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Only for you, children of doctrine and learning, have we written this work. Examine this book,

ponder the meaning we have dispersed in various places and gathered again; what we have

concealed in one place we have disclosed in another, that it may be understood by your wisdom.

H. C. A. von Nettesheim, De occulta philosophia, 3, 65.

I have understood. And the certainty that there is nothing to understand should be my peace, my

triumph. But I am here, and They are looking for me, thinking I possess the revelation They

sordidly desire. It isn’t enough to have understood, if others refuse and continue to interrogate.

U. Eco, Foucault’s Pendulum., Malkhut, 120.
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Abstract

Supervised learning methods are used to build functions which accurately predict the be-

havior of new objects from observed data. They are therefore extremely useful in several

computational biology problems, where they can exploit the increasing amount of empir-

ical data generated by high-throughput technologies, or the accumulation of experimental

knowledge in public databases.

A very popular example is DNA microarrays, which are used to measure the expression

of thousands of genes, for example in tumoral cells of a patient. Typical studies involve

such measures for hundreds of patients, and it is hoped that supervised learning methods

using this data can help build functions which differentiate between e.g., good progno-

sis and bad prognosis tumors based on their gene expression. In vaccine design, in silico

methods for the prediction of antigenic peptides binding to MHC class I molecules play

an increasingly important role in the identification of T-cell epitopes. Statistical and ma-

chine learning methods in particular are widely used to score candidate binders based on

their similarity with known binders and non-binders. Similarly, predicting interactions be-

tween small molecules and proteins is a crucial ingredient of the drug discovery process.

In particular, accurate predictive models are increasingly used to preselect potential lead

compounds from large molecule databases, or to screen for side-effects.

In these three examples however, the amount of training data is rarely sufficient to

deal with the complexity of the learning problem. Gene expression datasets often report

measures for only few patients with respect to the number of genes. In addition, these

expression measures are often noisy, and several biological effects like disease subtypes

1
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and gene expression regulation mechanisms suggest that the best possible function based on

gene expression can be very complex. Similarly, the genes coding for the MHC molecules,

are highly polymorphic, and statistical methods have difficulties building models for alleles

with few known binders. The same applies to drug discovery problems, where little or no

training data is available for some targets of interest.

On the other hand ill-posed problems, in particular those involving less data points than

dimensions, are not new in statistics and statistical machine learning. They are classically

addressed using regularization approaches, or equivalently in a Bayesian perspective, using

a prior on what the function should be like. We build on this principle and propose new

regularization methods based on biological prior knowledge and available information for

each problem.

For example, while classical in silico drug design approaches focus on predicting in-

teractions with a given specific target, new chemogenomics approaches adopt cross-target

views and have demonstrated the utility of leveraging information across therapeutical tar-

gets to improve the performance of the prediction. Using the prior biological knowledge

that similar targets bind similar ligands, and the large amount of data available for some tar-

gets, it is therefore possible to improve dramatically the prediction accuracy for the targets

with little known ligands, and even to make predictions for targets with no known ligand,

provided that some ligands are known for other targets which are similar in some sense.

Building on recent developments in the use of kernel methods in bio- and chemoinformat-

ics, we present a systematic framework to screen the chemical space of small molecules for

interaction with the biological space of proteins. We show that this framework allows infor-

mation sharing across the targets, resulting in a dramatic improvement of ligand prediction

accuracy for three important classes of drug targets: enzymes, GPCR and ion channels.

Here again, the same idea applies to vaccine design.

In order to exploit more efficiently the fact that similar targets bind similar ligands, it

is useful to make the idea more precise: in more realistic settings, the binding behaviors of

some targets are very close to each others while some others are independent or even oppo-

site, thereby defining clusters of related targets. Sharing information between tasks of the

same clusters is expected to be beneficial while between tasks of different clusters, it may

damage the performances. Since the clusters are unknown beforehand, we design a new
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spectral norm that encodes this restricted sharing assumption without the prior knowledge

of the partition of tasks into groups. This results in a new convex optimization formula-

tion for multi-task learning, which jointly minimizes the classification error and a relaxed

clustering cost. We show in simulations on synthetic examples and on the IEDB MHC-I

binding dataset, that our approach outperforms well-known convex methods for multi-task

learning, as well as related non-convex methods dedicated to the same problem.

Concerning DNA microarray data, it is known that gene expressions are not indepen-

dent. In particular, some groups of genes are known to be involved in the same biological

functions, and tend to have very correlated expressions. Alternatively, several types of gene

networks like regulatory networks or protein-protein interaction networks give informa-

tions about potential correlations between the expression of genes. To exploit this informa-

tion, we devise a norm which, when used as regularization for empirical risk minimization

procedures, leads to sparse estimators, the support of the sparse vector typically being a

union of potentially overlapping groups of covariates defined a priori, or a set of covariates

which tend to be connected to each other when a graph of covariates is given. When this

penalty is used with gene sets corresponding to biological functions, or graphs encoding

biological information about the correlation structure between gene expressions, it could

simultaneously guide the learning process and make the solution more interpretable. We

study theoretical properties of the estimator which follows from this penalty, and illustrate

its behavior on simulated and breast cancer gene expression data.



Résumé

Les méthodes d’apprentissage supervisé sont utilisées pour construire des fonctions prédis-

ant efficacement le comportement de nouvelles données à partir de données déjà observées.

Elles sont de ce fait extrêmement utiles dans de nombreux problèmes de biologie com-

putationnelle, où elles permettent d’exploiter la quantité grandissante de données expéri-

mentales générée par les technologies à haut débit, ou l’accumulation de connaissances

expérimentales contenue dans les bases de données publiques.

On peut donner en exemple les puces à ADN, qui sont utilisées pour mesurer l’expression

de milliers de gènes, en particulier dans les cellules tumorales de patients. La plupart

des études exploitant cette technologie effectuent ces mesures pour des centaines de pa-

tients, et on peut espérer que les méthodes d’apprentissage supervisé utilisant ces don-

nées peuvent à terme conduire à des functions permettant par exemple de différencier les

tumeurs à bon et à mauvais pronostic en se basant uniquement sur l’expression de leurs

gènes. Lors de la conception de vaccins, les méthodes in silico pour la prédiction de pep-

tides antigéniques se liant aux molécules du MHC-I jouent un rôle de plus en plus im-

portant dans l’identifications des épitopes de lymphocytes T. En particulier, les méthodes

d’apprentissage supervisé sont couramment utilisées pour noter les peptides candidats en

fonction de leur similarité avec les ligands et non-ligands connus. De la même façon, la

prédiction d’interactions entre des petites molécules et certaines protéines est un élément

crucial dans le recherche de nouveaux médicaments. En particulier, de plus en plus de mod-

èles prédictifs sont utilisés afin de pré-sélectionner des molécules potentiellement actives à

partir de grandes bases de données, ou pour détecter des risques d’effets secondaires.

4
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Dans chacun de ces trois exemples cependant, la quantité de données d’entraînement

disponible est rarement suffisante par rapport à la complexité du problème d’apprentissage.

Les études impliquant des expressions de gènes donnent généralement des mesures pour

quelques centaines de patients, à rapporter au millier de gènes potentiellement impliqués.

Par ailleurs, ces mesures sont généralement bruitées et de nombreux effets biologiques tels

que les sous-types d’une maladie et les mécanismes de régulation de l’expression des gènes

suggèrent qu’une fonction de prédiction basée sur ces valeurs peut être assez complexe. De

la même manière, les gènes codant pour les molécules du MHC sont hautement polymor-

phes, et il peut être difficile aux méthodes statistiques de construire de bons modèles pour

les allèles ayant peu de ligands connus à utiliser en entraînement. On retrouve le même

problème lors de la recherche de nouveaux médicaments, où certaines cibles thérapeutiques

ont peu voire aucun ligand connu.

Heureusement, les problèmes mal posés, en particulier ceux impliquant moins d’individus

que de dimensions, ne sont pas nouveaux en statistiques et apprentissage automatique. Une

approche classique est d’utiliser des méthodes de régularisation, ou de manière équiva-

lente dans une perspective Bayesienne, d’introduire un a priori sur la forme que la fonction

devrait avoir. Partant de ces principes, nous proposons de nouvelles méthodes de régulari-

sation basées sur des connaissances biologiques et sur les informations a priori disponibles

pour chaque problème.

Par exemple, alors que les approches classiques de conception in silico de médicament

se concentrent sur la prédiction d’interactions avec une cible spécifique, les approches ré-

centes dites chémogénomiques considèrent plusieurs cibles simultanément et ont prouvé

que partager l’information entre les cibles pouvait conduire à de meilleures prédictions.

L’utilisation de cette connaissance a priori que des cibles similaires lient des ligands sim-

ilaires et de la grande quantité de données disponibles pour certaines cibles permet ainsi

d’améliorer grandement les prédictions pour certaines cibles pour lesquelles peu de ligands

sont connus. Cette approche peut même conduire à de bonnes prédictions pour certaines

cibles sans ligand connu, sous réserve que des ligands soient disponibles pour d’autres

cibles, similaires à la cible d’intérêt. En nous basant sur les récents développements de

noyaux en bio- et chémoinformatique, nous proposons un cadre systématique pour cribler
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l’espace des molécules contre l’espace biologique des protéines, afin de détecter de poten-

tielles interactions. Nous montrons que ce cadre permet un partage de l’information entre

les cibles et conduit à une forte amélioration de la précision en prédiction de ligands pour

trois classes importantes de cibles thérapeutiques : les enzymes, les GPCR et les canaux

ioniques. Ici encore, la même idée s’applique également à la conception de vaccins.

Afin d’exploiter plus efficacement le fait que les cibles similaires lient des ligands simi-

laires, il convient ensuite de préciser cette idée : dans un cadre plus réaliste, certaines cibles

ont une comportement de liaison très proche tandis que d’autres ont des comportements in-

dépendants voire opposés, ce qui définit des groupes de cibles au même comportement.

On peut s’attendre à ce que le partage d’information entre des cibles du même groupe soit

bénéfique à l’apprentissage, alors qu’au contraire partager l’information entre des cibles de

groupes différents risque d’altérer les performances. Les groupes étant inconnus a pri-

ori, nous avons conçu une nouvelle norme spectrale qui représente cette hypothèse de

partage restreint sans nécessiter la connaissance de l’information de partition des cibles.

Il en résulte une nouvelle formulation d’optimisation convexe pour l’apprentissage multi-

tâche, qui minimise conjointement l’erreur de classification et une relaxation du coût de

clustering. Nous montrons par des simulations sur des exemples synthétiques ainsi que

sur les données de liaison MHC-I de la base de données IEDB que cette approche donne

de meilleures performances que les autres méthodes convexes pour l’apprentissage multi-

tâche, ainsi que les méthodes non-convexes appliquant la même idée.

En ce qui concerne les puces à ADN, les connaissances en génétique moderne suggèrent

que les expressions des gènes ne sont pas indépendantes. En particulier, certains groupes

de gènes sont connus pour être impliqués dans les mêmes fonctions biologiques, et ont

ainsi tendance à avoir des expressions corrélées. Par ailleurs, certains types de réseaux

de gènes tels que les réseaux de régulation ou les réseaux d’interaction de protéines four-

nissent des informations quant à la corrélation potentielles entre l’expression des gènes.

Afin d’exploiter ces informations, nous construisons une norme qui, lorsqu’elle est utilisée

pour régulariser un problème de minimisation du risque empirique, conduit à des estima-

teurs parcimonieux, dont le support est typiquement une union de groupes de variables

potentiellement chevauchants définis a priori, ou un ensemble de variables ayant tendance

à être connectées sur un graphe également défini a priori. Lorsque cette pénalité est utilisée
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avec des ensembles de gènes correspondant à des fonctions biologiques ou avec des graphes

représentant une information biologique sur les structures de corrélation entre les expres-

sions de gènes, elle pourrait simultanément guider le processus d’apprentissage et rendre

la solution plus interprétable. Nous étudions les propriétés théoriques de l’estimateur ré-

sultant de cette pénalité, et illustrons son comportement sur des données simulées ainsi que

sur des données d’expression de gènes dans des tumeurs du sein.



Chapter 1
Context

This preliminary chapter introduces the main concepts and existing work this thesis builds

on. We start by a very general introduction to statistical machine learning, followed by

a section on its applications to computational biology, with an emphasis on vaccine, drug

design and outcome prediction from gene expression data, which are the biological prob-

lems we tackle throughout this thesis. Then, we briefly introduce kernel methods, along

with a presentation of the existing kernels for proteins and for small molecules. Finally, we

present the notion of regularization and prior knowledge for statistical machine learning,

with a focus on multi-task learning and sparsity-based regularization.

1.1 Statistical machine learning

1.1.1 General definition

Machine learning is concerned with analyzing data arising from some phenomenon. The

objective can be purely descriptive, e.g., finding a good way to summarize the phenomenon

or isolating interesting trends. It can also be inferential, i.e., the goal can be to learn the

relation between the observed data and another phenomenon in order to accurately predict

the phenomenon from new data for which it is not observed. The methods addressing

the former problems are often refered to as unsupervised learning, whereas the methods

addressing the latter are refered to as supervised learning.

8
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In this thesis, this data will be generally described by observations xi ∈ X , denoted

{x1, . . . , xn} for n observations. Unless otherwise stated, these observations will be vectors

of dimension d, i.e., X = Rd. X ∈ Rn×d will denote the matrix whose lines are the

observations.

The remainder of this section introduces the basic notions which underly this thesis.

For a more detailed overview, the reader is referred to, e.g., Vapnik (1998) and Hastie et al.

(2001).

1.1.2 Supervised learning

In supervised learning, an output yi ∈ Y is associated to each corresponding observation

xi for i = 1, . . . , n. The set of observed data-output pairs {(xi, yi)i=1,...,n} is referred to as

the training set.

The goal is to learn a function from this training set, which accurately predicts the

output y of a new input x. More formally, considering that:

• The observations and the corresponding outputs follow a joint distribution P(x, y).

• We are given a loss function

L : Y × Y → R,

such that L(y, y′) quantifies the cost of predicting the output y′ when the right output

is y.

Then supervised learning aims at finding the function f which minimizes

R(f) =

∫
X×Y

L(y, f(x))dP, (1.1)

where R is the risk of f , i.e., the mean cost of using it to predict y from x on the joint

distribution.

Of course, this risk cannot be computed in practice because the joint distribution P
is unknown. Practical algorithms therefore have to use the training set to estimate it, for
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example by the empirical risk :

R̂n(f) =
1

n

n∑
i=1

L(yi, f(xi)). (1.2)

Choosing the f which minimizes R̂n is a procedure known as empirical risk minimization.

However, for a finite sample size n, the function which minimizes R̂n may not be unique,

and some of the minimizers may have a very high risk R. For example in a regression

problem where Y = R, any function f taking the correct values at the training points, i.e.,

f(xi) = yi, i = 1, . . . , n and any value everywhere else will have a zero empirical risk for

any reasonable loss function (e.g. the squared loss (yi − f(xi))
2). The theory of statistical

learning (Vapnik, 1995, 1998) gives bounds on the distance between R̂n(f) and R(f) as

a function of the sample size n and the complexity of the class of functions H on which

the empirical risk is minimized. The key to obtain a function having a low true risk and

therefore better generalization abilities on (x, y) pairs which were not in the training set is

to control the complexity of H. Indeed when looking for the best classifier f in a given

space of functions H, the Bayes regret R(f) − R∗, where R∗ is the risk of the Bayes rule

which is the optimal classifier knowing the true distribution, can classically be decomposed

as :

R(f)−R∗ =

(
R(f)− inf

g∈H
R(g)

)
+

(
inf
g∈H

R(g)−R∗
)
. (1.3)

The second term is called the approximation error and corresponds to the minimum excess

risk which can be achieved by using a member of H. It is a bias term, which does not

depend on the data but only on the richness of H, or at least on its ability to approximate

the Bayes rule. The first term is called the estimation error, and corresponds to the excess

risk of f with respect to the best possible function inH.

Interestingly, when choosing f by empirical risk minimization overH, it can be shown

that if f ∗n minimizes R̂n, then :

R(f ∗n)− inf
f∈H

R(f) ≤ 2 sup
f∈H
|Rn(f)−R(f)|,

so the estimation error can be thought of like a variance term, which grows with the size,
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or more precisely the complexity ofH.

The variance term in the Bayes regret decomposition (1.3) penalizes complex function

spaces, while the bias term penalizes spaces which do not contain good approximations of

the true function. In order to obtain a low risk when minimizing the empirical risk, it is

therefore necessary to minimize it over function spaces which are not too complex, but are

rich enough to contain good approximations of the true function.

This bias-variance trade-off is generally dealt with using the following structural risk

minimization procedure (Vapnik and Chervonenkis, 1974) :

1. Define a structured family of function complexity classes,

2. Find the empirical risk minimizer on each complexity class,

3. Choose the minimizer giving the best generalization performances.

In practice, step 3 is done by estimating the empirical risk of the selected function on

a hold out part of the training set which was not used in the two previous steps. Step 1 is

typically done by varying the strength of a penalty constraining the optimal function : each

level of constraint defines a new function space in which the empirical risk minimization

can be performed, with the hope that one of them is simple enough to have a small variance

term and rich enough to have a small bias term. This procedure underlines the importance

of designing good penalties : since it defines the sequence of function spaces in which

empirical risk minimization is performed, an excellent penalty may give function spaces

which are simple yet contain good approximations of the true function. In particular, this

may happen if the penalty enforces some a priori about what type of regularity the true

function should have. This thesis presents some of these priors, and the corresponding

penalties.

1.1.3 Unsupervised learning

Another family of methods, often termed unsupervised learning aim at analyzing the data

based on the descriptions {x1, . . . , xn} only. Among these, clustering methods attempt to

identify groups of observations which are significantly close to each others in the descrip-

tion space which can be a first step for preprocessing, compressing, or can reveal a hidden
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phenomenon. A very popular example of such a clustering algorithm is k-means (Hartigan

and Wong, 1979), which iteratively estimates the cluster centers from the cluster assign-

ments by taking the mean over the observations in each cluster, and the assignments from

the centers by associating each observation with the closest cluster center. Each step of this

fast heuristic decreases the within sum of squares criterion :

C∑
c=1

∑
i∈Ic

‖xi − x̄c‖2
2, (1.4)

where C is the number of clusters, Ic the indices of the observations belonging to cluster c

and x̄c the center of cluster c. More recently, approaches based on the spectral decomposi-

tion of the Gram matrix XX> have been shown to give good results (Ng et al., 2001; Bach

and Jordan, 2003; von Luxburg, 2007).

Other unsupervised methods try to identify trends or axes which characterize the set

of observations. For example, principal component analysis (PCA) (Pearson, 1901) gives

the directions which best explain the variance of the data while independent component

analysis (ICA) (Comon, 1994) identifies axes which are as independent as possible, for

a given independency criterion. Non-parametric version of these methods using positive

definite kernels (which will be introduced in Section 1.3.1) were proposed in Schölkopf

et al. (1999) and Bach and Jordan (2002) respectively.

Some approaches formally combine unsupervised and supervised learning, e.g. for

classifier fusion or combination (Kuncheva, 2004) which involves the identification of clus-

ters in the description space followed by the identification of the locally optimal classifier

on each cluster from a family of clusters.

1.1.4 `p norms

As they will be used to build several penalties which are presented in this thesis, it is useful

to recall the definition of the `p norms. The `p norm of a vector x ∈ Rd is defined by :

‖x‖p =

(
d∑
j=1

|xj|p
) 1

p

. (1.5)
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‖.‖p is a valid norm for 1 ≤ p ≤ ∞. The `2 norm is the usual euclidean norm. Taking

the limit p → ∞ yields the max norm ‖x‖∞ = maxj=1,...,d ‖xj‖. The last four images of

Figure 1.1 show the unit balls of ‖.‖p for p = 1, 3
2
, 2,∞, i.e., the set {w ∈ R2, ‖w‖p ≤ 1}.

For 0 < p < 1 on the other hand, ‖.‖p is not a norm anymore because it does not verify

the triangle inequality, but it is still a quasi-norm. Taking p→ 0 with the convention 00 = 0

gives :

‖x‖0 =
d∑
j=1

1{xj 6=0}, (1.6)

often referred to as the `0 norm although it is not a proper norm because it is not positive

homogeneous. The first two images of Figure 1.1 show the unit balls of ‖.‖p for p = 0, 2
3
.

Figure 1.1: Unit balls for the `p norms in two dimensions, for p = 0, 2
3
, 1, 3

2
, 2,∞.

1.2 Supervised learning in computational biology

1.2.1 Overview

The growing quantity of data available to analyze various problems in biology have made

possible and sometimes necessary the use of statistical tools like the ones we presented in
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Section 1.1. A typical example is the case of microarray data, which we further detail in

section 1.2.4 : while technology only allowed to study the expression of one or few genes

in one or few patients, there was no point in detecting statistical trends in the data. When

microarrays allowed to measure the expression level of thousand of genes for hundreds of

patients, the data became impossible to analyze by just looking at it, but it became relevant

to look at clusters of genes which had the same behavior across the patients, or to try to

identify which genes best explained a given variable on the patients in average.

For example, supervised learning methods were used to study the evolutionary related-

ness of biological sequences (Felsenstein, 1981; Carlo et al., 1999; Rohlf, 2005; Bouchard-

Côté et al., 2008) in phylogenetics , to find recurrent motifs in a set of sequence (Bailey

and Elkan, 1994; Roth et al., 1998; Xing et al., 2004; Xing and Karp, 2004; Frith et al.,

2008; Fu et al., 2009), and to predict the family (Bejerano and Yona, 1999; Bhasin and

Raghava, 2004a; Cai et al., 2004; Leslie et al., 2004; Qiu et al., 2007) or the structure of a

new protein (Kumar et al., 2005; Zhang, 2008).

The contributions of this thesis are focused on two classes of computational biology

problems. The first one is to predict pairwise interactions in a biological system, which can

also be thought of as infering missing edges in a particular biological networks (Vert and

Yamanishi, 2005). While this framework encompasses the completion of metabolic (Ya-

manishi et al., 2005; Bleakley et al., 2007; Vert et al., 2007), protein-protein interac-

tion (Ben-Hur and Noble, 2005; Bleakley et al., 2007; Vert et al., 2007) and regulatory

networks (Qian et al., 2003; Auliac et al., 2008; Mordelet and Vert, 2008), we focused on

methods for vaccine design, where one wants to predict interaction between small pathogen

fragments and MHC molecules, and drug design, where one wants to predict interaction

between small molecules and proteins. The second problem is to make good diagnosis or

prognosis based on molecular data. In particular, we study the problem of predicting tu-

mor metastasis based on gene expression data. The remainder of this section gives a more

detailed presentation of these two problems.
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Figure 1.2: T cell – HLA molecule interaction

1.2.2 Vaccine design

The immune system and cytotoxic T Lymphocytes

The immune system is the set of mechanisms that protect our organism against all kinds

of infectious agents. These mechanisms are organized in two main branches: innate or

non-specific and adaptive or specific immune system.

The idea of a vaccine is to artificially trigger active immunity to a disease, so we focus

our interest on specific immune system, i.e., lymphocytes and specific antibodies. Since

experiments in this thesis focused on HIV vaccines, for which the most efficient mechanism

seems to be cytotoxic reactions (McMichael and Hanke, 2002; Parham, 2004), we will be

even more specific and mostly describe this last mechanism.

T-cells are special lymphocytes that play a major role in the cell-mediated response, by

contrast with the humoral immunity ruled by the antibodies. They all express the T-Cell

Receptor (TCR). Cytotoxic T-cells are involved in the destruction of virally infected cells.

Since most of them express the CD8 glycoprotein, they are also known as CD8+ T-cells.

A key step in the cell-mediated immune response is the activation of the T-cells through

the interaction of the TCR with a specific MHC-antigen complex. This is illustrated on

Figure 1.2. Basically the T-cell “recognizes” an antigen, which is a peptide, i.e., a fragment

of protein, that is presented by a cell. Since the only viable T-cells are those who do not

recognize the organism-specific peptides, the recognition means that the presenting cell is

either not from the organism, like a bacteria, or has been infected by a virus and presents

its proteins.
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The naive T-cells that recognize an antigen both divide and mature into effector cells.

Activated cytotoxic T lymphocytes (CTL) are then able to kill specifically the infected cells

they recognize. This is done through the release of effector proteins such as perforin and

granzymes, or via the binding of Fas in the target cell membrane by the Fas ligand that

leads to activation of caspases. All these molecules induce apoptosis in the target cells.

The killing process is illustrated on Figure 1.3.

The MHC-epitope binding

As we explained above, both the activation of the T-cells and their action imply the recog-

nition of a specific MHC-antigen complex. We now describe this complex more precisely.

The MHC is a large gene family involving around 140 genes subdivided into three

groups or classes. CD8+ T-cells recognize antigen bound with class I MHC molecules1.

These molecules are heterodimers, consisting of a single transmembrane polypeptide chain

(the α-chain) and a β2 microglobulin (which is encoded elsewhere, not in the MHC). The

schematic representation on Figure 1.4 shows the peptide-binding groove formed by the

two polymorphic domains α1, α2. This part of the molecule, whose shape depends on the

corresponding MHC genes allele presents an antigen to the TCR of the T-cells. The binding

mechanism is shown on Figure 1.5.

As one can see on Figure 1.6, the shape of the epitope must be compatible with the

shape of the groove. In other words, the potential epitopes can be different if the molecules

are different, which is likely to occur if the corresponding MHC gene alleles are different.

The problem is that the MHC harbors much allelic diversity, i.e., one finds many dif-

ferent genotypes for the MHC genes. This implies different phenotypes, which means that

one finds a large variety of MHC presenting molecules, each of them being able to complex

with different peptides because of its different structure.

Interaction prediction for intelligent vaccine design

To summarize, a key step in the immune response to pathogen invasion is the activation of

cytotoxic T-cells, which is triggered by the recognition of a short peptide, called epitope,
1In humans, the subset of the MHC genes that code for presenting molecules is also known as HLA for

human leukocyte antigen.
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Figure 1.3: Killing by Cytotoxic T Lymphocyte
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Figure 1.4: Schematic representation of MHC class I molecule (source: Wikipedia).

Figure 1.5: Construction of the MHC-antigen complex
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Figure 1.6: Epitope presented in the groove of a MHC class I molecule

bound to Major Histocompatibility Complex (MHC) class I molecules and presented to the

T-cells. This recognition is supposed to trigger cloning and activation of cytotoxic lympho-

cytes able to identify and destroy the pathogen or infected cells. MHC class I epitopes are

therefore potential tools for the development of peptide vaccines, in particular for AIDS

vaccines (McMichael and Hanke, 2002). They are also potential tools for diagnosis and

treatment of cancer (Wang, 1999; Sette et al., 2001).

Identifying MHC class I epitope in a pathogen genome is therefore crucial for vac-

cine design. However, not all peptides of a pathogen can bind to the MHC molecule to

be presented to T-cells: it is estimated that only 1 in 100 or 200 peptides actually binds

to a particular MHC (Yewdell and Bennink, 1999). In order to alleviate the cost and time

required to identify epitopes experimentally, in silico computational methods for epitope

prediction are therefore increasingly used. Structural approaches, on the one hand, try to

evaluate how well a candidate epitope fit in the binding groove of a MHC molecule, by vari-

ous threading or docking approaches (Rosenfeld et al., 1995; Schueler-Furman et al., 2000;

Tong et al., 2006; Bui et al., 2006). Sequence-based approaches, on the other hand, estimate

predictive models for epitopes by analyzing and learning from sets of known epitopes and
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non-epitopes. Models can be based on motifs (Rötzschke et al., 1992; Rammensee et al.,

1995), profiles (Parker et al., 1994; Rammensee et al., 1999; Reche et al., 2002), or machine

learning methods like artificial neural networks (Honeyman et al., 1998; Milik et al., 1998;

Brusic et al., 2002; Buus et al., 2003; Nielsen et al., 2003; Zhang et al., 2005), hidden

Markov models (Mamitsuka, 1998), support vector machines (SVM) (Dönnes and Elof-

sson, 2002; Zhao et al., 2003; Bhasin and Raghava, 2004b; Salomon and Flower, 2006),

boosted metric learning (Hertz and Yanover, 2006) or logistic regression (Heckerman et al.,

2007). Finally, some authors have recently proposed to combine structural and sequence-

based approaches (Antes et al., 2006; Jojic et al., 2006). Although comparison is difficult,

sequence-based approaches that learn a model from the analysis of known epitopes benefit

from the accumulation of experimentally validated epitopes and will certainly continue to

improve as more data become available.

The binding affinity of a peptide depends on the MHC molecule’s 3D structure and

physicochemical properties, which in turns vary between MHC alleles. This compels any

prediction method to be allele-specific: indeed, the fact that a peptide can bind to an allele is

neither sufficient nor necessary for it to bind to another allele. Since MHC genes are highly

polymorphic, little training data if any is available for some alleles. Thus, though achieving

good precisions in general, classical statistical and machine learning-based MHC-peptide

binding prediction methods fail to efficiently predict bindings for these alleles.

Some alleles, however, can share binding properties. In particular, experimental work (Sid-

ney et al., 1995, 1996; Sette and Sidney, 1998, 1999) shows that different alleles have over-

lapping peptide repertoires. This fact, together with the posterior observation of structural

similarities among the alleles sharing their repertoires allowed the definition of HLA allele

supertypes, which are families of alleles exhibiting the same behavior in terms of peptide

binding. This suggests that sharing information about known epitopes across different but

similar alleles has the potential to improve predictive models by increasing the quantity of

data used to establish the model. For example, Zhu et al. (2006) show that simply pooling

together known epitopes for different alleles of a given supertype to train a model can im-

prove the accuracy of the model. Hertz and Yanover (2006) pool together epitope data for

all alleles simultaneously to learn a metric between peptides, which is then used to build

predictive models for each allele. Finally, Heckerman et al. (2007) show that leveraging
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the information across MHC alleles and supertypes considerably improves individual al-

lele prediction accuracy. This idea was extended to MHC-II binding prediction in Pfeifer

and Kohlbacher (2008), which is a harder problem since the MHC-II binding clefts are not

closed, using multiple instance learning (Dietterich et al., 1997).

1.2.3 Virtual screening for drug discovery

Interaction prediction for drug design in general

Predicting interactions between small molecules and proteins is a key element in the drug

discovery process. In particular, several classes of proteins such as G-protein-coupled re-

ceptors (GPCR), enzymes and ion channels represent a large fraction of current drug targets

and important targets for new drug development (Hopkins and Groom, 2002). Understand-

ing and predicting the interactions between small molecules and such proteins could there-

fore help in the discovery of new lead compounds.

Various approaches have already been developed and have proved very useful to address

this in silico prediction issue (Manly et al., 2001). The classical paradigm is to predict the

modulators of a given target, considering each target independently from other proteins.

Usual methods are classified into ligand-based and structure-based or docking approaches.

Ligand-based approaches compare a candidate ligand to the known ligands of the target

to make their prediction, typically using machine learning algorithms (Butina et al., 2002;

Byvatov et al., 2003) whereas structure-based approaches use the 3D-structure of the target

to determine how well each candidate binds the target (Halperin et al., 2002; Kellenberger

et al., 2004).

Ligand-based approaches require the knowledge of sufficient ligands of a given tar-

get with respect to the complexity of the ligand/non-ligand separation to produce accurate

predictors. If few or no ligands are known for a target, one is compelled to use docking

approaches, which in turn require the 3D structure of the target and are very time consum-

ing. If for a given target with unavailable 3D structure no ligand is known, none of the

classical approaches can be applied. This is the case for many GPCR as very few structures

have been crystallized so far, see Ballesteros and Palczewski (2001) for the first structure,

and Weis and Kobilka (2008); Mustafi and Palczewski (2009) and Topiol and Sabio (2009)
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for more recent reviews. In addition, many of these receptors, referred to as orphan GPCR,

have no known ligand.

An interesting idea to overcome this issue is to stop considering each protein target in-

dependently from other proteins, and rather take the point of view of chemogenomics (Ku-

binyi et al., 2004; Jaroch and Weinmann, 2006). Roughly speaking, chemogenomics aims

at mining the entire chemical space, which corresponds to the set of all small molecules,

for interactions with the biological space, i.e., the set of all proteins or at least protein fam-

ilies, in particular drug targets. A salient motivation of the chemogenomics approach is

the realization that some classes of molecules can bind “similar” proteins, suggesting that

the knowledge of some ligands for a target can be helpful to determine ligands for similar

targets. Besides, this type of method allows for a more rational approach to design drugs

since controlling a whole ligand’s selectivity profile is crucial to make sure that no side

effect occurs and that the compound is compatible with therapeutical usage.

Recent reviews (Kubinyi et al., 2004; Jaroch and Weinmann, 2006; Klabunde, 2007;

Rognan, 2007) describe several chemogenomic approaches to predict interactions between

compounds and targets. A first class of approaches, called ligand-based chemogenomics by

Rognan (2007), pool together targets at the level of families (such as GPCR) or subfamilies

(such as purinergic GPCR) and learn a model for ligands at the level of the family (Balakin

et al., 2002; Klabunde, 2006). Other approaches, termed target-based chemogenomic ap-

proaches by Rognan (2007), cluster receptors based on ligand binding site similarity and

again pool together known ligands for each cluster to infer shared ligands (Frimurer et al.,

2005). Finally, a third strategy termed target-ligand approach by Rognan (2007) attempts

to predict ligands for a given target by leveraging binding information for other targets in

a single step, that is, without first attempting to define a particular set of similar receptors.

For example, Bock and Gough (2005) merge descriptors of ligands and targets to describe

putative ligand-receptor complexes, and use machine learning methods to discriminate real

complexes from ligand-receptors pairs that do not form complexes This idea was further

developed in Weill and Rognan (2009). Erhan et al. (2006) show how the same idea can be

casted in the framework of neural networks and support vector machines (SVM), In par-

ticular they show that a given set of receptor descriptors can be combined with a given set

of ligand descriptors in a computationally efficient framework, offering in principle a large
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flexibility in the choice of the receptor and ligand descriptors.

Interaction prediction for drug design: the GPCR case

The G-protein coupled receptor (GPCR) superfamily is comprised of an estimated 600-

1,000 members and is the largest known class of molecular targets with proven therapeutic

value. They are ubiquitous in our body, being involved in regulation of every major mam-

malian physiological system (Bockaert and Pin, 1999), and play a role in a wide range of

disorders including allergies, cardiovascular dysfunction, depression, obesity, cancer, pain,

diabetes, and a variety of central nervous system disorders (Deshpande and Penn, 2006;

Hill, 2006; Catapano and Manji, 2007). They are integral membrane proteins sharing a

common global topology that consists of seven transmembrane alpha helices, an intracellu-

lar C-terminal, an extracellular N-terminal, three intracellular loops and three extracellular

loops. There are four main classes of GPCRs (A, B, C and D) defined in terms of se-

quence similarity (Horn et al., 2003). Their location on the cell surface makes them readily

accessible to drugs, and 30 GPCRs are the targets for the majority of best-selling drugs,

representing about 40% of all prescription pharmaceuticals on the market (Fredholm et al.,

2007). Besides, the human genome contains several hundreds unique GPCRs which have

yet to be assigned a clear cellular function, suggesting that they are likely to remain an

important target class for new drugs in the future (Lin and Civelli, 2004).

