
HAL Id: pastel-00006005
https://pastel.hal.science/pastel-00006005

Submitted on 9 Jul 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Codage Espace Temps pour les canaux MIMO à accès
multiple
Maya Badr

To cite this version:
Maya Badr. Codage Espace Temps pour les canaux MIMO à accès multiple. domain_other. Télécom
ParisTech, 2010. Français. �NNT : �. �pastel-00006005�

https://pastel.hal.science/pastel-00006005
https://hal.archives-ouvertes.fr


École Doctorale
d’Informatique,
Télécommunications
et Électronique de Paris

THÈSE DE DOCTORAT

Spécialité :

Communications et Électronique

Présentée par

Maya BADR

pour obtenir le grade de docteur de TELECOM ParisTech

Sujet de la thèse :

Codage Espace-Temps pour les Canaux MIMO à Accès
Multiple

Soutenue le 22 février 2010 devant le jury composé de :

Hikmet SARI Président
Helmut Bölcskei Rapporteurs
Emanuele VITERBO
Mérouane DEBBAH Examinateurs
Ghaya REKAYA
Jean-Claude BELFIORE Directeur de thèse





Abstract

Extensive research has been carried out these last few years on the single-user MIMO

Space-Time block code (STBC) design using advanced algebraic tools, namely cyclic divi-

sion algebra. Families of single-user codes have been carefully constructed to achieve the

diversity-multiplexing tradeoff (DMT) of the MIMO channel. Motivated by the promis-

ing results obtained in the single-user scenario, the aim of this thesis is to construct new

families of multi-user STBCs. Multi-user MIMO (MU-MIMO) channels have recently at-

tracted considerable attention because of its essential practical implication in today’s and

future communication systems, i.e., IEEE 802.11n, 3GPP Long Term Evolution Advanced

(LTE-A), IEEE 802.16m, etc.

The current study focuses on the uplink multiuser MIMO channel, equivalently, the

MIMO multiple-access channel (MAC). In a MIMO-MAC, multiple users equipped with

multiple transmit antennas communicate with one multiple-antenna receiver. A coherent

communication system is considered, where the receiver has a perfect channel state infor-

mation (CSI) while the transmitters do not have any CSI, but are aware of the channel

statistics. The construction of the proposed multiple-access codes is based on an in-depth

understanding of the information theoretic aspects of the MAC that give insight on the be-

havior of the channel. In order to simplify the problem, a MAC with single-antenna at the

transmitters and an arbitrary number of antennas at the receiver is first considered. Next,

the general MIMO-MAC with multiple-antenna at both the transmitters and the receiver

is investigated. Throughout this thesis, all the presented results deal with multiple-access

systems under the assumption of synchronized users which may not be practical for sev-

eral reasons: the users do not necessarily share the same timing reference, they access the

channel randomly, they have different geometrical locations, etc. As a practical applica-

tion, the effect of asynchronism on the multiple-access code performance is studied in the

single-antenna scenario. The proposed code turns out to be delay tolerant, i.e., does not

lose its performance gain due to asynchronism.

Finally, the multiple-access relay channel (MARC) is considered, where one or more

relays help the users communicate with the destination while the cooperation between

the users is not allowed. Relaying techniques exploit the spatial diversity in a wireless

network and, thus, significantly improve the performance of the system. The multi-access

amplify-and-forward (MAF) strategy, characterized by its low relaying complexity and its

linear nature, is considered. The MAF relay channel is shown to be equivalent to a virtual

MIMO-MAC for which, the code constructed for the MIMO-MAC can be applied in a

distributed way.
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Résumé de la Thèse en Français

Introduction

Multiples travaux de recherche ont été munis ces denirères années pour construire des codes

espace-temps optimaux pour les communications sans fil de point à point (i.e., mono-

utilisateur). Plusieurs familles de codes, dont la construction utilise des outils algébriques

avancés et qui atteignent le compromis Diversité-Multiplexage (DMT), ont été proposées

dans la litérature. Ce compromis a été développé par Zheng et Tse [1] pour capturer les

avantages duels d’un canal à évanouissement pour les SNR élevés : l’augmentation du débit

(augmentation du gain de multiplexage) et l’augementation de la fiabilité (augmentation du

gain de diversité). Depuis, le DMT devint un outil puissant de la théorie de l’information

utilisé pour évaluer la performance et comme critère de construction des codes espace-

temps.

H1

H2

HK

1

2

K

R

Figure 1: Le Canal MIMO à Accès Multiple.

Motivés par les résultats promettant obtenus dans le cas des canaux mono-utilisateur,

notre but dans cette thèse est de proposer des nouvelles constructions de codes espace-

temps pour les canaux à accès multiple (i.e., multi-utilisateur) en se basant sur une pro-

fonde compréhension de ce dernier du point de vue de la théorie de l’information.

xi



xii Résumé en Français

Le Canal à Accès Multiple

Dans une communication à accès multiple, plusieurs utilisateurs communiquent avec un

seul récepteur (voir Fig. 1.1). Ce canal est appelé canal MIMO-AM dans ce qui suit. Les

approches traditionnelles de codage pour ce scénario consistaient à utiliser des schémas

de communication orthogonaux ou, plus récemment, à utiliser des schémas de codages

construits pour les canaux point à point. Gärtner et Bölcskei [2] ont introduit l’idée de

codage "joint" pour les canaux MIMO-AM prenant en consideration les caractéristiques

de ces derniers. Les auteurs ont proposé un schéma de codage qui consiste à adapter le

code d’Alamouti au scénario multi-utilisateur et dont les performances mettent en évi-

dence l’importance de ce type de codage joint comparé aux techniques de communication

orthogonales et à l’utilisation des codes mono-utilisateur.

Dans cette thèse, nous présentons une analyse détaillée des aspects théoriques du canal

à accès multiple et nous proposons des nouveaux schémas de codage adapté à ce canal.

Nos codes espace-temps exploitent les avantages du canal en question d’une meilleure façon

comparé aux autres schémas de codage existant dans la litérature.

Hypothèses

Nous nous intéressons dans cette thèse au canal multi-utilisateur. D’où, sauf autrement

spécifié, il existe plusieurs utilisateurs et un seul récepteur dans le réseau étudié. Nous sup-

posons que les utilisateurs ne coopèrent pas entre eux de façon que l’information transmise

par l’un est indépendante de celle transmise par l’autre. Tous les canaux (entre chaque

utilisateur et le recepteur ainsi que le canal équivalent) sont à évanouissement lent (slowly

faded channels), i.e., malgré le fait qu’ils soient aléatoires, ils restent constants durant

toute la communication. Nous supposons que le recepteur a une connaissance parfaite et

précise de l’état de tous les canaux, tandis que les utilisateurs à l’émission n’ont aucune

connaissance des canaux.

Quand la technique de coopération est considérée, le canal à accès multiple est appelé

MARC (multiple access relay channel) et le protocole de relayage que nous adoptons dans

notre travail est l’Amplify-and-Forward (AF et dans le cas multi-utilisateur MAF). Ce

protocole est caractérisé, d’une part, par sa compléxité de relayage réduite impliquant

la possibilité de son implémentation en pratique et d’autre part, par sa linéarité nous

permettant de modéliser le MARC comme un canal MIMO-AM virtuel. Nous montrons

que, grace à cette modélisation, il est possible d’utiliser les codes espace-temps construits

pour les canaux MIMO-MA d’une façon distribuée.

Nous utilisons la probabilité de coupure (outage probability) ainsi que son approxima-

tion pour des grands SNR, i.e., le compromis diversité-multiplexage (DMT), comme outils

théoriques d’analyse de performance. Le DMT a été introduit par Zheng et Tse dans [1]

pour le canal point à point et généralisé par Tse et al. dans [3] au canal à accès multi-

ple. Concernant le MARC, une borne supérieure du DMT a été développée dans [4] et
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fut récemment utilisée par Chen et al. dans [5] pour évaluer la performance du protocole

MAF qu’ils ont proposé.

D’un autre côté, nous utilisons le taux d’erreur par mot pour évaluer la performance

d’un schéma de codage. Au récepteur, nous utilisons un égaliseur "minimum mean square

error decision feedback MMSE-DFE" [6] suivi d’un décodage de réseaux de points (Schnorr-

Euchner, SE) pour résoudre le problème de déficience de rang.

Plan et Contributions de la thèse

Cette thèse est organisée comme suit.

Chapitres 1 et 2 : Analogie entre les communications de point à point et
celles à accès multiple

Les deux premiers chapitres de cette thèse sont dédiés à l’analyse de l’analogie entre les

communications de point à point et à accès multiple. Chapitre 1 montre comment les

outils de la théorie de l’information, que nous commençons par définir dans le cas mono-

utilisateur, peuvent être adaptés au cas multi-utilisateur. Plus précisement, une analyse

détaillée des notions élémentaires de la théorie de l’information, telles que la capacité

du canal, la probabilité de coupure et le compromis Diversité-Multiplexage (DMT), est

présentée dans les deux cas mono et multi-utilisateur.

Dans le Chapitre 2, une étude de l’état de l’art sur la construction des codes espace-

temps est présentée. Dans la première partie de ce chapitre, le cas mono-utilisateur est

considéré. Les critères de construction des codes dans ce cas sont rappelés suivis par

quelques constructions de schémas de codage qui peuvent être trouvées dans la litérature

et qui nous seront utiles dans la suite de la thèse. Dans la deuxème partie du chapitre,

le cas multi-utilisateur est considéré et les critères de construction de codes espace-temps

dans ce cas sont présentés. L’idée de l’extension des codes espace-temps à ce dernier est

par la suite introduite suivie par la description et l’étude de la performance du premier

code joint proposé par Gärtner et Bölcskei dans [2] pour le canal à accès multiple avec

deux utilisateurs et nt = nr = 2. Ce code, qu’on note code GB , est de longueur 4. Il

est construit en concatenant deux codes Alamouti tel que, la matrice de mot de code de

l’utilisateur k peut être écrite sous la forme suivante

Xk =

[

sk,1 sk,2 sk,3 sk,4

−s∗k,2 s∗k,1 −s∗k,4 s∗k,3

]

(1)

où sk,j, k = 1, . . . , 2, j = 1, . . . , 4 correspondent aux quatre symboles d’information des

utilisateurs 1 et 2 qui sont indépendemment choisis d’une constellation QAM. Afin de

garantir un rang minimal égal à 3, une des matrices de mot de code d’un des utilisateurs,
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Figure 2: PE2 du code mono-utilisateur et du code GB, K = nt = nr = 2, 4-QAM.

disons l’utilisateur 2, est modifiée comme suit

X2 =

[

s2,1 s2,3 s2,2 s2,4

−s∗2,2 −s∗2,4 s∗2,1 s∗2,3

]

(2)

Dans la figure 2.1, nous comparons la performance du code GB à celle correspondante à

l’utilisation du code optimal pour une communication de point à point. Nous considérons

la probabilité de l’évènement où les deux utilisateurs sont en erreur, qu’on note évènement

2 , en fonction du SNR reçu. Nous remarquons une amélioration claire des performances

(2.5) qui s’explique par le rang de la matrice de mot de code équivalente qui est égal à 3

(rank(X) = 3) pour le code GB tandis qu’il est égal à 2 pour le code mon-utilisateur (le

Golden code).

Cette construction montre l’importance de l’utilisation de codes spécialement construits

pour les canaux à accès multiple, confirme la sous-optimalité des codes mono-utilisateur

dans un scénario multi-utilisateur et motive notre travail que nous présentons dans les

prochains chapitres.

Chapitre 3 : Construction de Codes Espace-Temps pour les Canaux à
Accès Multiple avec une Antenne à l’Émission

Dans ce chapitre, nous considérons un scénario multi-utilisateur relativement simple dans

lequel tous les utilisateurs sont équipés d’une seul antenne (voir Fig. 3.1). Nous supposons,

dans une première partie, que les utilisateurs sont synchronisés à l’émission et nous pré-
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Figure 3: Un canal à accès multiple, K utilisateurs, nt = 1 antenne par utilisateur.

sontons une analyse théorique basée sur la probabilité de coupure du canal en question qui

permet d’évaluer sa limite théorique.

Dans la figure suivante (Fig. 3.2), nous avons tracé les probabilités de coupure d’un

canal MA avec deux utilisateurs et nous avons considéré deux techniques d’accès: la tech-

nique d’accès orthogonal ("time sharing") où les utilisateurs accèdent au canal successive-

ment, et la technique d’accés simultané où les deux utilisateurs accèdent au canal simul-

tanément ("multiple-access"). Dans ce dernier scénario, la probabilité totale de coupure

ainsi que celle de l’évènement où les canaux des deux utilisateurs sont simultanément en

coupure ("outage event 2"), sont considérées.

Le même ordre de diversité est atteint avec les deux techniques d’accès mais le "time

sharing" est sous optimal. Cela s’explique par la mauvaise exploitation des degrés de liberté

du canal. Intuitivement, les deux utilisateurs doivent accéder au canal afin d’exploiter au

mieux ses degrés de liberté. Suite à cette analyse, une question s’est naturellement posée: et

si les codes espace-temps mono-utilisateur sont utilisés dans un scénario multi-utilisateur

? La figure 3.4 montre que l’utilisation du code espace-temps mono-utilisateur optimal

(simple modulation QAM dans ce cas) offre une bonne performance (comparé au time

sharing) dans le cas où nr = 2 tandis qu’elle est sous optimale (même performance que

le time sharing) dans le cas où nr = 1. Ce comportement qui s’explique facilement en

analysant le DMT dans les deux cas, nous a motivé à proposer notre nouvelle construction

brièvement décrite dans ce qui suit.

Le code que nous proposons est de longueur K de façon que la matrice du mot de code

équivalente est carrée. Le vecteur comprenant les symboles d’information de l’utilisateur

k est noté sk et est exprimé comme suit:

sk =
[

sk,1 sk,2 . . . sk,K

]⊤
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Figure 4: Probabilités de coupure d’un canal à accès multiple avec deux utilisateurs et
différentes techniques d’accès, nt = 1, R = 2 bits/puc.

où sk,l correspond au symbol d’information transmis par l’utilisateur k durant la lieme

utilisation canal, k, l = 1, 2, . . . ,K. La matrice de mot de code de chaque utilisateur k est

construite en multipliant le vecteur sk par la matrice unitaire de rotation que nous notons

U comme suit:

xk = Usk =
[

γxk γσ (xk) . . . σK−1 (xk)
]

(3)

La matrice de mot de code équivalente est par la suite construite,

X =









x1 σ(x1) σ2(x1) . . . σK−1(x1)

γx2 σ(x2) σ2(x2) . . . σK−1(x2)
...

. . .
. . .

. . .
...

γxK γσ (xK) . . . . . . σK−1 (xK)









(4)

Le coefficient γ est ajouté pour garantir un déterminant non nul et donc, un ordre de

diversité maximal. Nous avons montré que, si γ est un nombre transcendental, notre code

a un rang plein.

Dans le cas d’un canal AM à deux utilisateurs, nous utilisons la matrice U utilisée pour

la construction du Golden code:
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Figure 5: Probabilité d’erreur du code mono-utilisateur (modulation QAM) comparée à
celle du Time-Sharing, K = 2, nt = 1, 4-QAM.

