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Introdution
Contexte de la thèseLa méanique des �uides numérique (MFN) joue un r�le de plus en plus important dans le pro-essus de oneption aérodynamique. Comparé aux outils expérimentaux, le oût des simulationsnumériques est relativement moins élevé et il peut donner une prédition sur les on�gurations deséoulements qui sont di�iles à étudier expérimentalement. Bien que la plupart des logiiels de MFNmodernes peuvent traiter les éoulements visqueux turbulents autour de géométries omplexes, leure�aité de alul est enore basse puisque les shémas numériques utilisés sont souvent seulementd'ordre deux en maillage nonstruturé, de sorte qu'un maillage très �n est néessaire pour obtenirun résultat su�samment onvergé en maillage, 'est à dire indépendant du maillage.Beauoup de odes de alul MFN ont été développés qui utilisent les shémas d'ordre élevé enmaillage struturé, par exemple : les méthodes di�érenes �nies, méthodes spetrales ou les shémasompats basés sur le résidu (RBC). Cependant, la génération d'un maillage struturé devient déliateet demande beauoup de temps quand la géométrie est omplexe. Les tehniques spéiales ommeoverlapping sont don introduites a�n d'améliorer la �exibilité de la génération du maillage stru-turé. D'un autre oté, la génération d'un maillage non-struturé autour d'une géométrie omplexeest plus faile. De plus, les maillages non-struturés s'adaptent failement pour un ra�nement loal,qui réduit don largement le nombre total des éléments du maillage, omparé au ra�nement globalutilisé souvent en maillage struturé. Ayant onstaté les avantages des maillages non-struturés, desherheurs ont ommené à développer des méthodes numériques ompatibles ave e type de mail-lage, ave l'aent réent sur la préision d'ordre élevé (supérieur à l'ordre deux). Les méthodes ditesGalerkin disontinue, des volumes spetraux, des di�érenes spetrales et les shémas à distributionde résidu sont en ours de développement à l'ordre élevé en maillages non-struturés. Ces méthodesd'ordre élevé ont besoin d'un nombre réduit de degré de liberté par rapport au shéma d'ordre deuxpour avoir un niveau de préision omparable, e qui donne �nalement un oût de alul global moinsélevé.Le projet européen ADIGMA a été proposé ave l'objetif de développer des méthodes numériquesd'ordre élevé innovantes pour les équations d'Euler et de Navier-Stokes en aérodynamique ompress-ible. Ce projet a débuté en septembre 2006 et s'est terminé en déembre 2009. Dans e projet,
22 partenaires de l'industrie, des organismes de reherhe et des universités ont travaillé sur les astests séletionnés a�n de donner une évaluation la plus onrète possible de l'avantage d'utiliser desméthodes numériques d'ordre élevé en maillage non-struturé. Arts et Métiers ParisTeh(ENSAM)a partiipé à e projet à travers son Laboratoire de Simulation Numérique en Méanique des Flu-ides(SINUMEF) et la présente thèse.Parmi les équipes de reherhe impliqués dans le projet ADIGMA, il y a deux atégories: eux quidéveloppent les méthodes de Galerkin disontinue et eux qui travaillent en les approhes basées surle résidu(les shémas à distribution de résidu et les shémas ompats basés sur le résidu). Le présenttravail appartient à la deuxième atégorie puisqu'il se onsare à développer un shéma d'ordreélevé basé sur le résidu pour la simulation numérique d'éoulements ompressibles en maillage non-struturé. 7



CONTENTSLe shéma ompat basé sur le résidu (RBC) a été proposé par Lerat et Corre au début de 2000. Unshéma RBC d'ordre 3 a été d'abord onçu pour résoudre les équations d'Euler et de Navier-Stokesompressibles et appliqué notamment au alul des éoulements transsoniques autour des pro�ls d'aileen maillages urvilignes [30℄ [31℄. Ce shéma est ompat ar il utilise 3×3×3 points seulement pourles équations d'Euler en 3D. Le prinipe de e shéma n'est pas de traiter haque dérivée spatialeséparément omme dans un shéma diretionnel, mais d'approher d'une manière globale le résidu,la somme des termes dans les équations du système. Un shéma basé sur le résidu peut être expriméuniquement en termes du résidu, et sa dissipation numérique est exprimée en termes des dérivés durésidu. Ce point de vue onduit à des shémas ompats qui ne néessitent pas de résoudre dessystèmes algébriques et possèdent de bonnes propriétés de apture de ho, sans limiteurs et sanstermes de orretion. Grâe à sa ompaité, le shéma RBC peut être failement impliité et in-onditionnellement stable. En un maillage struturé, il est exprimé dans une formulation volumes�nis �ell-entered�, ave un traitement spéial pour l'irrégularité du maillage [21℄[33℄. Les premièresappliations du shéma RBC d'ordre 3 pour résoudre les équations de Navier-Stokes instationnairesont été proposées dans [21℄[12℄. Le résidu ontient la dérivé en temps et le shéma est résolu enutilisant une approhe à pas de temps dual. Dans le adre de travail du Réseau français "ReherheAéronautique sur le Supersonique", les shémas RBC d'ordre 2 et 3 ont été appliqués aux équationsRANS et URANS ave une modélisation de turbulene RMS pour aluler les éoulements ave deshos osillants dans les prises d'air supersoniques [38℄. Puis dans le programme DGAC AITEC, esshémas ont été mis en ÷uvre dans le ode de alul de l'ONERA elsA et appliqués à des on�g-urations réalistes, stationnaires et instationnaires, de turbomahine. Plus réemment, les shémasRBC ont été étendu à des préisions d'ordre supérieur à 3 (voir [32℄[11℄ [14℄) par une onstrutiondes expressions ompates du résidu déduite de frations de Padé partiulières. Cette approhe aonduit aux shémas d'ordre 5 et 7 à l'aide de 5× 5× 5 points seulement pour les équations d'Euleren 3D. Parmi les shémas RBC les plus ompats pour les équations de Navier-Stokes ompressibles,on peut distinguer RBCE5V5 (un shéma d'ordre 5 pour les termes d'Euler et les termes visqueux)et RBCE7V2 (un shéma d'ordre 7 pour les termes d'Euler et d'ordre 2 pour les termes visqueux)qui donne une préférene à l'approximation des termes d'Euler et rend la méthode bien adaptée à desaluls aéroaoustiques. Les shémas RBC d'ordre élevé ont été appliqués aux problèmes aoustiquesdu projet européen TurboNoise-CFD, aux simulations RANS de hos osillants dans des tuyères etaux simulations Euler des ondes aoustiques tournantes dans les prises d'air des moteurs d'avion. Ila été on�rmé que les shémas RBC d'ordre élevé ont besoin de beauoup moins de points que leshéma RBC d'ordre 3 pour atteindre le même niveau de préision.Vue le suès des shémas RBC en maillages struturés, l'idée de les étendre en maillages non-struturés s'est fait jour réemment. Un prototype du shéma d'ordre deux basé sur le résidu,développé à l'aide de la méthode volumes �nis en maillages non-struturés généraux, a été pro-posé dans [42℄. Comme ette formulation n'est pas néessairement ompate pour les éoulementsvisqueux, elle est dite simplement le shéma basé sur le résidu (RB).Objetif de la thèseEn aord ave l'objetif du projet ADIGMA, le but de ette thèse est de développer une versiondu shéma RB d'ordre élevé pour approher les équations régissant les éoulements ompressibles,d'intégrer e shéma dans un ode de alul MFN et d'évaluer ensuite sa performane. Plus pré-8



CONTENTSisémment, e travail a mis l'aent sur le développement d'un shéma RB d'ordre trois en explorantdeux stratégies :
• La première stratégie, elle la plus direte, s'appuie sur une extension direte du shéma RBproposé dans le adre de la méthode volumes �nis. On atteint une préision d'ordre élevéen étendant le stenil du shéma, e qui donne une représentation préise des variables del'éoulement. Comme il sera illustré ave une série des as tests (les problèmes modèles et lesas proposé par le projet ADIGMA), ette stratégie atteint sa limite pour les aluls 3D, où lesbesoins de mémoire de stokage dus à l'extension du stenil de shéma deviennent extrêmementgrands. Cette stratégie mérite d'être explorée en raison de l'intérêt du shéma d'ordre trois parrapport au shéma d'ordre deux, qui sera montré plus tard. Mais il est di�ile de ontinuersur e hemin quand es shémas RB de volumes �nis(noté FV-RB) atteignent une préisiond'ordre très élevé.
• Après une étude sur les méthodes d'ordre élevé e�etuée réemment en maillages non-struturés,la méthode des volumes spetraux est retenue omme la base alternative du développement dushéma RB d'ordre élevé. Dans le présent travail, à ause de nééssité de aluler beauoupde as tests pour le projet ADIGMA ave les shémas FV-RB, notre attention est limitée audéveloppement des shémas RB basés sur des volumes spetraux (noté SV-RB) d'ordre deux ettrois. Il est intéressant de souligner que les shémas SV-RB proposés dans e travail onstituentune bonne base pour leur extension future en plus haute préision.En résumé, on peut dire que l'objetif à ourt terme de e travail est de démontrer l'intérêt de laversion d'ordre trois du shéma FV-RB, tandis que l'objetif en long terme est d'explorer la faisabilitéet le potentiel du shéma SV-RB, ave une validation limitée à l'ordre trois dans ette thèse.Organisation du mémoireConformément aux idées qui viennent d'être exposées, e mémoire est divisée en deux parties prini-pales : la première partie est onsarée au développement du shéma FV-RB d'ordre deux et trois,tandis que la seonde partie dérit le développement du shéma SV-RB d'ordre deux et trois.La première partie de e mémoire est divisée en trois hapitres :
• Le hapitre 1 dérit brièvement les méthodes numériques disponibles au début de ette thèse.L'aent est mis sur les prinipes de oneption du shéma RBC initialement développé enmaillages struturés et la méthode des volumes �nis lassique pour atteindre la préision d'ordredeux et trois en maillages non-struturés ave des shémas déentré-amont.
• Le hapitre 2 explique omment les ingrédients préédents peuvent être ombinés pour donnerun shéma RB d'ordre deux et trois basé sur les volumes �nis (noté par FV-RB O2 et O3)pour les équations d'Euler et de Navier-Stokes stationnaires. Des détails sont fournis sur lestehniques d'aélération de onvergene vers l'état stationnaire et sur les onditions aux limitesutilisées dans les as test montrés dans le hapitre 3. En�n, es shémas sont étendus auxproblèmes instationnaires.
• Cette partie se termine ave le hapitre 3 qui présente les résultats numériques de ertainsproblèmes modèles et des as test proposés par le projet ADIGMA. La présentation suit un ordrequi va de problèmes simples à des problèmes omplexes : d'abord des éoulements ompressibles9



CONTENTSstationnaires sans ho d'un �uide parfait en 2D et 3D sont alulés par le shéma FV-RB O2et O3, puis des éoulements stationnaires ave ho d'un �uide parfait sont traités par esshémas, ensuite es shémas sont utilisés pour aluler des éoulements visqueux stationnairessans ho, en�n des résultats sur les éoulements instationnaires non-visqueux sont obtenus.Pour l'ensemble de es résultats, les avantages du shéma d'ordre trois par rapport à l'ordredeux sont disutés.La deuxième partie de e mémoire se déompose en deux hapitres :
• Le hapitre 4 expose les prinipes de base de la méthode des volumes spetraux et les détailssur la façon de onstruire un shéma RB d'ordre deux et trois dans e adre. La onvergeneen maillage du shéma SV-RB est évaluée par un problème d'advetion irulaire en 2D et uneomparaison est faite entre les shémas RB développés à partir de deux approhes di�érentes:FV-RB et SV-RB.
• Dans le inquième et dernier hapitre, les shémas SV-RB sont étendus aux équations d'Euler

2D. Comme il s'agit d'appliations aérodynamiques, on a besoin de soins partiuliers pour letraitement des parois solides. En partiulier, l'approhe SV s'appuyant sur une augmentationdes degrés de liberté à l'intérieur d'une ellule du maillage, une représentation d'ordre élevéde la géométrie urviligne est néessaire pour assurer la préision d'ordre élevé du shéma SV-RB en paroi. Une méthode pour représenter la paroi ourbée à l'ordre élevé est don miseen ÷uvre et évaluée. En outre, pour les appliations omplexes d'éoulement ompressible,ertaines tehniques d'aélération de onvergene ont été également utilisées pour l'intégrationen temps assoiée à la disrétisation en espae. Une phase impliite dite sans matrie utiliséepar le shéma FV-RB est ainsi adaptée pour les shémas SV-RB. On a e�etué les omparaisonsentre l'approhe SV ouplée ave le �ux numérique d'un shéma déentré-amont standard etle shéma SV-RB, ainsi qu'entre le shéma FV-RB et SV-RB lors du alul d'éoulementsnon-visqueux subsoniques autour d'un ylindre et d'un pro�l NACA0012.En�n e mémoire s'ahève par quelques onlusions et des perspetives à ourt et à long terme pourutiliser les apports originaux de e travail.
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Introdution
Bakground of the thesisComputational Fluid Dynamis(CFD) plays an inreasingly important role in the aerodynami de-sign proess. Compared to experimental tools, it is relatively less expensive and in some oasionsit an yield a predition on �ow on�gurations whih would be hard to study through experiments.Although most of up-to-date CFD softwares an deal fairly well with turbulent visous �ows aroundomplex geometries, their omputational e�ieny is still low beause the underlying numerialshemes are often seond-order aurate only on unstrutured grids, where the use of a very �nemesh is neessary to ahieve grid-onverged hene grid-independent results.A number of CFD tools have been developed, whih rely on high order shemes but remain limited tothe use of strutured grids, for instane : �nite di�erene methods, spetral methods [28℄ or Residualbased ompat (RBC) shemes [30℄. However, the strutured mesh generation beomes partiularlytriky and time-onsuming when a omplex geometry is immersed in the �ow domain. Spei� teh-niques suh as overlapping grids for example were therefore introdued to improve the �exibility ofstrutured grid generation. On the other hand, the mesh generation of unstrutured grids around aomplex body remains easier to handle. Moreover, suh an unstrutured grid an be easily adaptedfor the purpose of loal re�nement, whih results in a large redution of the total number of meshelements, ompared to the global mesh re�nement whih often takes plae in the strutured gridgeneration proess. Having pereived the advantages of unstrutured grids, researhers have startedto develop numerial methods well �tted for suh grids, with a reent emphasis on high order (higherthan seond-order) auray. Disontinuous Galerkin method [7℄, spetral volume method [47℄, spe-tral di�erene method [34℄ and residual distribution method[15℄ are all designed to yield high ordernumerial solutions on unstrutured grids. These high order methods require a redued number ofdegrees of freedom with respet to seond-order shemes for ahieving a omparable level of auray,whih results in a redution of the global omputational ost.The ADIGMA European projet has been proposed with the main objetive to develop innovativehigh order methods for ompressible �ow equations used in the ontext of aerodynami appliationsand airraft design. This projet started on Septembre 2006 and is ompleted on Deember 2009.In this projet, 22 ollaborators from industry, researh organisms and universities have worked onseleted test problems in order to produe an as muh as possible objetive assessment of the ben-e�t expeted from using high order numerial methods on unstrutured grids. The Arts et MétiersParisTeh(ENSAM) was sienti�ally involved in the projet through its Laboratory of NumerialFlow Simulation (SINUMEF) and the present thesis.Among the researh teams involved in the ADIGMA projet, two main ategories have emerged :those developing disontinuous Galerkin methods and those working on residual-based approahes(residual distribution methods, residual based ompat shemes). Clearly, the present works belongsto this seond family sine it is devoted to the development of a high order residual-based sheme forthe simulation of ompressible �ows on unstrutured grids.The Residual Based Compat (RBC) sheme was proposed by Lerat and Corre at the beginning of2000. A 3rd order RBC sheme was �rstly designed for solving the ompressible Euler and Navier-11



CONTENTSStokes equations and applied notably to the omputation of transoni �ows around airfoils on theurvilinear meshes [30℄[31℄. This sheme is ompat sine it involves 3 × 3 × 3 points only for the3D Euler equations. The design priniple is not to treat eah spatial derivative separately as in adiretional sheme, but to approah the residual, i.e. the sum of the terms in the balane equations,in a global way. A residual based sheme an be expressed only in terms of the residual, and for thenumerial dissipation, in terms of derivatives of the residual. This point of view leads to ompatshemes whih do not require the solution of algebrai systems and possess good shok apturingproperties without limiter or orretion terms. Owing to their ompatness, RBC sheme an be eas-ily made impliit and unonditionally stable. On a strutured mesh, it is expressed in a ell-entered�nite volume formulation, with a speial treatment for mesh irregularity [21℄[33℄. First appliationsof 3rd order RBC sheme to the solution of the unsteady Navier-Stokes equations were proposedin [21℄[12℄. The residual ontains the time derivative and the sheme is solved using a dual-timeapproah. In the frame work of the Frenh Net "Reherhe Aéronautique sur le Supersonique", 2ndand 3rd order RBC sheme have been applied to the RANS and URANS equations with a RSMturbulene modeling for omputing �ows with osillating shoks in supersoni air intakes [38℄. Andthen in the DGAC AITEC program, these shemes have been implemented in the ONERA elsAode and applied to a variety of realisti steady and unsteady turbomahinery on�gurations. Morereently, the RBC shemes have been extended to auray orders higher than 3 (see [32℄[11℄ [14℄)by onstruting ompat residual expressions dedued from partiular Pade frations. This approahhas led to 5th and 7th order aurate shemes by using 5 × 5 × 5 points only for the 3D Euler equa-tions. Among the most ompat RBC shemes for the ompressible Navier-Stokes equations, onean distinguish RBCE5V5 (a 5th order sheme for the Euler terms and also for the visous terms)and RBCE7V2 (a 7th order sheme for the Euler terms and 2nd order for the visous terms), whihgives a preferene to the approximation of the Euler terms and makes the method well adapted toaeroaoustis omputations. High order RBC shemes have been applied to aousti problems of theTurboNoise-CFD European Program, RANS simulations of osillating shoks in nozzles and Eulersimulations of spinning aousti waves in airraft engine intakes. It has been on�rmed that highorder RBC shemes need muh less points than 3rd order RBC sheme in order to reah the sameauray level.Having seen the suessful development of RBC shemes on strutured grids, the extension of thissheme to unstrutured grids has been launhed reently. A prototype of the seond-order residual-based sheme developped in �nite volume method for general unstrutured grids has been proposedin [42℄. Note that this formulation is not neessarily ompat anymore for visous �ows, it will bedenoted by RB (Residual Based) sheme.Objetive of the thesisTo be in line with the general purpose pursued by the ADIGMA projet, the objetive of this thesis isto propose a high order version of the RB sheme for approximating the ompressible �ow equationson unstrutured grids, to implement this sheme in a CFD ode and to assess its performanes.In reality, this work has been fousing on the development of third-order RB shemes, where twostrategies have been followed :
• The �rst strategy, the most straightforward one, relies on a diret extension of the RB shemedesigned in the general framework of a �nite-volume approah. Basially, high order auray12



CONTENTSis ahieved by extending the sheme stenil, thus allowing a more aurate representationof the �ow variables. As will be learly demonstrated on a variety of test-problems (modelones and �ow problems retained as benhmark test-problems in the ADIGMA projet), thisstrategy reahes its limits for 3D omputations, where the memory requirements indued bythe extension of the sheme's stenil tend to beome unaeptably large. This strategy deservesto be explored regarding the interest of third-order sheme over seond-order, whih will beillustrated. But this path remains a dead-end when this �nite volume based RB sheme (denotedby FV-RB shemes) goes to a very high order auray.
• After some studies on urrently developed high order methods for unstrutured grids, thespetral volume method has been retained as the alternative basis for the development ofhigh order RB sheme. In the present work, beause of the time-onstraints indued by theomputations of many test ases for the ADIGMA projet by using the FV-RB shemes, ourattention has been restrited to the development of seond and third-order spetral volumebased RB shemes (denoted by SV-RB shemes). It is neessary to emphasize however thespetral volume based shemes proposed in this work lays a good foundation for future higher-order extensions.In summary, it ould be said that the short-term objetive of this work has been to demonstrate theinterest of a third-order version of the FV-RB sheme while the long-term objetive has been fousedon exploring the feasibility and the potential of the SV-RB sheme, with an assessment limited tothird-order in this work.Organization of the thesisFollowing the ideas whih have just been exposed, the thesis is divided into two main parts : the �rstpart is devoted to the development of seond and third-order FV-RB shemes, while the seond partdeals with the development of seond and third-order SV-RB shemes.The �rst part of this thesis is divided into three hapters :
• Chapter 1 brie�y reviews the numerial tehniques available at the start of this thesis. Theemphasis is put on the design priniples of the RBC sheme initially developed on struturedgrids and the lassial �nite-volume method for ahieving seond or third-order auray onunstrutured grids with general upwind shemes.
• Chapter 2 explains how the previous ingredients an be ombined to yield a seond and third-order �nite volume based RB sheme (denoted by FV-RB O2 and O3) for steady Euler andNavier-Stokes equations. Details are provided on the onvergene aeleration tehniques tosteady state and on boundary onditions used in test ases showed in hapter 3. And thenthese shemes are extended for unsteady problems.
• This part loses with hapter 3, whih presents numerial results of some model problems andtest ases proposed by the ADIGMA projet. The presentation follows an order from simpleproblems to omplex problems : at �rst 2D and 3D steady invisid smooth ompressible �owproblems are omputed by the FV-RB O2 and O3 shemes; then steady invisid �ow problemswith shoks are treated by these shemes; next these shemes are used to deal with steady13



CONTENTSvisous smooth �ows; �nally results on unsteady invisid �ows are obtained with these shemes.For all of these results, the advantages of the third-order sheme over the seond-order one aredisussed.The seond part of the thesis is ogranized in two hapters :
• Chapter 4 desribes the basi priniples of the spetral volume method and details on how aseond and third-order RB sheme an be designed within this framework. The grid onver-gene of the developed SV-RB shemes is assessed on a 2D irular advetion problem anda omparison is made between the RB shemes from two di�erent approahes: FV-RB andSV-RB shemes.
• In the �nal hapter, Chapter 5, the SV-RB shemes are extended for the 2D Euler equations.Sine the aeronautial appliations of the proposed methods involve �ows over solid bodies, spe-ial are must be given to the wall boundary treatment. In partiular, beause the SV approahrelies on an inrease of the degrees of freedom inside a grid ell, a high order representationof the urved geometry is neessary to ensure the high order auray of the SV-RB shemeon solid walls. A method to represent the urved boundary at high order is therefore imple-mented and tested. Moreover, for omplex ompressible �ow appliations, some onvergeneaeleration tehniques also have to be given to the time integration assoiated with the spaedisretization. A matrix-free impliit sheme used for FV-RB sheme is thus adapted for theSV-RB shemes. Comparisons are performed between the SV approah oupled with a stan-dard upwind numerial �ux and the SV-RB sheme as well as between the FV-RB and SV-RBapproahes when omputing the 2D subsoni invisid �ow over a ylinder and a NACA0012airfoil.At last the thesis loses with some onlusions and perspetives on the short-term and long-term useof the �ndings in this work.
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1Some existing numerial methods for ompressible�ow simulation
Frenh Ce hapitre préliminaire donne une présentation onise des méthodes existantes pour lasimulation numérique des éoulements ompressibles. L'aent est mis sur les ingrédients qui serontutilisées pour avoir le shéma FV-RB d'ordre deux et trois en maillages non-struturés généraux.Préisément, il s'agit de la desription du shéma ompat basé sur le résidu en maillages struturéset de la méthode des volumes �nis lassique d'ordre trois en maillages non-struturés. La façon deombiner es ingrédients est l'objet du hapitre suivant.English This introdutive hapter gives a brief review of some methods already in use for om-pressible �ow simulations. Our fous is onentrating on those ingredients whih will be used inthe next hapter to derive a seond and third-order FV-RB sheme on general unstrutured grids.Preisely it is on the desription of the well-established residual-based ompat sheme on struturedgrids and on the desription of lassial �nite volume method for ahieving third-order aurayon unstrutured grids. The way on how to ombine these ingredients will be the topi of the nexthapter.1.1 Physial models for ompressible �owsA general model for desribing the movement of a ompressible �ow is the system of the Navier-Stokesequations, expressing the onservation of mass, momentum and total energy for a variable-density�ow. If 3D Cartesian oordinates are used, this system of onservation laws an be put in the loalform :
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�1.1where U is the vetor of onservative variables : U =









ρ
ρu
ρv
ρw
ρE









with ρ the density, (u, v, w) theveloity omponents and E the spei� total energy, E = e+
1

2
(u2 + v2 + w2), e being the spei�internal energy. The physial �ux vetors in the x, y and z diretions an be deomposed into aonvetive part depending solely on U and a di�usive part depending on U and its gradient ∇U :

f(U,∇U) = fE(U)− fV (U,∇U), g(U,∇U) = gE(U)− gV (U,∇U), h(U,∇U) = hE(U)− hV (U,∇U),15



Chapter 1 : Some existing numerial methods for ompressible �ow simulationwhere the invisid (Euler) �uxes are given by :
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�1.2and the visous �uxes are expressed as:
fV (U,∇U) =
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�1.3with p the pressure, T the temperature and H the total enthalpy, H = E+p/ρ. The system is losedwith some thermodynami equations of state relating p, T , ρ and e plus some onstitutive laws forthe thermal ondutivity oe�ient κ and the stress tensor omponents τxx, τxy = τyx, τyy. For aNewtonian �uid, the visous stress tensor is suh that :
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�1.4where x1 = x, x2 = y, x3 = z, u1 = u, u2 = v, u3 = w, δi,j is the Kroneker funtion; the �uiddynami visosity µ is determined by the Sutherland law. The thermal ondutivity κ and µ arerelated through the (onstant) Prandtl number : Pr = µCp/κ with Cp the (onstant) spei� heatoe�ient at onstant pressure.In this thesis the perfet gas is hosen as �uid, the thermal and alori equations of state used todesribe its thermodynami behavior are : p = ρrT and e = Cv T with r the gas onstant suh that
r = Cp −Cv and γ = Cp/Cv (Cv is the spei� heat oe�ient at onstant volume). Gathering theserelationships also yields p = (γ − 1)ρe.When the visous e�ets an be negleted, the Navier-Stokes equations simplify into the Euler hy-perboli system of onservation laws :
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�1.5In order to perform the analysis of the error order for the numerial shemes developed in this work,it will be also onvenient to deal with some simpli�ed model problems suh as :16



1.1 Physial models for ompressible �ows
• pure salar advetion :

Wt + a1Wx + a2Wy + a3Wz = 0,
�

�

�

�1.6with W the onservative variable and a1, a2, a3 the advetion oe�ients in the x, y and zdiretions
• salar advetion-di�usion :

Wt + a1Wx + a2Wy + a3Wz = ν1Wxx + ν2 Wyy + ν3 Wzz + ν12 Wxy + ν13 Wxz + ν23Wyz.
�

�
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�1.7with νk and νij visosity or di�usion oe�ients.In the present work, we will systematially use the non-dimensional form of the Euler and Navier-Stokes equations. Sine our interest will be foused on external �ows over airfoils or wings, the typialsituation will be that of uniform upstream far-�eld �ow onditions, ρ∞, U∞ and p∞. The quantity
V∞ denotes the norm of the upstream far-�eld veloity; in 2D the upstream far-�eld �ow diretion isentirely de�ned by the angle of attak α. By using these onditions as a referene state to normalizethe density, veloity and pressure, we introdue the non-dimensional quantities : ρ̄ =

ρ

ρ∞
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u

V∞
,

v̄ =
v

V∞
, p̄ =

p

p∞
. By taking typially the airfoil hord c as a referene length (in 2D) and a referenetime interval t∗ = c/U∞, it is immediate to show that the non-dimensional Euler equations on thenon-dimensional quantities ρ̄, ū, v̄, p̄ are formally idential to (1.5). The sole di�erene lies in thefar-�eld in�ow ondition whih an be expressed using only the Mah number M∞ based on far-�eldonditions and the angle of attak :

ρ̄∞ = 1 , ū∞ = cos(α) , v̄∞ = sin(α) , p∞ =
1

γM2
∞

.Note the system has been losed with the non-dimensional relation-ship between (non-dimensional)pressure, density and spei� internal energy : p̄ = (γ − 1)ρ̄ ē; sine Ē = ē+
1

2
(ū2 + v̄2), this rela-tionship an also be expressed as : p̄(U) = (γ − 1)ρ̄ (Ē − 1

2
(ū2 + v̄2)).When dealing with the (2D) Navier-Stokes equations, the non-dimensional form of the system ofonservation laws involves the Reynolds number based on the far-�eld �uid properties (ρ∞, U∞,

µ∞) and the referene length (typially an airfoil hord for external aerodynami �ow problems)
Re∞,c = Re =
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Chapter 1 : Some existing numerial methods for ompressible �ow simulationand
fV (U,∇U) =
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.where the bar on top of the non-dimensional variables has been omitted to simplify the expressionof this non-dimensional form of the Navier-Stokes equations.1.2 Original RBC sheme on strutured gridsThe original residual based ompat (RBC) sheme has been designed in a �nite di�erene framework.This baseline formulation of the RBC sheme is realled in this setion, sine it will be the startingpoint of our development on unstrutured grids. Let us onsider the following general two-dimensionalsystem of onservation laws (whih ould be for instane the Euler equations) :
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�1.9Using a general �nite di�erene approah on a uniform Cartesian grid, this system is disretized ateah grid point as :
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�1.10where subsript 1 and 2 will systematially refer to the spae diretions x and y respetively; δ1, δ2are di�erene operators over one grid ell, that is suh that :
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�1.11with δx (resp. δy) the mesh size in the x (resp. y) spae-diretion. A onservative disretizationsheme for (1.9) is uniquely de�ned by the expression of the numerial �uxes H1 and H2 on therespetive interfaes Γi± 1
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,j and Γi,j± 1

2

. Let us fous on the �rst grid diretion and the interfae Γi+ 1

2
,j(see Figure 1.1); the RBC numerial �ux on this fae an be expressed as :
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�1.12where µ1 is the arithmeti average operator over one grid ell in the x diretion :
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�1.13
Φ1 is a O(1) dissipation oe�ient whih ensures the term d1

i+1/2,j to be dissipative to the numerial�ux; r̃1 is a entered approximation of the residual r = fx+gy assoiated with system (1.9), omputedon the fae Γi+ 1

2
,j , whih plays a key role for the auray and robustness of the RBC sheme.18



1.2 Original RBC sheme on strutured grids

Figure 1.1: The RBC numerial �ux at fae enter i+ 1
2
, j is omputed using the ompatstenil made of the 6 grids points (i, j − 1), (i, j), (i, j + 1), (i + 1, j + 1), (i + 1, j) and

(i+ 1, j − 1).In the ontext of a strutured grid disretization proess, this residual approximation on the fae
Γi+1/2,j is omputed using the simply entered di�erene formula :
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�1.14Similarly, the numerial �ux on the interfae Γi,j+1/2 is given by the formula :
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�1.15where the entered approximation of residual on the fae Γi,j+ 1
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�1.16and Φ2 is also a O(1) dissipation oe�ient, playing the same role as Φ1. The way to properlydesign these dissipation oe�ients has been initially proposed in [24℄, when building the so-alledharateristi time-step sheme from the two-dimensional Roe and Lax-Wendro� shemes. Details ofthe derivation are not reprodued here and only the �nal formula for these oe�ients is provided.If f and g are salar �uxes with assoiated wavespeeds A(U) =
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�1.17where ϕ and ψ are given by:
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Chapter 1 : Some existing numerial methods for ompressible �ow simulationwith a parameter α de�ned as the loal advetion diretion with respet to the mesh :
α =

δx|B|
δy|A| .
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�1.19Note that when the advetion diretion is aligned with the x diretion, |B| = 0 and α = 0 so that
Φ1 = 1 and Φ2 = 0, whih means that the numerial dissipation is added only in the x diretion(similarly when |A| = 0, Φ1 = 0 and Φ2 = 1 yield a numerial dissipation in the y-diretion only). Infat, for 1D problems, the RBC sheme beomes the Roe sheme, provided the Roe average is usedto ompute the quantities sign(A), sign(B), ϕ, ψ on eah fae in formula (1.17), (1.18). This hoieof evaluation for the dissipation oe�ients will be systematially used through this work.To onlude this short desription of the existing seond-order RBC sheme, we brie�y review thekey points regarding the auray properties of this sheme. Straightforward Taylor developmentsallow to write (with h = δx = δy if the Cartesian grid is supposed uniform) :
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�1.21whih leads to a total trunation error at point (i, j) (this index is omitted for the sake of simpliity)given by:
ǫRBC O(2) = Ut + r + O(h2) − h
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�1.22When omputing a steady solution, Ut ≡ 0 and r ≡ 0 so that ǫRBC O(2) = O(h2) making the RBCsheme a seond-order approximation to the system of onservation laws on a globally 3 × 3-pointstenil.Note that in the same Cartesian grid, a onventional upwind sheme based on a MUSCL-type vari-able reonstrution would need a 5-point support in eah spae diretion to ahieve the seond-orderauray. The more ompat support of the RBC sheme makes the treatment of boundary ondi-tions simpler and also yields a better onvergene rate to reah steady state when this expliit RBCsheme is oupled with a simple �rst-order upwind impliit sheme (see [13℄).On this same 3 × 3-point stenil, a third-order RBC sheme an be derived [31℄ by using the resid-ual vanishing at steady-state to get rid of the seond-order error in (1.22). The basi idea for thatextension is to onsider as a starting point the seond-order RBC sheme written as :
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�1.23Sine the right-hand side of the above sheme has been shown to be O(h3) at steady-state, third-order auray is ahieved if an at least third-order approximation for r̃0
i,j is derived. On struturedgrids, the basi idea is to use the ompat Pade formula in a �rst step and to take advantage of the20



