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nach Frankreich ermöglichte, sowie die Fakultät für Bauingenieurwesen der TU Wien,

welche durch ein Förderungsstipendium den Ankauf von Laborgerät ermöglichte und
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Kurzfassung

Knochen ist ein hierarchisch aufgebautes Material, gekennzeichnet durch eine erstaunliche

Variabilität und Diversität. Knochenersatz- oder Biomaterialien sind wichtige Kompo-

nenten für künstliche Organe und werden auch als Gerüste für Tissue Engineering einge-

setzt. Das Ziel dieser Dissertation ist die Vorhersage der Festigkeit von Knochen und

Knochenersatzmaterialien auf Grund ihrer Zusammensetzung und Mikrostruktur mit-

tels Mehrskalenmodellen. Die theoretischen Entwicklungen werden durch umfangreiche

Experimente an kortikalen Knochen sowie an Biomaterialien aus Hydroxyapatit, Glas-

Keramik und Titanium untermauert.

Kapitel A untersucht verschiedene morphologische Konzepte (Kugel vs. Nadeln) für die

Homogenisierung der linear elastischen Eigenschaften von porösen Polykristallen, wie sie

in der Mineralphase des Knochens vorkommen.

In Kapitel B wird ein erster Versuch zur Modellierung der Festigkeit von Hydroxyapatit-

Biomaterialien vorgeschlagen, aufbauend auf einer mikromechanischen Beschreibung der

Steifigkeit und des spröden Versagens der Kontaktfläche (Interface) zwischen isotropen,

kugelförmigen Kristallen. Um Optimierungsverfahren zur Rückbestimmung der Eigen-

schaften der Kontaktfläche zu vermeiden (wie sie in Kapitel B verwendet werden), wurde

ein alternativer Ansatz (Kapitel C) entwickelt, wo die nichtkugelförmige Form von Hy-

droxyapatitkristallen berücksichtigt wurde. Die Verwendung von Nadeln impliziert einen

1D-Spannungszustand im soliden Kristall in Nadelrichtung, und diese Spannung kann

als relevant für die Spannungen an der Kontaktfläche zwischen den Kristallen erachtet

werden.

Kapitel D präsentiert ein experimentell gestütztes mikromechanisches Modell zur Er-

klärung der Festigkeit des kortikalen Knochens, basierend auf einer neuen Sichtweise für

dessen Versagen: Gegenseitiges duktiles Gleiten von Hydroxyapatit-Mineralkristallen ent-

lang von geschichteten Wasserfilmen geht dem Reißen des Kollagens voran. Es wird

gezeigt, dass das mehrskalige mikromechanische Modell die Festigkeiten für verschiedene

Knochen von verschiedenen Arten vorhersagen kann, auf der Grundlage ihres Mineral- und

Kollagengehalts, ihrer Porositäten und der Steifigkeit und Festigkeit von Hydroxyapatit

und (molekularen) Kollagen.

Experimentelle Untersuchungen und Modellierungen von zwei weiteren Arten von Bio-

materialien begleiten die theoretischen Entwicklungen: In Kapitel E werden poröse

Titaniumproben akustisch und mechanisch getestet und die entsprechenden mechan-

ischen Eigenschaften, Steifigkeit und Festigkeit, von einem poromikromechanischen Mod-

ell vorhergesagt. In Kapitel F wird eine mikromechanische Beschreibung von bioresor-

bierbaren porösen Glas-Keramik-Materialien präsentiert. Ein validiertes Materialmodell

ist im Stande, Beziehungen zwischen der Porosität und der Steifigkeit oder Festigkeit

vorherzusagen.



Abstract

Bone is a hierarchically organized material, characterized by an astonishing variability and

diversity. Bone replacement or biomaterials are critical components in artificial organs,

and they are also used as scaffolds in tissue engineering. The aim of this thesis is the

prediction of the strength of bone and bone replacement materials, from their composition

and microstructure, by means of multiscale models. The theoretical developments are

supported by comprehensive experiments on cortical bone and on biomaterials made of

hydroxyapatite, glass-ceramic, and titanium.

Chapter A investigates different morphological concepts (spheres vs. needles) for ho-

mogenization of linear elastic properties of porous polycrystals, as can be found in the

mineral phase of bone.

Chapter B proposes a first attempt to model the strength properties of hydroxyapatite

biomaterials, based on a micromechanical description of the elasticity and brittle failure

of interfaces between isotropic, spherical crystals. In order to avoid optimization proce-

dures for back-analysis of interface properties (as used in Chapter B), we developed an

alternative approach (Chapter C) where we considered the non-spherical shape of the

hydroxyapatite crystals. Using needles implies a 1D stress state in the bulk phase related

to the needle direction, and this stress can be regarded as relevant for the stresses at the

interface between crystals.

Chapter D presents an experimentally supported micromechanical explanation of corti-

cal bone strength, based on a new vision on bone material failure: mutual ductile sliding

of hydroxyapatite mineral crystals along layered water films is followed by rupture of colla-

gen crosslinks. The multiscale micromechanics model is shown to be able to satisfactorily

predict the strength characteristics of different bones from different species, on the basis

of their mineral/collagen content, their porosities, and the elastic and strength properties

of hydroxyapatite and (molecular) collagen.

Experimental investigations and modeling of two other classes of biomaterials accom-

pany the theoretical developments: In Chapter E, porous titanium samples are tested

acoustically and mechanically, and the corresponding mechanical properties, stiffness and

strength, are predicted by a poro-micromechanical model. Chapter F presents a mi-

cromechanical description of bioresorbable porous glass ceramic scaffolds. Again, a ma-

terial model predicting relationships between porosity and elastic/strength properties is

developed and validated.
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Introductory remarks

Presentation of investigated materials

Bone

Bone materials are characterized by an astonishing variability and diversity. Their hi-

erarchical organizations are often well suited and seemingly optimized to fulfill specific

mechanical functions. This has motivated research in the fields of bionics and biomimetics.

The aforementioned optimization is primarily driven by selection during the biological evo-

lution process. However, apart from the fact that selection is quite unlikely to push bone

skeletal and material design to a well-defined optimum (Nowlan and Prendergast 2005), it

is of great importance to notice that selection is realized at the level of the individual plant

or animal (and not at the material level). Therefore, material optimization in the strictest

sense of the word does not take place. Rather, ‘architectural constraints’ (Seilacher 1970;

Gould and Lewontin 1979) merely due to once chosen material constituents and their

physical interactions imply the fundamental hierarchical organization patterns or basic

building plans, which remain largely unchanged during biological evolution. These build-

ing plans are expressed by typical morphological features which can be discerned across

all bone materials. Katz et al. (1984) distinguish five levels of hierarchical organization,

which have been quite generally accepted in the scientific community:

• The macrostructure at an observation scale of several mm to cm, where cortical (or

compact) bone and trabecular (or spongy) bone can be distinguished [Fig. 1(a) and

(b)];

• The microstructure at an observation scale of several 100 µm to several mm, where

cylindrical units called osteons build up cortical bone, and where the single trabec-

ular struts or plates can be distinguished [Fig.1(c) and (d)];

• The ultrastructure (or extracellular solid bone matrix) at an observation scale of

several µm, comprising the material building up both trabecular struts and osteons

[Fig.1(e)].
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(f)
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Figure 1: Hierarchical organization of bone: (a) whole long bone (macrostruc-

ture)(+); (b) section through long bone (macrostructure)(+); (c) os-

teonal cortical bone (microstructure)(o); (d) trabecular spaceframe

(microstructure)(2); (e) ultrastructure(×); (f) hydroxyapatite crystals

(elementary components)(+); (g) collagen molecules (elementary com-

ponents)(+); (+). . . From (Weiner and Wagner 1998), reprinted, with

permission, from the Annual Review of Materials Science 28, c©1998 by

Annual Reviews, www.annualreviews.org; (o). . . Reprinted with permis-

sion from Lees et al. (1979a). c©1979, American Institute of Physics;

(2). . . reprinted from (Ding and Hvid 2000), with permission from Else-

vier; (×) . . . With kind permission from Springer Science+Business Me-

dia: (Prostak and Lees 1996, p.478, Fig. 5a).
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• Within the ultrastructure, collagen-rich domains [light areas in Fig.1(e)] and collagen-

free domains [dark areas in Fig.1(e)] can be distinguished at an observation scale

of several hundred nanometers. Commonly, these domains are referred to as fibrils

and extrafibrillar space.

• Finally, at an observation scale of several ten nanometers, the so-called elementary

components of mineralized tissues can be distinguished. These are

– Plate or needle-shaped mineral crystals consisting of impure hydroxyapatite

(HA;

Ca10[PO4]6[OH]2) with typical 1 to 5 nm thickness, and 25 to 50 nm length

(Weiner and Wagner 1998) [Fig.1(f)];

– Long cylindrically shaped collagen molecules with a diameter of about 1.2 nm

and a length of about 300 nm (Lees 1987a), which are self-assembled in stag-

gered organizational schemes (fibrils) with characteristic diameters of 50 to

500 nm (Cusack and Miller 1979; Miller 1984; Lees et al. 1990, 1994; Weiner

et al. 1997; Weiner and Wagner 1998; Rho et al. 1998; Prostak and Lees 1996),

[Fig.1(g)]; several covalently bonded fibrils are sometimes referred to as fibers;

– Different non-collagenous organic molecules, predominantly lipids and proteins

(Urist et al. 1983; Hunter et al. 1996); and

– Water.

The present thesis extends a previously published multi-scale model for bone elasticity

(Fritsch and Hellmich 2007) to bone strength, with emphasis on the material ‘cortical

bone’ (see Chapter D).

Biomaterials and tissue engineering scaffolds

Biomaterials are critical components in artificial organs, and they are also used as scaf-

folds in tissue engineering (see next paragraph for more details). Biomaterial production

includes metals, ceramics, polymers, and biocomposites. Metals such as stainless steel,

cobalt alloys, titanium and titanium alloys are preferred for orthopedic applications due

to their high strength and toughness. Ceramics are solid materials composed of inorganic,

non-metallic substances. They are produced at high temperatures above 500◦C and are

characterized by their brittleness and high hardness. Bioceramics are used for implants

and in the repair and reconstruction of diseased or damaged body parts. Examples of

bioceramics are alumina, zirconia, titania, tricalcium phosphate, hydroxyapatite, calcium

aluminates, bioactive glasses and glass-ceramics.

Tissue engineering is the laboratory-based design and construction of living, functional

components that can be used for the regeneration of malfunctioning tissues (Buttery and
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Bishop 2005). Ideally, stem cells are extracted from a patient, seeded on a scaffold in vitro,

and with the help of biological signals a tissue will grow. In more detail, the term scaffold

refers to a structure, realized with natural or synthesized materials, which is able to pro-

mote cellular regeneration and to guide bone regeneration. Therefore, synthetic scaffolds

may be seeded with carefully chosen biological cells and/or growth factors. Within this

concept, the main role of a scaffold is to assure a mechanical support to the growing tissue,

to guide this growth and to induce correct development of the bony organ. Due to their

stimulating effects on bone cells, ceramics (such as hydroxyapatite, β-tricalcium phos-

phate, bioactive glasses, or glass ceramics) are identified as expressly promising materials

for fabrication of tissue engineering scaffolds.

However, the design of such scaffolds is still a great challenge since (at least) two competing

requirements must be fulfilled:

1. on the one hand, the scaffold must exhibit a sufficient mechanical competence,

i.e. stiffness and strength comparable to natural bones;

2. on the other hand, once the scaffold would be implanted into the living organism,

it should be continuously resorbed and replaced by natural bones. This typically

requires a sufficient pore space (pore size in the range of hundred micrometers

and porosity of more than 50-60% (Cancedda et al. 2007)), which discriminates

the aforementioned mechanical properties, and therefore competes with the first

requirement.

As concerns biomaterials, the present work focuses on modeling the macroscopic mechan-

ical properties (elasticity and strength) of hydroxyapatite biomaterials as their properties

are very similar to those of one major component of natural bone, namely bone mineral

(see Chapters B and C). In particular the third paper (Chapter C) lays the foundation

for a micromechanical description of the extracellular mineral, relevant for bone (dealt

with in Chapter D).

In addition, mechanical characterization through acoustic, uniaxial, and triaxial testing as

well as application of micromechanical models is shown for porous titanium biomaterials

(see Chapter E) and porous glass-ceramic scaffolds (see Chapter F).

Hypotheses and limits

Morphology

The real morphology of bone mineral crystals is still an open question. Observations with

atomic force microscopy (Eppell et al. 2001; Tong et al. 2003; Hassenkam et al. 2004),

scanning electron microscopy (SEM) and transmission electron microscopy (TEM) (Traub
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et al. 1989; Su et al. 2003) reveal a rather plate-shaped morphology, being in contrast to

a needle-like crystal shape observed with TEM (Lees et al. 1994) or X-ray small angle

scattering (Fratzl et al. 1996).

The same ambiguity can be found for artificially produced hydroxyapatite biomaterials.

There is evidence for spherical crystals from SEM (De With et al. 1981; Liu 1997), but

also for rather elongated morphologies (Martin and Brown 1995). These hydroxyapatite

ceramics are typically produced by sintering at temperatures above 500◦C with resulting

crystal size in the micrometer range. There are only few attempts to synthesize hydrox-

yapatite at physiological temperatures (Martin and Brown 1995; Tadic and Epple 2003),

and only the latter study produced nanosized crystals.

Given the absence of a confirmed morphological description of hydroxyapatite crystals

in artificial biomaterials as well as in natural bone, different hypotheses were tested.

The aim was to identify a morphological description being sufficient for prediction of the

mechanical properties of both materials.

In Chapter B, hydroxyapatite biomaterials are envisioned as porous polycrystals with a

non-porous matrix. This matrix consists of spherical crystals with weak interfaces. A

second approach is presented in Chapter C: Based on the morphological description of

a polycrystal developed in Chapter A, hydroxyapatite biomaterials are represented as a

polycrystal consisting of uniformly distributed crystal needles and spherical pores. The

experimental validation for elasticity and strength indicates the superiority of the latter

model.

Brittle versus ductile behavior of crystals

In Chapter C, a brittle behavior of the hydroxyapatite crystal needles within biomaterials

is considered, whereas in Chapter D, we propose a (layered water-induced) ductile behav-

ior for interfaces between the hydroxyapatite crystals as part of natural collagenous bone

tissue. The reason for the different behaviors may well lie in the characteristic size of

the crystals, and hence of the nature of their contact surfaces, the crystals in collagenous

bone tissue being much smaller than the biomaterial crystals. In the same sense, in low or

non-collagenous tissues, such as specific whale bones (Zioupos et al. 1997), the minerals

grow larger, and also these tissues exhibit a brittle failure behavior. The idea of increased

ductility due to increased activity of layered water films is also supported by the fact

(Nyman et al. 2008) that bound water content is correlated to bone toughness; and this

idea fits well with the suggestions of Boskey (2003), that larger crystals (implying less

layered water films per crystal content) would lead to a more brittle behavior of bone

materials.
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Mechanical properties of elementary constituents

Validation of the micromechanical predictions for macroscopic mechanical properties (elas-

ticity and strength) of bone and biomaterials is based on ‘universal’ micro/nanoscopic

mechanical properties of the elementary constituents of the considered material. These

properties are tissue and biomaterial-independent, and they are derived from experimental

investigations. These ‘universal’ properties are the stiffness and strength characteristics

of hydroxyapatite crystals and their interfaces (see Chapters B and C for the case of

artificial biomaterials as well as Chapter D for the case of natural bone), of (molecular)

collagen and of water (see Chapter D), of pure titanium (see Chapter E for the case of

metallic biomaterials), and of a dense glass ceramic matrix (see Chapter F for ceramic

biomaterials).

Concerning the tissue-independent elastic phase properties of bone (Chapter D), we con-

sider the following experiments: Tests with an ultrasonic interferometer coupled with a

solid media pressure apparatus (Katz and Ukraincik 1971; Gilmore and Katz 1982) reveal

the isotropic elastic properties of hydroxyapatite powder, which, in view of the largely

disordered arrangement of minerals (Lees et al. 1994; Fratzl et al. 1996; Peters et al. 2000;

Hellmich and Ulm 2002a), are sufficient for the characterization of the mineral phase

(Hellmich and Ulm 2002b; Hellmich et al. 2004b; Fritsch et al. 2006). Given the absence

of direct measurements of (molecular) collagen, its elastic properties are approximated by

those of dry rat tail tendon, a tissue consisting almost exclusively of collagen. By means

of Brillouin light scattering, Cusack and Miller (1979) have determined the respective

five independent elastic constants of a transversely isotropic material (Table D.1). We

assign the standard bulk modulus of water (Table D.1) to phases comprising water with

mechanically insignificant non-collageneous organic matter.

Concerning the biomaterial-independent elastic properties of artificial hydroxyapatite

crystal (Chapters B and C) we adapt those chosen for bone mineral.

The approach proposed in Chapter B relies on three ‘universal’ material properties of in-

terfaces between single hydroxyapatite crystals represented, for mathematical tractability,

as spheres. The interface properties are difficult to be directly accessed, namely the fric-

tion angle α, the cohesion h, and a dimensionless quantity κ of the interfaces. Therefore,

these phase properties are determined by means of an optimization procedure providing

the closest match of model predictions to experimentally determined uniaxial compressive

strength data of hydroxyapatite biomaterials. Applying an evolution algorithm yields a

set of solution vectors which are equal in terms of the highly satisfactory correlation coef-

ficient between the respective model predictions and the corresponding experimental data

for uniaxial compressive strength (see Section B.5.4).

In order to avoid such an optimization procedure for back-analysis of interface properties,

we developed an alternative approach where we considered the non-spherical shape of

the hydroxyapatite crystals. Using needles suggests a predominant stress state related
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to the needle direction, and given this virtual 1D situation, this stress can be regarded

as relevant for the stresses at the interface between crystals. In this sense, the approach

proposed in Chapter C relies on the strength properties of interfaces between needle-

shaped hydroxyapatite crystals, expressed by the bulk phase ‘hydroxyapatite’, namely its

tensile and shear strength, σult,tHA and σult,sHA . We are not aware of direct strength tests on

pure hydroxyapatite (with φ = 0). Therefore, we consider one uniaxial tensile test and

one uniaxial compressive test on the densest samples available. From these two tests, we

back-calculate the universal tensile and shear strength of pure hydroxyapatite relevant for

crystal interfaces (Table C.2). It is interesting to note that consideration of the normal

stress alone proved to be not sufficient for predicting macroscopic failure, in particular

for low porosities in uniaxial compression. Only the ‘mixed’ formulation of the failure

criterion taking into account normal and shear stresses (see Section C.3.2) inside the

needles delivers satisfying macroscopic strength predictions.

Experimental data for model validation

The micromechanical models presented in Chapters B-F are based on experimentally de-

termined elasticity and strength properties of the elementary material components. The

models predict, for each set of tissue or biomaterial-specific volume fractions (e.g. porosi-

ties), the corresponding tissue or biomaterial-specific elasticity and strength properties at

all observation scales. Thus, a strict experimental validation of the mathematical model

is realized as follows: (i) different sets of volume fractions are determined from compo-

sition experiments on different bone or biomaterial samples; (ii) these volume fractions

are used as model input, and (iii) corresponding model-predicted stiffness and strength

values (model output) are compared to results from stiffness and strength experiments on

the same or very similar bone or biomaterial samples.

Elastic macroscopic properties of biomaterials can be determined through uniaxial quasi-

static mechanical tests, ultrasonic techniques or resonance frequency tests (Chapters C, E

and F). Typical sample geometries include cylinders (diameter 5 mm, length 10 mm) for

titanium samples (Chapter E) and glass ceramic scaffolds (Chapter F), and millimeter or

centimeter-sized cylinders, bars or discs for hydroxyapatite biomaterials (see Chapter C

and Table C.1). In case of ultrasonic testing, the length of the propagating wave has

to be taken into account: If the wavelength is considerably smaller than the diameter of

the specimen, a (compressional) ‘bulk wave’, i.e. a laterally constrained wave, propagates

in a quasi-infinite medium. On the other hand, if the wavelength is considerably larger

than the diameter of the specimen, a ‘bar wave’ propagates, i.e. the specimen acts as

one-dimensional bar without lateral constraints.

Macroscopic uniaxial strength properties of bone and biomaterial samples can be deter-

mined through quasi-static tensile, compressive and bending tests (Chapters C-F). Typi-

cal sample geometries include cylinders (diameter 5 mm, length 10 mm) for titanium sam-
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ples (Chapter E) and glass ceramic scaffolds (Chapter F), millimeter or centimeter-sized

cylinders, bars or discs for hydroxyapatite biomaterials (see Chapter C and Table C.1)

and millimeter or centimeter-sized cylinders or parallelepipeds, often with reduced cross

section, for bone (see Chapter D and Table D.4).

Original contributions to the field of micromechanical

modeling

Effect of morphology in self-consistent schemes

The classical self-consistent scheme (Hershey 1954; Kröner 1958; Hill 1963) is often used

for modeling the overall elastic properties of porous polycrystals. It consists in embedding

spherical inclusions into a matrix with stiffness of the homogenized material. This ap-

proach predicts a vanishing overall stiffness (‘percolation threshold’) for porosities greater

than 50%.

In Chapter A, it is proposed to replace spherical solid inclusions by a set of infinitely many

uniformly oriented cylindrical inclusions (needles). All these needles are identical with

respect to shape and material behavior, while being oriented in all directions in space.

This has two implications: (i) the stiffness tensor related to a single crystal is a function of

the Euler angles, while the components are orientation-independent in a local base frame,

and (ii) the (overall) effective stiffness tensor of the porous polycrystal is isotropic.

Interfaces

Interfaces are often believed to play a role in the mechanical behavior of mineralized

biological and biomimetic materials (Bhowmik et al. 2007). In Chapter B, porous hy-

droxyapatite biomaterials are represented as a (dense) polycrystal with weak interfaces,

which serves as the skeleton of a porous material defined one observation scale above.

In detail, isotropic single crystals of typically quasi-spherical shape are separated from

each other by very thin (essentially 2D) interfaces. The interface stiffness tensor exhibits

an infinite normal component and a positive tangential component, and its load bearing

capacity is characterized by a Coulomb-type law, considering the tangential and normal

components of the traction force acting on the interface (see Section B.3 for details).

In order to determine the effective failure properties resulting from local (brittle) failure

characteristics and from the interactions between interfaces and bulk single crystals, the

local interface forces have to be related to the ‘macroscopic’ stresses. The tangential and

normal traction forces occurring in the interface failure criterion are non-homogeneously

distributed across the interfaces. Failure will occur where relatively high tangential trac-

tion forces encounter a relative low resistance due to relatively low normal traction forces.
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Instead of trying to model the actual force fields across the interfaces, we estimate the

effect of the actual force distribution through so-called effective traction forces, as it is

commonly done for stress, strain, or force fields in the context of continuum micromechan-

ics (Suquet 1997a; Dormieux et al. 2007). In this line, we represent the failure-inducing

interplay between moderate normal traction forces and tangential traction force peaks

by means of two different effective measures for the normal and the tangential traction

forces, respectively: (i) first-order moments of normal forces, and (ii) second-order mo-

ments (also called quadratic average) of tangential forces, in the line of (Kreher 1990;

Kreher and Molinari 1993; Dormieux et al. 2002). The relation between the quadratic

average and the macroscopic stress is established through energy considerations. Remark-

ably, the second-order moment of tangential tractions over all interfaces within the RVE

is proportional to the ‘macroscopic’ equivalent deviatoric stress, and local, Coulomb-type

brittle failure in the interfaces implies Drucker-Prager-type (brittle, elastic limit-type)

failure properties at the scale of the polycrystal.

It is also interesting to note that the elastic, brittle failure criterion is quasi-identical to the

yield surface of a porous medium obtained through non-linear homogenization (Dormieux

2005; Dormieux et al. 2006b) which is related to failure of a ductile solid matrix obeying

a Drucker-Prager criterion. The ductile criterion is even identical to the elastic domain

for incompressible solid matrices, see Section B.5 for a detailed discussion.

Organization of the thesis

The overall aim of this thesis is the prediction of bone strength from its composition and

microstructure. Classically, the strength of bone materials is thought to be related to

the strength properties of hydroxyapatite and collagen, and/or interfaces between these

constituents. Chapters B and C concentrate on the failure properties of artificial hydrox-

yapatite biomaterials which are very similar to natural bone mineral, based on a morpho-

logical concept presented in Chapter A. A micromechanical model for bone strength is

presented in Chapter D, while some experimental investigations and modeling of bioma-

terials accompany the theoretical developments (Chapters E and F).

Chapter A is dedicated to the homogenization of linear elastic properties of porous

polycrystals built up of needle-like platelets or sheets. Such microstructures can be found

in a number of biological and man-made materials such as the mineral phase of bone, the

cement paste of concrete or gypsum. Within a self-consistent scheme the solid phase is

represented by cylindrical inclusions (needles). Uniform and axisymmetrical orientation

distribution of linear elastic, isotropic as well as anisotropic needles is considered and

the results are compared to the classical ones related to spherical inclusions. As a key

result, a porosity lower than 0.4 is shown to result in the (overall) elastic properties

of the polycrystal with uniformly oriented needles, which are quasi-identical to those of



Introductory remarks 10

a polycrystal with solid spheres. However, as opposed to the sphere-based model, the

needle-based model does not predict a percolation threshold for inclusions with infinite

aspect ratio.

Chapter B proposes a first attempt to model the strength properties of hydroxyapatite

biomaterials, based on a micromechanical description of the elasticity and brittle failure of

interfaces between isotropic crystals in a (dense) polycrystal, which serves as the skeleton

of a porous material defined one observation scale above. Equilibrium and compatibility

conditions, together with a suitable matrix-inclusion problem with a compliant interface,

yield the homogenized elastic properties of the polycrystal, and of the porous material

with polycrystalline solid phase. Incompressibility of single crystals guarantees finite shear

stiffness of the polycrystal, even for vanishing interface stiffness, while increasing the latter

generally leads to an increase of polycrystal shear stiffness. Corresponding elastic energy

expressions give access to effective stresses representing the stress heterogeneities in the

microstructures, which induce brittle failure. Thereby, Coulomb-type brittle failure of

the crystalline interfaces implies Drucker-Prager-type (brittle, elastic limit-type) failure

properties at the scale of the polycrystal. At the even higher scale of the porous material,

high interfacial rigidities or low interfacial friction angles may result in closed elastic do-

mains, indicating material failure even under hydrostatic pressure. This micromechanics

model can satisfactorily reproduce the compressive experimental strength data of differ-

ent (brittle) hydroxyapatite biomaterials, across largely variable porosities. Thereby, the

brittle failure criteria can be well approximated by micromechanically derived criteria

referring to ductile solid matrices, both criteria being even identical if the solid matrix is

incompressible.

A second approach for modeling the strength properties of hydroxyapatite biomaterials

is addressed in Chapter C, with the aim to predict uniaxial compressive and tensile

failure. Thereby, these biomaterials are envisioned as porous polycrystals consisting of

(isotropic) hydroxyapatite needles and spherical pores, in the line of Chapter A. Failure

possibly occurs at the interfaces of the crystal needles, but modeling interfaces between

non-spherical objects is extremely complex. Therefore, the effect of ‘micro’-interface be-

havior of elongated 1D particles on the overall ‘macroscopic’ material is mimicked by

equivalent ‘bulk’ failure properties of the crystal needles. Validation of respective mi-

cromechanical models relies on two independent experimental sets: Biomaterial-specific

macroscopic (homogenized) stiffness and uniaxial (tensile and compressive) strength pre-

dicted from biomaterial-specific porosities, on the basis of biomaterial-independent (‘uni-

versal’) elastic and strength properties of hydroxyapatite, are compared to corresponding

biomaterial-specific experimentally determined (acoustic and mechanical) stiffness and

strength values. The good agreement between model predictions and the corresponding

experiments underlines the relevance of this approach.

Chapter D proposes an experimentally supported micromechanical explanation of corti-

cal bone strength, based on a new vision on bone material failure: mutual ductile sliding of
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hydroxyapatite mineral crystals along layered water films is followed by rupture of collagen

crosslinks. In order to cast this vision into a mathematical form, a multiscale continuum

micromechanics theory for upscaling of elastoplastic properties is developed, based on

the concept of concentration and influence tensors for eigenstressed microheterogeneous

materials. The model reflects bone’s hierarchical organization, in terms of representative

volume elements for cortical bone, for extravascular and extracellular bone material, for

mineralized fibrils and the extrafibrillar space, and for wet collagen. In order to get access

to the stress states at the interfaces between crystals, the extrafibrillar mineral is resolved

into an infinite amount of cylindrical material phases oriented in all directions in space

in the line of Chapter C. The multiscale micromechanics model is shown to be able to

satisfactorily predict the strength characteristics of different bones from different species,

on the basis of their mineral/collagen content, their intercrystalline, intermolecular, la-

cunar, and vascular porosities, and the elastic and strength properties of hydroxyapatite

and (molecular) collagen.

In Chapter E, titanium with different porosities, produced on the basis of metal pow-

der and space holder components, is investigated as bone replacement material. For the

determination of mechanical properties, i.e. strength of dense and porous titanium sam-

ples, two kinds of experiments were performed – uniaxial and triaxial tests. The triaxial

tests were of poromechanical nature, i.e. oil was employed to induce the same pressure

both at the lateral surfaces of the cylindrical samples and inside the pores. The stiffness

properties were revealed by acoustic (ultrasonic) tests. Different frequencies give access

to different stiffness components (stiffness tensor components related to high-frequency-

induced bulk waves versus Young’s moduli related to low-frequency-induced bar waves), at

different observation scales; namely, the observation scale the dense titanium with around

100 µm characteristic length (characterized through the high frequencies) versus that of

the porous material with a few millimeters of characteristic length (characterized through

the low frequencies). Finally, the experimental results were used to develop and validate a

poro-micromechanical model for porous titanium, which quantifies material stiffness and

strength from its porosity and (in the case of the aforementioned triaxial tests) its pore

pressurization state.

Chapter F presents a micromechanical description of bioresorbable porous glass ceramic

scaffolds used for bone tissue engineering. Based on continuum micromechanics, a ma-

terial model predicting relationships between porosity and elastic/strength properties is

employed. The model, which mathematically expresses the mechanical behavior of a

ceramic matrix (based on a glass system of the type SiO2-P2O5-CaO-MgO-Na2O-K2O;

called CEL2) in which interconnected pores are embedded, is carefully validated through

a wealth of independent experimental data. The remarkably good agreement between

porosity-based model predictions for the elastic and strength properties of CEL2-based

porous scaffolds and corresponding experimentally determined mechanical properties un-

derlines the great potential of micromechanical modeling for speeding up the biomaterial
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and tissue engineering scaffold development process – by delivering reasonable estimates

for the material behavior, also beyond experimentally observed situations.
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Porous polycrystal-type microstructures built up of needle-like platelets or sheets are

characteristic for a number of biological and man-made materials. Herein, we consider

(i) uniform, (ii) axisymmetrical orientation distribution of linear elastic, isotropic as well

as anisotropic needles. Axisymmetrical needle orientation requires derivation of the Hill

tensor for arbitrarily oriented ellipsoidal inclusions with one axis tending towards infinity,

embedded in a transversely isotropic matrix; therefore, Laws’ integral expression of the

Hill tensor is evaluated employing the theory of rational functions. For a porosity lower

0.4, the elastic properties of the polycrystal with uniformly oriented needles are quasi-

identical to those of a polycrystal with solid spheres. However, as opposed to the sphere-

based model, the needle-based model does not predict a percolation threshold. As regards

axisymmetrical orientation distribution of needles, two effects are remarkable: Firstly, the

sharper the cone of orientations the higher the anisotropy of the polycrystal. Secondly,
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for a given cone, the anisotropy increases with the porosity. Estimates for the polycrystal

stiffness are hardly influenced by the anisotropy of the bone mineral needles. Our results

also confirm the very high degree of orientation randomness of crystals building up mineral

foams in bone tissues.

A.1 Introduction

Porous polycrystal-type microstructures built up of needle-like platelets or sheets can be

found in a number of biological and man-made materials; such as bone (Hellmich et al.

2004a; Hellmich and Ulm 2002a) or eggs (Silyn-Roberts and Sharp 1986), or at the cement

paste level of concrete (Baroughel-Bouny 1994). We here deal with homogenization of

their overall (linear) elastic properties, by means of self-consistent schemes. Thereby, the

solid phase (needles) is represented by cylindrical inclusions (a cylinder being the limit case

of a prolate spheroid with its long axis being very much larger than its spherical axis), and

the (empty) pore inclusions (drained conditions) are spherical; extension to pressurized

pores according to Chateau and Dormieux (2002) is straightforward. Subsequently, we

consider (i) uniform, (ii) axisymmetrical orientation distribution of isotropic as well as

anisotropic needles with elasticity tensor Cs.
A.2 Uniform orientation distribution of needles

Uniformly oriented needles result in isotropic elastic properties of the polycrystal. The

corresponding stiffness estimate CSCS reads asCSCS = (1 − φ)Cs :< [I+ PSCScyl : (Cs − CSCS)]−1 >:

{(1 − φ) < [I + PSCScyl : (Cs − CSCS)]−1 > +φ (I− PSCSsph : CSCS)−1}−1(A.1)

with

< [I+PSCScyl : (Cs−CSCS)]−1 >=

2π∫

ϕ=0

π∫

ϑ=0

[I+PSCScyl (ϑ, ϕ) (Cs−CSCS)]−1 sin ϑ dϑ dϕ

4π
(A.2)

where I, Iijkl = 1/2(δikδjl + δilδkj), is the fourth-order unity tensor, δij is the Kronecker

delta, φ denotes the porosity, PSCSsph and PSCScyl are the fourth-order Hill tensors for spherical

and cylindrical inclusions, respectively. The Hill tensor for spherical inclusions, PSCSsph , is

widely available in the open literature (Eshelby 1957; Suvorov and Dvorak 2002). The

components of the Hill tensor for cylindrical inclusions embedded in an isotropic medium

are given for a base frame coinciding with the long axis of the cylinder (Eshelby 1957).

Transformation of Hill tensors related to differently oriented cylindrical inclusions, to one
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reference frame can be expressed by Euler angles ϑ and ϕ, rendering P = PSCScyl (ϑ, ϕ) in

Eqn.(A.2).

The numerical solution of (A.1) shows that the effective Young’s modulus ESCS is prac-

tically independent of the needles’ Poisson’s ratio νs.

The question arises whether uniform orientation of needles can be appropriately consid-

ered by representing the solid phase simply by spherical inclusions. The corresponding

self-consistent estimate CSCS for identical shape and orientation of inclusions reads as (see

e.g. (Zaoui 1997a)) CSCS = (1 − φ)Cs : {I + PSCSsph : (Cs − CSCS)}−1 (A.3)

In case of an incompressible solid phase (with bulk modulus ks → ∞), (A.3) can be solved

analytically:

µSCS = µs
3(1 − 2φ)

3 − φ
, kSCS =

4(1 − φ)

3φ
µSCS (A.4)

where kSCS and µSCS are the effective bulk and shear moduli, and µs is the shear modulus

of the isotropic solid. This scheme shows a percolation threshold exactly equal to φ = 1
2
,

for any value of the Poisson’s ratio νs of the solid phase. As for a compressible solid

phase, the homogenized Young’s modulus ESCS can still be approximated by the affine

expression Es(1 − 2φ) with an error of at most 4 % relative to the exact solution, i.e.

ESCS is quasi-independent of Poisson’s ratio.

On the entire porosity range, 0 < φ < 1, the self-consistent stiffness estimates based

on uniformly oriented solid needles are quasi-identical for both isotropic and anisotropic

needle behavior [Fig. A.1 (a) and (b), see Fig. A.1(c) for elastic constants (Katz and

Ukraincik 1971) of hydroxyapatite crystals building up porous foams in bone (Hellmich

and Ulm 2002a)]. In addition, on the interval 0 < φ < 0.4, these estimates are quasi-

identical to those based on isotropic solid spheres [Fig. A.1 (a) and (b)]. ¿From a physical

viewpoint, one may argue that, at a sufficiently high concentration, both spherical as well

as isotropic or anisotropic needle-type particles build up similar contiguous matrices.

Particularly, in the vicinity of φ = 0, the first-order expansions of the homogenized elastic

constants with respect to the porosity are identical for the two models with an isotropic

solid phase, reading as:

ESCS

Es
= 1 − 3

2

(1 − νs)(5νs + 9)

7 − 5νs
φ ; νSCS = νs + φ

3(1 − 5νs)(1 − ν2
s )

2(7 − 5νs)
(A.5)

kSCS

ks
= 1 − 3

2

1 − νs
1 − 2νs

φ ;
µSCS

µs
= 1 − 15

1 − νs
7 − 5νs

φ (A.6)

However, as opposed to the sphere-based model, the needle-based model does not predict

any percolation threshold, i.e. ESCS, kSCS and µSCS → 0 only if the volume fraction of the
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Figure A.1: (a) Young’s modulus and (b) Poisson’s ratio of isotropic porous

polycrystals, predicted by the sphere-based and needle-based models, re-

spectively (isotropic spheres . . . dashed lines, uniformly oriented isotropic

needles . . . solid lines, uniformly oriented anisotropic needles . . . dash–dot

lines); (c) Anisotropic and isotropic elasticity of hydroxyapatite (Katz and

Ukraincik 1971).

solid phase becomes very small (φ → 1). From an intuitive viewpoint, this is consistent

with the ‘rice grain effect’: As compared to spheres, needles are more likely to contact

each other, especially at low volume fraction (φ → 1). A first-order expansion in the

vicinity of φ = 1 of µSCS (resp. kSCS) can be sought in the form µSCS ∼ m(1 − φ) [resp.

kSCS ∼ k(1−φ)]. As regards isotropic needles, analytical expressions for m and k can be

derived and proven to be independent of νs :

m =
71 − 2

√
79

1575
, k =

−8 + 2
√

79

189
(A.7)

Accordingly, the limit of νSCS when φ tends towards 1 is independent of νs as well :

lim
φ→1

νSCS =
17 −

√
79

35
(A.8)

A.3 Axisymmetric orientation distribution of needles

Axisymmetrically oriented needles result in transversely isotropic elastic properties of the

polycrystal. With ϑ being measured with respect to the symmetry axis of the orientation

distribution, we consider (i) uniform needle distribution in the cone [0, ϑmax], and (ii)

Gaussian needle distribution around ϑmax/2 with standard deviation sϑ; both expressed

in terms of a distribution function F (ϑ). The corresponding stiffness estimate still obeys

(A.1), while (A.2) now reads as
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< (I+ PSCScyl : δ C)−1 >=

2π∫

ϕ=0

ϑmax∫

ϑ=0

F (ϑ) [I+ PSCScyl (ϑ, ϕ) (Cs − CSCS)]−1 sinϑ dϑ dϕ

2π(1 − cosϑmax)

(A.9)

and while the Hill tensors PSCScyl and PSCSsph now refer to inclusions in a transversely isotropic

material.

