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Abstract

Heterogeneity, at service and technology level, is one of the main characteristics of
todays networks. The ever increasing offer of new services has changed not only the
amount of traffic in the network but also its structure. As a result, traditional tech-
niques for traffic prediction and classification are becoming obsolete. In the first part
of the thesis, we address these two problems by means of advanced statistical tools. We
analyze the problem of online prediction of the load on a link based only on past mea-
surements and without assuming any particular model. Concerning traffic classification,
and motivated by the widespread use of P2P systems, we focus on the identification
of P2P applications, considering more precisely the case of P2P television (P2P-TV).
For both cases, our framework makes use of Support Vector Machines (SVM). The
algorithms we propose provide very accurate results, they are robust and their compu-
tational cost is extremely low. These properties make our solutions specially adapted
to an online application.

As traffic is increasingly heterogeneous, so are the access technologies. In particular,
wireless is destined to be the access technology of choice. In this context, self-organized
systems such as Mobile Ah-doc Networks (MANETs), are of particular importance.
The design of an efficient and fair multiple access (MAC) mechanism is then crucial.
In the second part of the thesis, we address two different problems related to MAC
mechanisms in MANETs (in particular, we concentrate on CSMA since it is the most
widely deployed mechanism). Firstly, given the absence of a mathematical model of
consensus, an analysis of the existing models, with special emphasis on their correlation
with the real protocol, is presented. Some weakness are identified and possible solutions
are proposed. The use of stochastic geometry tools allows us to obtain analytical results
where other techniques cannot. Secondly, we address the problem of lack of QoS in
CSMA and we propose two different mechanisms that guarantee a minimum rate for
each accepted transmission. Both take the interference level into account to decide on
the set of connections which can access the shared channel at any given time. The main
difference between them is the possibility or not of adjusting the transmission power of
the nodes. The main aim of our study is to identify which of the proposed mechanisms
outperforms CSMA best depending on the scenario.
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Résumé

Motivation

Internet est le premier vrai réseau multiservice; des services de voix, vidéo et données
sont offerts sur le même réseau. La principale conséquence de cette multiplicité est le
changement de la structure du trafic. Non seulement la quantité du trafic a augmenté,
mais sa nature a aussi radicalement changé, principalement en raison de l’offre de
nouveaux services avancés (à l’impact socio-économique incontestable). La popularité
de ces services, tels que par exemple le partage de dossiers (e.g. KaZaa, eDonkey,
BitTorrent), la téléphonie par Internet (e.g. Skype, Gtalk, VoIPbuster) ou la télévision
par Internet a explosé ces dernières années. Par conséquence, le trafic de données sur
le réseau est de plus en plus complexe et dynamique.

Ces deux caractéristiques se sont traduites par une imprévisibilité élevée du trafic,
au moins avec des techniques traditionnelles et simples. Or la prédiction du volume
de trafic est très utile pour la planification de capacité et pour les systèmes autoges-
tionnaires (même s’ils impliquent des échelles de temps très différentes). Par exemple,
une application typique de cette prédiction est la réservation dynamique de ressources
dans le cadre du réseau privé virtuel (VPN en anglais) [1]. Une autre application,
liée au nouveau domaine de réseau vert (ou green networking) [2], est le problème de
l’adaptation du taux des liens (ALR en anglais). ALR est proposé comme une manière
de réduire la consommation d’énergie en réglant le taux de lien configuré sur le routeur
au minimum exigé. Il serait alors intéressant de concevoir un système de prédiction qui
prévoie de façon exacte et en ligne, la variabilité de ce trafic et en même temps réduise
au minimum les hypothèses sur sa structure (par exemple absence d’hypothèses sur les
propriétés statistiques des mesures).

Cependant, la prédiction de quelques caractéristiques du trafic tels que la moyenne
ou le maximum sur un intervalle donné de temps fournit peu d’information sur le
trafic lui-même. Certaines applications conscientes du trafic (traffic-aware) exigent
d’identifier réellement le type de trafic traversant le réseau, ou même l’application qui l’a
généré. Par exemple, la classification du trafic (application) est utile à l’application des
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8 Résumé

politiques de qualité de service (QoS), pour bloquer des applications interdites (e.g. P2P
ou le chat au bureau), ou encore pour identifier des applications populaires dans des buts
commerciaux (e.g. publicité). Un exemple de ces nouveaux types de trafic est P2P-TV
(télévision Pair-à-Pair); services de video-streaming en temps réel à grande échelle qui
exploitent le paradigme de communication pair-à-pair (P2P). Actuellement, plusieurs
systèmes déployés de P2P-TV comportent le streaming de basse qualité [3, 4, 5, 6],
mais l’utilisation de systèmes de haute qualité sera bientôt répandue [7, 8].

Les systèmes de P2P-TV peuvent être l’origine de problèmes graves pour l’Internet,
comme le montre le succès croissant des systèmes commerciaux tels que PPLive, Sop-
Cast, TVAnts et beaucoup d’autres. En effet, le trafic de P2P-TV peut se développer
sans contrôle, causant une dégradation de la qualité du service perçu par les internautes
ou même le collapse du réseau [9]. Tandis que la liaison descendante est limitée par le
taux de transfer, la liaison montante peut se développer de façon illimitée comme cela a
été déjà observé en [10]. En outre, la conception propriétaire de quelques applications
réussies de P2P-TV fait de l’identification de telles applications un thème d’importance
croissante. Par exemple, un fournisseur d’accès à Internet (ISP en anglais) sera cer-
tainement intéressé à bloquer des applications gloutonnes de ressources, ou au moins à
les identifier.

Bien que le problème de classification du trafic ne soit pas nouveau, pour différentes
raisons, quelques techniques bien connues sont devenues désuètes. C’est par exemple
le cas des techniques basées sur l’identification de ports ou l’identification du contenu
des paquets. Tandis que dans le premier cas le mécanisme peut être trompé par le
blocage des pare-feu ou bien par l’attribution dynamique des ports, la complexité in-
formatique du deuxième peut être si grande qu’il ne pourrait pas être mis en oeuvre.
Comme alternative, de très bons résultats peuvent être obtenus par la classification
statistique[11, 12]. En plus, la classification comportementale, basée sur la logique de
que les différentes applications produisent de différents modèles, a été employée dans
le cadre de la classification à grain grossier des hôtes d’Internet [13, 14]. Ainsi, nous
nous intéressons à la conception d’un mécanisme de classification visé aux applications
de P2P-TV (c-à-d à grain fin) basées sur le paradigme comportemental.

Une autre caractéristique des réseaux d’aujourd’hui liées aux considérations précédentes
est l’utilisation de nouvelles technologies. En effet, comme le trafic injecté dans le réseau
est de plus en plus hétérogène, sont ainsi les technologies d’accès. En particulier, l’accès
par des réseaux sans fil est de plus en plus utilisé. On s’attend à ce que dans un avenir
proche, avec la prolifération des dispositifs intelligents aux nouvelles fonctionnalités, la
communication entre les terminaux sans fil ait lieu habituellement sans passer par le
coeur d’Internet. Ces terminaux agiront d’une façon autonome et adaptative, tombant
dans la catégorie des réseaux ad hoc mobiles (MANETs en anglais).

Pour analyser la conception ou la performance de MANETs, un des aspects les plus
difficiles est la nature partagée du canal. En soi, la conception d’un mécanisme du
contrôle d’accès au support (MAC pour Medium Access Control) joue un rôle princi-
pal. Dans le meilleur des cas, un algorithme bien conçu de MAC permet un nombre
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maximum de transmissions simultanées tel qu’elles ne s’y interfèrent pas les unes avec
les autres. Dans le même temps, l’inégalité dans les occasions d’accès doit être min-
imisée. Cependant, une telle conception devient vraiment difficile quand un mécanisme
décentralisé est considéré (ce qui est le cas idéal).

Le mécanisme de MAC est alors appliqué localement pour chaque noeud, qui a seule-
ment une information locale de l’état de réseau. Le mécanisme le plus largement déployé
de MAC est CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance),
utilisé par exemple dans IEEE 802.11 et IEEE 802.15.4. Même s’il a été relativement
bien étudié d’un point de vue empirique, il n’existe aucun modèle mathématique large-
ment reconnu portant sur lui. Une analyse du protocole, et surtout l’identification des
caractéristiques principales avec le propos spécifique de la modélisation, est étonnement
manquant. Par exemple, les modèles plus répandus ne prennent pas en considération
l’aspect aléatoire de l’état du canal dû aux effets de fading/shadowing. En plus, certains
aspects de CSMA/CA sont simplement ignorés, comme le Clear Channel Assessment
(CCA). Dans ce contexte nous analysons si ces modèles peuvent être généralisés au cas
non déterministe, ou s’il est nécessaire et possible de définir un nouveau modèle pour
CSMA/CA.

Dans tous les cas, CSMA/CA ne garantit rien en termes de la qualité obtenue
pour les transmissions admises. Ce manque de QoS pourrait gêner l’exécution, par
exemple, d’applications en temps réel avancées. Il serait alors intéressant de concevoir
et d’analyser un mécanisme d’accès au support avec des garanties de performances.
Comme mentionné ci-dessus, la conception d’un tel mécanisme doit faire face à la
nature décentralisée et aux ressources partagées (d’où le QoS de chacun des connexions
dépend des toutes les connexions actives) de MANETs.

En un mot, cette thèse présente quatre contributions principales :

• Nous analysons le problème de la prédiction de la charge sur un lien, et proposons
un nouvel algorithme basé sur une technique originale d’Apprentissage Statis-
tique, nommé Support Vector Machines (SVM) [15]. Notre proposition comparée
à plusieurs techniques paramétriques et non paramétriques, obtient toujours les
meilleurs résultats.

• Une variante de SVM est utilisée pour la conception d’un mécanisme de classifi-
cation à grain fin d’applications de P2P-TV. La performance de notre proposition
est validée avec des tests sur plusieurs traces du trafic, qui représentent un large
éventail de scénarios. D’excellents résultats ont été obtenus.

• Nous analysons et discutons les modèles possibles pour les différentes types de
CSMA/CA, en mettant un accent spécial sur la corrélation entre les hypothèses
du modèle et les vraies caractéristiques de protocole. Une section spéciale est
consacrée à la modélisation et à la comparaison des différents modes de CCA.

• Nous proposons deux mécanismes d’accès différents qui garantissent un QoS mini-
mum (en termes de débit) pour toutes les transmissions admises. La performance
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de ces nouveaux mécanismes est comparée à celle du CSMA/CA classique dans
plusieurs scénarios, considérant plusieurs métriques de performance. Le but prin-
cipal de notre étude est d’identifier parmi les mécanismes proposés, celui qui
obtient des meilleurs résultats selon le scénario.

Dans la section suivante, nous détaillons les contributions principales de la thèse.

Contributions Principales

Cette thèse est organisée en deux partie. La première est consacrée à la conception
des outils basés sur l’apprentissage automatique, en particulier SVM [15, 16], pour
faire face à deux des problèmes précédemment mentionnés : la prédiction de la charge
sur un lien et la classification des applications P2P-TV. Les SVM sont un ensemble
de méthodes pour la classification et la régression fondus dans le cadre de la théorie
de l’apprentissage statistique. Si le premier travail dans ce domaine date des années
soixante-dix [17], SVM a gagné l’attention de la communauté académique internationale
seulement à partir des années quatre-vingt-dix. Les SVM ont été intensivement utilisés
principalement dans le cadre de la reconnaissance des formes dans lequel ils ont montré
une très bonne performance. Dans le cadre de la gestion des réseaux, ils ont été utilisés,
par exemple, pour la détection d’anomalies ou l’estimation du throughput [18, 19]. Nous
nous sommes intéressés à ces techniques puisqu’elles fonctionnent bien dans beaucoup
de situations, grâce à leur généralisation à des données inconnues. D’ailleurs, elles sont
adaptées à l’apprentissage continu et adaptatif en ligne, ce qui constitue une propriété
extrêmement souhaitable pour nos buts.

Dans un premier temps, nous réalisons une étude profonde et complète des tech-
niques de SVM. Nous analysons alors en détail leur performance lorsqu’elles sont fois
appliquées aux problèmes mentionnés ci-dessus de gestion de réseau. Comme remarque
générale, nous pouvons dire que dans les deux cas SVM s’est avéré être un outil très
utile et puissant. Considérant que pour la prédiction de charge de lien, la robustesse
de SVM et la basse complexité informatique apparaissent en tant que ses principaux
atouts, pour la classification des applications de P2P-TV SVM fournit des résultats
très précis.

Prédiction de la charge sur un lien

Pour la prédiction de la charge sur un lien, nous suivons la méthodologie connue sous
le nom de “embedding procedure”. Une série temporelle correspondant à des valeurs
moyennes de la charge sur un lien dans une échelle de temps choisie est considérée, et une
valeur future de cette série chronologique est prédit sur la base d’un nombre restreint
d’observations du passé. En particulier, nous choisissons des échelles de temps petites,
c.à.d moins d’une minute.
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input output 

t

λ(t)

λk+1 = λ((k + 1)τ)

λk

λk−(d−1)

(k + 1)τkτ(k − (d− 1))τ

Figure 1: Série temporelle correspondant à la charge sur un lien et les inputs/outputs
utilisés pour le embedding process.

Plus précisément, soit λ(t) la charge du trafic mesurée sur l’intervalle de temps [t−
τ, t]. En quantifiant le temps par les multiples de τ , nous obtenons une série temporelle
{λk}k∈N, où λk est la charge moyenne calculée sur l’intervalle [(k − 1)τ, kτ ]. Le SVR
(Support Vector Regression) embedding process emploie alors un nombre arbitraire d
d’observations du passé de la série défini ci-dessus afin de prévoir sa valeur future. Ainsi,
une fois donné un input d-dimensionnel x (SX = R

d), une fonction SVR apprentie sur
un ensemble d’entrâınement retourne comme output ŷ = f(x) une prévision de la cible
y (SY = R), qui dans notre cas est (voir Fig. 3.1) :

x = (λk−(d−1), . . . , λk−1, λk) and y = λk+1 (1)

Adoptant une approche empirique, nous évaluons l’efficacité de SVR en explorant
un grand espace de paramètres et de conception. Notre but est double : d’abord, nous
voulons évaluer l’exactitude de SVM et sa robustesse et, ensuite, nous voulons fournir
des intuitions utiles sur la sélection des paramètres de SVM, un aspect pas toujours
bien étudié dans les travaux précédents.

Nous comparons la performance de notre algorithme à ceux réalisables par des
modèles paramétriques et non paramétriques tels que la moyenne glissante, les modèles
autorégressifs ou l’estimateur de Nadaraya-Watson. Nos résultats montrent que, en
dépit d’un bon accord avec les données réelles, le gain de SVR réalisable au-dessus des
méthodes simples de prédiction n’est pas sufissant pour justifier son mise en oeuvre
pour la prédiction de la charge sur un lien aux au moins pour des échelles temporelles
courtes (voir Fig. 3.5 et Fig. 3.6).

Les Fig. 3.5 et Fig. 3.6 rapportent des résultats sur le RMSE (Root Mean Square
Error) en fonction du nombre d d’observations du passé utilisées, pour les deux ensem-
bles de données analysés en considérant une échelle temporelle égale à τ = 1 seconde.
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 5.5

 6

 6.5

 7

 7.5

 5  10  15  20  25  30

R
M

SE

Number of previous samples (d)

Daily period

 1.9

 2

 2.1

 2.2

 2.3

 2.4

 5  10  15  20  25  30

 

Nightly period
SVR
d-AR
d-MA
d-LSO

Figure 2: Impact du nombre d des observations passées sur l’exactitude de la prédiction.
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Figure 3: Impact du nombre d des observations passées sur l’exactitude de la prédiction
de l’estimateur Nadaraya-Watson quand le même ensemble d’apprentissage et de vali-
dation que pour SVM est utilisé.

Les résultats pour l’estimateur de NW sont affichés séparément pour faciliter la com-
paraison. Chaque point correspond au résultat moyen de 10 répétitions de l’expérience.
Comme première remarque, on peut affirmer que les résultats sont différents, SVR étant
celui qui obtient toujours les meilleurs résultats. Cependant ils sont quantitativement
très similaires : en d’autres termes, SVR ne semble pas offrir une amélioration signi-
ficative, particulièrement par rapport aux modèles d-AR. Il faut avouer que les modèles
AR sont en fait équivalents a des modèles de SVR avec un noyau linéal. Cependant,
nous devons attribuer à SVR un certain nombre d’aspects extrêmement positifs : par
exemple, les algorithmes basés sur SVR sont robustes à la variation des paramètres,
et leur complexité informatique est loin d’être prohibitive, propriétés qui les rendent
appropriés pour la prédiction en ligne.

Nous étudions également des méthodes pour prolonger l’horizon de prédiction en
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Figure 4: Comparaison des valeurs réelles et les prédictions associées obtenues par SVR
pour les traces (a) ISP and (b) Campus.

utilisant des valeurs prévues comme inputs pour une nouvelle prévision. Intéressante,
cette approche de SVR recursive peut, de manière significative, prolonger l’horizon
réalisable de prédiction, au prix d’une dégradation très limitée de l’exactitude de la
prédiction.

En outre, nous prouvons que la performance de l’algorithme de prédiction peut
être améliorée si une approche différente est adoptée. Nous employons toujours SVM
mais nous définissons différents inputs/outputs : l’objet de la prédiction dans ce cas-
ci est une fonction, par exemple le maximum ou le percentile, de la charge du lien
(pendant un intervalle donné de temps) et l’input est constituée par un résumé des
propriétés statistiques des observations mesurés dans l’intervalle passé de la même
longueur. Dans ce cas-ci, nous prouvons que l’utilisation de plusieurs “machines” en
parallèle peut améliorer le gain de performance et en même temps éviter la décision sur
le choix d’input optimal.

Nous montrons dans la Fig. 3.15 les valeurs réelles et les prédictions obtenues avec
SVR pour le maximum (en haut) et pour le 95th-percentile, pour un ensemble aléatoire
de validation pour deux ensembles de données différents (ISP et Campus). Cette figure
nous permet d’avoir une première idée (visuelle) de l’exactitude de la prédiction. Dans



14 Résumé

ISP Campus

Input p95 p p95 p

Naive RMSE 3.44 3.91 8.28 16.55

1st 5.1 % ◦ 8.2 % ⋆ 15.5 % • 21.2 % •
2nd 5.0 % • 8.0 % • 15.1 % ⋆ 20.9 % ⋆

SVM 3rd 4.6 % ⋆ 7.9 % ◦ 14.4 % ◦ 20.8 % ◦
Gain = 2 feat 4.7 % 7.7 % 14.6 % 20.1 %

≥ 3 feat 3.8 % 6.3 % 13.0 % 15.9 %
All 4.3 % 7.2 % 13.9 % 18.3 %

Table 1: Comparaison de la prédiction Naive et de SVR pour p et p95, pour les différents
inputs (◦=(µ),•=(µ, p),⋆=(µ, p95))

ce cas nous avons utilisé comme input la combinaison (µ, p) (moyenne, maximum).
Comme prévu, SVR ne peut pas prévoir les “pics” importants qui sont présents surtout
dans les traces nommé Campus, mais il est capable de “suivre” la forme de la courbe.
Intuitivement, la présence de ces pics rend la prévision du maximum plus difficile que
celui du percentile. Ces différences sont reflétées dans le RMSE : pour la trace ISP, le
RMSE est de 3.65 pour le maximum et de 3.39 pour le 95th-percentile, tandis que pour
la trace Campus ces valeurs sont respectivement de 21.46 et 9.94 .

Nous avons aussi exploré l’utilisation d’autres inputs que (µ, p). Nous considérerons
comme inputs toutes les combinaisons possibles des attributs µ (moyen), σ (écart type),
p (maximum) et p95 (95th-percentile). Le Tab. 3.4 rapporte le RMSE obtenu par
la prédiction näıve (où la prédiction est le maximum ou le percentile observé dans
l’intervalle précédent) et le gain correspondant de SVR pour l’ensemble de données ISP
et Campus et pour les différentes combinaisons des attributs.

Comme mentionné avant, il est en fait inutile d’inspecter quelle combinaison d’inputs
donne les meilleurs résultats : l’idée fondamentale est d’utiliser plusieurs machines en
parallèle, dont chacune est apprenti à partir des différents inputs pour le même out-
put (de sorte qu’il est possible par exemple de combiner la puissance de prédiction
de différentes machines, ou aussi de choisir automatiquement la meilleure combinaison
d’inputs).

Classification des applications P2P-TV

En ce qui concerne la classification du trafic P2P-TV, nous proposons une méthodologie
originale qui se fonde seulement sur le comptage de paquets et d’octets échangés parmi
des pairs pendant de petites fenêtres de temps. Notre affirmation est que les différentes
applications échangeront différentes quantités d’information au sujet de leur opération
particulière (par exemple d’activités de signalisation ou de taille du video chunks),
et que cette information exploitée de façon appropriée est sufissante pour identifier
l’application particulière. Notre système de classification, qui se sert de SVM, iden-
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Figure 5: Cadre de classification.

tifie non seulement exactement le trafic P2P-TV (95% du trafic dans le pire des cas
est correctement classifié), mais traite également le trafic qui n’est pas produit par
des applications de P2P-TV, de sorte que les événements de fausse classification sont
négligeables. Une campagne expérimentale très complète est exécutée pour valider nos
résultats. Elle emploie des méthodologies actives et passives et est représentative d’un
grand ensemble de scénarios possibles. D’ailleurs, nous analysons la portabilité de la
signature définie, prouvant que notre cadre peut être prolongé à des situations très
différentes, ce qui constitue un avantage très important.

Considérons le trafic reçu par un point final arbitraire P = (IP, port) pendant un
intervalle de temps ∆T . Nous évaluons simplement la quantité d’information reçue par
P par le nombre de paquets reçus. Après nous prolongeons ce concept pour compter
également la quantité d’octets.

Nous divisons l’espace N du nombre possible de paquets envoyés à P par un autre
pair dans Bn + 1 caissiers de taille exponentielle avec base 2, c.à.d :

I0 = (0, 1], Ii = (2i−1, 2i] ∀i = 1, . . . , Bn−1 et IBn = (2Bn−1,∞].

Pour chaque intervalle ∆T , nous comptons le nombre Ni de pairs qui ont envoyé à P
un certain nombre de paquets n ∈ Ii ; i.e., N0 compte le nombre de pairs qui ont envoyé
exactement 1 paquet à P pendant ∆T ; N1 compte le nombre de pairs qui ont envoyé
2 paquets; N2 le nombre de pairs qui ont envoyé 3 ou 4 paquets et NBn est égal au
nombre de pairs qui ont envoyé au moins 2Bn−1 + 1 paquets à P.

Soit K le nombre de pairs qui sont entrés en contact avec P dans l’intervalle. La
signature comportementale est donc définie par n = (n0, . . . , nBn) ∈ R

Bn+1, où :

ni =
Ni

Bn∑
j=0

Nj

=
Ni

K
.
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PPLive TVAnts SopCast Joost Unk

PPLive 81.66 0.58 9.55 2.32 5.90
TVAnts 0.49 98.51 0.18 0.77 0.04
SopCast 3.76 0.11 89.62 0.32 6.19
Joost 2.84 0.55 0.28 89.47 6.86

PPLive TVAnts SopCast Joost TNR

CAMPUS 2.42 2.23 0.01 0.02 95.3
ISP 0.66 0.13 0.43 0.10 98.7

Table 2: Matrice de confusion pour la classification du trafic P2P-TV.

La signature n est la fonction de masse observée du nombre de pairs qui ont envoyé un
nombre donné de paquets à P dans un intervalle de temps ∆T .

On appellera la signature “Abacus” pour ses initiales en anglais : “Automated
Behavioral Application Classification Using Signatures”.

Pour produire le modèle de classification, SVM doit être appris a partir des entrées
connues, comme il est montré dans la partie de dessous de la Fig. 4.4. Utilisant des
traces de banc d’essai, nous produisons des signatures pour des applications connues de
P2P-TV; spécifiquement, pour chaque trace, nous construisons une signature Abacus n
pour chaque intervalle de ∆T secondes. La signature est peut être choisie, au hasard,
pour faire partie de l’échantillon d’entrâınement. Une fois que le SVM a été appris,
l’outil de classification fonctionne comme indiqué dans la partie inférieure de la Fig. 4.4.
Des signatures Abacus du trafic à classifier sont calculées et données au modèle de SVM,
qui décide quelle application lui a produit : finalement, la classification donne par SVM
est acceptée s’il passe un critère de rejet, utilisé pour rejeter correctement le trafic qui
n’est pas du type P2P-TV.

Seulement pour montrer l’efficacité de notre méthode de classification, nous mon-
trons ici sa performance pour le cas le plus simple, où la signature est calculée a partir
du nombre de paquets échangés entre les pairs. Cette performance peut être améliorée
si on considère aussi le nombre d’octets en plus du nombre de paquets.

Dans la partie supérieure du Tab. 4.6 on rapporte la performance de notre mécanisme
de classification en adoptant une représentation type “matrice de confusion”. Chaque
ligne considère le trafic d’une application particulière, et chaque colonne rapporte des
résultats de classification. Les valeurs sur la diagonale correspondent aux vrais positifs
(accentués en gras), tandis que les éléments en dehors de la diagonale correspondent à
des faux négatifs, qui correspondent à des échantillons mal classifiés et à des échantillons
rejetés (marqués comme inconnus, Unk). On peut voir que, dans le pire des cas, environ
81% de signatures sont correctement classifiées. L’application la plus difficile à iden-
tifier semble être PPLive, qui est confondue avec SopCast (9.55%) ou Joost (2.32%).
D’autres applications montrent un plus haut taux de classification positive, avec une
classification presque parfaite pour TVAnts. En moyenne, environ 4.5% de signatures
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de trafic P2P-TV sont rejetées, donc marquées comme inconnues.

La partie inférieure du Tab. 4.6 rapporte des résultats en considérant de traces qui
ne contiennent pas de trafic P2P-TV. Le taux de vrai negatives est l’index principal à
considérer (les caractères gras dans la colonne plus à droite de la table). Les résultats
prouvent que le critère de rejet adopté est très robuste, de sorte que moins de 5%
d’échantillons sont mal classés dans le pire des cas. La partie gauche du tableau détaille
les faux positifs : PPLive et TVAnts sont la cause de la plupart de fausses classifications,
alors que Joost ne cause pratiquement aucun faux positif.

Modèles pour CSMA

Dans la deuxième partie de la thèse, nous traitons deux problèmes différents liés aux
mécanismes de contrôle d’accès au support dans les réseaux ad-hoc. Le premier est lié
à la modélisation du mécanisme bien connu CSMA/CA. Nous avons observé que pour
plusieurs des modèles proposés il n’est pas évident de savoir quelles sont les hypothèses
fondamentales et quelle est leur corrélation avec le vrai protocole. Sans viser de un
cours d’instruction sur la matière, nous présentons de manière clarifiant les multiples
modèles qui, à notre connaissance, ont été proposés dans la littérature pour l’analyse
de la performance de CSMA/CA. En particulier, nous discutons quand l’hypothèse sur
le mode de CCA peut être dépassée et dans quels cas un modèle basé sur la définition
des domaines d’exclusion est approprié.

En particulier, tous les modèles analysés sont basés sur l’hypothèse que la fonction
d’atténuation est monotone en la distance entre les noeuds, et pourtant n’inclut pas
des effets de fading/shadowing. Nous nous sommes alors concentrés sur la possibilité
de généraliser de tels modèles afin qu’ils incluent les variations aléatoires des conditions
de canal. En particulier, nous avons proposé une généralisation basée sur la définition
des domaines d’exclusion aléatoires (RED). Nous avons montré que des résultats très
différents sont obtenus par ce modèle une fois comparés aux précédents. Cette com-
paraison montre que les effets de fading/shadowing jouent un rôle important dans la
performance du protocole et qu’ils doivent être pris en considération.

CED se réfère au modèle qui considère une fonction d’atténuation déterministe, ce
qui implique que les domaines d’exclusion sont définis seulement en termes de distance.
RED renvoie au modèle comprenant des effets de fading/shadowing qui se traduisent
en domaines d’exclusion aléatoires. Dans ce qui suit nous comparons la réutilisation
spatiale et le débit moyen obtenu par les deux modèles pour différentes valeurs de
l’exposant α de la fonction d’atténuation (voir Fig. 5.6 et Fig. 5.7).

Plus que les résultats quantitatifs, le but de cette comparaison est d’indiquer que
des résultats qualitativement différents sont obtenus avec les deux modèles considérés.

Cependant, certaines des techniques employées par les propositions analysées, qui
permettent d’obtenir des résultats analytiques, ne peuvent pas être généralisées à ce
cas plus général (par exemple le packing formalisme ou la troncature d’un processus
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Figure 6: Comparaison de la réutilisation spatiale obtenue pour CED et RED avec
l’hypothpèse de shadowing Lognormal.
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Figure 7: Comparaison du taux moyen obtenu pour CED et RED avec l’hypothpèse de
shadowing Lognormal.

libre). Des résultats analytiques (même avec l’hypothèse d’une fonction d’atténuation
déterministe) peuvent être obtenus seulement pour une topologie simple comme la
ligne. Le seul modèle capable de fournir des résultats analytiques pour des topolo-
gies plus générales et pour des canaux aléatoires est un modèle de type Matèrn [20]
(au moins à notre connaissance). Malheureusement, ces modèles sont connus pour
être intrinsèquement conservateurs. Nous avons mesuré quelle est la magnitude de ce
conservatisme, constatant que la différence relative est d’environ 30% en termes de
réutilisation spatiale et taux moyen. Lorsque la densité spatiale du taux est considérée,
les différences sont réduites: moins de 10% dans beaucoup de cas (particulièrement
sous le modèle de shadowing Lognormal). En dépit de ces différences quantitatives,
les résultats obtenus sont qualitativement semblables. La dépendance des indicateurs
de performance (par exemple la réutilisation spatiale et le débit moyen) à l’égard du
paramètre K est presque identique dans les deux modèles. La différence entre les
résultats obtenus est grossièrement constante pour toutes les valeurs de K. Voir par
exemple la Fig. 5.14, qui montre la différence entre les modèles RED et MRED c.à.d,
la version Matèrn du modèle RED qui prend en compte les effets aléatoires du canal.

Une hypothèse fondamentale des modèles analysés est qu’ils supposent que le CCA
est exécuté dans le mode Carrier Detection (CD). Cependant, d’autres modes peuvent
être considérés, par exemple le mode Energy Detection (ED). Considérant que pour le
premier cas le canal est rapporté comme occupé si au moins un signal est détecté, pour
le second la condition est définie par rapport à la puissance totale reçue (interférence).
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Figure 8: Différence relative entre RED et MRED pour la densité spatiale de taux
considérant shadowing Lognormal (a) ou fading Rayleigh (b).

Pour ce dernier cas, tous les modèles précédemment présentés ne sont plus valides.
Nous proposons alors un cadre analytique, basé sur les outils provenant de la géométrie
aléatoire, qui nous permet de fournir une comparaison profonde entre ces deux modes.
En particulier, des formules analytiques sont données pour la probabilité d’accès pour
les deux modes considérés. In mélange de ces deux modes est également analysé.

Supposant que l’ensemble des noeuds d’un réseau est la réalisation d’un processus
ponctuel suivant une distribution Poisson dans R

2, nous avons prouvé que l’ensemble
d’émetteurs actifs sous ces deux modes (CD et ED) peut être rapproché par des shot
noise extrêmes ou additifs (ESN et ASN) associés au processus ponctuel original. Ce
cadre nous a permis de calculer la probabilité d’accès pour les deux cas et de mesurer
les différences entre elles.

Φadd et Φext sont des processus ponctuel qui représentent l’ensemble d’émetteurs
qui peuvent être actifs pour le ED et le CD mode respectivement. Nous avons supposé
par défaut à fading Rayleigh et la fonction d’atténuation suivante : l(r) = (Ar)−β tel
que β > 2. Nous avons aussi considéré deux cas différents : seuils déterministes et
aléatoires pour définir l’accès au canal. On note λpI et λpM la densité du processus
Φadd et Φext respectivement, pour chaque cas on indiquera si le seuil est aléatoire (rand)
ou deterministe (det).

Puisque la somme est toujours plus grande que le maximum il devrait être clair que
l’intensité de Φadd sera toujours plus petite que celle de Φext. Plus précisément, on a
prouvé que la différence entre les deux intensités (pour λ suffisamment grand) est un
facteur constant :

lim
λ→∞

λprand
I

λprand
M

=
1

Γ(1 + 2/β)Γ(1 − 2/β)
< 1. (2)

Ce facteur, qui dépend seulement de l’exposant β de la fonction d’atténuation, est
toujours plus petit que 1. Il peut être vu comme la perte sur la densité des émetteurs
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Figure 9: Fonctions de limite

actifs pour considérer l’interférence totale reçue par le noeud qui compte accéder au
canal, au lieu de la puissance de réception maximale, pour décider si le noeud peut être
activé ou pas (c.àd. pour considérer le CCA en mode de détection d’énergie au lieu de
détection de porteur).

Quand β → ∞ les deux fonctions Γ(1 + 2/β) and Γ(1 − 2/β) convergent vers 1.
Ceci signifie que les intensités de Φext et Φadd seront égales. D’ailleurs, la fonction
1/Γ(1 + 2/β)Γ(1 − 2/β) est monotone croissante, ce qui signifie que la différence entre
les intensités diminue avec β. Ces conclusions ne sont pas étonnantes : pour des valeurs
grandes de β l’impact de chaque shot est moins significatif et ainsi la différence entre
le maximum et la somme est moins importante. Cependant, (6.28) donne une quan-
tification de cette différence quand l’intensité du processus original est suffisamment
grande.

Dans la partie la plus à droite de la Fig. 6.2, on représente la fonction 1/Γ(1 + 2/β)Γ(1 − 2/β).
Comme nous pouvons observer la limite est approchée pour des valeurs très grandes
de β qui ne sont pas des choix raisonnables dans notre contexte. D’ailleurs les valeurs
obtenues pour des valeurs de β près de 2 sont très petites ce qui implique que les
différences correspondantes sur les intensités sont très grandes. Par exemple, pour
β = 2.1 et β = 4 les valeurs obtenues sont respectivement 0.05 et 0.64. Ceci signifie
que l’intensité asymptotique obtenue pour le shot noise additif sera respectivement 5%
et 64% de cela obtenu par le shot noise extrême.

Si maintenant on considère le cas où le seuil est déterministe, nous pouvons obtenir
des résultats analytiques pour le shot noise additif seulement pour β = 4. Dans ce cas,
la même relation que pour le cas aléatoire peut être prouvé, c.à.d. que pour β = 4 on
a la relation suivante :

lim
λ→∞

λpdet
I

λpdet
M

=
1

Γ(1 − 2/β)Γ(1 + 2/β)
< 1. (3)

Même si le résultat est prouvé seulement pour β = 4 nous faisons la conjecture de
qu’il est en fait valide pour toutes les valeurs de β. Nous validons notre conjecture par
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des simulations comme le montre la Fig. 10. Les mêmes conclusions que pour le cas
précédent sont donc valides.

Nous avons aussi comparé la relation entre le cas déterministe et le cas aléatoire, et
nous avons obtenu le même résultat pour le shot noise additif que pour l’extrémal :

lim
λ→∞

λprand
I

λpdet
I

= lim
λ→∞

λprand
M

λpdet
M

= Γ(1 + 2/β). (4)

Si nous nous concentrons sur la partie gauche de la Fig. 6.2, qui donne la relation
entre le cas aléatoire et déterministe pour les deux processus, on peut observer que le
minimum est atteint à β = 4 pour lequel la différence est de 12%. D’ailleurs, pour des
valeurs plus petites que β = 3, la fonction est plus grande que 0.9, ce qui implique dont
une différence de moins de 10%. Ceci signifie que la différence entre considérer un seuil
aléatoire ou déterministe est marginale.

Finalement, des résultats obtenus en considérant une condition pour la somme et le
maximum en même temps ont été également déduits et comparés aux modes précédents.
Une observation importante est que la condition sur la somme est plus restrictive, du
moins quand des seuils comparables sont considérés.

Contrôle d’accès au support avec des garanties de performance

La deuxième partie de cette thèse est consacrée à la conception et à l’évaluation quan-
titative des mécanismes de MAC avec des garanties de performance. Par ceci, nous
voulons dire des mécanismes où chaque connexion admise obtient un taux minimum
ou d’une manière équivalente un SINR (rapport signal sur bruit et interférence) min-
imum. Deux mécanismes sont définis et comparés. On propose ces mécanismes dans
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Figure 11: Comparaison de la réutilisation spatiale pour une topologie en ligne (lignes
continues) et en grille (lignes pointillés) pour le shadowing Lognormal.

le cadre des réseaux ad hoc et pourtant, ils doivent être décentralisés : les problèmes
d’implementation de cette contrainte sont analysées. Les deux mécanismes prennent
en considération le niveau d’interférence pour décider sur l’ensemble de connexions qui
peuvent accéder au canal de façon simultanée dans un moment donné. La différence
principale entre les deux mécanismes est la possibilité d’ajuster la puissance de trans-
mission des noeuds. Une comparaison approfondi de la performance de ces deux
mécanismes et du CSMA/CA est présentée, basée sur un mélange de modèles ana-
lytiques et des simulations, et sur un ensemble complet de métriques de performance
qui inclut la réutilisation spatiale et l’efficacité dans l’utilisation de la puissance de
transmission. Différentes topologies de réseau, différents environnements de propa-
gation et scénarios du trafic sont considérés. Dans tous les scénarios analysés, un des
mécanismes proposés surpasse de manière significative CSMA, sauf pour quelques cas où
les différences ne sont pas significatives. La distribution des taux obtenus est également
plus juste pour chacun des mécanismes proposés que pour CSMA. Cependant, celui qui
parmi eux est le “meilleur” dépend fortement du scénario de trafic.

Les mécanismes proposés sont nommés SBAC (pour SINR Based Access Control)
et PCBA (pour Power Control Based Access). Dans SBAC, la puissance est constante
et égale à P pour chaque émetteur. Une nouvelle connexion est acceptée si et seulement
si le SINR que elle obtient (qui dépend des connexions déjà admises) est plus grand
qu’un certaine seuil, et en même temps, le nouveau SINR que les transmissions déjà
actives obtiennent, en prenant en considération ce nouveau connexion, est également
plus grand que le seuil. Au lieu de simplement vérifier si le SINR est acceptable,
nous supposerons maintenant que la puissance de transmission peut être ajustée. Dans
notre deuxième proposition (PCBA), les connexions seront acceptées tant qu’il existe
un vecteur faisable de puissance (c.à.d. puissance des connexions déjà actives plus la
nouvelle) garantissant que le SINR obtenu pour toutes les transmissions admises est
plus grand que le minimum.

Dans les figures Fig. 7.2 et Fig. 7.3 nous montrons la comparaison de CSMA, SBAC
et PCBA en termes de réutilisation spatiale (SR) et de taux moyen (MR) pour deux
topologies différentes (ligne et grille) quand le shadowing est supposé Lognormal.
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Figure 12: Comparaison de la taux moyenne (ρ = log2(1 + SINR)) pour une topologie
en ligne (lignes continues) et en grille (lignes pointillés) pour shadowing Lognormal.
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Figure 13: Densité spatiale de taux pour une topologie en grille pour Rayleigh fading
(lignes continues) et pour Lognormal shadowing (lignes pointillés.

Concernant l’impact de la topologie sur le SR et le MR, l’analyse comparative entre
les mécanismes proposés et CSMA (or RED) est semblable pour les deux topologies.
On peut observer des différences principalement dans le SR, qui est plus petit pour
la topologie en grille due à l’augmentation des potentiels interférents : dans la ligne
chaque noeud loin du bord a deux voisins plus proches, qui deviennent quatre dans
la grille. Cependant, l’impact sur le MR est moins significatif. Le nombre peu élevé
des connexions actives simultanées a comme conséquence des niveaux de taux moyens
semblables à ceux obtenus sur la ligne.

Il y a un compromis évident entre le MR et le SR. Par exemple, si nous choisissons
la valeur de K qui maximise le SR, nous obtiendrons des valeurs petites pour le MR. Au
contraire, si nous choisissons K afin de maximiser le MR nous obtiendrons un SR très
faible. Quel est alors un bon choix de K qui considère les deux paramètres en même
temps ? Pour évaluer plus exactement cette différence, nous considérons plusieurs fonc-
tions d’utilité, selon le type de trafic présent dans le réseau. En particulier nous nous
concentrons sur trois types de trafic : le trafic élastique (par exemple données), le trafic
élastique avec un minimum SINR exigé (ce qu’on apprécierait beaucoup pour le trafic de
données dans LANs sans fil fortement chargé) et le trafic à taux d’échantillonnage fixe
(CBR pour ce sigle en anglais : Constant Bit Rate) (par exemple trafic téléphonique).
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Figure 14: Réutilisation spatiale quand SINR ≥ τ pour des topologies en ligne et grille
avec shadowing Lognormal.
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Figure 15: Densité spatiale de taux et réutilisation spatiale quand SINR = τ pour la
topologie en ligne avec shadowing Lognormal et α = 3.

Si le trafic élastique est considéré, SBAC est l’algorithme qui fournit les meilleurs
résultats. Quand un taux minimum doit être garanti, le meilleur dépend de la métrique
considéré, du niveau de taux minimum et aussi de α. Si la comparaison est faite en
termes de réutilisation spatiale, PCBA surpasse largement le reste des mécanismes.
Cette supériorité est dû à sa capacité de contrôler la puissance de transmission, ce qui
le permet d’accepter plus des connexions simultanés. En même temps, puisqu’il donne
exactement le même taux à tous les connexions, son performance diminue quand une
autre métrique (qui inclut explicitement le taux) est considérée. Par exemple, SBAC
est le mécanisme qui fournit la meilleure densité spatiale du taux. Exemples de ce type
de comparaison sont montrés dans les figures Fig. 7.5 et Fig. 7.10.

PCBA obtient également les meilleurs résultats quand le trafic CBR est considéré,
indépendamment de la métrique et du modèle de propagation. Quand on considère
le rapport entre le taux et la puissance de transmission, PCBA obtient encore des
résultats très bons tant que la distance entre l’émetteur et le récepteur reste limitée.
La Fig. 7.11 montre la comparaison en termes de réutilisation spatiale et de densité
spatiale de taux, pour le cas de trafic CBR pour un cas particulier représentatif des cas
plus généraux.
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Chapter1
Introduction

1.1 Motivation

Internet is the first real multi-service network; voice, video and data services are all
offered on the same network. Among the many consequences that this convergence
brought with it, the change on the traffic structure is probably between the most promi-
nent ones. Not only has the amount of traffic increased, but its nature has radically
changed too, mainly due to the offer of new advanced services (with a socio-economic
impact that is incontestably important). The popularity of these services, such as for
instance file-sharing (e.g. KaZaa, eDonkey, BitTorrent), Internet telephony (e.g. Skype,
Gtalk, VoIPbuster) and Internet television (e.g. Sopcast, Joost, Zatoo, Babelgum) has
exploded in the last years. As a result, network data traffic is increasingly complex and
dynamic.

These two characteristics translate into a high traffic unpredictability (at least with
traditional and simple techniques). Predicting traffic volume is very useful for both ca-
pacity planning and self-management schemes (even if they involve very different time
scales). For instance, a typical application of this prediction is the dynamic resource
reservation in the context of Virtual Private Networks (VPN) provisioning [1]. Another
application, related to the emerging discipline of green networking [2], is the Adaptive
Link Rate (ALR) problem. ALR is proposed as a way to reduce energy consumption
by means of adjusting the configured link rate on the router to the minimum required.
It would be interesting then to design a prediction scheme that accurately predicts
such variable traffic in an online manner, and at the same time minimizes the assump-
tions on the traffic structure (e.g. no assumption on the statistical properties of the
measurements should be made).

However, the prediction of some traffic features as the mean or the maximum over
a given time interval does not give information about the traffic itself. Certain traffic-
aware applications require to actually identify the type of traffic traversing the network,
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or even the application generating it. For instance, traffic (application) classification is
instrumental to the application of QoS policies, is necessary to block specific banned
applications (e.g. P2P or chat in an office), or to identify popular applications with
commercial purposes (e.g. advertising). An outstanding example of these new types
of traffic is P2P-TV (Peer-to-Peer Television); large-scale real-time video-streaming
services exploiting the peer-to-peer (P2P) communication paradigm. There are several
currently deployed P2P-TV systems which feature low-quality streaming [3, 4, 5, 6],
but high-quality systems will be soon of widespread use too [7, 8].

P2P-TV systems are candidates for becoming the origin of serious problems for the
Internet, as testified by the growing success of commercial systems such as PPLive,
SopCast, TVAnts and many others. Indeed, P2P-TV traffic may potentially grow
without control, causing a degradation of the quality of service perceived by Internet
users or even the network collapse [9]. While downlink is limited by the stream rate,
uplink may grow unboundedly as observed in [10]. Furthermore, the proprietary (and
closed) design of some successful P2P-TV applications turns the identification of such
applications in a topic of growing importance. For instance, an ISP (Internet Service
Provider) will certainly be interested in blocking these resource consuming applications,
or at least in identifying them.

Although the traffic classification problem is not new, for different reasons some well
known techniques are becoming obsolete. Examples of these are port-based or payload-
based classification. Whereas the former one can be misled by, for instance, firewall
blocking or dynamic port allocation, the computational complexity of the latter may
be as high as to make it not implementable. As an alternative, very good performances
are obtained by means of statistical classification [11, 12]. In addition, behavioural
classification, based on the rationale that different applications generate different pat-
terns, was used in the context of coarse-grained classification of Internet hosts [13, 14].
Thus, we interest ourselves in the design of a classification engine targeted to P2P-TV
applications (i.e. fine-grained) based on the behavioural paradigm.

Another characteristic of today networks related to the above considerations is
the use of new emerging technologies. Indeed, as traffic injected to the network is
increasingly heterogeneous, so are the access technologies. In particular, wireless have
increasingly become the edge technology of choice. It is expected that in the near
future, with the proliferation of smart devices with new functionalities, communication
between wireless terminals will usually take place without the core being involved.
These terminals will act in a self-organized and adaptive manner, falling in the category
of Mobile Ad-hoc NETworks (MANETs).

At the moment of analyzing the design or the performance of MANETs, the shared
nature of the medium appears as one of the most difficult aspects to cope with. As
such, the design of the Medium Access Control (MAC) mechanism plays a key role.
Ideally, a well designed MAC algorithm allows the maximum number of simultaneous
transmissions such that they do not interfere with each other. All of this, minimiz-
ing unfairness in the access opportunities. However, such design is a really difficult
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task when a decentralized mechanism is considered (which is the ideal case). The MAC
mechanism is then ran locally by each node, which has only local information of the net-
work state. The most widely deployed MAC mechanism is CSMA/CA (Carrier Sense
Multiple Access with Collision Avoidance), used for instance in IEEE 802.11 and IEEE
802.15.4. Even if it has been relatively well studied from an empirical point of view,
there is no widely accepted mathematical model for it. In this sense, an analysis of the
protocol, and the identification of its relevant features for modeling purposes is, surpris-
ingly, missing. For instance, current models do not take into account the randomness
of channel conditions due to fading/shadowing effects [21, 22]. Furthermore, some as-
pect of CSMA/CA are simply ignored, as the Clear Channel Assessment (CCA). In
this context we analyze whether these models can be extended to the non deterministic
case, or if it is necessary and possible to define a new model for CSMA/CA.

In any case, CSMA/CA does not guarantee anything in terms of the quality obtained
by the accepted transmissions. This lack of QoS (Quality of Service) could hinder
the implementation of, for instance, advanced real-time applications. It would then
be interesting to design and analyze a control access mechanism with performance
guarantees. As mentioned above, the design of such a mechanism must cope with
the decentralized nature and the shared resources (where the QoS of each connections
depends on all active connections) of MANETs.

In a nutshell, this thesis presents four main contributions:

• We analyze the problem of link load prediction, and propose a new algorithm
based on a novel Machine Learning technique, the so-called Support Vector Ma-
chines (SVM) [15]. Our proposal is compared with several parametric and non-
parametric techniques, obtaining always the best results.

• A SVM variant is used on the design of a fine-grained P2P-TV application clas-
sification engine. The performance of our proposal is validated by testing it on
several different traffic traces representative of a wide range of scenarios, from
which excellent results were obtained.

