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Kurzfassung

Knochen ist ein hierarchisch aufgebautes Material, gekergichnet durch eine erstaunliche
Variabiliat und Diversi@at. Knochenersatz- oder Biomaterialien sind wichtige Kompo-
nenten far kanstliche Organe und werden auch als Gerast@r Tissue Engineeringeinge-
setzt. Das Ziel dieser Dissertation ist die Vorhersage deestigkeit von Knochen und
Knochenersatzmaterialien auf Grund ihrer Zusammensetzgnund Mikrostruktur mit-
tels Mehrskalenmodellen. Die theoretischen Entwicklungewerden durch umfangreiche
Experimente an kortikalen Knochen sowie an Biomaterialieaus Hydroxyapatit, Glas-
Keramik und Titanium untermauert.

Kapitel A untersucht verschiedene morphologische Konzepte (Kuged.\Nadeln) far die
Homogenisierung der linear elastischen Eigenschaften voaresen Polykristallen, wie sie
in der Mineralphase des Knochens vorkommen.

In Kapitel B wird ein erster Versuch zur Modellierung der Festigkeit vorlydroxyapatit-
Biomaterialien vorgeschlagen, aufbauend auf einer mikr@thanischen Beschreibung der
Stei gkeit und des spreden Versagens der Kontaktache Interface) zwischen isotropen,
kugelrmigen Kristallen. Um Optimierungsverfahren zurRackbestimmung der Eigen-
schaften der Kontaktache zu vermeiden (wie sie in KapiteB verwendet werden), wurde
ein alternativer Ansatz (Kapitel C) entwickelt, wo die nichtkugell®rmige Form von Hy-
droxyapatitkristallen benacksichtigt wurde. Die Verwendung von Nadeln impliziert einen
1D-Spannungszustand im soliden Kristall in Nadelrichtungund diese Spannung kann
als relevant fur die Spannungen an der Kontaktache zwideen den Kristallen erachtet
werden.

Kapitel D prasentiert ein experimentell gestatztes mikromechasiches Modell zur Er-
kiarung der Festigkeit des kortikalen Knochens, basierehauf einer neuen Sichtweise fur
dessen Versagen: Gegenseitiges duktiles Gleiten von Hygkapatit-Mineralkristallen ent-
lang von geschichteten Wasser Imen geht dem Reien des Kafiens voran. Es wird
gezeigt, dass das mehrskalige mikromechanische Modell Egstigkeiten far verschiedene
Knochen von verschiedenen Arten vorhersagen kann, auf deru@dlage ihres Mineral- und
Kollagengehalts, ihrer Porositten und der Stei gkeit urd Festigkeit von Hydroxyapatit
und (molekularen) Kollagen.

Experimentelle Untersuchungen und Modellierungen von zweveiteren Arten von Bio-
materialien begleiten die theoretischen Entwicklungen: nl Kapitel E werden porese
Titaniumproben akustisch und mechanisch getestet und dientsprechenden mechan-
ischen Eigenschaften, Stei gkeit und Festigkeit, von eime poromikromechanischen Mod-
ell vorhergesagt. InKapitel F  wird eine mikromechanische Beschreibung von bioresor-
bierbaren pomsen Glas-Keramik-Materialien prasentig. Ein validiertes Materialmodell
ist im Stande, Beziehungen zwischen der Porosi@at und derte$ gkeit oder Festigkeit
vorherzusagen.



Abstract

Bone is a hierarchically organized material, characteriddoy an astonishing variability and
diversity. Bone replacement or biomaterials are critical@mponents in arti cial organs,
and they are also used as sca olds in tissue engineering. Tham of this thesis is the
prediction of the strength of bone and bone replacement matals, from their composition
and microstructure, by means of multiscale models. The thestical developments are
supported by comprehensive experiments on cortical bonedaon biomaterials made of
hydroxyapatite, glass-ceramic, and titanium.

Chapter A investigates di erent morphological concepts (spheres vseedles) for ho-
mogenization of linear elastic properties of porous polygtals, as can be found in the
mineral phase of bone.

Chapter B proposes a rst attempt to model the strength properties of droxyapatite
biomaterials, based on a micromechanical description ofdhelasticity and brittle failure

of interfaces between isotropic, spherical crystals. In der to avoid optimization proce-
dures for back-analysis of interface properties (as used @Ghapter B), we developed an
alternative approach(Chapter C) where we considered the non-spherical shape of the
hydroxyapatite crystals. Using needles implies a 1D strestate in the bulk phase related
to the needle direction, and this stress can be regarded aserant for the stresses at the
interface between crystals.

Chapter D presents an experimentally supported micromechanical dapation of corti-
cal bone strength, based on a new vision on bone material ta#: mutual ductile sliding
of hydroxyapatite mineral crystals along layered water Ins is followed by rupture of colla-
gen crosslinks. The multiscale micromechanics model is gimoto be able to satisfactorily
predict the strength characteristics of di erent bones fron di erent species, on the basis
of their mineral/collagen content, their porosities, and he elastic and strength properties
of hydroxyapatite and (molecular) collagen.

Experimental investigations and modeling of two other clags of biomaterials accom-
pany the theoretical developments: InChapter E , porous titanium samples are tested
acoustically and mechanically, and the corresponding meahical properties, sti ness and

strength, are predicted by a poro-micromechanical modelChapter F presents a mi-

cromechanical description of bioresorbable porous glassamic sca olds. Again, a ma-

terial model predicting relationships between porosity ah elastic/strength properties is

developed and validated.
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Introductory remarks

Presentation of investigated materials

Bone

Bone materials are characterized by an astonishing varidity and diversity. Their hi-
erarchical organizations are often well suited and seemlpgoptimized to ful Il specic
mechanical functions. This has motivated research in the lés of bionics and biomimetics.
The aforementioned optimization is primarily driven by sedction during the biological evo-
lution process. However, apart from the fact that selectiors quite unlikely to push bone
skeletal and material design to a well-de ned optimum (Novén and Prendergast 2005), it
is of great importance to notice that selection is realized #éhe level of the individual plant
or animal (and not at the material level). Therefore, mateml optimization in the strictest
sense of the word does not take place. Rather, “architectuinstraints' (Seilacher 1970;
Gould and Lewontin 1979) merely due to once chosen materiabnstituents and their
physical interactions imply the fundamental hierarchicalorganization patterns or basic
building plans, which remain largely unchanged during biobical evolution. These build-
ing plans are expressed by typical morphological featureshish can be discerned across
all bone materials. Katz et al. (1984) distinguish ve leved of hierarchical organization,
which have been quite generally accepted in the scienti ¢ oonunity:

The macrostructure at an observation scale of several mm tong where cortical (or
compact) bone and trabecular (or spongy) bone can be distinghed [Fig. 1(a) and

(b)I;

The microstructure at an observation scale of several 100n to several mm, where
cylindrical units called osteons build up cortical bone, ashwhere the single trabec-
ular struts or plates can be distinguished [Fig.1(c) and (d)

The ultrastructure (or extracellular solid bone matrix) at an observation scale of
several m, comprising the material building up both trabecular strus and osteons

[Fig.1(e)].
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Figure 1: Hierarchical organization of bone: (a) whole lonigone (macrostruc-
ture)(+); (b) section through long bone (macrostructure)@); (c) os-
teonal cortical bone (microstructure)(o); (d) trabecular spaceframe
(microstructure)(2); (e) ultrastructure( ); (f) hydroxyapatite crystals
(elementary components)(+); (g) collagen molecules (elemtary com-
ponents)(+); (+) ::: From (Weiner and Wagner 1998), reprinted, with
permission, from the Annual Review of Materials Science 28; 1998 by
Annual Reviews, www.annualreviews.org; (0): Reprinted with permis-
sion from Lees et al. (1979a). ¢ 1979, American Institute of Physics;
(2)::: reprinted from (Ding and Hvid 2000), with permission from Ede-
vier; () ::: With kind permission from Springer Science+Business Me-
dia: (Prostak and Lees 1996, p.478, Fig. 5a).
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Within the ultrastructure, collagen-rich domains [light areas in Fig.1(e)] and collagen-
free domains [dark areas in Fig.1(e)] can be distinguished @n observation scale
of several hundred nanometers. Commonly, these domains aeéerred to as brils
and extra brillar space.

Finally, at an observation scale of several ten hanometerie so-called elementary
components of mineralized tissues can be distinguished. &de are

{ Plate or needle-shaped mineral crystals consisting of imiguhydroxyapatite
(HA;
Cayo[PO4]6[OH]2) with typical 1 to 5 nm thickness, and 25 to 50 nm length
(Weiner and Wagner 1998) [Fig.1(f)];

{ Long cylindrically shaped collagen molecules with a diamet of about 1.2 nm
and a length of about 300 nm (Lees 1987a), which are self-asbted in stag-
gered organizational schemes ( brils) with characteristi diameters of 50 to
500 nm (Cusack and Miller 1979; Miller 1984; Lees et al. 1991994; Weiner
et al. 1997; Weiner and Wagner 1998; Rho et al. 1998; ProstakdalLees 1996),
[Fig.1(g)]; several covalently bonded brils are sometingereferred to as bers;

{ Di erent non-collagenous organic molecules, predomindmtlipids and proteins
(Urist et al. 1983; Hunter et al. 1996); and

{ Water.

The present thesis extends a previously published multi@le model for bone elasticity
(Fritsch and Hellmich 2007) to bone strength, with emphasi®n the material "cortical
bone' (see Chapter D).

Biomaterials and tissue engineering sca olds

Biomaterials are critical components in arti cial organs,and they are also used as scaf-
folds in tissue engineering (see next paragraph for more di$). Biomaterial production
includes metals, ceramics, polymers, and biocomposites.efdls such as stainless steel,
cobalt alloys, titanium and titanium alloys are preferred ér orthopedic applications due
to their high strength and toughness. Ceramics are solid matals composed of inorganic,
non-metallic substances. They are produced at high tempéuaes above 500C and are
characterized by their brittleness and high hardness. Biecamics are used for implants
and in the repair and reconstruction of diseased or damageady parts. Examples of
bioceramics are alumina, zirconia, titania, tricalcium phsphate, hydroxyapatite, calcium
aluminates, bioactive glasses and glass-ceramics.

Tissue engineering is the laboratory-based design and ctostion of living, functional
components that can be used for the regeneration of malfuimmning tissues (Buttery and



Introductory remarks 4

Bishop 2005). Ideally, stem cells are extracted from a patie seeded on a sca oldn vitro,
and with the help of biological signals a tissue will grow. Imore detail, the term sca old
refers to a structure, realized with natural or synthesizednaterials, which is able to pro-
mote cellular regeneration and to guide bone regeneratiomherefore, synthetic sca olds
may be seeded with carefully chosen biological cells and/growth factors. Within this
concept, the main role of a sca old is to assure a mechanicalpport to the growing tissue,
to guide this growth and to induce correct development of theony organ. Due to their
stimulating e ects on bone cells, ceramics (such as hydroxgatite, -tricalcium phos-
phate, bioactive glasses, or glass ceramics) are identi @d expressly promising materials
for fabrication of tissue engineering sca olds.

However, the design of such sca olds is still a great challga since (at least) two competing
requirements must be ful lled:

1. on the one hand, the scaold must exhibit a su cient mechaical competence,
i.e. stiness and strength comparable to natural bones;

2. on the other hand, once the sca old would be implanted intéhe living organism,
it should be continuously resorbed and replaced by naturaldmes. This typically
requires a su cient pore space (pore size in the range of hured micrometers
and porosity of more than 50-60% (Cancedda et al. 2007)), wehi discriminates
the aforementioned mechanical properties, and therefor@rmapetes with the rst
requirement.

As concerns biomaterials, the present work focuses on madglthe macroscopic mechan-
ical properties (elasticity and strength) of hydroxyapatie biomaterials as their properties
are very similar to those of one major component of natural Ime, namely bone mineral
(see Chapters B and C). In particular the third paper (Chapte C) lays the foundation
for a micromechanical description of the extracellular meral, relevant for bone (dealt
with in Chapter D).

In addition, mechanical characterization through acousti, uniaxial, and triaxial testing as
well as application of micromechanical models is shown foous titanium biomaterials
(see Chapter E) and porous glass-ceramic sca olds (see CtapF).

Hypotheses and limits

Morphology

The real morphology of bone mineral crystals is still an opequestion. Observations with
atomic force microscopy (Eppell et al. 2001; Tong et al. 2008lassenkam et al. 2004),
scanning electron microscopy (SEM) and transmission eleah microscopy (TEM) (Traub
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et al. 1989; Su et al. 2003) reveal a rather plate-shaped mbgogy, being in contrast to
a needle-like crystal shape observed with TEM (Lees et al. 949) or X-ray small angle
scattering (Fratzl et al. 1996).

The same ambiguity can be found for arti cially produced hydoxyapatite biomaterials.

There is evidence for spherical crystals from SEM (De With etl. 1981; Liu 1997), but
also for rather elongated morphologies (Martin and Brown B%). These hydroxyapatite
ceramics are typically produced by sintering at temperatws above 50 with resulting

crystal size in the micrometer range. There are only few attepts to synthesize hydrox-
yapatite at physiological temperatures (Martin and Brown 995; Tadic and Epple 2003),
and only the latter study produced nanosized crystals.

Given the absence of a con rmed morphological descriptionf dlydroxyapatite crystals
in arti cial biomaterials as well as in natural bone, dierent hypotheses were tested.
The aim was to identify a morphological description being scient for prediction of the
mechanical properties of both materials.

In Chapter B, hydroxyapatite biomaterials are envisioned & porous polycrystals with a
non-porous matrix. This matrix consists ofspherical crystals with weak interfaces. A
second approach is presented in Chapter C: Based on the moojpidgical description of

a polycrystal developed in Chapter A, hydroxyapatite biomterials are represented as a
polycrystal consisting of uniformly distributed crystal needlesand spherical pores. The
experimental validation for elasticity and strength indiates the superiority of the latter

model.

Brittle versus ductile behavior of crystals

In Chapter C, a brittle behavior of the hydroxyapatite crystal needles within biomaterials
is considered, whereas in Chapter D, we propose a (layeredavanduced) ductile behav-
ior for interfaces between the hydroxyapatite crystals asgt of natural collagenous bone
tissue. The reason for the di erent behaviors may well lie inhe characteristic size of
the crystals, and hence of the nature of their contact surfas, the crystals in collagenous
bone tissue being much smaller than the biomaterial crystl In the same sense, in low or
non-collagenous tissues, such as speci ¢ whale bones (Piosi et al. 1997), the minerals
grow larger, and also these tissues exhibit a brittle failerbehavior. The idea of increased
ductility due to increased activity of layered water Ims is also supported by the fact
(Nyman et al. 2008) that bound water content is correlated tdone toughness; and this
idea ts well with the suggestions of Boskey (2003), that layer crystals (implying less
layered water Ims per crystal content) would lead to a more httle behavior of bone
materials.



Introductory remarks 6

Mechanical properties of elementary constituents

Validation of the micromechanical predictions for macrogpic mechanical properties (elas-
ticity and strength) of bone and biomaterials is based on “uwersal' micro/nanoscopic
mechanical properties of the elementary constituents of ¢hconsidered material. These
properties are tissue and biomaterial-independent, andly are derived from experimental
investigations. These “universal' properties are the stiess and strength characteristics
of hydroxyapatite crystals and their interfaces (see Chapts B and C for the case of
arti cial biomaterials as well as Chapter D for the case of rtarral bone), of (molecular)
collagen and of water (see Chapter D), of pure titanium (seeh@pter E for the case of
metallic biomaterials), and of a dense glass ceramic matr{see Chapter F for ceramic
biomaterials).

Concerning the tissue-independent elastic phase propediof bone (Chapter D), we con-
sider the following experiments: Tests with an ultrasonicnterferometer coupled with a
solid media pressure apparatus (Katz and Ukraincik 1971; [Giore and Katz 1982) reveal
the isotropic elastic properties of hydroxyapatite powderwhich, in view of the largely
disordered arrangement of minerals (Lees et al. 1994; Frhét al. 1996; Peters et al. 2000;
Hellmich and Ulm 2002a), are su cient for the characterizaion of the mineral phase
(Hellmich and Ulm 2002b; Hellmich et al. 2004b; Fritsch et al2006). Given the absence
of direct measurements of (molecular) collagen, its elastproperties are approximated by
those of dry rat tail tendon, a tissue consisting almost exasively of collagen. By means
of Brillouin light scattering, Cusack and Miller (1979) hae determined the respective
ve independent elastic constants of a transversely isotpic material (Table D.1). We
assign the standard bulk modulus of water (Table D.1) to ph&s comprising water with
mechanically insigni cant non-collageneous organic madt.

Concerning the biomaterial-independent elastic propeds of arti cial hydroxyapatite
crystal (Chapters B and C) we adapt those chosen for bone miag¢

The approach proposed in Chapter B relies on three "univefsmaterial properties of in-
terfaces between single hydroxyapatite crystals represed, for mathematical tractability,
as spheres. The interface properties are di cult to be direty accessed, namely the fric-
tion angle , the cohesionh, and a dimensionless quantity of the interfaces. Therefore,
these phase properties are determined by means of an optiatian procedure providing
the closest match of model predictions to experimentally termined uniaxial compressive
strength data of hydroxyapatite biomaterials. Applying anevolution algorithm yields a
set of solution vectors which are equal in terms of the highlsatisfactory correlation coef-
cient between the respective model predictions and the cagsponding experimental data
for uniaxial compressive strength (see Section B.5.4).

In order to avoid such an optimization procedure for back-alysis of interface properties,
we developed an alternative approach where we considerec thon-spherical shape of
the hydroxyapatite crystals. Using needles suggests a podinant stress state related
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to the needle direction, and given this virtual 1D situation this stress can be regarded
as relevant for the stresses at the interface between cryistaln this sense, the approach
proposed in Chapter C relies on the strength properties of terfaces between needle-
shaped hydroxyapatite crystals, expressed by the bulk phashydroxyapatite’, namely its

ult;t ult;s

tensile and shear strength, ;. and .. We are not aware of direct strength tests on
pure hydroxyapatite (with = 0). Therefore, we consider one uniaxial tensile test and

one uniaxial compressive test on the densest samples aJaliga From these two tests, we
back-calculate the universal tensile and shear strength piéire hydroxyapatite relevant for

crystal interfaces (Table C.2). It is interesting to note that consideration of the normal
stress alone proved to be not su cient for predicting macrosopic failure, in particular

for low porosities in uniaxial compression. Only the “mixédormulation of the failure

criterion taking into account normal and shear stresses @eSection C.3.2) inside the
needles delivers satisfying macroscopic strength predasts.

Experimental data for model validation

The micromechanical models presented in Chapters B-F areds on experimentally de-
termined elasticity and strength properties of the elemeary material components. The
models predict, for each set of tissue or biomaterial-spexivolume fractions (e.g. porosi-
ties), the corresponding tissue or biomaterial-speci ¢ asticity and strength properties at

all observation scales. Thus, a strict experimental valideon of the mathematical model

is realized as follows: (i) di erent sets of volume fractios are determined from compo-
sition experiments on di erent bone or biomaterial samples(ii) these volume fractions

are used as model input, and (iii) corresponding model-prietied sti ness and strength

values (model output) are compared to results from sti nesand strength experiments on
the same or very similar bone or biomaterial samples.

Elastic macroscopic properties of biomaterials can be deteined through uniaxial quasi-
static mechanical tests, ultrasonic techniques or resonamfrequency tests (Chapters C, E
and F). Typical sample geometries include cylinders (diarter 5 mm, length 10 mm) for
titanium samples (Chapter E) and glass ceramic sca olds (Gipter F), and millimeter or
centimeter-sized cylinders, bars or discs for hydroxyapsg biomaterials (see Chapter C
and Table C.1). In case of ultrasonic testing, the length ofnie propagating wave has
to be taken into account: If the wavelength is considerablynsaller than the diameter of
the specimen, a (compressional) "bulk wave', i.e. a latelatonstrained wave, propagates
in a quasi-in nite medium. On the other hand, if the wavelenth is considerably larger
than the diameter of the specimen, a "bar wave' propagatese. the specimen acts as
one-dimensional bar without lateral constraints.

Macroscopic uniaxial strength properties of bone and biorterial samples can be deter-
mined through quasi-static tensile, compressive and bemdgj tests (Chapters C-F). Typi-
cal sample geometries include cylinders (diameter 5 mm, gh 10 mm) for titanium sam-
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ples (Chapter E) and glass ceramic sca olds (Chapter F), miimeter or centimeter-sized
cylinders, bars or discs for hydroxyapatite biomaterialssge Chapter C and Table C.1)
and millimeter or centimeter-sized cylinders or parallef@peds, often with reduced cross
section, for bone (see Chapter D and Table D.4).

