
HAL Id: pastel-00005864
https://pastel.hal.science/pastel-00005864

Submitted on 18 May 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Méthodologie de conception automatique pour
multiprocesseur sur puce hétérogène

Xinyu Li

To cite this version:
Xinyu Li. Méthodologie de conception automatique pour multiprocesseur sur puce hétérogène. do-
main_other. Université Paris Sud - Paris XI, 2009. Français. �NNT : �. �pastel-00005864�

https://pastel.hal.science/pastel-00005864
https://hal.archives-ouvertes.fr

N° D’ORDRE 9609

SPECIALITE : PHYSIQUE

Ecole Doctorale « Sciences et Technologies de l’Information des
Télécommunications et des Systèmes »

Présentée par : Mr. Xinyu LI

Sujet :

Méthodologie de Conception Automatique pour Multiprocesseur sur puce
Hétérogène

Soutenue le ……5 Nov. 2009……………..devant les membres du jury :

M. COLLETTE Thierry, Examinateur, Directeur de recherches, LIST CEA SACLAY, France

M. ERNST Rolf, Rapporteur, Professeur, Université de Braunschweig, Allemagne

M. GAUDIOT Jean-Luc, Examinateur, Professeur, Université de California, USA

M. HAMMAMI Omar, Co-directeur, Enseignant-chercheur, ENSTA, France

M. JERRAYA. Ahmed, Rapporteur, Directeur de recherches, CEA-LETI, MINATEC, France

M. MERIGOT Alain, Directeur, Professeur, Université Paris-Sud, Orsay, France

 - 2 -

 - 3 -

ACKNOWLEDGMENT

I would first like to extend my deepest gratitude and appreciation to my advisor Prof. Omar

Hammami at ENSTA ParisTech, for the confidence he has shown me and all his valuable

time to lead this thesis. I thank him also for all the technical discussions, for the valuable

advices he gave me and for everything he taught me during this thesis and in the preparation

of this manuscript. His guidance and instruction has played an invaluable part in both my

graduate studies and PhD Work.

I would also like to thank Prof. Alain Merigot, my advisor at IEF for all the support,

discussion and suggestion.

I am really honored to have Dr. A.A.Jerraya, CEA LETI and Prof. R.Ernst, IEEE Fellow, as

my Phd thesis reviewers. I am very grateful to them for their comments which greatly helped

me improve my manuscript.

I am really honored and grateful to have Prof. Gaudiot, IEEE Fellow and AAAS Fellow,

University of California, Irvine, for accepting being member of this Phd committee and for

presiding this Phd committee.

I am very grateful Dr. T.Collette CEA Saclay and Dr. Liu Dong (Intel Research Labs., China)

for being members of my PhD committee and I am thankful to them for providing me

valuable feedback on my research work.

It has been a pleasure to work with my colleagues at ENSTA ParisTech. I would specially like

to thank Zhoukun Wang, Guangye Tian and Mazen Khaddour for sharing their experiences in

all ups and downs during these three years.

I would like to thank EVE and Arteris companies for their excellent cooperation.

Almost last, but certainly not least, I would like to thank my entire family for the tremendous

love and support they have shown me during my entire life. I am thankful to them for

 - 4 -

teaching me the value of hard work and dedication. And finally I want to thank my wife Dong

Xin for her encourage and support during my PhD work.

 - 5 -

ABSTRACT

ITRS Semiconductor roadmap projects that hundreds of processors will be needed for

future generation multiprocessor system on chip (MPSOC) designs. Current research topics

contain modelling of multiprocessors and adequate levels of abstraction (TLM, RTL),

performance evaluation and design space exploration, verification and test trough simulation

or emulation. Design productivity is one of the most important challenges, which is a

relatively new and open research issue. We propose to improve design productivity by raising

IP reuse level to small scale multiprocessor (SSM) IP and by combining fast extension

techniques for system level design automation in the framework of multi-FPGA emulator.

In the thesis, different state-of-art NoC and MPSoC design methodologies are analyzed and

compared to better understand the design approaches and to overcome their shortcomings.

Then a fully automatic multi-objective design workflow is proposed for network on chip

(NoC) at TLM (Transaction Level Modeling) level. The timing and area criteria extracted

from RTL level are explored but not limited using the TLM NoC models of NoCexplorer, tool

from Arteris. A linear programming methodology is provided as a solution for the

organization and dimensioning of eFPGA reconfigurable area to maximize the efficiency of

network on chip mapping.

The main contribution is the automatic design flow for large scale MPSoC design based on

the reuse of SSM IP. Based on it, an automatic design flow is proposed for data parallel and

pipelined signal processing applications on multiprocessor with NoC, using cryptographic

application TDES (Triple Data Encryption Standard) as an example. High level synthesis tool

is used to generate hardware accelerators, which are added to explore the tradeoff in area-

performance while still privileging multiprocessor basis for the implementation. OCP-IP NoC

benchmarks are executed on the generated 48-core and 672-core multi-processor for

performance evaluation.

 All the work done in this thesis is the basis of “MPSOC explorer”, an ongoing industrial

project for large scale MPSoC design exploration supported by European Union and French

government.

 - 6 -

 - 7 -

Résumé

La feuille de route d'ITRS Semi-conducteur prévoit que des centaines de processeurs seront

nécessaires pour les futures générations du multiprocesseur (MPSoC). La modélisation des

multiprocesseurs, le niveau adéquat d'abstraction (TLM, RTL), l'évaluation de la performance

et l'exploration d'espace de conception, la vérification et la simulation ou l'émulation sont les

sujets actuels de recherche. L’efficacité de conception qui est l'un des défis les plus

importants, est un problème de recherche relativement nouveau et ouvert. Nous proposons

d'améliorer l’efficacité de conception en augmentant la taille d'IP SSM, et en combinant les

techniques d'extension rapide au niveau du système avec multi-FPGA émulateur.

Dans la thèse, avoir analysé et comparé les différentes méthodes pour la conception de NoC et

de MPSoC, nous proposons une procédure automatique et multi-objective pour NoC au

niveau TLM (Transaction Level Modeling). Les critères du timing et de surface du niveau

RTL sont explorés mais non limités avec des TLM modèles du NoC dans NoCexplorer. Une

méthodologie de la programmation linéaire est fournie comme solution au problème de

l'organisation et du dimensionnement de eFPGA reconfigurable pour maximiser l'efficacité du

NoC.

Notre contribution principale est la procédure automatique pour la conception de MPSoC à

grande taille basée sur la réutilisation de SSM IP. Basée sur ce principe, une procédure de

conception automatique pour des données parallèles et des traitements en pipeline est

proposée pour l’application au traitement du signal sur le multiprocesseur avec NoC, utilisant

l’application cryptographique au TDES (Triple Data Encryption Standard) comme un

exemple. La synthèse de haut niveau est ajoutée à cette procédure pour la génération de

hardware accélérateur, qui permet d'étudier le compromis entre la performance et la surface.

OCP-IP NoC benchmarks sont exécutés sur notre multiprocesseur de 48 coeurs et de 672

coeurs pour l'évaluation de performance.

Tous les travaux réalisés dans cette thèse rendent possible MPSOC explorer, un projet

industriel pour l’exploration de MPSoC à grand taille, soutenu par l’Union Européenne et le

gouvernement français.

 - 8 -

1. Introduction

La feuille de route d'ITRS Semi-conducteur prévoit que des centaines de processeurs seront

nécessaires pour les futures générations du multiprocesseur (MPSoC). La

densité croissante du dispositif permet exponentiellement plus de cœurs sur une seule puce.

Les fabricants de processeur ont décalé vers la production des processeurs multi-coeurs pour

respecter les contraintes de la puissance et du rafraîchissement tout en maintenant les

avancées de performance d'exécution attendues avec chaque nouvelle génération de

processeur. Le processeur à 8 coeurs de l’Intel est attendu d'ici 2009 et la performance de

Tflops avec 80 coeurs en 45 nm technologie a déjà été démontrée. Des processeurs graphiques

ont déjà des centaines de cœurs, tels que le récent GeForce 295 du NVIDIA avec 480 coeurs

en 55 nm technologie. D'ailleurs, ITRS prévoit que la même tendance continuera également,

et qu'une amélioration jusqu'à dix fois meilleure sur la productivité de conception sera

nécessaire au cours des dix prochaines années, jusqu'en 2019 afin de maintenir l'effort de

conception constante.

1.1 Motivation

En conséquence, il y a deux grands défis dans la conception de la nouvelle génération de

MPSOC :

1. Comment améliorer la productivité de la conception afin de réduire le temps de mise en

marché (TTM) de système électronique qui est de plus en plus complexe?

2. Comment s'assurer que le projet de conception actuel est adaptable à la technologie

de semi-conducteurs qui évolue rapidement?

La productivité de la conception du système sur puce est le défi majeur en matière de

technologie de conception. L'écart de productivité de la conception représente le fait que la loi

de Moore génère un certain nombre de transistors disponibles, qui croît plus vite que la

capacité à les utiliser d'une manière significative. La complexité de silicium et la complexité

des systèmes sont à l'origine de cette croissance exponentielle de l'écart de productivité de

conception. La complexité de silicium est le résultat des propriétés physiques de la

technologie des semi-conducteurs et de la agrandissement de l'interconnexion globale. Les

défis associés à la complexité des systèmes sont la réutilisation, la vérification et le test, ainsi

 - 9 -

que l'optimisation de la conception axée sur la rentabilité, la conception de logiciels

embarqués, les plateformes d’implémentation fiable, et la gestion des processus de

conception.

1.2 Les objectifs de recherche

Des nouvelles méthodologies de conception efficaces sont nécessaires pour surmonter les

complexités des systèmes et du silicium afin de remplir les écarts de la productivité de

conception croissante. Pour atteindre cet objectif, on propose trois stratégies :

1. la combinaison de divers niveaux de conception du système.

2. la réutilisation des IPs et des composants.

3. l’utilisation des nouvelles technologies.

Dans cette thèse nous présentons une nouvelle méthodologie qui implémente ces 3 stratégies

pour résoudre les défis de conception.

Cette nouvelle méthodologie combine ensemble différents niveaux de conception pour

prendre les avantages de chaque niveau et surmonter le défaut séparé de chaque niveau. De

cette façon, nous pouvons tirer profit des modèles au niveau d'abstraction élevé de la

conception de haut niveau du système pour passer au niveau RTL pour

alimenter l’information électronique du système autant que possible. Cette méthode garantit

aussi que la conception du système est toujours adaptative à la nouvelle technologie de semi-

conducteurs. De plus, les développeurs avec des simulateurs de système font face à “un mur

de simulation” à cause du temps de simulation des systèmes avec des centaines ou plus de

cœurs. L'émulation du CMP de grande taille sur la plate-forme multi-FPGA est une des

solutions proposées pour accélérer l’exploration de l’espace de conception des systèmes.

Cette nouvelle méthodologie réutilise les blocs et composants d’IP existants pour accélérer le

processus de conception et faciliter la vérification du système. Jusqu'à présent, les IPs

réutilisables sont toujours trop élémentaires pour construire rapidement des multiprocesseurs

de grande taille. Il est alors nécessaire d'augmenter la taille et la complexité d'IPS que nous

appelons le multiprocesseur à petite échelle (small scale multiprocessor SSM) IPs. La

conception de multiprocesseurs de grande taille basées sur des SSM IP permet la duplication

 - 10 -

et la construction rapide en un temps raisonnable utilisant l'émulation sur multi-FPGA pour

une validation et une évaluation rapide de performance.

De nouvelles technologies pour la conception de MPSOC sont appliquées dans cette nouvelle

méthodologie :

- le Réseau sur la Puce (NoC), une architecture de communication est utilisée pour régler le

problème d'évolutivité du système à grande taille.

- Synthèse de Haut Niveau (HLS), outils de génération de VHDL coprocesseur accélèrent la

conception et la réutilisation de la IP.

- La technologie de FPGA reconfigurable embarquée permet la mise en œuvre de NoC

reconfigurable sur ASIC.

- la plate-forme multi-FPGA rend l'émulation de système de grande taille réalisable.

La mise en oeuvre complète de ces stratégies et technologies dans notre nouvelle

méthodologie constitue une bonne solution pour améliorer la productivité de conception du

système et sa fabrication.

2. Définition et état de l'art

Le MPSoC (Multiprocessor System on Chip) est différent du multi-cœur distribué ou le

multiprocesseur, parce que tous les éléments de traitement sont intégrés sur une puce. La

différence majeure vient de l'architecture de communication. Le multiprocesseur est connecté

par un réseau d’interconnexion externe avec une grande bande passante et une latence haute ;

tandis que la communication sur puce de MPSoC doit être rapide et la gestion de réseau doit

être simple et efficace. Les couches d'intégration à très grande échelle (VLSI) fournissent de

nombreux fils pour transférer des signaux de contrôle et des données. La proximité locale des

éléments de traitement et des mémoires accélère le transport. Mais le compromis doit toujours

être fait entre la surface, la performance et la consommation d'énergie.

Le Réseau sur puce (NoC) est une nouvelle méthode pour les communications au sein de

grands systèmes VLSI mis en œuvre sur une seule puce de silicium. Comme la complexité de

systèmes intégrés continue à grandir, le NoC fournit la performance améliorée et l'évolutivité

en comparaison avec des solutions simples de communication sur puce tels que le point-à-

 - 11 -

point et le bus partagé. Avec l'avènement du multiprocesseur de grande taille, le NoC est un

choix naturel pour la conception d’architecture. Il peut offrir une séparation entre le calcul et

la communication, soutenir la modularité et la réutilisation de la IP via des interfaces

standards, gérer des problèmes de synchronisation, servir de plateforme pour le test du

système et partant, accroître la productivité de conception.

Le NoC est un réseau de communication qui est utilisé sur une puce. Il est construit de liens

multiples de interconnectés par des routeurs. Les données peuvent être transférées de la

source à la destination sur plusieurs liens, en faisant la décision de routage sur les routeurs.

Un haut niveau de parallélisme est obtenu, parce que tous les liens dans le NoC peuvent

fonctionner simultanément sur les différents transferts de données.

Un NoC élémentaire se compose de routeurs, de liens et d’interfaces de réseau. Les routeurs

dirigent des données sur plusieurs liens selon le politique de routage. Les connexions logiques

des liens sont mentionnées comme la topologie de réseau. L’interface de réseau (l'adaptateur)

doit découpler le calcul (les ressources) de la communication (le réseau). Chaque cœur IP est

connecté au NoC par une interface de réseau.

Les mesures les plus importantes des NoCs sont la bande passante, la surface de silicium, la

consommation d’énergie, et la latence. Tous ceux-ci doivent être réduits au minimum. Une

solution de Pareto est prévue pour l'exploration à grande échelle.

Différentes méthodes d'évaluation peuvent être utilisées pour mesurer la performance du

système: l'analyse basée sur modèle, la simulation et l'exécution sur des puces réelles.

L'analyse mathématique est rapide, mais peu précise. Elle peut être utilisée à la première étape

pour la vérification rapide et pour enlever les options inutiles et diminuer l'espace

d'exploration. La simulation SystemC est largement utilisée dans la recherche. Lorsque le

système devient de plus en plus complexe, la vitesse de simulation n'est plus suffisante.

L'émulation sur plate-forme FPGA est proposée comme solution pour l'exploration à grande

échelle. Nous soutenons que le temps d'exécution doit être mesuré en temps réel plutôt que le

nombre de cycle. La fréquence du système doit être mesurée pour des résultats de simulation.

La communication entre processeurs est importante pour la conception de MPSoC. Le bus est

une architecture d’interconnexion traditionnelle pour la conception de système sur puce

(SoC). L’AMBA bus d’ARM et le CoreConnect bus d’IBM sont les choix connus pour la

conception de processeur commercial. Le bus d’OCP (Open Core Protocol) est proposé

 - 12 -

comme un moyen efficace pour simplifier l'interconnexion par la standardisation de protocole

d'interface. Comme le nombre de processeur dans des MPSoCs grandit exponentiellement, le

réseau sur puce (NoC) est proposé comme la seule solution pour la bande passante de

communication requises, l'évolutivité de conception et l'énergie limitée.

Des multiprocesseurs homogènes et hétérogènes sont les deux branches importantes et

distinctes de la conception de MPSoC. Les communications inter processeur sont très

importantes pour la conception. Jusqu'à présent, il n’y a pas beaucoup de conceptions de

MPSoC qui sont basées sur l'architecture de NoC. Une étude montre qu’il n'y a aucune

procédure de conception pour les MPSoCs plus grands de 32 cœurs interconnectées par la

technologie de NoC.

3. Exploration de conception multi-objectif de NoC au niveau TLM

A la première étape de la thèse, on propose une exploration de l’espace pour la conception

multi-objectif de NoC au niveau TLM. L'exploration automatique est nécessaire afin de

garantir l'évaluation de toutes les solutions possibles. Bien que certains travaux ont été

réalisés dans ce domaine, l'explorations de l’espace de conception proposées sont basées sur

différents niveaux d'abstraction. Les modèles de SystemC TLM cachent beaucoup de détails

d’implémentation de bas niveau. Il permet une rapide simulation des systèmes complexes au

prix de moins de précision. Comment gérer l’exploration de l'espace de conception avec ce

manque de précision est l'objectif de ce travail. L’exploration de l’espace de la conception

multi-objectif devient un défi parce que la surface et timing du système doivent être extraites

des niveaux plus bas de l'abstraction. La représentation au niveau TLM de NoC exige la

perspicacité profonde et l'expérience d’implémentation pour interpréter correctement la

sémantique correspondante à ce niveau d'abstraction.

La version 2.0 de SystemC TLM a été publiée récemment et elle permet la modélisation du

système sur puce au plus haut niveau d’abstraction. Comme le SystemC TLM sont basées sur

les transactions, la communication entre les IPs doit été effectuée au niveau des transactions.

L'analyse d’architecture peut utiliser les trois styles de codage disponibles qui sont unlimited,

loosely-timed et approximately-timed.

 - 13 -

3.1 Les modèles de surface

Nous avons utilisé dans cette étude des outils de conception industrielle : NoC Solution de

l'Arteris. Il contient deux outils de CAO: NoCexplorer et NoCcompiler, qui se concentrent sur

les différents niveaux de simulation. NoCexplorer est un outil de génération et simulation

système utilisant le langage SystemC TLM. Les modèles cycle basé de l’Arteris accélère la

vitesse de simulation. NoCcompiler peut être utilisé pour générer des codes en VHDL ou

SystemC RTL pour NoC.

À ce niveau TLM, la topologie de NoC est représentée par des 'liens' (links). Un lien est

caractérisé par son horloge et sa largeur, et il est éventuellement associé à une capacité de

mémoire tampon FIFO. Les liens portent les paquets de requête et réponse entre chaque paire

de source et destination. N'importe quelle type de topologie, régulière ou irrégulière, peut

facilement être décrite utilisant des 'liens'. Pour chaque paire de source et de destination, nous

décrivons la séquence des liens comme son routage, dans lequel passe la communication.

Pour définir l'architecture du NoC, dans le script de NoCexplorer, on décrit le routage sur un

réseau de liens au lieu de routeurs. Le point où se mêle de liaisons représente un routeur au

niveau RTL, qui n’est pas un module au niveau TLM. Le NoC et les modèles d'esclave et de

maître sont décrits dans un fichier de script comme l’entrée de NoCexplorer.

Après une simulation rapide au niveau SystemC TLM, NoCexplorer donne un rapport de la

performance du système. Ensuite, nous pouvons transférer la topologie de NoC à

NoCcompiler, pour la simulation et l'implémentation au niveau RTL. Les performances,

incluant la latence et la bande passante sont prises comme les fonctions d’objectifs dans

l'exploration. La méthodologie de conception décrite a été appliquée à une étude de cas de

taille significative.

On construit les modèles de surface au niveau TLM pour les liens et routeurs utilisant le

rapport des surfaces au niveau RTL estimée par NoCcompiler. La surface est calculée dans

l'unité de porte NAND2. Les modèles de NoC au niveau TLM cachent beaucoup de détails

d’implémentation comparés aux modèles correspondants de niveau RTL et ce pour obtenir

une simulation rapide. Nous pouvons construire des modèles de surface de niveau TLM pour

l'estimation. Le composant de RTL est mis aux mêmes configurations que le modèle TLM

correspondant, si ces options sont présentés au niveau TLM. Sinon, les options de composant

de RTL restent par défaut. Dans cette étude, la profondeur des liens et le nombre d’ES de

 - 14 -

routeur sont modifiées en fonction des différentes configurations de l'exploration. En

conséquence, nous changeons la capacité du tampon FIFO du composant et le nombre d’ES

pour trouver les relations entre la consommation de surface et ces variables.

Selon les données de l'estimation des surfaces de NoCcompiler, la proportion entre la capacité

de FIFO et la consommation de surface est linéaire, qui peut être présenté comme:

0, 0
372* 30, 1

depthgates
depth depth

⎧⎪
⎨
⎪⎩

==
− >=

où le ‘gates’ représente la surface de lien et le ‘depth’ représente la capacité de FIFO de ce

lien.

La relation entre la surface et le nombre d’ES du routeur est plus complexe. Grâce à une

analyse numérique des données, la relation entre la surface du routeur et son nombre d’ES est:

Gates = 72*X*Y+273*Y+39*X+18

où le ‘gates’ représente la surface ; le ‘X’ représente le nombre d’entrée de ce routeur et le ‘Y’

représente le nombre de sortie de ce routeur.

3.2 Multi-objective NOC TLM DSE

La procédure de conception, NOCDEX2 est décrite ci-dessous.

NOCDEX2

générer des populations de configuration du NoC aléatoirement par la modification du

scénario

 while (les critères de terminaison non atteint)

 for (toutes les configurations du NoC)

 simuler au niveau TLM et enregistrer les performances

 estimer la surface

 classer toute les configurations

 générer une nouvelle génération de NoC

 analyser le front de Pareto final

 - 15 -

Figure 1 la procédure de conception NoCDEX 3

Combinant NoCDEX 2, notre procédure d'exploration au niveau TLM et NoCDEX, notre

procédure d’émulation basée sur la plateforme FPGA, nous proposons une procédure

complète de la conception du niveau TLM au RTL, NoCDEX3 qui est montrée dans la figure

1.

Après la parallélisation, le core graphe est extrait d'applications réelles. D'abord NoCDEX 2

est utilisé pour trouver des solutions de Pareto, qui sont utilisées pour l'émulation précise de

NoCDEX 1. Si les résultats ne répondent pas à l'objectif de la conception, les résultats sont

retournés à la simulation de haut niveau pour la nouvelle parallélisation d’application.

4. NoC reconfigurable sur eFPGA

Le multiprocesseur système sur puce (MPSoC) devrait être utilisé pour des applications

multiples qui pourraient présenter des modèles de communication distincts. Comme le

nombre d'IP augmente exponentiellement, le problème le plus important de la communication

sur puce est de garantir la qualité du service. Le réseau sur puce (NoC) offre une solution

éprouvée pour la communication des systèmes sur puce (SoC) complexes. Plusieurs

conceptions ont été réalisées. Toutefois, peu d'études ont été faites sur la conception de NoC

 - 16 -

pour des demandes d’applications multiples. La conception d'un NoC efficace commun pour

ces demandes d’applications multiples pourrait être impossible en raison des exigences

divergentes.

Le NoC reconfigurable est une solution potentielle pour ce problème, parce que le réseau est

reconfiguré avant l'exécution d'applications afin de répondre aux besoins spécifiques des

applications multiples. L'implémentation de cette reconfiguration pourrait être faite en

utilisant le circuit d’eFPGA (embedded FPGA). Nous proposons une méthodologie pour

spécifier la dimension de secteur d'eFPGA reconfigurable pour NoC. Les résultats

d'expérience montrent l'efficacité de notre approche.

L'avantage majeur d’eFPGA est sa capacité de faire des changements après la fabrication du

circuit SoC. Sa reconfigurabilité faite sur l’eFPGA est approprié pour des composants sur

puce, comme des accélérateurs hardware pour les processeurs afin d’accélérer les applications

embarquées, des unités de cryptage des données dans les appareils sans fil qui ont besoin

d'être changées de temps en temps, des interfaces d'entrée-sortie pour la transmission de

données, les routeurs de NoC qui doivent changer de configuration et routage pour s’adapter

aux trafics dynamiques. Les avantages de cette approche permettent d'approvisionner des

clients différents avec une seule puce programmable qui peut accommoder des changements

des standards ou des spécifications.

4.1 La définition du problème de NoC reconfigurable

Nous supposons comme données du problème que la bibliothèque de fréquence et de surface

pour chaque configuration du routeur dans le NoC est disponible. L'objectif est de trouver un

NoC hétérogène de haute performance sous contraintes de surface totale d’eFPGAs.

Entrée: (1) un NoC avec N routeurs, (2) la contrainte de surface totale d'un ou plusieurs

eFPGAs disponible.

Sortie : le choix de configuration pour chaque routeur dans le NoC et la position de chaque

router sur les eFPGA, si plusieurs eFPGAs sont utilisés.

Contraintes: la surface totale des routeurs sur chaque eFPGA ne peut pas dépasser la surface

maximum de cet eFPGA où ces routeurs sont placés.

 - 17 -

4.2 La solution de programmation linéaire et l’algorithme

Nous allons placer un NoC avec N routeurs sur K eFPGAs. Sur chaque eFPGA, il y a LUTk

luts et RAMk rams (k = 1,...,K). Les routeurs peuvent être placés sur n’importe quel eFPGA.

Nous devons trouver la configuration et la position de chaque routeur pour maximiser les

fréquences du NoC.

Nous introduisons une variable binaire xi,j,k pour représenter le choix de la configuration j et la

placement k du routeur i :

Xi,j,k ∈ {0,1} pour i = 1,…,N ; j = 1,…,M et k = 1,…,K.

xi,j,k = 1, si routeur i est fixé à sa configuration j et il est mis sur le eFPGA k. Sinon, xi,j,k = 0

Mettez luti,j,k et rami,j,k comme le nombre de luts et rams de switch i, si le routeur est fixé à sa

configuration j et il est mis sur le eFPGA k. Et fi,j,k représente la fréquence du routeur i. La

formulation ILP de ce problème est la suivante:

Max: , , , ,i j k i j k
i j

f x⋅∑∑ (1)

s.t. , , 1,i j k
j k

x i= ∀∑∑ (2)

, , , , ,i j k i j k k
i j

lut x LUT k⋅ ≤ ∀∑∑ (3)

, , , , ,i j k i j k k
i j

ram x RAM k⋅ ≤ ∀∑∑ (4)

L'objectif est de maximiser la fréquence de tous les routeurs dans (1). La contrainte (2) permet

de s'assurer que chaque routeur est fixé à une seule de ses configurations et est placé à un seul

eFPGA. Dans la contrainte (3), nous nous assurons que les luts totaux de tous les routeurs sur

eFPGA k ne dépasseront pas le maximum LUTk. Et dans la contrainte (4), nous nous assurons

que les rams totaux de tous les routeurs sur eFPGA k ne dépasseront pas le maximum RAMk.

4.3 Algorithme pour NoC reconfigurable sur eFPGAs minimum

Dans le cas de eFPGAs nombreux, il n’est pas nécessaire d’utiliser tous les eFPGA pour le

placement du NoC. Donc on cherche à minimiser le nombre d’eFPGAs utilisés. Nous

utilisons l'algorithme basé sur la formulation ILP pour résoudre ce problème.

L'idée majeure est de tester la faisabilité du placement des routeurs sur des eFPGAs, d’un

eFPGA juste qu’à K-1 eFPGAs. Si la valeur de la fonction objectif de la solution n (moins de

 - 18 -

K) eFPGAs est égale à la Fmax maximum de la solution K eFPGAs, et les autres valeurs des

fonction objectif des solution m (moins de n) eFPGAs sont inférieures à Fmax, puis on trouve

une solution minimale pour le problème du NoC sur eFPGAs nombreux.

Dans cet algorithme 1, la liste de combinaison des eFPGAs K est construite pour le problème

eFPGAs i. Un exemple combinaison de 3 eFPGAs (1,2,3) est:

(1); (2); (3); (1,2); (1,3); (2,3); (1,2,3)

5. Multiprocesseur de petite échelle (SSM IP)

La future génération de systèmes multiprocesseurs sur puce (MPSoC) sera basée sur des

centaines de processeurs connectés par un réseau sur puce (NoC). Un des défis est

d’augmenter la productivité de la conception. Nous proposons un multiprocesseur de petite

échelle basé sur NoC (SSM IP) comme un élément constitutif des multiprocesseurs à grande

taille. Nous décrivons l'architecture d'un tel SSM IP ainsi que les résultats de prototypage sur

une seule puce FPGA. Les applications de traitement d'image sont utilisées comme évaluation

préliminaire de logiciels parallèles.

5.1 Architecture

Algorithm 1 NoC on Minimal eFPGAs Algorithm

1: calculate ILP value Fmax of K eFPGAs problem

2: build list of all the combination of K eFPGAs

3: for i =1 to K do

4: calculate ILP value Fi of i eFPGAs problem

5: if Fi >= Fmax then

6: break

7: end if

 - 19 -

Figure 2 l’architecture du multiprocesseur de petite échelle (SSM IP)

La topologie de notre SSM IP est une maille de groupes (cluster). Le SSM IP est composé de

12 processeurs connectés par une maille 2x2 de routeurs, avec 3 processeurs de MicroBlaze et

2 SRAMs par routeur. La topologie de réseau est maille à cause de ses propriétés d'évolutivité

et l'extensibilité. La régularité de mise en page et les retards d'interconnexion sont

primordiaux. La topologie maillée fournit des liens courts et est plus facile à placer et router.

La performance du dispositif est mieux gérée grâce à des liens courts. Plusieurs projets

récents de système sur puce ont utilisé la topologie de maille.

Toutefois, notre architecture d’une maille de clusters est meilleure qu’une maille complète,

parce qu’on peut mieux profiter de la localité de données dans un cluster pendant le traitement

de l'image pour une application multimédia. Les images peuvent être regroupées également

entre les mémoires partagées de chaque cluster, afin que les processeurs appartenant à un

cluster puissent traiter la partie d'image associée à ce cluster.

Notre IP SSM est une soft IP. Il est composé des soft IP, qui sont décrites dans le tableau

suivant.

Table 1 IPs de SSM multiprocesseur.

Composant d’IP Description Source Version Nombre

Processeur Soft IP Xilinx MicroBlaze 6.00 b 12

Mémoire Soft IP Xilinx Coregen 96KB 2.4. 8

Routeur du NoC Soft IP VHDL Arteris Danube library 1.10 4

 - 20 -

Il y a beaucoup de configurations disponibles pour notre SSM IP. Les 4 exemples se trouvent

dans le tableau, qui modifient les configurations de processeur et routeur. Bien que cette

exploration de l'espace n'est pas grande, elle illustre les variations de SSM IP. L'application

est mis en œuvre sur ces 4 architectures afin de comparer leurs performances.

Table 2 Les 4 versions d’architecture.

 NoC MicroBlaze

Arch. V1 Fwdpipe Multiplier

Arch. V2 Fwdpipe+Bwdpipe+Pipe Multiplier

Arch. V3 Fwdpipe Multiplier+FPU

Arch. V4 Fwdpipe+Bwdpipe+Pipe Multiplier+FPU

5.2 Implementation and Results of NL-means filter

L’algorithme de NL-means est programmé en langage C pour chaque processeur dans notre

SSM IP. L'image grise de 64x48 est divisée en 12 blocs avec la même taille de dimension de

16x16. Une ligne de 3 blocs est mappée vers un SRAM d’un cluster. Chaque processeur lit un

bloc d'image de local SRAM. Après le filtrage de NL-means, les résultats sont envoyés dans

un autre SRAM local de ce cluster.

Figure 3 Le mapping d’image aux SRAMs pour l’application de NLMeans filtrage

La Figure 4 montre les performances de l’application NL-means sur les 4 architectures

différentes. Afin de mieux analyser la corrélation entre le temps d'exécution et la

consommation de hardware, toutes les informations sont fournies dans la même figure. L'axe

 - 21 -

Y droit fournit l'information de surface (slice), tandis que l'axe Y gauche fournit l’information

de temps d'exécution.

0
2000
4000
6000
8000

10000
12000
14000

Arch. V1 Arch. V2 Arch. V3 Arch. V4

Ex
ec

ut
io

n
tim

e
(m

s)

0

10000

20000

30000

40000

50000

SL
IC

E

Figure 4 résultats d’implémentation de NLMeans filtrage

L’augmentation de l’utilisation de surface diminue le temps d'exécution dans tous les cas.

Toutefois, le gain n'est pas linéaire. Par exemple, entre Arch. V4 et V3 ou entre Arch. V1 et

V2, la variation de la surface est moins de 5%, mais le temps d'exécution est réduit de plus de

50%. La fréquence du système est augmentée utilisant plus de pipelines dans le NoC, qui

prend peu de slices dans les architecture V2 et V4. Cela souligne l'importance de notre soft

SSM, dont les configurations peuvent être changées selon les besoins de l’application. L'unité

de traitement flottant (FPU) peut grandement améliorer les performances de calcul du

processeur MicroBlaze. La performance du système peut être améliorée par un ordre de

grandeur entre les architectures V4 et V1.

6. Multiprocesseur de grande taille (LSM)

La productivité de conception est un des défis les plus importants de la future génération de

multiprocesseur sur puce (MPSoC). Nous proposons d'augmenter la productivité de

conception en réutilisant notre SSM IP combinée avec les techniques de l'extension rapide.

Une implémentation d'un multiprocesseur de 48 coeurs sur une plateforme de 4 grand FPGA a

validé notre approche.

6.1 Extension du SSM IP au LSM

Afin d'atteindre une productivité de conception rapide de MPSoC de grande taille, nous

avons besoin: (1) de réutiliser notre multiprocesseur à petite échelle (SSM IP) et d'ajuster

 - 22 -

automatiquement les configurations du NoC (2) d’intégrer les outils EDA industrielles dans la

procédure de conception. En raison de sa grande taille et temps de simulation prohibitifs au

niveau RTL, nous avons besoin d'émulation en place de simulation des performances de

multiprocesseur de grande taille.

Figure 5 l’architecture du multiprocesseur de 48 coeurs

Un multiprocesseur de 48 coeurs est implémenté sur la plate-forme ZEBU-UF 4. Notre SSM

IP est réutilisée pour accélérer la conception de multiprocesseur. Tous les fichiers de

configuration de SSM IP sont réutilisées pour l'extension, qui peuvent largement réduire le

temps de synthèse de ce multiprocesseur. En double sur 4 FPGA, tous les composants SSM

ne seront pas changés, sauf le NoC adapté pour la nouvelle 4x4 topologie maillée.

6.2 Intégration des outils CAO et la procédure de conception

 - 23 -

Figure 6 La procédure de conception pour MPSoC sur la plateforme multi-FPGA

Les outils CAO de trois sociétés commerciales sont mis en semble pour générer notre MPSoC

de 48 coeurs. L'outil EDK de Xilinx est utilisé pour générer nos SSM multiprocesseurs. Une

fois que les fichiers de RTL de SSM sont produits, ils sont réutilisés pour la synthèse de

multiprocesseur de grande taille, ce qui peut largement réduire le temps de conception du

système. Différents fichiers de NoC sont synthétisés pour chaque SSM sur les différentes

puces FPGA de la plateforme en changeant le tableau de routage de chaque routeur selon le

politique de routage. Ces fichiers RTL des NoCs sont générés par NoCcompiler, outil

d’Arteris. Le compilateur ZEBU d’EVE prend les fichiers EDIF convertis par des outils de

synthèse de Xilinx pour l’implémentation sur FPGA. Enfin l’outil de placement et routage est

utilisé pour générer les fichiers de téléchargement au FPGA. Cette phase peut être parallélisée

afin de réduire le temps de conception. Les résultats de surface et performance sont obtenus

par l’émulation sur la plateforme multi-FPGA.

6.3 Modèles de parallélisme et l’implémentation

Une application typique de traitement du signal peut être divisée en plusieurs blocs de

fonction et parallélisée par le mapping des blocs sur des différents éléments de traitement. Ces

éléments de traitement peuvent travailler en pipeline pour la parallélisation de tâche.

 - 24 -

6.3.1 Modèle de Fork-Join

Figure 7 Modèle de Fork-Join avec les parallélismes de donnée et tâche

Deux types des parallélismes, le parallélisme de donnée et le parallélisme de tâche, sont

combinés ensemble pour atteindre une meilleure performance. Les deux parallélismes sont

réunis pour travailler en modèle de Fork-Join, montré dans la Figure 7.12. Dans le

parallélisme de donnée, nous distribuons différents blocs de données aux groupes de

traitement différents. Ces groupes travaillent sur les données reçues en parallèle. Dans le

parallélisme de tâche, toutes les fonctions d'application sont divisées en blocs et placées sur

des PEs (Processor Element) séquentiellement. Chaque PE obtient des données d'entrée,

calcule les blocs de fonction associés et envoie les résultats au processeur PE suivants et enfin

à la mémoire de destination. Les PEs mappés avec des blocs de fonction travaillent ensemble

comme un groupe en pipeline.

6.3.2 L’implémentation de parallélisme sur MPSoC basé sur NoC

Figure 8 Implémentation de modèle de Fork-Join sur MPSoC avec NoC

 - 25 -

Le MPSoC basé sur NoC est la tendance du future multiprocesseur à grande taille en raison de

la flexibilité du NoC. Pour paralléliser l’application, plusieurs PEs dans le MPSoC sont

divisés en groupes distincts pour la parallélisation de donnée. Afin de minimiser les temps de

latence de la communication, les PE dans le même groupe doivent être aussi proches que

possible. L'architecture simplifiée d’un MPSoC et une implémentation de notre modèle de

Fork-Join sont illustrés dans la figure. Dans cet exemple, PE10 travaille comme source et

envoie des blocs de données distincts à 4 groupes différents de PE en des couleurs différentes

dans la figure. L'application est divisée en 2 blocs de fonction et ils sont placés sur les deux

PEs dans chaque groupe. Enfin chaque groupe envoie les résultats vers PE23 qui sert comme

destination. Il y a au total 4 * 2 = 8 PEs utilisés dans cet exemple d'application.

6.4 L’implémentation des Parallélismes sur MPSoC

Le code C séquentiel de cryptage TDES est composé d'une permutation Forward (FO), 48

appels à une macro F et enfin une permutation inverse (IP). Pour utiliser pleinement notre

multiprocesseur, le parallélisme de données et le parallélisme de tâche sont combinés pour

obtenir une meilleure performance. Un exemple est donné dans la Figure 7.19:

Figure 9 Un exemple de mapping de modèle Fork-Join sur 48-PE multiprocesseur

 - 26 -

1. 24 PEs de MicroBlaze sont choisis pour l’implémentation;

2. Toutes les données sont divisées en 4 blocs et les 24 PEs sont divisés en 4 groupes;

3. Pour crypter chaque bloc de données, chaque groupe dispose de 24 / 4 = 6 PEs;

4. Dans chaque groupe en pipeline, chaque PE MicroBlaze calculera 48 / 6 = 8 appels de

macro F.

L’exploration aide à trouver un bon compromis entre le Parallélisme des tâches et le

parallélisme de données. Dans cet exemple, au maximum 24 PEs sont utilisés, la combinaison

du parallélisme de données et le parallélisme des tâches est répertorié dans la Tableau 3:

Table 3 combinaison des parallélismes de donnée et tâche

Nombre de group en pipeline Nombre de PE dans un groupe Nombre de micro associé a un PE
24 1 48
12 2 24
8 3 16
6 4 12
4 6 8
3 8 6
2 12 4
1 24 2

96000 packets

15900000

16000000

16100000

16200000

16300000

16400000

16500000

16600000

1 2 3 4 6 8 12

number of PE in 1 pipelined group

t
o
ta
l

c
yc
l
e

Figure 10 temps d’exécution de 96000 paquets

Dans la Figure 10, il est clair que le temps d’exécution est le plus court dans la combinaison

de 8 groupes de PE en pipeline, chacun avec 3 processeurs MicroBlaze dans le groupe. C'est

donc le meilleur compromis entre le parallélisme de données et le parallélisme des tâches. Et

ce résultat montre l'impact de l'architecture du système sur les performances des applications

parallèles.

 - 27 -

7. Conclusion

Dans cette thèse nous avons présenté une nouvelle méthodologie de conception de MPSoC à

grande taille pour résoudre le défi de la complexité de conception et augmenter la productivité.

Pour atteindre cet objectif, on propose et utilise trois stratégies:

1. la combinaison de divers niveaux de conception du système : du niveau TLM à

l'émulation de FPGA

2. la réutilisation des IPs et des composants : extension de SSM IP à 48-coeur et 672-coeur

MPSoC

3. l’utilisation des nouvelles technologies : Arteris NoC, M2000 eFPGA, EVE plateforme

multi-FPGA

Une étude des travaux récents sur la conception de NoC et de MPSOC montre qu'il n'y a

aucune procédure de conception mûre pour la future génération de MPSoC à grande taille.

L'architecture d'intercommunication de MPSOC affecte énormément la performance du

système. Trois méthodes d'intercommunication différentes ont été utilisées : bus, crossbar et

réseau sur puce (NoC). Et le NoC est proposé comme la seule solution d'intercommunication

pour le futur MPSoC à grande taille. Les outils d’Arteris pour la conception de NoC sont

utilisés comme le soutien industriel pour notre procédure de conception.

La contrainte de temps réel doit être prise en compte pendant la conception de MPSOC. Des

multiprocesseurs homogènes et hétérogènes sont les deux branches importantes et distinctes

de la conception de MPSOC. L'analyse et la comparaison des méthodologies différentes pour

la conception de MPSOC aident à mieux les comprendre et à surmonter leurs défauts. Le

mapping de “core graphe” aux topologies de NoC est connu comme NP-Hard. Des

algorithmes heuristiques sont les seules solutions pour obtenir le résultat proche à l’optimal

selon des fonctions objectif différentes. Différents algorithmes d'approximation sont proposés

pour réduire le temps d'exécution de la programmation linéaire en nombres entiers.

L’exploration de l’espace de conception du réseau sur puce peut être faite à plusieurs niveaux

d'abstraction, de la transaction juste qu’à l'émulation. D'abord on propose un procédure de

 - 28 -

conception entièrement automatique pour le réseau sur puce au niveau de TLM. La

combinaison de cette procédure avec notre travail d'émulation suivant permettra d’obtenir des

solutions satisfaisantes.

