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impeccable et pour l’accueil chaleureux que vous m’avez réservé à chaque occasion. A ce point,
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Nancy, Valentin, Nathalie, Sarah, Cléo, Chloé, Rémi, Nelly, Mounir, Ileana, Lotfi, Laurent D.,
Miguel, Loı̈s, Zaı̈d, Clara,... ainsi que Aurelia, Caro et Jérôme - mon trio Télécom-MLV-ien et
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1pour ceux qui se retrouvent sous ”...” je préparerai des remerciements personnalisés sur simple demande.

4



Contents

Remerciements 3

Table of contents 5

Glossary 6

Abstract 9

Resumé 11
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Glossary

4CIF: Four CIF: image resolution format of 706× 576 pixels.

ARQ: Automatic Repeat on Request.

CIF: Common Interchange Format: image resolution format of 352× 288 pixels.

DCT: Discrete Cosine Transform.

DWT: Discrete Wavelet Transform.

EBCOT: Embedded Block Coding with Optimized Truncation: still image coder.

EZBC: Embedded Zeroblock Coder: still image coder.

FB: Filter Bank.

FEC: Forward Error Correction.

FIR: Finite Impulse Response: class of filters with no internal feedback, whose impulse re-
sponse goes to zero within a finite number of samples.

fps: Frames per second (measuring unit for the frame rate of a video sequence).

GOF: Group of Frames in a video sequence.

GOP: Group Of Pictures in a video sequence.

H.264: Video compression standard

HVBSM: Hierarchical Variable Size Block Matching - motion estimation algorithm.

IIR: Infinite Impulse Response.

JPEG: Joint Photographic Experts Group: organization and compression standard.

JPEG2000: new JPEG compression standard based on wavelets.

MC: Motion Compensation.

MC-EZBC: Motion Compensated EZBC: video coder.

MDC: Multiple Description Coding.
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MDSQ: Multiple Description Scalar Quantization.

MDVQ: Multiple Description Vector Quantization.

MDCT: Multiple Descriptions with Correlating Transform.

MDTC: Multiple Description Transform Coding.

ME: Motion Estimation.

MIMO: Multiple-Input Multiple-Output.

MSE: Mean Squared Error.

MV: Motion Vector.

OFB: Oversampled Filter Bank.

PCT: Pairwise Correlating Transform.

pel: Pixel (abbreviation used in motion estimation/compensation operations to indicate pixel
precision, such as full pel, half-pel or 1/8-pel. The latter two indicate sub-pixel accuracy).

pixel: Picture element.

PSNR: Peak Signal to Noise Ratio.

PZW: Packetized Zerotree Wavelet.

QCIF: Quarter CIF: image resolution format of 176× 144 pixels.

QoS: Quality of Service.

RDWT: Redundant Discrete Wavelet Transform.

SPIHT: Set Partitioning Into Hierarchical Trees.

SVC: Scalable Video Coding

UEP: Unequal Error Protection.

Y-PSNR: PSNR on the luminance component, Y , of a signal.
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Abstract

The increasing usage of the Internet and other best-effort networks for diverse multimedia
communications, brings with it a stringent need for reliable transmission. For a long time, the
research efforts have been concentrated on enhancing the existing error correction techniques,
but during the last decades an alternative solution has emerged and gained more and more
popularity. This solution mainly answers to the situation in which immediate data retransmis-
sion is either impossible (network congestion or broadcast applications) or undesirable (e.g. in
conversational applications with very low delay requirements). We are referring to a specific
joint source-channel coding technique known as Multiple Description Coding (MDC).

Multiple description coding builds several correlated but independently decodable (prefer-
ably with equivalent quality) bitstreams, called descriptions, that are to be sent over as many
independent channels. In an initial scenario these channels are working in a binary manner,
in other words, if an error occurs on one channel this is considered entirely damaged and the
conveyed bitstream is unusable at the so-called side decoder end. As in other robust coding
methods, some amount of redundancy has to be added to the source signal, such that an ac-
ceptable reconstruction can be achieved from any of the bitstreams. Then, similar to layered
coding, the reconstruction quality will be enhanced with every bitstream received, maximal re-
construction quality being attained at the so-called central decoder. The major difference with
layered coding is that all “layers” have equal importance in MDC.

This thesis focuses on new approaches to Multiple Description Coding in low-redundancy
scenarios. We will present their application to the transmission of still images and video se-
quences. To this end, we have proposed new schemes based on wavelet frame decompositions,
which, for computational convenience, are implemented in a lifting form.

We first study new methods of building two descriptions in the temporal axis of a ”t+2D”
video codec. The redundancy of the schemes is inherent to the wavelet frame transform which
is equivalent to an oversampled filter bank. However, keeping the whole set given by this de-
composition would yield a redundancy of a factor of 2 which could be highly inefficient if both
paths were error-less. In our schemes we perform an additional subsampling of the detail sub-
bands while keeping the obtained approximation subbands entirely. Thus the redundancy is
tuned to the size of an approximation subband in a classical wavelet decomposition. However
this raises a new problem which is the perfect reconstruction of such a scheme. In this part
we have proven the perfect reconstruction for certain schemes and we have established choice
criteria among them based on the minimization of the quantization noise. We have compared
the performances of several schemes among the efficient ones in a scalable video coding con-
text provided by the MC-EZBC (Motion Compensated - Embedded Zero-trees Block Coding)
codec. Two scenarios - losing a whole descriptions versus losing only packets in each descrip-
tion - have been implemented and the results have been compared to the classical critically
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sampled decomposition.

A second direction that we have explored in this thesis refers to the MDC of still images,
which is viewed as an extension of the temporal schemes developed earlier. The problem of
structure invertibility is not trivial in the two-dimensional schemes and an exhaustive study has
been conducted in order to select the efficient schemes among all possible combinations based
on the proposed subsamplings. Moreover, we have explored the possibility of improving the
decoding by a post-processing based on a priori information on the system. This information is
given by the quantization steps which can be viewed as convex constraints. The reconstruction
problem has thus been formulated as the optimization of a quadratic function under convex
constraints and the decoded image gains several dB in terms of Peak Signal to Noise Ratio
(PSNR) both when a whole description is lost and when random pixels in each description are
destroyed.

Finally, we have approached the Multiple Description Problem from a completely different
angle, by considering the problem as a rate-distortion optimization in which a certain maxi-
mal distortion is allowed, and the best transmission rate (linked to the quantization step) is
searched. In general this is a non-convex problem hard to solve, therefore some approxima-
tions have been formulated in order to be able cast it as a convex optimization. The scheme
has also been generalized to an arbitrary number of descriptions. By doing this the complex-
ity is shifted to the encoder whereas the decoding becomes a simple linear process. We have
tested this theory for still images. This method is inspired from the recently developped theory
named ”Compressed Sensing” aiming at exploiting the sparsity present in signals in order to
solve inverse problems.
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Résumé de la thèse

Introduction, Motivations

Considérons le schéma de transmission simplifié présenté dans la Figure 1. Ce schéma illustre
la transmission d’un signal numérique, x, sur un réseau. Habituellement, entre le transmetteur
et le récepteur se trouvent plusieurs blocs de traitement, comme : une transformée ayant le rôle
de mieux préparer le signal pour la transmission (en réalisant une meilleure localisation de son
énergie, par exemple), un quantificateur qui impose un nombre fini de valeurs et, finalement,
un encodeur allouant une séquence binaire à chacun des échantillons à transmettre. Ensuite les
bits sont regroupés dans des paquets, en formant de cette manière le flux de données, qui sera
transmis sur un canal réseau. Le canal est habituellement sujet à des perturbations pouvant
altérer le flux de données et donc empêchant la réception correcte de celui-ci. Le signal reçu est
dénoté ici par x̂. Bien évidemment, le but majeur de la transmission est de minimiser l’erreur
ε = ‖x− x̂‖ entre le signal envoyé et celui décodé. Idéalement les deux signaux devraient être
identiques, ou alors leur difference doit se situer dans une marge de tolérance.

Channel

x ∈ RN y ∈ RM

x̂ ∈ RN
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Decoding Encoding
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FIGURE 1: Schéma de transmission de données simplifié.

Il existe plusieurs stratégies pour aborder ce problème. Une première consiste à re-
transmettre les paquets corrompus, mais cette méthode présente le désavantage d’introduire
d’importants délais qui ne sont pas acceptables dans toutes les circonstances. Une autre tech-
nique consiste à envoyer un flux de données plus important, englobant un code correcteur
d’erreur quelconque. Néanmoins, ceci est limité à quelques bits erronés par paquet unique-
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RESUMÉ

ment. Cette limitation est palliée avec une stratégie de codage en couches (“layered coding”
en anglais) qui consiste à transmettre un flux de données affinant successivement une couche
de base. La couche de base est tout de même essentielle pour pouvoir reconstruire les données
avec une qualité minimale. En conséquence, si la couche de base est touchée par des erreurs de
transmission, nous sommes ramenés au problème initial. Bien sûr, un mélange de ces méthodes
est facilement envisageable, et des techniques de protection pour la couche de base ont été em-
ployées.

L’usage intensif de l’Internet et/ou d’autres réseaux à pertes de paquets pour de la com-
munication multimédia impose la nécessité d’une transmission fiable. Les recherches se sont
pendant longtemps axées sur le perfectionnement des codes correcteurs d’erreurs existants,
mais les dernières décennies ont connu l’apparition d’une solution alternative devenue de plus
en plus populaire. Cette solution est amenée à répondre a un scénario de fonctionnement qui
ne permet pas la retransmission de l’information erronée (par exemple, à cause de goulots
d’étranglement ou pour des applications de type diffusion) ou alors cette dernière n’est pas
désirée (par exemple pour des applications conversationnelles avec des exigences de délais
très réduits). Cette technique est connue sous le nom de Codage par Descriptions Multiples
(en anglais Multiple Description Coding - MDC), méthode qui s’apparente au codage conjoint
source-canal.

La MDC se définit par la construction de flux de données, appelés descriptions, qui peu-
vent être décodés indépendamment les uns des autres et, de préférence, avec une qualité
équivalente. Ces flux de données sont transmis sur des canaux séparés à fonctionnement bi-
naire : ils sont considérés défaillants (et donc inutilisables) si une erreur est survenue lors de la
transmission, autrement ils sont considérés à fonctionnement parfait. L’enjeux principal dans
la construction des descriptions est de réaliser le meilleur compromis en termes de redondance
(et donc débit supplémentaire) et distorsion obtenue après décodage. Une distorsion maxi-
mum acceptée peut être atteinte par chacune des descriptions, et cette distorsion doit diminuer
avec chaque nouvelle description correctement reçue. Ceci a des similarités avec le codage en
couches, mais la différence majeure vient du fait qu’il n’existe pas de couche de base qui soit
vitale pour le décodage.

La formalisation de ces techniques est apparue à la fin des années ’70 dans la communauté
de la théorie de l’information. Les premiers résultats étaient à caractère théorique et ils donnait
la région des distorsions atteignables pour une source sans mémoire, décrite avec plusieurs flux
de données à débit fixé. Une vingtaine d’années plus tard l’utilité de ces résultats pour la trans-
mission de données sur des réseaux à pertes à donné naissance aux premières méthodes pra-
tiques de construction de descriptions multiples. Si l’on se réfère à la Figure 2, représentant les
principales étapes lors de l’encodage d’une source, nous identifions autant de points d’entrées
pour les méthodes par descriptions multiples.

FIGURE 2: Points d’entrée pour le codage par descriptions multiples.

Plus précisément, il existe deux classes principales de méthodes, distinguées par l’endroit
ou la redondance est introduite dans la chaı̂ne d’encodage. Chronologiquement, la separation
en descriptions a été introduite lors de l’étape de quantification, en décalant le intervalles de
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manière à obtenir une representation quantifiée plus finement si tous le canaux ont été fonc-
tionnels (ce que l’on appelle “décodeur central”) et, respectivement plus grossièrement si seule-
ment un sous-ensemble de canaux a pu être exploité (la reconstruction est faite au niveau du
décodeur dit “lateral”) [Vai93b]. La deuxième grande direction pour la construction des de-
scriptions multiples vise à introduire de la diversité au niveau de la transformée [WOR97],
[Goy98],[GKV99]. Ici, deux principales stratégies ont été utilisées : les transformées qui ra-
joutent de la corrélation et les décompositions en trame. Nos travaux se placent dans cette
dernière direction, et ils sont motivés par la robustesse au bruit additif sur le signal (tel que le
bruit de quantification) que ce type de transformée garantit.

L’objectif de cette thèse est de construire des représentations par descriptions multiples, à
faible redondance. Nous allons présenter leur application à la transmission des images fixes
et des séquences vidéo. Pour ce faire, nous avons considéré des schémas basés sur des trames
d’ondelettes, implantées en “lifting”.

Dans un premier temps nous avons considéré la construction des deux descriptions selon
l’axe temporel d’un codeur vidéo t+ 2D. La redondance introduite est inhérente à la transfor-
mation utilisée (une trame d’ondelettes qui peut également être vue comme un banc de filtres
sur-échantillonnés), cependant elle est d’un facteur deux et donc trop élevé si les deux canaux
ont fonctionné correctement (les deux descriptions ont été reçues). Nous avons proposé une
réduction de cette redondance par une étape de sous-échantillonnage supplémentaire des sous-
bandes de détails dans la décomposition. En procédant ainsi nous pouvons ajuster cette redon-
dance à la taille d’une sous-bande d’approximation en ondelettes, issue d’une décomposition
classique, échantillonnée critique. En revanche, ceci rajoute un problème de reconstruction par-
faite que nous avons adressé en détail. En outre, nous avons établi des critères de choix entre
les plusieurs schémas possibles, en introduisant un critère de minimisation du bruit de quan-
tification. Nous avons applique ceci à la transmission de la vidéo avec un codeur MC-EZBC
(Motion Compensated - Embedded Zerotrees Block Coding) via deux scénarios : la perte d’une
description entière versus des pertes aléatoires de paquets dans chacune des deux descriptions.

Une deuxième direction explorée dans cette thèse est l’extension des méthodes ci-dessus
au signal 2D, plus précisément à la transmission d’images. En employant une stratégie de
décomposition similaire, suivie d’un sous-échantillonnage supplémentaire nous avons iden-
tifié beaucoup plus de schémas possibles. Pour tous ces schémas une étude d’inversibilité
à été menée. En outre, nous avons proposé une méthode de post-traitement au niveau des
décodeurs, visant à améliorer la qualité de la reconstruction en situation de pertes. Ce problème
a été formulé comme la minimisation d’un critère quadratique sous des contraintes convexes.

Enfin, nous avons abordé le codage par descriptions multiples depuis un nouvel angle, en
considérant un problème d’optimisation débit-distorsion imposant une distorsion maximale,
tout en cherchant le débit (traduit par un pas de quantification) optimal pour la transmission.
Ceci est une formulation non-convexe pour laquelle nous avons cherché des approximations
permettant de la résoudre comme une optimisation convexe. Cette approche traite un cas de
figure different des approches précédentes, en considérant la complexité de calcul uniquement
possible à l’encodeur et en imposant des décodeurs très simples - linéaires. Cette méthode vise
à exploiter le fait que la source admet une représentation creuse dans la trame considérée et
elle suit des lignes similaires à la nouvelle théorie du “Compressed Sensing”.

Dans la suite nous allons présenter schématiquement les grandes lignes de nos contributions
ainsi que quelques résultats. Le détail des méthodes proposées se trouve dans les chapitres
suivants.

13
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Schémas à descriptions multiples temporelles

Comme annoncé précédemment, les schémas à descriptions multiples proposés dans cette
thèse font partie des méthodes de codage basées sur transformée. En particulier, la transformée
en ondelettes est un très bon candidat, grace à ses capacité de compression [FPP07] ainsi qu’à
sa scalabilité. Dans le contexte des descriptions multiples, des transformées en ondelettes re-
dondantes peuvent être mises en oeuvre.

Soit L2(R) l’espace des signaux réels à énergie finie. Nous allons construire des schémas
à descriptions multiples basés sur une analyse multirésolution de L2(R) ou l2(Z) (pour le cas
discret), [Mal89],[Mal98], [Mey90]. Ceci consiste à projeter le signal sur des bases de fonc-
tions permettant d’obtenir des approximations de plus en plus grossières du signal. On définit
une analyse multirésolution d’un signal comme la séquence des espaces vectorielles fermés :
{Vj}j∈Z of L2(R), satisfaisant:

{0} ⊂ . . . ⊂ Vj+1 ⊂ Vj ⊂ Vj−1 ⊂ . . . ⊂ L2(R), (1)

∀x ∈ L2(R) on a x(t) ∈ Vj ⇔ x(
t

2
) ∈ Vj+1, j ∈ Z. (2)

Alors, la projection d’un signal x ∈ L2(R) sur un sous-espace Vj représente une approximation
de x au niveau de résolution j. En outre, il existe un fonction dite “d’échelle” φ ∈ L2(R), telle
que la famille des fonctions translatées {t 7→ φ(t− n)}n∈Z forme une base orthonormale de V0,
et les versions dilatées et translatées de φ(t),

{
φj,n(t), n ∈ Z

}
avec φj,n(t) = 2−j/2φ(2−jt− n)

forment une base orthonormale de Vj .

La difference entre les approximations du signal, obtenues dans deux sous-espaces succes-
sifs, Vj et Vj+1, représente l’information de détail perdue d’un niveau de résolution à l’autre.
Cette information peut être obtenue à partir d’un espace de détail sous-jacent, Wj+1, orthogo-
nal à Vj+1:

Vj = Vj+1 ⊕Wj+1.

De même que pour les espaces d’approximation, une base orthonormale pour Wj est
obtenue à partir des versions translatées et dilatées d’une fonction appelée “ondelette mère”
ψ ∈ L2(R), données par :

{
ψj,n, n ∈ Z

}
avec ψj,n(t) = 2−j/2ψ(2−jt− n).

Ainsi, les coefficients d’approximation et de détail d’un signal x ∈ L2(R) sont donnés re-
spectivement par :

aj,n = 〈x, φj,n〉 =

∫ +∞

−∞
x(t)φj,n(t)dt =

∫ +∞

−∞
x(t)2−j/2φ(2−jt− n)dt,

dj,n = 〈x, ψj,n〉 =

∫ +∞

−∞
x(t)ψj,n(t)dt =

∫ +∞

−∞
x(t)2−j/2ψ(2−jt− n)dt.
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A une résolution donnée l’ensemble de coefficients d’approximation est appelé ”sous-
bande” d’approximation et il en va de même pour les coefficients de détail, qui forment la
”sous-bande” de détail.

Ainsi, un signal x ∈ L2(R) peut être représenté comme suit :

x(t) =
∑

n∈Z

aJ,nφJ,n(t) +
∑

j≤J

∑

n∈Z

dj,nψj,n(t). (3)

Notons la base engendrée par ces familles de fonctions par:

BI = {φJ,n, n ∈ Z} ∪
⋃

j≤J

{ψj,n, n ∈ Z},

où l’exposant I servira à distinguer les différentes bases employées par la suite. Dans cette
thèse nous nous limitons au cas des ondelettes orthogonales ou biorthogonales.

Ce type de décomposition classique en ondelettes génère une représentation non-
redondante et creuse du signal original, ce qui a été exploité dans des nombreux schémas de
compression.

L’idée directrice pour la construction de nos schémas à descriptions multiples est
d’employer une décomposition en trame d’ondelettes, obtenue comme une union de bases
issue des différentes translations de BI. Plus particulièrement, nous allons utiliser deux
représentations, notées BI (comme ci-dessus) et BII, où :

BII = {ψ′
J,n, n ∈ Z} ∪

⋃

j≤J

{φ′j,n, n ∈ Z}.

et

{ψ′
j,n =

1

2j/2
ψ(

t

2j
+

1

2
− n), n ∈ Z}

φ′j,n = 2−j/2φ(2−jt+ 1/2− n), ∀n ∈ Z.

Il est important de remarquer que l’ensemble de coefficients d’approximation et de détail
donné par BI et BII mène à une représentation à haute redondance - le nombre d’échantillons
est doublé. En supposant que deux descriptions ont été formées chacune avec la moitié de
cet ensemble, le supplément de débit engendré est souvent trop important par rapport à
l’amelioration de la qualité de reconstruction quand les deux descriptions ont été reçues.

Pour pallier ce problème nous proposons de rajouter une étape de sous-échantillonnage
supplémentaire sur les coefficients, à fin de réduire la taille de chaque description, et par con-
sequent le débit total. Ce procédé permet d’ajuster la redondance jusqu’à la taille d’une sous-
bande d’approximation (en terme de nombre de coefficients). Ainsi, la redondance introduite
décroı̂t avec le nombre de niveaux de décomposition employé.

Cette operation de sous-échantillonnage secondaire sera appliquée sur les sous-bandes de
détail et nous allons l’indiquer par les caractères .̂ and .̌, ce qui donne :

d̂ I
J,n = dI

J,2n, (4)

ď I
J,n = dI

J,2n−1. (5)

(6)
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pour les coefficients de détail issus d’une décomposition sur BI au dernier niveau de résolution,
J . Ici, n dénote l’indice temporel d’un signal discret mono-dimensionnel. Des notations simi-
laires seront employées pour les coefficients issus de BII.

Ainsi, pour construire un schéma à deux descriptions, la stratégie est la suivante :

1. Calculer aI
j,n et dI

j,n for j ∈ {1, . . . , J − 1}, comme auparavant,

2. Calculer aI
J,n, dI

J,n, aII
J,n et d II

J,n (au dernier niveau de résolution, J),

3. Sous-échantillonner d’un facteur 2 tous les sous-bandes de détail, mais garder les sous-
bandes d’approximation intactes,

4. Former deux descriptions avec ce qui reste des coefficients.

BI BIIStage 1

Stage 2

x[n]

aIn
dIn

aIIn
dIIn

aIn dIn aIIndIIn

{âIn, ǎIn} d̂In ďIn d̂IIn ďIIn {âIIn , ǎIIn}
Stage 3 Example of two-description

structure (merged descriptions)

Discarded pixel
Kept pixel aIn

d̂InaIIn ďIIn

BIBI BIIBIIStage 1Stage 1

Stage 2Stage 2

x[n]x[n]

aInaIn
dIndIn

aIInaIIn
dIIndIIn

aInaIn dIndIn aIInaIIndIIndIIn

{âIn, ǎIn}{âIn, ǎIn} d̂In̂dIn ďIňdIn d̂IIn̂dIIn ďIIňdIIn {âIIn , ǎIIn}{âIIn , ǎIIn}
Stage 3Stage 3 Example of two-description

structure (merged descriptions)
Example of two-description
structure (merged descriptions)

Discarded pixelDiscarded pixel
Kept pixelKept pixel aInaIn

d̂In̂dInaIInaIIn ďIIňdIIn

FIGURE 3: Construction des schéma à deux descriptions à redondance réduite. Première étape :
construire la décomposition en ondelettes basée sur BI and BII. Ensuite : échantillonnage d’un
facteur 2 et selection d’un sous-ensemble de coefficients.

Dans la Figure 3, nous présentons la stratégie énoncée sur un niveau de décomposition. Le
dernier étage dans cette figure donne une combination possible des sous-bandes pour former
deux descriptions. Il faut souligner qu’il est important de garder l’intégralité des sous-bandes
d’approximation (pas d’échantillonnage supplémentaire) à fin d’assurer une qualité de service
minimale quand seulement une de deux descriptions peut être décodée.

Note: La décomposition sur une base d’ondelettes translatée, qui revient donc à diversifier
le sous-échantillonnage classique, voir l’éliminer, peut être réalisée à n’importe quel niveau de
résolution, non pas uniquement au dernier niveau. Cependant, plus le niveau de résolution
est haut, plus la redondance introduite est importante et, par consequent, le post-traitement
par sous-échantillonnage doit être important, menant en plus à un ensemble plus consequent
de combinaisons possibles pour la création de descriptions. En effet, la plus faible redondance
du schéma est obtenue en introduisant la transformée sur-échantillonnée au dernier niveau de
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décomposition. En outre, l’étude de reconstruction parfaite peut être mené uniquement sur cet
ensemble de coefficients. Nous avons donc favorisé ce type de décomposition à la fois pour sa
plus grande simplicité et pour sa plus faible redondance.

En outre, il est bien connu que la décomposition en trame d’ondelette proposée est
équivalente pour des signaux numériques à une décomposition en bancs de filtres sur-
échantillonnés. Avec cette considération, et en prenant (hn)n∈Z et (gn)n∈Z comme réponses
impulsionnelles des filtres d’analyse, ainsi que le signal numérique (xn)n∈Z comme aupara-
vant, nous pouvons définir plusieurs schémas à deux descriptions.

Plus particulièrement, nous avons identifié les cas suivants qui couvrent toutes les combi-
naisons possibles dans le contexte de la Figure 3 :

• Schéma R - composé des séquences de coefficients :

{ âI
n, ǎ

I
n, d̂

I
n,︸ ︷︷ ︸

1ère description

âI
n, ǎ

I
n, ď

I
n︸ ︷︷ ︸

2ème description

}.

• Schéma MD1 - donné par :

{ âI
n, ǎ

I
n, d̂

I
n,︸ ︷︷ ︸

1ère description

âII
n , ǎ

II
n , ď

I
n︸ ︷︷ ︸

2ème description

}.

• Schéma MD2 - avec :

{âI
n, ǎ

I
n, d̂

I
n,︸ ︷︷ ︸

1st description

âII
n , ǎ

II
n , d̂

II
n︸ ︷︷ ︸

2nd description

},

• Schéma MD3 - donné par :

{âI
n, ǎ

I
n, d̂

I
n,︸ ︷︷ ︸

1st description

âII
n , ǎ

II
n , ď

II
n︸ ︷︷ ︸

2nd description

}

Ces ensembles sont représentés au dernier niveau de résolution (J), ceci étant l’endroit ou
la redondance est introduite dans le schéma. Les niveaux de résolution plus fine sont
tout simplement crées avec les coefficients de détail issus d’une décomposition en on-
delettes usuelle, échantillonnée critique, qui ont été repartis dans les descriptions selon
leurs indices pairs et impairs. De plus, ces sous-bandes, regroupées dans un vecteur
cn = {âI

n, ǎ
I
n, â

II
n , ǎ

II
n , d̂

I
n, ď

I
n, d̂

II
n , ď

II
n } ont été obtenues en passant par un banc de filtres

suréchantillonnés ayant les réponses impulsionnelles évoquées plus haut. Pour ce faire, il
est nécessaire de définir les composantes polyphase des réponses impulsionnelles des filtres
d’analyse comme suit :

∀i ∈ {0, 1, 2, 3}, hi(n) = h4n−i, gi(n) = g4n−i

et leur transformées en Z correspondantes, notées par : Hi(z) and Gi(z). De même le signal
d’entrée est divisé en quatre composantes polyphase qui s’ecrivent :

∀i ∈ {0, 1, 2, 3}, x(i)
n = x4n+i.
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ce qui donne le vecteur polyphase suivant :

xn =
(
x(0)

n x(1)
n x(2)

n x(3)
n

)T
.

Avec ces considérations, l’equation de transfert correspondante au banc de filtres
suréchantillonnés globale sera donnée par :

C(z) = M(z) X(z),

où C(z) et X(z) sont les transformées en Z du vecteur de séquences de coefficients, cn, et du
signal d’entrée, xn et M(z) est la matrice polyphase globale de transfert.

Dans les schémas à deux descriptions présentés, un sous-ensemble de 6 sous-bandes à été
à chaque fois sélectionné (le schéma R est donné comme référence car il est équivalent à un
schéma non-redondant en terme d’information).

Un problème important qui est soulevé par notre approche est celui de la reconstruction par-
faite au niveau du décodeur central. En effet, l’étape de sous-échantillonnage supplémentaire
peut affecter la structure de trame. Nous avons étudié ce problème en détail, en procédant en
deux étapes. Dans un premier temps nous avons déduit comme condition nécessaire et suff-
isante pour la trame, l’inversibilité au dernier niveau de décomposition. Ensuite, grace à la
representation polyphase nous avons étudie l’inversibilité pour les deux cas de figure les plus
souvent employés en codage vidéo : les filtres de Haar et les bancs de filtres biorthogonaux
suréchantillonnés 5/3. Cela se traduit par l’étude de l’inversibilité des sous-matrices de M(z)
ayant 6 lignes sur les 8. Nous avons donc construit un banc de filtres suréchantillonnés d’un
facteur 6× 4.

De plus, pour ces bancs de filtres il existe une implementation rapide et efficace du point de
vue de la mémoire consommée, appelée schéma ”lifting”, introduite dans [HP96] et étendue
dans [HP98] sous le nom de ”décompositions non-linéaires par sous-bande”. Le terme ”lifting”
a été introduit dans le tutoriel [DS98]. Ce schéma garantit la reconstruction parfaite du système.

−p u

aj,2n

aj,2n+1

aj+1,n

dj+1,n

γ

1
γ

−p−p uu

aj,2naj,2n

aj,2n+1aj,2n+1

aj+1,naj+1,n

dj+1,ndj+1,n

γγ

1
γ
1
γ

FIGURE 4: Schéma en lifting de base, sur un étage.

Le noyau de lifting que l’on utilise pour l’implementation de notre stratégie par descriptions
multiples est présenté dans la Figure 4. Ici, p, respectivement u représentent les opérateurs de
prédiction et de mise à jour, tandis que γ est une constante multiplicative réelle, non-nulle.

Ainsi, nous pouvons illustrer une de nos schémas à descriptions multiples temporelles
comme dans la Figure 5, dans laquelle nous affichons uniquement deux niveaux de
décomposition temporelle pour alléger la lecture.
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−p u

2 ↓
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−p u

2 ↓

2 ↓
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a0,2n

a0,2n+1

1
γ a1,n

1
γ

1
γ a1,2n

1
γ a1,2n+1

1
γ a1,2n−1 aII2,n

ďII2,n

ďI1,n

d̂I1,n

d̂I2,n

γ2

γ2

Desc. 1

Desc. 2

−p−p uu

2 ↓2 ↓

2 ↓z 2 ↓2 ↓2 ↓zzz

−p−p uu

2 ↓2 ↓2 ↓

2 ↓2 ↓2 ↓

2 ↓2 ↓2 ↓z−1z−1z−1

−p−p uu

2 ↓2 ↓2 ↓z−1z−1z−1

z−1z−1z−1

aI2,naI2,n

a0,2na0,2n

a0,2n+1a0,2n+1

1
γ a1,n1
γ a1,n

1
γ
1
γ

1
γ a1,2n1
γ a1,2n

1
γ a1,2n+11
γ a1,2n+1

1
γ a1,2n−11
γ a1,2n−1 aII2,naII2,n

ďII2,nďII2,n

ďI1,nďI1,n

d̂I1,nd̂I1,n

d̂I2,nd̂I2,n

γ2γ2

γ2γ2

Desc. 1Desc. 1

Desc. 2Desc. 2

FIGURE 5: Implementation en lifting 2-bandes sur les deux derniers niveaux de décomposition
d’un des schémas MDC proposés.

Considérations sur les bancs de filtres utilisés

Pour les deux classes de filtres d’analyse considérées (Haar et biorthogonal 5/3), nous avons
exploré l’inversibilité de chacune des matrices polyphase d’analyse, résultantes. Autrement
dit, nous avons cherché une matrice de synthèse,W , pour laquelle nous avons calculé l’erreur
quadratique moyenne de la reconstruction pour un bruit de quantification de variance unitaire
EQMr = ‖W‖2. Il est connu que l’effet du bruit en sortie, dû à la quantification, est minimal
si pour tout i, la norme de Frobenius de chaque colonne deW est minimale. De plus, puisque
l’on se place dans un cas suréchantillonné, plusieurs solutions d’inversion sont possibles. Cela
est traduit par l’ordre des filtres de synthèse quand l’on exprime la matrices de transfert du
système comme des matrices polynomiales de Laurent, W(z) =

∑p2
p=−p1

Wpz
−p.

Nous avons mené une étude expérimentale pour le calcul de EQMr de nos schémas, en
faisant varier l’ordre maximal, P , des filtres de reconstruction. Nous présentons ici les résultats
obtenus pour les bancs de filtres biorthogonaux 5/3, centralisés dans le Tableau 1. Dans ce cas
l’ordre des filtres d’analyse est Q = 3 ce qui correspond à deux cas de figure : filtres d’analyse
causals ((q1, q2) = (0, 2)) ou alors ”mixtes” ((q1, q2) = (1, 1)), où la matrice de transfert du
système2 est M(z) =

∑q2
q=−q1

Mqz
−q.

Ceci a permis d’en déduire des critères de choix entre les schémas obtenus avec un banc
de filtres ainsi que d’établir des conditions d’usage d’un banc de filtre plutôt que l’autre. Il
convient pourtant de remarquer que ces résultats portent uniquement sur les décodeurs cen-
traux et que donc les performances de décodage latéral ne sont pas considérées. Ceci explique

2en passant par la transformée en Z.
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Filtres biorthogonaux 5/3

Analyse: (q1, q2) = (0, 2) Analyse: (q1, q2) = (1, 1)
Schémas Ordre des filtres de synthèse (P ) Ordre des filtres de synthèse (P )

2 3 4 5 2 3 4 5

Schéma R
EQMr 4.37 4.37 4.37 4.37 4.37 4.37 4.37 4.37
(p1, p2) (0, 1) (1, 1) (1, 2) (1, 3) (0, 1) (1, 1) (1, 2) (1, 3)

Schéma MD1
EQMr 4.37 3.38 2.58 2.57 95.12 2.65 2.59 2.57
(p1, p2) (0, 1) (1, 1) (1, 2) (2, 2) (1, 0) (1, 1) (2, 1) (2, 2)

Schéma MD2
EQMr 14.60 3.20 2.94 2.93 14.60 3.20 2.94 2.93
(p1, p2) (0, 1) (1, 1) (1, 2) (2, 2) (0, 1) (1, 1) (1, 2) (2, 2)

Schéma MD3
EQMr 9.69 5.70 2.99 2.96 65.44 3.23 3.08 2.93
(p1, p2) (0, 1) (0, 2) (1, 2) (1, 3) (0, 1) (1, 1) (2, 1) (2, 2)

TABLE 1: L’evolution de EQMr avec l’ordre maximal de reconstruction des filtres pour les
schémas à descriptions multiples (MDC) et le schéma non-redondant (SDC) basé sur une
décomposition sur BI avec des filtres d’analyse biorthogonaux 5/3.

pourquoi le schéma MD1, bien que supérieur aux autres en performance centrale n’est pas le
meilleur candidat si l’on vise des performances latérales équivalentes. Aussi, les performances
en terme d’erreur de reconstruction n’augmentent pas de manière sensible avec l’ordre des fil-
tres de synthèse et donc, compte tenu des difficultés liées au codage vidéo, les filtres ayant la
réponse la plus courte sont à favoriser.

Simulations et résultats

Nous avons considéré une application de codage vidéo robuste pour des scénarios à pertes.
Pour la séquence de test dont on extrait quelques trames pour exemplification dans la Figure 6,
nous présentons dans la Figure 7 une comparaison entre le schéma MD1 et le schéma MD3,
quand on se place dans un scénario de fonctionnement tout-ou-rien. Comme nous avions
vu précédemment, ces deux schémas sont quasi-équivalentes du point de vue du décodeur
central, cependant les performances des décodeurs latéraux sont beaucoup plus proches pour
le schéma MD3, ce qui le rend plus attractif pour un scénario de transmission dans lequel les
canaux ont la même importance.

Nous présentons ici également les performances de codage en fonction de taux de pertes de
paquets qui sont illustrées dans la Figure 8 pour la séquence de test “Foreman” en format QCIF
à 30 fps et 250Kbs. Nous avons comparé notre approche avec un schéma de MDC basé sur la
division temporelle.

La Figure 9 donne les résultats à plusieurs débits pour un des points sur la Figure 8, corre-
spondant à un pourcentage de pertes de paquets de 10%, toujours en comparant à une approche
MDC basée sur distribution temporelle des échantillons du signal en deux descriptions (selon
les indices pairs et impairs). Ces résultats ont été obtenus en moyennant approximativement
1500 réalisations.
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(a) Frame 164 (b) Frame 165

(c) Frame 228 (d) Frame 275

FIGURE 6: Quatre trames extraites de la séquence de test ”Mobile”.
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FIGURE 7: Courbes Y-PSNR vs. débit pour deux schémas à deux descriptions temporelles
(séquence de test “Mobile”, en format CIF, 30fps).
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FIGURE 8: Distorsion vs. taux de pertes de paquets (“Foreman” QCIF, 30 fps, 250 Kbs).
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FIGURE 9: Courbes de Y-PSNR vs. débit à un taux de pertes de paquets de 10% (séquence de
test “Foreman” en QCIF, 30 fps).
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Schémas à descriptions multiples spatiales

Pour réaliser une extension du cas monodimensionnel au cas bidimensionnel pour les schémas
proposés, nous allons adapter les notations précédentes comme suit : les sous-bandes
d’approximation et de détail au niveau de résolution j ∈ {1, . . . , J} seront respectivement
désignées par aj , dhj , dvj and ddj , où la deuxième lettre dans les sous-bandes de détail cor-
respond à leur orientation : horizontale, verticale où diagonale, telle que données par une
décomposition classique d’image en ondelettes. Comme précédemment, le dernier niveau de
résolution est indiquée par la lettre majuscule J .

Ainsi, une décomposition en banc de filtres comme dans le cas temporel utilisera les filtres
passe-bas, respectivement passe-haut, à réponses impulsionnelles (h[n])n∈Z et (g[n])n∈Z.

Alors, sous l’hypothèse de séparabilité les sous-bandes d’ondelettes sont obtenues dans le
cas bidimensionnel par une cascade de convolutions et décimations d’un facteur 2 :

aj [n,m] =
∑

k,l

aj−1[k, l]h[2n− k]h[2m− l]

dhj [n,m] =
∑

k,l

aj−1[k, l]h[2n− k]g[2m− l]

dvj [n,m] =
∑

k,l

aj−1[k, l]g[2n− k]h[2m− l]

ddj [n,m] =
∑

k,l

aj−1[k, l]g[2n− k]g[2m− l],

(7)

à chaque niveau de résolution, j ∈ {1, . . . J}, où aj−1 représente la sous-bande d’approximation
à la résolution immédiatement supérieure (plus fine).

Dans ce cas de figure, nos schémas à deux descriptions utiliseront cette décomposition
jusqu’au niveau J − 1, suivi d’une décomposition non-décimée au dernier niveau (comme
dans le cas temporel). Une telle décomposition est obtenue en translatant les reposes impul-
sionnelles des filtres de 1 dans chacune des directions spatiales ou les deux directions à la fois.

Écrivons donc les équations donnant les sous-bandes d’ondelettes au dernier niveau de
résolution pour le cas suréchantillonné :

aJ(s,s′)
[n,m] =

∑

k,l

aJ−1[k, l]h[2n+ s− k]h[2m+ s′ − l]

dhJ(s,s′)
[n,m] =

∑

k,l

aJ−1[k, l]h[2n+ s− k]g[2m+ s′ − l]

dvJ(s,s′)
[n,m] =

∑

k,l

aJ−1[k, l]g[2n+ s− k]h[2m+ s′ − l]

ddJ(s,s′)
[n,m] =

∑

k,l

aJ−1[k, l]g[2n+ s− k]g[2m+ s′ − l],

(8)

Ici, les paramètres (s, s′) ∈ {0, 1} introduits dans les réponses impulsionnelles des filtres
d’analyse dans chaque direction spatiale représentent le facteur de translation employé.

En faisant le lien avec les notations introduites dans la section précédente, la paire (s, s′) =
(0, 0) correspondra donc aux coefficients issus de BI tandis que une paire (s, s′) 6= (0, 0) indique
l’utilisation de BII dans au moins une direction spatiale.
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FIGURE 10: Exemple de banc de filtres sur-échantillonné pour un niveau de décomposition
separable en ondelettes de l’image x.

La Figure 10 représente une décomposition sur un niveau avec les paramètres (s, s′) = (0, 0)
pour les deux premières branches et (s, s′) = (1, 0) pour les branches suivantes. Donc la
deuxième décomposition en ondelettes est obtenue dans ce cas en translatant les réponses im-
pulsionnelles des filtres d’analyse de 1 sur l’horizontale. Les filtres usuels sont employés pour
la direction verticale.

L’étape suivante dans la construction de schémas à descriptions multiples est donnée
par le sous-échantillonnage supplémentaire des sous-bandes de détail. Dans le cas spatial
plusieurs stratégies peuvent être envisagées. Pour des raisons de symétrie des descriptions
ainsi que de distribution homogène de l’information à transmettre, nous proposons un sous-
échantillonnage en quinconce, que l’on illustre dans la Figure 11.

Pour toutes les combinaisons possibles de sous-bandes d’ondelettes utilisées pour la com-
position des deux descriptions nous avons également étudié des critères de choix basés sur la
reconstruction parfaite et l’erreur quadratique moyenne de la reconstruction pour un pas de
quantification de variance unitaire.

Les performances de décodage des schémas à descriptions multiples dans le cas bidimen-
sionnel ont été améliorées par un algorithme itératif d’optimization quadratique, issus des
développements récents des méthodes de projection sur des ensembles convexes (POCS).
L’idée directrice de ce post-traitement est basée sur la prise en compte des contraintes de quan-
tification qui peuvent être modélisées comme des ensembles convexes et qui représentent de
l’information a priori sur le système pouvant être prise en compte au décodage. Cet algorithme
s’est avéré fort dépendant de l’initialisation et nous avons proposé plusieurs stratégies de com-
binaison des sous-bandes reçues avant optimisation.
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FIGURE 11: Illustration du sous-échantillonnage ultérieur à la transformée en ondelettes clas-
sique. Les sous-bandes d’approximation résultantes sont entièrement gardées dans le schéma
à descriptions multiples, tandis que les coefficients de détail sont sous-échantillonnés sur une
grille en quinconce. Uniquement une des parités du sous-échantillonnage quinconce sera gardé
dans la représentation finale.

Résultats

Choix des schémas

Tout d’abord nous avons considéré un fonctionnement du type ”marche/arrêt” des deux
canaux. Nous avons évalué les performances des schémas ayant présenté la reconstruction
parfaite et les performances les plus prometteuses en terme de reduction du bruit de quantifi-
cation. Dans ce type de fonctionnement basique il n’y a pas d’autres pertes de paquets et on
considère donc les descriptions comme reçues ou perdues. Les résultats obtenus au niveau des
décodeurs centraux pour deux schémas qui assurent la reconstruction parfaite et diminuent
l’erreur quadratique moyenne de la reconstruction3 sont présentés dans la Figure 12. En outre
l’algorithme d’optimisation convexe pour l’amélioration de la reconstruction à été utilisée ici
sur les deux schémas. Les performances avant optimisation sont données en traits pointillés.
Les traits pleins représentent les performances obtenues après 30 itérations d’optimisation.

Dans cette situation il n’y a pas d’indication sur un critère qui permettrait de choisir un
schéma plutôt qu’un autre, en revanche la reconstruction au niveau des décodeurs latéraux
donne un meilleur aperçu. Les performance PSNR vs. débit des deux schémas sont indiqués
par la Figure 13. Comme précédemment, les traits en pointillés correspondent aux valeurs
obtenues avant l’algorithme itératif, avec une initialisation moyenne, tandis que les traits pleins
correspondent aux valeurs obtenues après 30 itérations d’optimisation convexe.

Pertes de paquets aléatoires

Le deuxième ensemble d’expérimentations proposé dans cette thèse concerne un scénario de
pertes aléatoires selon un modèle de canal à bruit gaussien. Ceci permet d’illustrer l’intérêt des
techniques MDC sur les techniques non-redondantes. A titre d’exemple, nous donnons ici les

3une analyse d’inversibilité similaire au cas des descriptions temporelles à été réalisée dans le cas spatial en
calculant les valeurs singulières minimales de la matrice polyphase
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FIGURE 12: Evaluation PSNR-débit de deux schémas MDC au niveau des décodeurs centraux.
(image de test : LENA 512x512 pixels).
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FIGURE 13: Evaluation du PSNR vs. le débit pour les decodeurs lateraux .

résultats pour l’image de test ”Man” à 512x512 pixels, obtenus pour 4% de pertes aléatoires
de coefficients dans chacune des descriptions, comparés au cas non-rédondant affecté par les
mêmes pertes que la première description.

Nous avons prouvé expérimentalement que l’initialisation de l’algorithme itératif avec une
combinaison de type moyenne pondérée des sous-bandes individuelles de chaque descrip-
tion donne les meilleures performances. Cependant, le calcul des poids optimaux (dans le
sens des moindres carrés et en absence de pertes) et leur utilisation au décodeur nécessiterait
un canal de transmission supplémentaire. Une étude empirique sur les valeurs de ces poids
obtenues sur une base d’images ayant différentes caractéristiques (images naturelles, images de
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FIGURE 14: PSNR vs. débit. Comparaison entre le décodeur central d’un des schéma MDC
bidimensionnels à reconstruction parfaite à 4% de pertes aléatoires dans chaque description et
le cas non-redondant affecté par les mêmes pertes que la première description. Pour le schéma
MDC nous illustrons les résultats pour deux initialisations differentes, Init 1 et Init 2, ainsi que
les résultats après l’algorithme d’optimisation : les courbes Opt. 1 et Opt. 2. Comme réference
nous donnons la borne supérieure qui est le cas non-redondant en absence de pertes.

synthèse, images satellitaires, images bio-medicales) et contenant quelque dizaines d’éléments
nous a montré qu’il est possible de choisir un ensemble fixe de poids de pondération de chaque
sous-bande individuelle qui n’affecte pas de manière trop importante les résultats et qui varie
de manière négligeable d’une image à l’autre. Ceci présente l’avantage de pouvoir être pre-
déterminé au niveau du décodeur et donc ne nécessite plus de canal secondaire.

Dans le scénario à pertes aléatoires de coefficients, nous avons également calculé l’ensemble
des poids optimaux quand le modèle de pertes est connu dans chaque description. Ceci permet
de comparer les résultats obtenus avec les poids fixes par rapport aux performances maximales
atteignables. Une telle stratégie peut s’avérer utile si le fonctionnement du réseau de commu-
nication peut être considéré comme déterministe.

Approche par trame de synthèse - représentations creuses

Dans la dernière partie de cette thèse, nous avons généralisé le schéma MDC au cas de D
descriptions, toujours pour la transmission d’images sur des réseaux à pertes. En outre, nous
avons montré comment, à partir d’une représentation choisie au niveau de la synthèse, nous
pouvons coder les coefficients de manière à minimiser le débit pour une distorsion maximale
fixée. Nous avons ensuite examiné les approximations permettant de reformuler ce problème
sous la forme d’un problème d’optimisation convexe.
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Trame à l’analyse ou à la synthèse ?