Expressions for PSCSsph can be found in Hellmich et al. (2004a), and for determination ofPSCScyl we evaluate Laws’ double integral expression of the Hill tensor (Laws 1977) for

arbitrarily oriented cylindrical inclusions embedded in a transversely isotropic material,

employing the theory of rational functions. Thereby, we arrive at a single-integrated

expression allowing for efficient computational evaluation (see Appendix).

We evaluated Eqn.(A.9) for a uniform distribution of needles between 0 and a maxi-

mum angle ϑmax as well as for a Gaussian distribution with different standard deviations

around ϑmax/2, see Fig. A.2 and A.3. Two effects are remarkable (Fig. A.2): Firstly, as

expected, the sharper the cone of orientations the higher is the anisotropy of the polycrys-

tal. Secondly, the higher the porosity the more pronounced is the effect of the non-uniform

needle orientation distribution, on both the Young’s modulus and the Poisson’s ratio. As

compared to uniform needle distribution between ϑ = 0 and ϑ = ϑmax, the Gaussian

distribution around ϑmax/2 with standard deviation sϑ significantly affects the effective

Poisson’s ratio (compare Fig. A.2 and A.3), while differences in Young’s and shear moduli

are, on the average, less than 7 % for the investigated distributions (Fig. A.2 and A.3).

A.4 Discussion

The present results are also noteworthy from a biomechanical viewpoint: In the ultra-

structure of bones and mineralized tissues hydroxyapatite crystals build up a contiguous

network or mineral foam (Hellmich and Ulm 2002a; Hellmich et al. 2004a). Single crystals

have typical dimensions of 50 nm average length, 25 nm average width, and 1 to 7 nm

thickness (Weiner and Wagner 1998; Fratzl et al. 1996). In a first approximation, they are

often characterized as needles (Fratzl et al. 1996; Sasaki 1991; Fratzl et al. 1991). This

renders the homogenization schemes developed here as appropriate for mineral foams

occuring in bones. In particular, agreement between homogenized elastic properties of

uniformly oriented needles with those of spheres for a porosity lower 0.4 (Fig. A.1)

confirms the use of self-consistent schemes with spherical inclusions for hydroxyapatite

polycrystals (Hellmich et al. 2004a), which have been validated by the experimental data

of (Lees et al. 1983; Lees 1987a). At higher porosities, however, the needle-based scheme

seems to be superior to the sphere-based scheme, since the former accounts for contigu-

ity of the crystals, leading to non-zero homogenized stiffness, while the latter exhibits a
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Figure A.2: Effect of axisymmetric distribution of anisotropic needles (uni-

formly distributed between ϑ = 0 and ϑ = ϑmax) on the longitudinal and

transverse Young’s moduli, Poisson’s ratios, and shear modulus for dif-

ferent porosities [(a) φ = 0.2, (b) φ = 0.6]. Longitudinal components are

shown as solid lines, transversal components as dashed lines, and the shear

modulus as dotted line.
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Figure A.3: Effect of axisymmetric distribution of anisotropic needles

(Gaussian–type distributed around ϑmax/2 with standard deviation sϑ)

on the longitudinal and transverse Young’s moduli and Poisson’s ratios

for different porosities [(a) φ = 0.2, (b) φ = 0.6] and different standard

deviations (sϑ = 2.5o . . . thick lines, sϑ = 12o . . . thin lines). Longitudinal

components are shown as solid lines, transversal components as dashed

lines, and the shear modulus as dotted line.

percolation threshold beyond which the homogenized stiffness vanishes. Indeed, elasticity

experiments (Lees and Page 1992) reveal that mineral crystals do contribute to the overall

stiffness of low-mineralized turkey leg tendon, with a mineral foam porosity larger than

50%.

The present results also confirm the pronounced randomness of crystal orientation in

bone tissues, revealed already by chemical (Peters et al. 2000) or mechanical (Hellmich

and Ulm 2002a) means: Any pronounced orientation of needles leads to high anisotropy

ratios Etran/Elong far beyond two, and up to ten (Fig. A.2). In real bone ultrastructure,

however, this ratio lies always markedly below two (Lees et al. 1979b, 1983; Hellmich and
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Ulm 2002a).

A.5 Appendix: Hill tensor for arbitrarily oriented

cylindrical inclusions embedded in a transversely

isotropic material

The starting point is Laws’ classical expression for the Hill tensor (see for instance (Laws

1977, 1985)) : P =
ω2 ω3

4π

∫

|ξ|=1

Γ

(ξ · AT · A · ξ)3/2
dS(ξ) (A.10)

ξ is the unit length vector pointing from the origin of the sphere to the surface element

dS(ξ). The second-order tensor A describes the shape of the ellipsoid, with base vectors

w1,w2 and w3 pointing in the principal directions of the ellipsoid,

A = w1 ⊗ w1 + ω2 w2 ⊗ w2 + ω3 w3 ⊗w3, ω3 ≫ 1 (A.11)

The fourth-order tensor Γ is defined as

Γ = ξ
s
⊗ K−1

s
⊗ ξ, K = ξ · C · ξ (A.12)

The second-order tensor K is the acoustic tensor, C is the stiffness tensor of the trans-

versely isotropic matrix.
s
⊗ denotes the symmetrized tensor product.

The technique presented hereafter adapts the ideas presented in (Gruescu et al. 2005) and

(Suvorov and Dvorak 2002) to cylindrical inclusions. First, we consider the denominator

of expression (A.10). The unit vector ξ can be expressed in spherical coordinates Φ ∈
[0, 2π] and Θ ∈ [0, π] as ξ1 = sin Θ cos Φ, ξ2 = sin Θ sin Φ and ξ3 = cos Θ, so that

dS = sin Θ dΦ dΘ. Since

ξ · AT ·A · ξ = ω2
3 cos2Θ + sin2Θ (cos2Φ + ω2

2 sin2Φ)

we find with x = cos Θ and γ2 = 1
ω2

3
(cos2Φ + ω2

2 sin2Φ)P =
ω2

4π

2π∫

0

1∫

−1

γ2

[x2 + (1 − x2)γ2]3/2
Γ(x,Φ)

cos2Φ + ω2
2 sin2Φ

(−dx) dΦ (A.13)

Considering ω3 → ∞ (γ → 0), and use of the “Dirac delta function” δ(x)
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lim
γ→0

γ2

[x2 + (1 − x2) γ2]3/2
= 2 δ(x),

∫

δ(x) f(x) dx = f(0) (A.14)

yields, with ω2 = 1, P =
1

2π

2π∫

0

Γ(Θ=
π

2
,Φ) dΦ (A.15)

Next, we consider the numerator of Eqn. (A.10), Γ = ξ
s
⊗ K−1

s
⊗ ξ. Expressing ξ and K

in terms of the base vectors w1 and w2, while adopting z = cotΦ, yields

ξ = cos Φw1 + sin Φw2 = sin Φ(zw1 + w2) (A.16)

K = ξ · C · ξ =

= sin2Φ ((zw1 + w2) · C · (zw1 + w2)) sin2Φ (z2Q + z(R + RT ) + T)
︸ ︷︷ ︸

K
′(z)

(A.17)

when having introduced the second-order tensors Q,R and T as

Q = w1 · C · w1, R = w1 · C · w2, T = w2 · C · w2 (A.18)

K(Φ) = sin2Φ (z2Q + z(R + RT ) + T)
︸ ︷︷ ︸

K
′
(z)

(A.19)

K
′

(z) is a second-order polynomial. In order to obtain the inverse of K
′

(z), we use the

matrix of cofactors (algebraic complements) coK
′

,

(K(z))−1 =
1

sin2Φ
(K

′

)−1 =
1

sin2Φ

1

detK′
(coK

′

) (A.20)

The determinant of K
′

, detK
′

, is a sixth-order polynomial. Thus

Γ = ξ
s
⊗ K−1

s
⊗ ξ =

1

sin2Φ

1

detK′
(ξ

s
⊗ (coK

′

)
s
⊗ ξ) =

=
1

sin2Φ

1

detK′
(sin2Φ (zw1 + w2)

s
⊗ (coK

′

)
s
⊗ (zw1 + w2)) (A.21)

Insertion of Eqn. (A.21) into Eqn. (A.15) and use of Φ = arccot z yields
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P =
1

2π

2π∫

Φ=0

Γ dΦ =
1

2π
2

∞∫

z=−∞

Γ
dz

1 + z2
(A.22)

=
1

π

∞∫

−∞

(zw1 + w2)
s
⊗ (coK

′

)
s
⊗ (zw1 + w2)

(detK′) (1 + z2)
dz (A.23)

The integrand in (A.23) is a rational fraction with a sixth-order polynomial in the nu-

merator and an eighth-order polynomial in the denominator. Hence, the integration can

be based on the Residue Theorem:

∞∫

−∞

f(z) dz = 2iπ
∑

j

Res(f, zj), (A.24)

where zj are the poles with a positive imaginary part, of the function f(z).
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Interfaces are often believed to play a role in the mechanical behavior of mineralized bio-

logical and biomimetic materials. This motivates the micromechanical description of the

elasticity and brittle failure of interfaces between crystals in a (dense) polycrystal, which

serves as the skeleton of a porous material defined one observation scale above. Equi-

librium and compatibility conditions, together with a suitable matrix-inclusion problem

with a compliant interface, yield the homogenized elastic properties of the polycrystal,

and of the porous material with polycrystalline solid phase. Incompressibility of single

crystals guarantees finite shear stiffness of the polycrystal, even for vanishing interface

stiffness, while increasing the latter generally leads to an increase of polycrystal shear

stiffness. Corresponding elastic energy expressions give access to effective stresses rep-
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resenting the stress heterogeneities in the microstructures, which induce brittle failure.

Thereby, Coulomb-type brittle failure of the crystalline interfaces implies Drucker-Prager-

type (brittle, elastic limit-type) failure properties at the scale of the polycrystal. At the

even higher scale of the porous material, high interfacial rigidities or low interfacial fric-

tion angles may result in closed elastic domains, indicating material failure even under

hydrostatic pressure. This micromechanics model can satisfactorily reproduce the ex-

perimental strength data of different (brittle) hydroxyapatite biomaterials, across largely

variable porosities. Thereby, the brittle failure criteria can be well approximated by mi-

cromechanically derived criteria referring to ductile solid matrices, both criteria being

even identical if the solid matrix is incompressible.

B.1 Introduction

Interfaces are believed to often play a fundamental role in the mechanical behavior of

hierarchically organized biological materials. Accordingly, much attention has been paid

to the polymer-filled interfaces between ceramic tablets in nacre (Gennes and Okumura

2000; Okumura and Gennes 2001; Katti and Katti 2001; Katti et al. 2001; Okumura 2002,

2003; Barthelat et al. 2007), but the importance of interfacial behavior was also discussed

for other classes of biological materials, such as bone (Tai et al. 2006).

To gain insight into these material systems, material/microstructure models have been

developed within different theoretical frameworks, such as fracture mechanics and scaling

laws (Gennes and Okumura 2000; Okumura and Gennes 2001; Okumura 2002, 2003),

large-scale elastoplastic Finite Element analyses (Katti and Katti 2001; Katti et al. 2001;

Tai et al. 2006), or periodic homogenization on the basis of a unit cell discretized by Finite

Elements (Barthelat et al. 2007).

In addition to such periodic, FE-based (‘computational’) homogenization approaches,

analytical and/or semianalytical approaches of random homogenization (continuum mi-

cromechanics (Zaoui 1997b, 2002)) have been recently used as to effectively predict the

elastic properties of complicated hierarchically structured material systems (such as bone

(Hellmich and Ulm 2002b; Hellmich et al. 2004b,a; Fritsch and Hellmich 2007), wood

(Hofstetter et al. 2005, 2006), concrete (Bernard et al. 2003; Ulm et al. 2004; Hellmich

and Mang 2005), or shale (Ulm et al. 2005)), from the elasticity and the mechanical

interactions – over different observation scales – of nanoscaled elementary components.

Thereby, not every single detail of the highly random microstructures, but only the essen-

tial morphological features are considered, in terms of homogeneous subdomains (material

phases) inside representative volume elements (RVEs, Fig. B.1), their volume fractions,

their elasticity, and their mechanical interaction. Theoretically, it has been recently well

understood how to extend these homogenization techniques to the ductile failure of (bulk)

phases (Dormieux and Maghous 2000; Bernaud et al. 2002; Barthélémy and Dormieux
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ℓ

ℓ3d3

d

ℓ2d2

Figure B.1: Multistep homogenization: Properties of phases (with character-

istic lengths of d and d2, respectively) inside RVEs with characteristic

lengths of ℓ or ℓ2, respectively, are determined from homogenization over

smaller RVEs with characteristic lengths of ℓ2 ≤ d and ℓ3 ≤ d2, respec-

tively.

2003, 2004; Dormieux et al. 2006c,a) (while applications to real materials (Lemarchand

et al. 2002) are more rare than for the elastic case). In comparison, the treatment of

brittle failure and of interfaces in the framework of random homogenization is still a very

open field: It is the focus of this paper – both fundamentally, and in view of the failure

of biomimetic hydroxyapatite biomaterials.

Extending very recent results (Sanahuja and Dormieux 2005; Dormieux et al. 2007), where

inclusion coatings and interfaces in porous polycrystals were modeled, we here tackle the

description of the elasticity and failure of interfaces between crystals in a (dense) polycrys-

tal, which serves as the skeleton of a porous material defined one observation scale above

(Fig. B.2). Thereby, we show characteristic features of a corresponding new micromechan-

ics model, which is based on matrix-inclusion problems with compliant interfaces (Hashin

1991; Hervé and Zaoui 1993; Zhong and Meguid 1997), and which turns out to reasonably

explain the behavior of porous hydroxyapatite biomaterials, especially for their brittle

failure in the compressive regime.
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AC surface area of spherical crystal with radius a

Aex constant in solution of matrix-inclusion problem with compliant interface

Ai surface area of crystal i

Ain constant in solution of matrix-inclusion problem with compliant interface

a characteristic crystal radius

Bex constant in solution of matrix-inclusion problem with compliant interface

Bin constant in solution of matrix-inclusion problem with compliant interface

Cex constant in solution of matrix-inclusion problem with compliant interface
C fourth-order stiffness tensor of single crystals within the RVE VpolyCpoly fourth-order homogenized stiffness tensor of polycrystal with compliant interfacesCPORO fourth-order homogenized stiffness tensor of a porous material the solid phase

of which is a polycrystal with weak interfaces

Epoly second-order ‘macroscopic’ strain tensor (related to RVE Vpoly of polycrystal with

compliant interfaces)

E0 uniform strain imposed at infinity of matrix surrounding inclusion with compliant interface

Epoly,v ‘macroscopic’ volumetric strain (related to RVE Vpoly of polycrystal with compliant

interfaces)

Epoly,d ‘macroscopic’ equivalent deviatoric strain (related to RVE Vpoly of polycrystal with

compliant interfaces)

er radial unit vector

e
1
, e

2
, e

3
unit base vectors of Cartesian base frame

fi volume fraction of crystal i within the RVE Vpoly

h cohesion of interfaces between single crystalsI fourth-order identity tensor

I entity of interfaces within polycrystalline RVE Vpoly

Iij interface between crystals i and jJ volumetric part of fourth-order identity tensor IK deviatoric part of fourth-order identity tensor I
K second-order interface stiffness tensor

K
′

= 2K second-order interface stiffness tensor in matrix-inclusion problem with compliant interface

Kn normal interface stiffness (component of K)

Kt tangential interface stiffness (component of K)

kC bulk modulus of single crystals

kpoly homogenized bulk modulus of polycrystal with compliant interfaces (RVE Vpoly)

kPORO homogenized bulk modulus of a porous material the solid phase of which is a polycrystal

with compliant interfaces

n normal vector onto surface of a single crystal

RVE representative volume element

r radial coordinate in spherical coordinate systemS fourth-order Eshelby tensor for spherical inclusions

T traction force vector acting on surface element of interface

Tn normal component of T

Tt tangential component of T

T cr
t critical (maximum) tangential traction bearable by intercrystalline interface
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t tangential vector to surface of a single crystal

tr trace of a second-order tensor

VC volume of spherical crystal with radius a

∂VC surface of spherical crystal with radius a

Vi volume of crystal i

∂Vi surface of crystal i

Vpoly volume of an RVE of polycrystal with compliant interfaces

VPORO volume of an RVE of porous material the solid phase of which is a polycrystal with

compliant interfaces

VS volume of solid phase within the RVE VPORO

x position vector within an RVE, either Vpoly or VPORO

α friction angle of interfaces between single crystals

δij Kronecker delta (components of second-order identity tensor 1)

δI Dirac distribution supported on I
ε second-order strain tensor field within single crystals filling RVE Vpoly of polycrystal

with compliant interfaces

θ latitudinal coordinate of spherical coordinate system

κ =
K′

t
a

µC
dimensionless quantity related to rigidity of interface

µC shear modulus of single crystals

µpoly homogenized shear modulus of polycrystal with compliant interfaces (RVE Vpoly)

µPORO homogenized shear modulus of a porous material the solid phase of which is a polycrystal

with compliant interfaces

νpoly homogenized Poisson’s ratio of polycrystal with compliant interfaces (RVE Vpoly)

ξ displacements within and at the boundary of RVE Vpoly

JξK displacement discontinuity at the interfaces between crystals

JξnK normal component of JξK

JξtK tangential component of JξK

[ξ] displacement discontinuity at compliant interface of ‘generalized’ matrix-inclusion problem

ξ
i
, ξ

j
displacements along interface Iij , in crystal i and j, respectively

ξ̄ mean displacement at the interface Iij

ξ
in

displacement field inside the inclusion surrounded by compliant interface and infinite matrix

(related to ‘generalized’ matrix-inclusion problem)

ξ
ex

displacement field throughout the matrix surrounding inclusion coated by compliant

interface (related to ‘generalized’ matrix-inclusion problem)

Σpoly second-order ‘macroscopic’ stress tensor (related to RVE Vpoly of polycrystal

with weak interfaces)

Σpoly,m ‘macroscopic’ mean stress (related to RVE Vpoly of polycrystal with weak interfaces)

Σpoly,d ‘macroscopic’ equivalent deviatoric stress (related to RVE Vpoly of polycrystal with weak

interfaces)

ΣPORO second-order macroscopic stress tensor (related to RVE VPORO of porous

material the solid phase of which is a polycrystal with weak interfaces)

ΣPORO,m macroscopic mean stress (related to RVE VPORO of porous

material the solid phase of which is a polycrystal with weak interfaces)
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ΣPORO,d macroscopic equivalent deviatoric stress (related to RVE VPORO of porous

material the solid phase of which is a polycrystal with weak interfaces)

σ second-order stress tensor field within single crystals filling RVE Vpoly of polycrystal with

compliant interfaces

σin stress field inside the inclusion surrounded by compliant interface and infinite matrix

(related to ‘generalized’ matrix-inclusion problem)

σex stress field throughout the matrix surrounding inclusion coated by compliant interface

(related to ‘generalized’ matrix-inclusion problem)

φ longitudinal coordinate of spherical coordinate system

ϕ volume fraction of pores within the RVE VPORO

χ = µC

kC
dimensionless quantity related to compressibility of single crystals

Ψ macroscopic energy density

1 second-order identity tensor

· first-order tensor contraction

: second-order tensor contraction

⊗ dyadic product of tensors

Table B.1: List of symbols.
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B.2 Fundamentals of continuum micromechanics –

representative volume element

In continuum micromechanics (Hill 1963; Suquet 1997a; Zaoui 1997b, 2002), a material

is understood as a macro-homogeneous, but micro-heterogeneous body filling a repre-

sentative volume element (RVE) with characteristic length ℓ, ℓ ≫ d, d standing for the

characteristic length of inhomogeneities within the RVE (see Fig. B.1), and ℓ ≪ L, L
standing for the characteristic lengths of geometry or loading of a structure built up by

the material defined on the RVE. In general, the microstructure within one RVE is so com-

plicated that it cannot be described in complete detail. Therefore, quasi-homogeneous

subdomains with known physical quantities (such as volume fractions or elastic proper-

ties) are reasonably chosen. They typically include 3D subdomains, and may also include

the 2D interfaces between the 3D subdomains. They are called material phases; bulk

and interface phases, respectively. The ‘homogenized’ mechanical behavior of the overall

material, i.e. the relation between homogeneous deformations acting on the boundary of

the RVE and resulting (average) stresses, or the ultimate stresses sustainable by the RVE,

can then be estimated from the mechanical behavior of the aforementioned homogeneous

phases (representing the inhomogeneities within the RVE), their dosages within the RVE,

their characteristic shapes, and their interactions. If a single phase exhibits a heteroge-

neous microstructure itself, its mechanical behavior can be estimated by introduction of

an RVE within this phase, with dimensions ℓ2 ≤ d, comprising again smaller phases with

characteristic length d2 ≪ ℓ2, and so on, leading to a multistep homogenization scheme

(see Fig. B.1).

B.3 Micromechanics of polycrystal with weak inter-

faces

B.3.1 Micromechanical representation

We consider an RVE with volume Vpoly [Fig. B.2(a) and Fig. B.9(a)], hosting single crystals

of typically quasi-spherical shape and of volume Vi, separated from each other by very

thin (essentially 2D) interfaces Iij between crystals i and j, all interfaces making up the

entity of interfaces I, ∪Iij = I, see Fig. B.2. ‘Macroscopic’ strains Epoly are imposed at

the boundary of the RVE Vpoly in terms of displacements ξ,

on ∂Vpoly : ξ(x) = Epoly · x (B.1)

with x as the position vector within the RVE. The geometrical compatibility of (B.1) with

the local ‘microscopic’ strains ε(x) in the crystals and the displacement discontinuities
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(a) (b)

Vpoly VPORO

i
jVi

Iij

Figure B.2: (a) Polycrystal with interfaces (schematic representation of vol-

ume Vi of crystal i and interface Iij between crystals i and j), serving as

skeleton in a porous material at larger observation scale (b).

JξK = ξ
j
− ξ

i
at the interfaces Iij between the crystals i and j implies (Dormieux et al.

2007)

Epoly =
1

Vpoly

(
∫

Vpoly

ε(x) dV +
∑

ij

∫

Iij

JξK
s
⊗ n dS

)

=

=
1

Vpoly

∑

i

∫

∂Vi

ξ̄
s
⊗ n dS =

∑

i

fi
Vi

∫

∂Vi

ξ̄
s
⊗ n dS (B.2)

with location vector x, normal n onto the spherical surface of the crystals,

ξ̄ = (ξ
i
+ ξ

j
)/2 = ξ

j
− JξK/2 = ξ

i
+ JξK/2 (B.3)

as the mean displacement at the interface Iij , Vi and fi = Vi/Vpoly as the volume and the

volume fraction of the i-th crystal, and ∂Vi as its surface with area Ai. For crystals of the

same shape and size (with volume VC and surface ∂VC), and indiscernible average mean

displacements at their surfaces, (B.2) can be transformed to

Epoly =
1

VC

∫

∂VC

ξ̄
s
⊗ n dS (B.4)

The corresponding ‘macroscopic’ stresses Σpoly are equal to the spatial average of the

(equilibrated) local stresses σ(x) inside the RVE Vpoly,

Σpoly = 〈σ(x)〉 =
1

Vpoly

∫

Vpoly

σ(x) dV =

=
∑

i

fi
Vi

∫

Vi

σ(x) dV =

=
∑

i

fi
Vi

∫

∂Vi

x⊗ [σ(x) · n(x)] dS (B.5)
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For spherical crystals with radius a, surface ∂VC with area AC = 4πa2, and volume

VC = 4/3πa3, (B.5) can be further transformed,

Σpoly =
∑

i

fi
4
3
πa3

∫

∂VC

a er(x) ⊗ [σ(x) · er(x)] dS =

=
∑

i

3fi
AC

∫

∂VC

er(x) ⊗ [σ(x) · er(x)] dS =

=
1

VC

∫

∂VC

a n(x) ⊗ [σ(x) · n(x)] dS =

=
3

AC

∫

∂VC

n(x) ⊗ [σ(x) · n(x)] dS =

=
1

VC

∫

VC

σ(x) dV (B.6)

with radial unit vector er being identical to the normal n. Since the microscopic stresses

are equilibrated (div σ = 0), (B.5) and (B.6) imply (Hill 1963), (Dormieux 2005, p. 118),

that the ‘macroscopic’ stresses act as traction forces Σpoly ·n both at the boundary of the

RVE, ∂Vpoly, and those of single crystals, ∂VC ,

on ∂Vpoly and ∂VC : σ(x) · n(x) = Σpoly · n(x) (B.7)

The relation between Σpoly and Epoly depends on the constitutive behavior of the single

crystals and of the interfaces between them.

B.3.2 Constitutive behavior of interfaces and single crystals

The interfaces are the weakest locations of the material, the load bearing capacities of

which are bounded according to a Coulomb-type law,

∀x ∈ Iij : Tt(x) ≤ T crt = α(h− Tn(x)) (B.8)

with friction angle α, cohesion h, and Tt and Tn as the tangential and normal components

of the traction force T = Tn n + Tt t acting on an infinitesimal interface area around x,

with normal n, and t as the tangential unit vector, t ·n = 0. We consider brittle interface

failure once a critical value Tt = T crt is reached in (B.8).

Below this critical value, the interface behaves linear elastically, i.e. the interface traction

T (x) is related to a displacement discontinuity JξK(x) encountered when crossing the

interface Iij along n(x):

T (x) = K · JξK(x)

with

K = Kn n⊗ n+Kt (1 − n⊗ n), Kn → ∞ (B.9)
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K is the second-order interface stiffness tensor with infinite normal component Kn (no

mutual interpenetration of crystals), and positive tangential component Kt (allowing for

relative tangential movements of crystal surfaces). Also the bulk crystal phase inside the

RVE Vpoly behaves linear elastically,

∀x ∈ Vi : σ(x) = 
C : ε(x) (B.10)

with 
C = 3kC J + 2µC K as the isotropic elastic stiffness of the bulk material phase

comprising all single crystals; with bulk modulus kC and shear modulus µC . J = 1/3 1⊗1

and K = I−J are the volumetric and the deviatoric part of the fourth-order identity tensorI, with components Iijkl = 1/2(δikδjl + δilδkj); the components of the second-order unit

tensor 1, δij (Kronecker delta), read as δij = 1 for i = j and δij = 0 for i 6= j.

The assumption of crystal isotropy deserves to be commented, since single crystals are gen-

erally anisotropic, including approximately transversely isotropic hydroxayapatite (Katz

and Ukraincik 1971). However, hydroxyapatite anisotropy is not very pronounced (Katz

and Ukraincik 1971), and in addition, the disorder of crystals (and of their principal ma-

terial directions) probably renders isotropic phase proporties as suitable approximation

for the purpose of polycrystal property homogenization. This was recently shown quanti-

tatively for polycrystals consisting of perfectly disordered needles, being either isotropic

or anisotropic (Fritsch et al. 2006).

B.3.3 Homogenized elasticity of polycrystal with compliant in-

terfaces

As long as the interfaces behave elastically, the relation between Σpoly and Epoly reads as

Σpoly = Cpoly : Epoly (B.11)

with the ‘macroscopic’ homogenized stiffness tensor of the polycrystal, Cpoly = 3kpoly J +

2µpoly K, with bulk modulus kpoly and shear modulus µpoly; depending on the local elastic

properties 
C and Kt.

Following (Dormieux et al. 2007), the establishment of this dependence is based on the

behavior of a composite solid consisting of a spherical inclusion of radius a and a compliant

interface coating the inclusion, being itself embedded in an infinite matrix exhibiting the

elastic properties Cpoly of the homogenized polycrystal, and being subjected to uniform

strains E0 at infinity (Fig. B.3). Mathematically, we have
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r→∞ : ξ = E0 · x

T = K′·[ξ] Cpoly
C a

n

e1

e2

e3

φ

θ

er

Figure B.3: Matrix-inclusion problem with compliant interface (‘generalized

Eshelby problem’): A spherical inclusion with interface is embedded in

an infinite matrix subjected to uniform strain E0 at infinity. The elastic

properties of the matrix are those of the homogenized material.

r < a : σ = 
C : ε

r = a : T = K′ · [ξ]

with [ξ] = JξK/2, K′ = 2K

r > a : σ = Cpoly : ε

r → ∞ : ξ → E0 · x (B.12)

For determination of kpoly, a purely spherical deformation, E0 = E0 1 is imposed at

r → ∞. Spherical symmetry of both the loading and the geometry of the considered

solid implies vanishing tangential displacement discontinuities at the inclusion interface,

JξtK ≡ 0. Since Kn→∞, also JξnK = 0 (no mutual interpenetration of crystals), and the

matrix inclusion problem with compliant interfaces reduces to the classical Eshelby-type

inclusion problem with a perfect, rigid interface (Eshelby 1957). Then, consideration of

only one bulk phase (the crystals) implies that the overall bulk modulus kpoly is identical

to the crystal bulk modulus kC ,

kpoly ≡ kC (B.13)

For determination of µpoly, a purely deviatoric defomation, E0 = E0(e1 ⊗ e1 − e3 ⊗ e3),

is imposed (see Fig. B.3 for the Cartesian base frame e1, e2, e3). The mathematical form

of the displacement field in the exterior region, r > a (the homogenized material), ξ
ex

, is

established in the line of (Hervé and Zaoui 1993), and reads in spherical coordinates (see
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Fig. B.3 for Eulerian angles φ and θ) as

ξex,r
E0

= (Aex r + 3
Bex

r4
+

5 − 4νpoly
1 − 2νpoly

Cex
r2

)(cos2φ sin2θ − cos2θ)

ξex,θ
E0

=
1

2
(Aex r − 2

Bex

r4
+ 2

Cex
r2

) sin 2θ(1 + cos2φ)

ξex,φ
E0

= −1

2
(Aex r − 2

Bex

r4
+ 2

Cex
r2

) sin θ sin 2φ (B.14)

where νpoly is the Poisson’s ratio of the polycrystal with weak interfaces,

νpoly =
3kpoly − 2µpoly
6kpoly + 2µpoly

(B.15)

The boundary condition in (B.12)4 directly implies Aex = 1, while the constants Bex and

Cex will follow from interface conditions.

Inside the inclusion (r < a, the solid crystal phase), the displacement field ξ
in

reads as

ξin,r
E0

= (Ain r +Bin r
3) (cos2φ sin2θ − cos2θ)

ξin,θ
E0

=
1

2
(Ain r +

(11µC + 15 kC)Binr
3

3 (3kC − 2µC)
) sin 2θ(1 + cos2φ)

ξin,φ
E0

= −1

2
(Ain r +

(11µC + 15 kC)Binr
3

3 (3kC − 2µC)
) sin θ sin 2φ (B.16)

The four remaining constants Bex, Cex, Ain and Bin are determined by enforcing equilib-

rium of forces at the interface r = a:

T = σin · n = σex · n = K
′ · [ξ] (B.17)

together with constitutive laws (B.12)1, (B.12)2 and (B.12)3, see Appendix B.6. This

solution for the displacement fields ξ
in

and ξ
ex

gives access to the traction forces at the

interfaces T (r = a) = σ · n(r = a) = K′ · [ξ
ex

(r = a+) − ξ
in

(r = a−)]. Their use for

estimating the traction forces at the interfaces within the polycrystalline RVE Vpoly yields

the corresponding ‘macroscopic’ stress Σpoly according to (B.6) as

Σpoly =
1

VC

∫

∂VC

a n⊗ (σ · n)(r = a) dS (B.18)

The solution for the displacements at r = a+ turns out to be, according to (B.12)2 and

(B.3), a suitable estimate for the mean displacement ξ̄ at the crystal interface Iij . Use of

this quantity in (B.4) yields the corresponding ‘macroscopic’ strains Epoly in the form

Epoly =
1

VC

∫

∂VC

ξ
ex

(a+)
s
⊗ n dS (B.19)
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Figure B.4: Homogenized shear modulus µpoly of polycrystal, as function of

dimensionless quantity κ = K ′
t a/µC (interfacial rigidity), for different

crystal compressibilities χ = µC/kC, Eq.(B.20).

Shear components Σpoly,12 and Epoly,12 of ‘macroscopic’ stresses (B.18) and strains (B.19),

together with (B.14)–(B.17) and (B.50)–(B.54), give access to µpoly, via µpoly = Σ12/(2E12),

yielding (after elimination of E0) the following expression,

µC
µpoly

= 1 + 3

[

5κ

2
+

(
µC

8µpoly
+

6kC + 17µC
57kC + 4µC

)−1
]−1

(B.20)

with the dimensionless quantity κ = K ′
t a/µC . κ→∞ relates to a rigid interface. The

higher the rigidity κ of the interface, the higher the overall polycrystal shear modulus

(Fig. B.4), for different (dimensionless) compressibilities χ = µC/kC of the single crystals.

Thereby, crystal incompressibility (χ→0) guarantees finite overall shear stiffness even for

an interface with vanishing stiffness (κ = 0), while a polycrystal built up of crystals with

zero bulk modulus (χ→∞) and connected through zero-stiffness interfaces (κ = 0) does

not exhibit any shear stiffness (Fig. B.4), but still the bulk stiffness of the single crystals

according to (B.13). In case of an incompressible solid (kC →∞, χ = µC/kC → 0), it

follows from (B.13) that kpoly→∞, and (B.20) reduces to

48(5 + κ)

(
µpoly
µC

)2

+ (−114 + 9κ)
µpoly
µC

−57κ = 0 (B.21)

B.3.4 Upscaled failure properties of polycrystal with weak in-

terfaces

In order to determine the effective failure properties resulting from local failure character-

istics (B.8) and from the interactions between interfaces and bulk single crystals, we are

left with relating the local interface forces T (x) ∈ I to the ‘macroscopic’ stresses Σpoly, see

(B.5). The tangential and normal traction forces, Tt and Tn, occuring in the interface fail-

ure criterion (B.8), are non-homogeneously distributed across the interfaces. Failure will
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occur where relatively high tangential traction forces encounter a relative low resistance

due to relatively low normal traction forces. Instead of trying to model the actual force

fields across the interfaces, we estimate the effect of the actual force distribution through

so-called effective traction forces, as it is commonly done for stress, strain, or force fields

in the context of continuum micromechanics (Suquet 1997a; Dormieux et al. 2007). In

this line, we represent the failure-inducing interplay between moderate normal traction

forces and tangential traction force peaks by means of two different effective measures

for the normal and the tangential traction forces, respectively: (i) first-order moments of

normal forces, and (ii) second-order moments of tangential forces.

