian urns
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(a) Risk (first step)

(b) Ambiguity (first step)

Figure 3.8: Screenshots
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Chapter 4

The Compound Risk Approach

Segal (1987) suggests that Ellsberg’s two-urn paradox may be explained in terms of deci-

sion makers mentally representing the decision problem as a two-stage lottery and apply-

ing a non expected utility rule. Recently, Halevy (2007) suggested that attitudes towards

compound risk and attitude towards ambiguity are tightly associated and provided exper-

imental evidence that individuals who reduce compound risk to simple risk are ambiguity

neutral.

We further investigate Halevy’s findings by conducting an experiment that measures indi-

vidual behavior under simple risk, compound risk and ambiguity for different likelihood

levels. Our results confirm the link between ambiguity and compound risk attitudes but

undermine the equivalence between reduction of compound lottery and ambiguity neu-

trality. Indeed, subjects who reduce compound risk are prone to ambiguity aversion. This

tends to support only partially the hypothesis of a complete identification between ambi-

guity and compound risk.
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4.1 Introduction

Ellsberg (1961) demonstrates that not all uncertainties (and especially what he terms ’ambi-

guity’) can be reduced to risk and contradicts at the same time subjective expected utility

(Savage, 1954) which assumes that all uncertainties are substitutable. Segal (1987) proposes

an interpretation of the Ellsberg two-urn paradox where Ellsberg type behavior may be ex-

plained in terms of decision makers (henceforth, DMs) mentally representing the decision

problem as a two-stage lottery and applying a non expected utility rule. More precisely, an

ambiguous lottery should be considered as a two-stage lottery where the first stage deals with

all the possible values of the probability of the event under consideration and does not impose

the reduction of compound lottery principle between the two stages. Segal’s approach has

been revived in the modeling of uncertainty. Klibanoff, Marinacci and Mukerji (2005) describe

uncertainty in two stages. The first (subjective) stage depicts the beliefs over the possible res-

olutions of the uncertainty in the second stage. Ambiguity aversion is captured through a

function that underweights the second stage expected utilities calculated with respect to each

possible probability measure. In a different framework, Ergin and Gul (2009) similarly explain

the Ellsberg paradox as a consequence of aversion to second-order risk which corresponds to

the possible compositions of Ellsberg’s urn.

In a recent article, Halevy (2007) confirms Segal’s intuition and empirically establishes the

association between ambiguity attitudes and attitudes towards compound risk. More pre-

cisely, he finds that subjects who reduce a compound lottery resulting in one-half a chance

of winning are ambiguity neutral (they give the same certainty equivalent for the bet on the

compound lottery, for the bet on Ellsberg’s risky urn, and for the bet on Ellsberg’s ambiguous

urn); conversely, subjects who do not reduce compound lotteries are found to exhibit ambi-

guity attitudes. Hence, Halevy postulates equivalence between attitudes towards compound
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risk and ambiguity in noting:

(. . . ) subjects who reduced compound lotteries were almost always ambiguity neu-

tral, and most subjects who were ambiguity neutral reduced compound lotteries

appropriately .

Following Halevy (2007), axiomatizations have been developed that explicitly relate at-

titudes towards ambiguity and compound lotteries. Seo (2008) provides an axiomatization

in which a DM who reduces compound lotteries does not exhibit Ellsberg-type behavior.

Similarly, Halevy and Ozdenoren (2008) give the condition to obtain second-order probabilis-

tic sophistication that allows for non neutral behavior towards ambiguity. The reduction of

compound lottery axiom is needed to obtain basic probabilistic sophistication and ambiguity

neutrality.

In an Ellsberg-like framework we further investigate the link between ambiguity and two-

stage lotteries. A first range of finding deals with reduction of compound lotteries per se with

no respect to ambiguity. We confirm that failures in reduction are the prevailing behavior.

Moreover, our data support time neutrality (Segal, 1990) and attitude towards compound risk

is found to be likelihood-dependent.

A second range of findings confirms the relationship between attitude towards ambiguity

and attitude towards compound risk. However, our data show that ambiguity attitudes cannot

exclusively be associated with non reduction of two-stages lotteries. While almost no subject

exhibits both ambiguity neutrality and reduction conformity, subjects who reduce compound

lottery tend to be ambiguity averse. This result suggests that ambiguity attitudes cannot

entirely be attributed to compound risk attitudes. However, when focusing on subjects who

are not ambiguity neutral, our data do not allow to distinguish between subjects that do not

adopt a representation of in terms of compound risk and those who do but fail to reduce

compound risk correctly.
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Section 4.2 details the experimental protocol. Section 4.3 focuses on the findings regard-

ing the reduction of compound lotteries. Section 4.4 discusses preliminary findings on the

relationship between ambiguity and compound risk attitudes. Section 4.5 concludes.

4.2 Experiment

4.2.1 Uncertainties

Subjects faced three types of uncertainties, namely, simple risk, compound risk and ambi-

guity, each represented by Ellsberg-like urns. The common feature to these three types of

uncertainty is that each urn contained twelve balls; each ball was equally likely to be drawn

and each ball could be of one of the twelve colors available.

(a) Risky urn (b) Ambiguous urn

Figure 4.1: Ellsberg-like urns

For the simple (compound) risk, the subjects visualized the color of the balls in one (two

successive) urn(s) and thus could inferred probabilistic information. For ambiguity, the com-

position of the urn was hidden. Figure 4.1 represents the risky (a) and ambiguous (b) urns

which were used in the software in order to describe the informationnal context of each

choice situation. However, physical urns were used to concretize these uncertainties during

the explanatory phase and for implementing the incentive mechanism.
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4.2.2 Mechanisms to create ambiguity

The choice of a mechanism to create lab-ambiguity is controversial. Many previous empirical

studies approximated ambiguity by second-order probabilities (Chow and Sarin 2002; Yates

and Zukowski, 1976). A more sophisticated approach (Hey, Lotito and Maffioletti, 2008) uses

a transparent box containing balls that are put into continuous motion by a current of air. The

so-called British Bingo Blower allows simulating different degrees of ambiguity by varying

both the number of balls put in the Blower and their composition. This approach is limited by

the fact that it does not allow full ambiguity because it assimilates ambiguity and imprecision.

Our mechanism to create ambiguity is quite different since we want to keep the number

of balls constant in the ambiguous urn. To this end, ambiguity was represented by a meta-

ambiguous urn for which neither the number of balls nor the composition was specified to

the subject. Naturally, this meta-urn was endowed with a uniform distribution (144 balls,

12 balls of each color). At the beginning of the experiment, each subject creates his own

ambiguous urn by drawing twelve balls from the meta-urn. Each ball of the meta-urn was

marked with one of the twelve colors beforehand, but this mark was hidden so that each ball

in itself bore ambiguity. With such a two-stage generation of ambiguity, it becomes difficult

to infer any probability distribution on the final individual urn. Note that it forces subjects

to adopt a two-stage vision of ambiguity but does not guarantee that subjects operated such

a representation. Since our purpose is to study the relationship between ambiguity and two-

stage risk, one cannot argue that the two-stage feature of ambiguity was undermined by the

design. Moreover, with this procedure, our final ambiguous urn is not far from what is called

unknowable uncertainty (Chow and Sarin, 2002); neither the subject nor the experimenter

knew the composition of the final 12-ball ambiguous urn. The advantage of such a procedure

is that it avoids artificial ambiguity effects such as comparative ignorance effects (Fox and

Tversky, 1995).
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4.2.3 Sample

62 subjects were recruited from HEC (Management School, n=14) and Ecole Centrale (Engi-

neering School, n=48) Paris. Subjects were all well acquainted with probability theory but

had no knowledge in decision theory. The experiment consisted of individual and computer-

based interviews using specific software built for the experiment. Choices were entered by

the experimenter in order to avoid some "click mania". Subjects who asked to were allowed

to calculate with pencil and paper (only two subjects did).

4.2.4 Procedure

Subjects faced three parts, successively simple risk, ambiguity, and compound risk (see re-

spectively Figure 4.3, 4.4 and 4.6 in the Appendix). The compound risk part consisted in two

subparts: lotteries with relatively low probabilities in the first stage; and (equivalent) lotteries

with relatively high probability in the first stage. These two subparts were permuted between

groups (n=31 each) to control for possible order effects. A training question was asked before

each part to check whether subjects had a correct understanding of the design and of the type

of uncertainty faced.

On the overall experiment, subjects faced forty-one choice tasks. For each task, subjects

had to choose between receiving a sure amount or playing the urn. The maximum amount

was e50 and e0 was the minimum. We conducted likelihood treatments; for each type of

uncertainty, certainty equivalents where elicited for 7 likelihood levels (1/12; 2/12; 4/12;

6/12; 8/12; 10/12; 11/12). Likelihood treatments are described in Table 4.1.
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Uncertainty Risk Comp. risk (1) Comp. risk (2) Ambiguity

1/12 (
1

12
, 50; 0) (

2
12

x
6

12
, 50; 0) (

6
12

x
2

12
, 50; 0) (1 color, 50; 0)

1/6 (
2

12
, 50; 0) (

4
12

x
6

12
, 50; 0) (

6
12

x
4

12
, 50; 0) (2 colors, 50; 0)

1/3 (
4

12
, 50; 0) (

6
12

x
8

12
, 50; 0) (

8
12

x
6

12
, 0; 50) (4 colors, 50; 0)

1/2 (
6

12
, 50; 0) (

8
12

x
9

12
, 50; 0) (

9
12

x
8

12
, 50; 0) (6 colors, 50; 0)

2/3 (
8

12
, 50; 0) (

4
12

x
6

12
, 50; 0) (

6
12

x
4

12
, 50; 0) (8 colors, 50; 0)

5/6 (
10
12

, 50 ; 0) (
6

12
x

8
12

, 0; 50) (
8

12
x

6
12

, 0; 50) (10 colors, 50; 0)

11/12 (
11
12

, 50 ; 0) (
6

12
x

2
12

, 0; 50) (
2

12
x

6
12

, 0; 50) (11 colors, 50; 0)

Table 4.1: Likelihood Treatments

The elicitation method is very similar to the iterative multiple price list procedure of

Andersen et al. (2006). One series involved a choice between a lottery and an ascending

range of sure payments. Each series contained three steps. The first step consisted in six

choices between the lottery and a sure payment; sure payments were equally spaced between

the minimum and the maximum amount of the corresponding lottery (see Figure 4.4 (a)

in the Appendix). The second step consisted in a new set of eleven choices, spanning the

narrower range between the lowest sure payment that the respondent had rejected and the

highest sure payment he had accepted in the previous step (Figure 4.4 (b)). The third step

summed up all the 51 subject’s choices for the series just completed, and was submitted for

final validation (Figure 4.5). While the software forced consistency in the first two steps,

violations of monotonicity were allowed in step three. Hence, subjects were not allowed to
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choose e10 for sure rather than the lottery and then choose the same lottery rather than e20

in the first two steps; but this was authorized in the validation step. None of the subjects

acted this way. The program also allowed respondents to backtrack if they felt regret in a

previous series of choices.

4.2.5 Incentives

The efficiency of the incentive mechanisms is quite a controversial issue, especially in the

presence of compound lotteries (Holt, 1986; for a large discussion see Wakker’s "Message to

referees who want to embark on yet another discussion of the random-lottery incentive system

for individual choice"). Moreover, there is no information about the efficiency of incentives

in the presence of ambiguity. Therefore, two incentive treatments were implemented: The

Random Lottery Incentive (RLI) mechanism and Flat Payment procedure (FP). The RLI was

applied on a group of 30 subjects. Subjects performed a series of choices tasks knowing that

one of their choices would be randomly drawn at the end of the session and played for real.

If the choice implied (compound) risk, the (two) corresponding urn(s) was (were) created and

the subject picked the ball in one (two successive) bag(s). In the case of the ambiguous urn,

they drew the ball from the urn they generated at the beginning of the experiment. Subject

could win up to 50 euros. The FP procedure consists in paying subjects enough to guarantee

their extrinsic motivation in responding to the choice task. The 32 subjects who belonged to

flat payment group each received 15 euros for their participation. The total amount spent for

the payment was 1265 euros.
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4.3 Results

4.3.1 Failures in reduction of compound lotteries

One of the main assumptions of most economic models is that the nature and the complexity

of a lottery should not affect its evaluation. Especially, models implicitly assume the reduction

of compound lotteries principle that requires a DM to be indifferent between the extensive

and the reduced form of a compound lottery. However, a large body of empirical literature

demonstrates that individuals are widely sensitive to the structure of compound lotteries;

notably, the number and the order of stages, and the span of the tree significantly affect the

behavior.

Most empirical studies proceed through direct comparison between the reduced and the

extensive form of the lottery (except Friedman, 2005). Our experiment proceeds differently;

preferences are captured by asking subjects for their certainty equivalents for simple risk

and the two forms of compound risks, separately. Table 4.2 tests the equality of certainty

equivalents for both forms of compound lotteries (KK1 designates the compound risk (1)

with low probability in first stage and KK2 the compound risk (2) with high probability in

first stage) where the compound risk (1) is equivalent to (2) when permuting the first and the

second stage.

Probabilities 1/12 2/12 4/12 6/12 8/12 10/12 11/12

t-test KK1=KK2 0.2173 0.2534 0.0687 0.1835 0.2958 0.7286 0.1300

[95% Confidence Int.] [0.3215,1.3860] [-0.4026, 1.4993] [0.0969, 2.5485] [-0.5727, 2.9275] [-0.6360, 2.0553] [-1.0694, 1.5211] [-0.1953, .4857]

Table 4.2: Two measures of reduction of compound lotteries
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Time neutrality

Table 4.2 shows that, in the aggregate, exchanging first and second stage in the compound

lottery makes no difference. This corresponds to the property called time neutrality in Segal

(1990). Our data suggest that in the aggregate, time neutrality - which states that the DM

is indifferent to the timing of the resolution of the uncertainty - is satisfied. This result is

consistent with Friedman (2005) who does not find order effects due to the permutation of

the first and the second stages. Time non-neutrality is often considered as the reason for DMs

not to be indifferent between one- and two-stage lotteries (Segal, 1990). Note that our sample

exhibits time neutrality and does not reduce compound lotteries, suggesting that sensitivity

to timing of the resolution of uncertainty is a minor factor for the observed deviations of the

reduction principle.

Moreover, we do not find any significant order effect between the group which begins

by evaluating the compound lotteries with (relatively) high first stage probability (compound

risk (2): n=31) and the one which begins with the compound lotteries with (relatively) low

first stage probability (compound risk (1): n=31).

Reduction and likelihood treatments

Table 4.2 shows that our data are consistent with earlier findings of widespread non reduction

of compound lotteries in the economic and psychological literature (Bar-Hillel, 1973; Kahne-

man and Tversky, 1979; Conlisk, 1989; Bernasconi and Loomes, 1992; Friedman, 2005). Table

4.3 gives the number of subjects who gave the same certainty equivalent for the two sorts

of compound risk; it suggests that reductions are more frequent for small and very high

probability levels:

129



4.3. RESULTS

Likelihood treatment 1/12 2/12 4/12 6/12 8/12 10/12 11/12

Count KK1=KK2 26 23 23 21 13 18 20

Table 4.3: Reduction between compound risks and likelihood treatments

Individual level

We can also look at the individual subject level to see if there is substantial heterogeneity in

behavior towards the two stages of the compound lottery. An exact classification requiring

unanimity (the reduction holds at each of the seven probability levels) shows that none of the

subjects identifies as similar two compound identical lotteries. A classification authorizing

an error equal to 5 % of the expected value of the compound lottery is more permissive and

reveals only a few subjects who reduce the two compound identical lotteries. A classification

based on majority (the reduction holds for at least 4 over 7 likelihood levels) increases the

number of subjects who reduce similar compound lotteries.

Criteria KK1=KK2* KK1>KK2 KK1<KK2 Mixed

7 points (unanimity) 0 2 4 56

Error +/-2,5 (i.e., 5%EV) 4 21 14 23

At least 4 points over 7 14 16 8 24

*KK1(2) = compound lottery with relatively low probability in the first (second) stage

Table 4.4: Attitude towards two types of compound risk

Empirical studies show that for positive outcomes, subjects prefer lotteries with high prob-

ability in first-stage (Bar-Hillel, 1973; Kahneman and Tversky, 1979). However, all previous

studies implied direct comparison between the simple lottery and its extensive form. Our

data contradict the existing findings since subjects exhibit certainty equivalents higher for the

compound lottery with relatively low probability in first stage (according to error-permissive
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and majority classifications).

Simple risk and mean compound risk

The two measures of compound risk (1) and (2) are not significantly different (Table 4.2); in

the following, we take the mean of the two to simplify the analysis.

Table 4.5 below gives the certainty equivalents for simple risk and the mean certainty

equivalent for compound risk. It shows that subjects tend to overweight compound lottery to

their reduced equivalents for probabilities less or equal to 8/12. For higher probabilities, sub-

jects instead tend to underweight the compound lottery to its simple form. This result refines

previous findings that subjects overweight compound lotteries whatever the probability level.

