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Abstract

The amount of data is continously increasing through online databases such
as Flicker1. Not only is the amount of stored data increasing constantly
but also the data itself is highly complex. The need for smart algorithms
is obvious. Recently, manifold learning has made a strong entry into the
computer vision community. This method provides a powerful tool for the
analysis of high-dimensional complex data. Manifold learning is based on the
assumption that the degrees of freedom of the data are much smaller than
the dimension of the data space itself. More specifically, these methods try
to recover a submanifold embedded in a high-dimensional space which can
even be dimensionally infinite as in the case of shapes. The output of such
an algorithm is a mapping into a new space (commonly refered to as feature
space) where the analysis of data becomes easier. Often this mapping can be
thought of as a parametrization of the dataset.
In the first part of this thesis, we introduce the concepts and theory of metric
spaces providing the theoretical background to manifold learning. Once
the necessary tools are introduced, we will present a survey on linear and
non-linear manifold learning algorithms and compare their weak and strong
points.
In the second part, we will develop two applications using manifold learning
techniques. In both applications manifold learning is applied to recover or
approximate the metric on the original space data space. In this way distance
between points in the original space can be computed using the metric in the
feature space. This allows the formulation of distance based optimization
problems.
In this spirit, we tackle a first problem known under the name of Pre-image
problem. We will look at this problem in the context of Kernel PCA and dif-
fusion maps. It turns out, that previous Pre-image methods based on Kernel
PCA used a wrong normalization in centered feature space. We propose a
more subtle normalization improving previously proposed algorithm for the
computation of the Pre-image. We then look at the same problem in the
context of diffusion maps and shapes. A manifold interpolation algorithm is
proposed for solving the Pre-image correctly. We will show very promising
results in image and shape denoising.
The second problem is finding a set of correspondences between two non
rigid triangle meshes. Our solution builds upon a recent method which
allows to embed the first mesh into the second. The method relies on the
intrinsic distance function of the surfaces and therefore is purely geometrical.

1www.flickr.com/
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Unfortunately, when dealing with dynamic multiview stereo the reconstructed
surfaces do not satisfy the conditions of the geometric algorithm. Our solution
to this problem is an improved energy function taking the geometry of surface
and the photometric information from the images into account. This results
in a more robust correspondence matching algorithm for non-rigid surfaces.

Key-words : metric geometry, manifold learning, kernel PCA, diffusion
maps, multidimensional scaling, pre-image, shape space, non-rigid correspon-
dence problem.
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Résumé

Grâce au bases de données en ligne , le volume de données ne cesse d accroitre.
Non seulement la quantité de donnes augmente mais aussi la complexité des
donnes est hautement complexe. Ce fait nécessite le développement d algo-
rithmes performants. Récemment, une nouvelle classe de méthodes connue
sous le nom de: "apprentissage de variétés" a été introuduite. Ces méthodes
présentent un formalisme intéressant et performant pour l analyse de données
a très haute dimension. Ces méthode assument que les degrés de liberté dans
les données sont bien plus petit que la dimension de l espace des données. Le
but de ces algorithmes est retrouve une variété plongée dans un espace á haute
dimension (voir infinie). La sortie d un tel algorithme es une fonction trans-
formant les données dans un espace (espace de feature ) où l’analyse devient
plus facile. Souvent cette fonction est considère comme une para métrisation
de la variété. Dans la première partie de ce manuscrit, nous allons intro-
duire les idées principales ainsi que la théorie des espaces métriques. Ceci
nous fournissera les outils de bases pour les méthodes d’apprentissage de var-
iétés. Par la suite nous présenterons des méthodes linéaires et non- linéaires
pour l’apprentissage de variétés et analyserons leurs points forts et faibles. La
deuxième partie développera deux applications en utilisant l’apprentissage des
variétés. Dans les deux cas l’apprentissage de variétés est appliqué pour ap-
proximer le métrique dans l espace initiale. Ainsi la distance entre points dans
l’espace originale peut être approximé en utilisant la métrique dans l’espace
feature. Ainsi nous pouvant résoudre des problème d optimisation basée sur
les distance entre points. Dans cette idée nous regardons le premier problème
connu sous le nom "problem de la pre-image". Nous analyserons ce problème
dans le contexte de la ACP a noyau and la technique des diffusion maps.
Nous remarquerons que les méthodes basées sur l ACP a noyau appliqué une
mauvaise normalisation pour les calculs. Nous proposons pour cela une nor-
malisation raffinée améliorant les résultats des méthodes déjà développées.
Par la suite nous considérons le même problème dans le cadre des diffusion
maps appliqués a l’analyse de formes. Nous proposons une méthodes d inter-
polation pouvons résoudre le problème de la pré-image. Les deux méthodes
sont appliqués au de bruitage d’images et de formes avec des résultats très
prometteurs.

Le deuxième problème est celui de retrouver un ensemble de correspon-
dance entre deux maillage non rigide. Notre solution utilise une méthode
récente qui permet de plonger un premier maillage dans un deuxième. Cette
méthode est basée sur la distance intrinsèque entre les points du maillage et
est donc purement géométrique. Malheureusement quand les maillages sont is-
sues de la stéréo photométrique , les surfaces ne sont pas suffisamment précises
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pour satisfaire les hypothèses de l’algorithme géométrique. Notre solution a
ce problème est une optimisation raffinée, qui prend en compte non seulement
la géométrie de la surface mais aussi l’information photométrique des images.
Ainsi nous obtenons un algorithme robuste pour retrouver un ensemble de
correspondance entre deux maillages non rigides.

Mots-clefs : gémétrie métrique, apprentissage de variétés, ACP à noyau,
diffusion maps, multidimensional scaling, pré-image, espace de formes, prob-
lème de correspondance non rigides.
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6 Chapter 1. Introduction

1.1 General Context

Imaging technology is used extensively in the medical sector where it has be-
come a standard technology for the diagnosis of diseases. These non invasive
technologies such as Magnetic Resonance Imaging (MRI) allow the study of
morphological variations in the brain. For instance there is an obvious correla-
tion between a decrease of white matter and the Alzheimer diseases. Further,
such in-vivo imaging analysis tools provide a way to understand the brain
functionality. This is also known as functional brain imaging and allows the
medical research to visualize brain activity while a person carries out certain
tasks. Although imaging technology is more and more accurate, algorithm
engineers still have to deal with imaging problems such as noise in the image
which is inherent to the acquisition tools (c.f. MRI). Intelligent preprocessing
and postprocessing algorithms are being developed to suppress artefacts from
the images while not altering the important content. A common technique
to reduce the noise in an image is to convolve the image with a Gaussian
function. Unfortunately, this naive approach blurs significant features such as
edges and destroys some of the geometric information in the image. A more
subtle approach is to design an algorithm blurring homogenous regions but
without acting on the frontier between such regions[Tomasi 1998]. The reason
for this approach is that the frontiers or edges between homogenous regions
are very important for the perception of the geometric content in the image.
The development of smart algorithms enhancing image quality is the topic of
Image Processing [Sonka 1998]. Image enhancement and denoising is not
the only concern in image processing. The following list gives an incomplete
overview of typical operations in image processing:

• Geometric transformations such as rotation, shearing, scaling

• Color corrections such as brightness and contrast adjustments, quanti-
zation, or color translation to a different color space (typical operations
in digital cameras)

• Interpolation and demosaicing

• Image registration (aligning two or more images)

• Image morphing

• Image recognition (extract text from images)

• Image segmentation
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With the increasing progress of digital consumer technology, digital cam-
eras and digital video cameras are more accessible to a broad public. Due to
the widespread usage of digital cameras, the amount of images and videos is
increasing constantly. Thanks to the internet, digital content is also diffused
easily across the world. Dealing with this huge amount of data calls for intel-
ligent software for automatic image and video recognition, classification and,
categorization. The organization is not only challenging on the internet. On
the individual side, people are overwhelmed by the digital content they create
so easily. Smart algorithms helping to organize or extract high-hevel informa-
tion are the subject of Computer Vision [Forsyth 2002]. Often Computer
Vision is seen as the inverse operation of Computer Graphics, thus under-
standing what was created in this image and segmenting different objects in
the image (object segmentation). The next step is to infer what type of objects
are depicted in the image. Another intent could be a 3D reconstruction of the
object previously identified. All of these different stages are done bottom-up.
Thus, first a low level treatment is performed where salient points are found
which helps in the next step to perform segmentation of the object. Once
the object is delimited from the rest of the scene it is interesting to recognize
the object which is often done by using Machine Learning. Generally, the
community agrees upon the following classification of algorithms into three
categories:

• low-level vision

• mid-level vision

• high-level vision

Low-level vision is the sum of operations on the pixel-level of an image.
Low-level vision and image processing are often used synonymously. In
Computer Vision, low-level vision provides methods to filter images and
compute features such as edges. Mid-level vision includes techniques such as
segmentation, grouping, perceptual organization and fitting. All these tech-
niques seek to provide a more compact description of the image which might
be used for further processing such as high-level vision. High-level computer
vision can be divided into geometric methods and probabilistic methods.
Geometric methods target to understand the geometric configuration and
relation between the observed objects. On the other hand, probabilistic and
inferential methods try to recognize and classify the objects observed in order
to understand the content of the image.

Another common application of Computer Vision is the post process-
ing of movies and images in order to render artificial objects such as explo-
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sions into the images. These techniques are also known under the name of
special effects. In general, Computer Vision is ubiquitous in the movies
industry. When it comes to animated movies, it is especially challenging
to make the movies as realistic as possible. For instance the motion ani-
mation of characters requires a special technique known as Motion Track-
ing [Moeslund 1999, Rosenhahn 2008]. The producer of an animation movie
might want to make one of the characters dance like a ballerina. Generating
the motion of a ballet dancer manually is very time consuming and the result
might appear unrealistic. So the idea of Motion Tracking is to record a
real ballerina dancing in a camera rig and compute the motion parameters
of the recorded scene. The motion parameters are then employed to animate
virtual characters in an animation movie resulting in very realistic ballerina
moves. Motion Tracking can be divided into optical and non-optical meth-
ods. Non-optical methods are divided into mechanical, inertial and magnetic
methods. We focus in this thesis on optical systems. Optical systems use data
captured from cameras to triangulate the 3D position of an object. The three
most important methods are :

• Passive markers

• Active markers

• Markerless

Passive optical systems use retroreflective markers attached to the object
generating bright spots in the recorded images. In this manner, the markers
position in the images are easily pinpointed and triangulated. Contrary to
passive markers, active optical systems use LEDs instead of reflecting mark-
ers. 3D positions are triangulated by activating the LEDs and identifying
them by their relative position to each other using specific software. Lastly,
markerless optical systems solely rely on the intensity images recorded by the
camera rig.

Many of the above mentioned problems appear in Computer Vision and
nowadays are being solved using Machine Learning techniques. Machine
Learning[Hastie 2003] is about the development of algorithms to automat-
ically extract patterns or regularities from data. In the case of Computer
Vision, the data is usually composed of images as in Figure 1.2. A good al-
gorithm is measured by its capacity to generalize, which means if new data is
recognized correctly based on the available samples. Typical tasks of Machine
learning are

• Unsupervised: determines how the data is organized
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Figure 1.1: A set of points in R3 lying on a manifold sampled from a 2-

dimensional manifold and the corresponding parametrization f of the manifold

mappingM ot R2.(taken from [Etyngier 2008])

• Semi-supervised: given labelled and unlabelled points, build a labeling
function

• Supervised: given labelled points, build a labelling function

• Reinforcement learning: learns how to act given an observation of the
world.

• Transduction: the specific test cases are known beforehand and exploited
in the training stage. In contrast to the 2-steps inductive inference
process, which first learns a mapping from the entire input space to the
output space and can then apply it to any novel input, transductive
inference only predicts the labels of known test points and uses the
unlabeled data distribution in the learning procedure.

Applications for machine learning include machine perception, computer
vision, natural language processing, syntactic pattern recognition, search en-
gines, medical diagnosis, bioinformatics, brain-machine interfaces, detecting
credit card fraud, stock market analysis, classifying DNA sequences, speech
and handwriting recognition, object recognition in computer vision, game
playing, software engineering, adaptive websites and robot locomotion.

Over time, several learning tools were designed for the processing of linear
data. Unfortunately, the assumption of linear data is invalid most of the
time when dealing with real world data. For instance, taking a look at the
example in Figure 1.1 the data has a non-linear dependency, which leads to
the question of how to treat this data correctly.
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1.2 Manifold Learning

Manifold learning deals with the inference of geometrical properties from col-
lections of data (c.f Figure 1.2) represented in vector form and embedded in
a Euclidean space or an infinite dimensional space in the case of shapes. One
of the major assumptions of manifold learning techniques is that the data
lies approximately on a low dimensional surface embedded in a high (possibly
infinite) dimensional space (c.f Figure 1.3).

Figure 1.2: Each image is a vector in R4096, but we observe only three degrees

of freedom: 2 rotation angles and 1 illumination parameter. Therefore the

set of images span a 3-dimensional submanifold in R4096.(taken from http:

//web.mit.edu/cocosci/isomap/)

http://web.mit.edu/cocosci/isomap/
http://web.mit.edu/cocosci/isomap/
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Manifold-valued data

In the context of manifold learning, these types of datasets are often called
point clouds. Some of the goals of manifold learning are to determine if the
data is on (or close to) a manifold and estimating the intrinsic dimensionality
of the underlying manifold. In [Tenenbaum 2000, Roweis 2000a, Fan 2009,
Chunguang 007, Kégl 2003, Hein 2005b, Hero 2000] the authors propose in-
trinsic dimension estimators looking at local neighborhoods and combining
this information. If indeed the intrinsic dimension is lower then the embed-
ding space, the goal is to find a lower dimensional representation so that the
analysis of this data is eased. The idea of intrinsic dimension is equivalent to
the number of degrees of freedom in a data set. A good example is the data
set of faces depicted in Figure 1.2. The number of degrees of freedom in this
data set is three. Indeed we observe two rotation angles of the head and a
moving light source.
Linear methods such as MDS and PCA (c.f. Chapter 3) are supposed to
transform the data into a new coordinate system but have the drawback of
not properly handling nonlinear data. Therefore more sophisticated methods
are needed.

Motivation

The problems to be considered in this thesis are denoising and mesh
registration. In both cases, we will make use of manifold learning techniques.
The first problem to be considered is the denoising of images and shapes
in which images are considered as vectors in a finite dimensional space
and shapes are represented as implicit functions in an infinite dimensional
space. in this case, denoising is achieved through subspace projection onto
a low dimensional representation of the data. The idea is similar to Fourier
analysis, which assumes that the most important information is in the
low frequencies. This point of view can also be adopted for denoising of
images of shapes. For instance, given an input signal we assume that it
is composed of original data mixed with additive noise. Then the original
data corresponds to the low frequency components of the signal and the
noise corresponds to the high frequency. Applying manifold learning to
uncorrupted category specific data amounts to recovering the modes of
variation in the data set. The noise can be eliminated by projecting the noisy
datum onto the learned manifold. The projected signal then contains solely
low frequency describing the typical frequency for a certain category of signals.

The second problem considers the problem of non-rigid mesh registration
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X

m̄

m̃

Figure 1.3: The Face data lies on a 3-dimensional curved submanifold X

embedded in R4096. Linear combination m̄ of two elements of X yields an

element outside of X . This shows that the dataspace is not a vector space.

The mean between two faces m̃ yields an element of X .

in a multiple camera environment. This problem is solved by computing a
function which embeds the points of the first mesh onto the second mesh
so that the points should correspond to similar locations. This problem
was previously solved using a MDS-like approach [Bronstein 2006b]. We
show that in the case of reconstructed meshes the isometry assumption is
not fully satisfied due to local elastic deformation. The routine proposed
in [Bronstein 2006b] does not hold up to such perturbations and is not
adapted to our case. To cope with this problem, we modify the optimization
functional in [Bronstein 2006b] in order to enforce photometric consistency
among image pairs and in time. We then compute the embedding solving the
augmented energy. In this way local elastic deformations do not affect the
embedding computation too strongly.
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1.3 Organisation

One of the objectives of this thesis is to provide an educational and self
contained introduction to the theory of differential manifolds and the subject
of manifold learning in machine learning. Therefore, the first part starts
with the definition of metric spaces. This short introduction on metric
spaces provides a justification for the use of metrics in the real world in
order to quantify similarities between entities. The beginning of the first
chapter introduces rather general mathematical concepts and continues with
a geometric view of metric spaces. This leads to the theory of smooth
manifolds. The introduction of the terminology of manifolds opens the door
to the world of geometric machine learning or commonly known as manifold
learning. The second part of this thesis applies the algorithms introduced in
the first part to solve two standard problems in Computer Vision.

Chapter 2 is a standard introduction to metric geometry or smooth metric
geometry. A set of definitions and concepts are presented. The structure
follows the monograph of doCarmo [Do carmo 1992]. This introduction is
structered in a slightly different way to better fit the ideas in this thesis.
First, several properties of surfaces used for the analysis of their geometry
are presented. Second, we will characterize properties of transformations
between surfaces forming the second part of this introduction to differential
geometry.

Chapter 3 will provide an overview of the major manifold learning
methods. We will begin with the presentation of the most prominent linear
methods to afterwards move on to the non-linear methods. The intent is
offer a nice and easy read without neglecting the formalism necessary for the
correct treatment of these methods. Furthermore, several illustrations were
added to facilitate the understanding and the geometric intuition behind the
scene.

Chapter 4 will consider the problem of pre-image computation. Given
a set of training samples, manifold learning techniques embed the training
samples into a new space called feature space. As the feature space is more
suitable for the analysis of data, operations such as projections and nearest
neighbors search are preferably executed in the feature space. Unfortunately,
there is no inverse mapping from feature space back to the original space
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as the embedding is only known for the training samples. Therefore, for
a point with different embedding coordinates than those of the training
samples, one has to approximate the pre-image in the data space. As shown
by previous work, solving the pre-image problem can be used for denoising or
interpolation of datasets. We consider this problem in the context of Kernel
PCA and show that special care has to be taken on the issue of centering the
data set. The observation made shows significant improvements when applied
to the state of the art algorithms for denoising of images. In the second part,
we provide a new method for interpolation in the manifold in the context of
diffusion maps. The pre-image problem is solved by interpolating between
samples. Our methods shows very good results in image and shape denoising.

Chapter 5 will cover the problem of non-rigid registration of 3-D triangle
meshes in a multiple view camera environment. This problem is also known
as correspondence problem. Unfortunately, most of the existing algorithms
make assumptions (almost perfect isometry between the two surfaces for
example) which are not true in the case of surfaces reconstructed from
images. Such algorithms were mainly designed for the registration of surfaces
aquired by range scanners. But image based surface reconstruction often
yields imprecise meshes due to occlusions, bad camera calibration or because
of the algorithm itself. Therefore, we build upon previous registration
methods and exploit the photometric information in the images to render
a purely geometric registration method tractable for the case of imprecise
meshes issued from 3D reconstruction methods. Firstly, the standard form
of the problem is presented for the case of geometric rigid registration. A
vast amount of literature was published on this topic. We limit ourselves to
the work directly related to our own, with the aim of reviewing the previous
work done on mesh registration. Finally, we provide an algorithm which
is a combination of geometric properties of the surface and photometric
properties of the images. More precisely, we define an energy on a set of
correspondences minimizing the photometric disparity in the images. The
geometry is taken into account by regularization term which is added to the
energy to ease the minimization. The regularization term is a prior on the
admissible deformations between the triangle meshes. More precisely, we
assume that the two surfaces are intrinsically isometric. At the end we will
show some of the results achieved with the algorithm.

Chapter 6 forms the conlcusion of this thesis and will provide a short
review of the work presented in this manuscript. At the same time we present
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some promising research avenues which lie in the continuation of this work.
Including several ideas which could be explored.

1.4 Contributions

The purpose of this thesis is twofold. Firstly, we will provide an introduction
to the theory of metric geometry as proposed in the book by Burago et. al.
[Burago 2001]. We will mention important theorems of this theory in order
to provide a connection to the topic of manifold learning. Several concepts
translate to efficient numerical algorithms. This first part provides a concise
introduction to the topic of manifold learning and should help to get through
the very rich literature and understand weak and strong points of each method
and the connections between the methods.
Secondly, we will develop two algorithms using manifold learning techniques.
In a first instance we will consider the problem of pre-image computation in the
case of an infinite-dimensional shape space. This idea was first suggested by
Charpiat [Charpiat 2005] and further developed by Etyngier [Etyngier 2007b].
Based on an idea of Etyngier[Etyngier 2007b], we will propose an efficient way
to solve the pre-image of points in a high dimensional space. This requires
the projection of the point onto a manifold. We will propose to model the
underlying manifold as the set of Karcher means of close sample points. The
solution is solved through a non-linear interpolation of close sample points.
Results on synthetic 2D shapes and on real 2D images and 3D shapes are
presented and demonstrate the superiority of our pre-image method com-
pared to several state-of-the-art techniques in shape and image denoising
based on statistical learning techniques. The proposed methods were pub-
lished in [Thorstensen 2008, Thorstensen 2009c]
As a second problem, we will consider the difficulty of finding correspondences
between three-dimensional reconstructions of a deformable surface at differ-
ent time steps. We suppose that (i) the mechanical underlying model imposes
time-constant geodesic distances between points on the surface; and that (ii)
images of the real surface are available. This is for instance the case in spa-
tiotemporal shape from videos (e.g. multi-view stereo, visual hulls, etc.) when
the surface is supposed to be approximatively unstretchable. These assump-
tions allow to exploit both geometry and photometry. In particular, we will
propose an energy based formulation of the problem, extending the work of
Bronstein et al. [Bronstein 2006b]. On the one hand, we show that photometry
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(i) improves accuracy in case of locally elastic deformations or noisy surfaces
and (ii) allows to still find the right solution when [Bronstein 2006b] fails due
to ambiguities (e.g. symmetries). On the other hand, the usage of geometry
makes it possible to match shapes that have undergone large motion, which is
not possible with usual photometric methods. Numerical experiments prove
the efficiency of our method on synthetic and real data. The results of this
work were presented at the ACCV conference in Xi’An [Thorstensen 2009b].
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Overview

In this first Chapter, we will provide an introduction to the geometry of met-
ric spaces and machine learning methods. The intention is to provide some
elementary concepts about the mathematical notions necessary for under-
standing the notations involved in manifold learning. Further, we present the
most recent manifold learning algorithms which are used in this thesis to solve
specific problems in Computer Vision.

History

The idea of using the distance function to define metrics on sets, dates back to
1905 in a paper of the Romanian mathematician Dimitrie Pompeiu published
in the Annales de Toulouse. Felix Hausdorff popularized this approach in his
book Grundzüge der Mengenlehre published in 1914 in Leipzig. It is the well
known Hausdorff metric he introduced in this text. Through the metric he
provides an analytical description of a geometrical object. This was the first
work in metric geometry which was strongly popularized by Burago and his
coauthors in his excellent monograph on metric geometry[Burago 2001].

The subject of classical Riemannian geometry usually begins with the def-
inition of a C∞ manifold X and then introduces positive definite bilinear form
G on the tangent bundle of X . The concept of length of curves and geodesic
distances on X is build upon the fact that G varies smoothly over X . This
provides a family of continuous norms on the tangent space TxX of X . Then
fundamental notions such as the covariant derivative and curvature follow
from these basic definitions. Contrary to Riemannian geometry, metric geom-
etry studies the concept of length and geodesic distance as a unique concept
and shows how Riemannian geometry and its notions such as curvature and
derivatives arise when the metric space exhibits enough smoothness. This
chapter starts by introducing metric geometry following the books of Burago
et.al [Burago 2001] and the smooth analogue also known as Riemannian ge-
ometry as in the book by DoCarmo [Do carmo 1992].

2.1 Elementary Metric geometry and Topology

The concept of ”near” and ”far” is a very powerful and useful utility in every
day life. It classifies the relationship between two ”primitives”, whether they
are close or far apart. An example could be a biologist classifying the resem-
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blance between two dogs. The biologist would classify two dogs, let’s say a
German Sheppard and a sausage dog, as very distant races since they have
almost no resemblance at all(far). Of course this kind of classification is not
useful for computations. A metric space is the mathematical construction of
this vague idea.

Definition 1. Let X be an arbitrary abstract set. A function dX : X×X 7→ R∪

{∞} is a metric on X if the following conditions are met for all x1, x2, x3 ∈ X.

(i) Non-negativity: dX(x1, x2) ≥ 0 and dX(x1, x2) = 0⇔ x1 = x2.

(ii) Symmetry: dX(x1, x2) = dX(x2, x1).

(iii) Triangle inequality: dX(x1, x3) ≤ dX(x1, x2) + dX(x2, x3).

Then the pair (X, dX) is a metric space. The elements of X are called points
of the metric space. The function dX(x1, x2) returns the distance between two
points. A very well known instance of a metric space is the three dimensional
Euclidean space R3 with the Euclidean metric. In the rest of the document,
we will often write a metric space X instead of a metric space (X, dX).
In general, any normed vector space V is a metric space with the metric
induced by the norm.

Definition 2. Let V be a vector space. A function ‖.‖ 7→ R is a norm on V

if the following conditions are met for all v1, v2 ∈ V and k ∈ R.

(i) Non-negativity: |v| > 0 if v 6= 0, else |0| = 0.

(ii) Linearity: |kv| = |k| |v|.

(iii) Triangle inequality: |v1 + v2| ≤ |v1|+ |v2| with k ∈ R.

