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devote their valuable time to evaluate my thesis study. Especially French members of 
the jury, Caroline Richard, Sid Labdi and Michel Jeandin, for having traveled from 
France to Turkey for the viva. Prof. Dr. E. Sabri Kayalı, for accepting to be the 
chairman of the jury. Dr. Caroline Richard and Prof. Dr. Ali Aslan Kaya for their 
careful investigation of the dissertation as “rapporteur”.  

I would like to thank Prof. Dr. Onuralp Yücel, current director of Prof. Dr. Adnan 
Tekin Applied Research Center of Materials Science, for not only being participated 
to the jury but also, for his understanding during my PhD study and the warm 
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working environment. Equally, I express my gratitude to Prof. Esteban Busso, 
current director of Centre des Matériaux for the high quality international research 
environment he created.  

I wish to express special thanks to Marie-Hélène Berger, for her great skills on 
Transmission electron microscopy and for all the observations, we did together.   

I also want to acknowledge Olek Maciejak, Pascal Aubert, and especially Sid Labdi 
from Laboratoire d’Etudes des Milieux Nanometriques, Université d’Evry Val-
d’Essone, for their cooperation in nanomechanical characterization as well as for RF 
sputtering of boron carbide thin films.  

I wish to express my sincere thanks to Assoc. Prof. Dr. Gültekin Göller for letting me 
use his facilities, especially high-resolution SEM and FTIR. I am also grateful to 
Hüseyin Sezer for SEM observations, for his competence and help during all the 
study. I would also like to thank Hasan Dinçer, especially for EPMA analyses but 
also for his constant help for years. I wish to thank Nicole De Dave-Fabrègue for 
SEM observations on the wear tracks and for her assistance in “pin-on-disc” tests. 

Special thanks to my colleagues, lab and office mates in two countries, Dr. Şeref 
Sönmez, especially for his expertise in thesis format, M. Erkin Cura, François Borit, 
Dimitris Christoulis, Mélissa Delqué, Sophie Barradas, Serge Guetta, Nicolas Revuz, 
and Melis Aslan, for all their help, support and friendship. 

I am grateful to BMBT Inc. for industrially producing boron carbide powders and hot 
pressing of the target used in this study for the first time in Turkey and Hat Teknik 
Inc. for careful substrate preparations.   

Financial supports of French Embassy in Turkey and TUBITAK during my visits to 
France are much appreciated.  
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my brother Tuna Tavşanoğlu for their moral motivation throughout the study.  
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DEPOSITION AND CHARACTERIZATION OF SINGLE AND 
MULTILAYERED BORON CARBIDE AND BORON CARBONITRIDE 

THIN FILMS BY DIFFERENT SPUTTERING CONFIGURATIONS 

SUMMARY 

Over the last 30 years there has been a great deal of interest in the research of hard 
and wear resistant coatings. There exist ceramic thin films for industrial applications 
such as cutting tools, automobile and machine part including TiN, TiAlN, TiC, SiC, 
WC and diamond-like carbon (DLC) as examples. However, increasing 
technological and industrial demands request thin films with more complicated 
properties. For this purpose, B-C-N ternary system with its superhard phases is of 
great interest during last ten years. Boron carbide (B4C) with its high hardness and 
modulus besides other relevant properties is one of the most prominent candidates. 
Furthermore, boron carbonitride (BCN) thin films are attracting due to the 
combination of different properties as a result of that of different phases such as 
diamond, cubic boron nitride (c–BN) and hexagonal boron nitride (h–BN). A 
thorough literature study shows that these two materials have not been yet 
investigated in details in thin film form. Boron carbide is one of the least studied 
materials by atomistic deposition techniques such as sputtering and the least studied 
compound in the B-C-N ternary diagram. On the other hand, almost all the efforts 
were given by different researchers to deposit cubic boron nitride. Very limited 
studies could be found focusing on the effect of nitrogen incorporation into boron 
carbide structure and on the different phases that could be obtained.  
 
The aim of this thesis study is first to investigate the effect of different sputter 
deposition parameters on the properties of boron carbide thin films and to establish a 
relation between deposition parameters, growth morphologies of boron carbide films 
and mechanical and wear properties. Second, to study the effect of nitrogen 
incorporation into boron carbide structure and to grow optimized hard and tough 
BCN thin films with an improved wear resistance.  
 
In this work, single and multilayered boron carbide and boron carbonitride thin films 
were deposited by several sputtering configurations. Three types of well adherent 
and homogenous boron carbide films were deposited by conventional direct current 
(DC) magnetron sputtering, plasma-enhanced DC magnetron sputtering, and radio 
frequency (RF) sputtering. Boron carbonitride thin films deposited by reactive DC 
magnetron sputtering with addition of nitrogen to the processing gas were also 
studied. Functionally-graded multilayered designs were used to grow thicker boron 
carbide and boron carbonitride films. An “in-house” produced, direct current 
compatible, hot-pressed boron carbide target and a commercial boron carbide target 
were used for the deposition of thin films. The effect of deposition parameters on 
film properties were studied by using various characterization techniques. Elemental 
composition of the films was measured by electron probe microanalysis (EPMA). 
Field–emission gun scanning electron microscope (FE-SEM) was used to investigate 
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the microstructure and the morphology of the films. Elemental depth profiles of the 
coatings were obtained using a secondary ion mass spectrometer (SIMS). 
Nanomechanical properties were determined by nanoindentation. Tribological 
properties of the coatings were studied using “pin–on–disc” testing. Chemical 
bonding was investigated by Fourier transform infrared spectroscopy (FTIR). 
Nanostructure and crystallinity of the films were evaluated by transmission electron 
microscopy (TEM) observations.  
 
Results demonstrated that boron carbide films are promising candidates for wear 
resistance and hardness related applications. With a controlled change of process 
parameters, different microstructures, thus films with different properties were 
obtained. With N incorporation into boron carbide structure, optimized hard and 
better wear-resistant films were achieved. This showed that application ranges may 
be further expanded. Additionally, it was found that functionally-graded multilayered 
approach is an adequate solution to prevent film delamination and intrinsic stress 
related problems of hard and wear-resistant films. Thicker boron carbide and boron 
carbonitride films for several industrial applications could therefore be deposited 
easily with a proper design for the different underlayers.    
 
Keywords: Boron carbide, BCN, thin films, sputtering, ion plating, nanomechanics, 
SIMS depth profile, microstructure, nanostructure, tribology 
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ELABORATION PAR DIFFERENTS PROCEDES DE PULVERISATION ET 
CARACTERISATION DE MONO ET MULTI-COUCHES MINCES DE 

CARBURE DE BORE ET DE CARBONITRURE DE BORE  

RÉSUMÉ 

Au cours des 30 dernières années l'intérêt fut très marqué pour la recherche dans le 
domaine des couches minces dures et résistant à l'usure. Des matériaux ont été 
développés sous forme de couches minces céramiques pour des applications 
industrielles telles que des outils de coupe, des pièces d'automobile et différents 
composants de machine. Les matériaux en jeu étaient, TiN, TiAlN, TiC, SiC, WC et 
carbone adamantin (DLC) par exemple. Cependant, les besoins technologiques et 
industriels d’aujourd’hui nécessitent l’utilisation des couches minces avec des 
propriétés plus évoluées. Pour cela, le système ternaire de B-C-N avec ses phases 
ultra-dures a attiré beaucoup l’attention ces dernières années. Le carbure de bore 
(B4C) en particulier, avec sa haute dureté et son module d’Young élevé en plus de 
ses autres propriétés intéressantes, est l'un des matériaux les plus prometteurs. Une 
autre possibilité repose sur le carbonitrure de bore (BCN) qui présente des propriétés 
différentes en raison de la combinaison possible de plusieurs phases telles que le 
diamant, la nitrure de bore cubique (c-BN) et la nitrure de bore hexagonale (h-BN). 
Une recherche bibliographique détaillée indique le fait que ces deux matériaux n'ont 
pas été suffisamment étudiés quand sous forme de couches minces. Le carbure de 
bore est l'un des matériaux les moins étudiés dans le cas de techniques de dépôt en 
phase vapeur telles que la pulvérisation cathodique. C'est également le composé le 
moins étudié dans le diagramme ternaire B-C-N. D’autre part, dans la bibliographie, 
presque tout l'effort a porté sur le dépôt du nitrure de bore cubique. Il existe très peu 
d’études centrées sur l'effet de l'incorporation d'azote dans la structure de carbure de 
bore et les différentes phases qui pourraient être obtenues.  
 
Le but de ce travail est d'étudier, en premier, l'effet de différents paramètres de 
pulvérisation sur les propriétés des couches minces de carbure de bore et d'établir des 
relations entre les paramètres de dépôt, croissance des couches de carbure de bore et 
propriétés mécaniques et d’usure-frottement. Le deuxième objectif est d’étudier 
l'effet de l'incorporation d'azote dans la structure de carbure de bore pour établir une 
couche de carbonitrure de bore avec une dureté et une ténacité optimales ainsi qu’une 
résistance à l’usure élevée.  
 
Trois types de couches de carbure de bore bien adhérentes et homogènes ont été 
déposées par pulvérisation cathodique magnétron classique à courant continu (DC), 
pulvérisation cathodique magnétron DC assisté par plasma et pulvérisation 
cathodique radiofréquence (RF). Les couches minces de carbonitrure de bore 
déposées par pulvérisation cathodique magnétron a courant continu en mode réactif 
avec addition d’azote dans la composition du gaz plasmagène ont été également 
étudiées. La conception de multicouches fonctionnelles a permis de déposer des 
couches de carbure et carbonitrure de bore plus épaisses et adhérentes. Une cible de 
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carbure de bore conductrice, produite par pressage à chaud de poudres de carbure de 
bore et une cible de carbure de bore commerciale ont été utilisées pour les dépôts par 
décharge à courant continu et RF respectivement. L'effet des paramètres de dépôt sur 
les différentes propriétés des couches a été évalué par plusieurs techniques de 
caractérisation. La composition élémentaire des dépôts a été déterminée par 
microsonde électronique de Castaing (EPMA). La microscopie à balayage 
électronique haute résolution avec un canon à émission de champ (FE-SEM) a servi à 
examiner la microstructure et la topographie des couches. Les profils de profondeur 
élémentaires des dépôts ont été obtenus par spectrométrie de masse d'ions 
secondaires (SIMS). Les propriétés nanomécaniques ont mesurées par 
nanoindentation. Le comportement tribologique des dépôts a été étudié en utilisant 
un tribomètre « pion-disque ». Les liaisons chimiques ont été identifiées par la 
spectroscopie infrarouge à transformée de Fourier (FTIR). La nanostructure et la 
cristallinité des couches ont été caractérisées grâce à des observations par 
microscopie électronique en transmission (TEM).  
 
Les résultats ont démontré que les couches de carbure de bore constituent de bons 
revêtements à dureté élevée pour résister à l'usure. Grâce au contrôle des paramètres 
de pulvérisation, différentes microstructures correspondants à différentes propriétés 
ont pu être obtenues. Grâce à l’incorporation de l’azote dans la structure de carbure 
de bore, des couches présentant une dureté optimale et une résistance à l'usure élevée 
ont été développées, donnant ainsi la possibilité d’élargir la gamme d'applications 
pour ces dépôts. On a aussi constaté que la conception en multicouche fonctionnelle 
était une façon d'empêcher le décollement des couches et éviter des problèmes liés 
aux contraintes résiduelles pour les dépôts durs et résistants à l'usure. Des couches 
plus épaisses de carbure de bore et de carbonitrure de bore pour plusieurs 
applications industrielles, peuvent donc efficacement être déposées grâce a une 
conception appropriée des différentes sous-couches.  
 
 
Mots-clés: Carbure de bore, BCN, couches minces, pulvérisation cathodique, dépôt 
ionique, nanomécanique, SIMS,  microstructure, nanostructure, tribologie 
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TEK VE ÇOK KATMANLI BOR KARBÜR VE BOR KARBONİTRÜR İNCE 
FİLMLERİN FARKLI SIÇRATMA TEKNİKLERİYLE BİRİKTİRİLMESİ 

VE KARAKTERİZASYONU 

ÖZET 

Son 30 yılda sert ve aşınmaya dayanıklı kaplama çalışmalarında önemli bir artış 
görülmektedir. Endüstriyel uygulamalara yönelik özellikle, otomotiv endüstrisinde 
kullanılan çeşitli parçalar, takım uçları ve makine parçaları gibi uygulamalarda 
kullanılan ve detaylı olarak çalışılmış seramik ince filmlere, TiN, TiAlN, TiC, SiC, 
WC ve elmas benzeri karbon (DLC) örnek olarak verilebilir. Ancak, son yıllarda 
gelişen teknolojik ve endüstriyel uygulamalar birden fazla özelliği bir arada 
barındıran ince film türlerini gerektirmektedir. Bu sebeple bünyesinde bulundurduğu 
çok sert fazlar göz önüne alındığında B-C-N üçlü sistemi son on yılda ilgi çekici hale 
gelmiştir. Özellikle bor karbür ince filmler yüksek sertlikleri ve elastik modülleri ile 
en önemli adaylardan biri olarak ortaya çıkmaktadır. Bir diğer alternatif yapısında 
bulundurduğu farklı fazlarla birçok özelliği bünyesinde toplayan bor karbonitrür ince 
filmlerdir. Geniş kapsamlı bir literatür çalışması, bu iki tip malzemenin ince film 
formunda detaylı olarak çalışılmadığını göz önüne sermiştir. Bor karbür, sıçratma 
gibi atomal düzeyde biriktirmenin gerçekleştirildiği ince film kaplama yöntemleri ile 
en az çalışılmış malzemelerden biridir. Aynı zamanda B-C-N üçlü sistemi içerisinde 
en az çalışılmış olan bileşiktir. Öte yandan, literatürde B-C-N sistemi içerisinde en 
fazla çalışmanın kübik bor nitrür biriktirmek amacıyla gerçekleştirildiği 
görülmektedir. Bor karbür yapısı içerisine azot ilavesi ve sonucunda oluşabilecek 
fazlar ve özellikleri üzerine gerçekleştirilmiş çok sınırlı sayıda çalışma 
bulunmaktadır. 

Bu çalışmanın amacı, ilk olarak, biriktirme parametrelerinin elde edilen bor karbür 
kaplamaların özelliklerine olan etkilerini incelemek ve biriktirme şartları, bor karbür 
ince filmlerin büyüme morfolojileri ile mekanik ve aşınma özellikleri arasında bir 
ilişki kurmaktır. İkinci olarak ise, bor karbür yapısına azot ilavesinin etkilerini 
incelemek ve optimum sertlik ve tokluğa sahip aşınma dirençleri daha yüksek bor 
karbonitrür ince filmler elde etmektir.  

Bu çalışmada, farklı sıçratma teknikleriyle biriktirilmiş tek ve çok katmanlı bor 
karbür ve bor karbonitrür ince filmler incelenmiştir. Homojen ve taban malzemeye 
iyi yapışan bor karbür kaplamalar, sırasıyla, konvansiyonel doğru akım manyetik 
alanda sıçratma, plazma destekli doğru akım (DC) manyetik alanda sıçratma ve 
radyo frekans (RF) sıçratma teknikleriyle üretilmiştir. Proses gazına azot ilavesiyle, 
gerçekleştirilen reaktif doğru akım manyetik alanda sıçratma tekniğiyle bor 
karbonitrür ince filmler kaplanmıştır. Kalın bor karbür ve bor karbonitrür kaplamalar 
elde etmek için fonksiyonel gradyanlı çok katmanlı sistemler biriktirilmiş ve 
sonuçlar tartışılmıştır.  
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Bor karbür, bor karbonitrür ve fonksiyonel gradyanlı kaplamaların biriktirilmesinde, 
bu çalışma bünyesinde bor karbür tozlarının sıcak preslenmesiyle elde edilmiş, bor 
karbür hedef malzeme kullanılmıştır. Ticari kalitede bir bor karbür hedef malzeme 
radyo frekans sıçratma tekniğiyle biriktirilen bor karbür ince filmlerin üretiminde 
kullanılmıştır. Biriktirme parametrelerinin kaplama özelliklerine etkileri çeşitli 
karakterizasyon tekniklerinden faydalanılarak ortaya konulmuştur. Biriktirilen 
filmlerin elementel bileşimleri elektron prob mikro analizörü (EPMA) kullanılarak 
tespit edilmiştir. Filmlerin mikroyapı ve yüzey morfolojileri field-emission taramalı 
elektron mikroskobu (FE-SEM) kullanılarak incelenmiştir. Elementel derinlik 
profilleri ikincil iyon kütle spektrometresi (SIMS) kullanılarak çıkartılmıştır. 
Kaplamaların tribolojik özellikleri disk üzerinde pin testi kullanılarak tespit 
edilmiştir. Kimyasal bağ yapılarının özellikleri Fourier kızılötesi spektroskopisi 
(FTIR) kullanılarak incelenmiştir. Filmlerin nanoyapıları ve kristal yapı özellikleri 
geçirimli elektron mikroskobu (TEM) çalışmaları ile ortaya konmuştur.  

Çalışma neticesinde elde edilen sonuçlara dayanarak, bor karbür ince filmlerin sertlik 
ve aşınma direnci gerektiren uygulamalar için önemli bir alternatif olduğu 
düşünülmektedir. Üretim parametrelerinin değiştirilmesi ile farklı mikroyapılarda, 
dolayısıyla farklı özelliklere sahip bor karbür kaplamalar elde edilmiştir. Yapıya azot 
ilavesi ile optimum sertlik ve daha iyi aşınma dirençlerine sahip kaplamalar elde 
edilmiş ve söz konusu kaplamaların uygulama alanlarının daha da genişletilebileceği 
ortaya konmuştur. Fonksiyonel gradyanlı çok katmanlı kaplama tasarımlarının, içsel 
gerilmelerden kaynaklanan problemleri ve film yapışması gibi özellikle sert ve 
aşınmaya dayanıklı filmlerde çok karşılaşılan sorunları ortadan kaldırmakta 
kullanılabileceği tespit edilmiştir. Elde edilen sonuçlara göre, çeşitli endüstriyel 
uygulamalara yönelik, kalın bor karbür ve bor karbonitrür kaplamalar, uygun alt 
katmanların seçimiyle başarıyla biriktirilebilir.  

Anahtar kelimeler: Bor karbür, BCN, ince film, sıçratma, iyon destekli kaplama, 
nanomekanik, SIMS derinlik profili, mikroyapı, nanoyapı, triboloji 
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1. INTRODUCTION 

“God made the bulk; the surface was invented by the devil”, an aphorism quoted 

from the eminent physicist Wolfgang Pauli describes well the importance of the 

materials surface properties. He explained the diabolical characteristic of surfaces by 

a simple fact that a solid surface shares its border with the external world, while 

inside the solid; each atom is surrounded by other similar atoms. Therefore, surface 

properties of a solid are quite different from that of the bulk material.  

Humankind has tried to change the surface properties of the materials since antique 

ages. For example, gold beating and leafing to microscopically thinner form dates 

back to ancient Egypt and had used for protection and decorative purposes. An axe 

dating back to 900 B.C., possessing a Brinell hardness value of 444 at the edge, 

demonstrates that it had been carburized, which is a still used technique to increase 

surface hardness of materials.  

Today, surface coatings are used in the entire cross-section of applications ranging 

from microelectronics, display devices, corrosion, tribology and wear-resistance 

including cutting tools and different machine parts, high temperature oxidation, solar 

cells, thermal insulation and decorative coatings to improve the performance, 

extending the life, and enhancing the appearance of materials. First observations on 

thin film deposition dates back more than 150 years, but has advanced drastically 

during the past 30 years as a result of the technological achievements in deposition 

systems, plasma based techniques and atomistic deposition processes.  

A large variety of materials is used to produce these coatings. They are metals, 

alloys, refractory compounds (e.g., oxides, nitrides, and carbides), intermetallic 

compounds and polymers in single or multiple layers. The thickness of the coatings 

ranges from a few atom layers to millions of atom layers.  

Hard and wear resistant coatings constitute an important part of surface engineering 

applications and thin film researches. There are well-studied ceramic thin films for 
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industrial applications especially for cutting tools and other wear-resistance 

applications including TiN, TiAlN, TiC, SiC, WC, and DLC as examples. However, 

increasing technological and industrial demands request thin films with more 

complicated properties. For this purpose, B-C-N ternary system with its superhard 

phases is of great interest during last ten years. Especially boron carbide (B4C) with 

its high hardness and modulus besides other relevant properties is one of the most 

prominent candidates for wear resistance applications. Furthermore, boron 

carbonitride (BCN) thin films are attracting from the wear resistance point of view, 

due to the combination of different properties as a result of that of different phases 

such as ultra-hard diamond and cubic boron nitride (c–BN), as well as hexagonal 

boron nitride (h–BN). 

A thorough literature study shows that these two materials have not been yet 

investigated in details in the thin film form. First, there are very limited researches on 

boron carbide, which is a well-known man made technological ceramics with very 

large technological interest and application areas in bulk form. It is one of the least 

studied materials by atomistic deposition techniques such as sputtering and also the 

least studied compound in the B-C-N ternary diagram. Especially the effect of 

deposition parameters on film growth morphologies, on the micro and nanostructure 

of the coatings and consequently on different properties such as wear resistance, 

mechanical, optical and electronical properties have not been well established. On 

the other hand, almost all the efforts were given by different researchers to deposit 

cubic boron nitride. Very limited studies could be found focusing on the effect of 

nitrogen incorporation into boron carbide structure and on the different phases that 

could be obtained.  

Historically, sputtering is one of the oldest thin film deposition techniques and it 

occupies an important place between different physical vapor deposition (PVD) 

methods. In addition to its several advantages such as, high deposition rates, low 

temperature deposition, improved adhesion; with sensitive control of deposition 

parameters and different possible configurations, thin films with controlled 

microstructures thus well controlled properties can be obtained by sputtering.  

The aim of this study is to investigate at first, the effect of different sputter 

deposition parameters on the properties of boron carbide thin films and to establish a 
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relation between the deposition parameters, growth of boron carbide films and 

mechanical and wear properties. At the second, to study the effect of nitrogen 

incorporation into boron carbide structure and to establish optimum hard and 

lubricant boron carbonitride thin films. 

The dissertation is organized in the following way; first, a theoretical background on 

the deposition techniques and thin film system will be given in Chapter 2. In Chapter 

3, experimental details, the system used for the deposition of thin films including the 

deposition parameters, the properties of the target and substrate materials used in this 

study will be discussed followed by the presentation of the various characterization 

techniques used to elucidate different properties of thin films deposited. All the 

results obtained from different characterization techniques will be presented and 

discussed in Chapter 4. The dissertation will be closed with general conclusions and 

recommendations given in Chapter 5. 
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1.1 Résumé du Chapitre 

Les premières observations sur les couches minces remontent plus de 150 ans, mais 

l’utilisation et les applications se sont multipliées pendant les 30 dernières années en 

raison des avancées technologiques dans des systèmes de dépôt. Aujourd'hui, les 

couches minces ont des domaines d’applications très variés telle que la 

microélectronique, la corrosion, la résistance a l’usure avec les outils de coupe et 

différentes pièces de machine, l’oxydation à hautes températures, les piles solaires, 

l’isolation thermique et les couches décoratives.  

Les couches minces sont fréquemment utilisées pour améliorer les performances, 

prolonger la durée de vie, et améliorer l'aspect des matériaux. Parmi ces applications, 

les couches dures et résistantes à l'usure constituent une part importante d’un point de 

vue technologique, industriel et de recherche. Il existe des matériaux bien étudiés 

sous forme de couches minces céramique pour des applications industrielles telles 

que des outils de coupe, des pièces d'automobile et différentes pièces de machine, 

comprenant TiN, TiAlN, TiC, SiC, WC et DLC (Diamond like carbon – carbone 

adamantine) comme exemples. Cependant, les besoins technologiques et industriels 

d’aujourd’hui nécessitent l’utilisation de couches minces avec des propriétés plus 

évaluées. Pour cela, le système ternaire de B-C-N avec ses phases ultra dures a 

retenu beaucoup l’attention pendant ces dernières années. Particulièrement le carbure 

de bore (B4C), avec sa haute dureté et son module d’Young élevé en plus d’autres 

propriétés intéressantes, est l'un des matériaux les plus prometteurs. Un autre 

solution envisageable est le carbonitrure de bore (BCN) qui combine différentes 

propriétés en raison de la combinaison possible de plusieurs phases telles que le 

diamant, le nitrure de bore cubique (c-BN) et le nitrure de bore hexagonal (h-BN).  

Le but de ce travail est d'étudier, en premier lieu, l'effet de différents paramètres de 

pulvérisation sur les propriétés des couches minces de carbure de bore et d'établir une 

relation entre les paramètres de dépôt, la croissance des couches de carbure de bore 

et les propriétés mécaniques dont principalement la résistance à l’usure. Le 2ème 

objectif est d’étudier l'effet de l'incorporation d'azote dans la structure de carbure de 

bore pour établir une couche de carbonitrure de bore à dureté et ténacité optimales 

combinées à une résistance à l’usure élevée. 
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2. THEORETICAL BACKGROUND 

In this chapter, the basis of the deposition techniques and thin film system 

investigated in this study will be given. The chapter will be started with sputtering 

phenomena, with an overview of the historical aspects, followed by detailed basics of 

the technique, different sputtering configurations used in this study and will be 

concluded with the nucleation and growth mechanisms of atomistically deposited 

thin films. 

In the second part, a literature survey on boron carbide, its structural, mechanical, 

chemical, electrical, and tribological properties, and its application areas will be 

presented. N incorporation into boron carbide structure, B-C-N ternary system will 

also be discussed in a separate section. Finally, the concept of multilayered 

functionally graded design and its usage in thin film applications will be given.  

2.1 Sputtering Phenomena 

Historically, sputtering is one of the oldest thin film deposition techniques. Today, it 

is the most widely used technique in industry and academia to deposit thin films in a 

very large spectrum and for many purposes. It is generally believed that sputtering is 

the simplest thin film deposition technique from both operational and theoretical 

point of view, which is relatively and/or partially true. However, it is ironically the 

most incompletely and incorrectly known thin film deposition technique. Therefore, 

a detailed explanation of the technique, starting from historical timeline, including 

the mechanism and different configurations is a prerequisite to interpret clearly the 

results obtained during this study.  

2.1.1 An historical overview 

If a surface is subjected to bombardment by energetic ions, it is eroded and surface 

atoms are ejected. This phenomenon is named "Sputtering" in English, “Sıçratma” in 
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Turkish, "Pulvérisation (Cathodique)" in French, "(Kathoden) Zerstäubung" in 

German and "(Katodnoe) Raspylenie" (Pаспыление) in Russian. 

The phenomenon was first reported by Sir William Robert Grove who is also known 

as being the inventor of the first fuel cell, in his historical article in 1852 [1]. Grove 

realized his experiments in a glass discharge tube and used a von Guericke type 

vacuum pump to get a pressure of about half to three-quarters of an inch of mercury 

with his own words, which equals to ~12.7 – 19.0 Torr or to ~1700 – 2500 Pa when 

converted to current SI units. He used a steel needle as the cathode and a polished 

silver plate as the anode at the beginning of his series of 16 experiments. The 

cathode–anode distance was fixed at 2.54 mm (0.1 inch). The details of the apparatus 

he used can be seen in Figure 2.1. This figure is scanned from the original offprint of 

the historical article signed by him. He observed hollow (sputtered) deposits which 

he called oxidation on the polished silver surface when it was made the anode and 

drawn them as can be seen in the figure (1-10). He inverted the anode and the 

cathode and observed the same phenomenon, which he called reduction. He used 

different materials instead of steel needle such as wires of copper, silver, platinum 

and changed the silver plate to bismuth, lead, tin, zinc, copper, iron, and platinum. 

He also realized his experiments in different gas atmospheres, such as oxygen, 

hydrogen, protoxide of nitrogen, carbonic acid, and carbonic oxide. Even the 

cathode–anode distance was changed in his experiments. Considering his 

systematical experiments, the general introduction of many books and papers on 

sputter deposition which cites only an observation of a deposit on the glass walls 

(this was an observation from one of his additional experiments and the glass in 

question was not the discharge tube but an additional glass which the wire (cathode) 

was sealed in) which implies a coincidence, is quite incomplete. 

Summarize the history of the sputtering phenomena is an hard but fascinating work 

as the subject is strictly connected to the most important scientific achievements of 

the 18th and 19th centuries. Great experimentalist of that time worked on sputtering 

directly or occasionally. The most satisfactory and detailed review on the subject has 

been realized by D. Mattox in “The Foundations of Vacuum Coating Technology” 

[2] and is used as a guide throughout of this historical part. 
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Figure 2.1: Grove’s sputtering apparatus (1852) [1]. 
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The history of the components of a sputtering system could easily be dated to the 16th 

century, about 1640, to the discovery of the first piston–type vacuum pump by Otto 

von Guericke [2]. Michael Faraday was the first person who used a vacuum tube to 

create a glove discharge (plasma) in 1838, and the first who described the dark space 

lately known with his name in a glow discharge (See Figure 2.2 (d)). He also 

reported film deposition in a glow discharge tube in 1854 [2]. Heinrich Geissler, who 

was a German glassblower, invented sealed–off glove discharge tubes which are 

known as Geissler tubes in 1857 and by means of the mercury vacuum pump he 

invented in 1855, the tubes were evacuated more effectively to a relatively high 

vacuum [3]. The tube in question is an evacuated glass cylinder with an electrode at 

each end, which contains rarified gases such as neon, argon, air or conductive liquids 

or minerals. When a high voltage is applied to the electrodes, an electrical current 

goes through the tube, ionization of the gas occurs, hence different lighting effects 

are created. This was the first widespread recognition of glow-discharge plasmas. 

Some of the tubes were like Victorian style pieces of art and used for enjoyment (the 

basis of the neon lights of advertising) but others, especially the ones made for Julius 

Plücker who was a German mathematician and physician and his pupil Johan 

Wilhelm Hittorf working on the glow-discharges had given rise to the first important 

observations on the cathode rays1. Plücker is the first researcher who reported the 

formation of a (platinum) film inside of a discharge tube, creating a “beautiful 

metallic mirror” in 1858 [4]. This was the first report on the observation of a sputter 

deposited film over a relatively large area.  

It was by the work of William Crookes who modified the Geissler tubes and further 

improved the vacuum that the phosphorescent effects were further explored. The 

term cathode rays is often pronounced with his name and he is credited to be the first 

person proposed the fourth state of matter2 (plasma as it is known today) in 1879 [5].  

                                                 

1 The term “cathode rays” was introduced to the literature by Eugen Goldstein in 1876, a German 

physician who had undertaken his own investigations of the discharge tubes. He is also the discoverer 

of anode rays (canal rays), and in some sources is credited with the discovery of proton.  
2 Plasma is an expression coined by I. Langmuir in 1928 [I. Langmuir, ”Oscillations in ionized gases”, 

Proceedings of the National Academy of Sciences 14 (1928) 628] 
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First, he used the term “radiant matter”3 for this new state of material. In 1891, W. 

Crookes published an article on sputter deposition, which he called “electrical 

evaporation” [6]. He systematically analyzed the amount of sputtered materials 

(volatilized with his own words) for different metals and alloys by measuring the 

weight losses under similar discharge conditions. This was the first step in measuring 

the relative sputtering rates of materials and that article was probably the first 

popular publication on sputtering. Examples of activated Geissler and Crookes tubes 

can be seen in Figure 2.2. These tubes and observations made on cathode rays not 

only led the development of today’s sputtering applications but also caused the 

discovery of x-rays by Röntgen in 1895 and the electron4 by J.J. Thompson in 1897, 

both working with a Crookes tube, and constituted the basis for the development of 

fluorescent lights, television and computer monitors, many decades later.  

In 1877, A.W. Wright (Professor of Yale University) published a paper on the use of 

an electrical deposition apparatus to form mirrors and study their properties [7], 

which even today raise a question between scientists working on the history of 

vacuum deposition, whether he was using sputtering or cathode arcing. According to 

D. Mattox, Wright was sputtering because he was using an arrangement very similar 

to that of Grove, based on the description given in his paper, with one major 

difference; he used a swinging balance-pan fixture that allowed him to deposit a film 

over a relatively large area [2]. The apparatus drawn “a posteriori”, based on the 

description given in the Wright’s article can be seen in Figure 2.3. According to R. L. 

Boxmann, the question is, whether the discharge was a glow or an arc [8]. His 

opinion is that, as the inductor current given in Wright’s article was sufficiently great 

and the cathode diameter sufficiently small, the discharge operated in the arc mode 

[9].  

                                                 

3 The term “radiant matter” is attributed to Crookes in many sources, however in his lecture titled “on 

radiant matter” delivered at Sheffield University in 1879 before the publication of his article he stated 

that the expression was first proposed by Faraday, when delivering a series of lecture in 1816 at the 

early period of his career. 
4 Stoney used the term “electron” for the first time in 1894 as a unit of the elementary electrical 

quantity [G.J. Stoney, “Of the "Electron," or Atom of Electricity”, Philosophical Magazine, 38:5 

(1984) 418] 
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Figure 2.2: (a) Geissler tube made from uranium glass [10] (b) Activated Geissler 
tube [10] (c) Crookes tube [11] (d) Activated Crookes tube showing 
different regions of a glow discharge [11] (e) Schematic of a glow-
discharge tube showing various named regions [2]. 
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Figure 2.3: Wright deposition apparatus based on the description given in his 
paper [9]. 

Another evidence of the uncertainty on the Wright’s description of the deposition 

process he used, is the decision of U.S. Patent Office when challenging Thomas 

Edison’s 1884 patent application on arc-based “vacuous deposition” [12]. The patent 

examiners pointed out the work of Wright, which Edison was apparently unaware 

[2]. Edison modified his application by describing Wright’s work as a laboratory 

curiosity and a too slow process to be commercially useful and by maintaining that 

Wright used a pulsed arc whereas his was a continuous arc. The patent office used 

Wright’s work as “prior art” and finally the patent issued in 1894 [2,9]. By using 

whether sputtering or cathodic arc, Wright should be credited with being the first to 

characterize vacuum-deposited films for their specific properties such as visual 

appearance of the films by reflected and transmitted light, chemical stability and 

adhesion. Crookes, in his article on sputtering, referred to Wright’s work on 

producing mirrors [6]. In 1892, Edison used a vacuous deposit to seed coat his wax 

cylinder phonograph masters for subsequent electroplating [12,13]. In his 1902 

patent on the subject [14] he indicated that the deposition process (arc deposition) 

described in his previous patent [12] wasn’t suitable because of uniformity and 

heating problems, and in the figure in this patent (Figure 2.4) he showed a sputtering 

cathode  for depositing the metal. Therefore, Edison should be credited with the first 

commercial use of sputter deposition. Later on, he interested in making filaments in 

form of freestanding foils for his light bulbs using sputter deposition [2].  
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Figure 2.4: T. A. Edison’s sputtering apparatus [14]. 

After the late 1800s, sputter deposition was used occasionally to make mirrors [15]. 