U =
1√
5

[

α αθ

ᾱ ᾱθ̄

]

où α = 1 + i − iθ et θ = 1+
√

5
2 . Nous avons,

x⊤
k = Usk =

(

xk

σ (xk)

)

(5)

La matrice de mot de code équivalente est construite comme suit:

X =

[

x1

x2

]

=

[

x1 σ (x1)

γx2 σ (x2)

]

=

[

α(s11 + s12θ) ᾱ(s11 + s12θ̄)

iα(s21 + s22θ) ᾱ(s21 + s22θ̄)

]

La performance du code proposé (BB-code) est étudiée dans la figure 3.6 où le taux

d’erreur par mot correspondant est tracé en fonction du SNR. La supériorité du nouveau

code est claire et celle-çi quelque soit le nombre d’antenne à la réception.

Une étude théorique déterminant le DMT atteint par le nouveau schéma de codage que

nous avons proposé pour le canal AM avec une seul antenne par utilisateur a été présentée

suivie d’une analyse de l’optimalité de ce dernier en terme du DMT.
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Figure 6: Performance du BB-code, nt = 1, 4-QAM.

Dans la deuxième partie de ce chapitre, un scénario plus pratique dans lequel l’hypothèse

de synchronisation à la transmission est omise, est considéré. Nous avons montré que, mal-

gré un éventuel asynchronisme entre les utilisateurs, la performance et plus précisement

le gain offert par notre schéma de codage est consérvé (voir Fig. 3.12 dans laquelle la

probabilité de l’évènement où les deux utilisateurs sont en erreur est tracée).

Chapitre 4 : Construction de Codes Espace-Temps pour les Canaux à

Accès Multiple à Antennes Multiples

Motivé par le gain de performance important obtenu dans le cas mono-antenne et armé par

la compréhension des aspects théoriques du canal à accès multiple, nous avons considéré

dans ce chapitre 4 ce même canal mais avec des utilisateurs multi-antennaire (le canal

MIMO-AM). Le premier code espace-temps connu pour ce scénario est le code GB [2]

étudié précédemment. Hong et Viterbo ont considéré dans [7] le canal MIMO-AM et

ont construit un nouveau code que nous notons HV. Le code HV offre des meilleures

performances comparé au code GB (voir Fig. 4.3).

Indépendamment du code HV, nous avons proposé un nouveau code ( code MIMO-BB)

dont les performances sont meilleures que les codes précédents (voir Fig. 9). Un mot de

code du code MIMO-BB est sous la forme suivante:

X =









Ξ1 τ(Ξ1) . . . τK−1(Ξ1)

ΓΞ2 τ(Ξ2) . . . τK−1(Ξ2)
...

...
. . .

...

ΓΞK Γτ(ΞK) . . . τK−1(ΞK)









(6)
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Figure 8: PE2 des codes HV, GB et du code mono-utilisateur, K = nt = nr = 2, 4-QAM
(2 bits puc).
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Figure 9: Probabilités d erreur des codes HV, MIMO-BB et du time sharing, K = nt =
nr = 2, 4-QAM.

où Ξ correspond à la représentation matricielle d’un élément de l’algèbre cyclique de divi-

sion sur laquelle le code est construit, i.e.,

Ξ =









x1 x2 . . . xnt

ησ(xnt) σ(x1) . . . σ(xnt−1)
...

...
. . .

...

ησnt−1(x2) ησnt−1(x3) . . . σnt−1(x1)









(7)

Chapitre 5 : Le Canal à Accès Multiple avec Relais

Le canal à accès multiple avec relais (MARC) est un canal à accès multiple dans lequel

N relais aident les utilisateurs à communiquer avec la destination (voir Fig. 5.3). Il est

important de noter que les utilisateurs ne coopèrent pas entre eux. Dans ce chapitre, nt, nr

and nd correspondent au nombre d’antenne par utilisateur, par relais et à la destination,

respectivement.

Le protocole de relayage que nous adoptons dans notre travail est le "Multi-Access

Amplify-and-Forward" (MAF) qui a été récemment introduit par Chen et al. [5] pour le

canal MARC avec un seul relais auquel nous nous intéressons dans notre travail. Nous

supposons que le relais est "half-duplex", i.e., le relais ne peut pas transmettre et recevoir

en même temps. Un des principaux avantages du protocole MAF appartenant à la classe

de protocole AF, est le bon compromis entre compléxité et performance qu’il offre comparé

à d’autre protocoles tels que le "Dynamic Decode and Forward" (DDF) et le "Compress

and Forward" (CF). Une comparaison de ces différents protocoles de coopération, en terme
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du compromis diversité-multiplexage, a été présentée dans [5] montrant la supériorité du

MAF dans quelques régions de gain de multiplexage.

r1

r2

rN

d

1

2

3

4

Hk,ri Hri,d

Figure 10: Le canal à accès multiple avec relais ("multiple-access relay channel").

La structure de la trame de coopération du protocole MAF est illustrée dans la figure

5.4. Dans les deux phases de la trame, les deux utilisateurs transmettent simultanément

leurs informations. Le relais, due à la contrainte half-duplex qui lui est imposée, écoute dans

le première phase et transmet, dans la deuxième phase, une version amplifiée du message

qu’il a reçu durant la première phase. Dans la figure 5.4, les traits pleins correspondent au

mode de transmission et les traits pointillés au mode de réception.

T/2

First phase

T/2

Second phase

X11
X12

User 2 X21 X22

User K

BY rY r

Y 1 Y 2

User 1

XK,1 XK,2

Figure 11: La structure de la trame de cooprération avec le protocole MAF.

Nous avons montré que, grace à la linéarité du protocole MAF, le canal à accès multiple

avec relais peut être modélsier comme un canal MIMO-AM virtuel auquel nous avons

appliqué le schéma de codage que nous avons déjà construit pour le canal MIMO-AM en

une façon distribuée.

Dans la figure 5.9, nous avons tracé la probabilité d’erreur du nouveau code espace-

temps distribué proposé que nous comparons à celle du time-sharing et du code mono-

utilisateur distribué. Ces courbes montrent le gain offert par le nouveau code.
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Figure 12: Performance du code MIMO-BB distribué, nd = 1, 4-QAM.

Conclusions et Perspectives

Dans cette thèse, nous nous sommes intéressés au canal à accès multiple qui peut être

considéré comme canal élémentaire d’un réseau de communication sans fil large. Plus

précisement, nous avons proposé de nouveaux codes espace-temps adaptés au canal en

question qui offrent des gains de performance remarquables. Les outils de la théorie de

l’information, la probabilité de coupure et le compromis diversité-multiplexage, ont été

utilisés pour l’évaluation des performances théoriques.

Nous avons commencé par un scénario simple dans lequel tous les utilisateurs sont

équipés d’une seule antenne. Le code que nous avons proposé dans ce cas est le premier

code espace-temps pour ce type de canal. Deux scénarios, communication synchrone et

asynchrone, ont été considérés et l’optimalité du code proposé a été démontrée dans les

deux cas. Une étude théorique de ce nouveau schéma de codage a été présentée montrant

son optimalité, dans le sens du DMT, pour quelques régions de gain de multiplexage. Le cas

plus général multi-antennaire a été considéré par la suite. Nous avons proposé un nouveau

code espace-temps que nous avons comparé à d’autre codes existant dans la litérature pour

montrer sa supériorité dans la plupart des cas. Une première étape vers l’analyse de ce

code en terme du DMT a été présentée, la compléter constitue une importante perspective.

Dans une dernière partie, nous avons considéré la coopération dans un scénario multi-

utilisateur. Les utilisateurs ne coopèrent pas entre eux mais utilisent un relais pour at-

teindre leur destination. Nous avons montré que ce canal est équivalent à un canal à

accès multiple multi-antennaire et donc, nous avons utilisé le code espace-temps construit

pour ce dernier pour proposer un nouveau code espace-temps distribué pour le canal à
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accès multiple avec relais. Nous avons étudié le cas mono-antenne avec un seul relais, la

généralisation de ce travail pour des canaux à accès multiple plus larges est une perspective

intéressante.

Plus généralement, l’étude de canaux plus complexes comme le canal à intérférence est

une des perspectives majeures permettant la compréhension générale d’un large réseau de

communication sans fil.
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Notation

Scalars

K number of users

nt, nr number of transmit and receive antenna

nr, nd number of antennas at the relay and the destination in a

MAR channel

T codeword block length

s cardinality of S
SNR signal to noise ratio

Pout outage probability

PE error probability

ζn nth root of unity

Sets

S subset of users ⊆ {1, . . . ,K}
S complement of S in {1, . . . ,K}
Z Set of integers

R Set of reals

C Set of complex numbers

Q Set of rational numbers

Operations

E[x] Expectation of x

Q(a)
∫∞
a (1/

√
2π) exp−x2/2 dx

P {·} probability measure

|A| Cardianality of a set

f(x)
.
= xb exponential equality , limx→∞

log f(x)
log x = b

≥̇, ≤̇ exponential inequality

xxv



xxvi Notation

log(·) logarithme to base 2

& and operator

∧ exclusive or operator

Matrices and vectors

v vector

M matrix

M s horizontal concatenation of s matrices

Mi,j element of the j-th column and i-th row of the matrix M

v⊤,MT transpose of v and M

v†,M † conjugate transpose of v and M

[·]∗ element conjugate

⊙ component wise product

Tr(M) trace of M ,
∑

i Mi,i

detM determinant of M

rank(M ) rank of M

‖M‖F squared frobenius norm of M , Tr(MM †)

In n × n identity matrix

0 all zeros matrix

M ⊗ M
′

Kronecker product between matrices M and M
′

λ(M) Eigenvalue of matrix M

CN (0, σ2) Complex Gaussian random variable with zero mean and vari-

ance σ2

X transmitted signal

Y received signal

Z additive gaussian noise

Hk channel matrix of user k

H equivalent channel matrix



Acronyms

AF amplify-and forward

AWGN additive white gaussian noise

BB code Badr and Belfiore code

CDA cyclic division algebra

CF compress-and-forward

CSI instantaneous channel state information

dB deciBel

DDF dynamic decode-and-forward

DMC discrete memoryless channel

DMT diversity-multiplexing tradeoff

GB code Gärtner and Bölskei code [2]

HV code Hong and Viterbo code [7]

iid independent and identically distributed

LAST lattice space-time

MAC multiple-access channel

MIMO multiple input multiple output

MISO multiple input single output

MAC Multiple Access Channel

MIMO-MAC Multiple Input Multiple Output MAC

ML maximum likelihood

MMSE minimum mean square error

NAF non-orthogonal amplify-and forward

NVD non vanishing determinant

pcu per chanel use

PEP pairwise error probability

QAM quadrature amplitude modulation

SIMO single input multiple output

SISO single input single output

SNR signal to noise ratio
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STBC space time block code
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Introduction

Motivation

Extensive research has been carried out in the last few years on the single-user multiple-

input multiple-output (MIMO) space-time block code (STBC) design using advanced al-

gebraic tools, namely cyclic division algebra (CDA) ([8], [9], [10]). Families of single-user

CDA codes have been carefully constructed to achieve the outage diversity-multiplexing

tradeoff (outage-DMT) of the MIMO channel. The DMT framework introduced by Zheng

and Tse in [1] to evaluate the theoretical performance limit of a channel has been proven

to be an important tool to construct optimal codes ([11], [12], [13], [14]). Motivated by

the promising results obtained in the single-user scenario and the extension of the DMT

framework to the multi-user scenario [3], the aim of this thesis is to construct optimal

multi-user STBCs.

Using the multi-user information theoretic background, the goal here is to design STBCs

for MIMO multi-user channels that recently became a challenging topic due to its differ-

ent potential applications. We focus on the uplink multi-user MIMO channel, equivalently,

the MIMO multiple-access channel (MIMO-MAC). In a MIMO-MAC multiple users (trans-

mitters) equipped with multiple transmit antennas communicate with a single multiple-

antenna receiver. Traditional approaches consisted of using orthogonal communication

schemes or, more recently, employing single-user code for each user both leading to subop-

timum performance. Gärtner and Bölsckei introduced in [2] the idea of joint code design

for MIMO-MAC taking into account the multiple-access nature of the channel. They also

presented a code construction based on the Alamouti code [15]. This code is not optimal

but highlights the performance improvement resulting from a joint code design. This work

motivates the construction of optimal codes for MIMO-MAC.

This thesis attempts to fill this gap by investigating the fundamental performance

benefits of the MAC and presenting new families of multiple-access STBCs. These codes

better exploit the channel’s advantages compared to previous constructions. While we

start our work with a “simple“ single-antenna scenario, we generalize our construction to

the MIMO-MAC. A wide body of results followed the introduction of our codes ([7], [16],

[17], [18] and references therin) leading to some divergent points of view. Therefore, we

try throughout this thesis to offer a unified view of the main research results on this topic

obtained in the last few years.

1



2 Introduction

Assumptions

This thesis focuses on the uplink multi-user communication. Thus, unless stated otherwise,

there are multiple users and a single receiver in the network. This assumption is without

loss of generality when time-sharing among users is considered. Moreover, it is assumed

that the users are not allowed to cooperate with each other so that the information trans-

mitted by each user is independant from that of the other users. All users’ channels, and

therefore the equivalent multi-user channel, are assumed to be slowly faded, i.e., although

they are random, they stay constant over the duration of communication. Since the chan-

nel varies slowly, it is assumed that the receiver has sufficient time to estimate it and thus,

has an accurate knowledge of all users’ channels, i.e., full channel state information is

available at the receiver CSIR, whereas the transmitters do not have any CSI.

When relaying is considered in the multiple-access scenario, the amplify-and-forward

(AF) protocol is considered. This protocol is known in this case as the multi-access amplify-

and-forward (MAF) protocol. This protocol is characterized by its low relaying complexity

which makes the cooperation implementable in practice. In addition, the linearity of the

AF protocol transforms the MARC into a virtual MIMO-MAC where it is possible to apply

the results obtained for the MIMO-MACs in a distributed way.

The outage probability and its approximation for high signal-to-noise ratio (SNR), i.e.,

the diversity-multiplexing tradeoff (DMT), are used as theoretical analysis tools. The

DMT was introduced by Zheng and Tse in [1] for the point-to-point MIMO channel to

characterize, in the high SNR regime, the fundamental tradeoff between the throughput

increase and the reliability improvement offered by MIMO systems. This tradeoff has been

extended to the symmetric multiple-access channel in [3]. Moreover, an upper bound on

the achievable DMT for the multiple-access relay (MAR) channel has been derived in [4]

and recently used in [5] to study the performance of the proposed MAF protocol.

On the other hand, the word error rate is adopted as a performance measure to analyze

the performance of a code as a function of the SNR. At the receiver side, a minimum mean-

square error decision feedback equalizer MMSE-DFE preprocessing combined with lattice

decoding is used as a way to mitigate the problem of the rank deficiency resulting from nr

being smaller than K×nt. It has been shown in [6], that an appropriate combination of left,

right preprocessing and lattice decoding, yields significant saving in complexity with very

small degradation with respect to the ML performance. More precisely, left preprocessing

modifies the channel matrix and the noise vector such that the resulting closest lattice

point search has a much better conditioned channel matrix. Moreover, right preprocessing

is used to change the lattice basis such that it becomes more convenient for the searching

stage.