The first-order moment of the normal traction forces, 〈Tn〉, is related to the ‘macroscopic’

mean stress Σpoly,m through

Σpoly,m =
1

3
trΣpoly =

1

3
tr

(
3

AC

∫

∂VC

n(x) ⊗ [σ(x) · n(x)] dS

)

=

=
1

AC

∫

∂VC

σrr(x) dS =
1

AC

∫

∂VC

Tn(x) dS = 〈Tn〉 (B.22)

(B.22) establishes a first link between the ‘macroscopic’ stress Σpoly and the interface

tractions T (x): We use this average (or first-order moment) of normal traction forces as

to estimate the ‘average’ interface resistance T crt in (B.8), according to

T crt ≈ α(h− 〈Tn〉) (B.23)

However, use of the average tangential traction force 〈Tt〉 in failure criterion (B.8) is

problematic since force peaks initializing failure may be cancelled out in the averaging

process. As a remedy, we use the second-order moment
√

〈T 2
t 〉 (also called quadratic av-

erage) as a characteristic or effective value for Tt(x), in the line of (Kreher 1990; Dormieux

et al. 2002, 2007). The relation between
√

〈T 2
t 〉 and Σpoly is established through energy

considerations: The energy stored in the RVE Vpoly can be expressed through the global

‘macroscopic’ energy density Ψ as

Vpoly Ψ =
1

2
Vpoly Σpoly : Epoly =

=
1

2
Vpoly Epoly : Cpoly : Epoly =

= Vpoly(
1

2
kpolyE

2
poly,v + 2µpolyE

2
poly,d) (B.24)

with ‘macroscopic’ volumetric strain Epoly,v = tr Epoly and equivalent deviatoric strain

Epoly,d =
√

1/2 Epoly,d : Epoly,d, Epoly,d = Epoly − 1/3Epoly,v1.
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In order to express Ψ from a microstructural viewpoint, we consider the local constitutive

behavior of the interface [Eq.(B.9)] and of the bulk phase [Eq.(B.10)]. The corresponding

‘macroscopic’ elastic energy stored in the RVE reads as

Vpoly Ψ =
1

2

∫

Vpoly

σ : ε dV +
1

2

∫

I

T · JξK dS =

=
1

2

∫

Vpoly

ε : 
C : ε dV +
1

2

∫

I

JξK · K · JξK dS (B.25)

In order to extract 〈T 2
t 〉 = 1

AC

∫

I
T 2
t dS from (B.25), variations of Ψ with varying Kt

(holding merely Epoly fixed) are studied,

Vpoly
∂Ψ

∂Kt
=

∫

Vpoly

∂ε

∂Kt
: σ dV +

∫

I

∂JξK

∂Kt
· T dS +

+
1

2

∫

I

JξK · (1 − n⊗ n) · JξK dS =

∫

Vpoly

∂ε

∂Kt
: σ dV +

+

∫

Vpoly

∂

∂Kt

(JξK ⊗ n δI) : σ dV +
1

2

∫

I

JξtK
2 dS (B.26)

where T = σ · n was considered and where δI is the ‘Dirac distribution’ of support I,
∫

V
δIfdV =

∫

I
fdS. For transformation of (B.26), we extend Hill’s lemma (Hill 1963) to

the case of displacement discontinuities at the interfaces (Dormieux et al. 2007). Consider-

ing (B.5) and the format (2) for the ‘macroscopic’ strains Epoly, (B.26) can be transformed

to

Vpoly
∂Ψ

∂Kt
=

∫

Vpoly

∂

∂Kt
(ε + JξK ⊗ n δI) : σ dV +

+
1

2

∫

I

JξtK
2 dS =

∂Epoly

∂Kt

: Σpoly +
1

2

∫

I

JξtK
2 dS (B.27)

Fixed ‘macroscopic’ strains Epoly according to (B.1) imply ∂Epoly/∂Kt = 0, so that (B.27)

becomes

Vpoly
∂Ψ

∂Kt
=

1

2

∫

I

JξtK
2 dS =

I
2

〈
JξtK

2
〉

(B.28)

Identification of (B.28) with the derivation of the ‘macroscopic’ expression for the energy

density (B.24) with respect to Kt yields

I
Vpoly

〈
JξtK

2
〉

=
∂kpoly
∂Kt

E2
poly,v + 4

∂µpoly
∂Kt

E2
poly,d (B.29)

When considering 〈T 2
t 〉 = K2

t 〈Jξ2
t K〉 according to (B.9), ∂kpoly/∂Kt = 0 according to

(B.13), and
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Figure B.5: Concentration factor BTt relating ‘macroscopic’ deviatoric stress on

polycrystal to effective tangential traction in intercrystalline interfaces, as

function of dimensionless quantity κ = K ′
t a/µC (interfacial rigidity), for

different crystal compressibilities χ = µC/kC , Eq.(B.32).

Σpoly,d = 2µpolyEpoly,d, (B.29) reduces to

I
Vpoly

〈T 2
t 〉 = − ∂

∂Kt

(
1

µpoly

)

K2
t Σ

2
poly,d (B.30)

where Σpoly,d is the equivalent deviatoric stress of the ‘macroscopic’ second-order stress

tensor Σpoly,

Σpoly,d =

√

1

2
Σpoly,d : Σpoly,d

withΣpoly,d = Σpoly − Σpoly,m1,

and Σpoly,m =
1

3
trΣpoly (B.31)

Combination of (B.30) with I/Vpoly = 3/(2a) and with κ = K ′
t a/µC yields

√

〈T 2
t 〉 = BTtΣpoly,d

with BTt(χ=
µC
kC
, κ) =

√

−1

3
κ2

∂

∂κ

(
µC
µpoly

)

(B.32)

Remarkably, the second-order moment of tangential tractions over all interfaces within

the RVE,
√

〈T 2
t 〉, is proportional to the ‘macroscopic’ equivalent deviatoric stress Σpoly,d,

expressed by the proportionality factor BTt . The more compressible the solid crystal

(the larger χ = µC/kC), the higher the tangential traction peaks in the intercrystalline

interface, generated by an equivalent deviatoric ‘macroscopic’ stress Σpoly,d. However, the

corresponding concentration factor BTt is bounded by
√

2/5 (Fig. B.5),

lim
χ→∞

BTt(κ) =

√

2

5
(B.33)
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On the other hand, for any constant crystal compressibility χ, stiffening the interface

(enlarging κ = K ′
t a/µC) also increases the peaks of tangential traction force, i.e. the

proportionality factor BTt , again bounded by
√

2/5 (Fig. B.5),

lim
κ→∞

BTt(χ) =

√

2

5
(B.34)

Use of the micro traction-macro stress relationships (B.22) and (B.32) in the local interface

criterion (B.8) yields a ‘macroscopic’ polycrystal-specific brittle-failure criterion in the

form

BTtΣpoly,d ≤ α(h− Σpoly,m) (B.35)

(B.35) expresses that Coulomb-type brittle failure (B.8) in the interfaces between spherical

crystals inside the RVE results in Drucker-Prager-type (brittle) failure properties at the

scale of polycrystal.

B.4 Micromechanics of porous material with poly-

crystalline skeleton

We consider an RVE VPORO [Fig. B.2(b) and Fig. B.9(b)] of a porous material (with

porosity ϕ) where the contiguous solid phase [volume VS, VS = VPORO(1 − ϕ)] is a poly-

crystal with weak interfaces according to Section B.3. The Mori-Tanaka homogenization

scheme has been proven as suitable tool to upscale the elastic properties of the solid phase

[kpoly and µpoly defined through (B.13), (B.20), (B.21)] to the stiffness of such a porous

material, see e.g. (Dormieux 2005; Dormieux et al. 2006b),CPORO = (1 − ϕ)Cpoly :
(
(1 − ϕ)I+ ϕ(I− S)−1

)−1
(B.36)

with the Eshelby tensor S for spherical inclusions reading as (Eshelby 1957)S =
3 kpoly

3kpoly + 4µpoly
J +

6(kpoly + 2µpoly)

5(3kpoly + 4µpoly)
K (B.37)

so that

kPORO =
4kpolyµpoly(1 − ϕ)

3kpoly ϕ+ 4µpoly
(B.38)

µPORO = µpoly
(1 − ϕ)(9kpoly + 8µpoly)

9kpoly(1 + 2
3
ϕ) + 8µpoly(1 + 3

2
ϕ)

(B.39)

We consider brittle failure of the overall porous medium if the polycrystal failure cri-

terion (B.35) is reached in highly stressed regions of the polycrystalline matrix. The
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corresponding (‘micro’-)heterogeneity within the solid matrix has recently been shown

(Dormieux et al. 2002) to be reasonably considerable through so-called (homogeneous)

effective (‘micro’-) stresses, such as the square root of the spatial average over the solid

material phase, of the squares of equivalent deviatoric (‘micro’-)stresses,

√

〈σ2
d〉S =

√

1

VS

∫

VS

1

2
σd(x) : σd(x) dV (B.40)

with σd(x) = σ(x) − 1

3
tr σ(x) 1 (B.41)

The effective deviatoric stress (B.40), used to approximate Σpoly,d in (B.35), is accessi-

ble through energy considerations similar to those of (B.24) to (B.30), and result to be

((Dormieux et al. 2002), (Dormieux 2005, p. 132))

Σ2
poly,d ≈ 〈σ2

d〉S =

[

− ∂

∂µpoly
(

1

kPORO
)Σ2

PORO,m−

− ∂

∂µpoly
(

1

µPORO
)Σ2

PORO,d

]
µ2
poly

(1 − ϕ)
(B.42)

In analogy to (B.23), the effective mean stress level in the solid matrix is chosen as the

stress average over the solid phase,

Σpoly,m ≈ 〈σm〉S =
1

VS

∫

VS

1

3
trσ(x) dV =

=
ΣPORO,m

1 − ϕ
(B.43)

Use of Eqs.(B.43) and (B.42), together with (B.38) to (B.41), (B.13), and (B.20), in (B.35)

yields a failure criterion at the scale of the porous material with polycrystalline interfaces
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in the solid phase,

[

3ϕ

4
−
(
α

BTt

)2
]

Σ2
PORO,m +

+

[
2ϕ (23 − 50νpoly + 35ν2

poly)

(−7 + 5νpoly)2
+ 1

]

Σ2
PORO,d +

+2

(
α

BTt

)2

h(1 − ϕ) ΣPORO,m =

=

(
α

BTt

)2

h2(1 − ϕ)2 (B.44)

with

νpoly = νpoly(kpoly, µpoly) according to (B.15),

µpoly = µpoly(kC , µC , κ) according to (B.20),

and BTt = BTt(χ =
µC
kC
, κ) according to (B.32).

The elastic stress domain of the porous medium the matrix of which is a polycrystal with

brittle interfaces increases with decreasing crystal compressibility χ (Fig. B.6). For the

incompressible limit case, χ→0, (B.44) reduces to

[

3ϕ

4
−
(
α

BTt

)2
]

Σ2
PORO,m +

(

1 +
2

3
ϕ

)

Σ2
PORO,d +

+2

(
α

BTt

)2

h(1 − ϕ) ΣPORO,m =

=

(
α

BTt

)2

h2(1 − ϕ)2 (B.45)

For a crystal compressibility of hydroxyapatite, χ≈0.54 (see also Section B.5), the elastic

domain increases with decreasing interfacial rigidity (Fig. B.7) and with increasing friction

angle α (Fig. B.8). High interfacial rigidities κ or low friction angles α result in closed

elastic domains, indicating possible failure of the porous material even under hydrostatic

stress states Σ = 1Σm, while low interfacial rigidities κ or high friction angles α are

related to open elastic domains, related to infinite resistance of the porous material, as

long as the macroscopic stress state Σ contains a certain hydrostatic amount (Figs. B.7

and B.8).
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Figure B.6: Elastic limits of a porous material the matrix of which is a polycrys-

tal with brittle interfaces, for different crystal compressibilities χ = µC/kC
[Eq.(B.44)]: ϕ=0.5, α=0.3, κ→∞. Uniaxial load path indicated (thin

solid line).
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Figure B.7: Elastic limits of a porous material the matrix of which is a polycrys-

tal with brittle interfaces, for different dimensionless quantities κ=K ′
t a/µC

(interfacial rigidity) [Eq.(B.44)]: ϕ=0.5, α=0.3, χ=0.54. Uniaxial load

path indicated (thin solid line).
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Figure B.8: Elastic limits of a porous material the matrix of which is a poly-

crystal with brittle interfaces, for different friction angles α [Eq.(B.44)]:

ϕ=0.5, κ→∞, χ=0.54. Uniaxial load path indicated (thin solid line).
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(Peelen et al. 1978) (Akao et al. 1981) (Martin and Brown 1995)

ϕ fc ϕ fc ϕ fc

[%] [MPa] [%] [MPa] [%] [MPa]

36 160 2.8 509 27 172.5a

48 114 3.9 465 39 119a

60 69 9.1 415

65 45 19.4 308

70 30

a mean value calculated from three experiments

Table B.2: Experimental data: Compressive strength fc as function of poros-

ity ϕ, for artificial hydroxyapatite produced through different synthesis

routes.

B.5 Application to hydroxyapatite biomaterials

Porous hydroxyapatite (HA) biomaterials are widely used for replacement of hard tis-

sue defects, because of their chemical composition, microstructure and Young’s modulus

being similar to the bone mineral, called carbonated or calcium-deficient hydroxyapatite

(CDHA) (Suchanek and Yoshimura 1998; LeGeros 2002; Hench and Jones 2005). If porous

scaffolds are used as bone replacement material in highly loaded anatomical locations, re-

liability of their mechanical properties is particularly important for the performance of

the implants. Therefore, the prediction of strength of HA biomaterials from their mi-

crostructure and porosity is of particular interest. To the knowledge of the authors,

corresponding micromechanical approaches are extremely rare or inexistent, so that we

check in this Section, to which extent the model developed before can serve the purpose

of the aforementioned prediction.

B.5.1 Materials processing and uniaxial mechanical testing

We here consider the following artificially produced HA materials:

Peelen et al. (1978) controlled the porosity of HA by a variation of the sintering tempera-

ture (1100-1400oC, Table B.2). Compacted commercially available powders were used to

produce HA with porosities between 36 and 70%. Cylindrical samples (diameter: 1 cm,

length: 1-1.5 cm) were tested in compression (Table B.2).

Akao et al. (1981) precipitated HA powder and sintered it at different temperatures (1150-

1300◦C). Porosities ranged from 3 to 19% (Table B.2). Compression tests were performed

on bars with dimensions of 5x5x10 cm3 (Table B.2).

Martin and Brown (1995) prepared calcium-deficient HA formed in aqueous solutions

at physiological temperatures. The authors realized two different liquid-to-solid weight

ratios, resulting in porosities of 27% and 39%, respectively (Table B.2). Cylindrical

samples with diameter of ∼6 mm were tested in compression (Table B.2).
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Figure B.9: Micromechanical representation of a porous hydroxyapatite poly-

crystal by means of a two-step homogenization procedure.

B.5.2 Micromechanical representation of hydroxyapatite bio-

materials

In the hierarchical organization of synthetic hydroxyapatite ceramics, we identify two

different scales which will be considered in the framework of a two-step homogenization

scheme. The first homogenization step refers to an observation scale of several hun-

dreds of microns where hydroxyapatite crystals are separated by boundaries or interfaces

[Fig. B.9(a)]. The latter will be shown to be a potential nucleus for failure of the mate-

rial. The corresponding homogenized material is called ‘hydroxyapatite polycrystal with

interfaces’. At the microstructural scale with a characteristic length of some millimeters

[Fig. B.9(b)], pores are embedded in a matrix which is made up of the material which was

homogenized in the first upscaling step.

B.5.3 Elastic properties of single crystals of hydroxyapatite

An ultrasonic interferometer technique delivers typical values for bulk and shear moduli,

kC = kHA = 82.6 GPa and µC = µHA = 44.9 GPa (Katz and Ukraincik 1971).

B.5.4 Biomaterial-independent properties of interfaces between

hydroxyapatite crystals, α, h, κ – back-analysis

The expression for macroscopic admissible stress states (B.44) contains three material

properties which are difficult to be directly accessed, namely the friction angle α, the

cohesion h, and the rigidity κ of the interfaces. Therefore, these phase properties will

be determined by means of an optimization procedure providing the closest match of
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model predictions to experimentally determined uniaxial compressive strength data of

hydroxyapatite biomaterials, given in Table B.2 (Peelen et al. 1978; Akao et al. 1981;

Martin and Brown 1995).

The sum of squares of relative errors between predicted strength and experimental strength

values is minimized,

G(α, h, κ) =
∑

i

(

f predc,i − f expc,i

f expc,i

)2

→ 0 (B.46)

⇒ αopt, hopt, κopt

where f predc,i denotes predicted uniaxial compressive strength values obtained from Eq.(B.44)

with ΣPORO,m = −f predc,i /3, ΣPORO,d = f predc,i /
√

3, together with Eqs.(B.13), (B.20), and

(B.32), for porosity values ϕi according to Table B.2. f expc,i is the corresponding i-th

experimental strength value, see Table B.2.

We use the ‘two-membered evolution strategy’ (Schwefel 1977; Hellmich and Ulm 2002b),

closely related to the ideas of Darwin’s evolution theory. The components of a three-

dimensional vector of estimations for α, h and κ, (α, h, κ)parent, representing the ‘parent’,

are slightly varied by help of a random number generator (representing ‘mutations’),

resulting in a vector (α, h, κ)child, representing the ‘child’,

(α, h, κ)child = (α, h, κ)parent +

+(Nσαparent,Nσhparent,Nσκparent) (B.47)

N denotes a number produced by a standardized normally distributed random number

generator standardly available in MATLAB (Hunt et al. 2001). σ stands for a scattering

factor which will be dealt with later on.

If the child fits better in its ‘environment’ than the parent, i.e., if

G[(α, h, κ)child] < G[(α, h, κ)parent] (B.48)

see (B.46), vector (α, h, κ)child will be further varied, i.e., it then becomes the parent for

the next generation. If not, the original parent undergoes new mutations.

Based on the number of ‘successes’ of the evolution, i.e., the number of cases for which

Eq.(B.48) holds, the scattering factor σ is changed: If the total number of successes within

the last 10 mutations exceeds a certain threshold (typically 4), σ is enlarged, otherwise it

is reduced.

If the difference between G[(α, h, κ)parent] and G[(α, h, κ)child] lies within a prescribed

tolerance over a certain number of mutations, the optimum (αopt, hopt, κopt) ≈ (α, h, κ)parent
≈ (α, h, κ)child has been reached.
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Figure B.10: Uniaxial compressive strength fc of porous hydroxyapatite bioma-

terial as function of porosity ϕ: Model prediction according to Eq.(B.44) or

Eq.(B.49), evaluated with ΣPORO,m=−fc/3, ΣPORO,d=fc/
√

3, compared

to experimental data (Table B.2). Correlation coefficient r2=0.97.
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Figure B.11: Friction angle-interface rigidity relationship α(κ) suitable for rep-

resentation of strength of hydroxyapatite biomaterials (Fig. B.10).

Applying this procedure, (B.46) to (B.48), to (B.44) and using the experimental data

from Table B.2 yields, depending on the start values of the optimization procedure, a

set of solution vectors (αopt, hopt, κopt) which are equal in terms of the highly satisfactory

correlation coefficient (r2 = 0.97) between the respective model predictions and the cor-

responding experimental data for uniaxial compressive strength (see Fig. B.10). To give

an example, (αopt, hopt, κopt)= (0.6750, 17.2397, 0.9119) and (0.9345, 17.7664, 6.4160) (h

has the dimension [MPa]) are two of these solution vectors. For all calculated ‘optimal’

solution vectors, we find a constant ratio α′ = α/BTt = 1.61 [see Eqs. (B.32) and (B.20)],

implying a relationship between α and κ, depicted in Fig. B.11.

Clearly, it would be interesting to cross-check these interface failure parameters derived

from our ‘inverse method’ with other direct tests. Deplorably, an extensive literature check

could not provide any direct in situ measurements of stresses and failure mechanisms at the

interface ‘micro’ level. The only additional experimental evidence are scanning electron

micrographs (Fig. 2 in Ref. (De With et al. 1981), Figs. 5-7 in Ref. (Martin and Brown

1995)): These images, however, clearly show sharp, rough failure surfaces, coinciding with

the boundaries of single, micrometer-sized grains. This, together with the sharp stress

drops in corresponding (‘macroscopic’) stress-strain diagrams indicating brittle overall



Publication B Fritsch et al. (2007a) 46

failure, strongly suggests brittle failure of the crystal interfaces, as we have modelled

herein.

B.5.5 Brittle versus ductile failure of solid matrix in porous

medium

From a purely mathematical standpoint, it is interesting to compare the elastic domain

(B.44) to the yield surface of a porous medium, related to failure of a ductile (not a brittle)

solid matrix obeying Drucker-Prager criterion (B.35). This yield surface can be obtained

through non-linear homogenization based on effective quantities (B.42) and (B.43), as

detailed in (Dormieux 2005; Dormieux et al. 2006b),

(
3ϕ

4
− α′2)Σ2

PORO,m + (1 +
2

3
ϕ)Σ2

PORO,d +

+2α′2h(1 − ϕ)ΣPORO,m = α′2h2(1 − ϕ)2 (B.49)

with α′ = α/BTt(κ) and h as only two parameters being left for an optimization procedure

to match the experimental data of Fig. B.10 and Table B.2. This procedure delivers a co-

hesion hopt = 16.51 MPa (close to the values obtained for the brittle case in Section B.5.4)

and ratio α′opt = 1.61 which is quasi-identical to the one obtained for the brittle case (Sec-

tion B.5.4), implying an α-κ-relationship quasi-identical to that of Fig. B.11. This means

that the failure of porous hydroxyapatite biomaterials can be equally well represented

by a brittle elastic-limit-type micromechanics model and a ductile one related to limit

analysis. In this context, it is very interesting to note that the ductile criterion (B.49) is

even identical to the elastic domain for incompressible solid matrices, Eq.(B.45).

Accordingly, one might argue that the nature of the heterogeneity of the stresses in the

solid matrix (considered herein by quadratic averages) is far more important for the overall

failure of the material than the precise mode of local interface failure (brittle or ductile).

However, as regards hydroxyapatite biomaterials, experiments (Chu et al. 2002; Martin

and Brown 1995; Pramanik et al. 2007) strongly support brittle failure: A comprehensive

mechanical formulation for its possible origin, namely breaking of weak interfaces between

hydroxyapatite crystals, was the main focus of the present paper.

B.6 Appendix: solution of matrix-inclusion problem

with compliant interface (‘generalized Eshelby

problem’, Fig. B.3)

Solution of Eqs.(B.12), (B.13), (B.14), and (B.16) for the constants Bex, Cex, Ain, and Bin

yields them as:
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Bex = −a5(176µ3
polyµ

2
C + 24µ2

polyµ
3
C

−12µ3
Ca kpolyKt − 171µ2

Ca kpolyKtkC + 240µ3
polykCµC

+136µ3
polyµCaKt + 48µ3

polyaKtkC − 132aµ2
polyKtµ

2
C

+528µ2
polykpolyµ

2
C + 9aµ2

polyKtkCµC

+720µ2
polykpolykCµC + 342µ2

polyµ
2
CkC

+144µ2
polyakpolyKtkC + 408µ2

polyakpolyKtµC

+27aKtkCkpolyµpolyµC − 396aKtµ
2
Ckpolyµpoly

−57µpolyµ
2
CaKtkC − 4µpolyµ

3
CaKt)/N (B.50)

Cex = 5a3(48µ2
polyaKtkC + 240µ2

polykCµC

+136µ2
polyaKtµC + 176µ2

polyµ
2
C − 8µpolyµ

3
C

+9µpolyaKtkCµC − 114µpolyµ
2
CkC − 132µpolyaKtµ

2
C

−57µ2
CaKtkC − 4µ3

CaKt)µpoly/N (B.51)
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Ain = 5(544µ2
polyaKtµC + 192µ2

polyaKtkC + 320µ2
polyµ

2
C

+1536µ2
polykCµC + 16µpolyaKtµ

2
C + 228µpolyaKtkCµC

+408a kpolyµpolyKtµC + 144a kpolyµpolyKtkC

+240kpolyµpolyµ
2
C + 1152kpolyµpolykCµC

+12aKtµ
2
Ckpoly + 171aKtkCkpolyµC)µpoly/N (B.52)

Bin = 240µ2
polyµC(8µpolyµC + 6kpolyµC

−12µpolykC − 9kpolykC)/(a2N ) (B.53)

N = 1408µ3
polyµ

2
C + 192µ2

polyµ
3
C + 24µ3

CakpolyKt

+342µ2
Ca kpolyKtkC + 1920µ3

polykCµC

+1088µ3
polyµCaKt + 384µ3

polyaKtkC

+1664aµ2
polyKtµ

2
C + 1584µ2

polykpolyµ
2
C

+1032aµ2
polyKtkCµC + 2160µ2

polykpolykCµC

+2736µ2
polyµ

2
CkC + 432µ2

polya kpolyKtkC

+1224µ2
polya kpolyKtµC + 801aKtkCkpolyµpolyµC

+852aKtµ
2
Ckpolyµpoly + 1710µpolyµ

2
CkpolykC

+120µpolyµ
3
Ckpoly + 684µpolyµ

2
CaKtkC

+48µpolyµ
3
CaKt (B.54)

They define the displacement fields (B.14) and (B.16), which give access to strains ε =

▽
sξ, stresses σ (via (B.12)1, and (B.12)3 respectively), mean interface displacements ξ̄

and interface tractions T (via (B.12)2).
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Hydroxyapatite biomaterials production has been a major field in biomaterials science

and biomechanical engineering. As concerns prediction of their stiffness and strength, we

propose to go beyond statistical correlations with porosity or empirical structure-property

relationships, as to resolve the material-immanent microstructures governing the overall

mechanical behavior. The macroscopic mechanical properties are estimated from the mi-

crostructures of the materials and their composition, in a homogenization process based on

continuum micromechanics. Thereby, biomaterials are envisioned as porous polycrystals

consisting of hydroxyapatite needles and spherical pores. Validation of respective mi-

cromechanical models relies on two independent experimental sets: Biomaterial-specific

macroscopic (homogenized) stiffness and uniaxial (tensile and compressive) strength pre-

dicted from biomaterial-specific porosities, on the basis of biomaterial-independent (‘uni-
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versal’) elastic and strength properties of hydroxyapatite, are compared to corresponding

biomaterial-specific experimentally determined (acoustic and mechanical) stiffness and

strength values. The good agreement between model predictions and the corresponding

experiments underlines the potential of micromechanical modeling in improving bioma-

terial design, through optimization of key parameters such as porosities or geometries of

microstructures, in order to reach desired values for biomaterial stiffness or strength.
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C.1 Introduction

Hydroxyapatite [HA, with chemical formula Ca10(PO4)6(OH)2 in its pure (‘stoichiomet-

ric’) form] biomaterials production has been a major field in biomaterials science and

biomechanical engineering due to their excellent biocompatibility, and since their chemi-

cal composition, structure, and mechanical properties are similar to bone mineral (Hench

and Jones 2005). Aiming at mimicking the bone mineral and its important biological

and mechanical properties within bone tissues, HA is widely used for biomedical applica-

tions: They encompass coating of orthopedic and dental implants (Dorozhkin and Epple

2002), artificial hard tissue replacement implants in orthopedics, maxillofacial and den-

tal implant surgery (Charrière et al. 2001). Thereby, HA is used either in a pure state

(Frame et al. 1981), (Mastrogiacomo et al. 2006) or as composite, with ceramic, metallic

or polymer inclusions as reinforcing component (Verma et al. 2006).

Typical examples for powder-based production of porous hydroxyapatite biomaterials

were produced by the following researchers (see also Table C.1):

• Peelen et al. (1978) mixed commercially available HA powders with a 10% hydrogen

peroxide solution, poured it into a mold, and controlled the porosity of HA ceramics

by a variation of the sintering temperature (Tables C.1 and C.4).

• Akao et al. (1981) precipitated HA powder, which was compacted and sintered at

different temperatures (Tables C.1, C.3, and C.4).

• De With et al. (1981) compacted and sintered isostatically pressed HA powder

(Tables C.1 and C.3).

• Shareef et al. (1993) produced mixtures with different weight ratios of commercially

available fine and coarse powders. Ring-shaped samples were formed by uniaxial

pressing and then sintered. (Tables C.1 and C.4).

• Arita et al. (1995) used mixing of starting powders (see Table C.1) and a casting

process to produce green bodies made of HA before sintering (Tables C.1 and C.3).

• Martin and Brown (1995) prepared calcium-deficient HA formed in aqueous solu-

tions at physiological temperature. The authors realized two different liquid-to-solid

weight ratios, resulting in two different porosities (Tables C.1 and C.4).

• Liu (1998) prepared HA powder by mixing of starting powders (see Table C.1).

Water and polyvinyl butyral powder were added to HA before casting the slurry

and sintering the green bodies (Tables C.1, C.3, and C.4).

• Charrière et al. (2001) mixed commercially available powders in an aqueous solution

and used a casting process to obtain HA cement (Tables C.1 and 3).
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The mechanical and microstructural properties, i.e. stiffness/strength and porosity, of

these materials (see Tables C.3 and C.4) will be used as to validate the theoretical de-

velopments described in this article. Thereby, we will go beyond statistical correlations

between porosity and stiffness/strength or empirical structure-property relationships (Rao

and Boehm 1974; Driessen et al. 1982; Katz and Harper 1990), as to resolve the material-

immanent microstructures governing the overall mechanical behavior, in the theoretical

framework of continuum micromechanics.
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Literature reference Source material(s) Processing steps Shape/size Typical pore size Mechanical characterization

of samples method

(Peelen et al. 1978) Commercially available Mixing of HA powder with 10% Cylindrical 1-200 µm Uniaxial, quasi-static compressive

HA powder hydrogen peroxide solution, (d=1 cm, test (Table C.4)

poured into mold, sintering h=1-1.5 cm)

(Akao et al. 1981) Ca(OH)2, H3PO4 Mixing of starting powders to Bars ∼1 µm (pore Uniaxial, quasi-static compressive

precipitate HA powder, mixed (5x5x10 cm3) size ≈ grain test (Tables C.3 and C.4)

with water and cornstarch, size, see also

compaction, sintering Figs. 2-4 of the

reference)

(De With et al. 1981) Commercially available Mixing of HA powder with Cylindrical 1-5 µm (see Figs. Ultrasonic pulse-echo technique

HA powder water, compaction, sintering (d=5 mm, 2 and 7 of the (Table C.3)

h=15 mm) reference)

(Shareef et al. 1993) Commercially available Mixing of HA powders, Ring-shaped 1 µm Quasi-static tensile test (Stanford

fine and coarse HA compaction, sintering (inner dia- ring bursting test, Table C.4)

powders meter 34 mm)

(Arita et al. 1995) CaHPO4, CaCO3 Mixing of starting powders with Discs ∼1 µm (see Fig. 6 Resonance frequency method

water, tape casting, sintering (d=2.54 cm) of the reference) (Table C.3)

(Martin and Brown 1995) CaHPO4, Ca4(PO4)2O Mixing of starting powders with Cylindrical ∼1-2 µm Uniaxial, quasi-static compressive

water, precipitation, (d∼6.40 mm, test (Table C.4)

compaction at low temperature h=5.09-

6.39 mm)

(Liu 1998) Ca(OH)2, H3PO4 Mixing of starting powders in Bars 2-200 µm Quasi-static tensile test (three-

solution, mixing of HA powder (5x8x50 mm3) point bending; Tables C.3 and C.4)

with water and polyvinyl

butyral powder in a slurry, slip

casting, sintering

(Charrière et al. 2001) CaHPO4, CaCO3 Mixing of starting powders with Hollow cylinders ∼1 µm Uniaxial, quasi-static compressive

polyacrylic acid solution in (d=18 mm, test (Table C.3)

suspension, poured into mold, h=40 mm)

slip casting

Table C.1: Hydroxyapatite-based porous biomaterials used for model validation: survey on processing, pore size, and

mechanical characterization methods.
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C.2 Fundamentals of continuum micromechanics

C.2.1 Representative volume element and phase properties

In continuum micromechanics (Hill 1963; Hashin 1983; Suquet 1997a; Zaoui 2002), a

material is understood as a macrohomogeneous, but microheterogeneous body filling a

representative volume element (RVE) with characteristic length ℓ, ℓ ≫ d, d standing

for the characteristic length of inhomogeneities within the RVE, and ℓ ≪ L, L stand-

ing for the characteristic lengths of geometry or loading of a structure built up by the

material defined on the RVE (Fig. C.1). In general, the microstructure within one RVE

is so complicated that it cannot be described in complete detail. Therefore, Nr quasi-

homogeneous subdomains with known physical quantities are reasonably chosen. They

are called material phases [Fig. C.1(a)].

l

d

L

(a) (b)

σr = 
r : εr

σr+1 = 
r+1 : εr+1

∀x ∈ ∂VRV E : ξ(x) = E · x

∀x ∈ VRV E : div σ = 0

Figure C.1: (a) Loading of a representative volume element, built up by phases r

with stiffness 
r and strength properties f(σ) = 0, according to continuum

micromechanics (Hashin 1983; Zaoui 2002): Displacements ξ, related to

a constant (homogenized) strain E, are imposed at the boundary of the

RVE; (b) structure built up of material defined on RVE (a).

Quantitative phase properties are volume fractions fr of phases r = 1, . . . , Nr, as well as

elastic and strength properties of phases. As regards phase elasticity, the fourth-order

stiffness tensor 
r relates the (average microscopic) second-order strain tensor in phase r,

εr, to the (average microscopic) second-order stress tensor in phase r, σr,

σr = 
r : εr (C.1)

As regards phase strength, brittle failure can be associated to the boundary of an elastic

domain fr(σ) < 0,

fr(σ) = 0 (C.2)
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defined in the space of microstresses σ(x), x being the position vector for locations within

or at the boundary of the RVE.

Also the spatial arrangement of the phases needs to be specified. In this respect, two

cases are of particular interest: (i) one or several inclusion phases with different shapes

are embedded in a contiguous ‘matrix’ phase (as in a reinforced composite material), or

(ii) mutual contact of all disorderly arranged phases (as in a polycrystal).

C.2.2 Averaging – Homogenization

The central goal of continuum micromechanics is to estimate the mechanical properties

(such as elasticity or strength) of the material defined on the RVE (the macrohomoge-

neous, but microheterogeneous medium) from the aforementioned phase properties. This

procedure is referred to as homogenization or one homogenization step. Therefore, homo-

geneous (macroscopic) strains E are imposed onto the RVE, in terms of displacements at

its boundary ∂V :

∀x ∈ ∂V : ξ(x) = E · x (C.3)

As a consequence, the resulting kinematically compatible microstrains ε(x) throughout

the RVE with volume VRV E fulfill the average condition (Hashin 1983),

E = 〈ε〉 =
1

VRV E

∫

VRV E

ε dV =
∑

r

frεr (C.4)

providing a link between micro and macro strains. Analogously, homogenized (macro-

scopic) stresses Σ are defined as the spatial average over the RVE, of the microstresses

σ(x),

Σ = 〈σ〉 =
1

VRV E

∫

VRV E

σ dV =
∑

r

frσr (C.5)

Homogenized (macroscopic) stresses and strains, Σ and E, are related by the homogenized

(macroscopic) stiffness tensor C,

Σ = C : E (C.6)

which needs to be linked to the stiffnesses 
r, the shape, and the spatial arrangement

of the phases (Section C.2.1). This link is based on the linear relation between the

homogenized (macroscopic) strain E and the average (microscopic) strain εr, resulting

from the superposition principle valid for linear elasticity, see Eq. (C.1) (Hill 1963). This

relation is expressed in terms of the fourth-order concentration tensors Ar of each of the

phases r

εr = Ar : E (C.7)
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Insertion of Eq. (C.7) into Eq. (C.1) and averaging over all phases according to Eq. (C.5)

leads to

Σ =
∑

r

fr
r : Ar : E (C.8)

From Eq. (C.8) and Eq. (C.6) we can identify the sought relation between the phase

stiffness tensors 
r and the overall homogenized stiffness C of the RVE,C =
∑

r

fr
r : Ar (C.9)

The concentration tensors Ar can be suitably estimated from Eshelby’s 1957 matrix-

inclusion problem (Eshelby 1957), according to (Zaoui 2002), (Benveniste 1987)Aestr =
[I+ P0

r : (
r − C0)
]−1

:

{
∑

s

fs
[I+ P0

s : (
s − C0)
]−1

}−1

(C.10)

where I, Iijkl = 1/2(δikδjl + δilδkj), is the fourth-order unity tensor, δij (Kronecker delta)

are the components of second-order identity tensor 1, and the fourth-order Hill tensorP0
r accounts for the shape of phase r, represented as an ellipsoidal inclusion embedded

in a fictitious matrix of stiffness C0. For isotropic matrices (which is the case considered

throughout this article), P0
r is accessible via the Eshelby tensor (Eshelby 1957)Sesh,0r = P0

r : C0 (C.11)

see also Section C.3.

Backsubstitution of Eq. (C.10) into Eq. (C.9) delivers the sought estimate for the ho-

mogenized (macroscopic) stiffness tensor, Cest, asCest =
∑

r

fr
r :
[I + P0

r : (
r − C0)
]−1

:

{
∑

s

fs
[I + P0

s : (
s − C0)
]−1

}−1

(C.12)

Choice of matrix stiffness C0 determines which type of interactions between the phases

is considered: For C0 coinciding with one of the phase stiffnesses (Mori-Tanaka scheme

(Mori and Tanaka 1973)), a composite material is represented (contiguous matrix with

inclusions); for C0 = Cest (self-consistent scheme (Hershey 1954; Kröner 1958), a dispersed

arrangement of the phases is considered (typical for polycrystals).

As long as the average phase strains εr are relevant for brittle phase failure, resulting

in overall failure of the RVE, concentration relation (C.7) allows for translation of the

brittle failure criterion of the weakest phase r = w into a macroscopic (homogenized)

brittle failure criterion, according to (C.1), (C.2), (C.6) and (C.7),

fw(σ) = 0 = fw(
w : εw) = fw(
w : Aw : E) = fw(
w : Aw : C−1 : Σ) = F(Σ) (C.13)



Publication C Fritsch et al. (2009a) 57

Fourth-order tensor operations such as the ones occurring in Eqs. (C.1) and (C.6)-(C.12)

can be suitably evaluated in a vector/matrix-based software, through a compressed vec-

tor/matrix notation with normalized tensorial basis, often referred to as the Kelvin or the

Mandel notation, see e.g. (Cowin and Mehrabadi 1992; Cowin 2003) for details.

C.3 Micromechanical representation of porous bio-

materials made of hydroxyapatite – stiffness and

strength estimates

In the line of the concept presented in Section C.2, we envision biomaterials made of

hydroxyapatite as porous polycrystals consisting of hydroxyapatite needles (Fig. 7 of

(Shareef et al. 1993); Fig. 2 of (Liu 1998)) with stiffness 
HA and volume fraction (1−φ),

being oriented in all space directions, and of spherical (empty) pores with vanishing

stiffness and volume fraction φ (porosity) (see Figs. C.2 and C.3).

Figure C.2: RVE of polycrystal representing a porous biomaterial made of hy-

droxyapatite: Uniform orientation distribution of cylindrical (needle-like)

inclusions and spherical (empty) pores, in fictitious matrix with stiffness

of overall porous polycrystal and vanishing volume fraction.