With the advance of the technology and process modifications such as magnetron 

sputtering, RF sputtering for non-conductive materials, reactive sputter deposition for 

compounds, and the use of controlled concurrent ion bombardment, sputter 

deposition rapidly developed after the mid-1970s. Today’s applications are 

numerous, ranging from microelectronics, display devices, corrosion, tribology and 

wear-resistance including cutting tools and different machine parts, high temperature 

oxidation, solar cells, thermal insulation and decorative coatings. 

The term “sputtering” was probably created to distinguish the source of vaporization; 

between thermal evaporation and non-thermal (momentum transfer) process [2].     

At the beginning, the term “spluttering” was used. However, there is no convincing 
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information in the literature on who and when coined the term spluttering. A 

literature search by G.K. Wehner [16] shows that J.J. Thomson was using the word 

spluttering in 1913 [17] and this does not seem as the first usage of the term. 

Probably first elimination of the “l” was made by I. Langmuir and K.H. Kingdon in 

1923, which was the first use of the term “sputtering”. Both of the verbs to “splutter” 

and to “sputter” originate from Latin “sputare” which means, “to emit saliva with 

noise”. Other expressions proposed to describe the phenomena were, “impact 

evaporation” by Kay and Guenterschulze [16], “cathodic bombardment” [15] and 

“cathode disintegration” [18] to refer the destructive and unwanted effect when the 

first observations were made on the phenomena.  

2.1.2 Sputtering theory 

Sputter deposition is a Physical Vapor Deposition (PVD) process. To deposit a 

coating, the source of coating material, termed the “target” is mounted opposite to 

the substrates in a vacuum chamber. The chamber is then evacuated to a base 

pressure in the ranges of 10-6 to 10-10 Torr (10-4 to 10-8 Pa), depending upon the 

process. A sputtering apparatus, in which the target and substrate are opposing 

parallel plates, is shown schematically in Figure 2.5 [19]. 

Figure 2.5: Schematic representation of diode sputtering assembly [20]. 
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A precursor gas, Argon in most applications because of its mass compatibility with 

materials of engineering interest and its low cost, is then inserted into the deposition 

chamber to a pressure from 1 to 100 mTorr (0.1 to 1 Pa) [19]. When the target is 

powered negatively, typically between 0.5 and 5 kV, ionized Argon atoms provides 

the ion bombardment of the target. The process is then, the ejection of the target 

atoms as a result of the argon ion bombardment, their transfer to the substrate with a 

kinetic energy and the nucleation and growth of the thin film on the substrate 

surfaces.  

2.1.3 Sputtering mechanisms  

When an ion strikes the cathode, many interactions can occur on its surface as 

illustrated in Figure 2.6. These interactions include liberation of neutral atoms, 

ionized atoms, backscattering, x-ray emission, photon generation, secondary electron 

emission, and desorption of gas atoms from the target surface. Several other 

processes can occur also in the target, including the generation of collisional 

cascades, the creation of point defects, local heating, amorphization, implantation, 

and compound formation [21].  

Figure 2.6: Synopsis of the interaction events occurring at and near the target 
surface during the sputtering process [21]. 

In the sputtering process shown in Figure 2.6, if the incident particle impacts the 

surface of the solid with sufficient energy, it breaks bonds and dislodges atoms. The 

atoms thus removed from the solid are considered as sputtered atoms [22].  
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Sputtering can be described in four general energy ranges, from energies at near the 

binding energy to many MeV [22]. Very low energies: Although recent approaches 

demonstrated that, at incident ion energies of a few eV up to 30–50 eV, there is very 

little sputtering and the minimum ion energy for sputtering is the binding energy of 

the most-weakly-bound surface atom [22], there is still a general consensus on the 

presence of a sputter threshold below which no sputtering occurs as presented in 

early works (1960’s) [19]. Very low energy sputter yield measurements are difficult 

to make accurately and there is almost no mention of them in the literature [22]. 

Single Knock-on energy regime: At low energies <1 keV, the interaction is referred 

to as knock on regime [22,23]. In this regime, the incoming particle has more than 

enough energy to dislodge tens to hundreds of atoms. When collision takes place, the 

incident and the impacted particles move into the material causing more collisions 

[22]. Knock-on sputtering has been modeled by computer calculations, which follow 

the trajectories of a large number of incident and impacted particles [22]. Figure 2.7 

shows a computer simulation of such a process resulting from a single bombardment 

event. It is clear that sputtering cannot result from a single binary collision since the 

momentum vector of the target atom must be altered by more than 90°.  

Figure 2.7: Computer simulation of a portion of a collision sequence initiated by 
a single ion-bombardment event in a solid lattice [19]. 

In the simulated collision sequence of Figure 2.7, the incoming projectile strikes 

target atom 1 and moves it deeper into the lattice. The collision with atom 2 causes 

the projectile to hit atom 3, which is displaced and collides with surface atom 4. 

Thus, sufficient momentum is transferred to atom 4 to overcome the surface energy 

barrier and be ejected [19]. Knock-on sputtering characterizes the practical energy 

range used for most sputtering applications [19].  
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Collision-cascade sputtering: At ion energies between 1 keV and 50 keV, the 

incident particle has sufficient energy to break all the bonds between atoms in a 

spherical region around the impact point [22]. As the incident ion hit the surface it 

creates a series of collisions with atoms in the solid. In many of these collisions, 

sufficient energy is transferred to displace the atoms. The displaced atoms may 

displace other atoms and so on, thus creating a cascade of atomic collisions [23]. 

While this regime has generally higher yields than the knock-on regime, the higher 

energies (and voltages) make it impractical to use for most industrial scale sputter 

deposition applications [22]. This regime is mostly used for analytical 

characterization of surfaces by techniques such as Rutherford Backscattering 

Spectroscopy and Secondary Ion Mass Spectroscopy, which will be explained in 

details in Section 3.2.4. 

High-energy implantation: At ion energies above 50 keV, the incident particle can 

travel well into the bulk of the solid before depositing all its energy. While this can 

create significant damage a micron or so below the surface, little or no sputtering 

occurs as the energy is deposited so far away from the surface. In addition, the 

incident particle is often trapped or implanted within the sample [22]. This regime is 

used especially in semiconductor device fabrication. The introduction of dopants in a 

semiconductor is the most common application of ion implantation. Dopant ions 

such as boron, phosphorus or arsenic are generally created from a gas source then 

implanted with high energies, modifying the conductivity of the semiconductor in its 

vicinity. 

The momentum-transfer theory for physical sputtering was proposed early-on but 

was supplanted by the “hot-spot” theory involving thermal vaporization [16]. It has 

only been in recent years that the true nature of the physical sputtering process has 

been defined and modeled [24]. Much of that knowledge came from the work of 

Guntherschulze in the 1920’s and 30’s and Wehner and his co-workers in the 1950’s 

and 60’s [24]. To explain the momentum transfer theory, a particle of mass Mi with a 

velocity Vi which impacts on a line of centers with a target particle of mass Mt will 

be considered, as shown in Figure 2.8.  
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Figure 2.8: Schematic diagram showing momentum exchange processes that 
occur during sputtering [19]. 

Three simple observations can be made. First, the momentum delivered to the target 

particle drives it into the lattice. Secondly, from a simple line-of-centers atomic 

collision calculation, a fraction of the kinetic energy of the incident particle is 

transferred to the target particle [19]. 
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An expression for the yield, which can be written in the form shown in Eq. (2.2) has 

been derived below [19]. 
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The relationship is useful for illustrating the functional dependences of the important 

parameters and provides reasonably good agreement with measurements for medium 

mass (Ar, Kr) bombardment of a wide variety of materials. The yield is seen to 

depend directly on the energy transfer coefficient ε. The term α(Mt/Mi) is a near-

linear function of Mt/Mi, E is the kinetic energy of the incident ion, and U is the heat 

of sublimation for the target material. The mass dependence of εα does not vary 

greatly from one material to another. The primary material-sensitive factor is the heat 

of sublimation, and this is only a first power dependence. This is in contrast to 

chemical and thermal processes that depend exponentially on activation energy. It is 

this relative insensitivity to the properties of the target material that gives sputtering 

the universality [19]. 
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When the ion mass is lower than that of the target atom, it may be reflected backward 

in a single collision with a kinetic energy that is still a significant fraction of its 

initial energy. For a 180° reflection, this fraction is If Mi > Mt, reflection requires 

more than one collision and the reflection coefficient is low [19]. 
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Since the ions have a high probability of being neutralized prior to impact, they are 

reflected as energetic neutrals, which are therefore not influenced by the electric field 

over the target surface. The flux of reflected species contributes to substrate heating, 

particularly in devices operating at low pressures where the reflected neutralized ions 

may reach the substrates with little loss of kinetic energy by gas-phase collisions. 

Consequently, the reflected species bombard, and can become entrapped in the 

growing film [19]. 

2.1.4 Sputtering rate 

The sputtering process is quantified in terms of the sputtering yield, which is defined 

as the number of target atoms ejected per incident particle. The yield depends on the 

target species and the nature, energy, and angle of incidence of the bombarding 

species [19]. The sputtering yield tends to be greatest when the mass of the 

bombarding particle is in the same order or larger than that of the target atoms. It is 

relatively insensitive to the target temperature [16]. The yield is also independent of 

whether or not the bombarding species is ionized [19].  

Sputtering yields are determined experimentally. The dependence of sputtering yield 

on incident ion energy shows a characteristic appearance as shown in Figure 2.9. As 

explained before, below the threshold energy no sputtering occurs. The surface 

binding energy, Usb, (2–10 eV) of the atoms must be exceeded for the atom in order 

to escape from the solid by sputtering [23].  
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Figure 2.9: Sputtering yield versus energy of the incident ion [25]. 

Above the threshold energy, the sputtering yield increases initially in a quadratic 

manner and then increases linearly and attains a maximum. At higher energies, the 

sputtering yields decrease quite rapidly as the ions penetrate far inside the solid. In 

the energy range of 100–1000 eV, the sputtering yield is approximately linear in ion 

energies and independent of incident ion species [23].  

Figure 2.10: Variation of the sputtering yield of several materials as a function of 
Ar+ ion energy at normal angle of incidence [23]. 
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At typical ion acceleration energies, sputtering yields of most metals are very close 

to one another. The values of sputtering yield lie between 0.5 and 20 in the keV 

energy range for medium mass ions [23]. Figure 2.10 shows sputtering yield versus 

ion-energy data for several materials under normal ion incidence. 

The general dependence of the sputtering yield on the ion angle of incidence is 

indicated in Figure 2.11. In glow-discharge sputtering devices, the ions generally 

approach the target in a direction normal to the target surface. Thus, the relationship 

shown in the figure is of particular significance when the target surface is highly 

irregular or for ion-beam sputtering where the ion-incidence angle can be controlled 

[19]. 

Figure 2.11: Schematic diagram showing variation of the sputtering yield with ion 
angle of incidence for constant ion energy [24]. 

For off-normal bombardment, the sputtering yield initially increases to a maximum 

then decreases rapidly as the bombarding particles are reflected from the surface [22] 

and this effect is called the “angle-of-incidence effect” as shown in  Figure 2.11. The 

maximum sputtering yield for argon generally occurs at about 70 degrees off normal 

but this varies with the relative masses of the bombarding and target species. The 

increase of sputtering yield from normal incidence to the maximum can be as much 

as an increase of 2 to 3 times [24]. 

2.1.5 The nature of sputtered species 

Under typical conventional sputtering configurations, most sputtered material is 

ejected in the neutral atomic state. The fraction of charged particles sputtered from 
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target surface is on the order of 10-4, becoming larger for surfaces contaminated with 

strongly electropositive or electronegative species [19]. Plasma characterization such 

as the ionization degree and the nature of species present in the flux is difficult and 

necessities in-situ special arrangements such as Langmuir probes or mass 

spectrometers attached to the deposition systems. Therefore, the data on said 

properties of glow discharge plasmas is limited. A literature review realized by 

Thornton and Greene in [19] will be quoted here. They stated that relatively little 

experimental data is available on the probability of material being sputtered as 

molecules or clusters. Investigation by Oechsner and Gerhard [26] using mass 

spectrometric analyses of post-ionized sputtered neutral particles has shown that with 

1 keV Ar+ bombardment, the maximum fraction of sputtered dimers is 0.1 for Ag, 

Au, and Cu and about 0.03 for other metals. The fraction of trimers is about 0.001. 

The mechanism for the sputtering of molecular species is not well established. 

Statistical models have been proposed in which sputtered neutral atoms resulting 

from nearly-simultaneous ejection events agglomerate above the surface if their 

ejection is properly correlated and their relative kinetic energy is less than the 

dissociation energy of the molecule formed [27,28].  

In the case of compounds, most of the information available on molecular sputtering 

is for alkali halides and oxides where clusters can account for a significant percent of 

the total sputtered flux. Coburn et al. showed that the relative fraction 

molecules/neutrals of sputtered species from MxOy metal oxide targets increased 

with increasing M-O bond energy [29].  

Using 140 eV Ar+ bombardment, comparable to the average impact energy in many 

glow discharge deposition experiments, Comas and Cooper found from post-ionized 

mass spectroscopy measurements that molecular species (GaAs, Ga2, As2) amounted 

to less than 1% of the total sputtered flux [30]. However, for 6 keV Ar+ ion 

sputtering, Szymonski and Bhattacharya observed that at room temperature, 

sputtered GaAs and As2 molecules accounted for ~ 14% and 11% respectively of the 

flux [31]. The fraction of sputtered GaAs molecules was found to increase rapidly for 

target temperatures above 250°C. This latter effect was explained as being due to 

enhanced sputtering from collisional spikes. 
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As a conclusion, if a special configuration such as ionized PVD or ion plating is not 

mentioned, the transferred flux is formed of mostly single neutral atoms ejected from 

the target material in conventional (magnetron) sputtering. Above mentioned special 

configurations will be explained in details in Section 2.2.4. 

2.1.6 Energy and direction of sputtered atoms 

An important distinction between sputtering and other vapor phase deposition 

techniques is that sputtered atoms can have quite high kinetic energies. For example, 

the average ejection energy of Ge atoms under 1.2 keV Ar+ bombardment is ~15 eV 

compared to only ~0.1 eV for evaporated Ge. In sputter deposition systems for which 

the target-substrate separation is less than a few mean free paths, the energy 

distribution of sputtered species impinging on the substrate will be approximately the 

same as the ejected species energy distribution [19]. 

The most probable ejection energy is typically half of the surface binding energy, but 

because of the extended high-energy tail the average ejection energy is considerably 

higher (Figure 2.12) and, in general, is found to increase with the atomic number of 

the target [19]. 

Figure 2.12: (a) Comparison of velocity distributions of sputtered and evaporated 
Cu atoms (b) Energy distribution of sputtered Cu atoms at various 
energies [19]. 

The angular emission distribution for sputtered atoms is often described as a cosine 

distribution. This means that the relative amount of material sputtered at any 

particular angle can be compared to the amount sputtered at normal incidence times 

the cosine of the angle from normal incidence. 

(a) (b) 
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This is shown schematically in Figure 2.13. The overall distribution is often drawn as 

a circle, which is the relative amount emitted at any particular angle. In three 

dimensions, this would appear as a sphere centered on the impact point [22]. 

Figure 2.13: Angular emission distribution for sputtered atoms [22]. 

2.2 Sputtering Configurations 

The technological advances in the power supplies, vacuum pumps and other 

components have caused different sputtering configurations to be developed during 

last 40 years for the following attempts:  

1. Increase the sputtering rate 

2. Increase the available deposition area  

3. Reduce plasma heating of the substrates  

4. Operate at lower working-gas pressures  

5. Facilitate the coating of complex substrate shapes.  

6. Increase the ionization 

7. Deposit non-conductive or compound thin films 

There is a wide range of sputtering configurations, therefore in the following 

discussion, only the configurations used in this study will be reviewed. 
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2.2.1 Planar diode and DC glow discharge configuration 

The planar diode shown schematically in Figure 2.14 is the simplest and the most 

widely used sputtering configuration [19]. The target, in the form of a plate, consists 

of the material that will eventually result in a thin film. A DC power supply capable 

of supplying several kilovolts (0.5–5 kV) is used to energize the electrodes. The 

substrate is placed as to face the target [23]. Cathode diameters are typically 5 to 30 

cm and the cathode to anode spacing is generally 3 to 10 cm [19]. Arrangement for 

cooling or heating the substrate can be used. The substrate can be electrically 

grounded, biased or floating [23]. 

The chamber is evacuated to a base pressure that typically ranges from 10-6 to 10-10 

Torr (10-4 to 10-8 Pa) depending on the specific needs. The base pressure obtained 

prior to sputtering should give an outgassing flux that is significantly less than the 

total sputtering flux in the process. The chamber is backfilled with argon up to a 

pressure of 1 to 100 mTorr (0.1 to 1 Pa) [23]. 

When the electrodes receive power, a glow discharge type of plasma is created [32]. 

Because of the relatively low mobility of the ions compared to the electrons, most of 

the electrical potential that is applied between the anode and cathode is consumed in 

the cathode dark space, or sheath region [19]. 

Figure 2.14: Schematic representation of a planar diode sputtering system with 
various named regions [19]. 

Only 1% of the energy is used to produce the ejection of sputtered particles, and 

about 75% goes into heating the target, remaining 26% is dissipated by secondary 

electrons when they bombard the substrate [23].  
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Dark space thicknesses are typically 1 to 4 cm, depending on the pressure and current 

density. Strong electric fields are formed in the dark space, and ions passing from the 

plasma volume to the cathode are accelerated by these fields to impact the cathode. 

These ions not only sputter target atoms, but also cause a small number of secondary 

electrons to be emitted from the target surface (approximately one for every ten ions 

in the case of Ar ions impacting on a metal cathode). These electrons are accelerated 

in the cathode dark space and enter the plasma volume (negative glow) where they 

collide with gas atoms causing the ionization of the gas and sustain the discharge 

[19]. The atoms ejected from the target with a momentum as a result of the ion 

bombardment, are transferred to the substrate where they condensate and nucleate to 

form a thin film. 

Planar diodes are widely used despite substrate heating and low deposition rates. The 

reason is their simplicity and their ease of fabrication from a wide range of materials. 

It has also to be noted that such planar diode systems are suitable to operate with 

both DC and RF power supplies [19,23]. 

2.2.2 Magnetron sputtering 

The use of magnetron design was first introduced by Penning in 1936 [18] by using 

“crossed field” (electric and magnetic) electron trap to enhance plasmas in sputtering 

from cylindrical hollow magnetrons, and from cylindrical post magnetrons by 

Penning and Mobius in 1940 [33]. The development of high performance magnetron 

sputtering sources allowed sputtering to be performed at higher deposition rates, 

larger deposition areas, lower voltages and lower substrate temperatures than with 

non-magnetic DC sputtering [2,19]. Hence, almost a century after the first discovery 

of the phenomenon by Grove, sputtering became a suitable technique for industrial 

application of thin films [2].  

Magnetron sputtering sources are diode devices in which magnetic fields are so 

configured that the ExB electron drift currents close upon themselves, thus form 

traps for electrons to stay near the target surface [19]. An appropriate arrangement of 

the magnets allows a closed path for the electrons on the target surface, moving 

normal to the magnetic field then a “circulating current” is established on the surface. 
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Figure 2.15: (a) Magnet design effect on electron’s motion in a sputtering 
system[34] (b) 3D graphic showing magnetic field lines for a circular 
magnet design behind a circular target material [35] (c) Erosion effect 
of the target material due to the circular magnetron design [34]. 

This circulating current may be several times the current measured in the external 

electrical circuit [24]. As can be seen from Figure 2.15, the electron trajectory 

became sinusoidal which increases the path and consequently the probability of the 

collisions with Ar atoms. Therefore, the high flux of electrons creates high-density 

plasma near the target surface hence increase the deposition rates. Several magnetron 

configurations can be found in the literature including planar magnetron shown in the 

figure, the S-Gun type, and the cylindrical type [19]. 

 

(b) (c)

(a) 
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2.2.3 RF sputtering  

The technique was first introduced to the literature by Anderson, Mayer, and Wehner 

in 1962. They reported on the RF sputtering of a film that had been deposited on the 

inside of a glass window [36,37]. This was based on a suggestion by Wehner in 1955 

[38].  

DC methods cannot be used to sputter non-conducting targets because of charge 

accumulation at the target surface. The use of RF methods for sputtering                   

non-conducting materials is based upon the fact that a self-bias voltage, negative 

with respect to the plasma potential, develops on any surface that is capacitively 

coupled to a glow discharge [19]. The basis for this potential, which forms as a 

consequence of the difference in mobility between electrons and ions, is illustrated 

schematically in Figure 2.16.  

Figure 2.16: Schematic illustration of the development of a negative bias in a RF 
system [19]. 
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The current-voltage characteristic for an electrode immersed in plasma is given in 

Figure 2.16 (a). The voltage is negative relative to the plasma potential by an amount 

that depends upon the gas species and electron energy distribution, but is typically -

20 to -50 V and therefore too low to produce significant sputtering of most materials 

[19,24]. When an alternating voltage is applied to an electrode, a positive/negative 

potential appears on the surface as can be seen in Figure 2.16 (b). During part of each 

half-cycle, the potential is such that ions are accelerated to the surface with enough 

energy to cause sputtering while on alternate half-cycles, electrons reach the surface 

to prevent any charge buildup [24]. 

RF frequencies used for sputter deposition can be in the range of 0.5–30 MHz. Most 

systems are operated at a frequency of 13.56 MHz, since this has been allocated by 

the Federal Communications Commission (USA) for industrial-scientific-medical 

purposes [19]. Although the deposition rates are relatively low compared to DC 

magnetron sputtering, its ability to sputter insulator cathodes has adapted this 

technique to wide variety of applications [39]. All types of magnetron designs are 

successfully used in rf sputtering configurations [19].  

2.2.4 Bias sputtering – ion plating 

Bias sputtering or ion plating are the generic terms used to describe that substrate 

surface and the growing film are subjected to a flux of energetic particles which 

influence the film formation process and the properties of the deposited films 

[24,40].  

In 1962 Wehner patented the process of deliberate concurrent bombardment before 

and during sputter deposition using a “bias sputter deposition” arrangement and 

mercury ions  to improve the epitaxial growth of silicon films on germanium 

substrates and to lower the epitaxial temperature [41]. Separately, in 1964 Mattox 

introduced the term “ion plating” [42] and patented the process in 1966 [43]. By 

definition, the term ion plating does not specify the source of the depositing film 

particles, the bombarding particles, nor the environment in which the deposition 

takes place. The idea is to change the film properties by particle bombardment during 

its growth. Bias sputtering, hence, can be considered one form of ion plating. 
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As explained in previous sections, during conventional sputter deposition and 

especially in magnetron designs, the plasma is held near the cathode. For an effective 

bias sputtering however, plasma must be sustained near the substrate surfaces [40]. 

This may be done by having an auxiliary plasma generating technique such as, hot 

filament, hollow cathode triode configuration, or unbalanced magnetron sputtering. 

In this kind of configurations, the substrate is negatively biased and is in contact with 

plasma. Bombarded positive ions from the plasma are accelerated by the negative 

voltage applied to the substrates and arrive at the surface with a spectrum of energies 

[24].  

The advantages of bias sputtering can be listed as follows: 

1. The substrate surfaces can be cleaned in the deposition chamber (bias 

etching) which means a final surface finishing before deposition to remove 

any contaminants from the surface in an atomic matter and also surfaces 

would be activated by this operation.  

2. Bombardment during the nucleation stage of film deposition can increase the 

nucleation density. 

3. Bombardment during interface formation adds thermal energy to the surface 

and introduces lattice defects into the surface region which promotes 

diffusion and reaction. 

4. Bombardment during film growth results with the increase of the film 

density. It causes recoil displacement of near surface atoms (atomic peening), 

causes sputtering and redeposition, bombardment aids chemical reactions on 

the surface and the presence of plasma activates reactive species. The 

bombardment can also preferentially remove unreacted species [24].    

There are different terms for different configurations used to bombard the growing 

film; bias sputtering, bias sputter deposition, ion plating, ion vapor deposition, ion 

beam enhanced deposition (IBED), ion beam assisted deposition (IBAD), ionized 

physical vapor deposition (iPVD), plasma enhanced magnetron sputtering (PEMS) 

are some of them found in the literature. It has to be noted that at the beginning, the 

aim of auxiliary plasma configurations was only the effective bombardment of the 
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growing film by ions of the sputtering gas while sustaining the plasma onto the 

substrates. However, recent advances in the sputtering technique and power supplies 

led also post-ionization of the neutrals ejected from the target materials. Especially 

the term i-PVD coined at the beginning of 2000’s refers the case that the deposition 

flux consists of more ions than neutrals. Hence, the ions of the film forming material 

named “film ions” are guided more precisely towards the complex shaped substrates. 

Inner sides of the materials can also be coated by this way. The growing film is 

bombarded by mostly its own ions (film ions) and even self-sputtering applications 

without a precursor gas, thus without impurity incorporation is possible. However, it 

is not the subject of the present study and extensive review on the ionized PVD can 

be found in [44,45]. 

2.2.5 Reactive Sputtering 

Reactive sputtering is a process in which a fraction of at least one of the coating 

species enters the deposition system in the gas phase [19]. The first observation on 

the deposition of compounds by sputtering in a reactive gas for use as optical coating 

was reported by Overbeck in 1933 [46]. The term “reactive sputtering” was 

introduced by Veszi in 1953 [2]. 

With the incorporation of reactive gas, a wide variety of compounds including 

oxides, nitrides, carbides, sulfides may be deposited from a metallic or a compound 

target. A brief list of most common reactively sputtered compounds can be given as 

follows; 

1. Oxides (oxygen) – Al2O3, In2O3, SnO2, SiO2, ZnO,  

2. Nitrides (nitrogen, ammonia) – TiN, AlN, Si3N4, TaN  

3. Carbides (acetylene, methane, propane) – TiC, SiC, WC, B4C 

4. Sulfides (H2S) – CdS, CuS, ZnS 

5. Oxycarbides and oxynitrides of Ti, Ta, Al, Si [39] 

Desired gas composition and flow for reactive sputtering can be established by 

monitoring the partial pressure of the reactive gas as a function of gas flow in the 

deposition reactor [24]. Chemical reactions to form compound thin films can occur at 
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the target surface, at the substrate or at high working pressures, in the gas phases 

[19]. The most important problem in reactive sputtering is to prevent the poisoning 

of the sputtering target by the formation of a compound layer on its surface. This 

layer greatly reduces the sputtering rate and efficiency, and could even stop the 

process by forming a non-conductive layer while using DC power supplies [24]. The 

advantages of reactive sputtering can be listed as follows; compounds can be formed 

by using relatively easy to fabricate metallic targets, insulating compounds can be 

deposited by DC power supplies with a special care to target poisoning, films with 

graded compositions can be formed by step by step adjustment of the reactive gas 

flow [19]. 

2.3 Film Growth and Microstructural Evolution 

The growth of vacuum deposited films proceeds in three general steps as indicated 

schematically in Figure 2.17. The first step involves the transport of the coating 

species to the substrate. The second step involves the adsorption of these species 

onto the substrate surface or growing coating, their diffusion over this surface, and 

their incorporation into the coating or their removal from the surface by evaporation 

or sputtering. The third step involves movement of the coating atoms to their final 

position within the coating by processes such as bulk diffusion [47]. 

Figure 2.17: Steps involved in the condensation of a vapor during film growth [47]. 

In the case of sputtering, the primary deposition variables which determine the 

nucleation, growth kinetics and microstructural properties of films are; the film 

material, the incident film flux, the kinetic energy E of species incident at the film 

growth surface, the film growth temperature Ts, the flux of contaminants, and the 

substrate material surface cleanliness, crystallinity and orientation [48].  
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2.3.1 Nucleation mechanisms in thin film growth 

For atomistically deposited films using vapor phase deposition techniques, there are 

three primary modes of film growth on substrates as illustrated schematically in 

Figure 2.18. 

Figure 2.18: Schematic representation of three film growth modes where θ is the 
overlayer coverage in monolayers (ML) [49]. 

Three-dimensional (3-D) island, or Volmer-Weber growth, in this growth mode, the 

adatoms (adsorbed atoms that are mobile on a surface) diffuse on the surface and 

interact with other adatoms or reevaporate. A fraction of the adatoms nucleates 

directly on the substrate surface as small clusters. The clusters then grow into islands 

which in turn coalesce to form a continuous film as shown schematically in Figure 

2.19 and by TEM observations in Figure 2.20 respectively [20,39,49]. This type of 

growth occurs when the film atoms are more strongly bound to each other than to the 

substrate [48]. 3D nucleation can initiate at active surface sites, atomic steps and 

impurities. However, even if there are no active nucleation sites on the surface, 3D 

nuclei can still form at random surface locations by the spontaneous accumulation of 

mobile adatoms. Thus formed stable nuclei, which are bigger than a critical size, 

overcome the nucleation barrier and form clusters [39]. The columnar growth of 

physical vapor deposited films is the most well known example of 3D growth and 

will be explained in details in the next section.  

In 3D growth, at sufficiently high deposition rates and/or low deposition 

temperatures, resultant films are amorphous since the adatoms do not have enough 

time to diffuse across the surface, consequently they cannot find low energy sites 
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Figure 2.19: Schematic representation of the island density n as a function of the 
coverage θ during three–dimensional growth [48]. 

Figure 2.20: Nucleation, growth and coalescence of Ag films on (111) NaCl 
substrates [39]. 
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before they are buried by subsequently deposited adatoms [49]. Covalently and 

ionically bonded materials have low packing densities and strong bonding 

directionality, thus easily deposited in the amorphous state [49]. Metals exhibit much 

higher diffusivities and are considerably more difficult to obtain in the amorphous 

state [49].  

Two-dimensional (2-D) layer-by-layer, or Frank-van der Merwe, growth occurs 

when the binding between film atoms is equal to or less than that between the film 

atoms and the substrate [20]. In 2D growth, there is no nucleation barrier, hence the 

adsorbing atoms do not accumulate into 3D islands but, instead, spread out on the 

surface in a partial monolayer as shown in Figure 2.18 [19,39]. The most important 

examples of this growth mode are the homoepitaxial growth of Si on Si or 

heteroepitaxial growth of semiconductor AlAs films on GaAs. There are other 

examples of 2-D growth in metal-metal systems such as Cd on W growth [39,49].  

Stranski-Krastanov growth is a combination of the first two. In this case, after first 

forming one or more monolayers, further layer growth becomes unfavorable and 3-D 

islands form. The transition from 2-D to 3-D growth is not completely understood 

but can be driven in some cases by the release of elastic energy stored in the film due 

to film/substrate lattice mismatch. This growth mode occurs much more frequently in 

metal-metal and metal-semiconductor system [49]. 

2.3.2 Microstructure evolution and structure-zone diagrams 

After a growth mode has been established, the film morphology can be described by 

a Strucuture-Zone Diagram (SZD). Movchan and Demchishin [50] were the first to 

categorize microstructures observed in vapor-deposited films using a SZD in which 

the general features were schematically illustrated as a function of the normalized 

growth temperature, T/Tm as shown in Figure 2.21. Where T is the substrate 

temperature and Tm is the melting point of the coating material. Based primarily 

upon optical metallographic studies, they concluded that their evaporated thick 

coatings (0.3 to 2 mm) of Ti, Ni, W, ZrO2, and Al2O3 could be represented as a 

function of T/Tm in terms of three zones, each with its own characteristic 

microstructure and physical properties. 
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Figure 2.21: Movchan and Demchishin (MD) structure-zone diagram [50]. 

The low temperature (T/Tm<0.2 - 0.3) zone 1 structure was columnar, consisting of 

tapered units defined by voided growth boundaries. The zone 2 structure 

(0.3<T/Tm<0.5) consisted of columnar grains which were defined by metallurgical 

grain boundaries. The high temperature zone 3 (0.5<T/Tm<1) structure consisted of 

equiaxed grains. The simplicity of the Movchan and Demchisin SZD insured its 

popularity and many researchers showed that the general features represented in the 

diagram also applied to films with thickness in the order of micrometers rather than 

millimeters, and also to films deposited by other techniques such as sputtering, and to 

polycrystalline as well as amorphous materials [49]. 

Thornton, in 1974, extended the Movchan and Demchishin (MD) SZD by adding an 

additional axis for the pressure of the sputtering gas during cylindrical-post 

magnetron sputter deposition of relatively thinner (compared to MD), 25–250 μm Ti, 

Cr, Fe, Cu, Mo, and Al coatings [51]. In Thornton’s SZD which is shown in Figure 

2.22, the sputtering gas pressure P is not a fundamental parameter. Rather, the 

pressure affects the film microstructure through several indirect mechanisms. 

Increasing the pressure to values such that the mean-fee path for elastic collisions 

between sputtered (or evaporated) species and the gas becomes of the order of the 

target-substrate distance increases the oblique component of the deposition flux 

resulting in a more open zone-1 type structure. In addition, the energy of sputtered 

atoms and therefore, adatom mobilities on the substrate surface are decreased as a 

result of collisions in the plasma. Finally, decreasing the pressure during sputter 

deposition results in increased energetic particle (neutral) bombardment, and hence 

densification, of the growing film [53].  
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Figure 2.22: Structure-zone diagram showing schematic microstructures of films 
deposited by cylindrical magnetron sputtering as a function of growth 
temperature and Ar pressure [51]. 

Figure 2.23: SEM cross-sections of metallic coatings showing different 
microstructures (a) zone 1 (b) zone T (c) zone 2 [51]. 

Thornton in his revised SZD, directly related the three zones in the MD SZD to the 

steps of vapor deposited film condensation given in Figure 2.17 as zone 1, atomic 

shadowing during transport, zone 2, surface diffusion and zone 3, bulk diffusion. He 

also added an additional region, labeled zone T that can be seen in Figure 2.22, 

which consists of a “dense array of poorly defined fibrous grains” and represents the 

transition between zones 1 and 2 according to his observations made by SEM. 

Examples of fracture cross-sections of metal coatings exhibiting zones 1, T, and 2 

structures from Thornton’s study are shown in Figure 2.23.  
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After the SZD of Thornton, many researchers reported that the cross-sections of both 

polycrystalline as well as amorphous films deposited from vapor phase at low 

temperatures are typically composed of columnar structures with extended voids 

along the column boundaries [49]. Especially in the zone 1 regime, the columns are 

generally not single grains but are composed of smaller equiaxed grains, or can be 

completely amorphous [52]. 

This columnar structure is formed due to preliminarily clustering effects and atomic 

self-shadowing which occur in the very low adatom mobility. Shadowing induces 

open boundaries because high points on the growing surface receive more flux than 

valleys, particularly when a significant oblique component is present in the flux. 

Substrate surface roughness plays an important role on the production of columnar 

type structures by creating oblique deposition angles [47]. Limited surface diffusion 

of adatoms at low temperatures is also a very important factor for this type of 

structure [52]. Increasing adatom surface diffusion at higher growth temperatures 

(Zones T and 2) give rise to denser although still columnar structures while grain 

growth (recrystallization during deposition) occurs at deposition temperatures above 

0,5 Tm [49].  