Outline and Contributions

This thesis is organized as follows.
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From point-to-point to Multiple-Access Channel (Chapter 1 and 2)

As a starting point of this thesis, the transition from single-user to multi-user communica-

tion is investigated from an information theoretic point of view in Chapter 1 and a coding

point of view in Chapter 2. In the former, a comprehensive vision on elementary notions

of information theory is presented in both the single-user and multiple-access cases. In

the latter, a state of the art study of the Space-Time block coding design is presented.

The first part of the chapter is dedicated to the single-user STBCs. The corresponding

design criteria are derived and different single-user STBC constructions, that will be used

repeatedly in this thesis, are presented.

In the second part of the chapter, the idea of extending the Space-Time code design

from point-to-point to multiple-access is introduced. The multiple-access code design cri-

teria derived in [2] are presented. The first joint code construction based on the Alamouti

code and motivating the multiple-access code contruction is studied. Based on the informa-

tion theoretic background, DMT-optimal design criteria are derived in both point-to-point

and multiple-access scenarios.

Space-Time code construction for Single-Antenna Multiple-Access Channels (Chapter 3)

In Chapter 3, a simple multiple-access scenario, where the users are equipped with a single

transmit antenna, is considered. An information theoretic analysis of the channel, based

on the outgae probability, helps evaluate the performance limits of the channel and gives

insights on the way an optimal coding scheme should be constructed. A new family of full-

rank Space-Time codes is proposed for the single-antenna MAC. The users are assumed

to transmit synchronously their information. The proposed code is shown to outperform

the single-user scheme where the users transmit simultaneously their QAM information

symbols and the time-sharing scheme where the users transmit orthogonally their QAM

information symbols. A DMT-oriented analysis of the proposed code is then presented.

The single-antenna STBC is shown to be optimal, in the sense of the DMT, for a special

range of mutliplexing gains.

In practice, the assumption of perfect synchronization between the users at the trans-

mission is not easily justified. This fact motivates the study of code design for the asyn-

chronous MAC. Asynchronism entails a change in the STBC’s structure and may induce a

degradation of the corresponding performance. Fortunately, the proposed code is shown to

be delay-tolerant, i.e.,, its overall diversity order is preserved despite asynchronism among

users. Numerical results evaluating the error probability of the code confirm its delay-

tolerance.

Space-Time code construction for MIMO Multiple-Access Channels (Chapter 4)

Motivated by the promising gain obtained in the single antenna scenario and using the

information theoretical knowledge gained to this end, the MIMO-MAC is considered in
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Chapter 4. The goal is to design new space-time coding schemes that optimally exploit

the capabilities of the channel. This problem has interested other researchers ([2], [7], [19])

and different coding schemes were designed. These schemes are studied in this chapter and

compared to the new proposed coding scheme. The new code is shown to outperform or

at least offer the same performance as all other schemes.

The performance analysis presented in this chapter follows the same footsteps as in

Chapter 3. Time-sharing among users is shown to be sub-optimal while the simultane-

ous transmission using the single-user code is shown to offer a performance gain. This

gain is more significant when a special jointly designed coding scheme is employed. A

DMT-oriented analysis of the proposed code is finally presented using the DMT-optimal

design criteria presented in Chapter 2. Nevertheless, verifying whether the proposed code

is DMT-optimal in the sense of the latter criteria remains an open problem.

The Multiple-access relay channel (Chapter 5)

Simple cooperation techniques such as relaying are well known to improve both the re-

liability and the throughput in a wireless network. In this chapter, we are interested in

applying cooperative techniques in a multiple-access scenario. The users are not allowed

to cooperate with each other but can benefit from a common terminal, the relay, helping

them reach their destination. The channel is in this case termed Multiple-Access Relay

(MAR) channel and was first introduced in [20]. In contrast with other cooperation strate-

gies requiring coordination among terminals, the relaying technique considered here has a

significantly low cost and complexity. The complexity is further reduced due to the use

of an Amplify-and Forward (AF) cooperation protocol where the half-duplex relay simply

scales the information it receives (from all the users) and forwards it to the destination.

The considered MAF cooperation protocol was recently introduced by Chen et al. in [5].

In addition to its low complexity, the MAF protocol was shown to achieve the optimal

DMT for some multiplexing gain range. In this chapter, the MAF relay channel is mod-

elled as an equivalent virtual MIMO-MAC in which case, applying the code constructed

for the MIMO-MAC in Chapter 4 in a distributed fashion is shown to offer significant gain.

Finally, we conclude this thesis and provide some general perspectives.



Chapter 1

From Point-to-Point to

Multiple-Access Channel: An

Information Theoretical Perspective

In multiple-access communication, or equivalently uplink multi-user communication, the

information flows from multiple transmitting terminals to one receiver (base station). If

each user is considered separately, the corresponding channel is a point-to-point (single-

user) channel. In order to evaluate the performance limits of a multiple-access network,

different information theoretic tools are used. As may be expected, the derivation of such

tools follows the same footsteps as in the single-user case with some additional constraints

and properties resulting from the multiple-access nature of the channel that should be

taken into account.

As a starting point of this thesis, this chapter aims to provide a review of different prin-

ciples of information theory that yield important theoretical tools. These tools determine

the ultimate performance that can be achieved over a given channel. They are mainly used

as a basis to develop optimal coding schemes and to evaluate their performance. A com-

prehensive vision on the capacity, the outage probability and the diversity-multiplexing

tradeoff is presented for MIMO channels in both single-user and multiple-access cases.

The rest of the chapter is organized as follows. In Section 1.1, the channel model is

presented. A detailed information theoretic study of the single-user case as well as the

extension to the multi-user case is then developed. In Section 1.2, the capacity of a point-

to-point channel is defined. This notion is then generalized to the capacity region of a

multiple-access channel. These definitions are then used in Section 1.3 to analyze the

outage behavior of the channel in both scenarios. The diversity-multiplexing tradeoff is

then characterized and interpreted in Section 1.4 in the point-to-point and the multiple-

access cases. Different examples are given to illustrate and analyze the DMT. Finally, the

achievability of the DMT is discussed in Section 1.5. The proofs are deferred to Appendix

1.A at the end of the chapter.

5
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H1

H2

HK

1

2

K

R

Figure 1.1: A K-user Multiple-Access Channel.

1.1 System Model

Consider a multiple-access system consisting of K users communicating with a single re-

ceiver (Fig. 1.1). Let nt denote the number of transmit antennas per user and nr the

number of receive antennas.

Let Xk ∈ Cnt×T denote the codeword matrix transmitted by user k (equivalently, the

k-th channel input) chosen from the individual codebook Xk of user k and satisfying the

following per-user power constraint

‖Xk‖2
F ≤ ntT, ∀Xk ∈ Xk. (1.1)

where T denotes the codeword block length. The previous constraint should be satisfied

for all the users.

Remark 1.1.1 In all this thesis, we limit our study to MACs where the users have the

same number of transmit antennas nt and the same transmit power SNR/nt. SNR is the

(per user) signal-to-noise ratio at the receiver.

Let Hk ∈ C(nr×nt) denote the random matrix modeling the channel between user k

and the receiver. Each user’s channel is a nr × nt point-to-point MIMO channel with the

following input-output relation

Y =

√

SNR

nt
HkXk + Z (1.2)

where Z ∈ Cnr×T the Additive White Gaussian Noise (AWGN) at the receiver with inde-

pendent and identically distributed unit variance entries, i.e., CN (0, I).

Remark 1.1.2 The statistics of the random channel coefficients are modeled using the

Rayleigh fading model. Hence, the channel matrices have independent and identically dis-
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tributed entries with zero mean, unit variance, circularly symmetric, complex Gaussian

density, i.e., CN (0, I).

Multiple-access techniques

Throughout this thesis, two different multiple-access techniques are investigated repeat-

edly: the simultaneous multiple-access technique and the orthogonal multiple-access tech-

nique, more specifically time-sharing among users. In the former, all users transmit simul-

taneously their information while in the latter, only one user’s information is transmitted

at the same channel use.

Let Y ∈ Cnr×T denote the received signal (channel output) when all the users are

transmitting simultaneously:

Y =

√

SNR

nt

K∑

k=1

HkXk + Z (1.3)

For the sake of clarity, the following notation is defined:

Definition 1.1.1 The horizontal concatenation of s matrices with the same number of

rows is defined as

M s :=
[

M 1 . . . M s

]

(1.4)

Similarly, the vertical concatenation of multiple matrices with the same number of columns

is given by M s†. For s = K, MK is denoted M .

With the above notation, let H denote the equivalent MAC modeled by a nr×Knt matrix

as follows

H =
[

H1 H2 . . . HK

]

. (1.5)

Moreover, the concatenation of all users’ codeword matrices Xk yields the joint codeword

matrix X ∈ C
Knt×T

, element of the joint codebook X

X =







X1

...

XK







(1.6)

Therefore, the received signal can be written as

Y =

√

SNR

nt
HX + Z (1.7)



8 Chapter 1. From Point-to-Point to MAC: An Information Theoretic Perspective

Remark 1.1.3 (Joint Coding) While it will be shown that the users’ codebooks Xk, k =

1, . . . ,K have to be jointly designed leading to the joint codebook X , these are independent

from each other. This is due to the fact that there is no cooperation among the users at

the transmission side.

1.2 Channel Capacity

1.2.1 Capacity of a Point-to-Point Channel

In a point-to-point scenario, the theoretical limit of the amount of data that can be reliably

transmitted over a channel is its capacity, C. In his pioneering work [21], Shannon showed

that the transmission error probability over a channel can be made arbitrarily small as

long as the transmission rate is below the channel capacity C.

For a single-user MIMO channel with input-output relation (1.2), the instantaneous ca-

pacity is given by

C(Hk) = log

(

det

(

I +
SNR

nt
HkH

†
k

))

(1.8)

in bits per channel use (bits/pcu), for a given channel realization Hk.

Ergodic Capacity

For a fast fading channel, i.e., when coding is performed over an infinite number of indepen-

dent channel realizations, the maximum rate that can be reliably transmitted is obtained

by averaging the instantaneous capacity (1.8) over all channel realizations. The latter is

known as ergodic capacity,

C(SNR) = EHk
{C(Hk)} . (1.9)

It is shown in [22] that, asymptotically in SNR, this expression satisfies

C(SNR) = min(nt, nr) log SNR + o(1) (1.10)

where min(nt, nr) is the multiplexing gain denoted r and representing the maximum num-

ber of degrees of freedom available for data transmission. The additional spatial degrees

of freedom offered by a MIMO system, with respect to a single-antenna system, allow the

transmission of multiple independent data flows and their separation at the receiver side.

In the high SNR regime, the multiplexing gain determines how the data rate increases

with SNR. Indeed, r additional bits can be reliably transmitted over the channel the SNR

increases by 3 dB.
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1.2.2 Capacity Region of a Multi-User Channel

In a multi-user scenario, the concept of channel capacity is extended to the capacity region.

This region determines the set of all rate tuples (R1, . . . , RK) that all users can reliably

communicate at, simultaneously. Rk denotes the data rate of user k in bits/pcu.

The capacity region is a K-dimensional polyhedron containing the set of all rates veri-

fying the following 2K − 1 constraints, one for each possible subset S of users [23, Chapter

10]

∑

k∈S
Rk ≤ log det

(

Inr +
SNR

nt

∑

k∈S
HkH

†
k

)

, ∀S ⊆ {1, . . . ,K}. (1.11)

It is very important to point out that due to the sum rate constraint, the MAC cannot

be decomposed into a set of isolated point-to-point MIMO channels but should rather be

viewed as a whole system.

To understand the systems implications of the capacity region, consider a two-user

MIMO-MAC. The rates R1, R2 achieved by the two users satisfy the following constraints

Rk ≤ log det

(

Inr +
SNR

nt
HkH

†
k

)

, k = 1, 2 (1.12)

R1 + R2 ≤ log det

(

Inr +
SNR

nt
H1H

†
1 +

SNR

nt
H2H

†
2

)

(1.13)

The rate region defined by these constraints is the pentagon illustrated in Fig. 1.2. The

individual rate constraints (1.12) correspond to the rate at which each user can transmit

at, as if it has the entire channel for itself, i.e., the rate of the nt × nr MIMO channel.

The sum rate constraint (1.13) corresponds to the rate of a point-to-point channel with

the two users acting as a single-user with Knt antennas, but sending independent signals

at the antennas.

The same interpretation can be extended to a K-user MAC where K! corner points

limit the boundary region of the achievable rate region.

Ergodic capacity region

When over the transmission duration of a codeword, many channel realizations occur, the

set of achievable data rates is bounded by the following ergodic capacity region:

EHk

{

log det

(

Inr +
SNR

nt

∑

k∈S
HkH

†
k

)}

(1.14)

As in the point-to-point case, the ergodic capacity region in the high SNR regime is char-

acterized by:
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R2

R1

A

B

log det

(

Inr
+

SNR

nt

H1H
†
1

)

log det

(

Inr
+

SNR

nt

H2H
†
2

)

log det

(

Inr
+

SNR

nt

H1H
†
1
+

SNR

nt

H2H
†
2

)

Figure 1.2: Capacity region of the two-user MIMO-MAC.

∑

k∈S
Rk ≤ min(nt,

nr

K
) log SNR, ∀S ⊆ {1, . . . ,K}. (1.15)

where min(nt,
nr

K ) denotes the (per user) multiplexing gain representing the maximum

number of degrees of freedom available for each user’s data transmission.

1.3 Outage analysis

For a block fading channel, i.e., when coding is performed over one channel realization, ca-

pacity is not Representative of the maximum rate that can be reliably transmitted. Indeed,

the channel in this case is a random matrix and its capacity is a random variable C(H)

that can be arbitrarily small. Therefore, there is a non-zero probability that the channel

cannot guarantee a reliable transmission at a given data rate. This event is known as the

outage event and the corresponding probability, the outage probability, is the fundamental

parameter that evaluates the channel’s limit rather than its capacity.

1.3.1 Point-to-Point Outage Probability

For a point-to-point channel, an outage event occurs when the channel capacity falls below

the data rate R, i.e.,

Pout(R) = P {C(H) < R}

Definition 1.3.1 (Single-User MIMO Channel) For a single-user MIMO channel, whose

capacity is given by (1.8), the outage probability is

PMIMO
out (R) = P

{

log

(

det

(

Inr +
SNR

nt
HkH

†
k

))

< R

}

(1.16)
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Definition 1.3.2 The diversity order of a channel is defined as the SNR exponent of the

asymptotic expression of the outage probability. It corresponds to the negative slope of the

outage probability plotted in a log− log scale in the high SNR regime.

Theorem 1.3.1 The outage probability of a single-user MIMO channel decays, asymp-

totically in SNR, as 1/SNR
ntnr where ntnr is the maximum diversity order of the MIMO

channel.

Proof: The proof is given in Appendix 1.A.

In this context, multiple-antennas provide additional reliability compared to single-

antenna systems. Indeed, the diversity technique consists in transmitting different inde-

pendently faded replicas of the information symbols over independent channels leading to

a higher protection against fading.

