
HAL Id: pastel-00005644
https://pastel.hal.science/pastel-00005644

Submitted on 20 Dec 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sur des systèmes MIMO avec retour limité: distorsion
bout-à-bout, retour analogique du canal, et multiplexage

par couche
Jinhui Chen

To cite this version:
Jinhui Chen. Sur des systèmes MIMO avec retour limité: distorsion bout-à-bout, retour analogique
du canal, et multiplexage par couche. domain_other. Télécom ParisTech, 2009. Français. �NNT : �.
�pastel-00005644�

https://pastel.hal.science/pastel-00005644
https://hal.archives-ouvertes.fr


DISSERTATION
In Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy
from TELECOM ParisTech

Specialization: Communication and Electronics

Jinhui Chen

On MIMO Systems with Limited Feedback:
End-to-End Distortion, Analog Channel Feedback,

and Layered Multiplexing

Defense scheduled on the 9th of July 2009 before a committee composed of:

Reporters Prof. E. Telatar, EPFL
Prof. M. Debbah, SUPÉLEC
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Abstract

In this thesis, we investigate the following three fields on multi-input multi-
output (MIMO) systems with limited feedback.

End-to-end distortion: The first part of the thesis presents the joint
impact of antenna numbers, source-to-channel bandwidth ratio, spatial cor-
relation and time diversity on the optimum expected end-to-end distortion
in an outage-free MIMO system. In particular, based on the analytical ex-
pression for any signal-to-noise ratio (SNR), the closed-form expression of
the asymptotic optimum expected end-to-end distortion at a high SNR is
derived, comprised of the optimum distortion exponent and the optimum
distortion factor. The simulation results illustrate that, at a practical high
SNR, the analysis on the impacts of the optimum distortion exponent and
the optimum distortion factor explains the behavior of the optimum ex-
pected end-to-end distortion. The results in this part could be the perfor-
mance objectives for analog-source transmission systems as well as a guid-
ance on system design.

Analog channel feedback: In the second part of this thesis, we propose to
apply orthogonal space-time block codes (OSTBC) with linear analog chan-
nel feedback. Since MIMO channel information is a sort of analog source
vector, relative to quantized channel feedback, linear analog feedback has the
advantages such as outage-free, self channel adaptation and low complexity.
It is proved that the linear analog transmission method with OSTBC can
achieve the matched filter bound (MFB) on received SNR. In comparison
with the linear analog transmission method with circulant space-time block
coding (CSTBC), the method with OSTBC performs better with respect
to received SNR and mean-squared error. In comparison with the random
vector quantization methods with different modulation schemes, the simu-
lation results show that with respect to average direction error, the linear
analog transmission method with OSTBC performs over any RVQ method
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ii Abstract

with specific modulation scheme in the regimes of relatively high SNR and
low SNR; with respect to average mean-squared error, it performs always
better than the RVQ methods. We also evaluate the effect of applying the
linear analog channel feedback with OSTBC to multiuser MIMO downlink
beamforming. It is shown that the linear analog channel feedback with OS-
TBC can make the system approach the optimum performance within a
short latency.

Layered multiplexing: In the third part of this thesis, with respect to
the systems with short blocks, a new layered multiplexing strategy is pro-
posed to adapt an uncertain channel by Walsh layer-time coding, successive
interference canceller and HARQ signaling. As illustrated by simulation re-
sults, with respect to its high success rate, good performance on average
latency and lower computational complexity, this strategy would be a good
replacement to the widely-used adaptive QAM modulation strategy.



Résumé

Dans cette thèse, nous étudions les trois sujets suivants sur les systèmes de
multiples entrées multiples sorties (MIMO) avec retour limité:

Distorsion bout-à-bout : La première partie de la thèse présente l’impact
conjoint des les nombres d’antenne, le ratio de bande passante de la source
au canal, la corrélation spatiale et diversité dans le temps sur l’espérance
de la distorsion optimale bout-à-bout dans les MIMO systèmes sans panne.
En particulier, repose sur l’expression analytique pour tout les ratios du
signal au bruit (SNR), l’expression asymptotique de l’espérance de la dis-
torsion optimal bout-à-bout au SNR élevé est dérivé, composé de l’exposant
de distorsion optimale et le facteur de distorsion optimale. Les résultats
des simulations montrent que, à un SNR élevé pratique, l’analyse sur les
impacts de l’exposant de distorsion optimale et le facteur de distorsion op-
timale explique le comportement de la distorsion optimale bout-à-bout. Les
résultats présentés dans cette partie pourraient être les objectifs de perfor-
mance pour les systèmes qui transmettent les sources analogique et en outre
les directives sur la conception du système.

Retour analogique du canal : Dans la seconde partie de cette thèse, nous
proposons d’appliquer le codage bloc d’espace-temps orthogonal (OSTBC)
sur retour analogique linéaire du canal. Considérant l’information du canal
MIMO est une sorte de source vectorielle analogique, par rapport au retour
du canal quantifié, le retour analogique linéaire a les avantages comme sans
panne, l’adaptation automatique au canal et peu complexe. Il est prouvé
que la méthode de transmission analogique linéaire OSTBC peut atteindre
la borne de filtre adapté (MFB) sur SNR reçu. Par rapport en méthode
analogique linéaire du codage bloc d’espace-temps circulant, la méthode
linéaire analogique OSTBC obtient de meilleurs résultats à l’égard de SNR
reçu et erreur quadratique moyenne (MSE) ; Par rapport en méthode de
la quantification vectorielle aléatoire, les résultats des simulations montrent
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iv Abstract

que sous une contrainte stricte de latence, leur performances sont proches à
l’égard de l’erreur moyenne au sens et la méthode linéaire analogique OSTBC
exécute encore mieux à l’égard erreur quadratique moyenne. Nous étudions
également l’incidence de appliquer le retour linéaire analogique OSTBC au
beamforming en liaison descendante pour multiutilisateurs MIMO et nous
montrons que le retour linéaire analogique OSTBC peut rendre l’approche
du système des performances optimales dans un temps de latence court.

Multiplexage par couche: Dans la troisime partie de cette thèse, en con-
sidérant les systèmes avec des blocs courts, une nouvelle stratégie de multi-
plexage par couches est proposée d’adapter un canal incertain par le codage
couche-temps Walsh, l’annuleur d’interférence successif et HARQ signali-
sation. Comme l’illustrent les résultats de la simulation, en raison de ses
performances proches mais beaucoup moins complexe, cette stratégie serait
un bon substitut à la stratégie de modulation QAM adaptive qui est large-
ment utilisée.
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1 Introduction

Dans un système de communication sans fil, la condition de propagation
détermine les performances du système aux restrictions comme la contrainte
du pouvoir à long terme ou à court terme, le ratio de pouvoir du pic à la
moyenne, et une latence maximale. Bien que le modèle de canal et des infor-
mations statistiques de propagation dans certains environnements peuvent
être prédit [1–6], la réalisation de canal instantané est incertaine. Pour un
canal en lente disparition, la connaissance de canal instantané à l’émmeteur
pourrait aider un système améliorer ses performances [7–10].

Dans la pratique, non seulement les systèmes duplex division frquence
(FDD) utilisent les liaisons retours, mais aussi les systèmes duplex à division
de temps (TDD) pour l’étalonnage. Conformément à la technique adaptée
au canal et employée par le système, l’information sur la liaison allée à
retour n’est pas nécessairement les informations complètes d’état du canal.
Ce pourrait être une représentation de la condition de la liaison allée qui est
nommé comme retour limité.

Dans cette thèse, nous étudions les trois sujets suivants sur les systèmes
de multiples entrées multiples sorties (MIMO) avec retour limité:

Distorsion bout-à-bout : La première partie de la thèse présente l’impact
conjoint des les nombres d’antenne, le ratio de bande passante de la source
au canal, la corrélation spatiale et diversité dans le temps sur l’espérance
de la distorsion optimale bout-à-bout dans les MIMO systèmes sans panne.
En particulier, repose sur l’expression analytique pour tout les ratios du
signal au bruit (SNR), l’expression asymptotique de l’espérance de la dis-
torsion optimal bout-à-bout au SNR élevé est dérivé, composé de l’exposant
de distorsion optimale et le facteur de distorsion optimale. Les résultats
des simulations montrent que, à un SNR élevé pratique, l’analyse sur les
impacts de l’exposant de distorsion optimale et le facteur de distorsion op-
timale explique le comportement de la distorsion optimale bout-à-bout. Les
résultats présentés dans cette partie pourraient être les objectifs de perfor-
mance pour les systèmes qui transmettent les sources analogique et en outre
les directives sur la conception du système.

Retour analogique du canal : Dans la seconde partie de cette thèse, nous
proposons d’appliquer le codage bloc d’espace-temps orthogonal (OSTBC)
sur retour analogique linéaire du canal. Considérant l’information du canal
MIMO est une sorte de source vectorielle analogique, par rapport au retour
du canal quantifié, le retour analogique linéaire a les avantages comme sans
panne, l’adaptation automatique au canal et peu complexe. Il est prouvé
que la méthode de transmission analogique linéaire OSTBC peut atteindre
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La source d’entrée-sortie mai soit une séquence analogique (d’amplitude
continue) ou d’une séquence numérique (d’amplitude discrète). Quelle que
soit la source, il y a toujours un compromis entre l’efficacité et la fiabilité.
Pour transmettre une séquence numérique, le compromis se situerait entre
l’efficacité spectrale (bits/s/Hz) et la probabilité d’erreur. Pour transmet-
tre une séquence analogique, sous l’hypothèse de source Gaussian blanc de
bande limitée, le compromis serait entre le ratio de bande passante de la
source au canal Ws/Wc (S5..97 Tf 15.75 -1.64 D[(c)]TJ/i fiabilité.



Dans cette thèse, en supposant une source gaussien blanche continue est
transmise sur un canal MIMO et le transmetteur connâıt la capacité de canal
instantanée, nous analysons l’impact conjoint de le ratio de bande passante
de la source au canal (SCBR), la diversité spatiale, la corrélation spatiale et
la diversitéde temps à l’espérance de la distorsion optimal bout-à-bout. Les
théorèmes suivants sont issus:

Théorème 1 (L’Espérance de la Distorsion Optimale sur Canal Non Corrélés).
Supposons une source gaussien blanche continue au temps de la bande pas-
sante Ws et de la puissance Ps d’être transmise sur un canal MIMO non
corrélé de la bande passante Wc en disparition bloc. L’espérance de la dis-
torsion optimal bout-à-bout est:

ED∗
unc(η) =

Ps|U(η)|∏Nmin
k=1 Γ(Nmax − k + 1)Γ(Nmin − k + 1)

pour tout ρ (4)

òu η = Ws/Wc (SCBR), Nmin = min{Nt, Nr}, Nmax = max{Nt, Nr}, et
U(η) est une Nmin ×Nmin matrice de Hankel

uij(η) =
(

ρ

Nt

)−dij

Γ(dij)Ψ
(

dij , dij + 1− 2
η
;
Nt

ρ

)
(5)

òu dij = i + j + |Nt −Nr| − 1, 1 ≤ i, j ≤ Nmin, et Ψ(a, b; x) est la fonction
de Ψ (voir [16, pp. 257-261]).

Théorème 2 (L’Exposant de Distorsion Optimale sur Canal Non Corrélés).
L’exposant de distorsion optimale sur canal non corrélé

∆∗
unc(η) =

Nmin∑

k=1

min
{

2
η
, 2k − 1 + |Nt −Nr|

}
. (6)

Théorème 3 (Le Facteur de Distorsion Optimale sur Canal Non Corrélés).
Dfinir deux fonctions de quatre tuple κl(β, t, m, n) et κh(β, t, m, n) comme
dans (7) et (8) sur le haut de cette page, pour β ∈ R+ et t ∈ {0,Z+}.

Le facteur de distorsion optimale µ∗unc(η) est donnée comme suit:
1. Pour 2/η ∈ (0, |Nt−Nr|+1), dénommé le régime SCBR haut (HSCBR),le

facteur de distorsion optimale est

µ∗unc(η) = PsNt
∆∗unc

κh( 2
η , Nmin, Nmin, Nmax)∏Nmin

k=1 Γ(Nmax − k + 1)Γ(Nmin − k + 1)
. (9)

Il diminue de façon monotone avec N( max).
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κl(β, t, m, n) =





Γ(n−m + 1)Γ(β−n+m−1)
Γ(β)

∏t
k=2 Γ(k)Γ(n−m + k)

×Γ(β−n+m−2k+2)Γ(β−n+m−2k+1)
Γ(β−k+1)Γ(β−n+m−k+1) , t > 1;

Γ(n−m + 1)Γ(β−n+m−1)
Γ(β) , t = 1;

1, t = 0.

(7)

κh(β, t, m, n) =

{∏t
k=1 Γ(k)Γ(n−m− β + k), t > 0;

1, t = 0.
(8)

2. Pour 2/η ∈ (Nt + Nr − 1, +∞), dénommé le régime SCBR faible
(LSCBR),le facteur de distorsion optimale est

µ∗unc(η) = PsNt
∆∗unc

κl( 2
η , Nmin, Nmin, Nmax)∏Nmin

k=1 Γ(Nmax − k + 1)Γ(Nmin − k + 1)
. (10)

3. Pour 2/η ∈ [|Nt − Nr| + 1, Nt + Nr − 1], dénommé le régime SCBR
modérée (LSCBR),le facteur de distorsion optimale est

µ∗unc(η) =





PsNt
∆∗unc

κl(
2
η
,l,Nmin,Nmax)κh( 2

η
−2l,Nmin−l,Nmin,Nmax)

∏Nmin
k=1 Γ(Nmax−k+1)Γ(Nmin−k+1)

,

mod { 2
η + 1− |Nt −Nr|, 2} 6= 0;

PsNt
∆∗unc log ρ

κl(
2
η
,l−1,Nmin,Nmax)κh( 2

η
−2l,Nmin−l,Nmin,Nmax)

∏Nmin
k=1 Γ(Nmax−k+1)Γ(Nmin−k+1)

,

mod { 2
η + 1− |Nt −Nr|, 2} = 0

(11)

òu l =
⌊

2
η
+1−|Nt−Nr|

2

⌋
.

Théorème 4 (L’Espérance de la Distorsion Optimale sur Canal Corrélés).
L’espérance de la distorsion optimale sur un canal MIMO spatialement corrélés
est

ED∗
cor(η) =

Ps|G(η)|
∏Nmin

k=1 σ
|Nt−Nr|+1
k Γ(Nmax − k + 1)

∏
1≤m<n≤Nmin

(σn − σm)
.

(12)
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óu G(η) est une matrice de Nmin ×Nmin dont l’entrée (i, j)th donnée par

gij(η) =
(

ρ

Nt

)−dj

Γ(dj)Ψ
(

dj , dj + 1− 2
η
;

Nt

σiρ

)
. (13)

dj = |Nt−Nr|+ j. σ = {σ1, σ2, · · · , σNmin} avec 0 < σ1 < σ2 < · · · < σNmin

désignant les valeurs propres ordonées de la matrice de corrélation Σ.

Théorème 5 (L’Exposant de Distorsion Optimale sur un Canal Corrélés).
L’exposant distortion optimale ∆∗

cor dans le cas de canal MIMO spatialment
corréés est le même que l’exposant ∆∗

unc dans le cas de canal MIMO non
corréés, i.e.,

∆∗
cor(η) =

Nmin∑

k=1

min
{

2
η
, 2k − 1 + |Nt −Nr|

}
(14)

Théorème 6 (Le Facteur de Distortion Optimal surun Canal Corrélés). Le
facteur de distortion optimale µ∗cor(η) est donnée comme suit.

1. Pour 2/η ∈ (0, |Nt −Nr|+ 1) (HSCBR), le facteur de distorsion opti-
male est

µ∗cor(η) =
Nmin∏

k=1

σ
− 2

η

k µ∗unc(η). (15)

2. Pour 2/η ∈ (Nt + Nr − 1, +∞) (LSCBR), le facteur de distorsion
optimale est

µ∗cor(η) =
Nmin∏

k=1

σ−Nmax
k µ∗unc(η). (16)

3. Pour 2/η ∈ [|Nt − Nr| + 1, Nt + Nr − 1] (MSCBR), le facteur de
distorsion optimale est

µ∗cor(η) =
(−1)

l(l−1)
2 |V3(σ)|

∏Nmin
k=1 σ

|Nt−Nr|+1
k

∏
1≤m<n≤Nmin

(σn − σm)

×
Nmin−l∏

k=1

(k)l

(|Nt −Nr| − 2
η + l + k)l

µ∗unc(η)

(17)
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óu l = b
η
2
+1−|Nr−Nt|

2 c et chaque entrée de V3(σ) est

v3,ij = σ
−min{j−1, 2

η
−dj}

i . (18)

Théorème 7 (Convergence).

lim
Σ→I

µ∗cor(η) = µ∗unc(η). (19)

Théorème 8 (L’Espérance de Distorsion Optimale avec Entrelacement en
Temps). L’espérance de distorsion optimale bout-à-bout dans les systèmes
sur canal non corrélés en disparition de bloc avec parfait entrelacement en
temps est

ED∗
int(η) = P 1−L

s [ED∗
unc(Lη)]L . (20)

Au SNR élevé, le ED∗
int asymptotique est de la forme

ED∗
asy,int = µ∗int(η)ρ−∆∗int(η). (21)

Donnée (20), on a

ED∗
asy,int(η) = P 1−L

s ED∗
asy,unc

L(Lη). (22)

Par conséquent, l’exposant de distortion optimale est

∆∗
int(η) = L∆∗

unc(Lη), (23)

comme dans [17] et le facteur de distorsion optimale est

µ∗int(η) = P 1−L
s µ∗unc

L(Lη) (24)

3 Retour Analogique du Canal

Nous supposons que la transmission analogique linénaire sur un canal MIMO
peuvent également bénéficier de la diversité spatiale à venir ainsi que des
degrès de liberté spatiale et il pourrait être obtenu par la codage bloc
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d’espace-temps à l’émetteur et la combinaison correpondante au récepteur.
Puisque, dans un systéme analogique linénaire, pour une source de unité
norme, erreur quadratique moyenne (MSE) est l’inverse du SNR reçu et
c’est la primaire métriques pour la transmission de la source analogique,
nous pensons que, pour les systèmes MIMO, la borne de filtre adapté (MFB)
au SNR reçu (SNRMFB) est un objectif de performance plausible.

On voit que pour une méthode de transmission linéaire analogique, en
raison de sa linéarité, dans l’expression de l’espérance MSE (i.e., distorsion),
la diverité spatiale ne démontre pas en l’exposant de distorsion sur le SNR
transmettre mais dans le facteur de distorsion de côté, et le valeur absolue
de l’exposant est toujours un. Il est connu que une méthode de transmis-
sion non linénaire peut atteindre une value absolue supérieure l’exposant de
distortion [18–22]. Toutefois, en prenant le facteur de distorsion en compte,
une schème non linénaire peut donner de meilleurs résultats pour le SNR
ĺev’e impratique mais peut-être ne pas pour tout SNR.

En outre, en vertu d’une contrainte stricte de latence, une méthode de
transmission lináire analogique serait plus efficace que une méthode de trans-
mission avec quantification, même sur l’exposant de distorsion.

Dans la transmission analogique linénaire, à supposer que la pleine puis-
sance de transmission est utilisèpour transmettre, le vecteur d’une source
analogique doit être réduite et répondre aux contraints du pouvoir trans-
mettre. Dans ce fait, pour récupérer le vecteur de la source au récepteur,
un facteur d’échelle doit être transmise sous une autre manière. À savoir,
dans ce cas, seule la direction du vecteur de la source peut être transmise
par la méthode analogique linénaire. Dans cette thèse, pour simplifier, pour
mesuer la MSE, nous supposons que le facteur d’échelle est transmise par
une autre manière et connu à le récepteur parfaitment.

Alternativement, dans certains scńarios, le récepteur ne doit connâıtre les
directions des vecteurs de la source, par example, en liaison descendte zéro
forçant beamforming (ZFBF) techniques, après sélection de l’utilisateur,
seules les directions de canal doivent être connus à la station de base. Dans
ces cas, l’émetteur n’a pas besoin de connâıtre le facteur d’échelle, la trans-
mission purement analogique linénaire est suffisant. La métrique dans ces
cas serait d’erreur de direction.

Si nous supposons que la information de la direction du canal doit être
utilisée dans ZFBF, nous pourrions mesurer la performance d’un schème de
retour par la ratio du signal à l’interférence (SIR) en liaison descendante,
ce qui indique la dégradation de l’approche ZFBF due aux bruits dans les
procédures de formation et retour. Le borne supérieur sur le SIR serait le
SIR dans l’hypothèse où il n’y a que du bruit dans la procédure de formation

VIII





leur fonctionnalité dans le processus de production. De cette formule 33),

Wa(2) =
[

1 1
1 −1

]
,

Wa(2k) =
[

Wa(2k−1) Wa(2k−1)
Wa(2k−1) −Wa(2k−1)

]
.

(33)

on peut voir que, si nous utilisons une matrice Walsh échelle colonne-sage en
tant que une matrice couche-temps dont les colonnes sont considérés comme
des couches et les lignes sont considérés comme du temps, les interférences
inter couche peut être supprimé ou atténué par l’ajout de lignes en place.

Dans la première transmission, la cible de l’allocation de puissance de
couche est de s’assurer que pas de retransmission est requis lorsque tous les
emph (SNRs de canal instantanée ) dans le bloc, ρh,1t = min{|h|2/|n1t|2},
1 ≤ t ≤ T , sont supérieurs à un certain seuil ρ̄.

Pour savoir le schèma d’allocation de puissance, on doit résoudre un
tableau équation des L + 1 ’equations





ρ̄h,1tPl

l(ρ̄h,1t
∑l−1

l
′
=1

P
l
′+1)

= ρ̄, l = 1, . . . , L,

∑L
l=1 Pl = P

L .
(34)

En résolvant (34), on obtient le seuil de ρh,1t

ρ̄h,1t =
L

∑L
l=1 lρ̄

∏l−1
l
′
=1

(l
′
ρ̄ + 1)

P
(35)

et le schèma d’allocation de puissance

P1 =
ρ̄

ρ̄h,1t
,

Pl =
lρ̄

∏l−1
l′=1

(l
′
ρ̄ + 1)

ρ̄h,1t
, 2 ≤ l ≤ L .

(36)

Par conséquent, le vecteur de multiplexage à couche vec(w)1 est

w1 =
( √

P1 . . .
√

PL

)
. (37)

Au récepteur, le vecteur reçu y1 est traité par SIC de la couche supérieure
sL à la couche inférieure s1. Après une couche est correctement décodé, SIC
recommence à partir du haut vers le bas jusqu’ ce qu’il ne couche plus peut
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être décodé, à savoir, emph (SIC) cycliques. L’exactitude de décodage peut
être vérifiée par le code de détection d’erreur inséré dans le codage canal,
par exemple code de redondance cyclique [1, 31–33]. Quand aucune couche
de plus peut être dcod avec succès, le récepteur retour un signal HARQ q1

du premier transmission bloc d’indiquer quelles couches n’ont pas encore été
correctement décodés et l’émetteur est tenu de préparer la retransmission
en conséquence.