Predicting interactions in silico between small molecules and GPCRs is not only of

particular interest for the drug industry, but also a useful step for the elucidation of many

biological process. First, it may help to decipher the function of so-called orphan GPCRs,

for which no natural ligand is known. Second, once a particular GPCR is selected as a

target, it may help in the selection of promising molecule candidates to be screened in vitro

against the target for lead identification.

In silico virtual screening of GPCRs is however a daunting task, both for receptor-based

approaches (also called docking) and for ligand-based approaches. The former relies on

the prior knowledge of the 3D structure of the protein, in a context where only two GPCR

structures are currently known (bovine rhodopsin and human β2-adrenergic receptor). In-

deed, GPCRs, like other membrane proteins, are notoriously difficult to crystallize. As a

result, docking strategies for screening small molecules against GPCRs are often limited
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by the difficulty to model correctly the 3D structure of the target. To circumvent the lack

of experimental structures, various studies have used 3D structural models of GPCRs built

by homology modeling using bovine rhodopsin as a template structure. Docking a library

of molecules into these modeled structures allowed the recovery of known ligands (Evers

and Klabunde, 2005; Cavasotto et al., 2003; Shacham et al., 2004; Bissantz et al., 2003),

and even identification of new ligands (Becker et al., 2004; Cavasotto et al., 2008). How-

ever, docking methods still suffer from docking and scoring inaccuracies, and homology

models are not always reliable-enough to be employed in target-based virtual screening.

Methods have been proposed to enhance the quality of the models for docking studies by

global optimization and flexible docking (Cavasotto et al., 2003), or by using different

sets of receptor models (Bissantz et al., 2003). Nevertheless, these methods have been

applied only to class A receptors and they are expected to show limited performances for

GPCRs sharing lower sequence similarity with rhodopsin, especially in the case of recep-

tors belonging to classes B, C and D. Alternatively, ligand-based strategies, in particular

quantitative structure-activity relationship (QSAR), attempt to predict new ligands from

previously known ligands, often using statistical or machine learning approaches. Ligand-

based approaches are interesting because they do not require the knowledge of the target

3D structure and can benefit from the discovery of new ligands. However, their accuracy

is fundamentally limited by the amount of known ligands, and degrades when few lig-

ands are known. Although these methods were successfully used to retrieve strong GPCR

binders (Rolland et al., 2005), they are efficient for lead optimization within a previously

identified molecular scaffold, but are not appropriate to identify new families of ligands for

a target. At the extreme, they cannot be pursued for the screening of orphan GPCRs. In

this thesis, we will present a contribution to the screening of GPCRs, that is complementary

to the above docking and ligand-based approaches. The method is related to ligand-based

approaches, but because it allows to share information between different GPCRs, it can be

used for orphan GPCRs, possibly in parallel to docking methods in order to increase the

prediction quality.
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1.2.4 Outcome prediction from molecular data

Another important application field of supervised learning in computational biology is the

exploitation of molecular data, either to understand biological mechanisms like gene reg-

ulation in an organism, or to analyze and predict phenomenons influenced by such mech-

anisms. An example of particular interest is the prediction of outcome, e.g. diagnostic or

prognosis of a disease, based on gene expression or copy number data. Using this type of

information is crucial for diseases like cancers, which are known to be strongly related to

high genomic instability.

DNA microarrays

DNA microarrays are used to measure the expression level of several genes in a tissue

simultaneously. Several technologies exist, but the general idea is to use DNA segments

fixed on a solid array, each segment being located at a known place on the array and used

as a probe for a given gene. Typically, each segment is a single strand of DNA containing

a subsequence of the gene. RNA is then extracted from the studied cells, converted to dyed

cDNA by reverse-transcription and hybridized on the array. By complementarity, if a piece

of cDNA strand contains a gene, it will be hybridized at the location of the correspond-

ing probe. Two-channel technologies mix the reverse-transcripted RNA of two different

sources (e.g., a control tissue and a tested tissue) using a different fluorochrome to dye

each of them, whereas one-channel technologies directly measure the absolute expression

of the genes in a single tissue. The dye intensity of each spot is then measured, reflecting

the expression level of the corresponding gene. Figure 1.7 shows an example of such an

hybridized array. For a general presentation of DNA microarrays, see Brown and Botstein

(2000).

A large effort has been made to normalize and correct various biases of the raw data

generated by these technologies (Yang et al., 2002; Benito et al., 2004). In terms of ap-

plications, it has been used for a wide range of problems, including exploration of bio-

logical mechanisms (DeRisi et al., 1997; Ferea et al., 1999; Gasch et al., 2001; Le Roch

et al., 2004), gene network inference (Beal et al., 2005; Bansal et al., 2007), pathway anal-

ysis (Curtis et al., 2005) or drug discovery (Debouck and Goodfellow, 1999). A very
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Figure 1.7: Example of an approximately 37,500 probe spotted oligo microarray with en-
larged inset to show detail (source: Wikipedia).

important application is the study of cancerous cells. Early work (Golub et al., 1999; Al-

izadeh et al., 2000) showed that expression data could be used to efficiently differentiate

distinct tumour types, and give insight on the genes which were involved in the disease.

More generaly, a large effort has been made to propose efficient methods for tumor clas-

sification (Mukherjee et al., 1998; Ben-Dor et al., 2000; Bhattacharjee et al., 2001; van ’t

Veer et al., 2002; Rapaport et al., 2007), to characterize them (Perou et al., 2000) or extract

molecular signatures (van de Vijver et al., 2002; Bild et al., 2006) based on gene expression

data. In this thesis, we contribute to this effort by proposing methods which simultaneously

identify good metastasis signatures in terms of pre-defined biologically meaningful gene

groups and build a metastasis prediction function based on this signature, with the hope to

improve model interpretability and robustness.

Other technologies quantifying molecules

In this thesis, outcome prediction and biomarker discovery experiments were only based

on gene expression data. However, several other technologies allow to measure other quan-

tities of interest. For example, array comparative genomic hybridization (aCGH) measure

the number of copies of each gene in a cell (Pinkel et al., 1998; van Beers and Nederlof,

2006; Chin et al., 2006, 2007). In a normal diploid cell, the expected number of copy is

2, but phenomenons like microdeletions or duplications can decrease or increase it. Since
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these phenomenons have an influence on the outcome (e.g. in the case of a tumor sup-

pressor deletion), their measure is important both for prediction and analysis purposes.

In particular, several methods have been proposed to detect breakpoints on the CGH pro-

files (Jong et al., 2004; Hupé et al., 2004), classify patients based on the copy number mea-

sure (Aliferis et al., 2002), or do both simultaneously (Rapaport et al., 2008; Tibshirani and

Wang, 2008). Other relevant data include the quantity of each protein, measured by mass

spectrometry-based proteomics methods (Wilkins et al., 1996; Aebersold and Mann, 2003;

Dhingra et al., 2005), and epigenetic data such as DNA methylations, which are known to

influence gene expression (Jones, 2002; Jaenisch and Bird, 2003). Besides, recent high-

throughput technologies allow to measure at a better base-scale resolution the number of

DNA (Mardis, 2008) or RNA (Mortazavi et al., 2008; Wang et al., 2009) sequences.

1.3 Kernel methods in computational biology

Among the many approaches in machine learning that have been investigated to attack

problems arising in computational biology, kernel methods have emerged as a powerful and

principled tool to manipulate data such as molecules or proteins whose explicit description

by a real-valued vector is sometimes delicate. In this section largely inspired from Vert and

Jacob (2008), we introduce the notions of positive definite kernel and kernel methods, and

give an overview of existing kernels for small molecules and kernels for proteins. These

notions will be central in the methods introduced in Chapter 2. For a more detailed presen-

tation, the reader is referred to Saitoh (1988) for positive definite kernels, Cristianini and

Shawe-Taylor (2000) or Schölkopf and Smola (2002) for kernel methods and Schölkopf

et al. (2004) for the applications to computational biology.

1.3.1 Kernels and kernel methods

Many widely-used statistical and machine learning algorithms, including for example PLS

or ANN, are designed to manipulate vector data. Using these tools to manipulate and ana-

lyze data such as proteins or small molecules which are not intrinsically vectorial therefore

poses the problem of representing these data as vectors or, equivalently, defining a set of
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binary or real-valued descriptors for these data and stacking them to form a vector. The

design of molecular descriptors to describe various features of proteins or small molecules

has indeed been much investigated over the last decades, and many such descriptors are

nowadays routinely used in combination with statistical methods to correlate the structures

of molecules with their physicochemical or biological properties. The explicit computa-

tion of a finite number p of molecular descriptors to represent a molecule x by a vector

Φ(x) = (Φ1(x), . . . ,Φp(x)) nevertheless raises several challenges, including the problem

of choosing a set of descriptors sufficiently large to capture the relevant features for a given

problem and sufficiently small to allow fast computation and efficient storage.

Kernel methods, including SVM, are a class of algorithms that follow a slightly dif-

ferent strategy to solve the problem of data representation (Schölkopf and Smola, 2002;

Schölkopf et al., 2004; Shawe-Taylor and Cristianini, 2004). Data do not need to be repre-

sented individually as vectors, they need instead to be compared to each other. More for-

mally, instead of converting each protein or small molecule x into a p-dimensional vector

Φ(x) for further processing, kernel methods can manipulate data only through a function

k(x, x′) that compares any two proteins (or small molecules) x and x′ and returns a real

number. The function k is called a kernel, hence the name kernel methods. As a result,

when a set of n proteins (or of n small molecules) x1, . . . , xn is given as input to a kernel

method, the algorithm can only manipulate the data through the Gram matrix, which is the

square n× n matrix K of all pairwise similarities, whose entry Ki,j is equal to k(xi, xj).

Positive definite kernels

Only a certain class of functions k, however, can be used in combination with kernel meth-

ods. These kernels are often called positive definite kernels or more simply valid kernel.

The technical conditions that a function k(x, x′) must fulfill to be a valid kernel over a

space X are :

1. to be symmetric, i.e., ∀x, x′ ∈ X , k(x, x′) = k(x′, x),
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2. to be positive definite, i.e.,∀n ∈ N,∀x1, . . . , xn ∈ X , and ∀a1, . . . , an ∈ R,

n∑
i,j=1

aiajk(xi, xj) ≥ 0.

Although the second condition can sometimes be difficult to assess for a newly defined

function k, mathematics textbook abound on examples of valid kernels and on systematic

techniques to create them (Aronszajn, 1950; Berg et al., 1984; Berlinet and Thomas-Agnan,

2003). For example, given any representation of a molecule x by a vector of p descriptors

Φ(x), the inner product between two vectors Φ(x) and Φ(x′) representing two molecules x

and x′ is a valid kernel:

k(x, x′) = 〈Φ(x),Φ(x′)〉 =

p∑
i=1

Φi(x)Φi(x
′) . (1.7)

When such kernels are used, the vectors of descriptors Φ(x) are explicitly computed

prior to the computation of inner products, and kernel methods like SVM are not funda-

mentally different from other methods such as PLS or ANN.

Reproducing kernel Hilbert spaces

Interestingly, it can be shown that, conversely, any valid kernel k(x, x′) can be written as

an inner product (1.7), for some vector representation Φ(x) (Aronszajn, 1950) :

Theorem 1 (Aronszajn, 1950). K is a p.d. kernel on the set X if and only if there exists a

Hilbert spaceH and a mapping

Φ : X 7→ H,

such that, for any x, x′ in X :

K(x, x′) = 〈Φ(x),Φ(x′)〉H ,

where 〈., .〉H denotes the inner product inH.



30 CHAPTER 1. CONTEXT

The proof involves the explicit construction ofH from the set of functions of form :

∀x ∈ X , f(x) =
n∑
i=1

αik(xi, x),

together with their limit under the norm ‖f‖2
H =

∑n
i,j=1 αiαjk(xi, xj). This space can be

proved to be a Hilbert space endowed with the following dot product :

〈f, g〉H =
n∑
i=1

m∑
j=1

αiβjk(xi, xj),

between any two functions f(x) =
∑n

i=1 αik(x, xi) and g(x) =
∑m

i=1 βik(x, xi). In par-

ticular, taking g(x′) = k(x, x′) for any particular x ∈ X gives the following expression of

any function f ofH as a dot product inH :

∀(f, x) ∈ H ×X , f(x) = 〈f, k(x, .)〉H.

A direct consequence, known as the reproducing property, is that the kernel evaluation

between two points of X can be written as a dot product inH :

∀x, x′ ∈ X , k(x, x′) = 〈k(x, .), k(x′, .)〉H,

which makes the connection with Theorem 1 : k is the dot product in the space where each

point x ∈ X is mapped to the function k(x, .). Because of this property, H is often called

the reproducing kernel Hilbert space (RKHS) associated to k.

Practical use : kernel trick and representer theorem

This analysis apparently establishes an equivalence between the use of valid kernels, on

the one hand, and the use of explicit vector representations, on the other hand. In the con-

verse statement, however, the vector Φ(x) are not necessarily of finite dimension, they can

also involve an infinite number of descriptors. In that case, there is obviously no hope

to compute the infinitely many descriptors explicitly and store them in a computer, and a
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Figure 1.8: Defining a kernel over a space X , such as the space of all small molecules
or the space of all proteins, is equivalent to embedding X in a vector space F of finite or
infinite dimension through a mapping Φ : X 7→ F . The kernel between two points in X is
equal to the inner products of their images in F , as shown in (1.7)

computational trick must be found to compute directly the kernel k(x, x′) without comput-

ing Φ(x) and Φ(x′). We review several examples of such kernels in the next two sections.

As a result, the kernel approach can be seen as a generalization of the descriptor vector

approach, where the number of descriptors can be finite or infinite (Figure 1.8).

Valid kernels therefore always define a vector space structure over the set of molecules

to be manipulated. This structure can either be defined explicitly, when molecular descrip-

tors are computed in order to evaluate the kernel similarity through inner products of Tani-

moto coefficients between fingerprints, or implicitly, when a valid kernel function k(x, x′)

is directly computed to compare two molecules x and x′. Yet this implicit construction

is sufficient to perform various data processing and manipulation in the vector space. As

a simple illustration let us consider the problem of computing the distance between two

feature vectors Φ(x) and Φ(x′) corresponding to two data points x and x′, as illustrated in

Figure 1.9. A simple computation shows that:

‖Φ(x)− Φ(x′)‖2 = 〈Φ(x),Φ(x)〉+ 〈Φ(x′),Φ(x′)〉 − 2〈Φ(x),Φ(x′)〉

= k(x, x) + k(x′, x′)− 2k(x, x′) ,
(1.8)

where k is the kernel associated to the vector Φ through (1.7). This equation shows that
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Figure 1.9: We can define the distance between two objects x1 and x1, such as two
molecules or proteins, as the Euclidean distance between their images Φ(x1) and Φ(x2).
If the mapping Φ is defined by a valid kernel k, then this distance can be computed easily
without computing Φ(x1) and Φ(x2), as shown in (1.8). This kernel trick can be extended
to a variety of linear algorithms that only manipulate the data through inner products.

in order to compute the distance between points in the feature space, one does not neces-

sarily need to first compute explicitly the vectors themselves, and can rely instead on the

corresponding kernel. This trick, known as the kernel trick, can be applied to any algorithm

for vectors that can be expressed in terms of inner products: replacing each inner product

by the respective kernel evaluation allows to execute the algorithm implicitly in the feature

space defined by a valid kernel. A surprising variety of methods, collectively known as

kernel methods, can benefit from this trick. Besides the evaluation of distances using (1.8),

one can mention for example dimensionality reduction with principal component analysis

(PCA) (Schölkopf et al., 1999), regression and pattern recognition with Gaussian process

(Williams, 1998; Seeger, 2004), PLS (Rosipal and Trejo, 2001), SVM (Boser et al., 1992;

Vapnik, 1998), or outlier detection with one-class SVM (Schölkopf et al., 2001b). We re-

fer the reader to various textbooks and survey articles for more details on these algorithms

(Schölkopf and Smola, 2002; Schölkopf et al., 2004; Shawe-Taylor and Cristianini, 2004).

Another important practical property of kernels and their RKHS, is given by the repre-

senter theorem :

Theorem 2. Let X be a set endowed with a kernel k and S = {x1, . . . , xn} ⊂ X a finite

set of objects. Let Ψ : Rn+1 → R be a function of n + 1 arguments, strictly monotonic
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increasing in its last argument. Then any solution of the problem :

min
f∈H

Ψ(f(x1), . . . , f(xn), ‖f‖H),

where {H, ‖.‖H} is the RKHS associated with k, admits a representation of the form :

∀x ∈ X , f(x) =
n∑
i=1

αik(x, xi),

for some α1, . . . , αn ∈ R.

This theorem was stated in this form in Kimeldorf and Wahba (1971), generalized

in Schölkopf et al. (2001a) and extended to some non-Hilbertian norms in Abernethy et al.

(2008) and Argyriou et al. (2008a). It shows that when optimizing a functional over a

RKHS with a penalty on the RKHS norm, the solution always lies in a n-dimension space

where n is the number of data points in the problem, even if the RKHS is of infinite dimen-

sion. It can also be used in practice to “kernelize” optimization problems as an alternative

to the kernel trick.

In summary, the definition of a positive definite kernel for certain types of data defines

explicitly or implicitly a mapping of the data to a vector space, possibly of high or infinite

dimension. Yet a variety of data processing and analysis algorithm can be performed in this

feature space thanks to the kernel trick, without the need to compute and store the vector

representing the objects. In the next two sections, we review some recent work focusing on

the definition of valid kernels for proteins and small molecules, respectively, to illustrate

the possibilities offered by kernels to define implicitly “biological” and “chemical” spaces.

1.3.2 Kernels for proteins

Bioinformatics has historically been one of the first application domain for SVM and kernel

methods (Schölkopf et al., 2004), and has triggered a lot of research focused on the design

of valid kernels for non-vectorial object, such as proteins. The simplest representation of

a protein is the sequence of amino acids it contains, which mathematically is a string in

an alphabet of 20 letters. Alternatively, when available or predicted, one can represent a
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protein by its 3D structure, which is likely to contain more relevant information related

to physical interactions with other proteins or ligands. As summarized in Table 1.1, three

main strategies have been followed to define kernels between proteins: (i) computing an

inner product with descriptors explicitly defined, (ii) deriving a kernel from a probabilistic

model, and (iii) adapting widely used measures of similarity between biological sequences

or 3D structures. We now review in more details these different strategies, starting with

kernels defined for amino acid or nucleotide sequences.

Strategy Input data Examples
Physico-chemical kernels (Wang et al.,
2004; Zhang et al., 2003)

Define a list of descriptors Sequence
Spectrum, mismatch kernels (Leslie
et al., 2002; Leslie and Kuang, 2004;
Kuang et al., 2004, 2005)
Pairwise, motif kernel (Logan et al.,
2001; Ben-Hur and Brutlag, 2003; Liao
and Noble, 2003)

3D Structure
Kernel based on 3D descriptors (Dobson
and Doig, 2005)

Derive a kernel from a
generative model

Fisher, TOP kernel (Jaakkola et al.,
2000; Tsuda et al., 2002a)

Sequence
Mutual information kernels (Cuturi and
Vert, 2005)
Marginalized kernels (Tsuda et al.,
2002b; Vert et al., 2006; Kin et al., 2002)

3D Structure
Random walk kernel(Borgwardt et al.,
2005)

Derive a kernel from a
measure of similarity

Sequence

Local alignment kernels (Haussler,
1999; Watkins, 2000; Vert et al., 2004;
Saigo et al., 2004; Rangwala and
Karypis, 2005)

3D Structure
Structure alignment kernel (Qiu et al.,
2007)

Table 1.1: A typology of kernels for proteins.

The first strategy to make a kernel is to define a set of descriptors to characterize vari-

ous features of protein sequences, and to compute the inner products between the resulting
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vectors to obtain a kernel. As an example, Leslie et al. (2002) uses as descriptors how many

times each sequence of n letters occurs consecutively in the string, for a fixed integer n (a

sequence of n contiguous letters is called a n-mer). These descriptors could be relevant

to detect homologous proteins, which are likely to contain similar contents of the various

n-mers, or to predict biological properties that depend on short motifs of amino acids. Tak-

ing for instance n = 2, the DNA sequence x = AATCGCAACT is represented by the

16-dimensional vector Φ(x) = (2, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0), where the numbers are

the counts of occurrences of each 2-mer AA,AC, . . . , TG, TT lexicographically ordered.

The dimension of Φ(x) is then 4n for nucleotide sequences, and 20n for amino acid se-

quences, which can be prohibitively large for, e.g., n = 5. Fortunately, Leslie et al. (2002)

show that a computational trick allows to compute the kernel between two sequences with

a complexity in time and memory linear with respect to the sum of the length of the se-

quences, independently from the dimension of Φ(x) (Leslie et al., 2002; Vishwanathan and

Smola, 2004). Approximated approaches (Kuksa et al., 2008) allow to further improve

the scalability of this type of this kernek. Several variants have also been proposed, in-

cluding kernels based on counts of n-mers appearing with up to a few mismatches in the

sequences (Leslie et al., 2004), matching of n-mers with the possibility of gaps or substi-

tution (Leslie and Kuang, 2004), or counts of n-mers derived from a profile instead of a

single sequence (Kuang et al., 2004, 2005). Alternatively one can first replace each amino

acid by one or several numerical features, such as physico-chemical properties, and then

extract features from the resulting variable-length numerical time series using classical sig-

nal processing techniques such as Fourier transforms (Wang et al., 2004) or autocorrelation

analysis (Zhang et al., 2003). The resulting features can be explicitly computed to form a

vector, and any valid kernel for vector can then be used. These descriptors are interesting to

encode information about the variations of physico-chemical properties along the sequence,

e.g., to detect elements of the secondary structure. Finally, another popular approach to de-

sign features and therefore kernels for biological sequences is to “project” them onto a fixed

dictionary of sequences or motifs, using classical similarity measures, and to use the result-

ing vector of similarities as the feature vector. For example, Logan et al. (2001) represent

each sequence by a 10,000-dimensional vector indicating the presence of 10,000 motifs of

the BLOCKS database; similarly, Ben-Hur and Brutlag (2003) use a vector that indicates



36 CHAPTER 1. CONTEXT

the presence or absence of about 500,000 motifs in the eMOTIF database, requiring the use

of a tree structure to compute efficiently the kernel without explicitly storing the 500,000

features; and Liao and Noble (2003) represent each sequence by a vector of sequence sim-

ilarities with a fixed set of sequences. The choice of sequences or motifs to be included in

the dictionary is crucial and may be problem dependent, as it allows to extract for example

the occurrences of particular functional or structural motifs in the protein sequences.

A second strategy to design kernels for amino acid sequences has been to derive them

from probabilistic models. Indeed, before the interest on string kernels grew, a number of

ingenious probabilistic models had been defined to represent biological sequences or fam-

ilies of sequences, including for example Markov and hidden Markov models for protein

sequences, or stochastic context-free grammars for RNA sequences (Durbin et al., 1998).

Several authors have therefore explored the possibility to use such models to make kernels,

starting with the seminal work of Jaakkola et al. (2000) that introduced the Fisher kernel.

This kernel uses a parametric probabilistic model to explicitly extract features from each

sequence. The features for a sequence x are related to the influence of each parameter of the

model on the probability of x. The resulting vector of features, known as the Fisher score

vector in statistics, has a fixed dimension equal to the number of parameters in the model,

and therefore provides a principled way to map sequences of different length to a vector of

fixed length. The Fisher kernel was generalized by the Tangent Of Posterior (TOP) kernel

(Tsuda et al., 2002a). Intuitively, the descriptors encoded in the Fisher and TOP kernel

describe how each individual sequence differs from a model supposed to represent an “av-

erage” sequence, and the choice of the model and its parameters influence therefore a lot

the kernel. A second line of thought to make a kernel out of a parametric probabilistic

model is to use the concept of mutual information (MI) kernels (Seeger, 2002). Contrary to

the Fisher kernel, MI kernels do not provide an explicit finite-dimensional representation

for each sequence. Instead the dimensions of the feature space are indexed by all possible

values of the model parameters, and the feature Φθ(x) extracted from the sequence x for

the parameter θ is the probability of x under the model Pθ, i.e., Φθ(x) = P (x|θ). The

computation of this kernel involves a summation over all parameters, i.e., takes the form:

K(x, x′) =

∫
Pθ(x)Pθ(x

′)dµ(θ),



1.3. KERNEL METHODS IN COMPUTATIONAL BIOLOGY 37

where dµ is a prior distribution on the parameter space. Hence for practical applications

one must chose probabilistic models that allow the computation of the above integral. This

was carried out by Cuturi and Vert (2005) who present a family of variable-length Markov

models for strings and an algorithm to perform the integral over parameters and models

at the same time, resulting in a string kernel with linear complexity in time and memory

with respect to the total length of the sequences. There exists an information-theoretic in-

terpretation of mutual information kernels: they quantify how much information is shared

between two sequences, in particular if the knowledge of a sequence can be helpful to com-

press another one. Finally, a third strategy to derive valid kernels from probabilistic models

with latent variables, such as HMM, is to build a marginalized kernel (Tsuda et al., 2002b).

Latent variables in probabilistic models often represent meaningful information, such as

the local structure or function of a protein sequence. The basic idea behind marginalized

kernel is to first design a kernel over the latent and observed variables, as if the latent ones

were observed, and then to take the expectation of the kernel with respect to the condi-

tional distribution of the latent variable given the sequences. As for the MI kernel, this

kernel can only be computed for judicious choices of random models. Several beautiful

examples of such kernels for various probabilistic models have been worked out, including

hidden Markov models for sequences (Tsuda et al., 2002b; Vert et al., 2006) or stochastic

context-free grammars for RNA sequences (Kin et al., 2002).

A third strategy to define a kernel is to go back to the interpretation of kernels as “mea-

sure of similarity”, and try to adapt well-known measures of similarities between biological

sequences to make valid kernels. This idea was pioneered by Haussler (1999) introduced

the concept of convolution kernels for structured objects that can be decomposed into sub-

parts, such as sequences that can be decomposed into subsequences concatenated to each

other (see also Vert et al. (2004)). Convolution kernels offer the possibility to combine

several kernels adapted to each subpart of the sequences into a single kernel for the whole

sequence. Besides proving the validity of convolution kernels, Haussler (1999); Watkins

(2000) give several examples of convolution kernels relevant for biological sequences. This

work is extended by Vert et al. (2004); Saigo et al. (2004) where a valid convolution kernel

based on the alignment of two sequences is proposed. This kernel, named local alignment

kernel, is a close relative of the widely used Smith-Waterman local alignment score (Smith
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and Waterman, 1981), and gives excellent results on the problem of detecting remote ho-

mologs of proteins. This work was later extended to alignment kernels for sequence pro-

files (Rangwala and Karypis, 2005). This strategy is particularly relevant when the kernel

is used by a SVM to predict a property that is conserved across “similar” sequences. In

particular, the local alignment score attempts to quantify a measure of evolutionary dis-

tance, and the local alignment kernel is therefore particularly adapted to predict biological

properties conserved during evolution.

While kernels for sequences, that implicitly map proteins to a feature space through

their primary structure, have by far attracted the largest attention so far, several groups

have recently attempted to map protein 3D structures through the construction of kernels

between structures. Dobson and Doig (2005) explicitly represent each structure by a vector

made of carefully chosen features, such as secondary structure content, amino acid propen-

sities, surface properties, etc. Alternatively, Borgwardt et al. (2005) use a representation

based upon walks defined on a graph of secondary structural elements, while Qiu et al.

(2007) show that a kernel derived from a measure of structure superpositions is more effi-

cient to relate the structure of a protein to its function.

These kernels for proteins have been widely applied, often in combination with SVM,

to various classification tasks in computational biology, including for example the predic-

tion of structural or functional classes (Ding and Dubchak, 2001; Jaakkola et al., 2000; Vert

et al., 2004; Karchin et al., 2002; Cai et al., 2003; Dobson and Doig, 2005; Borgwardt et al.,

2005; Qiu et al., 2007) or the prediction of the subcellular localization of proteins (Hua and

Sun, 2001; Park and Kanehisa, 2003; Matsuda et al., 2005). The performance reported in

these studies are often state-of-the-art, which might be in large part due to the efficacy of al-

gorithms like SVM to estimate classification or regression function. While each kernel for

proteins corresponds to a particular embedding of the space of proteins in a vector space,

it has been observed that the choice of the kernel, hence of the embedding, can have an

important effect on the final performance of the algorithm. For example, in the context of

remote protein homology detection, Vert et al. (2004) compared different kernels and ob-

served that the local alignment kernel was particularly efficient for this application. Besides

the performance criterion, different kernels can have different computational complexities

which might become prohibitive if large datasets are to be processed. Hence in practical
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applications the choice of a particular kernel is often a trade-off between computational

consideration and performance.

1.3.3 Kernels for small molecules

Kernel methods are also increasingly used in chemoinformatics for various analysis, re-

gression or classification tasks with small molecules. We now review the main recent

contributions in this field, as summarized in Table 1.2.

Strategy Input data Examples

Use classical fingerprints
of molecular descriptors

1D to 4D structure

Tanimoto or inner products between
fingerprints (Burbidge et al., 2001;
Ralaivola et al., 2005; Azencott
et al., 2007)

Use an infinite number of
descriptors and a
computational trick

2D structure

Walk kernels (Kashima et al., 2003,
2004; Gärtner et al., 2003; Mahé
et al., 2005)
Shortest-path fragment kernel
(Borgwardt and Kriegel, 2005)
Subtree kernel (Ramon and Gärtner,
2003; Mahé and Vert, 2006)
Cyclic fragment kernel (Horváth
et al., 2004)

3D structure
Pharmacophore kernel (Mahé et al.,
2006)

Use a measure of similarity 2D structure
Optimal assignment kernel (Fröh-
lich et al., 2005)

Table 1.2: A typology of kernels for small molecules

The problem of explicitly representing and storing small molecules as finite-dimensional

vectors has a long history in chemoinformatics, and a multitude of molecular descriptors

have been proposed (Todeschini and Consonni, 2002). These descriptors include in partic-

ular physicochemical properties of the molecules, such as its solubility or logP, descriptors

derived from the 2D structure of the molecule, such as fragment counts or structural fin-

gerprints, or descriptors extracted from the 3D structure. All classical vector fingerprint



40 CHAPTER 1. CONTEXT

and vector representations of molecules define an explicit “chemical space” where each

molecule is represented by a finite-dimensional vector, and these vector representations

can obviously be used as such to define kernels between molecules (Burbidge et al., 2001;

Azencott et al., 2007).

Alternatively, several groups have investigated different strategies to build implicit

chemical spaces by defining kernels between molecules that do not require the explicit

computation of vector representations. These attempts were pioneered simultaneously and

independently by Kashima et al. (2003, 2004) and Gärtner et al. (2003) who proposed to

represent the 2D structure of a molecule by an infinite-dimensional vector of linear frag-

ment counts and showed how SVM can handle this representation with the kernel trick.

Mahé et al. (2005) extended these works by showing how irrelevant fragments can be fil-

tered out and proposing a trick to increase the dimension of the feature space to make the

fragments more specific while simultaneously increasing the speed of the kernel compu-

tation. Ralaivola et al. (2005) also tested several variants of these kernels, and showed

in particular that the Tanimoto index, widely used in chemoinformatics, is a valid kernel.

Borgwardt and Kriegel (2005) investigated the possibility to restrict the fragment counts

to shortest-path fragments. Several groups have also tried to extend the substructures ex-

tracted from the molecular graphs beyond linear fragments, and therefore to trade some

increase in expressiveness against loss in computational efficiency (Ramon and Gärtner,

2003). For example, Horváth et al. (2004) considers kernels based on cyclic fragments,

while Ramon and Gärtner (2003) suggests to consider tree fragments instead of linear frag-

ments, an idea that was later extended and validated in (Mahé and Vert, 2006). Finally,

Fröhlich et al. (2005) defines a kernel between molecular graphs by scoring an optimal

matching between the atoms of two molecules to be compared; this kernel, however, is not

a valid one (Vert, 2008).

A few attempts to define kernels based on the 3D structure of molecules have also

been proposed. Mahé et al. (2006) design a kernel focused on the detection of 3D phar-

macophores, while Swamidass et al. (2005) considers similarity measures between his-

tograms of pairwise distances between atom classes and Azencott et al. (2007) use Delau-

nay tetrahedrization and other techniques from computational geometry to characterize the

3D structures of small molecules and make kernels. Finally, Azencott et al. (2007) shows
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how kernels can also handle multiple 3D conformations and demonstrates the relevance of

this idea on several QSAR experiments.

Although the construction of valid kernels for molecules is a young discipline, it has

witnessed impressive progresses in just a few years, triggered by potential application in

chemoinformatics and drug design. Large avenues that could be relevant for kernel design

remain however largely unexplored, such as the modeling of 3D surfaces, their electro-

staticity and polarity, or the dynamics of the structures. We expect fast progresses in this

field in the coming years.

1.4 Prior knowledge and regularization

Another dominant theme in modern statistical machine learning is the regularization of

empirical risk minimization problems, generally guided by some prior knowledge on what

the solution should be like. In this section, we introduce this concept and present existing

attempts to regularize empirical risk minimization problems using various kinds of prior

knowledge. Regularization is a central notion in this thesis, and underlies all the methods

which are presented throughout Chapter 2 to 4.

1.4.1 Overview

Motivations

Regularization-based approaches are increasingly popular in machine learning and statis-

tics, providing an intuitive and principled tool for learning from high-dimensional data.

The underlying idea of these methods, which we started to motivated in section 1.1.2, is

to bias estimation problems towards more regular solutions, where the notion of regular-

ity depends on some prior knowledge of what the solution should be. This allows to turn

ill-posed problems into well-posed problems, and to avoid overfitting when little data is

available with respect to the complexity of the problem.

Historically, it stems from the notion of ill-posed problem by J. Hadamard (Hadamard,

1902, 1923). A well posed problem is a problem such that :

1. A solution exists,
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2. The solution is unique,

3. The solution depends continuously on the data, in some reasonable topology.

A typical example of nonwell posed problem is the Cauchy problem for the Laplace

equation, given in Hadamard (1923). For a long time, little effort was made by mathe-

maticians to address this type of problem, partially because many of them considered it as

a waste of time : a problem for which any of these conditions failed could not be of any

physical interest (Levine, 1979).

The first solutions to this problem appear in the independent work of A. N. Tikhonov

and D. L. Philips on integral equations (Tikhonov, 1943; Philips, 1962; Tikhonov, 1963;

Tikhonov and Arsenin, 1977). The idea was to regularize the minimization problem which

was solved when computing the solution of integral equations by adding a term penalizing

the Hilbertian norm of the function, hence improving the conditioning of the problem.

