
HAL Id: pastel-00005733
https://pastel.hal.science/pastel-00005733

Submitted on 19 Jan 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Techniques d’ingénierie de trafic dynamique pour
l’internet

Federico Larroca

To cite this version:
Federico Larroca. Techniques d’ingénierie de trafic dynamique pour l’internet. domain_other. Télé-
com ParisTech, 2009. Français. �NNT : �. �pastel-00005733�

https://pastel.hal.science/pastel-00005733
https://hal.archives-ouvertes.fr

École Doctorale

d’Informatique,

Télécommunications

et Électronique de Paris

Thèse

Présentée pour obtenir le grade de docteur

de Télécom ParisTech

Spécialité : Informatique et Réseaux

Federico LARROCA

Techniques d’Ingénierie de Trafic
Dynamique pour l’Internet

Soutenue le 18 décembre 2009 devant le jury composé de

Rapporteurs Fernando PAGANINI Universidad ORT

Peter REICHL Telecommunications Research Center Vienna

Examinateurs Annie GRAVEY Télécom Bretagne

Daniel KOFMAN Télécom ParisTech

Ariel ORDA Israel Institute of Technology

James ROBERTS INRIA

Directeur de thèse Jean-Louis ROUGIER Télécom ParisTech

Invitée Sara OUESLATI Orange Labs

Acknowledgements - Remerciements -

Agradecimientos

Está claŕısimo que sin el apoyo (impĺıcito o expĺıcito, creo que a los efectos es más
o menos lo mismo) de muchas personas, nunca hubiera podido terminar la tesis. Aqúı
voy a nombrar a ciertas de esas personas, en un orden entre aleatorio y cronológico
que no muestra necesariamente la importancia relativa de cada una. Es seguro que me
estoy olvidando de alguien, que espero sepa entender y se vea representado en el último
item.

Primero que todo, y más que obviamente, tengo que agradecerle a la Pao. Es obvio
que sin ella jamás hubiera podido soportar el transplante de Montevideo a Paris, y
menos que menos hubiera podido terminar la tesis en tiempo y forma. Su apoyo fue a
todo nivel (desde lo moral a lo cient́ıfico) y, no puedo recalcarlo lo suficiente, vital para
mı́.

Al Belza también tengo que agradecerle, que fue quien me recomendó a Daniel para
venir a hacer el doctorado.

Hablando de Daniel, es a él quien tengo que agradecerle haberme tráıdo y confiado
en mı́. Creo que, por ahora, no lo he defraudado.

C’est clair que sans Jean-Louis je n’aurais jamais fini la thèse non plus. Encore une
fois, son support tant humain que scientifique a été vital pour le bon déroulement de
cette thèse.

Je tiens aussi à remercier Jim et Sara. Sans eux, la prèmiere partie de cette thèse
n’aurait jamais été ecrite.

Il faut que je remercie également mes amis à Dareau (Masood, Paolo, Salma, Silvio,
Stefano et al.). La bonne ambiance reignante au 5ème m’a beaucoup aidé, et les
déjeuners à 13 heures vont me manquer.

También tengo que agradecer a todos los “uruguayos” que estando en Paŕıs hicieron
que la estad́ıa se pasara casi volando. En particular a Chloé (que además corrigió el
abstract en francés), Chupete, Edú, Jairo, Pedro, Rafa y Rose.

Vaya un muchas gracias también a la familia en Uruguay et ailleurs, e incluyo
también a toda la patota de amigotes. A la distancia (y a veces ni tanto) el apoyo
también fue importante. También incluyo en este agradecimiento a todas las visitas
que pasaron por nuestro apartamento, que ayudaron a cortar la monotońıa y a repasar
lo tuŕıstico de la ciudad Luz.

I would also like to thank Fernando, Peter, Annie, Daniel, Ariel, Jim and Sara that
kindly accepted to be part of the Jury.

Y bueno, por último agradezco a todos aquellos de los que me estoy olvidando y
creen que debeŕıan estar en esta página.

3

Résumé

Contexte et Motivation

L’Ingénierie Trafic (Traffic Engineering ou TE en anglais) est définie comme le domaine
de l’ingénierie des réseaux traitant du problème de l’évaluation et de l’optimisation
des performances des réseaux [1]. En particulier, nous nous intéressons à ce dernier
aspect, i.e. l’amélioration de la performance d’un réseau opérationnel. Ce problème a
été largement étudié, surtout pendant la première moitié des années 1990 quand les
ressources étaient considérées comme rares et chères. Cependant, le coût des capacités
des liens au coeur du réseau a beaucoup baissé pendant les années qui ont suivi, ce qui
a rendu économiquement viable le surprovisionnement des capacités du réseau.

Néanmoins, au fur et à mesure que les services offerts sur ces réseaux et les appli-
cations utilisées ont évolué, le trafic transporté est devenu de plus en plus complexe
et dynamique. La convergence des services de données, de téléphonie et de télévision
(formant ce qu’on appelle le triple-play) vers un seul et unique réseau a eu comme
effet une augmentation importante de la variabilité et de la complexité du trafic in-
jecté dans le réseau. De plus, des études récentes sur le trafic interne, publiées par
un important vendeur d’équipement réseau (Cisco Systems), prévoient l’avènement
de l’ère Exabyte [2, 3]. Cette nouvelle ère de l’internet aura comme principale car-
actéristique une énorme croissance du trafic, poussée par la généralisation de la vidéo
haute définition visionnée en ligne par les utilisateurs. Pour aggraver la situation,
la possibilité d’événements inattendus comme la panne d’équipements, des attaques
réseau de gros volumes, des flash crowds1 ou encore des modifications du routage ex-
terne, constituent des sources supplémentaires d’incertitude vis-à-vis du volume et de
la nature du trafic à transporter. Enfin, le déploiement de la fibre optique à l’accès (i.e.
Fiber To The Home) accrôıt cette incertitude.

Les opérateurs doivent également faire face à d’autres problèmes. La capacité
d’accès offerte aux utilisateurs que l’on vient de mentionner est telle que l’hypothèse

1Un événement précis qui attire une soudaine attention du public, générant un volume anormal de
trafic en un point du réseau.

5

6 Résumé

selon laquelle la capacité au coeur du réseau est infinie peut devenir obsolète dans
un futur proche. En outre, il est important de noter que pour d’autres architectures
d’accès (e.g. tous les réseaux sans fil), la capacité est intrinsèquement limitée de sorte
qu’une simple augmentation de la capacité peut s’avérer impossible ou non-viable d’un
point de vue économique.

Dans ce contexte, l’hypothèse de grande capacité ne suffit plus. Les opérateurs
réseau sont maintenant, et peut-être plus que jamais, en besoin de mécanismes d’Ingénierie
Trafic qui soient efficaces (conduisant à une bonne utilisation des ressources disponibles),
robustes par rapport aux variations de trafic injecté dans le réseau (changements dans
les volumes ou les caractéristiques des flux transportés) et plus tolérants (en cas de
panne d’un noeud ou un lien). Au fur et à mesure que la taille du réseau augmente, la
gestion du réseau peut devenir une tâche très complexe. Les administrateurs réseau sont
donc très intéressés par l’automatisation (un minimum de configuration nécessaire)
des mécanismes TE qu’ils mettent en pratique dans leur réseau.

Le Partage de Charge Dynamique (Dynamic Load-Balancing ou DLB en anglais)
est un mécanisme TE qui satisfait tous les critères que l’on vient d’énumérer. Si une
paire Origine-Destination (OD) est connectée par plusieurs chemins, le problème est
simplement comment distribuer le trafic associé parmi ces chemins, en fonction d’un ob-
jectif prédéterminé (généralement par l’optimisation d’une fonction objectif). Dans ce
mécanisme dynamique, les chemins sont fixés a priori et la quantité de trafic acheminée
sur chaque route (distribution de trafic) est déterminée dynamiquement en fonction de
la demande de trafic et de la situation actuelle du réseau. Idéalement, la distribution
de trafic est telle qu’à chaque instant la fonction objectif est optimisée. L’efficacité

du DLB vient de cette dernière caractéristique. Dans ce sens, il existe plusieurs fonc-
tions objectif possibles. Par exemple, les auteurs de [4] proposent un mécanisme appelé
MATE utilisant une fonction croissante, continue et convexe fl(ρl) qui mesure la con-
gestion dans le lien l (où ρl est la charge dans le lien). Leur objectif est de minimiser
la congestion totale dans le réseau, qui naturellement est

∑
l fl(ρl). Un autre objectif

possible est celui utilisé dans [5, 6] (appelés TeXCP et REPLEX respectivement), qui
est simplement de minimiser l’utilisation du lien (ul = ρl/cl où cl est la capacité du
lien) maximale dans le réseau.

Dans la pratique, cette caractéristique d’être “toujours optimisé” est remplie par
l’utilisation d’un algorithme distribué que chaque router d’entrée exécute périodiquement,
et qui se base sur des informations de feedback provenant du réseau. Tant que la
distribution de trafic est actualisée à une fréquence suffisamment grande, DLB sera
robuste et tolérant. Finalement, et comme conséquence directe de sa nature dis-
tribuée, ce type de mécanisme est aussi automatisé. Par contre, c’est également
cette nature distribuée qui constitue le défi le plus important de DLB. Le déploiement
de DLB a d’ailleurs été limité, les opérateurs réseau étant peu disposés à utiliser des
mécanismes dynamiques dans leurs réseaux par crainte de possibles oscillations. De fait,
les premières expériences menées dans le cadre d’ArpaNet avec ce type de mécanismes
ont été très négatives de ce point de vue [7]. Il faut néanmoins souligner que l’algorithme
utilisé n’avait pas fait l’objet d’études théoriques approfondies.

Résumé 7

Il est certain que tous les algorithmes distribués présentent un compromis entre
adaptabilité (vitesse de convergence) et stabilité qui peut s’avérer difficile à trouver,
surtout dans des situations où de grands changements du volume de trafic peuvent se
produire. Dans ce sens, l’alternative la plus importante à DLB est sans conteste le
Routage Robuste (RR) [8, 9]. Dans le RR, l’incertitude du trafic est prise en compte
directement dans l’optimisation du routage. On détermine une configuration unique
de routage pour toutes les demandes de trafic appartenant à un certain ensemble
d’incertitude dans lequel on suppose que le trafic varie. Cet ensemble d’incertitude
peut se définir de plusieurs manières, en fonction de l’information disponible : les
charges les plus grandes observées pendant une certaine période de temps, un ensemble
de demandes de trafic observées avec antériorité, etc. L’objectif du RR est généralement
de minimiser la plus grande utilisation du lien dans le réseau, pour toutes les demandes
dans l’ensemble d’incertitude. Il est à noter que l’optimisation avec incertitude étant
beaucoup plus difficile que l’optimisation classique, des objectifs plutôt simples sont
toujours choisis. Bien que la configuration du routage résultant n’est pas optimale
pour aucune demande en particulier, la pire des performances est maximisée globale-
ment pour toutes les demandes. Ceux qui préconisent l’utilisation de RR soutiennent
qu’il n’y a pas besoin de mettre en oeuvre des algorithmes d’optimisation distribués
prétendument compliqués. L’argument généralement mis en évidence est également
que la perte en performance subie à cause de l’utilisation d’une unique configuration
de routage est négligeable par rapport à la complexité induite par la mise en place
d’algorithmes distribués.

Dans cette thèse sont étudiés et proposés plusieurs mécanismes de DLB. Tout
d’abord, il est fait une distinction entre les architectures pour lesquelles la capacité
et les ressources sont réservées pour chaque chemin, et celles pour lesquelles aucune
réservation n’est effectuée (c’est-à-dire à ressources partagées). Cette simplification va
nous permettre de proposer l’utilisation d’un nouvel mécanisme pour gérer ces chemins.
Partant de ce mécanisme, nous allons définir un nouvel algorithme de DLB. Dans le cas
de ressources partagées, nous allons étudier et comparer plusieurs fonctions objectif,
celles présentées ci-avant et une nouvelle fonction que nous avons proposée. Nous al-
lons proposer et étudier un nouvel algorithme distribué pour atteindre l’optimum de ces
fonctions objectifs. Sa caractéristique la plus importante, et son avantage par rapport
à des propositions antérieures, est sa capacité d’auto-configuration (i.e. la convergence
de l’algorithme est garantie sans aucun besoin de réglage préalable des paramètres).
Dans les sections qui suivent on détaille les propositions les plus importantes de notre
thèse.

Première Partie : Ressources Réservées

La thèse compte deux parties. La première suppose que chaque chemin utilise des
ressources qui lui sont allouées exclusivement (comme par exemple avec MPLS-TE,
GMPLS, GELS). Dans ce type d’architecture, les chemins sont traditionnellement gérés
par un mécanisme appelé token bucket (seau à jetons). Il a été montré que cette tech-

8 Résumé

nique de Qualité de Service (QoS) est très inefficace et peu appropriée pour caractériser
le trafic [10]. En effet, pour obtenir une certaine probabilité de non-conformité, le
paramètre de burst doit être exagérément grand, même lorsque le paramètre de rate
est déjà plusieurs fois plus grand que le débit moyen du trafic. Il apparâıt donc qu’on
ne peut se fier aux paramètres du token bucket déclarés par le client, sous peine de
gaspiller des ressources.

Nous proposons donc que les routers de bord utilisent le mécanisme Cross-Protect
[11, 12] pour gérer l’accès à chacun de ses chemins. Le Cross-Protect permet de garantir
une certaine performance pour le trafic de type élastique ou streaming en gardant
l’interface utilisateur best-effort de l’internet. Autrement dit, il n’est pas nécessaire de
marquer des paquets ou de signaler les flots pour pouvoir distinguer les flots du type
streaming (qui ont besoin d’un bas délai et taux de pertes) et du type élastique (qui
nécessitent le plus grand débit possible). A la place, le cross-protect identifie les flots à
la volée, et met en oeuvre un ordonnancement (scheduling) au niveau flot en utilisant
Priority Fair Queueing (PFQ). De plus, un mécanisme de contrôle d’admission basé
sur des mesures est mis en place pour garantir un fair rate (i.e. le débit obtenu par les
flots élastiques) minimum et des conditions optimales pour les flots du type streaming.

L’algorithme de PFQ classifie les flots en streaming ou élastiques implicitement et
en ligne selon le principe qui suit : si un flot est transmis à un débit plus petit que le
fair-rate instantané actuel (cette situation se manifeste par le fait de que les paquets du
flot ne sont pas accumulés dans le router), celui-ci est classifié comme streaming et est
envoyé en priorité. Les flots restants (ou tous les flots dont les paquets s’accumulent
dans le router) partagent à égalité la capacité restante. De cette façon, un partage
juste des ressources est atteint grâce à l’algorithme d’ordonnancement, et ne dépend
pas d’algorithmes de contrôle de congestion mis en oeuvre par les utilisateurs finaux.
Par contre, l’utilisation de TCP est nécessaire pour que les flots trouvent leur fair-rate.

Le contrôle d’admission est utilisé pour maintenir le nombre de flots gérés par le
router au dessous d’une quantité raisonnable. De plus, il sert à garantir un QoS minimal
pour tous les flots. Plus précisément, on veut limiter la quantité de trafic prioritaire
(une quantité trop élevée entrâınerait une mauvaise performance pour ce trafic) et
garantir un débit minimal pour les flots élastiques. Donc, si à l’arrivée d’un nouveau
flot le trafic prioritaire est au dessus d’un certain seuil ou le fair-rate au dessous d’un
autre, on ne l’accepte pas et on bloque ses paquets. La Fig. 1 présente un diagramme
simplifié du mécanisme de cross-protect. Il faut noter que l’algorithme de classification
est appliqué en continu, et pas seulement à l’arrivée des flots.

En résumé, on dispose avec le cross protect d’un mécanisme qui garantit un débit
minimum pour les flots élastiques et de très bas délai pour le trafic streaming. Il est
important néanmoins d’évaluer la probabilité de blocage des flots causée par le contrôle
d’admission, afin de mieux appréhender le compromis entre QoS (débit minimum pour
les flux élastiques, etc.) et probabilité de rejet des flux entrants. Nous avons pour cela
analysé un router équipé du mécanisme cross-protect et nous avons obtenu une formule
pour la probabilité de blocage en fonction des seuils et des principales caractéristiques

Résumé 9

Figure 1: Diagramme simplifiée du Cross-Protect

du trafic. L’analyse est basée sur l’hypothèse que les flots streaming ont une échelle
temporelle beaucoup plus grande que celle des flots élastiques. Cette supposition nous
permet alors d’analyser la file d’attente des flots élastiques comme si la quantité de
flots streaming était fixe (chacun de ces flots étant caractérisé par un débit fixe r).

Après avoir analysé un router cross-protect, nous avons étudié la possibilité de
définir un mécanisme de partage de charge (DLB) tirant profit de ce mécanisme. Plus
exactement, dans le cas où plusieurs chemins sont disponibles pour une paire OD, le
problème est vers quel chemin aiguiller chaque flot entrant. Étant donné qu’avec le cross
protect les mesures sur l’état des chemins sont effectuées pour le contrôle d’admission, il
semble naturel de réutiliser ces résultats de mesure et donc de définir un mécanisme de
DLB à partir du priority load (PL) et du fair-rate (FR). En se basant sur des analyses
de la politique de routage optimale dans le cas d’un réseau de file d’attente du type
Processor Sharing, nous avons proposé l’algorithme suivant, que nous avons appelé
SGP (Simple Greedy Policy, politique gloutonne simple) :

Acheminer au chemin i⇔ i = arg max
j

fair ratej

Intuitivement, l’algorithme minimise la probabilité de blocage pour les flots élastiques
et, en même temps, maximise leur performance (en les envoyant par le chemin avec le
plus grand débit). Par contre, la même chose ne peut pas être dite à propos des flots
streaming. Néanmoins, étant donné qu’ils constituent la minorité du trafic, on sac-
rifie un peu sa performance pour favoriser un mécanisme qui reste toujours implicite
vis-à-vis de la classification des flots.

L’analyse mathématique de SGP s’avére beaucoup plus compliquée que celle d’un
router cross-protect qui n’utilise qu’un seul chemin. Néanmoins, nous sommes arrivés à
calculer des bornes pour la probabilité de blocage des flots, qui finalement constituent
une bonne approximation de cette probabilité. Nous avons aussi comparé SGP avec
d’autres algorithmes de partage de charges statiques, et vérifié que la probabilité de
blocage pour SGP peut être plus petite, de plusieurs ordres de grandeur, que pour les
autres algorithmes.

10 Résumé

Deuxième Partie : Ressources Partagées

Dans cette deuxième partie, on va être plus général dans le sens où on ne va pas
supposer que les chemins ont des ressources réservées. Le premier aspect à prendre en
compte est l’échelle temporelle à laquelle on va travailler. Dans ce cas, l’échelle sera
celle du routage, c’est-à-dire quelques secondes ou quelques minutes. Etant donné ces
temps, on ne va pas prendre en compte le contrôle de congestion, et supposer que le
trafic dans le réseau est bien représenté par la Matrice de Trafic (TM, Traffic Matrix).
Autrement dit, si chaque noeud dans le réseau est numéroté, cette matrice contient
dans son entrée i–j la moyenne de trafic envoyé du noeud i au noeud j.

Dans la suite de ce résumé, on va tout d’abord présenter deux fonctions objectif
possibles pour DLB dans ce contexte. Ensuite, on discutera comment obtenir leur
optimum de façon distribuée. Finalement, on présentera un bref résumé des principaux
résultats obtenus à partir de nos simulations.

Partage de Charge Basé sur la Maximisation de l’Utilité

Imaginons que chaque paire OD est numérotée par l’index s = 1, . . . , S . Chacune de
ces paires OD peut utiliser ns chemins d’un ensemble Ps (où chacun de ses éléments va
être noté comme Psi pour i = 1, . . . , ns). Imaginons pour l’instant que chaque paire
OD est constituée d’un total de Ns flots TCP, dont NPsi

utilisent le chemin Psi . Donc,
le problème de contrôle de congestion peut être écrit de la façon suivante :

maximiser
x

S∑

s=1

ns∑

i=1

NPsi
UPsi

(
xPsi

NPsi

)
(1)

s. à
∑

s

∑

i:l∈Psi

xPsi
≤ cl

Où xPsi
est le débit total obtenu par tous les NPsi

flots dans le chemin Psi (on a
supposé qu’ils partagent à égalité ce débit) et UPsi

est une fonction continue, croissante
et concave.

Il faut noter que le problème maximise en fonction de la variable xPsi
étant donné

les NPsi
(c’est-à-dire, le partage de charge est donné et TCP calcule le débit). Cepen-

dant, on pourrait essayer de maximiser en même temps en xPsi
et NPsi

pour améliorer
encore l’utilité, et avec elle la performance obtenue par les flots. Une première idée
serait que les utilisateurs finaux se chargent de choisir le chemin qu’ils vont emprunter.
Malheureusement, cela est trop compliqué d’un point de vue technique et politique
(une seule route est généralement disponible avec l’architecture de routage actuelle).
Donc, nous proposons de laisser la séparation entre partage de charge (maximisation
en NPsi

) et contrôle de congestion (maximisation en xPsi
), et d’essayer de toute façon

de résoudre (1).

Résumé 11

Plusieurs difficultés surgissent alors, surtout liées à l’échelle temporelle considérée.
Notamment, il est impossible de considérer que le nombre de flots est fixé, et on ne
peut pas non plus connâıtre la valeur instantanée de xPsi

/NPsi
. Il faut donc trouver

une estimation de la moyenne temporelle de ces deux quantités. Le problème résultant
d’une telle approximation est le suivant (où dPsi

est le trafic envoyé par la paire OD s
dans son chemin Psi d’un total ds) :

maximiser
d

S∑

s=1

ns∑

i=1

dPsi
U

(
min
l∈Psi

{cl − ρl}

)
(2)

s. à dP ≥ 0 ∀P ∈ Ps and
∑

P∈Ps

dP = ds ∀s = 1, . . . , S

Dans ce cas, on a supposé que le débit par flot est approximativement égal à la
bande passante disponible (ABW, available bandwidth) dans le chemin [13, 14], et on a
substituéNPsi

par dPsi
. Pour caractériser l’optimum du problème (2), nous avons utilisé

les conditions de Karush-Kuhn-Tucker (KKT) [15], et nous avons obtenu la condition
suivante pour chaque paire OD (où λ∗Psi

> 0 et ν∗s sont des constantes) :

φ∗Psi
= −U

(
min
l∈Psi

{cl − ρ
∗
l }

)
+

∑

l:l∈Psi

θ̂l =

{
−ν∗s if d∗Psi

> 0.

−ν∗s + λ∗Psi
if d∗Psi

= 0
(3)

où θ∗Psil =





d∗Psi

si l = argmin
l∈si

{cl − ρ
∗
l }

0 autrement

θ̂l =
S∑

s=1

∑

i:l∈Psi

θ∗PsilU
′(cl − ρ

∗
l)

Autrement dit, pour chaque paire OD s, les chemins utilisés dans la distribution
du trafic optimal ont le même coût φ∗Psi

. De plus, ce coût est plus petit que pour les
chemins qui ne sont pas utilisés. Comme on le verra plus tard, cette formulation va
nous permettre de concevoir un algorithme distribué.

Partage de Charge de Congestion Minimale : Pourquoi choisir une
fonction de congestion arbitraire ?

Dans cette section, on va s’intéresser à la fonction objectif “classique” utilisée, par
exemple, dans MATE [4]. Comme présenté ci-avant, dans ce cas on définit une fonction
croissante, convexe et continue fl(ρl) qui mesure la congestion dans le lien. L’objectif
est de minimiser la congestion totale dans le réseau

∑
l fl(ρl) . Typiquement fl(ρl) est

choisie comme le délai de la file d’attente. Un tel choix est justifié par sa simplicité (le
délai total du chemin est l’addition des délais dans chaque lien) et sa versatilité (de gros
délais indiquent une mauvaise performance pour tous les types de trafic). Par contre,

12 Résumé

la grande majorité des mécanismes DLB ont besoin d’une expression analytique de ce
délai. Pour trouver une telle expression, on utilise généralement des modèles simples [4]
comme le M/M/1 [16].

Nous proposons au contraire d’apprendre la fonction fl(ρl) à partir des mesures.
Supposons que le délai de la file d’attente dans le lien l est donné par la fonction
Dl(ρl). Alors, le problème dans ce cas est le suivant :

minimiser
d

L∑

l=1

Dl(ρl)ρl :=
L∑

l=1

fl(ρl) (4)

s. à dPsi
≥ 0

∑

P∈Ps

dP = ds

C’est-à-dire, minimiser le délai moyen où chaque lien est pondéré par la quantité de
trafic qu’il transporte. Nous avons préféré minimiser cette moyenne pondérée plutôt
qu’une simple addition parce qu’elle mesure plus correctement la performance perçue
par le trafic. Il faut noter que fl(ρl) = ρlDl(ρl) est proportionnel au nombre moyen
d’octets dans la file d’attente du lien l. Nous allons donc utiliser cette fonction fl(ρl)
qui est beaucoup plus facile à mesurer que le délai, et qui est directement disponible
dans les routers du marché.

La caractérisation de l’optimum dans ce cas peut être obtenue d’après les conditions
KKT, ce qui résulte dans la condition suivante :

φ∗Psi
=
∑

l∈Psi

φl(ρ
∗
l) =

∑

l∈Psi

f ′l (ρ
∗
l) =

{
−ν∗s si d∗Psi

> 0.

−ν∗s + λ∗Psi
si d∗Psi

= 0
(5)

On obtient donc la même condition que dans la section précédente, sauf que le coût
du chemin est plus simple. En définissant le coût du lien φl(ρl) = f ′l (ρl), le coût du
chemin est donné par son addition (i.e. φP =

∑
l∈P φl(ρl)). Par contre, il faut prendre

en compte le fait que la condition est nécessaire et suffisante uniquement si la fonction
fl(ρl) est convexe et de dérivée continue.

Le problème que nous abordons maintenant est comment déduire φl(ρl) = f ′l (ρl)
des observations de la taille moyenne de la file d’attente. En fait, comme la quantité
observable est justement fl(ρl), nous allons d’abord apprendre fl(ρ) et estimer ensuite
sa dérivée par dérivation de cette estimation. Comme la procédure pour chaque lien est
exactement la même, on va omettre le sous-index l dans la suite. Supposons que nous
avons un ensemble d’observations {(ρ1, Y1) (ρ2, Y2) . . . (ρN , YN)} (aussi appelé ensemble
d’apprentissage), et supposons que la variable de réponse Y (la taille moyenne de la file
d’attente mesurée) est reliée à la variable ρ par l’équation suivante :

Yi = f(ρi) + ǫi i = 1, . . . , N (6)

L’erreur de mesure ǫi est une variable aléatoire telle que E{ǫi} = 0 et Var{ǫi} = σi <
∞. Le problème des Moindres Carrés Pesés (WLS, Weighted Least Squares) consiste à

Résumé 13

trouver la fonction f̂(ρ) qui minimise la moyenne pondérée des erreurs élevées au carré,
tout en supposant que f̂(ρ) appartient à une famille de fonctions F donnée :

min
f

N∑

i=1

wi (Yi − f(ρi))
2 s. à f ∈ F (7)

où wi indique le poids relatif de l’observation i par rapport au reste des observations
dans l’ensemble d’apprentissage.

Nous allons présenter deux méthodes pour résoudre ce problème, qui diffèrent par
leur famille F . La première méthode que nous avons étudiée s’appelle Convex Nonpara-
metric Weighted Least Squares (CNWLS), une version pondérée du CNLS original [17].
Dans ce cas, F est le plus général possible, c’est-à-dire la famille des fonctions contin-
ues, croissantes et convexes. Dans ce cas, on peut démontrer que le minimum de
la moyenne pondérée des erreurs est obtenu par une fonction linéaire par morceaux
(i.e. f̂(ρ) = max

i=1,...,N
αi + βiρ) qui peut être obtenu par le problème de programmation

quadratique (QP, quadratic programming) suivant :

min
ǫ,α,β

N∑

i=1

wiǫi2 (8)

s. à Yi = αi + βiρi + ǫi ∀i = 1, . . . , N

αi + βiρi ≥ αj + βjρi ∀j, i = 1, . . . , N

βi ≥ 0 ∀i = 1, . . . , N

Même si cette méthode obtient la meilleure précision possible, le problème QP à
résoudre pour trouver la solution peut être trop grand. En fait, le deuxième ensem-
ble de restrictions, qui garanti la convexité de f̂(ρ), est quadratique dans le nombre
d’observations disponibles dans l’ensemble d’apprentissage. L’alternative est de fixer le
nombre maximal de morceaux à k (i.e. f̂(ρ) = max

i=1,...,k
αi+βiρ) et d’essayer de résoudre le

problème résultant. Ce problème, appelé Convex Piecewise Linear Fitting [18], ne peut
pas se résoudre exactement comme CNWLS. Il faut plutôt utiliser des heuristiques,
comme celui proposé dans [18]. Bien que la vitesse de calcul soit fortement réduite, la
précision de la fonction résultante est également moindre.

Obtention de l’Optimal : Jeu de Routage et Algorithmes Sans Regret

L’optimal pour (2) et (4) est caractérisé par une certaine fonction de coût du chemin
φP . Plus exactement, pour chaque paire OD, les chemins qui sont utilisés sont ceux qui
présentent le plus petit coût parmi tous les chemins de chaque paire OD. En fait, comme
discuté par la suite, cette situation peut être interprétée comme l’équilibre résultant
des paires OD qu’utilisent des algorithmes gloutons.

Dans ce type d’algorithme, chaque paire OD essaye toujours de minimiser le coût
associé à ses chemins. Ce contexte constitue un cas d’étude idéal pour la Théorie des

14 Résumé

Jeux, et on l’appelle Jeu de Routage [19]. Dans un jeu comme le nôtre, où le trafic
peut être réparti entre les chemins de manière arbitraire, on suppose que les paires OD
sont constituées pour une infinité d’agents. Chacun de ces agents contrôle une quantité
infinitésimale du trafic, et décide du chemin qu’il veut prendre.

Si chaque agent est glouton, le système va être en équilibre quand aucun agent ne
peut décrôıtre son coût en changeant de chemin. Une telle situation constitue ce qu’on
appelle un équilibre de Wardrop (WE, Wardrop Equilibrium) [20], qui est formellement
défini comme suit :

Définition 1. Une distribution trafic d est un équilibre de Wardrop si pour chaque
paire OD s = 1 . . . S et pour chaque chemin Psi avec dPsi

> 0 il est vrai que φPsi
≤ φPsj

pour tout Psj ∈ Ps.

Il est clair que l’optimum recherché et le WE (pour le coût de chemin correspondant)
sont les mêmes. On va donc étudier les différents algorithmes possibles permettant de
converger vers cet équilibre. En particulier, on va s’intéresser aux algorithmes du type
Sans Regret. Les auteurs de [21] ont prouvé que si toutes les paires OD utilisent ce
type d’algorithme, la convergence au WE est garantie. En particulier, nous avons choisi
l’algorithme Incrementally Adaptive Weighted Majority (iAWM) proposé dans [22]. Cet
algorithme a la particularité d’être complètement auto-configuré. Autrement dit, il a la
particularité de ne nécessiter aucun calcul de paramètre pour garantir sa convergence,
ce qui est un de nos objectifs. En fait, tous les algorithmes d’optimisation distribués
proposés jusqu’à aujourd’hui ont un paramètre qui contrôle la vitesse de l’algorithme
qui peut être très difficile à fixer.

Malheureusement, l’algorithme fonctionne uniquement dans des cas où le trafic est
stationnaire, et a une très lente réaction en cas des changements brusques des demandes.
Pour résoudre ce problème, nous avons proposé une variation de l’algorithme, que nous
avons appelé Incrementally Adaptive Weighted Majority with Restart (iAWM-R). Le
principe est très simple : l’algorithme est le même que iAWM, sauf que quand on détecte
un changement brusque, on le réinitialise. Dans la Fig. 2 on peut voir une comparaison
entre les deux algorithmes, utilisant le réseau Abilene. On peut remarquer que la
réinitialisation de iAWM-R accélère énormément la convergence par rapport à iAWM.

Évaluation et Conclusions

Nous avons finalement effectué une comparaison de trois fonctions objectif vis-à-vis
de leurs performances. Nous avons tout d’abord considéré la maximisation de l’utilité
(cf. (2)) qu’on va appeler ici MaxU (Maximum Utility). Nous avons également con-
sidéré le partage de charge de congestion minimale basé sur la régression (cf. (4)) qu’on
va noter MinQ (Minimum Queue). Finalement, nous avons considéré le WE obtenu en
utilisant le coût de chemin φP = max

l∈P
ul qui modélise les algorithmes classiques comme

TeXCP [5] ou REPLEX [6] qu’on va appeler MinMaxU (Minimum Maximum Utiliza-
tion). D’après cette étude, conduite sur deux véritables topologies (Abilene et Géant)

Résumé 15

0 100 200 300 400 500 600 700

30

40

50

60

70

80

90

100

Time (min)

T
o

ta
l
M

e
a

n
 D

e
la

y
 (

k
B

)

Actual Minimum
iAWM

(a) iAWM

0 100 200 300 400 500 600 700

30

40

50

60

70

80

90

100

Time (min)

T
o

ta
l
M

e
a

n
 D

e
la

y
 (

k
B

)

Actual Minimum
iAWM−R

(b) iAWM-R

Figure 2: Délai moyen total en fonction du temps pour le deux algorithmes de partage
de charge.

et en utilisant des matrices de trafic réelles, on peut obtenir plusieurs conclusions. En
premier lieu, en ce qui concerne la bande passante obtenue sur les chemins (ABW), elle
est toujours plus grande pour MaxU que pour les autres algorithmes. Plus précisément,
la différence avec MinQ n’est pas très grande, mais la différence avec MinMaxU par
contre est significative. Deuxièmement, et en ce qui concerne l’utilisation des liens (ul),
les résultats sont très similaires entre MaxU et MinMaxU. Les résultats pour MinQ
sont très similaires aux deux autres en moyenne et pour le dernier décile. Par contre,
l’utilisation maximale obtenue peut être très différente de celle de MinMaxU. Cet écart
est dû à la réticence de MinQ à utiliser les chemins les plus longs. En termes de délai
d’attente moyen total (D(d), un indicateur de performance très important pour tous
les types de trafic), la différence peut être très importante entre ces différentes fonc-
tions objectif. On peut constater une augmentation de plus de 50% entre MinMaxU
ou MaxU et MinQ. De plus, même si la différence pour MaxU est généralement plus
petite que celle de MinMaxU, c’est cet algorithme qui obtient la pire des différences
(plus de 100%).

Nous avons étudié le gain en D(d) du partage de charge basé sur la régression par
rapport à l’utilisation de fonctions fl(ρl) simplistes, en particulier basées sur le modèle
M/M/1. Nous avons prouvé qu’en termes d’utilisation des liens et de la bande passante
offerte aux différents chemins, ce choix n’est pas très important, tant que la fonction
est convexe, croissante et “explose” à mesure que fl(ρl) s’approche de la capacité du
lien. Par contre, en termes du délai d’attente total moyen ce choix s’avère crucial. Par
exemple, des augmentations de plus de 50% par rapport au D(d) optimal ne sont pas
rares. Finalement, nous avons aussi vérifié que l’augmentation subite de D(d) à cause
du manque de précision de CPLF n’est pas si importante (généralement moins de 15%).

Globalement, la fonction objectif MinQ semble être la plus équilibrée, dans le sens
où sa performance est généralement la meilleure, et que dans dans le cas contraire, la
différence n’est jamais trop significative. De plus, une fois que sont caractérisées les
fl(ρl) pour chaque lien, l’algorithme de partage de charge n’est pas plus compliqué
que celui de MinMaxU (considéré comme le plus simple de tous). Ce dernier aspect est

16 Résumé

justement un des points faibles de MaxU : pour calculer sa fonction de coût des chemins
φP , chaque lien doit mesurer le trafic de chaque paire OD. Il faut également mettre en
oeuvre un mécanisme pour qu’un lien détecte s’il constitue le bottleneck d’un chemin.
Même si dans un réseau MPLS ces mécanismes sont envisageables (par exemple mesurer
dPsi

est très simple), c’est une complexité additionnelle qui doit être prise en compte.