1.2 Original RBC sheme on strutured gridsresidual vanishing at steady-state in a seond step. Sine r = fx + gy, r̃0
i,j an be approximated atfourth-order by using usual Pade frations :
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�1.24These formulas needs to solve a linear algebrai system in eah spae diretion, whih leads to aomputation ost higher than an inompat sheme. Therefore an idea in [30℄ says that the fousshould be on �nding a small global error rather than disretizing eah spatial derivative at high order.More preisely, fx and gy are approximated separately to seond-order but the total error term an beexpressed with a spatial derivative of the residual r = fx + gy, whih will vanish at the steady-state.This idea an be expressed as :
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�1.25where the omputation of the residual r̃0
i,j at the ell enter makes use of the 3 × 3-point stenilpreviously introdued for omputing the residual-based dissipation. It is to note that this ompatformula is derived from the linear algebra usually assoiated with the use of Pade frations. Thenumerial �uxes assoiated with this hoie of r̃0

i,j (and the unhanged formulation of the residual-based dissipation) read :
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�1.26The resulting trunation error is given by :
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�1.27so that at steady-state ǫRBC O(3) = O(h3). A usual upwind sheme based on purely diretional ap-proximation of fx and gy using MUSCL-type variable reonstrution would need a 5-point stenil ineah grid diretion to ahieve the same third-order auray.These design priniples have been generalized in [32℄[11℄ to derive very high order (�fth, seventh)residual-based ompat shemes on a 5×5-point stenil. Extension to the ompressible Navier-Stokesequations has also been performed in [32℄[14℄; note that in that ase are must be taken to derivespei� Pade-type formula for �rst and seond-derivatives that allow simpli�ations of the Pade fra-tions and avoid any linear algebra. Clearly, suh a strategy to ahieve high order auray ruiallydepends on the use of strutured grids. Sine the objetive of the present work is to extend the RBCsheme on unstrutured grids, we shall not venture further along this way. Instead, we will fouson the use of a �nite-volume framework on general unstrutured grids and try to insert the mainfeatures of our residual-based sheme inside this framework. To this e�et, before performing thisombination of residual-based approah and �nite-volume tehnique in the next hapter, we brie�yreview in the next setion some key ingredients of standard numerial methods on unstrutured grids.21



Chapter 1 : Some existing numerial methods for ompressible �ow simulation1.3 Classial numerial methods on unstrutured gridsWe restrit our disussion to the �nite-volume method, whih is based on the integral formulationof onservation laws on general unstrutured grids. The �nite-volume method an be either vertex-entered or ell-entered. In the vertex-entered approah, the ontrol volume on whih the system ofequations is disretized is built around the verties (nodes) of the grid while in the ell-entered ap-proah, the grid ell itself plays the role of ontrol volume (see for instane [4℄). Only the ell-entered�nite-volume formulation will be used in this work; this hoie has some important onsequenes onthe formulation of the wall boundary onditions in the ase of aerodynami �ows around obstales(airfoils, wings . . .), whih will be disussed later in this work.Let us start our presentation of the �nite-volume approximation of the Navier-Stokes equationsfrom the ompat two-dimensional formulation :
∂U

∂t
+ ∇ · F(U,∇U) = 0,
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�1.28where F is the �ux vetor with omponents f , g in the x, y diretions respetively. On a generalunstrutured mesh, the ell-entered �nite-volume disretization of (1.28) takes the form :
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�1.29where Ui is the ell average solution de�ned at the entroid of the mesh ell Ωi, |Ωi| denotes thesurfae of this grid ell. By using Green-Gauss theorem, this equation an be rewritten as :
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�1.30with Γi,k the k-th fae of ell Ωi, |Γi,k| the length of this fae and n the fae normal unit vetorpointing outside the ontrol ell. The set of faes forming the ell Ωi is denoted by I(Ωi).The integral of physial �ux projetion onto the fae normal diretion an be omputed approxi-mately by using a Gauss quadrature formula along eah fae of the ontrol ell :
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�1.31with g the index of the Gauss quadrature point on the fae Γi,k, ωg its assoiated quadrature weight;
Ng = Integer((p + 1)/2) is the number of quadrature points along the fae whih is neessary toahieve an auray of order p - in partiular, for a seond order sheme (p = 2) Ng = 1 that is a singleGauss point on eah fae (midpoint of eah fae, see Figure 1.2) is su�ient to ensure seond-orderauray, as long as a polynomial of su�ient order (see below) is used to represent the solutionin the ell; (Hi,k)g denotes the numerial �ux at the Gauss point g, approximating the normal �ux
F · n. In the general visous ase we hoose to onsider, this numerial �ux inludes two parts :
(Hi,k)g = (HE

i,k)g − (HV
i,k)g where the invisid numerial �ux (HE

i,k)g approximating the Euler �ux
FE(U) ·n = (FE)⊥ is typially omputed using an approximate Riemann solver, suh as Roe, HLLCor AUSM+ shemes, while the visous numerial �ux (HV

i,k)g approximating the di�usive physial22



1.3 Classial numerial methods on unstrutured grids

Figure 1.2: Gauss quadrature point on a fae of triangle ell 1 quadrature point, the faeenter g is used by the seond-order sheme (left), 2 quadrature points (g1 and g2) are used by thethird-order sheme (right).�ux FV (U,∇U) · n = (FV )⊥ is omputed by a simply entered approximation.The invisid numerial �ux of a onventional upwind sheme typially reads:
(HE
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�1.32where the funtion HE depends on the spei� sheme retained for approximating (FE)⊥i,k (Roe,AUSM+ . . .), and (U
L/R
i,k )g denote the reonstruted solutions at the Gauss-point g obtained by usingthe solution polynomial in the ell loated on the left/right side of the fae Γi,k through whih thenumerial �ux is omputed; ni,k is of ourse the unit normal vetor to this fae, pointing outward ofell Ωi.For a seond-order sheme, solutions UL/R

i,k are omputed at the single Gauss-point (the fae en-ter) with the following linear reonstrution polynomial:
(U

L/R
i,k )g = Ui/o(i,k) + (rg − ri/o(i,k)) · ∇Ui/o(i,k)
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�1.33where rg is the position vetor of the Gauss point, [xg yg]
T ; ri/o(i,k) is the position of the left or rightell entroid (o(i, k) denoting the ell that shares the fae Γi,k with ell i); ∇Ui/o(i,k) is the gradientomputed at the left or right ell entroid. These gradients an be omputed using two distintmethods: a least-square approah or Green-Gauss formula. Sine the least-square method is retainedin this work, we shall fous on its desription and we will not provide any details on the Green-Gauss approah (we refer the interested reader to [16℄ for instane). Let us mention the least-squareapproximation for the gradient (and, later on, the Hessian) omputation is seleted beause of itsgreater ease of use.In order to apply the (linear) least-square method, a reonstrution stenil must be de�ned �rstly.We reall the basi priniple of the least-square approximation of the gradient at a given ell-enter

i is to write Taylor expansions around i on a set of ell entroids in the neighborhood of ell i; thisleads to an over-determined problem and the gradient omponents estimates are found as the valuesminimizing the global trunation error of these developments. In order to ensure the non-singularity23



Chapter 1 : Some existing numerial methods for ompressible �ow simulation

Figure 1.3: Stenil ells for least-square reonstrution in 2Dof the linear least-square reonstrution the minimum stenil number in 2D should inlude 3 en-troids around i. A simple way ensuring this ondition is to pik into the stenil all fae-neighbors of
i, that is all ells whih share at least one fae with ell i (see the ell entroids marked by a squarein �gure 1.3) for instane). For a ell interior to the grid, the minimum stenil number is guaranteedregardless of the grid ell type: triangle (3 neighbors in the least-square stenil) or quadrilateral (4neighbors in the least-square stenil). Note however it is not neessarily the ase for a boundary ell :for instane, a triangular ell on a boundary ould have a single fae-neighbor; in suh situation,the node-neighbors (ells who share at least one node with the ell in whih the gradient is to beomputed) will be added into the least-square stenil.For a given ell i, the system obtained by the linear least-square method takes the form :
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�1.34where ∆xj = xj − xi, ∆yj = yj − yi are the distane di�erenes between the ell i and a ell j inthe stenil; ∆Uj = Uj − Ui denotes the solution di�erene between a ell j and the ell i; n is thetotal number of neighboring ells whih belong to the stenil of ell i. It is lear that this system anbe solved analytially to yield the following expressions for the �rst-order estimates of the gradientomponents at the entroid of ell i :
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�1.35where S(i) denotes the set of ells j forming the stenil of the least-square formula applied in ell
i. In summary, formula (1.35) yields �rst-order estimates of the ell-gradient whih an be inserted24



1.3 Classial numerial methods on unstrutured gridsin the linear solution reonstrution formula (1.33); this formula is then applied in eah ell to yieldstates (U
L/R
i,k ) at the single Gauss point orresponding to the fae enter; these states are �nally usedin the numerial �ux formula (1.32) along with a single-point Gauss quadrature formula (mid-pointformula in the present ase) to obtain the approximation of the physial (normal) �ux along fae Γi,jof the ontrol ell Ωi. This proess is very ommonly used today for applying seond-order shemeson general unstrutured grids.Let us now brie�y review the steps that must be taken in order to upgrade this �nite-volume strategyto third-order auray. First, two Gauss quadrature points are required along eah fae and thesolution states (U

L/R
i,k )g on the left and right of eah of these points are omputed using a quadratipolynomial :
(U

L/R
i,k )g = Ui/o(i,k) + (rg − ri/o(i,k)) · ∇Ui/o(i,k)

+
1

2
(rg − ri/o(i,k))

T · Hi/o(i,k) · (rg − ri/o(i,k)).
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�1.36where Hi/o(i,k) is the Hessian of the solution at the left or right ell entroid. In a way similar to theseond-order sheme, both the solution gradient and its Hessian are omputed using a least-squaremethod. This means the Taylor expansions written at ell enters j around the ell-enter i areperformed up to third-order (the ell-gradient is approximated at seond-order while the Hessian isapproximated at �rst-order only); this results again in an over-determined problem, the trunationerror of whih is omputed and minimized with respet to the omponents of the gradient (Ux)i,
(Uy)i and the omponents of the symmetri Hessian matrix (Uxx)i, (Uxy)i, (Uyy)i. Naturally, sine 5unknown quantities have to be determined now, an extended stenil is required for these quadratileast-square formula with respet to the one used by the linear least-square formula. For example,this stenil should inlude a minimum number of 6 enters around i in 2D. Obviously, piking onlyfae-neighbors is not enough to form an aeptable stenil for an interior ell whatever the ell type is;therefore node-neighbors (ells sharing at least one node with the ell i under onsideration, markedby irles in �gure 1.3) are added into the stenil list. The set of fae-neighbors and node-neighborsis alled �rst-level neighbors. In 2D, it is easy to hek that there are 8 �rst-level neighbors for aninterior quadrilateral ell and 12 �rst-level neighbors for an interior equilateral triangle ell, whih isin both ases enough for the quadrati least-square reonstrution to be applied. Note again that fora boundary ell the �rst-level neighbors are often not enough to provide an aeptable stenil so thatall fae-neighbors of the �rst-level neighbors of the ell i in whih the gradient must be omputedat seond-order will then be added into the stenil list to ensure the appliability of the quadratileast-square formula.When applied in a given ell i, the quadrati least-square method yields the following system:
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Chapter 1 : Some existing numerial methods for ompressible �ow simulationwhere, following [16℄, geometry-based weights have been introdued to resale the system in order toensure a proper onditioning for the linear system to solve. These weights are de�ned as : wi
x = 1/hi

x,
wi

y = 1/hi
y, wi

xx = 1/(hi
x)

2, wi
xy = 1/(hi

xh
i
y), wi

yy = 1/(hi
y)

2 where hi
x and hi

y are harateristidistanes assoiated with ell i in the x and y diretions, omputed by hi
x = max(|xk+1 − xk|) and

hi
y = max(|yk+1 − yk|) with indies k and k+ 1 looping over all nodes of ell i. Suh a normalizationan of ourse be also performed for the linear reonstrution - but this latter is less sensitive to thegrid sales than the quadrati reonstrution. In visous omputation, highly distorted meshes ouldbe involved and this normalization will beome very useful for both reonstrution [4℄. Written inmatrix form, the above quadrati least-square approah reads :

Ai · Ui = Bi,
�
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�1.38where it must be emphasized the matrix Ai is onstant for a �xed-grid alulation (whih will besystematially onsidered in the present work) while the right-hand-side Bi depends on the solutionsin ell i and its neighbors, whih varies during the omputation.After left-multipliation of the system by the transpose matrix of Ai :
Mi · Ui = Ci,
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�1.39with Mi = AT
i ·Ai a onstant square matrix, Ci = AT

i ·Bi a varying solution vetor. The solution ofthe system is obtained as :
Ui = M−1

i · Ci.
�
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�1.40where the inverse matrix of Mi is omputed one for all of ells at the initialization stage (it dependson purely geometrial data) and stored for later use at eah iteration. Note this 5×Ni matrix (with
Ni the number of ells in the stenil of ell i) M−1

i in 2D (9 × Ni in 3D) has to be stored for eahgrid ell, whih may result in very large memory requirements for a �ne 3D mesh.This �rst hapter has been devoted to a brief review of the key ingredients for designing a residual-based sheme in a �nite-di�erene framework on regular Cartesian grids on one hand and a seondand third-order reonstrution-based upwind sheme in a �nite-volume framework on unstruturedgrids on another hand. In the next hapter, we will explain how these ideas an be ombined toderive a seond and third-order FV-RB sheme on general unstrutured grids.
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2Design priniples of 2nd and 3rd-order FV-RBshemes on unstrutured grids
Frenh La desription du shéma RB en maillages struturés dans le hapitre 1 est bref puisqueles développements de e shéma sont détaillés dans une série des papiers publiés préédemment etdes thèses de dotorat [30℄, [31℄, [12℄, [11℄, [14℄, [21℄, [38℄.Au ontraire, le développement de la formulation FV du shéma RB en maillages non-struturésgénéraux était beauoup moins avané avant ette thèse. Le travail initial sur e sujet était un pro-jet de �n d'étude d'étudiants[42℄. Le ode développé dans e projet a été étendu rapidement pourprendre en ompte des équations d'état générales et a donné lieu à une série de travaux sur l'analysed'éoulements de gaz denses[8℄ ave l'aent sur la physique d'éoulement plut�t que sur le odelui même. En 2006, un shéma FV-RB d'ordre deux a été présenté à la onférene ICCFD4, oùl'aent était mis sur une phase impliite éonomique dite sans matrie pré-onditionnée et oupléeave e shéma[9℄. Même si la version pré-onditionnée de e shéma RB ne sera pas présentée danse mémoire, ette version du shéma FV-RB 2006 est le point de départ des développements du RBen FV présenté dans e hapitre. Le shéma FV-RB d'ordre deux dérit au-delà est publié dans [10℄.Dans e travail le shéma FV-RB a été développé pour aluler les éoulements stationnaires/instationnaires,en 2D/3D, du �uide parfait/visqueux. Au lieu de donner la formulation omplète du shéma FV-RB pour les éoulements instationnaires tridimensionnels d'un �uide visqueux, on préfère présenterdans e hapitre la oneption du shéma, étape par étape, des problèmes simples aux problèmesomplexes. De ette façon, on espère que les spéi�ités du shéma apparaîtrent lairement. Leshéma FV-RB d'ordre deux et trois pour les équations d'Euler 2D stationnaire est don présentéd'abord. On donne ensuite des détails sur les onditions aux limites utilisées dans les appliations.L'extension de e shéma au as visqueux est également détaillé et un élément important du shémaRB, la dissipation numérique basé sur le résidu, est modi�é par les termes di�usifs introduits dans lesystème des lois de onservation. La desription du solveur pour les problèmes visqueux stationnaires
2D est omplétée ave quelques détails sur les onditions aux limites. La présentation du solveurstationnaire en 2D se termine par la desription de la disrétisation temporelle et de la tehnique delimitation, qui est néessaire pour aluler des éoulements ave des disontinuités. La formulation
3D du shéma FV-RB pour des problèmes stationnaires est donnée a�n de ompléter nos desrip-tions. Finalement, on dérit l'extension du shéma FV-RB aux problèmes instationnaires.Il est important de souligner que notre objetif de développement du shéma RB en maillages non-struturés n'était pas limité à une préision d'ordre trois. Toutefois la méthode volumes �nis montre27



Chapter 2 : Design priniples of 2nd and 3rd-order FV-RB shemes on unstrutured gridsun besoin énorme en mémoire de stokage quand un shéma d'ordre élevé est utilisé, partiulièrementpour les problèmes 3D. C'est pour ette raison qu'on déide de se limiter à l'ordre trois pour le shémabasé sur la FV. On envisage plut�t une autre voie de reherhe qui ouple le �ux numérique du shémaRB ave une nouvelle méthode de disrétisation en espae, dite la méthode Volumes Spetraux. Cettepartie du travail sera présenté dans les hapitres 4 et 5, une fois que les shémas FV-RB d'ordre deuxet trois aurait été évalués dans le hapitre 3 pour une grande gamme des problèmes.English The desription of the RB sheme for strutured grid omputations provided in hapter1 has been brief on purpose, sine these developments have been detailed in a series of previouslypublished papers and PhD thesis [30℄, [31℄, [12℄, [11℄, [14℄, [21℄, [38℄.On the ontrary, the development of a FV formulation of the RB sheme on general unstruturedgrids has been muh less doumented before this thesis. The initial work on this topi was performedin 2004 in the framework of a students' projet[42℄; the solver developed in this work was soon ex-tended to deal with general equations of state and gave rise to a line of work devoted to the analysisof dense gas �ows [8℄ with a fous on the �ow physis rather than on the numerial solver. In 2006,a seond-order FV-RB sheme was presented at the ICCFD4 Conferene with an emphasis on thelow-ost preonditioned matrix-free impliit stage with whih it was oupled [9℄. Even though thepreonditioned version of the RB sheme will not be presented in this memoir, this 2006 FV-RBsolver was the starting point of the FV developments performed during this thesis and presented inthis hapter. The seond-order version of the FV-RB sheme desribed hereafter was published in [10℄.The FV-RB sheme has been developed in this work to deal with steady / unsteady, invisid / vis-ous �ows for 2D and 3D on�gurations. Rather than diretly providing the full formulation of thesheme for 3D unsteady visous �ows, we prefer to present the RB sheme design step by step fromsimple problems to more omplex problems in this hapter. In this way, hopefully the spei�ities ofthe RB formulation ould be lari�ed. Thus the FV-RB sheme for the 2D steady Euler equationswill be �rst presented in its seond-order and third-order formulation. And some details will beprovided on the boundary onditions used in the appliation ases presented in the next hapter.Then the extension of the sheme to the visous ase will be then detailed, where one importantelement of the RB sheme, the residual-based numerial dissipation is modi�ed by the di�usive termsintrodued in the system of onservation laws to be solved. The desription of the 2D steady visoussolver will be ompleted with some details on the boundary treatment. The presentation of the 2Dsteady FV-RB solvers will be losed with the desription of the time disretization strategy, and thedesription of some limiting tehniques, whih are neessary to perform �ow omputations involvingdisontinuities. The 3D formulation of the FV-RB sheme for steady �ows will be provided for thesake of ompleteness. Finally, the extension of the FV RB strategy to unsteady �ows will be desribed.It is important to point out that our original objetive of the RB sheme development on unstruturedgrids was not limited to third-order auray. However the FV strategy displays memory require-ments that tend to beome exeedingly huge when high order sheme is used, in partiular for 3Domputations. This is the reason why it was deided to push no further than third-order aurayalong the FV path. Instead, another line of researh was explored, onsisting of oupling the RBnumerial �ux with a new spatial disretization method, alled Spetral Volume method. This partof our work will be displayed in hapter 4 and 5, after the seond and third-order FV-RB shemesare assessed in hapter 3 for a wide range of problems.28



2.1 Formulation for 2D steady �ows2.1 Formulation for 2D steady �ows2.1.1 Invisid ase2.1.1.1 Design of the baseline FV-RB numerial �uxAs previously explained in hapter 1, the FV-disretization of the onservation law (1.30), with thephysial �ux integral approximated by the Gauss quadrature rule (1.31), takes the form :
∂Ui

∂t
+

1

|Ωi|
∑

k∈I(Ωi)

Ng∑

g=1

ωg(Hi,k)g|Γi,k| = 0,
�

�

�

�2.1where, in the invisid ase, the numerial �ux (Hi,k)g = (HE
i,k)g approximates the invisid normal�ux FE(U) · n = (FE)⊥. When this invisid numerial �ux is omputed by the residual-based (RB)sheme, it takes the following form:

(HE
i,k)g = (HRB

i,k )g =
(
Hc

i,k

)

g
− (di,k)g,

�

�

�

�2.2where
•
(
Hc

i,k

)

g
is a purely entered (non-dissipative) approximation of the physial normal �ux vetor

(FE)⊥ omputed at the Gauss-point (·)g of fae Γi,k. This non-dissipative �ux is omputedfrom some evaluation of the physial �uxes f , g at the ontrol ell fae.
• (di,k)g is a dissipation �ux, whih is based on the residual and thus depends on the gradientsof the physial �uxes f , g.A �rst strategy onsidered in the ourse of this work was to rely on a least-square estimate of thephysial �uxes f , g, and their �rst- and seond-derivatives on the fae to build the RB numerial �ux.The interest of this strategy lies in the fat that it allows to retain the ompatness of the originalnumerial �ux. Unfortunately, this strategy did not provide a stable sheme, for reasons that remainunlear.The alternative method that was then followed is now desribed. First, the non-dissipative part ofthe numerial �ux is omputed using reonstruted values at the fae :

Hc((UL
i,k)g, (U

R
i,k)g) =

1

2
((FE

i,k,g)
⊥
L + (FE

i,k,g)
⊥
R),

�

�

�

�2.3If the general upwind numerial �ux (1.32) an be also deomposed as the sum of a non-dissipativeand a dissipative �ux (this is easily done for the Roe numerial �ux for instane), it is lear the soledi�erene between the RB sheme and this lassial upwind solver lies on the evaluation of the dis-sipation term (di,k)g. For the RB sheme that we have seen in hapter 1, this dissipation �ux vetoris based on the approximation of the residual assoiated with system (1.29) omputed on the interfae.The proper omputation of the residual-based dissipation (di,k)g is ruial for ensuring the aurayand robustness of the RB sheme. It is important at this stage to point out the di�erene betweenthe RB sheme and a onventional upwind sheme on this term : 29



Chapter 2 : Design priniples of 2nd and 3rd-order FV-RB shemes on unstrutured grids
• the built-in high-order dissipation of a onventional upwind sheme is obtained from the useof a high-order reonstrution of the �ow variables (going for instane from linear to quadratileast square formula as desribed in the previous hapter) whih are inserted in the upwindnumerial �ux formula (be it a Flux Vetor Splitting suh as Van Leer, Flux Di�erene Splittingsuh as Roe or Hybrid sheme suh as AUSM+).
• the high-order dissipation of the RB sheme is expliitly added to a purely entered high-orderformula. Depending on the way to ompute the residual on the onsidered fae (at �rst orseond order as will be explained below), the dissipative �ux will be O(h2) or O(h3). In orderto redue the ost of the RB sheme, this seond or third-order dissipation will be uniquelyomputed one on a fae and shared by all of RB �uxes at the Gauss-points loated on thesame Γi,k fae :

(di,k)g = di,k =
1

2
L⊥Φi,kRi,k,

�

�

�

�2.4where L⊥ is the projetion onto the fae normal diretion of the distane between two ellentroids (Ci and Co in Figure (2.1)) on the left and right side of this fae :
L⊥ = ∆rCi,Co

· ni,k,
�

�

�

�2.5Obviously this distane has the order of the mesh size O(h); besides, Φi,k is a matrix oe�ientof order O(1) designed so as to ensure the dissipation of the sheme; basially, with respet tothe desription provided for a Cartesian grid in the previous hapter, the dissipation oe�ienton a fae will be built from the wavespeeds or eigenvalues assoiated with the "normal" and"tangential" Jaobian, that is the Jaobian of the �ux FE ·n, FE ·t where n (resp. t) denotes theunit normal (resp. tangent) vetor to the fae through whih the numerial �ux is omputed.The quantity Ri,k is an approximation of the system residual Ri,k de�ned as :
Ri,k =

1

|Ωi,k|

∫

Ωi,k

r dΩ.
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�2.6The integral form Ri,k of the residual r assoiated with system (1.28) is omputed in a shiftell Ωi,k, enlosing the fae Γi,k and formed by the nodes of fae Γi,k and the two ell entroids
Ci, Co on eah side of this fae (see �gure 2.1). Note that, in this way, the quantity Ri,k in thedissipation �ux (2.4) adapts itself to the problem under study through the de�nition of r. Forthe Euler ase onsidered in this �rst part of the hapter, the residual r is given by r = ∇·FE .Obviously, a seond-order dissipation is obtained with a simple �rst-order estimate of Ri,k -sine this estimate is then multiplied by the �rst-order term L⊥ to yield the dissipative �ux. Inwhat follows, we will rather build a third-order dissipation whih will be systematially addedto the non-dissipative ontribution to the �ux, yielding a seond or third-order RB sheme,depending on the linear or quadrati reonstrution used for the �ow variables in the enteredformula (2.3).In the following let us detail the omputation of the dissipative �ux. For invisid �ows, the �uxintegral appearing in (2.6) an be expressed as :
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2.1 Formulation for 2D steady �owsUsing a single quadrature point on eah fae (fae enter) of the shift ell, a seond-order approxi-mation of this integral reads :
Ri,k =

1

|Ωi,k|
∑

l∈I(Ωi,k)

(
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c

)

l
|Γl|,
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�2.8

Figure 2.1: Shift ell used for the dissipation alulation in 2Dwhere the numerial �ux (HE
c )l is an approximation of the normal physial �ux (FE)⊥l at the enterof fae Γl of the shifted ell Ωi,k. Sine a seond-order approximation of the fae integral is seekedfor, this numerial �ux an be omputed by the trapezoidal rule. In the 2D ase, on a fae Γl withverties (N1

i,k, Co) for example (see Figure 2.1), the �ux (HE
c )l is omputed as :

(HE
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FE(UN1
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)
)

· nl.
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�2.9where nl denotes the unit normal vetor to the fae Γl pointing outwards the shift ell Ωi,k.In order to provide this seond-order aurate estimation of the �ux integral along a fae of theshift ell, the order of preision of the node value is of ourse a key element. A simple hoie foromputing the node value UN at a node N of the omputational grid is an inverse-distane weightedaverage of the ell-entered values in the ells sharing the node; this strategy was used by Frink[19℄ in the ontext of visous �ux evaluation, where node values may also be needed, depending onthe quadrature formula used for the visous �ux estimate (this point will be detailed later on, whendealing with the visous extension of the RB sheme). However, this method of evaluation for thegrid node values turns out to be less than seond order aurate, whih is not su�ient to derive aseond-order RB sheme. Therefore, another averaging method proposed by Holmes and Connell [23℄has been used : it is a bit more omplex hene expensive but yields seond-order aurate estimatesfor the node values.The general form of a node estimate from neighboring ell-enter values an be formulated as :
UN =

∑
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�2.1031



Chapter 2 : Design priniples of 2nd and 3rd-order FV-RB shemes on unstrutured grids

Figure 2.2: Cells sharing a node stenil used for omputing the solution and solution gradient onnode i.where I(N) denotes the set of ells Ωj sharing the node N , whih is the stenil assoiated withthe node estimate formula (see Figure 2.2); and the expression of the weight fator ωj depends onthe spei� method retained for node value evaluation. For the inverse-distane weighted average,
ωj = 1/Lj , where Lj is the distane between the node N and the entroid of the j-th stenil ell Ωj .In the method proposed by Holmes and Connell, for 2D ase, the weight fator ωj is given by:

ωj = 1 + λx (xj − xN) + λy (yj − yN),
�

�

�

�2.11where λx and λy are Lagrange multipliers onstruted from purely geometrial data:
λx =

Ixy · (1,∆y) − Iyy · (1,∆x)
D

,

λy =
Ixy · (1,∆x) − Ixx · (1,∆y)

D
,

�
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�

�2.12with the quantity (∆φ,∆ψ) de�ned by :
(∆φ,∆ψ) =

∑

j∈I(N)

(φj − φN) (ψj − ψN ) .
�

�

�

�2.13Quantities Ixx, Iyy, Ixy and D are de�ned by : Ixx = (∆x,∆x), Iyy = (∆y,∆y) and Ixy = (∆x,∆y);the denominator D is given by D = Ixx Iyy − I2
xy. On some severely distorted grids, the weight ωjan di�er signi�antly from unity; it is therefore bounded in the range [0, 2].Yet another strategy for node value omputation has been onsidered. Sine the solution gradientand Hessian are available in eah ell, they an be used as following to estimate the node value :

UN =

∑

j∈I(N)

(Uj + ∆rj,N · ∇Uj)

Ns
,
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�

�2.14where I(N) still represents the set of ells sharing the node N , Ns is the number of ells in thisstenil, i.e. the ardinal of I(N); ∆rj,N = rN − rj is the position di�erene vetor. Note the node32



2.1 Formulation for 2D steady �owsestimate (2.14) makes use of (1.33) assuming a linear reonstrution is used in the non-dissipative �uxevaluation; if a quadrati reonstrution is used in this same non-dissipative �ux, the node estimatewould rely on the average of values reonstruted in eah ell from formula (1.36) :
UN =

∑

j∈I(N)
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Uj + ∆rj,N · ∇Uj +
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2
(∆rj,N)T · Hj · ∆rj,N

)
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�2.15This method for omputing the node values will be referred to as gradient-based extrapolationmethod. In our omputations (see next hapter) it has been found that the RB sheme with thisgradient-based extrapolation method for node value omputation yields more aurate results withrespet to the inverse-distane or Holmes and Connell averaging. It should be noted however thatthis extrapolation method is likely to produe a more osillatory solution for ases with shoks andmay also ause some positivity problems in the visous ase. In these situations, the Holmes andConnell method will be preferred.The remaining key ingredient in the dissipation term (2.4) of the RB numerial �ux is the dissipationmatrix oe�ient Φi,k. If AE, BE denote respetively the Jaobian matrix of the invisid �uxes fEand gE for a 2D problem, let us de�ne as following the normal and tangential Jaobian matrix withrespet to the fae Γi,k:
(J⊥)i,k = AE

i,k(nx)i,k +BE
i,k(ny)i,k,

(J‖)i,k = AE
i,k(tx)i,k +BE

i,k(ty)i,k,
�

�

�

�2.16where ni,k(nx, ny) (resp. ti,k(tx, ty)) is the unit vetor normal (resp. tangent) to the fae Γi,k. Sinethe Euler equations form a hyperboli system of onservation laws, these normal and tangentialJaobian matries an also be expressed as :
(J⊥)i,k = (T⊥)i,k ·Diag((λ(l)

⊥ )i,k) · (T−1
⊥ )i,k,

(J‖)i,k = (T‖)i,k ·Diag((λ(l)
‖ )i,k) · (T−1

‖ )i,k,
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�2.17where Diag(·) represents a diagonal matrix; the quantity λ(l)
⊥ (resp. λ(l)

‖ ) denotes the lth eigenvalueof the matrix J⊥ (resp. J‖), and (T⊥)i,k (resp. (T‖)i,k ) is the matrix the olumns of whih are theeigenvetors assoiated with the eigenvalues λ(l)
⊥ (resp. λ(l)

‖ ). The dissipation matrix Φi,k is built byassuming its eigenvetors to be those of (J⊥)i,k, whih yields :
Φi,k = (T⊥)i,k ·Diag(φ(l)

i,k) · (T−1
⊥ )i,k,
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�2.18with the eigenvalues φ(l)
i,k omputed from the eigenvalues of J⊥ and J‖ :

φ
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�2.19where m(J‖) = minl(|λ(l)
‖ |) is the minimum eigenvalue related to the fae tangent diretion. Theeigenvalues and eigenvetors on the fae Γi,k are omputed using the Roe-average of the solutions atthe entroids of the ells sharing this fae. As will be seen in the following paragraphs, the de�nition of33



Chapter 2 : Design priniples of 2nd and 3rd-order FV-RB shemes on unstrutured gridsthe dissipation matrix by (2.18)- (2.19) will be left unhanged when omputing visous or unsteadyproblems. Only the residual r, hene Ri,k in the expression of the dissipation �ux (2.4), will beadapted to the system of onservation laws to be solved; leaving the dissipation matrix unhangedhas of ourse no impat on the sheme's auray, sine the dissipation matrix remains O(1), but itould a�et nonetheless the stability or e�ieny properties of the method : sine no suh �aw hasbeen previously deteted in the ontext of strutured grid alulations, the same simple hoie wasadopted for the present unstrutured grid omputations.2.1.1.2 Boundary onditionsWe brie�y review the spei�ities of boundary onditions when the RB sheme is used for Eulerequations.
• Far-�eld boundary ondition Note �rst that when omputing external �ows around a body,the far-�eld boundary of the �ow domain will be systematially set far enough from the objetin order to redue the e�et of the far-�eld boundary ondition on the �ow �eld near the body.The physial state on the far-�eld boundary fae is omputed with a harateristi-based non-re�eting boundary ondition, whih makes use of the interior solution and the presribed far-�eld state. The �ux on the boundary fae is then omputed by using the physial �ux formulaapplied with the omputed physial state. Clearly, this boundary treatment is not dependenton the numerial �ux used for the interior ell faes. Note however that the RB numerial�ux on faes having one node loated on the far-�eld boundary requires the estimation of thisboundary node value : this estimation is atually provided using the averaging in use for all theinterior ells with the sole di�erene that the stenil I(N) on whih the averaging is applieddisplays some diretionality (see Figure 2.3).