A revised version of Thornton SZD has proposed by Messier et al. in 1986 and is 

shown in Figure 2.24 [53]. T/Tm is still preserved as being the most important 

parameter. However, argon pressure axis was converted to the bombardment energy 

in their study. As can be seen from the figure, at lower bombardment energies (or 

bias voltages) zone T is small and may even not exist. When the bombardment 

energy increases the width of the zone T increases although the study is limited to 

100 eV bombarding energies.  

The structure zone diagrams started from macro characterization for thick films with 

optical microscopy by MD, improved with microstructural SEM observations for 

thin films by Thornton and reached nanostructured thin films by Messier et al. who 

realized extensive studies on both relatively thick and very thin films (30 to 0.01 μm) 

by SEM, TEM and Field ion microscopy (FIM). As a function of film thickness they 

observed five characteristic column sizes which are: 1-3, 5-20, 20-40, 50-200 and 

200-400 nm. The columns ranged from 1-3 nm for the thinnest films (15 nm) to 300 

nm for the thickest films (10 μm) [53].   
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Figure 2.24: Structure-zone diagram showing the effects of both bombardment and 
thermal induced mobility [53]. 

Computer simulations of film growth and microstructural evolution have been shown 

to qualitatively explain many of the features observed experimentally. In addition, 

the simulations provide a very useful tool for visualizing atomistic model of film 

growth. Figure 2.25 shows a Monte Carlo simulation of film growth realized by 

Dirks and Leamy using hard–sphere atoms which are incident at randomly chosen 

surface positions [54].  

(a)        (b)                               (c)                           (d) 

Figure 2.25: Monte Carlo computer simulations of amorphous films deposited with 
incident flux angles (a) 90° (b) 45° (c) 60° (d) 75° [54]. 

The adatoms are not allowed to diffuse over the surface but only to relax into the 

nearest lying cradle formed by at least two deposited atoms. Consequently, extended 

microvoid formation leading to columnar microstructures occurs due to atomic    
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self–shadowing by projecting clusters and small edges. From Figure 2.25, it can be 

clearly seen that, the columnar structure becomes increasing more noticeable with 

larger angles of incidence α, measured with respect to the substrate surface normal. 

The effect of temperature was studied by Müller who included adatom migration 

effects in microstructure evolution growth simulations. He allowed thermally 

adatoms to jump to empty neighboring sites of maximum coordination number. He 

found that above a critical temperature range, the porous columnar microstructure 

changes to a configuration of maximum packing density [55]. The lower three atom 

layers in Figure 2.26 correspond to the substrate. The typical open columnar 

structure characterizing low adatom mobility growth was obtained at Ts=350 K. 

Increasing the deposition temperature to 420 K resulted in a film with higher density, 

although still columnar. At Ts=450 K, a fully dense film with local defects was 

obtained [55].  

Figure 2.26: Computer simulated microstructures of Ni films during deposition at 
different times (t) for substrate temperatures of (a) 350 K (b) 420 K 
and (c) 450 K [55]. 

As a result of the microstructural investigations coupled with computer simulations, 

it is evident that the columnar structure observed in atomistically deposited films 

with open boundaries characteristic of zone 1 in the Thornton diagram, is formed due 

to atomic self-shadowing and clustering effects which occur at low T/Tm, at very 
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low adatom mobility and in presence of oblique flux independently of whether 

resultant films are crystalline or amorphous. Increasing adatom surface diffusion by 

increasing growth temperatures result with denser columnar films. Crystallization of 

amorphous films or recrystallization and grain growth of already crystalline films 

occur probably above 0.8 Tm. 

It should also be noted that, although there are researches on the manipulation of 

growth kinetics, these are quite limited with more idealized growths such as 2D or 

layer by layer growth of the thin films and especially homoepitaxially growth [56]. 

When the deposited material and the substrate are very dissimilar, as in many cases 

of hard tribological coatings deposited by sputtering, the growth becomes rapidly 3D, 

that is, the deposited material does not wet the surface [56]. For a given coating 

material and substrate couple, if these are not similar, a modification of nucleated 

clusters and 3D growth of the film by process parameters, such as deposition 

temperature, pressure, and ion irradiation (which will be explained in the next 

section) should be discussed for the changes in the microstructure, rather than a 

change in the film growth modes. 

2.3.3 Ion bombardment effects during film growth  

Low energy (< 1 keV) ion irradiation during vapor phase film growth can be used for 

the modification of film microstructure, densification and increase of the oxidation 

resistance, minimization or elimination of columnar microstructure, altering the state 

of stress, average grain size, and preferred orientation, increase film/substrate 

adhesion, enhance conformal coverage, and control magnetic anisotropy by a variety 

of techniques such as bias sputter deposition and ion plating (see Section 2.2.4) 

[19,49]. 

By bombarding the substrate with energetic ions before deposition, bias etching, in 

other words cleaning of the substrate in atomistic matter can be realized as a final 

surface preparation. In addition to sputter cleaning, ion bombardment can lead to 

fundamental changes in nucleation and growth, especially during the first stage of the 

film deposition. Examples of irradiation-induced effects which have been proposed 

and discussed in the literature include the production of defects in the substrate 

surface which can act as preferred adsorption sites, trapping or subsurface implanting 

of incident species in the near-surface region, the dissociation of small clusters 
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during the early stages of growth, localized high temperatures, enhanced adatom 

diffusion, and local electric field effects due to charging. Bombarding related effects 

are complex and all of these effects play a role under certain circumstances. There is 

no single mechanism that can explain all observed results. The effects, which 

dominate in a given case, depend upon the film/substrate materials combination, the 

energy Ei, flux Ji, and mass mi, of the incident particles and the growth temperature T 

[49]. 

In areas such as optical and wear protective films, the application of ion irradiation to 

densify and increase the internal strength of the layers as well as to increase 

film/substrate adhesion is already a prerequisite to commercial success. However, 

ion irradiation during film growth can also be disadvantageous. There are numerous 

examples in the literature reporting the generation of very high compressive stress 

levels in the films, which lead to adhesion problems and premature delamination 

[48]. 

It is well known from the work of Thornton that, during growth at low substrate 

temperatures the films are generally underdense with a voided columnar 

microstructure. Numerous researches have shown that the number density of voids 

and pores decreases dramatically with increasing ion energy and/or ion flux. Mattox 

and Kominiak  were among the first to demonstrate this effect. They found, in the 

case of sputter-deposited Ta films, the microstructure changed from a columnar 

morphology to a more equiaxed structure and that the film density increased from 

14.5 to 16.3 g cm-3 (bulk density = 16.6 g/cm3) as the negative substrate bias was 

increased from 0 to 500 V [57]. 

Monte Carlo (MC) and molecular dynamic (MD) simulations realized by Müller 

visualized the basic interaction mechanisms between ions and film species occurring 

during ion bombardment and their effects on film growth. He used 2D MD 

calculations including up to 800 particles to simulate Ar ion assisted growth of Ni 

films on Ni substrates at Ts = 0 K [58]. First, he simulated the case of a single ion 

that hits the surface of a porous film. Figure 2.27 and Figure 2.28 show structure 

rearrangements occurring at different times (t) when an Ar ion of 100 eV strikes the 

surface.  
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Figure 2.27:  Molecular dynamic simulation of a collision sequence induced by a 
100 eV Ar ion which hits the porous Ni film at different times (a)-(d) 
preventing the formation of a void [58]. 
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Figure 2.28:  Molecular dynamic simulation of a collision sequence induced by 100 
eV Ar ion which hits the porous Ni film at different times (a)-(d) 
showing the rearrangement of atoms in order to fill a closed void [58]. 
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In both cases, the striking ion transfers a part of its kinetic energy to a few surface 

atoms, which transfer their kinetic energies to other film atoms resulting with a 

collision sequence. In Figure 2.27, the bombardment during growth removes 

overhanging atoms by forward sputtering and thus the void remains open until filled 

by new depositing atoms, preventing the formation of voids and columnar structure. 

Figure 2.28 visualizes how the striking ion causes the filling of a closed void by 

surface diffusion and local heating dominated atomic rearrangements [58].  

After visualizing the microstructural changes caused by the cascade collisions from a 

strike of a single ion, Müller simulated also the microstructures obtained when large 

number of ions bombards the film during growth for more realistic results. In Figure 

2.29, the substrate consists of 5 layers of 40 atoms in a row and a total of 500 atoms 

approach sequentially the surface of growing film [58].  

Figure 2.29: Molecular dynamic simulation of microstructures obtained (a) without 
ion bombardment (b) with 10 eV Ar ion bombardment (c) with 75 eV 
Ar ion bombardment [58]. 
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As can be seen from the figure (a) the microstructure obtained by Müller by MD 

simulations, corresponds well the Monte Carlo simulation given in Figure 2.25 

realized by Dirks and Leamy at normal angle of incidence. Both simulations at low 

adatom mobility resulted with voided columnar microstructures. In (b) with 10 eV Ar 

bombardment, the densification effect can be clearly seen although the structure has 

still large voids. Finally in (c) at 75 eV Ar bombardment a nearly fully dense 

microstructure with local defects can be observed 

Although simulations such as these are not intended to correspond to a particular 

physical reality, they do provide a means for visualizing the general effects of ion 

irradiation on the atomic level. 

The calculations also predicted that there should be an optimum ion energy Ei* for 

densification; at Ei < Ei* the number of recoil events is small and there is a linear 

increase in the density with the increase of ion-to-v  apor flux ratio while at Ei > Ei* 

an increasing fraction of the ion energy is lost deeper in the lattice, hence a decrease 

in the density for the ion energies above the critical value is predicted. A good 

example of the comparison of both experimental and calculated data can be found in 

[59] for CeO2 films. Müller found a linear increase in the density with the increase in 

the ion energy until 200 eV which is the optimum ion energy from both experimental 

and calculated results and then a liner decrease with further increase in the ion 

energies. This fact is proved by many researchers experimentally, not only by the 

density measurements but also with the rise and fall behavior of the hardness of 

various thin films obtained with different bias voltages hence, different ion energies.  

2.4 Boron Carbide Thin Films  

Boron carbide occupies an important place in the group of most important                      

non-metallic hard materials. A boron carbide compound was first discovered in 1858, 

then Joly in 1883 and Moissan in 1894 prepared and identified the compounds B3C 

and B6C respectively [60]. The stoichiometric formula B4C was assigned in 1934 

[60].  

Boron carbide (B4C) is the third hardest material at room temperature, surpassing 

even diamond and cubic boron nitride at temperatures over 1100 °C, it has many 
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other attractive properties such as good wear resistance, low specific weight, high 

modulus, high thermal stability. It is chemically inert and not attacked by cold 

chemical agents. It has very high neutron absorption cross-section. 

[60,61,62,63,64,65]. Boron carbide is p-type semiconductor material even at very 

high temperatures [65]. In bulk form, it is currently used in grinding wheels for 

sharpening cutting tools, as abrasives in polishing, lapping and grinding media, in 

sand-blasting nozzles due to its high wear resistance, fibers for reinforced ceramic 

composites, lightweight armors, and high-temperature thermoelectric conversion 

[60,66]. Due to its high neutron absorption capability it is also used as a neutron 

shielding material, as a poison in fuel elements and in nuclear control rods [60,65]. 

General properties of boron carbide can be seen in Table 2.1. 

Table 2.1: General properties of boron carbide [60,65,100]. 

Properties of boron carbide  
Molecular weight (g/mol) 55.26 

Density (g/cm3) 2.52 – 2.465 for B4C-B10.4C 
Melting point (°C) ~ 2400 (does not decompose) 

Specific heat (Cal/mol K at 300 K) 12.7 
Heat of formation (-ΔH) (kJ/mol K at 

298.15 K) 
57.8 ± 11.3 

Thermal conductivity (W/cm K) 0.35-0.16 (25-800 °C) 
Thermal expansion (1/K) 4-8 E-6 (25-800 °C) 

Electrical resistivity (Ω cm) B13C2: 2, B4C: 5 (at 298 K) 
Electrical conductivity(1/ Ω cm) ~ 103 

Band gap (eV) 0.77-1.80 
Dielectric constant 5 

Seebeck coefficient (μV/K) 200-300 
Vickers hardness (GPa) 27.4-40 
Young’s modulus (GPa) 290-460 

Shear modulus (GPa) 158-200 
Bulk modulus (GPa) 190-250 

Tensile strength (N/mm2) 155 (980 °C) 162 (1425 °C) 
Toughness (KIc) (M Pa m1/2) 1.3-3.7 

Poisson’s Ratio 0.14-0.18 
Flexural strength (MPa) 323-430 
Velocity of sound (m/s) 14400 
Lattice constant (nm) c = 1.207 a = 0.561 
Oxidation resistance In air up to 600°C. 
Chemical resistance Generally excellent. Reacts with halogens 

at high temperature. 
Absorption Cross Sec. for Thermal 

Neutrons (barn) 
755 
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In thin film form, it is considered a promising candidate as hard and protective 

coatings for cutting tools, automobile parts, hard disk drives and other                       

wear–resistance and corrosion–resistance applications [62,64,67]. It is reported that 

boron carbide properties suggest applications in tribological systems under           

high load and/or elevated temperatures [68,69]. It has also been reported that B4C 

coating is used by General Motors to protect sun gears from fatigue pitting in 

transmissions that are used in the Volvo S80 Turbo [68]. B4C finds an important 

application area as first wall protective coating material in fusion devices, in thick 

film form [65]. Thin film boron carbide is also a candidate material for the electronic 

devices that can be operated at elevated temperatures and an excellent thermoelectric 

material especially at elevated temperatures due to its high temperature stability [70]. 

It is considered to be a good candidate material for semiconductor devices in harsh 

environments as heterojunction diodes with silicon [71]. Its usage in high intensity 

electron emitting devices is also reported [72].  

Interestingly, as it is mentioned by several authors as well, despite of its significant 

properties, boron carbide thin films have not been investigated extensively, 

especially regarding the effect of deposition parameters on the coating properties 

[63,73,74]. However, it has to be noted that, this lack of knowledge did not prevent 

the industrial applications of B4C thin films. Between 1982 and 1987, Bodycote Inc. 

(Conover, NC, USA) patented the sputter deposition of boron-carbon containing 

coatings, including boron carbide and a large variety of multilayer design 

[75,76,77,78,79]. Although their patents are full of interesting information such as 

lubricity of boron carbide (see Section 2.4.4), the formation of columnar structure 

with the increase in applied bias voltages (see Section 2.3.3) or the decrease of 

internal stresses with the increase in bias voltages (see Section 2.3.3), the company 

has commercialized boron carbide coatings with the trademark DiamondBLACKTM. 

It is also known that IonBond Inc. (Olten, Switzerland) commercializes boron 

carbide coatings after the merger of two companies in 2004. 

Several techniques have been used to synthesize boron carbide thin films, including 

chemical vapor deposition (CVD) [65,80,81], plasma-enhanced chemical vapor 

deposition [82,83], supersonic plasma jet CVD [84,85], laser CVD [67,86], cathodic 

arc [87], ion-beam evaporation [88], mass selected ion beam deposition (MSIBD) 

[89], pulsed laser deposition [72,90,91], atmospheric plasma spraying [92], vacuum 



 52

plasma spraying [93], electromagnetically accelerated plasma spraying [94], ion 

beam sputtering [95], RF magnetron sputtering [61,62,63] and DC magnetron 

sputtering [74,96,97,98]. Among these, magnetron sputtering techniques have been 

successfully commercialized in a large scale because of their high film-deposition 

rate and low-temperature features [99].  

2.4.1 Phase diagram and structure 

Many controversial phase diagrams have been proposed for B-C in the period of 

1955-1960 [60]. The most widely accepted standard diagram for this binary system 

was introduced by Elliott in 1961 [60] and is shown in Figure 2.30.  

Figure 2.30: Boron-carbon phase diagram [60]. 

According to the phase diagram, boron carbide  has a wide phase homogeneity range 

between 9-20 at.% C (with a relative accuracy of 3-5%). An eutectic between B4C 

and C at 26 at.% C at 2400 °C can also be seen from the binary phase diagram given 

in the figure. As a result of this wide homogeneity range, the term boron carbide and 

its chemical formula “B4C” is used generically to describe stoichiometric as well as 

various non–stoichiometric phases in the literature.  

The crystal structure of boron carbide is rather unique and ideally described by a 

rhombohedral unit cell with icosahedral arrangement of 12 atoms, in addition to a 

three-atom chain along the crystallographic c-axis that interconnect the icosahedra 

[60,100]. Figure 2.31 and Figure 2.32 show rhombohedral unit cell and crystal 

structure of boron carbide respectively.  
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Figure 2.31: Rhombohedral unit cell of boron carbide [60,101]. 

Figure 2.32: Rhombohedral crystal structure of boron carbide (a) each icosahedron 
is bonded to six other icosahedra through direct bonds (b) three atom 
intericosihedral chains that connect icosahedra [65]. 

(a)

(b)
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The 12 atoms of the icosahedra and 3 atoms of the intericosihedral chain form a 15-

atom unit cell. Four sites are available for 15 B and C atoms in the crystal 

arrangement. Thus, B and C atoms can easily substitute for each other within both 

the icosahedra and the intericosahedral chains. This fact is the main reason for the 

large homogeneity range of boron carbide [60,65]. The most widely accepted 

structural model for B4C with 20 at.% C has B11C icosahedra with C-B-C 

intericosahedral chains (B12C3) [60,65].  

Recent studies on boron carbide bonding properties by IR, Raman spectroscopy and 

XRD demonstrated that with the decrease of C content in the boron carbide structure, 

the intericosihedral C-B-C chains are replaced with C-B-B (B13C2) chains until they 

are nearly depleted.Further decreases in the carbon content result in the replacement 

of B11C icosahedra with B12 icosahedra. Several metastable boron carbide phases 

prepared by CVD have also been reported, such as B51C, B50C, B25C, B49C3, B48C3 

(all tetragonal) and B8C (orthorhombic). However, these phases are more difficult to 

prepare than the rhombohedral phase, their physical properties are not well known 

and usually not considered in metallurgical phase diagrams. Therefore, it can be 

stated that the most stable boron carbide structure is rhombohedral with a 

stoichiometry of B13C2, B12C3 or B4C, and some other phases close to B12C3 [60,65]. 

In thin film forms however, with a few exceptions, all reported sputter deposited 

boron carbide films in the literature are amorphous. It has to be noted that, for 

amorphous boron carbide structures, it is believed that the structure is still based on a 

random icosahedral network at a carbon content less than 50 at.% [95]. Chiang et al. 

have obtained crystalline boron carbide films at temperatures above 950 °C by RF 

sputtering [102]. Han et al. have suggested that with the increase of the temperature 

to about 450 °C boron carbide films deposited by DC magnetron sputtering shows a 

tendency of crystallization [103]. In a recent study, Kulikovsky et al. demonstrated 

the possibility to deposit crystalline B4C phase at temperatures above 900 °C by DC 

magnetron sputtering [104]. Chen et al. have demonstrated that by using ion beam 

sputtering, the boron carbide films crystallized at about 350 °C [105]. Lee et al. have 

deposited boron carbide films by reactive sputtering of a boron target in presence of 

methane gas as carbon source and suggested that the films were partially crystallized 

at 100 °C [106].  
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A few techniques other than sputtering were reported with resultant polycrystalline 

boron carbide films. Chemical vapor deposited boron carbide films were grown in 

polycrystalline form as a result of elevated deposition temperatures needed for film 

forming in this technique [65,84]. It is reported that in a conventional CVD when 

depositing boron carbide, the reactions take place at temperatures in the range of 

1000–1600 °C [86]. For the modified CVD processes such as supersonic plasma jet 

[84] or plasma-enhanced CVD [82] crystalline boron carbide films can be deposited 

at relatively lower temperatures in order of 500–600 °C, but no film deposition is 

possible below this temperature range [84]. The use of hazardous gases such as BCl3 

and boranes (e.g. B2H6) in case of boron carbide, the lack of thickness homogeneity 

and significantly elevated temperatures which are destructive for most substrates 

limit the industrial scale usage of CVD. 

Suematsu et al. have showed the possibility to deposit crystalline boron carbide thin 

films at room temperature without external heating, by pulsed ion-beam evaporation 

[88]. However, this is a laboratory scale technique and is not yet suitable for large-

scale industrial applications mainly due to the substrate dimension limitations.  

O.R. Monteiro et al. have prepared partially crystallized boron carbide films by 

cathode arcing [87]. However, the technique needs the use of high conductivity 

targets and hence, does not effectively suitable for mostly semiconductor boron 

carbide targets. The authors surpassed this handicap by increasing the temperature of 

the cathode while increasing also the amount of droplets incorporated into resultant 

boron carbide coating surface.  

As a result, it is clear from the literature that sputtering is the most used and 

convenient technique for boron carbide and derived thin films deposition, especially 

for its ease of operation, universality, relatively high deposition rates and integration 

to industrial scale usage. Sputter deposited boron carbide films are mostly 

amorphous and they tend to crystallize at elevated temperatures which are above the 

practical limits for most PVD systems. However, as will be seen in the next section, 

although they are amorphous, sputter deposited boron carbide films have mechanical 

properties comparable and even superior to that of crystalline bulk boron carbide  
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2.4.2 Sputtering yield of boron carbide 

As presented in Section 2.1.4, sputtering rates were measured especially for pure 

metals and some alloys. For boron carbide, a lack in sputtering data in the literature 

exists. It can be found only a computational measurement study using Monte Carlo 

simulation, realized by Ono et al. [107]. The motivation for their study was not 

sputter deposition applications of boron carbide, instead they realized these 

measurements for different ion irradiation such as H+, D+, T+, He+, Be+, C+, Ne+, Ar+ 

and Kr+ to investigate the erosion of thick boron carbide films used in nuclear 

industry, especially as plasma facing materials in fusion devices. As mentioned by 

the authors, there are no experimentally comparable data for Ar+ ion irradiation of 

boron carbide. However, the simulations and experimental results fit well for H, D, 

T, He, C and Ne ions. Thus in Figure 2.33 the simulated data is given for the sputter 

yield of boron carbide. 

Figure 2.33:  Sputtering yield versus energy of incident Ar+ ions for boron carbide 
[107]. 

The surface binding energy of carbon and boron are 6 eV and 5.6 eV respectively 

[108]. At a bombardment energy of 1 keV, the sputter yields for boron and carbon 

amount to 0.54 and 0.135 respectively. With B4C stoichiometry taken into account, 
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no preferential sputtering effect is expected [114]. When compared to the sputtering 

yield of most metals given in Section 2.1.4, it can be seen from the figure that the 

sputtering yield of boron carbide is very low. Thus, a low deposition rate could be 

expected for boron carbide thin films. 

2.4.3 Mechanical properties 

The general definition of the hardness will be given in Section 3.2.5. However, an 

empirical formula developed by Cohen (Eq.2.5) which relates the hardness of a 

material to its bulk modulus, B, is more generically used for covalently bonded hard 

and super-hard materials [109,110].   

5.3

2201971
4 d

N
B c λ×−
=                                                                                          (2.4) 

Where, 

B is the bulk modulus in GPa, Nc is the average coordination number, d is the bond 

length in A° and λ is a parameter describing the ionicity of the chemical bonding. 

According to this equation, the bulk modulus of an ideal crystal depends on bond 

length d, the nature of the chemical bonding and the crystal structure. Solids with 

small covalent bonds exhibit the highest bulk modulus. It can be concluded from the 

equation that the lower the bond length of the material, the higher the bulk modulus 

thus the hardness. Diamond has the lowest known bond length of 1.54 A° and the 

highest bulk modulus of 435 GPa [111]. Liu and Cohen supposed that the 

hypothetical material β-C3N4 is expected to be harder than diamond [111]. Although 

many groups tried to deposit this material, no really convincing evidence could be 

found up to now [112]. The ionicity λ depends on the electron wave functions and 

therefore on the electron densities. Typical λ values are 0 for diamond or silicon, 0.5 

for B4C, 1 for cubic boron-nitride (c-BN) and 2 for heteropolar compounds of Group 

II to VI elements [113].  

This approach is believed to be valid also for amorphous boron carbide thin films as 

the amorphous structure is still based on a random icosahedral network and explains 

well the high hardness values obtained from boron carbide and other thin films in the 

ternary B-C-N system obtained with N incorporation into boron carbide structure.  
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For boron carbide thin films, the literature data on the hardness and Young’s 

modulus are scattered. The hardest boron carbide film was reported by S. Ulrich et 

al. with 72 GPa [114]. The films were deposited by rf sputtering of a B4C target by 

applying bias voltages [113,114]. However, no details of the analyses procedures 

could be found in their article. The softer boron carbide films were reported by H.Y 

Chen et al. with 13 GPa for the films deposited without external heating [105] and by 

H.S. Ahn et al. with 18 GPa [99]. A list of the literature survey on the mechanical 

properties of boron carbide films is shown in Table 2.2. 

Boron carbide films shown in the table which are softer than 13 GPa were deposited 

with modifications in the processing gas, by adding different amount of acetylene or 

methane. Although the authors tend to name the coatings B4C, the actual 

stoichiometry of their coatings is far away from the large stoichiometry range of 

boron carbide. In many cases the B/C ratios of 1 was found as a result of processing 

gas modifications [96,99]. 

Table 2.2: Mechanical properties of boron carbide coatings. 

Hardness 
(GPa) 

Young’s Modulus 
(GPa) 

Technique Reference 

30-72 Not reported Microhardness S. Ulrich et al. [114] 
20-40 180-280 Nanoindentation T. Eckardt et al. [69] 
8-18 90-140 Nanoindentation H.S. Ahn et al. [99]  
15.4 138.5 Nanoindentation P.D. Cuong et al. 

[115] 
13-43 Not reported Microhardness H.Y. Chen et al. [105]

42.5-50.4 300-420 Nanoindentation Z. Han et al. [103] 
30 250 Nanoindentation Y. Chen et al. [64] 

36-40 Not reported Nanoindentation M.U. Guruz et al. [74]
10-35 145-275 Nanoindentation T. Hu et al. [96] 
14-32 175-313 Nanoindentation F. Kokai et al. [90] 
17-27 210-245 Nanoindentation L.G. Jacobsohn [97] 

19,5-25 250-300 Nanoindentation E. Pascual et al. [73] 
25-30 290-350 Nanoindentation A. Lousa et al. [63] 

16 200  Nanoindentation K.E. Lee et al. [106] 
30-32 Not reported Nanoindenttion O.B. Postel et al. [85] 
24-33 Not reported Nanoindentation M.J. Zhou et al. [95] 
20-35 Not reported Microhardness O. Knotek et al. [116] 
23-39 252-348 Nanoindentation J. Sun et al. [91] 

15.6-26 16-210 Nanoindentation O.R. Monteiro et al. 
[87] 

20.8-60 255-518 Nanoindentation V. Kulikovsky et al 
[104] 
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From the literature data, it is concluded that, the main interest was given to increase 

the deposition temperature in order to crystallize boron carbide coatings. Although 

no report of the totally crystallized pure boron carbide coating (without a 

combination of a crystalline and amorphous phases and free carbon) by sputtering 

has been reported as far as the author is aware, the increases in the hardness given in 

the table are mainly correlated with the increase of the deposition temperature. Few 

works have investigated the effect of ion bombardment during film grown.  Ulrich et 

al. have investigated the effect of bias voltages between 0 and 175 V, on the hardness 

of amorphous boron carbide films deposited by rf sputtering. They found a drastic 

increase of the hardness (from 30 GPa to about 72 GPa) and compressive stress 

(from 4 GPa to 7 GPa) with the increase in bias voltages from floating to 75 V, then 

a decrease after a threshold of 75 V until 175 V [114]. Lousa et al. have found an 

increase from 24 to 30 GPa with increasing negative bias voltage applied to the 

substrates and a threshold value (10 V) above which the hardness started to decrease. 

The intrinsic stresses increased linearly from about 4 to 5.5 GPa with increasing bias 

voltages in their study [63]. Kulikovsky et al. found a decrease from 28 GPa to 20 

GPa for rf sputtered boron carbide films with increasing applied bias voltages from 

floating to 165 V. In their study, the hardness values were increased with the increase 

of the deposition temperature, from 27 GPa for the films deposited without external 

heating to about 40 GPa at 970 °C. For some points they measured hardness values 

of about 60 GPa. They concluded that crystallized films resulted with such increase 

in the hardness, however the inhomogeneities present in the crystal film structure and 

the presence of free carbon may explain the scattered nature of the hardness values in 

their study [104]. 

A few studies have investigated the coupled effect of the deposition temperature and 

ion bombardment. Knotek et al. have realized experiments at 100 °C and 300 °C by 

applying bias voltages between 0 and 100 V. They found an increase in the hardness 

from about 20 to 35 GPa for the films deposited at 100 °C and 20 to 30 GPa at 300 

°C. Hence, interestingly in their study, boron carbide films deposited by applying 

100 V bias voltages at 100 °C were harder than the ones deposited with the same bias 

but at 300 °C. They concluded that both the heating and applied bias voltages 

increase the hardness. However, bias voltage has more dominant effect on the 

increase of the hardness [117]. 
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It is clear from Table 2.2 that, depending on the deposition conditions and because of 

the large homogeneity range of boron carbide, different values of hardness and 

modulus for boron carbide coatings has been reported previously. It can also be said 

that, the reported hardness and modulus values for boron carbide thin films are 

comparable and even superior to that of bulk boron carbide given in Table 2.1. 

Nevertheless, they are more localized about 25-30 GPa and Young’s modulus values 

measured from nanoindentation measurements about 200-250 GPa. It has also to be 

noted that, for all the studies investigating the mechanical properties versus the 

increase of the deposition temperature, the authors observed an increase of the 

hardness and modulus of the coatings no matter the resultant coating crystallized or 

not. However, for the bias voltages, while some investigators reported a continuous 

increase of the hardness with the increase of the negative bias voltages applied 

[96,117], others have observed a rise and fall behavior with the increase of the bias 

voltages with a maximum value at intermediate voltages [63,114], and others have 

reported a continuous decrease of the hardness while increasing bias voltages 

[104,118]. The deposition configurations are various (conventional or ion plating) 

and there is a lack of detailed structural and morphological investigation of the 

coatings deposited, therefore it is difficult to give a general dependence of the 

applied bias voltages on the mechanical properties of boron carbide thin films. 

2.4.4 Wear properties  

For the friction and wear properties of boron carbide thin films, the data reported by 

different researchers in the literature are again scattered like mechanical properties. 

Knotek et al. investigated the tribological properties of dc and rf magnetron sputtered 

boron carbide coatings by using a “pin-on-disc” tribometer against a 100Cr6 

counterface. The tests were carried out in air at 15 °C, with a relative humidity of 

60%, under unlubricated conditions, with a sliding velocity of 0.5 m/s and with 10 N 

applied load. They found friction coefficient values of about 0.7-0.8 for DC sputtered 

boron carbide films and 0.2 for rf sputtered boron carbide films [117]. 

Eckardt et al. have investigated the frictional properties of boron carbide coatings 

against 100Cr6 ball with 4.67 mm diameter using a load of 1 N and a disk speed of 

0.04 m.s-1 at constant temperature and humidity which were 21 °C and 45-50% 

respectively. They found that boron carbide thin films have friction coefficient of 
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about 0.9. With acetylene (C2H2) addition of 4-5 sccm into processing gas, they 

observed a decrease to about 0.2-0.3 [69]. The same approach was used by Ahn et al. 

who incorporated methane (CH4) to the processing gas. They found a decrease in the 

friction coefficient from 0.4 for pure boron carbide coating to 0.1 with addition of 1.2 

vol.% CH4. They used a micro-oscillating friction and wear tester, a 3 mm diameter 

steel ball (the type of steel is not indicated) as counterface and a sliding speed of 4.43 

mm/s. The relative humidity was between 40-45% and the tests were realized at 

ambient temperatures according to their paper [99].  

The same group was also studied the effect of relative humidity on the wear 

properties of boron carbide coating deposited with addition of 1.2 vol.% CH4, by 

using the same wear test parameters [115]. They found a decrease of the friction 

coefficient from about 0.5 at 5% relative humidity to 0.1 at 85% relative humidity. 

An XPS study within the wear track obtained at 45% relative humidity and after 

5000 cycle revealed the presence of boric acid/boron oxide. They suggested that 

boron carbide oxidized and boron oxide was formed on boron carbide surface which 

than reacted with the moisture in air to form boric acid as a low friction layer.  

This result is also in accordance with the findings of Erdemir et al. who studied the 

tribological properties of post-annealed bulk boron carbide and boron carbide thin 

films. They reported very low friction coefficient of about 0.03 by the formation of 

boron oxide film on the boron carbide during the annealing process as a result of the 

oxidization of boron carbide and top boric acid layers with the spontaneous reaction 

of boron oxide with moisture in air  [66,119]. The tests were realized in a “pin-on-

disc” tribometer, zirconia pins were used as counterfaces at room temperature in 

open air of 40-50% relative humidity. The normal force applied was 5 N. The wear 

rates of zirconia pins were measured in their study. Against un-treated B4C they 

measured wear rates of about 2.0 x 10-5 mm3/Nm, however against annealed B4C 

wear rates decreased to 5.7 x 10-8 mm3/Nm. The suggestion of the formation of 

double layer, boron oxide-boric acid films was based on the difference between the 

Raman spectra of untreated and annealed boron carbide in their study.  

The lubricity of the boron carbide at elevated temperatures was known since the 

work of Rabinowicz and Imai who investigated the frictional properties of B4C at 

various temperatures and found that B2O3 layers become lubricious above 650 °C, 
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therefore provide a friction coefficient as low as 0.1 [120]. However, it was by the 

work of Erdemir et al. that the low friction mechanism was further revealed.  

The formation of a solid lubrificant boric acid layer was also confirmed by Larsson 

et al. on sintered bulk boron carbide [120]. Their sliding tests were carried out with a 

“pin-on-disc” tribometer. They used B4C pins of 5 mm in diameter with 5, 15, 30 and 

45 N applied load. The experiments were realized in air at room temperature under 

atmospheric pressure. Different tests were carried out with 20%, 35%, 45%, 60%, 

80% and 100% relative humidity values. They obtained friction coefficient values 

between 0.9-0.07. The low friction coefficient values were obtained with increasing 

the relative humidity. Depending on the test conditions, wear rates between 3 x 10-3 

and 2 x 10-5 mm3/Nm were obtained for the B4C pins in their study. The formation of 

B2O3 and H3BO3 together with hydrocarbons was revealed by XRD measurements 

realized on the wear debris.    

Guruz et al. have investigated the friction and wear properties of boron carbide 

coatings by using a block-on-ring apparatus for the tests and M2 steel as counterface. 

The analyses were carried out in air using poly-alpha-olefin (PAO) as lubricant. The 

sliding speed was 0.139 m/s with a load of 1.96 N. In this lubricated conditions, they 

found friction coefficient values of about 0.06 for the M2 steel-boron carbide pair 

and 7.3±5 x 10-9 mm3/Nm wear rates [74].  