Afin de conclure sur ces travaux sur le partage de charge, nous avons conduit une
étude comparative entre des mécanismes de DLB et de RR (Routage Robuste). La
conclusion la plus importante est qu’une seule et unique configuration de routage n’est
pas suffisante quand le trafic est relativement dynamique. La performance de RR est
très pauvre quand il est confronté à des demandes de trafic qui n’étaient pas dans
l’ensemble d’incertitude considéré, ou quand cet ensemble d’incertitude veut prendre
en compte un nombre trop élevé de possibilités de demandes. Une forme de dynamisme
est nécessaire, que ce soit par l’utilisation de DLB ou par un Routage Réactif et Robuste
(RRR, Robust Reactive Routing) [23].

RRR calcule une configuration de routage nominale pour le trafic normal, et a
un routage alternatif (en utilisant les mêmes chemins) pour des situations anormales.
Pour détecter des telles situations, il est nécessaire de mesurer la charge des liens
et de les envoyer à une entité centrale. DLB fait ces mêmes mesures, mais il doit
actualiser la distribution de trafic à une échelle temporelle relativement courte. La
complexité supplémentaire est donc la distribution de ces mesures aux routers d’entrée,
et l’actualisation de la distribution trafic en temps réel. Nos résultats démontrent que
cette complexité peut ne pas être nécessaire si la variabilité du trafic est limitée. Par
contre, l’utilisation de DLB est très intéressant quand la variabilité est importante, et
obtient des résultats meilleurs que RRR. De plus, si les anomalies (permettant de bas-
culer sur des configurations de routage alternatives) peuvent ne pas être correctement
détectées, la seule solution efficace est alors DLB. Il faut aussi noter que RR considère
uniquement la variabilité au niveau trafic, alors que DLB est plus général puis qu’il
considère tout type de variabilité (e.g. pannes de liens).

Abstract

Network convergence and new applications running on end-hosts result in increasingly
variable and unpredictable traffic patterns. By providing origin-destination pairs with
several possible paths, Dynamic Load-Balancing (DLB) has proved itself an excellent
tool to face this uncertainty. The objective in DLB is to distribute traffic among these
paths in real-time so that a certain criteria or objective is fulfilled. In these dynamic
schemes, paths are established a priori and the amount of traffic sent through each of
them (traffic distribution) depends on the current traffic demand and network condition.
This thesis studies several possible DLB schemes. In this sense, it is separated in two
parts, depending on the considered architecture.

The first part considers a network in which resources are reserved and used ex-
clusively by each path. This simplification allows us to propose the use of a novel
mechanism to manage these paths: Cross-Protect. This flow-aware Traffic Engineering
(TE) technique enables performance guarantees for both streaming and elastic traffic
and its configuration relies on only two parameters, which may be easily mapped to
target performance guarantees. The advantage of Cross-Protect with respect to, for
instance, DiffServ, is that no packet marking is required. Instead flows are classified im-
plicitly based on their transmission rate. We analyze a Cross-Protect router and derive
analytical formulae for its most important QoS parameters. Based on this mechanism,
we propose a new flow-aware DLB scheme. In this case, approximate formulae for its
QoS parameters are derived. Our simulations indicate that the results obtained by this
new scheme are much better than classical static load-balancing schemes.

In the second part we consider the more general case of a “shared-resources” net-
work. In this case, DLB is mathematically defined in terms of an objective function
that must be optimized. The first contribution of this part is a new objective function,
based on ideas from congestion control. The rationale behind it is to further maximize
the utility obtained by each flow, but without changing the congestion control mech-
anism. Instead, this maximization is performed by load-balancing, which indirectly
controls the flow’s obtained rate by choosing its path.

We also study another possible objective function, known as Minimum Congestion

17

18 Abstract

Load-Balancing. In this case, congestion in each link is measured by a certain con-
tinuous, increasing and convex function fl(ρl), and the objective is to minimize the
total congestion on the network (i.e.

∑
l fl(ρl)). Typically, due to its simplicity and

versatility, the link mean queue size is used as this link congestion function. However,
most DLB mechanisms require an analytical expression of this mean size, for which
simplistic models are assumed (e.g. M/M/1). Instead of such an arbitrary choice, we
present a framework that does not assume any particular model for the queue size func-
tion, and instead learns it from measurements. This way, we converge to an excellent
approximation of the real minimum congestion traffic distribution.

The optimum of these two objective functions may be characterized as the equi-
librium of greedy OD pairs (i.e. each OD pair strives to minimize a certain path cost
function φP). This means that distributed greedy algorithms may be used to converge
to the optimum. In particular, we propose and study a variation of the Incrementally
Adaptive Weighted Majority Algorithm (iAWM), an implementation of the so-called
no-regret algorithms. The advantage of this new algorithm is that it is completely
self-regulated. That is to say, no complicated parametrization is needed to guarantee
its rapid convergence to the optimum. The performance of the algorithm is verified by
means of several packet as well as flow-level simulations.

We also present a thorough study of the schemes discussed so far. Firstly, we
compare three objective functions in terms of their obtained performance: our util-
ity maximization proposal, the minimum-congestion schemes, and the equilibrium of
greedy OD pairs that strive to minimize the maximum link utilization in the path
(which models other previously proposed load-balancing schemes). The obtained re-
sults indicate that the the minimum-congestion objective function is the most balanced
of the three, in the sense that it generally outperforms the other two, and when it does
not, the difference is not significant. Secondly, we present several simulations regarding
our regression based minimum-congestion framework. An important conclusion of this
study is that the choice of fl(ρl) is not crucial in terms of the link utilization, but is
very important with respect to the obtained total congestion. For instance, if we were
to use the M/M/1 model for fl(ρl), the incurred increase in the total congestion may
easily exceed 10%, and can go as high as more than 100%.

The final contribution of the thesis is to present a comparative analysis of DLB
and Robust Routing (RR), which many consider as the alternative to DLB. RR copes
with traffic uncertainty in an off-line preemptive fashion, computing a stable routing
configuration that is optimized for a large set of possible traffic demands. Much has
been said and discussed about the advantages and drawbacks of each approach, but
very few works have tried to compare the performance of both mechanisms, particu-
larly in the same network and traffic scenarios. Our study brings insight into several
Robust Routing algorithms, evaluating their virtues and shortcomings and presenting
new mechanisms to improve previous proposals. Among others, such a study intends
to help network operators in choosing an adequate mechanism to cope with traffic
uncertainty.

Contents

1 Introduction 23

1.1 Context and Motivation . 23

1.2 Summary of Contributions . 25

1.2.1 First Part: Reserved Resources 25

1.2.2 Second Part: Shared Resources 26

1.3 Structure of the Thesis . 28

I Reserved Resources 29

2 Cross-Protect 31

2.1 Introduction . 31

2.2 Proposed Architecture: Cross-Protect 33

2.3 Performance Analysis . 36

2.3.1 Model Description . 36

2.3.2 Analysis . 37

2.3.3 Packet-level simulations . 38

3 Load-Balancing with Cross-Protect: Simple Greedy Policy 41

3.1 Introduction . 41

3.2 Multiple Tunnels and Load balancing Analysis 41

3.2.1 Related work . 41

19

20 CONTENTS

3.2.2 Proposed scheme . 42

3.2.3 Analysis . 43

3.3 Simulation results . 47

3.3.1 Flow-level (or fluid) simulations 47

3.3.2 Packet-level simulations . 47

3.4 Conclusions . 49

II Shared Resources 51

4 Introduction and State of the Art 53

4.1 Introduction . 53

4.2 Static Routing for Dynamic Traffic . 54

4.2.1 Robust Routing . 54

4.2.2 The Hose Model . 55

4.2.3 Valiant Load-Balancing . 56

4.3 Dynamic Load-Balancing . 57

4.4 Multi-Path Congestion Control . 58

5 Utility Maximization Load-Balancing 61

5.1 The New Objective Function . 61

5.2 Characterization of the Optimum . 64

5.3 Illustrative Examples . 65

6 Minimum Congestion Load-Balancing: Learning the Cost Function 69

6.1 Introduction . 69

6.2 Characterizing the Optimum . 70

6.3 Learning the Mean Queue Size Function 71

6.3.1 General Considerations . 71

6.3.2 Convex Nonparametric Weighted Least Squares 73

6.3.3 Convex Piecewise-Linear Fitting 74

6.3.4 Choosing the Weights . 75

CONTENTS 21

6.4 Comparison of the Regression Methods 76

6.4.1 Dependence on N . 76

6.4.2 Dependence on k . 77

6.5 Some Regression Examples . 79

6.6 Related Work . 82

7 Achieving the Optimum: Routing Games and No-Regret Algorithms 85

7.1 Greedy Load-Balancing . 85

7.2 No-Regret Algorithms . 87

7.2.1 Definition and Results . 87

7.2.2 A No-Regret Algorithm: iAWM 88

7.3 Some Preliminary Simulations: iAWM-R 91

7.4 Related Work . 93

8 Evaluation 97

8.1 Introduction . 97

8.1.1 Implementation Issues . 97

8.2 The Three Objective Functions: A Performance Comparison 100

8.2.1 Abilene Network . 100

8.2.2 Géant Network . 102

8.3 Regression-Based Minimum Congestion Load-Balancing 104

8.3.1 Assessing the Performance Gain 104

8.3.2 Temporal Behavior . 107

8.4 Packet-Level Simulations . 107

8.4.1 Small Buffers and the Regression-Based Minimum Congestion
Load-Balancing . 108

8.4.2 Two iAWM-R Commodities . 111

8.5 Robust Routing vs Dynamic Load-Balancing 113

8.5.1 An Introduction to Robust Routing 113

8.5.2 Improving Stable Robust Routing 115

8.5.3 Evaluation and Discussion . 117

22 CONTENTS

8.5.4 Conclusions . 123

9 Conclusions and Future Work 125

9.1 Future Work . 129

A List of Publications 131

B Notation Index 133

Chapter1

Introduction

1.1 Context and Motivation

Traffic Engineering (TE) is defined as the aspect of Internet network engineering dealing
with the issue of performance evaluation and performance optimization of operational
networks [1]. In particular, we will focus on the last aspect; i.e. enhancing the perfor-
mance of an operational network. This problem was extensively studied in the early
90s, since resources were considered scarce and expensive. However, the cost of core link
capacities dramatically decreased in subsequent years, which resulted in considering a
simple upgrade in this capacity as the panacea of all problems.

Nevertheless, as network services and Internet applications evolved, network traffic
has become increasingly complex and dynamic. The convergence of data, telephony and
television services on an all-IP network directly translated into a much higher variabil-
ity and complexity of the traffic injected into the network. To make matters worse, the
presence of unexpected events such as network equipment failures, large-volume net-
work attacks, flash crowd occurrences and even external routing modifications induces
large uncertainty in traffic patterns. Moreover, current evolution and deployment-rate
of broadband access technologies (e.g. Fiber To The Home) only aggravates this un-
certainty.

But these are not the only problems network operators are confronted with. The
ever-increasing access rates available for end-users we just mentioned is such that the
assumption of infinitely provisioned core links could soon become obsolete. In fact,
recent Internet traffic studies from major network technology vendors like Cisco Sys-
tems forecast the advent of the Exabyte era [2, 3], a massive increase in network traffic
driven by high-definition video. Furthermore, there are new emerging architectures in
which resources are intrinsically scarce (e.g. Wireless Mesh Networks). Thus, simply
upgrading link capacities may no longer be an economically or technically viable solu-
tion. Moreover, even if overdimensioning would be possible, its environmental impact

23

24 1.1. Context and Motivation

is not negligible. For instance, the Information and Communication Technology sec-
tor alone is responsible for around 2% of the man made CO2, a similar figure to that
of the airline industry, but with higher increasing perspectives [24]. An efficient and
responsible usage of the resources is then essential1.

In the light of this traffic scenario, TE has regained the interest of the academic as
well as the industrial community. More to the point, network operators are now, more
than ever, in need of Traffic Engineering mechanism which are efficient (make good use
of resources), robust with respect to network variations (changes in traffic demands, or
characteristics of transported flows) and more tolerant (in case of node/link failures).
As the network size increases, its management may become a very complicated task.
That is why network operators are also interested in the automatization (as much
self-configuration as possible) of the TE mechanisms they implement.

Dynamic load-balancing (DLB) [4, 5, 6] is a TE mechanism that meets these require-
ments. If an origin-destination (OD) pair is connected by several paths, the problem
is simply how to distribute its traffic among these paths in order to optimize a certain
objective function. In these dynamic schemes, paths are configured a priori and the
portion of traffic routed along each of them (traffic distribution) depends on the current
traffic demand and network condition. Ideally, the traffic distribution is set so that at
every instant the objective function is optimized. Efficiency in DLB flows from this
last characteristic. In this sense, there exists several possible objective functions. For
instance, [4] defines a certain increasing, continuous and convex function fl(ρl) that
measures the congestion on link l (where ρl is the load on the link), and the objective
is to minimize the total congestion on the network

∑
l fl(ρl). On the other hand, the

objective in other DLB mechanisms such as [5, 6] is simply to minimize the maximum
link utilization (ul = ρl/cl, where cl is the capacity of the link).

In practice, this “always-optimized” characteristic is achieved by means of a dis-
tributed algorithm periodically executed by every ingress router based on feedback from
the network. As long as the traffic distribution is updated frequently enough, DLB will
be robust, and its dependence on the network condition makes it naturally tolerant

too. Finally, its distributed nature makes it automated. However, it is precisely this
last characteristic that constitutes the most challenging aspect of DLB. In fact, the de-
ployment of DLB has been, to say the least, limited. Network operators are reluctant
to use dynamic mechanisms mainly because they are afraid of a possible oscillatory be-
havior of the algorithm used by each OD pair to adjust their traffic distribution (as the
early experiences in ArpaNet has proved [7], these concerns are not without reason).
Indeed, for these adaptive and distributed algorithms, a tradeoff between adaptivity
(convergence speed) and stability must be found, which may be particularly difficult in
situations where abrupt traffic changes occur.

Concerning stability, the most prominent alternative to DLB is Robust Routing
(RR) [8, 9]. In RR, traffic uncertainty is taken into account directly within the routing

1To learn more about this emerging discipline, the interested reader should consult works related to
so called “green networking” [25]

Chapter 1. Introduction 25

optimization, computing a single routing configuration for all traffic demands within
some uncertainty set where traffic is assumed to vary. This uncertainty set can be
defined in different ways, depending on the available information: largest values of
links load previously seen, a set of previously observed demands, etc. The criteria
to search for this unique routing configuration is generally to minimize the maximum
link utilization over all demands of the corresponding uncertainty set. While this
routing configuration is not optimal for any single demand within the set, it minimizes
the worst case performance over the whole set. Those who advocate the use of RR
claim that there is actually no need to implement supposedly complicated dynamic
routing mechanisms, and that the incurred performance loss for using a single routing
configuration is small when compared with the increase in complexity. However, to
date, no serious comparative study between DLB and RR has been performed.

In this thesis we will study and propose various DLB mechanisms, differing in two
important aspects. The first difference resides in the assumption, or not, that resources
are reserved for each path. The second lies on the objective function. The performance
obtained from the network clearly depends on the choice of this function. However, to
the best of our knowledge, a performance benchmarking of the most classic objective
functions for DLB has not been carried out so far, a problem we address in this thesis.
For the case in which no reservations are performed, we will study and compare several
objective functions, including the ones we just discussed and a proposal of ours. We
will also propose and study a new distributed algorithm to attain the optimum of these
objective functions. Its most notable characteristic, and its advantage with respect
to previous proposals, is its complete self-configuration (that is to say, convergence is
guaranteed without any parametrization). Finally, we present the first complete and
fair comparative study between DLB and RR. In particular, we will try to answer the
question of which scheme is more convenient in each given situation, and highlight some
of their respective shortcomings and virtues. In the following section we summarize the
main contributions of the thesis.

1.2 Summary of Contributions

1.2.1 First Part: Reserved Resources

We have separated the thesis in two parts. The first one assumes that resources have
been reserved and are exclusively used by each of the paths. A typical use of these
tunnel-based architectures (e.g. MPLS-TE, T-MPLS, PBT, GELS) is VPN provisioning
in metro and backbone networks. Up to now, resources associated with each of these
tunnels are usually specified using token buckets. This classical QoS scheme has been
described as inefficient and inappropriate for characterizing traffic aggregates [10]. It
has been verified that the burst parameter needs to be excessively large, even when
the rate parameter is significantly greater than the actual flow mean rate, to achieve
a given non-conformity probability. This means that relying on declared token bucket
traffic parameters is typically very conservative, which leads to wasted resources.

26 1.2. Summary of Contributions

An attractive alternative is to use the Cross-Protect mechanism [11, 12]. This
flow-aware TE technique allows performance guarantees for both streaming and elas-
tic flows while preserving the user-network interface (i.e. neither packet marking nor
per-flow signalling is required). Moreover, its configuration relies on only two parame-
ters, which are easily mapped to target performance guarantees. These guarantees are
given independently of the flow characteristics, a major difference with token buckets.
We propose that provider edge routers implement the Cross-Protect mechanism on a
per-tunnel basis in the aforementioned architectures. Since resources are reserved for
each tunnel, the mechanism needs to be implemented in the edge only, minimizing de-
ployment complexity. We analyze a cross-protect router and derive analytical formulae
for its most important QoS parameters.

To improve resiliency and make a better resource utilization, we will extend the
aforementioned TE scheme with a simple flow-aware load-balancing mechanism. This
new DLB algorithm leads to better results than classical static load balancing schemes.
We have also analyzed this algorithm and derived tight approximations for the most
important QoS parameters in this case.

1.2.2 Second Part: Shared Resources

In the second part, we will not consider any tunnel-management mechanism in par-
ticular, and will analyze DLB mechanisms that use measurements that are available
in most commercial routers (e.g. link load). The first contribution of this part is to
propose a new objective function for DLB specifically designed for elastic traffic (which
we shall note MaxU, as in Maximum Utility). In this proposal we aim at further
maximizing the total utility obtained by flows, but without changing their congestion
control mechanism. This maximization is achieved instead by changing the amount of
traffic routed along each path, thus changing the flows’ mean rate. We also present a
characterization of this optimum, in the form of a path cost function φP (where P is a
path). More precisely, if each OD pair greedily strives to minimize the cost it obtains
from each of its paths, the resulting equilibrium will be the optimum.

As mentioned before, another possible objective function in DLB, and the second
objective function we will consider, is to define a convex, continuous and increasing
fl(ρl) and to minimize the total congestion

∑
l fl(ρl). Typically, the mean queue size

is used as fl(ρl), mainly due to its versatility (a big queue means bad performance for
all traffic) and simplicity (the mean queue size aggregates naturally across links as the
sum). However, most DLB schemes require an analytical formula of this mean queue
size, for which classic and oversimplistic models (e.g. M/M/1 [26]) are used [4]. As
we shall show, this simplistic choice results in an actual total congestion that may be
significantly larger than the optimum. Instead of making a choice at all, and as a second
contribution of this part, we propose a framework that learns this function from past
measurements while making no assumption on it (other than the hypothesis on its shape
mentioned before). To achieve this we present two different regression methods. We will
first consider Convex Nonparametric Weighted Least Squares (CNWLS), a variation of

Chapter 1. Introduction 27

the original unweighted CNLS [17]. Although this method obtains an excellent precision
by means of solving a simple QP problem, it presents scalability issues as the number of
available measurements increases. As an alternative, we present the Convex Piecewise
Linear Fitting (CPLF) [18], a heuristic that very rapidly finds a regression function
that reasonably adjusts the measurements. However, the precision of CPLF may be
very poor when compared to CNWLS.

It can be proved that the optimum for this second objective function may also be
characterized as the equilibrium of greedy OD pairs that strive to minimize a certain
path cost function φP . We will then study possible methods to converge to this equi-
librium. A third contribution of this part is to present a DLB algorithm based on
so-called no-regret algorithms. The authors of a recent paper [21] proved that if all
OD pairs use algorithms of this kind, convergence to this greedy equilibrium is guar-
anteed. In particular, we will use a variation of the Incrementally Adaptive Weighted
Majority Algorithm (iAWM) [22], which presents the advantage of being completely
self-regulated, thus avoiding any tricky parameter setting and the reactivity-stability
tradeoff we mentioned before. Furthermore, we will present certain adaptations of the
algorithm that are necessary to enable its use in the presence of non-stationary traffic.
The algorithm is illustrated by several packet as well as flow level simulations.

A fourth contribution of this part is to provide a thorough performance study of
all the schemes considered so far. We will first compare three objective functions,
using two real topologies and several real traffic demands. The considered objective
functions are MaxU, the regression-based minimum congestion framework described
above, and the equilibrium of OD pairs that strive to minimize φP = max

l∈P
ul (which

models the DLB mechanisms presented before and originally introduced in [5, 6]). This
is an important study that will allow us to better understand the tradeoffs between
each objective function, and will help network operators at the moment of choosing a
possible dynamic load-balancing mechanism. We will also study the regression-based
framework more in detail and show, for instance, that using the M/M/1 model instead
of our learned function results in an increase in the total congestion that may easily
exceed 10%, and can go as high as more than 100%. We will also study the impact of
the imprecision of CPLF, concluding that it is not very significant.

The final contribution of the thesis is presenting a fair and comprehensive com-
parative analysis between RR and DLB mechanisms. The analysis is comprehensive
as it evaluates the performance of both mechanisms based on different performance
indicators and considering normal operation as well as unpredicted traffic events. We
believe the comparison is fair because it considers the particular characteristics of each
mechanisms under the same network and traffic conditions. To the date and to the
best of our knowledge this is the first work that conducts such a comparative evalu-
ation, necessary indeed not only from a research point of view but also for network
operators who seek for proper solutions to face future network scenarios. Based on this
comparative analysis we develop and evaluate new variants of RR, improving some of
its shortcomings. These new variants, along with the legacy RR methods, will also be
considered in the comparative study.

28 1.3. Structure of the Thesis

1.3 Structure of the Thesis

The next two chapters constitute the first part of the thesis, concerning the “reserved
resources” model. Chapter 2 is devoted to the presentation and analysis of the Cross-
Protect mechanism. We will discuss how to integrate this mechanism into the network,
and derive a close formula for its most important QoS parameters based on some char-
acteristics of the input traffic. Chapter 3 defines the dynamic load-balancing scheme
based on Cross-Protect, and also derives analytical formulae to estimate the same pa-
rameters.

The second part of the thesis starts in Ch. 4, where we discuss the most relevant
works related to Dynamic Load-Balancing. In particular, we will present some static
routing schemes (including RR), discuss with more detail the most important proposals
in DLB, and present the problem of congestion control. Some of the ideas presented in
this last section will be revisited in Ch. 5, where we present MaxU.

Chapter 6 will begin by characterizing the demand vector that minimizes
∑

l fl(ρl).
We will then discuss how to learn the congestion function fl(ρl) from measurements.
In particular, we will present CNWLS and CPLF, and study their performance (in
terms of computation time and precision). We will finish the chapter with a regression
example that will be used as a reference in the following chapters.

A distributed method to converge to the equilibrium of greedy OD pairs will be
presented in Ch. 7. We will introduce the concept of Wardrop Equilibrium and discuss
the results pertaining to no-regret algorithms (in particular to its converge). We shall
then present iAWM, and by means of a preliminary simulation, justify and introduce
its final form: iAWM-R.

The performance study of the schemes will be presented in Ch. 8. By the end of
this chapter we will present the comparative analysis between DLB and RR. Chapter 9
concludes the thesis and presents possible extensions and perspectives.

Part I

Reserved Resources

29

Chapter2

Cross-Protect

2.1 Introduction

Current evolutions of network architecture show a growing domination of Ethernet
technologies. Enterprises have a growing need of interconnecting their local networks
(based on Ethernet), which are situated in different physical locations, and is the op-
erator who has to transport the Ethernet frames between the different sites, giving the
illusion of a dedicated Ethernet network to each of its clients. The MetroEthernet Fo-
rum [27] is presently working on the definition of such metropolitan Ethernet services.
An Ethernet service consists of a Ethernet service type, one or more Ethernet service
Attributes, and one or more parameter values associated with each Ethernet Service At-
tribute. Examples of Ethernet service types are Ethernet Line Service (E-Line Service)
and the Ethernet LAN Service (E-LAN Service).

This kind of commercially critical services is a typical example of the use of “reserved
resources” architectures, which as discussed in Ch. 1 will be the object of this first part
of the thesis. One of the most critical parameters in this kind of services is how
much traffic the customer can send or receive. In particular, for metropolitan Ethernet
services this is defined in what is called the Bandwidth Profile, an Ethernet Service
Attribute. Naturally, to make sure the user does not consume more resources than it
has paid for, some form of access control is implemented in the ingress router. As is
generally the case in this kind of architectures, a mechanism based on token buckets has
been chosen. More exactly, two consecutive token buckets are used. The parameters
that configure these token buckets, as well as the performance objectives, are part
of the agreement between the service provider and the customer (the Service Level
Agreement, SLA). If a packet is compliant with the first token bucket, it should be
delivered to its destination and the SLA performance objectives apply. If the packet
is not compliant with the first token bucket, but it is with second one, it should be
delivered to its destination but no performance guarantees are assured. In any other

31

32 2.1. Introduction

case, the packet is discarded.

Studies have been carried out within both the IEEE [28, 29] and the IETF [30] stan-
dardization bodies to define architectures that provide such services. These approaches
rely on tunnels to transport Ethernet frames either natively (e.g. PBT, GELS) or us-
ing MPLS (e.g. PWE3, VPLS). In such schemes, the use of token buckets as traffic
descriptors for SLA specifications has been strongly criticized in the past. In particu-
lar, in [10] they have been described as inefficient and inappropriate for characterizing
traffic aggregates. This a priori traffic descriptor is a very poor characterization of
the actual traffic, which leads to the customer to systematically overestimate the traf-
fic parameters. This means that their declared values are of little use for resource
allocation.

We propose an alternative Flow Aware TE approach for carrier class Ethernet
networks providing services as those defined by the Metro Ethernet Forum. We assume
that it is possible to associate a capacity to a given “tunnel” using for instance RSVP-
TE in the context of MPLS, or GMPLS for native Ethernet. We further assume that
multiple paths could be established between origin-destination (OD) pairs, a case we
shall analyze in Ch. 3.

We propose that provider edge routers implement the Cross-Protect mechanisms [11,
12] on a per tunnel (or Label Switch Path, LSP)1 basis. Cross-Protect allows perfor-
mance guarantees for streaming and elastic flows while preserving the user-network
interface of the best effort Internet, i.e. neither packet marking nor per-flow signalling
is required to differentiate explicitly between streaming flows, requiring low packet loss
and delay, and elastic flows, requiring “as fast as possible” document transfer. Instead,
Cross-Protect routers identify user-defined flows on the fly and implement per-flow
scheduling using Priority Fair Queueing (PFQ). Measurement-based admission control
is additionally employed to maintain the fair rate sufficiently high to provide streaming
like quality for flows of peak rate up to a chosen threshold.

The adopted flow-aware networking approach provides precise QoS guarantees (suit-
able for SLA specifications) and is more cost-effective than substantially over-provisioned
best-effort networks. Since resources are reserved on a per LSP basis, the Cross-Protect
mechanisms need only be implemented at the network edge (i.e. transparent to internal
nodes). In the following section we will describe Cross-Protect with more detail and
discuss how to integrate it into the network. We will then analyze its performance, and
derive a closed-form formula of its most important QoS parameter: the flow blocking
probability due to its admission control.

Before finishing this introduction, let us highlight the fact that our results and ideas
are applicable to any connection-oriented environment in which a certain capacity can
be guaranteed to tunnels. We have considered Metro Ethernet in particular due to its
flagrant lack of efficient TE mechanisms. Moreover, as mentioned before, Cross-Protect
needs only be implemented in the edge routers. This means that another possible case

1In the sequel, the terms tunnel, virtual path, and LSP are used without differentiation.

Chapter 2. Cross-Protect 33

scenario could be a simple DSL access connection, where Cross-Protect is implemented
in the customer’s modem (or, as discussed in[31], any other packet-scheduling algorithm
with the same properties as Cross-Protect).

2.2 Proposed Architecture: Cross-Protect

IP traffic can be broadly classified into two categories with clearly different QoS re-
quirements: elastic and streaming. Elastic traffic is generated by document transfers
(e.g. web page, MP3 music file). Associated Elastic flows require “as fast as possible”
transfers. Streaming traffic, on the other hand, is produced by real time audio and
video applications (e.g. video streaming, VoIP conversation), and requires transparent
delivery, i.e. low packet loss rate and delay.

IP networks are meant to support all kinds of service, each coming with its own
specific requirements. These are almost always met in present IP backbone networks,
in particular, thanks to substantial overprovisioning. Indeed, the inability of network
operators to distinguish between kinds of traffic leads to undiscriminated handling of
streaming and elastic packets (FIFO queueing). Of course, explicit marking using
Diffserv would be possible, but this comes at a certain cost and raises several other
issues such as trust in an inter-domain setting.

Overprovisioning is actually a quite satisfactory solution, as it satisfies most users’
requirements, while inducing very low operational costs. However, the network re-
mains vulnerable to ill-behaved users, as delivering reasonable QoS depends on users’
cooperation in implementing end-to-end congestion control (TCP or alternative “TCP-
friendly” protocols). More to the point, the network is oblivious to specific requirements
relative to different kinds of traffic. In particular, in the event of an overload situation
due, for instance, to a link or equipment failure (as overprovisioning may not take into
account all kinds of risk), all traffic is likely to suffer QoS degradation, including critical
applications such as voice or TV broadcast.

Moreover, following [10], we consider that traffic engineering and traffic control
for predictable QoS is most conveniently performed at flow level, rather than packet
or aggregate level. A flow corresponds to some application instance, transported by
the network. It is precisely at this level that the user perceives QoS. A flow may,
for instance, correspond to a web page download, a voice call, or a music or video
streaming. Although in practice a more exact definition is needed, for the present
study purpose, it is sufficient to define a flow as a stream of packets sharing common
header attributes (e.g. the TCP/IP 5-tuple, or the IPv6 flow label combined with the
source or destination address) and a maximum inter-packet time.

According to [10, 32, 33, 34], the integration of both streaming and elastic flows can
be achieved without deteriorating their respective QoS, as long as bufferless multiplex-
ing conditions are assured for streaming flows (handled with priority) and remaining
resources are fairly shared between elastic flows. A possible way to achieve this integra-

34 2.2. Proposed Architecture: Cross-Protect

tion is to use Cross-Protect, an implementation of the so called Flow Aware Networking
described in [11]. A Cross-Protect router consists of two traffic control components. On
the one hand, a Priority Fair Queueing (PFQ) scheduler, which is a simple adjustment
of a fair queueing scheduler (e.g. Start time Fair Queueing (SFQ) [35] or Deficit Round
Robin (DRR) [36]), that implicitly differentiates between streaming and elastic flows.
On the other hand, an admission control mechanism that guarantees a minimum QoS
to accepted (or protected) flows, as well as the scalability of the scheduler by limiting
the number of flows that need to be handled by the scheduler at any given time.

The PFQ scheduler implicitly classifies flows as streaming or elastic on the fly based
on the following principle. If a streaming flow is transmitting at a rate less than the
current instantaneous fair-rate (in practice, this is manifested by the flow being not
backlogged), then its packets are classified as streaming and given priority; whereas
elastic flows (i.e. backlogged flows) share the remaining capacity in a processor sharing
(PS) way. Hence, fair sharing is enforced by the queueing discipline, and does not rely
on the TCP friendliness of the congestion control protocol implemented by end users.2

Admission control is used to limit the streaming load (referred to as priority load
in the remainder, and denoted PL) to be under a relative threshold γs, and the current
rate obtained by elastic flows (i.e. fair rate, denoted in the sequel FR) above another
threshold γe. If any of these conditions is not satisfied, new flows are blocked. This
way, a minimum bandwidth for elastic flows is guaranteed, and the load induced by
streaming traffic is controlled. Typical values for γs and γe are around 80% and 1%
respectively, which we have used throughout our simulations.

A simplified diagram of the mechanism is illustrated in Fig. 2.1. It is worth noting
that the implicit classification is continuously applied to all ongoing flows and not only
upon flow arrival to the router. This means that, as the rate of flows evolves, their
classification may change too. For instance, the first few packets of a TCP connection
in the Slow Start mode are typically assimilated to streaming packets.

Figure 2.1: Cross-Protect diagram

A concern present in all flow-level scheduling mechanisms realizing fair bandwidth
sharing is scalability. As discussed in [37], the complexity of such schedulers depends

2However, TCP is required for the elastic traffic to find its fair rate.

Chapter 2. Cross-Protect 35

on the number of bottlenecked flows, and not in the number of active ones. Although
the latter increases with the link capacity, the former does not and remains small (in
the orders of tens). In PFQ in particular, another possible concern is the apparent
need of per-flow calculations for the implicit flow classification. However, per-flow rate
measurements are not made since the scheduling algorithm implicitly gives priority to
flows transmitting at less than the fair-rate. FR and PL are periodically measured to
be used for admission control purposes only. We refer the interested reader to [12] for
more details.

Our proposal for TE in the MetroEthernet architectures is to implement Cross-
Protect in the edge routers (thus, with no impact on core routers). Since edge routers
are connected via tunnels of a given capacity, overload control (in the form of admission
control) can be performed at ingress nodes only. This has the advantage of restricting
flow-aware operations to the network edge, and preserving the simplicity of packet
forwarding in the core. An example of such a TE architecture, in the case of MPLS
tunnels, is illustrated in Fig. 2.2. The Bandwidth Profile can be now specified with the
total path capacity and both thresholds (γs and γe).

Figure 2.2: Proposed architecture

We have already mentioned that a minimum throughput is guaranteed to elastic
traffic, and negligible delay and jitter is assured to streaming traffic. The only remaining
parameter is the flow blocking probability due to the admission control mechanism.
There is a clear trade-off between these parameters which needs to be understood. In
what follows, we analyze a Cross-Protect router and derive an analytical formula for
the flow blocking probability, which depends on the chosen thresholds and in the main
traffic characteristics.

36 2.3. Performance Analysis

2.3 Performance Analysis

2.3.1 Model Description

We model the arrival of elastic flows into our system as a Poisson process of intensity λe.
Each flow of this type is characterized by the workload offered to the system, distributed
as σe. We denote by be = E(σe) the mean offered workload and by de = λebe the elastic
load in the system. Typically, a reasonable choice for the distribution of σe will be heavy
tailed, where most flows are very small and the majority of the traffic is contained in
few but very long flows.

Streaming flows are modeled as circuit type traffic in telephone networks, and are
therefore characterized by an intrinsic rate r (that we suppose fixed so as to simplify
the analysis) and a random duration, with mean τs. We further assume that these
flows arrive also as a Poisson process of intensity λs. The mean workload introduced
by streaming traffic is then rτs, thus ds = λsτsr represents the streaming load of the
system.

Suppose C is the virtual path (or LSP) capacity. At the flow time scale, we suppose
that C is fixed. The described model for the system can be represented as a PS
network of queues with state dependent service rate as shown in Fig. 2.3. We denote
by x = (xs, xe) the number of ongoing streaming and elastic flows, respectively.

λe φe(xs, xe) =
C − rxs

be

λs φs(xs, xe) =
xs

τs

Figure 2.3: PS network representing a Cross-Protect router

One node represents the streaming service component, with arrival rate λs and
service rate φs(xs, xe) = xs/τs, which is the service rate of an Erlang system. The
other node represents the elastic service component, with arrival rate λe and service
rate φe(xs, xe) = (C−rxs)/be, which is the service rate of a PS queue with the workload
characterized by µe = 1/be and a variable capacity, that depends of the current available
bandwidth left by the streaming flows (we are supposing that elastic flows realize their
fair rate instantly).

In terms of the state x, the admission control conditions introduced in the previous
subsection constrain the state space, which is given by:

rxs ≤ γsC and
C − rxs

xe
≥ γeC (2.1)

It is important to observe that the implicit classification of the Cross-Protect router
is not modeled. This means that in our model flows are known to be elastic or streaming

Chapter 2. Cross-Protect 37

a priori, which is valid as long as all streaming flows’ transmission rate r remains smaller
than the fair rate.