Figure 2.3: Cells sharing a boundary node stenil used for omputation of the solution andsolution gradient on the boundary node i.
• Slip wall ondition For invisid �ows, the slip wall ondition implies that the veloity in thediretion normal to the wall is zero on the wall fae. This ondition an be introdued into thephysial �ux in the wall normal diretion and it therefore redues to :

Fw = [ 0 pwnx pwny 0 ]T .
�

�

�

�2.20where nx and ny are the omponents of the unit normal vetor to the wall fae, pw is thepressure on the wall fae. This pressure is estimated using the solution polynomial in the34



2.1 Formulation for 2D steady �owsinterior ell adjaent to the wall fae under onsideration. Here again, the boundary treatmentdoes not depend on the numerial �ux. However, an estimation of the solution at the wall nodeis neessary for omputing the RB numerial �ux through an interior fae with a node on thewall. Therefore, the slip boundary ondition has to be imposed at the node; this ondition isenfored as follows :� a �rst estimate V∗
N of the veloity vetor at a wall node (with omponents u∗N , v∗N) isomputed by equation (2.10) or (2.14) applied to the veloity vetor omponents, u and

v.� next, the normal veloity at the wall node is omputed from V ⊥
N = u∗N(nx)N + v∗N(ny)Nwhere (nx)N , (ny)N are the omponents of the unit wall normal vetor at node N . Thisvetor is omputed as the average of the unit normal vetors assoiated with the wallfaes sharing node N . Sine the wall faes in our omputations vary smoothly, suh anapproximation is su�ient to provide aurate results.� �nally, a wall veloity with zero-omponent in the normal diretion is omputed as VN =

V∗
N − V ⊥

N .2.1.2 Visous ase2.1.2.1 Extension of the RB numerial �uxThe baseline RB numerial �ux derived in the invisid ase is made of two ontributions : a purelyentered �ux and a residual-based dissipation term. In the visous ase (typially when solving theNavier-Stokes equations or, in a simpli�ed version, advetion-di�usion problems), the visous ontri-bution to the physial �ux must be inluded both into the purely entered �ux and in the residualon whih the dissipation �ux is based.Purely entered �ux Firstly, the entered numerial �ux beomes :
Hc = Hc((Ui,k)g, (∇Ui,k)g),

�

�

�

�2.21whih means that not only the solution but also the solution gradient needs to be omputed at eahGauss quadrature point on eah interfae. The solution omputation at eah quadrature point hasbeen previously desribed and remains unhanged; thus, the gradient omputation is now the mainfous.For the seond-order RB sheme, a �rst-order aurate solution gradient is omputed at the onlyquadrature point on the fae, i.e. the fae enter M (Figure (2.4)). There are several ways toompute this gradient [23℄[16℄. In our omputation, it is omputed by a simple average of gradientson all of nodes belonging to this fae :
(∇Ui,k)g = ∇UM =

1

2
(∇UN1

i,k
+ ∇UN2

i,k
).
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�2.22This approximation gives only �rst-order preision beause the gradient at eah mesh node is om-puted to �rst-order auray. As the same node gradient is also neessary in the RB numerialdissipation omputation, its evaluation will be explained later on, when desribing the estimate of35



Chapter 2 : Design priniples of 2nd and 3rd-order FV-RB shemes on unstrutured grids

Figure 2.4: Gauss quadrature points for RB numerial �ux omputation fae enter M isthe only quadrature point used for seond-order RB sheme; two quadrature points g1 and g2 areused for third-order RB sheme.this RB dissipation.For the third-order RB sheme, the omputation of the solution gradient with seond-order aurayat eah quadrature point on the fae is required : a reonstrution method using the ell gradientand ell Hessian is adopted - for an interior fae, the solution gradient and Hessian are available inboth neighbor ells. The gradient estimate at the quadrature point g is omputed as the arithmetiaverage of the reonstruted gradient in eah neighboring (left/right) ell :
(∇̌Ui,k)g =

1

2
((∇̌Ug)

L + (∇̌Ug)
R),
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�2.23where the reonstruted left (resp. right) gradient is omputed from the gradient and Hessian esti-mated at entroid of ell i (resp. o) :
(∇̌Ug)

L = ∇̌Ui + Hi · ∆ri,g,

(∇̌Ug)
R = ∇̌Uo + Ho · ∆ro,g.

�
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�

�2.24where the position di�erene vetors are de�ned as ∆ri,g = rg − rCi
, ∆ro,g = rg − rCo

.Dissipation �ux Aording to equation (2.6) and extending formula (2.7) to the visous asein a straightforward manner, the approximation of the residual assoiated with the visous systembeomes :
Ri,k =
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�2.25where the way to ompute the numerial visous �ux HV
c at eah fae enter of the shift ell needsto be spei�ed. Using the trapezoidal rule along the fae l of the shift ell (see (2.1), the visous �uxis alulated by :
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�2.26Hene, both gradients at ell entroids and ell nodes are needed. Sine the gradient at ell entroidsis already available - as well as the solution at ell nodes -, the extra-omputation introdued by the36



2.1 Formulation for 2D steady �owsvisous formulation is the gradient on mesh nodes.It is seen that the atual order of sheme degraded by one order beause of the involvement of thephysial visous �ux, i.e. the solution gradients, in the pure entered �ux. This is also the ase forthe RB dissipation �ux.For the seond-order RB sheme, the node gradient is omputed to �rst-order by a linear least squarereonstrution applied around the node; the stenil used for this least-square estimate inludes all ofells sharing the node (also referred to as the �rst-level neighbors). For a mesh with pure triangleells, the �rst-level neighbors of a node an ensure the good least-square reonstrution. But theseneighbors ould be not enough when quadrilateral ells are involved in the mesh, for example, node
i has only 2 �rst-level neighbors (see Figure 2.5), while 3 is the minimum stenil number to ensure asuessful least-square reonstrution. In this ase, fae neighbors of �rst-level neighbors are addedinto the stenil list.

Figure 2.5: Speial stenil for the solution gradient omputation with linear least-squarereonstrution on the boundary node in a mesh with quadrilateral ells. ells marked withsquare are the �rst-level neighbors, marked with dot are fae neighbors of the �rst-level neighbors.For the third-order RB sheme, a seond-order aurate dissipation �ux is enough beause the wholesheme is degraded to seond-order by the pure entered �ux. The same �rst-order residual approx-imation used by the seond-order RB sheme is still adopted. The node gradient is therefore stillomputed by the linear least-square reonstrution.2.1.2.2 Boundary onditionsA brief desription of the boundary onditions used by the RB sheme for omputing visous �owsis presented here.
• Far-�eld boundary ondition The far-�eld boundary treatment desribed in the invisidase is also applied in the visous ase. The sole di�erene lies in the fat that the invisid �uxobtained with the solution omputed on the boundary ell by using the theory of harateristismust be ompleted with the estimate of the visous physial �ux. For the seond-order sheme,equation (2.22) is used for the �rst-order gradient omputation as on internal faes. Solutionand its gradient are therefore neessary on the boundary node. Node solution omputation is37



Chapter 2 : Design priniples of 2nd and 3rd-order FV-RB shemes on unstrutured gridsthe same as the invisid ase. Node gradient is omputed to �rst order as stated in the RBnumerial dissipation �ux omputation. For the third-order sheme, equation (2.23) and (2.24)used for the seond-order gradient omputation are not suessfully used on the boundaryfaes, the reason is possibly that there are no ells either on the left or on the right side ofthe boundary faes, whih makes this kind of upwind gradient approximation instable. Alinear weighted approximation using node gradients is used instead speially for the gradientapproximation on boundary faes:
(∇wi,k)g = (1 − αN1

i,k
,g)∇wN1

i,k
+ αN1

i,k
,g∇wN2

i,k
.

�

�

�

�2.27with the weighting oe�ient αN1

i,k
,g =

|∆rN1

i,k
,g|

|∆rN1

i,k
,N2

i,k
| . It is easy to see that this equation willbeome the equation (2.22) when the seond-order RB sheme is used, where the Gauss quadra-ture point is the fae enter. Here the node gradient is always �rst-order aurate as mentionedin the RB numerial dissipation omputation.

• No-Slip wall ondition The no-slip boundary ondition on a wall fae is introdued in thephysial �ux estimate through this fae (the veloities are set to zero in the physial �uxformula on the solid wall). Like on the far-�eld boundary, equation (2.27) is used in the faegradient approximation for both the seond and third-order RB sheme. In a way similar tothe invisid ase, the no-slip boundary ondition is also imposed in the wall-boundary nodesolution omputation.2.1.3 Time integrationWe brie�y reall the well-known limitations of a simple Euler-expliit time-integration, regardless ofthe numerial �ux under onsideration, and proeed to desribe a simple matrix-free impliit stagewhih has been used throughout this work to speed up the onvergene of the omputations to asteady-state (inluding the onvergene to a pseudo-steady state in the ase of dual-time omputationsapplied to unsteady �ows).2.1.3.1 Expliit strategyLet us onsider the 2D Navier-Stokes equations (1.8) :
∂U

∂t
+
∂(fE(U) − fV (U,∇U))

∂x
+
∂(gE(U) − gV (U,∇U))

∂y
= 0,and introdue the visous Jaobian matries : AV

0 =
∂fV

∂U
, AV

1 =
∂fV

∂Ux

, AV
2 =

∂fV

∂Uy

and similarly
BV

0 =
∂gV

∂U
, BV

1 =
∂gV

∂Ux
, BV

2 =
∂gV

∂Uy
. Let us reall the Jaobian matries of the invisid �uxesare AE =

dfE

dU
, BE =

dgE

dU
. The Navier-Stokes equations an also be expressed in the followingquasi-linear form :

Ut + AEUx +BEUy = AV
0 Ux + AV

1 Uxx + AV
2 Uxy +BV

0 Uy +BV
1 Uxy +BV

2 Uyy.
�

�

�

�2.2838



2.1 Formulation for 2D steady �owsThe simplest time-integration strategy assoiated with the spae-disretization desribed up to nowwould be to use an Euler-expliit sheme, whih takes the general form :
Un+1

i − Un
i

∆t
+ E(Un) = 0,

�

�

�

�2.29where Un denotes the solution at time n∆t and the expliit stage E depends only on disrete valuesof the solution vetor at time-level n. When the Navier-Stokes equations in their onservative orquasi-linear formulation are solved by the �nite volume method on a general unstrutured grid, theexpliit stage takes the following form :
E(Un) =

1

|Ωi|
∑

k∈I(Ωi)

Ng∑

g=1

ωg(Hn
i,k)g|Γi,k|.

�

�

�

�2.30where the numerial �ux Hn is omputed from known solutions at time-level n. The time-step ∆tappearing in the expliit sheme (2.29) must be hosen so as to satisfy some numerial stabilityrequirements. If (2.28) redues to the 1D Euler equation (BE = AV
0 = AV

1 = AV
2 = BV

0 = BV
1 =

BV
2 = 0) a well-known solution for hoosing ∆t is the so-alled CFL-ondition :

∆ti = CFL
∆x

ρ(AE)i

with CFL ≤ 1,
�

�

�

�2.31where ρ(AE) is the spetral radius of the Jaobian matrix AE (that is the maximum absolute valuesof the eigenvalues of AE). For the 1D Euler equations, this spetral radius omputed in the ell i isgiven by ρ(AE)i = |ui| + ai where ai denotes the speed of sound omputed in the ell i.In the ase of the 2D Euler equations solved on a general unstrutured grid, this riterion of hoiefor ∆t is extended as follows :
∆ti = CFL

hi

ρC
i

with CFL ≤ 1,
�

�

�

�2.32where hi is a harateristi length of the ell i and ρC
i is the harateristi onvetive wave speed inthe ell. In order to ensure the stability of the expliit time-integration, the quantity hi is de�nedso as to be minimal while the quantity ρC

i is de�ned so as to be maximal. More preisely, in ouromputations, the harateristi length is omputed by taking the smallest distane between the ellentroid and the enter of the faes belonging to this ell. For a triangle for example (see Figure 2.6),one will have : hi = min(|−−−→CiCk|), k = 1, 3. As for the harateristi wave speed, it is omputed as :
ρC

i = |Vi| + ai.In the visous ase, a time-step ∆tVi related to the di�usive e�ets has also to be taken into aount,along with the onvetive harateristi time-step given by ∆tCi =
hi

ρC
i

. A straightforward extensionof a 1D stability analysis for advetion-di�usion problems leads to the �nal hoie of time-step :
∆ti = CFLmin(∆tCi ,∆t

V
i ),

�

�

�

�2.33where the CFL number is taken smaller than unity to ensure the stability of the Euler-expliittime-integration and :
∆tVi =

h2
i

2ρV
i

,
�

�

�

�2.3439



Chapter 2 : Design priniples of 2nd and 3rd-order FV-RB shemes on unstrutured grids

Figure 2.6: Charateristi size of a 2D triangle ellwith ρV
i the maximum eigenvalue of the visous Jaobian matries. This visous spetral radius ispreisely given by :

ρV
i =

1

ρi
·max(4

3
µi, κi).

�

�

�

�2.35with µi the �uid visosity omputed in ell i and κi the �uid thermal ondutivity.2.1.3.2 Impliit strategyA way to get rid of the previous restritive time-step limitations is to make use of an Euler-impliittime-integration, that is to disretize the system of onservation laws under onsideration with thefollowing sheme :
Un+1

i − Un
i

∆ti
+ E(Un+1) = 0,

�

�

�

�2.36In the linear ase, it an be easily proved suh fully impliit strategy yields unonditional stability :this means the time-step ∆ti an be hosen as large as possible; moreover the onvergene speedto steady-state is inreased when the time-step is inreased. In pratie, for non-linear problems,limitations an be enountered in the hoie of ∆ti but the maximum allowable time-step remainsmuh larger than the time-step assoiated with the Euler-expliit strategy. However, the prie topay for suh an improved stability and e�ieny is the need to solve the non-linear problem (in theunknown Un+1) (2.36) at eah time-step. When dealing with the Euler or Navier-Stokes equationson unstrutured grids, Un+1 is the solution of :
Un+1

i − Un
i

∆ti
= − 1

|Ωi|
∑

k∈I(Ωi)

Ng∑

g=1

ωg(Hn+1
i,k )g|Γi,k| = −E(Un+1),

�

�

�

�2.37Rather than solving this non-linear problem, whih might be very expensive, one may take advantageof the fat that only the steady-state solution of this problem is of interest in this work (this steady-state solution satis�es E(U) = 0). Following this idea, the impliit solution update is built in thefollowing form :
∆Un

i

∆ti
+

1

|Ωi|
∑

k∈I(Ωi)

(
∆Himp

i,k

)n |Γi,k| = −E(Un),
�

�

�

�2.3840



2.1 Formulation for 2D steady �owswhere ∆Un
i = Un+1

i −Un
i is the unknown time-inrement of the solution and (∆Himp)n = (Himp)n+1−

(Himp)n is a time-inrement on the numerial �ux Himp retained in the so-alled impliit stage (left-hand-side of formula (2.38)); a key point is that this impliit numerial �ux formula is not neessarilythe same as the one used in the expliit stage E(Un). The only requirement on the hoie of Himp isthat, when oupled with the expliit numerial �ux H appearing in E , it drives the expliit stage tozero - orresponding to the target steady-state in a stable and e�ient way. Formula (2.38) an alsobe expressed as :
∆Un

i

∆ti
+ I(∆Un) = −E(Un).

�

�

�

�2.39where the ouple impliit stage I / expliit stage E determines the onvergene rate of the sheme toa steady-state ∆U = 0, the auray of whih is solely de�ned by the expliit stage E . The ompu-tations to be presented in the next hapter of this report make use of various numerial �ux formula
H to de�ne the expliit �ux balane (seond or third-order Roe sheme, seond or third-order RBsheme in partiular). However, a single numerial �ux formula will be used for Himp; this formulais only �rst-order aurate in spae but this is of no onsequene on the result, beause the impliit�ux balane vanishes at steady-state. More importantly this formula is designed so as to ensure astable formulation for large values of ∆ti when oupled with various expliit formulas; its simpliityallows to minimize the ost of solving the linear algebrai system assoiated with the impliit stage,thus provides a globally e�ient time-integration. The impliit numerial �ux is deomposed as
Himp = HE(imp) −HV (imp) where HE(imp) is the invisid or Euler impliit numerial �ux and HV (imp)denotes the visous impliit numerial �ux.The invisid numerial �ux inrement on a ell fae used in the impliit stage throughout this workreads :

(

∆HE(imp)
i,k

)n

=
1

2
[(∆FE

i )n · ni,k + (∆FE
o(i,k))

n · ni,k − (ρE
⊥)n

i,k(∆U
n
o(i,k) − ∆Un

i )].
�

�

�

�2.40where ρE
⊥ is the spetral radius of the Jaobian matrix J⊥ (see also (2.16)). Formula (2.40) derivesfrom ideas originally proposed in the work of Jameson and Turkel [26℄, evolving through [27℄ and[44℄ to yield the present matrix-free impliit stage, used in partiular by Lohner and his o-workersfor solving the unsteady Navier-Stokes equations on unstrutured grids [35℄ [36℄. This �ux inrementorresponds in fat to the hoie of the �rst-order Rusanov sheme to build the impliit numerial�ux formula.For a 2D system, the time-inrement of the physial visous �ux projeted onto the fae normal

n takes the form :
(∆(FV )⊥)n = (∆fV )nnx + (∆gV )nny,

�

�

�

�2.41making use of the visous Jaobian matries previously introdued, the physial �ux inrement
(∆fV )n an be expanded as :

(∆fV )n =
∂fV

∂U
∆Un +

∂fV

∂Ux
(∆Ux)

n +
∂fV

∂Uy
(∆Uy)

n = AV
0 ∆Un + AV

1 (∆Ux)
n + AV

2 (∆Uy)
n,

�

�

�

�2.42and similarly for (∆gV )n. Introduing the partial derivatives U⊥ and U‖ with respet to the normaland tangent diretions to the ell fae (suh that Ux = U⊥nx−U‖ny and Uy = U⊥ny +U‖nx), insertingthese quantities into the expansion of (∆fV )n and (∆gV )n and ombining both developments yields :
(∆(FV )⊥)n = (JV

0 )n∆Un + (JV
⊥ )n∆Un

⊥ + (JV
‖ )n∆Un

‖ ,
�

�

�

�2.4341



Chapter 2 : Design priniples of 2nd and 3rd-order FV-RB shemes on unstrutured gridswhere (JV
0 )n = AV

0 nx + BV
0 ny, (JV

⊥ )n = AV
1 n

2
x + BV

2 n
2
y + (AV

2 + BV
1 )nxny, (JV

‖ )n = AV
2 n

2
x − BV

1 n
2
y +

(BV
2 −AV

1 )nxny. If the time-inrement of the impliit numerial visous �ux ∆HV (imp) is built as theentered disretization of (2.43), the resulting sheme will be expensive to solve, with in partiularbloks ontaining JV
0 , (JV

⊥ ), (JV
‖ ) to invert. If only ontributions involving a positive-de�nite matrixoe�ient are retained, the alulation ost will be dramatially redued beause this full matrixwill be simply replaed by its spetral radius, without ompromising the sheme stability. This iswhy the numerial visous �ux eventually retained in the impliit stage orresponds to the followingsimpli�ed version of (2.43) :

(∆HV (imp))n = (JV )n∆Un
⊥,

�

�

�

�2.44with (JV )n = AV
1 n

2
x + BV

2 n
2
y a positive-de�nite matrix (AV

1 and BV
2 are positive de�nite matries),with spetral radius (ρV

⊥)n. The normal derivative of U in (2.44) is omputed with a simple enteredapproximation by using the values at the entroid of the ells sharing the fae Γi,k :
∆(Un

⊥)i,k =
∆Un

o(i,k) − ∆Un
i

|∆ri,o · ni,k|
,

�

�

�

�2.45where ∆ri,o is the position di�erene vetor from the entroid of ell i to the entroid of ell o (shortfor o(i, k) when there is no ambiguity). The numerial visous �ux in the impliit stage is �nallygiven by :
(∆HV (imp)

i,k )n =
(ρV

⊥)n
i,k

|∆ri,o · ni,k|
(∆Un

o(i,k) − ∆Un
i ).

�

�

�

�2.46Inserting (2.40) and (2.46) into (2.38) and taking into aount ∑

k∈I(Ωi)

ni,k = 0 yields :
∆Un

i

∆ti
+

1

|Ωi|
∑

k∈I(Ωi)

[

1

2
(∆FE

o(i,k))
n · ni,k −

(

1

2
(ρE

⊥)n
i,k −

(ρV
⊥)n

i,k

|∆ri,o(i,k) · ni,k|

)

(∆Un
o(i,k) − ∆Un

i )

]

|Γi,k| = −E(Un),after introduing the salar oe�ients Cn
i,k and Dn

i de�ned by:






Cn
i,k = (ρE

⊥)n
i,k +

2(ρV
⊥)n

i,k

|∆ri,o · ni,k|
,

Dn
i =

1

∆ti
+

1

2|Ωi|
∑

k∈I(Ωi)

Cn
i,k|Γi,k|,

�

�

�

�2.47the simpli�ed impliit stage used in this work an be expressed as :
Dn

i ∆Un
i − 1

2|Ωi|
∑

k∈I(Ωi)

Cn
i,k∆U

n
o(i,k) |Γi,k| = −E(Un) − 1

2|Ωi|
∑

k∈I(Ωi)

(∆FE
i,k)

n · ni,k |Γi,k|, �

�

�

�2.48The impliit treatment (2.48) is said to be matrix-free so as to emphasize Cn
i,k and Dn

i are salaroe�ients whih are inexpensive to ompute. In this work, (2.48) will be simply solved using aPoint-Jaobi relaxation tehnique, whih is retained for its very low ost per iteration and verymodest memory requirements, whih makes up for its rather low intrinsi e�ieny; in pratie, thenumber of iterations to reah a steady-state is of ourse larger than the number of iterations o�ered42



2.1 Formulation for 2D steady �owsby a more sophistiated solution method but eah iteration is extremely heap. The time-integrationfrom level n to n + 1 takes the form :
∆U

(0)
i = 0,







l = 1, L

Dn
i ∆U

(l+1)
i = −E(Un) − 1

2|Ωi|
∑

k∈I(Ωi)

(

(∆FE
i,k)

(l) · ni,k − Cn
i,k∆U

(l)
o(i,k)

)

|Γi,k|,

∆Un
i = ∆U

(L)
i .

�

�

�

�2.49
where (∆FE

i,k)
(l) = (FE

i,k)
(l) − (FE

i,k)
n. The typial value for the number of sub-iterations is L = 10.Note that the onvergene rate of (2.49) to a steady-state depends on the use of a seond or third-order onventional upwind or RB numerial �ux in the expliit stage E(Un) (spei� omments onthis point will be provided in the next hapter, when analyzing the numerial test-ases); however,this impliit treatment has been systematially used with these various expliit stages and showsgood stability properties at large CFL numbers (typially, (2.49) has been used with CFL = 106 inthe time-step formula (2.33)).2.1.4 Limiting proessSine the interest of this work is on the aurate omputation of ompressible �ows, we are boundto enounter �ow on�gurations displaying disontinuous solution �elds. In the next hapter, we willaddress in partiular the omputation of 2D and 3D steady transoni �ows as well as the ompu-tation of a 2D unsteady supersoni �ow. When dealing with suh �ows, it is well known that thesolution reonstrution used for the UL/R states appearing in the numerial �ux of a onventionalupwind sheme but also in the non-dissipative part of the RB numerial �ux must be ompleted bya limitation proess in order to avoid the ourrene of osillations in the omputed solution thatould lead to the failure of the omputation.Linear reonstrution with limiting For the seond-order FV sheme, the Barth limiter mod-i�ed aording to Venkatakrishnan's proposal [46℄ (denoted VK limiter from now on) is introduedinto the linear solution reonstrution (1.33). The reonstruted state U r

g at a point g in ell i (g anbe of ourse loated on a boundary of ell i and oinide with a Gauss point) is given by :
U r

g = Ui + φi∆ri,g · ∇Ui.
�

�

�

�2.50where ∆ri,g is the position di�erene vetor between the point g under onsideration and the entroidof ell i where the solution gradient is made available, ∆ri,g = rg − ri. The VK limiter is denoted by
φi and is omputed by the following formula for eah ell i :

φi =
(∆+)2 + 2∆+∆− + ε

(∆+)2 + ∆+∆− + 2(∆−)2 + ε
,

�

�

�

�2.51where 





if ∆ri,g · ∇Ui > 0 : ∆+ = Umax
j − Ui , ∆− = ∆ri,g · ∇Ui,if ∆ri,g · ∇Ui < 0 : ∆+ = Umin
j − Ui , ∆− = ∆ri,g · ∇Ui,if ∆ri,g · ∇Ui = 0 : φi = 1. 43



Chapter 2 : Design priniples of 2nd and 3rd-order FV-RB shemes on unstrutured gridswith Umax
j and Umin

j the maximum and minimum values of the solution omputed for all the fae-neighbors of ell Ωi. And the parameter ε is hosen to be (Khi)
3, with the harateristi length hiof ell i, and the user-de�end limiting parameter K, whih is ase-dependent and its value will beprovided in the test ases presented in the next hapter.Quadrati reonstrution with limiting and troubled ell detetion When the quadratisolution reonstrution (1.36) is used for the third-order FV sheme, we follow the strategy initiallyproposed by Delanaye [16℄ : the VK limiter is still applied onto the linear part of the reonstrutionwhile another swith, σi, is used for the quadrati part as follows :

U r
g = Ui + ((1 − σi)φi + σi)∆ri,g · ∇Ui +

1

2
σi(∆ri,g)

T ·Hi · ∆ri,g,
�

�

�

�2.52The quantity σi allows the reonstrution to swith from "quadrati without limiting" to "linearwith limiting" when the loal �ow goes from "smooth" to "disontinuous" or at least "with strongloal variations". The funtion σi will be alled a sensor and is designed so as to allow a smoothtransition between the linear reonstrution with limiter to the quadrati reonstrution when goingfrom high-gradient to low-gradient regions. It must be emphasized the sensor σi used in this work isthe one proposed in [39℄. It is omputed as follows :
σi =

1 − tanh(S(ǫi − β))

2
.

�

�

�

�2.53where ǫi is the troubled ell indiator; the parameter β is a threshold to be determined for eahproblem. For a given β, ǫi > β in a ell i means that this ell is loated in a high-gradient region,whih leads to a σi lose to 0 : the quadrati part is then removed from the solution reonstrutionand the linear part is limited by the VK limiter. Reversely, if ǫi < β, the solution in ell i is onsideredto be smooth enough, whih yields a value of σi lose to 1 : the full quadrati solution reonstrutionis reovered. The parameter S in (2.53) is a user-de�ned onstant ontrolling the sti�ness of thehyperboli tangent funtion : a small value for S will make the hyperboli tangent swith smoother.In our omputations it is found that the value of ǫ is normally between 0 and 0.2. Therefore thevariation of the sensor σ for a ǫ in this value range is showed in Figure 2.7. The possible hoies forthe parameters β and S will be detailed in the numerial test ases presented in the next hapter.Based on the trunation error indiator initially designed by Löhner[37℄, the troubled ell indiatoris derived in [16℄ and used in our omputation, whih takes the form :
ǫi =

∑

j∈I(i)

|∆ri,j · (∇qj −∇qi)|
∑

j∈I(i)

|∆ri,j · ∇qj | + |∆ri,j · ∇qi|) + αiq
,

�

�

�

�2.54where I(i) is the set of ells belonging to the stenil used for the gradient omputation in ell i, ∆ri,jis still a position di�erene vetor onneting the entroid of ell i and the entroid of the ell j inthe set I(i), ∇q is the gradient of an indiator variable q, that will be spei�ed below. The averagestate q is omputed by :
q =

∑

j∈I(i)

(|qj | + |qi|),
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Figure 2.7: The variation of the sensor σi the e�et of S with β = 0.1 (left), e�et of β with
S = 80 (right).Basially, formula (2.54) is a multidimensional estimation of the ratio between seond-order and �rst-order variations of the solution vetor in ell i. The term αiq prevents formula from (2.54) beomingunde�ned in smooth-�ow regions where all the terms involving gradients will beome lose to zero.In high-gradient regions, this same term is not needed. To aount for this behavior, the parameter
α is designed as the following :

αi =
γq

∑

j∈I(i)

|∆ri,j · (∇qj −∇qi)| +
∑

j∈I(i)

(|∆ri,j · ∇qj | + |∆ri,j · ∇qi|) + q
.
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�

�2.56
In regions haraterized by high density gradients, α is lose to 0, while in quasi-uniform �ow regions
α tends to γ, whih is hosen as γ = 0.5.The indiator variable q ould be density, pressure, veloity or other �ow variables. In our om-putation, density has been systematially used and judged to yield satisfatory results. Furtherre�nement of the sensor ould be gained by using a ombination of variables but this path has notbeen investigated. In Figure 2.8, the distribution of the troubled ell indiator ǫi and its parameter
αi for a transoni �ow with inlet ondition Mach = 0.8, attak angle 1.25◦ over a NACA0012 airfoilis showed for an exemple. It is found that α is lose to γ = 0.5 in the smooth �ow region, and smallerthan this value in regions where the gradient is large, the minimal value is in the shok region wherethe gradient is the maximum in the whole �ow �eld. But the value is not lose to 0, possibly beausethe gradient is not big enough to make it be. The variation of ǫi shows well the strong shok on thesution side, while the weak shok on the pressure side is not deteted beause the density gradientvariation is small. 45
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Figure 2.8: Distribution of the troubled ell indiator ǫi and its parameter αi for a tran-soni �ow over the NACA0012 airfoil αi distribution (left), and ǫi distribution (right), Mahnumber iso-ontour (blak lines in both �gures).2.2 Formulation for 3D steady �owsThe design priniples of the �nite volume method applied in 3D are similar to what has been desribedup to now in 2D. Therefore we will simply review in this setion the salient features of the FVonventional upwind or RB shemes and point out the main quantitative di�erenes that appearwhen going from 2D to 3D, in partiular in terms of stenil used for gradient omputation in eahell, and the shape of shift ell used in RB dissipation �ux omputation.2.2.1 Cell gradient omputationFor a onventional upwind sheme but also for the non-dissipative part of the RB numerial �ux in3D, the solution at any point in a ell is still reonstruted by equation (1.33) to seond-order, andby equation (1.36) to third-order, where the solution gradient and Hessian (for third-order sheme)at a ell entroid are also omputed by the Least-square method. The di�erene with the 2D shemeis the number of ells in the stenil used for the least-square reonstrution (see Table 2.1). Forthe seond-order sheme, there are 4 degrees of freedom neessary to be determined in the solutionpolynomial in 3D, therefore at least 4 ells in the stenil are neessary for the linear least-squarereonstrution. For an internal hexahedron element, its 6 fae-neighbors are enough for this demand;and a tetrahedron element has exatly 4 fae-neighbors, whih sometimes an result in a singularreonstrution when the grid ell is really distorted, therefore edge neighbors of the ell are addedinto the stenil. For ells loated on the boundary, it is also the ase beause of insu�ient numbersof their fae-neighbors. For the third-order sheme, the solution polynomial needs 10 degrees offreedom in 3D, so a stenil with at least 10 ells is neessary. For an internal hexahedron ell, thesum of its fae-neighbor and edge-neighbor is 14, whih an satisfy this requirement; this sum of aninternal regular tetrahedron is 16, whih is also enough. But in atual ompution, it is found thatthe minimum stenil number 18 is neessary to ensure the robustness of the reonstrution.46



2.2 Formulation for 3D steady �ows
Reonstrution 2D minimum/maximum 3D minimum/maximumLinear 3/10 6/16Quadrati 8/20 18/36Table 2.1: Minimal number of ells in the stenil used by least-square reonstrution.In Table 2.1, it is found that the minimal and possible maximal number of ells in the stenil neededfor the least-square reonstrution. The 3D reonstrution needs about 1.6 to 2.2 times more ells inthe stenil than the reonstrution in 2D, whih leads to store a very large matrixM−1

i (see equation(1.40)), therfore a huge memory requirement for 3D omputation.2.2.2 Quadrature points for �ux integration on ell faesIn 2D the number of quadrature points used for physial �ux integration on faes of a ertain ellis related to the preision order of the sheme, while this number depends not only on the shemeorder but also the shape of the onsidered fae. For the seond-order sheme, only 1 quadraturepoint is neessary whih is the enter of the fae regardless of its shape; but for the third-ordersheme, 3 quadrature points are needed on a triangle fae and 4 quadrature points are neessary ona quadrilateral fae (see Figure 2.9).