Le réseau sur puce reconfigurable exige le support de hardware reconfigurable efficace dans

l'environnement d’ASIC. L'apparition d’eFPGA IPs permet l'intégration de secteur

reconfigurable dans des puces d’ASIC. L'organisation et le dimensionnement de cette zone

sont des questions importantes à traiter pour maximiser l'efficacité du réseau sur puce

reconfigurable. Notre méthodologie de programmation linéaire y apporte une solution.

La prochaine génération de MPSoC sera basée sur des centaines de processeurs. la conception

de MPSoC est très complexe. Pour accomplir le travail en un temps raisonnable, nous

proposons un SSM IP comme un composant élémentaire pour la conception de

multiprocesseur à grande taille. Ce SSM IP est basé sur un NoC de topologie Cluster-Mesh. Il

a été entièrement évalué sur une grande plateforme FPGA. La conception de multiprocesseurs

à grande taille utilisant notre SSM IP est très rapide. L'effort de conception principal est la

connexion entre IPs et l'adaptation d'adressage de NOC.

Nous avons validé notre approche sur un multiprocesseur de 48 coeurs en étendant

automatiquement notre SSM IP de 12 coeurs et nous avons étendu finalement à un MPSoC de

672 cœurs sur la plate-forme multi-FPGA Zebu-XXL d’EVE. Différents outils de conception

industrielle ont été mis ensemble dans notre procédure de conception automatique.

Une procédure de conception automatique pour des données parallèles et des traitements en

pipeline est proposée pour l’application au traitement du signal sur le multiprocesseur avec

NoC, utilisant l’application cryptographique au TDES (Triple Data Encryption Standard)

comme un exemple. Notre procédure explore par l'exécution sur la plate-forme d’émulation

multi-FPGA pour la mise en oeuvre de logiciel parallèle avec l'exploration de placement de

tâche et l'analyse de granularité de tâche. Un moniteur hardware conduit le processus de

placement de tâche pour réduire les congestions de la communication. Dans la deuxième

phase, des accélérateurs hardware générés par la synthèse de haut niveau sont ajoutés à notre

 - 29 -

procédure pour explorer les compromis entre la performance et la surface en privilégiant

toujours la base de multiprocesseur.

L’association de l’OCP-IP a proposé une suite de micro-benchmark pour réseau sur puce.

Nous avons évalué ces benchmarks par l'exécution réelle sur nos multiprocesseurs de grande

taille avec NoC.

7.1 Travaux Futurs

La conception de MPSoC à grande taille est un secteur de recherche nouveau et ouvert. Dans

la thèse, on a proposé des approches qui peuvent être étendues dans plusieurs directions de

recherche différentes.

La consommation d'énergie est très importante pour le système électronique, non seulement

pour la raison commerciale, mais aussi pour la protection de l’environnement. La bibliothèque

de modèle de consommation d'énergie peut être intégrée dans notre procédure de conception

pour explorer les compromis entre la performance, la surface et la consommation d’énergie.

La combinaison de cette procédure avec nos travaux précédents au niveau RTL permettra une

solution complète.

L'exploration de MPSoC à grande taille est très complexe et prend beaucoup de temps.

Profitant de la combinaison de différents niveaux, de TLM à RTL, l’espace d’exploration est

diminuée à haut niveau pour accélérer l'exploration. La théorie de réseau de neurone et la

technologie PR de FPGA peuvent aussi aider à atteindre ce but.

Les travaux futurs consistent à ajouter la gestion de reconfiguration dans la zone d’eFPGA

reconfigurable pour des accélérateurs hardware ainsi que la parallélisation automatique de

logiciel.

7.2 Contribution

Notre contribution principale est la procédure automatique pour la conception de MPSoC à

grande taille basée sur la réutilisation de SSM IP. Basée sur ce principe, une procédure de

conception automatique pour des données parallèles et des traitements en pipeline est

proposée pour l’application au traitement du signal sur le multiprocesseur avec NoC, utilisant

 - 30 -

l’application cryptographique au TDES (Triple Data Encryption Standard) comme un

exemple. La synthèse de haut niveau est ajoutée à cette procédure pour la génération de

hardware accélérateur, qui permet d'étudier le compromis entre la performance et la surface.

OCP-IP NoC benchmarks sont exécutés sur notre multiprocesseur de 48 coeurs et de 672

coeurs pour l'évaluation de performance.

Nous proposons une procédure automatique et multi-objectif pour NoC au niveau TLM

(Transaction Level Modeling). Les critères du timing et de surface du niveau RTL sont

explorés mais non limités avec des TLM modèles du NoC dans NoCexplorer. Une

méthodologie de programmation linéaire est fournie comme solution au problème de

l'organisation et du dimensionnement d’eFPGA reconfigurable pour maximiser l'efficacité du

NoC.

Pour la première fois dans le monde, nous avons évalué par l'exécution réelle les micro-

benchmarks d’OCP-IP sur nos multiprocesseurs à grande taille avec le réseau sur puce

utilisant la plate-forme d'émulation multi-FPGA.

Tous les travaux réalisés dans cette thèse rendent possible MPSOCexplorer, un projet

industriel pour l’exploration de MPSoC à grand taille, soutenu par l’Union Européenne et le

gouvernement français.

 - 31 -

CONTENTS

Méthodologie de Conception Automatique pour Multiprocesseur sur puce Hétérogène ... i

ACKNOWLEDGMENT ... iii

ABSTRACT ... v

Résumé ... vii

CONTENTS .. xxxi

LIST OF TABLES .. xxxvi

LIST OF FIGURES .. xxxviii

1. Introduction .. 1

1.1 Motivation .. 1

1.2 Research Objectives ... 2

1.3 Thesis organization ... 4

2. Multiprocessor and Network on Chip State of the Art .. 7

2.1 Multiprocessor on chip ... 7

2.1.1 Definitions, Architecture and Performance Evaluation 7

2.1.2 Academic and Commercial MPSOCs .. 8

2.2 Network on chip ... 9

2.2.1 Definitions, Architecture and Performance Evaluation 9

2.2.2 OCP-IP NoC micro-Benchmarks ... 14

2.2.3 Academic and Commercial NOCs ... 15

2.2.4 Case study: Arteris Technology ... 17

2.3 Conclusion .. 24

3. MPSOC Design Methodologies ... 27

3.1 MPSOC Design and Synthesis ... 27

3.1.1 Benchmarks .. 28

3.1.2 Design methods of MPSoC .. 30

3.2 NOC Design and Synthesis .. 40

 - 32 -

3.2.1 Graph theory related material and GLPK ... 42

3.2.2 Workflow for regular topology .. 43

3.2.3 Workflow for application specific topology ... 46

3.3 Conclusion .. 48

4. Multi-objective TLM Level NOC Design Space Exploration 53

4.1 NOC SystemC TLM Modelling and Traffic Generators 53

4.1.1 SystemC TLM .. 54

4.1.2 TLM NoC modeling with commercial tools .. 55

4.2 NoC Multi-objective Optimization: NSGA-II .. 61

4.2.1 Multi-objective modeling formulation ... 61

4.2.2 Multi-objective Evolutionary Algorithm .. 61

4.3 NOC Multi-objective Optimization under Constraints 63

4.3.1 Design Flow .. 64

4.3.2 Multi-objective NOC TLM DSE .. 65

4.3.3 Chromosome: ... 66

4.4 Performance Evaluation and Comparison .. 68

4.4.1 Best effort exploration .. 68

4.4.2 Experiment with different constraints .. 70

4.4.3 Results of 16 processors with NoC .. 71

4.4.4 Architecture of exploration results ... 76

4.5 Conclusion .. 78

5. Reconfigurable NoC on eFPGA... 81

5.1 eFPGA and Reconfigurable NoC State of Art ... 82

5.1.1 eFPGA technology ... 82

5.1.2 Reconfigurable NoC implementation with FPGA 84

5.2 eFPGA: M2000 Case Study ... 85

5.2.1 M2000 eFPGA technology ... 85

 - 33 -

5.2.2 Switch Area and frequency characterization .. 87

5.2.3 Reconfigurable NoC problem definition .. 88

5.3 NoC Optimization on eFPGA with Place and Route Constraints 88

5.3.1 Reconfigurable NoC on one eFPGA .. 89

5.3.2 Reconfigurable NoC on numerous eFPGAs ... 89

5.3.3 Reconfigurable NoC on minimal eFPGAs ... 90

5.4 Performance Evaluation and Results .. 91

5.4.1 Experimental setup ... 91

5.4.2 Results of NoC on one eFPGA ... 92

5.4.3 Results of NoC on numerous eFPGAs ... 92

5.5 Conclusion .. 93

6. SSM IP: Small Scale Multiprocessor IP .. 95

6.1 Cluster MPSOC and NoC design ... 95

6.2 SSM IP FPGA Design and Implementation ... 97

6.2.1 Small Scale Multiprocessor Soft IP .. 97

6.2.2 Architecture .. 98

6.2.3 Design Automation Flow ... 100

6.2.4 Processor Element and NoC communication service 102

6.2.5 Implementation ... 103

6.3 Design Space Exploration of SSM IP .. 104

6.3.1 SSM Soft IP potential variations .. 104

6.3.2 Synthesis, Place and Route Time and Target frequency 105

6.4 Application Performance Evaluation and Comparison 107

6.4.1 NL-means image filter .. 107

6.4.2 Implementation and Results of NL-means filter 108

6.4.3 Implementation and Results of other basic applications 109

6.4.4 Results Analysis ... 111

 - 34 -

6.5 Conclusion .. 111

7. Large Scale Multiprocessor (LSM) DSE ... 113

7.1 Flow Methodology from SSM to LSM .. 113

7.2 Extension of SSM IP to LSM ... 114

7.3 Automatic EDA Support .. 116

7.3.1 SSM IP Reuse and Automatic Composition 116

7.3.2 Eve Zebu-UF Platform ... 117

7.3.3 Eve Zebu Design Flow ... 119

7.3.4 EDA Tools Integration and workflow .. 119

7.4 Performance Evaluation and Comparison on synchronization 120

7.5 Automatic Exploration of Pipelined Data Parallel Applications 123

7.5.1 Related work on data parallelization .. 124

7.5.2 Application parallel implementation model and target 126

7.5.3 Exploration flow ... 128

7.5.4 TDES algorithm .. 131

7.5.5 Parallel Implementation of algorithm ... 133

7.5.6 NoC Monitoring and Traffic monitoring results example 138

7.5.7 Conclusion .. 139

7.6 Heterogeneous design flow with HLS .. 140

7.6.1 Heterogeneous design flow with HLS .. 140

7.6.2 High Level Synthesis: C-Based .. 142

7.6.3 EDA Tools Combination .. 143

7.6.4 Data parallelism with coprocessor .. 145

7.7 OCP-IP Micro-benchmarks on LSM processors .. 147

7.7.1 OCP-IP Micro-benchmarks .. 147

7.7.2 Performance Evaluation ... 149

7.8 Conclusion .. 153

 - 35 -

8. Very Large Scale Multiprocessor Design Automation .. 159

8.1 State of the art ... 160

8.1.1 BEE multi-FPGA platform ... 161

8.1.2 RAMP Blue .. 162

8.2 General VLSM framework ... 166

8.3 BB-672 VLSM ... 168

8.3.1 Zebu XXL multi-FPGA platform ... 168

8.3.2 OCP-IP benchmarks ... 170

8.3.3 Performance evaluation .. 171

8.4 Comparison between RAMP Blue and our VLSM .. 176

8.5 VLSM and Benchmarking: where are the benchmarks ? 179

8.6 Conclusion : EDA vs Computer Architecture .. 180

9. Conclusion and Perspective ... 183

9.1 Summary of the Thesis ... 183

9.2 Future Research .. 185

9.3 Contribution .. 185

 - 36 -

LIST OF TABLES

Table 1 IPs de SSM multiprocesseur. ... xix

Table 2 Les 4 versions d’architecture. ... xx

Table 3 combinaison des parallélismes de donnée et tâche .. xxvi

Table 2.1 Multicore Implementation.. 8

Table 2.2 comparison of regular and custom topologies ... 10

Table 2.3 characteristic of NoC design tools ... 15

Table 2.4 Arteris Danube Library main components ... 21

Table 2.5 Arteris Danube Library Switch component options .. 23

Table 3.1 characteristic of current MPSoC design workflow .. 30

Table 3.2 characteristic of network analysis program ... 42

Table 3.3 characteristic of regular noc workflow .. 44

Table 3.4 comparison of custom NoC workflow ... 46

Table 4.1 NOCDEX2 exploration with different constraints... 70

Table 5.1 Switch Options ... 87

Table 5.2 results of NoC on one eFPGA ... 92

Table 5.3 area constraint of 4 eFPGAs .. 92

Table 5.4 results of NoC on 4 eFPGAs .. 92

Table 5.5 results of NoC on minimal of 4 eFPGAs ... 93

Table 6.1 IPs of SSM multi-processor. .. 99

Table 6.2 Implementation results ... 103

Table 6.3 Switch options. ... 105

Table 6.4 the 4 versions of architecture. .. 105

Table 6.5 Area of 4 version architectures .. 106

Table 6.6 difference between NoC based system and bus-based system. 109

Table 7.1 Generic Rout-Table of FPGA00 .. 116

Table 7.2 EVE Zebu-uf4 platform details .. 117

Table 7.3 EVE Zebu-uf4 operating mode and performance .. 118

Table 7.4 Different Versions of SSM IP Architecture ... 122

Table 7.5 Synchronization Time of MicroBlaze36 using different methods 123

Table 7.6 combination of data and task parallelism (24 cores case) 136

 - 37 -

Table 7.7 HLS based TDES IP vs optimized IPs ... 146

Table 7.8 Temporal Distribution .. 148

Table 7.9 Selected Micro-benchmark .. 148

Table 8.1 RAMP systems summary ... 160

Table 8.2 NAS Parallel Benchmarks performance results on RAMP Blue system 165

Table 8.3 OCP-IP specific spatial distribution ... 170

Table 8.4 comparison between RAMP Blue and BB-672 ... 176

 - 38 -

LIST OF FIGURES

Figure 1.1 SOC-PE Design complexity trends .. 1

Figure 1.2 ITRS 2007 Design productivity gap ... 2

Figure 2.1 (a) distributed memory, (b) shared memory and (c) mixed memory architecture

MPSoC ... 7

Figure 2.2 Basic NoC realization ... 10

Figure 2.3 regular mesh topology (a) vs. irregular mesh topology (b) 11

Figure 2.4 Cycles Based Results vs. Time Based Results ... 14

Figure 2.5 Measurement configuration .. 15

Figure 2.6 Example SOC Design .. 18

Figure 2.7 NoCexplorer workflow ... 18

Figure 2.8 NoCexplorer workflow ... 19

Figure 2.9 NoCcompiler Flow ... 20

Figure 2.10 packet transport portion .. 21

Figure 2.11 Arteris switch interface ... 22

Figure 2.12 Switch internal architecture .. 22

Figure 2.13 functional view of switch.. 23

Figure 3.1 Design refinement from application codes to low-level implementation 32

Figure 3.2 HOPSE design flow .. 33

Figure 3.3 MAMPS design workflow for multiple use-case ... 34

Figure 3.4 Daedalus design workflow with ESPAM and Sesame ... 36

Figure 3.5 System-CoDesigner design workflow with behavioral SystemC model 38

Figure 3.6 SoCDAL design workflow overall ... 39

Figure 3.7 CoMPSoC design workflow overall ... 40

Figure 4.1 TLM, Use Cases and mapping ... 54

Figure 4.2 TLM Communication ... 55

Figure 4.3 Aretris NoC design tools. .. 56

Figure 4.4 Example of NoC modeling with NoCexplorer and NoCcompiler. 56

Figure 4.5 FIFO area estimation of the TLM link model with different depth. 57

Figure 4.6 Switch area estimation with different number of IO. .. 58

Figure 4.7 two-cut string crossover operation... 62

 - 39 -

Figure 4.8 Classification of individuals in fronts with constraints threshold. 63

Figure 4.9 Base Architecture ... 64

Figure 4.10 Target Board ... 64

Figure 4.11 TLM Network-on-chip design flow... 65

Figure 4.12 NoCDEX 3 design exploration flow... 66

Figure 4.13 Examples of different individuals in GA exploration.. 67

Figure 4.14 Chromosome representation of DES for NSGAII. .. 67

Figure 4.15 Results of best effort exploration .. 69

Figure 4.16 Best Effort Exploration Results. ... 71

Figure 4.17 Depth of Master links in Best Effort Exploration. .. 72

Figure 4.18 Busy Status of Master Links in Best Effort Exploration. 72

Figure 4.19 Latency Constraint Exploration Results. .. 73

Figure 4.20 Depth of Master Links in Latency Constraint Exploration. 74

Figure 4.21 Busy Status of Master Links in Latency Constraint Exploration. 74

Figure 4.22 Latency and Area Constraint Exploration Results.. 75

Figure 4.23 Depth of Master Links in Latency and Area Constraint Exploration. 75

Figure 4.24 Busy status of master links in latency and area constraint exploration. 76

Figure 4.25 TLM level NoC architecture of no constraint exploration’s conf1 solution. 77

Figure 4.26 TLM level NoC architecture of latency constraint exploration’s conf2 solution. 77

Figure 4.27 TLM level NoC architecture of latency and area constraint exploration’s conf3

solution. .. 78

Figure 5.1 ASIC with eFPGA (a) centralized (2) scattered .. 81

Figure 5.2 Placement of NoC onto eFPGAs .. 82

Figure 5.3 Abstract view of Menta eFPGA architecture ... 83

Figure 5.4 Abound Multi-function cell and layout of Raptor FPGA 86

Figure 5.5 Area and Frequency of Switches .. 87

Figure 5.6 Design flow of NoC on eFPGA .. 88

Figure 5.7 NoC testbench architecture ... 91

Figure 6.1 Small Scale Multiprocessor IP Interfaces ... 97

Figure 6.2 Small Scale Multiprocessor IP Composition (a) NOC based general case (b) NOC

Mesh organized .. 98

 - 40 -

Figure 6.3 Small Scale Multiprocessor IP architecture (a) Full mesh (b) Cluster based 98

Figure 6.4 Switch Area Variations as Function of Number of Inputs-Outputs 100

Figure 6.5 SSM Design Automation Work Flow .. 101

Figure 6.6 (a)Processor Tile (b) MicroBlaze core block diagram 102

Figure 6.7 Multiprocessor Xilinx FX140 floorplan (un-optimized) 104

Figure 6.8 Alpha-Data Board ADM-XRC (a) board architecture (b) board 104

Figure 6.9 DSE Execution Time .. 106

Figure 6.10 Image mapping to SRAMs for NLMeans filter application 108

Figure 6.11 Execution results of NLMeans filter... 108

Figure 6.12 Execution time of dot product .. 110

Figure 6.13 Execution time of matrix multiplication ... 110

Figure 6.14 Execution time of filter conservative .. 110

Figure 7.1 MPSOC Design Space Exploration .. 113

Figure 7.2 routing example of 2x2 multi-SSM .. 114

Figure 7.3 Multi-FPGA SRAM Addresses .. 115

Figure 7.4 Tx output of FPGA00 ... 115

Figure 7.5 Small Scale Multiprocessor IP Reuse and Automatic Composition 117

Figure 7.6 Eve Zebu-UF4 Platform. .. 118

Figure 7.7 ZeBu Compilation Flow Overview. ... 119

Figure 7.8 Workflow of Multi-FPGA MPSoC .. 120

Figure 7.9 Execution cycle of synchronization using different pilot and SRAM. 121

Figure 7.10 Execution time of synchronization with different architecture. 122

Figure 7.11 Block-by-block synchronization. .. 123

Figure 7.12 Fork-Join Model of data and function block parallelism.................................... 126

Figure 7.13 MPSoC with NoC and Fork-Join Model Implementation Example 127

Figure 7.14 Data parallel and pipeline exploration flow ... 129

Figure 7.15 Feistel function F (SBoxes) .. 131

Figure 7.16 TDES encryption and Decryption schemes (Feistel Network) 132

Figure 7.17 ECB operation mode for the TDES block cipher ... 132

Figure 7.18 CBC operation mode for the TDES block cipher ... 133

Figure 7.19 Fork-Join Model mapped to 48-PE multiprocessor example 134

 - 41 -

Figure 7.20 Results of one pipelined group with different size of data 135

Figure 7.21 Single pipelined group vs. multiple pipelined groups .. 137

Figure 7.22 Tradeoff between task and data parallelism (24 core limited case) 137

Figure 7.23 Performance monitoring concept .. 138

Figure 7.24 performance monitoring network on each FPGA ... 138

Figure 7.25 NOC monitoring results example ... 139

Figure 7.26 Automatic heterogeneous Design Flow with HLS ... 141

Figure 7.27 (1) Block Diagram of Accelerator Connection Forms (2) C-based HW

Accelerated System Design Workflow .. 143

Figure 7.28 Workflow of Multi-FPGA MPSoC with HLS .. 144

Figure 7.29 5 Stage pipeline TDES ... 145

Figure 7.30 Parallel Software vs Coprocessors on a 48 PE Multiprocessor 146

Figure 7.31 Measurement configuration .. 147

Figure 7.32 (a) Hot spot traffic b = 0.3 = 0.5 (b) locality b = 0.3　 149

Figure 7.33 Hot spot benchmark packets latency with target S0: (1) b = 0.3 ρ = 0.5 (2) b = 0.3

ρ = 0.7 (3) b = 0.5 ρ = 0.5 (4) b = 0.5 ρ = 0.7 .. 150

Figure 7.34 Hot spot benchmark packets latency with target S24: (1) b = 0.3 ρ = 0.5 (2) b =

0.3 ρ = 0.7 (3) b = 0.5 ρ = 0.5 (4) b = 0.5 ρ = 0.7 .. 150

Figure 7.35 Hot spot benchmark data transferred at MB0 b = 0.3 ρ = 0.5 150

Figure 7.36 Hot spot benchmark – MB0 (1) S0 b = 0.3 ρ = 0.5 (2) S24 b = 0.3 ρ = 0.7 151

Figure 7.37 Locality benchmark packets latency : (1) b = 0.3 (2) b = 0.5 152

Figure 7.38 Locality benchmark data transferred at MB0 b = 0.3 ... 152

Figure 7.39 Locality benchmark packets latency MB0 : (1) b = 0.3 (2) b = 0.5 153

Figure 8.1 general architecture of BEE2 module ... 161

Figure 8.2 Architecture of MicroBlaze processor for RAMP Bleu system interconnection . 163

Figure 8.3 Intra and inter board communication and RAMP Blue 3D mesh architecture 164

Figure 8.4 1008 cores RAMP Blue system on 21 BEE2 boards with management server and

monitor [5] ... 165

Figure 8.5 General methodology for VLSM multiprocessor design...................................... 166

Figure 8.6 target Automatic workflow for VLSM multiprocessor .. 167

Figure 8.7 Cluster-mesh architecture of 672-core VLSM ... 168

 - 42 -

Figure 8.8 Eve Zebu XXL multi-FPGA platform ... 169

Figure 8.9 Hot spot benchmark packets latency S0: b = 0.3 ρ = 0.5 (672 core) 171

Figure 8.10 Uniform benchmark packet latency with b = {0.5, 0.4, 0.3, 0.2} 172

Figure 8.11 N complement benchmark with b = {0.5, 0.4, 0.3, 0.2} 172

Figure 8.12 Bit rotation benchmarks with b = {0.5, 0.4, 0.3, 0.2} .. 173

Figure 8.13 Hot spot benchmark packets latency with b = {0.5, 0.3}, ρ = {0.5, 0.7}, and S0 as

hot spot ... 174

Figure 8.14 Hot spot benchmark packets latency with b = {0.5, 0.3}, ρ = {0.5, 0.7}, and S102

as hot spot ... 174

Figure 8.15 Locality benchmark packets latency with b = {0.5, 0.4, 0.3, 0.2} 175

 - 1 -

1. Introduction

1.1 Motivation

ITRS Semiconductor roadmap projects that hundreds of processors will be needed for future

generation multiprocessor system on chip (MPSOC) designs. Increasing device density

enables exponentially more cores on a single die. Processor manufacturers have shifted

towards producing multicore processors to remain within the power and cooling constraints of

modern chips while maintaining the expected performance advances with each new processor

generation. Intel's 8 core processors are expected within 2009 and Tflops with 80 cores in 45

nm technology has already been demonstrated. Graphic processors have already hundreds of

cores, as NVidia's recent GeForce 295 with 480 stream processors in 55 nm process.

Moreover, ITRS also predicts the same trend to continue assuming that 10x design

productivity improvements will be required for the newly designed portion in the next ten

years till 2016 in order to keep the design effort constant.

Figure 1.1 SOC-PE Design complexity trends

 - 2 -

As a result, there are two great challenges in designing new generation of MPSoC:

 How to improve design productivity in order to shrink the time to market (TTM) of

electronic system which is getting more and more complex?

 How to make sure the current design project is adaptive to the quickly evaluating

semiconductor process technology?

Figure 1.2 ITRS 2007 Design productivity gap

Design productivity of system on chip is the major challenge in design technology. The

design productivity gap represents the fact that Moore’s law regular progress generates a

number of available transistors which grows faster than the ability to use them in a

meaningful way. Silicon complexity and system complexity combining together cause this

exponentially increasing design productivity gap. Silicon complexity is the result of physical

properties of semiconductor process technology(like non ideal scaling of device parasitic and

supply threshold/voltages, manufacturing and process variability, complexity of

manufacturing handoff, decreased reliability) and scaling of global interconnect. System

complexity associated challenges are reuse, verification and test, cost-driven design

optimization, embedded software design, reliable implementation platforms, and design

process management.

1.2 Research Objectives

New efficient design methodologies are needed to overcome these silicon and system

 - 3 -

complexity and fill the increasing design productivity gaps. To achieve this object, 3

strategies are proposed:

1. Combination of different system design levels

2. Reuse of IPs and components

3. Utilization of new technologies

In this thesis we present a new methodology which implements these 3 strategies to resolve

the design challenges.

This new methodology combines different design levels together to takes each level’s

advantages and get over each level’s separate shortcoming. More automation is demanded

from high system design level, SystemC TLM level, until RTL design level and FPGA

emulation or ASIC verification. In this way, we can take advantage of the high abstraction

models from high level system design and pass through the RTL level to supply system

electronic information as much as possible. This also makes sure that system design is always

adaptive to the coming new semiconductor process technology. What is more, developers

with functional full-system simulators are facing a simulation wall because of its limited

throughput when simulating systems with hundreds or more cores. Large scale CMP

emulation with multi-FPGA platform is one solution proposed to accelerate system

exploration of design space.

This new methodology reuses the existing IP blocks and components to speed up the design

process and make easy the system verification. Until now, the basic reusable IPs are still too

elementary to quickly build large scale multiprocessors. It is then necessary to raise the size

and complexity of IPs to which we call as small scale multiprocessor (SSM) IPs. Designing

large scale multiprocessors based on small scale multiprocessors allows quickly duplicating

building elements and building a large scale multiprocessor in reasonable design time with

multi-FPGA emulation for fast validation and performance evaluation.

New technologies for MPSoC design are applied into this new methodology:

 - 4 -

 Network on Chip (NoC) communication architecture are used to settle the large scale

system scalability problem;

 High Level Synthesis (HLS) VHDL generation tools accelerate coprocessor conception

and IP reuse;

 Reconfigurable embedded FPGA technology allows the implementation of reconfigurable

NoC;

 Multi-FPGA platform make large scale system emulation realizable.

Full implementation of these strategies and technologies in our new methodology makes it a

very good solution to improve system design productivity and manufacturability.

1.3 Thesis organization

Chapter 2 of this thesis presents some general background of NoC and MPSoC. Definitions,

architecture and performance evaluation are given, then academic and commercial NoCs and

MPSoCs are analyzed and compared. Finally Arteris technology is presented as study case.

Chapter 3 compares state-of-art NoC and MPSoC design methodologies. This chapter

includes a detailed description of some design workflow. These different approaches are

compared and analyzed to overcome their shortcomings. Benchmarks and linear

programming tools are also introduced in this chapter.

Chapter 4 presents a fully automatic multi-objective design space exploration of NoC at TLM

level. The timing and area criteria extracted from RTL level are explored but not limited using

the TLM NoC models. We propose an automatic approach to this problem with three

instances: (1) best-effort optimization (2) latency constrained and (3) area and latency

constrained.

Chapter 5 provides a linear programming method as a solution for the organization and

dimensioning of eFPGA reconfigurable area to maximize the efficiency of network on chip

mapping.

 - 5 -

Chapter 6 describes the details of SSM IP, basic building block for large scale multiprocessor.

Architecture as well as prototyping results are given on a single FPGA chip. Image processing

applications are used as preliminary parallel software evaluation and demonstrate the potential

of design space exploration at small scale multiprocessor.

Chapter 7 presents the workflow for large scale multiprocessor design based on SSM IP. An

automatic design flow is proposed for data parallel and pipelined signal processing

applications on multiprocessor with NoC, using cryptographic application TDES (Triple Data

Encryption Standard) as an example. High level synthesis tool is used to generate hardware

accelerators, which are added to explore the tradeoff in area-performance while still

privileging multiprocessor basis for the implementation. OCP-IP NoC benchmarks are

executed on the generated 48-core and 672-core multi-processor for performance evaluation.

Chapter 8 summarizes the work presented, suggests topics for future work and lists

contributions.

 - 6 -

 - 7 -

2. Multiprocessor and Network on Chip State of the Art

2.1 Multiprocessor on chip

The trend of implementing multicore in a single chip is increasingly dominating the landscape

of new electronics products. Multiprocessors on chip (MPSoC) are strongly emerging and

several products or ongoing R&D projects are tackling the issues related to MPSoC [30-37].

2.1.1 Definitions, Architecture and Performance Evaluation

MPSoC is different to distributed multicore or multiprocessor as all the processing

elements are integrated onto one chip. The major different comes from the communication

architecture: the distributed multiprocessor is connected by Ethernet like network with large

bandwidth but high latency, while MPSoC on-chip communication must be fast and

networking must be simple and effective. Layers on very large scale integration (VLSI)

circuit supply wide of wires to transfer data and control signals. Local proximity of processing

elements and memories accelerates the transport. But still trade-off must be made among

bandwidth, latency and energy consumption.

Figure 2.1 (a) distributed memory, (b) shared memory and (c) mixed memory architecture MPSoC

Flynn’s taxonomy of computer architecture defines 4 classifications: SISD (Signal

Instruction Single Data), SIMD (Single Instruction Multiple Data), MISD (Multiple

Instruction Single Data) and MIMD (Multiple Instruction Multiple Data). MPSoC is most

appropriate to MIMD architecture. And MIMD can be further divided into 2 categories:

 - 8 -

SPMD (Single Program Multiple Data) and MPMD (Multiple Program Multiple Data)

according to the program number. Typically, MPMD system works as Fork-Join

programming model. With the position of memories, MPSoC can be divided into shared

memory architecture and distributed memory architecture.

Ideally, the system with n processor show n times faster performance than a signal

processor. But in reality, its speed-up ranges from a lower-bound log2 n to an upper bound

n/ln n due to conflicts over memory access, IO limitations and inter-processor communication

[29]. The interconnection architecture of MPSoC greatly impacts the system performance.

Three different interconnection methods have been used: bus, crossbar and network on chip

(NoC). And NoC is proposed as the only solution for future large scale MPSoC design.

2.1.2 Academic and Commercial MPSOCs

Table 2.1 provides A few examples of commercial multicore implementations have been

proposed. They can be globally divided in 2 categories: (1) general purpose (2) application

specific. In the first category we can place the ARM ARM11MPcore [30], the MIPS MIPS32

1004 Core [31] and the Renesas/Hitachi SH-X3 [32]. In the second category we can place

Texas Instruments TMS320C6474/ TMS320VC5441DSP [33-35], Freescale QorIQ P4080

[36] and the Toshiba Venezia multicore [37].

Table 2.1 Multicore Implementation

MPSOC Part Com PE
nbr

ARM ARM11 Shared Bus 4
Texas Instruments TMS320C6474 Switch Central Resource 3
Texas Instruments TMS320VC5441 Shared Bus/HPI 4
Freescale QorIQ™ P4080 Corenet Coherency fabric 8
MIPS 1004K™ Core Coherence Manager 4
Toshiba Venezia Bus 8

VeneziaEX
The ARM11 MPcore is a classical shared memory 4 processors based multiprocessor

based on a shared bus architecture with a snoopy cache coherency protocol (MESI). The

MIPS32 1004 is a 1 to 4 multi-threaded "base" cores (up to 8 hardware threads) with

Coherence Management (CM) unit - the system "glue" for managing coherent operation

between cores and I/O, I/O Coherence Unit (IOCU) - hardware block for offloading I/O

 - 9 -

coherence from software implementation on CPUs. Several multicore architectures are

proposed by Texas Instruments. The Texas Instruments TMS320C6474 is a 3 DSP based

multicore architecture with switch central resource (SRC) as the interconnection between the

3 DSP and the memories. The 6474 device contains 2 switch fabrics through which masters

and slaves communicate: (1) data switch (2) configuration switch. The data switch fabric is a

high-throughput intreconnect mainly used to move data across the system and connects

masters to slaves via 128-bits data buses (SCR B) and 64-bit data buses (SCR A). The

configuration switch is used to access peripheral registers. The Texas Instruments

TMS320VC5441 is a 4 core multicore with shared bus between 2 cores and HPI for external

accesses. The Freescale QorIQ™ P4080 is an 8 core multicore architecture with a Corenet

coherency fabric. Each core is a high-performance Power Architecture e500mc cores, each

with a 32-KByte Instruction and Data L1 Cache and a private 128-KByte L2 Cache. The

CoreNet fabric is Freescale’s next generation front-side interconnect standard for multicore

products. However, these devices have a limited number of processors and are not

customizable.

2.2 Network on chip

Network-on-Chip (NoC) is an emerging paradigm for communications within large VLSI

systems implemented on a single silicon chip. As the complexity of integrated systems keeps

growing, NoC provides enhanced performance and scalability in comparison with simple on

chip communication solutions such as dedicated point-to-point signal wires and shared buses.

From a system design viewpoint, with the advent of multi-core processor systems, a network

is a natural architectural choice. NoC can provide separation between computation and

communication; support modularity and IP reuse via standard interfaces; handle

synchronization issues; serve as a platform for system test; and hence, increase design

productivity.

2.2.1 Definitions, Architecture and Performance Evaluation

NoC is a communication network that is used on chip. It is constructed from multiple point-

to-point data links interconnected by switches (a.k.a. routers), such that data can be

transferred from source to destination over several links, by making routing decisions at the

 - 10 -

switches. A high level of parallelism is achieved, because all links in the NoC can operate

simultaneously on different data transfer.

Figure 2.2 Basic NoC realization

A basic NoC consists of switches, links, and network interfaces. Switches direct data

through several links according to switching policy. The logical connections of links are

referred as network topology which is also restricted by physical layout floor-planning. The

function of a network interface (adapter) is to decouple computation (the resources) from

communication (the network). Each IP core is connected to the NoC through a network

interface.

A. Topology

NoC architectures can be designed with both regular and irregular topologies.

Table 2.2 comparison of regular and custom topologies

Regular topologies Custom topologies

Mesh, torus … Irregular topologies

General purpose SoC Application specific SoC

Homogeneous routers Heterogeneous routers

Reuse of topologies Design reuse of routers

Lower design time Longer design time

Lower performance Higher performance

Higher power Lower power

The primary advantage of a regular NoC architecture is topology reuse and reduced design

 - 11 -

time. They are suitable for general purpose architectures, such as the RAW processor that

include homogeneous cores. Regular topologies assume that every core has equal

communication bandwidth with every other core which does not hold in custom SoCs.

Application-specific SoC architectures consist of heterogeneous cores and memory elements

which have vastly different sizes. Consequently, even if the system-level topology is regular,

it does not remain regular after the final floor-planning stage. The alternative option of regular

layout results in a large amount of area overhead. The custom NoC architecture is superior to

regular architecture in terms of power and area consumption under identical performance

requirements. [12, 17, 18] In custom topologies, the switch architecture itself is regular and

can be easily parameterized for reuse.

Figure 2.3 regular mesh topology (a) vs. irregular mesh topology (b)

Some important topologies are listed here and the area cost and performance of each one

are discussed.

Crossbar: NoC are fully connected when all switches are connected to all others in a

matrix manner. The single crossbar does not scale up to large number of network.

Mesh: 2-D mesh is the most common topology. As the switches can be placed regularly

in layout and all links have the same length, commercial multicore processor use mesh

topology for the manufacture facility. The number of network interface (NI) per switch can be

one as usual or more as we propos cluster based mesh. Regular mesh with one NI per switch

has relatively large average distance between NIs and affects negative power dissipation.

 - 12 -

While cluster based mesh overcomes these disadvantages. Traffic load distribution on mesh

topology is an open issue to avoid traffic accumulation in the center of mesh as a hot spot.

Torus: torus adds wrap-around links to the mesh topology. The area of torus is roughly

the same as mesh, but the power dissipation and performance are better because the average

distance is less than in mesh.

Irregular: Application-specific networks can obtain superior performance while

minimizing both area and energy. Foe example, an irregular mesh topology has sufficient

performance comparing to regular mesh but at lower cost, shown as in Figure 2.3 .

B. Switching policy

There are two basic modes of switching: circuit switching and packet switching. In

Circuit switching, a physical path of links and switches is reserved from source to destination

to transfer messages. Packet switching sends message in packet basic. A message make their

way independently from source to destination, no link is reserved for the message.

There are three packet switching choices: store and forward (SAF), cut-through (CT) and

wormhole (WH). SAF method stocks the whole packet in switch input buffer before sending

it to the next switch. The latency per switch is equal or more than the size of packets. CT

method reduces the per switch latency by forwarding the packet as soon as the head

information is available for switch arbiter. The payload of packet is sent after without delay is

there is space available in the next switch. Other whiles, the whole packet is buffered. Both

SAF and CT methods require critical buffer capacity, while WH method reduces the buffer

requirement to one flit at smallest by forwarding each flit to the next switch as soon as there is

buffer space for that flit. The whole packet is cut into flits and spreads over the NoC coined as

wormhole switching.

Circuit switching is better to guarantee bandwidth for relatively static communication,

which is frequency sent and long enough to amortize the high setup latency due to the initial

set-up phase before data transmission. Packet switching has no dedicated reserved circuits and

therefore supports more concurrent traffic. However, the buffering and concurrency

introduces unpredictable latency. As packet switching does not need set-up and torn down

phases, it is more suitable for small and dynamic traffics.

 - 13 -

C. Network Interface

Network interface (NI) is glue logic to adapt communication cores to the network.

Standardized interface is required for integrating intellectual property (IP) cores of diverse

communication bus-specific interfaces: such as AMBA (Advanced Microcontroller Bus

Architecture), AHB (Advanced High-performance Bus) and OCP (Open Core Protocol) bus.

These NIs support standard IP interface protocol make easy the reuse of IP core into NoC

based system on chip and greatly speedup the productivity of system design.

Network interface adapt the IP core communication protocol to the proper communication

protocol of NoC by packetization service. It encapsulates and decapsulates data between bus

and NoC interfaces by specifying the transaction service. Attentions are paid to guarantee the

bandwidth and minimize latency caused by NIs. A software library of instructions should be

supplied to support the access of memory. And cash coherence, which is easy to achieve on a

bus by snooping, needs new protocols on NoC to realize multiprocessor on chip at low cost.

D. Performance Evaluation

The most important metrics for NoCs are application execution time, silicon area, power

consumption, and latency. All these are to be minimized and Pareto solution of large scale

exploration is expected.

Different evaluation methods can be used to measure system performance: model based

analysis [40,41], simulation and real chip execution. Mathematical model analysis is fast but

not precise, which can be used at the first step for fast verification to minimize exploration

space. SystemC based simulation, is widely used in academic research but as the system

getting more and more complex, the simulation speed is not enough. FPGA platform based

emulation is proposed as the solution for large scale exploration.

 We argue that execution time should be measured on real time rather than cycle numbers

[42]. A comparison example is given in Figure 2.4. These results are obtained by emulation

on a multi-FPGA platform. Results are recorded both on cycle and time with the same

configurations.

 - 14 -

Figure 2.4 Cycles Based Results vs. Time Based Results

As it can be seen from the above figures time based and cycle based results of the same

evaluation are different. In fact, systems of different configurations can not achieve the same

working frequency. As the maximum frequency of system augment, the real execution time

decreases quickly. In this way, we say that the way using the numbers of cycles as the

measure of system performance is misleading and imprecise.

The impact of different options on the system’s frequency must be taken into

consideration, especially in the case of SoC design using ASIC devices, on which the

maximum working frequency of system is sensible to the system configuration, PAR (place

and rout) options and even the RTL language coding style.

2.2.2 OCP-IP NoC micro-Benchmarks

The OCP has released a comprehensive set of synthetic workloads as micro-benchmarks for

the evaluation of network on chip. A section on performance benchmarking specifically

describes requirements and features for application programs, synthetic micro-benchmarks,

and abstract benchmark applications. It then proposes ways to measure reliability, fault

tolerance, and testability of the on-chip communication fabric.

Although micro-benchmarks cannot represent a real application well they are complementary

to application benchmark. OCP defines two classes of communication services: best effort

and guaranteed services. The best effort is connection-less, delivering packets in a best-effort

fashion. It has no establishment phase, and sources send packets without the awareness of

states in destinations. The guaranteed service is connection-oriented providing certain bounds

in latency and/or bandwidth. A connection is a unidirectional virtual circuit setting up from a

 - 15 -

source NI to a destination NI via the network. The network reserves resources such as buffers

and link bandwidth for connections.

Figure 2.5 Measurement configuration

2.2.3 Academic and Commercial NOCs

This is a survey of nowadays Network on Chip design. NoC is expecting to be the future

communication architecture for System on Chip. The design of NoC combines topology

generation, core to router mapping and communication routing.

Table 2.3 characteristic of NoC design tools

 Aethereal
[2]

Xpipe

[3,4]

Danube

[5, 6]

Arizona

[28]

Nostrum

 [38]

TeraFlops

[39]

Industry

support

Phillips iNoCs Arteris no no Intel

SystemC

level

TLM flit-

accurate

CA TL0, CA no ? no

NoC

topology

regular custom custom custom mesh mesh

Switching

policy

Circuit and

WH

WH WH ? Circuit

SAF

WH

Network

interface

AXI OCP OCP AXI, OCP no OCP? ?