In modern machine learning and statistics, regularization has naturally emerged as a

dominant theme because of the new type of problems that have to be addressed and the

new type of data that have become available. While multivariate linear regression was

traditionally used to learn few parameters from a reasonably large number of data points

(“small p, large n” problems), typical computational biology or computer vision problems

involve more parameters than training data points, which makes them ill-posed. However,

as early as in the 1950s, statisticians were already facing ill-posed problems when solving

their multivariate linear regression problems with rank-deficient or ill-conditioned matri-

ces (Hoerl and Kennard, 1982) :

We were charging $90/day for our time, but had to charge $450/hour for com-

puter time [...], we found that we had both encountered the same phenomenon,

one that had caused some embarrassment with clients. We found that multi-

ple linear regression coefficients computed using least squares didn’t always

make sense when put into the context of the process generating the data. The

coefficients tended to be too large in absolute value, some would even have the

wrong sign, and they could be unstable with very small changes in the data.
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The ridge regression

This motivated the introduction of the ridge regression (independently from Tikhonov’s

and Philips’ work) for the parametric case (Hoerl, 1962; Hoerl and Kennard, 1970). The

idea of ridge regression is to penalize the least-square minimization problem by the `2 norm

of the parameter vector :

min
w∈Rd

∑
i

(w>xi − yi)2 + λ‖w‖2
2, (1.9)

where ‖.‖2 denotes the usual `2 norm of a vector, ‖w‖2 =
(∑d

j=1w
2
j

) 1
2
. This results in the

estimate ŵ = (X>X + λI)−1X>Y , which has several interesting properties :

• For λ 6= 0, it is defined even if X>X is rank-deficient. If (X>X)−1 is defined, it

recovers the solution of the unpenalized least-squares estimator for λ = 0.

• It adds an offset to the eigenvalues of X>X , which makes the inverted matrix better

conditioned.

• It is smooth in the sense that two close points x, x′ have close evaluations by ŵ.

Indeed, by the Cauchy-Schwarz inequality,

|ŵ>x− ŵ>x′| ≤ ‖ŵ‖.‖x− x′‖,

which is small because the penalty in the ridge regression enforces a small ‖ŵ‖.

The first two points are related to the definition of the problem and its numerical condi-

tioning. Intuitively, if the problem is unpenalized and we try to find a linear function which

fits few points in high dimension, the problem is ill-defined because there is no unique so-

lution (as long as n < p). The regularization makes the solution unique by imposing to

choose the one with the smallest `2 norm. But even if the solution is uniquely defined, the

problem can have a poor conditioning, i.e., the matrix X>X can have very small eigenval-

ues, which would cause a dramatic sensitivity of the solution to the noise in the input Y . In

particular, this happens if some variables are correlated, which is often the case in practice.

The regularizer solves this problem because it improves the conditioning of the matrix.
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The last point on the other hand relates to the notion of overfitting. Indeed, the regular-

ization doesn’t make the solution unique by randomly picking one of the functions which

correctly fit to the data, it choses the smoothest one. Therefore, the function is forced to

have a similar behavior on similar data, and will have better generalization properties, i.e.

it will be more accurate in evaluating y from x points which were not present in the op-

timization problem. This is a direct application of Occam’s razor principle, which states

that when competing hypotheses are equal in other respects, the simplest one should be

chosen. This is also a way to deal with the well known bias-variance dilemna in statistics,

which was presented in section 1.1.2 : by introducing a bias in the estimator towards 0, we

decrease its variance across the choice of the points which are used to build it. Even if its

introduction was motivated by numerical conditioning issues more than statistical learning

concepts, the ridge regression when used with an adequate regularization parameter selec-

tion procedure exactly applies the principle of structural risk minimization formalized later

in Vapnik and Chervonenkis (1974).

The ridge penalty

While further theoretical of the ridge regression was still carried on later (Wahba, 1990), the

importance of this work in the statistics and machine learning field mostly originates from

its applicability to a wide range of problems. Girosi et al. (1995) studied the ridge penalty

in the context of neural networks. The `2 penalty was also used to regularize classification

algorithms like logistic regression (Hastie et al., 2001) and support vector machines (Boser

et al., 1992; Vapnik, 1998), yielding in the latter case an interesting large margin interpre-

tation.

Bayesian point of view

Although the idea of regularizing an estimator by this `2 penalty historically stems from

very practical considerations, it also admits a very simple interpretation from a Bayesian

probabilistic point of view. In a Bayesian probabilitistic model, a prior distribution p(w)

of the linear function w is chosen, as well as a likelihood model p(D|w) of how the data D

should be distributed. Then, a posterior distribution of w is computed through the Bayes
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rule,

p(w|D) =
p(D|w)p(w)

p(D)
∝ p(D|w)p(w),

and w is estimated from this distribution, for example by finding the w which maximizes

the posterior distribution,

ŵMAP = argmax
w

p(w|D) = argmax
w

p(D|w)p(w), (1.10)

also known as the maximum a posteriori (MAP) estimator2 (De Groot, 1970; Berger, 1985).

Now for a given likelihood model, if one chooses a centered Gaussian distribution for the

prior, p(w) ∼ N (0, σ2I), using the log of the posterior in (1.10) it is straightforward to

see that the Gaussian prior becomes a `2 penalty in the maximization problem. In particu-

lar, for a Gaussian likelihood p(D|w), the problem is exactly equivalent to (1.9). In other

words, regularizing a regression problem by the `2 norm is equivalent choosing the most

likely function given the data under the prior that the parameters wi are independent and

normally distributed around 0, i.e., are not likely to have large values unless the data need

it. This Bayesian framework has been used in parallel to optimization-based regularization

approaches to find ways to improve learning performances by introducing prior knowledge

on what the solution should look like. While regularization-based approaches try to for-

mulate this prior knowledge as a penalty in an optimization problem, Bayesian methods

formulate it as a prior probability distribution of the learned function. Throughout the next

sections on sparse methods and multi-task learning, we will show some specific example

of such priors.

Non-parametric extension

The ridge regression as it was proposed in (Hoerl and Kennard, 1970) was a parametric

model dealing with linear functions. Using the positive definite kernels we introduced in

section 1.3.1, it is possible to make it non-parametric. Indeed recall that

ŵ = (X>X + λIp)
−1X>Y = X>(XX> + λIn)−1Y,

2In a pure Bayesian setting however, w is only manipulated through its distribution and predictions are
made by averaging over all possible w wieghted by their prior probability.
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so the prediction Ytest from new points Xtest is

Ytest = Xtestŵ = XtestX
>(XX> + λIn)−1Y,

which only depends on x through dot products, so the kernel trick applies. Replacing all

the dot products by kernel evaluations in this prediction is equivalent to using the solution

of the non-parametric problem

min
f∈H

n∑
i=1

(f(xi)− yi)2 + λ‖f‖H,

where H is the RKHS corresponding to the chosen kernel. In particular, by the same

Cauchy-Schwarz-based argument as in the linear case, the optimal function has the same

smoothness (hence good generalization) properties, because data points whose mappings to

H are close (in the metric of H) have close evaluations by f . Note that similar arguments

can be used in the non-parametric Bayesian framework to turn the parametric Bayesian

model presented above into a non-parametric Gaussian process model (Rasmussen and

Williams, 2005).

An interesting example of such a parametric extension is the case where a graph on the

variables is known, with the prior that parameters corresponding variables which are close

with respect to the graph topology should have similar values, i.e., the function should be

smooth on the graph. If L = EΛE> is the spectral decomposition of the graph Laplacian

L, then this effect can be obtained by penalizing the Hilbert norm of the following function

space :

Φ(x) = Λ
1
2E>x, (1.11)

i.e., the projection of each data point on the square root of the graph Laplacian. Penalizing

the Hilbert norm in this space (which is actually still Euclidean) gives :

‖w‖H = Φ(w)>Φ(w) = w>Lw =
∑
l∼k

‖wl − wk‖2
2, (1.12)

where l ∼ k indicates that the l-th and the k-th variables are connected on the graph. In

other words, enforcing smoothness in the description space (1.11) is equivalent to enforcing
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smoothness on the graph topology. This type of penalty was used in Rapaport et al. (2007)

to obtain interpretable classifiers of tumor expression data based on a biological graph.

While the regularization by Hilbertian norms improves the problem conditioning and

the generalization ability of the solution, it only relies on the assumption that the func-

tion should be as smooth as possible or in the parametric case that the parameters have

reasonable values. If more information is available on the expected structure of the solu-

tion, building a regularization which takes it into account could further improve the perfor-

mance of the learned function. In the next two sections we present two particular families

of assumptions, namely that the true model is sparse, and that the true models of several

problems are related.

1.4.2 Sparsity-inducing regularizations

Motivation

A particular and very popular assumption is that the true model is sparse, i.e., has a lot

of zero parameters. This assumption is especially helpful when trying to learn a function

in high dimension because most phenomenon only involve few of the many features in-

jected in the model, and learning a non-zero weight for all the other features may only add

noise. Besides, selecting a small set of explicative features makes the model interpretable

and is as important as learning an accurate classifier in some applications, especially in

computational biology.

Early selection methods, known as model selection approaches, like the AIC crite-

rion (Akaike, 1973), Cp (Mallows, 1973) or BIC (Schwarz, 1978), try to achieve this spar-

sity by penalizing the dimension of the model. Although they are based on a search over all

possible subset selections, they are shown to give optimal prediction performances in some

settings, and are still an active field of research (Birgé and Massart, 2006; Baraud et al.,

2009).

On the other hand, a possible formalization of this sparsity assumption in terms of

regularization of an empirical risk minimization problem for a given loss function L (Foster
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and George (1994) for the least-square case) is the following :

min
w
L(w) + λ‖w‖0, (1.13)

which has the same form as the Tikhonov formulation, but where we regularize by the `0

instead of the `2 norm. In other words, formulation (1.13) penalizes the number of non-zero

elements of w, which enforces the sparsity assumption.

A severe shortcoming of the `0 regularizer however is that like model selection ap-

proaches, it is non-convex (Natarajan, 1995) and therefore subject to the local minima

problem. A natural paradigm is to try to minimize this non-convex problem directly us-

ing greedy methods like the matching pursuit (Mallat and Zhang, 1993) or the orthogonal

matching pursuit (Tropp, 2004). It is still unclear in practice how much and under which

exact settings this non-convexity harms the prediction performances and model recovery,

as greedy methods empirically perform well in many cases.

Sparsity induction by the `1 norm

Another popular approach is to use a surrogate constraint which is convex has the same

effect as the `0 constraint. A possible convex relaxation of the `0 constraint is the `1 con-

straint, as shown on Figure 1.1. This is actually the tightest convex relaxation among all the

`p norms. Regularization by the `1 constraint was introduced independently in the statis-

tics (Tibshirani, 1996) and the signal processing (Chen et al., 1998) literatures3 in two very

close formulations. In statistics, it was first proposed in a regularized regression problem,

the least absolute shrinkage and selection operator (Lasso) :
min
w

n∑
i=1

(yi − xiw)2

‖w‖1 ≤ C,

(1.14)

3Historically, the first use of a `1 constraint was by the Nobel Prize winner Harry Markowitz, in his work
on portfolio optimization (Markowitz, 1952), although no explicit mention to the notion of regularization was
made in this work.



1.4. PRIOR KNOWLEDGE AND REGULARIZATION 49

whereas in signal processing it was introduced as the basis pursuit : min
w
‖w‖1

Xw = y,
(1.15)

as a mean to recover exactly the signal w from a given overcomplete dictionnary X (the

basis pursuit denoising formulation is equivalent to the Lasso). Note that by a Lagrangian

argument (Boyd and Vandenberghe, 2004), (1.14) can be written under the same Tikhonov

form as the ridge regression and the `0 regularization (1.13) :

min
w

n∑
i=1

(yi − xiw)2 + λ‖w‖1, (1.16)

and for all C, there exists λ(C) such that the two problems are equivalent.

The two following arguments explain why penalizing by the `1 norm favors sparse

solutions :

Geometric argument : Figure 1.10 illustrates in two dimensions the minimization of a

smooth function, represented by the contour lines under `1 and `2 constraints repre-

sented by the green zones. Ifwmin is the minimizer of the smooth function (the center

of the ellipses), the point inside the `2 ball of radius C which minimizes the function

is the projection of wmin on the ball, C. wmin

‖wmin‖ , which is colinear to wmin and has no

reason the have any zero coordinate (unless wmin itself has zero coordinates, which

has probability zero under any reasonable noise setting).

Under the `1 constraint on the other hand, the w minimizing the smooth function,

i.e., the projection of wmin on the `1 ball, generally lies on one of the singularities of

the ball, so the constrained solution typically has zero coordinates.

KKT argument : Consider the minimization of the following general problem :

min
w
L(w) + λ‖w‖p, (1.17)

for 1 ≤ p ≤ ∞, where ‖w‖p =
(∑d

j=1 |wj|p
) 1

p
, as defined in (1.5). This problem is
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Figure 1.10: Sparsity induction by the `1 norm.

equivalent to minw L(w) + λ̃‖w‖pp for some λ̃ and generalizes the ridge regression,

the Lasso, and several other regularized problems.

For a convex loss function L, since q ≥ 1, (1.17) is a convex optimization problem,

whose solution is characterized by its KKT conditions (Boyd and Vandenberghe,

2004). In particular, at the optimum, w must satisfy the stationarity conditions. For

p > 1, ‖w‖p is differentiable everywhere, and the stationarity conditions are :

∀j, ∂L
∂wj

= −λ∂‖w‖p
∂wj

= −λsign(wj)
|wj|p−1

‖w‖p−1
p

, (1.18)

where sign(wj) is 1 for a positive wj , −1 for a negative wj and 0 for wj = 0. This

condition simply means that at the optimum, the derivative of the loss function with

respect to each parameter is cancelled out by the absolute value of the parameter

(weighted by the strength λ of the constraint), which intuitively makes sense : the

former tries to increase the parameter value in order to minimize the loss, whereas

the latter penalizes large values of the parameter. As a consequence, for a wj to be

0 at the optimum for any λ > 0, the KKT conditions impose that the corresponding
∂L
∂wj

be 0 as well, which has probability 0 under any non-idealized setting.

For p = 1 on the other hand, |wj|p is non-differentiable at 0, so for wj = 0, the

stationarity condition, in terms of the subdifferential ∂wj
of the loss and the penalty
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functions becomes :

0 ∈ ∂wj
(L(w) + λ‖w‖p)⇔

∣∣∣∣ ∂L∂wj
∣∣∣∣ ≤ λ, (1.19)

because the subdifferential of the absolute value is the [−1, 1] set. Therefore, any

parameter with respect to which the gradient of the loss has an amplitude less than λ

will be 0 at the optimum. Note that the zone where the parameter is left to 0 because

it doesn’t help enough the loss decrease is created by the non-differentiability of the

penalty. This will be a useful fact to define more elaborate sparsity-inducing norms.

Following the geometric intuition, 1.1 shows that using `p constraints for p < 1 would

favor stronger sparsity, because the cost induced by the corresponding metrics is closer to

the `0 cost, i.e., the smaller p, the more expensive it is to add variables to the model. At

the other extreme, the `∞ norm only penalizes the largest parameter in absolute value, so

using it to penalize an empirical risk minimization problem results in solutions where all

the parameters have the same absolute value.

Algorithms

While the differentiability of the `2 norm allows to use any gradient-based descent method

for the minimization, `1-penalized problems may seem much more difficult to optimize as

it is known that subgradient iterations are slower than gradient descent methods. However,

two elements make the `1 minimization problem amenable in practice :

• For large penalizations, the above analysis shows that the optimal function is very

sparse, i.e., few parameters are involved.

• The regularization path of the Lasso is piecewise linear. In other words, to describe

all the values taken by the parameters across all possible λ, it is sufficient to describe

their values at a finite number of points. This was shown in Efron et al. (2004) and

generalized in Rosset and Zhu (2007) to any minimization of an affine combination

of a piecewise quadratic function and a piecewise linear function.

The main families of algorithms to minimize the Lasso are :
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Coordinate descent methods : First introduced by Fu (1998) and re-discovered in Daubechies

et al. (2004), they simply consist in iterating over the parameters wj , and for each pa-

rameter to minimize the Lasso objective with respect to the parameter only. This

partial minimization can be performed in closed form by soft-thresholding (Donoho,

1994). For this reason, in spite of its naive aspect, and the fact that it does not use

the piecewise linearity of the regularization path, this method is very efficient and

difficult to improve on in practice.

Homotopy methods : A second family of approaches, pioneered by Osborne et al. (1999a,b)

and further developed by Efron et al. (2004) follow the continuous path of each pa-

rameter along the regularization values. The idea of the LARS Efron et al. (2004) is

to use an active set of parameters which is empty at the beginning (corresponding to a

large penalty), then add the variable most correlated with the output and increase the

corresponding parameter until the correlation of another variable with the residual

is as strong as the correlation of the first variable, then add the new variable to the

active set and increase the value of the two parameters until a new variable becomes

correlated enough with the residual, etc. Under minor modifications, this algorithm

can be proved to follow the Lasso regularization path.

Projected gradient methods : Alternatively, it is possible to consider the Lasso problem

in its original constrained form (1.14) and minimize it by descending the gradient

projected on the `1 ball (Duchi et al., 2008).

Consistency of the Lasso

Once the practical minimization of the Lasso is solved, the remaining problem, which has

concentrated a lot of efforts recently, is its model consistency : under which settings does

the Lasso recover the correct sparsity pattern when the number of data points grows? An

interesting result in Leng et al. (2004) shows that selecting the regularization parameter

based on the regression performances does not lead to consistent models. More recently

however, Zhao and Yu (2006) and Yuan and Lin (2007b) show that in the case of a fi-

nite number of parameters and for an adequate choice of the regularization parameter, the

Lasso is consistent under some irrepresentable conditions, stating that when the variables
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of the model are not too correlated with the variables which are not in the model. To ad-

dress these restrictions, Zou (2006) proposes an adaptive version of the Lasso, while Bach

(2008c) shows that a bootstrapped version of the Lasso can be consistent even when the ir-

representable conditions are not met. Meinshausen and Buehlmann (2009) adopt a similar

approach, but add randomized weights which acts like a soft bootstrapping of the variables.

Note that as a non-asymptotic counterpart to this asymptotical result, recent analysis

from the compressed sensing field (Candes and Tao, 2005; Candes et al., 2006; Candes,

2008; Foucart and Lai, 2009) give conditions on the design matrix X under which `1 min-

imization leads to exact recovery in the noiseless case. For noisy recovery, the analysis

gives a tight bound on the `1 error made by the estimator. The conditions on X , known as

restricted isometry properties express that X should be close enough to an isometry in the

sense that mapping a vector by X should not change too much the euclidean norm of the

vector.

Variations on the Lasso

Several modifications of the Lasso have been proposed. As a direct alternative to the

Lasso, Candes and Tao (2007) introduced the Dantzig selector : min
w
‖w‖1

‖X>(Y −Xw)‖∞ ≤ C,
(1.20)

which interestingly relates to the Lasso through the following alternative formulation of the

Lasso (Osborne et al., 1999b) : min
w

1

2
w>X>Xw

‖X>(Y −Xw)‖∞ ≤ .C
(1.21)

Meinshausen et al. (2007) thoroughly discusses the differences of these two approaches.

A growing literature uses the `1 penalty to recover the structure of a Gaussian graphical

model (Meinshausen and Bühlmann, 2006; Friedman et al., 2007; Yuan and Lin, 2007a;

Ravikumar et al., 2009). It is indeed well known that the inverse covariance matrix of
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a Gaussian graphical model has zeros at positions corresponding to couples of variables

which are not connected. Penalizing the `1 norm of this inverse covariance matrix is there-

fore a natural way to estimate the structure of the graphical model.

In the Bayesian setting we introduced for the ridge regression, penalizing by the `1

norm can be seen as doing MAP estimation with a Laplacian prior instead of the Gaussian

prior. In a nonparametric Bayesian setting, Ravikumar et al. (2008) give a sparse version

of the generalized additive models proposed by Hastie and Tibshirani (1999) named SpAM

(Sparse Additive Model). While generalized additive models try to explain the output by a

sum of non-parametric functions of the individual variables Yi =
∑d

j=1 m(Xij) + ε, SpAM

adds a constraint on
∑d

j=1

√
E(m2

j(Xj)), which gives a non-parametric equivalent to the

Lasso. They propose an optimization algorithm and prove the model selection consistency

of the approach in the same paper.

As mentioned in the section on Lasso consistency, adaptive (Zou, 2006) as well as

bootstrapped (Bach, 2008c) variants of the Lasso have been proposed to improve the model

recovery abilities under settings where some variables of the models would be correlated

with variables outside the model. On the other hand, a known weakness of the Lasso is

that if two variables in the model are too correlated, the Lasso selects only one of them. In

an attempt to solve this problem, Zou and Hastie (2005) proposed to combine the `1 and

the `2 norms : Ωelastic(w) = λ1‖w‖1 + λ2‖w‖2. The resulting elastic net penalty selects

all the variables which are correlated enough instead of selecting only the variable most

correlated with the loss gradient and leaving the others. Following the geometric argument

we presented above, the projection of the optimumw on the ball of the elastic net, presented

on Figure 1.11 doesn’t fall on the corners if the unpenalized optimal is close enough to the

w1 = w2 axis. The minimal correlation that the variables must have to be selected together

depends on the (λ1, λ2) hyperparameters.

Structured sparsity

All the regularizations presented so far only assume that the true model is sparse, without

any assumption about how the non-zero coefficients are organized. Various models have

been devised to use this type of information when available.



1.4. PRIOR KNOWLEDGE AND REGULARIZATION 55

Figure 1.11: Unit ball of the elastic net λ1‖w‖1 + λ2‖w‖2 for λ1 = λ2.

In some applications, a natural order of the variables can be defined, with the assump-

tion that the model is piecewise constant on this order. A typical example in computational

biology is CGH data analysis, where the variables are copy numbers of each gene. Since

duplications and deletions of a chromosome segment are generally not limited to a sin-

gle gene, it is likely that the genes neighboring a given gene on the chromosome have the

same number of copies. Rapaport et al. (2008) and Tibshirani and Wang (2008) proposed to

take this information into account by using a fused penalty which combines the `1 norm of

the function and the `1 norm of the differences of parameters corresponding to successive

genes :

Ωfused(w) = λ1‖w‖1 + λ2

p−1∑
j=1

|wj − wj+1|. (1.22)

This penalty had first been proposed in Land and Friedman (1997) without the λ1‖w‖1 term

and used under this form in Harchaoui and Levy-Leduc (2008) for change-point detection.

It was studied under the complete form (1.22) in Tibshirani et al. (2005) where it was ap-

plied to expression and mass spectrometry data. It was further refined in Rinaldo (2009)

where an adaptive formulation was proposed. Intuitively, penalizing the `1 norm of differ-

ences favors solutions which have several zero differences, i.e., constant segments. Adding
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the regular `1 penalty leads to solutions which are both sparse and piecewise constant. Fig-

ure 1.12 shows that following the same geometric argument as for the Lasso confirms this

property, as the singularities of the fused ball happen at points where either one parameter

is 0 or the two parameters have the same value.

Figure 1.12: Unit ball of the fused penalty (1.22) for λ1 = 2
3
, λ2 = 1

3
.

Another type of prior information which can be available on the sparsity structure is

that some pre-defined groups of variables are likely to be selected together. In this case,

regularizing a learning problem by the following group-lasso penalty (Yuan and Lin, 2006)

favors solutions such that parameters within a group are either all zero or all non-zero :

Ωgroup =
∑
g∈G

‖wg‖2, (1.23)

where G is the set of pre-defined groups forming a partition of the variables. Penalty (1.23)

is a mixed `1/`2 norm : it is the `1 norm of the vector formed by the `2 norms of the groups

of variables. Therefore using this penalty favors solutions in which several ‖wg‖2 are 0.

For these groups, all the parameters are necessarily 0. On the other hand, all the parameters

within groups such that ‖wg‖2 6= 0 are non-zero with probability 1 for reasons similar to

those presented in the above KKT arguments for the Lasso sparsity (within each group, the

penalty is `2 so sparsity is not favored). Here again, it is possible to check on Figure 1.13
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that the singularities of the group-lasso ball occur at points where some groups have zero

norm. More generally, penalizing an empirical risk minimization problem by a `p/`q mixt

norm
(∑

g∈G ‖wg‖pq
) 1

p
induces the effect of the `p norm at the group level, and the effect

of the `q norm within each group.

Contrarily to the Lasso, the group-lasso does not have a piecewise linear regularization

path. It is therefore not possible to generalize the homotopy algorithms of the Lasso, but

several efficient block-coordinate descent algorithms have been proposed (Yuan and Lin,

2006; Meier et al., 2008; Roth and Fischer, 2008). The latter one uses an active set and is

able to deal with millions of variables. Lanckriet et al. (2004b) proposed a non-parametric

version of this penalty in the positive definite kernel framework. This multiple kernel learn-

ing (MKL) selects a small number of kernels instead of selectioning groups of variables.

The original formulation was an expensive SDP, but Bach et al. (2004a,b) introduced a

scalable SOCP formulation (Lobo et al., 1998) based on conic duality and Moreau-Yosida

smoothing (Lemarechal et al., 1997). More recently, Sonnenburg et al. (2006) and Rako-

tomamonjy et al. (2007, 2008) proposed fast algorithms for MKL minimization, based on a

variational formulation. Bach (2008a) gives consistency conditions for both the parametric

group-lasso and the MKL minimizations, yielding similar irrepresentable conditions as for

the Lasso. Huang and Zhang (2009) gives non-asymptotic results as tight bounds on the `2

error of the group-lasso under group-RIP conditions, and show that the group-lasso can be

inferior to the Lasso if the variables of the model belong to small groups. Finally, Bach

(2009) proposes an approximated version of the MKL which is able to deal with a very

large number of kernels if a hierarchical structure on the kernels is given.

Parametric variants of the group-lasso include the CAP penalty Zhao et al. (2009),

which enforces that a variable enters the model only if its parents enter the model as

well for a given hierarchical structure of the variables, and the model of Szafranski et al.

(2008b) which introduces sparsity within the groups. Szafranski et al. (2008a) generalizes

this model to the non-parametric and allows to increase sparsity at the cost of losing the

convexity of the penalty.
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Figure 1.13: Unit ball of the group-lasso in 3 dimensions with G = {{1, 2}, {3}}.

1.4.3 Multi-task and pairwise learning

Another type of prior information

In some practical applications, training data is available for several related yet different

learning problems. In marketing, one may want to predict the preferences of several cus-

tomers. In medicine, one may be interested in predicting the efficiency of various treat-

ments for different patients. Therefore, a new type of prior information becomes available

when considering all these learning problems simultaneously, i.e., as a single optimization

problem, and new regularizers favoring similar classification functions for related learning

tasks can be designed. More precisely when T related learning tasks are available, it is

possible to consider the joint minimization of their risk under some regularity constraint :

min
w1,...,wT

T∑
t=1

L(wt) + λΩ(w1, . . . , wT ), (1.24)

where wt is the classification function for task t. A first observation is that if the reg-

ularizer Ω is separable on the tasks, i.e., if Ω(w1, . . . , wT ) =
∑T

t=1 Ω̃(wt), then prob-

lem (1.24) can be decomposed as T smaller minimization problems. In particular, if

Ω(w1, . . . , wT ) =
∑T

t=1 ‖wt‖2
2, then problem (1.24) boils down to T independant ridge-

regularized learning problems. On the other hand, various non-separable joint penalties can
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enforce various forms of similarity among the wt. In the remaining of this section, some

existing penalties together with the corresponding type of relation among the tasks they

assume will be presented. While this presentation is made from a regularization point of

view to be consistent with the contributions of this thesis, several ideas in this domain come

from other frameworks like artificial neural networks, hierarchical bayes or non-parametric

bayes. The corresponding models will be presented with their regularization-based coun-

terpart.

Context

The idea of leveraging across several estimation problem long has been considered in

econometrics and statistics literature. Zellner (1962) and Srivastava and Dwivedi (1979)

studied seemingly unrelated regression which specifically consists in jointly solving sev-

eral linear regressions, which is shown to be more efficient than individual solving when

the residual terms are correlated. Brown and Zidek (1980) proposed a multivariate ridge

regression models which extends the ridge regression to the case where several outputs are

associated with each data points.

In the machine learning literature, this idea first appeared as the bias learning (Bax-

ter, 1996a,b, 2000), or learning to learn (Baxter, 1997; Thrun and Pratt, 1998) problem.

In these models, the bias denotes the hypotheses space in which the classification func-

tion can be chosen and the idea is to learn which hypotheses space is optimal from an

hypotheses space family and several related learning problems. In practice, this idea was

implemented by artificial neural networks with several output neurons corresponding to

the different functions, and in which a hidden layer with a given architecture is shared by

all the outputs. Optimizing the weights between the inputs and this hidden layer across

the tasks results in learning a common low dimension representation, i.e. implicitly a hy-

pothesis space. Caruana (1993, 1997) pioneered such networks and gave the denomination

multitask learning to this approach.

Related problems include recommender systems or collaborative filtering (Breese et al.,

1998; Heckerman et al., 2000), where the goal is to predict new products that a customer

could like based on his previous purchases or ratings and those of other customers. In

marketing, conjoint analysis (Green and Srinivasan, 1978; Chapelle and Harchaoui, 2005)
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tries to identify which features a new product should have based on the trade-off made

by several customers. Multi-task learning is also related to transfer learning (Pan and

Yang, 2008), where the goal is to apply a classifier learned on a learning task with a given

distribution and set of features to a related task with a possibly different distribution and

feature space.

Multi-task learning was studied from a learning theory point of view in Baxter (1997,

2000) and Ben-David and Schuller (2003). Baxter (2000) and Ben-David and Schuller

(2003) extended results of Vapnik (1998), using a notion of extended VC-dimension to de-

rive bounds on the generalization error of several tasks learned simultaneously, while Bax-

ter (1997) analyzed multi-task learning in an information theoretic framework.

Task relatedness

Recent contributions in machine learning have built on these ideas to propose new mod-

els which take into account the fact that several learning tasks are related to improve their

performances. Notwithstanding the different frameworks in which these models were pro-

posed like artificial neural networks, hierarchical bayes or regularized risk minimization,

an important distinction between them is the assumption they make about what is shared

among the learning tasks. The most common assumptions are presented below :

Low variance assumption : A first class of models assumes that the linear functions of

all the learning tasks are close to each others in `2 norm. This assumption stems in

the seemingly unrelated regression of Zellner (1962) presented above, and the mixed

effect models in statistics. In the regularization framework, Evgeniou and Pontil

(2004) and Evgeniou et al. (2005) introduced the following penalty :

Ωvariance = α

T∑
t=1

‖wt‖2
2 + (1− α)

T∑
t=1

‖wt − w̄‖2
2, (1.25)

for α ∈ [0, 1], where w̄ = 1
T

∑T
t=1 wt. When used to regularize a risk minimization

problem, Ωvariance penalizes more the functions (w1, ..., wT ) which are far from their

mean in average thereby favoring solutions such that all the wt are close to each

others. The first term of the penalty is a regular individual ridge penalty, and the
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hyperparameter α trades off between individual `2 regularity and low variance among

the wt.

The hierarchical Gaussian process model proposed by Yu et al. (2005), with one

Gaussian process by task and a Gaussian process prior whose parameters are learned

across the tasks, implicitly makes the same assumption : the mean function accounts

for the common effects shared by all the learning tasks, and the individual functions

for the specific effects of each task. The Gaussian distribution on the specific task

enforces a low variance of the individual functions around their mean, and the Gaus-

sian prior on the mean enforces a global regularity. Yu et al. (2007) extended this

model to t-processes, which are similar to Gaussian processes but have heavier tails,

for robust multi-task learning.

Shared low-dimension representation assumption : Another common assumption is that

the linear functions of all the learning tasks live in the same low-dimension linear

subspace. This is equivalent to assuming that all the linear classifiers can be ex-

pressed in terms of a few variables given by linear combinations of the original de-

scriptors. If this assumption is true, forcing all the functions to belong to the same

subspace can guide the learning process and provide an insight of which descriptors

best describe the problem. An interesting difference with the low-variance prior is

that under this assumption, two linear classifiers can be anti-correlated and still live

in the same linear subspace, whereas their `2 distance becomes maximal.

Early neural-networks approaches to multi-task learning (Caruana, 1993, 1997) are

based on this assumption since the way they share information among the tasks is by

learning a low-dimension representation in the hidden layer shared by all the tasks.

In the context of collaborative filtering, the most basic setting would only provide

the output yit (e.g. a rating) for each task t (e.g. a customer) and some point xi (e.g.

an object). Typically, this output matrix is very incomplete, e.g., only the ratings

of certain objects by certain users are available. In this case, searching for a low-

rank decomposition of the output matrix Y = UV >, U ∈ Rn×k, V ∈ RT×k is

equivalent to finding a k-dimension space in which each line ui of U describes the

corresponding point xi and each line vt of V contains the linear prediction function
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of the corresponding task (Srebro and Jaakkola, 2003). However, the rank constraint

is non-convex, and Srebro and Shraibman (2005); Srebro et al. (2005) propose to

relax it by the trace norm, defined by :

Ωtrace(W ) =

min(T,p)∑
k=1

|σk(W )|, (1.26)

where σk(W ) denotes the k-th largest singular value of W . Therefore, Ωtrace is the

`1 norm of the spectrum of the matrix and relaxes the rank penalty which would

constrain the `0 norm of the spectrum, like the usual `1 norm relaxes the usual `0

norm. In practice, the trace penalty indeed leads to low-rank matrices (Fazel et al.,

2001). More generally, when the data xi are described by features, penalizing the

joint risk minimization problem by the trace norm of W is equivalent to making the

(relaxed) assumption that all the linear classifiers belong to the same low-dimension

linear subspace. Indeed, if there are more descriptors than tasks, constraining the

rank of W will impose that all the wt can be expressed in a small shared basis.

Another insight on the effect of the trace-norm constraint is given by the following

equivalent formulation :

Ωtrace(W ) = min
U,V, W=UV

1

2

(
‖U‖2

F + ‖V ‖2
F

)
, (1.27)

where ‖.‖2
F denotes the squared Frobenius matrix norm, i.e., the sum of the squared

elements of the matrix. For a loss function L(wt) = L̃(X twt) which only depends

on wt through dot products with the data points of the taskX t, the joint minimization
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problem therefore writes :

min
W

T∑
t=1

L̃(X twt) + λΩtrace(W ) (1.28)

= min
W,U,V,W=UV

T∑
t=1

L̃(X twt) + λ
1

2

(
‖U‖2

F + ‖V ‖2
F

)
(1.29)

= min
U,V

T∑
t=1

L̃(X tUvt) + λ
1

2

(
‖U‖2

F + ‖V ‖2
F

)
, (1.30)

where vt are the columns of V . In other words, penalizing by the trace norm can be

seen as learning jointly a linear map U of the original descriptors across the tasks and

linear functions vt in this shared feature space. Because of the relaxation, the number

of shared features is not explicitly controlled and the complexity of the mapping is

only penalized through the Frobenius norm of U . The Frobenius norm of V , ‖V ‖2
F =∑T

t=1 ‖vt‖2
2 controls the `2 regularity of the linear functions in the shared space. This

approach was used in Argyriou et al. (2007), and extended in Argyriou et al. (2008b)

to a more general class of spectral functions. Consistency results for the trace norm

minimization were given in Bach (2008b).