Dans notre système, les informations de la transmission en cours pour
stocker dans C1 est une matrice Y

′
m de taille L × T . Chaque ligen de Y

′
m

est une variation du vecteur reçu après annuler tous les interférences inter-
couche connus, qui sert à le traitment ultérieure sur la couche correspondant.
Pour Y

′
1, toutes les lignes sont les mêmes,

y
′
1,l = y1 − q1X, , 1 ≤ l ≤ L. (38)

Si l’émetteur apprend de qm−1 qu’il existe encore des Lm couches pas
décodé, il démarre la retransmission. Soit L1 = L.

Les puissances des autres couches pas décodé sont amplifiés et le faceur
d’échelle en puissance am pour le mieme transmission,

am =

√
P

Lm‖(1− qm−1) ·w1‖2
(39)

où · désigne le produit de Hadamard.
Dans la transmission bloc deuxième, les autres couches pas décodé sont

renumérotés en tant que x1, . . . ,xL2 , soit X est permutée, et une matrice
Walsh Wa de dimension Lw = 2dlog2 L2e est fixé pour le codage couche-
temps. w1 et q1 sont également permutés en conséquence. Puis, le vecteur
de multiplexage en couche pour mieme transmission bloc est

wm = am · TZP{wa,m, L} ·w1 · (1− qm−1), 2 ≤ m ≤ Lw (40)

oú TZP{wa,m, L} est la fonction de tronquer ou z/’ero-pad la mieme ligne
de Wa, soit wa,m, à la longueur L.

Supposons que le paquet source est composée de 120 bits qui sont i.i.d.
binaires distribués uniformément et la contrainte du temps d’attente maxi-
mum est de 300 utilisations du canal. Trois schéma de multiplexage à couche
avec modulation QPSK et retour de HARQ (L = 2, 3, 4) sont comparées à
trois schémas de modulation avec retour d’ ARQ (QPSK, 16QAM, 64QAM).
Là, les schémas de modulation QPSK, 16QAM et 64QAM sont choisis pour
être la référence, car elles sont actuellement largement utilisés et combinés
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ensemble comme un schéma de modulation adaptative [34–37] avec indica-
teur de canal de la qualité (CQI) en retour dans les spécifications 3GPP
LTE [31,38–44].

En conclusion de cet exemple, en considérant le taux de réussite, la la-
tence moyenne et la complexité globale, plutôt que le système de modulation
adaptative, une système adaptative de multiplexage à couche avec moudla-
tion QPSK modulé QPSK avec L = 1 3 est recommandée pour obtenir gain
de multiplexage à signal sur bruit élevé sans perdre en fiabilité rapport signal
sur bruit faible.
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(a) Taux de r¶eussite

(b) Temps de latence moyen de transmissions r¶eussies

Figure 6: Les r¶esultats de simulation de l'exemple
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Chapter 1

Introduction

1.1 MIMO systems with feedback

In a wireless communication system, the propagation condition determines
the performance of the system within limitations such as short-term or long-
term power constraint, peak-to-average power ratio, and maximum latency.
Although the channel model and the statistical information of propagation
in some environments could be predicted [1–6], the instantaneous channel
realization is uncertain. For a slow-fading channel, the transmitter-side
knowledge on the instantaneous channel would help a system improve its
performance [7–10].

In [11], from the viewpoint of information theory, Biglieri et al. gave an
overview of the works on the role of channel side information on capacity.
For an additive white Gaussian noise (AWGN) channel in the single-user
setting, although the perfect channel state information at the transmitter
(CSIT) in addition to the receiver gives only a little advantage in terms of
ergodic capacity, the performance enhancement exhibited in terms of outage
capacity (reliability) is dramatic [11–15] and encoding and decoding could
be enormously simplified [16]. In the single user setting, for a multi-input
multi-output (MIMO) Gaussian channel with a large number of transmit
antennas, the optimal water-filling power control strategy requiring perfect
CSIT brings a substantial four-fold increase in ergodic capacity at low signal-
to-noise (SNR) [17], besides the improvement in the reliability. In the multi-
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2 Chapter 1 Introduction

user setting, with perfect CSIT, the optimal power control for multiple access
channel [18] and dirty paper coding for broadcast channel [19] can achieve
the maximum sum rate.

In the case that the forward link is not reciprocal to the reverse link,
to let the transmitter know about the forward link, conveying the channel
knowledge via a feedback link is a simple and practical way. In practice, not
only frequency division duplex (FDD) systems use feedback links, but also
time division duplex (TDD) systems for calibration [20]. In accordance with
the channel adaptive technique employed by the system, the information on
the forward link to feedback is not necessarily the full channel state infor-
mation (CSI). It could be some representation of the forward link condition
(e.g., lossy channel state information, instantaneous channel capacity, chan-
nel direction, received power, interference level, success-failure state, etc.)
which is referred to as limited feedback.

In this thesis, we shall introduce our works relevant to systems with
limited channel feedback. They are about the end-to-end distortion in an
outage-free MIMO system (e.g., with instantaneous channel capacity known
at the transmitter and joint source-channel coding), channel estimate feed-
back approaches, and multi-layer transmission with automatic repeat re-
quest (ARQ). The background and the state-of-the-art of these three topics
are presented as follows.

1.2 End-to-end distortion

It is well-known that the functional diagram and the basic elements of a
digital communication system can be illustrated by Fig.1.1 [1]. The source
input-output may be either an analog (continuous-amplitude) sequence or
a digital (discrete-amplitude) sequence. Whichever is the source, there is
always a tradeoff between the efficiency and the reliability. For transmit-
ting a digital sequence, the tradeoff would be between the spectral efficiency
(bits/s/Hz) [2] and the error probability. For transmitting an analog se-
quence, under the assumption of band-limited white Gaussian source, the
tradeoff would be between the source-to-channel bandwidth ratio Ws/Wc

(SCBR) [21] and the mean-squared error (MSE) [22, 23], i.e., end-to-end
distortion.

A distinct point between digital-source transmission and analog-source
transmission is: in digital-source transmission, if the spectral efficiency is
below the upper bound subject to the channel state and the transmitter
knows the instantaneous CSI perfectly, the error probability would go to
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Figure 1.1: Basic elements of a digital communication system

zero; whereas, in analog-source transmission, whatever good are the chan-
nel condition and the system, the distortion is nonvanishing, because the
entropy of a continuous-amplitude source is infinite and thus the exact re-
covery of an analog source requires infinite channel capacity [16,22–24].

In [25], Zheng and Tse studied the optimal tradeoff between the multi-
plexing gain and the diversity gain (DMT) in the SNR-indicated adaptive-
rate digital transmission with perfect CSIR. The transmission stage that
they considered is between channel coding and channel decoding as illus-
trated by Fig.1.1. For an Nt-input Nr-output Rayleigh fading channel, the
main result they obtained is

d∗(r) = (Nt − r)(Nr − r) (1.1)

in the case that the block length l ≥ Nt + Nr − 1, where r and d are defined
as

r , lim
ρ→∞

R(ρ)
log2 ρ

and d , − lim
ρ→∞

Po(ρ)
log2 ρ

(1.2)

with ρ the average SNR, the rate R(ρ) in bits per channel use (bpcu) and
outage probability Po. Therein, they assumed that the system supports that
the data rate increases with average SNR, R = r log2 ρ, whereas the trans-
mitter does not know the instantaneous channel rate, and thereby outage
accidents happen.

Regarding end-to-end distortion, in [26, 27], Ziv and Zakai investigated
the decay of MSE with SNR for analog-source transmission over a noisy
single-input single-output (SISO) channel without any channel knowledge
on the transmitter side. In [28,29], Laneman et al. used distortion exponent
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in the asymptotic expected distortion,

∆ , − lim
ρ→∞

ED(ρ)
log2 ρ

, (1.3)

as a metric to compare channel diversity and source diversity for parallel
channels, whose values are related to SCBR. Choudhury and Gibson pre-
sented the relations between the end-to-end distortion and the outage ca-
pacity for an AWGN channel [30]. Zoffoli et al. studied the characteristics of
the distortions in MIMO systems with different strategies, with and without
CSI [31,32].

For tandem source-channel coding systems, assuming optimal block quan-
tization and SNR-indicated adaptive-rate transmission as in [25], Holliday
and Goldsmith investigated the expected end-to-end distortion for an uncor-
related slow-fading MIMO channel [33–35] based on the results of [25,36,37].
They gave the bound on the total expected distortion (MSE)

ED ≤ 2−
2r
η

log2 ρ+O(1) + 2−(Nr−r)(Nt−r) log ρ+o(log2 ρ) (1.4)

where η is the SCBR. Considering the asymptotic high SNR regime, they
proposed that r should satisfy

∆∗
sep = (Nr − r)(Nt − r) =

2r

η
+ o(1) (1.5)

where ∆∗
sep is the optimum distortion exponent for tandem source-channel

coding systems. The explicit expression of ∆∗
sep is given by Theorem 2

in [38],

∆∗
sep(η) =

2(jd∗(j − 1))− (j − 1)d∗(j)
2 + η(d∗(j − 1)− d∗(j))

, η ∈
[

2(j − 1)
d∗(j − 1)

,
2j

d∗(j)

)
(1.6)

for j = 1, . . . , Nmin. Note that Nmin = min{Nt, Nr}.
In [38,39], assuming an uncorrelated slow-fading channel, the transmitter

perfectly knows the channel information and joint source-channel coding,
Caire and Narayanan derived the optimum distortion exponent

∆∗(η) =
Nmin∑

i=1

min
{

2
η
, 2i− 1 + |Nt −Nr|

}
(1.7)

which is larger than ∆∗
sep as Fig.1.2 and Fig.1.3 shows. Concurrently, the

same result as (1.7) was also provided by Gunduz and Erkip [40,41].
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The derivation ways of Caire-Narayanan and Gunduz-Erkip are quite
similar. Both are extensions of the outage probability analysis in [25] and
based on the expression of MIMO channel mutual information in bpcu [42]

I = log2

∣∣∣∣INr×Nr +
ρ

Nt
HH†

∣∣∣∣ , (1.8)

the rate-distortion function for a white Gaussian source [16]

D(Rs) = 2−2Rs , (1.9)

and Shannon’s rate-capacity inequality for outage-free transmission [23]

Rs ≤ Rc. (1.10)

The optimum distortion exponent can be a performance objective for
analog-source transmission systems. As seen in Fig.1.2 and Fig.1.3, the
distortion exponent ∆hda(η) of the hybrid digital analog (HDA) joint cod-
ing scheme for MIMO systems proposed by Narayanan and Caire [38, 43]
achieves the distortion exponent upper bound when η ≥ 2Nmin (a stricter
bandwidth compression case). Narayanan and Caire’s HDA scheme is an
extension to the MIMO case of Mittal and Phamdo’s work [44]. The dis-
tortion exponent ∆bs(η) of broadcast (superposition) scheme with varying
power and rate allocation proposed by Bhattad et al. [45, 46] achieves the
distortion exponent upper bound when η ≥ 2Nmin/(|Nt −Nr|+ 1). A simi-
lar broadcast scheme in [41, 47] is a special case of [45, 46] when Nmin = 1.
By simple linear analog schemes, when η ≤ 2Nmin, the distortion exponent
∆lin(η) is always one and achieves the optimum distortion exponent when
η = 2Nmin. When η > 2Nmin, the linear analog approach is infeasible.

Note that, although the distortion exponent upper bound is derived un-
der the assumption that CSIT is perfectly known [38, 39] or at least the
transmitter knows the instantaneous channel capacity [40, 41], the three
aforementioned optimum-exponent-achieved approaches (for specific ranges
or points of SCBR) do not require any transmit side channel knowledge.
Taking an insight into these approaches, we can see that all of them manage
to avoid outage to assure the minimum reliability: in the HDA approach, it
is done by the analog part; in the broadcast approach, it is done by suppos-
ing infinite layers bearing different rates. Nevertheless, there is something
more than the distortion exponent in the expected end-to-end distortion.

Intuitively, at high SNR, the form of the optimum asymptotic expected
end-to-end distortion could be

ED∗
asy = µ∗(ρ)ρ−∆∗ (1.11)
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where the optimum distortion factor µ∗(ρ) should satisfy the equation

lim
ρ→∞

log µ∗(ρ)
log ρ

= 0. (1.12)

For an analog-source transmission system, its performance at a high SNR
could be measured via the asymptotic expected end-to-end distortion

EDasy = µ(ρ)ρ−∆ (1.13)

where the distortion exponent ∆ and the distortion factor µ(ρ) could be
obtained analytically.

Apparently, we cannot say that a system must achieve the optimum
asymptotic expected distortion ED∗

asy if what it achieves is only the opti-
mum distortion exponent ∆∗. Also, we cannot say that, at a practical high
SNR, the scheme with the larger distortion exponent must perform better
than the other. As illustrated by Fig.1.4, in the regime of practical high
SNR, the effect of the distortion factor must be taken into consideration.
In other words, for practical cases, studying only the optimum distortion
exponent is insufficient and giving the closed-form expression of ED∗

asy is
more meaningful. Using ED∗

asy as an objective, via analyzing both ∆∗ and
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Joint encoder RX

Instantaneous channel rate

Figure 1.5: The feedback model for our end-to-end distortion analysis

µ∗, it is possible to design an analog-source transmission system performing
better than the existing systems in the regime of practical SNR. For deriving
ED∗

asy, if we could obtain the analytical expression of ED∗ for any SNR,
then it would be easy to find out the optimum distortion factor µ∗(ρ) and
the optimum distortion exponent ∆∗.

1.3 MIMO channel estimate feedback

As the overview in [10], recently, precoding techniques requiring channel in-
formation at the transmitter are popular for improving the performance of
MIMO system, e.g., Tomlinson-Harashima precoding (THP) [48–50], trellis
precoding [51], transmit matched filter [52,53], transmit zero-forcing [54,55],
transmit Wiener filter [56], linear precoders [57,58], water-filling power con-
trol [13, 14, 18], dirty paper coding [59] and so on. In some precoding tech-
niques, such as zero-forcing beamforming, only the directions of channel
vectors are required to be known at the transmitter. If the forward link and
the reverse link are not reciprocal, a feedback link (as shown in Fig.1.6) can
let the transmitter know the channel estimate. Since the channel gain ma-
trix or vector direction is a sort of continuous-amplitude source, the feedback
procedure is in fact the procedure of analog-source transmission. The feed-
back approach could be in digital, analog, or hybrid digital analog (HDA).
Then, our question would be again “to code, or not to code?” [60].

In digital feedback techniques, how to quantize the estimate of a MIMO
channel is the key issue. In [61], D. J. Love et al. gave an overview of recent
quantization techniques for limited feedback. Among them, the widely-
discussed techniques are Lloyd vector quantization approach [62–64] based
on Lloyd quantization algorithm [65], Grassmannnian line packing [66], and
random vector quantization (RVQ) [67,68].
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Figure 1.6: The feedback model for channel matrix or channel direction
acquisition

In analog feedback techniques, feeding back the estimate of a MIMO
channel is an issue of how to do analog transmission over a MIMO channel.
For SISO channel, it is well known that for a white Gaussian source whose
bandwidth is equal to the AWGN (real) channel bandwidth, the uncoded
unquantized transmission is the optimal with respect to mean-squared error
(MSE) [21, 69]. For a continuous-time AWGN channel, this optimality can
be achieved by single-sideband (SSB) modulation [27, 70]. For a discrete-
time AWGN channel, this optimality can be achieved by single-letter codes
and MMSE receivers [71, 72]. In [72], considering downlink and uplink es-
timation errors, Samardzija and Mandayam proposed an analog scheme for
CSI feedback in the case of independent Rayleigh fading AWGN SISO chan-
nel. Their criterion is to minimize the mean-squared error on the received
channel estimate at the transmitter considering the downlink and uplink
estimation errors, noise in the feedback phase, and channel distributions.

So far, many discussions on analog channel estimate feedback are focused
on the scenario of vector channel for multiple users. That is, the base sta-
tion has multiple antennas, each user has only one antenna, and the channel
estimate feedback is from each user to the base-station. The discussion in
the scenario of vector channel can be traced back to [73], where Visotsky
and Madhow proposed to use analog feedback for the Rayleigh fading vec-
tor channel. In [74], Thomas et al. proposed to apply analog feedback in
orthogonal frequency division multiplexing(OFDM) systems over a vector
channel. In [75], Marzetta and Hochwald supposed a zero-forcing receiver
for the direct analog CSI feedback. Feedbacks from different users are sup-
posed to be distinguished by code-division or some other ways [74,75].

If we compare linear analog channel feedback approaches to digital feed-
back approaches, the computational simpleness of linear analog approaches
is obvious; whereas, digital feedback approaches cost much more process-
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ing overhead. Furthermore, without external indicating signals such as the
current SNR range, fixed-rate digital approaches cannot adapt to the chan-
nel, that is, they would perform worse at relatively low SNR due to outage
accidents and reach an error floor at relatively high SNR due to the in-
evitable quantization error; whereas, linear analog approaches are to some
extent self-adaptive to the instantaneous channel and free of outage and
error floor. Also, it is hard to say that, in the analog-source transmission
over a MISO/SIMO/MIMO channel subject to a strict delay limit, a rate-
adaptive digital approach (with external indication) must perform better
than a linear analog approach.

In [76,77], assuming that the vector channel direction feedback serves for
multiuser MISO downlink zero-forcing beamforming, Caire et al. compared
an analog feedback approach with an RVQ feedback approach with respect
to respective rate gap upper bounds. They concluded that, with perfect
channel state information at the receiver(CSIR), the RVQ digital feedback
is far superior to analog when βfb > 1. Note that the feedback latency is
supposed to be βfbNb channel uses with Nb the antenna number at the base
station. As given in [76, 77], the rate gap upper bounds of the analog feed-
back approach and the RVQ digital feedback approach with perfect CSIR
are

∆RAF ≤ log2

(
1 +

1
βfb

)
(1.14)

∆RDF ≤ log2

(
1 +

ρ

1 + (1 + ρ)βfb

)
. (1.15)

Caire et al. drew their conclusion by comparing the right hand sides (RHS)
of (1.14) and (1.15) [76, 77]. But, is it fair to judge actual performance by
upper bound? For instance, from (1.14), we can see that there is no impact
from SNR on the upper bound, however, in fact, if the CSIR is perfect and
the SNR in the feedback procedure is infinitely high, the acquired CSIT via
the analog approach performs nearly perfect and thus the rate gap ∆RAF

approaches zero as the value of the rate gap ∆RDF with the digital feedback
approach (the RHS in (1.15)) at infinitely high SNR while of course ∆RAF

satisfies (1.14) as zero is smaller than any positive number.
From Fig.1.2 and Fig.1.3, we can see that digital feedback could achieve

a larger distortion exponent than analog feedback and thus it would cause
the the resulting performance curve of digital feedback decay or increase
faster. However, even though a digital approach could achieve a larger dis-
tortion exponent, it may be with a much smaller distortion factor as Fig.1.4
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shows.

In the case of quasi-static multi-input multi-output (MIMO) channels,
space-time coding (STC) considerations with issues of diversity and spatial
multiplexing arise also for analog transmission. Since the correctness of
the received estimate within an allowable feedback latency deserves more
concern, to find an STC to exploit the spatial diversity in linear analog
transmission is of our particular interest.

1.4 Multi-layer transmission

Presently, two classes of multi-layer transmission are mainly discussed, broad-
cast strategy and rateless coding.

Broadcast strategy (for single user) is the multi-layer transmission for
rate adaption without feedback [46,78–81], which stems from successive re-
finement source coding [82,83]. The framework of the broadcast strategy is
as Fig.1.7 shows. Each source layer conveys the source at different rate cor-
responding to respective channel realizations. All layers are superimposed
subject to certain power allocation scheme for transmission. If the number
of layers is infinite, it ensures that no matter how the channel realization is,
at least one layer can be successfully decoded, i.e., at least some information
of the source can be transmitted successfully.

Rateless coding is the multi-layer transmission with ARQ feedback as
Fig.1.8 shows. The layers are linearly combined at the transmitter and
the system transmits as much of a codeword as necessary for decoding to
be possible. Rateless codes for the erasure channel are known as fountain
codes [84,85], such as LT codes [86] and Raptor codes [87].

In [88–90], Erez et al. studied rateless coding for Gaussian channels
with respect to transmission rate. For canceling inter-layer interference,
they proposed to use random dithering to let all layered packets statisti-
cally independent to each other. Then, the system benefits from multiple
transmissions through summing up the average received SINR (including
the interference from lower layers) of each layer at each transmission by
maximum ratio combining (MRC) and subsequent successive interference
cancelation (SIC) and decoding. The receiver solution is similar to that in
MIMO V-BLAST [91]. The corresponding layer-time codes and the power
allocation scheme have been proposed [89, 90]. If the channel is very good,
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all layer packets would be successfully decoded via just one block transmis-
sion; if it is bad, they would be successfully decoded after multiple block
transmissions. In their schemes [89, 90], the decoder is supposed to rely on
average block SINR, which has nothing to do with noise realizations but the
noise variance. Namely, the block length should be long enough to let the
noise during the transmission be ergodic and the block is supposed to be
perfectly channel coded.

An alternative scenario is that the block length is limited and the noise
experienced by one block transmission is not ergodic. In this case, the
decoder would rely on the instantaneous SINR involving limited noise real-
izations rather than the average SINR. Thereby, the MRC receiver proposed
in aforementioned schemes would not work in this scenario. So, how to ben-
efit from layer-multiplexing with HARQ feedback in that case? It would be
to design a multi-layer scheme as follows: if the channel is very good, all
linear combined layers could be decoded via one block transmission; if the
channel is not so good, inter-layer inference could be removed or alleviated
by multiple block transmissions. Such a layer-multiplexing scheme is of our
interest in this thesis.
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1.5 Thesis outline and contributions

In this thesis, we make the following contributions. These contributions
are divided into three fields: 1) Optimum end-to-end distortion analysis for
outage-free MIMO systems; and 2) Analog channel feedback approach; and
3) Layer-multiplexing approach for delay-restricted cases.

1. In Chapter 2, we analyze the optimum expected end-to-end distor-
tion in a system over an uncorrelated MIMO channel. We derive the
analytical expression of the optimum expected end-to-end distortion
for any SNR and its asymptotic value for high SNR, comprised of the
optimum distortion exponent and the optimum distortion factor. The
results were published in

• Jinhui Chen, Dirk T. M. Slock, “Bounds on Optimal End-to-End
Distortion of MIMO Links”, Proceedings of IEEE International
Conference on Communications (ICC’08), Beijing, May 19-23,
2008.

and submitted as part of

• Jinhui Chen, Dirk T. M. Slock, “On Optimum End-to-End Dis-
tortion in MIMO Systems”, EURASIP Journal on Wireless Com-
munications and Networking, under review

2. In Chapter 3, we extend our analysis on the optimum expected end-to-
end distortion to the case of correlated MIMO channels. Besides the
derivations on the analytical expression of the optimum expected end-
to-end distortion for any SNR and its asymptotic value for high SNR,
we also prove that, with the spatial correlation matrix approaching an
identity matrix, the optimum asymptotic expected end-to-end distor-
tion for correlated channel converges to that for uncorrelated channel.
This work was submitted as the other part of

• Jinhui Chen, Dirk T. M. Slock, “On Optimum End-to-End Dis-
tortion of MIMO Systems”, EURASIP Journal on Wireless Com-
munications and Networking, under review

and a part of this work was published in

• Jinhui Chen, Dirk T. M. Slock, “On Optimum End-to-End Dis-
tortion of Spatially Correlated MIMO Systems”, Proceedings of
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IEEE Global Telecommunications Conferences (GLOBECOM 2008),
New Orleans, Nov.30 - Dec.4, 2008

3. In Chapter 4, we study the behavior of optimum expected end-to-end
distortion in the long-frame block-fading case where the time diversity
is exploited by interleaving. We show the impact of time diversity on
the optimum expected distortion. This work was published in

• Jinhui Chen, Dirk T. M. Slock, “Optimum end-to-end distor-
tion of interleaved transmission via a Rayleigh MIMO channel”,
Proceedings of IEEE 19th International Symposium Personal, In-
door and Mobile Radio Communications (PIMRC 2008), Cannes,
Septembre 15-18, 2008.