• We analyze and discuss possible models for the different flavours of CSMA/CA,
putting special emphasis on the correlation between the model assumptions and
the real protocol features. A special section is devoted to the modeling and
comparison of the different CCA modes.

• We propose two different access mechanisms that guarantee a minimum QoS (in
terms of rate) for all accepted transmissions. The performance of these new mech-
anisms is compared with the classic CSMA/CA in several scenarios, considering
various performance metrics. The main aim of our study is to identify which of
the proposed mechanisms performs better depending on the scenario.

In the following section, we detail the main contributions of the thesis.
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1.2 Main Contributions

This thesis is organized in two parts. The first one is dedicated to the design of tools
based on Machine Learning, in particular SVM [15, 16], to cope with two of the prob-
lems previously mentioned: link load prediction and P2P-TV traffic classification. SVM
are a set of methods for classification and regression that are grounded in the frame-
work of statistical learning theory. Even if the first work on this topic dates from the
seventies [17], it only gained the international academic community attention in the
nineties. SVM have been extensively used mainly in the context of pattern recogni-
tion in which they have shown very good performance. In the context of networking
applications, they have been used, for instance, for anomaly detection or throughput
estimation [18, 19]. We interested ourselves in these techniques since they work well
in many learning situations, due to its good generalization to unseen data. Moreover,
they are amenable to continuous and adaptive online learning which constitutes an
extremely desirable property for our purposes.

As a first step, we perform a deep and comprehensive study of the SVM techniques.
We then analyze in detail its performance when applied to the above mentioned net-
working problems. As a general remark, we can say that in both cases SVM proved
to be a very useful and powerful tool. Whereas for the link load prediction, SVM ro-
bustness and low computational complexity appear as its main assets, for the P2P-TV
classification SVM provides impressively good results.

More precisely, for the link load prediction, we follow the methodology known as
“embedding procedure”. A time series of averaged link load values at the chosen time
scale is considered, and a future value of this time series is predicted based only on a
small number of past observations. In particular, we choose for this work small time
scales, i.e. less than one minute. An extensive sensitivity analysis is presented which
shows the SVM robustness in terms of parameter tuning and training, as well as its cost-
effectiveness. Its accuracy is gathered by means of a thorough comparison phase that
includes parametric and non-parametric models, ranging from simply moving averages
to more sophisticated models such as the Nadaraya-Watson estimator [23]. We found
that in any case, SVM provides the best results.

Furthermore, we show that the performance of the predictor can be improved if a
different approach is taken. We still use SVM but we define different inputs/outputs:
the prediction is in this case focused on a function of the link load (e.g. the maximum or
percentile value over a given time interval) and the input is constituted by a summary
of statistical properties of the observations taken in a past interval of equal length. In
this case, we show that the use of several “machines” in parallel can further improve
the performance gain and avoids the decision of a particular input choice.

Concerning P2P-TV traffic classification, we propose a novel methodology that
relies only on the count of packets and bytes exchanged among peers during small time-
windows. Our claim is that the different applications will exchange different amounts
of information concerning their particular operation (e.g. signaling activities or video
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chunk size), and that this information conveniently exploited is enough to identify
the particular application. Our classification framework, which makes use of SVM,
not only accurately identifies P2P-TV traffic (95% of correctly classified traffic in the
worst case), but also handles traffic that is not generated by P2P-TV applications, so
that false classification events are negligible. A thorough experimental campaign is
performed to validate our results, which uses both active and passive methodologies
and is representative of a large set of possible scenarios. Moreover, we analyze the
portability of the defined signature, showing that our framework can be extended to
very different situations, which constitutes a very important benefit.

In the second part of the thesis, we deal with two different problems related to
the multiple access mechanisms in ad-hoc networks. The first one is related to the
modeling of the well known CSMA/CA mechanism. We found out that in many of
the proposed models it is not clear which are the underlying assumptions and their
correlation with the real protocol. Without aiming at providing a tutorial on the topic,
we present a clarifying picture of the several models that, to the best of our knowledge,
have been proposed in the literature for the analysis of the performance of CSMA/CA.
In particular we discuss when the assumption on the CCA mode can be overridden and
in which cases a model based on the definition of exclusion domains is appropriate.

In addition, we propose a new model for CSMA/CA that takes into account the
shadowing/fading effects, and we compare it with previous proposals. This comparison
allows us to prove that this aspect plays a major role in the performance of the mecha-
nism. Furthermore, we show that models originated in the stochastic geometry context
provide analytical formulae for some important performance indicators, such as the
access probability or the spatial reuse. These models are known to be conservative, but
up to now a quantitative analysis of the magnitude of this difference is still lacking. We
analyze this gap assuming a slotted division of time for both deterministic and random
attenuation functions. We show that, even if significant differences can appear in terms
of spatial reuse (and so in the rate), when other performance metrics that include both
the spatial reuse and rate are considered, these differences are reduced. Moreover, it
should be said that results obtained by Matérn like models are qualitative similar to
real ones.

An underlying hypothesis of the analyzed models is that they assume that the
CCA is performed in Carrier Detection (CD) mode. However, other modes can be
considered, for instance Energy Detection (ED) mode. Whereas for the first case the
channel is reported as busy if at least one signal is detected, for the second one the
condition is over the total received power (interference). For this last case, all previously
introduced models are no longer valid. We propose then an analytical framework, based
on stochastic geometry tools, that allows us to provide a deep comparison between these
two modes. In particular, analytical formulae is given for the access probability under
both considered modes. Moreover, a mixture of these two modes is also analyzed.

The second part of this thesis is also dedicated to the design and the quantita-
tive evaluation of MAC mechanisms with performance guarantees. By this, we mean
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mechanisms where each accepted connection obtains a minimum rate or equivalently a
minimum SINR (Signal to Interference and Noise Ratio). Two such mechanisms are de-
fined and compared. These mechanisms are proposed in the context of ad-hoc networks
and as such they must be decentralized: the implementations issues of this constraint
are analyzed. Both mechanisms take the interference level into account to decide on
the set of connections which can access the shared channel at any given time. The
main difference between the two is the possibility or not of adjusting the transmission
power of the nodes. A deep comparison of the performance of these two mechanisms
and CSMA/CA is presented, based on a mix of analytical models and simulations,
and on a comprehensive set of performance metrics which include spatial reuse and
power efficiency. Different network topologies, propagation environments and traffic
scenarios are considered. In all analyzed scenarios, one of the proposed mechanisms
significantly outperforms CSMA, apart from a few cases where the differences are not
significant. The rate distribution is also more fair for each of the proposed mechanisms
than for CSMA. However, which of them is the “best” one strongly depends on the
traffic scenario.

1.3 Outline

A brief summary of the main attributes of SVM is presented in Chap. 2. We choose
to avoid mathematical proofs that could make this chapter hard to follow. We present
instead the main results of this theory that are required for its understanding, and the
emphasis is put on those characteristics that will be useful later for our specific appli-
cations. In particular, SVM can be divided into classification or regression according to
the output type considered: discrete or continuous. Both cases are analyzed separately.
The multiclass classification case is particularly emphasized since our application falls
in this category.

The application of SVM in its regression mode (referred to as SVR) to the link
load problem will be analyzed in Chap. 3. In this chapter, two different approaches
are presented: the “embedding procedure” and the prediction of a function of the
link load. In the first case, much effort is dedicated to the parameter selection and
the comparison with several different techniques. The sensitivity analysis includes a
thorough and careful tuning of SVR, but also the analysis of other aspects that influence
its performance as, for instance, the training set size. Further details on the temporal
evolution of the error, the computational complexity and the recursive use of SVR are
also discussed in this chapter.

With the objective of improving the performance of the embedding procedure, we
then analyze the possibility of predicting a function of the link load (e.g. the maxi-
mum). In particular we propose to use as input to fed SVR a vector with the summary
of statistical properties of past observations. The use of several machines in parallel,
i.e. different machines trained with the same output but with different inputs, is an-
alyzed. In order to gather robust results we consider several real-world traffic traces,
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representative of very different network scenarios (such as ISP, Ethernet, WiFi LAN
and enterprise networks) so as to be able to print out a fine-grained picture of the gain
brought by SVR.

A classification framework tailored for P2P-TV traffic is defined and analyzed in
Chap. 4. The classification engine defined in this chapter is based on a signature
constructed from the count of packets and bytes that peers exchange between them,
which we claim and show to be enough to identify the application that generated the
traffic. A very important aspect of this kind of problems is to correctly validate the
results, and special attention is dedicated to the treatment of non P2P-TV traffic. In our
case, very different datasets are considered, which are representative of a wide range of
possible scenarios. Another aspect, as important as the previous one, is the portability
of the defined signature. In particular, we analyze this portability across different
network sites, access technologies, channel popularity, time and network conditions.

Chapters 5 and 6 are dedicated to the analysis of the MAC mechanism for wireless
ad-hoc networks. More precisely, the modeling of CSMA/CA is considered in Chap. 5.
Firstly, a comparison of some of the most “popular” models is presented, with special
emphasis on the correlation between the model assumptions and the real protocol fea-
tures. In particular, Matérn like models (conceived on the stochastic geometry context)
are introduced, for which analytical results of performance indicators are obtained. Sec-
ondly, a model that includes shadowing/fading effects is defined and compared with
other proposals that do not include it. Finally, we address the problem of quantifying
the subestimation of Matérn like models we mentioned above.

Chapter 6 is devoted to the modeling and comparison of the different CCA modes.
Our analysis is based on a key element in the context of stochastic geometry: the shot
noise (SN). As we will see, both modes of the CCA (ED and CD) can be described in
terms of an additive or an extremal shot noise. This framework allows us to calculate
the access probability of a typical node and so the density of nodes that can access the
channel at the same time. Moreover, a quantification of the impact of considering the
total interference instead of the maximum received power is provided. Finally, a third
mode consisting on a combination of the previous ones is analyzed.

In Chap. 7 two MAC mechanisms with performance guarantees are defined and
studied. A thorough comparison is performed, mainly based on simulations, including
different scenarios and metrics defined accordingly. A special section is devoted to the
discussion of the implementation issues, where we analyze the complexity of each of
the proposed algorithms and discuss the question of whether they can be implemented
in a decentralized and realistic way.

Finally, Chapter 8 concludes this dissertation and presents directions for future
work. A list of publications disseminating the material covered in this thesis can be
found in Appendix A.
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Chapter2
Support Vector Machines

In this section we introduce the basics ideas behind Support Vector Machines (SVM)
[15, 16]. SVM represent a set of classification and regression techniques, that are
grounded in the framework of statistical learning theory. Despite they were introduce
in the seventies [17] only in the nineties attract the attention of the academic com-
munity. Since then, SVM have shown very good performance, for both classification
and regression problems and in very different research areas. For the pattern recogni-
tion case, SVM have been extensively used for isolated handwritten digit recognition
[24, 25], object recognition [26], face detection in images [27, 28] or text categorization
[29]. But they have been also used more recently in the networking context [18, 30]. For
the regression case, SVM have been used for time series prediction and benchmarked
with known test, showing that in most cases the performance is similar or is signifi-
cantly better than that of competitors methods [31, 32, 33]. In this case there exist
also successful results in networking [19, 34].

We will apply SVM for two different networking problems. Firstly we will use
SVM for regression to predict the link load over a given timescale based only in past
measurements of its load. Results are presented in Chap. 3. Secondly, in Chap 4, we
analyze the problem of P2P-TV traffic applications classification by means of SVM.

We present here definitions and results according to Vapnik’s theory [15, 16]. We
start by giving the context of the learning theory, in particular the (structural) risk
minimization which is at the origin of SVM. We present only the main results without
proofs. Then, we will introduce the classification problem; in particular the simpler
case of linear separable data will be analyzed in detail. We will see that the general
case of non linear machines trained with non separable data can be solved in a very
similar way. Finally, we present how SVM can be used in the regression context. In each
case, we will concentrate on the most relevant notions and parameters whose impact
we investigate in detail later on and that are instrumental to the understanding of the
performance evaluation of chapters 3 and 4.
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2.1 Vapnik’s Learning Theory

For any learning task, with a given finite amount of training data, there is a main
tradeoff between the accuracy obtained for that particular training set and the “ca-
pacity” of the machine, that is the ability to learn any training set without error. As
perfectly explained in [35]: “A machine with too much capacity is like a botanist with
a photographic memory who, when presented with a new tree, concludes that it is not
a tree because it has a different number of leaves from anything seen before; a machine
with little capacity is like the botanist’s lazy brother, who declares that if it’s green, it’s
a tree. Neither can generalized well”. The formalization of these concepts are central
in the statistical learning theory of Vapnik and we will try to present here its main
features.

Let us consider a training set, i.e. a set of observations {(x1, y1), . . . , (xn, yn)} where
x ∈ SX is the input and y ∈ SY is the output. Suppose that there exist some unknown
probability distribution form which data is drawn, i.e. they are iid, independent and
identically distributed according to P (x, y) = P (y|x)P (x).

The objective is to define an algorithm (learning machine) that given a new input
X predicts the output Ŷ . In general the output Ŷ is found by minimizing some risk
functional. If the output Y is discrete the problem is a classification one, being a
regression problem if Y is continuous. Let be L : SX × SY × SY → R

+ a risk (cost)
function,

L(x, u, y) = cost of deciding u for input x when the real output is y.

Different risk functions can be defined according to the type of problem. In the classi-
fication problem with binary output, the objective is to minimize the number of errors
and so the risk function is simply L(x, u, y) = 1{u 6=y}. Alternatively, if the output is a
real variable and the problem is to find an approximation that minimizes the quadratic
error, the risk function will be L(x, u, y) = ||u− y||2.

Let F = {f : SX → SY } be the set of all possible functions f : SX → SY . A
learning machine is a function f ∈ F , i.e. given an input x returns an output y. We
look for the function f∗ ∈ F that minimizes the expected risk R(f):

R(f) = E(L(X, f(X), Y )) =

∫

SX×SY

L(x, f(x), y)dP (x, y).

Then, the function f∗ verifies that

f∗ = argmin
f∈F

R(f).

However the expected risk can not be calculated since the distribution P (y|x) is not
known. Instead an empirical risk is calculated from the training set:

Rn(f) =
1

n

n∑

i=1

L(xi, f(xi), yi),
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for which the dependence on the probability distribution disappears. The solution is
defined then as the function f∗n that minimizes the empirical risk function Rn(f):

f∗n = argmin
f∈F

Rn(f). (2.1)

We will refer to this solution as ERM (Error Risk Minimization) principle. One may
wonder about the validity of this principle as learning method (i.e. is f∗n a good approx-
imation of f∗? or more important, is Rn(f∗n) a good approximation of R(f∗)?), and
many of the Vapnik’s results are devoted to prove it. We present here only the main
results, for which some definitions need to be introduced.

Definition 2.1.1. The ERM principle is consistent if :

R(fn)
p→

n→∞ inf
f∈F

R(f) (2.2)

Rn(fn)
p→

n→∞ inf
f∈F

R(f) (2.3)

which means that the expected risk and the empirical risk for fn converge in probability
when n goes to infinity to the same limit that its the minimum value of the risk R(f)
(R(f∗)).

Vapnik [15] proves the following result, referred as to the Fundamental Theorem of
Learning.

Theorem 2.1.2. Suppose that there exist constants a and b such that a ≤ L ≤ b for
all f ∈ F . Then the following statements are equivalent:

1. The ERM principle is consistent

2. The empirical risk Rn(f) converges towards the expected risk R(f) in the sense
that:

lim
n→∞P

(
sup
f∈F

(Rn(f) −R(f)) > ǫ

)
= 0 ∀ǫ > 0

Remark 2.1.3. A simply case where it can be easily proved that the second condition
holds is when SX and SY are finite. In this case the family F is also finite, and by the
strong law of large number it results that Rn(f) converges uniformly and almost surely
to R(f) and so the second condition is verified.

However, this theoretical results can not be directly applied since the risk R(f)
can not be calculated (remember that the distribution probability P (x, y) is unknown).
Instead other sufficient conditions are deduced that can be used in practice. The central
idea is that the second condition of the previous theorem is verified if the family F is
not too “big”. Different measures are then introduced for instance the ǫ-entropy or
the Vapnik-Chervonenkis (VC) dimension. There exist a lot of results based on these
notions, but we present here only those results that are able to synthesize the main
features of the theory.
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Theorem 2.1.4. If the VC-dimension of the set F is finite, then the ERM principle
is consistent.

Furthermore, if the risk function is bounded a ≤ L ≤ b, then for a given η, with
probability 1 − η the following bound holds:

R(f) ≤ Rn(f) + (b− a)

√
h(log(2n/h) + 1) − log(η/4)

n
, (2.4)

where h is the VC-dimension of F . The second term is referred as to VC-confidence.

Remark 2.1.5. Consider a binary classification problem, i.e. the output y is either 1
or -1. If the risk function is defined as L(x, f(x), y) = |y − f(x)|, then 0 ≤ L ≤ 1 and
the previous bound holds with b− a = 1.

It can be seen that the bound does not depend on P (x, y), it simply assumes that
the observations are drawn independently according to some distribution. Also, and
as mentioned before, the left hand side can not be calculated. However, if h is known
(which it is the case for a certain number of models) then the second term of the right
hand can be easily calculated. Then, by choosing a small η if we choose the learning
machine that minimizes the right hand side, we are choosing the machine that gives
the minimum upper bound to the expected risk. This gives a method for selecting a
learning machine for a given task, and is the basis for the Structural Risk Minimization
(SRM) that we will introduce later.

It is important to note that in case the VC-dimension h is high, nothing can be
ensure about the performance of a selected machine, i.e. a high VC-dimension does not
necessarily implies high values of the expected risk. On the other hand, if for a given
fixed family of functions to choose from the bound is tight for at least one of them,
then it is not possible to do better. Moreover, since we only have an upper bound, it
is possible that a particular machine with the same empirical risk that belongs to a
family set with higher VC-dimension, obtains better performance. Some examples in
this sense are analyzed in [35].

2.1.1 The VC Dimension

To give more intuition to this notion, we limit ourselves here to a family of functions
f that take values in SY = {−1, 1}. Given a set of n points, we say that the family F
can shatter them if for each possible labeling (there are 2n possible labelings), there is
a function of the family that correctly assigns those labels. The VC-dimension of F is
defined as the maximum number of points that can be shattered by it. For example,
if the VC-dimension is h it means that there exist at least one set of h points that can
be shattered; but it is not necessarily true for all set of h points.
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Example 2.1.6.

1. Consider the family of characteristic functions of type 1[a,+∞]. It is clear that
two points in the real line can not be shattered by this family: if the left point
is classified as 1 then the right point will be also classified as 1. Then the VC-
dimension of this family is 1.

2. Consider points in R
2 and a family of functions defined by straight lines, so that

points on each side of the line are assigned to different classes. Clearly two points
can be shattered by this family of functions. Some drawing must convince the
reader that three points can be also shattered. However it is not possible to
shatter four points. Then the VC-dimension of this family is 3.

3. The VC-dimension of the set of oriented hyperplanes in R
n is n+ 1 (see [36]).

It is important to highlight that the VC-dimension is in fact different that the
number of parameters of a given model. An example of a learning machine with only
one parameter and infinite VC-dimension is constructed in [15].

2.1.2 Structural Risk Minimization

If we concentrate on the right side of (2.4), we see that if the ratio n
h is large enough

then the term preponderant will be the empirical error. In this way the minimization
of the empirical risk it is enough to ensure small values of the expected risk. However
if this ratio is small (for instance the training set is small), then the VC-confidence
plays a more important role and the simple minimization of the empirical risk may be
not enough to ensure good performance. Since in general the training set size can be
limited for real world applications, a way to ensure a small expected risk is to control
the VC-dimension h (still remember that high values of h does not necessarily imply
bad performance). Vapnik proposes then to use a different principle called Structural
Risk Minimization (SRM).

The main idea is that whereas the expected and the empirical risk depends only on
the selected function choose by the training procedure, the VC-confidence depends on
the family of functions. Then, the objective is to find a subset of this family such that
the bound for this subset is minimized. Since h is an integer (and so its variation is not
smooth), a structure is introduced by dividing the family into nested subsets for which
we can calculate (or at least bound) the VC-dimension. The SRM principle consist for
instance in training a set of machines, one per subset with the objective of minimize
the empirical risk. Then, the machine that minimizes the sum of the empirical risk and
the VC-confidence between them, is selected as the solution.

The final step in the Vapnik learning theory is the definition of efficient algorithms
that control the generalization capacity of the models they produce. It is on the basis
of the SRM that Vapnik proposes Support Vector Machines.
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H1

H2

M

T+

T−

Figure 2.1: SVM for linear separable data.

2.2 SVM for Classification

We devote this section to analyze in detail the binary classification problem for which
the output y ∈ {−1,+1}. In particular we will start with the simplest case where the
data are separable, which means that there is a hyperplane that separates the data
with label -1 from those with label 1.

2.2.1 The Linear Separable Case

Let S = {(x1, y1), . . . , (xn, yn)} be the training set where x ∈ R
d and y ∈ {−1,+1}.

Suppose that there exist a “separating” hyperplane, i.e. and hyperplane that separates
the positives from the negative data.

Let H be the hyperplane defined by H =
{
x ∈ R

d : f(x) = 〈w, x〉 + b = 0
}

, where

〈, 〉 represents a dot product in R
d , w ∈ R

d with ||w|| = 1 (w is the normal vector) and

b ∈ R, being |b|
||w|| the distance (perpendicular) to the origin. Let be T+ = {xi ∈ R

d :

yi = 1} and T− = {xi ∈ R
d : yi = 1}. The assumption that the data are separable by

H means that the sign of f is constant over T+ and T−.

Let d+ (d−) be the distance from H to the nearest positive (negative) data. The
margin of H is defined as M = d+ + d− (see Fig. 2.1). We look for a separating
hyperplane that maximizes the margin. This can be formulated as follows. Suppose
that all points in the training set verifies:

〈xi, w〉 + b ≥ 1 if yi = 1, (2.5)

〈xi, w〉 + b ≤ −1 if yi = −1, (2.6)

which can also be expressed as:

yi(〈xi, w〉 + b) − 1 ≥ 0 ∀i. (2.7)
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The points that verify the equality in (2.5) belong to the hyperplane H1 = {x :
〈x,w〉 + b = 1}, which is an hyperplane with normal w and distance to the origin
|1−b|
||w|| . Analogously, points that verify the equality in (2.6), belong to the hyperplane

H2 = {x : 〈x,w〉+b = −1} whose distance to the origin is |−1−b|
||w|| . Hence d+ = d− = 1

||w||
and the margin is 2

||w|| . The problem of maximizing the margin is then equivalent to

minimize ||w|| (equivalently 1
2 ||w||2 which simplifies future calculus) subject to con-

straints (2.7):

(P ) =

{
minimize 1

2 ||w||2
subject to yi(〈xi, w〉 + b) − 1 ≥ 0 ∀i.

This problem is a convex quadratic programming problem, and so there exist a
unique optimum. Thus, the KKT (Karush-Khun-Tucker) conditions [37] are necessary
and sufficient. This means that a point (w∗, b∗) is an optimal solution for (P ) if and
only if, there exist values {λi}i=1,...,n such that the following conditions are satisfied:

1. yi(〈xi, w
∗〉 + b∗) − 1 ≥ 0

2. λi ≥ 0

3. λi(yi(〈xi, w
∗〉 + b∗) − 1) = 0

4. ∇L(w∗, b∗, λ) = 0, where L(w∗, b∗, λ) = 1
2 ||w∗||2 −

n∑
i=1

λi(yi(〈xi, w
∗〉 + b∗) − 1) is

the Lagrangian associated to (P )

The values λi are called Lagrange multipliers. From condition 4, we obtain that:

∂L(w∗, b∗, λ)

∂w∗
j

= w∗
j −

n∑

i=1

λiyix
j
i = 0 ⇒ w∗ =

n∑

i=1

λiyixi

∂L(w∗, b∗, λ)

∂b∗
= −

n∑

i=1

λiyi = 0 ⇒
n∑

i=1

λiyi = 0 (2.8)

From these equations we obtain an explicit expression for w∗, but not for b∗. However
b∗ can be easily obtained from condition 3, by choosing any value λi0 6= 0:

b∗ =
1 − yi0〈xi0 , w

∗〉
yi0

For numerical reasons, it is safer to compute b∗ as the mean value resulting from all
such equations.

Observe that there is a Lagrange multiplier λi for each training point (xi, yi), but
the solution (w∗, b∗) is determined only for those training points which corresponding
multipliers are positive. These points are called “Support Vectors”. If λi > 0, con-
dition 3 implies that yi(〈xi, w

∗〉 + b∗) − 1 = 0, which means that the point (xi, yi)
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lies in the hyperplane H1 or H2 (see Fig. 2.1 where the support vectors are indicated
with extra circles). The important points are the support vectors, if any of the other
points (with λi = 0) is removed (or even moved but without changing of subspace), the
solution does not change: the same separating hyperplane will be obtained after the
training process.

Then, the solution can be written as:

f(x) = 〈w∗, x〉 + b∗ =
n∑

i=1

λiyi〈x∗i , x〉 + b∗ =
nSV∑

j=1

λjyj〈xj , x〉 + b∗, (2.9)

where nSV is the number of support vectors. This means that the solution depends on
the number of the support vectors and not in the training set size. It can be seen that
training (xi) and test points (x) are related only by its inner product. As we will see
later, this property is the key to the non linear extension of the procedure.

Despite we have obtained an expression for the optimal separating hyperplane, the
problem is not solved: we need to find the values λi ! Finding solutions for real world
problem usually require the use of numerical methods. However we will show how this
can be done by writing problem (P ) in its dual version. Let LD(w, b, λ) be the Lagrange
dual function:

LD(w, b, λ) = inf
w,b

L(w, b, λ)

The function L is convex in the variables w, b then its has an minimum that can be
founded by imposing that its partial derivatives must vanish at that point. These
derivatives are the same we already calculate in (2.8), and by replacing them in the
definition of L we obtain that:

LD(w, b, λ) = −1

2

n∑

i,j=1

λiλjyiyj〈xi, xj〉 +
n∑

i=1

λi (2.10)

Since the original problem (P ) is convex (the objective function in (P ) is convex and
the constraints are linear), it is equivalent to solve its dual version:

(D) =






maximize LD(w, b, λ)
subject to λi ≥ 0 ∀i

n∑
i=1

λiyi = 0.

The dual problem (D) is also a convex optimization problem, since the objective func-
tion is concave and the constraints are linear. This is always the case no matter whether
or not the original problem (P) is convex. This means that the dual problem always
has a solution that can be founded also by means of the KKT conditions. We will
see later some methods for solving this problem for more general cases. Note that the
solution of the SVM training is always global (there is no other feasible point at which
the objective function takes a lower value); this is in contrast to neural networks where
many local minima usually exist.
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Once we have trained a Support Vector Machine (i.e. we found w∗ and b∗), a new
data x will be classified accordingly to on which side of the decision boundary it lies,
or what it is the same, accordingly to the sign of the function f(x).

2.2.2 The Linear Non Separable Case

In this section we will show that a similar solution is obtained when there is not an
hyperplane that perfectly separates positives from negatives data. In this case we
cannot apply the same procedure as before. The idea is to relax conditions (2.5) and
(2.6), but only when necessary. Positive slack variables {ξi}i=1,...,n are then introduced
as a cost that will increase the objective function of (P ):

〈xi, w〉 + b ≥ 1 − ξi if yi = 1,

〈xi, w〉 + b ≤ −1 + ξi if yi = −1,

ξi ≥ 0,

which can also be expressed as:

yi(〈xi, w〉 + b) − 1 + ξi ≥ 0 and ξi ≥ 0 ∀i.

When an error occurs the corresponding ξi must be larger than one, then
∑n

i=1 ξi
is an upper bound for the number of training errors. The objective function is changed
to consider an extra cost due to errors as follows:

1

2
||w||2 + C

n∑

i=1

ξi,

where C is a constat chosen by the user to assign more or less penalty to errors (we
will evaluate its impact over the performance in Chapters 3 and 4). Then training
the Support Vector Machine in this case correspond to the following, again quadratic
convex programming problem:

(P ) =





minimize 1
2 ||w||2 + C

n∑
i=1

ξi

subject to yi(〈xi, w〉 + b) − 1 + ξi ≥ 0 ∀i
ξi ≥ 0 ∀i.

As in the previous section the KKT conditions are necessary and sufficient to find the
optimum. Let L(w, b, ξ, λ, µ) the Lagrangian associated to (P ):

L(w, b, ξ, λ, µ) =
1

2
||w||2 +C

n∑

i=1

ξi −
n∑

i=1

λi(yi(〈xi, w〉 + b) − 1 + ξi) −
n∑

i=1

µiξi.

Then the KKT conditions are:

1. yi(〈xi, w
∗〉 + b∗) − 1 + ξ∗i ≥ 0 and ξ∗i ≥ 0 ∀i
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2. λi ≥ 0 and µi ≥ 0 ∀i

3. λi(yi(〈xi, w
∗〉 + b∗) − 1 + ξ∗i ) = 0 ∀i

4. µiξ
∗
i = 0 ∀i

5. ∇L(w∗, b∗, ξ∗, λ, µ) = 0

Null gradient for the Lagrangian (last condition) implies that:

∂L(w∗, b∗, ξ∗, λ)

∂w∗
j

= w∗
j −

n∑

i=1

λiyix
j
i = 0 ⇒ w∗ =

n∑

i=1

λiyixi

∂L(w∗, b∗, ξ∗, λ)

∂b∗
= −

n∑

i=1

λiyi = 0 ⇒
n∑

i=1

λiyi = 0 (2.11)

∂L(w∗, b∗, ξ∗, λ)

∂ξ∗j
= C − λj − µj = 0 ⇒ λj + µj = C. (2.12)

We found in this case that w∗ has the same form as before. To calculate b∗ it is enough
to use condition (3) with 0 < λi0 < C: inequality λi0 < C implies that µi0 > 0
(see condition (2.11)) and from condition 4 we obtain that ξ∗i = 0. As before it is
recommended to use the average over all such equations.

The solution can be written then as before:

f(x) =
nSV∑

i=1

λiyi〈xi, x〉 + b∗, (2.13)

Finally, to find λi and µi, again the dual problem of (P ) is considered. It is easy to
verify that the dual Lagrangian function is given by (2.10) and that only the constraints
on λi change:

(D) =






maximize LD(w, b, λ)
subject to 0 ≤ λi ≤ C ∀i

n∑
i=1

λiyi = 0.

Thus the only difference with the separable case is that the λi have now an upper bound
equal to C.

2.2.3 The Nonlinear Case

In this section we show how the procedure introduced for the linear case can be easily
extended to the non linear case, i.e. to the case where the decision function is not a
linear function of the data. In [38], authors show that a quite old technique [39], can
be used to treat this case in a straightforward way. The fundamental idea to define a
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Support Vector Machine in this case is that we can transform the original data space
into a high dimensional space such that in this new space the data become separable for
a linear function. The main result of [38] that allows to apply this idea in practice is that
it is possible to find the separating hyperplane in this new space without considering it
explicitly or the transformation itself. This results is based in the fact that the training
data appears on the solution only by means of its dot product 〈xi, xj〉. It is enough to
known the dot product between support vectors and vectors of the new space. Let us
explain this idea more in detail.

Suppose that data is transformed by a map Φ : Rd → H where H is an Eu-
clidean space (possibly infinite dimensional). Then the training algorithm would de-
pend on the dot products of the mapped data 〈Φ(xi),Φ(xj)〉. Let us define K(xi, xj) =
〈Φ(xi),Φ(xj)〉. If we replace 〈x, y〉 by K(x, y) in the training algorithm, it will produce
a machine that lives in F and all the previous holds since it is a linear separation but
in a different space. Then the solution will only depend on K and takes the form:

f(x) =
nSV∑

i=1

λiyiK(xi, x) + b∗, (2.14)

Example 2.2.1. Let us give a simple yet illustrative example; suppose that data
live in R

2 and that are separable by a quadratic function. If we consider the map
Φ(x) : R

2 → R
3 such that Φ(x) = (x2

1,
√

2x1x2, x
2
2), then a linear function of Φ(x)

yields a quadratic function of x. In this case K(xi, xj) = 〈xi, xj〉2. Note also that
different maps or spaces H could result in the same function K: consider for instance
H = R

3 and Φ(x) = 1/
√

2(x2
1 − x2

2, 2x1x2, x
2
1 + x2

2), or Φ(x) = (x2
1, x1x2, x1x2, x

2
2) with

H = R
4.

However the approach of the previous example becomes computationally infeasible
for higher dimensions and other solutions must be founded. The question is whether we
can forgot about the map Φ and consider only the function K. The function K can not
be any function, since it must represent an inner product in the space H, this means that
K must be a “kernel function”. So the question turns to be for which kernel functions
there exist a pair (H,Φ) with the properties described above. The answer is given by
Mercer’s condition [40]: there exists a mapping Φ such that K(x, y) =

∑
i Φ(x)iΦ(y)i

in some feature space H if and only if:

∫
K(x, y)g(x)g(y)dxdy ≥ 0 for any function g(x) such that

∫
g(x)2dx <∞.

It must be noted that this condition (which it is not trivial to apply) allows us to verify
whether or not a given function is a kernel, but it says nothing about the mapping Φ
or even the space H.

In particular, some examples of kernels are the following:

• Linear Kernel K(x, y) = 〈x, y〉: produces a linear classifier.
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• Gaussian Kernel K(x, y) = e−γ||x−y||2: produces a Gaussian radial basis function
classifier (translation invariant).

• Polynomial Kernel K(x, y) = (〈x, y〉 + 1)p: produces a classifier that is a polyno-
mial of degree p.

• Hyperbolic Tangent Kernel: K(x, y) = tanh(κ〈x, y〉 − δ), only for some values of
κ, δ and of data ||x|| (resemblance with neural networks).

It must be noted that both training and test functions depend on the data only
through de kernel function K. Even if the kernel represent an inner product in H whose
dimension can be high, the complexity of computing K itself may be far smaller. For
instance, for the homogeneous polynomial kernel K(x, y) = (〈x, y〉)p, an inner product
in H requires order of Cd+p−1

p operations, whereas the computation of K only requires
O(d) operations. It is this special property that allows to construct hyperplanes in
very high dimension spaces with tractable number of computations. This property in
addition to the fact that SVM depend only on the number of support vectors (and
not on the whole training set), shows how SVM avoid well known forms of “curse of
dimensionality”. However, the choice of the best kernel for a given problem is still an
open research issue.

2.2.4 Multi-Class Classification

So far, only binary classifiers have been considered, however they can be combined
to include the multiclass case. We devote here some attention to this case since in
Chap. 4 we will apply SVM in its multiclass version. The passage from two class
to k classes is not so simple and different methods to do it has been proposed. We
described here some of them; from their comparison it seems that methods of kind
“one-versus-one” are more suitable than “one-versus-rest” or methods that consider all
classes simultaneously.

In “one-versus-rest” implementation of SVM multiclass [38] with k classes, k models
are constructed. The ith machine is trained with data corresponding to the ith class
which is labeled as positive, whereas all other data is labeled as negative. This corre-
spond to train k machines each one with a training set of size n (the original training
set size). Given a new input, the assigned class will be the one that maximizes the
value of the decision function fi(x) i = 1, . . . , k.

The method called “one-versus-one” [41], constructs N = k(k−1)/2 machines where
each one is trained with data corresponding only to two different classes. The decision
for a new input is usually done by voting; for each machine one vote is added for the
assigned class and the final decision correspond to the class with the maximum number
of votes. If all classes are equally represented (each class has more or less k/n data in the
training set) then this method imply to solve k(k − 1)/2 quadratic programming each
one with a training set of 2n/k points. This method is computationally more expensive
than one-versus-rest. Moreover, each machine is trained with data corresponding to
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two classes but they will be applied to any class point. Still, a defense of this approach
is presented in [42].

Another approach correspond to the directed acyclic graph SVM (DAGSVM) pro-
posed in [43]. For this method the training is as in the “one-versus-one” method i.e. N
machines are trained. For the test phase, a rooted binary directed acyclic graph with
N internal nodes and k leaves is constructed; each node is a binary machine between
two classes. Given a new data, at each node a binary decision is taking that indicate
the next node and the final decision corresponds to the reached leaf node.

Solutions to the multiclass SVM problem in one single optimization problem are
proposed in [16, 44]. The idea is similar to the “one-versus-rest” approach; there are k
decision functions but they are all obtained by solving only one optimization problem
(instead of k).

A comparison of the above methods is presented in [45]; the authors conclude that
“one-versus-one” and DAGSVM must be preferred over the other methods. Further-
more it is the former method that it is generally used in the available implementations
of SVM such as MySVM [46] or LibSVM [47].

2.3 SVM for Regression

SVM can be also used to function approximation [48], and it is referred to as Support
Vector Regression (SVR). In ǫ-SVR [15] the goal is to find a function f(x) whose
deviation from each target yi ∈ R is at most ǫ for all training data, and at the same
time, is as “flat” as possible. See Fig. 2.2(a). Again for the sake of clarity, we consider
the linear case since we already know that it can be easily extended to the non linear
case by introducing a kernel.

Let f : R
d → R be such that:

f(x) = 〈w, x〉 + b, with x ∈ R
d, b ∈ R (2.15)

Flatness in the case of (2.15) can be ensured by minimizing the norm ‖w‖2, leading to
the following convex optimization problem:

(P ) =





minimize 1
2‖w‖2 + C

S∑
i=1

(ξi + ξ∗i )

subject to yi − 〈w, xi〉 − b ≤ ǫ+ ξi∀i
−yi + 〈w, xi〉 + b ≤ ǫ+ ξ∗i ∀i

ξi, ξ
∗
i ≥ 0∀i

(2.16)

In the above formulation, slack variables ξi and ξ∗i are included to cope with oth-
erwise infeasible constraint of the optimization problem, whereas the constant C > 0
determines the trade off between the flatness of f and deviations from target greater
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Figure 2.2: (a) SVM for linear regression and (b) ǫ-insensitive loss function.

than ǫ. Notice that this tradeoff makes SVM rather different from traditional error
minimization problems, and very robust to outliers.

The above formulation is equivalent to the use of the ǫ-insensitive loss (see Fig. 2.2(b))
function in the theory of error risk minimization with regularization [48]. This means
that problem (P ) is equivalent to minimize:

Rreg(f) = Remp(f) +
α

2
||w||2, (2.17)

where α > 0 is a regularization constant. The rationale is that if the family of functions
F is very rich (for instance, small training set in very higher dimensional space), it can
lead to overfitting and bad generalization properties of the solution; then a control term
is added, in this case it is |w||2.

Loss function (2.18) represents the fact that there is no loss (or cost) for deviations
smaller than ǫ and that larger deviations will be linearly penalized.

L(x) =

{
0, if |ξ| ≤ ε
|x| − ε, otherwise.

(2.18)

It is easy to show that minimizing (2.17) is equivalent to minimize (2.16) with C = nα.

SVR can be seen as an extension of more traditional regression techniques: for
instance, when L(ξ) = |ξ|2 is used as loss function, then we fall into the case of a
minimum square error regression problem.

As for the classification problem, the training problem (2.16) it is solved more easily
in its dual formulation. The solution of the dual problem yields the function f(x), which
can be written as a linear combination of the training data, the Lagrange multipliers
λi, λ

∗
i (associated to the two first constraints of problem (2.16)), and the constant term

b, whose computation stems from the KKT conditions:

f(x) =
n∑

i=1

(λi − λ∗i )〈xi, x〉 + b =
nSV∑

i=1

(λi − λ∗i )〈xi, x〉 + b, (2.19)
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The Lagrange multipliers verify the constraints:

n∑

i=1

(λi − λ∗i ) = 0 and 0 ≤ λi, λ
∗
i ≤ C. (2.20)

The KKT conditions also imply that if λi, λ
∗
i 6= C and |f(xi) − yi| < ε, then λi, λ

∗
i

must be zero. Intuitively, as errors lower than ǫ are tolerated, training data lying inside
the so called “ε-tube” will not contribute to the problem solution (nor to its cost). As
before, not all xi are needed to calculate f(x), but only the nSV < n training points
xi whose λi, λ

∗
i 6= 0, already referred to as support vectors. Once again, the problem

complexity is independent of the dimension of the input space, and depends only in the
number of support vectors.

An interesting characteristic of the SVR is that it is possible to choose the kernel K
such that the solution results in a regression based on the Fourier series development
or the interpolation by “splines” [49].

2.3.1 Methods of Solution

In this section we briefly present how the optimization problems defined by the training
of SVM can be solved. This aspect of the SVM it is not our main interest since there are
a lot of very good available implementations and we will use them in the next chapters.
In particular we use JMySVM [46] an open source SVM implementation distributed
along with the Rapidminer [50] software tool and LibSVM in its version for MATLAB.

Basically, a quadratic convex problem must be solved for which the existence of a
unique minimum is guaranteed. In [35], three main steps are identified: (i) set out the
KKT conditions, (ii) maximize the dual object function (subject to its constraints) to
approach optimality, (iii) define a decomposition algorithm so that only portions of the
training set are handled at a given time. Some of the techniques described in [35] are
(refer to it for more references or details):

• Conjugate gradient with constraints: is a classical conjugate gradient where the
directions are projected over the subspaces defined by constraints

∑
i λiyi = 0.

If the problem is seen as a sequence of equality constrained problems, a Netwon
method could solve it in one step or at most in n steps using conjugate gradient
descent.

• Projection methods: similar to conjugate gradient, but limiting the moves so that
the actual move remains in the feasible region.

• Bunch-Kaufman decomposition: takes advantage of the fact that the Hessian can
be diagonalized and that most of the lagrange multipliers λi are nulls.

• Interior Point methods: solves the dual and the primal problem simultaneously
by only gradually enforcing the KKT conditions to find a feasible solution and
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using the duality gap [37] to determine the quality of the solution. This method
is specially useful if the support vectors proportion is expected to be high.

2.4 The VC Dimension of SVM

In this section we will show that the VC dimension of SVM, contrary to its initial
motivation, can be very large, even infinite. However, several arguments are explored
to explain that despite the VC dimension is not small, SVM can and usually have very
good generalization performance. As mentioned before, it is not always easy or even
possible to compute the VC dimension. The following results whose demonstrations
can be founded in [35], correspond to the VC dimension of the SVM with polynomial
and Gaussian kernel.

Theorem 2.4.1.

1. Let d be the dimension of the input space, the VC dimension of SVM with
polynomial kernel is Cd+p−1

p +1 (note that it quickly get very large).

2. The SVM with Gaussian kernel for which the error penalty can take any value,
has infinite VC dimension.

This results can be seen as contrary with the original ideas introduced in Sec.2.1;
however it must be noted that the effective error can be in practice much smaller than
the value given by the bound 2.4. In fact, different number of experiments show that
SVM obtain very good performances when compared with other learning algorithms, in
particular when the Gaussian kernel is considered [51]. For example in [35] an example
of a SVM with Gaussian kernel that can classify without errors any number of training
points is constructed (and the VC-dimension is infinite!). The good results for the SVM
seems to be based on the properties of the optimal separating hyperplane more than the
VC-dimension. In this sense the following result suggest that algorithm that minimizes
D2/C2 may obtain better generalization performance (i.e. more tight bounds for the
expected error) [16].

Theorem 2.4.2. If the training points verify that ||xi|| ≤ D ∀i = 1, . . . , n, and they
admit a separating hyperplane optimal with b = 0 and margin M , then:

E(P ( error )) ≤ E( D2

M2 )

n

where P (Error) is the probability of error in the test set, the expectation on the left
side is over all training sets of size n−1 and the one on the right side is over all training
sets of size n.

However, this theorem will be useful only if the diameter of the minimal enclosing
sphere D can be calculated for any kernel function and for any training set size. In [35]
an algorithm to calculate it is presented; which in fact is very similar to the training of
a support vector machine.



Chapter3
Link Load Prediction

In this chapter we explore the use of Support Vector Regression (SVR) for the purpose
of link load prediction. As we explained in Chap. 2, SVR works well in many learning
situations because it generalize to unseen data, and are amenable to continuous and
adaptive online learning – an extremely desirable property in network environments.
Motivated by the encouraging results recently gathered by means of SVR on other
networking applications, our aim is to enlighten whether SVR is also successful for
the prediction of network links load at short time scales. This problem is of great
interest in networking for both capacity planning and self-management application
(e.g. bandwidth provisioning, admission control, trigger of backpressure mechanisms,
etc.).

It is fairly well accepted that, as a result of network services and Internet applica-
tions evolution, network traffic is becoming increasingly complex. On the one hand,
transport networks are challenged by the current convergence trend of voice/video/data
services on an all-IP network, and by the fact that user-mobility will likely translate
into service-mobility as well. On the other hand, the explosion of Internet telephony,
television and gaming applications implies that we may be forced to re-think what we
mean by “data” traffic. Moreover, the widespread usage of application layer overlays
directly translates into a much higher variability of the data traffic injected into the
network. We wonder whether such variability can be efficiently forecasted, and if so,
with what level of accuracy. In contrast with most of the work related to network load
forecast, which are based on the analysis of time series properties, we prefer to focus on
techniques that avoid to make any assumption on the phenomenon under observation
such as SVR.

In Sec. 3.2, we focus first on link load forecast based only on past measurements,
following an approach known as “embedded process” [31]. Though the SVM approach
fits well to longer time-scales as well, which are more of a concern for capacity planning,
we focus here on the estimation of load variation at short time scales. Basically, the
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link load is treated as a series, and the future value is forecasted based on an arbitrary
number of its past measurements. Adopting a hands-on approach, we evaluate the
effectiveness of SVR for this purpose by exploring a rather extensive parameter and
design space. Our aim is twofold: first, we want to evaluate the SVM accuracy and
robustness and, second, we want to provide useful insights on the tuning of the SVM
parameters, an aspect not always clear in previous work.

We compare the performance with those achievable by parametric and non paramet-
ric models such as Moving Average, Auto-Regressive models and the Nadaraya-Watson
estimator. Our results show that, despite a good accordance with the actual data, the
SVR gain achievable over simple prediction methods is not enough to justify its de-
ployment for link load prediction at short time scales. Yet, we have to tribute SVR of
a number of extremely positive aspects: for instance, SVR models are rather robust to
parameter variation, and their computational complexity is far from being prohibitive,
which makes them suitable for online prediction. We also investigate methods to extend
the forecast horizon using forecasted values as input for a new prediction: interestingly,
this approach of recursive SVR may significantly extend the achievable forecast horizon,
entailing only a very limited accuracy degradation.

Given the results of this first approach, in Sec. 3.3 we take a radically different
approach and we devise techniques that significantly improve the accuracy of SVR.
Firstly, we consider a wider framework, targeting the maximum or the percentile of the
link load over a given temporal horizon (larger than the one considered before) instead
of the single value predicted by the embedding procedure. Secondly, we consider as
SVR input a summary of statistical properties (e.g.,mean, variance, quantiles, peak,
etc.) of the link load, as opposite to the past measurement of the link load series itself.
Furthermore, in order to gather more robust results we extend the evaluation to a more
complete set of traffic traces.

In this case, we quantify the impact of several factors such as forecast timescale,
samples aggregation strategy, input feature combination, forecast target, type of traffic,
etc., in the SVR forecast accuracy. We also show that the use of an “intelligent”
combination of different machines, can bring further advantages in both the forecast
accuracy as well as in the tuning of SVM, which allows us to construct a very robust
model. As mentioned before, we evaluate our model over different real world traffic
traces representing very different network scenarios (Ethernet and WiFi LAN, ISP and
enterprise). Our results show that SVR may provide accurate predictions and very
significant gain over both naive estimation techniques and also over the “embedding
process”.

Before presenting in detail both approaches and its results, some related works are
discussed in the next section.
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3.1 Related Work

Most of the work related to network load forecast is based on the analysis of time series
properties. In this context, a number of very different models [52, 53, 54] have been
proposed, ranging from very simple to very complex ones. However, the majority of
these approaches relies on specific assumptions and underlying models for the network
traffic (e.g., they are tailored to capture Long Range Dependence (LRD) [55] at short
and long timescales, etc.). A first drawback is that such models will no longer be appli-
cable if the assumption no longer holds (e.g., considering other timescales). A second
drawback is that such models usually rely on the precise estimation of some traffic
parameters, whose computation can be a very intensive and delicate task (e.g., Hurst
parameter of the arrival time series). Rather, as in [1, 56], we prefer to focus on tech-
niques that, avoiding to make any assumption on the phenomenon under observation,
allow for intrinsically more robust and flexible prediction. A simple local Gaussian
predictor is provided in [1] as a core tool to guide the bandwidth provisioning in the
hose model: interestingly, the model is able (but not forced) to embed assumptions on
the LRD properties of the traffic, by an appropriate tuning of the parameters. TCP
throughput prediction is the object of [56], where authors compare formula-based ver-
sus history-based prediction schemes, showing that even simple moving-average models
are able to yield satisfactory results (provided that one copes with major error sources).