Probability level 1/12 2/12 4/12 6/12 8/12 10/12 11/12

Expected value 4,16 8,33 16,66 25 33,33 41,65 45,81

Simple risk 7.41 11.12 18.03 24.87 31.35 41.09 45.27

(4.52) (5.11) (5.84) (5.31) (6.16) (4.94) (3.41)

Compound risk 8.37 13.32 18.74 25.50 32.01 37.41 42.16

(4.39) (7.35) (5.95) (6.50) (6.08) (6.08) (5.58)

Table 4.5: Mean (Standard Deviation) certainty equivalent for simple and mean compound
risk

4.3.2 Exchangeability

Exchangeability verifies that a subject reveals by his choices a uniform probability distribution

in the ambiguous urn (the method is detailed in Abdellaoui et al., 2009). The subject is asked

to give the certainty equivalent Ej for a bet involving a winning of a single color j in the

ambiguous urn against the other eleven −j, for three different j. Exchangeability was tested

over all the sample since the combination of the three colors was unique for each subject.
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Exchangeability, if checked (i,e., if a subject gives the same certainty equivalent for the three

colors) has two properties: first, it reveals that the subject is indifferent to the color of the

ball, avoiding any paranoiac behavior regarding the composition of the urn; second, it allows

to implicitly increment the likelihood level by adding a further color in a bet (adding a color

increases the number of favorable cases over the number of possible cases).

The minimum certainty equivalent assigned for one color is 0.5 and the maximum is 30.5.

Among 62 subjects, only 7 gave different certainty equivalents for at least two of the three

different colors they faced. The maximum standard deviation is 5.7735.

An ANOVA for repeated measure shows that the hypothesis that the colors are revealed

equally likely cannot be rejected within subject (p=0.6123). Consequently, exchangeability is

not rejected and the ambiguous urn can be endowed with a uniform subjective probability

distribution. Consequently, likelihood treatment can be implemented even under ambiguity.

4.4 Attitude towards ambiguity and attitude towards compound risk

Since Segal (1987)’s intuition, very few papers have explored the link between attitude towards

ambiguity and attitude towards compound risk. We notice two main (and contradictory)

empirical contributions dealing with this relationship. Bernasconi and Loomes (1992) test

Segal’s hypothesis and conclude:

"the Segal’s resolution of the Ellsberg’s paradox is, at best, only a partial explana-

tion. [. . . ] Our findings that ‘ambiguous lotteries’ in the sense of Ellsberg cannot

be fully characterized by ‘distributed lotteries’ as suggested by Segal also under-

mine the possibility of viewing ambiguity aversion and risk aversion as ‘two sides

of the same coin’."

132



4.4. ATTITUDE TOWARDS AMBIGUITY AND ATTITUDE TOWARDS COMPOUND RISK

More recently Halevy (2007) established empirically that attitude towards ambiguity is

related to attitude towards compound risk. In fact, Halevy goes even further and claims that

the lack of neutrality towards compound risk, i.e., non reduction of compound lotteries, is

necessary for non neutral attitude towards ambiguity.

“The results suggest that failure to reduce compound (objective) lotteries is the

underlying factor of the Ellsberg paradox, and call upon decision theory to un-

cover the theoretical relationship between ambiguity aversion and different forms

in which reduction may fail.”

Our experimental evidence confirms the presence of a relationship between attitude to-

wards ambiguity and towards compound risk. However, we do not find that neutrality to-

wards compound risk is strongly associated with neutrality towards ambiguity. Thus, our

data suggests that the conclusion in the quote from Halevy above is premature. As we dis-

cuss in the next section, we also find that both of these attitudes are strongly influenced by

the event on which the good outcome is realized: larger events in the sense of set containment

make both ambiguity and compound risk less attractive.

4.4.1 Contradictory findings for probability one-half

We begin with a simple contingency table relating neutrality/non neutrality towards ambi-

guity and compound risk as revealed by subjects’ choices in our treatment giving the good

outcome with the probability one-half (under ambiguity, half the colors win). Recall in this

treatment we observe a certainty equivalent for the simple lottery (50, 1/2; 0), the compound

lottery ((50, 3/4), 2/3; 0), the compound lottery ((50, 2/3), 3/4; 0), and the ambiguous bet

(50 if 6 colors; 0 otherwise). Reduction of (neutrality towards) compound risk is satisfied if

the certainty equivalents for the simple lottery and the two compound lotteries are equal.

Ambiguity neutrality is satisfied if the certainty equivalent for the simple risk lottery (de-
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noted by K) and for the ambiguous bet (denoted by U) are equal. In Table 4.6, we choose to

report the probability one-half (under ambiguity, half the colors) treatment first because the

simple lottery, compound lotteries and the ambiguous bet studied in Halevy (2007) also have

probability one-half (under ambiguity, half the colors).

Ambiguity Ambiguity Ambiguity

(Halevy 2007) (our data if K=KK) (our data if K=KK1=KK2)

Non Neutral Total Non Neutral Total Non Neutral Total

neutral neutral neutral

Reduction Count 1 22
23

8 1
9

6 2
8

Expected 18.5 4.5 7.55 1.45 6.96 1.29

Compound No Count 113 6
119

44 9
53

48 8
56

lotteries reduction Expected 95.5 23.5 44.45 8.55 48.77 9.03

Total 114 28 142 52 10 62 54 10 62

Fisher’s statistic 0.0000 1 0.5998

Table 4.6: Contingency table relating compound risk and ambiguity attitudes for probability
one-half

Our results suggest that the relationship (if any) between attitude towards compound risk

and ambiguity is more complex than simple identification. To further explore this relationship

we use regression analysis to relate the ambiguity premium to the compound risk premium.

We begin by defining the ambiguity premium as the certainty equivalent for the correspond-

ing simple lottery minus the certainty equivalent for the ambiguous bet. Similarly, we define

the compound risk premium as the certainty equivalent for the corresponding simple lot-

tery minus the average certainty equivalent across the two compound risks. The question of

the link between reduction of compound lotteries and attitudes towards ambiguity has never

been studies letting varying the probability level. The regression below pool observations

across all likelihood treatments and then consider each likelihood treatment separately.
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4.4.2 Regressions

As a first step to study the link between the ambiguity premium (U − K) and the compound

risk premium (KK − K), we pool all the observations and use dummies for likelihood treat-

ments. We estimate the following model: U − K = a(KK − K) +
t2

12
d2

12
+

t4

12
.
d4

12
+

t6

12
.
d6

12
+

t8

12
.
d8

12
+

t10

12
.
d10

12
+

t11

12
.
d11

12
+ c + e where di/12 is the dummy for the likelihood treatment

i/12, c is the intercept and e the error term.

U-K KK-K d2 d4 d6 d8 d10 d11 Intercept

Coef. 0.80 -0.26 -0.13 -0.22 -0.00 0.23 0.05 -1.23

Std. Err. 0.2199 0.2854 0.2696 0.2812 0.2723 0.2650 0.2898 0.4028

P>|t| 0.000 0.350 0.628 0.420 0.971 0.383 0.865 0.002

R-squared = 0.2618; Adj R-squared = 0.2497

Table 4.7: Pooled regression of the compound risk premium on the ambiguity premium

Wald test accepts the equality of all the coefficients (F(6, 426) = 1.10 , Prob > F = 0.3609).

One can see that the relationship between the two premia is highly significant (p=0.000,

coef=0.8080), though quite partial (R2=0.2618). Examination of the scatter plot shows that

linear regression is not a bad approximation of this relationship.
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Figure 4.2: Scatter plot: Ambiguity premium as a function of compound risk premium

Further note that the intercept in this relationship is significantly different from zero

(p=0.0022), demonstrating that if subjects reduce compound risk the best prediction is they

are non neutral towards ambiguity. More specifically, since the coefficient estimate is signifi-

cantly negative (p=0.0011), they will tend to be ambiguity averse. This finding, together with

the modest explanatory power of the regression is our basis for questioning the concluding

quote in Halevy (2007).

We then turn to an aspect of both these attitudes that could not be examined by earlier

works: the effects of different likelihood treatments.

4.4.3 The impact of likelihood on attitudes towards ambiguity, risk and com-

pound risk

Possibly the most striking aspect revealed by our data is the strong and systematic effect of

likelihood of the good outcome on attitudes towards all three types of uncertainties. The
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effects we find are to our knowledge entirely novel with regard to compound risk and are

consistent with the small body of existing literature examining this for ambiguity. For simple

risk, this aspect of our findings is consistent with a large body of previous work. Our basic

finding is that increases in likelihood of the good outcome (under ambiguity, making the

winning event larger) make both the ambiguity and compound risk premia increase while

also increasing the simple risk premium. This highlights the importance of controlling for

likelihood when measuring attitudes towards uncertainty. It also suggests that any descriptive

model intended to apply to the full range of uncertain situations must allow attitudes to

change with likelihoods.

Table 4.8 displays the median and mean certainty equivalent for the simple risk (K), the

mean compound risk (KK) and ambiguity (U). It shows that the standard deviation is always

higher for ambiguity compared with the two sorts of risk, and that it increases with the size

of the winning event.
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Likelihood Expected Value Urn Median Mean (SD)

1/12 4.1667 K 6.50 7.41 (4.5206)

(1/2.2/12) KK 7.50 8.37 (4.3998)

U 9.50 10.16 (6.9048)

2/12 8.3333 K 10.00 11.12 (5.1158)

(1/2.4/12) KK 12.00 12.27 (5.2936)

U 12.00 13.32 (7.3586)

4/12 16.6667 K 16.50 18.03 (5.8442)

(1/2.2/3) KK 17.00 18.74 (5.9511)

U 16.50 17.64 (7.7773)

6/12 25 K 24.50 24.87 (5.3139)

(2/3.3/4) KK 25.50 25.50 (6.5082)

U 24.50 23.22 (8.4663)

8/12 33.3333 K 32.50 31.35 (6.1693)

(1/2+1/3.1/2)* KK 33.00 32.01 (6.0861)

U 30.50 28.40 (9.5946)

10/12 41.6667 K 40.50 41.09 (4.9405)

(1/2+2/3.1/2) KK 38.50 37.41 (6.0842)

U 37.00 34.06 (10.8682)

11/12 45.8333 K 45.50 45.27 (3.4185)

(1/2+5/6.1/2) KK 44.00 42.16 (5.5845)

U 44.00 39.83 (10.5845)

*: This notation means that at the first stage with probability one-half you win and with probability
one-third you continue to the second stage and with probability one-sixth you lose. In the second

stage you win with probability one-half.

Table 4.8: Impact of likelihood level on certainty equivalent for simple risk, compound risk
and ambiguity

Table 4.9 describes the average premia. An ANOVA with repeated measures rejects the

equality of means across likelihood treatments for each premium (p=0.000 for each premium).

We observe that, in average, subjects tend to be simple risk seeking for probability less than

1/3 and risk lover for higher probability levels. They tend to be compound risk seeking except
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for very high probability (10/12 and 11/12). Ambiguity loving is predominant for very small

winning events (one ball wins; two ball win) then subjects turn to be averse for the remaining

likelihood levels.

Average premia

Likelihood treatment Simple risk (EV-ECK) Compound risk (ECK-ECKK) Ambiguity (ECK-ECU)

1/12 -3.2527 -0.9586 -2.7419

2/12 -2.7956 -1.1452 -2.1936

4/12 -1.3656 -0.7096 0.3871

6/12 0.1290 -0.6371 1.6452

8/12 1.9785 -0.6613 2.9516

10/12 0.5698 3.6774 7.0323

11/12 0.5591 3.1129 5.4355

Table 4.9: Uncertainties premia

4.5 Summary and conclusion

We obtain no compelling evidence that we necessary need a theory that incorporates both

ambiguity and reduction of compound lotteries. A descriptively valid theory should account

for compound risk attitude and ambiguity attitude separately and with respect to likelihoods

of events.
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Appendix

Figure 4.3: Display - Risky urn (first step)
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(a) Ambiguous urn (first step)

(b) Ambiguous urn (second step: refinement)

Figure 4.4: Display - Ambiguous urn
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Figure 4.5: Display - Ambiguous urn (third step: confirmation)
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Figure 4.6: Display - Compound urns (first step)
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Chapter 5

Machina Paradox and CEU: An

Empirical Evidence

In a recent paper, Machina (2009) suggested choice problems in the spirit of Ellsberg (1961)

which challenge tail-separability, an implication of Choquet Expected Utility (CEU) to a

similar extent as the Ellsberg paradox challenged the sure-thing principle implied by Sub-

jective Expected Utility (SEU). We have tested choice behavior for bets on one of Machina’s

choice problems, the reflection example. Our results indicate that tail-separability is vio-

lated by a large majority of subjects (over 70% of the sample). These empirical findings

complement the theoretical analysis of Machina (2009) and, together, they confirm the

need for new approaches in the analysis of ambiguity for decision making.

148



5.1. INTRODUCTION

5.1 Introduction

In the past twenty years, there has been a growing attention in decision theory and decision

analysis toward ambiguity (Schmeidler, 1989; Gilboa and Schmeidler, 1989; Camerer and

Weber, 1992; Fox and Tversky, 1995; Halevy, 2007). Simply stated, ambiguity may be defined

as uncertainty about unknown probability. The starting point of any study on ambiguity

is Ellsberg’s well-known two-color example. In this thought experiment the decision maker

(DM) has a choice between two bets: betting a sum of money on a red ball drawn from an urn

with 50 red balls and 50 black balls or betting the same sum of money on a red ball drawn

from a 100-ball urn with unknown numbers of red balls and black balls. Ellsberg predicted

that most people would prefer to bet on the first urn and defined this behavior as ambiguity

aversion. In such a case, the DM prefers the first urn because it provides a clear information

- known probabilities - rather than a vague information - unknown probabilities - about the

likelihood of receiving the sum of money.

In his 1961 article, Ellsberg also proposed the following choice problem, known as the

three-color example. An urn contains 90 balls, 30 of which are red and 60 are either yellow

or black in unknown proportion. One ball will be drawn at random. An act pays a particular

sum of money depending on the color of the ball drawn. Table 5.1, below, presents four acts

similar to those of Ellsberg (1961). We use different sums of money here in accordance with

the design of our experiment. For example, act f1 has two outcomes: 50 in the event of a red

ball, and 0 in the event of a yellow or black ball. Similarly, g1 pays 50 in the event of a black

ball and 0 otherwise.
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30 balls 60 balls

Acts Red Yellow Black

f1 50 0 0

g1 0 0 50

f̂1 50 50 0

ĝ1 0 50 50

Table 5.1: Ellsberg Acts

It has been widely documented (Slovic and Tversky, 1974; MacCrimmon and Larsson,

1979) that people prefer act f1 to act g1. As an explanation similar arguments as in the two-

color urn problem have been put forward: there is precise information about the likelihood

of receiving 50 in act f1, as opposed to act g1, where the range of likelihood is between 0 and

2/3. Aversion to this lack of information about the outcome 50 in act g1 has been identified

as a potential cause for the exhibited preferences.

The same aversion to lack of information leads to a preference for act ĝ1 over f̂1, because

there is a precise 2/3 chance of getting 50 in ĝ1 whereas there is imprecise probability ranging

between 1/3 and 1 of getting 50 in f̂1. Choice situations like these, which involve acts over

events that have imprecise probabilities (e.g., the events "the drawn ball is black", "the drawn

ball is yellow" or "the drawn ball is black or red" and "the drawn ball is yellow or red") have

been termed ambiguous.

While most people choose act f1 over g1 and also prefer act ĝ1 over f̂1, which has been

interpreted as ambiguity aversion, there are a few people exhibiting the opposite, ambiguity

seeking choice behavior (Slovic and Tversky, 1974). Both patterns of choices are in contrast

to what subjective expected utility (SEU) would predict. Under SEU, preferences must be

consistent in the sense that f1 is preferred to g1 if and only if f̂1 is preferred to ĝ1. This

principle of consistency is a direct implication of the sure-thing principle (Savage, 1954), which
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requires preferences to be independent of common outcomes. Hence, the choice between acts

f1 and g1 should not depend on the common outcome that obtains if the event "the ball is

yellow" occurs. More precisely, the sure-thing principle says that the common outcomes can

be replaced by any other common outcomes without influencing the preference, hence, in

this example, 0 can be replaced by 50 for the event "the ball is yellow". But notice that this

transforms the choice problem f1 versus g1 into the problem f̂1 versus ĝ1. This way Ellsberg

uncovered a major descriptive shortcoming of Savage’s SEU.

Generalizations of SEU have been developed in order to tackle the issues raised by Ellsberg

and more generally to take into account sensitive behavior towards ambiguity. Among the

most influential of these theories, Multiple Priors (Gilboa and Schmeidler, 1989), Choquet Ex-

pected Utility (CEU: Gilboa, 1987; Schmeidler, 1989; Sarin and Wakker, 1992) and Cumulative

Prospect Theory (CPT: Tversky and Kahneman, 1992; Wakker and Tversky, 1993). Although

we present our results in relation to a fundamental principle underlying CEU, our findings

also apply to CPT because, if consequences are all gains (or all losses), CPT agrees with CEU.