4. In Chapter 5, we introduce orthogonal space-time block coding (OS-
TBC) into linear analog channel feedback approaches for MIMO sys-
tems. We prove that the linear analog approach with OSTBC achieves
the matched filter bound on received SNR and compare it with the
random vector quantization (RVQ) approach and the linear analog
approach with circulant STBC. Part of this work was published in

• Jinhui Chen, Dirk T. M. Slock, “Orthogonal space-time block
codes for analog channel feedback”, Proceedings of IEEE Interna-
tional Symposium on Information Theory (ISIT 2008), Toronto,
July 6-11, 2008.

The other work that we have done related to analog channel feedback,
is the comparison of the channel estimate feedback with the received
signal feedback in the linear feedback approach with spatial multiplex-
ing. It was published in

• Jinhui Chen, Dirk T. M. Slock, “Comparison of Two Analog Feed-
back Schemes for Transmit Side MIMO Channel Estimation”,
Proceedings of IEEE 19th International Symposium Personal, In-
door and Mobile Radio Communications (PIMRC 2007), Athens,
Septembre 3-7, 2007.

The result is that, in terms of mean squared error, the channel estimate
feedback performs a little better than the received signal feedback in
the supposed scenario. Since the derivation and the result are rather
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straightforward, we shall not present it in this thesis.

5. In Chapter 6, considering short-block cases, we propose a simple prac-
tical layer-multiplexing scheme for reliable transmission with HARQ
feedback. Part of this work was published in

• Jinhui Chen, Dirk T. M. Slock, “A practical Walsh layering scheme
for reliable transmission”, Proceedings of IEEE Acoustics, Speech
and Signal Processing (ICASSP 2009), Taipei, May 19-24, 2009.



Chapter 2

End-to-End Distortion:
Uncorrelated MIMO
Channel

2.1 Introduction

In this chapter, we investigate the optimum expected end-to-end distortion
in an MIMO system over an uncorrelated slow-fading MIMO channel.

Shannon inequality shows the relationship between the end-to-end dis-
tortion (mean squared error) and the channel capacity [23]

Ws log2

Ps

D
≤ Rc (2.1)

where the source is assumed to be white Gaussian, Ws is the source band-
width, Ps is the source power, D is the distortion (mean squared error) and
Rc is the channel capacity.

This inequality implies the existence of the optimum distortion exponent
in the optimum expected end-to-end distortion,

∆∗ = − lim
SNR→∞

log ED∗

log SNR
, (2.2)

17
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where ED∗ denotes the optimum expected end-to-end distortion, E∗H[D].
The optimum distortion exponent in an outage-free system over an un-

correlated slow-fading MIMO channel has been derived [38,40]:

∆∗
unc =

Nmin∑

i=1

min
{

2
η
, 2i− 1 + |Nt −Nr|

}
(2.3)

where Nt is the number of transmit antennas, Nr is the number of receive
antennas, Nmin = min {Nt, Nr} and η is the source-to-channel bandwidth
ratio (SCBR).

Nevertheless, as it has been stated in Chapter 1, the optimum distortion
exponent does not suffice to reflect the behavior of optimum asymptotic
expected end-to-end distortion. In this chapter, we will focus on deriving
an analytical expression of the optimum expected end-to-end distortion and
its asymptotic expression, exhibiting the joint impact of SCBR, antenna
numbers and SNR.

The remainder of this chapter is organized as follows. The system model
is given in Section 2.2. In Section 2.3, the mathematical preliminaries such
as mathematical definitions, properties and lemmas are given as for deriva-
tions thereafter. The derivations of lemmas can be seen in Appendices at
the end of this chapter. Section 2.4 is dedicated to the main results. Nu-
merical results are presented in Section 2.5 with analysis. Finally, Section
2.6 concludes the contributions of this chapter.

2.2 System model

Assume s(t), a continuous-time white Gaussian source of bandwidth Ws

and source power Ps, is transmitted over a flat slow-fading MIMO channel of
bandwidth Wc and the system is working on “short” frames due to strict time
delay constraint, i.e., time-interleaving is impossible to be done and no time
diversity can be exploited. The transmitter is supposed to perfectly know
the instantaneous channel capacity which can be fed back by the receiver as
a real scalar. The recovered source at the receiver is denoted by ŝ(t).

As in [38], a K-to-(Nt × T ) joint source-channel encoder is supposed
to be employed at the transmitter, which maps the sampled source block
s
′ ∈ RK onto channel codewords X ∈ CNt×T . The corresponding source-

channel decoder is a mapping CNr×T → RK that maps the channel output
Y = {y1, . . . ,yT } into an approximation ŝ

′
. Assuming that the continuous-

time s(t) is sampled by a Nyquist sampler, 2Ws samples per second, and
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the bandlimited MIMO channel is used as a discrete-time channel at 2Wc

channel uses per second [16, pp. 247-250], we have

η =
Ws

Wc
=

K

T
. (2.4)

The model of the discrete flat slow-fading MIMO channel with Nt inputs
and Nr is

yt = Hxt + nt, t = 1, . . . , T (2.5)

where xt ∈ CNt is the transmitted signal at time t, satisfying the long-term
power constraint E[xH

t xt] = Pt; H ∈ CNr×Nt is the channel matrix, assumed
to be constant for all channel uses t = 1, . . . , T and all its elements hij are
i.i.d. CN (0, 1); n ∈ CNr is the additive white noise all of whose elements
nt,i are CN (0, σ2

n). Note that Pt is the transmit power constraint and it is
seen that the SNR per receive antenna ρ = Pt/σ2

n.

2.3 Mathematical preliminaries

The mathematical definition and lemmas below will be used in the deriva-
tions and results thereafter.

We shall need the integral of an exponential function
∫ ∞

0
e−pxxq−1(1 + ax)−νdx = a−qΓ(q)Ψ(q, q + 1− ν, p/a),

Re{q} > 0, Re{p} > 0, Re{a} > 0.

(2.6)

as introduced in [92, pp. 365]. This involves the confluent hypergeometric
function

Ψ(a, c; x) =
1

Γ(a)

∫ ∞

0
e−xtta−1(1 + t)c−a−1dt, Re{a} > 0 (2.7)

which satisfies

x
d2y

dx2
+ (c− x)

dy

dx
− ay = 0. (2.8)

Bateman has given a thorough analysis on Ψ(a, c;x) [93, pp. 257-261]. In
particular, he obtained the expressions on Ψ(a, c;x) for small x as Table 2.1
shows.

We shall also need the following lemmas:
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Lemma 1. Define an m×m full-rank matrix W(x) whose (i, j)th element
is of the form cijx

min{a,i+j}, cij 6= 0, x, a ∈ R+, 1 6 i, j 6 m. Then

lim
x→0

log|W(x)|
logx

=
m∑

i=1

min{a, 2i}. (2.9)

Proof. See Appendix 2.A.

Lemma 2. Define an m×m Hankel matrix W(x) whose (i, j)th element is
of the form ci+jx

i+j, ci+j 6= 0, x ∈ R+, 1 6 i, j 6 m. Then, each summand
in the determinant of W(x) has the same degree m(m + 1) over x.

Proof. See Appendix 2.B.

Lemma 3. Define an m × m Hankel matrix W whose (i, j)th element is
Γ(a + i + j − 1), 1 6 i, j 6 m, a ∈ R. Then

|W| =
m∏

k=1

Γ(k)Γ(a + k). (2.10)

Proof. See Appendix 2.C.

Lemma 4. Define an m × m Hankel matrix W whose (i, j)th element is
Γ(a + i + j − 1)Γ(b − i − j + 1) where 1 6 i, j 6 m, m > 2 and a, b ∈ R.
Then

|W| = Γ(a + 1)Γ(b− 1)Γm−1(a + b)

×
m∏

k=2

Γ(k)Γ(a + k)
Γ(b− 2k + 2)Γ(b− 2k + 1)

Γ(a + b− k + 1)Γ(b− k + 1)
.

(2.11)

Table 2.1: Ψ(a, c;x) for small x, real c
c Ψ

c > 1 x1−cΓ(c− 1)/Γ(a) + o
(
x1−c

)

c = 1 − [Γ(a)]−1 log x + o (| log x|)
c < 1 Γ(1− c)/Γ(a− c + 1) + o(1)
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Proof. See Appendix 2.D.

Lemma 5. Define

f(n) =
m∏

k=1

Γ(n−m− a + k)
Γ(n− k + 1)

, (2.12)

g(n) = namf(n), (2.13)

subject to a ∈ R+, m,n ∈ Z+, n ≥ m, and n−m + 1 ≥ a. Then both f(n)
and g(n) are monotonically decreasing.

Proof. See Appendix 2.E.

2.4 Main results

In this section, assuming the channel is spatially and temporarily uncorre-
lated, we derive the analytical expression of the optimum expected end-to-
end distortion for any SNR. Base on the analytic expression, we derive the
optimum asymptotic expected distortion consisting of the optimum distor-
tion exponent and the optimum distortion factor.

2.4.1 Optimum expected distortion at any SNR

Theorem 1 (Optimum Expected Distortion for Uncorrelated MIMO Chan-
nel). The optimum expected end-to-end distortion in a MIMO system over
an uncorrelated channel is

ED∗
unc(η) =

Ps|U(η)|∏Nmin
k=1 Γ(Nmax − k + 1)Γ(Nmin − k + 1)

for any ρ (2.14)

where Nmin = min{Nt, Nr}, Nmax = max{Nt, Nr} and U(η) is an Nmin ×
Nmin Hankel matrix whose (i, j)th entry is

uij(η) =
(

ρ

Nt

)−dij

Γ(dij)Ψ
(

dij , dij + 1− 2
η
;
Nt

ρ

)
(2.15)

where dij = i + j + |Nt − Nr| − 1, 1 ≤ i, j ≤ Nmin, and Ψ(a, b;x) is the Ψ
function (see [93, pp. 257-261]).
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Proof. Under the assumption that the transmitter only knows the instanta-
neous channel capacity Rc, the covariance matrix of the transmitted vector
x at the transmitter is supposed to be a scaled identity matrix Pt

Nt
INt . Given

by [42], the mutual information per channel use is

I(x;y) = log2

∣∣∣∣INr +
ρ

Nt
WW†

∣∣∣∣ . (2.16)

As stated in [16, pp. 248-250], a band-limited channel of bandwidth Wc

can be represented by samples taken 1/2Wc seconds apart, i.e., the channel
is used at 2Wc channel uses per second as a time-discrete channel, and hence
the channel capacity (bits/second) is

Rc = 2WcI = 2Wc log2

∣∣∣∣INr +
ρ

Nt
HH†

∣∣∣∣ . (2.17)

Substituting (2.17) into the Shannon inequality (2.1), we have the opti-
mum end-to-end distortion

D∗(η) = Ps

∣∣∣∣INr +
ρ

Nt
HH†

∣∣∣∣
− 2

η

. (2.18)

Thereby, the optimum expected end-to-end distortion is

ED∗(η) = PsEH

∣∣∣∣INr +
ρ

Nt
HH†

∣∣∣∣
− 2

η

, (2.19)

whose form is similar to the moment generating function of capacity in [94].
By the mathematical results given by Chiani et al. [94] for the expectation
over an uncorrelated MIMO Gaussian channel H, we have

ED∗
unc(η) = PsK|U(η)| (2.20)

where U(η) is an Nmin ×Nmin Hankel matrix with (i, j)th element given by

uij(η) =
∫ ∞

0
xNmax−Nmin+j+i−2e−x

(
1 +

ρ

Nt
x

)− 2
η

dx (2.21)

and
K =

1∏Nmin
k=1 Γ(Nmax − k + 1)Γ(Nmin − k + 1)

. (2.22)

By the integral solution (2.6), (2.21) can be written in the analytic form

uij(η) =
(

ρ

Nt

)−dij

Γ(dij)Ψ
(

dij , dij + 1− 2
η
;
Nt

ρ

)
, (2.23)

This concludes our proof of the theorem.
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2.4.2 Asymptotic optimum expected distortion

Theorem 1 tells us that the analytical form of ED∗
unc is a polynomial of ρ−1.

Therefore, at high SNR, the asymptotic ED∗
unc is in the form

ED∗
asy,unc = µ∗unc(η)ρ−∆∗unc(η) (2.24)

where ∆∗
unc(η) is the optimum distortion exponent satisfying

∆∗
unc(η) = − lim

ρ→∞
log ED∗

unc(η)
log ρ

(2.25)

and µ∗unc is the corresponding optimum distortion factor satisfying

lim
ρ→∞

log µ∗unc(η)
log ρ

= 0. (2.26)

The closed-form expressions of ∆∗
unc(η) and µ∗unc(η) are given as follows.

Theorem 2 (Optimum Distortion Exponent for Uncorrelated MIMO Chan-
nel). The optimum distortion exponent is

∆∗
unc(η) =

Nmin∑

k=1

min
{

2
η
, 2k − 1 + |Nt −Nr|

}
. (2.27)

Proof. The optimum distortion exponent herein appears already in [38,40].
However, a different proof is provided here.

Consider uij(η) in Theorem 1. When ρ is large, Nt/ρ is small. We thus
refer to Table 2.1 in [93] and see that, at a high SNR, uij(η) approaches
eij(η)ρ−∆ij(η) with

∆ij(η) = min
{

2
η
, i + j − 1 + |Nt −Nr|

}
(2.28)

and
lim

ρ→∞
log eij(η)

log ρ
= 0. (2.29)

Straightforwardly, at the asymptotically high SNR, the asymptotic form of
|U(η)| is |E(η)|ρ−∆∗

unc(η) with

lim
ρ→∞

log |E(η)|
log ρ

= 0. (2.30)
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κl(β, t, m, n) =





Γ(n−m + 1)Γ(β−n+m−1)
Γ(β)

∏t
k=2 Γ(k)Γ(n−m + k)

×Γ(β−n+m−2k+2)Γ(β−n+m−2k+1)
Γ(β−k+1)Γ(β−n+m−k+1) , t > 1;

Γ(n−m + 1)Γ(β−n+m−1)
Γ(β) , t = 1;

1, t = 0.

(2.32)

κh(β, t, m, n) =

{∏t
k=1 Γ(k)Γ(n−m− β + k), t > 0;

1, t = 0.
(2.33)

By Lemma 1, we obtain that

∆∗
unc(η) =

Nmin∑

k=1

min
{

2
η
, 2k − 1 + |Nt −Nr|

}
. (2.31)

This concludes our proof of this theorem.

Theorem 3 (Optimum Distortion Factor for Uncorrelated Channel). Define
two four-tuple functions κl(β, t, m, n) and κh(β, t, m, n) as (2.32) and (2.33)
for β ∈ R+ and t ∈ {0,Z+}.

µ∗unc(η) is given as follows:
1. For 2/η ∈ (0, |Nt − Nr| + 1), referred to as high SCBR regime, the

optimum distortion factor is

µ∗unc(η) = PsNt
∆∗unc

κh( 2
η , Nmin, Nmin, Nmax)∏Nmin

k=1 Γ(Nmax − k + 1)Γ(Nmin − k + 1)
. (2.34)

It monotonically decreases with Nmax.
2. For 2/η ∈ (Nt + Nr − 1,+∞), referred to as low SCBR regime, the

optimum distortion factor is

µ∗unc(η) = PsNt
∆∗unc

κl( 2
η , Nmin, Nmin, Nmax)∏Nmin

k=1 Γ(Nmax − k + 1)Γ(Nmin − k + 1)
. (2.35)
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3. For 2/η ∈ [|Nt−Nr|+ 1, Nt + Nr − 1], referred to as moderate SCBR
regime, the optimum distortion factor is

µ∗unc(η) =





PsNt
∆∗unc

κl(
2
η
,l,Nmin,Nmax)κh( 2

η
−2l,Nmin−l,Nmin,Nmax)

∏Nmin
k=1 Γ(Nmax−k+1)Γ(Nmin−k+1)

,

mod { 2
η + 1− |Nt −Nr|, 2} 6= 0;

PsNt
∆∗unc log ρ

κl(
2
η
,l−1,Nmin,Nmax)κh( 2

η
−2l,Nmin−l,Nmin,Nmax)

∏Nmin
k=1 Γ(Nmax−k+1)Γ(Nmin−k+1)

,

mod { 2
η + 1− |Nt −Nr|, 2} = 0

(2.36)

where l =
⌊

2
η
+1−|Nt−Nr|

2

⌋
.

Proof. From the proof of Theorem 2, we see that

µ∗unc(η) =
Ps|E(η)|∏Nmin

k=1 Γ(Nmax − k + 1)Γ(Nmin − k + 1)
(2.37)

where E(η) is an Nmin ×Nmin matrix of eij(η)’s.

1. When 2/η ∈ (0, |Nt−Nr|+ 1), given by (2.15) and Table 2.1, we have

eij(η) = Nt

2
η Γ(dij − 2

η
). (2.38)

By Lemma 3,

|E(η)| = N
∆∗unc
t κh

(
2
η
,Nmin, Nmin, Nmax

)
. (2.39)

In this case, ∆∗
unc(η) = 2Nmin/η. Substituting (2.39) into (2.37), we

obtain the optimum distortion factor in this case in the closed form

µ∗unc(η) = PsNt
∆∗unc

κh( 2
η , Nmin, Nmin, Nmax)∏Nmin

k=1 Γ(Nmax − k + 1)Γ(Nmin − k + 1)
. (2.40)

In the light of Lemma 5, it monotonically decreases with Nmax.

2. When 2/η ∈ (Nt + Nr − 1,∞), in terms of (2.15) and Table 2.1, we
have

eij(η) = N
dij

t Γ(dij)
Γ

(
2
η − dij

)

Γ
(

2
η

) . (2.41)
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In terms of Lemma 2 and Lemma 4, the determinant of E(η)

|E(η)| = N
∆∗unc
t κl

(
2
η
,Nmin, Nmin, Nmax

)
. (2.42)

In this case, ∆∗
unc(η) = NtNr. Substituting (2.42) into (2.37), we

obtain the optimum distortion factor in this case in the form

µ∗unc = PsNt
∆∗unc

κl( 2
η , Nmin, Nmin, Nmax)∏Nmin

k=1 Γ(Nmax − k + 1)Γ(Nmin − k + 1)
. (2.43)

3. When 2/η ∈ [|Nt − Nr| + 1, Nt + Nr − 1], the analysis is relatively
complex. Define a partition number

l =

⌊
2
η + 1− |Nt −Nr|

2

⌋
(2.44)

and partition the Hankel matrix E(η) in (2.14) as

E(η) =
(

A B
BT C

)
(2.45)

where A is the l × l submatrix and C is the (Nmin − l) × (Nmin − l)
submatrix.
At a high SNR, in terms of Table 2.1, if 2l 6= 2

η +1−|Nt−Nr|, elements
of A and C approximate

ãij = N
dij

t Γ(dij)
Γ( 2

η − dij)

Γ( 2
η )

ρ−dij , (2.46)

c̃ij = N
2
η

t Γ(dij − 2
η
)ρ−

2
η ; (2.47)

if 2l = 2
η + 1− |Nt−Nr|, the form of c̃ij is the same as (2.47) whereas

the form of ãij becomes

ãij =





N
dij

t Γ(dij)
Γ( 2

η
−dij)

Γ( 2
η
)

ρ−dij , (i, j) 6= (l, l);

N
2
η

t log ρ ρ
− 2

η , (i, j) = (l, l).
(2.48)

In terms of Schur determinant formula [95],

|E(η)| = |A||C−A∗| (2.49)



2.5 Numerical analysis and discussion 27

where A∗ = BTA−1B. By the method similar to the derivation in
Appendix 2.A, we know that at high SNR

C−A∗ ∼ C̃ (2.50)

where C̃ is composed of c̃ij ’s. Consequently,

|E(η)| ∼ |Ã||C̃|. (2.51)

Given the preceding derivation for the high and low SCBR regimes,
we have

|Ã| =





N
l(l+Nmax−Nmin)
t κl( 2

η , l, Nmin, Nmax)ρ−l(l+Nmax−Nmin),

if 2l 6= 2
η + 1− |Nt −Nr|;

N
l(l+Nmax−Nmin)
t κl( 2

η , l − 1, Nmin, Nmax) log ρ ρ−l(l+Nmax−Nmin),

if 2l = 2
η + 1− |Nt −Nr|,

(2.52)

|C̃| = N
2(Nmin−l)

η

t κh(
2
η
− 2l, Nmin − l, Nmin, Nmax)ρ

− 2(Nmin−l)

η . (2.53)

Therefore, in this case,

µ∗unc(η) =





PsN
∆∗unc
t

κl(
2
η
,l,Nmin,Nmax)κh( 2

η
−2l,Nmin−l,Nmin,Nmax)

∏Nmin
k=1 Γ(Nmax−l+1)Γ(Nmin−k+1)

,

2l 6= 2
η + 1− |Nt −Nr|;

PsN
∆∗unc
t log ρ

κl(
2
η
,l−1,Nmin,Nmax)κh( 2

η
−2l,Nmin−l,Nmin,Nmax)

∏Nmin
k=1 Γ(Nmax−l+1)Γ(Nmin−k+1)

,

2l = 2
η + 1− |Nt −Nr|

(2.54)
where the distortion exponent is

∆∗
unc(η) = l(l + |Nt −Nr|) +

2(Nmin − l)
η

. (2.55)

This concludes our proof of this theorem.

2.5 Numerical analysis and discussion

Fig.2.1 shows numerical and simulation results on the optimum expected
end-to-end distortion of Gaussian source transmission over uncorrelated
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slow-fading MIMO channels in the high SCBR state and at the high SNR,
ρ = 30dB. The number of antennas on one side (either the transmitter side
or the receiver side) is fixed to five and the number of antennas on the other
side is increased. ED∗

unc corresponding to (2.19) is evaluated by 10 000
realizations of H and denoted by ED∗

unc,sim .
From Fig.2.1(b), we can see that ED∗

unc,sim monotonically decreases with
the number of antennas on one side, which agrees with our intuition. There
is an excellent agreement between ED∗

unc,asy and ED∗
unc,sim, indicating that

in this case, the behavior of ED∗
unc at high SNR can be explained by studying

the distortion exponent ∆∗
unc and the distortion factor µ∗unc.