Original contributions to the eld of micromechanical
modeling

E ect of morphology in self-consistent schemes

The classical self-consistent scheme (Hershey 1954; ka®ri958; Hill 1963) is often used
for modeling the overall elastic properties of porous polggstals. It consists in embedding
spherical inclusions into a matrix with sti ness of the homgenized material. This ap-
proach predicts a vanishing overall sti ness ("percolatiothreshold’) for porosities greater
than 50%.

In Chapter A, it is proposed to replace spherical solid inckions by a set of in nitely many
uniformly oriented cylindrical inclusions (needles). Allthese needles are identical with
respect to shape and material behavior, while being oriemtan all directions in space.
This has two implications: (i) the sti ness tensor related b a single crystal is a function of
the Euler angles, while the components are orientation-iegpendent in a local base frame,
and (ii) the (overall) e ective sti ness tensor of the porows polycrystal is isotropic.

Interfaces

Interfaces are often believed to play a role in the mechanichehavior of mineralized
biological and biomimetic materials (Bhowmik et al. 2007).In Chapter B, porous hy-
droxyapatite biomaterials are represented as a (dense) gotystal with weak interfaces,
which serves as the skeleton of a porous material de ned onbservation scale above.
In detail, isotropic single crystals of typically quasi-sperical shape are separated from
each other by very thin (essentially 2D) interfaces. The imrface sti ness tensor exhibits
an in nite normal component and a positive tangential compoent, and its load bearing
capacity is characterized by a Coulomb-type law, consideg the tangential and normal
components of the traction force acting on the interface (seSection B.3 for details).
In order to determine the e ective failure properties resuing from local (brittle) failure
characteristics and from the interactions between interfaes and bulk single crystals, the
local interface forces have to be related to the ‘macroscopstresses. The tangential and
normal traction forces occurring in the interface failure riterion are non-homogeneously
distributed across the interfaces. Failure will occur wherrelatively high tangential trac-
tion forces encounter a relative low resistance due to rebegly low normal traction forces.
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Instead of trying to model the actual force elds across thenterfaces, we estimate the
e ect of the actual force distribution through so-callede ective traction forces, as it is
commonly done for stress, strain, or force elds in the contéof continuum micromechan-
ics (Suquet 1997a; Dormieux et al. 2007). In this line, we regsent the failure-inducing
interplay between moderate normal traction forces and taremtial traction force peaks
by means of two di erent e ective measures for the normal and the tangential traction
forces, respectively: (i) rst-order moments of normal fazes, and (ii) second-order mo-
ments (also called quadratic average) of tangential forces the line of (Kreher 1990;
Kreher and Molinari 1993; Dormieux et al. 2002). The relatio between the quadratic
average and the macroscopic stress is established througlemgy considerations. Remark-
ably, the second-order moment of tangential tractions ovell interfaces within the RVE
is proportional to the "macroscopic' equivalent deviatoci stress, and local, Coulomb-type
brittle failure in the interfaces implies Drucker-Pragertype (brittle, elastic limit-type)
failure properties at the scale of the polycrystal.

It is also interesting to note that the elastic, brittle failure criterion is quasi-identical to the
yield surface of a porous medium obtained through non-lineaomogenization (Dormieux
2005; Dormieux et al. 2006b) which is related to failure of audtile solid matrix obeying
a Drucker-Prager criterion. The ductile criterion is evendentical to the elastic domain
for incompressible solid matrices, see Section B.5 for a diétd discussion.

Organization of the thesis

The overall aim of this thesis is the prediction of bone streyth from its composition and
microstructure. Classically, the strength of bone materia is thought to be related to
the strength properties of hydroxyapatite and collagen, atior interfaces between these
constituents. Chapters B and C concentrate on the failure pperties of arti cial hydrox-
yapatite biomaterials which are very similar to natural boe mineral, based on a morpho-
logical concept presented in Chapter A. A micromechanical edel for bone strength is
presented in Chapter D, while some experimental investigans and modeling of bioma-
terials accompany the theoretical developments (Chapteis and F).

Chapter A is dedicated to the homogenization of linear elastic prop#s of porous
polycrystals built up of needle-like platelets or sheets.ugh microstructures can be found
in a number of biological and man-made materials such as themaral phase of bone, the
cement paste of concrete or gypsum. Within a self-consistestheme the solid phase is
represented by cylindrical inclusions (needles). Uniforrand axisymmetrical orientation
distribution of linear elastic, isotropic as well as anisobpic needles is considered and
the results are compared to the classical ones related to gpical inclusions. As a key
result, a porosity lower than 0.4 is shown to result in the (arall) elastic properties
of the polycrystal with uniformly oriented needles, which g quasi-identical to those of
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a polycrystal with solid spheres. However, as opposed to tlsphere-based model, the
needle-based model does not predict a percolation thresthdbr inclusions with in nite
aspect ratio.

Chapter B proposes a rst attempt to model the strength properties of droxyapatite
biomaterials, based on a micromechanical description ofdlelasticity and brittle failure of
interfaces between isotropic crystals in a (dense) polyatal, which serves as the skeleton
of a porous material de ned one observation scale above. Hlgorium and compatibility
conditions, together with a suitable matrix-inclusion prdlem with a compliant interface,
yield the homogenized elastic properties of the polycrydtaand of the porous material
with polycrystalline solid phase. Incompressibility of sigle crystals guarantees nite shear
sti ness of the polycrystal, even for vanishing interfacetsness, while increasing the latter
generally leads to an increase of polycrystal shear sti nesCorresponding elastic energy
expressions give access to e ective stresses representimg stress heterogeneities in the
microstructures, which induce brittle failure. Thereby, @ulomb-type brittle failure of
the crystalline interfaces implies Drucker-Prager-typelyittle, elastic limit-type) failure
properties at the scale of the polycrystal. At the even highiescale of the porous material,
high interfacial rigidities or low interfacial friction angles may result in closed elastic do-
mains, indicating material failure even under hydrostatiqressure. This micromechanics
model can satisfactorily reproduce the compressive expagntal strength data of di er-
ent (brittle) hydroxyapatite biomaterials, across largey variable porosities. Thereby, the
brittle failure criteria can be well approximated by micronechanically derived criteria
referring to ductile solid matrices, both criteria being egn identical if the solid matrix is
incompressible.

A second approach for modeling the strength properties of tgoxyapatite biomaterials
is addressed inChapter C , with the aim to predict uniaxial compressiveand tensile
failure. Thereby, these biomaterials are envisioned as s polycrystals consisting of
(isotropic) hydroxyapatite needles and spherical poresyithe line of Chapter A. Failure
possibly occurs at the interfaces of the crystal needles, tommodeling interfaces between
non-spherical objects is extremely complex. Therefore,dhe ect of ‘micro'-interface be-
havior of elongated 1D particles on the overall ‘'macroscapimaterial is mimicked by
equivalent "bulk' failure properties of the crystal neede Validation of respective mi-
cromechanical models relies on two independent experimahsets: Biomaterial-speci ¢
macroscopic (homogenized) sti ness and uniaxial (tensiend compressive) strength pre-
dicted from biomaterial-speci ¢ porosities, on the basisfdiomaterial-independent ("uni-
versal') elastic and strength properties of hydroxyapat#, are compared to corresponding
biomaterial-speci ¢ experimentally determined (acoust and mechanical) sti ness and
strength values. The good agreement between model predicts and the corresponding
experiments underlines the relevance of this approach.

Chapter D proposes an experimentally supported micromechanical dapation of corti-
cal bone strength, based on a new vision on bone material tag: mutual ductile sliding of
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hydroxyapatite mineral crystals along layered water Imss$ followed by rupture of collagen
crosslinks. In order to cast this vision into a mathematicatorm, a multiscale continuum
micromechanics theory for upscaling of elastoplastic prepies is developed, based on
the concept of concentration and in uence tensors for eigstiessed microheterogeneous
materials. The model re ects bone's hierarchical organizan, in terms of representative
volume elements for cortical bone, for extravascular and gacellular bone material, for
mineralized brils and the extra brillar space, and for wet collagen. In order to get access
to the stress states at the interfaces between crystals, tlegtra brillar mineral is resolved
into an in nite amount of cylindrical material phases orieried in all directions in space
in the line of Chapter C. The multiscale micromechanics moté shown to be able to
satisfactorily predict the strength characteristics of derent bones from di erent species,
on the basis of their mineral/collagen content, their intecrystalline, intermolecular, la-
cunar, and vascular porosities, and the elastic and strerfgproperties of hydroxyapatite
and (molecular) collagen.

In Chapter E , titanium with di erent porosities, produced on the basis & metal pow-
der and space holder components, is investigated as bonelagpment material. For the
determination of mechanical properties, i.e. strength ofehse and porous titanium sam-
ples, two kinds of experiments were performed { uniaxial anttiaxial tests. The triaxial
tests were of poromechanical nature, i.e. oil was employed induce the same pressure
both at the lateral surfaces of the cylindrical samples anahside the pores. The sti ness
properties were revealed by acoustic (ultrasonic) tests. iBrent frequencies give access
to di erent sti ness components (sti ness tensor componets related to high-frequency-
induced bulk waves versus Young's moduli related to low-fgeency-induced bar waves), at
di erent observation scales; namely, the observation s@the dense titanium with around
100 m characteristic length (characterized through the high #quencies) versus that of
the porous material with a few millimeters of characterist length (characterized through
the low frequencies). Finally, the experimental results we used to develop and validate a
poro-micromechanical model for porous titanium, which qudi es material sti ness and
strength from its porosity and (in the case of the aforemerdned triaxial tests) its pore
pressurization state.

Chapter F presents a micromechanical description of bioresorbablerpus glass ceramic
sca olds used for bone tissue engineering. Based on contimu micromechanics, a ma-
terial model predicting relationships between porosity ah elastic/strength properties is

employed. The model, which mathematically expresses the amanical behavior of a
ceramic matrix (based on a glass system of the type SiP,05-CaO-MgO-NgO-K,0;

called CEL2) in which interconnected pores are embedded,darefully validated through

a wealth of independent experimental data. The remarkablyapd agreement between
porosity-based model predictions for the elastic and strgth properties of CEL2-based
porous sca olds and corresponding experimentally determed mechanical properties un-
derlines the great potential of micromechanical modelingf speeding up the biomaterial
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and tissue engineering sca old development process { by de&lring reasonable estimates
for the material behavior, also beyond experimentally obsesd situations.
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Porous polycrystal-type microstructures built up of need-like platelets or sheets are
characteristic for a number of biological and man-made matals. Herein, we consider
(i) uniform, (ii) axisymmetrical orientation distributio n of linear elastic, isotropic as well
as anisotropic needles. Axisymmetrical needle orientatiaequires derivation of the Hill
tensor for arbitrarily oriented ellipsoidal inclusions wih one axis tending towards in nity,
embedded in a transversely isotropic matrix; therefore, kes' integral expression of the
Hill tensor is evaluated employing the theory of rational factions. For a porosity lower
0.4, the elastic properties of the polycrystal with uniforrty oriented needles are quasi-
identical to those of a polycrystal with solid spheres. Hower, as opposed to the sphere-
based model, the needle-based model does not predict a pktion threshold. As regards
axisymmetrical orientation distribution of needles, two ects are remarkable: Firstly, the
sharper the cone of orientations the higher the anisotropyf ¢he polycrystal. Secondly,
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for a given cone, the anisotropy increases with the porositistimates for the polycrystal
sti ness are hardly in uenced by the anisotropy of the bone rimeral needles. Our results
also con rm the very high degree of orientation randomnesg orystals building up mineral
foams in bone tissues.

A.1 Introduction

Porous polycrystal-type microstructures built up of need-like platelets or sheets can be
found in a number of biological and man-made materials; su@s bone (Hellmich et al.
2004a; Hellmich and Ulm 2002a) or eggs (Silyn-Roberts and&8p 1986), or at the cement
paste level of concrete (Baroughel-Bouny 1994). We here d&dth homogenization of
their overall (linear) elastic properties, by means of setfonsistent schemes. Thereby, the
solid phase (needles) is represented by cylindrical incloss (a cylinder being the limit case
of a prolate spheroid with its long axis being very much largehan its spherical axis), and
the (empty) pore inclusions (drained conditions) are sph&al; extension to pressurized
pores according to Chateau and Dormieux (2002) is straigbtfward. Subsequently, we
consider (i) uniform, (i) axisymmetrical orientation didribution of isotropic as well as
anisotropic needles with elasticity tensor .

A.2 Uniform orientation distribution of needles

Uniformly oriented needles result in isotropic elastic piwerties of the polycrystal. The
corresponding sti ness estimate S¢S reads as

= (1) e[+ Fi(s N
f@ )<+ 5% (s SO0 '>+ (5550 59 'g YA
with
2 7
sin#d#d'
<[+ 3°:(s SN te= [+ (s S T (A2)
* =0 #=0

where ; lju =1=2( k j + 1 &), is the fourth-order unity tensor, j is the Kronecker
delta, denotes the porosity, 5,°> and 37° are the fourth-order Hill tensors for spherical
and cylindrical inclusions, respectively. The Hill tensofor spherical inclusions, E&S, IS
widely available in the open literature (Eshelby 1957; Suvov and Dvorak 2002). The
components of the Hill tensor for cylindrical inclusions ebedded in an isotropic medium
are given for a base frame coinciding with the long axis of theylinder (Eshelby 1957).

Transformation of Hill tensors related to di erently oriented cylindrical inclusions, to one
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reference frame can be expressed by Euler angleand ' , rendering = S7°(#" ) in
Egn.(A.2).

The numerical solution of (A.1) shows that the e ective Youry's modulusES°©S is prac-
tically independent of the needles' Poisson's ratios.

The question arises whether uniform orientation of needlesn be appropriately consid-
ered by representing the solid phase simply by spherical Iosions. The corresponding
self-consistent estimate S¢S for identical shape and orientation of inclusions reads asde
e.g. (Zaoui 1997a))

v =(1 ) s:if + g&s (s 5%)g * (A.3)

In case of an incompressible solid phase (with bulk modulks! 1 ), (A.3) can be solved
analytically:

Scs _ 53(1 2 ); KSCS = 41 ) scs (A.4)
3 3
wherekS¢S and SCS are the e ective bulk and shear moduli, and  is the shear modulus
of the isotropic solid. This scheme shows a percolation ttateold exactly equal to = %
for any value of the Poisson's ratio s of the solid phase. As for a compressible solid
phase, the homogenized Young's moduligScS can still be approximated by the a ne
expressionEg(1 2 ) with an error of at most 4 % relative to the exact solution, ie.

E S¢S is quasi-independent of Poisson's ratio.

On the entire porosity range, 0< < 1, the self-consistent sti ness estimates based
on uniformly oriented solid needles are quasi-identical fdwoth isotropic and anisotropic
needle behavior [Fig. A.1 (a) and (b), see Fig. A.1(c) for edtic constants (Katz and
Ukraincik 1971) of hydroxyapatite crystals building up poous foams in bone (Hellmich
and Ulm 2002a)]. In addition, on the interval 0< < 0:4, these estimates are quasi-
identical to those based on isotropic solid spheres [Fig. A(a) and (b)]. >From a physical
viewpoint, one may argue that, at a su ciently high concentration, both spherical as well
as isotropic or anisotropic needle-type particles build ugimilar contiguous matrices.
Particularly, in the vicinity of =0, the rst-order expansions of the homogenized elastic
constants with respect to the porosity are identical for thewo models with an isotropic
solid phase, reading as:

31 591 3

ESSS 3L I 5+9)

= X =  + A.5
Es 2 7 54 ses T s 2(7 55) (A-5)
kSCS 3 1 S SCS 1 S
=1 > : =1 15 % A.
Ks 21 2, s 7 5, (A-6)

However, as opposed to the sphere-based model, the neediseld model does not predict
any percolation threshold, i.e.ESCS; kS¢S and S¢S 0 only if the volume fraction of the
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Figure A.1: (a) Young's modulus and (b) Poisson's ratio of &tropic porous
polycrystals, predicted by the sphere-based and needlesed models, re-
spectively (isotropic spheres ...dashed lines, uniformbriented isotropic
needles ...solid lines, uniformly oriented anisotropic edles ... dash{dot
lines); (c) Anisotropic and isotropic elasticity of hydroyapatite (Katz and
Ukraincik 1971).

solid phase becomes very small ( 1). From an intuitive viewpoint, this is consistent
with the ‘rice grain e ect: As compared to spheres, needleme more likely to contact
each other, especially at low volume fraction (! 1). A rst-order expansion in the
vicinity of =1 of SCS (resp. kS¢S) can be sought in the form S¢S m(1 ) [resp.
kS¢S k(1 )]. Asregards isotropic needles, analytical expressiors fn and k can be
derived and proven to be independent ofs :

71 zpﬁa_k_ g+2" 79 A
~ 1575 ' 189 '
Accordingly, the limit of S©S when tends towards 1 is independent ofs as well :
p__
17 79
H SCS _—
I|!ml =3 (A.8)

A.3 Axisymmetric orientation distribution of needles

Axisymmetrically oriented needles result in transverselisotropic elastic properties of the
polycrystal. With # being measured with respect to the symmetry axis of the origtion
distribution, we consider (i) uniform needle distributionin the cone [Q#mnax], and (ii)
Gaussian needle distribution aroundf,ax =2 with standard deviation s;; both expressed
in terms of a distribution function F (#). The corresponding sti ness estimate still obeys
(A.1), while (A.2) now reads as
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and while the Hill tensors 37° and $%° now refer to inclusions in a transversely isotropic
material.

'=0 #=0

Expressions for $3° can be found in Hellmich et al. (2004a), and for determinatio of

o> we evaluate Laws' double integral expression of the Hill teor (Laws 1977) for
arbitrarily oriented cylindrical inclusions embedded in aransversely isotropic material,
employing the theory of rational functions. Thereby, we aive at a single-integrated

expression allowing for e cient computational evaluation(see Appendix).

We evaluated Eqn.(A.9) for a uniform distribution of needls between 0 and a maxi-
mum angle#.,.x as well as for a Gaussian distribution with di erent standad deviations
around #,« =2, see Fig. A.2 and A.3. Two e ects are remarkable (Fig. A.2)Firstly, as
expected, the sharper the cone of orientations the highertise anisotropy of the polycrys-
tal. Secondly, the higher the porosity the more pronounced the e ect of the non-uniform
needle orientation distribution, on both the Young's modulls and the Poisson's ratio. As
compared to uniform needle distribution betweenrt = 0 and # = #,., the Gaussian
distribution around #,,.x =2 with standard deviation s; signi cantly a ects the e ective
Poisson's ratio (compare Fig. A.2 and A.3), while di erencgin Young's and shear moduli
are, on the average, less than 7 % for the investigated didtutions (Fig. A.2 and A.3).

A.4 Discussion

The present results are also noteworthy from a biomechanlcaiewpoint: In the ultra-
structure of bones and mineralized tissues hydroxyapatiterystals build up a contiguous
network or mineral foam (Hellmich and Ulm 2002a; Hellmich e4l. 2004a). Single crystals
have typical dimensions of 50 nm average length, 25 nm aveeagidth, and 1 to 7 nm
thickness (Weiner and Wagner 1998; Fratzl et al. 1996). In arst approximation, they are
often characterized as needles (Fratzl et al. 1996; Sasaki9l; Fratzl et al. 1991). This
renders the homogenization schemes developed here as agppate for mineral foams
occuring in bones. In particular, agreement between homageed elastic properties of
uniformly oriented needles with those of spheres for a ponyslower 0:4 (Fig. A.1)
con rms the use of self-consistent schemes with sphericaiciusions for hydroxyapatite
polycrystals (Hellmich et al. 2004a), which have been vakded by the experimental data
of (Lees et al. 1983; Lees 1987a). At higher porosities, hewee the needle-based scheme
seems to be superior to the sphere-based scheme, since thexdo accounts for contigu-
ity of the crystals, leading to non-zero homogenized sti res, while the latter exhibits a
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Figure A.2: E ect of axisymmetric distribution of anisotropic needles (uni-
formly distributed between# = 0 and # = #:,ax) on the longitudinal and
transverse Young's moduli, Poisson's ratios, and shear mads for dif-
ferent porosities [(a) = 0:2, (b) = 0:6]. Longitudinal components are
shown as solid lines, transversal components as dasheddirend the shear
modulus as dotted line.
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Figure A.3: Eect of axisymmetric distribution of anisotropic needles

(Gaussian{type distributed around #,,.x =2 with standard deviation sy)

on the longitudinal and transverse Young's moduli and Poiss's ratios

for di erent porosities [(a) = 0:2, (b) = 0:6] and di erent standard

deviations (s = 2:5° ...thick lines, sy = 12° .. .thin lines). Longitudinal

components are shown as solid lines, transversal comporseats dashed
lines, and the shear modulus as dotted line.

percolation threshold beyond which the homogenized sti rgs vanishes. Indeed, elasticity
experiments (Lees and Page 1992) reveal that mineral crylgalo contribute to the overall
sti ness of low-mineralized turkey leg tendon, with a mineal foam porosity larger than
50%.