Supposons que le signal à transmettre appartienne à un espace de Hilbert réel, H, de produit
scalaire 〈·, ·〉 et de norme associée ‖ · ‖. Chaque description i ∈ {1, . . . , D} est obtenue à partir
d’une famille de vecteurs (ei,k)k∈Ki

de H, où Ki ⊆ N, l’union de ces D familles étant supposée
former une trame de H. Notons les opérateurs d’analyse associés Li : H → `2(Ki), où x 7→
(〈x, ei,k〉)k∈Ki

. pour tout i ∈ {1, . . . , D}, ayant comme opérateurs adjoints L∗
i : `2(Ki) → H

avec (ξk)k∈Ki
7→∑

k∈Ki
ξkei,k

Nous pouvons alors adopter deux points de vue différents pour la construction d’un schéma
MDC à partir de ces opérateurs, que nous allons distinguer par les dénominations : paradigme
d’analyse et paradigme de synthèse.

Dans le paradigme d’analyse, un signal x ∈ H est décomposé par les opérateurs linéaires Li

donnés ci-dessus, formant ainsi D descriptions (D ensembles de coefficients) :

ci = Lix, i ∈ {1, . . . , D}, (9)

qui sont quantifiés et transmis séparément. Le signal reconstruit x̂, que l’on cherche à rendre
le plus proche possible de x, peut provenir d’un nombre réduit de descriptions ou de toutes
(selon le scénario de transmission survenu). Pour améliorer le décodage, on peut considérer
que la quantification effectuée au départ se traduit par un ensemble de contraintes convexes
imposées au décodeur [CMW99, PPPP05b]. Dans ce cas la reconstruction, bien que pouvant
être de bonne qualité, est non linéaire et donc coûteuse en calculs (Figure 15).
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2c ?
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Enc 2

x̂

Channel

Decoders

Nonlinear!

Encoder

x c1L1 Q

c2L2 Q
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Enc 2

x̂

Channel

Decoders

Nonlinear!

Encoder

FIGURE 15: Paradigme d’analyse.

La seconde approche est celle du paradigme de synthèse, qui consiste à utiliser des opérateurs
linéaires au niveau du décodeur. Dans ce cadre, les opérateurs adjoints sont directement ap-
pliqués aux coefficients quantifiés ci ou, plus exactement, au sous-ensemble I ⊂ {1, . . . , D}
des descriptions reçues. Les suites de coefficients quantifiés vont être générées par un algo-
rithme d’optimisation débit-distorsion qui prend en compte les caractéristiques du canal. Ceci
rend l’encodeur non-linéaire mais en revanche les décodeurs prennent des formes linéaires très
simples (Figure 16).

Par exemple, un choix naturel pour le décodeur central (quand I = {1, . . . , D}) est :

x̂ =
∑D

i=1 L
∗
i ci. Pour les décodeurs latéraux, on peut de manière similaire adopter une re-

construction du type : x̂ =
∑

i∈I L̃
∗
I,ici , où L̃∗

I,i : `2(Ki)→ H est un opérateur de reconstruction
bien choisi (pas nécessairement le même que celui utilisé au décodeur central).
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FIGURE 16: Paradigme de synthèse.

Problème d’optimisation débit-distorsion

En introduisant R(ci), i ∈ {1, . . . , D}, le nombre de bits nécessaires à la transmission de la
séquence des valeurs quantifiées ci, nous nous proposons de minimiser le débit global :

Rglobal =
D∑

i=1

R(ci) (10)

sous une contrainte de distorsion globale donnée par :

D =
∑

I∈P
αI‖x−

∑

i∈I

L̃∗
I,ici‖2 ≤ Dmax. (11)

où P est l’ensemble des parties non vides de {1, . . . , D}. Les poids positifs αI représentent,
par exemple, les probabilités de réception dans les différents scénarios, mais d’autres con-
sidérations peuvent entrer en ligne de compte (qualité perceptuelle etc) dans leur choix.

Cependant, trouver les suites ci qui minimisent le débit sous la contrainte de distorsion
globale est un problème d’optimisation non-convexe difficile. En faisant quelques hypothèses
sur les coefficients ainsi que sur le bruit de quantification, nous avons ramené ce problème à
une optimisation convexe qu’il est possible de résoudre numériquement à l’aide d’algorithmes
récents [CCPW06].

Résultats

Pour illustrer le paradigme de trame de synthèse nous avons considéré un exemple de trans-
mission d’images basé sur le standard de compression JPEG2000. Pour un scénario à deux
descriptions nous pouvons construire une décomposition en trame utilisant comme opérateur
de reconstruction L∗

1 associé à une base d’ondelettes biorthogonales 9/7 et l’opérateur de recon-
struction L∗

2, associé à la même base mais translatée d’un pixel dans chaque direction spatiale.

Dans ce cas, un choix naturel pour les décodeurs latéraux est donné par : L̃∗
i = 2L∗

i , i ∈ {1, 2}.
Nous avons utilisé l’image standard de test Lena, à 512 × 512 pixels, encodée en descriptions
multiples utilisant une décomposition sur trois niveaux de résolution grace à un banc de fil-
tres dyadique. Les poids utilisés dans la contrainte de distorsion ont été pris comme suit : as
α1,2 = 0.8, α1 = α2 = 0.1.

Les coefficients de trame ont été synthétisés avec l’approche d’optimisation que l’on vient
de décrire pour laquelle les paramètres du modèle Gaussien généralisé ont été estimés par une
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méthode de maximum de vraisemblance. En outre, le pas de quantification, q, a été optimisé
pour chaque débit obtenu avec JPEG2000 pour l’encodage de chaque description quantifiée.
Dans la Figure 17 nous présentons l’evolution du PSNR avec le débit global pour les décodeurs
central et latéraux. Compte tenu de la sous-optimalité du point de vue de la redondance de
la trame choisie pour cet exemple (facteur 2) nous présentons les résultats correspondants à
l’application directe de l’encodeur JPEG2000 à moitié du débit. Comme attendu, notre schéma
présente des meilleures performances au niveau du décodeur central tout en gardant des per-
formances acceptables au niveau des décodeurs latéraux. Bien entendu, des meilleurs résultats
sont à prévoir pour des décompositions plus sophistiquées (notamment plus efficaces en terme
de débit).
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FIGURE 17: Performances débit-distorsion pour Lena, cas de deux descriptions.

Nous avons considéré un scenario similaire avec trois descriptions, en choisissant les
opérateurs de synthèse L∗

1, L∗
2 and L∗

3 correspondant comme avant à une base d’ondelettes
biorthogonales 9/7 et respectivement deux versions translatées : translation de (1, 1) i.e. un
pixel dans chaque direction spatiale pour L∗

2 et de (1, 0) pour L∗
3). Nous désignons ces trois

descriptions par D1, D2, et respectivement D3, dans la Figure 18.

Dans cette situation, nous avons deux types de décodeurs latéraux : un qui reçoit unique-
ment une description sur les trois, et l’autre qui reçoit deux descriptions sur trois. Dans ces
conditions, un choix naturel pour les opérateurs L̃∗

I,iq est le suivant :

L̃∗
I,i =

{
3
2L

∗
i , if Card(I) = 2

3L∗
i , if Card(I) = 1.

(12)

Nous avons établi les valeurs de pondération dans la contrainte de distorsion comme étant
: α{1,2,3} = 0.8, αI = 0.0618 quand Card(I) = 2 et αI = 0.0048, quand Card(I) = 1.

Les images reconstruites correspondantes à un débit central de 0.8bpp sont présentées dans
la Figure 4.5.
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FIGURE 18: Performances débit - distorsion pour le schéma à trois descriptions (Lena).
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FIGURE 19: Reconstruction: Image original (gauche), Décodeur central D1 +D2 +D3 (droite) à
0.8 bpp.

Comparaison entre l’approche MDC classique et l’approche par trame de synthèse

Bien que les deux approches présentées ici sont dans un sens complémentaires il pourrait
être utile de comparer leurs performances sans tenir compte qu’elles s’appliquent dans des
différents cas de figure. Dans le cas que nous venons de décrire les schémas sont construits
tel que la complexité est transférée à l’encodeur, en gardant ainsi la linéarité des décodeurs.
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50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

FIGURE 20: Reconstruction: Décodeur latéral D1 +D2 (gauche), Décodeur latéral D1 (droite).

Cependant, l’idée de base dans cette approche reside dans la recherche du meilleur pas de
quantification devant être appliqué aux coefficients pour obtenir une distorsion maximum ac-
ceptable. L’approche précédentes se proposaient surtout de minimiser la redondance en lais-
sant la tâche de reconstruction aux décodeurs quelque soit le pas de quantification utilisé.

Comme résultats préliminaires, nous avons comparé ces deux types de méthodes sous
quelques hypothèses simplificatrices portées sur l’approche classique à fin de ramener les ex-
periences au même niveau (des trames très redondantes). Plus concrètement, nous avons com-
paré l’approche par paradigme de synthèse à une approche par trame classique à deux descrip-
tions dans lesquelles le pas de quantification a été choisi pour obtenir des débits équivalents.

Le résultat de cette comparaison pour l’image de test Barbara est donnée dans la Figure 21.
Dans la figure de gauche nous présentons les décodeurs centraux (les deux descriptions reçues)
ainsi que une décomposition en ondelettes biorthogonales 9/7 échantillonnée critique, donnant
une borne de performance. Les performances des décodeurs latéraux sont présentées dans la
figure de droite. Ces résultats montrent des performances équivalentes pour les deux types
d’approches au niveau des décodeurs centraux, avec un léger gain en faveur de la méthode par
trame de synthèse à haut débit. Les résultats obtenus pour les décodeurs latéraux contredisent
ceux des centraux, ce qui pourrait indiquer que certains raffinements des hypothèses utilisées
sont nécessaires.

Perspectives

Plusieurs perspectives s’ouvrent à l’issue de cette thèse, soit sous la forme d’extensions des
techniques proposées à fin d’améliorer les performances, soit en les appliquant à d’autres
problématiques qui s’y prêtent. Pour conclure ce résumé, nous passons en revue quelques
unes de ces perspectives.
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FIGURE 21: Comparaison entre l’approche par paradigme de synthèse et une approche MDC
classique avec une décomposition en trame équivalente. L’image de test utilisée est Bar-
bara, 512 × 512 pixels. Décodeurs centraux (gauche), Décodeurs latéraux (droite). Pour le
décodeur central nous présentons également la courbe PSNR en fonction du débit pour une
décomposition en ondelettes biorthogonales 9/7 échantillonnée critique.

Des schémas MDC hybrides pour la vidéo

Les descriptions temporelles (inter-trame) pourraient être par la suite combinées avec d’autres
stratégies de rajout de redondance dans le domaine spatial de la vidéo (intra-trame), que
nous avons vu proposées dans la littérature de spécialité. Ceci augmenterait la flexibilité des
schémas MDC ce qui permettrait de mieux adapter la construction des paquets à des différentes
situations de pertes survenues dans les réseaux. Un deuxième effet de cette extension serait une
amélioration de la reconstruction à des différents niveaux.

Des schémas spatiaux améliorées

Les performances des schémas à deux descriptions que nous avons proposées dans le cas des
images fixes pourraient être améliorées en rajoutant plus de diversité entre les sous-bandes les
plus énergétiques - les sous-bandes d’approximation. En effet, à l’issue de la décomposition
en trame d’ondelettes, celles ci gardent une très forte corrélation et donc le décodeur central
n’exploite pas la redondance introduite (en termes de débit) à son plus haut potentiel. Nous
proposons, par exemple, de rajouter une transformation de type codage par descriptions multi-
ples avec quantification scalaire (en anglais Multiple Description Scalar Quantization - MDSQ)
entre les deux sous-bandes d’approximation. Ceci serait réalisé en décalant les indices de quan-
tification par 1/2, de la manière de Vaishampayan [Vai93b]. La reception des deux description
fournirait une sous-bande d’approximation non seulement non-décimée mais également quan-
tifiée avec un pas de quantification plus fin qui devrait mener à un meilleur décodage.

Une autre extension que nous pourrions apporter aux schémas spatiaux consisterait dans
une stratégie plus adaptative concernant le choix des poids dans l’initialisation de l’algorithme
de décodage itératif. En effet, au lieu d’approcher les valeurs du pas de quantification à 1
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(moyennant une troncature aux entiers près) pour chaque débit, nous pourrions imaginer un
pas de quantification adaptatif.

Des trames moins redondantes pour l’approche qui exploite le caractère creux des données

La dernière direction explorée dans cette thèse est à ses débuts. Plusieurs extensions possi-
bles peuvent être envisagées. La première serait d’employer des trames moins redondantes,
telles que celles explorées dans les chapitres précédents. Aussi, nous pourrions considérer des
approximations plus fines de l’entropie qui seraient mieux adaptées au régimes bas-débit, en
s’appuyant par exemples sur les travaux de Fraysse et al. [FPPP09].

D’autres transformées et critères de performance

Une problématique importante dans toute approche MDC est la qualité de la reconstruction
latérale. Dans notre travail, nous avons considéré uniquement des critères d’évaluation de
performance “usuels”, tels que le PSNR. Deux directions sont possible à partir de ce point.

La première serait d’employer d’autres transformées qui augmentent la qualité subjec-
tive perçue à PSNR comparable. Dans ce sens, un effort considérable à été déployé dans la
littérature visant par exemple d’amélioration subjective de la qualité d’image perçue avec des
transformée préservant la géométrie. Nous pourrions explorer le remplacement des bancs de
filtres proposés par des techniques d’ondelettes plus avancées telles que : bandelettes [Pen02],
curvelets [CDDY06], contourlets [SW01, Chap. 4], des schéma en lifting adaptatif [PH02], etc. .
[SW01] et [Mal09] fournissent d’excellents revues sur les autres transformées qui s’apparentent
aux ondelettes (les “x-let”). Nous pourrions envisager de remplacer notre décomposition par
trame d’ondelettes construite comme une union de bases par une de ces transformées. Un ef-
fet secondaire bénéfique serait une representation plus creuse du signal et, implicitement, des
meilleures performances en compression. La deuxième direction qui mérite d’être étudiée pour
l’evaluation des performances du décodage latéral serait de changer les critères en s’orientant
vers des mesures de qualité perceptuelles, par exemple [vdBLV96], [dFZRS03].

Des applications inter-disciplinaires

Récemment, les méthodes de MDC ont été évaluées pour le développement de la
vidéo/télévision stereoscopique 3D [NAB+06], [KHWK08]. Une méthode de MDC simple
basée sur la repartition temporelle selon les indices paires et impaires à été proposée dans
[KHWK08]. Ces travaux s’appuient sur ceux de Apostolopoulos [Apo99] dans les codecs
vidéos à boucle fermée. Nous envisageons une approche similaire en utilisant nos méthodes
à redondance réduite. Dans ce contexte, MDC est un très bon candidat pour l’encodage de la
couche de base du signal stereoscopique.

Enfin, dans une note un peu plus générale, nous remarquons que la philosophie des
méthodes MDC n’est pas restreinte au domaine du traitement du signal (dans la définition
du signal communément accepté). L’expansion rapide des architectures de calcul multi- et
many-coeurs fait ressortir le besoin de tolérance aux erreurs à différents niveaux du système :
materiel, système d’exploitation, middleware, bus de communication etc. Dans ce contexte, il
y a une analogie à faire entre un réseau à paquets et une architecture multi-coeur, notamment
quand il s’agit d’architectures reconfigurables. Dans ce cas aussi il est commun d’introduire de
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la redondance dans le système, que cela soit au niveau logiciel ou materiel, à fin de palier des
potentielles erreurs de fonctionnement. De ce fait, le cadre MDC se trouve très en ligne avec
cette problématique. En outre, ces architectures disposent d’un degré très élevé de parallélisme,
ce qui complète le rapprochement avec la philosophie MDC. Par ailleurs, l’exploitation efficace
du parallélisme dans les architectures de calcul est un des problèmes ouverts dans la com-
munauté informatique actuelle. Concernant le traitement d’images, les algorithmes présentés
dans cette thèse se prêtent très bien au traitement parallèle. Une prochaine étape pourrait être
l’implémentation des schémas MDC proposés dans le chapitre 3 sur une architecture parallèle
à fin d’évaluer ses performances de calcul dans des scénarios plus réalistes.
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Introduction and thesis outline

Consider the simplified data transmission scheme in Figure 22. A digital signal, let us say,
x, has to be transmitted over some network. Usually, the path between the sender and the
receiver contains several processing blocks, for instance: some transform that better prepare
the signal for transmission (by better concentrating its energy for instance), a quantizer which
only allows a certain set of values and, finally, an encoder which will allocate a binary sequence
to each sample to be transmitted. Then, the bits are grouped into packets. In this manner a
bitstream is formed and sent over some network channel. This channel is usually subject to
perturbations which can alter the bitstream and thus prevent it from being correctly recovered
at the receiver, hence the notation x̂ for the decoded signal. Obviously, the ultimate goal of the
transmission is to minimize the error ε = ‖x− x̂‖, ideally the two signals should be identical or
within a tolerable difference4.
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FIGURE 22: Simple data transmission scheme.

There are several strategies available in order to tackle this problem. One is the retransmis-
sion of corrupted packets, but this introduces delays which are not always an option. Another
one is sending a larger bitstream which contains in addition some error correction code. This is
limited to only a few wrong bits in each packet. Then there is the option of the so-called layered
coding. This strategy forms several bitstreams which are progressively refinable starting from
a base layer. The base layer, however, is essential to data reconstruction with a minimal quality.
This means that if the base layer gets corrupted we are back to the initial problem. Then some

4Some irreversible transformation might occur for instance if the signal suffers a lossy compression.
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protection techniques for this base layer have been employed.

The increasing usage of the Internet and other best-effort networks for diverse multimedia
communications, brings with it a stringent need for reliable transmission. For a long time, the
research efforts have been concentrated on enhancing the existing error correction techniques,
but during the last decades an alternative solution has emerged and gained more and more
popularity. This solution mainly answers to the situation in which immediate data retransmis-
sion is either impossible (network congestion or broadcast applications) or undesirable (e.g. in
conversational applications with very low delay requirements). We are referring to a specific
joint source-channel coding technique known as Multiple Description Coding (MDC).

Multiple description coding builds several correlated but independently decodable (prefer-
ably with equivalent quality) bitstreams, called descriptions, that are to be sent over as many
independent channels. In an initial scenario these channels are working in a binary manner,
in other words, if an error occurs on one channel this is considered entirely damaged and the
conveyed bitstream is unusable at the so-called side decoder end. As in other robust coding
methods, some amount of redundancy has to be added to the source signal, such that an ac-
ceptable reconstruction can be achieved from any of the bitstreams. Then, similar to layered
coding, the reconstruction quality will be enhanced with every bitstream received, maximal
reconstruction quality being attained at the so-called central decoder. The major difference with
layered coding is that all “layers” have equal importance in MDC.

An ingredient enabling the success of an MDC technique is the path diversity since its us-
age balances the network load and reduces the congestion probability. In wireless networks,
for instance, a mobile receptor can benefit from multiple descriptions if these arrive indepen-
dently, for example on two neighbour access points; when moving between these access points
it might capture one or the other, and in some cases both. Another way to take advantage
of MDC in a wireless environment is by splitting in frequency the transmission of the two de-
scriptions: for example, a laptop may be equipped with two wireless cards (e.g., 802.11a and g),
each wireless card receiving a different description. Depending on the dynamic changes in the
number of clients in each network, one of them may become overloaded and the corresponding
description may not be transmitted.

In wired networks, the different descriptions can be routed to a receiver through different
paths by incorporating this information into the packet header. In this situation the initial
scenario of binary working channels might no longer be of interest, since for a typical CIF
format video sequence one frame might be encoded into several packets. Therefore, the system
should be designed to take into consideration individual or bursty packet losses rather than a
whole description.

Thesis objective

An important issue that concerned the researchers over the years is the amount of introduced
redundancy. In order for the transmission to be efficient, one has to consider a trade-off be-
tween this redundancy and the resulting distortion.

This thesis focuses on new approaches to Multiple Description Coding in low-redundancy
scenarios. We will present their application to the transmission of still images and video se-
quences. To this end, we have proposed new schemes based on wavelet frame decompositions,
which for computational convenience are implemented in a lifting form.
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Outline of the work

Background on Multiple Description Coding

This dissertation begins with a short state-of-the-art in Multiple Description Coding, in Chap-
ter 1. The topic of MDC has quite a long life cycle, its theoretical bases being laid out more
than almost forty years ago. Then a quiet period followed until about a decade ago when
the new transmission scenarios and applications made possible the quest for a wide variety of
MDC methods. This chapter does not pretend to be exhaustive, the amount of work on the
topic making it almost untraceable. However, it will mention the research guidelines that es-
tablished the main MDC trends. The purpose of this chapter is to place our proposed strategy
among the existent directions in MDC, highlighting the limitations of some of these methods
and the motivations behind this work.

Temporal MDC Schemes

The first contribution of this thesis will be presented in Chapter 2. Here, we study new methods
of building two descriptions in the temporal axis of a t + 2D video codec. The redundancy of
the schemes is inherent to the wavelet frame transform which is equivalent to an oversampled
filter bank. Keeping the whole set given by this decomposition would yield a redundancy of
a factor of 2 which could be highly inefficient if both paths were error-less. In our schemes
we perform an additional subsampling of the detail subbands while keeping the obtained ap-
proximation subbands entirely. Thus the redundancy is tuned to the size of an approximation
subband in a classical wavelet decomposition. However this raises a new problem which is the
perfect reconstruction of such a scheme. In this part we have proven the perfect reconstruction
for certain schemes and we have established choice criteria among them based on the mini-
mization of the quantization noise. We have compared the performances of several schemes
among the efficient ones in a scalable video coding context provided by the MC-EZBC (Motion
Compensated - Embedded Zero-trees Block Coding) codec. Two scenarios (as presented in the
previous section), that is: losing a whole descriptions versus losing only packets in each de-
scription have been implemented and the results have been compared to the classical critically
sampled decomposition.

Spatial MDC Schemes

A second direction that we have explored in this thesis refers to the MDC of still images, which
is viewed as an extension of the temporal schemes developed in the first part. This work will
be presented in Chapter 3. The same idea of reducing the redundancy by additional subsam-
pling of the wavelet subbands is applied (the subbands which contain the core of the signal
energy are again preserved). The problem of structure invertibility is not trivial in these two-
dimensional schemes and an exhaustive study has been conducted in order to select the effi-
cient schemes among all possible combinations based on the proposed subsamplings. More-
over, we have explored the possibility of improving the decoding by a post-processing based on
a priori information on the system. This information is given by the quantization steps which
can be viewed as convex constraints. The reconstruction problem has thus been formulated
as the optimization of a quadratic function under convex constraints and the decoded image
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gains several dB in terms of Peak Signal to Noise Ratio (PSNR) both when a whole description
is lost and when random pixels in each description are destroyed.

A complementary approach exploiting sparsity

Finally, in Chapter 4 we have approached the Multiple Description Problem from a completely
different angle, by considering the problem as a rate-distortion optimization in which a certain
maximal distortion is allowed, and the best transmission rate (linked to the quantization step) is
searched. Some approximations have been formulated in order to be able to solve this problem
as a convex optimization as well and the scheme has been generalized to an arbitrary number
of descriptions. By doing this the complexity is shifted to the encoder whereas the decoding
becomes a simple linear process. We have tested this theory for still images.

For the image applications we have tested two image coders: EZBC and JPEG2000. Most of
the presented results will involve the latter though, and this is because it yields slightly better
performances, but also mainly because, as a standard, it facilitates referencing.
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Chapter 1

Background on Multiple Description
Coding

An important issue appearing in heterogeneous packet-switched networks is the handling of
packet losses, that might be due either to network congestions or other perturbations generat-
ing transmission errors. If a preferential treatment can be performed on the packets allowing
some protection for the more important ones, then a very good solution is layered source cod-
ing (see for instance [KZC+94], [CHG03]). Otherwise a different technique might be employed,
and this has come to be known as Multiple Description Coding (MDC).

Multiple description coding involves the transmission of several correlated representations
of the source signal over independent channels. Before discussing the theoretical aspects that
have been investigated in this new transmission system, let us consider the simplest case, rep-
resented in Figure 1.1. Here, we have to transmit the source Xk and we know that two in-
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FIGURE 1.1: Two-channel scheme for multiple descriptions.

dependent channels are simultaneously available, in an error-prone network. Therefore two
representations (called descriptions) are generated by the MD encoder and each of those is sent
over its private channel. The MD decoder handles two different situations: in the first one,
errors have occurred on one of the channels and the decoder ignores the data coming from it,

delivering an approximate version of X , X̂j
k with j ∈ {1, 2}; in the second situation both chan-

nels were unaffected by errors and a central decoder produces a (usually) better version of X ,

41



1. BACKGROUND ON MULTIPLE DESCRIPTION CODING

X̂0
k .

The question is now: what should these two different representations of Xk be and how can

the reconstruction X̂i
k, i ∈ {0, 1, 2} be best obtained?

An important issue involved in source coding is the use of transforms that minimize the
correlation within the signal to be transmitted, thus eliminating the unnecessary redundancy.
This is mainly achieved with orthogonal transforms, such as the Discrete Cosine Transform or
some wavelet transform. A criterion for the transform’s efficiency is the sparse characteristic
of the obtained signal. While this idea is very useful in source coding as it leads to highly
compressible structures, its end-to-end performance is endangered by channel losses.

Channel coding, on the other hand, focuses on the correct transmission of the data source
and thus on the concealment of the eventual errors occurring on the channel. The famous
source/channel “separation” principle given by Shannon [Sha48] gives an asymptotic result
for the transmission of any source at a maximal bitrate with any desired error probability. This,
however, involves maximum length codewords, thus raising a real obstacle to the practical
implementation.

In these conditions it has been discovered that building source and channel codes jointly
leads to better results. In the joint source-channel coding strategy the source is compressed at
a lower ratio, or some particular redundancy is introduced in order to ensure better robustness
to transmission. Multiple description coding can be assigned to this class of methods, being
especially suitable for erasure channels, in which, even though great amount of data might be
lost, one can benefit from the fact that the received data is guaranteed to be accurate.

A note on the terminology that we are going to use from now on (and which has already
been introduced in the literature): we shall refer to an encoder which was optimized for coding
efficiency, in other words a “non-redundant” coder, as a Single Description (SD) coder. Obvi-
ously the “redundant” coders that we are studying here are referred to as Multiple Description
(MD) coders.

1.1 Information Theory framework

The beginnings of this new coding strategy date as far as 1979 when Gersho, Ozarow, Witen-
hausen, Wolf, Wyner and Ziv formulated the following question: What are the achievable dis-
tortions for a memoryless source at fixed given transmission bitrates when this source is described by
several bitstreams [Oza80],[GC82]?. This problem was tackled from an information theoretic
point of view. In this period the problem was mostly cast in the literature as a source coding
technique, probably because of the rate-distortion optimization philosophy. Later on, Goyal,
Vaishampayan and others included MDC in the class of joint source-channel coding but con-
sensus has not yet been completely reached among researchers. We are leaning toward the
latter classification, since the MDC strategy takes simultaneously into account the possibility
of losses and the encoding process.

The main idea was to determine (in the Shannon sense [Sha48]) the set of rates and dis-
tortions {Ri, Dj} with i ∈ {1, . . . , N} (N being the maximal number of descriptions) and
j ∈ {1, . . . , 2N − 1} (the number of decoders corresponding to the scheme), where R stands
for the transmission rate and D stands for the obtained decoder distortion. If we consider that
the signal to be transmitted is denoted by Xk and the jth reconstruction (at the jth decoder) is
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denoted by X̂
(j)
k then the distortion of this decoder is given by:

Dj =
1

N

N∑

k=1

E(dj(Xk, X̂
(j)
k )) (1.1)

where dj are some chosen distortion measures.

1
2(1 + 2−4R	)

2−2R	

2−4R	

Achievable

Unachievable

D0

D1

2−2R	/(2− 2−2R	)

1
2(1 + 2−4R	)1
2(1 + 2−4R	)

2−2R	2−2R	

2−4R	2−4R	

AchievableAchievable

UnachievableUnachievable

D0D0

D1D1

2−2R	/(2− 2−2R	)2−2R	/(2− 2−2R	)

FIGURE 1.2: Achievable central and side distortions for MDC of a memoryless Gaussian source
with squared-error distortion and equal individual rates and distortions.

In the two-description case the receiver has three decoders and one has to find the set of
reachable values {R1, R2, D0, D1, D2}, where R1 and R2 represent the side rates and Di, i ∈
{0, 1, 2} represent the central and sides distortions, respectively, as before. To this end, the
following theorem has been formulated for a set of Gaussian random variables, [GK01].

Theorem 1. Given the i.i.d Gaussian random variables {Xk}k∈{1, ..., N}
(the sequence of source symbols to be transmitted), the set of reachable distortion and rate values under
a quadratic norm satisfies:

D1 ≥ 2−2R1 (1.2)

D2 ≥ 2−2R2 (1.3)

D0 ≥ 2−2(R1+R2)γ(D1, D2, R1, R1) (1.4)

with

γ =





1

1−(
√

(1−D1)(1−D2)−
√

D1D2−2−2(R1+R2))2
if D1 +D2 ≤ 1 + 2−2(R1+R2)

1 otherwise.
(1.5)

The case leading to equality in (1.2) and (1.3) has been studied in [ZB95], whereas the equal-
ity in (1.4) has been treated in [Ahl85].

In the perfectly balanced case in which the two generated descriptions are equivalent, that is
R1 = R2 and D1 = D2, the achievable side-central distortion region is given in Figure 1.2. If we
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1. BACKGROUND ON MULTIPLE DESCRIPTION CODING

FIGURE 1.3: Side distortion in the balanced descriptions case for different redundancy rates, r
(taken from [Goy01]).

express the global rate as the sum of the base rate R0 (corresponding to the central distortion
D0 in the source-coding sense) and the redundancy r for a Gaussian memoryless source, we
have the central distortion D0 = 2−2R0 and the redundancy is the excess rate introduced in
order to get acceptable side distortions: r = R1 + R2 − R0. Thus, the side distortion is lower
bounded by, [Goy01]:

D1 ≥
{

1
2 [1 + 2−2R0 − (1 + 2−2R0)

√
1− 2−2r], for r ≤ R0 − 1 + log2(1 + 2−2R0)

1−
√

1 + 2−2R0 , for r > R0 − 1 + log2(1 + 2−2R0)
(1.6)

A representation of this bound for different redundancy rates is given in Figure 1.3.

The M description case with M > 2 has been tackled in [VKG03], [WV07] for Gaussian
sources.

The information theory community has thus formulated the interest of using a multiple de-
scription approach and it has given the theoretical bounds for the so-built systems. However,
while we knew what to expect in terms of performances, no practical method had been formu-
lated so far. This has led to almost two decades during which multiple description coding did
not find applications in the communication world.

The issue has known a spectacular regain of interest when researchers such as Vaisham-
payan, [Vai93b], Wang, Orchard, Reibman [WOR97], Kovacevic and Goyal [GK98] proposed
viable methods for error resilience via multiple description coding. These works were moti-
vated by the important advances in multimedia communications.

In the next three sections we shall proceed to a brief overview of these practical codes, which
highlights the major directions that have been developed in the last decade. Most of the current
applications that have emerged in the literature afterward are based on these main directions.
After explaining the theoretical framework we shall give a survey of the MDC techniques ap-
plied to the transmission of still images and video sequences, data which makes the object of
this thesis. A global picture of the MDC directions can be observed in Figure 1.4. The two
main directions that we are presenting in the sequel involve either quantization or correlation.
They provide the basis for the more complex methods developed later with a more specific
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FIGURE 1.4: The major directions in Multiple Description Coding.

application-oriented strategy in mind. Different decoding solutions are also investigated in
the literature and they aim at enhancing the reconstruction quality with respect to the rate-
distortion trade-off that gives the theoretical bounds.

1.2 MD by quantization

The first practical approach to Multiple Description Coding is proposed by Vaishampayan,
[Vai93b]. This technique relies on quantization and the idea is to build two discrete descriptions
X1 and X2 for a source X , each of them belonging to a certain dictionary of symbols: χ̂1 or
χ̂2. The imposed criterion is that the resulting quadratic distortion when both channels work
correctly is smaller than the individual side distortions.

However, since both side decoders must provide an acceptable distortion, the idea of a hi-
erarchical quantization in which the first description would be a coarse version, X1, of X and
the second one would be the residual X −X1, is not a good strategy. A different solution has
been proposed, based on scalar quantization. In this approach two uniform quantizers of step
δ are involved and the second one is shifted by half a quantization interval with regards to the
first one. Thus, if one description is lost, the source is recovered from a description quantized
with a step of δ, whereas if both descriptions are received the resulting quantization step is δ

2 .

An important remark concerns the transmission rate. One must notice that in the hypothesis
of high resolution such a scheme is very consuming in the sense that the rate will be doubled
in order to quantize the source at δ

2 , when only an extra bit would suffice.

As in traditional quantization, multiple description quantization follows the same tech-
niques: scalar and vector quantization or entropy-constrained quantization (see, for instance,
[GG92],[Pro01]). We shall explain these techniques in more detail in the following.

45



1. BACKGROUND ON MULTIPLE DESCRIPTION CODING

1

2

3

4

5

6

0 1 3 4 5 62

0 0

1 2

3 4

5 6

7 8

9 10

11 12

�
�

�
�

�
�

0 1 3 4 5 62

0 1 3 4 5 62

0 1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

5

6

0 1 3 4 5 62

0 0

1 2

3 4

5 6

7 8

9 10

11 12

1

2

3

4

5

6

0 1 3 4 5 62

0 0

1 2

3 4

5 6

7 8

9 10

11 12

�
�

�
�

�
�

�
�

�
�

�
�

0 1 3 4 5 620 1 3 4 5 62

0 1 3 4 5 620 1 3 4 5 62

0 1 2 3 4 5 6 7 8 9 10 11 12

FIGURE 1.5: Nested-cells scalar quantization (“linear” index representation (left), matrix repre-
sentation (right)).

1.2.1 Scalar quantization

MD Scalar quantization (MDSQ) without entropy coding consists in coding a stationary mem-
oryless source (Xk)k∈Z, having zero-mean and σ2

X variance, into two or more quantized de-
scriptions.

A scalar quantizer is given by a dictionary of reconstruction levels χ̂ = {X̂1, X̂2, ...X̂N}
of the source and a partition of R, A = {A1, A2, ..., AN}. With these notations, the encoder
is an application Q : R → {1, 2, . . . , N} such that Q(X) = i, ∀X ∈ Ai. The decoder is the
inverse application Q−1 : {1, 2, . . . , N} → χ̂ which associates the index i with a word from the

corresponding dictionary: Q−1(i) = X̂i.

Each encoder is defined by its partition Aj and an index set Ij = {1, 2, . . . ,Mj}, j ∈ {1, 2}
and the central partition is given by the intersection of these Aj whereas the central index set
is I ⊂ I1 × I1. If the sizes of the two quantizers are known and the side distortions are fixed,
then the problem is to find the optimal quantizer which will minimize the central distortion
D0 under the side distortion constraints Dj ≤ dj , with j ∈ {1, 2}. The usual measure for the

distortion is Di = E
∣∣∣X̂i −X

∣∣∣
2
, i ∈ {1, 2} for the two side distortions and D0 = E

∣∣∣X̂0 −X
∣∣∣
2

for the central distortion.

Finding the optimal quantizer is not a trivial problem, but the conditions for the optimality
can be given through a Lagrangian formulation. The optimization can be done in two parts:
in the first one the central partition - and implicitly the quantizers Qj - is optimized for fixed
decoding dictionaries and in the second part the dictionaries are optimized for a given cen-
tral partition. Alternating these two parts can lead to an optimal MDSQ. From classical scalar
quantization (e.g. [GG92], [GN98]) it is known that the minimal reachable distortion depends
on the quantization cells spread, being proportional to its square, under high-rate assump-
tions. While the central distortion is mainly related to the number of quantization cells, an
additional difficulty has to be overcome in order to minimize the side distortions, because
these are highly dependent of the index assignment in each of the side quantizers. Results are
given by Vaishmapayan in [Vai93b] who, further on and together with Battlo, also presents an
asymptotic analysis of these MDSQ in [VB98]. This work is then further extended to entropy-
constrained scalar quantization, [VD94].

A graphical representation of the simplest MDSQ scheme is given in Figure 1.5 in which the
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quantization cells from the two descriptions are nested such that the central decoder Q0 has an
index assignment corresponding to a two-times finer quantizer.

The dependencies between the quantized variables have been studied in [GGF02].

Entropy-constrained scalar quantization: In the previous case, equal length code words
had been chosen for the encoding of the scalar quantized descriptions. This has been extended
[VD94] by using variable length encoding and by changing the rate-distortion optimization
problem accordingly. This is achieved by considering the entropies of the random variables
Qj(X), j ∈ {1, 2}, denoted by H1(t) and H2(t), respectively, and given by:

Hj(t) = −
Mj∑

m=1

Pjm log2(1/Pjm)

where:

• t is a vector of thresholds describing the quantization operation as follows: Q(x) = n if
x ∈ [tn−1, tn), n ∈ {1, . . . , N}, and t = (t1, . . . , tN ) with t1 ≤ . . . ≤ tN ( in this case[t0, tN )
is the support of the probability density function of the source),

• Pjm is the probability of the jth decoder for the quantization index m ∈ {1, . . . Mj}.

Then, if we denote the average distortions by Dk with k ∈ {0, 1, 2}, one has to solve the
following problem:

Minimize D0(t, X̂0)

subject to the following constraints:

Dj(t, X̂j) ≤ Dj , j ∈ {1, 2},
Hj(t) ≤ Rj , j ∈ {1, 2},

where Rj , j ∈ {1, 2} are the side rates (as before).

1.2.2 Vector quantization

Detailed presentations of these techniques can be found in [Vai93b], [VB98], [VSS01], [KGK00],
[DSV02a].

The lattice vector quantizers are quite similar to scalar quantizers, but the source is split into
vectors of length L. A first lattice Λ ⊂ RL leads to a finely quantized vector Q(X) = λ ∈ Λ
which is subdivided into two descriptions λ′1 and λ′2, each in a coarser sub-lattice Λ′ of Λ. The
indexing function is given by the injective mapping α : Λ→ Λ′ × Λ′, such that α(λ) = (λ′1, λ

′
2).

Such a representation will be decoded simply by inversing the indexation at the central

decoder: X̂0 = α−1(λ′1, λ
′
2) and, if only one representation has reached the decoder, then X̂i =

λ′i.

Note that the sub-lattices Λ′ of Λ are geometrically similar to Λ or, in other words, Λ′ = cΛU
for an orthogonal matrix U and a scalar c. An example of admissible sub-lattices is given in
Figure 1.6, the additional condition being that no elements of Λ should lie on the boundaries of
Voronoi regions of Λ′.

As in the scalar case, the index assignment is obtained by solving the rate-distortion opti-
mization of the central distortion D0 under side rate constraints.
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1. BACKGROUND ON MULTIPLE DESCRIPTION CODING

FIGURE 1.6: Examples of trellis quantization lattices. The sub-lattices Λ′ are marked by thicker
points and the Voronoi cells associated to a point of the sub-lattice are equally represented. The
left figure represents a Z2 lattice while the right figure gives a hexagonal lattice (taken from
[GKK02]).

1.3 MD by correlating transforms

In the previous section we have presented the methods which introduce the redundancy after
the signal has been decorrelated, by diversifying the quantization. The second direction that
has been investigated by researchers aims at introducing the redundancy through the used
transform. Most of the strategies investigated in this direction are applied directly to the source
signal and prior to the quantization operation. The redundancy is introduced by a correlating
transform and the result is further quantized. The place of the quantization block can also be
inverted with that of the transform one, as it will be presented shortly, and in this situation one
can benefit from the properties of integer-to-integer transforms.

The two main strategies that have been developed in this case are introducing two types
of redundancy in the source signal: statistical and deterministic redundancy, respectively.
The first method consists in creating a correlated block of n variables out of an i.i.d block of
Gaussian variables, and the second one uses redundant transforms such as frame decomposi-
tions.

Let us explain these methods into more detail.

1.3.1 Statistical correlation

This technique, known as of Multiple Description Correlating Transform (MDCT) has been
introduced in the literature by Wang, Orchard and Reibman in [WOR97] and [WOR98] for two
variables. The results have been generalized later on by Goyal and Kovacevic to the case of n
variables.

Here, the descriptions are obtained from centered Gaussian variables Xi that are supposed
to be independent and have variances σ2

i respectively. The method consists in linearly trans-
forming these variables into correlated ones, Yi, that shall be sent over independent channels
with rates Ri. As mentioned above, in [WOR97] the two-description case is handled. Thus,
two correlated variables Y1 and Y2 are obtained from two independent ones X1 and X2.

From Shannon’s rate-distortion theory we know that the rate-distortion function of a cen-
tered Gaussian variable having σ2 variance is:
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R(D) =
1

2
log2

σ2

D
. (1.7)

On the other hand, it has been proven that the optimal bit rate allocation for a pair of cen-
tered Gaussian variables at a given global rate R is:

R1 = R+
1

2
log2

σ2
1

σ1σ2
(1.8)

R2 = R+
1

2
log2

σ2
2

σ1σ2
. (1.9)

If we consider the balanced case, in which Di = 1
2D for i ∈ {1, 2}, and the global rate-

distortion function of the pair (X1, X2) as being the sum of individual rate-distortion functions,
we deduce that:

R(D) =
1

2
[log2

σ2
1

D1
+ log2

σ2
2

D2
] =

1

2
log2

σ2
1σ

2
2

D2/4
= log2

σ1σ2

D/2
. (1.10)

We are then looking for the random vector Y = [Y1, Y2]
t = TX obtained with an orthogonal

transform, T , so that Y leads to the same distortion as X . If we denote the variances of the new
variables Yi, i ∈ {1, 2} by σ2

yi
respectively, and by φ the angle defined through the expectation

of the variable pair E{Y1Y2} = σy1σy2 cosφ, then we have the following relationship between
the variances of the initial and the new variable pairs:

σ2
1σ

2
2 = σ2

y1
σ2

y2
sin2 φ (1.11)

For correlated variables Yi, i ∈ {1, 2} the angle φ 6= π
2 and therefore σy1σy2 ≥ σ1σy2 . Thus, at

equal distortion, a higher rate would be necessary to transmit the correlated signals.

Goyal and Kovacevic introduced in [GK98] the notion of Multiple Description Transform
Coding (MDTC), which is an extension of the Wang, Orchard and Reibman’s work presented
above. In their method the source vector, x, is first quantized with a uniform scalar quantizer
of step ∆, leading to xqi

= [xi]∆, where [·]∆ denotes the rounding to the nearest multiple of ∆.
The so-obtained vector xq = [xq1 , xq2 , . . . , xqn ]T is then transformed with a discrete invertible

transform denoted by T̂ : ∆Zn → ∆Zn, giving the vector y = T̂ (xq). These coefficients are
independently entropy coded after being grouped into m ≤ n subsets to be sent over the m
channels.

The question is how to obtain T̂ from a linear transform T , and to this the authors pro-
pose a factoring of a given T with determinant one into several lifting steps (see [DS98]), or
in other words into a product of upper and lower triangular matrices with unit diagonals:

T = T1T2 . . . Tk. The transform T̂ (xq) is then taken as the discrete version of this transform.
The major advantage of this kind of construction is the immediate invertibility of the trans-
form, obtained by simply inverting the calculations.

It is important to note that the results presented above are valid under a couple of assump-
tions mostly related to fine quantization. These hypotheses are that the scalar entropy is pre-

served between the quantized vector y (obtained with T̂ ) and [Tx]∆, that the quantization does
not affect the correlation present in y and also that, in the event of component losses in y, the
quantization can be ignored with respect to the error caused by erasures.

A gradient-based algorithm for finding optimal correlating transforms used on erasure
channels is presented in [RRP05].
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1.3.2 Frame expansions

A second method that generates correlation into the transmitted signal was also proposed by
Goyal et al. ([Goy98], [KDG02], [GKV99]). In this case the signal is expanded by the means of
a frame decomposition y = Fx, where F is a frame operator. At this point a recall on frames is
useful since the current thesis is built on this kind of decompositions.

Background on frames

The beginnings of these particular transforms are commonly traced back to 1952 when Duffin
and Schaeffer [DS52] introduced frames for Hilbert spaces. An article reviewing most of the
important theoretical results regarding different types of frames is given by Casazza [Cas00].
Also, the recent tutorial given in [KC07a],[KC07b] presents a structured survey on frames in
the literature, mentioning the terminologies involving frames and also the different areas of
application.

Let us now review the basic concepts and properties for frame decompositions.

We shall operate in an infinite dimensional Hilbert space denoted by H which is endowed
with the inner product < ., . > and the norm ‖.‖. Given a family of vectors φ = {φk}k∈Z, and a
linear operator F : H → H, defined by:

(Fx)k = 〈x, φk〉 , ∀k ∈ Z, (1.12)

the theory of frames aims at finding the conditions in which a vector x can be recovered in a
stable manner from the projections (〈x, φk〉)k∈Z or, in other words, the conditions to be imposed
to the family φ in order to find a left inverse of the frame operator F .

We then have the following definition.

Definition 1.

The family of functions (φk)k∈Z, with φk ∈ l2(Z) is a frame ofH for any signal x ∈ l2(Z) if there exist
two finite positive constants A and B such that:

A‖x‖2 ≤
∑

k∈Z

| 〈x, φk〉 |2 ≤ B‖x‖2 (1.13)

These constants are known under the name of frame bounds and their values determine
different types of frames. This condition guarantees in particular the fact that the energy of the
transformed signal remains bounded if the signal itself has a finite energy.

Note: In practice, we consider finite dimension signals belonging to RN (or CN ) and in this
case the vector index, k, belongs to a countable index set K ⊂ Z and its cardinality is usually
greater than N . The redundancy of the frame is thus given by the ratio CardK

N .

The particular case when A = B leads to a so-called tight frame and if A = B = 1 then
φk can be found under the name of normalized tight frame. The norm of φk can also be indi-
cated in current types of frames, in particular the unit norm leads to unit-norm (found also as
uniform) frames. The case ‖φi‖ = ‖φj‖,∀(i, j) corresponds to equal-norm frames.