In Fig.2.1(a), in terms of Theorem 2, ∆∗
unc increases with Nmin and

then keeps constant after Nmin stops increasing, although the number of
antennas on one side is increasing. In Fig.2.1(b), in terms of Theorem 3,
µ∗unc monotonically decreases with Nmax. Therefore, when Nmin ≤ 5, ED∗

unc

decreases because ∆∗
unc is increasing. The increase of ∆∗

unc dominates the
monotonicity of ED∗

unc since the SNR is high. When the Nmin is fixed to
5, ED∗

unc decreases because µ∗unc is decreasing though ∆∗
unc keeps constant.

Hence, we can see that, at the high SNR, the monotonicity of ED∗
unc with the

number of antennas is either due to the increase of the distortion exponent
or due to the decrease of the corresponding distortion factor.

Moreover, from Fig.2.1, we can see that the commutation between the
number of transmit antennas and the number of receive antennas impacts
ED∗

unc. This impact comes from the effect of the commutation on the dis-
tortion factor µ∗unc. As indicated by expressions in Theorem 3 and shown
in Fig.2.1(b), between a couple of commutative antenna allocation schemes,
(Nt = Nmin, Nr = Nmax) and (Nt = Nmax, Nr = Nmin), the former scheme
whose number of transmit antennas is the smaller between the two antenna
numbers suffers less distortion than the other. This is reasonable since under
certain total transmit power constraint, the scheme allocated less transmit
antennas achieves higher average transmit power per transmit antenna.

If a system is in the moderate or low SCBR regimes, ∆∗
unc monotonically

increases with either of the two antenna numbers as Theorem 2 implies.
Therefore, in the high SNR regime, in the moderate or low SCBR regimes,
the optimum expected end-to-end distortion monotonically decreases with
either of the two antenna numbers regardless of the tendency of µ∗unc.

Fig.2.2-Fig.2.5 show the numerical and simulation results for the other
four examples corresponding to different cases. Red circles represent the
results of Monte Carlo simulations which are carried out by generating
10 000 realizations of H and evaluating (2.19). Blue dashed lines represent
ED∗

asy,unc. Green lines represent the analytic form of ED∗
unc in Theorem
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Figure 2.1: Uncorrelated channel, one of (Nt, Nr) is fixed to 5, η = 4, high
SCBR.
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Figure 2.2: Uncorrelated channel, Nt = 1, Nr = 2, η = 1.1, high SCBR
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Figure 2.3: Uncorrelated channel, Nt = 2, Nr = 2, η = 1.7, moderate SCBR
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Figure 2.4: Uncorrelated channel, Nt = 2, Nr = 2, η = 1, moderate SCBR
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Figure 2.5: Uncorrelated channel, Nt = 1, Nr = 2, η = 0.99, low SCBR
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1. It can be seen that the simulated results agree well with our analytic
results. In Fig.2.2-Fig.2.5, we can see that, in the practical range of SNR,
there are gaps between the curves of ED∗

unc and ED∗
asy,unc, which come from

the impact of other terms in the polynomial of ED∗
unc.

2.6 Conclusion

In this chapter, assuming a continuous white noise source is transmitted
over a spatially uncorrelated slow Rayleigh fading MIMO channel and the
system is free of outage (e.g., the transmitter knows the instantaneous chan-
nel capacity by scalar feedback and does joint source-channel coding), we
have derived the analytical expression of the optimum expected end-to-end
distortion. On this basis, we have derived the asymptotic optimum expected
distortion comprised of the optimum SNR distortion exponent and the cor-
responding distortion factor for all cases with respect to antenna numbers
and source-to-channel band ratio. By our results, we have explained the
behavior of the optimum expected end-to-end distortion of a MIMO sys-
tem over an uncorrelated channel in the regime of high SNR, related to the
behaviors of the SNR distortion exponent and the corresponding distortion
factor.

Straightforwardly, the theorems in this chapter are upper bounds for the
scenario that the transmitter has no knowledge on the channel and suffers
outage accidents at a certain probability.
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2.A Proof of Lemma 1

We shall prove this lemma recursively.
Define p(n) = min{a, n}, subject to a ∈ R+ and n ∈ Z+. If m1 −m2 =

n1 − n2, m1 > n1, and m2 > n2, then

p(m1)− p(m2) ≤ p(n1)− p(n2). (2.56)

In the case that m = 2, by definition,

W2(x) =
(

c11x
p(2) c12x

p(3)

c21x
p(3) c22x

p(4)

)
. (2.57)

Then
|W2(x)| = c11c22x

p(2)+p(4) − c12c
2
21x

2p(3). (2.58)

By (2.56),
p(2) + p(4) ≤ 2p(3). (2.59)

Consequently, when m = 2,

lim
x→0

log|W2(x)|
logx

= p(2) + p(4)

=
2∑

i=1

min{a, 2i}.
(2.60)

Suppose when m = k − 1, k ∈ Z+ ∩ [3, +∞),

lim
x→0

log|Wk−1(x)|
logx

=
k−1∑

i=1

min{a, 2i}. (2.61)

When m = k, Wk(x) can be written as

(
Wk−1(x) bk(x)
bT

k (x) ckkx
p(2k)

)
(2.62)

where the column vector

bk(x) =




c1kx
p(k+1)

...
ck−1,kx

p(2k−1)


 . (2.63)
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Hence, in terms of Schur determinant formula [95],

lim
x→0

log|Wk(x)|
logx

= lim
x→0

log
[|Wk−1(x)| |W∗

k−1(x)|]

logx

= lim
x→0

log|Wk−1(x)|
logx

+ lim
x→0

logdetW∗
k−1(x)

logx

(2.64)

where W∗
k−1(x) is the Schur complement of Wk−1(x),

W∗
k−1(x) = c2kx

p(2k) − bT
k (x)W−1

k−1(x)bk(x). (2.65)

Since Wk−1(x)W−1
k−1(x) = I, W−1

k−1(x) is of the form



c′11x
−p(2) · · · c′1kx

−p(k)

...
. . .

...
c′k1x

−p(k) · · · c′k−1,k−1x
−p(2k−2)


 . (2.66)

Consequently,

lim
x→0

log
[
bT

k (x)W−1
k−1(x)bk(x)

]

logx

= min{p(2k − 1)− p(k) + p(k + 1), p(2k − 1)− p(k + 1) + p(k + 2),
. . . , p(2k − 1)− p(2k − 2) + p(2k − 1)}

(a)
= p(2k − 1)− p(2k − 2) + p(2k − 1)
(b)

≥ p(2k)
(2.67)

where both steps (a) and (b) follow the inequality (2.56). Therefore, by
(2.64) and (2.65),

lim
x→0

logdetW(x)
logx

=
k∑

i=1

min{a, 2i}, (2.68)

which concludes this proof.

2.B Proof of Lemma 2

Each summand in |W(x)|, which is a product of the elements w1j1 , . . . , wmjm ,
can be written as

x
∑m

k=1(k+jk)
m∏

k=1

ck+jk
(2.69)
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where the numbers {j1, j2, ..., jm} is a permutation of {1, 2, ...,m}. Then,
each summand has the same degree m(m + 1), which concludes the proof.

2.C Proof of Lemma 3

By definition,

W =




Γ(a + 1) · · · Γ(a + m)
...

. . .
...

Γ(a + m) · · · Γ(a + 2m− 1)


 . (2.70)

For calculating the determinant of W, we do Gaussian elimination by
elementary row operations from bottom to top for obtaining the equivalent
upper triangular L [96]. Below-diagonal elements are eliminated from the
first column to the last column.

Let Wl denote the matrix after the below-diagonal elements of the lth

column are eliminated. Then the (i, j)th element of Wl subject to i ≥ j > l
is of the form

wl,i,j = θl,i,j Γ(a + i + j − 1− l). (2.71)

Hence, after below-diagonal elements of the (l− 1)th column are eliminated,
for the elements subject to i > l and j = l,

wl−1,i−1,l = θl−1,i−1,l Γ(a + i− 1), (2.72)
wl−1,i,l = θl−1,i,l Γ(a + i). (2.73)

Consequently, for eliminating the (i, l)th element of Wl−1 to obtain Wl,
the multiplied coefficient for the row operation in the Gaussian elimination
on the ith row

cl,i = − θl−1,i,l

θl−1,i−1,l
(a + i− 1). (2.74)

That is, wl,i,j is obtained as follows:

wl,i,j = wl−1,i,j + cl,i wl−1,i−1,j

=
[
θl−1,i,j (a + i + j − l − 1)− θl−1,i−1,j

θl−1,i,l

θl−1,i−1,l
(a + i− 1)

]

× Γ(a + i + j − l − 1).

(2.75)

Comparing the RHS of the above equation to (2.71), we get

θl,i,j = θl−1,i,j (a + i + j − l − 1)− θl−1,i−1,j
θl−1,i,l

θl−1,i−1,l
(a + i− 1). (2.76)
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Before doing any operation on W, θ0,i,j = 1. Then, by (2.76), we obtain
θ1,i,j = j − 1 and θ2,i,j = Γ(j)/Γ(j − 2). Supposing

θl,i,j =
Γ(j)

Γ(j − l)
. (2.77)

then by (2.76) we have

θl+1,i,j =
Γ(j)

Γ(j − l − 1)
. (2.78)

Therefore, our conjecture is right. Hence,

θi−1,i,i = Γ(i). (2.79)

and the ith diagonal entry of L,

wi−1,i,i = Γ(i)Γ(a + i). (2.80)

Consequently,

|Wm| =
m∏

k=1

Γ(k)Γ(a + k), (2.81)

which concludes this proof.

2.D Proof of Lemma 4

This proof is similar to Appendix 2.C.
By definition,

W =




Γ(a + 1)Γ(b− 1) · · · Γ(a + m)Γ(b−m)
...

. . .
...

Γ(a + m)Γ(b−m) · · · Γ(a + 2m− 1)Γ(b− 2m + 1)


 . (2.82)

The (i, j)th element of Wl subject to i ≥ j > l is of the form

wl,i,j = θl,i,j Γ(a + i + j − 1− l)Γ(b− i− j + 1). (2.83)

Consequently, the multiplied coefficient

cl,i = − θl−1,i,l (a + i− 1)
θl−1,i−1,l (b− i− l + 1)

. (2.84)
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and

wl,i,j = wl−1,i,j + cl,i wl−1,i−1,j

=
[
θl−1,i,j (a + i + j − l − 1)− θl−1,i−1,j θl−1,i,l (a + i− 1) (b− i− j + 1)

θl−1,i−1,l (b− i− l + 1)

]

Γ(a + i + j − l − 1) Γ(b− i− j + 1).
(2.85)

Comparing the RHS of the above expression to (2.83), we have

θl,i,j = θl−1,i,j (a + i + j − l− 1)− θl−1,i−1,j
θl−1,i,l (a + i− 1) (b− i− j + 1)

θl−1,i−1,l(b− i− l + 1)
(2.86)

Before doing any operation on W, θ0,i,j = 1. Then, by (2.86), we obtain

θ1,i,j =
(j − 1)(a + b− 1)

(b− i)
, (2.87)

θ2,i,j =
(j − 1)(j − 2)(a + b− 1)(a + b− 2))

(b− i)(b− i− 1)
. (2.88)

Supposing

θl,i,j =
l∏

k=1

(j − k)(a + b− k)
(b− i− l + k)

. (2.89)

then by (2.86) we have

θl+1,i,j =
l+1∏

k=1

(j − k)(a + b− k)
(b− i− l + k)

. (2.90)

Therefore, our conjecture is right. So, for i ≥ 2, the ith diagonal element of
the equivalent upper triangular L,

wi−1,i,i = Γ(a + b) Γ(i) Γ(a + i)
Γ(b− 2i + 2)Γ(b− 2i + 1)

Γ(a + b− i + 1)Γ(b− i + 1)
. (2.91)

Consequently,

|W| = Γ(a + 1)Γ(b− 1)Γm−1(a + b)
m∏

k=2

Γ(k)Γ(a + k)
Γ(b− 2k + 2)Γ(b− 2k + 1)

Γ(a + b− k + 1)Γ(b− k + 1)
,

(2.92)

which concludes this proof.
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2.E Proof of Lemma 5

f(n) can be written as

f(n) =
Γ(n− a)

Γ(n)
· · · Γ(n−m + 1− a)

Γ(n−m + 1)
. (2.93)

We thus have

f(n + 1)− f(n) =
(

n− a

n
· · · n−m + 1− a

n−m + 1
− 1

)
f(n). (2.94)

It is seen that n−a
n · · · n−m+1−a

n−m+1 < 1 and f(n) > 0. Hence, f(n+1)−f(n) < 0,
i.e., f(n) is monotonically decreasing.

For g(n),

g(n + 1)− g(n) =
[
(n + 1)am n− a

n
· · · n−m + 1− a

n−m + 1
− nam

]
f(n)

≤
[
(n + 1)am

(
n− a

n

)m

− nam

]
f(n)

(2.95)

If
(n + 1)a n− a

n
< na, (2.96)

then we have g(n + 1)− g(n) < 0.
Define a function h(x),

h(x) = (x− a)(x + 1)a − xa+1

= (x + 1)a+1 − xa+1 − (a + 1)(x + 1)a, x > a
(2.97)

In terms of mean value theory [97], for φ(x) = xa+1, there exists ξ which
lets

φ′(ξ) = (x + 1)a+1 − xa+1, x < ξ < x + 1 (2.98)

where φ′(ξ) is the first derivative.
As

φ
′′
(x) = a(a + 1)xa−1 > 0, (2.99)

φ
′
(x) is monotonically increasing and thus

φ
′
(ξ) < φ

′
(x + 1). (2.100)

So, h(x) < 0.
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Then, we have
x− a

x
<

(
x

x + 1

)a

. (2.101)

When x = n,

(n + 1)a n− a

n
< na (2.102)

Consequently, g(n+1)−g(n) < 0, that is, g(n) is monotonically decreasing.
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Chapter 3

End-to-End Distortion:
Correlated MIMO Channel

3.1 Introduction

In this chapter, we extend our investigation on the optimum expected end-
to-end distortion to the case of spatially-correlated slow-fading channel.

In practice, a spatially-correlated MIMO channel is more general than an
uncorrelated MIMO channel. Intuitively, for a correlated MIMO channel,
we ought to obtain the result that the spatial correlation increases ED∗

as it decreases the channel capacity and the results of the correlated case
converges to the uncorrelated case when the correlation matrix approaches
an identity matrix.

The system model in this chapter is similar to the description of the
system model in Section 2.2 in Chapter 2. However, we herein assume the
channel is spatially correlated on the receiver side and uncorrelated on the
transmitter side. The correlation matrix Σ = E{HH†}, which is assumed to
be a full-rank matrix, i.e. Nr ≤ Nt, with distinct eigenvalues. Its dual case
is that the channel is spatially uncorrelated at the receiver and correlated
at the transmitter.

The remainder of this chapter is organized as follows. In Section 3.2,
we give mathematical definitions, properties and lemmas as mathematical
preliminaries for subsequent derivations. Section 3.3 is dedicated to our main

41
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results. Numerical results are shown in Section 3.4 with analysis. Finally,
Section 3.5 concludes the contributions of this chapter.

3.2 Mathematical preliminaries

The mathematical definition and lemmas below will be used in derivations
and results thereafter.

For the function Ψ(a, c;x), besides its definition and properties clarified
in Section 2.3 in Chapter 2, in this chapter, we shall use other properties
stated by Bateman [93, pp. 257-261] as below:

• If c is not an integer,

Ψ(a, c; x) =
Γ(1− c)

Γ(a− c + 1)
Φ(a, c; x)

+
Γ(c− 1)

Γ(a)
x1−cΦ(a− c + 1, 2− c; x)

(3.1)

where Φ(a, c; x) is another confluent hypergeometric function,

Φ(a, c; x) =
∞∑

r=0

(a)r

(c)r

xr

r!
. (3.2)

Note that (a)n = Γ(a + n)/Γ(a).

• if c is a positive integer,

Ψ(a, n + 1;x) =
(−1)n−1

n!Γ(a− n)

{
Φ(a, n + 1; x) log x

+
∞∑

r=0

(a)r

(n + 1)r
[ψ(a + r)− ψ(1 + r)− ψ(1 + n + r)]

xr

r!

}

+
(n− 1)!

Γ(a)

n−1∑
r=0

(a− n)r

(1− n)r

xr−n

r!
n = 0, 1, 2, ...

(3.3)

The last sum is to be omitted if n = 0.

•
Ψ(a, c;x) = x1−cΨ(a− c + 1, 2− c;x). (3.4)
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Hence, when c is a non-positive integer, we can obtain the form of
Ψ(a, c; x) from (3.3) and (3.4), which is similar to (3.3),

Ψ(a, c; x) =
(−1)−c

(1− c)!Γ(a)

{
Φ(a + 1− c, 2− c;x)x1−c log x

+
∞∑

r=0

(a + 1− c)r

(2− c)r

[
ψ(a + 1− c + r)− ψ(1 + r)

− ψ(2− c + r)
]xr+1−c

r!

}
+

Γ(1− c)
Γ(a + 1− c)

−c∑
r=0

(a)r

(c)r

xr

r!

(3.5)

The other two mathematic lemma that we shall use are as below.

Lemma 6. Define an m ×m Toeplitz matrix W whose (i, j)th element is
Γ(a + i− j), 1 6 i, j 6 m, a ∈ R. Then

|W| = (−1)
m(m−1)

2

m∏

k=1

Γ(k)Γ(a + k −m). (3.6)

Proof. The derivation is very similar to Appendix 2.C. However, for deriving
Lemma 6, we use Gaussian elimination by column operations from the right
to the left, instead of row operations from the bottom to the top in Appendix
2.C. After the Gaussian elimination, the left upper-diagonal triangle-matrix
becomes a zero triangle-matrix. Consequently, the determinant of W is

|W| = (−1)
m(m−1)

2

m∏

k=1

Γ(k)Γ(a + k −m). (3.7)

Lemma 7. Let (a)n denote Γ(a + n)/Γ(a), a ∈ R, n ∈ Z+. Then

(a + 1)n = (−1)n(−a− n)n (3.8)

Proof. It is derived in terms of the feature of the Gamma function Γ(x),

Γ(1− z)Γ(z) =
π

sin(πz)
. (3.9)
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3.3 Main results

3.3.1 Optimum expected distortion at any SNR

Theorem 4 (Optimum Expected Distortion for MIMO Correlated Chan-
nel). The optimum expected end-to-end distortion for MIMO systems over
correlated channels

ED∗
cor(η) =

Ps|G(η)|
∏Nmin

k=1 σ
|Nt−Nr|+1
k Γ(Nmax − k + 1)

∏
1≤m<n≤Nmin

(σn − σm)
.

(3.10)
where G(η) is an Nmin ×Nmin matrix whose (i, j)th entry given by

gij(η) =
(

ρ

Nt

)−dj

Γ(dj)Ψ
(

dj , dj + 1− 2
η
;

Nt

σiρ

)
. (3.11)

dj = |Nt−Nr|+ j. σ = {σ1, σ2, · · · , σNmin} with 0 < σ1 < σ2 < · · · < σNmin

denoting the ordered eigenvalues of the correlation matrix Σ.

Proof. Following the proof of Theorem 1, by the mathematical results given
by Chiani et al. in [94] for spatially correlated H, we have

ED∗
cor(η) = PsKΣ|G(η)| (3.12)

where G(η) is an Nmin ×Nmin matrix with (i, j)th elements given by

gij(η) =
∫ ∞

0
x|Nt−Nr|+j−1e−x/σi(1 +

ρ

Nt
x)−

2
η dx (3.13)

and

KΣ =
|Σ|−Nmax

|V2(σ)|∏Nmin
k=1 Γ (Nmax − k + 1)

(3.14)

where V2(σ) is a Vandermonde matrix given by

V2(σ) , V1

(
−{σ−1

1 , · · · , σ−1
Nmin

}
)

(3.15)

and the Vandermonde matrix V1(x) is defined as

V1(x) ,




1 1 · · · 1
x1 x2 · · · xNmin

...
...

. . .
...

xNmin−1
1 xNmin−1

2 · · · xNmin−1
Nmin


 . (3.16)
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Due to the property of Vandermonde matrix [95], the determinant of V2(σ)

|V2(σ)| =
∏

1≤m<n≤Nmin

(−σ−1
j + σ−1

i ) (3.17)

=
∏

1≤m<n≤Nmin

σ−1
m σ−1

n (σn − σm) (3.18)

=
Nmin∏

k=1

σ1−Nmin
k

∏

1≤m<n≤Nmin

(σn − σm) (3.19)

=
Nmin∏

k=1

σ1−Nmin
k |V1(σ)|. (3.20)

Thereby,

KΣ =
1

∏Nmin
k=1 σ

|Nt−Nr|+1
k Γ(Nmax − k + 1)

∏
1≤m<n≤Nmin

(σn − σm)
(3.21)

In terms of the integral equation (2.6), (3.13) can be written in the
analytic form

gij(η) =
(

ρ

Nt

)−dj

Γ(dj)Ψ
(

dj , dj + 1− 2
η
;

Nt

σiρ

)
. (3.22)

This concludes our proof of this theorem.

3.3.2 Asymptotic optimum expected distortion

Theorem 4 tells us that the analytical expression of ED∗
cor is a polynomial

of ρ−1. Therefore, at high SNR, the asymptotic ED∗
cor is of the form

ED∗
asy,cor = µ∗cor(η)ρ−∆∗cor(η) (3.23)

where ∆∗
cor(η) is the optimum distortion exponent satisfying

∆∗
cor(η) = − lim

ρ→∞
log ED∗

cor(η)
log ρ

(3.24)

and µ∗cor is the corresponding optimum distortion factor satisfying

lim
ρ→∞

log µ∗cor(η)
log ρ

= 0. (3.25)

The closed-form expressions of ∆∗
cor(η) and µ∗cor are given as follows.
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Theorem 5 (Optimum Distortion Exponent for MIMO Correlated Chan-
nel). The optimum distortion SNR exponent ∆∗

cor in the optimum expected
end-to-end distortion in a system over a spatially correlated MIMO channel
is the same as the optimum distortion SNR exponent ∆∗

unc in a system over
an uncorrelated MIMO channel, that is,

∆∗
cor(η) =

Nmin∑

k=1

min
{

2
η
, 2k − 1 + |Nt −Nr|

}
(3.26)

Proof. Let G̃ denote the asymptotic form of G at a high SNR. Since gij is
a polynomial of ρ−1 given by (3.11) and the preliminaries in Section 3.2, in
terms of Table 2.1, |G̃| can be written as

∑M
m=1 |G̃m| where

|G̃m| = umρ−∆∗cor , (3.27)

i.e., they have the same degree over ρ−1. Each element of G̃m is a monomial
of ρ−1 denoted by g̃m,ij . In terms of Table 2.1 and the preliminaries in
Section 3.2, we learn that g̃m,ij ’s form is one of σ

−rm,j

i a(j, rm,j)ρ−(dj+rm,j)

(Form 1) and σ
dj− 2

η

i cj logε ρ ρ
− 2

η (Form 2), where rm,j is a non-negative
integer, ε = 0 or 1, and

a(j, rm,j) = N
dj+rm,j

t

Γ( 2
η − dj)Γ(dj + rm,j)

Γ( 2
η )Γ(rm,j + 1)(dj + 1− 2

η )rm,j

(3.28)

cj = N
2
η

t Γ(dj − 2
η
). (3.29)

If the elements of first l columns of G̃m are of Form 1 and other elements
are of Form 2, G̃m can be partitioned as

G̃m =
(

G̃m,1 G̃m,2

)
(3.30)

where G̃m,1 is of size Nmin × l and G̃m,2 is of size Nmin × (Nmin − l). Since
G̃m is a full-rank matrix, G̃m,1 and G̃m,2 ought to be full rank as well.
Apparently, G̃m,2 is a full-rank matrix; whereas, for G̃m,1, if there exist
rm,j1 = rm,j2 for j1 6= j2, G̃m,1 would not be full rank, because in that case,
its submatrix constructed by the two columns with individual indices j1 and
j2 would be rank-one. Thus, each rm,j must be distict.
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Now let us figure out l. Define a distortion exponent function as

γ(n) =

{∑n
k=1 dk +

∑n−1
k=0 k + 2(Nmin−n)

η , n ∈ Z ∩ (0, Nmin];
2Nmin

η , n = 0.
(3.31)

Apparently, γ(n) is on the curve of the two-order function f(x),

f(x) = x2 +
(
|Nt −Nr| − 2

η

)
x +

2Nmin

η
(3.32)

which is a symmetric convex function and whose minimum value is given

by x =
2
η
−|Nt−Nr|

2 . Since n = l gives the minimum γ(n), when 2/η ∈
(0, |Nt − Nr| + 1), l = 0; when 2/η ∈ (Nt + Nr − 1,+∞), l = Nmin; when
η ∈ [|Nt−Nr|+1, Nt+Nr−1], there exists an l who gives the minimum γ(n).
Note that when 2/η = |Nt−Nr+1|+1, γ(0) = γ(1); when 2/η = Nt+Nr−1,
γ(Nmin−1) = γ(Nmin).