So a normed vector space is a vector space equipped with a norm. For
instance, the Euclidean space Rn is a normed space with norm

∣∣(x1, . . . , xd)
∣∣ =√

(x1)2 + · · ·+ (xd)2.
Lastly, we notice that a norm is called Euclidean if it is associated with some
scalar product.
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Definition 3. Let V be a vector space. A scalar product 〈., .〉 : V ×V 7→ R on

V is a symmetric bilinear form F whose associated quadratic form is positive

definite, i.e. , F (v, v) > 0 for all v 6= 0.

The definition of bilinear forms is given as

Definition 4. Let V be a vector space. A bilinear form F on V is a function

of two variables V × V 7→ R satisfying the following equations:

F (v1 + v2, v3) = F (v1, v3) + F (v2, v3) (2.1)

F (λv1, v2) = λF (v1, v2) (2.2)

F (v1, v2 + v3) = F (v1, v2) + F (v1, v3) (2.3)

F (v1, λv2) = λF (v1, v2) (2.4)

with λ ∈ R.

A norm associated with a scalar product 〈., .〉 is given by |v| =
√
〈v, v〉.

Further, we mention that two vectors in a Euclidean space are called orthog-
onal it their scalar product equals zero. An orthonormal base or frame is a
collection of unit vectors where the scalar product between any two unit vector
equals zero. Given a collection of linearly independent vectors, an orthonor-
mal frame can be constructed using the Gram-Schmidt orthogonalization al-
gorithm. Every finite dimensional Euclidean space provides an orthonormal
basis and thus is isomorphic to Rn. This result is particular practical since all
geometric results of Rn can be applied to Euclidean spaces of finite dimension.

With the metric structure in hand, we can quantify the idea of ”near” and
”far” between elements of metric spaces. We can characterize the connectivity
of sets through small neighborhoods of elements which gives rise to a topology
of the sets. Therefore we start by defining small neighborhoods as balls.

Definition 5. Let X be a metric space and an element x ∈ X and r > 0.

The set Br(x) = {x′ ∈ X : dX(x, x′) < r} of points with distance less than r

from x is called an open metric ball centered at x with radius r. Similarly,

Br(x) = {x′ ∈ X : dX(x, x′) ≤ r} is called a closed ball.

With the definition of open and closed balls we can define open sets (sets
without boundary) and closed sets (with boundary) which are defined as the
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complement of open sets. We can study the topology of X induce by the
metric. The topology of a set allows one to study properties such as connec-
tivity. The space X is not connected if it is the union of two disjoint open
nonempty sets. The converse of this property implies that X is connected.
In a metaphoric way, a set is connected if we can draw a line between every
pair of elements in the set without lifting the pen. Further, we are able to
investigate convergence of a sequence of points {xi} ∈ X with i = 1, . . . ,∞.
If there exists a constant K for every ε > 0 such that xi ∈ Bε(x) for all i ≥ K

then the sequence converges to a limit x ∈ X as i → ∞. Of course, these
properties depend on the chosen metric. Therefore some call it convergence in
the metric in order to emphasize the dependency on the metric. For example,
a sequence of points might have a limit in a L1 metric whereas it might not
converge when using a L∞ metric.

2.2 Length spaces

A B

Figure 2.1: Travel length for the bird is shorter as the travel length of the ant.

The ant is constrained to move in a different metric space than the bird.
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A very intuitive example is provided in a monograph on metric geometry
by Burago [Burago 2001] (c.f. Figure 2.1) which we will illustrate here. A
bird and an ant meet on the summit of a mountain. After talking about their
breakfast they decide to travel to the neighboring mountain from which they
have been told the view is much better. So when they met again on the other
side the bird asked what took the ant so long. The answer is that they didn’t
travel the same distance. While the bird could take a straight path, the ant
was forced to travel along a path on the ground. Although they both left the
same point to reach the same endpoint they traveled differently along different
paths with unequal lengths.

Definition 6. A path in (X, dX) is a continuous map Γ [a, b] ⊂ R 7→ X. A

partition of [a, b] is a subdivision a = t0, . . . , tk = b.

We can associate a length to a path Γ

Definition 7. The length of Γ is L(Γ) = sup Σk
i=1dX(Γ(ti−1),Γ(ti)) ∈ [0,∞],

where the supremum is taken over all partitions of [a, b]. If L(Γ) < ∞ then

the path is rectifiable.

Thus the smooth path can be approximated by a sequence a small line
segments whose length is measured with the Euclidean distance. This idea is
well-known from the Riemann integral and which has the form

L(Γ) =

∫ b

a

∥∥∥Γ̇(t)
∥∥∥

2
dt, (2.5)

where Γ̇(t) is the derivative of Γ(t) with respect to the parameter t. As we
can see, the length structure is induced by the Euclidean metric ‖.‖2

By this observation, we see that distances emerge from the length of a
path joining two points in the considered space. A length itself is a map
assigning each pair of points a nonnegative number. So we call a metric space
a length space when the distance is given by the infimum of the length among
all admissible paths.

Definition 8. Let (X, dX) be a metric space and L the length of a path Γ

between x, y ∈ X. Then dL is a length metric if:

dL(x, y) = inf
Γ
{L(Γ)} (2.6)

If there is no path connecting x and y then dL(x, y) =∞
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As the reader can see from the definition, length metrics are not necessarily
finite. Infinite distances are encountered on disjoint sets. In fact, there exists
no smooth path between two distinct components of the set and the distance
between any two points of the two infinite components. There are no infinite
distances in a length space if for every pair of points in dX there exists a
path between them. In this case, we say the length space is complete. A
last remaining question is the uniqueness of shortest paths. In general, it is
hard to say whether a geodesic (mathematical name for a shortest path) is
unique or not. Consider for example a set with a spherical hole. Let’s position
two diametrically opposite points on the border of the hole. Then two paths
minimizing the length are the solution to definition 8. One path travelling
clockwise and the other path travelling counterclockwise around the hole.

2.2.1 An Example of Length Space

A very useful example of a length space is the undirected graph.

Definition 9. A graph is an ordered pair G := (V , E) comprising a set V of

vertices or nodes together with a set E of edges or lines, which are two-element

subsets of V

Then a path on a graph is an ordered set of edges Γ =

{(v1, v2), . . . , (vn−1, vn)} and the associated length is the sum over all
edges L(Γ) =

∑
i=1...n−1 L((vi, vi + 1)). For any two vertices v1, v2, the length

metric returns the length L of the shortest path joining the two elements.

So far, we did not talk about smoothness of the objects under investi-
gation. When one imposes smoothness on the metric spaces then the
theory becomes the topic of Riemanian geometry. Riemanian geometry is
the treatment of smooth parametric spaces also known under the name of
manifolds. In mathematics, a manifold is a topological space which is locally
isomorph to the Euclidean space Rd. But globally the manifold does not need
to look like a Euclidean space.
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2.3 Smooth Length Spaces or Riemannian ge-

ometry

Manifolds are the central objects of differential geometry and play an im-
portant role in theoretical physics. Recently, theory of manifolds made an
entrance into the world of machine learning. The geometric analysis of data
[Hein 2007] and the associated mathematical machinery is explored to detect
patterns in high dimensional manifold valued data. The purpose of the next
section is to provide the reader with some elementary notions. The exposition
follows do Carmo [Do carmo 1992], which is an excellent introduction to this
topic.

2.3.1 Manifold

Manifolds are the generalization of vector calculus of Rd to curved spaces that
locally look like Rd. However, the global structure of the abstract space is
often much more complicated.

Definition 10. A d-dimensional manifold is a topological space in which

points can be separated by neighborhoods and where every point has a

neighborhood that is homeomorphically mapped onto an open Euclidean d-

dimensional ball.

From this definition, we deduce immediately that Rd is a manifold since
it is trivially homeomorphic (definition c.f. section 2.4) to itself. Similarly,
any open set of Rd is a manifold. This general definition is not yet sufficient
to perform calculus on a manifold like the standard vector calculus in Rd.
The notion of a differentiable manifold comes hand in hand with the concept
of coordinate chart. In the following, whenever we work on manifold metric
space we set X = X and dX = dX

Definition 11. A coordinate chart on a d-manifold X is a pair (U, φ) where

U is an open subset of X and φ : U 7→ Ũ is a homeomorphism between U and

an open subset Ũ = φ(U) ⊂ Rd.

The chart can be thought of as assigning a set of coordinates to the points
in the neighborhood U (c.f. Figure 2.2 ). Or, any point x ∈ U has the coordi-
nates x1(0), . . . , xd(0) = φ(x). The purpose of such local coordinate systems
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X

Ũ

U ψ

Rd

Figure 2.2: A coordinate chart (U, ψ)

become obvious in the coming sections when writing explicit expressions for
derivates, tangent vectors and Riemannian metrics. Usually a single chart is

X

U

U ′
ψ ◦ φ−1

ψ

φ

Rd

Rd

Figure 2.3: Change of coordinates ψ ◦ φ−1 or transition map.

not sufficient to provide an entire description (e.g.atlas) of the manifold. Then
several charts are used to cover the manifold. Of course, we seek smoothness
between the charts. And we say two charts (U, φ) and (U ′, ψ) with a non-
empty intersection U ∩ U ′ 6= ∅ are compatible when the map taking a point
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from φ(U ∩ U ′) into ψ(U ∩ U ′) is a homeomorphism. The map is the compo-
sition ψ ◦ φ−1 and corresponds to a change of coordinates (c.f. Figure 2.3). A
family of charts covering the entire manifold X is called an atlas

Definition 12. A smooth d-dimensional manifold is a set X and a family of

charts (the atlas) (Uα, φα) with Uα ⊂ X and φα : X 7→ Rd such that:

(i)
⋃
α Uα = X

(ii) for any α, β with Uα∩Uβ = U ′ 6= ∅, the sets φα(U ′) and φβ(W ) are open

sets in Rn and the composition φβ ◦ φ−1
α is differentiable.

We shall look at the example of a circle S1 as a subset of R2 (c.f. Figure 2.4)

Figure 2.4: Example of an atlas for the circle with four coordinate charts.

Each chart has an associated mapping (indicated by arrows) from the circle

to an open interval. Assuming that the transition maps are smooth, the four

charts cover the whole circle and therefore provide an atlas.
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Each of the four charts is mapped to an open interval, and together they
cover the whole S1and therefore is an atlas on S1. Assuming that composition
of the charts are differentiable we have a smooth atlas and thus a smooth man-
ifold. An explicit parametrization of the circle is provided through trigono-
metric functions as

x1(t) = a cos(t) and y1(t) = a sin(t), t ∈ (0, π) ,

x2(t) = a cos(t) and y2(t) = a sin(t), t ∈ (π, 2π) ,

x3(t) = a cos(t) and y3(t) = a sin(t), t ∈
(

1

2
π,

2

3
π

)
,

x4(t) = a cos(t) and y4(t) = a sin(t), t ∈
(

2

3
π,

1

2
π

)
.

where a is the radius of the circle. This is an example of a 1-dimensional
surface embedded in R2. The embedding space provides the coordinates in
order to give every point an exact coordinate.

2.3.2 Tangent Space

The idea of linear approximation of a surface in vector calculus translates
into the concept of tangent space in differential geometry. Given a manifold
X embedded in Rd, one can associate a linear subspace of Rd to each point
x ∈ X . This linear subspace is called the tangent space and is the best
linear approximation within a small neighborhood around x. In the literature,
tangent vectors are introduced through the directional derivative. Consider a
differentiable curve Γ : (−ε, ε) 7→ X ∈ Rd centered at x, Γ(0) = x:

Γ(t) = (x1(t), . . . , xd(t)),t ∈ (−ε, ε).

(x1(t), . . . , xd(t)) are the coordinate functions of the curve Γ. Then for all
real-valued smooth functions f : X 7→ R in which the composition f ◦ Γ is
smooth the directional derivative writes:

d(f ◦ Γ)

dt
|t=0 = Σd

i=1

∂f

∂xi
|t=0

dxi

dt
|t=0 = (Σd

i=1ẋ
i(0)

∂

∂xi
)f. (2.7)

Geometrically (c.f. Figure 2.5 ), a tangent vector at x is nothing but the
tangent vector to any parametrized curve Γ : (ε, ε) 7→ X at t = 0. If, we have
a local parametrization (U, φ), we can express the tangent vector in the local
chart by

Γ̇(0) =
d∑
i=1

ẋi(0)(
∂

∂xi
)|0. (2.8)
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TxX

Γ̇(t)|t=0

x = Γ(t)|t=0

Γ(t)X
∂1

∂2

Figure 2.5: The tangent space TxX of X at x. The basis vectors ∂1, ∂2 span

the tangent space TxX with Γ̇(t)|t=0 ∈ TxX .

( ∂
∂xi

)|0 is the infinitesimal displacement along the i-th coordinate curve in
the local chart. We see that the local parametrization determines a basis
( ∂
∂x1 )|0, . . . , (

∂
∂xd

)|0 of the tangent space TxX which is independent with respect
to the parametrization. In general, tangent vectors are defined through curves
on X . The set of all tangent vectors at x defines the tangent space TxX . It
is also clear from the definition that there is an equivalence relation between
all the curves at x sharing the same tangent vector.

Example 1

Consider the 3 dimensional sphere embedded in R3 and consider the

parametrization φ :
[
−Π

2
, Π

2

]
× [0, 2Π):

φ1(x1, x2) = cosx2 cosx1

φ2(x1, x2) = sinx2 cosx1

φ3(x1, x2) = sinx1.

For a point x′ = (x1, x2) in the parameter domain the corresponding point on
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the sphere is given by x = φ(u). Then the basis vectors of the tangent plane

of the sphere are:

∂1 = (− cosx2 sinx1,− sinx2 sinx1, cosx1)

∂2 = (− sinx2 cosx1, cosx2 cosx1, 0).

To see the effect on the surface of small displacements in the parameter
domain, we change the point x′ by an infinitesimal quantity dx:

φ(x′ + dx′) = x′ + ∂1dx
′1 + ∂2dx

′2 = x′ + Jdx′

J is the Jacobian of the parametrization φ. Then the displacement on the
surface is given by dx = Jdx′. As the infinitesimal quantity dx is an element
of the tangent space, we can measure its length using the squared Euclidean
norm

‖dx‖2 = ‖Jdx′‖2
= dx′TJTJdx′ = dx′TGdx′ = 〈dx, dx〉x .

G is a symmetric matrix with elements gij = 〈∂i, ∂j〉 depending on the chosen
parametrization. Each gij measures the correlation between the basis vectors
of the tangent space. As we required smoothness for the map φ, we deduce
that the determinant of G is strictly bigger than 0 and hence G is a symmetric
positive definite matrix. Then the metric matrix G is commonly referred to
as Riemannian Metric or First Fundamental Form. Applied to our sphere
example, the Riemannian metric is

G =

[
〈∂1, ∂1〉 〈∂1, ∂2〉
〈∂2, ∂2〉 〈∂2, ∂1〉

]
=

[
1 0

0 cos2 x1

]
So when we take a small step dx2 along x2 the image of φ induces a displace-
ment by cos2 x1 on the sphere.

2.3.3 Riemannian Manifold

In the previous section, we demonstrated the existence of a metric on smooth
manifolds. To be more precise, we came to the result that we can define an
inner product between two tangent vectors of TxX which smoothly varies over
the manifold. Further, we said that when the metric matrix is positive definite
the manifold is a Riemannian manifold

Definition 13. A Riemannian metric on a differential manifold X is a sym-

metric, bilinear and positive-definite form 〈., .〉x on TxX varying continuously
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over X . The assignment of an inner product to each point x ∈ X is called

a metric tensor gij(x). Written in local coordinates on the manifold X the

vectors
{

∂
∂x1 , . . . ,

∂
∂xd

}
define a basis of tangent vectors at each x ∈ X . In this

coordinate system the metric tensor at x writes gij(x) := ( ∂
∂xi
, . . . , ∂

∂x1 ).

The metric gij allows to measure lengths, areas or angles. These quantities
depend on the geometry of the surface and therefore on the metric tensor. So
using the definition of the metric tensor, we can measure the length of a
smooth path Γ : [a, b] 7→ X on X as

L(Γ) =

∫ b

a

√〈
Γ̇(t), Γ̇(t)

〉
Γ(t)

As in mechanics the vector Γ̇(t) is often interpreted as the instantaneous

velocity of a particle at Γ(t). The Riemannian metric
√〈

Γ̇(t), Γ̇(t)
〉

Γ(t)

is

a local measure of length depending on the geometry of the surface at Γ(t).
It is nothing than a weighted Euclidean norm. In Riemannain geometry, it
is interesting whether Equation 2.6 (c.f. section 2.2) L(Γ) has extrema. A
geodesic is a path Γ which is a local minimizer of L. From a theoretical point
of view, an important question is if every pair of points in X has a connecting
geodesic. A metric space with the property of having a connecting geodesic for
each pair of points is said to be complete. The Hopf-Rinow theorem tells us
that every connected and compact Riemannian manifold is a complete metric
space. If we have a complete space, we can introduce the geodesic metric as

dX (x1, x2) = min
Γ
{L(Γ) such that Γ : [a, b] 7→ X ,Γ(a) = x1, γ(b) = x2} .

Riemann normal coordinates may be thought of as a generalization of
Cartesian coordinates from Euclidean space to any manifold (which should be
at least twice differentiable) with affine connection. (Including Riemannian
manifolds as a special case, of course!)

To define a system of Riemann normal coordinates, one needs to pick a
point P on the manifold which will serve as origin and a basis for the tangent
space at P . Suppose that the manifold is d dimensional. To any d -tuple of
real numbers (x1, . . . xn) , we shall assign a point Q of the manifold by the
following procedure:

Let v be the vector whose components with respect to the basis chosen
for the tangent space at P are x1, . . . xn . There exists a unique affinely-
parameterized geodesic C(t) such that C(0) = P and [dC(t)/dt]t=0 = v . Set
Q = C(1) . Then Q is defined to be the point of which Riemann normal
coordinates are (x1, . . . xn) .
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2.3.4 Normal coordinates

Normal coordinates are introduced as they are used for the convergence proof
in section 3.2.4. To each point x on X we have TxX , consisting of a Eu-
clidean space tangential to X at x. As seen before, a class of curves with
minimal length defined on a manifold X are the geodesics, which define a
metric dX (x, y) on the manifold derived from the length of a geodesic passing
through x and y. The Riemannian exponential map, exp(v) ∈ X , v ∈ TxX ,
is a function which maps points in the tangent space at x, to points on X .
If the geodesic is unique, this mapping is one-to-one in a neighborhood of x
and its inverse is the log map. The set of points on X for which there exists
more than one shortest path from x is called the cut locus of x. The cut locus
of a point on a sphere is for instance its antipodal point. Given a point p
and an orthonormal basis ∂i for the tangent space TpX , a Riemannian normal
coordinate system is provided by the exponential mapping. A point x ∈ X
has coordinates (x1, . . . , xd) if x = exp(

∑d
1 x

i∂i). In this simple way, we can
compute local coordinates in the tangent plane of any point within a small
neighborhood of p.

2.3.5 Laplace Beltrami operator

Let f be a real valued twice differentiable function defined on a Riemannian
manifold X . The Laplace-Beltrami operator ∆ is given by

∆Xf := div(∇Xf)

with ∇Xf the gradient of f and div the divergence of a vector field on a
manifold [Do carmo 1992] (the divergence is an operator that measures the
magnitude of a vector field’s source or sink at a given point). The Laplace-
Beltrami operator is a linear differential operator and can be calculated using
a local parametrization (Rd, ψ) with ψ : Rd 7→ RD. Given the metric tensor
G of X , the Laplace-Beltrami operator on X writes as

∆Xf =
1√
|G|

∑
i,j

∂i(G
−1
ij

√
|G|∂jf).

|G| is the determinant of G and ∂i, ∂j are the basis vector of the tangent space.
In the case where X ⊂ R2, the metric tensor G simplifies to the identity and
the Laplace-Beltrami reduces to the Laplace operator in R2:

∆f =
∂2f

(∂x1)2
+

∂2f

(∂x2)2
.
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The spectrum of the Laplacian is the set of eigenfunctions and associated
eigenvalues solving the Helmholtz equation

∆Xf = −λf.

The solution is an infinite number of eigenvalues λi (with i = 0, . . . ,+∞) and
eigenfunctions fi (with i = 0, . . . ,+∞). In the case of a closed surface without
boundary, the first eigenvalue λ0 is always equal to zero and the associated
eigenfunction f0 is a constant function. We will encounter this property in
section 3.2.5. Last, let’s mention a few properties of the Laplace-Beltrami
operator as mentioned in the book of Reuter [Reuter 2006]:

1. The spectrum depends only on the metric tensor and is invariant under
isometric mappings(c.f. 2.4)

2. The spectrum of the Laplace-Beltrami operator of d-dimensional mani-
folds at different scales can be compared by normalizing the eigenvalues
appropriately.

3. A change of the surface’s shape results in continuous change of the spec-
trum.

4. The spectrum does not characterize the shape completely, since some
non-isometric manifolds with the same spectrum exist. Nevertheless
these cases appear to be very rare.

5. A substantial amount of geometrical and topological information is
known to be contained in the spectrum. As a consequence of the high
dimensionality of the eigenspectrum, cropping the spectrum is unavoid-
able and consequently induces a loss of information. But nevertheless,
the first few eigenvalues contain important information.

2.4 Mappings between metric spaces

In this thesis we will be confronted with mappings between metric spaces.
For example, we will consider the problem of matching surfaces in pairs(c.f.
chapter 5), which are isometrically embedded into R3. So the problem is to
find a mapping between the two surfaces so that the metric is unchanged. The
characterization of different types of mappings between two manifolds X and
Y will be the purpose of this section.
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Definition 14. Homeomorphism. Let X and Y be two manifolds. A map

f : X 7→ Y is called a homeomorphism if it is one-to-one, continuous and

has a continuous inverse f−1. If such a function exists then X and Y are

homeomorphic.

For example, the unit disc in R2 is homeomorphic to the unit square in
R2. The two-dimensional torus is homeomorphic to the product space S1×S1.
Any sphere S2 in R3 is not homeomorphic to R2.

Definition 15. Diffeomorphism. Let X and Y be two manifolds. A map

f : X 7→ Y is called a diffeomorphism if f and its inverse f−1 are differentiable.

The set of all diffeomorphisms between X and Y is denoted by Diff(X ,Y). If

such a function exists then X and Y are diffeomorphic.

From now on we assume all mappings between surfaces to be diffeomor-
phisms. We now impose even more regularity on the mappings and introduce
the group of isometries. Let X and Y be two manifolds. A map f : X 7→ Y
is called an isometry if the length of any rectifiable curve on X is the same
as that of its image on Y . If such a map exists then X and Y are said to be
isometric.

Also, we can define an isometric map f as a map between two metric
spaces X 7→ Y such that dX (x1, x2) = dY(f(x1), f(x2)). If this property holds
for any x1, x2 then f is an isometric mapping. We will introduce a further
class of mappings which are almost isometric mappings. This is due to the
fact that when dealing with real world data such as in chapter 5 the data has
some inherent error caused by imperfect measurements or weak processing
methods. Therefore we relax the property of exact isometry to the notion of
ε-isometry. An ε-isometry is a mapping f : X 7→ Y such that for some ε ≥ 0

the error is bounded |dY(f(x1), f(x2))− dX (x1, x2)| ≤ ε for all x1, x2 ∈ X .
The distortion of an ε-isometry is measured as

disf = sup
x1,x2∈X

|dY(f(x1), f(x2))− dX (x1, x2)| .
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Overview

Among the most common applications of machine learning we want to
mention data mining and computer vision. Mostly these applications involve
estimating a function for the purpose of classification or recognition of
datasets. Common datasets encountered in computer vision often consist of
a large number of samples each of which are themselves of high dimension.
Either the datum is treated directly or more complex features are extracted
from the datum for further processing. Nevertheless, it might be the
entire datum or a set of computed features for which the dimensionality of
problems usually remain high slowing down the processing considerably or
sometimes making the treatment even intractable. In order to lessen the
computational burden an intuitive approach is to reduce the dimensionality
of the data. Being able to reduce the dimensionality requires understanding
the structure in datasets. This amounts to finding the latent variables
in the datasets. In statistics, latent variables (as opposed to observable
variables), are variables that are not directly observed but are inferred
(through a mathematical model) from other variables (the dataset) which
are observed and directly measured. They are also sometimes known as
hidden variables, model parameters, hypothetical variables or hypothetical
constructs. Once such parameters are identified, expressing the original
data in terms of these variables allows to reduce the dimensionality of the data.

There are many approaches to dimensionality reduction based on a
variety of assumptions and used in a variety of contexts. We will focus on an
approach initiated recently based on the observation that high-dimensional
data is often much simpler than the dimensionality would indicate. In
particular, a given high-dimensional data set may contain many features
that are all measurements of the same underlying cause. The stereotypical
problem of such phenomena are for example pictures of the same object
with a single moving light source. The images taken as vectors in some
high-dimensional space seem very complex. A simplified representation of the
data is desirable. And this seems reasonable as the governing parameters are
identifiable. The parameters are just the rotation angles of the lightsource.
(c.f Figure 1.2). A geometer would say that the data is parametrized and
lies on a two-dimensional manifold embedded in a high-dimensional space.
This is the geometric point of view in statistical learning. This is also the
point of view we will take in this thesis when deriving the learning algorithms
and developing applications. Nevertheless, it is to be noted that most of
the explanations given in this chapter can be rephrased in a statistical or
probabilistic manner which have been studied in a considerable number of
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papers.