The main derivations of CEU build up the idea of rank-dependence introduced for risk by

Quiggin (1982). Paraphrasing Diecidue and Wakker (2001), the intuition of rank-dependence

may be expressed as the fact that "the attention paid to an event depends not only on the event

but also on how good the outcome yielded by the event is in comparison to the outcomes

yielded by the other events". This has two main consequences. First, attitudes toward risk

are no longer modeled solely through the utility function but also through the perception

of risk and uncertainty. Second, not only the likelihood of an event matters but also its

ranking compared to others possible events. More accurately, non-expected utility with rank-

dependence (including CEU) restricts the sure-thing principle to comonotonic acts and this

can explain the pattern of preference derived from the Ellsberg paradox (Chew and Wakker,

1996). Comonotonicity may be defined as follows: if two acts have the same ranking of
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events, then any change of their common outcomes that does not change the ranking of events

should leave the preference between these acts unaffected. Under the comonotonic sure-thing

principle, preferences must be independent of common outcomes only for comonotonic acts.

In Ellsberg’s three-color example, the event "the ball is yellow" is rank-ordered differently in

the two proposed choices: it is of rank 0 (associated with the worst consequence) in choice

between f1 and g1 and of rank 1 (associated with the best consequence) in choice between

f̂1 and ĝ1. As a consequence, acts are not comonotonic in the Ellsberg’s three-color example,

and independence does not need to hold.

The comonotonic sure-thing principle is, on its own, more general than tail-separability,

the condition we test experimentally. According to tail-separability if two acts have the same

tail, on best or worst outcomes, then any change of their common tail should leave the prefer-

ence between these acts unaffected. CEU implies both tail-separability and the comonotonic

sure-thing principle. Tail-separability may be defined in two distinct ways depending on

whether indifference between adjacent outcomes is allowed or not. In the former case, we

have weak tail-separability, in the latter case, strong tail-separability.

Two reasons may explain CEU’s success. First, CEU keeps the main structure of SEU but

introduces more realistic, but still measurable, features of individual behavior. The idea of

rank-dependence inherent to CEU has proven to be capable of explaining both the observed

deviations from expected utility (the Allais paradox and the Ellsberg paradox). Second, CEU

provides generalizations of classic results in various areas of economics such as insurance

demand, portfolio choice and asset pricing, or inequality measurement (see Mukerji and

Tallon, 2004 for a survey). Throughout this paper we choose to concentrate on CEU as the

main and most popular non-expected utility theory but our results may be extended not

only to any model that implies tail-separability but also to the main Multiple Priors models

(Baillon, L’Haridon and Placido, 2009).
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In his reflection example Machina (2009) modified the original three-color example of Ells-

berg by adding a further imprecise probability event, a fourth color event. This modified

Ellsberg urn contains fifty red or yellow balls in unknown proportion and fifty black or green

balls in unknown proportion. An important aspect of the structure of the reflection example

is informational symmetry: notably, there are two symmetric events with precise probabilities

(events "the drawn ball is red or yellow" and "the drawn ball is black or green" are equally

likely) and further, within the two events "the drawn ball is red or yellow" and "the drawn ball

is black or green" the ambiguity about the distribution of colors is similar. Machina illustrated

that having two informationally symmetric sources of ambiguity poses serious difficulties for

tail-separability under CEU. More precisely, Machina showed that a specific replacement of

common outcomes at the tails of acts with other common outcomes leads to a reflected pair

of acts that were informationally symmetric to the original acts, so that a preference in the

former pair of acts would be reflected in the latter pair of acts, contradicting the consistency

requirement under CEU.

We present details of the reflection example in Section 5.2, where we also illustrate that

CEU requires consistent choice behavior between acts and their reflected, informationally

symmetric, acts. We tested these predictions in our experiment and found that more than

70% of subjects violate models implying weak tail-separability suggesting sensitivity to the

informationally symmetric structure in Machina’s choice problem.

The remainder of the chapter is organized as follows: Section 5.2 presents the theoreti-

cal and conceptual framework. Section 5.3 details the experimental studies. We report the

findings in Section 5.4. In Section 5.5 we confront the results in respect to CEU and attitudes

towards ambiguity.
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5.2 Framework

In this section we recall the reflection example of Machina (2009). To have a clear picture of

the challenge for the non-expected utility theories, including the rank-dependent theories, it

is important to introduce some notation. We recall briefly the classical subjective expected

utility model of Savage (1954) and present the sure-thing principle that underlies this theory

before we look at variations of this property that underpin rank-dependent theories.

As in the framework of Savage, we assume a state space S, subsets of which we call

events. An act f assigns to each event a consequence. For simplicity of exposition, the set

of consequences is R, designating money. For our purposes it will be sufficient to look at

simple acts, that is, acts that have only finitely many consequences. An act, therefore, can be

represented as f = (E1, x1;. . . ; En, xn) for a natural number n, with the understanding that xi

is obtained if event Ei is true. With this notation it is implicitly assumed that the collection of

events {E1,. . . , En} from an (ordered) partition of the state space S, that is, they are mutually

exclusive and exhaustive.

We assume a preference % over acts, denoting weak preference, and we adopt the usual

notation � and ∼ for strict preference and indifference, respectively (- and ≺ denote cor-

responding reversed preferences). Next we look at different models to evaluate acts such

that the assigned values allow for a comparison of acts in agreement with the preference %.

That is, we consider functions V that assign to each act a real value such that V( f ) ≥ V(g)

whenever f % g, for any acts f , g.

5.2.1 Subjective expected utility

Subjective expected utility (SEU) holds if each act f = (E1, x1;. . . ; En, xn) is evaluated by

∑n
i=1 p(Ei)u(xi). Here p is a uniquely defined probability measure and the continuous and

strictly increasing utility function u, which assigns to each consequence a real number, is
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cardinal.

We write hE f for the act that agrees with h if event E obtains and otherwise agrees with the

act f . A necessary condition for SEU is that the preference satisfies the sure-thing principle:

hE f % hEg⇔ h′E f % h′Eg,

for all acts hE f ,hEg, h′E f and h′Eg. Thus, under SEU, the preference between any two acts is

independent of consequence-event pairs that are common.

5.2.2 Choquet expected utility

Choquet Expected Utility (CEU) holds if each act f = (E1, x1;. . . ; En, xn) is evaluated by

∑n
i=1 π(Ej : xj ≥ xi)u(xi). The utility under CEU is also cardinal, like under SEU. The

difference between the two models consists in the weights that precede utility when eval-

uating an act. The weights p(Ei) under SEU are generated by a probability measure, thus,

an additive measure on the state space S, while the weights π(Ej : xj ≥ xi) under CEU are

generated by a (possibly) non-additive measure. This capacity v, assigns weight 0 to the

empty set and weight 1 for the entire state space S and is monotonic (i.e., v(A ∪ B) ≥ v(A)

for all events A, B ∈ S). The decision weights π(Ej : xj ≥ xi), i = 1, . . . , n, are defined

as follows: Take any permutation ρ of {1, . . . , n} such that xρ(1) ≥ · · · ≥ xρ(n). Then,

π(Ej : xj ≥ xi) = v(∪xρ(k)≥xi Eρ(k))− v(∪xρ(k)≥xi ,ρ(k) 6=iEρ(k)), i = 1, . . . , n.

Like the probability measure p under SEU, the capacity v is uniquely determined under

CEU.

A necessary property of rank-dependent utility models is tail-separability. It states that, if

two acts share a common tail, then this tail can be modified without altering the preference

between the acts. Let formally introduce weak tail-separability:

hE f % hEg⇔ h′E f % h′Eg,
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for all acts hE f ,hEg, h′E f and h′Eg, such that either all outcomes that obtain under event E

are ranked weakly above those of f and of g or all outcomes that obtain under event E are

ranked weakly below those of f and of g. Strong tail-separability holds if we require the

previous equivalence to hold whenever all outcomes that obtain under event E are ranked

strictly above those of f and of g or all outcomes that obtain under event E are ranked strictly

below those of f and of g.

The two variants of tail-separability, both being implications of the sure-thing principle,

are equivalent if other standard assumptions are invoked. These assumptions are required

under SEU and CEU, under CPT and under the outcome-dependent capacity model of Chew

and Wakker (1996). All these models imply both forms of tail-separability.

At this stage it is important to clarify the extent to which our experimental results apply.

While we are providing experimental evidence against weak tail-separability our tests do not

say anything about strong tail-separability. This point will be further illustrated in subsection

5.2.3 when we review Machina’s (2009) refection example. Moreover, we like to note here that

the specific test of weak separability that we focus on is not exclusively a test of CEU and

the other rank-dependent theories. Because we test weak tail-separability only by looking at

extreme consequences, the results we obtain also provide a test, and as we show a challenge,

for other "separable" models that have been put forward in the literature on ambiguity (for

a more detailed discussion see Baillon, et al. 2009). However, given the popularity of CEU

for the analysis of ambiguity, we present our results in relation to (weak) tail-separability. As

an illustration of the general property that we are testing, consider the following four acts

(assuming that outcomes are ordered from best to worst and that xj−1 ≥ yj and zj−1 ≥ xj):

h1 = (G1, z1; . . . ; Gj−1, zj−1; Ej, xj; . . . ; En, xn)

h2 = (G1, z1; . . . ; Gj−1, zj−1; Fj, yj; . . . ; Fn, yn)

h3 = (G1, x1; . . . ; Gj−1, xj−1; Ej, xj; . . . ; En, xn)
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h4 = (G1, x1; . . . ; Gj−1, xj−1; Fj, yj; . . . ; Fn, yn)

The two acts h1 and h2 share common outcomes on the same events that give outcomes strictly

better than xj (ie: z1, . . . , zj−1); they have a common upper tail (G1, z1; . . . ; Gj−1, zj−1). Similarly,

acts h3 and h4 have a common upper tail (G1, x1; . . . ; Gj−1, xj−1). Due to tail-separability, a

preference for h1 over h2 implies the preference for h3 over h4 (see Appendix 1 for a proof).

The two acts h2 and h4 share common outcomes on the same events that give outcomes

strictly lower than zj−1 and xj−1; they have a common lower tail (Fj, yj; . . . ; Fn, yn). Similarly,

acts h1 and h3 have a common lower tail (Ej, xj; . . . ; En, xn). The same reasoning as before

applies and the tail-separability property implies h1 % h2 ⇔ h3 % h4. In other words, in both

cases the preference is determined by the tail on which acts differ.

One should remark here that the common tail may not need to be maximal i.e., must not

contain the whole sequence. (Fn, yn) is a common lower tail for acts h2 and h4, but also any

tail formed by the partition {Fn\H, H} of event Fn. Then the common tail (Fn, yn) can be

replaced by the common tail (Fn\H, wn, H, wn+1) if wn+1 6 wn 6 zj−1. Such a replacement

of a common tail is possible only if outcomes are not required to be strictly rank-ordered:

x1 ≥ · · · ≥ xn. If outcomes are strictly rank-ordered: x1 > · · · > xn it is not possible to split

an event further. The former defines weak tail-separability which is the matter of this article;

the latter, strong tail-separability is beyond our scope.

5.2.3 The reflection example

Machina (2009) presented two new choice problems, namely the 50:51 example and the reflec-

tion example. In our experiment we investigate the latter through an urn containing twenty

identical balls except for color. Ten of these balls are red or yellow in unknown proportion,

and the remaining ten are black or green in unknown proportion. One ball is drawn at

random from the urn. Acts that give different outcomes depending on the color drawn are
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described in Tables 5.2 and 5.3. The choice pattern ft � gt and f̂t � ĝt is shortly designated

by ft f̂t. Index t refers to choices between bets of a table 5.t.

10 balls 10 balls

Acts R Y B G

f2 0 50 25 25

g2 0 25 50 25

f̂2 25 50 25 0

ĝ2 25 25 50 0

Table 5.2: The reflection example with Lower Tail Shifts

f̂2(ĝ2) is obtained from f2(g2) as follows. Suppose that g2 % f2 is observed (the arguments

below also apply if f2 % g2 is assumed). We rewrite this to highlight the common lower tails

(G; 25; R; 0) and (R; 0) of g2 and f2.

g2 % f2

⇔

(B, 50; Y, 25; G, 25; R, 0) % (Y, 50; B, 25; G, 25; R, 0).

Now we replace only the common tail (R, 0) with the common tail (R, 25) and obtain:

(B, 50; Y, 25; G, 25; R, 0) % (Y, 50; B, 25; G, 25; R, 0)

⇔

(B, 50; Y, 25; G, 25; R, 25) % (Y, 50; B, 25; G, 25; R, 25).

As remarked in the previous section, this latter replacement is allowed under the weak tail-

separability. Under the strong tail-separability the common tail (R, 0) can only be replaced

by a common tail (R, z) with z < 25, hence, to get the above equivalence, one would need to

invoke additional preference conditions like outcome-continuity. However, notice something

typical for rank-dependence with weakly rank-ordered outcomes: we can rewrite the acts in
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the last indifference by interchanging the order of the events G and R without affecting the

preference between those acts. This would not be possible when outcomes are required to be

strictly rank-ordered. Hence, we obtain the equivalence:

(B, 50; Y, 25; G, 25; R, 25) % (Y, 50; B, 25; G, 25; R, 25)

⇔

(B, 50; Y, 25; R, 25; G, 25) % (Y, 50; B, 25; R, 25; G, 25).

where the last two acts have common lower tails (R, 25; G, 25) and (G, 25). We, finally, replace

the common tail (G, 25) with the common tail (G, 0) and obtain

(B, 50; Y, 25; R, 25; G, 25) % (Y, 50; B, 25; R, 25; G, 25)

⇔

(B, 50; Y, 25; R, 25; G, 0) % (Y, 50; B, 25; R, 25; G, 0).

where the last preference is equivalent to ĝ2 % f̂2.

Notice, that the exercise of replacing common lower tails with other common tails, which

transforms the choice problem " f2 vs. g2 " into " f̂2 vs. ĝ2" has also lead to a replacement

of known probability events with unknown probability events when going from f2 to f̂2.

It has also lead to the opposite reflected replacement of unknown probability events with

known probability events when going from g2 to ĝ2. That is, the precise information that the

likelihood of obtaining 25 in the event "the drawn ball is black or green" in act f2 has now

changed into the ambiguous information that the likelihood of obtaining 25 ranges between

0 and 1 in act f̂2. Similarly, the imprecise information that the likelihood of obtaining 25

ranges between 0 and 1 in act g2 has now been changed into the precise information that the

likelihood of obtaining 25 in the event "the drawn ball is red or yellow" in act ĝ2.

Observe that there is informational symmetry when comparing acts f2 and ĝ2: there is a

50% chance of getting 25 in each act and an imprecise probability of getting 50 or 0. Except
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for the names of the corresponding events there is no informational asymmetry about the

outcomes of the respective acts. Likewise, there is informational symmetry between acts

f̂2 and g2: there is an imprecise probability p ranging between 0 and 1/2 of getting 0, an

imprecise probability q ranging between 0 and 1/2 of getting 50, and an imprecise probability,

1− p− q, of getting 25. So, weak tail-separability at the lower tail has reflected the ambiguity

that may have influenced a preference for f2 over g2 into a similar situation of ambiguity that

may influence a choice of ĝ2 over f̂2.

To see why this reflection poses a problem for CEU assume that utility of 0 is 0, and

consider the choice pattern f2 ĝ2 (note that a similar argument applies for g2 f̂2). Substitution

of CEU gives:

f2 � g2⇒ v(Y)u(50) + [v(Y ∪ B ∪ G)− v(Y)]u(25) >

v(B)u(50) + [v(Y ∪ B ∪ G)− v(B)]u(25)

and

ĝ2 � f̂2⇒ v(B)u(50) + [v(R ∪Y ∪ B)− v(B)]u(25) >

v(Y)u(50) + [v(R ∪Y ∪ B)− v(Y)]u(25)

Consequently,

f2 � g2⇒v(Y) > v(B) (1)

ĝ2 � f̂2⇒v(B) > v(Y) (2)

Because the revealed beliefs (1) and (2) are contradictory, informational symmetry leads to

preferences f2 ĝ2 or g2 f̂2 that are not compatible with weak tail-separability. A CEU DM

should exhibit either f2 f̂2 or g2 ĝ2. A CEU DM who furthermore follows informational sym-

metry should exhibit f2 ∼ g2 and f̂2 ∼ ĝ2.
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10 balls 10 balls

Acts R Y B G

f3 50 50 25 75

g3 50 25 50 75

f̂3 75 50 25 50

ĝ3 75 25 50 50

Table 5.3: The reflection example with Upper Tail Shifts

Table 5.3 shows the reflection example with upper tail shifts. Acts f̂3 and ĝ3 are obtained

from events f3 and g3 by an ordered sequence of upper tail shifts. f̂3 is obtained from f3

by two successive shifts. First, a shift of the payoffs in event G from e75 down to e50.