C.3.1 Stiffness estimate

In a reference frame (e1, e2, e3), the HA needle orientation vector N = er is given by

Euler angles ϑ and ϕ (see Fig. C.3). Specification of Eq. (C.12) for C0 = Cest = Cpoly
(self-consistent scheme) and for an infinite number of solid phases related to orientation

directions N = er(ϑ, ϕ), which are uniformly distributed in space (ϕ ∈ [0, 2π];ϑ ∈ [0, π]),

yields the homogenized stiffness of the porous hydroxyapatite biomaterial depicted in
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0
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e2

e3
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ϕ

ϑ

eϑ

eϕ
n

ψ

Figure C.3: Cylindrical (needle-like) HA inclusions oriented along vector N

and inclined by angles ϑ and ϕ with respect to the reference frame (e1,

e2, e3); local base frame (er, eϕ, eϑ) is attached to the needle.

Fig. C.2 (Fritsch et al. 2006)Cpoly = (1 − φ) 
HA :

〈[I+ Ppolycyl : (
HA − Cpoly)]−1
〉

:

{

(1 − φ)

〈[I+ Ppolycyl : (
HA − Cpoly)]−1
〉

+ φ(I− Ppolysph : Cpoly)−1

}−1

(C.14)

with the angular average
〈

[I + Ppolycyl : (
HA − Cpoly)]−1
〉

=

=

2π∫

ϕ=0

π∫

ϑ=0

[I + Ppolycyl (ϑ, ϕ) : (
HA − Cpoly)]−1 sinϑ dϑ dϕ

4π
(C.15)Ppolysph and Ppolycyl are the fourth-order Hill tensors for spherical and cylindrical inclusions,

respectively, in an isotropic matrix with stiffness Cpoly = 3kpolyJ + 2µpolyK; J, Jijkl =

1/3δijδkl, is the volumetric part of the fourth-order unity tensor I, and K = I − J is its

deviatoric part. The Hill tensors are related to Eshelby tensors via Eq. (C.11). The

Eshelby tensor Seshsph corresponding to spherical inclusions (pores in Fig. C.2) reads asSeshsph =
3kpoly

3kpoly + 4µpoly
J+

6(kpoly + 2µpoly)

5(3kpoly + 4µpoly)
K (C.16)
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In the base frame (eϑ, eϕ, er)(1=ϑ, 2=ϕ, 3=r, see Fig. C.3 for Euler angles ϕ and ϑ),

attached to individual solid needles, the non-zero components of the Eshelby tensor Seshcyl
corresponding to cylindrical inclusions read as

Seshcyl,1111 = Seshcyl,2222 =
5 − 4νpoly

8(1 − νpoly)

Seshcyl,1122 = Seshcyl,2211 =
−1 + 4νpoly
8(1 − νpoly)

Seshcyl,1133 = Seshcyl,2233 =
νpoly

2(1 − νpoly)

Seshcyl,2323 = Seshcyl,3232 = Seshcyl,3223 = Seshcyl,2332 =

= Seshcyl,3131 = Seshcyl,1313 = Seshcyl,1331 = Seshcyl,3113 =
1

4

Seshcyl,1212 = Seshcyl,2121 = Seshcyl,2112 = Seshcyl,1221 =
3 − 4νpoly

8(1 − νpoly)
(C.17)

with νpoly as Poisson’s ratio of the polycrystal,

νpoly =
3kpoly − 2µpoly
6kpoly + 2µpoly

(C.18)

Following standard tensor calculus (Salencon 2001), the tensor components of Ppolycyl (ϑ, ϕ) =Seshcyl (ϑ, ϕ) : C−1
poly, being related to differently oriented inclusions, are transformed into one,

single base frame (e1, e2, e3), in order to evaluate the integrals in Eqs. (C.14) and (C.15).

C.3.2 Strength estimate

Strength of the porous polycrystal made up of hydroxyapatite needles (see Fig. C.2 for its

RVE) is related to brittle failure of the most unfavorably stressed single needle. Therefore,

the macroscopic stress (and strain) state needs to be related to corresponding stress and

strain states in the individual needles. Accordingly, we specify the concentration relations

(C.7) and (C.10) for the biomaterial defined through Eqs. (C.14)-(C.18), resulting in

εHA(ϕ, ϑ) =
[I+ Ppolycyl (ϕ, ϑ) : (
HA − Cpoly)]−1

:

{

(1 − φ)

〈[I + Ppolycyl (ϕ, ϑ) : (
HA − Cpoly)]−1
〉

+ φ(I− Ppolysph : Cpoly)−1

}−1

: E (C.19)

When employing phase elasticity (C.1) to hydroxyapatite, and overall elasticity (C.6)

to the porous biomaterial according to Eq. (C.14), concentration relation (C.19) can be
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recast in terms of stresses

σHA(ϕ, ϑ) = 
HA :

{[I + Ppolycyl (ϕ, ϑ) : (
HA − Cpoly)]−1

:

{

(1 − φ)

〈[I + Ppolycyl (ϕ, ϑ) : (
HA − Cpoly)]−1
〉

+ φ(I− Ppolysph : Cpoly)−1

}−1
}

:C−1
poly : Σ = BHA(ϕ, ϑ) : Σ (C.20)

with BHA(ϕ, ϑ) as the so-called stress concentration factor of needle with orientation

N(ϕ, ϑ). We consider that needle failure is governed by the normal stress σHA,NN (ϕ, ϑ)

in needle direction and by the shear stress in planes orthogonal to the needle direction,

σHA,Nn(ϕ, ϑ;ψ) (see Fig. C.3),

σHA,NN(ϕ, ϑ) = N · σHA(ϕ, ϑ) · N (C.21)

σHA,Nn(ϕ, ϑ;ψ) = N · σHA(ϕ, ϑ) · n(ψ) (C.22)

depending on the direction n orthogonal to N , specified through angle ψ (Fig. C.3),

n = cosψ eϑ + sinψ eϕ (C.23)

More specifically, the failure criterion for the single needle considers interaction between

tensile strength σult,tHA and shear strength σult,sHA , and it reads as

ϑ = 0, . . . , π, ψ = 0, . . . , 2π :

fHA(σ) = max
ϑ

(

βmax
ψ

|σHA,Nn| + σHA,NN

)

− σult,tHA = 0 (C.24)

with β = σult,tHA /σ
ult,s
HA being the ratio between uniaxial tensile strength σult,tHA , and the shear

strength σult,sHA of pure hydroxyapatite. Use of Eqs. (C.20) to (C.23) in Eq. (C.24) yields

a macroscopic failure criterion in the format of Eq. (C.13),

F(Σ) = max
ϑ

{

βmax
ψ

|N · BHA(ϕ, ϑ) : Σ · n(ψ)| + N · BHA(ϕ, ϑ) : Σ · N
)

−

σult,tHA = 0 (C.25)

and a corresponding elastic domain,

F(Σ) < 0 (C.26)

with BHA according to Eq. (C.20). We also will evaluate the criterion (C.25) for uni-

axial macroscopic stress states Σ = ±Σrefe3 ⊗ e3: Insertion of these stress states into

Eqs. (C.20)-(C.24) yields an equation for Σref , the corresponding results Σult,t
poly and Σult,c

poly

being model predictions of macroscopic uniaxial strengths as functions of (microscopic)

needle strength and porosity (see Figs. C.6 and C.7, and Section C.4 for further details).
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C.4 Model validation

C.4.1 Strategy for model validation through independent test

data

In the line of Popper, who stated that a theory – as long as it has not been falsified –

will be ‘the more satisfactory the greater the severity of independent tests it survives’

(cited from (Mayr 1997), p.49), the verification of the micromechanical representation of

hydroxyapatite biomaterials [Eqs. (C.14)-(C.18) for elasticity, and Eqs. (C.19)-(C.26) for

strength] will rest on two independent experimental sets, as it has been successfully done

for other material classes such as bone (Hellmich and Ulm 2002b; Hellmich et al. 2004a;

Fritsch and Hellmich 2007) or wood (Hofstetter et al. 2005, 2006). Biomaterial-specific

macroscopic (homogenized) stiffnesses Cpoly (Young’s moduli Epoly and Poisson’s ratios

νpoly), and uniaxial (tensile and compressive) strengths (Σult,t
poly and Σult,c

poly ), predicted by

the micromechanics model (C.14)-(C.26) on the basis of biomaterial-independent (univer-

sal) elastic and strength properties of pure hydroxyapatite (experimental set I, Table C.2)

for biomaterial-specific porosities φ (experimental set IIa, Tables C.3 and C.4), are com-

pared to corresponding biomaterial-specific experimentally determined moduli Eexp and

Poisson’s ratios νexp (experimental set IIb-1, Table C.3) and uniaxial tensile/compressive

strength values (experimental set IIb-2, Table C.4). Because we avoided introduction of

micromorphological features that cannot be experimentally quantified (such as the precise

crystal shape), all material parameters are directly related to well-defined experiments.

C.4.2 Universal mechanical properties of (biomaterial-independ-

ent) hydroxyapatite – Experimental set I

Experiments with an ultrasonic interferometer coupled with a solid media pressure ap-

paratus (Katz and Ukraincik 1971; Gilmore and Katz 1982) reveal the isotropic elastic

constants for dense hydroxyapatite powder (φ = 0), the Young’s modulus EHA= 114 GPa,

and the Poisson’s ratio νHA= 0.27 (equivalent to bulk modulus kHA = EHA/3/(1−2νHA)=

82.6 GPa and shear modulus µHA = EHA/2/(1 + νHA)= 44.9 GPa).

The authors are not aware of direct strength tests on pure hydroxyapatite (with φ =

0). Therefore, we consider one uniaxial tensile test, Σult,t
exp =37.1 MPa, and one uniaxial

compressive test, Σult,c
exp =509 MPa, on fairly dense samples (with φ=12.2% and φ=2.8%,

respectively), conducted by Shareef et al. (1993) and Akao et al. (1981), respectively (see

Table C.4). From these two tests, we back-calculate, via evaluation of Eqs. (C.20)-(C.25)

for Σ = Σult,t
exp e3 ⊗ e3 and Σ = −Σult,c

exp e3 ⊗ e3, the universal tensile and shear strength of

pure hydroxyapatite, σult,tHA and σult,sHA (Table C.2).
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Young’s modulus EHA 114 GPa from (Katz and Ukraincik 1971)

Poisson’s ratio νHA 0.27 from (Katz and Ukraincik 1971)

Uniaxial tensile strength σult,t
HA 52.2 MPa from (Akao et al. 1981; Shareef et al. 1993);

Uniaxial shear strength σult,s
HA 80.3 MPa see Section C.4.2 for details

Table C.2: Universal (biomaterial-independent) isotropic phase properties of

pure hydroxyapatite needles.

C.4.3 Biomaterial-specific porosities – Experimental set IIa

Porosity of hydroxyapatite biomaterials is standardly calculated from mass M and vol-

ume V of well-defined samples on the basis of the mass density of pure hydroxyapatite,

ρHA=3.16 g/cm3,

φ = 1 − M

V ρHA
(C.27)

Corresponding porosity values have been reported by different investigators (Peelen et al.

1978; Akao et al. 1981; De With et al. 1981; Shareef et al. 1993; Arita et al. 1995; Martin

and Brown 1995; Liu 1998; Charrière et al. 2001), see Tables C.3 and C.4.

C.4.4 Biomaterial-specific elasticity experiments on hydroxya-

patite biomaterials – Experimental set IIb-1

Elastic properties of hydroxyapatite biomaterials were determined through uniaxial quasi-

static mechanical tests (Akao et al. 1981; Charrière et al. 2001), but also through ultrasonic

techniques (De With et al. 1981; Liu 1998), or resonance frequency tests (Arita et al. 1995).

In uniaxial quasi-static experiments, the gradient of the stress-strain curve gives access to

Young’s modulus. Respective experimental results are documented for cuboidal specimens

(Akao et al. 1981) and hollow cylindrical specimens (Charrière et al. 2001), see Tables C.1

and C.3 as well as Fig. C.4.

In ultrasonic experiments (Ashman et al. 1984, 1987), the time of flight of an ultrasonic

wave traveling through the specimen with a certain frequency f is measured. The cal-

culated velocity of the wave, v, together with material mass density of the sample, gives

access to the elastic constants (Carcione 2001; Kolsky 1953). Because the ultrasonic wave-

length λ, λ = v/f , is a measure for the loading of the structure (λ ≈ L in Fig. C.1), the

mechanical properties are related to an RVE with characteristic length l ≪ λ. Respective

experimental results are documented for bar-shaped specimens (Liu 1998) and cylindrical

samples (De With et al. 1981), see Tables C.1 and C.4 as well as Figs. C.4 and C.5.

In resonance frequency tests (Schreiber et al. 1973), beam type specimens are excited

in the flexural vibration mode, and the corresponding free vibration gives access to the
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Reference φ Eexp νexp

(%) (GPa) (1)

(Akao et al. 1981) 2.8 88

3.9 85

9.1 80

19.4 44

(De With et al. 1981) 3 112 0.275

6 103 0.272

9 93 0.265

17 78 0.253

22 67 0.242

27 54 0.238

(Arita et al. 1995) 6 88

28 41

33 32

35 29

50 14

52 10

(Liu 1998) 8 93

17 78

21 66

32 44

44 22

54 18

(Charrière et al. 2001) 44 13.5

Table C.3: Experimental Young’s modulus Eexp and Poisson’s ratio νexp of

hydroxyapatite biomaterials, as function of porosity φ.

fundamental resonance frequency. The latter allows for determination, via the material

mass density and the geometry of the sample, of the Young’s modulus of the sample.

Respective experimental results are documented for disc-shaped samples (Arita et al.

1995), see Tables C.1 and C.3 as well as Fig. C.4.

C.4.5 Comparison between biomaterial-specific stiffness predic-

tions and corresponding experiments

The stiffness values predicted by the homogenization scheme (C.14)-(C.18) (see Sec-

tion C.3 and Fig. C.2) for biomaterial-specific porosities (Section C.4.3, experimental

set IIa) on the basis of biomaterial-independent (universal) stiffness of hydroxyapatite

(Section C.4.2, experimental set I) are compared to corresponding experimentally deter-

mined biomaterial-specific stiffness values from experimental set IIb-1 (Section C.4.4).

To quantify the model’s predictive capabilities we consider the mean and the standard
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Reference φ Σult,c
exp Σult,t

exp Σult,b
exp

(%) (MPa) (MPa) (MPa)

(Peelen et al. 1978) 36 160

48 114

60 69

65 45

70 30

(Akao et al. 1981) 2.8 509

3.9 465

9.1 415

19.4 308

(Shareef et al. 1993) 12.2 37.1

16.1 32.8

20.6 31.8

24.8 24.2

27.3 23.6

29.2 20.0

(Martin and Brown 1995) 27.0 172.5

39.0 119.0

(Liu 1998) 20.2 25.5

26.8 20.0

29.0 16.8

32.6 13.9

39.6 14.4

42.8 11.1

50.9 7.2

54.5 8.0

Table C.4: Experimental compressive strength Σult,c
exp , bending strength Σult,b

exp ,

and tensile strength Σult,t
exp of hydroxyapatite biomaterials, as functions of

porosity φ.

deviation of the relative error between stiffness predictions and experiments,

ē =
1

n

∑

ei =
1

n

∑ qpoly − qexp
qexp

(C.28)

eS =

[
1

n− 1

∑

(ei − ē)2

] 1
2

(C.29)

where q has to be replaced by the quantity in question, E or ν, and with summation over

n stiffness values (see Tables C.3 and C.4).

Insertion of biomaterial-specific porosities (Table C.3) into Eq. (C.14) delivers, together

with Eqs. (C.15) to (C.18), the biomaterial-specific stiffness estimates for the effective

Young’s modulus Epoly and the effective Poisson’s ratio νpoly. These stiffness predictions
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are compared to corresponding experimental stiffness values (Figs. C.4 and C.5). The

satisfactory agreement between model predictions and experiments is quantified by pre-

diction errors of 16±25% [mean value±standard deviation according to Eqs. (C.28) and

(C.29)] for Young’s modulus, and of -0.4±2.3% for Poisson’s ratio.
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Figure C.4: Comparison between model predictions (Epoly) [Eqs. (C.14)-(C.18)]

and experiments (Eexp) for Young’s modulus of different porous biomateri-

als made of hydroxyapatite, as a function of porosity φ; ultra. . . ultrasonic

tests, res . . . resonance frequency tests, static. . . quasi-static uniaxial tests.
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Figure C.5: Comparison between model predictions (νpoly) [Eqs. (C.14)-(C.18)]

and experiments (νexp) for Poisson’s ratio of different porous biomaterials

made of hydroxyapatite, as a function of porosity φ; ultra. . . ultrasonic

tests.
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C.4.6 Biomaterial-specific strength experiments on hydroxyap-

atite biomaterials – Experimental set IIb-2

In uniaxial compressive quasi-static tests, a sharp decrease of stress after a stress peak

in the stress-strain diagram (Akao et al. 1981; Martin and Brown 1995) indicates brittle

material failure, as observed for all biomaterials described herein, and the aforementioned

stress peak is referred to as the ultimate stress or uniaxial strength Σult,c
exp . Respective

experimental results are documented for cylindrical samples (Peelen et al. 1978) and bars

(Akao et al. 1981), see Tables C.1 and C.4 as well as Fig. C.7.

In three-point bending tests, a force Fs is applied to the centre of a beam specimen,

and the maximum normal stress Σult = Σulte3 ⊗ e3 in the bar-type sample is calculated

according to beam theory,

Σult,t
exp =

3Fsls
2bsh2

s

(C.30)

with ls, bs, and hs as the length, width and height of the specimen with rectangular

cross-section, respectively. Respective experimental results (Liu 1998) are depicted in

Tables C.1 and C.4 (there, bending strengths are denoted as Σult,b
exp ) as well as in Fig. C.6.

In the Stanford ring bursting test, ring-shaped specimens are pressurized internally, in

order to generate a tensile hoop stress in the ring. The pressure is increased until the

sample fails. The tensile stress in the ring is calculated according to

Σult,t
exp =

rspi
ds

(C.31)

with rs as the inner diameter of the ring, pi as the internal pressure, and ds as the wall

thickness of the ring. Respective experimental results (Shareef et al. 1993) are depicted

in Tables C.1 and C.4 as well as Fig. C.6.

C.4.7 Comparison between biomaterial-specific strength predic-

tions and corresponding experiments

The strength values predicted by the homogenization scheme (C.19)-(C.26) (see Sec-

tion C.3 and Fig. C.2) for biomaterial-specific porosities (Section C.4.3, experimental set

IIa) on the basis of biomaterial-independent (universal) uniaxial tensile and compressive

strengths of hydroxyapatite (Section C.4.2, experimental set I) are compared to corre-

sponding experimentally determined biomaterial-specific uniaxial tensile and compressive

strength values from experimental set IIb-2 (Section C.4.6).

Insertion of biomaterial-specific porosities (Table C.4) into Eqs. (C.14)-(C.25) delivers,

together with EHA, νHA, σult,tHA , and σult,sHA (Table C.2), biomaterial-specific strength es-

timates for uniaxial tensile strength (Σult,t
poly) and uniaxial compressive strength (Σult,c

poly ).
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These strength predictions are compared to corresponding experimental strength values

(Figs. C.6 and C.7). The satisfactory agreement between model predictions and exper-

iments is quantified by prediction errors of 14±15% for uniaxial tensile strength and

-21±28% for uniaxial compressive strength; according to Eqs. (C.28) and (C.29) with

qpoly = Σult,t
poly and Σult,c

poly , respectively, and with qexp = Σult,t
exp and Σult,c

exp , respectively.
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Figure C.6: Comparison between model predictions [Eqs. (C.14)-(C.25)] and

experiments for tensile strength of different porous biomaterials made of

hydroxyapatite, as a function of porosity φ.
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Figure C.7: Comparison between model predictions [Eqs. (C.14)-(C.25)] and

experiments for compressive strength of different porous biomaterials

made of hydroxyapatite, as a function of porosity φ.

It is interesting to evaluate which crystal (located through the critical crystal angle ϑcr
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measured from the axis of macroscopic uniaxial loading) initiates the overall brittle ma-

terial failure, and to find out at which crystal stresses this occurs (Figs. C.8 and C.9).

Under tensile uniaxial macroscopic loading, failure occurs in crystals oriented closely to

the loading direction (Fig. C.8), for the entire range of biomaterial porosities. In contrast,

compressive uniaxial macroscopic loading induces failure in crystals which are oriented

more or less perpendicularly to the loading direction, again for the entire range of bio-

material porosities. This is consistent with earlier findings that tensile loading leads to

cracking perpendicular to the loading direction (mode I cracks) (Pichler et al. 2007b),

and that compressive loading leads to cracks in the planes incorporating the load axis

(axial splitting) (Pichler et al. 2007a). As regards the crystal stresses at failure, normal

tensile stresses in needle direction prevail under tensile macroscopic loading, while ten-

sile or compressive normal stresses combined with shear occur under compressive loading

(Fig. C.9).
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Figure C.8: Orientation of crystal needle initiating overall failure by fulfilling

local failure criterion (C.24), measured through critical angle ϑcr from

the loading direction, for tensile and compressive uniaxial macroscopic

loading, as function of porosity φ.

C.5 Discussion

We have developed a continuum micromechanical concept for elasticity and strength of

porous biomaterials made of hydroxyapatite, which was verified through independent ex-

perimental sets. We propose that such models have a considerable potential for improv-

ing biomaterial design. Nowadays the latter is largely done in a trial-and-error procedure.

Based on a number of mechanical and/or acoustical tests, new material design parameters
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Figure C.9: Stress state in crystal needle fulfilling local failure criterion (C.24),

in terms of (a) normal stresses and of (b) shear stresses in planes per-

pendicular to the needle direction, for tensile and compressive uniaxial

macroscopic loading, as function of porosity φ.

are guessed. On the other hand, with well validated micromechanics models, the mechani-

cal implications of changes in the microstructure can be predicted so that minimization of

material failure risk allows for optimization of key design parameters, such as porosities or

geometries of microstructures. Hence, we believe that micromechanical theories can con-

siderably speed up the future improvement of tissue engineering scaffolds. In this context,

extension of our modeling approach towards hydroxyapatite biomaterials with a hierarchi-

cal structure, i.e. with a double-porosity with different pore sizes (Woodard et al. 2007),

and/or towards collagen/hydroxyapatite or chitosan/hydroxyapatite composite materials

(Yunoki et al. 2006; Salgado et al. 2004) is currently under way.
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C.6 Appendix: NomenclatureAr fourth-order strain concentration tensor of phase rAestr estimate of fourth-order strain concentration tensor of phase rBHA fourth-order stress concentration tensor for single HA crystalsC fourth-order homogenized stiffness tensorCest estimate of fourth-order homogenized stiffness tensorC0 fourth-order stiffness tensor of infinite matrix surrounding an ellipsoidal

inclusionCpoly fourth-order homogenized stiffness tensor of biomaterial made of HA
HA fourth-order stiffness tensor of single HA crystals within the RVE Vpoly
r fourth-order stiffness tensor of phase r

d characteristic length of inhomogeneity within an RVE

E second-order macroscopic strain tensor

Eexp experimental Youngs modulus of biomaterial made of HA

EHA Youngs modulus of single HA crystals within the RVE Vpoly
Epoly homogenized Young’s modulus of biomaterial made of HA

ē mean of relative error between predictions and experiments

eS standard deviation of relative error between predictions and experiments

e1, e2, e3 unit base vectors of Cartesian reference base frame

eϑ, eϕ, er unit base vectors of Cartesian local base frame of a single crystal

F(Σ) boundary of elastic domain in space of macrostresses

f ultrasonic excitation frequency

fr volume fraction of phase r

fr(σ) boundary of elastic domain of phase r in space of microstresses

HA hydroxyapatiteI fourth-order identity tensorJ volumetric part of fourth-order identity tensor IK deviatoric part of fourth-order identity tensor I
kHA bulk modulus of single HA crystals within the RVE Vpoly
kpoly homogenized bulk modulus of biomaterial made of HA

L characteristic length of a structure built up by material RVEs

ℓ characteristic length of RVEs

M mass of a HA biomaterial sample

N orientation vector aligned with longitudinal axis of needle

Nr number of phases within an RVE

n orientation vector perpendicular to NP0
r fourth-order Hill tensor characterizing the interaction between the phase r

and the matrix C0Ppolycyl fourth-order Hill tensor for cylindrical inclusion in matrix with stiffness Cpoly



Publication C Fritsch et al. (2009a) 71Ppolysph fourth-order Hill tensor for spherical inclusion in matrix with stiffness Cpoly
RVE representative volume element

r, s index for phasesSesh,0r fourth-order Eshelby tensor for phase r embedded in matrix C0Seshcyl fourth-order Eshelby tensor for cylindrical inclusion embedded in isotropic

matrix with stiffness CpolySeshsph fourth-order Eshelby tensor for spherical inclusion embedded in isotropic

matrix with stiffness Cpoly
tr trace of a second-order tensor

V volume of a HA biomaterial sample

VRV E volume of an RVE

v ultrasonic wave propagation velocity within a HA biomaterial sample

w index denoting weakest phase

x position vector within an RVE

β ratio between uniaxial tensile strength and shear strength of pure HA

δij Kronecker delta (components of second-order identity tensor 1)

εHA second-order strain tensor field within single HA crystals

εr second-order strain tensor field of phase r

ϑ latitudinal coordinate of spherical coordinate system

λ ultrasonic wave length

µHA shear modulus of single HA crystals within the RVE Vpoly
µpoly homogenized shear modulus of biomaterial made of HA

νexp experimental Poisson’s ratio of biomaterial made of HA

νHA Poisson’s ratio of single HA crystals within the RVE Vpoly
νpoly homogenized Poisson’s ratio of biomaterial made of HA

ξ displacements within an RVE and at its boundary

ρ material mass density

ρHA mass density of pure HA

ρs mass density of a HA biomaterial sample

Σ second-order macroscopic stress tensor

Σult,t
poly model-predicted uniaxial tensile strength of biomaterial made of HA

Σult,c
poly model-predicted uniaxial compressive strength of biomaterial made of HA

Σult,t
exp experimental uniaxial tensile strength of biomaterial made of HA

Σult,c
exp experimental uniaxial compressive strength of biomaterial made of HA

Σref component of uniaxial stress tensor Σ imposed on boundary of

biomaterial made of HA

σHA(ϕ, ϑ) second-order stress tensor field within single HA crystals

σHA,NN(ϕ, ϑ) normal component of stress tensor σHA(ϕ, ϑ) in needle direction

σHA,Nn(ϕ, ϑ) shear component of stress tensor σHA(ϕ, ϑ) in planes orthogonal

to the needle direction
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σult,tHA uniaxial tensile strength of pure HA

σult,sHA shear strength of pure HA

σr second-order stress tensor field of phase r

ϕ longitudinal coordinate of spherical coordinate system

φ volume fraction of micropores within RVE of porous HA

ψ longitudinal coordinate of vector n

∂V boundary of an RVE

1 second-order identity tensor

〈(.)〉V = 1/V
∫

V
(.)dV average of quantity (.) over volume V

· first-order tensor contraction

: second-order tensor contraction

⊗ dyadic product of tensors
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There is an ongoing discussion on how bone strength could be explained from its inter-

nal structure and composition. Reviewing recent experimental and molecular dynamics

studies, we here propose a new vision on bone material failure: mutual ductile sliding of

hydroxyapatite mineral crystals along layered water films is followed by rupture of collagen

crosslinks. In order to cast this vision into a mathematical form, a multiscale continuum

micromechanics theory for upscaling of elastoplastic properties is developed, based on

the concept of concentration and influence tensors for eigenstressed microheterogeneous

materials. The model reflects bone’s hierarchical organization, in terms of representative

volume elements for cortical bone, for extravascular and extracellular bone material, for

mineralized fibrils and the extrafibrillar space, and for wet collagen. In order to get ac-
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cess to the stress states at the interfaces between crystals, the extrafibrillar mineral is

resolved into an infinite amount of cylindrical material phases oriented in all directions

in space. The multiscale micromechanics model is shown to be able to satisfactorily pre-

dict the strength characteristics of different bones from different species, on the basis of

their mineral/collagen content, their intercrystalline, intermolecular, lacunar, and vascu-

lar porosities, and the elastic and strength properties of hydroxyapatite and (molecular)

collagen.

D.1 Introduction

Explanation of the highly diverse mechanical properties of the material bone from its

internal structure and composition has been a biomechanician’s wish (Fung 2002; Martin

et al. 1998), ever since the establishment of this scientific field. This wish has motivated

(i) comprehensive mechanical testing series over all types of tissues and vertebrates (led

by Currey and colleagues (Currey 1959; Reilly and Burstein 1974b; Keaveny et al. 1993)),

(ii) the incorporation of the theory of anisotropic elasticity in the framework of ultrasonic

testing (driven forward by Katz and colleagues (Katz 1980; Ashman et al. 1984)), and (iii)

the complementation of the aforementioned two activities with chemical and physical mea-

surements revealing micro and nanostructural features of mineralized collagenous tissues

(pioneered in an unparalleled experimental campaign by Lees and colleagues (Lees et al.

1979b,a, 1983; Lees 1987a)). The huge experimental legacy following from the aforemen-

tioned activities was theoretically integrated in the context of validating micromechanical

models holding for bone materials across different species, ages and anatomical loca-

tions (Hellmich and Ulm 2002a; Hellmich et al. 2004a; Hellmich and Ulm 2005a; Fritsch

and Hellmich 2007). Such micromechanical models predict, on the basis of mechanical

properties of bone elementary constituents (hydroxyapatite, collagen, water), the (poro-)

elasticity tensors at the different hierarchical levels of the material, from tissue-specific

composition data, such as porosities and mineral/collagen content. Therefore, morpholog-

ical features such as Haversian and lacunar, intercrystalline, and intermolecular porosities,

mineralized fibrils and collagen-free extrafibrillar space, plate or needle-type hydroxyap-

atite crystals and long crosslinked collagen molecules were represented in the framework of

continuum micromechanics, also referred to as random homogenization theory (Hill 1963;

Suquet 1997b; Zaoui 2002). A key feature of these micromechanical models is the explicit

consideration of the extrafibrillar mineral crystals whose existence was evidenced earlier

(Lees et al. 1984a, 1994; Prostak and Lees 1996; Pidaparti et al. 1996; Benezra Rosen

et al. 2002). In this sense, the challenge of micromechanics-supported, consistently up-

scaled microstructure-property relationships for poroelasticity in bone has been met quite

reasonably.

However, the case of explaining bone strength from its internal structure and composition

seems to be fairly unsettled: while scaling relations for the strength of trabecular bone
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as function of porosity have become classical (Gibson 1985; Gibson and Ashby 1997), the

micro and nanostructural origin of bone strength remains an open question: While several

researchers favor the idea of brittle mineral crystals embedded in a compliant ductile

organic (collagenous) matrix (Currey 1969; Katz 1980, 1981; Sasaki 1991; Mammone and

Hudson 1993; Jäger and Fratzl 2000; Kotha and Guzelsu 2003) (still, explanation of a

large number of experimental data through only one model and realistic prediction of

measured stress-strain curves are somewhat out of sight), experiments show that collagen

may actually fail in a quasi-brittle fashion (Christiansen et al. 2000; Gentleman et al.

2003), and this observation is confirmed by latest molecular dynamics simulations (Buehler

2006; Bhowmik et al. 2007). Such computations are essential tools for understanding

the interaction of huge numbers of molecules, but, due to computational constraints,

the largest models which can be realized nowadays are of the order of some hundreds of

nanometers (Buehler 2006), far away from the larger length scales spanned by the material

bone up to its macroscopic appearance at the millimeter to centimeter scale. What further

complicates the matter is that once the elementary constituents mineral and collagen have

failed, a complex series of crack propagation events starts, spanning length scales between

tens of nanometers and ultimately several millimeters. Related toughening strategies in

bone have been intensively studied (Burr et al. 1998; Reilly and Currey 2000; Akkus and

Rimnac 2001; Okumura and Gennes 2001; Taylor et al. 2003; Ballarini et al. 2005; O’Brien

et al. 2007; Koester et al. 2008), but a consistent mathematical theory for relating them to

the overall, tissue-specific bone strength seems to be an enormously difficult task. Given

this highly challenging situation, we ask: Can continuum micromechanics help to explain

not only bone elasticity, but also bone strength from the material’s internal structure and

composition?

It is often felt that, in contrast to the elastic case, homogenization techniques which often

refer to strains or stresses averaged over the material’s constituents, might not help for

the explanation of bone strength, where stress peaks are likely to govern material failure.

Fortunately, this is not necessarily true: one remedy lies in the resolution of one material

constituent into an infinite amount of sub-phases – e.g. the mineral phase may be split

into an infinite amount of differently oriented needles, giving access to information on

local stress peaks in these needles. It was recently shown (Fritsch et al. 2009a) that based

on such a concept, the brittle failure of various hydroxyapatite biomaterials characterized

by different porosities could be explained from the failure characteristics of individual

crystals (quantified in terms of two strength values only) and from the microstructure

these crystals build up.

This recent micromechanics model can deliver important input, in terms of the strength

properties of single hydroxyapatite crystals, for a micromechanics model explaining bone

strength – the latter is the focus of the present paper. It is organized as follows: Review-

ing recent experimental and molecular dynamics studies, we first propose a new vision

on bone material failure: mutual ductile sliding of mineral crystals along layered water
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films is followed by rupture of collagen crosslinks. In order to cast this vision into a

mathematical form, we then present a continuum micromechanics theory for upscaling

of elastoplastic properties. Thereafter, this theory is applied to a multiscale representa-

tion of bone materials. Conclusively, it is shown that the corresponding multiscale model

can satisfactorily predict the stress-strain curves and the strength values of different bones

from different species, on the basis of their mineral/collagen content, their intercrystalline,

intermolecular, lacunar, and vascular porosities, and the elastic and strength properties

of hydroxyapatite and collagen.

D.2 A new proposition for bone failure: layered water-

induced ductile sliding of minerals, followed by

rupture of collagen crosslinks

Classically, the strength of bone materials is thought to be related to the strength proper-

ties of collagen, to the strength properties of hydroxyapatite, and/or the interfaces between

these constituents. However, more recent works extend and modify this traditional pic-

ture, by indicating the great role of water for the failure properties of bone. In this context,

molecular dynamics studies on collagen molecules being detached from hydroxyapatite in

solvated conditions, revealed that the interaction energies between hydroxyapatite and

water, and between collagen and water, are by orders of magnitude larger than that

between hydroxyapatite and collagen (Bhowmik et al. 2007). This implies that water

probably plays a central role in ‘glueing’ together the material’s elementary constituents,

mineral with mineral, collagen with collagen, and also mineral with collagen. The latter

interaction was confirmed by solid state Nuclear Magnetic Resonance (1H NMR) stud-

ies (Wilson et al. 2006). As concerns the water-hydroxyapatite interactions, molecular

dynamics simulations of crystal systems surrounded by water molecules revealed two to

three well-organized water layers on the crystal surfaces, these structured water layers

having ice-like features (Pan et al. 2007). These features were shown to chemically sta-

bilize the crystals. In the present contribution, we will discuss the possibility that they

also mechanically stabilize the interaction between mineral crystals: More specifically, we

consider the case when the mineral crystals will not break or detach one from another

once a critical stress threshold is reached (as in dry conditions), but when the intra- and

intercrystalline loads accumulated up to the elastic limit, will be maintained through the

(hydrated) crystals starting to glide upon each other, along the ice-like features, which

prevent the sliding hydroxyapatite surfaces from disintegration. The latter is also pre-

vented by the collagen fibrils interweaving the extracellular bone matrix. This vision

is consistent with an elastoplastic interface behavior between hydrated hydroxyapatite.

However, from a mathematical viewpoint, modeling interfaces between non-spherical ob-

jects is extremely expending (or extremely complex), so that we will benefit from the
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recent finding (Fritsch et al. 2009a) that the effect of ‘micro’-interface behavior of elon-

gated 1D particles, on the overall ‘macroscopic’ material can be mimicked by equivalent

‘bulk’ failure properties of the elongated phases. In case of hydroxyapatite polycrystals,

we even know the (brittle) failure properties of the single hydroxyapatite crystals, and

we will use them as elastic limits in the framework of full elastoplastic analysis of the

hierarchical mineral-collagen-water composites called ‘bone’. Therefore, it is appropriate

to present a continuum micromechanics theory for elastoplasticity next. Thereby, our

focus is on the plastic gliding mechanisms between mineral crystals, and we only proceed

our computations until a critical stress in the collagen is reached. Potentially plastic be-

havior or microcracking events/crack bridging occuring thereafter (Nalla et al. 2004) are

beyond our present scope. The critical stress of collagen is derived from direct mechanical

experiments on collagen, showing a brittle behavior of this constituent (Catanese et al.

1999; Christiansen et al. 2000; Gentleman et al. 2003), which is in agreement with some

molecular dynamics studies (Buehler 2006, 2008; Vesentini et al. 2005). In particular, the

latter work shows that collagen rupture is likely to be related to failure of crosslinks, such

as the decorin molecule.