The present results also con rm the pronounced randomnes$ orystal orientation in
bone tissues, revealed already by chemical (Peters et al.0B) or mechanical (Hellmich
and Ulm 2002a) means: Any pronounced orientation of needlEsads to high anisotropy
ratios Eyan =Ejong far beyond two, and up to ten (Fig. A.2). In real bone ultrastucture,
however, this ratio lies always markedly below two (Lees et.a979b, 1983; Hellmich and
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Ulm 2002a).

A.5 Appendix: Hill tensor for arbitrarily oriented
cylindrical inclusions embedded in a transversely
isotropic material

The starting point is Laws' classical expression for the Hitensor (see for instance (Laws
1977, 1985)) :

_+2:3
= AT A = 950) (A.10)
ji=1

is the unit length vector pointing from the origin of the sphee to the surface element
dS( ). The second-order tensoA describes the shape of the ellipsoid, with base vectors
wi; W, and wj pointing in the principal directions of the ellipsoid,

A=w; wi+!owy, wo+!zwz ws I3 1 (All)

The fourth-order tensor is de ned as

S 1 S
= K ; K= (A.12)
The second-order tensoK is the acoustic tensor, is the sti ness tensor of the trans-
S
versely isotropic matrix. denotes the symmetrized tensor product.

The technique presented hereafter adapts the ideas presestin (Gruescu et al. 2005) and
(Suvorov and Dvorak 2002) to cylindrical inclusions. Firstwe consider the denominator
of expression (A.10). The unit vector can be expressed in spherical coordinates 2
[0;2 ] and 2 [0; Jas ; =sin cos ; , =sin sin and 3 = cos, so that
dS =sin d d. Since

AT A =12cog +sin 2 (cos? + !3sin?)

we nd with x =cos and 2= % (cog + !2Zsin?)
3

2 71

'2 ? (x; )

4 X2+ (1 x?) 232 cog + !3sin?
0 1

( dx)d (A.13)

Considering! 3!'1 (! 0), and use of the \Dirac delta function" (x)
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Z
2
Il!m0 KT XD =2 (X); (x)f (x)dx = f(0) (A.14)

yields, with ! , =1,

1% - (A15)

) S 2 '

0

Next, we consider the numerator of Egn. (A.10), = k1T Expressing and K

in terms of the base vectorsv, and w,, while adopting z = cot , yields

Cos Wi+sin wp=sin ( Zwy+ W) (A.16)
K = =

= sin? (( zwy + W») (zw, + Wy))sin? (,2°Q + z(RZ+ RT)+ T? (A.17)

I {

K °(z)

when having introduced the second-order tensof3;R and T as

Q=w; Wi, R =w; Wy, T = ws Wo (A.18)

K()=sin 2 (lzzQ + z(R{Z+ RT)+ T; (A.19)

K (z)

K °(z) is a second-order polynomial. In order to obtain the inveesof K °(z), we use the
matrix of cofactors (algebraic complementsgo K®,

1 0

1 1
K
sin? (

sin® detK®

(K@) = ) L= (coK") (A.20)

The determinant of K °, detK °, is a sixth-order polynomial. Thus

s s 1 1 s s
- K " S detK® (coK) * )=
101, : o s
SiT W (S|n ( ZWq + Wz) (CO K ) (Z wq+ W2)) (A21)

Insertion of Eqn. (A.21) into Eqn. (A.15) and use of = arccot z yields
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1 1 dz
= o d= -2 57 (A.22)
=0 z=1

ZI‘ S o. S
_ 1 (zwi+wy) (coK) (zwi+ wp)
o (detK®) (1 + z2) dz (A.23)

1

The integrand in (A.23) is a rational fraction with a sixth-order polynomial in the nu-
merator and an eighth-order polynomial in the denominatorHence, the integration can
be based on the Residue Theorem:

2 X
f(z)dz=2i Res(; z;); (A.24)
1 j

wherez are the poles with a positive imaginary part, of the functiorf (z).
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Interfaces are often believed to play a role in the mechanidaehavior of mineralized bio-
logical and biomimetic materials. This motivates the micrmechanical description of the
elasticity and brittle failure of interfaces between crysdls in a (dense) polycrystal, which
serves as the skeleton of a porous material de ned one obs#ion scale above. Equi-
librium and compatibility conditions, together with a suitable matrix-inclusion problem
with a compliant interface, yield the homogenized elasticrpperties of the polycrystal,
and of the porous material with polycrystalline solid phase Incompressibility of single
crystals guarantees nite shear sti ness of the polycrysta even for vanishing interface
sti ness, while increasing the latter generally leads to armncrease of polycrystal shear
stiness. Corresponding elastic energy expressions givecass to e ective stresses rep-
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resenting the stress heterogeneities in the microstruces, which induce brittle failure.

Thereby, Coulomb-type brittle failure of the crystalline nterfaces implies Drucker-Prager-
type (brittle, elastic limit-type) failure properties at t he scale of the polycrystal. At the
even higher scale of the porous material, high interfaciaigidities or low interfacial fric-

tion angles may result in closed elastic domains, indicainmaterial failure even under
hydrostatic pressure. This micromechanics model can sd#storily reproduce the ex-
perimental strength data of di erent (brittle) hydroxyapatite biomaterials, across largely
variable porosities. Thereby, the brittle failure critera can be well approximated by mi-
cromechanically derived criteria referring to ductile sad matrices, both criteria being
even identical if the solid matrix is incompressible.

B.1 Introduction

Interfaces are believed to often play a fundamental role irheé mechanical behavior of
hierarchically organized biological materials. Accordgly, much attention has been paid

to the polymer- lled interfaces between ceramic tablets imacre (Gennes and Okumura
2000; Okumura and Gennes 2001; Katti and Katti 2001; Katti eal. 2001; Okumura 2002,

2003; Barthelat et al. 2007), but the importance of interfaal behavior was also discussed
for other classes of biological materials, such as bone (Hial. 2006).

To gain insight into these material systems, material/micostructure models have been
developed within di erent theoretical frameworks, such agracture mechanics and scaling
laws (Gennes and Okumura 2000; Okumura and Gennes 2001; Okuan 2002, 2003),
large-scale elastoplastic Finite Element analyses (Kattind Katti 2001; Katti et al. 2001;
Tai et al. 2006), or periodic homogenization on the basis ofumit cell discretized by Finite
Elements (Barthelat et al. 2007).

In addition to such periodic, FE-based (‘computational’) lbbmogenization approaches,
analytical and/or semianalytical approaches of random hoagenization (continuum mi-
cromechanics (Zaoui 1997b, 2002)) have been recently usadt@ e ectively predict the
elastic properties of complicated hierarchically structted material systems (such as bone
(Hellmich and Ulm 2002b; Hellmich et al. 2004b,a; Fritsch ah Hellmich 2007), wood
(Hofstetter et al. 2005, 2006), concrete (Bernard et al. 280 UIm et al. 2004; Hellmich
and Mang 2005), or shale (Ulm et al. 2005)), from the elasttgi and the mechanical
interactions { over di erent observation scales { of nanosaled elementary components.
Thereby, not every single detail of the highly random micrdeuctures, but only the essen-
tial morphological features are considered, in terms of hmgeneous subdomains (material
phases) inside representative volume elements (RVEs, Fi§.1), their volume fractions,
their elasticity, and their mechanical interaction. Theoetically, it has been recently well
understood how to extend these homogenization techniquesthe ductile failure of (bulk)
phases (Dormieux and Maghous 2000; Bernaud et al. 2002; Bedmy and Dormieux
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Figure B.1: Multistep homogenization: Properties of phase(with character-
istic lengths of d and d,, respectively) inside RVEs with characteristic
lengths of ™ or "5, respectively, are determined from homogenization over
smaller RVEs with characteristic lengths of, dand ;3 d,, respec-
tively.

2003, 2004; Dormieux et al. 2006c,a) (while applications teal materials (Lemarchand
et al. 2002) are more rare than for the elastic case). In compson, the treatment of

brittle failure and ofinterfacesin the framework of random homogenization is still a very
open eld: It is the focus of this paper { both fundamentally,and in view of the failure

of biomimetic hydroxyapatite biomaterials.

Extending very recent results (Sanahuja and Dormieux 200Bormieux et al. 2007), where
inclusion coatings and interfaces in porous polycrystalsene modeled, we here tackle the
description of the elasticity and failure of interfaces b&teen crystals in a (dense) polycrys-
tal, which serves as the skeleton of a porous material de nexhe observation scale above
(Fig. B.2). Thereby, we show characteristic features of a m@sponding new micromechan-
ics model, which is based on matrix-inclusion problems wittompliant interfaces (Hashin
1991; Hene and Zaoui 1993; Zhong and Meguid 1997), and wiiturns out to reasonably
explain the behavior of porous hydroxyapatite biomaterial, especially for their brittle
failure in the compressive regime.
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cr
Tt

surface area of spherical crystal with radiusa

constant in solution of matrix-inclusion problem with compliant interface

surface area of crystali

constant in solution of matrix-inclusion problem with compliant interface
characteristic crystal radius

constant in solution of matrix-inclusion problem with compliant interface

constant in solution of matrix-inclusion problem with compliant interface

constant in solution of matrix-inclusion problem with compliant interface
fourth-order sti ness tensor of single crystals within the RVE Vjoyy

fourth-order homogenized sti ness tensor of polycrystal wth compliant interfaces
fourth-order homogenized sti ness tensor of a porous matdal the solid phase

of which is a polycrystal with weak interfaces

second-order “macroscopic' strain tensor (related to RVEV,oy 0f polycrystal with
compliant interfaces)

uniform strain imposed at in nity of matrix surrounding inc lusion with compliant interface
‘macroscopic' volumetric strain (related to RVE Vyay Of polycrystal with compliant
interfaces)

‘macroscopic' equivalent deviatoric strain (related to RVE Vpoy of polycrystal with
compliant interfaces)

radial unit vector

unit base vectors of Cartesian base frame

volume fraction of crystal i within the RVE Vol

cohesion of interfaces between single crystals

fourth-order identity tensor

entity of interfaces within polycrystalline RVE Vo

interface between crystalsi and j

volumetric part of fourth-order identity tensor

deviatoric part of fourth-order identity tensor

second-order interface sti ness tensor

second-order interface sti ness tensor in matrix-inclusbn problem with compliant interface
normal interface sti ness (component of K )

tangential interface sti ness (component of K )

bulk modulus of single crystals

homogenized bulk modulus of polycrystal with compliant interfaces (RVE Vyoly )
homogenized bulk modulus of a porous material the solid phasof which is a polycrystal
with compliant interfaces

normal vector onto surface of a single crystal

representative volume element

radial coordinate in spherical coordinate system

fourth-order Eshelby tensor for spherical inclusions

traction force vector acting on surface element of interfae

normal component of T

tangential component of T

critical (maximum) tangential traction bearable by interc rystalline interface
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tr

Ve
Q¥
Vi

@V
Vpoly
Vporo

poly

poly;m
poly;d

PORO

PORO;m

tangential vector to surface of a single crystal

trace of a second-order tensor

volume of spherical crystal with radius a

surface of spherical crystal with radiusa

volume of crystal i

surface of crystali

volume of an RVE of polycrystal with compliant interfaces

volume of an RVE of porous material the solid phase of which isa polycrystal with
compliant interfaces

volume of solid phase within the RVE Vporo

position vector within an RVE, either Vygy 0Or Vporo

friction angle of interfaces between single crystals

Kronecker delta (components of second-order identity tener 1)

Dirac distribution supported on |

second-order strain tensor eld within single crystals |ling RVE Vpoy of polycrystal
with compliant interfaces

latitudinal coordinate of spherical coordinate system

dimensionless quantity related to rigidity of interface

shear modulus of single crystals

homogenized shear modulus of polycrystal with compliant iterfaces (RVE Vpoly )
homogenized shear modulus of a porous material the solid plsa of which is a polycrystal
with compliant interfaces

homogenized Poisson's ratio of polycrystal with compliantinterfaces (RVE Vo )
displacements within and at the boundary of RVE Vpoy

displacement discontinuity at the interfaces between crysals

normal component of J K

tangential component ofJ K

displacement discontinuity_at compliant interface of “generalized' matrix-inclusion problem
displacements along interfacd j , in crystal i and j, respectively

mean displacement at the interfacel j

displacement eld inside the inclusion surrounded by compiant interface and in nite matrix
(related to “generalized' matrix-inclusion problem)

displacement eld throughout the matrix surrounding inclu sion coated by compliant
interface (related to “generalized' matrix-inclusion prdblem)

second-order ‘macroscopic' stress tensor (related to RVE,qy, of polycrystal

with weak interfaces)

‘macroscopic' mean stress (related to RVEV,ay Of polycrystal with weak interfaces)
‘macroscopic' equivalent deviatoric stress (related to RE Vo Of polycrystal with weak
interfaces)

second-order macroscopic stress tensor (related to RVEporo Of porous

material the solid phase of which is a polycrystal with weak nterfaces)

macroscopic mean stress (related to RVE/poro Of porous

material the solid phase of which is a polycrystal with weak nterfaces)
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PORO:d  Macroscopic equivalent deviatoric stress (related to RVEVporo Of porous
material the solid phase of which is a polycrystal with weak nterfaces)
second-order stress tensor eld within single crystals ling RVE Vpoy of polycrystal with
compliant interfaces

in stress eld inside the inclusion surrounded by compliant irterface and in nite matrix
(related to “generalized' matrix-inclusion problem)
ex stress eld throughout the matrix surrounding inclusion coated by compliant interface

(related to “generalized' matrix-inclusion problem)
longitudinal coordinate of spherical coordinate system
volume fraction of pores within the RVE Vporo
= e dimensionless quantity related to compressibility of sinde crystals
macroscopic energy density
1 second-order identity tensor
rst-order tensor contraction
second-order tensor contraction
dyadic product of tensors

Table B.1: List of symbols.
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B.2 Fundamentals of continuum micromechanics {
representative volume element

In continuum micromechanics (Hill 1963; Suquet 1997a; Zaioli997b, 2002), a material
is understood as a macro-homogeneous, but micro-heterogens body Iling a repre-
sentative volume element (RVE) with characteristic length’, ~ d, d standing for the
characteristic length of inhomogeneities within the RVE (se Fig. B.1), and™ L , L
standing for the characteristic lengths of geometry or loadg of a structure built up by
the material de ned on the RVE. In general, the microstructue within one RVE is so com-
plicated that it cannot be described in complete detail. Thesfore, quasi-homogeneous
subdomains with known physical quantities (such as volumeaictions or elastic proper-
ties) are reasonably chosen. They typically include 3D subthains, and may also include
the 2D interfaces between the 3D subdomains. They are calledaterial phases; bulk
and interface phases, respectively. The "homogenized' im&cical behavior of the overall
material, i.e. the relation between homogeneous deformaitis acting on the boundary of
the RVE and resulting (average) stresses, or the ultimate Igtsses sustainable by the RVE,
can then be estimated from the mechanical behavior of the aéamnentioned homogeneous
phases (representing the inhomogeneities within the RVEeir dosages within the RVE,
their characteristic shapes, and their interactions. If aisgle phase exhibits a heteroge-
neous microstructure itself, its mechanical behavior canebestimated by introduction of
an RVE within this phase, with dimensions’,  d, comprising again smaller phases with
characteristic lengthd,  *,, and so on, leading to a multistep homogenization scheme
(see Fig. B.1).

B.3 Micromechanics of polycrystal with weak inter-
faces

B.3.1 Micromechanical representation

We consider an RVE with volumeV,,,, [Fig. B.2(a) and Fig. B.9(a)], hosting single crystals
of typically quasi-spherical shape and of volum¥;, separated from each other by very
thin (essentially 2D) interfacesl ; between crystalsi and j, all interfaces making up the
entity of interfaces|, [I j = |, see Fig. B.2. "Macroscopic' straing poy, are imposed at
the boundary of the RVE V,qy in terms of displacements ,

on@ Vol : _(l) = Epay X (B.1)

with x as the position vector within the RVE. The geometrical comptility of (B.1) with
the local ‘microscopic' strains'(x) in the crystals and the displacement discontinuities
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(b)

Figure B.2: (a) Polycrystal with interfaces (schematic repesentation of vol-
umeV; of crystali and interfacel ;; between crystalsi and j), serving as
skeleton in a porous material at larger observation scale)(b

JK= - atthe interfaces| ; between the crystalsi andj implies (Dormieux et al.
2007)
!
1 X “ s

Vooly Vo, i i

1 X z s X f; z s
= ndS = — ndsS (B.2)

Vpoly i ey i Viiay~

=(,* )= JK2= +]K2 (B.3)

— i —j ] ]

as the mean displacement at the interfack; , Vi and f; = V,=\,,, as the volume and the
volume fraction of thei-th crystal, and @Vas its surface with are&;. For crystals of the

same shape and size (with volum¥. and surface@YV¥), and indiscernible average mean
displacements at their surfaces, (B.2) can be transformed t

1 z s

— nds B.4
Ve oyv- (B.4)

E poy =

The corresponding ‘macroscopic’ stresses,,y are equal to the spatial average of the
(equilibrated) local stresses (x) inside the RVE Vg,

Z
poly = N (X)i = (x)dV =
poly  Vpoy
X g7 i
= i Vi (x)dVv =
X f, Z
= ¢ X [ ¥ nX]ds (B.5)

iVi@V_
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For spherical crystals with radiusa, surface @¥ with area Ac = 4 a?, and volume
Ve =4=3 a3, (B.5) can be further transformed,

X f,
poy = T2 gy ag(x) [ (x) e(x)]ds=
3f, z
= A—' ex) [ (xX) eX)]ds=
. Ac av
L Z
= anx) [ (x) nx)]dsS=
Ve ov
3 Z
= — nx) [ (x) nx)]dS=
Ac v
Z
1
v (x)dVv (B.6)

with radial unit vector e, being identical to the normaln. Since the microscopic stresses
are equilibrated (div = 0), (B.5) and (B.6) imply (Hill 1963), (Dormieux 2005, p. 118)
that the "macroscopic' stresses act as traction forces,,,, n both at the boundary of the
RVE, @y, and those of single crystals@YV,

oN@¥Yy and@V¥ : (X)) N(X) = poy N(X) (B.7)

The relation between p,, and E ,qy depends on the constitutive behavior of the single
crystals and of the interfaces between them.

B.3.2 Constitutive behavior of interfaces and single cryst als

The interfaces are the weakest locations of the material, ¢hload bearing capacities of
which are bounded according to a Coulomb-type law,

8x21y @ Tx) T'= (h Ta(x)) (B.8)

with friction angle , cohesionh, and T; and T,, as the tangential and normal components
of the traction force T = T,n + Tt acting on an in nitesimal interface area aroundx,
with normal n, andt as the tangential unit vector,t n = 0. We consider brittle interface
failure once a critical valueT; = T is reached in (B.8).

Below this critical value, the interface behaves linear eféically, i.e. the interface traction
T(x) is related to a displacement discontinuityJ Kx) encountered when crossing the
interface | ; along n(x):

T(x)= K JKX)
with

K=Kyn n+Ki(1l n n) Kqy!l (B.9)
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K is the second-order interface sti ness tensor with in nitenormal componentK,, (no
mutual interpenetration of crystals), and positive tangetial component K, (allowing for
relative tangential movements of crystal surfaces). Alsche bulk crystal phase inside the
RVE V,y behaves linear elastically,

8x2Vi: (X)= c:i"(X) (B.10)
with ¢ = 3kc +2 ¢ as the isotropic elastic stiness of the bulk material phase
comprising all single crystals; with bulk modulukc and shear modulus . =1=31 1
and = are the volumetric and the deviatoric part of the fourth-orer identity tensor

, with componentsljy = 1=2( ik j + i & ); the components of the second-order unit
tensorl, j (Kronecker delta), read as; =1fori=j and j =0fori6 j.