1.3.2 Multiple-Access Outage Probability

The notion of outage used to evaluate the ultimate performance limit over a slow fading

channel in the high SNR regime, can be extended from point-to-point to multiple-access

scenario.

Recall that for a given channel realization, the set of achievable rate tuples satisfies the

following boundary constraints

∑

k∈S
Rk ≤ log det

(

Inr +
SNR

nt

∑

k∈S
HkH

†
k

)

, ∀S ⊆ {1, . . . ,K}.

Assume that all the users have a common data rate R, i.e., Rk = R,∀k. An outage

event O occurs whenever (at least) one of these constraints is not satisfied. Denote s = |S|
and Os the corresponding outage event, also referred to as outage event s . The overall

outage probability is then given by

Pout(R) = P (O) = P




⋃

S⊆{1,...,K}
Os



 (1.17)

where the outage probability of Os is given by

P (Os) = P

{

log det

(

Inr +
SNR

nt

∑

k∈S
HkH

†
k

)

< sR

}

(1.18)

that corresponds to the outage probability of a point-to-point MIMO channel with snt

transmit antennas and nr receive antennas.

Asymptotically in SNR, Pout(R) decays as 1/SNR
ntnr and, thus, the maximum diversity

order of the MIMO-MAC is ntnr. The proof simply follows from the single-user case by

noting from (1.17) that
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P (O) ≤
∑

s

P (Os) =
∑

s

1/SNR
sntnr .

= 1/SNR
ntnr (1.19)

and

P (O) ≥ P (Os)
.
= 1/SNR

ntnr (1.20)

1.4 The Diversity-Multiplexing Tradeoff

1.4.1 DMT of a Coding Scheme

Consider a code X of data rate R bits/pcu. The family of codes X (SNR) at data rate

R(SNR) bits/pcu each, is called a coding scheme. In this context, the data rate scales

with SNR as R(SNR) = r log SNR such that, at a given SNR, the corresponding codebook

X (SNR) contains SNR
Tr codewords.

Definition 1.4.1 ([1]): A coding scheme X (SNR) is said to achieve multiplexing gain r

and diversity gain dX if

lim
SNR→∞

R(SNR)

log SNR
= r

and

lim
SNR→∞

Pe,X (SNR)

log SNR
= −dX (r)

Pe,X (SNR) is the average error probability of X (SNR) with a Maximum Likelihood (ML)

decoder. We have

Pe,X (SNR)
.
= SNR

−dX (r)

where dX (r) is called the Diversity-Multiplexing Tradeoff (DMT) of X (SNR).

The multiplexing gain, r, is a fraction of the maximum multiplexing gain min(nt, nr).

It determines the fraction of the ergodic capacity (1.10) that the family of code X (SNR)

achieves when SNR increases. Note that, for any fixed-rate code, the multiplexing gain is

zero.

Remark 1.4.1 The DMT dX (r) evaluating the performance of the entire family of codes

X (SNR) should not be confused with the traditional concept of diversity gain that charac-

terizes the performance of a single codebook for high SNR.

Remark 1.4.2 In a multiple-access scenario, Pe,X (SNR) is the total error probability ob-

tained through joint ML detection, that is, the probability for the receiver to make a detection

error for at least one user.

As shall be seen next, there is a fundamental limit to the optimal dX (r) dictated by

the fading channel.
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1.4.2 DMT of a fading Channel

The characterization of the DMT of a channel results from an approximation of the outage

probability in the high SNR regime and is referred to as outage-DMT.

Definition 1.4.2 The multiplexing gain r and diversity gain d of a fading channel are

defined as follows

lim
SNR→∞

R(SNR)

log SNR
= r

and

lim
SNR→∞

Pout(r log SNR)

log SNR
= −d(r)

d(r) is the outage-DMT of the channel that can be found as the exponent of the outage

probability in the high SNR regime, i.e.,

Pout(r log SNR)
.
= SNR

−d(r) (1.21)

The importance of the outage-DMT of the channel is that it provides, asymptotically

in SNR, an upper-bound on the DMT that can be achieved by any family of code X .

Theorem 1.4.1 (Converse of the DMT [1]) Assuming a ML receiver, the error probability

of any coding scheme satisfies

Pe,X (SNR) ≥ Pout(r log SNR), (1.22)

equivalently, the DMT of any coding scheme is dominated by the outage-DMT, i.e.,

dX (r) ≤ d(r), ∀r (1.23)

1.4.3 Outage-DMT of SIMO and MISO channels

In a Single-Input Multiple-Output (SIMO) channel, the transmitter is equipped with one

antenna while the receiver is equipped with multiple antennas, nr, so that the spatial

diversity order is increased. The outage probability is given by:

P SIMO
out (R) = P

{
log(1 + SNR‖h‖2) < R

}

= P

{

‖h‖2 <
2R − 1

SNR

}

(1.24)

The entries of h being Gaussian zero-mean and spatially uncorrelated, the outage proba-

bility (1.24) can be approximated, for high SNR, as follows
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P SIMO
out (R)

.
=

(
2R − 1

)nr

nr!SNR
nr

(1.25)

The outage-DMT of the SIMO channel can be derived by replacing R with r log SNR

in Eq. 1.25,

P SIMO
out (r log SNR)

.
=

SNR
rnr

nr!SNR
nr

Thus,

d1×nr(r) = nr(1 − r), 0 ≤ r ≤ 1 (1.26)

Similarly, for a Multiple-Input Single-Output (MISO) channel, where multiple antennas

are available at the transmitter and a single antenna is available at the receiver, the outage

probability can be approximated as

PMISO
out (R)

.
=

nnt
t

(
2R − 1

)nt

nt!SNR
nt

(1.27)

leading to the corresponding outage-DMT

dnt×1(r) = nt(1 − r) (1.28)

1.4.4 Outage-DMT of a Single-User MIMO Channel

Theorem 1.4.2 The outage-DMT of a nt×nr Rayleigh point-to-point channel is a piecewise-

linear function connecting the points (r, dnt,nr(r)) for

r = 0, 1, . . . ,min(nr, nt) (1.29)

and

dnt,nr(r) = (nr − r)(nt − r) (1.30)

Proof: An intuitive sketch of the derivation of the outage-DMT in the MIMO case is

given in Appendix 1.A

dnt,nr(r) is plotted in Fig. 1.3. The maximum diversity gain dmax(0) = ntnr is achieved

for r = 0. Thus, the optimal error performance can be only obtained at fixed rates. At

maximum spatial multiplexing gain rmax = min(nt, nr), the diversity gain is d(rmax) = 0.

Between these extreme points, the outage-DMT curve d(r) is a decreasing function of the

multiplexing gain r, i.e., increasing the data rate comes at the expense of diversity.
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d

r

(0, ntnr)

(1, (nt − 1)(nr − 1))

(r, (nt − r)(nr − r))

(min {nt, nr} , 0)

Figure 1.3: DMT of a point-to-point MIMO channel.

1.4.5 Outage-DMT of a Multiple-Access Channel

The fundamental tradeoff between diversity and multiplexing gain was extended by Tse et

al. [3] to symmetric multiple-access channels where the diversity orders and the multiplex-

ing gains of all the users are equal (to say r and d).

Theorem 1.4.3 The largest achievable symmetric diversity gain for fixed symmetric mul-

tiplexing gain is given by

dMAC(r) = min
s=1,...,K

dsnt,nr(sr) (1.31)

Another way to describe this outage-DMT is ([3, Theorem 3])

dMAC(r) =







dnt,nr(r), r ≤ min(nt,
nr

K+1)

dKnt,nr(Kr), r ≥ min(nt,
nr

K+1)

(1.32)

Proof: See Appendix 1.A.

Interpretation of the Outage-DMT of the MAC

dMAC(r) is illustrated in Fig.1.4. Two fundamental parameters characterize the perfor-

mance of the MAC:

1. min(nt,
nr

K ) that represents the maximum multiplexing gain achievable by each user.

2. min(nt,
nr

K+1) the threshold on the multiplexing gain delimiting two regimes: the

lightly loaded regime, i.e., r ≤ min(nt,
nr

K+1), and the heavily loaded regime, i.e., r ≥
min(nt,

nr

K+1). In the first regime, the single-user regime, the single-user performance
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r

(0, ntnr)

(1, (nt − 1)(nr − 1))

(r, (nt − r)(nr − r))
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nr

K
), 0)

nr/K + 1

Antenna Pooling

Single User

Figure 1.4: Outage-DMT of a multiple-access channel with K users with nt transmit
antennas each and a single receiver with nr antennas.

is achieved and the highest diversity gain is that of a nt×nr MIMO channel, ntnr. In

this regime, the presence of multiple users does not compromise the performance of

each user individually. In the second regime, the antenna-pooling regime, the system

is equivalent to a MIMO system with Knt transmit and nr receive antennas as if the

users pool up their antennas together. The highest diversity gain in this regime is

Kntnr.

Note that, for nr ≥ (K + 1)nt, the two parameters described above coincide, and the

single-user performance extends over the entire range of multiplexing gains. However, if

nr < (K + 1)nt, both the single user regime and the antenna pooling regime occur.

From a coding point of view, in the first case, using optimal space-time codes designed

for single-user MIMO channels is optimal in terms of the outage-DMT. While in the second

case, a joint code design is required to guarantee optimality.

Remark 1.4.3 Increasing the number of antennas at the destination results in a reduction

of the influence of the antenna pooling regime on the overall outage-DMT. In other words,

increasing the number of receive antennas decreases the importance of the joint code design

as compared to single-user code design.

1.4.6 Example: A Two-User MAC

Single transmit antenna

Consider a two-user MAC with single-transmit antenna per user. Using (1.31), the outage-

DMT of this channel is given by

dMAC(r) = min {d1,nr(r), d2,nr (2r)} (1.33)
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Figure 1.5: Outage-DMT of a two-user MAC: single transmit antenna case.

and is plotted in Fig. 1.5, for nr = 1 and 2.

For nr = 2 (Fig. 1.5-b), the outage-DMT of the channel is given by:

dMAC(r) =







d1,2(r) = 2(1 − r) r ≤ 2
3

d2,2(2r) = (2 − 2r)(2 − 2r) r ≥ 2
3

(1.34)

and is equivalent to the outage-DMT of a 2 × 1 SIMO channel. Thus, the use of a coding

scheme that is outage-DMT optimal for SIMO channels, i.e., QAM, is outage-DMT optimal

in this case.

For nr = 1 (Fig. 1.5-a), a joint code design is imperative since both the single-user and

the antenna pooling regimes should be taken into account, i.e.,

dMAC(r) =







d1,1(r) = (1 − r) r ≤ 1
3

d2,1(2r) = (2 − 2r)(1 − 2r) r ≥ 1
3

(1.35)

Note that for r ≥ 1
3 (antenna-pooling regime), when r increases dMAC(r) decays much

faster than it does in the single-user regime. This is a direct effect of the truncated DMT.

Multiple transmit antennas

Consider the same channel but with two transmit antennas per user. Using (1.31), the

outage MAC-DMT in this scenario is given by
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Figure 1.6: Outage-DMT of a two-user MAC: multiple transmit antennas case.

dMAC(r) = min {d2,nr(r), d4,nr(2r)}

=







d2,nr(r) = (2 − r)(nr − r) r ≤ nr

3

d4,nr(2r) = (4 − 2r)(nr − 2r) r ≥ nr

3

(1.36)

Plotting this DMT in Fig. 1.6 for nr = 3 and nr = 6 leads to similar conclusions. For

nr = 3, a jointly designed code is required, while for nr = 6 using codes that are outage-

DMT optimal for a 2 × 6 MIMO channel, is optimal.

For comparison purpose, the DMT of the time-sharing strategy is plotted in Figures

1.5 and 1.6,

dTS(r
′
) = nr(1 − r

′
) 0 ≤ r

′
= 2r ≤ 1 (1.37)

This DMT analysis highlights the sub-optimality of the time-sharing technique, that

increases with the number of receive antennas. Indeed, the orthogonal multiple-access

scheme makes very poor use of the increasing number of degrees of freedom. It is once again

clear that, the optimal multiple-access strategy is for the users to transmit simultaneously

so that all the degrees of freedom of the channel can be exploited.

1.4.7 Visualizing the MAC-DMT

Fig. 1.7 shows the relationship between the SNR, the data rate and the outage probability.

Each curve shows the way the outage probability decays with SNR for a given data rate R.

When the data rate R increases, the probability of the channel being in outage increases.



1.5. Achievability of the DMT 19

10−3

10−2

10−1

100

 0  10  20  30  40  50  60  70  80

O
u

ta
g

e
 P

ro
b

a
b

ili
ty

SNR (dB)

R = 1, 2, ..., 12  BPCU

Figure 1.7: Family of outage probability curves as a function of SNR for various target
rates R for a two-user MAC with nt = nr = 1.

Next, the outage probability is plotted as a function of SNR and R = r log SNR for

different values of r. In Fig. 1.8, Pout(SNR, R) is evaluated and each curve is labeled with

the corresponding r. Fig. 1.7 is overlaid as gray lines for comparison purpose. According

to (1.32), the slope of Pout(r log SNR) should asymptotically be equal to d(r) for a fixed

r. Indeed if lines of slopes d(r) are plotted, one can see that the slopes of the outage

probability curves and those of these lines match quite well at high SNR.

For a multiplexing rate that equals the maximum multiplexing gain r = 0.5, the di-

versity order is d = 0 which means that an increase in SNR does not improve the outage

probability but just yields an increase in data rate. In contrast, for r = 0, increasing the

SNR, increases the reliability but not the data rate.

More generally, it can be noted that, when R increases faster with SNR (r increases),

the corresponding outage probability decays slower (d(r) decreases). Moreover, in the

lightly loaded regime, the diversity gain decreases much slower than it does in the heavily

loaded regime, when the multiplexing gain increases. This is the fundamental diversity-

multiplexing tradeoff truncated at r ≥ min(nt,
nr

K+1).

1.5 Achievability of the DMT

The lower-bound of the optimal error probability given in Theorem 1.4.1 is shown to be

tight in both the point-to-point and the multiple-access scenario, for a sufficiently long

coding length T ≥ snt + nr − 1 (s = 1 for the point-to-point case). The DMT achieved by

a Gaussian random coding scheme was derived in [1] for point-to-point Rayleigh channels

and in [3] for multiple-access Rayleigh channels and was shown to coincide with the outage-
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Figure 1.8: Outage probability Pout(SNR, R) of a two-user MAC for R = r log SNR, nt =
nr = 1.

DMT d(r) of the channel. Codebooks of data rate R scaling as r log SNR and containing

2TR = SNR
Tr codewords are generated. Each codeword is a nt × T Gaussian matrix with

i.i.d. CN (0, 1) entries.

The achievability of the outage-DMT is proved by upper-bounding the average error

probability over the ensemble of Gaussian codes. These codes don’t have any structure

which makes their efficient encoding or decoding impractical.