D.3 Fundamentals of continuum micromechanics –

random homogenization of elastoplastic proper-

ties

D.3.1 Representative volume element

In continuum micromechanics (Hill 1963; Suquet 1997b; Zaoui 1997b, 2002), a material

is understood as a macro-homogeneous, but micro-heterogeneous body filling a repre-

sentative volume element (RVE) with characteristic length ℓ, ℓ ≫ d, d standing for the

characteristic length of inhomogeneities within the RVE (see Fig. D.1), and ℓ ≪ L, L
standing for the characteristic lengths of geometry or loading of a structure built up by

the material defined on the RVE. In general, the microstructure within one RVE is so com-

plicated that it cannot be described in complete detail. Therefore, quasi-homogeneous

subdomains with known physical quantities (such as volume fractions or elastoplastic

properties) are reasonably chosen. They are called material phases. The ‘homogenized’

mechanical behavior of the overall material, i.e. the relation between homogeneous de-

formations acting on the boundary of the RVE and resulting (average) stresses, including

the ultimate stresses sustainable by the RVE, can then be estimated from the mechanical

behavior of the aforementioned homogeneous phases (representing the inhomogeneities

within the RVE), their dosages within the RVE, their characteristic shapes, and their in-

teractions. If a single phase exhibits a heterogeneous microstructure itself, its mechanical

behavior can be estimated by introduction of an RVE within this phase, with dimensions
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d3 ℓ3
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Figure D.1: Multistep homogenization: Properties of phases (with character-

istic lengths of d and d2, respectively) inside RVEs with characteristic

lengths of ℓ or ℓ2, respectively, are determined from homogenization over

smaller RVEs with characteristic lengths of ℓ2 ≤ d and ℓ3 ≤ d2, respec-

tively.

ℓ2 ≤ d, comprising again smaller phases with characteristic length d2 ≪ ℓ2, and so on,

leading to a multistep homogenization scheme (see Fig. D.1).

D.3.2 Upscaling of elastoplastic properties

We consider an RVE consisting of nr material phases, r = 1, . . . , nr, exhibiting elastoplas-

tic material behavior, i.e. following the constitutive laws of ideal associated elastoplastic-

ity,

σr = 
r : (εr − εpr) (D.1)

ε̇
p
r = λ̇r

∂fr
∂σr

, λ̇rfr(σr) = 0, λ̇r ≥ 0, fr(σr) ≤ 0 (D.2)

In Eq. (D.2), σr and εr are the stress and (linearized) strain tensors averaged over phase

r with elasticity tensor 
r; εpr are the average plastic strains in phase r, λr is the plas-

tic multiplier of phase r, and fr(σr) is the yield function describing the (ideally) plastic

characteristics of phase r. The RVE is subjected to Hashin boundary conditions, i.e. to

‘homogeneous’ (‘macroscopic’) strains E at its boundary, so that the kinematically com-

patible phase strains εr inside the RVE fulfill the average condition

E =
∑

r

frεr (D.3)
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with fr as the volume fraction of phase r. In a similar way, the equilibrated phase stresses

σr fulfill the stress average condition

Σ =
∑

r

frσr (D.4)

with Σ as the ‘macroscopic’ stresses.

The superposition principle (following from linear elasticity and linearized strain) implies

that the phase strains εr are linearly related to both the macroscopic strains E, and to

the free strains εpr (which can be considered as independent loading parameters),

εr = Ar : E +
∑

s

ars : εps (D.5)

with Ar as the fourth-order concentration tensor (Hill 1965), and ars as the fourth-order

influence tensors (Dvorak 1992). The latter quantify the phase strains εr resulting from

plastic strains εps, while the overall RVE is free from deformation, E = 0.

In absence of plastic strains [fr < 0, εpr = 0 in Eqs. (D.1)-(D.2)], the RVE behaves fully

elastically, so that (D.5), (D.4), (D.3), and (D.1) yield a macroscopic elastic law of the

form

Σ = Chom : E with Chom =
∑

r

fr
r : Ar (D.6)

as the homogenized elastic stiffness tensor characterizing the material within the RVE. In

case of non-zero ’free’ plastic strains εpr , (D.6) can be extended to the form

Σ = Chom : (E − Ep) (D.7)

(D.7), together with (D.1), (D.4), (D.5), and (D.6) gives access to the macroscopic plastic

strains Ep, reading as

Ep = −
[
∑

r

fr
r : Ar]−1

:

{
∑

r

fr
r :

[

(Ar : E +
∑

s

ars : εps) − εpr

]}

+ E (D.8)

D.3.3 Matrix-inclusion based estimation of concentration and

influence tensors

We estimate the concentration and influence tensors from matrix-inclusion problems, as

it is standardly done in the field of elasticity homogenization. However, we consider not

only elastic, but also free (plastic) strains in both the inclusion (with stiffness 
inc) and
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surrounding infinite matrix (with stiffness C0); these plastic strains are denoted by ε
p
inc

and E0,p. At its infinite boundary, the infinite matrix is subjected to homogeneous strains

E∞. Then, the strains in the inhomogeneity can be given in the form (Zaoui 2002)

εinc = [I + P0
inc : (
inc − C0)]−1 : [E∞ + P0

inc : (
inc : ε
p
inc − C0 : E0,p)] (D.9)

We estimate the strains in phase r, εr, as those of an inclusion of the same shape as the

phase, i.e. we identify εinc = εr in (D.9), and insert this result into the strain average rule

(D.3), which yields a relation between E∞ and E,

E∞ =

{
∑

r

fr[I + P0
r : (
r − C0)]−1

}−1

:

{

E −
∑

s

fs[I+ P0
s : (
s − C0)]−1 : P0

s : (
s : εps − C0 : E0,p)

}

(D.10)

Use of Eq. (D.10) in (D.9) specified for ε = εr yields

εr = [I + P0
r : (
r − C0)]−1 :







{
∑

i

fi[I+ P0
i : (
i − C0)]−1

}−1

:

{

E −
∑

s

fs[I+ P0
s : (
s − C0)]−1 : P0

s : (
s : εps − C0 : E0,p)

}

+P0
r : (
r : εpr − C0 : E0,p)

}
(D.11)

In (D.11), the properties of the fictitious matrix, C0 and E0,p, still need to be chosen.

As regards C0, its choice governs the interactions between the phases inside the RVE:C0 = Chom relates to a dispersed arrangement of phases where all phases ‘feel’ the overall

homogenized material, and the corresponding homogenization scheme is standardly called

self-consistent (Hershey 1954; Kröner 1958), well-suited for polycrystalline materials. On

the other hand, the matrix may be identified as a phase M itself, C0 = 
M , which relates

to a matrix-inclusion-type composite, and the corresponding homogenization scheme is

standardly referred to as Mori-Tanaka scheme (Mori and Tanaka 1973; Benveniste 1987).

Herein, we have to make an additional choice, relating to the plastic (free) strains in

the fictitious matrix, E0,p. For a matrix-inclusion composite (Mori-Tanaka scheme), it

seems natural to identify E0,p with the free strain in the matrix phase, ε
p
M . In case

of the self-consistent scheme, however, we have to remember that the fictitious matrix

does not exhibit any volume fractions – therefore, it cannot host any free strains, and

E0,p is set zero in that case. In particular, one is not allowed to set E0,p equal to the

macroscopic plastic strains prevailing at the RVE level, since this would be in conflict

with the concentration relation (D.5).
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Concentration relation (D.5) remains to be specified for the polycrystals and matrix-

inclusion composites: For the former (self-consistent scheme, C0 = Chom, E0,p = 0),

(D.11) reads as

εr = [I + P0
r : (
r − Chom)]−1 :







{
∑

i

fi[I+ P0
i : (
i − Chom)]−1

}−1

:

{

E −
∑

s

fs[I + P0
s : (
s − Chom)]−1 : P0

s : 
s : εps

}

+ P0
r : 
r : εpr

}

(D.12)

Comparing (D.12) with (D.5), we can identify the concentration and influence tensors asAr =
[I + P0

r : (
r − Chom)
]−1

:

{
∑

s

fs
[I + P0

s : (
s − Chom)
]−1

}−1

(D.13)

and ars = arr = (−frAr + I) : (A∞
r : P0

r : 
r) if r = s (D.14)

otherwisears = −fsAr : A∞
s : P0

s : 
s (D.15)

whereby A∞
r = [I+ P0

r : (
r − Chom)]−1 (D.16)

For the Mori-Tanaka case (C0 = 
M , E0,p = ε
p
M), (D.11) reads as

εr = [I+ P0
r : (
r − 
M)]−1 :







{
∑

i

fi[I+ P0
i : (
i − 
M)]−1

}−1

:

{

E −
∑

s

fs[I+ P0
s : (
s − 
M)]−1 : [P0

s : (
s : εps − 
M : ε
p
M)]

}

+P0
r : (
r : εpr − 
M : ε

p
M)
}

(D.17)

Comparing (D.17) with (D.5), we can identify the concentration and influence tensors asAr =
[I+ P0

r : (
r − 
M)
]−1

:

{
∑

s

fs
[I + P0

s : (
s − 
M)
]−1

}−1

(D.18)
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and ars = arr = (−frAr + I) : (A∞
r : P0

r : 
r) if r = s (D.19)ars = arM = Ar : (−fMA∞
M : P0

M : 
M +
∑

i

fiA∞
i : P0

i : 
M) −−A∞
r : P0

r : 
M if s = M (D.20)

otherwisears = −fsAr : A∞
s : P0

s : 
s (D.21)

D.4 Application of microelastoplastic theory to bone

In the following, we will apply the above developed microelastoplastic theory to the ma-

terial ‘cortical bone’. Therefore, we will employ a slight adaptation of a recently proposed

and validated multiscale material model for bone elasticity (Fritsch and Hellmich 2007),

see Figure D.2. The adaptation lies in considering different orientations of non-spherical

mineral crystals, as this precision of morphological resolution is mandatory for the ap-

propriate prediction of the material’s strength properties, as has been shown for other

materials such as hydroxyapatite biomaterials (Fritsch et al. 2009a), concrete (Pichler

et al. 2008a,b), or gypsum (Sanahuja et al. 2008). As the basis for such a multiscale

micromechanics model, the mechanical properties of the elementary components, of hy-

droxyapatite, of collagen, and of water, are required. They will be discussed first.

D.4.1 Elastic properties of hydroxyapatite, collagen, and water

Concerning the tissue-independent (‘universal’) phase properties of the elementary con-

stituents of bone, being the same for all tissues discussed herein, we consider the following

experiments (see also (Fritsch and Hellmich 2007)): Tests with an ultrasonic interferome-

ter coupled with a solid media pressure apparatus (Katz and Ukraincik 1971; Gilmore and

Katz 1982) reveal the isotropic elastic properties of hydroxyapatite powder (Table D.1),

which, in view of the largely disordered arrangement of minerals (Lees et al. 1994; Fratzl

et al. 1996; Peters et al. 2000; Hellmich and Ulm 2002a), are considered as sufficient for the

characterization of the mineral phase (Hellmich and Ulm 2002b; Hellmich et al. 2004b).

Given the absence of direct measurements of (molecular) collagen, the elastic properties of

(molecular) collagen are approximated by those of dry rat tail tendon, a tissue consisting

almost exclusively of collagen. By means of Brillouin light scattering, Cusack and Miller

(1979) have determined the respective five independent elastic constants of a transversely

isotropic material (Table D.1). We assign the standard bulk modulus of water (Table



Publication D Fritsch et al. (2009b) 83

ℓ f
ib
=

10
0

-
50

0
n
m

V̆fib = V̆HA + V̆wetcol

1 = f̆HA + f̆wetcol

V̊wetcol = V̊col + V̊im

1 = f̊col + f̊im

ℓ e
x
v
a
s
≈

10
0

µ
m

V̌ef = V̌HA + V̌ic

1 = f̌HA + f̌ic

ℓ
c
o
r
t
≈

1
m

m
ℓ e

x
ce

l
=

5
-

10
µ
m

intercrystalline space

intermolecular space

x3

x1, x2

x3

x1, x2

x3

x1, x2

x3

x1, x2

x1, x2

x3
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Figure D.2: Micromechanical representation of bone material by means of a

six-step homogenization procedure
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D.1) to phases comprising water with mechanically insignificant non-collagenous organic

matter.

Phase Bulk Shear Experimental source

modulus modulus

k [GPa] µ [GPa]

Hydroxyapatite kHA = 82.6 µHA = 44.9 (Katz and Ukraincik 1971)

Water containing

non-collagenous

organics or osteocytes kH2O = 2.3 µH2O = 0

cijkl cijkl

[GPa] [GPa]

Collagen ccol,3333 = 17.9 ccol,1133 = 7.1 (Cusack and Miller 1979)

ccol,1111 = 11.7 ccol,1122 = 5.1

ccol,1313 = 3.3

Table D.1: ‘Universal’ (tissue and location-independent) isotropic (or trans-

versely isotropic) stiffness values of elementary constituents

D.4.2 Failure properties of hydroxyapatite crystals and collagen

Recent work on porous hydroxyapatite biomaterials (Fritsch et al. 2009a) has revealed

that the elastic limit of single (needle-type) hydroxyapatite crystals can be appropriately

characterized through a criterion of the form:

ψ = 0, . . . , 2π : fHAϕϑ(σHAϕϑ) = β max
ψ

|σNnHA| + σNNHA − σult,tHA = 0 (D.22)

with Euler angles ϕ and ϑ defining the crystal needle orientation vector N=er in the

reference frame (e1, e2, e3), and with ψ defining the orientation of vector n related to

shear stresses (see Figure D.3). β = σult,tHA /σ
ult,s
HA is the ratio between the uniaxial tensile

strength σult,tHA and the shear strength σult,sHA of pure hydroxyapatite (abbreviated ‘HA’),

and σNnHA = N · σHAϕϑ · n and σNNHA = N · σHAϕϑ · N are the normal and shear stress

components related to a surface with normal N(ϕ, ϑ). These strength values can be

gained from experiments of Akao et al. (1981) and Shareef et al. (1993), see (Fritsch et al.

2009a) for further details, and they amount to 52.2 MPa and 80.3 MPa, respectively

(see also Table D.2). Beyond the elastic regime, we consider associated ideal plasticity

according to Eq. (D.2) - having in mind a mathematically feasible strategy for mimicking

layered water-induced ductile sliding between crystals, which maintains the crystals’ stress

levels reached at the elastic limit. Use of (D.22) in (D.2) yields the flow and consistency
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rules as

ε̇
p
HAϕϑ = λ̇HA [N ⊗N + β sgn(σNnHA)(N ⊗ n + n⊗N)],

λ̇HA

(

β max
ψ

|σNnHA| + σNNHA − σult,tHA

)

= 0,

λ̇HA ≥ 0,

β max
ψ

|σNnHA| + σNNHA − σult,tHA ≤ 0, (D.23)

0

e1

e2

e3

er=N

ϕ

ϑ

eϑ

eϕ
nψ

Figure D.3: Cylindrical (needle-like) HA inclusion oriented along vector N and

inclined by angles ϑ and ϕ with respect to the reference frame (e1, e2, e3);

local base frame (er, eϑ, eϕ) is attached to the needle.

Phase Uniaxial tensile Uniaxial shear Experimental source

strength [MPa] strength [MPa]

Hydroxyapatite σult,t
HA = 52.2 σult,s

HA = 80.3 (Akao et al. 1981; Shareef et al. 1993)

Collagen σult
col = 144.7 (Gentleman et al. 2003; Lees et al. 1984a)

Table D.2: ‘Universal’ (tissue and location-independent) phase strength values

Experiments on collagen fibrils have evidenced the quasi-brittle failure characteristics of

this material (Christiansen et al. 2000; Gentleman et al. 2003). Failure of the crosslinks

between the cylindrical collagen molecules is standardly agreed upon as the primary cause

of collagen failure in the longitudinal direction of the molecules (fibrils) (Buehler 2006;
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Vesentini et al. 2005). We here represent this fact by a failure criterion of the form

fcol(σcol) = |e3 · σcol · e3| − σultcol ≤ 0 (D.24)

where the direction three coincides with the principal orientation direction of collagen (see

Figure D.2). Once the equal sign holds in criterion (D.24), we consider that the strengths

of both the collagenous phase and of the overall bone materials are reached, while any

potential plastic or, more probably, microcracking and crack bridging events leading to

toughening in the post-peak regime (Nalla et al. 2004), are beyond the scope of the present

manuscript.Given the aforementioned role of the collagen crosslinks for the strength of

molecular collagen, a non-mineralized collagenous tissue with crosslinking characteristics

close to that of bone is the favorable access to the strength of molecular collagen. As

before, we will rely on rat tail tendon, which, under wet conditions, exhibits a strength of

106.1 MPa (Table 2 in (Gentleman et al. 2003)). Again, we have to consider close packing

of collagen as to get access to properties of molecular collagen. It is known from neutron

diffraction studies (Lees et al. 1984a; Lees 1987a) that diffractional spacing (a measure

for the lateral distance of collagen molecules) reduces from 1.5 nm (for wet collagen) to

1.1 nm (for maximally packed (dry) collagen). Accordingly, the cross sectional area of

a tensile specimen would reduce by the ratio 1.5/1.1, so that the strength of molecular

collagen follows to be 1.5/1.1 times higher than that of wet collagen, i.e. 144.7 MPa (see

Table D.2).

D.4.3 Homogenization over wet collagen

An RVE of wet collagen [see Figure D.2(a)] hosts cylindrical intermolecular pores (labeled

by suffix ‘im’) being embedded into a matrix of crosslinked molecular collagen (labeled by

suffix ‘col’), which is suitably considered through a Mori-Tanaka scheme. Unless collagen

rupture criterion (D.24) is fulfilled, the RVE behaves purely elastically (εpcol=ε
p
im=0),

with a homogenized stiffness CMT
wetcol following from specification of (D.6) for r=[col, im].

Thereby, the volume fractions fulfill f̊im + f̊col = 1, and the concentration tensors Acol
and Aim, respectively, are given through specification of (D.18) for P0

im=Pcolcyl, 
M=
col,
as well as for 
r= 
col and 
r = 
im = 3kH2OJ, respectively. Jijkl = 1/3δijδkl is the

volumetric part of the fourth order unity tensor I; see Table D.1 for kH2O. According

to the aforementioned specifications, the concentration relation (D.17) for the matrix of

molecular collagen within an RVE of wet collagen reads as

εcol =
{

(1 − f̊im)I+ f̊im
[I + Pcolcyl : (
im − 
col)]−1

}−1

: Ewetcol (D.25)

whereby the components of morphology tensor Pcolcyl are given in the Appendix.
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D.4.4 Homogenization over mineralized collagen fibril

An RVE of mineralized collagen fibrils [see Figure D.2(b)] hosts crystal clusters (repre-

sented through spherical hydroxyapatite inclusions, labeled by suffix ‘HA’) and cylindrical

microfibrils of wet collagen (labeled by suffix ‘wetcol’), which are mutually intertwingled.

In order to consider this morphology, a self-consistent scheme is appropriate. Unless the

wet collagen phase does not fail [see Subsections D.4.3 and D.4.2, in particular Eq. (D.24)],

the RVE behaves purely elastically (εpHA=ε
p
wetcol=0), with a homogenized stiffness CSCSfib

following from specification of (D.6), for r=[HA, wetcol]. Thereby, the volume fractions

fulfill f̆wetcol + f̆HA = 1, and the concentration tensors AHA and Awetcol, respectively, are

given through specification of (D.13) for Chom=CSCSfib , for P0
HA=Pfibsph and P0

wetcol=Pfibcyl , re-

spectively, as well as for 
r=
HA = 3kHAJ+2µHAK, and 
r=CMT
wetcol, respectively. K = I−J

is the deviatoric part of the fourth order unity tensor I; see Table D.1 for kHA and µHA.

According to the aforementioned specifications, the concentration relation (D.12) for the

phase ‘wet collagen’ within an RVE of mineralized collagen fibril reads as

εwetcol =
[I + Pfibcyl :

(CMT
wetcol − CSCSfib

)]−1

:

{

f̆wetcol

[I+ Pfibcyl :
(CMT

wetcol − CSCSfib

)]−1

+

f̆HA

[I+ Pfibsph :
(
HA − CSCSfib

)]−1
}−1

: Efib (D.26)

whereby the components of Pfibsph and Pfibcyl are given in the Appendix – and εwetcol (here the

‘microscopic’ strain) is identical to Ewetcol of Eq. (D.25), there being the ‘macroscopic’

strain.

D.4.5 Homogenization over extrafibrillar space (hydroxyapatite

foam)

An RVE of extrafibrillar space [see Figure D.2(c)] hosts crystal needles (represented

through cylindrical hydroxyapatite inclusions, labeled by suffix ‘HA’) being oriented in

all space directions, and spherical, water-filled pores (intercrystalline space, labeled by

suffix ‘ic’). The corresponding polycrystal-type morphology is appropriately represented

through a self-consistent scheme. Sliding between crystals is modeled through criterion

(D.23), leading to plastic strains ε
p
HA, and no plasticity occurs in the intercrystalline space

(εpic=0). The homogenized stiffness of an RVE of extrafibrillar space, CSCSIIef , follows from

specification of (D.6) for r=[HA, ic]. Thereby, the volume fractions fulfill f̌HA + f̌ic = 1,

and the concentration tensors AHAϕϑ and Aic, respectively, are given through specifica-

tion of (D.13) for Chom=CSCSIIef , for P0
HA=Pefcyl(ϑ, ϕ) and P0

ic=Pefsph, respectively, as well

as for 
r=
HA and 
r = 
ic = 3kH2OJ (see Table D.1), respectively. Thereby, summation
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over all crystal orientations is done by integration over Euler angles ϑ = 0, . . . , π and

ϕ = 0, . . . , 2π. Accordingly, the concentration-influence relation (D.17) for the hydroxya-

patite phase oriented in a specific direction (ϑ, ϕ) within an RVE of extrafibrillar space

reads as

εHAϕϑ = [I+ Pefcyl(ϑ, ϕ) : (
HA − CSCSIIef )]−1 :












f̌HA

2π∫

φ=0

π∫

θ=0

[I + Pefcyl(θ, φ) : (
HA − CSCSIIef )]−1 sin θ dθ dφ

4π
+

+f̌ic[I + Pefsph : (
ic − CSCSIIef )]−1
}−1

:






Eef − f̌HA

2π∫

φ=0

π∫

θ=0

[I+ Pefcyl(θ, φ) : (
HA − CSCSIIef )]−1 :Pefcyl(θ, φ) : 
HA : ε
p
HAϑϕ

sin θ dθ dφ

4π

}

+ Pefcyl(ϑ, ϕ) : 
HA : ε
p
HAϑϕ

}

(D.27)

whereby the components of Pefsph and Pefcyl are given in the Appendix. According to (D.8)

applied to the present homogenization step, plastic strains ε
p
HA in the hydroxyapatite

phases imply a plastic strain E
p
ef at the level of the RVE of extrafibrillar space.

D.4.6 Homogenization over extracellular bone matrix

An RVE of extracellular bone matrix or ultrastructure [see Figure D.2(d)] hosts cylindrical

mineralized fibrils (labeled by suffix ‘fib’) being embedded into a matrix of extrafibril-

lar space (labeled by suffix ‘ef ’). This morphology is suitably modeled by means of a

Mori-Tanaka scheme. As discussed in the previous Subsection D.4.5, the extrafibrillar

matrix may be subjected to plastic strains, while we do not consider plastic strains in the

mineralized fibrils (εpfib = 0). The homogenized stiffness of an RVE of extracellular bone

matrix, CMTII
excel , follows from specification of (D.6) for r=[fib, ef ]. Thereby, the volume

fractions fulfill f̄fib + f̄ef = 1, and the concentration tensors Afib and Aef , respectively,

follow from specification of (D.18) for 
M=CSCSIIef , for P0
fib=Pefcyl, as well as for 
r=CSCSfib

and 
r=CSCSIIef , respectively. Accordingly, the concentration influence relation (D.17) for

the phase extrafibrillar space within an RVE of extracellular bone matrix reads as

εef =
{

f̄ef I + f̄fib[I + Pefcyl : (CSCSfib − CSCSIIef )]−1
}−1

:

{

Eexcel − f̄fib[I + Pefcyl : (CSCSfib − CSCSIIef )]−1 : Pefcyl : (−CSCSIIef : ε
p
ef)
}

(D.28)

whereby the components of Pefcyl are given in the Appendix. According to (D.8) ap-

plied to the present homogenization step, plastic strains in the extrafibrillar space (see
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Subsection D.4.5, ε
p
ef=E

p
ef) imply a plastic strain E

p
excel at the level of the RVE of the

extracellular bone matrix.

D.4.7 Homogenization over extravascular bone material

An RVE of extravascular bone material [see Figure D.2(e)] hosts spherical empty pores

called lacunae (labeled by suffix ‘lac’) being embedded into a matrix of extracellular bone

matrix (labeled by suffix ‘excel’). This morphology is suitably modeled by means of a

Mori-Tanaka scheme. As discussed in the previous Subsection D.4.6, the extracellular

bone matrix may be subjected to plastic strains while we do not consider plastic strains

in the lacunae (εplac = 0). The homogenized stiffness of an RVE of extravascular bone

material, CMTIII
exvas , follows from specification of (D.6) for r=[lac, excel]. Thereby, the

volume fractions fulfill f̃lac + f̃excel = 1, and the concentration tensors Alac and Aexcel,
respectively, follow from specification of (D.18) for 
M=CMTII

excel , for P0
lac=Pexcelsph , as well as

for 
r=
lac=0 and 
r=CMTII
excel , respectively. 
lac = 0 relates to the fact that the lacunar

pores are empty (drained) in all experiments considered in Section D.6 – for undrained

situations, 
lac = 3kH2OJ would be appropriate, see (Fritsch and Hellmich 2007) for de-

tails. According to the aforementioned specifications, the concentration-influence relation

(D.17) for the phase ‘extrafibrillar space’ within an RVE of extracellular bone matrix

reads as

εexcel =
{

f̃excelI+ f̃lac[I− Pexcelsph : CMTII
excel ]−1

}−1

:

{

Eexvas − f̃lac[I− Pexcelsph : CMTII
excel ]−1 : Pexcelsph : (−CMTII

excel : ε
p
excel)

}

(D.29)

whereby the components of Pexcelsph are given in the Appendix. According to (D.8) applied

to the present homogenization step, plastic strains in the extracellular bone matrix (see

Subsection D.4.6, ε
p
excel=E

p
excel) imply a plastic strain Ep

exvas at the level of the RVE of

the extravascular bone material.

D.4.8 Homogenization over cortical bone material

An RVE of cortical bone material [see Figure D.2(f)] hosts cylindrical empty pores called

Haversian canals or vascular space (labeled by suffix ‘vas’) being embedded into a ma-

trix of extravascular bone material (labeled by suffix ‘exvas’). This morphology is suit-

ably modeled by means of a Mori-Tanaka scheme. As discussed in the previous Subsec-

tion D.4.7, the extravascular bone material may be subjected to plastic strains, while

we do not consider plastic strains in the Haversian canals (εpvas = 0). The homoge-

nized stiffness of an RVE of cortical bone material, CMTIV
cort , follows from specification of

(D.6) for r=[vas, exvas]. Thereby, the volume fractions fulfill fvas + fexvas = 1, and

the concentration tensors Avas and Aexvas, respectively, follow from specification of (D.18)
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for 
M=CMTIII
exvas , for P0

vas=Pexvascyl , as well as for 
r=
vas=0 and 
r=CMTIII
exvas , respectively.
vas = 0 relates to the fact that the Haversian canals are empty (drained) in all exper-

iments considered in Section D.6. According to the aforementioned specifications, the

concentration-influence relation (D.17) for the phase ‘extravascular bone material’ within

an RVE of cortical bone material reads as

εexvas =
{
fexvasI + fvas[I− Pexvascyl : CMTIII

exvas ]−1
}−1

:

{
Ecort − fvas[I− Pexvascyl : CMTIII

exvas ]−1 : Pexvascyl : (−CMTIII
exvas : εpexvas)

}
(D.30)

whereby the components of Pexvascyl are given in the Appendix. According to (D.8) applied

to the present homogenization step, plastic strains in the extravascular bone material (see

Subsection D.4.7, εpexvas=Ep
exvas) imply a plastic strain E

p
cort at the level of the RVE of

the cortical bone material.

D.5 Algorithmic aspects

We are left with using the partially incremental constitutive relations developed in Sec-

tions D.3 and D.4 for computation of stress-strain relations. This requires some algorith-

mic deliberations which we will describe in view of a stress-strain curve for uniaxial stress

applied to an RVE of cortical bone, Σcort = Σ33e3⊗e3, the loading direction e3 coinciding

with the longitudinal (axial) direction of the bone material (see Figure D.2). This stress

is applied in load increments labeled by n, starting at Σ33 = 0, and being accumulated

up to failure of the material. Accordingly, flow rule (D.2) and (D.23) is considered in

a discretized fashion: It is evaluated for a finite number of needle orientation directions

(‘families’), and it is integrated over the n-th load step,

∆ε
p
HAϕϑ,n+1 = ∆λHA,n+1[N ⊗N + β sgn(σNnHA)(N ⊗ n+ n⊗N)] (D.31)

with

ε
p
HAϕϑ,n+1 = ε

p
HAϕϑ,n + ∆ε

p
HAϕϑ,n+1 (D.32)

At the beginning of the very first load step, there are neither plastic strains (Ep
cort,0 = 0)

nor total strains (Ecort,0 = 0); at the end of an arbitrary later load step with label n, there

may be plastic strains E
p
cort,n and total strains Ecort,n, both related to stresses Σcort,n =

Σ33,ne3 ⊗ e3. Then, the general task is to compute the strain increments ∆E
p
cort,n+1

and ∆Ecort,n+1, leading to total strains E
p
cort,n+1 = E

p
cort,n + ∆E

p
cort,n+1 and Ecort,n+1 =

Ecort,n + ∆Ecort,n+1, following from the stress increment ∆Σcort,n+1 = ∆Σ33,n+1e3 ⊗ e3.

To fulfill this task, an iterative procedure is applied: First, the macroscopic strains are

estimated from specification of (D.7) for an RVE of cortical bone, on the assumption that

no plastic strains would occur during the (n + 1)-st load step, which may be referred to
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as a ‘trial step’ in the line of classical computational elastoplasticity (Simo and Taylor

1985),

Etrial
cort,n+1 = CMTIV

cort : Σcort,n+1 + E
p
cort,n (D.33)

Then, these trial strains are concentrated into the lower-scale RVEs, by means of Eqs. (D.25)-

(D.30), all specified for Ecort = Etrial
cort,n+1; εpexvas = εpexvas,n, εexvas = Eexvas = εtrialexvas,n+1 =

Etrial
exvas,n+1; ε

p
excel = ε

p
excel,n, εexcel = Eexcel = εtrialexcel,n+1 = Etrial

excel,n+1; ε
p
ef = ε

p
ef,n, εef =

Eef = εtrialef,n+1 = Etrial
ef,n+1; ε

p
HAϕϑ = ε

p
HAϕϑ,n, εHAϕϑ = εtrialHAϕϑ,n+1. Within the RVE of

extrafibrillar material, the trial stress states in hydroxyapatite phases follow to be

σtrial
HAϕϑ,n+1 = 
HA : [εtrialHAϕϑ,n+1 − ε

p
HAϕϑ,n] (D.34)

and this trial stress allows one to identify the plasticizing mineral phases in load step

n+ 1:

fHAϕϑ(σ
trial
HAϕϑ,n+1) ≤ 0 ↔ ∆λHAϕϑ,n+1 = 0

fHAϕϑ(σ
trial
HAϕϑ,n+1) > 0 ↔ ∆λHAϕϑ,n+1 > 0 (D.35)

In the first case, the load step is elastic, ∆E
p
cort,n+1 = 0 and Etrial

cort,n+1 = Ecort,n+1,

and the computation can proceed to the next load step, n + 2. In the second case,

the load step is elastoplastic, the plastic multiplier ∆λHAϕϑ,n+1 and the plastic strain

increment ∆ε
p
HAϕϑ,n+1 need to be determined. In the line of classical computational

elastoplasticity, this is done by means of the so-called return map algorithm, also called

projection algorithm (Simo and Taylor 1985): A trial stress state σtrial
HAϕϑ,n+1 which lies

outside the elastic domain has to be projected back onto the failure surface fHAϕϑ = f1 in

Fig. D.4, which gives a first approximation of the stresses in the HA phase,

σ
(1)
HAϕϑ,n+1 = σtrial

HAϕϑ,n+1 − 
HA : ∆λHAϕϑ,n+1[N ⊗N +

+β sgn(σNnHA)(N ⊗ n+ n⊗N)],

f(σ
(1)
HA,n+1) = 0

→ ∆λHAϕϑ,n+1 =

=
(3kHA − 2µHA)ε̄11 + (3kHA − 2µHA)ε̄22 + (3kHA + 4µHA)ε̄33

3kHA + 4µHA + 6β2µ
+

+
sgn(σNnHA)6β µ ε̄13 − 3σult,tHA

3kHA + 4µHA + 6β2µ
(D.36)

whereby the components of the difference (εHAϕϑ,n+1 − ε
p
HAϕϑ,n), ε̄ij, are given in a local

base frame (er, eϑ, eϕ), see Fig. D.3.

Use of ∆λHAϕϑ,n+1 in (D.31), and insertion of the result into (D.8) specified for the ex-

trafibrillar RVE, for the extracellular RVE, for the extravascular RVE, and for the cortical
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RVE, yields a first approximation of E
p(1)
cort,n+1 and ∆E

p(1)
cort,n+1. These plastic strains are

inserted into (D.33) where E
p
cort,n is replaced by E

p(1)
cort,n+1, and the aforementioned pro-

cedure is repeated, leading to strains ∆E
p(2)
cort,n+1 and E

p(2)
cort,n+1. Further repetitions of the

aforementioned procedure are performed, the k-th performance yielding strains E
p(k)
cort,n+1;

and this is done until ∆E
p(k)
cort,n+1 approaches zero up to a prescribed tolerance so that

satisfactorily precise values for E
p
cort,n+1 and Ecort,n+1 have been attained. Then, the next

load step, (n+ 2), is tackled.

A particular case deserves further discussion: If the trial stress state σtrial
HAϕϑ,n+1 lies within

the gray shaded area of Fig. D.4, projection step (D.36) may deliver negative values for

|σNn|, which is not admissible. In this case, a two-surface failure criterion is employed,

the second surface being defined through

f2,HAϕϑ(σHAϕϑ,n+1) = σNNHA − σult,tNN,HA = 0, (D.37)

and Eq. (D.31) is extended according to Koiter’s flow rule (Koiter 1960)

∆ε
p
HAϕϑ,n+1 = ∆λ1,HAϕϑ,n+1

∂f1,HAϕϑ
∂σHAϕϑ,n+1

+ ∆λ2,HAϕϑ,n+1
∂f2,HAϕϑ

∂σHAϕϑ,n+1
(D.38)

with f1,HAϕϑ = fHAϕϑ = 0 from Eq. (D.22). This leads to plastic multipliers reading as

∆λ1,HAϕϑ,n+1 = sgn(σNnHA)
ε̄13

β

∆λ2,HAϕϑ,n+1 =

(3kHA − 2µHA)βε̄11 + (3kHA − 2µHA)βε̄22 + (3kHA + 4µHA)βε̄33+

(3kHA + 4µHA)β
+

+
sgn(σNnHA)(3kHA + 4µHA)ε̄13 − 3βσult,tHA

(3kHA + 4µHA)β

(D.39)

D.6 Experimental validation of multiscale model for

bone strength

The mathematical model developed in Sections D.4 and D.5 is based on experimentally

determined elasticity and strength properties of the elementary components hydroxyap-

atite, (molecular) collagen, and water. This model predicts, for each set of tissue-specific

volume fractions f̊col, f̆wetcol, f̌HA, f̄fib, f̃excel, and fexvas (see Figure D.2), the correspond-

ing tissue-specific elasticity and strength properties at all observation scales of Figure D.2.
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maxψ|σNn|

f1 >0,

0

f2 >0
f1 = 0

f2 = 0
f2 >0

f1 >0

σNN

σ
ult,s
HA

σ
ult,t
HA

Figure D.4: Schematic representation of the loading surfaces f1 = f1,HAϕϑ and

f2 = f2,HAϕϑ, for a specific needle family with orientation given through ϕ

and ϑ, in the σNN -σNn stress space.

Thus, a strict experimental validation of the mathematical model is realized as follows:

(i) different sets of volume fractions are determined from composition experiments on

different bone samples with different ages, from different species and different anatomi-

cal locations (micrographs, weighing tests on demineralized/dehydrated tissues, neutron

diffraction tests; see Subsection D.6.1); (ii) these volume fractions are used as model input,

and (iii) corresponding model-predicted strength values (model output) are compared to

results from strength experiments on the same or very similar bone samples. We here

refrain from validation of model-predicted elastic values, since these are reported, in great

detail, in (Fritsch and Hellmich 2007).

D.6.1 Experimental set providing tissue-specific volume frac-

tions as model input

Experimental validation of the six-step upscaling procedure [Eqs. (D.22) to (D.39)] re-

quires determination of the phase volume fractions within the six considered RVEs (Fig-

ure D.2).

Within an RVE of cortical bone [Figure D.2(f)], the extravascular volume fraction fexvas
is primarily driven by the interplay of osteoblastic and osteoclastic action in the vascular

pore space. We here have access to typical mammalian cortical bone under physiological

conditions, for which fexvas does not exceed 5% (Sietsema 1995), and the microradiographs

of bovine tibia provided by Lees et al. (1979a) yield fexvas=3% (see (Fritsch and Hellmich
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2007) for details); we will adopt this value throughout this validation section.

Within an RVE of extravascular bone material [Figure D.2(e)], the lacunar volume fraction

f̃lac relates to the way osteoblasts work: when laying down osteoid, a typical fraction of

osteoblasts become buried in this newly formed ultrastructure, leading to the formation

of lacunae. Hence, f̃lac always lies in a narrow range of values, around f̃lac=2% (see

(Fritsch and Hellmich 2007) for details); we will adopt this value for the remainder of this

validation section.