The assumption of crystal isotropy deserves to be commentesince single crystals are gen-
erally anisotropic, including approximately transversel isotropic hydroxayapatite (Katz
and Ukraincik 1971). However, hydroxyapatite anisotropys not very pronounced (Katz
and Ukraincik 1971), and in addition, the disorder of crystis (and of their principal ma-
terial directions) probably renders isotropic phase proptes as suitable approximation
for the purpose of polycrystal property homogenization. Tis was recently shown quanti-
tatively for polycrystals consisting of perfectly disordeed needles, being either isotropic
or anisotropic (Fritsch et al. 2006).

B.3.3 Homogenized elasticity of polycrystal with complian t in-
terfaces

As long as the interfaces behave elastically, the relatioretween g, and E yoy reads as

poly = poly : E poly (B.11)

with the "macroscopic’ homogenized sti ness tensor of theofycrystal, poy = 3Kpoy +
2 poly » With bulk modulus ko, and shear modulus oy ; depending on the local elastic
properties ¢ and K.

Following (Dormieux et al. 2007), the establishment of thiglependence is based on the
behavior of a composite solid consisting of a spherical inslon of radiusa and a compliant
interface coating the inclusion, being itself embedded iman nite matrix exhibiting the
elastic properties oy Of the homogenized polycrystal, and being subjected to uaiin
strains E ¢ at in nity (Fig. B.3). Mathematically, we have
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: =Eo X

Figure B.3: Matrix-inclusion problem with compliant interface (‘generalized
Eshelby problem’): A spherical inclusion with interface isembedded in
an in nite matrix subjected to uniform strain E g, at in nity. The elastic
properties of the matrix are those of the homogenized matati

r=a : T=K°[]

with[ 1= J K2, K °=2K

ril : P Eo X (B.12)
For determination of k,oy, @ purely spherical deformation,Eq = Ep1 is imposed at
r!'1l . Spherical symmetry of both the loading and the geometry ofhe considered
solid implies vanishing tangential displacement discomtuities at the inclusion interface,
J{K 0. SinceK,!1 , alsoJ ,K= 0 (no mutual interpenetration of crystals), and the
matrix inclusion problem with compliant interfaces reducs to the classical Eshelby-type
inclusion problem with a perfect, rigid interface (Eshelbyl957). Then, consideration of
only one bulk phase (the crystals) implies that the overall ik modulus kg, is identical
to the crystal bulk modulus k¢,

Kooy Kc (B.13)

For determination of gy, a purely deviatoric defomation,Eo = Eo(e, € €& &),
is imposed (see Fig. B.3 for the Cartesian base frameg e,, ;). The mathematical form
of the displacement eld in the exterior regionr > a (the homogenized material),_ex, IS
established in the line of (Hene and Zaoui 1993), and reads spherical coordinates (see
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Fig. B.3 for Eulerian angles and ) as

ex;r Bex 5 4 poly Cex
— = (Axr +3 + —

Y(cos® sin®  cog )

~ 1 B C .
EXC’) = S(Aar 2 rix +2—rzx)sm2 (1+cos? )
. 1 B . .
E(O = E(Aexr 2 rix + 2%) sin sin2 (B.14)

where oy is the Poisson's ratio of the polycrystal with weak interfaes,

3kpoly 2 poly

= B.15
Poly 6kpoly +2 poly ( )

The boundary condition in (B.12), directly implies Aex = 1, while the constantsBey, and
Cex Will follow from interface conditions.

Inside the inclusion ¢ < a, the solid crystal phase), the displacement eId_in reads as

=== (At + Big r¥)(cos’ s’ cog )

Eo
in; 1 (11 ct15 kC)Bin r3 .
L= (A 4 N
3 >(Ain T 33k 2 0) )sin2 (1 +cos? )
in: 1 (11 ¢ +15ke)Binr3, . _
= A r s .
E, 2(AIn r 33ke 2 o) )sin sin2 (B.16)

The four remaining constantsBey; Cex; Ain and Bj, are determined by enforcing equilib-
rium of forces at the interfacer = a:

0

T= in n= & n=K [_] (B.17)

together with constitutive laws (B.12), (B.12), and (B.12), see Appendix B.6. This
solution for the displacement elds . and _ gives access to the traction forces at the
interfacesT(r = a) = nr=a = K?9 [_ex(r =a") _in(r = a )]. Their use for
estimating the traction forces at the interfaces within thepolycrystalline RVE V,qy yields

the corresponding "macroscopic' stress,,y according to (B.6) as
z
1

— an (  n)(r=adS (B.18)
Ve v

poly =

The solution for the displacements ar = a* turns out to be, according to (B.12) and
(B.3), a suitable estimate for the mean displacement at the crystal interfacel ; . Use of

this quantity in (B.4) yields the corresponding "‘macroscap’ strains E oy in the form

Z
1 s
E poly = @) ndsS (B.19)

Ve ey
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Figure B.4: Homogenized shear modulus,,y, of polycrystal, as function of
dimensionless quantity = KpPa= ¢ (interfacial rigidity), for dierent
crystal compressibilities = ¢=kc, Eq.(B.20).

Shear components ,qy:12 and Eqy:12 0f "macroscopic’ stresses (B.18) and strains (B.19),
together with (B.14){(B.17) and (B.50){(B.54), give acces to0 iy, Via poy = 12=(2E12),
yielding (after elimination of Eg) the following expression,
n k l# 1
—1+3 24 c , OKetl7 c
2 8 poly 57kC +4 C

C

(B.20)
poly

with the dimensionless quantity = Kfa=c. !1 relates to a rigid interface. The
higher the rigidity  of the interface, the higher the overall polycrystal shear odulus
(Fig. B.4), for di erent (dimensionless) compressibilites = =k: of the single crystals.
Thereby, crystal incompressibility ( ! 0) guarantees nite overall shear sti ness even for
an interface with vanishing sti ness ( = 0), while a polycrystal built up of crystals with
zero bulk modulus ( '1 ) and connected through zero-sti ness interfaces (= 0) does
not exhibit any shear sti ness (Fig. B.4), but still the bulk sti ness of the single crystals
according to (B.13). In case of an incompressible solik!1 , = c=kc! 0), it
follows from (B.13) that kyay!1 , and (B.20) reduces to

2

485+ ) " 4+( 114+9 )PV
C C

57 =0 (B.21)

B.3.4 Upscaled failure properties of polycrystal with weak in-
terfaces

In order to determine the e ective failure properties resuding from local failure character-
istics (B.8) and from the interactions between interfacesral bulk single crystals, we are
left with relating the local interface forcesI (x) 21 to the ‘'macroscopic' stresses ,q, See
(B.5). The tangential and normal traction forces,T; and T,,, occuring in the interface fail-
ure criterion (B.8), are non-homogeneously distributed aoss the interfaces. Failure will
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occur where relatively high tangential traction forces emunter a relative low resistance
due to relatively low normal traction forces. Instead of tryng to model the actual force
elds across the interfaces, we estimate the e ect of the agal force distribution through

so-callede ective traction forces, as it is commonly done for stress, strainy éorce elds

in the context of continuum micromechanics (Suquet 1997a;ddmieux et al. 2007). In
this line, we represent the failure-inducing interplay beteen moderate normal traction
forces and tangential traction forcepeaksby means of two di erent e ective measures
for the normal and the tangential traction forces, respectely: (i) rst-order moments of

normal forces, and (ii) second-order moments of tangentiédrces.

The rst-order moment of the normal traction forces,hT,i, is related to the "macroscopic’
mean stress ,oy:m through

Z
1 1
poly;m = :—%tr poly = :—%tr Ac oy nx) [ (x) nx)]dS =
1 z 1 z
Ac ov Ac ov

(B.22) establishes a rst link between the ‘macroscopic' s#ss .,y and the interface
tractions T(x): We use this average (or rst-order moment) of normal tradon forces as
to estimate the “average' interface resistancE™ in (B.8), according to

T (h hTai) (B.23)

However, use of the average tangential traction forchll;i in failure criterion (B.8) is
problematic since force peaks initializing failure may [lj‘)eancelled out in the averaging
process. As a remedy, we use the second-order momeritT?i (also called quadratic av-
erage) as a characteristic oe ective value for T;(x), in the line of (Kreher 1990; Dormieux
et al. 2002, 2007). The relation between hTZ and poly 1S established through energy
considerations: The energy stored in the RVE/,,, can be expressed through the global
‘macroscopic' energy density as

1
Vpoly = évpoly poly - Epoly =

1

= évpoly Epoly © poly : E poly =

1
= VP0|y(ékP0|yE§oly;v +2 pO'YESOIy;d) (B.24)

with ‘maﬁroscopic' volumetric strainEyqy.y = tr E oy and equivalent deviatoric strain
Epoly;d = 1=2E poly;d - E poly;ds E poly:d = E poly 1=3Ep0|y;v1-
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In order to express from a microstructural viewpoint, we casider the local constitutive
behavior of the interface [Eq.(B.9)] and of the bulk phase [E(B.10)]. The corresponding
‘macroscopic' elastic energy stored in the RVE reads as

1% 17
Vool = tdvV+ - T JKIS=
2 Vpoly |
14 17
=5 "teitdveg JKK JKIS (B.25)
|

R
In order to extract HT2i = ﬁ , T2 dS from (B.25), variations of with varying K;
(holding merely E oy xed) are studied,

Z Z
@ @ @K
Vooly —— = —: dVv —= TdS
p IY@K Voo @K * I K '
Z Z
1 _ @ |
+ é I J_K (1 n n) J KdS = Voo, @{ . dav +
7 Z
1
+ @_@‘?{(J_K n,;): dv+ > | JKds (B.26)

wherel = R hwas considered and wherg is the "Dirac distribution' of support I,

v 1fdv = £dS. For transformation of (B.26), we extend Hill's lemma (Hill1963) to
the case of displacement discontinuities at the interfacé®ormieux et al. 2007). Consider-
ing (B.5) and the format (2) for the "macroscopic' strain€ oy, (B.26) can be transformed
to

z
vpo.y%: ) @—%"H_K n,): dv+
Z . Z
1 @ po 1
5 IJtKZdS: @pK'V: poly + 5 IJtKZdS (B.27)

Fixed ‘'macroscopic’ strains py according to (B.1) imply @ poy=@K= 0, so that (B.27)

becomes

@ 1°

_ I
PeK T 2

JtlédS: E

J K (B.28)

Identi cation of (B.28) with the derivation of the "‘macrosoopic' expression for the energy
density (B.24) with respect toK yields

| @ @ po

When consideringhT?i = KZhl 2K according to (B.9), @ky=@K = 0 according to
(B.13), and
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Figure B.5: Concentration factorBr, relating “macroscopic' deviatoric stress on
polycrystal to e ective tangential traction in intercryst alline interfaces, as
function of dimensionless quantity = KPa= ¢ (interfacial rigidity), for
di erent crystal compressibilities = ¢=kc, Eq.(B.32).

poly;d = 2 poly Epoly;d, (829) reduces to

: @
hT2i = — K2 2 B.30
t @K poly t poly;d ( )

where o4 IS the equivalent deviatoric stress of the "macroscopic' cand-order stress

Vpoly

r

1
poly;d = 5 polyd - poly;d
with poly;d =  poly poly;m 1;
1
and poy:m = Z%tr poly (B.31)
Combination of (B.30) with | =V,qy = 3=(2a) and with = KPa= ¢ yields
q -
HTZ = Br, polyd
S
. 1, @ c
with B = %)= — 22— B.32
Tt( kC ) 3 @ p0|y ( )

Remarkahly, the second-order moment of tangential tractits over all interfaces within
the RVE,  HTZi, is proportional to the “macroscopic’ equivalent deviatge stress poly:d>
expressed by the proportionality factorBr,. The more compressible the solid crystal
(the larger = ¢=kc), the higher the tangential traction peaks in the intercrysalline
interface, generated by an equivalent deviatoric ‘mac&cm@c‘ Stress poy:a. HoOwever, the
corresponding concentration factoBr, is bounded by 2=5 (Fig. B.5),

r
Ill{n BTt( ):

ol N

(B.33)
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On the other hand, for any constant crystal compressibility , sti ening the interface
(enlarging = Kpa= ¢) also increases the peaks of tangential traction force, .i.the
proportionality factor Br,, again bounded by 2=5 (Fig. B.5),

r

gl N

lim Br,( ) = (B.34)
Use of the micro traction-macro stress relationships (B.22nd (B.32) in the local interface
criterion (B.8) yields a ‘'macroscopic' polycrystal-sped brittle-failure criterion in the
form

BTt poly;d (h poly;m ) (B.35)

(B.35) expresses that Coulomb-type brittle failure (B.8)m the interfaces between spherical
crystals inside the RVE results in Drucker-Prager-type (lttle) failure properties at the
scale of polycrystal.

B.4 Micromechanics of porous material with poly-
crystalline skeleton

We consider an RVEVporo [Fig. B.2(b) and Fig. B.9(b)] of a porous material (with
porosity ' ) where the contiguous solid phase [volum¥s, Vs = Vporo(1 ' )] is a poly-
crystal with weak interfaces according to Section B.3. The dfi-Tanaka homogenization
scheme has been proven as suitable tool to upscale the etaptioperties of the solid phase
[Kooly @and oy de ned through (B.13), (B.20), (B.21)] to the sti ness of sich a porous
material, see e.g. (Dormieux 2005; Dormieux et al. 2006b),

1

PORO — (1 I ) poly . (1 I ) + ( ) ! (836)

with the Eshelby tensor for spherical inclusions reading as (Eshelby 1957)

3kpo|y 6(kpoly +2 poly)
= + B.37
3kpoly +4 poly 5(kaoly +4 poly) ( )
so that
4k a ')
Kporo = —pt PV B.38
PORO 3kpoly "+ 4 ooly ( )
1 ")9Kpoy +8

PORO = ( )OKpoly poly) (B.39)

poly 9kpoly(1+ %l )+8 poly(1+ %I )

We consider brittle failure of the overall porous medium if he polycrystal failure cri-
terion (B.35) is reached in highly stressed regions of the Iyorystalline matrix. The
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corresponding ("micro'-)heterogeneity within the solid ratrix has recently been shown
(Dormieux et al. 2002) to be reasonably considerable throhgso-called (homogeneous)
e ective (‘micro'-) stresses, such as the square root of the spatialeaage over the solid
material phase, of the squares of equivalent deviatoric (iono'-)stresses,

94— > 12 1
hdis= Ve .2 a(X) 1 a(x)dV (B.40)
with — a(0= (0 2 (01 (B.41)

The e ective deviatoric stress (B.40), used to approximate ,qy.4 in (B.35), is accessi-
ble through energy considerations similar to those of (B.240 (B.30), and result to be
((Dormieux et al. 2002), (Dormieux 2005, p. 132))

2 g h Zig= @ (—L yz
poly;d d @ poly kPORO PORO;m
@ 1 2 Soly
_ : B.42
@ poly PORO) PORO t ") ( )

In analogy to (B.23), the e ective mean stress level in the $id matrix is chosen as the

stress average over the solid phase,

Z
1

. 1
poly;m h nis= V_S v :—))tr (K)dV =

= _fomom (B.43)

Use of Egs.(B.43) and (B.42), together with (B.38) to (B.41)(B.13), and (B.20), in (B.35)
yields a failure criterion at the scale of the porous materavith polycrystalline interfaces
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in the solid phase,

mn 2#
3I 2 +
T By, PORO:m
2 (23 50 poiy +35 7yy) +1 2 +
5 PORO:d
( 7+5 poy)
2
+2 8 h(1 ') porom =
2
- L h2(1 1 )2 (B44)
Br,
with

poly = poly(Kpoly; poly) @ccording to (B.15)
poy = poy(Ke; c; ) according to (B.20)

and B, = Br,( = k—c; ) according to (B.32)
C
The elastic stress domain of the porous medium the matrix ofhich is a polycrystal with
brittle interfaces increases with decreasing crystal comgssibility (Fig. B.6). For the
incompressible limit case, ! 0, (B.44) reduces to

" 2#
3 2,
2 By porom * 1+ 3 Porod +
2
+2 B; h(1 ') porom =
2
= h2(1 )2 (B.45)
Br,

For a crystal compressibility of hydroxyapatite, 0.54 (see also Section B.5), the elastic
domain increases with decreasing interfacial rigidity (f§. B.7) and with increasing friction
angle (Fig. B.8). High interfacial rigidities or low friction angles result in closed
elastic domains, indicating possible failure of the porousaterial even under hydrostatic
stress states = 1 ,, while low interfacial rigidities or high friction angles are
related to open elastic domains, related to in nite resistace of the porous material, as
long as the macroscopic stress state contains a certain hydrostatic amount (Figs. B.7
and B.8).
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Figure B.6: Elastic limits of a porous material the matrix ofwhich is a polycrys-

tal with brittle interfaces, for di erent crystal compressibilities = ¢=k¢
[Eq.(B.44)]: ' =0.5, =0.3, !'1 . Uniaxial load path indicated (thin
solid line).
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Figure B.7: Elastic limits of a porous material the matrix ofwhich is a polycrys-
tal with brittle interfaces, for di erent dimensionless guantities =K a= ¢
(interfacial rigidity) [Eq.(B.44)]: ' =0.5, =0.3, =0.54. Uniaxial load
path indicated (thin solid line).
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Figure B.8: Elastic limits of a porous material the matrix ofwhich is a poly-
crystal with brittle interfaces, for di erent friction ang les [Eq.(B.44)]:
"'=0.5, 1 , =0.54. Uniaxial load path indicated (thin solid line).
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(Peelen et al. 1978)
) fe
[%]  [MPa]

(Akao et al. 1981)
) f e
[%6] [MPa]

(Martin and Brown 1995)
) f e
[%]  [MPa]

2.8 509 27 17252

36 160
3.9 465 39 1192

48 114
9.1 415
19.4 308

2 mean value calculated from three experiments

Table B.2: Experimental data: Compressive strengthi. as function of poros-
ity ', for arti cial hydroxyapatite produced through di erent s ynthesis
routes.

B.5 Application to hydroxyapatite biomaterials

Porous hydroxyapatite (HA) biomaterials are widely used foreplacement of hard tis-
sue defects, because of their chemical composition, mid¢rasture and Young's modulus
being similar to the bone mineral, called carbonated or cailon-de cient hydroxyapatite
(CDHA) (Suchanek and Yoshimura 1998; LeGeros 2002; Henchdaiones 2005). If porous
sca olds are used as bone replacement material in highly lded anatomical locations, re-
liability of their mechanical properties is particularly important for the performance of
the implants. Therefore, the prediction of strength of HA bbmaterials from their mi-
crostructure and porosity is of particular interest. To the knowledge of the authors,
corresponding micromechanical approaches are extremere or inexistent, so that we
check in this Section, to which extent the model developed foge can serve the purpose
of the aforementioned prediction.

B.5.1 Materials processing and uniaxial mechanical testin g

We here consider the following arti cially produced HA mateals:

Peelen et al. (1978) controlled the porosity of HA by a variabn of the sintering tempera-
ture (1100-1400C, Table B.2). Compacted commercially available powders weused to
produce HA with porosities between 36 and 70%. Cylindricabsples (diameter: 1 cm,
length: 1-1.5 cm) were tested in compression (Table B.2).

Akao et al. (1981) precipitated HA powder and sintered it at derent temperatures (1150-
1300 C). Porosities ranged from 3 to 19% (Table B.2). Compressidasts were performed
on bars with dimensions of 5x5x10 cin(Table B.2).

Martin and Brown (1995) prepared calcium-de cient HA formel in aqueous solutions
at physiological temperatures. The authors realized two drent liquid-to-solid weight
ratios, resulting in porosities of 27% and 39%, respectiye(Table B.2). Cylindrical
samples with diameter of 6 mm were tested in compression (Table B.2).
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Figure B.9: Micromechanical representation of a porous hyakyapatite poly-
crystal by means of a two-step homogenization procedure.

B.5.2 Micromechanical representation of hydroxyapatite b lo-
materials

In the hierarchical organization of synthetic hydroxyapate ceramics, we identify two
di erent scales which will be considered in the framework od two-step homogenization
scheme. The rst homogenization step refers to an observati scale of several hun-
dreds of microns where hydroxyapatite crystals are sepagat by boundaries or interfaces
[Fig. B.9(a)]. The latter will be shown to be a potential nuckus for failure of the mate-
rial. The corresponding homogenized material is called dgoxyapatite polycrystal with
interfaces’. At the microstructural scale with a characteistic length of some millimeters
[Fig. B.9(b)], pores are embedded in a matrix which is made ugf the material which was
homogenized in the rst upscaling step.

B.5.3 Elastic properties of single crystals of hydroxyapat ite

An ultrasonic interferometer technique delivers typical &lues for bulk and shear moduli,
kc = kya =82:6 GPaand ¢ = pa =44:9 GPa (Katz and Ukraincik 1971).