2.3.2 Analysis

The general analysis of the integrated model as presented before is not feasible, even
if we make the simplifying hypothesis of exponential workloads. Instead, we apply the
same idea as in [38] and assume that we can separate the time scales of streaming and
elastic flows. This allows for the study of the elastic queue as if the streaming queue
were in the stationary regime (also known as the Quasi-Stationarity (QS) assumption).

The justification behind the QS assumption is the following: in general, the mean
duration (τs) of streaming flows is much greater than the corresponding mean duration
of elastic flows. For a given load level ds, de, this means that the arrival rate of
streaming and elastic flows verify that λs ≪ λe. This relationship implies that the
events associated to streaming flows occur sparsely in time, and allows the elastic queue
to behave in a quasistationary regime, under which the elastic flows see the queue as a
constant rate server.

The QS assumption allows us to analyze the elastic queue as an M/G/1−PS queue
with capacity C − rxs for xs streaming flows present in the system. As a consequence,
we can write the probability of xe elastic flows in the system, given there are xs flows
in the streaming queue, as follows:

P (Ne = xe|Ns = xs) =
1− ρe(xs)

1− ρe(xs)N
max
e (xs)+1

ρe(xs)
xe (2.2)

for 0 ≤ xe ≤ N
max
e (xs), where:

ρe(xs) =
λebe

C − rxs
(2.3)

Nmax
e (xs) =

⌊
C − rxs

γeC

⌋
(2.4)

We can therefore write the blocking probability conditioned to xs from (2.2) by
making Ne = Nmax

e (xs):

Be(xs) =
1− ρe(xs)

1− ρe(xs)N
max
e (xs)+1

ρe(xs)
Nmax

e (xs) (2.5)

To derive the blocking probability under stationary regime, we must average the con-
ditional blocking probability Be(xs) with respect to the stationary distribution πs(xs)
of the streaming queue:

B =

Nmax
s∑

xs=0

Be(xs)πs(xs) (2.6)

38 2.3. Performance Analysis

where Nmax
s = ⌊γsC/r⌋.

The streaming queue would behave exactly like an Erlang one with As = λsτs load
(in Erlangs), if streaming flows were only rejected due to the priority load condition.
But this is not the case, since both conditions on priority load and fair rate are applied
independently of the traffic type. So, the resulting process is a birth-death one, with
the birth rate equal to λs(1 − Be(xs)) (to account for the blocking state of the elastic
queue) and the death rate is equal to xs/τs in state xs. The stationary distribution
then becomes:

πs(xs) = πs(0)
Axs

s

xs!

xs−1∏

i=0

(1−Be(i)) (2.7)

where πs(0) can be obtained from the normalization condition.

Equations (2.5)), (2.6) and (2.7) then give the blocking probability B of the system.

2.3.3 Packet-level simulations

In order to verify the previous analysis, we conducted several packet level simulations
using ns-2 [39], with the Cross-Protect implementation used in [12]. A comparison
between the blocking probability obtained by simulation and the corresponding esti-
mation can be seen in Fig. 2.4 for the single-server case, where the x-axis is the link
utilization (i.e. ρ = (de + ds)/C). The case scenario is a mix of elastic traffic whose
workload follows a Pareto distribution with mean 20 kB and streaming traffic with a
fixed rate of 10 kbps and a duration of 20 sec. Streaming traffic represents 20% of traffic
and the channel has a total capacity of 1Mbps.

0.6 0.8 1 1.2
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

ρ

B
lo

c
k
in

g
 P

ro
b

a
b

ili
ty

Simulation
Estimation

Figure 2.4: Blocking probability estimation and simulation results for an isolated Cross-
Protect router

Although the analysis did not take into account packet level dynamics of TCP
(e.g. Slow Start), the estimation proves to be very accurate. However, in the presence
of TCP packet level dynamics, the implicit classification system assimilates part of TCP
traffic to streaming traffic, notably during the Slow Start phase. This results in more

Chapter 2. Cross-Protect 39

priority traffic than expected by the model. If the probability that a flow is blocked
due to the PL condition is negligible, then the estimation model will yield accurate
predictions. Otherwise, the model tends to underestimate the blocking probability.
This effect is more clear at low loads, where it takes more time to TCP flows to
converge to their faire rate, thus resulting in more priority traffic than expected by the
model as explained before.

Chapter3

Load-Balancing with Cross-Protect:

Simple Greedy Policy

3.1 Introduction

As discussed in Ch. 1, we may improve performance and enhance resilience to sudden
traffic fluctuations and failure-induced overload events by means of dynamic load bal-
ancing. For instance, Fig. 2.2 illustrates how several LSPs can connect a pair of edge
nodes. Such methods allow the network to respond to changing demands and failures
by changing the routing pattern depending on the state of the paths. Since the fair
rate and the priority load of each LSP are measured for admission control purposes, it
is simple and natural to route each flow depending on these measurements.

In the following sections we propose and analyze a load balancing policy for the case
when there are several possible tunnels (or LSPs) between source and destination. As
in the previous chapter, we study the dependence of the flow blocking probability in the
proposed mechanism with the chosen thresholds and the main traffic characteristics.
Although the analysis will be similar to that of Sec. 2.3.2, the presence of several paths
and their coupled behavior will complicate the analysis and we will only be able to
derive approximations.

3.2 Multiple Tunnels and Load balancing Analysis

3.2.1 Related work

Let us assume that traffic consists of elastic traffic only. In this situation, the problem
becomes a routing problem between multiple processor sharing queues in parallel. This
problem was first studied by Bonomi (see [40] and references therein), and more recently

41

42 3.2. Multiple Tunnels and Load balancing Analysis

by Koole et al. [41]. Their results show that the optimal policy, in terms of blocking
probability and throughput, based on present state information is to send the arriving
flows to the queue with the least number of flows/customers (Join the Shortest Queue,
JSQ) for the case of two identical servers and exponential workloads.

For the general setting, i.e. general workloads and non symmetric systems, the
problem is open and the optimal policy is unknown. Hajek in [42] analyzed a more
general system allowing different capacities under a Markovian setting. He showed,
based on a dynamic programming approach, that the optimal policy is always switch
type (i.e. the probability of choosing any of the queues is either 1 or 0), but explicit
formulae for the switch curve were not provided. We performed numerical calculations
to approximate the switch curve of the Hajek model in a routing setting. The result
for exponential workloads, in the two server case, is that the optimal policy in terms
of throughput is given by the exact greedy policy (EGP):

Route to queue i⇔ i = arg max
j

Cj

xj + 1
(3.1)

where xj is the number of customers in the j–th queue. This is a greedy policy, in the
sense that each incoming flow will maximize the fair rate it will receive upon entering
service in the system. In the symmetric case, this boils down to the JSQ policy.

Another approach to load balancing in the elastic case is studied by Jonckheere et
al. [43]. The authors propose another class of policies, the balanced routing, with the
property that they are insensitive to the distribution of the flow workloads (meaning
that, for instance, the blocking probability only depends on the first moment of the
input process). In the class of balanced routing policies, the optimal in terms of blocking
probability is defined and is characterized by the following probabilities:

Route to queue i with prob. pi(x) =
ni − xi∑
j nj − xj

(3.2)

where xj is again the number of customers in the j–th queue and n = (n1, . . . , nN) is
the maximum number of customers allowed in each queue. We shall call this policy the
optimal balanced policy (OBP). The blocking probability Bobp in this case can be easily
computed.

3.2.2 Proposed scheme

In the proposed architecture described in Sec. 2.2, we assumed that each pair of ingress-
egress nodes are connected via one or multiple LSPs, where the ingress node implements
Cross-Protect mechanisms to realize QoS. From the flow perspective, this means that
there are N virtual paths with capacities C1, . . . , CN , that are fixed at the flow time
scale. The load balancing between these virtual paths becomes then a routing problem
between multiple queues. Note that these queues can be treated as equal choices in
terms of resources, that is, the objective here is to minimize the flow blocking probability

Chapter 3. Load-Balancing with Cross-Protect: Simple Greedy Policy 43

by choosing the right routing policy. At this time scale, we are not concerned with
minimizing the number of physical links composing each route (e.g. via shortest path
routing), as resources associated to virtual paths are supposed reserved in advance.

In the Cross-Protect setting, where the current fair rate is already measured, we pro-
pose to use the following simplified policy, that we call simplified greedy policy (SGP):

Route to queue i⇔ i = arg max
j

fair ratej (3.3)

This policy is clearly intuitive and is also very simple to implement in the ingress
node, not requiring additional measurements. It will also “inherit” the optimality of
EGP and, as will be outlined later, OBP. However, corresponding analytical results are
hard to derive and some approximations will be needed.

We now focus our attention on the streaming flows long time scale. These flows do
not gain any particular advantage from our SGP policy, which is devised with elastic
flows in mind. However, streaming flow routing is less critical because it represents
the minority of traffic. We sacrifice optimality at the streaming time scale in favor of
an implicit policy, which makes no distinction in the type of arriving flows. It must
be noted once again that the optimality here refers to the blocking probability in the
routing case, the other QoS requirements associated with streaming traffic (i.e. low
packet loss and delay) are guaranteed by priority handling and admission control.

3.2.3 Analysis

We model and analyze the load balancing between paths of equal or different capacities.
To clarify the exposition, we will only present here in full detail the load balancing
between two paths. The case in which more paths are present can easily be derived
from the results presented.

We will assume the two thresholds (γsiCi and γeiCi) are equal in both LSPs. Given
the two paths are equivalent, it is reasonable to consider these two values to be the
same, since they give the minimum QoS each protected flow will receive.

The analysis will be the same as in the isolated case. We will first analyze what
happens in the short time scale of elastic flows, estimate the blocking probability given
the value of xs1 and xs2 and then estimate the probability of having xs1 and xs2

streaming flows in the system so as to make the weighted sum.

Elastic Time-Scale

For the analysis of load balancing in the elastic case, we turn our attention to the
aforementioned work of Jonckheere et al. [43]. In this case, the blocking probability
when using OBP can be computed as Bobp = 1/δ(n) where δ is given by a simple

44 3.2. Multiple Tunnels and Load balancing Analysis

recursive formula:

δ(x) = 1 +
N∑

i=1

φi(xsi, xei)

λe
δ(x − ei) (3.4)

where

φi(xsi, xei) =
Ci − xsir

be
x− ei = (x1, . . . , xi − 1, . . . , xN)

δ((0, . . . , 0)) = 1 and δ(x̂) = 0 ∀ x̂ invalid, e.g. x̂ = (0,−1)

The usefulness of optimal balanced routing is that, as verified in [43], the equations
above provide a very good approximation for the blocking probability of a greedy policy
such as SGP. Intuitively, this may be verified by comparing the decision probability
vector of OBP and that of a greedy policy. In Fig. 3.1 we present a comparison example,
where each arrow is a vector with coordinates (p1, p2) for the corresponding x1 and x2

(n1 = n2 = 19). Note how as the number of flows in each queue increases (where
the blocking probability is more important) the decision probability vector of both
mechanisms is very similar.

0 5 10 15 20
0

5

10

15

20

x
1

x
2

(a) OBP

0 5 10 15 20
0

5

10

15

20

x
1

x
2

(b) Greedy

Figure 3.1: Comparison in the decision probability vector between OBP and a greedy
scheme.

The advantage of OBP over SGP is that its blocking probability calculation rely
on simple parameters of the input traffic, like the arrival intensity and mean workload,
making design calculations easier. We shall then approximate the loss probability given
xs1 and xs2 by:

Be(xs1, xs2) =
1

δ(Nmax
e1 , Nmax

e2)
(3.5)

where Nmax
e1 and Nmax

e2 were defined in (2.4). Note that, although OBP was used as
an approximation in our analysis, we believe that the integration of this policy into

Chapter 3. Load-Balancing with Cross-Protect: Simple Greedy Policy 45

Cross-Protect routers would not be as easy as the proposed one. Our proposal does
not require any additional measures and the only operation necessary is to select the
path with the highest fair rate. The few number of them limits the complexity of the
path selection operation. On the other hand, OBP requires a random assignment with
weights which have to be calculated each time a new flow arrives.

Streaming Time-Scale

Now the only remaining issue is to find the steady-state probability of the streaming
queues. The main effect of the policy in the system is to maintain equal fair rates in
each queue, which can be calculated as C1/xe1 and C2/xe2 respectively. If we equal the
two fair rates then xe1/xe2 = C1/C2.

So the proportion of flows to the i-th queue is approximately Ci/(C1 + C2). Since
streaming flows receive the same treatment as elastic ones, they are handed to each
queue in the same proportion. This is obviously a gross approximation, but our sim-
ulations indicate that this proportion is very accurately maintained for the streaming
flows.

Once again, we could calculate πs(xs1, xs2) like an Erlang double queue (where each
queue can be treated independently, leading to a product form probability) if we assume
that the only reason for rejecting streaming flows is the PL condition. This is not the
case, since streaming flows are rejected due to the FR condition too. So, analogous to
the single server case, the arrival rate to each streaming queue is finally:

λsi =
Ci

C1 + C2
λs(1−Be(xs1, xs2))

Thus, the streaming part of the system behaves as a birth-death process with tran-
sition rates:

xs → xs + ei :
Ci

C1 + C2
λs(1−Be(xs1, xs2))

xs → xs − ei : xsi
1

τs

The blocking probability couples the behavior of the queues, making the exact
analysis of the system not tractable. To get approximate values of the steady-state
probability, we have to numerically solve the global balance equations (πsQ = 0 plus
the normalization condition

∑
i πs(i) = 1). An alternative is to find an upper bound

for the system by finding an easier system to analyze with a conservative behavior
(i.e. yielding higher blocking probabilities). In this case, such a system is one which
tends to hold more customers in the queue than the original one. This can easily be
done by simply making the birth-rate bigger. For instance, if we change the original

46 3.2. Multiple Tunnels and Load balancing Analysis

transition rates to:

xs → xs + (1, 0) :
C1

C1 + C2
λs

(
1− arg min

xs2

Be(xs1, xs2)

)
=

C1

C1 + C2
λs(1−Be(xs1, 0))

xs → xs + (0, 1) :
C2

C1 + C2
λs

(
1− arg min

xs1

Be(xs1, xs2)

)
=

C2

C1 + C2
λs(1−Be(0, xs2))

xs → xs − ei : xsi
1

τs

This system has the advantage that a product-form holds for its stationary distri-
bution and since it is balanced, it is also insensitive [43]. Its steady-state probability
can be obtained by analyzing the system as if each queue were independent, so the joint
probability is simply the multiplication of both probabilities. So, the complete system
can be bounded as:

πs(xs1, xs2) ≤
st
π̃s(xs1, xs2) = πs1(xs1)πs2(xs2) (3.6)

where

πs1(xs1) = πs1(0)

(
C1

C1 + C2
As

)xs1 1

xs1!

xs1−1∏

j=0

(1−Be(j, 0)) (3.7)

πs2(xs2) = πs2(0)

(
C2

C1 + C2
As

)xs2 1

xs2!

xs2−1∏

j=0

(1−Be(0, j)) (3.8)

where πs1(0) and πs2(0) are obtained from the normalization condition.

The ≤
st

means that the balanced system will tend to have more customers in the

queue than the original one, thus it will have a higher average number. So, the blocking
probability using this system will be an upper bound of the original one.

Total Blocking Probability Bound

Finally, with (3.5) and (3.6) we can bound the total blocking probability as:

B =
∑

xs1,xs2

πs(xs1, xs2)Be(xs1, xs2) ≤
∑

xs1,xs2

π̃s(xs1, xs2)Be(xs1, xs2) (3.9)

The tightness of the upper bound depends on the difference between the maximum
and minimum blocking probability Be(xs1, xs2). As we shall see in the next section, in
our simulations the upper bound can be as much as twice as the simulated blocking
probability. However, this occurs only for high load values, where this difference is
bigger. As the load decreases, the upper bound gets tighter.

Chapter 3. Load-Balancing with Cross-Protect: Simple Greedy Policy 47

3.3 Simulation results

3.3.1 Flow-level (or fluid) simulations

Several approximations were made in the SGP analysis. Notably, we made suppositions
on the streaming flows arrival rate at each server and used OBP to calculate the blocking
probability for elastic flows. To verify that the fluid system (i.e. without considering
TCP dynamics) is still very well represented, we developed a flow-level simulator which
implements a Cross-Protect router.

A comparison between simulation and analytical results for the two server case can
be seen in Fig. 3.2. In the simulation, the capacity of a link is 1 and the other 2. The
total traffic is a mix of elastic traffic whose workload follows an exponential distribution
with mean 0.5 and streaming traffic whose rate is 0.05. The streaming part of traffic
represents 20% of the total volume of traffic. In the graphs, there are two different
analytical plots. One drawn using the product form bound π̃s(xs1, xs2) (Eq. (3.6)) and
the other one using the numerical solution of the global balance equations. It can be
seen how the product form estimation is an acceptable upper bound for the real blocking
probability. It is also clear that the numerical solution is a very tight approximation,
which means that the proposed Markov chain accurately models the system.

2.6 2.8 3 3.2

10
−4

10
−3

10
−2

10
−1

ρ

B
lo

c
k
in

g
 P

ro
b

a
b

ili
ty

Simulation

π*Q=0 Estimation

Product−Form Upper Bound

Figure 3.2: Blocking probability estimation and fluid simulation results for asymmetric
server case

3.3.2 Packet-level simulations

As in Sec. 2.3.3, we conducted several packet level simulations using ns-2. A compar-
ison between simulation and analytical results for the two server case can be seen in
Fig. 3.3. The considered scenario is the same as the previous one, but with a differ-
ent elastic load distribution. The figure features two different simulation plots: one
is relative to an exponential elastic flow size distribution, the other plot corresponds
to a Pareto distribution. Moreover, path capacities are 1 Mbps and 2 Mbps and the
x-axis represents the total demand with respect to 1Mbps (i.e. ρ = d/1 Mbps). Results

48 3.3. Simulation results

show that the scheme is a little bit sensitive to the distribution, all the more as load
increases. As the load decreases, blocking probability tends to be the same for both.
The graph also shows that the upper-bound is, in this case, actually an approximation.
As we saw, in the flow-level simulations it was a strict upper-bound. This increase in
the expected blocking probability is then due to the dynamic behavior of TCP.

2.6 2.8 3 3.2

10
−4

10
−3

10
−2

10
−1

ρ

B
lo

c
k
in

g
 P

ro
b

a
b

ili
ty

Exponential
Pareto
Upper−Bound

Figure 3.3: Blocking probability estimation and simulation results for SGP

We now compare the proposed scheme with other possible load balancing tech-
niques. As we will see further in the thesis, most dynamic load-balancing schemes will
converge to a situation where each incoming flow is assigned to a random path, where
the probability to be sent to the i–th queue is Ci/(

∑
Cj). In the symmetric case, there

is no great advantage in using the proposed scheme. But in the asymmetric case there
will be a great gain in a load balancing scheme that takes into account the current
state of each path. In Fig. 3.4 we present a comparison between the two load balancing
schemes in terms of their flow blocking probability. In the same example as before, it
can be seen that the gain in using the proposed load balancing scheme is considerable,
especially when the system is not very loaded, which should be the operation point.

2.5 2.6 2.7 2.8 2.9 3

10
−4

10
−3

10
−2

10
−1

ρ

B
lo

c
k
in

g
 P

ro
b

a
b

ili
ty

SGP
Random

Figure 3.4: Blocking probability using SGP and random load balancing

A reasonable question is whether this gain in blocking probability would have a
negative effect on TCP throughput. Since more flows are admitted in SGP, the share

Chapter 3. Load-Balancing with Cross-Protect: Simple Greedy Policy 49

of bandwidth each flow gets is less. In Fig. 3.5 the mean throughput of TCP flows is
shown as a function of the load for both load balancing schemes in the same scenario
as before. It can be seen that the gain in throughput is not big enough to compensate
for a blocking probability which can be two orders of magnitude bigger.

2.4 2.6 2.8 3

1.2

1.4

1.6

1.8

2

x 10
5

ρ

T
h

ro
u

g
h

p
u

t
(b

p
s
)

SGP
Random

Figure 3.5: Mean TCP throughput for SGP and random load balancing

3.4 Conclusions

Bringing Ethernet into the Metropolitan Area Network introduces a lot of advantages
to both the service provider and the customer (corporate and residential). However
the lack of mature TE solutions is seriously delaying the emergence of a “carrier class
Ethernet” network. In this first part of the thesis, we have addressed this critical aspect
of Metro Ethernet architectures.

Drawing on the work of Roberts et al., we have discussed the application of the
flow-aware networking paradigm, based on Cross-protect mechanisms, in the context
of connection-oriented networks, such as MPLS. We believe this a simple and efficient
alternative to the Diffserv-TE solution. Simplicity flows from the ability of differenti-
ating streaming and elastic flows associated to a virtual path in an implicit manner.
Hence, dispensing with the need of marking packets as in Diffserv. Efficiency, on the
other hand, is the result of a better control of QoS, which is realized at flow-level rather
than aggregate level (remember aggregates are difficult to characterize). Indeed, mini-
mum QoS guarantees to streaming and elastic flows are enforced by means of admission
control.

Note that the implementation of flow-aware networking is particularly interesting
in a connection-oriented network, compared to a pure IP network, as Cross-protect
mechanisms need only be implemented in edge routers. In fact, as mentioned before,
our scheme is not restricted to MetroEthernet only, but is applicable to any connection-
oriented environment in which a certain capacity can be guaranteed to tunnels. We
concentrated on MetroEthernet in particular due to its lack of efficient TE schemes.
In other architectures where such schemes do exist, our proposition can be seen as a

50 3.4. Conclusions

complement or a substitute.

We have evaluated the performance of the proposed QoS architecture by means
of analysis and simulations. In particular, we have derived a closed-form formula for
estimating the blocking probability of a Cross-Protect router, as a function of the
expected elastic and streaming loads.

In order to further improve network performance and resilience, we have proposed
Simplified Greedy Policy (SGP), a simple dynamic load balancing scheme which is
rather straightforward to implement in a Cross-protect router, as it exploits fair-rate
measurements used by the admission control. Our results highlight the gain achieved
by SGP over the static random load assignment strategy. In the asymmetric scenario
(i.e., parallel LSPs with different capacities), for instance, the static reference strategy
may yield a blocking probability that is orders of magnitude higher than that obtained
with SGP.

In order to evaluate the performance of a Cross-protect router implementing SGP
for balancing the load induced by both elastic and streaming traffic, we have developed
a simple analytical fluid model to derive an approximate expression for the block-
ing probability. The analytical model was verified by means of fluid simulations and
packet-level simulations. Fluid simulation results nicely fit the analytical results. The
comparative evaluation with packet-level simulation shows that the derived blocking
probability formula constitutes a reasonable approximation, though it does no longer
constitute an upper bound as in the fluid setting.

Part II

Shared Resources

51

Chapter4

Introduction and State of the Art

4.1 Introduction

In this second part of the thesis we shall discuss possible TE schemes for a network in
which resources are shared among paths. This is actually the case for most operating
networks, and as such the ideas proposed here may be applied to a broad group of
networks. However, we will still assume that each OD pair is connected by several
paths, of which they may obtain certain information (e.g. maximum link utilization).
This means that the mechanisms we shall propose are designed for intradomain TE. The
interdomain setting poses several problems (e.g. allowing multipath routing in internet,
obtaining reliable path information in a multiprovider context, etc), and as such is left
for future work. We will also assume that traffic may be arbitrarily distributed along
paths.

As opposed to the first part of the thesis, we will not assume any mechanism in
particular to manage the paths. In particular, the use of Cross-Protect in this context
raises several questions. We may for instance, and as before, implement Cross-Protect
at the ingress node of the path. The problem is then what to do at core nodes, where
different paths share a link and the performance enforced at the ingress is not respected.
If the core link capacities are such that we could assume a large overprovisionement,
we would fall back to the case considered in the previous part, where implementation
of Cross-Protect in the core was not necessary. If such assumption is unrealistic, we
could also implement Cross-Protect in the core nodes (i.e. classify traffic, schedule and
perform admission control). However, this would mean that we are duplicating tasks
in the network. It could happen that the decision taken for a flow is not consistent
throughout the routers it traverses. For instance, an admitted flow may be blocked
downstream, or a flow that has been classified as elastic may be reclassified as streaming.
Regarding classification, it should be noted that Cross-Protect performs its implicit
classification based on the assumption that elastic flows will reach their fair rate. Unless

53

54 4.2. Static Routing for Dynamic Traffic

the particular link is the bottleneck of the path, this will not be the case. This means
for instance that all flows for which a link is not the bottleneck will be transmitted with
priority, even when they are elastic but are bottlenecked elsewhere in the network.

Due to the above issues, we will not assume Cross-Protect at any level of the
network, and will propose mechanisms that do not use measurements of the FR or
PL, but more general ones, such as link load or queue size. Another very important
assumption is that of the existence of the so-called Traffic Matrix (TM). If every node
in the network is ordered by an index, this matrix contains in its ij–th entry the mean
traffic demand from node i destined to node j. We will assume that traffic in the
network is relatively well represented by this TM, and that the values it contains do
not depend on the current network condition. This means that we will not consider
congestion control in the problem. Furthermore, we will also assume that the TM does
not change with routing. This could not be the true if we were for instance optimizing
IGP weights, which have an influence on the egress node for BGP traffic (this is known
as hot-potato [44]), and thus in the TM. In this thesis we have considered an MPLS
network, and as a consequence we do not have this problem.

Before presenting our proposals, we will discuss and present several prior works
that revolve around Dynamic Load-Balancing (DLB). Actually, DLB can be seen as a
particular case of Multi-Path routing. Many papers fall under this category, and we will
highlight only those closely related to our work. In particular, we will first introduce,
among other static routing schemes, Robust Routing, a technique that many consider
as the alternative to DLB. We will then present the more important proposals in the
area of DLB. Finally, we will discuss the multi-path congestion control problem, which
has many aspects in common with DLB.

4.2 Static Routing for Dynamic Traffic

4.2.1 Robust Routing

As mentioned in Ch. 1, due mainly to service convergence, the traffic injected to the
network is increasingly complex and difficult to predict. Robust Routing (RR) [8, 9]
deals precisely with this problematic aspect of traffic from a routing perspective. More
exactly, the objective in RR is to find a single static routing configuration that fulfills a
certain criteria for a wide range of TMs, generally the one that minimizes the maximum
link utilization over all TMs.

Traditional algorithms rely on a small group of expected TMs (representative traffic
demands from past observations) or estimated TMs to compute optimal and reliable
routing configurations. An extreme case is presented in [45], where routing is optimized
for a single estimated TM and it is then applied during long time-scales (e.g. daily
routing). Traffic uncertainty is characterized by multiple TMs in [46] (e.g. set of TMs
from previous day, same day of previous week, etc.), and different ways to find optimal
routes for the set are presented.

Chapter 4. Introduction and State of the Art 55

Given the dynamic nature of current traffic demands, relying on a single or a small
set of expected TMs is no longer suitable, and Robust Routing techniques should be
used instead . In [8], the authors capture traffic variations by introducing a polyhedral
set of demands. This specific set enables a fast and relatively simple computation of
the optimal routing configuration. The authors of [47] apply this technique to com-
pute a robust MPLS routing configuration without depending on TM estimation, and
discuss corresponding methods for robust OSPF optimization. Oblivious Routing [9]
also defines linear algorithms to optimize worst-case performance for different sizes of
traffic uncertainty sets, aiming to handle dynamic changes.

It should be clear that, since a single traffic distribution is used for all TMs, resources
will be wasted for any specific TM, and that shrinking the uncertainty set results in
improved performance. For instance, [48] analyzes the use of RR through a combination
of traffic matrix estimation and its corresponding estimation error bounds, in order to
shrink the uncertainty set. The authors of [23] propose a multi-hour approach, in which
the static routing configuration changes over the day, thus reducing the uncertainty
set. In any case, this shrinking should be carefully done, because if the selected set
is too small and the network faces an unforeseen TM, the resulting performance is
unpredictable. In this sense, [23] proposes a scheme that is both robust and reactive.
In addition to the multi-hour approach we just described, it studies the possibility
of detecting anomalous or unexpected traffic demands, and reacting appropriately by
reconfiguring the traffic distribution. Another interesting reference is [49], in which
the authors present COPE, an approach to deal with this tradeoff in the size of the
uncertainty set. COPE optimizes routing for predicted demands and bounds worst-
case performance to ensure acceptable efficiency under unexpected traffic events. In any
case, an inherent problem of RR is that optimization under uncertainty is more complex
than classical optimization, which forces the use of simpler optimization criteria. More
details on RR will be discussed in Sec. 8.5 where we present a comparison between RR
and DLB.

4.2.2 The Hose Model

A problem related with RR is that of dimensioning and routing in the context of the so-
called Hose Model [50]. In traditional VPN services the Pipe Model is used, where the
customer specifies the maximum amount of traffic nodes will send to each other (in a
way, it specifies its worst-case TM). Finding these values could be very complicated for
the customer, who does not necessarily have the metrology infrastructure to determine
them. Moreover, as the number of nodes in the VPN increases, estimating this TM
could be problematic even for the NSP. In the hose model, the customer specifies
instead the total traffic each node will receive or send, independently of its origin or
destination. The advantages of this model are firstly its simplicity for the customer,
but also its potential reduction in the size of the access links due to traffic multiplexing.

The main difficulty in this model is managing the resources required to support all
possible TMs. For instance, the original paper of Duffield et al. [50] presents a measure-

56 4.2. Static Routing for Dynamic Traffic

ment based resizing mechanism. Implementation of such dynamic reservation scheme
is, to say the least, very difficult. Instead, several papers study the problem of designing
minimum-cost routing schemes (generally based on trees) given the bounds specified by
the customer (e.g. [51, 52, 53, 54]). In terms of efficiency, the total bandwidth required
by these solutions is roughly 50% more than if there was a single TM [55, 56].

Similarly to RR, the information we have of the TM in this model is a set in which
it is assumed to be. In addition to being more general in the considered uncertainty
set, there are two important aspects that distinguish RR from the hose model problem.
Firstly, one of the inputs to the former is the links capacity, which is one of the outputs
of the latter (or similarly, the required bandwidth reservation). Secondly, RR strives
to optimize a certain objective function (e.g. minimize the maximum link utilization),
while the objective in the algorithms presented in this section is simply to design a
network that can support all possible TMs.

4.2.3 Valiant Load-Balancing

The last static routing scheme we will discuss is Valiant Load-Balancing (VLB) [57]
(also known as Two-Phase Routing [58] or Randomized Load-Balancing [59]). Similarly
to the hose model, the only available information of the traffic is the maximum amount
each node may receive (Di) or send (Ui). However, the routing scheme considered, based
on the ideas by Valiant for processor interconnection networks [60], is very specific.

The mechanism is simple: traffic entering the network is balanced among all nodes
that in turn send the packets to their final destination (the amount balanced to each
node depends on the values of Di and Ui). The idea is to “uniformize” the demands so
that dimensioning to support all possible TMs is very simple. Moreover, the network
requires a capacity that, in the worst case, is twice the one obtained if we knew the
exact TM [61]. Finally, due to the huge path diversity, the resiliency of the network
is excellent. However, it also presents certain disadvantages. If there are N nodes in
the network, N − 1 paths have to be established for each OD pair (thus decreasing the
scalability of VLB), and the propagation delay will increase with respect to the shortest
path.

It is interesting to note the relation between VLB and the solutions of the hose
model. As mentioned above, these solutions are generally tree type, arguably because
dimensioning is easier in a tree than in an arbitrary graph. For instance, a very elegant
algorithm to find this least-cost tree is as follows [51, 54]. For every node v, calculate
the shortest path tree to all VPN nodes. In every path from root node v to VPN node
ni install Ui and Di in each corresponding direction (the effect of installing capacities
is cumulative). The optimum tree is the one with the minimum total cost of all these
capacitated trees (note vopt the root of this tree). The authors of [51] proved that the
cost needed to route under a tree or under a hub with the same root (all traffic is first
sent to an intermediate root node who in turn sends traffic to the final destination) is
the same only when the root is vopt. In the rest of the cases, the total cost for the hub

Chapter 4. Introduction and State of the Art 57

is always bigger.

VLB can be seen as a combination of hub routing, where all nodes in the network
act as the hub root for a portion of traffic. This means that, if the hub trees were
constructed under the shortest-path criteria, the resulting capacity requirements would
be a convex combination of the capacity of hubs rooted at all the nodes of the network1.
Based on these observations, and trying to construct a solution between the optimum
(but with very little resiliency) tree and the generally more expensive and with bigger
delays (but very resilient) VLB, the authors of [62] proposed Selective Load-Balancing.
The idea is to balance traffic only to a subset of nodes, instead of all as in VLB. That
is to say, superpose the M less expensive hubs. This will result in a network that is
cheaper than VLB and that generally has a smaller total delay (since less expensive
trees tend to have their roots at the center of the network).

4.3 Dynamic Load-Balancing

In order to avoid choosing a representative set of TMs, dynamic load-balancing (DLB) [4,
5, 6] strives to optimize the traffic distribution for the current traffic demand. This
way it completely avoids the performance-size tradeoff we mentioned above, obtaining
the best performance from the available resources. Actually, DLB performs the opti-
mization for the current network situation that, in addition to the TM, it also includes
possible link or node failures. This makes DLB more general in the considered scenarios
than the mechanisms we discussed above. Moreover, given the network resources, and
as long as the capacity constraints are enforced, the set of supported TMs is at least
the one supported by the static mechanisms.

Obviously, all these advantages come with a price. Due to the relatively short time-
scale (in the order of some seconds), paths are established a priori and the only possible
adaptation is changing the amount of traffic sent along each of them (i.e. establishing
and tearing down paths are not possible). Moreover, this time-scale also requires that
the algorithm that controls these adaptations is ran on each ingress router. The design
of these distributed algorithms is probably the most challenging aspect of DLB. It is
precisely due to its dynamic and distributed nature that the deployment of DLB has
been almost null2. Network operators are reluctant to use it mainly because they are
afraid of a possible oscillatory behavior of the load-balancing algorithm, even when
recent works indicate the contrary through simulations and theory [4, 5, 6].

The three most notable proposals in this area are MATE [4], TeXCP [5] and RE-
PLEX [6]. The first difference between them is the objective function. MATE defines a
convex increasing link function fl(ρl) (where ρl is the load on link l), and its objective

1This explains the results obtained in [61] indicating that the optimum cost in VLB is attained by
a star topology (where the center is vopt)

2In fact, practically the only load-balancing present in the internet today is ECMP (Equal Cost
Multi-Path) , where traffic is evenly split between paths with the same routing cost.

58 4.4. Multi-Path Congestion Control

is to minimize the sum over all links of fl(ρl). The rationale is that this function rep-
resents the congestion on the link, and that DLB should strive to minimize the total
congestion on the network. Convexity is intuitively justified by the fact that at higher
loads, an increase in load generates more congestion than at lower loads (although, as
we shall discuss further on, this is actually a mathematical requirement). This objec-
tive function has become very popular, to the point that some authors define TE as
the procedure through which the network operator minimizes

∑
l fl(ρl) [63]. On the

other hand, the objective for both TeXCP and REPLEX is to minimize the maximum
link utilization in the network, like in RR. The justification for this objective function
is the same as in RR, namely that a link with a ul close to one is operating near its
capacity, and in order to be able to support sudden increases in traffic and link/node
failures, it is preferable to keep the links utilization relatively low.

In addition to their objective function, the other important difference among these
three proposals lies in their distributed load-balancing algorithm. MATE uses an al-
gorithm based on the classic gradient projection algorithm [15]. That is to say, at
each iteration the amount of traffic sent along path P is updated as dP (t + 1) =
[dP (t)− γφP (t)]+, where the path cost φP is equal to

∑
l∈P f

′
l (ρl). The most impor-

tant drawback of this algorithm is its convergence speed [5]. Moreover, for convergence
to be guaranteed, the stepsize γ has to fulfill a condition that depends on fl(ρl), which
is not necessarily known in advance. The algorithm used in TeXCP was specifically
designed for its objective function, and it may be roughly described as increasing the
amount of traffic sent along the path with the lowest maximum utilization. Regarding
REPLEX, the load-balancing algorithm is based on the adaptive sampling methods
presented in [64]. We will discuss REPLEX with more detail in Sec. 7.4, but it is in-
teresting no note that although the original algorithm appearing in [64] was designed
for the objective function of MATE, the authors of [6] use it to minimize the maxi-
mum link utilization. Moreover, they also discuss some interesting ideas to adapt these
“tunnel-based” schemes to the context of all-IP routing.