As regards hydroxyapatite and collagen contents, Lees (1987b) has provided the weight

fractions of mineral and organic components within cortical bone samples, WF cort
HA and

WF cort
org , for several mammalian species and organs, including human and bovine bone

samples, together with their mass densities ρcort (see Table D.3). These values give access

to the weight fractions at the extracellular (ultrastructural) scale [Figure D.2(d)], through

tissue ρcort WF cort
HA WF cort

org f̄HA f̄col

[g/cm3] [-] [-] [-] [-]

given given given Eqs. (39), Eqs. (40)-

(42), (43) (42), (44)

human femur 1.98a 0.655a 0.227a 0.46 0.30

human tibia 1.98a 0.659a 0.228a 0.46 0.30

bovine femur 2.105a 0.717a 0.180a 0.53 0.25

bovine tibia 2.02a 0.667a 0.209a 0.47 0.28

equine radius 2.015b - - 0.47c 0.27c

tissue ds f̄fib f̌HA f̆HA f̊col

[nm] [-] [-] [-] [-]

Eqs. (42), Eq. Eqs. (50), Eqs. (50), Eqs. (53),

(49) (48) (52) (51) (54)

human femur 1.25 0.53 0.65 0.28 0.42

human tibia 1.25 0.53 0.66 0.28 0.42

bovine femur 1.23 0.44 0.71 0.30 0.36

bovine tibia 1.24 0.49 0.66 0.28 0.39

equine radius 1.25 0.48 0.65 0.28 0.38

a experimental data: (Lees 1987b), Table 2

b experimental data: (Riggs et al. 1993)

c calculated with Eqs. (45)-(47)

Table D.3: Tissue-specific composition values

WF excel
HA =

WF cort
HA

1 − ρH2O×[fvas+(1−fvas)f̃lac]

ρcort

(D.40)

WF excel
org =

WF cort
org

1 − ρH2O×[fvas+(1−fvas)f̃lac]

ρcort

(D.41)
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with ρH2O = 1 kg/dm3 as the mass density of water filling the vascular and lacunar pores

spaces. Since 90% of mass of organic matter in bone is collagen (Urist et al. 1983; Lees

1987a; Weiner and Wagner 1998), the weight fraction of collagen within the extracellular

matrix follows to be

WF excel
col = 0.9 ×WF excel

org , (D.42)

These weight fractions, together with the tissue mass density at the extracellular scale

(the pores of specimens discussed in Table D.3 are filled with water, see (Fritsch and

Hellmich 2007) for details),

ρexcel =
ρcort − ρH2O[fvas + (1 − fvas)f̃lac]

1 − fvas − (1 − fvas)f̃lac
(D.43)

give access to the mineral and collagen volume fractions at the extracellular observation

scale,

f̄HA =
ρexcel
ρHA

×WF excel
HA (D.44)

f̄col =
ρexcel
ρcol

×WF excel
col (D.45)

where ρHA=3.00 kg/dm3 (Lees 1987a; Hellmich 2004) and ρcol = 1.41 kg/dm3 (Katz and

Li 1973; Lees 1987a) (see Table D.3 for values of f̄HA and f̄col used for the validation of

the herein proposed strength model).

The dehydration–demineralization tests of Lees et al. (1979b); Lees (1987a); Lees et al.

(1995) show that, throughout samples from the entire vertebrate animal kingdom, the

extracellular volume fraction f̄HA depends linearly on the extracellular mass density ρexcel,

Ff̄HA
= A× ρexcel + B (D.46)

with A = 0.59 ml/g and B = −0.75, see (Fritsch and Hellmich 2007) for details. Combi-

nation of (D.46) with

ρexcel = f̄H2O ρH2O + f̄org ρorg + f̄HA ρHA (D.47)

with ρorg ≈ ρcol, with 1 = f̄org + f̄H2O+ f̄HA, and with f̄col = 0.9× f̄org, yields the collagen

content as a function of the extracellular mass density,

Ff̄col
(ρexcel) =

0.9

ρH2O − ρorg
×

{
Ff̄HA

(ρexcel) × [ρHA − ρH2O] − ρexcel + ρH2O

}
(D.48)

see Table D.3 for values based on these functions, used for the validation of the herein

proposed strength model.
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The extracellular volume fractions of the fibrils and the extracellular space, f̄fib and f̄ef
[Figure D.2(d)], can be quantified on the basis of the generalized packing model of Lees

et al. (1984b); Lees (1987a), through

f̄fib = f̄col ×
vfib
vcol

, vfib = b ds 5D (D.49)

where f̄col is determined according to (D.45) and (D.42), or according to (D.48) and

(D.46), respectively. vcol = 335.6 nm3 is the volume of a single collagen molecule (Lees

1987a). vfib is the volume of one rhomboidal fibrillar unit with length 5D, width b, and

height ds. b=1.47 nm is an average (rigid) collagen crosslink length valid for all mineralized

tissues (Lees et al. 1984b), D ≈ 64 nm is the axial macroperiod of staggered assemblies of

type I collagen, and ds is the tissue-specific neutron diffraction spacing between collagen

molecules, which depends on the mineralization and the hydration state of the tissue

(Lees et al. 1984a; Bonar et al. 1985; Lees et al. 1994). For wet tissues, ds can be given

in a dimensionless form (Hellmich and Ulm 2003), as a function of ρexcel only. For the

rather narrow range of tissue mass densities considered here, this function can be linearly

approximated through

ds = C × ρexcel + D (D.50)

where C = −0.2000 nm/(g cm−3) and D = 1.6580 nm.

The volume fractions for scales below the extracellular bone matrix can be derived directly

from f̄fib and f̄col, on the basis of the finding of Hellmich and Ulm (2001, 2003) that the

average hydroxyapatite concentration in the extra-collagenous space of the extracellular

bone matrix of wet mineralized tissues is the same inside and outside the fibrils. Accord-

ingly, the relative amount of hydroxyapatite in the extrafibrillar space reads as (Hellmich

and Ulm 2001, 2003)

φHA,ef =
1 − f̄fib
1 − f̄col

(D.51)

With this value at hand, the mineral volume fractions in the fibrillar [Fig. D.2(b)] and

the extrafibrillar space [Fig. D.2(c)] are,

f̆HA =
f̄HA(1 − φHA,ef)

f̄fib
(D.52)

f̌HA =
φHA,ef f̄HA

f̄ef
(D.53)

see Table D.3 for values used to validate the herein proposed strength model.

Within the fibril, comprising the phases hydroxyapatite and wet collagen, the volume

fraction of the latter reads as

f̆wetcol = 1 − f̆HA (D.54)
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Finally, the volume fraction of (molecular) collagen at the wet collagen level [Fig. D.2(a)]

can be calculated from f̄col, through

f̊col =
f̄col

f̆wetcol
(D.55)

see Table D.3 for values used for validating the proposed strength model.

D.6.2 Experimental set providing tissue-specific strength values

for model testing

In most cases, strength of bone is quantified in terms of uniaxial, compressive or tensile

mechanical tests, under quasi-static conditions (i.e. with a strain rate well below one).

To show the relevance of our model approach, we consider various experimental results

from various laboratories and various test setups, on various different bone samples (see

Table D.4 for specimen geometries, employed machines, and strain rates, and Table D.5

for tissue-specific experimental results).

D.6.3 Comparison between tissue-specific strength predictions

and corresponding experiments

The strength values predicted by the six-step homogenization scheme (Fig. D.2) for

tissue-specific volume fractions (experimental set of Subsection D.6.1) on the basis of

tissue-independent ‘universal’ phase stiffness and strength properties (experimental set of

Tables D.1 and D.2) are compared to corresponding experimentally determined tissue-

specific uniaxial tensile and compressive strength values from the experimental set of

Subsection D.6.2. The experimental strength values of Subsection D.6.2 are grouped into

types of tissues (e.g. human tibia), and their corresponding weighted mean and standard

deviation is considered (see Tables D.6 and D.7 as well as Fig. D.5).

To quantify the model’s predictive capabilities, we consider the mean and the standard

deviation of the relative error between strength predictions and experiments,

ē =
1

n

∑

ei =
1

n

∑ Σult
cort − Σult

exp

Σult
cort

(D.56)

eS =

[
1

n− 1

∑

(ei − ē)2

] 1
2

(D.57)

The satisfactory agreement between model predictions and experiments is quantified by

prediction errors of +2.61± 24.7% for uniaxial tensile strength, and of −4.00± 8.42% for

uniaxial compressive strength [ē± eS according to Eqs. (D.56) and (D.57)].
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literature source specimen geometry machine strain rate

[mm] [1/s]

(Burstein et al. 1972) cylindrical (dS=5) with rcs not given not given

(dcs=2.9)

(Burstein et al. 1975) cuboidal (≈15x5x5) with rcs (a=2) not given not given

(Burstein et al. 1976) cuboidal (≈15x5x5) with rcs (a=2) not given 0.05

(Cezayirlioglu et al. 1985) cuboidal (4-5x4x45) with rcs Instron 1230 0.01-0.06

(dcs=2.5-3)

(Currey 1959) cylindrical (lS=28) not given not given

with rcs (dcs=1.9-2.7)

(Currey 1975) cuboidal with rcs (acs=1.8) Instron table model 1.3x10−4-0.16

(Currey 1990) cuboidal with rcs (acs=1.8) Instron 1122 0.2

(Currey 2004) cuboidal with rcs (acs=1.8) Instron 1122 0.2

(Dickenson et al. 1981) cylindrical (l=30, dS=5.5) hydraulic servo-controlled not given

with rcs (dcs=2.4)

(Hellmich et al. 2006) cylindrical (lS=10, dS=5) LFM 150, Wille 0.001

Geotechnik

(Kotha and Guzelsu 2002) cuboidal with rcs (2x5) Instron 0.0005

(Lee et al. 1997) cylindrical (lS=40, dS=4.5) Instron 1331 0.5

with rcs (dcs=3)

(Martin and Ishida 1989) cuboidal (45x18x5) with rcs Instron 1122 0.004

(acs=5)

(McCalden et al. 1993) cuboidal (32x5x5) with rcs J.J. Lloyd M30K 0.03

(acs=2)

(Reilly and Burstein 1974a) cuboidal (≈15x5x5) with rcs (a=2) not given 0.05

(Reilly and Burstein 1975) cuboidal (≈15x5x5) with rcs (a=2) not given 0.02-0.05

(Riggs et al. 1993) cuboidal (lS<10) with rcs (tension), Instron 6025 0.001

cubes (lS=8, compression)

(Sedlin and Hirsch 1966) cuboidal (≈50x5x2) with rcs Instron TT-CM not given

Table D.4: Specimen geometries, employed testing machines, and strain rates

of the tensile and compressive tests, see also Table D.5. dS is the diameter

of the sample with length lS, ‘rcs’ stands for reduced cross section with

diameter dcs or side length acs.

D.7 Discussion of model characteristics

Having successfully shown the predictive capabilities of the proposed model for various

cortical bone tissues tested in uniaxial tension and compression, it is interesting to study

the sequence of plastic (interfacial) events in the extrafibrillar space, in terms of the

orientations of involved hydroxyapatite crystals.

Under uniaxial tensile loading of cortical bone in axial (longitudinal) direction (ϑ = 0◦),

longitudinally oriented crystals are the first to undergo inelastic deformation. In the course

of further loading, inelastic deformations spread relatively quickly over the range defined

by orientation angles ϑ between zero and 30 degrees [see Figure D.6(c)-(e) for Ecort,33
below 0.1%]. Afterwards, the spreading of plasticity slows off, and stops at an orientation

angle of about 65 degrees, see Figure D.6(d)-(e) for plastic strains, and Figure D.6(c) for

orientation ϑ = 74.25◦ remaining in the elastic regime. Thereby, crystals with longitudinal

orientation carry tensile normal stresses at a constant level throughout the plastic loading
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literature source tissue tension compression

n Σult,t
exp n Σult,c

exp

[MPa] [MPa]

(Burstein et al. 1972) bovine femur 25 172 ? 283

(Burstein et al. 1975) bovine tibia 10 188

(Burstein et al. 1976) human femur 178 132 95 192

(Burstein et al. 1976) human tibia 123 155 38 192

(Cezayirlioglu et al. 1985) human femur 37 136 19 206

(Cezayirlioglu et al. 1985) human tibia 13 158 9 213

(Cezayirlioglu et al. 1985) bovine femur 27 162 25 217

(Currey 1959) bovine femur 46 106.0

(Currey 1975) bovine femur 35 124.5

(Currey 1990) bovine femur 4 148

(Currey 1990) bovine tibia 4 146

(Currey 2004) human femur 4 165.7

(Currey 2004) bovine femur 10 142.4

(Dickenson et al. 1981) human femur 29 117

(Hellmich et al. 2006) bovine tibia 3 180

(Kotha and Guzelsu 2002) bovine femur 9 106.6

(Lee et al. 1997) human tibia 11 77.0

(Martin and Ishida 1989) bovine femur 10 112

(McCalden et al. 1993) human femur 38 91.6

(Reilly and Burstein 1974a) human femur 101 128.5 95 192.5

(Reilly and Burstein 1974a) bovine femur 11 133.1 10 249.6

(Reilly and Burstein 1974a) bovine tibia 152 228

(Reilly and Burstein 1975) human femur 21 135 20 205

(Reilly and Burstein 1975) bovine femur 3 144 3 272

(Riggs et al. 1993) equine radius 40 161 13 185

(Riggs et al. 1993) equine radius 40 105 13 217

(Sedlin and Hirsch 1966) human femur 52 87.5

Table D.5: Tissue-specific experimental uniaxial tensile and compressive mean

strength values. n denotes the number of samples tested.

tissue model experiments

Σult,t
cort Σult,t

exp

mean±std.dev.

[MPa] [MPa]

human femur 122.59 122.59 ± 17.28

human tibia 124.82 149.43 ± 20.69

bovine femur 147.69 132.77 ± 24.75

bovine tibia 125.00 164.00 ± 18.33

equine radius 118.91 133.00 ± 28.18

Table D.6: Predicted and experimental strength values for different tissues

tested in uniaxial tension.

stage, whereas the normal stresses in inclined crystals are declining, while increasing shear

stresses build up [see Figure D.6(a)-(b)].

Under uniaxial compressive loading of cortical bone material in axial (longitudinal) di-

rection (ϑ = 0◦), transversely oriented crystals (i.e. such oriented perpendicular to the
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tissue model experiments

Σult,c
cort Σult,c

exp

mean±std.dev.

[MPa] [MPa]

human femur -187.60 -194.50 ± 5.00

human tibia -190.84 -196.02 ± 8.35

bovine femur -246.57 -231.28 ± 20.59

bovine tibia -197.83 -214.91 ± 22.42

equine radius -190.19 -201.00 ± 10.81

Table D.7: Predicted and experimental strength values for different tissues

tested in uniaxial compression.
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Figure D.5: Comparison between model predictions and experiments at the

macroscopic scale [cortical bone material, Fig. D.2(f)]. Mean and standard

deviation are depicted for experimental tensile strength (dark color) and

experimental compressive strength (light color).

longitudinal direction) are the first to undergo inelastic deformation. In the course of

further loading, inelastic deformations spread relatively quickly over the range defined

by orientation angles between 90 and 70 degrees [see Figure D.7(c)-(e) for Ecort,33 be-

low 0.1%]. Afterwards, the spreading of plasticity slows off, and stops at an orientation

angle of about 60 degrees, see Figure D.7(d)-(e) for plastic strains, and Figure D.7(c)

for orientation ϑ < 60◦ remaining in the elastic regime. Thereby, transversely oriented

crystals and crystals with slight inclination from the transverse directions (which are first

associated with plasticity) carry normal tensile stresses, while more inclined crystals are

loaded in normal compression. Throughout the plastic loading stage, all these crystals,

whether loaded normally in tension or in compression, carry increasing shear stresses [see
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Figure D.7(a)-(b)].

This sequence of plastic events leads to distinctive stress-strain relationships at the level of

cortical bone (see Figure D.8): Elastoplastic behavior associated to longitudinal extrafib-

rillar crystals under tensile loading provokes a decrease of slope in the stress-strain curve,

which is more pronounced than that related to elastoplastic behavior in transverse crystal

clusters under compression. Thereby, Figure D.8 illustrates the stress-strain curves until

the failure stress in the collagen according to (D.24) is reached - this agrees well with the

investigations of Pidaparti et al. (1997); Morgan et al. (2005), showing a rather (quasi-

)brittle behavior of cortical bone under uniaxial loading. On the other hand, several

investigators (Currey 1959; Reilly and Burstein 1974a; Kotha and Guzelsu 2002) report

increasing cortical strains at a constant cortical stress level close to the ultimate strength

level, i.e. the occurrence of (macroscopically apparent) ‘plastic’ events also beyond the

point when the collagen failure criterion (D.24) is reached in the framework of our model.

The micromechanical consideration of respective plastic or microcracking/crack bridging

events (as dealt with by various researchers (Burr et al. 1998; Reilly and Currey 2000;

Akkus and Rimnac 2001; Okumura and Gennes 2001; Taylor 2003; Ballarini et al. 2005;

O’Brien et al. 2007; Koester et al. 2008)) is beyond the scope of this manuscript, where

we focus on a model which can predict, as function of the bone sample’s composition, the

ultimate stress which is bearable by that sample.

It is also interesting to study the effect of species, individual, and organ-specific bone

microstructures, on the cortical strength of corresponding bone materials: In healthy

mammalian cortical bone, the vascular porosity varies typically between 2 and 8%, while

osteoporosis may lead to porosities up to 27% (Bousson et al. 2000). Influence of vascular

porosity increase on cortical strength is illustrated in Figures D.9 and D.10, it is of linear

nature.

Within the extravascular matrix of a specific organ of an adult mammal, the average

chemical composition is constant in space and time (Hellmich et al. 2008), as can be

seen from experimental results from computerized contact microradiography (Boivin and

Meunier 2002), quantitative backscattered electron imaging (Roschger et al. 2003), Ra-

man microscopy (Akkus et al. 2003), and Synchrotron Micro Computer Tomography

(Bossy et al. 2004). Therefore, effects of (varying) extravascular mineral content [while

the collagen content follows (D.48)] on different resulting cortical strength values (see

Figure D.10), reflect inter-organ and inter-species variations from one bone sample to

another, with mineral contents between 30% (typical for deer antler) and 70% (typical for

equine metacarpus): the mineralization varying by a factor of two, implies a strength vari-

ation by a factor of two in tension, and by a factor of three in compression (Figure D.10).

In contrast to the extravascular porosity, the mineral content has a nonlinear influence

on cortical strength - this qualitative model feature is in perfect agreement with a wealth

of experimental data (Currey 1984, 1988; Hernandez et al. 2001).

Finally, there could seem to be a contradiction between the ductile behavior of interfaces
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Figure D.6: Plastic mechanisms associated to differently oriented crystals in

extrafibrillar space, provoked by uniaxial tensile loading of cortical bone

material (human femur, see Table D.3, line 1): (a) normal stress and (b)

shear stress; (c) value of yield function; (d) normal plastic strain and (e)

shear plastic strain
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Figure D.7: Plastic mechanisms associated to differently oriented crystals in

extrafibrillar space, provoked by uniaxial compressive loading of cortical

bone material (human femur, see Table D.3, line 1): (a) normal stress and

(b) shear stress; (c) value of yield function; (d) normal plastic strain and

(e) shear plastic strain



Publication D Fritsch et al. (2009b) 104

−1.00 −0.75 −0.50 −0.25 0 0.25 0.50 0.75 1.00
−200

−150

−100

−50

0

50

100

150

Ecort,33 [%]

Σcort,33 [MPa]

Figure D.8: Macrosopic stress-strain diagram for human femur in uniaxial ten-

sion and compression.
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between the hydroxyapatite crystals as part of natural collagenous bone tissue considered

in this paper, and the brittle behavior of the interfaces between crystals of man-made

hydroxyapatite biomaterials (Akao et al. 1981; Fritsch et al. 2009a). The reason for the

different behaviors may well lie in the characteristic size of the crystals, and hence of the

nature of their contact surfaces, the crystals in collagenous bone tissue being much smaller

than the biomaterial crystals. In the same sense, in low or non-collagenous tissues, such as

specific whale bones (Zioupos et al. 1997), the minerals grow larger, and also these tissues

exhibit a brittle failure behavior. The idea of increased ductility due to increased activity

of layered water films is also supported by the fact (Nyman et al. 2008) that bound water

content is correlated to bone toughness; and this idea fits well with the suggestions of

Boskey (2003), that larger crystals (implying less layered water films per crystal content)

would lead to a more brittle behavior of bone materials.

D.8 Conclusion and Perspectives

We have proposed a first multiscale micromechanics model for bone strength, extend-

ing earlier developments in the realm of elasticity (Hellmich et al. 2004a; Fritsch and

Hellmich 2007). Thereby, the explanation of bone strength across different species and

ages required resolution of the mineral phase into an infinite amount of non-spherical

phases, and definition of an elastoplastic failure criterion for the mineral crystals, reflect-

ing layered water-induced ductile sliding between these mineral crystals. The multiscale

material model was validated through independent experimental results: Tissue-specific

strength values predicted by the micromechanical model on the basis of tissue-independent

(‘universal’) stiffnesses and strengths of the elementary components (mineral, collagen,

water), for tissue-specific composition data (volume fractions) were compared to corre-

sponding experimentally determined tissue-specific strength values. Mean relative errors

between stiffness experiments and model estimates were well below 10%, which, given

remarkable experimental scattering, is considered satisfactory.

This renders the model ready for supporting various future scientific as well as application-

oriented activities:

1. As was already shown for elasticity (Hellmich et al. 2008), the model is expected to

be combined with computer tomographic images: Based on average relations from

X-ray physics, the voxel-specific X-ray attenuation information would be translated

to voxel-specific material composition; and the latter would serve as input for the

micromechanical model, which would then deliver voxel-specific (anisotropic and

inhomogeneous) stiffness and strength values. In this way, the current activities

concerning the virtual physiological human (Taylor et al. 2002; Yosibash et al. 2007;

Viceconti et al. 2008), could be extended from the realm of elasticity to that of full
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elastoplasticity, resulting in patient-specific fracture risk assessment of whole organs

in both healthy and pathological conditions.

2. The proposed model could also support the design of tissue engineering scaffolds,

through predictions of the failure properties of bone tissue-engineering scaffolds

with tissue-engineered bone, by feeding recently developed multiscale representa-

tions (Bertrand and Hellmich 2008) not only with an elastic, but with the present

elastoplastic micromechanical representation of the extracellular bone material.

3. Since the proposed model is linked to the hierarchical organization of bone and to its

elementary components, it is ready to be combined with most recent developments

in theoretical and computational biochemistry and biology, which quantify the well-

tuned interplay of biological cells via biochemical signaling pathways (Lemaire et al.

2004; Pivonka et al. 2008) – giving as output the volume fraction of newly deposited

or resorbed extravascular bone, which may serve as input for the proposed multiscale

strength model. That is expected to open the way to translation of biochemical

remodeling events to associated changes in mechanical competence.
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D.9 Appendix: Hill tensors P
D.9.1 Hill tensor for homogenization over wet collagenPcolcyl refers to a cylindrical inclusion in a transversely isotropic matrix with stiffness 
col,
where the plane of isotropy is oriented perpendicular to the long axis of the cylinder. The

non-zero components of the symmetric tensor Pcolcyl read as follows (Hellmich et al. 2004a;

Levin et al. 2000):

P col
cyl,1111 = P col

cyl,2222 = 1/8 (5 ccol,1111 − 3 ccol,1122)/ccol,1111/D2 , (D.58)

P col
cyl,1122 = P col

cyl,2211 = −1/8 (ccol,1111 + ccol,1122)/ccol,1111/D2 , (D.59)

P col
cyl,2323 = P col

cyl,1313 = 1/(8 ccol,2323) , (D.60)

P col
cyl,1212 = 1/8 (3 ccol,1111 − ccol,1122)/ccol,1111/D2 , (D.61)

whereby

D2 = ccol,1111 − ccol,1122 (D.62)

D.9.2 Hill tensors for homogenization over mineralized collagen

fibril

The non-zero components of Pfibcyl follow from substitution of ‘ccol,ijkl’ by ‘CSCS
fib,ijkl’ in (D.58)-

(D.62). The non-zero components of Pfibsph for spherical inclusions in a transversely isotropic
matrix follow from substitution of ‘C0

ijkl’ by ‘CSCS
fib,ijkl’ in the following equations:

P 0
sph,1111 =

1

16

∫ 1

−1
−(−5C0

1111x
4C0

3333 − 3C0
1122x

2C0
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1111C
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−2x2C0,2
1133 − 3C0

1122C
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P 0
sph,1122 = P 0

sph,2211 =
1

16

∫ 1
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Publication D Fritsch et al. (2009b) 108

P 0
sph,1133 = P 0

sph,3311 =
1

4

∫ 1

−1
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2323 + C0
1133)/D2dx (D.65)
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P 0
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1
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whereby
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and

D2 = 2C0
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D.9.3 Hill tensors for homogenization over extrafibrillar spacePefsph, the Hill tensor for a spherical inclusion in an isotropic matrix of stiffness CSCSIIef , is

of the form (Eshelby 1957; Zaoui 1997b)Pefsph = Sesh,efsph : CSCSII,−1
ef , (D.70)Sesh,efsph = αSCSIIef J + βSCSIIef K (D.71)

with

αSCSIIef =
3 kSCSIIef

3 kSCSIIef + 4µSCSIIef

βSCSIIef =
6 (kSCSIIef + 2µSCSIIef )

5 (3 kSCSIIef + 4µSCSIIef )
(D.72)Pefcyl, the Hill tensor for a cylindrical inclusion in an isotropic matrix, is of the formPefcyl = Seshcyl : CSCSII,−1

ef (D.73)

The non-zero components of the Eshelby tensor Seshcyl corresponding to cylindrical inclu-

sions read as

Seshcyl,1111 = Seshcyl,2222 =
5 − 4νSCSIIef

8(1 − νSCSIIef )

Seshcyl,1122 = Seshcyl,2211 =
−1 + 4νSCSIIef

8(1 − νSCSIIef )

Seshcyl,1133 = Seshcyl,2233 =
νSCSIIef

2(1 − νSCSIIef )

Seshcyl,2323 = Seshcyl,3232 = Seshcyl,3223 = Seshcyl,2332 =

= Seshcyl,3131 = Seshcyl,1313 = Seshcyl,1331 = Seshcyl,3113 =
1

4

Seshcyl,1212 = Seshcyl,2121 = Seshcyl,2112 = Seshcyl,1221 =
3 − 4νSCSIIef

8(1 − νSCSIIef )
(D.74)

where principal directions 1, 2, and 3 follow Figure D.2, and with νSCSIIef as Poisson’s

ratio of the extrafibrillar space,

νef =
3kSCSIIef − 2µSCSIIef

6kSCSIIef + 2µSCSIIef

(D.75)

Following standard tensor calculus (Salencon 2001), the tensor components of Pefcyl(ϑ, ϕ),

being related to differently oriented inclusions, are transformed into one, single base frame

(e1, e2, e3), in order to evaluate the integrals in Eq. (D.27).
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D.9.4 Hill tensor for homogenization over extracellular bone

matrixPefcyl, the Hill tensor for a cylindrical inclusion in an isotropic matrix, is given in Eq. D.73.

D.9.5 Hill tensor for homogenization over extravascular bone

material

The non-zero components of Pexcelsph for spherical inclusions in a transversely isotropic

matrix follow from substitution of ‘c0ijkl’ by ‘CMTII
excel,ijkl’ in Eqs (D.63)-(D.69).

D.9.6 Hill tensor for homogenization over cortical bone material

The non-zero components of Pexvascyl for cylindrical inclusions in a transversely isotropic

matrix follow from substitution of ‘ccol,ijkl’ by ‘CMTIII
exvas,ijkl’ in Eqs (D.58)-(D.62).
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Nomenclature

acs side length of reduced cross section of a bone specimenars fourth-order influence tensor

A constant in the linear relationship between ρexcel and f̄HAAr fourth-order strain concentration tensor of phase r

b width of a volume of one rhomboidal fibrillar unit

B constant in the linear relationship between ρexcel and f̄HA
col fourth-order stiffness tensor of molecular collagen

ccol,ijkl component of fourth-order stiffness tensor of molecular collagen

C constant in the linear relationship between ρexcel and dsCMTIV
cort homogenized fourth-order stiffness tensor of cortical bone materialCSCSIIef homogenized fourth-order stiffness tensor of extrafibrillar spaceCMTII
excel homogenized fourth-order stiffness tensor of extracellular bone matrixCMTIII
exvas homogenized fourth-order stiffness tensor of extravascular bone materialCSCSfib homogenized fourth-order stiffness tensor of mineralized collagen fibril
HA fourth-order stiffness tensor of hydroxyapatite
ic fourth-order stiffness tensor of intercrystalline space
im fourth-order stiffness tensor of intermolecular water
inc fourth-order stiffness tensor of an inclusion embedded in a matrix

with stiffness C0
lac fourth-order stiffness tensor of lacunae
M fourth-order stiffness tensor of the matrix phase
r fourth-order stiffness tensor of phase r
vas fourth-order stiffness tensor of Haversian canalsCMT
wetcol homogenized fourth-order stiffness tensor of wet collagenChom homogenized fourth-order stiffness tensorC0 fourth-order stiffness tensor of an infinite matrix surrounding an

ellipsoidal inclusion

d characteristic length of the inhomogeneities within an RVE

dcs diameter of reduced cross section of a bone specimen

ds neutron diffraction spacing between collagen molecules

dS diameter of a bone specimen

D 1/5 of length of a volume of one rhomboidal fibrillar unit

D constant in the linear relationship between ρexcel and ds
E second-order ‘macroscopic’ strain tensor

Er second-order ‘macroscopic’ strain tensor of phase r

Er,n, Er,n+1 second-order ‘macroscopic’ strain tensors of phase r for load steps n

and n+ 1, respectively

Ep
r,n, E

p
r,n+1 second-order ‘macroscopic’ plastic strain tensors of phase r for load

steps n and n+ 1, respectively
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E
p(k)
r,n+1 k-th approximation of second-order ‘macroscopic’ plastic strain tensor

of phase r for load step n + 1

Etrial
r,n+1 second-order ‘macroscopic’ trial strain tensor of phase r for load

step n + 1

Ep second-order ‘macroscopic’ plastic strain tensor

E0,p uniform ‘macroscopic’ plastic strain in matrix of a matrix-inclusion problem

E∞ uniform ‘macroscopic’ strain at infinity of a matrix-inclusion problem

e1, e2, e3 unit base vectors of Cartesian reference base frame

eϑ, eϕ, er unit base vectors of Cartesian local base frame of a single crystal of

hydroxyapatite within extrafibrillar space

fr(σr) boundary r of elastic domain of phase r in space of microstresses

f̄col volume fraction of collagen within an RVE V̄excel
f̊col volume fraction of molecular collagen within an RVE V̊wetcol
f̄ef volume fraction of extrafibrillar space within an RVE V̄excel
f̃excel volume fraction of extracellular bone matrix within an RVE Ṽexvas
fexvas volume fraction of extravascular bone material within an RVE Vcort
f̄fib volume fraction of mineralized collagen fibril within an RVE V̄excel
f̄HA volume fraction of hydroxyapatite within an RVE V̄excel
f̆HA volume fraction of hydroxyapatite within an RVE V̆fib
f̌HA volume fraction of hydroxyapatite within an RVE V̌ef
f̄H2O volume fraction of water within an RVE V̄excel
f̌ic volume fraction of intercrystalline space within an RVE V̌ef
f̊im volume fraction of intermolecular water within an RVE V̊wetcol
f̃lac volume fraction of lacunae within an RVE Ṽexvas
f̄org volume fraction of organic matter within an RVE V̄excel
fr volume fraction of phase r

fvas volume fraction of Haversian canals within an RVE Vcort
f̆wetcol volume fraction of wet collagen within an RVE V̆fib
HA hydroxyapatiteI fourth-order identity tensorJ volumetric part of fourth-order identity tensor IK deviatoric part of fourth-order identity tensor I
kHA bulk modulus of hydroxyapatite

kH2O bulk modulus of water

L characteristic lengths of geometry or loading of a structure built up by

the material defined on the RVE

lS length of a bone specimen

ℓ characteristic length of an RVE

ℓcort characteristic length of an RVE Vcort of cortical bone material
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ℓef characteristic length of an RVE V̌ef of extrafibrillar space

ℓexcel characteristic length of an RVE V̄excel of extracellular bone matrix

ℓexvas characteristic length of an RVE Ṽexvas of extravascular bone material

ℓfib characteristic length of an RVE V̆fib of mineralized collagen fibril

ℓwetcol characteristic length of an RVE V̊col of wet collagen

M index denoting a material phase being the matrix

N orientation vector aligned with longitudinal axis of hydroxyapatite needle

nr number of material phases within an RVE

n orientation vector perpendicular to N

RVE representative volume element

r index denoting a material phaseP0
inc fourth-order Hill tensor characterizing the interaction between the inclusion

inc and the matrix C0P0
r fourth-order Hill tensor characterizing the interaction between the phase r

and the matrix C0

sgn(.) signum function of quantity (.)S fourth-order Eshelby tensor for spherical inclusions

vcol volume of a single collagen molecule

vfib volume of one rhomboidal fibrillar unit

V̊col volume of molecular collagen within an RVE V̊wetcol
Vcort volume of RVE ‘cortical bone material’

V̌ef volume of RVE ‘extrafibrillar space’

V̄ef volume of extrafibrillar space within an RVE V̄excel
V̄excel volume of RVE ‘extracellular bone matrix’

Ṽexcel volume of extracellular bone matrix within an RVE Ṽexvas
Ṽexvas volume of RVE ‘extravascular bone material’

Vexvas volume of extravascular bone material within an RVE Vcort
V̆fib volume of RVE ‘mineralized collagen fibril’

V̄fib volume of mineralized collagen fibril within an RVE V̄excel
V̆HA volume of hydroxyapatite within an RVE V̆fib
V̌HA volume of hydroxyapatite within an RVE V̌ef
V̌ic volume of intercrystalline space within an RVE V̌ef
V̊im volume of intermolecular water within an RVE V̊wetcol
Ṽlac volume of lacunae within an RVE Ṽexvas
Vvas volume of Haversian canals within an RVE Vcort
V̊wetcol volume of RVE ‘wet collagen’

V̆wetcol volume of wet collagen within an RVE V̆fib
WF cort

HA weight fraction of hydroxyapatite at the scale of cortical bone material

WF excel
HA weight fraction of hydroxyapatite at the extracellular scale

WF cort
org weight fraction of organic matter at the scale of cortical bone material
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WF excel
org weight fraction of organic matter at the extracellular scale

β ratio between uniaxial tensile strength and shear strength of pure HA

∆Er,n+1 incremental second-order ‘macroscopic’ strain tensor of phase r for load

step n+ 1

∆E
p
r,n+1 incremental second-order ‘macroscopic’ plastic strain tensor of phase r

for load step n + 1

∆E
p(k)
r,n+1 k-th approximation of incremental second-order ‘macroscopic’ plastic

strain tensor of phase r for load step n+ 1

∆ε
p
n+1 incrmental plastic strain of n+ 1-st load increment

∆λHA,n+1 incrmental plastic multiplier of n+ 1-st load increment

εcol second-order strain tensor field within molecular collagen

εef second-order strain tensor field within an RVE V̌ef of extrafibrillar space

εexcel second-order strain tensor field within an RVE V̄excel of extracellular

bone matrix

εexvas second-order strain tensor field within an RVE Ṽexvas of extravascular

bone material

εfib second-order strain tensor field within an RVE V̆fib of mineralized

collagen fibril

εHAϑϕ second-order strain tensor field within oriented hydroxyapatite

needles in extrafibrillar space

εinc second-order strain tensor field within an inclusion embedded in matrix C0

ε
p
inc second-order plastic strain tensor field within an inclusion embedded

in matrix C0

ε̄ij tensor component of difference (εHAϕϑ,n+1 − ε
p
HAϕϑ,n), given

in a local base frame

ε
p
M second-order plastic strain tensor field within the matrix phase

εpn, ε
p
n+1 second-order strain tensor fields for load steps n and n+ 1, respectively

εr second-order ‘microscopic’ strain tensor field within phase r

ε̇r incremental ‘microscopic’ second-order strain tensor field within phase r

εpr second-order ‘microscopic’ plastic strain tensor field within phase r

εtrialr second-order ‘microscopic’ trial strain tensor field within phase r

εwetcol second-order strain tensor field within an RVE V̊col of wet collagen

λ̇r incremental plastic multiplier

ϑ latitudinal coordinate of spherical coordinate system

θ integration variable, θ = 0 . . . π

µHA shear modulus of hydroxyapatite

µH2O shear modulus of water

ρcol mass density of molecular collagen

ρcort mass density of cortical bone material

ρexcel mass density of the extracellular bone matrix
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ρHA mass density of hydroxyapatite

ρH2O mass density of water

ρorg mass density of organic matter

σcol second-order stress tensor field within molecular collagen

σultcol uniaxial tensile or compressive strength of molecular collagen

σef second-order stress tensor field within an RVE V̌ef of extrafibrillar space

σexcel second-order stress tensor field within an RVE V̄excel of extracellular

bone matrix

σexvas second-order stress tensor field within an RVE Ṽexvas of extravascular

bone material

σfib second-order stress tensor field within an RVE V̆fib of mineralized

collagen fibril

σHAϑ,ϕ second-order stress tensor field within oriented hydroxyapatite needle

in extrafibrillar space

σNNHA normal component of stress tensor σHAϑϕ in needle direction

σNnHA shear component of stress tensor σHAϑϕ in planes orthogonal to the

needle direction

σtrial
HAϑϕ,n+1 second-order trial stress tensor field within oriented HA needle for

load step n+ 1

σult,sHA uniaxial shear strength of pure HA

σult,tHA uniaxial tensile strength of pure HA

σr second-order stress tensor field within phase r

σ
(k)
r k-th approximation of stress field within phase r

σwetcol second-order stress tensor field within an RVE V̊col of wet collagen

Σ second-order ‘macroscopic’ stress tensor

Σcort second-order stress tensor within an RVE Vcort of cortical bone material

Σult
cort model-predicted uniaxial strength of cortical bone material

Σult
exp experimental uniaxial strength of cortical bone material

ϕ longitudinal coordinate of spherical coordinate system

φ integration variable, φ = 0..2π

φHA,ef relative amount of hydroxyapatite in the extrafibrillar space

ψ longitudinal coordinate of vector n

· first-order tensor contraction

: second-order tensor contraction

⊗ dyadic product of tensors
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Biocompatible materials are designed so as to mimic biological materials such as bone as

closely as possible. As regards the mechanical aspect of bone replacement materials, a

certain stiffness and strength are mandatory to effectively carry the loads imposed on the

skeleton. In this paper, porous titanium with different porosities, produced on the basis of

metal powder and space holder components, is investigated as bone replacement material.