While the use of SVM for classification is relatively more popular in networking
research, especially in the context of anomaly and intrusion detection [18, 30], the use
of SVM for regression is largely left unexplored. To the best of our knowledge, the only
works that explore the use of SVR techniques in the networking field are [19, 34].

TCP throughput prediction on a given path is the object of [19], where the predic-
tion is based on a combination of path properties (such as queueing delays and available
bandwidth) and on the performance of prior file transfers as well. Authors show that
when the path properties are precisely known (e.g., when they are provided by an “ora-
cle”), SVR is able to predict TCP throughput within 10% of the actual value in 90% of
the cases – which represent nearly a 3-fold improvement in accuracy over prior history-
based methods. Also, in more realistic scenarios and using less accurate measurements
of path properties (e.g., gathered by means of active probes), the predictions can be
made within 10% of the actual value nearly 50% of the time – which still represents a
60% improvement, with a furthermore much lower impact on end-to-end paths.

The authors of [34] focus instead on the prediction of the latency toward an un-
known IP address, based on the latency knowledge toward other previously contacted
IP addresses. Using as input features vectors of IP addresses bits (transformed into
a 32 dimension input space, where each bit of the address corresponds to a different
dimension), authors show that the estimation performance is within the 30% of the
true value for approximately three-quarters of the latency prediction on a large Inter-
net data set. More in details, SVM regression on a large randomly collected data set of
30,000 (IP,latency) couples, yield a mean prediction error of 30 ms (25 ms) using only
6% (20%) of the samples for training.
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3.2 Embedding Process

This section details how we apply the SVR framework to the load forecast problem.
Other techniques, such as Moving-Average (MA) and Auto-Regressive (AR) models,
whose performance will be compared with SVR’s, will be introduced in Sec. 3.2.1.

We stress that we deliberately avoid comparison with other unsupervised predictors
such as the Local Gaussian Predictor [1], as we experimentally verified that in the short
timescales considered in this work it systematically overestimates the incoming traffic
rate. While in some applications this is actually a desirable feature (e.g., as in VPN
bandwidth provisioning, where over-provisioning translate in fewer losses and thus in
a greater service QoS), in many other contexts it is not (e.g., when admission control
is performed, over-estimating the incoming load unjustifiably increases the flow reject
ratio): thus we prefer to avoid introducing any a priori bias.

We also point out that, in principle, an option to accommodate short timescales
variability due to Internet traffic burstiness, could be to exploit the a priori knowledge
of the scaling relations between rate and variance at different timescales as in [1].
However, as previously stated, we prefer to avoid any assumption on the phenomenon
under observation.

In the context of time series prediction by means of SVR, there is no a priori
restriction on the type and number of input features. A known approach, which we
adopt here and explain in the following, is the so called “embedding process” [31].

Let be λ(t) the traffic load measured in the time interval [t − τ, t]. By quantizing
the time in multiples of τ , we obtain a time series {λk}k∈N, where λk is the average
traffic load measured in the interval [(k − 1)τ, kτ ]. The SVR embedding process then
uses an arbitrary number d of past measurement of the above series in order to predict
its future value. Thus, when given a d-dimensional input x (SX = R

d), a trained SVR
function returns as output ŷ = f(x) a forecast of the target y (SY = R), which in our
case are (see Fig. 3.1):

x = (λk−(d−1), . . . , λk−1, λk) and y = λk+1 (3.1)

In order to construct all the possible x input tuples, we use a sliding window of length
d over the time series to construct all possible input/output pairs, obtaining the set
{(xi, yi)}i=1...L−d where L is the time series length.

A subset of this set will be used as training set, i.e., to construct the SVR forecast
function f(x) (see (2.19)); then, the model accuracy will be evaluated over the com-
plement of the training set, i.e., on unknown data. More precisely, the SVR training
set is constructed by randomly selecting a few out of all the possible x input tuples: in
other words, SVR training can be thought as realized by means of a jumping window.
The impact of the training set selection will be thoroughly examined later.

In general terms, τ can be thought as the observation timescale, the dimension d
as the minimum number of state variables required to describe the system and their
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Figure 3.1: Link load time series with SVR inputs/outputs for the embedding process.

product dτ corresponds to the average system memory length. The traditional “embed-
ding process” assumes that the observed time series is the projection of a deterministic
dynamic operating in a high-dimensional state space: in this case, the parameters d
and τ can be obtained by running (rather computationally intensive) geometric heuris-
tics on input data. However, we point out that the above assumptions do not apply
directly to our context, as the network load dynamic is clearly not well represented by
a deterministic process.

Moreover, our aim is rather to build a robust engine for the online estimation of
traffic load on arbitrary timescales: thus, we prefer to avoid constraints on the selection
of the operation point (d, τ) – or at least on the operation timescale τ . Therefore, we
prefer to cross-check the impact of the embedding parameters choice a posteriori, based
on the empirical results of the regression: as a side effect of this choice, we will extend
the sensitivity analysis of SVR to a wider range of parameters. In what follows, we
assume a Gaussian kernel, to which an infinite dimensional mapping space corresponds
(c.f. Sec. 2.2.3). This choice is motivated by the good performance shown in both the
time series prediction [57] and more general network [19] contexts:

K(x, x′) = e−γ‖x−x′‖2
. (3.2)

3.2.1 Reference Techniques

In this section we describe those methods whose performance will be compared with
the one obtained by SVR.
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Moving-Average Models

Given a time series {λk}k∈N, the one-step d-order Moving Average (d-MA) predictor
can be defined as:

λ̂k+1 =
1

d

k∑

i=k−d+1

λi (3.3)

As a general remark, if d is too small the predictor cannot smooth out the noise in
the underlying measurements, whereas a too large value of d makes it slow to adapt to
non-stationarity properties of the data. The predictor (3.3) is the simplest among the
unsupervised forecast methods; yet, in a slightly different context, the authors of [56]
showed that, despite its simplicity, d-MA is able to provide accurate results provided
that it copes with the two major error sources: namely, Level-Shift and Outliers (LSO).
We implement the LSO heuristics as in [56], and denote with d-LSO the corresponding
predictor. Basically, outliers are just ignored, whereas the detection of level-shift trig-
gers a filter restart. More on details, considering a set of measurements {λ1, . . . , λd},
a sample λk is said to be an outlier whenever it differs from the median of the set by
more than a relative difference ψ. Moreover, an increasing (decreasing) level-shift is
detected in correspondence of λk whenever the following conditions jointly holds:

• the measurements {λ1, . . . , λk−1} are all higher (lower) than {λk, . . . , λd}

• the median of the first portion {λ1, . . . , λk−1} is higher (lower) than the median
of the second portion of the set by more than a relative difference χ

• k + 2 ≤ n, to avoid classifying an outlier as a level shift

When a level shift is detected, all measures prior to λk are ignored and the predictor
is restarted from λk. In the following, we select (χ,ψ) = (0.3, 0.4) as in [56], which
correspond to a good parameter choice in our data set as well.

Auto-Regressive Models

We will compare SVR performance also with an Auto-Regressive (d-AR) models. d-AR
models are similar to d-MA models: the main difference is that they take into account
not only previous observations, but previous predictions as well.

λk =
d∑

i=1

ϕiλk−i + ǫk (3.4)

d-AR predictors takes the general form of (3.4), where ϕi are parameters of the model
and ǫk is a noise factor. In the embedding process context, a linear prediction function
leads to a class of autoregressive models, and fitting procedures can be used to extract
the most appropriate regression function within the class. Indeed, it has been shown [57]
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that the use of a linear kernel yields to an d-AR model equivalent to the one estimated
through other means such as, for instance, the Yule-Walker equations [52]. At the same
time, the advantage of using SVR to provide d-AR models lie in its simpler fitting
procedure and robustness in the presence of outliers: thus, in the following we will use
a SVR with linear kernel (c.f. Sec. 2.2.3) to evaluate the performance of autoregressive
models.

Nadaraya-Watson Estimator

The last class of forecast model that we will compare SVR performance with is the
Nadaraya-Watson estimator [23] [58]. Given a random vector X ∈ R

d (as for the SVR
inputs) and a random variable Y ∈ R (as for the SVR output), the regression problem
consists of finding an estimation of the function Φ such that:

Y = Φ(X) + ǫ,

where ǫ is an independent and centered random variable representing errors (the noise
factor of the AR models).

The function Φ can be estimated from observations of the pairs (X,Y ). Several
models can be assumed for Φ such us linear or parametric ones. However, since we are
already considering this kind of model (d-MA and d-AR) , we assume a non parametric
one, i.e. the function cannot be determined with a finite number of parameters. In
particular, the Nadaraya-Watson(NW) estimator is defined by the function Φn : R

d →
R such that:

Φn(x) =

n∑
i=1

YiK( ||x−Xi||
hn

)

n∑
i=1

K( ||x−Xi||
hn

)
, (3.5)

with the convention that Φn(x) = 0 if
∑n

i=1K(x−Xi
hn

) = 0. The function K is a kernel,
in the sense that K ≥ 0 and

∫
R
K(x)dx = 1 and hn is a sequence of positive numbers

that goes to zero with n. The selection of the window h is of crucial importance since
a non optimal selection may strongly degrade the accuracy of the estimation. For
instance, a large value of h will imply a large averaged estimation whereas a small one,
will imply a very noisy one. It must be noted the definition of kernel introduced here
is different to the one defined in Sec.2.2.3 which relates with the existence of an inner
product.

An intuitive interpretation of (3.5) is that Φ(x) is obtained by averaging the outputs
values Yi corresponding to inputs Xi that are “near” x, where the sense of near is given
by the kernel function. More formally, assuming that the vector (X,Y ) has a density
in R

d+1, this estimator can be seen as the plug-in estimator obtained by substituting
this density by its kernel estimation. More details can be found in [59], in particular
about the hypothesis for the different types of convergence of Φn to Φ.
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We will consider two different kernel functions: Gaussian (3.6) and Epanechnikov
(3.7), which are defined as:

K(x) =
1√
2π
e−x2/2 (3.6)

K(x) =
3

4
(1 − x2)1{|x|<1} (3.7)

An important difference between SVR and NW estimator is that for the former,
a model is constructed from the training phase, whereas for the latter each time a
new value is to be predicted, the rest of the time series could be used as observations
(or at least the past observations for online predictions). However, to achieve a fair
comparison, we will use the same training and validation sets for both models. For
SVR, once the training is done and the model constructed the prediction is very easy
and results of a simply function evaluation. Moreover as we have seen before, it depends
on the number of support vectors and not on the whole training size. Instead, for each
NW prediction the whole training set is considered in the calculation of (3.5). This
characteristic is a serious drawback of NW when used for online prediction, as in our
case, since it results to be more computationally expensive.

3.2.2 Sensitivity Analysis of SVR Performance

Support vector embedded process regression is affected by many parameters, pertaining
to two different areas. A first set, related to the SVR itself, includes the training size
S and the smoothing factor C of (2.16), the tolerance ǫ of the loss function (2.18), and
the parameter γ of the kernel function (3.2). The second set is instead related to the
embedding process parameters, i.e., the timescale τ and dimension d (3.1).

In the following, we provide a very thorough and careful tuning of SVR, with the
twofold intent of i) evaluating the extent of SVR accuracy for link load prediction, as
well as ii) assessing the sensitivity of SVR forecast performance to the above parameter
variation. Results reported in this chapter are gathered through JMySVM [46] an open
source SVR implementation distributed along with the Rapidminer [50] software tool.

Input Data

Prior to inspect the impact of the above parameters on SVR performance, we need to
provide details on the input data, that were collected at the POP of a major Italian ISP.
This dataset is very interesting since it refers to an innovative ISP which is providing
end users (residential, SoHo or large companies) with data, voice and video over IP by
means of either an ADSL or a FTTH link (no PSTN link is offered). Traffic is therefore
composed of data transfers over TCP, VoIP and VideoIP traffic over RTP/UDP. More-
over, as users make extensive use of P2P applications, VPN services, etc., the resulting
traffic mix is therefore very heterogeneous.
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i 0 2 4 6 8 10
τi [ms] 1 4 16 64 256 1024

Day-time µ [Mbps] 116.4 118.3 120.4 119.5 118.9 121.3
σ [Mbps] 28.9 20.7 16.4 12.7 10.3 7.9

Night-time µ [Mbps] 60.8 62.4 68.1 69.6 68.2 66.2
σ [Mbps] 32.6 21.2 15.4 9.6 6.8 8.7

Table 3.1: Input trace: link load at different timescales

We sniffed a one-day long trace on Monday the 15th May 2007, and consider a
single traffic direction, namely the downlink one. We then extracted several 10000
second long (about 2h45) subsets of the trace: here, we report results referring to
two different subset, namely a daily-busy period and nightly-idle one. In the daily
subset (D), average link load is 121.3 Mbps, whereas in the nightly subset (N), average
load was 66.2 Mbps. For each subset, we consider different timescales τi = 2i ms with
i ∈ [0, 10], and for the sake of brevity, in the description we approximate τ10 = 1024 ms
with τ = 1 s.

Further details relative to the mean and standard deviation of the load at different
timescales are reported in Tab. 3.1 for even values of i: it can be seen that in general,
the lower the timescale the higher the load variance. Also, considering the coefficient
of variation CoV = σ/µ, we notice that load variation is more important during the
night, where CoV is roughly the double with respect to the daily subset. For all
different timescales, we construct a N = 10000 long dataset with the partitioning
criterion illustrated in 3.2(a): the subset for the (i-1)-th timescale corresponds to the
central portion of the i-th one.

The daily and nightly datasets present another interesting difference. 3.2(b) depicts
the autocorrelation function of the load at timescale τ = 1 s: the peak of the busy trace
exhibits a periodic fluctuation on the range of 5 s (and multiples of 5 s) which is absent
in the nightly trace. Clearly, this dependence will affect any 5-lag samples when τ = 1s
(i.e., λk and λk−5) and more generally any two samples that are 5n seconds apart.

SVR Parameters

To tune the SVR performance, we start by performing a grid optimization process,
which boils down to the selection of a tuple (C∗, ǫ∗, γ∗) of SVR parameters. The best
tuple is chosen as the one that minimizes the Root Mean Square Error (RMSE) of the
prediction, a metric which asses the quality of the estimator in terms of its variation and
unbiasedness. RMSE has the same units as the quantity being estimated (specifically,
Mbps in our case), and is defined as:

RMSE =

√√√√ 1

n

n∑

i

(yi − ŷi)2 (3.8)
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Figure 3.2: (a) Subset choice at different timescales for the daily dataset and (b)
Autocorrelation function of the Daily and Nightly trace datasets

We point out that while RMSE is more suited than the Relative Error (RE) to assess
the quality of estimation, at the same time its interpretation is somewhat harder than
that of the RE index. As such, in the following we will mainly use RMSE to drive the
parameter tuning and selection, but will use both RMSE and RE metrics to quantify
the forecast accuracy.

Fixing for the moment d = 5 and τ = 1 s, we construct a dataset with all possible
inputs/outputs by means of a sliding window as described in Sec. 3.2. We selected 20%
of the dataset at random to train the SVM, and tested the prediction accuracy over
the remaining 80%.

We choose 10 values for each of the SVR parameters, for a total of 1000 tuples
(C, ǫ, γ). To select the boundary of the parameter space to be explored, we apply
the following reasoning. A prescription for the regularization parameter C follows
from (2.19): if we consider that, |λi − λ∗i | ≤ C and |K(xi, xj)| ≤ 1, we have that
|f(x)| ≤ CnSV , which yield to C ≤ |f(x)|/nSV . While for |f(x)| a reasonable choice is
max(|y+3σy|, |y−3σy |) (to avoid outliers influence), since the number of support vector
cannot be known a priori we consider the boundary cases where either all training data
are support vectors SV = S, or only a single data point is a support vector SV = 1.
Finally, [60] suggest that ǫ should be proportional to the input noise level: however, as
the definition of link load “noise” is questionable, we are forced to resort to an empirical
choice – and we proceed similarly for γ.

This grid optimization process for the daily trace yields to a minimum RMSE=5.9
when (C∗, ǫ∗, γ∗) = (30, 5, 0.05), to which a relative error RE=3.5% corresponds. Fig. 3.3
shows the whole (C, ǫ, γ) parameter set explored, conditioning over each of the three
parameters. For the sake of clarity, let us consider the leftmost plot of Fig. 3.3, whose
x-axis represents the C parameter values. Each point in the plot represents a single
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Figure 3.3: Grid optimization process for the selection of (C∗, ǫ∗, γ∗)

experiment, and for any value of the C parameter on the x-axis, 100 points are plotted
that correspond to the 100 combinations of the other two parameters ǫ and γ.

The plot also reports some reference lines: the vertical thin line refers to the best
value C∗; the dotted thick line represents, for any given C, the average of the RMSE
achieved for the 100 possible combination of ǫ and γ and the solid thick line refers
instead to the RMSE achieved as a function of C when the other parameters are set to
their best values (i.e., ǫ∗ and γ∗).

From the Fig. 3.3, it can be gathered respectively that i) as the RMSE is convex
in C, the value of C should be neither too big nor too small, ii) the prediction error
exhibit a (roughly exponential) increase with γ value, and iii) that the impact of ǫ is
less significant with respect to C and γ.

A similar operation on the nightly trace yielded to a different best combination of
parameters, namely (25, 0.1, 0.001). At the same time, the daily parameters (C∗, ǫ∗, γ∗)
ranked 50th in the night trace, with an RMSE increase of 4%: thus, even in extremely
different load conditions, the SVM prediction is rather robust to the parameter choice.

Training Size Impact

By fixing the parameters (C∗, ǫ∗, γ∗), we explore now the impact of the training set size
S on SVR performance. We build a training set with S randomly chosen samples and
evaluate the prediction accuracy over the remaining samples. The process is repeated
10 times for each value of S, changing the training and validation set every time. RMSE
results are reported in the boxplot Fig. 3.4 as a function of the training size S (top
x-axis) and ratio S/N over the total trace size (bottom x-axis). The boxes report the
lower quartile, median, and upper quartile values; the lines extending from each end of
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the boxes represents the extent of the rest of the data (i.e., the maximum and minimum
values), and outliers are not filtered out.

First, it can be observed that there exists a noticeable variation in the RMSE
performance for a given training set size, emphasizing the importance of the training
set in the model construction. Then, it can be observed that whenever the number of
samples is exiguous (S/N < 1/16), the SVM is under-trained and prediction error is
large. For instance, relative error, not shown on the picture, grows beyond 10% when
S/N < 1/128.

Afterwards, SVM rapidly learns and both the RMSE and RE errors quickly drop
(specifically, RMSE=5.9 and RE=3.5% when S/N = 1/4), until the SVM is over-
trained (S/N ≥ 1/2) and the error slightly increases (RE=4.2%). In our situation, in
the zone S/N ∈ [1/8, 1/4] the RMSE stays at acceptable values, with a minimum in
S/N = 1/4, which validates our original choice of S/N = 0.2.

Embedded Parameters Impact

In this section, we explore the impact of the embedding parameters d and τ in the
prediction accuracy of SVM versus d-MA, AR model and NW (c.f. Sec. 3.2.1). As
earlier explained in Sec. 3.2.1, AR models are evaluated through a SVR with a linear
kernel. In this case, the parameters that must be set are only C and ǫ: by performing
a new grid optimization process, we obtain that the best choice is keeping the values
C and ǫ already obtained for the Gaussian kernel. For the NW estimator, a grid
optimization was made to find the optimal value of the window h. It results to be
much less robust than SVR, since it strongly depends on the value of d, specially when
the Epanechnikov kernel is considered. Remember that for SVR the parameters were
optimized for d = 5.
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Figure 3.6: Impact of the number d of previous samples on the forecast accuracy for
the Nadaraya-Watson predictor using the same training and validation set as for SVM.

Fig. 3.5 and Fig. 3.6 reports the RMSE results as a function of the number d of pre-
vious samples, for both nightly (right) and daily (left) periods at the τ = 1 s timescale.
The results for the NW estimator are shown separately to ease the comparison. Each
point in the plot correspond to the average result over 10 repetitions of the experiment.
As a first remark, results are different, being SVR the one that always obtain the best
results. However they are quantitatively very close: in other words, SVR does not
appear to offer a significant improvement, especially over d-AR models.

Nevertheless, let us investigate more closely the daily period, where the d-MA and
the NW estimator (for both analyzed kernels) resent much of the periodical fluctuation:
intuitively, the error is minimum whenever the forecast is exactly a multiple of the
periodical lag (indeed, for d = 5 samples, two of them thus 2/5 are correlated, while
for d = 6 only 2/6 are correlated, and so on) and grows in between two multiples.
Interestingly, the LSO heuristic is not helpful in this case (as in this case the periodic
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fluctuation may be seen as a level shift and thus disregarded), while the robustness
of SVR models is preserved. It has to be noted that both SVR and d-AR models are
similarly affected by variations of d, but that the use of a Gaussian kernel yields to
slightly more accurate results.

Considering the nightly period, it can be seen that the knowledge of a few elements
is useful for the d-MA prediction, as long as the number of previous observation is
small: indeed, when d > 5 the d-MA filter is averaging not useful information, actually
worsening its accuracy. At the same time, while the d-LSO limits the error for high
values of d, it may actually worsen the accuracy at low values of d (and is furthermore
sensitive to its parameter tuning). A similar behaviour is observed for the NW esti-
mator. Conversely, SVR outperforms d-MA for all values of d, and is also naturally
robust even to unreasonable choices of d – i.e., increasing the number of features neither
ameliorate nor degrade the result accuracy. When considering d-AR models, we find
out that the performance is very close to that SVR: this can be expected as in this case,
the very small value of the γ = 0.001 means that linear kernel is a good approximation
of the Gaussian one. Still, the slightly better performance achieved by the Gaussian
kernel confirms it to be a good choice, other than for throughput [19] and latency [34]
prediction, even for the purpose of link load forecast.

From Fig. 3.5 and Fig. 3.6, it results that the NW estimator gives results that are
qualitatively similar to those obtained by d-MA, suggesting that perhaps the predictor
potential of NW is not being fully exploited. We propose then to change the training
set used for NW (in the previous we used the same as for SVR) to include only the
history (past data) of the time series. More precisely, for each point of the time we use
a fixed range of past values to construct the training set; in what follows we use 10%
of the total length of the time series times d, so as to obtain the same training set size
for all values of d. We decide to use a fixed range instead of all the past values since
we observed that the accuracy does not degrade and the time required to obtain the
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predictions was significantly smaller. Results for this case are reported in Fig. 3.7 where
the value of the window h was again optimized for each value of d (cf. Sec. 3.2.1). It
can be seen that results have improved but they are still worse than for SVR. Moreover,
the results depend now on the considered kernel, being again the Gaussian kernel the
one that obtain better results.

It should be noted that even if the differences with SVR are not significant, the
NW estimator is intrinsically expensive for online predictions as explained earlier in
Sec. 3.2.1. For instance, the point of Fig. 3.6 corresponding to d = 10 for the NW
estimator with Gaussian kernel takes 60 times more time than for SVR. It should be
said that we used our own MATLAB implementation for NW, but even if it can be
optimized the difference with SVR would be still high. The multiplication factor for the
kernel Epanechnikov is approximately 20. Furthermore, the variance on the errors for
the NW estimator is about twice the one obtained for SVR. We will not dig further in
the performance of NW but a more detailed analysis of the computational complexity
of SVR is presented in Sec. 3.2.3.

Finally, setting d = 5 (thus, the best case for the d-MA filter but not for the
SVM), we investigate whether SVM forecast bring any improvement at short time-
scales. RMSE of the prediction is depicted in Fig. 3.8 as a function of τ , where we report
only the nightly period to avoid cluttering the pictures. Behavior of both predictors
is similar, with short time scales constituting a stiffer scenario, as it can be expected
in reason of the much higher traffic variability shown earlier in Tab. 3.1. The picture
also reports the RMSE difference of the two forecast techniques, from which it can be
gathered that at very short time-scales (1 ms), SVM brings about a 10% improvement
over d-MA.
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Figure 3.9: Time evolution of SVR prediction

3.2.3 A Closer Look on Forecast Performance

Temporal Evolution

After having performed a sensitivity analysis of SVR, let dig deeper into SVR perfor-
mance, starting by an investigation of the temporal evolution of SVR prediction. Let
us start by an example where, using the SVR parameters obtained through the grid
optimization, we fix τ = 1 and d = 10 and devote the first 2000 sample of the daily
dataset for training and the last 2000 consecutive samples for testing.

The left portion of Fig. 3.9 reports the temporal evolution of real data and SVR
forecast (top) as well as the relative error RE (bottom), from which it can be gathered
that SVR prediction closely follows the real link load evolution, though the latter
exhibits several load “drops”, whose duration is on the order of a seconds, which SVR
is unable to predict. We highlight, however, that from a provider perspective it may
not be critical to be able to precisely predict such short load drops, since no specific
action needs to be undertaken as a reaction. This is clearly in stark opposition with
respect to load spikes, which we argue would be more critical to be able to anticipate,
in order to promptly trigger possible counter-measures.

Impact of load drops on SVR performance is further highlighted in the right portion
of Fig. 3.9, which depicts a scatter plot of the real and forecasted load values (top)
and the probability distribution function of the SVR relative error (bottom): from
comparison of these pictures is clear that the bias toward over-estimation is entailed
by the early noticed load drops, rather than by a systematic bias introduced by the
model.
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This asymmetry due to the load drops, slightly bias the mean relative error toward
negative values µ = −0.0065. At the same time, we point out that performing a
randomness test for the sequence of relative errors measured over the test set, we find
that errors are independent and identically distributed. In particular, results of a Runs
Test state that we could not reject the hypothesis of randomness for this sequence (with
a p-value of 0.3161): this allows as to calculate a 95% confidence interval for the error
I = [−0.0092,−0.0039].

This fact has very important consequences in the case of online predictions, as
it could be used in two rather different contexts. For instance, when the forecast
accuracy starts to degrade (as many predictions slightly fall out the confidence interval),
this may imply that a new training phase should be triggered. Conversely, if errors
differ drastically from the previous ones, this might implies that something unusual
is occurring with the traffic load – which may find useful applications in the field of
anomaly detection.

Computational Complexity

The SVR forecast performance can also be described in terms of their cost. First of
all, it is important to observe that SVR involves two rather different tasks, namely
model training and the actual forecast operation: the former translates into the solu-
tion of an optimization problem, whereas the latter only involves a limited number of
simple operations. The above decoupling of SVR computational complexity is a very
desirable property. Indeed, training and forecast tasks have to be performed at intrin-
sically different timescales: model training is an offline operation, that has to be done
episodically (or at most periodically) and in the background, while forecast need to be
performed constantly and in an online fashion.

Concerning the model training, we need to stress that there exist very efficient
algorithms for the solution of the SVR problem: for example, JMySVM implements
a Sequential Minimal Optimization decomposition technique, whose computationally
complexity is linear in the number of support vectors.

The computation of the forecast itself only involves a number of simple operations
as can easily be gathered by observing the SVR regression function (2.19). Moreover,
an interesting point is that it is actually possible to upper bound a priori the number of
support vectors returned as a solution to the problem. This can be done by adopting
a slightly different formulation of the SVR problem, called ν–SVR [48]: as opposite to
the ε–SVR case, though, we would no longer be able to tune the ε-tube, i.e., the margin
ǫ below which errors are tolerated. Thus, rather than tuning the tolerable error, one
could choose to fix the maximum cost that can be afforded – which could be extremely
useful to limit the amount of CPU resources devoted to the online forecast operation.

Still, in the case of ε–SVR, the online forecast cost can be evaluated a posteriori, and
as we will show, it does not clearly constitute a performance bottleneck. The primary
complexity indicator for the SVR forecast operation is clearly the number of support
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Figure 3.10: Number of support vectors for different values of d

vectors. Fig. 3.10 reports, for the daily dataset and Gaussian kernel, the number of
support vectors generated by the model as a function of the embedded parameter d.
Box-plots report the median, first and third quartiles, minimum and maximum number
of support vectors obtained over 100 different training per value of d; on the left y-axis,
we also report the percentage of support vector over the training set size (which is again
set to 20% of the dataset).

For small values of d, more support vectors are needed while for values greater
than 5, the mean percentage remains almost constant around 17%, though we can still
observe a variability of the results, which is due to the random selection of the training
set. For the AR models (evaluated via the use of SVR with linear kernel) results are
similar, with an increase of about 5% on the number of support vectors – which would
thus imply a slightly higher computational complexity and resource requirement in
both the offline training and the online forecast operations.

Finally, we give a very rough but nevertheless useful feeling of the actual CPU
requirement, reporting the typical execution time performance of our experimental
campaign. Experiments, which were run on a Linux PC featuring a 2.0 GHz Intel Core
2 Duo processor equipped with 2 GB of RAM, show that:

• the offline training time is about 0.83 seconds per thousand of support vector –
which means that the mean training time of a single SVR model of Fig. 3.10,
averaged over all d values, is less than a third of second;

• the online forecast rate is above 9000 forecast per second when d = 10 – thus much
faster than real-time, which further testify the viability of online SVR forecast.
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Extending the Forecast Horizon

Finally, an interesting question that we want to assess is whether it is possible to
extend the forecasting horizon by cascading a series of SVR predictors – in other words
whether recursively using forecasted results as an input for a new forecast is viable and
promising in the case of link load forecast. We stress that the approach is feasible and
intriguing, as results on computational complexity show that, when τ = 1 s, it would
be possible to actually cascade more than 9000 SVR predictors in a real-time online
forecast. Thus, we want to assess how fast the prediction accuracy degrades.

More formally, at time t = dτ we forecast the load at the next time step t = (d+1)τ ,
feeding the SVR function f(·) with the last d observation of the series, getting as result
the prediction ŷd+1 = f(x̂d). Always at time t = dτ , we then forecast the load at time
step t = (d+ 2)τ using the last d− 1 observation of the series and the forecasted value
ŷd+1 in the input x̂d+1, thus:

xd = x̂d = (λ1, . . . , λd), ŷd+1 = f(x̂d)

x̂d+1 = (λ2, . . . , λd, ŷd+1), ŷd+2 = f(x̂d+1)

x̂d+2 = (λ3, . . . , λd, ŷd+1, ŷd+2), ŷd+3 = f(x̂d+2)

This procedure can be iterated arbitrarily, and we define as forecast horizon H the
number of SVR forecast that are cascaded: notice that when H ≥ d, this means that
we are using only forecasted values as input features. In what follows, to avoid the
influence of the training set, we train and validate the model over the same dataset: by
doing so, we will be able to isolate the impact of the forecast horizon.

For illustration purpose, the left plot of Fig. 3.11 gives an example of recursive
forecast for SVR and d-MA models when d = 10 and for an horizon up to H = 30 s.
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H 1 2 5 10 15 20

d=10 0% 0.7% 1.1% 1.9% 2.5% 2.8%

d=20 0% 0.8% 1.3% 1.9% 2.4% 2.8%

Table 3.2: Relative Error RE between H-horizon and “one-step” SVR forecast

At time t = 0, we apply the cascading process and plot the ŷh prediction for a given
horizon h: notice that the x-axis represent the forecast horizon for both SVR and d-
MA, whereas it represents the time (in the future) as far as the real series is concerned.
In the picture, the d = 10 real load samples immediately preceding time t = 0 are also
shown: these points determines the initial load forecast for time t = 1, after which the
recursive process starts (and so SVR and d-MA models start to be fed with their own
forecasts).

From this simple example, it can be seen that SVR is able to more closely follow
the real data with respect to d-MA, at least for small values of H. Conversely, d-MA
predictor quickly converges to a fixed point, though the precise value to which an ∞-
cascaded d-MA filter converges depend on the actual order of the series1. Aiming at
assessing the average RMSE and RE of the recursive forecast, and in order to gather
results that are valid to a more general extent, we perform an exhaustive set of exper-
iments, repeating the process 10 times for different training sets. The right portion of
Fig. 3.11 depicts the RMSE error as a function of the forecast horizon for both SVR
and d-MA and two values of d ∈ {10, 20}. RMSE is evaluated as the error between the
cascaded value ŷd+H = f(x̂d+H−1) forecasted at time t = dτ and the real value λd+H

at time t = dτ + H. Results show that in all cases the RMSE error linearly increases
with the forecast horizon H, but that cascaded SVR performance exhibit a lower error.
Moreover, it can be gathered that d = 20 yields better results: this is not surprising,
since in this case we are using more “real values” as input features.

Finally, we compare the H-horizon cascaded SVR forecast (i.e., the recursive SVR
forecast for the series value at time t + H, performed at time t), with the “one-step”
forecast (i.e., a normal SVR forecast). This comparison helps us in assessing the extent
of the degradation in the prediction quality, which can be solely imputed to the cascad-
ing process itself. These results, expressed in terms of RE, are reported in Tab. 3.2 for
different values of H: rather surprisingly, results state that the prediction of a cascaded
SVR with a rather large horizon of H = 20 s is only about 3% worse than a “one-step”
prediction, and that furthermore this holds irrespectively of d. Interestingly, this sug-
gests that, if good accuracy is obtained for H = 1, the recursive process would not
affect much the quality of the prediction.

1For example, it is easy to verify that the d-MA cascading process over x = (1, 2, 3) converges to
2+1/3, whereas it converges to 2 − 1/3 in case of x = (3, 2, 1).
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3.3 Prediction of a Function of the Link Load

In this section we address the problem of forecasting a function of the link load, such
as the maximum or the percentile of its distribution, during an arbitrary time interval.
The motivation to analyze this new strategy is twofold, in one hand we search to
improve the performance obtained by the “embedding process” and on the other hand
we believe that it is more useful to know for instance the maximum load over the next
time period than the exact value for the next second.

tO tF 

t

λ(t)

λ(k)

X = (µ, σ) - X = (µ, p) Y = p, p95

inputs outputs

Figure 3.12: Example of possible SVR inputs/outputs.

As before, for a time scale tS , for each dataset let {λk}k=1,...,n be the time series
such that λk is the average traffic load measured in the interval [(k − 1)tS , ktS ]. Let
us denote the temporal horizon of the forecast by tF , and let us further assume that
predictions for the time frame tF are based on observations of a time frame tO of equal
length, i.e., tO = tF (see Fig. 3.12). If we compare with the embedding process of
Fig.3.1 we can see that the output is not anymore a single value but a function of the
observations in a given interval. Also the inputs change, even if the considered values
are the same the input is now a summary of statistical properties, for instance the
combination of the mean and the standard deviation or the maximum of these values,
as indicated in the figure.

More precisely, assume (for the moment) that we want to predict the peak network
load on a given temporal horizon, using past observations of the load mean µ and
standard deviation σ as input features. Let us now introduce, with the help of Fig. 3.13,
the notation that will be used throughout this work. As sketched in the top of the figure,
a single pair of features (µ, σ) can be gathered from the whole time frame tO, which can
then be used as SVR inputs to predict the maximum load in the subsequent time frame
tF . Alternatively, the samples constituting the time frame tO can be aggregated into
several windows of duration tW , where a separate set of input features (µi, σi) can then



78 3.3. Prediction of a Function of the Link Load

t =  2W
 n

tS

t =  2W
 n-1

tS

t =  2W
 n-3

tS

t =  W tS

tW

tS

x=(µ,σ)

..
.

..
.

t

tW

=tO

W

x=(µ ,σ,µ  ,σ )1 1 2 2

x=(µ ,σ ,...,µ ,σ )1 1 8 8

x=(µ , µ ,...,µ )1 2 n

Figure 3.13: Synoptic of the general framework used throughout the rest of the section.

be calculated for each window i. For instance, going down one step, the window length
is halved tW = tO/2, which doubles the number of features, producing (µ1, σ1, µ2, σ2).
Potentially, this dichotomic splitting procedure could continue until the window size
reaches a minimum, given by the traffic sampling time (i.e.,. tW = tS). However,
as 1-sample windows do not allow us to evaluate σ, in the following we disregard the
degenerated case tW = tS and consider tW ≥ 2tS . It is worth noting that the case
with 1-sample windows when the input is defined as the mean, is equivalent to the
“embedding process” analyzed in Sec. 3.2. This means that the input is defined as a
vector x ∈ R

d, where the fact that tS = 1 second, implies that d = tO. In Sec. 3.3.3 we
will show that the approach presented in this work brings better results (10% in the
worst case) than the “embedding process”.

For the sake of clarity, in the following we will refer to a forecast horizon tF , based
on an observation time frame tO, which is possibly split into several time windows tW ,
containing a number of samples collected using a constant sampling time tS. Also,
samples contained in the i-th window can be consolidated into a set of features, for
example, (µi, σi) in this example: therefore, the SVM input will be the union of all
feature sets, over all windows in which the observation time frame has been split. The
impact of the above variables will be studied at length in the following, but, unless
otherwise stated, we will refer to tF = tO = tW = 64 seconds (i.e., the power of 2
closest to 1 minute interval), using a sampling interval of tS = 1 second. In this case,
no splitting is performed.

For the SVR training, we use a sliding window of length tO = tF over this time
series to build all possible inputs/outputs pairs (xi, yi). Again, a subset of this dataset
is used for training, i.e., to solve the SVR problem and gather the forecast function
f(·). The model accuracy is then evaluated over the complement of the training set,
i.e., on unknown data. In the remainder, for each experiment 60% of the available data
is used for SVM training and 40% for validation. Also, each experiment is repeated
30 times (using different training and validation sets), so that each experimental point
corresponds to the average result over different SVR instances.
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ISP Campus WiFi Ent

Period May’06 May’06 Sep’07 Dec’04
Duration 15h 15h 15h 1h

Rate [Mbps] 60.1 30.0 28.8 7.7

Flows 3.4·106 6.2·106 3.3·106 58·103

Pkts 461·106 329·106 195·106 9.7·106

Bytes 0.4·1012 0.2·1012 0.2·1012 3.5·109

Pkts/Flow 134 53 59 167
Bytes/Pkts 864 615 997 361

IP src 2.8·103 11.4·103 3.4·103 3.2·103

IP dst 493·103 699·103 431·103 2.7·103

Table 3.3: Traffic Traces Properties

3.3.1 Experimental Results

In this section we explore SVM performance for different inputs and outputs, for varying
values of the temporal parameters and for different traces and traffic types.

In this case, SVR performance is affected by many parameters, belonging to two
different classes: a first set is related to the SVR regression method and kernel function,
whereas a second set pertains to the input (i.e., features) and output (i.e., target)
spaces. As in Sec. 3.2.2, a “grid optimization” routine is used to systematically explore
parameters of the first set, such as the smoothing factor C, the tolerance ǫ and the
kernel parameter γ, and to select the tuple (C∗, γ∗, ǫ∗) that minimizes the prediction
error. We have already shown that SVR is rather robust to the parameter selection,
provided that the above parameters are selected in a “reasonable” range. Conversely,
modification of the input features, the output target, etc., can significantly affect the
forecast accuracy: therefore, in the following we will restrict our attention to parameters
belonging to the latter class.

To quantify the forecast accuracy, we consider as before the RMSE (3.8). For refer-
ence purposes we consider the naive estimation, for which it is assumed that the value
in the next horizon tF will remain equal to the value achieved in the last observation
time frame tO. Thus, we may also express the relative RMSE gain of SVR forecast
with respect to the naive prediction as:

G =
(RMSEnaive −RMSESV M )

RMSEnaive
.

Other possible techniques to estimate a statistical property as the peak or the 95th-
percentile implies the assumption of a model; we focus instead on a methodology that
avoids making any assumption of the underlying phenomenon.

Experimental Dataset

Prior to investigate the SVM performance, let us briefly introduce the different real-
world traces used throughout this work: we directly monitored an ISP access link and
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the campus egress router ports of our Ethernet and WiFi LANs, but we also make use
of the enterprise network data made available by the LBNL/ICSI tracing project [61].
Details on these datasets are reported in Tab. 3.3, such as traces duration and bitrate,
amount of flows, packets and bytes observed, average packet and flow lengths, count of
distinct IP source and destination hosts.

All traces are 15 hours long and were collected between May 2006 and September
2007, with the exception of the enterprise traffic, which is 1 hour long2 and was gathered
during December 2003. The ISP dataset is very peculiar, as it refers to an innovative
ISP which is providing end users (residential, SOHO or large companies) with data,
voice and video over IP by means of either an ADSL or a FTTH link, whereas no PSTN
link is offered: clearly, all flavors of p2p applications are present in this downstream
dataset. Ethernet and WiFi traces are typical examples of campus LAN downstream
traffic, measured at the campus egress router, representing the aggregated traffic of the
hosts having Ethernet or Wireless access respectively. Ethernet Campus traffic consists
of a mix of Web, intranet services and Internet applications (a firewall tries to block
p2p traffic, although some as, e.g. Skype, still manage to go through) whereas WiFi
access is mostly used for Web browsing, mail and instant messaging. Finally, Enterprise
traffic is also particular, as intranet services constitute the most important part of the
traffic – for a thorough analysis of the LBNL/ICSI traffic, we refer the reader to [62].

Intuitively, these different traffic characteristics will translate into different predic-
tion accuracy. For explanatory purposes, let us show in Fig. 3.14 the peak p and 95-th
percentile p95 computed over 1 second long time-windows for both ISP and Campus
traces. We easily realize that the prediction will be more difficult for the Campus trace
since there are a lot of uncorrelated “spikes” in both series, especially considering the
peak load. Conversely, it can be seen also, that for the ISP trace, both series are very
similar, which make us expect the ISP trace to be a relatively easier forecast scenario
with respect to the Campus one. It should be noted that the ISP and Campus dataset
were already considered in the previous section (c.f. Sec. 3.2.2)

Features and Target Impact

Let us start by considering different statistical properties of the link load variable as
target (i.e., output of the model), and by feeding SVR with different combinations of
their previous observations (i.e., inputs of the model). As statistical properties, we
consider the mean µ, standard deviation σ, peak p and 95-th percentile p95. Also, as
far as output is concerned, in the following we consider the problems of peak p and
95-th percentile p95 prediction. We show results only for the ISP and Campus dataset
since they reflect the variety of performance results that can be obtained; we recall that
we expect Campus to be a stiffer scenario, especially when the peak load prediction is
considered.

2This is due to the measurement methodology in [62], where different switch ports are monitored
every hour.
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Figure 3.14: Peak p and 95-th percentile p95 of the link load for (a) ISP trace and (b)
Campus trace.

As explained before, we preliminary fix SVR parameters (C,ǫ,γ) for each trace by
performing a grid optimization for each output, using the pair (µ, p) as input (which is
a reasonable choice given SVR robustness). We recall that tO = tF = tW = 64 seconds,
whereas tS = 1 second. For this parameter setting we show in Fig. 3.15 real values and
SVR predictions for a random validation set for both ISP and Campus traces, to get a
first (visual) idea of the prediction accuracy. As expected, the predictions of both peak
and 95th-percentile are more accurate for the ISP trace: SVR is unable to forecast
the important “spikes” present in the Campus traces, despite it is able to “follow” the
curve. Also intuitively, the presence of these spikes makes peak prediction harder than
95-th percentile one. These differences are reflected in the RMSE: for the ISP trace
RMSE is 3.65 for the peak and 3.39 for the 95th-percentile, whereas for the Campus
trace these values are 21.46 and 9.94 respectively.

In what follow we will explore the use of different inputs in addition to (µ, p).
More precisely, we will consider as inputs all possible combinations of input features
µ, σ, p and p95. Tab. 3.4 reports the RMSE obtained by the naive prediction and
the corresponding SVR gain for the ISP and Campus dataset and for these different
combinations of input features. Specifically, we select:

• the three best combinations of 2-features inputs (i.e., over all pair of statistical
properties)
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Figure 3.15: Comparison of real and predicted values for (a) ISP trace and (b) Campus
trace.

• the average of all 2-features inputs

• the average of inputs with 3 or more features

• the average of all possible combinations irrespectively of their length

First, we observe that the performance of both SVR and naive forecast significantly
changes when different traces are considered: the RMSE change by about a multiplica-
tive factor between 2.5 and 4. Second, considering different outputs as p and p95, the
RMSE variation can be either important (roughly, a factor of 2 in the Campus case)
or irrelevant (as in the ISP dataset): as we early noticed this can be explained by the
presence of significant load spikes in the Campus trace, which are harder to predict
and thus yield to a larger forecast error. Third, the input features combination does
influence the results, although with a smaller magnitude. Interestingly, it can be seen
that is better to use a small number of features to describe the statistical properties of
the trace rather than a large one. Moreover, the three best input combinations yield
to very similar results, although no clear winner can be identified, as the best input
varies across traces and outputs. Therefore, in what follow, we will limit ourselves to
consider (µ),(µ, p),(µ, p95) as inputs for the SVM prediction. Finally notice that, rather
surprisingly, the (µ, σ) combination yields to worse results with respect to the simplest
input choice (µ), and that this holds furthermore for both traces and outputs. Also,
the combination (σ, p) provides the worst results of all combinations, which suggest
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ISP Campus

Input p95 p p95 p

Naive RMSE 3.44 3.91 8.28 16.55

1st 5.1 % ◦ 8.2 % ⋆ 15.5 % • 21.2 % •
2nd 5.0 % • 8.0 % • 15.1 % ⋆ 20.9 % ⋆

SVM 3rd 4.6 % ⋆ 7.9 % ◦ 14.4 % ◦ 20.8 % ◦
Gain = 2 feat 4.7 % 7.7 % 14.6 % 20.1 %

≥ 3 feat 3.8 % 6.3 % 13.0 % 15.9 %
All 4.3 % 7.2 % 13.9 % 18.3 %

Table 3.4: Comparison of Naive and SVR forecast of p and p95, for different input
features, where ◦=(µ),•=(µ, p),⋆=(µ, p95)

that the mean µ should always be considered as input feature, irrespectively of the
statistical properties considered as target of the forecast.

In Sec. 3.3.2 we will show that it is actually unnecessary to inspect which combi-
nation of input yield the best results: the underlying idea is to use several machines
in parallel, each of which is trained with different inputs for the same output (so that
it is either possible to e.g., combine the forecast power of different machines, or also
automatically select the best input combination).

Aggregation and Timescales Impact

In this section, we explore the impact of timing related parameters, such as the forecast
horizon tF and the window length tW . It is worth to note that we have fixed tS = 1
second, since this choice implies more flexibility in the selection of the the forecast
horizon and will allow us to explore a wider range of values for the aggregation time
window tW parameter. We focus again on the prediction of p and p95 load, considering
only ISP and Campus datasets, and report the SVM results averaged over 30 repetitions
for each of the three best 2-features input combinations described so far.

We first consider the forecast horizon tF = tO, assuming that the window tW
is consolidated into a single set of features (i.e. tW = tO = tF ). Neglecting the
degenerated case tF = 1 s, we explore values of tF = 2i s for i ∈ [1, 6], where for
instance tF = 16 means that we observe an interval of 16 seconds (or 16 samples, since
tS = 1 s) and predict the output value over the next 16 seconds interval. Results for
naive and SVR prediction of p and p95 are reported in Fig. 3.16 for both the ISP and
Campus traces 3.

Interestingly, the forecast accuracy is diversely affected by the forecast horizon
for the different traces: this reflects the fact that network usage is much different
across the datasets, and so are the temporal traffic dynamics. For example, considering

3Clearly, the results for small time scales are equal for peak and percentile, since in such time scales,
they usually coincide.
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Figure 3.16: Impact of forecast horizon tF on forecast accuracy for (a) ISP trace and
(b) Campus trace.

the ISP trace, both p and p95 can be predicted with higher accuracy over a medium
temporal horizon (i.e., 8 ≤ tF ≤ 16). Conversely, in the Campus dataset the p RMSE
error monotonously increases with tF , whereas the p95 RMSE exhibits an opposite
symmetrical behavior with respect to the ISP case (i.e., medium values of tF yield to
worse performance).The increasing error for peak is in accordance with the important
spikes shown in Fig. 3.15 since it could be easier to predict values in the near future
being not possible to extend the forecast horizon. This fact have less impact when
the percentile is considered as output since the spikes are not so important. Note that
both predictors (Naive and SVR) are equally affected by the variations on the forecast
horizon (i.e. the minimum is achieved at the same value of tF ).