4.4 Multi-Path Congestion Control

As illustrated in Fig. 4.1, if congestion control deals with flows from sender to receiver,
load-balancing deals with flows from ingress to egress nodes. Based on this analogy
we will develop in the following chapter a load-balancing mechanism that draws on the
ideas of congestion control. Let us then recall the congestion control problem in its
optimization perspective.

Assume that the network is used by S OD pairs, indexed by s = 1, . . . , S. Each
of these OD pairs may use any path from a set Ps, where each of its elements will be
noted as Psi with i = 1, . . . , ns. If the traffic generated by each OD pair is constituted
of a fixed number Ns of TCP flows, with NPsi

flows in path Psi, the congestion control

Chapter 4. Introduction and State of the Art 59

L o a d - B a l a n c i n g

C o n g e s t i o n C o n t r o l

Figure 4.1: An illustration of a difference between Load-Balancing and Congestion
Control

problem can be written as follows [65]:

maximize
x

S∑

s=1

ns∑

i=1

NPsi
UPsi

(
xPsi

NPsi

)
(4.1)

s.t.
∑

s

∑

i:l∈Psi

xPsi
≤ cl

where xPsi
is the total rate obtained by the NPsi

flows on path Psi (we have assumed
that this rate is identically distributed among the NPsi

flows) and UPsi
(x) is a non-

decreasing, concave and continuous function. A typical example of UPsi
(x) is the utility

function that leads to the so-called α-fairness [66]:

UPsi
(x) =

{
(1− α)−1x1−α, α 6= 1

log x, α = 1

The parameter α sets the fairness of the optimum. For α = 0 it maximizes the
weighted sum of xPsi

/NPsi
, α = 1 results in proportional fairness [67] and for α → ∞

it results in max-min fairness [16].

Possible adaptations of TCP to the multi-path case (MP-TCP) have been exten-
sively studied. The idea is that each flow may use all the paths in Ps, thus instead of
associating each end-user to a path, we associate them with an OD pair. Moreover,
the utility each user perceives is now a function of the total rate it obtains from all its
paths. This results in the following problem:

maximize
x

S∑

s=1

NsUs

(∑ns

i=1 xPsi

Ns

)
(4.2)

s.t.
∑

s

∑

i:l∈Psi

xPsi
≤ cl

The objective in MP-TCP is the same as in load-balancing: use the numerous
paths between any two points in a network to increase resiliency and performance. As

60 4.4. Multi-Path Congestion Control

mentioned above, the difference lies in that for load-balancing the network operator
exploits this multitude of paths, and in congestion control it is the end-user.

Several mechanisms that solve (4.2) have been proposed. For instance, in [68, 69,
70] the user is responsible of calculating its total rate and how much it should send
along each path. This kind of solution is very problematic since the network operator
should provide the end-users with information of the network topology. To avoid this
complication, in the mechanism proposed in [71] the user only calculates the total
sending rate, and the routers distribute traffic among paths. However, it is not clear
what happens when only a fraction of the end-hosts implement this mechanism and
the rest still uses legacy TCP.

A different but related problem is a user downloading the same file from different
sites or hosts (as in Bittorrent). Currently, greedy policies are used where users change
a path only if they obtain a better performance on the new one. The authors of [72]
show that if current TCP flavors are used in such schemes, the resulting allocation can
be both unfair and inefficient, and that a mechanism similar to MP-TCP should be
used instead.

Finally, the works presented in [63, 73] could be considered as a combination of
congestion control and load-balancing. In it, users have several paths to choose from,
and the objective is to adapt the sending rates to maximize users utility minus a network
cost. Although at first look it could seem similar to the TCP+AQM analysis [65], this
cost function could be the same as in MATE, and the idea is that sources should also
take into account the utilization of the links and leave a margin for future arrivals.
We believe this is not the best objective. Congestion control should enable users to
consume all their fair-share of the path. Saving a little bandwidth for future arrivals
is, in our opinion, a waste of resources.

Chapter5

Utility Maximization Load-Balancing

5.1 The New Objective Function

In this section we present a new objective function for DLB. As discussed in Sec. 4.3,
previously proposed objective functions take a network-centric approach, in the sense
that they minimize either congestion or utilization. Since the network operator is in-
terested in the communication between the OD nodes, in this section we state the
load-balancing problem in their terms (i.e. we take a user-centric approach). Assum-
ing that the majority of traffic is elastic, and inspired on the ideas we presented in
Sec. 4.4, the objective is to further maximize the flows’ total utility by means of the
multiple paths available. However, we do not propose to change the congestion control
mechanism. Instead, this maximization is achieved by changing the amount of traffic
routed along each path, thus changing the flows’ obtained mean rate. Before actually
presenting the new objective function, we will introduce the notation (valid here and
in the following chapters), which we partially introduced in Sec. 4.4.

The network is defined as a graph G = (V,E). In it there are a number of so-called
commodities (i.e. OD pairs), indexed by s = 1, . . . , S, specified in terms of the triplet
os, qs and ds; i.e. origin node, destination node and a certain fixed demand of traffic
from the former to the latter. Commodity s can use any path from set Ps, where each
of its elements (noted as Psi with i = 1, . . . , ns) connects os to qs. All commodities can
distribute their total demand arbitrarily along their paths. In particular, commodity
s sends an amount dPsi

of its traffic along path Psi, where dPsi
≥ 0 and

∑
dPsi

= ds.
This distribution of traffic induces the demand vector d = (dPsi

). Given the demand
vector, the total load on link l is then ρl =

∑
s

∑
i:l∈Psi

dPsi
. It should be noted that

in the framework described above the destination for a commodity is not necessarily a
single node (e.g. two gateways to the internet may be seen as a single destination).

As in Sec. 4.4, if we assume that demands are constituted of Ns elastic flows, of

61

62 5.1. The New Objective Function

which NPsi
are in path Psi, the congestion control problem can be written as follows:

maximize
x

S∑

s=1

ns∑

i=1

NPsi
UPsi

(
xPsi

NPsi

)
(5.1)

s.t.
∑

s

∑

i:l∈Psi

xPsi
≤ cl

where xPsi
is the total rate obtained by the NPsi

flows on path Psi and UPsi
(x) is a

non-decreasing, concave and continuous function. Note that since we assumed that
xPsi

is identically distributed among the Nsi flows, the argument of UPsi
in (5.1) is the

rate obtained by each flow.

The above problem optimizes in the obtained rate, considering the NPsi
’s (i.e. rout-

ing) as given. However, to improve performance and resiliency, we could jointly max-
imize in both N and x (adding the constraints

∑
NPsi

= Ns and NPsi
≥ 0). If we

approximate N by a real vector (reasonable if, for instance, the number of flows is
high) the problem in both N and x is still convex (yU(x/y) is known as the perspective
of U(x), which is convex in both x and y as long as U(x) is convex [74]), a fact that
makes this possibility even more appealing.

To implement such maximization, a first idea is that end-users decide their path.
However, as mentioned in Sec. 4.4, network operators are very reluctant to share routing
information with the end-users for security reasons. Moreover, allowing end-hosts to
choose their paths, or even making them aware that several possibilities exist, presents
several technical difficulties in current Internet architectures. However, it is possible to
exploit path diversity within a carrier network through (dynamic) load-balancing. We
thus propose to keep the separation between end-to-end congestion control (maximiza-
tion on x performed by end-users) and routing (maximizing on N performed by routers)
but still try to solve (5.1). However, two important issues should be considered, which
we shall now discuss.

The first obvious problem is that routers do not know UPsi
(x), and even if they knew

it, we as network operators may not “like” it1. For this reason, we shall use an arbitrary
U(x) function which we believe convenient to operate the network (in our simulations we
used U(x) = log(x)). The second issue has to do with time-scales. Congestion control
acts at the RTT timescale (generally in the order of ms) while routing does it at the
seconds or minutes timescale. This means that we cannot consider the instantaneous
values of xPsi

, but its temporal mean. Moreover, TCP flows have a certain finite life-
time, thus Ns cannot be considered as static or given and a substitute should be used
too. We will first introduce the dynamic traffic model we use for this context, and then
we will discuss how to address these issues.

The model is very similar to the one used in Sec. 2.3.1. Each origin node os gen-
erates flows as a Poisson process of intensity λs. Each of these elastic flows consists

1For instance, we may consider that the bias against RTT of TCP [75] should not be re-enforced by
routing.

Chapter 5. Utility Maximization Load-Balancing 63

of a random arbitrarily distributed workload with mean bs. After this workload is
transmitted, the flow disappears. Each flow is routed along path Psi with probability
psi, where it remains throughout its lifetime. Under these conditions, the demand of
the corresponding commodity can be written as ds = λsbs, and the demand vector as
d = (dspsi).

The above described system has been extensively studied in the past. The mean
throughput obtained by flows traversing path P can be roughly approximated by the
path’s Available Bandwidth (ABW):

E

{
xP

NP

}
≈ ABWP = min

l∈P
{ABWl} = min

l∈P
{cl − ρl}

where E represents the temporal mean. A possible justification of the above approxi-
mation is the following. The authors of [13] proved that balanced fairness [76] may be
used to approximate other fair sharing notions, such as proportional fairness or max-
min fairness (cf. Sec. 4.4). Moreover, they have proved in [14] that a possible upper
bound to the flows obtained rate under this model is precisely the path’s available
bandwidth. Similarly to [77], we shall then approximate xPsi

/NPsi
by ABWPsi

, and
use this approximation in (5.1).

The other variable we needed to approximate in (5.1) was NPsi
. Its natural substi-

tute in this dynamic context is dPsi
, who plays the role of the amount of traffic using

path Psi. The load-balancing approximation to (5.1) results finally in:

maximize
d

S∑

s=1

ns∑

i=1

dPsi
U

(
min
l∈Psi

{cl − ρl}

)
(5.2)

s.t. dP ≥ 0 ∀P ∈ Ps and
∑

P∈Ps

dP = ds ∀s = 1, . . . , S

Note that (5.2) is the maximization of a continuous function over a compact set,
meaning that there always exists at least one solution to the problem. However, it does
not present the convexity property of (5.1). In the following section we shall derive
certain characteristics of this optimum that will help us design distributed algorithms
to achieve it.

When reading Sec. 4.4 and the problem we just stated, one may wonder why we
did not consider an objective function similar to that of MP-TCP. That is to say,
a utility maximization problem where the argument of the utility function is the
mean rate obtained from all paths of the OD pair (i.e. dsU(

∑
i psiABWPsi

) instead
of
∑

i dPsi
U(ABWPsi

)). After all, the authors of [72] proved that MP-TCP obtains a
better performance than the solution of (5.1). In fact, we have also studied possible
adaptations of the MP-TCP problem to the load-balancing time-scale, as we just did.
The first problem we encountered is that the resulting problem is not solvable exactly,
and several approximations have to be made. Secondly, the simulations we performed
indicate that the performance obtained by both problems are very similar. Because of
this, we have considered it somewhat redundant to include both versions of the problem
in the thesis, and the interested reader may consult reference [78] for more details.

64 5.2. Characterization of the Optimum

5.2 Characterization of the Optimum

To characterize the optimum of (5.2), we will begin by transforming it into a minimiza-
tion problem. After some elemental transformations (which mainly take into account
that U(x) is non-decreasing) we may obtain the following equivalent problem:

minimize
d

S∑

s=1

ns∑

i=1

dPsi
max
l∈Psi

{−U (cl − ρl)}

We now introduce the auxiliary variable tPsi
, which at optimality will be equal

to max
l∈Psi

{−U (cl − ρl)}, resulting in the following problem (the restrictions have been

shortened for the sake of clarity):

minimize
d,t

S∑

s=1

ns∑

i=1

dPsi
tPsi

(5.3)

s.t. dPsi
≥ 0

ns∑

i=1

dPsi
= ds

tPsi
≥ −U(cl − ρl) ∀s, i ∀l : l ∈ Psi

Necessary conditions of a local minimum can be obtained from the Karush-Kuhn-
Tucker (KKT) conditions [15]. Let us first write the Lagrangian function associated to
problem (5.3):

L(d, t, ν, λ, θ) =
S∑

s=1

ns∑

i=1

dPsi
tPsi

+
S∑

s=1

νs

(
ns∑

i=1

dPsi
− ds

)

−
S∑

s=1

ns∑

i=1

λPsi
dPsi
−

S∑

s=1

ns∑

i=1

∑

l:l∈Psi

θPsil (tPsi
+ U(cl − ρl))

Let d∗ be a local optimum of problem (5.3). The KKT conditions state that there
exist unique Lagrange multiplier vectors ν∗, λ∗ ≥ 0 and θ∗ ≥ 0 such that:

t∗Psi
+ ν∗s − λ

∗
Psi

+
∑

l:l∈Psi

θ̂l = 0 (5.4)

d∗Psi
−

∑

l:l∈Psi

θ∗Psil = 0 (5.5)

λ∗Psi
d∗Psi

= 0 (5.6)

θ∗Psil(t
∗
Psi

+ U(cl − ρ
∗
l)) = 0 (5.7)

where

θ̂l =
S∑

s=1

∑

i:l∈Psi

θ∗PsilU
′(cl − ρ

∗
l) (5.8)

Chapter 5. Utility Maximization Load-Balancing 65

Firstly, note that (5.7) indicates that θ∗Psil
is zero for all links that are not the

bottleneck of path Psi (i.e. cl − ρl > ABWPsi
). If we assume that paths have only one

bottleneck, there will be only one non-zero term in the sum of (5.5). In such case, θPsil

is simply dPsi
for the bottleneck link of Psi, and 0 for the rest:

θ∗Psil =





d∗Psi

if l = argmin
l∈si

{cl − ρ
∗
l }

0 otherwise
(5.9)

Similarly, (5.6) means that the associated Lagrange multiplier λ∗Psi
is positive only

for those paths that are not used at optimality (d∗Psi
= 0), else it is equal to zero.

Substituting this in (5.4) results in:

φ∗Psi
:= tPsi

+
∑

l:l∈Psi

θ̂l = max
l∈Psi

{−U (cl − ρ
∗
l)}+

∑

l:l∈Psi

θ̂l =

= −U

(
min
l∈Psi

{cl − ρ
∗
l }

)
+

∑

l:l∈Psi

θ̂l =

{
−ν∗s if d∗Psi

> 0.

−ν∗s + λ∗Psi
if d∗Psi

= 0
(5.10)

Then, for a given commodity s and by defining the path cost φPsi
as above, all

paths that are used at optimality have the same optimum φ∗Psi
(−νs does not change

over paths), which is smaller or equal than that of paths that are not used (remember
that λsi ≥ 0). In Ch. 7 we will present a distributed algorithm to achieve a demand
vector that fulfills this condition.

Finally, note that the above condition is only necessary. This means that the
solution of (5.2) verifies the condition. However, not all points that verify this condition
are necessarily a minimum. For this last aspect, sufficient conditions may be derived
that although difficult to prove in the general case, are verified in all the examples we
evaluated (see Proposition 3.3.2 in [15]).

5.3 Illustrative Examples

So far, we have mentioned three objective functions that may be used for DLB: mini-
mum congestion (cf. MATE in Sec. 4.3), minimum maximum link utilization (cf. TeXCP
or REPLEX in Sec. 4.3, RR in Sec. 4.2.1) and maximum utility (the one we just pre-
sented). In this section we will overview three examples that illustrate the differences
between these three objective functions and help us gain some insight and intuition.
The simplicity of the considered examples allowed an easy offline calculation of the op-
timum for each objective function. In particular, in the case of minimum congestion we
will assume that the link congestion function fl(ρl) is given by the M/M/1 mean queue
size (i.e. fl(ρl) = ρl/(cl − ρl)). Finally, and for the sake of clarity of the exposition, we
shall note each objective function as MinQ (as in Minimum Queue), MinMaxU (as in
Minimum Maximum Utilization) and MaxU (as in Maximum Utility) respectively.

66 5.3. Illustrative Examples

The first example we will consider is the simplest: a single commodity with two
paths of the same capacity. However, one of the paths is constituted of two links, while
the other of only one. In particular, link capacities will be 3.0. In Fig. 5.1(a) we can see
p (the optimum traffic portion routed along the shortest path) as a function of d (the
demand generated by the commodity) for the three objective functions. Naturally, for
both MaxU and MinMaxU the optimum is always 0.5. However, in light loads MinQ
uses the shortest path almost exclusively, and as load increases it will need to use the
longest one to avoid congesting links. This behavior results in a significantly bigger
maximum link utilization, as can be seen in Fig. 5.1(b).

1 2 3 4 5
0.4

0.5

0.6

0.7

0.8

0.9

1

d

p

MaxU
MinQ
MinMaxU

(a) Optimum probability

1 2 3 4 5

0.2

0.4

0.6

0.8

1

d

M
a
x
im

u
m

 U
ti
liz

a
ti
o
n

MaxU

MinQ

MinMaxU

(b) Maximum link utilization

Figure 5.1: The single-commodity two-paths case (a longer path subcase).

The next example also has two paths, except that now both paths have the same
length (one hop) and a capacity of 3.0 and 4.0 respectively. In Fig. 5.2(a) we show p
(the optimum traffic portion routed along the narrowest path) as a function of d for the
three different objective functions. Clearly p is always 3/7 for MinMaxU. However, p
changes with d for both the other two objective functions this time. If the total demand
d is small enough, the narrowest path is left unused since the obtained performance is
inferior. As it can be seen in Fig. 5.2(b) the difference in the maximum utilization is
not as significant as before.

1 2 3 4 5 6
0.2

0.25

0.3

0.35

0.4

0.45

0.5

d

p

MaxU

MinQ

MinMaxU

(a) Optimum probability

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

d

M
a
x
im

u
m

 U
ti
liz

a
ti
o
n

MaxU

MinQ

MinMaxU

(b) Maximum link utilization

Figure 5.2: The single-commodity two-paths case (a narrower path subcase).

The third example illustrates some fairness issues that are important to highlight.
In Fig. 5.3(a) we can see the considered network. In it, all link capacities are equal
and all commodities have the same demand d0, except for commodity 1 that generates

Chapter 5. Utility Maximization Load-Balancing 67

d and is the only one to have more than one path to choose from. We will consider
cl = 5.0∀l, d0 = 2 and we will study the optimum p as we vary d. It is relatively simple
to verify that the optimum for MinQ and MinMaxU is p = 0.5 independently of d. On
the other hand, MaxU enforces fairness at a path level. This means that commodity 1
takes into account that the upper path “disturbs” two other paths while the lower one
disturbs only one, resulting in more traffic being sent along the latter (see Fig. 5.3(b)).
So, while d is relatively small and the ABW is enough, commodity 1 uses only the
lower path. If any of these conditions is not true, p will rapidly go to 0.5, but always
privileging better conditions on the upper path.

(1 - p) * d
d

p * d

3 d

d

4

2

1

0

0

0

(a) The network

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

d

p

MaxU

MinQ

MinMaxU

(b) Optimum p as a function of d

Figure 5.3: An example illustrating the fairness issue.

The above presented examples are relatively simple, but nevertheless give some
intuition on the results that should be expected in more realistic and complicated
scenarios. They will be helpful to interpret the results we will present in Sec. 8.2,
where we shall compare the three objective functions over two real network topologies
with real traffic demands.

Chapter6

Minimum Congestion Load-Balancing:

Learning the Cost Function

6.1 Introduction

In this section we will interest ourselves to the objective function used in MATE [4]
(and probably first introduced in [16]) that, as we mentioned, is arguably the most
popular one in TE. Let us recall that in this case we define a certain convex, increasing
and continuous function fl(ρl), and the objective is to minimize

∑
l fl(ρl). The idea

is that this function should measure the congestion on the link, for which the mean
queue size is generally used. This choice is justified by two aspects. Firstly, its algebra
is relatively simple since, as we shall discuss further on, the aggregation over all links
of this function as a sum is only natural. Secondly, it is a very versatile indicator. A
big mean queue size means more delay and jitter for streaming traffic. Moreover, a
link with an important queue size is traversed by several bottlenecked flows, meaning
that elastic traffic may obtain better throughput in other, less loaded, links. The mean
queue size then gives a numerical value to the congestion on the link.

However, most DLB schemes require an analytical expression of this queue size,
for which classic and oversimplistic models (e.g. M/M/1) are used [4]. It should be
clear that optimizing with such a simple model results in an actual total congestion
(
∑

l fl(ρl)) that is significantly bigger than the optimum. We will now present and study
a framework to avoid this arbitrary (and thus probably sub-optimal) choice of the queue
size function. Except for some natural hypothesis on its shape (e.g. monotonicity) we
will only assume that the mean queue size on link l is of the form fl(ρl) (i.e. depends
only on the mean load of the link). The actual fl(ρl) will be obtained (or learned) from
past measurements. This way, the congestion function will reflect reality independently
of any additional assumption on the traffic. Moreover, the obtained total congestion
will be an excellent approximation of the actual minimum.

69

70 6.2. Characterizing the Optimum

To achieve this we will present two different regression methods. The first one is
a variation of the nonparametric regression method presented in [17], and finds the
regression function that fits best the measurements. However, it presents scalability
issues as the number of available measurements increases. We consider then the al-
gorithm presented in [18]. This heuristic finds a parametric function that reasonably
adjusts the measurements in a very short time, although its precision is not as good as
the one obtained by the first method.

Before presenting the regression methods, we will derive a characterization of the
optimum for this case, analogously to Sec. 5.2. This analysis will help us identify
certain characteristics of fl(ρl) that are required in order to converge to the optimum
in a distributed fashion. Moreover, the information we need to know of fl(ρl) to achieve
this convergence will also result from this analysis.

6.2 Characterizing the Optimum

Let us add certain elements to the notation presented in Sec. 5.1 that are required in
this and the following chapters. The presence of load ρl on link l induces a certain mean
queueing delay given by the non-decreasing function Dl(ρl). The total delay of path P
is defined as DP =

∑
l:l∈P Dl(ρl). As the measure of the network total congestion we

shall use the mean end-to-end queueing delay (or mean total delay, which is the term
generally used) D(d), defined as:

D(d) =
S∑

s=1

∑

P∈Ps

dPDP =
L∑

l=1

Dl(ρl)ρl :=
L∑

l=1

fl(ρl)

that is to say, a weighted mean delay, where the weight for each path is how much traffic
is sent through it, or in terms of the links, the weight of each link is how much traffic is
traversing it. We prefer this weighted mean to a simple total delay because it reflects
more precisely performance as perceived by traffic: two situations where the total delay
is the same, but in one of them most of the traffic is traversing heavily delayed links,
should not be considered as equivalent. Note that, by Little’s law, fl(ρl) := Dl(ρl)ρl

is proportional to the average number of bytes in the queue of link l. Based on this
observation, and as already discussed before, we will use this last value as fl(ρl) which
(like the mean load) is readily available in most routers1.

We can now write the problem explicitly:

minimize
d

L∑

l=1

fl(ρl) (6.1)

s.t. dPsi
≥ 0

∑

P∈Ps

dP = ds

1For instance, Cisco defines the CISCO-CLASS-BASED-QOS-MIB which includes cbQosREDMean-
QSize and cbQosQueueingCurrentQDepth. If QoS is not enabled, we may use CISCO-QUEUE-MIB,
which includes cQStatsDepth

Chapter 6. Minimum Congestion Load-Balancing: Learning the Cost Function 71

Note that no explicit constraint on ρl was made. This is assumed to be implicitly
included in the mean queue size function. For instance, if there exists a capacity
constraint, fl(ρl) should go to infinity (or a big value) as ρl reaches cl.

To characterize the solution of (6.1), we will proceed as in Sec. 5.2. The analysis
in this case is very similar, and as such we will directly present the result of the KKT
conditions:

φ∗Psi
=
∑

l∈Psi

φl(ρ
∗
l) =

∑

l∈Psi

f ′l (ρ
∗
l) =

{
−ν∗s if d∗Psi

> 0.

−ν∗s + λ∗Psi
if d∗Psi

= 0
(6.2)

where vectors λ ≥ 0 and ν are the Lagrange multipliers of the inequality and equality
constraints respectively. Note that this necessary condition is true only if fl(ρl) is
continuously differentiable (i.e. its derivative is continuous). Just like before, all paths
that are used at optimality have the same cost, which is actually the minimum cost
among all paths of the corresponding commodity. However, this time the path cost
definition is simpler, resulting in the addition of a certain link cost function φl(ρl),
defined as the derivative of fl(ρl) (i.e. φl(ρl) = f ′l (ρl)).

If we assume that fl(ρl) is convex on ρl, the above condition is necessary and
sufficient. Moreover, in such case the optimum is unique. As mentioned in Sec. 4.3,
fl(ρl) is almost always assumed convex in the literature. We will not proceed differently,
and assume this characteristic too. In addition to guaranteeing the existence and
uniqueness of the optimum, it will help us in the design of the distributed load-balancing
algorithm we will discuss in Ch. 7.

6.3 Learning the Mean Queue Size Function

6.3.1 General Considerations

In the previous section we have shown that the solution of (6.1) is a demand vector in
which, for every commodity, the path cost φP (equal to the sum of the derivative of
the mean queue size fl(ρl)) is the same for all used paths, and bigger for those paths
that are not used. We now address the problem of obtaining a good estimation of
φl(ρl) = f ′l (ρl) from previous measurements on queue size and load. Actually, since it
is the observable quantity, we shall first estimate fl(ρl) and then simply derivate this
estimation. For the sake of clearness of the presentation, and since the procedure is the
same for every link, in this section we shall omit the subindex l.

Assume we have a set of N measurements {(ρ1, Y1) (ρ2, Y2) . . . (ρN , YN)} (also called
training set), and assume that the response variable Y (the measured mean queue size)
is related to the covariate ρ (the mean load) by the following equation:

Yi = f(ρi) + ǫi i = 1, . . . , N (6.3)

72 6.3. Learning the Mean Queue Size Function

The measurement error ǫi is a random variable such that E{ǫi} = 0 and Var{ǫi} =
σi < ∞. The Weighted Least Squares (WLS) problem consists in finding the function
f̂(ρ) that minimizes the weighted sum of quadratic errors, assuming that f̂(ρ) belongs
to a given family of functions F :

min
f

N∑

i=1

wi (Yi − f(ρi))
2 s.t. f ∈ F (6.4)

where the weight wi ≥ 0 represents the relative importance of measurement point i
with respect to the rest of the measurements in the training set.

There exists other criteria to choose the f̂(ρl) that best fits the data. For instance,
if the distribution of the errors ǫi was known, we could have used the Maximum Like-
lihood method [79]. However, the measurements are the result of a queueing process
whose characteristic may change over time, meaning that such a prior knowledge is not
available in our case. As a preview of the challenges posed by these measurements, we
show in Fig. 6.1 a typical training set.

To obtain these measurements we injected a 72 hour long packet trace (obtained
from [80]) to a simple queue emulator we developed2. The trace was measured on a
trans-Pacific line with a capacity of 150 Mbps in march 2008 (we thus believe it to be
a good representation of today’s internet traffic). In the absence of information we
assumed a relatively big buffer size of 100 MB. For each measurement, we took the
mean load and queue size in a 60 second period. In Fig. 6.1 we show the measurements
corresponding to two 4 hours period of the second day of the original trace: one in
the early morning between 5 and 8, and the other in the afternoon between 16 and 19.
Figure 6.1(a) shows a detail at relatively low loads, and in Fig. 6.1(b) we may see the
whole training set in logarithmic scale (where we have highlighted the detailed area
with a rectangle).

4000 6000 8000 10000 12000 14000
0

5

10

15

20

25

30

35

ρ (kB/s)

M
e
a
n
 Q

u
e
u
e
 S

iz
e
 (

k
B

)

(a) Detail of the measurements at
relatively low loads

0.5 1 1.5 2

x 10
4

10
0

10
2

10
4

ρ (kB/s)

M
e
a
n
 Q

u
e
u
e
 S

iz
e
 (

k
B

)

(b) The complete set of measure-
ments

Figure 6.1: An example of measurements

There are two characteristics of this training set that should be noted. Firstly, the
variance of the measurements is not constant over ρ (a characteristic known as het-

2Although simple, it is based on the model described in [81], which shows an excellent accuracy.

Chapter 6. Minimum Congestion Load-Balancing: Learning the Cost Function 73

eroscedasticity). Secondly, there are several and very important outliers. For instance,
note how at ρ ≈ 6000 kB/s, due to a short but important burst of traffic, there are
some mean queue size measurements that are almost two orders of magnitude bigger
than their nearest neighbors. A good choice of the weights wi will help us deal with
these problems.

The following subsections present two different methods to estimate f̂(ρ), and differ
mainly on the assumed F in (6.4). We will start with the most general case, and based
on the results obtained by it, derive the other method. How to assign the weights wi

will be left for the last subsection.

6.3.2 Convex Nonparametric Weighted Least Squares

In this subsection we present a method that keeps the assumptions on f̂(ρ) to the
minimum. Regarding its shape, we have only two necessary assumptions. Firstly, f̂(ρ)
should be non-decreasing, since more load may never mean less queue size. Secondly,
f̂(ρ) should be convex in order to guarantee the existence and uniqueness of the opti-
mum demand vector, and that this optimum verifies (6.2).

We then consider F as the family of continuous, monotonous increasing and convex
functions. We shall call Problem (6.4) with such F Convex Nonparametric Weighted
Least Squares (CNWLS), a variation of the original unweighted Convex Nonparametric
Least Squares (CNLS) [17]. The size of F makes this problem very difficult to solve in
such general form. Consider instead the following alternative family of piecewise linear
functions G1(P):

G1(P) =

{
g : R→ R | g(ρ) = max

i=1,...,N
αi + βiρ;

βi ≥ 0 ∀i = 1, . . . , N ;

αi + βiρi ≥ αj + βjρi ∀j, i = 1, . . . , N

}

It is clear that G1(P) ⊆ F for all P = {ρi}i=1,..,N . Moreover, consider the following
theorem:

Theorem 1. Let s2f be the solution of problem (6.4). Let s2g1 also be the solution of

problem (6.4), except that we substitute the constraint by f ∈ G1(P). Then s2f = s2g1.

Proof. The proof is exactly the same as in the original CNLS [17]. Its demonstration
relied on the fact that the optimization problem depends only on the value of f̂(ρ) at
the finite set of points {ρi}, which is also the case for CNWLS.

This result allows us to transform the infinite dimensional problem (6.4) into the

74 6.3. Learning the Mean Queue Size Function

following standard finite dimensional Quadratic Programming (QP) problem:

min
ǫ,α,β

N∑

i=1

wiǫ
2
i (6.5)

s.t. Yi = αi + βiρi + ǫi ∀i = 1, . . . , N

αi + βiρi ≥ αj + βjρi ∀j, i = 1, . . . , N

βi ≥ 0 ∀i = 1, . . . , N

Although each observation has its own associated pair (αi, βi), as we shall illustrate
later and already presented in the original CNLS, the actual number of significantly
different values (which we shall note N∗) generally results in a small fraction of N .
However, note that there are a total of 3N variables and 2N + N(N − 1) constraints
in (6.5). In particular, the second set of constraints, which are the key to enforce the
convexity of f̂(ρ), is quadratic in the number of observations, which will represent a
problem as N increases.

6.3.3 Convex Piecewise-Linear Fitting

We have seen that problem (6.4) with the biggest possible family F may be solved by
means of a QP problem. The resulting solution f̂(ρ) is a piecewise function, where the
partition of the linear segments is not fixed a priori; i.e. the number and location of
the segments are endogenously determined to minimize the weighted squared residual.
However, the resulting QP problem presents scalability issues as the number of obser-
vations increases. In this subsection we will try to solve this issue by fixing the number
of segments to an arbitrary k, thus considering the following family of functions:

G2 =

{
g : R→ R | g(ρ) = max

j=1,...,k
αj + βjρ;

βj ≥ 0 ∀j = 1, . . . , k

}

Substituting F by G2 in (6.4) results in the problem known as Convex Piecewise-
Linear Fitting (CPLF). If k is bigger or equal than N∗ (cf. previous subsection), then
the optimum for CPLF and CNWLS will be the same. Considering that N∗ is generally
a small fraction of N , the possibility of solving the former instead of the latter seems
interesting. Unfortunately, CPLF is not globally convex, meaning that, contrary to
CNWLS, an exact solution cannot be found. The authors of [18] present an heuristic
that approximately solves the unweighted version of the resulting problem, which may
be easily adapted to solve the weighted one.

The algorithm is relatively simple, and it alternates between partitioning the mea-
surements and performing a constrained (βj ≥ 0) linear WLS fitting to update the

(αj , βj) pairs. Let P
(l)
j for j = 1 . . . k be a partition of the measurements indices at

Chapter 6. Minimum Congestion Load-Balancing: Learning the Cost Function 75

iteration l, so that
⋃
P

(l)
j = {1 . . . N} and P

(l)
j1

⋂
P

(l)
j2

= ∅. The heuristic is described
below.

Algorithm 1 Convex Piecewise-Linear Fitting (CPLF) Heuristic

Starting with an initial partition P
(0)
1 . . . P

(0)
k

for l = 0, . . . , lmax do

Compute (αj , βj)
(l+1) = argmin

βj≥0; αj

∑

i∈P
(l)
j

wi (Yi − αj − ρiβj)
2 ∀j = 1, . . . , k

P
(l+1)
j contains i if j = argmax

s=1...k
{α

(l+1)
s + ρiβ

(l+1)
s }

Finish if P
(l+1)
j is equal to P

(l)
j ∀j = 1 . . . k

end for

The idea is to try different random initial partitions P
(0)
1 . . . P

(0)
k and keep the best

solution, which generally results in a relatively precise estimation. However, conver-
gence of the algorithm is not guaranteed, and oscillations may occur. The only effective
way of detecting this is by checking whether the maximum allowed number of iterations
was reached. In such case, the obtained solution is of such poor quality, that a new
repetition should be done instead. Moreover, during the iterations, certain partitions
may be emptied. In such case, their (αj , βj) should be eliminated. This means that
the input k actually indicates the maximum number of pairs in the solution. Finally,
regarding complexity, the core of the iteration (solving a constrained linear WLS) is
a much simpler problem than CNWLS. It is still a QP problem, but the number of
variables and restrictions are now 3k and k respectively.

6.3.4 Choosing the Weights

In this subsection we discuss a possible way of choosing the values of wi in (6.4). As we
illustrated in Sec. 6.3.1, measurements present heteroscedasticity and important out-
liers. We will then set the weights so that (6.4) results in the Least Absolute Deviations
problem (i.e. minimize the sum of the absolute, instead of the squared, errors), which is
known to be more robust to these problems. The classic way of calculating such weights
is to use the Iteratively Reweighted Least Squares algorithm [82] described below.

Algorithm 2 Iteratively Reweighted Least Squares Algorithm

Starting with the initial weights w
(0)
i = 1 ∀i = 1 . . . N

for l = 0, . . . , lmax do

Solve (6.4) with w
(l)
i to compute (αj , βj)

(l+1), resulting in the regression function

f̂ (l+1)(ρ)

Update w
(l+1)
i as the inverse of

∣∣∣f̂ (l+1)(ρi)− Yi

∣∣∣
Finish if convergence is reached

end for

76 6.4. Comparison of the Regression Methods

To avoid numerical problems, as suggested in [82], if at any given iteration an error
is less than 10−5 the corresponding weight should be set to 105. Anyway, note that
the algorithm requires a solution of (6.4) at each iteration. This does not represent a
problem for CPLF, although, as we mentioned before, the time required by CNWLS
may be considerable, and repeatedly applying it may result in a prohibitive amount
of time. In this case then, we shall proceed as follows. We perform an initial simple
estimation f̂ (0)(ρi), and calculate the corresponding weight as:

wi =
1∣∣∣f̂ (0)(ρi)− Yi

∣∣∣
(6.6)

As the initial f̂ (0)(ρi) we used the m-nearest neighbors algorithm (with m = 10),
which simply estimates f(ρ) as the median of the m measurements Yi corresponding to
the ρi’s nearest to ρ. In this way, we seek to find a curve that fits the bulk of the data,
and minimize the effect of outliers. Moreover, convergence is not guaranteed for the
reweighting algorithm. We deal with this situation (which may be detected by checking
if the total absolute error has increased from one iteration to the next) by falling back
to these default weights.