We are given a set of N data points {xi} ∈ RD (please note that we will
change this assumption in chapter 4 and work with more general spaces than
RD) and assume they approximately lie on a smooth manifold X . The in-
trinsic dimension of X is d = dim(X ) with d << D. In other words, we
hypothesize that X is the image of some parameter domain Y ⊂ Rd under a
smooth mapping Ψ : Y 7→ RD. The idea of Manifold Learning is to find the
low-dimensional coordinates yi ∈ Y of the corresponding points xi ∈ X . In
the sequel the matrices X = [x1, . . . , xN ] and Y = [y1, . . . , yN ] are matrices of
size D ×N and d×N respectively.
Manifold Learning can be mainly divided into linear and non linear methods.
A further distinction within non-linear methods is to divide the methods into
purely global methods and methods recovering global structure from local in-
formation only. We start with linear methods reviewing the famous Principal
Component Analysis and Multidimensional Scaling algorithm. We then move
on to the non-linear world to show the extension of Multidimensional Scaling
to the non linear case. At last, we examine the most recent local and global
methods while taking into account Locally Linear Embedding, Hessian Eigen-
maps. Our panoramic view of manifold learning methods ends with Laplacian
Eigenmaps and Diffusion Maps. These methods employ Laplacian regulariza-
tion to the problem providing a connection to harmonic analysis and opening
the door for sound theoretical results.

3.1 Linear Methods

3.1.1 Principle Component Analysis

Principal Component Analysis (PCA) is a standard algorithm in multivariate
statistics.The input is vectorial data and the output of the algorithm is a new
orthogonal coordinate system. The representation of the original data set in
the new coordinate system captures most of the variance of the data set. In
summary the problem in PCA is to find a d-dimensional subspace of RD that
best approximates the data in the least square sense. The new coordinates
of the original data X = {x1, . . . , xn} are computed through orthogonal pro-
jection onto the subspace. Let V ′ be a d-dimensional subspace of RD and let
u1, . . . ,uD be an orthonormal basis of RD such that u1, . . . ,ud is a basis of
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x1

xN

yN
Va)

b)
1

uD u1, . . . ,ud

vTCv = const

Figure 3.1: a) 1D manifold and the distances between the original points(red)

and their projection on the manifold. b) is a visualization of the geometry

and constraints of the optimization problem.

V . We then approximate each data point by

yn =
d∑
i=1

αn,iui +
D∑

i=d+1

biui.

In order to recover the vectors u1, . . . ,ud the following energy function is
proposed

E =
1

N

N∑
n=1

‖xn − yn‖2 .

This is the well known least square estimate. It is the mean over the squared
approximation error for each data point. Thus minimizing E with respect to
αn,i and bi leads to minimize the approximation error

xn − yn =
D∑

i=d+1

{
(xn − x)Tui

}
ui.

This equation shows that the best affine subspace given V is passing through
x and yn is the orthogonal projection of xn onto V (c.f. Figure 3.1). As a
consequence E only depends on ui with i = d + 1, . . . , D) and the energy is
rewritten as a double sum in the following manner

E =
1

N

N∑
n=1

D∑
i=d+1

(xTnui − xTui)
2 =

D∑
i=d+1

uTi Cui.
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Here C stands for the well-known covariance matrix C = 1
N

∑N
n=1(xn−x)(xn−

x)T and holds the values for mutual projection between points in the data set.
So far, we did not propose any solution to the optimization of the energy E.
It turns out that the global minimum of E is obtained for the space spanned
by the d eigenvectors of C corresponding to the d largest eigenvalues. In order
to see this, we minimize our energy with d = D − 1 (for simplicity )

E = uTDCuD under the constraint uTDuD = 1.

Such a constrained minimization is done using Lagrange multipliers which
then writes as

uTDCuD + λ(1− uTDuD) = 0.

Taking the derivative with respect to uD : 2CuD − 2λuD and equating to
0 yields CuD = λuD which is the standard form of an eigenvalue problem.
The geometry of the minimization problem is illustrated in Figure 3.1b). The
level sets of the quadratic form vTCv are drawn in red. The constraint on the
solution uD is drawn by a circle of radius 1 reducing the possible solutions.
As the reader might expect the solution u1, . . . ,ud is orthogonal to uD.
As a final remark, we want to emphasize the two possible interpretations of this
problem as mentioned at the beginning of this chapter. The solution computed
using PCA is a d-dimensional subspace of RD which best approximates X

in a least square sense. The projection of X onto the subspace minimizes
the distances between original and projected data under the L2 norm(c.f.
Figure 3.1a)). We considered the geometry point of view although a more
statistical approach is to find a d-dimensional subspace of RD onto which
the projected data has maximum variance. Therefore this method is also
referred to as a maximum variance based method. Lastly, more probabilistic
formulations of the problem which lead to the same solution [Etyngier 2008]
also exist.

3.1.2 Multidimensional Scaling

Multidimensional Scaling (MDS) corresponds exactly to PCA. The subtle dif-
ference to PCA is that MDS is coordinate-free. The only requirement is the
squared distance between pairs of points (xi, xj) in the data set X. The pair-
wise distance values are stored in square matrix D of size N×N . The problem
which can be solved with MDS is to find d-dimensional Euclidean coordinates
for each data sample so that the pairwise distance of their Euclidean coordi-
nates match the original pairwise distance as closely as possible. The literature
proposes several cost functions for this task and a variety of algorithms solving
the minimization problem. Nevertheless, we will focus on classical MDS as
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we will need this formulation to introduce Isomap in section 3.2.2. The MDS
algorithm, shown in Figure 3.2, is based on the duality between the space
of Euclidean distance matrices Dij = dX(xi, xj) of size N × Nand the space
of Gram matrices G = XXT (inner-product matrices) of size N × N . The
relation between D and G is given by

G = −1

2
JDJ where J = IdN −

1

N
11T

The objective is to find Y = {yi, . . . , yN} ∈ Rd minimizing the energy

E(DX ,DY ) = ‖GX −GY ‖2
2 =

∥∥∥∥1

2
J(DX −DY )J

∥∥∥∥2

2

RD

Rd

f

X

Y

Figure 3.2: The function f maps X from RD to Y in Rd so that pairwise

distances are as close as possible.

Like PCA the solution is given by the spectrum of the matrix GX with
eigenvalues λ1 ≥ · · · ≥ λN ≥ 0 and orthogonal eigenvectors {u1, . . . ,uN} ∈
Rn. Then Y ∈ Rd minimizing E is given by the columns of the d×N matrix

Y =

(√
λ1uT1
...√
λdu

T
d

)

Again we want to show how to obtain the solution of this minimization prob-
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lem. Therefore we rewrite the minimization problem as

min
Y
‖GX −GY ‖2

2 = min
Y

∥∥XXT −YYT
∥∥2

2
(3.1)

= min
Y

N∑
i=1

N∑
j=1

(xTi xj − yTi yj)2 (3.2)

= min
Y

Tr((XXT −YYT )2). (3.3)

As XXT and YYT are positive semidefinite, we have the following spectral
property XXT = VΛVT and equally YYT = WΛ′WT . V and W be-
ing the corresponding eigenvectors having the property VVT = WWT =

IdN and their associated eigenvalues Λ = Diag(λ1, . . . , λN) and Λ′ =

Diag(λ′1, . . . , λ
′
d, 0, . . . , 0) in descending order. Since the solution Y is d-

dimensional the remaining eigenvalues in Λ′ equal 0. Then we rephrase the
optimization problems in terms of V and W

min
Y
Tr((XXT −YYT )2) = min

W,Λ′
Tr(Λ−VTWΛ′WTV)2 (using Tr(WV) = Tr(VW))

= min
Q,Λ′

Tr(Λ−QΛ′QT ) with =VTW

= min
Q,Λ′

Tr(Λ2) + Tr(QΛ′QTQΛ′QT )− 2Tr(ΛQΛ′QT )

= min
Λ
Tr(Λ2 + Λ′2 − 2ΛΛ′)

= min
Y
Tr(Λ−Λ′).

The minimum is obtained for Λ′ = Diag(λ′1, . . . , λ
′
d, 0, . . . , 0) and therefore we

can set Q = VTW = IdN .
As mentioned in the introduction MDS requires only the pairwise squared

distances between the elements in X to compute the coordinates of the points
Y. In order to apply MDS on the distance matrix D one has to perform
double centering on D : G = −1

2
JDJ. Nevertheless, some issues remain when

D is not computed from a data set ∈ RD. In this case G might have negative
eigenvalues which reflects the fact that D is non Euclidean. Eckert and Young
[Eckart 1936] show that the d-dimensional embedding computed by MDS has
a Gram matrix which is the best approximation to G = −1

2
JDJ and provide

the following bound:∥∥YMDSYT
MDS −G

∥∥ ≤ ∥∥YYT −G
∥∥

for any Y in the space of positive definite matrices and YMDS being the
embedding obtained with MDS.
One can generalize MDS to geodesic distances between point samples from
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a non-linear manifold. This yields a non-convex energy function which is
tedious to optimize. In the next section we will leave the linear world to
discuss non-linear problems and provide an overview of non-linear manifold
methods. Recently, MDS was extended to Bregman divergence[Lai 2009].

3.2 Nonlinear methods

Linear methods such as PCA and MDS produce bad results when the data
is sampled from non linear manifolds. In Figure 1.1 (page 7) for example,
the data is sampled from a two-dimensional nonlinear manifold embedded in
the three-dimensional Euclidean space. All methods we review in this section
assume that the data is distributed along a d-dimensional submanifold X
embedded in RD.

3.2.1 Graph based methods

Non-linear dimensionality reduction often relies on adjacency graphs. These
graphs are build on the input data according to certain rules which should
reflect the structure in the neighborhood of some points. We will review
the two most prominent methods. Once the graphs are computed, methods
such as MDS need some pairwise distances between the nodes of the graph.
Therefore we also quickly review the computation of distance between the
nodes in the graph and analyse their approximation power. In fact, we can
bound the approximation error to the true geodesics distance on the manifold
X under certain assumption on the sampling density.

3.2.1.1 K-nearest neighbor graph

The construction of this graph is straightforward. Every data point xi ∈
X is connected by edges to the K ∈ Z+ nearest neighbors for a fixed K.
This always yields a graph with a single component for some K. The weak
point of this construction is the lack of symmetry. As a simple example
consider isolated far away point. TheK-nearest neighbors of the isolated point
probably might themselves not be connected to the isolated points because
of the large distance. To circumvent this problem, the alternative symmetric
K-nearest neighbor graph might be used instead. The construction goes as
follows: two vertices xi, xj with i 6= j are connected if xi is among the K-
nearest neighbors of xj or vice versa. Finally, the mutual K-nearest neighbor
graph is built by connecting two vertices (xi, xj) with i 6= j if xi is among the
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a) b) c)

ε

Figure 3.3: a) shows the result of the nearest K-neighbor rule for K = 3 and

b) depicts the graph obtained by applying the ε distance rule. c) illustrates

the problem when either the geometry is strongly curved or the sampling is

not uniform. This can lead to cycles and or several components in the graph.

In this example we used an ε neighborhood.

K-nearest neighbors of xj and vice versa. Similarly, we use a weighted mutual
K-nearest neighbor graph, in which all edges are weighted by the similarity
of the adjacent points. This last rule is also depicted in Figure 3.3a).

3.2.1.2 ε neighborhood graph

An alternative to the K-nearest neighbor construction is the use of ε-
neighborhood graphs. In this case, two vertices (xi, xj) with i 6= j are con-
nected by an edge if and only if the distance is equal or smaller than ε,
dX (xi, xj) ≤ ε. In order to assure a completely connected graph one uses a
ε-neighborhood graph ε set to its maximal value.
In both cases, we have to set a parameter K or ε which is not trivial to choose.
In [Maier 2009] Meier et.al. explored the influence of graph construction on
graph-based clustering measures. They analyze the convergence of a graph
clustering criteria as the sample size tends to infinity. The study reveals that
a K-nearest neighbor graph yields different clusters than a r-nearest neighbor
graph with r 6= K and thereby showing the strong dependency on the neigh-
borhood graph.
Lastly, we look at the problems which might occur when using the ε-nearest
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neighbor graph (Figure 3.3c) ). A small ε might create multiple components
in the graph and most of the latter methods will not compute meaningful
results. On the other hand, when the data is sparsely sampled from a highly
curved manifold the ε-nearest neighbor graph does not recover the geometry
properly and connects nodes which should remain disconnected.

Nevertheless we will see in the following section that the ε-nearest neighbor
graph is more suited for the analysis of the approximation of geodesics in
graphs (Bernstein et.al. [Bernstein 2000]).

3.2.1.3 Geodesic distance approximation

The idea of building graphs from local neighborhoods aims at recovering the
geometry of the low dimensional curved submanifold embedded in RD. There
are two possibilities one can adopt to measure the distance between two points
xi, xj ∈ X with i 6= j. The common approach is to measure the distance be-
tween the embedding space coordinates. Unfortunately, this method does not
take into account the geometry of the data. Whereas, if one considers a graph
constructed with one of the previous methods as a length space(c.f. section
2.2) or a submanifold, the distance between (xi, xj) ∈ X with i 6= j with re-
spect to the metric on the graph, is more meaningful. Recently, the idea of
approximating the data’s geometry using a graph has emerged. Therefore, a
nearest neighbor graph is built on the dataset. Then each edge is weighted us-
ing a similarity function (e.g. Euclidean distance). This construction induces
a length metric on the graph. The distance between two nodes xi and xj is
computed as the sum over the edges contained in the path joining the nodes.
Using the length structure on the graph, we approximate geodesics on X by
computing the shortest paths in the graph. The problem of shortest paths in
graphs can be efficiently solved using dynamic programming as proposed by
Dijskstra [Dijkstra 1959].
An important issue for the latter algorithm is the quality of approximation
of the true geodesic distances computed using Dijskstra algorithm. MDS
strongly depends on the approximation quality of the true geodesics. Bern-
stein et.al. [Bernstein 2000] provide some upper and lower bound on the
approximation error:

Theorem 16. For λ > 0 and some small enough δ, ε > 0 and δ < ε

(1− λ)dX (xi, xj) < dG(xi, xj) < (1 + λ)dX (xi, xj)

holds for all xi, xj if X is a δ-sample of X and if G is an ε nearest neighbor

graph.
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a) b)

Γ1 Γ2

s1

Figure 3.4: a) The sampling is not sufficiently dense to approximate the arc

segment s1 of Γ1. b) depicts a sufficiently dense sampling to properly approx-

imate the curve Γ2 using Euclidean distance between sample points.

The complete proof of this theorem can be found in [Bernstein 2000]. The
proof has two important arguments. The first argument is the δ sampling
density condition. This condition assumes that for every point x ∈ X there is
a data point xi so that dX (x, xi) < δ, where dX is the geodesic distance in X .
Figure 3.4a) does not satisfy this condition. The second argument is that the
geodesic distance in X can be approximated by short Euclidean distance hops
as depicted in Figure 3.4b). This condition is intuitively coupled with the
local curvature of X . So assuming that the dX (xi, xj) ≈ ‖xi − xj‖ assumes
some regularity on the curvature of X .

3.2.2 Isomap

Isomap [Tenenbaum 2000] is a generalization of classical MDS in which the
pairwise distance matrix is replaced by the matrix of pairwise geodesic dis-
tances approximated by distances in graphs. The algorithm consists of three
steps:

1. Approximate the manifold X by building a graph on the data set as
introduced in section 3.2.1.



48 Chapter 3. Manifold learning

2. Compute pairwise distance matrix D with the Dijkstra algorithm.

3. Apply MDS on D.

In Figure 3.5, we illustrate the behavior and limits of Isomap. Figure
3.5a) shows that as isometric as possible mapping produces no inconsistency.
Indeed, in the case where X is developable and convex the geodesic distances
in the graph are almost equal to the Euclidean distances in the reduced
space Rd. Nevertheless, if X is not convex we see that Isomap does not work
properly (c.f. Figure 3.5b)). Finally, in Figure 3.5c), we note that manifolds
without boundary cannot be unfolded into Rd using Isomap.

Although Isomap is very efficient due to certain theoretical guarantees
such as the convergence, if the geodesic approximation and its organizational
functionality on data are good enough, it has some negative points. First of
all, we note that Isomap is a global method which involves the decomposition
of a very large and dense Gram matrix. In the case of huge datasets Isomap
is not tractable anymore. A very intuitive idea is to sparsify the data by
using landmarks. Voting for representatives of small neighborhoods reduces
the amount of data tremendously. Furthermore, the constraint on X to be
isometric to a convex open set of Rd is rarely satisfied and a way to circumvent
this restriction is to look at conformal maps.

Landmark Isomap

The main motivation to use Landmark Isomap (L-Isomap) [Silva 2003a] is to
circumvent the scalability issue. Two major bottlenecks are observed when
using Isomap. The first is the computation of all pairs of shortest paths which
has complexity O(kN2 logN). Secondly, the factorization of a dense N × N
matrix has cubic complexity. In a multiresolution fashion, L-Isomap uses
n << N landmark points from the original dataset X and computes a n×N
pairwise geodesic distance matrix from each point to the landmark points only.
The computational savings achieved are obvious since the distance calculations
are nowO(knN logN). Instead ofO(N3) the factorization complexity reduces
to O(nN2). Several heuristics exist in the literature to choose the landmark
points for L-Isomap. The d-dimensional embedding is actually obtained by
applying classical MDS to the n × n matrix of squared distances between
landmarks. The coordinates in the reduced space are given by the eigenvalues
λi and eigenvectors ui of the Gram matrix :
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
√
λ1u

T
1

...√
λnu

T
n


In order to find the coordinates of the non-landmark point xi a distance
based triangulation approach is used. Essentially, the procedure computes
a weighted linear combination of the eigenvectors ui in which the weights
are given by the squared distance of xi to the landmark points. This is also
equivalent to project xi onto the first d principal components of the landmark
embedding. The second interpretation works only if the coordinates of the
input points are known.

Conformal Isomap

In mathematics, a conformal mapping is a function preserving oriented angles
between curves. The idea of conformal Isomap [de Silva 002] is to add angular
information into the optimization. If we assume X = f(Ω) where f : Ω 7→ RD

is a parametrization and Ω the support of f in Rd. f is said to be a conformal
embedding if for any y ∈ Ω there exists a scaling factor s(y) > 0 s.t. for any
x ∈ Rd the following equality holds ‖Dyf(x)‖ = s(y)x. (Dy derivative w.r.t.
y). To integrate this idea into Isomap the weight between edges is normalized
by an approximation

√
M(i)M(j) of the conformal factor s(y). The weight

between two nodes (xi, xj) is then calculated as dX(xi,xj)√
M(i)M(j)

with M(i) being

the mean over the distances between xi and it’s nearest neighbors.
Under the assumption of uniformly sampled points from a bounded con-

vex region de Silva et.al.[Silva 2003b] provide a probabilistic lower and upper
bound on the difference between the distance in the embedding X and the
distance in the parameter domain Ω. The observed effect of the conformal
factor is that regions of high density are inflated whereas regions with low
density tend to shrink.

3.2.3 Locally Linear Embedding (LLE)

Locally Linear Embedding(LLE) which was introduced by Roweis
[Roweis 2000b] aims at recovering the low dimensional geometry of the data
by looking at the local interaction between data points. This is a new class of
non-linear dimensionality reduction algorithms because the global geometry
is inferred only from local interactions between points. Local interactions are
recovered through the construction of a nearest neighbor graph which then
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a) b) c)

X X X

ΩΩ

ff

Figure 3.5: a) X is isometric to a convex open set b) X is not isometric to the

parameter domain and therefore geodesics are not mapped correctly c) MDS

fails because X is neither convex nor open

is further processed to reduce the dimensionality of the data and provide a
parametrization in a d-dimensional hyperplane. The strength of local inter-
action is usually measured by a decreasing function which is used as weight
between nodes of the graph. The algorithm has three steps:

1. Build a neighborhood graph G (c.f. section 3.2.1) on the data set X.

2. For each connected pair of nodes (xi, xj) compute weights wij that best
reconstruct each point xi from its neighbors in the sense of the following

energy: E(W ) =
∑

i

∥∥∥xi −∑j wijxj

∥∥∥2

such that wij = 0 if xi and xj

are not connected in G and
∑

j wij = 1. (c.f. Figure 3.6a).

3. Finally minimize the quadratic error function
∑

i

∥∥∥yi −∑j wijyj

∥∥∥ with
respect to yi.
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a) b)

∑
j wijxj

x′j xj
xi

∑
j wj = 1

wTGw = const

Figure 3.6: a) Approximation of the vertex xi by it’s neighbors (x′j, xj). b)

geometry of the optimization problem. wTGw and the level sets are drawn

in red. The constraint is visualized by the black line touching the level set at

a single point.

Step 1) is standard and was explained previously (c.f. section 3.2.1). Step
2) involves finding a set of optimal weights wij for each edge connecting xi
and its neighbors. The minimization of this problem requires N quadratic
minimizations under constraints. For any x ∈ X and its neighbors xj we note
wj = wij the corresponding edge weight, we write

E =

∥∥∥∥∥x−∑
j

wjxj

∥∥∥∥∥
2

=

∥∥∥∥∥∑
j

wj(x− xj)

∥∥∥∥∥
2

=
∑
j,k

wjwkGjk = wtGw.

Gik = (x−xj)T (x−xi) is the Gram matrix and therefore positive-semidefinite.
The solution w∗ minimizing E has the following closed form expression Gw =

(1, . . . , 1)T . Figure 3.6b) depicts the geometry the optimization problem. Note
that the solution w∗ must be rescaled to meet the condition

∑
j w
∗
j = 1 (c.f.

the black line in Figure 3.6b). The only remaining issue is when the number
of neighbors is higher then the dimension of the data space RD. Next, we have
to compute the embedding coordinates. In step 2), we have computed a set
of weights W for each vertex which implicitly carries the information about
the local connectivity between the xi’s in the original space X. Hence, we do
not need the original points xi to compute the embedding coordinates yi. The
embedding Y is obtained by minimising a quadratic energy. Expanding and
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rearranging the cost function we find:

E(Y) =
∑
i

∥∥∥∥∥yi −∑
j

wijyj

∥∥∥∥∥ =
∑
ij

Mijy
T
i yj

where Mij = δij − wij − wji +
∑

k wkiwkj or in matrix notation M = (Id −
W)T (Id −W). An additional translational ȳ =

∑
i yi = 0 and rotational

constraint 1
N

=
∑

i yiy
T
i = Idd are added to the optimization problem in

order to remove two degrees of freedom. The embedding Y is then given by the
eigenvectors u0, . . .ud of M with associated eigenvalues (λ0 ≤ · · · ≤ λd). Note
that we keep d+ 1 eigenvectors although we have a d-dimensional embedding.
This is due to the fact that the first eigenvector u0 is the constant vector and
is left out. The coordinates yi in the d-dimensional space Y is the i-th row of
eigenvector matrix U.

3.2.4 Hessian Eigenmaps

This section starts by setting up the notations and provides a theoretical
result which proves the convergence of this method. We then briefly summa-
rize the discrete implementation of this algorithm by an LLE like algorithm.
The strength of the Hessian eigenmaps [Donoho 2003] is its proven asymp-
totic behavior. In fact, Hessian Eigenmaps are guaranteed to recover the true
manifold under relatively general assumptions. This comes at the cost of esti-
mating second order differential properties as the name of the method already
implies. A major advantage of Hessian eigenmaps is that it can handle non
convex parameter domains. Let’s establish some ideas which are illustrated in
Figure 3.7. Y ⊂ Rd is an open connected set embedded in some high dimen-
sional space Ψ : Y 7→ X . We assume that Ψ is a smooth and locally isometric
embedding. For any x ∈ X we have a local orthonormal coordinates system
(x1, . . . , xd) on the tangent space TxX . Within a small neighborhood B(x)

of x the projection Prm(X )(c.f. Figure 3.7) of any m ∈ B(x) is meaningful.
Then for any twice differentiable function f : X 7→ R, the Hessian H tan

f of f
at x in tangent coordinates writes :

H tan
f (x)ij =

∂

∂xi

∂

∂xj
f(Pr−1

TxX (x))|x=0.

Donoho et.al. [Donoho 2003] propose the following theorem (c.f Figure 3.8):

Theorem 17. Let X = Ψ(Ω) be an open connected set and Ψ a locally iso-

metric embedding of Ω into RD. Then the nullspace of the following quadratic
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x1

x2 m
x

X
f

R
TxX

Prm(X )

Figure 3.7: Approximation of X in TxX using a local coordinate system

(x1, . . . , xd) in TxX .

form

H(f) =

∫
X

∥∥H tan
f (x)

∥∥2
dx.

is d+ 1-dimensional and induced by the constant functions and the d original

isometric coordinates pri ◦Ψ−1. pri : Rd 7→ R is the linear projection onto the

i-th coordinate axis in Rd.

In this theorem ‖.‖2 stands for the squared Frobenius norm (sum over
squared entries).
In order to see the meaning of this theorem, we look at the problem in the
coordinate space Y∪Rd. Then for any twice differentiable function g : Y 7→ R,

Heuc
g (y)ij =

∂

∂yi

∂

∂yj

is the corresponding Hessian matrix at y ∈ Y in Euclidean coordinates. As
before we define the functional

Heuc(g) =

∫
X

∥∥Heuc
g (y)

∥∥2
dy.
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The kernel of Heuc is the (d + 1)-dimensional space of affine functions on Rd

with everywhere vanishing Hessian. Now the key ingredient to the theorem
postulated before is thatH andHeuc have the same d+1 dimensional nullspace
under the correspondence provided by the local isometry Ψ. Or a function
f : X 7→ R is in the nullspace of H if and only if f ◦ Ψ : Y 7→ R is in the
null space of Heuc. So we see that finding a parametrization of X amounts to
estimate a basis in the nullspace of the Hessian functional H(f).