A step towards structured coding was presented by El Gamal et al. in [24] for single

user channels. Authors showed the existence of a structured coding scheme, called the

lattice space-time (LAST) code, that achieves the outage-DMT. This scheme was later

generalized to the multiple-access case by Nam and El Gamal in [25]. They proved that

the multiple-access LAST scheme, based on lattice decoding, achieves the outage-DMT of

the MAC but they did not give any constructive example. These results were based on

random coding arguments and an explicit construction of a single-user or a multiple-access

LAST codes remains unknown. In the rest of this thesis, more practical coding schemes

are used: the space-time block codes (STBCs). These schemes have a structure and can

consequently be explicitly constructed.
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1.A Proofs

Proof of Theorem 1.3.1. In the single-user MIMO case, the channel matrix Hk is a nr ×
nt matrix with zero-mean Gaussian i.i.d entries. Denote q = min (nt, nr). The outage

probability can be written as

PMIMO
out (R) = P

{

log

(

det

(

Inr +
SNR

nt
HkH

†
k

))

< R

}

= P

{
q
∑

i=1

log

(

1 +
SNR

nt
µ2

i

)

< R

}

(1.38)

where µi’s are the singular values of Hk. Depending on the instantaneous SNR, a mode

of transmission can be effective, i.e., (SNRµ2
i )/nt of order SNR or not effective, i.e.,

(SNRµ2
i )/nt of order 1.

An outage event occurs when none of the q channel modes is effective which means

that all µ2
i are of order 1/SNR or less. Since

q
∑

i=1

µ2
i = Tr(HkH

†
k) =

∑

i,j

|hi,j |2

an outage event can be equivalently defined as the event where each |hi,j |2 is of order

1/SNR or less. The corresponding outage probability is

PMIMO
out (R) = P







⋂

i,j

(
|hi,j |2 < 1/SNR

)







.
=

1

SNR
ntnr

(1.39)

resulting from the fact that all |hi,j |2 are independent and that

P
{
|hi,j |2 < 1/SNR

}
≈ 1/SNR.

Proof of Theorem 1.4.2. A similar procedure to that in [26] is followed. For high SNR and

with R = r log SNR, (1.38) implies:

PMIMO
out (r log SNR) = P

{

log
(

det
(

Inr + SNRHkH
†
k

))

< r log SNR

}

︸ ︷︷ ︸

OHk
(r,SNR)

(1.40)
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.
= P

{
q
∑

i=1

log (1 + SNRλi) < r log SNR

}

︸ ︷︷ ︸

Oλ(r,SNR)

(1.41)

.
= P

{
q
∑

i=1

(1 − αi)
+ < r

}

(1.42)

.
= P

{
k∑

i=1

αi > k − r, ∀k = 1, . . . , q

}

︸ ︷︷ ︸

Oα(r,SNR)

(1.43)

where λi = SNR
−αi are the eigenvalues of the matrix HkH

†
k in a decreasing order; α

the vector of the eigen-exponents corresponding to the vector of eigenvalues λ, i.e., αi ,
log λi

log SNR
; OHk

, Oλ and Oα are three representations of the outage region of the channel. It

can be shown that

pα(α)
.
= SNR

−E(α) (1.44)

where, for a nt × nr Rayleigh channel, E(α) is given by

E(α) =

q
∑

i=1

(2k − 1 + |nt − nr|)αi (1.45)

Thus,

PMIMO
out (r log SNR) = P {Oα(r,SNR)}

.
= SNR

− infO E(α) (1.46)

which gives

d(r) = inf
Oα(r)

E(α)

whose solution (via linear programming approach) gives rise to Eq. 1.30 and concludes the

proof.

Proof of Theorem 1.4.3. Recall the outage event definition in a multiple-access scenario

given in Subsection 1.3.2:

O ,
⋃

s

Os, ∀s = {1, . . . ,K} (1.47)



1.A. Proofs 23

with :

P (Os) = P

{

log det

(

Inr +
SNR

nt

∑

k∈S
HkH

†
k

)

< sR

}

. (1.48)

P (Os) is equivalent to the outage probability of a point-to-point MIMO channel with snt

transmit antennas and nr receive antennas. Let the target data rate be R = r log SNR.

Therefore:

P (Os)
.
= SNR

−dsnt,nr (sr) (1.49)
.
= SNR

−(snt−sr)(nr−sr) (1.50)

where (1.50) results from (1.49) using (1.30). Moreover, noting that (1.17) implies that

P(O) ≥ P(Os) (1.51)

for any 1 ≤ s ≤ K, leads to 2K − 1 lower bounds on P(O). Exponentially in SNR, the

tightest lower bound corresponds to the subset S that yields the largest outage probability,

or equivalently, the smallest SNR exponent dsnt,nr(sr) is:

P(O) ≥̇ SNR
−mins dsnt,nr (sr) = SNR

−ds∗nt,nr
(s∗r) (1.52)

s∗ = arg mins dsnt,nr(sr) is the cardinality of dominant outage set S∗. On the other hand:

P(O) = P

(
⋃

S
Os

)

≤
∑

S
P(Os)

.
= SNR

−mins dsnt,nr (sr) (1.53)

By combining (1.52) and (1.53), one gets

P(O)
.
= SNR

−mins dsnt,nr (sr) (1.54)

which proves Eq. 1.31.

To complete the proof of Theorem 1.4.3, note that, as shown in [3, Section VIII],

dnt,nr(r) is the smallest DMT among the K different tradeoffs for r ≤ min(nt,
nr

K+1) and

dKnt,nr(Kr) is the smallest, otherwise.
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Chapter 2

From Point-to-Point to

Multiple-Access Channel: A Coding

Perspective

Information theory treats the question of how much data can be reliably transmitted over

a given channel and gives an accurate understanding of the fundamental limits of the

channel. Using insights gained by the theoretical analysis presented in Chapter 1, suitable

codes can be designed such that, in practice, the capabilities of the channel predicted by

theory can be optimally exploited.

This chapter serves a double purpose. First, it provides a state of the art study of the

Space-Time block code (STBC) design for point-to-point channels that has been studied

in great details in the literature. Single-user code design criteria minimizing the pairwise

error probability are presented and the DMT-optimal design criterion: the non-vanishing

determinant criterion is discussed. Some single-user codes constructions based on cyclic

division algebras are then presented. These codes are optimal in the sense that, they have

a performance that is very close to theoretical limits.

Next, the problem of Space-Time code design for multiple-access channels is introduced.

This is the main goal of this thesis. The typical error events that can be encountered in

a MAC are first analyzed. Understanding the way an error occurs in the system helps

deriving the multiple-access code design criteria as in [2]. Based on the Alamouti code,

authors in [2] constructed the first multiple-access code taking into account the multiple-

access nature of the channel. This construction is presented and its performance studied,

showing the gain this multiple-access code offers as compared to the single-user code.

Finally, the DMT-optimal code design criteria derived in [27] as well as their achievability

are studied in details.

25
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2.1 Space-Time Block Coding: The Single-User Case

The construction of STBCs for single-user MIMO channels was largely studied in the

literature [15, 28, 29, 30, 31, 13]. Cyclic division algebras have been used as a tool to

construct these codes. Their algebraic properties are exploited to design optimal codes

satisfying the code design criteria presented in the following.

2.1.1 Design Criteria

Consider a STBC X with nt × T codeword matrices denoted X. The focus here is on the

error event occurring when, at the receiver side, a codeword X
′ 6= X is detected when the

codeword X ∈ X is transmitted. An estimate of the error probability, when maximum

likelihood (ML) decoding is applied, can be obtained using the union bound

Pe ≤ 1

|X |
∑

X∈X

∑

X 6=X
′

P

{

X → X
′
}

(2.1)

where P

{

X → X
′
}

is the pairwise error probability (PEP). For simplicity, it is assumed

that the codewords are normalized so that SNR = 1/σZ. The PEP conditioned on a

channel realization H , is given by

P
{

X → X
′ |H

}

= P
{

‖Y − HX
′‖2 ≤ ‖Y − HX‖2

}

= P

{

‖H
(

X − X
′
)

+ Z‖2 ≤ ‖Z‖2
}

= P







‖H
(

X − X
′
)

‖2 + 2R
(

H
(

X − X
′
)

Z†
)

︸ ︷︷ ︸

V

≤ 0







(2.2)

where V is a Gaussian variable with mean ‖H(X − X
′
)‖2 and variance

4‖H(X − X
′‖2σ2

Z.

Therefore,

P

{

X → X
′ |H

}

= Q




‖H

(

X − X
′
)

‖
2σZ



 (2.3)

The PEP averaged over the channel statistics is given by
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P
{

X → X
′
}

= EH



Q





√

SNR‖H
(
X − X

′) ‖2

2







 (2.4)

Let’s denote the codeword difference matrix ∆ = X − X
′
. ∆∆

† is diagonalizable by a

unitary transformation, so one can write

∆∆
† = UDU † (2.5)

where U is unitary and D is diagonal with elements λi, i = 1, . . . , nt (T ≥ nt) correspond-

ing to the singular values of the codeword difference matrix ∆. Therefore, the PEP in Eq.

2.4 can be written as:

P

{

X → X
′
}

= EH



Q





√

SNRHUDU †H†

2









≤ EH



Q





√

SNR
∑nt

i=1

∑nr

j=1 λ2
i | h̃i,j |2

2







 , (2.6)

where h̃i,j are elements of H̃ = HU that has the same distribution as H , i.e., h̃i,j are

Gaussian variables with zero mean and unit variance. Thus, the average PEP can be

bounded as follows

P

{

X → X
′
}

≤ EH

[

exp

(

−
SNR

∑nt

i=1

∑nr

j=1 λ2
i | h̃i,j |2

4

)]

≤
nr∏

j=1

nt∏

i=1

exp

(

−SNRλi

4

)

≤
(

nt∏

i=1

1

1 + SNRλ2
i /4

)nr

(2.7)

Let r denote the rank of the codeword difference matrix ∆, i.e., the number of non zero

λi. Asymptotically in SNR, the PEP can be written as

P

{

X → X
′
}

≤
[

det
(

∆∆
†
)]−nr

(
SNR

4

)−rnr

(2.8)

The diversity is given by the power of 1/SNR, hence, a diversity order of rnr is achieved.

The coding gain is determined by the minimum of the determinant over all codeword pairs,
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i.e.,

δmin = min
X 6=X

′
det
(

∆∆
†
)

(2.9)

Minimizing the PEP expression (2.8) leads to the following rank and determinant cri-

teria for the space-time code design:

Rank criterion: In order to exploit the ntnr independent channels available in the system

and therefore achieve the maximum diversity order, the rank of the difference of every pair

of distinct codewords X,X
′
has to be equal to nt. In other words, the determinant of the

difference of any codewords is non-zero

det∆ 6= 0, ∀X 6= X
′

(2.10)

Determinant criterion: For a fully diverse code, the coding gain δmin has to be maxi-

mized.

Information preserving criterion: A STBC is information lossless if the mutual infor-

mation of the channel does not change due to the coding. If Φ denotes the matrix used

to define the linear dependency between the elements of a codeword and the information

symbols, the use of a unitary matrix Φ preserves the information. In this case, the cubic

shaping constraint, required to have a uniform average transmitted energy among coded

symbols, is verified.

2.1.2 DMT-optimal Design Criterion

In order to further improve the performance of STBCs, one more property was introduced

to guarantee a coding gain that does not vanish when the constellation size grows. This

property, first introduced in [32], is called the non-vanishing determinant property.

Consider a linear dispersion coding scheme X (SNR) with data rate R(SNR) bits pcu,

i.e., the entries of any codeword matrix in X (SNR) are linear combinations of information

symbols. When the transmitting rate scales as r log SNR, the power constraint that any

codeword matrix X ∈ X should satisfy is defined by:

‖X‖2
F ≤ TSNR. (2.11)

Definition 2.1.1 (Non-Vanishing Determinant) X (SNR) is a NVD code if the difference

codeword matrix ∆ satisfies

min
∆=X−X

′
det

(
∆∆

†

SNR 2−R(SNR)/nt

)

≥̇ SNR
0 (2.12)
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for any pair of distinct codewords. SNR2−R(SNR)/nt is a normalization factor with respect

to the minimum distance in the symbols constellation. The NVD condition can be equiv-

alently written as ([26])

υ̃2
1 υ̃

2
2 . . . υ̃2

nt
≥ 1

2R(SNR)+o(log SNR)
(2.13)

where υ̃1, . . . , υ̃nt are the smallest nt singular values of the normalized (by
√

SNR) differ-

ence codeword matrix ∆ (in ascending order).

Elia and al. showed in [13] that the NVD property is a necessary and sufficient condition

for a full-rate STBC to achieve the outage-DMT of the channel.

Theorem 2.1.1 The achievable DMT of a rate-nt NVD scheme {X (SNR)} is lower bounded

by

dX (r) ≥ d(r), ∀r. (2.14)

Proof: See [13].

As a conclusion, NVD codes are a very important class of codes that preserves the coding

gain of the entire coding scheme and, from an information theoretic perspective, guarantees

the outage-DMT achievability.

2.1.3 Optimal Codes: SIMO/MISO Channels

Recall the outage-DMT of the SIMO channel given in (1.26)

d1×nr(r) = nr(1 − r)

that is achieved by transmitting QAM ([33, Chapter 3]), i.e.,

Pe,QAM(SNR)
.
= SNR

nr(1−r) (2.15)

For a MISO channel, the outage-DMT is given in (1.28):

dnr×1(r) = nt(1 − r)

A code with diversity order nt is clearly needed in this scenario in order to benefit from the

transmit diversity. For nt = 2, the Alamouti coding scheme is known to be outage-DMT

achieving.

Alamouti Code

The Alamouti code is an orthogonal code proposed in [15] as one of the first STBCs. Two

QAM information symbols, s1 and s2, are encoded into a 2×2 codeword matrix as follows:
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X =

(

s1 −s∗2
s2 s∗1

)

(2.16)

This code is fully diverse since detX is non-zero for any non-zero symbols. At the receiver,

one has:

[

y1

y2

]

=
[

h1 h2

]
[

s1 −s∗2
s2 s∗1

]

+

[

z1

z2

]

(2.17)

that can be rewritten as

[

y1

y∗2

]

=

[

h1 h2

h∗
2 −h∗

1

][

s1

s2

]

+

[

z1

z∗2

]

(2.18)

leading to the equivalent received vector

y = H
′
s + z (2.19)

It is clear that the received vector can be easily decoded due to the orthogonality of the

equivalent channel vectors [h1 h∗
2]

T and [h2 − h∗
1]

T . For high SNR, the error probability

is approximately given by

Pe,Alamouti(SNR)
.
= SNR

2(1−r). (2.20)

Low decoding complexity is one of the major advantages of the Alamouti code that is

optimal for MISO channel with nt = 2 and nr = 1. This construction has been extended

to higher dimensions, nt ≥ 2. The full diversity is achieved by the data rate decrease when

the number of antennas increases.

2.1.4 MIMO Channel: Perfect Codes

Perfect Space-Time codes [8, 9] were introduced as the class of linear dispersion having

full rate, non-vanishing determinant and uniform average transmitted energy per antenna.

Perfect codes are constructed using cyclic division algebras as follows.