Figure 2.9: Gauss quadrature points used for third-order FV sheme 3 points used by atriangle fae (left), 4 points used by a quadrilateral fae (right).2.2.3 Node solution and node gradient omputation stenilFor the 2D ase, the stenil needed for omputation of the solution and solution gradient is thesame for a mesh node inside the omputation domain (internal node), while the stenil used for nodevalue omputation ould be not enough for the node gradient omputation for a node loated onthe omputational domain boundary (boundary node), and in this ase, fae-neighbors of ells inthe node-value-stenil have to be added into the node-gradient-stenil. It is also the situation in3D. Although 4 is the minimal number of ells in the node-gradient-stenil for the linear least-square47



Chapter 2 : Design priniples of 2nd and 3rd-order FV-RB shemes on unstrutured gridsreonstrution in 3D, 6 ells are guaranteed in the stenil to avoid the instability of the reonstrution.Table 2.2 shows that the minimum and possible maximum stenil used for node solution and gradientomputation (for visous ase only). It is found that the stenil size for the node solution and gradientomputation in 3D an be 4.9 times more than the one in 2D, the muh higher omputation ost ofthe 3D ase is obvious.Computation 2D minimum/maximum 3D minimum/maximumNode solution 2/9 4/44Node gradient 3/9 6/44Table 2.2: Number of ells in the stenil used for solution and its gradient omputationon a mesh node.2.2.4 Shift ell for RB shemeAs we have seen in 2D, the shift ell Ωi,k onstruted for the residual omputation in RB shemenumerial dissipation is always a quadrilateral regardless of the shape of the ell whih it rossed.But in 3D ase, this shift ell hanges its shape with the type of elements on whih it is based. Thereare two possible types of shape showed in Figure (2.10) (red dotted line). In order to ompute theresidual in the shift ell with equation (2.8), the numerial �ux at the enter of a fae Γl with verties
(N1

i,k, N
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i,k, Co) is omputed by:
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(
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�

�

�

�2.57for visous ase, the numerial visous �ux at eah fae enter is omputed in the same way.

Figure 2.10: Possible shift ell for RB dissipation alulation in 3D2.3 Formulation for 2D unsteady �owsWe onlude our desription of the FV RB sheme for omputations on unstrutured grids with theadaptation of the steady solver to unsteady �ows. This adaptation is performed in the framework ofa dual-time formulation [25℄ with a time-auray whih remains limited to seond-order.48



2.3 Formulation for 2D unsteady �ows2.3.1 Dual-time disretization methodThe basi idea of a dual-time strategy an be formulated as follows : the solution of the unsteadyequations Ut + ∇ · F = 0 is found as the steady solution with respet to the so-alled dual or �-titious time τ of the evolution problem Uτ + Ut + ∇ · F = 0, whih an also be reast in the form
Uτ +∇ · F = −Ut. Sine the steady solution of Ut +∇ · F = 0 is suh that ∇ · F = 0, it an also beseen as the steady solution with respet to a dual-time τ of the evolution problem Uτ + ∇ · F = 0.Thus, starting from a steady solver, the development of an unsteady solver simply requires to insertthe existing (dual) time loop within a physial time loop and to aount for a soure term S = −Utin the disretization. In the ase of the RB sheme, the extension to unsteady �ows follows the samegeneral lines but spei� developments are needed when building the RB dissipation sine it relieson a residual r that inludes now the physial time derivative.A dual-time disretization applied to the FV formulation of the 2D Euler equations reads :

∂Ui

∂τ
+
∂Ui

∂t
+

1

|Ωi|
∑

k∈I(Ωi)

∫

Γi,k

FE · ndΓ = 0,
�
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�

�2.58The dual-time �nite-volume approah onsidered in the present study drives (2.58) to a steady-statewith respet to τ by using :
• a �rst-order (Euler impliit) approximation for the dual time-derivative, whih will vanish atsteady-state anyway,
• a seond-order (three-level) impliit approximation for the physial time-derivative,
• a Gauss-quadrature formula for approximating the �ux integral on the fae Γi,k.The resulting disretization of equation (2.58) reads:
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�2.59where m is the pseudo-time (or dual-time) iteration ounter, n is the physial time iteration ounter,
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n+1
i + O(∆t2). Besides, thenumerial �ux balane approximates the physial �ux balane at order p = 2 or p = 3. Therefore,when the pseudo-time marhing reahes a steady solution Un+1 = Un,m+1 = Un,m, sheme (2.59)yields :
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Chapter 2 : Design priniples of 2nd and 3rd-order FV-RB shemes on unstrutured gridswhih is an approximation of the unsteady �ow solution at order 2 in time and p in spae.In pratie, sheme (2.59) is made impliit to speed up the onvergene to the pseudo steady-state.The slight modi�ation brought by the dual-time approah to the matrix-free impliit stage previ-ously presented for steady �ow omputations will be detailed below. At �rst, we wish to emphasizethe di�erene between a onventional sheme and the RB sheme when extended to the alulation ofunsteady �ows using the dual-time strategy. A onventional sheme is based on deoupled approxi-mations for the various terms appearing in the system of onservation laws to whih it is applied. Letus assume that a onventional sheme is applied to the disretization of the unsteady Navier-Stokesequations (for more generality) with a dual-time framework :
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�2.62when the onventional sheme is used, the approximate solution of the above system is omputed bythis equation :
∂Ui

∂τ
+ BHE = BHV − S.
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�2.63where
• the numerial invisid �ux balane BHE depends only on the physial invisid �uxes,
• the numerial visous �ux balane BHV depends only on the physial visous �uxes,
• the numerial approximation for the soure term S depends only on the physial time-step andthe solution vetor U .Now, when the RB sheme is applied to this same system (2.62), it an be put under the same generiform (2.63) but the key di�erene now is that the RB numerial invisid �ux depends on the residualof the full system (2.62) for building its dissipative �ux, hene the numerial invisid �ux balane

BHE depends not only on the physial invisid �uxes but also on the physial visous �uxes as wellthe physial time-step and the solution vetor U . In the next setion the design details of the RBnumerial �ux for unsteady invisid �ows will be given.2.3.2 RB numerial �uxThe RB numerial �ux remains formally given by (2.2), whih is deomposed as a purely entered�ux ontribution on one hand and a dissipative ontribution on the other hand. For unsteadyproblems, the purely entered �ux is omputed in the same way as for the steady ase while theresidual approximation (2.2) in the dissipation �ux (2.4) must take into aount the physial time-derivative approximation. Let us reall the residual integral in a shift ell (see Figure 2.1) related tothe onsidered fae Γi,k :
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2.3 Formulation for 2D unsteady �owswhere the residual r at steady-state is now assoiated with the unsteady system (2.58), that is
r = Ut + ∇ · FE. The integral in (2.64) an then be expressed as:
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�2.65and is disretized as Ri,k = RE
i,k + Rt

i,k where RE
i,k approximates the invisid �ux balane over theshift ell Ωi,k and Rt

i,k approximates the physial time-derivative over the shift ell. The evaluation of
RE

i,k remains unhanged with respet to the steady ase - note only the solution used when omputingthe numerial �ux balane over the shift ell is Un,m instead of Un in the steady ase - :
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�2.66where the numerial �ux (HE)n,m
l is omputed by using (2.9).In order to build Rt

i,k, the physial time-derivative is approximated at fae enter Mi,k and the timedisretization operator (2.60) is used to yield :
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�2.672.3.3 New sensor for the RB shemeIf the RB sheme is applied to unsteady problems involving disontinuities, limited values of thereonstruted states UL/R are used in the numerial �ux. Although this strategy seems su�ient toensure the robustness of the omputations for a large panel of appliations, it was observed in theourse of the ADIGMA projet that the RB sheme failed to ompute problems suh as the interationof blast waves in 1D or the double Mah re�etion problem in 2D, both involving very strong shoksaround whih the RB sheme developed fatal osillations. Some numerial experiments allowed toidentify that this lak of robustness in the viinity of disontinuities is related to the estimation ofthe physial time-derivative in the residual used to ompute the RB numerial dissipation. Whenthe term Rt
i,k was taken out from (2.65), an exellent robustness was observed for the RB sheme,but at the expense of auray sine the sheme's auray drops down to �rst order when thedisrete residual is no longer onsistent with the exat residual (whih inludes the physial time-derivative). It was thus proposed to ompute the residual approximation on the interfae as follows,in the unsteady ase :
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�2.68The swith σt
i,k is analogous to the swith σi used for the quadrati solution reonstrution. In regionsdominated by �ow disontinuities, the robustness of the sheme is loally improved by aneling thephysial time-derivative estimate (σt

i,k → 0), thus inreasing the RB dissipation (from a third-orderterm to a �rst-order term); third-order auray is reovered away from these disontinuities with
σt

i,k → 1. For the sake of simpliity, or let us say beause we were more interested by a demonstrationof feasibility than by �ne-tuning the proposed swith, a binary de�nition of σi,k was retained :
σi,k = 1 if βi,k < βRB ,
σi,k = 0 if βi,k >= βRB,
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Chapter 2 : Design priniples of 2nd and 3rd-order FV-RB shemes on unstrutured gridswhere the parameter βRB is a threshold value whih is not neessary equal to the threshold β usedfor the quadrati solution reonstrution. The parameter βi,k is diretly linked with the troubled-ellindiator omputed in eah grid ell :
βi,k =

1

2
(ǫi + ǫo(i,k)).
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�2.70Note this strategy was not neessary for omputing unsteady ompressible �ows with the RBCsheme (on strutured grids) in previous works [12℄, [11℄; let us emphasize one again it was theourrene of very strong shoks for some ADIGMA test-ases (Interating Blast Waves and DoubleMah Re�etion) whih spei�ally motivated the development of this swith in the unsteady versionof the RB dissipative �ux.2.3.4 Adaptation of the impliit strategySine the robustness of the solver applied to the omputation of �ows involving shoks depends notonly on the spae-disretization proedure but also on the time-integration (both in dual and physialtime), we deem to be important to provide some information on the impliit stage whih is used toe�iently drive the seond- or third-order FV-RB sheme to a pseudo steady-state. For unsteady�ows omputed with a dual-time approah, the steady solution with respet to the pseudo-time τ isobtained after a redued number of pseudo-iterations by solving:
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�2.71where ∆(HE(imp))n,m = (HE(imp))n,m+1−(HE(imp))n,m and HE(imp) denotes the numerial �ux formularetained in the impliit stage. The hoie of a numerial �ux HE(imp) is the same as the one previouslyused in the steady ase. The impliit stage is therefore formally unhanged with respet to (2.48)and given by :
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�2.72but the salar diagonal oe�ient also inludes a ontribution oming from the physial time deriva-tive impliitation : 
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�2.73The dual-time integration from sub-level (or inner-level) n,m to n,m+ 1 takes the form :
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2.3 Formulation for 2D unsteady �owsNote that when ∆ti is hosen small enough so that the physial-time disretization in Rn,m
i is dom-inant with respet to the other ontributions, and sine this physial-time disretization is madefully impliit (ontribution of the oe�ient 3

2∆t
in the diagonal oe�ient Dn,m

i ), the above impliittreatment onverges to a steady-state after a few iterations only.
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3Appliations of FV-RB sheme
Frenh Les shémas RB d'ordre deux et d'ordre trois basés sur la méthode des volumes �nis (notésFV-RB O2 et FV-RB O3 respetivement) dérits dans le dernier hapitre sont appliqués maintenant àune série de as tests a�n d'évaluer leur préision, e�aité et robustesse. Nos analyses se onentrentsur la omparaison entre les shémas FV-RB O2 et O3, ainsi que sur la omparaison entre les shémasFV-RB et un shéma lassique déentré-amont d'ordre deux ou trois (typiquement le shéma de Roeave une reonstrution de solution linéaire ou quadratique). La omparaison est menée dans l'ordresuivant :

• Premièrement on onsidère des éoulements stationnaires sans ho de �uide parfait en 2D eten 3D a�n de ne pas avoir d'in�uenes du limiteur de la solution. Pour haque as (en 2D ouen 3D), une série des aluls sur un problème modèle dont la solution exate est onnue sonte�etués pour évaluer l'ordre de préision e�etif des shémas mis en oeuvre dans notre odede alul de volumes �nis en maillages non-struturés. Ensuite la version de es shémas pourles équations d'Euler est utilisée pour aluler un as lassique bidimensionnel, l'éoulementsubsonique de �uide parfait autour d'un pro�l NACA0012 et aussi un éoulement subsonique de�uide parfait autour d'un pro�l tridimensionnel proposé dans le projet ADIGMA. Les solutionsexates ne sont pas disponibles pour es problèmes, mais des résultats de référene existentpour le problème 2D. Cependant on emploie une stratégie d'évaluation de la solution proposéepar le projet ADIGMA, au lieu de omparer le résultat ave eux qui ont été publiés, ar etteomparaison dépend souvent du shéma numérique utilisé, du hoix de maillage et aussi dutraitement des onditions aux limites. La stratégie utilisée ii est une étude de onvergene enmaillage ave un ritère approprié. Cette étude est menée pour les shémas FV-RB développésii et elle donne des éléments pour une omparaison laire entre le shéma FV-RB O2 et O3.
• Ensuite, l'analyse des shémas appliqué aux équations d'Euler est réalisée pour des éoulementsave hos en 2D et en 3D a�n d'évaluer la performane des limiteurs dérits dans le hapitrepréédent.
• Pour le as d'un éoulement visqueux, on reprend la méthode d'analyse utilisée en �uide parfait :un problème d'advetion-di�usion, dont la solution exate est onnue, est alulé a�n d'estimerl'ordre de préision e�etif des shémas FV développés. Les versions de es shémas pour leséquations de Navier-Stokes sont ensuite appliquées au alul d'éoulement laminaire autourd'un pro�l NACA0012, où l'étude de onvergene en maillage est enore une fois menée.
• En�n la dernière partie de e hapitre traite de l'évaluation des shémas FV-RB pour les alulsd'éoulement instationnaire, dans le as sans ho de la propagation d'une tourbillon et aussidans un as ave ho beauoup plus di�ile, la double ré�exion de Mah.55



Chapter 3 : Appliations of FV-RB shemeEnglish The seond and third-order �nite-volume residual-based sheme (denoted by FV-RB O2and FV-RB O3 respetively) desribed in the previous hapter are now applied to a series of test asesin order to assess its auray, e�ieny and robustness properties. Our analysis will be espeiallyfoused on the omparison between the FV-RB O2 and O3 shemes as well as the omparison betweenthe FV-RB shemes and a lassial seond- or third-order upwind sheme (typially the Roe shemewith linear or quadrati solution reonstrution). The omparison is performed in the followingprogressive way :
• Firstly we deal with 2D and 3D steady smooth invisid �ows in order to analyze the shemeswithout interferene e�ets of the solution limiting strategy. In eah ase (2D or 3D), a pre-liminary series of omputations on a model problem with known exat solution are performedso as to assess the order of auray ahieved in pratie by the shemes implemented withinour unstrutured �nite-volume solver. Next, these shemes (extended for Euler equations) areapplied to the omputation of a well-known 2D invisid subsoni �ow over a NACA0012 airfoiland a subsoni invisid �ow over a 3D body proposed in the ADIGMA projet. No exatsolutions are available for these ases but numbers of referenes in the literature are availablefor the 2D test-problem. However we adopt the solution evaluation strategy proposed by theADIGMA projet, rather than performing omparisons with results in the literature, whihare often not only dependent on the numerial sheme but also on the hoie of grid and thetreatment of boundary onditions. The strategy used here is the grid onvergene study withan appropriate riteria on the solution auray. This study is performed for the developpedFV-RB shemes, and it provides elements for a lear omparison between FV-RB O2 and O3shemes.
• Next, the analysis of shemes applied to the Euler equations is performed for 2D and 3D �owsinvolving shoks in order to assess the performane of the solution limiting strategies for aseswith disontinuities desribed in the previous hapter.
• In the ase of 2D visous �ows, we return to the line of analysis followed in the invisid ase : amodel advetion-di�usion problem of known exat solution is �rst omputed in order to assessthe atual order of auray provided by the developed FV shemes. These shemes (extendedto the Navier-Stokes equations) are then applied to the omputation of a laminar �ow over theNACA0012 airfoil, where the grid-onvergene study is also onduted.
• At last this hapter loses with the assessment of the FV-RB shemes for unsteady �ow ompu-tations, both in the smooth ase, a vortex propagation problem and a muh more hallengingase, the double Mah re�etion problem.3.1 Steady invisid smooth �ows3.1.1 2D irular advetion problemThe model salar advetion problem solved in this setion takes the following form :
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3.1 Steady invisid smooth �owswhere the �ow domain orresponds to the square x ∈ [0, 1], y ∈ [0, 1]. The initial ondition in thisdomain is:
W (x, y, 0) = 0,The edges y = 0 and x = 0 of the omputational domain are inlet �ow onditions on whih thesolution is imposed as :

W (x, y, t) = e−50(r−0.5)2 ,with r =
√

(x− 1)2 + y2 the distane to the lower right orner of the �ow domain (point (1, 0)). Theedges x = 1 and y = 1 are outlet �ow boundaries along whih the solution is extrapolated from theinterior domain.Equation (3.1) is disretized using its onservative formWt +F (W )x +G(W )y = 0 with F (W,x, y) =
yW and G(W,x, y) = (1 − x)W . The wavespeed assoiated with eah physial �ux is respetively
a(W,x, y) = y for F (W ) and b(W,x, y) = (1 − x) for G(W ).The exat solution of (3.1) with assoiated initial and boundary onditions is readily obtained in thespae of harateristis : the harateristi lines of the problem are irular trajetories entered onpoint (1, 0), entering the domain through x = 0 and y = 0 and leaving it through x = 1 and y = 1;along eah of this line the inlet value is onserved. A typial numerial solution illustrating thesefeatures is displayed in Figure 3.1.
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Figure 3.1: Contours of the omputed solution W (30 levels from 0 to 1) obtained by the O3 RBsheme on mesh Tri_irreg5 (irregular triangular grid with 6400 boundary faes).In order to provide a more omplete analysis of the sheme properties, the omputations are arriedout on two di�erent series of meshes : one made of inreasingly re�ned regular triangle meshesand the other made of inreasingly re�ned irregular triangle meshes. The regular triangular gridsare derived from regular quadrilateral grids in whih eah ell is ut along the top-left / bottom-right diagonal (see the left-side of Figure 3.2). The irregular triangular grids are obtained from anautomati Delaunay triangulation performed by a ommerial grid generator when asked to mesh the57



Chapter 3 : Appliations of FV-RB shemeomputational domain by using triangular ells with a presribed number of regularly-spaed nodeson the domain boundaries (see the right-side of Figure 3.2). It is important to point out that at thisstage the FV shemes developed in this work an be used indi�erently on grids made of trianglesor retangles (or even hybrid grids). The analysis presented here is foused on triangular grids butsome omments will be provided on the ase of grids based on quadrilaterals.
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Figure 3.2: Mesh examples used for 2D irular advetion problem: regular triangle mesh(left),irregular triangle mesh(right).The main features of the omputational meshes are summarized in Table 3.1 and 3.2 : the regulartriangular grids are obtained from suessive Cartesian grids with 10× 10, 20× 20, 40× 40, 80× 80and 160 × 160 nodes regularly spaed along eah side of the unit square omputational domain; theirregular triangular grids rely on the same boundary nodes but are obtained from a triangulationbased on these boundary distributions. Note dof denotes the total number of degrees of freedomused for the omputation; in the ase of the �nite-volume method used in this work, the number ofdegrees of freedom is equal to the number of mesh ells regardless of the auray order, while this isnot the ase when a Spetral Volume approah is developed for the RB shemes in the next hapter :eah ell ontains a ertain number of degrees of freedom whih inreases with the desired aurayorder. Mesh Dof Number of boundary faesTri_reg1 200 40Tri_reg2 800 80Tri_reg3 3200 160Tri_reg4 12800 320Tri_reg5 51200 640Table 3.1: Basi information on the regular triangle-based meshes used for the 2D irular advetionproblem.58



3.1 Steady invisid smooth �owsMesh Dof Number of boundary faesTri_irreg1 226 40Tri_irreg2 894 80Tri_irreg3 3588 160Tri_irreg4 14412 320Tri_irreg5 57518 640Table 3.2: Basi information on the irregular triangle-based meshes used for the 2D irular advetionproblem.Auray analysis on regular triangular meshes The �rst series of omputations is performedon the inreasingly re�ned regular triangle-based meshes. For eah steady solution ahieved on a givengrid, the logarithm of the L2-norm of the di�erene between the exat solution in the grid and thenumerial solution provided by the sheme, also alled L2 error of the sheme, is omputed andplotted as a funtion of the harateristi mesh size h, whih is taken as the minimum of the ellmesh sizes omputed by hi =
√

Ωi (in 2D), and hi = Ω
1/3
i (in 3D). This L2 error is omputed bothfor the FV-RB sheme in its seond- and third-order version and for the Roe sheme, whih is takenas the representative of onventional upwind shemes, also in its seond and third-order version. Thenumerial errors are plotted in Figure 3.3 and also summarized in Table 3.3 for the FV-RB sheme.The orders (of auray) appearing in this table orrespond to the estimation omputed for the slopeof the urve error vs mesh size using the error and mesh size for the urrent grid and the previousone. The pratial auray order should orrespond to the asymptoti value reahed by this slopewhen the �nest grids are used for this estimation.It an be observed on Figure 3.3 the expeted theoretial auray orders are roughly ahieved withthe Roe numerial �ux and linear then quadrati solution reonstrution, yielding respetively anasymptoti slope of 2.32 and 2.98 (the regularity of the grids is likely to introdue some error ompen-sations whih would explain the pratial auray order exeeds 2 with the linear reonstrution).When the RB numerial �ux is used, the error slopes obtained between two �nest grids are respe-tively 1.98 for FV-RB O2 and 3.29 for FV-RB O3, whih orresponds to the expeted orders. Moreimportantly maybe, it is interesting to note the error level ahieved on the �nest grid with the third-order RB numerial �ux is muh lower than the error level obtained with the third-order Roe sheme.In fat the error level assoiated with this third-order onventional upwind sheme on the �nest grid(51200 dof) orresponds to the error level obtained with the third-order RB sheme on a grid witha number of dof between 3200 and 12800. This point will be detailed in the e�ieny analysis inthe last paragraph of this setion.Mesh L2 error of RBO2 order L2 error of RBO3 orderTri_reg1 -1.32978 - -1.37869 -Tri_reg2 -2.05291 2.40 -2.30685 3.08Tri_reg3 -2.71613 2.20 -3.63751 4.42Tri_reg4 -3.31275 1.98 -4.92621 4.28Tri_reg5 -3.90832 1.98 -5.91761 3.29Table 3.3: L2 norm of numerial errors and mesh onvergene order obtained with FV-RB shemeson regular triangle meshes. 59



Chapter 3 : Appliations of FV-RB sheme
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Figure 3.3: L2 norm of numerial errors obtained by the FV-RB sheme and FV-Roe sheme onregular triangle meshes.Auray analysis on irregular triangular meshes The (theoretially) seond and third-orderRoe and RB shemes are now applied on the series of irregular triangular meshes. The numerialerrors assoiated with these shemes are summarized in Table 3.4 and plotted in Fig.3.4. Withrespet to the previous regular ase, the hanges for the Roe sheme remain modest : the pratialerror orders are again very lose to their respetive theoretial value, namely 2.11 instead of 2 forFV-Roe O2 and 3.04 instead of 3 for FV-Roe O3. These results indiate the linear and most of allthe quadrati solution reonstrution are orretly implemented in our numerial solver. As for theFV-RB O2 sheme, it still provides a pratial auray order (1.98) very lose to the expeted valueof 2. However, the behaviour of the FV-RB O3 sheme is disappointing sine the pratial aurayorder of the sheme on irregular triangular grids drops down to 2.52. A possible explanation forthis disrepany between theoretial and pratial auray order ould be an insu�iently arefultreatment of out�ow boundary onditions. If the numerial �ux is the ause of this behavior, it isneessarily the dissipative �ux whih is involved (sine the non-dissipative entered �ux is also usedin the Roe sheme); the simpli�ations retained for omputing this dissipative �ux (with a singleresidual evaluation per fae) ould be inriminated but we did not manage to understand preiselywhy these simpli�ations would work perfetly well on the regular triangular grids and not on the�nest irregular triangular grids. It must be emphasized though that the error level provided by theFV-RB O3 sheme remains very low and, in partiular, lower than the error level assoiated withthe third-order Roe sheme in a given grid.E�ieny analysis We shall now ompare the seond-order RB sheme with its third-order ex-tension as well as ompare the RB shemes with the seond and third-order Roe shemes not purelyin terms of auray but rather in terms of the ost required (CPU, memory) to ahieve a simi-lar level of auray. It should be mentioned here that almost all of omputations (unless pointedout speially) in this work are arried out on a PC with 2 proessors of 1.86Ghz, 4MB memory,60



3.1 Steady invisid smooth �ows
Mesh L2 error of RBO2 order L2 error of RBO3 orderTri_irreg1 -1.69010 - -1.90880 -Tri_irreg2 -2.40014 2.41 -3.02975 3.81Tri_irreg3 -3.05994 2.46 -4.03660 3.76Tri_irreg4 -3.67028 1.92 -4.87415 2.63Tri_irreg5 -4.26599 1.98 -5.63012 2.52Table 3.4: L2 norm of numerial errors and mesh onvergene order obtained with FV-RB shemeson irregular triangle meshes.
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Figure 3.4: L2 norm of numerial errors obtained by the FV-RB sheme and FV-Roe sheme onirregular triangle meshes.
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Chapter 3 : Appliations of FV-RB shemewindows xp system and Digital/Compaq Visual Fortran ompiler. But eah omputation usesonly one proessor beause the ode is not parallelized. To make suh a omparison possible, we useFV-RB and FV-Roe seond and third-order omputations on the �nest irregular mesh Tri_irreg5and obtain from these omputations the CPU ost and memory storage for eah sheme. For eahomputation on this grid with 57518 dof, we report the total CPU time and number of iterationsneeded to reah mahine-zero steady-state from whih we derive a CPIPD (CPU time Per IterationPer Dof). The values reported in Table 3.5 are also normalized by the smallest values (obtainedwith the seond-order Roe sheme) and displayed in Table 3.6. Although this omparison may beto some extent mahine-dependent and no speial e�ort was made regarding the ost and memoryoptimization in our solvers, these values provide a basis to draw a few onlusions regarding theestimation of the relative osts of the RB shemes developped in this work :
• the FV-RB shemes are systematially more expensive and time-onsuming than the orre-sponding FV-Roe sheme. When omparing RB O3 with Roe O2 the extra CPIPD and extramemory reahes roughly a fator of 1.5 and 2 orrespondingly.
• The third-order RB sheme requires about the same amount of memory than the third-orderRoe sheme with a CPIPD only slightly larger (about 10%).Keeping these numbers in mind, we �rst analyze the e�ieny of the shemes when applied toompute the 2D advetion problem. On the �nest irregular grid, retained as the sample of theobserved behavior, we note that the onvergene to a zero-mahine steady-state is ahieved for allshemes, with a number of iterations ranging from about 400 for Roe O2 and O3, up to 440 for RB

O2 and 470 for RB O3 (see Figure 3.5). Taking into aount the ost per iteration, this leads to afator of about 1.7 on CPU time between the fastest method Roe O2 and the slowest one RB O3.However, suh a omparison is not fair sine the error level ahieved by RB O3 at onvergene is muhlower than Roe O2. A more interesting and meaningful omparison is to analyze the onvergenebehavior of the shemes for a similar auray level. It an be inferred from the error urves displayedin Figure 3.4 that the minimum error level on the series of irregular triangle-based grids is ahievedwith the seond-order shemes on the �nest grid Tri_irreg5, while is ahieved on the grid Tri_irreg4with Roe O3 and on the grid Tri_irreg3 with RB O3. The assoiated onvergene urves both initerations and in CPU time are display in Figure 3.6. The hierarhy is now widely di�erent: for this�xed level of auray, the RB O3 sheme provides the solution about 30 times faster than the Roe O2sheme. This gain is ahieved beause of the redution in the number of dof (from 57518 for the gridlevel 5 down to 3588 for the grid level 3) and also beause of a faster onvergene (in iterations) onoarser grids. At the same time, the RB O2 sheme remains more expensive than the Roe O2 shemebeause it ahieves the same level of auray on a given grid for a ost per iteration 15% higherand a slightly slower onvergene. This an be further interpreted as the fat that the dominanterror term for the seond-order shemes omes from the entered non-dissipative ontribution to the�ux balane; when going to third-order, the dominant error ontribution omes from the dissipativeontribution to the �ux balane and the gain o�ered by the RB sheme demonstrates the goodproperties of the residual-based dissipation, although third-order is not reahed between two �nestgrids.62



3.1 Steady invisid smooth �ows
Sheme Memory (MB) CPU time (s) Iterations CPIPDRB O2 52 60.7 440 2.4 × 10−6RB O3 92 83.6 470 3.1 × 10−6Roe O2 45 48 390 2.1 × 10−6Roe O3 86 64.7 400 2.8 × 10−6Table 3.5: Computation ost of the FV shemes obtained on mesh Tri_irreg5, CFL = 5.
Sheme Normalized Memory Requirement Normalized CPIPDRB O2 1.16 1.14RB O3 2.04 1.48Roe O2 1 1Roe O3 1.91 1.33Table 3.6: Normalized memory requirement and Cost Per Iteration Per Dof for the seond andthird-order RB and Roe shemes.
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Figure 3.6: Convergene history for the seond and third-order Roe and RB shemes with CFL = 5on grids where a similar error level is ahieved at steady state. Left : L2 norm of the residual vsiterations; right : L2 norm of the residual vs CPU.3.1.2 Subsoni invisid �ow over a NACA0012 airfoilWe proeed now to the appliation of the seond- and third-order RB shemes to the solution ofthe Euler equations. Our fous here will not be on a omparison between the RB sheme and aonventional upwind sheme suh as the Roe sheme, but rather on a detailed analysis of the possiblebene�t of using a third-order sheme instead of a seond-order sheme. This is preisely the mainmotivation of the ADIGMA projet in whih this thesis has taken plae. The idea is to quantify for agiven method the ost redution o�ered by the third-order sheme with respet to the seond-orderone, taking into aount most of the aerodynami solvers in use for industrial appliations are stilllimited to seond-order auray. This quanti�ation has been performed for a panel of test-asesrepresenting the typial problems enountered in the aeronautial industriy. For eah test-ase, in-dustrial partners have spei�ed grid onvergene riteria for some aerodynami quantities of interest(for instane, lift oe�ient, drag oe�ient and moment oe�ient) and a series of inreasinglyre�ned grids has been generated. The seond and third-order shemes have then been run on thesevarious grids. The grid size required for both shemes to ahieve the grid-independent results withinthe presribed tolerane intervals have been analyzed and ompared. A systemati faster grid on-vergene of the third-order sheme should be expeted but the third-order sheme will be provedvaluable if the gain in the number of dof required to ahieve a presribed auray level is not om-promised by an exessive over-ost of the third-order sheme with respet to the seond-order one. Inthis setion our fous is on suh a demonstration of interest for the RB shemes developed in this work.Methodology The �rst ase of demonstration retained in the ADIGMA projet and analyzed nowis the subsoni invisid �ow (upstream Mah number M∞ = 0.5, angle of attak α = 2◦) over theNACA0012 airfoil. Meshes used for omputation are a series of 9 unstrutured meshes omposedof mainly quadrilateral elements and provided within the ADIGMA projet; their main features are64



3.1 Steady invisid smooth �owssummarized in Table 3.7. Mesh Dof No. of faes on airfoilmesh1 206 16mesh2 365 32mesh3 664 46mesh4 1197 70mesh5 2249 112mesh6 4417 182mesh7 9046 306mesh8 19316 528mesh9 41685 926Table 3.7: Basi information on the unstrutured meshes used for the invisid �ow over airfoilomputations.The performane provided by the RB O2 and RB O3 is analyzed as follows :
• omputations with both shemes are run for the whole series of grids.
• for eah grid the lift, drag and moment oe�ients are omputed (respetively Cl, Cd and Cmwith a moment enter loated at the quarter-hord of the airfoil).
• the evolution of these oe�ients with grid re�nement is plotted on Fig.3.7
• the onvergene zone orresponds to the approximation level onsidered as aeptable in in-dustrial simulations. This onvergene zone is de�ned by the value obtained on the �nest gridand a tolerane interval whih has been provided in the ADIGMA projet based on industrialexperiene. In the present ase, the extent of the tolerane intervals for the lift, drag andmoment oe�ient were respetively ECl = 1 × 10−3, ECd = 1 × 10−4 and ECm = 2 × 10−4.The orresponding onvergene zone for the lift oe�ient is then given by Clmesh9 ±ECl, andsimilarly for the drag and moment oe�ients.
• grid onvergene is onsidered as ahieved when the urve "result vs dof" enters for the �rsttime the onvergene zone (without leaving it for further re�nement).
• one the grid level neessary to ahieve grid onvergene for eah sheme has been de�ned, the�nal e�ieny analysis must take into aount the dof of the �rst grid ensuring onvergeneand the CPIPD of the sheme.Overview of the �ow Figure 3.8 provides a view of the �nest quadrilateral grid (mesh9) anddisplays some results illustrative of the �ow physis - obtained with the RB O3 sheme on this �nestgrid. As explained above, the omparison between shemes will be performed following the verymatter-of-fat approah adopted in the ADIGMA projet, based on global indiators (aerodynamioe�ients) and not on ontours or wall-distributions analysis. The Mah ontours, wall-pressuredistribution and wall-entropy deviation (Cs = (S − S∞)/S∞) displayed in Figure 3.8 illustrate thesmoothness of this subsoni invisid �ow. The entropy variation obtained with the RB O3 shemeon this �ne grid does not exeed 1%. The omputed aerodynami oe�ients on this �nest grid are65
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Figure 3.7: Aerodynami oe�ients onvergene with dof based on meshes from mesh1 to mesh9obtained by the seond and third-order FV-RB sheme.
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3.1 Steady invisid smooth �owsalso displayed in Table 3.8 both for RB O2 and RB O3 sheme. The di�erene in the lift oe�ientpredited by the two shemes amounts to 0.7%. For this subsoni invisid ase, the drag should bezero of ourse and any deviation from this value is a symptom of numerial dissipation; the omputeddrag with RB O3 is 3.6 times lower than the one with RB O2.Sheme Cl Cd Cm