We now describe a Hessian LLE algorithm as proposed by Donoho et.al.
in [Donoho 2003]. It is an adaption of the LLE algorithm but estimating the
nullspace of the Hessian of f . The algorithm can be summarized in three
steps:

1. Build a K-nearest neighbor graph, where nonsymmetric neighborhoods
are allowed.

2. At each data point xi estimate a d-dimensional tangent coordinate sys-
tem TxiX by computing a singular value decomposition on the nearest
neighbors.

3. Estimate the Hessian H i at xi in tangent coodinates in the least square
sense.

4. Build a symmetric matrix H̃ from the Hessian estimators Hi in the
following manner:

H̃ij =
∑
l

∑
r

((H l)ri(H
l)rj).

H l is the Hessian estimator

5. Performan eigenanalysis of H̃, and identify the d + 1 dimensional sub-
space corresponding to the d+ 1 smallest eigenvalues. The d+ 1 eigen-
vactors of H̃ are the embedding coordinates.

So the general idea is to estimate H from the local Hessian estimates Hi of
the data set X. Construct a sparse N ×N matrix H̃ which approximates the
continuous operator H. Note that H has the same sparsity structure as the
matrix used in LLE. As with LLE, we then choose Y to be the eigenvectors
corresponding to the d smallest eigenvalues by omitting the constant vector
u0. However, it differs in that higher order derivatives are used to estimate
the nonzero entries of H̃.
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x1
x2
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X f

ΨΩ

RTxX

Prm(X )

pr1

pr2

y1

y2

Figure 3.8: Schematic visualisation of the proof of Theorem 16.

3.2.5 Laplacian Eigenmaps

Laplacian Eigenmaps were introduced by Belkin [Belkin 2003]. Its intent is
to embed the input data X in a d-dimensional space such that small neigh-
borhood relations are preserved. The name Laplacian Eigenmaps is due to
the Laplacian regularization in the optimization. The use of Laplacian regu-
larization opens the door to the mathematics of harmonic analysis as we will
see later. First we summarize the main steps of the algorithm:

1. Build a neighborhood graph using the K or ε nearest neighbor rule

2. Each edge connecting a pair (xi, xj) of points is weighted using the heat

kernel Wij = wij = e−
‖xi−xj‖2

σ and wij = 0 otherwise. σ is the variance
of the data set X.

3. The solution is given by the eigenvectors of the following generalized
eigenvector problem

Lf = λDf. (3.4)

D is a diagonal matrix Dii =
∑

j wij and L = D −W is the approxi-
mation of the Laplacian operator on the neighborhood graph.
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The operator L is acting on a function defined on the nodes of the graph. The
embedding of an initial point xi is given by yi = (Ψ1(xi), . . . ,Ψd(xi)) initial
data is given by yi. [Ψ1, . . . ,Ψd] the eigenvectors to the associated general-
ized eigenproblem ordered in ascending order. Also note that we switched
notation for the eigenvectors to emphasize the connection to eigenfunctions
in the smooth case. It is obvious that when computing the eigenfunctions
we actually compute eigenvectors, but we may switch between these terms in
this and the next section. The first eigenvector Ψ0 is left out because it is
constant and carries no information. The optimization problem in equation
3.4 is obtained by minimizing the energy

E =
∑
i,j

(yi − yj)2wij (3.5)

with respect to the embedding yT = (y1, . . . , yN) of X in R. This energy
penalizes heavily if close points in the data space are mapped far apart in the
embedding space. By expanding and rearranging the energy in equation 3.5
we obtain

E =
∑
i,j

(y2
i + y2

j − 2yiyj)
2wij =

∑
i

y2
iDii +

∑
j

yjDjj − 2
∑
i,j

yiyjwij = 2yTLy

In order to avoid trivial solutions and scaling issues, the constraint yTDy = 1

is imposed on the solution. The Lagrangian function of the minimization
yields the generalized eigenvalue problem in equation 3.4.
We now turn to the same problem in which a function is defined on a Rieman-
nian manifold as done in the exposition by Belkin et.al [Belkin 2008]. They
consider the problem of finding the best map f : X 7→ R so that close points
on X remain close under the map f . Assuming the map f to be smooth the
distortion induced on the neighborhood is measured by ‖∇f‖. The function
f ∈ L2 minimizing the distortion is found by minimizing

arg min
‖f‖L2

∫
X
‖∇f(m)‖2 dm.

Using Stoke’s identity, we have for any vector field Z on X ,
∫
X 〈Z,∇f〉 =

−
∫
X div(Z)f . From this it directly follows that∫

X
‖∇f(m)‖2 =

∫
X
L(f)f

where L is the well known Laplace-Beltrami operator defined on X : Lf =

−div∇(f). The solution is obtained by the first eigenfunction fi with as-
sociated eigenvalue λi different from 0. In [Belkin 2008], the authors prove
convergence of the discrete Laplace operator on graphs to the continous op-
erator as the number of samples tend to infinity.
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3.2.6 Diffusion Maps

We will follow the construction of Diffusion Maps as described
in [Coifman 2005]. The first step in computing Diffusion Maps is the con-
struction of a symmetric graph in which each node xi corresponds to a data
point of X = {xi} i=0 . . . N-1 . The connectivity between nodes is computed
based on some user-defined and application dependent scale parameter σ. The
adjacency graph W is built as the ε-neighborhood graph or the K-nearest
neighbor graph.

In a second step we need to weight each edge in the graph where the
weight reflects the similarity between two connected nodes. A common weight
function is the Gaussian or heat kernel w(xi, xj) = exp(−‖|xi−xj‖|2/(2∗σ2))

which is also used in [Belkin 2003, Coifman 2005]. From the construction
we see that this method is intimately related to the Laplacian Eigenmaps of
Belkin et. al. [Belkin 2003]. It is obvious that the distance measured between
nodes in the graph depends on the application and must be chosen by the
user. But it also shows the generality of this method. Once a norm between
data points is provided the method becomes applicable if the weight function
w(., .) meets the two conditions, for all xj and xi in X:

• symmetry w(xi, xj) = w(xj, xi) and

• non negativity w(xi, xj) ≥ 0

The weight function provides a notion of similarity and defines the amount of
local interaction between nodes. We will explain this idea in more detail later..
The common construction of Graph-Laplacian’s starts with the definition of
the degree function deg : X 7→ R+:

deg(si) =
∑
xj∼xi

w(xi, xj)

where ∼ stands for: xj adjacent to xi. Then the unnormalized Laplacian, also
referred to as the combinatorial Laplacian, Lu writes as

Lu(xi, xj) =


deg(xi), if xi = xj

−w(xi, xj), if xi ∼ xj

0, otherwise.

In matrix form Lu writes as

Lu = D−W
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where D is a diagonal matrix so that Dii = deg(xi) and W is the adjacency
matrix containing the weights Wij = w(xi, xj). The normalized graph Lapla-
cian Ln is given as

Ln(xi, xj) =


1− w(xi,xj)

deg(xj)
, if xi = xj

− w(xi,xj)√
d(xi)d(xj)

, if xi ∼ xj

0, otherwise.

Again, we can write this in matrix form as Ln = Id −D−
1
2 WD−

1
2 . In order

to clarify the relation between the two Laplacian’s we express the normalized
Laplacian in terms of the unnormalized which then writes

Ln = D−
1
2 LuD

− 1
2

Diffusion Maps [Coifman 2005] uses a diffusion kernel w(xi, xj) to build the
normalized Laplacian matrix

Pij =
w(xi, xj)

deg(xi)
. (3.6)

The diffusion kernel w(xi, xj) encodes the probability of transition between
xi and xj and deg(xi) normalizes the quantity in equation (3.6) such that∑

xj∼xi p(xi, xj) = 1. Therefore, the quantity p(xi, xj) can be seen as the prob-
ability of a random walker to jump from xi to xj and P becomes a Markov
chain on the adjacency graph. If we introduce a time index t on the random
walk matrix Pt, where t corresponds to the t-th power of P then the kernel
Pt
ij corresponds to the probabilities of transition between xi and xj in t time

steps. For a connected graph when t = ∞ the random walk converges to a
unique stationary distribution φ0. In [Belkin 2003], the author states that the
Gaussian kernel approximates the Laplace Beltrami operator if the data lies
approximately on a Riemannian submanifold with uniform distribution. This
idea goes hand in hand with the asymptotic behavior of the diffusion kernel
which converges to a constant function and illustrates the well-known averag-
ing behavior of the Laplace Beltrami operator. Therefore φ0 is an eigenvector
of P such that φT0 P = φT0 . Using a well known fact from spectral graph the-
ory, Coifman [Coifman 2005] shows the following eigendecomposition of the
kernel pt :

pt(xi, xj) =
N−1∑
l≥0

λtlΨ
t
l(xi)φ

t
l(xj). (3.7)

{λti} is the decreasing eigenspectrum of Pt and {φtl(xj)} respectively {Ψt
l(xi)}

being the corresponding biorthogonal left and right eigenvectors such that

φ0(x)Ψl(x) = φl(x). (3.8)
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Then the diffusion distance Dt(xi, xj) between two points xi and xi can be
written as

D2
t (xi, xj) =

∑
xl∈X

(Pt
il −Pt

jl)
2

φ0(xl)
. (3.9)

This simple L2 weighted distance between the conditional probabilities Pt
i.,

Pt
j. defines a metric on the data that measures the amount of connectivity of

the points xi and xj along paths of length t. Therefore if the graph has a
large number of paths connecting xi and xj then the diffusion distance will
be small. This behavior of the diffusion distance is used by Lafon et al. to
propose a clustering algorithm using Diffusion Maps [Lafon 2006a]. In order
to relate the diffusion distance and the eigenvectors of Pt we insert equation
(3.7) into equation (3.9) and use the biorthogonality between right- and left
eigenvector to find:

D2
t (xi, xj) =

m−1∑
i≥0

λ2
t (Ψ

t
i(xi)−Ψt

i(xj))
2. (3.10)

Ψt
i are the right eigenvectors associated to Pt and since Ψt

0 is a constant vector
it is left out of the sum. Equation (3.10) shows that the right eigenvectors of
Pt can be used to express the diffusion distance in terms of the eigenvectors
of Pt. To this end, we introduce the family of Diffusion Maps indexed by a
time parameter t

Ψt(x) =


λt0Ψt

0(x)

λt1Ψt
1(x)
...

λtN−1Ψt
N−1(x)

 . (3.11)

In the sequel we will omit the parameter t and assume it is set to a fixed
value [Lafon 2006b]. From equation (3.10), we can see that Diffusion Maps
generate a quasi-isometric mapping since the diffusion distance is approxi-
mately equal to the L2 metric in the new coordinate system when retaining
the first d eigenvectors. The parameter d is intimately related with the in-
trinsic dimension present in the data. In general, its automatic estimation is
very difficult. Usually one relies on the eigenspectrum to infer the parameter
d. See [Hein 2005a] for an algorithm to estimate the intrinsic dimension of
submanifolds in RD. Here, d is a parameter to be set manually. Also note that
methods like LLE or Laplacian Eigenmaps do not provide an explicit metric
which is crucial for our method. Let us finally mention that a completely
density invariant Markov chain can be built by re-weighting the kernel as:

w̃(xi, xj) =
w(xi, xj)

q(xi)q(xj)
, (3.12)
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with q(xi) =
∑

xj∈X w(xi, xj). Then the new transition probability becomes

p(xi, xj) =
w̃(xi, xj)

q̃(xi)
(3.13)

with q̃(xi) =
∑

xj∈X w̃(xi, xj). In this way one can recover the geometry of
the manifold independent of the data’s density.

At end, the embedding for every data point xi ∈ X in Rd is given by

yi = Ψ(xi) =


λ0Ψ0(xi)

λ1Ψ1(xi)
...

λd−1ΨN−1(xi)

 . (3.14)

3.2.7 Summary of metric learning algorithms

Depending on the availability of the training examples, most distance met-
ric learning techniques can be classified into two categories: Supervised Dis-
tance Metric Learning and Unsupervised Distance Metric Learning. We re-
viewed unsupervised methods in this chapter. While supervised metric learn-
ing makes use of label information to identify, unsupervised distance metric
aims to reduce the dimensionality of the dataset to the number of degrees of
freedom. The resulting low-dimensional embedding preserves geometric re-
lationships between data points with respect to some user defined distance.
In table 3.1 the general properties for distance metric learning methods in
this chapter are listed. For instance the following properties were considered:
linear vs. nonlinear and global vs. local. These properties describe the major
strategies for unsupervised learning algorithms.



3.2. Nonlinear methods 61

M
et
ho

d
Lo

ca
lit
y

Li
ne
ar
ity

P
C
A

gl
ob

al
st
ru
ct
ur
e
pr
es
er
ve
d

lin
ea
r

M
D
S

gl
ob

al
st
ru
ct
ur
e
pr
es
er
ve
d

lin
ea
r

IS
O
M
A
P

gl
ob

al
st
ru
ct
ur
e
pr
es
er
ve
d

no
nl
in
ea
r

LL
E

lo
ca
ls

tr
uc
tu
re

pr
es
er
ve
d

no
nl
in
ea
r

H
LL

E
lo
ca
ls

tr
uc
tu
re

pr
es
er
ve
d

no
nl
in
ea
r

La
pl
ac
ia
n
E
ig
en
m
ap

s
lo
ca
ls

tr
uc
tu
re

pr
es
er
ve
d

no
nl
in
ea
r

D
iff
us
io
n
m
ap

s
lo
ca
ls

tr
uc
tu
re

pr
es
er
ve
d

no
nl
in
ea
r

M
et
ho

d
St
ra
te
gy

sp
ec
ia
lf
ea
tu
re

P
C
A

pr
es
er
ve
s
va
ri
an

ce
of

da
ta

ba
se
d
on

in
ne
r
pr
od

uc
t

M
D
S

pr
es
er
ve

in
te
r-
po

in
t
di
st
an

ce
ba

se
d
on

di
st
an

ce
fu
nc
ti
on

IS
O
M
A
P

pr
es
er
ve

th
e
ge
od

es
ic
s

gr
ap

h
ba

se
d

LL
E

pr
es
er
ve

lo
ca
ln

ei
gh

bo
r

lin
ea
r
ne
ig
hb

or
ho

od
ap

pr
ox

im
at
io
n

H
LL

E
pr
es
er
ve

lo
ca
ln

ei
gh

bo
r

th
eo
re
ti
ca
lg

ua
ra
nt
ee
s

La
pl
ac
ia
n
E
ig
en
m
ap

s
pr
es
er
ve

lo
ca
ln

ei
gh

bo
r

la
pl
ac
ia
n
re
gu

la
ri
za
ti
on

D
iff
us
io
n
m
ap

s
pr
es
er
ve

lo
ca
ln

ei
gh

bo
r

w
av
el
et

ap
pr
oa

ch
an

d
de
ns
ity

in
de
pe

nd
en
ce

Ta
bl
e
3.
1:

O
ve
rv
ie
w

of
un

su
pe

rv
is
ed

di
st
an

ce
ba

se
d
le
ar
ni
ng

m
et
ho

ds
an

d
th
ei
r
pr
op

er
ti
es
.





Part II

Applications





Chapter 4

Non-linear Manifold learning and

Applications to Shape and Image

Denoising

Contents

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 67

4.1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . 69

4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2.1 Kernel methods . . . . . . . . . . . . . . . . . . . . . . 71

4.2.2 Calculus of shapes . . . . . . . . . . . . . . . . . . . . 76

4.2.3 Mean on statistical manifolds . . . . . . . . . . . . . . 81

4.2.4 Pre-Image . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2.5 Out-of-sample extension . . . . . . . . . . . . . . . . . 84

4.3 Normalization in Gaussian Kernel PCA . . . . . . . . 87

4.3.1 Pre-image in Kernel PCA . . . . . . . . . . . . . . . . 89

4.3.2 Application in image denoising . . . . . . . . . . . . . 91

4.4 Pre-Image as Karcher means . . . . . . . . . . . . . . 94

4.4.1 Related work . . . . . . . . . . . . . . . . . . . . . . . 94

4.4.2 Learning a set of shapes . . . . . . . . . . . . . . . . . 94



66
Chapter 4. Non-linear Manifold learning and Applications to

Shape and Image Denoising

4.4.3 Shape interpolation as Karcher mean . . . . . . . . . . 95

4.4.4 Pre-Image and manifold interpolation . . . . . . . . . 96

4.4.5 Implementation issues . . . . . . . . . . . . . . . . . . 97

4.4.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 103



4.1. Introduction 67

Abstract
We address the problem of finding the pre-image of a feature vector
in the feature space induced by diffusion maps. We offer a manifold
interpretation and define the pre-image as a Karcher mean interpolat-
ing between neighboring samples for the diffusion distance. The close
connections between manifold learning techniques and kernel methods
are clearly exposed, providing some insights on the superiority of diffu-
sion maps over kernel methods for learning the structure and intrinsic
geometry of a manifold. In addition, a careful analysis of kernel PCA
in centered feature space reveals how to improve existing pre-image
methods. Results on 3D shapes and 2D images are presented and
demonstrate the superiority of our approach.

4.1 Introduction

The notion of shape is important for several fields in Computer Vision and is
used for object tracking in image sequences or for object recognition in scene
understanding. Tracking for instance, is usually solved by segmenting the
image into two regions. One region being the object itself and the background
being the rest of the image. In order to regularize the segmentation, the
notion of shape is used to account for low contrast or partially hidden objects.
Especially when the targeted object is known before the segmentation, then
such knowledge is used as a prior or shape prior. Nevertheless, shape is a
complex notion which cannot be easily modeled, unlike images, as a vector in
RD. An important question is how to model space of shapes. For instance,
we want to be able to compute distances to make the models computable.
Distances require a metric on the space of shape. Finding a metric on the
space of curves and surfaces is the topic of the work by Michor [Michor 2006]

In general the questions arising in shape analysis are the following:

• Definition of a shape

• Structural properties of the shape space

• Metrification of the space of shapes (comparing shapes)

• Characterization of a family of shapes and their modes of variation

There is no consensus found so far on the definition of the shape. And
the defition is strongly dependent of the application targeted. A common
choice of representation of shapes are landmarks distributed on the object
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features. This is the representation chosen in [Cootes 1995]. Another very
common representation nowadays is a boundary representation of the object.
The object is defined through a closed surface separating interior and exterior
of the shape. This representation is done using an implicit function.

This leads to the points of view as in Grenader’s theory of patterns
[Grenander 1993]. Like many authors before [Charpiat 2005, Michor 2006,
Beg 2005, Charpiat 2006b] we share this point of view in this thesis. It con-
siders a shape as a point on an infinite-dimensional manifold.

But contrary to previous work, we do not model the variations of shapes by
infinite-dimensional groups, such as diffeomorphisms[Michor 2006, Beg 2005].
These authors have built a Riemannian structure on the set of shapes, i.e., to
go from an infinitesimal metric structure to a global one. The infinitesimal
structure is defined by an inner product in the tangent space (the set of
normal deformation fields) and has to vary continuously from point to point,
i.e., from shape to shape. The Riemannian metric is then used to compute
geodesic curves between two shapes: these geodesics define a way of warping
either shape onto the other. For instance this is the work done by Trouve
and Younes [Trouvé 2005]. The major drawback is that these methods have
to deal with parametrization of the shape.

Since we focus on the problem of image and shape denoising we give a
short overview of scientific research done on these topics:

Image denoising

Image denoising is very popular in the mathematical imaging community
as this kind of problem is very suitable to make numerical experiments for
mathematical models. The standard model is : given an original image u
altered by additive noise v and eventually an operator R. Such an operator is
usually modeled as a convolution and not necessarily invertible. Then given
an observed image I = Ru + v, the goal is to recover the original image u.
Under the simplistic assumption of Gaussian noise v, the method of maximum
likelihood leads to a minimization problem

inf
u
‖f −Ru‖2

2

where ‖.‖2
2 is the L2 norm. This problem is an inverse problem and ill-posed.

In order to resolve it numerically, a regularization term is added to the original
problem leading to

inf
u
‖f −Ru‖2

2︸ ︷︷ ︸
data attachement

+ L(u)︸︷︷︸
regularization

.
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A great amount of literature is available to help resolve this problem.
We compiled a short list with the most important methods ignoring hybrid
approaches.

• Gaussian smoothing model [Lindenbaum 1994]

• Anisotropic filtering Perona-Malik model [Perona 1990]

• Rudin-Osher-Fatemi total variation model [Guichard 2001]

• Wavelet tresholding [Donoho 1995]

• Non-local mean denoising [Buades 2005]

Shape denoising

In the case of shape denoising where a shape is taken in the sense of as specified
before, very little work has been done. The first to propose shape denoising
based on manifold learning techniques was Rathi et.al. [Dambreville 2006].
In this work, authors use KPCA to compute an embedding in the feature
space and then perform a projection onto the first leading eigenvectors. The
corresponding data space of the projected datum is obtained by solving a
fixed point iteration. Further work on manifold learning applied to shapes
was introduced in [Etyngier 2007b] by Etyngier et.al. Their approach rely on
diffusion maps. Their objective was the design of a prior energy for image
segmentation. Nevertheless, the proposed algorithm can also be applied to
solve the preimage problem in the context of diffusion maps.
A different approach based on level-sets was introduced in by Dong
et.al.[Dong 2008]. In their paper they extend the non-local smoothing tech-
nique for images to the case of a surface represented by surfaces. They show
promising results on synthetic data as well as city terrain and cortical surfaces.
Nevertheless, the noise is very low in their example. This approach cannot
cope with strong noise.

4.1.1 Contributions

We propose a new method to solve the pre-image (see section 4.4) problem
in the context of diffusion maps for shape and image denoising. We sug-
gest a manifold interpretation and learn the intrinsic structure of a given
training set. We compute a global metric using diffusion maps on the set of
shapes and compute smooth approximations of these metrics based on sim-
ilarity functions. We then minimize these functions using techniques of the
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calculus of variation by computing their gradient and performing infinitesi-
mal gradient descent to interpolate between shapes. Our method relies on
a geometric interpretation of the problem which naturally leads to the def-
inition of the pre-image as a Karcher-mean [Karcher 1977] that interpolates
between neighboring samples according to the diffusion distance. Previous
pre-image methods were designed for Kernel PCA. Our motivation for using
diffusion maps comes from the fact that the computed mapping captures the
intrinsic geometry of the underlying manifold independently of the sampling.
Therefore, the resulting Nyström extension (see section 4.2.5) proves to be
more “meaningful” far from the manifold and leads to quantitatively better
pre-image estimations, even for very noisy input data. Further, this method
has several significant advantages:

• In the case of Kernel PCA, our new normalization criteria performs
better on very noisy images.

• We provide a variational formulation of the pre-image problem in the
case of diffusion maps.

• Diffusion maps are more stable even when dealing with very noisy data

• We provide a way to interpolate between shape respecting the underlying
geometry of the shape space.

Last but not least, the method proposed has the advantage of being relatively
general. The main ingredient in order for this to work, is the use of a differ-
entiable distance function. One could expect the method to work on splines
and nurbs and several other representations in Computer Vision.
Further, we show some results on denoising of shapes. We compare
our results to the work proposed by Dambreville [Dambreville 2006] and
for image denoising, to several denoising algorithms using Kernel PCA:
[Kwok 2004], [Arias 2007], [Carreira-Perpiñan 2007]. Results on 3D shapes
and 2D images are presented and demonstrate the superiority of our method.
The shapes considered are medical MRI 3D volumes. For computations, the
volumes are converted into a boundary representation using an implicit func-
tion. The gradient descent to solve the pre-image yields a hyperbolic equation
which is solved using the Level-Set approach [Sethian 1999b].

4.2 Background

For the sake of clarity, we review and further detail some of the methods
introduced in chapter 2 and 3.
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4.2.1 Kernel methods

Kernel methods constitute a class of algorithms for the analysis of various kind
of data (vectors, character chains, graphs, images) using a similarity measure
w(., .). The similarity measure is commonly named kernel and associates each
pair of input data (xi, xj) a real number w(xi, xj) measuring the similarity
between the data.
By making certain assumptions on the kernel w(., .), the kernel implicitly maps
the data into a highdimensional Hilbert space through Ψ : X 7→ Y such that
the following relation holds : w(xi, xj) = 〈Ψ(xi),Ψ(xj)〉Y . 〈., .〉Y is the inner
product in the feature space. In the literature[Smola 1998, Schölkopf 2002],
the space H is commonly called feature space and the space where the data
lies X , input space.
This yields a very general and flexible framework for data analysis. But its
behavior will depend on the choice of kernel, which is equivalent to say on the
choice of the mapping. Once the kernel is fixed several linear algorithm can
be applied such as PCA and Support Vector Machines (SVM).
In the section, we review the main definitions related to kernel methods as
well as some results and applications useful and in relation to this work. As
mentioned in [Bengio 2003, Ham 2003], there exists a deep connection between
kernel methods and manifold learning.

Kernel Mapping

Definition 18 (Positive definite kernel). A positive definite kernel with input

space X is a symmetric mapping k : X × X 7→ R

w(x, x′) = w(x′, x) for every (x, x′) ∈ X 2,

such that for every n ∈ N, (x1, . . . , xN) ∈ X n, (a1, . . . , an) ∈ Rn

N∑
i=1

N∑
i=j

aiajw(xi, xj) ≥ 0

In matrix notation, the similarity matrix Wij is positive semi-definite for
every n-tuple of input points. The most trivial case is the linear kernel defined
on X = RD. Then, k : X 7→ R is given by

∀(x, x′) ∈ X 2, w(x, x′) = 〈x, x′〉RD
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It is easy to show that the linear kernel is positive definite. In fact, symmetry
is obvious and positivity is deduced by linearity as

N∑
i=1

N∑
i=j

aiaj 〈xi, xj〉 =

∥∥∥∥∥
M∑
i=1

aixi

∥∥∥∥∥
2

RD
≥ 0.