Alternatively, Ando et al. (2005) propose a model in which the linear classifier of

each task is a combination of a ridge-regularized component in the original feature

space and a component in another feature space. This other feature space is made of

h normalized and orthogonal linear combinations of the original features, where h is

an hyperparameter of the model :

min
{w−t,vt}t=1,...,T ,Θ

T∑
t=1

L(wt + Θ>vt) + λt‖wt‖2
2, (1.31)

s.t. ΘΘ> = Ih,

which they optimize by an efficient alternating optimization scheme. The problem

is convex in wt, vtt and in Θ, but not jointly convex because of the Θ>vt product. A

convex relaxation was proposed in Chen et al. (2009).
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Shared sparsity pattern assumption : A last family of approaches makes the assumption

that all the linear functions are sparse, and that the variables in the model are the

same for all of them. Like for the previous prior family, these methods assume that

the linear functions of all the tasks live in a low-dimension space, but they further

assume that this space is a restriction of the original feature space to certain variables.

A first model enforcing this prior was proposed in Jebara (2004) in the maximum

entropy discrimination framework (Jaakkola et al., 1999). In the framework of reg-

ularized learning, it is possible to enforce this prior by simply using a group-lasso

penalty where the groups are each variable considered across the tasks (Obozinski

et al., 2009) :

Ωjoint(W ) = ‖W‖1,2 =
d∑
j=1

‖w(j)‖2, (1.32)

where w(j) = (w
(j)
1 , . . . , w

(j)
T ) is the vector formed by the j-th parameter across the

tasks. As argumented in Section 1.4.2, this penalty will favor solutions such that

several w(j) are 0, resulting in wt which are sparse with a joint sparsity pattern.

A `1/`∞ version of this penalty was proposed in Turlach et al. (2005), studied in Tropp

et al. (2006) for sparse appoximations in signal processing and for regression, and

in Zhang et al. (2008) for classification. In the non-parametric Bayes framework,

a generalization of the SpAM was proposed in Liu et al. (2009) using the `1/`∞

norm. The model selection consistency was studied for the `1/`2 regression model

in Obozinski et al. (2008). Finally, Lounici et al. (2009) proposed a non-asymptotic

bound on the `1/`2 error of the corresponding estimate.

Of course, these assumptions do not exclude each others. For example, some hier-

archical Bayes models (Heskes, 2000; Bakker and Heskes, 2003) combine the first two

assumptions. Like the neural networks of Caruana (1997), they learn a common low di-

mension representation but in addition, they impose a common Gaussian prior to the task

parameters. Since the prior is learned jointly by taking its maximum of likelihood estima-

tor across the tasks, this controls the variance of the task parameters around the cross-task

mean (as in the non-parametric counterpart of Yu et al. (2005)). Abernethy et al. (2008),

which is presented later in this section, explicitely combines penalties (1.25) and (1.26)



1.4. PRIOR KNOWLEDGE AND REGULARIZATION 65

among others.

An alternative approach based on covariate shift (Shimodaira, 2000; Bickel et al., 2007)

was proposed by Bickel et al. (2008). Instead of jointly minimizing the empirical risks of

all the tasks under some relatedness constraint, they learn for each task t the probability

p(t|xi, yi) of a data point and its output to be generated from the task, and then learn a

model for the task using all the points weighted by this probability. They show that this is

equivalent to sampling the training points from the task distribution instead of the mixture

of tasks one.

Clustered multi-task

Some models consider that this low variance assumption only holds within some clusters

of tasks : Bakker and Heskes (2003) propose a version of their hierarchical Bayesian model

where the prior is a mixture of Gaussian instead of a single Gaussian. In the non-parametric

Bayesian framework, Xue et al. (2007b) used a Dirichlet process prior, which is known to

have a clustering effect. In Xue et al. (2007a) and Dunson et al. (2008), the idea was

extended to the case where the clustering is not the same for the different parameters.

Deodhar and Ghosh (2007) propose to alternate between clustering the tasks and learning

a multi-task model using this clustering. Daume (2009) uses a hierarchy structure instead

of a clustering.

Pairwise learning

As suggested in Evgeniou et al. (2005) and detailed in Appendix A.1, it is possible to

express the multi-task learning formulation (1.25) by considering pairs formed by one task

and one individual as the inputs of any kernel method, using a product kernel of the form

K((x, t), (x′, t′)) = Kdata(x, x
′)Ktask(t, t

′), (1.33)

for the particular choice of Ktask.

If some prior information about which tasks are similar is available under the form of a

kernel or of task descriptors, the problem becomes symmetric, i.e., the problem is to learn

a function which discriminates between “positive” pairs (the pairs formed by an x and a t
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such that x is a positive data for task t) from the negative ones. Using a product of kernel

and a regular kernel method with an `2 penalty, this approach was described in Bonilla

et al. (2007), is known as pairwise learning, and has been used with some success in

bioinformatics (Martin et al., 2005; Ben-Hur and Noble, 2005; Vert et al., 2007). In terms

of prior, using this `2 penalty in the joint space means that we expect the function to be

smooth across the pairs. Slight changes in either x or t (in terms of the Kdata and Ktask

metrics) should not result in large variations of the functions.

More generally, Abernethy et al. (2008) cast this problem of learning a discriminative

function on pairs as an operator estimation problem, and propose to regularize it by a

convex combination of the `2 (Frobenius) norm of the operator and its trace norm. As

for the `2 penalty, the interpretation of the trace norm contraint generalizes to the joint

feature space, to the idea that the true function should be expressed in terms of few linear

combinations of the joint features. Since a classical results on tensor products states that :

Kdata(x, x
′)Ktask(t, t

′) = Φdata(x)>Φdata(x
′)× Φtask(t)

>Φtask(t
′)

= (Φdata(x)⊗ Φtask(t))
> (Φdata(x

′)⊗ Φtask(t
′)) , (1.34)

these joint features are products of the data features and the task features.

In the non-parametric Bayesian framework, Bonilla et al. (2008) use a Gaussian process

model to learn a function in the joint function space, and learn an optimal representation

for the tasks.

Structured output learning

A problem very close to multi-task learning and in which the same type of prior can be used

is structured output learning (Taskar et al., 2004; Tsochantaridis et al., 2005). In structured

output learning, each data point xi is associated to an output yi which instead of just being a

binary variable like in classification or a real number like in regression has its own structure

and can be described with some features, like the input. Typical applications include natural

language processing, when one wants to predict the syntactic tree of a given sentence, or

bioinformatics when one wants to predict the splicing of a protein in some process. Multi-

class learning can also be formulated as a basic form of structured output learning, where
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the structure which has to be predicted is a vector of the canonical basis indicating the

class. Formally, the only difference with the multi-task learning problem is that each input

is positive for a unique structure, whereas in multi-task, each data point can be positive for

several tasks. Therefore, both problems can be formulated in a joint data-structure or data-

task feature space, but instead of the sum of risks which is minimized in multi-task (1.24),

the structured output problem is to minimize :

n∑
i=1

max
y 6=yi

(w>Φ(xi, y)− w>Φ(xi, yi)), (1.35)

that is, to make sure that w gives a higher score to the right pair (xi, yi) than to any other

pair formed by xi with another y. Several relaxations of this risk function following the

same large margin principle as the SVM were proposed in Tsochantaridis et al. (2005).

Once such a risk is chosen, any regularizer that was presented for the multi-task can be

used for the structured output problem. In particular, Amit et al. (2007) used the trace

norm in the context of multi-class learning.

1.5 Contributions of this thesis

1.5.1 Pairwise learning for interaction prediction

Both vaccine and drug design involve a screening step, whose purpose is to identify within

a very large list of potential binders (peptides for the vaccines, small molecules for the

drugs) which ones are the most likely to actually bind a given target (MHC molecule for

the vaccines, proteins for the drugs). A common way to formulate this problem is as a

binary classification problem for each target, where the positive data are the binders and

the negative data are the non-binders for this target. Note that another dominant way to

address this screening problem is to use docking methods which use the 3D-structure of the

target to determine how well each candidate binds the target.

One contribution of this thesis, when binding data is available for several targets, is to

reformulate this problem as a binary classification on binder-target pairs, where the positive

points are the pairs which interact, i.e., which involve a given target and one of its ligands,
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and the negative points are the pairs consisting of non-interacting elements. The purpose

of this reformulation is to improve the performances for targets which have little or no

available training data. The central idea of the method is to find descriptors for the pairs,

which reflect its potential to interact or not. These descriptors are built from descriptors

for the targets in addition to the traditional descriptors for the ligands. We propose several

target descriptor both for MHC molecules (vaccine design) and proteins (drug design). This

was detailed in Jacob and Vert (2008a,b) and Jacob et al. (2008), which form Chapter 2.

Note that the framework as it is proposed in this thesis only considers asymetric pairs,

in the sense that the two elements in the pair do not have the same nature. Problems

involving symmetric pairs, e.g., protein-protein interaction prediction, require a slightly

different handling, like counting each pair twice (one time in each order), or adding a

symmetrization term in the resulting scalar product.

Experimentally, this method outperformed state-of-the-art prediction methods for vac-

cine and drug design on various benchmarks

1.5.2 Clustered multi-task learning

Multi-task learning involves considering several related problems simultaneously, with the

hope of improving performance by sharing information across these problems or “tasks”. A

common strategy as outlined in Section 1.4.3 is to penalize the variance across the classifi-

cation functions of all the tasks, which can help guide learning when little data is available.

In more realistic settings, it may be that certain inference problems are related but

others are arbitrarily different. In such cases, penalizing the overall variance may harm

the performance as it would force classifiers of very different problems to be close to each

others. If this clustering structure on the learning tasks were known, one would like to

penalize the variance only within clusters of related problems.

As these clusters are generally unknown a priori, we have proposed in Jacob et al.

(2009a) a criterion which penalizes the variance of functions within clusters, and optimized

jointly with respect to both the classification functions and clustering. However, clustering

is by nature a non-convex problem, because it consists of finding the optimum assignment

of points (here the linear functions corresponding to the tasks) within a discrete set of
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possible assignements. We have therefore proposed a convex relaxation, which we show

improved the prediction performances.

This work is presented in Chapter 3.

1.5.3 Structured priors for expression data analysis

A well known problem in bioinformatics is to predict the class of a tumour from gene

expression measurements with microarrays, and simultaneously select a small number of

genes to establish a predictive signature. Selecting a few genes that either belong to the

same functional groups (where the groups are given a priori and may overlap e.g., biologi-

cal pathways) or tend to be connected to each other in a given biological network, may lead

to increased interpretability of the signature and potentially to better performance when

little data is available.

To this end, we proposed and studied in Jacob et al. (2009b) a new penalty which gen-

eralizes the `1/`2 norm to overlapping groups, and cast the problem of selecting connected

covariates in a graph as the problem of selecting a union of overlapping groups, with ade-

quate definition of groups. More precisely, this method can be used in cases where either

groups of covariates are given (potentially with overlap between the groups) and we wish

to estimate a model whose support is a union of groups, or when a graph with covariates as

vertices is given and we wish to estimate a model whose support contains covariates which

tend to be connected to each other on the graph.

We illustrated the behavior of this method on a well known benchmark of breast can-

cer tumors. When used with canonical pathways, it led to solutions involving much less

pathways, and when used with biological graphs, to solutions which were more connected.

This work is presented in Chapter 4.

1.5.4 List of articles published during the thesis

• L. Jacob and J.-P. Vert. Efficient peptide-MHC-I binding prediction for alleles with

few known binders. Bioinformatics, 24(3):358–366, Feb 2008a.
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Chapter 2
Pairwise learning for interaction prediction

This chapter presents the work which was published in Jacob and Vert (2008a,b); Jacob

et al. (2008) and Vert and Jacob (2008). The order of the sections as well as the content of

some of them has been modified to give consistency to the chapter.

2.1 Interaction prediction in computational biology

In vaccine design, immunologists are interested in having accurate predictions of which

peptides bind to MHC molecules. This is crucial to discover which peptides of a pathogen

can trigger an immunological response and therefore give protection against the given

pathogen. Different MHC alleles bind different peptides.

In drug discovery, biologists try to find small molecules which interact with given ther-

apeutical targets such as enzymes or GPCRs. The goal is to use these molecules as drugs

to regulate the target whose abnormal behavior causes a disease.

In both cases, traditional prediction methods build one classifier for each target (MHC

molecule or drug target) separately. Using a kernel-based approach which casts the prob-

lem as predicting whether each pair, e.g. (peptide,MHC) or (molecule,target) interacts or

not (Vert and Jacob, 2008), we obtained significant prediction improvement in accuracy for

the targets with few known binders. We have proposed some specific kernels for each prob-

lem, and shown that this approach improves the prediction accuracy for both the MHC (Ja-

cob and Vert, 2008a) and drug discovery problems (Jacob and Vert, 2008b). In Jacob et al.

71
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(2008), we propose some additional kernels for the GPCR case.

2.2 Kernel methods for interaction prediction

We formulate the typical in silico interaction prediction problem as the following learning

problem : given a collection of n target/ligand pairs (t1, l1), . . . (tn, ln) known to interact or

not, estimate a function f(t, l) that would predict whether any ligand l binds to any target

t. Here, the words ligand and target are taken in their most general meaning : in the in

silico chemogenomics problem, the ligands will be small molecules and the target will be

proteins whose activity has to be modulated whereas in the case of vaccine design, the

ligands will be short peptides and the target will be MHC molecules for different alleles. In

this section we propose a rigorous and general framework to solve this problems, building

on recent developments of kernel methods in bio- and chemoinformatics.

2.2.1 From single-target screening to interaction prediction

Much effort in chemoinformatics has been devoted to the more restricted problem of min-

ing the chemical space for interaction with a single drug target, and in immunoinformatics

the space of the potential epitopes for a single MHC allele, using a training set of ligands

l1, . . . , ln known to interact or not with the target. Machine learning approaches, such as

artificial neural networks (ANN) or support vector machines (SVM), often provide com-

petitive models for such problems. The simplest linear models start by representing each

ligand l by a vector representation Φ(l), before estimating a linear function ft(l) = w>t Φ(l)

whose sign (positive or negative) is used to predict whether or not the ligand l interacts

with the target t. The weight vector wt is typically estimated based on its ability to cor-

rectly predict the classes of molecules in the training set.

The in silico interaction prediction problem is more general because data involving

different targets are available to train a model which must be able to predict interactions

between any ligand and any target. In order to extend the previous machine learning ap-

proaches to this setting, we need to represent a pair (t, l) of target t and ligand l by a vector

Φ(t, l), then estimate a linear function f(t, l) = w>Φ(t, l) whose sign is used to predict
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whether or not l can bind to t. As before the vector w can be estimated from the training

set of interacting and non-interacting pairs, using any linear machine learning algorithm.

To summarize, we propose to cast the in silico interaction prediction problem as a learn-

ing problem in the ligand-target space thus making it suitable to any classical linear ma-

chine learning approach as soon as a vector representation Φ(t, l) is chosen for target/ligand

pairs. We propose in the next sections a systematic way to design such a representation.

2.2.2 Vector representation of target/ligand pairs

A large literature in chemoinformatics has been devoted to the problem of representing a

molecule c by a vector Φlig(c) ∈ Rdc , e.g., using various molecular descriptors (Todeschini

and Consonni, 2002). These descriptors encode several features related to the physico-

chemical and structural properties of the molecules, and are widely used to model interac-

tions between the small molecules and a single target using linear models described in the

previous section (Gasteiger and Engel, 2003). On the other hand, much work in computa-

tional biology has been devoted to the construction of descriptors for genes and proteins,

in order to represent a given protein t by a vector Φtar(t) ∈ Rdt . The descriptors typically

capture properties of the sequence or structure of the protein, and can be used to infer mod-

els to predict, e.g., the structural or functional class of a protein. Similarly for the epitope

prediction problem, it is possible to design descriptors for small peptides which would be

informative of their ability to bind a given molecule, and descriptors of MHC molecules

which would be related to their epitope repertoire. A more detailed presentation of these

descriptors will be given in the next sections.

For our in silico interaction prediction problem we need to represent each pair (l, t)

of ligand and target by a single vector Φ(l, t). In order to capture interactions between

features of the ligand and of the target that may be useful predictors for the interaction

between l and t, we propose to consider features for the pair (l, t) obtained by multiplying

a descriptor of l with a descriptor of t. Intuitively, if for example the descriptors are binary

indicators of specific structural features in each ligand and target, then the product of two

such features indicates that both the ligand and the target carry specific features, which

may be strongly correlated with the fact that they interact. More generally, if a molecule l
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is represented by a vector of descriptors Φlig(l) ∈ Rdl and a target protein by a vector of

descriptors Φtar(t) ∈ Rdt , this suggests to represent the pair (l, t) by the set of all possible

products of features of l and t, i.e., by the tensor product:

Φ(l, t) = Φlig(l)⊗ Φtar(t) . (2.1)

Remember that the tensor product in (2.1) is a dl×dt vector whose (i, j)-th entry is exactly

the product of the i-th entry of Φlig(l) by the j-th entry of Φtar(t). This representation can

be used to combine in an algorithmic way any vector representation of ligands with any

vector representation of targets, for the purpose of in silico interaction prediction or any

other task involving pairs of ligand/target. A potential issue with this approach, however, is

that the size of the vector representation for a pair may be prohibitively large for practical

computation and storage. For example, using a vector of molecular descriptors of size 1024

for molecules and representing a protein by the vector of counts of all 2-mers of amino-

acids in its sequence (dt = 20 × 20 = 400) results in more than 400k dimensions for the

representation of a pair. In order to circumvent this issue we now show how kernel methods

such as SVM can efficiently work in such large spaces.

2.2.3 Kernels for target/ligand pairs

SVM is an algorithm to estimate linear binary classifiers from a training set of patterns with

known class (Boser et al., 1992; Vapnik, 1998). A salient feature of SVM, often referred

to as the kernel trick, is its ability to process large- or even infinite-dimensional patterns

as soon as the inner product between any two patterns can be efficiently computed. This

property is shared by a large number of popular linear algorithms, collectively referred to

as kernel methods, including for example algorithms for regression, clustering or outlier

detection (Schölkopf and Smola, 2002; Shawe-Taylor and Cristianini, 2004).

In order to apply kernel methods such as SVM for in silico interaction prediction, we

therefore need to show how to efficiently compute the inner product between the vector rep-

resentations of two ligand/target pairs. Interestingly, a classical property of tensor products
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allows us to factorize the inner product between two tensor product vectors as follows:

(Φlig(l)⊗ Φtar(t))
> (Φlig(l

′)⊗ Φtar(t
′))

= Φlig(l)
>Φlig(l

′)× Φtar(t)
>Φtar(t

′) . (2.2)

This factorization dramatically reduces the burden of working with tensor products in large

dimensions. For example, in our previous example where the dimensions of the small

molecule and proteins are vectors of respective dimensions 1024 and 400, the inner product

in> 400k dimensions between tensor products is simply obtained from (2.2) by computing

two inner products, respectively in dimensions 1024 and 400, before taking their product.

Even more interestingly, this reasoning extends to the case where inner products be-

tween vector representations of ligands and targets can themselves be efficiently computed

with the help of positive definite kernels (Vapnik, 1998), as explained in the next sections.

Positive definite kernels are linked to inner products by a fundamental result (Aronszajn,

1950): the kernel between two points is equivalent to an inner product between the points

mapped to a Hilbert space uniquely defined by the kernel. Now by denoting

Kligand(l, l
′) = Φlig(l)

>Φlig(l
′), (2.3)

Ktarget(t, t
′) = Φtar(t)

>Φtar(t
′), (2.4)

we obtain the inner product between tensor products by:

K ((c, t), (c′, t′)) = Ktarget(t, t
′)×Kligand(c, c

′). (2.5)

In summary, as soon as two kernels Kligand and Ktarget corresponding to two implicit

embeddings of the ligand and target spaces in two Hilbert spaces are chosen, we can solve

the in silico interaction prediction problem with an SVM (or any other relevant kernel

method) using the product kernel (2.5) between pairs. The particular kernels Kligand and

Ktarget should ideally encode properties related to the ability of similar ligands to bind

similar targets. We review in the next two sections possible choices for such kernels.
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2.3 Kernels for epitope prediction

2.3.1 Kernels for peptides

We consider in this work mainly peptides made of 9 amino acids, although extensions to

variable-length peptides poses no difficulty in principle (Salomon and Flower, 2006). The

classical way to represent these 9-mers as fixed length vectors is to encode the letter at

each position by a 20-dimensional binary vector indicating which amino acid is present,

resulting in a 180-dimensional vector representations. In terms of kernel, the inner product

between two peptides in this representation is simply the number of letters they have in

common at the same positions, which we take as our baseline kernel:

Klinseq(x, x
′) =

l∑
i=1

δ(x[i]x′[i]),

where l is the length of the peptides (9 in our case), x[i] is the i-th residue in x and

δ(x[i]x′[i]) is 1 if x[i] = x′[i], 0 otherwise.

Alternatively, several authors have noted that nonlinear variants of the linear kernel can

improve the performance of SVM for epitope prediction (Dönnes and Elofsson, 2002; Zhao

et al., 2003; Bhasin and Raghava, 2004b). In particular, using a polynomial kernel of degree

p over the baseline kernel is equivalent, in terms of feature space, to encoding p-order

interactions between amino acids at different positions. In order to assess the relevance of

such non-linear extensions we tested a polynomial kernel of degree 5, i.e.,

Kseq5(x, x′) = (Klinseq(x, x
′) + 1)5.

In order to limit the risk of overfitting to the benchmark data we restrict ourselves to the

evaluation of the baseline linear kernel and its nonlinear polynomial extension. Designing

a specific peptide kernel for epitope prediction, e.g., by weighting differently the positions

known to be critical in the MHC-peptide complex, is however an interesting research topic

that could bring further improvements in the future.
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2.3.2 Kernels for MHC molecules

Although the question of kernel design for peptides has been raised in previous studies in-

volving SVM for epitope prediction (Dönnes and Elofsson, 2002; Zhao et al., 2003; Bhasin

and Raghava, 2004b; Salomon and Flower, 2006), the question of kernel design for alleles

is new to our knowledge. We tested several choices that correspond to previously published

approaches:

• The Dirac kernel is:

KDirac(a, a
′) =

1 if a = a′ ,

0 otherwise.

With the Dirac kernel, no information is shared across alleles and the SVM learns

one model for each allele independently from the others. Therefore this corresponds

to the classical setting of learning epitope prediction models per allele with SVM.

• The uniform kernel is:

Kuniform(a, a′) = 1 for all a, a′ .

With this kernel all alleles are considered the same, and a unique model is created by

pooling together the data available for all alleles.

• The multitask kernel is:

Kmultitask(a, a
′) = Kdirac(a, a

′) +Kuniform(a, a′) .

As explained in the previous section and in Evgeniou et al. (2005) this is the simplest

way to train different but related models. The SVM learns one model for each allele,

using known epitopes and non-epitopes for the allele, but using also known epitopes

and non-epitope for all other alleles with a smaller contribution. The training peptides

are shared uniformly across different alleles.
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• The supertype kernel is

Ksupertype(a, a
′) = Kmultitask + δs(a, a

′) ,

where δs(a, a′) is 1 if a and a′ are in the same supertype, 0 otherwise. As explained

in the previous section this scheme trains a specific models for each allele using

training peptides from different alleles, but here the training peptides are more shared

across alleles withing a supertype than across alleles in different supertypes. This is

used by Heckerman et al. (2007), without the kernel formulation, to train a logistic

regression model.

Heckerman et al. (2007) show that the supertype kernel generally improves the performance

of logistic regression models compared to the uniform or Dirac kernel. Intuitively it seems

to be an interesting way to include prior knowledge about alleles. However, one should

be careful since the definition of supertypes is based on the comparison of epitopes of

different alleles, which suggests that the supertype information might be based on some

information used to assess the performance of the method in the benchmark experiment. In

order to overcome this issue, and illustrate the possibilities offered by our formulation, we

also tested a kernel between alleles which tries to quantify the similarity of alleles without

using known epitope information. For that purpose we reasoned that alleles with similar

residues at the positions involved in the peptide binding were more likely to have similar

epitopes, and decided to make a kernel between alleles based on this information. For

each locus we gathered from Doytchinova et al. (2004) the list of positions involved in the

binding site of the peptide (Table 2.1). Taking the union of these sets of positions we then

represented each allele by the list of residues at these positions, and used a polynomial

kernel of degree 7 to compare two lists of residues associated to two alleles, i.e,

Kbsite7(a, a′) =

(∑
i∈bsite

δ(a[i]a′[i]) + 1

)7

,

where bsite is the set of residues implied in the binding site for one of the three allele groups

HLA-A, B, C, a[i] is the i-th residue in a and δ(a[i]a′[i]) is 1 if a[i] = a′[i], 0 otherwise.
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2.4 Kernels for compound prediction

2.4.1 Kernels for small molecules

The problem of explicitly representing and storing small molecules as finite-dimensional

vectors has a long history in chemoinformatics, and a multitude of molecular descriptors

have been proposed (Todeschini and Consonni, 2002). These descriptors include in par-

ticular physicochemical properties of the molecules, such as its solubility or logP, descrip-

tors derived from the 2D structure of the molecule, such as fragment counts or structural

fingerprints, or descriptors extracted from the 3D structure (Gasteiger and Engel, 2003).

Each classical fingerprint vector and vector representation of molecules define an explicit

“chemical space” in which each molecule is represented by a finite-dimensional vector,

and these vector representations can obviously be used as such to define kernels between

molecules (Azencott et al., 2007). Alternatively, some authors have recently proposed some

kernels that generalize some of these sets of descriptors and correspond to inner products

between large- or even infinite-dimensional vectors of descriptors. These descriptors en-

code, for example, the counts of an infinite number of walks on the graph describing the 2D

structure of the molecules (Kashima et al., 2004; Gärtner et al., 2003; Mahé et al., 2005),

or various features extracted from the 3D structures (Mahé et al., 2006; Azencott et al.,

2007). For a more detailed review of the kernels for small molecule, we refer the reader to

section 1.3.3.

In this study we select two existing kernels, encoding respectively 2D and 3D structural

information of the small molecules, and propose a new 3D kernel:

• The 2D Tanimoto kernel. Our first set of descriptors is meant to characterize the 2D

structure of the molecules. For a small molecule m, we define the vector Φmol(m)

as the binary vector whose bits indicate the presence or absence of all linear graph

of length u or less as subgraphs of the 2D structure of l. We chose u = 8 in our

experiment, i.e., characterize the molecules by the occurrences of linear subgraphs

of length 8 or less, a value previously observed to give good results in several virtual

screening tasks (Mahé et al., 2005). Moreover, instead of directly taking the inner
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product between vectors as in (2.3), we use the Tanimoto kernel:

Kligand(l, l
′) =

Φlig(l)
>Φlig(c

′)

Φlig(l)>Φlig(l) + Φlig(l′)>Φlig(l′)− Φlig(l)>Φlig(l′)
, (2.6)

which was proven to be a valid inner product by Ralaivola et al. (2005), giving very

competitive results on a variety of QSAR or toxicity prediction experiments.

• 3D pharmacophore kernel While 2D structures are known to be very competitive in

ligand-based virtual screening (Azencott et al., 2007), we reasoned that some spe-

cific 3D conformations of a few atoms or functional groups may be responsible for

the interaction with the target. Thus, we decided to test descriptors representing the

presence of potential 3-point pharmacophores. For this, we used the 3D pharma-

cophore kernel proposed by Mahé et al. (2006), that generalizes 3D pharmacophore

fingerprint descriptors. This approach implies the choice of a 3D conformer for each

molecule. In absence of sufficient data available for bound ligands in GPCR struc-

tures, we chose to build a 3D version of the ligand base in which molecules are

represented in an estimated minimum energy conformation. For each of the 2446

retained ligands, 25 conformers were generated with the Omega program (OpenEye

Scientific Software) using standard parameters, except for a 1 RMSD clustering of

the conformers, instead of the 0.8 default value. A 3D ligand base was generated

by keeping the conformer of lowest energy for each ligand. Partial charges were

calculated for all atoms using the molcharge program (OpenEye Scientific Software)

with standard parameters. This ligand base was then used to calculate a 3D pharma-

cophore kernel for molecules (Mahé et al., 2006).

We used the freely and publicly available ChemCPP1 software to compute the 2D and

3D pharmacophore kernel.

2.4.2 Kernels for protein targets

SVM and kernel methods are also widely used in bioinformatics (Schölkopf et al., 2004),

and a variety of approaches have been proposed to design kernels between proteins, ranging
1Available at http://chemcpp.sourceforge.net.

http://chemcpp.sourceforge.net
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from kernels based on the amino-acid sequence of a protein (Jaakkola et al., 2000; Leslie

et al., 2002; Tsuda et al., 2002b; Leslie et al., 2004; Vert et al., 2004; Kuang et al., 2005;

Cuturi and Vert, 2005) to kernels based on the 3D structures of proteins (Dobson and Doig,

2005; Borgwardt et al., 2005; Qiu et al., 2007) or the pattern of occurrences of proteins in

multiple sequenced genomes (Vert, 2002). A more detailed review of existing kernels for

proteins is proposed in section 1.3.2.

These kernels have been used in conjunction with SVM or other kernel methods for

various tasks related to structural or functional classification of proteins.

While any of these kernels can theoretically be used as a target kernel in (2.5), we

investigate in this chapter a restricted list of specific kernels described below, aimed at

illustrating the flexibility of our framework and testing various hypothesis.

• The Dirac kernel between two targets t, t′ is:

KDirac(t, t
′) =

1 if t = t′ ,

0 otherwise.
(2.7)

This basic kernel simply represents different targets as orthonormal vectors. From

(2.5) we see that orthogonality between two proteins t and t′ implies orthogonality

between all pairs (c, t) and (c′, t′) for any two small molecules c and c′. This means

that a linear classifier for pairs (c, t) with this kernel decomposes as a set of inde-

pendent linear classifiers for interactions between molecules and each target protein,

which are trained without sharing any information of known ligands between differ-

ent targets. In other words, using Dirac kernel for proteins amounts to performing

classical learning independently for each target, which is our baseline approach.

• The multitask kernel between two targets t, t′ is defined as:

Kmultitask(t, t
′) = 1 +KDirac(t, t

′) .

This kernel, originally proposed in the context of multitask learning (Evgeniou et al.,

2005), removes the orthogonality of different proteins to allow sharing of informa-

tion. As explained in Evgeniou et al. (2005), plugging Kmultitask in (2.5) amounts
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to decomposing the linear function used to predict interactions as a sum of a linear

function common to all targets and of a linear function specific to each target:

f(c, t) = w>Φ(c, t) = w>generalΦlig(c) + w>t Φlig(c) . (2.8)

A consequence is that only data related to the the target t are used to estimate the

specific vector wt, while all data are used to estimate the common vector wgeneral.

In our framework this classifier is therefore the combination of a target-specific part

accounting for target-specific properties of the ligands and a global part accounting

for general properties of the ligands across the targets. The latter term allows to share

information during the learning process, while the former ensures that specificities

of the ligands for each target are not lost.

• While the multitask kernel provides a basic framework to share information across

proteins, it does not allow to weight differently how known interactions with a pro-

tein t should contribute to predict interactions with a target t′. Empirical observations

underlying chemogenomics, on the other hand, suggest that molecules binding a lig-

and t are only likely to bind ligand t′ similar to t in terms of structure or evolutionary

history. In terms of kernels this suggest to plug into (2.5) a kernel for proteins that

quantifies this notion of similarity between proteins, which can for example be de-

tected by comparing the sequences of proteins. In order to test this approach, we

therefore tested two commonly-used kernels between protein sequences: the mis-

match kernel (Leslie et al., 2004), which compares proteins in terms of common

short sequences of amino acids up to some mismatches, and the local alignment ker-

nel (Vert et al., 2004) which measures the similarity between proteins as an alignment

score between their primary sequences. In our experiments involving the mismatch

kernel, we use the classical choice of 3-mers with a maximum of 1 mismatch, and

for the datasets where some sequences were not available in the database, we added

KDirac(t, t
′) to the kernel (and normalized at 1 on the diagonal) in order to keep it

valid.

• Alternatively we propose a new kernel aimed at encoding the similarity of proteins
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with respect to the ligands they bind. Indeed, for most major classes of drug targets

such as the ones investigated in this study (GPCR, enzymes and ion channels), pro-

teins have been organized into hierarchies that typically describe the precise func-

tions of the proteins within each family. Enzymes are labeled with Enzyme Com-

mission numbers (EC numbers) defined in International Union of Biochemistry and

Molecular Biology (1992), that classify the chemical reaction they catalyze, forming

a 4-level hierarchy encoded into 4 numbers. For example EC 1 includes oxidore-

ductases, EC 1.2 includes oxidoreductases that act on the aldehyde or oxo group of

donors, EC 1.2.2 is a subclass of EC 1.2 with NAD+ or NADP+ as acceptor and

EC 1.2.2.1 is a subgroup of enzymes catalyzing the oxidation of formate to bicar-

bonate. These number define a natural and very informative hierarchy on enzymes:

one can expect that enzymes that are closer in the hierarchy will tend to have more

similar ligands. Similarly, GPCRs are grouped into 4 classes based on sequence ho-

mology and functional similarity: the rhodopsin family (class A), the secretin family

(class B), the metabotropic family (class C) and a last class regrouping more di-

verse receptors (class D). The KEGG database (Kanehisa et al., 2002) subdivides the

large rhodopsin family in three subgroups (amine receptors, peptide receptors and

other receptors) and adds a second level of classification based on the type of ligands

or known subdivisions. For example, the rhodopsin family with amine receptors is

subdivided into cholinergic receptors, adrenergic receptors, etc. This also defines a

natural hierarchy that we could use to compare GPCRs. Finally, KEGG also provides

a classification of ion channels. Classification of ion channels is a less simple task

since some of them can be classified according to different criteria like voltage de-

pendence or ligand-gating. The classification proposed by KEGG includes Cys-loop

superfamily, glutamate-gated cation channels, epithelial and related Na+ channels,

voltage-gated cation channels, related to voltage-gated cation channels, related to

inward rectifier K+ channels, chloride channels and related to ATPase-linked trans-

porters and each of these classes is further subdivided according for example to the

type of ligands (e.g., glutamate receptor) or to the type of ion passing through the

channel (e.g., Na+ channel). Here again, this hierarchy can be used to define a mean-

ingful similarity in terms of interaction behavior.
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For each of the three target families, we define the hierarchy kernel between two tar-

gets of the family as the number of common ancestors in the corresponding hierarchy

plus one, that is,

Khierarchy(t, t
′) = 〈Φh(t),Φh(t

′)〉,

where Φh(t) contains as many features as there are nodes in the hierarchy, each be-

ing set to 1 if the corresponding node is part of t’s hierarchy and 0 otherwise, plus

one feature constantly set to one that accounts for the “plus one” term of the kernel.

One might not expect the EC classification to be a good similarity measure in terms

of binding since it does not closely reflect evolutionary or mechanistic similarities

except for the case of identical subclasses with different serial numbers. However,

using the full hierarchy gave a better accuracy in our experiments. Even if the hierar-

chy itself is not fully relevant in this case, the improvement can be explained, on the

one hand, by the multitask effect, i.e., by the fact that we use the data from the target

and the data from other targets with a smaller weight, and on the other hand by the

fact that we give more weight to the enzymes with the same serial number than to the

other enzymes.