Evaluation

method

TDMA

model

simulation

fast engine

Simulation

synthesis

Simulation

ASIC

FPGA

simulation simulation FPGA

ASIC

 - 16 -

In developing its Aethereal [2] Network-on-Silicon (NoS), Philips decided to use a

combination of circuit and packing switching, asynchronous transfer mode, to enable

communications between IP blocks. It is hardware architecture with a programming model

based on the OSI reference model, which allows the structuring of communication complexity

from the physical implementation up to the application in a number of layers. It use regular

topology and support AXI network interface. A unique feature of aethereal [2] is the fast

automatic performance verification: given the NOC hardware and configuration, the

guaranteed minimum throughput, maximum latency, and minimum buffer sizes are

analytically computed for all guaranteed connections. The guaranteed communication

services of Æthereal are essential to achieve this. Any NOC instance and configuration can be

verified, whether automatically or manually created.

Arteris NoC Solution [5, 6] consists of the Danube Intellectual Property Library and a suite

of design tools for configuring and implementing the IP library as synthesizable RTL. It uses

wormhole packet switching. The Danube Intellectual Property Library contains a set of

configurable building blocks managing all on-chip communications between IP cores in SoC

designs. The topology is totally customer defined. It supports AXI and OCP protocols. The

simulation engine of NoCexplorer [5] computes the dependencies between the occupation

time of each resource, arbitrates between transactions and allocates the resources to the

transactions. The engine solves a set of equations analogous to description of fluid quanta

moving in a network of pipes of various throughputs. The model is not event-driven, and

clocks rates are taken into account by computing peak throughput of resources. The model is

throughput-accurate and deals with latencies caused by conflicts in accessing resources, and

tine spent by packets in buffers.

Xpipes Compiler [3, 4], is a tool for automatically instantiating an application-specific NoC

for heterogeneous Multi-Processor SoCs. The Xpipes Compiler instantiates a network of

building blocks from a library of parameterized soft macros (switches, network interfaces and

links) described in SystemC at the cycle-accurate level. The network components are

optimized for that particular network and support reliable, latency insensitive operation.

The group of Chatha [28, 12] develops their own model of NoC component. It’s a VHDL

based cycle accurate model for evaluating the latency, dynamic and leakage power of NoC

based interconnection architecture. Comparing to Xpipe power model, which is obtained by

 - 17 -

estimation of dynamic power due to switched capacitances, they get both power consumption

due to controller and leakage power using SPICE and simulation. The problem is they don’t

support high level system simulation for quick verification.

 Nostrum [38] is a mesh architecture NoC. It combines Virtual circuit and packet switching

to supply both guaranteed and best effect (BE) services by mapping guaranteed service to

virtual circuit and BE services to packets. No network interface support is reported and all the

results are getting from simulation.

 TeraFlop NoC [39] is a 10x8 2-D mesh architecture operating at 4 GHz. Wormhole

switching policy is used. The max bandwidth between PEs gets to 80 Gbps. A router interface

block (RIB) encapsulates packets between PE and switch.

2.2.4 Case study: Arteris Technology

Arteris [3,4] is developing innovative and patented technology to enable designers to

efficiently connect and manage the on-chip traffic requirements among all the various

elements required in today’s SoC designs.

Arteris1 SA is a start-up company based in Paris, France and founded in 2003 by a group

of semiconductor industry veterans. The company’s focus is on the next-generation of

challenges associated with system on chip (SoC) design: on-chip communications, or

Network-on-Chip (NoC). Arteris is developing innovative and patented technology to enable

designers to efficiently connect and manage the on-chip traffic requirements among all the

various elements required in today’s SoC designs.

A possible topology is illustrated in the Fig.7, which only shows the request network to

simplify the graphic. The NoC interfaces all devices through Network Interface Unite (NIU),

which are also part of the Danube library. The proposed solution uses three lock domains that

match the initiator/target operating frequencies. Transport units are implemented as

configurable generators that are parameterized with Arteris NoCcompiler.

1 Arteris is a registered trademark of Arteris S.A.

 - 18 -

Figure 2.6 Example SOC Design

2.2.4.1 Arteris NoCexplorer

Figure 2.7 NoCexplorer workflow

NoCexplorer is the first link in the chain of Arteris NoC solution suite of Network on

chip design tools. NoCexplorer is dedicated to the system architecture phase of the design

process. More precisely, it is used to define the NoC interface, its quality of service (QoS)

requirement, and elaborate a NoC topology compatible with these constraints.

Input to NoCexplorer is provided in the form of scripts, which relies on a subset of syntax

and semantics derive from Python programming language. NoCexplorer simulations combine

 - 19 -

IP interface specifications, traffic requirements and QoS constraints with NoC architecture

specifications. NoCexplorer then reports the results in QoS pass-fail terms, traffic statistics

and performance graphs. When simulation results match the requirements for each SoC use

case, the resulting topology can be published into a PDD file, which can be then handed over

to designers for actual implementation using NoCcompiler software and Arteris IP library.

2.2.4.2 Arteris NoCcompiler

Figure 2.8 NoCexplorer workflow

NoCcompiler is the second stage in the flow of the Arteris NoC Solution suite of

Network on Chip design tools. The architecture topology and NoC component specification

can be used to implement the NoC using NoCcompiler. NoCcompiler allows to:

 select Arteris NoC IP generators and other add-in generators that are needed to

evaluate the NoC design,

 create custom NoC modules into a hierarchical net-list,

 save the resulting design into a project description document (PDD)

 test the NoC in order to identify the connectivity problems, obtain the area

estimations, and evaluate the performance in network simulation

 export project into a file compatible with several compatible industrial RTL standard

(VHDL, Verilog, SystemC), for simulation or synthesis.

 - 20 -

Figure 2.9 NoCcompiler Flow

When NoCcompiler is started, the program opens with an empty project pane. Project is

built by three steps:

1. parameterization
The following objects should be added into the project:

 folders, to organize design intents, modules and generation

 modules, to instantiate the generation and other modules

 generations, based on one or more generators selected from the NoC IP library

 export option and socket types, also selected from the NoC IP library

When the project is valid, that is, when it contains at least one valid module, a protocol,

an export generation, and any other generations required by design, it is ready to pass the next

step.

2. implementation
 Implementing a project involves opening a module in the netlist windows, instantiating

the generation or modules required by design and connecting all the nets and ports correctly.

3. export
 Once the project has been correctly implemented, that is, then the project status icon

is green, the design can be exported by various export commands for RTL simulation and

implementation. Supported RTL formats are VHDL,Verilog and SystemC.

 - 21 -

2.2.4.3 Special Element

Figure 2.10 packet transport portion

More specifically, the Arteris Danube Library contains the Packet Transport Unit (PTU)

generators which build the packet transport portion of the NoC which is comprised of a

request network and a response network.

Inside the Arteris NoC has its own transport protocol and interface: NoC Transaction and

Transport Protocol (NTTP) and Media Independent NoC Interface (MINI), which make sure

its stability and applicability in different design application areas.

Table 2.4 Arteris Danube Library main components

PTU
elements

Description

switch key component that arbitrates and routes packets in the network
mux arbitrates between several flows and multiplexes them over a single link

sync-fifo provides buffering to avoid congestion
bisync-fifo Performs resynchronization from asynchronous domains
Clock-conv Connect links from distinct clock domains
Rate-adapter Removes wait cycles that may arise when implementing units such as

bisync-fifo
Bandwidth

limiter
Prevent initiators from consuming too much bandwidth of a link or a target

Meso-link Packet transport unit for long distance connections where the endpoints may
be asynchronous in GALS systems

 - 22 -

2.2.4.4 Arteris switch

Figure 2.11 Arteris switch interface

Switch is the basic unit of all kinds of Network on Chip. The arteris Danube library

includes the switch generator, which is an essential building block of the NoC interconnect

system. The goal of this component is to accept NTTP packets got by input ports, and forward

each packet to a specific output port.

Figure 2.12 Switch internal architecture

The main features of Arteris switch are:

 fully synchronous operation

 internal full crossbar: up to one data word transfer per MINI port and per cycle

 Full throughput arbitration: up to one routing decision per input port and per cycle

 wormhole routing to reduce latency

 Freely cascading connection, supporting any loop-less network topology

 Pressure support for enhanced arbitration decision-making

 Lock support

 - 23 -

Figure 2.13 functional view of switch

A functional view of the switch potation is presented on the figure above: there is one route

table per Rx port, and one arbiter per Tx port. Packet switching consists of four stages:

Stage 1: choosing the route

Using relevant information extracted from the packet received, the route table selects a

target output port

Stage 2: Arbitrating

Since more than one single input port can request a given output port at a given time,

an arbiter selects one requesting input port per output port. The arbiter maintains the

input-output connection until the packet is transited in the switch.

Stage 3: Switching

Once routing and arbitration decisions have been made, the switch transports each

word of the packet from input port to output port.

Stage 4: Arbiter release

Once the last word of a packet has been pipelined into the crossbar, the arbiter releases

the output, making it available for other packets

The switch component architecture can be customized through several options described

in the following table.

Table 2.5 Arteris Danube Library Switch component options

Switch options values
Arbitration type Round-Robin(0), LRU(1), Random(2), Fifo(3)
Input pipeline register True(1), false(0)
Forwards pipeline register True(1), false(0)
Backwards pipeline register True(1), false(0)
Crossbar pipeline register True(1), false(0)
Dual cycle arbitration True(1), false(0)

 - 24 -

2.2.4.5 Arteris arbiter library

In a switch, each output port has its own arbiter to decide between multiple packets

destined to the same output. The arbitration algorithm is defined per output port. As listed in

the table, there are four different arbitration algorithms:

1. Random
The RANDOM arbiter uses a 16-bits pseudo-random LFSR that is updated at each cycle.

The arbiter’s value is used to choose the input ports that are requesting the same output port

simultaneously.

2. Round-Robin
The Round-Robin arbiter guarantees faire treatment among requests. One of the requests

is given the highest priority until it is granted service, then the priority passes to the next

request in round-robin order. In an example of 8-input arbiter whose order of priority is:

0,1,2,3,4,5,6,7, if input number 3 requests the output port, the priority order is updated when

this input is granted service. The order changes to 4,5,6,7,0,1,2,3.

3. LRU
The LRU arbiter gives the highest priority to the least recently serviced request and gives

the lowest priority to the most recently serviced one. Assuming an 8-input arbiter whose input

priority order is: 0,1,2,3,4,5,6,7. If input number 3 requests the output port, the priority order

is updated when the input is granted service and the order is now: 0,1,2,4,5,6,7,3.

4. FIFO
The FIFO arbiter takes into account the arrival order of requests and gives the highest

priority to the least recently arrived one

2.3 Conclusion

MPSoC is increasingly dominating the landscape of new electronics products. It is different to

distributed multicore or multiprocessor as all the processing elements are integrated onto one

chip. MPSoC is most appropriate to MIMD architecture. The interconnection architecture of

MPSoC greatly impacts the system performance. 6 commercial multiprocessors are compared.

Three different interconnection methods have been used: bus, crossbar and network on chip

(NoC). And NoC is proposed as the only solution for future large scale MPSoC design. A

basic NoC consists of switches, links, and network interfaces. There are many metric to

 - 25 -

evaluation NoC architecture such as: Quality of Service (QoS), bandwidth, operating

frequency, error tolerance, wire length, latency jitter, or packet loss. We think the most

important metrics for NoCs are application execution time, silicon area, power consumption,

and latency. These metrics are used in our design space exploration for Pareto front series of

solutions. We argue that execution time should be measured on real time rather than cycle

numbers, which means system frequency must be at least measured for simulation results.

Single transaction level simulation without RTL implementation is meaningless. OCP-IP NoC

micro-benchmark is an initiative toward open Network-on-Chip (NoC) Benchmarking. 6

different NoC models and tools are discussed and finally the Arteris Danube NoC library is

studied, which is used for our multiprocessor conception.

References
[1] L. Benini and G. De Micheli, Networks on chip: A new SoC paradigm., IEEE Computer, 2002
[2] Kees Goossens; John Dielissen; Om Prakash Gangwal; Santiago Gonzalez Pestana; Andrei Radulescu;

Edwin Rijpkema, A Design Flow for Application-Specific Networks on Chip with Guaranteed Performance
to Accelerate SOC Design and Verification, in Proc. of Desing, Automation and Test in Europe Conference
and Exhibition, 2005

[3] A.Jalabert et. al, ×pipesCompiler: A Tool For Instantiating Application Specific Networks on Chips, Proc.
DATE, 2004

[4] S. Stergiou et. al, xpipesLie: A Synthesis Oriented Design Library for Network on Chips, Proc. DATE,
2005

[5] NoCexplorer User’s Guide, solution 1.4, Arteris S.A.
[6] NoCcompiler User’s Guide, solution 1.4, Arteris S.A.
[7] S. Murali and G. De Micheli, SUNMAP: A tool for automatic topology selection and generation for NOCs.

In Proc. of the Design Automation Conf., pages 914-919, June 2004
[8] S. Murali and G. De Micheli, Bandwidth-constrained Mapping of Cores onto NoC Architectures. In Proc.

DATE04, June 2004
[9] U. Ogras and R. Marculescu. Application-specific network-on-chip architecture customization via long-

range link insertion. In Proc. Intl. Conf. on Computer Aided Design, November 2005
[10] U. Ogras and R. Marculescu. Energy- and performance-driven noc communication architecture synthesis

using a decomposition approach. In Design, Automation and Test in Europe, March 2005
[11] J. Hu and Radu Marculescu, Exploiting the routing Flexibility for Energy/Performance Aware mapping of

Regular NoC Architectures Proc. DATE, 2003
[12] K. Srinivasan; K. S. Chatha; G. Konjevod. Linear-programming-based techniques for synthesis of network-

on-chip architectures. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 14(4):407–420,
April 2006

[13] K. Srinivasan; K. S. Chatha; G. Konjevod, Application Specific Network-on-Chip Design with Guaranteed
Quality Approximation Algorithms, Proc. ASP-DAC, 2007

[14] K. Srinivasan; K. S. Chatha, ISIS: A Genetic Algorithm based Technique for Custom On-Chip
Interconnection Network Synthesis, Proc. VLSID, 2005

[15] K. Srinivasan; K. S. Chatha, A Methodology for Layout Aware Design and Optimization of Custom
Networkon-Chip Architectures, Proc. ISQED, 2006

[16] H. S. Wang, X. Zhu, L. S. Peh, and S. Malik. Orion: A power-performance simulator for interconnection
networks. In Proceedings of the 35th International Symposium on Microarchitecture (MICRO), pages 294–
305, November 2002

[17] D. Bertozzi, A. Jalabert, S. Murali, R. Tamhankar, S. Stergiou, L. Benini, and G. De Micheli. NoC synthesis
flow for customized domain specific multiprocessor systems-on-chip. IEEE Transactions on Parallel and
Distributed Systems 16(2):113–129, February 2005

 - 26 -

[18] S. Murali; P Meloni; F. Angionlini et. al. Designing Application-Specific Networks on Chips with Floorplan
Information, Proc. ICCAD, 2006

[19] J. G. Kim and Y. D. Kim, A linear programming based algorithm for floorplanning in VLSI design, IEEE
Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 22, no. 5, pp. 584–592, May 2003.

[20] M. Charikar and A. Karagiozova, On non-uniform multicommodity buy-at-bulk network design., In
STOC ’05: Proc. of the 37-th Ann. ACM Symp. on Theory of Computing, pages 176–182. ACM Press,
2005

[21] A. Pino; Luca Carloni; A. Sangiovanni-Vincentelli, Synthesis of Low Power NOC Topologies under
Bandwidth Constraints, Technical Report No. UCB/EECS-2006-137, EECS University of California at
Berkeley

[22] A. Hansson; Kees Goossens; A. Radulescu, A Unified Approach to Constrained Mapping and Routing on
Network on Chip Architectures, Proc. CODES+ISSS, 2005

[23] G. De Micheli and L. Benini. Networks on chip. Morgan Kaufmann, 2006
[24] GLPK, www.gnu.org/software/glpk/
[25] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-

Completeness.W. H. Freeman and Company, NY, 1979
[26] S. Murali, L. Benini, and G. De Micheli, Mapping and Physical Planning of Networks-on-Chip

Architectures with Quality-of-Service Guarantees, in ASP DAC, vol. 1, pp. 27-32, 2005
[27] N. Sherwani, Algorithms for VLSI Physical Design Automation. Kluwer Academic Publishers, 1995
[28] N. Banerjee, P. Vellanki, and K. S. Chatha, A power and performance model for network-on-chip

architectures, in Proc. Des. Automat. Test Eur., 2004
[29] David E. Culler and Jaswinder P. Singh, Parallel Computer Architecture, Morgan Kaufmann Publishers, San

Francisco,2005
[30] ARM 11 MPCore http://www.arm.com/products/CPUs/ARM11MPCoreMultiprocessor.html
[31] MIPS32® 1004K™ Core http://www.mips.com/products/processors/32-64-bit-cores/mips32-1004k/
[32] S.Shibahara, M.Takada, T.Kamei, K. Hayase, Y.Yoshida, O. Nishii, T. Hattori, SH-X3: SuperH Multi-Core

for Embedded Systems, Hot Chips 19th, Aug. 19-21 2007, Stanford, USA.
[33] Texas Instruments Multicore Fact Sheet SC-07175
[34] Texas Instruments TMS320C6474 Multicore DSP SPRS552 – Oct. 2008
[35] Texas Instruments TMS320VC5441 Fixed-Point DSP data manual SPRS122F – Oct. 2008
[36] QorIQ™ P4080 Communications Processor

http://www.freescale.com/webapp/sps/site/overview.jsp?nodeId=0162468rH3bTdG25E4
[37] T.Miyamori, Venezia: a Scalable Multicore Subsystem for Multimedia Applications, 8th International

Forum on Application-Specific Multi-Processor SoC 23 - 27 June 2008, Aachen, Germany
http://www.mpsoc-forum.org/

[38] M. Millberg, R. T. E. Nilsson, and A. Jantsch, “Guaranteed bandwidth using looped containers in
temporally disjoint networks within the Nostrum network on chip,” in DATE, Feb. 2004, pp. 890–895.

[39] D. Bertozzi et al., “NoC synthesis flow for customized domain specific multiprocessor systems-on-chip,”
IEEE Trans. Parallel and Distributed Systems, vol. 16, no. 2, pp. 113–129, Feb. 2005.

[40] M. Jersak and K. Richter and R. Ernst. "Performance Analysis for Complex Embedded Applications." In
International Journal of Embedded Systems, Special Issue on Codesign for SoC, 2004.

[41] Simon Schliecker and Jonas Rox and Mircea Negrean and Kai Richter and Marek Jersak and Rolf Ernst.
"System Level Performance Analysis for Real-Time Automotive Multi-Core and Network Architectures." In
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on, Volume 28, July 2009,
pp. 979-992

[42] X.LI, O.HAMMAMI, “NOCDEX: Network on Chip Design Space Exploration through Direct Execution
and Options Selection through Principal Component Analysis”, Industrial Embedded Systems, 2006. IES
'06. International Symposium on, page(s): 1-4

 - 27 -

3. MPSOC Design Methodologies

Homogeneous and heterogeneous multiprocessors are two important and distinct branches of

MPSoCs design. Inter-processor communications is very important for MPSoC design. Until

now little MPSoC designs are NoC communication architecture based. A survey shows that

until now there is no workflow for multiprocessor on chip design based on NoC technology

larger than 32 cores. In this thesis, we propose the first industrial tools supported independent

design workflow for large scale MPSoC design.

3.1 MPSOC Design and Synthesis

Beside of high performance, embedded on-chip multicore computing is real time restricted,

which makes it different from multi-processor computing. Applications like multimedia

applications require not only large computation but also strict timing deadline. Furthermore,

these MPSoC systems is often designed under strict power and cost budgets.

MPSoCs design has two important and distinct branches: homogeneous and

heterogeneous multiprocessors [36]. The homogeneous architecture is good candidate for

data-parallel systems. Heterogeneous architectures are designed for heterogeneous

applications with complex block diagrams that incorporate multiple algorithms, often using

producer–consumer data transfers. MPSoC design targets for applications with multiple

algorithms, which demand various computation and communication: types of operations,

memory bandwidth and access patterns, activity profiles, etc. Such variations argue for

heterogeneous architectures. Hardware and software architecture of MPSoC is tuned to meet

the specific requirements of a particular set of applications while providing necessary levels

of programmability. Because embedded system designers have specific goals and a better-

defined set of benchmarks, they can apply optimization algorithms to solve many design

problems.

 - 28 -

Inter-processor communications is very important for MPSoC design. Buses are the

traditional interconnection architecture for System on Chip (SoC) design. ARM AMBA and

IBM CoreConnect buses are well known in the commercial processor design area. The OCP

(Open Core Protocol) is proposed as an effective means to simplify the interconnection

through the standardization of core interface protocol. As the number of processor in MPSoC

grows exponentially, Network on Chip (NoC) is proposed as the only solution for the required

communication bandwidth, design scalability and energy restrict. Choosing the right mix of

standard buses, point to point communications, shared memory, and emerging network on

chip is the one of the most important conception in MPSoC design.

3.1.1 Benchmarks

Benchmarks are so important both in the research and industrial area that they greatly

motivate the progress of information technology and better formulation and algorithms. For

example, the benchmarks SPEC [1], (Standard Performance Evaluation Corporation) and

Mediabench[2] have a good contribution to the improvement of CPU design. In other hand,

common benchmarks allow other researchers to redo and compare the results produced by

their own with ours, making the communication between researchers more easily.

There are mainly two approaches to benchmarks.

Many researchers have attempted to developed free benchmarks, inclosing Task Graphs

For Free [4] (TGFF), RAW benchmarks suit [5] and MiBench[6]. They are designed based on

industry standard such as SPEC or EEMBC, more over they are open to download for all the

researchers.

TGFF generates task graphs for scheduling and allocation research problems involving

periodic or non-periodic task sets, in accordance with the user’s parameterized graphs and

resources. Users have parametric control over an arbitrary number of attributes for tasks,

processors and communication resources. The capability of sharing parameter setting allows

researchers to reproduce the examples used by others.

The RAW benchmarks suit is targeted to the reconfigurable computing system. It consists

of twelve programs including sorting, matrix operations, and graph algorithms. The most

 - 29 -

interesting point is they have developed a RAW Computation Structure which can be

automatically compiled into large scale FPGAs without user’s intervention.

MiBench is developed based on the industrial standard SPEC2000 and is adapted to the new

instruction set of ARM. Following EEMBC, all 35 applications are divided into different suits

including: Automotive and Industrial Control, Consumer Devices, Office Automation,

Networking, Security, and Telecommunications. MiBench is available as stand C sources

which are portable to any platform with compiler, but it contains many file operations which

are not easy to realize in diverse real embedded systems without standard file components.

And it will take time to allocate these applications into multi-processors as the developers

have not considered the parallel computes.

The best choice is to use an industrial standard as our own benchmarks. There have been

some efforts in the area of embedded system design, notably the suit developed by the EDN

Embedded Microprocessor Benchmark Consortium [3] (EEMBC). Recognizing the difficulty

of using just one suit to characterize such a diverse embedded application domain, they have

instead produced 9 different suits targeting Automotive, Consumer, Digital Entertainment,

Java, Networking, Office Automation, Telecom and an additional suite that allows users to

observe the energy consumed by the processor when performing these algorithms and

applications. The goal of its members is to make it an industry standard for evaluating the

capability of embedded microprocessors, compilers and Java implementations. EEMBC also

has MultiBench as a multicore-specific benchmarks that span multiple application areas

 MultiBench 1.0 [37] is a suite of embedded benchmarks that allows processor and system

designers to analyze, test, and improve multicore architectures and platforms. MultiBench

uses standardized workloads and a test harness that provides compatibility with a wide variety

of multicore embedded processors and operating systems. It extends the EEMBC scope to

analyze multicore architectures, memory bottlenecks, OS scheduling support, synchronization

efficiency, and other related system functions. It measures the impact of parallelization and

scalability across both data processing and computationally-intensive tasks. It aims to provide

an analytical tool for optimizing programs on a specific processor. This is first generation

targets the evaluation and future development of scalable SMP architectures.

 - 30 -

3.1.2 Design methods of MPSoC

Table 3.1 characteristic of current MPSoC design workflow
Method description Objective and

algorithm

Processor

Size

Architecture Platform applications

Simulink to

RTL[39,40]

(TIMA,

Korea,

Zhejiang

Univ)

Gradual refinement flow

from Simulink model to

RTL hardware and

software specification.

1. Performance of

total cycle

2.Manuel mapping

tuning

ARM7

Xtensa

CKCore

<=4

FIFO

homogenous

Simulink

SystemC TLM

FPGA

SMIC 0.13 µm

Motion-

JEPG

H.264

HOPES [41]

(HA Korea)

multi-task signal

processing application

aiming to minimize the

system cost while

satisfying the real-time

constraints.

1. Execution time

and system cost

2. exclusive?

High level

model

<=4

Bus

homogenous

SystemC DSP appls

MAMPS [42]
(Eindhoven)

methodology to generate

multiprocessor systems

in a systematic and fully

automated way for

multiple use-cases

1. Buffer-size and

throughput

2. Exclusive for

execution ;

heuristic for

partitioning

MicroBlaze

4

P2P FSL

homogenous

FPGA JPEG, H.263

Mobile

STARSoC

[43]

(UMR CNRS)

transaction-level

modeling co-simulation

methodology for

embedded open

architecture platform

1.Simulation time

2. no DSE

openRISC

ISS

2

Bus

homogenous

SystemC TLM

RTL

OS

Embedded

application

Daedalus [44-

48]

(NL)

fully automatic tool-

flow for design space

exploration, system-

level synthesis,

application mapping,

and system prototyping

of MP-SoCs

1.Performance of
total cycle and
FPGA resource
2. SPEA2

MicroBlaze

HW DCT IP

PowerPC

<=24

P2P CC CB

heterogeneous
trace-driven
cosimulation
FPGA

multimedia

System-

CoDesigner

[49,50]

(Erlanger U)

fast design space

exploration and rapid

prototyping of

behavioral SystemC

models synthesized

with Forte Design

Systems

1. latency,

throughput and

FPGA resource

2. Heuristic

Multi–Objective

PB Solver[49]

1 MB

19 HW IP by

Forte

P2P FIFO

heterogeneous

SystemC

FPGA

Motion-

JEPG

SoCDAL [51]

(CHOI Seoul)

automatic convert the

model to hierarchical

SDF model and extend

1. Execution cycle

and system cost

2. QEA extension

2 ARM7

4 HW models

Bus

heterogeneous

SystemC JPEG, H.263

H.264

 - 31 -

 QEA algorithm to

efficient application to-

architecture mapping

CoMPSoC

[52, 53]

(Philips)

integrated flow to

automatically generate a

highly configurable NoC-

based MPSoC for FPGA

instantiation.

1. execution time

and cycle

2. no DSE

3 Silicon

Hive VLIW

NoC

homogenous

FPGA JPEG

filter

3.1.2.1 Simulink model based workflow of TIMA and Zhejiang University

A gradual refinement flow starting from Simulink model to a synthesizable and executable

hardware is proposed by TIMA and Zhejiang University [39, 40]. The proposed methodology

consists of five different abstract levels: (1)Simulink combined algorithm and architecture

model (CAAM) for high-level algorithm and architecture specification, (2)virtual architecture

(VA) model for early development and validation of the multithreaded application software,

(3)transactional accurate architecture (TA) model for fast verification of hardware

architecture and operating system (OS) library, (4)virtual prototype (VP) model for accurate

system verification and performance estimation, and (5)RTL model for FPGA emulation and

ASIC implementation.

 - 32 -

Figure 3.1 Design refinement from application codes to low-level implementation

Application specification is the starting point for the design process, and the mapping of an

algorithm to architecture at CAAM level is an essential step from conception to

implementation. According to feedback from the simulation at different abstraction levels, the

architecture of the CAAM model can be modified until the design requirement is satisfied.

But this exploration is reported as manual tuning step and no elite algorithm is used. Vperl

enhances the automatic generation of Verilog code form CAAM level. FIFO is used for inter-

processor communication, which is not scalable for large scale system and the final

implemented system is limited to 4 ARM processors.

3.1.2.2 HOPSE design flow

HOPSE, a DSE based on Synchronous Data Flow (SDF) is described in [41]. It aims to find

MPSoC architecture for multi-task signal processing application with single objective to

minimize system cost while satisfying the real-time constraints. (1) With a library of HW PEs,

 - 33 -

SDF model is used to select processor, map task and estimate performance before simulation;

it prunes the exploration space and saves the time. (2) Then HW/SW cosimulation is

performed to obtain memory traces. (3) These traces are used to for communication

architecture selection. Again, estimation method prunes the design space before trace-driven

simulation. (4) Global DES of these two steps is iterated to find the Pareto solutions between

system performance and system cost.

Figure 3.2 HOPSE design flow

 This high level DSE separates the cosynthesis and communication synthesis, which in one

way make easy the workflow, but in another way adds extensional exploration step. SDF

model based estimation accelerates the exploration but is not precise. Bus is the basic

communication architecture in design library, but NoC communication is hard to estimate,

which make the work less scalable. Only one objective: system cost is considered under real-

time constraints. More design objectives should be added to the workflow and combination of

RTL level implementation will make the work practice.

3.1.2.3 MAMPS design workflow

MAMPS [42] is a design methodology to generate multiprocessor systems in a systematic and

automated way for multiple use-case of multi application on a signal FPGA platform.

Multiple use-cases are merged into one hardware design to minimize cost and design time.

Heuristics to partition use-cases are also presented such that each partition can fit in an FPGA,

and all use-cases can be catered for.

 - 34 -

Applications are specified in the form of synchronous data-flow (SDF) graphs. From these

application descriptions, a multiprocessor system is generated. The total number of processors

in the final architecture corresponds to the maximum number of actors in any application. All

the edges in an application are mapped on a unique FIFO channel. Since multiple applications

running concurrently, there is often more than one link between some processors. In addition

to the hardware topology, the software for each processor is also generated. A use-case

represents a collection of multiple applications that are active simultaneously. To merge

multiple use-cases into one design to save precious synthesis time and minimize hardware

cost. (1) The algorithm iterates over all use-cases to compute their individual resource

requirements. (2) Communication matrix is first constructed to generate the entire hardware

for FPGA. (3) Software for each use-case is generated with communication matrix and

compiled for direct execution on FPGA.

Figure 3.3 MAMPS design workflow for multiple use-case

As the number of use-cases to be supported increases, the minimal hardware design

increases as well, and it often becomes difficult to fit all use-cases in a single hardware design.

An approximation algorithm, called the greedy algorithm is means to have as few number of

hardware partitions as possible. The largest feasible subset of use-cases is first selected and a

hardware partition created for it. This is repeated with the remaining use-cases until all use-

cases are covered. FPGA resources are estimated as hardware synthesis takes lots of time.

 - 35 -

The hardware part is executed only once, whereas the software part is iterated until results

for all the use-cases are obtained. This flow makes execution of multiple use-cases a lot faster,

since hardware synthesis is no longer a bottleneck in system design and exploration. Lack of

real time constraint is the biggest problem of this evaluation design flow. FIFO is feasible for

this small scale system but is not scalable as the system getting larger. With a bigger FPGA

and large scale MPSoC, applications can be mapped onto separate processing elements and

there is no need for this merging technology. By contract, the mapping of multiple

applications onto large scale MPSoC is totally different research.

3.1.2.4 STARSoC design workflow

STARSoC [43] is a SystemC Transaction-Level modeling co-simulation flow with integration

of openRISC instruction set simulator OR1Ksim and the SystemC simulation components

like wishbone bus and memories. The input description consists of a set of communicating

parallel software and hardware processes described in C-code. (1) Number of processors and

the list of peripheral input/output components connected to each processor are specified.

(2)After hardware-software partitioning, the hardware part is synthesized into register-transfer

level architecture, and the software part is distributed to the available processors.

Mixed language co-simulators generate a communication overhead between different

simulators, often resulting in a significant degradation in the execution time. It is thus

necessary to use the same language for modeling software and hardware, and simulating these

models at system level in a unified systems design approach. The hardware and software

partitions are defined by the user manually and no DSE is available.

3.1.2.5 Daedalus design workflow

Daedalus [44-48] offers a fully integrated tool-flow in which design space exploration (DSE),

system-level synthesis, application mapping, and system prototyping of MPSoCs are highly

automated. There are specifications at three different levels of abstraction in the flow, namely

system level, RTL level and gate level. Application Specification describes an application as a

KPN which is the workflow input. (1) SESAME, a design space exploration tool generates the

platform and the mapping specifications automatically. These system level specifications are

given as input to ESPAM. (2) First, ESPAM constructs a platform instance from the platform

 - 36 -

specification and runs a consistency check on that instance. (3) Second, ESPAM refines the

abstract platform model to an elaborate (detailed) parameterized RTL model that is ready for

an implementation on a target physical platform. (4) Finally, ESPAM generates a program

code for each processor in the multiprocessor platform in accordance with the application and

mapping specifications. (5) With the hardware descriptions generated by ESPAM, a

commercial synthesizer can convert the RTL level specification to the target platform gate

level netlist.

Figure 3.4 Daedalus design workflow with ESPAM and Sesame

The designers believe that a system should be specified at a higher level of abstraction called

system level. There is an Implementation Gap between RTL and system level. The RTL

system specification is very detailed and close to an implementation while the complexity of

today’s systems forces us to move to higher levels of abstraction. Base on Embedded System

level Platform synthesis and Application Mapping (ESPAM), Daedalus implements a

systematic and automated multiprocessor platform design, programming, and implementation

in a very short time from system level to RTL level generation. DSE is based on simulation

with SESAME tool to find the Pareto solution using SPEA2 genetic algorithm. Then these

narrowed design space are implemented onto FPGA to get 100% accurate performance and

 - 37 -

cost information. At most 24 cores (MB+DCT) are implemented en FPGA. The

communication is FIFO based.

3.1.2.6 System-CoDesigner design workflow

System-CoDesigner [49,50] offers a fast design space exploration and rapid prototyping of

behavioral SystemC models. Starting from a behavioral SystemC model, hardware

accelerators can be generated automatically using Forte Cynthesizer and can be added to the

design space. (1) The application is described in SystemC behavioral model using the

SYSTEMOC library. (2) Each SYSTEMOC actor is transformed into both hardware

accelerators and software modules. Whereas the latter one is achieved by simple code

transformations, the hardware accelerators are built by the help of Forte Cynthesizer. VHDL

file is generated and synthesized using Synplify Pro. From the synthesis reports the

information required for automatic design space exploration like method execution delays,

required look-up tables (LUT), flip flops (FF), and block RAMs (BRAM) are extracted. (3)

Architecture template is specified by user as a graph which contains all possible hardware

accelerators, processors, memories, buses as well as their interconnection. (4) Design space

exploration by multi-objective optimization together with symbolic optimization techniques

selects solutions which fulfill the user requirements in terms of overall throughput and chip

size. (5) From this set of optimized solutions the designer selects a hardware/software

implementation best suited for his needs. They are prototyped for the corresponding FPGA-

based implementation. The program code for each microprocessor is generated. Finally, the

entire platform is compiled into an FPGA bit stream.

 - 38 -

Figure 3.5 System-CoDesigner design workflow with behavioral SystemC model

Application domain is limited to multimedia and networking, i.e., streaming applications,

SystemC model to be written using the SYSTEMOC library. In order to transform a SystemC

application into a SYSTEMOC description, the input SystemC application is required to only

communicate via SystemC FIFOs. The communication architecture is limited.

3.1.2.7 SoCDAL design workflow

SoCDAL [51] is a set of mostly automated tools covering system specification, HW/SW

estimation, application-to-architecture mapping, simulation model generation, and system

verification through simulation. (1) From a process network model in SystemC, c files and a

hierarchical model consisting of SDFs and FSMs are generated using a conversion tool using

the SUIF1 compiler. (2) The hierarchical model graph and C codes are the inputs for static

SW/HW estimation. For SW estimation, the generated C codes are compiled to create a basic

block graph through control flow analysis. The estimated results using ILP solver are

annotated into the hierarchical model. (3) For HW estimation, a control dataflow graph

(CDFG) is generated from C codes using SUIF1. Subsequently, we perform high-level

synthesis on the generated CDFGs to obtain synthesized CDFGs. Estimation is done by ILP

solver too. (4) The estimated results are also annotated into the hierarchical model and used to

map the application to the target architecture. With the input, the system maps actors to the

target architecture using an extended evolutionary algorithm based on QEA. (5)Finally, we

 - 39 -

perform synthesis to generate codes to be executed on processors or hard-wired logics

according to the mapping result, (6) and then we validate the system by simulation at various

levels of abstraction, such as transaction level, bus-cycle-accurate level, etc.

Figure 3.6 SoCDAL design workflow overall
A new approach is introduced to analyze a process network model statically, by automatically

converting the model to a hierarchical SDF model and extending the QEA algorithm to apply

it to efficient application-to-architecture mapping. It is very useful for hard real-time systems,

but cannot support soft and non real-time systems. Dynamic analysis has to be done to

estimate the performance of the system. Performance is limited by bus overhead

communication. Algorithm is single objective and there is no hardware prototyping.

3.1.2.8 CoMPSoC design workflow

CoMPSoC [52, 53] is an integrated flow to automatically generate a highly configurable

NoC-based MPSoC for FPGA instantiation. These are hardware and software flow separately.

For hardware, (1) system description together with core description and peripheral description

is used to generate RTL code of processor core, peripherals and NoC. The number of

hardware resource is fixed. For software (2) core description file is used for compilation of

codes. Communication by NoC is produced and linked with AEthereal Run-Time APIs. The

 - 40 -

actual assignment to applications and the NoC configuration is reconfigurable to

accommodate new or modified applications onto hardware platform.

Figure 3.7 CoMPSoC design workflow overall

The architectural components are constructed to offer composability and runtime

reconfiguration. The flow uses Æthereal NoC, and Silicon Hive processing cores, both

configurable at design- and run-time. No exploration is reported.

3.2 NOC Design and Synthesis

The mapping of regular NoC problem can be formulated mathematically. The

communication between the cores of the SoC is represented by the core graph:

The core graph is a directed graph, G(V,E) with each vertex iv V∈ representing a core and

the directed edge (,)i jv v , denoted as ,i je E∈ , representing the communication between the

cores vi and vj . The weight of the edge ei,j , denoted by commi,j , represents the bandwidth of

the communication from iv to jv .

The connectivity and link bandwidth of the NoC is represented by the NoC topology graph:

The NoC topology graph is a directed graph P(U, F) with each vertex iu U∈ representing a

node in the topology and the directed edge (,)i ju u , denoted as ,i jf F∈ representing a direct

communication between the vertices iu and ju . The weight of the edge ,i jf , denoted by ,i jbw ,

 - 41 -

represents the bandwidth available across the edge ,i jf .

The mapping of the core graph G(V,E) onto the topology graph P(U, F) is defined by the

one-to-one mapping function map:

: , . ., () , ,i j i jmap V U s t map v u v V u U→ = ∀ ∈ ∃ ∈

The mapping is defined when |V | ≤ |U|. The communication between each pair of cores

(i.e. each edge ,i je E∈) is treated as a flow of single commodity, represented as kd , k = 1,

2, · · · , |E|. The value of kd represents the bandwidth of communication across the edge and is

denoted by vl(dk). The set of all commodities is represented by D and is defined as:

, ,: () , 1,2,...,| |, ,

() (), () ()
k k i j i j

k i k j

d vl d comm k E e E
D

source d map v dest d map v

= = ∀ ∈⎧ ⎫⎪ ⎪= ⎨ ⎬= =⎪ ⎪⎩ ⎭

Computation and communication design is now decoupled to enable cores to be designed

and validated independently. Decoupling requires well defined communication services,

because in many SoCs, on which the applications require real-time performance, service

guarantees are essential. Quality-of-Service (QoS) guarantees enable independent design and

validation of every part of the SoC by ensuring that real-time application requirements are

met under all circumstances [2].

An important phase in the design of NoCs is choosing the most suitable NoC topology for a

particular application and mapping of the application on to that topology. The challenges are

in leveraging the intrinsic characteristics of on-chip communication to achieve both energy

efficiency and high performance [22]. At the specification level, NOC design is made

complex by the variety of the processing cores that can be integrated on a chip, (CPUs, micro-

controllers, accelerators, memories,...) and the heterogeneity of bandwidth and latency

requirements among them. [12, 17] At the implementation level, each target silicon

technology offers a multitude of options to the NoC designers who, for instance, must decide

the number and positions of network access points and routers as well as which metal layer to

use for implementing each given channel.

In particular, choosing the network topology is challenging as the space of possible topologies

is very large. [6, 16, 20] Hence, it is very difficult to guess the right communication topology

only by experience, taking into account the heterogeneity of the requirements and the

constraints imposed by the silicon technology. Consequently, the development an automatic

 - 42 -

tool for optimal topology selection for on-chip networks is of great help to the NOC design

paradigm.

3.2.1 Graph theory related material and GLPK

Table 3.2 characteristic of network analysis program

Library

name

description language File format OS Algo

support

igraph [28] Handles very large

graph and neat

interface to python

and R

C/R/Python GraphML

dimacs Pajek

Unix no gui Little basic

Pajek [29] Can handle Very

Large Networks

(Millions of Nodes)

C(?)/R Pajek SVG

EPS X3D

VRML

Win,

good gui

little

Powerful

visual

NetworkX

[30]

Can handle very large

networks (Millions of

Nodes)

Python Agraph dot vtk

matplotlib

Unix win no

gui

Basic

Easy

exchange

GraphViz

[31]

Graph Layouts C Agraph dot

dotty

Unix win

Mac

Graph

drawing

interface

Boost [32] Good reputation

Traversals, Spanning

Tree...