For the case of η ∈ [|Nt −Nr|+ 1, Nt + Nr − 1], we should have

γ(l) ≤ γ(l − 1) (3.33)

and
γ(l) ≤ γ(l + 1), (3.34)

which gives

2
η
− 1− |Nt −Nr| ≤ 2l ≤ 2

η
+ 1− |Nt −Nr|. (3.35)

Hence, for η ∈ [|Nt −Nr|+ 1, Nt + Nr − 1],

l =

⌊
2
η + 1− |Nt −Nr|

2

⌋
or

⌈
2
η − 1− |Nt −Nr|

2

⌉
(3.36)

and

∆∗
cor(η) = γ(l)

= l(l + |Nr −Nt|) +
2(Nmin − l)

η

=
Nmin∑

k=1

min
{

2
η
, 2k − 1 + |Nt −Nr|

}
.

(3.37)

Note that γ

(⌊
2
η
+1−|Nt−Nr|

2

⌋)
= γ

(⌈
2
η
−1−|Nt−Nr|

2

⌉)
. With the results for

the other two cases, this concludes our proof.
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Theorem 6 (Optimum Distortion Factor for MIMO Correlated Channel).
The optimum distortion factor µ∗cor(η) is given as follows.

1. For 2/η ∈ (0, |Nt −Nr|+ 1), the optimum distortion factor is

µ∗cor(η) =
Nmin∏

k=1

σ
− 2

η

k µ∗unc(η). (3.38)

2. For 2/η ∈ (Nt + Nr − 1, +∞), the optimum distortion factor is

µ∗cor(η) =
Nmin∏

k=1

σ−Nmax
k µ∗unc(η). (3.39)

3. For 2/η ∈ [|Nt −Nr|+ 1, Nt + Nr − 1], the optimum distortion factor
is

µ∗cor(η) =
(−1)

l(l−1)
2 |V3(σ)|

∏Nmin
k=1 σ

|Nt−Nr|+1
k

∏
1≤m<n≤Nmin

(σn − σm)

×
Nmin−l∏

k=1

(k)l

(|Nt −Nr| − 2
η + l + k)l

µ∗unc(η)

(3.40)

where l = b
η
2
+1−|Nr−Nt|

2 c and each element of V3(σ)

v3,ij = σ
−min{j−1, 2

η
−dj}

i . (3.41)

Proof. From the proofs of Theorem 4 and Theorem 5, we have

µ∗cor =
Ps|Σ|−Nmax

∑M
m=1 um∏Nmin

k=1 Γ(Nmax − k + 1)|V2(σ)|
(3.42)

where um is defined in (3.27).
1. Consider the case of 2/η ∈ (0, |Nt −Nr|+ 1). We have M = 1 and

g̃1,ij = σ
dj− 2

η

i cjρ
− 2

η , i = 1, . . . Nmin, j = 1, . . . Nmin (3.43)
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where dj is defined in Theorem 4 and uj is defined in (3.29). Thereby,

u1 = N
2Nmin

η

t |V1(σ)|
Nmin∏

j=1

Γ(dj − 2
η
)

Nmin∏

i=1

σ
|Nt−Nr|+1− 2

η

i . (3.44)

So, in this case,

µ∗cor(η) =
|Σ|−Nmax |V1(σ)|∏Nmin

i=1 σ
|Nt−Nr|+1− 2

η

i

|V2(σ)|

×
PsN

2Nmin
η

t

∏Nmin
j=1 Γ(dj − 2

η )
∏Nmin

k=1 Γ(Nmax − k + 1)

=
Nmin∏

k=1

σ
− 2

η

k µ∗unc(η).

(3.45)

Note that V1(σ) and V2(σ) are Vandermonde matrices defined by
(3.16) and (3.15) respectively, in the proof of Theorem 4.

2. Consider the case of 2/η ∈ (Nt + Nr − 1,+∞). We have M = Nmin!
and

g̃m,ij = σ
−rm,j

i a(j, rm,j)ρ−dj−rm,j , m = 1, . . . , M, i = 1, . . . , Nmin,

j = 1, . . . , Nmin

(3.46)

where

a(j, rm,j) = N
dj+rm,j

t

Γ(dj)Γ( 2
η − dj)(dj)rm,j

Γ( 2
η )Γ(rm,j + 1)(dj + 1− 2

η )rm,j

= N
dj+rm,j

t

Γ( 2
η − dj)Γ(dj + rm,j)

Γ( 2
η )Γ(rm,j + 1)(dj + 1− 2

η )rm,j

(3.47)

By Lemma 7,
(

dj + 1− 2
η

)

rm,j

= (−1)rm,j

(
2
η
− dj − rm,j

)

rm,j

. (3.48)

Substitute (3.48) to (3.47), we have

a(j, rm,j) = (−1)rm,jN
dj+rm,j

t

Γ(dj + rm,j)Γ( 2
η − dj − rm,j)

Γ( 2
η )Γ(rm,j + 1)

. (3.49)
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Hence,

um = (−1)
∑

j rm,j sgn(rm)|V2(σ)|
Nmin∏

j=1

a(j, rm,j)

= sgn(rm)|V2(σ)|
Nmin∏

j=1

N
dj+rm,j

t

Γ(dj + rm,j)Γ( 2
η − dj − rm,j)

Γ
(

2
η

)
Γ(rm,j + 1)

(3.50)

Note that rm is a permutation of {0, 1, . . . , Nmin − 1} and sgn(rm)
denotes the signature of the permutation rm: +1 if rm is an even
permutation and −1 if rm is an odd permutation.
Consequently, in the light of Leibniz formula [95],

M∑

m=1

um =
|V2(σ)|∏Nmin
k=1 Γ(k)

|Q| (3.51)

where each element of Q is

qij = N
dij

t Γ(dij)
Γ( 2

η − dij)

Γ( 2
η )

. (3.52)

Note that dij is defined in the description of Theorem 1. Comparing
(3.52) to (2.41), we find that qij and eij are identical. Therefore,

µ∗cor(η) =
Nmin∏

k=1

σ−Nmax
k µ∗unc(η). (3.53)

3. Consider the case of 2/η ∈ [|Nt − Nr| − 1, Nt + Nr + 1]. In terms of
the proof of Theorem 5 and the preliminaries in Section 3.2, when
mod {2/η + 1− |Nt −Nr|, 2} 6= 0, M = l!,

g̃m,ij =

{
σ
−rm,j

i a(j, rm,j)ρ−dj−rm,j , j ≤ l;

σ
dj− 2

η

i cjρ
− 2

η , j ≥ l + 1;
(3.54)

when mod {2/η + 1− |Nt −Nr|, 2} = 0, M = (l − 1)!,

g̃m,ij =





σ
−rm,j

i a(j, rm,j)ρ−dj−rm,j , j ≤ l − 1;

σ−l+1
i (−1)l−1 N

2
η

t
Γ(l) log ρ ρ

− 2
η , j = l;

σ
dj− 2

η

i cjρ
− 2

η , j ≥ l + 1.

(3.55)
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Note that a(j, rm,j) and cj are given by (3.28) and (3.29) respectively;
when mod {2/η + 1 − |Nt − Nr|, 2} 6= 0, rm is a permutation of
{0, 1, . . . , l − 1}; when mod {2/η + 1 − |Nt − Nr|, 2} = 0, rm is a
permutation of {0, 1, . . . , l − 2}. Thus,

um =





sgn(rm)|V3(σ)|∏l
j=1 a(j, rm,j)

∏Nmin
j=l+1 N

2
η

t Γ(dj − 2
η ),

mod {2/η + 1− |Nt −Nr|, 2} 6= 0;

sgn(rm)|V3(σ)|(−1)l−1N
2(Nmin−l+1)

η

t log ρ

×∏l−1
j=1 a(j, rm,j)

∏Nmin
j=l+1 Γ(dj − 2

η ),

mod {2/η + 1− |Nt −Nr|, 2} = 0.

(3.56)
where each element of V3(σ),

v3,ij = σ
−min{j−1, 2

η
−dj}

i . (3.57)

Comparing to the proof of Theorem 3 for the same case of η, we have

µ∗cor(η) =
(−1)

l(l−1)
2 |V3(σ)|

∏Nmin
k=1 σ

|Nt−Nr|+1
k

∏
1≤m<n≤Nmin

(σn − σm)

×
Nmin−l∏

k=1

(k)l

(|Nt −Nr| − 2
η + l + k)l

µ∗unc(η).

(3.58)

Theorem 7 (Convergence).

lim
Σ→I

µ∗cor(η) = µ∗unc(η). (3.59)

Proof. When 2/η ∈ (0, |Nt −Nr|+ 1) or 2/η ∈ (Nt + Nr − 1, +∞), in terms
of Theorem 6, straightforwardly, limΣ→I µ∗cor(η) = µ∗unc(η) .

Consider the case of 2/η ∈ [|Nt − Nr| − 1, Nt + Nr + 1]. By Taylor
expansion and Lemma 7 , the elements of V3(σ)

v3,ij =
∞∑

n=0

(−pj − n + 1)n

n!
(σi − 1)n

=
∞∑

n=0

(−1)n(pj)n

n!
(σi − 1)n

(3.60)
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where pj = min{j − 1, 2
η − dj}.

Thereby, when σ approaches a vector of ones,

|V3(σ)| =
(Nmin−1)!∑

m=1

|V3,m(σ)| (3.61)

where the elements of V3,m(σ)

v3,m,ij =





1, j = 1;
(−1)sm,j (pj)sm,j

sm,j !
(σi − 1)sm,j , j ≥ 1.

(3.62)

Note that sm = {sm,2, . . . , sm,Nmin} is a permutation of {1, 2, . . . , Nmin− 1}.
The determinant of V3,m(σ)

|V3,m(σ)| = (−1)n1 |V1(σ − 1)|sgn(sm)
Nmin∏

k=2

1
Γ(pk)Γ(k)

Nmin∏

j=2

Γ(sm,j + pj)

(3.63)
where n1 = Nmin(Nmin−1)

2 . In the light of Leibniz formula [95] and

|V1(σ − a)| = |V1(σ)|, a = {a, . . . , a}, (3.64)

|V3(σ)| can be written in the form

|V3(σ)| = (−1)
Nmin(Nmin−1)

2 |V1(σ)||W|
Nmin∏

k=2

1
Γ(pk)Γ(k)

(3.65)

where W is an (Nmin − 1)× (Nmin − 1) matrix with elements

wij = Γ(i + pj+1)

=

{
Γ(i + j), j ≤ l − 1

Γ
(

2
η − |Nt −Nr| − 1 + i− j

)
, j ≥ l.

(3.66)

By partial Gaussian elimination, W can be transformed to W
′

with a
(Nmin − l)× (l − 1) left-lower submatrix of zeros. Partition W

′
as

W
′
=

(
W

′
1 W

′
2

W
′
3 W

′
4

)
, (3.67)

where W
′
3 is the submatrix of zeros, the elements of W

′
1 are

w
′
1,ij = Γ(i + j − 1), 1 ≤ i, j ≤ l − 1, (3.68)
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and the elements of W
′
4 are

w
′
4,ij =

(
2
η
− |Nt −Nr| − j − l

)

l−1

Γ(
2
η
− |Nt −Nr| − l + i− j),

l ≤ i, j ≤ Nmin − 1.

(3.69)

|W| = |W′
1||W

′
4| (3.70)

By Lemma 3,

|W′
1| =

l−1∏

k=1

Γ(k)Γ(k + 1). (3.71)

By Lemma 6,

|W′
4| = (−1)n2

Nmin−1∏

j=l

(
2
η
− |Nt −Nr| − j − l

)

l−1

Nmin−l∏

k=1

Γ(k)Γ(
2
η
−Nmax+k).

(3.72)
where n2 = (Nmin−l)(Nmin−l−1)

2 .
Consequently, in terms of Theorem 5,

lim
Σ→I

µ∗cor = (−1)n1+n2+n3

Nmin−l∏

k=1

Γ( 2
η −Nmax + k)

Γ( 2
η − |Nt −Nr| − k − 2l + 1)

×
Γ(|Nt −Nr| − 2

η + l + k)

Γ(|Nt −Nr| − 2
η + 2l + k)

µ∗unc

(3.73)

where n3 = l(l−1)
2 . Since for any function f(x),

Nmin−l∏

k=1

f(a + Nmin − k − l + 1) =
Nmin−l∏

k′=1

f(a + k
′
) (3.74)

where k
′
= Nmin − k − l + 1,

lim
Σ→I

µ∗cor(η) = (−1)n1+n2+n3

Nmin−l∏

k=1

( 2
η −Nmax + k − l)l

(Nmax − 2
η − k + 1)l

µ∗unc(η). (3.75)

By Lemma 7,
(

2
η
−Nmax + k − l

)

l

= (−1)l

(
Nmax − 2

η
− k + 1

)

l

(3.76)
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Thus,
lim
Σ→I

µ∗cor(η) = (−1)n1+n2+n3+n4 µ∗unc(η). (3.77)

where n4 = l(Nmin − l + 1). As

(−1)n1+n2+n3+n4 = (−1)n1−n2+n3+n4 = 1, (3.78)

we have
lim
Σ→I

µ∗cor(η) = µ∗unc(η). (3.79)

This concludes our proof.

3.4 Numerical analysis and discussion

The analytical framework we have derived is general and valid for the cor-
related cases with all eigenvalues of the correlation matrix Σ distinct to
each other. To give an example, we consider a well-known correlation
model as in [94]: the exponential correlation with Σ = {r|i−j|}i,j=1,··· ,Nr

and r ∈ (0, 1) [98].

Fig.3.1-Fig.3.4 illustrates the ED∗ on a power-one white noise source
transmitted in different cases. Red circles represent results of Monte Carlo
simulations which are carried out by generating 10 000 realizations of H
and evaluating (2.19). Green lines represent the analytic form of ED∗

cor

in Theorem 4 or ED∗
unc in Theorem 1. Blue dashed lines represent the

asymptotic optimum distortion ED∗
asy.

ED∗
asy =

{
µ∗uncρ

−∆∗unc , r = 0
µ∗corρ

−∆∗cor , r > 0.
(3.80)

In Fig.3.1, we see that there is an agreement between ED∗ and ED∗
asy

in the high SNR regime. As we have analyzed in the preceding section, at
a high SNR, due to the same optimum SNR distortion exponent, the op-
timum distortions of systems with different correlation matrices have the
same descendent slope. The optimum distortion increases with r. The line
of the uncorrelated case (r = 0) is the lowest among the five. For reaching
the same optimum distortion in the high SNR regime above 15 dB, there is
about 8 dB difference of SNR between the cases of r = 0.99 and the case
of r = 0. This agrees with our intuition since spatial correlation decreases
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Figure 3.1: Uncorrelated and correlated channels, Nt = 4, Nr = 2, η = 10,
high SCBR

channel capacity. For systems in the high SCBR regime at high SNR, the
optimum distortion exponents are the same. The difference comes from dif-
ferent distortion factors involved by correlation coefficients.

Fig.3.2-Fig.3.4 show that, in some cases, due to the effect of other terms
in the polynomial of ED∗, there are gaps between ED∗ and ED∗

asy in the
given range of SNR.

3.5 Conclusion

In this chapter, we have investigated the optimum expected end-to-end dis-
tortion in an analog-source transmission system over a correlated MIMO
channel. The analytical expression of the optimum expected end-to-end dis-
tortion and its asymptotic form have been given. We have proved that the
optimum distortion exponent for the case of correlated-fading channel is the
same as that for the case of uncorrelated-fading channel. At a high SNR,
the degradation of the optimum asymptotic expected end-to-end distortion
caused by correlation is seen only in the optimum distortion factor. We have
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Figure 3.2: Uncorrelated and correlated channels, Nt = 2, Nr = 2, η = 1.7,
moderate SCBR
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Figure 3.3: Uncorrelated and correlated channels, Nt = 2, Nr = 2, η = 2,
moderate SCBR
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Figure 3.4: Uncorrelated and correlated channels, Nt = 2, Nr = 2, η =
0.6657, low SCBR

proved that, corresponding to our intuition, when the correlation matrix ap-
proaches an identity matrix, the optimum asymptotic expected end-to-end
distortion for the case of correlated-fading MIMO channel converges to the
one for the case of uncorrelated-fading MIMO channel.
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Chapter 4

End-to-End Distortion: With
Time Interleaving

4.1 Introduction

In this chapter, we extend our investigation on the optimum expected end-
to-end distortion to the case of long-frame system over block-fading channel.

For a time-varying fading channel, it is well known that time-interleaving
techniques can be used to exploit time diversity and thereby benefits the
error probability [2, 11, 99–106]. However, so far, no much work has been
done on the impact of time diversity on the reproduced analog (continuous-
amplitude) source.

In practice, an analog source is to be transmitted in frames to whose
length coding and decoding are subject. A frame can span over several
fading blocks to exploit the time diversity. Obviously, to be in time and
tractable, the frame length cannot be infinite. Thereby, for transmitting
over a block-fading channel, the number of time diversity branches to be
exploited is limited. We are particularly interested in the mechanism of
how time interleaving benefits reproducing an analog source conveyed via a
block-fading channel in length-limited frames.

In Chapter 2 and Chapter 3, we have analyzed the optimum expected
end-to-end distortion ED∗ of short-frame systems without time diversity.
In this chapter, our investigation shall base on the fact that the ideal time-

59
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interleaving inside a length-limited frame over a block-fading channel is
equivalent to separating the source sequence to transmit via several parallel
independent coherent channels. The channel is assumed to be uncorrelated.
The analysis for the case of correlated channel would be straightforward,
though this thesis does not give the details.

Coincidentally, Gunduz and Erkip have derived the relation between
the optimum distortion exponent and time diversity the same as we will
show in the following. However, via introducing the multiplicative optimum
distortion factor, we obtain more results on the impact of time diversity
giving a further guidance on system design.

The remainder of this chapter is organized as follows. The system model
for ideal interleaving frame transmission is described in Section 4.2. Section
4.3 is dedicated to our main results. The effect of utilizing time diversity
branches is illustrated in Section 4.4. Finally, Section 4.5 concludes the
contributions of this chapter.
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4.2 System Model

Consider a flat block-fading MIMO channel of bandwidth Wc with Nt in-
puts and Nr outputs. Assuming there are L fading-blocks in one frame,
i.e, L time diversity branches in one frame, with ideal interleaving, we can
regard the time-varying spatially-uncorrelated MIMO channel in one-frame
transmission as L parallel statistically-independent memory-less coherent
MIMO channels. Fig.4.1 is the block diagram of the transmission model.
Suppose a white noise source st of bandwidth Ws and average power Ps is
to be conveyed. First, it is sampled (over Nyquist sampling rate) into a
time-discrete source sn. After separate or joint source-channel coding with
ideal interleaving, the transmission can be regarded as L source symbols to
be transmitted over L parallel channels at time p simultaneously. For each
equivalent coherent channel, the channel model is represented as

yi
p = Hixi

p + ni
p, 1 ≤ i ≤ L. (4.1)

where all elements of Hi are i.i.d. CN (0, 1) random variables and all ele-
ments of ni

p are zero-mean i.i.d. complex random variables with variance σ2
n.

Suppose ||xi
p||22 = Pt, the average SNR at each receive antenna ρ = Pt/σ2

n.
At the receiver, after de-interleaving and decoding, the estimate of the time-
discrete source, ŝn, is obtained. Finally, the analog source is reconstructed
to ŝt via interpolation.

4.3 Main Results

4.3.1 Optimum expected distortion at any SNR

Theorem 8 (Optimum Expected Distortion with Time Interleaving). The
optimum expected end-to-end distortion in a MIMO system over an uncor-
related block-fading channel with perfect time interleaving is

ED∗
int(η) = P 1−L

s [ED∗
unc(Lη)]L . (4.2)

Proof. Since the channel can be regarded as parallel channels as Fig.4.1
shows, the mutual information of the channel per channel use is

I =
1
L

L∑

i=1

Ii

=
1
L

L∑

i=1

log
∣∣∣∣INr×Nr +

ρ

Nt
HiH

†
i

∣∣∣∣

(4.3)
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where Ii is the mutual information per channel use for the i-th channel in
the equivalent parallel channel bank.

Analogous to the proof of Theorem 1, according to Shannon’s inequality
[23], we have

Ws log
Ps

D
≤ 2Wc

L

L∑

i=1

log
∣∣∣∣INr×Nr +

ρ

Nt
HiH

†
i

∣∣∣∣ . (4.4)

Consequently,

ED∗
int = Ps

(
EH

∣∣∣∣INr×Nr +
ρ

Nt
HiH

†
i

∣∣∣∣
− 2

Lη

)L

= Ps

(
ED∗

unc(Lη)
Ps

)L

= P 1−L
s ED∗

unc
L(Lη).

(4.5)

This concludes our proof.