By using the associated linear frame operator F , Eq. (1.13) can be rewritten as follows:

AI ≤ F ∗F ≤ BI, (1.14)
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where I is the identity matrix, and F ∗ : H → H is the adjoint operator of F satisfying:

∀(x, y) ∈ H, 〈Fx, y〉 = 〈x, F ∗y〉 . (1.15)

The operator formulation is useful because it leads to a computational way to find the frame
bounds, since the eigenvalues of F ∗F lie in [A,B]. From this, it immediately follows that F ∗F
is invertible, by having all eigenvalues to be non-zero, and we have:

1

B
I ≤ (F ∗F )−1 ≤ 1

A
I. (1.16)

We can thus define the dual-frame as a family of vectors {Φ̃k}k∈Z having bounds 1
B and 1

A ,
respectively [GVT98].

Theorem 2. Given the vector family {Φ̃k}k∈Z defined by:

Φ̃k = (F ∗F )−1Φk (1.17)

Φ̃ corresponds to the dual frame and:

∀x ∈ H, 1

B
‖x‖2 ≤

∑

k∈Z

|
〈
x, Φ̃k

〉
|2 ≤ 1

A
‖x‖2. (1.18)

Moreover the reconstruction of the signal x is given by:

x̂ = F̃ ∗Fx =
∑

k∈Z

〈x,Φk〉 Φ̃k, (1.19)

where

F̃ = F (F ∗F )−1, (1.20)

F̃ ∗ being thus the pseudoinverse of F .

The frame approach to multiple descriptions consists in projecting the source on a redundant
frame and each of the resulting coefficient sets will constitute a description after quantization
[GKV99]. A block diagram of these operations is given in Figure 1.7.

Recovery

Channel

Fx ∈ RN y ∈ RM ŷ ∈ IM x̂ ∈ RNQ RecoveryRecovery

ChannelChannel

FFx ∈ RNx ∈ RN y ∈ RMy ∈ RM ŷ ∈ IMŷ ∈ IM x̂ ∈ RNx̂ ∈ RNQQ

FIGURE 1.7: MD coding by frame decomposition. F is a frame operator and Q stands for a
scalar quantization operator (IM stands here for the quantization index set).
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A note on the usefulness of frames in coding systems

The advantage brought by the use of frame decompositions is an increased robustness to ad-
ditive noise on the signal, such as the quantization noise at small quantization steps or when
using dithering 1 (see for instance [Lar95]). Since the linear operator P = FF̃ ∗ is the orthogonal
projector on the subspace =mF , applying it to ŷ (in Figure 1.7) leads to the elimination of the
noise component in =mF⊥ without altering the useful signal Fx. Moreover, the size of the
subspace =mF⊥ increases with the frame redundancy.

If we consider the quantized signal ŷ as being

ŷ = Fx+ w

wherew is an additive zero-mean white noise with components of variance σ2, and the decoder
uses the linear estimator:

x̂ = F̃ ∗ŷ (1.21)

in order to recover the original signal, the mean square error, D = 1
NE‖x− x̂‖2 will satisfy:

D ≤ 1

A
σ2.

The equality is reached for tight frames. Also, the estimator used in Eq. (1.21) is least mean
squares optimal but other operators can be used for the reconstruction as, for instance, Projec-
tions Onto Convex Sets (POCS), [TV94], [GVT98]. We have adopted a similar strategy for the
application of MD coding to still images that we are presenting in detail in Chapter 3.

An important issue when applying a frame decomposition to the data source is the robust-
ness to erasures (channel losses). In [GVT98] the error resilience for harmonic frames is proven.

One thing to note about the frame approach is its similarity with an error-correcting code.
Indeed, in the frame approach one can consider that a group of N symbols is transformed into
another group of M by adding a certain amount of redundancy. However this approach dis-
tinguishes itself from traditional channel coding by the position of the quantization step in the
transmission chain. In the frame approach the quantization step occurs after the introduction of
redundancy whereas in error-correcting codes the redundancy is added after quantization. In
[GKV99] the authors perform a comparison with traditional codes in a simple numerical case
and they conclude that the frame approach works better mostly at high rates and gives com-
parable performances otherwise. However, the redundancy introduced by the frame approach
allows to significantly reduce the quantization noise.

Other frame-based methods use the windowed Fourier transform [BDV00].

1.3.3 Filter banks

Another case of MD methods with transform coding, which can be viewed as a particular case
of a discrete-time frame decomposition [Cve95], [VK95], [CV98], [BHH98] is based on filter
banks. Already very popular for applications like audio and image coding, the new develop-
ments linking them to wavelet transforms [Dau88], [Mal89] led to a regain of interest in their
regard. The perfect reconstruction for filter bank decompositions has been thoroughly investi-
gated in [Vet86], [Vai93a], [CV98]. We depict an example with two channels in Figure 1.8.

1Dither means intentionally adding decorrelated noise to the original signal in order to obtain a uniform distri-
bution for the quantization noise.
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FIGURE 1.8: Two-channel filter bank.

The first application of filter banks to multiple descriptions is proposed by Yang and Ram-
chandran in [YR98]. Here, the analysis filters H1 and H2 are orthonormal and thus satisfy
|H1(e

jω)|2 + |H2(e
jω)|2 = 2, ∀ω ∈ [0, 2π], [VK95, Chap. 3]. At the reconstruction, the associ-

ated synthesis filters g1 and g2 are used. The filtered signals obtained at the analysis stage are
decimated by a factor of two, quantized and entropy coded for transmission over each of the
channels. Moreover, in this method a Wiener estimator is used in order to compensate for the
loss of one of the descriptions at the side decoders [YR98].

This approach presents in fact a more general case than that of the MD transform coding
method proposed by Goyal et al. because no restrictions are imposed on the lengths of the
analysis filters. The equivalent transformation from the filter bank is not limited to a 2 × 2
matrix in this situation. Moreover, the source is viewed as being Gaussian and wide sense
stationary and thus not necessarily i.i.d as before.

Filter Optimization: Given the wide sense stationary Gaussian random process with Power
Spectral Density (PSD) S(ω), the rate-distortion function is given by:

R(D) =
1

2π

∫ π

−π

1

2
log2

S(ω)

D
dω (1.22)

which is a generalization of Eq. (1.10), [Ber71]. By applying this to each of the two descriptions,
y1[k] and y2[k], which are viewed as Gaussian variables, and by supposing that the theoretical
bound is reached for the entropy, one can consider that the two transmission rates are:

R1(D0) =
1

2π

∫ π

−π

1

2
log2

Y1(ω)

D0
dω (1.23)

R2(D0) =
1

2π

∫ π

−π

1

2
log2

Y2(ω)

D0
dω (1.24)

where Yi(ω), i ∈ {1, 2} are the power spectral densities of the two variables andD0 is the central
distortion. In these conditions the redundancy is given by:

ρ(D0) =
1

2
(R1(D0) +R2(D0))−R(D0). (1.25)

The side decoders employ, as said above, a Wiener filter allowing the reconstruction of the
lost description. For instance, if only y1[k] is correctly received, the Wiener filter given by the
frequency response Y12(ω)/Y1(ω) is used to estimate y2[k]. Here Y12(ω) stands for the cross
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spectral density2 of the two random variables. Hence, the side distortions shall be given by the
Wiener estimation error, under high rates hypothesis for R1 and R2 which leads to a negligible
quantization error.

In order to find the optimal analysis filters, one must solve:

min
H1(ω),H2(ω)

1

2
(D1 +D2) + λρ(D0) (1.26)

under a fixed central distortion (λ is the Lagrangian parameter handling the redundancy con-
straint).

Several interesting results have been formulated in [YR98] for this trade-off between side
and central distortions. Thus,

• the optimal filters when λ→∞ form a filter bank equivalent to a Karhunen-Loeve trans-
form, which is a well known result in source coding [Mor00]. The two descriptions are
then completely decorrelated.

• Conversely, if λ → 0 then the redundancy is not considered and one only minimizes the
side distortions. In this situation it is found that the filter bank corresponds to a polyphase
transform and thus the two descriptions are:

y1[k] = x[2k] (1.27)

y2[k] = x[2k + 1] (1.28)

The correlation between y1[k] and y2[k] is then maximal.

• When x[2k] and x[2k+1] are each i.i.d. Gaussian, the optimal analysis filters are FIR filters
of length 2, and the proposed filter bank is equivalent to the MDTC method described
earlier. This result is also given in [PR00].

• Optimal filters are also given for an AR(1) source model and the rate-distortion results
are compared with those obtained with classical orthonormal filters associated to wavelet
decompositions, such as Haar, Daubechies, Coifman [Mal98].

The same problem of designing optimal filter banks for MDC has also been approached by
Dragotti et al. in [DSV02b]. The difference between the two approaches resides in the place
of the quantizer in the transmission chain. Dragotti et al. are building MD systems accord-
ing to the correlating transforms scenario proposed by Orchard et al. [OWVR97] and Goyal
et al. [Goy00] and thus the quantization is performed before the filter bank decomposition.
The advantage of this approach is that the quantization cells are not changing shape and the
quantization error is not increased by the use of non-orthogonal transforms. In a first stage of
this work the authors generalize the information theoretic results given by El Gamal, Cover
and Ozarow for the rate-distortion region of stationary Gaussian sources with memory. In the
second stage they design, as Yang and Ramchandran, the optimal two-channel filter bank and
prove that the optimal redundancy allocation between descriptions is obtained with the reverse
“water-filling” strategy.

2The cross spectral density of two wide-sense stationary random variables X[n] and Y [n] is given by the Fourier
transform of the cross-correlation function RXY (τ) = EX[n]Y [n + τ ].
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We have mentioned earlier that, for some choice of the Lagrangian parameter, λ, the filters
involved in the filter bank are equivalent to a polyphase decomposition. This idea has been
exploited in [JO99] where each description contains also a part from the other description.
Recall that theM polyphase components of a source x[k] are given by the sequences (yi[k]), k ∈
Z, i ∈ {1, . . . ,M}, where:

∀k ∈ Z, yi[k] = x[Mk + i], (1.29)

with k ∈ Z. The so-obtained components are encoded independently - an idea already used
in robust audio coding since the early eighties [Jay81]. In the multiple description scenario,
redundancy is added to each description through a coarsely coded version of the other one.
An advantage of this strategy is that the two stages: description generation and redundancy
allocation are separated - contrary to the MDSQ or the MDTC approaches presented before.
In this way, the encoder can have a lower complexity, according to Jiang and Ortega. Their
MDC approach is therefore preserving, in some sense, a separation between source and channel
coding.

The issue to handle at this point is the optimal rate allocation between the two descriptions
(considered in the balanced case). For a centered Gaussian i.i.d. source with variance σ2 it is
found,[JO99], that the rate distortion function for each variable corresponding to a description
is, as before (for i ∈ {1, 2}):

D(R0) = hσ22−2R0 , (1.30)

where h is a constant depending on the used quantizer and it is equal to
√

3π/2 for a scalar
Lloyd-Max quantizer, and to 1 for an optimal quantizer3. R0 is, as above, the rate needed to
encode the original source. The rate in each description is given by the sum of R0 and the
introduced redundancy, r, and the rate allocation is obtained by Lagrangian minimization of
the central distortion D0 under a side distortion constraint of type Di ≤ dimax and for a fixed
global rate R. In this manner the following expression is found for the redundancy:

r =
1

2
R+

1

4
log2(

λ

2 + λ
), (1.31)

λ being the Lagrangian parameter tuning the trade-off between central and side distortions.
The appropriate value of λ depends on the channel failure probability, in order to know if
one has to favor the side or the central decoder. The optimal redundancy according to this
probability, p, is given by:

r =

{
1
2R+ 1

4 log2(p), if p > 2−2R

0, if p ≤ 2−2R.
(1.32)

Other methods are designing MD with filter banks which optimize the synthesis filters for a
given analysis set in order to achieve minimal average distortion [SM02]. The synthesis filters
are no longer necessarily FIR.

1.4 Channel oriented methods

The previous sections gave an overview of the core methods developed for MDC and this,
mostly from a source coding point of view. These methods mainly concentrate on the way

3The optimal quantizer from an information theory point of view leads to the asymptotic rate-distortion bound
reached by an entropic vector quantizer on infinite length blocks.
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of building the descriptions without making any assumptions on the transmission network.
The design efforts thus focused on the equivalence in reconstruction quality of each individ-
ual description (in other words, on the least favorable transmission case which is that of un-
prioritized networks).

In this section we are recalling a different approach from the literature, which focuses on the
possibility of using Unequal Error Protection (UEP) on the transmission channels. To this end
researchers proposed to transform a scalable source bitstream into an M -description packet
stream in which each packet contains approximately the same amount of information. A strat-
egy for prioritized encoding mainly designed for video conferencing-type applications over
lossy packet networks is given in [ABE+96] and serves as a starting point in this new class of
MD methods. The scalable representation can be provided by hierarchical progressive coders
such as SPIHT [SP96], EZBC [HW00] or EBCOT [Tau98] which were introduced for image com-
pression.

Puri and Ramchandran, [PR99], combine these considerations with Forward Error Correc-
tion in order to add redundancy to a given source. They propose to split the information bit-
stream into several layers in decreasing order of importance and each of those layers is further
protected by progressively weaker channel codes (see also [MRL99], [CWP03] for similar MD
methods). An optimization algorithm allowing for the maximization of the expected recon-
struction quality is proposed in order to decide how much protection needs to be assigned to
each layer, given the channel state and the transmission rate constraints.

More precisely, a hierarchical bitstream is first split into M layers of increasing resolution
(as presented in the first part of Figure 1.9) for an M -description scheme. Abiding the MDC

working philosophy amounts to the condition that the ith layer must be decodable from any

subset of i received descriptions. In order to achieve this, the ith layer is further split into i
equal parts which are placed in the first i packets. The other packets are filled by channel codes
(Reed-Solomon, for instance) of parameters (M, i, M − i+ 1)4 applied vertically on each layer.

This mechanism of bitstream partitionning for M descriptions is presented in Figure 1.9.

As we said earlier, an important issue for this MD encoder is the optimal partitioning of
the bitstream into layers. A rate-distortion problem needs to be solved for D(R) - the rate-
distortion function of the hierarchical bitstream and R = (R1, R2, . . . , RM ) - the vector of rate
points in Figure 1.9. If pi is the probability that i of the M packets reach the decoder and σ2 is
the source variance, then the mean distortion at the decoder is:

E{D} = p0σ
2 +

M∑

i=1

piD(Ri) (1.33)

and the global bitrate is obtained as:

R = R1M +
R2 −R1

2
M + . . .+

RM −RM−1

M
M

=
M∑

i=1

αiRi

(1.34)

with the notation αi = M/(i(i+ 1)) for i ≤M − 1 and αM = 1 otherwise.

4Recall that an (n, k, d) forward error correction code transforms k source bits into n bits obtained by adding
n − k redundancy bits. This allows for the correction of maximum d − 1 erroneous bits, with d ≤ n − k + 1.
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FIGURE 1.9: Bitstream partitioning for unequal error protection (UEP): (1) the bitstream is di-
vided into M successive layers (quality levels) each level i having the bitrate Ri, (2) The ith

level is again divided into i equal parts, (3) a block code of redundancy (M, i) is applied to the
ith layer and the latter is then split into M packets.

For M packets (descriptions) of length L bits, the global needed rate, denoted by R∗ can be
expressed as R∗ = LM and finding the optimal truncation points of the bitstream translates to
the minimization of (1.33) under the constraints:

M∑

i=1

αiRi ≤ R∗ (1.35)

R1 ≤ R2 ≤ . . . ≤ RM . (1.36)

This rate-distortion optimization is solved using the classical method involving the La-
grangian operator.

A general framework for a variety of transmission scenarios in the packetized media stream-
ing context is proposed in [CM06]. In [KA05] a method of channel balancing for low-delay
wireless networks is developed based on a set partitioning algorithm.

The combination of MD with layered coding is also reported for correlating transforms
MDC in [WRTJ02]. Other works explore the adequate scenarios for using multiple descrip-
tion (source diversity) coding as opposed to the single description case [CKS01], [LMWA05].

Another interesting direction that has been slightly explored in the literature involves a mix-
ture of turbo codes and multiple description coding [BHG02], [KFR04].
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1.5 MDC in the world of multimedia applications

So far we have mainly seen general strategies for building multiple description codes which
do not concern a particular application, but instead give an idea of the attainable performances
of different methods as well as directions of further improvement. In this section we shall
orient our attention on the several practical applications that have appeared in the literature
in the ubiquitous multimedia projects. This survey is centred on applications that involve still
images and video sequences, since those represent the main interests for this thesis.

1.5.1 Image coding

The first applications of multiple description coding to images are investigated by Wang et al.
[WOR97], Goyal et al. [GKAV98], Jiang and Ortega [JO99], Serveto et al. [SRVN00], and they
are closely related to the general methods we have enumerated in the previous sections.

The pairwise correlating transform is applied to different blocks of an image, [WOR97], af-
ter classifying these blocks into four classes in order to ensure similar statistical properties of
the transformed coefficients. The selection is made upon geometrical/image regularity con-
siderations such as smoothness, edge orientation for the first three classes, whereas the fourth
is assigned to what is left after this classification. This is due to the fact that real images are
not statistically stationary, therefore the correlating transform applied globally could introduce
large estimation errors.

The transform coding approach to images of Goyal et al. [GKAV98] uses the generalized
multiple description method proposed before and applies it to a four-channel coding scenario
similar to JPEG. DCT coefficients are obtained in 8× 8 blocks and, after being uniformly quan-
tized, they are split into vectors of length four, based on frequency and space separation. Then
the correlating transform is applied on these four-tuples and descriptions are formed by repeat-
ing the DC coefficient and splitting the remaining AC coefficients in an approximately balanced
manner. A second method building descriptions with deterministic redundancy instead of sta-
tistical one is equally proposed. This is based on overcomplete frame expansions designed to
match an (n, k) error correcting code, with n > k. As in the previous application, a JPEG coding
context is considered, and thus descriptions based on 8× 8 blocks of DCT coefficients are built.
An example using a frame operator of size 10 × 8 is given as an alternative of an (10, 8) error
correcting code. This MD system has thus 10 descriptions and the obtained numerical results
are compared to a base line system using DCT coefficients and a systematic (10, 8) block code.
It is shown that the MD system outperforms the baseline if more than three descriptions are
lost, as it was expected, but it does not outperform the baseline system at the central decoder.

Another technique for MD image transmission was proposed by Jiang and Ortega [JO99]
and it uses the polyphase transform for description generation, followed by selective quanti-
zation in order to introduce the desired amount of redundancy. An optimal bitrate allocation
algorithm for i.i.d scalar and vector sources and independent channel failure probabilities is
equally proposed with this method. For the two-description case such a system can be viewed
as in Figure 1.10. Two quantizers are involved in each description: a fine quantizer Q1 and a
coarse quantizer Q2 that serves as redundancy for side reconstruction. The input signal, x, can
be here either the spatial or the frequency signal, and there are two proposed decompositions:

• The basic decomposition uses a wavelet transform in order to get a sequence of coeffi-
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cients. These are then grouped following their odd index in the first polyphase compo-
nent and their even index in the second one, and the operation is done in each subband.

• A zero-tree decomposition inspired by Shapiro, [Sha93] according to which the first
polyphase component contains the blocks of coefficients corresponding to the same spa-
tial position in each subband.

FIGURE 1.10: Polyphase encoding scheme (taken from [JO99]).

A SPIHT encoder [SP96] is used for these polyphase components. The interest of this al-
gorithm is that it exploits the correlation between the subband coefficients and also allows for
a fine tunning of the encoding rate. In the polyphase MD method the rate is equally divided
between the two descriptions and the central rate is given by a base rate R0 plus the added
redundancy r. Thus, in the first description, the y1 component will be denoted by y1(

1
2R0),

which means that the encoding rate is 1
2R0 and the y2 one will be encoded at r bits and de-

noted by 1
2y2(r) and vice versa for the second description. An extension to M descriptions is

also possible simply by making M groups of coefficients instead of 2 in the zero-tree structure,
but this raises the question of how many secondary polyphase components are needed in each
description.

A similar method to Jiang and Ortega’s is introduced by Miguel et al. in [MMR99]. This
equally uses the SPIHT coder and the descriptions are built by grouping wavelet coefficient
trees. The redundancy is obtained by duplicating trees encoded at a lower rate. An algorithm
for building packets is proposed here based on the Packetized Zerotree Wavelet (PZW) com-
pression scheme [RC98] and a description might contain several de-interleaved wavelet trees.
This method however requires the transmission of some side information containing the posi-
tion of the first tree and the number of trees in each description which adds up to the already
introduced redundancy. Comparisons are provided to Goyal et al. method and also to Jiang
and Ortega’s but in the first case it is not clear if the performance gain is due to a better encoder
or to the MDC and, in the second case, this might be due to the deficiency in the packetization
strategy of the latter.

Another recent method based on SPIHT is investigated by Sriraja et al. [SKK05] and it uses
overcomplete wavelet decompositions. These decompositions are depicted in Figure 1.11, that
we reproduce here since it is closely related (in terms of design starting point) to our proposed
two-dimensional application of MDC explained in detail in Chapter 3. A quick overview on
wavelets will be presented in the next chapter. For now, we shall only mention the fact that
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H0(z) is the z-transform of a low-pass impulse response filter h0[n] and H1(z) represents the
z-transform of a high-pass impulse response filter h1[n], allowing for the filter bank imple-
mentation of a discrete wavelet transform (DWT) - the Fast Wavelet Transform [Mal98, Chap.
7]. For images, a total of 4n equivalent sets of discrete wavelet transformed coefficients is
obtained after an n-level wavelet decomposition as in Figure 1.11, adapted for the separable
two-dimensional case, and, therefore, as many descriptions can be envisaged.

FIGURE 1.11: Overcomplete discrete wavelet transform for a one-dimensional signal (taken
from [SKK05]).

The evolution of the PSNR5 with the description number is studied, aiming to prove that
the descriptions are balanced. It is experimentally proven that a subset of two descriptions out
of the total possible number yields the best results in terms of performance versus coding gain
trade-off. The scheme proposed here has however the disadvantage of being highly redundant
and the central decoder cannot fully benefit from the introduced diversity, by that losing much
in coding efficiency. The SPIHT algorithm mainly serves here at the packetization in each
description as well as at the actual encoding of the coefficients, but not at description forming.

Other methods also use wavelet transforms when building multiple description schemes.
Thus Servetto et al. [SRVN00] have introduced MD scalar quantization combined with wavelet
transforms. The wavelet transform associated with rate-distortion optimization for bit alloca-
tion was equally used in [PAB02a], [PAB02b], [PAB03b], [PAB03a],[Per04], [CLJB05], [TO04],
[TGO07], and more generally frame decompositions and oversampled filter banks are reported
in [MG04a], [CMW99], [BR05]. Other applications are based on lapped orthogonal trans-
forms in [CW99b], discrete cosine transform (JPEG) [RWG00], [Shi06], phase scrambling in
the Fourier domain [SS04], optimal domain partitioning based on lattices [BW03].

Matching-pursuit like applications have also been proposed by Radulovic and Frossard in
[RF07]. They are building multiple descriptions based on redundant dictionaries.

1.5.2 Video coding

In this section we are going to review the practical MD schemes which apply to video coding
(MDVC). Building MD schemes for the transmission of video sequences offers more degrees of
freedom as compared with images since the source has an additional dimension in this case,
which is given by the temporal axis (the “frame” direction). However, new problems also
arise for these particular signals, and important ones are motion handling, error propagation,

5PSNR(x,


x) = 10 log10

max(x)2

MSE(x,x̂)
, with MSE denoting the mean square error
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FIGURE 1.12: Example of temporal splitting of a video sequence.

decoding mismatch etc. Naturally, the first ideas that appeared in the field are extensions of
the MD methods for still images with the necessary amendments required by video sequences.
Thus, a great deal of techniques that have been reported perform the previously explained
MD methods mostly intra-frame and we shall refer to these as spatial MD techniques. Some
works have been done on the temporal part of the signal, but there is less abundance than in
the spatial case, even though the approach shows promising results. We are referring to these
methods as temporal MD ones and, in the next chapter, we shall present our contribution based
on transform coding with redundant wavelets of the temporal signal in a t+ 2D video coding
scenario.

Several directions have been investigated for MDVC. These include protection of the most
significant DCT coefficients by MD [LPFA00], modifying the prediction loop [RJW+99] of
a closed-loop video encoder, matching pursuit [TZ02], forward error correction [PLRB01],
[Pur02], MD performed on motion vectors [KL01] and so on.

Before going into the details of these practical schemes, we present two very simple strate-
gies that are more or less the founding stones to the further considered directions when it comes
to dealing with video sequences. In Figure 1.12 is represented a technique known as temporal
splitting. This involves, in some sense, reducing the frame-rate of the video source by a factor
of two in each description. This idea is further investigated in [CGPPT07] for splitting also
groups of frames and for triadic schemes, too, in addition to dyadic ones [TCPPG07].

A second simple technique for building two or more descriptions involves the partitioning
of each individual frame in the video sequence, and this has come to be known as spatial split-
ting. Figure 1.13 gives an example with two descriptions formed in a balanced manner, as in
the temporal case [FFLT05]. Obviously other simple spatial splitting strategies are possible (for
instance quincunx splitting).

A very good survey on MD for hybrid video coders is provided by Wang, Reibman and
Lin in [WRL05]. Video schemes are classified here according to the solution to drift effect they
are proposing (or not) and the introduced redundancy. Thus the existing coders involving
prediction loops belong to one of the three classes:
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FIGURE 1.13: Example of spatial splitting of a video sequence.

• Class A - this includes the predictors without mismatch, where individual predictors
are using the information sent in only one the two descriptions (for a two-description
scheme);

• Class B - these are predictors that do not introduce additional redundancy in the scheme
and are those used in the single description scenario. The inconvenience of these predic-
tors is that both descriptions are needed, otherwise they introduce mismatch;

• Class C - in this category are given the adaptive schemes capable to trade-off prediction
efficiency and the amount of mismatch.

One of the first applications to video coding is given by Reibman et al. in [RJW+99] and
detailed in [RJW+02]. The authors propose video coders using motion-compensated predic-
tions without mismatch, thus their coder belongs to the above mentioned Class A. Multiple
description transform coding is used in order to generate two descriptions and the encoder
is formed of three separate prediction loops, each of them corresponding to a certain type of
decoder (two side decoders and a central one). The prediction error is also coded into two de-
scriptions. The redundancy allocation takes into account the importance of the frames in the
prediction, thus earlier frames get more redundancy. Three strategies are proposed in order to
reduce or eliminate the decoding mismatch. It is worth noting that this work was one of the
cornerstones in MD video schemes for prediction loop coders developed afterwards. Boulgo-
uris et al. have also built a drift-free MD coder [BZKS06] in which each description contains a
redundant part and a refinement part and the losslessly encoded motion vectors are repeated
in each description.

Another application of MD to video coding is presented by Tang and Zakhor in [TZ02].
Here the structure given by the discrete cosine transform is modified in order to allow the use
of matching pursuits and the MD system is built upon the three-loop structure proposed in
[RJW+02]. Another contribution of this paper is the enhancement of the reconstruction at the
central decoder based on Maximum Likelihood. The performances of the scheme are tested
over lossy channels using a two-state Markov model and a Rayleigh fading model. Another
technique using matching pursuits combined with MDSQ has been reported in [CFH05].

Gallant et al. have developed a standard compliant MDVC scheme based on spatial over-
sampling of the video signal by the means of an inverse zero-padded DCT, [GSK01] and a
polyphase transform that generates two descriptions. Bernardini et al. propose a MD video
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scheme with four descriptions [BDR+04] generated by a polyphase subsampling of the spatial
components of the video signal. The missing frames at the decoder are recovered by apply-
ing different types of linear and non-linear interpolations and a post-processing step is per-
formed in order to eliminate a visual artefact of granularity in the decoded sequence. In these
works, H.264/AVC codecs are used. The polyphase transform applied on the spatial compo-
nent of the video signal has equally been used by Franchi et al [FFLT05] for building a two
description scheme based on the MDTC structure from [RJW+02]. Such a scheme is known as
drift-compensation multiple description video coding (DC-MDVC) and, by offering the pos-
sibility of using the reconstructed reference frame in the side prediction loops (instead of the
original reference frame), it provides robustness in error prone networks. A second scheme is
also proposed in [FFLT05] under the name of Independent Flow MDVC (IF-MDVC) in order
to facilitate the construction of more than two descriptions. An extension to DC-MDVC using
Motion-Compensated 3D lifting [PPB01] is presented in [MS05].

In [JZY+04] a redundant wavelet scheme is given in order to encode a video stream into two
descriptions, based on temporal odd/even splitting of the input signal. The missing samples in
each of the two streams are predicted from the received ones and thus the mismatch is avoided
in each description. Each description is encoded with a redundant discrete wavelet transform
(RDWT) video codec. In the next chapter we present our application to video coding based on
redundant wavelets in the context of t+ 2D codecs.

Starting from the idea that the trade-off between error resilience and compression efficiency
of most existing MDC methods is dependent on the targeted quality, network capabilities, as
well as the characteristics of the video itself, Heng et al. introduced an adaptive multiple de-
scription scheme [HAL06]. Different simple MD modes are defined and the system chooses
between them based on a rate-distortion optimization. The authors consider the following
four modes: single description (SD) coding, temporal splitting (TS), spatial splitting (SS) and
repetition coding (RC). Among these modes the most efficient in terms of coding is obviously
the SD mode, whereas the most efficient in terms of error resilience is the RC mode. Of course,
these two modes represent extreme situations and they do not provide a satisfactory trade-off
when applied on the entire sequence. They could prove to be very useful on certain portions,
however. The other two modes are particularly efficient for low-motion videos, this being the
case of the TS mode (since in this situation reducing the frame rate is less damaging than in
high-motion videos) and, in a complementary manner, for high-motion videos. Therefore, if
a contextual separation of the original video is properly done, these four modes cover all the
important characteristics and good end-to-end performances might be expected. Choosing
between the MD modes is done by Lagrangian optimization of a modified rate-distortion func-
tion, in which the distortion is split into a known part - which is due to quantization - and an
unknown part - due to random packet losses. The distortion due to packet losses is estimated
for the particular Gilbert loss model of the channel. The specific application that is developed in
this paper uses the H.264 video coding standard and the adaptive mode selection is performed
on macroblocks.

Kim et al. approached MDC applied to video streaming in a different manner, [KMA05].
They built unbalanced MD schemes based on the spatio-temporal tree-preserving 3D-SPIHT
algorithm. Two independent bitstreams protected by Forward Error Correction (FEC) are gen-
erated according to allocated bitrates on each channel after bandwith estimation and the final
rate allocation takes into account a Gilbert loss model for the network. In the same direction,
Gan et al. [GGM06] proposed a technique that mixes MDC with FEC, ARQ and GOP-level
interleaving in order to account for bursty network losses. Their scheme, however, presumes
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the existence of a feedback channel which might be a limitation in low-delay applications.

Other methods of unbalanced multiple descriptions are based on optimal rate allocation
under a global distortion constraint, as for example in [CSOM03], [FSF06]. In the latter work,
the video sequence is viewed as a collection of AR(1) 6 signals. Scalable methods for rate-
distortion optimization MD coders can be found in [Kon05] and for P2P networks in [TPL04].
Other existing work in the scalable context, developed for t + 2D video codecs with temporal
redundancy addresses 3-band filter banks [vdST03]. Scalable MDVC methods compatible with
H.264/AVC are reported in [RSO06].

Lee et al. [LAM05] propose yet another method which uses error concealment by exploiting
spatial or temporal smoothness in a video combined with an MDSQ encoding method.

Another approach which is not multiple description coding but follows similar guidelines
is proposed by Apostolopoulos in [Apo99], and [Apo01], and it concerns video communication
over unreliable networks. In this work multiple states are created at the encoder by temporal
splitting. However, there is no explicit redundant coding of video frames, the higher rate re-
sulting when putting together two states encoded individually coming from the fact that the
frames are further apart and thus the motion compensation is less effective. The proposed en-
coding strategy is combined with path diversity which means explicitly sending different pack-
ets on different paths. This idea has some important benefits: the burst losses are transformed
into individual losses, the outage probability decreases and smaller fluctuations in transmis-
sion quality are encountered by averaging the number of paths. However, one must take into
account several issues when building such a communication system. Taking advantage of path
diversity seems to be a good strategy but it raises the questions of how to choose among differ-
ent packets and different paths, how many paths should one use, how to balance the load on
each of the chosen paths and so forth. Apostolopoulos proposes some architectures enabling
this, based on IP routing or relays [Apo01]. The multiple states with path diversity approach
also benefits from an additional stage at the decoder which is called state recovery. Related
approached applied to Ad-Hoc networks are found in [MLP+03]. Also, an MD technique ex-
ploiting multiple states and the redundant pictures option present in H.264/AV C standard is
reported in [RWW+07]. A somewhat similar idea based on redundant slices in H.264/AV C is
explored for video-over-IP applications in [VDMdW07].

1.6 Conclusion

In this chapter we have given a brief overview of the existing work in the multiple description
coding field. We have first outlined the theoretical rate-distortion results developed in the In-
formation Theory community in the late 70’s and the 80’s, results which determine the bounds
for certain types of sources and also for the ideal case in which channels have an on/off func-
tioning regime. However, these results are only stating that such joint source/channel strate-
gies are a preferable solution to separate source and channel coding in the event of erasure
channels. While answering the question of “why” one could use this kind of methods they
did not answer the “how” question. A couple of decades later, with the explosion of multi-
media transmission on packet-based networks, these attractive results have been brought back
to light and practical coding methods have been given along with the expected rate-distortion
performances.

61st order Autoregressive model

64



1.6. CONCLUSION

After briefly discussing the historical background we have presented the two main direc-
tions which have been followed in this domain: the quantization methods and the correlation
methods. We have recalled the most important results as well as the further developments that
have emerged by mixing these techniques with other coding methods in order to better suit the
actual network problems or specific application requirements.

We have continued this survey by recalling some of the main applications of MDC in mul-
timedia transmissions, mostly insisting on those which deal with still images and video se-
quences, since our work is conducted in these two directions.

Finally, it is easily seen that, once the interest for MDC methods was stirred up, the field
became highly prolific. In spite of this, comparisons both among different MD techniques and
between some of the most competitive ones and other coding solutions are far from being triv-
ial. In the first case, this is mostly due to the fact that a unified benchmark cannot be easily
established for different MDC methods, since many of them are problem oriented and answer
different problems. In addition to that, the experiments conducted may differ significantly
both in the working conditions and the underlying assumptions, this making objective evalu-
ation very difficult. Also, network conditions are a decisive factor when choosing one coding
technique over the other and, since MDC is mainly functioning on a trade-off basis, not all
conditions are adequate for usage. There is, however, some amount of agreement in the litera-
ture, for the case of applications with very low delay requirements on long retransmission time
networks or no feedback at all ones, to say that in this situation MDC is preferred to layered
coding and FEC techniques.
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Chapter 2

Temporal MDC schemes

In this chapter we present a strategy for building two descriptions relying on a temporal mul-
tiresolution analysis of finite energy signals, which is associated with a decomposition onto a
wavelet frame. In order to set the theoretical framework for our proposed schemes we are first
going to specify, in the next section, the notations employed in this chapter and, with slight
variations, throughout the whole document. This is followed in Section 2.1.1 by some wavelet
frame considerations, allowing to validate the proposed MDC approach. We are discussing the
conditions for perfect reconstruction from this angle and also the possible schemes that can be
conceived under reduced redundancy constraints. Then, we are presenting the oversampled
filter bank (OFB) structures associated with the overcomplete representations described be-
fore. Through this approach, practical conditions of invertibility and scheme selection criteria
are given.

This chapter is closed by an application of MDC to robust video coding schemes in a lossy
transmission scenario. Some of the results in this chapter stem from a joint work with C. Tillier
and the have been partially published in [PTPPP04], [PTPPP05], [TPPPP05], [TPPPP07].

2.1 Preliminaries

The MDC schemes proposed in this thesis belong to the class of methods based on transform
coding, as described in Chapter 1. In this class, wavelet transforms are a very appealing tool
because they offer inherent scalability as well as good compression capabilities [FPP07]. Also,
in the multiple description context, one can conceive wavelet transforms that have inherent
redundancy.

This enforces the idea that wavelets are a good candidate for multiple description coding,
especially for applications related to still images and video sequence transmission. Before go-
ing into the design details for our coding schemes, let us give the main notations used in this
chapter as well as some preliminary core concepts.

Let L2(R) denote the space of finite energy real-valued signals. The MDC schemes that
we shall build are essentially based on a multiresolution analysis of L2(R)1 [Mal89],[Mal98],
[Mey90]. This consists in projecting a signal onto bases of functions that yield successively
coarser approximations of that signal. Mathematically, a multiresolution analysis of a signal is

1actually, we shall soon enough refer to signals in l2(Z), since in practice we handle only signal samples.
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defined as a sequence of embedded closed vector subspaces {Vj}j∈Z of L2(R), which satisfies:

{0} ⊂ . . . ⊂ Vj+1 ⊂ Vj ⊂ Vj−1 ⊂ . . . ⊂ L2(R), (2.1)

∀x ∈ L2(R) we have x(t) ∈ Vj ⇔ x(
t

2
) ∈ Vj+1, j ∈ Z. (2.2)

Then, the projection of a signal x ∈ L2(R) onto a subspace Vj represents the approximation of
x at the resolution level j. Note that the approximation obtained at level j is obviously finer
than that obtained at level j + 1 since Vj is larger than Vj+1 in the sense given by (2.1).

Also, in a multiresolution analysis, a so-called scaling function φ ∈ L2(R) exists such that
the countable family of translated functions {t 7→ φ(t − n)}n∈Z is an orthonormal basis of V0.
Moreover, dilated and translated versions of φ(t):

{
φj,n(t), n ∈ Z

}
with φj,n(t) = 2−j/2φ(2−jt− n)

form an orthonormal basis of Vj .

The difference between the approximations of the signal, obtained in two successive sub-
spaces, Vj and Vj+1, represents the detail information lost from one resolution level to the next
one, and this can be obtained from a subsequent detail space Wj+1, orthogonal to Vj+1:

Vj = Vj+1 ⊕Wj+1.

As for the approximation space, it has been proven [Mal98] that an orthonormal basis forWj

can be obtained from translated and scaled versions of a so-called mother wavelet, ψ ∈ L2(R),
and given by the family:

{
ψj,n, n ∈ Z

}
with ψj,n(t) = 2−j/2ψ(2−jt− n).

The approximation and detail coefficients of a signal x ∈ L2(R) are given by:

aj,n = 〈x, φj,n〉 =

∫ +∞

−∞
x(t)φj,n(t)dt =

∫ +∞

−∞
x(t)2−j/2φ(2−jt− n)dt,

dj,n = 〈x, ψj,n〉 =

∫ +∞

−∞
x(t)ψj,n(t)dt =

∫ +∞

−∞
x(t)2−j/2ψ(2−jt− n)dt,

respectively.

The set of approximation coefficients at a given resolution is called approximation subband
and the set of detail coefficients a detail subband.

Then, a signal x ∈ L2(R) can be represented as:

x(t) =
∑

n∈Z

aJ,nφJ,n(t) +
∑

j≤J

∑

n∈Z

dj,nψj,n(t). (2.3)

Let us denote the basis formed by these families of functions as:

BI = {φJ,n, n ∈ Z} ∪
⋃

j≤J

{ψj,n, n ∈ Z}.
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The superscript I basically serves in distinguishing between different bases, as it will be best
apparent a little further. In this thesis we consider that our wavelet bases are either orthogonal
or biorthogonal.

Such a wavelet decomposition is well-known to generate a non-redundant2 and sparse rep-
resentation of the signal of interest and this has been exploited in many compression schemes.

With these ideas in mind, we propose an MDC strategy that uses a wavelet frame decompo-
sition obtained with an union of bases built by different translations of BI. Typically, we shall
use a union of two wavelet representations, denoted BI and BII, where the latter is a translated
version of the former, as it will be seen in the next section. This is followed by a secondary sub-
sampling operation and the by distribution of the remaining coefficients into two descriptions.
The additional subsampling aims at setting the redundancy to the size of an approximation
subband, in terms of number of coefficients. Thus, the higher the wavelet decomposition level,
the lower the global redundancy of the signal will be.

Before going into the details for these schemes, let us enumerate the main notations em-
ployed in this chapter and, with slight variations, throughout the thesis:

• x - usually represents the input (source) signal

• a - denotes the approximation coefficients resulted from a given wavelet decomposition,

• d - stands for a corresponding detail subband,

• j - is a resolution level associated with the wavelet decomposition,

• J - corresponds to the coarsest resolution level in a wavelet decomposition,

• n - designates the temporal index of a 1D-signal, in the discrete case,

• The superscript symbols I and II - distinguish between the coefficients in the first and the
second wavelet representation, respectively. More information about this second wavelet
representation will follow.

As an example, dI
j,n stands for the detail coefficient obtained from the first basis BI at reso-

lution level j and temporal index n.

The additional subsampling operation mentioned above and performed in the detail sub-
bands will be indicated by the characters .̂ and .̌ . The detail subbands in the first wavelet
representation BI, at the coarsest resolution level, J , are then written as:

d̂ I
J,n = dI

J,2n, (2.4)

ď I
J,n = dI

J,2n−1. (2.5)

We have thus highlighted the even-index (d̂ I) and the odd-index (ď I) coefficients, respectively.
Similar notations are employed for the coefficients resulting from a second wavelet basis, de-
noted BII and defined in the next section.

Also, in the next chapter we shall present an application of multiple description coding to
two-dimensional signals (still images) and the proposed notations will undergo some slight
variations that will be best apparent at that moment.

2also called critically sampled representation, since the number of samples after the wavelet transform is equal to
the number of samples in the original signal.
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2.1.1 Signal Analysis

Let us now explain the wavelet frame-based signal analysis employed in this thesis. The use
of this kind of structures is motivated by the fact that the reconstruction error is confined into
an interval depending on the frame bounds, or in other words the quantization operation does
not amplify the reconstruction error [MC99], [KDG02], [PTPPP05], [Fow05] as was mentioned
in Chapter 1.

A frame decomposition improving the shift invariance property is obtained, for instance,
from the union of the previously defined wavelet basis, BI, with one shifted version of it, given
by: {

ψ′
j,n =

1

2j/2
ψ(

t

2j
+

1

2
− n), n ∈ Z

}

and the corresponding scaling function which is given in this case by φ′j,n = 2−j/2φ(2−jt+1/2−
n), ∀n ∈ Z, and forms the family {φ′j,n}.

This second wavelet basis for a representation at a resolution J ∈ Z is thus given by:

BII = {ψ′
J,n, n ∈ Z} ∪

⋃

j≤J

{φ′j,n, n ∈ Z}.

Let us now express the approximation and the wavelet coefficients obtained with these bases,
in the one-dimensional case and at each resolution level j ∈ Z, for a signal x ∈ L2(R):

aI
j,n =

∫ ∞

−∞
x(t)

1

2j/2
φ(

t

2j
− n) dt, (2.6)

dI
j,n =

∫ ∞

−∞
x(t)

1

2j/2
ψ(

t

2j
− n) dt, (2.7)

and, with the second basis

aII
j,n =

∫ ∞

−∞
x(t)

1

2j/2
φ(

t

2j
+

1

2
− n) dt, (2.8)

d II
j,n =

∫ ∞

−∞
x(t)

1

2j/2
ψ(

t

2j
+

1

2
− n) dt. (2.9)

Note that if we choose a finite set of resolution levels {1, . . . , J}, then the global set of
wavelet coefficients, {aI

J,n, d
I
j,n, a

II
J,n, d

II
j,n}, for all j ∈ {1, . . . , J}, amounts to a redundant

scheme in which the number of coefficients as compared to a critically-sampled decomposi-
tion is doubled. In this work we aim at finding smaller sets of coefficients that preserve the
frame property and yet reduce the overall redundancy. Further in this chapter we are going
to discuss practical conditions for the proposed decompositions, and we shall see that these
are enabled by the link between filter banks and wavelets [Mal98]. We shall thus see that the
coefficients in Eqs. (2.6)-(2.9) can be obtained by cascading operations of filtering and decima-
tion by a factor of 2. However, the whole redundant structure is equivalent to a filter bank
decomposition in which the decimation step has been removed [HP98].

Note also that if we associate the decomposition on each family of functions BI and BII

to a description in an MD scheme3, then the original signal is perfectly and independently

3This is only a particular scenario. In our work we are building more general scenarios and the superscript
indices I and II will usually not stand for a given description.
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recoverable from each stream in case of failure of the other channel and no other losses. At the
central decoder, however, the coding cost might be too high as compared to the gain in quality
that the second wavelet representation might offer.

Our first contribution consists in building a reduced redundancy wavelet coefficient set, by
eliminating the decimation only at the last decomposition level (coarsest resolution), and thus
finding a better rate-distortion trade-off for a frame-based MD scheme. This will amount to
a redundancy of the size of an approximation subband, in terms of number of coefficients, as
mentioned before. In this situation though, the coefficients yielded by the two wavelet repre-
sentations are going to be mixed in the two descriptions. Therefore the issue of perfect recon-
struction at the central decoder in the absence of channel losses needs to be investigated. We
shall address this problem in a later section.

2.1.2 Decomposition Schemes

A two-description scheme based on the above considerations will thus be built in the following
way:

1. Compute aI
j,n and dI

j,n for j ∈ {1, . . . , J − 1}, as in Eqs. (2.6) and (2.7),

2. Compute aI
J,n, dI

J,n, aII
J,n and d II

J,n (at the coarsest resolution level, J),

3. Subsample all the detail subbands by a factor of 2 and then discard half of the resulting
coefficients,

4. Form two descriptions with the remaining coefficients.

A schematic representation of our MDC strategy is depicted in Figure 2.1 for a decompo-
sition over one level. The last stage in this figure gives a possible combination of subbands,
obtained as explained above, into a two-description scheme. In the next section we are elabo-
rating the possible structures formed in this manner and discuss their properties.

Before going further though, it is important to stress out again the fact that the upper-indices
I and II indicate the family of functions used in the wavelet decomposition, meaning BI or BII,
respectively, and not the description to which the coefficients belong. The descriptions will be
usually formed with “mixed” coefficients, that is, sequences obtained from both wavelet bases.

In the following we present four schemes with two descriptions based on the above strat-
egy, the differences between all of them occurring in the second description at the last level of
decomposition, J . In other words, at higher resolution levels, the detail coefficients obtained
from BI will be split into two sets and each of them will contribute to one description.