C++ Agraph

exrensible

All

no gui

Lots typical

extensible

Jgraph [33] Visualization and

basic algos with nice

interactive plcmt

Java UML XML

strings

All swing Basic

extensible

Goblin [34] Standard Textbook

Graph Optimization

Pbs

C++/Tcl Goblin dimacs

tsplib steinlib

Unix win gui Rich

extensible

LEDA [35] Good commercial

library

C++ ? Win unix

gui/pakcet

Rich

extensible

 - 43 -

Graph theory is the study of graphs, mathematical structures used to model pair wise

relations between objects from a certain collection. A "graph" in this context refers to a

collection of vertices and a collection of edges that connect pairs of vertices. A graph

structure can be extended by assigning a weight to each edge of the graph. Graphs with

weights, or weighted graphs, are used to represent structures in which pairwise connections

have some numerical values. For example if a graph represents a road network, the weights

could represent the length of each road. A digraph with weighted edges in the context of

graph theory is called a network. And this is exactly the study domain of NoC.

There are many program tools to analyze and visualize graphs as listed in the table II.

The power consumption problem of NoC design is widely studied. [12, 13, 16, 20, 21]

Same of them take the power consumption of NoC as the linear combination of switch and

physical link [12, 13, 21] which is based on the equation is based on experimental results.

Linear programming (LP) problems involve the optimization of a linear objective

function, subject to linear equality and inequality constraints. There are many mature tools for

solving LP problems like GLPK, Xpress-MP and other open source or commercial tools.

The GLPK [24] (GNU Linear Programming Kit) package is intended for solving large-

scale linear programming (LP), mixed integer programming (MIP), and other related

problems. It is a set of routines written in ANSI C and organized in the form of a callable

library.

GLPK supports the GNU MathProg language, which is a subset of the AMPL language.

The GLPK package includes the following main components:

 Revised simplex method.

 Primal-dual interior point method.

 Branch-and-bound method.

 Translator for GNU MathProg.

 Application program interface (API).

 Stand-alone LP/MIP solver.

3.2.2 Workflow for regular topology

The mapping of regular NoC problem can be formulated mathematically. The

 - 44 -

communication between the cores of the SoC is represented by the core graph:

Table 3.3 characteristic of regular noc workflow

method topo object mapping routing floor planning

Hu [11] Tile based Min energy Branch and bound

algo

Static xy routing no

Ogras [9] Tile based

mesh

Min latency Supposed done long-rang link

Iterative algo

no

SUNMAP

[7,8]

Mesh

torus …

Other

regular

NoC

Min latency

area energy

[7]Heuristic

greedy pair wise

swapping

[8]robust tabu

search

minimum path

Dijkstra’s shortest

path algo

area -power model;

floorplanafter

mapped

NMAP [8] Mesh torus Min latency Heuristic greedy minimum path

Dijkstra/ split

traffice LP solve

no

Aethereal

[2]

mesh guaranteed

ser/

best effort

Core clustering

based on balance

Static xy routing Phillips power

measure/0.13 um

proc

UMARS

[22]

mesh Mini latency

area energy

Mapping during

routing

Heuristic iterative

combine mapping

scheduling

Phillips power

measure/ 0.13 um

proc

Creating a NoC-based system with guaranteed services requires efficient mapping of cores

and distribution of NoC resources. Design choices include mapping core port to network port,

routing of communication between cores and schedulng of network channel capacity over

time. These choices have significant impact on energy, area and performance metrics of the

system.

Many existing solutions decouple the mapping and routing on two separate steps [2, 7, 11,

13] whose objectives do hereby not necessarily coincide. The routing phase must adhere to

decisions taken in the mapping phase which invariably limits the routing solution space.

Mapping therefore significantly impacts energy and performance metrics of the system. In the

table III the routing and mapping are listed separately, but it should be clear that routing and

corrective traffic arbitration is closely bound to the first step of mapping.

 - 45 -

In [11] a branch-and-bound algorithm is used to map cores onto a tile-based architecture,

aiming to minimize energy while bandwidth constraints are satisfied while balancing network

load. Static xy routing is used in this work. And work of ogras[9] reduces the packet latency

by inserting long-rang link, which is a fresh ideal comparing to the traditional design methods.

In [7, 8, 9] a heuristic improvement method is used. An initial mapping is derived with

objectives such as minimizing communication delay, area or power dissipation. This is

succeeded by routing according to a predefined routing function. Routing and evaluation is

repeated for pair-wise swaps of nodes in the topology, thereby exploring the design space in

search for an efficient mapping. In [9] the algorithm integrates physical planning and QoS

guarantees. Design space exploration is improved with a robust tabu search.

In all these approaches [11, 7, 8, 9], multiple mapping and routing solutions are evaluated

iteratively to mitigate the negative effects mapping decisions may have on routing. A greedy

non-iterative algorithm is presented in [2]. Mapping is done based on core clustering

whereafter communication is routed using static xy routing. A guaranteed performance is

essential to replace time-consuming simulation by fast analytical performance validation.

UMARS [22] unified single objective algorithm unifies three steps: spatial mapping of

cores, spatial routing of communication and scheduling of traffics. The fundamental

difference if that mapping is no longer done prior to routing but instead during it. Comparing

to early aethereal [2] method, UMARS reduces area and power by more than 33% and wore-

case latency by a factor four in an MPEG decoder SoC.

As a conclusion, regular topology NoC design problem can be modeled as mapping the

weighed communication core graph onto different NoC networks, in this section the network

topology is regular and in the next section irregular. The general problem of embedding one

graph onto another is NP-complex and is a special case of the Quadratic Assignment Problem

(QAP) [25].

Of all the algorithms talked above, only SUNMAP and related works [7, 8, 9] take

floorplan information as input of design workflow. They use ORION [16] to set up the xpipe

power model and specific LP floorplanning tools [19, 27] to get area model and physical

placement of IP cores and switches.

 - 46 -

3.2.3 Workflow for application specific topology

Table 3.4 comparison of custom NoC workflow

method algo workflow Floorplan/power remark

NetChip

[17]

Minimum path

mapping/

Heuristic swapping

1] topology mapping

2] topology selection

3] topology generation

LP-based

floorplanner [27]/

ORION[16]

1] fixed topo library

2] manual custom

NoC by GUI

INI-TOP

[18]

Min-cut partition/

clustering heuristic

1] min-cut partition of

core graph

2] switch cost graph with

prohibited turn set

3] path_compute to

minimize power

4] floorplan evaluate

wire power

PARQUET[19] or

Cadence SoC

encounter/

Synopsys

PrimePower

1] Chaco for graph

partition

2] PTS to avoid

dead-lock

3]floorplan info is

not used in min-cut

ANOC

[12]

ILP with Xpress-

MP/ clustering

heuristic

1] system level

floorplannig with an

objective of minimizing

the power consump of

the NoC with layout

constraints

2] router selection and

NoC topology

3] map and route

minimizing power with

perf constraints

Customized

PARQUET[19] ?/

Arizona SPICE

experiment

1] floorplan before

topology generation

2] a linear

combination of the

power-latency

function and area of

layout

GQA

[13]

1] max flow min

cut: Rush-Relabel

algo

2]2approximation

1] core to router mapping

with floorplan

information

2]routing and topology

generation

Same to ANOC 1] custom floorplan

2] mapping

separated from

routing

ISIS

[14]

GA 1] hierarchical

representation of solution

2] GA evaluation

? Arizona 1] hierarchi

representation of

NoC solution

BAB buy-at-bulk algo 1] placement of cores PARQUET[19]/ 1] place without

 - 47 -

[21] with pre-allocation of

area for NoC

2] discretize NoC area

for graph PLT

3] map and route

minimize power

ORION [16] optimal

2] variable NoC

area

3] variable router

position

NoC architectures can be designed with both regular and irregular topologies. The primary

advantage of a regular NoC architecture is topology reuse and reduced design time. They are

suitable for general purpose architectures, such as the RAW processor that include

homogeneous cores. Regular topologies assume that every core has equal communication

bandwidth with every other core which does not hold in custom SoCs. Application-specific

SoC architectures consist of heterogeneous cores and memory elements which have vastly

different sizes. Consequently, even if the system-level topology is regular, it does not remain

regular after the final floorplanning stage. The alternative option of regular layout results in a

large amount of area overhead.

The custom NoC architecture is superior to regular architecture in terms of power and area

consumption under identical performance requirements. [12, 17, 18] In custom topologies, the

router architecture itself is regular and can be easily parameterized for reuse.

In nanoscale technologies, the link energy consumption will constitute a considerable part

of the total communication energy. Therefore, the total energy consumption of the NoC is

strongly influenced by system-level floorplan. All of the application specific NoC design [12,

18, 21] have computed the power consumption by both the physical links and routers.

In the NetChip [17] design flow, the topology is selected by an heuristic algorithm that tries

many fixed topologies described in a library and selects the best one according to the user

objective function. The designer can use xpipecompiler to generate a custom NoC using the

GUI. A two-state Markov Models as stochastic traffic generators model the bursty nature of

the application traffic, with average communication bandwidth matching the real application’s.

The general solution to the floorplanning problem has two basic steps: first is finding out the

relater position of modules and the second is finding the exact position, area and size of the

modules [37]. In NetChip situation, the relative positions of modules are known. Thus, a

simple LP-based floorplanner existing in literature [38] is used.

 - 48 -

The work INI-TOP [18] of Murali et. al. minimizes the power consumption of switches

considering the activities of switches in their algorithm PATH_COMPUTE, which maps the

inter-partition communication flows to physical paths as less as possible while guaranteeing

deadlock freedom and communication bandwidth constraints. The generated NoC is

synthesized by floorplanner, which compute the design area and wire length minimizing a

dual-objective function of area and wire length. From the obtained wire length the power

across the wires is calculated. So the optimization of router and wire power consumption is

separated in this workflow. As discussed in the work of Chatha’s[12, 13], the various sizes of

different cores impact the floorplanning of IP cores and routers greatly and consequently

impact the mapping of IP core to router, which is done before floorplanning in Murali’s work.

That is to say the min-cut partition dos not take into account of the floorplan information,

which is not a good practice.

As the power consumption of wire is getting larger part of whole system, the work of K.

Srinivasan and K. Chatha [12,13,14] is a good practice to combine the router and wire power

consumption of NoC together with physical floorplan placement information. They set up the

ILP objective function to minimize power consumption and propose different heuristic

algorithms to accelerate the execution time like: clustering in [12], Rush-Relabel algorithm

and 2-approximation in [13] and GA algorithm in [14]. The limitation is that their work is

built on the assumption that the area of router is much less than IP cores.

A. Pinto et. al. [21] adopt the same workflow as K. Chatha’s [12]: floorplan, generation of

admissible router position, optimal routing. They rely on the modified buy-at-bulk

approximation algorithm to exploit the large design space more efficiently. They consider the

size of router and give a changeable area for the routers and wires. Router is placed around

the IP cores instead of the four corners in Chatha’s work [12]. They simplified the physical

placement of IP cores without optimization functions.

3.3 Conclusion

Real time constrains must be considered during MPSoC design. Homogeneous and

heterogeneous multiprocessors are two important and distinct branches of MPSoCs design.

Inter-processor communications is very important for MPSoC design. Until now little MPSoC

designs are NoC communication architecture based. A survey of design benchmarks and

 - 49 -

MPSoC design methodology is done. Analysis and comparison help to better understand

different design approach and overcame their shortcomings.

MAMPS is lack of real time constraint is the biggest problem of this evaluation design

flow. FIFO is feasible for this small scale system but is not scalable as the system getting

larger. With a bigger FPGA and large scale MPSoC, applications can be mapped onto

separate processing elements and there is no need for this merging technology.

Daedalus communication is FIFO based. At most 24 cores (MB+DCT) are implemented

en FPGA. the scale of MPSoC is still limited.

For System-CoDesigner, in order to transform a SystemC application into a

SYSTEMOC description, the input SystemC application is required to only communicate via

SystemC FIFOs. The communication architecture is limited.

To our best knowledge, until now there is no workflow for large scale multiprocessor on

chip design based on NoC technology. In this thesis, we propose the first industrial tools

supported independent design workflow for large scale MPSoC design.

Floorplan constrained NoC synthesis is getting suitable for real application specific SoC

design. Custom NoC with its better performance and less power consumption comparing to

regular topologies, is currently studied. The mapping of core graph to NoC topologies is well

known NP-Hard, only heuristic algorithms can be used to get the optimal solution according

to different objective functions. The ILP formulation of NoC power consumption is a good

practice. Different approximation algorithms are proposed to reduce the execution time of IPL

problem.

References
[43] L. Benini and G. De Micheli, Networks on chip: A new SoC paradigm., IEEE Computer, 2002
[44] Kees Goossens; John Dielissen; Om Prakash Gangwal; Santiago Gonzalez Pestana; Andrei Radulescu;

Edwin Rijpkema, A Design Flow for Application-Specific Networks on Chip with Guaranteed Performance
to Accelerate SOC Design and Verification, in Proc. of Desing, Automation and Test in Europe Conference
and Exhibition, 2005

[45] A.Jalabert et. al, ×pipesCompiler: A Tool For Instantiating Application Specific Networks on Chips, Proc.
DATE, 2004

[46] S. Stergiou et. al, xpipesLie: A Synthesis Oriented Design Library for Network on Chips, Proc. DATE,
2005

[47] NoCexplorer User’s Guide, solution 1.4, Arteris S.A.
[48] NoCcompiler User’s Guide, solution 1.4, Arteris S.A.
[49] S. Murali and G. De Micheli, SUNMAP: A tool for automatic topology selection and generation for NOCs.

In Proc. of the Design Automation Conf., pages 914-919, June 2004

 - 50 -

[50] S. Murali and G. De Micheli, Bandwidth-constrained Mapping of Cores onto NoC Architectures. In Proc.
DATE04, June 2004

[51] U. Ogras and R. Marculescu. Application-specific network-on-chip architecture customization via long-
range link insertion. In Proc. Intl. Conf. on Computer Aided Design, November 2005

[52] U. Ogras and R. Marculescu. Energy- and performance-driven noc communication architecture synthesis
using a decomposition approach. In Design, Automation and Test in Europe, March 2005

[53] J. Hu and Radu Marculescu, Exploiting the routing Flexibility for Energy/Performance Aware mapping of
Regular NoC Architectures Proc. DATE, 2003

[54] K. Srinivasan; K. S. Chatha; G. Konjevod. Linear-programming-based techniques for synthesis of network-
on-chip architectures. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 14(4):407–420,
April 2006

[55] K. Srinivasan; K. S. Chatha; G. Konjevod, Application Specific Network-on-Chip Design with Guaranteed
Quality Approximation Algorithms, Proc. ASP-DAC, 2007

[56] K. Srinivasan; K. S. Chatha, ISIS: A Genetic Algorithm based Technique for Custom On-Chip
Interconnection Network Synthesis, Proc. VLSID, 2005

[57] K. Srinivasan; K. S. Chatha, A Methodology for Layout Aware Design and Optimization of Custom
Networkon-Chip Architectures, Proc. ISQED, 2006

[58] H. S. Wang, X. Zhu, L. S. Peh, and S. Malik. Orion: A power-performance simulator for interconnection
networks. In Proceedings of the 35th International Symposium on Microarchitecture (MICRO), pages 294–
305, November 2002

[59] D. Bertozzi, A. Jalabert, S. Murali, R. Tamhankar, S. Stergiou, L. Benini, and G. De Micheli. NoC synthesis
flow for customized domain specific multiprocessor systems-on-chip. IEEE Transactions on Parallel and
Distributed Systems 16(2):113–129, February 2005

[60] S. Murali; P Meloni; F. Angionlini et. al. Designing Application-Specific Networks on Chips with Floorplan
Information, Proc. ICCAD, 2006

[61] J. G. Kim and Y. D. Kim, A linear programming based algorithm for floorplanning in VLSI design, IEEE
Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 22, no. 5, pp. 584–592, May 2003.

[62] M. Charikar and A. Karagiozova, On non-uniform multicommodity buy-at-bulk network design., In STOC
’05: Proc. of the 37-th Ann. ACM Symp. on Theory of Computing, pages 176–182. ACM Press, 2005

[63] A. Pino; Luca Carloni; A. Sangiovanni-Vincentelli, Synthesis of Low Power NOC Topologies under
Bandwidth Constraints, Technical Report No. UCB/EECS-2006-137, EECS University of California at
Berkeley

[64] A. Hansson; Kees Goossens; A. Radulescu, A Unified Approach to Constrained Mapping and Routing on
Network on Chip Architectures, Proc. CODES+ISSS, 2005

[65] G. De Micheli and L. Benini. Networks on chip. Morgan Kaufmann, 2006
[66] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-

Completeness.W. H. Freeman and Company, NY, 1979
[67] S. Murali, L. Benini, and G. De Micheli, Mapping and Physical Planning of Networks-on-Chip

Architectures with Quality-of-Service Guarantees, in ASP DAC, vol. 1, pp. 27-32, 2005
[68] N. Sherwani, Algorithms for VLSI Physical Design Automation. Kluwer Academic Publishers, 1995
[69] Igraph, http://cneurocvs.rmki.kfki.hu/igraph/
[70] Pajet, http://vlado.fmf.uni-lj.si/pub/networks/pajek/
[71] NetworkX, https://networkx.lanl.gov/wiki
[72] GraphViz, http://www.graphviz.org/
[73] Boost, http://www.boost.org/libs/graph/doc/index.html
[74] Jgraph, http://jgrapht.sourceforge.net/
[75] Goblin, http://www.math.uni-augsburg.de/~fremuth/goblin.html
[76] LEDA, http://www.algorithmic-solutions.com/enleda.htm
[77] N. Banerjee, P. Vellanki, and K. S. Chatha, A power and performance model for network-on-chip

architectures, in Proc. Des. Automat. Test Eur., 2004
[78] Wayne Wolf, Ahmed A. Jerraya and Grant Martin, Multiprocessor System-on-Chip (MPSoC) Technology,

IEEE trans. On CAD of integrated circuits and systems. VOL. 27, NO. 10, Oct. 2008
[79] EEMBC, MultiBench™ 1.0 Multicore Benchmark Software ,

http://www.eembc.org/benchmark/multi_sl.php
[80] Shay Gal-On, Markus Levy, "Measuring Multicore Performance," Computer, vol. 41, no. 11, pp. 99-102,

Nov. 2008

 - 51 -

[81] Sang-II Han et al. , Simulinks-based heterogeneous multiprocessor SoC design flow for mixed
hardware/software refinement and simulation , INTEGRATION,the VLSI journal, Volume 42, Issue 2,
February 2009, Pages 227-245

[82] Kai HUANG et al, Gradual refinement for application-specific MPSoC design from Simulink model to
RTL implementation , Journal of Zhejiang University SCIENCE A, Volume 10, Number 2 / February, 2009

[83] Choonseung Lee, Sungchan Kim and Soonhoi Ha , A Systematic Design Space Exploration of MPSoC
Based on Synchronous Data Flow Specification , Journal of Signal Processing Systems, March 11, 2009

[84] AKASH KUMAR et al, Multiprocessor Systems Synthesis for Multiple Use-Cases of Multiple Applications
on FPGA , ACM Transactions on Design Automation of Electronic Systems, Volume 13 , Issue 3 ,July
2008

[85] Sami Boukhechem and El-Bay Bourennane , SystemC Transaction-LevelModeling of an MPSoC
PlatformBased on an Open Source ISS by Using Interprocess Communication , International Journal of
Reconfigurable Computing, Volume 2008 (2008),

[86] Pimentel, A.D. , Erbas, C. and Polstra, S. , A systematic approach to exploring embedded system
architectures at multiple abstraction levels, IEEE Transactions on Computers, Volume: 55, Issue: 2, Feb.
2006

[87] Andy Pimentel et al. , "Tool Integration and Interoperability Challenges of a System-level Design Flow: a
Case Study", Invited paper In Proc. "8th Int. Sumposium on Systems, Architectures, MOdeling, and
Simulation (SAMOS'08)", LNCS 5114, pp. 167-176, Samos, Greece, July 21-24, 2008.

[88] Hristo Nikolov, Todor Stefanov, and Ed Deprettere, Automated Integration of Dedicated Hardwired IP
Cores in Heterogeneous MPSoCs Designed with ESPAM, EURASIP Journal on Embedded Systems
Volume 2008

[89] Pimentel, A.D., Erbas, C., Polstra, S.: A systematic approach to exploring embedded system architectures at
multiple abstraction levels. IEEE Trans. on Computers 55, 99–112 (2006)

[90] Erbas, C., Pimentel, A.D., Thompson, M., Polstra, S.: A framework for system-level modeling and
simulation of embedded systems architectures. EURASIP Journal on Embedded Systems (2007)

[91] Martin Lukasiewycz, Michael Glaß, Christian Haubelt, and Jürgen Teich. Efficient Symbolic Multi-
Objective Design Space Exploration. In Proceedings of the 13th Asia and South Pacific Design Automation
Conference (ASP-DAC 2008). pp. 691-696, Seoul, Korea, January 2008

[92] Christian Haubelt, Mike Meredith, Thomas Schlichter, and Joachim Keinert. SystemCoDesigner: Automatic
Design Space Exploration and Rapid Prototyping from Behavioral Models. In Proceedings of the 2008
ACM/EDAC/IEEE Design Automation Conference (DAC 2008). pp. 580-585, Anaheim, CA, U.S.A., June
8-13 2008.

[93] YONGJIN AHN et al. , SoCDAL: System-on-chip design AcceLerator, ACM Transactions on Design
Automation of Electronic Systems, Volume 13 , Issue 1 ,January 2008

[94] Andreas Hansson, Kees Goossens, Marco Bekooij and Jos Huisken, CoMPSoC: A template for composable
and predictable multi-processor system on chips, ACM Transactions on Design Automation of Electronic
Systems, Volume 14 , Issue 1 January 2009

[95] Akash Kumar, Andreas Hansson, Jos Huisken and Henk Corporaal. An FPGA Design Flow for
Reconfigurable Network-Based Multi-Processor Systems on Chip. In Proceedings of the Design,
Automation and Test in Europe Conference and Exhibition (DATE), April 2007.

 - 52 -

 - 53 -

4. Multi-objective TLM Level NOC Design Space
Exploration

A multi-objective design space exploration of NoC at TLM level is proposed at the first step.

Automatic exploration is needed in order to guarantee the evaluation of all potential solutions.

Although some work has been achieved in this area, the proposed design space explorations

are based on different levels of abstraction. SystemC TLM hides many of the implementation

details. It allows fast simulation of complex systems however at the price of less accuracy.

How to manage design space exploration with this lack of accuracy is the objective of this

work. Design space exploration becomes a challenge with multi-objective evaluation since

area and timing are subjects to be extracted from lower levels of abstraction. The TLM

representation of NoC requires deep insight and implementation experience in order to

interpret correctly the embedded semantics at this level of abstraction. We propose an

automatic approach to this problem with three instances: (1) best-effort optimization (2)

latency constrained and (3) area and latency constrained. Application of our methodology on

a 16 processors MPSOC validates our approach

4.1 NOC SystemC TLM Modelling and Traffic Generators

Network on chip based Multiprocessors system on chip are increasingly complex to design

and tune for emerging applications [1-3]. Ad-hoc techniques can not meet the requirements of

the increasingly complex traffic flows in system on chip. Automatic design space exploration

is needed in order to guarantee the evaluation of all potential solutions. Although some work

have been achieved in this area the design space exploration differs depending on the level of

abstraction. We address in this chapter the design space exploration of network on chip at

SystemC TLM level. SystemC TLM hides many of the implementation details and as such

 - 54 -

allows fast simulation of complex systems however at the price of less accuracy. How to

manage design space exploration with this lack of accuracy is the objective of this work.

4.1.1 SystemC TLM

SystemC TLM 2.0 has been released recently [19] and it allows high level modeling of

system on chip with various complexities. Since SystemC TLM is transaction based,

communication between IPs is considered to be conducted at transaction level. The use cases

and coding styles are described in Figure 4.1 and architectural analysis may use the three

available coding styles that are unlimited, loosely-timed and approximately-timed. It is clear

that application specific design space exploration of network on chip based multiprocessor

requires the highest possible accuracy in order to provide the right amount of supporting

resources to meet timing constraints (i.e. latency) and especially if area constraints are added.

Although TLM abstraction level introduces some amount of inaccuracy [17] lowering this

amount is paramount.

Figure 4.1 TLM, Use Cases and mapping

In this hypothesis packet based, wormhole based network on chip represents a challenge.

 - 55 -

Figure 4.2 TLM Communication

The TLM communication starts with a transaction from an initiator to a target through some

interconnect component which in our case represents the network on chip and cannot be as

accurate as cycle level switches. The concepts used in this study are the queue which

represents a line of ordered transactions usually associated with an initiator socket. A link is a

physical medium characterized by its clock and a width with possible FIFO buffering

capacity. Various arbiters can be used for links and defining an architecture consists in

describing routing across a network of links. The connectivity map describes the addressing

space of each initiator.

4.1.2 TLM NoC modeling with commercial tools

We used in this study an industrial design tools: the Arteris NoC Solution [20-23]. As seen

from Figure 4.3, Arteris NoC solution contains two EDA tools: NoCexplorer [22] and

NoCcompiler [21], focusing on different levels of simulation and implementation.

NoCexplorer is a NoC generation and simulation tools using SystemC TLM language.

Arteris’ cycle based model accelerates the simulation speed. NoCcompiler can be used to

generate VHDL or SystemC RTL source of NoC.

 - 56 -

Figure 4.3 Aretris NoC design tools.

At this TLM level, the topology of NoC is represented by ‘links’. The basic component of

NoC architecture using NoCexplorer as showed in the Figure 4.4. A link is characterized by

its clock and width, and possibly associated with a FIFO buffer capacity. The links carry

transaction request and response packets between each initiator-target pair. Any topologies,

regular or irregular, can easily be described using ‘links’. For each pair of source and

destination, we describe the link sequence, in which the communication passes through, as its

routing. To define the architecture of NoC, a NoCexplorer script essentially describes the

routing across a network of links instead of switches. The merging point of different links is

like a switch at RTL level but which is not a module at TLM level. The NoC and master-slave

models are described in a script file as the input of NoCexplorer.

Figure 4.4 Example of NoC modeling with NoCexplorer and NoCcompiler.

After the high speed TLM level SystemC simulation, NoCexplorer will report the system’s

performance and we can transfer the NoC topology to NoCcompiler, for further RTL level

simulation and implementation. Performances including latency and throughput are taken as

fitness into our design space exploration. Previously the described design space methodology

has been applied to a significant size case study.

 - 57 -

4.1.2.1 Area models:

We construct the area models of links and switches using NoCcompiler area estimation at

RTL level. Area is computed in unit of NAND2 gate.

The TLM level NoC models hide many implementation details comparing to the

corresponding RTL level models to get a high simulation speed. But still we can construct a

TLM level area models for area estimation. The RTL component is set to the same

configurations of the TLM model, if these options are presented at TLM level. If not, the

options of RTL component rest as default. In the study case, the depth of links and the IO

number of switches change between different individuals of evaluation exploration.

Correspondingly we change the buffer capacity of FIFO component and the IO number of

switch to find the relations between area consumption and these variables.

Figure 4.5 FIFO area estimation of the TLM link model with different depth.

According to the area estimation data of NoCcompiler, we can see that the proportion

between the FIFO capacity and area consumption is linear, which can be presented as:

0, 0
372* 30, 1

depthgates
depth depth

⎧⎪
⎨
⎪⎩

==
− >=

 (1)

where the gates means the area of links and the depth is the buffer capacity.

 - 58 -

Figure 4.6 Switch area estimation with different number of IO.

The relation between area and the IO number of switch is more complex as showed in Figure

4.6. Switch area is proportional linearly to the number of input (or output), when the number

of output (or input) is fixed. With numerical analysis of data, the relation between area of

switch and the IO number is:

Gates = 72*X*Y+273*Y+39*X+18 (2)

where the gates means the area of switch (merging point at TLM level), X the number of

input and Y the number of output.

4.1.2.2 Different Traffic Model

4.1.2.2.1 RTLL traffic model:

We model processors are treated as Real-Time Low Latency (RTLL) traffic generator. They

are representative of CPU traffics. Sometimes it is acceptable to have brief intervals of longer

latency as long as the average latency is low. Cache miss is a typical example of RTLL

service. Delays incurred in retrieving data from DRAM can significantly degrade software

performance as CPUs stall until data become available. Assume a copy-back cache is

employed. Misses to this kind of cache can generate three types of DRAM transactions:

- read miss: The existing content of the target cache line is identical to the data in DRAM.

Therefore it can be safely overwritten.

- read with eviction: The target cache line cannot simply be overwritten since its content is

different from the corresponding locations in DRAM. The existing data in the cache must be

 - 59 -

written to DRAM to avoid loss. To minimize the CPU’s wait for the data, the actual order of

operation is to read the cache line first and then write the old cache line to DRAM.

- write miss: like read with eviction, the target cache line is inconsistent with data in DRAM.

However, there is no need to write the line to DRAM. The target cache line must first be read

from DRAM then the cache merges the new CPU write data with this existing cache line

content.

The following process implements the copy-back cache traffic flows.
Process(‘CPU_flow’,procedure=(Choose ({

Load(64, ExplicitDequeue) + Dequeue(64) : 7 # Read misee

Load(64, ExplicitDequeue) + Store(64) + Dequeue(64) : 2 # Read with evictice

Load(64, ExplicitDequeue) + Dequeue(64) : 1 # Read misee

)} (Dram_addr_Ran) / 75.0 **MBps ^ Queue(‘GT1_Q’, depth=128, initiator= GT1_m, urgencyThresholds

=[64,96])))

The Choose operator is used to alternate between types of cache transactions. In the preceding

script, read miss is chosen with a frequency of 70 percent, read miss with eviction at 20

percent and write miss at 10 percent.

The cache traffic is directed to random DRAM address (Dram_Addr_Ran address generator).

The transaction are randomly spaced but with a mean spacing of 75 MBps average bandwidth.

The depth of the initiator FIFO is one transaction: 64 bytes. Effectively, the FIFO acts like the

cache register. Whenever the FIFO is full, the CPU will stall. If the CPU sends another cache

miss transaction before the previous one completes, the full FIFO blocks the CPU and

performance drops.

4.1.2.2.2 GT traffic model:

Guaranteed Throughput (GT) model must maintain its throughput over a relatively long time.

A 3-level dynamic pressure scheme is implemented.
Process(‘GT1_flow’,procedure=(Load(32) (Dram_addr_Ran) / 50.0 **MBps >> Queue(‘GT1_Q’, depth=128,

initiator= GT1_m, urgencyThresholds =[64,96])))

In the process, 2 urgency thresholds are entered. Thus, if initiator GT1_m issues up to 2

unacknowledged transactions at 75 MB/s, then the lowest pressure is used. If the NoC and/or

Dram are busy, a 3rd transaction might be issued before the first two are acknowledged. In

 - 60 -

this case it is assigned intermediate pressure which will help it to compete with other traffic

and attain higher throughput, thus draining the fifo. If at some point a 4th unacknowledged

transaction fills the fifo beyond 96 bytes, this transaction will be assigned the highest

pressure, enabling it to win extra bandwidth even at the expense of the CPU flow.

4.1.2.2.3 BE traffic model:

Best Effort (BE) does not require guaranteed latency or throughput but to which the principle

of fairness in treatment is applied. The BE flows always have the lowest pressure. This is

indicated in the urgency Threshold by assigning a NULL threshold.
Process('BE1_flow', procedure=(Store(32)(Dram_Addr_Ran) / 70.0**MBps >> Queue('BE1_Q',depth = 128,

initiator= BE1_m,urgencyThresholds=[])))

Whenever a BE flow competes at a switch with a higher pressure flow, it is blocked until that

flow clears. If it competes with other BE flows, it is treated fairly and wins arbitration

alternately with them.

4.1.2.3 DDR2 model:

The data bus width of DDR2 is 32bits. We have assigned the 11 MSBits to the page address

and 2bits low as bank select bits. Because low bits of random address change more frequently

than higher bits, the probability that consecutive transactions target different banks is

maximized. Each DDR memory has a controller with 3 schedulers: bank optimization

scheduler, priority scheduler and read-write turn scheduler. For most addressing patterns,

bank optimization will minimize performance loss caused by the bank miss big penalty. When

the arbiter can not avoid bank penalty, it chooses the pending transaction with highest

priority. Finally, if it cannot avoid bank penalty and there are no high priority pending

transaction, the arbiter will try to select a like transaction (load-load or store-store) to avoid a

read-write turn penalty. According to our hardware platform technique documents, the bank

miss delay is set as 10 cycles and the write-read turnaround delay is set as 5 cycles.

Both the traffic generator and DDR2 memory are specified as OCP sockets which respect the

protocol.

 - 61 -

4.2 NoC Multi-objective Optimization: NSGA-II

4.2.1 Multi-objective modeling formulation

In order to evaluate various NoC configurations we propose a TLM multi-objective based

design space exploration.

The multi-objective optimization problem is the problem of simultaneously minimizing the n

components (e.g. area, number of execution cycles, energy consumption), fk , k = 1, …, n of a

possibly non linear function f of a general decision variable x in a universe U where

f(x) = (f1(x), f2(x), …, fn(x))

The problem has usually no unique optimal solution but a set of non dominated alternative

solutions known as the Pareto-optimal set. The solution of a practical problem such as

embedded multiprocessor design may be constrained by a number of restrictions imposed on a

decision variable. Constraints may express the domain of definition of the objective function

or alternatively impose further restrictions on the solution of the problem according to

knowledge at a higher level. The constrained optimization problem is that of minimizing a

multi-objective function (f1,…,fk) of some generic decision variable x in a universe U subject

to a positive number n-k of conditions involving x and eventually expressed as a functional

vector inequality of the type

(fk+1(x),…fn(x)) < (gk+1, …,gn)

where the inequality applies component-wise. It is implicitly assumed that there is at least one

point in U which satisfies all constraints although in practice that cannot always be

guaranteed.

4.2.2 Multi-objective Evolutionary Algorithm

Multi-objective Evolutionary algorithms (MOEA) are more appropriate to solve optimization

problems with concurrent conflicting objectives and are particularly suited for producing

Pareto-optimal solutions. The NSGA-II is an MOEA considered to outperform other MOEA.

The NSGA-II algorithm runs in time O(GNlog M-1N) where G is the number of generations,

M is the number of objectives and N is the population size. In addition, our previous

experience on multi-objective optimization of multiprocessor [24] emphasizes this choice.

A typical genetic algorithm requires:

- a genetic representation of the solution domain,

 - 62 -

- a fitness function to evaluate the solution domain.

A standard representation of the solution is as an array of bits which is called chromosome.

Arrays of other types and structures can be used in essentially the same way. The main

property that makes these genetic representations convenient is that their parts are easily

aligned due to their fixed size, which facilitates simple crossover operations. Variable length

representations may also be used, but crossover implementation is more complex in this case.

Tree-like representations are explored in genetic programming and graph-form

representations are explored in evolutionary programming. In NSGAII, the encoding of

chromosome is binary string.

The crossover and mutation are the most important part of the genetic algorithm. The

performance is influenced mainly by these two operators. Am example of two-cut string

crossover is showed in fig. 3.

Figure 4.7 two-cut string crossover operation.

Initially, a random parent population P0 is created. Each individual of this population is

affected to an adequate Pareto rank. From the population P0, we apply the genetics operators

(selection, mutation, and crossover) to generate the population child Q0 of size N. The elitism

is ensured by the comparison between the current population Pt and the preceding population

Pt-1. The NSGA-II procedure follows (see Algorithm 1).

 - 63 -

Algorithm 1: NSGA-II.

Figure 4.8 Classification of individuals in fronts with constraints threshold.

4.3 NOC Multi-objective Optimization under Constraints

The case study of multi-objective optimization addressed in this chapter is the minimization

of whatever individual high level parameters in a network of chip for a base architecture as

described in the following figure.

 - 64 -

Figure 4.9 Base Architecture

The NOC topology needs to be synthesized at TLM level under constraints. We selected the

case of a 16 initiators and 4 targets architecture. The 4 targets are DDR2 DRAM which are

fully specified in an FPGA based target board described in Figure 4.10.

Figure 4.10 Target Board

4.3.1 Design Flow

The design flow takes platform as input and parameters values as constraints.

 - 65 -

Figure 4.11 TLM Network-on-chip design flow.
A multi-objective optimization technique is applied on this platform by taking into account:

(1) user constraints, (2) core graph (3) traffic generators in order to deliver a Pareto set for

each case.

4.3.2 Multi-objective NOC TLM DSE

Our proposed flow NOCDEX2 is described below.

NOCDEX 2
Generate random NOC configurations population through modification of scenario
while termination criteria not met

for all NOC configurations
simulate at TLM level and record all performances parameters,
Estimate area
rank the solution

generate new population of NOC
Analyze final Pareto front

This approach provides an automatic exploration of the design space exploration at TLM level

which provides at the end a Pareto set of NOC architectures.

NoCDEX 3 design flow

 - 66 -

Figure 4.12 NoCDEX 3 design exploration flow

Combining our TLM level exploration NoCDEX 2 and FPGA emulation based

exploration NoCDEX, a full level design space exploration flow NoCDEX3 is shown in

Figure 4.12. After parallelization, core graph is extracted from real applications. NoCDEX 2

TLM level fast exploration are used to find first Pareto solutions, which are used for FPGA

based accurate emulation exploration NoCDEX 1. If the results don’t meet the design target,

results are feed back to high level simulation for new application parallelization.

4.3.3 Chromosome:

The input of multi-objective genetic evaluation algorithm is the chromosome, which

represents the topology and configuration of NoC architecture.

In the study case, a special NoC topology is proposed as showed in the following figure,

which is well used in the industry case of Arteris. The NoC is divided into two parts: the

request paths side and the response paths side, which can avoid the deadlock problem. The

request side of NoC is in the Fig. 7: initiators are at the top and targets at the bottom. The

initiators and targets are grouped separately and connected by links to different merging

points, which represent switches at RTL level. According to different initiator-target pair

transactions, these merging points are connected by links for the transaction routing. The IO

 - 67 -

number of switch (merging point at TLM level) changes with different grouping of initiators

and targets.

Figure 4.13 Examples of different individuals in GA exploration.

The NoC architecture changes with different grouping of initiators and targets, and with the

FIFO capacity of links, which has important impact on the performance and area of NoC.

There are two kinds of genes in the chromosome of NSGAII in this case: they can represent

separately the grouping of initiators or targets at the request or response side, or they present

the FIFO capacity of each links in the architecture.

Figure 4.14 Chromosome representation of DES for NSGAII.

The FIFO capacity of each link can change form o to Max. Each initiator connects to one of

all M merging points at the top side of NoC architecture, and each target is connected to one

of all N merging point at the bottom side. Remember there are request and response path side

in our NoC architecture.

ith Initiator ith Target

 - 68 -

4.4 Performance Evaluation and Comparison

The throughput and average latency of NoC is two performances which can not be satisfied

simultaneously. The NoC designers have to find a trade-off between them. We choose 3

different configurations at the front of Pareto curves for further architecture analysis. Depth is

one option of ‘link’ in NoCexplorer exploration represents the depth of FIFO on this link.

Here are the configurations of 16 links connected to the 16 processors, which varies in entity

of {0, 4, 16, 32}. If the column is invisible in the figure, the value of that link is 0. We can

see that for each configuration, the depths of 16 links are different. For each link, the value of

depth changes in different configuration solutions.

In Busy is a measurement for link busy status. It represents the percentage of time when the

link is at busy state. We can see that the busy state of 16 links connected to 16 processors

varies in each configuration solution. For each link, its busy state changes a lot in different

configuration solutions.

4.4.1 Best effort exploration

Our NOCDEX2 workflow is generic for any type of NoC topology. Here we use a 16 multi-

processor based on NoC as an example to validate our approach. The NOCDEX2 algorithm is

set to have 30 individuals and executes for 32 generations based on previous experience. The

exploration results are given in the figure below in decimal and logarithm scale.

 - 69 -

Figure 4.15 Results of best effort exploration

The exploration have stretched NoC configurations ranging from low high latency medium

NoC area to low latency and high NoC area with varying DDR2 busyness. The impact of the

type of performance metric is important. Many other types of NoC performance parameters

could have been used: individual link performance, width, frequency. However, our TLM

case study specified a very practical design constraint which was the one imposed by our

target board environment that is a limited number of DDR2. This aspect if common for

MPSOC since chip pins are scarce and it is difficult to afford even a medium number of

DDR2 banks. In our case 4 DDR2 banks are the strong constraint imposed on the design. It is

therefore essential that the DDR2 be used to their maximum capacity through a carefully

designed network on chip and not wastes this important memory bandwidth resource due to

network on chip bottlenecks.

This SOC constraint makes the difference with traditional parallel architectures designs where

interconnection networks have access to large number of memory banks. The figures also

point the important chip area savings potential when 2 configurations are close in their

performance but with significant difference in their area. The designer will naturally select the

best NOC area-DDR2 use -latency tradeoff.

 - 70 -

4.4.2 Experiment with different constraints

The whole system is set to work at 266 MHz. The data bus width of processors and DDR2

memories is 32bits. Every processor can access the 4 DDR2 memories, each 256MB.

Table 4.1 NOCDEX2 exploration with different constraints

Constraint Traffic (16 RTLLs and 4 DDRs)

Best-effort No constraint

Latency constraint Latency threshold: 24 ns

Latency and area constraint
Latency threshold: 24 ns

Area measurement: number of link

The NOCDEX2 can work with different user constraints. In this experiment, we use 3

different configurations:

1) Best effort: without any constraints.

2) Latency constraint: the average memory operation latency threshold is set to 24 ns. If

the average memory latency of any of these 16 processors exceeds 24 ns, the current NoC will

not be accepted as a solution.

3) Latency and area constraints: with the same average latency threshold as instant (2),

we add the number of used links as a fitness of NOCDEX2 algorithm to find out optimal area

solution. As at the level of TLM, there is not any area information, we suppose that the area of

NoC is proportional to the number of used links. And we take the number of used links as

area measurement.

Here we use a Real-Time-Low-Latency (RTLL) model provided by the tool as the traffic

generator. They are representative of CPU traffics. Sometimes it is acceptable to have brief

intervals of longer latency as long as the average latency is low. Care must be taken to avoid

starving other traffic flows as a side effect of pursuing low latency. In this experiment, the

RTLL model has a frequency of 80% to read DDR2 memory and 20% time for write

operation. The traffic is to random DDR2 addresses in an average bandwidth of 75 MB/s over

time.

 - 71 -

The data bus width of DDR2 is 32bits. We have assigned the 11 MSBits to the page address

and 2bits low as bank select bits. According to our hardware platform technique documents,

the bank miss delay is set as 10 cycles and the write-read turnaround delay is set as 5 cycles.