Second, a shift of the payoffs in event R from e50 up to e75. The same applies for the

way ĝ3 is obtained from g3. As previously these shifts also create a mirror-image effect by

making f3 (g3) symmetric with ĝ3 ( f̂3). As a consequence choice patterns which correspond

to informational symmetry are f3 ĝ3 or g3 f̂3 while strict choice patterns which correspond to

CEU are f3 f̂3 or g3 ĝ3. One may note that f3 ∼ g3 and f̂3 ∼ ĝ3 is the only choice pattern

consistent both with informational symmetry and CEU.

Choice situations presented above enable us to test for preference conditions that allow

discriminating between behaviors which are consistent with CEU with weak tail-separability

and behaviors which follow informational symmetry. More accurately, any strict choice pat-

tern consistent with informational symmetry violate weak tail-separability and is therefore a

preference reversal under a CEU representation based on such hypothesis.

5.2.4 Proper criteria to analyze ambiguity

In an earlier draft of his paper, Machina proposed three criteria to analyze ambiguity for the

reflection example. Depending on the criteria retained, a DM’s behavior may or may not
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be compatible with weak tail-separability. In what follows, we refer to acts of Table 5.2 to

highlight these aspects.

Individual payoffs

Acts f2 and g2 ( f̂2 and ĝ2) offer e0 on the same event R (G) and e50 on equally ambiguous

event Y and B. The difference between f2 and g2 ( f̂2 and ĝ2) lies in the fact that f2 (ĝ2) offers

the intermediary outcome e25 with probability one half while g2 ( f̂2) offers the same outcome

with a probability that can range from 0 to 1. When considering individual payoffs, the main

difference between f2 (ĝ2) and g2 ( f̂2) is based on the nature of the intermediary outcome.

For acts f2 (ĝ2), intermediate outcome is not ambiguous while this is the case for acts g2

( f̂2). Thus, a DM who is ambiguity-averse in terms of individual payoffs would rather choose

f2 ĝ2. If ambiguity is defined as uncertainty about probability, created by missing information that

is relevant and could be known (Frisch and Baron, 1988), then the probability of winning e25

is the missing information that is relevant and could be known. In that sense ambiguity in

terms of individual payoffs coincides with Camerer and Weber (1992)’s “ambiguity about

probability”. The difference is that ambiguity about probability is defined between urns in

the Ellsberg (1961) two-color problem whereas ambiguity in terms of individual payoffs is

defined within the reflection example.

Decumulative payoff events

As before, the best outcome e50 is equally ambiguous under f2 and g2 ( f̂2 and ĝ2) and the

worst outcome e0 is placed on the same event R (G). A closer look at decumulative payoff

events shows that f2 and g2 yield e25 or more on the same event Y ∪ B ∪ G. In term of de-

cumulative payoff events, this event is equally ambiguous across f2 and g2 (and R ∪ Y ∪ B is

also equally ambiguous between f̂2 and ĝ2), the missing information being the same between
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acts. As a consequence, if ambiguity is defined in terms of decumulative payoff events a DM

would be indifferent between f2( f̂2) and g2(ĝ2). We note that CEU maximizers who follow

informational symmetry fall in this category. Decision makers who are indifferent between

acts exhibit consistent beliefs and hence reveal no preference reversal. If one considers that

following informational symmetry is a necessary condition for a rational choice then indiffer-

ence is the only behavior consistent with CEU. If individual are not sensitive to informational

symmetry but CEU maximizers, they would exhibit strict preferences ( f2 f̂2 or g2 ĝ2).

Exposure to ambiguity

f2 (ĝ2) concentrates ambiguity on the 10 yellow or red balls, whereas g2 ( f̂2) concentrates

this amount over the 20 balls. The missing information that is relevant to the decision is

concentrated within the set of 10 yellow or red balls in f2 (ĝ2) whereas it is distributed over the

whole urn in g2 ( f̂2). Thus, an individual who is averse to exposure to ambiguity minimize the

concentration of missing information and prefers to span ambiguity over the 20 balls rather

than over only 10 balls. Then, she will choose g2 f̂2.

It worth noticing that, while the second criterion allows for behavior consistent with CEU,

the first and third criteria violate weak tail-separability. If one considers that informational

symmetry is inherent to the urn and this, independently of any specification of the acts, then

a CEU maximizer should be indifferent between both pairs of acts and should satisfy the

second criteria only.

The following subsection describes an experimental study mainly based on Machina

(2009)’s proposal which aims at testing the validity of the first and third criteria. The va-

lidity of the second criteria is discussed in section 5.5.1 through a specific replication of the

main experiment.
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5.3 Experiment

Four groups of subjects (94 students, 39 females and 55 males) enrolled in economics courses

at IUFM and Ecole Centrale Paris participated in this experiment. Most of the students were

acquainted with probability theory but they had no explicit training in decision theory. The

experiment consisted of a pencil and paper questionnaire. Subjects were presented with

choice-situations described in the above three tables; each choice-situation was described as

the corresponding urn with balls of different colors, and a picture of the urn was also dis-

played. Subjects could read the composition of the urn and were asked to choose between

two options labeled A and B (See Figure 5.1 of the Appendix 2 for a typical display).

As an introduction, subjects were told there were no right or wrong answers, and they

had to choose the alternative they prefered. In order to increase motivation, we introduced

a random incentive mechanism similar to the one used by Camerer and Ho (1994), Harrison,

Lau and Rutström (2007a), and Harrison, List and Towe (2007b). The mechanism worked

as follows. In each of the four groups, one of the subjects was randomly selected from that

group. Only for these subjects one of their task was selected and their choice was played

for real and each selected subject could win up to e75 depending on her responses. Subject

were informed about the mechanism prior to the experiment . There was no time constraint.

We controlled for order effects, permuting situations A and B (two groups: 49 students for

one and 45 for the other). Moreover, for each subject, we also controlled for color effect in

order to guarantee that we effectively captured a preference toward an alternative rather than

a preference for a particular color. Thus, we replicated choice situations of Tables 5.2 and 5.3

by reversing payoffs between colors. This prevented subjects from thinking that the ratios of

colors were chosen to bias the bets in favor of the experimenters.

In this specific experiment, indifference between options A and B was not allowed. Two
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reasons justify such a protocol that forces subjects to express outright choice for one of the

two options. First, using strict preference patterns, the protocol generates a sharp distinction

between behavior consistent with CEU and behavior consistent with informational symmetry.

By making these two behaviors mutually exclusive, we obtained a direct and clear test on the

possibility - or the difficulty - to observe a paradox for CEU. Second, the absence of indiffer-

ence avoids certain choice behaviors such as randomization or indecisiveness. If individuals

are subject to randomization or indecisiveness, indifference may be viewed as a way to es-

cape from the choice problem and not as an equivalence judgment between the two options.

Not allowing for indifference is therefore a first step to test wether CEU could be prone to a

paradox. Section 5.5.1 discusses the importance of the indifference hypothesis and presents

results from a replication of the experiment on another set of 42 subjects. We found that, even

if indifference is allowed, more than 90% of subjects still express strict preferences.

5.4 Results

5.4.1 Confirming Ellsberg paradox

A first result is that 65% of subjects exhibit a preference reversal against the SEU prediction.

This result confirms the classic Ellsberg paradox and replicates the most commonly observed

choice pattern in the three-color example. For example, Slovic and Tversky (1974) also find

that 65% of subjects (n = 29) violate SEU (percentage raises to 72% after subjects have received

arguments pro and con SEU). MacCrimmon and Larsson (1979) found 79% of answers (n =

19) inconsistent with SEU.
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5.4.2 Informational symmetry

Table 5.4 summarizes subjects’ choices between acts in Tables 5.2 and 5.3 described above. For

each pair of bets, the table gives the number of subjects that chose each of the four possible

patterns of choice. The table also provides the proportion of preference reversals observed

under weak tail-separability and the significance of this proportion as compared to one half

through the p-value of a binomial test.

Modified Ellsberg Acts Color-treatment ft f̂t ft ĝt gt ĝt gt f̂t % reversal (against CEU) p-value

Table 5.2 (Lower 1 11 44 15 24 72% 0.000

tail Shifts) 2 10 43 13 28 76% 0.000

Table 5.3 (Upper 1 8 47 6 33 85% 0.000

tail Shifts) 2 4 54 7 29 88% 0.000

Note a: Treatment 2 proposes similar acts to those described in Table 5.2 but reverses payoffs between colors.

Note b: % of reversal is given by the percentage of subjects exhibiting ft ĝt or gt f̂t. The p-value corresponds to a

binomial test of the difference between the preference reversal proportion and 0.5.

Table 5.4: Subjects’ choices and Preference reversals

Informational symmetry, which is due to both the symmetric structure of the urn and

the symmetry between acts, is not violated by a significant proportion of subjects. Indeed,

information symmetric behavior corresponding to following patterns ft ĝt or gt f̂t is exhibited

by 74% of subjects in the lower tail case and 86.5% in the upper tail case. A necessary

condition for CEU to accommodate informational symmetry is ft ∼ gt and f̂t ∼ ĝt. The results

provide evidence against weak tail-separability and highlight the relevance of informational

symmetry.
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5.4.3 A paradox for Choquet expected utility

Table 5.4 shows that violations of weak tail-separability in Machina’s reflection example are

greater than those observed in Ellsberg urns under SEU. All percentages of preference rever-

sals are above 70% and all are significantly different from 0.5. In the same vein, Wu (1994)

empirically finds that more than 50% of subjects violate the ordinal independence axiom un-

der risk, and consequently, that the rank-dependent expected utility model is not sufficient

to explain the observed behavior. At odds with our results, Fennema and Wakker (1996)

find that only 25 % of subjects violate upper tail-separability under uncertainty. We used the

Conlisk’s D statistic (Conlisk, 1989) to test and compare preference reversals between upper

and lower tail separability. Interestingly, we observe a greater amount of preference reversal

under CEU with upper tail-separability than with lower tail-separability (Conlisk’s D statistic

is D = 2.12, p = 0.02 for treatment 1, D = 2.28, p = 0.01 for treatment 2). An Anova with

repeated measures rejects the equality of preference reversals proportions across the four

situations (p-value=0.0027).

5.4.4 An empirically-consistent approach for ambiguity

The experiment provides an empirical complement to the three criteria proposed by Machina

to analyze ambiguity. Table 5.4 shows that the prevailing pattern of observed choice is ft ĝt

(for 50% of the sample on average), agreeing with the idea of ambiguity aversion based on

individual payoffs. Moreover, about 30% of the subjects exhibit the pattern gt f̂t which is

compatible with an approach of ambiguity in terms of exposure to ambiguity. In order to

evaluate to which extent violations of tail-separability are systematic rather than random, we

used the Conlisk’s Z statistic. This statistic tests whether the percentage of ft ĝt is significantly

different from the percentage of gt f̂t. If all Machina’s choice problems we found large values

of Z (Z=3.55, p=0.002 and Z= 2.41, p=0.007 for lower tail shifts and Z=1.86, p=0.03 and Z=3.26,
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p less than 0.001 for upper tail shifts). As a consequence, one can conclude that violations

of tail-separability are not only frequent but also systematic. Observed choices cannot be

justified by errors made by subjects close to indifference.

5.4.5 Other effects

In order to identify possible effects from order, age, gender, color and treatment group, Table

5.5 displays estimates from a panel random-effect probit regression of preference reversals for

the four modified Ellsberg choice situations. We find no effect of age and gender on preference

reversals and no significant order effect. Moreover, the colors used in the experiment have no

effect on preference reversals. The only significant variable is group treatment suggesting that,

in our sample, engineers from Ecole Centrale (N=56) are more prone to preference reversals.

Variable Age Gender Order Students type Color-treatment

Coefficient 0.0004 0.525 0.035 0.456 0.168

t-statistic 0.00 1.66 0.13 2.97 0.97

Notes: The Log-likelihood value is -170.27; The Wald test for the null hypothesis that all coefficients are equal to

zero has a chi-square value of 54.43 with 4 degrees of freedom (p-value=0.00). The fraction of the total variance

due to random individual effects is estimated to be 0.446, with a standard error of 0.097.

Table 5.5: Panel random-effect probit regression of preference reversals

5.5 Discussion

5.5.1 Choquet expected utility versus informational symmetry?

Our results provide experimental evidence for the generalized Ellsberg paradox following

Machina (2009). Informational symmetry is an important feature of preferences that calls

for a reassessment of rank-dependence and specifically of weak tail-separability implications.

The most common observed pattern of choice (47% on average) suggests that individuals are
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ambiguity averse in terms of individual payoffs. We also observed a significant proportion of

choices (29% on average) compatible with the hypothesis of ambiguity aversion in terms of

exposure to ambiguity.

At this stage, our experiment did not account for indifference between acts. This has two

main consequences. First, it does not envisage the case where a CEU subject may decide to

treat the various reflected events as informationally symmetric. In such a case, according to

cumulative dominance (Sarin and Wakker, 1992) she will be indifferent between each pair of

acts. Second, since indifference captures ambiguity in terms of decumulative events, we ob-

tained no information about this specific definition of ambiguity. In order to clarify this point,

we run a fourth experimental session with 42 students enrolled in economic courses at Ecole

Normale Supérieure Cachan. Subjects faced the same questionnaire but have the possibility

to express indifference between two acts. Overall only 2 subjects appear to be indifferent

between all acts (4.7%) and thus satisfy both CEU and informational symmetry. This suggest

that ambiguity in terms of decumulative events is rarely found. Results on preference rever-

sals and informational symmetry remain (79% and 69% for lower tail shifts, 79% and 83% for

upper tail shifts, with a majority of subjects ambiguity averse in terms of individual payoffs).

Consequently, this fourth session casts doubt on the possibility for informational symmetry

to be an inherent part of CEU. Results from this fourth session confirm the preeminence of

informational symmetry over CEU even when indifference is allowed. This rules out the pos-

sibility of ’informational symmetric Choquet preferences’ being the most common observed

pattern of choice. One may argue that our protocol involved no precise incentive to express

indifference. This may appear as a drawback of our experiment. However if indifference

was the dominant pattern, we should have observed random choices rather than systematic

choices at the aggregate level.
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5.5.2 Informational symmetry and editing

Many violations in decision analysis can be explained by cognitive operations which forgo the

evaluation of an act. For example, Wu (1994) explains observed violations of tail-separability

under risk by a combination of editing and composition rules in a two-stage procedure. At

the first stage most people cancel common tails between prospects. Editing rule at hand is

that people only cancel common tails that are directly apparent (unapparent common tails

are said to be opaque). At the second stage, people use a composition rule that evaluate

the lotteries, event by event. This composition rule used under risk is derived from original

prospect theory (Kahneman and Tversky, 1979), a theory which was not designed to deal with

uncertainty. In our experiment, subjects may have used such an editing operation.

Table 5.2 shows that an editing rule could be applied to cancel out events R and G across

acts f2 and g2 and between acts f̂2 and ĝ2. With editing, f2 is equivalent to f̂2 and g2 is

equivalent to ĝ2. Such a cancellation of common tails must yield results consistent with weak

tail-separability. Indeed the editing rule proposed by Wu (1994) is more subtle: subjects

cancel apparent common tails but not opaque common tails. When we write acts of Table 5.2

f2 = (Y, 50; B ∪ G, 25; R, 0) and g2 = (B, 50; Y ∪ G, 25; R, 0), we observe that the only apparent

common tail is on event R while the commonality of event G is opaque. The way we framed

choices to the subjects (see Figure 5.1 of the Appendix 2 for a typical display) promotes

such cancelling of the common tail (Erev, Wakker and Weber, 1994, under risk, Fennema

and Wakker, 1996, under uncertainty). Let f ′2 and g′2 be the acts the subject considered once

editing is performed. Hence, f ′2 = (Y, 50; B ∪ G, 25) and g′2 = (B, 50; Y ∪ G, 25). Thus, the

choice appears as a fifty percent chance to win exactly e25 plus an extra ambiguous chance

to win e50 ( f ′2) or as a fifty percent chance to win at least e25 (possibly e50) plus an extra

ambiguous chance to win e25 (g′2).

Similarly, after an editing phase, the choice between acts f̂2 and ĝ2 becomes choice between
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f̂ ′2 = (Y, 50; B ∪ R, 25) and ĝ′2 = (B, 50; Y ∪ R, 25). Thus, the choice appears also as a fifty

percent chance to win exactly e25 plus an extra ambiguous chance to win e50 (ĝ′2) or a fifty

percent chance to win at least e25 plus an extra ambiguous chance to win e25 ( f̂ ′2). Then,

if people cancel only apparent common tails and not opaque tails they would identify f2 and

ĝ2 (g2 and f̂2) as similar. Such an editing operation à la Wu (1994) explains violations of weak

tail-separability and is in agreement with informational symmetry. In subsection 5.2.3 we

showed that acts f̂2 and ĝ2 are obtained from f2 and g2 through two lower tail replacements

from (R; 0) to (R; 25) and from (G; 25) to (G; 0) under a weak tail separability condition. This

common lower tail replacements have been presented in a coalesced form to the subjects (see

Appendix 2 for a display) and then could not be considered as transparent. As Birnbaum and

colleagues have shown for the special case of risk (see Birnbaum 2008 for a review), presenting

choice problems in coalesced form leads to more frequent violations of tail-separability. This

suggests that the observed violations of weak tail-separability are mainly a consequence of

violation of coalescing.