Consider a cyclic extension L of degree nt over Q(i) and σ the generator of its Galois

group. OL denotes the ring of integers of L. Let A = (L/Q(i), σ, γ) be a cyclic division

algebra of degree nt with γ verifying γ ∈ Z[i] and γ, γ2, . . . , γnt−1 non-norm elements in

L. Each element in A has the following matrix representation (c.f., A.4 in Appendix A)
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X =











x0 x1 x2 . . . xnt−1

γσ(xnt−1) σ(x0) σ(x1) . . . σ(xnt−2)
...

. . .
...

γσnt−2(x2) γσnt−2(x3) γσ(x4) . . . σnt−2(x1)

γσnt−1(x1) γσnt−1(x2) γσnt−1(x3) . . . σnt−1(x0)











(2.21)

where xi ∈ OL. A being a CDA implies that

detX ∈ Z[i].

This determinant is non-zero for a non-zero matrix X, yielding a NVD since the difference

matrix of each pair of codewords is an element of the CDA.

Finally, in order to get a STBC with good shaping, elements xi of the codeword matrix

should belong to a properly chosen ideal I ⊆ OL [34] and | γ |= 1. Each layer of the code

can be written as Us, where s is the information symbols vector and U is a unitary matrix

that encodes the symbols into each layer.

Example 2.1.1 (Golden Code) The Golden code is a 2× 2 perfect code built on the cyclic

algebra

A = (L = Q(i,
√

5)/Q(i), σ, i)

with σ :
√

5 7→ −
√

5. Let θ = 1+
√

5
2 be the golden number and θ̄ = 1−

√
5

2 be its conjugate.

Define α = 1 + i − iθ and its conjugate ᾱ = 1 + i − iθ̄ ∈ I.

The unitary transform, used to code the QAM information symbols si,j, is given by

U =
1√
5

[

α αθ

ᾱ ᾱθ̄

]

(2.22)

Thus, a codeword X of the Golden code has the form

X =
1√
5

[

α (s1,1 + s1,2θ) α (s2,1 + s2,2θ)

iᾱ
(
s2,1 + s2,2θ̄

)
ᾱ
(
s1,1 + s1,2θ̄

)

]

(2.23)

where θ = 1+
√

5
2 .

Since i is not a norm in L, A is a CDA and the Golden code is a full rate and fully

diverse code with a good shaping and a codeword determinant that does not vanish when

the spectral efficiency increases.
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2.1.5 Parallel MIMO Channel

Consider a set of N parallel nt × nr MIMO channels. The channel matrix denoted H is

given by

H = diag (H1,H2, . . . ,HN )

where H i is a nr × nt matrix corresponding to channel i.

The construction of perfect STBCs achieving the DMT of a parallel MIMO channel was

presented in [35]. This construction follows the same footsteps as the construction of codes

for MIMO channels. A CDA is first constructed by

1. replacing the base field Q (i) by a Galois extension of degree N over Q (i) denoted F

with Galois group:

Gal(F/Q(i)) = {τ1, τ2, . . . , τN}

2. replacing the field L by K = F (θ), a cyclic extension of degree nt over F with the

same Galois group as Gal(L/Q(i))

3. choosing η verifying η, η2, . . . , ηnt−1 are not norms in K.

The constructed cyclic division algebra is A = (K/F, σ, η). Let Ξ be the matrix rep-

resentation of some element of A which is a nt × nt matrix. Since the channel is block

diagonal, the constructed code has a block diagonal structure with nt × nt square blocks

on the diagonal

X =









τ1 (Ξ)

τ2 (Ξ)
. . .

τN (Ξ)









(2.24)

This code is full-rate, i.e. each codeword corresponds to N.n2
t information symbols. We

have

N∏

k=1

det (τk (Ξ)) =

N∏

k=1

τk(detΞ)

= NF/Q(i)(detΞ) (2.25)

that is in Z(i) leading to a NVD code. An explicit code construction is provided in the

following example.
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Example 2.1.2 (N = 2m sub-channels and nt = 2 transmit antennas ([35])) Define

ζ2m+1 = e
iπ
2m . Consider the base field F = Q(ζ2m+2) an extension of degree 2m of Q(i) and

K = F(
√

5) = Q(ζ2m+2 ,
√

5). η = ζ2m+2 can be shown to be a non-norm element in K.

Let θ = 1+
√

5
2 , σ : θ 7→ θ̄ = 1−

√
5

2 and the ring of integers of K, OK, given by

OK = {a + bθ | a, b ∈ Z[ζ2m+2 ]}

the chosen ideal is principle, i.e., I = (α)OK with α = 1 + i − iθ and ᾱ = 1 + i − iθ̄. The

matrix Ξ is given by:

Ξ =

[

α(s1,1 + s1,2θ) α(s2,1 + s2,2θ)

ηᾱ(s2,1 + s2,2θ̄) ᾱ(s1,1 + s1,2θ̄)

]

(2.26)

where si,j ∈ Z[ζ2m+2].

2.2 Space-Time Block Coding: The Multiple-Access Case

In this section, the typical error events occurring in a multiple-access scenario are first

analyzed. Similar error events analysis was first presented by Gallager in [36] for the

AWGN-MAC and revisited in [3] and [2] for the fading MAC.

2.2.1 Error Event Analysis

In a multiple-access scenario, the error can occur in different ways, depending on the num-

ber of users that are decoded erroneously. In this context, the overall error event can be

decomposed into multiple disjoint error events Es, s = 1, . . . ,K, (also referred to as error

event s ) that occurs when s users are decoded in error and (K − s) users are decoded

correctly. Recall that S ⊆ {1, . . . ,K} is a set of all the users that are decoded erroneously,

S its complement, s = |S| and 1 ≤ s ≤ K.

For k = 1, . . . ,K, let Xk denote the codeword matrix transmitted by user k and X̂k

the joint ML decision at the receiver. We have:

Es ,

{

X̂k 6= Xk, ∀k ∈ S and X̂k = Xk, ∀k ∈ S
}

(2.27)

Define P(Es | H) the probability of Es for a given channel realization. Therefore, the total

error probability is the sum of the K disjoint error events and:

Pe =
K∑

s=1

P(Es) (2.28)

where
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P(Es) = EH[P(Es | H)] (2.29)

Example 2.2.1 Consider a two-user MAC with an arbitrary number of transmit and re-

ceive antennas. This channel entails two different types of error events; E1 where one user

is in error, i.e., S = {1} or {2} and E2 where both users are in error, i.e., S = {1, 2}.

More generally, an error occurs if

(X̂1, X̂2) 6= (X1,X2)

Thus,

E1 ,

{

(X̂1 6= X1 & X̂2 = X2) ∧ (X̂2 6= X2 & X̂1 = X1)
}

E2 ,

{

(X̂1 6= X1) & (X̂2 6= X2)
}

The overall error probability is given by

Pe = P(E1) + P(E2) (2.30)

Depending on the transmission rate, one of the K error probabilities in (2.28) dominates

the total error probability. This dependency was first characterized in [36] for the two-user

AWGN-MAC and then in [2] for the fading MAC using the standard upper bound in terms

of error exponents

P(Es | H) ≤ exp−TEs(sR,H), S ⊆ {1, . . . ,K} (2.31)

where the random coding exponent Es(sR,H) is given in [36, Th. 2].

Once related to the transmission data rates, the probability of each error event brings

a numerical evaluation of the dominant error event over the achievable finite rate region

(cf. [2] for details).

2.2.2 Design Criteria

There is a main conceptual difference between a multiple-access and point-to-point scheme

due to the fact that each user’s own codeword is limited to its transmitting antenna. Hence,

the design criteria originally derived for point-to-point space-time coding are not sufficient

to construct good multiple-access coding schemes.

The understanding of the nature of error events occurring in a MAC enables the de-

velopment of criteria for optimal space-time codes design derived in [2]. These criteria

essentially aim at minimizing the overall error probability.
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Define Xs the codeword resulting from the concatenation of the codewords of the s

users that are in error. In the high SNR regime, the space-time code design criteria mini-

mizing the error probability, Pe given in (2.28), consists first in determining the type of the

dominant error event depending on the rate tuple, and then minimizing the correspond-

ing dominant error probability P(Es) where s ∈ {1, 2, . . . ,K} using codes that fulfill the

following criteria

1. Rank criterion: For every codeword pair (Xs,X
′s) with Xs 6= X

′s the rank of the

corresponding codeword difference matrix should be maximized.

2. Eigenvalue criterion : For every codeword pair (Xs,X
′s) with Xs 6= X

′s the product

of the nonzero eigenvalues of the corresponding codeword difference matrix should

be maximized.

Interestingly, when the single-user error event dominates, i.e., PE1 dominates, these

design criteria are equivalent to those of the single-user MIMO codes. This scenario can

be dealt by using well known space-time codes designed for the single-user case. The same

observation is made when the event where more than one user are in error dominates, but

these criteria apply to the special overall STBC that is required in this case.

Remark 2.2.1 Although these design criteria mimic those of the conventional co-located

MIMO STBCs, there is an important conceptual difference in the multiple-access scenario.

When ranks (and determinants) of the differences of distinct codewords are considered for

the joint error events, none of the rows are identical in Xs and X
′s.

2.2.3 Multiple-Access Codes Construction

Little was known about space-time block coding for MACs before the work of Gärtner and

Bölcskei [2] where the authors proposed the first code taking into account the multi-user

nature of the channel. Traditional approaches are mainly based on the use of orthogonal

transmission schemes, such as TDMA and CDMA. More recent works [37, 38] consisted in

using single-user STBCs for each user.

In [37], Naguib et al. presented a MMSE interference cancellation technique combined

with a ML decoding in order to suppress interference in a multi-user scenario. As an

example, the two-user MAC was considered. The number of transmit and receive antennas

are nt = 2 and nr ≥ 2, respectively. Each user’s information is transmitted using a length

two Alamouti code (c.f. 2.1.3). While this technique effectively suppresses the co-channel

interference, using single-user coding schemes leads to sub-optimal performance.

In [38], the authors proposed a technique aiming to separate the users in signal space us-

ing what they called an interference-resistant modulation (IRM). This technique is based on

the multi-dimensional rotated constellations previously addressed in [39] for AWGN-MAC.

Single-user STBC combined with IRM was shown to enhance each user’s performance but

suffers from a reduced transmission rate. This is the unavoidable drawback of this coding

scheme which significance increases with the number of users.
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Gärtner and Bölcskei (GB) Code

Gärtner and Bölcskei considered in [2] a two-user MAC with nt = nr = 2. They proposed

the first multiple-access STBC taking into account the multiple-access nature of the chan-

nel. This code, referred to as GB code, is of length 4 and results from a concatenation of

two Alamouti codes. The codeword matrix transmitted by user k is given by

Xk =

[

sk,1 sk,2 sk,3 sk,4

−s∗k,2 s∗k,1 −s∗k,4 s∗k,3

]

(2.32)

where sk,j, k = 1, . . . , 2, j = 1, . . . , 4 denote the four information symbols of user 1 and 2,

independently chosen from a QAM constellation.

In order to take the error event 2 into account, a STBC guaranteeing a minimum rank

of three, is proposed. This joint design consists in swapping two columns of the codeword

matrix of one user, say user 2, as follows:

X2 =

[

s2,1 s2,3 s2,2 s2,4

−s∗2,2 −s∗2,4 s∗2,1 s∗2,3

]

(2.33)

Fig. 2.1 illustrates the performance of GB code in terms of the probability of the error

event 2 versus the received SNR. Compared to the single-user code, the proposed code

clearly exhibits better performance when both users are in error (2.5 dB better). While

the rank of each user’s codeword is the same for the two codes (rank(Xk) = 2), the rank

of the overall codeword matrix is 2 for the SU code and 3 for the GB code. The higher

diversity order achieved by GB code, when both users are in error, explains the observed

gain.

This construction simply highlights the importance of the multiple-access code design

and shows the sub-optimality of the use of a single-user code in a multiple-access scenario.

2.2.4 DMT-Optimal Design Criteria

Coronel et al. established in [27] the outage-DMT of selective-fading MIMO-MACs and

derived sufficient conditions on the users’ codebooks that, if verified, guarantee that the

coding scheme is outage-DMT optimal. In other words, the error probability of the code

behaves, exponentially in SNR, as Pout(R). This work highlights the relation between the

dominant error event regions and the outage-DMT. It also shows that, exploiting the DMT

framework helps in rigorously characterizing the error behavior of the MAC.

We focus on the DMT optimal code design criteria derived in ([27]) using a standard

PEP-driven space-time analysis. In [16], Coronel et al. revisited the derivation of their

criteria and provided a less stringent criteria that is presented in the following theorems

for a Rayleigh block fading channel that can be seen as a particular frequency selective
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Figure 2.1: PE2 for Single-User code and GB code (joint code design), two-user MAC,
nt = nr = 2, 4-QAM.

fading channel with one multipath.

Let Xk(SNR) denote the space-time coding scheme of user k with data rate R(SNR)

bits pcu scaling as r log SNR and assume that a codeword matrix Xk ∈ Xk satisfies

‖Xk‖2
F ≤ TSNR. (2.34)

The non-vanishing determinant condition defined in Definition 2.1.1 in the single-user

scenario can be applied to the multiple-access case as follows.

Definition 2.2.1 (Joint Non-Vanishing Determinant) A multiple-access coding scheme X
is said to be a joint NVD code, if the difference codeword matrix ∆

s = Xs −X
′s, for any

pair of distinct codewords, satisfies

min
{∆s}s=|S|

det

(
∆

s
∆

s†

SNR 2−R(SNR)/nt

)

≥̇ SNR
0 (2.35)

for all values of 1 ≤ s ≤ K. SNR 2−R(SNR)/nt is the normalization factor with respect to

the minimum distance in the symbols constellation.

Theorem 2.2.1 ([27]) For every s ∈ {1, 2, . . . ,K}, T satisfies T ≥ snt and ms is defined

as

ms , min(snt, nr).

Denote λl, l = 1, . . . ,ms the ms non-zero eigenvalues (in ascending order) of the normalized
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(by SNR) ∆
s
∆

s† and

Ψsnt
ms

(SNR) , min
{∆s}s=|S|

ms∏

l=1

λl. (2.36)

If the following condition is satisfied

Ψsnt
ms

(SNR) ≥ 1

2sR(SNR)+o(log SNR)
(2.37)

then, the probability of the error event s is upper bounded by

PEs ≤̇ SNR
−dsnt,nr (sr) (2.38)

Theorem 2.2.2 ([16]) If the family of code X (SNR) satisfies (2.37) for the dominant

outage set, i.e., for s = s∗ and for every other set, i.e., for s 6= s∗, the following condition

is satisfied

Ψsnt
ms

(SNR) ≥ 1

SNR
ρs(r)+o(log SNR)

(2.39)

where

0 ≤ ρs(r) ≤ rsnt,nr (ds∗nt,nr(s
∗r)) (2.40)

then X (SNR) achieves the optimal DMT, i.e.,

dX (r) = dMAC(r).