4.4.3 Results of 16 processors with NoC

The results of 16 processors and 4 DDRs are presented in this section with a detailed analysis

and comparison of the 3 different configurations.

4.4.3.1 Best effort exploration

The best effort exploration has no constraints on the NoC system performance. So the

NOCDEX2 algorithm evolves with its 2 objectives function: (1) average latency and (2)

global DDR state. The maximum of the 16 processors’ average NoC latency is used as the

fitness 1. NoCexplorer gives the analysis of DDR memory status: for example the percentage

of time when DDR is at the status of busy. The reciprocal of the sum of 4 DDR busy status

percentages is used as the fitness 2 of NOCDEX2. The results of last generation are presented

in the Figure 4.16.

Figure 4.16 Best Effort Exploration Results.

In the Figure 4.16 are the 30 different NoC configurations, which are clearly ranked as a

curve of Pareto. The global status of DDR is a measurement of memory busy status, which in

consequence is a measurement of NoC throughput.

 - 72 -

depth of 16 links connected to masters

0
5

10
15
20
25
30
35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

de
pt

h
(w

or
d)

conf1 conf2 conf3

Figure 4.17 Depth of Master links in Best Effort Exploration.

The throughput and average latency of NoC is two performances which can not be satisfied

simultaneously. The NoC designers have to find a trade-off between them. We choose 3

different configurations at the front of Pareto curves for further architecture analysis. Depth is

one option of ‘link’ in NoCexplorer exploration represents the depth of FIFO on this link.

Here are the configurations of 16 links connected to the 16 processors, which varies in entity

of {0, 4, 16, 32}. If the column is invisible in the figure, the value of that link is 0. We can

see that for each configuration, the depths of 16 links are different. For each link, the value of

depth changes in different configuration solutions.

In Busy of 16 links connected to masters

0

0.5

1

1.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

%

conf1 conf2 conf3

Figure 4.18 Busy Status of Master Links in Best Effort Exploration.

In Busy is a measurement for link busy status. It represents the percentage of time when the

link is at busy state. We can see that the busy state of 16 links connected to 16 processors

varies in each configuration solution. For each link, its busy state changes a lot in different

configuration solutions.

 - 73 -

4.4.3.2 Latency constraint exploration

Latency constraint is added to NoCDEX2 exploration to get the solutions under the latency

threshold of 24 ns. We take the same 2 fitness as best effort exploration as NOCDEX2’s

fitness, but those solutions which exceed the 24 ns latency threshold will be punished by

multiplying their NOCDEX2 fitness with 1000. in this way NoCDEX2 will find all the

solutions under the threshold finally. Here are the results of last generation in Figure 4.19.

Figure 4.19 Latency Constraint Exploration Results.

As we have added a threshold in NSGAII algorithm, NoCDEX2 give all the configuration

solutions which are all under the 24 ns threshold in the last generations. Comparing to the best

effort exploration, we can see form the minimum value of average latency and global DDR

status that NoCDEX2 has found the solutions which have less average latency in average

latency constraint exploration, for example the point marked as conf2 in the figure. But we

have to note that in latency constraint exploration, the throughput of NoC is sacrificed: we can

not find the solutions which have as large throughput as in best effort exploration.

 - 74 -

depth of 16 links conneted to masters

0
5

10
15
20
25
30
35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

de
pt

h
(w

or
d)

conf1 conf2

Figure 4.20 Depth of Master Links in Latency Constraint Exploration.

Of the results, we use two configurations to analyze the NoC architecture. Comparing the best

average latency solutions: conf2 in latency exploration and the conf1 in best effort

exploration, conf2 use less FIFO than conf1. in this way, conf2 has less latency than conf1,

but the throughput is not good as conf1.

In Busy of 16 links connected to masters

0

0.5

1

1.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

%

conf1 conf2

Figure 4.21 Busy Status of Master Links in Latency Constraint Exploration.

At the side of link busy state, we ca see that they fluctuate a lot as in the best effort

exploration.

4.4.3.3 Latency and area constraints exploration

Based on the latency exploration, the area measurement is added to NSGAII algorithm as

fitness. At the level of TLM, we do not have any area information, so the number of links is

taken as the area measurement. The results of last NOCDEX2 generation are showed in the

Figure 4.22. The trade-off between NoC latency and area is presented in this figure. If there is

more links used in the NoC, there will be less communication conflicts, so the average latency

will be smaller.

 - 75 -

Figure 4.22 Latency and Area Constraint Exploration Results.

It is a good explication to the results in the figure. The latency and area constraint exploration

is the first step to evaluate the trade-off between NoC performance and area. It can give a

guideline for the further RTL level exploration.

depth of 16 links connected to masters

0
5

10
15
20
25
30
35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

de
pt

h
(w

or
d)

conf1 conf2 conf3

Figure 4.23 Depth of Master Links in Latency and Area Constraint Exploration.

As we add the number of links as fitness of NSGAII algorithm, the depth of links in different

configuration solutions does not fluctuate as much as it does the other two explorations, which

is really an interesting phenomenon.

 - 76 -

In Busy of 16 links connected to masters

0

0.5

1

1.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

%

conf1 conf2 conf3

Figure 4.24 Busy status of master links in latency and area constraint exploration.

Since the links depth of different solutions does not change a lot, it is logic to find out that the

busy state of the links does not change too much consequently.

4.4.4 Architecture of exploration results

The 3 NoC architectures of 3 different explorations can be found herewith: solution conf1 of

no constraint exploration in Figure 4.25; solution conf2 of latency exploration in Figure 4.26

and solution conf1 of latency and area exploration in Figure 4.27.

At the top of the figures, 16 traffic generators (TG) and their NIU (Network Interface Unit)

are presented as green rectangles. The 4 DDR memories and Dram controllers are found at the

bottom. The NoC architecture has two levels of links. The first level of 16 links is connected

to each traffic generator’s NIU separately as black lines. The figures written in the middle of

lines are the FIFO depths of each link, same for the red lines, which represented the links of

second level. The merging circle indicates there will be a competition of link if the different

communications conflict there. In our experiment, the second level of links is optimal: the

traffic can get to the DDR memory through only the first level of link without through the

second one. The dashed green lines designate the routing of communications from generators

to memories, and do not exist during the NoCexplorer TLM simulation. All the

communications through only the first level of links are not showed in the pictures to get a

legible image: they go directly from the black links to the Dram controllers.

The NoC architecture is not quite equivalent for each traffic generator. It is a further work to

find a good scenario of the optimization technique to balance the architecture for each

generator.

 - 77 -

Figure 4.25 TLM level NoC architecture of no constraint exploration’s conf1 solution.

Figure 4.26 TLM level NoC architecture of latency constraint exploration’s conf2
solution.

 - 78 -

Figure 4.27 TLM level NoC architecture of latency and area constraint exploration’s
conf3 solution.

4.5 Conclusion

Design space exploration of network-on-chip can be conducted at multiple levels of

abstraction from transaction level modeling down to emulation. A fully automatic multi-

objective design workflow is proposed for network on chip at TLM level. The timing and area

criteria are explored but not limited using the TLM NoC models of NoCexplorer. Further

work is to build the energy consumption model library, which can be integrated into our

workflow for power-area- performance multi-criteria system on chip design exploration.

Combining this flow with our previous work at RTL level will allow a fully integrated

solution.

Reference
[1] Benini, L.; De Micheli, G.; Networks on chips: a new SoC paradigm, Computer, Volume 35, Issue 1, Jan.

2002 Page(s):70 – 78
[2] Tobias Bjerregaard, Shankar Mahadevan, A survey of research and practices of Network-on-chip, ACM

Computing Surveys (CSUR), Volume 38 Issue 1, June 2006
[3] Owens, J.D.; Dally, W.J.; Ho, R.; Jayasimha, D.N.; Keckler, S.W.; Li-Shiuan Peh; Research Challenges for

On-Chip Interconnection Networks, IEEE Micro, Volume 27, Issue 5, Sept.-Oct. 2007 Page(s):96 - 108
[4] Li, X.; Hammami, O.;, NOCDEX: Network on Chip Design Space Exploration Through Direct Execution

and Options Selection Through Principal Component Analysis, Industrial Embedded Systems, 2006. IES
'06. International Symposium on 18-20 Oct. 2006 Page(s):1 - 4

 - 79 -

[5] Partha Pratim Pande; Grecu, C.; Jones, M.; Ivanov, A.; Saleh, R.;, Performance evaluation and design trade-
offs for network-on-chip interconnect architectures, Computers, IEEE Transactions on Volume 54, Issue
8, Aug. 2005 Page(s):1025 – 1040

[6] Hyung Gyu Lee, Naehyuck Chang, Umit Y. Ogras, Radu Marculescu On-chip communication architecture
exploration: A quantitative evaluation of point-to-point, bus, and network-on-chip approaches, ACM
Transactions on Design Automation of Electronic Systems (TODAES), Volume 12 Issue 3, August 2007

[7] Jingcao Hu; Marculescu, R.;, Energy- and performance-aware mapping for regular NoC architectures,
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on Volume 24, Issue
4, April 2005 Page(s):551 – 562

[8] Xinping Zhu, Sharad Malik, A hierarchical modeling framework for on-chip communication architectures of
multiprocessing SoCs, ACM Transactions on Design Automation of Electronic Systems
(TODAES), Volume 12 Issue 1 , January 2007

[9] Lahiri, K.; Raghunathan, A.; Dey, S.;, Design space exploration for optimizing on-chip communication
architectures, Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on Volume
23, Issue 6, June 2004 Page(s):952 – 961

[10] Bertozzi, D.; Jalabert, A.; Srinivasan Murali; Tamhankar, R.; Stergiou, S.; Benini, L.; De Micheli, G.; NoC
synthesis flow for customized domain specific multiprocessor systems-on-chip, Parallel and Distributed
Systems, IEEE Transactions on Volume 16, Issue 2, Feb 2005 Page(s):113 – 129

[11] Jiang Xu, Wayne Wolf, Joerg Henkel, Srimat Chakradhar, A design methodology for application-specific
networks-on-chip, ACM Transactions on Embedded Computing Systems (TECS), Volume 5 Issue 2, May
2006

[12] Murali, S.; Benini, L.; De Micheli, G.;, An Application-Specific Design Methodology for On-Chip Crossbar
Generation, Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on Volume
26, Issue 7, July 2007 Page(s):1283 – 1296

[13] Brandolese, C.; Fornaciari, W.; Pomante, L.; Salice, F.; Sciuto, D.; Affinity-driven system design
exploration for heterogeneous multiprocessor SoC, Computers, IEEE Transactions on Volume 55, Issue
5, May 2006 Page(s):508 - 519

[14] Murali, S.; Atienza, D.; Meloni, P.; Carta, S.; Benini, L.; De Micheli, G.; Raffo, L.; Synthesis of Predictable
Networks-on-Chip-Based Interconnect Architectures for Chip Multiprocessors, Very Large Scale
Integration (VLSI) Systems, IEEE Transactions on Volume 15, Issue 8, Aug. 2007 Page(s):869 – 880

[15] Angiolini, F.; Meloni, P.; Carta, S.M.; Raffo, L.; Benini, L.;, A Layout-Aware Analysis of Networks-on-
Chip and Traditional Interconnects for MPSoCs, Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on Volume 26, Issue 3, March 2007 Page(s):421 – 434

[16] T.Kogel, R.Laupers and H.Meyr, "Integrated System-Level Modeling of Network-on-chip enabled Multi-
Processor Platforms", Springer 2006.

[17] F.Ghenassia, "Transaction-level Modeling with SystemC - TLM Concepts and Applications for Embedded
Systems", Springer 2005.

[18] W.Muller, W.Rosenstiel nd J.Ruf, " SystemC Methodologies nd pplictions", Kluwer Academic Publishers
2003.

[19] OSCI TLM 2 User Manual Doc. Version 1.0.0. Nov. 2007
[20] Arteris S.A. http://www.arteris.com
[21] NoC Solution 1.9, NoC Compiler user’s Guide, o918v5, Sep. 2007, Arteris
[22] NoC Solution 1.9, NoCexplorer user’s Guide, o3088v5, Sep. 2007, Arteris
[23] Danube 1.9, Packet Transport Units Technical reference, o4277v9, Oct. 2007, Arteris
[24] R. Ben Mouhoub and O. Hammami, “MOCDEX: Multiprocessor on Chip Multiobjective Design Space

Exploration with Direct Execution,” EURASIP Journal on Embedded Systems, vol. 2006, Article ID 54074,
14 pages, 2006.

 - 80 -

 - 81 -

5. Reconfigurable NoC on eFPGA

Multiprocessor system on chip (MPSoC) is expected to be used for multiple applications

which might exhibit distinct communication patterns. As number of IPs is increasing

exponentially, the most important issue in communication is to guarantee the quality of

service. Network on chip provides a proven solution for the communication of complex

System on Chip and several designs have been made. However, few studies have addressed

the requirements of network on chip design for multiple applications. Finding a common

efficient network on chip for these multiple applications might be simply impossible due to

the diverging requirements.

Reconfigurable network on chip is a potential solution, in which the network is

reconfigured before the execution of applications in order to match the applications’ specific

requirements. Implementation of this reconfigurability might be done using eFPGA. We

propose a methodology to specify the area dimension of reconfigurable eFPGA for NoC

(Network on Chip). Various objective functions are used to drive our study. The experiment

results show the efficiency of our approach.

Figure 5.1 ASIC with eFPGA (a) centralized (2) scattered

Although this is possible to be done on FPGA devices by exploiting the reconfigurability of

FPGA low power, high performance and area efficiency requirements of SoC push for an

ASIC solution with eFPGA. This eFPGA have been the focus of various studies (e.g. [5]) and

ASIC ASIC

 - 82 -

represents the only solution so far to introduce reconfigurability in non-FPGA environment

that is ASIC.

Figure 5.2 Placement of NoC onto eFPGAs

In order to efficiently use this provided resource it is essential to characterize the various

designs to be mapped on it. Proper selection among area-performance allows such a choice.

5.1 eFPGA and Reconfigurable NoC State of Art

5.1.1 eFPGA technology

The ability to make post fabrication changes in System-on-Chip (SoC) designs is the

major advantage of eFPGA cores. Its reconfigurability makes eFPGA suitable for on-chip

logics such as hardware accelerators for processors to speed up embedded applications, data

encryption units in wireless devices that need to be changed from time to time, I/O interfaces

for data communication, configuration and packet routing of Network-on-Chip to adapt

dynamic traffic. The advantages of this approach make possible to supply multiple customers

with a single programmable chip and accommodate changes in standards or design

specifications.

There are two French companies accelerate the embedded FPGA technology

implementation on chips. They are Menta [14] and M2000 (change to Abound) [15]. They

develop eFPGA cores in the form of soft IP. Chip designers would use their eFPGA core and

integrate it on their design to get the live capability of reconfiguration..

Menta licenses world’s first pure soft FPGA IP core [14]. As a soft IP, it is synthesized

with the standard HDL design flow, makes very easy its integration onto a SoC. The Menta’s

 - 83 -

soft core eFPGA is technology independent. It can be integrated with any process technology,

which gives a lot of easiness for SoC manufacturing.

In addition of being soft core, Menta’s eFPGA [14] is highly customizable so a domain

specific-FPGA (dsFPGA) [16] can be used in SoC which provides extensive features for the

target applications giving enormous benefits in terms of Area, Power consumption and Speed.

Current, eFPGA core-II architecture for general purpose logic mapping without using any

hard macros can achieve a density of around 5,000 equivalent gates per mm2 for 90 nm

CMOS process. Menta forecast for next generation having more than 8,000 equivalent gates

per mm2 for 90 nm CMOS process. For critical and high volume users, target technology

achieves more than 15,000 equivalent gates per mm2 (estimates on 90 nm) while still keeping

much of the flexibility of soft IP core.

Figure 5.3 Abstract view of Menta eFPGA architecture

As it is soft IP there are no SRAM cells on Menta eFPGA [16], Pass transistor or tri state

buffer switches. The configuration element is a Flip Flop and switching element is a

Multiplexer. The core is highly configurable. We can select all the fundamental parameters of

the eFPGA like LUT size, Cluster size (number of LUT in a eCB), Routing channel size and

array size (number of eCBs) etc.

M2000 is another French startup working of embedded FPGA technology, which has

become as Abound Logic. They claim to have the largest FPGA on earth. The technology

details are given in the next section. Comparing to Menta, M2000 has more commercial

success. They are involved in several European research projects such as MORPHEUS

 - 84 -

project [23], which targets at a modular heterogeneous SOC platform. Hardware accelerators

are implemented onto M2000 eFPGA which are connected by STNoC. STMicroelectronics

uses their technology for several ASAP+eFPGA chips. For example, Xtensa processor

connects an eFPGA [18] onto which hardware accelerators are implemented. And in [19],

three eFPGAs are connected by an eight port NoC with the main ARM processor.

Stretch S6000 family of software configurable processors [20] combines Tensilica’s

Xtensa® LX Processor together with their own proprietary programmable fabric, which they

call Stretch Instruction Set Extension Fabric (ISEF). ISEF is used to optimize the instruction

set for specific applications in real time. This is probably the first commercial CPU with

embedded FPGA. Both the S6100 and the S6105 contain an integrated Processor Array (PA)

interface to connect multiple Stretch processors into hyper-cubes.

Selected C-functions are converted by Stretch compiler into programmable logics

automatically inside ISEF and these new instructions execute in a single cycle on ISEF. The

FPGA-like ISEF logic is designed specifically for implementing variable-sized ALUs,

multipliers, and shifters — all data path extensions to the processor. The ISEF computes

complex functions "in parallel” but tailored by system designers to meet the needs of their

own compute-intensive applications.

Warp processor [21] consists of a main processor ARM7, an efficient on-chip profiler,

warp oriented FPGA (W-FPGA), and an on-chip computer-aided design module (OCM).

Another ASAP+eFPGA solution proposed by RWTH Aachen University [22], uses MIPS-IV

instruction set and an ARM940T separately as main processor, and their arithmetic oriented

eFPGA as coprocessor. LEON3 +Menta eFPGA [16] proposes to use the eFPGA logics as

coprocessor or integrate the eFPGA logic as pipeline into LEON3 main processor as Stretch

solution. Performances are obtained by simulation to show the efficacy of reconfigurable

eFPGA solution.

5.1.2 Reconfigurable NoC implementation with FPGA

A heterogeneous reconfigurable hardware platform composed of two ASIC and two

FPGA for Cognitive Radio is used for reconfigurable SDR system emulation [24]. NoC

FAUST of wormhole switching mode is extended to a FPGA and Functional units are

connected to the network through a network interface (NI). The amount of credit and data

 - 85 -

inside each NI is periodically reconfigured using Xilinx’s PR (Partial Reconfiguration)

technology.

Dynamic Reconfigurable NoC (DRNoC) Emulation Platform [25] is an FPGA emulation-

based fast Network on Chip (NoC) prototyping framework. Again, partial reconfiguration

technology is applied to avoid whole system re-synthesis during the design exploration for

best NoC configuration. Comparing to previous partial reconfiguration works [26, 27] for

dynamical insertion and removal of routers and cores on a MESH based NoC, DRNoC is a

complete fast NoC emulation framework based on different types of partial reconfiguration.

After all configurations have been setup, each DRNoC configuration is emulated FPGA

platform. All configurations are emulated consecutively, and the results related to each

hardware measuring point are saved. The workflow is not automatic.

An overview of existing reconfigurable NoC work is given is [29]. A description of a

dynamic reconfiguration NoC model is introduced. Three research issues: dynamic

reconfiguration administration, network infrastructure reconfiguration and network protocols

reconfiguration are listed. Existing approaches and open Issue are discussed. a controlled

tradeoff between quality of service and overhead at the three levels of decision is focused on.

5.2 eFPGA: M2000 Case Study

5.2.1 M2000 eFPGA technology

M2000 was created in 1996 on France by experts on configurable logic. Started with

Meta Systems they developed the industry's first emulation system based on custom FPGAs

(Field Programmable Gate Arrays.) The founding team holds numerous patents in the field of

configurable logic and its applications for electronic system testing. M2000's current focus is

the design and development of state of the art configurable logic technology for the rapidly

growing reconfigurable SoC (System on a Chip) market. They have changed the name as

Abound and moved the headquarter to California USA. FlexEOS is the last technique

supplied by M2000, and the new FPGA technology is called as Raptor™ FPGA.

M2000’s 90nm FlexEOS embedded FPGA macros in 90 nanometer CMOS technology

breaks the density barrier of 1,000 reprogrammable Look-Up Tables (LUTs) per mm2 in

2005, with an intrinsic technology performance capable of 2.7 GHz. The FlexEOS [15] range

of embedded FPGA cores are SRAM based, and can be dynamically reconfigured to change

 - 86 -

the functionality of ASIC and SoC circuits after silicon processing and packaging. FlexEOS

macros are suitable for a wide range of applications, and can be supplied for any silicon

foundry technology. Each macro is delivered with a comprehensive software tool suite for the

compilation of the applications which are to run on the macro. Mentor Graphics is the

supplier of the front-end synthesis technology for Abound Logic’s products.

Based on a dense, hierarchical routing structure, Raptor™ FPGAs [15] deliver an

unprecedented level of density, far beyond that of any other FPGA. Providing more than

750,000 LUTs and an equal number of flip-flops to the designer, Raptor FPGAs are an

attractive alternative to ASICs in many applications.

At the heart of the Raptor FPGA is the multifunction cell (MFC) composed of a 4-input

LUT plus a D-type flip-flop, offering invertible clock polarity, programmable enable and

asynchronous/synchronous reset.

Figure 5.4 Abound Multi-function cell and layout of Raptor FPGA

The Raptor architecture includes three types of MFCs to provide access to other

resources: logic, memory and arithmetic. Logic MFCs contain a single LUT and D-type flip-

flop; memory MFCs add access to an embedded 32 × 18 register file; arithmetic MFCs

provide access to 4-bit adders. More information can be found in [17].

 - 87 -

5.2.2 Switch Area and frequency characterization

We use the Danube IP Library of company Arteris to generate the NoC. The switch

component architecture can be customized through several options described in the following

table.

Table 5.1 Switch Options

Switch options values
1.Arbitration type Round-Robin(1), LRU(2), Random(3), Fifo(4)
2.Input pipeline register True(1), false(0)
3.Forwards pipeline register True(1), false(0)
4.Backwards pipeline register True(1), false(0)
5.Crossbar pipeline register True(1), false(0)
6.Dual cycle arbitration True(1), false(0)

Because of the constraints between different options, there are 80 different configurations for

each switch. There is one example of a switch with 4 inputs and 4 outputs synthesized on the

eFPGA of M2000 using 80 configurations with 90nm FlexEOS embedded FPGA library.

0

200

400

600

800

1000

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76

nu
m

be
r o

f F
FS

 o
r L

U
Ts

flip-flops LUTs

0

10

20

30

40

50

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76

fr
eq

ue
nc

y
(M

hz
)

frequency

Figure 5.5 Area and Frequency of Switches

The number of flip-flops and LUTs (Look Up Table) are taken as the switch area

measurement. With different configurations, the switch area changes a lot. The switch

 - 88 -

frequency fluctuates from 25 MHz to 40 MHz. And it should e noticed that the frequency

does not change proportionally to the area.

5.2.3 Reconfigurable NoC problem definition

We have the area and frequency library of each switch configuration. The objective is to find

out a high performance heterogynous NoC at the constraints of eFPGA area.

Input: (1) a NoC with N switches; (2) the area constraint of one or numerous eFPGAs

disposable.

Output: the choice of configuration for each switch and the placement of each switch if more

than one eFPGA are used.

 Constraints: the total area of switches can not exceed the whole area constraint of eFPGA

where these switches are placed.

Figure 5.6 Design flow of NoC on eFPGA

5.3 NoC Optimization on eFPGA with Place and Route Constraints

In this section we present our ILP formulation for the reconfigurable NoC design problem.

Depending on the number of eFPGAs, we have two different formulations: (1) reconfigurable

NoC is placed on just one eFPGA, the configuration of each switch can be chosen with the

area constraint; (2) NoC is placed on more than one eFPGAs, not only the configuration

should be selected but also the placement of each switch on eFPGA is decided. At the base

the formulation (2), we extend to find a solution which uses the minimal number of eFPGAs

among all the possible ones. And the workflow is described.

 - 89 -

5.3.1 Reconfigurable NoC on one eFPGA

At first situation there is just one eFPGA to place the NoC with N switches of which each has

M different possible configurations. This eFPGA has LUTmax luts and RAMmax rams.

We introduce a binary variable xi,j to represent the choice of configuration of switch i:

xi,j ∈ {0,1} for i = 1,…,N and j = 1,…,M .

xi,j = 1 if switch i is set to its configuration j, and xi,j = 0 otherwise.

In out area library we have all the information of each switch configuration. Let luti,j and

rami,j be the number of luts and rams of switch i if it’s set to configuration j. And fi,j represents

the frequency of switch i set to configuration j. The ILP formulation A of this problem is:

Max: , ,i j i j
i j

f x⋅∑∑ (1)

s.t. , 1,i j
j

x i= ∀∑ (2)

, , maxi j i j
i j

lut x LUT⋅ ≤∑∑ (3)

, , maxi j i j
i j

ram x RAM⋅ ≤∑∑ (4)

The objective is to maximize the frequency of all switches as we suppose to construct a

heterogeneous NoC with each switch different frequency as in (1). The constraint (2) makes

sure that each switch is set to only one of its configurations. In constraint (3), we ensure that

the sum of all switches’ luts will not exceed the whole LUTmax luts of eFPGA. And in

constraint (4), we ensure the sum of all switches rams will not exceed the whole RAMmax rams

of eFPGA.

5.3.2 Reconfigurable NoC on numerous eFPGAs

We consider the situation there is K eFPGAs to place the NoC with N switches. Each eFPGA

has LUTk luts and RAMk rams where k = 1,…,K. The switch is free to be placed in any of

these eFPGAs. The configuration of each switch is to be set, but also their placement.

In this case, we introduce a binary variable xi,j,k to represent the choice of configuration and

the placement of switch i:

Xi,j,k ∈ {0,1} for i = 1,…,N ; j = 1,…,M and k = 1,…,K.

 - 90 -

xi,j,k = 1 if switch i is set to its configuration j and is placed on the eFPGA k, and xi,j,k = 0

otherwise.

Let luti,j,k and rami,j,k be the number of luts and rams of switch i if it’s set to configuration j

and placed on eFPGA k. And fi,j,k represents the frequency of switch i set to configuration j

and placed on eFPGA k. The ILP formulation B of this problem is:

Max: , , , ,i j k i j k
i j

f x⋅∑∑ (5)

s.t. , , 1,i j k
j k

x i= ∀∑∑ (6)

, , , , ,i j k i j k k
i j

lut x LUT k⋅ ≤ ∀∑∑ (7)

, , , , ,i j k i j k k
i j

ram x RAM k⋅ ≤ ∀∑∑ (8)

The objective is still to maximize the frequency of all switches in (1). The constraint (2)

makes sure that each switch is set to only one of its configurations and is placed to only one

eFPGA. In constraint (3), we ensure that on eFPGA k the sum of all switches’ luts will not

exceed the whole LUTk. And in constraint (4), we ensure on eFPGA k the sum of all switches’

rams will not exceed the whole RAMk.

5.3.3 Reconfigurable NoC on minimal eFPGAs

In the case of numerous eFPGAs, not all of them are need to place the NoC. So we want to

minimize the number of used eFPGAs. We use the algorithm based on formulation B to solve

this problem.

The major idea is to test the feasibility of placing the NoC on form one eFPGA to K-1

eFPGAs. If the objective function value of the n (less than K) eFPGAs solution is equal to the

K eFPGAs solution’s Fmax and the other m (less then n) eFPGAs solutions’ objective function

value is less than Fmax, then we find a minimal solution for the NoC on numerous eFPGAs

problem.

In this algorithm 1, a list of combination of K eFPGAs is built for the i eFPGAs problem. A

combination example of 3 eFPGAs (1,2,3) is:

(1); (2); (3); (1,2); (1,3); (2,3); (1,2,3)

 - 91 -

5.4 Performance Evaluation and Results

5.4.1 Experimental setup

We generate our area and frequency library by synthesis on the eFPGA using the M2000

techniques and Mentor Graphics Precision Synthesis. A NoC of 16 inputs and 4 outputs is

used as test bench for out NoC on minimal eFPGA algorithm. GNU glpk library is used to

solve the ILP problems. The function ‘lpx_intopt’ with branch-and-bound method is effective

to solver our IPL formulations in seconds. We obtain the results of NoC on one eFPGA and

on numerous eFPGAs. All results were obtained on a 2.6GHz Xeon station with 4GB DDR

memories.

Figure 5.7 NoC testbench architecture

Algorithm 1 NoC on Minimal eFPGAs Algorithm
1: calculate ILP value Fmax of K eFPGAs problem
2: build list of all the combination of K eFPGAs
3: for i =1 to K do
4: calculate ILP value Fi of i eFPGAs problem
5: if Fi >= Fmax then
6: break
7: end if
8: end for
9: output Fi, i , used eFPGAs and switch configurations

 - 92 -

5.4.2 Results of NoC on one eFPGA

Here we compare our optimal results with the original NoC implementation on the eFPGA of

M2000 technique. The original NoC is synthesized on one M2000 eFGPA f4-16000-

90nm_fast without optimization. Then our ILP solver is used to get the optimal result and the

configurations of switches. The new NoC with optimal configurations is re-synthesized on the

same eFGPAs. The area of eFPGA is set to 7000 flip-flops and 5000 LUTs.

Table 5.2 results of NoC on one eFPGA

switch Frequency
(MHz)

options
1 2 3 4 5 6

Switch00 26 2 0 1 0 1 0
Switch01 26 2 0 1 0 1 0
Switch02 26 2 1 0 1 1 0
Switch03 26 2 0 1 0 1 0
Switch10 30 2 0 1 0 1 0
Switch11 30 2 1 1 0 1 0
Switch12 30 2 1 1 1 1 0
Switch13 30 2 0 1 0 1 0

5.4.3 Results of NoC on numerous eFPGAs

Table 5.3 area constraint of 4 eFPGAs

eFPGA Flip-flops LUTs
0 5000 4000
1 4000 4000
2 3000 4000
3 3000 5000

We try to place the NoC on 4 eFPGAs whose size is not very large. At first all the 4 eFPGAs

are used for placement and the minimal eFPGAs algorithm is used to get the optimal solution.

Table 5.4 results of NoC on 4 eFPGAs

switch eFPGA Frequency
(MHz)

options
1 2 3 4 5 6

Switch00 0 26 2 1 1 0 1 0
Switch01 0 26 2 1 0 1 1 0
Switch02 2 26 2 1 0 1 1 0
Switch03 3 26 2 0 0 1 1 0
Switch10 0 30 2 1 1 1 1 0
Switch11 3 30 2 1 1 1 1 0
Switch12 2 30 2 1 1 1 1 0
Switch13 1 33 2 1 1 1 1 0

 - 93 -

Table 5.5 results of NoC on minimal of 4 eFPGAs

switch eFPGA Frequency
(MHz)

options
1 2 3 4 5 6

Switch00 0 26 2 0 1 0 1 0
Switch01 0 26 2 0 0 1 1 0
Switch02 0 26 2 1 1 0 1 0
Switch03 1 26 2 1 1 0 1 0
Switch10 1 30 2 0 1 0 1 0
Switch11 1 33 2 0 1 0 1 0
Switch12 1 30 2 1 1 0 1 0
Switch13 1 30 2 1 1 1 1 0

The 8 switches are placed on all the 4 eFPGAs, if the minimal eFPGAs Algorithm is not used.

Then an optimal solution with only 2 used eFPGAs is found by the NoC on minimal eFPGAs

Algorithm. The switches are placed on the eFPGA 0 and 1 with different configurations.

5.5 Conclusion

Reconfigurable network on chips require efficient reconfigurable hardware support in

ASIC environment. The emerging eFPGA IPs allow the integration of reconfigurable area in

ASIC devices. The organization and dimensioning of this area is an important issue to be

tackled in order to maximize the efficiency of network on chip mapping. The proposed linear

programming methodology provides a solution to this problem. Several use cases have been

studied which proves the efficiency of our approach. As the eFPGA process technology is

reaching 45 nm, the implementation of our ILP solution onto the newest technology will be

the future work.

Reference
[1] A.A.Jerraya and W.Wolf, “Multiprocessor Systems-on-Chips”, Morgan Kaufman Pub., 2004
[2] Tobias Bjerregaard, Shankar Mahadevan, A survey of research and practices of Network-on-chip, ACM

Computing Surveys (CSUR), Volume 38 Issue 1, June 2006
[3] Owens, J.D.; Dally, W.J.; Ho, R.; Jayasimha, D.N.; Keckler, S.W.; Li-Shiuan Peh; Research Challenges for

On-Chip Interconnection Networks,IEEEMicro Volume 27, 5, Sept.-Oct. 2007 pp. 96 – 108
[4] A. Lodi, A. Cappelli, M. Bocchi, C. Mucci, M. Innocenti, C. De Bartolomeis, L. Ciccarelli, R. Giansante, A.

Deledda, F. Campi, M. Toma and R. Guerrieri, “XiSystem: A XiRisc-Based SoC With Reconfigurable IO
Module,” IEEE Journal of slid-state circuits. vol. 41, NO.1, pp. 85–96, January 2006.

[5] S. Murali, M. Coenen, A. Radulescu, K. Goossens and G. De Micheli, “A Methedology for Mapping
Multiple Use-Cases onto Networks on Chips,” Desing, Automationand Test in Europe,2006, prceedings.
vol: 1, pp. 1- 6, March 2006 .

[6] A. Kumar, A. Hansson, J. Huisken and H. Corporaal, “An FPGA Design Flow for Reconfigurable Network-
Based Multi-Processor Systems on Chip,” Desing, Automationand Test in Europe,2007, prceedings. vol:
1, pp. 16- 20, April 2007.

 - 94 -

[7] V. Aken’Ova and R. saleh, “A ‘Soft++’ eFPGA Physical Design Approach with Case Studies in 180nm and
90nm,” Proceeding of the 2006 Emerging VLSI Technologies and Architectures, vol:1, pp103-108. March
2006 .

[8] V. Nollet, T. Marescaux, D. Verkest and J-Y. Mignolet, “Centralized Run-Time Resource Management in a
Network-on-Chip Containing Reconfigurable Hardware Tiles,” Desing, Automationand Test in
Europe,2005, prceedings. vol: 1, pp. 234- 239, March 2005.

[9] V. Aken’Ova, G. Lemieux, and R. Saleh, “An Improved ‘Soft’ eFPGA Design and Implementation
Strategy,” IEEE Custom Integrated Circuits Conference, 2005 proceeding, pp. 179–182, September 2005.

[10] M2000 http://www.m2000.com
[11] GNU Linear Programming Kit http://www.gnu.org/software/glpk/
[12] Schrijver, Theory of Linear and Integer Programming,
[13] Li, X.; Hammami, O.;, NOCDEX: Network on Chip Design Space Exploration Through Direct Execution

and Options Selection Through Principal Component Analysis, Industrial Embedded Systems, 2006. IES
'06. International Symposium on
18-20 Oct. 2006 Page(s):1-4

[14] Menta company http://www.efpga.com/
[15] Abound company http://www.aboundlogic.com/
[16] Ahmed, Syed Zahid et al. , Exploration of power reduction and performance enhancement in LEON3

processor with ESL reprogrammable eFPGA in processor pipeline and as a co-processor, Design,
Automation & Test in Europe Conference & Exhibition, 2009. DATE '09. page(s): 184 – 189

[17] Raptor™ FPGA Product Information Brief, PB001 (V1.0) May 2009, http://www.aboundlogic.com/
[18] Borgatti, M.; Lertora, F.; Foret, B.; Cali, L., A reconfigurable system featuring dynamically extensible

embedded microprocessor, FPGA, and customizable I/O, Solid-State Circuits, IEEE Journal of, Volume 38,
Issue 3, Mar 2003 Page(s): 521 – 529

[19] Andrea Lodi et al. , XiSystem: A XiRisc-Based SoC With Reconfigurable IO Module, IEEE JOURNAL OF
SOLID-STATE CIRCUITS, VOL. 41, NO. 1, JANUARY 2006

[20] Strech, http://www.stretchinc.com
[21] Roman Lysecky, Scalability and Parallel Execution of Warp Processing: Dynamic Hardware/Software

Partitioning, International Journal of Parallel Programming, Volume 36, Number 5 / October, 2008
[22] B. Neumann, T. von Sydow, H. Blume, T. G. Noll , Application Domain Specific Embedded FPGAs for

Flexible ISA-Extension of ASIPs, Journal of Signal Processing Systems, Volume 53 , Issue 1-2 (November
2008)

[23] Deledda, A et al. , Design of a HW/SW Communication Infrastructure for a Heterogeneous Reconfigurable
Processor, Design, Automation and Test in Europe, 2008. DATE, Page(s):1352 – 1357

[24] Delorme, J. Martin, J. Nafkha, A. Moy, C. Clermidy, F. Leray, P. Palicot, J. A FPGA partial
reconfiguration design approach for cognitive radio based on NoC architecture, Circuits and Systems and
TAISA Conference, 2008. NEWCAS-TAISA 2008

[25] Krasteva, Y.E. Criado, F. de la Torre, E. Riesgo, T. , A Fast Emulation-based NoC Prototyping
Framework, Reconfigurable Computing and FPGAs, 2008. ReConFig '08, page(s): 211-216

[26] C. Bobda, A. Ahmadinia, M. Majer, J. Teich, S. P. Fekete, and J. van der Veen, “Dynoc: A dynamic
infrastructure for communication in dynamically reconfigurable devices,” in FPL, 2005, pp. 153–158.

[27] T. Pionteck, R. Koch, and C. Albrecht, “Applying partial reconfiguration to networks-on-chips.” in FPL.
IEEE, 2006, pp. 1–6.

[28] R.Benmouhoub and O.Hammami, “Noc monitoring harwdare support for fast noc design space exploration
and potential noc partial dynamic reconfiguration,” in IEEE IES, 18-20 oct 2006.

[29] Dafali, R. Diguet, J.-P. Sevaux, M. , Key Research Issues for Reconfigurable Network-on-Chip,
Reconfigurable Computing and FPGAs, 2008. ReConFig '08, page(s): 181-186

 - 95 -

6. SSM IP: Small Scale Multiprocessor IP

Future generation multiprocessor system on chip (MPSOC) will be based on hundreds of

processors connected through network on chips. One of the challenges is to tackle the design

productivity required to reach this goal. We propose a NoC based small scale multiprocessor

IP (SSM IP) as a building block for large scale multiprocessor. In this chapter we describe the

architecture of such an SSM IP as well as the prototyping results on a single chip FPGA.

Image processing applications are used as preliminary parallel software evaluation and

demonstrate the potential of design space exploration at small scale multiprocessor.

6.1 Cluster MPSOC and NoC design

ITRS Semiconductor roadmap [1] projects that hundreds of processors will be needed for

future generation multiprocessor system on chip (MPSOC) designs. Among the various

challenges of MPSOC [2] design productivity is paramount. Design productivity of system on

chip at large is by itself a declared design technology major challenge [1]. The design

productivity gap represents the fact that Moore’s law regular progress generates a number of

available transistors which grows faster than the ability to use them in a meaningful way. This

gap puts at risk the entire semiconductor investment cycle. The design productivity gap is the

result of the combined silicon complexity and system complexity which translates into super

exponentially increasing complexity. Silicon complexity is the result of physical properties

(non ideal scaling of device parasitic and supply threshold/voltages, coupled high-frequency

devices and interconnects, manufacturing variability, complexity of manufacturing handoff,

process variability, decreased reliability) and scaling of global interconnect performance

relative to device performance. System complexity associated challenges are reuse,

verification and test, cost-driven design optimization, embedded software design, reliable

implementation platforms, and design process management.

 - 96 -

Although design reuse, platform and IP based design are powerful concepts [1] in order to

speed up the design process the basic IPs are still too elementary to quickly build large scale

multiprocessors. Indeed, reuse productivity of design, verification and test must scale at more

than twice per technology generation it is then necessary to raise the size and complexity of

IPs to small scale multiprocessor IPs in order to speed up the process. Designing large scale

multiprocessors based on small scale multiprocessors allows quickly duplicating building

elements and building a large scale multiprocessor in reasonable design time. Small scale

multiprocessor IP can be soft or hard IP. Hard IP alleviates many design efforts by providing

quick solution. However, soft IP allows design space exploration and efficient tuning of

resources to match multi-objective requirements. In addition, reliable and predictable silicon

implementation fabrics that support ever-high level electronic system design handoff are

needed. We propose a small scale multiprocessor soft IP fully based on more elementary soft

IP and analyze the potentials of design space exploration on this IP. The effects of silicon

complexity and system complexity are partially addressed as the first step towards a more

general and extended flow.

Design productivity with regard to multiprocessor system on chip is a relatively new

research issue and there are still many open research issues. Modelling of multiprocessors and

adequate level of abstraction (TLM , RTL), performance evaluation and design space

exploration, verification and test trough simulation or emulation are current topics of debates.

Multiprocessor on chip performance evaluation requires billion of cycles of validation which

cannot be afforded by traditional simulation techniques. Multiprocessor designers face

prohibitive simulation times which have been coined as the simulation wall [3]. In addition,

simulation is not able to take into account implementation issues: processors have technology

dependent frequency and area, network on chip are layout sensitive and DDR modules have

very precise timing models and operations mode. Emulation and FPGA-based emulator have

been recognized as efficient techniques for the performance evaluation and validation of

multiprocessors. In [5] design space exploration of multi-processor on multi-FPGA platform

[11] have been conducted with masters on one chip, network on chip on a second chip and

slaves on a third chip. Automatic design space exploration of multiprocessor on chip on a

single large scale FPGA chip have been conducted [13] with automatic tuning and test of the

multiprocessor. The combined effects of compiler, architecture and place and route have been

 - 97 -

addressed for a single chip in [8]. A complete network on chip emulation platform has been

proposed in [15] and a multiprocessor platform in [16,17]. Finally large scale multiprocessor

project have emerged in [18]. However to the best of our knowledge, the issue of design

productivity and the use of small scale multiprocessor IP as building blocks for large scale

multiprocessor have not been addressed.