5.5.3 Quality of the CEU model

Most of the empirical work on non-expected utility theories under uncertainty has been car-

ried out with only two outcomes-lotteries (see Abdellaoui, Vossmann and Weber, 2005 for a

review). Exceptions are MacCrimmon and Larsson (1979), Tversky and Kahneman (1992),

Fennema and Wakker (1996), Wu and Gonzalez (1999a, 1999b), Hey, Lotito and Maffioletti

(2007) and Diecidue, Wakker and Zeelenberg (2007). Experiments involving two outcomes

are well suited to the study of determinants and shapes of decision weights under uncer-

tainty but miss middle-ranked positions. Such positions are important for a general study

of rank-dependence. Although rank-dependence has been shown to be a major descriptive

improvement when precise probabilities for events are given, things are less clear-cut under
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ambiguity. Fennema and Wakker (1996) test upper tail-separability with three-outcome acts

in a more general setting than ours. According to their results, the CEU model does not pro-

vide any descriptive improvement over SEU. They concluded that "RDU can be of descriptive

value in specific domains of decision making" i.e., if the certainty and possibility effect ap-

plies in the case of multi-outcomes gambles or within the Ellsberg paradox. Note that our

experiment does not apply to risk (see L’Haridon and Placido 2008 on this topic). Under risk,

RDU - and then rank-dependence - may still be descriptively superior when compared to

Expected Utility. Using de Finetti’s betting-odds system, Diecidue, Wakker and Zeelenberg

(2007) elicited decision weights under uncertainty with three outcomes in a setting where the

certainty effect applies and find evidence for rank-dependence. Using a British Bingo Blower

to study individual attitudes towards ambiguity, Hey, Lotito and Maffioletti (2007) also found

support in favor of CEU. The results of the present experiment raises the question of the

sensitivity of the weak-tail separability to the number of outcomes and to the weight put on

intermediate outcomes.

The problem investigated in this paper reveals a deeper, more fundamental question:

is rank-dependence a general recipe for the study of ambiguity? In the Ellsberg paradox,

subjects face a single source of ambiguity. In the reflection example tested in this paper, there

are two sources of ambiguity. The informational symmetric reflections of events within acts

lead to violations of comotonicity because they induce specific ambiguity attitudes due to

manipulation of ambiguity. By focusing on ambiguity on intermediate events, the reflection

example shifts the DM attention away from extreme events. As a consequence, the CEU

model with weak tail-separability, which aims precisely at focusing on these extreme events

may not predict accurately the DM’s choices.

One may interpret Machina’s reflection example in terms of sources of ambiguity (Sinis-

calchi, 2008). Unlike the Ellsberg paradox where only one source of ambiguity exists, the
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reflection example offers a choice between acts with two sources of ambiguity (R vs Y and B

vs G for g2 and f̂2 , respectively) and acts with a unique source of ambiguity (R vs Y for f2

and B vs G for ĝ2). Our experimental results suggest that CEU keeps its descriptive value if

a single source of ambiguity is considered but a more refined approaches are needed to deal

with multiple sources of ambiguity and the information attached to events. The model of

Siniscalchi (2008) captures complementarities among ambiguous events and is able to explain

the main pattern of preference observed in this experiment.
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Appendix 1

We consider the four following acts described in the main text:

h1 = (G1, z1; . . . ; Gj−1, zj−1; Ej, xj; . . . ; En, xn)

h2 = (G1, z1; . . . ; Gj−1, zj−1; Fj, yj; . . . ; Fn, yn)

h3 = (G1, x1; . . . ; Gj−1, xj−1; Ej, xj; . . . ; En, xn)

h4 = (G1, x1; . . . ; Gj−1, xj−1; Fj, yj; . . . ; Fn, yn)

Assuming CEU preference for h1 over h2 gives:

h1 % h2

⇔

CEU(G1, z1; . . . ; Gj−1, zj−1; Ej, xj; . . . ; En, xn) ≥

CEU(G1, z1; . . . ; Gj−1, zj−1; Fj, yj; . . . ; Fn, yn)

The value of the common term of h1 and h2 is:

∑
j−2
k=1 v(∪Gk)[u(zk)− u(zk+1)] + v(∪Gk)[u(zj−1)

Replacing zk by xk for k = 1 . . . i− 1 gives:

∑
j−2
k=1 v(∪Gk)[u(xk)− u(xk+1)] + v(∪Gk)[u(xj−1)

It follows that:

CEU(G1, x1; . . . ; Gj−1, xj−1; Ej, xj; . . . ; En, xn) ≥

CEU(G1, x1; . . . ; Gj−1, xj−1; Fj, yj; . . . ; Fn, yn)

⇔

h3 % h4
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Appendix 2

Choice Task n°3

Which situation do you choose?

Situation A Situation B

If the ball is  yellow,                  you receive  50 €

If the ball is black or green,        you receive  25 €

If the ball is red,                         you receive   0 €

If the ball is black,                     you receive  50 €

If the ball is green or yellow,      you receive  25 €

If the ball is red,                         you receive   0 €

The following urn contains 20 balls:

‐10 red or yellow balls in unkown proportion

‐10 black or green balls in unkown proportion

A ball will be drawn at random within this urn

 

   
? ?

Figure 5.1: A typical display used in the experiment (indifference not allowed)

175



5. APPENDIX

Choice Task n°3

Which situation do you choose?

Situation A Situation B

If the ball is  yellow,                  you receive  50 €

If the ball is black or green,        you receive  25 €

If the ball is red,                         you receive   0 €

If the ball is black,                     you receive  50 €

If the ball is green or yellow,      you receive  25 €

If the ball is red,                         you receive   0 €

The following urn contains 20 balls:

‐10 red or yellow balls in unkown proportion

‐10 black or green balls in unkown proportion

A ball will be drawn at random within this urn

 

   
? ?

Figure 5.2: A typical display used in the replication with indifference allowed
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Chapter 6

An Allais-like Paradox for Generalized

Expected Utility Theories ?

This chapter reports the results of an experiment which aims at providing a test of ordi-

nal independence, a necessary property of Generalized Expected Utility theories such as

Rank-Dependent Expected Utility theory (RDEU). Our experiment is based on a modified

version of the Allais paradox proposed by Machina (2007), which allows testing ordinal

independence restricted to simple lotteries, i.e. the tail-separability property.

The results tend to support RDEU models since tail-separability is not violated by 71%

of subjects while 73% violate the independence condition of classic Allais paradox. This

confirms the relative theoritical soundness of RDEU models over Expected Utility model

for the particular context of risk.
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6.1 Introduction

In 1953, Allais severly questionned classical Expected Utility (vNM: von Neumann and Mor-

genstern, 1944) suggesting that choice behavior could not be consistent with a necessary

condition of the theory, the independence axiom. With its empirical confirmations (MacCrim-

mon and Larson, 1979; Kahneman and Tversky, 1979), the so-called Allais paradox belongs

to a broad series of systematic violations of Expected Utility (see Starmer, 2000 for a survey)

which compromised Expected Utility as a descriptively valid theory of choice under risk.

Allais (1953) proposes the four lotteries described in Table 6.1.

Probabilities 0,89 0,10 0,01

l1 1 000 000 1 000 000 1 000 000

l2 1 000 000 5 000 000 0

l3 0 1 000 000 1 000 000

l4 0 5 000 000 0

Table 6.1: Allais lotteries

In the vNM theory, as well in the Savage expected utility theory (SEU: Savage, 1954),

consistent preferences are those for both l1 and l3 or for both l2 and l4. However, most of the

individuals express preferences l1 � l2 and l4 � l3, which means under expected utility:

u(1000000).0, 89 + u(1000000).0, 10 + u(1000000).0, 01 >

u(1000000).0, 89 + u(5000000).0, 10 + u(0).0, 01

u(0).0, 89 + u(5000000).0, 10 + u(0).0, 01 > u(0).0, 89 + u(1000000).0, 10 + u(1000000).0, 01

Under the normalization condition u(0) = 0 it implies:

0, 11.u(1000000) > u(5000000).0, 10

u(5000000).0, 10 > 0, 11.u(1000000)
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Together, these inequalities are contradictory. According to the independence axiom (vNM),

as well as the sure thing principle (SEU), the change of the common consequence 1 000 000 to

0 from the first to the second pair of lotteries should not reverse the preference within each

pair. The intuitive behavioral justification for this paradox is that the change of the common

outcome make the status of the lottery l1 change from a degenerate lottery (that gives one

million with certainty) to a risky lottery l3. Hence, it looses the advantage of the certainty.

Note that this modification marginally affects the original l2 since l4 remains risky.

Following Allais’intuition, alternative models were developped in order to allow non lin-

ear treatments of probabilities. Among these models, Quiggin’s (1982) Rank Dependent Ex-

pected Utility (RDEU) model was the first successful, since it avoided violations of stochastic

dominance through the introduction of decision weights that incorporate the relative ranking

of the outcomes instead of a direct transformation of probability (for other rank-dependent

generalizations, see Yaari, 1987; Segal, 1987). All these expected utility generalizations involv-

ing rank-dependence are based on a weaker form of the vNM’s original independence axiom,

namely comonotonic independence. The comonotonicity requirement was further weakened

in the ordinal independence property (Green and Jullien, 1988; Quiggin, 1993; Wakker and

Zank, 2002), also called tail-separability when restricted to simple lotteries.

Machina (2007) proposes thought experiments in the spirit of Allais and Ellsberg that

points out the possible vulnerability of RDEU models through the tail-separability property.

Moreover, recent results show that the tail-separability property defined over events chal-

lenges the descriptive validity of the counterpart of RDEU under uncertainty, i.e. Choquet

Expected Utility (L’Haridon and Placido, 2009). In the present chapter, we provide an empiri-

cal test based on Machina’s examples in order to empirically confront RDEU in the particular

context of risk.

The rest of the chapter is organized as follows: In Section 6.2 we present the general
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framework of the experiment. We report the findings of the experiment in Section 6.3. Section

6.4 concludes.

6.2 Framework of the experiment

6.2.1 Rank-dependent expected utility

We consider an individual who has to make a choice between three-outcome risky lotteries.

We restrict the formulation of RDEU to such lotteries. Let L = (x1, p1; x2, p2; x3, p3) denotes

the risky lottery which yields the monetary payoff xi with probability pi, i = 1, ..., 3. Monetary

payoffs are rank-ordered: x1 ≥ x2 ≥ x3. The RDEU of lottery L is given by VRDEU(L):

VRDEU(L) = w(p1)u(x1) + [w(p1 + p2)− w(p1)]u(x2) + [1− w(p1 + p2)]u(x3) (6.1)

u(.) is a strictly increasing utility function over payoffs and w(.) a strictly increasing proba-

bility weighting function from [0, 1] to [0, 1] with w(0) = 0 and w(1) = 1.

A decision maker (DM) who has RDEU preferences satisfies all EU axioms except the in-

dependence axiom, which is replaced by a similar condition on rank-dependence, the ordinal

independence axiom (see Quiggin, 1993 and Marley and Luce, 2005 for a review). Ordinal

independence requires that, if two lotteries agree on a given segment of the cumulative distri-

bution function, the value they take on that segment should not affect their ranking (Quiggin,

1993). In our experiment, we focus on tail-separability, a special case of ordinal independence

where the common segment of the cumulative distribution function is one of both tails. Tail-

separability implies that if two lotteries share a common tail then the substitution of another

common tail maintains the preference order between the lotteries.

When the common tail concerns the higher payoffs, we more precisely refer to upper

tail-separability. As an illustration, we consider the four following lotteries:
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L1 = (x1, p1; x2; p2; x3, p3) vs. L2 = (x1, p1; x2; q2; x3, q3)

L3 = (x1, p′1; x2; p2; x3, p3) vs. L4 = (x1, p′1; x2; q2; x3, q3)

Lotteries L1 and L2 share the common upper tail (x1, p1) and lotteries L3 and L4 share

the common upper tail (x1, p′1). Under RDEU, the choice between L1 and L2, (L3 and L4)

depends on the sign of the difference VRDEU(L1)−VRDEU(L2) (VRDEU(L3)−VRDEU(L4)) and

the intensity of preference is given by the absolute amount of this difference (up to a positive

affine transformation). Applying (6.1) one gets:

VRDEU(L1)−VRDEU(L2) = [w(p1 + p2)− w(p1 + q2)][u(x2)− u(x3)] (6.2)

VRDEU(L3)−VRDEU(L4) = [w(p′1 + p2)− w(p′1 + q2)][u(x2)− u(x3)] (6.3)

Using p1 + p2 + p3 = p1 + q2 + q3 = 1 and p′1 + p2 + p3 = p′1 + q2 + q3 = 1, (2) and (3)

become

VRDEU(L1)−VRDEU(L2) = [w(1− p3)− w(1− q3)][u(x2)− u(x3)] (6.4)

VRDEU(L3)−VRDEU(L4) = [w(1− p3)− w(1− q3)][u(x2)− u(x3)] (6.5)

As a consequence, VRDEU(L1) − VRDEU(L2)=VRDEU(L3) − VRDEU(L4). Any shift of the

common upper tail (x1, p1) (x1, p′1) between lotteries L1 and L2 (L3 and L4) does not change

the preference order neither the intensity of preference.

Similarly, when the common tail concerns the lower payoffs, we more precisely defined

lower tail-separability. As an illustration, we consider the four following lotteries:

L1 = (x1, p1; x2; p2; x3, p3) vs. L2 = (x1, q1; x2; q2; x3, p3)

L3 = (x1, p1; x2; p2; x3, p′3) vs. L4 = (x1, q1; x2; q2; x3, p′3)
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Lotteries L1 and L2 share the common lower tail (x3, p3) and lotteries L3 and L4 share the

common lower tail (x3, p′3) Applying (6.1) to binary choices between L1 and L2 and L3 and L4

gives:

VRDEU(L1)−VRDEU(L2) = [w(p1)− w(q1)][u(x1)− u(x2)] = VRDEU(L3)−VRDEU(L4) (6.6)

Lower tail-separability applies since any shift of the common lower tail (x3, p3) does not

change the preference order and the intensity of preference.

6.2.2 Allais-like choices

Machina (2007) proposes choices built on Allais classic paradox that may question RDEU

ordinal independence axiom in the same way that the Allais paradox questionned the EU

independence axiom. The choices proposed are as follows:

L1 = (75, 0.05; 45, 0.90; 15, 0.05) vs. L2 = (75, 0.05; 60, 0.45; 15, 0.50)

L3 = (60, 0.05; 45, 0.90; 0, 0.05) vs. L4 = (60, 0.50; 15, 0.45; 0, 0.05)

These modified Allais lotteries are used in our experiment to test ordinal independence

through tail-separability. Each pair of lotteries shares both a common upper tail (a 5% chance

to get the best consequence) and a common lower tail (a 5% chance to get the worst conse-

quence). The remaining 90% are split among monetary payoffs: concentrated on the inter-

mediary payoff 45 in L1 and L3, split between the intermediary 60 and the worst payoff 15

in L2 and between the intermediary 15 and the best payoff 60 in L4. Common tails become

apparent if one writes:

L1 = (75, 0.05; 45, 0.90; 15, 0.05) vs. L2 = (75, 0.05; 60, 0.45; 15, 0.45; 15, 0.05)

L3 = (60, 0.05; 45, 0.90; 0, 0.05) vs. L4 = (60, 0.05; 60, 0.45; 15, 0.45; 0, 0.05)
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Then, choice between L1 and L2, and L3 and L4 are given by the sign of the following differ-

ences:

VRDEU(L1)−VRDEU(L2) = −[w(0.50)− w(0.05)]u(60) + [w(0.95)− w(0.05)]u(45)

−[w(0.95)− w(0.50)]u(15)

VRDEU(L3)−VRDEU(L4) = −[w(0.50)− w(0.05)]u(60) + [w(0.95)− w(0.05)]u(45)

−[w(0.95)− w(0.50)]u(15)

As a consequence: VRDEU(L1) − VRDEU(L2) = VRDEU(L3) − VRDEU(L4). A DM who ex-

hibits preference for L3 over L4 should also exhibit a preference for L1 over L2. An individual

may prefer L1 over L2 because the latter offer a slightly higher chance to get the worst outcome

while the chance to obtain the best outcome stays unchanged. However, people may also pre-

fer L4 over L3 because the latter offers a higher chance to get the best outcome while the

chance to get the worst outcome is unchanged. An individual who exhibit theses preferences

violates tail-separability and consequently RDEU.

6.2.3 Experiment

Ninety-four students (39 females and 55 males) took part in the experiment. Students were

enrolled in economics courses at IUFM and Ecole Centrale Paris. Most of the students were

acquainted with probability theory but they had never heard of decision theory. The experi-

ment consisted of a paper-pencil questionnaire where subjects were confronted with the two

pairs of binary choices presented above. Subjects were told there were neither right nor wrong

answers, and they had to choose the situation they prefered, without any time constraint. We

run three sessions and within each session, subjects were informed that one of them would be
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randomly selected to have her choice played out for real. In order to control for order effects,

we permuted situations on the questionnaire. As an introduction, subjects faced a version of

the Allais paradox including monetary payoffs similar to the one used in lotteries L1 to L4.