4.3.2 Asymptotic optimum expected distortion

At a high SNR, the asymptotic ED∗
int is of the form

ED∗
asy,int = µ∗int(η)ρ−∆∗int(η). (4.6)

Given (4.2), we have

ED∗
asy,int(η) = P 1−L

s ED∗
asy,unc

L(Lη). (4.7)

Therefore, the optimum distortion exponent is

∆∗
int(η) = L∆∗

unc(Lη), (4.8)

as in [41] and the optimum distortion factor is

µ∗int(η) = P 1−L
s µ∗unc

L(Lη) (4.9)

4.4 Interleaving Impact Analysis

In this section, we analyze the interleaving impact on ED∗
asy,int. The defini-

tion of different SCBR regimes are: 2/Lη ∈ (Nt + Nr − 1,+∞) is defined as
low SCBR regime; 2/Lη ∈ (0, |Nt−Nr|+1) is defined as high SCBR regime;
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Figure 4.2: With time interleaving, Nt = 2, Nr = 1, η = 0.25, low SCBR

2/Lη ∈ [|Nt − Nr| + 1, Nt + Nr − 1] is defined as moderate SCBR regime.
Note that in the following numerical analysis, Ps = 1.

When the time diversity branches L ≤
⌈

2
η(|Nt−Nr|+1)

⌉
, the system is

either in the low SCBR regime or in the moderate SCBR regime. In both
cases, ∆∗

int increases with L, which leads ED∗
asy,int to decrease with L in

the high SNR regime. Fig.4.2 illustrates the relationship between ED∗
asy,int

and L in the low SCBR regime. We can see that increasing L decreases
ED∗

asy,int and makes the line of ED∗
asy,int decay faster, which corresponds to

the increase of ∆∗
int.

When L > d 2
η(|Nt−Nr|+1)e, the system is in the high SCBR regime. In

this case, ∆∗
int is fixed to 2Nmin/η and thus has nothing to do with L. So,

let us study the behavior of µ∗int with L.
Given Theorem 3 in Chapter 2, equations (4.8) and (4.9), when the

system is in the high SCBR regime, the optimum distortion factor

µ∗int = PsNt

2Nmin
η

(
Nmin∏

k=1

Γ(|Nt −Nr| − 2
ηL + k)

Γ(|Nt −Nr|+ k)

)L

. (4.10)
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Figure 4.3: With time interleaving, Nt = 4, Nr = 2, η = 1, high SCBR

Let

ϕ(L) =
Nmin∏

k=1

Γ(|Nt −Nr| − 2
ηL + k)

Γ(|Nt −Nr|+ k)
. (4.11)

Since 0 < ϕ(L) < 1 and d
dLϕ(L) > 0, the derivative of the µ∗int with respect

to L
d

dL
µ∗int = PsN

2Nmin
η

t ϕ(L)L lnϕ(L) · d
dL

ϕ(L) < 0. (4.12)

Consequently, the corresponding distortion factor µ∗int decreases with L in
the high SCBR regime and thereby ED∗

asy,int also decreases. Fig.4.3 illus-
trates the relationship between ED∗

asy,int and L in the high SCBR state. We
can see that increasing L decreases ED∗

asy,int but does not change the slope.
For a system initially in the low SCBR regime, if we increase L contin-

uously, the SCBR regime would migrate from the low to the moderate and
then to the high. We refer to the point of L where the systems migrates
from the moderate SCBR regime to the high SCBR regime as transit point,
which is

L∗ =
⌈

2
η(|Nt −Nr|+ 1)

⌉
. (4.13)
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Figure 4.4: SCBR state transition with time diversity branches. Nt = 2,
Nr = 3, η = 0.32, and ρ = 20dB.
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Fig.4.4 illustrates the transition process. In Fig.4.4(a) and Fig.4.4(b),
the ranges of low, moderate and high SCBR regimes are denoted by LSCBR,
MSCBR and HSCBR, respectively. The transit point L∗ in this case is 4.
We can see that ED∗

asy,int decreases with L, but after L∗, because increasing
L only affects µ∗int, the benefit of increasing L becomes insignificant.

4.5 Conclusion

In this chapter, considering transmitting a white Gaussian source s(t) over
a block-fading uncorrelated MIMO channel via an outage-free long-frame
system, we have investigated the impact of time diversity on the optimum
end-to-end distortion. Based on our preceding results for the case of flat
uncorrelated channel, we have derived the analytical expression of the op-
timum expected end-to-end distortion and its closed-form asymptotic ex-
pression with respect to the time diversity order. We have proved that the
optimum asymptotic expected end-to-end distortion, consisting of the opti-
mum distortion exponent and the multiplicative optimum distortion factor,
is monotonically decreasing with the time diversity order. However, the op-
timum distortion exponent keeps constant when the time diversity order is
greater than the transit point. Our analysis on the optimum asymptotic ex-
pected end-to-end distortion reflects the behavior of the optimum expected
end-to-end distortion. Analogous to our analysis in this chapter, the results
for the case of correlated channel are straightforward.
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Chapter 5

Analog Channel Feedback

5.1 Introduction

In this chapter, we consider feeding back MIMO channel estimation by linear
analog approaches.

We suppose that linear analog transmission over a MIMO channel can
also benefit from the spatial diversity coming along with degrees of spatial
freedom and it could be obtained by space-time block coding at the trans-
mitter and the corresponding combination at the receiver. Since in a linear
analog system, for a unit-norm source, mean-squared error (MSE) is the re-
ciprocal of the received SNR and it is the primary metric for analog-source
transmission, we believe that, for MIMO systems, the matched filter bound
(MFB) on received SNR (SNRMFB) is a plausible performance target.

We see that for linear analog transmission, due to its linearity, in the
expression of expected MSE (i.e., distortion), the spatial diversity does not
show in the distortion exponent over the transmit SNR but in the distortion
factor aside, and the absolute value of the negative exponent is always one. It
is known that a nonlinear transmission method can achieve a higher absolute
value of the distortion exponent [25, 34, 38, 46, 77]. However, taking the
distortion factor into account, a nonlinear scheme may not perform better
than a linear scheme for any SNR but for impractical sufficiently high SNR,
as we indicated in Chapter 1.

Furthermore, under a strict latency constraint, a linear analog transmis-

69
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sion method would perform better than a quantization transmission method,
even on the distortion exponent.

In linear analog transmission, supposing that the full transmit power
is used to radiate, the analog source vector is to be scaled and meet the
transmit power constraint. Thereby, for recovering the source vector at the
receiver, a scaling factor should be transmitted in another way. Namely,
in this case, only the direction of the source vector can be transmitted in
the linear analog method. In this chapter, for simplicity, in this case, for
measuring MSE, we assume that the scaling factor is transmitted in another
way and known at the receiver perfectly.

Alternatively, in some scenarios, the receiver only needs to know the
directionsss of the source vectors. e.g., in downlink zero-forcing beamforming
(ZFBF) techniques after user selection, only the channel directions are to
be known at the base station. In these cases, the transmitter does not need
to know the scaling factor, purely linear analog transmission sufficing. The
metric in these cases would be direction error.

If we suppose the channel direction information is to be used in ZFBF,
we could measure the performance of a feedback scheme by the signal-to-
interference ratio (SIR) in downlink, which indicates the degradation of the
ZFBF approach due to the noises in the training and feedback procedures.
The upper bound on the SIR would be the SIR under the assumption that
there is only noise in the downlink channel training procedure but not in
the uplink feedback procedure.

The remainder of this chapter is organized as follows. In Section 5.2, we
introduce the orthogonal space-time block coding (OSTBC) to linear analog
transmission and compare it with the random vector quantization (RVQ)
approach. In Section 5.3, we describe a linear analog channel feedback
scheme with OSTBC and compare it with a linear analog channel feedback
scheme with circulant STBC (CSTBC). The SIR in a ZFBF scheme with our
analog channel feedback approach with OSTBC is investigated in Section
5.4. Finally, this chapter is concluded in Section 5.5.
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5.2 Space-time coding in analog transmission

In this section, orthogonal space-time coding (OSTBC)(see, e.g., [107–115])
is introduced to linear analog transmission. It can help a MIMO system
benefit from spatial diversity and reach the matched filter bound (MFB)
on received SNR. The examples are given to show the performance of the
linear analog approach with OSTBC compared with the RVQ approach with
respect to average direction error and average MSE.

5.2.1 Channel model

Assume a frequency-flat block-fading MIMO channel with Nt inputs and Nr

outputs. The channel model is

Y = XsH + W (5.1)

where H is the Nt×Nr channel matrix known at the receiver and unknown at
the transmitter, Xs is the Lb×Nt space-time block codeword matrix subject
to the transmit power constraint Pt per channel use and s is the input symbol
sequence of Ls symbols with individual source power Psi , 1 ≤ i ≤ Ls, W is
the Lb ×Nr noise matrix whose elements are i.i.d. as CN (0, σ2

w), and Y is
the Lb ×Nr matrix of received symbols.

5.2.2 MFB on receive SNR

For linear coding in analog transmission, the matched filter bound (MFB),
which refers to maximum spatial diversity combining, is different from the
one in digital transmission with respect to affected objects. It is well-known
that in digital transmission, MFB is an exponentially upper bound on the
probability of error [116] and can be achieved by orthogonal space-time
coding with maximum likelihood (ML) detection or other means. For linear
receivers in analog transmission, MFB is a multiplicative coefficient upper
bound on received SNR which closely relates to MSE.

Assume Ls continuous-amplitude complex source symbols are to be trans-
mitted linearly via a length-Lb data block. At the receiver, if the matched
filter bound (MFB) on received SNR is achieved, the total power on the re-
ceived block would be LbPt||H||2F , exploiting the maximum spatial diversity
of the MIMO channel for linear systems. For reaching the MFB, each source
symbol ought to be transmitted at least once via each transmit antenna, i.e.,
in the block, there are at least Nt replicas for each symbol. Consequently,
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the MFB on average SNR per source symbol is

SNRMFB =
LbPt||H||2F

NtLsσ2
n

. (5.2)

5.2.3 OSTBC achieves SNRMFB

It is well known that the orthogonality of an OSTBC completely decouples
a MIMO channel into many parallel and independent subchannels. Never-
theless, as far as we know, the orthogonality of the effective channel had
been actually in intuition until recently Shang and Xia made it clear by
their persuasive explanation in [117] (though it is not their main contri-
bution therein) based on the general construction of OSTBC proposed by
Liang in [111]. We shall introduce Shang-Xia’s derivation with more details
as follows.

In terms of Liang’s Proposition 2 in [111], an OSTBC Os can be written
in the construction form

Os = (A1s + B1s∗ A2s + B2s∗ · · · ANts + BNts
∗) (5.3)

where s ∈ CLs , A1,A2, · · · ,ANt and B1,B2, · · · ,BNt satisfy complex Hurwitz-
Randon matrix equations [118,119],





A†
iAi + BT

i B∗
i = ILs×Ls , i = 1, 2, . . . , Nt

A†
iAj + BT

j B∗
i = 0, 1 ≤ i < j ≤ Nt

A†
iBj + BT

j A∗
i = 0, i, j = 1, 2, . . . , Nt.

(5.4)

Substituting Os into (5.1), we have

Y = OsH + W. (5.5)

As an extension to the solution in [117] for the MISO case, we multiply
both sides of (5.5) by

∑Nt
i=1 h∗ijA

†
i and also the conjugate of both its sides

by
∑Nt

i=1 hijBT
i for each column of yj , and sum the resulting 2Nr equations

Nr∑

j=1

Nt∑

i=1

(h∗ijA
†
iyj + hijBT

i y∗j )

=
Nr∑

j=1

( Nt∑

i=1

h∗ijA
†
i

Nt∑

i1=1

(Ai1s + Bi1s
∗)hi1j +

Nt∑

i=1

hijBT
i

Nt∑

i1=1

(A∗
i1s

∗ + B∗
i1s)h

∗
i1j

+
Nt∑

i=1

(h∗ijA
†
iwj + hijBT

i w∗
j )

)
.

(5.6)
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The valid part in the processed received signal is
Nr∑

j=1

(
Nt∑

i=1

h∗ijA
†
i

Nt∑

i1=1

(Ai1s + Bi1s
∗)hi1j +

Nt∑

i=1

hijBT
i

Nt∑

i1=1

(A∗
i1s

∗ + B∗
i1s)h

∗
i1j

)

=
Nr∑

j=1

( Nt∑

i=1

|hij |2(A†
iAi + BT

i B∗
i )s +

i,i1=Nt∑

i,i1=1,i 6=i1

h∗ijhi1j(A
†
iAi1 + BT

i1B
∗
i )s

+
i,i1=Nt∑

i,i1=1,i 6=i1

h∗ijhi1j(A
†
iBi1 + BT

i1A
∗
i )s

∗)

(a)
=

Nr∑

j=1

‖hj‖2s

= ‖H‖2
Fs

(5.7)

where the step (a) comes from (5.4), presenting the orthogonality of the
effective channel.

Alternatively, regarding the MISO subchannel for the jth receive an-
tenna, the subchannel model can be represented as

(
yj

y∗j

)
=

( Oshj + wj

O∗sh∗j + w∗
j

)

=

( ∑Nt
i=1 hijAi

∑Nt
i=1 hijBi∑Nt

i=1 h∗ijB
∗
i

∑Nt
i=1 h∗ijA

∗
i

)(
s
s∗

)
+

(
wj

w∗
j

)
.

(5.8)

Given (5.4), we have
( ∑Nt

i=1 h∗ijA
†
i

∑Nt
i=1 hijBT

i

)(
yj

y∗j

)

=
( ‖hj‖2ILs×Ls 0Ls×Ls

)(
s
s∗

)
+

( ∑Nt
i=1 h∗ijA

†
i

∑Nt
i=1 hijBT

i

)(
wj

w∗
j

)

= ‖hj‖2s +
Nt∑

i=1

h∗ijA
†
iwj +

Nt∑

i=1

hijBT
i w∗

j .

(5.9)

Given (5.8) and (5.9), for the MISO subchannel for the jth receive an-
tenna, the effective subchannel matrix is

H
′
j =

( ∑Nt
i=1 hijAi∑Nt
i=1 h∗ijB

∗
i

)
, (5.10)
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which is a scaled 2Lb × Ls non-square orthogonal matrix,

H
′
j

†
H
′
j = ‖hj‖2ILs×Ls . (5.11)

Given (5.7) and (5.9), the noise in the processed signal

w
′
=

Nr∑

j=1

Nt∑

i=1

(h∗ijA
†
iwj + hijBT

i w∗
j ). (5.12)

Thus, in the case that noise elements are i.i.d. CN (0, σ2
w), the correlation

matrix of noise
E

[
w
′
w
′†]

= ‖H‖2
Fσ2

wILs×Ls . (5.13)

Consequently, for the source symbol si, the received SNR is

ρi =
Psi‖H‖2

F

σ2
w

. (5.14)

By the structure of Os (5.3) and the condition (5.4), the signal energy from
the mth transmit antenna is

Pm = ‖Ams + Bms∗‖2

= ‖s‖2, m = 1, . . . , Nt.
(5.15)

Hence,
Nt‖s‖2 = LbPt (5.16)

which gives

‖s‖2 =
LbPt

Nt
, (5.17)

i.e.,
Ls∑

i=1

Psi =
LbPt

Nt
. (5.18)

Substituting (5.17) into the sum of (5.14), we have

SNROSTBC =
∑Ls

i=1 ρi

Ls
=

LbPt‖H‖2
F

NtLsσ2
w

, (5.19)

which is exactly SNRMFB (5.2) for MIMO systems.
When a long latency is allowed, based on the derived result above for

MIMO systems, straightforwardly, repeating OSTBC or repeating the input
vector to construct an OSTBC of larger size and then equalizing symbols
by mean estimation can also achieve SNRMFB.



5.2 Space-time coding in analog transmission 75

5.2.4 OSTBC analog vs. RVQ digital

In recent literature, as a digital approach, random vector quantization (RVQ)
is proposed to feed back the channel information (see [68,77,120,121], etc.).
An interesting common point between RVQ and linear analog transmission
is that both of them can only be used to transmit an analog vector’s direc-
tion. If the amplitude of the vector is also required, it is assumed to be sent
in another way.

In spite of the disadvantages of RVQ as a digital approach, introduced in
Chapter 1, we will compare the performance of the linear analog approach
with OSTBC to RVQ with respect to average direction error and average
MSE.

Average direction error comparison

As described in [68,77,120,121], for multiuser zero-forcing beamforming
(ZFBF) at the base station, in some cases, e.g., after user selection, the base
station only needs to know the directions of channel vectors. Although most
discussions on ZFBF assume only one antenna at each user end, it is not
difficult to implement it to the case with multiple antennas at each user end.
In this case, the feedback procedure can be considered as transmitting the
direction of an analog vector over a MIMO channel. The metric can be the
average direction error

E(φ2) = E

[
1−

∣∣∣∣
sŝ†

‖s‖‖ŝ†‖

∣∣∣∣
2
]

(5.20)

where s is the row source vector of Ls complex elements and ŝ is the recovered
source vector at the receiver.

In the RVQ approach, a unit vector quantization codebook W is gen-
erated randomly, including 2B isotropically i.i.d. unit vectors wi, i =
1, . . . , 2B. The codeword wk satisfying

wk = arg max
wi∈W

∣∣∣∣
s
‖s‖w

†
i

∣∣∣∣
2

(5.21)

is selected and its index is sent. It is known that [120,121]

E

[
1−

∣∣∣∣
s
‖s‖w

†
k

∣∣∣∣
2
]

= 2B β

(
2B,

Ls

Ls − 1

)
(5.22)
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where β(x, y) is the beta function defined as β(x, y) = Γ(x)Γ(y)
Γ(x+y) [122], and

for an arbitrary unit vector wi, 1 −
∣∣∣ s
‖s‖w

†
i

∣∣∣
2

is a beta distributed random
variable, B(Ls − 1, 1), with

E

[
1−

∣∣∣∣
s
‖s‖w

†
i

∣∣∣∣
2
]

=
Ls − 1

Ls
. (5.23)

Assume the transmission is over Lb channel uses without channel coding
and using 2b-QAM modulation. The size of the codebook is 2bLb , i.e., B =
bLb. Denote the probability of wrong decision on the code index at the
receiver by Pe. The average direction error by the RVQ method

E
[
φ2

RVQ

]
= 2B β

(
2B,

Ls

Ls − 1

)
(1− Pe) +

Ls − 1
Ls

Pe. (5.24)

Assume a length-two unit source vector s is transmitted over a two-
input two-output Rayleigh fading channel over two channel uses and the
channel is perfectly known at the receiver but not known at the transmitter.
Suppose both the RVQ method and the linear analog method with OSTBC
are using Alamouti coding and the corresponding MRC at the receiver. Fig.
5.2 illustrates the comparison of the linear analog transmission method with
OSTBC to the RVQ transmission method in terms of the average direction
error. For the RVQ method without channel coding, the probabilities of
wrong decision Pe are estimated by simulation (10,000 trials) and shown in
Table 5.1 and Fig. 5.1. Then, its average direction errors are calculated in
terms of (5.24). For the linear analog method with OSTBC, the average
direction errors are evaluated by simulations (10,000 trials).

In Fig. 5.2, we can see that, in the assumed scenario, with respect to
average direction error, when the SNR is greater than 7dB, the linear analog
method with OSTBC performs better than the uncoded QPSK-modulated
RVQ method; when SNR is greater than 20dB, the OSTBC linear analog
method performs better than the 16QAM-modulated RVQ method. Though
it seems that in a specific range of SNR, the OSTBC linear analog method
performs always worse than the RVQ method with the optimal modulation
in that SNR range (the difference would be 5dB), we should not forget that
the complexity of the RVQ method is much higher than that of the linear
analog method, e.g., the 16QAM scheme in our scenario requires processing
on a randomly-varying codebook of size 28, and the 64QAM scheme re-
quires processing on a randomly-varying codebook of size 212. Additionally,
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Table 5.1: Wrong decision ratios of QPSK, 16QAM and 64QAM modulation
schemes

ρ (dB) Pe,QPSK Pe,16QAM Pe,64QAM

0 0.013341 0.20756 0.39076
5 0.000706 0.074239 0.27534
10 0.000012 0.01096 0.13196
15 ≈ 0 0.000553 0.0307
20 ≈ 0 0.000008 0.002518
25 ≈ 0 0.000001 0.000078
30 ≈ 0 ≈ 0 0.000002
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Figure 5.1: Wrong decision ratios of QPSK, 16QAM and 64QAM modula-
tion schemes
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Figure 5.2: Average direction error comparison: OSTBC vs. RVQ

for rate-adaptive digital transmission in practice, we need to also consider
the system overhead and the method of letting the transmitter reliably know
the SNR range of the feedback channel.

Average MSE comparison

If the channel feedback is used to rebuild the channel matrix, then aver-
age MSE is a plausible metric to measure the performance of a channel
feedback scheme. Concerning minimizing the MSE, the RVQ approach
in [68, 77, 120, 121] is to be modified as follows, referred to as real RVQ
(RRVQ) herein.

Assume a unit vector quantization code book W is generated randomly,
including 2B isotropically i.i.d unit vectors wi, i = 1, . . . , 2B. Since our
target is to minimize the MSE, the selection criterion is to select a codeword
wk satisfying wk = arg minwi∈W ‖s− ‖s‖wi‖2. We have

‖s− ‖s‖wi‖2 = ‖s‖2

(
2− 2Re

[
w†

i

s
‖s‖

])
. (5.25)
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Then,

wk = arg max
wi∈W

Re
[
w†

i

s
‖s‖

]
. (5.26)

Let z denote the inner product between a channel direction and an ar-

bitrary quantization vector, zi =
∣∣∣w†

i
s
‖s‖

∣∣∣
2
. Namely,

Re
[
w†

i

s
‖s‖

]
=
√

zi cos θi (5.27)

where zi is beta distributed B(1, Ls − 1) [120, 121], and θi is uniform dis-
tributed U [−π, π]. Consequently, the index selection criterion can be written
as

k = arg maxi=1,...,2B

√
zi cos θi. (5.28)

Consider transmitting an analog source vector s composed of Ls complex
values over an M -input N -output slow-fading channel by the uncoded RRVQ
approach. Let

γ = Re
[
w†

k

s
‖s‖

]
(5.29)

where wk is the selected codeword in W. The average MSE of the recovered
source at the receiver by the uncoded RRVQ approach

E
[
ε2RRVQ

]
= E‖ŝ− s‖2

= 2‖s‖2 (1− E[γ])Pc + 2‖s‖2(1− Pc)

= 2‖s‖2 (1− E[γ]Pc)

(5.30)

where Pc is the probability of correct decision.

Assume a length-four unit source vector s is transmitted over a two-
input two-output Rayleigh fading channel over four channel uses with perfect
CSIR and unkown CSIT. Suppose both the RRVQ method and the linear
analog method with OSTBC use Alamouti coding and the corresponding
MRC at the receiver. Fig.5.3 illustrates the comparison of the linear analog
transmission method with OSTBC with the RVQ transmission method with
repect to average mean squared error.