The linear kernel can be generalized in the following way. Let X be a metric
space, Y a vector space of finite dimension and Ψ : X 7→ Y . Then the positive
definite function k : X 2 7→ R is defined as :

∀(x, x′) ∈ X 2, w(x, x′) = 〈Ψ(x),Ψ(x′)〉Y .

In this way, we are able to define a kernel function defined over general metric
space through the mapping Ψ mapping the space X into a finite dimensional
vector space.

Kernel function as inner-product

We now seek a representation of some inner product in a space X through
a positive definite kernel w(., .).

Theorem 19. w(., .) is positive definite if and only if there exists a mapping

Ψ : X 7→ Y such that for all x, x′ ∈ X

w(x, x′) = 〈Ψ(x),Ψ(x′)〉Y

The idea of this theorem is illustrated in Figure 4.2.1. The kernel w(., .)

implicitly maps the data into a high-dimensional Hilbert space Y through the
unknown mapping Ψ and evaluates the inner product between the two points.
With the property we can measure distances in the feature space Y . A space
Y having this property is called a kernel reproducing Hilbert space(RKHS).
Since computing the matrix Wij = w(xi, xj) amounts to computing all inner
products between all pairs of points of X , the kernel defines a metric on X
and G = W is the associated Gram matrix. Since w(., .) is differentiable and
defines an inner product on X , [Amari 1999] propose an explicit expression
for the metric tensor on X in terms of the second order derivatives of the
kernel:

gij(x) = 〈∇Ψ(x),∇Ψ(x′)〉 |x=x′ =
∂

∂xi

∂

∂x
′
j

w(x, x′)|x=x′ .
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Ψ Y
X

x1

x2

Ψ(x1)

Ψ(x2) dX = ‖Ψ(x1)−Ψ(x2)‖Y

Figure 4.1: Embedding of X into Y . dX is a distance defined on X through a

positive definite kernel.

Kernel trick and distance computation

In practice, the mapping does not have to be computed explicitly as most
techniques only require the computation of dot products that can be evaluated
directly using the kernel w(., .). This is called the kernel trick. Therefore
evaluating the kernel on the points amounts to mapping the points into a
high dimensional possibly infinite dimensional space Y and compute their
inner product.

w(x, x′) = 〈Ψ(x),Ψ(x′)〉Y .

With this trick, points in feature space are processed implicitly through the
kernel. For instance, we can compute the distance between two points in the
feature space. Note that,

dX (x, x′)2 = ‖Ψ(x)−Ψ(x′)‖2
Y

= 〈Ψ(x)−Ψ(x′),Ψ(x)−Ψ(x′)〉Y
= 〈Ψ(x),Ψ(x)〉Y + 〈Ψ(x′),Ψ(x′)〉Y − 2 〈Ψ(x),Ψ(x′)〉Y
=w(x, x) + w(x′, x′)− 2w(x, x′).
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This defines a distance on X which is calculated through a kernel w(., .)(c.f.
Figure 4.2.1). More precisely, dX is a pseudo-distance because Ψ is not in-
jective and therefore the property d(x, x′) = 0 ⇔ x = x′ is not verified. In
view of the development of a kernel version of PCA, we show how to remove
the mean Mean = 1

N

∑N
i=1 Ψ(xi) from the Gram matrix G. Remember the

definition of the Gram matrix Gij = 〈xi, xj〉 then the centered Gram ma-
trix GC

ij = 〈xi −Mean, xj −Mean〉. When using a kernel to evaluate the dot
product between two points, the mean can not computed explicitly as the
mapping Ψ is not known. Nevertheless, by using the kernel trick we can write
a centered version of the Gram matrix when using a kernel

GC
ij = 〈Ψ(xi)−Mean,Ψ(xj)−Mean〉Y

= 〈Ψ(xi),Ψ(xj)〉Y − 〈Mean,Ψ(xi) + Ψ(xj)〉Y + 〈Mean,Mean〉Y

= 〈Ψ(xi),Ψ(xj)〉Y −
1

N

N∑
k=1

〈Ψ(xk),Ψ(xi) + Ψ(xj)〉Y +
1

N2

N∑
k=1

N∑
l=1

〈Ψ(xk),Ψ(xl)〉Y

=Gij −
1

N

N∑
k=1

(Gi,k + Gj,k) +
1

N2

N∑
k=1

N∑
l=1

Gkl

which writes in matrix notation as

GC = HGH.

H is called the centering matrix H = Id11T . It might be interesting to
visualize the pre-image of the mean in feature space. Therefore we must
compute xMean ∈ X such that Ψ(xMean) = Mean. This problem is called the
pre-image problem and will be discussed in more details in section 4.2.4.

Empirical Kernel Mapping

The previous section introduced very general ideas on reproducing kernel
Hilbert spaces. Unfortunately, the mappings involved are usually infinite di-
mensional and do not allow any computations except for the kernel trick. To
make computations in the RKHS, we introduce a finite dimensional approxi-
mation to the original possibly infinite dimensional space.
For instance, we take a finite sampling X of the input space X as this is the
standard situation encountered in applications where data is gathered from
several measurements. If we consider only linear operations between the em-
bedded points Ψ(xi) with i = 1, . . . , N , we can restrict the infinite dimensional
case to a finite dimensional subspace spanned by the N mappings Ψ(xi) as

YN =

{
u =

N∑
i=1

αiΨ(xi), αi ∈ R, xi ∈ X

}
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The space YN is the empirical feature space which is spanned by a weighted
linear combination of the embedded points Ψ(xi) with i = 1, . . . , N . A repre-
sentation of the basis in YN can be done by expanding on the basis given by
the mappings Ψ(xi) with i = 1, . . . , N . If αu be the coefficient vector of u

u =
N∑
i=1

(αu)iΨ(xi).

Then the inner product between two elements u and u′ ∈ YN with corre-
sponding coefficient vectors αu and αu′ is given by

〈u,u′〉Y =
N∑
i=1

N∑
j=1

(αu)i(αu′)jw(xi, x
′

j) = αTuWαu′ .

Wij = w(xi, xj) is the usual kernel matrix and αu = [α1, . . . , αN ] and anal-
ogously αu′ . In order to compute the u, we need the coefficient vectors α
which are computed by minimizing an energy functional [Smola 1998].

Kernel Principal Component Analysis (KPCA)

A different basis of YN can be computed by the principal component approach
presented in section 3.1.1.
Using the kernel trick presented in section 4.2.1 and assuming we have a
RKHS, we know from the previous section that the eigenvectors are ex-
pressed in the finite dimensional subspace spanned by the embbeded points
Ψ(x1), . . . ,Ψ(xN). We can rewrite the eigenvalue problem of section 3.1.1 in
terms of the inner product using the kernel trick w(xi, xj) = 〈Ψ(x1),Ψ(xN)〉
which gives us the gram matrix G = W. This yields a dual generalized
eigenvalue problem

Nλα = Wα,

with α being a coefficient vector satisfying the normalisation condition
αTWα = 1 . The associated solution vectors of the eigenvalue problem
are

αi =
1√
λiei

where (ei, λi) are the associated eigenvectors and eigenvalues of W and the
projection of the input data x1, . . . ,xN on the i-th component are computed
as Wαi.
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4.2.2 Calculus of shapes

A considerable amount of work is published on the definition and representa-
tion of shapes. And yet there is no best representation and one has to make
a choice depending on the targeted application. In this chapter, we choose an
implicit representation of the shapes.

Shape representation

The definition of shape we will need in this chapter is adopted from the work
of Charpiat [Charpiat 2006a]. It is a purely geometrical approach and inde-
pendent of the pixels intensity. Therefore the shape is only defined by the idea
of interior and exterior. In order to achieve parametrization independency, we
define the characteristic function of a shape s as

χ(s) =

{
1 if x ∈ s,
0 if x /∈ s.

or of it’s contour γ = ∂s. Then we define the signed distance function from
the contour of the shape s

Dγ = ε(x) inf
y∈∂s

d(x, y) with ε(x)

{
+1 if x ∈ s,
−1 if x /∈ s

. (4.1)

Further, we assume that locally the shape is the graph of a twice differen-
tiable function and sufficiently apart of it’s skeleton in the sense of Charpiat
[Charpiat 2006a]. We call the set S of all such shapes a shape space with nice
topological and metric properties.

Level Sets

The level set method is very popular for the numerical simulation dynamic
interfaces. First proposed by Alain Dervieux and François Thomasset [?]
and then further developed by Osher and Sethian [Osher 1988], its success is
mainly due to the automatic handling of complex geometries and topological
changes, (c.f. Figure 4.2b)) as well as efficient numerical schemes and almost
trivial computations of intrinsic quantities. Further, this method easily gener-
alizes to high dimensions. Nevertheless, level sets bear some drawbacks such
as loss of mass and big memory consumption. Numerous domains ranging
from fluid dynamics [Osher 2001] and image segmentation [Osher 2003] to 3D
reconstruction [Keriven 1998] and shape optimization [Charpiat 2006a] still
employ level sets. For example, Nikos Paragios and Rachid Deriche propose
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a) b)

f > 0
f < 0

γ = {f = 0}

f(x)

γ(t1)

γ(t0)

Figure 4.2: a) shows a 2D curve and a normal deformation field. b) shows

the embedding of the curves in a 2+1 dimensional space a the cross section

at time t =0 and different shapes at different times (t0, t1).

geodesic active regions [Paragios 2000, Paragios 2002] still implemented in
the Level Set framework. The curve evolves according to a statistical analysis
based on the maximum likelihood principle for the observed density functions
(e.g. image histogram).

Level sets are represented implicitely as the 0-level set of some higher-
dimensional function f defined on the whole domain. Given a hypersurface
γ ∪ Rn, we define a function f : Rn 7→ R such that:

γ = {x ∈ Rn|f(x) = 0} .

Further, we assume that f takes negative values inside the curve and positive
values outside. One such function is the signed distance equation 4.1

In the context of deformable models, the evolution of a curve γ(t) with
t ≥ 0 under a deformation field v is written as

∂γ

∂t
= v.

Applied to the level set equation, the deformation of γ under v becomes
∂f

∂t
+ v∇f = 0
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when f(γ(t), t) is differentiated with respect to t at t = 0. Furthermore,
we easily see that solely the normal component of the deformation field v

influences the shape geometry if we know that

n =
∇f
|∇f |

and rewrite the level set equation as

∂f

∂t
+ |∇f |v · n = 0.

Hence any tangential motion corresponds just to a reparametrization. Also
note that the computation of several intrinsic quantities is easily computed as
explained in [Osher 2001, Sethian 1999c].

Shape distances

The standard approach to shape optimization in computer vision is to min-
imize the distance between shapes. Therefore, a suitable distance function
measuring the similarity of two shapes is required. Two ways are commonly
used: The first is to equip the shape space with a metric on the tangent space
at each point. This implies that the shape space is an infinite dimensional
Riemannian manifold. The distance between two shapes is defined as the
length of a geodesic path joining the two shapes. This framework was
established by Trouve et.al.[Trouvé 2005].
A different approach is to consider a distance defined on the global geometry
of the shape. Contrarily to the previous idea, this approach does not
necessarily require differentiability of the underlying structure and further
does not expect any parametrization of the shape space. This is the case for
the following distance functions.

Symmetric difference

A commonly used similarity measure between two shapes s1, s2 defined over
two measurable sets Ω1,Ω2 is the symmetric difference function:

dSD(s2, s2) = ‖χΩ1 − χΩ2‖L2 =

(
1

2

∫
(χΩ1(x)− χΩ2(x))2dx

) 1
2

.

Geometrically (c.f. Figure 4.3b)), this distance measures the area of the sym-
metric difference between the two shapes. This distance was first proposed by
Cremers et.al.[Cremers 2004].
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Figure 4.3: a) Haussdorf distance between two curves. b) Area of symmetric

distance.

Hausdorff distance

Another well known distance is the Hausdorff distance which was first
used by Serra [Serra 1998] for image processing using mathematical morphol-
ogy. Therefore we consider the distance between distance functions of shapes
DΩ1 ,DΩ2

dH(Ω1,Ω2) = ‖DΩ1 − DΩ1‖L∞ = sup |DΩ1 − DΩ1|

which in fact turns out to be the Hausdorff distance:

d(Ω1,Ω2) = max

{
sup
x∈Ω1

DΩ2 , sup
x∈Ω2

DΩ1

}
This distance as it is, is not smooth and therefore not applicable for variational
methods. Charpiat et.al. [Charpiat 2005] propose a smooth approximation to
overcome this problem.

L2 distance between Level-Set

As in [Charpiat 2005], we define the L2 norm between two Level-Set or
equivalent distance functions Ds1 ,Ds2 as:

dL2(s1, s2) = ‖Ds1 − Ds2‖L2 .

Sobolev norm between Level-Set

If more regularity of the shapes is required, Charpiat et.al [Charpiat 2005]
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and Sundaramoorthi et.al[Sundaramoorthi 2008] proposed to restrict the func-
tion to the Sobolev space W 1,2. This imposes regularity on the gradient of
the distance function of shapes. The Sobolev norm between two shapes then
writes as:

d1,2
W (s1, s2) = ‖Ds1 − Ds2‖L2 + ‖∇Ds1 −∇Ds2‖L2 .

Gradient descent

In most cases the global minimization of an energy measuring similarity be-
tween shapes is not possible. One has to resort to a local optimization scheme.
The calculus of variation provides suitable tools for the local minimization and
optimality conditions to reach a local minima. By assuming a manifold struc-
ture on the data space X , we can apply a gradient descent on the manifold
like in standard variational calculus. By considering a small variation of the
shape we have a meaningful interpretation of the derivative of the energy with
respect to the shape and can perform a gradient descent:

Gradient descent on a manifold:

Let X be some Riemannian manifold and f : X 7→ R a smooth real valued
function on X , x ∈ X and v ∈ TxX a tangent vector on X at x. Then the
directional derivative of f in x in the direction of v is given by

∂f

∂v
(x) = df(x)v =

d

dt
f(Γ(t))|t=0

for every differentiable curve Γ on X such that Γ(0) = x and Γ̇(0) = v. Then
using the Riesz theorem, the unique vector ∇Xf(x) ∈ TxX corresponding to
the gradient of f in x is

df(x)v = 〈∇Xf(x), v〉x .

Once the gradient can be computed, we can perform a gradient descent which
is an iterative procedure to minimize a function. Since the gradient always
points in the direction of biggest change of f , the idea is take a step along
the opposite direction of the gradient. Thus the opposite gradient always
decreases the function f

df(x)v = 〈∇Xf(x),−∇Xf(x)〉x = −‖∇Xf(x)‖2
x ≤ 0.
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Gâteaux derivative and shape gradient

In the case of curves or surfaces, the directional derivative is not a single vector
v but rather a vector field β. The vector field β is a deformation normal to γ
such that for any x ∈ γ x transforms as x+β(x)n(x) where n is the normal to
γ at x. Under the assumption of sufficient regularity and bounded energy, the
deformation defines a new curve ( or surface) as γ + βn. In particular if βn

is C2 then γ + tβn is well defined for small t and corresponds to the tangent
space of γ. Given a certain energy functional E(γ) , the derivative of E with
respect to γ in the direction of β writes as

dE(γ)β =
d

dt
E(γ + tβn)|t=0 = lim

t→0

E(γ + tβn)− E(γ)

t

This type of derivative is a functional derivative. And it is a Gâteaux deriva-
tive if the mapping β 7→ dE(γ)β is defined and continuous on the vector space
of normal deformation fields β.
Defining the gradient of E in γ in the direction of β requires an inner prod-
uct on the space of normal deformation fields. Usually, the space of normal
deformations is defined as the sub-space of the Hilbert space L2(γ) with inner
product

〈β1, β2〉 =
1

|γ|

∫
x∈γ

β1(x)β2(x)dx.

The gradient ∇βE(γ) is then defined as the unique deformation field so that

dE(γ)β = 〈∇βE(γ), β〉γ .

The choice of a specific inner product such as the canonical L2 which we will
use in this chapter and which is systematically used throughout the literature
defines the space of admissible deformation fields. As pointed out by Charpiat
et al. [Charpiat 2007], the gradient depends on the particular choice of the
inner product. This opens the door on the design of specific metrics through
the choice of inner products [Charpiat 2007],[Sundaramoorthi 2008].

4.2.3 Mean on statistical manifolds

The linear definition 1
N

∑
i xi is not so easily generalized in the case of man-

ifolds with probability distributions. In this section, we develop the notion
of a mean in the sense of Karcher and Frećhet which provides the theoretical
framework for the correct definition of a mean for shapes.
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Fréchet expectation

Let x be a random element of Rn. Fréchet observed in [Fréchet 1944,
Fréchet 1948] that the variance σ2

x(y) = E [d(x, y)2] is minimized by the mean
x̄ = E [x]. The main assumption in order to generalize this observation is that
the expectation of a real measurable function is always well-defined. We con-
sider now a distance on a manifold X . In our case we will choose the intrinsic
distance with respect to the surface metric. Let x be a random primitive
of density px. The expectation of the squared distance between the random
primitive and some fixed primitive y is defined as:

σ2
x(y) = E

[
d(x, y)2

]
=

∫
X
d(y, z)2.px.dX (z) (4.2)

If the variance σ2
x(y) is defined for every y (this is true if the density has com-

pact support), we call mean or expected primitive x̄ minimizing this variance.
We then have the set of mean primitives as

E [x] = arg min
y∈X

E
[
d(x, y)2

]
=

∫
X
d(y, z)2.px.dX (z) (4.3)

If there exists at least one mean x̄, the variance is the minimum value σ2
x =

σ2
x(x̄) and the standard deviation is the root of this value. In the same spirit,

we define the empirical mean of a set of measurements x1, . . . , xn by a discrete
version of Eq.(4.3):

E [{xi}] = arg min
y∈X

E
[{
d(xi, y)2

}]
= arg min

y∈X

(
1

n
Σid(y, xi)

2

)
(4.4)

Again if there exists at least one mean primitive x̄, we call an empirical stan-
dard deviation or root mean square the value

√
1
n
Σid(x̄, xi)2. We can go

further and define different types of central primitives (moments). Let’s call
mean deviation of order α the value

σx,α(y) = (E [d(x, y)α])
1
α =

(∫
X
d(y, z)α.px.dX (z)

) 1
α

(4.5)

Under reasonable smoothness assumption every primitive x̄α minimizing
Eq.4.5 is a central primitive of order α. Then setting α = 0 amounts to finding
the modes of the density and setting α = ∞ amounts to find the barycentre
of the support of the density. Let’s also emphasize that the Fréchet mean is
defined in every metric space and therefore in particular on every Riemannian
manifold. The Fréchet mean is an important concept and used throughout
the literature on the topic of shape statistics.
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Existence and uniqueness : Karcher expectation

It is obvious that the existence of the mean in the sense of Fréchet is not
guaranteed as it is the solution of a minimization and the global minima
might not be reached. Generally, the result of the minimization is not a
single element but rather a set of elements since we might encounter several
minima. This is typically the case when the random element has several
central values. Equivalently, this can be seen as multi-modal distribution
functions representing a variable centered around several values. With the
definition of the Fréchet expectation we cannot define all modes because we
keep only the minimal value. In order to cope with this constraint, Karcher
[Karcher 1977] proposed to consider local minima of variance σ2

x(y) instead
of solely global minima. As there are usually more local minima than global,
the set of means in the sense of Fréchet is a subset of the means in the
sense of Karcher. Also, remember that we only need second order derivatives
to characterize the solutions at the potential points. Using this extended
definition, Karcher [Karcher 1977] and Kendall [Kendall 1990] stated certain
conditions about the manifold and the distribution to guarantee existence and
uniqueness of the mean.

Theorem 20 (Existence and uniqueness of Karcher mean). Let x be random

variable(primitive) with density px

(Karcher, 1977) If the support of px is included in the geodesic ball Br(y) and the ball

B2r(y) with two times the radius is still geodesic and regular then the

variance σ2
x(z) is a convex function of z. Therefore we have a unique

critical point in Br(y) which is necessarily the Kracher mean.

(Kendall, 1990) If the support of px is included in the geodesic ball Br(y) then there exists

one and only one Karcher mean of x in Br(y).

These conditions are quite restricting but assure a good behavior of the
mean.

4.2.4 Pre-Image

Given a point Υ in the feature space, the pre-image problem consists
of finding a point x̂ ∈ X in the input space such that Ψ(x̂) = Υ,
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Ψ(x)
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Ψ−1(Υ)

Ψ(x1)

Ψ(x2)

Ψ(x3)

Υ

input space feature space

Figure 4.4: Problem configuration: We are looking for the pre-image x̂ of Υ

in the input space X

i.e. the pre-image of Υ. The exact pre-image might not exist (when
it exists, it might also not be unique) and the pre-image problem is ill-
posed [Arias 2007, Dambreville 2006, Kwok 2004, Mika 1999]. To circumvent
this problem, one usually settles for an approximate solution and searches
for a pre-image that optimizes a given optimality criterion in the feature
space. The pre-image problem has received a lot of attention in kernel meth-
ods [Arias 2007, Dambreville 2006, Kwok 2004, Mika 1999] and different op-
timality criteria have been proposed, e.g.:

x̂ = arg min
z∈X

‖Ψ(z)−Υ‖2 (4.6)

This problem, known as the pre-image problem, is the problem to be addressed
in this chapter.

4.2.5 Out-of-sample extension

In general, the mapping Ψ (c.f section 4.2.1 and section 3.2.6), also re-
ferred to as an embedding, is only known over the training set. The
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Figure 4.5: Nyström extension of the first embedding coordinate (from blue

corresponding to smaller coordinates to red corresponding to larger ones) pro-

vided by the leading eigenvector in different kernel methods : Kernel PCA

without (a) and with normalization [Arias 2007] (b), Kernel PCA in centered

feature space without (c) and with normalization (d)

extension of the mapping to new input points is of primary importance
for kernel based methods. These methods success significantly depend on
the “accuracy” of the extension. This problem, referred to as the out-
of-sample problem, is often solved using the popular Nyström extension
method [Arias 2007, Bengio 2004, Lafon 2006a]. Instead of recomputing the
whole embedding, which can be costly for very large datasets because it in-
volves a spectral decomposition, the problem is solved through a method
borrowed from numerical analysis [Baker 1996]. It is obvious that the exten-
sion depends on the data and recomputing the whole embedding with the new
datum would yield a different embedding. But in general the approximation
works well and is used throughout the literature.
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Nyström approximation

As we have seen in the previous section computing diffusion maps involves
the computation of eigenvectors of a symmetric matrix of size N × N . This
takes a considerable amount of time. Thus the question of how to extend an
empirical function outside the range of samples becomes important in order to
avoid recomputing the empirical function when a new datum is input. In the
machine learning community this problem is often solved with the Nyström
method which numerically approximates eigenfunctions of integral equation
of the form ∫ b

a

w(x, y)Ψ(y)dy = λΨ(x),

with w(., .) being a suitable kernel function. This eigenfunction problem
can be approximated by evaluating the equation at evenly spaced points
η1, η2, . . . , ηn on the interval [a, b] with the following quadrature rule

(b− a)

n

n∑
j=1

w(x, ηj)Ψ̂(ηj) = λΨ̂(x). (4.7)

Here ψ̂(x) is an approximation to the true Ψ(x). In order to solve equation
(4.7), we set x = ηi

(b− a)

n

n∑
j=1

w(ηi, ηj)Ψ̂(ηj) = λΨ̂(ηi).

Let [a, b] be[0, 1], we rewrite the system of equations in matrix form as

WΨ̂ = nΨ̂Λ.

Where Wij = w(ηi, ηj) and Ψ̂ =
[
Ψ̂1, . . . , Ψ̂n

]
are the n eigenvectors of

W with associated eigenvalues {λ1, . . . , λn}. Then substituting back into
Equation (4.7) yields the desired Nyström extension of x for each coordinate

Ψ̂i(x) =
1

nλi

n∑
j=1

w(x, ηj).Ψ̂(ηj) (4.8)

This expression allows us to extend an eigenvector computed for a set of sam-
ple points to an arbitrary point x in terms of a linear combination of the
eigenvectors weighted by the kernel w(., ηj).

In addition, the reverse mapping, from the feature space back to the input
space, is often required. After operations are performed in feature space
(these operations necessitate the extension of the mapping), corresponding
data points in input space often need to be estimated. This problem, known
as the pre-image problem, is the problem to be addressed in this chapter.
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Ψ̄C
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a) b)

Figure 4.6: a) Visualization of the feature points(blue) geometry in Y and the

affine subspace(red circle); b) Affine subspace Sp−1

4.3 Normalization in Gaussian Kernel PCA

Kernel PCA is achieved by applying a principal component analysis on the
mapped training samples. PCA computes an eigen-decomposition of a kernel
matrix deduced from the adjacency matrix W. Before applying PCA, the
data is centered at the origin. In Kernel PCA the mean of the mapped in-
put points is not known. Therefore, to simplify, one often assumes that the
mapped training points Ψ(xi) are already centered in the feature space Y and
”incorrectly” diagonalize the adjacency matrix W [Arias 2007, Mika 1999].
Although simpler to understand, the resulting presentation of kernel methods
misses some important points.

Our analysis of the kernel PCA methods studies in detail the centering
of the data and underlines some important properties of the geometry of
the mapped data induced by the kernel. We focus on the Gaussian kernel
w(xi,xj) = exp (−d2

X (xi,xj)/2σ
2), with σ estimated as the median of all the

distances between all training points [Arias 2007, Lafon 2006b]. In accordance
with the geometry induced by the Gaussian kernel, we highlight some non-
trivial elements and rephrase some pre-image methods in a centered feature
space[Arias 2007]. A comparison based on numerical experiments demon-
strates the superiority of our pre-image methods using a careful normalization
in a centered feature space.