Using the wavelet bases introduced above, we construct the following schemes:

1. R (Repeat)-scheme: This scheme consists in simply repeating in each description the ap-
proximation coefficients from a single wavelet basis and splitting the detail coefficients in
half in each description. This corresponds to the decomposition onto the set of functions:

J⋃

j=1

{ 1

2j/2
ψ(

t

2j
− n), n ∈ Z

}
∪
{ 1

2J/2
φ(

t

2J
− n), n ∈ Z

}
. (2.10)
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BI BIIStage 1

Stage 2

x[n]

aIn
dIn

aIIn
dIIn

aIn dIn aIIndIIn

{âIn, ǎIn} d̂In ďIn d̂IIn ďIIn {âIIn , ǎIIn}
Stage 3 Example of two-description

structure (merged descriptions)

Discarded pixel
Kept pixel aIn

d̂InaIIn ďIIn

BIBI BIIBIIStage 1Stage 1

Stage 2Stage 2

x[n]x[n]

aInaIn
dIndIn

aIInaIIn
dIIndIIn

aInaIn dIndIn aIInaIIndIIndIIn
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structure (merged descriptions)
Example of two-description
structure (merged descriptions)
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Kept pixelKept pixel aInaIn

d̂In̂dInaIInaIIn ďIIňdIIn

FIGURE 2.1: Building of reduced redundancy frame-based MDC schemes. In a first stage, the
wavelet decompositions based on BI and BII are built. Then an additional subsampling is
performed on the resulting subbands and a smaller set of coefficients is selected.

where, if we outline the fact that the detail coefficients are split according to their index
parity, we can rewrite:

J⋃

j=1

{ 1

2j/2
ψ(

t

2j
− n), n ∈ Z

}
=

=
J⋃

j=1

{ 1

2j/2
ψ(

t

2j
− 2n), n ∈ Z

}
∪

J⋃

j=1

{ 1

2j/2
ψ(

t

2j
− 2n+ 1), n ∈ Z

}
.

Then, using Eqs. (2.6) - (2.9) the two descriptions are built with the following sets of
wavelet coefficients:

• description 1 contains the sequences: (aI
J,n)n and (d̂ I

j,n)n, with j ∈ {1, . . . , J}, where,

d̂ I
j,n is given by Eq. (2.4),

• description 2 is constructed with the same approximation coefficients (aI
J,n)n and

the remaining detail coefficients: (ď I
j,n)n, with j ∈ {1, . . . , J}, where ď I

j,n = dI
j,2n−1.

This scheme is only provided for completeness of the study of possible combinations
of subbands leading to the desired amount of redundancy. In what follows, we will be
mainly interested in decompositions introducing some diversity between the approxima-
tions.

2. MD1-Scheme: In this second scheme the considered set of functions is:

J⋃

j=1

{ 1

2j/2
ψ(

t

2j
− n), n ∈ Z

}
∪

⋃

p∈{0,1}

{ 1

2J/2
φ(

t

2J
+
p

2
− n), n ∈ Z

}
. (2.11)
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This corresponds to a decomposition onto two wavelet bases, from which we have kept
both the approximation subbands and eliminated all the detail subbands from the second
decomposition. The detail subbands from the first decomposition are split as before. In
other words, this can be expressed as follows:

• description 1 contains: (aI
J,n)n and (d̂ I

j,n)n, with j ∈ {1, . . . , J},

• description 2 is composed of: (aII
J,n)n and (ď I

j,n)n, with j ∈ {1, . . . , J}.

3. MD2-Scheme: This scheme stems from the decomposition onto the set of functions:

J−1⋃

j=1

{ 1

2j/2
ψ(

t

2j
− n), n ∈ Z

}
∪

⋃

p∈{0,1}

{ 1

2J/2
ψ(

t

2J
+
p

2
− 2n), n ∈ Z

}
∪

∪
⋃

p∈{0,1}

{ 1

2J/2
φ(

t

2J
+
p

2
− n), n ∈ Z

}
.

(2.12)

In contrast with the previous scheme, we keep some of the detail coefficients from the
second decomposition (at the last decomposition level) along with the corresponding
approximation coefficients. The two descriptions are thus:

• description 1 remains unchanged from before: (aI
J,n)n and (d̂ I

j,n)n, with j ∈
{1, . . . , J},
• description 2 has a different subsampling of the detail coefficients at the last de-

composition level, which results in the following sequences: (aII
J,n)n, (ď I

j,n)n, with

j ∈ {1, . . . , J − 1} and (d̂ II
J,n)n, where d̂ II

J,n = d II
J,2n.

4. MD3-Scheme: In this last scheme we have the following union of functions:

J−1⋃

j=1

{ 1

2j/2
ψ(

t

2j
− n), n ∈ Z

}
∪
{ 1

2J/2
ψ(

t

2J
− 2n), n ∈ Z

}
∪

{ 1

2J/2
ψ(

t

2J
+

3

2
− 2n), n ∈ Z

}
∪

⋃

p∈{0,1}

{ 1

2J/2
φ(

t

2J
+
p

2
− n), n ∈ Z

}
.

(2.13)

The two descriptions thus contain the following sets of wavelet coefficients:

• description 1 is still the same as in the MD2-Scheme: (d̂ I
j,n)n for j ∈ {1, . . . , J}, and

(aI
J,n)n,

• description 2 is also built as above until the last level of decomposition, where the
index parity for the kept details change. This leads to the sequences: (ď I

j,n)n for

j ∈ {1, . . . , J − 1}, (ď II
J,n)n, and (aII

J,n)n, where ď II
J,n = d II

J,2n−1.

Note that at the coarsest resolution other decompositions combining different approxi-
mation coefficients can be obtained by exchanging the I and II superscripts but, by sym-
metry, they are equivalent to one of the MD1, MD2 or MD3 schemes.
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2.2 Wavelet Frame Considerations

The families of functions used in Eqs. (2.10) is obviously a (tight) frame of V0 = Vect{φ(t −
n), n ∈ Z}. One important question arising at this point is to know whether the other families
(Eqs. (2.11), (2.12) and (2.13)) form frames of the vector space V0 or not.

In practice, this frame structure guarantees the completeness of the proposed representa-
tion, that is the ability to perfectly reconstruct an original signal belonging to V0 from the two
descriptions, in the absence of quantization.

As we have seen in Chapter 1, a well-known condition for this property to hold [Dau92],
is that the energy of the wavelet coefficients in the representation is bounded by two positive
constants A and B.

We shall now express a necessary and sufficient condition for the frame structure, in the
following proposition (in which we have considered the decomposition proposed in the MD3-
scheme).

Proposition 1. (Necessary and sufficient frame condition)
There exists (A,B) ∈ (R∗

+)2 such that, for all x ∈ V0,

A‖x‖2 ≤
J−1∑

j=1

∑

n

|dI
j,n|2 +

∑

n

|d̂ I
J,n|2 +

∑

n

|ď II
J,n|2 +

∑

n

|aI
J,n|2 +

∑

n

|aII
J,n|2 ≤ B‖x‖2, (2.14)

is a frame if and only if there exists (α, β) ∈ (R∗
+)2 such that ∀x ∈ V0 and aI

J−1,n ∈ l2(Z):

α
∑

n

|aI
J−1,n|2 ≤

∑

n

|d̂ I
J,n|2 +

∑

n

|ď II
J,n|2 +

∑

n

|aI
J,n|2 +

∑

n

|aII
J,n|2 ≤ β

∑

n

|aI
J−1,n|2, (2.15)

where ‖ · ‖ denotes the usual norm of the space L2(R).

It should be noted that the other possible subsamplings of the detail coefficients at the last
decomposition level, corresponding to the other MDC schemes can by treated similarly, using
the same arguments. The above proposition reduces the perfect reconstruction problem to the
last level of wavelet decomposition in the redundant schemes and this shall be studied in a
later section.

For the moment let us verify that Eq. (2.14)⇔(2.15).

Proof.

Let us first introduce:

E =
J−1∑

j=1

∑

n

|dI
j,n|2 +

∑

n

|d̂ I
J,n|2 +

∑

n

|ď II
J,n|2 +

∑

n

|aI
J,n|2 +

∑

n

|aII
J,n|2.

We know that since,
⋃J−1

j=1 {2−j/2ψ(2−jt − n), n ∈ Z} ∪ {2−(J−1)/2φ(2−J+1t − n), n ∈ Z} has

been assumed to be biorthogonal basis of V0 then ∃(A′, B′) ∈ (R∗
+)2 such that, for all x ∈ V0,

A′‖x‖2 ≤
J−1∑

j=1

∑

n

|dI
j,n|2 +

∑

n

|aI
J−1,n|2 ≤ B′‖x‖2. (2.16)
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2.2. WAVELET FRAME CONSIDERATIONS

Let us first prove the implication (2.15) =⇒ (2.14).

With the introduced notation and from Eq. (2.16) we have:

E ≤
J−1∑

j=1

∑

n

|dI
j,n|2 + β

∑

n

|aI
J−1,n|2

≤ max(1, β)(
J−1∑

j=1

∑

n

|dI
j,n|2 +

∑

n

|aI
J−1,n|2)

≤ max(1, β)B′‖x‖2.

Since B′ max(1, β) > 0 we can choose B = B′ max(1, β) as the searched upper bound in
Eq. (2.14).

Similarly, we have:

E ≥
J−1∑

j=1

∑

n

|dI
j,n|2 + α

∑

n

|aI
J−1,n|2

≥ min(1, α)(
J−1∑

j=1

∑

n

|dI
j,n|2 +

∑

n

|aI
J−1,n|2)

≥ min(1, α)A′‖x‖2.

Therefore, we have proven that ∃A = A′ min(1, α) > 0 as the lower bound in Eq. (2.14).

Let us now prove the reciprocal statement (2.15)⇐= (2.14).

For all x ∈ V0, we know from Eq. (2.14) that

A‖x‖2 ≤ E ≤ B‖x‖2.

Then, according to Eq. (2.16), we have

‖x‖2 ≤ 1

A′




J−1∑

j=1

∑

n

|dI
j,n|2 +

∑

n

|aI
J−1,n|2




which leads to:

E ≤ B

A′




J−1∑

j=1

∑

n

|dI
j,n|2 +

∑

n

|aI
J−1,n|2


 .

In other words:

J−1∑

j=1

∑

n

|dI
j,n|2+

∑

n

|d̂ I
J,n|2+

∑

n

|ď II
J,n|2+

∑

n

|aI
J,n|2+

∑

n

|aII
J,n|2 ≤

B

A′

[
∑

n

|dI
j,n|2 +

∑

n

|aI
J−1,n|2

]
.

(2.17)
We want to find an upper bound for C =

∑
n |d̂ I

J,n|2 +
∑

n |ď II
J,n|2 +

∑
n |aI

J,n|2 +
∑

n |aII
J,n|2. By

considering the approximation space at resolution level J − 1:

VJ−1 = Vect
{

2−
J−1

2 φ
( t

2J−1
− n

)}
,
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any arbitrary signal x in VJ−1 ⊂ V0 can be written as:

x(t) =
∑

n

aI
J−12

−(J−1)/2φ(2−J+1t− n) and

dI
j,n = 0, ∀j < J,

since VJ−1 = VJ ⊕WJ . Thus Eq. (2.17) reduces itself to:

∑

n

|d̂ I
J,n|2 +

∑

n

|ď II
J,n|2 +

∑

n

|aI
J,n|2 +

∑

n

|aII
J,n|2 ≤

B

A′
∑

n

|aI
J−1,n|2.

This shows that Eq. (2.15) is satisfied with β = B
A′ > 0.

From Eq. (2.14), we also deduce that

E ≥ A‖x‖2 ≥ A

B′




J−1∑

j=1

∑

n

|dI
j,n|2 +

∑

n

|aI
J−1,n|2




and, by invoking similar arguments, we obtain: α = A
B′ > 0.

We have thus found a necessary and sufficient condition for Eq. (2.14).

The perfect reconstruction at the last wavelet decomposition level is tackled by passing to an
equivalent filter bank approach which will allow us to express the transfer matrix correspond-
ing to the MDC system. Then, the perfect reconstruction at the coarsest level is ensured by the
invertibility of this transfer matrix.

Moreover, by using the polyphase formalism, we can easily express the global polyphase
transfer matrix of the system, in which we also highlight the different additional subsampling
operations that are possible for the chosen frame structure.

Finding a solution for the system inversion is not only useful in order to guarantee the per-
fect reconstruction of our schemes, but it equally gives the guidelines for the implementation
of the (central) decoders.

Before going to this step let us rewrite Eq. (2.15) in a simpler form. Recall that, the con-
dition (2.15) only involves sequences of coefficients at the last decomposition stage, J . Then,
for the sake of simplicity, we can subsequently omit the index J and furthermore denote the
approximation coefficients at resolution level J − 1 by (xn)n∈Z so as to avoid scale ambiguities.

With the newly adopted notations, the inequality in (2.15) is then rewritten as

α
∑

n

|xn|2 ≤
∑

n

|aI
n|2 +

∑

n

|aII
n |2 +

∑

n

|d̂ I
n|2 +

∑

n

|ď II
n |2 ≤ β

∑

n

|xn|2 (2.18)

In this particular case the upper-indices I and II point out the description number in addition
to the wavelet basis.

Let us now express our MDC schemes in terms of oversampled filter banks.

2.3 Filter Bank Representations for Discrete Frames

It is now well-known [Mal98], [VK95] that there exists an equivalent filter bank structure lead-
ing to these sequences of wavelet coefficients and that this allows for fast implementation of the
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2.3. FILTER BANK REPRESENTATIONS FOR DISCRETE FRAMES

transform as well as for simple reconstruction. Therefore, in this section we are investigating
the filter banks related to our proposed schemes. The filter bank approach to frames has also
been recently used for Joint-Source Channel Coding in [MG04b].

Let us now consider the discrete one-dimensional input signal, (xn)n∈Z. This could be, for
instance, the signal given by the temporal variation of the a pixel in the frames in a video
sequence4.

In the following we are expressing the previously defined wavelet subbands in terms of
filter banks and for discrete input signals.

Let (hn)n∈Z and (gn)n∈Z be the impulse responses of the analysis low-pass and high-pass
filters, respectively, corresponding to the considered multiresolution decomposition.

Then in our MDC schemes we perform a standard wavelet decomposition for the first J − 1
resolution levels, which leads to the equivalent writing of Eqs. (2.6) and (2.7), as follows:

aI
j,n =

∑

k

h2n−k a
I
j−1,k,

for the temporal approximation subband, and

dI
j,n =

∑

k

g2n−k a
I
j−1,k,

for the detail one, where j ∈ {1, . . . , J − 1}. The four schemes discussed in section 2.1.2 are
different at the last level of wavelet decomposition, J .

At this point let us recall that we perform an additional subsampling on the detail subbands,
which we have indicated by the symbols .̂ and .̌ for the odd and even-sampled sequences,
respectively.

Then, let cn be the vector which contains all the possible subsampled sequences involved in
any of the schemes, that is

cn =
(
âI

n ǎ
I
n â

II
n ǎII

n d̂ I
n ď

I
n d̂

II
n ď II

n

)T
.

We shall now express each component of cn in terms of filter bank decomposition. For the
coefficients generated by the “classical” wavelet scheme and further subsampled by a factor of
2, we have: 




âI
n = aI

2n =
∑

k

xkh4n−k

ǎI
n = aI

2n−1 =
∑

k

xkh4n−2−k

d̂ I
n =

∑

k

xkg4n−k.

ď I
n =

∑

k

xkg4n−2−k.

(2.19)

As we have previously seen, the coefficient sets aII
n and d II

n result from the decomposition onto
the translated basis BII. This is equivalent in terms of filter banks to the convolution with the

4We have chosen this particular example because it suits the application proposed in the second half of this
chapter, but the theoretical results stand for any general 1D signal.
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translated filters having the following impulse responses:

h̃n = hn−1, g̃n = gn−1.

This leads to the sequences:





âII
n = aII

2n =
∑

k

xkh4n−1−k

ǎII
n = aII

2n−1 =
∑

k

xkh4n−3−k

d̂ II
n =

∑

k

xkg4n−1−k

ď II
n =

∑

k

xkg4n−3−k.

(2.20)

The four sets of coefficients generated by the R-scheme are obviously obtained from a crit-
ically sampled filter bank. We will now see that this scheme as well as the other redundant
schemes can be viewed as an oversampled 6-band filter bank structure with a decimation fac-
tor of 4.

In order to express these equations in terms of the desired 6 × 4 oversampled filter banks,
in each of the four schemes discussed earlier, we now define the polyphase components of the
impulse responses of the filters as follows:

∀i ∈ {0, 1, 2, 3}, hi(n) = h4n−i, gi(n) = g4n−i

and introduce the corresponding z-transforms5: Hi(z) and Gi(z). Similarly, the input signal
split into four polyphase components can be written as:

∀i ∈ {0, 1, 2, 3}, x(i)
n = x4n+i.

With this notation, the corresponding polyphase component vector for the input signal is

xn =
(
x(0)

n x(1)
n x(2)

n x(3)
n

)T
.

In order to describe the polyphase transfer matrices corresponding to the oversampled filter
banks of the different schemes, we use the following global representation:

C(z) = M(z) X(z),

where C(z) and X(z) are the z-transforms of the coefficient vector sequence, cn, and of the
input signal, xn and M(z) is the global polyphase transfer matrix (of the fully redundant system
containing both complete wavelet representations for a one-level decomposition).

2.3.1 Expression of the polyphase transfer function matrix for the MD schemes

We are now aiming at finding the expression of the global polyphase transfer matrix as well as
those of the transfer matrices corresponding to each of the MD schemes.

5Recall that the z-transform of a discrete-time signal, (xn)n∈Z, is given by X(z) =
�

n∈Z
xnz−n, with z ∈ C.
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2.3. FILTER BANK REPRESENTATIONS FOR DISCRETE FRAMES

By highlighting the four polyphase components of the input signal and according to
Eq. (2.19), the approximation coefficients in the first wavelet representation can be expressed
as

âI
n =

∑

k

x4kh4(n−k) +
∑

k

x4k+1h4(n−k)−1 +
∑

k

x4k+2h4(n−k)−2 +
∑

k

x4k+3h4(n−k)−3 (2.21)

ǎI
n =

∑

k

x4kh4(n−k)−2 +
∑

k

x4k+1h4(n−k)−3 +
∑

k

x4k+2h4(n−k−1) +
∑

k

x4k+3h4(n−k−1)−1.

(2.22)

Similarly, from Eq. (2.20), the approximation coefficients in the second wavelet representation
are given by:

âII
n =

∑

k

x4kh4(n−k)−1 +
∑

k

x4k+1h4(n−k)−2 +
∑

k

x4k+2h4(n−k)−3 +
∑

k

x4k+3h4(n−k−1) (2.23)

ǎII
n =

∑

k

x4kh4(n−k)−3 +
∑

k

x4k+1h4(n−k−1) +
∑

k

x4k+2h4(n−k−1)−1 +
∑

k

x4k+3h4(n−k−1)−2.

(2.24)

Now, taking the z-transform of the expressions in Eqs. (2.21) - (2.24), gives:





ÂI(z) = X0(z)H0(z) +X1(z)H1(z) +X2(z)H2(z) +X3(z)H3(z)

ǍI(z) = X0(z)H2(z) +X1(z)H3(z) + z−1X2(z)H0(z) + z−1X3(z)H1(z)

ÂII(z) = X0(z)H1(z) +X1(z)H2(z) +X2(z)H3(z) + z−1X3(z)H0(z)

ǍII(z) = X0(z)H3(z) + z−1X1(z)H0(z) + z−1X2(z)H1(z) + z−1X3(z)H2(z)

where capital characters are used to denote the z-transforms of the different sequences of coef-
ficients.

Similar expressions are obtained for the z-transforms of d̂ I
n, ď I

n, d̂ II
n and ď II

n by replacing the
polyphase components of hn by those of gn.

Thus, the expression of the global transfer matrix uniting the two critically-sampled wavelet
decompositions into a factor 2-redundant structure is given by:

M(z) =




H0(z) H1(z) H2(z) H3(z)
H2(z) H3(z) H0(z)z

−1 H1(z)z
−1

H1(z) H2(z) H3(z) H0(z)z
−1

H3(z) H0(z)z
−1 H1(z)z

−1 H2(z)z
−1

G0(z) G1(z) G2(z) G3(z)
G2(z) G3(z) G0(z)z

−1 G1(z)z
−1

G1(z) G2(z) G3(z) G0(z)z
−1

G3(z) G0(z)z
−1 G1(z)z

−1 G2(z)z
−1




.

An MD-scheme following the proposed reduced-redundancy strategy is obtained by taking
a subset of cn having 6 components (3 for each description). Thus we build a new vector,
denoted by cn, for any of the specific schemes previously described and resulting from the
equation:

C(z) = M(z) X(z).
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Here, C(z) is the z-transform of (cn)n∈Z and M(z) is the polyphase transfer function of the
considered MD scheme. The corresponding transfer matrix for each scheme is obtained by
extracting some of the lines of M(z) as we will show in the following.

Let us review the four schemes discussed earlier, this time from the filter bank perspective,
in order to identify the polyphase transfer matrix in each of these cases. We shall also present
some considerations on the possibility to invert these schemes.

R-Scheme

As we said earlier, this scheme consists in splitting the detail coefficients of the decomposition
onto BI into two groups: even-index coefficients and odd-index coefficients, each group be-
longing to one of the descriptions. The approximation coefficients are simply duplicated. This
corresponds to the vector:

{âI
n, ǎ

I
n, d̂

I
n,︸ ︷︷ ︸

1st description

âI
n, ǎ

I
n, ď

I
n︸ ︷︷ ︸

2nd description

}.

Therefore, the multiple description coefficient subset of cn, denoted above by cn, correspond-
ing to this scheme is given by cn = (âI

n ǎI
n d̂ I

n ď I
n)T. In this case, M(z) is formed with the

1st, 2nd, 5th, and the 6th line of M(z) (lines 1 and 2 are used twice). More precisely this corre-
sponds to the following transfer matrix:

M(z) =




H0(z) H1(z) H2(z) H3(z)
H2(z) H3(z) H0(z)z

−1 H1(z)z
−1

G0(z) G1(z) G2(z) G3(z)
G2(z) G3(z) G0(z)z

−1 G1(z)z
−1


.

In the absence of quantization, the invertibility of this decomposition is immediate since it is
derived from a classical critically-sampled filter bank with perfect reconstruction.

MD1-Scheme

In this scheme we have split the detail subbands according to the same scheme as above, but
in the second description, instead of repeating the approximation coefficients from the first
decomposition, we have used the approximation coefficients from the second one. This corre-
sponds to

{âI
n, ǎ

I
n, d̂

I
n,︸ ︷︷ ︸

1st description

âII
n , ǎ

II
n , ď

I
n︸ ︷︷ ︸

2nd description

}.

and M(z) is formed with the 1st, 2nd, 5th, 3rd, 4th, and the 6th lines of M(z). Thus,

M(z) =




H0(z) H1(z) H2(z) H3(z)
H2(z) H3(z) H0(z)z

−1 H1(z)z
−1

H1(z) H2(z) H3(z) H0(z)z
−1

H3(z) H0(z)z
−1 H1(z)z

−1 H2(z)z
−1

G0(z) G1(z) G2(z) G3(z)
G2(z) G3(z) G0(z)z

−1 G1(z)z
−1



.

The coefficient vector is in this case: cn = (âI
n ǎI

n âII
n ǎII

n d̂ I
n ď I

n)T. As this scheme includes a
complete decomposition onto a wavelet basis, its invertibility does not raise any problem as
well.
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MD2-Scheme

Here, the two wavelet decompositions are combined so that

{âI
n, ǎ

I
n, d̂

I
n,︸ ︷︷ ︸

1st description

âII
n , ǎ

II
n , d̂

II
n︸ ︷︷ ︸

2nd description

},

which, with the chosen ordering convention, gives cn = (âI
n ǎI

n âII
n ǎII

n d̂ I
n d̂ II

n )T. The transfer
matrix for this scheme, M(z), is formed with the 1st, 2nd, 5th, 3rd, 4th and the 7th lines of M(z).
Or, explicitly:

M(z) =




H0(z) H1(z) H2(z) H3(z)
H2(z) H3(z) H0(z)z

−1 H1(z)z
−1

H1(z) H2(z) H3(z) H0(z)z
−1

H3(z) H0(z)z
−1 H1(z)z

−1 H2(z)z
−1

G0(z) G1(z) G2(z) G3(z)
G1(z) G2(z) G3(z) G0(z)z

−1



.

MD3-Scheme

By selecting the odd-subsampled detail coefficients in the second wavelet decomposition rather
than the even-subsampled one, we get:

{âI
n, ǎ

I
n, d̂

I
n,︸ ︷︷ ︸

1st description

âII
n , ǎ

II
n , ď

II
n︸ ︷︷ ︸

2nd description

}

and cn = (âI
n ǎ

I
n â

II
n ǎII

n d̂ I
n ď

II
n )T. Now, M(z) is formed with the 1st, 2nd, 5th, 3rd, 4th, and the 8th

lines of M(z). We then get,

M(z) =




H0(z) H1(z) H2(z) H3(z)
H2(z) H3(z) H0(z)z

−1 H1(z)z
−1

H1(z) H2(z) H3(z) H0(z)z
−1

H3(z) H0(z)z
−1 H1(z)z

−1 H2(z)z
−1

G0(z) G1(z) G2(z) G3(z)
G3(z) G0(z)z

−1 G1(z)z
−1 G2(z)z

−1



.

In the case of MD2 and MD3 schemes, their invertibility is not immediate. This has de-
termined the study presented in the following section which looks for invertibility criteria for
the polyphase transfer matrix. However, since we are designing oversampled systems, the in-
verses, if they exist, are not unique. Therefore we have also studied the influence of the chosen
inverse on the quantization noise occurring during transmission.

2.4 Invertibility Using the Polyphase Transfer Matrix

Assuming that the analysis filters are stable (i.e. (hn)n∈Z and (gn)n∈Z belong to the space
`1(Z) ⊂ `2(Z) of summable sequences), this means that the function ω 7→ M(eiω) is contin-
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uous and bounded on [0, 2π]. By expressing the energy of the coefficients as:

∫ 2π

0

1

2π
|C(eiω)|2 dω =

∫ 2π

0

1

2π
|M(eiω)X(eiω)|2 dω

≤
∫ 2π

0

1

2π
|M(eiω)|2|X(eiω)|2 dω,

and considering that M(eiω) bounded implies ∃β ∈ R, such that:

|M(eiω)| ≤ β,

this leads to: ∫ 2π

0

1

2π
|C(eiω)|2 dω ≤ β

∫ 2π

0

1

2π
|X(eiω)|.

But, from the Parseval relation,
∫ 2π
0

1
2π |X(eiω)|2dω equals

∫ T
0 |x(t)|2dt. Passing into discrete

time again, we conclude that the energy of the wavelet coefficients corresponding to the cho-
sen redundant representation is bounded by β

∑
n |xn|2. This is equivalent to saying that the

condition (2.18) is satisfied if and only if the oversampled filter bank leading to these wavelet
sequences is with perfect reconstruction [BHH98]. Or, more precisely, (2.18) holds if and only
if the rank of M(eıω) is equal to the number of polyphase components (4 in our case) for all
ω ∈ [0, 2π) [BHH98], [CV98]. Note that, by having less columns than rows in M(z), the cor-
responding MIMO (Multiple-Input Multiple-Output) linear system is likely to admit several
inverses and one of the problems to be addressed is choosing the most appropriate one.

In the particular case when the analysis filters are with Finite Impulse Response (FIR),
sharper results concerning the invertibility of Laurent polynomial matrices can be applied,
[FV97], [GL99]. These results are especially useful for the schemes MD2 and MD3, whose
invertibility is not a priori guaranteed. A polynomial matrix having more lines than columns
is left-invertible by another polynomial matrix provided that all its maximal order minors (de-
terminants of the square submatrices of maximal size) are coprime, i.e. these determinants do
not share a common non-null zero. This is also equivalent to saying that the matrix is full rank
for all z ∈ C∗. By studying the minors of the polyphase transfer function matrix, three cases
may occur:

1. All the maximal order minors have a common zero on the unit circle and the system is
not invertible.

2. There are non-null zeros common to the maximal order minors but none of these zeros
lies on the unit circle. Then, the system is left-invertible by a rational stable MIMO filter
having an Infinite Impulse Response (IIR).

3. The maximal order minors have no common non-null zero and consequently the system
is left-invertible by an FIR MIMO filter.

Note that, if one of the maximal order minors reduces to a monomial, we are necessarily in
the third situation. Then, the sub-system corresponding to the lines of the minor constitutes an
oversampled filter bank which is invertible by an FIR MIMO filter. This provides a solution to
the inversion problem, which may however be suboptimal as only four coefficient sequences
are used to reconstruct (xn)n∈Z.
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We shall later on illustrate these facts through the examples of Haar and biorthogonal 5/3
decompositions.

In the case where a causal FIR MIMO inverse is needed the following Lemma [Kai80], [GL99]
has been proposed in the literature:

Lemma 1. Given M(z) ∈ C[z]K×N a polynomial matrix with K > N , if rank(M(z)) = n, ∀z
and M(z) is also column reduced, i.e. rank([M1(l1), . . . MN (lN )]) = n, where li, i ∈ 1, . . . , N are
the maximum degrees of each column Mi(z), i ∈ 1, . . . , N of the matrix M(z), then ∃Q ≥ 0 and a

polynomial matrix W(z) =
∑Q

q=0Wq · z−q, such that:

W(z)M(z) = IN .

When z ∈ C∗ these conditions do not necessarily hold, therefore we shall not impose the
causality property for the synthesis FIR filter-banks. Moreover, when applying our schemes to
video coding, the causality might even be a drawback since the reconstruction might involve
coefficients lying in a too far away group of pictures (GOP) as referred to the current GOP.

2.4.1 Solution of the System Inversion

Recall that, for the considered filter banks, we have found a necessary and sufficient condi-
tion for perfect reconstruction from the two descriptions, in the absence of quantization. This
amounts to proving the invertibility of the MDC scheme at the last level of wavelet decomposi-
tion. The wavelet sequences involved at this level were obtained from the temporal signal via
the polyphase formulation of the transfer function. Let us now further investigate the inversion
of the polyphase matrix.

With the notations used in the previous section, we can formulate the problem as follows:
we want to find a MIMO N ×K transfer function W(z), such that

W(z)M(z) = IN×N (2.25)

where W(z) = [Wi,j(z)]1≤i≤N,1≤j≤K , M(z) = [Mi,j(z)]1≤i≤K,1≤j≤N and IN×N is the identity
matrix of order N . We remind that K = 6 is the number of wavelet coefficient sequences
and N = 4 < K is the number of polyphase components of the input signal, needed by the
redundant transform. The maximum length of the scalar filters with transfer function Wi,j(z)
(resp. Mi,j(z)) is assumed to be equal to P ∈ N∗ (resp. Q ∈ N∗). We thus have to solve N2

scalar polynomial equations in order to satisfy Eq. (2.25).

Let W(z) and M(z) in Eq. (2.25) be explicitly written as Laurent polynomial matrices of the
form:

W(z) =

p2∑

p=−p1

Wp z
−p (2.26)

M(z) =

q2∑

q=−q1

Mq z
−q (2.27)

where, for all p (resp. q) Wp (resp. Mq) is an N × K (resp. K × N ) matrix. In this case the
maximal orders of the analysis and synthesis filters are Q = q1 + q2 + 1 and P = p1 + p2 + 1,
respectively, where the constants p1, p2, q1, q2 belong to N.
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Then, the global N ×N transfer function in the left-hand side of Eq. (2.25) reads

G(z) = W(z)M(z) =

q1+q2∑

l=−(p1+q1)

Gl z
−l

where, for all l,

Gs =

min(p2,s+q2)∑

l=max(−p1,s−q1)

Wl Ms−l. (2.28)

This shows that the solution W(z) of Eq. (2.25) is obtained by solving a system ofN2(Q+P−1)
linear equations. On the other hand, the number of unknown variables in W(z) is NKP .

Our goal is to find an inverse W(z) which satisfies Eq. (2.25) and is optimal in a sense that
will be made more precise in Section 2.4.2. Using Eq. (2.28), Eq. (2.25) may be rewritten in the
following matrix form:

MW = U (2.29)

where W and U are real matrices of sizes KP ×N and N(Q+ P − 1)×N respectively, which
are given by

W
T = [W−P+1 . . . W0]

U
T = [0N×N . . . 0N×N︸ ︷︷ ︸

p1+q1 times

IN×N 0N×N . . . 0N×N︸ ︷︷ ︸
p2+q2 times

]

whereas M
T

is the KP ×N(Q+ P − 1) generalized Sylvester matrix:

M
T

=




M0 M1 . . . MQ−1 0K×N . . . . . . 0K×N

0K×N M0 M1 . . . MQ−1 0K×N . . . 0K×N
...

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0K×N

0K×N . . . . . . 0K×N M0 M1 . . . MQ−1



. (2.30)

Finding W obviously amounts to finding its column vectors. In order to identify these vectors,
we can rewrite:

W = [w0 . . . wN−1] (2.31)

U = [u0 . . . uN−1] (2.32)

where, for all i ∈ {0, . . . , N − 1}, wi ∈ RKP and ui ∈ RN(Q+P−1). Solving Eq. (2.29) is therefore
equivalent to solving

∀i ∈ {0, . . . , N − 1}, M wi = ui. (2.33)

Let ‖·‖2 denote the usual Euclidean norm. We further know that there exists a unique minimum
norm vector wi minimizing ‖M wi − ui‖2, which is expressed as

wi = M
]
ui (2.34)

where A
] denotes the pseudo-inverse of a matrix A. The vector given by Eq. (2.34) is also a

solution of Eq. (2.33), provided that, for all i, ui belongs to the column space of M. The latter
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condition is fulfilled when rank([M U ]) = rank(M). If M(z) can be inverted by a Laurent
polynomial matrix, there exists a minimal value of P for which this equality is reached. By
combining Eqs. (2.34), (2.31) and (2.32), we then obtain the following whole system inversion
solution:

W = M
]
U . (2.35)

2.4.2 Optimality criteria for system inverse

In terms of coding, it is of main importance to study the influence of the choice of W on the
effect of the quantization noise. By modeling the quantization as the addition of a noise on
each sequence at the output of M(z), we aim at reducing as much as possible the influence of
this noise on the reconstruction (x′

n)n∈Z of (xn)n∈Z. We assume in the sequel that the noise vec-
tor sequence (bn)n∈Z is zero-mean, independent and identically distributed with non singular
covariance matrix Λ. We obviously have

x
′
n = xn + vn

where (vn)n∈Z is the multivariate moving average process defined by

vn =
∑

p

Wpbn−p .

The autocovariance matrix for vn is

E{vnvn
T} =

∑

p,q

WpE{bn−pbn−q
T}Wq

T =
∑

p,q

WpΛδp−qWq
T =

∑

p

WpΛWp
T.

The global noise power on the components of x
′
n is

E{‖vn‖22} =
∑

p

tr(WpΛWp
T) = tr



[

W−P+1 . . . W0

]
Λ

′




W−P+1
T

...

W0
T







where Λ
′ is the block-diagonal matrix of size (PK)× (PK) given by

Λ
′ =




Λ 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0

0 . . . 0 Λ



.

By defining

∀i ∈ {0, . . . , N − 1}, w
′
i = (Λ′)1/2

wi

we obtain

E{‖vn‖22} = tr







w
′

0
T

...

w
′

N−1
T



[

w
′

0 . . . w
′

N−1

]

 = tr




w
′

0
T
w

′

0 . . . w
′

0
T
w

′

N−1
...

...

w
′

N−1
T
w

′

0 . . . w
′

N−1
T
w

′

N−1




=
N−1∑

i=0

‖w′

i
‖22 .
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This shows that the power of the output noise is minimum if, for all i, ‖w′
i‖2 is minimum. By

noting that Eq. (2.33) can be rewritten as

∀i ∈ {0, . . . , N − 1}, M(Λ′)−1/2
w

′
i = ui

the optimal solution is

w
′
i = (M(Λ′)−1/2)]

ui

= (M(Λ′)−1/2)T(M(Λ′)−1/2(M(Λ′)−1/2)T)−1,

∀i ∈ {0, . . . , N−1}. We deduce that the inverse system minimizing the effect of the quantization
error is

W = (Λ′)−1/2
M

T
(M(Λ′)−1

M
T
)−1

U ,

which is equivalent to Eq. (2.35) if Λ
′ = IKP×KP .

Thus, a particular case of interest for us is the quantization of all the coefficient sequences
with the same precision, in which case the covariance matrix of the quantization noise can
be written as Λ = σ2

IK×K , even though the polyphase coefficients are correlated. When the
quantization noise variance equals one, the above mentioned condition for Λ

′ is satisfied.
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FIGURE 2.2: Test temporal signals formed by concatenation of 7 classical QCIF test videos,
given here for two spatial positions in the video frame

Let us then verify the diagonality of the covariance matrix, Λ on a sample of 100 temporal
signals obtained in as many different spatial positions of a concatenated sequence of QCIF
classical test videos (such as Foreman, Crew, Hall-Monitor, Mobile, etc..., in Y UV color format).
We have chosen such signals in order to comply with the application framework proposed at
the end of this chapter aiming the multiple description transmission of a video sequence. This
corresponds to the case without motion estimation, which, as it will be explained later, presents
an interest in the MDC scenario for computation and complexity reasons. Two of those signals
are illustrated in Figure 2.2.

We have computed the covariance matrix of the resulting quantization noise in each of the
six coefficient sets forming the scheme MD3, for instance6. In Figure 2.3 we present the covari-
ance matrix corresponding to the whole set of considered temporal signals at different quan-
tization steps denoted here by ∆. We have obtained the wavelet coefficients with the Haar

6Recall that the scheme MD3 has the following wavelet sequences at the coarsest resolution:

{âI
n, ǎI

n, d̂ I
n, âII

n , ǎII
n , ď II

n }.
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FIGURE 2.3: Covariance matrix for the quantization noise at different quantization steps ∆.

filter bank. Similar results were observed for the 5/3 filter bank. We can thus observe that our
hypothesis stands at sufficiently low quantization steps.

It is obvious that this result does not hold when the redundancy comes from the mere repe-
tition of some coefficients (R-scheme, for instance). In this case, the optimal choice reduces to
Eq. (2.35).

2.4.3 Practical examples

In the following we shall present two practical examples that use Haar and biorthogonal 5/3
filter banks, which are the common choice for wavelet video codecs - the application aimed in
this chapter. Let us study the invertibility of the MD3-scheme, for instance. We have chosen
this scheme here mainly for its additional subsampling diversity, but the following results can
be easily adapted to the other proposed MD schemes.

We begin by evaluating the perfect reconstruction of the corresponding filter bank and after-
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wards we shall compute a left inverse for the analysis polyphase matrix, following the previous
theoretical considerations.

After computing the pseudoinverses for Haar and biorthogonal 5/3 filter banks, in this cho-
sen example, we shall draw some conclusions about our frame-based schemes with respect to
the robustness to quantization noise (as before) when the maximal degree of the reconstruction
polynomials in the synthesis matrix varies.

2.4.3.1 Haar filter banks

Perfect Reconstruction

Let us now investigate the perfect reconstruction of the MD3-scheme, based on oversampled
Haar filter banks. Recall that the z-transforms of the Haar low-pass and high-pass filters are
given by

H(z) =
1 + z√

2
, G(z) =

−1 + z√
2

.

The polyphase components of H(z) and G(z) are thus





H0(z) =
1√
2

H1(z) =
1√
2

H2(z) = 0
H3(z) = 0

,





G0(z) = − 1√
2

G1(z) =
1√
2

G2(z) = 0
G3(z) = 0

.

By substituting these values in

M(z) =




H0(z) H1(z) H2(z) H3(z)
H2(z) H3(z) H0(z)z

−1 H1(z)z
−1

H1(z) H2(z) H3(z) H0(z)z
−1

H3(z) H0(z)z
−1 H1(z)z

−1 H2(z)z
−1

G0(z) G1(z) G2(z) G3(z)
G3(z) G0(z)z

−1 G1(z)z
−1 G2(z)z

−1




we obtain the following polyphase matrix:

M(z) =
1√
2




1 1 0 0
0 0 z−1 z−1

1 0 0 z−1

0 z−1 z−1 0
−1 1 0 0
0 −z−1 z−1 0



. (2.36)

As explained in the previous subsection, in order to study the perfect reconstruction properties
of the corresponding oversampled filter bank, we have to examine the maximal order minors
of M(z). Table 2.1 presents all the 4th order minors for the different possible 4× 4 sub-matrices
of
√

2 M(z). The first column of the table indicates the lines of M(z) which have been selected
to build each sub-matrix and the third one gives the moduli of the zeros of the associated
determinant. As several minors are monomial, we conclude that M(z) is left-invertible by
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Lines Minor Moduli of the zeros

1 2 3 4 z−2(z−1 − 1) 1

1 2 3 5 2z−2 None

1 2 3 6 −z−2(1 + z−1) 1

1 2 4 5 −2z−2 None

1 2 4 6 2z−3 None

1 2 5 6 2z−2 None

1 3 4 5 −2z−2 None

1 3 4 6 2z−3 None

1 3 5 6 2z−2 None

1 4 5 6 0 -

2 3 4 5 z−2(z−1 + 1) 1

2 3 4 6 −2z−3 None

2 3 5 6 z−2(z−1 − 1) 1

2 4 5 6 −2z−3 None

3 4 5 6 −2z−3 None

TABLE 2.1: Maximal order minors of
√

2 M(z) for Haar filters.

a polynomial matrix. Each monomial minor corresponds to sequences of coefficients from
which the original signal can be reconstructed by an FIR filter bank. For example, the second
line of the table shows that an FIR MIMO filter allows us to compute (xn)n∈Z from (âI

n)n∈Z,
(ǎI

n)n∈Z, (âII
n )n∈Z and (d̂ I

n)n∈Z. (The corresponding synthesis filter bank is easily determined by
inverting the corresponding polynomial submatrix.) On the contrary, some minors have a zero
on the unit circle showing that the corresponding sub-matrices are not invertible. Thus, the first
line of the table shows that it is not possible to reconstruct (xn)n∈Z from the only knowledge of
(âI

n)n∈Z, (ǎI
n)n∈Z, (âII

n )n∈Z and (ǎII)n∈Z. This is consistent with the fact that the detail coefficients
cannot be completely discarded since they carry useful high-frequency information.

Haar Polyphase Matrix Inversion

Based on the polyphase matrix determined in Eq. (2.36), and the above considerations, we can
find a polynomial left inverse for M(z). In this case, we have Q = 2. Thus, Eq. (2.27) becomes:

M(z) = M0 + M1z
−1

where

M0 =
1√
2




1 1 0 0
0 0 0 0
1 0 0 0
0 0 0 0
−1 1 0 0
0 0 0 0



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and

M1 =
1√
2




0 0 0 0
0 0 1 1
0 0 0 1
0 1 1 0
0 0 0 0
0 −1 1 0



.

It can be checked that the minimal value of P for which rank([M U ]) = rank(M) is equal to 2.
Then, the block matrix M in Eq. (2.30) reduces to

M =




M0
T

04×6

M1
T

M0
T

04×6 M1
T


 .

Computing the pseudo-inverse of M and using Eq. 2.26 yields:

W(z) =
√

2




5
12 −1

6
1
6

1
12 − 5

12
1
12

1
4 0 0 1

4z
1
4 −1

4z

1
12z

1
6z −1

6z
5
12z − 1

12z
5
12z

−1
4z

1
2z

1
2z −1

4z
1
4z −1

4z



. (2.37)

We shall now present the same study for biorthogonal 5/3 filter banks.

2.4.3.2 Biorthogonal 5/3 Filters

Perfect reconstruction

The z-transform of the biorthogonal 5/3 filter pair is the following:

H(z) = γ(−p1u1z
−2 + u1z

−1 + 1− 2p1u1 + u1z − p1u1z
2)

H̄(z) =
1

γ
(p1z

−1 + 1 + p1z),

where H(z) and H̄(z) are the transfer functions of the low-pass analysis and synthesis filters
and γ, p1 and u1 are some nonzero real constants. The usual values for these constants are:
γ =
√

2, p1 = 1/2 and u1 = 1/4.

Let (h̄n)n∈Z be the impulse response of the low-pass synthesis filter. From the relations
between the analysis and synthesis filters [VK95]:

gn = (−1)n+1h̄n+1,

we obtain

G(z) =
∑

n

(−1)n+1h̄n+1z
−n = zH̄(−z) =

1

γ
(−p1 + z − p1z

2).
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The polyphase components of H(z) and G(z) are then given by:





H0(z) = γ(1− 2p1u1)
H1(z) = γu1

H2(z) = −γp1u1(1 + z−1)
H3(z) = γu1z

−1

,





G0(z) = −γ−1p1

G1(z) = γ−1

G2(z) = −γ−1p1

G3(z) = 0,

and they lead to the following polyphase matrix:

M(z) =

�






�

γ(1 − 2p1u1) γu1 −γp1u1(1 + z−1) γu1z
−1

−γp1u1(1 + z−1) γu1z
−1 γ(1 − 2p1u1)z

−1 γu1z
−1

γu1 −γp1u1(1 + z−1) γu1z
−1 γ(1 − 2p1u1)z

−1

γu1z
−1 γ(1 − 2p1u1)z

−1 γu1z
−1 −γp1u1z

−1(1 + z−1)
−γ−1p1 γ−1 −γ−1p1 0

0 −γ−1p1z
−1 γ−1z−1 −γ−1p1z

−1

�
�������
. (2.38)

Note that for the calculation of the zeros of the minors, the constant γ or γ−1 weighting each
line of the matrix has no effect. Therefore, we can focus our attention on the matrix:

M̃(z) = Diag(γ−1, . . . , γ−1, γ, γ)M(z)

=

�






�

1 − 2p1u1 u1 −p1u1(1 + z−1) u1z
−1

−p1u1(1 + z−1) u1z
−1 (1 − 2p1u1)z

−1 u1z
−1

u1 −p1u1(1 + z−1) u1z
−1 (1 − 2p1u1)z

−1

u1z
−1 (1 − 2p1u1)z

−1 u1z
−1 −p1u1z

−1(1 + z−1)
−p1 1 −p1 0
0 −p1z

−1 z−1 −p1z
−1

�
�������
. (2.39)

By considering the values of the constants p1 and u1, we obtain the results presented in Ta-
ble 2.2. As for Haar filters, we specify the lines of matrix M(z) which have been used to calcu-
late each maximal order minor as well as the moduli of the zeros of the minor.