While it is hard to draw general conclusions from these specific behaviors, neverthe-
less one can gather that some time horizon are definitively easier to predict. Pushing
this intuition a bit further, we are interested in answering whether, aiming at predict-
ing link load over arbitrary time horizons, it could be beneficial to aggregate data into
windows corresponding to timescales where forecast is known to be more accurate. For
instance, consider the Campus case: in order to predict next minute’s p95 load, would
it be better to use (i) a single set of features from the last minute window, or (ii) sev-
eral sets of features gathered from separate smaller windows ? To answer this question,
fixing tF = tO = 64, we consider the impact of the aggregation window tW by splitting
the observation time frame tO into several windows of duration tW = 2i s with i ∈ [1, 6]
as described in Fig. 3.13. For instance, tW = 32 s means that the observation period tO
is split into two intervals of 32 samples, each of which gets consolidated into a different
set of features: SVR is then fed with the union of these sets.

Results are reported in Fig. 3.17 in terms of the RMSE as a function of the window
duration tW . Moreover, we point out that, being the naive estimation RMSE constant
for a fixed tO = tF = 64, the SVR gain is thus directly proportional to the error.

From comparison of Fig. 3.16 and Fig. 3.17, we have a partial confirmation of our
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Figure 3.17: Impact of aggregation timescale tW on the SVM accuracy for (a) ISP trace
and (b) Campus trace.

intuition: for instance, in both ISP p and p95 cases the minimum error at tO = tF = 64
is achieved when tW = 16 s, which is precisely the value that minimized the RMSE in
Fig. 3.17. In other words, there are cases where for an arbitrary forecast horizon tF ,
it is preferable to split the observation time frame tO into different windows tW < tF ,
whose duration t∗W should be selected so as to minimize the forecast error.

At the same time, interpretation of Campus results is more complex, and undermine
the generality of the above observation. Considering p95 estimation, it can be seen that
Fig. 3.16 would suggest the use of small (tW ≤ 4) or even large (tW ≥ 32) windows –
but not intermediate values of tW , as the RMSE is concave in tW . Fig. 3.17 states that
smaller errors can be achieved by using large tW ≥ 32 windows (and consequently, a
smaller number of features), which does not contradict our intuition, despite tW value
do not precisely correspond to the optimum of Fig. 3.16.

Prediction results of p are of harder interpretation, as the minimum error can be
achieved when the observation time frame is not split (i.e., tW = 64), despite the
prediction error monotonously increases with tW = tF as shown in Fig. 3.16. Thus,
it seems as though the specific network scenario may play a very significant role in
determining SVR forecast performance, and that moreover this happen in a non trivial
way.

A possible, partial, explanation lies in the fact that shorter windows tW translate
into a higher number of features, which as early noted tends to “confuse” the SVR
prediction: therefore, there may be cases where this increased number of features simply
offsets the potential benefits brought by the splitting procedure.

Traces and Traffic Breakdown Impact

In this section, we analyze the different traces of Tab. 3.3 in the attempt to quanti-
tatively bound the extent of SVR benefits. We limit the analysis to the peak load
estimation at tF = tO = 64 s and report in Tab. 3.5 the naive RMSE (R), as well as
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CoV All Srv/All Services Web/Srv Web
∞ 64 s G% R B% F% G% R B% F% G% R

I 0.29 0.05 12 3.7 1 2 22 1.1 8 2 15 0.5
C 0.40 0.17 21 13.4 44 21 19 14.2 66 38 18 12.5
W 0.88 0.54 11 10.6 92 89 11 10.6 91 80 10 10.6
E 0.64 0.56 25 10.2 62 37 27 10.0 27 33 10 4.9

Table 3.5: Naive RMSE error (R) and SVR gain (G%) for different traces (I,C,W,E)
and for different traffic breakdown in terms of service type (All, Srv, Web), bytes (B%)
and flows (F%)

the maximum gain (G%) brought by SVR (over all possible window values tW ).

First of all, the table reports the coefficient of variation (CoV), defined as the ratio
of the standard deviation over the mean load and measured at two different timescales,
as a statistical compact index of the link load variation. More specifically, CoV(∞) is
evaluated over the whole trace, and represents the long-term load variability, whereas
CoV(64 s) is the mean CoV evaluated over 64 s long windows and is representative of
the traffic “burstiness” at short timescales. Notice that there is only a weak correlation
between the CoVs and the forecast accuracy: for instance, RMSE for Campus is the
highest despite its CoV is lower than both WiFi or Enterprise ones – which is reasonable
since relevant forecast errors, corresponding to Campus load spikes, are quadratically
penalized by the RMSE metric.

In order to test whether forecast accuracy not only depends on the traffic trace
but on the traffic class as well, we partition each trace into different traffic aggregates
and apply the SVR load estimation to each aggregate separately. Specifically, we first
extract all “server” traffic from the trace, considering only those packets that involve
well-known transport layer ports, and then extract a second aggregate constituted by
Web traffic only (i.e., port 80).

Aggregates have a very different importance depending on the trace we are con-
sidering: e.g., ISP traffic volume is dominated by p2p traffic, while server traffic plays
a major roles in the Enterprise trace and HTTP constitutes the dominant fraction of
the WiFi dataset. Tab. 3.5 details the traffic breakdown across traces reporting the
relative volume, expressed in terms of bytes (B%) and flows (F%), of Server/Total and
Web/Server traffic.

We stress that this difference in the relative volume of traffic aggregates affects the
RMSE value, which indeed also depends on the actual scale of the data. For example
in the case of Web traffic for the ISP trace, the fact that RMSE is very small is also
tied to the fact that Web browsing only represents a small fraction of the total traffic.
For this reason, and to allow a more direct comparison across traffic aggregates, the
table also reports the gain in percentage with respect to the naive prediction method.

From Tab. 3.5, is easy to gather that the gain over the naive estimation ranges
between 10% and 30%, with an average of 17% – which is clearly a very significant
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gain. Moreover, results confirm that the specific dataset considered strongly affects the
SVR performance, whereas the forecast accuracy does not exhibit a significant variation
across the different traffic aggregates4.

An important remark is that the optimal t∗W value (i.e., the one reported in Fig. 3.16
to which the most accurate prediction when tW = tF = tO corresponds) only varies
across traces, but remains the same over all aggregates for a given trace.

More precisely, the values of t∗W that yield to the highest gain are tW = 64 s for
Campus, tW = 16 s for WiFi or ISP and tW = 2 s for Enterprise respectively. Unfortu-
nately, as early pointed out, there is no generally applicable guideline to properly select
tW . A possible strategy could be to use the largest possible window tW = 64, which
correspond to the most concise summary. A natural question is then to quantify the
accuracy loss whether tW = 64 is used instead of t∗W .

Interestingly, the loss in SVR accuracy under this sub-optimal heuristic choice is
actually very limited. Specifically, results are on average only 4% above the optimum,
with a maximum of 11% for Enterprise traffic: furthermore, if we neglect the latter (too
short) dataset, the mean accuracy loss drops to a very limited 2%. Therefore, we can
conclude that, although properly setting the SVR parameters may be a cumbersome
task, at the same time SVR models are robust enough to have very good performance
even under non optimal settings.

3.3.2 Parallel SVR

In this section we study the performance obtained by using several SVMs in parallel,
i.e. for the same output several machines are trained and the final prediction is a
combination of the results obtained by the single machines. The idea is that the use of
several parallel machines can increase the forecast power. In this case we limit ourselves
to consider the peak p as output. In particular, a different SVM is trained for each of
the following inputs: (1) = (µ), (2) = (µ, σ), (3) = (µ, p) and (4) = (µ, p95) (which are
chosen according to Tab. 3.4). Different predictions are obtained form these machines
and combined according to the following strategies:

I. the final prediction is the average of all predictions except the one that obtained
the worst RMSE over the validation set

II. idem, but for each point in the validation set, we neglect the prediction that is
furthest from the mean prediction of all machines

III. idem, but the prediction is defined as the one that is closest to the mean prediction

For the first case (I) the final prediction is defined depending on the performance
(RMSE) of the different machines over all the validation set: the same combination is

4The most important variations appears for the Enterprise traffic, but the results may be negatively
biased by the excessively short trace duration.
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Best Worst Most distant Closest

ISP (3) - 100% (2) - 100% (2) - 39% (4) - 37%

Campus (3) - 76% (2) - 100% (1) - 38% (4) - 34%

WiFi (3) - 69% (1) - 100% (1) - 60% (2) - 35%

Table 3.6: Best and worst choice and percentage of most distant and closest to the
mean prediction

ISP Campus WiFi

Strategy Best Worst Best Worst Best Worst

I -0.5% 5.4% 0.1% 2.1% 0.1% 6.8%
II -0.1% 5.7% 0.4% 2.4% 0.1% 6.8%
III 0.0% 5.8% 0.1% 2.1% 0.2% 6.9%

Table 3.7: Gain of parallel SVR over the best and the worst input

used for all points in this set. Conversely, in the last two cases the best combination
is redefined for each point, i.e. the decision can be taken online with only punctual
knowledge of the system.

It is our aim here to compare the performance of these three strategies with respect
to the best and worst input combination, which possibly changes between datasets and
outputs. Thus, for a given validation set, we determine the best and worst machine
(in terms of RMSE). For each point in the validation set, we also identified which
was the machine that predicted the value nearest and furthest to the mean of all
predictions. This procedure is repeated 200 times and results are shown in Tab. 3.6
for ISP, Campus and WiFi datasets. The first two columns indicate the machine (or
features combination) that obtained the best and worst RMSE in the majority of the
repetitions (this majority is shown as a percentage in the table). The last two columns
indicate the machine whose prediction was the closest and the most distant for the
majority of points in the validation set and repetitions (again this majority is shown
as a percentage).

Some remarks are in order. Regarding the first strategy, we find that the best input
changes over the different repetitions, in accordance with the results already shown in
Tab. 3.4. However the worst machine does not change, motivating the first considered
strategy (I). More in details, since the worst machine is different across the traces, but
not changes over a particular trace, a startup phase can be used to evaluate the worst
machine which is then not considered for future predictions. Moreover we find out
that the best (worst) input not necessarily coincides with the closest (most distant)
predictor. This last observation justifies the consideration of the last two strategies (II
and III).

We report in Tab. 3.7 the gain of using parallel SVMs over the best and worst
results obtained by a single SVM. Performance are very similar for all the strategies,
with strategy III obtaining slightly better results. Interestingly, any strategy employing
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ISP Campus WiFi

RE RMSE RE RMSE RE RMSE

11.6% 10.3% 25.7% 14.8% 12.2% 11.8%

Table 3.8: Gain of parallel SVR over the “embedding procedure”

parallel SVM is also better than a single machine using all the input (µ, σ, p, p95).
Moreover, with respect to the best 2-feature input, the results of parallel SVR are
generally better but sometimes worse (i.e. strategies I and II in the ISP case), with a
difference always smaller than 0.5%. This means that although no real gain is obtained,
at the same time no noticeable performance loss happens either.

In other words, the use of several machines in parallel can be an excellent strategy
when the best input is not clear. A possible objection is that this approach may raise
the computational cost of training several machines at the same time: to this extent,
we stress that a common PC can support several thousand of such SVR machines in
real-time 3.2.3.

It should be mentioned that more sophisticated techniques such as Boosting [63]
or Bagging [64] can also be applied in this context. However, since they are more
sophisticated they are more complex too, and the trade off between accuracy and
simplicity (remember that the target is to do online predictions) should be carefully
analyzed.

3.3.3 Comparison with the Embedding Process

Finally, we compare the performance of parallel SVM previously described and the
“embedding process” described in Sec. 3.2. More precisely, we use the cascading proce-
dure described and analyzed in Sec. 3.2.3 to predict all values on the forecast interval
tF , from which the maximum is then calculated.

We consider again the dataset ISP, Campus and WiFi, and the peak as the output,
since it is the most difficult to predict. Given the results of the previous section, for
parallel SVM we limit ourselves to the strategy III. Roughly, with this comparison
we aim at knowing which approach is better to predict the maximum load in the
next minute: the “embedding process” which uses as input a vector containing all the
observed samples (x ∈ R

d with d = 64), or the approach presented in the previous
section which uses an intelligent combination of statistical summary as input.

Results are shown in Tab. 3.8, averaged over 100 repetitions, where in each case 60%
of the data is used as training and the remainder as validation set. Considering both
the relative error (RE) or the RMSE, results indicate that for all traces an important
gain can be obtained with the new approach: 15% on average and 10% in the worst
case. It can be observed that a substantial RE gain is obtained for the Campus trace,
which we already knew to be a stiffer scenario. This is an encouraging result, which
shows that the drawbacks of the “embedding procedure” can be overcome, confirming
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that SVM is a very interesting technique for the purpose of link load prediction.

3.4 Conclusions

In Sec. 3.2 we have explored the use of Support Vector Regression for the purpose of link
load forecast by means of the “embedding process”. In this case, a series of averaged
load at a given timescale is constructed and a future value of this series is forecast based
on a given number of past measures. A very extensive sensitivity analysis of parameters
impact was performed, including those of the SVR model and the embedding procedure,
as well as the training set size. We compared SVR performance with those achievable by
using Moving Average (MA), Auto-Regressive (AR) models and the Nadaraya-Watson
estimator (NW). We found that, despite a good accordance with the actual data and
that no one of the other considered methods can improve the results obtained by SVR,
the gain achievable over simple prediction methods such as MA or AR is not sufficient
to justify its deployment for link load prediction at short time scales. The gain over
NW is also not significant, but the computational complexity of NW showed to be very
much larger than that of SVR. Moreover, SVR showed a number of extremely positive
aspects: for instance, SVR models are (i) rather robust to parameter variation, (ii)
their computational complexity is far from being prohibitive, and (iii) the cascading of
SVR models may significantly extend the achievable forecast horizon, entailing only a
very limited accuracy degradation.

These results motivate us to the search of other approaches that we have analyzed
in Sec. 3.3. In this case, a function of the link load over a given interval is predicted (in
particular we concentrate in the peak and the 95th-percentile) based on a summary of
statistical properties of observations taken from a past interval of equal length. We have
investigated the impact of several parameters on the forecast accuracy and considering
several real-work traces we gathered results that are representative of rather different
network environments. Our main result is that combinations of several parallel SVR
using different statistical summary as input, referred to as “parallel SVR”, can provide
accurate prediction. Indeed, a significant gain can be obtained not only over the naive
estimation technique used as reference, but also with respect to the “embedding proce-
dure”. This work further provides some useful insights to tune SVR predictors: first,
and as a rule of thumb, SVR accuracy improves when “compact” statistical summaries
are used as inputs. Then, despite the best input feature set possibly depends on the
forecast output, we have shown that the selection can be avoided by using parallel
SVM. Concerning time-related parameters, our experiments show that their optimal
tuning may not be easy task. Yet, we point out that the best setting only depends
on the network measurement point but is insensitive to the traffic breakdown. Second,
the use of large input time-scales (corresponding to compact input summary) yield to
a near-optimal forecast accuracy. Third, we argue that the use of parallel SVM could
bring benefits also concerning the tuning of time-related parameters.

Overall, we can conclude that SVR is an interesting technique for its flexibility,
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cost-effectiveness, accuracy and robustness. SVR is flexible since it applies to the
forecast of different targets, while cost-effectiveness stems from the fact that both the
offline training and the online forecast operations have a linear cost in the number of
support vector. Moreover, given that a number of software tools are readily available,
SVR techniques can be deployed right away. Finally, SVR has the potential to bring
accurate results under a number of different scenarios: while parameter tuning may
not be a trivial task, we stress that SVR performance is rather robust even under non
optimal settings and that the use of parallel SVM helps in relieving this problem.





Chapter4
P2P-TV Traffic Classification

The Internet proved to have an awesome capability of adapting to new services, migrat-
ing from the initial pure datagram paradigm to a real multi-service infrastructure. One
of the most recent steps of this evolution is P2P-TV, i.e., large-scale real-time video-
streaming services exploiting the peer-to-peer (P2P) communication paradigm. There
are several currently deployed P2P-TV systems [3, 4, 5, 6], which feature low-quality
streaming, while high-quality systems are just beyond the corner [7, 8].

In P2P-TV systems, hosts running the application, called peers, form an overlay
topology by setting up virtual links over which information is transmitted and received.
A source peer is responsible for injecting the video stream, by chopping it into segments
of a few kilobytes, called chunks, which are then sent to a few other peers, called
neighbors. Each peer then contributes to the chunk diffusion process by retransmitting
chunks to its neighbors (accordingly to some scheduling scheme) following a swarming
like behavior, somehow inspired from file sharing P2P systems like BitTorrent.

The main motivation to the deployment of P2P architectures is their ability to func-
tion, scale and self-organize in the presence of large number of nodes (whose behaviour
is highly dynamic) and network failures, without the need of a central entity. The
addition of new nodes requires more bandwidth but they also contribute to increase
the available resources. Furthermore they are instantaneous to deploy and can enable
the support of applications with minimal cost [65]. The major differences between
P2P-TV systems and traditional P2P file sharing applications are that (i) the source
is generating the stream in real time, (ii) data must be received by peers at constant
rate, and (iii) chunks must arrive almost in sequence so that they can be immediately
played at the receiver.

P2P-TV systems are candidates for becoming the next Internet killer application,
as testified by the growing success of commercial systems such as PPLive, SopCast,
TVAnts and many others. This raised the interest of the research community to un-
derstand their behavior and improve their performance, while the Internet Service
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Providers (ISP) community have some concerns about them. Indeed, P2P-TV traffic
may potentially grow without control, causing a degradation of quality of service per-
ceived by Internet users or even the network collapse [9]. Unfortunately, many of the
successful P2P-TV applications follow a closed and proprietary design, so that the al-
gorithms and protocols they adopt are unknown. As such, the identification of P2P-TV
applications is a topic of growing interest, which we address in the present chapter.

Much valuable effort has already been devoted to the problem of Internet traffic clas-
sification, and a large literature is available on the topic. After the classical port-based
classification (which is no longer reliable), different approaches have been considered in
the literature. These approaches can be roughly divided in: Payload-based [66, 67, 68],
Statistical-based [69, 12, 11, 70, 71, 72] and Behavioral-based [13, 14] classification. In
Sec. 4.1 a more detailed description of these approaches is presented, and a taxonomy
of the most relevant works in the area is defined. In this chapter we will focus on the
last approach (i.e. Behavioral-based classification).

This approach is very light-weight, as it requires neither to inspect portions of
the packet payload as in [66, 68], nor to perform operations on a per-packet basis as
in [72, 71]. Moreover, given the current tendency toward flow-level monitors such as
NetFlow [73], the possibility to operate on the sole basis of behavioral characteristics
is a very desirable property for classification engines. However, behavioral classifica-
tion has so far attempted only a coarse-grained classification of Internet applications,
identifying broad application classes (e.g., interactive, P2P, Web, etc.) rather than
discriminating different applications within the same class. Thus, the design of a fine-
grained classification engine that only exploits behavioral characteristics remains, to
date, an open problem. Furthermore, it turns out that, given the implementation
differences between the different P2P-TV applications, it may be easier to precisely
identify a single application rather than the more coarse P2P-TV application class. As
a beneficial effect, the fine-grained identification may allow both researches and ISP to
conduct detailed analysis, e.g., explicitly comparing different systems or establishing a
popularity ranking of the P2P-TV applications running on its network.

Motivated by the previous remarks, we designed a novel classification framework
tailored for P2P-TV applications, filling thus a gap in the classification of Internet
traffic. Our work fits in the Behavioral-based classification category, introducing at
least three novel aspects. First, we perform fine-grained classification that distinguishes
each particular application. Second, while much research has been devoted to P2P-TV
application characterization, we are not aware of any P2P-TV classification engine.
Third, we employ Support Vector Machines (Chap. 2) which have been rarely exploited
(see for instance [74]) in the context of Internet traffic classification, using furthermore
traditional transport layer information.

More precisely, our proposal relies only on the count of packets and bytes exchanged
among peers during small time-windows: the rationale is that these two counts convey
a wealth of useful information, concerning several aspects of the application and its
inner working, such as, signaling activities, video chunk size, etc. It must be noted that
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this information is easily obtained by any peer in the network.

To validate the proposed classification engine, we carry out a thorough experimental
campaign using both testbed traces and passive measurements collected from real net-
work environments. Our results show that the percentage of correctly classified traffic
exceeds 95% in the worst case. Moreover, the engine correctly labels as “unknown”
the traffic generated by non P2P-TV applications, keeping the false positive rate (i.e.,
wrong classification of not P2P-TV traffic as such) below 1% in the worst case.

4.1 Related Work

Despite Internet traffic classification is a relatively recent research field, there is already
a large literature on the topic. Since port-based classification has become unreliable (e.g.
applications changing traditional ports to circumvent access controls, firewalls blocking,
dynamic allocation of server ports, etc), three different classes of approaches have tried
to solve this issue. Payload-based techniques [66, 67, 68], inspect the content of packets,
looking for distinctive payload signatures. Statistical-based classification [69, 12, 11, 70,
71, 72] is based on the rationale that, being the nature of the services extremely diverse
(e.g., Web vs VoIP), so will be the corresponding traffic generated (e.g., short packets
bursts of full-data packets vs long, steady throughput flows composed of small-packets).
Initially, work in this area focused on late traffic classification [69, 12, 11, 70] while
early traffic classification has been also addressed more recently [71, 72] considering size
and direction of the first few packets of a flow. Finally, Behavioral-based classification
[13, 14]] targets a coarse-grained classification of Internet hosts on the sole basis of
the transport layer traffic patterns they generate: e.g., P2P hosts will contact many
different hosts typically using a single port for each host, whereas a Web server will
be contacted by different clients with multiple parallel connections. The idea is that
different classes of services and applications generate different patterns.

Table 4.1 aims to present a taxonomy of that we consider are the most relevant
works in the area. The three main approaches mentioned above (i.e. Payload, Statisti-
cal and Behavioral) are further divided depending on the granularity and timeliness of
the classification. Granularity refers to the level of detail known about the application.
Generally speaking, applications can either be precisely individuated (e.g., discrim-
inating between different VoIP applications, discriminating between P2P-filesharing
versus P2P-TV applications, discriminating different database services, etc.) or only
the coarse application class can be identified (e.g., data versus interactive versus P2P,
without further discrimination possibility). The timeliness of the application refers
instead to the duration of the classification process - from very short durations (e.g.,
a single or a few packets for early classification), to moderate durations (e.g., 10-100
packets or 1-5seconds for online classification), to post-mortem classification (i.e., at
the end of the flow). Considerations on the computational cost and further comments
are also reported.
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Approach Subcategory Granularity Timeliness Comp. Cost Comments

Payload [66, 67] DPI Fine-grained Early Moderate Deterministic
Based Individual appl. first few packets technique

[70] SPI Fine-grained Online High Robust
Individual appl. 100 pkts window technique

Statistical [69, 12, 11, 70] Coarse-grained Late Lightweight Post-mortem
Based Class of appl. after the flow end analysis

[71, 72] Fine-grained Early Lightweight On the fly
Individual appl. first 5 packets

Behavioral [13, 14] Coarse-grained Late Lightweight Post-mortem
Based Class of appl. after the flow end analysis

this work Fine-grained Online Lightweight Online
P2P-TV appl. 1-5 sec. window Only P2P-TV

Table 4.1: Taxonomy of classification techniques (DPI: Deep Packet Inspection - SPI:
Stochastic Packet Inspection )

4.2 Classification Framework

4.2.1 The Rationale

Our aim is to classify P2P-TV end-points, which can be identified by IP address and
transport layer port pair (IP, port). Typically, P2P-TV applications rely on UDP as
the transport protocol. During installation, a single UDP port is selected at random,
over which all the signaling and video traffic exchanged with other peers is multiplexed.
Therefore, all the traffic going to/coming from a given (IP,UDP − port) endpoint is
actually destined to/sourced from the same P2P-TV application running on the host.
This holds true for P2P-TV applications like PPLive[3], SopCast[4], TVAnts[5] and
Joost[6]1, which we take as examples throughout this chapter.

As mentioned before, we design a P2P-TV classification methodology that relies
only on the evaluation of the amount of information, such as packets and bytes, ex-
changed by peers during small time-windows. The rationale is that a raw count of
exchanged data conveys useful information concerning several aspects of P2P-TV ap-
plications.

A human analogy may help in clarifying the intuition. Suppose peers in the network
are people in a party room: people generally have different behavior, e.g., they will be
more or less talkative. As such, somebody may prefer lengthy talks with a few other
people, whereas somebody else may prefer very brief exchanges with a lot of people.
This is similar to what happens with P2P applications: some applications continuously
perform peer discovery by sending a single packet to a previously not-contacted peer;
others tend to keep exchanging data with the same peers as long as possible.

Additionally, most P2P-TV applications have been designed around the concept

1Joost became a Web-based application in October 2008, but at the time when the experiments
were performed it offered VoD and live-streaming by P2P.
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of “video-chunks”, i.e., small units of information whose size is a typical parameter of
each application. P2P-TV video service has an almost constant downlink throughput,
due to the nature of the video stream. By tracking its breakdown between the different
contributors it is possible to highlight different policies that a particular application can
adopt, namely, fetching chunks from many neighbors, or downloading from a restricted
list of preferential peers. Yet, while any P2P-TV peer consumes equally, the amount
of uploaded data can be significantly different from peer to peer, due to different con-
figuration, such as upload capacity. For example, in [75], it is shown that uplink to
downlink throughput ratio for PPLive, roughly varies in the [0, 10] Mbps range. In
reason of the above observation, we assume that the classifier is situated at the edge of
the network (where all traffic exchanged by a given end-point transits), and consider
only the downlink direction, i.e., traffic coming from the Internet and crossing the edge
of the network into the end-point direction.

In the following, we restrict our attention to UDP traffic since, as we mentioned
before, all the applications considered in this work largely prefer UDP as the transport
layer protocol. However, endpoint identification can be extended to applications relying
on TCP at the transport layer as well. Indeed, in case TCP is used, the client TCP port
is ephemeral (i.e., randomly selected by the Operating System for each TCP connection
active open), thus requiring more complex algorithms to aggregate traffic directed to a
peer.

4.2.2 Behavioral P2P-TV Signatures

Let us consider the traffic received by an arbitrary end-point P = (IP, port) during an
interval of duration ∆T . We simply evaluate the amount of information received by P
as the number of received packets. In Section 4.4.3 we extend this concept to account
also for the amount of bytes.

We partition the space N of the possible number of packets sent to P by another
peer into Bn + 1 bins of exponential-size with base 2:

I0 = (0, 1], Ii = (2i−1, 2i] ∀i = 1, . . . , Bn−1 and IBn = (2Bn−1,∞].

For each ∆T interval, we count the number Ni of peers that sent to P a number of
packets n ∈ Ii; i.e., N0 counts the number of peers that sent exactly 1 packet to P
during ∆T ; N1 counts the number of peers that sent 2 packets; N2 the number of peers
that sent 3 or 4 packets and, finally, NBn is equal to the number of peers that sent
at least 2Bn−1 + 1 packets to P. Let also K denote the total number of peers that
contacted P in the interval.

The behavioral signature is then defined as n = (n0, . . . , nBn) ∈ R
Bn+1, where:

ni =
Ni

Bn∑
j=0

Nj

=
Ni

K
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Figure 4.1: Temporal evolution of P2P-TV applications signature with a mark for the
widest bin.

The signature n is the observed probability mass function (pmf) of the number of peers
that sent a given number of packets to P in a time interval of duration ∆T ; this function
is discretized according to the exponential bins described above.

Since n has been derived from the pure count of exchanged packets, we name it
“Abacus”, which is also a shorthand for “Automated Behavioral Application Classifi-
cation Using Signatures”.

The choice of exponential width bins allows us to work with “short” signatures while
keeping the most significant information that can be provided by the pmf. In this way,
we can distinguish short flows and group together the long ones, since there is no need
to have an extreme accuracy when considering long flows (e.g., distinguishing between
500 or 501 packet long flows), while it is more important to distinguish between short
flows. We examine the impact of different binning strategies later on in Sec. 4.4.2.

Prior to describe the whole classification process, let us show the expressiveness
of the Abacus signatures by presenting a few examples considering the four targeted
P2P-TV applications. The temporal evolution of n is shown in Fig. 4.1, considering
an arbitrary peer during 1-hour long experiment (from left to right, Joost, SopCast,
TVAnts and PPLive are reported). Time of the experiment runs on the x-axis in
multiples of ∆T = 5s, whereas components ni are reported on the y-axis using different
levels of gray to highlight different bins (specifically, darker colors correspond to lower
bins). Bins are ordered and staggered from bottom to top: thus, bin number 0 is the
lowest one, and bin number Bn extends up to 1.

Each application has its own characteristic distribution, which is extremely different
from the others. Moreover the largest (or most probable) bin, which is highlighted in
the figure, is also characteristic of each application. Interestingly, the most probable bin
remains the same during most of the application lifetime, despite its actual width varies
over time. Notice that the breakdown is not stationary over time for all applications:
this is for instance the case of PPLive, as it emerges from the rightmost plot of Fig. 4.1,
which hints to transient or possibly “multi modal” behaviors. The dark vertical line
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Figure 4.2: Mean value for each component of Abacus signatures.

toward the end of PPLive experiment corresponds to a sudden massive increase of n0,
due to a 10-seconds long blackout period, where the end-point under observation was
essentially receiving single-packet probes, and likely no video chunks.

To better highlight how Abacus signatures capture the differences between appli-
cations, Fig. 4.2 reports the time average of the application signatures, averaged over
all time intervals of Fig. 4.1. Bin identifier is reported on the x-axis, with top x-axis
showing the maximum number of packets within the bin.

Interesting behaviors stand out from the picture. For instance, Joost peers prefer-
entially receive either a single or several (32, 64] packets from any given peer. SopCast
instead prefers middle-sized burst of (5, 16] packets, while TVAnts prefers lower or-
der bins (2, 7] packets. Finally, PPLive highly prefers single packet exchanges. This
confirms that different P2P-TV applications have remarkably different behaviors, just
like humans at a party: in the following we will exploit this evidence for classification
purposes.

4.3 Methodology and Dataset

Our classification framework exploits the Abacus signatures described so far through
SVM (extensively described in Chap. 2). We use LibSVM implementation [47] of SVM.
In the context of SVM, entities to be classified are represented by means of some
distinctive features, which in our case are the Abacus signatures. As early explained,
SVM must first be trained with a supervised input (i.e.,features and class labels), called
training set. The output of this phase is a trained model, which is then exploited to
discriminate traffic during the validation phase of the classification process.
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Figure 4.3: Some examples of Abacus space.

4.3.1 Model Generation

Our classification problem relies into the multi-class classification described in Sec. 2.2.4.
As mentioned before LibSVM implements a “one-versus-one” strategy were k(k− 1)/2
machines are trained, each one considering data corresponding to two different classes.
In our case k = 4, corresponding to the fourth different applications considered so far.

The training phase correspond to the procedure of building the separation surface
(see Sec. 2.2.2). In our case, Abacus signatures n are used to represent patterns belong-
ing to different applications in a (Bn +1)-dimensional space, which is then transformed
into an infinite-dimensional space by means of a Gaussian kernel (Sec. 2.2.3).

For the sake of illustration, Fig. 4.3 reports a few “cuts” of the Abacus space before
transformation, represented as bi-dimensional scatter plots of signature components
pairs (nj, nk). In the plots, each point corresponds to a different time interval of those
shown in Fig. 4.1. It can be seen that for instance, SopCast and TVAnts cannot be
discriminated using the (n0, n6) components (top left plot), but that are instead easily
separable (even in the original space) by means of a straight line in all other cases
reported in Fig. 4.3.

To generate a classification model, SVM needs to be trained with supervised inputs,
as shown in the top-portion of Fig. 4.4. Using testbed traces described later in this
section, we generate signatures of known P2P-TV applications; specifically, for each
trace, we build an Abacus signature n every interval of ∆T seconds. The signature
is possibly chosen, at random, to be used for the training set. We will come back on
the training set selection later on in Sec. 4.4.2. Once the SVM has been trained, the
classification tool works as indicated in bottom part of Fig. 4.4. Abacus signatures of
the traffic to be classified are computed and fed to the SVM model, who decides which
application has generated it: finally, SVM classification is accepted provided it passes
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Figure 4.4: Classification framework.

a rejection criterion, to correctly discard non P2P-TV traffic.

4.3.2 Rejection Criterion

As previously mentioned, the multidimensional space is partitioned into regions and,
during the classification process, each sample is always labeled as belonging to one
region; i.e., the observed traffic is always classified as belonging to one of the classes the
SVM has been trained with. However, since not all samples are necessarily generated
by P2P-TV applications, we need to define a rejection criterion according to which we
classify some traffic as not belonging to any of the considered classes.

Given that Abacus signatures are probability mass functions, we use an index suit-
able to quantify distribution similarity. Given two pmf’s, there exist several indexes to
evaluate their degree of similarity. The Bhattacharyya distance (BD) [76] is a measure
of divergence of two probability density (or mass) functions. Given two pmf’s p and q
over n discrete values, the Bhattacharyya distance BD(p, q) is defined by:

BD(p, q) =
√

1 −B where B =
n∑

i=1

√
piqi (4.1)

Bhattacharyya distance has several properties. First, it verifies the triangular inequal-
ity. Values of BD close to zero indicates strong similarity (if pi = qi ∀i, B = 1 and
BD = 0) whereas values close to one indicates weak similarity. The Bhattacharyya
coefficient B ∈ [0, 1], can be seen as the scalar product between the two vectors
p′ = (

√
p1, . . . ,

√
pn) and q′ = (

√
q1, . . . ,

√
qn), which leads to a geometric interpre-

tation of the coefficient B. In fact it can be seen as the cosine of the angle between
p′ and q′. The Bhattacharyya distance is a particular case of the Chernoff distance,
and has been successfully applied in different contexts such as signal selection [77], or
classification [78] as in our case.
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In our context, we use BD to measure the separability of two traffic classes. In
particular, we reject the SVM label C of a sample signature n whenever the distance

BD(n,E[n(C)]) > R (4.2)

where E[n(C)] is the average signature computed on the training samples of application
C. Notice that the average signature E[n(C)] identifies the center of the cluster formed
by all training set signatures of application C. In other words, we accept SVM decision
conditionally to the fact that the observed traffic signature n lies within a radius R
from the center of the SVM training set for that class. For the time being, we select
R = 0.5, and defer further discussion on the selection of R to Sec. 4.4.2.

There exist some cases where no false alarm can be raised (i.e., non P2P-TV traffic
will be always classify as unknown), which makes Abacus robust by design. Let us con-
sider the case when traffic is received from only one peer. Then, the Abacus signature
n is a vector containing a single 1 at the coordinate (bin) i∗. In this case, the distance
from the center E[n(C)] (C for short) of the cluster of an arbitrary application will

be BD(n,C) =
√

1 −√
Ci∗ . Then, the signature will be rejected if BD(b, C) > 0.5 or

equivalently
Ci∗ < (1 − 0.52)2 = 0.56 (4.3)

which is actually always the case as we can see in figure Fig. 4.2, where all Ci are
strictly lower than 0.4 for all applications. In the same way, if K = 2, any signature is
a linear combination of two unit vectors and it can be proved that it will be rejected
too. Therefore, if K ≤ 2, the signature is always rejected (classified as “unknown”)
and therefore no false alarm is raised.

4.3.3 Model Validation

Assessing classification performance is known to be a non-trivial task due to the diffi-
culty to know the “ground truth”, i.e., what was the actual application that generated
the traffic [67]. Testing the classification engine by means of artificial traffic (e.g., by
generating traffic in a testbed) solves the problem of knowing the ground truth but
synthetic traces are hardly representative of real world traffic.

Assessing the performance against traffic traces collected from operative networks is
therefore mandatory. Moreover, even when considering real traffic traces, performance
of the classifiers can be affected by the scenario (e.g, corporate and residential networks
have very different traffic mixes). However, the major problem when dealing with real
traffic traces is finding the ground truth.

In reason of the above trade-off, we adopt a mixed approach: we use both (i)
traces actively gathered in a large scale testbed, and (ii) passive traces collected from
different real operational network environments. Testbed traces contain P2P-TV traffic
only and allow us to evaluate the engine capability to correctly discriminate P2P-TV
applications. Conversely, real network traces do not contain P2P-TV traffic and allow
us to verify that the engine correctly handles unknown applications.
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Host Site CC Access Nat FW

1-4 BME HU high-bw - -
5 DSL 6/0.512 - -

1-9 PoliTO IT high-bw - -
10 DSL 4/0.384 - -

11-12 DSL 8/0.384 Y -
1-4 MT HU high-bw - -
1-3 FT FR high-bw - -
1-4 ENST FR high-bw - Y

5 DSL 22/1.8 Y -

1-5 UniTN IT high-bw - -
6-7 high-bw Y -

8 DSL 2.5/0.384 Y Y

1-8 WUT PL high-bw - -
9 CATV 6/0.512 - -

Table 4.2: Summary of the hosts, sites, countries (CC) and access types of the peers
involved in the testbed.

Application Hr Signatures Packets Bytes

SopCast 36 26k 17.2M 7.5G
TVAnts 36 26k 14.2M 7.1G
PPLive 26 19k 11.7M 5.1G
Joost 30 22k 6.1M 6.4G

Total 128 93k 48.2M 26.1G

Table 4.3: Details about the Testbed Traces.

Testbed Traces

To overcome the testbed representativeness limitation, we setup a large testbed involv-
ing multiple measurements points. The testbed was setup in the context of NAPA-
WINE, a 7th Framework Programme project funded by the EU [9]. The testbed in-
volved more than 30 controlled peers, hosted at 7 different Institutions, scattered over
4 European countries and connected to 9 different Autonomous Systems (see Tab. 4.2
for details). During the experiments, each PC ran the same application for one hour,
during which all involved peers were forced to watch the same channel at the same time.
SopCast, TVAnts, PPLive and Joost were run, and packet-level traces were collected
during experiments2.

In all (but Joost) cases, the nominal stream rate was 384 kbps (∼550 kbps) and Win-
dows Media 9 Encoder was used. Further details concerning the experimental testbed
traces are available in Tab. 4.3, which reports the overall duration, number of signature
samples (when ∆T = 5s), packets and bytes observed for any given application.

Overall, the testbed is representative of about 130 hours worth of video streaming,
93k signatures samples, 48M packets and 26 GBytes of data. Moreover, as different

2Traces differ because during the experiment some application could not successfully run, e.g., due
to peer failure, or bad network condition.
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Network Traffic Signatures Packets Bytes

UDP 1.9M 73.6M 10.6G
Campus Skype 0.5M 11.9M 2.2G

DNS 0.2M 5.0M 0.7G

UDP 0.7M 28.5M 24.9G
ISP eDonkey 0.3M 9.8M 1.4G

DNS 24.4k 0.6M 37.8M

Table 4.4: Details about Real Traces, only end-points for which K > 2 are considered.

network setups (e.g., access technologies, security policies, private/public addresses
etc.) and peers configurations (hardware, OS, etc.) were part of the testbed, we are
confident that the heterogeneity of the dataset is representative of a wide range of
scenarios.

Real Traces

Real traffic traces were collected from two different networks in Italy. In both cases,
traces were collected during May 2006, when P2P-TV applications were not popular in
such networks:

• Campus (C) is a 5-days long trace, collected during one working week at the
edge router of Politecnico di Torino LAN, which is representative of a typical
data connection to the Internet [79]. The LAN contains about 7000 hosts, whose
users can be administrative, faculty members and students. Most of the traffic
is due to TCP data flows carrying web, email and bulk traffic, since a firewall
blocks all P2P file sharing applications.

• ISP (I) is a 1-day long trace collected from FastWeb [80], which is the main
broadband ISP in Italy, offering triple-play services over an all-IP architecture
to more than 5 millions of users. FastWeb network is representative of a very
heterogeneous and uncontrolled scenario, in which customers are free to use the
network without restriction. Traffic is sniffed at a PoP level, to which about
500 users are connected, using more than 2000 different IP addresses considering
VoIP phones, set-top-boxes, PCs.

The above traces contain no P2P-TV traffic. As such, they are instrumental to
assess the amount of false classification, i.e., non-P2P-TV traffic classified as P2P-TV,
produced by the classification engine.

As reported in Tab. 4.4, we consider both the total aggregated UDP traffic produced
by all applications in the Campus and ISP traces, as well as relevant UDP traffic sub-
sets, representative of both P2P and client-server applications. The rationale of this
choice is that we want to test whether false-positive classification is more likely to arise
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P2P-TV Non P2P-TV Total

P2P-TV TP FN TP+FN
Non P2P-TV FP TN FP+TN

Table 4.5: Classification performance parameters.

when considering P2P applications or traditional client-server services. Specifically, we
consider Skype and eDonkey traffic as examples of voice and file-sharing P2P appli-
cations, and DNS as an example of traditional client-server service. More precisely,
Skype traffic is extracted from the Campus dataset (since it is not popular in the ISP

network due to flat rate telephony tariff), while eDonkey traffic is extracted from the
ISP trace (since it is filtered by the Campus firewall).

To reliably identify eDonkey, we develop and implement a DPI classifier, based
on [81, 82], while we classify Skype resorting to [70], and rely on Tshark [83] protocol
inspection capabilities to isolate DNS traffic.

Considering the Real Trace dataset, the condition K ≤ 2 is verified for a large
fraction of the signatures: 62% and 82% in Campus and ISP respectively, to which a
72% and 85% of UDP volume corresponds. Thus, in reason of (4.3), for a very large
portion of the UDP traffic misclassification is not possible. To gather conservative
results, in the following we consider only those end-points for which K > 2.

4.4 Experimental Results

This section reports the results of our experimental campaign. We start by considering
signatures that are defined on the number of packets exchanged, investigating the
sensitivity of the classification engine to all the relevant parameters. Then, we show
how classification performance can be improved by jointly considering the amount of
packets and bytes exchanged in the signature definition. More precisely, classification
performance are expressed in terms of (see also Tab. 4.5):

• the amount of True Positive (TP) classification, i.e. number of tests for which
the classifier identifies the correct P2P-TV application given that the sample was
actually of that P2P-TV class. TPs are counted considering the testbed traces.

• the amount of False Positive (FP) classification, i.e. number of tests for which
the classifier identifies the sample as any of the P2P-TV application, despite the
sample was not actually of any P2P-TV class. FPs are counted considering the
real traces.

• the amount of True Negatives (TN), i.e. tests in which the classifier correctly re-
jects the sample (does not classify it as P2P-TV) which was indeed not generated
by a P2P-TV application.
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PPLive TVAnts SopCast Joost Unk

PPLive 81.66 0.58 9.55 2.32 5.90
TVAnts 0.49 98.51 0.18 0.77 0.04
SopCast 3.76 0.11 89.62 0.32 6.19
Joost 2.84 0.55 0.28 89.47 6.86

PPLive TVAnts SopCast Joost TNR

CAMPUS 2.42 2.23 0.01 0.02 95.3
ISP 0.66 0.13 0.43 0.10 98.7

Table 4.6: P2P-TV Classification Performance: Confusion Matrix of Testbed and Real
Traces

• the amount of False Negatives (FN), i.e. tests for which a sample of a P2P-TV
application was misclassified (rejected or classified as another P2P-TV class).

TP and FP results are usually normalized with respect to the total positive (and
negative) samples. The TP-Rate (TPR) and the FP-Rate (FPR) are defined as follows:

TPR =
TP

TP + FN
, FPR =

FP

FP + TN
, FNR =

FN

TP + FN
, TNR =

TN

FP + TN
.

4.4.1 Classification results

In this first set of experiments, we report results considering the following parameters:
for each application, the training set include samples extracted considering 2 peers at
random from each group of N = 7 networks taking part to the experiment. From all
signatures they generate, 4000 signatures are randomly extracted to define the training
set, which corresponds to about 17% of all signatures. Experiments are then repeated
10 times, randomly changing the training set and so the validation set at each run,
finally average classification results are computed. As other parameters, we consider
signatures to be generated over ∆T = 5s intervals. Classification are performed using
SVM with a Gaussian kernel and exponential bins Bn = 8, with a rejection threshold
R = 0.5. Parameters sensitivity and optimization is later discussed in the remaining
part of this section. However, we shall note that the SVM parameters were optimized
by means of a grid optimization as we did in Chap. 3; in particular see Sec. 3.2.2 for a
complete discussion on the subject.

Top part of Tab. 4.6 reports the classification performance, adopting a “confusion
matrix” representation. Each row considers traffic of a given application, and each
column reports classification results. Values on the diagonal correspond to True Posi-
tives (highlighted in bold), whereas elements outside the diagonal correspond to False
Negatives, which accounts for both misclassified samples, and rejected samples (labeled
as Unknown). It can be seen that, in the worst case, about 81% of individual signa-
tures are correctly classified. The most difficult application to identify appears to be
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Figure 4.5: TPR and FPR as a function of the rejection threshold R evaluated on
packet feature.

PPLive, which is confused with SopCast (9.55%) or Joost (2.32%). Other applications
show higher TPR, with TVAnts showing almost perfect match. On average, about
4.5% of P2P-TV signatures are rejected, therefore being labeled as Unknown.

Bottom part of Tab. 4.6 reports results considering the real traces dataset. Since no
P2P-TV traffic is present in this dataset, True Negative Ratio (TNR) is the main index
to be considered (boldface, rightmost table column). Results show that the rejection
criterion adopted is very robust, so that less than 5% of samples are misclassified in the
worst case. Left part of the Table details the False Positives: PPLive and TVAnts are
the cause of most misclassification, while Joost practically causes no False Positives.

4.4.2 Sensitivity Analysis

Impact of the Rejection Threshold R

The rejection threshold R is crucial to classification accuracy. Leaving the other pa-
rameters unchanged, we now assess its impact over the classification performance. The
selection of the threshold R is guided by the following trade off: R should be large to
maximize the TPR (i.e., avoid classifying P2P-TV as Unknown), while R should be
small to minimize the FPR (i.e., avoid classifying unknown traffic as P2P-TV).

To investigate which rejection policy to adopt and which threshold value R to select,
we evaluate the TPR (using Testbed traces) and FPR (using Real traces) as a function
of R: these are depicted in Fig. 4.5, where a solid vertical line at R = 0.5 represents the
threshold used so far. It can be seen that TPR of P2P-TV applications increases with
R (for small values of R most of the classifications will be mistakenly rejected) and
quickly saturates for R ≥ 0.5. Conversely, the FPR of non-P2P-TV traffic increases
only for large values of R, and for low values of R ≤ 0.5 almost no false alarm is raised.
This confirms R = 0.5 to be a good choice for the rejection threshold.
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Figure 4.6: P2P-TV TPR for different values of the time interval ∆T . Best-case for
each application is labeled with a star ∗ sign.

Impact of Time Interval ∆T

The choice of the value of the ∆T parameter is driven by the following trade off. On the
one hand, timely detection of P2P-TV traffic needs ∆T to be small. On the other hand,
sufficiently large time intervals must be considered to estimate the signature. Moreover,
to limit computational complexity and the generated amount of information, network
monitoring probes typically operate on large timescales. One would expect that in
both extremal cases (too small o too large), the signatures tends to be more similar
(concentrating in low or high bins respectively) and partly loosing their discriminative
power.

Results are reported in Fig. 4.6, where the best results for each application is labeled
with a star. As expected, medium-duration window (e.g., ∆T = 5 s) yields higher TPR
for most applications, while providing a more timely classification. Smaller values
of ∆T limit the estimation of the bin distribution, impairing classification accuracy.
Interestingly, for large windows (e.g., ∆T = 60 s) the discriminative power of the Abacus
signatures only mildly degrades for three out of four applications. Only for PPLive
we observe a decrease of approximately 20% for the TPR, which is due manly to
the rejection criterion being too aggressive and discarding correct classifications. We
conclude that for longer time interval the rejection criterion should be more fine tuned.

Impact of Training Set Size and Diversity

We now assess the classification sensitivity to variations on the training set size, i.e.,
the impact of the number of samples that form the training set. Indeed, the training
set should be large enough to be representative of the application behavior under a
large range of conditions. On the other hand, the SVM training and classification
computational costs benefit of a smaller set. Moreover, a too large training set could
result in the well-known phenomenon of over-fitting, resulting in poor classification
performance.
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Figure 4.7: Impact of the training set size.

Fig. 4.7 reports the TPR for each application, as a function of the number of
signatures used in the training phase per each application. For each value of the
training set size, we run 10 independent experiments over which results are averaged.
The bottom x-axis reports the number of signatures used for training on a logarithmic
scale, while the upper x-axis reports the percentage of training samples versus the total
testbed dataset. Training set size extends up to 4000 signatures per application, which
corresponds to the 17% early used in Sec. 4.4.