80 Chapter 5 Analog Channel Feedback

0 5 10 15 20 25 30
10

−4

10
−3

10
−2

10
−1

10
0

10
1

SNR (dB)

E
(ε

2
)

OSTBC analog
RRVQ QPSK
RRVQ 16QAM 

Figure 5.3: Average MSE comparison: OSTBC vs. RRVQ

Table 5.2: E[γ]

B = 8 B = 16
E(γ) 0.8352 0.9670

Since the linear analog approach with OSTBC achieves SNRMFB, in this
case, the average MSE on ŝ

E
[
ε2OSTBC

]
= EH

[
1

SNRMFB

]

= EH

[
2

‖H‖2
Fρ

]

=
1
3ρ

(5.31)

For the RRVQ method, since the probability of wrong decision Pe for
transmitting two uncoded QAM symbols over two channel uses are given by
Table 5.1, straightforwardly,

Pc = (1− Pe)2. (5.32)
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Ĝ

α

Figure 5.4: Linear analog channel feedback scheme

The values of E(γ) in the case of Ls = 4 are evaluated by simulations (1000
trials) and given by Table 5.2. E

[
ε2RRVQ

]
is then calculated in terms of

(5.30).
Fig.5.3 shows that, with respect to average MSE, in the assumed sce-

nario, the linear analog method with OSTBC is not only of much lower com-
putational complexity but also performs better than uncoded QPSK- and
16QAM-modulated RRVQ methods. Note that due to its high complexity,
we did not simulate the RRVQ methods with modulation complexity higher
than 16QAM, which means to calculate E[γ] for B ≥ 20.

5.3 CSIT acquisition by analog channel feedback

5.3.1 Scheme description and channel model

Consider a peer-to-peer MIMO system with analog channel feedback for
acquiring the channel state information at the transmitter (CSIT) over a
slow-fading MIMO channel, Na antennas at the transmitter A, and Nb an-
tennas at the receiver B. Fig.5.4 shows the framework of the linear analog
channel feedback scheme with orthogonal space-time coding. The complete
procedure of four stages and the corresponding channel models are described
as follows:

The first stage is referred to as transmit channel training stage. In this
stage, in the pilot time slot, a Na×βhNa training matrix Sh, composed of βh
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Na×Na identity matrices, is sent by A under the transmit power constraint
Pa per channel use; the receiver B does least square estimation (LSE) on
the received signal matrix R and obtains the estimated channel matrix Ĥ.

The channel model of the transmit channel training stage is

Rh =
√

PaHSh + Wh (5.33)

where Rh is the received signal at B, H is the complex channel gain matrix,
Wh is the additive noise matrix at B, and ShS

†
h = βhI.

By LSE, the complex channel gain matrix estimation is

Ĥ =
RhS

†
h

βh

√
Pa

. (5.34)

The second stage is referred to as feedback preparing stage. In this stage,
Ĥ is regarded as a column source vector of NaNb complex values, denoted
by ĥ. Assume the feedback latency is Lb channel uses and a Ls/Lb-rate
OSTBC Os of size Lb × Nb is used. Let βs = Ls

NaNb
. The length-Ls basis

source vector s is composed of βs ĥ as

s =




ĥ
...
ĥ


 . (5.35)

Then, the OSTBC Os is set. Os is scaled to meet the block power constraint
LbPb before feedback. Given (5.17), the scaling factor is

α =

√
LbPb

Nb‖s‖2

=

√
LbPb

βsNb‖ĥ‖2

(5.36)

Third stage is referred to as feedback channel training stage. In this
stage, in the pilot time slot, a Nb × βgNb training matrix Sg, composed
of βg Nb × Nb identity matrices, is sent by B under the transmit power
constraint Pb per channel use. A does LSE on the received signal matrix Rg

and obtains the channel matrix estimation Ĝ.
The channel model of the feedback channel training stage is

Rg =
√

PbGSg + Wg (5.37)
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where Rg is the received signal at A, G is the complex feedback channel
gain matrix, and Wg is the additive noise matrix at A.

By LSE, the estimated complex feedback channel gain matrix is

Ĝ =
RgS

†
g√

Pb
. (5.38)

The fourth stage is referred to as CSIT acquiring stage. In this stage, B
sends the scaled OSTBC to A; at A, the received signals are processed, such
as descaling, maximum ratio combining (MRC), and mean estimation, to

obtain the transmit channel gain matrix estimation ˆ̂H. Herein, we suppose
the scaling factor α is transmitted to A in some unlinear way.

The channel model of the CSIT acquiring stage is

Y = αOsG + W (5.39)

where Y is the received signal at A, G is the complex feedback channel gain
matrix, and W is the additive noise matrix at A.

After descaling, by MRC given by (5.6), the source vector estimation is

ŝ =
1
α̂

Na∑

j=1

( ∑Nb
i=1 ĝ∗ijA

†
i

∑Nb
i=1 ĝijBT

i

)(
yj

y∗j

)
. (5.40)

By mean estimation on ŝ, the estimated channel gain vector is

ˆ̂h =
1
βs

βs∑

k=1




ŝ(k−1)NaNb+1
...

ŝkNaNb


 , (5.41)

which is used to reconstruct the channel matrix estimation ˆ̂H.

5.3.2 Mean squared error evaluation

Considering mean square error (MSE) as the primary metric in analog source
transmission, in this subsection, we analyze the performance of the afore-
mentioned linear analog channel feedback scheme with OSTBC with respect
to MSE, and compare its performance to a linear analog channel feedback
scheme with circulant STBC (CSTBC).

In this chapter, the MSE metric is

ε2 = E‖ ˆ̂H−H‖2
F

= E‖ˆ̂h− h‖2
(5.42)

.
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MSE analysis for OSTBC channel feedback

In the channel training stage, given (5.33) and (5.34), we have

Ĥ = H +
∑βh

k=1 Wh,k

βh

√
Pa

(5.43)

where Wh,k are Nb ×Na submatrices of Wh,

Wh =
(

Wh,1 . . . Wh,βf

)
. (5.44)

Correspondingly, the vector reshaped from Ĥ

ĥ = h +
∑βh

k=1 wh,k

βh

√
Pa

(5.45)

where wh,k’s are column vectors reshaped from Wh,k-s.
For simplicity, assume there is no error in estimating G and acquiring

the scaling factor α , i.e., Ĝ = G and α̂ = α. By the results in the subsetion
5.2.3,

ŝ = ‖G‖2
F s +

1
α
w
′

(5.46)

where

w
′
=

Na∑

j=1

Nb∑

i=1

(g∗ijA
†
iwj + gijBT

i w∗
j ). (5.47)

Consequently,

ˆ̂h = ĥ +
1

βsα‖G‖2
F

βs∑

k=1

w
′
k (5.48)

where w
′
k’s are subvectors of w

′
,

w
′
=




w
′
1

...
w
′
βs


 . (5.49)

Hence,

ˆ̂h− h =
∑βh

k=1 wh,k

βh

√
Pa

+
1

αβs‖G‖2
F

βs∑

k=1

w
′
k. (5.50)
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Under the assumption that the elements of Wh are i.i.d. CN ∼ (0, σ2
wh

) and
the elements of W are i.i.d. CN ∼ (0, σ2

w), given (5.13) and (5.36), the MSE

ε2OSTBC = E‖ˆ̂h− h‖2

=
E‖∑βh

k=1 wh,k‖2

β2
hPa

+ E
(

1
α2

)
1

β2
s (‖G‖2

F)2
E‖

βs∑

k=1

w
′
k‖2

=
NaNbσ

2
wh

βhPa
+

(
‖H‖2

F +
NaNbσ

2
wh

βhPa

)
NaN

2
b σ2

w

LbPb‖G‖2
F

=
NaNb

βhρh
+

(
‖H‖2

F +
NaNb

βhρh

)
NaN

2
b

Lb‖G‖2
Fρ

(5.51)

where ρh = Pa/σ2
wh

and ρ = Pb/σ2
w.

MSE analysis for CSTBC channel feedback

In linear analog transmission, circulant STBC (CSTBC) is an alterna-
tive approach of space-time block coding on analog sources, whose rate
is one. For conveying an analog vector source s of Nt complex elements,
s = (s1, s2, . . . , sNt)

T, over a MIMO channel with Nt transmit antennas and
Nr receive antennas, the channel model of the linear analog transmission
approach with CSTBC is

Y = CsH + W (5.52)

where Y is the received signal matrix of size Nt × Nr, H is the channel
matrix of size Nt ×Nr, W is the noise matrix, and Cs is the CSTBC,

Cs =




s1 sNt . . . s3 s2

s2 s1 sNt s3
... s2 s1

. . .
...

sNt−1
. . . . . . sNt

sNt sNt−1 . . . s2 s1




. (5.53)

Given (5.52), we can see that the channel model can also be written as

Y =
(

H
′
1 . . . H

′
Nr

)
s + W (5.54)
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where

H
′
j =




h1j hNtj . . . h3j h2j

h2j h1j hNtj h3j
... h2j h1j

. . .
...

hNt−1,j
. . . . . . hNtj

hNtj hNt−1,j . . . h2j h1j




, j = 1, . . . , Nr. (5.55)

It is easy to see that the effective subchannel matrix H
′
j is also a circulant

matrix.
Under the assumption that H

′
j ’s are invertible matrices, the MRC at the

receiver is

ŝ =
1

Nr

Nr∑

j=1

H
′
j

−1
yj

= s +
1

Nr

Nr∑

j=1

H
′
j

−1
wj

(5.56)

where yj ’s are subvectors of Y,

Y =
(

y1 . . . yNr

)
, (5.57)

and wj ’s are subvectors of W,

W =
(

w1 . . . wNr

)
. (5.58)

Under the power constraint Pt per channel use, i.e.,

‖s‖2 = Pt, (5.59)

the received SNR

SNRCSTBC =
Nr

2Pt

σ2
w

∑Nr
j=1 tr{(H†

jHj)−1}
. (5.60)

By the properties of circulant matrices [123],

tr{(H†
jHj)−1} =

Nt

‖hj‖2
. (5.61)

Consequently,

SNRCSTBC =
Nr

2Pt

Ntσ2
w

∑Nr
j=1

1
‖hj‖2

. (5.62)
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Consider a linear analog channel feedback scheme using CSTBC. Assume
Lb = βsNaNb. The channel estimation data block fed back by the receiver
B is

C =
( C11 C12 . . . C1βs CNa1 . . . CNaβs

)
(5.63)

where Cij , i = 1, . . . , Na, j = 1, . . . , βs, is a CSTBC constructed from the
column channel vector estimation ĥj .

The scaling factor

α =

√
NaPb

‖h‖2
. (5.64)

The receive processing at transmitter A is

ˆ̂hj =
1

αβsNa

βs∑

k=1

Na∑

i=1

Ĝ
′−1
i yi,j,k, j = 1, . . . , Na (5.65)

where yi,j,k is the corresponding subvector in the receive matrix Y and
Ĝ
′
i is the effective circulant matrix of the subchannel vector estimation ĝi,

i = 1, . . . Na.
Under the same assumption as for deriving (5.51), the MSE of the

CSTBC method

ε2CSTBC =
NaNb

βhρh
+

(
‖H‖2

F +
NaNb

βhρh

) N2
b

∑Na
i=1

1
‖gi‖2

LbNaρ
(5.66)

where ρh = Pa/σ2
wh

and ρ = Pb/σ2
w.

OSTBC vs. CSTBC

Comparing (5.62) to (5.19), in the light of the inequality between the
harmonic mean and the arithmetic mean, we have

SNRCSTBC ≤ SNRMFB. (5.67)

The equality holds only when ‖h1‖2 = . . . = ‖hNr‖2.
Comparing (5.66) to (5.51), similarly to the above,

ε2CSTBC ≥ ε2OSTBC. (5.68)
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Figure 5.5: MSE comparison: OSTBC vs. CSTBC

The equality holds only when ‖h1‖2 = . . . = ‖hNa‖2.

Assume Na = Nb = 2, βh = 10, Lb = 4, ρh = ρ, and random generated
deterministic transmit and feedback channels,

H =
(

0.3028 + 0.5169i 0.0285 + 0.4023i
0.6333 + 0.4086i 0.4788− 0.1808i

)
, (5.69)

G =
( −0.2669− 1.0431i −0.2092− 0.1655i

0.0838 + 1.0207i 0.2226− 0.2482i

)
. (5.70)

Fig.5.5 illustrates that, in this case, for achieving the same MSE, the OS-
TBC linear analog scheme requires 5dB less SNR than the CSTBC scheme.

Assume complex elements in H and G are symmetric i.i.d. distributed
CN (0, 1). We have

‖H‖2
F ∼ χ2(2NaNb), (5.71)

1
‖G‖2

F

∼ Inv−χ2(2NaNb), (5.72)

1
‖gj‖2

∼ Inv−χ2(2Nb). (5.73)
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Figure 5.6: Average MSE comparison: OSTBC vs. CSTBC

Hence,

E‖H‖2
F = 2NaNb, (5.74)

E
1

‖G‖2
F

=
1

2NaNb − 2
, (5.75)

E
1

‖gj‖2
=

1
2Nb − 2

. (5.76)

Consequently, when Nb ≥ 2, the average MSE

E(ε2OSTBC) =
NaNb

βhρh
+

(
2NaNb +

NaNb

βhρh

)
NaN

2
b

2Lb(NaNb − 1)ρ
, (5.77)

E(ε2CSTBC) =
NaNb

βhρh
+

(
2NaNb +

NaNb

βhρh

)
N2

b

2Lb(Nb − 1)ρ
, (5.78)

E(ε2OSTBC) ≤ E(ε2CSTBC). (5.79)

Fig.5.6 shows that, for the same scenario as the precedent example for
evaluating MSE in the case of certain deterministic channels, the average
MSE gap between the linear channel feedback schemes with OSTBC and
CSTBC is about 2 dB.
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Figure 5.7: Multiuser MIMO downlink channel with channel feedback

From (5.77) and (5.78), we see that, when βhρh is so large that NaNb
βhρh

approaches to zero, the ratio of the average MSE of the CSTBC scheme to
the OSTBC scheme

E(ε2CSTBC)
E(ε2OSTBC)

∼ 1 +
1

Nb − 1
(1− 1

Na
). (5.80)

5.4 Multiuser MIMO downlink beamforming with
analog channel feedback

5.4.1 Scheme description

As shown in Fig.5.8, we consider a K-user MIMO downlink system with
zero-beamforming precoding (ZFBF) at the base station, Nui antennas at
the user i, and Nb antennas at the base station.

The received signals via the downlink can be represented by



y1
...

yK


 =




H1
...

HK




(
v1 · · · vK

)



u1
...

uK


 +




w1
...

wK


 (5.81)
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where Hi is user i’s channel matrix of size Nui ×Nb, vi is user i’s length-Nb

precoding vector, ui is user i’s data symbol to be transmitted, y1 . . .yK are
each user’s received vectors, and wi is the additive noise vector for user i.

Ideally, if the transmitter perfectly know the directions of the row vectors
in Hi’s, we should have

Hivj = 0Nui
, i 6= j, 1 ≤ i, j ≤ K. (5.82)

which indicates that inter-user inferences are prevented by precoding at the
base station.

Hence, our scheme of multiuser MIMO downlink ZFBF with OSTBC
analog channel feedback is as follows: in the first stage, for each user, user
i learns its downlink channel by common training procedure; in the second
stage, user i considers the channel estimation Ĥi as a source vector of NbNui

complex analog symbols to be transmitted and accordingly construct an
OSTBC of size Lb × Nui where Lb is the feedback latency given by the
system according to the time resource allocated to the feedback procedure;
Ĥi is row-wise normalized and scaled according to the block power constraint
LbPbi ; in the third stage, K users are supposed to transmit data spread by
different OVSF for avoiding inter-user interferences [75], and the base station
learns the feedback channel by feedback training and processes the received
signal to obtain the row-wise-normalized channel matrix estimations ˆ̂Hi; in
the fourth stage, the base station generates the unit beamforming vectors
vi-s satisfying

ˆ̂Hjvi = 0Nuj
, i 6= j, 1 ≤ i, j ≤ K (5.83)

and uses them in ZFBF.
From the above description, we can see that the condition on the number

of antennas at the base station is

Nb ≥ max{M1, . . . , MK} (5.84)

with

Mi =
K∑

j=1, j 6=i

Nuj + 1, 1 ≤ i, j ≤ K. (5.85)

5.4.2 Signal-to-interference ratio evaluation

Although ideally, all inter-user interferences can be eliminated by ZFBF,
such perfectness cannot happen in practice. Even for learning Hi-s at user
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Figure 5.8: Average SIR comparison: OSTBC analog channel feedback with
different latencies and upper bound

ends by training, there are estimation errors caused by the noise in the com-
mon training procedure. Additionally, there are the noise in the feedback
training procedure for learning the feedback channel and the noise in the
channel direction feedback procedure. Therefore, in practice, the beamform-
ing vectors are distorted due to noises and thus cause inter-user interferences
Hiv̂j-s (i 6= j) which are not zero vectors due to the imperfectness of v̂j .
The average signal-to-interference ratio (SIR) of each user

ξk = E

[
u†kv̂

†
kH

†
kHkv̂kuk∑

i 6=k u†i v̂
†
iH

†
kHkv̂iui

]
, k = 1, . . . , K (5.86)

can be a metric for evaluating channel feedback schemes.

Suppose there are one base station with three antennas and two users
with two antennas each. Assume that the channels are MIMO Rayleigh
fading with i.i.d. channel gains CW(0, 1) and source symbols u1 and u2 are
i.i.d distributed. In terms of (5.86), the average SIR

ξ1 = ξ2 = E
[‖H1v1‖2

‖H1v2‖2

]
. (5.87)
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Fig.5.8 shows the simulation results (50,000 trials) when βh = βg = 4
and βs = 1, 2, 4, 8. The upper bound of ϕi is represented by the blue dashed
line, which is the average SIR in the case under the assumption that there is
no noise in the feedback channel but only the noise in training the downlink
channel, i.e., Ĥi 6= Hi but ˆ̂Hi = Ĥi. We see that, when βs = 2, the average
SIR of OSTBC linear analog feedback scheme is about 2.5dB away from
the upper bound; when βs = 8, the performance of OSTBC linear analog
feedback scheme is very close to the upper bound.

5.5 Conclusion

Considering the low complexity and reliability of linear analog transmission,
we have introduced the orthogonal space-time block coding (OSTBC) to
linear analog channel feedback to exploit the spatial diversity in an MIMO
channel. We have proved that the linear analog approach with OSTBC can
achieve the matched filter bound (MFB) on received SNR.

By simulations, we have compared the performance of the linear ana-
log approach with OSTBC with the RVQ approach with respect to average
MSE and average direction error. In the example where the average direc-
tion errors are measured, we have seen the self-adaptability to channel of
the linear analog approach with OSTBC. In the example where the average
direction errors are measured, we have seen that the linear analog method
with OSTBC performs always better than the real RVQ method. Therefore,
we could conclude that, in some cases, additionally considering the relative
high computational complexity of the RVQ approach, in the sense of appli-
cation, the linear analog transmission with OSTBC is more appropriate for
analog vector source transmission via a MIMO channel.

Subsequently, we have described two complete linear analog channel
feedback schemes for acquiring CSIT at the transmitter with linear ana-
log channel feedback methods with OSTBC and CSTBC respectively. MSE
and average MSE of these two schemes have been analyzed and compared.
It has been shown that a scheme with OSTBC performs always better than
a scheme with CSTBC due to the inequality of Pythagorean means.

For investigating the performance of linear analog channel feedback with
OSTBC, assuming multiuser MIMO downlink ZFBF is employed at the
base station, for a two-user case, we have simulated SIR’s for the linear
analog channel feedback schemes with OSTBC with different latencies and
compared them to the upper bound. The simulation results have shown
that, in our example, the performance of the MU-MIMO ZFBF system
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using linear analog channel feedback with OSTBC is quite close to the upper
bound.



Chapter 6

Layered Multiplexing

6.1 Introduction

In this chapter, we consider a layered-multiplexing scheme for short-block
multi-layer transmission with hybrid automatic repeat request(HARQ) feed-
back.

Referring to the strategy of rateless coding over AWGN channels [88–90],
a binary source packet is divided into several equal-length subpackets. These
subpackets are channel coded and modulated to layers individually. Then,
these layers are linearly combined to a block and sent. The receiver tries
to decode all multiplexed layers. If decoding is not successful, the receiver
will indicate the transmitter to resend a new linear combination of layers by
ARQ feedback. This rateless coding strategy is to deal with the uncertainty
of a channel and ensure the reliability of the transmission when there is no
CSIT.

The key issue in the above-described rateless coding strategy is: how to
let decoding at the receiver benefit from multiple block transmissions?

In [88–90], Erez et al. proposed to use random dither layer-time coding
at the transmitter and MRC at the receiver to sum up all long-term block
SNRs which have nothing to do with inter-layer interference and noise real-
izations but noise variances. This approach is effective for long-block cases
but not for short-block cases. In short-block cases, the decoder relies more
on interference and noise realizations. Then, in these cases, a more practical

95
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Figure 6.1: A multi-layer system with HARQ

way for benefiting from multiple block transmissions is to reduce the inter-
layer interference by some layer-time coding scheme at the transmitter and
the corresponding processing at the receiver, which we will propose in this
chapter.

Another easy improvement to the strategy is that, when some layers are
successfully decoded at the receiver, we can use a HARQ signal instead of
an ARQ signal to indicate the transmitter not to combine decoded layers
in the next block transmission and thus the other undecoded layers could
benefit from allocated powers and less inter-layer interference.

The remainder of this chapter is organized as follows. In Section 6.2,
the channel model and the general framework of a multi-layer transmission
system with HARQ are given. The details of our Walsh layer-time coding
scheme with HARQ feedback are presented in Section 6.3. The simulation
result of comparison to comparable denser modulation schemes are shown
in Section 6.4. Finally, this chapter is concluded in Section 6.5.

Note that the multi-layer transmission considered in this chapter is sup-
posed to be over an AWGN SISO channel. With space-time coding and
decoding, our scheme could be employed in MIMO systems.

6.2 General description and channel model

Consider transmitting a N -bit binary packet s̄ via a multi-layer system with
HARQ as shown in Fig.6.1. s̄ is split into L subpackets {sl : 1 ≤ l ≤ L}
(Spl.). The L subpackets are individually channel coded at rate r (r ≤ 1)
into N/rL bits (CC) and unit-energy phase-modulated into layers {xl : 1 ≤
l ≤ L} (Mod.) each of which is composed of T unit-energy phase-modulated
symbols {xlt : 1 ≤ t ≤ T}. Namely, if K-PSK modulation is used,

N = rLT log2 K. (6.1)
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Subsequently, {xl : 1 ≤ l ≤ L} are multiplexed into one block bm by
linear combination for the mth block transmission

bm = wm X (6.2)

where

X =




x1
...

xL


 (6.3)

and the wm is the length-L layer-multiplexing vector, i.e. the mth row vector
of the layer-time code matrix W.

Letting P denote the peak power constraint per channel use, we have

|wmX.t|2 ≤ P (6.4)

with X.t the tth column of the matrix X.
Since the column vector X.t is composed of L unit-energy random vari-

ables, we have
|wmX.t|2 ≤ ‖wm‖2

1. (6.5)

By Jensen’s inequality [124],
(‖wm‖1

L

)2

≤ ‖wm‖2
F

L
. (6.6)

Consequently, to ensure the power constraint is satisfied for arbitrary X.t,
the following condition on wm is proposed,

‖wm‖2
2 ≤

P

L
. (6.7)

Under the assumption that the delay constraint is MT , a block group B
of size M×T is supposed to be transmitted over a slow-fading AWGN SISO
channel through multiple transmissions with HARQ feedback. The received
signals can are represented by

Y = hB + N (6.8)

where h is the channel coefficient constant for the whole procedure of trans-
mitting B, N is the M×T noise matrix whose elements are i.i.d. CN (0, σ2

n),
and Y is the received matrix of size M × T . (6.8) can be also written as

Y = hWX + N (6.9)
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where

Y =




y1
...

yM


 , W =




w1
...

wM


 , N =




n1
...

nM


 . (6.10)

At the receiver, for the mth block transmission, with the relevant infor-
mation y

′
m−1 from previous block transmissions (stored in Cache 1 (C1)),

the receiver tries to demultiplex layers from the received vector ym (DMux).
The successfully-decoded subpacket sl is not only output to Cache 2 (C2) for
rebuilding s̄, but also re-channel-coded into the layer xl (CC at the receiver)
for the module DMux to decode rest layers. The indices of undecoded layers
are fed back to the transmitter by HARQ signals (HARQm). Meanwhile,
the relevant information y

′
m from this transmission is saved in C1 for helping

process the next retransmission.