• The binding pocket kernel. Because the protein-ligand recognition process occurs

in 3D space in a pocket involving a limited number of residues, we tried to de-

scribe the GPCR space using a representation of this pocket. The difficulty resides

in the fact that although the GPCR sequences are known, the residues forming this

pocket and its precise geometry are a priori unknown. However, the two available

X-Ray structures, together with mutagenesis data showed that the binding pockets

are situated in a similar region for all GPCRs (Kratochwil et al., 2005). In order to

identify residues potentially involved in the binding pocket of GPCRs of unknown

structure studied in this work, we proceeded in several steps. (a) The two known

structures (PDB entries 1U19 and 2RH1) were superimposed using the STAMP al-

gorithm (Russell and Barton, 1992). In the superimposed structures, the retinal and

3-(isopropylamino)propan- 2-ol ligands are very close, which is in agreement with

global conservation of binding pockets, as shown on Figure 2.1. (b) The structural

alignment of bovine rhodopsin and of human β2-adrenergic receptor was used to
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generate a sequence alignment of these two proteins. (c) For both structures, in or-

der to identify residues potentially involved in stabilizing interactions with the ligand

(residues of the pocket), we selected residues that presented at least one atom situ-

ated at less than 6 from at least one atom of the ligand. Figure 2.1 shows that these

two pockets clearly overlap, as expected. (d) Residues of the two pockets (as de-

fined in (c)) were labeled in this structural sequence alignment. These residues were

found to form small sequence clusters that were in correspondence in this align-

ment. These clusters were situated mainly in the apical region of transmembrane

segments and included a few extracellular residues. (e) All studied GPCR sequences,

including bovine rhodopsin and of human β2-adrenergic receptor were aligned using

CLUSTALW (Chenna et al., 2003) with Blosum matrices (Henikoff and Henikoff,

1992). For each protein, residues in correspondence with a residue of the binding

pocket (as defined above) of either bovine rhodopsin or human β2-adrenergic recep-

tor were retained. This lead to a different number of residues per protein, because

of sequence variability. For example, in extracellular regions, some residues from

bovine rhodopsin or human β2-adrenergic receptor had a corresponding residue in

some sequences but not in others. In order to provide a homogeneous description

of all GPCRs, in the list of residues initially retained for each protein, only residues

situated at positions conserved in almost all GPCRs were kept. (f) Each protein was

then represented by a vector whose elements corresponded to a potential conserved

pocket. This description, although appearing as a linear vector filled with amino acid

residues, implicitly codes for a 3D information on the receptor pocket, as illustrated

on Figure 2.2. Note that another approach to identify binding pocket residues was

previously proposed in Surgand et al. (2006).

These vectors were then used to build a kernel that allows comparison of binding

pockets. The classical way to represent motifs of constant length as fixed length

vectors is to encode the letter at each position by a 20-dimensional binary vector

indicating which amino acid is present, resulting in a 180-dimensional vector repre-

sentations. In terms of kernel, the inner product between two binding pocket motifs

in this representation is simply the number of letters they have in common at the
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same positions:

Kpb(x, x
′) =

l∑
i=1

δ(x[i], x′[i]),

where l is the length of the binding pocket motifs (31 in our case), x[i] is the i-th

residue in x and δ(x[i], x′[i]) is 1 if x[i] = x′[i], 0 otherwise. This is the baseline

pocket binding kernel. Alternatively, using a polynomial kernel of degree p over the

baseline kernel is equivalent, in terms of feature space, to encoding p-order interac-

tions between amino acids at different positions. In order to assess the relevance of

such non-linear extensions we tested this polynomial pocket binding kernel,

Kppb(x, x
′) = (Kpb(x, x

′) + 1)
p
.

We only used a degree p = 2, although a more careful choice of this parameter could

further improve the performances.

• The binding pocket hierarchy kernel. Because of the link between binding pockets

and ligand recognition, we also defined a new hierarchy based on the sequence align-

ment of the binding pocket amino acid vectors without gaps. To do this, we used a

PAM matrix with high values of gap insertion and extension to compare each cou-

ple of GPCR vectors. The obtained scores were used in UPGMA (Unweighted Pair

Group Method with Arithmetic mean) to determine a binding pocket similarity based

hierarchy. We obtained a tree comparable to phylogenetic trees, and that happens to

be share many substructures with the GLIDA hierarchy.

2.5 Experiments

2.5.1 Epitope prediction

Data

In order to evaluate both the performance of our method and the impact of using various

kernels for the peptides or the alleles, we test our method on three different benchmark



2.5. EXPERIMENTS 87

Figure 2.1: Representation of the binding pocket of β2-adrenergic receptor (in red) and
bovine Rhodopsin (in black) viewed from the extracellular surface. On the center of the
pocket, 3-(isopropylamino)propan-2-ol and cis-retinal have been represented to show the
size and the position of the pocket around each ligand. Figure drawn with VMD (Humphrey
et al., 1996).

datasets that have been compiled recently to compare the performance of epitope prediction

algorithms.

We first use two datasets compiled by Heckerman et al. (2007), where it is already

shown that leveraging improves prediction accuracy with respect to the best published

results.The first dataset, called SYFPEITHY+LANL, combines experimentally confirmed

positive epitopes from the SYFPEITHY database (see Rammensee et al., 1999, available

at http://www.syfpeithy.de) and from the Los Alamos HIV database (http:

//www.hiv.lanl.gov) and negative example randomly drawn from the HLA and

amino acid distribution in the positive examples, for a total of 3152 data points. For more

details, see Heckerman et al. (2007) where this dataset is used to compare the leveraged

http://www.syfpeithy.de
http://www.hiv.lanl.gov
http://www.hiv.lanl.gov
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Figure 2.2: 3-(isopropylamino)propan-2-ol and the protein environment of β2-adrenergic
receptor as viewed from the extracellular surface. Amino acid side chains are represented
for 6 of the 31 residues (in cyan, blue and red) of the binding pocket motif. Transmem-
branes helix and 3-(isopropylamino)propan-2-ol are colored in black and red respectively.
Figure drawn with VMD (Humphrey et al., 1996).

logistic regression with DistBoost. Since this dataset is quite small and was already used

as a benchmark, we use it as a first performance evaluation, and to compare our kernels.

The second dataset of Heckerman et al. (2007) contains 160, 085 peptides including

those from SYSFPEITHY+LANL and others from the MHCBN data repository (see Bhasin

et al., 2003, available at http://www.imtech.res.in/raghava/mhcbn/index.

html). This corresponds to 1, 585 experimentally validated epitopes, and 158, 500 ran-

domly generated non-binders (100 for each positive). We only kept 50 negative for each

positive in the interest of time and assuming this would not deteriorate too much the per-

formance of our algorithm. In the worst case, it is only a handicap for our methods.

http://www.imtech.res.in/raghava/mhcbn/index.html
http://www.imtech.res.in/raghava/mhcbn/index.html
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Finally, we assess the performance of our method on the MHC-peptide binding bench-

mark recently proposed by Peters et al. (2006) who gathered quantitative peptide-binding

affinity measurements for various species, MHC class I alleles and peptide lengths, which

makes it an excellent tool to compare MHC-peptide binding learning methods. Since our

method was first designed for binary classification of HLA epitopes, we focused on the

9-mer peptides for the 35 human alleles and thresholded at IC50 = 500. Nevertheless,

the application of our method to other species or peptide lengths would be straightforward,

and generalization to quantitative prediction should not be too problematic either. The

benchmark contained 29336 9-mer.

The first dataset is 5-folded, the second 10-folded, so that the test be only performed

on HIV (LANL) data. The third dataset is 5-folded. We used the same folds as Heck-

erman et al. (2007), available at ftp://ftp.research.microsoft.com/users/

heckerma/recomb06 for the first two datasets and the same folds as Peters et al. (2006)

available at http://mhcbindingpredictions.immuneepitope.org/ for the

third one.

Molecule-based allele kernels require the amino-acid sequences corresponding to each

allele. These sequences are available in various databases, including http://www.

anthonynolan.org.uk/ and Robinson et al. (2000). We used the peptide-sequence

alignment for HLA-A, HLA-B and HLA-C loci. Each sequence was restricted to residues

at positions involved in the binding site of one of the three loci, see Table 2.1. Preliminary

experiments showed that using this restriction instead of the whole sequences didn’t change

the performance significantly, but it speeds up the calculation of the kernel. We were not

able to find the sequence of a few molecules of the two datasets of Heckerman et al. (2007),

so in the experiments implying these datasets and a molecule-based allele kernel, we used

Kbsite7(a, a′)+Kmultitask(a, a
′) instead of simply usingKbsite7(a, a′) , with a sentinel value

ofKbsite7(a, a′) = 0 in these cases. This is the sum of two kernels, so still a positive definite

kernel and actually exactly the same thing as Ksupertype with Kbsite7 instead of δs.

ftp://ftp.research.microsoft.com/users/heckerma/recomb06
ftp://ftp.research.microsoft.com/users/heckerma/recomb06
http://mhcbindingpredictions.immuneepitope.org/
http://www.anthonynolan.org.uk/
http://www.anthonynolan.org.uk/
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Locus Positions
HLA-A 5, 7, 9, 24, 25, 34, 45, 59, 63, 66, 67, 70, 74, 77, 80, 81, 84, 97, 99, 113,

114, 116, 123, 133, 143, 146, 147, 152, 155, 156, 159, 160, 163, 167,
171

HLA-B 5, 7, 8, 9, 24, 45, 59, 62, 63, 65, 66, 67, 70, 73, 74, 76, 77, 80, 81, 84, 95,
97, 99, 114, 116, 123, 143, 146, 147, 152, 155, 156, 159, 160, 163, 167,
171

HLA-C 5, 7, 9, 22, 59, 62, 64, 66, 67, 69, 70, 73, 74, 77, 80, 81, 84, 95, 97, 99,
116, 123, 124, 143, 146, 147, 156, 159, 163, 164, 167, 171

Table 2.1: Residue positions involved in the binding site for the three loci, according
to Doytchinova et al. (2004)

Results

We first use Klinseq and Kseq5 for the peptides and Kuniform (one SVM for all the al-

leles), KDirac (one SVM for each allele), Kmultitask, Ksupertype and Kbsite7 for the alle-

les on the small SYFPEITHI+LANL dataset. Using combinations of molecule-based and

non-molecule-based kernels for Kall didn’t improve the prediction, generally the result

was as good as or slightly worse than the result obtained with the best of the two com-

bined kernels. Results are displayed on Table 2.2, and ROC curves for Klinseq × KDirac,

Klinseq ×Ksupertype, Kseq5 ×Ksupertype and Kseq5 ×Kbsite7 on Figure 2.3.

Table 2.2 demonstrates the benefits of carefully sharing information across alleles. The

Dirac allele kernel being the baseline kernel corresponding to independent training of SVM

on different alleles, we observe an improvement of at least 2% when information is shared

across alleles during training (with the multitask,supertype or bsite7 strategies). It should be

noted, however, that the uniform strategies which amount to training a single model for all

alleles perform considerably worse than the Dirac strategies, justifying the fact that it is still

better to build individual models than a single model for all alleles. Among the strategies

to share information across alleles, the supertype allele kernel seems to work slightly better

than the two other ones. However, one should keep in mind that there is a possible bias in

the performance of the supertype kernel, because some peptides in the test sets might have

contributed to the definition of the allele supertypes. Among the multitask kernel, which

considers all different alleles as equally similar, and the bsite7 kernel, which shares more
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information between alleles that have similar residues at key positions, we observe a slight

benefit for the bsite7 kernel, which justifies the idea that including biological knowledge in

our framework is simple and powerful. Finally, we observe that for all allele kernels, the

nonlinear seq5 peptide kernel outperforms the baseline linseq kernel, confirming that linear

models based on position-specific score matrices might be a too restrictive set of models to

predict accurately epitopes.

In terms of absolute value, all three allele kernels that share information across alleles

combined with the nonlinear seq5 peptide kernel (AUC = 0.943± 0.015) strongly outper-

form the leveraged logistic regression of Heckerman et al. (2007) (AUC = 0.906± 0.016)

and the boosted distance metric learning algorithm of Hertz and Yanover (2006) (AUC

= 0.819 ± 0.055). This corresponds to a decrease of roughly 40% of the area above the

ROC curve compared to the best method. As the boosted distance metric learning ap-

proach was shown to be superior to a variety of state-of-the-art other methods by Hertz

and Yanover (2006), this suggest that our approach can compete if not overcome the best

methods in terms of accuracy.

As we can clearly see in Table 2.2, two factors are involved in the improvement over

the leveraged logistic regression of Heckerman et al. (2007):

• The use of an SVM instead of a logistic regression, since this is the only difference

between the leveraged logistic regression and our SVM with a Klinseq × Ksupertype

kernel. This, however, may not be intrinsic to the algorithms, but caused by opti-

mization issues for the logistic regression in high dimension.

• The use of a non-linear kernel for the peptide, as we observe a clear improvement in

the case of SVM (this improvement might therefore also appear if the logistic regres-

sion was replaced by a kernel logistic regression model with the adequate kernel).

Figure 2.3 illustrates the various improvement underlined by this experiment: first from

the individual SVM (Klinseq ×KDirac), to the Klinseq ×Ksupertype SVM which is the SVM

equivalent of leveraged logistic regression, and finally to Kseq5 × Ksupertype and Kseq5 ×
Kbsite7 SVM that both give better performances thanKlinseq×Ksupertype SVM because they

use a nonlinear kernel to compare the peptides. It is also worth noting that the supertype



92 CHAPTER 2. PAIRWISE LEARNING FOR INTERACTION PREDICTION

Kall\Kpep linseq seq5
uniform 0.826± 0.010 0.883± 0.011

Dirac 0.891± 0.014 0.893± 0.024
multitask 0.910± 0.008 0.936± 0.008
supertype 0.923± 0.011 0.943± 0.015

bsite7 0.919± 0.011 0.943± 0.009

Table 2.2: AUC results for an SVM trained on the SYFPEITHI+LANL with various kernel
and estimated error on the 5 folds.

Figure 2.3: ROC curves on the pooled five folds of the SYFPEITHI+LANL benchmark.

and the bsite7 strategies give very similar results, which makes them two good strategies

to leverage efficiently across the alleles with different information.

These results are confirmed by the MHCBN+SYFPEITHI+LANL benchmark, for which

the results are displayed in Table 2.3. Again, the use of SVM with our product kernels

clearly improves the performance with respect to Heckerman et al. (2007) (from 0.906

to 0.938). Moreover, we again observe that learning a leveraged predictor using the data

from all the alleles improves the global performance very strongly, hence the important
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Method AUC
Leveraged LR 0.906
Klinseq ×Kstype 0.916± 0.008
Kseq5 ×Kdirac 0.867± 0.010
Kseq5 ×Kmultitask 0.934± 0.006
Kseq5 ×Kstype 0.939± 0.006
Kseq5 ×Kbsite7 0.938± 0.006

Table 2.3: AUC results for an SVM trained on the MHCBN+SYFPEITHI+LANL benchmark
with various kernel and estimated error on the 10 folds.

step between Dirac (0.867) and all the multitask-based methods, including the simplest

multitask kernel (0.934). It is worth reminding here that the multitask kernel is nothing

but the sum of the Dirac and uniform kernels, i.e., that it contains no additional biological

information: the improvement is caused by the mere fact of using roughly (with a weighting

of 0.5) the points of other alleles to learn the predictor of one allele. Figure 2.4 shows the

ROC curves for SVM with Kseq5 ×KDirac, Kseq5 ×Ksupertype and Kseq5 ×Kbsite7 kernels

on this benchmark. Again, we clearly see the strong improvement between leveraged and

non-leveraged strategies. The difference between the Kseq5 ×KDirac and the two others is

only caused by leveraging, since in the three case the same nonlinear strategy was used for

the peptide part. On the other hand, the figure illustrates once again that our two high-level

(i.e., more sophisticated than multitask) strategies for leveraging across alleles give almost

the same result.

Finally, Table 2.4 presents the performance on the IEDB benchmark proposed in Peters

et al. (2006). The indicated performance corresponds, for each method, to the average on

the AUC for each of the 35 alleles. This gives an indication of the global performances of

each methods. The ANN field is the tool proposed in Peters et al. (2006) giving the best

results on the 9-mer dataset, an artificial neural network proposed in Nielsen et al. (2003),

while the ADT field refers to the adaptive double threading approach recently proposed

in Jojic et al. (2006) and tested on the same benchmark. These tools were compared to and

significantly outperformed other tools in the comprehensive study of Peters et al. (2006),

specifically Peters and Sette (2005) and Bui et al. (2005), that are both scoring-matrix-

based. Our approach gives equivalent results in terms of global performances as Nielsen
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Figure 2.4: ROC curves on the pooled ten folds of the MHCBN+SYFPEITHI+LANL bench-
mark.

et al. (2003), and therefore outperforms the other internal methods.

Table 2.5 presents the performances on the 10 alleles with less than 200 training points,

together with the performances of the best internal tool, Nielsen et al. (2003) ANN, and the

adaptive double threading model that gave good prediction performances on the alleles with

few training data. Except for one case, our SVM outperforms both models. This means of

course that our approach does not perform as well as Nielsen et al. (2003) on the alleles

with a large training set, but nothing prevents an immunologist from using one tool for some

alleles and another tool for other alleles. As we said in introduction, our original concern

was to improve binding prediction for alleles with few training points, and for which it is

hard to generalize. This was the main point of using a multitask learning approach. The

results on this last benchmark suggest that the leveraging approaches succeed in improving

prediction performances when few training points are available.

Discussion and concluding remarks

In these experiments, we used the general framework of pairwise learning introduced in this

chapter to share efficiently the binding information available for various alleles by simply
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Method AUC
SVM with Kseq5 ×KDirac 0.804
SVM with Kseq5 ×Ksupertype 0.877
SVM with Kseq5 ×Kbsite7 0.892
ADT 0.874
ANN 0.897

Table 2.4: AUC results for an SVM trained on the IEDB benchmark with various methods.

Allele Peptide number Kseq5 ×Kbsite7 ADT ANN
A_2301 104 0.887± 0.021 0.804 0.852
A_2402 197 0.826± 0.025 0.785 0.825
A_2902 160 0.948± 0.015 0.887 0.935
A_3002 92 0.826± 0.048 0.763 0.744
B_1801 118 0.866± 0.020 0.869 0.838
B_4002 118 0.796± 0.025 0.819 0.754
B_4402 119 0.782± 0.084 0.678 0.778
B_4403 119 0.796± 0.042 0.624 0.763
B_4501 114 0.889± 0.029 0.801 0.862
B_5701 59 0.938± 0.046 0.832 0.926

Table 2.5: Detail of the IEDB benchmark for the 10 alleles with less than 200 training points
(9-mer data).

defining a kernel for the peptides, and another one for the alleles. The result is a simple

model for MHC-peptide binding prediction that uses information from the whole dataset

to make specific prediction for any of the alleles. Our approach is simple, general and both

easy to adapt to a specific problem by using more adequate kernels, and to implement,

by running any SVM implementation with these kernels. Everything is performed in low

dimension and with no need for feature selection.

We presented performances on three benchmarks. On the first two benchmark, our ap-

proach performed considerably better than the state-of-the-art, which illustrates the good

general behavior in terms of prediction accuracy. Besides, these experiments clearly con-

firmed the interest of leveraging the information across the alleles. On the last benchmark,

the results were globally comparable to the best state-of-the-art tested in Peters et al. (2006),
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with a strong improvement on the alleles for which few training points were available, prob-

ably, as it was already observed, because of the fact that our model uses all the points from

all the alleles for each allele-specific prediction.

Another contribution is the use of allele sequences, which allows us to improve the

prediction accuracy and to do as well as what was done with the supertype information.

Supertype is a crucial information and a key concept in the development of epitope-based

vaccines, for example to find epitopes that bind several alleles instead of just one. How-

ever, one should be careful when using it to learn an automatic epitope predictor because

even if the idea behind a supertype definition is to represent a general ligand trend, the in-

tuition is always guided by the fact that some alleles have overlapping repertoires of known

binders, and it is not easy to figure out to which extent the known epitopes used to assess

the predictor performances were used to design the supertypes.

Because of these overfitting issues and the fact that supertypes are difficult to define,

the good performances of molecule-based allele kernel with respect to the supertype-based

allele kernels are good news. This potentially allows us to leverage efficiently across alleles

even when the supertype is unknown, which is often the case, and we don’t take the risk to

use overfitted information when learning on large epitope databases.

Although the kernels we used already gave good performances, there is still room for

improvement. A first way to improve the performances would be to use more adequate

kernels to compare the peptides and, probably more important, to compare the alleles. In

other words answering the question, what does it mean in the context of MHC-peptide

binding prediction for two alleles to be similar? Possible answers should probably involve

better kernels for the allele sequences, and structural information which could be crucial to

predict binding and, as we said in introduction, is already used in some models. Another

interesting possibility is, as it was suggested in Hertz and Yanover (2007), the use of true

non-binders, that could make the predictor more accurate than randomly generated peptides

since these experimentally assessed peptides are in general close to the known binders.

Finally, it could be useful to incorporate the quantitative IC50 information when available,

instead of simply thresholding as we did for the last benchmark.

This leads us to the possible generalizations we hope to work on, besides these im-

provements. Using the binding affinity information, it is obviously possible to apply our
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general framework to predict quantitative values, using regression models with the same

type of kernels. This framework could also be used for a lot of similar problems involving

binding, like MHC-type-II-peptide binding where sequences can have variable length and

the alignment of epitopes usually performed as pre-processing can be ambiguous. Salomon

and Flower (2006) already proposed a kernel for this case. Another interesting application

would be prediction of a virus susceptibility to a panel of drugs for various mutations of

the virus.

2.5.2 Compound prediction: KEGG benchmark

Data

We extracted compound interaction data from the KEGG BRITE Database (Kanehisa et al.,

2002, 2004) concerning enzyme, GPCR and ion channel, three target classes particularly

relevant for novel drug development.

For each family, the database provides a list of known compounds for each target. De-

pending on the target families, various categories of compounds are defined to indicate

the type of interaction between each target and each compound. These are for example

inhibitor, cofactor and effector for enzyme ligands, antagonist or (full/partial) agonist for

GPCR and pore blocker, (positive/negative) allosteric modulator, agonist or antagonist for

ion channels. The list is not exhaustive for the latter since numerous categories exist. Al-

though different types of interactions on a given target might correspond to different bind-

ing sites, it is theoretically possible for a non-linear classifier like SVM with non-linear

kernels to learn classes consisting of several disconnected sets. Therefore, for the sake of

clarity of our analysis, we do not differentiate between the categories of compounds.

For each target class, we retained only one protein by element of the hierarchy. In par-

ticular, we did not take into account the different orthologs of the targets, and the different

enzymes corresponding to the same EC number. We then eliminated all compounds for

which no molecular descriptor was available (principally peptide compounds), and all the

targets for which no compound was known. For each target, we generated as many nega-

tive ligand-target pairs as we had known ligands forming positive pairs by combining the

target with a ligand randomly chosen among the other targets’ ligands (excluding those that
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were known to interact with the given target). This protocol generates false negative data

since some ligands could actually interact with the target although they have not been ex-

perimentally tested, and our method could benefit from experimentally confirmed negative

pairs.

This resulted in 2436 data points for enzymes (1218 known enzyme-ligand pairs and

1218 generated negative points) representing interactions between 675 enzymes and 524

compounds, 798 training data points for GPCRs representing interactions between 100

receptors and 219 compounds and 2330 ion channel data points representing interactions

between 114 channels and 462 compounds. Besides, Figure 2.5 shows the distribution of

the number of known ligands per target for each dataset and illustrates the fact that for most

of them, few compounds are known.

For each target t in each family, we carried out two experiments. First, all data points

corresponding to other targets in the family were used for training only and the nt points

corresponding to t were k-folded with k = min(nt, 10). That is, for each fold, an SVM

classifier was trained on all points involving other targets of the family plus a fraction of

the points involving t, then the performances of the classifier were tested on the remaining

fraction of data points for t. This protocol is intended to assess the incidence of using lig-

ands from other targets on the accuracy of the learned classifier for a given target. Second,

for each target t we trained an SVM classifier using only interactions that did not involve

t and tested on the points that involved t. This is intended to simulate the behavior of our

framework when making predictions for orphan targets, i.e., for targets for which no ligand

is known.

For both experiments, we used the area under the ROC curve (AUC) as a performance

measure. The ROC curve was computed for each target using the test points pooled from

all the folds. For the first protocol, since training an SVM with only one training point

does not really make sense and can lead to “anti-learning” less than 0.5 performances, we

set all results r involving the Dirac target kernel on targets with only 1 known ligand to

max(r, 0.5). This is to avoid any artefactual penalization of the Dirac approach and make

sure we measure the actual improvement brought by sharing information across targets.
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Results

We first discuss the results obtained on the three datasets for the first experiment, assessing

how using training points from other targets of the family improves prediction accuracy

with respect to individual (Dirac-based) learning. Table 2.6 shows the mean AUC across

the family targets for an SVM with a product kernel using the Tanimoto kernel for ligands

and various kernels for proteins. For the enzymes and ion channels datasets, we observe

significant improvements when the multitask kernel is used in place of the Dirac kernel,

on the one hand, and when the hierarchy kernel replaces the multitask kernel, on the other

hand. For example, the Dirac kernel only performs at an average AUC of 77% for the ion

channel dataset, while the multitask kernel increases the AUC to 87.3% and the hierarchy

kernel brings it to 92.5%. For the enzymes, a global improvement of 30.9% is observed

between the Dirac and the hierarchy approaches. This clearly demonstrates the benefits of

sharing information among known ligands of different targets, on the one hand, and the

relevance of incorporating prior information into the kernels, on the other hand.

On the GPCR dataset though, the multitask kernel performs slightly worse than the

Dirac kernel, probably because some targets in different subclasses show very different

binding behavior which results in adding more noise than information when sharing naively

with this kernel. However a more careful handling of the similarities between GPCRs

through the hierarchy kernel again results in significant improvement over the Dirac kernel

(from 75% to 92.6%), again demonstrating the relevance of the approach.

Sequence-based target kernels do not achieve the same performance as the hierarchy

kernel, although they perform relatively well for the ion channel dataset, and give better

results than the multitask kernel for both GPCR and ion channel datasets. In the case of en-

zymes, it can be explained by the diversity of the proteins in the family and for the GPCR,

by the well known fact that the receptors do not share overall sequence homology (Gether,

2000). Figure 2.6 shows 3 of the tested target kernels for the ion channel dataset. The hi-

erarchy kernel adds some structure information with respect to the multitask kernel, which

explains the increase in AUC. The local alignment sequence-based kernels fail to precisely

re-build this structure but retain some substructures. In the cases of GPCR and enzymes,
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Ktar\ Target Enzymes GPCR Channels
Dirac 0.646± 0.009 0.750± 0.023 0.770± 0.020

multitask 0.931± 0.006 0.749± 0.022 0.873± 0.015
hierarchy 0.955± 0.005 0.926± 0.015 0.925± 0.012
mismatch 0.725± 0.009 0.805± 0.023 0.875± 0.015

local alignment 0.676± 0.009 0.824± 0.021 0.901± 0.013

Table 2.6: AUC for the first protocol on each dataset with various target kernels.

almost no structure is found by the sequence kernels, which, as alluded to above, was ex-

pected and suggests that more subtle comparison of the sequences would be required to

exploit the information they contain.

Figure 2.7 illustrates the influence of the number of training points for a target on the

improvement brought by using information from similar targets. As one could expect,

the improvement is very strong when few ligands are known and decreases when enough

training points become available. After a certain point (around 30 training points), using

similar targets can even impair the performances. This suggests that the method could be

globally improved by learning for each target independently how much information should

be shared, for example through kernel learning approaches (Lanckriet et al., 2004a).

The second experiment aims at pushing this remark to its limit by assessing how each

strategy is able to predict ligands for proteins with no known ligand. Table 2.7 shows the

results in that case. As expected, the classifiers using Dirac kernels show random behav-

ior in this case since using a Dirac kernel with no data for the target amounts to learning

with no training data at all. In particular, in the SVM implementation that we used, the

classifier learned with no data from the task gave constant scores to all the test points,

hence the 0.500 ± 0.000 AUC on the test data. On the other hand we note that it is still

possible to obtain reasonable results using adequate target kernels. In particular, the hi-

erarchy kernel loses only 7.2% of AUC for the ion channel dataset, 5.1% for the GPCR

dataset and 1.7% for the enzymes compared to the first experiment where known ligands

were used, suggesting that if a target with no known compound is placed in the hierarchy

through, e.g. in the case of GPCR homology detection with known members of the family

using specific GPCR alignment algorithms (Kratochwil et al., 2005) or fingerprint analy-

sis (Attwood et al., 2003), it is possible to predict some of its ligands almost as accurately
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as if some of them were already available.

In this second setting, our approach when using the hierarchy kernel on the targets

is closely related to annotation transfer. Indeed, the learned predictor in this case will

predict a molecule to be a ligand of a given target if the molecule is similar to the known

ligands of close targets in the hierarchy. In particular, it will predict that the ligands of the

target’s direct neighbors are ligands of the target (which is an intuitive and natural way to

choose new candidate binders). A major difference however is that an annotation transfer

approach will not predict as a ligand a molecule that is very similar to close target’s ligands

but that is not itself a close target’s ligand. In particular if the candidate molecule is not

present anywhere else in the ligand database, it will never be predicted to be a ligand.

Exemples can be found in each of the considered target classes. The 4-Aminopyridine is a

blocker of the ion channel KCJN5, a potassium inwardly-rectifying channel. Although this

molecule is a known blocker of other channels (in particular, many potassium channels),

it is not a known ligand of any other channel of KCJN5’s superfamily. However, the most

similar molecule in the database, in the sense of the Tanimoto kernel, is the Pinacidil,

which happens to be a known ligand of two direct neighbors of KCJN5. This allows our

method to predict 4-Aminopyridine as a ligand for this target. Similarly, N-Acetyl-D-

glucosamine 1,6-bisphosphate is the only known effector of phosphoacetylglucosamine

mutase, an enzyme of the isomerase family. This molecule is not a known ligand of any

other enzyme in the database, so a direct annotation transfer approach would never predict

it as a ligand. Our method, on the other hand, predicts it correctly, taking advantage of the

fact that very similar molecules like D-Ribose 1,5-bisphosphate or alpha-D-Glucose 1,6-

bisphosphate are known ligands of direct neighbors. The same observation can be made

for several GPCRs, including the prostaglandin F receptor whose 3 known ligands are not

ligands of any other GPCR but whose direct neighbors have similar ligands.

Discussion

We propose a general method to combine the chemical and the biological space in an al-

gorithmic way and predict interaction between any small molecule and any target, which

makes it a vary valuable tool for drug discovery. The method allows one to represent sys-

tematically a ligand-target pair, including information on the interaction between the ligand
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Ktar\ Target Enzymes GPCR Channels
Dirac 0.500± 0.000 0.500± 0.000 0.500± 0.000

multitask 0.902± 0.008 0.576± 0.026 0.704± 0.026
hierarchy 0.938± 0.006 0.875± 0.020 0.853± 0.019
mismatch 0.602± 0.008 0.703± 0.027 0.729± 0.024

local alignment 0.535± 0.005 0.751± 0.025 0.772± 0.023

Table 2.7: AUC for the second protocol on each dataset with various target kernels.

and the target. Prediction is then performed by any machine learning algorithm (an SVM

in our case) in the joint space, which makes targets with few known ligands benefit from

the data points of similar targets, and which allows one to make predictions for targets with

no known ligand. Our information sharing process therefore simply relies on a choice of

description for the ligands, another one for the targets and on classical machine learning

methods: everything is done by casting the problem in a joint space and no explicit pro-

cedure to select which part of the information is shared is needed. Since it subdivides the

representation problem into two subproblems, our approach makes use of previous work

on kernels for molecular graphs and kernels for biological targets. For the same reason, it

will automatically benefit from future improvements in both fields. This leaves plenty of

room to increase the performance.

Results on experimental ligand datasets show that using target kernels allowing to share

information across the targets considerably improve the prediction, especially in the case

of targets with few known ligands. The improvement is particularly strong when the target

kernel uses prior information on the structure between the targets, e.g., a hierarchy defined

on a target class. Although the usage of a kernel based on the hierarchy is restricted to

protein families where hierarchical classification schemes exist, it applies to the three main

classes of proteins targeted by drugs, and others like cytochromes and abc transporters.

Sequence kernels, on the other hand, did not give very good results in our experiments.

However, we believe using the target sequence information could be an interesting alterna-

tive or complement to the hierarchy kernel. For example, Jacob et al. (2008) used a kernel

based on the sequence of the GPCR that performed as well as the kernel based on the

GPCR hierarchy. Further improvement could come from the use of kernel for structures in

the cases where 3D structure information is available (e.g. for the enzymes, but not for the
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GPCR). Our method also shows good performances even when no ligand at all is known

for a given target, which is excellent news since classical ligand based approaches fail to

predict ligand for these targets in the one hand, and docking approaches are computation-

ally expensive and not feasible when the target 3D structure is unknown which is the case

of GPCR in the other hand.

In future work, it could be interesting to apply this framework to quantitative prediction

of binding affinity using regression methods in the joint space. It would also be important

to confirm predicted ligands experimentally or at least by docking approaches when the

target 3D structure is available.

2.5.3 Compound prediction: GLIDA benchmark

Data

For a more extensive study on GPCR, we used the GLIDA GPCR-ligand database Okuno

et al. (2006) which includes 22964 known ligands for 3738 GPCRs from human, rat and

mouse. The ligand database contains highly diverse molecules, from ions and very small

molecules up to peptides, and a significant number of duplicates. These redundancies were

eliminated. Elimination of duplicates present in the GLIDA database was important here

because it could have led to over-optimistic evaluation in the cross-validation procedure

described below. The remaining molecules were further filtered in order to satisfy two con-

straints. First, our method relies on the evaluation of similarities between molecules using

kernels, which makes sense only if the molecules are comparable in size. Second, since the

long term goal is to identify drug candidates targeting GPCRs, it was important to retain

drug-like compounds, i.e. molecules having the adequate physico-chemical characteristics

to be potential drugs candidates satisfying ADME criteria Caldwell et al. (1995). Therefore,

to only keep drug-like compounds, we filtered the GLIDA database using the filter pro-

gram (OpenEye Scientific Software) with standard parameters, which removes molecules

according to calculated properties such as molecular weight, hydrogen bond donor and

acceptor count, number of rotatable bonds, ring size and number etc... as discussed in Lip-

inski et al. (2001); Egan et al. (2000); Veber et al. (2002); Martin (2005). For example, only

molecules of molecular weights ranging from 150 Da to 450 Da were kept (the classically
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accepted range for drugs), since the aim was to evaluate if statistical learning was possible

on drug-like compounds. Another example was the elimination of molecules with more

than 10 rotatable bonds (although most of them being already filtered out on the molecular

weight criterion). Indeed, they correspond to very flexible molecules that are not suitable

for the use of 3D descriptors. Overall these filters retained 2446 molecules, available under

a 2D description file in the GLIDA data bank, and giving 4051 interactions with the human

GPCRs. The number of molecules retained is only a small fraction of the GLIDA database,

but it corresponds to all drug-like compounds of this database. For each positive interaction

given by this restricted set, we generated a negative interaction involving the same receptor

and one of the ligands that was in the database and that was not indicated as one of its lig-

ands. This may have generated a few false negative points in our benchmark, and it would

be interesting to use experimentally tested negative interactions. However, the mean sim-

ilarity between the different ligands in the database using the Tanimoto kernel, a classical

normalized similarity measure for ligands which is later used in our method, is quite low

(0.13). Besides, only 6.7% of the ligands have a mean similarity of more than 0.2 to the

other ligands. This suggests that even if false negative have to be expected, this method

to generate negative interaction is a reasonable approximation. We loaded the sequences

of all GPCRs that are able to bind any of these ligands, which resulted in 80 sequences,

all corresponding to human GPCRs. The retained GPCRs were significantly diverse in se-

quence, most of them sharing 15% to 50% pairwise sequence similarities. Furthermore,

they belong to various families, according to the GLIDA classification. They are found in

several subfamilies of class A (rhodopsin-like receptors), classes B (secretin family) and

C (metabotropic family). In the GLIDA database, GPCRs are classified in hierarchy (as

mentioned above) which was also loaded for use in the hierarchy kernel.