For the determination of mechanical properties, i.e. strength of dense and porous titanium

samples, two kinds of experiments were performed - uniaxial and triaxial tests. The triax-

ial tests were of poromechanical nature, i.e. oil was employed to induce the same pressure

both at the lateral surfaces of the cylindrical samples and inside the pores. The stiffness

properties were revealed by acoustic (ultrasonic) tests. Different frequencies give access

to different stiffness components (stiffness tensor components related to high-frequency-

induced bulk waves versus Young’s moduli related to low-frequency-induced bar waves), at
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different observation scales; namely, the observation scale the dense titanium with around

100 µm characteristic length (characterized through the high frequencies) versus that of

the porous material with a few millimetres of characteristic length (characterized through

the low frequencies). Finally, the experimental results were used to develop and validate a

poro-micromechanical model for porous titanium, which quantifies material stiffness and

strength from its porosity and (in the case of the aforementioned triaxial tests) its pore

pressurisation state.
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Notation

a radius of cylindrical specimenChom Homogenized stiffness of porous mediumCS Elasticity tensor of pure titanium

C1111 Normal component of isotropic elasticity tensor

C1212 Shear component of isotropic elasticity tensor

d Characteristic size of inhomogeneities within material volume (RVE)

div divergence of a vector field

e1,2,3 Base vectors

E Macroscopic strain tensor

E Young’s modulus of porous titanium

ES Young’s modulus of pure titanium

F Homogenized, macroscopic yield criterion

f Frequency

fy Yield stress

G Shear modulus of porous titanium

i Index denoting tensor componentsI Fourth-order identity tensor

j Index denoting tensor componentsJ Volumetric part of fourth-order identity tensor

J0 Bessel function of first kind and order 0

J1 Bessel function of first kind and order 1K Deviatoric part of fourth-order identity tensor

kf Compressibility of porous medium

kS Bulk modulus of pure titanium

ℓRV E Characteristic length of the RVE

lS Travel distance through the specimen

p Pore pressure in porous titanium

p0 Lateral pressure built up in pressure cell

m Fluid mass per unit volume of porous medium

r Radial polar coordinate

RVE Representative volume elementS Eshelby tensor

t Time

tr trace of tensor

tS Travel time through the specimen

v Phase velocity of acoustic wave
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vL Bulk velocity of longitudinal (or compressional) wave

vbar Bar velocity of bar wave

vT Velocity of transversal (or shear) wave

v Fluid velocity

Vsolid Solid volume inside the RVE of porous medium

w Mass flow vector

x Location vector in the RVE

1 Second-order identity tensor

αn Roots of J0, J0(αn) = 0

β Inverse characteristic time of surface pressue built-up

δij Kronecker delta

∆ Laplace operator

ε Microscopic strain tensor

εd Equivalent (micro-) shear strains

εeff,d Effective equivalent deviatoric microstrains

ηf Viscosity of fluid

κ Intrinsic permeability of porous medium

λ Wavelength

µS Shear modulus of pure titanium

ν Poisson’s ratio of porous titanium

νS Poisson’s ratio of pure titanium

ρ Mass density of specimen

ρf Mass density of fluid

Σ Macroscopic stress tensor

Σd Equivalent deviatoric macroscopic stress

Σm Mean macroscopic stress

ϕ Porosity of porous medium

: Second-order tensor contraction

⊗ Dyadic product of tensors

E.1 Introduction

Many bone replacement materials, based on a multitude of different chemical composi-

tions, are available nowadays. All these materials are designed so as to mimic bone as

closely as possible. In other words, the bone biomaterials are required to be biocompatible

(Jones 2005), i.e. they should smoothly fit into the biological, chemical, and mechanical

environment inside the body of the patient. As regards the mechanical aspect, a certain

stiffness and strength are mandatory to effectively carry the loads imposed onto the skele-

ton. In addition, the biomaterial should match the mechanical properties of the original

bone as precisely as possible, in order to preserve the standard physiological stress fields
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around the implant. These stress fields are required to guarantee effective functioning of

the biological cells resorbing the bone and forming new bone.

In this study,we aimed at contributing to the latter aspect. Precise determination of the

stress fields around an implant requires profound knowledge of the material properties of

both the bone material and the bone replacement material under multiaxial stress states,

as found in the living body (Kobayashi et al. 2001). In addition to multiaxial stress

fields, the pore pressure inside the bone is often believed to play a mandatory role, as

regards both mechanical integrity (Hellmich and Ulm 2005a,b; Ochoa et al. 1991; Lim and

Hong 2000) and biological function (Mizuno et al. 2004; Weinbaum et al. 1994). However,

related experimental data are extremely scarce in the open literature. Therefore, we have

started a campaign of triaxial test series on bone and bone biomaterials, giving access

to the strength properties of the tested materials. Moreover, to determine the stiffness

of such materials, our test campaign included ultrasonic measurements as well. Here we

describe processing as well as its mechanical and acoustic characterization of titanium

biomaterials. Finally, the experimental results are used to develop and validate a first

poro-micromechanical model for porous titanium, which quantifies material stiffness and

strength from its porosity and (in the case of the aforementioned triaxial tests) its pore

pressurization state.

E.2 Materials

Porous titanium samples with open cell structures were produced by using metal powder

(pure titanium particles with <45µm characteristic length) and spherical space holder

components (para-formaldehyde with a mean diameter of 500 µm), at Fraunhofer IFAM

(Bremen, Germany). The manufacturing process included four steps.

1. Powder mixture preparation: Titanium and para-formaldehyde (as space holder)

were mixed with paraffin (as a pressing agent), and with additional process aids

dissolved in water or organic solvent, to ensure a good bonding of the metal powder

and the space holder particles.

2. Pressing: The mixture was densified, by means of axial pressing in a powder press.

3. Debinding: After compaction, the space holder and bonding agent phases was re-

moved from the samples, in a catalytic process.

4. Sintering: After complete space holder removal, the samples were sintered in a high

vacuum atmosphere, at a temperature of 1200oC.

The above-described process ensures crack-free and homogeneous titanium samples, with

two different porosities (Figure E.1).
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Figure E.1: (a) Titanium samples (porous in foreground, dense in background);

(b) higher magnification of porous titanium samples

Figure E.2: (a) Micrograph of the center of a dense titanium sample; (b) higher

magnification of the denser part of the same sample

1. Dense titanium [Figure E.1(a), background] was processed without space holders.

However, the formation of some microns-sized pores inside the material (Figure E.2)

results in a mass density of 3.80 g/cm3, remarkably lower than the mass density of

pure titanium, which is 4.50 g/cm3 (Thelen et al. 2004).

2. Porous titanium [Figure E.1(a), foreground; and Figure E.1(b)] was produced by

use of spaceholders as described before. The solid matrix between the hundreds-of-

microns-sized pores is similar to the material depicted in Figure E.2. The overall

porous material exhibits a mass density of 1.64 g/cm3.

E.3 Mechanical testing

All tests were conducted at room temperature. The average height and diameter of the

samples were 10.0 and 5.0 mm, respectively. In uniaxial testing mode, the samples were

subjected to axial compressive loads by means of a 150 kN uniaxial electromechanical ma-

chine [LFM 150; Wille Geotechnik, Germany, with displacement control, Figure E.3(a)],

at a displacement rate of 0.01 mm/s. Extension of uniaxial testing mode to triaxial



Publication E Müllner et al. (2008) 122

loading was realized through a high-pressure triaxial testing cell [LT 63500-2/50-T; Wille

Geotechnik, Germany, Figure E.3(b)], filled with mineral oil. In order to stabilize the

sample during the filling process, it was attached to the lower die by means of plasticine

[Figure E.3(d)].

An outlet valve on the top of the cell eliminated air bubbles within the testing chamber.

This valve was locked once the chamber was properly filled with oil. Then, the oil was

pressurized by means of an electromechanical pressure control [DV 350-150/10; Wille

Geotechnik, Figure E.3(c)], up to a pressure of 14.5 MPa. Pressures of this order of

magnitude occur if the bone is deformed under undrained conditions (Lim and Hong

2000). A vertical compressive force was applied simultaneously by the electromechanical

uniaxial testing machine. The specimens were loaded in a state of axisymmetric triaxial

compressive stress until the vertical displacement of the upper die [Figure E.3(d)], driven

by the electromechanical machine, reached 30% of the specimen height.

Figure E.3: Experimental setup for uniaxial and triaxial tests: (a) 150 kN

uniaxial testing machine; (b) pressure control; (c) 150 bar triaxial cell; (d)

fixing of specimen: (1) specimen, (2) plasticine, (3) upper die, (4) lower

die

E.3.1 Identification of triaxial tests as poromechanical tests

Here, we show that the pore pressure build-up within the porous titanium samples is very

much faster than the uniaxial load application through the electromechanical machine, so

that the uniaxial macroscopic deformation is increased, while a constant pore pressure is

prescribed in the pores. In order to estimate corresponding characteristic times, we study

the transport of oil through an undeformed (incompressible) porous medium (metal foam).

The fluid mass conservation law for this case reads as

dm

dt
+ div w = 0, (E.1)
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where m is the fluid mass per unit volume of porous medium, d(.)/dt denotes the temporal

derivation of quantity (.), div denotes the divergence of a vector field, and w is the mass

fluid vector. The latter is related to the fluid velocity v through

w = ϕρfv, (E.2)

where ϕ is the porosity and ρf the mass density of the fluid. The fluid mass change is

related to the fluid pressure change dp/dt through the state equation of the fluid (Coussy

2004)

dm

dt
= ϕ

dρf
dt

= ϕρf
1

kf

dp

dt
, (E.3)

where kf = 1.5 GPa (Rydberg 2001) is the compressibility or bulk modulus of the (oil)

fluid. The fluid velocity v results from a pressure gradient, as expressed in Darcy’s fluid

conduction law

v = − κ

ηf
grad p, (E.4)

where ηf is the fluid viscosity (ηf = 450 mPas for oil (Grimm and Williams 1997)), and

κ the intrinsic permeability of the porous medium (κ = 3.1 x 10−8 m2 for an open metal

foam of comparable porosity (Leong and Jin 2006)). Use of Equations (E.2)-(E.4) in

(E.1) yields an analogon to the so-called diffusion equation (Crank 1975), reading for

space-invariant material properties kf , ηf and κ, as

dp

dt
=
kfκ

ηf
∆p, (E.5)

with ∆ as the Laplace operator.

Solutions of this partial differential equation are widely documented, see e.g. (Crank 1975).

Specifically, the pore pressure development p(r, t) inside a cylindrical porous sample due

to rapid pressure build-up around the sample,

p = p0(1 − exp(−βt)) with β → ∞ (E.6)

can be given in the form (Crank 1975):

p

p0
= 1 − J0(

√

βr2ηf/kfκ)

J0(
√
βa2ηf/kfκ)

exp(−βt) +
2βηf
akfκ

∞∑

n=1

J0(rαn)

αnJ1(aαn)

exp(−kfκα2
nt/ηf)

α2
n − (βηf/kfκ)

(E.7)

where r is the radial polar coordinate, t denotes the time elapsed since the initiation

of pressure build-up, J0 and J1 are the Bessel functions of the first kind and of order 0

and 1, respectively, and αn are the roots of J0, J0(αn) = 0: α1 = 2.4048, α2 = 5.5201,

α3 = 8.6537, . . . .
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Evaluation of Eq. (E.7) for the intrinsic permeability values of metal foams (Table E.1),

and the compressibility and viscosity of mineral oil, kf = 1.5 GPa (Rydberg 2001) and ηf
= 450 mPas (McNeil and Stuart 2004), respectively, clearly shows that the pore pressure

inside the tested titanium samples is built up within a small fraction of 1 s. This holds

even for the intrinsic permeability values of bone (Table E.1) which are lower than the

one for metal foams. Hence, during the mechanical experiments, lasting typically 10 min,

the pore pressure is always quasi-identical to the oil pressure built up in the pressure cell.

Therefore, the triaxial tests performed here may be regarded as poromechanical tests,

where the pore pressure inside the samples is prescribed.

Source Material κ (m2)

(Leong and Jin 2006) Metal foam 3.1 x 10−8

(Grimm and Williams 1997) Trabecular bone 8.5 x 10−9

(Li et al. 1987) Cortical bone 2.5 x 10−13

Table E.1: Intrinsic permeabilities κ of metal foams and bone

E.3.2 Determination of strength properties

Load-displacement curves obtained for uniaxial and triaxial tests (Figure E.4) are charac-

terized by a considerable decrease of the slope of the load-displacement curve at a certain

load level. This refers to ductile material behavior, which is also evident from the de-

formed shape of the samples after mechanical testing, as shown in the photographs of

Figure E.5. Bilinear approximation of the load-displacement curves gives access to the

yield load (Figure E.4). Dividing the latter by the sectional area of the specimen gives

access to the yield stress of the material (see Table E.2 for corresponding experimental

results). The results of the uniaxial and triaxial tests are not markedly different. This is

probably due to the fact that the lateral pressure of 14.5 MPa is by far smaller than the

uniaxial yield stress of the samples. More profound investigations into the poromechanical

behavior of the titanium materials considered herein would call for a pressure cell apt for

extremely high pressures.

The remarkably high ductility of the titanium materials does not necessarily match the

mechanical characteristics of natural bone, often showing a more brittle behavior in com-

pression (Morgan et al. 2005). This underlines the fact that, in addition to the anisotropy

of natural bone (Lees et al. 1979b), which is not mimicked by the tested biomaterial, the

inelastic constitutive behavior of man-made biomaterials still needs to be improved as to

match more precisely the one of natural bone.

The load-displacement curves presented in Figure E.4 do not show any linear regime,

which indicates that inelastic phenomena are at action right from the initial testing phase,
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when they are restricted to the regions of the samples close to the load platens. Hence,

elastic properties cannot be derived from the load-displacement curves; therefore, the me-

chanical tests were used for determination of strength properties, only; and the materials’

elasticity was revealed through ultrasonics measurements (shown below).
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Figure E.4: Load-displacement curves for dense and for porous titanium sam-

ples

Titanium dense Titanium porous

Uniaxial test (p = 0 MPa) 400 ± 26 (n=4) 103 ± 32 (n=4)

Triaxial test (p = 15 MPa) 353 ± 70 (n=4) 88 ± 15 (n=4)

Table E.2: Mean values and standard deviations of yield stresses in [MPa]

(p. . . oil pressure, n . . . number of tests)

Figure E.5: Photographs of tested samples: (a) dense titanium; (b) porous

titanium
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E.4 Acoustical Testing

E.4.1 Equipment for transmission through technique

The used ultrasonic device consists of a pulser-receiver PR 5077 [Panametrics Inc., Waltham,

MA, Figure E.6(a)], an oscilloscope, and several ultrasonic transducers [Figure E.6(b)].

The pulser unit emits an electrical square-pulse of up to 400 V, with frequencies from

0.1 MHz to 20 MHz. The piezoelectric elements inside the ultrasonic transducers trans-

form such electrical signals into mechanical signals [when operating in the sending mode,

transferring, via a coupling medium (here honey), the mechanical signals to one side of

the specimen under investigation], or they transform mechanical signals back to electrical

signals (when receiving mechanical signals from the opposite side of the specimen under

investigation). The piezoelectric elements are tailored for the frequency of the employed

mechanical signal: The higher the frequency, the smaller the element and the correspond-

ing transducer. Depending on the cut and orientation of the element, a longitudinal or a

transversal wave is emitted.

Figure E.6: Equipment for acoustical testing: (a) pulser-receiver; (b) ultrasonic

transducers

The receiver unit of the pulser-receiver has a bandwidth of 0.1 to 35 MHz and a voltage

gain of up to 59 dB. The amplified signal is displayed on an oscilloscope Lecroy WaveRun-

ner 62Xi (Lecroy Corporoation, Chestnut Ridge, NY) width a bandwidth of 600 MHz and

a sample rate of 10 gigasamples per second. The oscilloscope gives access to the time of

flight of the ultrasonic wave through the specimen, tS, which provides, together with the

travel distance through the specimen, lS, the phase velocity of the wave as

v =
lS
tS

(E.8)

see Table E.3 for typical velocities of longitudinal or compressional waves (vL), where the

particle displacement points into the wave propagation direction, and transverse or shear

waves (vT ), where the particle displacement is perpendicular to the wave propagation

direction.
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ρ f v λ ℓRV E C1111/C1212 E/G ν

[g/cm3] [MHz] [km/s] [mm] [mm] [GPa] [GPa]

Dense 3.83±0.05 10.0 vL= 0.56±0.00 ≥0.10 C1111= E= 0.28±0.03

5.59±0.02 119.7±2.3 94.3±4.0

Dense 3.83±0.05 5.0 vT = 0.62±0.02 ≥0.10 C1212= G=

3.11±0.12 37.0±2.3 37.0±2.3

Dense 3.83±0.05 0.1 vbar= 50.6±0.9 ≥0.10 E=

5.06±0.09 98.1±4.4

Porous 1.69±0.09 0.1 vbar= 33.9±0.5 ≥2.50 E=

3.39±0.05 19.5±1.7

Table E.3: Ultrasonic measurement results for dense and porous titanium sam-

ples (mean values ± standard deviations)

E.4.2 Theoretical basis of ultrasonic measurements

Frequency f and wave velocity v give access to the wavelength λ, through

λ =
v

f
(E.9)

If the wavelength is considerably smaller than the diameter of the specimen, a (compres-

sional) ‘bulk wave’, i.e. a laterally constrained wave, propagates with velocity vL in a

quasi-infinite medium. On the other hand, if the wavelength is considerably larger than

the diameter of the specimen, a ‘bar wave’ propagates with velocity vbar, i.e. the specimen

acts as one-dimensional bar without lateral constraints (Ashman et al. 1984). In con-

trast, shear waves’ propagation is identical in quasi-infinite media and bar-like structures

(Ashman et al. 1987).

As regards bulk waves, a combination of the conservation law of linear momentum, the

generalized Hooke’s law, the linearized strain tensor, and the general plane wave solution

for the displacements inside an infinite solid medium yields the elasticity tensor compo-

nents C1111 and C1212 of isotropic materials as functions of the material mass density ρ

and the bulk wave propagation velocities vL and vT (Carcione 2001),

C1111 = ρv2
L and C1212 = G = ρv2

T (E.10)

with G as the shear modulus.

Combination of (E.10) with the definitions of the engineering constants Young’s modulus

E and Poisson’s ratio ν, yields the latter as functions of the wave velocities, in the form

E = ρ
v2
T (3v2

L − 4v2
T )

v2
L − v2

T

(E.11)

and

ν =
E

2G
− 1 =

v2
L/2 − v2

T

v2
L − v2

T

(E.12)
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respectively.

In the case of bar wave propagation (Kolsky 1953), the measured bar wave velocity vbar
gives direct access to the Young’s modulus,

E = ρv2
bar (E.13)

In continuum (micro)mechanics (Zaoui 1997b, 2002), elastic properties are related to a

material volume [representative volume element (RVE)], with a characteristic length ℓRV E
being considerably larger than the inhomogeneities d inside the RVE, and the RVE being

subjected to homogeneous stress and strain states (Figures E.7 and E.8). Hence, the

characteristic length of the RVE, ℓRV E, needs to be much smaller than the scale of the

characteristic loading of the medium, here the wavelength λ (Figure E.7). Mathematically,

d≪ ℓRV E ≪ λ (E.14)

Therefore, ultrasonic tests at different frequencies ‘detect’, inside a sample, materials at

transmitter

(frequency f1) receiver

ℓ1

characterized RVE

wavelength λ1

transmitter

(frequency f2) receiver

ℓ2

characterized RVE

wavelength λ2

Figure E.7: Schematic, grey-scale based illustration of stress magnitude in spec-

imens tested ultrasonically with different frequencies (f1 > f2) (Fritsch

and Hellmich 2007)

different observation scales (Fritsch and Hellmich 2007), such as the macroscopic porous

material or the solid phase of the material. In the following, this is detailed for the

titanium samples.

E.4.3 Determination of elastic properties

Longitudinal waves at ultrasonic frequencies of 0.1 and 10 MHz, and transversal waves

at 5 MHz were employed to characterize four dense and four porous cylindrical samples.

The waves traveled along the height of the specimen.

The employed frequencies implied wavelengths of around half a millimeter and half a

decimeter, respectively (Table E.3), characterizing the RVEs of dense and porous titanium
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e3

e2e1 p

ℓRV E

∂V : ξ(x) = E · x

Figure E.8: Micromechanical representation of porous medium (Dormieux 2005;

Dormieux et al. 2002, 2006b): a representative volume element (RVE) is

loaded by displacements related to homogeneous (macroscopic) strains E,

and by a pore pressure p

samples, with at least 0.1 and 2.5 mm characteristic length, respectively (Table E.3).

Depending on the wavelength, measured velocities correspond to bulk waves (rows 1 and

2 of Table E.3) or to bar waves (rows 3 and 4 of Table E.3). Remarkably, two independent

test series at different frequencies, providing Young’s modulus of dense titanium either

directly (f = 0.1 MHz) or via C1111 and C1212 (f = 5 and f = 10 MHz), differ by only

3% (rows 3 and 1 in Table E.3).

E.5 Prediction of mechanical properties by means of

poro-micromechanics – microstructure-property

relationships

In this section, we aim at explaining the above-collected stiffness and strength properties

from the internal structure and composition of the tested materials. Therefore, we consider

the basic morphological feature of the pores inside the samples, which is its spherical

shape, and the volume occupied by these pores normalized by the volume of the entire

material volume, i.e. the porosity of the samples. In a first micromechanical approximation

of the material’s microstructure, we do not distinguish between the typically 10-µm-

sized pores discernable in Figure E.2 and the typically 500-µm-sized pores discernible in

Figure E.1; but we consider the sum of both porosities as overall porosity. Accordingly,

the measured mass density of each specimen and the mass density of pure titanium, equal

to 4.50 g/cm3, give access to the aforementioned overall porosity of each sample (see

coordinates on abscissa of experimental data points in Figures E.9 and E.10, as well as

Table E.4 for mean values and standard deviations).

We consider an RVE of porous titanium (Figure E.8, see also Section E.4 and Fig-
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ure E.7), with characteristic length ℓRV E = 2. . . 5 mm. Therein, we distinguish two

quasi-homogeneous subdomains (also called material phases): (i) the pores of character-

istic size d = 10 . . . 500 microns ≪ ℓRV E, with a volume fraction equal to the porosity

ϕ and with a prescribed hydrostatic stress state equal to the pore pressure; and (ii) the

solid titanium matrix with volume fraction (1 − ϕ) and with mechanical properties of

pure (non-porous) titanium. The elastic properties of the latter are typically given by a

Young’s modulus ES = 120 GPa and a Poissons ratio νS = 0.32, i.e. by a bulk modulus kS
= 111 GPa and a shear modulus µS = 45.5 GPa (Matweb 2007), see also the stiffnesses

in Figure E.9 at ϕ= 0, and the uniaxial strength of pure titanium typically amounts to

450 MPa (Matweb 2007). These quantities are the basis for determination of the ‘homog-

enized’ mechanical behavior of the overall material, i.e. the relation between homogeneous

(‘macroscopic’) deformations E acting on the boundary of the RVE (being identical to the

average of the (‘micro’-) strains inside the RVE) and resulting average (‘micro’-) stresses

(being identical to the ‘macroscopic’ stresses Σ), as well as the macroscopic stress states

related to material failure (‘homogenized strength’). The homogenized or effective mate-

rial behavior of the porous titanium samples is estimated from the mechanical behavior

of the aforementioned homogeneous phases, representing the inhomogeneities within the

RVE, their dosages within the RVE, their characteristic shapes, and their interactions, as

described next.
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Figure E.9: Prediction of stiffness properties of titanium samples, by means

of poro-micromechanical model, Equations (E.15)-(E.18); experimental

values according to Sections E.3 and E.4



Publication E Müllner et al. (2008) 131

0 0.2 0.4 0.6 0.8 1
 

100

200

300

400

500
uniaxial model
uniaxial exp.
triaxial model
triaxial exp.

porosity ϕ [ ]

st
re

ng
th

[M
Pa

]

Figure E.10: Prediction of strength properties of titanium samples, by means

of poro-micromechanical model, Equations (E.19)-(E.20); experimental

values according to Sections E.3 and E.4

ϕ (%)

Dense titanium samples 14.9 ± 1.2

Porous titanium samples 62.4 ± 2.1

Table E.4: Porosities of samples (mean values ± standard deviations)

E.5.1 Stiffness

For predicting the effective stiffness properties of the (empty) porous titanium samples,

we consider - on average - the interaction of spherical pores inside a pure titanium matrix,

by means of a Mori-Tanaka homogenization scheme (mean-field homogenization) (Zaoui

2002; Dormieux 2005; Dormieux et al. 2002; Mori and Tanaka 1973; Benveniste 1987),

delivering the following estimate Chom for the ‘homogenized’ stiffness of the composite

material ‘porous titanium’Chom = CS : (I− ϕ[I− (1 − ϕ)S]−1), (E.15)

relating macroscopic stresses Σ to macroscopic strain E. In (E.15), CS is the elasticity

tensor of pure titanium, CS = 3kSJ+ 2µSK withJ =
1

3
1 ⊗ 1 and K = I− J (E.16)

as the volumetric and the deviatoric part of the fourth-order identity tensor,I = Iijkl =
1

2
(δikδjl + δilδkj) (E.17)
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and δij (Kronecker delta) are the components of the second-order identity tensor 1, δij=1

for i=j and 0 otherwise.

The Eshelby tensor S for spherical inclusions accounts for the inclusion shape and is of

the form (Eshelby 1957) S =
3kS

3kS + 4µS
J +

6(kS + 2µS)

5(3kS + 4µS)
K (E.18)

The predictions of the micromechanical model (E.15)-(E.18) compare well with corre-

sponding experimentally determined stiffnesses (Figure E.9).

E.5.2 Strength

In contrast to the homogenized elastic properties, which can be derived from averages

of microstrains and microstresses over the material phases, homogenization of strength

properties calls for additional information on the heterogeneity of these micro-quantities,

i.e. the strain or stress peaks inside the microstructure (possibly cancelled out through

averaging) need to be appropriately considered.

It has recently been shown (Dormieux et al. 2002; Kreher 1990), that this heterogeneity

can reasonably be considered through the so-called effective microstrains, such as the

square root of the average over the solid material phase, of the squares of the equivalent

deviatoric (micro-)strains εd(x),

εeff,d =

√
∫

Vsolid

εd(x) : εd(x)dV (E.19)

with

εd(x) = ε(x) − 1

3
trε(x)1 (E.20)

where Vsolid is the volume inside the RVE, which is occupied by the solid matrix, x the

location vector indicating positions inside the RVE (Figure E.8), and tr denotes the trace

of a tensor. By non-linear homogenization theory (Dormieux 2005; Dormieux et al. 2002;

Suquet 1997a), the limit case of large effective microstrains, being related to microstresses

fulfilling a failure criterion (such as the ideally plastic von Mises criterion calibrated by the

uniaxial strength of pure titanium herein), can be assigned to corresponding macroscopic

stress states, defining a ‘macroscopic’, homogenized (ideally plastic) yield criterion of the

following, elliptical form:

F(Σm,Σd, p) =
3ϕ

4(1 − ϕ)2
(Σm + p)2 +

1 + (2/3)ϕ

(1 − ϕ)2
Σ2
d −

f 2
y

3
= 0 (E.21)

with Σm and Σd as the mean and the equivalent macroscopic stress, reading as

Σm =
1

3
trΣ (E.22)
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and

Σd =

√

1

2
Σd : Σd, Σd = Σ − 1

3
trΣ1 (E.23)

and p as the pressure acting inside the pores. It is important to note that p is a state vari-

able independent of Σ. In particular, p is not equal to hydrostatic part of the macroscopic

stress, 1/3 tr Σ, as it is sometimes used in the open literature.

For validation of the micromechanics model through our experimental data, we consider

a Cartesian base frame with base vectors e1, e2 and e3, where the third axis coincides

with the long axis of the cylindrical samples. We consider model predictions for the yield

stress in:

1. uniaxial compression without internal pore pressure:

Σ = Σ33e3 ⊗ e3,

p = 0,

and in

2. triaxial (not hydrostatic) compression with internal pore pressure:

Σ = −p0e1 ⊗ e1 − p0e2 ⊗ e2 + Σ33e3 ⊗ e3,

p = p0, p0 = 14.5 MPa,

where Σ33 is the normal stress related to the axial compression load imposed by the

electromechanical machine onto the specimen, irrespective of the pore pressure p0.

The aforementioned model predictions compare quite well to corresponding, experimen-

tally obtained values (Figure E.10). Consideration of two differently sized porosities in a

multistep-homogenization procedure, instead of only one as done herein, might improve

the model predictions.

E.6 Conclusions

Triaxial mechanical tests and ultrasound experiments were performed on porous titanium

samples of different porosity, in order to determine their Young’s moduli and Poisson’s

ratios, as well as their plastic behavior and yield stresses. The investigations indicate that

porous titanium material has a hardening plasticity behavior as seen in load-displacement

curves (Figure E.4). Experiments show that yield stress and Young’s modulus decrease

at increasing porosity (see data points in Figures E.9 and E.10). The experimental results

were consistent with poro-micromechanical model predictions based on the stiffness and
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strength properties of pure titanium, as well as on the sample specific porosity. In addition,

the corresponding Mori-Tanaka model for upscaling of elasticity shows that the overall

Young’s modulus of the porous titanium samples depend nonlinearly and convexly on

the porosity (Figure E.9); while a nonlinear homogenization scheme based on effective

microstrains in the solid material matrix, shows that the uniaxial yield stress depends

more linearly on the porosity and that internal oil pressure increases the yield stress

(Figure E.10). However, as the employed oil pressure is by far smaller than the uniaxial

yield stress, the aforementioned increase is very small in the present case. This is probably

the reason why it could not be clearly confirmed by the experiments. This leads the way

to our next step in the described research project, devoted to application of the same

oil pressure to materials characterized by a higher porosity, and to application of by far

higher oil pressures to materials such as the ones described herein. In addition, we plan

an extension of the experimental program towards cyclic loading. This loading condition

is highly relevant for the day-to-day use of implants (Hosoda et al. 2006), and also plays

an important mechanobiological role (Mizuno et al. 2004).
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Owing to their stimulating effects on bone cells, ceramics are identified as expressly

promising materials for fabrication of tissue engineering (TE) scaffolds. To ensure the

mechanical competence of TE scaffolds, it is of central importance to understand the im-

pact of pore shape and volume on the mechanical behaviour of the scaffolds, also under

complex loading states. Therefore, the theory of continuum micromechanics is used as

basis for a material model predicting relationships between porosity and elastic/strength

properties. The model, which mathematically expresses the mechanical behaviour of a

ceramic matrix (based on a glass system of the type SiO2-P2O5-CaO-MgO-Na2O-K2O;

called CEL2) in which interconnected pores are embedded, is carefully validated through

a wealth of independent experimental data. The remarkably good agreement between

porosity based model predictions for the elastic and strength properties of CEL2-based

porous scaffolds and corresponding experimentally determined mechanical properties un-
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derlines the great potential of micromechanical modelling for speeding up the biomaterial

and tissue engineering scaffold development process – by delivering reasonable estimates

for thematerial behaviour, also beyond experimentally observed situations.
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NotationAr fourth order strain concentration tensor of phase rAS fourth order strain concentration tensor of solid phase (dense CEL2 glass

ceramic)Apor fourth order strain concentration tensor of pores

a typical cross-sectional dimension of a CEL2-based porous biomaterial

sampleChom fourth order homogenised stiffness tensor

Cijkl components of fourth order homogenised stiffness tensorCpor fourth order stiffness tensor of poresCS fourth order stiffness tensor of solid phase (dense CEL2 glass ceramic)

d characteristic length of inhomogeneity within an RVE

E second order ‘macroscopic’ strain tensor

Ed deviatoric part of macroscopic strain tensor

ES Young’s modulus of solid phase (dense CEL2 glass ceramic)

Eexp experimentally determined Young’s modulus of porous CEL2-based

biomaterial

Ēexp mean over all experimentally determined Young’s moduli of porous

CEL2-based biomaterial

Ehom homogenised Young’s modulus of porous CEL2-based biomaterial

ē mean of relative error between predictions and experiments

eS standard deviation of relative error between predictions and experiments

e1 unit base vector of Cartesian reference base frame

f ultrasonic excitation frequency

f(σ) = 0 boundary of elastic domain of solid material phase, in space of

microstresses

F(Σ) = 0 boundary of elastic domain of porous CEL2-based biomaterial, in

space of macrostresses

g1, g2 functions for determination of homogenised elastic constants khom and

µhom [see Eq. (F.18)]I fourth-order identity tensorJ volumetric part of fourth-order identity tensor IK deviatoric part of fourth-order identity tensor I
kjDS, k

j+1
DS homogenised bulk moduli of step j and j + 1 in a Differential Scheme

kS Bulk modulus of solid phase (dense CEL2 glass ceramic)

khom homogenised bulk modulus of porous CEL2-based biomaterial

L characteristic length of a structure containing an RVE

ℓRV E characteristic length of RVE of porous CEL2-based biomaterial

l length of ultrasonic path

M mass of a porous CEL2-based biomaterial sample
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RVE representative volume element

r index for phasesSsph fourth order Eshelby tensor for spherical inclusion embedded in

isotropic matrix with stiffness CS
t transition time of an ultrasonic wave through a CEL2-based

biomaterial sample

tr trace of a second order tensor

V volume of a porous CEL2-based biomaterial sample

Vpor volume of pores within an RVE of porous CEL2-based

biomaterial

VS volume of the solid phase (dense CEL2 glass ceramic) within

an RVE of porous CEL2-based biomaterial

VRV E volume of an RVE of porous CEL2-based biomaterial

v propagation velocity of ultrasonic wave within a CEL2-based

biomaterial sample

x position vector within an RVE

∆ϕ pore increment in a Differential Scheme

∆x very small volume fraction of homogenised material in a

Differential Scheme, to be replaced by pores

δij Kronecker delta

ε second order microscopic strain tensor

εd deviatoric part of microscopic strain tensor

εd equivalent deviatoric microscopic strain

εeffd effective deviatoric microscopic strain

εpor average microscopic strain in pore phase

εr average microscopic strain in phase r

εS average microscopic strain in solid phase (dense CEL2 glass

ceramic)

λ ultrasonic wave length

µjDS, µ
j+1
DS homogenised shear moduli of step j and j + 1 in a Differential

Scheme

µhom homogenised shear modulus of porous CEL2-based biomaterial

sample

νS Poisson’s ratio of solid phase (dense CEL2 glass ceramic)

νhom homogenised Poisson’s ratio of porous CEL2-based biomaterial

sample

ξ displacements within an RVE and at its boundary

ρ material mass density of porous CEL2-based biomaterial sample

ρS material mass density of solid phase (dense CEL2 glass ceramic)

Σ second order ‘macroscopic’ stress tensor
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Σd deviatoric part of macroscopic stress tensor

Σult,c
pred model predicted uniaxial compressive strength of porous

CEL2-based biomaterial

Σult,c
exp experimentally determined uniaxial compressive strength of

porous CEL2-based biomaterial

σ second order ‘microscopic’ stress tensor

σd deviatoric part of microscopic stress tensor

σd equivalent deviatoric microscopic stress

σeffd effective deviatoric microscopic stress

σS average microscopic stress in solid phase (dense CEL2 glass ceramic)

τultS shear strength of dense CEL2 glass ceramic

τult shear strength

ϕ volume fraction of pores within an RVE of porous CEL2-based

biomaterial

∂V boundary of an RVE

1 second order identity tensor

〈(.)〉V = average of quantity (.) over volume V

1/V
∫

V
(.)dV

· first order tensor contraction

: second order tensor contraction

⊗ dyadic product of tensors

F.1 Introduction

Bone replacements are needed for many orthopaedic, maxillofacial and craniofacial surg-

eries. The latter may be required due to e.g. trauma or bone neoplasia. Hence, bone regen-

eration is an increasingly important clinical need. Autografts, allografts and xenografts

can be used as bone substitutes; autografts are still considered as the best choice, because

of their ability to support osteoinduction and osteogenesis, but considerable drawbacks are

associated with the need for further surgery and with donor site morbidity. Allografts and

xenografts represent a promising alternative, but they show worse bone induction prop-

erties, lower integration rates and non-negligible risks of viral contamination. For these

reasons, artificial grafts (also called scaffolds) are interesting candidates to stimulate bone

regeneration.