For the lines 1, 4, 10, 12 and 13 of the table, a zero on the unit circle is observed. Therefore, we
cannot invert the respective sub-systems. Each other minor corresponds to a critically sampled
filter bank which is invertible, but with an IIR synthesis filter bank (since the minor does not
reduce to a monomial). As there is no common zero between all the maximal minors, we
can claim that a MIMO FIR synthesis filter bank allowing us to reconstruct (xn)n∈Z from the
complete set of coefficients.

Biorthogonal 5/3 Polyphase Matrix Inversion

Similarly to the case of Haar filters, we want to calculate a polynomial left inverse of the
polyphase matrix M(z) for biorthogonal 5/3 filters. Now, we have Q = 3 and, for symme-
try reasons that will be best apparent when presenting the design of the 5/3-based decoders,
M(z) can be written as:

M̃(z) =
∑

q∈Q

Mq z
−q.

where Q = {−1, 0, 1}. This is possible by taking M̃(z) = Diag(1, z, z, z, 1, z) ·M̃(z) in Eq. (2.39).

The real matrices Mq, q ∈ {−1, 0, 1} involved in M̃(z) are the explicitly the following:
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Lines Minors Moduli of the zeros

1 2 3 4 z−3

4096 (z − 1)2 (1− 194 z−1 + z−2) 5.155×10−3, 1, 1, 194.0

1 2 3 5 z−1

64 (1 + 30 z−1 + z−2) 3.337×10−2, 29.97

1 2 3 6 z−1

1024 (1− 123 z−1 − 397 z−2 + 7z−3) 1.753×10−2, 3.16, 126.15

1 2 4 5 − z−2

4 (1 + z−1) 1

1 2 4 6 − z−2

1024 (7− 397 z−1 − 123 z−2 + z−3) 7.927×10−3, 3.160×10−1, 57.02

1 2 5 6 z−2

16 (9− z−1) 1.111×10−1

1 3 4 5 z−1

1024 (7− 397 z−1 − 123 z−2 + z−3) 7.927×10−3, 3.160×10−1, 57.02

1 3 4 6 z−2

64 (1 + 30z−1 + z−2) 3.337×10−2, 29.97

1 3 5 6 − z−1

256 (7− 142z−1 + 7z−2) 4.941×10−2, 20.24

1 4 5 6 z−3

256 (z − 1)(49− z−1) 2.041×10−2, 1

2 3 4 5 − z−1

1024 (1− 123 z−1 − 397 z−2 + 7 z−3) 1.754×10−2, 3.164, 126.15

2 3 4 6 − z−3

4 (1 + z−1) 1

2 3 5 6 z−2

256 (1− 49z−1) 1, 49

2 4 5 6 − z−2

256 (7 + 114z−1 + 7z−2) 6.164×10−2, 16.22

3 4 5 6 z−2

16 (1− 9z−1) 9

TABLE 2.2: Maximal order minors of M̃(z) for biorthogonal 5/3 filters.

M−1 =




0 0 −p1u1 u1

0 0 0 0
0 0 0 0
0 0 0 −p1u1

0 0 0 0
0 0 0 0




M0 =




1− 2p1u1 u1 −p1u1 0
−p1u1 u1 1− 2p1u1 u1

0 −p1u1 u1 1− 2p1u1

u1 1− 2p1u1 u1 −p1u1

−p1 1 −p1 0
0 −p1 1 −p1




and

M1 =




0 0 0 0
−p1u1 0 0 0
u1 −p1u1 0 0
0 0 0 0
0 0 0 0
0 0 0 0



.

The pseudoinverse of M, computed for P = 3, gives W which contains the blocks
W−1, W 0, W 1 such that:

W (z) = W−1 z + W 0 + W 1 z
−1
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We thus obtain the inverse transfer matrix:

W (z) =




0.7567− 0.07465 z −0.2034 + 0.1081 z−1 0.1396− 0.2211 z−1 0.1819 + 0.01995 z . . .
0.02789 + 0.05653 z 0.2015 + 0.003985 z−1 −0.08500 + 0.05633 z−1 0.4580− 0.01214 z . . .
−0.08500 + 0.05633 z 0.4580− 0.01214 z−1 0.02789 + 0.05653 z−1 0.2015 + 0.003985 z . . .

0.1396− 0.2211 z 0.1819 + 0.01995 z−1 0.7567− 0.07465 z−1 −0.2034 + 0.1081 z . . .

. . . −0.5499 + 0.03732 z − 0.05405 z−1 0.03988− 0.009973 z + 0.1105 z−1

. . . 0.4953− 0.02827 z − 0.001992 z−1 −0.2199 + 0.006071 z − 0.02816 z−1

. . . −0.2199− 0.02816 z + 0.006071 z−1 0.4953− 0.001992 z − 0.02827 z−1

. . . 0.03988 + 0.1105 z − 0.009973 z−1 −0.5499− 0.05405 z + 0.03732 z−1




2.4.4 Observations on the proposed MDC schemes

At this point some observations are necessary in order to assess the reconstruction perfor-
mances of the different proposed MDC schemes. For the two categories of analysis filters (Haar
and biorthogonal 5/3), we have investigated the invertibility of the resulting polyphase analy-
sis matrix M(z) in each of the MDC situations previously presented. In other words, we have
computedW (as in Eq. (2.35)) leading to the synthesis matrix W (z). For eachW we have eval-
uated the mean squared error of the reconstruction, supposing a quantization noise of variance
one:

MSEr = ‖W‖2 . (2.40)

As we have seen in section 2.4.2, the output noise due to quantization has a minimum effect on
the reconstruction if, for all i, the Frobenius norm of the ith column of W is the smallest, and
thus the reconstruction error is given by Eq. (2.40)7.

We have carried out some numerical tests computing the MSEr for our MDC schemes, when
varying the maximal order of the reconstruction filters, P and choosing the minimum normW
obtained with the couple of bounds (p1, p2), such that P = p1 + p2 + 1 (as before). These
results are summarized in Table 2.3 for the case of Haar filter banks. Note that, from the trans-

MSEr for Haar FB
Scheme Synthesis order (P )

2 3 5

R-scheme 4 4 4
MD1-scheme 3 3 3
MD2-scheme 3.66 3.66 3.66
MD3-scheme 3.66 3.66 3.66

TABLE 2.3: Evolution of the MSEr with the order of the reconstruction filters for the MDC
schemes.

fer matrix point of view, the MSEr computed for the R-scheme is the same as in the Single
Description case, since this scheme merely repeats coefficients from the same wavelet decom-
position. Therefore, these results are the reference for comparison between multiple and single
description coding modes.

7The “r” in MSEr stands for “reconstruction”.
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Biorthogonal 5/3 filters

Analysis: (q1, q2) = (0, 2) Analysis: (q1, q2) = (1, 1)
Schemes Synthesis order (P ) Synthesis order (P )

2 3 4 5 2 3 4 5

R-scheme
MSEr 4.37 4.37 4.37 4.37 4.37 4.37 4.37 4.37

(p1, p2) (0, 1) (1, 1) (1, 2) (1, 3) (0, 1) (1, 1) (1, 2) (1, 3)

MD1-scheme
MSEr 4.37 3.38 2.58 2.57 95.12 2.65 2.59 2.57

(p1, p2) (0, 1) (1, 1) (1, 2) (2, 2) (1, 0) (1, 1) (2, 1) (2, 2)

MD2-scheme
MSEr 14.60 3.20 2.94 2.93 14.60 3.20 2.94 2.93

(p1, p2) (0, 1) (1, 1) (1, 2) (2, 2) (0, 1) (1, 1) (1, 2) (2, 2)

MD3-scheme
MSEr 9.69 5.70 2.99 2.96 65.44 3.23 3.08 2.93

(p1, p2) (0, 1) (0, 2) (1, 2) (1, 3) (0, 1) (1, 1) (2, 1) (2, 2)

TABLE 2.4: Evolution of the MSEr with the maximal order of the reconstruction filters for the
MDC schemes and the SDC scheme given by a non-redundant decomposition based on BI,
using biorthogonal 5/3 analysis filters.

Another remark concerning the Haar filter banks is that if the analysis filters are supposed to
be causal, then the inverse filters will be anti-causal and conversely. In other words, the results
given in Table 2.3 stand for (q1, q2) = (0, 1) and (p1, p2) = (1, 0) in Eqs. (2.27) and (2.26),
respectively (as presented in Section 2.4.3.1). From this table it can be seen that increasing the
order P of the synthesis filters does not influence the reconstruction performances of this filter
bank.

When considering biorthogonal 5/3 filter banks, however, the maximal order of the analysis
filters is Q = 3 which leaves more degrees of freedom in choosing the pair (q1, q2) summing
up to Q. We have considered two cases of interest: (q1, q2) = (0, 2) (in other words causal
analysis filters) and (q1, q2) = (1, 1) (as in the biorthogonal example given in Section 2.4.3.2).
After setting the analysis pair of bounds (q1, q2) in this scenario, we have searched for the pair
(p1, p2) leading to the minimal norm ofW . Table 2.4 summarizes the results for the evolution
of MSEr with the variation of P , for the optimal pair (p1, p2) such that p1 + p2 + 1 = P .

These tables (2.3 and 2.4) show that the best performances at the central decoder are to be
expected from the scheme MD1 whereas the schemes MD2 and MD3 exhibit comparable
performances for a good choice of (p1, p2) bounds in the synthesis filter maximum order. If one
wants to judge the performances of Haar versus biorthogonal 5/3 filter banks, the R-scheme
seems to be worse in the latter case, whereas the others are generally better than the Haar filter-
bank schemes. This first (counter-intuitive) result concerning the R-scheme could be explained
by the fact that here we did not take into account the energy compaction properties of the
different bases. Indeed, if one of the filter banks leads to a more compact representation of
the signal, there will be less significant coefficients, thus one could expect the possibility of
using a coarser quantization step, leading to better compression performances. This reasoning
however does not necessarily apply when comparing configurations using the same filters.

Another remark about the two considered filter banks is that these results concern solely the
central decoders, therefore they do not infer anything about the side decoding performances.
This is why, even though the MD1-scheme performs better at the central decoder, it is not a
good choice in a balanced channels scenario. Indeed, if comparable quality is expected from
both side decoders, a better choice would be one of the schemes MD2 or MD3 (any of the two
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2.5. LIFTING-BASED DESIGN OF THE HAAR MD ENCODER

being a good choice).

Note also that the performances of these filter banks in terms of reconstruction error do not
improve significantly with the increasing of the synthesis order P . If we take into account the
implementation difficulties in a video coding system, than the shortest are the filters the faster
and less complex is the implementation. This is the reason behind the choices made in the
last section of this chapter - an application to robust video coding. Moreover, Table 2.4 clearly
shows that for the MD3-scheme (which is our final implementation choice) imposing causality
to our filter is too much of a restriction, significantly altering the end-to-end performances.

In the following we shall detail the encoding and decoding issues both for Haar and
biorthogonal 5/3-based schemes, and this chapter will be closed by the mentioned application
to video coding.

2.5 Lifting-based design of the Haar MD encoder

The aim of this section is to find equivalent lifting implementations for the previously intro-
duced MDC schemes, allowing for an easier and more flexible implementation of the one-
dimensional signal decompositions. This will be further exploited for non-linear motion-
compensated temporal decompositions of video sequences.

Let us consider in this section only the implementation of the MD3-scheme, knowing that
with the corresponding modification in the shifting factor all these considerations stand for the
other schemes as well. We also choose this particular scheme because it is the most balanced in
terms of the positions of the kept samples in the detail subbands resulting from any of the two
wavelet bases, at the coarsest level. This configuration is especially useful when it comes to the
side decoding.

2.5.1 2-band lifting approach

Since the first J − 1 levels in our decompositions are obtained from a usual wavelet analysis, in
the following we shall only be interested in the last resolution level.

The corresponding coefficients in the two descriptions are computed as follows:





aI
n =

∑

k

h2n−kxk (2.41a)

d̂ I
n =

∑

k

g4n−kxk (2.41b)

aII
n =

∑

k

h2n−1−kxk (2.41c)

ď II
n =

∑

k

g4n−3−kxk, (2.41d)

where, for simplicity, we have denoted by xk the approximation coefficients at the (J − 1)-th
level and we have omitted the subscript J .

A quick and memory efficient implementation for filter banks is given by the so-called lifting
scheme, introduced in [HP96] and extended in [HP98] under the name of nonlinear subband
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FIGURE 2.4: Basic single-stage lifting scheme.
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FIGURE 2.5: 2-band lifting implementation of the proposed multiple description coder for the
last two resolution levels.

decompositions. The “lifting” term was introduced in the tutorial paper [DS98]. This scheme
guarantees the perfect reconstruction of the system. The basic lifting core that we are using
when implementing our MDC strategy is given in Fig. 2.4. The p and u operators in the scheme
stand for the predict and update, respectively, and γ is a real non-zero multiplicative constant.

Using a one-stage lifting implementation of the filter bank as above, we illustrate our scheme
in Fig. 2.5. For readability we shall only display two levels of resolution.

2.5.2 Equivalent 4-band lifting implementation for the Haar filter bank

The 2-band lifting approach presented above does not yield an immediate inversion scheme,
in particular when using nonlinear operators, such as those involving motion estima-
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tion/compensation in the temporal decomposition of a video sequence. This is the motivation
behind searching an equivalent scheme for which global inversion would be easier to prove.
In the following we build a simpler equivalent lifting scheme for the Haar filter bank, by using
directly the four-band polyphase components of the input signal, instead of the two-band ones.
For the first description, the approximation coefficients can be rewritten from Eq. (2.41a), while
the detail coefficients are still obtained with Eq. (2.41b), leading to:





âI
n = aI

2n =
∑

k

h4n−kxk

ǎI
n = aI

2n−1 =
∑

k

h4n−2−kxk

d̂ I
n =

∑

k

g4n−kxk.

(2.42)

Similarly, for the second description, we express the approximation subband from Eq. (2.41c)
and keep the details from Eq. (2.41d):





âII
n =

∑

k

h4n−1−kxk

ǎII
n =

∑

k

h4n−3−kxk

ď II
n =

∑

k

g4n−3−kxk.

(2.43)

To go further and find an equivalent scheme for the Haar filter bank, note that the two-band
polyphase components of the input signal, x2n = aJ−1,2n and x2n+1 = aJ−1,2n+1 are first filtered
and then subsampled (see Fig. 2.5). However, for the Haar filter bank, recall that the predict
and update operators are respectively p = I and u = 1

2I (and the constant γ =
√

2). Since these
are both instantaneous operators, one can reverse the order of the filtering and downsampling
operations. This yields the following very simple expressions for the coefficients in the first
description:





âI
n =

x4n + x4n+1√
2

=
x

(0)
n + x

(1)
n√

2
(2.44a)

ǎI
n =

x4n−2 + x4n−1√
2

=
x

(2)
n−1 + x

(3)
n−1√

2
(2.44b)

d̂ I
n =

x4n+1 − x4n√
2

=
x

(1)
n − x(0)

n√
2

(2.44c)

and in the second: 



âII
n =

x4n + x4n−1√
2

=
x

(0)
n + x

(3)
n−1√

2
(2.45a)

ǎII
n =

x4n−2 + x4n−3√
2

=
x

(2)
n−1 + x

(1)
n−1√

2
(2.45b)

ď II
n =

x4n−2 − x4n−3√
2

=
x

(2)
n−1 − x

(1)
n−1√

2
. (2.45c)

A schematic form of these equations is given in Fig. 2.6.
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FIGURE 2.6: Redundant 4-band lifting scheme for the Haar filter bank encoder.

2.6 Encoder design for biorthogonal 5/3 filter banks

In the case of biorthogonal 5/3 filter banks, finding an equivalent 4-band lifting scheme as in
the case of Haar filters is not possible, therefore we will only use the 2-band lifting scheme
presented in the previous section, in order to find the six wavelet coefficient sets needed for the
MD3-scheme at the coarsest level (see Figure 2.5).

If we replace the lifting parameters p1, u1 and γ in the analysis matrix M(z) given in Sec-
tion 2.4.3.2 with their values corresponding to the biorthogonal 5/3 filters we obtain the fol-
lowing transfer matrix:




1.060 0.3535 −0.1768 z−1 − 0.1768 0.3535 z−1

−0.1768− 0.1768 z 0.3535 1.060 0.3535

0.3535 z −0.1768− 0.1768 z 0.3535 1.060

0.3535 1.060 0.3535 −0.1768 z−1 − 0.1768

−0.3535 0.7070 −0.3535 0.0

0.0 −0.3535 0.7070 −0.3535




that shall be further used in the implementation of the biorthogonal 5/3 scheme. The inver-
sion of this matrix will give a decoding strategy for the central decoder whereas for the side
decoders one should invert a sub-matrix given by the lines which form each side scheme (e.g.
the matrix formed with the lines 1, 2 and 5 for the first side decoder).
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2.7 Decoder design

Now that we have presented the actual transform stage serving in encoding the two descrip-
tions, having taken the MD3-scheme as an example, let us focus on the corresponding de-
coding strategies. We are thus presenting in this section the reconstruction of each polyphase
component of the input signal both for Haar and biorthogonal 5/3 filter banks.

As explained in the previous chapter, the next stage in the coding scheme is the operation of
quantization. In our case we consider that uniform quantization is performed on the wavelet
subbands, and we shall indicate this fact by the following notation [cn], where c stands for a
generic wavelet coefficient subband.

In the generic case, our aim is to recover xn, the input signal, from the subsampled wavelet
coefficients corresponding to an MDC scheme at the central decoder, in which case the recov-
ery error is the effect of quantization, and at the side decoders, where half of the subsampled
wavelet subbands have been lost. Let us denote the recovered polyphase components of the

signal by x̃
(i)
n .

In the following we shall obtain these polyphase components from the quantized subbands
obtained from Haar and biorthogonal 5/3 filter banks. Then, the next sections will present an
application of our MDC strategy to robust video coding and more coding/decoding details will
be given for the central and side decoders, by incorporating motion into our schemes. Some
structure improvements that lead to better reconstruction will also be presented for the case of
Haar filter banks.

2.7.1 Haar decoders

Central decoder

The central decoder for Haar filter banks is obtained from the pseudo-inverse matrix computed
in Section 2.4.3.1 in the case of the MD3-scheme. Thus, applying the inverse z-transform to
Eq. (2.37) leads to the following reconstructed polyphase components of xn:

x̃(0)
n =

5

6

[
1√
2
(âI

n − d̂ I
n)

]
+

1

6

[
1√
2
(ǎII

n + ď II
n )

]
−
√

2

6
(ǎI

n − âII
n )

x̃(1)
n =

1

2

[
1√
2
(âI

n + d̂ I
n) +

1√
2
(ǎII

n+1 − ď II
n+1)

]

x̃(2)
n =

1

6

[
1√
2
(âI

n+1 − d̂ I
n+1)

]
+

5

6

[
1√
2
(ǎII

n+1 − ď II
n+1)

]
+

√
2

6
(ǎI

n+1 − âII
n+1)

x̃(3)
n = −1

2

[
1√
2
(âI

n − d̂ I
n)− 1√

2
(ǎII

n+1 − ď II
n+1)

]
+

1√
2
(ǎI

n+1 + âII
n+1)

Note that most of these components are obtained by directly inverting the basic lifting
schemes represented in Fig. 2.6 to which the contribution of the additional information given
by the halves of approximation subbands is added. The immediate inversion of the basic lifting
core is illustrated in Fig. 2.7.
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FIGURE 2.7: Inverse lifting scheme for the first description - gives the first two polyphase com-
ponents of the input signal, reconstructed perfectly in the absence of quantization.

Side decoders

Concerning the side decoders, again from Fig. 2.6, we note that from each description we can
partially recover the original sequence by immediate inversion of the scheme. For instance,
if we only receive the first description, we can easily reconstruct the polyphase components

x
(0)
n , x

(1)
n from the first Haar lifting block. The last two polyphase components x

(2)
n and x

(3)
n are

reconstructed by assuming that they are similar:

x̃(2)
n = x̃(3)

n =
[ǎI

n+1]√
2
.

Similarly, when receiving only the second description, we are able to directly reconstruct x
(1)
n ,

x
(2)
n from the second Haar lifting block, while x

(0)
n and x

(3)
n are obtained by duplicating âII

n+1:

x̃
(0)
n+1 = x̃(3)

n =
[âII

n+1]√
2
.

In the next section we are considering the second example of filter bank formed with
biorthogonal 5/3 filters and give the guidelines for the decoders.

2.7.2 Biorthogonal 5/3 decoders

Central decoder

The central decoder is obtained by using the pseudo-inverse computed in Section 2.4.3.2 in
order to recover each of the four polyphase components of the input signal. At this point
no motion estimation/compensation has been performed at the coarsest level. Therefore, the
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recovered vector for the input signal is simply given by:




x̃
(0)
n

x̃
(1)
n

x̃
(2)
n

x̃
(3)
n


 =




0.7567 0.02789 −0.08500 0.1396
−0.07465 0.05653 0.05633 −0.2211
−0.2034 0.2015 0.4580 0.1819
0.1081 0.003985 −0.01214 0.01995
0.1396 −0.08500 0.02789 0.7567
−0.2211 0.05633 0.05653 −0.07465
0.1819 0.4580 0.2015 −0.2034
0.01995 −0.01214 0.003985 0.1081
−0.5499 0.4953 −0.2199 0.03988
0.03732 −0.02827 −0.02816 0.1105
−0.05405 −0.001992 0.006071 −0.009973
0.03988 −0.2199 0.4953 −0.5499
−0.009973 0.006071 −0.001992 −0.05405

0.1105 −0.02816 −0.02827 0.03732




T 


âI
n

âI
n+1

ǎI
n

ǎI
n−1

d̂ I
n

d̂ I
n−1

âII
n

âII
n+1

ǎII
n

ǎII
n+1

ǎII
n−1

ď II
n

ď II
n+1

ď II
n−1




. (2.46)

Side decoders

In the case of biorthogonal 5/3 filter banks an equivalent four-band lifting implementation (as
for Haar) is not possible. Moreover, using the pseudo-inverse for the reconstruction of the two
side-decoders in the absence of motion estimation/compensation is not a feasible approach
because of the delays in the synthesis filters. These delays would lead to an unrealistic re-
construction in which every current frame would be computed from frames in neighbouring
GOPs, which are usually too far away in time to be exploitable in this case. In the case of Haar
filter banks, the lifting structures forming the four-band MDC schemes allowed for the perfect
reconstruction of two out of the three wavelet subbands in each description, thus leaving only
one detail subband to interpolate.

Based on these considerations we have instead implemented a simple strategy consisting
mainly in interpolating the missing frames from the immediately near ones, at the side de-
coders. We thus do not present the obtained inverse matrices for the side decoders, since this
is irrelevant for the rest of the chapter.

This will be detailed in the next section, which considers an MDC application to video cod-
ing.

2.8 Application to robust video coding

In the theoretical part of this chapter we have mostly given considerations about the general
MD encoding and decoding scheme for a 1D source signal. Let us now apply the described
method to the robust coding of video sequences. If we consider a simple example ignoring
the motion information usually inherent to video, the temporal signal in an animated sequence
would look as in Figure 2.8. In other words, one temporal signal is given by the variations in
the light intensity of each pixel s in a frame, throughout the whole sequence. Intuitively in this
example the video is viewed simply as a sequence of still images without any link between
them.
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FIGURE 2.8: Example of temporal signal in a video viewed as a sequence of still images, and
represented as a function of the frame number (the actual sampling period, Te[sec], of this
signal is given by the frame rate, F [fps] and the number of frames, N in the video sequence).

In practice however, a video is more than a chain of still images and important information
related to motion needs to be incorporated. We are considering the so-called t + 2D video
codecs, such as MC-EZBC [HW00], [HW01], in which a Motion-Compensated Time Filtering
(MCTF) transform is first applied in the temporal direction, this operation being followed by a
spatial wavelet transform. The process is completed by an EZBC entropy coding stage.

The Motion Estimation/Compensation (ME/MC) operations performed on the video se-
quence prior to the temporal transform allow for building the temporal signals that we shall
handle in the MDC context. More explicitly, each the motion compensated samples in each the
video frame form temporal video signals, as illustrated in Figure 2.9.

f0 f1 f2 f3 f4 fN−1 fN

n

cn

f0f0 f1f1 f2f2 f3f3 f4f4 fN−1fN−1 fNfN

nn

cncn

FIGURE 2.9: Temporal video signal after motion estimation. We have denoted the video frames
by fi, i ∈ {0, . . . , N}.

In this application scenario the proposed wavelet frame decompositions have to be adapted
to take into account the motion estimation and compensation between video frames, since these
are an essential ingredient for the success of our temporal decompositions.

However, as shown in the case of critically-sampled 2-band and 3-band motion-
compensated filter banks [PPB01], [TPP03], [PTPPH04], incorporating the ME/MC into the
lifting scheme leads to non-linear spatio-temporal operators, and this needs to be taken into
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consideration when designing our MD structures.

Connected pixel
Multiple-connected pixel

x(0)
n x(1)

n

p0 s0
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Unconnected pixelUnconnected pixeld̂In(s)d̂In(s)âIn(s− v)âIn(s− v)

v0v0

vivi

FIGURE 2.10: Motion compensated prediction in the Haar scheme.

2.8.1 Temporal video descriptions

Let us now explain the construction of two temporal video descriptions, using the Haar trans-
form in the MD3-scheme. In this case, consider the motion-compensated prediction of a pixel

s in the frame x
(1)
n from the frame x

(0)
n and denote by v the forward motion vector correspond-

ing to s as illustrated in Figure 2.10. We also take into account in this figure the other two
possible scenarios that might occur when estimating the motion across frames, which are the
so-called multiple-connected pixels [CW99a], represented here as pm and the unconnected pix-
els denoted by pu in this example. In the first situation, several pixels si, i ∈ {1 . . . , N} in the

current frame x
(1)
n need to be predicted by a single pixel in the reference frame x

(0)
n and we then

have s1 − v1 = . . . = si − vi = . . . = sN − vN , with vi denoting the corresponding motion
vectors. The motion vector is considered to be zero if a pixel is unconnected.

Writing now Eqs. (2.44a)-(2.44c) in a lifting form and incorporating the motion into the pre-
dict/update operators yields the following set of wavelet subbands at the coarsest resolution
level (also corresponding to the first description in the MD3-scheme):





d̂ I
n(s) =

x
(1)
n (s)− x(0)

n (s− v)√
2

âI
n(s− v) =

√
2x(0)

n (s− v) + d̂ I
n(s)

ǎI
n(s) =

x
(2)
n−1(s) + x

(3)
n−1(s)√

2
.

(2.47)

Note that the update step may involve all the details d̂ I
n(si), i ∈ {1, . . . , N}while preserving

the perfect reconstruction property and it has been shown [TPPvdS05] that the update step
minimizing the reconstruction error is the one averaging all the detail contributions from the
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connected pixels si. With this remark, one can rewrite Eqs. (2.47) as follows:





d̂ I
n(si) =

x
(1)
n (si)− x(0)

n (si − vi)√
2

, i ∈ {1, . . . , N} (2.48a)

âI
n(si − vi) =

√
2x(0)

n (si − vi) +

∑N
`=1 d̂

I
n(s`)

N
(2.48b)

ǎI
n(s) =

x
(2)
n−1(s) + x

(3)
n−1(s)√

2
(2.48c)

and with similar notations for multiple connections in the second description:





ď II
n (si) =

x
(2)
n−1(si)− x(1)

n−1(si − vi)√
2

, i ∈ {1, . . . ,M} (2.49a)

ǎII
n (si − vi) =

√
2x

(1)
n−1(si − vi) +

∑M
`=1 ď

II
n (s`)

M
(2.49b)

âII
n (s) =

x
(0)
n (s) + x

(3)
n−1(s)√

2
. (2.49c)

Since for video coding efficiency motion prediction is an important step, we propose an alter-
native scheme for building the two descriptions, in which we incorporate the motion estima-
tion/compensation in the computation of the second approximation sequence (âI

n, resp. ǎII
n ).

This scheme is illustrated in Fig. 2.11. In this case an additional motion vector field needs

z−1

z−1

x(0)
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+ ME+ ME

MEMEME

MEMEME

FIGURE 2.11: 4-band lifting scheme with motion estimation on the approximation subbands.

to be encoded per description. Therefore, in the following, this scheme will be referred to as

4B 1MV. Now, if we denote by u the motion vector predicting the pixel s in frame x
(3)
n−1 from

x
(2)
n−1 and by w the motion vector predicting the pixel s in frame x

(0)
n from x

(3)
n−1, the analysis
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equations for âI
n and ǎII

n can be rewritten as:

ǎI
n(s− u) =

x
(3)
n−1(s) + x

(2)
n−1(s− u)√
2

, (2.50)

âII
n (s−w) =

x
(3)
n−1(s−w) + x

(0)
n (s)√

2
, (2.51)

for the connected pixels (here, only the first pixel in the scan order is considered in the compu-
tation), and

ǎI
n(s) =

√
2x

(2)
n−1(s),

âII
n (s) =

√
2x

(3)
n−1(s),

for the non-connected pixels.

Furthermore, it can be noticed that the two polyphase components of the approximation
signals that enter each description are temporally correlated. This suggested us to come up
with a new coding scheme, illustrated in Fig. 2.12, where a motion-compensated temporal Haar
transform is applied on âI

n and ǎI
n (resp., on ǎII

n and âII
n ). Compared to the original structure,

two additional motion vector fields have to be transmitted. The scheme will thus be referred to
as 4B 2MV.

We represent the temporal transforms involved in two decomposition levels of the 4B 2MV
scheme in Figure 2.23. Note the temporal subsampling of the details on the first decomposition
level and the redundancy introduced at the second decomposition level.
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ǎInǎIn
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FIGURE 2.12: 4-band lifting scheme with motion estimation and Haar transform on the approx-
imation subbands of each description.

Motion compensated prediction in the biorthogonal 5/3 filter bank case

In the biorthogonal 5/3 filter bank case an equivalent 4-band lifting structure can not be for-
mulated. Moreover, including motion into the last stages of decomposition is a very tedious
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task in the multiple description case. Therefore, for these filters we have considered that the
coarsest level subbands are obtained as we presented in the theoretical part of this chapter, with
no ME/MC. The higher resolution levels are obtained in the classical motion-compensated 5/3
temporal filtering scenario, in which the motion vectors fields are bi-directional. A schematic
representation for the prediction stage is given in Figure 2.13.

x2n x2n+1x2n−1

s
vl(s) vr(s)

dn

x2nx2n x2n+1x2n+1x2n−1x2n−1

ss
vl(s)vl(s) vr(s)vr(s)

dndn

FIGURE 2.13: Motion compensated prediction in the biorthogonal 5/3 scheme. Motion vectors
are denoted by v(s) and their direction is given by the indices l or r, standing for “left” or
“right”, respectively. The detail subbands are synchronized with the even-indexed x2n tempo-
ral frames.

At the decoder end we are using the following strategy. The central decoder uses the
pseudo-inverse in Eq. (2.46) in order to recover the last decomposition level subbands and
then the classical 2-band 5/3 lifting inversion scheme is used at higher levels. For the side de-
coders however, the reconstruction without motion could lead to much too poor results. We
have therefore chosen to use the motion vectors computed at the encoding stage whenever it is
possible, as it will be shown in the next section.

2.8.2 Central and side video decoders

Haar filter bank

The inversion of the Eqs. (2.48a) and (2.48b) is straightforward by the lifting scheme, allowing
us to reconstruct the first two polyphase components. Using the same notations as in Sec-
tion 2.4, the reconstructed polyphase components from the first description are as follows:





x̃(0)
n (si − vi) =

1√
2

(
[âI

n(si − vi)]−
1

N

N∑

`=1

[d̂ I
n(s`)]

)

x̃(1)
n (si) =

1√
2

(
[âI

n(si − vi)] + 2[d̂ I
n(si)]−

1

N

N∑

`=1

[d̂ I
n(s`)]

) (2.52)

When analyzing the reconstruction of the connected pixels in the first two polyphase compo-
nents, one can remark that it corresponds to the inverse lifting using the average update step.

A similar reasoning for the second description allows us to find the reconstruction of the
sequence from the received frames ǎII

n , ď
II
n , and âII

n . By inverting the Eqs. (2.49a) and (2.49b) we
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obtain: 



x̃(1)
n (si − vi) =

1√
2

(
[ǎII

n+1(si − vi)]−
1

M

M∑

`=1

[ď II
n+1(s`)]

)

x̃(2)
n (si) =

1√
2

(
[ǎII

n+1(si − vi)] + 2[ď II
n+1(si)]−

1

M

M∑

`=1

[ď II
n+1(s`)]

) (2.53)

For the non-connected pixels we have: x̃
(0)
n (si) = 1√

2
[âI

n(si)] and x̃
(1)
n (si) = 1√

2
[ǎII

n+1(si)].

As it can be seen, x̃
(1)
n can be recovered from both descriptions, and the final central re-

construction is obtained as the mean of these values. Also, one can remark that by knowing

x
(2)
n−1 (resp. x

(0)
n ) from the first (resp., second) description, it is possible to reconstruct x

(3)
n−1, by

reverting Eqs. (2.50) and (2.51).

As for the side decoders of the initial scheme, the solution for the first description is given
by Eqs. (2.52) and:

x̃(2)
n (s) = x̃(3)

n (s) =
1√
2

[ǎI
n+1(s)],

while for the second description it reads:

x̃
(0)
n+1(s) = x̃(3)

n (s) =
1√
2

[ǎII
n+1(s)],

in addition to x̃
(1)
n and x̃

(2)
n obtained with Eqs. (2.53).

For the 4B 1MV scheme, the additional motion compensation involved in the computation
of the approximation sequences requires reverting the motion vector field in one of the compo-
nents. Thus, we have:

x̃
(2)
n−1(s) =

[ǎI
n(s)]√

2
,

x̃
(3)
n−1(s) =

[ǎI
n(s− u)]√

2
,

for the first side decoder and

x̃
(3)
n−1(s) =

[âII
n (s)]√

2
,

x̃(0)
n (s) =

[âII
n (s− u)]√

2
,

for the second one.

For the scheme 4B 2MV, the temporal Haar transform being revertible, no additional diffi-
culties appear for the central or side decoders.

Note that the reconstruction by one central and two side decoders corresponds to a specific
application scenario, in which the user receives the two descriptions from two different loca-
tions (for example, two WiFi access points), but depending on its position, it can receive both or
only one of the descriptions. In a more general scenario, the user may be in the reception zone of
both access points, but packets may be lost from both descriptions (due to network congestion,
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transmission quality etc). In this case, the central decoder will try to reconstruct the sequence
by exploiting the information in all the received packets. It is therefore clear that an important
issue for the reconstruction quality will be the packetization strategy. Even though the com-
plete description of the different situations which can appear in the decoding (depending on
the type of the lost packets) cannot be done here, it is worth noting that in a number of cases
an efficient usage of the received information can be employed: for instance, even if we do not
receive the spatio-temporal subbands of one of the descriptions, but only a packet containing
its motion vectors, these vectors can be exploited in conjunction with the other description for
improving the fluidity of the reconstructed video. We also take advantage of the redundancy
existing at the last level to choose, for the frames which can be decoded from both descriptions,
the version which has the best quality, and thus to limit the degradations appearing in one of
the descriptions.

Biorthogonal 5/3 filter bank

Let us consider a two level scheme based on the biorthogonal 5/3 filter bank, as in Figure 2.14.
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FIGURE 2.14: Two levels of biorthogonal 5/3 temporal decomposition of a video sequence.

Here, three successive GOPs of a video sequence are first temporally decomposed using the
5/3 filter banks. In this figure we highlight the multiple description decomposition at each
level. Thus at the first level of decomposition we split the details into the two descriptions
according to their index parity. The even indexed details go to the first description and the odd
ones go to the second one. The approximation subbands are further decomposed to the next

108



2.8. APPLICATION TO ROBUST VIDEO CODING

level, at which we obtain the two descriptions as presented in the beginning of this chapter. We
also indicate the positions of the discarded coefficients at this (coarsest) level. The vertical and
oblique lines between decomposition levels show the video frames involved in the computa-
tion of one wavelet subband (the oblique lines also point out the vector fields calculated at the
encoder).

As we said before, no motion estimation/compensation is used at the last level for the cen-
tral reconstruction. Thus, at the central decoder we simply recover the input frames by using
the Eq. (2.46).

The side reconstruction based on this example implies the reconstruction of the eight frames

that form the video GOP, n, denoted here by x̃#i
n (s), i ∈ {0, . . . 7}, only from the received sub-

set of wavelet coefficients (those forming the Description 1 for the Side A decoder, for instance).
Since some of the detail subbands are missing, we can not make much use of the bi-directional
motion vectors, thus we are only going to use one of the two motion vectors, whenever possi-
ble.

We first recover the frames which are synchronous with the approximation subbands in the
first description, by renormalizing them twice (since the decomposition is done on two levels).
We reuse the notation [.] to indicate that the subbands are quantized. Thus we obtain:

x̃#0
n (s) =

1

2
[âI

n(s)],

x̃#4
n (s) =

1

2
[ǎI

n(s)].

Then we can use these two frames to recover x̃#2
n by averaging x̃#0

n and x̃#4
n :

x̃#2
n (s) =

1

2
(x̃#0

n (s) + x̃#4
n (s)). (2.54)

Similarly, we recover x̃#3
n as an average of x̃#2

n and x̃#4
n :

x̃#3
n (s) =

1

2
(x̃#2

n (s) + x̃#4
n (s)). (2.55)

For the reconstruction of x̃#1
n (s) we can take advantage of the motion vector vl (as depicted

in Figure 2.13). On the other hand, the right motion field vr which would compensate x̃#1
n (s)

from x̃#2
n (s) is unusable, since x̃#2

n has been already quite damaged by the averaging operation.

Therefore, x̃#1
n will be given by:

x̃#1
n (s) = x̃#0

n (s + vl0),

where we have denoted by vl0 the motion vector between the frame number 0 and the frame
number 1. The same problem in using the vector field computed at the first decomposition

level arises for the reconstruction of the x̃#5
n video frame. We proceed similarly to x̃#1

n , and
thus obtain:

x̃#5
n (s) = x̃#4

n (s + vl4),

with a similar notation for the motion vector between the frames number 4 and 5. The only

frames that need yet to be reconstructed in this GOP are x̃#6
n and x̃#7

n . These are recovered in
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2. TEMPORAL MDC SCHEMES

the same way as those in Eqs. (2.54) and (2.55), but using the the corresponding frames in the
next GOP. More precisely, we have:

x̃#6
n (s) =

1

2
(x̃#4

n (s) +
1

2
[âI

n+1(s)]),

x̃#7
n (s) =

1

2
(x̃#6

n (s) +
1

2
[âI

n+1(s)]).

The border GOPs are handled in the usual manner, by making mirror extension of the GOP
(in fact, equivalently modifying the filtering coefficients).

2.8.3 Simulation experiments and results

Let us begin the presentation of our experimental framework by recalling that when comparing
the four MDC schemes based on wavelet-frames, in terms of global noise power of the recon-
structed sequences (in Section 2.4.4), the R and MD2 schemes appeared to provide lower per-
formances than the MD1 and MD3 ones. Therefore, in the following we are only presenting
results concerning the latter two schemes.

This section is organized as follows. In a first part we are presenting comparisons between
the MD1 and MD3 schemes for the Haar transform. This will give a choice criterion based
on their side performances, since the two schemes exhibit similar central performances as it
will be shown shortly. We will find that the scheme MD3 is the best compromise in terms
of central/side reconstruction. Therefore, the rest of the section concentrates entirely on this
scheme.

Then we have considered two application scenarios. In the first one, an entire description
might be lost during transmission and this corresponds to the “on-off channels” scenario. We
have compared the reconstruction results on several video sequences for Haar and 5/3 filter
banks in a reduced motion estimation/compensation scenario, namely by excluding this oper-
ation from the coarsest resolution level. This simplification is needed since a motion compen-
sated lifting scheme has not been found for the 5/3 filters in the multiple description context.
This comparison gives a choice criterion between these two filter banks. We have concluded
that even though the central performances are better for the 5/3 filter banks the side ones are
much too poor for the introduced complexity. Therefore in a second application scenario we
only consider the Haar filter bank.

This new application scenario is called “Packet-losses” transmission, and it involves forming
packets inside each of our two temporal descriptions and authorizing the loss of a subset. This
scenario corresponds to the video transmission over Ethernet networks, for instance, without
QoS.

Choice between schemes

We have implemented J = 3 levels of motion-compensated temporal lifting Haar decompo-
sition [PPB01], the last level consisting of one of the two analyzed schemes: MD1 or MD3.
Recall that the detail frames obtained at resolution levels j < J have been alternately distrib-
uted between the two descriptions in an identical manner for the two schemes. They only differ
at the coarsest resolution level and the overall redundancy of the structure has the size of an
approximation subband.
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2.8. APPLICATION TO ROBUST VIDEO CODING

The proposed schemes have been tested on several CIF sequences at 30fps. See for instance
Figure 2.15 for an example of four frames extracted from the test video sequence “Foreman”
and Figure 2.16 for a similar excerpt of the test video sequence “Mobile”.

(a) Frame 1 (b) Frame 2

(c) Frame 3 (d) Frame 4

FIGURE 2.15: The first four frames extracted from the test video sequence “Foreman”.

On the first two temporal decomposition levels a full-pixel motion compensation is involved
in the lifting transform, while at the last level no motion estimation is performed. The tempo-
ral subband frames have been decomposed with the 9/7 biorthogonal wavelets. The spatio-
temporal wavelet coefficients and motion vectors have been coded as for the non redundant
codec, by using the MC-EZBC algorithm [ezb].

In Figures 2.17 and 2.18 we compare the PSNR-rate performances of the central and side
decoders for the MD1 and MD3 schemes, on the Y component of the signal. The exact figures
are given in Table 2.5. Note that the central decoder of the MD1 scheme slightly outperforms
the central decoder of MD3, as predicted by the theoretical framework. One of the side de-
coders (denoted by “A” in Figure 2.17) is identical for the two schemes. However, due to an
asymmetrical construction of the two descriptions in the MD1 scheme, one of its side decoders
(denoted by “B” in Figure 2.17) exhibits a poorer performance.

The motion estimation is performed using Hierarchical Variable Size Block Matching
(HVBSM) algorithm with block sizes ranging from 64×64 to 4×4. An integer pel accuracy
is used for motion compensation. Spatio-temporal coefficients and motion vectors (MV) are
encoded within the MC-EZBC framework [CW99a, ezb], where MV fields are first represented
as quad-tree maps and MV values are encoded with a 0-order arithmetic coder, in raster-scan
order.
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2. TEMPORAL MDC SCHEMES

(a) Frame 164 (b) Frame 165

(c) Frame 228 (d) Frame 275

FIGURE 2.16: Four frames extracted from the test video sequence “Mobile”.

“FOREMAN” MD1 scheme

bitrate 250 500 750 1000 1500 3000

central 29.48 32.19 33.85 34.98 36.85 40.53

side A 26.05 27.20 27.78 28.13 28.66 29.51

side B 24.32 24.84 25.06 25.16 25.29 25.43

“FOREMAN” MD3 scheme

bitrate 250 500 750 1000 1500 3000

central 29.27 32.01 33.68 34.79 36.68 40.39

side A 26.05 27.20 27.78 28.13 28.66 29.51

side B 25.26 26.16 26.62 26.88 27.28 27.96

“MOBILE” MD1 scheme

bitrate 250 500 750 1000 1500 3000

central 19.89 22.18 23.54 24.88 26.55 30.61

side A 18.96 20.15 20.78 21.24 21.91 23.07

side B 18.36 19.24 19.70 19.93 20.37 20.90

“MOBILE” MD3 scheme

bitrate 250 500 750 1000 1500 3000

central 19.70 21.95 23.33 24.61 26.33 30.43

side A 18.96 20.15 20.78 21.24 21.91 23.07

side B 18.81 19.83 20.35 20.72 21.28 22.23

TABLE 2.5: Rate-distortion comparison: YSNR (dB) at different bitrates (Kbs), for “FOREMAN”
and “MOBILE” sequences (CIF at 30fps) on three levels of wavelet decomposition.
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FIGURE 2.17: Central and side Y-PSNR vs. rate curves for the schemes MD1 and MD3 (“Fore-
man” CIF sequence, 30fps).
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FIGURE 2.18: Central and side Y-PSNR vs. rate curves for the schemes MD1 and MD3 (“Mo-
bile” CIF sequence, 30fps).
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2.8.3.1 On-off channels scenario

As we previously said, in this scenario we have considered the loss of an entire description and
we have tested the MD3 scheme on several video sequences.

Choice of the filter bank
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Central decoder, Haar
Central decoder, Biorthogonal 5/3
Side decoder, Haar
Side decoder, Biorthogonal 5/3

FIGURE 2.19: Y-PSNR vs. rate curves(“Foreman”, CIF at 30 fps). Comparison between the Haar
and the 5/3 biorthogonal FB scheme, on two levels of decomposition.

In Figures 2.19 and 2.20 we present the PSNR-rate performance comparison for Haar and
biorthogonal 5/3 filter banks on two decomposition levels, for the test sequences “Foreman”
and “Mobile” in CIF format at 30fps. As expected from Tables 2.3 and 2.4, the central decoder
performs better in the 5/3 case.

Robust Haar MD coder

In Fig. 2.21 we compare the rate-distortion performance of the non-robust Haar scheme with
that of the MDC central decoder on the “Foreman” video test sequence in QCIF format at
30fps. The bitrate corresponds to the global rate for the robust codec (both descriptions). Three
temporal decomposition levels have been used in this experiment (J = 3). We can observe that
even the loss of one description still allows for acceptable quality reconstruction especially at
low bitrates and also that the global redundancy does not exceed 30% of the bitrate.

Fig. 2.22 illustrates the central Y-PSNR vs. rate curves for different levels of redundancy
and, together with Fig. 2.21 shows the narrowing of the gap with respect to the non redundant
version when the number of decomposition levels increases.
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FIGURE 2.20: Y-PSNR vs. rate curves(“Mobile”, CIF at 30 fps). Comparison between the Haar
and the 5/3 biorthogonal FB scheme, on two levels of decomposition.

The difference in performance between the two descriptions is a phenomenon appearing
only if the scheme involves three or more decomposition levels, since it is related to an asym-
metry in the GOF structure of the two descriptions when performing the decimation. Indeed,
as illustrated in Fig. 2.23, when the first description is lost, some of the motion information
in the second description cannot be used to improve the reconstruction, while this does not
happen when loosing the second description.