Results

We ran two different sets of experiments on this dataset in order to illustrate two impor-

tant points. In a first set of experiments, for each GPCR, we 5-folded the data avail-

able, i.e., the line of the interaction matrix corresponding to this GPCR. The classifier

was trained with four folds and the whole data from the other GPCRs, i.e., all other

lines of the interaction matrix. The prediction accuracy for the GPCR under study was
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Ktar\Klig 2D Tanimoto 3D pharmacophore
Dirac 86.2± 1.9 84.4± 2.0
multitask 88.8± 1.9 85.0± 2.3
hierarchy 93.1± 1.3 88.5± 2.0
binding pocket 90.3± 1.9 87.1± 2.3
poly binding pocket 92.1± 1.5 87.4± 2.2
binding pocket hierarchy 93.0± 1.4 90.0± 2.1

Table 2.8: Prediction accuracy for the first experiment with various ligand and target ker-
nels.

then tested on the remaining fold. The goal of these first experiments was to evaluate

if using data from other GPCRs improved the prediction accuracy for a given GPCR. In

a second set of experiments, for each GPCR we ignored ligand data available for this

particular GPCR, we trained a classifier on the whole data from the other GPCRs, and

tested on the data of the considered GPCR. The goal was to assess how efficient our

chemogenomics approach would be to predict the ligands of orphan GPCRs. In both ex-

periments, the C parameter of the SVM was selected by internal cross validation on the

training set among 2i, i ∈ {−8,−7, . . . , 5, 6}. The data and source code (under GPL

license) are publicly available at http://www.biomedcentral.com/content/

supplementary/1471-2105-9-363-s2.tgz.

For the first experiment, since learning an SVM with only one training point does not re-

ally make sense and can lead to "anti-learning" less than 0.5 performances, we set all results

r involving the Dirac GPCR kernel on GPCRs with only 1 known ligand to max(r, 0.5).

This is to avoid any artefactual penalization of the Dirac approach and make sure that we

measure the actual improvement brought by sharing information across GPCRs.

Table 2.8 shows the results of the first experiments with all the ligand and GPCR kernel

combinations. For all the ligand kernels, one observes an improvement between the individ-

ual approach (Dirac GPCR kernel, 86.2%) and the baseline multitask approach (multitask

GPCR kernel, 88.8%). The latter kernel is merely modeling the fact that each GPCR is

uniformly similar to all other GPCRs, and twice more similar to itself. It does not use any

prior information on the GPCRs, and yet, using it improves the global performance with

respect to individual learning. Using more informative GPCR kernels further improves the

prediction accuracy. In particular, the hierarchy kernel add more than 4.5% of precision

http://www.biomedcentral.com/content/supplementary/1471-2105-9-363-s2.tgz
http://www.biomedcentral.com/content/supplementary/1471-2105-9-363-s2.tgz
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with respect to naive multitask approach. All the other informative GPCR kernels also im-

prove the performance. The polynomial binding pocket kernel is almost as efficient as the

hierarchy kernel, which is an interesting result. Indeed, one could fear that using the hier-

archy kernel, for the construction of which some knowledge of the ligands may have been

used, could have introduced bias in the results. Such bias is certainly absent in the binding

pocket kernel. The fact that the same performance can be reached with kernels based on

the mere sequence of GPCRs’ pockets is therefore an important result. Figure 2.8 shows

three of the GPCR kernels. The baseline multitask is shown as a comparison. Interestingly,

many of the subgroups defined in the hierarchy can be found in the binding pocket kernel,

that is, they are retrieved from the simple information of the binding pocket sequence.

The 3D kernel for the ligands, on the other hand, did not perform as well as the 2D

kernel. This can be either explained by the fact the the pharmacophore kernel is not suited

to this problem, or by the fact that choosing the conformer of the ligand is not a trivial task.

This point is discussed below.

Figure 2.9 illustrates how the improvement brought by the chemogenomics approach

varies with the number of available training points. As one could have expected, the

strongest improvement is observed for the GPCRs with few (less than 20) training points

(i.e., less than 10 known ligands since for each known ligand an artificial non-ligand was

generated). When more training points become available, the improvement is less impor-

tant, and sharing the information across the GPCRs can even degrade the performances.

This is an important point, first because, as showed on Figure 2.10, many GPCRs have few

known ligands (in particular, 11 of them have only two training points), and second because

it shows that when enough training points are available, individual learning will probably

perform as well as or better than our chemogenomics approach.

Our second experiment intends to assess how our chemogenomics approach can per-

form when predicting ligands for orphan GPCRs, i.e., with no training data available for the

GPCR of interest. Table 2.9 shows that in this setting, individual learning performs random

prediction. Naive multitask approach provides modest improvement of the performance,

but informative kernels such as hierarchical and binding pocket kernels achieve 77.4% and

78.1% of precision respectively, that is, almost 30% better than the random approach one

would get when no data is available. Here again, the fact that the binding pocket kernel
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Ktar\Klig 2D Tanimoto 3D pharmacophore
Dirac 50.0± 0.0 50.0± 0.0
multitask 56.8± 2.5 58.2± 2.2
hierarchy 77.4± 2.4 76.2± 2.2
binding pocket 78.1± 2.3 76.6± 2.2
poly binding pocket 76.4± 2.4 74.9± 2.3
binding pocket hierarchy 75.5± 2.4 76.5± 2.2

Table 2.9: Prediction accuracy for the second experiment with various ligand and target
kernels.

Family \Ktar Dirac multitask hierarchy BP PBP
Rhodopsin peptide receptors (18) 73.7 80.0 85.8 83.8 83.7
Rhodopsin amine receptors (35) 91.1 92.1 94.0 93.9 94.1
Rhodospin other receptors (17) 83.6 88.0 95.7 95.9 95.9
Metabotropic glutamate family (9) 73.1 93.5 98.9 83.3 93.3
Secretin family (1) 50.0 100.0 100.0 50.0 100.0

Table 2.10: Mean prediction accuracy for each GPCR family for the first experiment with
the 2D Tanimoto ligand kernel and various target kernels. The numbers in bracket are
the numbers of receptors considered in the experiment for each family. BP is the binding
pocket kernel and PBP the poly binding pocket kernel.

Family \Ktar Dirac multitask hierarchy BP PBP
Rhodopsin peptide receptors (18) 50.0 50.6 66.7 74.0 65.3
Rhodopsin amine receptors (35) 50.0 56.0 73.7 74.0 73.1
Rhodospin other receptors (17) 50.0 50.2 86.5 87.6 85.5
Metabotropic glutamate family (9) 50.0 79.7 93.9 87.2 91.3
Secretin family (1) 50.0 100.0 100.0 50.0 100.0

Table 2.11: Mean prediction accuracy for each GPCR family for the second experiment
with the 2D Tanimoto ligand kernel and various target kernels. The numbers in bracket are
the numbers of receptors considered in the experiment for each family. BP is the binding
pocket kernel and PBP the poly binding pocket kernel.

that only uses the sequence of the receptor pocket performs as well as the hierarchy-based

kernel is encouraging. It suggests that given a receptor for which nothing is known except

its sequence, it is possible to make reasonable ligand predictions.
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Discussion

Our results demonstrate that chemogenomic approaches outperform individual approach,

in particular in cases where very limited or no ligand information is available, as shown in

Table 2.9 and Figure 2.9.

In the case of well studied GPCRs, more classical ligand-based methods (QSAR) may

be better suited to predict new strong binders from a large number of known ligands, as

shown in Figure 2.9. Consistent with this observation, Tables 2.10 and 2.11 show that in

the two types of experiments, the improvement is observed for all subfamilies of GPCRs

retained in this study. This is an interesting result since most of published virtual screening

studies on GPCRs were applied to class A GPCRs.

Since our chemogenomic approach is a ligand-based approach, it would probably be

interesting to use it in combination with docking. Indeed, although prior known ligands can

help tuning docking procedures to the receptor under study, it can in principle be used with

little or no ligand information. When more experimental 3D structures become available

for GPCRs in the future, this will help building reliable models for a wider range of GPCRs

that would be suitable for docking studies. Joint use of ligand-based chemogenomic and

docking would certainly improve predictions.

We chose to use a binary descriptor for the receptor-ligand interaction, while QSAR

or docking methods usually try to rank molecules according to their predicted affinity for

the receptor. However, affinity prediction is still a subject of research at the level of a

single receptor, at least when using methods whose calculation times are compatible with

the screening of large molecular databanks. In this context, we feel that in chemogenomic

approaches, where information is shared between different proteins, such quantitative pre-

diction is even more challenging. This led us to retain the binary binding and non-binding

descriptors, although it would formally have been straightforward to use a regression algo-

rithm instead of a classification one to make quantitative predictions.

It is not always easy to compare the performances of a new method to other existing

methods, and particularly in the case of GPCRs. Indeed, at least to our knowledge, there

is up to now no public complete data from previous screening studies available as a bench-

mark to compare different screening methods on the same data. This urged us to give public
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access to the ligand and receptor databases used in this study, to the detailed experimental

protocol of the study, and to the predictions made by our chemogenomic approach for each

GPCR, see Tables B.2 and B.3, summarized by GPCR family in Table 2.10 and Table 2.11.

This provides a benchmark which we hope will contribute to a fair evaluation of differ-

ent methods and trigger new developments. This benchmark could be used to compare

predictions made by other methods.

Our approach boils down to the application of well-known machine learning methods in

the constructed chemogenomics space. We used a systematic way to build such a space by

combining a given representation of the ligands with a given representation of the GPCRs

into a binding-prediction-oriented GPCR-ligand couple representation. This allows to use

any ligand or GPCR descriptor or kernel existing in the chemoinformatics or bioinformat-

ics literature, or new ones containing other prior information as we tried to propose in this

chapter. Our experiments showed that the choice of the descriptors was crucial for the pre-

diction, and more sophisticated features for either the ligands or the GPCRs could probably

further improve the performances. Among these features, improvements in the 3D ligand

descriptors could probably be obtained. Indeed, 3D pharmacophore kernels did not always

reach the performance of 2D kernels for the ligands. This is apparently in contradiction

with the idea that protein-ligand interaction is a process occurring in the 3D space, and

with previous work in our group Mahé et al. (2006). Different explanations can be pro-

posed. First, it is possible that the bioactive conformation was not correctly predicted for

all molecules used in this study. For the two ligands for which it was known, i.e., retinal and

3-(isopropylamino)propan- 2-ol from PDB entries 1U19 and 2RH1 respectively, we found

that the predicted conformation, using the same method as for all other molecules, was very

close to the experimental conformation, with RMSD values of less than 1. However, in ab-

sence of any other information on bound ligand conformations, it is not possible to rule

out the possibility that for other molecules, the prediction was not correct. Although more

complete conformational space exploration for all ligands was clearly out of the scope of

this work and would be a study by itself, work in this direction could improve the method.

In particular, since 2D ligand-based methods are not easily suitable to make predictions

outside of the molecular scaffolds for which information is known, ligand-based methods
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using 3D description are of particular interest, because they are expected to allow better pre-

dictions on molecules presenting diverse molecular patterns. Synergy between our method

and docking would provide a means for the choice of a conformer. The principle could

be to build homology models for the GPCRs, dock the molecular database in the modeled

binding pockets, and derive a 3D database using, for each molecule, the conformer associ-

ated to the best docking solution. However, conformer generation and selection is a major

drawback of using 3D descriptors, especially in the case of large ligands with many free

torsion angles.

Various evidence suggest that, within a common global architecture, a generic binding

pocket mainly involving transmembrane regions hosts agonists, antagonists and allosteric

modulators. In order to identify this pocket automatically, other studies report the use of

sequence alignment and the prediction of transmembrane helices. Kratochwil et al. (2005)

detected hypervariable positions in transmembrane helices for identification of residues

forming the binding pocket, although some positions were more conserved. Indeed, con-

served residues are probably important for structural stabilization of the pocket, while vari-

able positions are involved in ligand binding, in order to accommodate the wide spec-

trum of molecules that are GPCR substrates. Analyzing the positions of variable positions,

these authors proposed potential binding pockets for GPCRs, and found that the corre-

sponding residues were frequently in the GRAP mutant database for GPCRs Kristiansen

et al. (1996). Interestingly, they pointed that residues at hypervariable positions were found

within a distance of 6 from retinal in the rhodopsin X-Ray structure, which is also a clas-

sical distance cutoff above which it is admitted that protein-ligand interactions become

negligible. Therefore, this inspired the simple and automatic method used in the present

work for extracting GPCRs potential binding pockets, and our results are in good agree-

ment with this study. It is also important to note that GPCRs are known to exist in dynamic

equilibrium between inactive- and several active-state conformations Kobilka (2007), and

different ligands sometimes trigger distinct conformational changes and stabilize different

receptor conformations Yao et al. (2006). Taking into account receptor plasticity constitutes

in itself a research domain in docking. Its use is of particular interest for screening GPCR

homology models since residue positions are not exactly known. Therefore flexible dock-

ing procedures have been proposed and applied on GPCR proteins Cavasotto et al. (2003);
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Chen et al. (2007). Moreover, a modeling method has been proposed to get insights on

transmembrane bundle plasticity Deupi et al. (2007). In our case, receptor flexibility might

influence the definition of the binding pocket, since it initially relies on the identification of

residues in the two reference structures (1U19 and 2RH1) that present at least one atom sit-

uated at less than 6 of the ligand. Therefore, we made the implicit hypothesis that receptor

conformational changes upon ligand binding does not drastically affect this list of residues.

When more structures become available in this family of proteins, a better appreciation of

such conformational rearrangements will be possible, which could be taken into account

in the binding pocket definition and could help to improve the method. Kristiansen et al.

(1996) found that hierarchical tree representations of GPCR subfamilies calculated with

full-length GPCR sequences or with only binding pocket residues were similar, and that lo-

cally, the latter was in better agreement with functional data although their binding pocket

included only 35 residues. This result is also in good agreement with our finding that the

hierarchy kernel based on full length sequence (from GLIDA) and the kernel based on the

binding pocket provided very similar performances. As mentioned in the Results section, it

is however important to note that the kernels based on the binding pocket were built without

any ligand information that could lead to some bias and artificially better performance.
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Figure 2.5: Distribution of the number of training points for a target for the enzymes,
GPCR and ion channel datasets. Each bar indicates the proportion of targets in the family
for which a given (x-axis) number of data points is available.
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Figure 2.6: Target kernel Gram matrices (Ktar) for ion channels with multitask, hierarchy
and local alignment kernels.
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Figure 2.7: Relative improvement of the hierarchy kernel against the Dirac kernel as a func-
tion of the number of known ligands for enzymes, GPCR and ion channel datasets. Each
point indicates the mean performance ratio between individual and hierarchy approaches
across the targets of the family for which a given (x-axis) number of training points was
available.
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Figure 2.8: GPCR kernel Gram matrices (Ktar) for the GLIDA GPCR data with multitask,
hierarchy, binding pocket and binding pocket hierarchy kernels.
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Figure 2.9: Improvement (as a performance ratio) of the hierarchy GPCR kernel against the
Dirac GPCR kernel as a function of the number of training samples available. Restricted to
[2− 200] samples for the sake of readability.

Figure 2.10: Distribution of the number of training points for a GPCR. Restricted to [2 −
200] samples for the sake of readability.



Chapter 3
Clustered multi-task learning

The material presented in this section was published under a slightly different form in Jacob

et al. (2009a).

3.1 Introduction

Regularization has emerged as a dominant theme in machine learning and statistics, provid-

ing an intuitive and principled tool for learning from high-dimensional data. In particular,

regularization by squared Euclidean norms or squared Hilbert norms has been thoroughly

studied in various settings, leading to efficient practical algorithms based on linear algebra,

and to very good theoretical understanding (see, e.g., Wahba (1990); Girosi et al. (1995)).

In recent years, regularization by non Hilbert norms, such as `p norms with p 6= 2, has also

generated considerable interest for the inference of linear functions in supervised classifica-

tion or regression. Indeed, such norms can sometimes both make the problem statistically

and numerically better-behaved, and impose various prior knowledge on the problem. For

example, the `1-norm (the sum of absolute values) imposes some of the components to

be equal to zero and is widely used to estimate sparse functions Tibshirani (1996), while

various combinations of `p norms can be defined to impose various sparsity patterns.

While most recent work has focused on studying the properties of simple well-known

norms, we take the opposite approach in this paper. That is, assuming a given prior knowl-

edge, how can we design a norm that will enforce it?

117
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More precisely, we consider the problem of multi-task learning, which has recently

emerged as a very promising research direction for various applications Bakker and Hes-

kes (2003). In multi-task learning several related inference tasks are considered simultane-

ously, with the hope that by an appropriate sharing of information across tasks, each one

may benefit from the others. When linear functions are estimated, each task is associated

with a weight vector, and a common strategy to design multi-task learning algorithm is to

translate some prior hypothesis about how the tasks are related to each other into constraints

on the different weight vectors. For example, such constraints are typically that the weight

vectors of the different tasks belong (a) to a Euclidean ball centered at the origin Evgeniou

et al. (2005), which implies no sharing of information between tasks apart from the size of

the different vectors, i.e., the amount of regularization, (b) to a ball of unknown center Ev-

geniou et al. (2005), which enforces a similarity between the different weight vectors, or (c)

to an unknown low-dimensional subspace Abernethy et al. (2006); Argyriou et al. (2007).

In this paper, we consider a different prior hypothesis that we believe could be more

relevant in some applications: the hypothesis that the different tasks are in fact clustered

into different groups, and that the weight vectors of tasks within a group are similar to each

other. A key difference with Evgeniou et al. (2005), where a similar hypothesis is studied,

is that we don’t assume that the groups are known a priori, and in a sense our goal is both

to identify the clusters and to use them for multi-task learning. An important situation that

motivates this hypothesis is the case where most of the tasks are indeed related to each

other, but a few “outlier” tasks are very different, in which case it may be better to impose

similarity or low-dimensional constraints only to a subset of the tasks (thus forming a clus-

ter) rather than to all tasks. Another situation of interest is when one can expect a natural

organization of the tasks into clusters, such as when one wants to model the preferences of

customers and believes that there are a few general types of customers with similar prefer-

ences within each type, although one does not know beforehand which customers belong

to which types. Besides an improved performance if the hypothesis turns out to be correct,

we also expect this approach to be able to identify the cluster structure among the tasks as

a by-product of the inference step, e.g., to identify outliers or groups of customers, which

can be of interest for further understanding of the structure of the problem.

In order to translate this hypothesis into a working algorithm, we follow the general
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strategy mentioned above which is to design a norm or a penalty over the set of weights

which can be used as regularization in classical inference algorithms. We construct such

a penalty by first assuming that the partition of the tasks into clusters is known, similarly

to Evgeniou et al. (2005). We then attempt to optimize the objective function of the infer-

ence algorithm over the set of partitions, a strategy that has proved useful in other contexts

such as multiple kernel learning Lanckriet et al. (2004b). This optimization problem over

the set of partitions being computationally challenging, we propose a convex relaxation of

the problem which results in an efficient algorithm.

3.2 Multi-task learning with clustered tasks

We consider m related inference tasks that attempt to learn linear functions over X = Rd

from a training set of input/output pairs (xi, yi)i=1,...,n, where xi ∈ X and yi ∈ Y . In the

case of binary classification we usually take Y = {−1,+1}, while in the case of regression

we take Y = R. Each training example (xi, yi) is associated to a particular task t ∈ [1,m],

and we denote by I(t) ⊂ [1, n] the set of indices of training examples associated to the task

t. Our goal is to infer m linear functions ft(x) = w>t x, for t = 1, . . . ,m, associated to the

different tasks. We denote by W = (w1 . . . wm) the d ×m matrix whose columns are the

successive vectors we want to estimate.

We fix a loss function l : R×Y 7→ R that quantifies by l(f(x), y) the cost of predicting

f(x) for the input x when the correct output is y. Typical loss functions include the square

error in regression l(u, y) = 1
2
(u − y)2 or the hinge loss in binary classification l(u, y) =

max(0, 1 − uy) with y ∈ {−1, 1}. The empirical risk of a set of linear classifiers given in

the matrix W is then defined as the average loss over the training set:

`(W ) =
1

n

m∑
t=1

∑
i∈I(t)

l(w>t xi, yi) . (3.1)

In the sequel, we will often use them×1 vector 1 composed of ones, them×m projection

matrices U = 11>/m whose entries are all equal to 1/m, as well as the projection matrix

Π=I − U .
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In order to learn simultaneously the m tasks, we follow the now well-established ap-

proach which looks for a set of weight vectors W that minimizes the empirical risk regu-

larized by a penalty functional, i.e., we consider the problem:

min
W∈Rd×m

`(W ) + λΩ(W ) , (3.2)

where Ω(W ) can be designed from prior knowledge to constrain some sharing of infor-

mation between tasks. For example, Evgeniou et al. (2005) suggests to penalize both the

norms of the wi’s and their variance, i.e., to consider a function of the form:

Ωvariance(W ) = ‖w̄‖2 +
β

m

m∑
i=1

‖wi − w̄‖2 , (3.3)

where w̄ = (
∑n

i=1wi) /m is the mean weight vector. This penalty enforces a clustering of

the w′is towards their mean when β increases. Alternatively, Argyriou et al. (2007) propose

to penalize the trace norm of W :

Ωtrace(W ) =

min(d,m)∑
i=1

σi(W ) , (3.4)

where σ1(W ), . . . , σmin(d,m)(W ) are the successive singular values of W . This enforces

a low-rank solution in W , i.e., constrains the different wi’s to live in a low-dimensional

subspace.

Here we would like to define a penalty function Ω(W ) that encodes as prior knowledge

that tasks are clustered into r < m groups. To do so, let us first assume that we know

beforehand the clusters, i.e., we have a partition of the set of tasks into r groups. In that

case we can follow an approach proposed by Evgeniou et al. (2005) which for clarity we

rephrase with our notations and slightly generalize now. For a given cluster c ∈ [1, r], let us

denote I(c) ⊂ [1,m] the set of tasks in c, mc = |I(c)| the number of tasks in the cluster c,

and E the m× r binary matrix which describes the cluster assignment for the m tasks, i.e.,

Eij = 1 if task i is in cluster j, 0 otherwise. Let us further denote by w̄c = (
∑

i∈I(c) wi)/mc

the average weight vector for the tasks in c, and recall that w̄ = (
∑m

i=1wi) /m denotes the

average weight vector over all tasks. Finally it will be convenient to introduce the matrix
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M = E(E>E)−1E>. M can also be written I − L, where L is the normalized Laplacian

of the graph G whose nodes are the tasks connected by an edge if and only if they are in the

same cluster. Then we can define three semi-norms of interest on W that quantify different

orthogonal aspects:

• A global penalty, which measures on average how large the weight vectors are:

Ωmean(W ) = n‖w̄‖2 = trWUW> .

• A measure of between-cluster variance, which quantifies how close to each other the

different clusters are:

Ωbetween(W ) =
r∑
c=1

mc‖w̄c − w̄‖2 = trW (M − U)W>.

• A measure of within-cluster variance, which quantifies the compactness of the clus-

ters:

Ωwithin(W ) =
r∑
c=1

∑
i∈I(c)

‖wi − w̄c‖2

 = trW (I −M)W> .

We note that both Ωbetween(W ) and Ωwithin(W ) depend on the particular choice of clus-

ters E, or equivalently of M . We now propose to consider the following general penalty

function:

Ω(W ) = εMΩmean(W ) + εBΩbetween(W ) + εWΩwithin(W ) , (3.5)

where εM , εB and εW are non-negative parameters that can balance the importance of the

components of the penalty. Plugging this quadratic penalty into (3.2) leads to the general

problem:

min
W∈Rd×m

`(W ) + λtrWΣ(M)−1W> , (3.6)

where

Σ(M)−1 = εMU + εB(M − U) + εW (I −M) . (3.7)

Here we use the notation Σ(M) to insist on the fact that this quadratic penalty depends on

the cluster structure through the matrix M . Observing that the matrices U , M − U and
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I −M are orthogonal projections onto orthogonal supplementary subspaces, we easily get

from (3.7):

Σ(M) = ε−1
M U+ε−1

B (M−U)+ε−1
W (I−M) = ε−1

W I+(ε−1
M −ε

−1
B )U+(ε−1

B −ε
−1
W )M . (3.8)

By choosing particular values for εM , εB and εW we can recover several situations, In

particular:

• For εW = εB = εM = ε, we simply recover the Frobenius norm of W , which does

not put any constraint on the relationship between the different tasks:

Ω(W ) = εtrWW> = ε
m∑
i=1

‖wi‖2 .

• For εW = εB > εM , we recover the penalty of Evgeniou et al. (2005) without

clusters:

Ω(W ) = trW (εMU + εB(I − U))W> = εMn‖w̄‖2 + εB

m∑
i=1

‖wi − w̄‖2 .

In that case, a global similarity between tasks is enforced, in addition to the general

constraint on their mean. The structure in clusters plays no role since the sum of

the between- and within-cluster variance is independent of the particular choice of

clusters.

• For εW > εB = εM we recover the penalty of Evgeniou et al. (2005) with clusters:

Ω(W ) = trW (εMM + εW (I −M))W> = εM

r∑
c=1

mc‖w̄c‖2 +
εW
εM

∑
i∈I(c)

‖wi − w̄c‖2

 .

In order to enforce a cluster hypothesis on the tasks, we therefore see that a natural choice is

to take εW > εB > εM in (3.5). This would have the effect of penalizing more the within-

cluster variance than the between-cluster variance, hence promoting compact clusters. Of

course, a major limitation at this point is that we assumed the cluster structure known a
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priori (through the matrix E, or equivalently M ). In many cases of interest, we would like

instead to learn the cluster structure itself from the data. We propose to learn the cluster

structure in our framework by optimizing our objective function (3.6) both in W and M ,

i.e., to consider the problem:

min
W∈Rd×m,M∈Mr

`(W ) + λtrWΣ(M)−1W> , (3.9)

whereMr denotes the set of matricesM = E(E>E)−1E> defined by a clustering of them

tasks into r clusters and Σ(M) is defined in (3.8). Denoting by Sr = {Σ(M) : M ∈Mr}
the corresponding set of positive semidefinite matrices, we can equivalently rewrite the

problem as:

min
W∈Rd×m,Σ∈Sr

`(W ) + λtrWΣ−1W> . (3.10)

The objective function in (3.10) is jointly convex in W ∈ Rd×m and Σ ∈ Sm+ , the set of

m × m positive semidefinite matrices, however the (finite) set Sr is not convex, making

this problem intractable. We are now going to propose a convex relaxation of (3.10) by

optimizing over a convex set of positive semidefinite matrices that contains Sr.

3.3 Convex relaxation

In order to formulate a convex relaxation of (3.10), we observe that in the penalty term (3.5)

the cluster structure only contributes to the second and third terms Ωbetween(W ) and Ωwithin(W ),

and that these penalties only depend on the centered version of W . In terms of matrices,

only the last two terms of Σ(M)−1 in (3.7) depend on M , i.e., on the clustering, and these

terms can be re-written as:

εB(M − U) + εW (I −M) = Π(εBM + εW (I −M))Π. (3.11)

Indeed, it is easy to check thatM−U = MΠ = ΠMΠ, and that I−M = I−U−(M−U) =

Π − ΠMΠ = Π(I −M)Π. Intuitively, multiplying by Π on the right (resp. on the left)

centers the rows (resp. the columns) of a matrix, and both M −U and I −M are row- and

column-centered.
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To simplify notations, let us introduce M̃ = ΠMΠ. Plugging (3.11) in (3.7) and (3.9),

we get the penalty

trWΣ(M)−1W> = εM
(
trW>WU

)
+ (WΠ)(εBM̃ + εW (I − M̃))(WΠ)>, (3.12)

in which, again, only the second part needs to be optimized with respect to the clustering

M . Denoting Σ−1
c (M) = εBM̃ + εW (I − M̃), one can express Σc(M), using the fact that

M̃ is a projection:

Σc(M) =
(
ε−1
B − ε

−1
W

)
M̃ + ε−1

W I. (3.13)

Σc is characterized by M̃ = ΠMΠ, that is discrete by construction, hence the non-convexity

of Sr. We have the natural constraints M ≥ 0 (i.e., M̃ ≥ −U ), 0 � M � I (i.e.,

0 � M̃ � Π) and trM = r (i.e., trM̃ = r − 1). A possible convex relaxation of the

discrete set of matrices M̃ is therefore {M̃ : 0 � M̃ � I, trM̃ = r − 1}. This gives an

equivalent convex set Sc for Σc, namely:

Sc =
{

Σc ∈ Sm+ : αI � Σc � βI, trΣc = γ
}
, (3.14)

with α = ε−1
W , β = ε−1

B and γ = (m − r + 1)ε−1
W + (r − 1)ε−1

B . Incorporating the first

part of the penalty (3.12) into the empirical risk term by defining `c(W ) = λ`(W ) +

εM
(
trW>WU

)
, we are now ready to state our relaxation of (3.10):

min
W∈Rd×m,Σc∈Sc

`c(W ) + λtrWΠΣ−1
c (WΠ)> . (3.15)

3.3.1 Reinterpretation in terms of norms

We denote ‖W‖2
c = minΣc∈Sc trWΣ−1

c W T the cluster norm (CN). For any convex set Sc,
we obtain a norm on W (that we apply here to its centered version). By putting some dif-

ferent constraints on the set Sc, we obtain different norms on W , and in fact all previous

multi-task formulations may be cast in this way, i.e., by choosing a specific set of posi-

tive matrices Sc (e.g., trace constraint for the trace norm, and simply a singleton for the

Frobenius norm). Thus, designing norms for multi-task learning is equivalent to designing

a set of positive matrices. In this paper, we have investigated a specific set adapted for
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clustered-tasks, but other sets could be designed in other situations.

Note that we have selected a simple spectral convex set Sc in order to make the opti-

mization simpler in Section 3.3.3, but we could also add some additional constraints that

encode the point-wise positivity of the matrix M . Finally, when r = 1 (one cluster) and

r = m (one cluster per task), we get back the formulation of Evgeniou et al. (2005).

3.3.2 Reinterpretation as a convex relaxation of K-means

In this section we show that the semi-norm ‖WΠ‖2
c that we have designed earlier, can

be interpreted as a convex relaxation of K-means on the tasks Deodhar and Ghosh (2007).

Indeed, givenW ∈ Rd×m, K-means aims to decompose it in the formW = µE> where µ ∈
Rd×r are cluster centers and E represents a partition. Given E, µ is found by minimizing

minµ ‖W> − Eµ>‖2
F . Thus, a natural strategy outlined by Deodhar and Ghosh (2007), is

to alternate between optimizing µ, the partitionE and the weight vectorsW . We now show

that our convex norm is obtained when minimizing in closed form with respect to µ and

relaxing.

By translation invariance, this is equivalent to minimizing minµ ‖ΠW> −ΠEµ>‖2
F . If

we add a penalization on µ of the form λtrE>Eµµ>, then a short calculation shows that

the minimum with respect to µ (i.e., after optimization of the cluster centers) is equal to

trWΠ(ΠE(E>E)−1E>Π/λ+ I)−1ΠW> = trWΠ(ΠMΠ/λ+ I)−1ΠW>.

By comparing with Eq. (3.13), we see that our formulation is indeed a convex relaxation of

K-means.

3.3.3 Primal optimization

Let us now show in more details how (3.15) can be solved efficiently. Whereas a dual

formulation could be easily derived following Lanckriet et al. (2004b), a direct approach is

to rewrite (3.15) as

min
W∈Rd×m

(
`c(W ) + min

Σc∈Sc

trWΠΣ−1
c (WΠ)>

)
(3.16)
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which, if `c is differentiable, can be directly optimized by gradient-based methods on W

since ‖WΠ‖2
c = minΣc∈Sc trWΠΣ−1

c (WΠ)> is a quadratic semi-norm of WΠ. This reg-

ularization term trWΠΣ−1
c (WΠ)> can be computed efficiently using a semi-closed form.

Indeed, since Σc as defined in (3.14) is a spectral set (i.e., it does depend only on eigen-

values of covariance matrices), we obtain a function of the singular values of WΠ (or

equivalently the eigenvalues of WΠW>):

min
Σc∈Sc

trWΠΣ−1
c (WΠ)> = min

λ∈Rm, α≤λi≤β, λ1=γ, V ∈Om
trWΠV diag (λ)−1V >(WΠ)>,

where Om is the set of orthogonal matrices in Rm×m. The optimal V is the matrix of the

eigenvectors of WΠW>, and we obtain the value of the objective function at the optimum:

min
Σ∈S

trWΠΣ−1(WΠ)> = min
λ∈Rm, α≤λi≤β, λ1=γ

m∑
i=1

σ2
i

λi
,

where σ and λ are the vectors containing the singular values of WΠ and Σ respectively.

Now, we simply need to be able to compute this function of the singular values.

The only coupling in this formulation comes from the trace constraint. The Lagrangian

corresponding to this constraint is:

L(λ, ν) =
m∑
i=1

σ2
i

λi
+ ν

(
m∑
i=1

λi − γ

)
. (3.17)

For ν ≤ 0, this is a decreasing function of λi, so the minimum on λi ∈ [α, β] is reached for

λi = β. The dual function is then a linear non-decreasing function of ν (since α ≤ γ/m ≤
β from the definition of α, β, γ in (3.14)), which reaches it maximum value (on ν ≤ 0) at

ν = 0. Let us therefore now consider the dual for ν ≥ 0. (3.17) is then a convex function of

λi. Canceling its derivative with respect to λi gives that the minimum in λ ∈ R is reached

for λi = σi/
√
ν. Now this may not be in the constraint set (α, β), so if σi < α

√
ν then

the minimum in λi ∈ [α, β] of (3.17) is reached for λi = α, and if σi > β
√
ν it is reached

for λi = β. Otherwise, it is reached for λi = σi/
√
ν. Reporting this in (3.17), the dual
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problem is therefore

max
ν≥0

∑
i,α
√
ν≤σi≤β

√
ν

2σi
√
ν +

∑
i,σi<α

√
ν

(
σ2
i

α
+ να

)
+

∑
i,β
√
ν<σi

(
σ2
i

β
+ νβ

)
− νγ . (3.18)

Since a closed form for this expression is known for each fixed value of ν, one can

obtain ‖WΠ‖2
c (and the eigenvalues of Σ∗) by Algorithm 1. The cancellation condition in

Algorithm 1 Computing ‖A‖2
c

Require: A,α, β, γ.
Ensure: ‖A‖2

c , λ
∗.