Results show that no over-fitting phenomenon is experienced, since the TPR in-
creases with the increase of the training set size. Best results are obtained considering
4000 signatures per application, which validates the choice made in previous section.
Notice that even by drastically decreasing the training set size to about 300 signatures
per application, the corresponding decrease in TPR is only modest, e.g., 8% in the
worst case, while TVAnts shows excellent results even with an extremely reduced train-
ing set. This interesting performance is the result of both the discriminative power
of SVM, and the descriptive expressiveness of Abacus signatures. Clearly, a better
characterization of each application behavior is achieved including more signatures, as
reflected by the improved performance.

We now fix the training set size and focus on the training set diversity, i.e., the
number of different peers from which signatures are selected. Our aim is to roughly
assess whether it is sufficient to observe a single peer in a given network to gather
an adequate description of the application behavior in that network, or whether the
observation of several peers is necessary. To answer this question, we fix the overall
training set size to 4000 signatures per application and vary the number of peers selected
as reference in each network (see Tab. 4.2 for details on the number of peers). Each
experiment is repeated 10 times to collect average results. Fig. 4.8 shows the TPR
obtained considering a reference set of one, two or all peers for each network in the
testbed. Results show that the increase of the number of peers only provides a very
limited gain on the classification performance. From a practical perspective, this is a
very desirable property: even a single trace is sufficient to build expressive signatures.
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Figure 4.8: Impact of the training set diversity.

Impact of SVM Kernel and Binning Strategy

Since the core of our classification framework exploits SVM, all parameters that are
susceptible of affecting its performance need to be investigated as well. Therefore, we
focus on two main choices concerning the SVM design, that are: (i) the kernel function
and (ii) the binning strategy.

The SVM literature is very rich of kernel functions, which are more or less indicated
for different kinds of data. In our study we evaluate three well-known kernels: the
general-purpose Gaussian kernel (KG), the Linear kernel (KL) and the Bhattacharyya
kernel (KB). The Gaussian and Linear kernels were already described and used in
Chap. 3. The linear kernel (4.5) is simply the dot product of two feature vectors, while
the Bhattacharyya kernel can be obtained by substituting each features with its square
root [84]: due to the good performance exhibited early for the purpose of classification
rejection, a natural question is whether the kernel function (4.6) can be helpful to better
separate the different applications.

KG(xi, xj) = e−γ||xi−xy ||2 (4.4)

KL(xi, xj) = xi · xj (4.5)

KB(xi, xj) =
√
xi · xj (4.6)

As far as bin distribution is concerned, we use either Bexp = Bn + 1 = 9 exponential-
width bins (base 2), or Bfix = 255 constant-width bins (1-packet steps); represented by
Exp. and Const. in Tab. 4.7. Both spans over the [0 : 255] packets range. Recall that
the number of bins impacts both memory requirement and computational complexity,
so that exponential binning should be preferred in case of comparable classification
performance.

Results are shown in Tab. 4.7, which reports classification results in terms of the
TPR of P2P-TV applications, and reports also the number of Support Vectors (SV) of
the trained model. This latter number is a measure of the classification computational
cost, since the number of operations that has to be performed to classify each signature
grows linearly with the number of SVs. The cost of the training phase is not considered,
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True Positive Rate (TPR) Support Vectors (SV)

Bins Kernel PPLive TVants SopCast Joost PPLive TVants SopCast Joost Total

KG 81.66 98.51 89.62 89.47 1015 106 845 415 2381

Exp. KB 77.73 98.52 88.58 87.99 1759 110 1185 798 3852
KL 73.44 98.54 88.55 87.42 2062 219 1348 956 4585

KG 67.12 97.86 89.76 69.66 853 81 654 635 2223

Const. KB 65.27 97.14 89.58 68.27 1215 113 902 755 2985
KL 64.90 97.70 89.45 68.88 1382 316 911 1091 3700

Table 4.7: Classification performance and cost for different binning strategies, SVM
kernels. In bold the best results.

since it is an offline operation rarely performed. The selected kernel has impact on
the computational cost as well, with the linear kernel being light-weighted, and the
Gaussian model being the most expensive. The Bhattacharyya kernel is in between the
other two.

Tab. 4.7 collects results, bold fonts highlight the best choices. Given a binning strat-
egy, the Gaussian kernel yields consistently better results for both TPR and number of
SVs. It must be noted that the number of SV required for the Gaussian kernel are sen-
sible less than the one required for the Linear kernel. We see a more important decrease
in the performance of the constant binning, where the TPR for PPLive and Joost falls
below the 70%. This is mostly due to the rejection criterion, which wrongly identify
as unknown a conspicuous number of signatures. In fact the Bhattacharyya distance
is less effective with this longer signatures which contains a lot of zero values which
result in bigger distances to the class center. Results obtained with the Bhattacharyya
kernel are almost equal to the linear kernel, with the advantage that the number of SV
is smaller. Finally it must be noted that TVAnts requires a very small number of SV
to obtain very good performance, irrespectively of the binning and kernel choice. In
contrast PPLive which has shown to be difficult to classify, requires a number of SV
that is ten times the same number for TVAnts for its best choice of binning and kernel.

With respect to the bin distribution choice, the use of exponential binning reduces
the memory consumption and the number of operations to be performed by Bfix/Bexp,
i.e., almost a factor of 30. For example, assuming 1 GBytes of RAM, Bexp = 9 expo-
nential bins would allow to compute about 15M end-points considering 64bit floating
point notation. With the same amount of memory, using Bfix linearly spaced bins al-
lows to track roughly 0.5M end-points. Considering CPU time, a server equipped with
an Intel Xeon E5345 clocked at 2.33GHz reaches 3000 classifications per second us-
ing exponentially distributed bins. Given that a signature is produced every ∆T = 5 s,
about 15000 end-points could be classified in real-time even by our non optimized code.
Considering linearly distributed bins, only 126 classifications per second are computed,
allowing to classify no more than 630 end-points.

The previous analysis reenforces the selection made until the moment, i.e. the
exponential binning strategy and Gaussian kernel.
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Figure 4.9: TPR and FPR as a function of the rejection threshold R evaluated on bytes
feature.

4.4.3 Improving the Accuracy: Extending the Signature

In this section we augment the Abacus signature to include not only the number of
packets received by each period n, but also the number of received bytes. Following the
same procedure as before with packets, we consider a ∆T time interval in which the
endpoint P receives b1, . . . , bK bytes from K peers. Bb + 1 exponential-width classes
are identified, according to the number of bytes received from P, and counting the
occurrences of each class in Bi. The byte-wise signature b = (b0, . . . , bBb

) is then
obtained by normalizing the count Bi over the total number of contacted peers K:

bi =
Bi

K

The tuple b is a pmf, whose component bi can be interpreted as the probability that
an arbitrary peer sends between (2i−1, 2i] bytes to P. For byte-wise signatures, we set
the number of bins to Bb = 14.

We define the application signature by concatenating the packet-wise n and byte-
wise b signatures in a single vector a = (n, b). Since the extended signature a = (n, b)
is composed of two parts, we can define two rejection thresholds, considering n or b
only. We therefore report in Fig. 4.9 the TPR and FPR evaluated on as a function
of the rejection threshold R applied to byte signatures. Contrasting Fig. 4.9 with the
packet-signature results shown early in Fig. 4.5, we observe that the bytes signature is
somehow more robust to the choice of R, suggesting to apply the rejection criterion to
b only. In fact we can also safely adopt a bigger threshold R = 0.6, which further limits
the percentage of false alarms raised.

We then perform the classification based on the extended signature a with a byte-
wise rejection criterion and a rejection threshold R = 0.6. Results reported in Tab. 4.8
are gathered for ∆T = 5s, with 4000 signatures extracted at random to build the
training set. Compared to previous results of Tab. 4.6, the extended signature leads
to significant performance improvement, so that TPR is now higher than 95%, and
misclassification probability is reduced to few percentage points.
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Signatures: Confusion Matrix
PPLive TVAnts SopCast Joost Unk

PPLive 95.42 0.22 1.86 0.36 2.14
TVAnts 0.06 99.84 0.10 0.00 0.00
SopCast 0.98 0.15 97.55 0.03 1.29
Joost 0.21 0.01 0.01 94.97 4.80

Table 4.8: Extended Abacus signatures: Confusion Matrix of P2P-TV applications

Signatures Packets Bytes Peer
TP Mis Unk TP Mis Unk TP Mis Unk TP Unk (n)

PPLive 95.42 2.44 2.14 98.11 1.60 0.29 98.32 1.54 0.14 100.0 0.0 (0)
TVAnts 99.84 0.16 0.00 99.77 0.23 0.00 99.82 0.17 0.01 100.0 0.0 (0)
SopCast 97.55 1.17 1.29 99.18 0.78 0.04 98.96 0.98 0.06 97.06 2.94 (1)
Joost 94.97 0.23 4.80 99.50 0.25 0.25 99.62 0.23 0.15 93.33 6.67 (2)

Table 4.9: Extended Abacus signatures: per Signature, Packets, Bytes and End-Point
classification results.

To better appreciate results, in Tab. 4.9 reports performance considering correctly
classified packets, bytes and peers. Packet-wise and byte-wise performance can be di-
rectly gathered by taking into account the number of packets and bytes carried by each
signature; the peer classification is instead evaluated considering a majority criterion,
so that a peer is classified as running application X if the majority of time such peer
samples have been classified as X.

Tab. 4.9 reports the percentage of correct classification (TP), of misclassification
(Mis, corresponding to the sum by rows of non diagonal values in the confusion matrix)
and rejection (Unk) for all the above metrics. Notice that FN=Mis+Unk. Interestingly,
performance improves when the number of correctly classified packets and bytes is
considered, suggesting that misclassification occurs when signatures carry few data,
e.g., when the application is possibly malfunctioning. In case of peer classification,
reliability of end-points identification increases as well. Only 3 hosts are classified
as not running any P2P-TV application, and notably there is no misclassification.
Investigating further, we found that rejected cases correspond to peers that received a
small amount of traffic, and, thus, possibly were not playing any video.

So far, we have seen that extending the abacus signatures improves the classification
performance of P2P-TV application: we now have to assess the impact of this extension
on the effectiveness of the rejection criterion. We again consider real traffic collected
from operational networks, considering only the traffic portion for which possible false
positives may be triggered (i.e., the portion of the samples for which K > 2). Tab. 4.10
reports results referring to the extended signatures, showing the false positive rate
(FPR) and the breakdown of false alarms between the different P2P-TV applications.
First, notice that the number of false alarms is very limited, being only 2.7% considering
end-points for which K > 2. If all UDP traffic is considered irrespectively of K,
FPR drops to less than 0.1%. This negligible number of false detections confirms the
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FP Confusion Matrix

Network Traffic FPR PPLive TVAnts SopCast Joost

UDP 2.70 0.57 1.00 1.13 -
CAMPUS Skype 0.04 - 0.03 0.01 -

DNS 0.17 0.02 0.10 0.05 -

UDP 0.90 0.61 0.14 0.15 -
ISP eDonkey 0.09 0.02 0.04 0.03 -

DNS 0.44 0.03 0.33 0.08 -

Table 4.10: Non P2P-TV Traffic in Campus and ISP traces: False Positive Ratio (FPR)
and FP Confusion Matrix.

reliability of the classification engine. Moreover, false positive rate is low for individual
applications too: indeed, it is very rare that eDonkey or Skype traffic is confused with
any P2P-TV application (0.09% and 0.04% of false positives).

4.5 Signatures Portability

We now evaluate network portability of Abacus signatures. The objective is to answer
the question: how generic is a training performed considering traces collected in a net-
work? Our testbed dataset is different enough to see what happens when, for example,
the classifier is trained considering a trace collected in a University Campus network,
and then used in a totally different network, like a ADSL scenario. Moreover, both the
access types and the channel popularity could impact the accuracy of the training set,
which we deal with in the following. Finally, we also test how robust the classifier is in
presence of high packet loss or limited bandwidth.

For the sake of simplicity, we consider only packet-wise Abacus signatures and
testbed traces, and no longer apply the rejection criterion. Results are summarized in
Tab. 4.11: the first column reports the experiment label, the second column (Train)
states which training set was used, while the third column (Test) reports the dataset
used for the validation of the classification process. TPR for each application are
reported in the subsequent columns. To ease the comparison, the first row (labeled
Ref ) reports the baseline results: notice that TPR is slightly higher with respect to
Tab. 4.6, since we do not apply the rejection criterion.

Portability across Different Network Sites (NS)

In the first scenario, we consider traffic captured from PCs running at different institu-
tions, i.e., in different Countries, networks, etc. (see Tab. 4.2). We start by considering
peers that are all placed in corporate or campus networks, with high-bandwidth con-
nections to the Internet. There are 7 of such sites. For each application, we select 4
sites, and used traffic collected there for the training. Then, traces collected in the
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Train Test PPLive TVAnts SopCast Joost

Ref ALL ALL 84.84 98.51 92.63 91.50

NS 4/7 3/7 78.90 97.61 90.30 88.61

ADSL ADSL 83.48 97.86 95.61 91.36
AT ADSL HB 79.63 93.73 87.30 90.61

HB ADSL 58.28 98.15 93.70 81.55

POP POP 95.88 - - -
CP POP UNP 48.59 - - -

UNP POP 94.79 - - -

TI 2008 2006 18.81 98.44 51.06 -

HB Bw 91.14 76.80 75.76 -
EI HB Delay 88.19 84.62 77.80 -

HB Loss 75.22 91.77 84.31 -

Table 4.11: Signature portability: TPR evaluation.

remaining 3 networks are classified to evaluate TPR. To gather robust results, we con-
sider every possible combination

(7
4

)
= 35 of training and validation subsets. For each

combination, 3 tests are performed with different random training samples.

Results are reported in the raw labeled as NS in Tab. 4.11, which shows that
signatures are network-portable under homogeneous settings: indeed, the largest per-
formance drop is 5%, which corresponds to the PPLive case.

Portability across Different Access Technologies (AT)

We now test to what extent signatures are portable across different access technologies,
e.g., ADSL versus High Bandwidth (HB) access. As noted in [75], nodes with high-
bandwidth access can act as “amplifiers”, providing content to possibly several peers;
conversely, ADSL peers may only act as “forwarder” due to the limited uplink capacity.
Despite we consider only the downlink traffic, different behaviors can impact the Abacus
signatures, e.g., due to a different fraction of signaling packets a peer receives. For
example, an amplifier peer can receive many small sized acknowledgments, while a low-
capacity peer mainly receives large packets containing video data. We therefore split
the testbed dataset into two parts: the first contains traces collected from all High
Bandwidth PCs, while the second contains ADSL PCs. Three tests are performed: (i)
classifying ADSL traces using ADSL training set, (ii) classifying ADSL traces using the
HB training set and (iii) classifying HB traces using ADSL training set. Each test has
been repeated 10 times, and average results are reported.

Results are reported in rows labeled AT in Tab. 4.11. Overall, Abacus signatures
confirm their portability even across different access networks: for TVAnts, SopCast
and Joost, results are modestly impacted by train/test combination (being 8% of re-
duced TPR the worst case). In case of PPLive, the TPR drops to 58% when HB
training is used to classify ADSL traffic. This is likely due to the fact that PPLive is
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very aggressive in exploiting HB peers upload capacity, so that the number of peers
sending acknowledgments shifts the signature toward low bins, i.e., few acknowledg-
ment packets are received from a given peer. ADSL peers, on the contrary, contribute
with little upload bandwidth, so that the incoming traffic is mainly due to video chunks
received as trains of packets, i.e., groups of large data packets that are received from
contributing peers.

Portability across Channel Popularity (CP)

We now consider what is the impact of channels with different popularity. Channel
popularity indeed may significantly influence the P2P-TV application behavior. For
instance, if popular channels are considered a large number of peers are available,
while for unpopular channel few peers can be used to exchange the video content.
We performed a second experiment considering a very popular (POP) channel using
PPLive. We selected PPLive since it is the P2P-TV application for which Abacus
showed the worst performance so far. The total number of peers observed during
this experiment was larger than 200000, while in the previous dataset less than 56000
peers were observed. We refer to this dataset as a unpopular channel (UNP). As
before, we evaluate the portability over all combination of train/test sets, repeating
the experiments 10 times. Results are reported in the rows labeled CP in Tab. 4.11.
Few considerations hold: first, PPLive classification performance improves when it
comes to the classification of popular channels (i.e., TPR in POP/POP and UNP/POP
cases is about 95% versus the about 85% of the UNP/UNP case used as reference).
Nonetheless, we observe that the classification of UNP dataset when training has been
done considering the POP dataset leads to poor performance (TPR drops to less than
50%). This partly limits the portability across channels. A simple solution consists in
building a training set containing a mixture of signatures from both traces, which raises
the TPR again to about 85%. This result suggests that channel popularity should be
explicitly taken into account when building the training set, by including samples that
are representative of different channel popularity.

Portability over Time (TI)

We now focus on the signatures portability over different periods of time. From a
practical point of view, this allows to know how often classifier should be retrained.
We resort to the traffic traces used in [85], which authors kindly made available to the
scientific community. Traces of [85] were collected in July 2006 during the Fifa World
Cup: the study focused on the same applications we examined in this article, with the
exception of Joost which was not available at that time. Overall, the time-portability
measurements account for 14 hours of video, 14M packets and 2.3 Gbytes of data. We
classify this old dataset using the Abacus classifier trained with the dataset collected
in 2008 (same training set of Sec. 4.4). Notice that the network environment was also
different, so that we are jointly evaluating time and network portability.



Chapter 4. P2P-TV Traffic Classification 117

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  500  1000  1500  2000  2500  3000  3500  4000
PPLive

TVAnts

SopCast

Joost

T
ru

e 
Po

si
tiv

e 
R

at
e

Time [s]

800kb
750kb

700kb
650kb

600kb
550kb

500kb
450kb

400kb
350kb

300kb
250kb

800kb

TPR

Figure 4.10: Portability over Emulated Impairment: example of temporal evolution of
SopCast classification for decreasing bottleneck bandwidth.
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Figure 4.11: Portability over Emulated Impairment: example of temporal evolution of
SopCast classification for increasing packet loss rate.

Results are reported in the row labeled TI of Tab. 4.11, which shows that TVAnts
is correctly classified, SopCast has a TPR of 51%, while PPLive is almost completely
misclassified. This suggests that applications changed drastically their behavior from
July 2006 to March 2008. Notice that TVAnts was at version 1.0.58 in [85] and it is
now at 1.0.59, which suggests that little changes have been implemented. On the other
hand, PPLive moved from version 1.1.0 to version 1.9.15 and SopCast from 0.9 to 3.0.3,
hinting to clearly more drastic changes. Thus, as long as applications do not change,
the Abacus signatures are extremely portable across time –even across years– as we see
in the case of TVAnts. On the other hand, if an application implements new algorithms
which result in new behavior, then Abacus should undergo a new training phase.
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Portability over Emulated Impairments (EI)

As a final case, we consider whether Abacus signatures are portable across different
network conditions. We consider the traces gathered in an active testbed [86], where
changing network conditions were artificially enforced. In particular, in these experi-
ments, a Linux router was used to emulate some network conditions: bandwidth, delay
and packet losses were imposed on the downlink path to the PC running the P2P-TV
application.We refer to [86] for a complete description of the testbed: we only point out
that impairments range from mild to very tough conditions (e.g., 200 Kbps of available
downlink bandwidth, delay up to 2 s and packet losses up to 40%).

Traces gathered in this testbed are classified considering the HB training set, and
results are reported in the last lines of Tab. 4.11 labeled EI. Even in these extreme
conditions, Abacus still exhibits very high TPR, which can still exceed 90% for some
applications, with a worst case of about 75%. Reported results are averaged over all
the time varying conditions, including very distorted scenarios. Classification results
are differently impaired by different network conditions. For example, PPLive is mostly
affected by loss increase, while TVAnts classification results are more sensitive to band-
width change. SopCast results are mostly affected by bandwidth and delay changes.

Interestingly better results are achieved considering PPLive classification in the
case of bandwidth limitations. While this seems counter intuitive, it can be explained
considering that most False Negatives obtained from other applications are actually
misclassified as PPLive. This suggests that PPLive signatures are more variable and
spread out, avoiding FN classification for PPLive but possibly causing more FP clas-
sification for other applications.

As an example, we report on the time evolution of two different experiments of
SopCast classification, considering a scenario in which the available bandwidth is de-
creasing (Fig. 4.10), or the packet loss rate is increasing (Fig. 4.11). Every 5 minutes
network conditions are artificially worsened by either reducing the available bandwidth
by 50 Kbps, or by increasing the packet loss rate by 5%. The resulting impairment
profile is reported in the picture.

Fig. 4.11 plots individual classification decisions, taken each ∆T = 5s: these are
represented with crosses, referring to the right y-axis, and allow to see when and how
the application has been eventually misclassified. The picture also reports the True
Positive Rate, evaluated over 20 consecutive signatures (i.e., 100 seconds), represented
as a continuous dotted line referring to the left y-axis. Considering Fig. 4.10, which
refers to bandwidth limited scenario, it can be seen that as soon as the bottleneck
bandwidth kicks in, SopCast is misclassified as PPLive during a brief period, possibly
hinting to a sudden reaction of the application to the anomalous conditions. Then,
SopCast is correctly classified until the available bandwidth drops too low: afterward,
SopCast TPR drops quickly, being most of the time misclassified as PPLive and seldom
with TVAnts. At the end of the experiment, when the bottleneck bandwidth is removed,
SopCast is again correctly classified. Similar considerations hold for the loss scenario
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depicted in Fig. 4.11, in which samples are misclassified only when loss rate exceeds
30%.

4.6 Conclusions

In this chapter we have applied SVM for multi-class classification purpose, in particular
we consider the problem of classifying P2P-TV applications. We proposed Abacus, a
novel behavioral approach for fine-grained classification of P2P-TV applications. Our
methodology relies only on the simple count of packets and bytes exchanged amongst
peers during small time-windows. The rationale is that these two counts are represen-
tative of the different operation of each application, such as signaling activities, chunk
size, etc. We applied our framework to four well known applications: PPLive, TVAnts,
Sopcast and Joost.

We have also addressed the problem of dealing with non P2P-TV traffic by means
of defining a rejection threshold: in short, if the signature is far enough from the mean
signature in the training set of the corresponding application, then the result is rejected
and the signature is classified as “unknown”.

We evaluated our classification framework by means of a large experimental cam-
paign that includes P2P-TV traces actively collected in a large scale testbed (in the
context of the NAPA-WINE European project [9]) and real traces that do no contain
P2P-TV traffic. This mix approach allowed us to evaluate the capacity of our classi-
fication engine to correctly identify the P2P-TV application that generates the traffic.
Furthermore, it also allowed us to identify if the traffic does not correspond to any of
the considered P2P-TV applications.

If packet based signatures are considered, we found out that in mean we can ac-
curately identify signatures in almost 90% of the cases with a worst case of 82%.
Furthermore, if bytes are included on the signatures, our classification engine correctly
classifies about 95% of packets, bytes and peers in the worst case. Concerning the non
P2P-TV traffic, our results indicate that the classification engine raise very few false
alarms, well below 1% in the worst case. Such astonishing performance is the result,
on the one hand, of the discriminative power of SVM, and, on the other hand, of the
descriptive expressiveness of Abacus signatures.

A large set of experiments have been carried over to assess Abacus parameter sensi-
tivity and portability. We have analyzed different time-windows over which we calculate
the Abacus signature, finding that the accuracy on the classification performance is only
mildly degraded if longer time scales are considered. With respect to the SVM param-
eters, the choice of using a Gaussian kernel with exponential binning has proved to be
the best combination in terms of accuracy and complexity. Results over the training
set and diversity have shown that a very large training set is not required and that
information gathered from a single peer in each network is enough to build expressive
signatures and so to obtain very good performance.
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As far as Abacus signature portability is concerned, we have analyzed very different
scenarios including network heterogeneity, access technology, channel popularity, time
and even distortions in network bandwidth or losses. In most of the cases, Abacus seems
to be very robust in face to these changes and classification performance is maintained
or limitedly worsened. Probably the most important conclusion of this analysis is that
channel popularity must be taken into account in the training phase of the model.

To sum up, training the Abacus classifier is simple, as signatures can be gener-
ated automatically using a very small number of traces. In terms of both memory
requirements and computational complexity, Abacus is also very lightweight. Aba-
cus is therefore apt to be deployed in real network environments. Finally, since the
information required by Abacus simply relies on packet and byte counts, it is worth
investigating how to integrate it in NetFlow monitors which are commonly deployed
in operative networks. However, in this case, a more fine rejection criterion should be
defined.
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Chapter5
Modeling CSMA/CA

There are no doubts about today’s importance of wireless networks. They are present
almost everywhere in everyday life: cellular networks, public Internet access (Wireless
LAN have increasingly became the edge network of choice), residential WiFi networks
and a large etcetera. In particular, Mobile Ad-hoc NETworks (MANETs) are infras-
tructureless wireless networks able to provide temporary and instantaneous solutions
where other infrastructured wireless networks (e.g. cellular) are expensive or even in-
feasible to deploy (for instance rural or disaster areas).

More in detail, MANETs are very attractive since they are easy to deploy and
offer great flexibility. Furthermore, due to their inherently distributed nature, they are
more robust against network elements failure. In these networks, nodes act both as
transmitter and receiver and they operate in a self-organized and adaptive manner. In
addition, to further increase the coverage of the network, multihop routing is used; i.e.
nodes between origin and destination may be used as relays. This means that each
node can be at the same time a terminal (origin or destination of some traffic) and a
router (relay for traffic between other origin/destination pair). Much research efforts
(e.g. routing, security, quality of service, etc) have been dedicated to this area specially
to enable the adoption of this kind of networks in wide-scale.

A key issue in such networks is the design of a Medium Access Control (MAC)
mechanism, which is however not an easy task. When several neighboring transmissions
access the medium simultaneously they might jam each other and a mechanism to decide
which transmissions can access the medium at a given time is then required. Due to the
multihop characteristic of ad-hoc networks, a packet needs to be retransmitted until
reaching its final destination. These retransmissions enlarge the interference created by
each packet and the loss probability, thus increasing the need of a MAC mechanism.

If too many nodes are allowed to transmit at the same time by the MAC mecha-
nism, the interference created by them will prevent an intended receiver from correctly
receiving the signal. If on the contrary too few nodes are allowed to transmit simulta-
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neously, resources (such as bandwidth) are wasted and the overall performance may be
degraded. The essential characteristics of a well designed access mechanism will be then
a large number of simultaneous successful transmissions, and at the same time, equal
access opportunity for all nodes. However, since the MAC mechanism is run locally
by each node, which has only local information of the network state, it is difficult to
globally optimize the number of successful simultaneous transmissions based on their
individual decisions.

The medium can be shared according to very different strategies. For example,
a controlled access strategy such as TDMA (Time Division Multiple Access) could
be used. In this case, time is divided into slots and the sharing is organized in a
predetermined basis, i.e. a collision free schedule is computed and informed to all nodes.
This strategy may be quite inefficient since the schedule must be recomputed each time
something changes. Alternative strategies are random access based mechanisms such
as ALOHA or CSMA (Carrier Sense Multiple Acess) which are generally admitted
to be more adequate given the mobile and open characteristics of ad-hoc networks.
In ALOHA, at each time slot, each node access the channel with a fixed probability
appropriately chosen to avoid a large number of collisions. The main feature of CSMA
is to sense the medium before transmitting: a node intending to transmit first senses
the medium; if the latter is idle, the node transmits; else it waits until its idle again.
Both, ALOHA and CSMA have the useful property of being fully decentralized. There
exists other strategies such as CDMA (Code Division Multiple Access) or (O)FDMA
((Orthogonal) Frequency Division Multiple Access); however we will not go into details
on them since our main study objet will be CSMA. Good overviews of MAC mechanisms
can be found in [87, 88].

CSMA/CA (CSMA with Collision Avoidance) is perhaps the most widely used MAC
mechanism for wireless networks and its popularity is mainly due to its simplicity. The
collision avoidance (CA) is required to avoid that once the medium is sensed idle, several
nodes start transmitting at the same time, creating collisions. The CA consist in the
introduction of a random time between the time that the medium is sensed idle and the
beginning of the transmission. This random time varies in a interval that increases with
the number of consecutive collisions. However, collisions may occur anyway. A Ready-
To-Send/Clear-To-Send (RTS/CTS) handshake, also known as “virtual sensing”, can
be used in addition to CSMA/CA to avoid the well known “hidden terminal” problem.
This problem arises when two transmitters, that are out of range of each other, are
allowed to transmit to the same receiver at the same time creating a collision. This
collision can be avoided by using an RTS/CTS exchange previous to data transmission:
the receiver will authorize the communication (if it is possible) and at the same time will
inform its potential interferers of the ongoing communication. We will not analyze here
some of the already known weaknesses of this protocol, such as the access unfairness
(which is usually referred to as “starvation phenomenon”[89]) or the lack of performance
guarantees for the accepted transmissions, since the goal of this chapter is to analyze
how to define an accurate model for the CSMA/CA protocol as it is. The problem of
defining a MAC mechanism with performance guarantees will be considered in the next
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chapter.

More precisely, the objective of this chapter is twofold. Firstly, we will try to
identify and classify the different models used so far to analyze the performance of
the CSMA/CA protocol, highlighting their benefits and drawbacks. To achieve this
we will first describe, with more details, the main features of CSMA/CA which are
essential to the model definition, leaving aside all implementation-specific details. We
will see that most of the existing models do not include channel variations due for
example to shadowing/fading effects. Moreover, analytical formulae for performance
indicators, such as the spatial reuse or the throughput, can be obtained only in simple
cases such as a regular line topology. Our second objective is then to present two
different shadowing/fading aware CSMA models and to show that these models present
significantly different performance results than the previous one, revealing the need of
taking into account these effects. We will also discuss why previous model cannot be
extended and the difficulties to obtain analytical results.

It must be noted that even in the simplest model where the signal power emitted by
a node decays exponentially with the distance in an isotropic way, the space distribution
of nodes plays a key role in the overall performance of the network since it determines
the SINR (Signal to Interference Noise Ratio) at each receiver and hence its rate. Based
on this observation, we will concentrate on models that take into account the geometry
of the network. This assumption excludes for instance the Markovian models for IEEE
802.11 DCF presented in [90] (or the fixed point analysis of [91]) and for the slotted
version of IEEE 802.15.4 presented in [92]. In these works a per user Markov model is
used to capture the state of each user at each moment and different ways of coupling
them are derived according to the specific characteristics of the protocol under analysis.

5.1 CSMA/CA Basics

In this section we will describe the CSMA/CA operation, emphasizing those aspects
that are crucial at the time of defining a model to represent it. There exist different
flavours of the CSMA/CA protocol depending, for instance, if the time is assumed to
be divided in slots or not. For example, in IEEE 802.11 [93] a non-slotted CSMA/CA
is used whereas a slotted one is used in beacon-enabled IEEE 802.15.4.

The behaviour of CSMA/CA in the non-slotted case can be schematically explained
as follows. Each link (or transmission) has a backoff timer which is chosen according
to a given backoff distribution. This timer decreases with time and when it reaches
zero, the link becomes active provided that the channel is sensed idle (more details
on this aspect will be discussed further on). In this case, the backoff timer of the
neighboring connections is frozen, i.e. the backoff value decreases only when no activity
is detected in the exclusion domain (see next section for a more precise definition of
exclusion domain). When the transmission is finished a new backoff value is drawn
from the backoff distribution. An example of this dynamic is shown in Fig. 5.1 for two
neighboring nodes.
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Figure 5.1: Illustration of the backoff dynamic: when the backoff timer of Node 1
reaches zero it transmits and Node 2 frozes its backoff timer; at the end of the trans-
mission Node 1 gets a new backoff timer and Node 2 continues to decrease its remaining
backoff timer until it reaches zero.

When time is divided in slots transmissions are synchronized. At the beginning of
the time slot all nodes draw a new backoff timer and the decision of which transmission
is activated is the same as in the non-slotted case. The difference lies in the fact that
all transmissions finish at the same time.

In both cases, the channel is sensed in two phases (the first one being a physical
sensing whereas the second one is logical):

1. Clear Channel Assessment (CCA): is the procedure performed by a node intending
to access the channel to identify the channel state (idle/busy).

2. RTS/CTS Handshake: followed by the data transmission and finished by an ACK
(acknowledge packet), this handshake is used to exchange information about the
duration of the transmission avoiding the so-called “hidden terminal” problem.

More details on these two phases are describe in the following sections.

Clear Channel Assessment

In CSMA/CA networks a node intending to transmit first senses the medium; if it
is idle, the node transmits; else it backs off and tries again after a random time. In
order to sense the status of the channel the so-called Clear Channel Assessment (CCA)
procedure is used by network nodes. CCA depends on the specific MAC protocol used
and the terminal settings. For the most widely used CSMA/CA protocols (e.g. IEEE
802.11 DCF or IEEE 802.15.4) CCA is performed according to one of the following
modes [93]:

• Mode 1 (Energy Detection): CCA reports a busy medium if the detected energy
(measured power level) is above a user-selectable threshold.

• Mode 2 (Carrier Detection): CCA reports a busy medium if at least one signal is
detected having the modulation characteristics of the considered wireless network.

• Mode 3 (Energy and Carrier Detection): CCA reports a busy medium if at least
one signal is detected having the desired modulation characteristics and the total
power is larger than the given threshold.
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All modes intend to represent the fact that if there is some activity on the channel, the
transmission must be postponed. The first mode seems more adequate for narrowband
systems, whereas the second one is for wideband systems [94]. As we will see, and
as far as modeling is concerned, an important difference between these modes is that
Carrier Detection can be modeled as a pairwise relation between nodes, whereas the
Energy Detection mode requires to take into account the additive interference created
by all the ongoing transmissions. In the next chapter we will analyze these two modes
in more detail.

RTS/CTS Handshake

As mentioned in the introduction of the chapter, an RTS/CTS handshake can be used in
addition to the CCA to avoid the “hidden terminal” problem. When a node intends to
transmit, it first sends an RTS message to its receiver which in turns replies with an CTS
message if it is currently not busy, i.e. it can successfully receive the data. Additionally,
the RTS and CTS messages carry the total duration of the tagged transmission in
the Network Allocation Vector (NAV). In this way, all “overhearing” nodes (nodes
in the transmission range) will be aware of the duration of the ongoing transmission.
These nodes will be silenced during the tagged transmission, meaning that they refrain
themselves from transmitting or receiving. In this way nodes that are close to each other
do not transmit at the same time. The set of nodes silenced by an active transmission
is referred to as the exclusion domain (ED).

This handshake solves the hidden terminal problem but other problematic situa-
tions can appear. For instance, a node that receives a RTS message is refrained from
transmitting even if its receiver is outside the interference region of the ongoing trans-
mission. This problem is known as the “exposed terminal”. A different problem is
generated when a potential receiver node decodes a CTS message and as a consequence
cannot receive even if the activation of its transmitter does not interfere the ongoing
transmission.

Other problematic situations can be identified. For example a node could be si-
lenced by the RTS message of a transmission that will finally not take place (the
intended receiver will not answer with a CTS because it is already silenced by another
communication). In this case, the virtual sensing (expressed by the NAV value) does
not reflect the real state of the network. Another situation arises when a node, which
is jammed by an active data transmission, cannot decode an RTS message and so it
cannot update its NAV. This means that this node is not considering that another
communication is taking place and when the jamming transmission is finished, it could
start a new transmission creating a collision. Clearly these situations are not desirable
since transmissions that could take place at the same time are instead rejected or ac-
cepted ones are interrupted. However these drawbacks are a direct consequence of the
simplicity of the mechanism which is in turn its major advantage. Different solutions
are suggested in the standard or were proposed later to solve, or at least to alleviate,
the negative effects of these situations. However, as we mentioned before, it is not
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our intention to solve the drawbacks of the CSMA/CA protocol, but to analyze the
definition of an accurate model for it in order to better understand its behaviour.

5.2 Traditional Models for CSMA/CA

In this section we will describe those models that have been proposed to analyse the
CSMA/CA protocol. We do not pretend that the list of works discussed here is ex-
haustive. Instead, we will highlight the models that, in our opinion, are the most
representative of the different approaches that can be used in this context.

Before going into details, we will introduce the notation used in this and the fol-
lowing sections. Given two nodes, h and k, the power received from h by k is:

P (h, k) = PhL(h, k), (5.1)

where Ph is the transmission power of node h, and L(h, k) is the path loss from h
to k which depends on the distance between nodes. Different path loss functions can
be considered. For instance, if r is the distance between h and k, a simple case is to
consider L(h, k) = l(d(h, k)) where l(r) = Ar−α where α > 2. Since this simplified
model makes no sense for r close to 0, we will use instead l(r) = Amax(r0, r)

−α where
r0 > 0. Both functions give similar results when r > r0 or Ar is large.

Let Ti and Ri denote the transmitter and receiver of link i respectively. We will
assume that the communication between Ti and Ri will be successful if the two following
conditions are verified:

P (Ti, Ri) ≥ P0 and SINRi =
P (Ti, Ri)

W +
∑
j 6=i

P (Tj , Ri)
≥ γ,

where W is the thermal noise and P0 and γ are selectable thresholds.

The RTS/CTS packets, as well as the ACKs, are usually sent at rates lower than
that of data packets, and so we can safely ignore the condition over the SINR. In
this case the, the exclusion domain (ED) of link i = [Ti, Ri] (i.e. links silenced by the
activation of link i) may be defined as follows:

C(i) = {j : P (Tj , Rj) > P0 or P (Tj , Ti) > P0 or P (Rj , Ti) > P0 or P (Rj , Ri) > P0}
= {j : P (h, k) > P0 for h ∈ {Ti, Ri}, k ∈ {Tj , Rj}} . (5.2)

Note that if the transmission power is constant and equal for all nodes (Ph = P ∀h),
then the ED is symmetric in the sense that if j ∈ C(i), then i ∈ C(j). This means that
two contender links cannot access the channel at the same time.

Note that the condition that the reception power from h in k is larger than P0 is
equivalent to verifying that the distance between them is smaller than a corresponding
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threshold. More precisely, if r = d(h, k) is larger than r0 and l(r) = Amax(r0, r)
−α,

then:

P (h, k) > P0 ⇔ r <

(
P0

PA

)−1/α

. (5.3)

This assumption implies that the ED of a given link is constituted by those nodes which
distance to the transmitter or receiver of the tagged link is smaller than a given thresh-
old. As we will see, this equivalence largely simplifies the problem and it will be the key
to allow the calculation of analytical formulae for the CSMA/CA performance. In what
follows, we will present the three considered models: packing formalism, truncation of
a reversible process, and Matérn like models.

5.2.1 Packing Formalism and Gibbs Distribution

This section is devoted to the presentation of the models introduced in [21]. Following
the author’s notation, the ED of a tagged link is defined as the union of two discs:

(i) the set of nodes within the RXRange (receiving range) of the sender or the receiver
of the tagged link and,

(ii) the set of nodes within the CSRange (carrier sensing range) of the tagged sender.

This definition of the ED is meant to represent the CSMA/CA RTS/CTS hand-
shake: all nodes, different from the tagged receiver, which can decode a RTS (i.e. a node
within the RXRange of the tagged transmitter) are silenced. Similarly, all nodes that
can decode a CTS (i.e. within the RXRange of the tagged receiver) are also silenced.
In addition, it is assumed that CSMA/CA silences all nodes within the CSRange of
the tagged sender (physical carrier sense). It must be noted that the CSRange aims
to represent the CCA. More details on this assumption will be discussed in Sec. 5.2.4.
The ED results then in the union of two (usually intersecting) discs, one centered at
the transmitter and the other at the receiver of the tagged link. This means that the
contenders of an active link (the nodes in its ED) are its nearest neighbors.

In what follows, we will usually refer to a line topology where nodes are equally
spaced (by a distance d, assumed to be 1 space unit) along a straight line. Each node
can transmit or receive and it communicates with its nearest neighbors. In this case, a
minimum distance between two active transmissions is then required. Let l be 1 plus
this minimum distance, then it can be an active link every l space units. An example
of this situation is illustrated in Fig. 5.2.

To simplify the analysis but also to analyze the protocol under “extreme” conditions,
saturated traffic is assumed, meaning that each link always has data to send. Under
this assumption, a very important performance metric in the wireless ad-hoc setting is
the number of simultaneous transmission that can be scheduled by the protocol. For
this, the spatial reuse – defined as the mean proportion of links which are active at a
typical time slot – is generally the performance indicator of reference.
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d=1

l = 3

Figure 5.2: Illustration of the packing analogy.

Slotted Case: Packing Formalism

As we mentioned above, when the time is divided in slots, the decision of which links
can be activated in each time slot is decided at the beginning of the slot. At its turn,
each link will transmit if the channel is sensed idle. If the line topology is assumed,
defining a transmission schedule (set of active links) is equivalent to finding a packing
of the line with as many non-overlapping intervals of length l as possible. This means
that the spatial reuse σ only depends on l (i.e. the “space” occupied by an active link).

More precisely, using this packing analogy, authors of [95] show that the spatial
reuse achieved with L equidistant nodes when L→ ∞ is:

σ = exp[−2F (1)]

1∫

0

exp(2F (u))du where F (u) =

u∫

0

1 − yl−1

1 − y
dy (5.4)

In particular if d = RXRange = CSRange = 1, each active link silences its two left/right
neighbors and the minimum distance between two active links is l = 3. See Fig. 5.2 for
an illustration of this situation. In this case, σ = 0.275 whereas the maximal spatial
reuse is 1/3 (one out of three links is active).

Non-Slotted Case: Gibbs distribution

In this case data transmissions can start and finish at any given time. Thus, the
duration of the transmissions is supposed to be random. In particular, it is assumed
that they are exponentially distributed. Concerning the backoff distribution, in the
real protocol it is defined as uniform discrete in an interval depending on the value
of the contention window. However, as in most works in the literature, the authors
of [21] assume that the backoff timers are also exponentially distributed. A continuous
backoff distribution implies that the probability of a collision occurrence is null, which
constitutes an ideal case.

Under all the mentioned hypothesis (attenuation depending only on distance, ex-
ponential distribution of the backoff and transmission duration, and saturated traffic
condition), a continuous time Markov chain can be used to model the dynamic of
CSMA/CA. For the line topology, a transmission pattern is a vector x ∈ E = {0, 1}L

that specifies which of the L links are active (if i is active, then xi = 1). A transmission
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pattern must verify then the following condition:

xi

∑

j∈C(i)

xj = 0, (5.5)

where C(i) is the ED of link i. If link i is active (xi = 1), then the links in its exclusion
domain must be inactive (xi = 0). A Markov chain with E as state space is then
defined.

Let n(x) be the number of active links in the transmission pattern (state) x; it is
said that the state x is at level i if n(x) = i. Transitions of the Markov chain can
only occur between states separated by one level: from level i to level i − 1 when a
transmission is finished, and from level i to level i+ 1 when a backoff time finishes and
a new connection arrives. Then the transition rates are µ and λ respectively, where λ
and µ are the parameters of the exponential distribution of the backoff timer and the
transmission duration respectively. The access intensity is defined as ρ = λ/µ. It is
easy to see that the Markov chain is irreducible and reversible since it is a loss network
(see [96]). Then, its unique distribution has a product form:

π(x) =
ρn(x)

Z
, (5.6)

where Z is a normalizing constant. The calculus or the estimation of the constant Z
is not trivial which seriously limits its application for the obtention of closed formulae.
The only exception as we will see below is the line topology.

From this equation it is clear that all transmission patterns with the same number
of active links have the same stationary probability. For ρ > 1 (observe that there is
no stability condition on ρ since it is a loss network), π(x) increases with n(x) and the
patterns with a high number of active links have a higher probability of appearing. In
the limit when ρ→ ∞, only the patterns with the highest number of active links have
a non-zero probability. This effect translates into high spatial reuse but poor fairness
since some links will rarely access the channel (“starvation phenomenon”).

The spatial reuse (i.e. mean number of active links normalized by L) can be calcu-
lated as:

σ =
1

L

∑

i

iπi,

where πi is the probability to have i active links (i.e. the chain is at level i). This
probability can be calculated as follows:

πi =
N(i)ρi

∑
k N(k)ρk

, (5.7)

where N(i) denotes the number of states x such that n(x) = i (i.e. with i active links).
Then, the spatial reuse is:

σ =
1

L

∑

i

iπi =
1

L

∑

i

i
N(i)ρi

∑
k N(k)ρk

.
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In general, it is difficult to obtain a closed formula for N(i). In fact it is possible only
for the line topology, for which N(i) = 2iCi+v

i where v = L + (l − 1) − li (number of
free spaces once there are i intervals of length l). In this case, the spatial reuse when
L→ ∞ results:

σ =
2ρy1

l−1

1 + 2lρy1
l−1

, where y1 is the real positive root of 1 − y − 2ρyl. (5.8)

For a fixed value of L the spatial reuse increases with ρ, reaching the maximal spatial
reuse 1/3 when ρ tends to infinity i.e when the backoff time is much lower than the
average exchange time (there is always an attempting connection). On the contrary,
when ρ is fixed, the spatial reuse decreases with L.

These results imply that this decentralized protocol can optimally organize the
transmissions in space (when the access intensity is high the maximal spatial reuse is
achieved). It must be noted that these results can be achieved with an ideal collision
avoidance mechanism. One of the reasons for which the real protocol is unable to
achieve this maximum spatial reuse, is the discrete distribution of the backoff timer
which, as mentioned before, implies a non-null probability of collisions.

This analysis can be seen in a more general context. In fact, the stationary distri-
bution (5.6) can be seen as a Gibbs distribution:

π(x) =
e−H(x)

Z
,

where the function H derives from a Gibbs potential V , i.e. H(x) =
∑

i V (xi) +∑
i∼j V (xi, xj) and

V (xi) = −xi log(ρ) and V (xi, xj) =

{
+∞ if i ∼ j
0 in other case

The normalizing constant Z is usually known as the “partition function” (in Sec. 5.2.2
we will describe a method to estimate it). See [97] for an excellent reference to Gibbs
Fields.

Results discussed until now refer only to the line topology since, as mentioned before,
closed formulae cannot be derived even for a 2-dimension regular lattice network (it is
not possible to calculate N(i)). Actually, authors of [21] proved that in this case one
or more Gibbs distribution may exist depending on the value of the access intensity ρ.
This characteristic will imply that there is a phase transition: for values of ρ smaller
than some constant ρc1 , the border effect (links at the border have less contenders
and so higher probability of access the channel) does not propagate into the network
and the protocol is long term fair (all links have the same access probability) as the
network size goes to infinity. For values larger than ρc2 the border effect translates into
the network independently of the size and the protocol is not fair.

The main conclusion of this work is that CSMA/CA can be spatially efficient, find-
ing spontaneously the maximal spatial reuse states, but unfairness or even “starvation”
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is the price to pay for it (even in the ideal case without collisions). The trade-off between
fairness and spatial reuse can be moderated by appropriately choosing the access inten-
sity or by considering not so regular scenarios, for instance by considering asymmetric
exclusion domains.

5.2.2 Truncation of a Reversible Process

The same results of the previous section can be obtained by the truncation of a “free”
process. Results of this section correspond to the work introduced in [22] which relates
the analyzed problem with statistical mechanics (i.e. the use of probability theory for
the analysis of systems with large number of interacting particles). Consider a free
process X for which a node accesses the channel independently of the other nodes. It
is easy to find the stationary distribution of the process X; let x ∈ E = {0, 1}L be a
transmission pattern, then:

π(x) = pn(x)(1 − p)(L−n(x)),

where n(x) =
∑L

i=1 xi is the number of active nodes, and p is the probability that a
node is active. With the same assumptions of the previous section, p = ρ

1+ρ (remember
that ρ = λ/µ is the access intensity) which results in:

π(x) =
ρn(x)

(1 + ρ)L−1
.

Clearly, X is a reversible process. Let X ′ be the restriction of the original process to
E′ ⊂ E. Assuming that X ′ is irreducible, it results that its stationary distribution is
simply the truncation of the stationary distribution of X to E′, i.e.

π′(x) =
π(x)
∑

x∈E′
π(x)

=
ρn(x)

ZL
∀x ∈ E′.