B.5.4 Biomaterial-independent properties of interfaces b etween
hydroxyapatite crystals, , h, { back-analysis

The expression for macroscopic admissible stress states4d contains three material
properties which are dicult to be directly accessed, namei the friction angle , the
cohesionh, and the rigidity  of the interfaces. Therefore, these phase properties will
be determined by means of an optimization procedure provitj the closest match of
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model predictions to experimentally determined uniaxial @ampressive strength data of
hydroxyapatite biomaterials, given in Table B.2 (Peelen etl. 1978; Akao et al. 1981,
Martin and Brown 1995).

The sum of squares of relative errors between predicted stggh and experimental strength
values is minimized,

X fpred g o' 2
Cil Cil
i ci

) opt. yopt. opt

wheref %° denotes predicted uniaxial compr%ssive strength valuestamed from Eq.(B.44)
with  porom = FO%9=3, porow = FE°°= 3, together with Egs.(B.13), (B.20), and
(B.32), for porosity values' ; according to Table B.2. ;" is the correspondingi-th
experimental strength value, see Table B.2.

We use the ‘two-membered evolution strategy' (Schwefel IRHellmich and Ulm 2002b),
closely related to the ideas of Darwin's evolution theory. e components of a three-
dimensional vector of estimations for , h and , (;h; )parent, representing the “parent’,
are slightly varied by help of a random number generator (reépsenting “mutations’),

resulting in a vector (;h; )cnig, representing the “child’,

(;h; Denia = (5 h; )parent +
+(N  parent; N N parent; N parent) (B.47)

N denotes a number produced by a standardized normally didhtited random number
generator standardly available in MATLAB (Hunt et al. 2001) stands for a scattering
factor which will be dealt with later on.

If the child ts better in its "environment' than the parent, i.e., if

Gl(;h; enia] < G[(;h; parent] (B.48)

see (B.46), vector (h; )cniig Will be further varied, i.e., it then becomes the parent for
the next generation. If not, the original parent undergoesew mutations.

Based on the number of "successes' of the evolution, i.e.ethumber of cases for which
Eq.(B.48) holds, the scattering factor is changed: If the total number of successes within
the last 10 mutations exceeds a certain threshold (typicagll4), is enlarged, otherwise it
is reduced.

If the di erence between G[( ; h; )parent] and G[( ) h; )child] lies within a prescribed
tolerance over a certain number of mutations, the optimum (°°'; h°P'; %Y (:h;  )parent
(:h; )enig has been reached.



Publication B Fritsch et al. (2007a) 45

f. [MPa
700 w : : :
x Peelen etal. 1978
600 O Akao etal. 1981 I
O  Martin and Brown 1995
500K — micromechanical model
400¢
300r o
200¢
x
1001 X

0 02 04 06 08 1

Figure B.10: Uniaxial compressive strength. of porous hydroxyapatite bioma-
terial as function of porosity' : Model prediction accordingéo Eq.(B.44) or
Eq.(B.49), evaluated with porom= fc=3, porod=fc= 3, compared
to experimental data (Table B.2). Correlation coe cient r2=0.97.
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Figure B.11: Friction angle-interface rigidity relationip ( ) suitable for rep-
resentation of strength of hydroxyapatite biomaterials (k. B.10).

Applying this procedure, (B.46) to (B.48), to (B.44) and usng the experimental data
from Table B.2 yields, depending on the start values of the ¢imization procedure, a
set of solution vectors (°P'; hoPt; ©°PY) which are equal in terms of the highly satisfactory
correlation coe cient (r2 = 0:97) between the respective model predictions and the cor-
responding experimental data for uniaxial compressive singth (see Fig. B.10). To give
an example, ( °P, hoPt, °PH=(0.6750, 17.2397, 0.9119) and (0.9345, 17.7664, 6.41@0)
has the dimension [MPa]) are two of these solution vectors.oFall calculated "optimal’
solution vectors, we nd a constant ratio °= =By, = 1:61 [see Egs. (B.32) and (B.20)],
implying a relationship between and , depicted in Fig. B.11.

Clearly, it would be interesting to cross-check these int&ace failure parameters derived
from our “inverse method' with other direct tests. Deploraly, an extensive literature check
could not provide any direct in situ measurements of stressand failure mechanisms at the
interface "micro’ level. The only additional experimentakvidence are scanning electron
micrographs (Fig. 2 in Ref. (De With et al. 1981), Figs. 5-7 irRef. (Martin and Brown
1995)): These images, however, clearly show sharp, rouglhui@ surfaces, coinciding with
the boundaries of single, micrometer-sized grains. Thispdether with the sharp stress
drops in corresponding (‘'macroscopic'’) stress-strain djgams indicating brittle overall
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failure, strongly suggests brittle failure of the crystal nterfaces, as we have modelled
herein.

B.5.5 Brittle versus ductile failure of solid matrix in poro us
medium

From a purely mathematical standpoint, it is interesting tocompare the elastic domain
(B.44) to the yield surface of a porous medium, related to fisire of a ductile (not a brittle)
solid matrix obeying Drucker-Prager criterion (B.35). Thg yield surface can be obtained
through non-linear homogenization based on e ective quaities (B.42) and (B.43), as
detailed in (Dormieux 2005; Dormieux et al. 2006b),

3 2,
(Z ) 2orom T (1+ 3 ) Borow *
+2 ®h(1 ') porom = %h2(1 )2 (B.49)
with %= =By, ( ) and h as only two parameters being left for an optimization procede

to match the experimental data of Fig. B.10 and Table B.2. Thd procedure delivers a co-
hesionh® = 16:51 MPa (close to the values obtained for the brittle case in 8&éon B.5.4)
and ratio ®P'=1:61 which is quasi-identical to the one obtained for the brite case (Sec-
tion B.5.4), implying an - -relationship quasi-identical to that of Fig. B.11. This mans
that the failure of porous hydroxyapatite biomaterials canbe equally well represented
by a brittle elastic-limit-type micromechanics model and aductile one related to limit
analysis. In this context, it is very interesting to note thd the ductile criterion (B.49) is
evenidentical to the elastic domain forincompressiblesolid matrices, Eq.(B.45).

Accordingly, one might argue that the nature of the heterogeeity of the stresses in the
solid matrix (considered herein by quadratic averages) iaffmore important for the overall
failure of the material than the precise mode of local intesce failure (brittle or ductile).
However, as regards hydroxyapatite biomaterials, expergnts (Chu et al. 2002; Martin
and Brown 1995; Pramanik et al. 2007) strongly support brite failure: A comprehensive
mechanical formulation for its possible origin, namely beking of weak interfaces between
hydroxyapatite crystals, was the main focus of the presentaper.

B.6 Appendix: solution of matrix-inclusion problem
with compliant interface (‘generalized Eshelby
problem’, Fig. B.3)

Solution of Egs.(B.12), (B.13), (B.14), and (B.16) for the onstants Bey; Cex; Ain, and Bjy,
yields them as:
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Bex = 615(176 Soly g:+ 24 soly 3()2

12 ?éakpmth 171 éakpmthkC + 240 So|ykc C

+136 5oy caKi+48 > aKike 132 2, K &
+528 rz)olkuJO'y (2:+9a SOIthkC C

+720 r2)0|ykpoly Ke ¢ +342 [2)0Iy ékc
+144 §0|yakp0IthkC +408 [Z)olyakPOWKt c

+27a|'<tk(:kpoly poly C 396&Kt (z:kpoly poly
57 poy 2aKike 4 oy SaKy)=N (B.50)
Cex =5a°(48 2, aKike +240 5 ke ¢

+136 SoyaKi ¢ +176 25y & 8 poy o

57 2aKikc 4 2aK;) poy=N (B.51)
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Ain =5(544 5,.aK; ¢ +192 7, aKke +320 2, &

+1536 S ke c +16 poyaK; & +228 pgyaKike c
+408a kpoly poyKt ¢ + 144a Kooy poyK ke
+240Ko0ly poly 2 +1152Kpoy poyKe
+12aK; Zkpoy + 171aKkckpoy c) poy=N (B.52)
Bin =240 Soly c(8 poy ¢ +6Kpay c

12 poyke  OKpoyke)=(a®N) (B.53)
N =1408 3, &+192 3, &+24 ZakyK;
+342 ZakpoyKike +1920 3, ke ¢
+1088 3, caK;+384 5, aKkc

+1664a 2, K; 2 +1584 2 Koy 2

poly poly
+1032a §o|thkC c +2160 [2)0kap0|ykc C

+2736 5y, akc +432 2, akooyKike

+1224 2 akooy K¢ ¢ +801aK KcKpoly poly ©
+852aK; 2Kpoly poly + 1710 poiy 2KpoiyKc

+120 poy cKpoly + 684 oy 2aKikc

+48 oy caK (B.54)

They de ne the displacement elds (B.14) and (B.16), which ge access to straing =
O° , stresses (via (B.12)1, and (B.12); respectively), mean interface displacements
and interface tractionsT (via (B.12),).
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Hydroxyapatite biomaterials production has been a major k in biomaterials science
and biomechanical engineering. As concerns prediction dieir sti ness and strength, we
propose to go beyond statistical correlations with porositor empirical structure-property
relationships, as to resolve the material-immanent micrasictures governing the overall
mechanical behavior. The macroscopic mechanical propediare estimated from the mi-
crostructures of the materials and their composition, in admogenization process based on
continuum micromechanics. Thereby, biomaterials are ersioned as porous polycrystals
consisting of hydroxyapatite needles and spherical pored/alidation of respective mi-
cromechanical models relies on two independent experimahsets: Biomaterial-speci ¢
macroscopic (homogenized) sti ness and uniaxial (tensiend compressive) strength pre-
dicted from biomaterial-speci ¢ porosities, on the basisfdiomaterial-independent ("uni-
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versal') elastic and strength properties of hydroxyapat#, are compared to corresponding
biomaterial-speci ¢ experimentally determined (acoust and mechanical) sti ness and

strength values. The good agreement between model predicts and the corresponding
experiments underlines the potential of micromechanical mdeling in improving bioma-

terial design, through optimization of key parameters suchs porosities or geometries of
microstructures, in order to reach desired values for biortexial sti ness or strength.
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C.1 Introduction

Hydroxyapatite [HA, with chemical formula Cao(PO4)s(OH), in its pure (‘stoichiomet-
ric) form] biomaterials production has been a major eld inbiomaterials science and
biomechanical engineering due to their excellent biocomiaility, and since their chemi-
cal composition, structure, and mechanical properties a@milar to bone mineral (Hench
and Jones 2005). Aiming at mimicking the bone mineral and itsnportant biological
and mechanical properties within bone tissues, HA is widelysed for biomedical applica-
tions: They encompass coating of orthopedic and dental ingits (Dorozhkin and Epple
2002), arti cial hard tissue replacement implants in orthpedics, maxillofacial and den-
tal implant surgery (Charrere et al. 2001). Thereby, HA isused either in a pure state
(Frame et al. 1981), (Mastrogiacomo et al. 2006) or as comitas with ceramic, metallic
or polymer inclusions as reinforcing component (Verma et.a2006).

Typical examples for powder-based production of porous hgakyapatite biomaterials
were produced by the following researchers (see also Tabld)C

Peelen et al. (1978) mixed commercially available HA powdewith a 10% hydrogen
peroxide solution, poured it into a mold, and controlled thgorosity of HA ceramics
by a variation of the sintering temperature (Tables C.1 and @&).

Akao et al. (1981) precipitated HA powder, which was compaetl and sintered at
di erent temperatures (Tables C.1, C.3, and C.4).

De With et al. (1981) compacted and sintered isostatically nessed HA powder
(Tables C.1 and C.3).

Shareef et al. (1993) produced mixtures with di erent weigthratios of commercially
available ne and coarse powders. Ring-shaped samples wéovemed by uniaxial
pressing and then sintered. (Tables C.1 and C.4).

Arita et al. (1995) used mixing of starting powders (see TablC.1) and a casting
process to produce green bodies made of HA before sinterifigifles C.1 and C.3).

Martin and Brown (1995) prepared calcium-de cient HA forme in aqueous solu-
tions at physiological temperature. The authors realizedno di erent liquid-to-solid
weight ratios, resulting in two di erent porosities (Tables C.1 and C.4).

Liu (1998) prepared HA powder by mixing of starting powdersgee Table C.1).
Water and polyvinyl butyral powder were added to HA before csting the slurry
and sintering the green bodies (Tables C.1, C.3, and C.4).

Charrere et al. (2001) mixed commercially available powers in an aqueous solution
and used a casting process to obtain HA cement (Tables C.1 a8yl
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The mechanical and microstructural properties, i.e. sti ess/strength and porosity, of
these materials (see Tables C.3 and C.4) will be used as toidake the theoretical de-
velopments described in this article. Thereby, we will go lyend statistical correlations
between porosity and sti ness/strength or empirical struture-property relationships (Rao
and Boehm 1974; Driessen et al. 1982; Katz and Harper 19903,ta resolve the material-
immanent microstructures governing the overall mechanité®ehavior, in the theoretical
framework of continuum micromechanics.



Literature reference

Source material(s)

Processing steps

Shape/size
of samples

Typical pore size

Mechanical characterization
method

(Peelen et al. 1978)

(Akao et al. 1981)

(De With et al. 1981)

(Shareef et al. 1993)

(Arita et al. 1995)

(Martin and Brown 1995)

(Liu 1998)

(Charrere et al. 2001)

Commercially available
HA powder

Ca(OH) 2, H3PO4

Commercially available
HA powder

Commercially available
ne and coarse HA
powders
CaHPO 4, CaCO3

CaHPO 4, Cas(PO4)20

Ca(OH) 2, H3PO4

CaHPO 4, CaCO3

Mixing of HA pow
water, compaction, sintering

Mixing of HA pow der with 10%
hydrogen peroxide solution,

poured into mold, sintering
Mixing of starting powders to
precipitate HA powder, mixed

with water and cornstarch,

compaction, sintering

der with

Mixing of HA po wders,
compaction, sintering

Mixing of starting powders with
water, tape casting, sintering
Mixing of starting powders with
water, precipitation,
compaction at low temperature

Mixing of starting powders in
solution, mixing of HA powder
with water and polyvinyl
butyral powder in a slurry, slip
casting, sintering

Mixing of starting powders with
polyacrylic acid solution in
suspension, poured into mold,
slip casting

Cylindrical
(d=1 cm,
h=1-1.5 cm)
Bars
(5x5x10 cm  3)

Cylindrical
(d=5 mm,
h=15 mm)
Ring-shaped
(inner dia-
meter 34 mm)
Discs
(d=2.54 cm)
Cylindrical
(d  6.40 mm,
h=5.09-
6.39 mm)
Bars
(5x8x50 mm  3)

Hollow cylinders
(d=18 mm,
h=40 mm)

1-200 m
1 m (pore
size  grain

size, see also
Figs. 2-4 of the
reference)

1-5 m (see Figs.
2 and 7 of the

reference)
1 m

1 m (see Fig. 6

of the reference )

1-2 m
2-200 m
1 m

Uniaxial, quasi-static compressive
test (Table C  .4)

Uniaxial, quasi-static compressive
test (Tables C.3 and C.4)

Ultrasonic pulse-echo technique
(Table C.3)

Quasi-static tensile test (Stanford
ring bur  sting test, Table C.4)

Resonance frequency method
(Table C.3)

Uniaxial, quasi-static compressive
test (Table C.4)

Quasi-static tensile test (three-
point bending; Tables C.3 and C.4)

Uniaxial, quasi-static compressive
test (Table C.3)

Table C.1: Hydroxyapatite-based porous biomaterials us€dr model validation: survey on processing, pore size, and
mechanical characterization methods.

D uonedlgnd
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C.2 FRundamentals of continuum micromechanics

C.2.1 Representative volume element and phase properties

In continuum micromechanics (Hill 1963; Hashin 1983; Suqué&997a; Zaoui 2002), a
material is understood as a macrohomogeneous, but microbeigeneous body lling a
representative volume element (RVE) with characteristicdngth ~, ° d, d standing
for the characteristic length of inhomogeneities within te RVE, and™~ L , L stand-
ing for the characteristic lengths of geometry or loading od structure built up by the
material de ned on the RVE (Fig. C.1). In general, the microgucture within one RVE
is so complicated that it cannot be described in complete dst. Therefore, N, quasi-
homogeneous subdomains with known physical quantities areasonably chosen. They
are called material phases [Fig. C.1(a)].

8Xx 2 Vgye: div =0 d

@) (b)

Figure C.1: (a) Loading of a representative volume elemeriyilt up by phasesr
with sti ness , and strength propertiesf( ) = 0, according to continuum
micromechanics (Hashin 1983; Zaoui 2002): Displacementsrelated to
a constant (homogenized) strairE , are imposed at the boundary of the
RVE; (b) structure built up of material de ned on RVE (a).

elastic and strength properties of phases. As regards phadasticity, the fourth-order
sti ness tensor , relates the (average microscopic) second-order strain sa&r in phaser,
";, to the (average microscopic) second-order stress tensorphaser, .,

r= oy (C.1)

As regards phase strength, brittle failure can be associaté¢o the boundary of an elastic
domainf,( )< O,

fri( )=0 (C.2)
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de ned in the space of microstresses(x), x being the position vector for locations within
or at the boundary of the RVE.

Also the spatial arrangement of the phases needs to be sped. In this respect, two
cases are of particular interest: (i) one or several inclusi phases with di erent shapes
are embedded in a contiguous ‘matrix' phase (as in a reinfeadt composite material), or
(i) mutual contact of all disorderly arranged phases (as i polycrystal).

C.2.2 Averaging { Homogenization

The central goal of continuum micromechanics is to estimatie mechanical properties

(such as elasticity or strength) of the material de ned on te RVE (the macrohomoge-

neous, but microheterogeneous medium) from the aforemenmied phase properties. This
procedure is referred to as homogenization or one homogetian step. Therefore, homo-

geneous (macroscopic) strains are imposed onto the RVE, in terms of displacements at
its boundary @V

8x 2 @V: (Xx)=E X (C.3)

As a consequence, the resulting kinematically compatibleionostrains " (x) throughout
the RVE with volume Viye fulll the average condition (Hashin 1983),
z X
1
"dv = for (C.4)

r

E =Hi=
VRVE
VRvE

providing a link between micro and macro strains. Analogolis homogenized (macro-
scopic) stresses are de ned as the spatial average over the RVE, of the micrasisses
(),
1 ¢ X
dv = fr (C.5)

=hi=
VRVE
VRvE

Homogenized (macroscopic) stresses and strainsand E , are related by the homogenized
(macroscopic) sti ness tensor ,

= E (C.6)

which needs to be linked to the sti nesses,, the shape, and the spatial arrangement
of the phases (Section C.2.1). This link is based on the linegelation between the
homogenized (macroscopic) straie and the average (microscopic) strairi,, resulting
from the superposition principle valid for linear elastidy, see Eqg. (C.1) (Hill 1963). This
relation is expressed in terms of the fourth-order concemttion tensors , of each of the
phasesr

"= :E (C.7)
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Insertion of Eg. (C.7) into Eqg. (C.1) and averaging over all pases according to Eq. (C.5)
leads to

= fr v (E (C.8)

From Eq. (C.8) and Eq. (C.6) we can identify the sought relabn between the phase
sti ness tensors , and the overall homogenized sti ness of the RVE,

= frvi ot (C.9)

The concentration tensors , can be suitably estimated from Eshelby's 1957 matrix-
inclusion problem (Eshelby 1957), according to (Zaoui 20ZBenveniste 1987)

( ) 1

fo + 2:(s 9 °

(C.10)
where |, I =1=2( ik ji + i &), IS the fourth-order unity tensor, j (Kronecker delta)
are the components of second-order identity tensdr, and the fourth-order Hill tensor
9 accounts for the shape of phase, represented as an ellipsoidal inclusion embedded
in a ctitious matrix of stiness °. For isotropic matrices (which is the case considered
throughout this article), ? is accessible via the Eshelby tensor (Eshelby 1957)
esh;0 — 0 : 0 (Cll)

r r

see also Section C.3.

Backsubstitution of Eq. (C.10) into Eg. (C.9) delivers the sught estimate for the ho-
mogenized (macroscopic) sti ness tensor,®!, as

( ) 1
est — frr: + 0:(r O) fs + 2:(3 0) 1

r S

(C.12)

Choice of matrix stiness © determines which type of interactions between the phases
is considered: For ° coinciding with one of the phase sti nesses (Mori-Tanaka keme
(Mori and Tanaka 1973)), a composite material is represerte(contiguous matrix with
inclusions); for ©= st (self-consistent scheme (Hershey 1954; Kener 1958), amersed
arrangement of the phases is considered (typical for polystals).