Let {x1, · · · ,xN} = X be a set of training data in the input space X .
Kernel PCA computes the principal components of mapped features in the
feature space Y . The mapping can be explicitly computed by the eigen-
decomposition of a kernel matrix deduced from the adjacency matrix W. The
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coefficients of the adjacency matrix W are a measure of similarity between
samples. Typically, the kernel function w(., .) is a decreasing function of the
distance dX between training points xi and xj.

Here, we focus on the Gaussian kernel. The Gaussian kernel has the
important property of implicitly mapping the training points onto the unit
sphere of Y , since ‖Ψ(xi)‖2 = 〈Ψ(xi),Ψ(xi)〉H = Wii = 1. This im-
portant normalization property has been extensively used by Arias and
coworkers [Arias 2007] to improve the “accuracy” of previous pre-image meth-
ods [Dambreville 2006, Kwok 2004, Mika 1999]. Furthermore, we state the
Kernel PCA methodology in centered space and shows that a finer degree of
normalization can be achieved by considering the geometry of the mapped
features.

Let Ψ̄ = 1
N

∑
xk∈Γ Ψ(xk) and ΨC denote the centered mapping, i.e.

ΨC(xi) = Ψ(xi) − Ψ̄. The mapping ΨC can be computed by the eigen-
decomposition of a centered kernel WC [Schölkopf 1999]:

WC = HWH = ΨCΛC(ΨC)
T

= ΨC
√

ΛC(ΨC
√

ΛC)
T
,

where H is the centering matrix H = IdN − 1
N
1N1

T
N and ΛC =

diag{λC1 , · · · , λCN} with λC1 ≥ · · · ≥ λCN−1 > λCN = 0. We denote Λ̂ =

diag{λC1 , · · · , λCN−1} and Ψ̂ = (ΨC
1 , · · · ,ΨC

N−1), the mapping is obtained as:

ΨC : X → RN−1, xi 7→
√

Λ̂Ψ̂TeCi . (4.9)

The canonical basis {eC
1 , · · · , eC

N−1} of RN−1, defined formally by eCk =
1√
λCk

∑
xi∈Γ ΨC

k (xi)Ψ
C(xi), captures the variability of the point cloud of train-

ing samples. Projection of a new test point x ∈ X onto the kth-canonical
vector eCk in the feature space can be shown to be:

βk(x) =
〈
eCk ,Ψ

C(x)
〉

= (eCk )T Λ̂−
1
2 Ψ̂TpCx , (4.10)

where pCx (xj) = H(px − 1
N

W1N)(x,xj). (4.11)

pCx (xj) is the extended mapping in centered feature space computed by
centering the kernel vector px = [w(x,x1), . . . , w(x,xN)]T . This way
of extending embedding coordinates to new test points has been used
implicitly[Dambreville 2006, Kwok 2004, Mika 1999] or explicitly[Arias 2007]
in kernel methods[Ham 2003]. Projecting a new test point x ∈ X onto the
subspace spanned by the first dC vectors {eC1 , · · · , eCdC} (i.e. PdC (ΨC(s)) =∑

1≤k≤dC βk(x)eCk ) does not require the explicit computation of the map-
ping ΨC(x) since equation 4.10 can only be written in terms of the kernel.
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Working in a centered feature space, some important (often mistakenly ig-

nored) comments follow. We show that the fundamental property of the
mapped input points ‖Ψ(xi)‖2 = w(xi,xi) = 1 can be greatly improved in
a centered feature space. To do so, we define the mean in feature space
Ψ̄C(∈ RN−1) = 1

N
(ΛC)( 1

2
)(ΨC)THW1N and consider some properties of the

feature points mapped under:

Ψ̃C : X → RN−1,x 7→ Ψ̄C + ΨC(x). (4.12)

Under this mapping, the training samples verify:
〈

Ψ̃C(xi), Ψ̃
C(xj)

〉
=

w(xi,xj) − Ψ̄C
N , with 0 ≤ Ψ̄C

N ≤ 1. The adjacency matrix W therefore gives
(up to an additional factor (Ψ̄C

N)2 the inner product between two points in
the feature space under the mapping Ψ̃C . The constant Ψ̄C

N has a simple
geometric interpretation. In the feature space, the N non-centered training
points, which belong to the unit sphere, define an affine space that is iso-
morphic to RN−1. This affine space, spanned by the vectors {eC1 , · · · , eCN−1},
is at distance Ψ̄C

N from the origin 0. Consequently, feature points mapped
under Ψ̃C : s 7→ Ψ̄C + ΨC(s) all belong to a hypersphere of RN−1 of radius
rN =

√
1− Ψ̄C2

N , i.e. SN−1(0, rN). This implies that, for all training sample
xi ∈ X, we have ‖Ψ̃C(xi)‖ = rN . This normalization property of training
samples is stronger than the usual property ‖Ψ(xi)‖ = 1 and will prove im-
portant in the next section1. In particular, this allows us to rephrase some
pre-image methods, such as[Arias 2007], in a centered feature space, leading
to better results (section 5.4). Finally, we note that the mapping Ψ can be
deduced from ΨC by Ψ : X → RN ,x 7→ (Ψ̃C(x)T , Ψ̄C

N)T .

4.3.1 Pre-image in Kernel PCA

Given a point in the feature space Υ, the pre-image problem consists in finding
a point x ∈ X in the input space such that Ψ(x) = Υ, i.e. the pre-image of
Υ. Previous methods [Arias 2007, Dambreville 2006, Kwok 2004, Mika 1999]
propose certain optimality criteria to solve this problem. Although most of
those are based on the property ‖Ψ(xi)‖2 = 1, significant improvement can
be attained by considering that the mapped feature points Ψ̃C(xi) belong to
the hypersphere SN−1(0, rN) (or equivalently stated that ‖Ψ̃C(xi)‖ = rN).
In particular, we insist on the fact that the popular normalization Ψ(x)

‖Ψ(x)‖ is

not equivalent to the normalization Ψ̃C(x)

‖Ψ̃C(x)‖ . In more detail, note that after

1Note that to compute the radius value rN (or, equivalently, the distance Ψ̄C
N ), it is

sufficient to compute ‖Ψ̃C(xi)‖ for only one of the training samples xi ∈ Γ.
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Figure 4.7: Digit images corrupted by additive Gaussian noise (from top

to bottom, σ = 0.25, 0.45, 0.65). The different rows respectively represent:

the original digits and corrupted digits; different reconstruction methods:

[Dambreville 2006] ; [Dambreville 2006] with normalization ; [Kwok 2004] ;

[Kwok 2004] with normalization.
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normalization by the former criterion, a feature point does not any longer
belong to the affine space defined by the N -training points. This behavior
can also be seen in Figure 4.6b), which is the two dimensional visualization of
the affine subspace(red circle) in Figure 4.6a). Figure 4.6a) shows the sphere S
and the layout of feature points on S. The extended mapping of a new input
point does not lie on the sphere(visualized as a purple point). As can be
clearly seen the normalization as proposed in [Arias 2007] projects the feature
point(purple) onto the sphere(white). But the projected point does not lie in
the span. This is clearly problematic as the principal modes of variations span
only this affine space. The later normalization is the correct one and should
be advantageously used. Therefore, we capitalize on our careful analysis of
KPCA and define the different optimality criteria in centered feature space:

Distance:x̂ = arg minz∈X ‖Ψ̃C(z)− Υ̃C‖2, (4.13)

Collinearity:x̂ = arg maxz∈X

〈
Ψ̃C(z)

‖Ψ̃C(z)‖ ,
Υ̃C

‖Υ̃C‖

〉
, (4.14)

where Υ̃C = Ψ̄C + ΥC . Recently, Arias and coworkers[Arias 2007] have shown
the connections between the out-of-sample and the pre-image problems and
proposed a normalized optimality criterion addressing the important lack of
normalization in kernel methods:

s = arg min
z∈χ

‖Ψ̃C(z)− Ῡ‖2 with Ῡ = rN
Υ̃C

‖Υ̃C‖
. (4.15)

Instead of directly solving the pre-image in equation 4.15, they first esti-
mate the optimal kernel vector as a standard least-squares problem pCΥ =

Ψ̂
√

Λ̂(Ῡ−Ψ̄C) and then use previous methods[Dambreville 2006, Kwok 2004]
to estimate the optimal pre-image.

4.3.2 Application in image denoising

In order to validate the proposed algorithm, we run experiments on real world
data. We test our pre-image algorithm on the denoising of noisy images and
compare our approach to previous methods. The computation of Kernel PCA
is done using the Gaussian kernel exp (−d2

X (xi,xj)/2σ
2) where σ is the median

over all distances between points[Arias 2007].
To test the performance of our approach on the task of image denoising,

we apply the algorithm on the USPS dataset of handwritten digits2. We
show that our normalization method improves two recent state-of-the-art al-
gorithms [Dambreville 2006], [Kwok 2004]. Therefore, we form two training

2The USPS dataset is available from http://www.kernel-machines.org.
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sets composed of randomly selected samples (60 and 200 respectively) for each
of the ten digits. The test set is composed of 60 images randomly selected and
corrupted by some additive Gaussian noise at different noise levels. The pro-
cess of denoising simply amounts to estimating the pre-images of the feature
vectors given by the Nyström extension of the noisy samples. In the case of
Kernel PCA, we use the first dC = 8 eigenvectors {eC1 , · · · , eCdC} to compute
projections in feature space.

σ2 [Dambreville 2006] [Dambreville 2006] [Kwok 2004] [Kwok 2004]

improved improved

0.25 10.39 11.71 15.88 16.18

0.45 10.22 12.54 15.80 16.35

0.65 9.95 12.72 15.54 16.32

0.85 9.52 12.58 15.31 16.28

0.25 12.11 12.14 15.83 15.89

0.45 10.22 12.54 15.80 16.35

0.65 9.95 12.72 15.54 16.32

0.85 9,24 12.59 15.31 16.28

Table 4.1: Average PSNR (in dB) of the denoised images corrupted by different

noise level. Training set is composed of 60 samples (first 4 rows) and 200

samples (last 4 rows). The first and third column show the denoising results

without and the second and last columns with the normalization we proposed.

Figure 4.7 displays some of the computed pre-images using different meth-
ods. Table 4.3 shows a quantitative comparison between different methods
based on the pixel-signal-to-noise ratio(PSNR). Our normalisation method
visually and quantitatively improves both pre-image methods. The results
confirm that the new normalisation criterion in centered features space (sec-
ond and fourth column) yields better results than previous pre-image methods
(first and third column).
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Figure 4.8: Digit images corrupted by additive Gaussian noise (from left to

right, σ2 = 0.25, 0.45, 0.65, 0.85). The different rows respectively represent,

from top to bottom: the original digits; the corrupted digits; denoising with

[Dambreville 2006] ; with [Dambreville 2006]+[Arias 2007] ; with [Kwok 2004]

; with [Kwok 2004]+[Arias 2007] ; with [Carreira-Perpiñan 2007]; with our

Karcher mean based method. See table 4.3 for quantified results
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4.4 Pre-Image as Karcher means

4.4.1 Related work

Statistical methods for shape processing are very common in computer vi-
sion. A seminal work in this direction was published by Leventon et.al.
[Leventon 2000] adding statistical knowledge into energy based segmentation
methods. Their method captures the main modes of variation by perform-
ing a PCA on the set of shapes. With the apparition of non-linear methods,
Dambreville et.al [Dambreville 2006] developed a method for shape denoising
based on Kernel PCA. So did Kwok et.al. [Kwok 2004] in the context of im-
age denoising. Both methods compute a projection of the noisy datum onto
a low dimensional space. In [Lu 2008, Carreira-Perpiñan 2007] the authors
propose another kernel method for data denoising, the so called Laplacian
Eigenmaps Latent Variable Model (LELVM), a probabilistic method. This
model provides a dimensionality reduction and reconstruction mapping based
on linear combinations of input samples. LELVM performs well on motion
capture data but fails on complex shapes (see Fig. 4.8). Additionally, we would
like to mention the work of Pennec [Pennec 2006] and Fletcher [Davis 2007]
modeling the manifold of shapes as a Riemannian manifold and the mean of
such shapes as a Karcher mean [Karcher 1977]. Their methodology is used in
the context of computational anatomy to solve the average template match-
ing problem. Closer to our work is the algorithm proposed by Etyngier et.
al. [Etyngier 2007b]. They use diffusion maps as a statistical framework for
non linear shape priors in segmentation. They augment an energy functional
by a shape prior term. Contrary to us, they do not compute a denoised shape
but propose an additional force toward a rough estimate of it.

4.4.2 Learning a set of shapes

Let Γ = {s1 · · · sN} be N independent random points of a d-dimensional mani-
fold X locally sampled under a certain density qX (s) (d << N). The manifold
M is assumed to be a smooth finite-dimensional sub-manifold embedded in
a (potentially infinite-dimensional) space S. The density qM(s) is unknown
and might not be uniform. In this work, we consider more general spaces than
the traditional Euclidean space Rn and only assume that the input space S is
equipped with a distance dS .

Also note that methods like LLE or Laplacian Eigenmaps do not provide
an explicit metric which is crucial for the contribution in this thesis. We now
tackle the problem of pre-image computation using diffusion maps.
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We push the manifold interpretation and define the pre-image of Υ ∈ RN

as the point s = Ψ−1
|X (Υ) in the manifold X such that Ψ(s) = Υ. Although

diffusion maps extract the global geometry of the training set and define a
robust notion of proximity, they cannot permit the estimation of the manifold
between training samples, i.e. the local geometry of the manifold is not pro-
vided. Following [Etyngier 2007a], we propose to approximate the manifold
as the set of Karcher means [Karcher 1977] interpolating between correctly
chosen subsets of d + 1 sample points, d being the fixed dimension reduction
parameter. Usually it is chosen by observing the eigenvalues of the eigen-
vectors. As mentioned in section 3.2.6 only a few eigenvectors are needed to
properly approximate the diffusion distance. And the parameter d is exactly
the number of eigenvectors retained. From a dimensionality reduction point
of view, this parameter corresponds to the degree of freedom in the data set
but cannot be computed automatically and therefore must be guessed. In
[Etyngier 2007a], these subsets are the Delaunay simplices of a d-dimensional
Delaunay triangulation of the sample points. In practice, this limits d to small
integer values. Here, we simply exploit the Euclidean nature of the feature
space: for a given Υ, we choose the interpolating subset as its d + 1 near-
est neighbors with respect to the diffusion distance D. We then define the
pre-image s = Ψ−1

|X (Υ) as a Karcher mean that minimizes the mean-squared
criterion:

s = arg min
z∈S

‖Ψ(z)−Υ‖2 (4.16)

4.4.3 Shape interpolation as Karcher mean

Given a set of neighboring points N = {s1, · · · , sd+1} (i.e. neigh-
boring for the diffusion distance D), we assume that the man-
ifold X can be locally described (i.e. between neighboring sam-
ples) by a set of weighted-mean samples {sΘ} that verifies:

sΘ = arg min
z∈S

∑
1≤i≤d+1

θidS(z, si)
2, (4.17)

where dS is the distance in the input space and
(
θi ≥ 0,

∑d+1
i=1 θi = 1

)
. The

coefficients Θ = {θ1, . . . , θd+1} are the barycentric coefficients of the
point sΘ with respect to its neighbors N in S. Proposed by Charpiat el
al.[Charpiat 2005], this model has proven to give natural shape interpolations,
compared to linear approximations. One classical choice is the area of the
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symmetric difference between the regions bounded by the two shapes:

dSD(s1, s2) =

(
1

2

∫
(χΩ1(x)− χΩ2(x))2dx

) 1
2

. (4.18)

This distance was recently advocated by Solem in [Solem 2006] to build
geodesic paths between shapes. But the drawback is that this distance yields
no unique geodesics [Serra 1998](Appendix A). Another definition has been
proposed [Leventon 2000, Rousson 2002, Charpiat 2005], based on the rep-
resentation of a curve in the plane, of a surface in 3D space, by its signed
distance function.In this context, the distance between two shapes can be de-
fined as the L2-norm or the SobolevW 1,2-norm of the difference between their
signed distance functions. Let us recall that W 1,2(Ω) is the space of square
integrable functions over Ω with square integrable derivatives:

dL2(s1, s2) = ‖Ds1 − Ds2‖L2 ,

d1,2
W (s1, s2) = ‖Ds1 − Ds2‖L2 + ‖∇Ds1 −∇Ds2‖L2

where Dsi denotes the signed distance function of shape si (i = 1, 2), and
∇Dsi its gradient(c.f. section).

4.4.4 Pre-Image and manifold interpolation

We propose to define the pre-image of a target point Υ in the feature space,
as the point sΘ that minimizes the energy EΨ(sΘ) = ‖Ψ(sΘ)−Υ‖2, sΘ being
expressed as a Karcher mean for the neighborhood N made of the d+1 samples
of X which embedding are the d+1-closest neighbors of Υ in the feature space
equipped with D:

Ψ−1
|M(Υ) = arg min

Θ
‖Ψ(sΘ)−Υ‖2, (4.19)

with N ⊂ Γ, N = {d+ 1 closest neighbors of Υ in the feature space}(4.20)
When the input space is some Euclidean space Rn with its traditional L2-
norm, this indeed amounts to assuming that the manifold X is piecewise-linear
(i.e. linearly interpolated between neighboring training samples). For shapes,
we will see that this yields natural pre-images. By simple extension, we
define the projection of any new test sample s on the manifold X by
ΠX (s) = Ψ−1

|X (Ψ(s)).
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4.4.5 Implementation issues

The pre-image Ψ−1
|M(Υ) is computed by gradient descent. Instead of optimizing

over Θ, we use a descent over sΘ itself (equation 4.19), constraining it to
remain a Karcher mean (equation 4.17). This boils down to projecting the
deformation field ∇sEψ onto the tangent space TsΘX of X at point sΘ. Note
that to compute this tangent space, we are implicitly assuming that the space
X has a manifold structure, in particular that the tangent space TsΘX of X
at location sΘ (i.e. the space of local deformations around sΘ) is equipped
with an inner product that we denote 〈.|.〉X .

The optimality condition of equation 4.17 is:

∀~β ∈ TsΘX ,
d+1∑
i=1

θidi〈∇sdi|~β〉X = 0,

where we denote N = {s1, ..., sd + 1} and di = dS(sΘ, si). In order to recover
the tangent space TsΘM at sΘ, one needs to relate the d-independent modes of
variations of the coefficient Θ (remember that

∑d+1
i=1 θi = 1) with local defor-

mation fields ~dsΘ ∈ TsΘS. To a small variation of the barycentric coefficients
Θ→ Θ + ~dΘ, corresponds a small deformation of the sample sΘ → sΘ + ~dsΘ.
Differentiating the optimality condition with respect to Θ and sΘ provides the
relation between ~dΘ and ~dsΘ (see Appendix A for more detail). For example,
when the input space is taken to be the Euclidean space, i.e. S = Rn, we
obviously obtain ~dsΘ =

∑d+1
1 dθisi. Remembering

∑d+1
1 dθi = 0 and fixing

the dθi appropriately, we can recover TsΘX . Therefore we optimize for sΘ

without explicitly computing Θ. The gradient descent generates a family of
samples s : τ ∈ R+ 7→ s(τ) ∈ X such that

s(0) = s0,
ds

dτ
= −~vX (sτ ),

with s0 ∈ N (in practice, the nearest neighbor of Υ). The velocity field
~vX (sτ ) is the orthogonal projection of the deformation field ∇sτEΨ = (Ψ(sτ )−
Υ)TΛΨT∇sτpsτ onto the tangent space TsτX . Here Λ is a diagonal matrix
of eigenvalues and Ψ are the corresponding eigenvectors. Note that before
projecting onto TsτX we first orthogonalize the tangent space by using Gram-
Schmidt. In the case of the L2-norm the Θ’s can be easily recovered. When
using a different distance function such as the symmetric difference or the
Sobolev W 1,2-norm, one needs to additionally solve a system of linear equa-
tions in each step of the gradient descent (Appendix A).
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Figure 4.9: Synthetic sample of 200 articulated and elongated shapes. From

left to right: (a) a subset of the sample. (b) triangulated two-dimensional em-

bedding computed using diffusion maps and a gradient descent from an initial

shape to a target one, without (red dots) and with (purple dots) remaining

on the interpolated manifold. (c) Some shapes of the resulting evolution (left

column: without projection, right column: with projection.

4.4.6 Results

In order to validate the proposed method, we run several experiments on real
and synthetic data. First, we test the Karcher mean interpolation with the
reconstruction problem of occluded 3D medical shapes [Dambreville 2006]. In
a second experiment we validate the purpose of the projection of the gra-
dient onto the tangent space. Finally, a third experiment demonstrates the
superiority of our method for a standard denoising problem on images.

Remaining on the manifold

To validate both the Karcher mean modeling of the manifold and our pro-
jecting constraint (section 4.4.5), we generate a set of 200 synthetic shapes
parameterized by an articulation angle and a scaling parameter (Fig. 4.9a).
The corresponding embeddings are shown Fig. 4.9b. Choosing two distant
shapes A and B, we compute a path s(τ) from A to B by means of a gradient
descent starting from s(0) = A and minimizing dS(s(τ), B). Fig. 4.9c and
4.9b show in red the intermediate shapes and the corresponding embeddings.
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Figure 4.10: Interpolation using Karcher means for 39 three-dimensional sam-

ple shapes. From left to right: a) a new shape not in the given sample b) the

same shape with an occlusion c) the 3 nearest neighbors of the corrupted

shape according to the diffusion distance (in red, green and blue) d) the orig-

inal shape (in yellow) and our interpolation (in red). See text for quantitative

results.

In purple the same path is shown when projecting the gradient in order to
remain on the manifold. Observe in that case, how the intermediate shapes
look more like the original samples. Note also that when remaining on M,
the interpolating path is almost a straight line with respect to the diffusion
distance.

Projection and manifold as Karcher means

Here we test the validity of using Karcher means as a manifold interpo-
lation model. We consider the space of two-dimensional surfaces embedded
in R3. For such a general space, many different definitions of the distance
between two shapes have been proposed in the computer vision literature but
there is no agreement on the correct way to measure shape similarity. In this
work, we represent a surface si in the Euclidean embedding space R3 by its
signed distance function Dsi . In this context, we define the distance between
two shapes to be the L2-norm of the difference between their signed distance
functions [Leventon 2000]:

d2
S(s1, s2) = ||Ds1 − Ds2||2L2

Note that, in order to define a distance between shapes, which is invari-
ant to rigid displacements (e.g.rotations and translations), we first align the
shapes using their principal moments before computing distances. Note also
that the proposed method is obviously not limited to a specific choice of
distance [Charpiat 2005, Etyngier 2007b]. We use a dataset of 39 ventricles
nuclei extracted from Magnetic Resonance Image (MRI). We learn a random
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subset of 30 shapes and corrupt the nine remaining shapes by an occlusion
(Fig. 4.10a,b). In order to recover the original shapes we project, with our
method, the shapes onto the shape manifold. We then compare the reconstruc-
tion results with the nearest neighbor, the mean of the d+1 nearest neighbors
and the method of Dambreville [Dambreville 2006]. The parameters of this
experiment are d = 2. In Figure 4.10-d one example of a reconstructed shape
(red) is obtained from the d+ 1 nearest neighbors of s• (Fig. 4.10c). In order
to quantitatively evaluate the projection, we define the reconstruction error
as e(s) = dS(s◦, s)/σ, where s◦ is the original shape and s is the reconstructed
shape. The occluded shape has an error of e(s•) = 4.35, while the nearest-
neighbor has an error of 1.81. In Table 4.2 we see that our method is superior
to the one proposed by Dambreville [Dambreville 2006].

Avg. err occluded shapes Nearest neighbors(NN) Mean of NN

4.67 1.81 1.96

[Dambreville 2006] Our method

1.1 0.58

Table 4.2: Average reconstruction error for a set of 9 noisy shapes

Application: denoising of Digits

To test the performance of our approach on the task of image denois-
ing, we apply the algorithm on the USPS dataset of handwritten digits3.
In a first experiment, we compare our method to five state-of-the-art al-
gorithms [Dambreville 2006], [Dambreville 2006]+[Arias 2007], [Kwok 2004],
[Kwok 2004]+[Arias 2007] and [Carreira-Perpiñan 2007]. For each of the ten
digits, we form two training sets composed of randomly selected samples (60
and 200 respectively). The test set is composed of 40 images randomly se-
lected and corrupted by some additive Gaussian noise at different noise levels.
The process of denoising simply amounts to estimating the pre-images of the
feature vectors given by the Nyström extension of the noisy samples. For all
the methods, we take d = 8 for the reduced dimension (number of eigenvectors
for the kernel-PCA based methods). Table 4.3 shows a quantitative compar-
ison based on the pixel-signal-to-noise ratio (PSNR). Our method visually
(Fig. 4.8) and quantitatively outperforms other approaches. Interestingly, it

3The USPS dataset is available from http://www.kernel-machines.org.
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is less sensitive to noise than other ones and yields good results even under
heavy noise.
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4.5 Discussion

Kernal PCA

First, we focused on the pre-image problem in kernel methods such as Kernel
PCA thus elucidating the issue of correctly normalizing in centered feature
space. A geometric interpretation eased the understanding of operations in-
volved when working with centered data in feature space. As a consequence,
we deduced a new normalization criterion for previously proposed pre-image
methods. The theoretical results could be nicely verified at hand of computed
examples. Despite the strong results, we have to point out a weak point that
could be improved. In fact, we don’t compute the true mean of the N − 1-
dimensional hypersphere but rather the centroid of the points in feature space.
Therefore the computed centroid strongly depends on the distribution of the
points on the N − 1-dimensional hypersphere. For instance, one might con-
sider the case when all the points are mapped onto the upper part of the
sphere. In this case the empirical mean is a very bad approximation of the
true mean. Some exciting developments in the area of high dimensional ge-
ometry were the introduction of the idea of core sets [Agarwal 2005]. In this
context, Bâdoiu [Bâdoiu 2003] proposed an algorithm for the computation of
balls for core-sets. The idea is to approximate a set P of N points by selecting
a set of points S (not necessarily contained in P) of size O(1

ε
). S is called the

core-set. A property of the core-set is that the value of the optimal solution
on S is close (i.e within a 1 + ε factor) to the set P (in our case the true hy-
persphere). Applying the idea of core-sets to the estimation or approximation
of the true hypersphere is excpected to yield a better approximation to the
mean in feature space.