Classic Allais choices were the following:

LA1=( e15,1) vs. LA2=(e75,0.10;e15;0.89;e0,0.01)

LA3=(e75,0.1;e0,0.90) vs. LA4=(e15,0.11;e0,0.89)

6.3 Results

Table 6.2 summarizes subjects’ choices for the two choice situations designed to test tail-

separability. For each pair of lotteries, the following table gives the number of subjects that

chose each of the four possible patterns of choice. Overall 68% of subjects revealed choices

consistent with RDEU and 32% of subjects exhibit a preference reversal under RDEU. More-

over results from the first part of the experiment on Allais paradox also plead in favor of

RDEU: 73% of the subjects satisfied the Allais paradox and thus exhibit preference reversals

under EU.

Choice L1L3 L2L4 L1L4 L2L3

n 45 19 19 11

Table 6.2: Subjects’ choices

At the individual level, over the 25 subjects whose answers where EU compatible in the classic

Allais paradox part of the experiment, 15 also gave answers RDEU compatible (60%). Among

the 69 subjects whose answers were incompatible with EU in Allais, 49 gave answers com-

patible with RDEU (71%) in modified Allais choices. This left 20 subjects who gave answers
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incompatible with both EU and RDEU. The most common pattern of choice was therefore

incompatible with EU preferences and the independence axiom but compatible with ordinal

independence necessary to RDEU preferences

One should also notice that we found no significant effects from order, age, gender, and

session (p-values of correlations between each variable and pattern of choices were all greater

than 0.12).

6.4 Conclusion

Our results show that the majority of subjects exhibit a behavior that violate the indepen-

dence axiom (and hence EU) but that is compatible with the ordinal independence axiom (i.e

RDEU). This suggests that RDEU models are less vulnerable to independence-type violations

in comparaison with EU. Thus, we found no "Allais paradox" for generalized expected utility

theory. Our results are consistent with existing litterature. Weber and Kirsner (1997) show

that the number of violation of comonotonic independence are significantly less that thoses

for non comonotonic independence. Wu (1994) tests violations of tail-separability under risk

and finds similar results in a different setting. Wu reports a 38% of within-subjects violation

of upper tail-separability whereas we found only 32%. Wakker, Erev and Weber (1994) test

comonotonic independence. They show that this axiom is well suited for Allais-type choices

but loses in performance in more general choice contexts (in particularly when the certainty

effect does not apply). Our experiment reinforces such evidence.
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Chapter 7

Machina Paradox’s Collateral Damages

for Ambiguity

Machina (2009) introduced two examples that falsify Choquet expected utility, presently

one of the most popular models of ambiguity. This chapter shows that Machina’s examples

do not only falsify the model mentioned, but also four other popular models for ambiguity

of the literature, namely maxmin expected utility, variational preferences, α-maxmin and

the smooth model of ambiguity aversion. Thus, Machina’s examples pose a challenge to

most of the present field of ambiguity.
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7.1 Introduction

Ellsberg (1961) constructed counterexamples to show the limitations of Savage’s (1954) subjec-

tive expected utility (SEU). Ellsberg’s examples involved a comparison between objective un-

certainty (or risk), in which probabilities are clearly determined, and subjective uncertainty, in

which they are not. The prevailing preference for objective over subjective uncertainty, known

as ambiguity aversion, raised an important paradox for economic theory under uncertainty.

Since Ellsberg’s canonical work, many models have been developed to generalize SEU, so as

to represent this preference for objective over subjective uncertainty.

In the same vein as Ellsberg, Machina (2009) proposed two examples that falsify one of the

SEU generalizations, Schmeidler’s (1989) Choquet expected utility (CEU). In this chapter, we

show that the impact of Machina’s examples is not restricted to the model initially targeted.

His examples pose difficulties not only for CEU, but also the other four most popular and

widely-used models of ambiguity-averse preferences, namely maximin expected utility, vari-

ational preferences, α-maxmin and the smooth model of ambiguity aversion. Consequently,

implications for economics are more profound than initially thought.

The chapter proceeds as follows: Section 7.2 formally presents four major models of ambi-

guity aversion. In Section 7.3 and 7.4, these models are confronted with Machina’s examples.

Section 7.5 reports further results from the literature and Section 7.6 concludes.

7.2 Four popular models of ambiguity-averse preferences

Machina (2009) proposed two examples that point out the vulnerability of CEU. In this section,

we present four major models that are as well challenged by Machina’s examples. A typical

decision problem under uncertainty involves a state space S, which contains all possible states

of nature. Only one of those states is (will be) true, but we do not know which one. By D we
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denote the set of all probability measures (typically denoted p) over S. An act is a mapping

from the state space S to a set of monetary outcomes. Up( f ) refers to the expected utility

of act f if the probability distribution is p. Using this notation, Gilboa and Schmeidler’s

(1989) Maxmin Expected Utility (MEU), also called multiple priors, holds if preferences can be

represented by

MEU( f ) = min
p∈∆

Up( f ), (7.1)

where ∆ is a subset of D and is called the set of priors. ∆ need not be equal to D, i.e.,

decision makers (DMs) may think that some probability distributions in D are not possible or

irrelevant. MEU is the basis of several results in economics and finance. For instance, Dow

and Werlang (1992), and Epstein and Wang (1994), followed by many others, have studied the

impact of multiple priors in asset pricing. Introducing multiplier preferences, Hansen and

Sargent (2001) showed how applications of robust-control theory used to account for model

mispecification in macroeconomic modeling are related to MEU.

Maccheroni, Marinacci and Rustichini (2006) proposed a general model, called variational

preferences (VP), which captures both MEU and multiplier preferences. Under VP, prefer-

ences are represented as follows:

VP( f ) = min
p∈D

{
Up( f ) + c(p)

}
, (7.2)

where c(p) : D → [0, ∞] is an index of ambiguity aversion assigned to the probability dis-

tribution p. MEU is a special case of VP where c(p) = 0 if p ∈ ∆ and c(p) = ∞ otherwise.

Hansen and Sargent’s (2001) multiplier preferences correspond to a case with c a function of

relative entropy.

The third model, axiomatized by Ghirardato, Maccheroni and Marinacci (2004), is called

α-maxmin (αM), which is a linear combination of MEU (maxmin) and its opposite (maxmax),
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in which not the worst but the best expected utility is considered. This model directly extends

the well-known Hurwitz criterion to ambiguity. αM holds if preferences can be represented

by:

αM( f ) = α min
p∈∆

Up( f ) + (1− α) max
p∈∆

Up( f ). (7.3)

In this model, the set of priors ∆ and the parameter α are, respectively, interpreted as

ambiguity and ambiguity attitude. Consider an αM DM facing Ellsberg’s three-color urn (an

urn with 20 red balls and 40 balls that may be yellow or black, one ball being randomly

drawn; the DM has to bet on the color of the ball) and who strictly prefers to bet on red rather

than on yellow or on black. Such a DM is clearly ambiguity averse and violates SEU. It can

be shown that in such a case, α must be higher than 1/2.

The fourth model was introduced by Klibanoff, Marinacci and Mukerji (2005). Their ap-

proach is slightly different from the previous ones. Their "smooth model of ambiguity aver-

sion”, usually called KMM, involves a two-stage decomposition of the decision process into

risk and ambiguity. Each stage is represented by an expected-utility-like functional form.

Preferences are represented by

KMM( f ) = ∑
p∈D

µ(p)ϕ
(
Up( f )

)
, (7.4)

where µ is a subjective probability measure over D, that is, the measure of the subjective rele-

vance of p to be the ’right’ probability. Ambiguity attitude is contained in ϕ. More precisely,

concavity of ϕ implies ambiguity aversion. For instance, a DM who prefers to bet on red

rather than on yellow or on black in Ellsberg’s urn cannot have a convex ϕ. Klibanoff, Mari-

nacci and Mukerji (2005) defined ambiguity aversion as aversion to mean preserving spreads

in expected utility values (see Section 7.3 for more explanations) and their model deals with
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ambiguity aversion as expected utility does with risk aversion. Hence, it is particularly con-

venient for applications (e.g., in macroeconomics, Hansen, 2007; in health and environmental

policy, Treich, 2008; in finance, Gollier, 2006).

In the next two sections, we show precisely how Machina’s examples pose difficulties for

all the four models presented above.

7.3 The 50:51 example

The first example proposed by Machina (2009) is based on an urn with 101 balls. 50 balls are

marked with either 1 or 2 and 51 balls are marked with either 3 or 4. Each ball is equally likely

to be drawn. Ek denotes the event "a ball marked with an k is drawn”. Table 7.1 displays the

outcomes assigned to each event by four acts. These outcomes are expressed in utility units.

We use Machina’s flexibility of outcomes to choose outcomes that are equally-spaced on the

utility scale1. This adaptation of Machina’s original example enables us to derive particularly

clear counter-examples for MEU, αM, and VP, but is unnecessary for the KMM model. The

specific numbers 0, 101, 202, 303 are proposed for convenience, to simplify some formulas

(they are multiples of the number of balls in the urn). These numbers do not constitute any

further restriction since under all the models we are dealing with, utility is defined up to unit

and level.
1Eliciting such outcomes is rather easy for the four models MEU, αM, VP, and KMM, because they all assume

expected utility under risk. A simple way to determine such outcomes is to fix two outcomes (e.g., $0 and
$10,000) and find two certainty equivalents: first, the certainty equivalent of the lottery giving the high outcome
with probability 1/3 and giving the low outcome otherwise; second, the certainty equivalent of the lottery giving
the high outcome with probability 2/3 and the low outcome otherwise. Imagine that these certainty equivalents
are $1,500 and $4,000. We can conclude that $0, $1,500, $4,000 and $10,000 are equally-spaced in terms of utility
units.
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50 balls 51 balls

Acts E1 E2 E3 E4

f1 202 202 101 101

f2 202 101 202 101

f3 303 202 101 0

f4 303 101 202 0

Table 7.1: The 50:51 example

If a DM is sufficiently ambiguity averse, she will prefer f1 to f2, as argued by Machina.

Indeed, f1 is clearly unambiguous whereas f2 is ambiguous, but benefits from a slight advan-

tage due to the 51th ball that may yield 202. There is thus a tradeoff between this advantage

offered by f2 and the absence of ambiguity offered by f1. Such a tradeoff is less obvious in

the choice between f3 and f4. Like f2, f4 benefits from the 51th ball but f3 does not offer a

particular informational advantage at hand. Two normative principles are conflicting in this

example. A Bayesian DM (an Expected Utility maximizer assuming a uniform distribution

over the balls) should prefer f2 and f4. And yet, a DM who values unambiguous information

may prefer f1 to f2 and may be indifferent between f3 and f4. The informational advantage

of f1 can more than offset its Bayesian disadvantage with respect to f2 whereas f3 benefits

from no such informational advantage that could compensate its Bayesian disadvantage with

respect to f4. This would lead to f1 � f2 and f3 ≺ f4. However, Machina showed that under

CEU, f1 � f2 if and only if f3 � f4. We show that f1 � f2 also implies f3 � f4 if the DM’s

preferences are represented by MEU, VP, αM, or KMM with ϕ concave.

Throughout this section, any possible probability distribution over the state space is fully

characterized by a pair of numbers (i, j) where i denotes the number of balls marked with a

1 and j denotes the number of balls marked with a 3. There are 50− i balls marked with a

2 and 51− j balls marked with a 4. D = {0, ..., 50} × {0, ..., 51} refers to the set of all such
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distributions. U(i,j)( f ) denotes the expected utility of act f if the distribution is characterized

by (i, j). In what follows, we often suppress f in U(i,j)( f ).

First consider MEU. For f2 and f3, increasing i or j by 1 increases U(i,j) by 1. For f4, it

increases U(i,j) by 2. As a consequence, a MEU DM will take into account the minimum of

i + j for f2, f3, and f4. The same prior can thus be applied to evaluate the four acts, the prior

having no impact on the evaluation of f1, the DM knowing for sure the probability of each

outcome. With the same prior for the four acts, we are back to SEU. Hence, MEU implies the

same restriction as CEU (and SEU): f1 � f2 if and only if f3 � f4

Under αM, it can easily be shown that the same result holds. As for MEU, the priors that

are used to evaluate f1, f2, f3 and f4 are the same. In the 50:51 example, αM corresponds to

SEU with a specific probability distribution: α times the distribution that minimizes i + j plus

(1− α) times the distribution that maximizes i + j (over the set of priors ∆).

Result 1 in the Appendix establishes that an ambiguity averse DM, who prefers f1 to f2,

will violate2 VP if f3 ≺ f4. A similar result can be derived for KMM with ϕ concave. Using

the functional given by (7.4), the values of the acts in the 50:51 example are:

KMM( f1) = ϕ(151),

KMM( f2) = ∑(i,j)∈D µ(i, j)ϕ(i + j + 101),

KMM( f3) = ∑(i,j)∈D µ(i, j)ϕ(i + j + 100), and

KMM( f4) = ∑(i,j)∈D µ(i, j)ϕ(2i + 2j + 50).

Figure 7.1 represents the impact of the concavity of ϕ on the evaluation of the acts for

i + j < 50 and i + j > 50. The case i + j = 50 is straightforward: it implies ϕ(151)− ϕ(101 +

i + j) = ϕ(100 + i + j)− ϕ(50 + 2i + 2j). For i + j < 50, U(i,j)( f1) > U(i,j)( f2) > U(i,j)( f3) >

U(i,j)( f4). Moreover, the difference between U(i,j)( f1) and U(i,j)( f2) on the one hand and

U(i,j)( f3) and U(i,j)( f4) on the other hand is the same. Figure 7.1(a) shows how concavity of ϕ

2Note that unlike under CEU, MEU, and αM, f1 ≺ f2 and f3 � f4 may both hold under VP and KMM. These
preferences are however not plausible under natural ambiguity aversion.
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implies that ϕ(151)− ϕ(101 + i + j) ≤ ϕ(100 + i + j)− ϕ(50 + 2i + 2j) for all (i + j) < 50. The

same result holds if i + j > 50 as can be seen in Figure 7.1(b). Under KMM, a preference for

both f1 over f2 and f4 over f3 implies KMM( f1)− KMM( f2) > KMM( f3)− KMM( f4) which

is not possible because ϕ(151)− ϕ(101 + i + j) ≤ ϕ(100 + i + j)− ϕ(50 + 2i + 2j) for all (i, j).

This leads to a contradiction. A DM with ϕ concave cannot exhibit both f1 � f2 and f3 ≺ f4.

Note that this result can easily be extended to outcomes that are not equally spaced in terms

of utility unit, the proof being very similar.

6
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(b) i + j > 50

Figure 7.1: Impact of the concavity of ϕ on the evaluation of the acts

7.4 The reflection example

The second example proposed by Machina (2009), the reflection example, entails a slight modi-

fication of the previous urn; not 51 but 50 balls are marked with a 3 or a 4. Table 7.2 describes

four acts assigning outcomes evaluated in terms of utility to the four events (with 0 < π < 1).

Unlike in the previous example, the outcomes need not be equally-spaced on the utility scale.
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50 balls 50 balls

Acts E1 E2 E3 E4

f5 100π 100 100π 0

f6 100π 100π 100 0

f7 0 100 100π 100π

f8 0 100π 100 100π

Table 7.2: The reflection example

7.4.1 Decision criteria and experimental results

E1 and E2 (E3 and E4) are informationally symmetric: there is no more evidence in favor of

one event or the other. Moreover, the two pairs (E1,E2) and (E3,E4) are also informationally

symmetric. This is why Machina (2009) argues that f8 is an (informationally symmetric) left-right

reflection of f5 and f7 is a left-right reflection of f6. As a consequence, there is no reason to

prefer f8 to f7 if one prefers f6 to f5. We will say that preferences should be reflected. Machina

shows that under CEU, f5 ≺ f6 is equivalent to f7 ≺ f8 and thus preferences should not be

reflected, unless indifference holds. Hence, CEU can only account for reflected preferences

through indifference ( f5 ∼ f6 and f7 ∼ f8). However, in an experimental study of the reflection

example, L’Haridon and Placido (2009) showed that such indifferences are rejected (over 90%

of the subjects expressed strict preferences when indifference was allowed) while reflected

preferences hold for more than 70% of subjects.

More can be said about the pattern of preferences on this set of acts. Let us begin with

a normative point of view. Bayesianism suggests indifference between the four acts, because

they lead to the same expected utility (assuming a uniform prior). Decision makers may have

to find other criteria unless they accept to be indifferent. We first present two arguments in

favor of f5 ≺ f6 and f7 � f8 and then two arguments in favor of f5 � f6 and f7 ≺ f8.