6.3 Process description

In this section, we first introduce Walsh matrix into layer-time coding and
then present the main features and details of our layer-multiplexing scheme
in different stages.

6.3.1 Walsh layer-time coding

Walsh matrices are the Hadamard matrices of dimension 2k for k ∈ N. They
are given by the following recursive formula

Wa(2) =
[

1 1
1 −1

]
,

Wa(2k) =
[

Wa(2k−1) Wa(2k−1)
Wa(2k−1) −Wa(2k−1)

]
.

(6.11)

We suggest to use Walsh matrices as layer-time codes is not because of
their orthogonality but because of their feature from the generating process.
From the formula (6.11), we can see that, if we employ a column-wise scaled
Walsh matrix as a layer-time code matrix whose columns are considered as
layers and rows are considered as time, the inter-layer interferences can be
eliminated or alleviated by adding rows up. Note that OVSF code matrices
have the same property since it is a variation of Walsh matrix with the row
order changed.
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6.3.2 In the first transmission

In the first transmission, the target of layer-power allocation is to ensure
that no retransmission is required when all instantaneous channel SNR’s in
the block, ρh,1t = min{|h|2/|n1t|2}, 1 ≤ t ≤ T , are higher than a specific
threshold ρ̄.

The power allocation scheme is similar to the method in [90] except with
some different concerns. Assume all layered symbols xlt have the same SNR
threshold ρ̄ ensuring correct demodulation and y1 is processed by successive
interference cancelation (SIC) in the sequence from the top layer xL to the
bottom layer x1. Let Pl denote the allocated power for xlt, 1 ≤ l ≤ L, 1 ≤
t ≤ T . The instantaneous SINR of xlt in the first transmission,

ρl =
|h|2Pl

|h∑l−1
l′=1

√
Pl
′xl

′
t + n1t|2

. (6.12)

By Jansen’s inequality [124]

|h
l−1∑

l
′
=1

√
Pl′xl′ t + n1t|2 ≤ l(

l−1∑

l
′
=1

|h|2Pl′ + |n1t|2) (6.13)

with |xl′ t|2 = 1. Thereby,

ρl ≥
ρh,1tPl

l(ρh,1t
∑l−1

l′=1
Pl
′ + 1)

, (6.14)

On the other hand, since Pl = |wml|2, given (6.7), we have

L∑

l=1

Pl ≤ P

L
. (6.15)

As a consequence, for figuring out the power allocation scheme, we need to
solve an equation array of L + 1 equations





ρ̄h,1tPl

l(ρ̄h,1t
∑l−1

l
′
=1

P
l
′+1)

= ρ̄, l = 1, . . . , L,

∑L
l=1 Pl = P

L .
(6.16)

After solving (6.16) (see Appendix 6.A), we get the threshold of ρh,1t

ρ̄h,1t =
L

∑L
l=1 lρ̄

∏l−1
l′=1

(l
′
ρ̄ + 1)

P
(6.17)
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and the power allocation scheme

P1 =
ρ̄

ρ̄h,1t
,

Pl =
lρ̄

∏l−1
l′=1

(l
′
ρ̄ + 1)

ρ̄h,1t
, 2 ≤ l ≤ L .

(6.18)

Hence, the layer-multiplexing vector w1 is

w1 =
( √

P1 . . .
√

PL

)
. (6.19)

At the receiver, the received vector y1 is processed by SIC from the
top layer sL to the bottom layer s1. Once a layer is successfully decoded,
SIC starts again from the top to the bottom until no more layer can be
decoded, namely, cyclic SIC. The correctness of decoding can be checked by
the error detection code inserted in channel coding, e.g. cyclic redundancy
code [1, 125–127]. When no more layer could be successfully decoded, the
receiver feeds back a HARQ signal HARQ1 for the first block transmission
to indicate which layers have not been successfully decoded yet and the
transmitter is required to prepare retransmission accordingly.

Note that HARQ1 can be a byte or several bytes composed of binary
bits representing success signals for respective layers, e.g., 0 is success and
1 is failure. In this chapter, for simplicity of presenting by expressions,
HARQm is denoted by a binary row vector qm where 0 represents success
and 1 represents failure.

In our scheme, the information of the current transmission to be stored in
C1 is a L×T matrix Y

′
m. Each row of Y

′
m is a variation of the the received

vector after canceling all-known inter-layer interference, which serves for
subsequent processing on the corresponding layer. For Y

′
1, all rows are the

same,
y
′
1,l = y1 − q1X, , 1 ≤ l ≤ L. (6.20)

Note that only rows corresponding to undecoded layers are valid.

6.3.3 In the mth transmission when 2 ≤ m ≤ Lw

If the transmitter learns from qm−1 that there are still Lm layers undecoded,
it starts retransmission. Let L1 = L.

The powers of the rest undecoded layers are amplified and the power
scaling factor am for the mth transmission,

am =

√
P

Lm‖(1− qm−1) ·w1‖2
(6.21)
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where · denotes the Hadamard product.
In the second block transmission, the rest undecoded layers are renum-

bered as x1, . . . ,xL2 , i.e. X is permutated, and a Walsh matrix Wa of
size Lw = 2dlog2 L2e is set for layer-time coding. w1 and q1 are also per-
mutated correspondingly. Then, the layer-multiplexing vector for the mth

block transmission is

wm = am · TZP{wa,m, L} ·w1 · (1− qm−1), 2 ≤ m ≤ Lw (6.22)

where TZP{wa,m, L} is the function to truncate or zero-pad the mth row of
Wa, i.e. wa,m, to length L.

At the receiver, after cyclic SIC, for each retransmitted layer, we have

y
′
m,l =

1
am

wa,mlym + y
′
m−1,l − im,l, 1 < m ≤ Lw (6.23)

where im,l is the known inter-layer interference on the lth layer. Subse-
quently, demodulation and decoding are done on the output of the matched
filter h∗y′m,l. If xl cannot be successfully decoded, y

′
m,l is sent to Cache 1 as

the lth row of the matrix Y
′
m for processing in the next block transmission.

When no more layer block can be successfully decoded, the HARQ vector
qm is sent back to the transmitter for preparing the next block transmission.

In the Lth
w transmission, no matter how many layers have been decoded

in previous transmissions, for the lth layer, if it has not been successfully
decoded yet, its received signal after processing

y
′
Lw,l = Lwh

√
Plxl + n

′
Lw,l (6.24)

where n
′
Lw,l is the noise vector in y

′
Lw,l

n
′
Lw,l =

Lw∑

m=1

wa,mlnm

am
. (6.25)

Obviously, there is no interference in y
′
Lw,l. In other words, after Lw block

transmissions, the layer-multiplexing transmission is equivalent to single-
layer sequential transmission.

6.3.4 When Lw < m ≤ M

Recall that MT channel uses is the delay constraint given by the system.
Generally, M > Lw.
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Given by (6.24) and (6.25), the SNR in y
′
Lw,lt

ρLw,lt =
L2

w|h|2Pl

|n′Lw,lt|2
, (6.26)

which implies that, if a layer xl cannot be successfully decoded after Lw

transmissions, the reason is probably because its initial power Pl is small
relative to other undecoded layers and noises. For solving this problem,
single-layer sequential ARQ transmission is employed to transmit each un-
decoded layer block alone at full peak power until this layer is successfully
decoded. Thereby, if the lth layer needs to be retransmitted alone, the
layer-multiplexing vector is a row vector whose lth element is

√
P and rest

elements are zeros. This strategy is a compensation for the drawback of
Walsh time-layer coding.

If there is still one or several layers undecoded after M block trans-
missions, as M is the allowable maximum number of block transmissions,
the transmitter will stop retransmission and start to process another source
packet.

Note that, although more layers can obtain a higher multiplexing gain
(less latency) at relatively high SNR, it suffers inter-layer interference at rel-
atively low SNR. Therefore, the number of layers is important to be decided,
which might be empirical.

6.4 An example with simulation results

In this section, an example of transmitting a binary packet over a slow-fading
AWGN channel is given. For clearness and simplicity, we assume that there
is no channel coding and the correctness of demodulation and decoding can
be told by the aid of a genie. The overheads of HARQ/ARQ feedback are
neglected in our evaluation as it is small relative to data block length.

Suppose the source packet is composed of 120 bits which are indepen-
dently identically uniformly binary distributed and the constraint of maxi-
mum latency is 300 channel uses. Three QPSK-modulated layer-multiplexing
schemes with HARQ feedback (L = 2, 3, 4) are compared with three modula-
tion schemes with ARQ feedback (QPSK, 16QAM, 64QAM). Herein, QPSK,
16QAM and 64QAM modulation schemes are chosen to be the reference as
they are currently widely-used and combined together as an adaptive mod-
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Figure 6.2: Simulation results of the example
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ulation scheme [128–131] with channel quality indicator (CQI) feedbak in
3GPP LTE specifications [125,132–138].

The six transmission schemes are evaluated by 10 000 Monte Carlo tri-
als. In each trial, the source packet, channel gain and noise are generated
independently and randomly. Both the channel gain h and the noise nmt

are supposed to be i.i.d. CN (0, 1). The success rate and average latency for
successful transmission of the whole packet are investigated.

Fig.6.2(a) shows that, with respect to success rate, the three layer-
multiplexing schemes performs very close to the QPSK modulation ARQ
scheme. Especially at low SNR, the curves of success rate of these four
are far above the ones of 64QAM and 16QAM ARQ schemes. Let us sup-
pose 0.95 is the success rate threshold, i.e., only schemes with success rate
higher than 0.95 are acceptable. Then, the three layer-multiplexing schemes
and the QPSK modulation scheme with ARQ are acceptable when the peak
power is above 5 dB, the 16QAM modulation scheme with ARQ is acceptable
when the peak power is above 9 dB, and the 64QAM modulation scheme
with ARQ is acceptable when the peak power is above 15 dB.

From Fig.6.2(b), we can see that, in the regime of high SNR, the average
latency of the QPSK-modulated layer-multiplexing scheme with L = 3 is the
same as the 64QAM-modulated ARQ scheme; so does the QPSK-modulated
layer-multiplexing scheme with L = 2 with the 16QAM-modulated ARQ
scheme. Thereby, corresponding to our intuition, with respect to the min-
imum latency in the regime of high SNR, a K-PSK-modulated L-layer-
multiplexing scheme is equivalent to an Q-QAM modulation ARQ scheme
when L log2 K = log2 Q.

Additionally, Fig.6.2(b) shows that, with respect to average latency (only
successful transmission counted), for acceptable schemes, when peak power
is in the range of 5 dB to 9 dB, the QPSK ARQ scheme achieves the smallest
latency; from 9 dB to 19 dB, the 16QAM ARQ scheme achieves the smallest
latency whereas the layer-multiplexing scheme with L = 2 is very close; from
19 dB to 30 dB, the 64QAM ARQ scheme the smallest latency whereas either
the layer-multiplexing scheme with L = 2 or the layer-multiplexing scheme
with L = 3 is very close.

Now, let us take a look at the processing complexity. Denote the process-
ing complexity of ML decoder of n parameters by ML(n). From Fig.6.2(b),
in the peak power range of 9 dB to 19 dB, for the 16QAM ARQ scheme, the
processing complexity for demodulating a symbol is ML(16) ; whereas, for
the QPSK-modulated layer-multiplexing scheme with L = 2, considering the
worst case with cyclic SIC, the processing complexity is 2 ML(4) ∼ 3 ML(4).
In the peak power the range of 19 dB to 30 dB, for the 64QAM ARQ
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scheme, the processing complexity per symbol is ML(64); whereas, for the
layer-multiplexing scheme with L = 2, it is 2 ML(4) ∼ 3 ML(4), and for
layer-multiplexing scheme with L = 3, it is 3 ML(4) ∼ 6 ML(4). Therefore,
we can see the advantage of the layer-multiplexing schemes with respect to
processing complexity.

As a conclusion of this example, under the comprehensive consideration
of success rate, average latency and complexity, rather than the adaptive
modulation system, a QPSK-modulated adaptive layer-multiplexing system
with L = 1 3 is recommended to achieve multiplexing gain at high SNR
without losing reliability at low SNR.

6.5 Conclusion and future works

In this chapter, concerning the uncertainty of a channel and the peak power
constraint, we have proposed a simple but practical layer-multiplexing trans-
mission scheme with HARQ feedback for short-block cases. Walsh matrices
are introduced to do layer-time coding. We have given an example to show
the performance of our layer-multiplexing scheme in terms of success rate
and average latency. It is compared with sequential ARQ schemes with
denser constellations. By the figure of simulation results and our analy-
sis, we have seen that, thanks to its good performance and relatively low
processing complexity, an adaptive layer-multiplexing scheme could be an
option to replace current widely-used adaptive modulation scheme.
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6.A Solving the equation array (6.16)

Given (6.16), we have

ρ̄h,1tPl = lρ̄(ρ̄h,1t

l−1∑

l′=1

Pl′ + 1). (6.27)

Namely,

ρ̄h,1tP1 = ρ̄ , (6.28)
ρ̄h,1tP2 = 2ρ̄(ρ̄ + 1) , (6.29)

ρ̄h,1tP3 = 3ρ̄(2ρ̄ + 1)(ρ̄ + 1) , (6.30)

and so on. Hence, we can hypothesize that ρ̄h,1tPl(l > 1) is in the form

ρ̄h,1tPl = lρ̄

l−1∏

l
′
=1

(l
′
ρ̄ + 1) . (6.31)

On the other hand,for l > 1, (6.27) can also be written as

ρ̄h,1tPl = lρ̄

(
ρ̄h,1tPl−1 +

ρ̄h,1tPl−1

(l − 1)ρ̄

)
, l > 1

= lρ̄ρ̄h,1tPl−1
(l − 1)ρ̄ + 1

(l − 1)ρ̄
, l > 1 .

(6.32)

Combining (6.32) and (6.31), we have

ρ̄h,1tPl+1 = (l + 1)ρ̄ρ̄h,1tPl
lρ̄ + 1

lρ̄

= (l + 1)ρ̄
l∏

l
′
=1

(l
′
ρ̄ + 1)

(6.33)

which exactly corresponds to our hypothesis (6.31). As a consequence,

L∑

l=1

ρ̄h,1tPl =
L∑

l=1

lρ̄
l−1∏

l′=1

(l
′
ρ̄ + 1) . (6.34)

Since under the peak power constraint, we have

L∑

l=1

Pl =
P

L
, (6.35)
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the equation (6.34) yields

ρ̄h,1t =
L

∑L
l=1 lρ̄

∏l−1
l
′
=1

(l
′
ρ̄ + 1)

P
. (6.36)

Therefore, straightforwardly, the layer power

Pl =
lρ̄

∏l−1
l′=1

(l
′
ρ̄ + 1)

ρ̄h,1t
, 2 ≤ l ≤ L . (6.37)
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Chapter 7

Conclusion and Future Work

In this thesis, three topics on MIMO systems with limited feedback are
investigated. They are optimum end-to-end distortion, analog channel feed-
back and layered multiplexing approach with hybrid automatic repeat re-
quest (HARQ). If the problems on MIMO systems with limited feedback
are categorized into what to feed back, how to feedback and where to use the
feedback, we see that the analysis on the optimum end-to-end distortion is
relevant to what to feed back (instantaneous channel capacity) and where to
use (outage-free transmission), the proposal of using orthogonal space-time
coding on analog channel feedback is relevant to how to feed back (analog
transmission other than digital) , and the proposal of the layered multi-
plexing approach with HARQ is relevant to what to feed back (the HARQ
signals) and where to use (layered multiplexing).

In Chapter 2, 3 and 4, assuming a continuous white Gaussian source
is transmitted over a MIMO channel and the transmitter knows the in-
stantaneous channel capacity, we analyze the joint impact of the source-to-
channel bandwidth ratio (SCBR), spatial diversity, spatial correlation and
time diversity on the optimum expected end-to-end distortion. The basis
of our analysis is discrete MIMO channel capacity [42] and Shannon’s in-
equality [22, 23] for continuous sources and continuous channels, which are
connected by the channel sampling theorem [16, 10.3]. With Chiani et al.’s
work on the moment generating function of capacity [94] and Bateman’s

109
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investigation on hypergeometric confluent functions [93], we provide the an-
alytical expressions of the optimum expected end-to-end distortion for any
SNR in different scenarios and the corresponding asymptotic expressions
consisting of optimum distortion exponent and optimum distortion factor
for high SNR. Before our work, the optimum distortion exponent has been
figured out [38–41]. Our results on the optimum distortion factor can pro-
vide further insight into the behavior of the end-to-end distortion in MIMO
systems.

In Chapter 2, the channel is assumed to be spatially uncorrelated and
slow fading. By the results, it is illustrated that increasing antenna number,
no matter on which side, always benefit on the optimum end-to-end distor-
tion either via increasing the optimum distortion exponent or via decreasing
the optimum distortion factor, and the commutation of the transmit antenna
number and the receive antenna number affects the optimum end-to-end dis-
tortion due to its impact on the distortion factor.

In Chapter 3, the discussion is extended to the case of spatially correlated
channel. We see that spatial correlation has no impact on the optimum
distortion exponent but on the optimum distortion factor. It is proved that
when the correlation matrix approaches an identity matrix, the asymptotic
optimum end-to-end distortion for the case of spatially correlated channel
converge to that for the case of uncorrelated channel. It is illustrated that the
spatial correlation deteriorates the optimum end-to-end distortion as well as
the asymptotic optimum end-to-end distortion. The results correspond to
intuition.

In Chapter 4, the time diversity is involved into our analysis. It is proved
that the time diversity always benefits the optimum end-to-end distortion,
either by increasing the optimum distortion exponent or by decreasing the
optimum distortion factor. Increasing time diversity branches can make a
system in the low SCBR regime migrate into the high SCBR regime. When
the system is in the high SCBR regime, increasing time diversity branches
only impacts the optimum distortion factor and thus the impact is relatively
not obvious, as shown by simulation results. Therefore, considering the extra
processing complexity and delay for lengthening frames, we do not suggest
lengthen frames to achieve the relatively trivial performance improvement
when the time diversity branches is more than the given transit point where
the system migrate into the high SCBR regime from the moderate SCBR
regime. Analogous to our analysis in this chapter, the results for the case of
correlated channel are straightforward and the results on frequency diversity
would be similar.

Straightforwardly, our results on outage-free systems are upper bounds
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for the scenarios where the transmitter has no knowledge about the channel
and suffers to outage accidents happening at a certain probability.

Future work: The asymptotic optimum expected end-to-end distortion
was derived from the polynomial form of the optimum expected end-to-end
distortion and it is only effective at relative high SNR. When the SNR is not
so high, there is gap between the asymptotic optimum expected distortion
and the optimum expected distortion. In this case, if more terms in the
polynomial of the optimum expected end-to-end distortion could involve,
the analysis on the behavior of the optimum expected end-to-end distortion
would be more precise.

Let us take an insight into the optimum distortion exponent. Define a
non-negative integer m as

m =





Nmin, 0 < 2
η < |Nt −Nr|+ 1;

Nmin −
⌊

2
η
+1−|Nt−Nr|

2

⌋
, |Nt −Nr|+ 1 ≤ 2

η ≤ Nt + Nr − 1;

0, 2
η > Nt + Nr − 1.

(7.1)
Then, the optimum distortion exponent can be written in the form

∆∗(η) = (Nt −m)(Nr −m) +
2m

η
, (7.2)

which looks quite similar to the formula of diversity multiplexing tradeoff [25]
and the expression of the distortion exponent in tandem source-channel cod-
ing systems [35]. Note that (7.2) has nothing to do with outage since the
instantaneous channel capacities is assumed to be known at the transmit-
ter. This intriguing similarity induces us to conjecture that there may be a
hidden connection to be explored here.

In chapter 5, considering the low complexity and reliability of linear
analog transmission, we introduce the orthogonal space-time block coding
(OSTBC) to linear analog channel feedback to exploit the spatial diversity in
MIMO channels. It is proved that the linear analog approach with OSTBC
can achieve the matched filter bound (MFB) on received SNR. The per-
formance of the linear analog approach with OSTBC is compared with the
random vector quantization (RVQ) approach with respect to average MSE
and average direction error. Circulant space-time block coding (CSTBC)
is another possible space-time coding for analog transmission. The perfor-
mances of an analog feedback scheme with OSTBC and an analog feedback
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scheme with CSTBC are compared and it is proved that the one with OS-
TBC performs better. For investigating the performance of linear analog
channel feedback with OSTBC, assuming multiuser MIMO downlink zero-
forcing beamforming (ZFBF)is employed at the base station, for a two-user
case, SIR’s for OSTBC linear analog channel feedback schemes with different
latencies are simulated and compared to the upper bound. The simulation
results show that within a short delay, the performance of the MU-MIMO
ZFBF system using linear analog channel feedback OSTBC is quite close to
the upper bound.

Future work: In our future work, more theoretical analysis on the per-
formance of OSTBC linear analog channel feedback method in a multi-user
multi-antenna ZFBF scheme is to be done. In the case that the complete
CSI is required to be known at the transmitter, a nonlinear method of how
to feedback the scaling factor is to be proposed and the performance of the
hybrid feedback scheme is to be analyzed.

In Chapter 6, concerning the uncertainty of a channel and the peak
power constraint, a simple but practical layer-multiplexing transmission
method with HARQ feedback is proposed for short-block cases. Walsh
matrices are used to do layer-time coding for inter-layer interference can-
celation. This method is compared to comparable sequential ARQ schemes
with denser constellations. By simulation results , we see that thanks to
its good performance and relatively low processing complexity, an adaptive
layer-multiplexing scheme could be an option to replace current widely-used
adaptive modulation scheme.

Future work: Although we did not involve channel coding and decoding
in our simulation, it is necessary in practice and the effect along could be
seen by further simulation or demonstration.

This layer-multiplexing scheme could also be implemented for the case
of the fast-fading channel with time-interleaving in channel coding, not only
limited to the slow-fading channel. Such implementation is to be analyzed
in future.

An alternative adaptive method to adaptive layer-multiplexing or mod-
ulation transmission is the adaptive error protection coding [139, 140]. In
3GPP LTE standards [125, 132–138], it is combined with adaptive modula-
tion scheme. Straightforwardly, it can also be combined with our adaptive
layer-multiplexing scheme. This combination and its optimization is to be
studied in future.

MIMO system with limited feedback is a rich subject and its study spans
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over many topics. Those have been studied in this thesis are only several
fragments.
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