The term scaffold refers to a structure, realised with natural or synthesised materials,

which is able to promote cellular regeneration and to guide bone regeneration. Therefore,

synthetic scaffolds may be seeded with carefully chosen biological cells and/or growth

factors: this is referred to as tissue engineering (Langer and Vacanti 1993). Within this

concept, the main role of a scaffold is to assure a mechanical support to the growing

tissue, to guide this growth and to induce correct development of the bony organ. Due
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to their stimulating effects on bone cells, ceramics (such as hydroxyapatite (Akao et al.

1981; Verma et al. 2006), β-tricalcium phosphate (Charrière et al. 2001), bioactive glasses

(Hench and Jones 2005; Boccaccini et al. 2005), or glass ceramics (Vitale-Brovarone et al.

2007)) are identified as expressly promising materials for fabrication of tissue engineering

scaffolds.

However, the design of such scaffolds is still a great challenge since (at least) two competing

requirements must be fulfilled:

1. on the one hand, the scaffold must exhibit a sufficient mechanical competence,

i.e. stiffness and strength comparable to natural bones;

2. on the other hand, once the scaffold would be implanted into the living organism,

it should be continuously resorbed and replaced by natural bones. This typically

requires a sufficient pore space (pore size in the range of hundred micrometres

and porosity of more than 50-60% (Cancedda et al. 2007)), which discriminates

the aforementioned mechanical properties, and therefore competes with the first

requirement.

For finding a good balance between these competing requirements, it is of central impor-

tance to understand the impact of pore shape and volume on the mechanical behaviour of

the scaffolds, also under complex loading states. In order to contribute to this understand-

ing, the authors started a multidisciplinary activity driven forward by physicists, chemists,

material scientists, and engineering mechanicians. While the authors’ endeavours com-

prised state of the art processing and characterisation techniques, ranging all the way from

microscopy to mechanical and acoustical testing, the focus of the present contribution is on

an engineering science based synthesis tool for consistent explanation of the experimental

data: in more detail, the theory of continuum micromechanics (Suquet 1997a; Zaoui 2002)

provides the authors with the basis for a material model predicting relationships between

porosity and elastic/strength properties. The model, which mathematically expresses the

mechanical behaviour of a ceramic matrix in which interconnected pores are embedded

(see Section F.3), is carefully validated through a wealth of independent experimental data

(see Section F.4). The latter are gained from geometrical and weighing measurements and

from mechanical tests on CEL2 biomaterials (see Section F.4). These biomaterials are

based on a glass system of the type SiO2-P2O5-CaO-MgO-Na2O-K2O, the production and

microstructural morphology of which will be given in Section F.2. The remarkably good

agreement between porosity based model predictions for elastic and strength properties

of CEL2-based porous scaffolds and corresponding experimentally determined mechanical

properties (see Section F.4) underlines the great potential of micromechanical modelling

for speeding up the biomaterial and tissue engineering scaffold development process – by

delivering reasonable estimates for the material behaviour, also beyond experimentally

observed situations. A related discussion concludes the present paper (see Section F.5).
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F.2 Processing and microstructural characterisation

of CEL2 biomaterials before and after bioactivity

treatment

The production of glass ceramic tissue engineering scaffolds with different porosities was

based on a glass called CEL2 (Vitale-Brovarone et al. 2007). This glass belongs to the sys-

tem SiO2-P2O5-CaO-MgO-Na2O-K2O, with the following molar composition: 45% SiO2,

3% P2O5, 26% CaO, 7% MgO, 15% Na2O, 4% K2O. CEL2 was prepared by melting the

raw products in a platinum crucible at 1400oC for 1 h and by quenching the melt in cold

water to obtain a frit that was finally ground and sieved. This resulted in a final grain

size of less than 30 µm.

The porous scaffolds were produced by means of two different methods:

1. the replication technique based on a polymeric sponge

2. the burning-out method based on a mixture of glass and organic powders.

In the latter method, different quantities of an (polyethylene) organic powder with grain

sizes of 100-600 µm are mixed with the aforementioned CEL2 powder, leading to different

porosities of the end product. Subsequently, the mixture is pressed, then it passes through

a heat treatment where the polymer burns, leaving pores on the substrate; finally, the

powders are sintered. As an alternative production technique, the replication method

involves the impregnation of a polymeric template with a suitable powder suspension

(slurry). The chosen template possesses a porous microstructure and, after the impregna-

tion phase, the template undergoes a thermal treatment that burns out the organic phase

and sinters the inorganic one.

To check the bioactivity requirement given in Section F.1, some of the replication tech-

nique based 3D scaffolds were treated in simulated body fluid (SBF) for one week (sample

‘B’ in Tables F.2 and F.3) and for four weeks (sample ‘D’ in Tables F.2 and F.3) respec-

tively, in order to study the formation of hydroxyapatite crystals on the sintered struts

(Figure F.2). In addition, 3D scaffolds were also soaked in a buffered medium, trishydrox-

ymethylaminomethane (standardly abbreviated as tris), again for one week (sample ‘C’

in Tables F.2 and F.3) and four weeks (sample ‘D’ in Tables F.2 and F.3) respectively, so

as to assess the scaffolds bioresorption with time.

The microstructural morphology of the scaffolds was studied by means of scanning electron

microscopy (SEM). The replication technique allows for realisation of strut like morpholo-

gies inspired by trabecular bone architecture [Figure F.1(a)-(b)], while the powder mixture

technique results in porous matrix type morphologies [Figure F.1(c)-(d)]. In both cases,

the pore sizes related to the tailored (macro) porosity range between 100 and 500 µm.

Moreover, the sintering process induces a microporosity (with characteristic length of
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(a) (b)

(c) (d)

Figure F.1: Scanning electron micrographs of CEL2 glass ceramic scaffolds

at different resolutions, produced by replication method (a)-(b), and by

burning-out method (c)-(d)

15 µm) important for adhesion of proteins and cells. After soaking in SBF or tris at 37oC,

a new phase formed on the pore surfaces (Figure F.2), showing the remarkable bioactivity

of the material. In SBF, the chemical composition of this new phase was confirmed to

be close to hydroxyapatite, by means of X-ray diffraction (XRD) and energy dispersion

spectrometry (EDS). The pH variations in the pores during the soaking of the scaffolds

were also monitored: ranging between 7.4 and 8, they fall into the moderately alkaline

conditions preferred by the osteoblasts, the biological cells building up an extracellular

bone matrix.

Next, the microstructural information contained in Figures F.1 and F.2 is reduced to

the features which are essential to capture the mechanical behaviour of the scaffolds.

Therefore, the authors will not distinguish between the solid glass ceramic substance

and the new phase initiated through treatment in SBF or tris. The relevance of this

simplification will be underlined in the section devoted to model validation. The model

itself will be cast in the framework of continuum micromechanics, as is detailed next.
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Figure F.2: Scanning electron micrograph of CEL2 glass ceramic scaffold after

one week of soaking in SBF

F.3 Micromechanical model

F.3.1 Fundamentals of continuum micromechanics – represen-

tative volume element

In continuum micromechanics (Suquet 1997a; Zaoui 2002; Hill 1963) a material is un-

derstood as a macrohomogeneous, but microheterogeneous body filling a representative

volume element (RVE) with characteristic length ℓRV E , ℓRV E ≫ d, d standing for the

characteristic length of inhomogeneities within the RVE, and ℓRV E ≪ L, L standing for

the characteristic lengths of the geometry or loading of a structure built up by the mate-

rial defined on the RVE. In general, the microstructure within each RVE is so complicated

that it cannot be described in complete detail. Therefore, quasihomogeneous subdomains

with known physical quantities (such as volume fractions, elastic or strength properties)

are reasonably chosen. They are called material phases. The ‘homogenised’ mechanical

behaviour of the overall material, i.e. the relation between homogeneous deformations act-

ing on the boundary of the RVE and resulting (average) stresses, or the ultimate stresses

sustainable by the RVE, can then be estimated from the mechanical behaviour of the

aforementioned homogeneous phases (representing the inhomogeneities within the RVE),

their dosages within the RVE, their characteristic shapes, and their interactions.
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F.3.2 Micromechanical representation of CEL2-based biomate-

rial

An RVE of CEL2-based biomaterial is considered, with characteristic length ℓRV E=55 mm

and with volume VRV E, hosting spherical, empty pores with characteristic size d=100-

500 µm ≪ ℓRV E , with volume Vpor and volume fraction ϕ (=Vpor/VRV E). These pores are

embedded in a solid matrix with volume VS and volume fraction (1-ϕ) (see Figure F.3).

Homogeneous (‘macroscopic’) strains E are imposed onto the RVE, in terms of displace-

ments ξ at its boundary ∂V

∀x ∈ ∂V : ξ(x) = E · x (F.1)

with x as the position vector within the RVE. As a consequence, the resulting kine-

matically compatible microstrains ε(x) throughout the RVE with volume VRV E fulfil the

average condition (Hashin 1983)

E = 〈ε〉 =
1

VRV E

∫

VRV E

ε(x) dV = (1 − ϕ) εS + ϕ εpor (F.2)

with

εS =
1

VS

∫

VS

ε(x) dV, εpor =
1

Vpor

∫

Vpor

ε(x) dV, VS + Vpor = VRV E (F.3)

Equation (F.2) provides a link between ‘micro’ and ‘macro’ strains. Thereby, εS and εpor

are the averages of the (micro)strain tensor fields, over the solid and the porous phase

respectively [see equation (F.3)]. Analogously, homogenised (‘macroscopic’) stresses Σ

are defined as the spatial average over the RVE of the microstresses σ(x)

Σ = 〈σ〉 =
1

VRV E

∫

VRV E

σ dV = (1 − ϕ) σS (F.4)

with σS as the average of the (micro)stress tensor field over the solid phase.

VSCS VRV E
VporCpor ≡ 0

Figure F.3: Micromechanical representation of CEL2-based biomaterial:

macropores of porosity ϕ are embedded and interconnected within dense

(microporous) solid glass substance with elasticity tensor CS



Publication F Malasoma et al. (2008) 145

F.3.3 Constitutive behaviour of CEL2 and pores

The solid phase (consisting of dense CEL2 glass ceramic, and in case of samples tested for

biocompatibility, also of tris or SBF-derived substances) inside the RVE VRV E behaves

linear elastically

σ = CS : εS (F.5)

with CS = 3kSJ + 2µSK as the isotropic elastic stiffness of the solid phase; with bulk

modulus kS and shear modulus µS. J = 1/31 : 1 and K = I − J are the volumetric

and the deviatoric part of the fourth order identity tensor I, with components Iijkl =

1/2(δikδjl + δilδkj); the components of the second order unit tensor 1, δij (Kronecker

delta), read as δij = 1 for i = j and δij = 0 for i 6= j. The pores are empty, thereforeCpor = 0. The load bearing capacity of the solid phase is bounded according to a von

Mises-type failure criterion, reading as

f(σ(x)) = σd(x) − τult = 0 (F.6)

where τult is the shear strength of the solid phase, and σd is the equivalent deviatoric

microscopic stress, reading as

σd(x) =

√

1

2
σd(x) : σd(x) (F.7)

with

σd(x) = σ(x) − 1

3
trσ(x)1 (F.8)

as the deviatoric part of the microscopic stress tensor σ.

F.3.4 Homogenisation of elastic properties

Homogenised (‘macroscopic’) stresses and strains, Σ and E, are related by the ho-

mogenised (‘macroscopic’) stiffness tensor Chom
Σ = Chom : E (F.9)

which needs to be linked to the solid stiffness CS, as well as to the shape, and to the

spatial arrangement of the phases (solid glass ceramic substance and pores). This link

is based on the linear relation between the homogenised (‘macroscopic’) strain E and

the average (‘microscopic’) strain εr, resulting from the superposition principle valid for

linear elasticity [equation (F.5)] (Hill 1963). This relation is expressed in terms of the

fourth order concentration tensors Ar of each of the phases r (r=S or por)

εr = Ar : E (F.10)
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which implies, together with equation (F.2), that

(1 − ϕ)AS + ϕApor = I (F.11)

Insertion of equation (F.10) into equation (F.5) and averaging over all phases according

to equation (F.4) leads to

Σ = (1 − ϕ)CS : AS : E (F.12)

From equations (F.12) and (F.9), the sought relation between the phase stiffness tensorCS and the overall homogenised stiffness Chom of the RVE can be identifiedChom = (1 − ϕ) : CS : AS = CS : (I− ϕApor) (F.13)

If the porosity is very small, ϕ≪ 1 (dilute dispersion of pores), the mechanical interactions

between the pores can be neglected. In this case, the macroscopic strains E acting on the

RVE of Figure F.3 can be set equal to those acting on the remote boundary of an infinite

matrix made up by the solid phase, a matrix which hosts one pore like inclusion. Under

this condition, the homogeneous (microscopic) strains εpor within a spherical empty pore

follows from Eshelby’s 1957 problem (Eshelby 1957), and read as

εpor = [I− Ssph]−1

︸ ︷︷ ︸Apor

: E (F.14)

whereby Apor follows from equation (F.10). The fourth order Eshelby tensor Ssph accounts

for the morphology of the inclusion. For spheres, it reads asSsph =
3kS

3kS + 4µS
J+

6(kS + 2µS)

5(3kS + 4µS)
K (F.15)

Use of equations (F.14) and (F.15) in equation (F.13) yields the so called ‘dilute estimate’

for the stiffness of a porous material with spherical pores. In the present situation,

however, this estimate needs to be extended to the case of higher porosities made up

by interconnected pores (see Figures F.1 and F.2). Therefore, the so called Differential

Scheme is used (Boucher 1976; McLaughlin 1977; Molinari and El Mouden 1996; Dormieux

and Lemarchand 2001). Initially, a very small volume fraction of pores ∆ϕ is introduced

into the solid matrix and the material is homogenised via equations (F.14), (F.15) and

(F.13). The following steps consist in (i) removing a very small portion ∆x ≪ 1 of the

previously homogenised material (containing already some porosity), in (ii) replacing it

by the same volume fraction of pores (see Figure F.4), and in (iii) homogenisation of the

slightly more porous material. Thereby, the overall porosity increases by the increment

∆ϕ.

∆ϕ = −ϕ∆x + ∆x = (1 − ϕ)∆x, ∆x≪ 1 (F.16)
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∆V

VRV E
∆x = ∆V

VRV E

jth homogenised medium

pore volume∆x

poressolid phase

Figure F.4: Schematical representation of Differential Scheme, in the line of

(Dormieux and Lemarchand 2001)

Repeating this removal and introduction of small volume fractions, followed by subsequent

homogenisation, leads to an iteration scheme of the form (Dormieux et al. 2006b)

kj+1
DS = kjDS

[

1 −
(

1 +
3kjDS
4µjDS

)

∆x

]

µj+1
DS = µjDS

[

1 −
(

5
3kjDS + 4µjDS
9kjDS + 8µjDS

)

∆x

]

(F.17)

with kjDS and µjDS as the homogenised moduli after the jth homogenisation step. Realising

scheme (F.17) for the limit case ∆ϕ → 0, as long as the actual porosity is reached,
∑

j ϕj = ϕ, yields the differential estimate (Dormieux et al. 2006b)

g1 =
(1 + 4µS/3kS)(µhom/µS)

3

2 − (1 − 4µS/3kS)(µhom/µS)3/5
− (1 − ϕ)6 = 0

g2 =
µhom
µS

− (1 − 4/3µhom/khom)5/3

(1 − 4/3µS/kS)5/3
= 0 (F.18)

with khom and µhom as the bulk and the shear modulus of the homogenised stiffness

tensor Chom, Chom = 3khomJ+2µhomK. Equation (F.18) is valid as long as Poisson’s ratio

νS = (3kS − 2µS)/(6kS + 2µS) is larger than 0.2 (see (Dormieux et al. 2006b)). Finally,

standard isotropic elasticity relates khom and µhom to the Young’s modulus Ehom

Ehom =
9khomµhom

3khom + µhom
(F.19)

F.3.5 Upscaling of failure properties

In order to determine the effective failure properties resulting from local failure char-

acteristics [equation (F.17)], we are left with relating the local strains and stresses to

corresponding macroscopic quantities. In contrast to the homogenised elastic proper-

ties, which can be derived from (first order) averages of microstrains and microstresses
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over the material phases [see εS and εpor in equation (F.3)], homogenisation of strength

properties calls for additional information on the heterogeneity of these microquantities,

i.e. the strain or stress peaks inside the microstructure (possibly cancelled out through

averaging) need to be appropriately considered. This heterogeneity can reasonably be

considered through so called effective microstrains ε
eff
d (Kreher 1990; Dormieux et al.

2002; Barthélémy and Dormieux 2003, 2004) (see (Fritsch et al. 2007a,b, 2009a) for appli-

cation to hydroxyapatite ceramics), such as the square root of the average over the solid

material phase, of the squares of the equivalent deviatoric (micro) strains εd(x),

εeffd =

√
√
√
√

1

VS

∫

VS

ε2
d(x)dV (F.20)

with

εd(x) =

√

1

2
εd(x) : εd(x) (F.21)

with the deviatoric microstrain tensor

εd(x) = ε(x) − 1

3
tr ε(x) 1 (F.22)

and with tr ε as the trace of the microscopic strain tensor. Energy considerations

(Dormieux et al. 2002) allow for determination of the effective deviatoric strain εeffd from

the macroscopic strains E, according to

εeff,2d =
1

2(1 − ϕ)

[
1

2

∂khom
∂µS

(trE)2 +
∂µhom
∂µS

Ed : Ed

]

(F.23)

with tr E and Ed as the trace and the deviatoric part of the macroscopic strain tensor E.

The definition of Ed is analogous to equation (F.22). The derivations of khom and µhom
with respect to µS are obtained via implicit differentiation of equation (F.18), leading to

∂µhom
∂µS

=
− ∂g1
∂µS

∂g1
∂µhom

,
∂khom
∂µS

=
−
(

∂g2
∂µhom

∂µhom

∂µS
+ ∂g2

∂µS

)

∂g2
∂khom

(F.24)
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whereby

∂g1

∂µS
= −

6µ3
hom(9kS + 8µS)

(

4µhomµS + 5µS

(
µhom

µS

)2/5

kS − 2µhomkS

)

µS N
,

∂g1

∂µhom
=

6µ2
hom(3kS + 4µS)

(

8µhomµS + 15µS

(
µhom

µS

)2/5

kS − 6µhomkS

)

N ,

N = 5µ4
S

(

6kS − 3

(
µhom
µS

)3/5

kS + 4

(
µhom
µS

)3/5

µS

)2(
µhom
µS

)2/5

,

∂g2

∂µS
= −µhom

µ2
S

−
20
(

1 − 4µhom

3khom

)5/3

9kS

(

1 − 4µS

3kS

)8/3
,

∂g2

∂µhom
=

1

µS
+

20
(

1 − 4µhom

3khom

)2/3

9khom

(

1 − 4µS

3kS

)5/3
,

∂g2

∂khom
=

20µhom

(

1 − 4µhom

3khom

)2/3

9k2
hom

(

1 − 4µS

3kS

)5/3
(F.25)

The macroscopic strains E and Ed in equation (F.23) are related to the corresponding

macroscopic stress states via the homogenised stiffness tensor Chom [see equation (F.9)].

In equation (F.6), stress peaks of σd(x) are left to be estimated by the effective microstress

σeffd . The latter reads as

σeffd = 2µS ε
eff
d (F.26)

Insertion of equation (F.26), together with equations (F.18)-(F.25) and (F.9), into the

microscopic failure criterion (F.6) with σd(x) ≈ σeffd , delivers an elastic limit criterion for

macroscopic stress states (representing ultimate strength in the case of brittle materials),

as function of the porosity ϕ

F(Σ) =
2µS

√

2(1 − ϕ)

[

1

2

∂khom
∂µS

(
trΣ

3khom

)2

+
∂µhom
∂µS

Σd : Σd

2µ2
hom

]1/2

− τult = 0 (F.27)

with tr Σ and Σd as the trace and the deviatoric part of the macroscopic stress tensor Σ.

The definition of Σd is analogous to equation (F.22).

In particular, strength model (F.27) will be evaluated for stress states related to uniaxial

compression Σ = Σ e1⊗e1, yielding an estimate for the macroscopic uniaxial compressive

strength

Σult,c
pred =

[

9(2νhom − 1)2 ∂khom

∂µS
+ 12(νhom + 1)2 ∂µhom

∂µS

]1/2

(1 − ϕ)1/2Ehomτ
ult

[

3(2νhom − 1)2 ∂khom

∂µS
+ 4(2νhom + 1)2 ∂µhom

∂µS

]

µS
(F.28)
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In equation (F.28), νhom is Poisson’s ratio of the homogenised material

νhom =
3khom − 2µhom
6khom + 2µhom

(F.29)

F.4 Model validation

F.4.1 Strategy for model validation through independent test

data

Validation of the micromechanical representation of CEL2-based biomaterials will rest on

two independent experimental sets, related to dense CEL2 glass ceramics and to samples

of (macro)porous biomaterials: biomaterial specific macroscopic (homogenised) Young’s

moduli Ehom and uniaxial compressive strengths Σult,c
pred, predicted by the micromechanics

model (see Section F.3) on the basis of biomaterial independent (‘universal’) elastic and

strength properties of pure CEL2-glass (experimental set I, see Section F.4.2) for bio-

material specific porosities ϕ (experimental set IIa, see Section F.4.3), are compared to

corresponding biomaterial specific experimentally determined Young’s moduli Eexp (ex-

perimental set IIb-1, see Section F.4.4) and uniaxial compressive strength values Σult,c
exp

(experimental set IIb-2, see Section F.4.5).

F.4.2 ‘Universal’ mechanical properties of dense CEL2 glass ce-

ramics – experimental set I

Acoustic experiments (Kohlhauser et al. 2009) reveal the isotropic elastic constants for

dense CEL2 glass ceramic, its Young’s modulus ES = 85.3 GPa, and its Poisson’s ratio

νS = 0.25 (equivalent to bulk modulus kS = ES/3/(1 − 2νS) = 56.9 GPa and shear

modulus µS = ES/2/(1 + νS) = 34.1 GPa (see also Table F.1). The authors are not

aware of reliable direct strength tests on dense CEL2 glass ceramics. However, ceramic

biomaterials made of hydroxyapatite with a microporosity similar to that of the herein

investigated materials exhibit a typical shear strength of τult = 9.8 MPa (Charrière et al.

2001), which will be considered as representative for dense (microporous) CEL2 glass

ceramic (Table F.1).
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Young’s modulus ES 85.3 GPa from (Kohlhauser et al. 2009)

Poisson’s ratio νS 0.25 from (Kohlhauser et al. 2009)

Shear strength τultS 9.8 MPa from (Charrière et al. 2001)

Table F.1: ‘Universal’ (biomaterial-independent) isotropic phase properties of

dense CEL2 glass ceramic (=solid phase in Figure F.3)

F.4.3 Sample specific porosities of CEL2-based biomaterials –

experimental set IIa

The porosity of the investigated CEL2-based samples was determined from measurements

of their masses M and volumes V , according to

ϕ = 1 − M

V ρS
(F.30)

whereby ρS = 2.6 g/cm3 is the mass density of the dense CEL2 glass ceramic (Kohlhauser

et al. 2009) (see Table F.2). Samples denoted A-E in this table were cubes with an edge

length of about 5 mm, while the rest of the samples collected in Table F.2 were cuboid

shaped, with dimensions between 10x10x10 mm and 10x10x50 mm. Equation (F.30)

was also used for the estimation of the porosity of the scaffolds soaked in SBF and tris

(see Section F.2 for details): this is equivalent to approximating the mass density of the

soaking induced, newly formed phases, such as hydroxyapatite with density between 2.61

and 3.16 g/cm3 in biological systems (Dorozhkin and Epple 2002) by the mass density of

CEL2 glass.

F.4.4 Sample specific elasticity experiments on CEL2-based bio-

materials – experimental set IIb-1

Elastic properties of porous CEL2-based biomaterials were determined through acoustical

testing. The used ultrasonic device is composed of a pulser-receiver Panametrics-NDT

5077 PR, of an oscilloscope, and of several ultrasonic transducers; the pulser unit can emit

a square pulse of up to 400 V, with frequencies from 0.1 to 20 MHz. The piezoelectric

elements in the transducers are able to transform electrical signals into mechanical ones,

or mechanical signals into electrical ones (see Figure F.5).

The receiver unit has a bandwidth of 0.1-35 MHz and a voltage gain until 59 dB. The

signal is displayed on an oscilloscope Lecroy Waverunner 62Xi, which allows for estimating

the time of flight t of the acoustic wave through the specimen along a path of length l; t

and l give access to the velocity v of the wave, via

v =
l

t
(F.31)
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Speci- a ρ ϕ vbar λ a/λ Eexp
men measured measured Eq. (F.30) Eq. (F.31) Eq. (F.32) - Eq. (F.33)

nr. [mm] [g/cm3] [%] [km/s] [mm] - [GPa]

A 5.22 0.84 67.3 3.96 39.6 0.13 13.10

B 5.35 0.87 66.2 4.09 40.9 0.13 14.50

C 4.33 0.97 62.3 3.94 39.4 0.11 15.00

D 5.22 0.80 68.7 3.06 30.6 0.17 7.50

E 5.14 0.58 77.5 2.97 29.7 0.17 5.10

1 15.27 1.47 42.4 4.71 47.1 0.32 32.73

2 13.34 1.45 43.5 4.31 43.1 0.31 26.87

3 9.78 1.35 47.1 4.09 40.9 0.24 22.61

4 9.74 1.32 48.3 4.16 41.6 0.23 22.85

5 9.85 1.40 45.3 4.08 40.8 0.24 23.28

6 9.59 1.30 49.3 4.08 40.8 0.24 21.58

7 9.5 1.88 26.7 4.73 47.3 0.20 42.02

8 9.5 1.59 37.9 4.43 44.3 0.21 31.13

9 10.39 0.88 65.4 4.34 43.4 0.24 16.70

10 9.74 0.89 65.1 4.24 42.4 0.23 16.10

11 24.75 0.88 65.4 4.25 42.5 0.58 16.00

12 21.6 0.89 65.1 4.13 41.3 0.52 15.30

Table F.2: Porous CEL2-based biomaterial samples: Young’s modulus Eexp
determined from propagation velocity vbar of bar waves with a signal fre-

quency f=0.1 MHz: a is a typical cross-sectional dimension, ρ is the mass

density, and ϕ the porosity of the sample; λ denotes the wavelength

(a) (b)

Figure F.5: Equipment for acoustical testing: (a) pulser-receiver, (b) ultrasonic

transducers
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Velocity v and frequency f of the acoustic signal yield the wavelength λ as

λ =
v

f
(F.32)

If the wavelength l is considerably larger than the diameter or another typical cross-

sectional dimension a of the specimen, a bar wave propagates with velocity vbar (Fedorov

1968; Ashman et al. 1984). This is the case for the herein employed 0.1 MHz signals

propagating through CEL2-based biomaterial samples (see Table F.2). There, the theory

of elastodynamics (Fedorov 1968; Ashman et al. 1984) allows for the determination of

Young’s modulus from the velocities of bar waves

E = ρv2
bar (F.33)

Given λ ≈ 40 mm (see Table F.2) ≫ lRV E = 5 mm (see Section F.2), these values for

Young’s modulus actually refer to the (macro)porous biomaterial scaffolds (and not to

the dense CEL2 glass ceramic between the macropores).

F.4.5 Comparison between sample specific stiffness predictions

and corresponding experiments

The stiffness values predicted by the homogenisation scheme for elastic properties (de-

scribed in Section F.3) for biomaterial specific porosities (experimental set IIa) on the

basis of biomaterial independent (‘universal’) stiffness of CEL2 biomaterials (experimen-

tal set I) are compared to corresponding experimentally determined biomaterial specific

stiffness values from experimental set IIb-1. To quantify the model’s predictive capabili-

ties, the mean and the standard deviation of the normalised error e, between predictions

and experiments ē and eS, are considered

ē =
1

n

n∑

i=1

ei =
1

n

n∑

i=1

ei
Ehom,i −Eexp

Ēexp
(F.34)

eS =

[

1

n− 1

n∑

i=1

(ei − ē)2

] 1
2

(F.35)

with summation over n values Eexp. Ēexp is the mean over all experimental values.

Insertion of biomaterial specific porosities (fourth column of Table F.2) and ‘universal’

stiffness constants (Table F.1) into equation (F.18) delivers, together with equation (F.19),

sample specific stiffness estimates for the effective Young’s modulus Ehom. These stiffness

predictions are compared to corresponding experimental stiffness values Eexp (Figure F.6

and last column of Table F.2). The satisfactory agreement between model predictions

and experiments is quantified by prediction errors of −9 ± 16% (mean value±standard

deviation).
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Figure F.6: Comparison between model predictions and experiments for stiff-

ness of porous CEL2 glass ceramic scaffolds

F.4.6 Sample specific strength experiments on CEL2-based bio-

materials – experimental set IIb-2

Ultimate properties of CEL2-based biomaterials were determined by uniaxial, compres-

sive, quasistatic testing. The five cubic samples A-E (see also Table F.2 and Section F.4.3)

were suitable for measurements in an electromechanical testing stand (MTS QTest 10, see

Figure F.7). A 1000 N range force transducer was used. Compression tests were performed

in a displacement control mode with 0.015 mm/s speed (strain rate ∼ 3 · 10−3/s). Corre-

sponding stress strain curves of the specimens are characterised by pronounced softening

after a first stress peak. The latter was identified as ultimate strength (see Table F.3).

Sample ϕ Σult,c
exp

[-] [MPa]

A 0.67 1.85

B 0.66 4.58

C 0.62 4.40

D 0.69 2.11

E 0.77 1.91

Table F.3: Experimental compressive strength Σult,c
exp of CEL2-based biomaterial

samples as function of porosity ϕ (see Table F.2)
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Figure F.7: Electromechanical testing stand for compression tests on CEL2-

based biomaterial samples

F.4.7 Comparison between sample specific strength predictions

and corresponding experiments

The strength values predicted by the upscaling relations described in Section F.3, for

sample specific porosities (experimental set IIa) on the basis of sample independent (‘uni-

versal’) elasticity and shear strength characteristics of dense CEL2 glass ceramic (exper-

imental set I) are compared to corresponding experimentally determined sample specific

uniaxial compressive strength values from experimental set IIb-2.

Insertion of biomaterial specific porosities (second column of Table F.3) into equation (F.28),

together with equations (F.24), (F.25) and (F.18), delivers, together with ES, νS and τultS

(Table F.1), sample specific strength estimates for uniaxial compressive strength (Σult,c
pred).

These strength predictions are compared to corresponding experimental strength values

Σult,c
exp (Figure F.8 and third column of Table F.3). The satisfactory agreement between

model predictions and experiments is quantified by prediction errors of 3±34% [mean

value±standard deviation, in analogy to equations (F.34)-(F.35)].

F.5 Conclusions

A continuum micromechanical concept has been developed for the elasticity and strength

of porous biomaterials made of CEL2, which was verified through independent experimen-

tal sets. The latter were gained from the authors’ own experiments. The predictions of the

porosity based micromechanics model agree well with the corresponding experimentally
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Figure F.8: Comparison between model predictions and experiments for com-

pressive strength of porous CEL2 glass ceramic scaffolds

determined mechanical properties of samples produced by both the replication technique

and the burning-out method: this underlines the relevance of the Differential Scheme for

microstructures with interconnected pores, irrespective of the actual sphere or strut type

microstructural morphology. The good agreement of the model with the corresponding

elasticity and strength experiments of samples of both the unmodified and the bioactivity

tested biomaterials indicates that the bioactivity tests primarily increased the porosity

of the scaffolds, while the newly formed chemical phases exhibit mechanical properties

which are more or less similar to the original glass ceramic phase. The suitability of the

differential scheme to predict the elasticity properties of porous CEL2 glass ceramic scaf-

folds for tissue engineering is consistent with the earlier finding (Zimmermann 1991) that

this scheme appropriately predicts the elastic properties of sintered glass (Walsh et al.

1965) of various porosities with nearly spherical pore shape.

Conclusively, it is proposed that micromechanical models have a considerable potential

for improving biomaterial design. Nowadays, the latter is largely done in a trial-and-

error procedure. Based on a number of mechanical and/or acoustical tests, new material

design parameters are guessed. On the other hand, with well validated micromechanical

models, the mechanical implications of changes in the microstructure can be predicted

so that minimisation of material failure risk allows for the optimisation of key design

parameters, such as porosities or geometries of microstructures. Hence, it is believed that

micromechanical theories can considerably speed up the future development of tissue

engineering scaffolds.
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Concluding remarks

We have proposed micromechanical descriptions for different classes of biomaterials, as

well as a first multiscale micromechanics model for bone strength, extending earlier de-

velopments in the realm of elasticity (Hellmich et al. 2004a; Fritsch and Hellmich 2007).

The employed morphological description for crystals of hydroxyapatite and of bone min-

eral within biomaterials and bone, respectively, has remarkable analogies to another natu-

ral material, namely gypsum. Recent investigations (Sanahuja 2008; Sanahuja et al. 2008)

have shown the potential of micromechanical models, based on self-consistent schemes us-

ing elongated (prolate) inclusions with different aspect ratios, for predicting elastic and

strength properties of gypsum.

As concerns modeling the mechanical properties of bone (Chapter D), such models can

potentially support various future scientific as well as application-oriented activities:

1. As was already shown for elasticity (Hellmich et al. 2008), the model is expected to

be combined with computer tomographic images: Based on average relations from

X-ray physics, the voxel-specific X-ray attenuation information would be translated

to voxel-specific material composition; and the latter would serve as input for the

micromechanical model, which would then deliver voxel-specific (anisotropic and

inhomogeneous) stiffness and strength values. In this way, the current activities

concerning the virtual physiological human (Taylor et al. 2002; Yosibash et al. 2007;

Viceconti et al. 2008), could be extended from the realm of elasticity to that of full

elastoplasticity, resulting in patient-specific fracture risk assessment of whole organs

in both healthy and pathological conditions.

2. The proposed model could also support the design of tissue engineering scaffolds,

through predictions of the failure properties of bone tissue-engineering scaffolds

with tissue-engineered bone, by feeding recently developed multiscale representa-

tions (Bertrand and Hellmich 2008) not only with an elastic, but with the present

elastoplastic micromechanical representation of the extracellular bone material.

3. Since the proposed model is linked to the hierarchical organization of bone and to its

elementary components, it is ready to be combined with most recent developments
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in theoretical and computational biochemistry and biology, which quantify the well-

tuned interplay of biological cells via biochemical signaling pathways (Lemaire et al.

2004; Pivonka et al. 2008) – giving as output the volume fraction of newly deposited

or resorbed extravascular bone, which may serve as input for the proposed multiscale

strength model. That is expected to open the way to translation of biochemical

remodeling events to associated changes in mechanical competence.

As concerns modeling mechanical properties of biomaterials (Chapters B-C and E-F),

it is proposed that micromechanical models have a considerable potential for improving

biomaterial design. Nowadays, the latter is largely done in a trial-and-error procedure.

Based on a number of mechanical and/or acoustical tests, new material design param-

eters are guessed. On the other hand, with well validated micromechanical models, the

mechanical implications of changes in the microstructure can be predicted so that minimi-

sation of material failure risk allows for the optimisation of key design parameters, such

as porosities or geometries of microstructures. Hence, it is believed that micromechanical

theories can considerably speed up the future development of tissue engineering scaffolds.
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analyse, interprétation [Characterization of cement pastes and concretes - methods,

analysis, interpretations]. Technical report, Laboratoire Central des Ponts et Chaussées,

Paris, France. In French.

Barthelat, F., Tang, H., Zavattieri, P., Li, C.-M., and Espinosa, H. (2007). On the

mechanics of mother-of-pearl: A key feature in the material hierarchical structure.

Journal of the Mechanics and Physics of Solids, 55(2):306 – 337.



Bibliography 161

Barthélémy, J.-F. and Dormieux, L. (2003). Determination of the macroscopic strength

criterion of a porous medium by nonlinear homogenization. Comptes Rendus Mecanique,

331:271 – 276.
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composites]. Lecture Notes from École Polytechnique, Palaiseau, France, in French.

Zaoui, A. (1997b). Structural morphology and constitutive behavior of microheteroge-

neous materials. In Suquet, P., editor, Continuum micromechanics, pages 291 – 347.

Springer, Wien – New York.

Zaoui, A. (2002). Continuum micromechanics: Survey. Journal of Engineering Mechanics

(ASCE), 128(8):808 – 816.

Zhong, Z. and Meguid, S. (1997). On the elastic field of a spherical inhomogeneity with

an imperfectly bonded interface. Journal of Elasticity, 46(2):91 – 113.

Zimmermann, R. (1991). Elastic moduli of a solid containing spherical inclusions. Me-

chanics of Materials, 12:17 – 24.

Zioupos, P., Currey, J., Casinos, A., and Buffrénil, V. D. (1997). Mechanical properties

of the rostrum of the whale mesoplodon densirostris, a remarkably dense bony tissue.

Journal of Zoology, London, 241:725 – 737.



Curriculum Vitae

Dipl.-Ing. Andreas FRITSCH

Personal Data

Name: Andreas Fritsch

Academic Degree: Dipl.-Ing.

Date of Birth: 25.1.1980

Place of Birth: Vienna, Austria

Nationality: Austrian

Education

09/1990 – 06/1998 Secondary school in Vienna, Austria

10/1999 – 09/2005 Vienna University of Technology (TU Wien), Vienna, Austria

Diploma studies in Civil Engineering

10/2005 – 02/2009 Doctoral studies at the École des Ponts ParisTech,
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