We address the issue of building a small scale multiprocessor as a basic building block

for large scale multiprocessors and evaluate through actual synthesis, place and route and

execution the potentials of such IP.

6.2 SSM IP FPGA Design and Implementation

6.2.1 Small Scale Multiprocessor Soft IP

Figure 6.1 Small Scale Multiprocessor IP Interfaces

A small scale multiprocessor soft IP can be seen as modulable IP where external

connections are more or less modified. Figure 1 shows possible variations (b,c,d) of SSM IP

from a basic configuration a. The basic configuration includes external connections for: (1)

memories (DDR2, flash) (2) IO access (3) debug, test and performance monitoring and (4)

SSM cascading. SSM cascading represents the possibility to reuse the SSM IP to design a

larger scale multiprocessor system on chip. This extension for a NOC based SSM goes

through extended NOC connections (NOC_IO) as seen in Figure 6.1 for variations c and d.

 - 98 -

Figure 6.2 shows a general view of this principle through a general network on chip in (a) or a

mesh oriented network on chip in (b).

Figure 6.2 Small Scale Multiprocessor IP Composition (a) NOC based general case (b)
NOC Mesh organized

The SSM IP should be designed from start by taking into account the extensibility and

design reuse of the SSM IP. A natural NOC for the connections of SSM IP is a mesh network

on chip under the condition that the SSM IP is organized internally as a cluster in order to

reduce the size of the network (average number of hops) and maximizes the area dedicated to

computation over communication.

6.2.2 Architecture

Figure 6.3 Small Scale Multiprocessor IP architecture (a) Full mesh (b) Cluster based

 - 99 -

The SSM IP architecture is a mesh of clusters. The SSM IP is composed of 12 processors

connected through a 2x2 mesh with 3 Xilinx MicroBlaze processors and 2 SRAM on chip

memories per switch. The network on chip topology is mesh for its scalability properties and

easy extensibility [3,4,5]. In addition, in system on chip where layout regularity and

interconnection delays are paramount the mesh topology provides short links and easier place

and route. With regards to silicon complexity scaling of global interconnect performance

relative to device performance is better managed through short links. Several recent system

on chip projects and devices use the mesh topology. The TRIPS project [7] use a mesh

topology while industrial chips such as TILE64 form Tilera [6] and Intel TERAFLOPS [8]

use mesh topology as well.

However, our proposed cluster based mesh architecture design has been preferred over a

full mesh in order to fully exploit the data locality processing of image and multimedia

applications. Images can be distributed equally among the shared memories of each cluster so

that processors belonging to a cluster can operate on the image portion associated to a cluster.

The full mesh architecture example of our SSM IP is shown in Figure 6.3 (a), and our

proposed cluster based mesh architecture is presented in Figure 6.3 (b) for comparison. Our

SSM IP architecture is a mesh of clusters. It is composed of 12 processors and 8 SRAMs

connected through a 2x2 mesh with 3 Xilinx MicroBlaze processors and 2 SRAM on chip

memories per switch. Meanwhile full mesh architecture use 12 switches or even more

dimension if each switch is restricted to just one processor or SRAM, see in Figure 6.3 (a).

Since the SSM IP is a soft IP it is composed of various soft IP described in following table.

Table 6.1 IPs of SSM multi-processor.

IP component description source version Qty

processor Soft core IP Xilinx MicroBlaze Soft core IP 6.00 b 12

memory Soft core IP Xilinx Coregen 96KB v.2.4. 8

Network on chip switch Soft core IP VHDL Arteris Danube library 1.10 4

 Our design of the network on chip is based on Arteris Danube Library. The Arteris Danube

library [20] includes the switch generator which is an essential building block of the NoC

interconnect system. NoCcompiler [21] tools estimates switch area using NAND2 gate as unit.

The relation between switch area and IO number is complex as showed in Figure 6.4.

 - 100 -

Figure 6.4 Switch Area Variations as Function of Number of Inputs-Outputs

Switch area is proportional linearly to the number of input (or output), when the number of

output (or input) is fixed. With numerical analysis of data, the relation between area of switch

and the IO number is:

F(X, Y) = 72*X*Y+273*Y+39*X+18

where the F(X,Y) means the area of switch in unit of NAND2x2, X the number of input and

Y the number of output.

Processor to switch is taken as input and switch to SRAM as output, while interconnection

between switches is 2 directions. In cluster based mesh, for each switch X=5 and Y=4. Total

area is 4*F(5,4) = 10980 NAND2x2. While in full mesh of figure 3(a), there are 5 types of

switch regarding to IO numbers. And total area of this full mesh is

4*F(4,4)+2*F(3,3)+2*F(3,2)+2*F(5,5)+2*F(4,3) = 25572 NAND2x2.

Besides shorter communication link, our cluster based mesh architecture consumes much less

area than full mesh implementation. This clustered design increases the size of each switch

but reduces the number of switches.

6.2.3 Design Automation Flow

EDA tools of Xilinx and Arteris companies are combined together for our SSM IP design

automation work flow in Figure 6.5.

 - 101 -

Figure 6.5 SSM Design Automation Work Flow

The Xilinx EDK tool is used to generate our SSM (Small Scale Multiprocessor) processor

elements according to the configuration input. Once the RTL files of SSM are generated, they

are reused for the multi-FPGA large scale multiprocessor synthesis, which can largely reduce

system design time. Arteris NoCcompiler tool is used to generate NoC RTL files with the

input of NoC architecture. Then Xilinx synthesis and PAR (place and route) tools are used to

generate the download bit files of FPGA from these RTL files. Sequential C code of

application is parallelized to each processor and NoC communication service functions are

used for data communication and synchronization. These parallelized codes are compiled with

Xilinx EDK tools to generate execution file for each processor. Finally system bit file and

executable files are downloaded to Alpha-data FPGA platform and application is executed.

 - 102 -

6.2.4 Processor Element and NoC communication service

Figure 6.6 (a)Processor Tile (b) MicroBlaze core block diagram

MicroBlaze soft IP [24] is used as basic processor element in SSM IP. It is a 32-bit 3-stage

single issue pipelined Harvard style embedded processor architecture provided by Xilinx as

part of their embedded design tool kit (EDK), in Figure 6.6 (b). The MicroBlaze processor is

flexible, and gives the user control of a number of features such as the cache sizes, interfaces,

and execution units like: selectable barrel shifter (BS), hardware multiplier (HWM), hardware

divider (HWD), and floating point unit (FPU).

Our SSM design is OCP-IP [26] compliant which implies that we can change processor IP

by any other OCP-IP compliant processor IP while leaving the overall design identical. The

OCP-IP protocol is used for the communication between the processors and Network on Chip.

Arteris supplies NIU (Network Interface Unit) in NoC to support OCP-IP protocol. A FSL-

OCP network interface is designed in order to make MicroBlaze processor compatible to

OCP-IP protocol as shown in Figure 6.6 (a). This interface gets data from MicroBlaze

processor through FSL link [23] and transfers data to SRAM through Network on Chip under

OCP-IP protocol. It encapsulates and decapsulates data between FSL links and OCP-IP bus

interface.

A NoC communication service library of driver is written in C for the FSL-OCP network

interface to support OCP-IP basic and extended communication modes as in figure 5. As FSL

link works like 32 bits FIFO interface, the address and data are transferred in two phases

between MicroBlaze processor and FSL using basic micro C code ‘putfsl()’ and ‘getfsl()’ in

EDK library. In the service library, 5 OCP-IP compliant communication modes [26] are

supported: Write, Read, Read Exclusive, Write Non-Post and Write Conditional. Parallelized

 - 103 -

application codes use these drivers for data communication and synchronization between

processors and SRAMs.

6.2.5 Implementation

The implementation of the small scale multiprocessor has been realized by targeting the

largest Xilinx Virtex-4 FPGA chip the FX140. Design has been realized using the Xilinx tools

(EDK, ISE) with the Xilinx library of IPs. The objective of the implementation was to design

a multiprocessor of sufficient scale to be significant while leaving some chip area and

resources for design space exploration. The implementation details are given in Table 6.2.

Table 6.2 Implementation results

FPGA Resource Utilization %

Number of DSP48s 36/192 18%
Number of RAMB16s 544/552 98%

Number of Slices 25261/63168 39%

Number of SLICEMs 2795/31584 8%

The layout has been left intentionally un-optimized to leave enough area to extend the

processor and network on chip features through design space exploration. The network on

chip is based on Arteris network on chip technology [19-21]. The Arteris Danube library [21]

provides a wide range of network on chip components allowing the design of any kind of

packet based wormhole routing network. Implementation is achieved through the

NoCcompiler design tool. It should be noted that all the network on chip component are

parametrical components which allows design space exploration at all network on chip levels.

This automatic exploration has already been achieved on Arteris Danube library components

for small scale multiprocessor with NOCDEX design flow [11].

 - 104 -

Figure 6.7 Multiprocessor Xilinx FX140 floorplan (un-optimized)

We used the Alpha-data board ADM-XRC for the validation and test of the small scale

multiprocessor with debugging from a host through PCI.

Figure 6.8 Alpha-Data Board ADM-XRC (a) board architecture (b) board

This validation guarantees that the small scale multiprocessor is verified and allows design

space exploration of SSM IP.

6.3 Design Space Exploration of SSM IP

6.3.1 SSM Soft IP potential variations

The SSM IP is a soft IP. It is fully configurable for all its components: (1) embedded

processor (2) NOC elements (3) memories. Therefore, it offers numerous opportunities to

 - 105 -

tailor the SSM under resource and performance constraints. In MicroBlaze architecture, barrel

shifter (BS), hardware multiplier (HWM), hardware divider (HWD), and floating point unit

(FPU) are all selectable.

The Arteris Danube IP Library switch component architecture can be customized through

several options described in the following table. It is possible to select the arbitration type of

the switch among 4 possible values Round-Robin, LRU, Random, Fifo with default value

round robin. Several optional registers can be added in order to pipeline the switch.

Table 6.3 Switch options.

Switch options values
Arbitration type Round-Robin(1), LRU(2), Random(3), Fifo(4)
Input pipeline register True(1), false(0)
Forwards pipeline register True(1), false(0)
Backwards pipeline register True(1), false(0)
Crossbar pipeline register True(1), false(0)
Dual cycle arbitration True(1), false(0)

Because of the constraints between different options, there are 80 different configurations for

each switch. Here we show four examples of possible system architecture in the design

exploration space. The 4 examples modify the embedded processor features as well as the

switch features. Although this design space exploration is not large as in [9, 11] it illustrates

the powerful variations of SSM soft IP.

Table 6.4 the 4 versions of architecture.

 NOC MicroBlaze

Arch. V1 Fwdpipe Multiplier

Arch. V2 Fwdpipe+Bwdpipe+Pipe Multiplier

Arch. V3 Fwdpipe Multiplier+FPU

Arch. V4 Fwdpipe+Bwdpipe+Pipe Multiplier+FPU

6.3.2 Synthesis, Place and Route Time and Target frequency

In this section we provide information regarding the time required for respectively: (1) the

synthesis (2) place and route (PAR) of each potential architecture. Most time of hardware

platform design space exploration is spent on the system synthesis and place and rout (PAR).

 - 106 -

Figure 6.9 shows the time used for the 4 examples in Table 6.4 and the maximum frequency

on which the system can be run with these different configurations.

2904 2946
3257 3318

1877
1416

2870

2156

26 77 26 77
0

500
1000
1500
2000
2500
3000
3500

Arch. V1 Arch. V2 Arch. V3 Arch. V4

tim
e

(s
)

Synthesis PAR Frequency(MHz)

Figure 6.9 DSE Execution Time

The design space exploration translates to varying frequencies for each SSM IP configuration

but obviously also by varying areas. Table 5 describes the resulting SLICEs and SLICEMs for

the 4 configurations and shows a 54% variation in area between Arch V1 and Arch V4.

Table 6.5 Area of 4 version architectures

 SLICEs SLICEMs

Arch. V1 24888 2795

Arch. V2 27040 2795

Arch. V3 36067 2987

Arch. V4 38183 2987

With regard to the design space exploration process, we can observe that changing the SSM

soft IP change synthesis and place and route execution time as much as twice on place and

route and up to 1,14 on synthesis.

 - 107 -

6.4 Application Performance Evaluation and Comparison

The optimization of SSM multi-processor is multi-objective by nature and is focused on the

system frequency, performance and area. image processing application NL-means (Non-Local

means) filter and various basic image applications are used as preliminary parallel software

evaluations on our SSM. A performance evaluation of the various configuration architectures

demonstrates the potential of design space exploration for small scale multiprocessor.

6.4.1 NL-means image filter

For 2D natural images, the NL-means image filter outperforms state-of-the-art denoising

methods such as total variation minimization scheme, anisotropic diffusion or translation

invariant wavelet thresholding [27]. Nevertheless, the main drawback of the NL-means filter

is the computational burden due to its complexity. Let N² denote the size of the 2D image,

then the complexity of the filter is in the order of O (N x m² x d²). [28] finds a computational

time of 58.1 seconds for a 512 x 512 image, with parameters m=15 and d=7 running on a

2.0GHz CPU.

Given a discrete noisy image z=z(x), the estimated value ‘NL z(x)’ for a pixel x is computed

as a weighted average of all the pixels in the image,

NL z(x) = 1 (,) ()
() y

w x y z y
C x ∈Ω

∑

where the weights {w(x,y)}y depend on the similarity between the pixel x and y. and C(x) is

the normalizing factor.

C(x) = (,)
y

w x y
∈Ω∑

The similarity between two pixels x and y depends on the similarity of the intensity gray level

vectors, the similarity window, of fixed size d x d pixels and centered at a pixel k. This

similarity is measured as a decreasing function of the weighted Euclidian distance.

The weights associated with the quadratic distance are defined by

w(x,y) =

2
2,

2

() () az x z y

he
−

−

where the parameter h controls the decay of the exponential function and therefore the decay

of the weights.

 - 108 -

6.4.2 Implementation and Results of NL-means filter

The NL-means algorithm is written in C for each MicroBlaze processor in SSM IP. The gray

image of 64x48 is divided into 12 blocks with the same size and dimension of 16x16 and.

Each line of 3 blocks is mapped to one SRAM of each cluster as shown in Figure 6.10. Each

processor get one block of image from local memory and after the NL-means denoising, the

results are sent and stock in the other local memory at the cluster. Finally execution time is

recorded.

Figure 6.10 Image mapping to SRAMs for NLMeans filter application

Figure 6.11 shows the performances of NL-means image filter application on the 4

different architectures described in section 5. In order to better analyze the correlation

between execution time and the area consumption, both information are provided in the same

figure. The right Y axis provides area (slices) information while the left Y axis provides

execution time information.

0
2000
4000
6000
8000

10000
12000
14000

Arch. V1 Arch. V2 Arch. V3 Arch. V4

Ex
ec

ut
io

n
tim

e
(m

s)

0

10000

20000

30000

40000

50000

SL
IC

E

Figure 6.11 Execution results of NLMeans filter

 - 109 -

6.4.3 Implementation and Results of other basic applications

Three basic applications are used to test the system performance: dot product, matrix

multiplication and conservative image filter. Each MicroBlaze calculates a dot product of

dimension 800*800; a matrix multiplication of dimension 80*80 and a conservative filter of

dimension 80*80. All the variables are of floating point types. MicroBlaze0 in the 12

MicroBlazes of SSM is used as a system pilot; it checks the flag variables of the other 11

MicroBlazes to find out whether all the MicroBlaze have finished the computation and report

the total number of cycle as the system performance.

We compared the NoC based SSM system with a simple system composed of just one

MicroBlaze with a timer to see the error of performance caused by the verification mechanism

of flag variable in SSM system. Only one of the MicroBlazes in SSM is used for the

computation.

Table 6.6 difference between NoC based system and bus-based system.

 NoC (cycle) NoC (us) Bus (cycle) Bus (us)

Dot product 286608 10891.1 286511 2865.11

Matrix multiplication 4235322 160942.2 4235247 42352.47

Filter conservative 15965011 606670.4 15953716 159537.16

We can see from the table 4 that the error of total number of cycle between NoC based system

and bus-based system is less than 0.1%.

All the variables are of floating point types to show to impact of FPU in MicroBlaze

processor. As the image mapping of NL-means filter, matrix A is stocked in one local

memory of cluster and matrix B in each processor’s local memory. The final results are sent

to the other local memory of cluster.

 - 110 -

101.608182

33.869693
17.242641

5.748106

24888 27040

36067 38183

0

20

40

60

80

100

120

Arch. V1 Arch. V2 Arch. V3 Arch. V4
0

10000

20000

30000

40000

50000

Dot product(ms) SLICEs

Figure 6.12 Execution time of dot product

1501.614036

500.538571

183.726504
61.242519

24888 27040

36067 38183

0
200
400
600
800

1000
1200
1400
1600

Arch. V1 Arch. V2 Arch. V3 Arch. V4
0
5000
10000
15000
20000
25000
30000
35000
40000
45000

Matrix multiplication(ms) SLICEs

Figure 6.13 Execution time of matrix multiplication

622.80426

207.60168

51.878541 17.293406

24888 27040

36067 38183

0
100
200
300
400
500
600
700

Arch. V1 Arch. V2 Arch. V3 Arch. V4
0
5000
10000
15000
20000
25000
30000
35000
40000
45000

Image filter conservative(ms) SLICEs

Figure 6.14 Execution time of filter conservative

 - 111 -

6.4.4 Results Analysis

Clearly increasing the area reduces the execution time in all cases. However, the gain is not

linear. For example between Arch. V4 and V3 or between Arch. V2 and V1, the area variation

is a mere 5 % but the execution time is reduced by more than half in both examples, as the

frequency of system is improved greatly using more pipelines in NoC with little usage of

Slices . This point emphasizes the importance of a SSM soft IP over a SSM hard IP in order to

better exploit area and customization. The floating point unit (FPU) can greatly improve the

floating point calculation performance of MicroBlaze processor. This impact is more

obviously in matrix multiplication, as almost 100% of instructions are floating-point

calculation in matrix multiplication case, while only 33% of instructions in NL-means filter

application. The system performance can be improved by one order of magnitude between the

Arch. V4 and V1.

6.5 Conclusion

Next generation multiprocessor on chip will be based on hundreds of processors.

Multiprocessor on chip design is very complex and in order to reach efficient working silicon

in reasonable time we propose a small scale multiprocessor design as a building block (soft IP)

for large scale multiprocessor. Regularity and data locality of image processing and

multimedia applications favours both regular NOC like mesh and computation clustering. We

proposed a Mesh NOC based small scale multiprocessor IP which have been fully prototyped

on a large scale FPGA chip. Architectural variations among 4 selected architectures

demonstrate the area saving and performance potential of soft IP. In addition reasonable

synthesis, place and route execution time and achieved target frequencies justify the design

effort. Building large scale multiprocessors from the proposed SSM IP can be fast as the main

design effort resides in the connection and adaptation of NOC addressing. We plan to extend

this work to a larger family of SSM IP. The effects of silicon complexity and system

complexity are partially addressed.

 - 112 -

References
[1] ITRS http://www.itrs.net/
[2] A.A.Jerraya and W.Wolf, “Multiprocessor Systems-on-Chips”, Morgan Kaufman Pub., 2004.
[3] Benini, L.; De Micheli, G.; Networks on chips: a new SoC paradigm, Computer, Volume 35, Issue 1, Jan.

2002 Page(s):70 – 78
[4] T.Bjerregaard, S.Mahadevan, “A survey of research and practices of Network-on-chip”, ACM Computing

Surveys (CSUR), Volume 38 Issue 1, June 2006
[5] Owens, J.D.; Dally, W.J.; Ho, R.; Jayasimha, D.N.; Keckler, S.W.; Li-Shiuan Peh, “Research Challenges for

On-Chip Interconnection Networks”, IEEE Micro, Volume 27, Issue 5, Sept.-Oct. 2007 Page(s):96 – 108
[6] Bell, S.; Edwards, B.; Amann, J.; Conlin, R.; Joyce, K.; Leung, V.; MacKay, J.; Reif, M.; Liewei Bao;

Brown, J.; Mattina, M.; Chyi-Chang Miao; Ramey, C.; Wentzlaff, D.; Anderson, W.; Berger, E.; Fairbanks,
N.; Khan, D.; Montenegro, F.; Stickney, J.; Zook, J. , TILE64 Processor: A 64-Core SoC with Mesh
Interconnect , Tilera Corp. Solid-State Circuits Conference, 2008. ISSCC 2008. Digest of Technical Papers.
IEEE International.

[7] P.Gratz and al. “On-chip Interconnection Networks of the TRIPS Chip”, IEEE Micro, pp. 41-50, Sept. –
Oct. 2007.

[8] Intel Teraops Solid-State Circuits Conference, 2008. ISSCC 2008. Digest of Technical Papers. IEEE
International

[9] Mouhoub, R.B.; Hammami, O.;Multiprocessor on chip: beating the simulation wall through multiobjective
design space exploration with direct execution PDPS 2006, 25-29 April 2006 Page(s):8 pp.

[10] S.Hauck and A.DeHon, "Reconfigurable Computing The Theory and Practice of FPGA-Based
Computation", Morgan Kaufmann 2007.

[11] Li, X.; Hammami, O.;, NOCDEX: Network on Chip Design Space Exploration Through Direct Execution
and Options Selection Through Principal Component Analysis, Industrial Embedded Systems, 2006. IES
'06. International Symposium on 18-20 Oct. 2006 Page(s):1 – 4

[12] CHIPit Platinum Edition – ASIC Emulation and Rapid Prototyping System – v.2.0., 2004, ProDesign
www.uchipit.com

[13] R. Ben Mouhoub and O. Hammami, “MOCDEX: Multiprocessor on Chip Multiobjective Design Space
Exploration with Direct Execution,” EURASIP Journal on Embedded Systems, vol. 2006, Article ID 54074,
14 pages, 2006.

[14] O.Hammami, "Heterogeneous Multiprocessor on chip Compiler, Architecture, Place and Route Design
Space Exploration", in IEEE MELECON, May 5-7, 2008, Ajaccio, France

[15] N. Genko, D. Atienza, G. De Micheli, J. M. Mendias, R. Hermida, F. Catthoor, A Complete Network-On-
Chip Emulation Framework, Proceedings of the conference on Design, Automation and Test in Europe
Volume 1 DATE '05, March 2005

[16] Nava, M.D.; Blouet, P.; Teninge, P.; Coppola, M.; Ben-Ismail, T.; Picchiottino, S.; Wilson, R.; An open
platform for developing multiprocessor SoCs, Computer, Volume 38, Issue 7, July 2005 Page(s):60 – 67

[17] E.S. Chung, E. Nurvitadhi, J.C. Hoe, B.Falsafi, K.Mai Virtualized Full-System Emulation of
Multiprocessors using FPGAs, 2nd Workshop on Architectural Research Prototyping WARP-2007

[18] K. Asonvic, RAMP: Research Accelerator for Multiprocessors, 2nd Workshop on Architectural Research
Prototyping, WARP-2006

[19] Arteris S.A. http://www.arteris.com
[20] NoC Solution 1.10, NoC Compiler user's Guide, o918v2rs4, Dec. 2008, Arteris www.arteris.com
[21] Danube 1.10 – Packet Transport Units Technical reference – 04277v3rs6 – March 2008, Arteris.

www.arteris.com
[22] Xilinx. Embedded system tools guide. Available on: http://www.xilinx.com/ise/embedded/edk docs.htm.
[23] Xilinx. Xilinx fast simplex link IP. Available on: http://www.xilinx.com/bvdocs/ipcenter/data sheet/FSL

V20.pdf.
[24] Xilinx. Xilinx microblaze soft core processor. Available on: http://www.xilinx.com/ise/embedded/mb ref

guide.pdf.
[25] Alpha-Data. ADM-XRC-4 PCI mezzanine card. Available on: http://www.alpha-data.com/.
[26] OCP-IP Open Core Protocol Specification 2.2.pdf http://www.ocpip.org/, 2008
[27] A. Buades, B. Coll, and J.M. Morel, A review of image denoising algorithms, with a new one, Multiscale

Modeling & Simulation, vol. 4, no. 2, pp. 490-530, 2005.
[28] C. Kervrann, J. Boulanger, and P. Coupé, Bayesian non-local means filter, image redundancy and adaptive

dictionaries for noise removal, in Proceedings of the 1st International Conference on Scale Space and
Variational Methods in Computer Vision (SSVM’07), pp. 520-532, 2007 May-June.

[29] EVE TEAM Zebu-UF Emulation platform. www.eve-team.com

 - 113 -

7. Large Scale Multiprocessor (LSM) DSE

Design productivity is one the most important challenge facing future generation

multiprocessor system on chip (MPSOC). The modeling of dozens of interconnected IPs with

distributed memories implies intensive manual EDA based design activity. We propose to

improve design productivity by raising IP reuse to small scale multiprocessor IP combined

with fast extension techniques for system level design automation in the framework of multi-

FPGA based emulator. A design case study of a 48-processors multiprocessor on 4 large scale

FPGA based industry class emulator validates our approach.

7.1 Flow Methodology from SSM to LSM
The adopted flow methodology follows the analysis of the previous section that is the

combination of a tile design space exploration flow with a multi-tile design space exploration.

Figure 7.1 MPSOC Design Space Exploration

The resulting overall exploration flow is depicted in the following figure. Clearly steps 3 and

4 , heterogeneous MPSOC exploration and synthesis, place and route exploration are

 - 114 -

performed on a single tile which in turn is duplicated and extended to multi-tile MPSOC for

the exploration of the upper part of the design space exploration flow. This allows the analysis

of application performance and NOC effects.

7.2 Extension of SSM IP to LSM

The Arteris switch is a wormhole routing synchronous switch, which can be used to construct

a mesh connection of network on chip. XY routing is used for both the intra and inter FPGA

communication. As shown in Figure 7.2, the mesh NoC can be easily extended to a multi-

SSM multi-processor.

Figure 7.2 routing example of 2x2 multi-SSM

A 2x2 inter-FPGA multi-processor is planned to be implemented on the EVE Zebu-UF

emulation platform [39]. All the configuration files of SSM IP are reused for the extension,

which can largely minimize the synthesis time of this large scale multi-processor system. The

SSM IP is reused to accelerate multi-FPGA multiprocessor design. Duplicated onto 4 FPGAs,

all the SSM components will not be changed except the NoC adapted for the new 4x4 mesh

topology.

The MicroBlaze processors still use their 32 bits address, but the SRAM’s address is

changed since there are 32 SRAMs in total. The first 5 MSB of the 32bits address are used as

 - 115 -

the identification of SRAM as shown in the figure. The index of MicroBlaze in each FPGA is

equal to (original index in SSM + index of FPGA * 12).

Figure 7.3 Multi-FPGA SRAM Addresses

The Arteris switch is a wormhole routing synchronous switch, which can be used to construct

a mesh connection of network on chip. XY routing is used for both the intra and inter FPGA

communication.

Figure 7.4 Tx output of FPGA00

A generic route-table is generated for each switch. Each output port is allocated with one

or more packet address segments. For example, the switch00 in the Figure 7.4 can be

configured as:address 0 to tx0; address 1to tx1; address [4,7], [16,31] to tx2; address [2,3],

[8,15] to tx3. And the output ports to the top and left of switch00 are not used in 2x2 LSM.

In a generic rout-table, each Tx output port, except the port with the highest index, is

allocated with one or more packet address segments. Therefore, when one packet enter the

switch, the destination address is compared to all the segments, and in case of a match, the

allocated Tx port is selected, from which the packet will be sent out. When no segment

matches the destination address, the port with the highest index is selected. In the case where

 - 116 -

segments form several ports match simultaneously the destination address, the rout-table

selects the port with the lowest index among the candidates. A segment requires two

parameters: begin is the first address of the segment; end is the last address of the segment.

When the parameter end is set to None, the segment has a signal address that is defined by the

parameter begin.

The route-table of the 4 switches implemented on the top left FPGA of the 2x2 mesh multi-

FPGA platform is shown in Table 7.1.

Table 7.1 Generic Rout-Table of FPGA00

Switch Tx Segment Begin End
00 0 0 0 None

1 0 1 None
2 0 4 7

1 16 31
01 0 0 2 None

1 0 3 None
2 0 4 7

1 16 31
3 0 0 1

10 0 0 4 None
1 0 5 None
2 0 0 3
3 0 6 15

11 0 0 6 None
1 0 7 None
2 0 0 3
3 0 4 5
4 0 16 31

For example, according to the rout-table of switch00, packets of destination address 0 are

sent to Sram0 form Tx0 port and all the packets of destination address from 4 to 7 and from

16 to 31 are all sent out from Tx2 port.

7.3 Automatic EDA Support

7.3.1 SSM IP Reuse and Automatic Composition

In order to achieve fast design productivity for this target architecture we need: (1) to raise

the level IP design and reuse to Small Scale Multiprocessor (SSM IP) and automatically

duplicate and adjust NOC characteristics to reach the desired size (2) fully integrate all EDA

 - 117 -

tools involved in the design (3) due to its large size and prohibitive simulation time at RTL

level, we need emulation for the validation, test and performance evaluation of this

multiprocessor architecture. In addition emulation requires synthesis place and route which

provides accurate area and maximum operating frequencies data. Our methodology will

exploit the concept of FPGA IP which is the maximum size modular IP which can fit in a

single FPGA device of the emulation platform and which can be duplicated. This requires a

prior analysis of the emulation platform and the FPGA devices used in it.

Figure 7.5 Small Scale Multiprocessor IP Reuse and Automatic Composition

7.3.2 Eve Zebu-UF Platform

The ZeBu-UF4 [39] emulator platform is based on 4 Xilinx Virtex-4 LX200 [35] devices

placed on an extended PCI card via a motherboard-daughter card approach.

Table 7.2 EVE Zebu-uf4 platform details

Modules Descriptions

FPGA 4 Virtex-4 LX200

DRAM 512 MBytes

SSRAM 64 MBytes

ICE Smart and Direct

 - 118 -

Figure 7.6 Eve Zebu-UF4 Platform.

The 4 FPGA based system can emulate the equivalent of up to 6 million ASIC gates in a

single system. ZeBu-UF4 also includes on-board memory capacity based of 64 MBytes of

SSRAM and 512 MBytes of DRAM memory chips via an additional memory board, which

plugs into the PCI motherboard. The ZeBu-UF4 emulation system can be used in various

ways such as co-emulation with commercial HDL simulator, co-emulation with both

transaction level and signal-level SystemC and with synthesizable test bench. Performance

ranges for these various uses are given in Table 7.3.

Table 7.3 EVE Zebu-uf4 operating mode and performance

Operating Mode Performance Range

Max capacity in ASIC gates 6M

Co-emulation with commercial HDL simulator 5K-100KHz

Co-emulation with signal-level C/C++/SystemC 100K-500KHz

Co-emulation with transaction-level C/C++/SystemC/SystemVerilog 500K-20MHz

Test vectors 100K-500KHz

Emulation with synthesizable test bench <=20MHz

In-circuit emulation, connected to target system <=20MHz

Emulation with SW debuggers via JTAG interface <=20MHz

This main approach requires EDA tools combination and integration. We first introduce Eve

Zebu design flow.

 - 119 -

7.3.3 Eve Zebu Design Flow

The Design Under Test (DUT) is mapped onto one or several FPGAs and memory chips.

The mapping is carried out through any one of the most popular commercial ASIC/FPGA

RTL synthesis tools plus the ZeBu software compilation package to deal with the DUT gate-

level clustering, and clock and memory modeling. The Zebu design flow is given in figure 6.

All the system EDIF files generated by synthesis are used by Zebu compiler for the

implementation on FPGAs. The compilation is incremental but the Xilinx ISE P&R phase can

be parallelized to reduce the turnaround time.

Figure 7.7 ZeBu Compilation Flow Overview.

Once the design and the test environment have been mapped, ZeBu provides a comprehensive,

efficient and high-performance hardware or software test environment for the emulated DUT.

7.3.4 EDA Tools Integration and workflow

Design automation tools of 3 commercial companies are combined together to generate our

multi-FPGA MPSoC. Figure 7.8 describes the workflow. The Xilinx EDK [36] tool is used to

generate our SSM multiprocessor using Xilinx IPs. Once the RTL files of SSM are generated,

they are reused for the multi-FPGA large scale multiprocessor synthesis, which can largely

reduce system design time. Different NoC files are synthesized for each SSM on different

 - 120 -

FPGA chips of Zebu platform by changing the generic route-table according to the XY

routing algorithm and the SRAM addresses on each FPGA. These NoC RTL files are

generated by Arteris NoCcompiler tool [33], which allows the export of NoC using the Arteris

Danube Library [34]. Eve Zebu compiler [39] takes the EDIF files converted by Xilinx

synthesis tools for the implementation. Different SSM IPs are analyzed and distributed onto

FPGAs. User constraints can be used to accelerate this incremental process. Finally Xilinx

place and rout tools are used to generate the download bit files of FPGA. This phase can be

parallelized to reduce the turnaround time. Area and performance results are obtained.

Figure 7.8 Workflow of Multi-FPGA MPSoC

7.4 Performance Evaluation and Comparison on synchronization

As the scale of our multi-FPGA multiprocessor gets large, the processor synchronization

becomes complicated. OCP [31] blocking synchronization can easily realized based on our

architecture and network on chip, without adding any extra resource. The blocking

synchronization (read-modify-write) used by most processors is implemented by the OCP

Read-Exclusive master command, and the Write or Write-Non-Posted slave commands. The

Read-Exclusive command sets a lock on a memory location, and the corresponding Write or

 - 121 -

Write-Non-Posted command to that memory location releases the lock. The Arteris NoC fully

supports the OCP protocol, including the read-modify-write synchronization. The OCP

Network Interface Unit (NIU) of NoC can decode the Read-Exclusive command and transfers

it through the network to the target NIU, and then this slave NIU is blocked until the

corresponding write command release the lock. Barrier synchronization performance is tested

using our multi-FPGA platform.

Barrier synchronization is a common synchronization operation in programs with parallel

loops. It allows the multiprocessors to wait until a certain number of processors have reached

a ‘barrier’. When the barrier number is enough, all the waiting processors can continue. Each

processor tries to read the synchronization variable ‘count’ by the OCP command Read

Exclusive. When it successes, the variable is locked until the processor updates it by adding 1

and write it back. Then the processor will check the condition whether variable ‘count’ is

equal to the number of processors. When the barrier is reached, the total execution time is

record by one of the processors.

There are 32 SRAM in our multi-FPGA platform. The choice of SRAM where the

synchronization variable ‘count’ is stored will impact the performance as shown in figure 10.

Required number of cycles for synchronization is provided for both processors 0 and 36 to

illustrate the impact of synchronization RAM. The SRAM located in the middle of the large

scale MPSOC 4x4 mesh network is preferred: like SRAM6 connected to switch11 on

FPGA00 shown in the architecture figure.

2750
2800
2850
2900
2950
3000
3050
3100
3150
3200

0 2 8 10 6 12 14 24 26 30

Index of SRAM

ex
ec

ut
io

n
cy

cl
e

M icroBlaze0 MircoBlaze36

Figure 7.9 Execution cycle of synchronization using different pilot and SRAM.

 - 122 -

The execution time of processor is different to each other according to the processor’s

position in the communication network. So the positions of synchronization variable and

processors will impact the performance, which should be taken into account when

programming the system. In order to evaluate the architecture effect we designed 4 variations

of SSM IP described in the following figure where the switch uses pipelining or not and

MicroBlaze have multiplier and FPU or not.

Table 7.4 Different Versions of SSM IP Architecture

 NOC MicroBlaze
Arch. V1 Fwdpipe Multiplier
Arch. V2 Fwdpipe+Bwdpipe+Pipe Multiplier

The synchronization performance of two architectures: Arch. V1 and Arch. V2 are compared.

The execution time of MicroBlaze36 is showed in the figure 11. As the timing of Arch. V2 is

improved by 3 stages of pipelines, the real execution of Arch. V2 is much faster than Arch.

V1, although it takes more number of cycles.

2300
2400
2500
2600
2700
2800
2900
3000
3100
3200

0 2 8 10 6 12 14 24 26 30

ex
ec

ut
io

n
cy

cl
e

0

20

40

60

80

100

120

ex
ec

ut
io

n
tim

e
us

Arch. 2 (cycle Arch. 1 (cycle)
Arch. 2 (us) Arch. 1(us)

Figure 7.10 Execution time of synchronization with different architecture.

In the first test, all 48 processors use just one global variable for synchronization. Another

block-by-block method is used to reduce the execution time. Four synchronization variables

are used instead of just one global. Block-by-block means processors on the same FPGA

block synchronize using one local variable which is stored on one SRAM on the same FPGA

block. After the local synchronization, processors will check the other 3 variable to find out

whether all the synchronizations are done. According to the above results, the SRAMs in the

middle of whole 4x4 network are chosen to store the four variables. One example is shown in

the following figure.

 - 123 -

Figure 7.11 Block-by-block synchronization.

Table 7.5 Synchronization Time of MicroBlaze36 using different methods

Synchronization method Execution cycle
Global variable 2917
Block-by-block 856

The block-by-block method takes full advantage of the network and can dramatically reduce

the total synchronization time. This again tells the programmers should consider the

architecture of multiprocessor. So the block-by-block method is more complex than the global

one.

7.5 Automatic Exploration of Pipelined Data Parallel Applications

The existing data parallelizing algorithm for multiprocessor are insufficient for this novel

MPSoC with NoC, in which the bandwidth is architecture restricted and communication

latency must be considered. We describe in this section an automatic data parallel and

pipeline exploration flow based on Fork-Join parallelism model, which is well suited for

signal processing application on MPSoC. This large scale exploration is enabled by direct

FPGA platform emulation, which is till more fast and data precise than traditional high level

of abstraction SystemC like simulation. We selected the block cipher TDES (Triple Data

 - 124 -

Encryption Standard) cryptographic algorithm on the 48 PE single chip distributed memory

multiprocessor with NoC as an application example of the flow. Our experimental results

show significant productivity gains and performance improvement of our exploration flow.

7.5.1 Related work on data parallelization

Multiprocessor mapping and scheduling algorithms have been extensively studied over

the past few decades and have been tackled from different perspectives. Bokhari [40, 44] have

addressed partitioning problems in parallel, pipeline and distributed computing. The problem

of optimally assigning the modules of a parallel program over the processors of a multiple-

computer system is addressed. A sum-bottleneck path algorithm is developed that permits the

efficient solution of many variants of this problem under some constraints on the structure of

the partitions. The problem of optimally partitioning the modules of chain- or tree-like tasks

over chain-structured or host-satellite multiple computer systems is treated. Prior research has

resulted in a succession of faster exact and approximate algorithms for these problems.

Several polynomial exact and approximate algorithms for this class are proposed. King and al

[41-42] have addressed the modeling and design of pipelined data parallel algorithms. A

decision-free timed Petri net tool have been used for this purpose. Several other mapping

proposals [43-46] have been made with variations on constraints and hypothesis. A multi-

objective optimization and evolutionary algorithms for the application mapping problem in

multiprocessor system-on-chip design have been proposed [47]. Sesame is a software

framework that aims at developing a modeling and simulation environment for the efficient

design space exploration of heterogeneous embedded systems. Since Sesame recognizes

separate application and architecture models within a single system simulation, it needs an

explicit mapping step to relate these models for co-simulation. The design tradeoffs during the

mapping stage, namely, the processing time, power consumption, and architecture cost, are

captured by a multi-objective nonlinear mixed integer program. Multi-objective evolutionary

algorithms (MOEAs) are introduced on solving large instances of the mapping problem. In

[49] a top-down system level design flow has been proposed which allows code and data

structure partitioning for MPSOC. The evaluation has been conducted on limited size

architecture. Recently [51] a mapping framework based on packing for design space

exploration of heterogeneous MPSoCs have been proposed. The framework is based on static,

 - 125 -

analytical, bottom-up temporal and spatial mapping of applications based on packing. The

problem is formulated as mixed integer linear program (MILP) problem. The idea of the

framework is to explore and reduce the design space to find promising candidates that can be

simulated more detailed. An energy/delay exploration of a distributed shared memory

architecture for NoC based MPSoC is proposed in [52]. The work focuses on data allocation

on the distributed shared memory space, and the exploitation of the HwMMU (hardware

memory management unit) primitives which dynamically managed the shared data. Power

model is estimated by gate-level simulation. Exploration is based on cycle-accurate level

simulation and the scale of MPSoC is limited at 8 PEs. A customized version of the Ptolemy

II framework for MPSoC exploration is presented in [56]. Multiprocessor based on different

size of RENATO NoC is evaluated using actor-oriented model of HERMES NoC.

Application is mapped onto different configurations of the RENATO platform.

Communication latency results from simulation give designer an early estimation of the

communication costs. All previous works are either based on theoretical framework or on

simulation. Both approaches are not suitable for mid to large scale multiprocessors due to: (1)

simulation based approaches suffer from prohibitive simulation time (2) static based

approaches makes simplifying assumptions which ignore the communication behavior

complexities of actual execution on NOC based mid to large scale multiprocessors.

A two-phase solution for a real-time film grain noise reduction application is proposed

based on FPGA platform [56]. The application is mapped to MORPHEUS architecture using

NoC inter-chip communication approach. FPGA platform is used as a reference design at the

first step. Then a novel heterogeneous reconfigurable computing platform that offers

flexibility is used for an efficient mapping. Platform-based software design flow for

heterogeneous MPSoC is proposed and validated on FPGA platform [57]. Shapes MPSoC

architecture which is a multi-tile architecture based on a Diopsis tile is used as the design and

validation platform. The combination of the platform with the software code produces an

executable model that emulates the execution of the final system, including hardware and

software architecture. MOCDEX [53, 54] is a multi-objective design space exploration for

multiprocessor on chip based on FPGA platform emulation. Pareto solutions are found by

exploration of processor micro-architecture configuration and the size of FIFO. The hardware

configuration exploration is still limited on 4-core multiprocessor. NOCDEX [55] is multi-

 - 126 -

objective design space exploration of NoC based on multi-FPGA platform emulation.

Different configurations of routers in NoC are explored. The latency of packets both on cycle

and real time are reported with other metrics like FPGA Slices and frequency. All these works

based on FPGA emulation are still limited by the scale of multiprocessor and they focus on

hardware configuration of processor and NoC.