Compute the singular values σi of A.
Order the σ2

i

α2 ,
σ2

i

β2 in a vector I (with an additional 0 at the beginning).
for all interval (a, b) of I do

if ∂L(λ∗,ν)
∂ν

is canceled on ν ∈ (a, b) then
Replace ν∗ in the dual function L(λ∗, ν) to get ‖A‖2

c , compute λ∗ on (a, b).
return ‖A‖2

c , λ
∗.

end if
end for

Algorithm 1 is that the value canceling the derivative belongs to (a, b), i.e.,

ν =

(∑
i,α
√
ν≤σi≤β

√
ν σi

γ − (αn− + βn+)

)2

∈ (a, b) ,

where n− and n+ are the number of σi < α
√
ν and σi > β

√
ν respectively. Denoting

‖A‖2
c = F (A,Σ∗(A)), ∇AF = ∂AF + ∂ΣF∂AΣ cannot be computed because of the non-

differentiable constraints on Σ for F . We followed an alternative direction, using only the

∂AF part.
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3.4 Experiments

3.4.1 Artificial data

We generated synthetic data consisting of two clusters of two tasks. The tasks are vectors

of Rd, d = 30. For each cluster, a center w̄c was generated in Rd−2, so that the two clusters

be orthogonal. More precisely, each w̄c had (d − 2)/2 random features randomly drawn

from N (0, σ2
r), σ

2
r = 900, and (d − 2)/2 zero features. Then, each tasks t was computed

as wt + w̄c(t), where c(t) was the cluster of t. wt had the same zero feature as its cluster

center, and the other features were drawn from N (0, σ2
c ), σ

2
c = 16. The last two features

were non-zero for all the tasks and drawn from N (0, σ2
c ). For each task, 2000 points were

generated and a normal noise of variance σ2
n = 150 was added.

In a first experiment, we compared our cluster norm ‖.‖2
c with the single-task learning

given by the Frobenius norm, and with the trace norm, that corresponds to the assumption

that the tasks live in a low-dimension space. The multi-task kernel approach being a special

case of CN, its performance will always be between the performance of the single task and

the performance of CN.

In a second setting, we compare CN to alternative methods that differ in the way they

learn Σ:

• The True metric approach, that simply plugs the actual clustering in E and optimizes

W using this fixed metric. This necessitates to know the true clustering a priori, and

can be thought of like a golden standard.

• The k-means approach, that alternates between optimizing the tasks in W given the

metric Σ and re-learning Σ by clustering the tasks wi Deodhar and Ghosh (2007).

The clustering is done by a k-means run 3 times. This is a non convex approach, and

different initialization of k-means may result in different local minima.

We also tried one run of CN followed by a run of True metric using the learned Σ repro-

jected in Sr by rounding, i.e., by performing k-means on the eigenvectors of the learned

Σ (Reprojected approach), and a run of k-means starting from the relaxed solution (CNinit

approach).
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Only the first method requires to know the true clustering a priori, all the other methods

can be run without any knowledge of the clustering structure of the tasks.

Each method was run with different numbers of training points. The training points

were equally separated between the two clusters and for each cluster, 5/6th of the points

were used for the first task and 1/6th for the second, in order to simulate a natural setting

were some tasks have fewer data. We used the 2000 points of each task to build 3 training

folds, and the remaining points were used for testing. We used the mean RMSE across the

tasks as a criterion, and a quadratic loss for `(W ).

The results of the first experiment are shown on Figure 3.1 (left). As expected, both

multi-task approaches perform better than the approach that learns each task independently.

CN penalization on the other hand always gives better testing error than the trace norm pe-

nalization, with a stronger advantage when very few training points are available. When

more training points become available, all the methods give more and more similar per-

formances. In particular, with large samples, it is not useful anymore to use a multi-task

approach.

Figure 3.1: RMSE versus number of training points for the tested methods.

Figure 3.1 (right) shows the results of the second experiment. Using the true metric

always gives the best results. For 28 training points, no method recovers the correct clus-

tering structure, as displayed on Figure 3.2, although CN performs slightly better than the
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Figure 3.2: Recovered Σ with CN (upper line) and k-means (lower line) for 28, 50 and 100
points.

k-means approach since the metric it learns is more diffuse. For 50 training points, CN

performs much better than the k-means approach, which completely fails to recover the

clustering structure as illustrated by the Σ learned for 28 and 50 training points on Fig-

ure 3.2. In the latter setting, CN partially recovers the clusters. When more training points

become available, the k-means approach perfectly recovers the clustering structure and

outperforms the relaxed approach. The reprojected approach, on the other hand, performs

always as well as the best of the two other methods. The CNinit approach results are not

displayed since the are the same as for the reprojected method.

3.4.2 MHC-I binding data

We also applied our method to the IEDB MHC-I peptide binding benchmark proposed in Pe-

ters et al. (2006). This database contains binding affinities of various peptides, i.e., short

amino-acid sequences, with different MHC-I molecules. This binding process is central in

the immune system, and predicting it is crucial, for example to design vaccines. The affini-

ties are thresholded to give a prediction problem. Each MHC-I molecule is considered as

a task, and the goal is to predict whether a peptide binds a molecule. We used an orthog-

onal coding of the amino acids to represent the peptides and balanced the data by keeping

only one negative example for each positive point, resulting in 15236 points involving 35
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Table 3.1: Prediction error for the 10 molecules with less than 200 training peptides in
IEDB.

Method Pooling Frobenius MT kernel Trace norm Cluster Norm
Test error 26.53%± 2.0 11.62%± 1.4 10.10%± 1.4 9.20%± 1.3 8.71%± 1.5

different molecules. We chose a logistic loss for `(W ).

Multi-task learning approaches have already proved useful for this problem, see for

example Heckerman et al. (2007); Jacob and Vert (2008a). Besides, it is well known in the

vaccine design community that some molecules can be grouped into empirically defined

supertypes known to have similar binding behaviors.

Jacob and Vert (2008a) showed in particular that the multi-task approaches were very

useful for molecules with few known binders. Following this observation, we consider the

mean error on the 10 molecules with less than 200 known ligands, and report the results

in Table 3.1. We did not select the parameters by internal cross validation, but chose them

among a small set of values in order to avoid overfitting. More accurate results could

arise from such a cross validation, in particular concerning the number of clusters (here we

limited the choice to 2 or 10 clusters).

The pooling approach simply considers one global prediction problem by pooling to-

gether the data available for all molecules. The results illustrate that it is better to consider

individual models than one unique pooled model.On the other hand, all the multitask ap-

proaches improve the accuracy, the cluster norm giving the best performance. The learned

Σ, however, did not recover the known supertypes, although it may contain some relevant

information on the binding behavior of the molecules.

3.5 Conclusion

We have presented a convex approach to clustered multi-task learning, based on the design

of a dedicated norm. Promising results were presented on synthetic examples and on the

IEDB dataset. We are currently investigating more refined convex relaxations and the natu-

ral extension to non-linear multi-task learning as well as the inclusion of specific features
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on the tasks, which has shown to improve performance in other settings Abernethy et al.

(2006).



Chapter 4
Structured priors for expression data

analysis

This work was presented under a slightly modified form in Jacob et al. (2009b).

4.1 Introduction

Estimation of sparse linear models by the minimization of an empirical error penalized by

a regularization term is a very popular and successful approach in statistics and machine

learning. Controlling the trade-off between data fitting and regularization, one can obtain

estimators with good statistical properties, even in very large dimension. Moreover, sparse

classifiers lend themselves particularly well to interpretation, which is often of primary

importance in many applications such as biology or social sciences. A popular example is

the penalization of a `2 criterion by the `1 norm of the estimator, known as Lasso Tibshirani

(1996) or basis pursuit Chen et al. (1998). Interestingly, the Lasso is able to recover the

exact support of a sparse model from data generated by this model if the covariates are not

too correlated Zhao and Yu (2006); Wainwright (2006).

While the `1 norm penalty leads to sparse models, it does not contain any prior infor-

mation about, e.g., possible groups of covariates that one may wish to see selected jointly.

Several authors have recently proposed new penalties to enforce the estimation of mod-

els with specific sparsity patterns. For example, when the covariates are partitioned into

133
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groups, the group lasso leads to the selection of groups of covariates Yuan and Lin (2006).

The group lasso penalty for a model, also called `1/`2 penalty, is the sum (i.e., `1 norm)

of the `2 norms of the restrictions of the model to the different groups of covariates. It

recovers the support of a model if the support is a union of groups and if covariates of dif-

ferent groups are not too correlated. It can be generalized to an infinite-dimensional setting

Bach (2008a). Other variants of the group lasso include joint selection of covariates for

multi-task learning Obozinski et al. (2009) and penalties to enforce hierarchical selection

of covariates, e.g., when one has a hierarchy over the covariates and wants to select co-

variates only if their ancestors in the hierarchy are also selected Zhao et al. (2009); Bach

(2009).

In this chapter, we are interested in a more general situation. We assume that either

(i) groups of covariates are given, potentially with overlap between the groups, and we

wish to estimate a model whose support is a union of groups, or (ii) that a graph with

covariates as vertices is given, and we wish to estimate a model whose support contains

covariates which tend to be connected to each others on the graph. Although quite general,

this framework is motivated in particular by applications in bioinformatics, when we have

to solve classification or regression problems with few samples in high dimension, such as

predicting the class of a tumour from gene expression measurements with microarrays, and

simultaneously select a few genes to establish a predictive signature Roth (2002); Ghosh

and Chinnaiyan (2005). Selecting a few genes that either belong to the same functional

groups, where the groups are given a priori and may overlap, or tend to be connected to

each other in a given biological network, could then lead to increased interpretability of the

signature and potential better performances Rapaport et al. (2007).

To reach this goal, we propose and study a new penalty which generalizes the `1/`2

norm to overlapping groups for the first case, and propose to cast the problem of selecting

connected covariates in a graph as the problem of selecting a union of overlapping groups,

with adequate definition of groups, for the second case. We mention various properties

of this penalty, and provide conditions for the consistency of support estimation in the

regression setting. Finally, we report promising results on both simulated and real data.
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4.2 Problem and notations

For any vector w ∈ Rp, ‖w‖ denotes the Euclidean norm of w, and supp (w) ⊂ [1, p]

denotes the support of w, i.e., the set of covariates i ∈ [1, p] such that wi 6= 0. A group

of covariates is a subset g ⊂ [1, p]. The set of all possible groups is therefore P([1, p]),

the power set of [1, p]. Throughout the chapter, G ⊂ P([1, p]) denotes a set of groups,

usually fixed in advance for each application. We say that two groups overlap if they have

at least one covariate in common. For any vector w ∈ Rp, and any group g ∈ G, we

denote wg ∈ Rp the vector whose entries are the same as w for the covariates in g, and

are 0 for other other covariates. However, we use a different convention for elements of

VG ⊂ Rp×G the set of |G|-tuples of vectors v = (vg)g∈G , where each vg is this time a

separate vector in Rp, which satisfies supp (vg) ⊂ g for each g ∈ G. For any differentiable

function f : Rp → R, we denote by ∇f(w) ∈ Rp the gradient of f at w ∈ Rp and by

∇gf(w) ∈ Rg the partial gradient of f with respect to to the covariates in g.

4.3 Group lasso with overlapping groups

When the groups in G do not overlap, the group lasso penalty Yuan and Lin (2006) is

defined as:

∀w ∈ Rp , ΩGgroup (w) =
∑
g∈G

‖wg‖ . (4.1)

When the groups in G form a partition of the set of covariates, then ΩGgroup (w) is a norm

whose balls have singularities when some wg are equal to zero. Minimizing a smooth

convex loss functional L over such a ball :

min
w
L(w) + λ

∑
g∈G

‖wg‖2 (4.2)

often leads to a solution that lies on a singularity, i.e., to a vector w such that wg = 0

for some of the g in G. The hyperparameter λ ≥ 0 in (4.2) is used to adjust the tradeoff

between minimizing the risk and finding a solution which is very sparse at the group level.

When some of the groups in G overlap, the penalty (4.1) is still a norm (if all covariates
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⇒
‖wg1‖2 = ‖wg3‖2 = 0

Figure 4.1: Effect of penalty (4.1) on the support. Removing any group containing a vari-
able removes the variable from the support.

are in at least one group) whose ball has singularities when some wg are equal to zero.

Indeed, for a vector w, if we denote by G0 ⊂ G the set of groups such that wg = 0, then

supp (w) ⊂
( ⋃
g∈G0

g
)c
.

This is illustrated on a simple example in Figure 4.1. We see that this penalty induces

the estimation of sparse vectors, whose support in typically the complement of a union of

groups. Although this may be relevant for some applications, with appropriately designed

families of groups — as considered by Jenatton et al. (2009) — , we are interested in this

chapter in penalties which induce the opposite effect: that the support of w be a union of

groups. For that purpose, we introduce one latent variable vg by group and propose instead

to solve the following problem :


min
w,v

L(w) + λ
∑
g∈G

‖vg‖2

w =
∑

g∈G vg

supp (vg) ⊆ g.

(4.3)

Figure 4.2 illustrates the idea of (4.3). Each group g ∈ G is assigned a latent variable
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Figure 4.2: Latent decomposition of w over (vg)v∈G . Applying the `1/`2 penalty to the
decomposition instead of applying it to the wg removes only the variables which do not
belong to any selected group.

vg ∈ Rp whose support is restricted to the group by the last constraint. Applying the `1/`2

penalty to these vg favors solutions which have several ‖vg‖ = 0. On the other hand, since

we enforce w to be the sum of these vg, a variable can be non-zero as long as it belongs to

at least one selected group. More precisely, if we denote by G1 ⊂ G the set of groups g

with vg 6= 0, then we immediately get w =
∑

g∈G1 vg, and therefore:

supp (w) ⊂
⋃
g∈G1

g .

In other words, this formulation leads to sparse solutions whose support is typically a union

of groups, matching the setting of applications that motivate this work.

Interestingly, solving this expanded problem can be thought of as a minimization of L

constrained by a particular penalty function. This can be seen directly by separating the

min over v from the rest in (4.3) :


min
w,v

L(w) + λ
∑
g∈G

‖vg‖2

w =
∑

g∈G vg

supp (vg) ⊆ g,

= min
w
L(w) + λΩGoverlap (w) , (4.4)
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with

ΩGoverlap (w) = min
v∈VG ,

P
g∈G vg=w

∑
g∈G

‖vg‖ . (4.5)

ΩGoverlap (w) is a penalty function of w ∈ Rp which is defined as the solution of a con-

strained minimization problem. When used instead of the `1/`2 penalty (4.1) to constrain

the solution of a learning problem, it leads to solution whose support is included in a union

of groups. When the groups do not overlap and form a partition of [1, p ], there exists a

unique decomposition of w ∈ Rp as w =
∑

g∈G vg with supp (vg) ⊂ g, namely, vg = wg

for all g ∈ G. In that case, both penalties (4.1) and (4.5) are the same. If some groups over-

lap, then we have shown that this penalty induces the selection ofw that can be decomposed

as w =
∑

g∈G vg where some vg are equal to 0.

Figure 4.3 shows the ball for both norms in R3 with groups G = {{1, 2}, {2, 3}}. The

pillow shaped ball of ΩGgroup (·) has four singularities corresponding to cases where either

only w1 or only w3 is non-zero. By contrast, ΩGoverlap (·) has two circular sets of singularities

corresponding to cases where (w1, w2) only or (w2, w3) only is non zero.

In the remaining of this chapter, we therefore investigate in more details ΩGoverlap (.), both

theoretically and empirically.

4.4 Some properties of ΩGoverlap (.)

We first analyze the decomposition of a vector w ∈ Rp as
∑

g∈G vg induced by (4.5). For

that purpose, let V(w) ⊂ VG be the set of |G|-tuples of vectors v = (vg)g∈G which reach

the minimum in (4.5), i.e., which satisfy

w =
∑
g∈G

vg and ΩGoverlap (w) =
∑
g∈G

‖vg‖ .

The optimization problem (4.5) defining ΩGoverlap (w) is a convex problem and its objec-

tive is coercive, so that the set of solutions V(w) is non-empty and convex. Moreover,

Lemma 1. w 7→ ΩGoverlap (w) is a norm.
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Figure 4.3: Bottom: balls for ΩGgroup (·) (left) and ΩGoverlap (·) (right) for the groups G =
{{1, 2}, {2, 3}} where w2 is represented as the vertical coordinate. Up: group-lasso (G =
{{1, 2}, {3}}), for comparison.
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Proof. Positive homogeneity and positive definiteness hold trivially. We show the trian-

gular inequality. Consider w,w′ ∈ Rp; let (vg)g∈G and (v′g)g∈G be respectively optimal

decompositions of w and w′ so that ΩGoverlap (w) =
∑

g ‖vg‖ and ΩGoverlap (w′) =
∑

g ‖v′g‖.
Since (vg + v′g)g∈G is a (a priori non-optimal) decomposition of w + w′, we clearly have :

ΩGoverlap (w + w′) ≤
∑
g∈G

‖vg + v′g‖ ≤
∑
g

(‖vg‖+ ‖v′g‖) = ΩGoverlap (w) + ΩGoverlap (w′) .

Using the conic dual of (4.5), we give another formulation of the norm ΩGoverlap (.) yeld-

ing some important properties.

Lemma 2. 1. It holds that:

ΩGoverlap (w) = sup
α∈Rp:∀g∈G,‖αg‖≤1

α>w . (4.6)

2. A vector α ∈ Rp is a solution of (4.6) if and only if there exists v = (vg)g∈G ∈ V(w)

such that:

∀g ∈ G , if vg 6= 0, αg =
vg
‖vg‖

else ‖αg‖ ≤ 1 (4.7)

3. Conversely, a G-tuple of vectors v = (vg)g∈G ∈ VG such that w =
∑

g vg is a solution

to (4.5) if and only if there exists a vector α ∈ Rp such that (4.7) holds.

Proof. Let us introduce slack variables t = (tg)g∈G ∈ RG and rewrite the optimization

problem (4.5) as follows:

min
t∈RG ,v∈VG

∑
g∈G

tg s.t.
∑
g∈G

vg = w and ∀g ∈ G, ‖vg‖ ≤ tg .

We can form a Lagrangian (Boyd and Vandenberghe, 2004) for this problem with the dual

variables α ∈ Rp for the constraint
∑

g∈G vg = w, and (β, γ) ∈ VG × RG with ‖βg‖ ≤ γg

for the conic constraints ‖vg‖ ≤ tg, and get:

L =
∑
g∈G

tg + α>
(
w −

∑
g∈G

vg

)
−
∑
g∈G

(
β>g vg + γgtg

)
.
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The minimum of L with respect to the primal variables t and v is non trivial only if γg = 1

and αg = −βg for any g ∈ G. Therefore, we get the dual function:

min
t,v

L =

α>w if γg = 1 and αg = −βg for all g ∈ G ,

−∞ otherwise.

By strong duality (since, e.g., Slater’s condition is fulfilled), the optimal value ΩGoverlap (w)

of the primal is equal to the maximum of the dual problem. Maximizing this dual function

over γg = 1, ‖βg‖ ≤ γg and αg = −βg is equivalent to maximizing α>w over the vectors

α ∈ Rp such that ‖αg‖ ≤ 1 for all g ∈ G, which proves (4.6). To prove the second point, we

note that the variables (t,v, α, β, γ) are primal/dual optimal for this convex optimization

problem if and only if the Karush-Kuhn-Tucker (KKT) conditions are satisfied, i.e., if and

only if, for all g ∈ G:

supp (vg) = g, ‖vg‖ ≤ tg and w =
∑

g∈G vg

supp (βg) = g, ‖βg‖ ≤ γg

αg = −βg and γg = 1

β>g vg + γgtg = 0

Eliminating β and γ with the stationarity conditions, all conditions are fulfilled if and only

if w =
∑

g∈G vg and for all g ∈ G, (i) either vg = 0 and ‖αg‖ ≤ 1, (ii) or vg 6= 0

and αg = vg/‖vg‖. If a pair (α,v) fulfills these conditions, then we obtain a primal/dual

solution by taking tg = ‖vg‖, βg = −αg and γg = 1. This proves points 2 and 3.

Denote by G1 the group-support of w, i.e., the set of groups belonging to the support of

at least one optimal decomposition of w: G1 = {g ∈ G | ∃v = (vg)g ∈ V(w), vg 6= 0} and

J1 the corresponding set of variables J1 = ∪g∈G1 g.

Lemma 3. Let α be an optimum in the formulation (4.6) of the ΩGoverlap (·) norm, then αJ1

is uniquely defined.

Proof. Consider any solution v = (vg)g∈G of (4.5). Let α be any optimal solution of (4.6).

Since (v, α) form a primal/dual pair, they must satisfy the KKT conditions. In particular,
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for all g such that vg 6= 0, αg is defined uniquely by αg = vg

‖vg‖ . Since this is true for all

solutions v ∈ V(w), αJ1 is uniquely defined.

Corollary 1. For any v,v′ ∈ V(w) and for any g ∈ G,

‖vg‖ ×
∥∥v′g∥∥ = 0 or ∃γg ≥ 0 s.t. v′g = γvg . (4.8)

Proof. If vg 6= 0 and v′g 6= 0, let α be solution of (4.6), by the previous lemma αg is unique

and αg = vg

‖vg‖ =
v′g
‖v′g‖

.

4.5 Using ΩGoverlap (.) as a penalty

We now consider a learning scenario where we use ΩGoverlap (w) as a regularization term to

the minimization of an objective function L(w), typically an empirical risk. We assume

that L(w) is convex and differentiable in w, and consider the optimization problem:

min
w∈Rp

L(w) + λΩGoverlap (w) , (4.9)

where λ > 0 is a regularization parameter. We first derive optimality conditions for any

solution of (4.9). For that purpose, let us denote AG(w) the set of vectors α ∈ Rp solution

of (4.6).

Lemma 4. A vector w ∈ Rp is a solution of (4.9) if and only if −∇L(w)/λ ∈ AG(w).

Proof. The proof follows from the same Lagrangian based derivation as for Lemma 2,

adding only the loss term.

Remark 1. By point 2 of Lemma 2, an equivalent formulation is the following: a vector

w ∈ Rp is a solution of (4.9) if and only if it can be decomposed as w =
∑

g∈G vg where,

for any g ∈ G, vg ∈ Rp, supp (vg) = g, and if vg = 0 then ‖∇gL(w)‖ ≤ λ, and ∇gL(w) =

−λvg/‖vg‖ otherwise.

4.6 Consistency

Before we present a consistency result on ΩGoverlap (.), we will need the following lemma.
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Lemma 5. Assume that for all w′ in a small neighborhood U of w, w′ admits a unique

decomposition (v′g)g∈G of minimal norm supported by the same set of groups G1 as w.

Writing ηg = ‖vg‖, there exists a neighborhood U0 of wJ1 in R|J1| and a neighborhood U ′0
of (αJ1 , ηG1) in R|J1|×|G1| such that there exists a unique continuous function

φ : wJ1 7→ (αJ1(w), ηG1(w))

from U0 to U ′0.

Proof. The dual problem (4.6) is equivalent to the saddle-point problem

min
α

max
η
L′(α, η, w) s.t. ηg ∈ R+,

with Lagrangian

L′(α, η, w) = −α>w +
∑
g∈G

ηg
2

(‖αg‖2 − 1)

and KKT conditions:

∀g ∈ G, ‖αg‖2 ≤ 1, (primal feas.)

∀g ∈ G, ηg ≥ 0, (dual feas.)

∀i ∈ [1, p],−wi +
(∑

g3i ηg

)
αi = 0, (stationarity)

∀g ∈ G, ηg(‖αg‖2 − 1) = 0, (comp.slack.)

By stationarity, (vg)g∈G defined by vg = ηgαg is a decomposition of w; it is optimal because

it satisfies property 3 of lemma 2; finally we have ηg = ‖vg‖ consistently with our definition

of ηg(w). For any w with the same set of supporting groups G1, we have ‖αg(w)‖ = 1 for

all g ∈ G1 and ηg = 0 for all g ∈ G\G1. For all wJ1 with group-support no smaller than

G1, the corresponding pair (αJ1(w), ηG1(w)) is therefore a solution of the set of non-linear

equations: ∀i ∈ J1,−wi +
(∑

g3i ηg

)
αi = 0

∀g ∈ G1, ‖αg‖2 − 1 = 0
(4.10)
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In other words consider the function

F : R|J1|×|J1|×|G1| → R|J1|×|G1|

(wJ1 , αJ1 , ηG1) 7→

(−wi +
[∑

g3i ηg

]
αi

)
i∈J1

(‖αg‖2 − 1)g∈G1

 ,

then (4.10) is equivalent to F (wJ1 , αJ1 , ηG1) = 0. We use the implicit function theorem for

non-differentiable function of Kumagai (1980). The theorem states that for a continuous

function

F : R|J1| × R|J1|×|G1| → R|J1|×|G1|,

such that F (w0, (α0, η0)) = 0, if there exist open neighborhoods U ⊂ R|J1| and U ′ ⊂
R|J1|×|G1| of w0 and (α0, η0) respectively, such that, for allw ∈ U , F (w, ·) : U ′ → R|J1|×|G1|

is locally one-to-one then there exist open neighborhoods U0 ⊂ R|J1| and U ′0 ⊂ R|J1|×|G1| of

w0 and (α0, η0), such that, for all w ∈ U0, the equation F (w, (α, η)) = 0 has a unique solu-

tion (α, η) = φ(w) ∈ U ′0, where φ is a continuous function from U0 into U ′0. By continuity

of the addition, the product and the Euclidean norm, the above defined F is continuous. For

each w fixed, F (w, ·) is bijective, because of the assumption of the existence of a unique

decomposition in a neighborhood of w. Applying the theorem of Kumagai (1980) then

yields the desired result.

We are now ready to prove the consistency of ΩGoverlap (.). Consider the linear regression

model Y = Xw̄ + ε , where X ∈ Rn×p is a design matrix, Y ∈ Rp is the response vector

and ε ∈ Rp is a vector of i.i.d. random variables with mean 0 and finite variance. We denote

the true regression function by w̄. We assume that

1. (H1) Σ := 1
n
X>X � 0

2. (H2) There exists a neighborhood of w̄ in which (4.5) has a unique solution.

If G1 is the set of group supporting the unique solution of (4.5), we denote G2
∆
= G\G1 and

J2
∆
= [1, p ]\J1. For convenience, for any group of covariates g we note Xg the n × | g |

design matrix restricted to the predictors in g, and for any two groups g, g′ we note Σgg′ =
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X>g Xg′ . We can then provide a condition under which minimizing the least-square error

penalized by ΩGoverlap (w) leads to an estimator with the correct support. Consider the two

conditions:

∀g ∈ G2, ‖ΣgJ1Σ
−1
J1J1

αJ1(w̄)‖ ≤ 1 (C1)

∀g ∈ G2, ‖ΣgJ1Σ
−1
J1J1

αJ1(w̄)‖ < 1 (C2)

Lemma 6. With assumptions (H1-2), for λn → 0 and λnn
1/2 → ∞, conditions (C1)

and (C2) are respectively necessary and sufficient for the solution of (4.9) to estimate

consistently the group-support of w̄.

Proof. We follow the line of proof of Bach (2008a) but consider a fixed design for sim-

plicity of notations. Let us first consider the subproblem of estimating a vector only on

the support of w̄ by using only the groups in J1 in the penalty, i.e., consider w1 ∈ RJ1

a solution of minwJ1
∈RJ1

1
2n
‖Y −XJ1wJ1‖

2 + λnΩG1overlap (wJ1) . By standard arguments,

we can prove that w1 converges in Euclidean norm to w̄ restricted to J1 as n tends to in-

finity Knight and Fu (2000). In the rest of the proof we show how to construct a vector

w ∈ Rp from w1 which under condition (C2) is with high probability a solution to (4.9).

By adding null components to w1, we obtain a vector w ∈ Rp whose support is also J1,

and u = w − w̄ therefore satisfies supp (u) ⊂ J1. A direct computation of the gradient of

the loss L(w) = ‖Y −Xw‖2 gives ∇L(w) = Σu −W , where W = 1
n
Xε. From this we

deduce that u = Σ−1
J1J1

(∇J1L(w) +WJ1), and since∇J1L(w) = −λnαJ1(w) we have :

∇J2L(w) = ΣJ2J1Σ
−1
J1J1

(WJ1 − λnαJ1(w))−WJ2 .

To show thatw is a feasible solution to (4.9) it is enough to show that ∀g ∈ G2, ‖∇gL(w)‖ ≤
λn. Moreover, since the noise has bounded variance,

ΣJ2J1Σ
−1
J1J1

WJ1 −WJ2 = X>J2

[
1

n
XJ1Σ

−1
J1J1

X>J1
− I
]
ε

is
√
n-consistent and

1

λn
‖∇gL(w)‖ ≤ ‖ΣgJ1Σ

−1
J1J1

αJ1(w)‖+Op(λ−1
n n−1/2).
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By Lemma 5, we have that αJ1 is a continuous function of w in a neighborhood of w̄ so

that wJ1

P→ w̄J1 implies αJ1(w)
P→ αJ1(w̄). Since we chose λn such that λ−1

n n−1/2 → 0,

we have
1

λn
‖∇gL(w)‖ ≤ ‖ΣgJ1Σ

−1
J1J1

αJ1(w̄)‖+ op(1).

Hence the result for the sufficient condition. Symmetrically, for the necessary condition we

have
1

λn
‖∇gL(w)‖ ≥ ‖ΣgJ1Σ

−1
J1J1

αJ1(w̄)‖ − op(1).

4.7 Graph lasso

We now consider the situation where we have a simple undirected graph (I, E), where the

set of vertices I = [1, k] is the set of covariates and E ⊂ I × I is a set of edges that

connect covariates. We suppose that we wish to estimate a sparse model such that selected

covariates tend to be connected to each other, i.e., form a limited number of connected

components on the graph. An obvious approach is to consider the prior ΩGoverlap (.) where G
is a set that generates by union the connected components. For example, we may consider

for G the set of edges, cliques, or small linear subgraphs. As an example, considering all

edges, i.e., G = E leads to :

Ωgraph(w) = min
v∈VE

∑
e∈E

‖ve‖ s.t.
∑
e∈E

ve = w, supp (ve) = e .

Alternatively, we will consider in the experiments the set of all linear subgraphs of

length k ≥ 1. Although we have no formal statement on how to chose k, it intuitively con-

trols the size of the groups of connected variables which are selected, and should therefore

be typically chosen to be slightly smaller than the size of the minimal connected component

expected in the support of the model.
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4.8 Implementation

We consider loss functions L which only depend on w through dot products with the data

points Xi, i.e. L(w) = L̃(Xw), which is the case of many loss functions of interest.

In this case, a simple way to implement empirical risk minimization using ΩGoverlap (.)

as the regularizer is to explicitly duplicate the variables in the design matrix. Using the

latent variable formulation of (4.4) and eliminating w by plugging the first constraint into

L̃(Xw), we can write :
min
w,v

L̃(Xw) + λ
∑
g

‖vg‖2

w =
∑

g vg

supp (vg) ⊆ g.

= min
ṽ
L̃(X̃ṽ) + λ

∑
g

‖ṽg‖2,

where X̃ ∈ Rn×
P
|g| is defined by the concatenation of copies of the design matrix

restricted each to a certain group g, i.e., X̃ = [Xg1 , Xg2 , ..., Xg|G| ], with G = {g1, . . . , g|G|},
and where we denote ṽg = (vgi)i∈g and ṽ = (ṽ>g1 , . . . , ṽ

>
g|G|

)>.

On our simple example with 3 overlapping groups, this gives :

Xw = X.

ṽ1

0

+X.

0

ṽ2

0

+X.

0

ṽ3

= (Xg1 , Xg2 , Xg3) .

ṽ1

ṽ2

ṽ3

∆
= X̃ṽ.

That way the vector ṽ ∈ R
P
|g| can be directly estimated from X̃ with a classical

group lasso for non-overlapping groups. We implemented the approach of Meier et al.

(2008) to estimate the group lasso in the expanded space. Note that Roth and Fischer

(2008) provides a faster algorithm for the group Lasso. When there are many groups with

important overlap however, an alternative implementation without explicit data duplication,

e.g., with a variational formulation similar to the one of Rakotomamonjy et al. (2008) might
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be more scalable.

4.9 Experiments

4.9.1 Synthetic data: given overlapping groups

To assess the performance of our method when overlapping groups are given as a priori, we

simulated data with p = 82 variables, covered by 10 groups of 10 variables with 2 variables

of overlap between two successive groups: {1, . . . , 10}, {9, . . . , 18}, . . . , {73, . . . , 82}. We

chose the support of w to be the union of groups 4 and 5 and sampled both the support

weights and the offset from i.i.d. Gaussian variables. Note that in this setting, the support

can be expressed as a union of groups, but not as the complement of a union. Therefore,

ΩGoverlap (.) can recover the right support, whereas by construction ΩGgroup (·) using the same

groups would be unable to recover it.

The model is learned from n data points (xi, yi), with yi = w>xi + ε, ε ∼ N (0, σ2),

σ = |E(Xw+b)|. Using an `2 loss L(w) = ‖Y −Xw−b‖2, we learn models from 50 such

training sets. On Figure 4.4, for each variable (on the vertical axis), we plot its frequency

of selection in levels of gray as a function of the regularization parameter λ, both for the

Lasso penalty and ΩGoverlap (.).

For any choice of λ the Lasso frequently misses some variables from the support, while

ΩGoverlap (.) never misses any variable from the support for a large part of the regularization

path. Besides, we observed that over the replicates, the Lasso never selected the exact

correct pattern for n < 100. For n = 100, the right pattern was selected with low frequency

on a small part of the regularization path. ΩGoverlap (.) on the other hand selected it up to 92%

of the times for n = 50 and more than 99% on more than one third of the path for n = 100.

We tried the same experiment for various n and as long as n was too small for the Lasso to

recover the right support, the group regularization always helped.

Figure 4.5 shows the root mean squared error of both methods for various n. For both

methods, the full regularization path is computed and tested on three replicates of n training

and 100 testing points. The best average parameter is selected and used to train and test a

model on a fourth replicate. On a large range of n, ΩGoverlap (.), not only helps to recover the
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Figure 4.4: Frequency of selection of each variable with the Lasso (left) and ΩGoverlap (.)
(right) for n = 50 (top) and 100 (bottom).

right pattern, improves the regression performance. A possible explanation is that if several

variables from the support are correlated in the design matrix X , the Lasso selects one and

is less robust than ΩGoverlap (.) which uses all the variables. Note that when enough training

points become available (last point on Figure 4.5), Figure 4.4 shows that the selected model

is generally better but still not correct whereas ΩGoverlap (.) selects the right model, even if it

does not give much lower error anymore.
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Figure 4.5: Root mean squared error of overlapped group lasso and Lasso as a function of
the number of training points.

4.9.2 Synthetic data: given linear graph structure

We now consider that the prior given on the variables is a graph structure and that we are

interested by solutions which are connected components on this graph. As a first simple

illustration, we consider a chain. We use w ∈ Rp, p = 100, supp (w) = [20, 40]. The

nodes of the graph are the variables wi, the edges are all the pairs (wi, wi+1), i = 1, . . . , n.