As long as the average phase straiis are relevant for brittle phase failure, resulting
in overall failure of the RVE, concentration relation (C.7)allows for translation of the

brittle failure criterion of the weakest phaser = w into a macroscopic (homogenized)
brittle failure criterion, according to (C.1), (C.2), (C.6) and (C.7),

fw( )=0=fu( w:"w)=Tu(w: w:E)=fu(w: w: ': )=F() (C.13)
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Fourth-order tensor operations such as the ones occurring Egs. (C.1) and (C.6)-(C.12)
can be suitably evaluated in a vector/matrix-based softwag, through a compressed vec-
tor/matrix notation with normalized tensorial basis, often referred to as the Kelvin or the
Mandel notation, see e.g. (Cowin and Mehrabadi 1992; Cowi®@3) for details.

C.3 Micromechanical representation of porous bio-
materials made of hydroxyapatite { sti ness and
strength estimates

In the line of the concept presented in Section C.2, we enwsi biomaterials made of
hydroxyapatite as porous polycrystals consisting of hydryapatite needles (Fig. 7 of
(Shareef et al. 1993); Fig. 2 of (Liu 1998)) with sti ness o and volume fraction (1 ),

being oriented in all space directions, and of spherical (gy) pores with vanishing
sti ness and volume fraction (porosity) (see Figs. C.2 and C.3).

Figure C.2: RVE of polycrystal representing a porous biomatial made of hy-
droxyapatite: Uniform orientation distribution of cylind rical (needle-like)
inclusions and spherical (empty) pores, in ctitious matrk with sti ness
of overall porous polycrystal and vanishing volume fractim

C.3.1 Stiness estimate

In a reference frame €, e, e3), the HA needle orientation vectorN = e, is given by
Euler angles# and' (see Fig. C.3). Specication of Eq. (C.12) for © = °et=
(self-consistent scheme) and for an in nite number of solighases related to orientation
directionsN = e, (#;" ), which are uniformly distributed in space ( 2 [0;2 [;# 2 [0; ]),
yields the homogenized sti ness of the porous hydroxyap#ti biomaterial depicted in



Publication C Fritsch et al. (2009a) 58

Figure C.3: Cylindrical (needle-like) HA inclusions orieted along vector N
and inclined by angles# and ' with respect to the reference frameg(,
e,, €3); local base frame §,, e, ey) is attached to the needle.

Fig. C.2 (Fritsch et al. 2006)
h | i
poly — (1 ) HA - + E§|y :( HA poly)

h i 1
@ ) o+ B i(ha opy)  F (0 Byt (CA4)

with the angular average

D | E
[ + E;JIY :( HA poly)] b=
sing d# d'
= VO (e poy) (C.15)
''=0 #=0

ESL" and E;’l'y are the fourth-order Hill tensors for spherical and cylindcal inclusions,
respectively, in an isotropic matrix with stiness oy = 3Kpoy +2 poy 5+ Jijk =

1=3 j w, is the volumetric part of the fourth-order unity tensor , and = is its
deviatoric part. The Hill tensors are related to Eshelby tegors via Eq. (C.11). The

Eshelby tensor ggﬂ corresponding to spherical inclusions (pores in Fig. C.2gads as

esh _ 3Kpoly + 6(Kpoly +2 poly)

= C.16
sph 3kpo|y +4 poly 5(3kpoly +4 poly) ( )



Publication C Fritsch et al. (2009a) 59

In the base frame €4, e , e;)(1=#, 2=", 3=r, see Fig. C.3 for Euler angles and #),
attached to individual solid needles, the non-zero compoms of the Eshelby tensor &

cyl
corresponding to cylindrical inclusions read as
gesh = gesh _ 9 4 poy
cyl;1111 = “cyl;2222 — 8(1
poly)
gesh — cesh — 1+4 poly
cyl;1122 = “cyl;2211 T 8(1 | )
poly
esh — cesh — poly
Scy|;1133 - Scyl;2233 - 2(1 | )
poly
esh — qesh — qesh — qesh —
ScyI;2323 - Scyl;3232 - Scyl;3223 - ScyI;2332 -
— Sesh — Sesh — Sesh — Sesh — 1
— “cyl;3131 T “~eyl;1313 T “eyl; 1331 T eyl 3113 T Z
3 4
esh — cesh — qesh — e — poly
ScyI;1212 - ScyI;2121 - ScyI;2112 - Scyl;1221 - 8(1 | ) (C-17)
poly
with oy as Poisson's ratio of the polycrystal,
3Kpoly 2 pol
— poly poly (C18)

poly =
6Kpoly + 2 poly

Following standard tensor calculus (Salencon 2001), thertgor components of E§|Iy(#i )=

g;lh(#;' ) : po]iy’ being related to di erently oriented inclusions, are trarsformed into one,

single base framed;, e,, e3), in order to evaluate the integrals in Egs. (C.14) and (C.16

C.3.2 Strength estimate

Strength of the porous polycrystal made up of hydroxyapaté needles (see Fig. C.2 for its
RVE) is related to brittle failure of the most unfavorably stressed single needle. Therefore,
the macroscopic stress (and strain) state needs to be reldt® corresponding stress and
strain states in the individual needles. Accordingly, we gEify the concentration relations
(C.7) and (C.10) for the biomaterial de ned through Eqgs. (C14)-(C.18), resulting in
h i,
wa(i#)= + BVCH#) I (ha poy)
h i 1
(1 ) + Eﬁ:y(l; # ) : ( HA poly) + ( ESLY : poly) ! 'E (C.lg)

When employing phase elasticity (C.1) to hydroxyapatite, ad overall elasticity (C.6)
to the porous biomaterial according to Eq. (C.14), concerdtion relation (C.19) can be
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recast in terms of stresses
h [
1. _ . Iy 1. .
HA(G# )= A + E;y(,#)-(HA poly)

h I 1 l)
@ )+ BVCG#) (wa poy) T G
gyt = wa(i#): (C.20)

with  ya (';# ) as the so-called stress concentration factor of needle Wwibrientation

N (;# ). We consider that needle failure is governed by the normatress pann (;# )

in needle direction and by the shear stress in planes orthagd to the needle direction,
nann (3# ;) (see Fig. C.3),

nann (5#)=N  wa(5#) N (C.21)
Hann (G# 5 )= N wa(5#) n() (C.22)

depending on the directionn orthogonal to N , speci ed through angle (Fig. C.3),
n=cos es;+sin e (C.23)

More speci cally, the failure criterion for the single neel® considers interaction between
tensile strength s and shear strength |=°, and it reads as

#=0;::1;;, =0;::11;2
fra( ) =max  maxj uannj+ Hann w0 (C.24)
with = ['= " peing the ratio between uniaxial tensile strength 1% , and the shear

strength ﬁ'f\s of pure hydroxyapatite. Use of Egs. (C.20) to (C.23) in Eq. (@24) yields
a macroscopic failure criterion in the format of Eq. (C.13),

F( )=mgx maxjN A (5# ) N+ N wa(h#): N

i =0 (C.25)
and a corresponding elastic domain,
F( )<0O (C.26)

with A according to Eq. (C.20). We also will evaluate the criterion(C.25) for uni-
axial macroscopic stress states = ref €3 €3. Insertion of these stress states into
Egs. (C.20)-(C.24) yields an equation for r, the corresponding results i and 5
being model predictions of macroscopic uniaxial strengthes functions of (microscopic)

needle strength and porosity (see Figs. C.6 and C.7, and Seat C.4 for further details).
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C.4 Model validation

C.4.1 Strategy for model validation through independent te st
data

In the line of Popper, who stated that a theory { as long as it ha not been falsi ed {
will be “the more satisfactory the greater the severity of glependent tests it survives'
(cited from (Mayr 1997), p.49), the veri cation of the micranechanical representation of
hydroxyapatite biomaterials [Eqgs. (C.14)-(C.18) for elagity, and Egs. (C.19)-(C.26) for
strength] will rest on two independent experimental sets,sait has been successfully done
for other material classes such as bone (Hellmich and Ulm 20 Hellmich et al. 2004a;
Fritsch and Hellmich 2007) or wood (Hofstetter et al. 2005,d6). Biomaterial-speci c
macroscopic (homogenized) sti nessesyqy (Young's moduli E,qy and Poisson's ratios
poy), and uniaxial (tensile and compressive) strengths (5 and 55°), predicted by
the micromechanics model (C.14)-(C.26) on the basis of biaterial-independent (univer-
sal) elastic and strength properties of pure hydroxyapat# (experimental set |, Table C.2)
for biomaterial-speci ¢ porosities (experimental set lla, Tables C.3 and C.4), are com-
pared to corresponding biomaterial-speci ¢ experimentl determined moduli E,, and
Poisson's ratios ¢, (experimental set 11b-1, Table C.3) and uniaxial tensile/ompressive
strength values (experimental set Ilb-2, Table C.4). Becae we avoided introduction of
micromorphological features that cannot be experimentailquanti ed (such as the precise
crystal shape), all material parameters are directly rel&d to well-de ned experiments.

C.4.2 Universal mechanical properties of (biomaterial-in depend-
ent) hydroxyapatite { Experimental set |

Experiments with an ultrasonic interferometer coupled wh a solid media pressure ap-
paratus (Katz and Ukraincik 1971; Gilmore and Katz 1982) resal the isotropic elastic
constants for dense hydroxyapatite powder (= 0), the Young's modulusEpa = 114 GPa,
and the Poisson's ratio ya = 0.27 (equivalent to bulk moduluskya = Eqa=3=(1 2 pa)=
82.6 GPa and shear modulusya = Epya=2=(1+ nha)=44.9 GPa).

The authors are not aware of direct strength tests on pure hydxyapatite (with =
0). Therefore, we consider one uniaxial tensile test,'tt =37.1 MPa, and one uniaxial

1exp

compressive test, Yt¢=509 MPa, on fairly dense samples (with =12.2% and =2.8%,

' exp
respectively), conducted by Shareef et al. (1993) and Akaba&. (1981), respectively (see
Table C.4). From these two tests, we back-calculate, via elation of Egs. (C.20)-(C.25)

for = g'xtg es ezand = g!};f es; es, the universal tensile and shear strength of

pure hydroxyapatite, - and "% (Table C.2).
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Young's modulus Eya 114 GPa from (Katz and Ukraincik 1971)

Poisson's ratio ya 0.27 from (Katz and Ukraincik 1971)

Uniaxial tensile strength ,ﬂ'tA;t 52.2 MPa from (Akao et al. 1981; Shareef et al. 1993);
Uniaxial shear strength 1%  80.3 MPa  see Section C.4.2 for details

Table C.2: Universal (biomaterial-independent) isotrod phase properties of
pure hydroxyapatite needles.

C.4.3 Biomaterial-speci c porosities { Experimental set | la

Porosity of hydroxyapatite biomaterials is standardly catulated from massM and vol-
ume V of well-de ned samples on the basis of the mass density of puhydroxyapatite,
ha =3.16 g/cm3,
M
V' Ha

Corresponding porosity values have been reported by di eneinvestigators (Peelen et al.
1978; Akao et al. 1981; De With et al. 1981; Shareef et al. 199Gita et al. 1995; Martin
and Brown 1995; Liu 1998; Charrere et al. 2001), see Tabl€s3 and C.4.

=1 (C.27)

C.4.4 Biomaterial-speci c elasticity experiments on hydr oxya-
patite biomaterials { Experimental set Il1b-1

Elastic properties of hydroxyapatite biomaterials were dermined through uniaxial quasi-
static mechanical tests (Akao et al. 1981; Charrere et aR001), but also through ultrasonic
techniques (De With et al. 1981; Liu 1998), or resonance frgency tests (Arita et al. 1995).

In uniaxial quasi-static experiments, the gradient of thetsess-strain curve gives access to
Young's modulus. Respective experimental results are donented for cuboidal specimens
(Akao et al. 1981) and hollow cylindrical specimens (Chaere et al. 2001), see Tables C.1
and C.3 as well as Fig. C.4.

In ultrasonic experiments (Ashman et al. 1984, 1987), thertie of ight of an ultrasonic
wave traveling through the specimen with a certain frequegcf is measured. The cal-
culated velocity of the wave,v, together with material mass density of the sample, gives
access to the elastic constants (Carcione 2001; Kolsky 195Because the ultrasonic wave-
length , = v=f, is a measure for the loading of the structure ( L in Fig. C.1), the
mechanical properties are related to an RVE with charactestic length | . Respective
experimental results are documented for bar-shaped speeins (Liu 1998) and cylindrical
samples (De With et al. 1981), see Tables C.1 and C.4 as wellFgs. C.4 and C.5.

In resonance frequency tests (Schreiber et al. 1973), beaypé specimens are excited
in the exural vibration mode, and the corresponding free \bration gives access to the
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Reference E exp exp
(%) (GPa) (1)
(Akao et al. 1981) 2.8 88
3.9 85
9.1 80
19.4 44
(De With et al. 1981) 3 112 0.275
6 103 0.272
9 93 0.265
17 78 0.253
22 67 0.242
27 54 0.238
(Arita et al. 1995) 6 88
28 41
33 32
35 29
50 14
52 10
(Liu 1998) 8 93
17 78
21 66
32 44
44 22
54 18

(Charrere et al. 2001) 44 135

Table C.3: Experimental Young's modulusEcy, and Poisson's ratio ¢y, of
hydroxyapatite biomaterials, as function of porosity .

fundamental resonance frequency. The latter allows for d&imination, via the material
mass density and the geometry of the sample, of the Young's thdus of the sample.
Respective experimental results are documented for distaped samples (Arita et al.
1995), see Tables C.1 and C.3 as well as Fig. C.4.

C.4.5 Comparison between biomaterial-speci ¢ sti ness pr edic-
tions and corresponding experiments

The stiness values predicted by the homogenization schem.14)-(C.18) (see Sec-
tion C.3 and Fig. C.2) for biomaterial-speci ¢ porosities ection C.4.3, experimental
set lla) on the basis of biomaterial-independent (univerdasti ness of hydroxyapatite

(Section C.4.2, experimental set |) are compared to correspding experimentally deter-
mined biomaterial-speci ¢ sti ness values from experimdal set llb-1 (Section C.4.4).
To quantify the model's predictive capabilities we considethe mean and the standard
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Reference e - i
%) (MPa) (MPa) (MPa)
(Peelen et al. 1978) 36 160
48 114
60 69
65 45
70 30
(Akao et al. 1981) 2.8 509
3.9 465
9.1 415
194 308
(Shareef et al. 1993) 12.2 37.1
16.1 32.8
20.6 31.8
24.8 24.2
27.3 23.6
29.2 20.0
(Martin and Brown 1995) 27.0 1725
39.0 119.0
(Liu 1998) 20.2 25.5
26.8 20.0
29.0 16.8
32.6 13.9
39.6 14.4
42.8 11.1
50.9 7.2
54.5 8.0

Table C.4: Experimental compressive strength 3¢, bending strength 4>,
and tensile strength g'xtg of hydroxyapatite biomaterials, as functions of

porosity

deviation of the relative error between sti ness predictins and experiments,

X X

e = 1 17 Goy G (C.28)
n n Gexp

1 X 2% C.29

& = (e o (C.29)

whereq has to be replaced by the quantity in questionE or , and with summation over
n sti ness values (see Tables C.3 and C.4).

Insertion of biomaterial-speci ¢ porosities (Table C.3)mto Eqg. (C.14) delivers, together
with Egs. (C.15) to (C.18), the biomaterial-speci c sti ness estimates for the e ective
Young's modulusE,q, and the e ective Poisson's ratio ,y. These stiness predictions
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are compared to corresponding experimental sti ness valsgFigs. C.4 and C.5). The
satisfactory agreement between model predictions and expeents is quanti ed by pre-
diction errors of 16 25% [mean value standard deviation according to Egs. (C.28) and
(C.29)] for Young's modulus, and of -0.42.3% for Poisson's ratio.

125

O exp-static: Akao et al. 1981

KO ¢ exp-ultra: De With et al. 1981

* exp-ultra: Gilmore and Katz 1982

100r , + exp-res: Arita et al. 1995

* exp-ultra: Liu 1998

Qt x exp-static: Charriere et al. 2001
o —model prediction

751

50

Eexp- Epoly [GPa]

251

Figure C.4: Comparison between model prediction&(y) [Eqs. (C.14)-(C.18)]
and experiments Eeyp) for Young's modulus of di erent porous biomateri-
als made of hydroxyapatite, as a function of porosity ; ultra. . . ultrasonic
tests, res ...resonance frequency tests, static...quasatic uniaxial tests.

0.5
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Figure C.5: Comparison between model predictions {,y) [Egs. (C.14)-(C.18)]
and experiments (exp) for Poisson's ratio of di erent porous biomaterials
made of hydroxyapatite, as a function of porosity ; ultra... ultrasonic
tests.
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C.4.6 Biomaterial-speci c strength experiments on hydrox yap-
atite biomaterials { Experimental set Ilb-2

In uniaxial compressive quasi-static tests, a sharp decseaof stress after a stress peak
in the stress-strain diagram (Akao et al. 1981; Martin and Bywn 1995) indicates brittle
material failure, as observed for all biomaterials descrdal herein, and the aforementioned
stress peak is referred to as the ultimate stress or uniaxiatrength g'xt;pC. Respective
experimental results are documented for cylindrical sangs (Peelen et al. 1978) and bars
(Akao et al. 1981), see Tables C.1 and C.4 as well as Fig. C.7.

In three-point bending tests, a forceFs is applied to the centre of a beam specimen,
and the maximum normal stress Yt = Ute; e in the bar-type sample is calculated
according to beam theory,

ultt — 3FSIS
&P 2hsh2

(C.30)

with ls, bs, and hs as the length, width and height of the specimen with rectandar
cross-section, respectively. Respective experimentalsudis (Liu 1998) are depicted in
Tables C.1 and C.4 (there, bending strengths are denoted ag;") as well as in Fig. C.6.

In the Stanford ring bursting test, ring-shaped specimensra pressurized internally, in
order to generate a tensile hoop stress in the ring. The press is increased until the
sample fails. The tensile stress in the ring is calculated @arding to

utt — T'sPi
exp ds

(C.31)

with rg as the inner diameter of the ring,p; as the internal pressure, andls as the wall
thickness of the ring. Respective experimental results (8freef et al. 1993) are depicted
in Tables C.1 and C.4 as well as Fig. C.6.

C.4.7 Comparison between biomaterial-speci ¢ strength pr edic-
tions and corresponding experiments

The strength values predicted by the homogenization schen{€.19)-(C.26) (see Sec-
tion C.3 and Fig. C.2) for biomaterial-speci ¢ porosities ection C.4.3, experimental set
[la) on the basis of biomaterial-independent (universal) miaxial tensile and compressive
strengths of hydroxyapatite (Section C.4.2, experimentaset I) are compared to corre-
sponding experimentally determined biomaterial-speci cniaxial tensile and compressive
strength values from experimental set IIb-2 (Section C.4)6

Insertion of biomaterial-speci ¢ porosities (Table C.4)mto Egs. (C.14)-(C.25) delivers,
together with Exa, wa, s, and 1% (Table C.2), biomaterial-speci ¢ strength es-

timates for uniaxial tensile strength ( g';l;) and uniaxial compressive strength (g'élf,)
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These strength predictions are compared to correspondingperimental strength values
(Figs. C.6 and C.7). The satisfactory agreement between meldpredictions and exper-
iments is quanti ed by prediction errors of 14 15% for uniaxial tensile strength and
-21 28% for uniaxial compressive strength; according to Eqgs. (&Z8) and (C.29) with
Choly = poy @nd ooiv, respectively, and withGe, = Ut and  Ute, respectively.

50
o exp: Shareef et al. 1993

¢ exp: Liu 1998
—model prediction
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Figure C.6: Comparison between model predictions [Egs. @2)-(C.25)] and
experiments for tensile strength of di erent porous biomadrials made of

hydroxyapatite, as a function of porosity .
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x exp: Peelen et al. 1978

o exp: Akao et al. 1981

o exp: Martin and Brown 1995
—model prediction
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Figure C.7: Comparison between model predictions [Egs. @2)-(C.25)] and
experiments for compressive strength of dierent porous bmaterials
made of hydroxyapatite, as a function of porosity .