The main problem is to identify E′ and to calculate the normalizing constant (partition
function) ZL. In our case, and as discussed in the previous section:

E′ = {x ∈ E : xi

∑

j∈C(i)

xj = 0}. (5.9)

For the line topology, a possible way to approximate the partition function ZL is based
on the method of the subtracted singularities. Let ZG(t) =

∑∞
L=0 ZLt

L be the gener-
ating function (also referred to as grand partition function), then ZL can be estimated
in terms of the smallest pole t0 of ZG(t):

ZL ≈ −Res[ZG(t0)]

tL+1
0

.
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The approximation error decreases exponentially with L. The partition function can
be written as:

ZL =
∑

x∈E′

ρn(x) =
∑

i

αi
Lρ

i,

where αi
L is the number of patterns with i active links (see (5.7) in previous section,

where αi
L = N(i)). For the free process, αi

L = CN
i and for the case of CSMA/CA

with CSRange = RXRange = 1 (i.e. l = 3) the following recurrence can be derived by
adding one more link to the line and examining the number of configurations having i
active links:

αi
L+1 = αi

L + αi−1
L−2 L ≥ 2, (5.10)

α0
0 = α0

1 = α0
2 = 1. (5.11)

The first term corresponds to aggregating a non transmitting node and the second one
to the case where the (L + 1)-node is active. Then the following recurrence for ZL is
also valid:

ZL+1 = ZL + ρZL−2 L ≥ 2,

Z0 = 1, Z1 = 1 + ρ, Z2 = 1 + 2ρ.

Therefore the generating function is:

ZG =
1 + ρt+ ρt2

1 − t− ρt3

Let t0 be the smallest (positive) pole of ZG(t), the approximation for ZL results:

ZL ≈ −Res[ZG(t0)]

tL+1
0

=
1 + ρt0 + ρt20

(3ρt20 + 1)tL+1
0

(5.12)

It must be noted that the pole t0 is the solution of 1 − t− ρt3 = 1 − t− ρtl = 0, which
is the same equation that appears in the Gibbs analysis of [21] (see (5.8), where the
extra 2 factor appears from considering undirected links).

These independent and different works lead to the same results. In [21] authors
analyze the spatial reuse and fairness of the protocol; in [22] authors analyze instead
the link throughput (which is in fact closely related with the spatial reuse previously
considered). Let Sij be the throughput of link [i, j], defined as the mean number of
successful transmissions over link [i, j] per unit time. Then,

Sij = ρijP ([i, j] is active) = ρijP (C([i, j]) is idle) = ρij

ZL\C[i,j]

ZL

where ρij is the traffic intensity of packets from node i to node j and C([i, j]) is the
exclusion domain of link [i, j]. An approximation for the link throughput is obtained
from the estimation (5.12) of ZL. In particular, for the line topology where each node
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communicates equally with its two neighbors, it is proved that the node throughput
Si =

∑
j Sij tends to 1/3 when ρ goes to infinity. As observed before, for very high

access intensity, transmissions will be densely packed by the protocol (every third node
would be active).

In [89], a similar Markovian model is considered but with different transition rates.
The RTS/CTS exchange is taken into account by relating the access intensity ρ with
the link capacity, the contention window parameters, the data frame length and the
duration of the time slot. More precisely ρ is in fact ρij for link (i, j) and so ρn(x) in (5.6)
translates into

∏
ρij . Authors derive an approximation formula for the throughput in

this context and consider different fairness scheduling such as proportional and max-
min fairness for which distributed algorithms based on local information are discussed.

5.2.3 Matérn like Process

In this section, a radically different approach is considered. The location of the nodes
in the network is seen as the realization of some point process [98]. This means that
the network can be considered as a snapshot of a stationary random model in the (Eu-
clidean) space and that it is possible to analyze it in a probabilistic way. Stochastic
geometry is a powerful tool (suitable to analyze networks on the plane or in higher
dimension) that allows to define and compute macroscopic properties of the network
by averaging over all potential geometrical patterns of the nodes. There exist several
applications of this tool to networking problems being the analysis of MAC protocol,
such as ALOHA or CSMA, a particular case. A good reference with many applications
of stochastic geometry to wireless networks is [99]. An excellent reference including the
mathematical tools required to understand the networking applications is the mono-
graph [20].

Hard Core (HC) models represent a class of point process whose points are never
closer to each other than some given distance h > 0. If we define h = RXRange =
CSRange, the nodes allowed by CSMA to transmit at a given time are always at a
distance larger than h, and so they can be seen as a HC model.

A particular HC model is known as Matérn hard core (MHC). Such a process
is constructed from an underlying Poisson point process (p.p.) by removing certain
points depending on its neighbors positions and additional marks associated with the
points [20]. More precisely, consider that each point xi has a mark Ui where {Ui}i are
independent and identically distributed random variables with uniform distribution on
[0, 1]. The MHC is defined by the points whose mark is the smallest in a ball centered
at them with radius h, i.e. the point xi is not removed if Ui < Uj for all j ∈ Bxi(h).
See Fig. 5.3 for an example of the Matérn selection process. The MHC is a process-
dependent thinning of the original Poisson process but it is not itself a Poisson p.p.
(there is no h > 0 such that the points of a Poisson p.p. are separated a distance h).
The intensity of the MHC can be calculated from the intensity of the original Poisson
p.p. This model was applied for instance in [100] to the analyze the performance and
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Figure 5.3: Example of the Matérn selection process: only x3 and x4 are retained.

planning of dense IEEE 802.11 networks.

It must be noted that the Poisson assumption for the underlying p.p. is not necessary
to define a Matérn like process. If it assumed that each point has a mark, the selection
of the points with the smallest mark in a given region (e.g. a ball with fixed radius)
can be defined irrespectively of the underlying point process. However, the difficulty is
to obtain analytical results for this general case; in fact the calculations made for the
Poisson case cannot be extended to other distributions. The only exception is perhaps
the simplest case where the distribution of the points is deterministic (e.g. a regular
fixed topology).

A Matérn like model for CSMA/CA was defined in [20] as follows. By adding a
mark to each node, which can be for instance its backoff timer, define a Matérn like
process that keeps those nodes whose mark is the smallest in its exclusion domain.
In this way, all remaining links verify the condition (5.5) i.e. are valid transmissions
for the CSMA/CA mechanism. However, results obtained by this model may be too
conservative: a node can be prevented from transmitting even if there is no activity in
its exclusion domain. Consider for instance the situation illustrated in Fig. 5.3: node
x1 is not retained because it detects a contender x2 (the mark of x2 is smaller than the
mark of x1 and x2 is in the exclusion domain of x1) but node x2 is also not retained
because it detects another contender x3 which is not a contender of x1. The Matérn
CSMA model will not retain neither x1 nor x2, but in fact x1 and x3 could access the
channel simultaneously without creating collisions.

The conservative nature of this model can be easily shown in the case of the line
topology. Consider as before RXRange=CSRange=1, then the exclusion domain of
each node is constituted by its two left/right neighbors. The probability that a node i
(not in the border) is retained by the Matérn CSMA model (i.e. the access probability)
is:

pi = P (Ui < min{Ui−2, Ui−1, Ui+1, Ui+2}) =
1

5
.
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This value is directly bounded with the number of contenders of each link; the proba-
bility will be equal to the inverse of the number of contenders (exclusion domain size)
plus 1. If L→ ∞, the border effects are negligible and the spatial reuse (SR) is:

σ =
Lp

L
= p = 0.2 (5.13)

With this model, for each slot, the set of active links is a subset of the corresponding
set previously defined in Sec. 5.2.1, which implies that a smaller SR will be obtained: in
fact we obtain 0.2 versus 0.275 of the previous model. The main advantage of this model
is that it can be extended to different topologies in the plane (regular or irregular) in
which case analytical formulae or approximations can be derived. Remember that for
the previous models analytical results can be obtained only for the line topology. For
example, if the original p.p. (i.e. the nodes of the network) is assumed to be Poisson in
R

2 with intensity λ, the spatial density of active nodes (density of the MHC) can be
calculated as λMHC = pλ, where p is the access probability (see [100]):

p =
1 − e−λπh2

πh2
.

It must be noted that this probability represents a spatial average and not a time
frequency (i.e. this result does not mean that a node will access the channel with time
frequency p).

5.2.4 Conclusions

Several conclusions may be drawn from the study we just presented, some of which
we would like to highlight now. Different approaches were considered, ranging from
the packing approach valid for a line topology to the analysis of a snapshot of the
network by means of Matérn like process, and including classical Markov chains for the
asynchronous case. However all these models have made simplifying assumption, some
of which were not even explicit.

As already pointed out, the path loss function is assumed to be deterministic and
decreasing with the distance (see (5.1)). Clearly, this is a simplifying assumption that
ignores the random variations of the channel conditions due to, for instance, shadow-
ing/fading effects. In the following section we analyze if the considered models can be
extended to include this more general case. It is not difficult to see that some of the
analyzed approaches are not applicable. For instance, the packing approach introduced
in Sec. 5.2.1 cannot be used since the space occupied by an active transmission is no
longer a deterministic set (i.e. an interval for the line topology), but a random one that
could even be disconnected. More precisely, we will propose an extension that includes
shadowing/fading effects and we will show that results obtained by this model may be
very different of those of previously analyzed ones.

The attentive reader may have been realized that in the previously considered mod-
els almost nothing is said regarding the CCA. In fact, this aspect is not explicitly ana-
lyzed or described in any of the above considered models. However, we will show that
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if the CCA is in Carrier Detection (CD) mode (c.f. Sec. 5.1), then the analysis based
on the definition of exclusion domains is enough to represent both the CCA and the
RTS/CTS handshake. More precisely, in the Carrier Detection mode, the CCA will
declare the channel as busy if the transmitter of an intending link detects at least one
signal (pertaining to the same network). This is equivalent to receive such a transmis-
sion with a power larger than a certain threshold PCCA. If we assume that PCCA > P0,
then this condition is already included in the definition of the exclusion domain (c.f.
5.2). This means that at the moment of deciding to access the channel, if the trans-
mitter does not belongs to the exclusion domain of any of the ongoing transmissions,
then the CCA will declare the channel idle. This conclusion is based on a symmetry
assumption: if node h can detect node k is also the case in the other sense, i.e. node k
can detect node h.

It should be noted that if the CCA in Energy Detection mode, then the models
based on exclusion domains (i.e. as a pairwise relation between nodes) are not longer
valid. In this case, the interference created by all the ongoing transmission must be
taken into account to decide if the channel is idle or not. That is to say, an intending
transmitter can sense the channel as busy, even if it does not belong to the exclusion
domain of any of the ongoing transmissions. In Chap. 6 we introduce a model for this
mode and we compare it with the Carrier Detection mode. We will see that a shot
noise process can be used to approximate the CCA in this mode.

From these observations, we may conclude that the previously introduced models
are valid when the fading/shadowing effects are negligible and the CCA is performed
in the Carrier Detection mode. All in all, it should be noted that some of these models
provide analytical results only for the line topology which constitutes only a particular
case study. The only model that provides analytical formulae is the Matérn like process
with the limitation that its results are intrinsically conservative.

5.3 A Shadowing/Fading Aware Model for CSMA/CA

As we have already seen in the previous section, the assumption of an attenuation
function depending only on the distance between nodes facilitates the analysis of the
protocol. However it should be clear that this assumption limits severely its accu-
racy with respect to the real protocol. In this section, we analyze the inclusion of the
fading/shadowing effects in the models and we will show that (as expected) this inclu-
sion increases significantly their complexity. To the best of our knowledge there is no
analytical model of CSMA/CA that includes this aspect.

In this case, given two nodes h and k, the power received from h by k is:

P (h, k) = PhF
h
k L(h, k), (5.14)

which depends now on the random variable F h
k representing the fading/shadowing from

node h to node k. In this work we will consider two different models for the channel



Chapter 5. Modeling CSMA/CA 139

variations: Rayleigh fading (suitable when many obstacles are present and there is
no line of sight between transmitter and receiver), and Lognormal shadowing. To
what modeling is concerned, the difference resides in the distribution of the variables
F h

k . More precisely, the random variables {F h
k }h,k are assumed to be independent

and exponentially distributed with parameter µ in the first case, and Lognormally
distributed with standard deviation σ in the second one.

As before, the RTS/CTS handshake defines the set of nodes that must be silenced
by a tagged link. Whereas in the deterministic case the resulting set (i.e. the exclusion
domain) was an interval or a disc, in this case a random set is obtained. More precisely,
the silenced nodes are those whose reception power from the tagged transmitter or from
the tagged receiver, is larger than a certain threshold P0. We shall call this set, the
Random Exclusion Domain (RED). Thus, the RED of link i = [Ti, Ri] may be defined
as:

C(i) = {j = [Tj, Rj ] : P (h, k) > P0 for h ∈ {Ti, Ri}, k ∈ {Tj , Rj}} . (5.15)

Note that even if this definition coincides with 5.2, the random nature of the fad-
ing/shadowing implies that this RED is not necessarily made of the nearest neighbors
of the link as in the previously analyzed models. We will discuss now if the models
introduced in Sec. 5.2, when fading effects are not considered, can be extended to this
case or not. We will see that analytical results can only be obtained by defining a
Matérn like process, even in the simplest case of the line topology.

5.3.1 Gibbs Distribution

As we have already explained, the packing formalism cannot be applied in this random
case. Thus, we focus ourselves on the dynamic case for which two approaches were
used in the not random case: Markov chains or the truncation of a reversible process.

In particular, under the assumptions of Sec. 5.2.1, i.e. exponential distribution of
the backoff timer and the transmission duration, the same Markov chain can be defined
for this case. The state space is still E = {0, 1}L and a transmission pattern x ∈ E
must verify the same condition as before xi

∑
j∈C(i) xj (c.f. (5.9)). Then, we still have a

loss network with the same transitions rates, thus the stationary distribution has also
a product form:

π(x) =
ρn(x)

Z
.

As for the ED definition, this formula coincides with the one already obtained in the
previous section (see (5.6)). However, they differ on the normalizing constant Z. This
constant is the sum of the state probabilities over the set of all possible states (i.e. valid
transmission patterns). While transitions rates are the same as before, the states are
not. When channel conditions change, the RED also changes modifying the allowed
transmission patterns (states of the chain). This characteristic highly increases the
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complexity of the analysis. Remember that even in the not random case, the stationary
distribution was not evaluated directly, but by calculating N(i) the number of states
with i active links. Clearly, this quantity cannot be evaluated here, even for the simplest
case of the line topology, and so we cannot calculate neither the spatial reuse nor the
throughput.

In a similar way, it is quite easy to see that the analysis based on the truncation of
a free process cannot be applied either. Even if the process can be seen as a truncation
of the same free process, there is not a recursive relation for ZL as before (see (5.11)).
For the previous case, each active link occupied a fixed interval of length l of the line.
In this case, as we have already explained, each link does not only occupy a random
sized space (the size of its exclusion domain), but this space changes with time.

From these observations we can conclude that, even if the general framework of the
previously analyzed modes can still be valid, its complexity does not allow to obtain
analytical results. If we assume that there is some kind of “quasistationarity” in the
sense that the shadowing/fading changes slowly enough to allow the chain to converge
to its stationarity state, then the stationary distribution can be calculated as:

π(x) =

∫
π(x|F )dF where π(x|F ) =

ρn(x)

ZF
,

and ZF =
∑

x∈EF
ρn(x) being EF the set of possible patterns assuming a constant fading

F . Still, the solution is not trivial and it seem unlikely to find analytical results by this
way. We think that techniques used by physicists known as “Spin Glasses” [101] may
help to estimate ZF or Z. However the high complexity of these techniques put this
analysis out of scope of this thesis.

5.3.2 Matérn like Process

As mentioned before, when shadowing/fading effects are considered there is no more a
minimum fixed distance between two active links. This means that a hard core model
such as the MHC introduced in Sec. 5.2.3 cannot be used here. Instead a Matérn like
process can be defined by replacing the ball Bxi(h) for the exclusion domain C(i); i.e.
a node will be retained by this process if its mark is the smallest in its RED. It is quite
easy to see that the retained nodes represent valid transmission patterns for CSMA/CA
and that once again this model is conservative (a link may be removed even if there is
no active nodes in its exclusion domain). We will refer to this model as MRED as for
Matérn RED.

Consider first the reference (deterministic) line topology and assume as before in-
dependent uniform marks, m(i) representing the mark of link i. For this case, we can
calculate the access probability as follows:

P (i access the channel|m(i) = t) =
∏

j 6=i

P (j /∈ C(i)) + P (j ∈ C(i),m(j) > t)
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=
∏

j 6=i

1 − P (j ∈ C(i)) + P (j ∈ C(i))P (m(j) > t)

=
∏

j 6=i

1 − P (j ∈ C(i)) + P (j ∈ C(i))(1 − t)

=
∏

j 6=i

1 − tP (j ∈ C(i)) =
∏

j 6=i

(1 − tpij)

To calculate pij, i.e. the probability that j belong to the exclusion domain of i, consider
the (independent) events Ahk = {P (h, k) > P0} = {F h

k > P0
PL(h,k)} with h ∈ {Ti, Ri}

and k ∈ {Tj , Rj}. Then pij can be calculated as follows:

pij = P




⋃

h,k

Ahk



 = 1 − P




⋂

h,k

Ac
hk



 = 1 −
∏

h,k

P (Ac
hk), (5.16)

where:

P (Ac
hk) = 1 − P (Ahk) = 1 − P

(
F h

k >
P0

PL(h, k)

)
,

which depends on the fading distribution. Then, the access probability can be written
as:

P (i access the channel) =

∫ 1

0

∏

j 6=i

(1 − tpij)dt.

This formula can be easily and accurately calculated numerically, and the spatial reuse
is simply the mean access probability:

σ =
1

L

L∑

i=1

P (i access the channel). (5.17)

Other performance indicators such as the fairness or throughput, can also be evaluated
from the calculation of the access probability. In Sec. 5.4 we will compare the results
obtained by this model with the ones obtained by the RED model defined in the
previous section.

The example presented here is very simple. However, more general cases can be
analyzed. For instance, in [20, 100] results are obtained for a network where transmit-
ters are assumed to be an independently marked Poisson point process on the plane.
In these works, authors calculate the access probability of a typical node as well as the
probability of joint medium access for several nodes. The coverage probability and the
density of successful transmissions can also be evaluated. More precisely, the access
probability is given by:

p =
1 − e−N

N ,
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where N = E(C(0)) is the mean number of contenders of a typical node in the network.
If the intensity of the underlying Poisson p.p. goes to infinity the access probability p
goes to 1/N . In particular if Rayleigh fading with parameter µ is assumed,

N = 2πλ

∫ ∞

0
e−P0µl(r)rdr,

where l(r) is the path-loss function (see next chapter for more details on this model).

The Matérn process suffers, as we mentioned before, of being too conservative.
This means that less connections than in the real protocol will be accepted and so
the estimated throughput for the accepted connection will be larger than for the real
protocol. However, up to date and to the best of our knowledge, a quantitative analysis
of the difference between this model and the real protocol has not been performed. In
the following section, we will present such analysis.

5.4 Comparison Results

In this section, we will compare the results obtained by the different models introduced
in the previous sections. The objective of this comparison is twofold. On the one hand,
we want to evaluate the impact of including the shadowing/fading effects on the models.
On the other hand, we want to quantify how conservative the Matérn like models are.

To achieve this we will assume a slotted division of time; i.e. all transmissions start
and finish at the same time and the selection of the set of active transmissions is random
and is the same, in law, at each time slot, but independent from time slot to time slot.
As mentioned before, a very important performance indicator is the spatial reuse (SR).
However, the accepted connections may obtain a very poor quality. We hence also
measure the mean rate (MR) obtained by each of them, which will be evaluated as
ρ = log2(1 + SINR).

In this section, we will consider a line topology with L = 100 nodes and d = 1. Re-
garding the propagation model, we fix A = −53dB, r0 = 0.01 and α ∈ {2.5, 3, 4}, which
correspond to different propagation scenarios (e.g. for a typical urban environment α is
about 3). Finally, we fix P = 2.3dBm and W = −96dBm for all nodes. Concerning the
fading model, we analyze two different models: Rayleigh fading with parameter µ = 1
and Lognormal shadowing with standard deviation σ = 4dB. The results of this section
are obtained by a mix of simulation and analytical results. In the simulations, each
algorithm is performed N = 1000 times, each time representing a slot. At each time
slot, a symmetric matrix of random numbers is constructed representing the symmet-
ric random fading/shadowing. In each repetition (slot), the order at which the nodes
intend to access the channel is random, selected according a Uniform distribution in
the interval [0, 1]. The decision of accepting the transmission or not is taken according
to the selected model.

The model introduced in Sec. 5.2.1 will be referred to as CED as for Constant
Exclusion Domain. Its Matérn version (cf. Sec. 5.2.3) will be identified as MCED.
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The shadowing/fading aware model defined in Sec. 5.3.1 will be referred to as RED as
for Random Exclusion Domain, whereas MRED refers to its Matérn version defined in
Sec. 5.3.2.

5.4.1 RED Model Analysis

We will analyze here the RED model and we will further compare it with CED. We
consider first the mean number of contenders of a typical transmission. Note that this
set has the same law for all links provided all transmitter-receiver segments have the
same length and orientation. The law of the typical RED is then defined as the law of
the RED of any such link. All performance metrics clearly depend on it: a large typical
RED results in small access probability and so in poor spatial reuse. On the contrary
a small RED results in high access probability and so in high spatial reuse.

Let Ni be the number of links in C(i):

Ni =
∑

j 6=i

1{j∈C(i)}.

The mean number of contenders of link i can be calculated as follows:

E(Ni) =
∑

j 6=i

P (j ∈ C(i)) =
∑

j 6=i

pij, (5.18)

where pij was already calculated in the previous section (see (5.16)) as:

pij = 1 −
∏

h,k

P (Ac
hk) (5.19)

where:

P (Ac
hk) =





e
− P0

PL(h,k) for Rayleigh fading,

Φ( log(P0/PL(h,k))
σ ) for Lognormal shadowing,

and Φ is the Gaussian cumulative distribution function.

For the line topology and assuming d(h, k) 6= 0, we have P0
PL(h,k) = K

|h−k|−α , where

K = P0/PAd
−α. A similar expression will be valid for a regular topology in R

2.
However we cannot calculate explicitly the spatial reuse or the throughput obtained by
this model in any case.

Figure 5.4(a) reports on the mean number of contenders for the line topology with
Lognormal shadowing for different values of α as a function of the constant K. Results
under Rayleigh fading assumption are reported in Fig. 5.4(b). The values of K were
selected in order to obtain comparable results for both channel models. Note that when
α increases, the mean number of contenders decreases: for high values of α it is less
likely that distant links interfere.

We now show that RED differs from CED or equivalently that fading/shadowing
plays a role. Firstly, note that as K increases, for all values of α, the mean number of



144 5.4. Comparison Results

0 1 2 3 4 5
0

5

10

15

 

 

K

α=2.5
α=3
α=4

(a) Lognormal shadowing

0  0.1 0.2 0.3 0.4 0.5
0

5

10

15

K

 

 

(b) Rayleigh fading

0 1 2 3 4 5
0

20

40

60

80

100

K

(c) Percentage of distant com-
petitors

Figure 5.4: Mean number of contenders for RED assuming (a) Lognormal shadowing
or (b) Rayleigh fading as a function of K = P0/PA, and (c) percentage of distant
competitors for the Lognormal case.

contenders converges to a value approximately equal to 4. This same value for CED
would mean that the contenders of each link are its two left/right nearest neighbors.
Although this mean number is the same, the actual contenders are not the same. In each
sample, we counted the number of times there was at least one contender link outside
this region. In Fig. 5.4(c), we show these results in percentage for the Lognormal case.
For example, if α = 3 and K = 2.1 (value of K for which the number of contenders is
exactly 4), we obtain that in 51% of the cases, there is a contender which is not a two
left/right neighbor. Note that for most values of K and α, in more than 20% of the
cases there is a contender which is not a two left/right neighbor. In what follows we
will compare RED and CED in terms of spatial reuse (SR) and mean rate (MR).

Comparison with CED

The difference on the number and the nature of the contenders also translates into
different performance results. Remember that the CED model introduced in Sec. 5.2.1
was analyzed in a particular case where the RXRange was assumed to be equal to
the CSRange and equal to the distance between two consecutive nodes. However, to
perform a fair comparison with RED, a more realistic scenario will be assumed in which
the carrier and sensing range depends on the variable P0 (or K). The previous case
simply corresponds to a particular value of P0 that depends on other parameters such
as the transmission power or the attenuation function: the relation between K and the
RXRange is given by equation (5.3).

The SR for CED can be calculated as a function of the minimum distance between
two active nodes using formula (5.4): results are reported in Fig.5.5(a). The most left
value is l = 2 which corresponds to the case that almost one of two links is active and
the SR is approximately 0.5. The most right value l = 12 is an extreme case and the
corresponding SR is very poor. It must be noted that these results do not depend on
the value of α nor on the fading/shadowing model.
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Figure 5.5: (a) Spatial reuse for CED as a function of l. Number of contenders (or
ED size) for those values of K that correspond to the Lognormal shadowing (b) and
Rayleigh fading (c) for the RED model.
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Figure 5.6: Comparison of the Spatial Reuse for CED and RED assuming Lognormal
shadowing.

The relation between K and l can be seen through the number of contenders (NC)
of an active link (nodes in its exclusion domain), since for the line topology NC is equal
to 2 × (l − 1). In Fig.5.5(b), results on the NC are shown for different values of α,
for the values of K that correspond to those analyzed for RED, under the Lognormal
assumption. Three different values are obtained which correspond to l = 2, 3, 4. In
this case, there is no difference for the different values of α probably due to the chosen
granularity of K. If Rayleigh fading is considered, results are reported in Fig. 5.5(c)
and once again, the values of K correspond to those analyzed for the RED model. In
this case the NC shows more variations with respect to K and α.

Comparing these results with those obtained by RED (see Fig. 5.4), we find that
for the same value of K, the number of contenders of RED is larger than for CED. If
Lognormal shadowing is considered the differences can be very important. This means
that the inclusion of the shadowing/fading effects results in considering more nodes
as contenders as for the deterministic case, including nodes that are not the nearest
neighbors.

It should be clear now that all performance metrics for CED are step functions of K.
In Fig. 5.6, the SR for CED and RED are reported assuming Lognormal shadowing.
It can be seen that, for both CED and RED, the SR increases with α and with K;
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Figure 5.7: Comparison of the Mean Rate for CED and RED assuming Lognormal
shadowing.
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Figure 5.8: Spatial Density of Rate for CED and RED assuming Lognormal shadowing
(a) or Rayleigh fading (b) for α = 3.

in each case there are less contenders (see Fig. 5.4(a) and Fig. 5.5(b)). Similarities
between both models are limited to this observation. Note that for each value of K,
the SR for RED is smaller than the corresponding value for CED. This is due to the
fact that, as already discussed, the number of contenders of RED is larger than that
of CED. However, this difference decreases with α. As an example of the magnitude of
the difference on the SR between the two models, if we fix α = 3 we obtain that the
relative difference is about 25% in mean and can go up to 40%.

We now focus on the comparison in terms of the mean rate (MR). Results are
reported in Fig. 5.7. For both models, the mean rate decreases with K: when K
increases the number of active connections increases and so does the interference. For
CED the impact of α on the SR was not significant, whereas for the MR it is more
significative since the SINR depends on it. In particular, for larger values of α, each
interferer have less impact on the SINR. In any case, for each value of K and α, RED
obtains strictly larger values than CED (exactly the contrary as for SR). The relative
difference on the MR are increased with respect to the ones obtained with the SR,
being in general larger than 50% and going up to 100%.

The previous observations illustrates on the tradeoff between the spatial reuse and
the rate: if the SR increases the MR decreases. To evaluate more accurately this
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Figure 5.9: Spatial Reuse for CED and MCED as a function of l (a) and its relative
difference (b).

tradeoff we consider the Spatial Density of Rate (SDR), i.e. the average of the product
of the access probability (pi) and the mean rate (ρi) of each connection:

SDR =
1

L

L∑

i=1

piρi.

Results for the SDR are reported in Fig. 5.8 for both attenuation models with α = 3.
It must be noted that results depend on the channel model. When RED is considered,
SDR is relatively constant with K for both channel models. The difference between
Lognormal and Rayleigh is that for the former we obtain smaller values. On the other
hand, the difference between both propagation models is much more significant for
CED. Not only is there a difference in the magnitude, but the dependence on K is
accentuated for the Lognormal case.

More than the quantitative results, the goal of this section was to reveal that qual-
itatively different results are obtained with the two considered models. As such, the
shadowing/effects must be taken into account.

5.4.2 Matérn like Models Analysis

In this section we will compare the performance of the Matérn like models MCED and
MRED with the one obtained by CED and RED. We have already seen in Sec. 5.2.1,
that Matérn like models are conservative, since they underestimate the number of
simultaneous connections. Here we want to quantify this difference. We first present
the results for the constant exclusion domain, where the shadowing/fading effects are
not considered, and we defer to the last part of the section the comparison for the
shadowing/fading aware models.

The SR and MR for the CED model were already shown in the previous section.
Concerning MCED, we have seen in Sec. 5.2.3 that the SR can be calculated in terms
of the exclusion domain size which determines the value of l. Hence, we report results
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Figure 5.11: Relative difference between CED and MCED for the Mean Rate assuming
Lognormal shadowing (a) or Rayleigh fading (b).

of the SR for MCED as a function of l in Fig.5.9(a). As expected, the SR obtained by
MCED is always smaller than the one of CED. In Fig. 5.9(b), we report the relative
difference (SRdif = (SRmced−SRced)/SRced) between both models which increases with
l and varies between 20% and 30%, corresponding the larger differences to extreme
values of l.

We report in Fig. 5.10 the MR for CED and MCED. As expected the MR obtained
by MCED is always larger than the one obtained by CED, as it is the contrary for the
SR, and for both models the MR increases with α. To ease the comparison we report
also the relative difference in Fig. 5.11, from which it can be see that the channel model
has different impact. For instance, if we concentrate on the Rayleigh case, the value of
α limitedly affects the relative difference whereas for the Lognormal case the differences
increase with it, specially for large values of K where the difference can be 40%.

We analyze now the difference between RED and MRED. We report in Fig. 5.12 the
spatial reuse and the mean rate for Lognormal shadowing for all values of α. The spatial
reuse for the MRED was obtained from the formula (5.17) derived in Sec. 5.3.2. We
have already analyzed the RED model in Sec. 5.4.1, so we concentrate on its difference
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Figure 5.12: Spatial Reuse (a) and Mean Rate (b) for RED (solid line) and MRED
(dotted line) assuming Lognormal shadowing.
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Figure 5.13: Relative difference between RED and MRED for the Spatial Reuse (a)
and the Mean Rate (b).

with MRED. Moreover, the general conclusions of this comparison are the same as
the ones already obtained from CED and MCED. That is, the SR (MR) for MRED is
always smaller (larger) than the one obtained by RED. Hence we concentrate in the
relative difference for the SR and the MR. Results are shown in Fig. 5.13, for both
channel models and all values of α. It can be seen that in general, the Lognormal case
presents larger differences than that of Rayleigh. For both models, the differences in
the SR decrease with α and with K. Regarding the MR, the differences clearly decrease
with α for the Rayleigh case, which is not the case under the Lognormal assumption.
All in all, it can be concluded that the relative difference is larger than 20% being about
30% in mean for the spatial reuse and mean rate.

As in the previous section, we will also consider the SDR which in certain sense
accounts both the SR and the MR at the same time. We report in Fig. 5.14 the relative
difference for this metric, for both channel models. It can be seen that the difference
can still be important although this time it can be negligible for certain values of K
and α. These values correspond to large number of contenders and so low values of
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Figure 5.14: Relative difference between RED and MRED for the Spatial Density of
Rate assuming Lognormal shadowing (a) or Rayleigh fading (b).

spatial reuse. The differences for both cases decrease with K and α, with a maximum
of 30% (20%) for the Rayleigh (Lognormal) case.

5.5 Conclusions

In this chapter we have considered different models for the analysis of the classic
CSMA/CA protocol. In order to correlate the assumptions of these models with the
real features of the protocol, we described first those aspects that are essential for mod-
eling purposes. From this analysis two main observations are deduced. On the one
hand, these models are based on simplifying assumptions that, in certain cases, may
influence the results obtained from them. On the other hand, assumptions regarding
some important features of the protocol are not explicitly stated.

In particular, all of the analyzed models are based on the hypothesis that the at-
tenuation function is monotonic on the distance between nodes, and do not include
shadowing/fading effects. We then concentrated on the possibility of extending such
models so that they include the random variations of the channel conditions. In par-
ticular, we proposed an extension based on the definition of random exclusion domains
(RED). We showed that very different results are obtained by this model when com-
pared to the previous ones. This comparison shows that the shadowing/fading effect
plays a major role in the achieved performance of the protocol and that it must be
taken into account.

However, some of the techniques used by the previously analyzed proposals, that
allow to obtain analytical results, cannot be extended to this more general case (e.g.
the packing formalism or the truncation of a free process). These analytical results
(even with the assumption of a deterministic attenuation function) were obtained only
for the line topology. The only model capable to provide analytical results for more
general topologies and for random channels is a Matérn like model (at least to the best
of our knowledge). Unfortunately, this kind of models are known to be intrinsically
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conservative. We have quantified how conservative this model is, finding that the
relative difference is about 30% in terms of spatial reuse and mean rate. If, on the
other hand, the spatial density of rate is considered, the differences are reduced, being
less than 10% in many cases (specially under the Lognormal shadowing model). Despite
these quantitative differences, results obtained are qualitatively similar. For instance,
the dependence of the performance indicators (e.g. the spatial reuse and the mean rate)
on K is almost the same under the two models. The difference between the obtained
results is roughly constant for all values of K.

Finally, in addition to not considering shadowing/fading effects, the consulted ref-
erences do not explicitly state the considered CCA mode (i.e. the physical sensing of
the channel). Indeed, we have shown that if the CCA is assumed to be in Carrier
Detection mode, then models based on the definition of an exclusion domain for each
active connection are still accurate. However, this is not the case if CCA is in Energy
Detection mode. In this case, the interference created by all the ongoing transmission
should be taken into account, and so it cannot be considered as a pairwise relationship.
Models for this case will be analyzed in the next chapter.





Chapter6
Modeling and Comparison of the CCA
modes

In the previous chapter we analyzed different models that can be used to represent
the CSMA/CA protocol. In particular we have identified that an underlying, but
essential, assumption in all of them is that the Clear Channel Assessment (CCA) is
performed in Carrier Detection (CD) mode. This means that an intending transmitter
will consider the channel as busy if it detects at least one signal. However, we have
already discussed that if the Energy Detection (ED) mode is used, then the previously
analyzed models are no longer valid. In this mode the medium is detected as busy if the
total received power is larger than a given threshold. In particular, the models based on
the definition of an exclusion domain in a pairwise manner are not adequate. However,
it is important to highlight that the importance of the CCA in the performance of the
CSMA/CA protocol is crucial, specially when the RTS/CTS is not activated, since in
such case it is the mechanism that decides which nodes will be authorized to transmit.

In this chapter we analyze in more detail the differences between these two modes
(ED vs CD). To perform a more complete comparison we will focus on modeling tech-
niques that provide closed form formulae for the access probability in both cases. The
models that we have studied in the previous chapter correspond to the CD mode and
most of them provide analytical results only in particular cases (for instance a line
topology). On the other hand, models based on stochastic geometry appear to lead to
obtain explicit formulae in many cases. As we shall see, this kind of models are also
adequate for deriving results in the ED mode. We are aware that these models repre-
sent an intrinsically conservative approximation of the real protocol, but the emphasis
of this chapter is put on the comparison between the models of the CCA modes more
than in a comparison between the models and the real performance.

The main objective of this chapter is to obtain a representation of the set of trans-
mitters that can access the medium simultaneously according to both considered CCA
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modes. It should be clear that even if the set of transmitters is assumed to be a Poisson
point process, the set of nodes that are allowed to transmit cannot be obtained as an
independent thinning of the original process in any case. The analytical framework
that we propose in this chapter allows us to calculate the access probability of a typical
node and so the density of nodes that can access the channel at the same time. More
precisely, we will introduce the additive shot noise (ASN) and the extremal shot noise
(ESN) associated with the point process of transmitters and we will show that both
CCA modes can be described in terms of them. This property does not only allow
us to obtain closed form formulae but also provides a quantification of the impact of
considering the total interference received instead of the maximum received power.

6.1 CCA model

We present here the analytical framework that will allow us to calculate the access
probability for the two considered CCA modes.

Let Φ̃ = {(Xi,mi, Fi)} be an independent marked (i.m.) Poisson point process (p.p.)
with intensity λ in R

2 such that:

• Φ = {Xi} denotes the location of the potential transmitters;

• {mi} are iid marks with uniform distribution in the interval [0, 1];

• {Fi = (F i
j : j)}i represents the fading model. F i

j represents the fading from node

Xi to node Xj and the random variables {F i
j}ij are assumed iid with distribution

G. In particular if Rayleigh fading is assumed, F i
j is exponentially distributed

with parameter µ.

In this context we will define two different processes that mean to represent the
two different modes of the CCA: the Carrier Detection (CD) mode and the Energy
Detection mode (ED). As we will see later, the first mode can be represented as a
extremal shot noise whereas the second one can be represented by an additive one.

It should be noted that a model for the CD mode was already presented in Sec. 5.3.2.
This model corresponds to a Matérn like process. We briefly recall that in this case, a
node x detects a node y (or equivalently that they are contenders) if the power received
on x from y is larger than a given threshold P0. The exclusion set of a node is then
defined as the set its contenders. Assuming that the marks m(.) correspond to the
time at which each node intends to access the channel, a node will be retained by the
Matérn process (i.e. the CCA in CD will consider the channel as idle) if it has the
smallest mark in its exclusion domain. Let N (Xi) be the set of contenders of node Xi,
that is:

N (Xi) =
{

(Xj , Fj) ∈ Φ̃ : PjF
j
i L(Xj ,Xi) ≥ P0, j 6= i

}
, (6.1)
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where Pj is the transmission power (that will be assumed constant and equal for all
nodes) and L(Xj ,Xi) = l(|Xj −Xi|) is the path-loss function. Let ei be the medium
access indicator, that is ei = 1 if node Xi passes the corresponding CCA. Then, the
condition to access the medium is:

ei = 1{∀Xj∈N (Xi),mi<mj}. (6.2)

This means that a node will be allowed to transmit if it does not detect any of the
nodes that intended to access the channel before it. This model captures the key
feature that two nodes that detect each other (they belong to their respective exclusion
domains) cannot access the channel simultaneously. As mentioned earlier this model is
a conservative approximation to the real protocol (cf. Fig. 5.2.3).

It is easy to see that the access condition (6.2) is equivalent to impose that the
maximum received power from those nodes whose mark is smaller than mi, is smaller
than P0. Then, the access indicator ei can be rewritten as follows:

ei = 1{
max

(Xj,(mj,Fj))∈Φ̃

PjF j
i L(Xj ,Xi)1{mj<mi}

<P0

}. (6.3)

We define then the following process, that represents the set of transmitters that are
allowed to transmit by the CCA procedure in the CD mode

Φext := {Xi ∈ Φ : ei = 1} .
We will see that it corresponds to an extremal shot noise, which is why we note it Φext.

Following the same ideas as for the CD mode, we can define a way to select those
points that pass the CCA in ED mode, i.e. that verify that the interference over them
at the moment of accessing the medium is smaller than a given threshold I0. Once
again we base our decision on the marks and define a conservative approximation: we
consider the interference created by all previous (i.e. that intend to access the channel
before the tagged node) nodes, even if they are not transmitting. Then, the access
indicator for the CCA in Energy Detection mode can be defined as:

e′i = 1


∑

(Xj,(mj,Fj ))∈Φ̃

PjF j
i L(Xj ,Xi)1{mj<mi}

<I0





. (6.4)

The process that represents the set of allowed transmitters in the ED mode is then:

Φadd :=
{
Xi ∈ Φ : e′i = 1

}
. (6.5)

In this case, a node will be retained if the interference created by the previous intending
nodes over it is smaller than a given threshold.

Both process Φext and Φadd are non independent thinnings of the original Poisson
process since the decision of retaining a point depends on each particular point. This
means that these processes are not Poisson. The intensity of these processes is λp
where p is the corresponding access probability of a typical node and will be calculated
in what follows. Before proceeding to this calculation we will introduce the shot noise,
that will be a key element in the modeling.
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6.2 Shot Noise

In this section we will define the additive and the extremal shot noise, and summarize
their main properties that will be used later for the analysis of the previously defined
processes Φadd and Φext. We will concentrate on the definition of a scalar shot noise,
since it will be our case, but it can be easily extended to the vectorial case.

While the characterization of the interference in a wireless network as a shot noise
is relatively new, the shot noise itself has been the object of studies from a long time
now (at least since the works of Campbell in 1909 [102]). This section is based on [20]
but some of the results on the closed formula of the shot noise distribution can be found
in [103].

Definition 6.2.1 (Additive Shot Noise). Let Φ̃ =
∑

i ε(xi,mi) be a marked process on

R
d with marks in R

l and L : R
d′ × R

d × R
l → R

+ a non-negative response function.
The additive shot noise (ASN) associated with Φ̃ and L is defined by:

I
Φ̃

(y) =

∫

Rd

∫

Rl
L(y, x,m)Φ̃(d(x,m)) =

∑

(xi,mi)∈Φ̃

L(y, xi,mi), for y ∈ R
d′ .

The most common case is where the ASN lives in the same space as the point
process, i.e. d′ = d. The term shot noise comes from the interpretation that if we
consider that each point xi defines a “shot” (via the response function L) then I

Φ̃
(y)

is the sum of the effects of the “shots” at point y. Since the response function L is
positive, the ASN is well defined but it can be infinite.

The expectation of I
Φ̃

(y) can be evaluated from Campbell’s formula [20] (where
Λ(.) is the intensity measure of Φ):

E(I
Φ̃

(y)) =

∫

Rd×Rl
L(y, x,m)Fx(dm)Λ(dx). (6.6)

Please note that what we have defined here as additive shot noise is commonly referred
to simply as shot noise. However we want to emphasize the difference with the extremal
shot noise.

Instead of the sum of the shots, i.e. the sum of the impacts of all points, we can
consider only the strongest impact. This case, which defines an extremal shot noise, is
as follows:

Definition 6.2.2 (Extremal Shot Noise). Let Φ̃ =
∑

i εxi,mi be a marked process on
R

d, with marks in R
l and L : R

d′ × R
d × R

l → R
+ a non-negative response function.

The extremal shot noise (ESN) associated with Φ̃ and L is defined by:

M
Φ̃

(y) = sup
(xi,mi)∈Φ̃

L(y, xi,mi), for y ∈ R
d′ .
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Once again, the ESN is well defined but can be infinite. A very interesting result is
that the distribution of M

Φ̃
(y) can be expressed in terms of the Laplace transform of

an associated (additive) shot noise. More precisely, we have that

P (M
Φ̃

(y) ≤ t) = E


exp






∑

(xi,mi)∈Φ̃

log 1{L(y,xi,mi)≤t}







 . (6.7)

This result will allow us to express the distribution of the ESN explicitly for the par-
ticular case of a Poisson point process.

6.2.1 Poisson point process

Assume now that Φ̃ is an independent marked Poisson point process with intensity
measure Λ and mark distribution Fx(dm). In this particular case, we can obtain a
closed formula for the Laplace transform of the ASN as well as the distribution of the
ESN.

First of all, let us remember that the Laplace transform of Φ̃ is given by the following
expression:

L
Φ̃

(f) = E

(
exp

{
−
∑

xi

f(xi,mi)

})
= exp

{∫

Rd

(
1 −

∫

Rl
e−f(x,m)Fx(dm)

)
Λ(dx)

}
.

(6.8)

Proposition 6.2.3. The Laplace transform of the ASN I
Φ̃

(y) associated to Φ̃ is in this
case given by:

LI(y)(s) = exp

{
−
∫

Rd

∫

Rl

(
1 − e−sL(y,x,m)

)
Fx(dm)Λ(dx)

}
. (6.9)

This formula also allows one to evaluate higher moments of I
Φ̃

(y) by differentiating
at zero. Prop. 6.2.4 gives a condition that assures that the ASN is absolutely contin-
uous with respect to the Lebesgue measure, i.e. it has a density. Under this condition,
the Plancherel-Parseval theorem [97] can be used to derive the distribution of I

Φ̃
(y)

from its Fourier transform.

Proposition 6.2.4. If Λ(Rd) = ∞ and if, for each A ⊂ R
+ of Lebesgue measure 0,

∫

Rd

∫

Rl
1{L(y,x,m)∈A}Fx(dm)Λ(dx) = 0,

then, for all y ∈ R
d′ , the random variable I

Φ̃
(y) has a density.

Let us now concentrate on the extremal shot noise. The following proposition gives
its distribution:
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Proposition 6.2.5. The distribution of the extremal shot noise ESN associated to Φ̃
is in this case given by:

P (M
Φ̃

(y) ≤ t) = exp

{
−
∫

Rd

∫

Rl
1{L(y,x,m)>t}Fx(dm)Λ(dx)

}
. (6.10)

This result follows from (6.7) and the Laplace transform of a Poisson p.p., given by
(6.8).

The previous results show us that under the Poisson assumption, the distribution
of the ESN can be explicitly calculated. For the ASN we may only evaluate its Laplace
transform. Its distribution is more difficult to calculate (it can nevertheless be obtained
via the inverse fourier transform).

6.3 CCA & Shot Noise

After these general results on the shot noise, let us now come back to the setting of
Sec. 6.1, i.e. the process Φ represents the location of the potential transmitters and the
marks represents the time at which each node intends to access the channel and the
fading. In this section, we will show that when conditioning on the value of the mark
m(.) of the considered node, the access conditions (6.3) and (6.4) can be expressed in
terms of a shot noise (extremal and additive respectively). The access probability may
be obtained by deconditioning on the mark distribution. This will be presented in the
next section.

Let us assume that the intending node has a mark m()̇ equal to t. The set of nodes
with mark smaller than t, which will be referred to as Φt, corresponds to an independent
thinning of Φ. Then, the process Φt is also a Poisson process with intensity λt. We
denote Φ̃t = {(Xi, (mi, Fi))} with Xi ∈ Φt the associated marked process.

Let It(y) be the ASN associated to Φ̃t, that is:

It(y) =
∑

(Xj ,Fj)∈Φ̃t

L(y,Xj , Fj) where L(y, x, f) = Pfl(|x− y|). (6.11)

It(y) represents the interference created over y by the nodes that intended to access
the channel before it (i.e with smaller marks). Then the medium access indicator for
the ED mode (6.4) can be expressed in terms of the ASN It(y) as follows:

e′i = 1{It(Xi)<I0}. (6.12)

In the same way, let M t be an ESN associated to Φ̃t, defined as:

M t(y) = max
(Xj ,Fj)∈Φ̃t

L(y,Xj , Fj) where L(y, x, f) = Pfl(|x− y|). (6.13)
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M t represents the maximum shot of the previous intending nodes over y (i.e. the
strongest signal power received at y). Then, the condition to access the channel in
CD mode (6.3) can be expressed in terms of the ESN M t(y):

ei = 1{M t(Xi)<P0}. (6.14)

Under the Poisson assumption of Φ and then of Φt, the results for the ASN and
the ESN derived in the previous section can be used to calculate the access probability
conditioned on the value of the mark. In what follows we will calculate the Laplace
transform of the ASN (and the distribution when possible), and the distribution of the
ESN for this setting assuming Rayleigh fading and a given path-loss function. The
following two subsections discuss the case of ASN and ESN respectively. Since we
will concentrate on a typical node 0, we suppress the reference to the point in the
calculations (that is It(0) = It and M t(0) = It).

6.3.1 Additive Shot Noise

For the setting of Sec. 6.1, the Laplace transform of It is:

LIt(s) = exp

{
−
∫

R2

∫ ∞

0
1 − e−sPfl(|x|)G(df)λtdx

}

= exp

{
−2πλt

∫ ∞

0

(
1 −

∫ ∞

0
e−sPfl(r)G(df)

)
rdr

}

= exp

{
−2πλt

∫ ∞

0
(1 − LF (Psl(r))) rdr

}
= exp {−tKF (s)} , (6.15)

where KF (s) = 2πλ
∫∞
0 (1 − LF (Psl(r))) rdr and LF is the Laplace transform associ-

ated to the fading distribution. This expression follows directly from (6.9).