O2 0.282181 1.67 × 10−4 -0.002545
O3 0.284150 4.62 × 10−5 -0.002936Table 3.8: Aerodynami oe�ients obtained with the FV-RB sheme on mesh9.Results analysis from the point view of auray/e�ieny It an be dedued from theurves displayed in Figure 3.7 that :

• the lift oe�ient is onverged on mesh8 for RB O2 and on mesh6 for RB O3.
• the drag oe�ient is onverged on mesh7 for RB O2 and on mesh6 for RB O3.
• the moment oe�ient is onverged on mesh8 for RB O2 and on mesh7 for RB O3.Summing things up it an be stated that the RB O3 shemes provides a grid onverged solution of allof aerodynami oe�ients by using mesh7, a grid with 19316 dof while RB O2 needs to be appliedwith mesh8, a grid with 41685 dof to ahieve this same grid onvergene. The ratio of dof in favorof the third-order sheme is therefore about 2.2. To make this omparison omplete, it is of ourseruial to know the relative CPIPD of both shemes. Reliable values for these unit osts are obtainedfrom the series of omputations performed on grids mesh6 to mesh9 (see Table 3.9 and 3.10, wherethe CPU time orresponds to the time needed to ahieve a fully onverged state de�ned by a residualdrop of 8 orders of magnitude). The average CPIPD for RB O2 is 1.25 × 10−5 s and 1.575 × 10−5 sfor RB O3; the extra-ost introdued by the third-order sheme is about 26% (in agreement with the

29% observed in the salar advetion ase). On a given grid, the seond- and third-order shemesneed roughly the same number of iterations to ahieve steady-state (typially RB O3 needs between
3% and 10% more iterations). Of ourse, using a oarser grid ensures a faster onvergene to steady-state : thus, RB O3 needs 8140 iterations to reah steady-state and yield a grid-onverged solutionon mesh7 while RB O2 needs 11760 iterations to ahieve steady-state and yield a grid-onvergedsolution on mesh8. The redution fator on the iterations in favor of RB O3 amounts to 0.69 goingup to 0.87 when the extra-ost (26%) per iteration for RB O3 is taken into aount. Eventually thenet e�ieny gain o�ered by the third-order RB sheme is 2.2 (ratio of the dof) divided by 0.87(CPU gain on onvergene to steady-state) whih is 2.5. This fator orresponds also of ourse tothe diret CPU time ratio, 10016 s for RB O2 over 3821 s for RB O3, but we wanted to give somemore details on how this gain is built (intrinsi onvergene, ost per iteration, grid size). If the gridonvergene for a spei� aerodynami oe�ient is under onsideration, the following is observed :

• the lift oe�ient onvergene is obtained with a CPU time gain of 87% for RB O3 with respetto RB O2 (and a orresponding memory gain of 56%).
• the drag oe�ient onvergene is obtained with a CPU time gain of 60% for RB O3 withrespet to RB O2 (and a orresponding memory gain of 8%). 67



Chapter 3 : Appliations of FV-RB sheme
• the moment oe�ient onvergene is obtained with a CPU time gain of 59% for RB O3 withrespet to RB O2 (and a orresponding memory gain of 16%).Dof Memory (MB) CPU time (s) Iterations CPIPD4417 7 277 5100 1.23 × 10−59046 12 888 7900 1.24 × 10−519316 25 2862 11760 1.26 × 10−541685 52 10016 18860 1.27 × 10−5Table 3.9: Computation ost of the FV-RB O2 sheme obtained from mesh6 to mesh9.Dof Memory (MB) CPU time (s) Iterations CPIPD4417 11 359 5220 1.56 × 10−59046 21 1161 8140 1.57 × 10−519316 43 3821 12300 1.61 × 10−541685 91 13421 20640 1.56 × 10−5Table 3.10: Computation ost of the FV-RB O3 sheme obtained from mesh6 to mesh9.3.1.3 A 3D helioidal advetion problemFollowing a methodology similar to the one adopted in 2D, another model salar advetion problemis used to hek the atual order of auray brought by the FV-RB sheme in 3D. This helioidaladvetion of a Gaussian pro�le problem is de�ned as follows :
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)2).on lower boundary z = 0.For this 3D problem, two types of meshes will be used : so-alled "strutured" meshes beause theyappear as Cartesian grids sine based on regular hexahedral elements, and unstrutured meshes basedon tetrahedral elements. The main features of these meshes are listed in Table 3.11 and 3.12.A view of the steady solution obtained with the RB O3 sheme on the �ne mesh Tetra_5 is plottedin Figure 3.9. It is provided to give an overview of the solution of the model �ow problem as well as toillustrate the good auray of the numerial solution (on what is a �ne grid) : the omputed solutiondistribution on the outlet boundary is hardly distinguishable from the imposed distribution on theinlet boundary. The analysis of the auray will now be performed using a grid onvergene studyon the series of strutured and unstrutured grids, ompleted by onsiderations on the respetiveost of eah sheme (namely the seond- and third-order Roe shemes on one hand and the seond-and third-order RB shemes on the other hand).68



3.1 Steady invisid smooth �ows
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Chapter 3 : Appliations of FV-RB sheme
Mesh ells boundary faesTetra_1 7506 1364Tetra_2 56076 5402Tetra_3 191110 12140Tetra_4 433439 21602Tetra_5 870128 33676Table 3.12: Unstrutured tetrahedral meshes for the 3D helioidal advetion problem.
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3.1 Steady invisid smooth �owsAuray analysis on regular hexahedral meshes Figure 3.10 displays the error onvergeneurve for the seond- and third-order Roe and RB shemes when the series of regular hexahedralmeshes is used. Although some error anelations seem sometimes to take plae, whih is arti�iallyinreasing the pratial order of auray, eah sheme is found to yield the expeted behavior; inpartiular, the seond-order RB sheme yields a slope exatly equal to 2 for the log(error) vs log(meshsize) urve and the third-order RB sheme displays a urve with a slope equal to 3.3 (see also Table3.13). Even more interestingly, the error level produed by the third-order RB sheme is partiularlylow : when the seond-order Roe and RB shemes as well as the third-order Roe sheme produeabout the same error level (about 10−3) with the �nest grid Hex_5, the third-order RB shemealready yields this same error level on grid Hex_3, with 27000 dof ompared to the 125000 dof onthe �nest grid. Mesh L2 error of RBO2 order L2 error of RBO3 orderHex_1 -1.82430 - -1.68127 -Hex_2 -2.39261 1.89 -2.59874 3.05Hex_3 -2.73202 1.93 -3.21879 3.52Hex_4 -2.98182 2.00 -3.64636 3.42Hex_5 -3.17614 2.00 -3.96648 3.30Table 3.13: L2 norm of numerial errors obtained by the FV-RB sheme on strutured hexhedralmeshes.

log_h

lo
g_

er
rL

2

-1.8 -1.7 -1.6 -1.5 -1.4 -1.3 -1.2 -1.1 -1
-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

Roe 2nd order
RB 2nd order

2.42

2.00

log_h

lo
g_

er
rL

2

-1.8 -1.7 -1.6 -1.5 -1.4 -1.3 -1.2 -1.1 -1
-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

Roe 3rd order
RB 3rd order

2.90

3.30

Figure 3.10: L2 norm of numerial errors obtained by the FV-RB sheme and FV-Roe sheme onstrutured meshes from Hex_1 to Hex_5.Auray analysis on tetrahedral meshes When the previous mesh onvergene analysis isarried out on the series of irregular tetrahedral meshes, the results of the third-order RB shemeare unfortunately disappointing. As an be observed from Table 3.14 and Figure 3.11, the RB O3sheme gives only seond-order on these irregular tetrahedral meshes, while it does give third-order71



Chapter 3 : Appliations of FV-RB shemeonvergene on the previous regular hexahedral meshes. Moreover, the error level provided by RB O3on the �nest grid is about the same as the one given by RB O2, itself almost idential to the error levelprovided by Roe O2. In the meantime, the Roe O3 sheme does yield a third-order pratial auray,this means the quadrati solution reonstrution is orretly implemented in 3D. This disappointingbehavior of the RB O3 sheme on irregular meshes most likely results from the evaluation of theRB dissipation, whih is quite geometry dependent. In spite of our areful investigations, we did notmanage to understand the reason for this loss of auray on irregular meshes untill now.Mesh L2 error of RBO2 order L2 error of RBO3 orderTetra_1 -2.01724 - -1.96477 -Tetra_2 -2.67112 2.30 -2.62094 2.30Tetra_3 -2.99440 1.84 -3.02481 2.30Tetra_4 -3.22007 2.05 -3.26260 2.16Tetra_5 -3.41852 2.02 -3.45300 1.94Table 3.14: L2 norm of numerial errors obtained by the FV-RB sheme on unstrutured tetrahedralmeshes.
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3.1 Steady invisid smooth �owsthe seond-order RB sheme takes many more iterations than its third-order sheme for this ase,whih is not the situation in 2D. This must be related to the impliit phase. The residual evolutionwith CPU time obtained with 4 shemes is quite reasonable, the third-order sheme is more omplexthan the seond-order sheme and therefore takes more CPU time to reah the onvergene. Asthe CPIPD(Cost Per Iteration Per Dof) of the RB sheme is globally higher than the Roe sheme,the CPU time of omputation with RB shemes is longer than the Roe shemes. Although RB O2sheme takes about 70 more iterations than the RB O3 sheme to reah the onvergene, the CPUtime neessary for RB O3 to reah the onvergene is still longer than the one needed for the RB O2sheme beause the CPIPD of RB O3 is higher than RB O2.Table 3.15 shows detailed information on the omputation ost of FV based 4 shemes. As RBshemes need more iterations than the Roe shemes to reah the residual onvergene and the CPIPDof RB shemes is higher than the Roe sheme, the total CPU time needed by the RB shemes for theresidual onvergene is therefore longer than the one for Roe shemes. And the RB sheme needsmore memory for a omputation than the Roe shemes. On the same mesh the third-order shemeis always more expensive on memory and CPU time than the seond-order sheme. If values inTable 3.15 are normalized by the smallest values (results obtained with Roe O2 sheme), Table 3.16is obtained, whih makes the omputation ost of eah sheme more lear. For Roe shemes, O3sheme onsumes 3.68 times more memory and 1.63 times more CPIPD than the O2 sheme. AndRB O3 sheme is 2.68 and 2.40 times more expensive on memory and CPIPD respetively than theRB O2 sheme. Comparison between RB sheme and Roe sheme shows that RB O2 sheme spends
1.6 times more memory and 1.53 times more CPIPD than the Roe O2 sheme, and the memoryand CPIPD of RB O3 sheme are orrespondingly 1.16 and 2.26 times more than those of Roe O3sheme. On the same mesh, the moste expensive sheme on memory and CPIPD is RB O3 sheme.Sheme Memory (MB) CPU time (s) Iterations CPIPDRB O2 203 145 200 5.8 × 10−6RB O3 543 248 140 1.4 × 10−5Roe O2 127 42.9 90 3.8 × 10−6Roe O3 467 78.0 100 6.2 × 10−6Table 3.15: Computation ost of the FV shemes obtained on mesh Hex_5, CFL = 106.Sheme Normalized Memory Requirement Normalized CPIPDRB O2 1.6 1.53RB O3 4.28 3.68Roe O2 1 1Roe O3 3.68 1.63Table 3.16: Normalized memory requirement and Cost Per Iteration Per dof for the seond andthird-order RB and Roe shemes.As mentioned before in 2D advetion ase, it is not fair to ompare the e�ieny of seond andthird-order shemes on the same mesh. This ompairison should be made for the same auraylevel. From Figure 3.10 it an be seen that Roe O2, O3 and RB O2 sheme ahieve about the same73



Chapter 3 : Appliations of FV-RB shemeerror level on mesh Hex_5, while this error level is already obtained by the RB O3 sheme on meshHex_3. So it is interesting to ompare the e�ieny of these shemes based on this error level.In Figure 3.13 it is found that to reah the same level of auray, Roe O2 sheme takes the leastiterations and RB O2 sheme takes the most iterations, but it is RB O3 sheme who takes the leastCPU time to reah the onvergene, whih shows the real advantages of using the high-order sheme.
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3.1 Steady invisid smooth �ows
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Chapter 3 : Appliations of FV-RB shemeand its attak angle 1◦ in z positive diretion, the asymmetri Mah ontours on the plane "y=0"(topleft �gures) are found. The zoom of leading edge (top right �gure) shows that ontours obtained bythe RB O3 sheme on this �ne mesh are smooth. Beause the airfoil body is symmetri to the plane"z=0" and the �ow has no angle with the diretion y, symmetri ontours around the airfoil bodyare found on the plane "z=0" (bottom �gures), and it is interesting to see two symmetri vortexstrutures around the trailing edge (bottom right �gure).
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3.1 Steady invisid smooth �owserror given by the ADIGMA projet: ECl = 1 × 10−3, ECd = 3 × 10−4 and ECm = 5 × 10−4. It isfound that globally the result di�erene between the FV-RB seond and third-order sheme is verysmall, as showed in results of the 3D helioidal advetion ase. For the lift oe�ient, FV-RB O2 and
O3 sheme stays in the onvergene zone from the oarse mesh Mesh1, while the steady onvergedvalue seems ahieved on Mesh2 beause the di�erene between the value obtained on Mesh2 andon Mesh3 is small. The drag oe�ient onvergene is ahieved by the RB O2 and O3 sheme untilMesh3. Like the lift oe�ient onvergene, the moment oe�ients obtained by both RB O2 and
O3 sheme always stay in the onvergene zone, and the onverged value is almost ahieved on theMesh2.
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Chapter 3 : Appliations of FV-RB shemeDof Memory (MB) CPU time (s) Iterations CPIPD191753 322 33790 5950 3.0 × 10−5254960 429 56200 6790 3.2 × 10−5440494 747 130800 8800 3.4 × 10−5Table 3.18: Computation ost of the FV-RB O2 sheme obtained from Mesh1 to Mesh3.Dof Memory (MB) CPU time (s) Iterations CPIPD191753 865 61050 7600 4.2 × 10−5254960 1100 99100 8830 4.4 × 10−5440494 2000 260000 11680 5.1 × 10−5Table 3.19: Computation ost of the FV-RB O3 sheme obtained from Mesh1 to Mesh3.Sheme Cl Cd Cm

O2 3.9564 × 10−4 8.8020 × 10−4 1.6096 × 10−3

O3 5.0117 × 10−4 8.7147 × 10−4 1.5598 × 10−3Table 3.20: Aerodynami oe�ients obtained with the FV-RB sheme on Mesh3.is found that the FV-RB O3 sheme has a averagely 41% higer CPIPD and 2.7 times more memoryrequirement than the FV-RB O2 sheme for a omputation. Unfortunately the preision gain of thethird-order sheme is very small. In Table 3.20 exat aerodynami oe�ient values obtained onthe �nest mesh are showed. For this subsoni ase, ideally the drag is zero, so it is easy to see thepreision gain on the drag oe�ient. The RB O3 sheme gives only a 1% smaller drag than the O2sheme. For other oe�ients, the quality of RB sheme results an be seen from the omparisonwith a referene result of a projet partner NLR(National Aerospae Laboratoy) showed in ADIGMAprojet report [1℄. It gives Cl = 2.1163 × 10−4, Cd = 5.3076 × 10−4, Cm = 1.7085 × 10−3, whih areobtained on a strutured grid with 1572864 dof by a seond-order disontinuous Galerkin method. Itis found that on the lift oe�ient, RB O2 sheme has 87% di�erene from the referene result, andRB O3 sheme has 137% di�erene; for the moment oe�ient, the di�erene between the referenevalue and the RB O2 result is 6%, and RB O3 result has 9% di�erene.3.2 Steady invisid �ows with shoks3.2.1 Transoni invisid �ow over a NACA0012 airfoilAfter having analyzed the performane of the FV-RB sheme for smooth �ows in 2D and 3D,�ow problems with disontinuities are taken into onsideration in this setion. First of all, a well-doumented test ase is onsidered, namely the steady transoni invisid �ow around the NACA0012airfoil with an inlet Mah number equal to 0.8 and an angle of attak α equal to 1.25◦. The mainharateristis of this �ow are a strong shok on the sution side and a weak shok on the pressureside of the airfoil. A rather �ne unstrutured mesh with 26384 pure triangle elements is used in ouromputation (see Figure 3.17). In fat, in the ourse of the ADIGMA projet, a grid onvergenestudy similar to the previous subsoni ase has been performed and similar onlusions on the fastergrid onvergene of the FV-RB O3 sheme have been drawn. Rather than repeating this study here,78



3.2 Steady invisid �ows with shokswe wish to illustrate in this setion the shok-apturing properties of the seond- and third-order RBshemes on a su�iently �ne grid.Sheme K S β CL CD CMRB O2 2 - - 0.35825417 0.02300606 -0.04090117RB O3 2 160 0.03 0.36009461 0.02293367 -0.04137368Table 3.21: Limiter parameters used by the FV-RB sheme and the orresponding aerodynamioe�ients obtained on a triangular mesh with 26384 dof.
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Chapter 3 : Appliations of FV-RB shemeThe limiting strategy desribed in 2.1.4 is used to remove osillations. The sole parameter forthe seond-order sheme is the oe�ient K used in the Venkatakrishnan limiter; for the third-order sheme, the parameter S and β oe�ient appearing in the swith (2.53) from quadratireonstrution to limited linear reonstrution must also be tuned. The values eventually retainedare typially used for transoni �ows and yield osillation-free results. They are summarized in Table3.21, where the omputed aerodynami oe�ient are also displayed. A referene result is providedby a projet partner DLR (German Aerospae Center) in the ADIGMA projet report [2℄, whih isobtained on a strutured C-mesh with 115584 dof by a seond-order sheme, and yields the followingreferene values for the lift, drag and moment oe�ients : CL = 0.357895, CD = 0.022736 and
CM = −0.038646. It is found that the result of FV-RB O2 sheme has a 0.1% di�erene on CL, 1.2%di�erene on CD and 5.8% di�erene on CM , while the FV-RB O3 gives a result with 0.6% di�ereneon CL, 0.9% di�erene on CD and 7% di�erene on CM . More importantly, it must be underlinedthe seond- and third-order RB shemes yield very lose results (whih do not di�er by more than
1%) whih tends to validate the strategy followed for the third-order sheme in presene of �owdisontinuities. Some representative results are displayed in Figure 3.17 : Mah ontours omputedusing RB O3, pressure oe�ient and entropy deviation distributions at the wall omputed with RB
O2 and RB O3. It is lear from these pitures that both the strong and weak shoks are well apturedby the FV-RB O2 and O3 shemes. The di�erene between these two shemes on the Cp is verysmall; meanwhile, on the CS �gure, the better auray of the third-order solution an be observedwith, in partiular, a lower entropy deviation level upstream of the shoks.3.2.2 Transoni invisid �ow over the ONERA M6 wingThe performane of the FV-RB sheme is also assessed for a 3D transoni ase, namely the �ow overthe ONERA M6 wing with an inlet Mah number M∞ = 0.84 and an angle of attak α = 3.06◦. At�rst, omputations with both the seond and third-order RB shemes have been performed on a veryoarse "strutured" mesh ontaining 48000 hexahedrons. The limiting parameters used for this aseare listed in the Table 3.22. The mesh and the Mah number ontours omputed with the FV-RB
O3 sheme are displayed in Figure 3.18.Sheme K S βRB O2 6 - -RB O3 6 160 0.1Table 3.22: Limiter parameters used by the FV-RB sheme for the transoni invisid �ow over theONERA M6 wing.Although the mesh is oarse, the λ-shok struture on the upper wing surfae is already orretlyaptured by both FV-RB O2 and O3 sheme. A more detailed omparison between the RB O2and O3 shemes an be found in the wall pressure oe�ient distributions on the wing along someseleted spanwise setions where experimental data (for an evidently turbulent �ow) are available(see Figure 3.19). Globally the di�erenes between the FV-RB O2 and O3 shemes on the omputed
Cp distributions are small. For the position around 20% of the span-wise length, ounted from thewing root, the two branhes of the λ-shaped shok are aptured in a very similar way by both FV-RB
O2 and O3 shemes. At 65% of the span-wise length away from the wing root, the result providedby the O3 sheme appears more dissipative, probably beause the hoie of the parameter β is not80
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Figure 3.18: Coarse strutured mesh and the orresponding result. Strutured mesh(left)with 48000 ells, and the Mah iso-ontour (right) with 40 levels from 0.2 to 1.5 obtained with O3RB sheme.
optimal (the tuning of suh a parameter beomes di�ult to perform for ostly 3D omputations).When the position moves to 95% spanwise length away from the wing root, only one shok branhis left and it seems that the O3 sheme gives a slightly sharper shok. It must be underlined thatboth sets of results are quite lose to the experimental data, whih are obtained with the same Mahnumber and attak angle but for a turbulent �ow with Reynolds number 1.172 × 107[43℄.Next, the FV-RB O2 and O3 shemes are applied to the omputation of the same ase but using anunstrutured mesh with 818411 tetrahedrons provided by the ADIGMA projet. This unstruturedmesh has about 17 times more elements than the previous strutured mesh and will of ourse yieldmore aurate results. This omputation gives us in partiular the opportunity to demonstrate theRB solver is fully operational on whatever type of 3D unstrutured grids. Moreover, it is also ahane to assess the behavior of the seond-order and third-order RB shemes for the typial valuesof the parameters K, β and S that we have deided to use for transoni �ows in 3D. The Mahontours omputed by the RB O3 sheme are displayed in Figure 3.20 and learly illustrate the λ-shaped shok struture is muh better aptured on this re�ned grid. Figure 3.21 allows to appreiatein some detail the di�erenes between the FV-RB O2 and O3 shemes. As ould be expeted fromthe already lose agreement on the previous oarse grid, the seond and third-order results remainvery lose to eah other (and in good agreement with experimental values). Note also the hoie oflimiting oe�ients previously adopted seem to work well again in this ase, whih is enouragingsine we do not wish to �ne-tune these oe�ients for eah new omputation. The overshoots inthe RB O3 Cp-predition near the wing leading-edge are not osillations (the �ow is smooth in thisregion). 81



Chapter 3 : Appliations of FV-RB sheme
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Figure 3.19: Coarse strutured mesh results. Cp distribution on the wing body for spanwisewing setions loated respetively 20% (top left), 65% (top right), and 95% (bottom) span-wise lengthaway from the wing root, obtained with the seond and third-order FV-RB shemes.
82



3.3 Steady visous �ows
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Figure 3.20: Fine Unstrutured mesh and the orresponding result. Unstrutured mesh (left)with 818411 ells. Mah ontours (right) with 40 levels from 0.2 to 1.8 obtained with the O3 RBsheme.3.3 Steady visous �ows3.3.1 2D advetion-di�usion problemBefore solving the Navier-Stokes equations, the visous formulation of the seond and third-orderFV-RB shemes are tested on a 2D advetion-di�usion model problem. The governing equation ofthis problem reads:
∂W

∂t
+ a

∂W

∂x
= ν

∂2W

∂y2
,and the �ow domain is x ∈ [0, L], y ∈ [0, L] (L = 1). The problem an be seen as a Poiseuille-type�ow :

• the solution in the �ow domain is initialized with W = 1;
• the inlet ondition W = sin(π y

L
) is imposed on the boundary x = 0;

• "wall-like" onditions are imposed on the lower (y = 0) and upper (y = L) boundary : W = 0;
• the boundary x = L is an out�ow where the solution is extrapolated from the interior domain.The exat solution of the problem at steady-state is given by :

Wexact(x, y) = sin(πy)e−π2 ν
a
x.Physially, the inlet signal is onveted and di�used along the way (see also the plot of this exatsolution in Figure 3.22). The omputations performed in this setion use the following values ofthe problem parameters : a = 1, ν = 0.005 and L = 1, so that the Reynolds number is equal to

Re = aL/ν = 200. Two series of unstrutured meshes are used to perform the grid onvergene83
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Figure 3.21: Fine Unstrutured mesh results. Cp distribution on the wing body for span-wisewing setions loated respetively 20% (top left), 65% (top right) and 95% (bottom) of the span-wiselength away from the wing root, obtained by seond and third-order FV-RB shemes.
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3.3 Steady visous �owsstudy with the Roe O2, Roe O3, RB O2 and RB O3 shemes : a series of regular triangle meshesand a series of irregular triangle meshes whih are preisely the ones used for the irular advetionproblem (see Table 3.1 and Table 3.2 for a summary of their main features).
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Figure 3.22: Left : ontours of the solution W (with 30 levels from 0 to 1) obtained by the RB O3sheme on mesh Tri_reg5. Right : 3D view of the exat solution.Auray analysis on regular grids The numerial errors produed by the FV-RB shemeson regular triangle meshes are summarized in Table 3.23. Plots of the error versus the harater-isti mesh size are also provided in Figure 3.23 along with the results given by the onventionalRoe sheme. Let us reall that with the hoie made in Chapter 2 for the design of the visousextension of a onventional sheme and of the RB sheme, we expet in fat to reover in pratie�rst-order auray only for the so-alled Roe O2 and RB O2 shemes and seond-order aurayfor the so-alled Roe O3 and RB O3 shemes. Indeed, let us remind the reader the solution gradientis omputed to �rst-order with the linear least-square reonstrution for the O2 sheme while thequadrati least-square reonstrution used by the O3 sheme gives a seond-order approximation ofthe solution gradient.In pratie, the FV-RB O2 sheme gives indeed an order of preision lose to 1 when the �ner meshesare used while the RB O3 sheme is almost seond-order aurate. Note the Roe and RB shemesof the same order yield lose error levels whih an be explained by the fat the dominant error forthis low-Reynolds number �ow omes from the entered disretization of the visous �ux, whih isthe same for Roe or RB sheme. It is important to note that the third-order shemes yield on themesh Tri_reg3 an error level omparable with the error level ahieved by the seond-order shemeson the �nest mesh Tri_reg5.
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Chapter 3 : Appliations of FV-RB sheme
Mesh L2 error of RBO2 order L2 error of RBO3 orderTri_reg1 -2.59113 - -3.52000 -Tri_reg2 -3.19317 2.00 -4.32713 2.68Tri_reg3 -3.78722 1.97 -4.98202 2.18Tri_reg4 -4.32675 1.79 -5.58930 2.02Tri_reg5 -4.70709 1.26 -6.16806 1.92Table 3.23: L2 norm of numerial errors obtained by the FV-RB sheme on regular triangle meshes.
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Figure 3.23: L2 norm of numerial errors obtained by the FV-RB sheme and FV-Roe sheme onregular triangle meshes.
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3.3 Steady visous �owsAuray analysis on irregular grids Table 3.24 and Figure 3.24 show the results obtained whenperforming the grid onvergene analysis on the series of irregular triangle meshes. A bit strangely,it is found that the FV-RB O2 sheme gives a globally better onvergene order on these irregularmeshes than on the previous regular meshes, with an auray order equal to 1.62 when reahing the�nest grids. A slightly better auray order is also found on irregular meshes for the RB O3 sheme,with an order equal to 2.17 on the �nest grids. What is more interesting is the fat that, again, the
O3 sheme needs a muh oarser grid (Tri_irreg3) to produe the error level ahieved with the O2sheme on the �nest grid Tri_irreg5.Mesh L2 error of RBO2 order L2 error of RBO3 orderTri_irreg1 -2.59034 - -3.36309 -Tri_irreg2 -3.22951 2.17 -4.12650 2.59Tri_irreg3 -3.88792 2.46 -4.84348 2.68Tri_irreg4 -4.48798 1.88 -5.56022 2.25Tri_irreg5 -4.97336 1.62 -6.21312 2.17Table 3.24: L2 norm of numerial errors obtained by the FV-RB sheme on irregular triangle meshes.
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Figure 3.24: L2 norm of numerial errors obtained by the FV-RB sheme and FV-Roe sheme onirregular triangle meshes.E�ieny analysis The same analysis method used for 2D and 3D advetion ase is adoptedfor this ase, whih is to ompare at �rst the e�ieny of the seond and third-order RB and Roeshemes on the same mesh, and then the ost of 4 shemes to ahieve the same auray level. InFigure 3.25 it is interesting to see that on the same irregular triangle mesh, RB shemes take lessiterations to reah the steady state than the Roe shemes, and iterations used by the seond andthird-order shemes to reah the onvergene are omparable, with few iterations less neessary forthe third-order shemes; and the most CPU-expensive sheme is Roe O3 sheme, RB O2 spends the87



Chapter 3 : Appliations of FV-RB shemeleast CPU time to reah the steady state. The reason of these CPU time di�erenes an be found inTable 3.25. It shows that although RB O2 sheme takes 30 more iterations to reah the onvergenethan the RB O3 sheme, its CPIPD is lower than the one of RB O3, whih �nally leads to a smallerCPU time of RB O2 sheme. At the same time Roe O3 sheme needs 10 iterations less than Roe O2sheme for the onvergene, but a larger CPU time is obtained with the Roe O3 sheme beause ofits higher CPIPD than the O2 sheme. If values in this table are normalized by the Roe O2 result,Table 3.26 an be obtained. It is found that Roe O3 sheme is 1.29 and 1.98 times more expensive onCPIPD and memory respetively than the Roe O2 sheme, RB O3 sheme spends 1.27 times moreCPIPD and 1.87 times more memory than the RB O2 sheme. For the third-order shemes, RB O3sheme needs 1.1 times more CPIPD and 1.08 times more memory than the Roe O3 sheme for theomputation. Sheme Memory (MB) CPU time (s) Iterations CPIPDRB O2 47 80.1 520 2.7 × 10−6RB O3 88 96.4 490 3.4 × 10−6Roe O2 41 89.9 650 2.4 × 10−6Roe O3 81 115 640 3.1 × 10−6Table 3.25: Computation ost of the FV shemes obtained on mesh Tri_irreg5.Sheme Normalized Memory Requirement Normalized CPIPDRB O2 1.15 1.12RB O3 2.15 1.42Roe O2 1 1Roe O3 1.98 1.29Table 3.26: Normalized memory requirement and Cost Per Iteration Per dof for the RB and Roeseond and third-order shemes.As mentioned in Auray analysis on irregular grids, with mesh Tri_irreg3 the third-ordershemes ahieved the same error level as the one obtained with seond-order shemes on meshTri_irreg5, it is therefore useful to ompare the e�ieny of these shemes in this situation (Figure3.26). It is seen that no matter in term of iterations or CPU time, the third-order shemes are farless expensive than the seond-order shemes, and the di�erene between RB O3 sheme and Roe
O3 sheme is very small. In summary, with less omputation ost the third-order sheme an ahievethe same auray level as the seond-order sheme.3.3.2 Subsoni laminar �ow over a NACA0012 airfoilIn order to assess the performanes of the FV-RB sheme for solving the Navier-Stokes equations, asteady laminar �ow over the NACA0012 airfoil is omputed, with the far-�eld onditions : M∞ = 0.5,zero angle of attak and Reynolds number (based on the airfoil hord and the far-�eld inoming �owboundary onditions Re∞,c = 500. A series of 5 inreasingly re�ned triangular meshes is used forthe omputations; the main features of these meshes are summarized in Table 3.27. An overview ofthe �ne mesh5 is also provided in Fig. 3.27. The grid onvergene analysis is performed followingthe very same methodology used in the ase of the subsoni invisid ase over the NACA0012 airfoil.88
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Figure 3.25: 2D advetion-di�usion problem. Convergene history for the seond and third-orderRoe and RB shemes on the �nest irregular grid Tri_irreg5. Left : L2 norm of the residual vsiterations; right : L2 norm of the residual vs CPU.
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Chapter 3 : Appliations of FV-RB shemeThe presribed toleranes on the values of the aerodynami oe�ients omputed in the �nest gridare respetively ECl
= ±1× 10−3 for the lift oe�ient, ECd

= ±5× 10−4 for the drag oe�ient and
ECm

= ±2 × 10−4 for the moment oe�ient.Mesh Dof No. of faes on airfoilmesh1 2262 16mesh2 4518 50mesh3 8526 150mesh4 17210 400mesh5 26384 700Table 3.27: Unstrutured triangle meshes used for subsoni laminar �ow over the NACA0012 airfoil.
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Figure 3.27: Global view of mesh5.Overview of the �ow The Mah ontours obtained by using the RB O3 sheme on the �nestmesh mesh5 are displayed on top of Fig. 3.29. The omputed �ow is perfetly (at least visually)smooth and symmetri with respet to the y axis. The �ow seems to remain fully attahed. Theseobservations are on�rmed by the plots of the wall-pressure oe�ient distribution and skin-fritiondistribution along the airfoil. Table 3.28 displays the aerodynami oe�ients obtained on the �nestmesh mesh5 by the FV-RB O2 and O3 shemes. The ideal lift oe�ient for this ase should ofourse be zero beause the �ow is symmetri along the airfoil hord. The total drag oe�ients Cdomputed by both shemes are very lose to eah other, sine their relative di�erene does not exeed90