Proof: Using (2.28), one gets:

Pe,X (SNR)
.
= P(Es∗) +

∑

s 6=s∗

P(Es) (2.41)

For s = s∗, (2.37) is satisfied and it follows from Theorem 2.2.1 that

P(Es∗) ≤̇ SNR
−ds∗nt,nr

(s∗r) (2.42)

For s 6= s∗, (2.39) implies

P(Es) ≤̇ SNR
−dsnt,nr (ρs(r)) (2.43)

Inserting (2.42) and (2.43) in (2.41) and noting that

SNR
−dsnt,nr (ρs(r)) ≤ SNR

−ds∗nt,nr
(s∗r), ∀s 6= s∗

yields
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Pe,X (SNR) ≤̇ SNR
−ds∗nt,nr

(s∗r) +
∑

s 6=s∗

SNR
−dsnt,nr (ρs(r))

.
= SNR

−ds∗nt,nr
(s∗r)

Finally, since Pe,X (SNR) ≥̇ P(O), one concludes that

Pe,X (SNR)
.
= P(O)

.
= SNR

−ds∗nt,nr
(s∗r). (2.44)

Theorem 2.2.2 implies that, if (2.37) and (2.39) are satisfied for s∗ and s 6= s∗, respectively,

Pe,X (SNR)
.
= SNR

−mins=1,...,K dsnt,nr (sr) (2.45)

which, combined with Theorem 1.4.3 leads to the following conclusion: depending on the

rates of users, the typical way errors occur is either one of the users is in error or all the

users are in error.

Remark 2.2.2 In their first result stated in [27], Coronel et al. claimed that, in order to

achieve the outage-DMT, a coding scheme should satisfy the joint NVD criterion. In other

words, condition (2.37) should be satisfied for all outage events, i.e., ρs(r) = sr, which is

stronger than condition (2.39). Obviously, for a dominant outage event s∗ ,

sr ≤ rsnt,nr (ds∗nt,nr(s
∗r)) , ∀s

showing that condition (2.39) is more relaxed. The first criterion [27] is sufficient but is

too strict.

For nr ≥ Knt, criterion (2.37) in Theorem 2.2.2 is equivalent to the NVD criterion

(2.35) and thus, helps determine the way the following normalized minimum determinant

behaves at high SNR

δs
min = min

{∆s}s=|S|

det

(
∆

s
∆

s†

SNR 2−R(SNR)/nt

)

. (2.46)

Since ms = snt, then (2.36) can be rewritten as

Ψsnt
snt

(SNR) = min
{∆s}s=|S|

snt∏

l=1

λl

= min
{∆s}s=|S|

det

(
∆

s
∆

s†

SNR

)

(2.47)

If condition (2.37) is satisfied, then
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min
{∆s}s=|S|

det

(
∆

s
∆

s†

SNR

)

≥̇ SNR
−sr

δs
min ≥̇ SNR

0 (2.48)

which is clearly equivalent to (2.35). On the other hand, if condition (2.39) is satisfied, we

get

min
{∆s}s=|S|

det

(
∆

s
∆

s†

SNR

)

≥̇ SNR
−ρs(r)

δs
min ≥̇ SNR

−(ρs(r)−sr) (2.49)

where

0 ≤ ρs(r) ≤ rsnt,nr (ds∗nt,nr(s
∗r))

Theorem 2.2.3 (Pigeon Hole bound [40]) Consider a full-rate multiple-access lattice code

X for a K-user MAC with nt transmit antennas per user. The minimum determinant

(2.46) can be upper bounded as follows

δK
min = min

∆

det

(
∆∆

†

SNR 2−R(SNR)/nt

)

≤̇ SNR
−(K−1)r (2.50)

Next, the implications of the DMT-optimal design criteria stated in Theorem 1.4.3 are

investigated for both the single-user and the antenna pooling regimes.

Single-user regime

In the single-user regime, 0 ≤ r ≤ nr

K+1 . The dominant outage event is event 1 , i.e.,

s∗ = 1. As shown in (2.48), condition (2.37) implies:

δ1
min ≥̇ SNR

0 (2.51)

i.e., the NVD condition should be satisfied by each individual code. For the non-dominant

outage event of interest, event K , condition (2.39) implies

δK
min ≥̇ SNR

−(ρK(r)−Kr) (2.52)

where

0 ≤ ρK(r) ≤ rKnt,nr (dnt,nr(r)) .

Combining (2.52) and (2.50) leads to
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SNR
−(ρK(r)−Kr) ≤̇ δK

min ≤̇ SNR
−(K−1)r (2.53)

which leads to the conclusion that, in the single-user regime, condition (2.39) can be

satisfied only if

ρK(r) ≥ (2K − 1)r (2.54)

Antenna pooling regime

The system operates in the antenna pooling regime when the multiplexing gain satisfies
nr

K+1 ≤ r ≤ min(nt,
nr

K ). Outage event K dominates in this regime, i.e., s∗ = K. Using

(2.37), the overall code should satisfy

δK
min ≥̇ SNR

0 (2.55)

which combined with (2.50), shows the non-existence of a multiple-access code satisfying

the DMT-optimal design criteria [16] in the antenna pooling regime.
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Chapter 3

Space-Time Block Coding for

Single-Antenna Multiple-Access

Channels

As a first approach to the multiple-access Space-Time code design, we consider in this

chapter a simple multiple-access system in which the number of transmit antenna (per

user) is fixed to one. The destination is equipped with an arbitrary number of receive

antennas. Two different scenarios are distinguished, the synchronous and the asynchronous

multiple-access system.

In a synchronous multiple-access system (studied in Section 3.1), the users are assumed

to be synchronized at the transmission. Based on an outage analysis, the theoretical

limits of the channel is evaluated and the sub-optimality of the time-sharing technique

as compared to the multiple-access technique is highlighted. Obviously, the users should

transmit simultaneously in order to exploit the degrees of freedom of the channel. Moreover,

it can be shown that the use of the best single-user Space-Time block coding schemes in

a multiple-access scenario is sub-optimal. Motivated by these statements that are proven

numerically for the two-user MAC in Subsection 3.1.1, we propose a new family of single-

antenna Space-Time block codes. The algebraic tools originally proposed for constructing

STBCs for single-user MIMO channels are used (c.f., Chapter 2). The new construction,

termed single-antenna BB-code, better exploits the MAC’s capabilities and consequently,

offers a significant gain compared to both the time-sharing and the single-user coding

schemes. The general construction for K users is presented in Subsection 3.1.2 followed

by an explicit construction for a two-user MAC in Subsection 3.1.3. This first part is

concluded by a DMT analysis of the new coding scheme presented in Subsection 3.1.5.

In the second part of this chapter, a more practical scenario without the assumption

of synchronization at the transmission is considered. Asynchronism among users leads to

shifted codeword matrices and thus, change the structure of the code. The main result

here, is the proof of the delay-tolerance of the code proposed for the single-antenna MAC.

Indeed, despite the asynchronism and the resulting structural changes, the full diversity

43
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Figure 3.1: A K-user Multiple-Access Channel with single transmit antenna.

of single-antenna BB-code is shown to be preserved. Section 3.2 of this chapter, deals

with asynchronism and its effect on the STBC’s performance. First, the asynchronous

MAC is modeled in Subsection 3.2.1. In Subsection 3.2.2, the code design criteria is

derived such that a full diversity is achieved at the receiver. The single-antenna BB-

code is then shown to be delay-tolerant in Subsection 3.2.3. Numerical results presented in

Subsection 3.2.5 finally confirm that the diversity of the coding scheme is preserved despite

the asynchronism.

3.1 Synchronous Multiple-Access Scenario

Consider the MAC illustrated in Fig. 3.1 where K users with single antenna each are

communicating with one receiver with an arbitrary number of antennas. The users are

not allowed to cooperate together. Each user’s channel is modeled by the following vector

hk ∈ Cnr

hk =
[

hk,1 hk,2 . . . hk,nr

]

(3.1)

A perfect synchronization is assumed between the users, such that, at the receiver side,

all users’ informations are received without any delay. In this case, the received signal is

given by

Y =
[

h⊤
1 h⊤

2 . . . h⊤
K

]









x1

x2
...

xK









+ Z

= HX + Z (3.2)

where Y ∈ Cnr×T denotes the received matrix, xk ∈ CT the coded information vector
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Figure 3.2: Outage performance of a two-user MAC, nt = 1, R = 2 bits/pcu.

transmitted by user k and Z ∈ Cnr×T the AWGN.

3.1.1 Motivation

What is the best transmission strategy and the optimal performance that can

be achieved over the single-antenna MAC ?

An answer to the first part of the question was already given in Subsection 1.4.6, where the

outage-DMT of the single-antenna MAC is analyzed. In Fig. 1.5-a and b, the DMT of the

multiple-access technique, where both users transmit simultaneously their information, is

compared to the DMT of the time-sharing technique. These figures show the sub-optimality

of time-sharing in terms of the achievable DMT.

Here, the question is answered numerically by analyzing the outage behavior of the

channel with different multiple-access techniques. Recall that, asymptotically with SNR,

the outage probability constitutes an upper-bound on the error probability of any coding

scheme. Consider a two-user MAC. In Fig. 3.2, the corresponding outage probability

is plotted for nr = 1 and 2. The probability of the outage event 2 , i.e., O2, is also

plotted. The spectral efficiency is R = 2 bits/pcu. These curves show that the same

diversity order is achieved with the two techniques, d = nr and d = 2nr for O1 and O2,

respectively. However, time-sharing technique is clearly sub-optimal. This is due to the

fact that orthogonal transmission makes very poor use of the available spatial degrees of

freedom. Intuitively, to exploit the available degrees of freedom, both users must access

the channel simultaneously. A natural question arises from this conclusion:
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What if each user employs the optimal single-user STBC?

For a two-user MAC, each user’s channel considered separately is a SISO channel when

nr = 1 and a SIMO channel when nr = 2. In this case, simply transmitting QAM symbols

is optimal in the sense of the outage-DMT (c.f., 2.1.3). To evaluate the performance of this

single-user scheme in the multiple-access scenario, we consider that both users transmit

simultaneously their QAM symbols (equivalent to an uncoded scheme). The received signal

is given by

Y = Hx + Z (3.3)

where x is the vector of transmitted signals with entries drawn independently from some

QAM constellation.

Theoretical performance analysis

In Fig. 3.3 the DMT achieved by the uncoded and the time-sharing schemes, i.e.,

dQAM = nr(1 − r) and dTS = nr(1 − 2r)

are illustrated. The outage-DMT dMAC(r) is plotted for comparison purpose,

dMAC(r) =







d1,nr(r) = nr(1 − r) r ≤ nr

3

d2,nr(2r) = (2 − 2r)(nr − 2r) r ≥ nr

3

The QAM modulation achieves the outage-DMT of the channel with two receive anten-

nas since the outage-DMT corresponds in this case to that of a single-user MIMO channel

with one transmit antenna and two receive antennas. Contrarily, for nr = 1, the uncoded

scheme is sub-optimal and achieves the same DMT as time-sharing.

Numerical analysis

Numerical results illustrated in Fig. 1.5 confirm the previous analysis. With two receive

antennas, the uncoded scheme outperforms time-sharing and offers a significant gain that

is comparable to that observed on the outage probability curves. Indeed, for nr = 2, the

event of one user being in error is the dominant event and the only one to be considered.

This explains the optimality of the uncoded scheme.

For nr = 1, the uncoded scheme and the time-sharing scheme have (roughly) the same

error behavior. This result shows that, using the optimal single-user coding scheme is

sub-optimal since it does not exploit the multiple-access nature of the channel required in

this case.

A closer examination of the error behavior is illustrated in Fig. 3.5 where the probability

of each error event is considered separately: P(E1), the probability of the error event 1
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Figure 3.3: DMT achieved by the uncoded scheme (QAM modulation) and time-sharing
scheme in a single transmit antenna MAC.

where, at the receiver, the information of only one user is decoded erroneously; P(E2), the

probability of the error event 2 where both users are decoded erroneously; and Pe the

total error probability:

Pe = P(E1) + P(E2).

With two receive antennas, the error probability of event 2 is smaller than that of event

1 which dominates the overall error probability. Even though QAM is sub-optimal when

both users are in error, it offers optimal error performance when one user is in error, which

is the dominant error event.

With a single receive antenna, both error events have a significant effect on the overall

probability (they occur with the same probability) and the uncoded scheme is no longer

optimal. QAM leads to a bad error performance when both users are in error which

significantly affects the overall error probability. A joint code design offering a higher

diversity order (d = 2) is needed in this case.

The generalization of this analysis to the K-user MAC is straightforward. As a con-

clusion, for nr ≤ (K + 1)nt, a joint code design dealing with the different error events is of

major importance. The idea behind this joint coding is to focus on the dominating error

event while making sure that the other events do not have a much worse performance.

Remark 3.1.1 (Joint Code) We call the joint code, the code resulting from the concate-

nation of the individual codes of all the users that are independent from each other because

there is no cooperation between the users at the transmission.
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Figure 3.4: Error performance of an Uncoded scheme vs Time-Sharing, K = 2, nt = 1,
4-QAM.

3.1.2 New Construction: The Single-Antenna BB-Code

The proposed code spans K slots, i.e. T = K, such that the joint codeword matrix is a

square matrix. The vector of information symbols of each user is given by:

sk =
[

sk,1 sk,2 . . . sk,K

]⊤

where sk,l denotes the QAM information symbol of user k at lth channel use, k, l =

1, 2, . . . ,K.

Let L be a cyclic extension over Q(i) of degree K and OL its ring of integers. Denote σ

the generator of the Galois group of L. From this extension, a unitary matrix is extracted

[41, 42], that associates to the vector of information symbols the following vector of length

K, transmitted by each user k

xk = Usk =
[

γxk γσ (xk) . . . σK−1 (xk)
]

(3.4)

where xk ∈ OL is a linear combination of K information symbols per user and γ ∈ Q(i)

is a carefully chosen multiplication factor for the k − 1 first components of xk, added to

guarantee a full diversity.

Let X denote the joint codebook. A codeword X of X results from the (vertical)

concatenation of all users codewords as follows
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Figure 3.5: Different error events of an Uncoded scheme, K = 2, nt = 1, 4-QAM.

X =









x1 σ(x1) σ2(x1) . . . σK−1(x1)

γx2 σ(x2) σ2(x2) . . . σK−1(x2)
...

. . .
. . .

. . .
...

γxK γσ (xK) . . . . . . σK−1 (xK)









(3.5)

Remark 3.1.2 Compared to the perfect code (Eq. A.4), the proposed code does not have

the same algebraic properties. Hence, the conditions that γ should verify in order to get a

fully diverse code should be derived with respect to the new construction.

Theorem 3.1.1 If γ is transcendental, the proposed coding scheme X is fully diverse.

Proof: The determinant of the codeword matrix (3.5) is a polynomial function of γ,

i.e.,

detX = PX(γ) =
∑

π∈SK

sgn(π)
K∏

i=1

xπ(i),i (3.6)

where sgn(·) is the sign function of a permutation in the permutations group SK , that

returns +1 and −1 for even and odd permutations, respectively [43]. xπ(i),i, i = 1, . . . ,K

denote the codeword’s elements (row π(i), column i). This polynomial has a degree K − 1

since the coefficient of the term γK−1 given by
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σK−1(x1) . x2 . σ(x3) . . . σK−2(xK)

is non zero. Indeed, the full diversity constraint is required when event K dominates, in

other words, when all users are in error, i.e., xπ(i),i 6= 0,∀i.