It is interesting to evaluate which crystal (located throudp the critical crystal angle #.,
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measured from the axis of macroscopic uniaxial loading) trdtes the overall brittle ma-

terial failure, and to nd out at which crystal stresses thisoccurs (Figs. C.8 and C.9).
Under tensile uniaxial macroscopic loading, failure occsiin crystals oriented closely to
the loading direction (Fig. C.8), for the entire range of bimaterial porosities. In contrast,

compressive uniaxial macroscopic loading induces failuire crystals which are oriented
more or less perpendicularly to the loading direction, agaifor the entire range of bio-
material porosities. This is consistent with earlier ndirgs that tensile loading leads to
cracking perpendicular to the loading direction (mode | creks) (Pichler et al. 2007b),
and that compressive loading leads to cracks in the planescorporating the load axis
(axial splitting) (Pichler et al. 2007a). As regards the crgtal stresses at failure, normal
tensile stresses in needle direction prevail under tensmeacroscopic loading, while ten-
sile or compressive normal stresses combined with shearwaender compressive loading
(Fig. C.9).

90F T T -1.-....---
n T

67.51
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O tension

45

#er [°]

22.5r

b
°© 0o o
° o
° o
° 0o o
i 9000000

0 0.2 0.4 0.6 0.8 1

(1]

Figure C.8: Orientation of crystal needle initiating overd failure by ful lling
local failure criterion (C.24), measured through criticalangle #., from
the loading direction, for tensile and compressive uniaxXianacroscopic
loading, as function of porosity .

C.5 Discussion

We have developed a continuum micromechanical concept fdagticity and strength of
porous biomaterials made of hydroxyapatite, which was veed through independent ex-
perimental sets. We propose that such models have a consalde potential for improv-
ing biomaterial design. Nowadays the latter is largely doni@ a trial-and-error procedure.
Based on a number of mechanical and/or acoustical tests, nematerial design parameters
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Figure C.9: Stress state in crystal needle ful lling localdilure criterion (C.24),
in terms of (a) normal stresses and of (b) shear stresses irapés per-
pendicular to the needle direction, for tensile and comprsise uniaxial
macroscopic loading, as function of porosity.

are guessed. On the other hand, with well validated micromieanics models, the mechani-
cal implications of changes in the microstructure can be pidected so that minimization of
material failure risk allows for optimization of key desigrmparameters, such as porosities or
geometries of microstructures. Hence, we believe that mienechanical theories can con-
siderably speed up the future improvement of tissue engin@ey sca olds. In this context,
extension of our modeling approach towards hydroxyapatiteiomaterials with a hierarchi-
cal structure, i.e. with a double-porosity with di erent pore sizes (Woodard et al. 2007),
and/or towards collagen/hydroxyapatite or chitosan/hydroxyapatite composite materials
(Yunoki et al. 2006; Salgado et al. 2004) is currently underay.
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C.6 Appendix: Nomenclature

r fourth-order strain concentration tensor of phase
est estimate of fourth-order strain concentration tensor of paser
HA fourth-order stress concentration tensor for single HA csjals
fourth-order homogenized sti ness tensor
est estimate of fourth-order homogenized sti ness tensor
0 fourth-order sti ness tensor of in nite matrix surrounding an ellipsoidal
inclusion
poly fourth-order homogenized sti ness tensor of biomaterial ade of HA
HA fourth-order sti ness tensor of single HA crystals within he RVE Vg
r fourth-order sti ness tensor of phase
d characteristic length of inhomogeneity within an RVE
E second-order macroscopic strain tensor
Eexp experimental Youngs modulus of biomaterial made of HA
Ena Youngs modulus of single HA crystals within the RVEVy
Epoly homogenized Young's modulus of biomaterial made of HA
e mean of relative error between predictions and experiments
€s standard deviation of relative error between predictionsral experiments

€1, €, €3 Uunit base vectors of Cartesian reference base frame
ex, €, e, unit base vectors of Cartesian local base frame of a single/stal

F( ) boundary of elastic domain in space of macrostresses

f ultrasonic excitation frequency

f, volume fraction of phaser

fr( ) boundary of elastic domain of phase in space of microstresses
HA hydroxyapatite

fourth-order identity tensor
volumetric part of fourth-order identity tensor
deviatoric part of fourth-order identity tensor

Kua bulk modulus of single HA crystals within the RVE Vg
Kpoly homogenized bulk modulus of biomaterial made of HA
L characteristic length of a structure built up by material RVEs

characteristic length of RVEs
mass of a HA biomaterial sample
orientation vector aligned with longitudinal axis of need#
r number of phases within an RVE
orientation vector perpendicular toN
fourth-order Hill tensor characterizing the interaction ketween the phase
and the matrix °©°

E;’l'y fourth-order Hill tensor for cylindrical inclusion in matrix with stiness

S Zz2zZ2Z

e
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poly
sph

RVE

r,s

esh;0
r

esh
cyl

esh
sph

tr

VRV E

HA
poly
exp
HA
poly

HA

S

ult;t

poly
ult;c

poly
ult;t
exp
ult;c
exp

ref

Ha (5 #)
Hann (5 # )
Hann (G# )

fourth-order Hill tensor for spherical inclusion in matrixwith sti ness
representative volume element

index for phases

fourth-order Eshelby tensor for phase embedded in matrix °
fourth-order Eshelby tensor for cylindrical inclusion embdded in isotropic
matrix with stiness ,ay

fourth-order Eshelby tensor for spherical inclusion embeeéd in isotropic
matrix with stiness ,qy

trace of a second-order tensor

volume of a HA biomaterial sample

volume of an RVE

ultrasonic wave propagation velocity within a HA biomateral sample
index denoting weakest phase

position vector within an RVE

ratio between uniaxial tensile strength and shear strengtbf pure HA
Kronecker delta (components of second-order identity teas 1)
second-order strain tensor eld within single HA crystals

second-order strain tensor eld of phase

latitudinal coordinate of spherical coordinate system

ultrasonic wave length

shear modulus of single HA crystals within the RVEV,qyy

homogenized shear modulus of biomaterial made of HA

experimental Poisson's ratio of biomaterial made of HA

Poisson's ratio of single HA crystals within the RVEV,qy

homogenized Poisson's ratio of biomaterial made of HA
displacements within an RVE and at its boundary

material mass density

mass density of pure HA

mass density of a HA biomaterial sample

second-order macroscopic stress tensor

model-predicted uniaxial tensile strength of biomateriamade of HA
model-predicted uniaxial compressive strength of biomaial made of HA
experimental uniaxial tensile strength of biomaterial mad of HA
experimental uniaxial compressive strength of biomatetianade of HA
component of uniaxial stress tensor imposed on boundary of
biomaterial made of HA

second-order stress tensor eld within single HA crystals

normal component of stress tensor ya (;# ) in needle direction

shear component of stress tensorya (';# ) in planes orthogonal

to the needle direction

poly
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ulet uniaxial tensile strength of pure HA
ulis shear strength of pure HA
r second-order stress tensor eld of phage

' longitudinal coordinate of spherical coordinate system
volume fraction of micropores within RVE of porous HA
longitudinal coordinate of vectorn

@V boundary of an RVE

1 second-order identity tensor

h)iv =1=V ,(:)dV average of quantity (.) over volumeV
rst-order tensor contraction
second-order tensor contraction
dyadic product of tensors
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There is an ongoing discussion on how bone strength could belained from its inter-
nal structure and composition. Reviewing recent experim&d and molecular dynamics
studies, we here propose a new vision on bone material fadurmutual ductile sliding of
hydroxyapatite mineral crystals along layered water Ims$ followed by rupture of collagen
crosslinks. In order to cast this vision into a mathematicatorm, a multiscale continuum
micromechanics theory for upscaling of elastoplastic pregies is developed, based on
the concept of concentration and in uence tensors for eigstiessed microheterogeneous
materials. The model re ects bone's hierarchical organizan, in terms of representative
volume elements for cortical bone, for extravascular and gacellular bone material, for
mineralized brils and the extra brillar space, and for wet collagen. In order to get ac-
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cess to the stress states at the interfaces between crystdlse extra brillar mineral is
resolved into an in nite amount of cylindrical material phases oriented in all directions
in space. The multiscale micromechanics model is shown to alele to satisfactorily pre-
dict the strength characteristics of di erent bones from dierent species, on the basis of
their mineral/collagen content, their intercrystalline, intermolecular, lacunar, and vascu-
lar porosities, and the elastic and strength properties ofykdroxyapatite and (molecular)
collagen.

D.1 Introduction

Explanation of the highly diverse mechanical properties ahe material bone from its
internal structure and composition has been a biomecharaai's wish (Fung 2002; Martin
et al. 1998), ever since the establishment of this scienti @ld. This wish has motivated
(i) comprehensive mechanical testing series over all type$ tissues and vertebrates (led
by Currey and colleagues (Currey 1959; Reilly and BursteirZ4b; Keaveny et al. 1993)),
(ii) the incorporation of the theory of anisotropic elastidty in the framework of ultrasonic
testing (driven forward by Katz and colleagues (Katz 1980; shman et al. 1984)), and (iii)
the complementation of the aforementioned two activities ith chemical and physical mea-
surements revealing micro and nanostructural features ofineralized collagenous tissues
(pioneered in an unparalleled experimental campaign by Le@nd colleagues (Lees et al.
1979b,a, 1983; Lees 1987a)). The huge experimental legamioiing from the aforemen-
tioned activities was theoretically integrated in the congxt of validating micromechanical
models holding for bone materials across di erent specieages and anatomical loca-
tions (Hellmich and Ulm 2002a; Hellmich et al. 2004a; Hellh and Ulm 2005a; Fritsch
and Hellmich 2007). Such micromechanical models predictn ¢he basis of mechanical
properties of bone elementary constituents (hydroxyapd#, collagen, water), the (poro-)
elasticity tensors at the di erent hierarchical levels of he material, from tissue-specic
composition data, such as porosities and mineral/collageontent. Therefore, morpholog-
ical features such as Haversian and lacunar, intercrystalée, and intermolecular porosities,
mineralized brils and collagen-free extra brillar space plate or needle-type hydroxyap-
atite crystals and long crosslinked collagen molecules waepresented in the framework of
continuum micromechanics, also referred to as random honegzation theory (Hill 1963;
Suquet 1997b; Zaoui 2002). A key feature of these micromenlwl models is the explicit
consideration of the extra brillar mineral crystals whoseexistence was evidenced earlier
(Lees et al. 1984a, 1994; Prostak and Lees 1996; Pidapartiadt 1996; Benezra Rosen
et al. 2002). In this sense, the challenge of micromechanggoported, consistently up-
scaled microstructure-property relationships for poroaskticity in bone has been met quite
reasonably.

However, the case of explaining bone strength from its inteal structure and composition
seems to be fairly unsettled: while scaling relations for ¢éhstrength of trabecular bone
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as function of porosity have become classical (Gibson 19&&bson and Ashby 1997), the
micro and nanostructural origin of bone strength remains aopen question: While several
researchers favor the idea of brittle mineral crystals emdded in a compliant ductile
organic (collagenous) matrix (Currey 1969; Katz 1980, 198%asaki 1991; Mammone and
Hudson 1993; Jager and Fratzl 2000; Kotha and Guzelsu 200@till, explanation of a
large number of experimental data through only one model anckalistic prediction of
measured stress-strain curves are somewhat out of sightyperiments show that collagen
may actually fail in a quasi-brittle fashion (Christiansenet al. 2000; Gentleman et al.
2003), and this observation is con rmed by latest moleculadynamics simulations (Buehler
2006; Bhowmik et al. 2007). Such computations are essentialols for understanding
the interaction of huge numbers of molecules, but, due to cgmtational constraints,
the largest models which can be realized nowadays are of theler of some hundreds of
nanometers (Buehler 2006), far away from the larger lengtleales spanned by the material
bone up to its macroscopic appearance at the millimeter to o#meter scale. What further
complicates the matter is that once the elementary constients mineral and collagen have
failed, a complex series of crack propagation events stargpanning length scales between
tens of nanometers and ultimately several millimeters. Rafied toughening strategies in
bone have been intensively studied (Burr et al. 1998; Reilgnd Currey 2000; Akkus and
Rimnac 2001; Okumura and Gennes 2001; Taylor et al. 2003; Baini et al. 2005; O'Brien
et al. 2007; Koester et al. 2008), but a consistent mathemaél theory for relating them to
the overall, tissue-speci ¢ bone strength seems to be an emwusly di cult task. Given
this highly challenging situation, we ask: Can continuum nagromechanics help to explain
not only bone elasticity, but also bone strength from the magrial's internal structure and
composition?

It is often felt that, in contrast to the elastic case, homogeazation techniques which often
refer to strains or stresses averaged over the material'snstituents, might not help for

the explanation of bone strength, where stress peaks areelik to govern material failure.

Fortunately, this is not necessarily true: one remedy liesiithe resolution of one material
constituent into an in nite amount of sub-phases { e.g. the nmeral phase may be split
into an in nite amount of di erently oriented needles, giving access to information on
local stress peaks in these needles. It was recently shownité€h et al. 2009a) that based
on such a concept, the brittle failure of various hydroxyapée biomaterials characterized
by di erent porosities could be explained from the failure learacteristics of individual

crystals (quanti ed in terms of two strength values only) am from the microstructure

these crystals build up.

This recent micromechanics model can deliver important ing, in terms of the strength
properties of single hydroxyapatite crystals, for a microechanics model explaining bone
strength { the latter is the focus of the present paper. It is manized as follows: Review-
ing recent experimental and molecular dynamics studies, wist propose a new vision
on bone material failure: mutual ductile sliding of mineralcrystals along layered water
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Ims is followed by rupture of collagen crosslinks. In ordeto cast this vision into a

mathematical form, we then present a continuum micromech&s theory for upscaling
of elastoplastic properties. Thereafter, this theory is g@ied to a multiscale representa-
tion of bone materials. Conclusively, it is shown that the awesponding multiscale model
can satisfactorily predict the stress-strain curves and thstrength values of di erent bones
from di erent species, on the basis of their mineral/collagn content, their intercrystalline,

intermolecular, lacunar, and vascular porosities, and thelastic and strength properties
of hydroxyapatite and collagen.

D.2 A new proposition for bone failure: layered water-
induced ductile sliding of minerals, followed by
rupture of collagen crosslinks

Classically, the strength of bone materials is thought to beelated to the strength proper-
ties of collagen, to the strength properties of hydroxyapéte, and/or the interfaces between
these constituents. However, more recent works extend andodify this traditional pic-
ture, by indicating the great role of water for the failure poperties of bone. In this context,
molecular dynamics studies on collagen molecules beingat#ted from hydroxyapatite in
solvated conditions, revealed that the interaction energs between hydroxyapatite and
water, and between collagen and water, are by orders of matyde larger than that
between hydroxyapatite and collagen (Bhowmik et al. 2007).This implies that water
probably plays a central role in "glueing' together the mat@l's elementary constituents,
mineral with mineral, collagen with collagen, and also mimal with collagen. The latter
interaction was con rmed by solid state Nuclear Magnetic R&onance tH NMR) stud-
ies (Wilson et al. 2006). As concerns the water-hydroxyapé interactions, molecular
dynamics simulations of crystal systems surrounded by watenolecules revealed two to
three well-organized water layers on the crystal surfacethese structured water layers
having ice-like features (Pan et al. 2007). These featureem@ shown to chemically sta-
bilize the crystals. In the present contribution, we will dscuss the possibility that they
also mechanically stabilize the interaction between minal crystals: More speci cally, we
consider the case when the mineral crystals will not break atetach one from another
once a critical stress threshold is reached (as in dry conidits), but when the intra- and
intercrystalline loads accumulated up to the elastic limit will be maintained through the
(hydrated) crystals starting to glide upon each other, alog the ice-like features, which
prevent the sliding hydroxyapatite surfaces from disinte@tion. The latter is also pre-
vented by the collagen brils interweaving the extracellur bone matrix. This vision
is consistent with an elastoplastic interface behavior beten hydrated hydroxyapatite.
However, from a mathematical viewpoint, modeling interfags between non-spherical ob-
jects is extremely expending (or extremely complex), so thave will benet from the
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recent nding (Fritsch et al. 2009a) that the e ect of "micro-interface behavior of elon-
gated 1D particles, on the overall ‘'macroscopic' materiahno be mimicked by equivalent
“bulk’ failure properties of the elongated phases. In casé loydroxyapatite polycrystals,

we even know the (brittle) failure properties of the single ydroxyapatite crystals, and

we will use them as elastic limits in the framework of full elstoplastic analysis of the
hierarchical mineral-collagen-water composites calledone'. Therefore, it is appropriate
to present a continuum micromechanics theory for elastotcity next. Thereby, our

focus is on the plastic gliding mechanisms between mineraystals, and we only proceed
our computations until a critical stress in the collagen iseached. Potentially plastic be-
havior or microcracking events/crack bridging occuring threafter (Nalla et al. 2004) are
beyond our present scope. The critical stress of collagerdesrived from direct mechanical
experiments on collagen, showing a brittle behavior of thisonstituent (Catanese et al.
1999; Christiansen et al. 2000; Gentleman et al. 2003), whits in agreement with some
molecular dynamics studies (Buehler 2006, 2008; Vesentetial. 2005). In particular, the

latter work shows that collagen rupture is likely to be relagd to failure of crosslinks, such
as the decorin molecule.

D.3 Fundamentals of continuum micromechanics {
random homogenization of elastoplastic proper-
ties

D.3.1 Representative volume element

In continuum micromechanics (Hill 1963; Suquet 1997b; Zabt997b, 2002), a material
is understood as a macro-homogeneous, but micro-heterogens body Iling a repre-
sentative volume element (RVE) with characteristic length’, ~ d, d standing for the
characteristic length of inhomogeneities within the RVE (ge Fig. D.1), and™ L , L
standing for the characteristic lengths of geometry or loadg of a structure built up by
the material de ned on the RVE. In general, the microstructue within one RVE is so com-
plicated that it cannot be described in complete detail. Thesfore, quasi-homogeneous
subdomains with known physical quantities (such as volumedictions or elastoplastic
properties) are reasonably chosen. They are called matérghases. The "homogenized'
mechanical behavior of the overall material, i.e. the relan between homogeneous de-
formations acting on the boundary of the RVE and resulting (eerage) stresses, including
the ultimate stresses sustainable by the RVE, can then be @stated from the mechanical
behavior of the aforementioned homogeneous phases (repréing the inhomogeneities
within the RVE), their dosages within the RVE, their characteristic shapes, and their in-
teractions. If a single phase exhibits a heterogeneous nustructure itself, its mechanical
behavior can be estimated by introduction of an RVE within ths phase, with dimensions
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Figure D.1: Multistep homogenization: Properties of phase(with character-
istic lengths of d and d,, respectively) inside RVEs with characteristic
lengths of ™ or "5, respectively, are determined from homogenization over
smaller RVEs with characteristic lengths of, dand ;3 d,, respec-
tively.

"> d, comprising again smaller phases with characteristic letig d, "», and so on,
leading to a multistep homogenization scheme (see Fig. D.1)

D.3.2 Upscaling of elastoplastic properties

tic material behavior, i.e. following the constitutive laws of ideal associated elastoplastic-
ity,

r= (" "D (D.1)

"P= —r@r'
@’

In Eq. (D.2), , and", are the stress and (linearized) strain tensors averaged oygEhase

r with elasticity tensor .; "P are the average plastic strains in phase, . is the plas-

tic multiplier of phase r, and f,( ) is the yield function describing the (ideally) plastic

characteristics of phase. The RVE is subjected to Hashin boundary conditions, i.e. to
"homogeneous' (‘macroscopic’) strairts at its boundary, so that the kinematically com-

patible phase strains', inside the RVE ful Il the average condition

~f(C)=0, - 0 f(,) O (D.2)

E = fr"r (D3)
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with f, as the volume fraction of phase. In a similar way, the equilibrated phase stresses
¢ ful ll the stress average condition

= f (D.4)

with  as the ‘macroscopic' stresses.

The superposition principle (following from linear elastity and linearized strain) implies
that the phase strains”, are linearly related to both the macroscopic strain& , and to
the free strains"P (which can be considered as independent loading paramejers
X
r= B+ is o8 (D.5)
S
with . as the fourth-order concentration tensor (Hill 1965), and,s as the fourth-order
in uence tensors (Dvorak 1992). The latter quantify the phae strains", resulting from
plastic strains"®?, while the overall RVE is free from deformationg = O.