200



7.4. THE REFLECTION EXAMPLE

In the Ellsberg paradox3 as presented in Section 7.2, Bayesianism also suggests indiffer-

ence, but DMs who do not feel indifferent between betting on red or on yellow usually choose

acts the outcomes of which are associated with known probabilities. This phenomenon of

ambiguity aversion is argued to be a normative principle by Ellsberg (1961). In the reflection

example, the outcomes of f5 and f8 are not assigned objective probabilities whereas the mid-

dle outcome (100π) has a known probability (1/2) in f6 and f7. Consequently, in the light of

Ellsberg, it seems natural that f6 and f7 are less ambiguous than f5 and f8 and hence, that

they should be preferred.

Furthermore, consider an act assigning 100π to E1, and 100 to both E2 and E3. Should a

DM prefer to remove 100(1− π) from E2 (yielding f6) or from E3 (yielding f5)? Subtracting it

from E2 removes an exposure to ambiguity (the respective proportions of balls marked with

1 and with 2 do not matter anymore). We can call this a categorical change, from ambiguity to

unambiguity. Substracting the same amount from E3 only decreases a previously-existing ex-

posure to ambiguity (a utility of 100 is exposed to the ambiguity of E3/E4 before the change,

but only 100π after). This can be viewed as a gradual change. For many DMs, a categorical

change brings some extra value with respect to a gradual change. As shown by economics of

innovation it is often easier to reach a higher utility level by consuming a new good (categor-

ical change) than by increasing the quantity of an already-consumed one (gradual change).

Among others, Hausman (1997) and Petrin (2002) provided empirical evidence on the welfare

gains of such categorical change over gradual change. Consequently, f6 (which results from

the categorical change) should be preferred to f5 (and with a similar reasoning, f7 to f8).

However, Machina argued that both reflected preference patterns are plausible and gives

an argument for f5 � f6 and f7 ≺ f8. He explained that f6 may be perceived more ambiguous

than f5 because f6 has a utility of 100 riding on the subjective uncertainty implied by {E3, E4}
3Recall that this paradox involves an urn with 20 red balls and 40 balls that are either yellow or black.
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whereas f5 splits this ambiguous utility between 100(1−π) on {E1, E2} and 100π on {E3, E4}.

A last criterion consists in avoiding mean preserving spreads in terms of expected utility

values. This is the way Klibanoff, Marinacci and Mukerji (2005) define ambiguity aversion.

Assuming that all the possible probability distributions over the urn are equally likely4, f6

( f7) can be derived by a series of mean preserving spreads in expected utility values from f5

( f8) (see Result 2 in the Appendix). A DM who would apply this rule should prefer f5 to f6

and f8 to f7.

The four normative arguments do not allow us to clearly predict what the preferences

should be. However, we can still let the data speak. Up to now, the only experimental test of

the reflection example we are aware of has been conducted by L’Haridon and Placido (2009).

The typical preference pattern they found was f5 ≺ f6 and f7 � f8 (46% of the participants),

even if 28% of the subjects exhibited f5 � f6 and f7 ≺ f8. Furthermore, they replicated

the Ellsberg paradox and found that f5 ≺ f6 and f7 � f8 was still the most common pattern

when only the subjects that are clearly ambiguity averse according to the Ellsberg paradox are

considered. This confirms that ambiguity averse DMs tend to have this pattern of preferences.

As a consequence, one might expect that a model of ambiguity aversion can account for

f5 ≺ f6 and f7 � f8. This is what we will check for the four models under consideration in

this chapter.

7.4.2 Analysis of the reflection example

In what follows, (i, j) denotes any possible probability distribution over the state space with

i the number of balls marked with a 2 (whereas it denoted the balls marked with a 1 in the

previous section) and j the number of balls marked with a 3. Therefore, there are 50− i balls

4A sufficient condition for what follows is that µ(i, j) = µ(j, i) where µ is a second-order distribution on
D = {0, ..., 50} × {0, ..., 50} and (i, j) ∈ D denotes any possible probability distribution over the state space with i
the number of balls marked with a 2 and j the number of balls marked with a 3.
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with a 1 and 50− j balls with a 4. D = {0, ..., 50}× {0, ..., 50} is the set of all (i, j) distributions.

First consider MEU. It can be shown that MEU will minimize some linear combinations

of i and j in f5 and f8 whereas it minimizes only j in f6 and only i in f7. It is thus impossible

for both f6 and f7 to be preferred to f5 and f8 respectively (see Result 3 in the Appendix).

However, f5 � f6 and f7 ≺ f8 may hold. MEU predicts that, if preferences are reflected, an

ambiguity averse DM will prefer the acts in which none of the outcomes are associated with a

known probability. It cannot represent what L’Haridon and Placido (2009) found as being the

prevailing ambiguity averse preferences. VP also fails to account for these preferences. The

derivation of this result follows the same steps as in the MEU case (Result 4 in the Appendix).

At odds with MEU and VP, αM can explain the reflection example for any α as soon as

∆ 6= D and α 6= 1. If the set of priors equates the set of all possible distributions (∆ = D),

indifference should hold between the four acts. Assume now, for instance, ∆ = D−{(50, 50)}

and α 6= 1. Note that i = 50 or j = 50 are still possible independently. The maximum expected

utility (50 + 50π) is still possible for f6 and f7 but not for f5 and f8. Assume that π ≥ 1/2.

The valuations of the acts are: αM( f5) = αM( f8) = 50π + (1− α)(49 + π), which is smaller

than αM( f6) = αM( f7) = 50π + (1− α)50. Similarly assume that π < 1/2. In such a case:

αM( f5) = αM( f8) = 50π + (1− α)(50− π), which is also smaller than αM( f6) = αM( f7) =

50π + (1− α)50. Thus, f5 ≺ f6 and f7 � f8 can both hold.

However, this result may be considered counter-intuitive. One may think that the infor-

mational symmetry of the decision problem should be present in the set of priors. We will say

that the set of priors replicates the informational symmetry of the decision problem if (i, j) ∈ ∆

implies (50− i, j) ∈ ∆, (i, 50− j) ∈ ∆, and (j, i) ∈ ∆. If ∆ (∆ 6= D) replicates the informational

symmetry5, f5 ≺ f6 ( f7 � f8) implies α < 1/2 (see Result 5). As a consequence, either ∆ does

not replicate the informational symmetry or α < 1/2 (or both). In other words, DMs exhibit-

5This excludes the above example ∆ = D− {(50, 50)}.
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ing f5 ≺ f6 and f7 � f8 must change their preferences for some permutations of E1 with E2,

E3 with E4, or (E1, E2) with (E3, E4) (if ∆ does not replicate the informational symmetry, the

numbers 1, 2, 3 and 4 must matter) or they must prefer to bet on the yellow and on the black

balls rather than on the red balls in the aforementioned Ellsberg urn (otherwise, α cannot be

smaller than 1/2).

Finally, let us study Klibanoff, Marinacci and Mukerji’s smooth model of ambiguity. f5 ≺

f6 and f7 � f8 imply that a KMM DM cannot have a concave ϕ (see Result 6), no matter what

µ is, i.e., whatever a KMM DM thinks about the relevance of each probability distribution.

Moreover, if this preference pattern does not depend on the outcomes under consideration, ϕ

must be convex. Similarly, if the Ellsberg paradox holds whatever the color and the outcomes,

ϕ must be concave. This leads to a contradiction.

It is noteworthy that the four models under consideration rule out not only a way of think-

ing that has been found to be dominant in the first empirical test of the reflection example but

also what can be justified by some decision criteria. When choosing a model, an economist

might want to have in mind the models’ descriptive abilities but one may prefer a model for

normative reasons. Machina’s examples are an efficient tool to understand what each model

implies, both from a normative and from a descriptive viewpoint.

7.5 The implications of Machina’s examples for other models

Up to now, we have focused on four popular models of ambiguity aversion. Lehrer (2007a)

analyzed the impact of the reflection example on two other models: Lehrer’s (2009) con-

cave integral for capacities and Lehrer’s (2007b) expected utility maximization w.r.t partially-

specified probabilities. In both cases, he found that f5 � f6 and f7 ≺ f8, but not the opposite

preferences that were experimentally found. As a consequence, these two models have the
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same prediction as MEU and VP for the reflection example. Lo (2007) showed similar re-

sults for Klibanoff’s (2001) version of MEU thanks to an unpublished example proposed by

Machina in an earlier draft. Lo’s (2007) results are consistent with ours.

Siniscalchi (2008) proposed a model, called Vector Expected Utility (VEU), that is able to

account for both the 50:51 and the reflection examples. His model is decomposed into an

expected utility term and an adjustment term capturing attitude towards ambiguity. Comple-

mentarities among ambiguous events (in the above studied examples, E1 and E2 on the one

hand, E3 and E4 on the other hand, have such complementarities) are represented through

adjustment factors. The second term of the VEU model is a function defined over these ad-

justment factors. It is negative if Chateauneuf and Tallon’s (2002) diversification axiom holds.

Furthermore, it is negative and concave if Gilboa and Schmeidler’s (1989) uncertainty aver-

sion axiom holds (this axiom is necessary for VP and MEU). VEU can handle the preference

patterns under focus in the present chapter but this implies that the adjustment function is

negative and not concave, meaning that the diversification axiom holds but not the uncer-

tainty aversion axiom.

7.6 Conclusion

This chapter shows that Machina’s (2009) examples which were initially designed to chal-

lenge CEU also question a wide range of ambiguity models. Our results show that, the

seminal MEU model but also two major extensions (αM and VP) and the KMM model, also

fail to account for some important patterns of preference implied by Machina’s examples. In

the 50:51 example, the preferences of ambiguity averse DMs cannot be better represented by

MEU, VP, αM and KMM (with ϕ concave). In the reflection example, a pattern of preferences

that is especially relevant according to informational symmetry and to available experimen-
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tal evidence cannot be represented by MEU, VP and KMM (with ϕ concave). It cannot be

represented by αM unless it satisfies some strong and counter-intuitive restrictions.

Machina’s examples, together with Allais’s and Ellsberg’s, highlight the relevance of

thought experiments for clarifying the behavior under uncertainty. Machina’s (2009) examples

are exciting call for future theoretical and empirical research.
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Appendix

Result 1. In the 50:51 example, VP implies f1 � f2 ⇒ f3 � f4.

We can define (ih, jh) as any element of argmin(i,j)∈D{U(i,j)( fh) + c(i, j)}. As a consequence,

VP( f1) = 151 + c(i1, j1), VP( f2) = 101 + i2 + j2 + c(i2, j2), VP( f3) = 100 + i3 + j3 + c(i3, j3)

and VP( f4) = 50 + 2i4 + 2j4 + c(i4, j4).

First, suppose that f1 � f2 and f3 ≺ f4. Hence, 50 + c(i1, j1) > i2 + j2 + c(i2, j2). Replacing

i4 and j4 by i3 and j3 in VP( f4), because this can only increase the evaluation of the act, we

obtain i3 + j3 > 50. By definition of (i1, j1), c(i1, j1) ≤ c(i3, j3). The sum of these inequalities

gives 50 + c(i1, j1) < i3 + j3 + c(i3, j3). As i2 + j2 + c(i2, j2) = i3 + j3 + c(i3, j3) must hold, we

have 50 + c(i1, j1) < i2 + j2 + c(i2, j2). This leads to a contradiction.

To show that f1 ≺ f2 and f3 � f4 are possible, let us give an example. Imagine that

c(i, j) = 0 if i + j > 60, c(i, j) = 90− 1.5(i + j) if 30 < i + j ≤ 60 and c(i, j) = 135− 3(i + j)

otherwise (note that c is a convex function on the simplex generated by D). With such a

function, we must have i1 and j1 such that i1 + j1 ≥ 60, i2 = j2 = i3 = j3 = 30 and i4 = j4 = 15.

As a consequence, VP( f1) = 151, VP( f2) = 161, VP( f3) = 160, and VP( f4) = 155. Then,

there exists a c(i, j) such that f1 ≺ f2 and f3 � f4.

Result 2. Assuming µ(i, j) = µ(j, i) ∀(i, j) ∈ D (where µ is a probability measure over D), f6 ( f7)

can be derived from f5 ( f8) by a series of mean preserving spreads in terms of expected utility values.

Let µ fh be the density function over the expected utility values induced by fh and µ (h ∈

{5, 6}). We assume that µ(i, j) = µ(j, i). Note that:

U(i,j)( f5) = i + (50− i + j)π (7.5)

U(i,j)( f6) = j + 50π (7.6)
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For all (i, j) such that i = j, both µ f5 and µ f6 assigns µ(i, j) to i + 50π.

Let us now consider each (i, j) ∈ D such that j < i and its symmetric distribution (j, i) (we

are thus dealing with every cases satisfying i 6= j). If 1/2 ≤ π < 1:

U(i,j)( f6) < U(i,j)( f5) ≤ U(j,i)( f5) < U(j,i)( f6). (7.7)

Otherwise (0 < π < 1/2):

U(i,j)( f6) < U(j,i)( f5) < U(i,j)( f5) < U(j,i)( f6). (7.8)

Therefore, whatever π is, µ f5 assign µ(i, j) and µ(j, i) (which are equal, by assumption)

to intermediate values while µ f6 assigns them to extreme values, moving a probability mass

from the center to the tails of the distribution. Moreover, the mean expected utility has not

changed because U(i,j)( f5) + U(j,i)( f5) = U(i,j)( f6) + U(j,i)( f6). This correspond to Rothschild

and Stiglitz’s (1970) definition of a mean preserving spread (for discrete distribution). As a

consequence, µ f6 can be derived through as many mean preserving spreads in µ f5 as there are

cases j < i. The same result can be obtained for f7 and f8 by symmetry.

Result 3. In the reflection example, MEU preferences f5 ≺ f6 and f7 � f8 cannot both hold.

We first define (ih, jh) as an element of argmin(i,j)∈∆U(i,j)( fh). Thus we obtain MEU( f5) =

i5 + (50− i5 + j5)π, MEU( f6) = j6 + 50π, MEU( f7) = i7 + 50π and MEU( f8) = j8 + (50−

j8 + i8)π. f5 ≺ f6 and f7 � f8 imply j6 + i7 > (i5 + j8)(1− π) + (j5 + i8)π. However, the jhs

and ihs being defined as the arguments of the minimization problems, j6 (i7) cannot be higher

than the others jhs (ihs). As a consequence, j6 + i7 > (i5 + j8)(1− π) + (j5 + i8)π cannot hold

under MEU.

Result 4. In the reflection example, VP implies that f5 ≺ f6 and f7 � f8 cannot both hold.
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We can define (ih, jh) as any element of argmin(i,j)∈D{U(i,j)( fh) + c(i, j)}. We must have

VP( f5) = i5 + (50− i5 + j5)π + c(i5, j5), VP( f6) = j6 + 50π + c(i6, j6), VP( f7) = i7 + 50π +

c(i7, j7), and VP( f8) = j8 + (50− j8 + i8)π + c(i8, j8). f5 ≺ f6 and f7 � f8 imply j6 + i7 +

c(i6, j6)+ c(i7, j7) > (i5 + j8)(1−π)+ (j5 + i8)π + c(i5, j5)+ c(i8, j8). The jhs and ihs are defined

as the arguments of the minimization problems. As a consequence, j6 + c(i6, j6) ≤ j5 + c(i5, j5),

j6 + c(i6, j6) ≤ j8 + c(i8, j8), i7 + c(i7, j7) ≤ i5 + c(i5, j5), i7 + c(i7, j7) ≤ i8 + c(i8, j8). If we

multiply the first and the fourth inequalities by π and the two others by (1− π) and sum up

them, we obtain j6 + i7 + c(i6, j6) + c(i7, j7) ≤ (i5 + j8)(1− π) + (j5 + i8)π + c(i5, j5) + c(i8, j8),

which contradicts the inequality implied by the preferences.

Result 5. If ∆ (∆ 6= D) replicates the informationnal symmetry of the decision problem, f5 ≺ f6

( f7 � f8) implies α < 1/2

We say that the set of priors replicates the informationnally symmetric left-right reflection

whenever (i, j) ∈ ∆ implies (50 − i, j) ∈ ∆, (i, 50 − j) ∈ ∆, and (j, i) ∈ ∆. Note that this

definition also implies (50− i, 50− j) ∈ ∆. Assume that (i′, j′) ∈ argmin(i,j)∈∆U(i,j)( f5) and

(i′′, j′′) ∈ argmin(i,j)∈∆U(i,j)( f6). As a consequence of the structure of ∆ and by reflection,

(j′, i′) ∈ argmin(i,j)∈∆U(i,j)( f8) and (j′′, i′′) ∈ argmin(i,j)∈∆U(i,j)( f7).

It also implies that (50− i′, 50− j′) ∈ argmax(i,j)∈∆U(i,j)( f5),

(50 − i′′, 50 − j′′) ∈ argmax(i,j)∈∆U(i,j)( f6), (50 − j′, 50 − i′) ∈ argmax(i,j)∈∆U(i,j)( f8) and

(50− j′′, 50− i′′) ∈ argmax(i,j)∈∆U(i,j)( f7). f5 ≺ f6 (or f7 � f8) implies:

α
(
i′ + (j′ − i′)π

)
+ (1− α)

(
50− i′ + (i′ − j′)π

)
< αj′′ + (1− α)(50− j′′) (7.9)

α
(
i′ − j′′ + (j′ − i′)π

)
< (1− α)

(
i′ − j′′ + (j′ − i′)π

)
(7.10)

By definition of i′, j′ and j′′ and because of the symmetry of ∆, j′′ ≤ j′ and j′′ ≤ i′. As a con-

sequence, (i′ − j′′ + (j′ − i′)π) ≥ (i′ − j′′)(1− π) ≥ 0. If (i′ − j′′ + (j′ − i′)π) = 0, indifference
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should hold. It must thus be strictly positive. Hence, α < 1− α and therefore, α < 1/2.