3.3 Steady visous �ows
0.2%. Note however there is a ompensation e�et between the pressure drag Cdp and the visousdrag Cdv. Preisely the value of Cdp obtained by the RB O3 sheme is 1.7% higher than the oneobtained by the O2 sheme, while the value of Cdv obtained with the O3 sheme is 0.4% smaller thanthe one given by the O2 sheme. Let us now proeed to analyze how the shemes evolve towardsthese values when the grid is re�ned.Sheme Cl Cd Cdp Cdv Cm

O2 −1.56 × 10−4 0.181513 0.048751 0.132762 −2.31 × 10−5

O3 −1.04 × 10−4 0.181808 0.049580 0.132228 −2.59 × 10−5Table 3.28: Subsoni laminar �ow over the NACA0012 airfoil. Aerodynami oe�ients obtainedwith the FV-RB sheme on mesh5.Results analysis from the viewpoint of auray/e�ieny In Figure 3.28 it is found thatusing FV-RB O2 sheme, the lift oe�ient remains within the onvergene zone frommesh3. How-ever, this oe�ient is still dereasing slowly with further grid re�nement. A fully onverged valuedoes not seem to be reahed until the �nest meshmesh5 is used. The drag oe�ient enters the on-vergene zone from mesh3 but is always inreasing until mesh5 where the onvergene is ahieved.The moment oe�ient goes within the onvergene zone frommesh2 but its variation does not stopuntil mesh5, where its grid onvergene an be assumed.Using RB O3 sheme, the lift oe�ient enters the onvergene zone frommesh3 and remains almostonstant until mesh5, whih is to say the onverged value is reahed on mesh3, a very satisfyingbehavior with respet to RB O2 sheme. The drag oe�ient enters the onvergene zone frommesh3 and a fully steady state is obtained on mesh4. The omputed moment oe�ient enters theonvergene zone frommesh3 and reahes its steady state on mesh4. In summary, RB O3 providesgrid-onverged values for the lift oe�ient from mesh3 and for the drag and moment oe�ientfrom mesh4, while RB O2 sheme needs mesh5 for the grid onvergene of all of oe�ients. Notethis analysis leads to think the onvergene riteria provided within the ADIGMA projet shouldhave been more restritive; in any ase, the previous analysis assumes more stringent riteria of gridonvergene than the ones initially provided.Dof Memory (MB) CPU time (s) Iterations CPIPD8526 11 2109 10170 2.43 × 10−517210 21 6143 14620 2.44 × 10−526384 32 10427 16380 2.41 × 10−5Table 3.29: Computation ost of the FV-RB O2 sheme from mesh3 to mesh5.The performane of both RB O2 and RB O3 shemes is now ompared in terms of CPU and memoryost. From Table 3.29 and Table 3.30, it an be �rst notied that averagely FV-RB O3 sheme hasa 31% higher CPIPD (ost per iteration per dof) and 1.6 times more memory requirement than theone assoiated with the RB O2 sheme. For a fully grid-onverged lift oe�ient, the RB O2 shemeneedsmesh5(26384 dof) with 10427s CPU time, while RB O3 sheme only needsmesh3 (8526 dof)with 2680s CPU time. The CPU time gain o�ered by RB O3 with respet to RB O2 is therefore91
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Figure 3.28: Aerodynami oe�ients onvergene with dof based on meshes frommesh1 to mesh5obtained by the FV-RB sheme.
Dof Memory (MB) CPU time (s) Iterations CPIPD8526 17 2680 10020 3.14 × 10−517210 34 7952 14420 3.20 × 10−526384 50 13729 16390 3.17 × 10−5Table 3.30: Computation ost of the FV-RB O3 sheme from mesh3 to mesh5.
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3.4 Unsteady �owsa fator of almost 4; the orresponding memory gain is 47%. The ost redution ahieved by RB
O3 sheme with respet to the RB O2 sheme for the grid onvergene of the drag and momentoe�ients is less sine mesh4 has now to be used with RB O3. Preisely this redution is about
24% in CPU time and the memory requirement is almost the same.
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Figure 3.29: A loal zoom of mesh5(top left) and the orresponding results obtained by the FV-RB
O3 sheme. Mah number ontour (top right); Pressure oe�ient distribution on the airfoil (bottomleft); Frition oe�ient distribution on the airfoil (bottom right).
3.4 Unsteady �owsWe lose this hapter with the appliation of the unsteady version of the RB shemes to the ompu-tation of unsteady �ow problems : 93



Chapter 3 : Appliations of FV-RB sheme
• the propagation of an isotropi vortex along the diagonal of a �ow domain will allow us to hekwhether the proposed unsteady extension of the RB sheme within a dual time framework isindeed seond-order aurate.
• the omputation of the (di�ult) Double Mah Re�etion problem will provide some insighton the robustness of the RB sheme when applied to the omputation of �ows involving strongmoving shoks (in partiular we will assess the interest of the variant proposed in 2.3.3).3.4.1 Smooth �ow: vortex propagation problemOverview of the �ow problem The unsteady Euler equations are solved on a omputationaldomain x ∈ [0, 10] and y ∈ [0, 10]. Initially, a mean �ow de�ned by the following values for theprimitive variables is set everywhere in the domain : {ρ, u, v, p} = {1, 1, 1, 1}. An isotropi vortex isthe added to this mean �ow with the following perturbations on the veloity omponents, temperatureand entropy :

∆u =
ε

2π
e0.5(1−r2)(−ȳ),

∆v =
ε

2π
e0.5(1−r2)(x̄),

∆T =
(1 − γ)ε2

8γπ2
e(1−r2),

∆S = 0.
�

�

�

�3.3In these expressions, ε denotes the vortex strength, ε = 5; the initial position of the vortex enteris xc = 5, yc = 5 and r2 = x̄2 + ȳ2 with x̄ = x − xc, ȳ = y − yc (see Figure 3.30). The vortexis onveted through the domain with the veloity (u, v) = (1, 1). Charateristi-based in�ow andout�ow boundary ondition are used on all the boundaries. The solution is omputed until t = 2whih ensures the vortex remains in the omputational domain. It must be pointed out that ourintent with this test-ase is simply to hek the orretness of the design priniples of the unsteadyRB shemes: we do not seek to assess for instane the behavior of the shemes when the vortex ispropagated several times through the whole domain, where periodi boundary onditions should beused.A series of regular triangular grid is used to perform the omputations, from Tri_reg1 with 200dof to Tri_reg4 with 12800 dof (see 3.31). Another important parameter to set up is the physialtime-step : it must be large enough to limit the omputational ost of the �ow simulation but alsosmall enough to make the time-disretization error small with respet to the spae-disretizationerror. Besides, it must also be kept in mind that the physial time-step has a diret in�uene on theonvergene speed to the pseudo-steady state at eah physial time iteration. The physial time-step�nally retained for the omputations on the whole series of meshes has been ∆t = 0.002, oupled witha riterion on the pseudo-time onvergene onsisting to let the omputation run at eah physialiteration until the residual on the dual-time derivative has been redued by 4 orders of magnitude.An example of the evolution of this residual is showed in Figure 3.31, in eah physial time stepinterval 0.002, the residual drops at least 4 orders.94
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Figure 3.30: Left : mesh Tri_reg3. Right : initial vortex density ontours (30 levels from 0.49 to1.0).
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Figure 3.31: A zoom of residual onvergene history vs physial time, obtained with RB O3 shemeon mesh Tri_reg4, time step ∆t = 0.002.
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Chapter 3 : Appliations of FV-RB shemeError analysis In Figure 3.32, the density of the exat solution and the numerial solution om-puted with RB O3 on the mesh Tri_reg4 are displayed. On this �ne grid, these two solutions arealmost undistinguishable. Tables 3.31 and 3.32 summarize the omputed error at t = 2 with RB O2and RB O3 on this series of regular triangle grids. A omparison between these two sets of resultsallow to onlude that, with the same seond-order time-disretization, the FV-RB O3 sheme yieldsmore aurate results than the FV-RB O2 sheme. For instane, on the mesh Tri_reg4 for example,the error redution is about 5.5%.
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Figure 3.32: Solution at t = 2. Vortex density ontours (30 levels from 0.49 to 1.003) obtainedby the FV-RB O3 sheme with ∆t = 0.002 on mesh Tri_reg4 (red solid line), and exat solution(blak dashed line). Mesh Dof L2 error orderTri_reg1 200 -2.66056 -Tri_reg2 800 -3.40782 2.48Tri_reg3 3200 -4.00367 1.98Tri_reg4 12800 -4.51921 1.71Table 3.31: L2 norm of numerial errors of density obtained by the FV-RB O2 sheme.Mesh Dof L2 error orderTri_reg1 200 -2.56071 -Tri_reg2 800 -3.29511 2.44Tri_reg3 3200 -4.12090 2.74Tri_reg4 12800 -4.76814 2.15Table 3.32: L2 norm of numerial errors of density obtained by the FV-RB O3 sheme.96



3.4 Unsteady �ows3.4.2 Flow with shoks: double Mah re�etion problemSet up of the test-ase The Double Mah Re�etion (DMR) problem involves moving and re-�eting strong shoks. The on�guration omputed here has been initially proposed by Woodwardand Collela[51℄. The �ow domain is set as x ∈ [0, 4], y ∈ [0, 1]. At initialization, a shok wave issent diagonally into a re�eting wall (equivalently, the problem an also be seen as a shok movinghorizontally and enountering a wedge). The initial �ow is de�ned as the two onstant states on eahside of an inlined shok with shok Mah number Ms = 10, its foot attahed at (x = 1/6, y = 0)and forming an angle of 30◦ with respet to the y-axis (see Figure 3.33). The �uid loated in the�ow region in whih the shok is advaning is initially at rest and suh that :
ρ1 = 1.4, p1 = 1.The upper boundary ondition is set to desribe the exat shok movement from the left to the rightof the domain. With this ondition and the Mah number of the shok, the �ow variables an beomputed in the following way. At the beginning, let us onsider a moving vertial shok at veloity

us with the same after-shok ondition (Figure 3.34), it an be also onsidered as a stati shok with�uid on both sides of it moves with di�erent veloities (Figure 3.35). The Mah number of shok
Ms is atually determined by the �uid on upstream of the shok: Ms = M1 = u′1/a1, with the soundveloity de�ned by: a1 =

√

γp1/ρ1. As the �uid onsidered here is the perfet gas: γ = 1.4, theomputed updtream �uid veloity is therefore u1′ = 10, the shok veloity us = 10. And then thedownstream �uid status an be obtained by the relationship aross a vertial shok. The pressure isgiven by:
p2 =

(
2γ

γ + 1
M2

1 − γ − 1

γ + 1

)

p1,the omputed value is p2 = 116.5.

Figure 3.33: Initial shok position, and the orresponding boundary onditions.The relationship for the �uid density and veloity is given by:
ρ2

ρ1
=
u′1
u′2

=
(γ + 1)M2

1

2 + (γ − 1)M2
1

, 97



Chapter 3 : Appliations of FV-RB sheme

Figure 3.34: A moving vertial shok.

Figure 3.35: A stati shok.
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3.4 Unsteady �owsthe omputed downstream �uid density is: ρ2 = 8, and veloity is u2′ = 1.75.Now if we go bak to the ase with the moving vertial shok (Figure 3.34), status upstream theshok is:
p2 = 116.5, ρ2 = 8, u2 = us − u′2 = 8.25.For the moving shok with the presene of a inlined angle, the veloity omponent in x diretion:

(u2)x = u2cos(30◦), in y diretion (u2)y = −u2sin(30◦) = −4.125. Until now both of status upstreamand downsteam the inlined moving shok are obtained.Figure 3.33 and Figure 3.36 show the boundary onditions hangement with time t. The shok footis always loated at x = 1/6, and the shok head position is hanging with time:
l1 =

1

6
+ tan(30◦) +

ust

cos(30◦)
. On the left boundary, boundary ondition inlet1 is imposed, whihrepresents that the physial �ux omputed from upstream shok onditions is used here. For the partof the top and bottom boundary upstream shok, the boundary ondition inlet2 represents that anumerial �ux using upstream shok ondition and extrapolated solution from internal domain isomputed on this boundary. It is to note that the numerial �ux of a lassial approximate Riemannsovler is used for the omputation with FV-RB sheme, beause the numerial �ux of the FV-RBsheme annot be used on the boundary. On the top boundary loated at right hand side of theshok, ondition inlet3 means that the physial �ux omputed from the status downstream theshok is imposed. For the part of the bottom boundary downstream shok, the boundary onditionwall represents that a physial �ux is imposed, where the slip-boundary ondition is used and thepressure is extrapolated from the internal domain. On the right boundary, the outlet onditionimpose zero solution gradient. The solution to be omputed is the solution at t = 0.2.

Figure 3.36: Shok movement on the upper boundary, and the orresponding boundary onditions.99
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Figure 3.37: A loal re�ned triangle mesh used for DMR ase, zoom of the part x ∈ [1.5, 3.5].
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3.5 ConlusionAnalysis of the omputed solutions The DMR test-ase is omputed using the FV-RB O2 and
O3 shemes on a triangle-based mesh, whih is loally re�ned in the region where the main �owstrutures will be loated at the �nal time t = 2 of the omputation. This mesh ontains 98172 dofand a detailed view of the re�ned region is displayed in Figure 3.37. It is important to point out thebaseline unsteady version of the RB shemes applied to this problem (that is the same version usedfor the previous vortex onvetion problem) fails to onverge from the very start of the omputation.The only way to obtain a developed solution at t = 2 with RB O2 or RB O3 is to make use of the RBtime residual limiting desribed in 2.3.3). Unfortunately, this means that the oe�ient βRB whihappears in equation 2.69 has to be tuned, on top of the oe�ients K and β assoiated with thespae disretization. When βRB is taken large, it means the applied limiting is loose, so that manydetailed strutures suh as the disontinuity vortex roll-up an be aptured but many osillation mayappear and sometimes the omputation an even explode before atually reahing t = 2. With asmall value for βRB (a strit limiting), the omputation runs without di�ulties and the result hasfew osillations, but some �ne strutures are smeared out. The parameters used by both RB shemesare summarized in Table 3.33 and the orresponding results on this mesh are displayed in Figure(3.38). The global shok struture is orretly aptured by both the RB O2 and O3 shemes withthe applied limiting strategy but numerous osillations remain present in the solution. A omparisonwith the referene result (Figure 3.39) taken from the omputation results of a projet partner UNST(University of Stuttgart) in the ADIGMA projet report [3℄ learly show some small �ow strutures(in partiular the roll-up vortex struture) are not really well aptured by RB shemes. Although thelak of grid re�nement may be inriminated for this very demanding test-problem, it is lear howeverthe RB sheme, in its present stage of development, is not well adapted to the aurate and e�ientomputations of suh �ows involving strong moving disontinuities.Sheme K βRB βRB O2 2.0 0.05 -RB O3 2.0 0.05 0.05Table 3.33: Limiter parameters used by the FV-RB sheme for DMR ase.3.5 ConlusionIn this hapter the grid onvergene order of FV-RB seond and third-order sheme is veri�ed onsimple model problems like a irular advetion problem and advetion-di�usion problem. Resultsshow that the seond-order RB sheme is robust to the mesh quality, while the result of the third-order RB sheme is quite mesh dependant. On a regular mesh it an give a very good result: smallerror and super onvergene order, but a poor onvergene order and big error ould be obtained ona irregular mesh. This problem seems quite severe in 3D. And then some more omplex problemsare omputed. For a smooth invisid �ow in 2D, the gain of third-order FV-RB sheme ompared tothe seond-order sheme for omputing a grid-onverged aerodynami oe�ient is very lear. Thepreision advantage of the third-order sheme is also evident on a transoni ase and visous asein 2D. But for several 3D ases, the gain of third-order FV-RB sheme is not found. The possiblereason is that a very large stenil is neessary for the third-order FV sheme, whih ompromisedthe performane of the third-order sheme to some extent. 101
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Figure 3.38: Density ontours (30 levels from 1.5 to 21.5) obtained by the FV-RB O2 sheme (top)and the O3 sheme (bottom) with ∆t = 2 × 10−4.

Figure 3.39: Referene result. Density ontours obtained by a WENO-FV O5 sheme on a struturedmesh with 921600 dof.102



4Design priniples for the SV-RB sheme
Frenh La première partie de e travail a été onsarée au développement et la validation d'unshéma d'ordre deux et d'un shéma d'ordre trois basés sur le résidu sous la formulation des volumes�nis en maillages non-struturés. Ces shémas FV-RB O2 et O3 ont été appliqués à une série desproblèmes d'éoulement et une omparaison systématique a démontré dans quelques as le gain ene�aité due à la montée en ordre du shéma. Toutefois, lorsque l'on augmente l'ordre du shéma,les di�ultés liées à la méthode des volumes �nis sont apparus lairement : de l'ordre deux à l'ordretrois pour les problèmes 3D en partiulier une augmentation très signi�ative de la mémoire destokage est introduite. En e�et, il est di�ile d'imaginer de onevoir, par exemple, une reonstru-tion ubique de moindres arrés en 3D en raison d'un stenil trop large qui lui serait assoié. Uneautre stratégie onsiste à augmenter le nombre de degrés de liberté dans haque ellule du maillageplut�t que d'étendre le support autour de haque ellule. À ette �n, des essais ont été menés surla méthode des di�érenes spetrales [34℄[49℄ dans la phase initiale de ette thèse. Étant donné queertains problèmes de stabilité apparaissent lorsque le shéma RB est ouplé ave la méthode desdi�érenes spetrales, on a �nalement déidé d'utiliser la méthode des volumes spetraux (SV)[47℄omme une base alternative de développement du shéma RB d'ordre très élevé en maillages non-struturés généraux. Dans ette thèse, on s'est onentré sur le développement d'un shéma d'ordredeux et surtout d'ordre trois, qui ouple l'idée de SV et du �ux numérique de RB (les shémas or-respondants seront désignés par SV-RB O2 et SV-RB O3 à partir de maintenant).Ce hapitre dérit le prinipe de l'approhe SV et la façon dont on ouple la SV ave le �ux numériquedu RB. A�n de présenter lairement les desriptions tehniques, le as d'appliation traité ii estun problème d'advetion salaire simple. Ensuite on va montrer omment la phase impliite sansmatrie utilisée par le shéma FV-RB est implémentée ave suès pour les shémas SV. Finalement,les omparaisons seront faites non seulement entre les shéma SV-RB et les shémas déentrés-amontlassiques ouplés ave la SV, mais aussi entre les shémas SV-RB et les shémas FV-RB développésauparavant.English The �rst part of this work has been devoted to the development and assessment of a se-ond and third-order �nite-volume formulation for the residual-based sheme on unstrutured grids.These FV-RB O2 and O3 shemes have been applied to a large panel of �ow problems; a systematiomparison has demonstrated in some ases the bene�t for e�ieny of inreasing the auray or-der. However the di�ulties assoiated with the �nite-volume strategy when inreasing this aurayorder were also made lear : going from seond-order to third-order for 3D problems in partiular103



Chapter 4 : Design priniples for the SV-RB shemeindues a very signi�ant inrease in memory storage In fat, it is hardly oneivable to design forinstane a ubi least-square reonstrution in 3D beause of a huge stenil assoiated with it. Analternative strategy onsists in inreasing the number of degrees of freedom within eah mesh ellrather than extending the support stenil for eah ell. To this end, experiments were arried out inthe initial stage of this thesis with the spetral di�erene method [34℄[49℄. Sine some stability prob-lems emerged when the RB sheme is oupled with the spetral di�erene method, it was eventuallydeided to assess the Spetral Volume (SV) strategy proposed in [47℄ as an alternative frameworkfor deriving potentially very high-order RB shemes on general unstrutured grids. In the presentwork, we have foused on the design of a seond and more importantly third-order aurate shemeombining the SV ideas with the RB numerial �ux (the orresponding shemes will be denoted bySV-RB O2 and SV-RB O3 from now on).This hapter desribes the basi priniples of the SV method and the way to ombine SV withthe RB numerial �ux. In order to larify as muh as possible this tehnial desription, the aseof appliation treated here is a simple salar advetion problem. And then we will show how thematrix-free impliit method used by the FV-RB sheme is suessfully implemented for SV shemes.Finally omparisons will be made not only between the SV-RB shemes and lassial upwind shemesoupled with the SV method but also between these SV-RB shemes and the previously developedFV-RB shemes.4.1 Introdution to the Spetral Volume methodConsider a omputational domain Ω whih an be divided into non-overlapping triangular ells, eahell is named a spetral volume (SV) and the ith SV is denoted by Si. In the present work we willrestrit our study to triangular spetral volumes but the approah is general and applies to any typeof ell (triangular or quadrilateral). Eah SV is itself divided into a set of non-overlapping sub-ellsin a strutured way so that a polynomial of a ertain degree an be reonstruted by using subell-average values. The sub-ell is alled ontrol volume (CV); the jth CV in the ith SV is denoted by
Ci,j. The triangular SV an be transformed into a simplex: a right triangle or a equilateral triangle;the �rst type is hosen in the present work. There are many hoies for subdividing a SV into CVsin order to ahieve a given auray order; the subdivisions or partitions initially used by Wang[48℄ have been found to be not the best ones [18℄. A series of optimal partitions giving a smallerLebesgue onstant proposed by Chen [6℄ are used in the present work and displayed in Figure 4.1.For example, to onstrut a linear polynomial, at least 2 piees of information are neessary in eahdiretion, whih results in 3 CVs (3 CV entroids i.e. 3 piees information) totally in a SV. Thedetails on the solution reonstrution will be desribed later.Let us onsider the following system of onservation laws :

∂U

∂t
+ ∇ · F = 0.

�

�

�

�4.1with the time t, the onservative variable U and the physial �ux F . The integral formulation of thisNote the hoie was made to store the geometry-based data to be used in least-square linear or quadrati reon-strution. Not storing these data would make omparable memory requirements of the seond and third-order shemesbut, in the meantime, would severely inrease the ost per iteration of the latter over the former.104



4.1 Introdution to the Spetral Volume method

Figure 4.1: Partitions of a right triangle simplex SV Partitions for linear, quadrati, and ubireonstrution (left to right).equation leads to the following evolution equation in eah CV:
∂Ūi,j

∂t
+

1

|Ωi,j|

∫

Ωi,j

∇ · FdΩ = 0.
�

�

�

�4.2where Ūi,j is the average solution in the CV Ci,j with its surfae given by |Ωi,j | (for the reason ofsimpliity, the bar on top of solution will be dropped from now on). By using Green-Gauss theorem,the integral term in the above equation beomes:
∫

Ωi,j

∇ · FdΩ =

Nf∑

k=1

∫

Γk

F · ndΓ,
�

�

�

�4.3with Γk the kth fae of Ci,j, n its normal outward-pointing unit vetor, and Nf the total number offaes of Ci,j. The �ux integral on eah fae an be approximated to the desired order by a Gaussquadrature rule :
Nf∑

k=1

∫

Γk

F · ndΓ ≃
Nf∑

k=1

Ngp∑

m=1

ωmHk,m|Γk|.
�

�

�

�4.4where Hk,m is the numerial �ux normal to the fae Γk at the quadrature point m on this fae, theorresponding quadrature weight is ωm; |Γk| is the fae area whih is the length of fae Γk in 2D;total number of quadrature points on the fae k is Ngp.A solution polynomial in the SV i is derived from the CV-averaged values Ui,j and takes the form :
Ui(x, y) =

Ndof∑

j=1

Li,j(x, y)Ui,j.
�

�

�

�4.5where Ndof is the number of degrees of freedom, whih is the number of CVs in eah SV. To onstruta polynomial of degree n in 2D on a SV, a number Ndof = (n+ 1)(n+ 2)/2 of independent piees ofinformation is neessary (by piee of information we mean here a CV-averaged value). For example,
Ndof = 6 for the third-order sheme, hene there are 6 CVs for the quadrati reonstrution (Figure105
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Figure 4.2: SV mapping from physial domain to omputational domain4.1), whih will be used later when deriving third-order shemes. Moreover, the solution reonstru-tion oe�ient Li,j(x, y) depends on the loation of the entroid of Ci,j in the SV i. It seems that thisoe�ient varies in eah SV for every point k(xk, yk). In fat it beomes onstant for every point k ifeah SV is transformed into a standard ell (a simplex) whih is then divided into straight edged CVsin a strutured way, as those partitions showed in Figure 4.1. The mapping proess from a normalmesh ell to the simplex is showed in Figure 4.2, where the original domain (with oordinates x and
y) is alled physial domain, the new domain (with oordinates ξ and η) being alled omputationaldomain. This mapping proess an be also expressed by the following equation:

r = ri,1 + ξ(ri,2 − ri,1) + η(ri,3 − ri,1).
�

�

�

�4.6where r = [x y]T is the vetor of oordinates, ri,j with j = 1, 3 are the oordinates of the three nodesof the triangular SV i, in whih the polynomial reonstrution is going to be built.The reonstrution oe�ients are omputed by expressing the fat that the average value of thereonstruted solution Ui over the CV Ci,j is equal to the solution Ui,j :
1

|Ωi,j |

∫

Ωi,j

Lm(ξ, η)dΩ = δj,m, (m = 1, Ndof ),
�

�

�

�4.7with δj,m the Kroneker delta funtion. For example, in the ase of a linear reonstrution thereonstrution oe�ient an be developed as :
L(ξ, η) = a0 + a1ξ + a2η.

�

�

�

�4.8where a0, a1 and a2 are polynomial oe�ients to be determined. Sine there are three CVs Ci,j inthe SV Si for the linear reonstrution ase (Ndof = 3), equation (4.7) yields three equations for eah
Li,j (j = 1, Ndof). The three polynomial oe�ients for a given reonstrution oe�ient L an beomputed from these equations. In this way, all three reonstrution oe�ients in funtion of theomputational oordinates L1(ξ, η), L2(ξ, η) and L3(ξ, η) an be obtained.After the mapping proess equation (4.5) an be written in this form :

Ui(ξ, η) =

Ndof∑

j=1

Lj(ξ, η)Ui,j.
�

�

�

�4.9106



4.1 Introdution to the Spetral Volume methodGiven the omputational oordinates of any point in the SV, the solution at this point ould beestimated from (4.9). In pratie only the solution at some points is neessary, typially at Gaussquadrature points. In a simplex, the oordinates (ξg, ηg) of these Gauss points are known one forall, therefore any reonstrution oe�ient Lj(ξg, ηg) is a onstant for the Gauss point g. Coe�ientsfor eah Gauss point are omputed and saved at the beginning of the omputation.Sine an independent solution polynomial is reonstruted in eah SV, the solution is ontinuousthrough the CV faes loated inside the SV. Consequently, the �ux at a Gauss point loated on aso-alled internal CV fae is simply omputed as the physial �ux using the solution estimate at thisGauss point. The piture is of ourse di�erent on the boundaries of a SV, or so-alled external CVfaes, oinident with CV faes from a neighboring SV. In that ase, the solution reonstrution isa priori disontinuous sine expressed by two distint polynomials; a ommon numerial �ux is thenneessary for approximating the physial �ux in equation (4.4) at Gauss points loated on externalCV faes whih belong to the SV boundary. The numerial �ux an be obtained by using an exat orapproximate Riemann solver (Rusanov sheme, HLLC sheme or Roe sheme typially) or by usinga RB numerial �ux. The formulation of the RB sheme based on the SV method will be detailedin the next setion. In the present setion, we omplete our desription of the SV approah by usinga lassial approximate Riemann solver as the numerial �ux, namely the Rusanov numerial �uxgiven by :
HRusanov =

1

2
(F⊥

L + F⊥
R ) − 1

2
λmax (UR − UL).

�

�

�

�4.10where F⊥
L and F⊥

R are the projetion of the physial �ux onto the outward fae normal diretion,respetively omputed in the left and right CV of the orresponding interfae, λmax is the maximumwave-speed assoiated with the hyperboli system to be solved, whih is the maximum absolute valueof the normal Jaobian matrix eigenvalues.The partition of the SV into CVs and the Gauss points along the faes of eah CV in the ase of aseond-order SV method are provided in Figure 4.3. At the so-alled interior Gauss-points, loatedalong faes of CVs whih are not shared with another SV, the numerial �ux appearing in (4.4) isdiretly omputed as :
Hg = F⊥(Ug)

�

�

�

�4.11where Ug is omputed with (4.9). For boundary Gauss-points, loated along faes of CVs whih areshared with another SV, the physial �ux is approximated by a numerial �ux, written as follows inthe ase where the Rusanov �ux is retained :
Hg =

1

2
(F⊥(Ug,L) + F⊥(Ug,R)) − 1

2
λmax

g (Ug,R − Ug,L).
�

�

�

�4.12where Ug,L = Ug,i is the solution obtained by the reonstrution polynomial in SV i and Ug,R = Ug,ois the solution obtained by the reonstrution polynomial in SV o. The maximum signal speed,
λmax(Ug,L, Ug,R) is omputed at the Gauss point g using typially a Roe-averaged state omputedfrom Ug,L and Ug,R. 107
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Figure 4.3: CVs and Gauss points for O2 SV4.2 Strategy for time-integration4.2.1 Expliit time-advanementFollowing several authors who have initially ontributed to the development of the SV approah, athird-order Runge-Kutta sheme [20℄ an be used for omputing both steady and unsteady problems[47℄, [18℄. Time-auray will be ensured for unsteady �ows while robustness in the hoie of a CFLnumber will be obtained for steady �ow omputations. The method reads :
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�4.13where the residual of equation (4.2) is given by :
R(Un

i,j) = −∆ti,j
|Ωi,j |

Nf∑

k=1
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m=1

ωmHk,m|Γk|.
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�4.14with ∆ti,j the time step in the CV Ci,j. Based on the de�nition of the CFL number, the time stepis omputed by:
∆ti,j =

CFL · hi,j

λmax
i,j

.
�

�

�

�4.15where hi,j is the harateristi size of the CV Ci,j and is omputed as for the FV-RB sheme (referto setion 2.1.3); λmax
i,j is the maximum eigenvalue of the physial �ux Jaobian matrix in equation(4.2). This approah has been implemented within our SV numerial solver; however sine it wasimportant for us to be in position to perform a fair omparison between the FV-based and SV-based108



4.2 Strategy for time-integrationstrategies for deriving third-order versions of the RB sheme, it was also deided to devote somee�ort to the building of an impliit version of the SV sheme for omputing steady problems.4.2.2 Matrix-free impliit method for SVAs previously mentioned, in the ourse of this work, impliit formulations for SV shemes have beenderived by some authors (motivated in partiular by the need to speed up the onvergene to steady-state in the ase of visous �ow problems). For instane, an impliit LU-SGS algorithm oupled witha p-multigrid strategy has been suessfully used for the SV method in [40℄. In this work, we havenaturally deided to extend to the SV formulation the simple matrix-free impliit sheme presentedin the �rst part of the work (see setion 2.1.3, devoted to the FV formulation of the RB sheme).For SV method, the impliit sheme is used for eah CV instead of SV beause the disretizationequation is based on a CV. The basi idea of this matrix-free sheme is to use a Rusanov shemefor the numerial �ux in the impliit phase, while the numerial �ux used in expliit phase is in-dependent on the impliit sheme. There are two hoies: either using the impliit numerial �uxonly on the boundary CV faes (faes loated on the SV boundary), or using the impliit sheme onall of CV faes. By onsidering that later hoie ould bring more dissipation to the whole sheme,this hoie is therefore adopted in our omputation. In order to implement the impliit sheme inthis way, a tehnial issue in the programming omes, whih is that all of CVs and the nodes andfaes of eah CV needs to be numbered globally in the whole physial domain, while it is not nees-sary when the expliit sheme is used, where CVs are numbered loally in a SV, i.e. Ci,j is the jthCV of SV i. As long as the global numbering is done, the onnetion between a loal CV in a SVand a global CV is neessary, some detailed issues related to programming are disussed in Appendix.Let us reall the disretized system of onservation law for a CV Ci,j:
∆Un

i,j = R(Un
i,j),

�

�

�

�4.16where ∆Un = Un+1 − Un, and the residual R(Un
i,j) is given by (4.14). Now if we drop the notationfor the loal CV and use a new notation for any global CV p, the above disretization beomes:

∆Un
p = −∆tp
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�4.17Then the impliit sheme is used in the same way as desribed in setion 2.1.3. The total impliitsystem is also solved with the Point-Jaobi relaxation tehnique, whih gives:
⇔







∆U
(0)
p = 0







l = 1, L

∆U (l)
p =

1

Cp

(Rn
p − a

∑

k

|Γk|(∆H(l−1)
p + ∆H(l−1)

o(p,k) − (ρ⊥)p,o(p,k)∆U
(l−1)
o(p,k)))

∆U
(n)
p = ∆U

(L)
p

.
�

�

�

�4.18where L is the number of sub-iteration; the oe�ient Cp = 1+aσ
∑

k

|Γk|(ρ⊥)p,o(p,k), with a =
∆tp
2|Ωp|

,and a relaxation oe�ient σ. Normally σ = 1 for a high e�ieny of the impliit phase. But thishigh e�ieny ould result in a stability problem in a ertain ase. Therefore only a small CFL ispermitted. By inreasing the σ a big CFL an still be used. 109



Chapter 4 : Design priniples for the SV-RB sheme4.3 Coupling the SV method and the RB numerial shemeIn the following a 2D seond and third-order RB sheme is developed within the framework of the SVmethod. The proposed formulation an be "easily" generalized to higher orders of preision and to 3Dproblems. By "easily", we mean there is no suh obstale as the exeedingly large stenil assoiatedwith a high-order 3D FV extension. Let us start from the SV-RB O2 sheme, the partition of the SVand hoie of Gauss quadrature points on eah CV fae are showed in Figure 4.4. A shift ell formedby two CV entroids i, j and o, k, and two nodes n1 and n2 of the fae on whih the numerial �ux isomputed. Let us now proeed to a detailed desription of the RB �ux omputation at a Gauss-point
g on frae k.