In absence of plastic strainsf{ < 0, "P = 0 in Egs. (D.1)-(D.2)], the RVE behaves fully
elastically, so that (D.5), (D.4), (D.3), and (D.1) yield a macroscopic elastic law of the
form

X
= hom.pE with hom= for (D.6)

r

as the homogenized elastic sti ness tensor characterizitige material within the RVE. In
case of non-zero 'free’ plastic strainsP, (D.6) can be extended to the form

= M™M:(E EP) (D.7)

(D.7), together with (D.1), (D.4), (D.5), and (D.6) gives acess to the macroscopic plastic
strains E P, reading as

IIX # 1
EP= fr r r
)

" #

( X X )
frer (iE+ s:"8) "F +E (D.8)

r S

D.3.3 Matrix-inclusion based estimation of concentration and

in uence tensors

We estimate the concentration and in uence tensors from mak-inclusion problems, as
it is standardly done in the eld of elasticity homogenizaton. However, we consider not
only elastic, but also free (plastic) strains in both the inkusion (with stiness i) and
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surrounding in nite matrix (with stiness ©); these plastic strains are denoted by .

and E %P, At its in nite boundary, the in nite matrix is subjected to homogeneous strains
E! . Then, the strains in the inhomogeneity can be given in the fm (Zaoui 2002)

IIinc:[ + i?mc:(inc 0)] l:[El + i?mc:(inc:"i?]c O:EO;p)] (D,9)
We estimate the strains in phase, ", as those of an inclusion of the same shape as the
phase, i.e. we identify'i,c = ", in (D.9), and insert this result into the strain average rule
(D.3), which yields a relation betweerE! and E ,
(o )
EY = f[+ P O
r
C )
E f[+ J:(s O Si(sE PHETD) (D.10)
S
Use of Eqg. (D.10) in (D.9) speci ed for* = ", yields
8
8, ) 1
v=l+ i °)]1:: L+ 2o Ot
i
C R
E fs[ + 2:(5 0)]1: 2:(51"2 O:Eo'p)
S
+ O:i( P 0EOD (D.11)

In (D.11), the properties of the ctitious matrix, © and E°P, still need to be chosen.
As regards ©, its choice governs the interactions between the phasesiies the RVE:

0= hom relates to a dispersed arrangement of phases where all plsageel' the overall
homogenized material, and the corresponding homogenizatischeme is standardly called
self-consistent (Hershey 1954; Kmner 1958), well-suttdor polycrystalline materials. On
the other hand, the matrix may be identi ed as a phaseM itself, °= \ , which relates
to a matrix-inclusion-type composite, and the correspondg homogenization scheme is
standardly referred to as Mori-Tanaka scheme (Mori and Tarka 1973; Benveniste 1987).
Herein, we have to make an additional choice, relating to thplastic (free) strains in
the ctitious matrix, E%P. For a matrix-inclusion composite (Mori-Tanaka scheme),ti
seems natural to identify E P with the free strain in the matrix phase, "W In case
of the self-consistent scheme, however, we have to rememb®at the ctitious matrix
does not exhibit any volume fractions { therefore, it cannothost any free strains, and
E %P is set zero in that case. In particular, one is not allowed toe$ E °° equal to the
macroscopic plastic strains prevailing at the RVE level, sce this would be in conict
with the concentration relation (D.5).
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Concentration relation (D.5) remains to be specied for thepolycrystals and matrix-
inclusion composites: For the former (self-consistent same, ° = hom EOP = (),
(D.11) reads as
8
20, ) s
=Lk PiCe MMt il PG Pyt
i

C ) )

E fl o 20 MM S aiE e PP (D)

S

Comparing (D.12) with (D.5), we can identify the concentraion and in uence tensors as

( ) 1
0 h 1 X 0 h 1
=t iy oM fs + g:(s ™M) (D.13)
S
and
s = = ( frr+):(|}: ?:r) if r=s (D.14)
otherwise
s = fs o é : 2: s (D.15)
whereby
L=+ Oi(,  homy? (D.16)

For the Mori-Tanaka case (°= y, E®" ="} ), (D.11) reads as

2(y ) 1
"r:[+ 9:(r M)]l:: .fi[+ io:(i M)]l
( X )
E fs[‘l' (s):(s M)]l:[g:(s:"g M:"plv|)]
S (A VI ) (D.17)

Comparing (D.17) with (D.5), we can identify the concentraion and in uence tensors as

(D.18)
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and
s = =0 f + ):( rl: 9: r) if r=s (D.19)
rs:rM—r(fMM M m T
X
fo b 90w o9 if o s=M (D.20)
i
otherwise
= fsri b 20 g (D.21)

D.4 Application of microelastoplastic theory to bone

In the following, we will apply the above developed microettoplastic theory to the ma-
terial “cortical bone'. Therefore, we will employ a slight daptation of a recently proposed
and validated multiscale material model for bone elastigit (Fritsch and Hellmich 2007),
see Figure D.2. The adaptation lies in considering di erenbrientations of non-spherical
mineral crystals, as this precision of morphological resaion is mandatory for the ap-
propriate prediction of the material's strength properties, as has been shown for other
materials such as hydroxyapatite biomaterials (Fritsch etal. 2009a), concrete (Pichler
et al. 2008a,b), or gypsum (Sanahuja et al. 2008). As the basior such a multiscale
micromechanics model, the mechanical properties of the mlentary components, of hy-
droxyapatite, of collagen, and of water, are required. Thewill be discussed rst.

D.4.1 Elastic properties of hydroxyapatite, collagen, and water

Concerning the tissue-independent (‘universal’) phase gerties of the elementary con-
stituents of bone, being the same for all tissues discussegréin, we consider the following
experiments (see also (Fritsch and Hellmich 2007)): Testgtivan ultrasonic interferome-
ter coupled with a solid media pressure apparatus (Katz andRgaincik 1971; Gilmore and
Katz 1982) reveal the isotropic elastic properties of hydkyapatite powder (Table D.1),
which, in view of the largely disordered arrangement of minals (Lees et al. 1994, Fratzl
et al. 1996; Peters et al. 2000; Hellmich and Ulm 2002a), arensidered as su cient for the
characterization of the mineral phase (Hellmich and Ulm 2@b; Hellmich et al. 2004b).
Given the absence of direct measurements of (molecular)leglen, the elastic properties of
(molecular) collagen are approximated by those of dry rat thtendon, a tissue consisting
almost exclusively of collagen. By means of Brillouin lighscattering, Cusack and Miller
(1979) have determined the respective ve independent etacsconstants of a transversely
isotropic material (Table D.1). We assign the standard bulkmodulus of water (Table
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D.1) to phases comprising water with mechanically insigncant non-collagenous organic
matter.

Phase Bulk Shear Experimental source
modulus modulus
k [GPa] [GPa]

Hydroxyapatite kpa =82:6 HA =44:9 (Katz and Ukraincik 1971)

Water containing
non-collagenous

organics or osteocytes | ky,o =2:3 H,0 =0
CijkI CijkI
[GPa] [GPa]
Collagen Ceol: 3333 = 17:9 | Ccol: 1133 (Cusack and Miller 1979)

=71
Ceol; 1111 = 11:7 | Ceol; 1122 =511
Ceol; 1313 = 313

Table D.1: "Universal' (tissue and location-independentjsotropic (or trans-
versely isotropic) sti ness values of elementary constignts

D.4.2 Failure properties of hydroxyapatite crystals and co llagen

Recent work on porous hydroxyapatite biomaterials (Fritde et al. 2009a) has revealed
that the elastic limit of single (needle-type) hydroxyapaite crystals can be appropriately
characterized through a criterion of the form:

=0;:::;2 fuas (pas )= maxj NRj+ NN dt =0 (D.22)

with Euler angles' and # de ning the crystal needle orientation vectorN=e¢, in the
reference frame €, e,, &;), and with  de ning the orientation of vector n related to

shear stresses (see Figure D.3).= % = U s the ratio between the uniaxial tensile

strength %' and the shear strength 1% of pure hydroxyapatite (abbreviated "HA'),
and §h = N nwar nand NN = N wag N are the normal and shear stress
components related to a surface with normaN (';# ). These strength values can be
gained from experiments of Akao et al. (1981) and Shareef dt €1993), see (Fritsch et al.
2009a) for further details, and they amount to 52.2 MPa and 88 MPa, respectively
(see also Table D.2). Beyond the elastic regime, we considessociated ideal plasticity
according to Eg. (D.2) - having in mind a mathematically feable strategy for mimicking
layered water-induced ductile sliding between crystals,hich maintains the crystals' stress

levels reached at the elastic limit. Use of (D.22) in (D.2) wlds the ow and consistency
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rules as

"Pax = +a[N N+ sgn(§A)N n+n N

C NN NN it _ A
—HA maxj gal+ Ha ha = 0;
—+a O
. NN NN ult:t .
maxj jaj+ Qa HA 0; (D.23)

Figure D.3: Cylindrical (needle-like) HA inclusion oriened along vectorN and
inclined by angles# and' with respect to the reference frameg, e, &;);
local base frame ¢, e,, e ) is attached to the needle.

Phase Uniaxial tensile Uniaxial shear Experimental source
strength [MPa] strength [MPa]

Hydroxyapatite | ‘,j'}f =52:2 | ‘,f"}f =80:3 | (Akao et al. 1981; Shareef et al. 1993)
Collagen | Wo=144:7 | | (Gentleman et al. 2003; Lees et al. 1984a)

Table D.2: "Universal' (tissue and location-independentphase strength values

Experiments on collagen brils have evidenced the quasiditite failure characteristics of
this material (Christiansen et al. 2000; Gentleman et al. ZIB). Failure of the crosslinks
between the cylindrical collagen molecules is standardlgeeed upon as the primary cause
of collagen failure in the longitudinal direction of the macules ( brils) (Buehler 2006;
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Vesentini et al. 2005). We here represent this fact by a faile criterion of the form

feol( col) = 1€ col &3 g(l)tl 0 (D.24)

where the direction three coincides with the principal origation direction of collagen (see
Figure D.2). Once the equal sign holds in criterion (D.24), &consider that the strengths
of both the collagenous phase and of the overall bone matdsiaare reached, while any
potential plastic or, more probably, microcracking and crek bridging events leading to
toughening in the post-peak regime (Nalla et al. 2004), arespond the scope of the present
manuscript.Given the aforementioned role of the collagerrasslinks for the strength of
molecular collagen, a non-mineralized collagenous tisswéh crosslinking characteristics
close to that of bone is the favorable access to the strengtt molecular collagen. As
before, we will rely on rat tail tendon, which, under wet conttions, exhibits a strength of
106.1 MPa (Table 2 in (Gentleman et al. 2003)). Again, we haue consider close packing
of collagen as to get access to properties of molecular cgéa. It is known from neutron
di raction studies (Lees et al. 1984a; Lees 1987a) that diactional spacing (a measure
for the lateral distance of collagen molecules) reducesrimal.5 nm (for wet collagen) to
1.1 nm (for maximally packed (dry) collagen). Accordinglythe cross sectional area of
a tensile specimen would reduce by the ratio 1.5/1.1, so thahe strength of molecular
collagen follows to be 1.5/1.1 times higher than that of wetatlagen, i.e. 144.7 MPa (see
Table D.2).

D.4.3 Homogenization over wet collagen

An RVE of wet collagen [see Figure D.2(a)] hosts cylindricahtermolecular pores (labeled
by sux " im") being embedded into a matrix of crosslinked molecular dagen (labeled by
su x = col), which is suitably considered through a Mori-Tanaka schrae. Unless collagen
rupture criterion (D.24) is ful lled, the RVE behaves purely elastically (*?,="F,=0),
with a homogenized sti ness M1, following from speci cation of (D.6) for r=[col, im].
Thereby, the volume fractions ful ll fi,, + f.o = 1, and the concentration tensors g
and i, respectively, are given through speci cation of (D.18) fo { = gg; M= cols
as well as for \= ¢ and = in = 3ky,0 , respectively. Jjq = 1=3j i Is the
volumetric part of the fourth order unity tensor ; see Table D.1 forky,o. According
to the aforementioned speci cations, the concentration tation (D.17) for the matrix of

molecular collagen within an RVE of wet collagen reads as

n 01

"ol = (1 fim) +fim  + g&' : ( im col) ' E wetcol (D-25)

whereby the components of morphology tensorgg;} are given in the Appendix.
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D.4.4 Homogenization over mineralized collagen bril

An RVE of mineralized collagen brils [see Figure D.2(b)] hsts crystal clusters (repre-
sented through spherical hydroxyapatite inclusions, lalbed by sux * HA") and cylindrical
micro brils of wet collagen (labeled by su x ~wetcol), which are mutually intertwingled.
In order to consider this morphology, a self-consistent seme is appropriate. Unless the
wet collagen phase does not fail [see Subsections D.4.3 andl.B) in particular Eq. (D.24)],
the RVE behaves purely elastically (]}, =" 5 .= 0), with a homogenized sti ness §5°
following from speci cation of (D.6), forr=[HA, wetcol. Thereby, the volume fractions
fulll fyewo + fha = 1, and the concentration tensors ya and etcol, respectively, are

given through speci cation of (D.13) for "m= 8¢S for 9,= ™ and 0. .= ™ re-

sph cyl?
spectively, as well as for,= ya =3kya +2 wa ,and = M, respectively. =
is the deviatoric part of the fourth order unity tensor ; see Table D.1 fokkya and na.
According to the aforementioned speci cations, the concemation relation (D.12) for the

phase "wet collagen' within an RVE of mineralized collagerbril reads as

h _ [
n — + fib . MT SCS
wetcol — cyl - wetcol fib
fib | 1
b . MT SCS
fwetcol + cyl - wetcol fib +
h fib ! . '
ib . SCS .
fua  + on' HA fib . Etib (D.26)

whereby the components of fs'gh and ‘;'f,’l are given in the Appendix { and" wewco (here the
“microscopic' strain) is identical toE yetco Of Eq. (D.25), there being the “macroscopic'
strain.

D.4.5 Homogenization over extra brillar space (hydroxyap atite
foam)

An RVE of extra brillar space [see Figure D.2(c)] hosts cry=l needles (represented
through cylindrical hydroxyapatite inclusions, labeled g sux ® HA") being oriented in

all space directions, and spherical, water- lled pores (tarcrystalline space, labeled by
su x " ic'). The corresponding polycrystal-type morphology is apmpriately represented
through a self-consistent scheme. Sliding between crystas modeled through criterion
(D.23), leading to plastic strains" [}, , and no plasticity occurs in the intercrystalline space
"P=0). The homogenized sti ness of an RVE of extra brillar space 35", follows from

speci cation of (D.6) for r=[HA, ic]. Thereby, the volume fractions ful ll fy + fic =1,

and the concentration tensors yax and i, respectively, are given through specica-
tion of (D.13) for hom= SCSI "for O = ¢ (#:')and %= & | respectively, as well

ef cyl sph?
asfor = ya and ; = i =3ky,0 (see Table D.1), respectively. Thereby, summation
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over all crystal orientations is done by integration over Eler angles# = 0;:::; and
=050 ;2 . Accordingly, the concentration-in uence relation (D.17 for the hydroxya-
patite phase oriented in a speci ¢ direction £, ' ) within an RVE of extra brillar space
reads as

"har =[ + cyl(# ) ( HA SCS”)] o
gg £z sin d d
o faa [ + cyl( )i ( ha sl 147"'
' =0 =0
. (0]
el + niCic oot
g 2 7
. Eet fha [ + cyl( )i ( Ha | B
' =0 =0
sin d d
cyl( ): HA :”EA#' 47 + cyl(# ) :”EA#' (D'27)

€

whereby the components of & sph and f, are given in the Appendix. According to (D.8)
applied to the present homogenlzatlon step, plastic strasn},, in the hydroxyapatite
phases imply a plastic strainE £, at the level of the RVE of extra brillar space.

D.4.6 Homogenization over extracellular bone matrix

An RVE of extracellular bone matrix or ultrastructure [see kgure D.2(d)] hosts cylindrical
mineralized brils (labeled by sux " fib') being embedded into a matrix of extra bril-
lar space (labeled by sux ‘ef'). This morphology is suitably modeled by means of a
Mori-Tanaka scheme. As discussed in the previous SubsentiD.4.5, the extra brillar
matrix may be subjected to plastic strains, while we do not ewsider plastic strains in the
mineralized brils ("F, = 0). The homogenized sti ness of an RVE of extracellular bone
matrix, Mii , follows from speci cation of (D.6) forr=[fib, ef]. Thereby, the volume
fractions fulll fs, + fof = 1, and the concentration tensors f,b and ¢, respectively,
follow from speci cation of (D.18) for y= 55", for 2, = Cyl, as well as for ;= 75°
and = S°5"', respectively. Accordingly, the concentration in uence elation (D.17) for

the phase extra brillar space within an RVE of extracellula bone matrix reads as
n 0
" — f . SCS SCSII 1
or = fer +fan[ + o1 ( o o ]
n

E excel ffib[ + g;l : fsltg:s SCS” )] l' g;l :( ngS” :"ef) (D-28)

whereby the components of ef, are given in the Appendix. According to (D.8) ap-

plied to the present homogenization step, plastic strainsiithe extra brillar space (see
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Subsection D.4.5,"%, =EP®,) imply a plastic strain E!, ., at the level of the RVE of the

v ef T exce
extracellular bone matrix.

D.4.7 Homogenization over extravascular bone material

An RVE of extravascular bone material [see Figure D.2(e)] Ists spherical empty pores
called lacunae (labeled by su x lac’) being embedded into a matrix of extracellular bone
matrix (labeled by su x "~ excel). This morphology is suitably modeled by means of a
Mori-Tanaka scheme. As discussed in the previous SubsentiD.4.6, the extracellular
bone matrix may be subjected to plastic strains while we do h@onsider plastic strains
in the lacunae (. = 0). The homogenized sti ness of an RVE of extravascular bone
material, MU follows from specication of (D.6) for r=[lac, excel]. Thereby, the
volume fractions fulll fipc + faxcer = 1, and the concentration tensors ¢ and excel,
respectively, follow from speci cation of (D.18) for y= s , for .= &5, as well as
for = = and = MUl respectively. . = relates to the fact that the lacunar
pores are empty (drained) in all experiments considered ire&ion D.6 { for undrained
situations, oc = 3kuy,0 would be appropriate, see (Fritsch and Hellmich 2007) for de
tails. According to the aforementioned speci cations, theoncentration-in uence relation
(D.17) for the phase “extra brillar space' within an RVE of etracellular bone matrix

reads as

n 0]
"excel = Texcet * flacl ggﬁel : eszelzll ] 1
n 0}
E exvas fTac[ g;ﬁd : glx-gtlell ] ! : Séﬁel : ( ('\a/lxztlell - excel) (D'29)

whereby the components of ggge' are given in the Appendix. According to (D.8) applied
to the present homogenization step, plastic strains in thex&acellular bone matrix (see
Subsection D.4.6,"E, . =E?® ..) imply a plastic strain E®, . at the level of the RVE of

1 excel ™

the extravascular bone material.

D.4.8 Homogenization over cortical bone material

An RVE of cortical bone material [see Figure D.2(f)] hosts dindrical empty pores called
Haversian canals or vascular space (labeled by su xas) being embedded into a ma-
trix of extravascular bone material (labeled by su x ‘exvas). This morphology is suit-
ably modeled by means of a Mori-Tanaka scheme. As discussadhie previous Subsec-
tion D.4.7, the extravascular bone material may be subjedaeto plastic strains, while
we do not consider plastic strains in the Haversian canals{,, = 0). The homoge-
nized sti ness of an RVE of cortical bone material, M1V | follows from speci cation of

(D.6) for r=[vas, exvag. Thereby, the volume fractions fulll fas + fexas = 1, and
the concentration tensors ,s and exas, respectively, follow from speci cation of (D.18)
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for m= Soas » for D= on®, as well as for (= o= and = gli , respectively.
vas = relates to the fact that the Haversian canals are empty (draed) in all exper-
iments considered in Section D.6. According to the aforemtganed speci cations, the
concentration-in uence relation (D.17) for the phase "exavascular bone material' within

an RVE of cortical bone material reads as

" _ exvas . MTHI 71 1.
exvas — fexvas + fvas[ cyl * exvas ] :
exvas . MTIII 1. exvas . MTIHI . n
E cort fVas[ cyl * exvas ooyl . ( exvas exvas) (D-30)

whereby the components of &i®* are given in the Appendix. According to (D.8) applied
to the present homogenization step, plastic strains in thexeravascular bone material (see
Subsection D.4.7,"R,..=EP. . .s) imply a plastic strain E®,, at the level of the RVE of

the cortical bone material.

D.5 Algorithmic aspects

We are left with using the partially incremental constitutive relations developed in Sec-
tions D.3 and D.4 for computation of stress-strain relatios. This requires some algorith-
mic deliberations which we will describe in view of a strestrain curve for uniaxial stress
applied to an RVE of cortical bone, ot = 338; €3, the loading directione; coinciding
with the longitudinal (axial) direction of the bone materid (see Figure D.2). This stress
is applied in load increments labeled by, starting at 33 = 0, and being accumulated
up to failure of the material. Accordingly, ow rule (D.2) and (D.23) is considered in
a discretized fashion: It is evaluated for a nite number of eedle orientation directions
(‘families