6.4 Comparison of the Regression Methods

In this section we will present a performance study of the two regression methods, so
as to quantify some of their aspects that we have so far discussed based on intuition.
In particular we are interested in the total time consumed by each method and the
obtained precision. All calculations were performed in MATLAB (in particular, all QP
solving was done using the optimization toolbox provided by MOSEK [83]) running on
a laptop with a t5600 @1.83 GHz processor and 3GB of RAM. The training sets were
constructed with measurements resulting from the trace mentioned in Sec. 6.3.1 (we
will note the whole set of measurements as (ρ, Y)).

6.4.1 Dependence on N

In this subsection we will analyze the performance of the algorithms as we change N
(the size of the training set), in particular the computation time they require. To
encompass as many operation points as possible, we separated (ρ, Y) into 5 equally
sized subsets (ρ, Y)m=1,..,5 so that max{(ρ, Y)m1} < min{(ρ, Y)m2} ∀m1 < m2. From
each of these subsets we took N/5 random measurements to construct a training set,
to which the two regression methods were applied. For each training set size N , the
procedure was repeated 10 times. For CPLF, the maximum number of segments k was
fixed at 10.

Figure 6.2 shows the boxplots of the results obtained by each method from N =
100 to N = 700. We may clearly appreciate that the computation time for CNWLS

Chapter 6. Minimum Congestion Load-Balancing: Learning the Cost Function 77

is quadratic on the number of available observations, while for CPLF it is roughly
linear. This means that although at relatively low values of N the performance of the
two methods may be considered as equivalent, as N increases CNWLS may become
prohibitive. However, it should be noted that although in median the computation time
of CPLF is small, there is a non-negligible probability that it may be very important.
This is due to the oscillatory behavior of CPLF we discussed in Sec. 6.3.3. Even if we
intended to try 10 random initial partitions (like in our case) we may end up actually
doing many more.

100 200 300 400 500 600 700
0

50

100

150

200

250

300

350

400

450

T
im

e
 (

s
e
c
)

N

(a) CNWLS

100 200 300 400 500 600 700
0

50

100

150

200

250

300

350

400

450

T
im

e
 (

s
e
c
)

N

(b) CPLF

Figure 6.2: The time consumed by each method as we change N (the number of
observations in the training set)

6.4.2 Dependence on k

In this subsection we will study the performance of CPLF as we change k (the maxi-
mum number of (αj , βj) pairs), and compare it with the optimum solution obtained by
CNWLS. The procedure to construct the training set was the same as before, except
that measurements were taken exclusively from the second day of the trace and we
fixed N at 300.

As the precision indicator we will use the median of the absolute error obtained
by applying the corresponding f̂(ρ) to the rest of the measurements in the 24 hours
period. We preferred the median to the mean because of the extreme outliers we
already discussed. In Fig. 6.3 we can see the absolute errors obtained by the two
methods in a typical training and validation set. Note how the extreme values for
10000 < ρ < 12000 kB/s result in an average error that is very similar for both methods.
However, the median for CNWLS is significantly smaller than for CPLF. It should be
clear from the graph that CNWLS is the most precise of both methods, and the mean
not reflecting this fact makes it an inadequate indicator.

A natural question that may arise from the above observations is why not minimize
the median error in (6.4). First of all, such problem with the addition of shape re-
strictions is extremely difficult and escapes the scope of this thesis. Secondly, it is not

78 6.4. Comparison of the Regression Methods

0.5 1 1.5 2

x 10
4

10
−2

10
0

10
2

10
4

ρ (kB/s)

A
b

s
o

lu
te

 e
rr

o
r

CNWLS
CPLF
mean CNWLS
mean CPLF
median CNWLS
median CPLF

Figure 6.3: The absolute error for each measurement in the validation set for the two
methods in an arbitrary example (k=2)

clear that completely ignoring extreme values, like the median error does, is the best
solution. For instance, in Fig. 6.1 it could result in not using the measurements with
ρl > 15000 kB/s.

The precision obtained by each method at different values of k is presented in
Fig. 6.4. Although CNWLS is obviously not influenced by k, the graph shows its
performance when applied over the same training set as CPLF. We may verify that
CNWLS systematically obtains the best results. Although its weights are not adjusted
optimally, the fact that it “finds” the best value of k (N∗ in its case) for each particular
training set, and that its corresponding optimization problem can be solved exactly,
compensate this disadvantage. Note how for CPLF, after a rapid decrease, the error
becomes constant for all k bigger than 4. This means that in general, setting k to a
cautious value such as k = 10 (cautious in the sense that we are sure we are in the
constant part of Fig. 6.4(b)) should be a reasonable choice.

1 2 3 4 5 6 7 8 9 10
10

0

10
1

M
e
d
ia

n
 A

b
s
o
lu

te
 E

rr
o
r

k

(a) CNWLS

1 2 3 4 5 6 7 8 9 10
10

0

10
1

M
e
d
ia

n
 A

b
s
o
lu

te
 E

rr
o
r

k

(b) CPLF

Figure 6.4: Median absolute error obtained by each method as we change k (the max-
imum number of segments in CPLF)

We have already studied the time performance of each algorithm as we changed N .

Chapter 6. Minimum Congestion Load-Balancing: Learning the Cost Function 79

We will now comment on its dependence on k. For the same cases as before, we have
measured the total time consumed by each method. The results may be seen in Fig.
6.5. We have again included the results for CNWLS only as a reference. Surprisingly,
the time consumed by CPLF is almost independent of k (except at its lower values).
Notice that this behavior is similar to the one obtained in Fig. 6.4(b). As mentioned
before, for CPLF k is only the maximum number of pairs. If during an iteration one of
the partitions is emptied, it is discarded, and does not influence future computations
any longer. This explains why in Fig. 6.4(b) after k ≈ 4 the error is constant (for the
heuristic, more segments are unnecessary) and the same happens for the computation
time (except for some few iterations, the computation is the same for k ≥ 4).

1 2 3 4 5 6 7 8 9 10

0

50

100

150

T
im

e
 (

s
e
c
)

k

(a) CNWLS

1 2 3 4 5 6 7 8 9 10

0

50

100

150

T
im

e
 (

s
e
c
)

k

(b) CPLF

Figure 6.5: The time consumed by each method as we change k (the maximum number
of segments in CPLF)

6.5 Some Regression Examples

Function Estimation Accuracy

We finish this chapter by presenting two illustrative regression examples. The first one
bears on the precision of the regression methods, specially in terms of the derivative
φ̂(ρ). In this first example we will use a training set obtained through the ns-2 simulator.
A single commodity with a single two-link path generates TCP flows of a random size
(exponentially distributed with mean 20 kB). Flows are generated as a Poisson process
with an intensity that changes over time. The first link has a capacity of 2 Mbps and the
second 1Mbps. We concentrate on the queue from the second node to the destination.
The training set together with the real function f(ρ) may be seen in Fig. 6.6. The
measurements (235 in total) were obtained by averaging over a two minute period,
while the real function was obtained by averaging over long periods with the same
traffic intensity. Observe that the precision of both methods in this case is remarkably
good (in particular, for CPLF we used k = 10). Except for a small underestimation at
the higher loads (due to the fewer number of observations) the real function and the
estimations are almost identical.

80 6.5. Some Regression Examples

0 20 40 60 80 100
0

5

10

15

ρ (kB/s)

M
e

a
n

 Q
u

e
u

e
 S

iz
e

 (
k
B

)

Actual f(ρ)

Measurements

f(ρ) CNWLS

f(ρ) CPLF

Figure 6.6: Noisy measurements, the real function f(ρ), and the regression f̂(ρ) for
CNWLS and CPLF in the first example

More interesting for our purposes is Fig. 6.7 which shows the real derivative (ob-
tained by a simple difference quotient of the real function f(ρ)) and the regression for
both methods. The first aspect that should be noted is that, since f̂(ρ) is estimated as
a piecewise linear function, the estimated φ̂(ρ) is piecewise constant. As we mentioned
in Sec. 6.2, fl(ρl) should be continuously differentiable, meaning that φl(ρl) should be
continuous, a condition that our estimation clearly does not fulfill. To address this issue
we took a very simple approach, and approximate this piecewise constant function by
a continuous piecewise linear one. The idea is the following. The piecewise constant
function φ̂(ρ) may be characterized by the intervals in which its value is constant, and
the corresponding value. If we have N∗ pairs, we will have N∗ of these intervals. We
will assume that the first of these intervals starts at 0 and the last ends at the last
available observation in the training set. Let us note the center of these intervals as ρj ,
where we will assume that ρj1 < ρj2 ∀j1 < j2. If we have to estimate the cost at a load
ρ between ρj and ρj+1, then our continuous estimation will be:

φ̂∗(ρ) =
ρj+1 − ρ

ρj+1 − ρj
φ̂(ρj) +

ρ− ρj

ρj+1 − ρj
φ̂(ρj+1) (6.7)

If we have to estimate the cost for ρ < ρ1, we will then assume that there is a ρ0 = 0
and that its cost is φ̂(ρ0) = 0. If we are on the other end and have to estimate the cost for
ρ > ρN∗ , we will simply return φ̂(ρN∗). To characterize our continuous approximation
we then require only the interval centers {ρj}j=1,..,N∗ and their associated cost φ̂(ρj).

To clarify the explanation, we included in Fig. 6.7 this continuous approximation.
Interestingly enough, φ̂∗(ρ) is actually a better approximation of φ(ρ) than the original
φ̂(ρ). It is only natural that φ(ρ) is softer than a piecewise constant function. Finally,
note that the resulting estimation for both methods becomes constant after, at the
latest, no more observations are available. This aspect, which is due to the shape of
the regression function, could be problematic and shall be further discussed later.

Let us finally mention that this continuous requirement is not necessary if we were
to implement a centralized optimization scheme. Actually, minimization of a piecewise

Chapter 6. Minimum Congestion Load-Balancing: Learning the Cost Function 81

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

ρ (kB/s)

Actual φ(ρ)

φ(ρ) CNWLS

φ*(ρ) CNWLS

(a) The real derivative φ(ρ), and the

regression φ̂(ρ) for CNWLS

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

ρ (kB/s)

Actual φ(ρ)

φ(ρ) CPLF

φ*(ρ) CPLF

(b) The real derivative φ(ρ), and the

regression φ̂(ρ) for CPLF

Figure 6.7: The derivative estimation for the first example

linear function can be easily transformed into a linear optimization problem, for which
very fast solvers exist. However, our final objective is to design distributed schemes to
solve the problem. As we shall see in the next chapter, the distributed optimization
algorithm we propose (and probably all distributed optimization methods) requires a
continuously differentiable fl(ρl) function.

Outliers Impact

We finish this section by presenting an example where we may appreciate the impact
of the outliers on the two methods. We have used 720 random observations from the
second day of the trace we used in the previous sections. The resulting approximative
function f̂(ρ) for the two methods may be seen in Fig. 6.8(a) (for CPLF we used
k = 10). Note that, as already discussed in the previous section, CNWLS follows the
bulk of the observations more closely than CPLF. The latter is greatly influenced by
the relatively few (but significantly bigger than the rest) mean queue size measurements
around ρ = 10.000 kB/s.

0.5 1 1.5 2

x 10
4

10
0

10
2

10
4

ρ (kB/s)

M
e

a
n

 Q
u

e
u

e
 S

iz
e

 (
k
B

)

Training
CNWLS
CPLF

(a) The estimation of the mean queue size
function

10
0

10
2

10
4

10
6

10
−4

10
−2

10
0

10
2

−α

β

CNWLS (complete)
CNWLS
CPLF

(b) The (αj , βj) pairs in the plane

Figure 6.8: The second regression example

82 6.6. Related Work

Finally, we will use this example to illustrate the fact that the actual number of
different (αj , βj) pairs for CNWLS is very small when compared to N . Figure 6.8(b)
shows these pairs in the plane for another random 720 measurements long training set.
Notice that, while N is equal to 720, N∗ (the number of significantly different pairs)
is only 14. A very simple clustering algorithm may be used to estimate the final set
of pairs. For instance, consider A as the set of N∗ (αj , βj) pairs that we shall finally
consider in CNWLS. We may initialize this set with any pair of the complete set, and
then iterate through the whole set, adding to A only those pairs whose relative difference
in α or β with all the elements in A is bigger than a certain threshold. Concerning
CPLF, the final number of pairs was reduced from 10 to 3.

Finally, let us highlight that Sec. 8.1.1 provides, after discussing some of the im-
plementation issues associated with this framework, further considerations on which of
the two regression methods should be preferred.

6.6 Related Work

Non-Parametric Convex Regression

In addition to CNWLS and CPLF, there exist other methods that make no assumptions
on the regression function f̂(ρ) and allow one to obtain its derivative. Probably the
most prominent alternative is Local Polynomial Regression (for a good overview of
this and other regression methods see [84]). This kernel-type regression method allows
one to estimate any order derivative of the regression function through a standard
weighted least square problem. However, it presents several shortcomings. First of
all, evaluating the regression function at any point is as costly as the regression itself,
i.e. a weighted least square problem has to be solved every time the function or its
derivative is evaluated. In a way, the functional representation of f̂(ρ) is the whole
training set, which can be relatively big (compare this to CNWLS or CPLF, where
f̂(ρ) is represented by N∗ and k parameters respectively). Secondly, all kernel-type
methods suffer from the so-called bias-variance tradeoff, controlled by the bandwidth
parameter, which can be very tricky to assign and on which the quality of the estimation
depends heavily. Finally, in order to enforce shape constraints, such as monotonicity
and convexity, “indirect” methods have to be used. For instance, [85] describes a
method to transform the training set so that when the local polynomial method is
applied, shape restrictions are assured. Anyway, the intrinsic problems of kernel-type
methods we already mentioned are still present.

Non-Parametric Minimum Congestion Load-Balancing

To the best of our knowledge, there is only one paper similar to the ideas presented in
this chapter. The authors of [86] present a dynamic load-balancing method that also
strives to find the minimum congestion routing configuration. Differently to our work,

Chapter 6. Minimum Congestion Load-Balancing: Learning the Cost Function 83

they do not assume any model for the mean queue size function (i.e. this function is now
fl(W), where the argument is the whole packet input process during the time period).
Their approach to characterize the optimum is however relatively similar, in the sense
that, based on the results discussed in Sec. 6.2, they use an algorithm similar to MATE
on the path cost φP =

∑
l∈P

∂fl

∂ρl
. To estimate this derivative in such general case, they

use the so-called Perturbation Analysis, which requires measuring the moment each
packet enters and leaves the queue of link l.

The first disadvantage of this method is the measurements it requires. At the time
of the proposal (late eighties), the assumption that the moment at which each packet
of each link enters and leaves the queue was measurable, was somewhat reasonable.
Nowadays, it simply cannot be done. Its second disadvantage, which at first may seem
like the contrary, is the level of generality of their model. The optimization problem
they wish to solve assumes a mean queue size function that depends solely on ρl (just
like ours). However, their estimation of the derivative does not make such supposition,
but depends on the whole packet process. This means that fl depends on many more
and unknown variables than just ρl. Note that since commodities may only change the
portion of traffic sent through each path, these new variables are not controllable by
them. This translates into oscillations, as presented in the original paper.

All in all, although our framework does not use the most general model, it does
assume a “controllable” one. We can then guarantee convergence and stability, and
expect that the mean total delay (or total congestion) obtained by the resulting demand
vector is a good approximation of the absolute minimum. Moreover, the measurements
required by our framework are available in most routers and need not be extremely
precise.

Chapter7

Achieving the Optimum: Routing Games

and No-Regret Algorithms

7.1 Greedy Load-Balancing

In this section we present and discuss how to solve (5.2) and (6.1) in a distributed
fashion. The solution to these problems have been characterized in Sec. 5.2 and 6.2
respectively. In both cases, having defined a certain path cost function φP , the optimum
demand vector is the one in which, for each commodity, paths that are used present
the minimum φP . As we shall now present, this situation may be regarded as the
equilibrium resulting from OD pairs that use greedy load-balancing mechanisms.

In this kind of schemes, each commodity greedily minimizes the cost it obtains from
each of its paths. This context constitutes an ideal case study for game theory, and is
known as Routing Game in its lingo [19]. In a routing game like ours, where the traffic
generated by a commodity may be arbitrarily distributed among paths, commodities
are assumed to be constituted of an infinite number of agents. These agents control
an infinitesimal amount of traffic, and decide along which path to send their traffic
(dPsi

/ds represents then the fraction that have Psi as their choice for commodity s).
If each of these agents acts selfishly, then the system will be at equilibrium when no
agent may decrease its cost by unilaterally changing its path decision. This situation
constitutes what is known as a Wardrop Equilibrium (WE) [20], which is formally
defined as follows:

Definition 1. A demand vector is a Wardrop Equilibrium if for each commodity s =
1 . . . S and for each path Psi with dPsi

> 0 it holds that φPsi
≤ φPsj

for all Psj ∈ Ps.

It is easy to see that in a WE, and for any given commodity, all paths with dP > 0
have the same cost φP , namely the minimum among all paths of the corresponding
commodity. It should be clear then that the optimum demand vector and the WE (for

85

86 7.1. Greedy Load-Balancing

the corresponding path cost φP) are the same. We will then study how to achieve the
WE given φP . However, let us first review the two most important kinds of games:
Congestion Routing Games and Bottleneck Routing Games. We will also give a new
interpretation to the utility maximization load-balancing scheme we presented in Ch. 5.

Congestion Routing Games

In both congestion and routing games, we first define a certain link cost function φl(ρl).
The defining characteristic of a congestion game is that the path cost function is the
addition of this link cost; i.e. φP =

∑
l∈P φl(ρl). The idea is that φl(ρl), called in this

context the latency function, represents the delay incurred by traffic traversing link
l (hence the name congestion). In fact, the concept of a WE was introduced in the
context of transportation, where the objective was to characterize the equilibrium of
car users that greedily strive to minimize their travel time.

A well-known result first observed in [87] is that, if each user acts selfishly and φl(ρl)
is nonnegative, nondecreasing and continuous, the resulting WE will not minimize the
mean delay, but will result in a local minimum of the so-called potential function:

Φ(d) =
L∑

l=1

∫ ρl

0
φl(x)dx (7.1)

This result may be regarded as equivalent to the one we obtained in Sec. 6.2 (and
is obtained almost in the same way): if we substitute φl(ρl) by f ′l (ρl) in the above
equation, we may easily verify that the WE coincides with the unique global minimum
of
∑

l fl(ρl). Note that game theory is mostly interested in characterizing the resulting
equilibrium of greedy users. For instance, there are several papers that study the so-
called Price of Anarchy [88] (the ratio between the worst WE and the optimum of
a certain objective function) or the Price of Equilibrium [89] (the ratio between the
best WE and the optimum). We will proceed inversely. That is to say, given that
the solution to our problem is a WE, we will study mechanisms that converge to this
equilibrium.

Bottleneck Routing Games

Differently to congestion games, the path cost function in a bottleneck routing game is
defined as the maximum among links of φl(ρl); i.e. φP = max

l∈P
φl(ρl). This time, moti-

vation comes from networking, particularly in the context of minimizing the maximum
link utilization, as it is the case for Robust Routing (cf. Sec. 4.2.1) or REPLEX (cf.
Sec. 4.3).

The authors of [90] studied general bottleneck games where the objective is to
minimize the biggest link cost in the network, and showed that although the price of

Chapter 7. Achieving the Optimum: Routing Games and No-Regret Algorithms 87

anarchy is unbounded, the price of stability is 1 under the so-called efficiency condi-
tion [90] (i.e. every WE that fulfills this condition is optimum):

Definition 2. Let N(P) denote the number of network bottlenecks over P ; that is to

say N(P) =

∣∣∣∣

{
l ∈ P : φl(ρl) = max

m∈E,ρm>0
{φm(ρm)}

}∣∣∣∣. Then, WE d is said to satisfy the

efficiency condition if all commodities route their traffic along paths with a minimum
number of network bottlenecks; i.e. for all Psi ∈ Ps with dPsi

> 0 it holds that N(Psi) ≤
N(Psj).

This definition may be interpreted as a second level path cost function that measures
the number of bottlenecks in the given path. This result, which is relatively new,
was not applied in the design of neither TeXCP or REPLEX, both of which strive to
minimize the maximum link utilization by means of a greedy algorithm in the path
utilization. It could then be the case that these algorithms converge to a sub-optimal
WE. Towards the end of the Evaluation chapter (Ch. 8) we will discuss the possible
consequences on the obtained performance of ignoring this result, and propose a possible
alternative path cost function that strives to converge to the optimum WE.

Utility Maximization Routing Game

The utility maximization load-balancing framework we proposed in Ch. 5 may be in-
terpreted as a mixture between congestion and bottleneck games. Instead of starting
from the optimization problem (5.2), we could have simply assumed a bottleneck game
(where φl(ρl) = −U(cl− ρl)), but where the objective function is the weighted mean of
φP (like in a congestion routing game). With this new interpretation, the path cost we
proposed in Sec. 5.2 may be regarded as a necessary correction to φP so that the WE
coincides with the optimum.

7.2 No-Regret Algorithms

7.2.1 Definition and Results

In this section we will present an algorithm that, given the path cost φP , converges to
the corresponding WE. In particular, we will consider so-called No-Regret algorithms.
As mentioned in Sec. 4.3, previously proposed DLB algorithms always include a param-
eter that controls the convergence speed, which is very tricky to assign. Although for
each algorithm there exists a range for this parameter in which it is stable, these values
result in unresponsiveness in certain situations. We could simply increase this param-
eter, but this may result in oscillations. To avoid this reactivity-stability tradeoff, we
will use a variation of the Incrementally Adaptive Weighted Majority Algorithm [22] (a
no-regret algorithm), which presents the advantage of being completely self-regulated.

88 7.2. No-Regret Algorithms

Before actually presenting the algorithm, let us present the result on convergence to
the WE of no-regret algorithms, for which certain definitions are required. This kind of
algorithm is iteratively applied over time, and as such we shall note the demand vector
at time-step t as dt. In the context of a routing game, the per-time-step regret incurred
by a commodity is defined as the difference between its average path cost and the cost
of the best fixed path at hindsight. That is to say, for a total time T , per-time-step
regret for commodity s is defined as follows:

1

Tds

T∑

t=1

∑

P∈Ps

dt
Pφ

t
P −

1

T
min
P∈Ps

T∑

t=1

φt
P (7.2)

The term regret comes from the fact that (7.2) measures the mean extra cost we in-
curred by not using exclusively the cheapest path (in the considered time interval). No-
Regret algorithms are those for which the per-time-step regret may be upper bounded
by zero as T goes to infinity. The authors of [21] proved that if all commodities apply
no-regret algorithms, the resulting demand vector will converge towards the WE. Let
us formally present this result, for which we will first define an ǫ-Wardrop Equilibrium
(ǫ-WE) [21]:

Definition 3. A demand vector d is a ǫ-WE if its total average path cost is within ǫ
of the weighted mean cost of the minimum cost path available to each commodity, i.e.
S∑

s=1

∑

P∈Ps

dPφP −
S∑

s=1

ds min
P∈Ps

φP ≤ ǫ
S∑

s=1

ds.

Note that if φP ≥ 0 a 0-WE is simply a normal WE. Let us define as Tǫ the
number of time steps required to bound (7.2) by ǫ. We may now formally present the
convergence result as obtained in [21]:

Theorem 2. For a link-cost function φl(ρl) with maximum slope δ, for all but a ǫ′

fraction of steps up to time Tǫ, d
t is a ǫ′-WE, where ǫ = Ω

(
ǫ′4

δ|E|4+δ2|V |2

)
. Moreover,

Tǫ depends quadratically on δ.

Intuitively, this means that for most time steps, the instantaneous demand vector
dt is very near the WE, and this difference vanishes with time. However, it should be
noted that the bigger the maximum derivative of φl(ρl), the slower the convergence
speed. This means that, as mentioned in Sec. 6.5, φl(ρl) should be continuous for the
algorithm to converge.

7.2.2 A No-Regret Algorithm: iAWM

The result presented in the previous subsection is very general, in the sense that it
does not specify any algorithm in particular. Its only requirement is the use of no-
regret algorithms by all OD pairs. In particular, we will consider the Incrementally
Adaptive Weighted Majority (iAWM) algorithm [22], which originated in the context of

Chapter 7. Achieving the Optimum: Routing Games and No-Regret Algorithms 89

online learning, in particular from the online prediction using expert advice problem [91,
92]. The algorithm does not only obtain a very good upper bound on the regret, but
also presents the desirable characteristic of not requiring any parameter tuning. The
complete pseudo-code for commodity s is described below.

Algorithm 3 Incrementally Adaptive Weighted Majority (iAWM) Algorithm

Lt
Psi

= 0 ∀i = 1, . . . , ns

for t = 1, . . . ,∞ do

Receive the path cost φt
Psi
∈ [0, 1] ∀i

Lt−1
s ← min

i=1,..,ns

Lt−1
Psi

εts ← min

{
1
4 ,

√
2 log ns

Lt−1
s

}

λt
s ←

1
1−εt

s

W t
s ←

∑ns

i=1(λ
t
s)

−Lt−1
Psi

ωt
Psi
← (λt

s)
−Lt−1

Psi /W t
s ∀i

Adjust the demand vector: dt
Psi

= ωt
Psi
ds ∀i

Receive the outcome yt
s ∈ [0, 1]

Update the path regret Lt
Psi
← Lt−1

Psi
+ |yt

s − φ
t
Psi
| ∀i

end for

Each path has a corresponding regret Lt
Psi

that measures its performance up to time-
step t (the bigger the path’s regret, the worse its performance), which is initialized at
0 for all paths. At each time-step, the OD pair performs roughly four steps. Firstly,
it receives the cost φt

Psi
of each of its paths. Secondly, it calculates the value of λt

s

(called the learning rate). Note how as the minimum regret among all ns paths (Lt−1
s)

increases, λt
s decreases accordingly.

The third step is to adjust the demand vector. The portion of traffic sent along
path Psi (noted as ωt

Psi
) depends on λt

s and on the corresponding path’s regret Lt
Psi

.
Naturally, those paths with a smaller regret will get more traffic. Moreover, note that
for the same set of regret values, the portion of traffic sent along the best path is bigger
as λt

s increases. In a sense, λt
s controls the speed of the algorithm: the bigger the

learning rate, the more reactive the demand vector adjustment. The interesting aspect
of iAWM is that λt

s is automatically tuned. As mentioned before, as the regret of the
best path increases, the algorithm’s speed decreases.

The fourth and final step is to update the path’s regret Lt
Psi

. This is performed by
simply accumulating the absolute difference between the path cost φt

Psi
and a certain

value yt
s (called outcome). Let us define ŷt

s =
∑ns

i=1 ω
t
Psi
φt

Psi
. It may be proved that for

any arbitrary sequence yt
s of length T , the following inequality is verified when T goes

to infinity [22]:

T∑

t=1

∣∣∣ŷt
s − y

t
s

∣∣∣− LT
s ≤ (2.83 + o(1))

√
LT

s log ns (7.3)

90 7.2. No-Regret Algorithms

The outcome yt
s is a value that we consider as the objective. We shall now see that

any value smaller than or equal to all path costs will serve our purposes. In particular,
we have used:

yt
s = min

i=1,..,ns

φt
Psi

The following theorem proves that iAWM is no-regret in the context of a routing
game.

Theorem 3. The algorithm iAWM using yt
s = min

i=1,..,ns

φt
Psi

is no-regret in the context

of a routing game.

Proof. We need to prove that (7.2) is bounded, and that this bound goes to zero with
T . In this case, it may be written as:

1

T

(
T∑

t=1

ns∑

i=1

dt
Psi

ds
φt

Psi
− min

i=1,..,ns

T∑

t=1

φt
Psi

)

=

1

T

(
T∑

t=1

ns∑

i=1

ωt
Psi
φt

Psi
−

T∑

t=1

(yt
s − y

t
s)− min

i=1,..,ns

T∑

t=1

φt
Psi

)

=

1

T

(
T∑

t=1

(
ŷt

s − y
t
s

)
− min

i=1,..,ns

T∑

t=1

(
φt

Psi
− yt

s

))

=

1

T

(
T∑

t=1

∣∣∣ŷt
s − y

t
s

∣∣∣− min
i=1,..,ns

T∑

t=1

∣∣∣φt
Psi
− yt

s

∣∣∣

)

=

1

T

(
T∑

t=1

∣∣∣ŷt
s − y

t
s

∣∣∣− LT
s

)

≤
1

T
(2.83 + o(1))

√
LT

s log ns ≤

1

T
(2.83 + o(1))

√
T log ns →

T
0

As mentioned above, it is important that yt
s ≤ φt

Psi
∀i = 1, .., ns. This condition

allows us to take the absolute value in the fourth step in the proof above. Using yt
s =

min
i=1,..,ns

φt
Psi

means that when the algorithm converges the regret of the best path does

not increase. This fact will prove useful, as we will discuss later, when the algorithm is
used with real, time-changing demands.

Finally, note that iAWM requires the path costs to be in the interval [0, 1]. This
justifies the last inequality in the proof, since the regret of any path may never increase
more than one unit per time-step (i.e. LT

s ≤ T). However, the path cost discussed
in Ch. 6 is always positive, but its bound is not known a priori. In this case we can

address this issue by using the alternative path cost φ̂t
Psi

=
φt

Psi

max
P∈Ps

φt
P

. In the general case,

Chapter 7. Achieving the Optimum: Routing Games and No-Regret Algorithms 91

where φP may be any arbitrary real (as in the path cost discussed in Ch. 5), we can use

the alternative path cost φ̂t
Psi

=
φt

Psi
−Kt

s

max
P∈Ps

φt
P
−Kt

s+C0
, where C0 is a small constant to avoid

numerical problems and Kt
s is a lower bound to φt

P ∀P ∈ Ps (for instance, the smallest

cost seen so far). Note that a routing game that uses any of the two φ̂t
Psi

instead of the
original φt

Psi
still has the same WE.

7.3 Some Preliminary Simulations: iAWM-R

In this subsection we shall present some first simulations that will help us gain insight
into the framework and highlight one shortcoming of iAWM as it faces unforeseen
and abrupt changes in the traffic demand. This will justify the final version of the
load-balancing algorithm. Before, we will discuss how we performed these simulations.

As the reference network we used Abilene [93], an Internet2 backbone network.
Abilene consists of 12 router-level nodes connected by 30 links (only intra-domain links
were considered). The used topology and traffic demands are available at [94]. Traffic
data consists of 6 months of traffic matrices collected every 5 minutes via Netflow.
As measured demands do not significantly load the network, we re-scaled them by
multiplying all their entries by a constant. Paths were constructed as discussed in [23],
a method we will present with detail in Sec. 8.5.1. In particular, in this section we will
consider a congestion routing game where f̂l(ρl) is the same for all links in the network
(i.e. MinQ in Sec. 5.3), namely the one obtained in Sec. 6.5 for CNWLS and shown in
Fig. 6.8(a).

For the present simulation we will consider 200 TMs from dataset X06 in [94], whose
main characteristic is the anomalous increase of the traffic demand for two commodities.
The simulation will be performed as follows. The TMs are fed to the mechanism in
consecutive temporal order. The demand vector d is initiated at an arbitrary value
d0, which will be updated using iAWM as new link load measurements arrive. We will
assume that each OD pair receives these measurements every minute, meaning that
for each new TM the OD pairs will perform five updates of the portions of traffic sent
along each of their paths. We will then calculate the total mean delay (D(d) =

∑
l fl(ρl)

where fl(ρl) indicates the mean queue size, cf. Sec. 6.2) corresponding to each of these
minutes. As a reference, we also computed the optimum value of D(d) for every TM
on the dataset. The difference between the obtained D(d) and the optimum measures
how far is d from the WE.

In Fig. 7.1(a) we show the results corresponding to this simulation. Note how
iAWM rapidly converges to the optimum, and even when at t = 200 the first anomaly
starts, there is only a small difference between the obtained total mean delay and the
optimum. However, the behavior is quite the opposite for the second anomaly, which
starts at t ≈ 400. In this case, the overshoot is very important, and the convergence
time is more than 100 minutes (or iterations in our case).

92 7.3. Some Preliminary Simulations: iAWM-R

0 100 200 300 400 500 600 700

30

40

50

60

70

80

90

100

Time (min)

T
o
ta

l
M

e
a
n
 D

e
la

y
 (

k
B

)

Actual Minimum
iAWM

(a) iAWM

0 100 200 300 400 500 600 700

30

40

50

60

70

80

90

100

Time (min)

T
o
ta

l
M

e
a
n
 D

e
la

y
 (

k
B

)

Actual Minimum
iAWM−R

(b) iAWM-R

Figure 7.1: The total mean delay as a function of time for the two load-balancing
mechanisms

The reason behind this slow convergence is relatively simple. At the moment of the
anomaly, for the commodity in question, the path through which some of the traffic is
routed at optimality has a very bad history (i.e. a very big Lt

Psi
). This means that for

iAWM, this path has to be the cheapest for several iterations to revert its bad image
and start being able to route traffic. When an anomaly occurs, conditions severely
change and history should not be so relevant. If we consider that we are in such a
situation, we could for instance completely ignore history and restart iAWM by setting
Lt

Psi
= 0 ∀i for the commodity in question.

Regarding the decision of restarting iAWM, one may imagine several possibilities.
In particular, we will consider that if |yt

s − ŷ
t
s| is abnormally big, it constitutes a “sus-

picious” situation. By abnormally big, we mean that this difference exceeds the mean
in previous iterations by a certain threshold Lth

s ; in particular, we used Lth
s = 0.1 ∀s

(remember that yt
s and ŷt

s are in the interval [0, 1]). Such a situation should indicate
to us that the current situation does not correspond to what we have seen so far.
However, it could also be due to noisy measurements. We will then require that this
“suspicious” situation is repeated a certain amount mth

s of consecutive times (in our
case we used mth

s = 5 ∀s). The complete pseudo-code of this new algorithm, which
we called iAWM with Restart (iAWM-R) is presented below. The results obtained by
iAWM-R may be seen in Fig. 7.1(b). Note how the overshoot has now disappeared
almost completely. The temporal performance of iAWM-R will be further analyzed in
the following chapter.

Before finishing this section, let us further justify the choice we made on yt
s. With

yt
s = min

i=1,...,ns

φt
Psi

we have two important advantages. Firstly, as the algorithm con-

verges, |yt
s − ŷ

t
s| goes to zero. If we would have used, for instance, yt

s = 0, the “suspi-
cious” situation would manifest by a decrease in this difference, complicating its detec-
tion. Secondly, not increasing the best regret when convergence is reached, improves
the algorithm reactiveness (λt

s is not changed).

Chapter 7. Achieving the Optimum: Routing Games and No-Regret Algorithms 93

Algorithm 4 Incrementally Adaptive Weighted Majority with Restart (iAWM-R) Al-
gorithm

Initialize τ t
s ← 0, L̂t

s ← 0 and mt
s ← 0

for t = 1, . . . ,∞ do

Perform a normal iteration of iAWM.
τ t
s ← τ t−1

s + 1
L̂t

s ← L̂t−1
s + |yt

s − ŷ
t
s|

if |yt
s − ŷ

t
s| > L̂t

s/τ
t
s + L̂th

s then

mt
s ← mt−1

s + 1
else

mt
s ← 0

end if

if mt
s > mth

s then

Lt
Psi
← 0 ∀i = 1, .., ns

mt
s ← 0

τ t
s ← 0

end if

end for

7.4 Related Work

No-Regret in the Context of On-Line Learning

The no-regret framework has been discovered and re-discovered in many research areas.
For instance, in information theory [95] or computer science [96] (where it is called
Competitive Analysis). As mentioned before, in this chapter we have considered an
algorithm that comes from the context of online learning, in particular from the online
prediction using expert advice problem. In this problem, in a sequence of time-steps,
a learning algorithm is required to predict a value yt. To produce its prediction, this
algorithm takes into account the advice of N experts, where the advice of each expert
is simply its prediction of yt. After deciding its prediction ŷt, the algorithm incurs a
loss, measured by the loss function L(ŷt, yt). Since it is impossible to guarantee an
overall quality of the algorithm, the objective is to design an algorithm that predicts
as well as the best expert for any sequence {yt}t=1,..,T , or at least that the difference
with it is bounded.