In particular, if Rayleigh fading is assumed (with parameter µ), LF (s) = µ
µ+s and

LIt(s) = exp

{
−2πλt

∫ ∞

0

(
r

1 + µ
sP l(r)

)
dr

}
. (6.16)

Moreover, if the path-loss function is assumed to be l(r) = (Ar)−β with β > 2, the
Laplace transform is:

LIt(s) = exp

{
−λt

(
sP

µ

)2/β k(β)

A2

}
, where k(β) =

2π2

β sinπ/β
. (6.17)

If we consider the particular case of β = 4, equation (6.17) gives:

LIt(s) = exp
{
−
√

2cs1/2
}

with
√

2c =
λtk(4)

A2

(
P

µ

)1/2

=
λtπ2

2A2

(
P

µ

)1/2

.
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Then It follows a Lévy distribution with parameter c, which has the following closed
formula:

P (It ≤ s) = 1 − erf

(√
c

2s

)
= 1 − erf

(
λtπ2

4A2

√
P

sµ

)
,

where erf is the error function, i.e. erf(x) = 2√
π

∫ x
0 e

−s2
ds. For other values of β, there

is no closed formula for the distribution of the additive shot noise.

For β 6= 4, Prop. 6.2.4 gives a condition that assures that ASN has a density. In
the particular case of a Poisson process, sufficient conditions are at least one of the
following: the distribution function G of the marks admits a density which is not null
(i.e. G(0) < 1) or the path-loss function l(r) is strictly decreasing [20]. When ASN
has a density, we may use the inverse Plancherel-Parseval theorem [97], to obtain its
distribution (provided that LI(s) is square integrable):

P (a ≤ I(y) ≤ b) =

∫ +∞

−∞
LI(2iπs)

e−2iπbs − e−2iπas

−2iπs
ds,

where a ≤ b. Clearly, this expression is not tractable and of limited practical use.

6.3.2 Extremal Shot Noise

Concerning the extremal shot noise, we can obtain a closed formula for its distribution
directly from (6.10):

P (M t ≤ s) = exp

{
−
∫

R2

∫

R

1{L(0,x,f)≥s}Fx(df)λtdx

}

= exp

{
−
∫

R2
P (F ≥ s/P l(|x|))λtdx

}

= exp

{
−2πλt

∫ ∞

0
1 −G(s/P l(r))rdr

}

= exp
{
−tN (s)

}
, (6.18)

where N (s) = 2πλ
∫∞
0 1 − G(s/P l(r))rdr may be interpreted as the mean number of

contenders of node 0 since (cf. 6.1):

N (s) = E0




∑

(Xj ,Fj)∈Φ̃

1{PFj l(|Xj |≥s)}


 = λ

∫

R2
P (F ≥ sP l(|x|))dx. (6.19)

In particular, if Rayleigh fading with parameter µ is assumed, the result is :

P (M t ≤ s) = exp

{
−2πλt

∫ ∞

0
e

µs
Pl(r) rdr

}
. (6.20)
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Moreover, if the path-loss function is assumed to be l(r) = (Ar)−β with β > 2 the final
result is:

P (M t ≤ s) = exp
{
−tN (s)

}
where N (s) =

2πλΓ(2/β)

βA2(sµ/P )2/β
(6.21)

and Γ(a) =
∫∞
0 e−tta−1dt is the Gamma function.

6.4 Access Probability

In this section we will calculate the access probability of a typical node, or equivalently
the intensity of the processes Φadd and Φext. We will assume as default scenario Rayleigh
fading and path-loss function l(r) = (Ar)−β with β > 2. We will also consider two
different cases: deterministic and random thresholds P0 and I0. While it is probably
more appropriate to consider the deterministic case, the lack of a closed formula for
the distribution of the ASN (except for the case of β = 4) is a drawback that can be
avoided if a random threshold is considered. Moreover, interesting conclusions will be
drawn from the comparison of the random and deterministic case. Finally, we will see
that the difference between the intensity of both processes can be quantified when the
intensity of the original p.p. is large enough.

6.4.1 Random detection threshold

Assume first that both detection threshold P0 and I0 are random variables, more pre-
cisely, exponentially distributed with parameter γ.

Additive Shot Noise (ED)

Under the Palm probability, the access probability can be calculated as:

prand
I = E0(e′i) = E0(e′0) =

∫ 1

0
P 0(e′0 = 1|m0 = t)dt.

Recalling the access condition (6.12), this conditional probability can be calculated as
follows:

P 0(e′0 = 1|m0 = t) = P (It(0) < I0) = P (It < I0)

=

∫ ∞

0
P (s < I0)PIt(ds) =

∫ ∞

0
e−γsPIt(ds) = LIt(γ).

By deconditioning with respect to t, we obtain that in this case the access probability
is:

prand
I =

∫ 1

0
P 0(e′0 = 1|m0 = t)dt =

∫ 1

0
LIt(γ)dt =

∫ 1

0
e−tKF (γ)dt =

1 − e−KF(γ)

KF (γ)
,

(6.22)
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where KF (s) =
∫∞
0 (1 − LF (Psl(r))) rdr was introduced before and depends on the

fading distribution and the path-loss function. In particular, for our default scenario
we obtain that:

KF (γ) =
λk(β)

A2

(
γP

µ

)2/β

=
2πλΓ(2/β)Γ(1 − 2/β)

βA2

(
γP

µ

)2/β

. (6.23)

Remark 6.4.1. Observe that when λ goes to infinity, prand
I is asymptotically equivalent

to 1/KF (γ).

In particular this means that the density of accepted transmitters when the intensity
of the transmitters is large enough is the constant λ/KF (s). For our default setting
this is:

lim
λ→∞

λprand
I =

βA2

2πΓ(2/β)Γ(1 − 2/β)

(
µ

γP

)2/β

=

(
µ

γP

)2/β A2

π

1

Γ(1 + 2/β)Γ(1 − 2/β)
.

(6.24)

Extremal Shot Noise (CD)

As for the additive case, the probability of being retained by Φext for a typical node,
given that its mark is equal to t, is given by:

P 0(e0 = 1|m0 = t) = P (M t(0) < P0) = P (M t < P0) = LM t(γ). (6.25)

Unfortunately, in this case the Laplace transform does not have a closed formula. Still,
we can calculate this probability using (6.18) as:

P (M t < P0) =

∫ ∞

0
P (M t < s)γe−γsds =

∫ ∞

0
e−tN (s)γe−γsds, (6.26)

where N was defined in (6.19). By deconditioning with respect to t and by Fubini’s
exchanging lemma, we obtain that:

prand
M =

∫ 1

0
P 0(e0 = 1|m0 = t)dt =

∫ 1

0

∫ ∞

0
e−tN (s)γe−γsdsdt

=

∫ ∞

0

(∫ 1

0
e−tN (s)dt

)
γe−γsds =

∫ ∞

0

1 − e−N (s)

N (s)
γe−γsds.

Remark 6.4.2. When λ goes to infinity, 1−e−N(s)

N (s)
is asymptotically equivalent to

1/N (s).

Then, using (6.21), we obtain that the intensity of Φext converges to the following
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constant:

lim
λ→∞

λprand
M =

βA2

2πΓ(2/β)

(
µ

P

)2/β ∫ ∞

0
γe−γss2/βds

=
βA2

2πΓ(2/β)

(
µ

P

)2/β (1

γ

)2/β

Γ(1 + 2/β)

=

(
µ

γP

)2/β A2

π
. (6.27)

The last equality follows from the property of the Gamma function: Γ(1 + z) = zΓ(z).

Remark 6.4.3.

1. Since the sum is always larger than the maximum it should be clear that the
intensity of Φadd will be always smaller than the one of Φext. Moreover, from
equations (6.24) and (6.27) it can be observed that the difference between both
intensities (for λ large enough) is simply a constant factor:

lim
λ→∞

λprand
I

λprand
M

=
1

Γ(1 + 2/β)Γ(1 − 2/β)
< 1. (6.28)

This factor which depends only on the path-loss exponent β, is always less than
1 and can be seen as the loss on the density of active transmitters for considering
the total interference received by the intending node, instead of the maximal
reception power, to decide if the node can be activated or not (i.e. for considering
the CCA in energy detection mode instead of carrier detection one).

2. When β → ∞ both functions Γ(1 + 2/β) and Γ(1 − 2/β) converge to 1. This
means that the intensities of Φext and Φadd will be equal. Moreover, the function
1/Γ(1 + 2/β)Γ(1 − 2/β) is monotone increasing, which means that the difference
on the intensities decreases with β. These conclusions are not surprising: for
large values of β the impact of each shot is less significant and so the difference
between the maximum and the sum is less important. However, (6.28) gives a
quantification of this difference when the intensity of the original process is large
enough. Further details on this function will be discussed in Sec. 6.5.

6.4.2 Deterministic Threshold

In this section we will assume that both thresholds P0 and I0 are positive constants.

Additive Shot Noise (ED)

The access probability given that the mark of the node 0 is t, is given directly by
the distribution of It(0). This distribution has a closed formula only for β = 4 as we
mentioned in the previous section. For this case, the access probability is:
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pdet
I =

∫ 1

0
P (It(0) ≤ I0)dt =

∫ 1

0
1 − erf(at)dt where a =

λπ2

4A2

√
P

I0µ
.

Then,

pdet
I =

∫ 1

0

(
1 − 2√

π

∫ a

0
e−u2t2tdu

)
dt = 1 − 2√

π

∫ a

0

(∫ 1

0
e−u2t2tdt

)
du

= 1 − 2√
π

∫ a

0

1 − e−u2

2u2
du

= 1 − 1√
π

(
−1 + e−a2

a
+

√
πerf(a)

)
.

In particular if we define b such that a = λb, the intensity of Φadd can be written
as:

λpdet
I =

1√
πb

(1 − e−a2
) + λ(1 − erf(a)). (6.29)

Remark 6.4.4. When λ goes to infinity, we obtain the following result for the intensity
of Φadd:

lim
λ→∞

λpdet
I =

1√
πb

=
4A2

√
ππ2

√
I0µ

P
. (6.30)

Some interesting remarks can be deduced about the relation between the random
and deterministic threshold assumptions:

Remark 6.4.5. Note that the quotient between the random and the deterministic case
is also a constant factor when λ goes to infinity. Using (6.24) with I0 = 1/γ and β = 4

we obtain that λprand
I =

(
µI0
P

)1/2
2A2

π2 when λ goes to infinity, and therefore:

lim
λ→∞

λprand
I

λpdet
I

=

√
π

2
= Γ(1 + 1/2). (6.31)

Remark 6.4.6. Note that in the previous remark Γ(1 + 1/2) = Γ(1 + 2/β). We may
then conjecture that for all β > 2:

lim
λ→∞

λprand
I

λpdet
I

= Γ(1 + 2/β). (6.32)

If this conjecture is valid, the intensity of Φadd when λ goes to infinity, assuming that
I0 = 1/γ, can be deduced from the random case:

lim
λ→∞

λpdet
I =

1

Γ(1 + 2/β)
lim

λ→∞
λprand

I

=
1

Γ(1 + 2/β)

(
µI0
P

)2/β A2

π

1

Γ(1 + 2/β)Γ(1 − 2/β)
. (6.33)
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Note that for β = 4 we find again the result obtained in (6.30). This conjecture will be
validated by simulations in the next section, and enforced by the observations we now
present for the ESN case.

Extremal Shot Noise (CD)

The results for this case are already known and the resulting access probability is (see
[20, 100] or (6.27)):

pdet
M = P (M t(0) ≤ I0) =

1 − e−N (P0)

N (P0)
.

In particular, for our default setting (see (6.21)):

N (P0) =
2πλΓ(2/β)

β(P0µ)2/βA2
.

Remark 6.4.7. The access probability is asymptotically equivalent to 1/N (P0), which
means that:

lim
λ→∞

λpdet
M =

1

N (P0)
=

βA2

2πΓ(2/β)

(
P0µ

P

)2/β

=

(
P0µ

P

)2/β A2

π

1

Γ(1 + 2/β)
. (6.34)

In this case, we can also deduce interesting relations between the different cases we
analyzed:

Remark 6.4.8.

1. In this case the following relation holds:

lim
λ→∞

λprand
M

λpdet
M

= Γ(1 + 2/β) < 1. (6.35)

Observe that this ratio is the same as the one we discussed for the ASN (see
(6.32) in Rmk. 6.4.6), which further supports the validity of our conjecture.

2. If we compare the result for the additive and the extremal case for P0 = I0 and
assuming that our conjecture is valid for β 6= 4 (see equation (6.33) and (6.34)):

lim
λ→∞

λpdet
I

λpdet
M

=
1

Γ(1 − 2/β)Γ(1 + 2/β)
< 1. (6.36)

Interestingly enough, this ratio is the same as in the case when thresholds were
assumed to be random variables (see (6.28)). We have already observed that the
intensity of Φadd will always be smaller than that of Φext. In this case, we may go
further on this: if the fading conditions and the order in which the nodes intend
to access the channel is the same, a node that is retained by Φadd will always
be retained by Φext (recall that we assumed P0 = I0). This means that the set
of nodes allowed to transmit by Φadd is a subset of those accepted by Φext. In
Fig. 6.1 we can see an example for λ = 0.5, β = 3.5 and P0 = I0 = 5e− 005.
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Figure 6.1: The set of points retained by Φadd is a subset of those retained by Φext.

3. By combining the results given by (6.36) and (6.31) we obtain that the relation
between the additive process with random threshold and the extremal one with
deterministic threshold P0 = 1/γ is:

lim
λ→∞

λprand
I

λpdet
M

=
1

Γ(1 − 2/β)
< 1. (6.37)

This same result can be deduced from the equality (see (6.21) and (6.23)):

KF (γ) = N (1/γ)Γ(1 − 2/β).

This means that there is a close relation between the additive and the extremal
shot noise even if we considered a random threshold for the first case and a
deterministic for the other one.

6.4.3 Additive and Extremal Shot Noise

As we mentioned in the previous chapter there is a third mode of the CCA which
corresponds to a combination of the two previously analyzed modes. In this case, the
medium is reported busy if at least one signal is detected and the total received power is
larger than a given threshold. In order to obtain closed form formulae, we will assume a
random detection threshold for the interference and a deterministic one for the maximal
received power. The access probability in this mode can be deduced from the following
result [104]:

Proposition 6.4.9. Assume the setting of Sec. 6.1, let I and M be the corresponding
additive and extremal shot noise. Assume also Rayleigh fading and path-loss function
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l(r) = (Ar)−β with β > 2. Let us define:

L(u)
I (s) = E(e−sI1{M≤u}).

Then,

L(u)
I (s) = exp

{
−2πλ

(
sP

µAβ

)2/β

Γ(1 + 2/β)

(
Γ(1 − 2/β) +

2

β
Γ(−2/β, uµ)

)}
,

where Γ(a, x) =
∫∞
x e−tta−1dt is the incomplete Gamma function.

Proof.

L(u)
I (s) = E(e−sI1{M≤u}) = E


e

−s
∑

(xi,Fi)∈Φ̃

PFil(|xi|) ∏

(xi,Fi)∈Φ̃

1{PFil(|xi|)≤u}




= E


e

−
∑

(xi,Fi)∈Φ̃

sPFil(|xi|)−log1{PFil(|xi|)≤u}



= exp

{
−λ

∫

R2
1 − e−sPF l(|x|)1{PF l(|x|)≤u}G(df)dx

}

= exp

{
−2πλ

∫

R2
1 − E

(
e−sPF l(r)1{PF l(r)≤u}

)
rdr

}
.

Under the assumption of Rayleigh fading, the distribution of the marks F is expo-
nential of parameter µ and:

E
(
e−sPF l(r)1{PF l(r)≤u}

)
=

∫ ∞

0
e−sPfl(r)1{Pfl(r)≤u}µe

−µfdf

= µ

∫ u/P l(r)

0
e−(sP l(r)+µ)fdf

= µ

(
1 − e−(s−µ/P l(r))u

sP l(r) + µ

)
. (6.38)

Then,

L(u)
I (s) = exp

{
−2πλ

∫

R2

(
sP l(r) + µe−(s−µ/P l(r))u

sP l(r) + µ

)
rdr

}
.

For the path-loss function l(r) = (Ar)−β we obtain that (similar calculus to obtain
(6.17)):

∫ ∞

0

r

1 + µ/sP l(r)
dr =

(
sP

µ

)2/β Γ(2/β)Γ(1 − 2/β)

βA2
, (6.39)
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and by simply change of variables we can calculate:

∫ ∞

0

µe−(s−µ/P l(r))u

sP l(r) + µ
rdr =

(
P

µ

)2/β e−su

βA2

∫ ∞

0

t2/betae−tu

s+ t
dt

=

(
P

µ

)2/β e−su

βA2

(
s2/βΓ(1 + 2/β)eusΓ(−2/β, us)

)

=

(
sP

µ

)2/β Γ(1 + 2/β)Γ(−2/β, us)

βA2
, (6.40)

where the following equality for x, y > 0 has been used:

∫ ∞

0
e−xt tw

y + t
= ywΓ(1 + w)exyΓ(−x, xy).

The proof concludes by replacing (6.39) and (6.40) in (6.38).

From this proposition we can directly obtain the access probability for the third
mode of the CCA. In this case the medium access indicator is

e0 = 1{It≤I0,M t≤P0}.

If we assume that I0 is exponential with parameter γ, and P0 is a positive constant,
then the access probability is given by:

pI,M(γ, P0) =

∫ 1

0
P (e0 = 1|m0 = t)dt =

∫ 1

0
Lγ

It(P0)dt

=

∫ 1

0
e−C(γ,P0)tdt =

1 − e−C(γ,P0)

C(γ, P0)
, (6.41)

where C(γ, P0) is given by:

C(γ, P0) = πλ

(
γP

µ

)2/β Γ(1 + 2/β)

A2

(
Γ(1 − 2/β) +

2

β
Γ(−2/β, P0µ)

)
.

Remark 6.4.10.

1. It is easy to see that C(γ, P0) = KF (γ)+N(γ, P0) where the factor N(γ, P0) goes
to N (P0) when γ → 0 and that

lim
λ→∞

λpI,M(γ, P0) =
1

C(γ, P0)
.

2. Is quite simple to derive the results presented earlier for the extremal and additive
shot noise. For instance,

lim
P0→∞

C(γ, P0) = πλ

(
γP

µ

)2/β Γ(1 + 2/β)

A2
Γ(1 − 2/β) = KF (γ).
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This follows directly from the limit to zero of the incomplete Gamma function
and correspond to the case where no restriction is imposed over the maximum,
i.e. only the condition over the interference is considered.

Using that γ2/βΓ(−2/β, γP0) → P
2/β
0
2/β when γ goes to zero, we obtain that:

lim
γ→0

C(γ, P0) =
πλΓ(1 + 2/β)

A2

(
P

P0µ

)2/β

= N (P0).

This case correspond to imposing no restriction over the interference so that only
the condition over the maximum is considered.

6.5 Simulations

In this section we will present some simulations related to the results showed in the
previous sections. In particular we will pay special attention to the validation of the
conjecture presented in the remark 6.4.6.

As in our analytical framework we consider a network topology where the set of
transmitters are distributed according a Poisson p.p. in R

2 with intensity λ ∈ R
+.

We generate a Poisson process in a circle of radius R = 40 and consider only those
points that fall in an observation window equal to [−5, 5]2. The points outside the
observation window have an influence on the points inside it, but we do not consider
them to minimize border effects. Theoretical results on this matter can be found in
[105]. Other network parameters considered in this section are: P = 102.3, A = 105.3/3

and µ = 1. In addition, otherwise state, default values are γ = 20000 (1/γ = 5e − 5)
and P0 = 1/γ. All simulations were run a time long enough to assure that the variance
is relatively small.

Before going into details on the simulations we will give some numerical results of
the calculus for the intensity of Φadd, Φext and ΦI,M . More precisely, we have deduced
the following main relations:

lim
λ→∞

λprand
I

λpdet
I

= lim
λ→∞

λprand
M

λpdet
M

= Γ(1 + 2/β), (6.42)

lim
λ→∞

λprand
I

λpdet
M

=
1

Γ(1 − 2/β)
, (6.43)

lim
λ→∞

λprand
I

λprand
M

= lim
λ→∞

λpdet
I

λpdet
M

=
1

Γ(1 − 2/β)Γ(1 + 2/β)
. (6.44)

In Fig. 6.2, we report on the functions defined on the right hand side of these
equations. First, if we concentrate on the left most figure, which gives the relation
between the random and the deterministic case for both processes, it can be seen that
the minimum is attained at β = 4 for which the difference is of 12%. Moreover, for



170 6.5. Simulations

2 4 6 8 10
0.88

0.9

0.92

0.94

0.96

0.98

1
Γ(1+2/β)

β
2 4 6 8 10

0

0.2

0.4

0.6

0.8

1
1/Γ(1−2/β)

β
2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

β

1/Γ(1+2/β)Γ(1−2/β)

Figure 6.2: Functions defining the relations given in equations (6.42)-(6.44)

values smaller than β = 3, the function is larger than 0.9, which implies a difference of
less than 10%. This means that the difference between a random and a deterministic
threshold is only marginal.

As we mentioned earlier it can be observed that:

lim
β→∞

1

Γ(1 − 2/β)
= lim

β→∞
1

Γ(1 − 2/β)Γ(1 + 2/β)
= 1. (6.45)

On the one hand, this means that for both random and deterministic cases, the in-
tensities of Φext and Φadd tend to be equal as β increases (see (6.44)). On the other
hand, the same conclusion is valid when the intensity of Φadd for the random case is
compared with the one of Φext for the deterministic one (6.43).

However, as we can observe in Fig. 6.2, the limit is approached for very large values
of β which is not a reasonable scenario in our context. Moreover the values obtained
for β close to 2 are very small which implies that the corresponding differences on the
intensities are very large. For instance, if we concentrate on the right most figure we
have that for β = 2.1 and β = 4 the obtained values are 0.05 and 0.64 respectively.
This means that the asymptotic intensity obtained for the additive shot noise will be
5% and 64% of that of the extremal shot noise respectively. The same conclusions can
be obtained for the relation defined in (6.43).

The previous relations are valid when λ → ∞. However, it would be interesting
to assess which is the minimum value (λ∗) of λ such that the previous conclusions are
valid. We report in Fig. 6.3 the results for the intensities λprand

I and λpdet
I given by

the formulas (6.24) and (6.34) respectively. We show the results as a function of λ for
different values of β.

A first obvious observation is that the intensity of Φext is larger that the one of Φadd

for each value of λ and β (cf. Rmk 6.4.8). It can be observed also that the value of λ∗

for Φext is always larger than the corresponding value for Φadd. For instance, if β = 3,
we obtain that λ∗add ≈ 0.07 whereas λ∗ext ≈ 0.2 (i.e. a multiplicative factor of three).
This difference decreases with β. Moreover, λ∗ increases with β: while small values are
obtained for β = 2.8, 3, highest values of λ are required for larger values of β. This is
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Figure 6.4: Density of accepted transmission for ΦI,M with γ = 2e4 with (a) Po = 1/γ
and (b) Po < 1/γ as a function of λ for several values of β.

natural since a larger β limits the interactions between nodes, requiring more of them
in order to converge.

As we analyzed in Sec. 6.4.3 we can impose a restriction over the sum and the
maximum at the same time. Results on the density of active transmissions for this case
(see (6.41)) are reported in Fig. 6.4. In Fig. 6.4(a) we chose P0 = 1/γ and the obtained
results are very similar to those obtained for Φadd (see Fig. 6.3(a)). This is reasonable
since the restriction over the sum is clearly more restrictive. However, if we chose P0

smaller than 1/γ, in this case the results are very different: about twice time smaller
when P0 is 10% smaller than 1/γ (see Fig. 6.4(b)).

Up to now we have analyzed numerical results given by the formulas obtained in
the previous sections. We will compare now these results with the ones obtained by
simulations. More precisely, we show in Fig. 6.5 the asymptotic intensities of Φadd and
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In particular validation of the conjecture made in 6.4.6.
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Figure 6.6: Simulations results for the relation given by (6.44)-(6.43).

Φext when λ goes to infinity (i.e. is larger than λ∗) for the random and the determin-
istic threshold case. The first observation is that the match between simulations and
theoretical results are almost perfect. Special attention should be paid to the results of
Φadd in the deterministic case (Fig. 6.5(b)) for which theoretical results were obtained
only for β = 4. As we can appreciate our conjecture (cf. Rmk 6.4.6) is validated for all
values of β.

In Fig. 6.6 we report on the results of the quotients defined in equation (6.44) to
(6.43) obtained this time by simulations. We also show the theoretical limit. Once
again the value of λ is chosen larger than the corresponding λ∗. As we can see the
results are very accurate. The largest differences correspond to β = 2.8 which are due
to the fact that each factor on the quotient is very small (e.g. for Φadd the intensities
are 0.0073 and 0.008 for the random and deterministic case).

Finally we analyze for the deterministic threshold the impact of the parameters P0

and I0 over the asymptotic intensity of Φadd and Φext for β = 2.8 and β = 3.5. Results
are shown in Fig. 6.7(a). As expected the obtained results for Φext are larger than
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Figure 6.7: Comparison of the asymptotic intensities and mean interference for Φadd

and Φext as a function of P0 = I0 with β = 2.8 and β = 3.5.

those of Φadd for all values of P0. Moreover, when β increases the maximum and the
sum of the response function L (6.11) decreases, which means that more connections
are accepted, i.e. larger values of intensities are obtained. However it seems that the
impact of the value of β is stronger for the ESN, resulting in a difference between the
maximum and the sum that decreases with β: whereas the intensity of Φadd is about
40% of the intensity of Φext, this factor is about 60% when β = 3.5.

Finally, we report Fig. 6.7(b) the mean interference for each of the analyzed cases.
For each node the interference created by all the active nodes over it is calculated at
several epochs during the simulations, and the mean over all nodes on the observation
windows is what we refer here. We analyze the interference since less interference will
translate into higher probability of successful transmission.

Clearly the interference experienced by those nodes retained by Φext will be larger
than those retained by Φadd: in the second case less connections are accepted and so
less interference is created. Another natural observation is that the interference will be
lower for larger values of β.

To see more in detail the differences between the two modes we plot in Fig. 6.8 the
quotient of the mean interference and P0 (resp. I0). As we can see, the interference
for the ASN is about half of the threshold I0. This observation was not necessarily
true a priori. Even if we impose that at the moment of connecting each node has
an interference smaller than I0, as other nodes became active the interference on the
already connected nodes could exceed the selected threshold. However, our simulations
suggest that the condition is restrictive to the level of obtaining a mean interference
that is always smaller than the decision threshold. Moreover, this quotient does not
change significantly with β, which is not the case for the ESN (we have already observed
this stronger effect of β over the ESN for the intensity). It does not change with P0

either. If we concentrate now on the results obtained by the ESN we can observe that
the mean interference is always larger than P0 (e.g. it is more than twice for β = 2.8).
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Figure 6.8: Mean interference divided by the threshold P0 = I0.

This shows that the interference for the ASN and the ESN are very different for small
values of β despite this difference decreases with it.

6.6 Conclusions

In this chapter we proposed an analytical framework to analyze two modes of the CCA
used in CSMA: Carrier Detection (CD) and Energy Detection (ED). Assuming that
the set of network nodes is a realization of a Poisson point process in R

2, we have
shown that the set of active transmitters under these two modes (CD and ED) can be
approximated by an extremal and an additive shot noise respectively (ESN and ASN)
associated to the original point process. This framework allowed us to calculate the
access probability for both cases and to quantify the differences between them.

It is easy to see that under the same network conditions the set of nodes allowed to
transmit under the ED mode (i.e. retained by the ASN) is a subset of the ones allowed
by the CD (i.e. retained by the ESN). We deduced here a quantification of this difference
that depends only on the path-loss function exponent when the density of nodes is large
enough (and Rayleigh fading is assumed). More in detail, we analyzed two different
scenarios: random and deterministic threshold. We found that the intensity of the
process ASN and ESN for both cases is related, and that their ratio when the density
of nodes increases is the same and again depends only on the path-loss exponent. We
want to highlight that for the ASN with deterministic threshold analytical results could
only be obtained for β = 4. However, we conjectured that the same conclusions are valid
for other values of β, a claim that was validated by simulations. Also by simulations we
analyzed which is the mean interference experienced by an active transmitter for both
processes. We found that under the ASN the mean interference is about half of the
threshold used to decide its transmission, and that the impact of β is not significant.
However, for the ESN the interference can be much larger than the corresponding
threshold and the impact of β is stronger than for the ASN. Clearly, as β increases
the differences between the ASN and the ESN decreases. Finally, results of considering
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a condition over the sum and the maximum at the same time were also deduced and
compared with the previous modes. An important observation is that the condition
over the sum is more restrictive, at least when comparable thresholds are considered.

This chapter is a first approximation to considering an additive version of the in-
terference to decide which nodes can transmit instead of a Matérn like process. In this
sense several aspects still require to be analyzed. For instance, a more formal compar-
ison of the trajectories of both process (ASN and ESN) can be done (e.g. following the
ideas of [106]). In addition, other fading models as well as other path-loss functions
can be considered. Also, a different model can be assumed to the network nodes, for
instance a Poisson Cluster can be used for which analytical results on the shot noise
can be derived. Up to now, we have concentrated on the location of the transmitter
but the location of the receptor is crucial to define a successful transmission. For in-
stance, the receptor can be assumed to be at a constant distant of the transmitter, it
can be the nearest point of the process or even a multicast scenario can be considered.
With respect to the approximation of the CCA modes by the ASN and ESN, a careful
evaluation of how conservative they are should be performed. It would be interesting
to verify if both cases are equally conservative or not, and if there exist scenarios (e.g.
low or high fading) in which the approximations are more accurate.





Chapter7
Multiple Access Mechanisms with
Performance Guarantees

In the previous chapter we introduced the basic operation of the classic CSMA/CA
protocol, and we focused on the comparison of different models designed to analyse
its performance. The interest on such a mechanism is due to the ever increasing use
of wireless technologies to access the Internet. Moreover, the proliferation of new
services with high requirements in terms of quality of service (e.g. high quality video),
increases the need of mechanisms with very high levels of performance, or ideally with
performance guarantees (which is neither the case for CSMA/CA). This chapter bears
then on the design and the quantitative evaluation of MAC mechanisms for wireless
ad-hoc networks with performance guarantees. By this, we mean mechanisms where
each accepted connection obtains a minimum rate or equivalently a minimum SINR
level and which are adapted to the wireless ad-hoc network framework, namely are
fully decentralized, power efficient and provide a good spatial reuse.

As we mentioned before, CSMA/CA suffers of many well known weaknesses. For
instance, the already explained problem of the “exposed terminal” is not solved, and
this unnecessarily reduces the number of simultaneous transmissions [107]. Also, the use
of a fixed transmission power, independent of the distance between the transmitter and
the receiver, prevents certain transmissions that could be accommodated with power
adaptation. Moreover, there are no guarantees in terms of transmission success nor
in terms of performance (e.g. rate); this makes CSMA/CA inappropriate for real time
traffic. This lack of guarantees is mainly due to the fact that the additive character
of the interference is not taken into account in the protocol. Indeed, we show in Sec.
7.2 that when shadowing/fading effects are taken into account, one may have a large
collection of transmitters such that (i) each transmitter is outside the set of contenders
of some tagged transmitter; (ii) none of these transmitters contend with each other
and hence all are allowed to transmit simultaneously; (iii) the interference level at the
tagged node tends to infinity with the size of the collection.
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Much effort has been put on the improvement of the CSMA/CA performance. Most
of the papers on the matter are devoted to modifying particular parameters defined in
the original CSMA/CA protocol (see for example [108, 109, 110]). We assumed instead
a clean slate approach, aiming at revisiting or defining multiple access mechanisms
which (i) are decentralized and hence adapted to the MANET context (ii) guarantee a
certain level of performance for all accepted transmissions in the presence of variable
channel conditions due to fading/shadowing effects.

In order to achieve these QoS guarantees, we argue that there is a need for mecha-
nisms which explicitly take the SINR at the receivers into account for deciding which
transmissions to accept/schedule from a given set of candidates. Two such mechanisms
are proposed and analyzed in this thesis.

The first one, which will be referred to SBAC (SINR Based Access Control), roughly
consists in admitting a new connection if its own SINR as well as that of each already
active transmission are all larger than the required minimum (when taking the inter-
ference created by the new connection into account). The scheduling problem, which
consists in determining a maximal set of simultaneous transmissions in such a way that
the SINR at the receiver of each transmission is above a given threshold, is NP-complete
for networks consisting of a set of transmitter-receiver pairs arbitrarily distributed in
the Euclidean space [111]. SBAC can be seen as a greedy heuristic for solving this
problem, where transmissions are scanned in a random order and accepted as long as
the above described condition is satisfied. Other solutions are discussed in Sec. 7.1.

The second, which will be referred to as PCBA (Power Control Based Access) is
based on power control: given a set of transmissions intending to access the channel, a
subset is selected for which there exist feasible transmission powers such that the SINR
for all of them is larger than a given threshold (for instance, all connections obtain the
same SINR). It should be noted that power control is used as a way to increase the
number of simultaneous transmissions and not as a mechanism for energy saving (as we
shall see, PCBA is not always the best in terms of power efficiency). Power control is
classical in cellular networks [112, 113]. It is also used for scheduling in such networks
(see e.g. [114, 115, 116, 117, 118]). We will discuss these approaches in Sec. 7.1.

Both SBAC and PCBA guarantee a minimum prescribed rate but they differ in
several aspects: SBAC assumes constant transmission power and actually provides
rates larger than the required minimum, whereas PCBA adjusts power transmissions
to provide exactly the prescribed rate for all the active transmissions.

The aim of this chapter is twofold. Firstly, to discuss the usefulness and the im-
plementability of these two mechanisms and secondly, to compare the performance of
these mechanisms in the context of wireless ad-hoc networks. In order to compare
SBAC, PCBA and CSMA/CA within this context, we consider different topologies: a
line and a two-dimensional grid and different traffic scenarios: elastic (e.g. data) and
non elastic (e.g. voice) traffic. For each case, several metrics, typical of mobile ad-hoc
networks, are studied; these metrics leverage rate, fairness, spatial reuse and power
efficiency. The use of these metrics of course depends on the traffic scenario. For exam-
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ple, for data traffic, high rates are valuable, whereas for voice traffic a minimum rate
level is required and anything larger is not really useful. We show that no mechanism
outperforms the others in all cases. We also determine which one is best depending
on the considered traffic type, the propagation model, the required SINR level, and of
course the performance metric.

7.1 Related Work

In this section we present some works that we believe are relevant on the context of the
proposed mechanisms. More precisely, we first present some heuristics that has been
proposed as the solution of the problem of achieving the throughput capacity (i.e. the
maximum rate at which data can be sent) in a wireless network which is closely related
to the problem of ensuring a minimum rate for all accepted connections. Then, we
present some works devoted to power control mechanisms, whose particular objective
may not coincide, but they all share the common principle that more connections can
be scheduled if the transmission powers are appropriately chosen.

There is a large number of works devoted to the capacity of wireless networks, but
we will mention here only some of the most recent ones based on the SINR model for the
interference. We claim that the network geometry plays a key role on the determination
of the SINR at each receiver and so in this rate. This means that we explicitly do not
include graph based models since its inefficiency has been already shown [119]. In [120]
a greedy scheduling algorithm is proposed for the particular case of uniform distributed
nodes in a square of unit area; an approximation ratio is calculated depending on the
number of nodes and the path-loss function exponent. In [111], an algorithm valid
for more general topologies is presented with an approximation ratio that depends on
the network diversity (which reflects the length variation of the links to be scheduled);
however this diversity can be as large as the number of nodes. The approximation ratio
found in [121] is logarithmical on the ratio between the maximum and the minimum
distance between two nodes on the network; as for the network diversity this quantity
can be as large as the network size.

Finally, the work that seems to be the closest to SBA is [122], in which an algorithm
that ensures a minimum SINR for all active transmissions is proposed whose approxi-
mation guarantee is independent of the topology of the network. This approximation
factor depends on the path-loss exponent, the network space dimension and a constant
appropriately chosen that accounts for the distance at which transmitters can impair an
active receiver. However, this factor is not evaluated and some simple examples show
that it could be large. Moreover, any of these proposals has no known decentralized
incarnations and they do not take shadowing/fading into account, two aspects that we
want to include here. In fact, we do not look for optimal solutions but solutions that
ensure that a minimum rate is guaranteed for all the accepted connections.

In [115] the problem of determining a minimal length schedule to satisfy links de-
mands (i.e. SINR larger than a given threshold and no node can receive and transmit
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at the same time) when transmitters use optimally chosen transmission powers is ad-
dressed. Authors show that this problem is hard to solve and they find conditions
under which the problem turns to be tractable. However, this condition is rarely satis-
fied in real networks. Moreover, the proposed solution is not decentralized. A different
approach bounding routing, links scheduling and power control is assumed in [116].
The objective is to find transmission patterns such that the total average transmission
power is minimized whereas each link has an average data rate equal or larger than a
given threshold whereas each node has a peak transmission power bound. The problem
is solved with a duality approach and from it an optimal routing is deduced. Main dif-
ferences with our work are that the guarantee is over the mean rate and not each time a
connection is accepted and that the fading/shadowing is not considered. Furthermore,
the optimization is clearly performed off line (there is no decentralized algorithm that
guides the evolution of the power transmission to the solution).

Probably the works that are the closest to PCBA are [117] and [118]. In [117], a two
step scheduling mechanism is proposed. The first step consists in finding a set of “valid”
simultaneous transmissions. This step is targeted to eliminate strong interferences be-
fore applying a power control mechanism and it is assumed that a central controller is
responsible of its execution. The second step determines the powers needed to satisfy
the SINR constraints. The main difference with our work is that we do not consider
the first centralized step and we directly apply a distributed power control algorithm
in order to determine the set of transmissions to be scheduled. Moreover, the fading is
not considered, i.e. the attenuation is a deterministic function of the distance between
nodes. In [118], the authors propose PCMA (Power Controlled Multiple Access), a
wireless MAC protocol where each receiver sends busy-tone pulses to communicate its
interference margin. The main idea is to preserve the paradigm of the RTS/CTS hand-
shake by proposing an exchange of the same type refer to as RTPS/APTS: Request-
Power-To-Send and Acceptable-Power-To-Send. The signal strength of the pulses is
used to bound the transmission power of the interfering nodes. It is not clear however
how to determine the interference margin in this context. In addition, an independent
channel is required for the transmission of the busy-tones and contention between them
is not addressed. However, authors show that PCMA allows for a greater number of
simultaneous transmission than CSMA/CA, approximately twice.

7.2 Motivating Example

In this section we want to show, by means of a simple yet illustrative example, that
accepted connections under the CSMA/CA protocol may obtain a very poor perfor-
mance. As we will see, the main reason behind this situation is the fact that the channel
condition is verified only on the intending transmitters, and the total interference ex-
perienced by already active receivers is neglected.

Consider a network with several short links over a circle as in Fig. 7.1(a) and a
propagation environment such that these links do not detect (contend with) each other
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Figure 7.1: (a) Example topology and (b) Mean SINR for the receiver located at the
center of the circle.

(e.g. there are obstacles between them and the shadowing isolates them). Suppose that
there is a link whose receiver is located at the center of the circle and that this link
does not contend with the other links (for instance, because of distance). Finally, let
us assume that the timers are such that the central link has the smallest one, then it
senses the channel clear. All links are hence allowed to transmit simultaneously. We
show below that the total interference created by the links located on the circle at the
central receiver is possibly high.

Assume, as in the previous chapter that given two nodes, h and k, the power receiver
from h by k is:

P (h, k) = PhF
h
k L(h, k), (7.1)

where Ph is the transmission power of node h, F h
k represents the fading/shadowing

from node h to node k and L(h, k) = Amax{ro, d(h, k)}−α is the path-loss function.

Let N be the number of links, P be the transmission power of each transmitter,
and r be the radius of the circle. Assuming Rayleigh fading, i.e. F j

i is exponentially
distributed with parameter 1. Then, the interference I seen by the central receiver is:

I =
N∑

i=1

PFiAr
−α.

Fi represents the fading between the transmitter of node i in the circle and the receiver
located at the center. Under the Rayleigh fading assumption, the interference I is the
sum of N independent exponential random variables, i.e. has a Gamma distribution
with parameters N and λ = 1/PAr−α. The mean interference is then Nλ, which grows
linearly with N . Analogously, if we neglect the thermal noise (i.e. take W = 0 in (7.2)),
the mean SINR at the central receiver is:

SINR = E

(
PAd−α

0∑N
i=1 PFiAr−α

)
=
PAd−α

0

PAr−α
E

(
1

∑N
i=1 Fi

)
=

1

N − 1

(
d0

r

)−α

,
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where d0 is the distance between the central transmitter and receiver. The results
follows from the observation that 1/

∑N
i=1 Fi has a inverse gamma distribution with

parameters N and 1, thus its expected value is simply 1/(N − 1).

For the parameter setting of Sec. 7.4 with r = 100 and d0 = 1, Fig. 7.1(b) shows
SINR as a function of N . As we can observe, a few links on the circle are enough
to lead to a very poor SINR for the central link. This toy example shows clearly
why CSMA/CA, even when augmented by the RTS/CTS handshake, cannot guarantee
any performance because it is based on pairwise exclusions only. Hence the need for
protocols that take the interference created by all nodes in the network into account to
decide which transmission can access the channel.

7.3 Proposed Mechanisms

Motivated by the example in the previous section, we now consider admission mech-
anisms based on the total interference resulting from the active transmissions. More
precisely, we define two mechanisms guaranteeing a minimum rate (equivalently SINR)
for all accepted connections. Before describing the proposed mechanisms, let us reintro-
duce some notation. Let Pi be the power transmission of transmitter Ti to its receiver
Ri. The SINR of an active link i is then:

SINRi =
PiF

Ti
Ri
L(Ti, Ri)

W +
∑
j 6=i

PjF
Tj

Ri
L(Tj, Ri)

, (7.2)

where W is the thermal noise, which is considered constant and equal for all nodes.
Let A ∈ ML×L be the gain matrix :

Aij =

{
0 if i = j
τaij

aii
if i 6= j

, (7.3)

where τ is the target SINR and aij = F
Tj

Ri
L(Tj , Ri).

We will consider the slotted version of CSMA/CA (with the CCA in carrier sensing
mode), in which all transmissions start and finish at the same time. The selection of
the set of active transmissions is random and is the same, in law, at each time slot,
but independent from time slot to time slot. At the beginning of the slot, the order
at which each node tries to access the channel is decided randomly (for example, by
using a timer). At its due turn, each transmitter/receiver pair decides whether or not
to become active based on the corresponding access mechanism. It must be noted that
the assumed slotted division of time prevents all algorithms from creating unfairness
(i.e. the well known “starvation phenomenon” [21]).

Finally, let us note that the mechanisms that we introduce in what follows are still
valid if specific performance levels are required for each transmissions; it is enough to
replace τ by τi. This can be useful, since different values of τi can be associated with
different service levels.
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7.3.1 SINR Based Access Control (SBAC)

In SBAC, power is constant and equal to P at each transmitter. A new connection is
accepted if and only if the SINR it obtains (which depends on the connections already
accepted) is larger than the target threshold and, at the same time, the new SINR that
the already active transmissions obtain, when taking this new connection into account,
is also larger than the threshold. More precisely we want SINRi ≥ τ for all active
connections, i.e.

SINRi =
PF Ti

Ri
L(Ti, Ri)

W +
∑
j 6=i

PF
Tj

Ri
L(Tj, Ri)

≥ τ.

In terms of the gain matrix, the condition is:

τW

Paii
+ τ

∑

j 6=i

aij

aii
≤ 1. (7.4)

If W = 0 or negligible with respect to Paii, then the previous condition is that the sum
of all rows of matrix A are less than 1, i.e. the matrix A is sub-stochastic. If W 6= 0,
the exact condition is that the sum of all rows must be less than 1 minus a term that
depends on each link:

τ
∑

j 6=i

aij

aii
≤ 1 − τW

Paii
.

The dynamic of the algorithm is as follows. The first connection i attempting to access
the channel is accepted if τW/Paii ≤ 1 (the second term of the left part of (7.4) is zero).
For the second one, if the matrix A ∈ R

2 associated with the pair is sub-stochastic in
the sense given above, then the connection is accepted, otherwise it is rejected. For
each new connection attempting to access the channel, its admission depends on the
sum of the rows of the matrix A associated with the already accepted connections and
this new one. Possible ways to implement this in a decentralized way are discussed in
Sec. 7.5.

Clearly the set of accepted connections depends on the order in which the nodes
attempt to access the channel. This order is assumed random. It must be noted
that it is not the objective of this algorithm to maximize the number of accepted
connections, since to do that, global knowledge is required. Instead, we preferred to
keep our algorithm as simple as possible. As we shall see, even with this first version,
substantial improvement over classical CSMA/CA is obtained.

We are aware that distributed implementations of this algorithm are not trivial
due to the necessary exchange of information (possible ways to implement it in the
slotted case are discussed in Sec. 7.5). However, we believe that the comparison with
this algorithm is still relevant since it can be considered as the “best” solution in the
analyzed context.
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7.3.2 Power Control Based Access (PCBA)

Instead of the simple verification that the SINR is acceptable, we will suppose now
that transmission power can be adjusted. In our second proposal, connections will be
accepted as long as there exists a feasible power vector (i.e. the power of the already
active connections plus the new one) guaranteeing that the SINR obtained for all ac-
cepted transmission is larger than the minimum. This condition, SINRi ≥ τ ∀i, can be
written as:

Pi ≥
τW

aii
+ τ

∑

j 6=i

Pj
aij

aii
=
τW

aii
+
∑

j 6=i

PjAij ,

which can be expressed in a vectorial form by defining the vectors of transmission
powers P and the vector η ∈ R

L with entries ηi = τW/aii, as follows:

P ≥ AP + η (7.5)

It can be proved that this inequality has a positive and finite solution if the spectral
radius (maximal eigenvalue) of A is smaller than 1 (see for instance [123]). We will see
how this solution can be obtained by means of a distributed algorithm. In particular,
our second mechanism will be based on the distributed power control introduced by
Foschini et al. in [112]. In fact, Foschini’s algorithm ensures that the SINR obtained
by all accepted connections is equal to the target SINR.

Foschini’s algorithm

In [112], authors propose a simple class of power control algorithms that seek to deter-
mine as quick as possible whether or not a set of links can achieve a common SINR level
τ . Ideally, a continuous dynamic for the power evolution will be given by a differential
equation of type:

Ṡi(t) = −β(Si(t) − τ), (7.6)

where Si(t) is the SINR at the receiver of link i at time t and β is a positive propor-
tionality constant. This dynamic cannot stop unless Si(t) = τ for all i. However, it
cannot be implemented in a distributed manner since one link (or user) has no direct
control over the transmission power of the other users. Then, a dynamic that depends
only on local measurements is required. To achieve this, the authors of [112] propose
a simplification in which each user adjust its transmission power as if its interference
does not change. Then, the derivative at the right part of (7.6) can be calculated and
the following equation is obtained:

Ṡi(t) =
aiiṖi(t)

Ii(t)
= −β(Si(t) − τ),
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where Ii(t) is the interference seen by user i at time t. This equation is equivalent to:

Ṗi(t) = −βB
(
Pi(t) − τ

Ii(t)

aii

)
.

Which can be rewritten in a vectorial form by defining the matrix B = I − A i.e.
Bij = −Aij = − τaij

aii
if i 6= j and Bii = 1:

Ṗ (t) = −βP (t) + βη. (7.7)

In a discrete time setting, let P (k) be the power of vectors at time k = 0, 1, 2, . . . , where
the time coordinate is defined such that the unit time is the time between consecutive
iterations of the algorithm. Then, a discrete version of (7.7) can be defined as.

P (k + 1) − P (k) = −βBP (k) + βη,

which can be rewritten in turn as:

Pi(k + 1) = (1 − β)Pi(k)

[
1 +

(
β

1 − β

)(
τ

Si(k)

)]
, (7.8)

This is the basis of a very efficient distributed scheme. In [112], it is proved that, if the
spectral radius of A is less than 1 and β ≤ 1, then P (k) converges to P ∗ starting from
any initial vector P (0), where P ∗ is the smallest solution of (7.5) (i.e. if P is a solution
then P ≥ P ∗).