Martinez et al. have studied the nanowear properties of boron carbide coatings. In 

their study, the friction coefficient was measured by microscratch test with a 

diamond tip and was found about 0.12. They also presented their results on wear 

rates. However the analyses were carried out by scanning a preselected 3 μm2 area 

with the diamond tip and the wear rates were given in nm/cycle. Hence their results 

were relative and could not be used for comparison purpose. Accordingly, they 

explain in their article that friction and wear seem to be different at atomic scale. 

[121]. Reigada et al. have also reported the nanowear properties of boron carbide 

coatings deposited by DC magnetron sputtering. They mainly studied the effect of 

applied bias voltages on the wear properties and found that with the increase in 

negative bias voltages both friction and wear decreased at nanoscale [122] 
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Kustas et al. have investigated the wear rates of metal doped (Mo, W, Ni-Cr) boron 

carbide coatings deposited by rf sputtering. Wear testing was performed by 

reciprocating sliding of a 5 mm WC-Co ball against the boron carbide coated 

substrates for a total number of 50 cycles. 5 and 15 N loads were used for the tests. 

No details of other test conditions, such as temperature or relative humidity were 

found in their article. Depending on the dopant material, bias voltage and applied 

loads during the tests, wear rates between 9.1 x 10-4 and 4.7 x 10-5 mm3/Nm were 

obtained during their study. They explained the improvement of the wear properties 

for the coatings deposited with bias voltages, by a process of densification of the 

coatings [123].  

Harris et al. studied the wear of boron carbide coatings against 52100 steel balls with 

a “pin-on-disc” system. In their study, the wear tests were conducted at room 

temperature and at relative humidity of 35 ± 15% [68]. The load was varied between 

0.05 and 11 N. They studied the polishing of the counterface during sliding wear by 

boron carbide coatings, after a suggestion by Erdemir that hard coatings could 

increase the fatigue resistance of a coated part by polishing mating surfaces during 

sliding contact [124]. Harris et al. have introduced a term, “coating abrasiveness”, to 

characterize the ability of the coatings to polish their counterfaces. The abrasiveness 

is defined in their article as the volume of material removed from a counter surface 

per distance traveled (mm3/m). They observed two main aspects; the abrasive 

removal of steel from the ball by boron carbide and the counter-polishing of the 

boron carbide by the steel ball. They found that the average abrasion rate of the steel 

balls decreased with the increase of the sliding distance following a power law 

scaling relationship. As an example, at 0.05 N normal load, the amount of material 

removal during the first 1000 cycles was about 3.6 x 10-3 l mm3 (for l=2πr, with 

r=wear track diameter), while the amount of material removed during the first 10000 

cycles was about 4 x 10-3 l mm3. That indicates that only 10% as much material was 

removed after the first 1000 cycles as was removed during the first 1000 cycles [68]. 

Thus, they suggested that boron carbide could be used as a run-in purpose finite-life 

coating with only tens of nanometer thickness, surviving a short period of time to 

polish its mating surface in typical machine components [125]. This fact explains 

also the usage of boron carbide coating on gears; the coating increase the overall 

fatigue resistance of the coated part during sliding contact through a polishing action 
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that it provides to the counterpart surface [126]. The same group investigated the 

effects of the contact conditions on the abrasiveness of boron carbide coatings in 

their follow-up paper. By running experiments using different contact conditions 

such as, ball-on-disc, con-on-disc, “pin-on-disc” and spiral track wear experiments at 

the 0.1 N fixed normal loads, they found that the decrease of the coating abrasiveness 

was independent of the macro-scale contact conditions [126]. According to their 

findings, the boron carbide-steel system is an example of chemical-mechanical 

polishing in which the steel is mechanically abraded by boron carbide, while boron 

carbide is chemically polished by steel. However, the mechanism by which the 

polishing occurs and by which such smooth surfaces are generated is not well 

understood and need complementary studies [68]. 

Several conclusions can be drawn from the above literature survey; first of all it is 

clear that for boron carbide thin films which are not modified by processing gas or by 

post-annealing, and tested at low to moderate humidity conditions, the friction 

coefficients of between 0.4-0.9 were reported by different investigators. Thus, the 

introduction of several articles which cites low friction coefficients and high lubricity 

among different properties of boron carbide thin films, repeat only the cliché “low 

friction – high wear resistance” which is not the case for boron carbide coatings. The 

reason of the remarkable wear resistance of boron carbide thin films especially 

against erosive and abrasive wear lie on their high hardness and high strength. As it 

is mentioned by Erdemir [66], despite its excellent wear resistance, B4C does not 

provide low friction to sliding surfaces, especially at low to moderately high 

temperatures. 

Although there are interesting researches on the tribological properties of boron 

carbide films such as the polishing of the counterpart, the formation of low friction 

boric acid layer by post-annealing treatments, the main interest was given to the 

tribological properties of steel-boron carbide pair. No effort was made to connect the 

microstructural changes of boron carbide thin films by deposition parameters to their 

tribological properties. No report could also be found for example for alumina which 

is a frequently used counterpart, especially to investigate the tribological properties 

of ceramic bulk materials and thin films.    



 65

2.4.5 Microstructure 

Despite its significant properties and all potential technological applications, boron 

carbide films were not investigated extensively in regard to their microstructures. As 

mentioned early by several authors, no investigation of relations between deposition 

parameters, microstructure and mechanical, tribological or other properties exist in 

the literature [118,127]. 

Although there are no extensive investigations, examples of microstructures can be 

found. Two types of microstructures reported by different authors, columnar structure 

by DC magnetron sputtering [68,69], reactive sputtering [106], pulsed ion-beam 

evaporation [88] and non-columnar, featureless grown films by DC magnetron 

sputtering [118], plasma jet CVD [84] and by PLD [90]. Hu et al. have studied the 

effect of bias voltages on the microstructure and found that boron carbide coatings 

deposited at floating potential had coarse columnar micostructure, at 200 V bias 

voltages it transformed to a denser Zone T type microstructure [96]. Knotek et al. 

have studied the effect of argon pressure on the microstructure of boron carbide 

coatings and found that the columnar structure for the films deposited at 4 Pa 

changed to no structure growth at 1 Pa [116].  

Chen et al. [64], Han et al. [103] and Zhou et al. [95] have demonstrated the 

amorphous nature of boron carbide films by high resolution TEM investigations.  

2.4.6 Electrical properties 

Boron carbide is a p-type semiconductor with a band gap of 1.2-1.8 eV [83]. With its 

high melting point, B4C phase is very stable even at high temperatures [60]. With the 

combination of these properties, B4C is known as a candidate material for the 

electronic devices that can be operated at elevated temperatures and an excellent 

thermoelectric material especially at high temperature [70]. Suematsu et al. have 

studied the electrical propertied of crystalline boron carbide films deposited by      

ion-beam evaporation. For increased thermoelectric conversion efficiency, deposited 

film should have high conductivity. They found that the carbon content of the films 

have important influence on the electrical properties. The electrical conductivity 

measured with a four point probe decreased from about 105 Ω-1cm-1 to 104 Ω-1cm-1 as 

a result of an increase of the carbon content from 14% to 20% in boron carbide 
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coating structure. The Seebeck coefficient (measured for thermoelectric properties) 

also decreased from about 300 μVK-1 to 150 μVK-1 with an increase of the carbon 

content from 14% to 20%. [70]. The same group was also studied the electrical 

conductivity and Seeback coefficients at different temperatures and concluded that 

boron rich thin films are promising candidate to be used as thermoelectric device to 

convert heat energy into electrical energy [128].  

Ahmad et al. have investigated boron carbide coatings as candidates to be used in 

semiconductor devices in harsh environments. Their work details the rf magnetron 

sputter deposition of high resistivity boron carbides and the fabrication of boron 

carbide/silicon heterojunction diodes [129]. To be used as junction with silicon 

deposited boron carbide films should have high resistivity. They mentioned in their 

article that boron carbide films deposited via sputtering have low resistivity values 

ρ<10 Ωcm and thus, do not form rectifying junctions with silicon. They developed an 

interesting way which includes the saturation of boron carbide target before 

deposition, in methane/argon plasma for several hours. They then used the saturated 

target to produce B5C films with a constant B/C ratio. Thus produced films result 

with resistivities greater than 107 Ωcm. The same group has also evaluated the 

optical properties of boron carbide films deposited by PECVD on glass substrates, 

using both spectroscopic ellipsometry and spectrophotometry [130]. They concluded 

that boron carbide films with about 0.75 eV indirect band gap and about 1.5 eV 

direct band gap, exhibited heterojunction diode characteristics.  

2.5 Boron Carbonitride (BCN) Thin Films 

In the last few years, thin films with composition within the ternary system B–C–N have 

attracted much attention. Films of superhard materials can be found in the system B-C-N 

such as diamond, cubic boron nitride, tetragonal amorphous carbon and boron carbide 

[113,131]. A list of hard and superhard materials as well as B-C-N phase diagram can be 

seen in Figure 2.34. Moreover, materials in this system are characterized by short bond 

lengths and expected to combine some specific properties of diamond, cubic boron 

nitride (c–BN), hexagonal boron nitride (h–BN) and boron carbide (B4C), such as, high 

hardness, low friction coefficients, lubricity and good wear resistance and therefore are 

considered to be promising candidate as hard and protective coatings for cutting tools 

and other wear–resistance applications. [121,131,132].  
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Figure 2.34: List of hard and superhard materials and B-C-N ternary diagram [113]. 

The system includes also materials with interesting optical and electrical properties 

such as high refractive index or a large band gap (diamond and cubic boron nitride) 

[133,134]. In addition to the above mentioned examples which consist of only one or 

two elements, there are possibilities to form ternary materials within the system 

which can combine the advantages of less complex materials and/or to form more 

relaxed ternary phases which would still preserve the structure and properties of 

those localized on the sides and vertices of the train gle, like diamond, c-BN and 

boron carbide (See Figure 2.34) [131,134]. Different attempts have been made to 

merge materials with extremely different properties, for example superhard diamond 

and soft h-BN, hard and wear resistant B4C and soft and lubricating h-BN, 

semimetallic graphite and insulating h-BN, or the cubic phases of diamond and c-BN 

(BC2N heterodiamond) [134].  

Many different techniques were used to synthesize phases in the B-C-N ternary 

system including chemical vapor deposition, PACVD, sputtering, or pulsed laser 

deposition [134]. Only sputter deposition attempts will be presented here. They can 

be actually divided in two parts, the use of h-BN target in a plasma that contains 

methane or acetylene as reactive gases, by RF sputtering obligatory due to the high 

electrical resistivity of h-BN and the use of B4C target with N2 introduction into 

processing plasma atmosphere, by RF and as well as DC sputtering. There are 

several attempts in the literature, which focalizes only on the deposition of c-BN 

phase by sputtering or other techniques.  
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A few works, which have studied the effect of nitrogen incorporation into boron 

carbide structure, will be discussed as background of the present study. Phase 

composition of N incorporated boron carbide coatings were studied by several 

authors. IR spectrometry was used in almost all the studies to distinguish the h-BN 

and c-BN phases and to quantitatively estimate the ratio of these two phases in the 

deposited coating structures. Some of them were deposited a mixture of h-BN and 

amorphous C [135] and h-BN [131], while other investigators, by the assistance of 

ion bombarding of growing film, were able to obtain a cubic phase dominated 

structure [133,136,137]. It exists a general consensus on the necessity of extensive 

ion bombardment to nucleate and growth of cubic boron nitride films. However, thus 

deposited films contain very high compressive stress and premature delamination of 

the films thicker than a few hundred nanometers occurs especially after their 

exposition to the ambient air [133,137,138,139]. As an example, Kouptsidis et al. 

have deposited nearly single-phase c-BN from a B4C target by an unbalanced DC 

magnetron sputtering design at bias voltages between 220 to 320 V [136]. Tsai et al. 

deposited cubic boron nitride phase as high as about 82% by a pulsed DC magnetron 

sputtering system at 250 V bias voltages [133]. The same group has also investigated 

the coupled effect of the bias voltages and temperature on the formation of cubic 

phase. They found that, in their case, the maximum c-BN content of 82% was 

reached at 250 °C and 250 V bias voltages. They also suggested that by a multi-step 

biasing process, by applying different bias voltages at the nucleation and grown of 

thin films, 95% c-BN content could be reached with a better crystallinity [137]. 

Yamamoto et al. have proposed a multilayered design of B4C as the first underlayer 

and B-C-N as gradient layer, thus were able to deposit a c-BN top layer of 2.65 μm 

thick [140]. Linss et al. studied the bonding properties of N incorporated boron 

carbide thin films in the range of 0 to 100% N2 in the working gas by FTIR 

spectrometry. The structure was hexagonal boron nitride, with the presence of large 

absorption peak for B-N bonding. In addition they observed C-C stretching bonds, 

and C-N and N-H bonds especially for films deposited with ≥ 25% N2 in the 

processing gas [141].  

Film compositions were measured by either XPS or EPMA. A strong influence of the 

N2 incorporation was found by all the investigators. Without N2 incorporation B4C 

coatings are generally near stoichiometric.  
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With the increase of N2, for example in [135], at 10% N2, the structure composed of 

about 50% B, 40% N, 10% C (relative %). In [134], the incorporation of N in the 

coating increased linearly till 25% N2 in the gas, from 0 at.% to 45 at.% N and 

stabilized at this point. Further increase of N2 in the processing gas led a slight 

increase of the N incorporated in the coating structure about 50 at.% N at 100% N2. 

The composition of the coatings changed from 72 at.% B, 20 at.% C, 8 at.% O 

without N2 in the processing gas, to 44 at.% B, 38 at.% N, 17 at.% C, 1 at.% O with 

25% N2 incorporation to the processing gas in [131]. Kouptsidis et al. reached B/C 

ratio of nearly 1 with about 46% B, 42% N and 10% C at 20% N2 in the processing 

gas [136]. With 20% N2 in the processing gas, a composition of 50 at.% B, 38 at.% 

N, 12 at.% C was obtained by Tsai et al. [133].  

Growth rates of the coatings were increased with addition of N2 into processing gas. 

From 6.6 nm/min at 0% N2 to 18.3 nm/min at 10% N2 [135]. From 1.3 nm/min at 0% 

N2 to 2 nm/min at 25% N2 and then decreased to 1.2 nm/min in [131].  

With the incorporation of nitrogen into boron carbide structure, the hardness and 

modulus of the coatings obtained decreased gradually by increasing the N2 flow rate 

or partial pressure in the processing gas, from for example 27 GPa at 0% N2 to 13 

GPa at 40% N2. The same trend was also observed for modulus of the coatings from 

280 GPa to about 180 GPa in [121]. From 25 GPa at 0% N2 to 8 GPa at 40% N2 

[134]. An extreme hardness value of about 80 GPa obtained in [136] at 20% N2 as a 

result of the formation of nearly single cubic phase.  

The stress values of the films were also decreased by the incorporation of N2 with the 

exception of the studies in which a dominating c-BN phase in the coating structure 

was obtained. For example, from 5 GPa at 0% N2 to 2 GPa at 40 % N2 in [121].   

Friction coefficient values were also affected by the nitrogen incorporation. It 

decreased from about 0.12 to 0.05 in [121]. However, interestingly the wear rate of 

the coatings measured by nanowear tests was increased in the same study. The 

authors concluded that at the atomic scale the wear rates are much dependent to 

hardness rather than the friction coefficient or adhesion to the substrate [121]. 

Friction coefficient values measured by nanowear testing decreased from 0.25 to 

about 0.1 in [131]. “pin-on-disc” tests were carried out in [134] against 100Cr6 balls 
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in air with a humidity between 40 and 50%. Friction coefficient values of between 

0.05 and 0.5 were obtained on coatings with different roughness and at different 

normal loads between 0.5 and 1.5 N.     

Surface roughness of the coatings measured by a profilometer or AFM was 

decreased with the increase of the nitrogen incorporation. From about 0.9 nm for B4C 

coating at 0% N2 to 0.2 nm at 25% N2 for BCN films in [131].  

As a result of the above literature survey; with the incorporation of N into boron 

carbide structure and by appropriate changes of process parameters such as bias 

voltages and N2 partial pressure, it is possible to deposit several phases in the B-C-N 

ternary system. By means of this versatility, resultant thin film properties may be 

easily tailored for specific applications. 

2.6 Functionally Graded Thin Films 

The concept of functionally graded materials (FGM) was proposed in 1984 by 

material scientists in Japan [142]. By definition, a functionally graded material is a 

material, in which the composition and microstructure gradually change resulting in 

a corresponding change in the properties [142,143].  

Advanced high-performance components for structural, electrical, chemical, optical 

and biological applications demand materials with more than one superior value 

among the set of available properties. Such materials are difficult to obtain from 

either monolithic, multilayer, or composite systems. This has prompted the 

development of a new category of material known as functionally graded materials 

that possess various functions simultaneously [144]. The FGM concept is applicable 

to many fields. In engineering applications such as cutting tools, machine parts, and 

engine components, incompatible functions such as heat, wear, corrosion resistance, 

toughness, machinability are incorporated into one single part [142].  By the end of 

1980s, FGM concepts have triggered world-wide research activities and are applied 

to metals, ceramics and organics, composite bulk materials as well as thin films to 

generate improved components with superior physical properties [145] 

In thin film form, FGM concept is defined as a compositionally graded multilayer 

coating where two successive layers have at least one common element [144]. These 
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graded interfaces ensure no abrupt change in composition, and therefore the 

mismatch in elastic modulus, thermal expansion coefficient and hardness between 

two materials which could lead to excessive residual stresses and consequent 

delamination or cracking of the coating, will be altered by the functionally graded 

design [144,146]. Therefore, much improved coating-substrate adhesion, less 

intrinsic stresses, thus, thicker hard and wear resistant coatings could be obtained by 

the proper configuration of gradient layers.  

The functionally graded approach has been largely used for wear resistant Me-DLC 

systems [144,147] or  TiN and its derivatives (e.g. TiAlN) [148], however very few 

works can be found in the literature for BCN and especially c-BN films although the 

internal stress and adhesion problems are well known for these coatings as explained 

in the previous section. There are attempts to use gradually increased bias voltages 

and low/high circle of bias voltages to obtain gradual underlayers to deposit thick 

BCN and c-BN coatings respectively [74,139]. There is no FGM approach to B4C 

reported in the literature as far as the author is aware. Only, metallic Ti bondcoat 

layer was used in [69] and Cr bondcoat layer by Bodycote Inc. on its commercially 

available Diamondblack coating [149]. 
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2.7 Résumé du Chapitre 

La pulvérisation cathodique consiste à bombarder, sous vide partiel, un solide (cible) 

au moyen d’ions d’énergie suffisante, afin d’en extraire des atomes qui vont se 

transformer pour se déposer sur le substrat. Historiquement, la pulvérisation 

cathodique est l'une des techniques les plus anciennes d’élaboration de couches 

minces découverte par Sir William Robert Grove en 1852. Elle occupe une place 

importante entre différentes méthodes de dépôt physique en phase vapeur (PVD). 

Aujourd'hui, c'est la technique de dépôt par voie atomique la plus employée dans 

l'industrie et dans le milieu universitaire pour l’élaboration de couches minces. Elle 

couvre une très large gamme de matériaux et pour différents applications comme, par 

exemple, des dépôts anti-usures sur outils de coupe et pièces de machine, des dépôts 

semi-conducteurs pour dispositifs microélectroniques, des dépôts sur vitres pour 

raisons d’économie d’énergie ou encore pour applications décoratives. En plus de ses 

nombreux avantages comme, un taux de dépôt élevé, la réalisation possible de dépôts 

a basse température, une adhérence améliorée, plusieurs types et configurations sont 

couramment utilisées principalement la pulvérisation magnétron, la pulvérisation 

réactive, la pulvérisation radio fréquence, la pulvérisation assisté par plasma (dépôt 

ionique), et la pulvérisation triode. Grâce à une large palette de paramètres de 

pulvérisation et de configurations possibles, des couches minces avec les 

microstructures aux propriétés bien ajustées peuvent être obtenues par la 

pulvérisation cathodique.  

Le système ternaire de B-C-N a retenu beaucoup l’attention ces dernières années 

surtout sans, cependant, se limiter aux applications anti-usure avec des phases ultra 

dures comme le carbure de bore et le carbonitrure de bore plus particulièrement. Une 

recherche bibliographique détaillée indique que le carbure de bore est un matériau 

bien connu, sous sa forme massive, à haute dureté et module d’Young élevé en plus 

d’autres propriétés intéressantes comme une faible masse volumique, une grande 

résistance aux milieux chimiques agressifs et une absorption neutronique élevée. En 

revanche, sous forme de dépôt, obtenu par exemple par pulvérisation cathodique, il 

reste extrêmement peu connu. C'est également le composé le moins étudié dans le 

diagramme ternaire B-C-N. D’autre part, presque tout l'effort a porté sur le dépôt du 

nitrure de bore cubique dans la bibliographie. Il existe très peu d’études qui se 
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focalisent sur l'effet de l'incorporation d'azote dans la structure de carbure de bore et 

les différentes phases qui pourraient en être issues.  

Selon la bibliographie, l'effet des paramètres de dépôt sur des morphologies de 

croissance des couches, sur le micro et la nanostructure et, par conséquent, sur 

différentes propriétés des couches telles que la résistance à l'usure, les propriétés 

mécaniques, optiques et électroniques n'est pas encore bien établi. 
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3. EXPERIMENTAL STUDIES  

In this chapter, the systems used for thin film deposition, production and properties 

of the target material, types of substrates used, parameters used to deposit different 

types of films, and characterization techniques used to elucidate different properties 

of the films obtained will be presented in details. 

3.1 Film Deposition  

In this section, details of the film deposition related studies, such as, deposition 

systems, target materials, different substrates used in the study and deposition 

conditions for different types of films will be given. 

3.1.1 Sputtering systems 

Two sputtering system were used to deposit thin films investigated in this study. 

Conventional DC magnetron sputtered boron carbide films, plasma-enhanced 

magnetron sputtered boron carbide films, BCN films, functionally graded B4C and 

BCN films were deposited by (plasma enhanced) DC magnetron sputtering system of 

Prof. Dr. Adnan Tekin Applied Research Center of Materials Science & Production 

Technologies of Istanbul Technical University/Turkey, RF sputtering system of the 

Laboratoire des Milieux Nanometrique (LMN) of Université d’Evry-Val-

D’Essone/France was used to deposit RF sputtered boron carbide films.   

3.1.1.1 Plasma enhanced DC magnetron sputtering system 

TSD 350 PCVD model hybrid coating machine (HEF-France) was used to deposit B4C, 

BCN and functionally graded films. The deposition system as well as the schematic of the 

deposition chamber is shown in Figure 3.1. Detailed description of the technique is given 

in Section 2.2. With its magnetron source powered by an 2500 W DC power supply 

(Huttinger Inc./Germany) and an auxiliary plasma source (plasma booster), the machine is 

capable to work both in PVD (magnetron sputtering) and plasma enhanced magnetron 

sputtering modes (a type of ion plating configuration explained in Section 2.2.4).  
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Figure 3.1:  (a) DC Magnetron sputtering system used in this study (b) schematic 
of the deposition chamber. 

PECVD (Plasma enhanced chemical vapor deposited) thin films can also be 

deposited with the same system. In the patented plasma-enhanced magnetron 

sputtering design [150], the auxiliary plasma source is powered positively, thus, fast 

electrons produced by the ion bombardment of the target are trapped near the target 

by means of the magnetron design, whereas slow electrons are accelerated towards 

the positively powered plasma source. They collide with Argon atoms and create 

high-density plasma over the substrate holder. Figure 3.2 demonstrates inside of the 

deposition reactor during film growth for two deposition modes. In Figure 3.2 (a) at 

the left hand side, the brilliant part is the plasma generated by boron carbide target. 

Different shaped substrates can be seen in front of the target on a rotational substrate 

holder. In the figure (b), in addition to the plasma created near boron carbide target 

by means of the magnetron configuration, high-density plasma created by means of 

the auxiliary source can be seen at the right of the picture, distinguishable with its 

pink color. The substrates that are in rotation are passing through this high-density 

plasma. In operation, the plasma generated by auxiliary plasma covers more 

homogenously the substrate holder than it is seen in the figure (due to the image 

resolution limitations), although the density is higher at the zone close to the source. 

In this configuration, the collision energy of the ions to the substrate was controlled 

through negative DC bias applied to the sample holder (an isolated holder attached to 

(a) (b) 

Target material 
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a 1000 W DC power supply), whereas the ion flow was controlled by the applied 

plasma booster current. Thus, during film growth by the negative magnetron source, 

the substrates were bombarded with energetic ions generated by the assistance of 

positive plasma source.  

Figure 3.2:  Inside view of the deposition reactor (a) Conventional magnetron 
sputtering mode during film growth (without auxiliary plasma) (b) 
PEMS mode during film growth (in presence of the auxiliary plasma). 

The base pressure of 5x10-5 Pa was obtained by a combination of a rotary and 

turbomolecular pump system. Vacuum levels were measured by the combination of a 

thermocouple Pirani gage up to 10-1 Pa and with a cold cathode Penning gage up to 

10-5 Pa. The system can be heated up to 300°C by a radiant heater and the 

temperature was controlled by a thermocouple. By means of the removable shield in 

front of the target and with the auxiliary plasma source, the substrates were bias-

etched before deposition to remove the surface oxide layer and to clean any 

remaining contamination on the target and the substrates surfaces. 

2 cm 

(a) 

2 cm 

(b) 
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3.1.1.2 RF sputtering system 

A non-magnetron ultra high vacuum (UHV) RF deposition system with a 13.56 MHz 

RF power supply was used to deposit B4C thin films. Detailed description of the RF 

deposition technique is given in Section 2.2.3. A base pressure of 1.33 x 10-6 Pa was 

obtained by a combination of rotary and turbomolecular pumps. By means of the 

load-lock chamber, specimens were loaded into the deposition chamber without 

breaking the vacuum. Hence, the deposition of the films can be realized at ultra high 

vacuum conditions with this sytem. 

3.1.2 Substrates  

Three types of substrates, AISI M2 grade high speed steel, 2 cm in diameter, 0.5 mm 

in thickness, AISI 430 steel, 5x2 cm2, with 0.5 mm thickness and one side polished 

Si (100) wafers were used in the experiments. Table 3.1 demonstrates the chemical 

compositions of two different steel substrates. All steel substrates were mirror 

polished to Ra values of approximately 0.03 μm. Before being introduced into the 

deposition chamber, all the substrates were pre-cleaned in ultrasonic bath, in 

acetylene and in ethanol respectively and were then blown dry with dry nitrogen gas. 

Table 3.1: Chemical compositions of steel substrates. 

 C% Cr% Mo% V% W% Fe% 
AISI M2 0.9 4.10 5.00 1.90 6.40 balance 
AISI 430 0.08 17 - - - balance 

3.1.3 Target material 

An “in-house” produced boron carbide target material was used for the deposition of thin 

films in this study except a commercially available B4C target (99.5% purity) which was 

used for RF sputtering. The advantage of the target production is to control over the 

composition and different properties of the target material. As explained in Section 2.4, 

one reason of the insufficient researches on the boron carbide in thin film form may be 

the properties of the target material. For example, the electrical resistivity of the boron 

carbide depends strongly on its chemical composition and on its relative density, which 

is the result of sintering conditions. That is the reason that some of the commercially 

purchased targets are not compatible with DC configurations. In this study, boron 

carbide target was hot pressed from own produced boron carbide source powders. 
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3.1.3.1 Boron carbide powder production 

Boron carbide powders were obtained from the carbothermal reduction of boric acid 

in a graphite resistance furnace at 2000ºC. As the powder production is not the 

subject of this study and as the process is already commercialized, the details of the 

powder production will not be presented here. Extensive literature can be found on 

the subject, one example is already given in the Section 2.4 [60]. The powders 

obtained were then crushed and milled to fine boron carbide powders with average 

grain size d(0.5): 3.702 µm (measured with a laser particle size analyzer) for hot 

pressing. Figure 3.3 shows SEM image of boron carbide powders.  

Figure 3.3: SEM images of boron carbide powders. 

Elemental composition of the powders was revealed by EPMA. Boron carbide 

powders had an elemental composition of (at.%) 78% boron, 21.5% carbon, with 

0.2% oxygen and 0.3% silicon as impurities. Thus, in this study, the relative ratio of 

B/C for boron carbide powder was 3.62. Figure 3.4 shows the phase distribution of 

boron carbide powders obtained by XRD analysis. As it can be seen from XRD 

results, the initial powder contained small amounts of free carbon and boric acid in 

addition to boron carbide phase. 

 

 

     20 μm 
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Figure 3.4: XRD spectra of boron carbide powders. 

3.1.3.2 Hot pressing of boron carbide powders 

Boron carbide powders were hot pressed in pure nitrogen atmosphere with 100 MPa 

applied force at 2100 °C for 15 minutes to obtain boron carbide target used in this 

study. Microstructure of hot-pressed boron carbide target is shown in Figure 3.5. 

Figure 3.5: Hot-pressed boron carbide target microstructure. 

Dense structure of sintered boron carbide can be seen from SEM observation given 

in the figure, realized by fractured cross-sections. Hot-pressed sputtering target was 

15 cm in diameter and 7 mm in thickness as can be seen in Figure 3.6 (a) and (b) 

respectively. The picture of the target was taken after the preliminary experiments. 

2 μm 
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The eroded area shown in the figure (a) is the zone that most of sputtering occurs due 

to the circular magnet design of the source. 

Figure 3.6: Hot-pressed boron carbide target (a) front view of the target showing 
its diameter (b) section view showing the thickness of the target. 

Chemical analysis of the sintered boron carbide was realized with EPMA and nearly 

the same composition as source powders was found. Density measurement of the 

sintered target was carried out by Archimedes’s method, referring to the industry 

standard of commonwealth Germany ‘DIN51056’ [151]. According to Archimedes’s 

principle, any object, wholly or partially immersed in a fluid, is buoyed up by a force 

equal to the weight of the fluid displaced by the object. Thus, the density of the 

immersed object relative to the density of the fluid can easily be calculated without 

measuring any volumes according to the following equation; 

L
BA

A xd
WW

W
d

)( −
=                                                                                                  (3.1) 

Where, d is the density of the material, WA is the weigth of the material, WB, is 

apparent immersed weigth of the same material in liquid and dL is the density of the 

liquid (water in our case). It was found that, theoretical density of 99% was achieved 

for boron carbide target with the sintering conditions used.  

(a) (b) 
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3.1.4 Processes parameters for thin films 

In this section, process parameters used to deposit different films will be given in 

separate sections. First standard configuration of the system before deposition will be 

described, than different parameters used for different films will be listed. 

3.1.4.1 Conventional DC magnetron sputtered B4C films 

All pre-cleaned substrates (3 types of substrates for each deposition) were placed in 

the special designed substrate holder and were then introduced to the deposition 

reactor. The base pressure of about 10-5 Pa was attained before each deposition. 

Argon was introduced into the chamber as precursor with a 20 sccm flow rate to 

ignite the plasma by applying a negative voltage to the cathode. Before deposition of 

each film, the boron carbide target was presputtered in argon atmosphere for 30 

minutes, and meanwhile with the help of the removable shield in front of the target 

and the auxilary plasma source, the substrates were bias-etched with a gradually 

applied voltage (50 V for 5 minutes, 100 V for 5 minutes, 200 V for 10 minutes, and 

250 V for 10 minutes) to remove the surface oxide layer and to clean any remaining 

contamination on the target and the substrates surfaces. After the bias etching of the 

substrates, the auxiliary plasma source was shut down, the removable shield in front 

of the target was removed, and variable parameters, bias voltages in the case of 

conventional magnetron sputtered B4C films, was set to desired values. Deposition 

time was 75 minutes for all the experiments. No external heating was used during 

experiments, however, because of the ion-target material interactions and kinetic 

energy transfers of the atoms to the substrate during film growth, the temperature 

reached ~50°C in all the experiments. Details of the deposition parameters for 

magnetron sputtered B4C films is given in the Table 3.2. 

Table 3.2: Deposition parameters for magnetron sputtered B4C films. 
Exp. Number BC47 BC48 BC49 
Exp. Duration (min) 75 75 75 
Base Pressure (Pa) 10-5 10-5 10-5 
Work. Pressure (Pa) 0.3 0.3 0.3 
Ar (sccm) 20 20 20 
Power (W) 500 500 500 
Voltage (V) 701 701 701 
Current (A) 0.71 0.71 0.71 
Bias (-V) 0 50 250 
Temperature (ºC) 44 45 46 
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3.1.4.2 Plasma-enhanced DC magnetron sputtered B4C films 

For plasma enhanced magnetron sputtered B4C films exactly the same procedure 

described in the previous section was used until the end of the bias etching process 

only, when the external heating was used, the hating of the system was started once 

the base pressure of 10-3 Pa had been reached. After the bias etching of the 

substrates, the removable shield in front of the target was removed and the auxiliary 

plasma source was leaved on. Variable parameters, bias voltage, and temperature 

were set to desired values. Details of the deposition parameters for plasma enhanced 

magnetron sputtered B4C films are given in the Table 3.3. 

Table 3.3:  Deposition parameters of plasma enhanced magnetron sputtered B4C 
films. 

Exp 
Number 

Exp.  
Duration 

(min) 

Working 
Pressure 

(Pa) 

Base 
Pressure 

(Pa) 

Ar  
(sccm)

Power 
(W) 

Voltage 
(V) 

Current 
(A) 

Bias  
(V) 

Booster  
current  

(A) 

Booster 
voltage  

(V) 

Temp. 
(ºC) 

BC82 75 0.3 10–5 20 520 689 0.76 100 1 30 52 
BC83 75 0.3 10-5 20 520 689 0.76 50 1 30 50 
BC84 75 0.3 1x10–5 20 520 689 0.76 150 1 29 51 
BC85 75 0.3 2x10-5 20 520 689 0.76 250 1 29 53 
BC86 75 0.3 10-5 20 520 689 0.76 250 1 29.5 150 
BC87 75 0.3 6x10-4 20 520 689 0.76 250 1 28.5 250 
BC88 75 0.3 8x10-4 20 520 689 0.76 150 1 28.5 250 
BC89 75 0.3 5x10-4 20 520 689 0.76 50 1 28.7 150 
BC90 75 0.3 10-4 20 520 689 0.76 100 1 28 250 
BC91 75 0.3 2x10-5 20 520 689 0.76 150 1 28.8 150 
BC92 75 0.3 1x10-5 20 520 689 0.76 0 1 29.8 51 
BC93 75 0.3 5x10-5 20 520 689 0.76 100 1 27.5 150 
BC94 75 0.3 6x10-4 20 520 689 0.76 0 1 29.2 250 
BC95 75 0.3 6x10-4 20 520 689 0.76 50 1 29.7 250 
BC96 75 0.3 10-5 20 520 689 0.76 0 1 30.4 150 

3.1.4.3 RF sputtered B4C films 

Boron carbide thin films were deposited by a non–magnetron RF sputtering (13.56 

MHz) of a commercial boron carbide target with 99.5% purity. Mirror polished AISI 

430 steel with average roughness (Ra) of 0.03 μm and one–side polished Si (100) 

wafer were used as substrates in each deposition. The distance of the insulated 

substrate holder from the target was 3 cm. The base pressure of 1.33 x 10-6 Pa was 

obtained by a combination of a rotary and turbomolecular pump system. High-purity 

Argon was used as precursor and was introduced into the vacuum chamber through a 

mass flow controller to establish the desired working pressure. All depositions were 

realized without external heating.  
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However, as a result of long deposition times needed to establish desired thicknesses 

because of the non–magnetron design, the temperature gradually increased and 

reached a steady–state level around 250 °C. The processing parameters used for RF 

sputtered B4C films are listed in Table 3.4. 