If we note the i-th expert advice at time-step t as ξt
i , the loss of this expert is defined

as:

Li =
T∑

t=1

L(ξt
i , y

t)

The best expert in hindsight is the one that obtains the smallest loss, which we

94 7.4. Related Work

shall note as L∗. Analogously, the loss of the algorithm is:

Lalg =
T∑

t=1

L(ŷt, yt)

The regret of the algorithm in this context is the difference between Lalg and L∗.
The idea is then to define an algorithm whose regret is bounded. In the previous
section, for reasons that should be clear now, we used the absolute loss function, i.e.
L(ŷt, yt) = |ŷt − yt|. Although it is probably the most common loss function, it has
proved very challenging to design algorithms for it, and is still an active research area.
In addition to the loss functions, the difference between no-regret algorithms also lies
in the way of calculating the prediction ŷt. In particular, and in order to associate each
path with an expert, we used an algorithm whose prediction is a weighted mean of the
experts’ prediction.

Finally, let us highlight the recent article [97]. In it, the authors propose an online
learning algorithm that, similarly to iAWM, is completely self-tuned. However, it
presents the advantage of not requiring the outcome yt or the paths cost φt

P to be
in [0, 1], and they may be any arbitrary real. We have only very recently found this
article, and because of this we did not consider it further in the thesis. However,

preliminary simulations made us realize that using φ̂t
Psi

=
φt

Psi

max
P∈Ps

φt
P

presents a very

important advantage: similarly to the situation that gave place to the reset in iAWM-
R, not dividing may slow significantly the convergence speed of the algorithm (a single
very big φt

P may take several time-steps to revert).

Tracking the Best Expert

Adapting on-line learning algorithms to non-stationary environments, as we have just
discussed for iAWM, is an active research area. The alternative to restarting, is the
more “continuous” framework of tracking the best expert [98]. The objective is the
same as in the no-regret framework, except that we consider that time is divided into
segments, and that each of them has a best expert. Performance of the algorithm is then
compared to the performance obtained by this sequence of experts. Although it would
be interesting to adapt such algorithms to be used for load-balancing, several aspects
remain to be addressed. Firstly, convergence to the Wardrop Equilibrium has not been
proved. Secondly, these algorithms are not self-configured which, as we discussed, is a
very important property.

REPLEX: Exploration-Replication Policy

Regarding convergence to a WE, arguably the most prominent alternative to no-regret
algorithms is REPLEX [6] (based on the game-theoretic algorithm presented in [64]),

Chapter 7. Achieving the Optimum: Routing Games and No-Regret Algorithms 95

which we introduced in Sec. 4.3. Below, we can see the algorithm that each commodity
executes in turn.

Algorithm 5 The REPLEX algorithm

ω′
Psi
← ωPsi

∀i = 1, .., ns

for every pair of paths Psi, Psj of commodity s do

if φPsi
> φPsj

then

δ ← λ
(
(1− β)ωPsj

+ β
ns

) φPsi
−φPsj

φPsi
+α

ω′
Psi
← ω′

Psi
− δ

ω′
Psj
← ω′

Psj
+ δ

end if

end for

ωPsi
← ω′

Psi
∀i = 1, .., ns

The algorithm converges to the WE as long as λ (the parameter that controls the
speed of convergence) is smaller than k/r, where k > 0 is a suitable constant and r is
an upper-bound to the relative slope of all φl(ρl), which is defined as follows [64]:

Definition 4. A differentiable cost function φl(x) has relative slope r at x if φ′l(x) ≤
rφl(x)/x. A cost function has relative slope r if it has relative slope r over the entire
range [0, 1].

Intuitively, migration from one path to the other should be slow if the cost function
has abrupt changes. On the other hand, if the cost function is relatively “soft”, changes
may be faster. As discussed in [6], the values of α and β are not very influential, and
β = 0.1, α = 0 are generally good choices.

The most important inconvenience with REPLEX when compared with iAWM-
R is the presence of the speed controlling parameter λ, specially in what respects
guaranteeing convergence. Firstly, the numerical value of the constant k is not very
clear. It may be interpreted as 1/32 in the original paper (see the first paragraph in
Sec. 2 of [64]), while in [6] nothing is said about it. Secondly, the definition of the
relative slope only applies for cost functions whose argument is in the interval [0, 1], an
assumption that, at least in our case, we may not make.

Chapter8

Evaluation

8.1 Introduction

In this chapter we will present a thorough evaluation of the three main propositions
of this second part of the thesis. We will first study and compare the performance
obtained by maximizing the utility (Ch. 5), minimizing the total mean delay (Ch. 6)
or minimizing the maximum link utilization in the network. As in Sec. 7.3 we will
use real topologies and demands, so as to study the performance of these objective
functions in realistic scenarios. Secondly, we will concentrate on the minimum delay
scheme, and analyze the impact of using a realistic mean queue size function fl(ρl), as
opposed to a simplistic model (in our case, the M/M/1). Furthermore, we will analyze
the temporal validity of a fl(ρl) learned from measurements. That is to say, how often
does this function needs to be “relearned” so that the obtained performance is not
affected significantly. Last but not least, we will present several simulations of the
proposed load-balancing mechanism: iAWM-R (Ch. 7). We are particularly interested
in its reactivity and convergence. In this sense, we will compare the mechanism with a
Robust Routing scheme which, as mentioned in Sec. 4.2.1, is regarded as the alternative
to DLB.

8.1.1 Implementation Issues

Before presenting the evaluation, we will discuss several implementation issues arising
from each of the proposals.

Maximum Utility Load-Balancing

Let us first recall that in this case, the optimum traffic distribution d is the WE of the
following path cost:

97

98 8.1. Introduction

φPsi
= −U

(
min
l∈Psi

{cl − ρl}

)
+

∑

l:l∈Psi

θ̂l

where θ̂l =
S∑

s=1

∑

i:l∈Psi

θPsilU
′(cl − ρl)

θPsil =





dPsi

if l = argmin
l∈si

{cl − ρl}

0 otherwise

The first clear requirement of any load-balancing scheme is that border routers have
to be able to send arbitrary portions of traffic along the different paths. Secondly, in
this case in particular, and in order to measure dPsi

and calculate θPsil, interior routers
should distinguish between traffic belonging to a given path that is traversing its links.

These requirements are accomplished for instance by MPLS. Hashing can be used in
order to load-balance traffic with an arbitrary distribution [99] and packets belonging
to a given Psi can be identified by its label header. A counter for each of them should
be kept by interior routers, indicating the number of routed bytes belonging to a given
label. Periodically, each router calculates the corresponding dPsi

by dividing its counter
by the measurement interval, after which they reset it. The total load ρl is then
calculated as the sum of all dPsi

that use the link. The ABW of link l can be easily
calculated as the difference between the total capacity and this value. However, in
order to avoid numerical problems, the maximum between the ABW and a relatively
small value (for instance cl/100) should be used.

Another important aspect is the communication between links and the ingress
routers (we have assumed that these routers, through which commodities inject traffic
to the network, distribute this traffic). Explicit messages from the latter to the former
are not necessary, since communication in that sense is simply how much traffic com-
modity s is sending through link l. It is true that what actually reaches the link will
always be smaller or equal than originally at the source, but this approximation will
not affect the algorithm’s performance.

The most challenging communication in this case is from the link towards the ingress
router. We will use the same approach as TeXCP [5] and use probe packets, which in
our case will contain the path’s ABW and total cost (

∑
l:l∈Psi

θ̂l). Periodically, the
ingress router sends a probe packet, initially indicating as the path’s ABW and cost∞
and 0.0 respectively. As the probe advances towards the destination node, each interior
router checks the ABW indicated in it. If this value is bigger than that of the outgoing
link, the router overwrites it with the link’s ABW (and “remembers” it). When the
destination node receives the probe packet, he sends it back to the ingress router along
the same path but in the opposite direction. As it is going back, each interior router
checks whether the final ABW indicated on the probe packet is the one its link had
when the packet first passed. If this is the case, it means that it is the bottleneck of

Chapter 8. Evaluation 99

the particular path. It then calculates θPsil accordingly, updates the link’s total cost
θ̂l =

∑
s

∑
i:l∈Psi

θPsilU
′(cl − ρl), and adds this value to the total path cost indicated

on the packet. Finally, the ingress router receives the path’s ABW and total cost,
calculates φPsi

= −U (ABWPsi
) +

∑
l:l∈Psi

θ̂l and applies iAWM-R to update its load
distribution (i.e. one iteration in Algorithm 4).

Regression-Based Minimum Congestion Load-Balancing

The implementation of this framework in a real-world network is relatively simple. Once
all links have been characterized, each OD pair receives ρl from the links it uses (for
this purpose, a TE-enabled routing protocol such as OSPF-TE may be used), calculates
its paths’ cost using (6.7) for each link, and applies iAWM-R to update the portion of
traffic routed along each of them. This process is repeated regularly every few seconds.
Regarding this update period, and this applies to Dynamic Load-Balancing in general,
it should be long enough so that the quality of the measurements obtained is reasonable,
but not too long to avoid unresponsiveness (in particular, we suggest 60 sec).

Regarding the learning phase (i.e. gathering the training set and performing the
regression) we envisage several possibilities, differing in the degree of distribution of
the resulting architecture. One possibility is that a central entity gathers the mea-
surements, performs the regression and communicates the parameters obtained to all
ingress routers. This first possibility presents the advantage that the new functional-
ities required on the router are minimal. However, as all centralized schemes, it may
not be possible to implement in some network scenarios, and handling the failure of
this central entity could be very complicated. An alternative is that links (or rather,
the router at the origin of the link) perform the regression. Links keep the mean queue
size measurements for themselves, perform the regression and communicate the result
to ingress routers. The regression could be done once a day, in periods of low intensity
(i.e. the night) so that normal operation is not affected. As we shall discuss further
on, frequent updates in the regression function are not necessary.

An important aspect that should be analyzed is which measurements to keep for
the training set. It is clear that newer measurements should be given priority over older
ones. However, those corresponding to bigger loads will give us more information on
φl(ρl) (and are more rare). A possible structure for the measurements database could
be to partition the load into intervals, and keep the same amount of measurements per
interval, each of which will work as a FIFO queue. As mentioned before, those intervals
corresponding to bigger loads should be smaller, so as to have more information there.

Regarding the choice of the regression method, we have shown in Sec. 6.4 that
the precision obtained by CNWLS may be significantly better than that of CPLF.
However, as we shall present in Sec. 8.3.1, this translates in a difference in the obtained
total mean delay that is much smaller. In any case, whether the extra computational
burden incurred by CNWLS is worth the performance improvement depends on the
given situation. If the size of the training set we are working with is significant, or

100 8.2. The Three Objective Functions: A Performance Comparison

the computation capacity available limited, we could fall back on CPLF. If not, we
recommend using CNWLS. Not only does it obtain a better precision, but its solution
does not rely on a heuristic and may be calculated exactly.

8.2 The Three Objective Functions: A Performance Com-

parison

In this section we present a comparative study between the three objective functions
considered so far. We will reference each objective function the same way we did in
Sec. 5.3; i.e. MinQ (as in Minimum Queue), MinMaxU (as in Minimum Maximum
Utilization) and MaxU (Maximum Utility). Regarding MinMaxU, its objective is not
simply minimizing the maximum link utilization (umax), but rather converging to the
WE of a bottleneck game with φl(ρl) = ul (just like in TeXCP or REPLEX). It should
also be noted that the results we will show for MaxU were obtained by repeatedly
applying iAWM-R using the path cost φP defined in (5.10). Differently to Sec. 5.3,
MinQ will use a fl(ρl) that corresponds more to reality than the simple M/M/1 model
we used before. In particular, and as in Sec. 7.3, we shall use the estimated f̂l(ρ)
obtained by CNWLS in Sec. 6.5, and that may be seen in Fig. 6.8(a).

The comparison will be made in two real networks, with several real demands,
calculating for each of these TMs the optimum demand vector for the three objective
functions. Moreover, for each of these demand vectors and to be as fair as possible,
we will calculate the three performance indicators each objective function is interested
in, and whose importance we have already discussed: path’s ABW (ABWP), link
utilization (ul) and the total mean delay (D(d) =

∑
l fl(ρl)). We could consider other

performance indicators, such as path’s propagation delay. However, we shall suppose
that it has already been taken into account by the operator in the paths’ choice.

8.2.1 Abilene Network

In this subsection we present the performance analysis for Abilene [93], a network we
have already presented in Sec. 7.3. In this case, we used 613 demands (spanning a
complete week) from dataset X01 of [94]. The paths are the same we used in Sec. 7.3,
and were constructed as in [23].

We will first present the ABWP results. For each demand we calculated the
weighted mean ABWP , where the weight of path Psi is dPsi

. This average provides
us with a rough idea of the performance as perceived by traffic. A good value of this
average indicator could however hide some pathological cases where some portions of
traffic obtain a bad performance. That is why we also measured the 10% quantile and
the minimum ABWP . The comparison will be made by dividing the value obtained by
MaxU by those obtained by the other objective functions.

In Fig. 8.1 we can see the boxplots of the ABWP indicators. We first note that the

Chapter 8. Evaluation 101

weighted mean of ABWP is almost always bigger in MaxU than in MinQ or MinMaxU.
In particular, the increase with respect to MinMaxU is generally between 4% and 12%,
and it may be as big as 20%. On the other hand, the difference with MinQ is much
smaller, generally between 1% and 2%, and no more than 5%. Regarding the 90%
quantile and the minimum ABWP , and as expected, the best results are obtained by
MinMaxU. No conclusive results may be obtained when comparing MaxU and MinQ.

Mean 10% quantile Min
0.7

0.8

0.9

1

1.1

1.2

A
B

W
P
 (

g
a
in

)

(a) MaxU vs MinQ

Mean 10% quantile Min
0.7

0.8

0.9

1

1.1

1.2

A
B

W
P
 (

g
a
in

)

(b) MaxU vs MinMaxU

Figure 8.1: ABWP for MaxU, MinQ and MinMaxU in the Abilene network

We now turn our attention to the link utilization (ul) results. For each demand we
calculated the mean, 90% quantile and maximum utilization on the network for each
of the considered objective functions. The comparison will be made by making the dif-
ference between the indicator obtained by MinMaxU and the other two. Fig. 8.2 shows
these results. Firstly, and as expected, the best results in terms of the maximum link
utilization are obtained by MinMaxU, but with a difference that is generally no more
than 5%. Quite surprisingly, the 90% quantile and the mean are bigger in MinMaxU
than in the rest. The reason behind these results is that MinMaxU is so conservative
in its objective, that, although it minimizes the maximum link utilization, it overlooks
the less loaded links.

Mean 90% quantile Max

−0.1

−0.05

0

0.05

0.1

L
in

k
 U

ti
liz

a
ti
o
n
 (

d
if
f)

(a) MinQ vs MinMaxU

Mean 90% quantile Max

−0.1

−0.05

0

0.05

0.1

L
in

k
 U

ti
liz

a
ti
o
n
 (

d
if
f)

(b) MaxU vs MinMaxU

Figure 8.2: ul for MaxU, MinQ and MinMaxU in the Abilene network

Let us now discuss the results on total mean delay (D(d)). In this case, for each TM
we calculated the D(d) obtained by each of the objective functions, and we present the

102 8.2. The Three Objective Functions: A Performance Comparison

division of that obtained by MaxU and MinMaxU, by the optimum obtained by MinQ.
Figure 8.3 presents the results. Naturally, the best performance is achieved by MinQ.
Differently to the other performance indicators, the difference between the objective
functions may be significant this time. For instance, the increase in D(d) incurred by
MinMaxQ is generally between 15% and 30%, and may exceed 50%. On the other hand,
MaxU obtains relatively better results, with an increase that is generally between 5%
and 30% (with a median that is only 6%). However, the difference with MinQ may
exceed the 60%.

MaxU MinMaxU

1

1.5

2

2.5

3

T
o
ta

l
M

e
a
n
 D

e
la

y
 (

g
a
in

)

Figure 8.3: D(d) for MaxU, MinQ and MinMaxU in the Abilene network

8.2.2 Géant Network

The second case scenario is Géant [100]. This European academic network connects
23 nodes using 74 unidirectional links, with capacities that range from 155 Mbps to
10 Gbps. The topology and demands (383 in total, covering a three week period) were
obtained from TOTEM’s webpage [101, 102, 103]. In this case paths were constructed
by a shortest path algorithm, where we used the inverse of the capacity as the link’s
weight. For each commodity we computed two paths. The first is simply the shortest
path, we then prune the network of the links this path uses, and compute the second
shortest path.

Unfortunately, the great variety in link capacities forced us to use an artificial fl(ρl).
In this case, we assumed that the mean queue size depends solely on the link utilization
(as it is the case for the M/M/1 model). We had the realistic fl(ρl) we used in the
previous section, which corresponds to a link of capacity cref, given by the (αj , βj) pairs.
We then calculated fl(ρl) for an arbitrary capacity cl as follows:

fl(ρl) = max
j=1,...,N

{
αj + βj

cref
cl
ρl

}
(8.1)

This is equivalent to having the link characterization (αj , βjcref/cl) for a link with
capacity cl. The alternative to this approximation is to re-generate the training set
to obtain a new link characterization for each link capacity, for which there are two
possibilities. The first one is to simulate the router using as an input any packet

Chapter 8. Evaluation 103

trace, and simply decrease/increase the link capacity. This would be equivalent to
assuming that the link capacity does not influence the sources behavior, which is not
true, specially as we decrease it1. A second alternative is to try to generate a traffic
trace whose intensity depends on the link capacity (for instance, by thinnning the
input process). However, transforming the packet trace would influence its statistical
properties in ways we are not sure of, and designing such “invariant” transformation
clearly escapes the scope of the present work. We will then use the simple approximation
(8.1), but taking into account that these are artificial results, similar to using the
M/M/1 model. They should then be considered as illustrative of the general minimum-
congestion framework, rather than of our regression-based one.

Results for the ABWP in this case can be seen in Fig. 8.4. This time, the comparison
between MaxU and MinQ is more favorable to the former, specially in the 10% quantile
and minimum ABWP . Results for the mean ABWP are similar to those obtained for
Abilene, with a mean that is generally between 1% and 3%, and at most 7%. On the
other hand, the results of the comparison between MaxU and MinMaxU are relatively
similar to the ones obtained before. Although the difference is smaller, the mean ABWP

is still always bigger in MaxU, with an increase that is generally between 7% and 8%,
and as high as 11%. The most important difference is in the 90% quantile. This time
MaxU obtains the best results, with a difference that may be as big as 18%. With
respect to the minimum ABWP , the results are logically better for MinMaxU, but the
difference is generally not significant.

Mean 10% quantile Min
0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

A
B

W
P
 (

g
a
in

)

(a) MaxU vs MinQ

Mean 10% quantile Min
0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

A
B

W
P
 (

g
a
in

)

(b) MaxU vs MinMaxU

Figure 8.4: ABWP for MaxU, MinQ and MinMaxU in the Géant network

Figure 8.5 shows that the results for the link utilization are now more favorable to
MaxU than MinQ, specially in terms of the maximum link utilization. We may see
that the results obtained by MinQ are somewhat worse than before, with a difference
with respect to MinMaxU that is generally between 1% and 7%, and that may be as
much as 12%. On the other hand, the increase incurred by MaxU is always less than
5%, with a median of only 2%.

Finally, we present the results on the total mean delay for this case in Fig. 8.6. It

1Unfortunately, the only publicly available traffic trace we are aware of and which significantly loads
its link, is the one we used to obtain the present link characterization.

104 8.3. Regression-Based Minimum Congestion Load-Balancing

Mean 90% quantile Max

−0.1

−0.05

0

0.05

L
in

k
 U

ti
liz

a
ti
o
n
 (

d
if
f)

(a) MinQ vs MinMaxU

Mean 90% quantile Max

−0.1

−0.05

0

0.05

L
in

k
 U

ti
liz

a
ti
o
n
 (

d
if
f)

(b) MaxU vs MinMaxU

Figure 8.5: ul for MaxU, MinQ and MinMaxU in the Géant network

is interesting to note that the difference between the three objective functions is now
almost insignificant. It is very difficult to measure the influence of the approximation
we used to estimate fl(ρl) in this case, but it may seem that as link capacities are more
varied across the network, the difference in D(d) between the objective functions tends
to be smaller.

MaxU MinMaxU
1

1.02

1.04

1.06

1.08

1.1

T
o
ta

l
M

e
a
n
 D

e
la

y
 (

g
a
in

)

Figure 8.6: D(d) for MaxU, MinQ and MinMaxU in the Géant network

8.3 Regression-Based Minimum Congestion Load-Balancing

8.3.1 Assessing the Performance Gain

In this section we interest ourselves to the potential gain in total mean delay (D(d) =∑
l fl(ρl)) achieved by using a good estimation of the real fl(ρl) instead of a simplistic

model. We will also measure the loss in performance due to the relatively imprecise
estimation of CPLF with respect to CNWLS. As mentioned before, the most commonly
used model is M/M/1 [4] (which results in fl(ρl) = ρl/(cl − ρl)), and as such we will
use it as the reference. In particular, we will consider that the real mean queue size
function fl(ρl) is the one obtained by CNWLS in Fig. 6.8(a). The resulting derivative
for CNWLS as well as CPLF are shown in Fig. 8.7, where we also include the M/M/1
model (more precisely, a piecewise linear approximation of the M/M/1 model). It

Chapter 8. Evaluation 105

should be clear from the graph that if we assume the M/M/1 model instead of the real
fl(ρl) we would incur an increase of the total mean delay with respect to the optimum
that may be important.

To quantify this increase more precisely, we will compare their performance in the
Abilene topology, and as in Sec. 8.2.1 we will assume the same fl(ρl) for all links. We
will also consider the same 613 TMs we used in Sec. 8.2.1. For each of these traffic
demands, we calculated the optimum demand vector for each link cost function. We
will measure the difference in D(d) assuming the f̂l(ρl) obtained by CNWLS as the
true fl(ρl). Just like before, we shall note these schemes as MinQ, but this time we will
indicate the link cost function between parentheses (e.g. MinQ(CNWLS)).

0 0.5 1 1.5 2

x 10
4

10
−4

10
−2

10
0

10
2

ρ (kB/s)

φ(ρ) CNWLS

φ(ρ) CPLF

M/M/1

Figure 8.7: The estimated link cost used on the comparison and the M/M/1 model

In Fig. 8.8(a) we can see the boxplot of the results. In particular, for each traffic
demand we calculated D(d) for the considered cost functions: CNWLS, CPLF and
M/M/1. We present the division between the value obtained by each scheme and
MinQ(CNWLS). The results verify that the increase in total mean delay can be im-
portant when using the M/M/1 model. In particular, the total mean delay obtained
by MinQ(M/M/1) is generally between 5 and 55% bigger than the one obtained by
MinQ(CNWLS). This difference may actually go as high as a 135%, and in some cases
even more (although not shown for the sake of clarity of the graph, the actual maximum
was 600%). If we look carefully at Fig. 8.7 we can see that this difference originates
in the fact that the M/M/1 model underestimates φl(ρl). In particular, the abrupt
increase in queue size that occurs at ρ ≈ 12 MB/s, is also present in the M/M/1 esti-
mation, but at a much higher load of ρ ≈ 17.5 MB/s. This leads iAWM-R to “believe”
that links are operating at a low queue size load, when it is actually the opposite.
Regarding MinQ(CPLF), we may verify that the loss in precision does not seriously
impact the obtained performance. Except for some isolated cases where the difference
may be as big as 30%, the increase in total mean delay is generally between 0% and
15%.

For the sake of completeness, we will also make the comparison in terms of the link
utilization (i.e. ul = ρl/cl). As a reference for the comparison, and as in the previous
section, we will use the results obtained by MinMaxU. We will measure the three

106 8.3. Regression-Based Minimum Congestion Load-Balancing

MinQ(CPLF) MinQ(M/M/1)

1

1.5

2

2.5

3

T
o
ta

l
M

e
a
n
 D

e
la

y
 (

g
a
in

)

(a) MinQ(CPLF) and
MinQ(M/M/1) with respect to
MinQ(CNWLS)

1

1.5

2

2.5

3

T
o
ta

l
M

e
a
n
 D

e
la

y
 (

g
a
in

)

(b) Using the f̂l(ρl) of the day before

Figure 8.8: Increase in Total Mean Delay in the Abilene network

same network-wide performance indicators: the mean, 90% quantile and maximum
link utilization. We calculated the results obtained by all the mechanisms, and present
the difference between the reference and the other schemes, which we show in Fig. 8.9.
It should be noted that the results for all versions of MinQ are very similar, and as in
the previous section, the difference with the MinMaxU is not significant.

Mean 90% quantile Max

−0.15

−0.1

−0.05

0

0.05

0.1

L
in

k
 U

ti
liz

a
ti
o
n
 (

d
if
f)

(a) MinQ(CNWLS)

Mean 90% quantile Max

−0.15

−0.1

−0.05

0

0.05

0.1

L
in

k
 U

ti
liz

a
ti
o
n
 (

d
if
f)

(b) MinQ(CPLF)

Mean 90% quantile Max

−0.15

−0.1

−0.05

0

0.05

0.1

L
in

k
 U

ti
liz

a
ti
o
n
 (

d
if
f)

(c) MinQ(M/M/1)

Figure 8.9: Difference in link utilization between MinMaxU and the different versions
of MinQ in the Abilene network

Several conclusions may be drawn from these experiments, some of which we would
like to highlight. As shown in the graphs of Fig. 8.9, in terms of link utilization the
exact choice of fl(ρl) is not crucial as long as it is increasing, convex and diverges (or has
a big derivative) as it reaches cl. However, when it comes to minimizing the total mean
delay, this is no longer true. We have shown that the link queue size function obtained
from measurements differs from the M/M/1 model. Although this last statement is
not a novel result, we have also shown that this difference significantly impacts on the
obtained total mean delay. As shown in Fig. 8.7, the M/M/1 model fails to predict the
abrupt increase in mean queue size at relatively low loads. Whatever are the causes of
this increase (e.g. long-range dependence have been observed to generate big queueing
delays at relatively low loads [104]), it is probably the main reason behind this difference
in D(d). Finally, we have also shown that CPLF is a relatively good substitute of

Chapter 8. Evaluation 107

CNWLS and that its obtained total mean delay is close to the real optimum. It is
precisely because CPLF estimates this abrupt increase at a relatively precise link load
value that it obtains such good results.

8.3.2 Temporal Behavior

A natural question that arises in our framework is how often links need to be charac-
terized. In other words, how long can φ̂l(ρl) be used as a good approximation of φl(ρl)?
Although more frequent updates of the links characterization will mean a more optimal
or fine-tuned network, it will also mean greater computational expenses. This tradeoff
between the optimality of the network and computational burden should be addressed.

Here we will give a partial answer to this question, and, as a reference, provide
a lower bound to the validity of the link characterization used as a reference in the
previous subsection (which we will note as (αi, βi)PREV). The idea is the following.
From the same 72 hours long packet trace used before, we take the same 12 hours worth
of measurements, but from the next day. We will note the CNWLS characterization
resulting from this new training set as (αi, βi)NEXT. We now assume that the correct
fl(ρl) for all links in Abilene is f̂l(ρl)NEXT, and measure the increase in the total mean
delay if we were to minimize the total mean delay using f̂l(ρl)PREV instead.

In Fig. 8.8(b) we show the results obtained in this case. We can see that although
in some few cases the increase due to the misspecification may be as much as 20%,
it is generally under 10%. These results are to be compared to those obtained by
MinQ(M/M/1), which obtained an excess in the total mean delay of more than 15% in
half of the cases, and a maximum difference of more than 100%.

Our partial answer is then that the characterization of a link obtained from the
measurements of any given day, is also valid the next day. This validates our implicit
assumption that φl(ρl) remains relatively stable over time. Another positive conclusion
is that regression need not be performed very frequently. It should be noted that
the trace used in this study contained only working days. Our conjecture is that
the characterization obtained from any working day holds for the rest of the working
days in the same week. The traffic mix generally changes on weekends, which will
probably result in a different fl(ρl) than that of the working days, thus requiring its
own characterization.

8.4 Packet-Level Simulations

In this section we will consider some relatively simple examples we implemented in ns-2
[39] that will verify the correct performance of iAWM-R in the presence of delayed and
noisy measurements. It is important to highlight that in all the simulations, and as
mentioned in Sec. 8.1.1, load balancing is performed at the granularity of flows, i.e. once
a flow is routed along a path it stays there throughout its lifetime, and is random,

108 8.4. Packet-Level Simulations

i.e. commodity s will route new incoming flows along path Psi with probability ωt
Psi

(cf. Sec. 7.2.2). Finally, note that in this section we have used φ̂∗l (ρl), the continuous

approximation of the link-cost φ̂l(ρl) (cf. (6.7) in Sec. 6.5).

8.4.1 Small Buffers and the Regression-Based Minimum Congestion
Load-Balancing

In this subsection we will analyze what happens when in the regression framework
described in Ch. 6 one or more links systematically present a small queue size. The
network of the considered example may be seen in Fig. 8.10, and is very similar to the
third example in Sec. 5.3. Its six “core” links have a capacity of 125 kB/s, while the
“access” ones 250 kB/s. There are a total of four commodities, all with the same desti-
nation node q, except for commodity 3, whose destination node is origin 4. Moreover,
only commodity 1 has more than one path available. We will note ωP11 the portion
of traffic of commodity 1 routes along the upper path. The traffic in the network is a
mixture of elastic and streaming flows. The elastic ones (whose size is exponentially
distributed with mean 20 kB) are generated as a Poisson process of intensity λe. The
streaming traffic is constituted of CBR flows (at a bitrate of 10 kbps and an expo-
nentially distributed duration with mean 20 s) also arriving as a Poisson process (of
intensity λs). The corresponding intensities were calculated so that streaming repre-
sents 10% of the total traffic. Finally, the traffic distribution update and the link load
measurements are performed over a 60 s period.

P

3 4

2

1

1 1

P
1 2

q

1
2

3

5
4 6

Figure 8.10: The network for the packet-level simulations.

The training set has been constructed by fixing ωP11 at 0.5 and varying the demand
generated by each commodity. The training set and the corresponding regression for
links 2, 3, 5 and 6 may be seen in Fig. 8.11. Note that links 2, 3 and 5 have almost
the same characterization. On the contrary, link 6 presents little or no queue. This is
because traffic on this link is already shaped by the queue of link 5. Links with little
or no queue clearly represent a problem for our framework. This small queue may be
due to the traffic characteristics as in this case, or simply because the link has a small
buffer. Such links will have a constant insignificant cost, and the converged demand
vector could overload them. This could also be the case for a characterization resulting
from an incomplete training set. If the maximum measured load is relatively small, as
observed in Sec. 6.5, the resulting cost function φ̂∗l (ρl) will become a small constant.

Chapter 8. Evaluation 109

0 20 40 60 80 100 120
0

2

4

6

8

10

12

14

ρ (kB/s)

M
e
a
n
 Q

u
e
u
e
 S

iz
e
 (

k
B

)

Meas. l=5
CNWLS l=5
Meas. l=2
CNWLS l=2

(a) Links l = 2 and l = 5

0 20 40 60 80 100 120
0

5

10

15

ρ (kB/s)

M
e
a
n
 Q

u
e
u
e
 S

iz
e
 (

k
B

)

Meas. l=6
CNWLS l=6
Meas. l=3
CNWLS l=3

(b) Links l = 6 and l = 3

Figure 8.11: The training sets and the corresponding regressions

To illustrate the above mentioned problems, we have conducted two simulations. In
both of them, the total traffic intensity for commodities 2, 3 and 4 is 50 kB/s throughout
the simulation, while for commodity 1 it changes from 12.5 kB/s to 75 kB/s at t = 5000 s
(in a total of 20000 seconds). The difference between the two simulations lies in the
characterization used for link 5. In the first one we used the complete characterization,
as it appears in Fig. 8.11(a), while in the second one we have removed the (αj , βj) cor-
responding to the biggest βj . This means that after ρ ≈ 75 kB/s the link cost function
becomes constant. In Fig. 8.12 we show the evolution of ωP11 over time for the two
simulations. Notice how the ωP11 corresponding to the complete link characterization
converges to a value very near the optimum we calculated off-line (which is marked
by a horizontal line). On the other hand, the incomplete link characterization makes
iAWM-R believe that link 5 is cheaper than it really is, resulting in ωP11 converging
to 0.2. In the first case, it is interesting to verify how the restart in iAWM-R is only
applied when the abrupt change in demand occurs. For the second training set, the
difference in cost is not enough to trigger a restart.

0 0.5 1 1.5 2

x 10
4

0

0.2

0.4

0.6

0.8

1

Time (s)

ω
P

1
1

(a) ωP11
as a function of time using

the complete link characterization

0 0.5 1 1.5 2

x 10
4

0

0.2

0.4

0.6

0.8

1

Time (s)

ω
P

1
1

(b) ωP11
as a function of time us-

ing the incomplete characterization
of link 5

Figure 8.12: The simulation using two link characterizations

In Fig. 8.13 we present the load for all “core” links on the simulation corresponding
to the incomplete link characterization. Naturally, links 5 and 6 are overloaded in

110 8.4. Packet-Level Simulations

the second part of the simulation. It is interesting to notice how the total demand
generated by commodity 1 (approximately 120 kB/s from Fig. 8.13) exceeds the traffic
intensity of 75 kB/s. This is because at overload, due to retransmissions, the mean
traffic generated by each TCP flow exceeds the 20 kB. This means that, although the
implicit assumption that demands do not depend on network condition or routing is
not fulfilled in this simulation, the load-balancing algorithm still converges. Another
interesting aspect to note is that although the level of noise in the load measurements
is important, its impact on the converge of ωP11 is relatively small.

0.5 1 1.5 2

x 10
4

0

0.5

1

1.5

2

2.5
x 10

5

Time (s)

L
in

k
 L

o
a

d
 (

B
/s

)

l=1 l=2 l=3 l=4 l=5 l=6

Figure 8.13: The links load as a function of time using the incomplete characterization
of link 5

We will now present a possible solution to the above problems. The idea is to avoid
overloading links due to unobserved link loads or little mean queue size. We propose
to substitute φ̂∗l (ρl) by a certain function ψl(ρl) for ρl > ρmax

l , where ψl(ρl) has the
following characteristics:

• The resulting cost function should be continuous: ψl(ρ
max
l) = φ̂∗l (ρ

max
l).

• ψl(ρl) should be increasing on ρl and convex.

• As load exceeds ρmax
l , all links should have a big and similar cost. Else, the

algorithm would still prefer to overload the cheapest links.

Let us temporarily define ψl(ρl) as:

ψl(ρl) = eblρl/cl − 1 (8.2)

with bl =
cl
ρmax

l

log
(
1 + φ̂∗l (ρ

max
l)

)

We suggest an exponential because, in our experience, it is a rough approximation
of the shape of the φ̂∗l (ρl) obtained from measurements. Function (8.2) goes through

the origin and at ρmax
l is exactly φ̂∗l (ρ

max
l). For each link, ψl(ρl) then fulfills the two

Chapter 8. Evaluation 111

first characteristics of the above list. To fulfill the third one, we will take the maximum
bl among all links (bmax), and use the resulting function as the definitive substitute cost
ψl(ρl). The final link cost is then:

φl(ρl) =

{
φ̂∗l (ρl) if ρl < ρmax

l ,

ebmaxρl/cl − ebmaxρmax
l

/cl + φ̂∗l (ρ
max
l) else

(8.3)

As the threshold ρmax
l we could use the biggest ρl in the training set, a certain

fraction of cl, or the minimum of both. There are many possibilities. In particular, in
our simulations we used the last option, with a fraction of 80%. It could happen that
the link capacity was not known, in which case we should then substitute it by a load
that we consider critical for the operation of the link. The exact value of cl in (8.3) is
not so important and an order-of-magnitude value should be enough. Finally, note that
as long as the load at all links is smaller than the corresponding ρmax

l , the presence of
ψl(ρl) has no influence.