Figure 4.4: Shift ell used by the SV-RB O2 sheme. For the RB numerial �ux omputed at Gausspoint g on a boundary CV fae n1 − n2, the shift ell formed by i, j(entroid of jth CV in SV i),
o, p (entroid of pth CV in SV o), and two nodes (n1 and n2) of this fae is used. Points 1 − 4 arequadrature points used for residual omputation in this shift ell.As in the FV method, the RB numerial �ux still inludes two parts, namely a purely entered �uxand a numerial dissipation :

HRB
g =

1

2
(F⊥

g,L + F⊥
g,R) − dg,
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�

�4.19where F⊥
g,L and F⊥

g,R are the normal �uxes at the Gauss point g alulated orrespondingly in the SV
i and SV o. The de�nition of the numerial dissipation dg is similar to the one de�ned for FV-RBsheme:

dg =
1

2
L⊥ΦkRk,
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�4.20where L⊥ = ∆r(i,j),(o,p) · nk is the projetion of distane between the entroids of two CVs sharingthe interfae k on the fae normal diretion; the O(1) dissipation oe�ient matrix Φk is alulatedin the same way as for FV-RB (refer to equation (2.18) and (2.19)); and Rk is an approximation ofthe residual integral:
Rk =

1

|Ωk|

∫
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r dV ,
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�

�4.21110



4.3 Coupling the SV method and the RB numerial shemewhere r the residual of the onsidered system, here Euler equations are onsidered:r = ∇·F(U); and
|Ωk| is the surfae of the shift ell (see Figure 4.4). Taking into aount the residual r in equation(4.21) and using Gauss's theorem yields :

Rk =
1

|Ωk|

∫

∂Ωk

F · n dS =
1

|Ωk|
∑

l∈I(Ωk)

∫

Γl

F · n dΓ,
�

�

�

�4.22where I(Ωk) inludes all the faes of the shift ell. For a seond-order sheme, this residual shouldbe approximated at least to �rst-order in order to obtain a seond-order dissipation term. A seond-order - at least - residual approximation is neessary for a third-order dissipation. Obviously theintegral in equation (4.22) an be omputed by a Gauss quadrature formula :
∫

Γl

F · n dΓ =

Nq∑

q=1

ωqF⊥
l,q|Γl| + O(h2Nq+1),
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�

�4.23where Nq is the number of quadrature points, ωq is the quadrature weight orresponding to point
q, the length of the fae l is |Γl| and h is the typial mesh size. Clearly the exat �ux F⊥

l,q is notavailable beause the exat solution at this point remains of ourse unknown. Therefore a numerial�ux Hl,q is used as replaement, whih is obtained by substituting the reonstruted solution intothe physial �ux, i.e. Hl,q = F⊥(UR
l,q), so that :

Hl,q = F⊥
l,q + O(hk).
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�4.24Taking into aount (4.24), equation (4.23) is rearranged in the form :
∫
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�4.25An extra order of auray will be gained if the fae integral is summed up for all faes of the shiftell:
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�4.26In 2D |Ωk| is onsidered to be O(h2), so that this equation beomes:
Rk = Rk + O(hk) + O(h2Nq),

�

�

�

�4.27with the residual approximation:
Rk =

1

|Ωk|
∑

l∈I(Ωk)

Nq∑

q=1

ωqHl,q|Γl|.
�

�

�

�4.28Equation (4.27) shows that for a seond-order sheme (k = 2) as well as for a third-order sheme(k = 3) , only one Gauss quadrature point along eah fae of the shift ell is needed for the �rst-orderresidual approximation or seond-order approximation. Equation (4.28) �nally beomes:
Rk =

1

|Ωk|
∑

l∈I(Ωk)

Hl|Γl|.
�

�

�

�4.29111



Chapter 4 : Design priniples for the SV-RB shemeWhen omputing the non-dissipative �ux for the third-order SV-RB sheme, two Gauss quadraturepoints are needed on eah CV fae, whih means that two distint RB numerial �uxes should beomputed on eah boundary fae. On a given CV fae, the purely entered �ux is omputed at eahquadrature point (g1 or g2 in Figure 4.5) but the same numerial dissipation is adopted to redue theomputational ost :
HRB

g1
=

1

2
(F⊥

g1,L + F⊥
g1,R) − dg,

HRB
g2

=
1

2
(F⊥

g2,L + F⊥
g2,R) − dg.

�

�

�

�4.30where it is emphasized dg is omputed one on eah CV fae, using the �ux balane on a shift-ellpreviously desribed. This shift ell is onstruted in the same way as for the seond-order sheme.An example is displayed in Figure 4.5. It is important to make lear that no RB �ux is omputedon internal CV faes, and only one dissipation �ux dg is omputed for eah external fae of a CV.For instane, in the ase of the seond-order SV-RB sheme (see Figure 4.4) there are 6 external CVfaes, hene 6 distint evaluations for the dissipation �ux on a given SV and 6 distint evaluations ofthe non-dissipative entered �ux beause there are 1 Gauss quadrature point on eah CV fae. In thease of the third-order SV-RB sheme, beause there are 9 external CV faes, 9 distint evaluationsof the dissipation �ux and 18 evaluations of the non-dissipative entered �ux (sine 2 Gauss pointson eah CV fae) are made.

Figure 4.5: Shift ell used by the SV-RB O3 sheme. For the RB numerial �ux omputed at Gausspoint g1 and g2 on a boundary CV fae n1−n2, only one numerial dissipation is omputed by usingthe shift ell formed by i, j(entroid of jth CV in SV i), o, p (entroid of pth CV in SV o), and twonodes (n1 and n2) of this fae. Points 1 − 4 are quadrature points used for residual omputation inthis shift ell.The reonstrution oe�ients orresponding to the fae enters of the shift ell, whih are spei� tothe use of the RB numerial �ux, are omputed from their known oordinates in the simplex. Theyare omputed only one at the very beginning of the alulation and stored for later usage, so as tosave on omputational time.112



4.4 Numerial results4.4 Numerial resultsThe 2D irular advetion problem presented in setion 3.2.1 is now onsidered and omputed usingthe seond and third-order SV shemes. For eah order of preision, the RB sheme and a representa-tive of onventional upwind shemes, Roe sheme, are used and ompared. The series of unstruturedtriangular meshes already used for the FV omputations in Chapter 3 (see Table 3.2 for details) areused for the omputation with eah sheme. Let us reall that these meshes are made of triangles,with the oarsest mesh, Tri_irreg1, ontaining 226 ells and the �nest mesh, Tri_irreg5, on-taining 57518 ells. For eah mesh the error between the exat solution and the numerial solutionobtained using the SV approah is omputed in eah CV and the resulting norm is plotted againstthe harateristi grid size in order to estimate the atual order of auray that an be attained withthe numerial shemes under study. It is important to point out at this stage the di�erene betweenthe SV results and the previously obtained FV results. On the �nest mesh Tri_irreg5 for instane,the number of dof assoiated with the FV O2 and O3 methods are the same, namely the numberof grid ells, 57518. If the SV O2 shemes are applied on this same grid, sine eah ell, i.e. SV,ontains 3 CVs, the number of dof amounts to 57518 × 3 = 172554. Similarly for O3 SV sheme,with 6 CVs in eah SV, 14412 × 6 = 86472 dof is used on this mesh.
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Chapter 4 : Design priniples for the SV-RB shemethe di�erene between the results obtained with two distint numerial �uxes is dereasing with thesheme order inreasing. In other words, the numerial �ux seems to play a role less and less impor-tant in the solution auray. The reason for this behavior is probably that with the inreasing orderof auray, the number of CV boundary faes - i.e. CV faes loated on a SV boundary, hene onwhih the numerial �ux is omputed - tend to derease with respet to the total number of CV faesin a SV, thus making less signi�ant the in�uene of the numerial �ux formula on the numerialsolution. For instane, eah CV has two boundary faes for the seond-order SV sheme; there areCVs that have only 1 boundary fae for third-order SV shemes and for fourth-order SV shemes, aCV without boundary faes exists (see Figure 4.1).Analysis of the SV shemes e�ieny In the following the omputation ost of the SV-RB sheme is ompared to the SV-Roe sheme. At �rst, the results obtained on the �nest meshTri_irreg5 are onsidered. In Table 4.1 CPIPD is the CPU time Per Iteration Per Dof. Iterationsand CPU time in this table are those needed by the omputation to reah the steady state, whih isde�ned as the residual drop of order 10 here. This table shows that the omputation with SV-RB O2sheme is about 12% more expensive on CPIPD than the SV-Roe O2 sheme for this ase, whih isunderstandable beause the RB numerial �ux is more omplex to ompute than the Roe numerial�ux. A higher CPIPD is the soure whih leads to a global higer CPU time used by the RB O2sheme to reah the onvergene with about the same iterations used by the Roe O2 sheme. Thememory use of both shemes is almost the same. Table 4.2 shows that between di�erent numerial�uxes for the third-order sheme, the RB sheme has a 10% higher CPIPD than the Roe sheme.As more iterations are neessary to reah the omputation onvergene with the RB O3 sheme,the total CPU time needed by this sheme is higher than the one of Roe O3 sheme. Again bothshemes use almost the same quantity of memory. By omparing the third-order results with those ofseond-order sheme, there is no suprise to see that the CPIPD of third-order SV sheme is globallyhigher than the one of seond-order sheme, beause there are more numerial �uxes to ompute foreah CV in the third-order sheme. Preisely, the CPIPD of Roe O3 sheme is 19% higher than theone of Roe O2 sheme, and ompared to RB O2 sheme, RB O3 sheme has a 17% higher CPIPD.As there are more CVs and quadrature points to be stored in the omputation, the memory usageof the third-order sheme is 2.2 times higher than the seond-order sheme on the same mesh. Butit should be noted that the numerial error level ahieved by the seond-order shemes on the �nestmesh Tri_irreg5 an already be obtained by third-order shemes on a oarse mesh Tri_irreg3,and the orresponding omputation ost is very low (see Table 4.3). This is to say that to ahievethe same preision level, with third-order shemes the omputation ost is far less than the one ofseond-order shemes.Sheme Dof Memory(M) CPU time(s) Iterations CPIPDRoe O2 172554 167 281 550 2.96 × 10−6RB O2 172554 168 332 580 3.32 × 10−6Table 4.1: Computation ost omparison for SV O2 shemes on mesh Tri_irreg5, CFL = 106.Comparison between FV and SV shemes Sine our objetive in this last part of the workis to investigate the interest of turning to the SV approah as a general framework for deriving114



4.4 Numerial resultsSheme Dof Memory(M) CPU time(s) Iterations CPIPDRoe O3 345108 373 1031 850 3.52 × 10−6RB O3 345108 375 1246 930 3.88 × 10−6Table 4.2: Computation ost omparison for SV O3 shemes on mesh Tri_irreg5, CFL = 106.Sheme Dof Memory(M) CPU time(s)Roe O3 21528 24 21.7RB O3 21528 24 32.4Table 4.3: Computation ost omparison for SV O3 shemes on mesh Tri_irreg3, CFL = 106.
high-order formulations of the RB sheme, we wish to ompare SV-RB O3 with FV-RB O3 both interms of auray, e�ieny and memory requirements. The omparison will be made for a regulartriangular mesh, but observations remain valid for the omputations performed on other meshes.The mesh used by the FV-RB sheme has 19208 elements and the one used by the SV-RB shemehas 6 times less elements, whih is the mesh Tri_reg3 in Table 3.1 (3200 triangles, see Figure 4.7),so that both shemes will have almost the same dof (19208 for FV-RB O3, number of ells, and
6 × 3200 = 19200 for SV-RB O3, number of CVs). The evolution of the numerial error (L2 norm)against the CPU time obtained by both shemes with the same (large) CFL is showed in Figure4.8. On this piture, we also plot for referene the evolution of the numerial error obtained on theoarse grid made of 3200 triangles with FV-RB O3 (in that ase the number of dof is the numberof ells or SVs). Naturally for suh a redued number of dof the onvergene is fast, the memoryrequirement is low but the numerial error is large. With this ase, we want to emphasize the fatthat, in pratie, the SV method will be applied on this same oarse grid; the automati proess of SVsubdivision will then take plae to yield the aforementioned 19200 dof. In the ase of FV omputa-tions, a grid re�nement would have to take plae in order to inrease the number of ells in the grid :this proess an also be made automati but the simpliity of generating CVs within eah SV is better.It is lear that the omputation using FV-RB O3 and SV-RB O3 with the same number of dof yielda onverged numerial error in about the same omputational time as showed in Table 4.4. Note bothshemes are oupled with the same previously desribed �rst-order impliit stage (applied at the elllevel for the FV approah and at the CV level for the SV approah). In Figure 4.8, the alulation isrun for eah sheme until the same level of residual is attained (typially 10−8); it an be observed theasymptoti onvergene rate for the SV-RB O3 sheme is poorer than the one ahieved with the FV-RB O3 sheme, thus leading to a larger number of iterations (though we emphasize the steady-stateon the numerial error has been prior ahieved with both shemes). More interestingly, the level ofnumerial error provided by the FV-RB O3 sheme for the same number of dof is smaller than theone ahieved with SV-RB O3. It an be dedued from Table 4.4 the intrinsi ost (CPIPD) of SV-RB
O3 is about 31% higher than the intrinsi ost of FV-RB O3 but with memory requirements 25%lower. This last positive point is worthy of interest sine the memory requirements learly beome aruial onern when extending the FV approah to higher-order. 115
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Figure 4.7: Mesh with regular triangles used by the SV-RB sheme (left) and the FV-RB sheme(right).
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4.5 Conlusion4.5 ConlusionThe seond and third-order SV method based RB sheme are obtained for solving a pure advetionproblem on unstrutured triangular grids. The grid onvergene study shows that the RB shemeis no more aurate than the SV method oupled with the numerial �ux of a lassial approximateRiemann solver. And the omputation ost of the SV-RB sheme is higher than the one of thelassial numerial �ux. When the SV-RB sheme is ompared to the FV-RB sheme at third-orderwith the same dof and same impliit sheme, it is seen that the FV-RB onverges a little faster andgives a muh smaller numerial error.
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5Extension of the SV-shemes to ompressible �ows
Frenh Le hapitre préédent a été onsare à la desription du prinipe de l'approhe SV. Lesontributions du présent travail ont aussi été détaillées: développement d'un shéma SV-RB à l'ordre2 et 3; adjontion d'une phase impliite assoiée à la phase expliite du système basé sur la disréti-sation du SV d'ordre élevé. Le shéma SV-RB a d'abord été développé pour aluler des problèmesd'advetion salaire et une première analyse a été menée sur la préision et l'e�aité des shémasSV pour un problème d'advetion irulaire. Dans e dernier hapitre, on va étendre es versions dushéma au alul des éoulements ompressibles autour d'une obstale (par résolution des équationsd'Euler). Comme on s'intéresse seulement ii aux problèmes stationnaires, l'extension des shémassalaires au système non-linéaire des équations d'Euler n'introduit pas de grande di�ulté. Cepen-dant on a besoin d'un traitement spéial à la paroi a�n que la solution d'ordre élevé ne soit pasdégradée par une représentation impréise d'une paroi ourbe dans un maillage grossier, qui estsouvent utilisé ave des shémas SV d'ordre élevé. A la �n de e dernier hapitre, on fera des om-paraisons non seulement entre les shéma SV-RB et les shémas déentré-amont lassiques ouplésave la SV, mais aussi entre les shémas SV-RB et les shémas FV-RB développés auparavant. Cettedernière omparaison faite dans e hapitre et le préédent montrera l'intérêt potentiel de la SVomme base du développement du shéma RB d'ordre élevé.English The previous hapter has been devoted to the desription of the design priniples of theSV approah. The spei� ontributions introdued in this work have also been detailed : derivationof a SV-RB sheme at seond and third-order auray; development of an impliit stage assoiatedwith the high-order SV-based expliit stage. SV-RB sheme has been developed for salar advetionproblems. A �rst analysis of the auray and e�ieny properties of SV shemes has been performedfor the omputation of a irular advetion problem. In this �nal hapter, we intend to extend theseshemes to the omputation of ompressible �ows over obstales. Sine we will limit ourselves tosteady invisid �ows in this hapter, the extension from the salar linear advetion to the non-linearEuler system does not introdue any spei� di�ulties. The presene of a wall boundary howeverrequires a areful treatment if one wishes to avoid that the whole high-order solution be spoiled byan insu�iently aurate representation of a urved boundary in the a-priori oarse grids whih areoften used with the high-order SV shemes. At the end of this last hapter we will perform detailedomparisons not only between the SV-RB shemes and other lassial upwind shemes oupled withthe SV method but also between the SV-RB shemes and the previously developed FV-RB shemes.This last omparison made in last hapter and this hapter will reveal the potential interest of theSV framework for the higher-order RB sheme development.119



Chapter 5 : Extension of the SV-shemes to ompressible �ows5.1 Extension of some lassial upwind shemesWhen reonstruting the solution of the Euler equations, formula (4.9) remains valid but an beapplied either to the vetor of onservative variables U or to the vetor Q = [ρ p u v]T of so-alledprimitive variables. The later hoie is sometimes favored when ompressible �ows with shoks isomputed by using the FV approah beause it allows a better ontrol of the pressure osillations(the limiting strategy assoiated with the FV approah is then diretly applied upon the pressure).In the ase of the SV approah, the �rst hoie is adopted mainly beause it is slightly more e�ientsine it avoids a onversion from onservative to primitive variables and vie-versa.5.1.1 Rusanov shemeWe have already pointed out in the previous hapter the very simple Rusanov sheme [41℄ ould beretained as the numerial �ux for the SV approah, preisely beause of its great simpliity henelow intrisi ost. The expression of the Rusanov numerial �ux is given by (4.10). For the 2D Eulerequations, the Jaobian matrix in the fae normal diretion has 4 eigenvalues:
λn = [Vn Vn Vn − a Vn + a]T , with Vn = u · nx + v · ny the veloity in the fae normal diretion and
a the speed of sound. Hene the maximum absolute value of the wave speeds is λmax = |Vn| + a;its value on the fae is omputed using typially a Roe-averaged value of the veloity omponents,density and total enthalpy between the left and right states given at the onsidered Gauss point bythe respetive reonstrution polynomials in the SVs on eah side of the interfae. For smooth �ows,a simple arithmeti average an also be used to further redue the ost of the sheme.5.1.2 HLLC shemeIn order to hek the SV framework an aommodate a large spetrum of numerial �uxes and alsoto perform a fair omparison between the SV-RB sheme and the oupling of SV with a onventionalupwind sheme, we have deided to perform omputations with the HLLC sheme, reputed lessdissipative than the previous Rusanov sheme while o�ering a low intrinsi ost. The HLLC shemeused here is preisely the one developed by Toro et al.[45℄; its numerial �ux is given by:

HHLLC =







F⊥
L if SL > 0

F⊥(U∗
L) if SL 6 0 < SM

F⊥(U∗
R) if SM 6 0 6 SR

F⊥
R if SR < 0

,
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�5.1where
U∗
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ρ∗L/R

(ρu)∗L/R
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(ρE)∗L/R








= CL/R







ρL/R∆VL/R

∆VL/R(ρu)L/R + ∆pL/Rnx

∆VL/R(ρv)L/R + ∆pL/Rny

∆VL/R(ρE)L/R − pL/R(Vn)L + p∗SM
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�5.2with ∆VL/R = SL/R−V n
L/R, ∆pL/R = p∗−pL/R, (Vn)L/R the veloity in the interfae normal diretion.Moreover :
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L − SL)(V n
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5.2 Extension of the RB sheme
F⊥∗

L/R = F⊥(U∗
L/R) =








ρ∗L/RSM

(ρu)∗L/RSM + p∗nx

(ρv)∗L/RSM + p∗ny

((ρE)∗L/R + p∗)SM ,







,
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�

�

�5.5The signal veloities or wave speeds SM , SL and SR are given by :
SM =

ρRV n
R (SR−V n

R )V n
L −ρLV n

L (SL−V n
L )V n

R +pL−pR

ρR(SR−V n
R

)−ρL(SL−V n
L

)
,

SL = min(λmin(UL), λmin(URoe)),

SR = max(λmax(URoe), λmax(UR)).
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�5.6
with λmin(URoe) and λmax(URoe) the smallest and largest eigenvalue of the normal Jaobian matrixomputed with the Roe averaged state between the Left and Right solution vetors. This numerial�ux formula is then diretly inserted into the SV formulation detailed in the previous hapter, whihis omputed at eah Gauss point of external faes of the CVs.5.2 Extension of the RB shemeThe numerial �ux of the RB sheme for the Euler equations remains omputed by equation (4.19)with a formally unhanged expression for the dissipation term, exept that the dissipation �ux isnow the produt of a matrix dissipation oe�ient by the vetor residual. The dissipation matrixis omputed as desribed in Chapter 2 and the residual vetor is obtained with equation (4.29). Itis therefore espeially important to adopt the simpli�ation onsisting of omputing the dissipation�ux only one on eah CV fae in order to limit the ost of the RB numerial �ux with respet tothat of the Rusanov or HLLC numerial �ux previously desribed.5.3 Boundary onditions5.3.1 General strategyWe will onsider only two types of boundaries in the forthoming external �ow appliations : far-�eldboundary and solid wall boundary (slip-wall ondition for the invisid �ow under study).The treatment of the far-�eld boundary does not di�er from what has been brie�y desribed in the FVase : a boundary state is omputed on the CV faes loated on the boundary, by using harateristi-based formula whih depends on the neighboring internal state (omputed at the Gauss point on thisboundary CV with the solution polynomial in the SV whih inludes this CV) and the far-�eld state.The physial normal �ux omputed with this boundary state is then taken as the numerial �ux.On a solid wall, the physial normal �ux formula is applied with an extrapolated state, whih isomputed using the internal solution polynomial. More preisely, onsider a ell i lose to wallboundary; the extrapolated solution at the Gauss point on this wall boundary is omputed with121



Chapter 5 : Extension of the SV-shemes to ompressible �ows
Ug =

∑

j Lj,gUi,j . Taking into aount the slip-wall ondition, the �ux in the normal diretion to theboundary fae at this Gauss point is given by :
F⊥

w = [0 pgnx pgny 0]T .
�

�

�

�5.7where n = [nx ny]
T is the unit normal vetor to the wall mesh fae. The pressure pg is deduedfrom the reonstruted value of the vetor of onserved variables Ug. The fae normal is usuallyomputed by supposing the fae of the CV is a straight line. As to be demonstrated this hoie maybe insu�ient to ensure an aurate representation of the solution and some extra-are is needed inthe treatment of a solid wall-boundary for general urved geometries.5.3.2 Improved treatment for a urved wall-boundaryIt is well know that a preise desription of the boundary is very important for high-order methods.Given a urved boundary, unstrutured mesh with straight edge ells annot represent the boundaryexatly. This approximation an be improved with the re�nement of the mesh. For some high-ordermethods, like Disontinuous Galerkin (DG) method and spetral volume method, the number of de-grees of freedom in eah mesh ell inreases with the sheme order but the boundary representationremains unhanged sine still represented by a series of straight edges. A high-order sheme with alow order boundary representation annot ahieve a truly high-order aurate solution. Unlike the�nite volume method whih is moderately sensitive to the boundary representation, the DG method[5℄ and SV method [50℄ are on the ontrary quite sensitive to this representation.To represent the boundary in a more preise way, one ould use iso-parametri elements on theboundary for SV method. But this would lead to di�erent reonstrution oe�ients and residualomputations for boundary ells with respet to inner ells, whih would make the orrespondingCFD ode rather ompliated. Therefore a simpler method has been proposed by Harris [22℄ forSpetral Volume shemes and used in our omputation. Note this idea, referred as high order im-plementation of wall boundary onditions, has been originally proposed in [29℄ for DisontinuousGalerkin method. Its general priniples are desribed in the following; it is next oupled with the SVversion of the HLLC and RB shemes previously desribed and applied to the omputation of the�ow over a ylinder and an airfoil in this work.The general priniples of the improved wall boundary treatment to be implemented and assessed inour omputation an be summarized as follows :

• First, a set of interpolation points to be used to represent the boundary fae at a presribed(high) order is determined for eah boundary SV.
• Next, the normal vetor assoiated with eah urved fae onstruted from the above interpo-lation points is omputed.
• Finally, a ghost solution vetor at eah Gauss point on the wall mesh fae is omputed, byusing this normal vetor to the urved fae and the solution vetor in the internal domain. Theinternal and ghost solution on eah side of the Gauss point(s) loated on the boundary faeare then used to ompute a numerial �ux through this fae. Alternatively, the physial �ux(5.7) omputed with the physially orret/aurate normal vetor ould be used; this hoiewas not retained for the sake of robustness.We now proeed to give a detailed desription of the above steps in the following paragraphs.122



5.3 Boundary onditions5.3.2.1 Interpolation points determinationLet us suppose a urved wall boundary exists in the 2D �ow domain. A �rst-order mesh disretizesit only with some straight lines (see Figure 5.1) leading to some possibly large numerial errors. Asthe analyti form of the wall boundary is often unknown, we have to �nd a way to reover the urvedboundary from the mesh data. If a quadrati representation of the urved boundary is desired, threeinterpolation points on the boundary are neessary. For example, in order to represent the real urvedfae between points 1 and 2 quadratially in Figure 5.1, the oordinates of the middle point 4 has tobe known. The idea is to suppose the urved fae to be part of a irle. By using nodes of this fae(1 and 2) and two neighbor mesh nodes (5 and 6), two irles an be obtained from two ombinationsof three neighbor points (point 5, 1 and 2 an determine a irle for instane). A new irle is thenomputed by averaging parameters of these two irles. With the parameters of this new irle andthe fae nodes oordinates, point 4 an be determined. If the fae is loated on a boundary orner(point 6 for example), only one neighbor node (point 1) an be found, whih gives only one irlethat will be diretly used to determine the loation of point 4.

Figure 5.1: Real urved boundary and straight mesh boundaryLet us onsider a fae 1 − 2 in Figure 5.1, with two neighboring mesh nodes: point 5 and 6. Takingthe equation of the irle with its enter loated at (a, b), and a radius r :
(x− a)2 + (y − b)2 = r2.

�

�

�

�5.8Substituting the oordinates of the three points 5, 1 and 2 into this equation, the parameters ofthe �rst irle de�ned by these three points an be omputed. The irle entroid oordinates aredenoted by (a1, b1), its radius is r1. In the same way, the parameters of the seond irle de�ned bypoints 1, 2 and 6 are obtained: entroid at (a2, b2), with its radius r2. We suppose that the point 4is loated on the averaged irle obtained by:
am =

(a1 + a2)

2
, bm =

(b1 + b2)

2
, rm =

(r1 + r2)

2
.

�

�

�

�5.9In order to ompute the oordinates of point 4, whih is loated at the middle of the ar onnetingpoint 1 and 2, the equation of the averaged irle is written in the parametri form :
{
x = am + rmcosθ
y = bm + rmsinθ

.
�

�

�

�5.10123



Chapter 5 : Extension of the SV-shemes to ompressible �owsSubstitution of the oordinates of point 1 (x1,y1) in this equation gives the orresponding angle θ1,in the same way θ2 is obtained with the oordinates of point 2. Obviously the angle of point 4 is
θ4 =

(θ1 + θ2)

2
. By using again the equation (5.10) the oordinates of point 4 an be �nally obtained.
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Figure 5.2: Extra interpolation points for a quadrati representation of the NACA0012 airfoil leadingedge. Blak line is the airfoil obtained on a �ne mesh, red line is a baseline oarse mesh on whihthe interpolation points are obtained.In Figure 5.2 an example of the quadrati representation of the leading edge of the NACA0012airfoil is displayed. This �gure illustrates the good agreement of the real urved geometry with theseinterpolation points omputed by above desribed method based on a oarse mesh.5.3.2.2 Physial normal vetor omputationIn this next step the objetive is to ompute the normal vetor of the urved fae at Gauss pointson the wall mesh fae. For a general mapping proess from a urved element to an isoparametrisimplex, the oordinates transformation is expressed by:
r =

n∑

i=1

Mi(ξ, η)ri.
�

�

�

�5.11where n is the number of nodes neessary for a ertain isoparametri simplex, the shape funtionorresponding to eah node is Mi(ξ, η).In our omputations the ell element has often only one urved edge as showed in Figure 5.3. The124



5.3 Boundary onditions

Figure 5.3: Mapping from a urved element to a quadrati simplexshape funtion for the simpli�ed quadrati isoparametri simplex is given by:
M1 = 1 − 3ξ + 2ξ(ξ + η) − η,
M2 = −ξ + 2ξ(ξ + η),
M3 = η,
M4 = 4ξ(1 − ξ − η).
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�5.12Only Gauss points on fae 1 − 2 in the simplex are onsidered; this fae is suh that :
η(ξ) = 0.
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�5.13With the expression for shape funtions and the mapping equation (5.11), the equation of fae 1− 2is �nally given by:
r = (1 − 3ξ + 2ξ2)r1 + (−ξ + 2ξ2)r2 + (4ξ − 4ξ2)r4.
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�5.14It is known that the unit outward normal vetor N of a physial fae is omputed by:
Nx =

dy

dA
,Ny = − dx

dA
.
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�5.15where:
dx =

∂x

∂ξ
dξ +

∂x

∂η
dη,

dy =
∂y

∂ξ
dξ +

∂y

∂η
dη,

dA =
√

dx2 + dy2.
�

�

�

�5.16From equation (5.13) we have: dη(ξ) = 0. Finally the normal vetor is omputed by:
Nx =

dy
dξ

dA
,Ny =

−dx
dξ

dA
.
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�5.17with dA =

√

(
dx

dξ
)2 + (

dy

dξ
)2. The derivatives of the oordinates are easily obtained from equation(5.14):
dx

dξ
= (−3 + 4ξ)x1 + (4ξ − 1)x2 + (4 − 8ξ)x4,

dy

dξ
= (−3 + 4ξ)y1 + (4ξ − 1)y2 + (4 − 8ξ)y4.
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Chapter 5 : Extension of the SV-shemes to ompressible �owswhere the oordinates of point 1, 2 and 4 are now known. The oordinates of eah Gauss point (ξg,ηg)on the fae 1 − 2 are known in the quadrati simplex, so that the normal vetor of the urved faeat this point (Ng
x ,Ng

y ) an be obtained with equation (5.17). Compared to the normal vetor of themesh fae, the omputed normal vetor is referred to as the physial normal vetor, beause it is anapproximated normal vetor to the true urved physial fae.5.3.2.3 Numerial �ux omputation on the urved wallSine the physial normal vetor is omputed at eah Gauss point, a ghost state an be obtained byusing the algorithm proposed by Krivodonova et al [29℄. At a Gauss point on the boundary mesh fae,a solution vetor an be obtained by the internal solution polynomial, and the orresponding primitivevariable vetor is denoted by : Qi = [ρi pi ui vi]
T . The orresponding ghost state is onstruted by :

ρg = ρi,
ug = ui[(N

g
y )2 − (Ng

x)2] − 2Ng
xN

g
y vi,

vg = vi[(N
g
x)2 − (Ng

y )2] − 2Ng
xN

g
yui,

pg = pi.
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�5.19and is suh that the average value between the internal and ghost states satis�es the slip-wall bound-ary ondition written with the physial normal vetor on this fae (V ·N = 0 with the veloity vetor
V = [u v]T ). A lassial approximate Riemann solver is �nally used to approximate the numerial�ux on the boundary: Hg = (Ui, Ug,ng) with ng the unit normal vetor of the mesh fae at the Gausspoint g.It should be pointed out that the RB numerial �ux was not used as numerial �ux approximatingthe physial �ux on the boundary fae beause of the extra-omplexity will be introdued with theomputation of the RB dissipation on a boundary fae. Consequently, for a omputation with theRB sheme and this high order boundary representation method, the RB numerial �ux is usedeverywhere in the �ow domain exept on the wall, where the numerial �ux of a lassial Riemannsolver is used instead.5.4 Numerial assessment5.4.1 In�uene of the numerial �ux for SV methodIn order to study the onvergene order of the SV-RB sheme for solving the Euler equations, alassial test ase is onsidered, namely the subsoni invisid �ow over a ylinder with Mah number
0.38 and zero attak angle [5℄. The ylinder radius is 1 and the far-�eld boundary is loated 20 hordsaway from the ylinder. A �ne 128× 32 quadrilateral strutured mesh is built at �rst and then eahell is divided diagonally into 2 triangles. Three other triangular meshes are obtained by suessivelyoarsening the �ne strutured mesh with a fator of 2 and performing the division of the quadrilateralells. These meshes are displayed in Figure 5.4, and their main features are summarized in Table 5.1.Assessment of auray In the �rst approah, aimed at demonstrating the need for higher-orderboundary representation, a seond-order SV method taking the HLLC sheme as numerial �ux is126



5.4 Numerial assessment
Mesh No. of ells No. of points on the ylinderMesh1 128 16Mesh2 512 32Mesh3 2048 64Mesh4 8192 128Table 5.1: Main features of the regular triangle meshes used for omputation
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Figure 5.4: Meshes for ylinder ase. Mesh1(top left) to Mesh4(bottom right).
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Chapter 5 : Extension of the SV-shemes to ompressible �owsused for the omputation, with a �rst-order boundary representation. This numerial strategy willbe denoted by SV-HLLC O2B1 to emphasize the sheme order is 2 but the boundary representationorder is 1. Although a relatively �ne mesh Mesh3 is used, it an be observed on the omputedMah ontours in Figure 5.5 that the solution is spurious : instead of the expeted symmetrial �ow(upper/lower and up�ow/down�ow), two vortex strutures appear behind the ylinder, a lear signof a spurious entropy generation. The reason for this behavior is that the SV sheme is very sensitiveto the boundary representation : its solution in that ase is strongly in�uened by the sharp ornersintrodued by the �rst-order grid in the wall boundary representation - turning the smooth ylinderinto a polygon. In order to ompute a orret solution, the same seond-order SV sheme is used withthe afore-explained seond-order boundary ondition - an approah denoted by SV-HLLC O2B2. Theimprovement brought by this improved boundary treatment is dramati, as an be learly seen onFigure 5.6 : the Mah ontours are now visually almost perfetly symmetri.
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Figure 5.5: SV-HLLC O2B1 result. Computed Mah ontours from 0.05 to 0.9 with 30 levels onMesh3.Sine the entropy is theoretially onstant for this subsoni invisid �ow, an entropy-based error isde�ned as:
ǫs =

S − S∞

S∞
.
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�5.20where S∞ denotes the entropy level in the inoming �ow; the entropy is omputed as S = p/ργ . Thisnumerial error on entropy, or entropy deviation, is used to perform a grid onvergene analysis onthe series of triangular grids previously introdued. Table 5.2 shows that both the seond-order SV-HLLC sheme and the seond-order SV-RB sheme ahieve a super-onvergene with a seond-orderboundary ondition sine their respetive asymptoti order of auray exeeds 2. Note also that thelevels of entropy errors omputed by the SV-HLLC sheme are globally smaller than those obtainedwith the SV-RB sheme on all the meshes.128



5.4 Numerial assessment
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Figure 5.6: SV-HLLC O2B2 result. Computed Mah ontours from 0.05 to 0.9 with 30 levels onMesh3.Next, the third-order SV shemes are used to ompute this ase with the same seond-order boundaryondition. Results are summarized in Table 5.3. It is found that both third-order shemes yield aonvergene order a bit less than 3 (about 2.8), only very slightly better than the one obtained withthe seond-order SV shemes. It must be emphasized however the entropy error levels ahieved bythe third-order SV shemes are systematially lower than the ones obtained with the seond-orderSV shemes. In partiular, the error level obtained with SV-RB O3 or SV-HLLC O3 on grid level 3is a bit lower than the minimum error level ahieved by SV-RB O2 and SV-HLLC O2 on the �nestgrid level 4.The numerial error omputed by SV-RB sheme is systematially a bit larger than the one obtainedby the SV-HLLC sheme. This di�ers from the result obtained on the irular advetion problemwhere the third-order SV-RB sheme provided the same auray as the lassial upwind sheme. Thereason for this worse performane of the third-order RB sheme on the ylinder ase ould be relatedto the details of the wall boundary treatment, known to be partiularly ruial in the generation ofentropy. Let us reall indeed we have not yet developed a spei� high-order SV boundary treatmentfor the RB sheme and have retained instead the HLLC numerial �ux for approximating the physial�ux on a wall-boundary fae. An improper ombination of this �ux and the RB �uxes on the otherexternal CV faes in the wall SV might explain this error inrease with respet to a purely HLLCalulation.Assessment of e�ieny Figure 5.7 and 5.8 display the onvergene behavior of the seond-and third-order SV shemes (with seond-order wall-boundary representation). The onvergene isanalyzed both on the residual history and on the evolution of the numerial error on entropy. It anbe observed that both seond-order HLLC and RB shemes ahieve a steady state on the numerial129



Chapter 5 : Extension of the SV-shemes to ompressible �ows
Sheme Mesh Dof L2norm ǫs (log10) OrderHLLC Mesh1 384 -1.39627 -HLLC Mesh2 1536 -2.04525 2.27HLLC Mesh3 6144 -2.76722 2.46HLLC Mesh4 24576 -3.52960 2.56RB Mesh1 384 -1.38527 -RB Mesh2 1536 -2.00906 2.18RB Mesh3 6144 -2.72502 2.22RB Mesh4 24576 -3.47125 2.72Table 5.2: SV O2B2 results. L2 norm of numerial entropy errors and the orresponding gridonvergene order.