The model’s weights, offset and the 50 training examples (x, y) are drawn using the same

protocol as in the previous experiment. We take for the groups all the sub-chains of length

k. We present the results for various choices of k and compare to the Lasso (k = 1).

Figure 4.6 shows the frequency of each variable selection over 20 replications. Here

again, using a group prior helps the pattern recovery. We also observe as expected that the

choice of k plays a role in the improvement.

4.9.3 Synthetic data: given non-linear graph structure

Here we consider the same setting as in the linear case, except that instead of a chain we

are given a grid structure on the variables. Each node is connected to the 4 nodes above,
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Figure 4.6: Variable selection frequency with ΩGoverlap (.) using the chains of length k (left)
as groups, for k = 1, 2, 4, 8.

below, left and right. The support is a 20-variable region in the center of the grid, x-axis

4 to 7, y-axis 4 to 8. As groups, we use all the 4-cycles, which is a natural prior given the

graph topology and the expected pattern.

Figure 4.7 shows the variable selection frequency of each variable for both methods at

a fixed λ (chosen in both cases to give the best behavior). ΩGoverlap (.) seems to generally

give better selection performances than Lasso.

Besides, we observed that on each run, variables incorrectly selected where always

unions of groups whereas the Lasso selected disconnected variables on the graph. We

made the same observation for the linear graph case. This is an expected property of our
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method, and implies that even if variables which are not in the model are selected, they

enter the model as large connected components, whereas the false positive of the Lasso are

more randomly distributed on the graph, often as isolated variables. This is an interesting

property for real applications because it may then be easier to discard manually a few large

connected components of false positives, than many isolated variables (assuming of course

that the right variables are selected as well).

Figure 4.7: Grid view of the variable selection frequencies with the non-linear graph set-
ting. Left: Lasso, right: ΩGoverlap (.) using 4-cycles as groups. n = 30 training points, λ is
arbitrarily fixed.

4.9.4 Breast cancer data: pathway analysis

An important motivation for our method is the possibility to perform gene selection from

microarray data using priors which are overlapping groups. For example, one may want to

analyse microarrays in terms of biologically meaningful gene sets. In most such analysis,

genes discriminating the classes (e.g. tumors leading to metastasis versus non-metastasis)

are selected in a first step, then enrichment analysis is performed by looking for gene sets

in which selected genes are overrepresented Subramanian et al. (2005). Several organiza-

tions of the genes into gene sets are available in various databases. We use the canonical

pathways from MSigDB Subramanian et al. (2005) containing 639 groups of genes, 637 of

which involve genes from our study.
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Table 4.1: Classification error, number and proportion of pathways selected by the `1 and
ΩGoverlap (.) on the 3 folds.

METHOD `1 ΩGOVERLAP (.)
ERROR 0.38± 0.04 0.36± 0.03
] PATH. 148, 58, 183 6, 5, 78
PROP. PATH. 0.32, 0.14, 0.41 0.01, 0.01, 0.17

We use the breast cancer dataset compiled by van de Vijver et al. (2002), which consists

of gene expression data for 8, 141 genes in 295 breast cancer tumors (78 metastatic and

217 non-metastatic). We restrict the analysis to the 3510 genes which are in at least one

pathway. Since the dataset is very unbalanced, we balance it by using 3 replicates of each

metastasis patient (keeping all duplicates in the same fold during cross-validation).

We estimate by 3-fold cross validation the accuracy of a logistic regression with `1

and ΩGoverlap (.) penalties, using the pathways as groups. As a pre-processing, we keep the

300 genes most correlated with the output (on each training set). λ is selected by cross

validation on each training set.

Table 4.1 shows the results of both methods. Using ΩGoverlap (.) instead of the `1 penalty

leads to a slight improvement in the prediction performances, and much sparser solutions

at the pathway level, which makes the selected model easier to interpret.

4.9.5 Breast cancer data: graph analysis

Another important application in microarray data analysis is the search for potential drug

targets. In order to identify genes which are related to a disease, one would like to find

groups of genes forming connected components on a graph carrying biological information

such as regulation, involvement in the same chain of metabolic reactions, or protein-protein

interaction. Similarly to what is done in pathway analysis, Chuang et al. (2007) built a

network by compiling several biological networks and performed such graph analysis by

identifying discriminant subnetworks in one step and using these subnetworks to learn a

classifier in a separate step. We use this network and the approach described in section 4.7,

taking all the edges on the network as the groups, on the breast cancer dataset. Here again,



154 CHAPTER 4. STRUCTURED PRIORS FOR EXPRESSION DATA ANALYSIS

Table 4.2: Classification error and average size of the connected components selected by
the `1 and ΩGoverlap (.) on the 3 folds.

METHOD `1 ΩGOVERLAP (.)
ERROR 0.39± 0.04 0.36± 0.01
AV. SIZE C.C. 1.1, 1, 1.0 1.3, 1.4, 1.2

we restrict the data to the 7910 genes which are present in the network, and use the same

correlation-based pre-processing as for the pathway analysis.

Table 4.2 shows the results of the logistic regression with `1 and ΩGoverlap (.). Here again,

both methods give similar performances, with a slight advantage for ΩGoverlap (.). On the

other hand, while the `1 mostly selects disconnected variables on the graph, ΩGoverlap (.)

tends to select variables which are grouped into larger connected components on the graph.

This would make the interpretation and the search for new drug targets easier.

4.10 Discussion

We have presented a generalization of the group lasso penalty, which leads to sparse models

with sparsity patterns that are unions of pre-defined groups of covariates, or, given a graph

of covariates, groups of connected covariates in the graph. We obtained promising results

on both simulated and real data.

From a theoretical point of view, we gave both sufficient and necessary conditions

for the correct recovery of the same union of groups as in the decomposition induced by

ΩGoverlap (·) on the true optimal parameter vector. It still remains to characterize when the

latter decomposition has the smallest number of groups. The situation where several de-

compositions exist should be analyzed. Also, the construction of an adaptive version of

the Group Lasso with overlap that could possibly generalize the scheme proposed by Bach

(2008a) would be of interest.

From a practical point of view, although algorithms for the standard group Lasso can be

used to implement ΩGoverlap (·), more dedicated and scalable algorithms could be designed

for cases with large overlaps.
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Future work should compare more systematically ΩGoverlap (·) and ΩGgroup (·) empirically

and theoretically.



Conclusion

The successive chapters of this thesis have illustrated how supervised learning methods

could take advantage of the available prior knowledge in computational biology problems.

Chapter 2 has showed how to practically use the fact that similar targets bind similar lig-

ands in the context of vaccine design and drug discovery. This involved working with

target-ligand pairs, which could technically be done directly by using product kernels. Ex-

periments showed that this information sharing across the targets helped when little data

was available, even allowing to learn when no data is available for a given target. They also

showed however that this information sharing was pointless or even harmful when enough

data was available. Chapter 3 has introduced a practical algorithm to deal with the cases

where one only wants to share information across certain sets of tasks, where the sets are

unknown beforehand. We provided an efficient algorithm to deal with the resulting op-

timization problem, and gave interpretations both in terms of non-Hilbertian norm of the

classification functions, and of convex relaxation of the original k-means objective. Fi-

nally in Chapter 4, we introduced a penalty which induces solutions involving few groups

among some predefined overlapping groups of covariates, or few connected components

in a given graph on the covariates when used to regularize a convex smooth optimization

problem. This allowed us to build functions predicting breast cancer outcome from gene

expressions, and involving only few gene pathways, resulting in more interpretable sig-

natures. Technically, we provided practical algorithms to solve the resulting optimization

problem and showed some properties of this new estimator, in particular its consistency

under certain conditions.

156
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From a technical point of view, all the algorithms we introduced can be expressed under

the usual Tikhonov regularization form of the minimization of a loss functional penalized

by a regularization term. It is worth noting that in Chapter 3 and 4, these regularization

terms are novel non-Hilbertian norms which where built to impose the desired type of

regularization. More precisely, these norms are given by the solution of some convex op-

timization problems, which in turn define some quantity of interest for analysis purpose:

a partition of the learning problems in the first case, and an optimal decomposition of the

support of the linear function over some pre-defined overlapping groups in the second case.

For each of these problems, several improvement directions remain to be explored. For

the interaction prediction problem, in the context of which we used Hilbertian norms in

a joint description space, the most fragile element from our point of view is not really

the method itself, but the design of the benchmark on which it is tested. The practical

purpose of the ligand-based approach we presented is to mine large databases of drug (or

vaccine) candidates. It is not easy to simulate this setting, because the existing databases

contain a lot of redundant information which is not straightforward to filter automatically,

in particular some receptors are extremely close and share the same binding repertoire in

databases. Overall, it is very easy to build a benchmark which over-represents some pieces

of the chemical or receptor spaces (namely, those which are best studied and published in

public databases). Quantifying the prediction accuracy of a method on such a benchmark

may give biased results. This doesn’t invalidate our results at all, because our purpose was

only to show that sharing information helps learning for targets with little or no training

data, but a consequence of this remark is that the importance of the improvement brought

by sharing information may be different in practical cases depending on the quantity and

quality of training data available for similar enough targets. A related comment on these

experiments concerns the way the practical problem is classicaly modeled in machine learn-

ing. Ligand-based approaches cast the problem of enriching a set of ligand candidates in

a binary classification framework, i.e., as the problem of separating the true binders from

the non-binders. In practice, this implies to have both positive (binders) and negative (non-

binders) training data whereas most databases contain only lists of ligands for some targets.

Casting the problem as a binary classification therefore makes it necessary to find a way to
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designate some molecules as being non-ligands. It may be worth finding a better and sys-

tematic way to learn from positive data only. Concerning the method itself, Chapter 2 only

illustrated the effect of considering the problem of predicting interactions as a unique joint

learning problem. Several improvements could be brought by integrating recent advances

in machine learning, such as using more recent kernels for targets or ligands. In particular,

it seems crucial to find good ways to compare targets in terms of their binding abilities,

which could necessitate more thorough methods to compare binding pockets. Learning the

kernel or using more recent multi-task learning approaches, as suggested in Chapter 3, may

also improve the performances on this problem.

Concerning the penalty we proposed in Chapter 3, which is based on a convex relax-

ation of the clustering problem, direct improvements could be brought by finding tighter

relaxations, involving less parameters, and by faster optimization schemes. A limitation of

this approach is indeed that it transforms T learning problems of dimension p, correspond-

ing to the T tasks in a single joint problem of dimension pT and that, contrarily to what

happens with the trace norm minimization, the problems do not decouple even when fixing

the metric Σ. Other possible improvements include taking into account existing features

on the tasks, which could guide the clustering process, and enforcing that antithetic tasks

learn from each others, i.e., that the problem is invariant by flipping the labels. Once these

improvements are brought, it would be interesting to apply the method to chemogenomics

data, and in particular to see if the resulting clustering corresponds to known receptor fam-

ilies or gives interesting insights in terms of target grouping.

Several directions emerge from the penalty we proposed in Chapter 4. First, this work

overall makes it necessary to define what the optimal decomposition of the support of a

classifier over a set of groups of covariates is when the groups overlaps. In particular, de-

pending on the number of available training points, it may be preferable to include, e.g., one

large group containing the full support and few other variables than several small groups

whose union is exactly the support, thereby introducing a small bias in the model selection

at the benefit of a better stability. An appropriate weighting of the groups should allow

to deal with this trade-off. In addition, since the optimal decomposition over the groups

may not be unique even for some simple patterns, it would be important to generalize our
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consistency result to the such cases. Concerning the implementation, we used the straight-

forward approach to duplicate the variables which were in several groups and apply non-

overlapping group-lasso because it was sufficient for our experiments, but several finer ap-

proaches could be devised, including any multiple kernel learning algorithm, which would

have a better scaling in the size of the group intersections than the duplication approach.

Using these algorithms would by definition also allow to introduce non-linearities among

variables which belong to the same group. Allowing non-linear effects between variables

which belong to different groups could be even more interesting, but is less straightfor-

ward. Finally, while using this new penalty improved the learning accuracy on synthetic

data, it failed to do so on real datasets like the breast cancer benchmark we used in our

experiments. Achieving sparsity at the gene set level, hence more interpretability, was one

of the objectives, which was met in the experiments, but enforcing this biological prior did

not lead to the expected improvement. This is not extremely surprising since this dataset is

known to be a difficult prediction problem, on which basically all methods level up at the

same performance, but it leaves unanswered the question of how to better predict cancer

outcome from molecular data and whether or not this is compatible with enforcing inter-

pretable priors like the one we used here. A last related point which remains to be verified,

is whether using this penalty confers more robustness to the learned classifier, i.e., whether

it gives reasonable performances on a new independant breast cancer dataset.



Appendix A
Context

A.1 Relation between learning in a joint feature space and

controlling the variance of the individual tasks

Let us choose Ktask = 1 + µδ{t=t′} for some µ(α), where δ{t=t′} is 1 if t = t′, 0 otherwise.

Considering the linear kernel Kdata(x, x
′) to simplify the notations, one can check that

Kdata(x, x
′)(1 + µδ{t=t′}) = 〈x, x′〉(1 + µδ{t=t′})

= 〈Φ(x),Φ(x′)〉,

with Φ(x) = x ⊗ (1
√
µet(x)), t(x) being the task of point x, ⊗ denoting the tensor

product and et the t-th vector of the canonical basis. Therefore describing the pairs by this

product of kernels is equivalent to describing each data-task pair (x, t) by a large vector of

size p(T + 1) containing only zeros except at the first p positions and between the tp + 1

and the (t+ 1)p positions, where it contains the description of the data. In this joint feature
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space, the prediction function is :

w>Φ(x) =

wg

w1

...
wt(x)

...

wT︸ ︷︷ ︸
w

.

x

0

...

x
√
µ

...

0︸ ︷︷ ︸
Φ(x)

,

and penalizing the squared `2 norm of this w will give :

‖w‖2
2 = ‖wg‖2

2 + µ
T∑
t=1

‖wt‖2
2 = ‖wg‖2

2 + µ
T∑
t=1

‖vt − wg‖2
2, (A.1)

where vt = wg + wt is the linear function learned for task t, i.e., w>Φ(x) = v>t x. It is

straightforward to check from (A.1) that at the minimum, wg = 1
1+T

∑T
t=1, that is, the

part of w which is shared by all the tasks is a shrinked mean of the individual functions.

Therefeore, (A.1) exactly states that penalizing the `2 norm in the joint data-task space is

equivalent to enforcing a low variance of the individual functions across their mean, and a

small individual `2 norm (since the vt are close to wg, penalizing the norm of wg controls

the norm of the vt).
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Appendix B
Interaction prediction

B.1 GPCR binding pocket

B.2 Prediction accuracy by GPCR for the first experiment

B.3 Prediction accuracy by GPCR for the second experi-

ment
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GPCR \Ktar Dirac multitask hierarchy BP PBP
Rhodopsin peptide receptors

AG2R(5) 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0
CCKAR(6) 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0
CML2(1) 50.0± 0.0 50.0± 35.4 100.0± 0.0 50.0± 35.4 50.0± 35.4
CXCR3(1) 50.0± 35.4 0.0± 0.0 50.0± 35.4 50.0± 35.4 50.0± 35.4
EDNRA(50) 100.0± 0.0 99.0± 0.9 100.0± 0.0 100.0± 0.0 100.0± 0.0
EDNRB(48) 96.9± 1.1 91.8± 3.4 98.0± 1.1 99.0± 0.9 99.0± 0.9
GASR(2) 100.0± 0.0 75.0± 21.7 75.0± 21.7 75.0± 21.7 75.0± 21.7
GPR7(1) 50.0± 35.4 50.0± 35.4 50.0± 35.4 50.0± 35.4 50.0± 35.4
LSHR(4) 70.0± 11.0 70.0± 11.0 70.0± 11.0 70.0± 11.0 70.0± 11.0
NK1R(24) 92.0± 4.4 82.0± 5.2 86.0± 5.4 88.0± 3.3 86.0± 3.6
NK2R(1) 50.0± 35.4 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0
NK3R(1) 50.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0
OPRD(27) 92.3± 1.7 86.7± 4.4 90.3± 4.9 90.3± 2.8 90.3± 2.8
OPRK(24) 96.0± 3.6 98.0± 1.8 98.0± 1.8 98.0± 1.8 98.0± 1.8
OPRM(21) 100.0± 0.0 97.5± 2.2 97.5± 2.2 97.5± 2.2 97.5± 2.2
OXYR(3) 90.0± 8.9 100.0± 0.0 90.0± 8.9 100.0± 0.0 100.0± 0.0
SSR1(3) 90.0± 8.9 90.0± 8.9 90.0± 8.9 90.0± 8.9 90.0± 8.9
CCR3(1) 50.0± 35.4 50.0± 35.4 50.0± 35.4 50.0± 35.4 50.0± 35.4

Rhodopsin amine receptors (1/2)
5HT1A(196) 91.6± 1.3 90.1± 2.2 88.8± 0.8 91.8± 1.5 90.8± 1.7
5HT1B(28) 82.7± 3.0 96.0± 3.6 98.0± 1.8 100.0± 0.0 100.0± 0.0
5HT1D(172) 93.3± 1.0 92.4± 0.9 92.7± 0.9 94.8± 0.7 94.8± 0.7
5HT1E(16) 87.5± 5.5 90.8± 3.4 96.7± 3.0 90.8± 3.4 90.8± 3.4
5HT1F(49) 86.7± 1.2 90.9± 0.8 88.8± 1.7 92.9± 1.1 91.7± 2.1
5HT2A(79) 94.9± 1.4 95.6± 1.4 93.0± 1.7 94.3± 1.7 94.9± 1.4
5HT2B(72) 81.2± 3.3 78.3± 2.9 83.9± 1.8 83.2± 2.0 83.2± 2.0
5HT2C(198) 88.6± 1.2 86.8± 1.2 89.4± 1.4 89.6± 0.8 90.1± 1.3
5HT4R(87) 92.5± 2.0 86.7± 2.5 85.7± 2.0 87.9± 2.1 89.0± 2.0
5HT5A(7) 80.0± 8.4 75.0± 10.0 75.0± 10.0 75.0± 10.0 75.0± 10.0
5HT6R(13) 95.0± 4.5 96.7± 3.0 91.7± 4.7 95.0± 4.5 100.0± 0.0
5HT7R(15) 90.0± 6.0 90.0± 3.7 96.7± 3.0 93.3± 3.7 93.3± 3.7
ACM1(527) 96.7± 0.6 94.3± 0.9 95.5± 1.0 96.1± 0.7 96.1± 0.8
ACM2(24) 82.0± 5.2 90.0± 2.8 92.0± 3.3 94.0± 3.6 92.0± 3.3
ACM3(58) 93.2± 2.6 90.5± 0.7 91.3± 1.3 96.4± 1.5 95.6± 1.3
ACM4(21) 90.0± 5.5 95.0± 2.7 95.0± 2.7 92.5± 2.7 95.0± 2.7
ACM5(16) 94.2± 3.2 94.2± 3.2 100.0± 0.0 100.0± 0.0 100.0± 0.0
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GPCR \Ktar Dirac multitask hierarchy BP PBP
Rhodopsin amine receptors (2/2)

ADA1A(80) 93.1± 2.1 98.8± 0.7 99.4± 0.6 98.1± 0.7 98.8± 0.7
ADA1B(67) 90.5± 3.7 95.7± 1.9 98.6± 0.8 97.0± 0.7 97.0± 0.7
ADA1D(73) 90.4± 2.4 96.0± 1.1 98.7± 0.7 98.0± 0.7 98.0± 0.7
ADA2A(234) 95.7± 0.5 96.8± 0.3 98.5± 0.2 98.5± 0.2 98.5± 0.2
ADA2B(224) 95.1± 1.2 95.5± 1.3 98.2± 0.7 98.2± 0.7 98.0± 0.7
ADA2C(225) 95.3± 0.4 96.4± 0.4 97.6± 0.4 97.6± 0.4 97.8± 0.3
ADRB1(50) 98.0± 1.1 97.0± 1.8 99.0± 0.9 99.0± 0.9 99.0± 0.9
ADRB2(48) 92.8± 1.9 95.9± 0.9 96.9± 1.1 98.0± 1.1 98.0± 1.1
ADRB3(57) 98.2± 1.0 95.5± 2.2 97.3± 1.6 97.3± 1.6 97.3± 1.6
DRD1(100) 93.5± 1.8 94.5± 1.5 95.0± 1.4 94.5± 1.3 94.5± 1.3
DRD2(106) 93.4± 0.8 92.9± 1.8 92.4± 1.6 91.5± 1.7 91.9± 1.9
DRD3(41) 86.7± 2.6 89.2± 3.1 89.3± 3.8 90.4± 3.2 91.5± 2.8
DRD4(143) 92.3± 0.8 92.7± 1.1 93.7± 1.3 93.7± 1.4 94.1± 1.3
DRD5(7) 95.0± 4.5 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0
HRH1(19) 89.2± 4.3 92.5± 2.7 86.7± 0.7 92.5± 2.7 92.5± 2.7
HRH2(22) 91.0± 3.5 93.5± 3.7 96.0± 3.6 96.0± 3.6 96.0± 3.6
HRH3(88) 97.2± 0.8 96.1± 1.3 97.7± 0.9 97.7± 0.5 97.7± 0.5
HRH4(5) 80.0± 11.0 70.0± 17.9 100.0± 0.0 80.0± 11.0 80.0± 11.0
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GPCR \Ktar Dirac multitask hierarchy BP PBP
Rhodopsin other receptors

AA1R(56) 96.4± 1.5 96.4± 0.8 96.4± 1.5 97.3± 1.0 97.3± 1.0
AA2AR(73) 96.0± 1.7 97.3± 1.1 98.6± 0.8 98.0± 1.2 98.0± 1.2
AA2BR(83) 97.6± 1.0 98.2± 0.7 99.4± 0.6 99.4± 0.6 99.4± 0.6
AA3R(17) 97.5± 2.2 82.5± 1.8 94.2± 3.2 95.0± 4.5 95.0± 4.5
CLTR1(18) 89.2± 2.5 84.2± 4.1 89.2± 4.3 91.7± 3.1 91.7± 3.1
LT4R1(2) 50.0± 25.0 50.0± 25.0 100.0± 0.0 100.0± 0.0 100.0± 0.0
LT4R2(2) 50.0± 25.0 50.0± 25.0 100.0± 0.0 100.0± 0.0 100.0± 0.0
MTR1A(91) 97.3± 1.1 96.8± 1.4 100.0± 0.0 100.0± 0.0 100.0± 0.0
MTR1B(90) 97.8± 0.9 97.8± 0.9 99.4± 0.5 99.4± 0.5 99.4± 0.5
MTR1L(75) 98.7± 0.7 99.3± 0.6 100.0± 0.0 100.0± 0.0 100.0± 0.0
PAFR(1) 50.0± 35.4 50.0± 35.4 50.0± 35.4 50.0± 35.4 50.0± 35.4
PE2R1(5) 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0
PE2R2(7) 100.0± 0.0 95.0± 4.5 100.0± 0.0 100.0± 0.0 100.0± 0.0
PE2R3(5) 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0
PE2R4(5) 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0
R3R2(1) 50.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0
TA2R(63) 100.0± 0.0 99.2± 0.7 99.2± 0.7 100.0± 0.0 100.0± 0.0

Metabotropic glutamate family
GABR1(1) 50.0± 0.0 100.0± 0.0 100.0± 0.0 50.0± 35.4 100.0± 0.0
GABR2(1) 50.0± 0.0 100.0± 0.0 100.0± 0.0 0.0± 0.0 50.0± 35.4
MGR1(34) 98.3± 1.5 91.4± 4.7 100.0± 0.0 100.0± 0.0 100.0± 0.0
MGR2(6) 95.0± 4.5 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0
MGR3(5) 100.0± 0.0 90.0± 8.9 100.0± 0.0 100.0± 0.0 100.0± 0.0
MGR5(5) 90.0± 8.9 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0
MGR6(5) 100.0± 0.0 90.0± 8.9 90.0± 8.9 100.0± 0.0 90.0± 8.9
MGR7(6) 95.0± 4.5 90.0± 8.9 100.0± 0.0 100.0± 0.0 100.0± 0.0
MGR8(3) 80.0± 17.9 80.0± 17.9 100.0± 0.0 100.0± 0.0 100.0± 0.0

Secretin family
VIPR1(1) 50.0± 35.4 100.0± 0.0 100.0± 0.0 50.0± 35.4 100.0± 0.0

Table B.2: Prediction accuracy by GPCR for the first experiment. Mean prediction accu-
racy for each GPCR for the first experiment with the 2D Tanimoto ligand kernel and various
target kernels. The GPCR identifiers are the GLIDA references. The numbers in bracket
are the numbers ligands considered in the experiment for each GPCR. BP is the binding
pocket kernel and PBP the poly binding pocket kernel.
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GPCR \Ktar Dirac multitask hierarchy BP PBP
Rhodopsin peptide receptors

AG2R(5) 50.0± 50.0 50.0± 50.0 50.0± 50.0 50.0± 50.0 50.0± 50.0
CCKAR(6) 50.0± 50.0 50.0± 50.0 66.7± 47.1 50.0± 50.0 50.0± 50.0
CML2(1) 50.0± 50.0 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0
CXCR3(1) 50.0± 50.0 50.0± 50.0 50.0± 50.0 50.0± 50.0 50.0± 50.0
EDNRA(50) 50.0± 50.0 46.0± 49.8 100.0± 0.0 100.0± 0.0 94.0± 23.7
EDNRB(48) 50.0± 50.0 22.9± 42.0 74.0± 43.9 95.8± 20.0 75.0± 43.3
GASR(2) 50.0± 50.0 25.0± 43.3 75.0± 43.3 75.0± 43.3 50.0± 50.0
GPR7(1) 50.0± 50.0 50.0± 50.0 50.0± 50.0 100.0± 0.0 50.0± 50.0
LSHR(4) 50.0± 50.0 0.0± 0.0 37.5± 48.4 50.0± 50.0 37.5± 48.4
NK1R(24) 50.0± 50.0 27.1± 44.4 33.3± 47.1 60.4± 48.9 39.6± 48.9
NK2R(1) 50.0± 50.0 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0
NK3R(1) 50.0± 50.0 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0
OPRD(27) 50.0± 50.0 37.0± 48.3 44.4± 49.7 55.6± 49.7 55.6± 49.7
OPRK(24) 50.0± 50.0 47.9± 50.0 81.2± 39.0 87.5± 33.1 83.3± 37.3
OPRM(21) 50.0± 50.0 54.8± 49.8 88.1± 32.4 90.5± 29.4 90.5± 29.4
OXYR(3) 50.0± 50.0 50.0± 50.0 50.0± 50.0 66.7± 47.1 50.0± 50.0
SSR1(3) 50.0± 50.0 50.0± 50.0 50.0± 50.0 50.0± 50.0 50.0± 50.0
CCR3(1) 50.0± 50.0 50.0± 50.0 50.0± 50.0 50.0± 50.0 50.0± 50.0

Rhodopsin amine receptors (1/2)
5HT1A(196) 50.0± 50.0 39.8± 48.9 53.3± 49.9 49.0± 50.0 45.7± 49.8
5HT1B(28) 50.0± 50.0 50.0± 50.0 89.3± 30.9 91.1± 28.5 89.3± 30.9
5HT1D(172) 50.0± 50.0 29.7± 45.7 56.7± 49.6 59.3± 49.1 57.3± 49.5
5HT1E(16) 50.0± 50.0 68.8± 46.4 93.8± 24.2 93.8± 24.2 90.6± 29.1
5HT1F(49) 50.0± 50.0 41.8± 49.3 58.2± 49.3 60.2± 48.9 56.1± 49.6
5HT2A(79) 50.0± 50.0 68.4± 46.5 76.6± 42.3 77.2± 41.9 76.6± 42.3
5HT2B(72) 50.0± 50.0 31.2± 46.4 70.8± 45.5 56.9± 49.5 55.6± 49.7
5HT2C(198) 50.0± 50.0 35.1± 47.7 60.4± 48.9 52.0± 50.0 48.2± 50.0
5HT4R(87) 50.0± 50.0 20.1± 40.1 29.9± 45.8 34.5± 47.5 31.6± 46.5
5HT5A(7) 50.0± 50.0 78.6± 41.0 64.3± 47.9 78.6± 41.0 78.6± 41.0
5HT6R(13) 50.0± 50.0 92.3± 26.6 80.8± 39.4 84.6± 36.1 88.5± 31.9
5HT7R(15) 50.0± 50.0 93.3± 24.9 93.3± 24.9 90.0± 30.0 90.0± 30.0
ACM1(527) 50.0± 50.0 30.2± 45.9 43.3± 49.5 48.8± 50.0 45.6± 49.8
ACM2(24) 50.0± 50.0 58.3± 49.3 81.2± 39.0 91.7± 27.6 87.5± 33.1
ACM3(58) 50.0± 50.0 35.3± 47.8 59.5± 49.1 73.3± 44.3 70.7± 45.5
ACM4(21) 50.0± 50.0 90.5± 29.4 76.2± 42.6 78.6± 41.0 81.0± 39.3
ACM5(16) 50.0± 50.0 84.4± 36.3 84.4± 36.3 78.1± 41.3 84.4± 36.3
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GPCR \Ktar Dirac multitask hierarchy BP PBP
Rhodopsin amine receptors (2/2)

ADA1A(80) 50.0± 50.0 76.9± 42.2 97.5± 15.6 96.2± 19.0 96.2± 19.0
ADA1B(67) 50.0± 50.0 74.6± 43.5 91.8± 27.5 91.0± 28.6 91.8± 27.5
ADA1D(73) 50.0± 50.0 79.5± 40.4 98.6± 11.6 97.9± 14.2 97.9± 14.2
ADA2A(234) 50.0± 50.0 58.3± 49.3 93.8± 24.1 91.0± 28.6 89.7± 30.3
ADA2B(224) 50.0± 50.0 57.4± 49.5 97.5± 15.5 97.3± 16.1 95.3± 21.1
ADA2C(225) 50.0± 50.0 59.6± 49.1 94.9± 22.0 94.2± 23.3 94.7± 22.5
ADRB1(50) 50.0± 50.0 44.0± 49.6 87.0± 33.6 84.0± 36.7 84.0± 36.7
ADRB2(48) 50.0± 50.0 52.1± 50.0 95.8± 20.0 89.6± 30.5 90.6± 29.1
ADRB3(57) 50.0± 50.0 46.5± 49.9 86.0± 34.7 82.5± 38.0 81.6± 38.8
DRD1(100) 50.0± 50.0 43.0± 49.5 45.5± 49.8 43.0± 49.5 43.0± 49.5
DRD2(106) 50.0± 50.0 50.5± 50.0 54.7± 49.8 59.9± 49.0 55.7± 49.7
DRD3(41) 50.0± 50.0 57.3± 49.5 70.7± 45.5 74.4± 43.6 69.5± 46.0
DRD4(143) 50.0± 50.0 45.8± 49.8 45.1± 49.8 51.0± 50.0 49.3± 50.0
DRD5(7) 50.0± 50.0 57.1± 49.5 100.0± 0.0 100.0± 0.0 100.0± 0.0
HRH1(19) 50.0± 50.0 55.3± 49.7 57.9± 49.4 68.4± 46.5 68.4± 46.5
HRH2(22) 50.0± 50.0 45.5± 49.8 52.3± 49.9 56.8± 49.5 56.8± 49.5
HRH3(88) 50.0± 50.0 39.2± 48.8 49.4± 50.0 46.0± 49.8 46.0± 49.8
HRH4(5) 50.0± 50.0 70.0± 45.8 90.0± 30.0 70.0± 45.8 70.0± 45.8
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AA1R(56) 50.0± 50.0 39.3± 48.8 91.1± 28.5 92.9± 25.8 86.6± 34.1
AA2AR(73) 50.0± 50.0 46.6± 49.9 94.5± 22.8 96.6± 18.2 95.2± 21.4
AA2BR(83) 50.0± 50.0 37.3± 48.4 87.3± 33.2 98.2± 13.3 89.2± 31.1
AA3R(17) 50.0± 50.0 38.2± 48.6 64.7± 47.8 70.6± 45.6 52.9± 49.9
CLTR1(18) 50.0± 50.0 50.0± 50.0 50.0± 50.0 50.0± 50.0 52.8± 49.9
LT4R1(2) 50.0± 50.0 50.0± 50.0 100.0± 0.0 100.0± 0.0 100.0± 0.0
LT4R2(2) 50.0± 50.0 50.0± 50.0 100.0± 0.0 100.0± 0.0 100.0± 0.0
MTR1A(91) 50.0± 50.0 43.4± 49.6 97.3± 16.3 97.3± 16.3 95.6± 20.5
MTR1B(90) 50.0± 50.0 47.2± 49.9 95.6± 20.6 97.8± 14.7 97.8± 14.7
MTR1L(75) 50.0± 50.0 46.7± 49.9 99.3± 8.1 100.0± 0.0 99.3± 8.1
PAFR(1) 50.0± 50.0 50.0± 50.0 50.0± 50.0 50.0± 50.0 50.0± 50.0
PE2R1(5) 50.0± 50.0 50.0± 50.0 100.0± 0.0 100.0± 0.0 100.0± 0.0
PE2R2(7) 50.0± 50.0 42.9± 49.5 92.9± 25.8 85.7± 35.0 85.7± 35.0
PE2R3(5) 50.0± 50.0 60.0± 49.0 100.0± 0.0 100.0± 0.0 100.0± 0.0
PE2R4(5) 50.0± 50.0 60.0± 49.0 100.0± 0.0 100.0± 0.0 100.0± 0.0
R3R2(1) 50.0± 50.0 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0
TA2R(63) 50.0± 50.0 42.1± 49.4 47.6± 49.9 50.8± 50.0 49.2± 50.0

Metabotropic glutamate family
GABR1(1) 50.0± 50.0 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0
GABR2(1) 50.0± 50.0 100.0± 0.0 100.0± 0.0 50.0± 50.0 100.0± 0.0
MGR1(34) 50.0± 50.0 42.6± 49.5 63.2± 48.2 61.8± 48.6 64.7± 47.8
MGR2(6) 50.0± 50.0 58.3± 49.3 100.0± 0.0 100.0± 0.0 83.3± 37.3
MGR3(5) 50.0± 50.0 70.0± 45.8 100.0± 0.0 100.0± 0.0 100.0± 0.0
MGR5(5) 50.0± 50.0 90.0± 30.0 100.0± 0.0 100.0± 0.0 100.0± 0.0
MGR6(5) 50.0± 50.0 90.0± 30.0 90.0± 30.0 90.0± 30.0 90.0± 30.0
MGR7(6) 50.0± 50.0 83.3± 37.3 91.7± 27.6 83.3± 37.3 83.3± 37.3
MGR8(3) 50.0± 50.0 83.3± 37.3 100.0± 0.0 100.0± 0.0 100.0± 0.0

Secretin family
VIPR1(1) 50.0± 50.0 100.0± 0.0 100.0± 0.0 50.0± 50.0 100.0± 0.0

Table B.3: Prediction accuracy by GPCR for the second experiment. Mean prediction
accuracy for each GPCR for the second experiment with the 2D Tanimoto ligand kernel
and various target kernels. The GPCR identifiers are the GLIDA references. The numbers
in bracket are the numbers ligands considered in the experiment for each GPCR. BP is the
binding pocket kernel and PBP the poly binding pocket kernel.
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