We will now repeat the two previous simulations, but using the corrected link cost
function (8.3). In Fig. 8.14(a) we may see that the influence of ψl(ρl) when using the
complete characterization is negligible. The differences with Fig. 8.12(a) are due to a
relatively incomplete training set on links 1 and 4. In Fig. 8.14(b) we may see how the
presence of ψl(ρl) when using the incomplete link characterization plays a fundamental
role in the convergence of ωP11 . In Fig. 8.15 we may verify that no link is overloaded
now.

0 0.5 1 1.5 2

x 10
4

0

0.2

0.4

0.6

0.8

1

Time (s)

ω
P

1
1

(a) ωP11
as a function of time using

the complete link characterization

0 0.5 1 1.5 2

x 10
4

0

0.2

0.4

0.6

0.8

1

Time (s)

ω
P

1
1

(b) ωP11
as a function of time us-

ing the incomplete characterization
of link 5

Figure 8.14: The simulations using the corrective function ψl(ρl)

8.4.2 Two iAWM-R Commodities

We will now present a simulation where two iAWM-R routers interact. In particular,
we will present an example where we strive to maximize the total utility (i.e. MaxU in
the previous section). In Fig. 8.16 we can see the considered case scenario. There are
two commodities and each of them can use two paths, one of which is shared. As before,

112 8.4. Packet-Level Simulations

0.5 1 1.5 2

x 10
4

0

0.5

1

1.5

2

2.5
x 10

5

Time (s)

L
in

k
 L

o
a

d
 (

B
/s

)

l=1 l=2 l=3 l=4 l=5 l=6

Figure 8.15: The links load as a function of time for the incomplete characterization of
link 5

all links have a capacity of 125 kB/s, except for the “access” ones which have 250 kB/s.
Traffic consists of elastic flows with an exponentially distributed size with mean 20 kB,
arriving as a Poisson process of the corresponding intensity so as to generate a certain
traffic intensity which we shall change with time.

1

2

P
1 2

P
1 1

P
2 2

P
2 1

2
1

3

5
4

Figure 8.16: The example topology

Just like before, the demand vector is updated every 60 seconds, although commodi-
ties are not coordinated and update their probabilities at different moments (with a gap
of 25 s). The amount of traffic sent along path P will be noted as ωP . At the beginning
of the simulation we fix the demand vectors, so as to reach a steady state, after which
we start updating the ωP ’s. The simulation is divided in two parts. Firstly, commodity
2 sends very little traffic (approximately 10 kB/s), while commodity 2 sends ten times
this amount. In the second half of the simulation, commodity 2 abruptly starts sending
the same amount of traffic as commodity 1 (see Fig. 8.17(a)).

In Fig. 8.17(b) we may see the evolution of the ωP ’s with time. Firstly, both ωP11

and ωP21 are initiated at 0.5 automatically by iAWM-R. In the first iterations, both
commodities see that the direct path is much less loaded than the indirect one, and
increase the corresponding ωP . However, commodity 1 rapidly realizes that it cannot
use its direct path exclusively, and since the cost of the indirect one has decrease due to

Chapter 8. Evaluation 113

0 2000 4000 6000 8000 10000
0

5

10

15

x 10
4

Time (s)

L
in

k
 L

o
a

d
 (

B
/s

)

d
1

d
2 l=1 l=3 l=5

(a) Links load as a function of time

0 2000 4000 6000 8000 10000

0

0.2

0.4

0.6

0.8

1

Time (s)

ω

ω
P

11

ω
P

21

(b) ωP as a function of time

Figure 8.17: The example topology, and the traffic distribution and links’ load as a
function of time

the reaction of commodity 2, its ωP11 converges to 0.5. In the mean-time, commodity
2 has converged to a situation in which it uses the direct path exclusively. However, in
the second part, and analogously to commodity 1 in the first one, this path only is not
enough for its traffic demand. Furthermore, the sudden increase triggers a restart in
the iAWM-R of commodity 2, after which both ωP11 and ωP21 rapidly converge to 2/3.
Notice that, like in the previous example, load measurements need not be very precise,
and that the algorithm supports some noise.

8.5 Robust Routing vs Dynamic Load-Balancing

8.5.1 An Introduction to Robust Routing

In this section we interest ourselves to the performance of Dynamic Load-Balancing
(DLB, in this case iAWM-R) when compared with a stable routing configuration, in
particular Robust Routing (RR), which we presented in Sec. 4.2.1. As mentioned
before, DLB and RR may be seen as antagonist approaches to face the ever increasing
uncertainty and unpredictability of the traffic injected into the network. On the one
hand, Robust Routing copes with traffic uncertainty in an off-line preemptive fashion,
computing a stable routing configuration that is optimized for a large set of possible
traffic demands. On the other hand, Dynamic Load-Balancing balances traffic among
multiple paths in an on-line reactive fashion, adapting to traffic variations in order to
optimize a certain cost-function.

Much has been said and discussed about the advantages and drawbacks of each
approach, but very few works have tried to compare the performance of both mecha-
nisms, particularly in the same network and traffic scenarios. In fact, to the best of
our knowledge the only paper that performs a similar analysis is [49]. In this work,
authors compare the performance of their proposal, COPE, with a dynamic approach

114 8.5. Robust Routing vs Dynamic Load-Balancing

which they claim models the behavior of mechanisms such as MATE [4] and TeXCP [5]
(cf. Sec. 4.3). Given a time-series of traffic demands, this dynamic approach consists of
computing an optimal routing for each traffic demand i and evaluate its performance
with the following traffic demand i + 1. There are two important shortcomings of
this DLB simulation. Firstly, adaptation in DLB is iterative and never instantaneous.
Secondly, in all DLB mechanisms paths are set a priori and remain unchanged during
operation. This is not the case in their dynamic approach, where each new routing
optimization may change not only traffic portions but paths themselves. For these
reasons, we believe that the comparison provided in [49] is unrealistic with respect to
DLB, and thus biased against dynamic schemes.

Before presenting our comparative study, we will present a more detailed descrip-
tion of RR in general, and of the considered scheme in particular. In a robust perspec-
tive of TE, demand uncertainty is preemptively taken into account within the routing
optimization, computing a single routing configuration for all demands within some
uncertainty set. In particular, we will consider a polyhedral uncertainty set X, more
precisely a polytope as in [8], based on the intersection of several half-spaces that result
from linear constraints imposed to traffic demand. Before presenting an example, let
us introduce the last necessary piece of notation. As before, we will note as ωPsi

the
portion of ds sent along path Psi. Moreover, the Routing Matrix R = (rls) is defined
as rls =

∑
P∈Ps

ωP 1{l∈P} (i.e. rls indicates the fraction of traffic from commodity s
routed through link l). This matrix simplifies the calculation of the load on link l, since
ρ = RX (where ρ = (ρl) and X = (ds)).

As an example of an uncertainty set, let us define X based on a given routing matrix
Ro and the peak-hour links traffic load ρpeak obtained with this routing matrix:

X =
{
X ∈ R

S, Ro.X 6 ρpeak, X > 0
}

This definition of the uncertainty set has a major advantage: routing optimization
can be performed from easily available links traffic load ρ without even knowing the
actual value of traffic demand X.

The now traditional Robust Routing Optimization Problem (RROP) [8] consists on
minimizing the maximum link utilization umax, considering all demands within polytope
X (see the explicit problem below). The solution to the problem is twofold; on the
one hand, a routing configuration Rrobust = argmin

R
max
X∈X

umax(X,R) and on the other

hand, a worst-case performance threshold urobust
max = max

X∈X

umax(X,R). Given a proper

definition of the uncertainty set, the obtained robust routing configuration is applied
during long-term periods of time; in this sense, we refer to robust routing as Stable
Robust Routing (SRR).

minimize
R

umax (8.4)

s.t.
S∑

s=1

∑

P∈Ps

1{l∈P}ωPds ≤ umaxcl ∀l = 1, . . . , L ∀X ∈ X;

Chapter 8. Evaluation 115

∑

P∈Ps

ωP = 1 ∀s = 1, . . . , S; ωP ≥ 0 ∀P ∈ Ps ∀s = 1, . . . , S

The authors of [8] have shown that RROP can be efficiently solved by linear
programming techniques, applying a combined columns and constraints generation
method. This method iteratively solves the problem, progressively adding new con-
straints and new columns to the problem. The new constraints are the extreme points
of the uncertainty set X, and the new columns represent new paths added to reduce the
objective function value. Only extreme points of X are added as new constraints, as it
is easy to see that every traffic demand X ∈ X can be expressed as a linear combination
of these extreme demands.

Regarding new added paths, the algorithm in [8] may not be the best choice from
a practical point of view since the number of paths for each OD pair is not a priori
restricted and the characteristics of added paths are not controlled. For example,
and in order to improve resilience, it would be interesting to have disjoint paths to
route traffic from each single OD pair. For this reason, the authors of [23] suggested
a modification to the path selecting algorithm, both limiting the maximum number
of paths in Ps and taking as new candidates the shortest paths with respect to link
weights wl(i) = (ǫ + (1 − rls(i)))

−1. In this case, rls(i) corresponds to the fraction of
traffic ds that traverses link l after iteration i and ǫ is a small constant that avoids
numerical problems. If OD pair s uses a single path P , rls = 1 for every link l ∈ P ,
and so this path is removed from the graph where new shortest paths are computed
(wl →∞, ∀l ∈ P). While this may result in a sub-optimal performance, it allows a real
and practical implementation. In case there are no disjoint paths for OD pair s, we use
the column constraint generation method used in [8] to add new paths for OD pair s.

8.5.2 Improving Stable Robust Routing

An illustrative Example

In this subsection we will present a first simulation that will help us gain insight into RR
and highlight some of its shortcomings. The topology is exactly the same as in Sec. 8.2.1,
i.e. Abilene with the demands obtained from [94]. The polytope X is computed based

on the historical routing matrix of Abilene Ro: X =
{
X ∈ R

S, Ro.X 6 ρmax, X > 0
}
,

where ρmax contains the maximum link load values observed at normal operation during
the evaluation period. Ro is available at [94].

Figure 8.18(a) shows the results for the maximum link utilization umax. The con-
sidered demands are the TMs with indexes between 1050 and 1200 from dataset X23
in [94]. The evaluation starts with a normal traffic pattern, where umax does not even
exceed 0.10. At the 100th minute one of the OD pairs abruptly starts generating an
anomalous amount of traffic. We consider two different definitions for polytope X: a
first polytope adapted to low load traffic, i.e. traffic in normal operation before the
100th minute, and a second polytope adapted to high load traffic, i.e. traffic after the

116 8.5. Robust Routing vs Dynamic Load-Balancing

occurrence of the anomaly. In the sequel we refer to SRR as RROP, recalling that the
optimization problem is (8.4). In this sense, we shall use the term RROP L for the
SRR adapted to normal operation traffic and RROP H for the SRR adapted to high
load anomalous traffic. As may be seen in Fig. 8.18(a), the difference between RROP
H and RROP L in the obtained results is significant. In the first case, the anomalous
traffic belongs to the uncertainty set and results are only 0.05 higher than the opti-
mum. On the other hand, RROP L performs quite bad during the anomalous event,
a result somehow expected given the definition of the polytope. Moreover, and as it
may be seen in Fig. 8.18(b), RROP L obtains disastrous results in terms of the total
mean delay (D(d) =

∑
fl(ρl)). Although results for RROP H are somewhat better, its

difference with respect to the optimum is still significant (approximately 25%).

100 250 400 550 700
0

0.2

0.4

0.6

0.8

Time (min)

u
m

a
x

Actual Minimum
RROP H
RROP L

(a) Maximum link utilization

100 250 400 550 700

20

40

60

80

100

120

Time (min)

T
o

ta
l
M

e
a

n
 D

e
la

y
 (

k
B

)

Actual Minimum
RROP H
RROP L

(b) Total Mean Delay

Figure 8.18: Maximum link utilization and total mean delay over time.

Robust Routing AOF Problem

The SRR approach presents two important problems, one related to the objective
function it intends to minimize and the other one as an inherent consequence of using
a single static routing configuration. Let us begin by the objective function problem.
As we stated in Sec. 4.2.1 and verified in Sec. 8.2, the minimization of umax may often
lead to a worse distribution of traffic, adversely affecting for instance the total mean
delay (D(d)). This is exactly the case in Fig. 8.18(b) for RROP H. Using D(d) as the
objective function in RROP results in a difficult optimization problem, as fl(ρl) is not
a linear function. Instead, we could use the total network link utilization utot =

∑
l ul

as the objective function. However, simply minimizing utot results in an unbounded
value of umax, which is not practical from an operational point of view.

An alternative approach is to minimize both the value of umax and utot at the same
time, which constitutes a multi-objective optimization problem. The difficulty that
this kind of problem presents is that traditional single-objective optimization tech-
niques cannot be directly applied. An intuitive and easy approach to address this issue
is to construct a single aggregated objective function (AOF) that combines both ob-

Chapter 8. Evaluation 117

jective functions. We define a weighted linear combination of umax and utot as the new
objective function uaof = α . umax + (1 − α) . utot, where 0 6 α 6 1 is the combination
fraction. Equation (8.5) presents the resulting optimization problem, which we shall
note as Robust Routing AOF Problem (RRAP). The problem is solved using the same
recursive algorithm as in RROP. As we show in the results from the following section,
the optimum of this problem achieves better global performance.

minimize
R

uaof = αumax + (1− α)utot (8.5)

s.t.
L∑

l=1

S∑

s=1

∑

P∈Ps

1{l∈P}ωP
ds

cl
≤ utot ∀X ∈ X;

S∑

s=1

∑

P∈Ps

1{l∈P}ωP ds ≤ umaxcl ∀l = 1, . . . , L ∀X ∈ X;

∑

P∈Ps

ωP = 1 ∀s = 1, . . . , S; ωP ≥ 0 ∀P ∈ Ps ∀s = 1, . . . , S

As we illustrated in Fig. 8.18, the other important drawback of SRR is its inherent
dependence on the definition of the uncertainty set. The authors of [23] proposed an
adaptive version of SRR, known as Reactive Robust Routing (RRR). The basic idea
in RRR consists of computing a set of paths Ps and a robust routing configuration
Ro

robust for expected traffic in nominal operation. Additionally, and using this set of

paths, a routing configuration Rj
robust is computed for every single anomalous traffic

event As, s = 1, .., S, where As represents a large volume anomaly in traffic from
OD pair s. Using a single anomaly detection/localization sequential algorithm, RRR
balances traffic among paths from Ps according to Rs

robust when an anomaly of type
As is detected and localized. This way they avoid to define an uncertainty set that
encompasses all possible anomalous traffic. We refer the reader to [23] for details on
the implementation of RRR.

8.5.3 Evaluation and Discussion

In this section we evaluate the performance of iAWM-R and the different RR algorithms
presented before (in particular, for RRAP we used α = 0.5), considering both normal
operation and anomalous traffic situations. Regarding iAWM-R, we will concentrate on
MinQ and MinMaxU, and use this evaluation to present some of their aspects we have
not discussed yet. For MinQ, we are interested in the effects on the convergence of the
approximations we used for the derivative function φ̂∗l (ρl): the linear approximation
(cf. (6.7) in Sec. 6.5), and the addition of the corrective ψl(ρl) (cf. (8.3) in Sec. 8.4.1).
For MinMaxU we will present an example in which the WE is suboptimal, and analyze
a possible solution to this issue. To be as fair as possible, all mechanisms use the same
set of paths, namely those calculated by SRR as discussed in Sec. 8.5.1.

We present and discuss three simulation case-scenarios: starting from a normal
traffic variation scenario, we increase the number of OD pairs that present anomalous

118 8.5. Robust Routing vs Dynamic Load-Balancing

traffic variations. This allows for performance comparison at different levels of traffic
variability. The considered network is again Abilene, and the traffic demands were
obtained from [94]. Finally, the methodology for DLB is the same as in Sec. 7.3 (i.e. TMs
are fed to the commodities in order, and they perform five iterations of iAWM-R per
TM).

Normal Operation

The first case-scenario is the simplest one, which corresponds to traffic in normal op-
eration. The only variability is due to typical daily fluctuations. Fig. 8.19 shows the
evolution over time of umax and D(d) for the different mechanisms, when fed with 260
TMs from set X01 in [94]. All algorithms perform similarly as regards maximum link
utilization, depicted in Fig. 8.19(a). This may be further appreciated in Fig. 8.20(a),
where we present a boxplot of the difference in umax with respect to the optimum for all
the mechanisms. Naturally, the algorithm that performs best is MinMaxU, although
its improvement over the rest is not significant.

Results with respect to D(d) are quiet different, as it can be seen in Fig. 8.19(b)
and 8.20(b); the latter shows the D(d) obtained by each mechanism divided by the
corresponding actual minimum. We may verify that the best results are obtained by
MinQ, followed closely by both RRAP and MinMaxU (note that the poor results ob-
tained by MinMaxU are mainly from the beginning of the simulation, where it has not
yet converged). However, RROP systematically obtains a significant difference with
respect to the optimum, generally of about 30%. These results further highlight the
limitations of RROP we previously discussed: using only umax as a performance objec-
tive results in a relatively low maximum utilization, but neglects the rest of the links,
impacting global performance. Finally, we may verify that in this case the influence of
the approximations of φ̂l(ρl) on D(d) is insignificant.

200 400 600 800 1000 1200
0.25

0.3

0.35

0.4

0.45

0.5

0.55

Time (min)

u
m

a
x

Actual Min.
MinMaxU
MinQ
RROP
RRAP

(a) Maximum link utilization

200 400 600 800 1000 1200

40

50

60

70

80

Time (min)

T
o

ta
l
M

e
a

n
 D

e
la

y
 (

k
B

)

Actual Min.
MinMaxU
MinQ
RROP
RRAP

(b) Total mean delay

Figure 8.19: Maximum link utilization and total mean delay under normal operation.

Chapter 8. Evaluation 119

RROP RRAP MinMaxU MinQ

0

0.05

0.1

0.15

u
m

a
x
 (

d
if
f)

(a) Maximum link utilization

RROP RRAP MinMaxU MinQ

1

1.2

1.4

1.6

1.8

T
o

ta
l
M

e
a

n
 D

e
la

y
 (

g
a

in
)

(b) Total mean delay

Figure 8.20: Results overview for the first simulation case-scenario - normal operation.

One Anomalous OD Pair

The second case-scenario is the one considered in Sec. 8.5.2, whose main characteristic
was the sudden and abrupt increase of traffic generated by one OD pair. To be fair
with the DLB mechanisms, both RRAP and RROP use the RRR mechanism described
in Sec. 8.5.2 to adapt traffic balancing after the detection of the anomalous traffic
variation. Regarding umax, Fig. 8.21(a) and 8.22(a) show that the results obtained by
RRAP are quite good and close to the optimum. Surprisingly enough, the results for
RROP are somewhat worse, although the difference is not significant. This difference
is due to the fact that both RROP and RRAP are solved numerically and not exactly
in order to reduce computation time. Results for D(d) follow the same tendency as
in the normal operation case, although RRAP performs worse than before. Moreover,
although more important than in the previous case, the difference between MinQ using
the approximations on φ̂l(ρl) and the actual optimum is relatively small (generally less
than 5%).

200 400 600

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time (min)

u
m

a
x

Actual Min.
MinMaxU
MinQ
RROP
RRAP

(a) Maximum link utilization

200 400 600

30

40

50

60

70

80

90

Time (min)

T
o

ta
l
M

e
a

n
 D

e
la

y
 (

k
B

)

Actual Min.

MinMaxU

MinQ

RROP

RRAP

(b) Total mean delay

Figure 8.21: Maximum link utilization and total mean delay under abrupt and large
traffic variations.

The most interesting aspect of this example are the results obtained by MinMaxU,
which does not converge to the optimum, and obtains the worst performance of all the

120 8.5. Robust Routing vs Dynamic Load-Balancing

RROP RRAP MinMaxU MinQ

0

0.05

0.1

0.15

0.2

u
m

a
x
 (

d
if
f)

(a) Maximum link utilization

RROP RRAP MinMaxU MinQ

1

1.1

1.2

1.3

1.4

T
o

ta
l
M

e
a

n
 D

e
la

y
 (

g
a

in
)

(b) Total mean delay

Figure 8.22: Results overview for the second simulation case-scenario - abrupt traffic
variation.

considered schemes (a difference of 15% with respect to the optimum). The reason
behind this poor performance is simply that MinMaxU does not take into account the
result regarding the optimality of the WE and the efficiency condition discussed in
Sec. 7.1 and originally presented in [90]. This result states that if at a WE the com-
modities send their traffic along paths with a minimum number of network bottleneck
links (those with the maximum utilization in the whole network), the WE is optimal.
The problem we analyze now is how to design a path cost function φP that takes into
account this condition, so that when using it, the load-balancing algorithm converges,
when possible, to the correct WE. Note that the condition is only sufficient, meaning
that a WE that fulfills the efficiency condition may not exist. A simple example of
such case is a single commodity with two paths with different lengths, where all links
have the same capacity. Anyhow, the two main difficulties in the design of such path
cost are the following. Firstly, the number of bottleneck links in a path is an integer
(thus not continuous on dPsi

). Secondly, the probability of two links having exactly the
same utilization is zero, and as such we should consider the number of links that have
an utilization similar to the network bottleneck.

The objective is then to find a cost function that penalizes paths in which several
links have similar utilizations (and that this utilization is the maximum in all the
network), and that it does not switch between values to avoid oscillations. A candidate
φP that fulfills these two conditions is the so-called log-sum-exp function. Consider a
set of arbitrary numbers A = {ai}, the log-sum-exp function g(A) is defined as follows:

g(A) =
1

γA
log




∑

i=1,...,|A|

eγAai



 = ai∗ +
1

γA
log



1 +
∑

i=1,...,|A|
i6=i∗

eγA(ai−ai∗)



 (8.6)

Consider the special case in which ai∗ = max A. It should be clear that if ai∗

is significantly bigger than the rest of the elements in A, the above convex and non-
decreasing function constitutes an excellent approximation of ai∗ . In fact, it easy to
prove that ai∗ ≤ g(A) ≤ ai∗ + log(|A|)/γA, meaning that we may control the precision
of the approximation through the parameter γA (the bigger this parameter, the more

Chapter 8. Evaluation 121

precise the resulting approximation). Moreover, as more elements in A are similar to
the maximum, g(A) approaches the upper bound, reaching it when all elements are the
same.

We will then use the second term of (8.6) as a penalty to those paths with several
links whose utilization is similar to umax (the maximum utilization in the network).
More precisely, given a path P , let UP = {ul}l∈P be the utilizations in the path,
and l∗ ∈ P be the link with the biggest utilization in P . We will then use the penalty
function with the alternative set U∗

P , which has the same elements as UP , but substitutes
ul∗ by umax. This results in the following cost function:

φP = ul∗ +
1

γP
log



1 +
∑

l∈P
l 6=l∗

eγP (ul−umax)



 (8.7)

Even if this new cost function penalizes paths with several network bottleneck links,
it also penalizes longer paths, which although it may seem as a positive effect, it was not
our original objective. A good choice of γP will alleviate this side-effect. For instance,
we used γP = log(|P |)/max{0.01, ul∗/10}. This way, we try to minimize the effect of
log(|P |) and relativize the penalization to ul∗ .

200 400 600

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time (min)

u
m

a
x

Actual Minimum
MinMaxU

(a) Second example

200 400 600 800 1000 1200
0.25

0.3

0.35

0.4

0.45

0.5

0.55

Time (min)

u
m

a
x

Actual Minimum
MinMaxU

(b) First example

Figure 8.23: Maximum Link Utilization for the first and second simulation case-scenario
using the alternative path cost function.

Figure 8.23 shows the results for this new cost function in this and the previous
example. As shown in Fig. 8.23(a), the results on the second example are exactly as
we intended to. Notice how iAWM-R now converges to the correct WE, effectively
minimizing umax. Results for the first example, shown in Fig. 8.23(b), illustrate how
the new cost function may influence negatively the obtained maximum utilization. Due
to the condition only being sufficient, and the penalization of longer paths, we obtain a
slight difference (less than 3% in most of the cases) with respect to the actual minimum
umax. We believe that such small loss is largely justified by the gain obtained in the
first example.

122 8.5. Robust Routing vs Dynamic Load-Balancing

Two Anomalous OD Pairs

In this case-scenario, obtained from dataset X06 of [94], two OD pairs largely increase
their traffic demand, one at approximately the 150th minute and the other at the 320th.
They both present this anomalous traffic until the end of the simulation. We shall then
separate the simulation in three parts: the first third where traffic is normal, the second
third were only one OD pair is anomalous, and the last third were both OD pairs are
anomalous. The anomaly localization algorithm of RRR was designed for the case of
one single anomalous OD pair. Because of this, we will further illustrate the tradeoff
between size of the considered uncertainty set and efficiency of the obtained routing,
and chose the uncertainty polytope by the traffic loads seen after the second anomaly.

100 200 300 400 500
0.1

0.2

0.3

0.4

0.5

0.6

Time (min)

u
m

a
x

Actual Min.
MinMaxU
MinQ
RROP
RRAP

(a) Maximum link utilization

100 200 300 400 500

30

40

50

60

70

80

90

100

110

Time (sec)

T
o

ta
l
M

e
a

n
 D

e
la

y
 (

k
B

)

Actual Min.
MinMaxU
MinQ
RROP
RRAP

(b) Total mean delay

Figure 8.24: Maximum link utilization and total mean delay under gradual and large
traffic variations.

RROP RRAP MinMaxU MinQ

0

0.05

0.1

0.15

0.2

u
m

a
x
 (

d
if
f)

(a) Maximum link utilization

RROP RRAP MinMaxU MinQ

1

1.1

1.2

1.3

1.4

T
o

ta
l
M

e
a

n
 D

e
la

y
 (

g
a

in
)

(b) Total mean delay

Figure 8.25: Results overview for the third simulation case-scenario - gradual traffic
variation.

In Fig. 8.24(a) we may see that, as expected, the umax obtained by both RROP
and RRAP in the last third of the simulation are very close to the optimum. However,
in the rest of the simulation the difference may be important, specially in the second
part where the difference for RRAP is almost 0.2. It is important to highlight the
results obtained by MinQ and MinMaxU. Notice that the overshoot this time is much
smaller than in the previous example (a maximum of 0.1 in umax for both MinMaxU

Chapter 8. Evaluation 123

and MinQ) and the settling time is negligible. In this case, the increase in traffic of the
anomalous OD pairs is more gradual than before, which clearly favors dynamic schemes
in their performance. In this case we used the new cost function for MinMaxU, which
again has a negligible effect on the obtained umax. The same can be said about the
approximative φ̂∗l (ρl) used for MinQ and the obtained D(d).

8.5.4 Conclusions

Several conclusions may be drawn from the simulations we just presented, some of
which we will now highlight. Firstly, and most importantly, we haven shown that
using a single static routing configuration is not a satisfactory solution when the traffic
presents a certain level of uncertainty. It could either lead to wasted resources when too
many TMs are considered (cf. Fig. 8.24), or a very poor performance when considering
too few and facing an unforeseen TM (cf. Fig. 8.18).

It is clear then that some way of adaptability should be implemented in the network,
which could either by Reactive Robust Routing (RRR) or DLB. In any case, note that
if the anomaly may not be detected correctly (as in the third example in Sec. 8.5.3), the
only viable solution is DLB. In this sense, we have verified that iAWM-R is not only
stable, but shows a remarkable reactivity to adapt to sudden changes in the demand
vector (specially when considering MinQ).

Regarding MinMaxU in particular, we have presented an example in which not con-
sidering the efficiency condition discussed in Sec. 7.1 leads to a very poor performance.
We have then proposed an alternative path cost function that penalizes those paths that
have several network bottlenecks. Preliminary results presented in the previous section
are very promising and encourage us to further study this new cost function (e.g. char-
acterize the resulting WE or consider other alternative penalization functions).

Chapter9

Conclusions and Future Work

In this thesis we have studied new and effective Traffic Engineering (TE) techniques.
In particular, we have made special emphasis in what is known as Dynamic Load-
Balancing (DLB). Let us recall that the idea in DLB is to exploit path diversity to
increase resilience and obtain a better performance out of the available resources. More
to the point, in DLB each Origin-Destination (OD) pair is connected by several paths,
and the objective is to dynamically distribute traffic among these paths depending on
the current demand and network condition.

Motivation to study this kind of mechanisms came mainly from two problems net-
work operators are facing today, and that risk to worsen with time. Firstly, and due
to service convergence, traffic injected to the network is increasingly dynamic and un-
predictable. Indeed, we have shown real traffic demands in which abrupt increases
of an order of magnitude are not rare. The possibility of unexpected events such as
link/node failures, network attacks, flash crowds or external routing modifications only
exacerbate this problem. Secondly, simple overprovisioning is being reconsidered as a
valid solution for all problems. This is due to the ever increasing access rates (which
has an influence on the dynamic nature of traffic too) and to the emergence of new
network architectures in which link capacities are intrinsically limited (e.g. Wireless
Networks).

Our study was separated in two parts, depending on the assumed architecture. The
first part concentrated on the case in which resources are reserved for paths. The
typical way of managing the tunnels in this kind of architectures is based on token
buckets. This a priori descriptor of traffic has proved inadequate in the past, leading
to a systematic overestimation of its parameters to obtain a certain conformity level.
We proposed instead to use Cross-Protect, a flow-aware networking TE mechanism.
In cross-protect, streaming flows obtain head-of-the-queue priority, while elastic flows
fairly share the remaining capacity. This way, each kind of traffic obtain the QoS
they are interested in. The advantage of Cross-Protect with respect to, for instance,

125

126

DiffServ, is that no packet marking is required. Instead, flows are classified implicitly
based on their rate. A flow transmitting at less than the current fair-rate (which is
detected by the flow not being backlogged) is classified as streaming, and viceversa.
Moreover, to guarantee a minimum QoS to ongoing flows and to assure the scalability
of the scheduler, an admission control mechanism is used. If the amount of streaming
traffic (called Priority Load) is more than a certain threshold, or if the fair-rate is less
than another one, no more flows are accepted. Note that Cross-Protect provides precise
and predictable QoS guarantees, which are easily mapped to the only two parameters
of the mechanism. Moreover, and since resources are reserved for each tunnel, the
mechanism needs only be implemented in the border routers.

We have modeled a cross-protect router, and derived a close formula for the only
remaining QoS parameter: the flow blocking probability generated by the admission
control. Moreover, we have studied how to define a dynamic load-balancing scheme in
this case. Since the priority load and the fair rate are already measured for admission
control purposes, it was only natural to use them to choose the path along which new
flows are to be routed. In particular, we have defined Simple Greedy Policy (SGP),
a DLB mechanism where new flows are routed along the path with the biggest fair-
rate. This way, we maximize performance for the majority of traffic, i.e. elastic flows.
Moreover, the blocking probability of this scheme is orders of magnitude smaller than
the one obtained by classical load-balancing schemes. We have modeled SGP, and
could derive tight upper-bounds to its blocking probability. The whole analysis has
been verified by means of flow and packet-level simulations.

In the second part of the thesis we have studied the more general “shared resources”
case. The implementation of Cross-Protect in such case was somewhat problematic, and
as such we did not consider any scheduling mechanism in particular. Instead, we analyze
possible DLB schemes that rely on measurements that are available in most current
routers (e.g. link load). In particular, we have concentrated on two objective functions:
Utility Maximization Load-Balancing (MaxU, as in Maximum Utility, introduced by
us in this thesis) and Minimum Congestion Load-Balancing (MinQ, as in Minimum
Queue).

MaxU was designed with elastic flows in mind, with the idea that TCP is in charge
of the path’s resource sharing, while load-balancing further maximizes utility by indi-
rectly changing flow’s obtained rate through their path choice. The objective in MinQ
is to minimize the total congestion in the network, measured by

∑
l fl(ρl). The idea

is that fl(ρl) measures the congestion on link l, for which we have chosen the mean
queue size. However, most DLB mechanisms, and ours is not the exception, require an
analytical expression for fl(ρl). Instead of assuming an arbitrary model, like most prior
works do, we have studied the possibility of learning this function from measurements,
thus reflecting the actual congestion on the link. Moreover, certain shape restrictions
(e.g. increasing) were to be imposed to fl(ρl). To obtain a function that is as general
as possible, but still enforces the restrictions, Convex Nonparametric Weighted Least
Squares (CNWLS) was presented. This regression method obtains an excellent preci-
sion, but presents scalability issues as the number of measurements available increases.

Chapter 9. Conclusions and Future Work 127

The alternative Convex Piecewise Linear Fitting (CPLF) addressed this issue, but at
the cost of precision.

The optimum of both objective functions has been characterized as the Wardrop
Equilibrium (WE) of a certain path cost φP . That is to say, the equilibrium resulting
from OD pairs that greedily strive to minimize their path cost. To achieve the WE in a
distributed fashion, we have analyzed the possibility of using so-called no-regret algo-
rithms, in particular Incrementally Adaptive Weighted Majority with Restart Algorithm
(iAWM-R). The advantage of iAWM-R with respect to prior distributed optimization
algorithms is that it is completely self-regulated. For instance, its convergence speed is
automatically set depending on previously observed path costs. The stability and con-
vergence speed of the algorithm have been verified by means of flow and packet-level
simulations. Dynamic approaches as DLB are generally met with reluctancy due to
their transient behavior under strong traffic variations. However, we have shown that
this transient behavior can be effectively controlled, or at least alleviated, by simple
mechanisms.

We have performed a thorough performance comparison of three objective functions.
In addition to MaxU and MinQ, we have also considered a WE where the path cost φP

is defined as the maximum link utilization (we have noted this scheme as MinMaxU, as
in Minimum Maximum Utilization). From our study, conducted over two real networks
along with several real traffic demands, some conclusions can be drawn. Firstly, in what
respects the path available bandwidth (ABW), it is always better in MaxU than both
MinQ and MinMaxU. More specifically, the improvement over MinQ is generally not
very big, although it does obtain significantly better results than MinMaxU. Secondly,
results on link utilization are very similar between MaxU and MinMaxU. MinQ obtains
similar results in the mean and quantile link utilization. However, due to its reticence
to use longer paths, the maximum link utilization may be somewhat bigger in MinQ.
In terms of the total mean end-to-end queueing delay D(d) =

∑
l fl(ρl) (which we

have called total mean delay), the difference may be substantial. The increase in D(d)
incurred by MinMaxU or MaxU may easily exceed the 50%. Moreover, although MaxU
generally obtains a smaller difference than MinMaxU, its maximum difference is the
worst (more than 100%).

Regarding the regression-based minimum congestion framework above, we have
studied its potential gain in terms of the total mean delay when compared with as-
suming a simplistic model for fl(ρl). DLB (and TE in general) is usually defined in
terms of a fl(ρl) that is arbitrarily chosen, as long as it is convex and goes to infinity
when load reaches the link capacity. In terms of link utilization and path available
bandwidth, we have shown that the exact choice of fl(ρl) may be considered as some-
what unimportant. However, when the objective is minimizing queue sizes, which is a
very important performance indicator for both elastic (a big mean queue size indicates
several bottlenecked flows) as well as streaming traffic (it indicates bigger delays and
jitter), this choice is crucial, and a misspecification can result in significant increases
of total mean delay with respect to the optimum. We have also shown that the loss in
precision incurred by CPLF in its estimation of fl(ρl) does not impact significantly the

128

obtained total mean delay.

All in all, it seems like MinQ is the most balanced objective function, in the sense
that it generally outperforms the rest, and when it does not the difference is not very
important. Moreover, once we have characterized the links (i.e. learned fl(ρl)), the
load-balancing algorithm is exactly as complicated as MinMaxU, considered the most
simple one. On the other hand, this is exactly the problem with MaxU. It path-
cost function φP , through which the optimum is obtained, requires to distinguish and
measure the traffic generated by each commodity. Moreover, a mechanism so that a
link can learn whether it constitutes a path’s bottleneck has to be designed. Although
such mechanisms may be difficult to implement in a packet switched environment,
they may be implemented in an MPLS network (where, for instance, measuring dPsi

is
straightforward).

We have also conducted a comparative study between DLB and so-called Robust
Routing (RR), from which we may reach several conclusions. The most important is
probably that we have shown that using a single and unique routing configuration is not
a viable solution when traffic is relatively dynamic. It obtains a very poor performance
either when faced with unforseen TMs or when its design tries to consider as many
TMs as possible. It is clear from our study that some form of dynamism is necessary,
which could be either Reactive Robust Routing (RRR) or DLB.