This algorithm can be used to decide whether a new link can access the channel.
For each new connection attempting to access the channel, admission depends on the
spectral radius of the gain matrix A associated with the already accepted connections
and the new one. If this spectral radius is less than 1, then the new connection can
be accepted. If it is larger than 1, then it should be rejected. A natural incarnation
of the algorithm is that where a set of active connections is first built (using a random
scanning of the connections and admitting/rejecting them based on this spectral radius
criterion) and (7.8) is then performed to obtain the power vector P . A more efficient
incarnation is discussed in Sec. 7.5. For this power vector, the SINR obtained by all
actives nodes is τ .

7.4 Comparison Results

We have proposed two mechanisms that guarantee a minimum SINR for all connections.
A natural question is how they perform in terms of other metrics, such as the number
of accepted connections. It could be the case that their strict requirement on the
SINR translates into high rejection of the intending connections. For instance, in the
example of Sec. 7.2, SBAC will admit only the central transmission. In this section,
we will compare the proposed mechanisms, SBAC and PCBA, together with classic
CSMA/CA, considering different network scenarios and performance metrics.
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As in the previous chapter we will assume saturated traffic conditions (each node
always has data to send). Under this condition, a very important performance metric
in the wireless ad-hoc setting is the number of simultaneous transmission that can be
scheduled by the protocol. For this, we evaluate spatial reuse, which we remember
that it is defined as the mean proportion of links which are active at a typical time
slot. However, as already explained, the accepted connections may obtain a very poor
quality. We hence also measure the rate obtained by each of them. Since there is a
clear tradeoff between spatial reuse and rate, we also define several different utilities
to assess the overall performance of each algorithm. We also compare how fair is the
rate distribution. A special emphasis is put on the comparison of the two mechanisms
with CSMA/CA. More precisely, we will use the RED model introduced and analyzed
in the previous chapter (c.f. Sec. 5.3) for comparison purposes; so that when we refer
to CSMA results they actually correspond to the RED model.

Two different topologies are considered: regular lattices in R (line) and in R
2 (grid),

with a distance d between two neighbor nodes. It is also assumed that each node can
transmit or receive and that it communicates with its nearest neighbors. We fix L = 100
nodes for both topologies, distributed in a lattice of 10 × 10 for the grid. As in the
previous chapter, we use A = −53dB, r0 = 0.01 and α ∈ {2.5, 3, 4}. Finally we
fix P = 2.3dBm and W = −96dBm for all nodes. Concerning the channel model, as
before we analyze two different models: Rayleigh fading and Lognormal shadowing. The
random variables {F j

i }i,j are independent and exponentially distributed with parameter
µ = 1 in the first case, and Lognormally distributed with standard deviation σ = 4dB
in the second one.

The results of this section are obtained mainly by simulations where each algorithm
is performed N = 1000 times, each time representing a slot. At each time slot, a sym-
metric matrix of random numbers is constructed representing the symmetric random
fading/shadowing. In each repetition (slot), the order at which the nodes intends to
access the channel is random, selected according a Uniform distribution in the inter-
val [0, 1]. The decision of accepting the transmission or not is taken according to the
selected mechanism.

We have chosen default options — the line topology and Lognormal shadowing —
and we only report on results for the other cases if they are illustrative (e.g. grid versus
line topology) or if the differences are significant. For example, for a given channel
model the comparison results obtained for both topologies are quite similar. However,
for a given topology, the channel model may have a significant impact.

7.4.1 Spatial Reuse and Mean Rate

In this section, we compare the spatial reuse (SR) and the mean rate (MR) obtained
by each mechanism. Let 1r(i) be an indicator function that takes the value 1 when
link i is active during the time slot r and 0 otherwise. The considered indicators are
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Figure 7.2: Spatial reuse comparison for the line topology (solid lines) and the grid
topology (dotted lines) with Lognormal shadowing.
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Figure 7.3: Mean rate comparison (ρ = log2(1 + SINR)) for the line topology (solid
lines) and the grid topology (dotted lines) with Lognormal shadowing.

defined as:

SR =
1

L

L∑

i=1

pi where pi =
1

N

N∑

r=1

1r(i) =
1

N
Ni,

MR =
1

L

L∑

i=1

ρi where ρi =
1

Ni

N∑

r=1

1r(i) log2(1 + SINRr(i)). (7.9)

Note that Ni is the number of time slots that link i accessed the channel, and SINRr(i)
is the SINR obtained in the r-th slot (the rate was calculated as ρ = log2(1 + SINR)).
For the SINR-based algorithms, the minimum required SINR is τ ∈ {1, . . . , 20}dB.

Results for the SR and the MR are reported in Fig. 7.2 and Fig. 7.3 respectively.
Please note that for the same value of α, the spatial reuse increases (decreases) with K
(τ). Small values of K correspond to large values of τ : in both cases, less connections
are accepted. When K decreases, the number of contenders increases, resulting in
lower access probability for each user. Analogously, large of values of τ translate into
higher SINR requirements, thus reducing the possibility of accepting a new connection.
Finally, before presenting the results, let us highlight that for PCBA the mean rate
does not depend on α nor on the topology, since it is equal to log2(1 + τ) in any case.

For each value of τ , PCBA has higher SR than SBAC. However, its MR is smaller
since, as we mentioned before, the rate obtained by all connections in SBAC is larger
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than the target minimum. On the other hand, CSMA achieves similar levels of SR and
MR as PCBA. These observations are valid for both considered topologies. However,
PCBA guarantees a minimum rate for all accepted transmissions. Consider for example
α = 3, where the maximum SR obtained by CSMA is 0.34. For the value of τ where
PCBA obtains the same SR (τ = 1), 44% of the connections accepted by CSMA obtain
a SINR smaller than τ . On the other hand, when CSMA is compared with SBAC, it
can be seen that the former can obtain levels of SR that the latter does not. Hence, if
only the rate is considered, SBAC is the best solution. For the same SR level, a large
number of CSMA connections obtain smaller SINR than the one guaranteed by SBAC.
Then, for the same number of active links, better conditions will be obtained with
PCBA or SBAC. These results are in accordance with our conjecture that substantial
improvement is possible by means of SINR-aware algorithms.

Regarding the impact of the topology on the SR and MR, it can be seen that the
comparative analysis between the proposed mechanisms and CSMA (equivalently RED)
is similar for both topologies. Differences can be observed mainly in the SR, which is
smaller for the grid topology due to the increase of potential interferers: in the line
topology each “no border” node has two nearest neighbors, that become four in the
grid one. However, the impact on the MR is less significative. The lower number of
simultaneous active connections results in rate levels similar to those obtained on the
line.

There is a clear tradeoff between MR and SR. For instance, if we choose the value of
K that maximizes the SR we will obtain a small MR. On the contrary, if we choose K so
as to maximize the MR we obtain a very poor SR. Which is then a good choice of K that
considers both parameters at the same time? To evaluate more accurately this tradeoff,
we will consider several utility functions, depending on the type of traffic present on
the network. In particular we will concentrate in three types of traffic: Elastic Traffic
(e.g. data), Elastic Traffic with minimum required SINR (what one would very much
appreciate for data traffic in heavily loaded wireless LANs) and Constant Bit Rate
(CBR) (e.g. voice traffic).

7.4.2 Elastic Traffic

For a given algorithm, link i has an access probability pi and the mean rate obtained
is ρi (see (7.9)). For elastic traffic, for which the importance is on the amount of
information that can be send per time unit, a good performance indicator for link i is
the product piρi. To measure the overall performance, we will consider the following
utility functions:

U0(x) = x, U1(x) = log(x), and U2(x) = −1

x
.
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Figure 7.4: Spatial Density of Rate (U0) for the line topology with Rayleigh fading
(solid lines) and Lognormal shadowing (dotted lines).
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Figure 7.5: Spatial Density of Rate (U0) for the grid topology with Rayleigh fading
(solid lines) and Lognormal shadowing (dotted lines).

Considering the average of the users (links) utilities, we obtain the following perfor-
mance indicators:

U0 =
1

L

L∑

i=1

piρi, U1 =
1

L

L∑

i=1

log(piρi), and U2 =
1

L

L∑

i=1

− 1

piρi
.

U0 may be interpreted as the spatial density of rate; a larger value of this function
indicates a bigger total throughput. However, U0 does not consider fairness among
users, i.e. how is this total throughput distributed. U1 is precisely a measure of such
fairness (in the proportional sense). Finally, U2 may be seen as a negative delay. Our
simulations indicated that similar conclusions are obtained for the three utilities. As
such, we will only show the results for U0.

Fig. 7.4 shows the obtained results for the line topology with Lognormal shadowing
(solid lines) and Rayleigh fading (dotted line). Corresponding results for the grid
topology are reported in Fig. 7.5. Observe that for the CSMA, the values of K are not
indicated since they should be interpreted differently depending on the channel model
(see Sec. 5.4.1). In any case, values of K were chosen in order to obtain a similar mean
number of contenders.

If we focus on the Lognormal shadowing (solid lines), and we concentrate on the
maximum value obtained by each algorithm, we find that for both topologies and for
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all values of α, SBAC and PCBA obtain better results than CSMA. Moreover, SBAC
outperforms PCBA for almost all values of τ ; obtaining also the maximum for the line
topology. For the grid topology the maximum achieved by PCBA (obtained for a high
value of τ) is slightly larger than the one obtained by SBAC; however as we may see
in the figure, the difference is almost negligible.

As mentioned before, in general, our results do not change significantly with the
fading/shadowing distribution. However, this is not entirely the case for this metric.
If we focus now on the results for the Rayleigh fading (dotted lines), we may see
that results obtained by CSMA have improved with respect to the other mechanisms;
obtaining similar results than SBAC specially for small values of α. In contrast, the
results for the other mechanisms are in general worsened, specially for the grid topology
and SBAC (for the line topology, results remains essentially the same).

More in detail, we observe that the results obtained by CSMA and SBAC are almost
constant in K/τ (for a given value of α), whereas those obtained by PCBA strongly
depend on τ . This effect is a direct consequence of the fact that for each value of τ , all
connections accepted under PCBA obtain exactly the same SINR and no more (which
is not the case for SBAC), thus limiting its performance when the spatial density of
rate is considered; specially for small values of τ . The comparison between SBAC and
CSMA is favourable to the former for all values of τ and K.

Summing up, the best results are always obtained by a SINR-based mechanism,
but which of the two is the best depends on the topology and the channel model. If
Rayleigh fading is assumed, for both topologies SBAC obtains the best results but the
differences with CSMA are not significant. This means that a similar tradeoff between
spatial reuse and mean rate as for CSMA can be obtained by SBAC with the added
improvement that a minimum SINR is guaranteed for the accepted transmissions. For
the Lognormal shadowing, SBAC and PCBA obtains very similar results, being the
former slightly larger for the line topology and the inverse for the grid one.

Finally, we will consider fairness in the obtained rates in more detail. Even if U1

already takes this into account, we also study the Jain’s index, defined as follows:

FIrate =

(∑L
i=1 ρi

)2

L
∑L

i=1 ρ
2
i

.

The rationale behind this index is that the perfect rate distribution is one in which
all rates are the same. The index measures the difference between the obtained rate
distribution and the perfect one. It ranges from 1/L corresponding to the worst case,
to 1 corresponding to the ideal rate distribution.

In Fig. 7.6 we report on the results obtained by calculating the fairness index for
each slot and averaging these values. Since with PCBA all transmissions obtain the
same SINR, this mechanism obtains the maximum fairness index independently of the
value of α and τ (i.e. FIrate = 1). As we observe, the results for the SINR-based
algorithms largely outperform CSMA. This means that the rate distribution is more
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Figure 7.6: Mean Rate Jain’s index FIrate.
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Figure 7.7: Product of the FIrate and the Spatial Density of Rate (U0) for the line
topology with Lognormal shadowing (solid lines) and Rayleigh fading (dotted lines).

fair in each of the proposed mechanisms. Both proposed mechanisms can then achieve
better or at least equal spatial density of rate but with a much more fair distribution
of the rate.

Let us now consider both the spatial density of rate and the fairness index. For
this we will weight U0 by FIrate. Results are shown in Fig. 7.7 for the line topology
with Lognormal shadowing (solid lines) and Rayleigh fading (dotted lines). Note that,
due to its perfect index PCBA now outperforms SBAC for α = 2.5 and 3. On the
other hand, CSMA suffers from the unfairness in its rate distribution; for instance if
the Lognormal case is considered, the maximum value obtained by CSMA is smaller
than the minimum obtained by SBAC. These results reinforce our previous conclusions
about the advantages of the proposed mechanisms.

7.4.3 Elastic Traffic with Minimum Required SINR

The main difference between the considered algorithms is the guarantee or not of a
minimum SINR. In this section we want to quantify this difference; for this, we define
metrics that penalize situations where an active connection obtains a SINR smaller
than the target minimum. Consider the following modified access probability and rate:

pτ
i =

1

Ni

Ni∑

r=1

1r(i)1{SINRr(i)≥τ},
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ρτ
i =

1

Ni

N∑

r=1

1r(i)1{SINRr(i)≥τ} log2(1 + SINRr(i)),

The first definition represents the probability to access the channel with a SINR larger
than τ . Analogously, ρτ

i is the mean rate of these connections. The comparison metrics
are:

(i) U τ
0 (x) = 1

L

∑L
i=1 p

τ
i ρ

τ
i : a modified spatial density of rate,

(ii) SRτ =
∑L

i=1 p
τ
i : the SR but considering only those connections whose SINR is

larger than τ .

Clearly, for SBAC and PCBA, these metrics coincide with that previously calculated
(SR and U0) since, by definition, a minimum is guaranteed for each connection. Yet,
results for all mechanisms are reported to ease the comparison.

The results for the modified spatial density of rate are shown in Fig. 7.8, for different
values of τ . For CSMA, we report on the maximum value since it depends on K.
Note that for every value of τ , the best result is obtained by one of the SINR-based
mechanisms. More precisely, SBAC essentially provides the best results, although it
is in some cases slightly worse than PCBA (e.g. for α = 2.5 and 3 and large values of
τ). In fact, the difference between SBAC and PCBA decreases with τ and increases
with α. The relative gain of SBAC over PCBA is mainly due to the SBAC property of
guaranteeing a minimum SINR by actually providing more than the required minimum,
from which this metric takes advantage (even if the same number of connections is
accepted for both mechanisms they will obtain more rate in SBAC). Regarding the
comparison between CSMA and PCBA, we see that, for the former, U τ

0 decreases with τ ,
whereas, for the latter, it increases. Actually, for small values of τ , CSMA outperforms
PCBA, whereas it is exactly the contrary for large values of τ . This situation can be
explained by the fact that for small values of τ , most of the connections accepted by
CSMA obtain a MR that exceed these values (see Fig. 7.3). But, as we will see in what
follows, the transmission power required for both mechanism can be very different.

We have observed that for a given channel model, the comparison results (in terms
of U τ

0 ) are the same for both considered topologies. Then, to complete the analysis we
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Rayleigh fading.
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Figure 7.10: Spatial Reuse when SINR ≥ τ for the line and grid topology with Log-
normal shadowing.

report on the results for the grid topology with Rayleigh fading. In this case, the results
are slightly different. In Fig. 7.9, we see that the performance obtained by the three
mechanisms are now more similar than on the line. In particular, for some small values
of τ , CSMA is the mechanism that obtains the best results, although the difference is
not significant. The reason behind this behaviour is the same as before.

We now concentrate on the modified spatial reuse. In Fig. 7.10, we may see that
PCBA outperforms the rest of the mechanisms for all values of τ and α, irrespectively of
the topology and the channel model. We have already seen that PCBA obtains larger
spatial reuse than SBAC (see Fig. 7.2) for all values of α and τ ; and the condition
that the SINR must be larger that τ makes that several of the connections accepted by
CSMA are not taken into account anymore, decreasing its spatial reuse. This means
that, if the target is to guarantee a certain minimum SINR (independently of the
particular level), SBAC and PCBA can accommodate more connections. PCBA is the
one that obtains the best results since for the same given set of links it can adjust the
transmission powers to accept more connections.

7.4.4 Constant Bit Rate (CBR)

We consider now a different kind of traffic: Constant Bit Rate. This type of traffic needs
a certain rate level and obtaining more than the required level is without value (e.g.
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Figure 7.11: Spatial Density of Rate (a) and Spatial Reuse (b) with SINR = τ for the
line topology with Lognormal shadowing and α = 3.

voice traffic). To evaluate the performance of the algorithms in the presence of such
traffic, we consider the same metrics as before but imposing that the SINR is “equal”
to a certain threshold τ . In this case, it is important to guarantee a minimum rate, but
situations where much more larger values than the required minimum are obtained will
be simply ignored. In fact we consider an interval of values near τ , since if we consider
values exactly equal to τ , no algorithm will make it (due to numerical variations on
the obtained SINR). In particular, we define the interval I = [0.99∗τ, 1.05∗τ ]. Observe
that the interval is not symmetric, smaller values than τ are more penalized than larger
ones. More precisely, we consider SRτ and U τ

0 but replacing pτ
i and ρτ

i by:

pτ
i =

1

Ni

Ni∑

r=1

1r(i)1{SINRr(i)∈I},

ρτ
i =

1

Ni

Ni∑

r=1

1r(i)1{SINRr(i)∈I} log2(1 + SINRr(i)).

We evaluate the same metrics as in the previous section, but replacing 1{SINRr(i)≥τ} by
1{SINRr(i)∈I}. In this case, the results coincide for both metrics and without surprise,
PCBA provides (by far) the best results for all values of α and τ . We report results for
α = 3 in Fig. 7.11, where the y-axis is in log-scale to highlight the differences. It must
be noted that CSMA obtains a very poor performance when this metric is evaluated
(we have already seen that the rate fairness index can be very low, see Fig. 7.6).
SBAC obtains intermediate results; they are largely better than CSMA’s but still far
off the very good results obtained by PCBA. It is not surprising that for this metric,
the difference between SBAC and PCBA increases, since this metric prioritizes more
equally distributed rates; and as we have already seen the actual rate obtained by
SBAC is larger than the minimum required (see Fig. 7.3). The conclusions are valid
for both topologies and both analyzed channel models.



Chapter 7. Multiple Access Mechanisms with Performance Guarantees 195

7.4.5 Rate vs Transmission Power

A very important aspect in MANETs is power consumption, which is also a main
difference between the analyzed access mechanisms. It must be noted that PCBA was
not designed with power saving in mind, but to allow a larger number of simultaneous
transmissions. In this section, we analyze the ratio between the mean rate and the
required transmission power, i.e. how many bits per second can be transmitted with
one power unit.

We define the following metric that takes into account the relation between rate
and power each time a transmission takes place:

Up =
1

L

L∑

i=1

1

Ni




Ni∑

r=1

ρi(r)

Pi(r)
1r(i)


 =

1

L

L∑

i=1

(
ρi

Pi

)
,

where Pi(r) is the power of link i in slot r. Since for PCBA, the rate is constant and
equal to R = log2(1 + τ) and since for the rest of the algorithms, the transmission
power is always constant and equal to P , the metric becomes respectively:

Up
pcba = R

1

L

L∑

i=1

(
1

Pi

)
and Up =

1

LP

L∑

i=1

ρi.

Note that the comparison between CSMA and SBAC is the same as presented in
Sec. 7.4.1 since the considered metric is simply the mean rate weighted by a constant.

The transmission power required to obtain the target level of SINR with PCBA
depends on the value of d (distance between nodes). Results are shown in Fig. 7.12 for
d ∈ {1, 10, 100} and for different values of α. Clearly the required power increases with
τ and α. From Fig. 7.12, we may conclude that for d = 1, PCBA is the best results in
terms of the previously defined metric (the mean power is orders of magnitude smaller
than the constant power P = 102.3mW assumed for the rest of the mechanisms).
Fig. 7.13 reports on the results for d = 10. To ease the comparison, we plot all the
algorithms together although they depend on different parameters: for CSMA the x-
axis must be understood as K, whereas for SBAC and PCBA it must be understood as
τ . As expected, the mechanism which obtains the best results is PCBA. However, the
difference decreases with τ and α since in both cases the transmission power increases.

Furthermore, it can be expected that as d increases (and so the power required by
PCBA) the gain of PCBA over the rest of the mechanisms will decrease. If P is the
minimum power required to achieve the target SINR with d = 1, the corresponding
value when d 6= 1 is P ′ = Pdα (see Fig. 7.12). Then, for large values of d (e.g. d = 100),
the performance of PCBA in terms of the rate/power relation decreases, specially for
high values of α (see the most right part of Fig. 7.12). However, this parameter also
impacts over the other mechanisms. For instance, when d increases, for CSMA there is
no difference in the SR, but the MR decreases. SBAC experiences a decrease in the SR
(less connections can be accepted). PCBA maintains its SR and MR, but at the expense
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Figure 7.12: Transmission power obtained by PCBA (mW).
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Figure 7.13: Comparison of Up for all mechanisms with d = 10, for the line topology
with Lognormal shadowing.

of an extreme increase of the power transmission. More precisely, if d = 100 and α = 2.5
or α = 3, for both the line and the grid topology under the Lognormal assumption,
PCBA is still the mechanism that obtains the best results with this metric. For the
other metrics previously analyzed an increase of d translates into larger differences in
favour of the SINR-based mechanisms.

7.5 Implementation Issues

In this section we discuss which are the main implementation issues of the proposed
mechanisms and we present possible solutions. Remember that our main constraint to
the proposed solutions, is that they must be fully decentralized.

SBAC

In this algorithm, a transmission intending to access the channel must evaluate its
SINR, and at the same time the already active transmissions must verify that the new
SINR they will experience (if the new transmission is accepted) will still be larger than
the target minimum. A possible solution is that the intending node sends a probing
signal to the rest of the nodes, to give them the information necessary to evaluate
their new SINR. In case a connection sees that its new SINR is not acceptable, this



Chapter 7. Multiple Access Mechanisms with Performance Guarantees 197

information must be sent back to the original node to cancel its transmission. However,
it is hard to imagine a simple way to achieve this exchange of information. If we assume
that is enough to consider only the maximum interferer the exchange of information is
limited and can be feasible, but work is required to validate this assumption.

Alternatively, we may think the problem in the following reverse sense: all nodes
intending to send data are active (in particular sending “HELLO” messages to their
destinations) and they are inactivated in random order. When its turn comes, the
tagged node stops transmitting and starts “listening”. If it receives an ACK from its
receiver, it means that the SINR is enough to successfully receive the data and the
connection is activated. If this ACK is not received after a certain time, the node will
start to listen for the HELLO probes, i.e. it verifies if it is not the intending destination
of another node. If it receives such packets, it answers with an ACK when they stop.
Note that after all nodes have stopped sending HELLO messages the resulting active
transmissions will obtain a minimum SINR level, enough to correctly decode data. In
order to obtain an arbitrary minimum SINR level, each receiving node must estimate
its SINR and answer with an ACK only if the estimation is larger than the required
minimum.

PCBA

As mentioned before, PCBA can be implemented in a totally distributed way. In the
algorithm introduced by Foschini and described in Sec. 7.3.2 the transmission power
evolves according to (7.8) which depends only on local measurements. For real imple-
mentations, the two step decision described before - first decide which transmission are
feasible and then calculate the corresponding power - is not realistic. In place, a useful
property of this algorithm can be used: if the feasibility condition is not satisfied, it
diverges at an exponential rate [124]. Then, to decide if a new transmission can be
accepted or not, some iterations of (7.8) are performed and if there is divergence, the
connection is rejected; in other case it is accepted with the power obtained after these
iterations.

7.6 Conclusions

In this chapter, we analyzed some weaknesses of CSMA/CA and we proposed two
decentralized multiple access mechanisms: SBAC and PCBA. The main advantage of
these mechanisms is to guarantee a minimum rate for all the accepted transmissions.
We compared their performance assuming different topologies, traffic scenarios and
propagation models and we devoted special attention to the comparison with CSMA.

We found that in all cases, irrespectively of the topology, traffic type and/or propa-
gation model, one of the proposed mechanisms significantly outperforms CSMA, apart
from a few cases where the differences are not significant. The rate distribution is also
more fair for each of the proposed mechanisms than for CSMA.
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If elastic traffic is considered, SBAC is the algorithm which provides the best results.
When a minimum rate is to be guaranteed, the best one depends on the considered
metric, the minimum rate level and α. If the comparison is made in terms of spatial
reuse, PCBA largely outperforms the rest of the mechanisms. This is due to its ca-
pacity of controlling the transmission power, thus accommodating more simultaneous
connections. At the same time, since it gives exactly the same rate to all the connec-
tions, its performance decreases when other metrics (that explicitly include the rate)
are considered. For example, SBAC is the mechanism which provides the best spatial
density of rate.

Finally, PCBA also brings the best results when constant bit rate traffic is consid-
ered, irrespectively of the metrics and the propagation model. When the ratio between
rate and transmission power is considered, again PCBA obtains very good results as
long as the distance between transmitter and receiver is limited.

These results encourage us to continue with the quest of an algorithm that guaran-
tees minimal performance for the accepted transmissions. However, much work needs
to be done, specially in the practical implementation of the decentralized algorithms.
Among the most important open questions let us quote the impact of a maximum
transmission power on PCBA and the extension of the proposed mechanisms to more
dynamic scenarios. The analysis of the non slotted version of these algorithms is un-
doubtedly challenging and necessary. It would be interesting for instance to check
whether the starvation phenomena experienced by CSMA is still present or not for the
mechanisms proposed in this work. Furthermore, other irregular topologies must be
included to obtain more general results. For instance, two-dimension networks with
nodes distributed according to Uniform or Poisson distribution can be analyzed.



Chapter8
Conclusions and Future Work

Telecommunications networks are embracing heterogeneity at service as well as tech-
nological level. The organization of this thesis tagged to reflect these two aspects and
so was organized in two parts. The first one was devoted to the prediction and classi-
fication of traffic. Indeed, the first problem is of great interest, for instance, for online
resource management or capacity planning. However, service convergence on the same
network, together with the ever-increasing access rates (e.g. Fiber To The Home), has
complicated enormously this problem. This increase on the access rate has also permit-
ted the proliferation of new resource consuming network applications. As an example of
such applications we consider P2P-TV traffic. In this sense, ISP are interested in iden-
tifying traffic generated by these applications. In particular, we have addressed these
two problems using a Machine Learning technique known as Support Vector Machines
(SVM).

Before going into details, some general remarks are in order. Very good results
were obtained by SVM in both of the considered problems. This shows the versatility
of the chosen learning technique, and encourages its use in other networking problems.
In addition to the accurate results, some of its main advantages are its robustness
and low computational complexity. Robustness refers to the parameter selection and
tuning. We have shown that even if the optimal parameter selection may be somewhat
difficult, the performance of SVM under suboptimal conditions is limitedly degraded.
Its computational efficiency is a consequence of the fact that the final solution depends
on the number of support vectors and not on the training set size. This characteristic
turns SVM specially attractive for online applications as it is our case.

In particular, for the problem of the link load prediction, two different strategies
were investigated. The first one, known as “embedding process” is based on a time series
of averaged load values. The SVM embedding process uses an arbitrary number of past
measurement of the time series in order to predict its future value. In this case a small
time scale was used. This procedure gives the most accurate results when compared
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with a large set of parametric and non parametric techniques, such as Moving Averages,
Auto Regressive models and the Nadaraya-Watson estimator. An extensive analysis
of the parameter impact was performed from which we showed the robustness of SVM
mentioned above. We have also analyzed the temporal evolution of the prediction error,
which could be useful at the moment of deciding when to trigger a new training phase
or detecting anomalous situations. Finally, the possibility of extending the forecast
horizon by recursively applying the SVM predictor was evaluated.

Despite these good results, the gain of SVM over optimized versions of some of the
considered alternatives was somewhat modest. This observation motivated our second
strategy. In this case, we took a different approach and predict not the mean value of
the link load at short timescales, but the maximum value or a percentile during a longer
time interval. Moreover this prediction is based not on raw past observations, but on
a summary of statistical properties of them. In particular, we have considered as SVM
output the maximum and the 95th-percentile over a one minute length interval, and as
input different combinations of the mean, standard deviation, maximum and percentile,
over a past interval of equal length. The impact of several parameters (such as the in-
put/output selection, timescale or traffic breakdown) on the SVM prediction accuracy
was evaluated. We also considered several real-world traffic traces, representative of
very different network scenarios (such as ISP, Ethernet, WiFi LAN and enterprise net-
works). We showed that this strategy performs better than other techniques, including
the “embedding process” described above. In particular the use of parallel SVM (i.e.
the combination of the results obtained by several machines trained with the same
output but with different inputs) appears as a very interesting alternative to obtain
good results, avoiding at the same time the selection of optimal settings. Our results
indicate that although we do not improve the results obtained by the optimum input
choice, the performance loss is insignificant. This property transforms parallel SVM in
an excellent strategy when the best input is not clear.

It is our belief that some extensions are worthwhile and that this topic is not closed
with the results obtained in this thesis. For instance, the “embedding procedure”
with larger time scales may be considered. In particular, it would be interesting to
investigate whether feeding SVM with features such as time-of-day and day-of-week
would help in forecasting periodic load fluctuations (such as lunch breaks and week-
ends). With respect to the parallel SVM proposed here, other ways of coupling the
results of different machines are available, such as Boosting or Bagging [63, 64]. Even
if these techniques are more complex, whether they can bring further improvements or
not should be assessed. Finally, it would be interesting to investigate if other alternative
methods based on functional attributes, that take further advantage of the time series
nature of our data, could improve the performance of the methods considered in this
thesis.

For the problem of identifying P2P-TV traffic, the emphasis was put on the defini-
tion of a signature able to describe the operation of each application, and that can be
used to discriminate them. We showed that such signature could be simply the count of
packets and bytes exchanged between peers during small time intervals (in the order of
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seconds). This signature (which we called Abacus) combined with the discriminatory
potential of SVM, is the key of the impressive results we obtained: 95% of P2P-TV
traffic correctly classified and less than 1% of false alarms when non P2P-TV traffic is
considered. Our proposal was largely validated in terms of accuracy and portability,
based on the use of traces gathered in a large scale testbed or collected from real opera-
tional networks. The portability of Abacus (i.e. train the machine in a specific context
and test it in a very different one), was verified by testing it in different network sites,
access technologies, channel popularity and disruption situation (e.g. high packet loss).
Furthermore, Abacus proved to be very lightweight in terms of memory consumption
and computational complexity.

Regarding the Abacus framework, we have identified at least two aspects that de-
serve more attention. Firstly, given the simplicity of the signature (only counts packets
and bytes) and the low computational cost of SVM, it is worth to analyze the inclusion
of Abacus in monitoring tools such as Netflow (which is commonly deployed in oper-
ative networks). Secondly, even if the false rate alarm is very low with our rejection
criterion based on the Bhattacharyya distance (less than 1%), other methods could be
used. For instance, all the non P2P-TV traffic can be assimilated to a single class and
the SVM could be trained accordingly (with the addition of this “unknown” class). In
this way, the rejection criterion is not required anymore. This would be specially useful
if large time windows are considered, since in this case most of the errors are generated
by the rejection criterion.

The second part of this thesis was devoted to the the study of wireless ad-hoc
networks. This was motivated by the increasing deployment of this kind of networks,
and the potential new services that will be offered over them in the near future. In
particular, we focused on MAC mechanisms, which are fundamental to their correct
performance.

We performed a deep study of the most relevant models of CSMA/CA [21, 22, 100],
which is the commonly used MAC mechanism. The first thing we noticed is that the
assumptions made by these models and their correlation with the real protocol are not
clear. For instance, the underlying assumptions on the CCA (Clear Channel Assess-
ment) are not even mentioned in these references. Moreover, certain assumptions are
over-simplistic, such as not considering the random variations of the channel condition.
We then performed a classification of these models, making explicit in which context
these models are valid, which we believe is a contribution on the understanding of the
CSMA modeling.

We analyzed also the extension of some of these models to the more general case
so that they include shadowing/fading effects. In this sense, we proposed an extension
based on the definition of a random exclusion domain. We showed that significantly
different results are obtained with this extension with respect to the original model.
This shows that this aspect should be considered for modeling purposes. However, the
techniques used to obtain analytical formulae in the analyzed proposals (such as the
packing formalism or the subtracted singularities method) are not applicable in this
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more general setting.

In any case (considering or not shadowing/fading effects), these techniques only
provide analytical formulae for simple cases, such as the regular line topology. Analyt-
ical results for other topologies can only be obtained, to the best of our knowledge, by
means of Matérn like models. However, it is well known that these models are intrin-
sically conservative when compared with the real protocol. A quantitative evaluation
of the magnitude of this difference was carried out for the first time in this thesis. We
showed that even if the differences on the spatial reuse are significant (about 30%),
when other performance metrics are considered the differences are less important (e.g.
10% for the spatial density of rate). An interesting aspect that could be worth to in-
vestigate, even if we are aware that it is of long term scope, is the possibility of using
Spin Glasses techniques [101] to model the CSMA dynamics. It would be interesting
to analyze if these techniques, used by physicists for the analysis of particle systems,
could be adapted to this context.

One of the main aspects that remained open for us at the moment of modeling
CSMA/CA was the inclusion of other CCA modes. The above mentioned models were
implicitly conceived for the Carrier Detection (CD) CCA mode. In the alternative
Energy Detection (ED) mode the use of exclusion domains is no longer valid, and
the total interference created by all active transmissions must be evaluated (i.e. it is
no longer a pairwise relation). We devoted then special attention to the modeling
and comparison of these two modes. In particular, we have seen that they can be
described in terms of an additive and an extremal shot noise (ASN and ESN). This
observation implies that analytical results can be derived for the access probability in
both cases, when the set of potential transmitters is assumed to follow a Poisson point
process. Moreover, a quantification of the difference (loss) on the number of accepted
transmissions when the ED is used (instead of the CD one) was provided. Interesting
observations were also deduced when random or deterministic thresholds are considered
(for both modes). We also evaluated the mean interference at each active transmitter,
finding that the differences between the two modes can be very important, and that
the ED mode is conservative enough to obtain mean interference values that are about
a half of the threshold used to accept a transmission. Results on imposing a condition
over the sum and the maximum at the same time were also derived, which resulted to
be in close relation with the previous ones.

Several aspects still remain to be explored. Let us quote some of them. Since the
results were derived under the Rayleigh fading, other shadowing/fading models should
be analyzed. Other path-loss functions could be considered as well. A distribution of
the transmitters location different than a Poisson point process could be assumed, such
as a Poisson Cluster. The location of the receiver, not considered up to now, should
be included in the analysis since the success of the transmission also depends on it.
Finally, both ASN and ESN are intrinsically conservative and an evaluation of how
conservative they are will be worthwhile.

Finally, we have addressed the problem of guaranteeing QoS in MANETs. Indeed,
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we have shown in our simulations that the performance of accepted connections in
CSMA/CA can be very poor. We proposed two new MAC mechanisms that guarantee
a minimum rate for all the accepted connections: SBAC and PCBA. Even if the ideas
behind the proposed mechanisms are not new, we focused on its adaptation to the ad-
hoc context and specially on its evaluation under different network scenarios by means
of metrics defined accordingly.

In particular, to compare SBAC, PCBA and CSMA, we have considered different
topologies (a line and a two-dimensional grid), different traffic scenarios (e.g. data and
voice traffic) and different propagation models (e.g. Rayleigh fading and Lognormal
shadowing). The objective was to determine which one is the “best” depending on
the considered scenario. Our results showed that there is not a single answer to the
question of which is the “best” mechanism.

For all the analyzed scenarios and performance metrics, it is one of our proposed
mechanisms that obtains the best results. More in detail, we found that if elastic traffic
is considered, SBAC should be chosen, since it provides rate levels that are generally
larger than the target minimum. When a minimum rate is to be guaranteed, the best
one depends on the considered metric, the minimum rate level and the attenuation
coefficient. For instance, PCBA largely outperforms the rest of the mechanisms if the
comparison is made in terms of spatial reuse. This is due to its capacity of control-
ling the transmission power, thus accommodating more simultaneous connections. At
the same time, since it gives exactly the same rate to all the active transmissions, its
performance decreases when other metrics (which explicitly include the rate) are con-
sidered. For example, SBAC is the mechanism which provides the best spatial density
of rate. However, this particular property of PCBA is its main asset when constant bit
rate traffic is considered: it obtains the best results irrespectively of the metric and the
propagation model. When the tradeoff between rate and transmission power is consid-
ered, PCBA obtains very good results as long as the distance between transmitter and
receiver is limited.

Implementation issues derived from the required decentralization of the proposed
algorithms were discussed, and possible solutions were proposed. However, a more
detailed analysis on their complexity and overhead should be performed. Since our
analysis was focused on the slotted case, a future study should consider more dynamic
scenarios. It would be interesting to evaluate if the well known “starvation phenomena”
experienced by CSMA/CA is still present for the proposed mechanisms. Moreover,
we considered regular topologies, but irregular ones assuming, for instance, random
distribution of network nodes (e.g. Uniform or Poisson), should also be evaluated.
Concerning the power control based mechanism, a maximum transmission power should
be imposed to avoid non realistic solutions, and its impact on the performance of PCBA
must be measured.
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SVM, Support Vector Machines,” Apprentissage Automatique, pp. 109–138, 1999.

[50] I. Mierswa, M. Wurst, R. Klinkenberg, M. Scholz, and T. Euler, “YALE: Rapid
Prototyping for Complex Data Mining Tasks,” in Proceedings of the 12th ACM
SIGKDD international conference on Knowledge discovery and data mining.
ACM, 2006, pp. 935–940.

[51] B. Schölkopf, B. Scholkopf, K. Sung, C. Burges, F. Girosi, P. Niyogi, T. Poggio,
and V. Vapnik, “Comparing Support Vector Machines with Gaussian Kernels
to Radial Basis Function Classifiers,” IEEE Transactions on Signal Processing,
vol. 45, pp. 2758–2765, 1997.

[52] P. J. Brockwell and R. Davis, Introduction to Time Series and Forecasting.
Springer, 1996.

http://www.csie.ntu.edu.tw/~cjlin/libsvm


BIBLIOGRAPHY 211

[53] J. Beran, Statistics for Long-memory Processes. Chapman & Hall, 1994.

[54] B. Krithikaivasan, Y. Zeng, K. Deka, and D. Medhi, “ARCH-based Traffic Fore-
casting and Dynamic Bandwidth Provisioning for Periodically Measured Non-
stationary Traffic,” IEEE/ACM Transactions on Networking, vol. 15, no. 3, pp.
683–696, 2007.

[55] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson, “On the Self-
similar Nature of Ethernet Traffic,” IEEE/ACM Transactions on Networking,
vol. 2, no. 1, pp. 1–15, 1994.

[56] Q. He, C. Dovrolis, and M. Ammar, “On the Predictability of Large Transfer
TCP Throughput,” Computer Networks, vol. 51, no. 14, pp. 3959–3977, 2007.

[57] S. Ruping and K. Morik, “Support Vector Machines and Learning About Time,”
in ICASSP’03: IEEE International Conference on Acoustics, Speech, and Signal
Processing, vol. 4, 2003, pp. 864–7.

[58] G. Watson, “Smooth regression analysis,” Sankhya, Series, vol. A, no. 26, pp.
359–372, 1964.

[59] E.A.Nadaraya, Non Parametric Estimation of Probability Density and Regression
Curves, ser. Soviet Series. Dordrecht,Boston: Kluwer Publishers Group, 1989,
vol. 20.

[60] V. Cherkassky and Y. Ma, “Practical Selection of SVM Parameters and Noise
Estimation for SVM Regression,” Neural Networks, vol. 17, no. 1, pp. 113–126,
2004.

[61] M. A. M. B. J. L. V. Paxson, R. Pang and B. Tierney, “LBNL/ICSI Enterprise
Tracing Project.” [Online]. Available: http://imdc.datcat.org/

[62] R. Pang, M. Allman, M. Bennett, J. Lee, V. Paxson, and B. Tierney, “A First
Look at Modern Enterprise Traffic,” in IMC ’05: Proceedings of the 5th ACM
SIGCOMM Conference on Internet Measurement. USENIX Association, 2005,
pp. 2–2.

[63] R. E.Schapire, “The Boosting Approach to Machine Learning: An Overview,” in
MSRI Workshop on Nonlinear Estimation and Classification, 2002, pp. 2–2.

[64] L. Breiman, “Bagging Predictors,” Machine Learning, vol. 24, no. 2, pp. 123–140,
1996.

[65] J. Liu, S. G. Rao, B. Li, and H. Zhang, “Opportunities and Challenges of Peer-
to-Peer Internet Video Broadcast,” in IEEE Special Issue on Recent Advances in
Distributed Multimedia Communications, 2007.

[66] S. Sen, O. Spatscheck, and D. Wang, “Accurate, Scalable in-Network Identifica-
tion of P2P Traffic Using Application Signatures,” in WWW ’04: 13th interna-
tional conference on World Wide Web. ACM, 2004, pp. 512–521.

http://imdc.datcat.org/


212 BIBLIOGRAPHY

[67] A. W. Moore and K. Papagiannaki, “Toward the Accurate Identification of Net-
work Applications,” in Passive and Active Network Measurement, 2005, pp. 41–
54.

[68] J. Ma, K. Levchenko, C. Kreibich, S. Savage, and G. M. Voelker, “Unexpected
Means of Protocol Inference,” in IMC ’06: 6th ACM SIGCOMM Conference on
Internet Measurement. ACM, 2006, pp. 313–326.

[69] A. Mcgregor, M. Hall, P. Lorier, and J. Brunskill, “Flow Clustering Using Ma-
chine Learning Techniques,” in Passive and Active Network Measurement, 2004,
pp. 205–214.

[70] D. Bonfiglio, M. Mellia, M. Meo, D. Rossi, and P. Tofanelli, “Revealing Skype
Traffic: When Randomness Plays With You,” SIGCOMM Computer Communi-
cation Review, vol. 37, no. 4, pp. 37–48, 2007.

[71] M. Crotti, M. Dusi, F. Gringoli, and L. Salgarelli, “Traffic Classification Through
Simple Statistical Fingerprinting,” SIGCOMM Computer Communication Re-
view, vol. 37, no. 1, pp. 5–16, 2007.

[72] L. Bernaille, R. Teixeira, and K. Salamatian, “Early Application Identification,”
in CoNEXT ’06: Proceedings of the 2006 ACM CoNEXT conference. ACM,
2006, pp. 1–12.

[73] “Cisco Systems NetFlow Services Export Version 9,” in IETF RFC 3954. Editor
B. Claise, October 2004.

[74] Y.-X. Yang, R. Wang, Y. Liu, and X. yong Zhou, “Solving P2P Traffic Iden-
tification Problems Via Optimized Support Vector Machines,” in AICCSA ’07:
IEEE/ACS International Conference on Computer Systems and Applications,
2007, pp. 165–171.

[75] X. Hei, C. Liang, J. Liang, Y. Liu, and K. W. Ross, “A Measurement Study of a
Large-Scale P2P IPTV System,” IEEE Transactions on Multimedia, 2007.

[76] A. Bhattacharyya, “On a Measure of Divergence Between Two Statistical Pop-
ulations Defined by Probability Distributions,” Bulletin Calcutta Mathematical
Society, vol. 35, pp. 99–109, 1943.

[77] T. Kailath, “The Divergence and Bhattacharyya Distance Measures in Signal
Selection,” IEEE Transactions on Communications [legacy, pre - 1988], vol. 15,
no. 1, pp. 52–60, 1967.

[78] K. Matusita, “A Distance and Related Statistics in Multivariate Analysis,” in
International Symposium on Multivariate Analysis. Academic Press P.R. Krish-
naiah (ed.), 1966, pp. 187–200.

[79] M. Mellia, R. Lo Cigno, and F. Neri, “Measuring IP and TCP Behavior on Edge
Nodes with Tstat,” Computer Networks, vol. 47, no. 1, pp. 1–21, 2005.



BIBLIOGRAPHY 213

[80] “FastWeb Company Information,” 2006. [Online]. Available:
http://company.fastweb.it

[81] “IPP2P home page.” [Online]. Available: http://www.ipp2p.org/

[82] Y. Kulbak and D. Bickson, “The eMule Protocol Specifica-
tion,” Leibniz Center, School of Computer Science and Engineer-
ing, TheHebrew University, Tech. Rep., 2005. [Online]. Available:
http://www.cs.huji.ac.il/labs/danss/presentations/emule.pdf

[83] “Tshark.” [Online]. Available: http://www.wireshark.org/

[84] T. Jebara and R. Kondor, “Bhattacharyya and Expected Likelihood Kernels,” in
16th Annual Conference on Learning Theory (COLT) and 7th Annual Workshop
on Kernel Machines, ser. Lecture Notes in Artificial Intelligence, B. Schölkopf
and M. Warmuth, Eds. Springer Verlag, 2003.

[85] T. Silerston and O. Fourmaux, “Measuring P2P IPTV Systems,” in NOSSDAV:
International workshop on Network and Operating Systems Support for Digital
Audio & Video, 2007.

[86] E. Alessandria, M. Gallo, E. Leonardi, M. Mellia, and M. Meo, “P2P-TV Systems
Under Adverse Network Conditions: a Measurement Study,” in IEEE Infocom,
2009.

[87] D.Bertsekas and R.Gallager, Data Networks. Prentice Hall, 1988.

[88] S. Keshav, An Engineering Approach to Computer Networking: ATM networks,
the Internet, and the Telephone Network. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 1997.

[89] X. Wang and K. Kar, “Throughput Modelling and Fairness Issues in CSMA/CA
Ad-hoc Networks,” IEEE Infocom, 2005.

[90] G. Bianchi, “Performance Analysis of the IEEE 802.11 Distributed Coordination
Function,” IEEE Journal on Selected Areas in Communications, vol. 18, no. 3,
pp. 535–547, 2000.

[91] A. Kumar, E. Altman, D. Miorandi, and M. Goyal, “New insights from a fixed-
point analysis of single cell ieee 802.11 wlans,” IEEE/ACM Transactions on Net-
working, vol. 15, no. 3, pp. 588–601, 2007.

[92] S. Pollin, M. Ergen, S. Ergen, B. Bougard, L. Van der Perre, F. Catthoor, I. Mo-
erman, A. Bahai, and P. Varaiya, “Performance Analysis of Slotted Carrier Sense
IEEE 802.15.4 Medium Access Layer,” IEEE Transactions on Wireless Commu-
nications, vol. 7, no. 9, pp. 3359–3371, 2008.

[93] “Wireless LAN medium access control (MAC) and physical layer (PHY) speci-
fications,” IEEE Std 802.11-2007 (Revision of IEEE Std 802.11-1999), June 12
2007.

http://company.fastweb.it
http://www.ipp2p.org/
http://www.cs.huji.ac.il/labs/danss/presentations/emule.pdf
http://www.wireshark.org/


214 BIBLIOGRAPHY

[94] I. Ramachandran and S. Roy, “On the Impact of Clear Channel Assessment
on MAC Performance,” in IEEE GLOBECOM’06: Global Telecommunications
Conference, 2006, pp. 1–5.

[95] M. Durvy and P. Thiran, “A Packing Approach to Compare Slotted and Non-
Slotted Medium Access Control,” in IEEE Infocom, 2006, pp. 1119–1207.

[96] F. Kelly, “Loss Networks,” The Annals of Applied Probability, vol. 1, pp. 319–378,
1991.

[97] P. Brémaud, Markov Chains, Gibbs Fields, Monte Carlo Simulation and Queues.
Springer-Verlag, New York, Inc., 1999.

[98] D. J. Daley and D. Vere-Jones, An Introduction to the Theory of Point Processes.
Springer-Verlag, New York, Inc., 1988.

[99] M.Haenggi, J.Andrews, F.Baccelli, O.Dousse, and M. (Editors), “Stochastic
Geoemtry and Random Graphs for Wireless Networks,” Special Issue of IEEE
JSAC, 2009.

[100] H. Nguyen, F. Baccelli, and D. Kofman, “An stochastic geometry analysis of dense
IEEE 802.11 networks ans its use in economic modeling,” in IEEE Infocom, 2007,
pp. 1119–1207.

[101] M. Talagrand, Spin Glasses: A Challenge for Mathamaticians. Springer Verlag,
2000.

[102] N.Campbell, “Discontinuities in light emission,” Mathematical Proceedings of the
Cambridge Philosophical Society, vol. 15, pp. 117–136, 1909.

[103] M. Haenggi and R. K. Ganti, Interference in Large Wireless Networks. Now
Publishers. Foundation and Trends in Networking Series, 2009, vol. 3, no. 2.

[104] F. Baccelli and V. M. Nguyen, “Best Signal Quality in Interference Fields,” per-
sonal communication, 2009.

[105] F. Tournois, “Modélisation et Simulation de Réseaux CDMA par la Géométrie
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