Table 3.4: Deposition parameters for RF sputtered B4C films. 
 BC27 BC28 BC29 
Base pressure (Pa) 1.33x10-6 1.33x10-6 1.34x10-6 
Working pressure (Pa) 0.67 0.26 0.4 
Power (W) 80 140 100 
Voltage (V) 500 700 600 
Exp. Duration (h) 8 6 8 
Temperature (ºC) 250 250 250 

3.1.4.4 BCN films 

For BCN films, after the bias etching, high purity N2 gas was introduced into the 

deposition chamber and the shield was removed after the stabilization of reactive 

plasma. Different reactive gas flows to deposit different BCN films was set for each 

experiment. Table 3.5 gives the parameters used to deposit BCN films with different 

N2 partial pressure.  

Table 3.5: Deposition parameters for BCN thin films. 
 BC67 BC68 BC69 
Exp. Duration (min) 50 55 55 
Base Pressure (Pa) 5x 10-5 5x 10-5 5x 10-5 
Work. Pressure (Pa) 0.3 0.3 0.3 
Ar (sccm) 19 15 10 
N2 (sccm) 1 5 10 
Power (W) 510 500 500 
Voltage (V) 619 525 509 
Current (A) 0.82 0.95 0.99 
Bias (-V) 50 50 50 
Booster current (A) 1 1 1 
Booster voltage (V) 30 22-32 15-40 
Temperature (ºC) 49 56 53 

3.1.4.5 Functionally graded films 
The preparation of the graded films has been carried out by means of plasma 

enhanced DC magnetron sputtering in a two-step process. A titanium target (99,5% 

purity) was used to pre-deposit Ti-TiN and Ti-TiC underlayers using nitrogen and 

acetylene as reactive gases respectively. Pack boriding method was used to obtain 

boride underlayers on AISI 430 steel substrates. Samples were embadded in the 

powder mix (EKABORTM2) and sealed in a stainless steel container than were 
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placed in a resistance furnace. The process was performed under atmospheric 

pressure and N2 gas environment at 930°C for 12 hours. Once the underlayers were 

deposited, boron carbide and boron carbonitride films were grown onto them by 

plasma enhanced DC magnetron sputtering of our hot–pressed boron carbide target. 

The synthesis conditions of underlayers and B4C and BCN films are summarized in 

Table 3.6. 

Table 3.6: Deposition parameters for functionally graded films. 
 Ti TiC TiN B4C BCN 

Base pressure (Pa) 5x 10-5 5x 10-5 5x 10-5 5x 10-5 5x 10-5 
Working pressure (Pa) 0.3 0.3 0.3 0.3 0.3 

Target power (W) 1000 1000 1000 520 520 
Voltage (V) 447 548 560 689 541 
Current (A) 2.26 1.83 1.8 0.76 0.96 

Ar flow rate (sccm) 20 12 12 20 17 
N2 flow rate (sccm) - - 8 - 3 

C2H2 flow rate (sccm) - 8 - - - 
Substrate bias (V) 125 125 125 100 250 
Temperature  (ºC) 250 250 250 250 250 

Deposition time (min) 7-10 15 15 180 120 

3.2 Characterization Techniques 

In this section, characterization techniques such as SEM (Scanning Electron 

Microscopy), TEM (Transmission Electron Microscopy), EPMA (Electron Probe 

Micro Analysis), SIMS (Secondary Ion Mass Spectrometry), FTIR (Fourier 

Transform Infrared Spectrometry), nanoindentation and “pin-on-disc” test, used in 

this study will be described. 

3.2.1 Scanning electron microscopy 

Scanning electron microscopy is used for surface imaging of solids using electron 

beam generated secondary electrons. Upon interacting with the solid, secondary 

electrons are generated which are utilized to image the surface [152]. When the 

energy of the emitted electron is less than about 50 eV, by convention it is referred to 

as a secondary electron. Most of the emitted secondary electrons are produced within 

the first few nm of the surface [153]. Some of the primary electrons will be 

backscattered toward the surface with little or no loss in energy. As the atomic 

number of the element increases, the back-scattering coefficient increases, hence the 

brightness of the BSE image tends to increase.  
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Therefore with BSE imaging, strong topographical contrasts can be obtained 

depending on the position of the detector [21,152]. One of the most common 

analytical attachments to the SEM is the energy dispersive x-ray spectrometer (EDX 

or EDS). Energetic primary electrons ionize atoms in the solid producing x-rays 

which are characteristic of the elements that are present. 

With suitable detectors, x-rays may be detected to provide qualitative, semi-

quantitative and quantitative elemental analysis [152]. X-ray emission signal can also 

be detected with a wavelength spectrometer (EPMA will be described in the next 

section). Although with modern detectors and electronics, recent EDS systems can 

detect X-rays above beryllium (Z = 4), if present in sufficient quantity, the EDS 

analyses are accurate for elements with Z > 9. Light elements could not be properly 

detected with EDS systems [154]. 

In this study, three SEM; JEOL 6320 FV field-emission gun scanning electron 

microscope, field-emission gun ZEISS DSM 982 (GEMINI) and LEO 450 VP were 

used to study mostly the microstructures and surface topographies of the films 

deposited, and in limited cases, to study qualitative and quantitative elemental 

analyses.  

3.2.2 Electron probe micro analysis 

Electron Probe Microanalysis (EPMA) is a spatially resolved, quantitative elemental 

analysis technique based on the generation of characteristic X-rays by a focused 

beam of energetic electrons [155]. EPMA is used to measure the concentrations of 

elements (beryllium to the actinides) at levels as low as 100 parts per million (ppm) 

and to determine lateral distributions by mapping [24,155]. Hence, the quantitative 

analysis of light elements can be realized with this technique even for trace amounts. 

EPMA combines the imaging capabilities of a SEM with quantitative elemental 

analysis using mainly wavelength dispersive spectrometry and possibly energy 

dispersive spectrometry [155].  

Wavelength Spectrometry (WDS) is based on the phenomenon of Bragg diffraction. 

The diffraction is described by the expression:  

Bdn θλ sin2=                                                                                                          (3.2) 
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Where, λ is the wavelength equivalent of the X-ray, d is the crystal spacing for the 

diffracting planes, and θB is the angle at which constructive interference occurs (i.e., 

the Brag angle). The X-ray source, the specimen, the diffracting crystal, and the gas 

counter must follow a specific geometry (a Rowland circle) to detect the X-rays. 

Accurate positioning is ensured by incorporating an optical microscope into the 

electron probe. To detect a wide energy range, different crystals with various d 

spacing are mounted on a mechanical turret, and are selectable under computer 

control [155]. 

As thin films studied in this thesis were mainly constituted by light elements such as, 

B, N, C and O, their chemical compositions were determined by EPMA. Two models 

of the same company, CAMECA SX 50 and CAMECA SX 100 were used for 

quantitative elemental analyses during this study.  

3.2.3 Transmission electron microscopy 

The transmission electron microscopy (TEM) utilizes an electron beam much like the 

SEM but at higher accelerating potential since in this technique, electrons that are 

transmitted through thinned specimens (less than 50 to 300 nm) are imaged. The 

accelerating potential required, depends on the sample thickness and atomic mass but 

is typically 100 - 400 kV [152]. 

TEM’s strong cards are its high lateral spatial resolution, which is stated generally as 

better than 0.2 nm “point-to-point’’ in the literature [152,156] (recently a resolution 

of 0.07 nm is announced by Carl Zeiss on an ultra-high resolution model [157]), and 

its capability to provide both image and diffraction information from a single sample. 

The information obtained by electron microscopy is derived from either elastic or 

inelastic scattering processes. Electrons that do not undergo any scattering or elastic 

scattering with little change in trajectory will form the transmitted beam (bright field 

mode). Elastically scattered electrons with a significant change in trajectory form the 

diffracted beam (dark field mode) [152]. A series of magnetic lenses at and below the 

sample position are responsible for delivering the signal to a detector. Accompanying 

this signal transmission is a magnification of the spatial information in the signal by 

as little as 50 times to as much as a factor of 106  [156].  
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Modern analytical electron microscopes are often equipped with a wide variety of 

signal detectors. In the scanning TEM mode (STEM), any of these signals 

(transmitted electrons, diffracted electrons, backscattered electrons, secondary 

electrons and characteristic x-rays) can be used to modulate the input signal to a 

cathode ray tube (CRT) to form an image [156]. There are numerous special 

analytical techniques or operation modes, which are in use with this powerful 

technique. Present, is a limited description in order to explain the techniques used 

specially to characterize thin films during this study. 

In Energy Filtered TEM (EFTEM), the transmitted electrons are subjected to an 

additional energy selection after the angle selection. The contrast is optimised by 

filtering the contrast-reducing electrons from the spectrum of transmitted electrons, 

or by only allowing electrons containing specific information to be used for imaging. 

The ability to quantify chemical information at a near atomic-scale and the 

possibility to obtain elemental distribution images (mapping) including ligth 

elements makes EFTEM an important tool for materials characterization [158]. 

EELS (Electron energy loss-spectroscopy) is an analytical methodology which 

derives its information from the measurement of changes in the energy and angular 

distribution of an initially nominally monoenergetic beam of electrons that has been 

scattered during transmission through a thin specimen [156]. The high energy 

primary electrons lose energy passing through the sample due to ionization of the 

energy levels of atoms present. This results in loss peaks at discrete energy levels. 

The physics of energy loss favors strong EELS signal generation for light elements, 

which is complimentary to EDS analysis which is insensitive to light elements [152]. 

By means of EELS, local elemental concentration of each atomic species present can 

be derived. Additionally, by studying the detailed shape of the spectral profiles, the 

analyst may derive information about the electronic structure, chemical bonding, and 

average nearest neighbor distances for each atomic species detected [156]. 

A TECNAI F 20 ST model TEM shown in Figure 3.7 was used to further investigate 

thin films deposited in this study. High-resolution observations from in plane and cross-

sections of different films were realized. EELS analyses of boron carbide structure were 

carried out. EFTEM analyses were also carried out on some specimens. 
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Figure 3.7: TECNAI F 20 ST TEM used in the study. 

3.2.3.1 Sample preparation for TEM analyses 

Two techniques were used to prepare thin foils for in-plane and cross-section TEM 

observations. Specimens that were observed by their cross-sections were prepared 

with a special technique named “sandwich method” developed particularly for 

multilayered materials and thin film observations, but suitable as well as bulk 

materials. In this technique, first two platelets, which belong to the same specimen, 

were glued face to face with a low viscosity epoxy resin as can be seen in the           

Figure 3.8 (a). The main idea is to protect the material surface while achieving a 

cross-section. Also by means of this technique, the observable material quantity in 

the same sample can be multiplied. The specimen thus obtained, was cut to 1 mm 

thick slices with a low speed diamond wheel saw. Then it was glued on the glass 

insert of a tripod and the whole mounting was placed on a heating plate (150 °C) for 

half an hour to ensure a proper glue polymerization. The planarity of the tripod was 

already verified before the mounting process. The first face was directly polished up 

to 500 μm, then the specimen was pulled out by heating on the plate, and the other 

face was mounted exactly by the same way. This face was gradually polished and 

thinned by means of micrometric screws of the tripod and a corner with a thickness 

of 500 nm was obtained as can be seen in (c). 
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Figure 3.8: Sample preparation steps of the sandwich technique for cross-
sectional TEM observations. 

Then, the specimen was put on a copper ring and a final thinning to electron 

transparency was realized with a GATAN ion beam thinning machine with dual 

argon ion beam during 3-15 minutes, at 3 kV, with 6 ° incidence angle. In Figure 3.9, 

the final form of the specimen before being introduced into TEM for analyses can be 

seen.  

Figure 3.9: Specimen prepared for cross-sectional TEM observations (a) view on 
the copper ring (b) demonstration of the probable analyses areas.  

Small arrows in Figure 3.9 (b), visualizes probable analyze areas where were thinned 

to electron transparency. For in-plane observations, the specimens were directly cut 

with a low speed diamond wheel saw and the process explained thereafter in the 

sandwich method was repeated exactly for these samples. 

(b) 

 250μm 

(a) 

 500μm 

(a) (b) (c) 
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3.2.4 Secondary ion mass spectrometry 

Secondary ion mass spectrometry (SIMS) is a sputtering based analytical technique 

as mentioned in the Section 2.1.3. With ion bombardment, sample surface particles 

are sputtered. The ionized flux (secondary ions) is then mass separated by different 

types of mass analyzers before to reach the convenient detector [159]. SIMS ion 

sources are usually designed to operate in the 1 to 20 keV energy range. As only a 

few percent of the atoms removed by sputtering are ionized, proper selection of the 

primary ion is a prerequisite to accurate analyses. Positive primary ions enhance the 

yield of negative secondary ions while negative primary ions enhance the yield of 

positive secondary ions. The favored primary ions are O and Cs for their high yield 

of positive and negative secondary ions, respectively [159]. 

SIMS is one of the most sensitive analytical techniques, with elemental detection 

limits in the ppm to sub-ppb range, depth resolution as good as 2 nm and lateral 

resolution depending upon the application and mode of operation. SIMS can be used 

to measure any elemental impurity, from hydrogen to uranium and any isotope of 

any element. The detection limit of most impurities is typically between 10l2 and 10l6 

atoms/cm3, which is at least several orders of magnitude lower (better) than the 

detection limits of other analytical techniques capable of providing similar lateral and 

depth information. Therefore, SIMS is usually the analytical technique of choice 

when ultrahigh sensitivity with simultaneous depth or lateral information is required. 

Additionally, its ability to detect hydrogen is unique and not possible using most 

other non-mass spectrometry surface sensitive analytical techniques [160]. 

There are two main subtypes of SIMS named static and dynamic SIMS. In the static 

mode, the incident flux of primary ions is kept below 5x1012 atoms/cm2, with ion 

current densities of < 1 nA cm-2 obtained using primary beams operated at kinetic 

energies between 1 and 10 keV. This mode of operating is used generally to obtain 

chemical information of the top most surface layers of the materials and its 

applications is well known for polymers and biomaterials [161]. In dynamic mode, 

kinetic energies between 10 and 20 keV are used generally, which result with ion 

current densities greater than 1 nA cm-2 and primary ion flux above 5x1012 

atoms/cm2. Thus, statistically, a given area has a high probability of being 

repetitively bombarded, causing a crater to be formed in the sample.  
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This mode of SIMS provides depth profiles) of any element and its isotopes with 

excellent detection limits. [159,160,162]. Dynamic SIMS can be operated in any of 

four basic modes to yield a wide variety of information: 

1. The depth-profiling mode, by fir the most common, is used to measure the 

concentrations of specific preselected elements as a function of depth from 

the surface. 

2. The bulk analysis mode is used to achieve maximum sensitivity to trace-level 

components, while sacrificing both depth and lateral resolution. 

3. The mass scan mode is used to survey the entire mass spectrum within a 

certain volume of the specimen. 

4. The ion-imaging mode is used to determine the lateral distribution of specific 

preselected elements. In certain circumstances, an imaging depth profile (3D 

imaging) is acquired, combining the use of both depth profiling and imaging. 

Figure 3.10: Cameca ims 6f secondary ion mass spectrometer used in this study. 

In this study, Cameca ims 6f model secondary ion mass spectrometer was used. The 

machine is capable to work both in static and dynamic modes. Dynamic SIMS mode 

has been used for the elemental depth profiling of the coatings and scanning ion 

imaging was realized to analyze the wear tracks obtained during tribological 

examinations. 



 95

3.2.5 Nanoindentation  

The most important hardness definitions for engineers are by Vickers, Knoop, 

Brinell, and Rockwell. Apart from the last one, all of them define hardness as the 

quotient of applied load P and remaining area A of indentation [163]. According to 

this definition, hardness cannot be measured if there is no remaining impression as 

the area of the impression is normally measured by optical microscopy. While the 

force can be measured with good accuracy, the error in indentation area 

measurements can reach high values if the area is small and the end of the diagonals 

cannot be well-resolved [163]. By the early 1980s, the necessity to measure the 

mechanical properties of thin hard films and small depth ranges was rapidly 

increasing. Such measurements could be carried out only with smaller forces, and it 

became difficult to get the accurate size of the indentation area [163]. This was the 

main reason for the development of a new measurement technique of hardness called 

“depth sensing indentation” or “instrumented indentation testing”. In this technique, 

depth and force are recorded simultaneously over the whole indentation cycle 

(loading and unloading). There is no need to measure the indentation area directly 

because it can be derived from the known shape of the indenter at any depth. The 

depth can be measured automatically with nanometer resolution and it is this 

nanometer range resolution that gives the well known name “nanoindentation” to this 

indentation technique [163,167].  

In nanoindentation, three-sided Berkovich pyramidal indenters instead of four-sided 

Vickers pyramids are mostly used because they can be produced with sharper tips 

and, therefore allows a better depth resolution [167]. Figure 3.11 shows the SEM 

image and the schematic of the Berkovich indenter demonstrating angles and its 

representative indent impression.  

As can be seen from the figure, the Berkovich tip has a nominal angle of 65.3° 

between the (side) face and the normal and an angle of 76.9° between edge and 

normal with a radius of curvature between 50 and 150 nm. When compared with the 

radius of curvature of the four-sided Vickers tip, which is bigger than 500 nm, it is 

clear that for the thin film applications with thicknesses of several hundred 

nanometers, Berkovich indenter should be decided for accurate analyses.   
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Figure 3.11: (a) Schematic of the Berkovich indenter (b) SEM image of the 
Berkovich indenter (c) Schematic indent impression [164]. 

The deformation pattern of a real elastic–plastic sample during and after indentation 

is shown schematically in Figure 3.12. In this figure, the contact depth (hc) is defined 

as the depth of indenter in contact with the sample under load. The depth measured 

during the indentation (h) includes the depression of the sample around the 

indentation in addition to the contact depth. The depression of the sample around the 

indentation (hs = h – hc) is caused by elastic displacements and must be subtracted 

from the data to obtain the actual depth of indentation or actual hardness [164]. At 

peak load, the load and displacement are Pmax and hmax, respectively, and the radius 

of the contact circle is a. Upon unloading, the elastic displacements in the contact 

region are recovered and, when the indenter is fully withdrawn, the final depth of the 

residual hardness impression is hf [164]. Schematic of a load–displacement curve 

obtained at the end of the nanoindentation process is shown in Figure 3.13. 
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 Figure 3.12: Schematic representation of the nanoindentation process [164]. 

There are several models to predict the mechanical properties, Hardness and Young’s 

modulus as well as the elastic and creep properties of the materials by analyzing the 

load-displacement curve shown in Figure 3.13 [48,164]. Among them, the methods 

of Loubet et al. [165], Doerner and Nix [166] are well known but the most widely 

used today, is that of Oliver and Pharr [167] which was also the model used in this 

study to measure hardness and modulus of the thin films deposited.  

Figure 3.13: Schematic of a load–displacement curve [167]. 

 

P 
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The Oliver–Pharr data analysis procedure [167] begins by fitting the unloading curve 

to the power-law relation 

m
fhhBP )( −=                                                                                               (3.3) 

Where; P is the indentation load, h is the displacement, B and m are empirically 

determined fitting parameters, and hf is the final displacement after complete 

unloading (also determined by curve fitting). The unloading stiffness, S, is then 

established by differentiating Eq. (3.3) at the maximum depth of penetration, h=hmax; 

1
maxmax )()( −−=== m

fhhmBhh
dh
dPS                                                                    (3.4) 

The contact depth is also estimated from the load-displacement data using; 

S
P

hhc
max

max ε−=                                                                                                    (3.5) 

Where; Pmax is the peak indentation load and ε is a constant which depends on the 

indenter geometry [167]. Oliver and Pharr empirical studies have shown that ε=0.75 

for a Berkovich indenter [167]. From the basic measurements contained in the load-

displacement data, the projected contact area of the hardness impression, A, is 

estimated by evaluating an empirically determined indenter shape function at the 

contact depth, hc; that is A=f(hc). The shape function, f(d), relates the cross-sectional 

area of the indenter to the distance, d, from its tip. For a geometrically perfect 

Berkovich indenter, the shape function is given by f(d)=24.56d2, but for real 

Berkovich indenters, f(d) is considerably more complex due to tip rounding. A 

simple experimental procedure has been developed for determining shape functions 

without having to image the indenter or hardness impressions made with it [167]. In 

the procedure, a series of indentations of various sizes are made in a material with 

well-known, isotropic elastic properties (usually fused quartz), and the shape 

function is deduced from the load-displacement data by assuming the elastic modulus 

of the material is independent of depth. Once the contact area is determined from the 

load-displacement data, the hardness, H, and reduced or indentation elastic modulus, 

Er, follow from; 
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A
P

H max=                                                                                                                 (3.6) 

and 

A
SEr 2

1 π
β

=                                                                                                       (3.7) 

where β is a constant which depends on the geometry of the indenter (β=1.034 for the 

Berkovich) [167]. The reduced modulus, which accounts for the fact that elastic 

deformation occurs in both the specimen and the indenter, is given by; 

i

i

r EEE

22 111 νν −
+

−
=                                                                                                (3.8) 

Where; E and υ are the Young’s modulus and Poisson’s ratio for the specimen, and 

Ei and υi are the same quantities for the indenter [3]. For diamond, Ei =1141 GPa and 

υi=0.07. Eq. (3.6) is founded in elastic contact theory [168].  

The indentation or reduced modulus obtained from the load-displacement curves as 

explained above can be slightly different from the Young’s modulus determined by 

ultrasonic or other methods, because it is a weighted average of the elastic properties 

in a certain sample volume and the Young’s modulus is directional. For isotropic 

materials however, there is no physical reason for this differentiation, and both 

values should agree if the contact area can be correctly determined [164].  

Figure 3.14: Nanomechanical test system (a) AFM instrument (b) nanoindenter 
head that is placed in the place of the AFM head for nanomechanical 
measurements. 

(a) (b) 
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In this study, Hysitron Triboscope mounted on a Veeco AFM instrument was used to 

measure nanomechanical properties of thin films deposited. This AFM coupled 

nanoindentation technique provides in-situ imaging of the surface topography of the 

test location and the resulting test deformation with the same tip that is used to 

perform the nanomechanical testing.  

3.2.6 FTIR technique 

Fourier transform infrared spectrometry (FTIR) is one of the few techniques that can 

provide information about the chemical bonding in a material [153]. The goal of the 

basic infrared experiment is to determine the changes in the intensity of a beam of 

infrared radiation as a function of wavelength or frequency (2.5- 50 μm or 4000-200 

cm-1, respectively) after it interacts with the sample [153]. In operation, radiation 

from the IR source passes through a beam splitter onto a fixed and movable mirror as 

shown in Figure 3.15. The IR radiation is recombined in an interference pattern 

which is determined by the position of the movable mirror. Infrared radiation 

transmitted through the sample or reflected from the surface is detected and a plot of 

IR absorption versus wavelength is generated [152].  

Figure 3.15: Schematic of FTIR spectrometry [23]. 
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Peak position is most commonly exploited for qualitative identification, because each 

chemical functional group displays peaks at a unique set of characteristic 

frequencies. Hence, computer databases of peak positions and some relative intensity 

information are used to identify the chemical bonding of analyzed material [153]. 

In this study the chemical bonding properties of boron carbide and boron 

carbonitride thin films were investigated by a Parkin-Elmer Spectrum – One System 

Fourier transform infrared spectrometer with a variable–angle specular reflectance 

attachment for thin film analysis in the wavenumber range 500 – 4000 cm-1. 

3.2.7 Tribological studies 

Tribology is the science and technology of two interacting surfaces in relative motion 

and of related subjects and practices. The popular equivalent is friction, wear, and 

lubrication. The word tribology coined in 1966, is derived from the Greek word 

tribos meaning rubbing, thus the literal translation would be the science of rubbing 

[169,170]. 

Wear is the major cause of material wastage and loss of mechanical performance and 

any reduction in wear can result in considerable savings. Friction is a principal cause 

of wear and energy dissipation. Considerable savings can be made by improved 

friction control. It is estimated that one-third of the world's energy resources in 

present use is needed to overcome friction in one form or another [170].  

The introduction of a fluid between the surfaces has long been the most common 

way to change the tribological behavior of two surfaces moving relative to each 

other. Another increasingly popular possibility is to apply a thin surface layer or 

coating on one or both of the surfaces [171]. Hard, wear resistant coatings, especially 

hard carbides, nitrides and carbonitrides are used to reduce abrasive, adhesive and 

fretting wear. Applications of wear resistant coatings are found in every industry. In 

most of these applications, wear rather than friction is the critical problem. Another 

benefit of hard-coating technology is that a cheap substrate material can be improved 

by a coating of a high performance material. Most engineering items are made of 

steel and it is often found that some material other than steel is needed to fulfill the 

wear and friction requirements. Many wear resistant materials are brittle or 

expensive and can only be used as a coating, so improved coating technology has 



 102

extended the control of wear to many previously unprotected engineering 

components [170]. “pin-on-disc” testing is a commonly used laboratory technique for 

investigating the friction and sliding wear of a variety of bulk materials and thin 

films [171].  

Figure 3.16: “pin-on-disc” tribometer. 

In the present study, CSEM “pin-on-disc” tribometer shown in Figure 3.16 was used 

to measure tribological properties of the thin films deposited. As the name implies, 

such apparatus consists essentially of a stationary "pin" in contact with a rotating disc 

as can be seen in Figure 3.17. Either the pin or the disc can be the test piece of 

interest. The contact surface of the pin is generally spherical but may also be flat or 

any convenient geometry. The normal load, rotational speed, and the wear track 

diameter are all set by the user prior to the “pin-on-disc” test. 

Figure 3.17: Schematic of the “pin-on-disc” testing principle [172]. 
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In a typical “pin-on-disc” experiment, the coefficient of friction is continuously 

monitored as wear occurs and it is calculated by dividing the friction by the applied 

load. The material removed is determined by weighing or the volume loss is 

calculated by measuring the profile of the resulting wear track to investigate the wear 

properties of dry or lubricated surfaces. Changes in coefficient of friction are 

frequently indicative of a change in wear mechanism, although marked changes are 

often seen during the early stages of wear tests as equilibrium conditions become 

established. The main variables which affect friction and wear are velocity and 

normal load. In addition, specimen orientation can be important if retained wear 

debris affects the wear rate. The loads used are dependant of the material system and 

can be in the range of 500 mN–1000 N for most commercial “pin-on-disc” test 

systems. 

In this study, alumina balls of 6 mm diameter were used as counterface to measure 

the friction and wear properties of all the coatings deposited. In some of the tests on 

boron carbide coatings, WC and boron carbide coated steel pins were also used. A 

sliding speed of 0.1 m/s was selected for all of the measurements. All friction tests 

were carried out in air with controlled humidity between 25% and 30% by means of 

the silicagel particles placed inside the tribotest environment. Before each test, the 

pin and specimen were cleaned in ethanol, in an ultrasonic bath for 5 minutes. Wear 

track diameter of 6 mm was used for all the tests, however when necessary, 7 and 8 

mm diameter wear tracks were also produced on the specimens to proof the 

reproducibility of the results. Friction and wear measurement procedures used in this 

study are described in the next two sections. 

3.2.7.1 Friction measurement 

Friction is the resistance to movement of one body over body. The word comes from 

the Latin verb fricare, which means to rub [173]. 

Friction is commonly represented by the friction coefficient, for which the symbols μ 

or f generally are used. The friction coefficient is the ratio between the tangential 

force, F, and the applied load, N. 

N
F

=μ                                                                                                                      (3.9) 
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For the friction coefficient measurements, during testing, the tangential force, F, was 

measured by a set of load cells and was then monitored by a computerized data 

acquisition system. As the applied load, N, is known, the friction coefficient is 

calculated according to the Eq. (3.8) by the data acquisition software and registered 

as a function of number of tours or sliding distance.  

3.2.7.2 Wear rate measurement 

Wear is a direct consequence of friction and occurs at the contact zones. The wear 

resistance (wear rate) is estimated by calculating the volume loss of the materials 

according to the equation: 

lN
Vk
×

=                                                                                                                (3.10) 

Where; 

k = Wear rate (mm3/Nm) V = Volume loss (mm3) 

N = Applied load (N) l = Sliding distance (m) 

To calculate the wear rates of the coatings, the maximum wear depth D, the wear 

length l and the wear area A, of the wear tracks were measured by a profilometer         

(Hommel Tester T500). A schematic example of the measured wear track profile can 

be seen in Figure 3.18. For each sample, 4 measurements on the same wear track 

were carried out and the averages of 4 measurements were used to obtain the wear 

depth, length and area.   

Figure 3.18: Representative profile of the wear track obtained by profilometer. 

 



 105

The wear coefficient k is calculated using the following equation: 

nrN
Ar

lN
Vk

⋅⋅⋅⋅
⋅⋅⋅

=
×

=
π

π
2

2                                                                                      (3.11) 

or 

nN
Ak
×

=                                                                                                               (3.12) 

Where; 

k = Wear rate (mm3/Nm) A = Wear area (mm2) 

V = Volume loss (mm3) r = Wear track diameter (m) 

N = Applied load (N) n = tour number 

l = Sliding disantce (m)  
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3.3 Résumé du Chapitre 

Ce chapitre est consacré a la présentation des systèmes de pulvérisation, les 

matériaux cible et les substrats, les différents paramètres utilisés pour déposer les 

différents systèmes de couches minces ainsi qu’a la présentation détaillée des 

techniques de caractérisation utilisées pour élucider les propriétés des couches 

minces obtenues.  

Dans cette étude, une cible de carbure de bore conductrice produite par pressage à 

chaud des poudre de carbure de bore, compatible avec la décharge courant continu, a 

été utilisée pour déposer les couches de carbure de bore, carbonitrure de bore et les 

multicouches fonctionnelles. Pour comparaison, une cible de carbure de bore 

commerciale a été employée pour le dépôt de couches de carbure de bore par 

pulvérisation radiofréquence. Des aciers de type AISI M2 et AISI 430 ainsi que des 

« wafers » Si (100) wafers ont servi comme substrats aux couches minces.  

Mono-et multicouches minces de carbure de bore et carbonitrure de bore ont été 

déposées par différentes configurations de pulvérisation cathodique. Trois types de 

couches de carbure de bore bien adhérentes et homogènes ont été déposés par 

pulvérisation cathodique magnétron classique à courant continu (DC), pulvérisation 

cathodique magnétron DC assistée plasma et par pulvérisation cathodique 

radiofréquence (RF). Les couches minces de carbonitrure de bore déposées par 

pulvérisation cathodique magnétron a courant continu en mode réactif avec addition 

d’azote dans le gaz plasmagène ont été également étudiées. Une conception 

multicouche fonctionnelle a été adoptée pour déposer des couches de carbure et 

carbonitrure de bore plus épaisses et adhérentes. Les résultats sont présentés. 

Les techniques de caractérisation et les raisons de leur emploi sont présentées en 

détail. On mentionne ici une brève liste des techniques utilisées pour caractériser les 

propriétés appropriées. La composition élémentaire des dépôts a été mesurée par 

microsonde électronique de Castaing (EPMA). La microscopie à balayage 

électronique à haute résolution avec un canon à émission de champ (FE-SEM) a 

permis l’examen de la microstructure et la topographie des couches minces obtenues. 

Les profils en profondeur des différents éléments constituant les dépôts ont été 
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obtenus par spectrométrie de masse d'ions secondaires (SIMS). Les propriétés 

nanomécaniques ont été évaluées par nanoindentation. Le comportement tribologique 

des dépôts a été étudié en utilisant un dispositif « pion-disque ». Les liaisons 

chimiques ont été évaluées par spectroscopie infrarouge à transformée de Fourier 

(FTIR). La nanostructure et la cristallinité des couches ont été caractérisées par 

microscopie électronique à transmission (TEM). 
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4. RESULTS AND DISCUSSION 

In this chapter, the results of the experimental studies obtained from various 

characterization techniques will be presented and discussed in separate sections for 

all series deposited.  

4.1 DC Sputtered B4C Films 

In this section results obtained from the characterization studies on B4C films 

deposited by conventional DC magnetron sputtering and plasma-enhanced DC 

magnetron sputtering will be presented and discussed. 

4.1.1 Early studies and the optimization of deposition parameters 

Figure 4.1 shows the high-resolution cross-sectional SEM micrographs of the first 

boron carbide thin films deposited in this study. In Figure 4.1 (a) coarse columnar 

structure of boron carbide film can be seen, in (b) taken with 10° tilt angle, rough, 

cauliflower-like surface morphology of the deposited film is shown. 

These first experiments were realized at 3.10-3 Pa base pressure and at 2 Pa working 

pressure when the chamber was back-filled with argon precursor. EPMA analyses 

carried out on this specimen resulted with 76 at.% B, 20 at.% C, with 3,5 at.% O and 

0,5 at.% Si as impurities. The reasons of such derivation from the stoichiometry and 

the excess amount of oxygen incorporation for the columnar structured films 

deposited in this study will be explained in the following sections of this manuscript.  

After the preliminary set of experiments and microstructural characterization studies, 

it is concluded that the main parameters influencing the coating microstructures were 

the base and working pressures. The mean free path of particles is decreasing while 

increasing the pressure in a plasma environment, as explained in Section 2.3.2. 
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Figure 4.1:  Cross-sectional SEM micrograph of the first boron carbide film 
deposited in this study showing (a) the columnar microstructure of the 
film (b) cauliflower-like surface morphology.  

Hence, the atomic self-shadowing becomes the dominant factor while film growth 

due to the oblique flux because of increased scattering probability. Thus, resulting 

films microstructures were columnar. This was the reason to fix the base pressure 

below 10-5 Pa, its minimum value that was possible to obtain by a combination of 

rotary and turbomolecular pumps. Furthermore, the working pressure was set to 0.3 

Pa to coerce the increase the mean free path of the neutrals in the flux while 

decreasing the probability of the oblique flux theoretically for the rest of the coatings 

deposited in this study. 

500 nm 

500 nm 

(a) 

(b) 

Steel substrate 

B4C coating 

Steel substrate 

B4C coating 
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Second important observation was about the film thicknesses and the adhesion of the 

coatings. As can be seen in Figure 4.1, the thickness of the coating on AISI 430 

substrate, deposited for 90 minutes was around 1 μm. It is observed that the coating 

suffers from delamination a short while after its exposition to the atmospheric 

pressure due to the ambient moisture (no or less delamination was observed in 

vacuum). The adhesion problems were much important for the films deposited by 

auxiliary plasma configuration and in the presence of applied bias voltages. 