RRR computes a nominal operation routing configuration, and has an alternative
routing (using the same paths than in normal operation) for certain possible anomalous
situations. In order to detect these anomalous situations, link load measurements
have to be gathered. On the other hand, DLB gathers these same measurements
but also requires updating load-balancing in a relatively small time-scale. The added
complexity is then to distribute these measurements to all ingress routers (instead of a
central entity) and updating the load-balancing in real-time. Our results show that the
additional complexity involved in DLB may not be justified when the variability (or the
anomalies) are not very significant. However, the use of DLB under highly dynamic
traffic is very appealing and generally provides better results than RRR. Moreover,
if the anomalies may not be correctly detected, the only effective solution is DLB.
It should also be noted that RR only considers uncertainty in traffic, and that DLB
considers traffic variability and link/node failures, thus making it much more flexible.

Finally, regarding RR in particular and similarly to DLB, we have proved that a
local performance criterium such as umax (maximum link utilization), widely used in
current network optimization problems, does not represent a suitable objective function
as regards global network performance. The use of umax together with other perfor-
mance indicators (such as utot, the sum of links utilization) through the framework of
Multi-Objective Optimization provides interesting results and deserves further analysis.

Chapter 9. Conclusions and Future Work 129

9.1 Future Work

The presented results encourage us to continue on this line of research. However,
much remains to be done. A first, and very important problem, is that the result
on convergence to the WE of no-regret algorithms proved in [21] was specifically for
congestion routing games. For instance, we have used iAWM-R to converge to the WE
of a bottleneck routing game1. Although convergence was verified in all the simulations
we tried, an actual formal proof is still, to the best of our knowledge, an open and very
interesting problem. More so, as it has been proved that in general games, agents
repeatedly applying no-regret strategies do not converge to the Nash Equilibrium.

Related to the considerations above, and in order to converge to the optimum in
MaxU, we have proposed the path cost φP defined in (5.10). We have proved that any
optimum of the problem was necessary a WE with this path cost. However, we were
unable to prove that this condition was also sufficient. Moreover, in this case φP is
not continuous in the demands, a fact that could translate into oscillations. However,
we wanted to analyze the performance of the objective function before tackling these
complicated problems.

Regarding the regression framework, a possible improvement has to do with the
model used when defining fl(ρl). Although, as we saw in Sec. 6.5, the mean queue
size can be reasonably modeled with such a function in wired mediums, this is not
necessarily true in a wireless medium. Actually, as discussed for instance in [105],
the MAC-layer interactions between routers play a significant role in determining the
capacity of a link (and thus its queue size). This means that the f of any given link
should include the load of all links in its collision domain, and not only itself. A deeper
analysis of this non-local model represents interesting future work. It would also be very
interesting to perform the regression method over real traces, and not over emulation or
simulations. Although we have tried to obtain such data from the routers in our own
local network, for reasons more political than technical, we have not yet succeeded.
Finally, the two regression methods we presented gave as a result a piecewise linear
function. However, iAWM-R requires a continuous differentiable fl(ρl). We addressed
this issue by approximating the piecewise constant derivative by a piecewise linear
function, and verified that this approximation did not affect the obtained performance
significantly. However, it would be interesting to design a regression method that shares
the optimality properties of CNWLS, but whose output is a continuous differentiable
function.

Let us also highlight that the DLB framework we presented was limited to architec-
tures in which paths can be established (e.g. MPLS). An interesting extension would
be to consider pure-IP networks. There are two ideas in this direction that we would
like to highlight here. Firstly, in multi-topology routing (see for instance [106]) there
are several logical topologies in the same network. Routers have an associated rout-

1It should be noted that the authors of [6] apply REPLEX to a bottleneck routing game, even when
their algorithm was also designed for congestion routing games.

130 9.1. Future Work

ing table for each of these topologies, and packets are marked at the ingress so as to
identify to which logical topology they belong to. For instance, the implementation
of Selective Load-Balancing (cf. Sec. 4.2.3) with this technique is relatively straight-
forward. Adaptation of the DLB problem to this framework would be an important
extension of our work. Another interesting possibility is the one presented in [63]. In-
stead of ECMP (Equal Cost Multi-Path) as the only possible multi-path routing in
IP networks, they propose to split traffic with an exponential penalization to longer
paths. Even if they require this addition to legacy IP routing, they keep the simplicity
of hop-by-hop routing and do not require paths to be established, while still minimizing∑

l fl(ρl).

We have also limited ourselves to intradomain routing. How to define a Dynamic
Load-Balancing scheme in the interdomain case, in which packets may traverse several
Autonomous Systems (ASs), is an important, but very complicated, problem. Even
the establishment of paths in this case poses several technical and political challenges.
However, multi-homing and the advances in the development of, for instance, the Loca-
tor/ID Separator Protocol (LISP) [107] could simplify and accelerate the development
of such interdomain DLB schemes.

AppendixA

List of Publications

International Conferences

• Pedro Casas, Federico Larroca, Jean-Louis Rougier, and Sandrine Vaton, “Ro-
bust Routing vs Dynamic Load-Balancing A Comprehensive Study and New Di-
rections,” in proceedings of 7th International Workshop on the Design of Reliable
Communication Networks (DRCN 2009). Washington D.C., USA, October 2009.

• Pedro Casas, Federico Larroca, and Sandrine Vaton, “Robust Routing Mecha-
nisms for Intradomain Traffic Engineering in Dynamic Networks,” in proceedings
of IEEE/IFIP 6th Latin American Network Operations and Management Sympo-
sium (LANOMS 2009). Punta del Este, Uruguay, October 2009. Awarded with
the Best Conference Paper Award

• Federico Larroca and Jean-Louis Rougier, “Robust Regression for Minimum-
Delay Load-Balancing,” in proceedings of 21st International Teletraffic Congress
(ITC 21). Paris, France, September 2009.

• Federico Larroca and Jean-Louis Rougier, “Routing Games for Traffic Engineer-
ing,” in proceedings of IEEE International Conference on Communications (ICC
2009). Dresden, Germany, June 2009.

• Federico Larroca and Jean-Louis Rougier, “Minimum-Delay Load-Balancing Through
Non-Parametric Regression,” in proceedings of IFIP/TC6 NETWORKING 2009.
Aachen, Germany, May 2009.

• Federico Larroca and Jean-Louis Rougier, “A Fair and Dynamic Load-Balancing
Mechanism,” in proceedings of International Workshop on Traffic Management
and Traffic Engineering for the Future Internet (FITraMEn 08). Porto, Portu-
gal, December 2008. Selected to be published in Traffic Management and Traf-
fic Engineering for the Future Internet, First Euro-NF International Workshop,

131

132

FITraMEn 2008, Porto, Portugal, December 11-12, 2008, Revised Selected Papers
edited by LNCS, Springer.

• Andrés Ferragut, Daniel Kofman, Federico Larroca, and Sara Oueslati, “Design
and analysis of flow aware load balancing mechanisms for multi-service networks,”
in proceedings of 4th EURO-NGI Conference on Next Generation Internet Net-
works (NGI 2008). Krakow, Poland, April 2008.

• Andrés Ferragut, Daniel Kofman, Federico Larroca, and Sara Oueslati, “Design
and analysis of flow aware load balancing mechanisms for multi-service networks
- Extended Abstract,” presented in EuroFGI Workshop on IP QoS and Traffic
Control. Lisbon, Portugal, December 2007.

International Journals

• Pedro Casas, Federico Larroca, Jean-Louis Rougier and Sandrine Vaton, “Taming
Traffic Dynamics: Analysis and Improvements” submitted for fast-tracking in
Computer Communications (COMCOM) Journal (Elsevier).

• Federico Larroca and Jean-Louis Rougier, “Minimum delay load-balancing via
nonparametric regression and no-regret algorithms,” submitted to IEEE/ACM
Transactions on Networking.

AppendixB

Notation Index

Notation Meaning

γs Threshold for the streaming queue in Cross-Protect
γe Threshold for the elastic queue in Cross-Protect
C Capacity of a tunnel or LSP
xs Number of active streaming flows in Cross-Protect
λs Streaming flows arrival intensity
r Rate of each streaming flow
τs Streaming flows’ mean duration
ds Demand generated by the streaming flows (ds = λsτsr)
xe Number of active elastic flows in Cross-Protect
be Mean elastic flows’ size
de Demand generated by the elastic flows (de = λebe)
Nmax

e Maximum possible number of elastic flows in the Cross-Protect queue
Nmax

s Maximum possible number of streaming flows in the Cross-Protect queue
Be Blocking probability of the elastic queue in Cross-Protect
πs Stationary distribution of the streaming queue in Cross-Protect
B Blocking probability of the Cross-Protect router
Bobp Blocking probability of an optimal balanced policy router
G = (V,E) The graph defining the network
l The index of a link
ρl Load on link l
ρ A vector containing the ρl’s
cl Capacity of link l
ul The link utilization of l (ul = ρl/cl)
s The index of an OD pair or commodity
S The number of OD pairs in the network
os Origin node of OD pair s
qs Destination node of OD pair s
P A generic path

133

134

Ps Set of paths belonging to OD pair s
Psi Any path belonging to OD pair s
ns The number of paths available to OD pair s (ns = |Ps|)
φP Path cost function of P
φl(ρl) Link cost function of l
NP Number of flows on path P
xP Total rate obtained by the NP flows on path P
ds Traffic demand generated by OD pair s
dP Amount of traffic sent along path P
d The demand vector d = (dPsi

)
U(x) The utility function
ABWl Link available bandwidth (ABWl = cl − ρl)
ABWP Path available bandwidth (ABWP = min

l∈P
ABWl)

Dl(ρl) Mean queueing delay on link l
DP End-to-End path queueing delay (DP =

∑
l:l∈P Dl(ρl))

D(d) Mean end-to-end queueing delay
fl(ρl) Mean queue size on link l
{(ρi, Yi)}i=1,..,N Set of N measurements (the training set)
wi Weight for the measurement i in the regression problem
(αi, βi) Parameters specifying the line segment i in the piecewise linear approximation
k Maximum number of segments in CPLF
N(P) Number of network bottlenecks over P
ys Outcome in iAWM
LPsi

Path regret in iAWM
λs Learning rate in iAWM
ωPsi

Portion of ds sent along path Psi (ωPsi
= dPsi

/ds)
X The uncertainty set in Robust Routing
rls Fraction of traffic from commodity s routed through link l
R Routing Matrix (R = (rls))
X A vector representation of the TM (X = (ds))
umax The maximum link utilization
utot The total network utilization (utot =

∑
l ul)

Bibliography

[1] A. E. I. W. D. Awduche, A. Chiu and X. Xiao, “Overview and Principles of
Internet Traffic Engineering,” RFC 3273 (Informational), May 2002. [Online].
Available: http://www.faqs.org/rfcs/rfc3272.html

[2] Cisco Systems, “Global ip traffic forecast and methodology 2006-2011,” White
Paper, 2007 - updated 2008.

[3] ——, “The exabyte era,” White Paper, 2007 - updated 2008.

[4] A. Elwalid, C. Jin, S. Low, and I. Widjaja, “MATE: MPLS adaptive traffic
engineering,” in IEEE Twentieth Annual Joint Conference of the IEEE Computer
and Communications Societies. (INFOCOM 2001), vol. 3, Anchorage, USA, April
2001, pp. 1300–1309.

[5] S. Kandula, D. Katabi, B. Davie, and A. Charny, “Walking the tightrope: re-
sponsive yet stable traffic engineering,” in Proceedings of the 2005 conference on
Applications, technologies, architectures, and protocols for computer communica-
tions (SIGCOMM ’05), Philadelphia, USA, August 2005, pp. 253–264.

[6] S. Fischer, N. Kammenhuber, and A. Feldmann, “Replex: dynamic traffic en-
gineering based on wardrop routing policies,” in Proceedings of the 2006 ACM
CoNEXT conference (CoNEXT ’06), Lisboa, Portugal, December 2006, pp. 1–12.

[7] A. Khanna and J. Zinky, “The revised arpanet routing metric,” SIGCOMM Com-
put. Commun. Rev., vol. 19, no. 4, pp. 45–56, 1989.

[8] W. Ben-Ameur and H. Kerivin, “Routing of uncertain traffic demands,” Opt. and
Eng., vol. 6, no. 3, pp. 283–313, September 2005.

[9] D. Applegate and E. Cohen, “Making intra-domain routing robust to changing
and uncertain traffic demands: understanding fundamental tradeoffs,” in Pro-
ceedings of the 2003 conference on Applications, technologies, architectures, and
protocols for computer communications (SIGCOMM ’03), Karlsruhe, Germany,
August 2003, pp. 313–324.

135

http://www.faqs.org/rfcs/rfc3272.html

136 BIBLIOGRAPHY

[10] J. W. Roberts, “Internet Traffic, QoS and Pricing,” Proceedings of the IEEE,
vol. 92, no. 9, pp. 1389– 1399, September 2004.

[11] S. Oueslati and J. W. Roberts, “A new direction for quality of service: flow-
aware networking,” in Next Generation Internet Networks (NGI 2005), Rome,
Italy, April 2005, pp. 226– 232.

[12] A. Kortebi, S. Oueslati, and J. W. Roberts, “Cross-protect: implicit service dif-
ferentiation and admission control,” in Workshop on High Performance Switching
and Routing (HPSR 2004), Phoenix, USA, 2004, pp. 56–60.

[13] T. Bonald, L. Massoulié, A. Proutière, and J. Virtamo, “A queueing analysis of
max-min fairness, proportional fairness and balanced fairness,” Queueing Syst.
Theory Appl., vol. 53, no. 1-2, pp. 65–84, 2006.

[14] T. Bonald and A. Proutière, “On performance bounds for balanced fairness,”
Perform. Eval., vol. 55, no. 1-2, pp. 25–50, 2004.

[15] D. P. Bertsekas, Nonlinear Programming. Athena Scientific, 1999.

[16] D. Bertsekas and R. Gallager, Data Networks. Prentice-Hall, 1992.

[17] T. Kuosmanen, “Representation theorem for convex nonparametric least
squares,” Econometrics Journal, vol. 11, no. 2, pp. 308–325, July 2008.

[18] A. Magnani and S. P. Boyd, “Convex piecewise-linear fitting,” Optimization and
Engineering, vol. 10, no. 1, pp. 1–17, March 2009.

[19] E. Altman, T. Boulogne, R. El-Azouzi, T. Jiménez, and L. Wynter, “A survey
on networking games in telecommunications,” Comput. Oper. Res., vol. 33, no. 2,
pp. 286–311, 2006.

[20] J. Wardrop, “Some theoretical aspects of road traffic research,” Proceedings of
the Institution of Civil Engineers, Part II, vol. 1, no. 36, pp. 352–362, 1952.

[21] A. Blum, E. Even-Dar, and K. Ligett, “Routing without regret: on convergence
to nash equilibria of regret-minimizing algorithms in routing games,” in Twenty-
Fifth Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed
Computing (PODC 2006), Denver, USA, July 2006, pp. 45–52.

[22] P. Auer, C. Gentile, and A.-G. Austria, “Adaptive and self-confident on-line
learning algorithms,” Journal of Computer and System Sciences, vol. 64, no. 1,
pp. 48–75, February 2002.

[23] P. Casas, L. Fillatre, and S. Vaton, “Robust and reactive traffic engineering for
dynamic traffic demands,” in Next Generation Internet Networks (NGI 2008),
Krakow, Poland, April 2008, pp. 69–76.

[24] Global Action Plan, “An inefficient truth.” [Online]. Available:
http://www.globalactionplan.org.uk/upload/resource/Full-report.pdf

http://www.globalactionplan.org.uk/upload/resource/Full-report.pdf

BIBLIOGRAPHY 137

[25] M. Gupta and S. Singh, “Greening of the internet,” in Proceedings of the 2003
conference on Applications, technologies, architectures, and protocols for com-
puter communications (SIGCOMM ’03), Karlsruhe, Germany, August 2003, pp.
19–26.

[26] L. Kleinrock, Queueing Systems. Wiley-Interscience, 1975.

[27] “Metro Ethernet Forum.” [Online]. Available:
http://www.metroethernetforum.org/

[28] “Provider Bridges.” [Online]. Available:
http://www.ieee802.org/1/pages/802.1ad.html

[29] “Provider Backbone Bridges.” [Online]. Available:
http://www.ieee802.org/1/pages/802.1ah.html

[30] “VPLS - Virtual Private LAN Service.” [Online]. Available: http://www.vpls.org

[31] G. Carofiglio and L. Muscariello, “On the impact of tcp and per-flow scheduling on
internet performance,” in Proceedings of the 29th IEEE Conference on Computer
Communications (INFOCOM 2010), San Diego, USA, March 2010.

[32] T. Bonald, A. Proutiere, and J. W. Roberts, “Statistical Performance Guarantees
for Streaming Flows using Expedited Forwarding,” in IEEE Twentieth Annual
Joint Conference of the IEEE Computer and Communications Societies (INFO-
COM 2001), vol. 2, Anchorage, USA, 2001, pp. 1104–1112.

[33] T. Bonald and J. W. Roberts, “Congestion at flow level and the impact of user
behaviour,” Computer Networks, vol. 42, no. 4, pp. 521–536, 2003.

[34] S. B. Fredj, T. Bonald, A. Proutiere, G. Regnie, and J. W. Roberts, “Statistical
bandwidth sharing: A study of congestion at flow level,” in Proceedings of the
2001 conference on Applications, technologies, architectures, and protocols for
computer communications (SIGCOMM ’01), San Diego, USA, 2001, pp. 111–122.

[35] P. Goyal, H. Vin, and H. Cheng, “Start-time fair queueing: a scheduling algorithm
for integrated services packet switching networks,” IEEE/ACM Transactions on
Networking, vol. 5, no. 5, pp. 690–704, October 1997.

[36] M. Shreedhar and G. Varghese, “Efficient Fair Queuing Using Deficit Round
Robin,” IEEE/ACM Transactions on Networking, vol. 4, no. 3, pp. 231–242,
June 1996.

[37] A. Kortebi, L. Muscariello, S. Oueslati, and J. Roberts, “Evaluating the num-
ber of active flows in a scheduler realizing fair statistical bandwidth sharing,” in
Proceedings of the 2005 ACM SIGMETRICS international conference on Mea-
surement and modeling of computer systems (SIGMETRICS ’05), Banff, Canada,
2005, pp. 217–228.

http://www.metroethernetforum.org/
http://www.ieee802.org/1/pages/802.1ad.html
http://www.ieee802.org/1/pages/802.1ah.html
http://www.vpls.org

138 BIBLIOGRAPHY

[38] N. Benameur, S. B. Fredj, F. Delcoigne, S. Oueslati-Boulahia, and J. W. Roberts,
“Integrated admission control for streaming and elastic traffic,” in Second COST
263 International Workshop on Quality of Future Internet Services (QofIS 2001),
vol. 2156, Coimbra, Portugal, 2001, pp. 69–81.

[39] “The Network Simulator - ns.” [Online]. Available:
http://nsnam.isi.edu/nsnam/index.php/Main Page

[40] F. Bonomi, “On job assignment for a parallel system of processor sharing queues,”
IEEE Trans. Comput., vol. 39, no. 7, pp. 858–869, 1990.

[41] G. Koole and A. Hordijk, “On the Assignment of Customers to Parallel Queues,”
Probability in the Engineering and Informational Sciences, vol. 6, pp. 495 – 511,
1992.

[42] B. Hajek, “Optimal control of two interacting service stations,” IEEE Trans. on
Automatic Control, vol. 29, no. 6, pp. 491– 499, June 1984.

[43] T. Bonald, M. Jonckheere, and A. Proutiere, “Insensitive load balancing,” in
Proceedings of the joint international conference on Measurement and modeling of
computer systems (SIGMETRICS ’04/Performance ’04), New York, USA, June
2004, pp. 367–377.

[44] S. Agarwal, A. Nucci, and S. Bhattacharyya, “Controlling hot potatoes in in-
tradomain traffic engineering,” Sprint ATL, Tech. Rep. RR04-ATL-070677, July
2004.

[45] M. Roughan, M. Thorup, and Y. Zhang, “Traffic engineering with estimated traf-
fic matrices,” in Proceedings of the 3rd ACM SIGCOMM conference on Internet
measurement (IMC ’03), Miami Beach, USA, October 2003, pp. 248–258.

[46] C. Zhang, Y. Liu, W. Gong, J. Kurose, R. Moll, and D. Towsley, “On optimal
routing with multiple traffic matrices,” in 24th Annual Joint Conference of the
IEEE Computer and Communications Societies (INFOCOM 2005), vol. 1, Miami
Beach, USA, March 2005, pp. 607–618.

[47] M. Johansson and A. Gunnar, “Data-driven traffic engineering: techniques, expe-
riences and challenges,” in 3rd International Conference on Broadband Commu-
nications, Networks and Systems (BROADNETS 2006), San José, USA, October
2006, pp. 1–10.

[48] I. Juva, “Robust load balancing,” in IEEE Global Telecommunications Conference
(GLOBECOM ’07), Washington D.C., USA, November 2007, pp. 2708–2713.

[49] H. Wang, H. Xie, L. Qiu, Y. R. Yang, Y. Zhang, and A. Greenberg, “Cope: traffic
engineering in dynamic networks,” SIGCOMM Comput. Commun. Rev., vol. 36,
no. 4, pp. 99–110, 2006.

http://nsnam.isi.edu/nsnam/index.php/Main_Page

BIBLIOGRAPHY 139

[50] N. G. Duffield, P. Goyal, A. Greenberg, P. Mishra, K. K. Ramakrishnan, and J. E.
van der Merwe, “Resource management with hoses: point-to-cloud services for
virtual private networks,” IEEE/ACM Trans. Netw., vol. 10, no. 5, pp. 679–692,
2002.

[51] A. Gupta, J. M. Kleinberg, A. Kumar, R. Rastogi, and B. Yener, “Provisioning a
virtual private network: a network design problem for multicommodity flow,” in
Proceedings of the thirty-third annual ACM symposium on Theory of computing
(STOC ’01), Crete, Greece, July 2001, pp. 389–398.

[52] A. Kumar, R. Rastogi, A. Silberschatz, and B. Yener, “Algorithms for provi-
sioning virtual private networks in the hose model,” IEEE/ACM Trans. Netw.,
vol. 10, no. 4, pp. 565–578, 2002.

[53] T. Erlebach and M. Ruegg, “Optimal bandwidth reservation in hosemodel vpns
with multi-path routing,” in Twenty-third Annual Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM 2004), vol. 4, Hong Kong,
China, March 2004, pp. 2275–2282.

[54] F. Eisenbrand, F. Grandoni, G. Oriolo, and M. Skutella, “New approaches for
virtual private network design,” SIAM J. Comput., vol. 37, no. 3, pp. 706–721,
2007.

[55] A. Juttner, I. Szabo, and A. Szentesi, “On bandwidth efficiency of the hose re-
source management model in virtual private networks,” in Twenty-Second Annual
Joint Conference of the IEEE Computer and Communications Societies (INFO-
COM 2003), vol. 1, San Francisco, USA, March, April 2003, pp. 386–395.

[56] M. Berthelot, D. Pletsch, and H. Ravokatra, “Dimensionnement de réseau à l’aide
du modèle de hose,” July 2007, end-of-course project for UE RES 381 in Télécom
ParisTech.

[57] R. Zhang-Shen and N. McKeown, “Designing a predictable internet backbone net-
work,” in Third Workshop on Hot Topics in Networks (HotNets-III), San Diego,
USA, November 2004.

[58] M. Kodialam, T. Lakshman, and S. Sengupta, “Efficient and robust routing of
highly variable traffic,” in Third Workshop on Hot Topics in Networks (HotNets-
III), San Diego, USA, November 2004.

[59] R. Prasad, P. J. Winzer, S. C. Borst, and M. K. Thottan, “Queuing delays in
randomized load balanced networks,” in 26th IEEE International Conference on
Computer Communications (INFOCOM 2007), Anchorage, USA, May 2007.

[60] L. G. Valiant and G. J. Brebner, “Universal schemes for parallel communication,”
in STOC ’81: Proceedings of the thirteenth annual ACM symposium on Theory
of computing, Milwaukee, USA, 1981, pp. 263–277.

140 BIBLIOGRAPHY

[61] R. Zhang-Shen, “Valiant load balancing,” Ph.D. dissertation, Stanford University,
Stanford, California, 2007.

[62] F. B. Shepherd and P. J. Winzer, “Selective randomized load balancing and
mesh networks with changing demands,” Journal of Optical Networking, vol. 5,
pp. 320–339, 2006.

[63] D. Xu, M. Chiang, and J. Rexford, “Link-state routing with hop-by-hop forward-
ing can achieve optimal traffic engineering,” in The 27th Conference on Computer
Communications (INFOCOM 2008), Phoenix, USA, April 2008, pp. 466–474.

[64] S. Fischer, H. Räcke, and B. Vöcking, “Fast convergence to wardrop equilibria
by adaptive sampling methods,” in Proceedings of the thirty-eighth annual ACM
symposium on Theory of computing (STOC ’06), Seattle, USA, May 2006, pp.
653–662.

[65] R. Srikant, The Mathematics of Internet Congestion Control. Birkhäuser Boston,
2003.

[66] J. Mo and J. Walrand, “Fair end-to-end window-based congestion control,”
IEEE/ACM Trans. Netw., vol. 8, no. 5, pp. 556–567, 2000.

[67] F. Kelly, A. Maulloo, and D. Tan, “Rate control in communication networks:
shadow prices, proportional fairness and stability,” Journal of the Operational
Research Society, vol. 49, no. 3, pp. 237–252, 1998.

[68] W.-H. Wang, M. Palaniswami, and S. H. Low, “Optimal flow control and routing
in multi-path networks,” Perform. Eval., vol. 52, no. 2-3, pp. 119–132, 2003.

[69] F. Kelly and T. Voice, “Stability of end-to-end algorithms for joint routing and
rate control,” SIGCOMM Comput. Commun. Rev., vol. 35, no. 2, pp. 5–12, 2005.

[70] H. Han, S. Shakkottai, C. V. Hollot, R. Srikant, and D. Towsley, “Multi-path
tcp: a joint congestion control and routing scheme to exploit path diversity in
the internet,” IEEE/ACM Trans. Netw., vol. 14, no. 6, pp. 1260–1271, 2006.

[71] F. Paganini, “Congestion control with adaptive multipath routing based on op-
timization,” in 40th Annual Conference on Information Sciences and Systems
(CISS ’06), Princeton, USA, March 2006.

[72] P. Key, L. Massoulie, and D. Towsley, “Path selection and multipath congestion
control,” in 26th IEEE International Conference on Computer Communications
(INFOCOM 2007), Anchorage, USA, May 2007, pp. 143–151.

[73] J. He, M. Bresler, M. Chiang, and J. Rexford, “Towards robust multi-layer traffic
engineering: Optimization of congestion control and routing,” IEEE Journal on
Selected Areas in Communications, vol. 25, no. 5, pp. 868–880, June 2007.

[74] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University
Press, 2004.

BIBLIOGRAPHY 141

[75] T. V. Lakshman and U. Madhow, “The performance of tcp/ip for networks with
high bandwidth-delay products and random loss,” IEEE/ACM Trans. Netw.,
vol. 5, no. 3, pp. 336–350, 1997.

[76] T. Bonald and A. Proutière, “Insensitive bandwidth sharing in data networks,”
Queueing Syst. Theory Appl., vol. 44, no. 1, pp. 69–100, 2003.

[77] P. Lassila, A. Penttinen, and J. Virtamo, “Communication networks dimensioning
of data networks: a flow-level perspective,” European Transactions on Telecom-
munications, to appear.

[78] F. Larroca and J.-L. Rougier, “A fair and dynamic Load-Balancing mechanism,”
in International Workshop on Traffic Management and Traffic Engineering for
the Future Internet (FITRAMEN) 2008, Porto, Portugal, December 2008.

[79] A. van den Bos, Parameter Estimation for Scientists and Engineers. Wiley-
Interscience, 2007.

[80] K. Cho, “WIDE-TRANSIT 150 Megabit Ethernet Trace 2008-03-18.” [Online].
Available: http://mawi.wide.ad.jp/mawi/samplepoint-F/20080318/

[81] N. Hohn, D. Veitch, K. Papagiannaki, and C. Diot, “Bridging router performance
and queuing theory,” SIGMETRICS Perform. Eval. Rev., vol. 32, no. 1, pp. 355–
366, 2004.

[82] R. C. Fair, “On the robust estimation of econometric models,” Annals of Eco-
nomic and Social Measurement, vol. 3, no. 4, pp. 117–128, October 1974.

[83] “The MOSEK Optimization Software.” [Online]. Available:
http://www.mosek.com/

[84] L. Wasserman, All of Nonparametric Statistics: A Concise Course in Nonpara-
metric Statistical Inference. Springer, 2006.

[85] Y. Ait-Sahalia and J. Duarte, “Nonparametric option pricing under shape restric-
tions,” Journal of Econometrics, vol. 116, no. 1-2, pp. 9–47, September-October
2003.

[86] C. Cassandras, M. Abidi, and D. Towsley, “Distributed routing with on-line
marginal delay estimation,” IEEE Trans. Comm., vol. 38, no. 3, pp. 348–359,
Mar 1990.

[87] M. Beckmann, C. B. McGuire, and C. B. Winsten, Studies in the Economics of
Transportation. Yale University Press, 1956.

[88] E. Koutsoupias and C. Papadimitriou, “Worst-case equilibria,” in Proceedings of
the 16th Annual Symposium on Theoretical Aspects of Computer Science (STACS
’99), Trier, Germany, March 1999, pp. 404–413.

http://mawi.wide.ad.jp/mawi/samplepoint-F/20080318/
http://www.mosek.com/

142 BIBLIOGRAPHY

[89] E. Anshelevich, A. Dasgupta, J. Kleinberg, E. Tardos, T. Wexler, and T. Rough-
garden, “The price of stability for network design with fair cost allocation,”
in 45th Annual IEEE Symposium on Foundations of Computer Science (FOCS
2004), Rome, Italy, October 2004, pp. 295–304.

[90] R. Banner and A. Orda, “Bottleneck routing games in communication networks,”
IEEE Journal on Selected Areas in Communications, vol. 25, no. 6, pp. 1173–
1179, August 2007.

[91] V. G. Vovk, “Aggregating strategies,” in Proceedings of the third annual workshop
on Computational learning theory (COLT ’90), Rochester, United States, August
1990, pp. 371–386.

[92] N. Littlestone and M. K. Warmuth, “The weighted majority algorithm,” Inf.
Comput., vol. 108, no. 2, pp. 212–261, 1994.

[93] “The Abilene Network.” [Online]. Available: http://www.internet2.edu/network/

[94] Yin Zhang, “Abilene Dataset.” [Online]. Available:
http://www.cs.utexas.edu/∼yzhang/research/AbileneTM/

[95] T. M. Cover, Mathematical Finance, vol. 1, no. 1, pp. 1–29, 1991.

[96] A. Borodin and R. El-Yaniv, Online Computation and Competitive Analysis.
Cambridge University Press, 1998.

[97] N. Cesa-Bianchi, Y. Mansour, and G. Stoltz, “Improved second-order bounds for
prediction with expert advice,” Mach. Learn., vol. 66, no. 2-3, pp. 321–352, 2007.

[98] M. Herbster and M. K. Warmuth, “Tracking the best expert,” Mach. Learn.,
vol. 32, no. 2, pp. 151–178, 1998.

[99] Z. Cao, Z. Wang, and E. Zegura, “Performance of hashing-based schemes for
internet load balancing,” in Nineteenth Annual Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM 2000), vol. 1, Tel Aviv,
Israel, March 2000, pp. 332–341.

[100] “Géant Topology Map.” [Online]. Available: http://www.geant.net

[101] G. Leduc, H. Abrahamsson, S. Balon, S. Bessler, M. D’Arienzo, O. Del-
court, J. Domingo-Pascual, S. Cerav-Erbas, I. Gojmerac, X. Masip, A. Pescape,
B. Quoitin, S. Romano, E. Salvadori, F. Skivee, H. T. Tran, S. Uhlig, and H. Umit,
“An open source traffic engineering toolbox,” Computer Communications, vol. 29,
no. 5, pp. 593–610, 2006.

[102] “TOTEM: TOolbox for Traffic Engineering Methods.” [Online]. Available:
http://totem.info.ucl.ac.be/

http://www.internet2.edu/network/
http://www.cs.utexas.edu/~yzhang/research/AbileneTM/
http://www.geant.net
http://totem.info.ucl.ac.be/

BIBLIOGRAPHY 143

[103] S. Uhlig, B. Quoitin, J. Lepropre, and S. Balon, “Providing public intradomain
traffic matrices to the research community,” SIGCOMM Comput. Commun. Rev.,
vol. 36, no. 1, pp. 83–86, 2006.

[104] W.-B. Gong, Y. Liu, V. Misra, and D. Towsley, “Self-similarity and long range
dependence on the internet: a second look at the evidence, origins and implica-
tions,” Comput. Netw., vol. 48, no. 3, pp. 377–399, 2005.

[105] M. Heusse, F. Rousseau, G. Berger-Sabbatel, and A. Duda, “Performance
anomaly of 802.11b,” in Twenty-Second Annual Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM 2003), vol. 2, San Fran-
cisco, USA, March, April 2003, pp. 836–843.

[106] A. Kvalbein and O. Lysne, “How can multi-topology routing be used for in-
tradomain traffic engineering?” in Proceedings of the 2007 SIGCOMM workshop
on Internet network management (INM ’07), Kyoto, Japan, August 2007, pp.
280–284.

[107] D. Farinacci, V. Fuller, D. Oran, D. Meyer, and S. Brim, “Locator/id separation
protocol (lisp),” draft-farinacci-lisp-11, December 2008. [Online]. Available:
http://tools.ietf.org/id/draft-farinacci-lisp-11.txt

http://tools.ietf.org/id/draft-farinacci-lisp-11.txt

	Introduction
	Context and Motivation
	Summary of Contributions
	First Part: Reserved Resources
	Second Part: Shared Resources

	Structure of the Thesis

	I Reserved Resources
	Cross-Protect
	Introduction
	Proposed Architecture: Cross-Protect
	Performance Analysis
	Model Description
	Analysis
	Packet-level simulations

	Load-Balancing with Cross-Protect: Simple Greedy Policy
	Introduction
	Multiple Tunnels and Load balancing Analysis
	Related work
	Proposed scheme
	Analysis

	Simulation results
	Flow-level (or fluid) simulations
	Packet-level simulations

	Conclusions

	II Shared Resources
	Introduction and State of the Art
	Introduction
	Static Routing for Dynamic Traffic
	Robust Routing
	The Hose Model
	Valiant Load-Balancing

	Dynamic Load-Balancing
	Multi-Path Congestion Control

	Utility Maximization Load-Balancing
	The New Objective Function
	Characterization of the Optimum
	Illustrative Examples

	Minimum Congestion Load-Balancing: Learning the Cost Function
	Introduction
	Characterizing the Optimum
	Learning the Mean Queue Size Function
	General Considerations
	Convex Nonparametric Weighted Least Squares
	Convex Piecewise-Linear Fitting
	Choosing the Weights

	Comparison of the Regression Methods
	Dependence on N
	Dependence on k

	Some Regression Examples
	Related Work

	Achieving the Optimum: Routing Games and No-Regret Algorithms
	Greedy Load-Balancing
	No-Regret Algorithms
	Definition and Results
	A No-Regret Algorithm: iAWM

	Some Preliminary Simulations: iAWM-R
	Related Work

	Evaluation
	Introduction
	Implementation Issues

	The Three Objective Functions: A Performance Comparison
	Abilene Network
	Géant Network

	Regression-Based Minimum Congestion Load-Balancing
	Assessing the Performance Gain
	Temporal Behavior

	Packet-Level Simulations
	Small Buffers and the Regression-Based Minimum Congestion Load-Balancing
	Two iAWM-R Commodities

	Robust Routing vs Dynamic Load-Balancing
	An Introduction to Robust Routing
	Improving Stable Robust Routing
	Evaluation and Discussion
	

	Conclusions and Future Work
	Future Work

	List of Publications
	Notation Index