Diffusion maps

Second, we focused on the pre-image problem. We provided a solution to the
pre-image problem using diffusion maps. Following a manifold interpretation
of the training set, we define the pre-image as a Karcher mean interpolation
between neighboring samples with respect to the diffusion distance. Results
on real world data, such as 3D shapes and noisy 2D images, demonstrate the
superiority of our approach. In the continuation of this work several ideas
may be exploited. In the perspective of working on complex shape spaces,
our projection operator, defined from a manifold point-of-view, could be used
in different tasks, such as segmentation with shape priors [C. Florin 2007,
Rousson 2008, A. Besbes 2009, Essafi 2009], interpolation and reconstruction
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of shapes, and manifold denoising. Interestingly, our approach is able to deal
with manifolds of complex topology. In the context of manifold denoising
this property can be useful. So far, none of the pre-image problems were
tested when the training data itself contains heavy noise. We are currently
investigating these directions.
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5.1 Introduction

Matching of objects is an essential task in Computer Vision. Matching occurs
at several stages starting with matching of features or regions in images for the
purpose of camera calibration, panoramic image stitching or image warping to
name just a few. While this kind of matching is considered as low-level image
processing, the matching of shapes (for instance curves and surfaces) is impor-
tant for high-level Computer Vision such as recognition and semantization of
scenes. The term matching or also commonly known as the correspondence
problem often appears in connection with the term registration. And in fact
they are closely related as matching, e.g. finding a set of correspondences
on different objects, is the preliminary step for the registration, e.g. aligning
two shapes into a common reference frame. As a very important applica-
tion of matching between shapes we want to mention shape morphing, e.g.
the interpolation between two shapes [Kilian 2007, Bronstein 2007]. These
three tasks allow further processing such as recognition and classification of
shapes [Shilane 2004]. One possibility to measure similarity between shapes is
to measure the energy (or distortion) introduced by morphing one shape onto
another [Younes 2000, Younes 1998, Trouvé 2005, Bronstein 2006b]. There-
fore, if the interpolation between two shapes introduces a strong distor-
tion the shapes are likely to be dissimilar and vice versa. This measure is
then often used as distance which allows to use a distance based clustering
algorithm such as MDS (Section 3.1.2) and perform recognition of shapes
[Elad 2001]. Another application of registration is to solve the average tem-
plate matching [Hirani 2001] which is used to compute the mean shape of
a dataset of input shapes. Once the template or mean shape is computed
shapes from the original data set are morphed onto the mean shape. In
this way shapes can be characterized by the deformations around the mean
[Charpiat 2006a, Pennec 2006]. It is obvious that correspondence matching
and registration is an essential task for many Computer Vision applications.
In this work, we focus on the problem of correspondence matching be-
tween two surfaces which is a subproblem of the more general problem : the
registration problem.

Registration problem

The registration problem takes two or more surfaces as input. Each surface
provides a set of m primitives {P 1

1 , . . . , P
1
m} ∈ S1 and a set of n primitives

{P 2
1 , . . . , P

2
n} ∈ S2 corresponding to the second surface. We now seek a trans-

formation (aligning) of the two objects.
In pattern recognition an object is classified if there exists a transformation
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f aligning a sufficient large number of primitives between the two objects.
Therefore one seeks to maximize the number of correspondences between the
objects and the quality of these matches at the same time. In other words, the
computed transformation maps the corresponding primitives onto the same
coordinates in a common metric space.
We call correspondence function the map π associating to every index i of
a primitive P 1

i of the model S1 the index j = π(i) of a primitive P 2
j of the

model S2. We define the similarity measure α(x, x′) = 1 if dX(x, x′) ≤ ε. The
optimal correspondence map π̂ maximizes the following matching score:

π̂ = arg max
π

(
Σiα(f(P 1

i ), P 2
π(i))

)
.

Simultaneously, we want to optimize the quality of the correspondences
and find the transformation f aligning the correspondences in a common met-
ric space. The map f̂ is usually estimated in the least square sense with the
convention that dX(P 1

i , .) = 0 if P 1
i has no correspondence. The map f̂ is the

solution to the following optimization problem

f̂ = arg min
f

(
ΣidX(f ◦ xi, yπ(i))

)
,

which minimizes the mean error between the transformation of a primitive
and it’s correspondence. This is the most general setting for the registration
problem. And one can easily see that several issues have to be addressed
seperatly.
As one can see that whole problem of shape matching consists of simul-
taneously seeking in the space of correspondences and in the space of
transformations. In this work, we focus on the problem of correspondence
matching, fix some of the variables (c.f. section 5.3.1) and leave out the
estimation of the transformation.

In many cases, the task of correspondence matching and alignment (or
morphing, interpolation) are solved simultaneously using one algorithm. Such
algorithms are modeled most of the time to solve a specific problem and
therefore are not easily adaptable to different problems. Most methods can
devided into classes based on four criteria:

• shape representation

• type of transformation

• similarity measure

• algorithmic approach
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These are the most important characteristics of shape matching methods but
there are several other aspects such as partial [Gal 2006] and multiple shape
matching [Mitra 2004] which will not be considered here.
Due the vast literature produced over the last two decades, we will limit
the literature review to directly related work. Nevertheless, we want to
mention some interesting surveys on shape matching among which Lazarus
[Lazarus 1998] extensively reviews 3D matching with an emphasis on the
transformation between shapes. On the other hand, Alt [Alt 1996] re-
views geometric techniques based on the Hausdorf distance whereas Veltkamp
[Veltkamp ] gives an overview of several similarity measures for shape match-
ing. In the context of medical imaging, Audette et.al. [Audette 1999] provides
a quite general overview of matching methods. Finally, we want to mention
the paper of Planitz [Planitz 2005] providing a classification of popular meth-
ods in shape matching.

Shape Representations:

In general a surface S can be represented parametrically as the image of
a certain parameter domain or implicitly as the 0 level-set of a smooth func-
tion(c.f. section 4.2.2). The advantages and disadvantages were discussed
previously in section 4.2.2. We focus here on two-dimensional Riemannian
manifolds. Together with the geodesic distance function dS : S × S 7→ R+

induced by the Riemannian metric, we define the metric space (dS, S). Here
S is embedded in R3. In extrinsic coordinates, a point on the surface P ∈ S
is written as P = [x, y, z]T . In practice, the surface represented by a finite
dimensional set of sample consisting of N points. In addition, we assume that
the point set is triangulated so that it is manifold. This kind of representation
is called a triangle mesh. The triangle mesh is defined by a set of N points
{P1, . . . , PN} and a list of K triangles {(T11, T12, T13), . . . , (TK1, TK2, TK3)},
where each triangle is defined by a triplet of point indices Tik ∈ {1, . . . , N}.
At the end, we have a piecewise linear approximation of the original surface.
For the sake of completeness, we mention some further representations. For
instance, there are several smooth representations based on splines and nurbs.
These representations are very common in computer aided engineering. Other
parametric representations include : spherical harmonics, medial axis and
point based representation. Several more representation exist but are beyond
the scope of this work.

Transformations:

The mapping between two surfaces f : S1 7→ S2 cannot always be com-
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puted directly. Therefore it is common to compute a map f : X 7→ Y between
the embedding spaces of the shapes. This amounts to deform the embedding
space and therefore deform the shape so that the two shapes align. In this
context, the map is usually non-linear and solves the registration problem di-
rectly. The non-linear map is modeled either parametric or non-parametric.
Non parametric methods were sucessfuly applied in [Modersitzki 2004]. Para-
metric methods, for instance thin-plate splines [Bookstein 1989] and Bézier
splines [Khamene 2007, Rueckert 1999] have been applied in several registra-
tions tasks.
On the other hand, methods operating directly on the surfaces and not the
ambient space can be seperated into two classes: i) Inspired by differential
geometry (c.f section 2.3.1), a common intermediate parametrization of S1

and S2 is computed and the problem is formulated in the parameter domain.
For more details the reader is referred to [Zöckler 2000, Gu 2004, Litke 2005].
ii) The second type of approach computes a map directly between S1 and S2.
This methodology was applied in [Schreiner 2004, Bronstein 2006b].

Similarity Measures:

In order to optimize a function, we need a similarity measure. Several ge-
ometric similarity measures were proposed for the task of registration and
correspondence matching. Mostly, such measures evaluate the surfaces S1, S2

and their derivatives. Among these methods the most prominent is the ICP
algorithm [Zhang 1994, Besl 1992] evaluating only the measure between the
surfaces. Unfortunately, this measure is not invariant under transformation.
However, measures based on first and higher order geometric features are in-
variant. Therefore commonly used measures quantify metric distortions or
stretching. In [Litke 2005, Bronstein 2006b] the author computes the distor-
tion using geodesics on the surface. Higher order derivatives such as curvature
measures bending of a surface. Terzopoulus [Terzopoulos 1987] introduces an
energy measuring curvature deviation through the thin-shell energy. Basically
the idea is to look at the difference between first and second fundamental forms
at corresponding points. Closely related energies are the ones proposed by Gu
[Gu 2004] and Litke [Litke 2005].

Those basic properties are the ingredients for a whole family of geometric
registration algorithms. The common approach then, is to optimize this
similarity measure composed of a geometric measure and a regularization
term. The geometric term is supposed to align the two surfaces consistently
whereas the regularization term adds a certain regularity to the problem
in order to achieve proper convergence of the method. Beyond the purely
geometric approach, let us mention a few that combine geometry and
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statistical information.

Pennec et.al. [Pennec 2006] use statistics on the manifold of diffeomor-
phisms. The deformation between a set of shapes is driven by an elastic
energy with the statistical information on the diffeomorphisms. The major
drawback of this method is the requirement of a carefully selected training
set which reflects the geometric properties of the shape to match.

Lipman [Lipman 2009] proposes a Tensor voting scheme in the complex
parametrization plane of the surfaces. The votes output a fuzzy correspon-
dence matrix which is used to compute a permutation matrix which outputs
a set of correspondences with confidence values. The main advantage of this
algorithm is that it can find intrinsic point correspondences in the spirit of
[Bronstein 2006b] even under extreme deformation.

5.1.1 Our contributions

The goal of this chapter is to contribute a new model for finding a set of
correspondences between two non-rigid surfaces. The strategy proposed is
to combine two methods to find the best set of correspondence optimizing,
on one side a geometric energy and, on the other side forcing photometric
consistency between correspondences.
We propose to take the best of both worlds and design an extension of the
work of [Bronstein 2006b] by adding a photometric term to their energy. We
obtain a robust multi-resolution 3D surface mapping procedure that combines
photometric and geometric information(c.f. Figure 5.3). We experiment with
it for non-rigid surface correspondence between two surfaces and observed a
different time steps in a multiple cameras environment thus demonstrating its
superiority.
The main contributions are:

• registration non-rigid shapes

• handles large displacements

• handles locally elastic deformation

• handles symmetry ambiguities arising when working with distance func-
tion

The result of this work was published at the ACCV conference in Xi’AN,
China [Thorstensen 2009b].
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5.2 Background

The correspondence problem is one of the fundamental challenges in computer
vision. It might be in the context of optical flow, calibration or surface regis-
tration. For rigid surface and point cloud registration, Iterative Closest Point
(ICP) and its variants [Gelfand 2005] are the standard algorithms. Operating
on a purely geometric level, they rely on approximated differential quantities,
e.g. curvature, or more robust surface descriptors [Belongie 2002]. Recently,
several algorithms also address the problem of non rigid surface registration.
They can be mainly divided into two categories: geometric and photomet-
ric. Whereas geometric methods assume the known geometry, photometric
methods estimate structure and motion.

5.2.1 Geometric methods

We give a short description of the most important and directly related meth-
ods.

Rigid Iterated Closest Point (ICP)

The algorithm “Iterated Closest Point” was first introduced by Besl and
McKay [Besl 1992] and Zhang [Zhang 1994]. The idea is to alternate the op-
timization of the correspondences and the transformation. Starting with an
initial transformation f0 the following two steps are alternatively executed:

Correspondence matching:

Each primitive xi of the transformed model is matched against the closest
primitive yj such that:

πt(j) = arg min
j

d(ft ◦ xi, yi) or yπt(j) = NN(ft ◦ xi)

where NN stands for the nearest neighbor.

Registration:

The transformation is usually computed using a least square estimation,
especially when working with point clouds. The explicit solution has the ad-
vantage of being fast which is a desirable property when working with iterative
minimization techniques.
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b)a)

Figure 5.1: a) Initialization using solely geometric information is sensible to

symmetry in shapes. b) Color coded labeling of the meshes (see text) and

our photometric plus geometric initialization, in which ambiguities have been

solved.
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A major problem encountered when using a distance based matching criteria
is the lack of symmetry of the solution. Generally, one can encounter the
situation where yi = NN(xi) and xk = NN(yi) with i 6= k. To circumvent
this mathematical issue, Pennec and Ayache[Pennec 1998] proposed a sym-
metrized version where the points xi and yi = NN(xi) are matched against, if
and only if, NN(NN(xi)) = xi.
Under certain conditions, convergence of the algorithm to a local minimum
can be proven. The idea is to consider the two steps presented before as two
distinct minimizations of the same criteria with respect to two different pa-
rameter sets: the matching function (NN) and the transformation (ft). In
this setting Cohen [Cohen 1996] shows the convergence of the procedure. An
analysis of convergence under several minimization algorithms is provided in
[Pottmann 2006]. Further, he shows how to extend the concepts to the simul-
taneous registration of an arbitrary number of views.
This type of iterative minimization algorithm requires a termination criteria.
Contrary to the continuous case, we usually have properly separated primitives
(e.g.points) in computer vision and graphics. Therefore the set of transforma-
tions is discrete and each transformation is unique. Once the algorithm has
converged the correspondences don’t change from one iteration to the next
and the computed transformation remains the same. This behavior allows to
define a stopping criteria terminating the algorithm once the transformations
remain unchanged from one iteration to the next. Otherwise, if the algorithm
oscillates around a local minimum we can force the algorithm to step by limit-
ing the maximum number of iterations. Lastly we notice the sensitivity of ICP
with respect to the initial conditions. This behavior especially applies when
the two models only partially overlap. In this case, it is necessary to estimate
either a transformation or a set of correspondences very close to the expected
solution. Although ICP is widely used for rigid registration it applies often as
a verification step once the scenes are already registered and refine an earlier
registration method such as feature based registration or geometric hashing.

Non-rigid ICP

A non-rigid counterpart to ICP was introduced in [Amberg 2007]. Further, in
[Brown 2007], the authors propose a non rigid registration method by piece-
wise rigid registration and local thin plate spline alignment of range scan
images.
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Generalized Multidimensional Scaling

Elad et al. [Elad 2003] take an intrinsic point of view of the matching problem.
By isometrically embedding two surfaces into a common Euclidean space the
problem is reduced to the simpler of rigid matching between surfaces. In this
common Euclidean space, moment descriptors of the two surfaces are com-
puted. Based on the descriptors, a simple descriptor matching is applied to
find correspondences. Following this idea, Bronstein et al. [Bronstein 2006a]
take it one step further and solve the correspondence problem by embedding
the surface directly into another. The major drawback of this approach is the
difficulty to handle ambiguities like shape symmetries. As the method solely
relies on the distance function of the surface, the algorithm tends to wrongly
match pairs of symmetric points (see Figure 5.1). Also their approach is more
targeted towards classification problems.

5.2.2 Photometric methods

On the photometric side, non rigid registration is commonly known under
the name of scene flow. Vedula et al. [Vedula 2005] were the first to in-
troduce the concept of scene flow which is the 3D extension of 2D optical
flow. It is the simultaneous reconstruction of structure and motion between
time frames. Further work on scene flow was undertaken by other teams
[Furukawa 2008, Huguet 2007, Pons 2007a]. The first complete static dense
stereo was proposed by Keriven based on the local minimization of a func-
tional in the third dimension which is independent of the surface normals.
Pons et.al. [Pons 2007a] extend the work in [Keriven 1998] to solve the scene
flow problem which implicitly solves the correspondence problem between non
rigid surfaces. We therefore present the work of Keriven and Pons.
The model of Keriven considers a set of n cameras which project the observed
scene onto images Ii through the projections Πi : R3 7→ R2. Furthermore,
each camera has an associated indicator function χk computing the visible
points of S in the corresponding camera. Their model assumes that the visi-
bility does not change with respect to small perturbations which is of course
not valid but works well in practice. Then the objective function proposed in
[Keriven 1998] measures the photometric disparity of each projected point P
of the surface among all cameras it is visible from. This error is integrated
over the whole surface which yields a global scoring functional of the following
form:

E(S) =

∫
S

ρSds with ρ(P )S = ‖Ii ◦ Πi(P )− Ii ◦ Πi(P )‖1 .
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It is obvious that this model is too simplistic to be of use for real world 3d
multi-view reconstruction. Pixel by pixel comparison of intensity values bears
too little information and the risk of local minima is unavoidable. Therefore
Keriven suggests a better functional ρ based on normalized cross correlation.
The normalized cross correlation is differentiable and robust to illumination
changes and measures photometric similarity in a neighborhood around the
points p1, p2 in the images I1, I2:

E(S) =

∫
S

ρSds with ρ(P )S = (1−NCCσ(Ii ◦ Πi(P ), Ii ◦ Πi(P )),

with:

NCCσ(p1, P2 = νσ(p1, p2)/
√
νσ(p1)νσ(p2),

νσ(p1, p2) = Gσ ∗ (p1 − µσ(p1))(p2 − µσ(p2))/ωσ,

νσ(p1) = Gσ ∗ (p1 − µσ(p1))2/ωσ + τσ,

µσ(p1) = Gσ ∗ p1/ω
σ,

where NCCσ is the normalized cross correlation over a Gaussian window of
scale σ. ωσ(x)

∫
Ω
G(x − y)dy normalizes the quantities with respect to the

shape of the correlation window and τ is a small constant to avoid numerical
issues. Minimizing this energy not only modifies the position but also the sur-
face normal such that the projection of the surface best matches the images.
The extension of the previous work to 3D scene flow was proposed by Pons
[Pons 2007a]. Pons proposes a variational model to estimate shape and mo-
tion of a moving object by minimizing a global similarity measure. In order
to recover motion between time he not solely considers the reprojection er-
rors between images but also between images at different times. Therefore,
contrary to the work of Keriven, this methods minimizes the photoconsis-
tency measure with respect to the back-projected images (shape) and the
predicted images (motion) induced by a time dependent motion field. In
order to make the computation tractable, the energy is minimized in the im-
ages. Images are back-projected on the surface and reprojected on another
camera. Using projective texture maps from OpenGL, projective distortion
is handled automatically and allows a parallel implementation of the image
based similarity measure. Courchay [Courchay 2009] propose a novel method
to simultaneously and accurately estimate the 3D shape and 3D motion of a
dynamic scene from multiple-viewpoint calibrated videos. The motivation is
to formulate an energy exploiting spatio-temporal redundancy. The shape is
represented as an animated mesh with fixed connectivity capturing the motion
of the object in scene. Like in [Pons 2007a], the energy is minimized in the
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image which can be efficiently computed and fully handles projective distor-
tion and partial occlusions. In order to properly initialize variational meth-
ods, authors often use a conservative first estimate [Vu 2009, Goldlücke 2004,
Esteban 2008, Vlasic 2009] such as the visual hull. Computing the visual hull
of an object based on the images needs a foreground-background segmentation
of the images. I refer the interested reader to the rich literature on this topic
[Laurentini 1994, Matusik 2000, Lazebnik 2001, Franco 2003].

5.2.3 Where geometry meets photometry

Lastly, both approaches have their advantages. Several recent papers address
this problem. In [Starck 2005], Starck et al. provide a method to register
shapes from silhouettes. The method embeds the two surfaces into a com-
mon spherical domain. Using the analytic expression of geodesic distances on
the sphere allows one to minimize the geometric distance between correspon-
dences and the distances between the associated color feature. This work is
the most related to ours in the sense that they perform an isometric mapping
into a common metric space and use geodesic distances as regularization for
the appearance minimization. In order to be robust with respect to topolog-
ical changes, they then developed a matching algorithm based on a Markov
random field optimization [Starck 2007a]. A much more heuristic approach
is used by Ahmed et al. [Ahmed 2008]. A set of SIFT features is computed
which are then used for initialization of a refinement model. Lastly, the work
of Kiran et al. [Varanasi 2008] also makes use of SIFT. The 3D position of the
interest points are used to compute a sparse estimate of the motion field. By
applying a diffusion operator on the sparse motion field, they recover a dense
motion field.

Most of the algorithms presented so far use heuristics to recover corre-
spondences between two meshes. In this work we want to consider a more
rigorous model and propose a variational refinement method using ideas from
variational stereo [Keriven 1998, Courchay 2009, Pons 2007a] and geometric
embedding methods [Elad 2003, Bronstein 2006a]. In this way, we recover
temporal correspondences between meshes at different resolutions and inde-
pendently of the combinatorial configuration. Further, our method can han-
dle local elastic deformations so that the correspondence is consistent with
the observed images. Although the geometric embedding methods work well
on very smooth meshes, we cannot expect to work on meshes issued from
photometric stereo. For instance, we want to find correspondences between
meshes issued from an approximate surface reconstruction methods such as
in [Aganj 2009]. This is challenging since the reconstructed surfaces do not
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Figure 5.2: A visualization describing the problem configuration as in section

5.3.1.

have the properties required to work on a purely geometric level. To alleviate
this limitation, we exploit photometric information and improve the method
in [Bronstein 2006a]. The recovered set of correspondences are then used to
improve variational methods as in [Courchay 2009].

5.3 Variational correspondence optimization

using geometry and photometry

5.3.1 Problem formulation

Let S1 and S2 be the two surfaces to match. Each of them is observed by a
certain number of cameras. Although not required, we simplify notations and
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suppose that the number and positions of the cameras are constant, so that
both surfaces are observed by n cameras defined by their respective projections
Π1, . . .Πn. We denote by Iki the ith image of surface k.

Following [Bronstein 2006a], we use a Lagrangian point of view where a
set of m correspondences are constraint to move on the surface such that they
minimize a given energy. We denote (P 1

i , P
2
i ) such a correspondence where

P k
i ∈ Sk and Θ = {(P 1

i , P
2
i ), 1 ≤ i ≤ m} the set of all correspondences. m is

a fixed integer that can be estimated during initialization (see Section 5.3.6).
Our energy is a function of parameter Θ that writes:

Etot(Θ) = αEgeom(Θ) + βEphoto(Θ) (5.1)

The first term Egeom is the geometric part, taken from the work of Bronstein
et al. [Bronstein 2006b] while Ephoto is our photometric attachment. As usual,
α and β are positive constants that control the relative weights among these
terms. Minimizing energy (5.1) with respect to Θ will position the corre-
spondences on the mesh such that their projections in the images minimize
a photometric dissimilarity measure while geodesic distances on the surfaces
are respected.

5.3.2 Geometry

Bronstein et al. [Bronstein 2006a] propose to embed near-isometric surfaces
one into another by minimizing the following energy:

Egeom(Θ) =
∑
i>j

(dS1(P 1
i , P

1
j )− dS2(P 2

i , P
2
j ))2. (5.2)

where dSk is the geodesic distance on surface Sk. Again, this energy suffers
mainly from two weaknesses: (i) symmetries yield ambiguities and (ii) if the
object undergoes locally elastic deformations between shape S1 and shape S2,
geodesic distances are not preserved exactly. Note that this is also the case
when the surface are 3D reconstructions, since they are unavoidably noisy.

5.3.3 Photometry

For our image matching term Ephoto, we chose the normalized cross-correlation
to measure similarity between corresponding points. Its simplicity, robustness
in the presence of varying lighting conditions and differentiability make it a
common choice in variational methods. Each surface point is generally seen
from several cameras and one might be tempted to correlate multiple pairs
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v1

v2

v3

∇Egeom(Θi)

α∇Egeom + β∇Ephoto∇Ephoto

P = ΘTV

Figure 5.3: This visualization shows the interaction between the geometric and

the photometric gradient in a triangle composed by the vertices (v1, v2, v2).

The point P = ΘTV is given as a weighted combination of the vertices. P

travels along the red arrow which is calculated as a linear combination of the

geometric term ∇Egeom and the photometric term ∇Ephoto.
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of images. However, in our experiments, the number of cameras is relatively
small. Thus, using information from only one pair of cameras for each surface
point reveals to be enough.

As a first step, for each surface Sk, we associate to each point M ∈ Sk an
optimal image Ik

lk(M)
. Choice of labels lk might be guided by different criteria.

Here, we compute partitions of the surfaces following [Allène 2008]. This
method assigns each point smoothly to a label corresponding to the camera
from which it is best viewed. Using graph-cut optimization, the labeling is
obtained by minimizing a weighted sum of two terms which represents a good
trade off between resolution and color continuity, while respecting occlusions
(c.f. Figure 5.1b).