Adhesion problems are common especially for films deposited under intensive ion 

bombardment by applying negative bias voltages while film growth and also 

observed by other researchers for boron carbide and BCN thin films as explained in 

the Sections 2.4 and 2.5. These can be explained by the high level of internal (mostly 

compressive due to the ion bombardment during grown) stresses generated in these 

films and also the mismatch of the substrate mechanical properties with remarkably 

high hardness and modulus of the films deposited. 

A series of experiments were carried out on three different substrates with different 

deposition times and resultant films were then investigated by cross-sectional SEM 

analyses to find out an optimum thickness below which no delamination occurs. It is 

concluded by direct observations coupled with SEM analyses that, for AISI 430 

steel, delamination in ambient moisture starts around 500 nm and for AISI M2 steel 

around 900 nm. For Si substrate no delamination was observed for the thickness 

interval reached in this study. Figure 4.2 shows delaminated and well adherent boron 

carbide thin films on AISI 430 and AISI M2 substrates after the exposure to the 

ambient moisture. 

In Figure 4.2, (a) delamination of the boron carbide coating deposited on AISI M2 

substrate can be clearly seen, mirror polished steel substrate is visible especially at 

the extremities of the substrate. The coating thickness measured by cross-sectional 

SEM observation was around 1 μm. In (b) well adherent boron carbide coating on 

AISI M2 substrate with 400 nm thickness is shown. Note that the bright black color 

of the boron carbide coating is a result of the mirror polishing of the steel substrate; 

otherwise, the real color of the boron carbide is dark gray. In Figure 4.2 (c) 

delamination of the boron carbide coating on AISI 430 steel substrate can be seen. 
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Figure 4.2: (a) Delaminated boron carbide coating on AISI M2 substrate (b) well 
adherent boron carbide coating on AISI 430 substrate (c) delaminated 
boron carbide coating on AISI 430 substrate (d) well adherent boron 
carbide coating on AISI 430 substrate. 

The thickness of this coating measured by SEM was 600 nm. Mirror polished steel 

substrate can be seen towards the bottom of the specimen as a result of complete 

delamination of the coating at this zone. In (d) well adherent boron carbide coating 

deposited on AISI 430 substrate with 400 nm thickness is shown. It has to be noted 

that the zone at the bottom of this specimen, where the polished substrate is visible, 

is not an evidence of the coating delamination, instead it is the part, which received 

no flux because it was attached from this part to the special designed substrate 

holder.  

Delaminated 
B4C coating 

Polished AISI M2 

(a) 

    1 cm 

Adherent B4C coating  (b) 

    1 cm 

Delaminated B4C               
coating 

Polished AISI 430 Substrate 

(c) 

    1 cm 

Adherent B4C coating  

Polished AISI 430 substrate 

(d) 

    1 cm 
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As a result of the above observations, it is concluded that the thickness plays an 

important role on the generation of the internal stresses and there are different 

threshold thicknesses for different types of substrates used in this study, above which 

the delamination of the coatings occur. Thus, a thickness of about 400 nm, which 

was reached in 75 minutes (for boron carbide coatings), was selected for all boron 

carbide coatings deposited with and without auxiliary plasma configuration and on 

all three types of substrates, to properly compare the properties of different thin films 

deposited in this study.  

4.1.2 Conventional DC magnetron sputtered B4C films 

In order to distinguish different properties obtained from boron carbide coatings 

deposited by different configurations, the results will be discussed in separate 

sections. Followings are the results for boron carbide films deposited by 

conventional DC magnetron sputtering, thus without the presence of the auxiliary 

plasma source.  

4.1.2.1 Microstructural studies 

Microstructures were observed for all three coatings deposited without external 

plasma configuration. Figure 4.3 (a) shows cross-sectional SEM observations of the 

specimen BC47 deposited on Si substrate. The columnar structure can be clearly seen 

from the figure. Note that the micrograph is taken with a 10° tilt angle in order to 

observe the coating microstructure and the surface morphology together. Measured 

film thickness was 370 nm for this coating. 

BC47 was deposited without any external hating at 44 °C which corresponds to 

T/Tm of 0.02 and with an Ar pressure of 0.3 Pa which is equal to 3 mtorr is situated 

in the Zone 1 of the Thornton diagram as explained in Section 2.3.2 and is shown in 

the figure (b) with a circle. The same coating deposited without applying any bias 

voltages is also situated in the zone 1 according to Messier’s SZD which replaced the 

Ar pressure axis with ion bombardment (bias) voltages.as can be seen in Figure 4.3 (c)  

For this specimen, the formation of the columnar structure can be explained by the 

low adatom mobility and atomic shadowing due to the very low deposition 

temperature (T/Tm) as explained in Section 2.3.2.  
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Figure 4.3: Cross-sectional SEM observation of the specimen BC47 (a) columnar 
structure of the B4C thin film (b) corresponding morphology on 
Thornton diagram (c) corresponding morphology on Messier’s SZD. 

(a) 

200 nm 

(b) 

(c) 
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In Figure 4.4, cross-section of the specimen BC48 is presented. This picture is taken 

from the coating deposited onto AISI 430 steel substrate. The sample was embrittled 

in liquid nitrogen and the pictures were taken from the fractured cross-section. 

Figure 4.4: Cross-sectional SEM image of the specimen BC48. 

As can be observed from the figure, there was no dramatic change in the 

microstructure of BC48, deposited with 50 V bias voltage and the coating 

morphology although denser was still columnar with less distinguishable voids 

between columns compared to the specimen deposited without applying any bias 

voltages. The scratches observed at the surface of the coating were originated from 

the scratches of the substrates due to polishing. These observations confirmed the 

fact that the hills receives more flux than the valleys explained in the Section 2.3.2, 

hence surface roughness of the substrates play a very important role on the roughness 

of the coating.  

To explain the change in the microstructure of the specimen deposited with 50 V 

applied bias voltage compared to the previous one, Messier’s SZD will be used as 

Thornton visualizes the microstructural changes in his SZD by two parameters, 

deposition temperature and pressure. The pressure and deposition temperature were 

identical for these two coatings. Thus, the main effect was the bias voltage applied to 

the substrates during film growth which will be more clarified by the following 

microstructure of the specimen deposited at 250 V bias voltage.  

 AISI 430 substrate 200 nm 

B4C coating 
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Figure 4.5: Cross-sectional SEM observation of the specimen BC49. 

Figure 4.5 is the cross-sectional observation for BC49. From the figure, it can be 

seen that even for this coating deposited with 250 V bias voltage, the columnar 

morphology was still present. However, the columns were not clearly separate like 

two preceding samples deposited without applying any bias voltages and 50 V bias 

voltages. It can thus be concluded a transformation from zone 1 to zone T 

microstructure as indicating Messier’s SZD, although their diagram was limited to 

100 V ion-bombarding voltages. In Messier’s SZD, the trend of the increase of the 

Transition zone with the increase in the bias voltages is remarkable between 0 V 

which includes almost no Transition zone even for elevated deposition temperatures 

and, large Transition zone at 100 V even for low deposition temperatures. Hence, it 

is believed that in our case, the trend continues and boron carbide coating deposited 

at 250 V bias voltage had zone T microstructure although it was deposited at very 

low temperatures. In other words, a densification occurred with the increase in the 

bias voltages. However, the effect was not sufficient to completely surpass the 

columnar structure.  

4.1.2.2 Chemical composition 

Electron Probe Micro analysis was used to quantify the chemical composition of B4C 

coatings deposited by conventional DC magnetron sputtering,without auxiliary 

plasma configuration, at three different bias voltages. Results are presented in Table 

4.1. 

B4C coating 

 AISI 430 substrate 

200 nm 
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Table 4.1:  Elemental composition of the boron carbide coatings deposited without 
auxiliary plasma. 

 B (at.%) C (at.%) O (at.%) Si (at.%) 
BC47 77.25 20.87 1.46 0.42 
BC48 77.06 21.78 0.65 0.51 
BC49 78.05 21.17 0.32 0.46 

The first observations from the elemental compositions were the difference of the 

oxygen concentrations between three coatings. With exactly the same deposition 

conditions, in the meaning of base and working pressures, sputtering power and 

target voltage, the coating deposited without applying bias voltage, resulted with the 

highest amount of oxygen incorporated with 1.46 at.%. At 50 V applied bias voltage 

it decreased to 0.65 at.% and at 200 V to 0.32 at.%. There was no significant change 

on the boron and carbon concentrations and with Si that incorporated to the 

composition as the target material impurity; the coatings had the hot-pressed boron 

carbide target material composition. As it was explained in the theoretical part of the 

manuscript, columnar microstructures presents voids between the columns and in our 

case there is a significant difference between the amounts of oxygen of different but 

all columnar microstructures, including the first B4C coating given in Section 4.1.1, 

with coarse columnar microstructure with 3.5 at.% O. Thus, it is concluded that 

further investigations by TEM should have been realized to analyze in details the 

coating microstructures and the results are presented in the next section. 

4.1.2.3 Nanostructural analyses  

Further investigations of the columnar BC47 were carried out by means of TEM. 

shows the microstructure of the specimen in details. In Figure 4.6 (a), the columnar 

microstructure of BC47 can be seen as in the SEM observations given in Figure 4.3. 

However, no further investigation could be possible by SEM due to the resolution 

limitations. By TEM observations, in Figure 4.6 (b), columnar structure was further 

revealed and column boundaries were made visible. These are images obtained by 

defocusing the beam and forcing to obtain Fresnel fringes5. 

 

                                                 

5 These fringes result from the electrons experiencing an abrupt change in the scattering potential 

parallel to the electron beam path and they are best seen when the object is slightly out of focus. 



 120

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6: Cross-sectional TEM observations of the specimen BC47 (a) general 
view of the columnar structure (b) column boundaries in detail (c) 
HRTEM observation of one single column and Fast Fourier 
Transform (FFT) diffraction pattern.  

In Figure 4.6 (c), one single column can be seen by high-resolution TEM observation, 

two arrows demonstrates column boundaries again obtained by Fresnel fringes. 

Individual columns from (b) and (c) were 20-25 nm in thickness, which is in good 

agreement with the findings of Messier as explained in Section 2.3.2. In Figure 4.6  

(c), inset FFT pattern demonstrates the amorphous structure of boron carbide coating. 

It has to be noted that, when compared the microstructural and nanostructural 

analyses on the same specimen realized by SEM and TEM and given in Figure 4.3 

(a) and Figure 4.6 respectively, columns are better seen in SEM micrograph than in 

low-resolution TEM observations realized with the same magnification. It is believed 

that, the reason for that lies in different sample preparation used for two techniques. 
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For SEM observations Si substrate on which boron carbide coating was deposited, 

was fractured and directly observed from its cross-section. However, for TEM 

observations, as explained in details in Section 3.2.3.1, the specimen was prepared by 

sandwich technique, polished with different grain sized diamond cloths and ionically 

thinned to electron transparency. Hence, it is believed that while fracturing the 

specimen, an extra contrast was added during SEM observations. However, for TEM 

analyses the contrast, which should already be present, was eliminated during 

polishing and thinning sequences. Defocusing of the beam had to be used to create 

Fresnel fringes to increase the contrast and to clearly identify and observe the 

columnar structure.   

EFTEM analyses were also carried on the same specimen. In Figure 4.7, boron 

EFTEM analysis is shown. Figure (a) shows the analyzed area and (b) boron 

mapping obtained from the same area. The distribution of boron is quite 

homogenous, however, a lack of boron at the column boundaries has been observed 

during the analyses, as can be seen in the figure. 

Figure 4.7:  EFTEM analysis on the specimen BC47 (a) the area of observation 
(b) boron distribution in the same area. 

More detailed EFTEM analyses were than conducted with higher magnifications, 

including boron, carbon and oxygen elemental mapping. Figure 4.8 demonstrate the 

results obtained, in (a) low-resolution TEM micrograph with a square indicating the 

analyzed area and (b) zero loss image of the analyzed area can be seen. Column 

boundaries are present in the figure, obtained by Fresnel fringes as precedents. Boron 

(a) (b) 
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distribution is shown in (c) and the same phenomenon obtained in Figure 4.7 is 

present in a smaller zone, which is the lack of boron at column boundaries, in other 

words, in nano-voids with approximately 2-3 nm thickness, which are present 

between the columns. It is clear from Figure 4.7 (d) that impurity oxygen present in 

the deposition chamber, or oxygen from the ambient atmosphere after the exposition 

of the specimen, is trapped at these nano-voids. Thus, the reason of the excess 

amount of oxygen obtained from EPMA analyses is clarified analytically by TEM 

observations. 

Figure 4.8:  Elemental distribution by EFTEM analyses, (a) low-resolution TEM 
image of boron carbide coating indicating the observed zone (b) zero 
loss image of the observed zone (b) boron distribution (c) oxygen 
distribution (d) carbon distribution.    

These results also demonstrated that boron carbide coatings deposited by 

conventional DC magnetron sputtering without external heating were amorphous 

with columnar microstructures. The columns, which can be seen in details in Figure 

4.6 and Figure 4.8, were not completely continuous all along the thickness of the 

coating. Instead, they were randomly interrupted which was proved by the EFTEM 

boron and oxygen distributions. 
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4.1.2.4 Nanomechanical properties 

First, a series of nanoindentation measurements with variable maximum applied 

loads between 1000–8000 µN were realized on the coatings deposited on steel and Si 

(100) substrates to optimize the load. Load-penetration curves for the specimen 

BC47 deposited on Si and AISI 430 substrates, from which the hardness and 

Young’s modulus of the films were calculated by using the elastoplastic model 

proposed by Oliver and Pharr, is given in Figure 4.9. This plot was taken with an 

applied load of 8000 µN. For the same coating deposited at floating potential on Si 

substrate, a well defined load-displacement curve for hard coatings was observed 

with 70% elastic recovery after unloading. However for the film deposited on AISI 

430 substrate around 3000 µN which corresponds to a penetration depth of 75 nm, a 

derivation occurs and the curvature of the load-displacement curve starts to decrease 

instead of increasing gradually like the blue curve (BC47 on Si). Since the coatings 

are homogeneous throughout their thickness, this derivation can be identified as the 

point where plastic flow starts within the AISI 430 substrate, which is softer than Si 

substrate and considerably softer than the coating. The same phenomenon was 

observed for all the coatings analyzed.  

Figure 4.9: Load-displacement curves for BC47 on Si and AISI 430 substrates. 

In Figure 4.10, the hardness and Young’s modulus curves versus indentation depth 

obtained for the specimen BC47 for different applied loads is given.  
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Figure 4.10: (a) Hardness vs. indentation depth diagram of the specimen BC 47 (b) 
Young’s modulus vs. indentation depth diagram of the same 
specimen. 

As can be observed from Figure 4.10 (a), for the same coating deposited on Si substrate, 

after 3000 µN, the hardness values demonstrate a quite stable nature around 20 GPa, 

while for the film on AISI 430 substrate, a drastical decrease occurs due to the substrate 

effect. At 5000 µN for 110 nm penetration depth it decreases to 18 GPa and at 8000 µN 

applied load which results with a penetration depth of around 210 nm, the hardness 

values decreases to 7 GPa. The Young’s modulus values are not much influenced from 

the substrate effect with increasing applied load, however, again a much stable nature is 

observable for the coating deposited on Si substrate in Figure 4.10 (b), while a decrease 

can be seen for the coating deposited on AISI 430 substrate. 
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In the light of above observations which were also valid for all the specimens 

analyzed, to study the nanomechanical properties of the coatings deposited with 

different process parameters solely, without the influence of the substrates, 

measurements were realized on the coatings deposited on Si substrates, with 3000 

µN applied force. Thus, the measurements, which demonstrated no tip rounding 

effect for lower loads and no substrate effect for higher loads, were taken into 

account while investigating the effect of deposition parameters. The results are 

summarized in Figure 4.11.  

Figure 4.11: The effect of the bias voltage on the nanomechanical properties of 
B4C films deposited without auxiliary plasma configuration. 

As can be seen from Figure 4.11, the nanomechanical properties of boron carbide 

cotings, which were deposited without auxiliary plasma, hence with a lack of a dense 

plasma around the substrates, were not influenced by different applied voltages, although 

the microstructures have been changed from columnar for the coating deposited at 

floating potential to a denser structure for the coating deposited at 250 V bias voltages. It 

is clear from the TEM observations that the columnar structure of the film deposited at 

floating potential was not continuous along the coating and the voids between the 

columns were only a few nanometers. The densification effect for the coatings was not 

enough to have effect on the hardness and modulus of the coatings. In this case, the films 

during their growth were bombarded by insufficient amount of the ions with insufficient 

kinetic energy because of the absence of dense plasma around the substrates, which is 

the reason of this insensitiveness to the increased bias voltages.  
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4.1.2.5 Bonding properties 

The phase composition of the films was investigated by FTIR spectroscopy. Figure 

4.12 shows representative FTIR spectra of boron carbide films deposited by 

conventional DC magnetron sputtering. There was no effect of the deposition 

parameters on the bonding properties of conventional magnetron sputtered boron 

carbide films. Infrared spectra present two broad bands, one centered at ~ 1100 cm-1 

and the other at ~ 1600 cm-1. The band at 1100 cm-1 is attributed to B–C bonds in the 

icosahedra and is characteristic of B4C thin film structure [63,97,134,136,141]. The 

band near 1570 cm-1 has been attributed either to the presence of free carbon in boron 

carbide structure or to the vibrations of the linear C–B–B chains that interconnect the 

icosahedra [97,174,175]. 

Figure 4.12:  Representative FTIR spectra of boron carbide films deposited by 
conventional DC magnetron sputtering. 

4.1.2.6 Tribological properties 

Tribological tests were performed using a “pin-on-disc” tribometer. An alumina ball 

of 6 mm diameter was used as the counterface. A sliding speed of 0.1 m/s was 

selected for all the tests. The applied force was 1 N. A radius of 8 mm was used and 

a total sliding distance of 300 m was chosen to see the friction coefficient behavior in 

details. At least 4 tests were realized with each configuration and the mean value is 

presented as wear rate. 
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Detailed optimization processes to measure tribological properties of the coatings 

solely, without the influence of the substrate will be described in Section 4.1.3.6. 

Friction coefficient evaluation of boron carbide film deposited on AISI M2 substrate 

against alumina ball is presented in Figure 4.13.   

 

 

 

 

Figure 4.13:  Representative friction coefficient vs. distance diagram of 
conventional DC magnetron sputtered B4C thin film against alumina 
ball. 

As can be seen from the figure, at the beginning of the test, the friction coefficient 

increased drastically and reached values about 1. It decreased gradually to about 0.7, 

which is believed the friction coefficient of conventional DC magnetron sputtered 

B4C thin film against alumina ball. Then it reached a steady-state level around 0.8, 

which is the friction coefficient of the steel substrates against alumina ball. All three 

coatings deposited with three different applied bias voltages demonstrated the same 

friction coefficient evaluation.  

According to friction coefficient evaluation, 100 m sliding distance was chosen to 

observe only the tribological behavior of boron carbide coatings deposited by 

conventional DC magnetron sputtering by applying different bias voltages. After the 

experiments, the wear rates were calculated by measuring the depth and width of the 

wear tracks by a profilometer. A representative profile of the wear track obtained at 

the end of 100 m sliding against alumina ball can be seen in Figure 4.14. 
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Figure 4.14:  Representative wear track measurement of B4C coating against Al2O3 
pin. 

All three coatings deposited with different bias voltages; floating, 50 V and 250 V 

demonstrated the same wear track profiles. Measured wear rates for conventional DC 

magnetron sputtered boron carbide films according to the equation 3.10 were about   

5 x 10-8 mm3/Nm. It can thus be concluded that applied bias voltages although 

caused a transition from zone 1 type columnar structure to zone T type 

microstructure, had no significant effects on the friction and wear properties of 

conventional DC magnetron sputtered boron carbide coatings.  

4.1.2.7 SIMS elemental depth profiles 

Elemental depth profiles of the coatings were obtained using a secondary ion mass 

spectrometer. An O2+ primary ion beam of 20 μm diameter was used at 15 keV 

acceleration voltage with 200 nA primary beam current to scan a 250 μm × 250 μm 

area. The data was collected from 150 μm field of analyses to prevent the edge 

effects while creating sputter craters.  

SIMS elemental depth profile analyses were realized on the films grown on Si 

substrates. All the coatings deposited by conventional DC magnetron sputtering 

demonstrated the same profile. At least five measurements were realized on each 

sample. Figure 4.15 shows that the elemental film distribution was constant over the 

whole film depth. The intensities are qualitative and dependant to the analyses 
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conditions, more specifically to the secondary ion yields, depending on primary ion 

beams as explained in Section 3.2.4. For example, carbon intensity in the figure is 

lower than expected because carbon is more sensitive to negative secondary ions 

while O2+ primary beam increases the yield of positive secondary ions. The same 

phenomena is valid for oxygen counts, however it has to be noted that oxygen counts 

detected could be higher than expected because of the mixing effect of the oxygen 

coming from the primary ion source. An example realized with an increased yield of 

negative secondary ions by using Cs ion source will be given in Section 4.1.3.7. 

Figure 4.15:  SIMS elemental depth profile of boron carbide coatings deposited by 
conventional DC magnetron sputtering. 

For SIMS data given in the figure, the x–axis was converted from time to depth by 

measuring the crater depths obtained during analyses by a profilometer. The 

thicknesses were in good agreement with SEM observations with a maximum 

deviation of 5%. 
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4.1.3 Plasma-enhanced DC magnetron sputtered B4C films 

In this section the effect of bias voltages and different deposition on the 

microstructural, nanomechanical, tribological and bonding characteristics of boron 

carbide thin films deposited with the presence of auxiliary plasma source, hence with 

the presence of dense plasma around the substrates will be discussed. 

4.1.3.1 Microstructural studies  

Microstructural examinations of boron carbide films were realized on cross-sections 

and are shown in Figure 4.16. The presence of continuous and homogeneous B4C 

films with 350–400 nm thickness can be observed from the figure. 

The coating microstructure and the surface morphology were observed in the pictures 

taken at a 10º tilt angle. All the coatings deposited with different bias voltages         

(0-250 V) and temperatures (50-250 °C) were investigated on their cross-sections. In 

Figure 4.16, microstructures of two coatings, BC92 deposited without external 

heating at floating potential (a) and BC87 deposited at 250 °C by applying 250 V 

bias voltage (b) are presented. As can be seen from Figure 4.16 (a), BC87 shows a 

quasi-featureless structure instead of columnar morphology obtained for the films 

deposited without auxiliary plasma configuration. The film deposited without 

heating, at floating potential had a relatively high surface roughness, whereas for the 

film deposited at 250 °C by applying 250 V bias voltage, the columnar structure 

completely disappeared and the coating presented a featureless non-columnar 

structure with a smooth surface. Thus, it can be concluded that the increase of the 

bias voltage and the temperature led to the surpassing of the columnar structure and 

therefore a decrease of the surface roughness. 

These two microstructures are given as representative examples for all the coatings 

deposited in these series. The non-columnar structures with smooth surfaces were 

obtained even for an increase of 50 V in the bias voltage and with an increase of the 

deposition temperature to 150°C separately. The reason of this non-columnar 

microstructure observed, even for the films deposited without applying bias voltage, 

is the intensive bombardment of the coatings during film growth by highly energetic 

ions generated by plasma-enhanced configuration as explained in details in Section 

2.3.3.  
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Figure 4.16: Cross-sectional micrograph of the specimens (a) BC92 and (b) BC87. 

The effect of the different substrates on the coating growth was also investigated by 

cross-sectional SEM observations. To do this; BC90 which was deposited at 250 °C 

with 100 V applied bias voltage was selected. The coating on Si (100) substrate was 

directly cut by means of a scalpel while for the coatings on AISI M2 and 430 

substrates, the specimens were thinned starting from the back sides of the substrates 

without damaging the coating, they were then embrittled in liquid nitrogen and 

fractured by means of a plier for fractured cross-section images. Figure 4.17 shows 

the cross-sectional observations of the same coating on three different substrates. 

From the figure, no substrates effect on the coating grown morphologies for three 

different substrates used in this study were observed.  

200 nm 

200 nm 
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Figure 4.17: Cross-sectional SEM observations of the same coating BC90 on three 
different substrates (a) AISI 430 (b) AISI M2 (c) Si (100). 
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4.1.3.2 Chemical compositions 

Electron probe microanalysis was used to quantify the chemical composition of the 

B4C coating deposited by plasma enhanced DC magnetron sputtering Results are 

presented in Table 4.2. 

Table 4.2:  Elemental composition of boron carbide coatings deposited by plasma 
enhanced DC magnetron sputtering. 

 B (at.%) C (at.%) O (at.%) Si (at.%) 
BC92  77.74 21.69 0.39 0.18 
BC83  78.05 21.51 0.16 0.28 
BC82  76.64 22.84 0.27 0.25 
BC84  77.23 22.20 0.32 0.25 
BC85  77.83 21.67 0.25 0.25 
BC96  77.42 21.88 0.38 0.32 
BC89  77.71 21.72 0.31 0.26 
BC93  77.96 21.64 0.23 0.17 
BC91  77.62 21.82 0.33 0.23 
BC86  76.69 22.86 0.19 0.26 
BC94  77.72 21.60 0.32 0.36 
BC95  77.75 21.52 0.27 0.46 
BC90  77.71 21.73 0.35 0.21 
BC88  77.86 21.46 0.44 0.24 
BC87  77.06 22.26 0.42 0.26 

It can be seen from Table 4.2 that process parameters had no significant effect on the 

coating compositions for the films deposited by plasma-enhanced configuration. The 

concentrations were the same as the hot-pressed boron carbide target and thus were 

the same as the initial powder composition for all the coatings with negligible 

differences. 

4.1.3.3 Nanomechanical properties 

For plasma-enhanced magnetron deposited B4C films like without auxiliary 

configuration (Sec. 4.1.2.4), first, a series of nanoindentation measurements with 

variable maximum applied loads between 300–9000 µN were realized on the 

coatings deposited on AISI M2 steel and AISI 430 substrates to optimize the load. 

Load-penetration curves for the specimen BC87 deposited on AISI M2 and AISI 430 

substrates, from which the hardness and Young’s modulus of the films were 

calculated by using the elastoplastic model proposed by Oliver and Pharr, is given in 

Figure 4.18 as an example. This plot was taken with an applied load of 9000 µN. For 

the same coating, on AISI M2 substrate a well defined force-displacement curve for 
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hard coatings is observed, however for the film deposited on AISI 430 substrate 

around 3000 µN which corresponds to a penetration depth of 65 nm (indicated by an 

arrow in Figure 4.18) a derivation occurs. As the same phenomena observed in the 

nanoindentation of the series deposited without auxiliary plasma configuration, this 

is associated with the onset of plastic deformation within the substrate. The same 

phenomenon was observed for all the series with different bias voltages and 

temperatures.  

Figure 4.18: Load-displacement curves for BC87 on AISI M2 and AISI 430 
substrates. 

For all the coatings analyzed on AISI 430 substrates at higher loads (8000-9000 µN), 

another phenomena which is named pop-in in the literature and appeared by a sudden 

increase in indentation depth, in other words interruption in the load-displacement 

curves is observed. An example can be seen in Figure 4.18, for the curve, which 

belongs to BC87 on AISI 430, an interruption that is indicated by an arrow, occurs at 

~ 7500 µN applied load which resulted with a penetration depth of ~ 133 nm. The 

pop-in event is believed to be associated with the onset of cracking of B4C coatings.  

In Figure 4.19, the hardness and Young’s modulus curves obtained from the load-

displacement data, which is given in Figure 4.18 are presented.  
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Figure 4.19: Hardness and Young’s modulus vs. load and corresponding 
indentation depths curves of (a) BC87 on AISI M2 (b) BC87 on AISI 
430 substrates. 

From this curves, it is possible to observe the change of the hardness and modulus 

values for the same coating deposited on two different substrates by different applied 

loads and corresponding penetration depths. As can be seen from the figure, for the 

coating on AISI M2 (Figure 4.19 (a)), for the lower loads starting from 300 µN to 

1000 µN, an increase of the hardness from 15 to 27 GPa was observed. With the 
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increase of the applied load, at 2000 µN the hardness value reached ~ 30 GPa and no 

important changes were observed with further increase of the load, even at 9000 µN 

which was the limit load of the nanoindenter used in this study. Hence, it is 

concluded that below 2000 µN applied forces, the hardness and modulus values for 

the same coating on both substrates were underestimated due to the tip rounding 

effect. The same observations were made for Young’s modulus values. They were 

underestimated as well for the loads between 300-1000 µN with 180-220 GPa and 

they demonstrated a quite stable nature with the increase of the load until 9000 µN 

around 240-250 GPa. No substrate effect was observed for this specimen, which was 

also clear from the load-displacement curve given in Figure 4.18. For BC87 on AISI 

430 substrate (Figure 4.19 (b)), the plot was quite different. For the lower loads, 

again an underestimate of the hardness was observed between 300-1000 µN. The 

hardness values increased with applied loads from 13 to 23 GPa, it reached 32 GPa at 

2000 µN, then a drastical decrease was observed by further increase in the applied 

loads which results with 15 GPa at 9000 µN. This can be explained by the effect of 

the substrate on boron carbide coating nanomechanical properties by combining the 

load-penetration depth curves and the hardness values obtained. The depth (~65 nm) 

at which the load-penetration curve derivate, corresponds the point at which the 

hardness values started to decrease. The indentation depth (~130 nm) where pop-in 

occurred fitted as well with the drastical decrease of the hardness values. The same 

tendency was observed for the Young’s modulus values. 

Further investigations to compare the effect of different substrates were realized on 

the coatings deposited on Si substrates. In the light of above observations realized 

with a large interval of applied loads, a series of indentation with 1000, 3000 and 

5000 µN loads only, were realized and the results are presented in Figure 4.20 for 

BC86 deposited on both AISI M2 and Si (100) substrates. 

It is clear from the figure that two curves are completely identical. Even the 

corresponding penetration depths for different applied loads are the same with a few 

nanometers differences.  
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Figure 4.20: Hardness and Young’s modulus versus load and indentation depth 
curves of BC86 (a) on AISI M2 (b) on Si (100). 

As a result of the above observations, all the series were decided to analyze on AISI 

M2 substrates with 3000 and 5000 µN applied loads. Thus, once again, only the 

effect of deposition parameters on the boron carbide thin film’s nanomechanical 

properties will be discussed in the coming part. Figure 4.21 shows the effect of bias 

voltages and deposition temperatures on the hardness and Young’s modulus of boron 

carbide thin films deposited by plasma-enhanced configuration. 
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Figure 4.21: The effect of bias voltages and temperatures on the (a) hardness and 
(b) Young’s modulus of the B4C thin films deposited by plasma-
enhanced DC magnetron sputtering. 

From Figure 4.21 (a), the hardness values of the three series deposited with different 

temperatures between 50 and 250 °C and applied bias voltages between floating 

potential and 250 V can be seen. For the coating deposited at floating potential 

without any external heating, a hardness of 28 GPa was found which was also the 

softest film deposited in plasma-enhanced DC magnetron sputtered series. With the 

increase in the temperature, at 150 °C again at floating potential, the hardness 
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increased to 30 GPa and at 250 °C, 32 GPa was reached for the films deposited 

without applying any bias voltages. This increase in the hardness with the increase of 

the deposition temperature can be explained by the thermally activated adatom 

mobility on the substrate surface as explained in Section 2.3.2. For all the series, an 

increase in the hardness with the increase in the applied bias voltages was observed 

until a critical value. This critical value is 150 V for the coatings deposited without 

external heating, at this voltage the hardness reached ~ 32 GPa. Then a decrease to 

29 GPa was observed with further increase in the bias voltages to 250 V. For the 

films deposited at 150 °C the same tendency was observed; the hardness was 

increased to 32 GPa at 50 and 100 V applied bias voltages, reached its maximum 

with 33 GPa at 150 V and then decreased to 29 GPa with further increase in the bias 

voltages to 250 V. For the films deposited at 250 °C, the hardness was increased 

from 32 GPa for the boron carbide film deposited at floating potential to 35 GPa at 

50 V, at 100 V the hardness reached its maximum with 38-40 GPa which is the 

hardest film deposited in this study, then gradually dropped to 33 at 150 V and 

finally to 32 at 250 V.  

The increase in the hardness by ion bombardment during the growth of films can be 

explained by the densification effect as explained in Section 2.3.3 which first causes 

the suppression of the columnar structure and when coupled with thermal energy, 

further densification occurs until a threshold value. At 250 °C, the threshold for 

densification effect obtained as a result of the thermal activation of the adatoms, 

coupled with highly energetic ion bombardment appears at 100 V, differently from 

the series deposited at lower temperatures for which this threshold appeared less 

remarkably at 150 V bias voltages.  

The same tendency was observed for the Young’s modulus of the coatings deposited, 

however the effect was not as evident as the hardness results. Starting from around 

270 GPa for all the coatings deposited at floating potential with different 

temperatures, the Young’s modulus values reached their maximum at 150 V bias 

voltages with 280-290 GPa and decreased again to 270 GPa with further increase of 

the bias voltage to 250 V.  
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Figure 4.22 shows the load-displacement curves of two coatings, (a) BC96 deposited at 

150 °C at floating potential, given as representative of the series with hardness values 

near 30 GPa and (b) BC90 deposited at 250 °C with 100 V applied bias voltage, which 

is the hardest coating obtained in this study with ~ 40 GPa. As can be seen from the 

figure, BC96 as representative of the majority of the coatings deposited by plasma-

enhanced configuration, shows approximately 70% elastic  recovery after unloading in 

(a), whereas for BC90, more than 80% of elastic recovery is observed in (b). Thus, a 

high elastic recovery behavior of the boron carbide films can be deduced. 

Figure 4.22: Load-displacement curves of (a) BC 96 (b) BC90. 

Figure 4.23 shows a typical indent profile obtained by AFM on the sample BC90. 

The same pyramidal Berkovich indenter was used for tests and visualization before 

and after the indentation. In Figure 4.23 (a) 2D view of the indent can be seen with 

the roughness scale on the right hand side. In (b) 3D visualization of the indent and 

the surface of the specimen are presented.  
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Figure 4.23: Representative indent profiles obtained by AFM on the specimen 
BC90 (a) 2D view of the indent (b) 3D visualization of the same area. 

4.1.3.4 Nanostructural analyses 

TEM analyses were conducted on the selected specimens from the series deposited 

by plasma-enhanced configuration, to further investigate the coating microstructures 

and to observe possible evidence of crystallization to correlate the effect of the 

deposition parameters on the nanomechanical properties of the coatings. Figure 4.24 

shows the microstructure of the specimen BC92 with low and high-resolution TEM 

micrographs.  
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Figure 4.24: Cross-sectional TEM micrographs of the specimen BC92 (a) low-
magnification (b) high-resolution TEM of the selected area. 

The coating deposited on AISI M2 substrate was prepared by the sandwich technique 

and observed on its cross-section. In Figure 4.24 (a) low-magnification bright field 

TEM micrograph is shown. It is clear from the figure that the microstructure is not 

columnar neither granular, instead a featureless solid structure is observed. In Figure 

4.24 (b), high-resolution observations were realized on the area indicated by the 
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square in (a). Amorphous structure of the coating can be clearly seen from the figure 

and also from the inset FFT pattern. Crystalline structure of the steel substrate can be 

seen and compared by the coating. Crystallographic order at the extremity of the thin 

foil is an artifact due to the ion milling for the final specimen preparation to electron 

transparency and should not be taken into consideration as an evidence of the 

cristallinity of boron carbide thin film. Hence, it is evident from the figure that the 

coating deposited by plasma-enhanced magnetron sputtering without any applied 

bias voltages and temperatures was amorphous in nature.  