Our proposed automatic mapping exploration approach for pipelined data parallel

applications differs from all other approaches as it is based on: (1) multi-FPGA emulation for

accurate and fast performance evaluation on a large scale multiprocessor up to 48 cores (2)

accurate hardware NOC monitoring for accurate feedback for parallel program tuning. To the

best of our knowledge, this is the first exploration automatic exploration of pipelined data

parallel applications mappings on network on chip based distributed memory embedded

multiprocessor on Multi-FPGA.

7.5.2 Application parallel implementation model and target

A typical signal processing application can be divided into several function blocks and

parallelized by mapping function blocks onto different computing elements, and these

computing elements can work in pipeline for further parallelization. So signal application is a

good candidate for data and function block parallelization.

7.5.2.1 Fork-Join model of parallelization

Figure 7.12 Fork-Join Model of data and function block parallelism

 - 127 -

Two parallelisms, data and function block parallelism, are studied and combined together to

achieve a best performance. The two parallelisms are combined together to work as a Fork-

Join model showed in Figure 7.12. Data parallelism means that we distribute different data

blocks to different processing groups. These groups process their received data in parallel. In

function block parallelism, all the application functions are divided into blocks and mapped

onto PEs (Processor Element) sequentially of each data parallel group. Each PE gets input

data, calculates its mapped function block and sends the results to the following PE processor

and finally to the destination memory. In this way, the PE processors mapped with function

blocks work together as pipelined group.

Assuming there are M*N PEs available in the target embedded MPSoC (Multiprocessor

System on Chip), application data can be divided into blocks for M groups of PEs and in each

group, the application function can be divided into blocks for N PEs. Not all the PEs in

MPSoC must be used for the application.

7.5.2.2 Parallel implementation on MPSoC with NoC

Figure 7.13 MPSoC with NoC and Fork-Join Model Implementation Example

MPSoC with NoC is the trend of future large scale multiprocessor, because of the flexibility

of NoC and commercial chips like Tilera TILE64 have widely use mesh topology NoC

architecture for the manufacturability reason. To parallelize the application, several PEs in

MPSoC is picked up and divided into separate groups for data block parallelization. To

 - 128 -

minimize communication latencies, PEs in the same group should be as close as possible. The

simplified MPSoC architecture and one implementation of our Fork-Join model of

parallelization are illustrated in Figure 7.13. In this example, PE10 works as source and sends

separate data blocks to 4 different groups of PEs distinguished by different colours in the

figure 2. The application is divided into 2 function blocks and mapped onto the 2 PEs on each

group. Finally each group of pipelined PEs sends the results back to PE23 serves as

destination. There are totally 4*2=8 PEs used in this implementation example.

7.5.3 Exploration flow

The data parallel and pipeline exploration flow is described in figure 3. In the exploration,

we change the number ‘M’ of data blocks for data parallelization and the number ‘N’ of PEs

in pipelined group for function block parallelization. For each number of data and function

block parallelization, the mapping of pipelined groups is explored in the inner iteration. The

flow and all the steps of exploration have been fully implemented in Linux RHEL 5.0

environment through scripts invoking the whole set of EDA tools involved in the generation

process. It is obviously easy to port the flow in other operating system environment. The

inputs of the flow are: (1) the total number of PEs used for parallelization, fixed as a constant

MAX and (2) the C source codes of original signal processing application. All performance

evaluation results will be achieved through actual execution of the applications on a multi-

FPGA platform based multiprocessor we fully designed and implemented.

 - 129 -

Figure 7.14 Data parallel and pipeline exploration flow

In step 1, the original application must be modified based on Fork-Join model for the next

step: automatic generation of C codes in the workflow. The modification depends on the

nature of application. If the processing part of application is a repetition of some dedicated

function macros, which is the most common case, the repeated part is extracted and written

into a C function with a ‘for’ or ‘while’ boucle of K. Assuming there are K*N repeated

macros in the application, they are divided into N function blocks, each block for one PE in

the pipelined group. Each PE get the data from the proceeding PE or from the source; repeat

K times of macros; and send the processed data to the next PE or to the destination. Here we

use the simplest way, the function is written like:

#define K K_Value

Void Function () {

 Get data from predecessor PE or resource;

 - 130 -

 For(int i=0; i<K; i++)

 Repeated Macros;

 Send data to successor PE or destination;

}

In step 2, codes are automatically generated. For each function block parallelization of ‘N’,

we replace the ‘K_Value’ with ‘N’. If the beginning or ending part of application can not be

repeated, these parts are written into separate C functions and are mapped to dedicate PEs,

which serve as source and destination in the Fork-Join model.

In the case where the application has no repeated macros, the application is divided to a

fixed number of function blocks. The number of block function is fixed a constant but the

exploration of data parallelization and mapping of pipelined groups remain. So the principle

of our exploration methodology does not change.

In step 3, the mapping combination of ‘N’ pipelined groups onto MPSoC is generated. To

minimize communication latencies, PEs in the same pipelined group should be as close as

possible. Applying this principle on mesh topology NoC based MPSoC, we put the PEs

connected on the same switch or on the same line of mesh together into one pipelined group.

And the direction of this sequential pipeline must be from source to destination. This principle

of same line is illustrated in Figure 7.13

In step 4, the codes are mapped to the chosen PEs for compilation. Each PE has a unique

identity in our multiprocessor, which is generated by EVE compilation tool zCui [38, 39, 40].

A mapping configuration file is generated designating the corresponding between dedicate

compiled code file and PE’s identity. This mapping configuration file is used to download

executables file into PEs’ local instruction memories during the FPGA download step.

In step 5, the mapped codes for PEs are compiled using Xilinx EDK tools [37]. The

synthesized bit files for FPGA with compiled executable file are downloaded with mapping

configuration file and executed on the FPGA platform to get results. The details of synthesis

and execution flow can be found in our previous work [39, 40]. The fast emulation on FPGA

platform gives us the possibility to explore all the possible mapping and choose the best

mapping results from them.

After all the combination of mapping is explored, the number of data parallelisation ‘M’ is

increased to another value, which makes N=MAX/M is an integer. New codes are generated,

 - 131 -

compiled and executed. The exploration stops when the number of data parallelization ‘M’ is

greater than total number of PEs MAX.

 Our proposed exploration flow is general and can be applied onto different FPGA

emulation platform and MPSoC design. We use Eve Zebu-UF4 multi-FPGA platform and our

48-core multiprocessor, which are presented in the next section as an example.

7.5.4 TDES algorithm

TDES algorithm was introduced as a security enhancement of the aging DES, a complete

description of the TDES and DES algorithms can be found in [19-21].

7.5.4.1 The algorithm

The TDES is a symmetric block cipher that has a block size of 64 bit and can accept several

key size (112, 168 bits) which are eventually extended into a 168 bit size key, the algorithm is

achieved by pipelining three DES algorithms while providing 3 different 56 bits keys (also

called key bundle) one key per DES stage. The DES is a block cipher with 64bit block size

and 54 bit key.

Figure 7.15 Feistel function F (SBoxes)

The TDES starts by dividing the data block into two 32 bits blocks which are passed into a

Forward Permutation (FP) then criss-crossed in what is known as Feistel scheme (or Feistel

Network) while being passed into a cipher Feistel function F, as illustrated in Figure 7.16, this

operation is repeated for 48 rounds followed by one IP (Inverse Permutation). The F function

expands the 32 bit half block input into 48 bits that is mixed with a round key that is 48 bit

 - 132 -

wide, the result is divided into 8 blocks 6 bits each which in turn are passed into 8 S-Box

(Substitution Box) that returns only 4 bits each making an output of 32 bits. round keys are

calculated for each round by a expanding the 56 bit key through a specific key scheduling

process, then dividing the result into 48 bit keys. Figure 7.15 shows the Feistel F function.

Figure 7.16 TDES encryption and Decryption schemes (Feistel Network)

 The TDES algorithm clearly process data on a pipelined mode in both the encryption and the

decryption mode.

7.5.4.2 Operation mode

Block cipher algorithms have different operation modes; the simplest is called ECB

(Electronic Code Book) in this mode the block cipher is used directly as illustrated in Figure

7.17.

Figure 7.17 ECB operation mode for the TDES block cipher

 - 133 -

The problem with ECB is that encrypting the same block with the same key gives an identical

output, as counter measure to reveling any information, blocks are chained together using

different modes like CFB (Cipher Feed Back), OFB (Output Feed Back) and CBC (Cipher

Block Chaining) illustrated in Figure 7.18.

Figure 7.18 CBC operation mode for the TDES block cipher

The TDES represents a data parallel and pipelined signal processing application. So far TDES

have been implemented as a hardware IP core, and shared memory parallel software

implementation [12] but to the best of our knowledge, no parallel software implementation on

distributed memory embedded multiprocessor has been reported.

7.5.5 Parallel Implementation of algorithm

We base our work on the C implementation from NIST [21] (National Institute of Standards

and Technology), the sequential TDES encryption C code consists from a Forward

Permutation (FP), a 48 calls to an F macro that executes both F boxes and the Feistel network,

and finally there is an Inverse Permutation (IP), the C Code is a LUT (Look Up Table) based

implementation with combined SPBox tables meaning all arithmetic operations are pre-

calculated and stored in tables.

To fully use our 48-PE multiprocessor, two parallelisms, data block and function block

parallelism, are studied and combined together to achieve a best performance. An example is

given in Figure 7.19:

- 24 MicroBlaze PEs are chosen for implementation;

 - 134 -

- all data are divided into 4 blocks and the 24 MicroBlaze PEs are divided into 4 groups

correspondingly ;

- to encrypt each data block, each pipelined group has 24/4=6 MicroBlaze PEs;

- in each pipelined group, each MicroBlaze PE will calculate 48/6=8 F macro calls.

Figure 7.19 Fork-Join Model mapped to 48-PE multiprocessor example

The two parallelisms are combined together to work as a Fork-Join model showed in figure

11. In order to measure the exact execution time and verify the result’s validity, two

MicroBlaze processors are reserved as the source and destination; in a real case, the source

and destination are the memory blocks, where original and worked data are stocked. The

source MicroBlaze processor generates the original data, does the FP function and sends one-

by-one to the first MicroBlaze processors of different pipelined groups. Each pipelined group

of MicroBlaze processor calculates their received data in parallel and finally sends the results

to the destination. The destination MicroBlaze processor gets the data from the last

MicroBlaze processors of pipelined groups, does the IP function and stocks them to the

memory. As described in the architecture section, our target architecture is a 48-PE

multiprocessor organized as a 4x4 mesh of clusters fully interconnected through a network-

on-chip (NOC). Each cluster includes 3 local MicroBlaze processors and 2 local memory

blocks connected to a NOC switch. One local memory block is used for data communication

 - 135 -

between MicroBlaze processors and the other one is used for synchronization service between

MicroBlaze processors in the same pipelined group. Separation of data and synchronization

memory location will avoid unnecessary communication conflicts and improve system

performance. MicroBlaze processors in the same cluster communicate using local memory

blocks to minimize the communication time; in each memory block, addresses have been

reserved for inter-cluster communication.

7.5.5.1 Single task implemented on different number of pipelined processors

The combination of data and task parallelisms on our 48-PE multi-processor is a very large

exploration space. Here we give one example result. Only 24 cores in maximum among 48

PEs are used for data and task mapping. As mentioned before, MicroBlaze 42 is used as

source and MicroBlaze 24 as destination. At the first step, only one pipelined group is used to

map the TDES application. Different size of data is sent by the source: from 10 packets up to

400,000 packets as in Figure 7.20. The number of MicroBlaze processor in the pipelined

group augments from 1 PE to 24 PEs in maximum. As the size of packets increasing, the

average cycle to treat one packet of all the pipelined groups converges to a constant, which is

in the fact the calculation time of one MicroBlaze processor in the pipeline (48/N *

calculation time of F). For the next step of experiment, in total 96000 packets traffic is used

for data and task parallelization, at most 24 pipelined group will get 4000 packets for each

group. The observation of stable average cycle for one packet will ensure that the variety of

packet number will not impact the result precision in the next step of experiment.

0

200

400

600

800

1000

1200

1400

1600

1 2 3 4 6 8 12 24

number of PE in the pipelined group

m
e
a
n

c
y
c
l
e

f
o
r

o
n
e

p
a
c
k
e
t

10

40

4000

400000

Figure 7.20 Results of one pipelined group with different size of data

 - 136 -

Another important observation is that small size of packets treated by large number pipelined

group will use more time than the one treated by small number pipelined group, for an

extreme example 10 packets treated by 24-PE pipeline uses almost the same time as 10

packets treated by 1-PE pipeline. So task parallelism is suitable for large scale data

application.

7.5.5.2 Data parallelization with 24 processors

At the second step, task parallelism and data parallelism are combined to find out a good

trade-off between the 2 parallelisms. In this example, at most 24 PEs are used, different

combination of data and task parallelism is listed in Table 7.6:

Table 7.6 combination of data and task parallelism (24 cores case)

Number of pipelined
group

Number of PE in 1 pipelined
group

Number of F micro mapped
to 1 PE

24 1 48
12 2 24
8 3 16
6 4 12
4 6 8
3 8 6
2 12 4
1 24 2

Figure 7.21 shows the comparison between single pipelined group (only task parallelism) and

multiple pipelined groups (task parallelism combined with data parallelism) both treating

96000 packets. Signal pipelined group means that only one pipeline with different number of

PE is used to encrypt the 96,000 packets. Multiple pipelined groups fully use all the 24 PEs.

Results show multiple pipelined group mapping is much quicker than single pipelined group

mapping, which is obvious. And we can see that a large number PE (24 PEs) pipelined group

is not a good choice. The results of the other 7 multiple pipelined groups are zoomed in figure

14 to find out the best trade-off between data and task parallelism.

 - 137 -

96000 packets

0

50000000

100000000

150000000

1 2 3 4 6 8 12 24

number of PE in 1 pipelined group

t
o
t
a
l

c
y
c
l
e

single pipelined group

multiple pipelined group using 24core

Figure 7.21 Single pipelined group vs. multiple pipelined groups

96000 packets

15900000

16000000

16100000

16200000

16300000

16400000

16500000

16600000

1 2 3 4 6 8 12

number of PE in 1 pipelined group

t
o
ta
l

c
yc
l
e

Figure 7.22 Tradeoff between task and data parallelism (24 core limited case)

In Figure 7.22, it is clear that the combination of 8 pipelined groups, each with 3

MicroBlaze processors in group, is the mapping of TDES with minimum execution time. So

it’s the best trade-off between data and task parallelism. Our principle of PE grouping is to

make the most nearby MicroBlaze processor together: meaning that use inner-cluster

MicroBlaze processor as most as possible, inter cluster MicroBlaze processor as close as

possible. This principle can explain the best trade-off combination of 8 pipelined groups each

with 3 MicroBlaze processors. And this result shows the great impact of system architecture

on parallel application performance.

 - 138 -

7.5.6 NoC Monitoring and Traffic monitoring results example

Network on chip traffic is monitored through hardware performance monitoring unit. The

overall concept is to probe the Network Interface Unit (NIU) from initiator and target.

Figure 7.23 Performance monitoring concept

Figure 7.24 performance monitoring network on each FPGA

Statistics collector are added for each group of 3 processors and 4 on-chip SRAM and

collected through a dedicated performance monitoring network on chip in figure 15. The

monitoring unit and performance monitoring network on chip uses dedicated hardware

resources and thus do not interfere of affect the measure. There is a trade-off between

emulation frequencies and hardware monitoring area which is significant. These collectors

can record the packet latency and traffic throughput of each processor and SRAM.

 - 139 -

Figure 7.25 NOC monitoring results example

Hardware performance monitoring network, which is also integrated in the 48 cores

multiprocessor, records the latency of each packet sent by the 24 MicroBlaze processors. As

we have separated the data and synchronization communication and most nearby PE grouping

principle, there are not many routing conflicts on the NoC and the packets latency does not

change too much especially for the PEs in the middle of pipelined group. Most of the conflicts

are found at the connection from source or destination, which is the bottleneck of system

communication. With hardware performance monitoring network, we can analyze the system

communication situation and find out the limits of system to easily improve performance.

Hardware performance monitoring is a good feedback tools for software programmers, as

the real-time traffic distribution is now available to analyze the data throughput on the NoC

and find out the traffic jam. This will help programmer to change the mapping of application

onto different PEs to avoid large traffic conflicts and ameliorate the system performance. And

the statistic data from the hardware monitor can be used as a fitness of our future work flow

for multi-objective exploration.

7.5.7 Conclusion

High performance embedded applications based on image processing and single processing

will increasingly be moved to embedded multiprocessors. Novel NoC communication

architecture enforces the impacts of bandwidth and latency restricts, which is considered in

existing parallel programming algorithms. Parallel programming for application on MPSoC is

 - 140 -

getting more complex with large scale of parallel resource on chip. Traditional simulation

based exploration is no longer fast enough for exploration on large scale MPSoC.

We have proposed an automatic data parallel and pipeline exploration flow based on Fork-

Join parallelism model for signal processing applications on embedded multiprocessor with

NoC. Our work flow based on direct multi-FPGA platform emulation is much faster for

exploration and more precise for task granularity analysis. Cryptographic application TDES is

implemented onto our 48 core multiprocessor and exploration flow is used to find the best

parallelization solution. Exploration results show that the parallelization on embedded

multiprocessor is architecture depended and our proposed exploration flow guarantees not

only system performance improvement but also design productivity.

A hardware based network on chip monitoring drives the task placement process to reduce

communication bottlenecks. This hardware monitoring network will be automatically

integrated in to our new exploration workflow. Future work also will add automatic

parallelization as well as optimization algorithm into the proposed exploration flow.

7.6 Heterogeneous design flow with HLS

Embedded system design is increasingly based on single chip multiprocessors because of the

high performance and flexibility requirements. Embedded multiprocessors on FPGA provide

the additional flexibility by allowing customization through addition of hardware accelerators

on FPGA when parallel software implementation does not provide the expected performance.

And the overall multiprocessor architecture is still kept for additional applications. This

provides a transition to software only parallel implementation while avoiding pure hardware

implementation. We selected the block cipher TDES (Triple Data Encryption Standard)

cryptographic algorithm on a 48 PE single chip distributed memory multiprocessor with

coprocessors as an application example of the flow.

7.6.1 Heterogeneous design flow with HLS

The heterogeneous design flow used for this study is described in figure 1. The inputs of the

flow are the TDES application provided as an ANSI C code and a small scale multiprocessor

(SSM) IP which will serve as the basic component for the parallelization process. All

 - 141 -

performance results will be achieved through actual execution on a multi-FPGA platform. The

process starts from mapping the TDES application onto the small scale multiprocessor and

automatically increases the size of the multiprocessor to reach the maximum multi-FPGA

emulation.

Figure 7.26 Automatic heterogeneous Design Flow with HLS

The execution on the multiprocessor will be based on a fork-join multiple-data multi-pipeline

exploiting both the data parallel and the pipeline feature of the TDES algorithm. Having

achieved maximum design space exploration through parallel programming the second step is

to explore coprocessor based TDES parallel execution by incrementally adding TDES C-

based synthesis generated coprocessor. Final step will compare both paths to select the most

appropriate implementation.

Our proposed methodology for data parallel and pipeline signal processing applications

combines: (1) multi-FPGA emulation for accurate and fast performance evaluation (2)

automatic multiprocessor generation up to 48 processors, synthesis and execution (3) accurate

TDES

C application

Multiprocessor IP

Multiprocessor parallel

software execution

HLS Coprocessor DSE

Multi-FPGA Platform

Performance

Evaluation Results

Parallel Software DSE Multiprocessor with

coprocessor

Multiprocessor Generation

 - 142 -

hardware NOC monitoring for accurate feedback for parallel program tuning (4) automatic

synthesis and inclusion of hardware accelerators through HLS (High Level Synthesis).

7.6.2 High Level Synthesis: C-Based

Hardware accelerators are blocks of logic that are either automatically generated or

manually designed to offload specific tasks from the system processor. Many math operations

are performed more quickly and efficiently when implemented in hardware versus software.

Adding powerful capability to FPGAs, hardware accelerators can be implemented as

complex, multi-cycle coprocessors with pipelined access to any memory or peripheral in the

system. They can utilize FPGA resources (such as on-chip memory and hard-macro

multipliers) to implement local memory buffers and multiply-accumulate circuits. Using as

many master ports as necessary, they can initiate their own read and write operations and

access any I/O pin in the system. Hardware accelerators are a great way to boost performance

of software code and take full advantage of the high-performance architecture of FPGAs. The

design and software simulation of a hardware accelerator used a CAD tool called ImpulseC.

This software allows the creation of applications intended for FPGA-based programmable

hardware platforms similar to [11] and design space exploration at the HLS level [12-13].

The ImpulseC compiler translates and optimizes ImpulseC programs into appropriate

lower-level representations, including Register Transfer Level (RTL) VHDL descriptions.

Impulse CoDeveloper™ is an ANSI C synthesizer [37] based on the Impulse C™ language with

function libraries supporting embedded processors and abstract software/hardware

communication methods including streams, signals and shared memories. This allows

software programmers to make use of available hardware resources for co-processing without

writing low-level hardware descriptions. Software programmers can create a complete

embedded system that takes advantage of the high-level features provided by an operating

system while allowing the C programming of custom hardware accelerators. The ImpulseC

tools automate the creation of required hardware-to-software interfaces, using available on-

chip bus interconnects.

• Concurrency model: the main concurrency feature is pipelining. As pipelining is only

available in inner loops, loop unrolling becomes the solution to obtain large pipelines. The

 - 143 -

parallelism is automatically extracted. Explicit multi-process is also possible to manually

describe the parallelism.

• Types: ANSI C types operators are available like int and float as well as hardware types

like int2, int4, int8. The float to fixed point translation is also available.

• Timing specification: the only way to control the pipeline timings is through a constraint

on the size of each stage of the pipeline. The number of stages of the pipeline and thus the

throughput/latency are tightly controlled.

• Memory: all arrays are stored either in RAM or in a set of registers according to a

compilation option.

Figure 7.27 (1) Block Diagram of Accelerator Connection Forms (2) C-based HW
Accelerated System Design Workflow

7.6.3 EDA Tools Combination

Design automation tools of 4 commercial companies are combined together to generate our

multi-FPGA MPSoC and the parallelized execution files for emulation as described in Figure

7.28.

 - 144 -

Figure 7.28 Workflow of Multi-FPGA MPSoC with HLS

The Xilinx EDK tool is used to generate our SSM (Small Scale Multiprocessor)

multiprocessor, which is described in section V. Once the RTL files of SSM are generated,

they are reused for the multi-FPGA large scale multiprocessor synthesis, which can largely

reduce system design time. Different NoC files are synthesized for each SSM on different

FPGA chips of Zebu platform by changing the generic route-table according to the XY

routing algorithm and the SRAM addresses on each FPGA. These NoC RTL files are

generated by Arteris NoCcompiler tool, which allows the export of NoC using the Arteris

Danube Library. Sequential C code of application can be synthesized to RTL codes by

ImpulseC High Level Synthesis (HLS) tools to generate coprocessor to SSM IPs. Eve Zebu

compiler takes the EDIF files converted by Xilinx synthesis tools for the implementation.

Different SSM IPs are analyzed and distributed onto FPGAs. User constraints can be used to

accelerate this incremental process. Finally Xilinx place and rout tools are used to generate

the download bit files of FPGA. This phase can be parallelized to reduce the turnaround time.

 - 145 -

Application is programmed into parallelized C codes, compiled with Xilinx EDK tools to

generate execution file of each processor. Finally system bit file is downloaded to multi-

FPGA platform and application is executed.

7.6.4 Data parallelism with coprocessor

Data parallelism with coprocessor is another method to realize TDES application

parallelization onto multiprocessor. Coprocessor is used to execute complex math operation,

which can greatly improve system performance. In our case, each MicroBlaze processor of

the 48-PE multiprocessor has a coprocessor to do the whole TDES functions; the MicroBlaze

processor is only in charge of communication: they get the original data from the source, send

them to coprocessor, wait until coprocessor sends back the results and finally send the results

back the destination.

 We use ImpulseC tools to generate our TDES coprocessor directly from our C code to

VHDL source, which greatly improves our design productivity.

7.6.4.1 TDES Coprocessors generation using ImpulseC

The TDES coprocessor is designed for the Xilinx MicroBlaze processor using an FSL

interface. The Triple DES IP was synthesized for a Virtex-4 platform by Xilinx ISE. Our 5-

stage pipeline implementation uses 2877 slices and 12 RAM blocks with a maximum

frequency of 169.75 MHz. The occupation for the same IP using LUTs instead of RAM

blocks is 4183 slices. The maximum frequency for this version is 162.20 MHz. 12 instances

of our IP were successfully implemented on an Alpha Data XRC-4 platform (Virtex-4 FX-

140) using 12 MicroBlaze processors within a Network-on-Chip.

The chosen architecture for our Triple-DES hardware accelerator is the following 5-stage

pipeline:

Figure 7.29 5 Stage pipeline TDES

This IP was synthesized for a Xilinx Virtex-4 LX-200 FPGA. RAM blocks can be saved by

using LUTs, if necessary. The chart below gives us an idea of the surface and performance of

our IP. Xilinx’s implementation uses a fully pipelined architecture, which allows a very high

 - 146 -

throughput. But it is impossible to reach such a throughput on a NoC. Helion’s architecture

uses a simple loop, which saves a lot of slices. Our IP was generated by ImpulseC whereas

Helion’s one was coded directly in VHDL/Verilog. This is the main reason why our IP is not

as efficient.

Table 7.7 HLS based TDES IP vs optimized IPs
 Helicon Xilinx HLS (RAM) HLS (LUT)
Slices 467 16181 2877 4183
Max frequency (MHz) 196 207 170 162
Throughput at 100 MHz 255.6 Mbps 6.43 Gbps 305 Mbps 305 Mbps

The execution time was measured for several input data sizes

7.6.4.2 Parallel Software vs Coprocessors

0

10000

20000

30000

40000

50000

60000

1 2 4 8 16

number of packets

t
o
t
a
l

c
y
c
l
e
s

with HW

no HW

Figure 7.30 Parallel Software vs Coprocessors on a 48 PE Multiprocessor

In this case, all the 48 MicroBlaze processors do the TDES application in parallel. When they

finish all the packets, they will send a finish flag to the synchronization memory. MicroBlaze

0 will verify all the PEs finish their jobs and records the execution time. Results of TDES

application using coprocessor on the 48-PE multiprocessor are showed in figure 20. The

results of software parallel are used to illustrate the acceleration with hardware coprocessor. It

can improve system performance by 5 times.

 - 147 -

7.7 OCP-IP Micro-benchmarks on LSM processors

7.7.1 OCP-IP Micro-benchmarks

The OCP has released a comprehensive set of synthetic workloads as micro-benchmarks for

the evaluation of network on chip. Although micro-benchmarks cannot represent a real

application well they are complementary to application benchmark. OCP defines two classes

of communication services: best effort and guaranteed services. The best effort is connection-

less, delivering packets in a best-effort fashion. It has no establishment phase, and sources

send packets without the awareness of states in destinations. The guaranteed service is

connection-oriented providing certain bounds in latency and/or bandwidth. A connection is a

unidirectional virtual circuit setting up from a source NI to a destination NI via the network.

The network reserves resources such as buffers and link bandwidth for connections. Our

MPSOC network being wormhole routing based is then a best effort class of communication

services.

Figure 7.31 Measurement configuration

7.7.1.1 Temporal distribution

OCP-IP micro-benchmarks tackle temporal distribution of traffic based on the b-model [20].

This model through a bias parameter b with 0 < b ≤ 0.5 generates more or less burstiness in

the traffic. A bias parameter b = 0.3 means that within a given time interval 30% of the data

are generated in one half of the time interval and the remaining 70% in the other half and this

continues recursively until reaching the time resolution. The case b= 0.5 means that there is

 - 148 -

no burstiness and the emission probability is constant. The burstiness of the traffic increases

as b converges to 0. OCP-IP specifies 4 types of burst traffic.

Table 7.8 Temporal Distribution

Bursty Traffic b
type 1 0.5
type 2 0.4
type 3 0.3
type 4 0.2

7.7.1.2 Spatial distribution

OCP-IP specifies 6 spatial traffic patterns: (1) uniform (2) locality (3) bit rotation (4) N

complement (5) Hot spot (6) Fork join pipeline. Each of these spatial traffic patterns are

representative of a distinct spatial pattern. For example, Fork join pipeline is a pattern where a

fork feeds c nodes that are the starting point of c parallel pipelines while uniform is the

uniform distribution. We focused on 2 spatial patterns, locality and hot spot. Locality spatial

pattern describes a traffic with spatial locality that is the probability to send a packet to a

destination node is higher when the destination node is spatially closer. More precisely if we

consider the distance d as the source-destination distance then P(d) = 1/(A(D)2d) where D is

the maximum distance in the network and A(D) = Σd= 1..D (1/2d) is a normalizing factor.

Within a set of nodes with the same distance, each node is selected with uniform probability.

Table 7.9 Selected Micro-benchmark

Spatial Distribution Description
Locality P(d) = 1/(A(D)2d)
Hot Spot N/M of the nodes hot spots M ∈ {2, 4, 8, ..., N}

ρ 　∈{0.5, 0.7} of traffic sent to these hot spots remaining sent
uniformly

The hot spot model selects N/M2 of the nodes as hot spots M ∈ {2, 4, 8,..., N}. A certain

fraction ρ ∈{0.5, 0.7} of traffic is sent to these hot spots while the remaining is sent

uniformly to all other nodes.

 - 149 -

7.7.1.3 Example Traffics

Figure 7.32 (a) Hot spot traffic b = 0.3 = 0.5 (b) locality b = 0.3　

The above figures provide examples of hot spot and locality traffic.

7.7.2 Performance Evaluation

We conducted performance evaluation of the 2 OCPIP micro-benchmarks described in section

4, which are hot spot and locality, on two large scale multiprocessors.

For hot spot we considered 2 hot spot cases: (1) S0 being on-chip SRAM S_0 located on

the top left corner of the architecture and (2) S24 being on-chip S_24 located on bottom right

corner at another position.

 - 150 -

Figure 7.33 Hot spot benchmark packets latency with target S0: (1) b = 0.3 ρ = 0.5 (2) b = 0.3 ρ = 0.7 (3) b

= 0.5 ρ = 0.5 (4) b = 0.5 ρ = 0.7

Figure 7.34 Hot spot benchmark packets latency with target S24: (1) b = 0.3 ρ = 0.5 (2) b = 0.3 ρ = 0.7 (3) b

= 0.5 ρ = 0.5 (4) b = 0.5 ρ = 0.7

Figure 7.35 Hot spot benchmark data transferred at MB0 b = 0.3 ρ = 0.5

 - 151 -

Figure 7.36 Hot spot benchmark – MB0 (1) S0 b = 0.3 ρ = 0.5 (2) S24 b = 0.3 ρ = 0.7

 - 152 -

Figure 7.37 Locality benchmark packets latency : (1) b = 0.3 (2) b = 0.5

Figure 7.38 Locality benchmark data transferred at MB0 b = 0.3

 - 153 -

Figure 7.39 Locality benchmark packets latency MB0 : (1) b = 0.3 (2) b = 0.5

Figure 7.33 to Figure 7.39 describe the achieved results. Figure 7.33 describes the hot

spot benchmark packets latency with target S0 under the following values: (1) b = 0.3 ρ = 0.5

(2) b = 0.3 ρ = 0.7 (3) b = 0.5 ρ = 0.5 (4) b = 0.5 ρ = 0.7. In Figure 7.34 the hot spot

benchmark packets latency target S24. It is clear from both figures that the position of the hot

spot coupled with the burst factor affect considerably the results. Figure 7.35 and Figure 7.36

provide the results for master MB0. The locality benchmark is exposed in Figure 7.37 and

shows as expected less variance among latencies. The consequence for parallel programming

is tremendous as parallel program execution is dominated by critical path. Figure 7.38 and

Figure 7.39 provide details for master MB0

7.8 Conclusion

Next generation multiprocessor on chip will be based on hundreds of processors.

Multiprocessor design is very complex and in order to reach efficient working silicon in

 - 154 -

reasonable time large scale prototyping is needed. We propose a small scale multiprocessor

design as a building block for large scale multiprocessor. This SSM IP can be quickly

extended in order to build larger scale multiprocessor. We validated our approach on a 48

processors system by automatically extending a 12 processors small scale multiprocessor IP.

Future work will deepen the compiler and applications part and find cross-covering niches of

optimality.

Design productivity for large scale multiprocessor on chip is a major challenge. Large

scale multiprocessors system on chip design can benefit from: (1) larger IP design and reuse

such as small scale multiprocessor IP (2) multi-FPGA emulation platforms for quick and

modular duplication combined with fully integrated EDA tools and (3) quickly redeployable

benchmarks for efficient design space exploration. Indeed, considering the number of

processors as a variable in the design space exploration process requires having application

suites and benchmarks which can scale within the range of considered number of processors.

High performance embedded applications based on image processing and single

processing will increasingly be moved to embedded multiprocessors. We have proposed an

automatic design flow for data parallel and pipelined signal processing applications on

embedded multiprocessor with NoC for cryptographic application TDES. Our flow explore

through execution on multi-FPGA emulation for parallel software implementation with task

placement exploration and task granularity analysis. A hardware based network on chip

monitoring drives the task placement process to reduce communication bottlenecks. In the

second phase, high level synthesis generated hardware accelerators are added to explore the

tradeoff in area-performance while still privileging multiprocessor basis for the

implementation. Future work will add reconfigurability management of dedicated area for

hardware accelerators as well as automatic parallelization.

In the absence of such applications and benchmarks for large scale multiprocessor

synthetic workloads and network on chip micro-benchmarks can play such a role. OCP-IP has

proposed such a suite of micro-benchmarks. To the best of our knowledge this is the first

work which evaluates through actual execution OCP-IP benchmarks on large scale

multiprocessors with network on chip.

 - 155 -

Reference
[1] ITRS http://www.itrs.net
[2] J.L. Hennessy and D.A. Patterson Computer Architecture, 4th Edition A Quantitative Approach , Morgan

Kauffmann, 2006.
[3] D.Culler, J.P.Singh, A.Gupta, Parallel Computer Architecture : A Hardware/Software Approach , Morgan

Kaufmann Pub. , 1999.
[4] A.A. Jerraya and Wayne Wolf , “Multiprocessor Systems-on-Chip”, Morgan Kaufman Pub, 2004
[5] Benini, L. ; De Micheli, G., “Networks on Chips: Technology and Tools”, Morgan Kaufmann, 2006.
[6] T.Miyamori, Venezia: a Scalable Multicore Subsystem for Multimedia Applications, 8th International

Forum on Application-Specific Multi-Processor SoC 23 - 27 June 2008, Aachen, Germany
http://www.mpsoc-forum.org/

[7] T.Isshiki, MAPS-TCT: MPSoC Application Parallelization and Architecture Exploration Framework, 8th
International Forum on Application-Specific Multi-Processor SoC 23 - 27 June 2008, Aachen, Germany
http://www.mpsoc-forum.org/

[8] L;Gao, K.Karuri, S.Kraemer, R.Leupers, G.Ascheid and H.Meyr, Multiprocessor Performance Estimation
Using Hybrid Simulation", in Proc. of DAC 2008, pp.325-330, June 8-13, 2008, CA, USA.

[9] R.Ben Mouhoub and O.Hammami MOCDEX: Multiprocessor on Chip Multiobjective Design Space
Exploration with Direct Execution,
Volume 2006 (2006), Article ID 54074, 14 pages

[10] M.O.Cheema, O.Hammami, Application-specific SIMD synthesis for reconfigurable architectures,
Microprocessors and Microsystems, Volume 30, Issue 6, 4 September 2006, Pages 398-412

[11] M.O.Cheema, L.Lacassagne, and O.Hammami , System-Platforms-Based SystemC TLM Design of Image
Processing Chains for Embedded Applications,
Volume 2007 (2007), Article ID 71043, 14 pages

[12] O.Hammami, Z.Wang, V.Fresse, and D.Houzet, A Case Study: Quantitative Evaluation of C-Based High-
Level Synthesis Systems,
Volume 2008 (2008), Article ID 685128, 13 pages

[13] Z.Wang and O.Hammami, C-Based Hardware-Accelerator Coprocessing for SOC An Quantitative Area-
Performance Evaluation, In Proc of the 15th IEEE International Conference on Electronics, Circuits, and
Systems, ICECS 2008, Malta, 31st Aug. - Sept3rd. 2008.

[14] Y.Ahn, K.Han, G.Lee, H.Song, J.Yoo and K.Choi, "SoCDAL: System-on-chip Design AcceLerator", ACM
TDAES, Vol. 13, No.1, pp. 17:1-17:38, Jan. 2008.

[15] H. Nikolov, M. Thompson, T.Stefanov, A. Pimentel, S. Polstra, R.Bose, C. Zissulescu, E.Deprettere,
"Daedalus: Toward Composable Multimedia MP-Soc Design", in Proc. of DAC 2008, pp.574-579, June 8-
13, 2008, CA, USA.

[16] C. Haubelt, T. Schlichetr, M. Meredith, "SystemCoDesigner: Automatic Design Space Exploration and
Rapid Prototyping from Behavioral Models", in Proc. of DAC 2008, pp.580-585, June 8-13, 2008, CA,
USA.

[17] G.Chen, F.Lui, S.W.SOn, and M.Kandemir, "Application Mapping for Chip Multiprocessors", in Proc. of
DAC 2008, pp.620-625, June 8-13, 2008, CA, USA.

[18] Joan Daemen and Vincent Rijmen, "The Design of Rijndael: AES - The Advanced Encryption Standard."
Springer-Verlag, 2002

[19] FIPS 46-3: The official document describing the DES standard
[20] FIPS 197: The official document describing the AES standard

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
[21] “Recommendation for Block Cipher Modes of Operation-Methods and Techniques”, NIST Special

Publication 800-38A 2001 Edition
[22] Patrick Crowley “The future in your pocket” March 2008 SIGCOMM Computer Communication Review ,

Volume 38 Issue 2
[23] Rizk, M.R.M.; Morsy, M “Optimized Area and Optimized Speed Hardware Implementations of AES on

FPGA” International Design and Test Workshop, 2007 2nd 16-18 Dec. 2007 Page(s):207 – 217
[24] P. Kitsos, N. Sklavos, M.D. Galanis, O. Koufopavlou, VLSI Implementations of the Triple-DES Block

Cipher, Proceedings of the 10th IEEE International Conference on Electronics, Circuits and Systems
(ICECS'03), United Arab Emirates, December 2003

 - 156 -

[25] Helion Technology, – High Performance DES and Triple-DES cores for Xilinx FPGA,
http://www.heliontech.com , 2003.

[26] Xilinx Inc., Pasham V, Trimberger S, High-Speed DES and Triple-DES Encryptor-Decryptor,
http://www.xilinx.com, August 2001

[27] Yao Yue, Chuang Lin, Zhangxi Tan “NPCryptBench: a cryptographic benchmark suite for network
processors” March 2006 MEDEA '05: Proceedings of the 2005 workshop on MEmory performance:
DEaling with Applications , systems and architecture

[28] Divya Arora, Anand Raghunathan, Srivaths Ravi, Murugan Sankaradass, Niraj K. Jha, Srimat T. Chakradhar
“Software architecture exploration for high-performance security processing on a multiprocessor mobile
SoC” July 2006 DAC '06: Proceedings of the 43rd annual conference on Design automation ACM.

[29] Jung-Ho Lee, Sung-Rok Yoon, Kwang-Eui Pyun, Sin-Chong Park “A multi-processor NoC platform applied
on the 802.11i TKIP cryptosystem” January 2008 ASP-DAC '08: Proceedings of the 2008 conference on
Asia and South Pacific design automation IEEE Computer Society Press.

[30] Klimm, A.; Braun, L.; Becker, J.; “An adaptive and scalable multiprocessor system For Xilinx FPGAs using
minimal sized processor cores” IPDPS2008, April 2008

[31] OCP-IP Open Core Protocol Specification 2.2.pdf http://www.ocpip.org/, 2008
[32] Arteris http://www.arteris.com/
[33] NoC Solution 1.12, NoC NTTP technical reference, o3446v8, April 2008
[34] Arteris Danube 1.12, Packet Transport Units technical reference, o4277v11, April 2008
[35] Xilinx Virtex-4 http://www.xilinx.com/products/silicon_solutions/fpgas/virtex/virtex4/index.htm
[36] Xilinx EDK 9.2 http://www.xilinx.com/ise/embedded/edk_docs.htm
[37] http://www.impulsec.com/
[38] A.Kumar, S.Fernando, Y.Ha, B. Mesman and H.Corporall, "Multiprocessor Systems Synthesis for Multiple

Use-Cases of Multiple Applications on FPGA", ACM TDAES, Vol. 13, No.3, p. 40:1-40:27, July 2008.
[39] Eve ZeBu UF-4 http://www.eve-team.com
[40] S.H.Bokhari,; Partitioning problems in parallel, pipeline, and distributed computing, Computers, IEEE

Transactions on, Volume 37, Issue 1, Jan. 1988 Page(s):48 – 57
[41] King, C.-T.; Chou, W.-H.; Ni, L.M.; Pipelined data parallel algorithms-I: concept and modeling, Parallel

and Distributed Systems, IEEE Transactions on, Volume 1, Issue 4, Oct. 1990 Page(s):470 – 485
[42] King, C.-T.; Chou, W.-H.; Ni, L.M.; Pipelined data parallel algorithms-II: design, Parallel and Distributed

Systems, IEEE Transactions on, Volume 1, Issue 4, Oct. 1990 Page(s):486 - 499
[43] P. Hansen, K.-W. Lih, Improved algorithms for partitioning problems in parallel, pipeline, and distributed

computing, IEEE Transactions on Computers 41 (6) (1992) 769–771.
[44] M.A. Iqbal, S.H. Bokhari, Efficient algorithms for a class of partitioning problems, IEEE Transactions on

Parallel and Distributed Systems 6 (2) (1995) 170–175.
[45] Yu-Kwong Kwok, I.Ahmad Static scheduling algorithms for allocating directed task graphs to

multiprocessors December 1999 Computing Surveys (CSUR) , Volume 31 Issue 4
[46] M.A. Senar, A.Ripoll, A.Cortés, E.Luque, Clustering and reassignment-based mapping strategy for

message-passing architectures, Journal of Systems Architecture, Volume 48, Issues 8-10, March 2003, pp.
267-283

[47] Erbas, C.; Cerav-Erbas, S.; Pimentel, A.D.; Multiobjective optimization and evolutionary algorithms for the
application mapping problem in multiprocessor system-on-chip design, Evolutionary Computation, IEEE
Transactions on, Volume 10, Issue 3, June 2006 pp. 358 – 374

[48] Kianzad, V.; Bhattacharyya, S.S.; Efficient techniques for clustering and scheduling onto embedded
multiprocessors, Parallel and Distributed Systems, IEEE Transactions on, Volume 17, Issue 7, July 2006
pp. 667 – 680

[49] P.Chandraiah, R.Domer, Code and Data Structure Partitioning for Parallel and Flexible MPSoC
Specification Using Designer-Controlled Recoding, Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, Volume 27, Issue 6, June 2008 pp.1078 – 1090

[50] B. Ristau, T. Limberg and G. Fettweis, A Mapping Framework Based on Packing for Design Space
Exploration of Heterogeneous MPSoCs, Journal of Signal Processing (2009) 57:45-56

[51] G.Chen, F.Lui, S.W.SOn, and M.Kandemir, Application Mapping for Chip Multiprocessors, in Proc. of
DAC 2008, pp.620-625, June 8-13, 2008, CA, USA.