In Figs. 2.24-2.25, we present the Y-PSNR vs. rate curves for the central and side decoders, in
the absence of packet losses. The performances of the scheme without ME/MC in the compu-
tation of the approximation sequences ǎI

n and âII
n are compared with the 4B 1MV and 4B 2MV

schemes. One can remark that the addition of the ME/MC step in the computation of ǎI
n and

âII
n (4B 1MV) does not lead to an increase in the coding performance of the central decoder,

since the expected gain is balanced by the need to encode an additional MV field. On the other
hand, the final MC-Haar transform (4B 2MV) leads to much better results, since instead of two
correlated approximation sequences we now only have transformed subbands. For the side
decoders however, the introduction of the motion-compensated average in the computation
of ǎI

n and âII
n leads to a significant improvement in coding performances (increasing with the

bitrate from 1 to 2.5 dB), and the MC-Haar transform adds another 0.3 dB of improvement.
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FIGURE 2.21: Central and side Y-PSNR vs. rate curves of the MDC scheme compared with the
non-robust Haar codec (“Foreman” QCIF sequence, 30fps).
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FIGURE 2.22: Y-PSNR vs. rate curves at the central decoder for several levels of decomposition
(redundancy).
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Desc. 1

Desc. 2

Desc. 1

Desc. 2

Desc. 1

Desc. 2

d̂I1,4n−3 d̂I1,4n−2 d̂I1,4n−1 d̂I1,4n
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1 6
n

1 6
n 16( n

+ 1)
16( n

+ 1)
16(n
−
1)

16(n
−
1)

1st level1st level

2nd level2nd level

3nd level3nd level

Previous GOPPrevious GOP Current GOPCurrent GOP

d̂I1,2nd̂I1,2n
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FIGURE 2.23: 4B 2MV scheme over 3 levels (GOP size = 16). Motion-compensated temporal
operations are represented by arrows (solid lines for the current GOP, dashed lines for the
adjacent GOPs).
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FIGURE 2.24: Y-PSNR vs. rate curves for different reconstruction strategies, central decoder
(“Foreman” QCIF sequence, 30 fps).
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FIGURE 2.25: Y-PSNR vs. rate curves for different reconstruction strategies, first side decoder
(“Foreman” QCIF sequence, 30 fps).
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FIGURE 2.26: Three levels of decomposition in the temporal splitting scheme.
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2.8. APPLICATION TO ROBUST VIDEO CODING

2.8.3.2 Packet-losses scenario

In this second scenario, we have tested our MD3 scheme for transmission over a packet-loss
network, like Ethernet. In this case, the bitstreams of the two descriptions are separated in
packets of maximal size of 1500 bytes. For each GOP, separate packets are created for the
motion vectors and for each spatio-temporal subband. If the packet with motion vectors is
lost, or if the packet with the spatial approximation subband of the temporal approximation
subband is lost, then we consider that the entire GOP is lost (it cannot be reconstructed).

We compare our scheme with a non redundant MCTF one and also with another very well-
known temporal MDC scheme, consisting in a temporal splitting of the initial video sequence.
Odd and even frames are separated into two descriptions which are encoded with a Haar
MCTF coder (Fig. 2.26 illustrates the motion vectors and temporal transforms for this struc-
ture).

The coding performance as a function of the packet loss rate is illustrated in Figs. 2.27 and
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FIGURE 2.27: Distortion vs. packet loss rate (“Foreman” QCIF sequence, 30 fps at 250 Kbs).

2.28 for the “Foreman” and “Mobile” video test sequences at 250 Kbs. As expected, when there
is no loss, the non redundant coding is better than both MDC schemes (which have comparable
performances). However, as soon as the packet loss rate gets higher than 2%, our scheme
overpasses by 0.5-1dB the temporal splitting and the non robust coding by up to 4dB.

Moreover, we have noticed that the MDC splitting scheme exhibits a flickering effect, due
to the fact that a lost packet will degrade the quality of one over two frames. In our scheme
this effect is not present, since the errors in one description have limited influence thanks to the
existing redundancies, and also to a different propagation during the reconstruction process.

Fig. 2.29 presents the influence of the average update operator, with gains of about 0.2 dB
over the entire range of packet loss rates. Finally, we have compared in Fig. 2.30 the Y-PSNR vs.
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FIGURE 2.28: Distortion vs. packet loss rate (“Mobile” QCIF sequence, 30 fps).

rate curves of the temporal splitting and the proposed MDC schemes for a fixed packet loss rate
(10%). One can remark a difference of 0.5-1.3 dB at medium and high bitrates (150-1000 Kbs)
and slightly smaller at low bitrates (100 Kbs). It is noticeable that the PSNR of the reconstructed
sequence is not monotonically increasing with the bitrate: a stiff increase in PSNR until 250 Kbs
is followed by a “plateau” effect which appears at higher bitrates. This is due to the loss of the
information in the spatial approximation of the temporal approximation subband. Indeed, for
low bitrates, this spatio-temporal subband can be encoded into a single packet, so for uniform
error distribution, the rate-distortion curve increases monotonically. At a given threshold (here,
it happens at about 250 Kbs for packets of 1500 bytes), the approximation subband has to be
coded into two packets. Moreover, we considered that if any of these two packets is lost, the
GOF cannot be reconstructed. Therefore, we see a drop in performance. From this point, with
the increasing bitrate, the performance improves till a new threshold where the subband needs
to be encoded into three packets and so on. A better concealment scheme in the spatial domain,
allowing to exploit even a partial information from this subband, would lead to a monotonic
increase in performance.
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FIGURE 2.29: Influence of average update operator on the performance (“Foreman” QCIF se-
quence, 30 fps).
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FIGURE 2.30: Y-PSNR vs. Rate curves at 10% packet loss rate (“Foreman” QCIF sequence, 30
fps).
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2.9 Conclusions

In this chapter we have presented a study of temporal multiple description coding schemes
based on redundant wavelets forming a frame. Using a union of classical orthonormal or
biorthogonal wavelet bases at the coarsest resolution of the one-dimensional signal, we first
discussed all the possible two-description schemes in this framework and checked their invert-
ibility.

Considering the filter bank equivalence with these wavelet transforms, we have given prac-
tical implementation structures for two categories of filter banks, Haar and biorthogonal 5/3,
which are compliant to current video coding scenarios involving wavelets. The proposed struc-
tures are based on oversampled filter banks and in the Haar case we have equally proven the
existence of a 4-band lifting structure enabling the construction of a motion-compensated two-
description wavelet scheme. Such an equivalent scheme was not possible to exhibit for the
biorthogonal 5/3 filters.

Our study continued with decoding solutions for the schemes that have proven to be poten-
tially interesting in terms of MD encoding. We have thus discussed solutions for the inversion
of the oversampled system and we have given optimality criteria for these inverses with respect
to the quantization noise.

In the last part of this chapter, we have presented a new multiple description scalable video
coding scheme based on a motion-compensated redundant temporal analysis related to Haar
and biorthogonal 5/3 wavelets.

The redundancy of the scheme can be reduced by increasing the number of temporal de-
composition levels. Reversely, it can be increased either by reducing the number of temporal
decomposition levels, or by using non-decimated versions of some of the detail coefficients.

The performances of the proposed MDC schemes have been mainly tested in two scenarios:
on-off channels and packet losses. We have compared the performances of the two filter banks
in the on-off channels scenario and have chosen the Haar filter bank for the second one based
on the compromise it offers in terms of performances versus computational complexity. In the
packet-losses scenario we compared our approach to an existing temporal splitting solution.

Note that the presented schemes build the descriptions in the temporal domain of the video,
but they can be combined with structures introducing the redundancy in the spatial domain, for
which many more solutions have been proposed in the literature. The increased flexibility thus
achieved may be exploited to better adapt the packetization to different situations of network
losses and also to improve the reconstruction at different levels.
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Chapter 3

Spatial MDC schemes

In this chapter we present the extension of our frame-based multiple description schemes to
two-dimensional signals, such as still images. If one uses a separable analysis for the classical
frame decomposition, this extension is simple. However, as in the temporal case, we propose
an additional subsampling of some of the wavelet subbands in order to obtain reduced redun-
dancy multiple description schemes. We saw that the post-transform subsampling operation
raises the problem of perfect reconstruction and proven that in the one-dimensional case the
subsampled schemes still satisfy the frame property. In the two-dimensional case the structures
obtained after the additional subsampling require more attention, first of all because several
subsampling strategies (by a factor of two in each spatial direction) are possible, and secondly
because not all of the resulting subsets of coefficients form an invertible structure.

In the following, we elaborate a new encoder design in view of obtaining two spatial de-
scriptions having reduced redundancy. We discuss criteria to choose among the possible MDC
schemes and evaluate their performance in different transmission scenarios.

Another contribution that we present in this chapter is a post-processing stage at the decoder
side based on iterative projections. The quantization information enclosed in the bitstream can
be used in order to enhance the reconstruction of the transmitted image in the event of losses
- whole description loss or random losses. The technique has some similarities with the one
proposed by Chou in [CMW99], which is based on Projections Onto Convex Sets [Roc70], but
it considers a more evolved iterative scheme as well as biorthogonal wavelet frames. The pro-
posed method is derived from the general algorithm allowing to minimize a quadratic convex
function under convex constraints, which was developed in [Com03].

The work elaborated in this chapter was partially presented in [PPPP05b], [PPPP05a].

3.1 Multiple spatial representations in the wavelet domain

In the following, as in the previous chapter, we start by presenting the wavelet frame decom-
position, which uses in this case separable pairs of two-dimensional dyadic filters.

We adapt the notations introduced in Chapter 2 to rejoin those from the classical wavelet
decomposition of images, thus denoting the approximation and the three detail subband coef-
ficients at resolution level j ∈ {1, . . . , J} by aj , dhj , dvj and ddj , respectively. The second letter
in the detail subbands corresponds to their spatial orientation: horizontal, vertical or diagonal.
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3. SPATIAL MDC SCHEMES

The letter J is used as before to indicate the resolution of the last level of wavelet decomposition
(coarsest resolution).

For the filter bank approach we consider, as before, (h[n])n∈Z and (g[n])n∈Z to be the impulse
responses of the analysis low-pass and high-pass filters on one of the dimensions. Under the
hypothesis of separability, the wavelet subbands in the two-dimensional case are computed by
cascading convolutions followed by decimations by a factor of 2:

aj [n,m] =
∑

k,l

aj−1[k, l]h[2n− k]h[2m− l]

dhj [n,m] =
∑

k,l

aj−1[k, l]h[2n− k]g[2m− l]

dvj [n,m] =
∑

k,l

aj−1[k, l]g[2n− k]h[2m− l]

ddj [n,m] =
∑

k,l

aj−1[k, l]g[2n− k]g[2m− l],

(3.1)

at each resolution level, j ∈ {1, . . . J}, where aj−1 stands for the approximation subband at the
upper (finer) resolution.

Our two-description schemes will be based on the classical wavelet decomposition given in
Eq. (3.1) up to the next-to-last level of decomposition, J − 1, and on a un-decimated decom-
position at the coarsest resolution level (as in the temporal MDC case). This is obtained by
considering a shift in the impulses responses of the filters in one spatial direction at a time or
in both.

Note: As in the temporal MDC case, the decomposition onto the shifted wavelet basis can
occur at any level of resolution, but, since we want to perform a post-transform subsampling
on some of the subbands, then the simplest case in terms of number of possible subband combi-
nations in the two descriptions is obtained with the shifting occurring at the coarsest resolution
level, J . In this manner, it is sufficient to consider the invertibility of our redundant schemes
at the last level of decomposition in order to asses the global ability of perfect reconstruction of
our structures.

Based on these considerations, let us give the equations leading to the wavelet subbands at
the coarsest resolution, in an oversampled context.

aJ(s,s′)
[n,m] =

∑

k,l

aJ−1[k, l]h[2n+ s− k]h[2m+ s′ − l]

dhJ(s,s′)
[n,m] =

∑

k,l

aJ−1[k, l]h[2n+ s− k]g[2m+ s′ − l]

dvJ(s,s′)
[n,m] =

∑

k,l

aJ−1[k, l]g[2n+ s− k]h[2m+ s′ − l]

ddJ(s,s′)
[n,m] =

∑

k,l

aJ−1[k, l]g[2n+ s− k]g[2m+ s′ − l],

(3.2)

where we have pointed out the shift parameters (s, s′) ∈ {0, 1} introduced in the impulse re-
sponses of the analysis filters in each spatial direction.

If we want to link these new notations with those introduced in Chapter 2, then the pair
(s, s′) = (0, 0) will correspond to coefficients obtained from BI whereas a pair (s, s′) 6= (0, 0)
indicates that BII has been used in at least one spatial direction.
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FIGURE 3.1: An example of oversampled filter bank for a separable 1-level wavelet decom-
position of the image x (obtained with a shift by one in the horizontal direction of impulse
responses of the analysis filters).

In Figure 3.1 we depict an example of two-dimensional oversampled wavelet decomposition
on one level and for the following choice of shifting parameters in the impulse responses of the
analysis filters: (s, s′) = (0, 0) for the first two branches and (s, s′) = (1, 0) for the next two. This
means that a second wavelet decomposition is obtained from shifted by one impulse responses
of the analysis filters in the horizontal direction. In the vertical one, the usual decomposition
filters are used.

Two remarks

A first obvious remark is that, as in the 1D-case presented in Chapter 2, the shifted represen-
tation is identical to the first one except for the coarsest resolution where we are introducing
some information diversity by considering the complementary positions for the decimation
operation. By keeping these two representations we have an oversampled scheme that forms a
wavelet frame and thus a shift-invariant structure, [PKC96]. Intuitively, such a decomposition
amounts to by-passing the decimation step in the transforms at the last level of decomposition,
thus leading to four times as many coefficients at the coarsest resolution. Other methods con-
sidering frame-based multiple descriptions are giving algorithms for efficient inversion of the
system, [GKV99], [BR05]. In [BR05] a restoration stage of the missing coefficients is used before
the synthesis oversampled filter bank. Instead of calculating a global pseudo-inverse for the
system, the problem is split into blocks and block inverses are computed such that lost samples
can be recovered before the actual synthesis stage.

A second remark concerns the chosen decimation positions in the previous approximation
subband. Going back to Figure 3.1, we note that any 4-branch subset of the oversampled
decomposition, containing one approximation and three detail subbands forms a complete
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3. SPATIAL MDC SCHEMES

wavelet basis (in other words any coefficient group given by cascading: H(z) with H(z), H(z)
with G(z), G(z) with H(z) and G(z) with G(z), respectively), thus a directly invertible system.

This is highlighted in Figure 3.1 by the dashed rectangles, for a non-“standard” combina-
tion of wavelet subbands. We shall retrieve these considerations a little further when we shall
present the exhaustive list of interesting invertible combinations in each of the three shifting
situations in the impulse responses of the analysis filters. Also, we have found out that some
of these non-classical combinations (in terms of the diversity in the inherent subsampling op-
eration associated with the wavelet transform) yield a smaller reconstruction error at the same
quantization step, when compared to the homogeneous subsampling, classically proposed.

Toward forming the descriptions

As announced at the beginning of the chapter, we eliminate the overlap between the two repre-
sentations by down-sampling all the detail coefficients from Eqs. (3.1) and (3.2) on a quincunx
grid. Thus, unlike other existing schemes [MG04b], it is worth noticing that with the proposed
scheme the redundancy in terms of coefficient number will be limited to the size of an approx-
imation subband at the coarsest resolution.

If we consider only the first two branches in Figure 3.1, an illustration of the quincunx sub-
sampling in the final subbands is shown in Figure 3.2. A detailed explanation of this strategy
follows below.
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↓2H(z)

G(z) ↓2
↓2

OR

kept pixel
eliminated pixel

a1[n,m]

dh1[n,m]
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↓2↓2↓2

OR

kept pixel
eliminated pixel
kept pixelkept pixel
eliminated pixeleliminated pixel

a1[n,m]a1[n,m]

dh1[n,m]dh1[n,m]

x[m,n]x[m,n]

FIGURE 3.2: Illustration of the proposed additional subsampling of the wavelet subbands (note
that the resulting approximation subbands are entirely kept in the multiple description scheme,
while the detail subbands are quincunx subsampled and only one of the components of this
subsampling is kept in the final representation).

In the two-dimensional case also, by discarding some wavelet coefficients we endanger the
frame property and thus the perfect reconstruction of our schemes. This issue is addressed a
little further and its resolution leads in the same time to a criterion for subband choice in each
description.

But for the moment let us explain more thoroughly the forming of the two descriptions in
the case of still images applications.

First of all, it is again convenient to use the polyphase representation in order to express the
transfer matrix of our multiple description system and study its invertibility.
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3.1. MULTIPLE SPATIAL REPRESENTATIONS IN THE WAVELET DOMAIN

Recall also that by the quincunx sampling of a 2-D field (x[n,m])n,m one gets two quincunx
polyphase components, that can be written as:

x(q)[n,m] = x[n+m+ q, n−m] (3.3)

where q ∈ {0, 1}.
The polyphase transfer matrix associated to the redundant system based on the impulse

responses used in Eqs. (3.1) and in Eq. (3.2), can be written in the frequency domain as a tensor
product of the polyphase matrices corresponding to the filter bank operating along one of the
dimensions.

Let

M0(ω) =

[
H0(ω) H1(ω)
G0(ω) G1(ω)

]

be the polyphase matrix corresponding to the filter bank operating along one of the dimensions.
H0 and H1 are the two polyphase components of H as follows:

H0(ω) =
∑

n

h2ne
−ınω =

1

2
[H(

ω

2
) +H(

ω

2
+ π)]

H1(ω) =
∑

n

h2n+1e
−ınω =

e
ıω
2

2
[H(

ω

2
)−H(

ω

2
+ π)]

and similar notations are used for G.

For the shifted filters (s or s′ equal to 1) we obtain:

M1(ω) =

[
H1(ω) eıωH0(ω)
G1(ω) eıωG0(ω)

]
.

The polyphase matrix for the 2D separable representation in Eq. (3.1) at the coarsest level or
in Eq. (3.2) is thus given by the Kronecker tensor product:M(r,r′)(ωx, ωy) = Mr(ωx)⊗Mr′(ωy),
where (r, r′) ∈ {(0, 0), (s, s′)}.

With these considerations, the convolutions followed by decimations from Eqs. (3.1) and
(3.2) can be put into the following matrix form:

[
C(0,0)(ωx, ωy)

C(s,s′)(ωx, ωy)

]
=

[
M(0,0)(ωx, ωy)

M(s,s′)(ωx, ωy)

]
X (ωx, ωy) , (3.4)

where we have denoted by X (ωx, ωy), the vector of the Fourier transforms of the 4 polyphase
components of the approximation coefficients obtained at the next to last level, temporally
denoted by (x[2n − k, 2m − l])n,m with (k, l) ∈ {0, 1}2, for easier reading. The left-hand side
term in Eq. (3.4) is the vector of the Fourier transforms of each coefficient subband, c(s,s′), at the
last level of decomposition in the two representations.

By highlighting the quincunx polyphase components of the coefficients with the quincunx
notation from Eq. (3.3), Eq. (3.4) can be rewritten under the form:




C(0)
(0,0)(ωx, ωy)

C(1)
(0,0)(ωx, ωy)

C(0)
(s,s′)(ωx, ωy)

C(1)
(s,s′)(ωx, ωy)




=

[
M̃(0,0)(ωx, ωy)

M̃(s,s′)(ωx, ωy)

] [
X (0)(ωx, ωy)

X (1)(ωx, ωy)

]
, (3.5)
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3. SPATIAL MDC SCHEMES

where, X (q), q ∈ {0, 1}, denote the two polyphase components of the Fourier transform of the
input signal, x(q). Also, for (r, r′) ∈ {(0, 0), (s, s′)}, we have used the notation:

M̃(r,r′)(ωx, ωy) =
[
M̃(0)

(r,r′)(ωx, ωy) M̃(1)
(r,r′)(ωx, ωy)

M̃(1)
(r,r′)(ωx, ωy) eı(ωx+ωy)M̃(0)

(r,r′)(ωx, ωy)

]
,

with

M̃(0)
(r,r′)(ωx, ωy) =

1

2
(M(r,r′)(νx, νy) +M(r,r′)(νx + π, νy + π))

M̃(1)
(r,r′)(ωx, ωy) =

eıνx

2
(M(r,r′)(νx, νy)−M(r,r′)(νx + π, νy + π)),

where νx = (ωx + ωy)/2 and νy = (ωx − ωy)/2.

In the left-hand side of Eq. (3.5) we end up with a subband coefficient vector having 16
components while the vectors X (q)(ωx, ωy), q ∈ {0, 1}, have 4 components each.

3.1.1 Forming low redundancy descriptions

Let us now describe several multiple description schemes each based on a specific subsampling
in Eqs. (3.1) and (3.2), as mentioned before.

We are focusing on equally important descriptions, therefore we shall favor the combina-
tions that contain in each description coefficients from both wavelet representations. According
to Figure 3.2, and in order to avoid obtaining too damaged side reconstructions, we preserve
one entire approximation subband in each description and distribute the subsampled detail
subbands among descriptions, such that the global redundancy of the MDC scheme equals the
size of one coarsest-level subband in the wavelet decomposition tree.

In the former section we have shown that the two representations only differ at the coarsest
resolution. Each of the two proposed descriptions contains one of the polyphase components
of the quincunx sampling of the detail subbands from finer resolutions. The coarsest level in
each description will be detailed further.

Considering Eq. (3.3), we build two descriptions as follows:

1. Description I is formed by a set of coefficients CI
J defined at resolution level J and the

detail subbands {dh(0)
j , dv

(0)
j , dd

(0)
j } defined at resolution levels j ∈ {1, . . . , J − 1};

2. Description II contains a set of coefficients CII
J defined at resolution level J as well the

other quincunx polyphase components of each detail subband: {dh(1)
j , dv

(1)
j , dd

(1)
j }, for

j ∈ {1, . . . , J − 1}.

Here, we have denoted by CI
J (resp. CII

J ) the set of all subband coefficients at the coarsest
resolution in the first (resp. second) description. These sets will be of the form:

CI
J = {aJ,(0,0), dh

(p1)
J,(r1,r′1)

, dv
(p2)
J,(r2,r′2)

, dd
(p3)
J,(r3,r′3)

}

CII
J = {aJ,(s,s′), dh

(p4)
J,(r4,r′4)

, dv
(p5)
J,(r5,r′5)

, dd
(p6)
J,(r6,r′6)

}
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where pi ∈ {0, 1}, i ∈ {1, . . . , 6}, denotes the selected quincunx polyphase component for the
i-th detail coefficient sequence at resolution level J . Also, for all i ∈ {1, . . . , 6}, we have either
(ri, r

′
i) = (0, 0) or (ri, r

′
i) = (s, s′).

Scheme redundancy: Note that if we would keep all the coefficients in the subbands ob-
tained at the coarsest resolution we would introduce a redundancy factor of 2. But, by trans-
mitting only 6 of the 12 polyphase components of the high-pass subbands, we are not introduc-
ing any redundancy in the detail coefficients. In this way, the redundancy factor at the coarsest
resolution level is limited to 10/8 = 1.25, or in other words, the overall redundancy of the MDC
scheme is of the size of an approximation subband.

We will consider all the possible overcomplete expansions, based on the proposed translated
impulse responses of the filters and discuss their perfect reconstruction ability. In the next sec-
tion we present the framework that led to the following conclusions concerning these possible
overcomplete expansions:

• The first one is given by s = s′ = 1 and will be denoted later on by the index (1, 1). In
this case only two possible sets of wavelet subbands from the two representations pro-
vide perfect reconstruction. These sets are given by the critically sampled decomposition
from Eq. (3.1) to which we added the approximation subband from Eq. (3.2) or by the
similar structure considering all of the second basis coefficients and the approximation
from the first basis as redundancy. In this situation perfect reconstruction is not an is-
sue since both schemes include the critically sampled decomposition. In addition, under
i.i.d. hypotheses on the quantization noise, we have determined numerically that these
schemes lead to smaller reconstruction errors than the critically sampled decomposition
at the same quantization step, as it will be shown later on. In this situation the central
decoder does indeed exploit the introduced redundancy in order to increase the quality
of the reconstruction.

• The other two possible shifts are a more interesting case. They are given by s = 1−s′. For
each of these combinations we obtain at least 12 schemes that can be perfectly recoverable.
These 12 schemes also yield a smaller reconstruction error as compared with the critically
sampled scheme.

These considerations are detailed further.

3.1.2 Perfect reconstruction issues

By discarding some of the detail coefficients, the global system no longer has a frame structure
for all combinations of polyphase components in the detail subbands. It is therefore important
to identify the combinations which ensure the perfect reconstruction. To this end we study the
invertibility of the polyphase transfer matrix of our system.

Following the strategy discussed in Section 3.1.1, we have to keep only 10 of the resulting 16
quincunx subsampled wavelet subbands: all 4 approximation components and 6 detail ones.
Once this choice has been made, let us denote by M̄(ωx, ωy) the submatrix of size 10×8 formed
by the corresponding selected lines of the polyphase transfer matrix in Eq. (3.5). The perfect
reconstruction of the proposed scheme is guaranteed if and only if M̄(ωx, ωy) is left-invertible
for all (ωx, ωy) ∈ [0, 2π)2. We designate this matrix as the quincunx polyphase transfer matrix
in the following.
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3.1.2.1 Invertibility of the polyphase matrix

The left invertibility of the polyphase transfer matrix can be studied by considering its sin-
gular value decomposition. A necessary and sufficient condition for perfect reconstruction is
that none of the eight so-obtained singular values vanishes on the unit bi-circle. For the three
possible combinations of s and s′ (different from (0, 0)) we have studied the evolution on the
unit bi-circle of the minimum singular values of each quincunx polyphase transfer matrix cor-
responding to one of the considered low-redundancy schemes. Considering the shift of the

(a) (b)

(c) (d)

FIGURE 3.3: Minimum singular value, v, of the quincunx polyphase transfer matrix as
a function of frequency for schemes: (a) DI ∪ DII = {a(0,0), dh(0,0), dv(0,0), dd(0,0), a(1,1)},
(b) the critically sampled decomposition {a(0,0), dh(0,0), dv(0,0), dd(0,0)}, (c) DI ∪ DII =
{a(0,0), dh(0,1), dv(0,0), dd(0,0), a(0,1)}, (d) one of the combinations that do not yield perfect re-
construction.
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filters impulse responses by (1, 1), we show in Fig. 3.3 the variation w.r.t. the frequency of the
minimum singular value of one of the possible choices for the matrix M̄(ωx, ωy). The invert-
ibility of the system is ensured, since for all (ωx, ωy) ∈ [0, 2π)2 the minimum singular value
is nonzero. In Fig. 3.3 we also show a less obvious combination of polyphase quincunx detail
subbands, that yields perfect reconstruction, as well as a combination that does not.

The two descriptions forming our scheme will be denoted by DI and DII in Fig. 3.3. Let us
now give two examples of MD schemes. A first scheme corresponds to (s, s′) = (1, 1) and it
has the following distribution of the coefficients between the two descriptions at the last level:

DI
(1,1) = {a(0,0), dh

(0)
(0,0), dv

(0)
(0,0), dd

(0)
(0,0)} and DII

(1,1) = {a(1,1), dh
(1)
(0,0), dv

(1)
(0,0), dd

(1)
(0,0)}. In this case,

the perfect reconstruction that is reflected by Fig. 3.3 can be deduced more directly by observing
that the a(1,1) approximation sequence comes in addition to the decomposition onto a basis and
thus the overall decomposition is clearly invertible.

A second perfect reconstruction scheme, obtained with (s, s′) = (0, 1), is formed

by the following descriptions: DI
(0,1) = {a(0,0), dh

(0)
(0,1), dv

(0)
(0,0), dd

(0)
(0,0)} and DII

(0,1) =

{a(0,1), dh
(1)
(0,1), dv

(1)
(0,0), dd

(1)
(0,0)}. This combination leads to a smaller reconstruction error than

in the critically sampled case at the same quantization step, as will be illustrated in the next
section.
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FIGURE 3.4: Example of the transmission chain for one of the MDC schemes given by the trans-
fer matrix M̄, in which we highlight the hypothesis that the quantization can be viewed as an
additive noise on the MDC coefficients c̄[n,m].

The study of the singular values of the matrix M̄(ωx, ωy) in each situation also provides a
means to evaluate the mean squared reconstruction error (MSE), that will be denoted here by
eM̄# . Indeed, if we consider the pseudoinverse of the quincunx transfer matrix, denoted by
M̄#, such that M̄#M̄ = I8, then the reconstruction error that we will be showing to depend
on the singular values of M̄# can be cast on the singular values of M̄.

Let us also denote the Fourier transform of the coefficient vector representing the chosen
combination of subbands that form the two descriptions by C̄(ωx, ωy). Then, using one of the
possible quincunx transfer matrices, M̄, this coefficient vector is obtained as follows:

C̄(ωx, ωy) = M̄(ωx, ωy)X (ωx, ωy)

to which corresponds the spatial domain coefficient vector c̄[n,m].

The so-obtained wavelet coefficients are further uniformly quantized with a step of δ and
let us consider that the quantization operation introduces the additive i.i.d. noise wδ as in
Figure 3.4. In other words the quantized coefficients, denoted by c̄q[n,m] in the spatial domain,
are given by:

c̄q[n,m] = c̄[n,m] + wδ[n,m]
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Let us now express the mean squared reconstruction error for the signal x as being ex =
E‖x− x̂‖2, and by considering the frame operator F associated to the polyphase quincunx
transfer matrix M̄, and its dual operator denoted by F̃ , we get:

ex = E{‖F̃ c̄− F̃ c̄q‖2} = E{‖F̃wδ‖2} ≤ E{‖F̃‖2‖wδ‖2}

If the quantization step, δ, equals one1, and by expressing wδ as wδ = c̄q − c̄, then E{‖wδ‖2} =
σ2

wδ
and the reconstruction error will be mainly bounded by the norm of the dual operator F̃ for

an i.i.d quantization noise of zero mean and standard deviation of 1. Moreover, we can relate
to the norm of the associated inverse quincunx transfer matrix M̄# and thus to the norm of the
analysis quincunx transfer matrix M̄. And by using the singular values decomposition of M̄
we can write that:

‖M̄‖2 = trace(M̄tM̄) =
8∑

i=1

vi
2,

where we have denoted by vi, i ∈ {1, . . . , 8} the singular values of M̄.

If we considerNf points in each spatial frequency direction and compute the singular values
of M̄ in all of these points, then it immediately follows that the mean squared error (MSE)
generated by the reconstructed signal x̂ for a specific MDC scheme given by this transfer matrix
can be expressed as:

eM̄# =
1

N2
f

Nf∑

ωxk
=1

Nf∑

ωyl
=1

∑

i∈{1, ... 8}

1

vi(ωxk
, ωyl

)2
, (3.6)

where vi(ωx, ωy) stands for the ith singular value of M̄(ωx, ωy) at each spatial frequency.

The next section presents all the combinations of wavelet subbands, into a two description
scheme, that lead to interesting invertible structures from the MSE point of view. By a slight
abuse of notations we are designating the MSE computed with Eq. (3.6) by eM̄# for all the
MDC schemes, even though each one is given by a different quincunx transfer matrix M̄. We
are equally computing in the same way the MSE for a critically sampled decomposition and
we are designating it by eM#

(0,0)
.

3.1.2.2 The invertible combinations of subbands

We now verify that a smaller mean square reconstruction error can be obtained with the pro-
posed redundant schemes in the absence of network losses and for the same quantization step
at the central decoder.

We have performed this study for three possible frame constructions based on the shifting
parameters (s, s′) ∈ {(0, 0), (1, 0), (0, 1), (1, 1)} in the analysis filters (each one including the pair
(s, s′) = (0, 0)) that we have discussed in this chapter.

From a practical point of view, recall that all the possible two-description schemes formed
on this wavelet frame are given by the 10 × 8 minors of the 16 × 8 global transfer matrix of
the system, corresponding to an overcomplete decomposition (or in other words to an un-
decimated wavelet decomposition). Recall also that the factor 16 is given by the two polyphases
of the proposed quincunx subsampling of the wavelet subbands.

1We are choosing this stepsize in order to satisfy a high rate approximation for which the quantization noise can
be considered as an uniform i.i.d random variable.
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3.1. MULTIPLE SPATIAL REPRESENTATIONS IN THE WAVELET DOMAIN

However, as we said before, not all of the 10 × 8 minors of the global polyphase matrix
are invertible and, among those that are, not all lead to a smaller reconstruction error than
the critically sampled wavelet scheme. Therefore, we identify and present here only those
combinations that satisfy both properties.

Let us recall the global wavelet coefficient vector corresponding to the fully overcomplete
representation for the scheme given by the shifting parameters (s, s′) ∈ {(0, 0), (1, 0)}, in which
we have highlighted the quincunx components as before (see Eq. (3.5) in Fourier domain),
denoted here by:

C = [C
(0)
(0,0)︸ ︷︷ ︸

1×4

C
(1)
(0,0)︸ ︷︷ ︸

5×8

C
(0)
(1,0)︸ ︷︷ ︸

9×12

C
(1)
(1,0)︸ ︷︷ ︸

13×16

]t

with

C
(i)
(s,s′) = [A

(i)
(s,s′) Dh

(i)
(s,s′) Dv

(i)
(s,s′) Dd

(i)
(s,s′)]

The positions (indexes) of each quincunx polyphase component in the global coefficient vec-
tor C of the overcomplete representation are highlighted with the braces under each coefficient

block C
(i)
(s,s′).

We are going to present the most interesting combinations of subbands by referring to them
through these indexes. These are the combinations that lead to a smaller reconstruction error
than a complete wavelet basis (critically sampled and encoded at the same quantization step)
and they are given in Table 3.1 for this scheme. Moreover, we want to highlight the indexes
corresponding to the kept polyphase quincunx components of the detail subbands from the
two representations, therefore we are regrouping in the first four “Subband Index” columns
the ones that correspond to the two approximation subbands2, thus leaving the last six “Sub-
band Index” columns for the indexes of the detail subsets of coefficients - that change with the
combination number.

In order to have a clearer idea of the actual subsets of wavelet subbands that correspond to
the indices given in Table 3.1, we are equally giving the Table 3.2, in which we have, in addition,
highlighted the most efficient detail combinations in terms of reconstruction error.

Note that the smallest reconstruction error in Table 3.2 is obtained for the central decoder
combinations which contain whole detail subbands given by a certain analysis filter instead of
only halves of them, or in other words only one of the two quincunx polyphase components
from each basis (such as the combination #2 = {1, 5, 9, 13, 2, 3, 4, 6, 8, 11} , in Table 3.1,

corresponding to the coefficients: {a(0,0), dh(0,0), dd(0,0), a(1,0), dv
(0)
(0,0), dv

(0)
(1,0)}).

For the critically sampled wavelet basis, which would correspond for instance to the set of
indices {1, 5, 2, 3, 4, 6, 7, 8} in Table 3.1, we obtain eM#

(0,0)

= 8.1882 at a quantization step of

1, according to Eq (3.6).

In this manner we retrieve the result announced before, in which non-homogeneous sub-
sampling (with respect to the chosen positions) in the detail subbands as compared to the clas-
sical critically sampled decomposition can form complete bases and, if taken with an additional
approximation subband, can lead to better reconstruction performances.

2Again, the quincunx components of the approximation subbands are explicitly given for the homogeneity of
the representation.
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No. Subband Index eM̄#

1 1 5 9 13 2 3 4 6 7 8 6.9801
2 1 5 9 13 2 3 4 6 8 11 7.8747
3 1 5 9 13 2 3 4 6 8 15 7.8747
4 1 5 9 13 2 4 6 7 8 11 7.8747
5 1 5 9 13 2 4 6 7 8 15 7.8747
6 1 5 9 13 2 4 6 8 11 15 6.9801
7 1 5 9 13 3 7 10 12 14 16 6.9801
8 1 5 9 13 3 10 11 12 14 16 7.8747
9 1 5 9 13 3 10 12 14 15 16 7.8747
10 1 5 9 13 7 10 11 12 14 16 7.8747
11 1 5 9 13 7 10 12 14 15 16 7.8747
12 1 5 9 13 10 11 12 14 15 16 6.9801

TABLE 3.1: Subband choices (i.e. lines forming the M̄(s,s′) minor in the global polyphase trans-
fer matrix from Eq. (3.5)) for invertible two-description schemes based on the shift parameters
(s, s′) ∈ {(0, 0), (1, 0)}.

No. Approximation Subbands Detail Subbands eM̄#

1 a(0,0) a(1,0) dh(0,0) dv(0,0) dd(0,0) - 6.9801

2 a(0,0) a(1,0) dh(0,0) dd(0,0) dv
(0)
(0,0) dv

(0)
(1,0) 7.8747

3 a(0,0) a(1,0) dh(0,0) dd(0,0) dv
(0)
(0,0) dv

(1)
(1,0) 7.8747

4 a(0,0) a(1,0) dh(0,0) dd(0,0) dv
(1)
(0,0) dv

(0)
(1,0) 7.8747

5 a(0,0) a(1,0) dh(0,0) dd(0,0) dv
(1)
(0,0) dv

(1)
(1,0) 7.8747

6 a(0,0) a(1,0) dh(0,0) dd(0,0) dv(1,0) - 6.9801

7 a(0,0) a(1,0) dv(0,0) dh(1,0) dd(1,0) - 6.9801

8 a(0,0) a(1,0) dv
(0)
(0,0) dh(1,0) dd(1,0) dv

(0)
(1,0) 7.8747

9 a(0,0) a(1,0) dv
(0)
(0,0) dh(1,0) dd(1,0) dv

(1)
(1,0) 7.8747

10 a(0,0) a(1,0) dv
(1)
(0,0) dh(1,0) dd(1,0) dv

(0)
(1,0) 7.8747

11 a(0,0) a(1,0) dv
(1)
(0,0) dh(1,0) dd(1,0) dv

(1)
(1,0) 7.8747

12 a(0,0) a(1,0) dh(1,0) dv(1,0) dd(1,0) - 6.9801

TABLE 3.2: Combinations of subbands at the coarsest resolution, which lead to invertible two-
description schemes for the shifting parameters (s, s′) ∈ {(0, 0), (1, 0)} in the analysis filters.

The same tables are presented for the frame given by the analysis filters h(s,s′) and g(s,s′),
with (s, s′) ∈ {(0, 0), (0, 1)} this time. By exploiting the symmetry between the two schemes
((s, s′) = (1, 0) or (s, s′) = (0, 1)) we can immediately give the following results3.

The 10× 8 minors of the global polyphase transfer matrix that lead to good invertible com-
binations in terms of MSE at the same quantization step are given by the line combinations
presented in Table 3.3. The equivalent combinations for the actually considered wavelet sub-
bands are presented in Table 3.4.

3See also Figure 3.1.
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No. Subband index eM̄#

1 1 5 9 13 2 3 4 6 7 8 6.9801
2 1 5 9 13 2 3 4 7 8 10 7.8747
3 1 5 9 13 2 3 4 7 8 14 7.8747
4 1 5 9 13 2 6 11 12 15 16 6.9801
5 1 5 9 13 2 10 11 12 15 16 7.8747
6 1 5 9 13 2 11 12 14 15 16 7.8747
7 1 5 9 13 3 4 6 7 8 10 7.8747
8 1 5 9 13 3 4 6 7 8 14 7.8747
9 1 5 9 13 3 4 7 8 10 14 6.9801
10 1 5 9 13 6 10 11 12 15 16 7.8747
11 1 5 9 13 6 11 12 14 15 16 7.8747
12 1 5 9 13 10 11 12 14 15 16 6.9801

TABLE 3.3: Subband choices for invertible two-description schemes based on the shift parame-
ters (s, s′) ∈ {(0, 0), (0, 1)}

No. Approximation Subbands Detail Subbands eM̄#

1 a(0,0) a(0,1) dh(0,0) dv(0,0) dd(0,0) - 6.9801

2 a(0,0) a(0,1) dh
(0)
(0,0) dv(0,0) dd(0,0) dh

(0)
(0,1) 7.8747

3 a(0,0) a(0,1) dh
(0)
(0,0) dv(0,0) dd(0,0) dh

(1)
(0,1) 7.8747

4 a(0,0) a(0,1) dh(0,0) dv(0,1) dd(0,1) - 6.9801

5 a(0,0) a(0,1) dh
(0)
(0,0) dv(0,1) dd(0,1) dh

(0)
(0,1) 7.8747

6 a(0,0) a(0,1) dh
(0)
(0,0) dv(0,1) dd(0,1) dh

(1)
(0,1) 7.8747

7 a(0,0) a(0,1) dv(0,0) dd(0,0) dh
(1)
(0,0) dh

(0)
(0,1) 7.8747

8 a(0,0) a(0,1) dv(0,0) dd(0,0) dh
(1)
(0,0) dh

(1)
(0,1) 7.8747

9 a(0,0) a(0,1) dv(0,0) dd(0,0) dh(0,1) - 6.9801

10 a(0,0) a(0,1) dh
(1)
(0,0) dh

(0)
(0,1) dv(0,1) dd(0,1) 7.8747

11 a(0,0) a(0,1) dh
(1)
(0,0) dv(0,1) dd(0,1) dh

(1)
(0,1) 7.8747

12 a(0,0) a(0,1) dh(0,1) dv(0,1) dd(0,1) - 6.9801

TABLE 3.4: Combinations of subbands at the coarsest resolution, which lead to invertible two-
description schemes for the shifting parameters (s, s′) ∈ {(0, 0), (0, 1)} in the analysis filters.

The only other possible two-descriptions scheme given by the proposed frame decomposi-
tion is the one using filters with shifting parameters (s, s′) ∈ {(0, 0), (1, 1)}. For this scheme we
have obtained only two combinations that lead to a smaller MSE than the critically sampled de-
composition. These include the critically sampled decomposition for the corresponding (s, s′)
analysis filters combination to which the approximation subband for the other basis is added.
The MSE obtained in this case is of 6.8901 as compared to 8.1882 for the critically sampled basis
at the same quantization step.

In Table 3.5 we give the corresponding transfer matrix minors. As before, this is equivalent
to the subband choices given in Table 3.6.

From this study we can conclude that the proposed MDC schemes offer two reconstruction
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No. Subband Index eM̄#

1 1 5 9 13 2 3 4 6 7 8 6.9801
2 1 5 9 13 10 11 12 14 15 16 6.9801

TABLE 3.5: Subband choices for invertible two-description schemes based on the shift parame-
ters (s, s′) ∈ {(0, 0), (1, 1)}

No. Approximation Subbands Detail Subbands eM̄#

1 a(0,0) a(1,1) dh(0,0) dv(0,0) dd(0,0) 6.9801

2 a(0,0) a(1,1) dh(1,1) dv(1,1) dd(1,1) 6.9801

TABLE 3.6: Combinations of subbands at the coarsest resolution, which lead to invertible two-
description schemes for the shifting parameters (s, s′) ∈ {(0, 0), (1, 1)} in the analysis filters.

quality levels which can be expected better than the critically sampled decomposition (for the
same encoding conditions, under a high rate hypothesis and in the absence of losses). These
values of eM̄# confirm numerically the inherent symmetries that exist amongst schemes con-
sidering a frame representation based on unions of shifted wavelet basis.

For all these schemes that represent good two-description choices we have studied recon-
struction strategies based on convex optimization techniques.

3.1.3 Transform implementation considerations

As in the previous chapter, the separable wavelet decomposition can be efficiently imple-
mented via the popular lifting scheme. In the following we give a quick overview of this
aspect, highlighting the particular implementation for biorthogonal 9/7 filter banks that we
are considering for the application proposed in this chapter.

Since we are in a separable case, we are going to give the announced results only on one
of the image dimensions and we are recalling some of the notations that we have used in the
temporal MDC schemes4.

The basic one stage transform of a one-dimensional signal split into odd and even samples
can be represented as in Figure 3.5.

p1(z)

x2n+1 dn

x2n an

FIGURE 3.5: One stage transform of the input signal.

4e.g. the spatial index in either polyphase component of the signal x2n, x2n+1 or in the wavelet subbands is
becoming a subscript index again.
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Then from Figure 3.5 and with the previous notations we have:

an = x2n

dn = x2n+1 +
∑

k

p1[k]x2n−2k

for one set of approximation and detail coefficients respectively.

For the considered 9/7 biorthogonal filter pairs used in the two representations we choose
a lifting factorization [DS98], that can be implemented as in Figure 3.6, where pk(z), k ∈
{1, . . . , 4} are Laurent polynomials of the form:

p1(z) = p1(1 + z),

p2(z) = p2(1 + z−1),

p3(z) = p3(1 + z),

p4(z) = p4(1 + z−1),

and the factors pi, i ∈ {1, . . . , 4} are computed according to [DS98]:

p1 ≈ −1.586134342,

p2 ≈ −0.05298011854,

p3 ≈ 0.8829110762,

p4 ≈ 0.4435068522,

p5 ≈ 1.149604398.

p3(z) p4(z)p1(z) p2(z)

p5

1
p5

FIGURE 3.6: Lifting formulation of the 9/7 biorthogonal filter pair on one of the dimensions.

In order to compute the adjoint operator, we express the scalar product in which we can
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identify the recovered input samples as follows:
∑

n

anãn +
∑

n

dnd̃n =

∑

n

ãnx2n +
∑

n

d̃n(x2n+1 +
∑

k

p1(k)x2n−2k) =

∑

n

ãnx2n +
∑

n

d̃nx2n+1 +
∑

n

d̃n

∑

k

p1(k)x2(n−k) =

∑

n

ãnx2n +
∑

n

d̃nx2n+1 +
∑

n

d̃n

∑

l

p1(n− l)x2l =

∑

n

ãnx2n +
∑

n

d̃nx2n+1 +
∑

l

∑

n

p1(n− l)d̃nx2l =

∑

n

ãnx2n +
∑

n

d̃nx2n+1 +
∑

n

∑

l

p1(l − n)d̃lx2n =

∑

n

[ãn +
∑

l

p1(l − n)d̃l]x2n +
∑

n

d̃nx2n+1

and where we have denoted the dual coefficients by ·̃.
The outputs of the adjoint operator are thus given by:

x̃2n+1 = d̃n

x̃2n = ãn +
∑

l

p1(l − n)d̃l =

ãn +
∑

l

p̃1(l − n)d̃l

which can be schematically represented as in Figure 3.7.

p1(z−1)

ãn

d̃n

x̃2n

x̃2n+1

FIGURE 3.7: Adjoint one stage lifting transform of the input signal.

By extension, the dual lifting of the structure in Figure 3.6 is shown in Figure 3.8.