Figure 4.25: High-resolution TEM observation of the specimen BC94. 

To observe the effect of the deposition temperature, the specimen BC94 deposited at 

250 °C, at floating potential was investigated. For this sample, thin foil of the coating 

deposited on Si substrate was prepared for TEM in-plane observations. Figure 4.25 

shows the high-resolution TEM image of the specimen BC94. The image as well as 

the inset FFT shows the amorphous nature of the film. Therefore, it is concluded that 

the temperature interval used in this study was not sufficient to crystallize boron 

carbide thin films. It is well known from the literature survey given in Section 2.4.1, 

that boron carbide films deposited by different sputtering configurations start to 

crystallize at temperatures above 900 °C.   
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Figure 4.26: Cross-sectional TEM micrographs of the specimen BC90 (a) low-
magnification (b) high-resolution TEM of the selected area. 

To observe the effect of the deposition temperature and the bias voltages, the hardest 

coating of all the series deposited in this study, BC90, grown at 250 °C, with 100 V 

applied bias voltage was selected to investigate in details. Figure 4.26 shows low and 

high magnification cross-sectional TEM observations of the coating deposited on Si 

substrate. In the figure (a) low magnification image from cross-section of the coating 
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and Si substrate is shown. The area indicated by a square was investigated by high 

resolution TEM analyses and is shown in (b). Ordered crystal structure of Si 

substrate can be clearly seen in the figure, while boron carbide thin film shows a 

completely amorphous structure. Again the artifact of the ion milling process is 

present at the extremity of the coating. 

In Figure 4.27 more detailed observations of the coating-substrate interface can be 

seen. 4-5 atomic layers, which correspond to 1-1.5 nm, were in crystallographic 

order just at the interface as a transition layer and then the coating becomes quickly 

amorphous. The crystalline structure of Si substrate and amorphous nature of B4C 

coating can be clearly seen from the inset FFT patterns.  

Figure 4.27: High resolution TEM micrograph of the specimen demonstrating the 
coating-substrate interface and the cristallinity of the substrate and 
coating with inset FFT patterns. 

From the results presented, it is clear that all boron carbide coatings deposited in this 

study were amorphous. The difference in the hardness values between the columnar 

structured films deposited without auxiliary plasma and non-columnar, featurless 

structures deposited by the assistance of the auxiliary plasma was related to the 

change in the microstructures by means of a densification process. The difference in 

the hardness for the series deposited by enhanced-plasma configuration at different 
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deposition temperatures by applying different bias voltages is considered again a 

densification process, however, the phenomena was not observable from the change 

in the microstructures even with high-resolution TEM observations. It is also clear 

that the hardening could not be related to the degree of crystallization, because in all 

the high-resolution TEM observations no evidence of even the presence of nano-

crystalline phase was found.  

The chemical composition of the films was further investigated with an electron 

energy loss spectroscope (EELS) attached to the TEM. Figure 4.28 shows a typical 

EELS spectrum taken from boron carbide thin films deposited by plasma enhanced 

DC magnetron sputtering.  

Figure 4.28: Typical EELS spectrum taken from boron carbide coatings. 

In the EELS spectrum, ionization edges around 188 and 284 eV, corresponding to the 

characteristic K-shell ionization edges of elemental boron and carbon are present. 

There were no detectable traces of oxygen (532 eV) in the EELS spectrum taken 

from different boron carbide coatings. 

The carbon and boron K-edges both exhibit a small 1s → π* transition peak and a 

series of broad 1s → σ* transition peaks. The π* and σ* features of boron K-edge 

can be usually observed from boron carbide, as in boron carbide crystals boron atoms 

are located either at the vertices of icosahedra (sp2 hybridization, i.e., π* feature) or 

the chains connecting the icosahedra (sp3 hybridization, i.e., σ* feature) as explained 

in Section 2.4.1. 
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4.1.3.5 Bonding properties 

The phase composition of boron carbide films deposited by plasma-enhanced DC 

magnetron sputtering was investigated by FTIR spectroscopy. Figure 4.29 shows 

FTIR spectra of boron carbide film deposited without external heating and at floating 

potential. Infrared spectra present two broad bands, one centered at ~ 1100 cm-1 and 

the other at ~ 1570 cm-1. The band at 1100 cm-1 is attributed to B–C bonds in the 

icosahedra and the band at 1570 cm-1 has been attributed either to the presence of 

free carbon in boron carbide structure or to the vibrations of the linear C–B–B chains 

that interconnect the icosahedra as explained in Section 4.1.2.6. 

Figure 4.29: FTIR spectra of boron carbide film deposited without external heating 
and at floating potential. 

The analyses were conducted on all the coatings deposited by plasma-enhanced 

configuration. In all the series deposited at different temperatures with applied bias 

voltages, a shift of the band present at 1570 cm-1 to the higher wavenumbers was 

observed. A representative example for the series deposited at 250 °C with different 

applied bias voltages is shown in Figure 4.30. Thus, it is believed that the band near 

1570 cm-1 is an evidence of the C–B–B chains rather than the presence of free carbon 

and applied bias voltages resulted with a change in the vibrational properties, thus in 

bonding characteristics of the boron carbide films deposited.   
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Figure 4.30: FTIR spectra of the boron carbide films deposited at 250 °C with 
different bias voltages. 

4.1.3.6 Tribological studies 

First a series of optimization experiments were realized on B4C coatings. An alumina 

ball of 6 mm diameter was used as the counterface. A sliding speed of 0.1 m/s was 

selected for all the tests. The applied force was varied between 1–2 N. A radius of 6 

mm was used during this first series of experiments and a total sliding distance of 

300 m was chosen to see the friction coefficient behavior in details. After the 

experiments, the wear rates were measured on wear tracks by measuring the depth 

and width by a profilometer. At least 4 tests were realized with each configuration 

and the mean value is presented as wear rate. With the same configuration, using the 

same parameters, the friction coefficients and the wear rates of the steel (AISI M2 

and AISI 430) substrates were measured against alumina ball. Friction coefficients of 

virgin AISI M2 steel against alumina ball and boron carbide film deposited on AISI 

M2 substrate against alumina ball are presented in Figure 4.31. 

As a result of the adhesion problems observed during “pin-on-disc” tests realized on 

boron carbide coatings deposited on AISI 430 steel substrates, all the tests were 

realized on boron carbide films deposited on AISI M2 substrates.  
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Figure 4.31: Representative friction coefficient vs. distance diagram of (a) AISI 
M2 steel without coating against alumina ball (b) B4C coated AISI 
M2 against alumina ball.  

All the coatings investigated have been demonstrated exactly the same friction 

properties regardless the deposition parameters used. Tests with different sliding 

distances were decided to conduct in order to optimize “pin-on-disc” test conditions 

and to obtain information about the wear mechanism by SEM investigations of the 

worn surfaces. “pin-on-disc” tests with 25, 125, and 225 m were realized on the same 

specimen with a standard 1 N applied force. Figure 4.32 demonstrates wear tracks 

observed after 25 m sliding. 

As can be seen from the figure, after 25 m, the wear track was hardly visible but 

Al2O3 debris was present at both sides of the wear track. The profilometer 

measurements realized on this wear track are shown in Table 4.3. 
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Figure 4.32: SEM investigation of wear track after 25 m sliding. 

Table 4.3: Profilometer measurement of the wear track after 25 m. 

Wear track depth (μm) Wear track width (μm) 
0.126 211 
0.119 246 
0.123 232 

 

At this early stage of the wear test, two bodies were getting in contact, hence, an 

increase of the friction coefficient can be seen in Figure 4.33. 

Figure 4.33: Friction coefficient during early stage of the wear test. 

The observations were fallowed with 125 m sliding distance on the same specimen. 

SEM observation of the worn surfaces is demonstrated in Figure 4.34. 
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Figure 4.34: SEM investigation of wear track after 125 m sliding. 

From Figure 4.34, it can be observed that after 125 m, the wear track became more 

visible. The profilometer measurements realized on the wear track obtained after 125 

m are presented in Table 4.4. For further investigations, backscattered electron image 

of the same track was taken and presented in Figure 4.35 (a).  

By EDS line scan analysis on the area shown by a square in Figure 4.35 (a) starting 

from the edge of the coating through the wear track, no boron was detected on the 

worn surface in the figure (b). The analysis was verified by EPMA and the same 

result was obtained, although profilometer measurements (Table 4.4) demonstrated 

that the “pin-on-disc” test was ended before reaching the substrate.  

Table 4.4: Profilometer measurement of the wear track after 125 m. 

Wear track depth (μm) Wear track width (μm) 
0.194 248 
0.185 230 
0.204 299 

As a surface sensitive technique, SIMS ion imaging was used to further explore the 

worn surfaces as the thickness of the coating was reduced to 100 – 150 nm according 

to profilometer measurements. As can be seen from Figure 4.36, boron, which was 

not detectable with SEM-EDS and EPMA analyses, is still present on the worn 

surface.  
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Back scattered electron image does not present the exact area where the ion images 

were taken and is a representative one, because during the secondary ion mass 

spectrometry analyses, it is not possible to obtain secondary ion and electron images 

together. 

Figure 4.35: (a) Backscattered electron image of the worn track after 125 m (b) 
line scan on the zone shown by the square. 

The friction coefficient versus distance diagram for 125 m sliding is given in Figure 

4.37. From the figure it can be seen that between 25 and 125 m, friction coefficient 

stabilizes and reach a steady state  level around 0,6.  
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Figure 4.36: SIMS elemental ion imaging of the worn surfaces (a) B distribution 
(b) Al distribution (c) Fe distribution (d) representative SEM image of 
the wear track.  

Figure 4.37: Friction coefficient vs. distance diagram for 125 m sliding distance. 
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The tests were continued with 225 m sliding distance. Figure 4.38 shows SEM 

observations of the wear track after 225 m. 

Figure 4.38: SEM investigations of the worn surfaces after 225 m. 

Profilometer measurements realized on the wear track after 225 m sliding distance 

are presented in Table 4.5. In Figure 4.39, further observations by backscattered 

electron images of the wear tracks obtained after 225 m sliding distance are given. 

From the figures and complementary EPMA results from which no boron or excess 

amount of carbon was observed, it is evident that after 225 m, the counterface 

reached the substrate. Instead, some oxides were already present in the zones 

demonstrated in Figure 4.39 (b) indicating that the coating is completely worn and 

the wear of the steel substrates already started.  

The increase of the friction coefficient to the values around 0.9 in Figure 4.40 

coupled with the information obtained from SEM investigations and profilometer 

measurements, confirms that the substrate was reached.  

Table 4.5: Profilometer measurement of the wear track after 225 m. 

Wear track depth (μm) Wear track width (μm) 
0.482 405 
0.451 408 
0.494 379 
0.496 423 
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Figure 4.39: SEM investigations of the worn surfaces after 225 m. 

Figure 4.40: Friction coefficient vs. distance diagram for 225 m sliding distance. 
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After these first investigations, a sliding distance of 100 m was decided for all B4C 

thin films deposited in this study, to observe only the wear properties of the coatings. 

In the second stage of the wear study, a phenomenon, which occurs during wear tests 

by using Al2O3 counterfaces, was studied. As can be seen from Figure 4.41, during 

wear tests, Al2O3 counterface which has approximately the half of the hardness (~20 

GPa) of B4C coatings, worn out and Al2O3 debris was present at both sides of the 

wear track and on the pin itself. However, worn volumes of alumina balls were too 

small to detect and for that reason will not be presented here.  

Figure 4.41: (a) Optical observation of the debris present at the sides of the wear 
track (b) SEM image of same debris (c) Optical observation of the 
debris on the Al2O3 counterface (d) SEM image of same debris. 

As a result of these observations, different counterfaces were selected to understand 

the wear properties of B4C coatings against different materials. Two counterfaces 

other than Al2O3; B4C coated steel pins and WC pins were used for wear tests with the 

same parameters used for Al2O3. The tests were conducted on the same specimen, the 

depth and width of the wear tracks were measured by means of a profilometer and wear 

rates were calculated for all three counterfaces. Results are presented in Figure 4.42.  
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Figure 4.42: Wear track measurements of B4C coating against (a) WC (b) B4C (c) 
Al2O3 pins.  
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The profiles of the wear tracks obtained from different counterfaces can be seen in 

Figure 4.42. Measured wear rates were quite similar. When compared, the profiles of 

three wear tracks visualized in the figure present some dissimilarities. Although there 

were no big differences in measured wear rates, the profiles obtained from WC and 

B4C coated pins presented inhomogenities at the bottom of the wear tracks. Hence, 

Al2O3 pins were selected to measure wear rates of all the coatings deposited; using a 

sliding distance of 100 m. Figure 4.43 demonstrates the results obtained from these 

measurements. 

Figure 4.43: Wear rates of boron carbide coatings deposited with different 
temperatures and bias voltages by plasma-enhanced dc magnetron 
sputtering. 

From the figure, it can be clearly seen that, the process parameters used in this study 

(temperature and bias voltages), had no significant effect on the wear properties of 

the coatings. The measured wear rates were between 2.60 and 3,48 x 10-8 mm3/Nm. 

For the total range of process parameters, there were no drastical changes in the 

microstructures of the plasma-enhanced DC magnetron sputter deposited B4C films 

Even the film deposited at floating potential and without external heating shows a 

quasi-solid structure instead of usual columnar morphology of the conventional 
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magnetron sputtered thin films deposited with similar conditions. It is concluded that, 

the microstructural stability obtained for all the films deposited in these series 

explains the insensitivity of the wear rates to the process parameters.  

SEM investigations on the worn surfaces were also realized to define the wear 

mechanism of B4C coatings against Al2O3 counterface. Figure 4.44 shows a 

representative example of the wear tracks investigated. 

Figure 4.44: Representative SEM investigations of the wear track, the 
magnification increases from (a) to (c) for the same wear track. 
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It is known from the profilometer measurements that after the “pin-on-disc” test, the 

film thickness at the contact point was reduced to 100 – 150 nm. In Figure 4.44 (b) at 

low magnification, the substrate was already observed on the wear track and the 

white zones, which can be clearly seen at higher magnifications in Figure 4.44 (c), 

taken from the inside of the wear track are carbides of the AISI M2 substrate (VC, WC). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.45: EDS line scan analysis of the wear track (a) BSE image of the 
analyzed area (b) boron (c) carbon (d) aluminum (e) iron and (f) 
oxygen elemental distributions. 
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In Figure 4.44 (b) even for the coating, which was not worn out, the carbides of the 

substrate, was visible. EDS line-scan analyses were carried out on the wear tracks to 

see the distribution of the elements which constitutes the coating structure and also 

Al and O, which were the pins constituent elements and the results are presented in 

Figure 4.45. In the figure (a) the backscattered image of the analyzed zone can be 

seen. In (b) boron elemental distribution is given. It is clear from the figure that 

boron concentration decreased in the wear track where iron and oxygen 

concentrations given in (e) and (f) increased respectively. The increase of the iron 

accounts is remarkable although there are approximately 150 nm of coatings 

remaining in the wear track according the profilometer measurements. The same 

increase was observed for the oxygen concentration. Although the decrease of the 

boron concentration was expected, from image analysis as well as from elemental 

distributions, it is concluded that electrons as well as x-rays collected were 

influenced from the substrate hence consequently SEM is not a convenient technique 

to predict the wear mechanism of thin coatings in the nanometer range. 

4.1.3.7 SIMS elemental depth profiles 

The elemental depth profile of plasma-enhanced DC magnetron sputtered boron 

carbide coatings deposited on Si substrates were analyzed with the same procedure 

described in Section 4.1.2.7 by using O2
+ primary ion beam. All the coatings 

deposited by plasma-enhanced DC magnetron sputtering demonstrated the same 

profile regardless the deposition conditions. Figure 4.15 shows elemental depth 

profiles of boron, carbon, oxygen, and silicon. It can be observed from the figure that 

the elemental film distribution was constant over the film thickness. The intensities 

are qualitative as explained in Section 4.1.2.7. To analyze particularly the oxygen 

and hydrogen evaluation that are sensitive to negative secondary ions, depth profiles 

by using Cs+ primary ion source were realized and the result is presented in Figure 

4.47. As can be seen from the figure, the relative concentration of carbon that is also 

a secondary negative ion sensitive element is significantly increased. It is found that, 

hydrogen that was not detectable while using O2
+ primary ion source was present as 

impurity in the coatings. There was no dramatical change of oxygen concentration 

between analyses realized with two different ion sources according to the figure. 
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Figure 4.46:  Representative depth profile of boron carbide films deposited by 
plasma-enhanced DC magnetron sputtering by using O2

+ primary ion 
beam. 

Figure 4.47: Representative depth profile of boron carbide films deposited by 
plasma-enhanced DC magnetron sputtering by using Cs+ primary ion 
beam. 
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For SIMS data given in the figure, the x–axis was converted from time to depth by 

measuring the crater depths obtained during analyses by a profilometer. The 

thicknesses were in good agreement with SEM observations with a maximum 

deviation of 5%. 

4.1.4 Conclusion 

Two types of DC magnetron sputtered boron carbide films, with and without the 

presence of auxiliary plasma source, were investigated in this section. Chemical 

compositions of deposited films were insensitive to the deposition configurations and 

deposition parameters investigated. Measured film compositions were the same with 

boron carbide target material, thus the same with source powders and were nearly 

stoichiometric boron carbide with 78% B, 21.4% C, 0.3% O and 0.3% Si. Boron 

carbide films deposited by conventional DC magnetron sputtering had columnar 

microstructures and a densification to zone T type structure with less pronounced 

columnar morphologies and less separated columns as indicated in the Thornton 

structural-zone diagram was observed with the increase in bias voltages. Whereas 

boron carbide films deposited by plasma-enhanced DC magnetron sputtering had 

non-columnar, featureless microstructures even for the films deposited without any 

applied bias voltages and external heating. All observed boron carbide thin films 

deposited by DC magnetron sputtering with or without auxiliary plasma 

configuration were amorphous according to high-resolution TEM observations and 

consequent FFT and/or diffraction patterns. High-resolution TEM observations and 

EFTEM elemental mapping on conventional DC magnetron sputtered boron carbide 

films revealed that, column thicknesses were about 20-25 nm and oxygen from the 

deposition chamber and/or ambient air, incorporated in the nanovoids of about 2-3 

nm between the columns. From high-resolution TEM observations on plasma-

enhanced DC magnetron sputtered boron carbide films, it is evident that there exists 

a transition layer of 4-5 atomic layers, which correspond to 1-1.5 nm, with a 

crystallographic order just at the coating-substrate interface and then the coating 

becomes quickly amorphous. Nanomechanical characterizations revealed that 

conventional DC magnetron sputtered boron carbide thin films had about 20 GPa 

hardness and 220 GPa modulus values and process parameters did not have an effect 

on the hardness and modulus values for these films. However, plasma enhanced DC 

magnetron sputtered boron carbide films had about 30-35 GPa hardness and 270-300 
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GPa modulus values. An increase in the hardness and modulus with the increase in 

bias voltages and temperature was observed for these films. The hardest film with 

about 40 GPa hardness and 300 GPa modulus values was obtained at 250 °C and 100 

V applied bias voltage. Thus, there was a factor of about 1.5 to 2 times between the 

hardness and modulus values of boron carbide films deposited with and without 

auxiliary plasma configuration. Tribological studies demonstrated that DC 

magnetron sputtered boron carbide coatings do not give low friction coefficients 

against different counterfaces. Friction coefficients of about 0.7 and 0.6 were found 

against Al2O3 for the coatings deposited without and with auxiliary plasma 

configuration respectively. However, good wear rate values of about                       

5 x 10-8 mm3/Nm and 2.6 – 3.5 x 10-8 mm3/Nm were obtained for conventional DC 

magnetron sputtered and plasma-enhanced DC magnetron boron carbide films 

respectively. It is believed that the same factor of two between the wear rates and 

hardness values of two types of boron carbide coatings deposited with two different 

configurations is an evidence of hardness and strength dominated wear resistance of 

these films as explained in Section 2.4.4. SIMS elemental depth profile analyses 

were realized on both conventional DC magnetron sputtered and plasma-enhanced 

DC magnetron sputtered boron carbide films. Results demonstrated that for all the 

films, the profiles of boron, carbon, oxygen, and silicon were the same and constant 

over the whole film thicknesses, regardless of deposition parameters used. Well-

known primary ion beam effect on the sputtering yields during SIMS analyses was 

observed for elements analyzed. The concentrations are qualitative and dependant to 

the analyze conditions. More accurate results were obtained for boron and silicon 

which are more sensitive to secondary positive ions with O2
+ primary ion beam, 

while for oxygen, carbon and especially trace hydrogen which was not detectable 

with O2
+ better sensitivity was obtained with Cs+ primary ion beam.  

4.2 RF Sputtered B4C Thin Films 

In this section, the microstructures, nanomechanical properties, chemical bonding 

and tribological properties of non-magnetron radio-frequency sputtered boron 

carbide thin films will be discussed. 
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4.2.1 Microstructural studies 

Microstructural analyses were carried out on three specimens deposited by RF 

sputtering. Figure 4.48 shows the microstructures of the specimens BC27, BC28 and 

BC29. These micrographs were taken from the coating cross-sections. The 

specimens were prepared differently from previous microstructural studies; they 

were cut, enrobed and mirror polished before the observations. A representative back 

scattered image is given for the specimen BC28. As the contrast is more important 

for BSE images and as the coating consists of light elements, boron and carbon, the 

coating microstructure as well as the substrate is more distinguishable from this 

micrograph. 

Figure 4.48: Cross–section SEM micrographs of (a) BC27 (b) BC28 (c) BC29 (d) 
BSE image of BC29. 

As can be seen from the figure, all three coatings deposited had non-columnar 

structures. However, the surface and the coating morphologies were not as smooth as 

which deposited by plasma-enhanced DC magnetron sputtering. Actually, according 

the Thornton’s SZD, the coatings should have columnar structures regarding their 

processing conditions; temperature and argon pressure. It is believed that this 
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suppressing of the columnar morphologies without applying any bias voltages, is due 

to the relatively high neutral bombarding of the films during their growth because of 

the short target-substrate distance and the increase of the deposition temperatures 

during long deposition times.  

4.2.2 Chemical compositions 

Electron Probe Micro analysis was used to quantify the chemical composition of B4C 

coatings deposited by RF sputtering. Results are presented in Table 4.6. 

Table 4.6: Elemental composition of boron carbide coatings deposited by RF 
sputtering. 

 B (at. %) C (at. %) O (at. %) Si (at. %) 
BC27 76.13 23.00 0.63 0.25 
BC28 76.20 23.17 0,51 0.12 
BC29 75.97 23.23 0.57 0.23 

The measured chemical compositions were slightly different from the coatings 

deposited by DC sputtering. The target used for the deposition of RF sputtered boron 

carbide thin films was a commercially obtained one and there was no information 

about the boron carbide chemical composition. For this reason, it is hard to give a 

definite conclusion if the composition of the target material or the process parameters 

were caused this difference in the case of RF sputtered boron carbide thin films.  

4.2.3 Nanomechanical properties 

For the nanoindentation measurements of RF deposited boron carbide films, the 

same procedure described in the Sections 4.1.2.4 and 4.1.3.3 were used. The coatings 

were deposited onto AISI 430 steel and Si (100) substrates. The substrate effect was 

dominant for the loads over 3000 μN for the coatings deposited on steel substrate. 

Thus, 3000 μN was used to analyze the coating properties. Figure 4.49 shows the 

effect of the deposition parameters, mainly sputtering power in the case of RF 

sputtered boron carbide thin films, on the nanomechanical properties. From the 

figure, it can be seen that the nanomechanical properties of boron carbide thin films 

were not influenced by the increase of the sputtering power hence, dependant 

increase of the cathode voltage. 
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Figure 4.49: The effect of sputtering power on the nanomechanical properties of 
boron carbide films deposited by RF sputtering. 

All the coatings deposited by RF sputtering had about 22 GPa hardnesses and 240 

GPa Young’s modulus values. Figure 4.50 shows a representative load-displacement 

curve of boron carbide coatings deposited by RF sputtering. As can be seen from the 

figure, the coating shows approximately 70% elastic recovery after unloading, the 

same value for the films deposited by DC magnetron sputtering without auxiliary 

configuration. 

Figure 4.50: Representative load-displacement curve for boron carbide coatings 
deposited by RF sputtering. 
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Figure 4.51 shows the representative indent profiles obtained by AFM on the RF 

deposited boron carbide coatings. The same pyramidal Berkovich indenter was used 

for tests and visualization before and after the indentation. In Figure 4.51 (a) 2D 

view of the indent can be seen with the roughness scale on the right hand side. In (b) 

3D visualization of the indent and the surface of the specimen are presented. If 

compared with the indent profile given in Figure 4.23 taken from the plasma-

enhanced DC sputtered B4C film, it would be seen that, the surface presented in 

Figure 4.51 is rougher. The reason for that was the difficulties on the surface 

finishing when mirror polishing of AISI 430 substrates which was considerably 

softer than the AISI M2 substrates, and the dependency of the coating surface 

morphologies to the final substrate conditions.  

Figure 4.51: Representative indent profile obtained by AFM on the RF sputtered 
boron carbide coatings (a) 2D view of the indent (b) 3D visualization 
of the same area. 

(a) 

(b) 
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4.2.4 Bonding properties 

The phase composition of RF deposited B4C films were also investigated by FTIR 

spectroscopy. Figure 4.52 shows representative FTIR spectra taken from the 

specimen BC27. Infrared spectra present two broad bands, one centered at ~ 1100 

cm-1 and the other at ~ 1600 cm-1. The spectrum of three specimens were identical 

and as can be seen from the figure were the same as DC magnetron sputtered boron 

carbide coatings which was presented in Figure 4.29 with a small shift.   

Figure 4.52: Representative FTIR spectra of RF sputtered boron carbide film. 

4.2.5 Tribological studies 

The friction coefficient evolution of RF sputtered boron carbide thin films was 

studied by performing tribological tests until the coatings were completely worn and 

the substrates were exposed. Figure 4.53 shows the evaluation of friction coefficients 

of the coatings versus distance. 

For all the three specimens the friction coefficient evolution presented three stages. 

During the first short time stage, the friction coefficient was unstable due to the first 

contact and the initial roughness of the surfaces in contact. In the second stage it 

stabilized at about 0.5 which is believed, the friction coefficient value of RF 

sputerred boron carbide coatings.  
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Figure 4.53: Friction coefficient evaluations of (a) BC27 (b) BC28 (c) BC29. 

In the third stage, there was an increase to about 0.6, which is thought to be due to 

the propagation of the wear debris and their entrapment at the contact area between 

tested material and the counterface. Finally, it increased to a value of 0.8, which is 

the friction coefficient of the steel substrate against Al2O3 counterface, indicating 

that the coating was completely worn after 120 m sliding.  
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As RF sputtered B4C films were deposited only on AISI 430 steel substrates, the 

wear rates could not be measured because of the adhesion problems observed during 

the tests.  

4.2.6 SIMS elemantal depth profiles 

The elemental depth profile of RF sputtered boron carbide coatings were analyzed 

with the same procedure described in Section 4.1.2.7. Analyses were realized on 

boron carbide films deposited on AISI 430 steel substrates. Representative diagram 

in Figure 4.15 realized with O2
+ primary ion beam shows that, like DC magnetron 

sputtered boron carbide films, the elemental film distribution was constant over the 

whole film depth. 

Figure 4.54:  Representative depth profile of boron carbide films deposited by RF 
sputtering by using O2

+ primary ion beam. 

For SIMS data given in Figure 4.54, the x–axis was converted from time to depth by 

measuring the crater depths obtained during analyses by a profilometer. The 

thicknesses were in good agreement with SEM observations with a maximum 

deviation of 5%. 
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4.2.7 Conclusion 

Microstructural studies realized on RF deposited boron carbide films demonstrated 

the non-columnar structures of these films. It is believed that this suppressing of the 

columnar morphologies without applying any bias voltages, is due to the relatively 

high neutral bombarding of the films during their growth because of the short target-

substrate distance and/or the increase of the deposition temperatures during long 

deposition times. Measured film compositions were about 76% B, 23.2% C, 0.5% Si, 

0.3% O. Thus, slightly different from the coatings deposited by DC magnetron 

sputtering. However, as there was no information about the commercial boron 

carbide target chemical composition, it is hard to conclude whether configuration or 

the target itself caused this difference. The coupled effect of non–magnetron design 

of the deposition system and low sputtering yield of boron carbide resulted with very 

low deposition rates for boron carbide coatings. Films were amorphous according to 

grazing angle XRD results. Nanomechanical characterizations revealed that non-

magnetron RF sputtered boron carbide coatings had ~22 GPa hardness and ~240 GPa 

Young’s modulus and showed 70% of elastic recovery. Our results demonstrated that 

boron carbide deposition without process modifications results with hardness values 

about 20 GPa, and different configurations such as extensive ion bombardment or 

very low pressure deposition is needed to deposit ultrahard (40 GPa and above) 

boron carbide thin films by PVD systems. Tribological studies on RF deposited 

boron carbide thin films demonstrated a quite different characteristic especially for 

friction coefficient evolution. Lower friction coefficients compared to DC sputtered 

boron carbide films, about 0.4 were observed at the beginning of “pin-on-disc” tests 

instead high values about 1 obtained for DC sputtered films. Friction coefficients 

stabilized around 0.5, which is believed the friction coefficient value of RF sputtered 

boron carbide films. Boron, carbon, oxygen and silicon depth profiles realized by 

SIMS on RF sputtered boron carbide thin films demonstrated that the elemental 

distribution was constant over the whole film depth. 
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4.3 BCN Thin Films 

In this section the effect of different N2 flow rates, hence the incorporation of 

different amount of nitrogen on the microstructural, nanomechanical, tribological and 

bonding characteristics of boron carbide thin films in other words boron carbonitride 

compounds deposited with the presence of auxiliary plasma source will be 

investigated.  

4.3.1 Microstructural studies 

Microstructures were observed for all three coatings deposited with different N2 flow 

rates. Figure 4.55 demonstrates cross-sectional SEM observations of the specimen 

BC67 deposited on Si substrate. The columnar structure can be clearly seen from the 

figure. The micrograph is again taken with a 10° tilt angle in order to observe the 

coating microstructure and the surface morphology together. Measured film 

thickness is about 400 nm for this coating. 

Figure 4.55: Cross-sectional SEM micrograph of the specimen BC67. 

As can be seen from the figure, BCN film deposited with 5% N2 in the deposition gas 

had large columnar structure, although 250 V bias voltage and 250°C deposition 

conditions. The incorporation of the nitrogen into boron carbide structure changed 

the non-columnar boron carbide coating structure deposited by plasma-enhanced 

configuration to a coarse columnar structure for BCN films deposited in presence of 

5% N2 in the process gas. Figure 4.56 shows the microstructure of BC68 from its 

cross-section. It can be observed from the figure that the nitrogen incorporation at    

200 nm 

BCN coating 

Si substrate 
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25% N2 in the processing gas changed drastically the coating microstructure. For this 

specimen the structure was neither columnar nor a continuous solid structure without 

defects, instead, uniform granular structure of the coating can be seen from the 

figure. 

Figure 4.56: Cross-sectional SEM micrograph of the specimen BC68. 

Figure 4.57 shows the cross-section of the specimen BC69. It can be seen from the 

figure that further increases of the N2 to 50% in the processing gas, led to more 

complex microstructures. Because of this relatively high nitrogen flow, non-uniform 

granular structure of BCN coating can be seen from the figure. 

Figure 4.57: Cross-sectional SEM micrograph of the specimen BC69. 
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4.3.2 Chemical compositions 

Electron Probe Micro analysis was used to quantify the chemical composition of 

BCN coatings deposited by reactive DC magnetron sputtering and results are 

presented in Table 4.7.  

Table 4.7: Elemental composition of boron carbonitride coatings deposited by 
reactive DC magnetron sputtering. 

 B (at. %) C (at. %) N (at. %) O (at. %) Si (at. %) 
BC67 51.23 18.18 30.13 0.21 0.25 
BC68 28.69 8.23 62.33 0.48 0.27 
BC69 15.68 6.76 76.23 1.16 0.17 

From the table it can be seen that; the increase of N2 in the processing gas resulted 

with a drastic increase of the nitrogen incorporation into the boron carbide structure. 

Detected N in the structure increased from 30.13 % to 76.23 %, for an increase of N2 

from 5 % to 50 % in the process gas. Accordingly, the amount of boron and carbon 

in the boron carbide structure showed a tendency of decrease with the increase of N2 

as a reactive gas. Boron percentage decreased from 51.23 % to 28.69 % for an 

increase of N2 from 5% to 25 %. For 50% N2 in the process gas, 15.68 % boron was 

detected in the coating structure. The same tendency of decrease with the increase of 

reactive gas flow was also observed for carbon, it decreased from 18.8 to 8.23 and to 

6.76 % finally for 50% N2 in the processing gas environment.  

4.3.3 Nanomechanical properties 

Nanoindentation measurements were realized with 3000 μN applied forces for the 

reasons explained in the precedent sections. In Figure 4.58, hardness and Young’s 

modulus values of three coatings plotted versus N2 in the gas and N incorporated in 

the coatings measured by EPMA. 

As can be seen from the figure, N incorporation reduced noticeably the hardness of 

the coatings. It is known from the results of boron carbide series deposited with 

auxiliary plasma configuration that the coating deposited with the same conditions 

without N incorporation had ~ 32 GPa hardness. The boron carbonitride coating 

deposited with 5% N2 in the deposition gas, possessed 30% N in the composition and 

had 20 GPa hardness.  
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At 25% N2 in the gas, the coating deposited had 62% N in its composition add its 

hardness decreased to 14 GPa. BCN film deposited at 50% N2 in the processing gas 

resulted with 76% N in the composition with 10 GPa hardness. 

Figure 4.58: Hardness and modulus vs. N2 in the processing gas and N 
incorporated in BCN films.  

The Young’s modulus values of the coatings showed also the same tendency to 

decrease with increasing N2 in the processing gas, thus with the increase of 

incorporated nitrogen in the structure, however the influence was less considerable. It 

decreased from 180 GPa for 5% N2 to 155 GPa at 25% N2 and finally at 50% N2 it 

reached its minimum with 135 GPa.  

4.3.4 Bonding properties 

The phase composition of BCN films were investigated by FTIR spectroscopy. IR is 

a common characterization tool for BCN compounds because is very sensitive to B-

N bonds and the spectra for c-BN and h-BN show distinct features. According to the 

majority agreement from the literature; the spectrum of h-BN is composed of two 

bonds at 780 and 1380 cm-1, which arise from in-plane stretching B-N and bending 

B-N-B vibrations respectively, and the c-BN band appears around 1100 cm-1 and 

shift to higher frequencies as the carbon content increases [133,134,135,137, 

141,176,177]. 
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However, the interpretation of the spectrum for the absorptions different from B-N 

bonding is delicate. There are many other infrared active bonds in the B-C-N system 

and the wavelength positions of these bonds found in the literature demonstrate a 

relatively dispersive nature. Figure 4.59 shows the spectrum of three samples 

deposited with varying N2 content in the process gas. 