Sheme Mesh Dof L2norm ǫs (log10) OrderHLLC Mesh1 768 -2.40296 -HLLC Mesh2 3072 -3.09008 2.40HLLC Mesh3 12288 -3.79667 2.42HLLC Mesh4 49152 -4.62274 2.78RB Mesh1 768 -2.40948 -RB Mesh2 3072 -2.95673 1.91RB Mesh3 12288 -3.60784 2.22RB Mesh4 49152 -4.42985 2.76Table 5.3: SV O3B2 results. L2 norm of numerial entropy errors and the orresponding gridonvergene order.
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5.4 Numerial assessmenterror in about 1500 iterations, whih orresponds to a residual drop by about 4 orders of magnitude.Analyzing the third-order results, it is found that the SV-RB O3 sheme ahieves a steady state onthe numerial error in less than 4000 iterations, orresponding to 7 orders of magnitude in the residualdrop, while the SV-HLLC O3 sheme ahieves a steady state in about 5500 iterations, orrespondingto a residual drop by almost 8 orders of magnitude. Note this observation indiates the omputationalost of these methods should be ompared when the steady state of the numerial error is ahievedbut not when the same level of residual derease is ahieved.
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5.4 Numerial assessmentis still denoted by SV-RB O2B2 while the ombination of FV-RB O2 with a �rst-order or linearboundary representation is referred to as FV-RB O2B1. Table 5.6 summarizes the omputationresults obtained both approahes. It an be seen that both of shemes use the same quantity ofmemory and has roughly the same intrinsi ost (CPIPD). And it must be noted that the standardFV-RB O2B1 approah yields a faster onvergene speed than the more sophistiated SV-RB O2B2sheme, while the numerial error obtained with the later is smaller, whih must result from the fatthat a quadrati boundary ondition is adopted by the SV-RB sheme.
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Figure 5.9: Cylinder ase. The mesh reated with CVs of the SV O2 sheme used on Mesh3.Sheme L2 norm of ǫs (log10) Memory(M) CPU time(s) Iterations CPIPDSV-RB O2B2 -2.72502 14 83 1100 1.23 × 10−5FV-RB O2B1 -2.09753 14 69 900 1.25 × 10−5Table 5.6: Computational ost omparison of FV-RB O2B1 and SV-RB O2B2. Grid of 6144 dof,�rst-order impliit sheme with CFL = 106.In order to perform a omparison between third-order SV and FV approahes whih is not over-dominated by the e�et of wall-boundary representation, we hoose to retain a test-ase with lesspronouned urvature e�ets than in the ylinder ase. Both FV-RB O3 with linear boundary repre-sentation (thus FV-RB O3B1) and SV-RB O3 with quadrati boundary representation (thus SV-RB
O3B2) are applied to the omputation of the subsoni invisid �ow over the NACA0012 airfoil withinlet Mah number 0.5 and angle of attak 2◦. The mesh used for the third-order FV-RB sheme has
6 times more ells than the one used for the SV-RB sheme sine the SV-RB sheme makes use of
6 dof inside eah ell or SV while the FV-RB sheme uses a single dof per ell. For eah mesh, astrutured "O" type mesh is reated and then every quadrilateral ell is divided into 2 triangles inthe diagonal diretion (see Figure 5.10). The mesh for the SV-RB O3B2 has 90 points on the airfoiland 1800 ells; there are 180 points on the airfoil and 10800 ells in the mesh for the FV-RB O3B1.133



Chapter 5 : Extension of the SV-shemes to ompressible �owsThe far-�eld boundary is loated 50 hords away from the airfoil in both ases.
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5.4 Numerial assessment

iterations

C
l

0 2000 4000 6000 8000
0.22

0.24

0.26

0.28

0.3

FV-RB order3
SV-RB order3

iterations

C
d

0 2000 4000 6000 8000
-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

FV-RB order3
SV-RB order3

x/c

-C
p

0 0.2 0.4 0.6 0.8 1
-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

FV-RB order3
SV-RB order3

x/c

C
S

0 0.2 0.4 0.6 0.8 1
-0.04

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

FV-RB order3
SV-RB order3

Figure 5.11: Results obtained by FV-RB O3B1 and SV-RB O3B2 sheme.
135
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5.5 Conlusionfor the FV-RB approah.In this paragraph of onlusion, we wish to emphasize how ruial it is to be able to perform suha omparison by using our own developed numerial tools. Indeed, during the ADIGMA projet,high-order methods have sometimes (often) been analyzed in a way that we did not judge truly fair.For instane, the last results obtained for the NACA0012 airfoil ould be presented in a muh morefavorable light (for the SV strategy) if we insist on the fat the SV sheme makes use of a mesh thatis 6 times oarser than the FV mesh, with twie less points on the airfoil surfae. Naturally, suh apiture would be biased sine what makes sense is a omparison for the same number of dof - thetype of omparison we have retained. It is true, though, the SV method allows to rely on the fastgeneration of oarse grids, whih are then automatially enrihed through the partition of the SVs /ells into CVs. For omplex on�gurations, suh a strategy may prove an interesting alternative tothe generation of re�ned grids for FV omputations of omparable quality.We have not yet investigated the extension of the SV approah to orders higher than 3; it may befound that this strategy would demonstrate its advantages for forth or �fth-order omputations whihare hardly tratable with the FV approah. The general framework provided by the SV approahmakes this extension relatively easy to perform; we provide in the appendix of this work some detailson the struture of the FV and SV solvers developed in this work, whih might prove useful for futuredevelopers of suh very high-order versions. Note that before proeeding to these developments onthe spatial disretization, we would advise to investigate the impliit time integration assoiated withthe expliit stage. Indeed, the hoie of a simple �rst-order matrix-free impliit stage has proved quiteadvantageous for the seond and even third-order shemes but it is probably not an optimal hoiefor higher-order shemes sine its e�ieny tends to derease when the order di�erene between theexpliit and impliit stage tends to inrease. A more strongly impliit strategy ould be advantageousin that ase, of ourse more omplex for the development.

137





Conlusion
ConlusionThe objetive of this thesis was to derive, develop and analyze a high-order unstrutured grid versionof the RB sheme, initially developed in the ontext of Cartesian and urvilinear grid omputations.The spei� emphasis was on the assessment of the potential interest of a third-order version ofthe RB sheme for omputing ompressible �ows on general unstrutured grids over a more stan-dard seond-order version. This type of assessment was atually the general topi of the Europeanprojet ADIGMA whih funded the work. The hoie is made to write a thesis report whih istotally distint from the deliverables produed within the ADIGMA projet. Although test-asesand grids provided by the projet were often used for �ow omputations, the systemati normalizedgrid-onvergene studies required by the projet are avoided in this report. However, this work isfoused on a self-designed omparison. Namely, the third-order RB sheme is systematially om-pared with its seond-order version as well as seond and third-order shemes based on onventionalupwind numerial �uxes (Roe, Rusanov, HLLC), whih have been implemented inside the same ode.A natural way to develop a RB sheme on unstrutured grids is to rely on the �nite volume method.Therefore this path was �rst explored : seond and third-order FV-based RB shemes (FV-RB O2and O3) have been developed for solving the steady and unsteady Euler and Navier-Stokes equationson general unstrutured grids. The hoie has been made to derive these shemes as purely en-tered shemes with an added residual-based dissipation and to approximate the purely entered partwith usual linear or quadrati least-square reonstrution, where the spei�ity of the RB shemeis ondensed in the evaluation of the dissipation �ux. The RB shemes as well as the onventionalupwind shemes have been systematially oupled with a simple matrix-free impliit stage, allowingto perform omputations with large CFL numbers and ensuring in this way fast onvergene to asteady-state (be it in physial or dual-time, depending on the steady or unsteady nature of the �owproblem). The auray, stability and e�ieny properties of the RB shemes have then be assessedon a series of test-ases ranging from model test-problems of salar steady advetion in 2D and 3Dto invisid and visous �ows over 2D and 3D obstales.The model test problems with known analytial solutions allow to hek the pratial order of a-uray o�ered by the shemes. The main onlusions that an be drawn from these problems havetwo sides. On the negative side, a more pronouned level of grid-dependeny has been observed forFV-RB O3 with respet to the other seond and third-order shemes (FV-RB O2 as well as FV-Roe
O2 and O3). The soure of this behavior an be traed bak to the alulation of the dissipation �uxbut ould not be more learly determined. On the bright side, it must be pointed out the gain of usingthe third-order sheme ompared to the seond-order sheme in 2D is very enouraging (not only formodel problems but also for steady invisid �ows). For instane, to ahieve the grid onvergene ofthe drag oe�ient for a subsoni �ow over an airfoil, the third-order sheme saves 60% pu timeand 23% memory ompared to the seond-order sheme.Unfortunately the advantage of using the third-order FV-RB rather than the seond-order FV-RBsheme does not hold in 3D, at least for 3D �ows in the implementation developed in this work. Theinterest of the third-order FV-RB sheme over the seond-order FV-RB sheme is still establishedfor the model advetion problem but for the invisid �ow alulations performed over 3D bodies139



Chapter 5 : Extension of the SV-shemes to ompressible �owsthe quality of the third-order sheme results remains very lose to that of the seond-order shemeresults. Sine the ost of FV-RB O3 is naturally higher than the ost of FV-RB O2, this makesFV-RB O3 unattrative for 3D ases. A possible reason for this behavior ould be the very largestenil needed by the third-order FV sheme whih may ompromise the sheme auray on generalgrids. A bit similarly, the visous extension of FV-RB O2 and FV-RB O3 did yield lose results thusmaking the third-order sheme not really ompetitive with respet to the seond-order version. Notehowever this behavior ould also be explained by the fat that the visous test-ases orrespond tolow-Reynolds laminar �ows with dominating visous e�ets.When this stage of the work was reahed, several options for the next step to take were evaluated :initially a further investigation of the weak points whih have been pointed out for FV-RB O3 wasonsidered. However, it was judged more useful to put in perspetive the general FV results obtained :it was lear that going very high-order (more than third-order) with a traditional FV approah, us-ing for instane a ubi reonstrution instead of a quadrati one, was a strategy doomed to failbeause of the explosion of the memory requirements whih would be enountered, espeially in 3Domputations. Therefore it was deided to explore another way to derive high-order shemes that wewould assess for third-order omputations. Note that it should be possible to extend the approahto higher-order.After some preliminary attempts with the spetral di�erene method, We opted for the newly de-veloped spetral volume method [47℄. Basially, this approah relies on an inrease of the numberof available degrees of freedom inside a grid ell rather than an inrease of the grid ell support foromputing higher-order solution reonstrution within eah ell. This more ompat design prini-ple keeps the higher-order 3D formulation of the SV shemes manageable. The oupling of the RBnumerial �ux with the spetral volume approah has been performed, giving birth to the SV-RB
O2 and SV-RB O3 shemes. Moreover, a SV version of the existing FV matrix-free impliit stagewas also developed in order to speed up the onvergene of these shemes to a steady-state. Theperformanes of these new shemes have then been assessed with respet to the previously developedFV-RB O2 and O3 shemes on one hand and with respet to onventional SV shemes (relying ononventional upwind numerial �uxes suh as Rusanov or HLLC) at seond and third-order on theother hand.The possibility to insert the RB numerial �ux into the general SV framework was suessfullydemonstrated for 2D model problems �rst. However, a rather disappointing observation was thatthe numerial �ux used for approximating the physial �ux at the external faes of a SV seemed lessand less in�uential when inreasing the order of the reonstrution polynomial in eah SV. In fat,this is not surprising beause inreasing the order of the SV sheme leads to a dereasing proportionof external faes on whih the numerial �ux is used, it is realled that the physial �ux throughthe inreasing number of inner faes is diretly omputed with the reonstruted solution on thesefaes). When solving the 2D Euler equations for smooth �ows, no bene�t was observed from usingthe SV-RB shemes rather than the SV-HLLC shemes for instane, whih agrees with the result ofmodel problem. In summary, the SV-RB shemes not only provide a less aurate solution but alsoneeds a larger omputation ost. Moreover, the SV-RB shemes did not prove its ompetitivenessompared to FV-RB shemes. In spite of these disappointing onlusions, it is believe that the devel-opment of the SV version of the RB shemes is truly useful when put in a broader perspetive : theymay be regarded as a �rst step for higher-order formulation of the RB sheme, where they might be140



5.5 Conlusionompetitive sine the FV-RB shemes ould be hardly developed to very high order beause of largememory onstraints.It should be pointed out that apart from the theoretial work on the RB shemes, another importantpart of this work has been devoted to the development of a CFD ode, named NS3, in whih all thenumerial shemes developed in this work have been suessfully implemented. The starting pointwas only a simple unstrutured solver for 2D invisid steady �ows. This highly tehnial part wasboth essential and time-onsuming sine the unstrutured history in the laboratory has started withthe present work. The developped NS3 ode an now deal with steady invisid and laminar �ow in2D and 3D, unsteady invisid �ow in 2D, subsoni, transoni and hypersoni ases on any type ofunstrutured grids. This ode is also optimized to some extent in order to arry out omputationswith a reasonable memory and CPU time. For the purpose of evaluating the SV-RB shemes, theode NS3 was adapted to the SV method and turned into a new version, NS3_SV (the �nite volumeversion is renamed similarly as NS3_FV ). The NS3_SV ode inludes all the features presentedin this work, in partiular an e�ient matrix free treatment for omputing steady invisid �ows aswell as the method for imposing high order boundary onditions.PerspetivesThis �rst ontribution to the development of high-order RB shemes on unstrutured grids has raiseda number of issues whih remain to be solved. The advantage of using a third-order FV RB shemefor steady invisid �ows has been learly demonstrated in 2D, but this onlusion does not seemholding for 3D. However, the 3D FV omputations have been only performed for a subsoni aseon a rather unonventional geometry and for a transoni ase. To draw more de�nitive onlusions,it would be interesting to perform omplementary tests for 3D subsoni �ow, for more well-de�nedproblems suh as the �ow over a sphere for instane. Turbulent test-ases needs also to be sys-tematially performed to omplete the 2D analysis. A RANS version of the solver, based on theSpalart-Allmaras model, has been developed by another researh group working with NS3 but theresult is not ready to perform a proper assessment of the RB shemes for high-Reynolds �ows.It should also be realled that the FV formulation of the RB shemes is based on an option in whihthe reonstruted solution is used to ompute the non-dissipative part of the RB numerial �ux.It would be interesting to investigate more deeply the possibility to use a least-square approah toestimate not only the �ux gradient used in the dissipative �ux but also the �ux on the fae, withoutresorting to a variable reonstrution. Suh an approah agrees better with the strategy used byoriginal RBC shemes sine it preserves better the ompatness of this sheme, while it is lost in theFV-RB shemes presented in this work.Regarding the SV approah, it would probably be interesting to hek whether the impat of thenumerial �ux is more meaningful when omputing �ows with shoks, beause no real interest wasfound in using the RB �ux over the HLLC �ux for instane when omputing smooth invisid �ows.More importantly however, performing a 3D extension of the SV approah, oupled with the proposedimpliit treatment and RB numerial �uxes as well as onventional upwind �uxes should be a priority.Indeed, the developed odes inluding high-order approximations should provide a good support toperform some studies on large-eddy-simulations on unstrutured grids as long as a 3D version is141



Chapter 5 : Extension of the SV-shemes to ompressible �owsmade available. Note that reent results obtained in [17℄ when oupling the third-order SV methodwith a lassial upwind sheme in 3D have revealed that the approah is weakly unstable; further
3D investigations are therefore ruial to determinate whether the SV approah is indeed a goodandidate for performing �exible LES omputations on general geometries.
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AStruture of ode NS3_FV
The development of the CFD ode NS3 is a part of work of this thesis. Hene a brief introdutionof the ode struture is given here. Neessary diretories for the ode are listed in Figure A.1.

Figure A.1: Diretories neessary for ode NS3Files in eah diretory and their funtion are showed in Table A.1, Table A.2 and Table A.3. Files inData are provided and to be modi�ed by the user, �les inRes will be reated after the startup of om-putation, and �les in Grid have to be reated by using programs in diretory GAMBIT_to_NS3and Support_�le_NS3. The struture of diretory GAMBIT_to_NS3 is showed in FigureA.2. For the moment the ode NS3 uses GAMBIT as mesh generator, but the mesh format is di�er-ent. Firstly the mesh is made inside the GAMBIT, before de�ning boundary onditions, 'Generi' insolver option is hosen. Then boundaries are de�ned with type 'Elementside'. Reognized boundary145



Chapter A : Struture of ode NS3_FVnames are: WALL for wall, RIEMANN for far-�eld boundary, SUPIN for inlet and SUPOUTfor outlet. Finally a mesh �le *.neu an be exported from GAMBIT. This �le should be put intodiretory GAMBIT. In �le �le_name.inp the soure mesh �le name '*.neu' and the target �lename '*.inp' are to be given. Aording to the mesh dimension (2D or 3D) an exeutive �le an bereated from soure �les in the orresponding Sr_* diretory. At last the target mesh �le (*.inp)will be reated in diretory Grid by using the reated exeutive �le.After having the main mesh �le, programs in diretory Support_�le_NS3 will be used for support�les reation. The struture of this diretory is showed in Figure A.3. Copy the main mesh �le *.inpinto diretory Support_�le_NS3/Grid and give the name of main mesh �le and its support �les in�le Support_�le_NS3/Data/�le.inp. Aording to mesh dimension use soure �les in diretorySr_* to reat exeutive program, whih an be used to obtain 3 support �les for 2D mesh and 2for 3D mesh. All of reated �les an be found in diretory Support_�le_NS3/Grid.Files Funtion�le.inp provide names of main grid �le and support �les:main grid �le: *.inp;support grid �les: *_support_order2.inp,*_support_order3.inp,*_support_node.inp.userhoie.inp user-de�ned parameters:problem type, CFL, sheme order...freestream.inp free stream boundary ondition:M,α,Reede.inp give �uid type:'pfg' for the perfet gasdataDENSI.inp �uid status onstant:
γ for the perfet gasTable A.1: Files in diretory DataFiles Funtion*.inp main grid �le*_support_order2.inp �le providing ell stenils for seond-order sheme*_support_order3.inp �le providing ell stenils for third-order sheme*_support_node.inp �le providing node stenilsTable A.2: Files in diretory GridThe ode soure �les in the diretory Sr are listed in Table A.4. It is ineresting to see the de�nitionof some important variables in this ode.
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Files Funtionusr.info omputation information:grid �le names, physial model, numerial parameters, CPU time...residue.dat evolution of density residual with iterations and CPU timeaero_stress.dat evolution of aerodynami oe�ients with iterations and CPU timeteplot_aero_�eldNNN.inp solution �eld: ρ, p, T, M...obtained at iteration NNNwall_oef_NNN.dat solution distribution on the immersed body obtained at iteration NNNrestart_NNN.dat onservative variables obtained at iteration NNN,for another omputation restarting from the urrent solution.Table A.3: Files in diretory Res

Figure A.2: Struture of diretory GAMBIT_to_NS3Files Funtiondelaration.f90 delaration of all of variables in the odealloate.f90 assemble of subroutines alloating variablesfuntions.f90 all of funtions used in the odens3_2d.f90 main programread_input.f90 grid �le and support �les reading, pre-proessingell_update.f90 �ux integration, solution reonstrutiontime step and residual omputationgradient_alulation.f90 omputation of node values, ell gradients, limiter and error indiatorboundary.f90 boundary ondition on the wall, far-�eld, inlet and outletnum_�ux.f90 numerial �ux omputation: RB sheme and AUSM+ sheme availablewrite_output.f90 write omputation information �le and result �les,result �les output management�le_operation.f90 open and lose some �les opened at the omputation startand losed in the end of omputationimpli.f90 impliit sheme: only matrix-free method availableTable A.4: Files in diretory Sr 147



Chapter A : Struture of ode NS3_FV

Figure A.3: Struture of diretory Support_�le_NS3
Variables Meaningnp,n,nf number of mesh nodes, ells and faesuold(i)%rho,%rhou,%rhov,%rhoE onservative solution vetor at entroid of ell iqold(i)%p,%u,%v,%T primitive solution vetor at entroid of ell iq_node(i)%p,%rho,%T,%u, %v solution vetor of node ix(i),y(i) ell entroid oordinatessurfae(i) ell volumeonnetion(4,i) ell onnetivity information: nodes belonging to the ell ix(i),y(i) mesh node oordinatesnode_b(i) node type, same de�nition as fae typeinell(i),outell(i) ell on the left and right side of the faesx(i),sy(i) mesh fae area normal vetor(poiting from left ell to the right ell)b(i) fae type: 0 for internal fae, 1 for wall fae

2 for inlet fae, 3 for oulet fae, 4 for far-�eld faefae(2,i) fae onnetivity information: 2 nodes belonging to the faeTable A.5: De�nition of some important variables in ode NS3_FV
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BSome important issues of ode NS3_SV
The ode NS3_SV is developed based on the ode struture of TNS3_FV and some adaptationare made in order to implement SV method in this version of ode. The diretory struture of ode
NS3_SV is the same as ode NS3_FV . And this ode needs only the main mesh �le *.inp and thenode stenil support �le *_support_node.inp, whih an be reated in the same way as for theode NS3_FV . Neessary soure �les for the ode are the same as those showed in Table A.4. Inthis ode the way of de�ning some important variables are quite di�erent with the ode NS3_FV(see Table B.1).Variables Meaningnp,n,nf number of mesh nodes, ells and faesnv,nqp number of CVs and quadrature points in a SVL(i)%dofF(j) ith shape funtion of quadrature point jell(i)%dof_u(j)%uold%rho, %rhou... onservative solution vetor at entroid of CV j in SV iell(i)%dof_f(j)%U%rho,%rhou... onservative solution vetor at quadrature point j in SV iell(i)%sv_x,%sv_y entroid oordinates of SV iell(i)%sv_volume SV volumeell(i)%onnetion(4) SV onnetivity information: nodes belonging to the SVnode(i)%x_n,%y_n oordinates of mesh node inode(i)%b_n node type, same de�nition as fae typefae(i)%inell, %outell ell on the left and right side of the fae ifae(i)%sx_f, %sy_f mesh fae area normal vetor(poiting from left ell to the right ell)fae(i)%b fae type: 0 for internal fae, 1 for wall fae

2 for inlet fae, 3 for oulet fae, 4 for far-�eld faefae(i)%nd(2) fae onnetivity information: 2 nodes belonging to the faefae(i)%spl(2), %spr(2) CV entroid on the left and right side of the faefae(i)%fpl(2), %fpr(2) quadrature points on the left and right side of the faefae(i)%svpl(3), %svpr(3) SV partition points on the left and right side of the faefae(i)%rbpl(4), %rbpr(4) quadrature points neessary for the RB shemeon the left and right side of the faeTable B.1: De�nition of some important variables in ode NS3_SVIn this SV version ode, an important issue is the numbering of CV entroid and quadrature points.As the solution polynomial is reonstruted in a SV, it is onvinient to number CVs and quadrature149



Chapter B : Some important issues of ode NS3_SVpoints loally in a SV. The numbering in a standard SV is showed in Figure B.1, where squarepoints are partition points dividing one SV into 3 CVs (for seond-order sheme), round points areCV entroids, and triangle points are all of quadrature points in a SV. For the RB sheme, itsnumerial dissipation term needs solutions at partiular quadrature points on faes of shift ellsformed between CVs, these points are therefore numbered and saved for later use (see triangle pointsshowed in Figure B.2). Although all of these points in eah SV are numbered in a same way inthe physial domain, the orientation of eah SV is random. Given a mesh fae (SV fae), the nu-meration of these points on both sides is therefore unknown, while this information is neessaryfor numerial �ux omputation. The numeration �nding and saving is done in the pre-proessing.An example of numeration for a fae i is showed in Figure B.3, the variable saving numerationof CV entroids on the left side: face(i)%spl(1) = 3, face(i)%spl(2) = 2, on the right side:
face(i)%spr(1) = 1, face(i)%spr(2) = 2; the variable saving numeration of quadrature pointson the left side:face(i)%fpl(1) = 4, face(i)%fpl(2) = 3, on the right side: face(i)%fpr(1) = 1,
face(i)%fpr(2) = 2. Numeration of SV partition points and RB quadrature points are saved in thesame way.

Figure B.1: CV entroids and quadrature points numbering in the standard SV for the seond-ordersheme.As mentioned in Chapter 5 the matrix-free impliit method is used for the SV method, where theonnetivity of eah CV is neessary, whih needs a global numbering of entroid, nodes and faes ofeah CV. This gives a new mesh with CVs as mesh ells. Varaibles related to the new mesh are listedin Table B.2. With the help of these variables, the solution an be passed easily from a loal CV tothe orresponding global ell. For example, solutions at the entroid of global ells an be obtainedby the loop:do i=1,ndo j=1,3150



Figure B.2: RB quadrature points numbering in the standard SV for the seond-order sheme.

Figure B.3: Numeration saved for a fae for the seond-order sheme.
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Chapter B : Some important issues of ode NS3_SVnl=ell(i)%dof_u(j)%nwnnwuold(nl)=ell(i)%dof_u(j)%uoldend doend dowhere nwuold(nl) is the solution at the entroid of global ell ncl. With information for the newglobal ells (CVs of the SV sheme), the impliit solution inrement an be omputed as the one forthe FV sheme.Variables Meaningnnp,nn,nnf number of new mesh nodes, ells and faesnw_ell(i)%x,%y entroid oordinates of new ell inw_ell(i)%onnetion(4) onnetivity information of new ellnw_node(i)%x_n,%y_n oordinates of new mesh node inw_fae(i)%inell, %outell ell on the left and right side of new fae inw_fae(i)%sx, %sy mesh fae area normal vetor(poiting from left ell to the right ell)nw_fae(i)%nd(2) new fae onnetivity informationell(i)%dof_u(j)%nwn the global number of CV j in SV iTable B.2: De�nition of variables related to CV global numbering in ode NS3_SV
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SCHEMA D’ORDRE ELEVE BASE SUR LE RESIDU  
POUR LA SIMULATION NUMERIQUE D’ECOULEMENTS COMPRESSIBLES  

EN MAILLAGES NON-STRUCTURES 
 

RESUME : Un schéma compact de haute précision basé sur le résidu (RBC) a été développé au 

laboratoire SINUMEF pour la simulation numérique d'écoulements compressibles en maillages 

structurés. Certaines proriétés intéressantes font de ce schéma un bon choix pour les calculs 

d'écoulements compressibles. L'objectif de cette thèse est donc de développer un schéma basé sur le 

résidu (RB) en maillages non-structurés avec une précision d'ordre élevé. A cette fin, deux approches 

ont été explorées. La première est basé sur la méthode des volumes finies en non-structuré et conduit 

à un schéma basé sur le résidu appelé FV-RB. Le seconde approche s'appuie sur une nouvelle 

formulation spatiale dite volumes spectraux (SV) et mène au schéma SV-RB. Le schéma FV-RB a été 

développé à l'ordre 2 et 3. Avec cette version du schéma, de nombreux cas tests sont calculés: 

écoulement d'un fluide parfait et visqueux, subsonique, transonique et hypersonique, stationnaire et 

instationnaire, en 2D et en 3D. Une analyse de la précision et du coût de calcul est effectuée pour le 

schéma FV-RB. Dans la seconde approche, un schéma SV-RB est développé à l'ordre 2 et 3 pour 

résoudre le problème d'advection pure et les équations d'Euler. A travers quelques cas tests, une 

comparaison de la précision et l'efficacité est effectuée entre le schéma RB et un solveur de Riemman 

classique, et entre deux formulations du schéma RB développés ici. 

 

Mots clés : schéma basé sur le résidu, ordre élevé, maillages non-structurés, écoulements 

compressibles 

 

 

HIGH ORDER RESIDUAL BASED SCHEME FOR NUMERICAL SIMULATION OF 
COMPRESSIBLE FLOWS ON UNSTRUCTURED GRIDS 

 

ABSTRACT : A very accurate compact residual based scheme (RBC) has been developed in 

SINUMEF laboratory for numerical simulation of compressible flows on structured grids. Some 

interesting properties of this scheme makes it a good choice for compressible flow computations. 

Objective of this thesis is therefore to develop a high-order residual based scheme (RB) on 

unstructured grids. For this purpose, two approaches have been explored. First one is based on the 

finite volume method for unstructured grids which gives a residual based scheme named FV-RB. 

Second approach uses a new spatial discretization method called Spectral Volume method (SV) giving 

a scheme named SV-RB. The FV-RB scheme is developped to 2
nd

 and 3
 rd

 order. With this version of 

scheme, many test cases are computed: steady and unsteady, subsonic, transonic and hypersonic, 

inviscid and laminar flow in 2D and 3D. Analysis on the precision and cost of computation is made for 

this FV-RB scheme. For the second approach, the 2
nd

 and 3
 rd

 order SV-RB schemes are obtained for 

solving pure advection problem and Euler equations. Through several test cases, the comparison of 

accuracy and computation efficiency is made between the RB scheme and a classical Riemann 

solver, and between two different versions of RB scheme developped in this work. 

 

Keywords : residual based scheme, high order, unstructured grids, compressible flows 
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