Let lk(i) be a short notation for lk(P k
i ), our photometric energy then writes:

Ephoto(Θ) =
m∑
i=1

g[NCC(I1
l1(i) ◦ Πl1(i), I

2
l2(i) ◦ Πl2(i))(P

1
i , P

2
i )] (5.3)

where g is a positive decreasing function and NCC(f 1, f 2)(M1,M2) denotes
the normalized cross-correlation of functions f 1 and f 2 between two related
neighborhoods of points M1 and M2.

Following the stereovision work of Keriven et al. [Keriven 1998], we ap-
proximate locally the surfaces by their tangent planes at points Mk. In their
case, only one surface is considered and M1 and M2 are the same point, with
the same tangent plane, thus the same neighborhood. Their correlation boils
down to correlating image regions related by a homography. In our case, we
suppose that the tangent plane to S1 at point M1 and the tangent plane to
S2 at M2 are related by a given two-dimensional isometry IM1,M2 sending
M1 to M2. Under this assumption, neighborhoods on the respective tan-
gent planes are related and the correlation NCC(f 1, f 2)(M1,M2) is correctly
defined. Moreover, it (and its derivatives) remains easy to compute since
corresponding image regions are still related by a homography. Introducing
the isometry IM1,M2 at each point pair (M1,M2) might be thought as prob-
lematic since one would be required to match the surfaces to know it, thus
yielding a chicken and egg problem. Practically, this is not the case. As usual,
we will minimize the energy by means of a gradient descent starting from a
coarse initialization (see Section 5.3.4). This approximate solution reveals to
be sufficient to obtain a robust IM1,M2 . We proceed in the following manner:
(i) each correspondence point P k

i define a geodesic distance map dSk(P
k
i , .)

on Sk; (ii) the gradients of these distance maps at a given point Mk define
local directions that should correspond from one surface to the other if M1

corresponds toM2; (iii) as a consequence, the best1 isometry from the tangent
1in the least squares sense
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a) b)

Figure 5.4: a) On the left, the front image of the first mesh, red dots being the

projections of some key points. On the right, the front image of the second

mesh, showing the reprojections of the corresponding points, in red obtained

with the method in [Bronstein 2006a] (initialized with our method), in green

obtained with our method. b) Shows the same correspondences directly on the

meshes with the same color code. The inaccuracies of [Bronstein 2006a], due

to local elastic deformations, are corrected by our photometric + geometric

criterion.
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plane at M1 to the one at M2 which sends both M1 to M2, and the distance
gradients directions at M1 to the ones at M2, is a good estimate of IM1,M2 .
Please note that computing distance maps represents no extra cost since it is
part of Egeom. Note also that the isometries I are actually needed only for
the pairs (P 1

i , P
2
i ) and that they will be refined during the gradient descent

iterations as the pairs move.

5.3.4 Optimization

5.3.5 Discretization

We suppose that the surfaces are both discretized as collections of triangles.
Following [Bronstein 2006a], points P k

i are taken as barycenters of triangle ver-
tices. Θ consists in a choice of triangles and corresponding barycentric coordi-
nates. From now on, we consider the notations Θi

Sk
and P i

Sk
synonymous. The

geodesic distances between all vertices of the mesh are computed using the Fast
Marching algorithm for triangular surfaces [Sethian 1999a, Kimmel 1998].
Geodesic distance is then interpolated like in [Bronstein 2006a] (note that
the problem is not only to interpolate the distance at a certain barycenter,
but also the distance to some barycenter).

For the photometric part of the energy, discretization is not a particular
issue: the labeling method [Allène 2008] is designed for triangle meshes, and
we use a standard normal interpolation method to estimate the tangent planes.

Minimizing the energy with respect to both the P 1
i ’s and the P 2

i ’s is obvi-
ously not well posed. Although different cases might apply, in our experiments
we have no further constraint on the choice of the points to be matched. Thus,
we fix points P 1

i to their initial position (see Section 5.3.6) and minimize the
energy with respect to the positions of points P 2

i .
As written above, we use a classical gradient descent. Properly minimizing

it is not trivial because the problem is non-convex. In order to cope with local
minima, we apply a multi resolution strategy, considering the problem at
several scales. Once a solution is found at a coarse scale, it is used to initialize
the problem at a finer scale. Our problem has two scalable dimensions. The
first one is the number of correspondences and the second is the scale of the
images. This leads to a two step multi resolution scheme. Starting with a small
number of correspondences, we iteratively increase the number of points by
interpolating the solution from the coarser level to the next finer level. This
scheme is adapted from [Bronstein 2006c]. Then, at each level, we perform
a gradient descent in a multi scale manner using a Gaussian pyramid of the
images.
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5.3.6 Initialization

We first have to initialize the correspondences. Copying [Bronstein 2006c], we
take advantage of the geodesic distance maps and use the farthest point sam-
pling (FPS) strategy [Moenning 2003] to get geometry-based feature points
on the surfaces. For near isometric surfaces we can expect the sampling to be
almost identically distributed on both surfaces S1 and S2 [Bronstein 2006a].
Taking photometry into account to avoid geometric ambiguities, we then re-
ject points that have an autocorrelation score below a given threshold, thus
corresponding to non textured regions. As in [Bronstein 2006c], points are
then associated using branch and bound optimization [Dasgupta 2007], yield-
ing m initial pairs. Here, to the initial geodesic distance based criterion, we
add a photometric one in order to cancel out geometric ambiguities. Because
no correlation is possible (at this stage, tangent planes cannot yet be related
by isometries), we use SIFT descriptor based similarity, being thus invariant to
scale and orientation. The results of the initialization of the correspondences
can be viewed in Figure 5.1. Note how geometric ambiguities are solved. The
parameteres (α, β) are set manually.

5.3.7 Gradient descent

Optimization is performed at all scales until convergence is reached, i.e. the
norm of the gradient goes below a given threshold. The expressions of the
gradients of the geometric and the photometric parts of our energy can be
found in [Bronstein 2006c] and [Keriven 1998] respectively. The interaction
between the photometric part and the geometric term is illustrated in Figure
5.3.

Remember that Θ consists of these coordinate but also of the choice of the
triangles to which the barycenters are related. As in [Bronstein 2006a], the
gradients are computed for a fixed choice. However, when a point P k

i gets out
of its related triangle, we force it to stop at the reached edge and assign it to
the triangle at the "other side" of this edge. Doing it this way, points travel
gently from one triangle to another if needed.

Gradient of geometric term

The geometric energy is taken to be the same as in [Bronstein 2006c]
and writes as Egeom(Θ1, . . . ,Θm) =

∑
i>j(dS1(P 1

i , P
1
j ) − dS2(P 2

i , P
2
j ))2. For

one fix Θi using the three point geodesic distance interpolation scheme
[Bronstein 2006c], the energy writes
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a)

c)

b)

d)

Figure 5.5: Results on a real-world dataset[Starck 2007b]. a) and c) show

the results obtained using the method in [Bronstein 2006a]. b) and d) are

obtained using our method.
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Egeom(Θi) = (dS1(P 1
i , P

1
j )−ΘT

i DS2(ti, tj)Θj)
2

= ΘT
i AiΘi + 2bTi Θi + ci

where DS2(ti, tj) is a matrix containing all distances from the vertices of
triangle ti to all vertices of triangle tj and

Ai = Σj 6=iDS2(ti, tj)ΘjΘ
T
jDS2(ti, tj)

T

bi = −Σj 6=idS1DS2(ti, tj)Θi

ci = Σj 6=id
2
S1(P 1

i , P
1
j ).

Taking the gradient with respect to Θi yields

∇Egeom(Θi) = AiΘi + bi.

Gradient of photometric term

The photometric term is taken to be the same as in the work of Keriven
et.al. [Keriven 1998, Pons 2007b]. We assume the tangent planes aligned as
explained in section 5.3.3. Then we fix all variables except Θi and compute
the derivative with respect to Θi :

Ephoto(Θi)

∂Θi

= ∂NCC︸ ︷︷ ︸
1×d

DI︸︷︷︸
d×2

DΠ︸︷︷︸
2×2

(Θi)

d can be either 1 or 3 depending on whether one works with color or grey im-
ages. Then the gradient first involves the derivative of NCC with respect to
the second argument since we keep fix the first argument. The exact compu-
tation of the expression can be found in [Pons 2007b]. DI involves a gradient
in the image and is approximated using numerical central finite differences
in the image. Finally, the linearization of the projection matrix is straight
forward. The coordinates (u, v) in image Ii are obtained by projection

u(Θ) =
a11ΘXT + a11ΘY T + a13ΘZT + q1

a31ΘXT + a32ΘY T + a33ΘZT + q3

v(Θ) =
a21ΘXT + a21ΘY T + a23ΘZT + q1

a31ΘXT + a32ΘY T + a33ΘZT + q3

.

q = [q1, q2, q3]T and Q = [Q1, Q2, Q3]T with Q.,i = [a.,1, a.,2, a.,3] is the cor-
responding coordinate transformation P 2

′
= QP 2 + q of the ith camera.

(X, Y, Z) are the x,y and z coordinates of the triangle vertices such that
X = [xi, x2, x3]T . The jacobian of Πi is then obtained by differentiating u
and v with respect to Θ.
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5.4 Results

In order to validate the proposed method, we run several experiments on real
and synthetic data. First, we test it on a synthetic dataset. In a second
experiment, we validate our algorithm on real images.

5.4.1 Validation

Our first experiment focuses on the validation of our energy by testing the
algorithm on a synthetic dataset (8 cameras) and comparing it to the result
of [Bronstein 2006a]. This experiment aims at justifying the photometric part
of the energy. The parameter α is set to 1.0 whereas β equals 8.0. We take 12

pairs of correspondences and a 3 level Gaussian pyramid. The advantages of
our initialization having already been demonstrated in Figure 5.1, we prefer
to launch the original method proposed by Bronstein et al. [Bronstein 2006a]
with our initialization. The red dots in the left image of Figure 5.4a are some
of the P 1

i projected on the front image of S1. The red dots in the right image
of Figure 5.4a are the projections of the corresponding P 2

i obtained after
running the optimization of [Bronstein 2006a]. The green dots correspond to
the result obtained with our combined photometric-geometric optimization.
One can clearly see, the green dots are consistent with the initial sampling in
the left image although the zone around the knee and shoulder exhibit elastic
deformation. Whereas the red dots in the right image ignore the image signal
and are pushed away by the local elastic deformations. Figure 5.4b shows the
same points on the meshes.

5.4.2 Real data

In order to see how our method performs, we ran several experiments on im-
age data courtesy of J. Starck2 [Starck 2007b], again with 8 cameras. In this
experiment the number of correspondences is 150 and the number of image
levels is set to 3. α and β are set to 0.9 and 1.5 respectively. The results are
depicted in Figure 5.5. Notice how the method of [Bronstein 2006a] fails to
solve the matching problem. Local elastic deformations are observed in both
cases (Figure 5.5a and 5.5c) and wrong matches occur because of symmetry.
Nevertheless, our method can handle the symmetries and local elastic defor-
mations as can be observed around the hair and the back in Figure 5.5b and
in the zones located on the skirt and the hair in Figure 5.5d.

2http://personal.ee.surrey.ac.uk/Personal/J.Starck/
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5.5 Discussion

We have described a variational framework for the correspondence problem of
non-rigid surfaces coming from multi-view reconstruction or from any setup
that provides images of the scene. By using photometric and geometric infor-
mation, our method improves the one by Bronstein et al. [Bronstein 2006a]
and allows to cope with elastic stretches and symmetries of the shape. Like
in the initial work, and contrary to usual photometric methods, we are not
limited to small deformations. Numerical experiments show the success of our
method. Our future work includes extending our framework to surfaces with
varying topology. A first step in this direction could be the use of more robust
embedding such as the one proposed in [Bronstein ]. Another improvement is
the use of second order information in the gradient descent which allows to
perform Newton steps. Finally, we notice that regularization is important in
low-textured image regions. Therefore we currently investigate the effect of
automatically setting the control weights as proposed in [Vu 2009].
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Chapter 6

Conclusion

6.1 Conclusion

In this thesis, we exploited recent machine learning algorithms designed to
compute isometric embeddings. Two cases were considered.

First, based on the diffusion maps methodology, we have proposed a
deformable model framework for shape denoising where shapes are modeled
as points in an infinite dimensional space. The major assumption of this
method was that our data approximately lies on a manifold. Using diffusion
maps, the dimensionality of the problem is reduced to the intrinsic dimension
of the data. We approximate the manifold by linear complexes and capture
the intrinsic geometry of the data. This provides a metric in the feature space
allowing us to perform a gradient descent. We demonstrated the strength
of our approach by applying these ideas in different experiments either with
synthetic or real data. We stress the fact that the proposed method is
general and is not necessarily restricted to specific shape representations. In
particular, the only requirement is a differentiable distance (and differentiable
kernel). We expect our approach to work on splines and other representations.

In the second part, we focused on the task of finding a set of correspon-
dences satisfying geometric and photometric constraints. This kind of corre-
spondence algorithm is especially well suited to the case of meshes output by
multi-view reconstruction methods. Our method is again based on an energy
measuring geometric (deviation from isometric deformation) and photometric
consistency (normalized cross-correlation) and an energy minimization pro-
cess. We tested the model on synthetic data as proof for the concept and
on real-world dynamic stereo data. Currently, we are assembling a complete
pipeline in the spirit of the standard 3D reconstruction pipeline for dynamic
multiview stereo reconstruction. The pipeline consists of three stages. First,
a global 4D reconstruction based on a quasi-dense point cloud is computed
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using the method in [Aganj 2009]. Using our method this is put into a 4D
mesh with fixed connectivity. Lastly, a global dense variational refinement is
applied on the 4D mesh using the method in [Courchay 2009]. The results
will be presented in a forthcoming paper.

Future Work

Of course, there is still room for improvement in many parts of this thesis. In
the first part, we are convinced that our interpolation methods can be used
in a number of computer vision problems, such as segmentation with a priori
knowledge [Etyngier 2007b], shape tracking, and also shape registration. But
a thorough experimental evaluation and modelization should be carried out
in order to see if such implementations are possible. In the second part of this
thesis our first results are promising and motivate further development of the
method. Especially scalability should be investigated. Further it would be
interesting to test the algorithm on several other datasets. This is currently
under investigation.

Some avenues for future research are pointed out in the following lists

Diffusion Maps

In the case of shape analysis using diffusion maps, we could

• Apply our framework to shape segmentation with shape priors.

• Experiment on manifold denoising.

• Experiment with different data such as 2D and 3D Splines for character
animation.

Isometric shape matching

• Compute the derivative with respect to the metric for isometric defor-
mation prior like in [Devir 2009].

• Investigate the extension of GMDS proposed in [Bronstein ] to cope with
topological changes.

• Achieve scale independency of the GMDS method.
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In the case of shape optimization with deformation prior, no work has ever
before considered exploiting intrinsic shape prior such as pairwise geodesic dis-
tance preservation. Such a prior could play an essential role when segmenting
tubular structures or calibrating cameras. Therefore it would be interesting
to define an intrinsic energy based on geodesics acting as a regularizer for
segmentation and other shape optimization problems (3D reconstruction).
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Appendix A

Computing TsΘX

A.1 Interpolation by projecting into the tan-

gent space

As a first step we compute the eigenvectors {Ψi} using Diffusion Maps. For
a given sampe s1 we compute the iso-embedding Υ of s1 using the Nyström
extension. We intialise the shape z as the nearest neighbor of Υ in the reduced
space. Now we want to warp shape z such that is has the same embedding as
Υ. This can be done by minimizing the diffusion distance

ŝ = arg min
s∈S

‖Ψ(s)− Υ︸︷︷︸
const

‖2. (A.1)

Minimizing this functional can be done by taking its gradient and per-
form a gradient descent. Since the only requirement to perform a gra-
dient descent w.r.t to the diffusion distance is the use of a differentiable
kernel[Etyngier 2007b]. It is obvious that a simple gradient descent doesn’t
generate proper intermediate shapes lying on the manifold. This observation
is due to the fact that the gradient does not respect the curved geometry of
the data. Our goal is to define an interpolation between shapes constrained
such that intermediate shapes lie on the manifold. Therefore, we introduce a
constraint which is expressed as Karcher mean:

E = arg min
s,θ

=
d+1∑

1

θid(s, si)
2

such that
∑

θi = 1 and θi ≥ 1

The first order optimality condition of the Karcher mean constraint must
satisfy the following equation
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∇|sE = 2
d+1∑

1

θid(s, si)
∂

∂s
d(s, si) = 0.

Hence any variation in s at s0 yields a deformation field which increases
our energy functional.
We are now looking for the differential equation which describes the motion
constrained to the manifold X in terms of the θi and the shape gradient.
More precisely, we want to estimate the tangent space TX at every point
on the manifold so that we can constrain the gradient flow to the manifold
by projection onto tangent space. We assume s ∈ X , then any variation of
the coefficient θi 7→ θi + dθi is related to a deformation field of the curve
s 7→ s + dβ. Using the Calculus of Variation, we want to minimize the
functional E(sθ) =

∫
Ω
F (s, θ)dx depending on s and θ and Ω is a certain

integration domain. We compute the derivative of E

dE

dε
|ε=0 =

E(sθ + εψ)− E(sθ)

ε
= 〈∇E,ψ〉 = 0

for all test functions ψ ∈ D (space D of test functions). Remembering the
coupling of θ and s, we have ∇E = ∂E

∂θ
+ ∂E

∂s
dβ.

Summary :

φ is the levelset representation of a shape s. Then the optimality condition
for any choice of distance di = d(φ, φi) =< φ, φi > is:

∀ψ
d+1∑

1

θidiDφdi(ψ) = 0.

For the dot product induced by the distance d, we have:

Dφdi(ψ) =< ∇φdi, ψ >,

which gives the following optimality condition:

d+1∑
1

θidi∇φdi = 0.

Differentiating this condition leads to:

0 =
d+1∑

1


dθidi∇φdi

+θi < ∇φdi, β > ∇φdi
+θidiHiβ

 ,
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which we can write as:

0 =
d+1∑

1

dθidi∇φdi +
d+1∑

1

θi(∇φdi.∇T
φdi + diHi)β.

In this formulation Hi is the Hessian matrix of the distance di: Hi = ∇φ∇φdi.
We can find a basis for the tangent space at location {θ1, . . . , θd+1} as long as

β 7→
d+1∑

1

θi(∇φdi.∇T
φdi + diHi)β

is invertible.

A.1.1 Symmetric Difference

In this section, we consider the symmmetric difference function

d(s1, s2) =
1

2

∫
(χΩ1 − χΩ2)2dx

as given in the paper of Solem. Its gradient writes as

∇f(x) = (
1

2
− χΩ0).

Proof: using the unit step function H : x ∈ R 7→ {0, 1} with H(x) = 1 iff
x ≥ 0, we have:

d(S1, S2) =
1

2

∫
(χΩ1 − χΩ2)2dx,

=
1

2

∫
(H(φ1(x))−H(φ2(x)))2dx,

= d(φ1, φ2)

We can express this distance as d(φ1, φ2) =
1
2

∫
H(φ1(x))(1− 2H(φ2(x)))dx+ f(φ2) (f(φ2) is not relevant for differ-

entiation with respect to φ1), which implies that:

Dφ1d(φ1, φ2)(ψ) = lims 7→0
d(φ1 + sψ, φ2)− d(φ1, φ2)

s

=
1

2

∫
ψ(x)(1− 2H(φ2(x)))δ(φ1(x))dx

= < ψ(x),
1

2
(1− 2H(φ2(x)))δ(φ1(x))︸ ︷︷ ︸

∇φ1
d(φ1,φ2)

> .
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This shows directly that the gradient (with respect to the image domaine φ1)
is (1

2
− H(φ2))δ(φ1), or equivalently with respect to the normal field to the

curve Γ1: (1
2
− χΩ2) since:

Dφ1d(φ1, φ2)(ψ) =
1

2

∫
Rn

ψ(x)

|ψ(x)|︸ ︷︷ ︸
β

(1− 2H(φ2(x))) δ(φ1(x))|ψ(x)|dx︸ ︷︷ ︸
dσ

=

∫
Γ

β(
1

2
− χΩ2)dσ,

= < β, (
1

2
− χΩ2) >Γ

with β = ψ
|ψ| the normal deformation to the curve. It is a result from geomet-

ric integration theory that the Euclidean measure on Γ can be expressed as
dσ = δ(φ1(x))|ψ(x)|dx. δ ∈ D(R) is the Driac distribution on the real line.
Precomposition of δ by φ is nothing then the pullback of δ by φ and indicates
a change of variable. So it follows that

|Γ| =
∫

Γ

|∇φ|δ(φ)dx =

∫
<d+1

|∇H(φ)|dx

The complete proof can be found in [Aubert 2006].

A.1.2 L2 distance

In this section we consider the L2 distance between two distance functions
φ1, φ2

d(φ1, φ2) =

∫
(φ1 − φ2)2dx

The gradient of d(φ1, φ2) computes as

lim
ε→0

=

∫
(φ1 + εψδ(φ1)− φ(x)idx)2 −

∫
(φ1(x)− φ2(x))2dx

ε

=

∫
(φ1 − φ2)2 − 2εψδ(φ1(x))(φ1(x)− φ2(x)) + ε2ψδ(φ1)− (φ1(x)− φ2(x))

ε

=
2εψδ(φ1)(φ1 − φ2) + (εψδ(φ1))2

ε
= 2ψδ(φ1)(φ1 − φi) valid for test functions ψ
= 2δ(φ1)(φ1 − φ2).

Therefore we have

Dφ1d(φ1, φ2) = 2δ(φ1)(φ1 − φ2).
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Gradient of the Diffusion maps :

∇sΨ(s)

B.1 Density independent kernel

Using the diffusion maps of Coifman[Coifman 2005], similarity between shapes
are defined via the diffusion distance of the Laplace-Beltrami Operator on the
manifold of shapes. Therefore minimizing the distance between shapes can be
done via the gradient of the diffusion distance. In the following, we review the
diffusion distance following the work of Coifman and show how to compute the
gradient. Let Γ = {s1, · · · , sN} ∈ X be N sample points of the d-dimensional
manifold X sampled under unknown density. From this sample points, we
build the adjacency matrix (Wij) between points, where connecting edges are
weighted with a positive decraesing function of the distances between shapes.
In our case we use

w(si, sj) = exp(−d2(si, sj)/2σ
2)

where σ is the median distance between all shapes. By normalizing the adja-
cency matrix

w̃(si, sj) =
w(si, sj)

q(si)q(sj)
with q(s) =

∑
w(s, y)

we overcome the problem of unknown density and contruct an ansisotropic
kernel (Pi,j) such that

p(si, sj) =
w̃(si, sj)

q̃(si)
with ˜q(s) =

∑
w̃(s, y).

Then the kernel Id − P is an density independent approxiamtion of the
Laplace Beltrami operator on X .
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B.1.1 Computing w̃(., .) and p(., .)

w̃(si, sj) =
w(si, sj)

q(si)q(sj)
with q(s) =

∑
w(s, y)

then p(., .) computes as

p(si, sj) =
w̃(si, sj)

q̃(si)

=

w(si,sj)

��q(si)q(sj)∑
b

w(si,sj)

(��q(si)q(b))

=
w(si, sj)∑

b
q(sj)

q(sb)
w(si, sj)

=
w(si, sj)∑

bKjbw(si, sb)
with Kjb =

∑
aw(sa, sb)∑
dw(sd, sb)

.

B.1.2 Derivative of the anisotropic kernel p(., .)

p(s, sj) =
w(s, sj)∑

bKjbw(s, sb)

∂

∂s
p(s, sj) =

1

(
∑

bKjbw(s, sb))
2

w′(s, sj)︸ ︷︷ ︸
*1

∑
b

Kjbw(s, sb)− w(s, sj)
∑
b

Kjbw
′(s, sb)︸ ︷︷ ︸

*


=

1

(
∑

bKjbw(s, sb))
2

∑
b 6=j

w′(s, sj)w(s, sb)−Kjbw(s, sb)w
′(s, sj)

We finally obtain the gradient of the embedding Ψ̂ with respect to s become

Ψ̂(s) = λ−1
k

∑
j

p(s, sj)Ψk(sj)

∇sΨ̂(s) = λ−1
k

∑
j

∇sp(s, sj)Ψk(sj).

B.2 Approximation of Heavyside function

Hα(x)


1
2
(1 + x

α
+ 1

π
sin(πx

α
)) if |x| ≤ α,

1 if x > α,
0 if x < −α,
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B.3 Approximation of Dirac function

δα(x)

{
1

2α
(1 + cos(πx

α
)) if |x| ≤ α,

0 if |x| ≥ α.
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Gradient of distance function

C.1 Gradient of the distance function on a tri-

angle mesh

Given a triange defined through three vertices v0, v1, v2. d0, d1, d2 are the corre-
sponding distances defined on each vertex computed using the Fast Marching
method for triangle meshes. Let e0, e1, e2 be the edges between the vertices
such that e0 = (v0 − v2)/ ‖v0 − v2‖ and e1 = (v1 − v2)/ ‖v1 − v2‖.. Then we
compute the gradient at a point in a local frame in [Peyré 2003]. The gradient
(gu, gv)

Tof the distance function U in directions (e0, e1) is(
〈∇U, e0〉
〈∇U, e1〉

)
=

(
(d0 − d2)/ ‖e0‖
(d1 − d2)/ ‖e1‖

)
=

(
gu
gv

)
.

We are searching for the gradient of the distance function which is defined as
∇U = dxe0 + dye1. This gives rise to the system(

〈e0, e0〉 〈e0, e1〉
〈e0, e1〉 〈e1, e1〉

)(
dx

dy

)
=

(
gu
gv

)
.

The solution (dx, dy)T is obtained by solving the previous system.
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