3.1.3.1 Boundary effects in the lifting scheme

Finding the adjoint of the lifting operator as in section 3.1.3 requires some caution on the image
borders. If its computation is done in the same manner all over the image, one is confronted
with serious boundary effects. To overcome this drawback we apply a special treatment on the
borders which is given by:

an = x2n

dn = x2n+1 +
∑

k

p1(k, n)x2n−2k
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p4(z−1) p3(z−1) p2(z−1) p1(z−1)

p5

1
p5

FIGURE 3.8: The dual lifting scheme.

where the corresponding operator also depends on the borders.

Thus the scalar product will be:

∑

n

anãn +
∑

n

dnd̃n =

∑

n

ãnx2n +
∑

n

d̃n(x2n+1 +
∑

k

p1(k, n)x2n−2k) =

∑

n

ãnx2n +
∑

n

d̃nx2n+1 +
∑

n

d̃n

∑

k

p1(k, n)x2n−2k =

∑

n

ãnx2n +
∑

n

d̃nx2n+1 +
∑

n

d̃n

∑

l

p1(n− l, n)x2l =

∑

n

ãnx2n +
∑

n

d̃nx2n+1 +
∑

l

∑

n

d̃lp1(l − n, l)x2n =

∑

n

x2n[ãn +
∑

l

d̃lp1(l − n, l)] +
∑

n

d̃nx2n+1

The outputs of the adjoint operator are therefore:

x̃2n = ãn +
∑

l

d̃lp1(l − n, l)

x̃2n+1 = d̃n

3.2 Optimized MD reconstruction

At the decoder stage we can enhance the quality of the reconstruction by solving an optimiza-
tion problem under convex constraints. These constraints are provided by the quantization
operation, which can be incorporated as prior knowledge on our system at the decoder. Other
constraints such as the light intensity of each pixel can equally be considered.

In the following we are, at first, briefly reviewing some notions of convex optimization
mainly through a set theoretic approach and, subsequently, we are presenting our proposed
optimization algorithm.

For more in depth information about convex analysis and the related techniques one can
refer to [Roc70], [BV04], for instance.
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3.2.1 A brief overview on convex set theoretic estimation

We are presenting here the guidelines for a set theoretic approach to convex optimization. This
is useful in order to grasp the terminology that we are employing in the next section, as well as
the motivations behind the chosen algorithm. We are mainly relying on the theory and results
presented in [Com93] and [Com97].

When a signal recovery problem needs to be solved one can resort to convex analysis tech-
niques for instance, provided that a convex formulation can be given.

Consider a signal x in a real Hilbert space,H, endowed with a norm ‖.‖, that is degraded by
some operation (either physical noise or some analysis transform such as Fourier or wavelet
followed by some compression operation, for example). In this situation, the optimization
problem to solve consists in finding the best possible estimation for x and, most of the time, it
is a constrained one.

Choosing an objective function for the optimization problem is not always an easy task.
This is due to the fact that, even for simple practical goals, it is sometimes hard to formalize
in a strict, mathematical way the optimization criterion. Moreover, the interest in reaching op-
timality of the solution might sometimes disagree with the subjective perception that governs
the expected result. It is known, for instance, that the human eye is not an optimal least-squares
detector which makes the choice of an objective function in the sense of squared estimation er-
ror a poor candidate even if it solves efficiently the optimization problem. Besides all that,
one should make use of the available a priori information about the process. The most reason-
able approach to obtain acceptable solutions is to incorporate all available information into the
problem formulation. This could lead to an unsolvable optimization problem though, since the
constraint information may be very diverse.

In order to determine the acceptability of a solution, the information about the problem
should be appropriately classified. Combettes proposes in [Com93] the following classification:

• information about the solution itself (meaning physical constraints that can be imposed
on the solution);

• information about the system (properties of the physical system that generated the data)
- generally this is incorporated in the problem formulation;

• information about the external factors (model uncertainty, noise etc.).

Suppose that a solution for the optimization problem exists and that it lies in a space Ξ ⊂ H.
The solution space should be chosen as the one that contains the objects directly described by
most of the available information. Suppose also that we can define families (ψi)i∈I of convex
constraints for the objective function, where I is a given finite or countably infinite index set.
These constraints define the following closed and convex property sets:

(∀i ∈ I) Si = {a ∈ Ξ | a satisfies ψi}.

Note that if such a formulation is not possible one can replace the property sets by their convex
hull.

The set theoretic estimation approach is given by the pair (Ξ, (Si)i∈I) and is based on finding
a point in the so-called “feasibility” set, given by:

S =
⋂

i∈I

Si,
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instead of finding the strict optimum of the problem [Com93]. The set theoretic formulation is
said to be consistent if and only if the intersection of these property sets is non-void: S 6= ∅, fair
if the original signal x lies in S and ideal if S = {x}. Inconsistency arises for instance if mutually
exclusive constraints are included. In general, consistency is difficult to check analytically and
is often revealed by the convergence behavior of the solution algorithm. Note also that averag-
ing feasible solutions yields a feasible solution in the convex case and this might be useful in
order to speed up the convergence of the optimization algorithm.

Feasibility algorithms

Finding a∗ in the feasibility set S, has mainly been tackled by the so-called “Projections Onto
Convex Sets” (POCS) method, [Roc70], which consists in sequentially projecting an initial es-
timate of x onto the individual convex property sets, following a periodic schedule, assuming
that the index set is finite: I = {1, . . . ,M}. The point a∗ will be in this situation the weak limit
of the iterative sequence (an)n≥0 given by:

∀n ∈ N, an+1 = P(n(mod M)+1)Si
(an)

with PnSi
designating the projection operator of an onto Si at iteration n.

Recall that, given a non-empty set A ⊂ H and a point z ∈ H, the distance between z and A
is given by:

dA(z) = inf{‖z − y‖ | y ∈ A}.

Moreover, the projection of z onto A, defines the unique point PA(z) ∈ A satisfying:

∀y ∈ A, 〈y − PA(z)|z − PA(z)〉 ≤ 0. (3.7)

Obviously,

‖z − PA(z)‖ = dA(z).

POCS methods encounter some drawbacks however (as explained in [Com97]):

• the convergence of the algorithm is usually quite slow;

• only one set is processed by iteration, therefore parallelizing the algorithm is not possible;

• an exact projection is computed at each iteration, and this might be numerically chaleng-
ing;

• the method is limited to problems having a finite number of constraints.

More efficient algorithms, [Com97], can be proposed under some relaxations of the problem
formulation and some additional assumptions, as we will see shortly. The main idea in this
new optimization strategy can be summarized as follows. In order to find a∗ ∈ S as before, a
sequence of signals (an)n∈N is built according to the following steps:

1. At each iteration a series of approximate projections (Pi,n(an))i∈In of (an) onto a subfam-
ily of property sets (Si)i∈In with In ⊂ I is computed;
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2. The obtained projections are averaged:

dn =
∑

i∈In

wi,nPi,n(an).

3. The new estimation is built as follows:

an+1 = an + λn(dn − an),

where λn is a relaxation parameter λn ∈ (0, 2Ln) and Ln ≥ 1. The usual values in convex
optimization for Ln are lying in (0, 2). With this new relaxation parameter the increased
speed for the convergence of the algorithm is ensured.

Other common algorithms encountered in the literature for convex optimization are Kacz-
marz’s and Cimmino’s algorithms, the relaxation method of Agmon-Motzkin-Schoenberg, re-
laxed POCS, Dijkstra’s algorithm and anchor point methods, (see [Gas66], [MS54], [Agm54],
[BD86] and other references within [Com93]).

Quadratic signal recovery

We are now going to present some considerations that are closer to the methodology employed
in solving our specific reconstruction problem. These paragraphs are based on recent advances
in convex programming given in [Com03].

Suppose as before that we have to find an estimation for a signal x in a real Hilbert space,
H, endowed with the norm ‖.‖ and associated scalar product 〈·, ·〉, such that this estimation
satisfies all the M convex constraints that can be a priori defined for the system, and suppose
that these constraints are quadratic. If we consider the linear operators Lj , and the reference
signals rj , then these constraints can be put in the form:

‖Ljx− rj‖2 ≤ ξj , (3.8)

where ξj are some given bounds. Normally j would take values in {1, . . . ,M}, and Eq. (3.8)
would define the convex property sets, Sj , as before, which in their turn would define the
feasibility set SM =

⋂
j∈{1,...,M} Sj for the searched estimation of x.

However, in reality, some of these constraints may not have known bounds. Assume that
p of the M constraints have unknown bounds, then the so-called “hard” feasibility set can be
defined as the intersection of only the convex sets that are precisely defined:

S =
⋂

k∈{p+1,...,M}
Sk.

The convex optimization problem that can be solved in this situation is the following.

Problem 1.

Find x̂ ∈ S such that J(x̂) = infx∈S J(x), where the objective function J is defined as a weighted
average over the p un-precise quadratic constraints:

J(x) =

p∑

j=1

αj‖Ljx− rj‖2,
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3.2. OPTIMIZED MD RECONSTRUCTION

with (αj)j∈{1,...,p} in (0,+∞). The optimization must be done under the constraints:

‖Lkx− rk‖2 ≤ ξk, k ∈ {p+ 1, . . . ,M}.

This problem is thus tantamount to solving a constrained quadratic minimization, which is
usually solved iteratively since a closed form solution for it is not guaranteed. From a practical
point of view, finding the feasible signal x̂ in Problem 1 translates to finding the signal whose
linear transformations Ljx are closest, in a least squares sense, to the reference signals rj , with
j ∈ {1, . . . , p}.

The methods discussed in [Com03], and on which our proposed algorithm relies, are par-
ticularly suitable for large scale applications of signal recovery under convex constraints. First
of all, a block iterative parallel structure is defined, which helps to speed up the computation
by taking advantage of parallel processing units. In addition, by using local linearizations, the
exact enforcement of the constraints is relaxed to an approximate one, thus contributing again
to the convergence speed.

Considering again Eq. (3.7) that defines the projection of x onto a closed convex set A ⊂ H,
this is usually achieved through an iterative procedure. In the particular case in which A is in
fact a half-space of H denoted by: Ah = {y ∈ H ‖ 〈y, u〉 ≤ η}, with u ∈ H {0} and η ∈ R, the
projection PAh

(x) is given explicitly by:

PAh
(x) =

{
x+ η−〈y,u〉

‖u‖2 u, if 〈y, u〉 > η

x, if 〈y, u〉 ≤ η.

It is thus useful to be able to express the problem with this approximation.

A geometrical representation of the block-iterative algorithm, that we are reproducing from
[Com03], is given in Figure 3.9. The algorithm is initialized with the point x0 and at each it-
eration i an outer approximation Ai is built at the intersection of two closed half-spaces that
contain the feasibility set S. The ellipses centered in x0 represent the level curves for the crite-
rion J .

3.2.2 Optimized decoding problem formulation

Let us now discuss the specific application of the above theory to the quality enhancement of
the received description(s) at the decoder.

We adopt more concise notations for simplicity:

• αi = (αi[j])1≤j≤N = Fix, i ∈ {1, 2} is the vector of coefficients resulting from the decom-
position of an image x onto one of two biorthogonal wavelet bases; the image x is viewed
as a column vector in RN where N is the number of pixels of x.

• α̂i = Qδ(αi) denotes the vector of quantized coefficients using a uniform quantizer Qδ

with quantization step δ ∈ R∗
+ (the extension to non-uniform/distinct quantizers is im-

mediate). From the received description(s), a subset (α̂i[j])j∈Ji
of quantized coefficients

is known, where Ji ⊂ {1, . . . , N}.
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FIGURE 3.9: An illustration for the iterative projections algorithm which minimizes the objec-
tive function J over the shaded area by decomposing the global minimization problem into a
sequence of simpler minimizations (over outer approximations to the feasibility set S).

Note that, when J1 = ∅ or J2 = ∅, the reconstruction of x is achieved by directly inverting
F2 or F1. This situation however never arises for the central decoder and it also happens only
in specific cases for the side decoders. Subsequently, we address the general case when both J1

and J2 are non empty.

In our case the a priori information about our problem is modeled by the quantization con-
straints:

∀i ∈ {1, 2},∀j ∈ Ji, |αi[j]− α̂i[j]| ≤
δ

2
. (3.9)

The constraints (3.9) define the closed hyperslabs5

Si,j = {x | − δ

2
≤ fi[j]

Tx− α̂i[j] ≤
δ

2
}

where fi[j] is the j-th basis function of the i-th representation (the j-th column of the matrix Fi).
The decoded image should therefore belong to the closed convex set S =

⋂
i∈{1,2}

⋂
j∈Ji

Si,j .

Let x0 be a reference image we expect the decoded image to be close to. Such a reference
image may correspond to an initial estimate of the original image.

The decoding problem can be cast as:

Problem 2.

Find x̂ = arg minx∈S ‖x− x0‖, where ‖.‖ denotes the euclidean norm of RN .

This means that x̂ is the projection of x0 onto S. As we have mentioned in the previous
section, usually, no closed form expression of x̂ exists and an iterative optimization algorithm
needs to be used to compute it.

5A hyperslab is defined as the set {a ∈ Ξ |αi ≤ fi(a) ≤ βi} for a non-zero continuous real functional fi defined
over a vector space Ξ and αi, βi ∈ R
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3.2. OPTIMIZED MD RECONSTRUCTION

Before presenting such an algorithm, we note that the projection onto each set Si,j is easily
expressed as

PSi,j
(x0) = x0 − γi[j]

fi[j]

‖fi[j]‖
where γi = Ti(αi,0) with αi,0 = Fix0. Each operator Ti is such that, for all j 6∈ Ji, γi[j] = 0 and,
for all j ∈ Ji,

γi[j] =





αi,0[j]− δ
2 − α̂i[j]

‖fi[j]‖
, if αi,0[j] >

δ
2 + α̂i[j]

0, if |αi,0[j]− α̂i[j]| ≤ δ
2

αi,0[j] + δ
2 − α̂i[j]

‖fi[j]‖
, if αi,0[j] < − δ

2 + α̂i[j].

A similar multiple description scheme for images has been developed in [CMW99] and it
uses overcomplete expansions obtained with frame decompositions obtained by concatenation
of two invertible decompositions as in our case. This method also is inspired on the works
in [GKAV98] and [GKV99]. In this MDC approach however, each of the coefficients resulted
from the frame decomposition is viewed as an individual description, contrary to our strategy
in which we form descriptions of mixed coefficients. Another difference with our scheme per-
tains to the amount of introduced redundancy. In [CMW99] the redundancy is of a factor of
2 (since two critically sampled decompositions are involved in the overcomplete expansion),
whereas in our case the redundancy is tunable with the number of decomposition levels, being
for instance of 1.0156 for a 3-level wavelet decomposition in each description (or of 25% more
coefficients at the coarsest resolution level as we have seen in Section 3.1).

At the reconstruction a POCS algorithm is proposed in [CMW99]. This algorithm, however,
uses the global projections onto Si and not onto Si,j and this is only possible for orthogonal
decompositions. In our case a POCS implementation is not possible since the number of convex
sets involved is too high, and this is the motivation behind using the proposed algorithm that
we will describe in the sequel, after giving the general iterative algorithm that we have adapted
to our given framework. Moreover, as we have said before, the main shortcomings of a POCS
method are the fact that it does not converge to the best approximation of x0 in S and also its
convergence is slow [Com97].

3.2.3 Iterative projections algorithm

The proposed method is derived from the general algorithm allowing to minimize a quadratic
convex function under convex constraints, which was developed in [Com03]:

Algorithm 1 (Combettes, 2003).

➀ Fix ε ∈ (0, 1). Set x0 = r and n = 0.

➁ Take a nonempty finite index set In ⊂ I .

➂ Set zn = xn + λnR
−1(
∑

i∈In
wi,npi,n − xn), where:

a) R is defined as: R =
∑

j∈{1,..., p} αjL
∗
jLj and L∗

j stands for the adjoint operator of Lj (with
Lj and the index set {1, . . . , p} as in the previous section);
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b) For every i ∈ In, pi,n is a subgradient6 projection given by:

pi,n =

{
xn − fi(xn)ti,n

‖ti,n‖2 , if fi(xn) > 0

xn, if fi(xn) ≤ 0

with fi : H → R a continuous and convex function and ti,n ∈ ∂fi(xn)7 a subgradient;

c) The weights (wi,n)i∈In belong to [0, 1] and satisfy
∑

i∈In
wi,n = 1;

d) The relaxation parameter λn belongs to [εLn, Ln], with Ln given by:

Ln =





�
i∈In

wi,npi,n‖pi,n−xn‖2

〈R−1un | un〉 , if xn /∈ ⋂i∈In
Si

1
‖R−1‖ , otherwise.

➃ Set: πn = 〈x0 − xn | xn − zn〉, µn = ‖x0 − xn‖2, νn = ‖xn − zn‖2 (all w.r.t R) and ρn =
µnνn − π2

n. Compute:

xn+1 =





zn, if ρn = 0 and πn > 0

x0 + (1 + πn

νn
)(zn − xn), if ρn > 0 and πnνn ≥ ρn

xn + νn

ρn
(πn(x0 − xn) + µn(zn − xn)), if ρn > 0 and πnνn < ρn.

➄ Set n← n+ 1 and go to ➁.

Since in our case we are using only differentiable operators the subgradient computations
amount to gradients. Our proposed algorithm derived from the Algorithm 1 is given in the
sequel. Since we are mainly handling 8-bit images we will introduce an additional constraint
to keep the computed samples in the range 0 to 255. This will be done by simple projection.

Algorithm 2.

➀ Set k = 0 and choose an initial estimate x0
8.

➁ Calculate αi,k = Fixk, i ∈ {1, 2}.

➂ Set γi,k = Ti(αi,k) and λi,k = ‖γi,k‖2, for i ∈ {1, 2}. Calculate γ̃i,k = (γi,k[j]/‖fi[j]‖)j .

➃ Set ai,k = −FT

i γ̃i,k, i ∈ {1, 2}

➄ Set apm = xk. Find outlier values (below 0 and above 255) in apm and put them in masks mp and

mm. Set apm =





−xk ∀mp > 0,

255− xk ∀mm > 0,

0 otherwise.

➅ Set ω1,k =
2λ1,k

3(λ1,k+λ2,k) , ω2,k =
2λ2,k

3(λ1,k+λ2,k) , and ωpm = 1
3 . Compute Lk = ω1,kλ1,k + ω2,kλ2,k +

ωpm‖apm‖2
6A vector t is called a subgradient projection of a function g in a vector space Ξ at a point a if the continuous

affine functional fa,t which is given by b 7→ 〈b − a t〉+ g(a), having the “slope” t takes the same value as g in a and
minorizes g on Ξ

7(∂fi(x))i∈I is called the subdifferential of fi in x
8possible choices of x0 will be presented bellow.
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➆ If Lk = 0, exit iteration. vk = ω1,ka1,k + ω2,ka2,k + ωpmapm and dk = Lk

‖vk‖2 vk.

➇ Set bk = x0 − xk, πk = −bTk dk, µk = ‖bk‖2, νk = ‖dk‖2, and ρk = µkνk − π2
k.

➈ Set xk+1 =





xk + dk if ρk = 0 and πk ≥ 0,

x0 + (1 + πk/νk)dk if ρk > 0 and πkνk ≥ ρk,

xk+
νk

ρk

(
πkbk+µkdk

)
if ρk > 0 and πkνk < ρk.

➉ Set k ← k + 1 and go to ➁.

It can be noted that the adjoint operators FT

i involved in step ➃ can be implemented by
using filter bank structures and the developments on the lifting scheme in Section 3.1.3. An-
other interesting characteristic of this algorithm is that the computations in ➁, ➂ and ➃ can be
parallelized on a bi-processing unit.

3.2.4 Reference image in the objective function

Before discussing the performances of the proposed iterative algorithm we need to make some
remarks on the reference image, x0, used in the first run of step ➁. This corresponds to a first
estimate of the original image obtained from the decoding of the two descriptions. There are
however many ways to combine this recovered information and we are dealing with this sub-
ject in this section. This discussion is necessary because the proposed iterative algorithm is
sensitive to the choice of the reference image used in the objective function. It turns out that the
best performances are achieved by choosing x0 as the global minimizer for the unconstrained
optimization Problem 2.

In the following we are presenting several strategies that lead to the initialization image for
the Algorithm 2, from the simplest to the most complex.

We start with a simple weighted mean reconstruction from the two descriptions to which
we are referring as WMR in the sequel. This is indeed the simplest and quickest initialization
that one can imagine but it leads to poorer performances than those theoretically expected for
the optimization method and it has motivated our research for other reference images.

3.2.4.1 WMR from two descriptions

In this first, very simple strategy, the two received descriptions are individually recovered and
the obtained images are averaged in order to give an initialization point for the iterative algo-
rithm. However, one must take into account the fact that in some of the invertible cases the
distribution of subbands resulting from one or the other wavelet basis is not balanced. There-
fore a weighted average would be a better solution for combining the two reconstructions. We
shall refer to this technique as WMR1 from now on. Let the two reconstructed images from
each description be denoted by x̂i, with i ∈ {1, 2}:

x̂i = F−1
i α̂i

where F−1
i is the synthesis operator for each of the two representations and α̂i stands for the

quantized coefficients in each description, as before (Section 3.2.2).
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Thus, if we denote by x̂m the average reconstruction from x̂1 and x̂2 we get:

x̂m = p1x̂1 + p2x̂2

where the weights are given by the energy of the reconstruction:

p1 =
||x̂1||2

||x̂1||2 + ||x̂2||2

and p2 = 1− p1.

The starting point x0 in the presented algorithm is the so-computed x̂m. As we shall see
after having presented the other strategies, this one has very poor performances as compared
to a critically sampled decomposition and it systematically contradicts the results presented in
Section 3.1.2.2 for the expected mean square error at the same quantization step as the non-
redundant decomposition.

We have thus extended this averaging method by considering a least squares algorithm
giving the optimal weights for each one of the two reconstructions from the descriptions.

3.2.4.2 WMR with least squares (LS) weights

In this new method we thus compute the weights for each coefficient set with a least squares
algorithm.

Let us denote the initialization image in this case by x̂0.

We have to minimize:

E{|x(n)− x̂0(n)|2}

for any n ∈ Z2, by setting x̂0(n) = p1x̂1(n) + p2x̂2(n).

This amounts to minimizing:

E{|x(n)− p1x̂1(n)− p2x̂2(n)|2}

We thus have to solve the following system of equations:

[
E{x̂1(n)}2 E{x̂1(n)x̂2(n)}

E{x̂2(n)x̂1(n)} E{x̂2(n)}2
] [

p1

p2

]
=

[
E{x(n)x̂1(n)}
E{x(n)x̂2(n)}

]

By choosing the reconstruction weights in this manner we observe experimentally that for
some of the schemes the weights computed in the last section were the optimal ones in a least
squares sense, therefore a real improvement cannot be expected for all the possible invertible
combinations of subbands.

Therefore a further enhancement of the initialization has been proposed and it is given in
the following. This is also motivated by the fact that the global multiple description structure
introduces a lot of zero coefficients when each of the descriptions is taken individually, thus
biasing the computation of the global reconstruction weights for the initialization.
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3.2.4.3 Selective WMR - LS weights

This initialization can be further extended by computing least squares weights for each of the
received wavelet subbands in the descriptions. This is referred to as selective WMR in this
section in order to highlight the fact that the weights depend only on the subbands which are
non-zero in the global MD representation. Note that according to the chosen scheme a subband
can either contain all of the samples or only half of them, when only one of the two possible
quincunx components where included in the MDC scheme. The number of weights shall thus
vary according to these two situations. More precisely, regarding the coarsest decomposition
level in which subbands may no longer be the outcome of a single basis decomposition, we
have a total of 10 halves of subbands which, in the central reconstruction, are either grouped
into 5 whole subbands (two approximation subbands and 3 detail subbands) or into 4 whole
subbands (two approximations and two details) and 2 half-subbands (if the remaining quin-
cunx subsampled details were not the outcome of a single basis decomposition).

In this situation the initialization of the iterative algorithm can be written as:

x̂0 =
K∑

k=1

wkr̂k

with K being the maximum number of kept subbands in the two descriptions at the last level
of decomposition, and r̂ the reconstruction from a single subband only, when all the other
coefficients are set to zero.

Note that, based on the considerations given above (as well as in section 3.1.2.2) the number
of weights to be computed is not higher than 6 in any of the favorable invertible schemes.

Transmission considerations

One major drawback of this method is that, in order to compute the least squares optimal
weights, the original image must be known. Therefore, this computation must take place at the
encoder side, since this knowledge is no longer available at the decoder. By doing that, addi-
tional information must be included in the bitstream containing these weights. Even though
this does not encumber the transmission, the option of transmitting side information might not
be available for all codecs by default. This operation obviously reduces the flexibility of our
scheme which is something we would like to avoid. A solution that overcomes this difficulty is
to set these K weights at fixed values (for example, estimated off-line on a large database) and
use these values at the decoder for any image. This leads us to a new strategy, detailed in the
following.

3.2.4.4 Selective WMR from each of the received subbands - fixed weights

In order to chose fixed values for the subband reconstruction weights we need to verify that
the obtained values do not vary a lot from one image to another, at the same quantization
step. Therefore we have computed those weights for several images of different types: natural,
synthetic, satellite, biomedical, astronomical. Some of the most common test images in this
database9 are given in Fig 3.10.

9The size of the considered data base is of 15 images.
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(a) Lena (b) Barbara (c) Pentagon

(d) Mandrill (e) Boat (f) Moon

(g) Goldhill (h) Aerial (i) Montage

(j) Paris Spot 5 (512 × 512
fragment)

FIGURE 3.10: Ten of the test images used to compute the LS weights for the initialization based
on individual subband reconstruction (512× 512 pixels).

In Table 3.7 we can see the evolution of these values for ten of the database images at a
quantization step of 1, for the MDC combination (s, s′) ∈ {(0, 0), (0, 1)} on three levels of de-
composition.

150



3.3. CASE STUDY

Image w1a(0,0) w2(dv(0,0)) w3(dd(0,0)) w4(a(0,1)) w5(dh(0,1))

Lena 0.0000 0.9998 1.0000 1.0000 1.0000
Barbara 0.0001 0.9999 0.9996 0.9998 1.0000
Pentagon 0.0002 1.0000 1.0000 0.9998 1.0000
Mandrill -0.0001 1.0001 1.0000 1.0001 1.0000
Boat -0.0000 1.0001 0.9999 1.0000 1.0000
Moon 0.0001 0.9991 1.0001 0.9999 0.9999
Goldhill 0.0001 1.0000 0.9996 0.9999 0.9999
Aerial 0.0001 1.0000 1.0001 0.9999 0.9999
Montage 0.0000 1.0001 0.9995 1.0000 1.0000
Paris Spot 5 0.0000 1.0000 1.0000 1.0000 1.0000

TABLE 3.7: Least squares weights for several test images uniformly quantized with the step of
1

Quantization step w1(a(0,0)) w2(dv(0,0)) w3(dd(0,0)) w4(a(0,1)) w5(dh(0,1))

1 0.0001 1.0000 0.9996 0.9999 0.9999
4 0.0019 0.9996 0.9981 0.9981 0.9982
16 0.0198 0.9903 0.9174 0.9802 0.9816
32 0.0625 0.9683 0.8934 0.9372 0.9424
64 0.1851 0.8948 0.7849 0.8153 0.8402
128 0.3487 0.8047 0.6925 0.6525 0.6898

TABLE 3.8: The evolution of the computed least squares weights on each subband for the image
“Goldhill”

As it can be seen, choosing the 5-tuple (0, 1, 1, 1, 1) for the combination of subbands
{a(0,0), dv(0,0), dd(0,0), a(0,1), dh(0,1)} as weights corresponding to each subband is a reasonable
approximation. Moreover the variation of weights across the different quantization steps is
sufficiently small as it can be seen in Table 3.8 for the image “Goldhill”, for instance.

Note that these weights confirm the remark we have made in the beginning of this chap-
ter, concerning the fact that the subsampling positions in the critically sampled transform do
not alter the basis property and the perfect reconstruction in the absence of quantization. In
the above situation our computation has confirmed the fact that the set of wavelet subbands
a(0,1), dv(0,0), dd(0,0), dh(0,1) suffices for optimal reconstruction in the absence of quantization.

3.3 Case study

In order to draw some conclusions about the proposed decoding enhancements let us look at a
case study for the test image “Mandrill” (512 × 512 pixels). We are considering two scenarios:
the first one represents the ideal MDC functioning with on/off channels and the second one
considers the case of random (or deterministic) losses inside both descriptions. In this case
study we do not concentrate on the encoder used in order to determine the bitrate points in the
PSNR vs. Rate curves. The encoding algorithm that we are using will be discussed in the next
section.
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FIGURE 3.11: Central decoder comparison between the different iterative reconstructions for
the image “Mandrill”.

3.3.1 On/off channels - loss of an entire description

In this scenario we are aiming to offer choice criteria for the optimized decoding.

Let us consider the MD scheme given byDI∪DII = {a(0,0), dv(0,0), a(1,0), dh(1,0), dd(1,0)}. The
central decoder in this situation is presented in Figure 3.11 for the different methods of initial-
ization presented in Section 3.2.4. Here we have denoted by WMR1 and WMR2 the weighted
mean reconstructions (initialization points) for which there are only two weights to be com-
puted, one for each description. These correspond to the first two sections in Section 3.2.4.
In this situation we confirm what we have announced before, that is the energy-dependent
weights are the very close to the optimal values in a least squares sense. Therefore, no visible
difference can be observed in Figure 3.11 between these two methods either before or after the
convex optimization.

On the other hand, the dependency of the quadratic algorithm to the initialization is obvious
in this scheme. Indeed, four of the eight curves represented in Figure 3.11, which correspond to
the points for selective-weights for each of the non-zero subbands in the central reconstruction,
weights that are chosen to be either optimal in a least squares (LS) sense or in a fixed manner
(using a high-rate approximation of the LS weights). Both the initial values for each of these
two curves and the iterated values coincide.

This is important because it validates the selective WMR with fixed weights technique we
have discussed above. Thus, there is no need for the additional costs incurred by transmitting
a vector of reconstruction weights to the decoder along with the two descriptions. A fixed set
of weights offers an acceptable sub-optimal solution.

Similar results are obtained for the other schemes that contain only full subbands at the last
level of decomposition instead of only one of the quincunx polyphase components coming each
from a different basis for the third detail subband10.

10Recall that the only good invertible combinations of detail subbands at the coarsest resolution, lead at the

152



3.3. CASE STUDY

Quantization step w1(a(0,0)) w2(dv(0,0)) w3(a(1,0)) w4(dh(1,0)) w5(dd(1,0))

1 0.6047 0.7975 0.4113 1.0166 1.0038
5 0.6047 0.7976 0.4113 1.0160 1.0049
10 0.6047 0.7982 0.4113 1.0142 1.0029
20 0.6044 0.7980 0.4116 1.0120 0.9957
30 0.6044 0.7905 0.4116 1.0102 0.9901
50 0.6034 0.7750 0.4124 1.0041 0.9665
60 0.6034 0.7777 0.4124 1.0072 0.9610
70 0.6024 0.7783 0.4127 0.9819 0.9403

TABLE 3.9: The evolution of the computed least squares weights on each subband for the image
“Mandrill” affected by 4% of random losses

Remark

Looking again at Figure 3.11 an important question arises: if the selective-weights for each sub-
band give quasi-optimal results, then how can one take advantage of the convex optimization
any more? The answer to that question resides in the interest in using MDC techniques instead
of SDC ones. The on/off functioning for the transmission channel is not the most realistic sce-
nario. Usually independent losses occur in the bitstream in addition to channel failure (such as
congestion for instance).

Therefore in the second part of this case study we are presenting the random losses scenario
affecting each description at coefficient level individually.

3.3.2 Random losses in each description

As we have seen in the previous section, a judicious choice of an initial reconstruction given
the two descriptions can lead to optimal solutions that eliminate the need for the convex opti-
mization algorithm. This was however a somewhat un-realistic scenario since in practice the
channels may be disrupted by noise, thus provoking individual losses inside descriptions. We
can model this kind of functioning by randomly setting to zero some of the received wavelet
coefficients in each description.

In this situation a first observation is that the proposed fixed weights in Section 3.2.4.4, which
are close to those computed in an optimal manner in the absence of losses at the encoder end,
are no longer accurate. Indeed if we could calculate these weights at the decoder end, knowing
the loss pattern that affected the signal, we would see that considerable differences occur.

For instance, in the case of our example image “Mandrill”, one can observe the obtained
Least Squares weights for each subband in the chosen invertible combination for the shifting
scheme having as parameters (s, s′) ∈ {(0, 0), (1, 0)} in Table 3.9. These are given for one real-
ization of losses that affect approximatively 4% of the wavelet coefficients.

The corresponding optimal weights computed at the encoder in the absence of losses can be
observed in Table 3.10. According to this set of weights we had chosen a fixed set of five values
which approximate those obtained for a quantization step equal to 1 in each description. Thus,

central decoder, to either 3 whole subbands distributed into the two descriptions in a quincunx manner or to 2
whole subbands plus 2 halves of subband - which gives a total of 3 half-subbands in each description.
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Quantization step w1(a(0,0)) w2(dv(0,0)) w3(a(1,0)) w4(dh(1,0)) w5(dd(1,0))

1 1.0000 1.0001 0.0000 1.0000 0.9998
5 0.9999 1.0004 0.0001 0.9995 1.0007
10 0.9986 0.9992 0.0014 0.9981 0.9991
20 0.9924 0.9924 0.0077 0.9961 0.9911
30 0.9907 0.9873 0.0094 0.9947 0.9839
50 0.9483 0.9556 0.0513 0.9874 0.9626
60 0.9431 0.9537 0.0569 0.9883 0.9485
70 0.9264 0.9418 0.0726 0.9660 0.9357

TABLE 3.10: The evolution of the least squares weights computed on each wavelet subband for
the image “Mandrill” (simulation at the encoder for different quantization steps)

for this particular shifting scheme the proposed set of fixed weights would be of [1, 1, 0, 1, 1],
respectively (with the same subband order as in Table 3.10). This is obviously an inadequate
choice (at least for this particular noise realization). Note that even if several realizations of
noise are performed for this loss percentage, in order to get a statistically accurate evaluation,
the subband weights might vary a lot with different percentages of losses and therefore fixing
a set of weights that would comply with the real ones obtained for known losses patterns is
quickly becoming impractical if not impossible.

In Figure 3.12 we present a comparison between the different initialization points at the cen-
tral decoder. Note that the simplest initialization from the two lossy descriptions yields quite
good results, therefore a trade-off between complexity and quality might be in order. As ex-
pected, the fixed weights solution is very far from the optimal one at this stage. However, as it
can be seen in Figure 3.13, where we present the results obtained after 30 iterations of quadratic
optimization corresponding to the initialization curves we just mentioned, the iterative algo-
rithm compensates the performances of this solution at least at small to medium bitrates. The
quality is degrading at higher rates where the influence of the reconstruction weights is greater,
since less drowned in the transmission noise.

The visual quality corresponding to the point of approximately 1.25 bpp in the two PSNR
vs. rate graphs are given in Figure 3.14 for the initialization stage and in Figure 3.15 after 30
iterations of quadratic optimization. We also present the visual quality in the Single Description
case, when a complete set of critically sampled wavelet coefficients is affected by the same 4%
loss pattern as the first description.

Concluding remarks

To sum up this case study we are presenting a couple of conclusions regarding the decoding
with multiple descriptions.

• If no individual losses occur on any of the transmission channels but instead some of
them might be in impossibility of functioning (for instance in the case of bottlenecks)
then a reconstruction from an average combination of received subbands is possible such
that no iterative procedure is needed in order to have good performances.

• If individual losses might occur on some of the channels then the convex optimization
algorithm presented in Section 3.2.3 leads to high and quick increases in the reconstruc-
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FIGURE 3.12: Comparison between the different initialization strategies for the image “Man-
drill” affected by 4% of random losses (we have denoted by WMR 1 the simplest initializa-
tion which performs the weighted mean reconstruction with energy-given weights as in Sec-
tion3.2.4.1).
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FIGURE 3.13: Comparison between the different iterative reconstructions for the image “Man-
drill” affected by 4% of random losses starting from the initialization points given in Fig-
ure 3.12.

tion quality. Convergence speed curves are presented later on in the simulation results
section. In this situation the initialization of the convex algorithm is important in order
to reach the theoretical bounds that are expected of the proposed schemes (at very high
bitrates), as well as in order to increase as much as possible the reconstruction at low and
medium bitrates. We have distinguished among two strategies:
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(a) Original image
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(b) Weighted mean reconstruction
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(d) Optimal LS weights for known losses

FIGURE 3.14: Different initializations for the 4% random losses scenario and reconstruction at
1.25 bpp.

� The simple average initialization - gives fairly good performances over the single
description reconstruction with losses

� The fixed weights by subband initialization - slightly more complex but yielding
better performances especially at medium bitrates (at least 0.5dB over the first ini-
tialization and some 1.5dB over the SD situation, at approximately 1.5bpp).

According to the transmission scenario as well as the desired quality of reconstruction, a
trade-off must be considered in order to choose one of those techniques over the other.
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FIGURE 3.15: The different reconstructions after 30 iterations of quadratic optimization for the
4% random losses scenario and reconstruction at 1.25 bpp.

3.4 Further extensions of the MDC scheme

The performances of our 2-description schemes might be enhanced by adding more diversity
between the most energetic subbands, mainly the approximation ones. These remain highly
correlated after the frame transform, therefore the central decoding cannot fully exploit this
redundancy.

With this in mind we propose to perform a basic multiple description scalar quantization
between the two approximation subbands, consisting in shifting the quantization indices by
one half. The reception of the two descriptions leads to a finer quantized reconstruction of the
approximation subbands.

By combining this with the chosen weighting strategy for the subbands, this should lead to
good decoding results.

Another extension that can be brought to the initialization strategy is a finer choice of the
fixed weighting coefficients of each received subbands according to the quantization step, in-
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stead of approximating the values corresponding to the integer truncation quantization step,
equal to 1.

3.5 Simulation results

In this section we are discussing in more detail the simulation framework that we have consid-
ered in order to validate the proposed MDC strategy.

3.5.1 Choice between the schemes

The first set of simulations aims at giving a choice criterion among the different invertible MDC
schemes, since one can expect comparable performances at the central decoder (and the same
quantization step) from several combinations of subbands as we have seen in Section 3.1.2.2.

Recall thus that we have four combinations of subbands at the coarsest resolution level in
the case of the two schemes with shift parameters (s, s′) ∈ {(0, 0), (1, 0), (0, 1)} (as presented in
Tables 3.2, 3.4), that we denote by S(1,0) in the first case and by S(0,1) in the second case, that

lead to better MSE performances than the non-redundant decomposition11.

The only other possible shifting scheme in the impulse responses of the filters, denoted
analogously by S(1,1) has two combinations that provide the best central reconstruction, as we
have seen before in Table 3.6. Moreover, as we have previously seen, these combinations are
merely the whole non-redundant basis plus the approximation subband from the other non-
redundant representation.

While all these ten possible schemes have comparable central performances, as
we can see from Figure 3.16, in the case of the following combination S(1,0) :
{a(0,0), a(1,0), dv(0,0), dh(1,0), dd(1,0)} called “Scheme 1” in Figure 3.16 and the combination con-
taining the whole coefficient set, C(0,0) plus the approximation subband a(1,1) which is called
“Scheme 2”. The image considered here is the standard “Lena” image of 512× 512 pixels.

In this situation, no indication for the choice of one scheme over the other can be given,
therefore we propose to look at the side decoding reconstruction, in the basic functioning mode
of MDC (on/off channels) without additional random losses. The PSNR-rate performances for
the two schemes mentioned above are given in Figure 3.17.

We can see from these curves that the two schemes exhibit very different performances in
terms of side decoding. Thus, the Scheme S(1,0) (Scheme 1) performs as a balanced one, whereas
the Scheme S(1,1) (Scheme 2) has very different side decoders. According to the transmission
scenario to which one is confronted, one of these two schemes can be chosen. More precisely, if
unequal error protection is available a good choice would be given by the Scheme S(1,1) since
we could favor the transmission of the first description over the second. Conversely, for equally
error-subjected networks a better choice is S(1,0). In these PSNR-rate curves we are illustrating
the inherent performances of the quadratic optimization algorithm even in the situation of a
poor initialization.

These preliminary PSNR-rate results have been obtained with an EZBC lossless encoder
used on uniformly quantized coefficients. In the next set of simulations we are considering

11We are omitting the combination (s, s′) = (0, 0) in our scheme notation, since it is common to all the proposed
schemes, and corresponds to the first wavelet decomposition in these redundant representations.
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FIGURE 3.16: PSNR-rate evaluation of two MDC schemes. Dashed lines for the curves obtained
before the optimization algorithm (initialization with the WMR1 method), and full lines for the
curves after the quadratic optimization algorithm.

Bitrates [bpp]

P
S

N
R

[d
B

]

Opt. Scheme 2 Side Dec. 2

Init. Scheme 1 Side Dec. 1
Opt. Scheme 1 Side Dec. 1
Init. Scheme 2 Side Dec. 1
Opt. Scheme 2 Side Dec. 1
Init. Scheme 1 Side Dec. 2
Opt. Scheme 1 Side Dec. 2
Init. Scheme 2 Side Dec. 2

0 0.2 0.4 0.6 0.8 1 1.2 1.4

23

24

25

26

27

28

29

30

FIGURE 3.17: PSNR-rate evaluation of two schemes for the side decoders (dashed lines corre-
spond to values before convex optimization (WMR1 initialization) and full lines to the values
obtained after 30 iterations of the optimization algorithm).

only Scheme 1 because it works in a more general transmission setup.

Fig. 3.18 gives an idea on the convergence speed for the iterative algorithm for the two cen-
tral decoders and the four side decoders corresponding to the two considered schemes. In
the bottom graph the fact that the second scheme is balanced can be easily noticed. Also, one
should observe that since in Scheme 1 the first side decoder contains only coefficients from one
of the basis, no optimization needs to be performed. The characteristics of the convergence
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FIGURE 3.18: Convergence speed for the proposed optimization algorithm: central (top graph)
at 1.7 bpp and side (bottom graph) at 0.8 bpp decoders.

curves are similar for all bitrates, the quickest convergence being obtained at low bitrates (al-
most 90% of gain in 2 iterations) and the slowest at high bitrates (Fig.3.18).

3.5.2 Scheme performance versus a critically sampled decomposition

In order to verify the theoretical performances in terms of the MSE of the reconstruction for a
quantization step: δ = 1 as presented in Section 3.1.2.2, we are going to compare the obtained
PSNR of the MDC scheme S(1,0) mentioned earlier with that of a critically sampled decompo-
sition uniformly quantized with the same step of 1.

We recall here the bounds for the MSE in these two cases. Thus we have obtained the
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MSE-s: eM#
(0,0)

= 8.1882 at δ = 1 for the critically sampled decomposition corresponding to

Eq. (3.1) and eM̄# = 6.9801 for the S(1,0) scheme given by the union of the following subbands
{a(0,0), a(1,0), dh(0,0), dd(0,0), dv(1,0)} at the last level of decomposition and the same detail
subbands as the critically sampled decomposition at higher resolutions.

Thus a bound for the performance gain to be expected between the MDC scheme and the
SDC one is given by:

GMD vs SD = 10 log10

eM#
(0,0)

eM̄#

≈ 0.69

Note however that the evaluations of the reconstruction error are given for the quin-
cunx transfer matrices corresponding to the coarsest resolution level, since this is where
the diversity with respect to a critically sampled decomposition is introduced with our
MDC schemes. Therefore we are evaluating the performances at the central decoder and
in the absence of additional losses, except those introduced by quantization, on one level
of wavelet decomposition. Thus the S(1,0) scheme is formed only with the following
subbands: {a(0,0), a(1,0), dh(0,0), dd(0,0), dv(1,0)} whereas the SD scheme is given by:
{a(0,0), dh(0,0), dd(0,0), dv(0,0)}.

Moreover since we do not compute the pseudoinverse of the quincunx transfer matrix in
our scheme, we are going to compare the performances of the reference image obtained with
the selective WMR with least squares weights for each individual wavelet subband in the MD
scheme (as in Section 3.2.4.3) with the ones for the direct inversion of the SD scheme. We are
presenting these results for several test images, given in Figure 3.19 in Table 3.11.

(a) Lena (b) Barbara (c) Mandrill (d) Boat

(e) Goldhill (f) Faces (g) Marseille (h) Pentagon

(i) Peppers (j) SAR (k) Astro (l) Medical

FIGURE 3.19: Test images for MDC vs SDC comparison.
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Image PSNR [dB] Gain
SD MDC dual frame GMDC Gdual

Lena 58.8283 59.2483 59.5265 0.42 0.6982
Barbara 58.8188 59.2220 59.5173 0.40 0.6985
Mandrill 58.8130 59.2000 59.5017 0.39 0.6888
Goldhill 58.8177 59.2270 59.5158 0.40 0.6981
Boat 58.8237 59.2140 59.5010 0.39 0.6773
Faces 58.8145 59.2910 59.4929 0.48 0.6784
Marseille 58.8198 59.2319 59.5076 0.41 0.6878
Pentagon 58.8168 59.2029 59.4989 0.39 0.6820
Peppers 58.8068 59.2174 59.5089 0.41 0.7021
SAR 58.8106 59.1979 59.5030 0.38 0.6881
Astro 58.8212 59.2039 59.4983 0.38 0.6771
Medical 58.8249 59.2196 59.4887 0.39 0.6638

TABLE 3.11: Comparison between the MDC scheme S(1,0) and the SDC scheme at quantization
step of 1, 1 level of wavelet decomposition and 10 iterations of convex optimization (for the
MDC scheme). PSNR MDC gives the value after the convex optimization algorithm starting
with the reference image given by the selective WMR with least squares weights for each in-
dividual subbands. The gains are computed as the difference between PSNR MDC and PSNR
SDC. The theoretical gain is obtained by computing the reconstruction from the dual frame
operator (last column, denoted here by Gdual)

From the results obtained in Table 3.11 we can see that the convex optimization algorithm
for the decomposition on one level is not too far from the theoretical expected gain. For com-
parisons purposes we have equally implemented the reconstruction by the dual frame operator
and we are also giving the scheme gain in this situation in Table 3.11.

A second remark for the results obtained in Table 3.11 concerns the types of the test images.
We can see that the values that are the closest of the theoretical gain of the MDC scheme are nat-
ural images, on which is safer to assume that the quantization noise for the wavelet coefficients
is uniform and i.i.d.

3.5.3 Random losses scenario

We are now considering the more general transmission scenario in which random losses can
occur into each of the transmitted descriptions.