Result 6. If a KMM DM has a concave ϕ, f5 ≺ f6 and f7 � f8 cannot both hold.

In the reflection example, values of the acts are:

KMM( f5) = ∑(i,j)∈D µ(i, j)ϕ(i + (50 + j− i)π),

KMM( f6) = ∑(i,j)∈D µ(i, j)ϕ(j + 50π),

KMM( f7) = ∑(i,j)∈D µ(i, j)ϕ(i + 50π), and

KMM( f8) = ∑(i,j)∈D µ(i, j)ϕ(j + (50 + i− j)π).

A preference for both f6 and f7 against f5 and f8 implies

∑(i,j)∈D µ(i, j)[ϕ(j + (50 + j− i)π)− ϕ(j + 50π) + ϕ(i + (50 + i− j)π)− ϕ(i + 50π)] < 0.

However, if ϕ is concave, for all (i, j):

ϕ(j + (50 + j− i)π)− ϕ(j + 50π) + ϕ(i + (50 + i− j)π)− ϕ(i + 50π) ≥ 0.

To prove this, let us define a(i, j) = ϕ(j + (50 + i− j)π)− ϕ(j + 50π), and

b(i, j) = ϕ(i + (50 + j− i)π)− ϕ(i + 50π).

Assume j ≥ i; hence, a(i, j) ≤ 0 and b(i, j) ≥ 0. Note that j + 50π − (j + (50 + i− j)π) =

i + (50 + j− i)π − (i + 50π) = (j− i)π > 0. Consequently, the same increase (i.e., (j− i)π )

of the argument of ϕ is applied to two different levels: i + 50π and j + (50 + i− j)π. If j ≥ i,

i + 50π ≤ j + (50 + i− j)π. ϕ being increasing and concave, the impact of an increase of the

arguments in terms of ϕ units should be lower for the highest argument. As a consequence,

b(i, j) ≥ −a(i, j).

The opposite case i ≥ j is obtained by symmetry.
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Discussion

The discussion is built around two opened questions related to 1. the nature - rational or not

- of ambiguity attitudes, and 2. the role of different actors - decision theorists, contradictors

and experimentalists - with regards to improvements of the field.

Are ambiguity attitudes rational?

The existence of ambiguity attitudes is widely supported by empirical evidence. It follows

that the question of whether or not DMs are ambiguity neutral was quickly cut off6; but

whether DMs should be ambiguity neutral is a still-in-debate question. It leads to discuss

three hypotheses:

1. ambiguity attitudes are a convincing and consistent behavioral demonstration of the

descriptive insufficiencies of Savage expected utility,

2. ambiguity attitudes result from possible cognitive limitations of DMs who act on the

basis of series of heuristics,

3. ambiguity attitudes result from sensitivity to framing effects or to more generally per-

nicious representations of decision problems.

6An alternative strategy exists: de Finetti (1977) banishes ambiguity by simply stating: "all probabilities are
equally well known to ourselves so that ambiguity is meaningless".
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While (1) leads to update what has to be taken as normative in decision models, (2) is an

in-between position and envisages ambiguity attitudes as a kind of second-best in decisions

and (3) leads to qualify ambiguity attitudes as irrational.

Is ambiguity neutrality rational?

The nature, rational or irrational, of ambiguity attitudes, depends on the definition of ratio-

nality adopted.

Model-based rationality

First, a model-based definition of rationality would imply that any DM who departs from the

standard SEU model by treating objective and subjective probabilities differently, or by failing

in assigning a personal probability to an event, is irrational; it follows that a DM is irrational

whenever he is not ambiguity neutral. To show the limitation of this approach, let us discuss

whether ambiguity neutrality is necessarily rational.

A first perspective is given by Gilboa et al. (2008b). They argue that, because Savage (1954)

stays mute about the origin and formation of the prior beliefs, being Savagean is not sufficient

for rationality; indeed:

"Many beliefs in super natural phenomena and many superstitions are considered

’irrational’ because they conflict with evidence. Yet, nothing prevents a DM from

holding such beliefs and also satisfying Savage’s axioms. In others words, Savage’s

axiomatic system restricts choices only to be internally coherent and is therefore

insufficient for an intuitive definition of rationality."

Hence, being ambiguity neutral in the meaning of always having the ability to formulate

a subjective additive probability on any event is not sufficient for rationality. The assump-

tion about completeness of beliefs that underlies Savage’s theory is too strong for rationality.
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We conclude that ambiguity attitudes cannot be pointed out as irrational when considering

model-based rationality. Another side of literature argues that rationality is fundamentally of

subjective nature.

Subjective rationality

Gilboa (2008) proposes two definitions of rationality that differ in their between or within

person foundations. He defines a decision as objectively rational if one can convince any

reasonable person that it is the right thing to do; a decision is subjectively rational if the DM

cannot be convinced that it is a wrong thing to do. The within-person definition of rational-

ity would imply that the DM is not willing to change his behavior after having analyzed it.

Ambiguity aversion has been confirmed for sophisticated subjects (Hogarth and Kunreuther,

1989); hence, being ambiguity averse is rational in the second meaning of subjective rational-

ity. It is worth noticing that until now, no empirical data confront the first between-person

definition of subjective rationality.

Ambiguity aversion as heuristic

Ambiguity aversion can be viewed as a good strategy in some decision contexts that are non

common for the DM, or when better informed agents (like experts) are present for substituting

to the DM when a choice has to be made. In certain cases, it is rational not to decide as argued

by Gilboa, et al. (2008a):

"In the absence of information, it appears more rational to be silent than to pretend

to have knowledge that one does not have."

It follows that it may be reasonable for DMs to be ambiguity averse in the sense of avoiding

situations in which they feel there is not enough information to decide; similarly, delegating

decisions may be a good strategy when experts can be involved.
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Frish and Baron (1988) list reasons that lead to the heuristic that it is a good rule to avoid

making decision under ambiguity: the possibility of the existence of better informed oppo-

nent, the existence of an hostile opponent who will biais the situation in your disadvantage,

a series of identical ambigous gambles are more risky than a series of non-ambiguous gam-

bles in the long run, ambiguous options may incitate to wait for obtaining more information,

the blame and regret arguments . . . Hence, even when it results from heuristics, ambiguity

aversion is a kind of second best in decisions.

Are ambiguity attitudes a consequence of mere framing effects7?

Attributing ambiguity attitudes to framing have concrete normative implications: a model

should account for sensitivity of individuals to the informational structure of a decision con-

text to the extent it cannot be attributed to framing effects since the latter result from judge-

ment errors.

We already discussed ambiguity attitudes as resulting from framing in the case of Ellsberg

two-urn example (2.2.3.). More generally, Frish and Baron (1988) argue that, an ambiguous

urn may be transformed in unambiguous by simple framing. Assume that the decision is one

of a sequence of identical but independent decisions. Propose the subject a bet on either (red

or black) color in the ambiguous urn, one hundred or one thousand times, with a different

ambiguous urn used each time. In the long run, over a long series of such a bets, the informa-

tion becomes irrelevant and reduces to half a chance of winning; hence, the ambiguous urn

turns to be unambiguous. This is a possible frame for the classic risky urn.

The question of whether attitudes in Machina (2009) result from ambiguity or from a

mere framing effect is still in debate. We have seen that Machina paradox involves a complex

uncertainty mix whose association with a specific payoffs scheme leads to reflection effects.

7Framing effects are at play if a DM changes his decision when facing two different descriptions of the same
choice problem.
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Machina assumed that DMs ought to be sensitive to reflection effects since they entail natural

symetry considerations. The way Machina’s problem was proposed to subjects (detailed in

Chapter 6) undermines such symetry effects but promotes others, such as cancelation of com-

mon parts of the bets in the editing phase, potentially followed by violations of coalescing.

However, as soon as choice problems become more complex, framing effects become more

likely to appear.

Theories and paradoxes of ambiguity

The theory of choice under uncertainty has evolved following a series of paradoxes high-

lighting the contradictory aspects of choice behavior. A paradox of behavior is originally a

thought experiment whose empirical confirmation contains enough evidence to conclude to

a violation of the theory of choice assumed beforehand. Hence, the role of the paradoxes is

to lead to further theoretical constructs that however should not depart from minimum ratio-

nality conditions. Paradoxes shake theories but at the same time give rise to the normative

and descriptive improvements required.

The evolution of the theory of individual decision making is motivated by three actors: the

theorists, who define reasonable principles that a DM should follow; the contradictors, who

are interesting in the failure of the theory; and the experimenters who confront behavioral evi-

dence to theoretical predictions. Interactions between actors create fruitful complementarities

but different questions can be individually adress to each of these three actors.

Questions to address to the decision theorist

What should be the limits of theoretical innovations and what are the criteria that lead a

decision theorist to consider a behavioral trait as normatively desirable? What should the

theorist do when the normative and descriptive purposes are in conflict? It is not worthwhile
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to define a behavior that does not exist in the real life, and at the same time, it is not relevant to

describe an existing behavior that cannot be seen as desirable. Applying this to the ambiguity

aversion phenomenon, should it be incorporated in economic models for descriptive purpose

and sometimes until to become a rule of behavior as for instance done by the uncertainty

aversion axiom (MEU: Gilboa and Schmeidler, 1989). Should we say that economic models

should account for ambiguity attitudes because it unquestionably constitutes a behavioral

regularity of the individual decision making or should economic models stay mute arguing

that ambiguity attitudes ought not to play a role in decision. Observation of violations of

normative models leads to consider two solution as suggest by Gilboa (2008):

" [. . . ] we can either bring the theory closer to reality (making the theory a bet-

ter descriptive one), or bring reality closer to theory (preaching the theory as a

normative one)."

Questions to address to the contradictor

When should we stop looking for behavioral anomalies? The complexity of the human be-

havior and its dependence to the decision context makes it easy to build a tricky example

that ends up generating behavior inconsistent with the theory. A theory of decision making

could be falsified as soon as we can find an individual who does not conform with one of its

axiom. The term ’falsification’ may appear too strong especially in the social studies field. A

major falsification, say, a falsification that could give birth to new theories should embedded

enough empirical evidence and should be thought as representing sufficiently concrete and

general context.
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Questions to address to the (lab) experimenter

Two main questions arise when time comes to test paradoxes that incorporate ambiguity fea-

tures. The first one concerns the proper and credible mechanism one should use to generate

ambiguity in the laboratory. By nature, ambiguity should not be determined by a prespecified

nor predictable random mechanism. Second, let us suppose that a proper way to generate

lab-ambiguity has been found. Then, the question of the role and impact of the incentive

mechanism on ambiguity attitudes should be addressed.

What is the proper way to simulate ambiguity? Properly creating ambiguity using a phys-

ical device has always been an experimental challenge. The difficulty for the experimenter is

to find a transparent and credible mechanism for generating ambiguity (this question does

not apply to real-life events like "the temperature in Paris tomorrow", which finds its natural

resolution). It follows that nobody (neither the subject nor the experimenter) should have

information on the way ambiguity is generated, i.e., on the law that governs the random pro-

cess. Under risk, it is plausible that subjects do not distinguish between different ways of

generating objectively known probabilities ("apart from some volatile psychological effects",

see for instance Wakker, 2008). As suggested by the source approach, distinct supports of

uncertainty determine distinct ambiguity attitudes.

In the literature, many empirical studies approximate ambiguity by second order probabil-

ities (Chow and Sarin, 2002; Yates and Zukowski, 1976). A more sophisticated approach (Hey,

Lotito and Maffioletti, 2007) consists in constructing a transparent box containing balls that

are in continuous motion thanks to a jet of wind. Hence, the so-called British Bingo Blower

allows simulating different degrees of ambiguity by varying the number of balls put in the

Blower. Another approach consists in using a quantum random number generator (Abdel-

laoui, L’Haridon and Nebout, 2009), the physical properties of which intrinsically guarantee

the randomness of the process. All these artificial lab-mechanisms are at best a way to clear
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the experimenter’s conscience. Indeed, ambiguity is ultimately an affair of what the subjects

actually believe and none of the previous device could pretend to control this.

What about the efficiency of incentives in the presence of ambiguity? Until there, ex-

periments under ambiguity have raised the problem of how to properly generate ambiguity

experimentally. By contrast, the question of whether the magnitude of the stakes affects am-

biguity attitudes and, as a corrolary, the question of the proper incentive mechanism has not

received much attention. Obviously, the second question can be answered once the first one

has received its natural response. More than risk, ambiguity raises serious problems with

regard to the implementation and the efficiency of incentives. In this respect, the growing

experimental literature on ambiguity appeals from an add-on of Holt and Laury (2002, 2005)

contribution for risk. Thus, if the impacts of incentives on behavior under risk are well-known,

a precise investigation of these effects under ambiguity seems topical.

The major limitation of this triptych is that it defines and observes the sole choice behavior,

neglecting cognitive processes that lead to the decision. As a consequence, ambiguity models

and their experimental measures appear sometimes speculative. Indeed, they are built on pre-

suppositions on the manner individuals represent themselves a decision problem (ambiguity

as a source of uncertainty; ambiguity as a set of beliefs; ambiguity as compound risk). How-

ever, the diversity of approaches that results from the lack of information regarding the true

cognitive process that governs decision is virtuous since it may reflect the inter-individual het-

erogeneity of human decision processes. A complementary psychological perspective would

permit a better investigation of foundations of all of these approaches.
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Conclusion

In this thesis, ambiguity has been studied in a framework where decisions are made in one-

shot problems. Such approach sheds light on what are ambiguity and ambiguity attitudes.

However, it stays quite restrictive; indeed, by definition and by opposition to objective proba-

bilities, subjective beliefs have the property to evolve as soon as new information arise. Hence,

ambiguity and ambiguity attitudes have to be envisaged in a dynamic framework that autho-

rizes DMs to update her beliefs. Many theoretical studies exist (for instance: Ozdenoren and

Peck, 2008; Hanany and Klibanoff, 2007); however, very few empirical studies are concerned

with ambiguity in dynamic settings. It will certainly be a challenging way of research.
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Abstract
From Ellsberg to Machina : Confronting decision models under ambiguity

with experimental evidence

How do decision makers act and how should they act when confronted with uncertainty ?
Economic behavior under uncertainty is often influenced by the informational structure
of the decision context. Remarkably, the joint presence (juxtaposition or combination) of
two sources of uncertainty - namely risk (known probability) and ambiguity (unknown
probability of events) - gives rise to behaviors that depart from standard models of de-
cision making, subjective expected utility and its extension to non-additive probability,
Choquet expected utility ; the essential behavioral component beyond paradoxes of un-
certainty is (non neutral) attitude toward ambiguity. The studies reported in this thesis
empirically investigate the heterogeneity of ambiguity attitudes in the light of the variabi-
lity of the features of uncertainty. They deal with two main sorts of cases : the case where
a decision maker faces two separate sources of uncertainty (two-color Ellsberg paradox) ;
the case where a decision maker faces mixed sources of uncertainty (Machina paradox).

Key words : Ambiguity, Behavioral Decision Making, Experimental Economics, Machina
Paradox, Sources of Uncertainty.

Résumé
D’Ellsberg à Machina : les modèles de décision dans l’ambiguïté à l’épreuve

de l’expérimentation

Dans quelle mesure le comportement des décideurs se conforme-t-il aux prédictions des
modèles de décision en environnement incertain ? Le comportement économique est sou-
vent influencé par la structure informationnelle du contexte de décision. Notamment, la
concomitance (juxtaposition ou combinaison) de deux sources d’incertitudes - le risque
(probabilités connues) et l’ambiguïté (probabilités inconnues des événements) - donne lieu
à des comportements non compatibles avec les modèles standards de théorie de la déci-
sion, le modèle d’utilité espérée subjective et son extension aux probabilités non-additives,
le modèle d’utilité espérée à la Choquet ; la composante comportementale à la base des
paradoxes de l’incertitude est le fait que les individus ont une attitude (non neutre) face
à l’ambiguïté. Cette thèse propose différentes études empiriques visant à mettre en evi-
dence l’hétérogénéité des attitudes face à l’ambiguïté à la lumière de la variabilité des
structures d’incertitude. Ces études traitent de deux principaux cas : lorsque le décideur
est confronté à deux sources séparées d’incertitude (paradoxe d’Ellsberg à deux couleurs) ;
lorsque le décideur est confronté à un mix d’incertitudes (paradoxe de Machina).

Mots clés : Ambiguïté, Économie Expérimentale, Paradoxe de Machina, Sources d’In-
certitude, Théorie de la Décision.
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