Figure 4.59: FTIR spectrum of BCN coatings deposited with different N2 contents. 

The spectrum was interpreted according to the literature in the coming way; the 

absorptions around 780 and 1380 cm-1 are evidence of the h-BN structures that can 

be clearly seen from BC67 spectra. Especially the peak about 800 cm-1 which was 

detected for all three specimens is a clear evidence of the formation of B-N bonds 

and in our case it becomes stronger with the increase of the N amount incorporated 

into the composition. Absorption peak around 1600 cm-1 is attributed to C=N or C=C 

bonds in the literature [134,176]. According to the spectrum, as the absorption peak 

at this wavelength is sharper for the specimen which contains minimum nitrogen and 

became less sharper with increasing nitrogen and decreasing carbon content, this 

peak is thought to be an evidence of the C=C bonds. With the increase of the N 

content, a shift to the lower wavelengths for the absorption peak around 1380 cm-1 

was observed. From the literature it is known that there is an absorption peak at 1130 

cm-1 which represents wurtzite-BN (w-BN) structure [133,137]. Hence, it is believed 

that, the shift to the lower wavelength with the increase of the N content is an 

evidence of the hexagonal-wurtzite transformation for the coatings deposited with 
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high nitrogen content. The absorption band at ~2200 cm-1 is attributed to C≡N bonds 

and the band at 3400 cm-1 to N-H bonds [134,141,176]. It can be seen from the 

figure that with the increase of N content these two peaks became sharper.  

As a result, it is concluded that, there is no evidence for the presence of sp2 bonded 

c-BN for which the absorption band is situated at approximately 1080 cm-1. It is 

believed that the structure obtained was a mixture of h-BN and w-BN with C-C, C-N 

and N-H bonds for BCN coatings deposited with increasing N contents.  

4.3.5 Tribological studies  

Tribological studies were conducted on BCN coatings deposited with different N 

contents to determine the friction and wear properties of the coatings. Al2O3 

counterfaces and test parameters optimized in the Section 4.1.3.6 were used for “pin-

on-disc” testing of BCN coatings. At least 4 tests were realized with each 

configuration and the mean value is presented as wear rate. First, a wear track 

diameter of 6 mm was chosen for a total sliding distance of 300 m.  

Figure 4.60 shows friction coefficient vs. distance diagram for the specimen BC67. 

The friction coefficient presents a different characteristic compared to the boron 

carbide coatings deposited without nitrogen incorporation. Starting from low values, 

~ 0.2, while the two bodies were first in contact, the friction coefficient value 

increased gradually to ~ 0.7 where it stabilized.  

Figure 4.60: Friction coefficient versus distance diagram of the specimen BC67. 
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According to the profilometer measurements on worn surface given in Table 4.8 and 

wear track profile given in Figure 4.61, the substrate was not reached after 300 m 

sliding distance. 

Table 4.8: Profilometer measurement of wear track on BC67 after 300 m. 

Wear track depth (μm) Wear track width (μm) 
0.148 0.117 
0.200 0.112 
0.149 0.116 

To compare the tribological properties of BCN films deposited, although the coating 

was not worn after 300 m sliding distance, 100 m sliding distance was selected for 

three BCN films with three different amount of nitrogen into their compositions. 

BCN films presented the same evaluation of friction coefficient during 100 m 

sliding. However, wear rates measured were quite different, about 1.2 x 10-9 

mm3/Nm for BCN coating deposited with the presence of 5% N2 in the processing 

gas, about 9 x 10-10 mm3/Nm for 25% N2 and 7.8 x 10-10 mm3/Nm for 50% N2. 

Figure 4.61: Wear track measurements of BCN coating after 300 m sliding. 

Thus, wear rates of almost 20-40 times better than B4C coatings deposited by 

plasma-enhanced configuration were found for BCN films. It is believed that, while 

the hardness decreased, toughness of the BCN films was increased. Also as a result 

of more relaxed phases obtained such as h-BN, wear rates better than boron carbide 

films were obtained.  
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4.3.6 SIMS elemental depth profiles 

The elemental depth profiles of BCN films were analyzed with the same procedure 

described in Section 4.1.2.7 by using O2
+ primary ion beam. Only BCN films 

deposited at 5% N2 in the processing gas will be presented. It is observed that 

increasing N content in the film compositions increased also their electrical 

resistivity. Thus for films deposited at 25% and 50% N2, charging problems occurred 

particularly at the beginning of the analyses during first ion-material interactions. 

Figure 4.62 shows elemental depth profile of BCN film deposited on steel substrate. 

It can be observed from the figure that the elemental film distribution was constant 

over the film thickness. 

Figure 4.62:  SIMS elemental depth profile of BCN film deposited at 5% N2 in the 
processing gas. 

For SIMS data given in the figure, the x–axis was converted from time to depth by 

measuring the crater depths obtained during analyses by a profilometer. The 

thicknesses were in good agreement with SEM observations with a maximum 

deviation of 5%. 
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4.3.7 Conclusion 

Boron carbonitride films with N incorporation into boron carbide structure were also 

studied. Microstructural studies revealed the columnar structure of BCN film 

deposited in presence of 5% N2 in the process gas. At 25% N2, the coating 

microstructure changed to a uniform granular structure and at 50% N2 to a non-

uniform coarse granular structure. Chemical composition of the films deposited was 

drastically influenced by different amount of N2 in the processing gas. At 5% N2, 

30.13 at.% N incorporated in the coating structure and increased to 76.23 at.%, for an 

increase of N2 to 50 % in the processing gas. Boron percentage decreased from ~ 78 

at.% to 51.23 % at 5% N2 in the gas and to 28.69 % for an increase of N2 from 5% to 

25 %. For 50% N2 in the process gas, 15.68 % B was detected in the boron 

carbonitride film structure. The same tendency of decrease with the increase of 

reactive gas flow was also observed for carbon, it decreased from ~ 21 at.%  for 

boron carbide thin films to 6.76 % for 50% N2 in the processing gas environment. 

Nanomechanical characterizations further revealed the effect of N incorporation. The 

boron carbonitride coating deposited with 5% N2 in the deposition gas had 20 GPa 

hardness. At 25% N2 it decreased to 14 GPa and at 50% N2 to 10 GPa. The Young’s 

modulus values of the coatings showed also the same tendency to decrease with 

increasing N2 in the processing gas, from 180 GPa for 5% N2 to 155 GPa at 25% N2 

and finally at 50% N2 it reached its minimum with 135 GPa. Friction coefficients 

measured for BCN films were about 0.7. Thus it can not be concluded a lubricity for 

BCN films deposited in the test configurations used. However, wear rates measured 

were about 1.5x10-9 mm3/Nm for these coatings. Thus almost 20 times better than 

B4C coatings deposited by plasma-enhanced configuration. It is believed that, while 

the hardness decreased, toughness of the BCN films was increased. Also as a result 

of more relaxed phases obtained such as h-BN, wear rates better than boron carbide 

films were obtained. SIMS analyses realized on BCN films demonstrated the 

elemental film distribution was constant over the film thickness. Charging problems 

at the beginning of analyses that was observed more importantly with the increase in 

N content of the coatings demonstrated that the nitrogen incorporation increased the 

electrical resistance of BCN films deposited. 
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4.4 Functionally Graded B4C and BCN Thin Films 

Despite its good properties and potential applications, boron carbide and boron 

carbonitride films have found to suffer from delamination when the thickness of the 

coatings exceeded 500 nm as explained in the Sections 3.1.4.4 and 4.1.1. These can 

be explained by the high level of internal stresses generated in these films and the 

mismatch of the substrate mechanical properties with remarkably high hardness and 

modulus of the boron carbide and BCN films deposited. Functionally graded 

multilayered coatings, where neighboring layers share at least one common 

component, are one means to alleviate this problem and provide much improved 

adhesion as explained in the Section 3.1.4.5. Three functionally graded multilayer 

design; boride layers/B4C on AISI 430 substrate, Ti/TiC/B4C and Ti/TiN/BCN on 

AISI M2 and Si substrates are used to deposit thick and adherent boron carbide and 

BCN top layers and will be discussed in the following part.  

4.4.1 Microstructural studies 

Microstructural examinations of the films deposited on Si and boronized steel 

substrates were observed on their cross–sections. For all the samples, secondary 

electron images were taken at a 10º tilt angle to observe the coating microstructure 

and the surface morphology together. For detailed topographical analysis of the 

coatings deposited, backscattered electron images were also taken. Figure 4.63 shows 

secondary and backscattered electron images of boron carbide thin film and boride 

layers on steel substrate.  

As can be seen from Figure 4.63 (a) boron carbide coating on boride layer is well 

adherent and has approximately 1.1 µm thickness. Boride underlayer has 12 µm 

thicknesses. This sample was prepared by two different techniques for SEM 

observation; for secondary electron image the sample was embrittled in liquid 

nitrogen and the pictures were taken from the fractured cross-section. For back 

scattered electron image, the sample was cut, enrobed and mirror-polished, to 

observe in details the thick boride underlayer. In Figure 4.63 (b), to reveal in details 

the microstructure of boride underlayers, the contrast for backscattered electron 

image was increased, hence, the top B4C layer was not observable.  
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Figure 4.63: Cross-sectional SEM micrographs of (a) secondary electron image (b) 
back scattered image of boron carbide thin film on boronized steel 
substrate. 

It can be seen from the figure that, a double phase boride layer was formed on AISI 

430 substrate. The near substrate phase is Fe2B. FeB phase which can be clearly 

distinguished thanks to a darker coloration stay between Fe2B and top B4C layer 

deposited by plasma-enhanced DC magnetron sputtering. Some voids were also 

detected at the boride layer-substrate interface. Figure 4.64 shows the microstrusture 

of functionally graded Ti/TiC/B4C thin film.  
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Figure 4.64: Cross-sectional SEM micrographs of (a) secondary electron image (b) 
back scattered image of Ti/TiC/B4C graded film on Si substrate. 

In this design, pre-deposited Ti had columnar microstructure while TiC underlayer 

and 1 µm thick boron carbide top layer had non-columnar morphologies. Figure 4.65 

demonstrates the graded structure of Ti/TiN/BCN thin film deposited on Si substrate 

observed from fractured cross-section. From the figure (a) and (b), the 

columnar structure of Ti and TiN underlayers with 250 and 100 nm thicknesses and 

well adherent columnar BCN film of 1,2 µm thick can be clearly seen. 
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Figure 4.65: Cross-section SEM micrographs of (a) secondary electron image (b) 
back scattered image of Ti/TiN/BCN graded film on Si substrate. 

4.4.2 Elemental depth profile analyses 

Secondary ion mass spectrometer analyses were carried out for all the samples to 

verify the functionally graded structures by elemental depth profiling of the major 

elements which constitutes the graded structure. From Figure 4.66, it can be seen that 

the functionally graded structure was successfully formed for all three samples. 

A surface effect was observed at the beginning of the analysis for Ti/TiN/BCN 

structure, which is believed, due to poor conducting properties of the topmost BCN 

layer coupled with surface contamination. The high intensity of titanium detected in 
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the top B4C and BCN layers was mainly because of the high positive secondary ion 

yields of Ti+ compared to C+ while using O2
+ as primary ion beam and secondly 

because of the interferences between C+ and Ti+ ions.  

Figure 4.66: SIMS depth profiles of (a) Ti/TiC/B4C (b) Ti/TiN/BCN (c) Boride 
layer/B4C functionally graded structures. 

This approach was also verified by the results of EPMA analyses which detected no 

Ti in the top layer elemental composition. For SIMS data, the x-axis was converted 

from time to depth by measuring the depth of the craters obtained during analyses by 

a profilometer. The layer thicknesses were in good agreement with SEM 

observations with a maximum deviation of 10%. 
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4.4.3 Nanomechanical properties 

A series of nanoindentation measurements with variable maximum applied loads 

between 500–5000 µN were realized on the coatings. This resulted with a maximum 

penetration depth between 20–200 nm. The results which demonstrated no tip 

rounding effect (for lower loads) and no substrate effects (for higher loads) were 

taken into consideration. Figure 4.67 demonstrates the hardness values and the 

Young’s modulus of the substrates and layers accompanied by elemental 

compositions measured by EPMA.  

Figure 4.67: Hardness, Young’s modulus and elemental compositions of the 
substrates and layers. 

4.4.4 Conclusion 

FE-SEM observations and SIMS depth profile analyses revealed that Ti/TiC and 

Ti/TiN graded underlayers on AISI M2 and Si (100) substrates were successfully 

formed by plasma-enhanced DC magnetron sputtering and boride underlayer by 

surface boronizing on AISI 430 steel substrates. Well adherent BCN and Boron 

carbide top layers with thicknesses over 1 µm were grown onto the underlayers by 

means of the functionally graded multilayered structures. Nanoindentation 

measurements revealed the graded transition of the hardness and Young’s modulus 

values between different layers. 
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4.5 Résumé du Chapitre 

Dans ce chapitre, les résultats obtenus par différentes techniques de caractérisation 

sont présentés et discutés dans des sous-chapitres pour chaque type de couche mince 

déposée. 

Une série de couches de carbure de bore a été déposée par pulvérisation cathodique 

magnétron classique à courant continu sans chauffage externe (50 °C), sous une 

tension de polarisation comprise entre 0 et 200 V. Les couches déposées sans tension 

de polarisation présentaient des structures colonnaires. Avec l'augmentation de la 

tension de polarisation de 0 à 200 V, une transition de structure colonnaire à une 

structure plus dense bien qu'encore colonnaire avec des colonnes moins séparées a 

été observée. Des observations MET à haute résolution accompagnées d’analyses 

cartographique des éléments (EFTEM) ont montré que les épaisseurs de colonnes 

étaient d’environ 20-25 nm et que de l’oxygène de l’enceinte de dépôt et/ou de l'air 

ambiant avait été incorporé sous forme de nanovides de 2-3 nm de diamètre entre les 

colonnes. Toutes les couches déposées par pulvérisation cathodique magnétron 

classique à courant continu observées étaient amorphes comme l’ont montré 

l’imagerie à haute résolution par MET, les spectres FFT et/ou les diagrammes de 

diffraction. Des duretés de l’ordre de 20-22 GPa et des modules de 220 GPa ont été 

mesurés par nanoindentation pour toutes les couches minces de carbure de bore 

déposées par pulvérisation cathodique magnétron classique. Il n'y avait aucun effet 

significatif des tensions de polarisation appliquées sur la dureté des films de carbure 

de bore. Des coefficients de frottement, pour ces couches, de l’ordre de 0,7 et des 

taux d'usure de l’ordre de 5,0 x 10-8 mm3/Nm ont été déterminés avec antagoniste de 

alumine. Les valeurs de coefficient de frottement et les taux d’usure étaient 

insensibles aux paramètres de dépôt. 

Une autre série de couches de carbure de bore a été déposée par pulvérisation 

cathodique magnétron à courant continu assisté par plasma à des températures entre 

50 °C (sans chauffage) et 250 °C et sous tension de polarisation entre 0 et 250 V. On 

a observé des microstructures non colonnaires avec des surfaces lisses pour toutes les 

combinaisons de paramètres de dépôt, même pour les films déposés sans chauffage et 

sans polarisation. Grace à des mesures de nanoindentation, une augmentation de la 
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dureté et du module des couches a été mise en évidence avec l'augmentation de la 

tension de polarisation et de la température de dépôt. La dureté des couches déposées 

avec différentes combinaisons de tensions de polarisation et de la température était 

environ 30-35 GPa. Une valeur de dureté de l’ordre de 40 GPa a été obtenue pour la 

couche déposée à 250 °C et une polarisation de 100 V, qui est la couche la plus dure 

déposée dans cette étude. Les modules d’Young des couches de carbure de bore 

déposés en configuration assisté par plasma se situaient entre 270 et 300 GPa. Les 

observations par MET ont prouvé que les couches de B4C déposées dans cette même 

configuration étaient complètement amorphes dans toute la gamme des paramètres 

de dépôt. Des observations à haute résolution, ont montré qu'il existait une couche de 

transition composées de 4-5 couches atomiques (1-1,5 nm) avec une structure 

cristallographique juste à l'interface couche-substrat. Au-delà, la couche devient 

rapidement amorphe. Les études tribologiques ont montré que les couches de carbure 

de bore ne donnaient pas de coefficient de frottement bas sur différents antagonistes. 

Des coefficients de frottement de l’ordre de 0,6 ont été trouvés pour un antagoniste 

Al2O3, quelle que soit la couche déposée en configuration assisté par plasma. 

Cependant, des faibles taux d'usure entre 2,6 – 3,5 x 10-8 mm3/Nm, soit d'environ 

deux fois meilleurs ont été obtenus pour des couches de carbure de bore déposées par 

pulvérisation cathodique magnétron assisté par plasma, comparé aux couches de 

carbure de bore pulvérisés par pulvérisation cathodique magnétron classique. Les 

valeurs de coefficient de frottement et les taux d’usure étaient indépendants des 

paramètres de dépôt. 

Les compositions chimiques des couches de carbure de bore déposées par 

pulvérisation cathodique magnétron avec ou sans plasma auxiliaire mesurées par la 

microsonde de Castaing (EPMA) étaient les mêmes avec le carbure de bore cible et 

étaient presque stœchiométrique avec environ 78% B, 21,4% C, 0,3% O et 0,3% Si. 

La composition chimique des dépôts était indépendant des paramètres de dépôt. 

Des couches de carbure de bore ont été également déposées par pulvérisation 

cathodique radiofréquence (RF) en utilisant une cible commerciale de B4C à une 

puissance entre 80 et 140 W. Les études microstructurales ont montré la croissance 

non colonnaire de ces couches. Les compositions chimiques mesurées étaient 

d’environ 76% B, 23,2% C, 0,5% Si, 0,3% O. Les caractérisations nanomécaniques 

ont indiqué que les couches présentaient une dureté de l’ordre de 22 GPa et un 
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module de ~240 GPa. Des coefficients de frottement de l’ordre de 0,4 ont été obtenus 

au lieu de valeurs élevées de l’ordre de 1 obtenues au début des essais « pion-

disque » pour des couches déposées par pulvérisation magnétron DC. Le coefficient 

de frottement atteignait un niveau stable autour de 0,5 jusqu'à ce que les couches 

fussent complètement usées. 

Des couches de carbonitrure de bore avec incorporation d’azote dans la structure de 

carbure de bore ont été également étudiées. Les études microstructurales ont mis en 

évidence la structure colonnaire des couches BCN déposées en présence de 5% N2 

dans le gaz plasmagène. La composition chimique des couches déposées a été 

notablement influencée par addition de différentes quantités de N2 dans le gaz 

plasmagène. Pour 5% N2 dans le gaz, 30 at.% N étaient présents dans la structure des 

couches. La concentration en azote incorporée augmentait jusqu'à 76 at.%, pour une 

augmentation de 50% N2 dans le gaz. Les caractérisations nanomécaniques ont bien 

démontré l'effet de l'incorporation d’azote dans la composition des couches BCN. Le 

carbonitrure de bore déposé en présence de 5% N2 dans le gaz présentait une dureté 

de l’ordre de 20 GPa. En présence de 25% N2, la dureté des couches BCN obtenues a 

diminué jusqu’à 14 GPa et en présence de 50% N2, jusqu’à 10 GPa. Les valeurs de 

module d’Young des couches ont montré la même tendance à la diminution avec 

l'augmentation du pourcentage d’azote dans le gaz plasmagène. Les modules 

d’Young obtenues étaient de l’ordre de 180 GPa pour 5% N2 dans le gaz. Ils sont 

diminuaient jusqu’à 155 GPa pour 25% N2. Finalement, en présence de 50% N2, les 

valeurs minimums de l’ordre de 135 GPa ont été obtenues. Des coefficients de 

frottement de l’ordre de 0,7 ont été trouvés pour les couches BCN déposées, avec 

antagoniste en alumine. Les taux d'usures mesurés pour les couches BCN déposées 

avec différents pourcentages d’azote dans le gaz plasmagène étaient comprises entre 

1,2 x 10-9 – 7,8 x 10-10 mm3/Nm. Ainsi, les taux d'usure presque 20-40 fois meilleurs 

pour des couches B4C déposées en configuration assisté par plasma ont été trouvés 

pour des couches BCN. 

Des observations par microscopie électronique à balayage haute résolution            

(FE-SEM) et des profils en profondeur par spectrométrie de masse d'ions secondaires 

(SIMS) ont conclu que les sous-couches de Ti/TiC et Ti/TiN sur les substrats AISI 

M2 et Si (100) avaient été efficacement déposées par pulvérisation cathodique 

magnétron DC assisté par plasma et des sous-couches de borures obtenues sur les 
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substrats AISI 430 par boronisation. Des mesures de nanoindentation ont mis en 

évidence la transition graduelle des valeurs de dureté et de module d’Young entre les 

différentes couches. Des couches de BCN et de carbure de bore bien adhérentes avec 

des épaisseurs supérieures à 1 μm ont été déposées sur les sous-couches. 
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5. GENERAL CONCLUSIONS AND RECOMMENDATIONS 

In this thesis study, single and multilayered boron carbide and boron carbonitride 

thin films deposited with several sputtering configurations were investigated. Three 

types of well adherent and homogenous boron carbide films were deposited by 

conventional DC magnetron sputtering, plasma-enhanced DC magnetron sputtering 

and RF sputtering. Boron carbonitride thin films deposited by reactive DC 

magnetron sputtering in addition of nitrogen into processing gas were also studied. 

Functionally graded multilayered designs were used to grow thicker boron carbide 

and boron carbonitride films. Various characterization techniques were used in order 

to elucidate different growth structures and the properties of different films obtained. 

Following conclusions were drawn from this study; 

A DC compatible conducting boron carbide target was hot-pressed from boron 

carbide source powders. The target chemical composition measured by EPMA was 

the same with the source powders and both were nearly stoichiometric boron carbide 

with about 78% B, 21.4% C, 0.3% O and 0.3% Si. It is believed that, the electrical 

conductivity of boron carbide target produced, originates from 99% of theoretical 

density achieved with sintering conditions used. 

The chemical composition of DC magnetron sputter deposited boron carbide films 

with or without auxiliary plasma configuration, measured by EPMA was the same 

with the target material. For RF deposited boron carbide films, a composition of 76% 

B, 23% C, 0.6% O and 0.4% Si was obtained which is believed the composition of 

commercial B4C target used for RF deposition. In all the cases, there was no 

significant effect of deposition parameters on the elemental compositions of boron 

carbide films. 

During preliminary DC magnetron sputtering experiments of boron carbide, coarse 

columnar structures with cauliflower-like surface morphologies were obtained for 

boron carbide films deposited at 3x10-3 Pa base pressure and 2 Pa deposition 

pressure. Adhesion problems with the increase in coating thickness were observed 
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for these films due to the generation of internal stresses. Well adherent boron carbide 

films were deposited on AISI 430, AISI M2, and Si (100) substrates when the 

thicknesses were limited to 350-400 nm, the base pressure about 10-5 Pa and working 

pressure to 0.3 Pa. 

When deposited by conventional DC magnetron sputtering without any external 

heating, and at floating potential, boron carbide coatings had columnar structures 

although denser with smoother surfaces morphologies compared to boron carbide 

coatings deposited at higher pressure. With the increase in bias voltages from 

floating to 200 V, a transition from columnar zone 1 type structure to denser zone T 

type structure with less pronounced columnar morphology and less separated 

columns were observed. Nanostructural observations by TEM further revealed the 

columnar structure of conventional magnetron sputtered boron carbide coatings. 

Column thicknesses were about 20-25 nm and nanovoids present at the column 

boundaries were about 2-3 nm according to high-resolution TEM observations and 

EFTEM elemental mapping results. EFTEM analyses also demonstrated that oxygen 

from the deposition chamber and/or from ambient air were incorporated into the 

nanovoids between the columns. All observed conventional DC magnetron sputtered 

B4C films were amorphous according to high-resolution imaging and consequent 

FFT and/or diffraction patterns. 

Nanomechanical studies realized on boron carbide films deposited by conventional 

DC magnetron sputtering on three different substrates revealed the effect of the 

substrates on the mechanical properties. Substrate effect was observed particularly 

for the films deposited on AISI 430 steel, which is the softer and mechanically 

poorer substrate. No substrate effect was observed for coatings deposited on AISI 

M2 and Si substrates. When analyzed solely, without the effect of the substrates, no 

changes in the hardness and modulus were observed with the increase in bias 

voltages for boron carbide films deposited without auxiliary plasma configuration. It 

is concluded that the ion bombardment without intense plasma around the substrate, 

although demonstrated an effect of densification on the microstructures, was not 

sufficient to affect the hardness and modulus of the coatings obtained. About 20-22 

GPa hardness and 220 GPa modulus with 70% of elastic recovery after unloading 

were measured for all boron carbide coatings deposited by conventional DC 

magnetron sputtering.  
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Boron carbide films deposited by plasma-enhanced DC magnetron sputtering had 

featureless, non-columnar structures with smooth surface morphologies for all the 

deposition parameters combinations, even for the films deposited at floating potential 

without any external heating. Ion bombardment caused the complete suppression of 

columnar growth and increased the density of boron carbide films by forward 

sputtering, atomic rearrangement and increased adatom surface diffusion by 

localized high temperatures. Detailed SEM investigations of the same coating 

deposited on three different substrates demonstrated that, the growth morphologies of 

boron carbide films were not influenced by the types and properties of the substrates. 

Especially, it is observed that surface roughness of the substrates which is an 

important parameter affecting the growth morphologies, had not an influence on the 

properties of thin films deposited, for the roughness interval used in this study.  

Substrate effect was also observed during nanoindentation of plasma-enhanced DC 

magnetron sputtered boron carbide films deposited on AISI 430 steel and no effect 

was found for the films deposited on AISI M2 and Si substrates for the load intervals 

used in this study. When analyzed solely, an increase in the hardness and modulus of 

the coatings with the increase in the bias voltages and deposition temperatures were 

found. It is concluded that coupled effect of the bombardment and temperature was 

the reason for different hardness and modulus values obtained. The effect of the ion 

bombardment was remarkably higher than the effect the deposition temperatures. 

The hardness of the coatings deposited with different bias voltages and temperature 

combinations was about 30-35 GPa. A hardness value of ~40 GPa was obtained for 

the coating deposited at 250 °C with 100 V bias voltage, which is the hardest coating 

deposited in this study. Thus, there was a factor of about 1.5 to 2 between the 

hardness values of boron carbide coatings deposited with and without auxiliary 

plasma configuration. Indentation moduli of boron carbide coatings followed the 

same trend with the hardness values and were between 270 and 300 GPa. The elastic 

recovery of plasma-enhanced magnetron sputter deposited boron carbide films was 

about 75% for the majority of the films. More than 80% of elastic recovery was 

observed for the hardest boron carbide film, thus, a high elastic recovery behavior of 

boron carbide films can be deduced from these results. 

TEM observations on selected specimens showed that B4C films deposited by 

plasma-enhanced DC magnetron sputtering were completely amorphous in the total 
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range of process parameters. From high-resolution observations, it is evident that 

there is a transition layer of 4-5 atomic layers, which correspond to 1-1.5 nm with 

crystallographic order just at the coating-substrate interface and then the coating 

becomes quickly amorphous. According to high-resolution TEM images and 

diffraction patterns, no evidence of a nanocrystalline phase was found. Therefore, it 

is believed that, the hardening mechanism as a result of the coupled effect of 

deposition temperature and ion bombardment was directly related to the change in 

the microstructures and to the densification of the coatings.  

Tribological studies demonstrated that DC magnetron sputtered boron carbide 

coatings do not give low friction coefficients against different counterfaces. Friction 

coefficients of about 0.7 and 0.6 were found against Al2O3 for the coatings deposited 

without and with auxiliary plasma configuration respectively. However, good wear 

rate values of about 5 x 10-8 mm3/Nm and 2.6 – 3.5 x 10-8 mm3/Nm were obtained 

for conventional DC magnetron sputtered and plasma-enhanced DC magnetron 

sputtered boron carbide films respectively. It is believed that the same factor of two 

between the wear rates and hardness values of two types of boron carbide coatings 

deposited with two different configurations is an evidence of hardness and strength 

dominated wear resistance of these films. 

Microstructural studies realized on RF deposited boron carbide films demonstrated 

the non-columnar growth of these films. It is believed that, this suppressing of the 

columnar morphology without applying any bias voltages, is due to the relatively 

high neutral bombardment of the films during their growth because of the short 

target-substrate distance and/or the increase of the deposition temperatures during 

long deposition times during RF sputtering of boron carbide films.  

Nanomechanical characterizations revealed that non-magnetron RF sputtered boron 

carbide coatings had ~22 GPa hardness and ~240 GPa Young’s modulus and showed 

70% of elastic recovery. Although there is no detailed information on the properties 

of commercial boron carbide target used for RF sputtering, the hardness values of 

conventional DC magnetron sputtered and RF sputtered boron carbide films were the 

same. It is thus believed that boron carbide deposition without process modifications 

results with hardness values about 20 GPa, and different configurations such as 
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extensive ion bombardment and/or very low pressure deposition is needed to deposit 

ultrahard (40 GPa and above) boron carbide thin films by PVD systems.    

Tribological studies on RF deposited boron carbide thin films demonstrated a quite 

different characteristic especially for friction coefficient evolution. Lower friction 

coefficients compared to DC sputtered boron carbide films, about 0.4 were observed 

at the beginning of “pin-on-disc” tests instead high values about 1 obtained for DC 

magnetron sputtered films. Friction coefficients stabilized around 0.5. However, to 

reveal the reasons of this difference and wear mechanisms lying behind, more study 

has to be done as a future work. 

Microstructural studies revealed the columnar structure of BCN film deposited in 

presence of 5% N2 in the process gas. At 25% N2, the coating microstructure 

changed to a uniform granular structure and at 50% N2 to a non-uniform coarse 

granular structure.  

Chemical composition of the films deposited was drastically influenced by different 

amount of N2 in the processing gas. At 5% N2, 30 at.% N incorporated in the coating 

structure and increased to 76 %, for an increase of N2 to 50 % in the processing gas. 

Boron percentage decreased from ~ 78 at.% to 51 at.%  at 5% N2 in the gas and to 28 

at.% for an increase in N2 from 5% to 25%. For 50% N2 in the process gas, 15 % B 

was detected in the boron carbonitride film structure. The same tendency of decrease 

with the increase in reactive gas flow was also observed for carbon, it decreased from 

~ 21 at.%  for boron carbide thin films to 6 at.% for 50% N2 in the processing gas 

environment. 

Nanomechanical characterizations further revealed the effect of N incorporation. 

Boron carbonitride coating deposited with 5% N2 in the deposition gas had 20 GPa 

hardness. At 25% N2 it decreased to 14 GPa and at 50% N2 to 10 GPa. The Young’s 

modulus values of the coatings showed also the same tendency to decrease with 

increasing N2 in the processing gas, from 180 GPa for 5% N2 to 155 GPa at 25% N2 

and finally at 50% N2 it reached its minimum value with 135 GPa. 

Friction coefficients measured for BCN films were about 0.7. Thus it can not be 

concluded a lubricity for BCN films deposited in the test configurations used. 

However, wear rates measured for BCN films were between 1.2 x 10-9 - 7.8 x 10-10 
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mm3/Nm. Thus, wear rates of almost 20-40 times lower than B4C coatings deposited 

by plasma-enhanced configuration were found. It is believed that, while the hardness 

decreased, toughness of the BCN films was increased. Also as a result of more 

relaxed phases obtained such as h-BN, wear rates better than boron carbide films 

were obtained.  

To growth thicker boron carbide and boron carbonitride thin films, functionally 

graded multilayered designs were also studied. FE-SEM observations and SIMS 

depth profile analyses revealed that Ti/TiC and Ti/TiN graded underlayers on AISI 

M2 and Si (100) substrates were successfully formed by plasma-enhanced DC 

magnetron sputtering and boride underlayer by surface boronizing on AISI 430 steel 

substrate. Nanoindentation measurements showed the graded transition of the 

hardness and Young’s modulus values between different layers. Well adherent BCN 

and boron carbide top layers with thicknesses over 1 µm were successfully grown 

onto the underlayers. 

SIMS depth profile analyses revealed that the elemental film distributions were 

constant over the whole films thicknesses for all the series deposited. Thus, it is 

concluded that, for all sputter configurations used, resultant films were homogenous. 

Measured coatings thicknesses were in good agreement with SEM observations with 

maximum deviations of 5-10%. 

Results demonstrated that boron carbide films are promising candidates for wear 

resistance and hardness related applications. With a controlled change of process 

parameters, different microstructures, thus films with different properties were 

obtained. With N incorporation into boron carbide structure, optimized hard and 

better wear-resistant films were achieved. This showed that application ranges for 

these coatings may be further expanded. Additionally, it was found that functionally-

graded multilayered approach is an adequate solution to prevent film delamination 

and intrinsic stress related problems of hard and wear-resistant films. Thicker boron 

carbide and boron carbonitride films for several industrial applications could 

therefore be deposited easily with a proper design of different underlayers.    
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Followings are some recommendations for further studies: 

• It is believed that the hardness mechanism for the films deposited by plasma-

enhanced configuration is based on the generetion of internal stresses as a 

result of the bombardment of the films during their growth with highly 

energetic ions. These stresses should be quantified as a future work to better 

understand the hardening mechanism. 

• Modelization studies should be carried out to clarify the substrate effects 

observed during nanoindentation measurements.   

• Nanotribological studies and especially nanoscratch tests can give a different 

perspective to elucidate wear mechanisms of boron carbide and boron 

carbonitride coatings with nanometer range thichknesses. 

• Electrical properties of boron carbide and boron carbonitride films deposited 

by different sputtering configurations should be studied as these coatings are 

prominent candidates for electronical applications according to the literature.  
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5.1 Résumé du Chapitre 

Les résultats ont démontré que les films de carbure de bore étaient des matériaux 

prometteurs pour des applications tribologiques qui nécessitent des duretés élevées. 

Grâce à la maîtrise des paramètres de pulvérisation, différentes microstructures, 

associées a différentes propriétés, ont été obtenues. Grace à l’incorporation d’azote 

dans la structure de carbure de bore, des couches à dureté optimale et résistance à 

l'usure élevée ont été développées, donnant ainsi la possibilité d’élargir les gammes 

d'applications pour ces dépôts. On a aussi constaté que la conception en multicouche 

fonctionnelle permettait d'empêcher le décollement des couches et d’éviter des 

problèmes liés à des contraintes résiduelles pour les dépôts durs et résistants à 

l'usure. Des couches plus épaisses de carbure de bore et de carbonitrure de bore pour 

plusieurs applications industrielles, peuvent donc être efficacement déposés avec une 

conception appropriée de différentes sous-couches. 
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