In the following we are presenting the simulation results obtained for a test image that does
not belong to the original image database that we have considered in order to compute the
LS reconstruction weights for the initialization of the convex optimization algorithm using the
combined reconstruction from individual subbands. This test image is given in Figure 3.20.

The wavelet coefficients are obtained with biorthogonal 9/7 wavelets and the encoding is
done using JPEG2000. We are obtaining the bitrates by imposing a quantization step to the
JPEG2000 encoder and we are using the dead-zone quantization option.

We are going to test the robustness to losses for the Scheme S(1,0) for different percentages
of individual losses in each description.
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FIGURE 3.20: Test image: “Man.pgm”.
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FIGURE 3.21: PSNR vs. bitrate. Comparison between the central decoder of Scheme S(1,0) at
1% random losses in each description and the single description case affected by the same loss
pattern as the first description.

In Figure 3.21 we can see a comparison with the single description scheme (given by the
first non-redundant decomposition used to form our MDC schemes, a classical biorthogonal
9/7 decomposition) of our proposed MDC scheme. We are considering the fixed-weights ini-
tialization for the optimization algorithm, with the fixed-weights computed on the considered
image database in the no-loss situation. In addition we compute the LS weights for each sub-
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FIGURE 3.22: PSNR vs. bitrate. Comparison between the central decoder of Scheme S(1,0) at
4% random losses in each description and the single description case affected by the same loss
pattern as the first description.

Central Bitrate [bpp] 1.9265 1.1260 0.5917 0.3866 0.2233 0.1834

PSNR Central Init. 1 [dB] 20.1451 20.0878 19.9473 19.8026 19.5424 19.4265
PSNR Central Opt. 1 [dB] 34.5244 33.1773 30.7742 29.1586 27.1567 26.4473
PSNR Central Init. 2 [dB] 22.7032 22.6016 22.3583 22.1170 21.6958 21.5137
PSNR Central Opt. 2 [dB] 35.2535 33.5549 30.9885 29.3071 27.2528 26.5337

SD Bitrate [bpp] 1.7640 1.0035 0.5087 0.3201 0.1723 0.1360

PSNR SD with losses [dB] 27.7820 27.4607 26.7470 26.0965 25.0876 24.6953
PSNR SD without losses [dB] 41.9294 37.1143 32.8276 30.5977 28.1441 27.3631

TABLE 3.12: PSNR vs Bitrate comparison between the MDC scheme S(1,0) and the SD scheme
affected by 4% of random losses (the values are averaged over 100 runs of random losses in
each description)

band knowing the loss pattern, in order to have an idea of the influence of the approximation
by fixed-weights on the overall reconstruction performances. All the following tests are aver-
aged over 100 runs of random losses with different percentages in each description. We also
give the performances of the single description scheme when no losses had occurred.

Figure 3.22 presents the same results as before for 4% of losses in each description. We can
observe that the MDC scheme greatly outperforms this baseline reconstruction of the single
description strategy. Naturally, error concealment could be in addition applied to the single
description scheme in order to enhance its performances.

In Figure 3.23 we can observe the performances of the side decoders before the optimization
algorithm and after 30 iterations of convex optimization. One can observe that a gain of about
1dB can be obtained for the side decoders, too.

The exact numerical values corresponding to the curves in Figure 3.22 are given in Table 3.12
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FIGURE 3.23: PSNR vs. bitrate performances for the side decoders at 4% of random losses in
each description (values averaged over 100 runs of random losses).

and the reconstructed images for the third point of the curves are presented in Figure 3.24.

Increasing the loss percentage in each description to 6% leads to the curves presented in
Figure 3.25. As expected, the greater the loss percentage, the greater the gain between the
MDC and SDC can be expected.
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(a) SD reconstruction (no losses), 32.8276
dB
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(b) SD reconstruction with 4% of losses,
26.7470dB
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(c) MDC fixed weights (before), 19.9473 dB
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(d) MDC fixed weights (after), 30.7742 dB
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(e) MDC LS weights (before), 22.3583 dB
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(f) MDC LS weights (after), 30.9885 dB

FIGURE 3.24: The different reconstructions after 30 iterations of quadratic optimization for the
4% random losses scenario and reconstruction at 0.39 bpp for the multiple description scheme
and at 0.32 for the single description scheme (the same quantization step in both cases).
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FIGURE 3.25: PSNR vs. bitrate. Comparison between the central decoder of Scheme S(1,0) at 6%
random losses in each description and the single description case affected by the loss pattern
as the first description (values averaged over 100 runs).
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3.6 Conclusions

In this chapter we have considered low redundancy MDC schemes for images, based on re-
dundant wavelet frame expansions. We have shown that by an appropriate design of this
decomposition the perfect reconstruction property is satisfied.

The decoding performances of the multiple descriptions schemes are improved by an itera-
tive quadratic optimization algorithm. We have discussed the importance of choosing some
schemes over the others among the possible combinations and we have equally discussed
methods of improving the final reconstruction by improving the initialization point of the op-
timization algorithm.

We have considered a lossy scenario and tested the performances of our schemes over the
single description case, affected by the same losses as one of the two descriptions. We have
shown experimentally that by initializing the iterative optimization algorithm with the combi-
nation of the received individually recovered subbands from each description we can obtain
satisfactory performances. This combination, which is in fact a weighted average, utilizes a
fixed set of weights that is chosen as an approximation of the ones which are optimal in a least
squares sense when no losses have occurred on the network.

We have computed these optimal weights for several schemes that are giving the best MSE
errors in each MDC scheme that can be conceived for the proposed frame decomposition, on
a database of diverse images (natural, synthetic, satellite, biomedical etc.). It has thus been
shown experimentally, that for each shifting scheme and subband combination in order to form
two descriptions, there is a unique set of optimal weights which presents negligible variations
of values among the images.

The problem with computing the optimal reconstruction set of weights for each MDC
scheme is that it would incur the transmission of this set along with the descriptions, and,
therefore, the MDC technique would greatly loose in flexibility. We have then studied compar-
atively the performances obtained if we approximate this optimal weights by a fixed set and
found out that the results can be considered as satisfactory.

In the lossy scenario we have also computed the optimal reconstruction weights when the
pattern of losses is known in each description, in order to compare the performances obtained
with the fixed weights with the maximal achievable ones. This could also be useful if the
functioning of the transmission network can be considered deterministic.

Several extensions of the MDC strategies are possible. First, the coding efficiency might
be improved if the two approximation subbands in each description would be passed by a
decorrelating transform for instance at the central decoder. Secondly, the optimal weights in-
volved in the initialization of the optimization algorithm are varying across the bitrates, or in
other words with the quantization step. A further optimization in order to find the best set of
subband weights with the quantization step might also be considered.
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Chapter 4

A complementary approach exploiting
sparsity

In this chapter we present a complementary viewpoint inspired from the recent Compressed
Sensing (CS) theory which gives remarkable results for analyzing signals having a sparse rep-
resentation in some frame. These results basically state that such a signal can be perfectly
recovered from a reduced number of arbitrary projections, provided that it is compressible. Be-
ing compressible means that it exists a sparse representation of this signal in some basis, and
in this case the “sparsity” of the signal is given by the number of non-zero samples. This signal
recovery problem can also be found under the name of sparse approximation and it has mainly
been addressed by Matching Pursuit [DDWB06] or Basis Pursuit techniques [Don06]. Match-
ing Pursuit has also been used in a first stage of generating multiple balanced descriptions (see
[RF06] and references therein) for still images, in a lossy network scenario.

In our MDC framework we borrow from the CS field the idea that the encoder should de-
termine a reduced number of components of the image in a frame representation from the
observation of its pixel values. The choice of the components is grounded on a rate-distortion
formulation of the MDC problem, which after some simplifications is re-expressed as a convex
optimization problem.

Some of the results in this chapter are the outcome of a joint work with A. Fraysse and they
were published in [PPPP07] and [PFPPP07].

4.1 Analysis vs. synthesis frames

Let us first reformulate the frame-based multiple description coding problem in a more general
framework than in the previous chapters. We assume that the signal to be encoded belongs to
a real Hilbert space H endowed with an inner product 〈., .〉 and the associated norm ‖.‖ and
we do not restrict the MDC application to the two-description case.

Thus, in a general Multiple Description scenario with D descriptions, each description i ∈
{1, . . . , D} is obtained from a vector family (ei,k)k∈Ki

in H with Ki ⊆ N. The union of these
families is assumed to form a redundant frame ofH.

The associated decomposition operators of this frame are considered as follows. For all
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i ∈ {1, . . . , D},

Li : H → `2(Ki)

x 7→ (〈x, ei,k〉)k∈Ki
. (4.1)

And their adjoint operators are given by:

L∗
i : `2(Ki)→ H

(ξk)k∈Ki
7→
∑

k∈Ki

ξkei,k. (4.2)

Based on these frame operators, two different points of view can be adopted in the design of
an MDC scheme, and we are distinguishing them by the names of “analysis” and “synthesis”
frame paradigm. The former corresponds to the conventional philosophy of an MDC scheme,
that has been approached in the literature so far, whereas the latter expresses a complementary
approach in some sense, that will be more apparent a little further.

In the analysis frame paradigm, a signal x ∈ H is decomposed by the linear operators L1 and
L2, as given before, so as to provide D descriptions

ci = Lix, i ∈ {1, . . . , D}, (4.3)

which are quantized and transmitted separately. At the decoder side, only a subset of de-
scriptions may be available and the problem that needs to be solved is to reconstruct a signal
x̂ as close as possible to x. In order to improve the quality of the reconstruction, the convex
constraints induced by the quantization rules can be addressed within a convex optimization
approach as we have seen in Chapter 3. Solving this problem leads to a nonlinear, hence com-
putationally complex, reconstruction.

A block-diagram representation for these considerations in the two-description scenario is
given in Figure 4.1. Here, we have highlighted the fact that, once the strategy for creating
the descriptions is chosen, the remaining difficulty of the scheme lies at the decoder end and,
consequently, the improvement in terms of quality of reconstruction will be solely steered by
the chosen decoding method. Thus, we point out the fact that such an application is mostly
suitable for networks providing scalable1 decoders, or more generally for the situation in which
computationally complex decoders are available and only simple encoders are used.

x c1L1 Q

c2L2 Q

1c

2c ?
Enc 1

Enc 2

x̂

Channel

Decoders

Nonlinear!

Encoder

x c1L1 Q

c2L2 Q

1c

2c ?
Enc 1

Enc 2

x̂

Channel

Decoders

Nonlinear!

Encoder

FIGURE 4.1: The analysis frame paradigm.

1Here we employ the term of scalable in the sense of adaptability of the network with respect to the user demands
or the receivers characteristics
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A second point of view concentrates more on the efficient design of the MD encoders and
on imposing very simple decoders (for instance linear ones). This framework is more adequate
for low-delay applications such as broadcasting. While this strategy seems similar to the rate-
distortion trade-off sought by standard MDC methods, the two differ by the decomposition
operators that are used. Hence, in the so-called synthesis frame paradigm, the adjoint opera-
tors L∗

1 and L∗
2 are used at the decoder side and they serve in reconstructing the signal from

its sequences of quantized values ci with i ∈ {1, . . . , D} that correspond to the transmitted
descriptions, as follows:

x̂ =
∑

i∈{1,...,D}
L∗

i ci (4.4)

for the central decoder, and

x̂ = L̃∗
i ci, i ∈ I. (4.5)

where L̃∗
i : `2(Ki) → H is a given reconstruction operator and I ⊂ {1, . . . , D} is the set of

received descriptions, for the side decoders.

x̂

1c

x
2c

L1
*

L2
*

?
ChannelEncoder Decoders

x̂

1c

x
2c

L1
*

L2
*

?
ChannelEncoder Decoders

FIGURE 4.2: The synthesis-frame paradigm.

We see that one of the advantages of this approach is that the decoders take a simple linear
form. At the encoder, the problem is however to generate the sequences c1 and c2 in the best
way in a rate-distortion sense, taking into account the channel characteristics. This situation is
represented by the block diagram in Figure 4.2.

The design of the encoding rule yields a nonlinear optimization problem which is formu-
lated in the next section.

4.2 Rate-distortion problem for the synthesis frame approach

With little loss of generality for practical purposes, we will subsequently assume that a finite
number of frame coefficients is considered, that is Ki = {1, . . . ,Ki} (which implies that H is
finite dimensional).

Let R(ci), with i ∈ {1, . . . , D}, denote the number of bits required to transmit the sequence
of quantized values ci. We aim at minimizing the global bitrate

Rglobal =
D∑

i=1

R(ci) (4.6)
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4. A COMPLEMENTARY APPROACH EXPLOITING SPARSITY

under a distortion constraint which is expressed as

D =
∑

I∈P
αI‖x−

∑

i∈I

L̃∗
I,ici‖2 ≤ Dmax. (4.7)

where P is the set of non-void parts of {1, . . . , D}. Hereabove, Dmax is the maximum distor-
tion allowed whereas αI are, for instance, the probabilities of receiving the descriptions in the
different scenarios, but other criteria can equally be considered (perceptual quality, etc).

Finding the sequences ci which minimize (4.6) subject to the constraint (4.7) is a difficult
global non-convex optimization problem. However, under some hypotheses on the coefficients
and on the quantization noise some simplifications can be brought to the problem, thus casting
it as a convex optimization one, which can be dealt with using recent algorithms, [CCPW06].
Note also that the upper bound, Dmax, should be chosen large enough to guarantee the exis-
tence of a solution to the optimization problem.

More precisely, the coefficients (ci,k)1≤k≤Ki
with i ∈ {1, . . . , D} can be viewed as the outputs

of a uniform quantizer of step q > 0 driven with real-valued coefficients ci,k. In the same time,
they can also be viewed as a realization of a random vector Ci = (Ci,k)1≤k≤Ki

taking its values
in {. . .− 2q,−q, 0, q, 2q, . . .}Ki .

Since for memoryless sources, the entropy provides a lower-bound for the rate, we are going
to minimize the global entropy:

Hglobal =
D∑

i=1

Ki∑

k=1

H(Ci,k), (4.8)

where H(Ci,k) is the discrete entropy of Ci,k, defined by:

H(Ci,k) = −
∑

n∈Z

P (Ci,k = nq) log2

(
P (Ci,k = nq)

)
. (4.9)

The initial (unquantized) coefficients ci,k can be equally considered as being realizations of
independent, real, random variables Ci,k whose probability densities, pi,k, can be modelled by
generalized Gaussian laws. Their probability density is then given by:

∀ξ ∈ R, pi,k(ξ) =
βi,kω

1/βi,k

i,k

2Γ(1/βi,k)
e−ωi,k|ξ|βi,k

(4.10)

where βi,k ≥ 1 et ωi,k > 0.

Let us set Ni ∈ N∗ for every i ∈ {1, . . . , D}. We then define the following set:

Si := {(β(l)
i , ω

(l)
i ), 1 ≤ l ≤ Ni}. (4.11)

And we suppose that:

∀Ki ∈ N∗ ∀k ∈ {1, . . . ,Ki} (βi,k, ωi,k) ∈ Si. (4.12)

In other words, we assume that, for all i ∈ {1, . . . , D} and all Ki, the parameters correspond-
ing to the random variable Ci,k law must take a precise finite number of values. In the case
of wavelet coefficients, this hypothesis can be translated by the fact that the coefficients are
identically distributed in each subband.
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4.2. RATE-DISTORTION PROBLEM FOR THE SYNTHESIS FRAME APPROACH

Moreover, according to [GP68], at high-resolution (i.e. small quantization steps), the entropy
of ci,k and the differential entropy of Ci,k are related by:

H(Ci,k) ≈ h(Ci,k)− log2(q) (4.13)

where

h(Ci,k) = −
∫
pi,k(x) log2(pi,k(x))dx

= −E(log2(pi,k(Ci,k))). (4.14)

For every i ∈ {1, . . . , D} and every l ∈ {1, . . . , Ni}we build the set:

S(l)
i = {k ∈ {1, . . . ,Ki} | (βi,k, ωi,k) = (β

(l)
i , ω

(l)
i )}, (4.15)

where (β
(l)
i , ω

(l)
i ) ∈ Si. In this case, for each i ∈ {1, . . . , D} and l ∈ {1, . . . , Ni}, the sequences

(Ci,k)k∈S(l)
i

are independent and identically distributed. In addition to this, we assume that for

every i ∈ {1, . . . , D} and every l ∈ {1, . . . , Ni}, the cardinality of S(l)
i is proportional toKi. And

since the random variables (log2(pi,k(Ci,k)))1≤i≤D; k∈S(l)
i

have finite variance, we can invoke the

strong law of large numbers, allowing to deduce that, when Ki →∞,

− 1

Card(S(l)
i )

∑

k∈S(l)
i

log2(pi,k(Ci,k))
a.s.−→ h(C

(l)
i ), (4.16)

where C
(l)
i is a random variable with probability law given by a generalized Gaussian function

of parameters (β
(l)
i , ω

(l)
i ).

In this manner the differential entropy is approximated by an empirical mean.

By using (4.16) in (4.8), the minimization of Hglobal is cast as the minimization of

J(c1, . . . , cD) =

D∑

i=1

Ki∑

k=1

ωi,k|ci,k|βi,k , (4.17)

Note that the parameters ωi,k and βi,k can be estimated by Maximum Likelihood.

Let us now investigate the approximation of the distortion by a convex function of ci. We
define, for each i ∈ {1, . . . , D}, the quantization error vector εi = (εi,k)1≤k≤Ki

which is reflected
to the quantized coefficients in an additive manner: ci = ci + εi.

The global distortion can thus be rewritten as follows:

D =
∑

I∈P
αI‖x−

∑

i∈I

L̃∗
I,i(ci + εi)‖2.

By using the Hilbert structure of H and the linearity of the operators L̃∗
I,i, we can express

each term of the preceding summation under the form:

‖x−
∑

i∈I

L̃∗
I,i(ci + εi)‖2 = ‖x−

∑

i∈I

L̃∗
I,ici‖2 + ‖

∑

i∈I

L̃∗
I,iεi‖2

+ 2
∑

j∈I

〈L̃I,j(x−
∑

i∈I

L̃∗
I,i(ci)), εj〉.

(4.18)
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We now assume that εj et L̃I,j(x −
∑

i∈I L̃
∗
I,i(ci)) are realizations of the random vectors

Ej = (Ej,k)1≤k≤Kj
and Zj = (Zj,k)1≤k≤Kj

. For a fine enough quantization step, one can as-
sume that the Ej,k are centered i.i.d and equally independent of Zj,k. In this case, the variables
(Ej,kZj,k)1≤k≤Kj

are centered and decorrelated.

Moreover, the condition (4.12) implies that the variances of the random variables Zi,k are
uniformly bounded in (i, k). By letting Kj tend to infinity we obtain

K−1
j

Kj∑

k=1

Zj,kEj,k
a.s.−→ 0. (4.19)

And thus, for large values of (Kj)1≤j≤D the scalar products in (4.18) can be neglected. Simi-
larly, the term corresponding to the error can be put under the form,

Dε,I = ‖
∑

i∈I

L̃∗
I,i(εi)‖2 =

∑

i∈I

∑

j∈I

Ki∑

k=1

Kj∑

l=1

Ei,kEj,l〈uI,i,k, uI,j,l〉, (4.20)

where, for each i ∈ {1, . . . , D}, {uI,i,k}1≤k≤Ki
is the family of vectors in H associated to the

linear synthesis operator L̃∗
I,i.

This term is independent of the coefficients ci,k and can be estimated from the variance of
E1,1. In some cases, especially when the union of L̃∗

I,i forms a basis and for large values of Ki,
the law of large numbers gives:

Dε =
∑

I∈P
αIDε,I ∼ E(E2

1,1)
∑

I∈P
αI

∑

i∈I

Ki. (4.21)

Thus, the distortion constraint (4.7) is brought to a quadratic constraint on the coefficients
ci, given by:

G(c1, . . . , cD) ≤ Gmax = Dmax −Dε. (4.22)

with G(c1, . . . , cD) =
∑

I∈P αI‖x−
∑

i∈I L̃
∗
I,ici‖2.

Finally, we can say that the initial optimization problem is reformulated to minimizing J
under a convex quadratic constraint. Note that, for the case in which βi,k ≡ 1 and ωi,k ≡ 1, this
optimization problem is quite similar to the one addressed in compressed sensing.

4.3 Convex optimization

Let us now address the convex optimization problem previously defined. Classically, this prob-
lem is solved by finding the critical points of the Lagrangian. One must thus solve:

max
µ≥0

min
(c1,...,cD)

(J(c1, . . . , cD) + µ(G(c1, . . . , cD)−Gmax) . (4.23)

The main difficulty in (4.23) is at the minimization stage. This problem is generally tackled
by iterative algorithms. We suggest using the algorithm given in [CCPW07], which is itself

an extension of the methods in [DDM04]. To this end, we set the initial values (c
(0)
1 , . . . , c

(0)
D )
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and we generate the sequence (c
(n)
1 , . . . , c

(n)
D )n≥1 which converges toward the solution of the

optimization problem. At the nth iteration, we compute

π
(n)
i,k = prox

γωi,k| . |βi,k (c
(n)
i,k − γg

(n)
i,k ) (4.24)

c
(n+1)
i,k = c

(n)
i,k + λ(π

(n)
i,k − c

(n)
i,k ) (4.25)

for all i ∈ {1, . . . , D} et k ∈ {1, . . . ,Ki}.
Here, γ ∈ [0, γmax] is the algorithm step and λ is a relaxation parameter. The vectors

(g
(n)
i,k )i=1,...,D; 1≤k≤Ki

are given by:

(g
(n)
i,k )1≤k≤Ki

= 2
∑

I∈P
1{i∈I}αIL̃I,i

(∑

i∈I

L̃∗
I,ic

(n)
i − x

)
. (4.26)

Recall that prox
γωi,k| . |βi,k is the proximal operator of the function γωi,k| . |βi,k . The proximal

operator of a convex function, f : R→ R, is defined by

proxf : u 7→ argminv

1

2
(v − u)2 + f(v).

According to [CCPW07], for the specific case of our functions, this operator can be explicitly
computed for particular values of βi,k, and easily computed numerically, otherwise.

4.3.1 Proof of theoretical results

Let us first develop the transition from ((4.8)) to (4.17).

Lemma 2. For all i = 1, . . . , D and large values of Ki the discrete entropy of Ci,k is equivalent to:

J(c1, . . . , cD) =
D∑

i=1

Ki∑

k=1

ωi,k|ci,k|βi,k . (4.27)

Proof. As seen in (4.16), the weak law of large numbers serves in obtaining the proof of this
Lemma. Let us first verify that this theorem can be applied. For each Ci,k, we define the
random variable Yi,k of probability law given by log2(Ci,k). We first verify the independence of
the random variables (Yi,k)i=1,...,D,1≤k≤Ki

.

More easily, if (Ci)1≤i≤n are independent then, for any function fi with i ∈ {1, . . . , n}, fi(Ci)
are independent. This can be viewed as the fact that the components of a random vector
(Xk)1≤k≤N are independent if the probability density, f , of the N -tuple verifies that N func-
tions, fi, exist such that:

f(x1, . . . , xN ) = f1(x1) . . . fN (xN ).

Let p : RN → R be the probability density of the N -tuple Yi,k, where N = K1 + . . . +KD and
the variables are reordered. We have, by definition:

p(Y1, . . . , YN ) = ey1+...+yNpC(ey1 , . . . , eyN ).

where pC is the density of the N -tuple (Ci,k)i=1,...,D,1≤k≤Ki
. But since Ci,k are considered to be

independent we have:

p(Y1, . . . , YN ) = ey1p1,1(e
y1) . . . eyNpD,KD

(eyN ).
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In other words, the random variables (Yi,k)i=1,...,D,1≤k≤Ki
are independent.

Set i ∈ {1, . . . , D} and l ∈ {1, . . . , Ni}. By the definition of the set Si,l, the random variables
(Ci,k)k∈Si,l

, and thus the random variables (log2(Ci,k))k∈Si,l
, are identically distributed. More-

over, we assume that whenKi tends toward infinity, CardSi,l also tends toward infinity. In this
case one can apply the law of large number and this gives:

− 1

Card(Si,l)

∑

k∈Si,l

log2(pi,k(Ci,k))
a.s.−→ h(C

(l)
i ).

Let us now look at Hglobal. This function is defined by:

Hglobal =
D∑

i=1

Ki∑

k=1

H(Ci,k).

And we have seen that H(Ci,k) ∼ h(Ci,k) − log2(q) where q > 0 is the quantization step.
Then

Hglobal ∼
D∑

i=1

Ki∑

k=1

h(Ci,k)− log2(q).

But, as seen above we can group the Ci,k into packets. In other words:

Hglobal ∼
D∑

i=1

Ni∑

l=1

Card(Si,lh(C
(l)
i )− log2(q)).

And from (4.16), when Card(Si,l) is large,

h(C
(l)
i ) ∼ − 1

Card(Si,l)

∑

k∈Si,l

log2(pi,k(Ci,k))

Therefore,

Hglobal ∼
D∑

i=1

Ni∑

l=1

∑

k∈Si,l

− log2(pi,k(Ci,k))− log2(q)

∼
D∑

i=1

Ki∑

k=1

(log2(pi,k(Ci,k))− log2(q)).

The second point that we are going to prove is taking the limit (4.19), which allows for
neglecting the inner products when computing the distortion.

Proof. A faster way for this proof can be given by invoking the Theorem 19.4, p. 295 of Davidson
[Dav94] which, in addition, ensures the almost sure convergence.

Let us adopt the notation: SKj
=
∑Kj

k=1Ej,kZj,k.
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Since the Ej,k are centered and both mutually independent and from Zj,k, we have:

E(SKj
) =

Kj∑

k=1

E(Ej,kZj,k) =

Kj∑

k=1

E(Ej,k)E(Zj,k) = 0,

and

E(S2
Kj

) = E(

Kj∑

k=1

(Ej,kZj,k))
2

=

Kj∑

k=1

E(E2
j,kZ

2
j,k) +

Kj∑

k=1

∑

k′ 6=k

E(Ej,kZj,kEj,k′Zj,k′)

=

Kj∑

k=1

E(E2
j,k)E(Z2

j,k)

+

Kj∑

k=1

∑

k′ 6=k

E(Ej,k)E(Ej,k′)E(Zj,kZj,k′)

= E(E2
1,1)

Kj∑

k=1

E(Z2
j,k).

By applying the Bienaymé-Tchebychev inequality to the random variable SKj
we obtain that

∀t > 0,

P(|SKj
| ≥ t) ≤

E(S2
Kj

)

t2
.

Then we can set t = Kjη for all η > 0 and

P(|SKj
| ≥ Kjη) ≤

E(S2
Kj

)

(Kjη)2
.

Therefore,

P(
|SKj
|

Kj
≥ η) ≤

E(E2
1,1)

∑Kj

k=1 E(Z2
j,k)

(Kjη)2
.

Moreover, since the probability densities pi,k related to the law of the Zi,k are parametered by:
(βi,k, ωi,k) ∈ S, we can write that:

Kj∑

k=1

E(Z2
j,k) =

Nj∑

l=1

CardSi,lE(Z
(l) 2
i )

≤ sup
l=1,...,Nj

E(Z
(l) 2
i )

Nj∑

l=1

CardSi,l = sup
l=1,...,Nj

E(Z
(l) 2
i )Kj ,

where Z
(l)
i is the random variable indexed by (β

(l)
i , ω

(l)
i ) ∈ S.

177



4. A COMPLEMENTARY APPROACH EXPLOITING SPARSITY

Finally, we obtain that for all η > 0,

P(
|SKj
|

Kj
≥ η) ≤

KjE(E2
1,1)c

(Kjη)2
=

E(E2
1,1)c

Kjη2
.

which tends to zero when Kj tends to infinity.

We are now concentrating on estimating the quantization error in the distortion, or in other
words the transition to (4.21).

Proof. L̃∗
I,i are square summable linear operators in `2(Ki) taking their values in H. Thus, for

each i ∈ {1, . . . , D}, it exists a vector (ui,k)1≤k≤Ki
such that for all k = 1, . . . ,Ki, ui,k ∈ H. From

(4.20), the error obtained in the expression of the distortion for each configuration I ∈ P is:

Dε,I = ‖
∑

i∈I

L̃∗
I,i(εi)‖2 =

∑

i∈I

∑

j∈I

〈L̃∗
I,i(Ei), L̃

∗
I,j(Ej)〉

=
∑

i∈I

∑

j∈I

〈L̃I,j(L̃
∗
I,i(Ei)), Ej〉

But, by definition,

L̃I,j(L̃
∗
I,i(Ei)) = (〈L̃∗

I,i(Ei), uj,l〉)1≤l≤Kj

= (

Ki∑

k=1

Ei,k〈ui,k, uj,l〉)1≤l≤Kj
.

Finally, with the necessary replacements we obtain (4.20). For practical reasons we reorder
i ∈ I, such that K1 ≤ K2.... ≤ KCard I. We can thus rewrite:

Dε,I =
∑

i∈I

∑

j>i

KiKj
1

Kj

Kj∑

l=1

1

Ki

Ki∑

k=1

Ej,lEi,k〈ui,k, uj,l〉

+
∑

i∈I

∑

j≤i

KiKj
1

Ki

Ki∑

l=1

1

Kj

Kj∑

k=1

Ej,lEi,k〈ui,k, uj,l〉

Let us first look at the first term of the summation. In this case we are considering the conver-
gence in mean of the random variable Si,j defined by

Si,j =

Kj∑

l=1

Ki∑

k=1

Ej,lEi,k〈ui,k, uj,l〉. (4.28)

If we compute

E(|Si,j |) ≤
Kj∑

l=1

Ki∑

k=1

E(|Ej,lEi,k|)|〈ui,k, uj,l〉|

≤ E(|E1,1|2)
Kj∑

l=1

Ki∑

k=1

|〈ui,k, uj,l〉|.
(4.29)
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Therefore, if (ui,k)i=1,...,D; 1≤k≤Ki
form a basis, the scalar products are nulls and we have

convergence in mean to zero since i 6= j and thus Ei,k and Ej,l are independent for all k =
1, . . . ,Ki and all l = 1, . . . ,Kj , respectively. Moreover, using the independence of the random
variables (Ei,k)i=1,...,D; 1≤k≤Ki

,

Var(Si,j) =

Kj∑

l=1

Ki∑

k=1

Kj∑

l′=1

Ki∑

k′=1

E(Ej,lEi,kEj,l′Ei,k′)〈ui,k, uj,l〉〈ui,k′ , uj,l′〉

=

Kj∑

l=1

Ki∑

k=1

E(E2
j,l)E(E2

i,k)〈ui,k, uj,l〉2

= E(E2
1,1)

2

Kj∑

l=1

Ki∑

k=1

〈ui,k, uj,l〉2.

Since (ui,k)i=1,...,D; 1≤k≤Ki
are unitary vectors, and with the Cauchy-Schwarz inequality, we

obtain

Var(Si,j) = E(Si,j) ≤ E(E2
1,1)

2KiKj . (4.30)

We then apply the Bienaymé-Tchebychev inequality to the random variable Si,j and we
obtain that ∀t > 0,

P(|Si,j | ≥ t) ≤
E(S2

i,j)

t2
.

Then we set t = KjKiη, for all η > 0 and

P(|Si,j | ≥ KiKjη) ≤
E(S2

i,j)

(KjKiη)2
.

Thus, from (4.30)

P(| Si,j

KiKj
| ≥ η) ≤

E(E2
1,1)

2

KjKiη2
.

And this tends to zero when Ki and Kj tend toward infinity. In the second term of this
summation we similarly obtain that the corresponding sums tend to zero for i 6= j. Therefore,
for large Ki, and since it is assumed that ‖uk,i‖ = 1,

Dε,I ∼
∑

i∈I

Ki∑

k=1

E2
i,k.

By applying once more the law of large numbers we can write that:

1

Ki

Ki∑

k=1

E2
i,k

a.s.−→ E(E2
1,1). (4.31)

And this leads to (4.21).
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4.4 Example and numerical results

Let us consider a simple example inspired from the JPEG2000 standard. For a two description
scenario we can build a frame-based scheme by using the reconstruction operator L∗

1 associated
to a 9-7 biorthogonal wavelet basis and the reconstruction operator L∗

2, associated to the same
wavelet basis functions but shifted by 1 pixel in each spatial direction. In this case, a natural

choice for the side decoders is L̃∗
i = 2L∗

i , i ∈ {1, 2}. A 3-resolution level dyadic filter bank
structure is applied for the MDC encoding of the 512×512 standard Lena image. The weight-
ing factors in the distortion constraint have been chosen here as α1,2 = 0.8, α1 = α2 = 0.1.
The frame coefficients are synthesized by the optimization approach described in the previous
section where the parameters of the generalized Gaussian model have been estimated by an
iterative Maximum Likelihood method. The quantization step, q, has been optimized for each
rate, and the JPEG2000 algorithm has been employed to encode the two quantized descrip-
tions. Fig. 4.3 shows the evolution of the PSNR w.r.t. the global bitrate for the central and side
decoders. For comparison, the results corresponding to the direct application of the JPEG2000
encoder at half the bitrate are provided. As expected, the proposed scheme provides better
results for the central decoder while showing a good performance for the two side decoders. It
is worth noticing that better results could be expected by using more sophisticated frames.
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FIGURE 4.3: Rate-distortion performance of the two-description scheme for Lena.

Let us now look at a similar scenario having three descriptions this time, where we have
chosen the synthesis operators L∗

1, L∗
2 and L∗

3 corresponding as before to a biorthogonal 9/7
wavelet basis and two shifted versions (the (1, 1)-shift for L∗

2 and the (1, 0)-shift for L∗
3). These

correspond to the three descriptions denoted D1, D2, and D3, respectively, in Figure 4.4.

Now we have two types of side decoders: one which receives only one out of three descrip-
tions and the other which receives two out of the three. Therefore a natural choice for L̃∗

I,i is the
following:

L̃∗
I,i =

{
3
2L

∗
i , if Card(I) = 2

3L∗
i , if Card(I) = 1.

(4.32)

The weights involved in the distortion constraint take the following values: α{1,2,3} = 0.8,
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αI = 0.0618 when Card(I) = 2 and αI = 0.0048, when Card(I) = 1.
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FIGURE 4.4: Rate-distortion performance of the three-description scheme for Lena.

For perceptual quality assessment we equally give the reconstructed images corresponding
to the central rate of 0.8 bpp.
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FIGURE 4.5: Reconstruction: Original image (left), Central decoder D1 +D2 +D3 (right) at 0.8
bpp.
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FIGURE 4.6: Reconstruction: Side decoder D1 +D2 (left), Side decoder D1 (right).

4.5 Synthesis frame approach versus the classical MDC approach

This chapter gave a complementary approach to the previously presented wavelet multiple
description schemes. Recall that this allowed us to shift the computational complexity to the
encoder side leaving the decoder fast and linear. The shift in complexity however is only a side
effect and not a purpose per se. The main idea of the synthesis frame approach was to better
take into account the joint source-channel coding aspect by choosing the “good” quantization
steps that would lead to a given maximum distortion.

In the previous chapter the problem was reversed. The encoder had only the purpose
of minimizing the redundancy while preserving the perfect reconstruction, whereas the de-
coder had the task of combining the correctly received data in an efficient manner by a post-
processing optimization step.

Even though the approach in Chapter 3 and the current one are complementary in some
sense, it would be useful to see how far apart in performance these two are, without taking
into consideration the fact that one is preferable in a given scenario (for instance the classical
approach could work well for simple encoders and complex decoders) and the other in an
orthogonal scenario (for instance a broadcast application in which the decoders need to be fast
and simple).

Before presenting such a comparison we need to do some simplifying hypothesis however,
because the MDC approach chosen in this chapter in order to validate the theoretical concept is
very basic in terms of the chosen frame and the amount of introduced redundancy. In this con-
text, we shall compare the synthesis frame approach with a classical two-description approach
based on the same analysis frame in which the quantization step is chosen to yield the same
bitrates. This is more of a preliminary result that could be useful in continuing the research in
the synthesis frame approach.

The outcome of this comparison for the Barbara image (512 × 512 pixels) is given in Fig-
ure 4.7. On the left-hand side we present the central decoder obtained when both descriptions
have been received, as well as the critically sampled biorthogonal 9/7 wavelet decomposition
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FIGURE 4.7: Comparison between the synthesis frame approach and a classical MDC approach
using an equivalent redundant wavelet frame, for Barbara and a two description scenario: Cen-
tral decoders (left), Side decoders(right). For the central decoder we also give the PSNR vs rate
curve for a critically sampled biorthogonal 9/7 wavelet decomposition.

for performance boundary purposes. On the right-hand side we can observe the rate-distortion
performances of the side decoders for the two MDC schemes. These results exhibit compara-
ble performances between the central decoders, with the novel scheme performing slightly
better at high bitrates. This confirms the fine quantization approximation and opens new per-
spectives for the synthesis frame scheme. If more refined approximations are to be done, the
performances of the scheme could enhance drastically. When compared to the single descrip-
tion situation (i.e. the critically sampled decomposition), these results are quite bad, but this is
hardly a surprise considering the great amount of redundancy (double) at the central decoders.

The side decoders results slightly contradict the central decoder ones which could indicate
that refinements in the used hypothesis in the synthesis frame approach are in order.

4.6 Conclusions

In this chapter we have presented a novel approach to Multiple Description Coding in which
the focus is on efficiently generating sequences of quantized coefficients at the encoder, in a
frame-based scenario. We have imposed linearity at the decoder and we have proposed a
convex formulation of the rate-distortion optimization problem to be solved at the encoder. By
optimizing the rate at the encoder the smallest number of coefficients is selected thus leading
to a sparse representation of the source.
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Chapter 5

Conclusion & Future Work

In this thesis we have addressed the problem of data transmission over error-prone networks,
by employing a technique called Multiple Description Coding (MDC). Such methods, which
define a joint source-channel coding strategy, have gained popularity as an alternative to error
correcting codes because they handle efficiently much larger data-chunk losses. In addition,
they are much more flexible to variable network conditions such as changing bandwidth, dif-
ferent size displays, multiple available transmission channels etc.

We have chosen the transform-based approach to MDC, since this enables the use of inher-
ently redundant wavelet transforms for signal encoding. In this manner we introduce infor-
mation diversity in the transform domain of the signal and simultaneously benefit from the
scalability induced by these kind of multiresolution transforms. This thesis focused on build-
ing reduced-redundancy schemes, and, more concretely, we have studied schemes in which
the redundancy is tunable with the size of an approximation subband in a classical wavelet
decomposition.

In the following, we summarize the contributions of this thesis and address several perspec-
tives for future work.

5.1 Overview of thesis contributions

The first direction, considered in Chapter 2, consisted in building redundant schemes for one-
dimensional signals. In practice, we have applied the theoretical framework to the temporal
signal in a t+ 2D-encoded video sequence. The redundancy was achieved by using a wavelet
frame approach which is equivalent to an oversampled filter bank (OFB) applied to the signal.
Through this transform we have created two descriptions of the source signal, each containing
a set of wavelet coefficients given by an approximation and three detail coefficients subsets.
Each set was to be transmitted over its own independent channel. However, the union of these
sets yields a redundancy of a factor of 2, which would result in a highly inefficient coding
scheme if the absence of losses. Therefore, we have introduced an additional subsampling of
all the detail subbands while keeping the approximation subbands entirely. This allows for the
tuning of the overall redundancy of the MDC scheme to the size of an approximation subband
in a critically sampled wavelet decomposition.

Next, we addressed the perfect reconstruction issue raised by this additional subsampling.
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We have proven the perfect reconstruction for certain schemes and we have established choice
criteria among them based on the minimization of the quantization noise. We have compared
the performances of several schemes among the efficient ones in a scalable video coding context
provided by the Motion Compensated - Embedded Zero-trees Block Coding (MC-EZBC) codec.
We have implemented two scenarios: in the first one a whole description is lost at a time (this
corresponding to a network packet per description), and in the second one we have simulated
the loss of several packet into each wavelet description.

A second direction that we have explored in this thesis referred to the multiple description
coding of still images, which is viewed as an extension of the temporal schemes developed in
Chapter 2. The same idea of reducing the redundancy by an additional subsampling of the
wavelet subbands was employed (the subbands which contain the core of the signal energy
were again preserved). In the two-dimensional schemes presented in Chapter 3, the problem
of structure inversion is not trivial, and therefore an exhaustive study has been conducted in
order to select the efficient schemes among all possible combinations based on the proposed
subsampling strategies.

Moreover, we have explored the possibility of improving the decoding by a post-processing
stage based on a priori information on the system. This information is given by the quantiza-
tion steps which can be viewed as convex constraints. The reconstruction problem has thus
been formulated as the optimization of a quadratic function under convex constraints and the
decoded image gains several dB in terms of Peak Signal to Noise Ratio (PSNR) both when a
whole description is lost and when random pixels in each description are destroyed.

Finally, we have approached the Multiple Description problem from a different angle by
considering the problem as a rate-distortion optimization in which a certain maximal distor-
tion is allowed and the best transmission rate (linked to the quantization step) is sought. The
philosophy of this approach is related to the newly expanding theory called “Compressed Sens-
ing”. This theory aims at re-thinking signal acquisition by exploiting the fact that many signals
have a sparse representation in some basis. Thus, acquiring all signal samples just to discard
most of them in the next step of the transmission chain might not be the most efficient way to
proceed. To this end a signal recovery problem needs to be solved. Researchers have thus for-
malized a framework in which a number slightly bigger than the sparsity1 of the signal suffices
to recover it perfectly with very high probability.

Our multiple description approach, which rejoins this philosophy, aimed at selecting a small
number of quantized coefficients at the encoder, such that the best rate-distortion trade-off
was to be attained at the decoder. Some approximations have been formulated in order to be
able to solve this problem as a convex optimization, and the scheme has been generalized to
an arbitrary number of descriptions. By doing this, the complexity is shifted to the encoder
whereas the decoding becomes a simple linear process. We have tested this framework for still
images encoded with the EZBC and JPEG2000 coders. Preliminary results have been compared
to a classical MDC approach for the same level of redundancy.

5.2 Perspectives for future work

The work presented in this thesis leads toward several possible extensions. In the following we
identify some of them.

1i.e. the number of non-zero elements in the signal, either in its time domain or in some basis.
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Hybrid MDC schemes for video

For the case of temporal descriptions our schemes may be further combined with other spa-
tially redundant strategies that have already been proposed in the literature. The increased
flexibility thus achieved may be exploited to better adapt packet-forming to different situations
of network losses and also to improve the reconstruction at different levels.

Enhanced spatial MDC schemes

In the spatial case, the performances of our 2-description schemes might be enhanced by
adding more diversity between the most energetic subbands, mainly the approximation ones.
These remain highly correlated after the decomposition, therefore the central decoding cannot
fully exploit this redundancy. With this in mind we propose to perform a basic multiple de-
scription scalar quantization between the two approximation subbands, consisting in shifting
the quantization indices by one half - in the Vaishampayan [Vai93b] style. The reception of
the two descriptions would lead to a finer quantized reconstruction of the approximation sub-
bands. By combining this with the chosen weighting strategy for the subbands, better decoding
results might be expected.

Another extension that can be brought to the spatial MDC schemes, mainly in the initial-
ization strategy for the iterative decoding, is a finer choice of the fixed weighting coefficients
of each received subband. Indeed, instead of approximating the values corresponding to the
integer truncation to 1 of the quantization step, an adaptive quantization step might be chosen
for each bitrate.

Sparsity approach with finer redundancy frames

The last direction explored in this thesis is incipient. Many possible extensions can be envis-
aged. An immediate one is to employ less redundant frames, such as those explored in the
previous chapters. Also finer approximations for the entropy, better suited for the low-bitrate
regime based on the works of Fraysse et al. [FPPP09] could be a possible extension.

Different transforms and/or performance measures

An important issue in any MDC approach is the quality of the side reconstruction. In our
work we only considered the “usual” performance evaluation criteria, based on PSNR. Two
directions are possible from this point.

The first one would be to use other transforms which enhance the subjective quality percep-
tion at comparable PSNR-s. In this sense, a great deal of effort has been spent in the literature in
order to enhance the subjective quality perception based on geometry preserving transforms.
We could investigate replacing the proposed filter banks by more advanced wavelet-like tech-
niques such as: bandlets [Pen02], curvelets [CDDY06], contourlets [SW01, Chap. 4], the adap-
tive lifting scheme [PH02], etc. . See [SW01] and [Mal09] for surveys on other interesting
wavelet-like (“x-let”) transforms. We could envisage replacing our frame decomposition built
as a union of bases with some of these transforms. A beneficial side effect to this would also be
a sparser representation of the signal and thus much better compression performances.

187



5. CONCLUSION & FUTURE WORK

The second direction to explore when evaluating the side decoding performance would
be to consider other criteria, based on perceptual quality measures, for instance [vdBLV96],
[dFZRS03].

Cross-domain applications

Recently MDC methods have been evaluated for the development of 3D stereoscopic
video/television [NAB+06], [KHWK08]. In [KHWK08] a simple MDC method based on
odd/even temporal splitting is employed starting from the works of Apostolopoulos [Apo99]
for closed-loop video coders. We could imagine a somewhat similar approach using our re-
duced redundancy methods. In this context, MDC makes a very good candidate for the base
layer encoding of the stereoscopic signal.

Finally, on a more general note, the MDC philosophy is clearly not restricted to signal
processing, in its commonly accepted definition. The explosion of multi- and many-core com-
puting architectures brings with it a stringent need for fault tolerance at different system levels:
hardware, operating system, communication buses etc. In this context, the analogy between a
multi-core architecture and a packet-based network is not far-fetched, especially in the case of
reconfigurable architectures. The idea that some redundancy is introduced in order to cope
with possible failures (either hardware or software) is very much in-line with the MDC frame-
work.

Moreover, an important ingredient in such architectures is parallelism - yet another simi-
larity with multiple description coding. Exploiting parallelism efficiently is one of the open
problems in present day computer science community. Being applied to all pixels in an im-
age simultaneously, the algorithms presented in this dissertation are “embarrassingly” parallel
[ABC+06]. A next step would thus be to transpose the schemes presented in Chapter 3 to a
parallel architecture in order to evaluate their computational performances in a more real-life
scenario.
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description. Pour le schéma MDC nous illustrons les résultats pour deux ini-
tialisations differentes, Init 1 et Init 2, ainsi que les résultats après l’algorithme
d’optimisation : les courbes Opt. 1 et Opt. 2. Comme réference nous donnons la
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21 Comparaison entre l’approche par paradigme de synthèse et une approche MDC
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