[52] M. Monchiero, G. Palermo, C. Silvano, O. Villa, Exploration of distributed shared memory architectures for
NoC-based multiprocessors, Journal of Systems Architecture, Volume 53, Issue 10, October 2007, Pages
719-732

 - 157 -

[53] R. Ben Mouhoub and O. Hammami, “MOCDEX: Multiprocessor on Chip Multiobjective Design Space
Exploration with Direct Execution,” EURASIP Journal on Embedded Systems, vol. 2006, Article ID 54074,
2006.

[54] R.B.Mouhoub and O Hammami,.;Multiprocessor on chip: Beating the Simulation Wall Through
Multiobjective Design Space Exploration with Direct Execution , IEEE PDPS 2006, 25-29 April 2006
Page(s):8 pp.

[55] X.Li and O.Hammami, NOCDEX: Network on Chip Design Space Exploration Through Direct Execution
and Options Selection Through Principal Component Analysis, Industrial Embedded Systems, 2006. IES
'06. International Symposium on 18-20 Oct. 2006 Page(s):1 – 4

[56] Sean Whitty and Henning Sahlbach and Wolfram Putzke-Röming and Rolf Ernst. "Mapping of a Film Grain
Removal Algorithm to a Heterogeneous Reconfigurable Architecture." In Proc. of Design, Automation and
Test in Europe (DATE), Nice, France, April 2009.

[57] Katalin Popovici, Xavier Guerin, Frédéric Rousseau, Pier Stanislao Paolucci, Ahmed Amine Jerraya,
“Platform-based software design flow for heterogeneous MPSoC”, ACM Transactions on Embedded
Computing Systems, Volume 7 , Issue 4 (July 2008)

 - 158 -

 - 159 -

8. Very Large Scale Multiprocessor Design Automation

The previous chapters have demonstrated that small to medium scale multiprocessor design

on single or multiple chips with fast productivity is a reality. This addressed our original

concern on tackling the design productivity gap for MPSOC design of small to medium scale.

The next challenge for the research community is to address large scale multiprocessors,

which are beyond 512 PE or even more [1].

To the best of our knowledge there is no reported work in the world in 2010 besides the

RAMP project, of prototyping multiprocessor larger than 512 cores on multi-FPGA platforms

or on single ASIC chip.

Very large scale multiprocessor (VLSM) is very difficult to be implemented on to ASIC or

FPGA circuit because of its complexity and the lack of CAD supported design framework.

The design productivity challenge is at its best in terms of hardware generation and in

performance evaluation in face of the simulation wall. To our best knowledge, there is no

report on either high level modeling (e.g. SystemC) or high level performance evaluation of

VLSM. As the simulation wall blocks the VLSM design path, FPGA platform based

emulation is selected as the only solution for billion cycle applications. Based on the

experience achieved and described in the previous chapters, the framework should support

both cycle-accurate emulation of detailed parameterized machine models and rapid

functional-only emulations. Details in the underlying FPGA emulation should be hidden from

architects and software designers. Automatic design work flow is mandatory at this scale to

accelerate the design and debug process.

We achieved the design, implementation and validation of a 672 cores cluster-mesh NoC

based multiprocessor architecture onto a very large scale emulator: the Zebu XXL multi-

 - 160 -

FPGA platform. Compared to RAMP Blue 1008-core multiprocessor, our system is more

flexible in communication architecture and it is fully implemented with NoC technology.

8.1 State of the art

The state of the art at this level of complexity is restricted in 2010 to the University of

California Berkeley project, RAMP (Research Accelerator for Multiple Processors) [2].

The project aims to ramp up the hardware and software multiprocessor research. From 2005,

three prototype systems have been developed and implemented, named as RAMP Red,

RAMP Blue and RAMP White. New systems have been developed such as RAMP gold and

RAMP purple from 2007. The table below summarizes the major features of these systems.

Table 8.1 RAMP systems summary

System Processor OS Communication
Number of

FPGA

Max

number

Frequency

(MHz)

RAMP Red

(2005)
PowerPC Linux

Transactionnal

Memory
4 8 100

RAMP Blue

(2005)

MicroBlaze

V4.0
ucLinux Message Passing 64 1008 90-100

RAMP

White (2005)

PowerPC

LEON
Linux

Coherent Shared

Memory
1 2 50 ?

RAMP

Purple

(2007)

MicroBlaze

V6.0

Xilinx

MicroKernel

Coherent Shared

Memory
8 ? 64 ? 90-100

RAMP Gold

(2007)
SPARC V8 No report

Coherent Shared

Memory
No report 64 50

Seen from the above table, the RAMP project has evolved through different versions in the

communication paradigm and in the number of processors. Only the RAMP blue has

hundreds of processors based on message passing communication. The detail of this system is

described in the next section.

The RAMP framework is based on units which communicate and synchronize with each other

over channels. Units can be developed as RTL models implemented onto FPGA or as

 - 161 -

software codes executed on attached computer for co-simulation or on processor cores

embedded within FPGA platform for HW/SW co-synthesis.

The RTL code of unit must be provided by model designers. The instances of each unit and

their interconnection by channel are described using RDL (RAMP description language).

Then RAMP framework tools automatically generate RTL code of the channels and the

interfaces to the channels for a unit. The configuration tools in RAMP framework provide the

option to change the channel’s parameters dynamically at system boot time. This

configuration tool also supports control of the inter-unit channels for monitoring and

debugging facilities. Messages can be inserted and read out from the channels by using a

automatically inserted debugging network. More detailed workflow is not found in published

reports.

8.1.1 BEE multi-FPGA platform

Figure 8.1 general architecture of BEE2 module

RAMP systems have been implemented at first on BEE2 (Berkeley Emulation Engine) multi-

FPGA platform [6]. The main board contains 5 Xilinx Virtex-II Pro 70 FPGAs, among which

4 FPGAs are used for user implementation and are connected in a ring topology while the 5th

FPGA serves as the control FPGA, which is connected in a star topology with each user

FPGA as presented in Figure 8.1. On the board, each FPGA is mapped to 4 DDR2 banks of

1GB each with 3.4 GBps peak throughput per channel. Each user FPGA has four sets of

 - 162 -

multi-gigabit transceiver (MGT) for off-board communication. These serial channels are

connected to 10GBase-CX4 Ethernet interface for Ethernet or simple P2P connection over

cables.

New version project RAMP-2 will base on BEE3 platform. The BEE3 board has 4 Xilinx

Virtex 5 LX 110T FPGAs, along with 64 GB DDR2 DRAM and eight Ethernet interfaces for

inter-board communication. Over 64 MicroBlaze processors can be implemented on this

board.

The major challenge using BEE platform is porting designs that span multiple FPGAs [3].

The interconnection between IPs is often constrained by the inter-FPGA network and

especially inter-board interconnection as Ethernet. The initial bus connection of RAMP Red

system has be replaced by a star-like interconnection network constrained by the BEE2 board

layout.

It is important to note that in our project based on EVE multi-FPGA platform, there is no

interconnection constraints. The emulator allows any type of communication architecture to

be implemented.

8.1.2 RAMP Blue

The RAMP Blue system [4] consists of 768-1008 MicroBlaze cores implemented on BEE2

platform which has at most 21 boards. It is the first multiprocessor on chip surpassing the

milestone of thousand cores. Inter-processor communication is based on MPI standard or for

global address space language such as Unified Parallel C (UPC). We describe in details this

platform.

 - 163 -

Figure 8.2 Architecture of MicroBlaze processor for RAMP Bleu system interconnection

The Xilinx MicroBlaze processor has been selected in RAMP Blue for its better resource

utilization and its FIFO-like FSL interface which provides unidirectional point-to-point

connections. At most 12 MicroBlaze processors can be implemented on Virtex-II Pro 70

FPGA, with the following processor options : 90 MHz core clock, no optional functional units,

all optional exceptions, 2 KB I-cache, 8 KB D-Cache, LMB block RAM and OPB peripherals.

The full 12-core design consumes 32,991 slices (99%), 61,891 LUTs (93%), 37,198 flip-flops

(56%) and 181 block RAMs (55%) [4]. The FSL (Fast Simplex Link) is used for most of the

interconnection for inter and intra FPGA communication between processors. Packets are

transmitted between the FSL interfaces of different processors through statically routed

network.

 - 164 -

 (a) (b)

Figure 8.3 Intra and inter board communication and RAMP Blue 3D mesh architecture

RAMP Blue communication architecture is based on 3D cluster mesh topology. Inter

board connection is 3D mesh as shown in figure 8.4, while inter FPGA network at the same

board is a ring. On each FPGA, processors are connected through a crossbar switch. The intra

and inter BEE2 communication is based on buffer and crossbar switch units. Packets are

routed by the buffer units to MicroBlaze or across another link. For compatibility, the packet

format is Ethernet II encapsulated with route header. The 4 off-board serial channels are used

for inter board connection while two parallel links are used for inter FPGA connection on the

same board. Virtual cut-through routing is used and it will be blocked if the next buffer is not

available. Board-to-board connections use 4 sets of bonded MGT (multi-gigabit transceiver)

forming four independent 10 Gbps high-speed serial I/O channels, so the latency of these

links is from tens to hundreds of cycles while the intra-board LVCMOS Parallel links latency

is two or three cycles. The delivery is guaranteed end-to-end in software. The gateware does

not perform check-summing or retransmission. The prototyping platform system is shown in

the following figure. Each BEE2 board is in preliminary 2U chassis and assembled in a

standard 19’’ rack with external supplies. Physical connection among the boards is through 10

Gbps cables. System configuration, debugging and monitoring are through a 100 Mbps

Ethernet switch with connection to the control FPGA of each board.

 - 165 -

Figure 8.4 1008 cores RAMP Blue system on 21 BEE2 boards with management server and monitor [5]

The NAS parallel benchmarks are run on RAMP Blue system with class-S datasets due to

memory limitations [5] The execution time is dominated by the communication costs, a large

fraction of which can be eliminated by implementing a DMA-based network interface. Five of

the NPB benchmarks are executed on RAMP Blue system: Embarrassingly Parallel (EP),

Multigrid (MG), Conjugate gradient (CG), 3D FFT PDE (FT) and Integer sort (IS). The

performance results are shown in the following table.

Table 8.2 NAS Parallel Benchmarks performance results on RAMP Blue system [5]

Benchmark Size Iteration Processors Time (s) Mops/s

EP 25 256 256 27.75 1.21

MG 32x32x32 4 256 13.22 0.57

CG 1400 15 256 190.19 0.35

FT 64x64x64 6 32 12.77 13.88

IS 65536 1 256 4.39 0.01

Although its performance results is not good as the latency of communication is high,

RAMP Blue is the first step for developing a robust library of RAMP infrastructure for

building more complicated parallel systems.

 - 166 -

8.2 General VLSM framework

Figure 8.5 General methodology for VLSM multiprocessor design

Our general VLSM design methodology is based on the idea of SSM IP reuse and

Network on Chip interconnection technology. Embedded processor soft IPs and NoC are

used for the design and implementation of SSM IP. At this step, we focus on the improvement

of system area, frequency and application performance. The exploration of SSM IP design can

be based on single FPGA platform. Different SSM IPs can be used to realize a heterogeneous

VLSM multiprocessor. After all the SSM IPs are designed, they are used and duplicated onto

multiple FPGA chip to form the large scale multiprocessor. The interconnection between

SSM IPs is based on another top level of Network on Chip. This top level NoC can be

realized by the interconnection between SSM IP’s switches as in [7], or by a separate

topology of NoC to which all the SSM IP are connected. The final multiprocessor is

implemented onto multi-FPGA platform without any modification, by using the EVE Zebu

compilation and implementation technology.

 - 167 -

Figure 8.6 target Automatic workflow for VLSM multiprocessor

The automatic workflow of our VLSM multiprocessor design is presented in the above

figure. Design automation tools of 3 commercial companies are combined together to

generate our multi-FPGA MPSoC. The Xilinx EDK tool is used to generate our SSM

multiprocessor using Xilinx IPs. Once the RTL files of SSM are generated, they are reused for

the multi-FPGA large scale multiprocessor synthesis, which can largely reduce system design

time. Different NoC files are synthesized for each SSM on different FPGA chips of Zebu

platform. These NoC RTL files are generated by Arteris NoCcompiler tool, which allows the

export of NoC using the Arteris Danube Library. Eve Zebu compiler takes the EDIF files

converted by Xilinx synthesis tools for the implementation. Different SSM IPs are analyzed

 - 168 -

and distributed onto FPGAs. Xilinx place and route tools are used to generate the download

bit files of FPGA. This phase can be parallelized to reduce the turnaround time. The

application is parallelized onto our multiprocessor using the NoC communication service

drivers. All the C codes are compiled using the gcc compliant compiler integrated in EDK

design environment. Finally the compiled execution files and download bits files are

downloaded to EVE Zebu XXL multi-FPGA platform using Zebu download tools. The

execution time is recorded after the execution.

8.3 BB-672 VLSM

There are 56 Xilinx Virtex 4 LX200 FPGAs available on the Zebu XXL platform. Duplicating

our SSM IP onto these 56 FPGAs, our VLSM with 672-core is generated automatically [8,9].

We name our VLSM as BB-672 as a consequence. The general global architecture is

presented in the figure. Each square represents one SSM IP which is implemented on one

FPGA. The global architecture stays as cluster mesh topology. Each of our SSM IP consumes

53,438 slices (59%), 88,432 LUTs (49%), 50,999 flip-flops (31%), 91 DSP48s (94%) and 289

block RAMs (86%) of Virtex-4 LX200 FPGA.

Figure 8.7 Cluster-mesh architecture of 672-core VLSM

8.3.1 Zebu XXL multi-FPGA platform

Our very large scale multiprocessor is implemented on ZeBu-XXL platform. It is a high

capacity system emulator with the easy setup and debugging associated with emulation, and

 - 169 -

the performance of rapid prototyping. Configurable to handle designs from 12.5M to 100M

ASIC gates in a compact, rack-mountable unit, and expandable to accommodate up to 200M

ASIC gates via 2 interconnected units. It is ideal for the system-integration phase of the

design cycle where multiple logic blocks, multiple chips, and embedded software all must be

verified together. Hardware design and software development teams can share the same

system and design representation, and can easily collaborate when debugging complex

hardware/software interactions.

Figure 8.8 Eve Zebu XXL multi-FPGA platform

ZeBu-XXL is a 19” rack system and includes a PCI (or PCIe) interconnection board

(with two cables) to connect to the host PC running under Linux. ZeBu-XXL includes the

following modules to implement the DUT:

• 4 memory modules with 1 GBytes of DDR2 DRAM each

• 8 modules slots used to customize the ZeBu-XXL configuration, each able to host one

of the following modules:

o Single-Slot FPGA module with 8 Virtex-4 LX200

o Double-Slot FPGA module with 8 Virtex-4 LX200 and 2 Gbit of RLDAM

o Single-Slot DirectICE Module with 2 Virtex-4 LX100 and 128 Mbit of SSRAM

ZeBu-XXL is an open system in that it interfaces with the best-in-class EDA tools, such

as listed in the table:

FPGA synthesis (RTL emulation) Synplify Pro™ Precision Synthesis™ Xilinx XST

ASIC synthesis (gate level

emulation)

Design Compiler™ (through a GTECH or Xilinx

Library)

HDL simulators VCS™ ModelSim™ NC-Sim™

C++ modeling SystemC

The Zebu compilation tools make sure the initial user system is correctly partitioned and

placed onto the multiple FPGA circuits.

 - 170 -

8.3.2 OCP-IP benchmarks

As presented in the last chapter, OCP-IP specifies 6 spatial traffic patterns [6]: (1) Uniform

(2) Locality (3) Bit Rotation (4) N Complement (5) Hot Spot (6) Fork Join Pipeline. Each of

these spatial traffic patterns are representative of a distinct spatial pattern. For example, Fork

join pipeline is a pattern where a fork feeds c nodes that are the starting point of c parallel

pipelines while uniform is the uniform distribution. In our 672-core case, all the spatial

benchmarks are executed except the Fork and Join Pipeline.

Table 8.3 OCP-IP specific spatial distribution

Spatial

Distribution

Description

uniform P=1/(N-1), assuming N nodes in network.

locality P(d) = 1/(A(D)2d), where D is the max distance and A(D) =

1
(1/ 2)D d

d =∑
Bit rotation Right rotating the bit string representation of the source node address

by one .
N complement ns + nd = N, where ns is the source node’s address and nd is its

destination address

Hot spot N/M of the nodes selected as hot spots M ∈ {2, 4, 8, ..., N}; ρ 　∈{0.5,

0.7} of traffic sent to these hot spots remaining sent uniformly

In Uniform case, the probability for one node to send another node a packet is 1/(N-1),

assuming there are N nodes in the network. A node does not send data to itself.

 Locality spatial pattern describes traffic with spatial locality that is the probability to send a

packet to a destination node is higher when the destination node is spatially closer. More

precisely if we consider the distance d as the source-destination distance then P(d) =

1/(A(D)2d) where D is the maximum distance in the network and A(D) =
1
(1/ 2)D d

d =∑ is a

normalizing factor. Within a set of nodes with the same distance, each node is selected with

uniform probability.

Both Bit Rotation and N Complement define a destination node address by a function of the

source node address. Bit Rotation pattern means that the destination address is obtained by

 - 171 -

right rotating the bit string representation of the source node address by one. While in N

Complement scenario, if the source node address is ns, its destination node address is nd, then

ns + nd = N, supposing there are N nodes in the network and they are numbered as naturals

from 0 utile N-1.

The hot spot model selects N/M2 of the nodes as hot spots M ∈ {2, 4, 8, ..., N}. A certain

fraction ρ ∈{0.5, 0.7} of traffic is sent to these hot spots while the remaining is sent uniformly

to all other nodes.

8.3.3 Performance evaluation

We have designed a 672-core multiprocessors extend version of the 48-processors

multiprocessor. This multiprocessor has been implemented on a large scale emulation

platform (Eve ZeBu XXL) composed of 56 FPGA Virtex-4 LX200.

Figure 8.9 Hot spot benchmark packets latency S0: b = 0.3 ρ = 0.5 (672 core)

At first, we ran the hot spot benchmark targeting S0 as the hot spot with b=0.3 and ρ = 0.5.

Monitoring networks have been applied to all masters using the same overall monitoring

configuration. Due to the large amount of collected data from this large number of processors

we describe the traffic latency of only 56 masters (1 per FPGA chip). A part from the starting

phase where some masters experience large latencies , it appears that latencies smooth out on

 - 172 -

the large scale multiprocessor and this contrary to the 48-core version where under the same

benchmarking conditions the hot spot is clearly pronounced as described in figure 8.10. So we

plan to evaluate the full set of OCP-IP benchmarks on this large scale multiprocessor

platform.

Figure 8.10 Uniform benchmark packet latency with b = {0.5, 0.4, 0.3, 0.2}

Figure 8.11 N complement benchmark with b = {0.5, 0.4, 0.3, 0.2}

 - 173 -

Figure 8.12 Bit rotation benchmarks with b = {0.5, 0.4, 0.3, 0.2}

It’s interesting to analyze the Uniform, Bit Rotation and N Complement benchmarks together.

As we can see from the above figures, changing the parameter b from 0.5 to 0.2, the packet

latency does not fluctuate very much, especially in the Bit Rotation and N complement cases.

While in Uniform case, for the same master, the packet latency changes from one to each

other, as the packets go to different nodes. But still the traffic bursty does not change the

global fluctuation. The impact of burst is the maximum packet latency decreases as the bursty

increase, as there are less conflict when the traffic becomes more bursty.

Comparing the Bit Rotation and N Complement results, we can see that how nodes are

numbered determines the traffic spatial distribution. The node should be regularly numbered

according to the topology. The pair of source and destination nodes should be close to

decrease packet latency.

 - 174 -

Figure 8.13 Hot spot benchmark packets latency with b = {0.5, 0.3}, ρ = {0.5, 0.7}, and S0 as hot spot

Figure 8.14 Hot spot benchmark packets latency with b = {0.5, 0.3}, ρ = {0.5, 0.7}, and S102 as hot spot

 - 175 -

Hot Spot benchmarks are rerun on our 672-core processor. At first, S0 SRAM is still selected

as hot spot, while the parameters b and ρ are changed. Parameter b changes from 0.5 to 0.3,

changing the traffic from no burstiness to bursty and the fraction of traffic to hot spot changes

from 0.5 to 0.7. From figure 8.14, comparing the 2 figures on the top to the other 2 on the

bottom, we can see that if there are no bursts in the traffic, the packet latency will increase, as

there will be more traffic going into the hotspot. Comparing the 2 figures from left to right, if

there are more traffic goes to the hot spot, the packet latency will increase too. Change the hot

spot from S0 to S102, we get the same observation from Figure 8.15.

Figure 8.15 Locality benchmark packets latency with b = {0.5, 0.4, 0.3, 0.2}

When comparing Locality benchmarks results with other benchmark, the average packet

latency is as it can intuitively been expected the smallest, which is the nature of this scenario.

Changing the parameter b from 0.5 to 0.2, the packet latency does not change too much from

Figure 1.13. So the locality pattern traffic is not sensitive to burstiness, which suggests us that

 - 176 -

bursty traffic should have local memory access to have better communication latency. In a

VLSM clearly the impact of parallel programming on communications needs to be very

carefully analyzed in order to feedback to the parallel programmer and help tune his

application [13-14].

8.4 Comparison between RAMP Blue and our VLSM

According to our best acknowledge, the RAMP blue and our VLSM are the only two

multiprocessors which have surpassed the milestone of 512 cores on multi-FPGA platforms.

The basic idea of multi-FPGA platform emulation is the same, while the approaching

framework is quite different. Although Berkeley decided to go for its own board designs we

selected industry-class emulator in order to focus on the methodologies and design flows.

Table 8.4 comparison between RAMP Blue and BB-672

 RAMP Blue BB-672

Max number of

processor
1008 672

FPGA number and type 84 Virtex-II Pro 70 56 Virtex-4 LX200

Emulation frequency 90 MHz 10 Mhz

Processor MB V4.0 no optional units MB V6.0 full optional units

OS & compiler ucLinux & GCC Standalone & GCC

FPU 64 bits FPU / 12 cores 32 bits FPU / core

DDR memory 250 MB / processor Not implemented

Monitoring & Debug
Control network

Debug interface

Monitoring network

Dynamic probes

Network topology Cluster 3D mesh Cluster mesh

Interconnection Crossbar switch + Ethernet Network on Chip

Communication Message passing Distributed shared memory

Language MPI or UPC ENSTA proper C driver

Benchmarks
Netpert (for network)

NPB class-S (on 256 cores)

OCP-IP micro-benchmarks (on

672 cores)

 - 177 -

Design flow Not reported Full automatic

Both systems have surpassed the milestone of 512 cores: RAMP Blue has 1008

MicroBlaze processor implemented on 84 Xilinx Virtex-II Pro 70 FPGAs; while our BB-672

has 672 cores on 56 Xilinx Virtex-4 LX200 FPGAs. As there are more hardware resources on

Virtex-4 LX200 than Virtex-II Pro70, We can place at most 24 with all full optional units on

one FPGA and 12 cores with full optional units and hardware multiplier are placed with our

BB-672 project; while there are 12 processor with no optional units in RAMP Blue case. Each

processor has one 32 bits FPU (floating point unit) in our case; while all the 12 processors

share one 64 bits FPU in RAMP Blue case. In RAMP Blue system, each processor can access

up to 250 MB DDR2 memory; while in our system DDR memory has not been implemented

until now, which will be used in the next version. Console and control network is used for

code, data and user input from NFS or TELNET service as each MicroBlaze run uClinux

operating system in RAMP Blue; While in our case, OS is not implemented yet as the high

level parallelization service is not used for our program execution, so the execution codes are

initiated to FPGA download bit files for standalone execution. JTAG port of each FPGA is

used by Xilinx Microprocessor Debugger for software debug and by Xilinx ChipScope for

signal tracing; in our BB-672 system ,a dedicate monitoring network is used for

communication surveillance and analysis, and dynamic probes can be added into system for

signal tracing by the tools of EVE company. Using this monitoring network, we can get the

throughput and latency of traffic as shown in the last section, although this network takes

almost 10% of FPGA hardware resource. During the debug process, we can trace the signals

we want to check out with the dynamic probes, which will slow down the emulation speed.

As presented in section 1, the RAMP Blue network topology is cluster 3D mesh. On each

FPGA, 12 processors are connected to one switch as a cluster. The 4 FPGA modules on the

same board are connected by the switches as a ring by parallel links. The inter board

interconnection is based on MGT XAUI serial links. The FPGA modules are globally

connected as a 3D mesh topology. So the interconnection is based both on switch and

Ethernet compatible network to realize the message passing mechanism. As complained in

[3], the interconnection between IPs is constrained by the inter-FPGA network. Considering

also the inter-board interconnection by serial links, the BEE2 multi-FPGA platform is not

 - 178 -

very flexible. Designers have to modify their original designs to adapt to the platform

interconnection for implementation. In this way, the BEE2 platform is not a full emulation

platform for ASIC design and is not representative of current MPSOC design efforts

In contract, the automatic partition and placement technology of EVE Company can

make sure that the user’s original large size design is implemented onto Zebu multi-FPGA

platform without any modification of system architecture. From user’s view, it looks like his

original design is placed and routed onto a really large FPGA. So there is not any constraint

for user’s architecture. To achieve this objective, the frequency of system is less than 20MHz

until now. Our BB-672 system runs at 10 MHz while RAMP Blue is at 90 MHz. Considering

the flexibility of system, which should be one advantage of FPGA platform, the frequency

difference of 80 MHz is adaptable for hardware emulation purpose. And our emulation of

large OCP-IP benchmarks is still hundreds time quicker than VHDL simulation.

Our BB-672 system is built on the reuse of SSM IP. As presented in chapter 7 and last

section, the system topology is still cluster mesh. The interconnection is fully based on

Network on Chip technology. The inter-processor communication is based on distributed

shared memory. Because of the flexibility of Zebu multi-FPGA platform, it is easy to change

our VLSM architecture to other regular topologies including the 3D mesh. We just have to

modify the SSM IP output interconnection, and then the whole system can be regenerated and

implemented onto Zebu XXL platform automatically. While there is no automatic workflow

reported for RAMP project.

Proper drivers for OCP-IP communication protocol are developed and used for our BB-

672 system programming. The OCP-IP mirco-benchmarks for NoC are used for the

performance measurement as presented in section 2. Processor executes the benchmarks to

generate different traffic which pass through the communication architecture based on NoC

technology. Common benchmarks can be executed to comparing the two system performance.

In fact performance is not the major objective of VLSM framework. In this thesis, we have

proposed a fully automatic workflow for system generation and implementation, which can

greatly accelerate the large scale multiprocessor design.

 - 179 -

8.5 VLSM and Benchmarking: where are the benchmarks ?

VLSM multiprocessor on chip is technically realizable because of the advances in silicon

technology. The inter-core communication is considerable faster on a MPSOC than in a multi-

node system. New benchmarks are needed which should thoroughly characterize the new

communication patterns.

MultiBench 1.0 [12] is proposed by EEMBC (Embedded Microprocessor Benchmark

Consortium) as a suite of industrial embedded benchmarks to analyze, test, and improve

multicore architectures and platforms. It measures the impact of parallelization and scalability

across both data processing and computationally-intensive tasks. This is first generation

targets the evaluation and development of scalable SMP (symmetrical multicore processor)

architectures with shared memory.

The PARSEC [13] (Princeton Application Repository for Shared-Memory Computers) is

a benchmark suite composed of multithreaded programs, which also targets the shared-

memory based chip-multiprocessors design. It supports two parallelization models: OpenMP

and pthreads. In the second version, the TBB (Intel Treading Building Blocks) is supported.

Both benchmarks presented here target multiprocessor with large size of shared memory,

which is not available in the embedded system design. Taking the ‘dedup’ program of

PARSEC benchmarks for example, the input set of small problem size has reached 10 MB.

While in our multiprocessor system, each processor has only 32 KB local memory. The future

benchmarks for embedded multiprocessor design should take the memory limitation as one

important criteria. The new version of PARSEC [19] is still not adapted to embedded

multiprocessors.

The interface between processor and NoC of our multiprocessor is based on OCP-IP

protocol. The cache coherency is not supported until the middle of 2009 as the OCP-IP

version 3.0 was released. In this new release, coherency extension is available to support

cache coherency of multiprocessor with OCP-IP interface. As our BB-672 system is based on

OCP-IP version 2.2, cache coherency cannot be implemented, and that is the reason why we

do not use DD2 extern memory as application parallelization on the multiprocessor without

hardware cache coherency is considering low. Cache coherency based on OCP-IP version 3.0

has been developed thins its release. A simple directory based cache coherency has done.

 - 180 -

Full hardware cache coherency unit will be integrated in the next version of our

multiprocessor. A new parallelization flow with automatic parallelization should be supplied

with this new version of multiprocessor. The Parallelization is based on MPI. A new NoC

synthesis method will be proposed from MPI parallelization to RTL implementation.

 An extension of this work will be to realize a multiobjective design space exploration [12,

16] for VLSM. With 2.3 billion transistors and 8 cores the most recent intel microprocessor

[20] represent state of the art in 2010 of multicore. We expect that with the dawn of terascale

computing VLSM Design Space Exploration is just at the beginning [21].

8.6 Conclusion : EDA vs Computer Architecture

Very large scale multi-processor with 100+ cores is very complex to design and evaluate.

Facing the simulation wall, the multi-FPGA platform is the only solution to realize such large

system. Using our automatic generation workflow a 672-core multiprocessor can be generated

and implemented onto FPGA platform in less than one day. OCP-IP micro-benchmarks are

evaluated on our NoC based 672-core. Packet latency results from monitoring network are

analyzed and they are useful for architecture and software designers to improve system

performance. Comparing to RAMP Blue multiprocessor, our VLSM is more flexible on

communication architecture as different topologies can be implemented using our automatic

workflow within one day. This new design framework based on multi-FPGA emulation has

been validated by our project to help and accelerate large scale multiprocessor hardware and

software design. The fundamental issue in our approach is that we have put the emphasis on

system level design methodologies and tools rather than on a computer architecture only

approach.

We believe that time has come for EDA to move up the scale and integrate 50 years of

parallel computer architecture, automatic parallelization compiler and operating system

research results to efficiently tackle in a unified and integrated framework the design

productivity gap.

Reference
[1] John H. Kelm, Daniel R. Johnson, Matthew R. Johnson, Neal C. Crago, William Tuohy, Aqeel Mahesri,

Steven S. Lumetta, Matthew I. Frank, Sanjay J. Patel, Rigel: An Architecture and Scalable Programming

 - 181 -

Interface for a 1000-core Accelerator, International Symposium on Computer Architecture (ISCA'09),
June 2009.

[2] Wawrzynek, J.; Patterson, D.; Oskin, M.; Shin-Lien Lu; Kozyrakis, C.; Hoe, J.C.; Chiou, D.; Asanovic, K.; ,
"RAMP: Research Accelerator for Multiple Processors," Micro, IEEE , vol.27, no.2, pp.46-57, March-
April 2007

[3] Njuguna Njoroge, Jared Casper, Sewook Wee, Yuriy Teslyar, Daxia Ge, Christos Kozyrakis, and Kunle
Olukotun, ATLAS: A Chip-Multiprocessor with Transactional Memory Support, Proceedings of the
Conference on Design Automation and Test in Europe (DATE), Nice France, April 2007

[4] Alex Krasnov, Andrew Schultz, John Wawrzynek, Greg Gibeling, and Pierre-Yves Droz, RAMP Blue: A
Message-Passing Manycore System In FPGAs, Proceedings of International Conference on Field
Programmable Logic and Applications, Amsterdam, The Netherlands, August 2007

[5] Andrew Schultz, RAMP Blue: Design and Implementation of a Message Passing Multi-processor
System on the BEE2, master thesis, University of California at Berkeley 2007

[6] Asanovic K, Patterson DA, Tan Z, Waterman A, Avizienis R, Lee Y. RAMP Gold: An FPGA-based
Architecture Simulator for Multiprocessors. In: The 4th Workshop on Architectural Research
Prototyping. Austin, Texas; 2009

[7] Chang, C.; Wawrzynek, J.; Brodersen, R.W.; , "BEE2: a high-end reconfigurable computing system,"
Design & Test of Computers, IEEE , vol.22, no.2, pp. 114- 125, March-April 2005

[8] OCP-IP Network-on-chip Benchmarking Specification Part2: Micro-benchmark Specification v1.0,
May 23rd; 2008. http://www.ocpip.org

[9] Xinyu Li, Omar Hammami, BB-762: Design and Implementation of 762 Processor Multiprocessor and
OCP-IP Benchmarking, DATE 2009, university booth.

[10] O. Hammami, X.Li, L.Larzul and L.Burgun, Automatic Design Methodologies for Large Scale MPSOC
and Prototyping on Multi-FPGA Platforms, International SoC Design Conference (ISOCC) 2009, invited
talk, Nov. 22-24 2009, South Korea.

[11] Xinyu Li and Omar Hammami, Multi-FPGA emulation of a 48-cores multiprocessor with NOC, Design
and Test Workshop, 2008. IDT 2008. 3rd International, 20-22 Dec. 2008

[12] Xinyu Li and Omar Hammami, “An Automatic Design Flow for Data Parallel and Pipelined Signal
Processing Applications on Embedded Multiprocessor with NoC: Application to Cryptography,”
International Journal of Reconfigurable Computing, vol. 2009, Article ID 631490, 14 pages, 2009.

[13] Riad Ben Mouhoub; Omar Hammami; NOC Monitoring Feedback for Parallel Programmers Circuits
and Systems, 2006 IEEE North-East Workshop on .

[14] Riad Ben Mouhoub; Omar Hammami;NOC Monitoring Hardware Support for fast NOC Design Space
Exploration and Potential NOC Partial Dynamic Reconfiguration", IES 2006.

[15] Mouhoub, R.B.; Hammami, O.; Multiprocessor on chip: beating the simulation wall through
multiobjective design space exploration with direct execution , Parallel and Distributed Processing
Symposium, 2006. IPDPS 2006. 20th International

[16] R;Benmouhoub and O.Hammami, "MOCDEX: Multiprocessor on Chip Multiobjective Design Space
Exploration with Direct Execution", EURASIP Journal of Embedded Systems, 2006.

[17] EEMBC, MultiBench™ 1.0 Multicore Benchmark Software ,
http://www.eembc.org/benchmark/multi_sl.php

[18] Christian Bienia and Sanjeev Kumar and Jaswinder Pal Singh and Kai Li, The PARSEC Benchmark
Suite: Characterization and Architectural Implications, Proceedings of the 17th International
Conference on Parallel Architectures and Compilation Techniques, October 2008

[19] C. Bienia and K. Li. PARSEC 2.0: A New Benchmark Suite for Chip-Multiprocessors In Proceedings of
the 5th Annual Workshop on Modeling, Benchmarking and Simulation, June 2009.

[20] Rusu, S. Tam, S. Muljono, H. Stinson, J. Ayers, D. Chang, J. Varada, R. Ratta, M. Kottapalli, S. Vora,
S. A 45 nm 8-Core Enterprise Xeon¯ Processor, Solid-State Circuits, IEEE Journal of Volume: 45 Issue:1
page(s): 7 – 14, Jan 2010.

[21] [21] Rattner, J.; The dawn of terascale computing, Solid-State Circuits Magazine, IEEE Volume: 1 , Issue:
1 2009 , Page(s): 83 – 89

 - 182 -

 - 183 -

9. Conclusion and Perspective

The final part concludes the thesis by summarizing all the proposed methodologies for

MPSoC design and major results. An overview of future research directions are given for

future large scale MPSoC design. And the major contributions are listed.

9.1 Summary of the Thesis

In this thesis we present a new methodology for large scale MPSOC design to resolve the

design challenges of complexity and productivity. To achieve this object, 3 strategies are

proposed and used:

1. Combination of different system design levels: from TLM level to FPGA emulation

2. Reuse of IPs and components: extend SSM IP to 48-core and 672-core MPSoC

3. Utilization of new technologies: Arteris NoC, M2000 eFPGA, EVE multi-FPGA

platform.

A survey of until recent work on NoC and MPSoC design shows that there is no mature

design workflow for the future large scale MPSoC. The interconnection architecture of

MPSoC greatly impacts the system performance. Three different interconnection methods

have been used: bus, crossbar and network on chip (NoC). And NoC is proposed as the only

solution for future large scale MPSoC design. Arteris NoC design tools are used as industrial

support for our design.

Real time constrains must be considered during MPSoC design. Homogeneous and

heterogeneous multiprocessors are two important and distinct branches of MPSoC design.

Analysis and comparison of different MPSoC design methodologies help to better understand

different design approach and overcame their shortcomings. The mapping of core graph to

NoC topologies is well known NP-Hard, only heuristic algorithms can be used to approach

 - 184 -

the optimal solution according to different objective functions. Different approximation

algorithms are proposed to reduce the execution time of ILP problem.

Design space exploration of network-on-chip can be conducted at multiple levels of

abstraction from transaction level modeling down to emulation. Although, each level brings

its own benefits multiple constraints may push for a given level of abstraction. At first a fully

automatic design flow for network on chip at TLM level is proposed. Combining this flow

with our following emulation work will allow fully integrated solutions.

Reconfigurable network on chips require efficient reconfigurable hardware support in

ASIC environment. The emerging eFPGA IPs allow the integration of reconfigurable area in

ASIC devices. The organization and dimensioning of this area is an important issue to be

tackled in order to maximize the efficiency of network on chip mapping. Our linear

programming methodology provides a solution to this problem.

Next generation MPSoC will be based on hundreds of processors. MPSoC design is very

complex and in order to reach efficient working silicon in reasonable time we propose a small

scale multiprocessor design as a building block (soft IP) for large scale multiprocessor. We

proposed a Cluster-Mesh NoC based small scale multiprocessor IP which have been fully

prototyped on a large scale FPGA chip. Building large scale multiprocessors from the

proposed SSM IP can be fast as the main design effort resides in the connection and

adaptation of NOC addressing.

We validated our approach on a 48 processors system by automatically extending our 12

processors SSM IP and finally extend to a 672-core MPSoC on EVE Zebu-XXL multi-FPGA

platform. Different industrial design tools are combined into our automatic design flow.

We have proposed an automatic design flow for data parallel and pipelined signal

processing applications on embedded multiprocessor with NoC using cryptographic

application TDES as an example. Our flow explores through execution on multi-FPGA

emulation for parallel software implementation with task placement exploration and task

granularity analysis. A hardware based NoC monitoring drives the task placement process to

reduce communication bottlenecks. In the second phase, high level synthesis generated

hardware accelerators are added to explore the tradeoff in area-performance while still

privileging multiprocessor basis for the implementation.

 - 185 -

OCP-IP has proposed a suite of micro-benchmarks for network on chip benchmarking. We

evaluate through actual execution of OCP-IP benchmarks on large scale multiprocessors with

network on chip. And traffic information and statistics are obtained from our hardware

monitoring network.

9.2 Future Research

Large scale MPSoC design is a new and open research area from software programming

to hardware design. In the thesis, approaches are proposed and can be extended in several

different research directions.

Energy consumption is very important for nowadays electronic system not only for

commercial reason but also for earth protection. The energy consumption model library can

be integrated into our workflow for power-area- performance multi-criteria system on chip

design. Combining this flow with our previous work at RTL level will allow a fully integrated

solution.

Large scale MPSoC exploration is very complex and takes a long time. Take advantage

of the combination of different levels from TLM to RTL will prune exploration space at fast

evaluation level to accelerate exploration. Neural network theory estimation and the PR

technology of FPGA can also achieve this goal.

Add reconfigurability management of dedicated reconfigurable eFPGA area for hardware

accelerators as well as automatic parallelization is the future work too.

9.3 Contribution

 The main contribution is our automatic design flow for large scale MPSoC design

based on the reuse of SSM IP. Based on this, an automatic design flow for data

parallel and pipelined signal processing applications on embedded multiprocessor

with NoC for cryptographic application TDES. High level synthesis is added to

generated hardware accelerators, which are added to explore the tradeoff in area-

performance while still privileging multiprocessor basis for the implementation.

 - 186 -

 A lot of work has been done to summarize the state-of-art NoC and MPSoC design

flow. Analysis and comparison of different MPSoC design methodologies help to

better understand different design approach and overcame their shortcomings. The

same case for eFPGA and reconfigurable NoC design.

 We propose a fully automatic multi-objective design workflow for network on chip

at TLM level. The timing and area criteria from RTL level are explored but not

limited using the TLM NoC models of NoCexplorer.

 A linear programming methodology is provided as a solution to the problem:

organization and dimensioning of eFPGA reconfigurable area to maximize the

efficiency of network on chip mapping.

 We propose to reuse and extend SSM IP multiprocessor to large scale MPSoC as a

solution for design complexity and productivity.

 We first evaluate through actual execution OCP-IP benchmarks on large scale

multiprocessors with network on chip using multi-FPGA emulation platform.

All the work done in this thesis is the basis of “MPSOC explorer”, an ongoing industrial

project for large scale MPSoC design exploration supported by European Union and French

government.

 - 1 -

Thèse préparée dans Laboratoire Electronique et Informatique d’ENSTA