Since all the coefficients of PX(γ) are in L, the roots of the polynomial equation

PX(γ) = 0 are in some algebraic extension of L of degree at most K − 1 [44]. Therefore, a

sufficient condition that guarantees a non-zero determinant is to choose γ transcendental.

Hence, by the linearity of the mapping (3.4), the determinant of any codeword difference

matrix is also non-zero and the full-rank property is satisfied.

Remark 3.1.3 The above Lemma gives a necessary condition on the value of γ in order

to guarantee the full-rank property. Other non transcendental values of γ can also yield a

full-rank code. This is shown in the following explicit construction.

3.1.3 Explicit Construction: Two-user MAC

In the two-user case, the unitary transformation matrix U initially defined in (2.22) for

the construction of the Golden code is used,

U =
1√
5

[

α αθ

ᾱ ᾱθ̄

]

where α = 1 + i − iθ and θ = 1+
√

5
2 . U associates to the vector of information QAM

symbols sk = [sk1 sk2]
⊤ the vector

x⊤
k = Usk =

(

xk

σ (xk)

)

(3.7)

One of the users, say user 2, multiplies the symbol transmitted in the first slot by a

constant γ ∈ Q(i) yielding the equivalent matrix

X =

[

x1

x2

]

=

[

x1 σ (x1)

γx2 σ (x2)

]

=

[

α(s11 + s12θ) ᾱ(s11 + s12θ̄)

γα(s21 + s22θ) ᾱ(s21 + s22θ̄)

]

Theorem 3.1.2 For γ 6= ±1, the codeword matrix X is full rank and hence, X is fully-

diverse.

Proof: The idea is to find the condition on the value of γ for which the two columns

of the codeword X are proportional leading to a zero determinant, and hence, consider
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λ0

[

x1

γx2

]

+ λ1

[

σ (x1)

σ (x2)

]

= 0 (3.8)

where λ0, λ1 ∈ Q(i). Assuming that λ0 = 1 and λ1 = λ, the following system is obtained:

x1 = λσ(x1) (3.9)

γx2 = λσ(x2) (3.10)

(3.9) implies that λ = +1 or −1 for xj ∈ Q(i) (xj = σ (xj)) or xj ∈
√

5Q(i) (xj = −σ (xj)),

respectively. Using (3.10), we conclude that

detX = 0 ⇐⇒ γ = ±1

Hence, any γ ∈ Q(i)\{±1} yields a non zero determinant. Hence, let γ = i, giving rise

to the fully-diverse code X .

3.1.4 Error Performance

The performance of the new coding scheme is studied in terms of its error probability

illustrated in Fig. 3.6 and 3.7 for 4-QAM and 16-QAM information symbols, respectively.

At the receiver side, a joint ML decoding is used.

Compared to time-sharing, the proposed code achieves the same diversity order, d =

ntnr, but offers a significant performance gain. For a 4-QAM constellation and at an error

rate of 10−4, a coding gain of 3.5 dB is observed for nr = 1 and 5 dB for nr = 2. When

the spectral efficiency is increased (16-QAM), the coding gain increases to 8 dB for nr = 1

and 9.5 dB for nr = 2.

Moreover, we notice that the sub-optimality of the time-sharing scheme increases when

the number of receive antennas increases. This is due to the fact that time-sharing does

not exploit the available spatial degrees of freedom. Interestingly, if the outage probability

curves of the channel (Fig. 3.2) are compared to the error probability curves of the new

code (Fig. 3.6), similar behaviors are "roughly" observed. This result shows (numerically)

the superiority of the proposed scheme.

Remark 3.1.4 For the time-sharing scheme, the information symbols are carved from a

16- and 256-QAM constellations, respectively, in order to take into consideration the code

length and thus to guarantee a fair comparison.

In order to further analyze the error behavior of the new coding scheme, the probability

of each error event is considered separately and the corresponding error probabilities, P(E1)

and P(E2), are plotted in Fig. 3.8.

Comparing these error probabilities to those of the uncoded scheme (Fig. 3.5) explains

the gain offered by the new code. We notice that error event 1 has the same probability in
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Figure 3.6: Performance of the proposed code, nt = 1, 4-QAM.

both cases. Indeed, when one user is in error, we are only interested in the codeword of this

user given in 3.7 which is simply equivalent to rotated QAM symbols. The importance of

the new code mainly results from its higher diversity order that improves the performance

of the system when both users are in error by decreasing the probability of error event 2 .

While this improvement has a marginal effect for nr = 2, it explains the gain obtained

when nr = 1.

The structure of the code, as well as the careful choice of γ, guarantee the full rank

property of the code and thus the previously discussed performance improvement. The

impact of the value of γ on the performance of the code is studied in Fig. 3.9. We see

that the performance of the proposed code is degraded, i.e., the performance gain is lost,

for γ = 1 which is mainly due to the loss of the diversity order (2) when both users are in

error.

3.1.5 DMT Analysis

Up to this point, we have proposed a new coding scheme for single transmit antenna MACs

that has been shown to satisfy the overall full rank criterion i.e., the determinant of any

joint codeword X is non-zero whenever all the users’ codewords Xk, k = 1, . . . ,K are

non-zero. Simulation results evaluated the performance gain obtained using the proposed

construction and showed (numerically) that the corresponding error probability and the

outage probability of the channel have the same behavior.

In this section, we present a DMT-oriented analysis of the proposed single-antenna

BB-code. In the DMT framework, the common data rate R of the system scales with SNR

as R(SNR) = r log SNR. In this case, we are interested in studying the performance of the

family of codebooks Xk(SNR), one for each SNR with block length T = K. The overall
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Figure 3.7: Performance of the proposed code, nt = 1, 16-QAM.

family of codes X (SNR), results from the concatenation of all individual coding schemes

Xk(SNR). It consists of (K × T ) code matrices and, thus, contains SNR
TKr codewords, at

a given SNR.

The best DMT a coding scheme is expected to achieve is the outage-DMT of the channel

given, as in (1.32), by:

dSA-MAC(r) =







d1,nr(r), r ≤ min(1, nr

K+1)

dK,nr(Kr), r ≥ min(1, nr

K+1)

(3.11)

DMT optimal design criteria: Single-Antenna case

According to the DMT optimal code design criteria derived in [16] and presented in The-

orem 2.2.2, a coding scheme achieves the outage-DMT of a MAC with single transmit

antenna per user, i.e., Pe,X = dSA-MAC(r), if the following inequality resulting from

(2.37) is satisfied

Ψs∗
ms∗

(SNR) ≥̇ SNR
−(s∗r−ǫ) (3.12)

for the dominant outage event s∗ and for all the other outage events, there exists ǫ > 0

such that

Ψs
ms

(SNR) ≥̇ SNR
−(ρs−ǫ) (3.13)
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Figure 3.8: Different error events of the proposed code, nt = 1, 4-QAM.

where ms = min(s, nr) and ρs satisfies (2.40) for nt = 1, i.e.,

0 ≤ ρs ≤ rs,nr (ds∗,nr(s
∗r)) (3.14)

BB-coding scheme

We assume that each user k transmits K information symbols, sk,l, chosen from a QAM

constellation denoted Ck with 2R(SNR) points carved from Z[i] = {m + in : m,n ∈ Z}, i.e.,

Ck(SNR) =

{

(m + in) :
−2R(SNR)/2

2
≤ m,n ≤ 2R(SNR)/2

2

}

, m, n ∈ Z (3.15)

The symbol vector sk is then coded using a unitary transform matrix leading to user’s k

codeword

x⊤
k = Usk. (3.16)

We have

max
x⊤

k
=Usk

‖xk‖2 = max
sk,l∈Ck(SNR)

‖sk‖2 = T

(

2R(SNR)

2

)

(3.17)

Define κ2 = 2R(SNR)

2 , used to scale the transmit vector as follows

x̃k =
1

κ
xk (3.18)
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Figure 3.9: The impact of the value of γ on the error probability of event 2, K = 2,
nr = nt = 1, 4-QAM.

such that the power constraint (1.1), ‖Xk‖2
F ≤ ntT , is satisfied for all the users (|γ| = 1)

max
x̃k∈Xk(SNR)

‖x̃k‖2 =
1

κ2
max

x⊤
k

= Usk

‖xk‖2 = T (3.19)

We are now ready to study the DMT of the proposed code using (3.12) and (3.13). As in

[27], R(SNR) is assumed to scale with SNR as (r − ǫ) log SNR for some ǫ > 0. For s = 1,

we have

Ψ1
1(SNR) = min

x̃1,x̃
′

1∈X1(SNR)

‖x̃1 − x̃
′

1‖2

= 21−R(SNR) min
x⊤

1 =Us1;x
′⊤
1 =Us

′
1

‖x1 − x
′

1‖2 (3.20)

= 21−R(SNR) min
s1,l,s

′
1,l

∈C1(SNR)
‖s1 − s

′

1‖2

︸ ︷︷ ︸

≥d2
min

(3.21)

.
= SNR

−(r−ǫ) (3.22)

where dmin = 1 is independent of SNR. For s = K, the overall transmitted codeword is

given by:
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X̃ = κ−1X = κ−1









x̃1 σ(x̃1) . . . σK−1(x̃1)

γx̃2 σ(x̃2) . . . σK−1(x̃2)
...

. . .
. . .

...

γx̃K γσ (x̃K) . . . σK−1 (x̃K)









(3.23)

From the linearity of the mapping σ over L, the codeword difference matrix is obtained as

D̃ =










d̃1 σ(d̃1) . . . σK−1(d1)

γd̃2 σ(d̃2) . . . σK−1(d̃2)
...

. . .
. . .

...

γd̃K γσ
(

d̃K

)

. . . σK−1
(

d̃K

)










(3.24)

where d̃k = κ−1
(

x̃k − x̃
′

k

)

∈ L for k = 1, . . . ,K.

ΨK
min(K,nr)(SNR) = min

D̃

min(K,nr)
∏

l=1

λl. (3.25)

For a sufficient number of receive antennas, nr ≥ K, ms = K such that, from (3.25),

we get

ΨK
K(SNR) = min

D̃=X̃−X̃
′

K∏

l=1

λl

= min
D̃=X̃−X̃

′
|det D̃|2

= κ−2K min
∆=X−X

′
|det∆|2,

hence,

ΨK
K(SNR) = 2K(1−R(SNR)) min

∆=X−X
′
|det∆|2. (3.26)

Recall that det∆ 6= 0 since the multiple-access coding scheme is full rank. Let ω(SNR)

denote

ω(SNR) = min
∆=X−X

′
|det∆|2. (3.27)

For high SNR regime, replacing R(SNR) by (r − ǫ) log SNR, yields
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ΨK
K(SNR)

.
= SNR

−(Kr−ǫ
′
)ω(SNR) (3.28)

Definition 3.1.1 The determinant of a coding scheme is said to decay with exponent β if

lim
SNR→∞

− log ω(SNR)

log SNR
= β. (3.29)

Remark 3.1.5 It is clear that the smaller this decay exponent is, the better the corre-

sponding code behaves asymptotically.

Using (3.29), we get

ΨK
K(SNR)

.
= SNR

−(Kr+β−ǫ
′
) (3.30)

In the antenna pooling regime, r ≥ min(1, nr

K+1), (3.30) should satisfy the code design

criterion (3.12) for s∗ = K. This is only possible in the case of a sub-polynomial decay of

ω(SNR), β = 0. Otherwise, for β > 0, the quantity ΨK
K(SNR) decays faster than required

in (3.12). In other words, the code is not DMT optimal in the sense of Theorem 2.2.2 in

the antenna pooling regime.

In the single-user regime, r ≤ min(1, nr

K+1), the dominant outage event is event 1 and

s∗ = 1. The first criterion (3.12) with s∗ = 1 is shown to be satisfied in (3.22). On the

other hand, in order to satisfy (3.14) for s 6= 1, the following inequality should be satisfied

Kr + β ≤ rK,nr (d1,nr(r)) (3.31)

Note that

d1,nr(x) = nr(1 − x), 0 ≤ x ≤ 1 (3.32)

and

dK,nr(x) = (K − x)(nr − x), 0 ≤ x ≤ K (3.33)

As a conclusion, the achievability of the DMT optimal design criteria depends on the

decay function of the considered coding scheme.

Decay function of the Two-user BB-code

Consider a two-user MAC, K = nr = 2 and nt = 1. Following the same reasoning as

above, we have:

Ψ1
1(SNR)

.
= SNR

−(r−ǫ) (3.34)

and

Ψ2
2(SNR)

.
= SNR

−(2r+β−ǫ
′
) (3.35)
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When the system is operating in the antenna pooling regime, i.e., r ≥ 2/3 and s∗ = 2,

(3.35) clearly decays faster than SNR
−(2r−ǫ) required in condition (3.12).

In the single-user regime, i.e., r ≤ 2/3 and s∗ = 1, (3.34) satisfies (3.12). However, for

the non-dominant event 2 , s = 2, (3.35) implies that, in order to satisfy (2.39) and using

(2.40), the decay exponent of the code should satisfy

2r + β ≤ r2,2 (d1,2(r)) (3.36)

with

d2,2(x) =







4 − 3x, 0 ≤ x ≤ 1

2 − 2x, 1 ≤ x ≤ 2

(3.37)

and d1,2(r) = 2 − 2r, thus

r2,2 (d1,2(r)) =







2+2r
3 , 0 ≤ r ≤ 1

2

r, 1
2 ≤ x ≤ 1

. (3.38)

Lahtonen et al., studied in [18] the way ω(SNR) decays with SNR for the two-user

BB-code, K = nr = 2 and nt = 1. They showed that

ω(SNR)
.
= SNR

−2r (3.39)

and thus, β = 2r. Combining this result with (3.38) implies that the BB-code is DMT

optimal in the sense of Theorem 2.2.2 for r ≤ 1
5 .

3.2 Asynchronous Multiple-Access Scenario

So far, we dealt with multiple-access systems under the assumption of synchronized users

which may not be practical for many reasons. In practice, the users do not necessarily

share the same timing reference, they access the channel randomly, they have different ge-

ometrical locations and their transmitted messages may have different lengths. Therefore,

the assumption of perfect synchronization between the users at the transmission is not

easily justified.

Asynchronism in cooperative communication has recently received significant interest.

Distributed space-time coding schemes previously designed for synchronous relays were

shown to be suboptimal for asynchronous relays. This fact motivated the design of delay-

tolerant distributed space-time codes preserving the full cooperative diversity order without

the synchronization assumption. For more details on the design of space-time codes for

asynchronous cooperative communication schemes, the reader is referred to [45, 46, 47]

and references therein.

Even though the MAC is inherently asynchronous in practice, to the best of our knowl-

edge, there is no study of code design for the asynchronous MAC. In this section, a practical
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multiple-access system is considered where the (single transmit antenna) users are not syn-

chronized. The design criteria for the different users are developed such that full diversity

is achieved at the receiver. Asynchronism entails the introduction of delays between the

users leading to shifted codeword matrices. Such structural change may induce a degrada-

tion of the performance of the code. Following the same reasoning as in [47], we show that,

even with shifted codeword matrices, the MAC Space-Time code proposed in Subsection

3.1.2 for synchronous MAC, is delay-tolerant. Numerical results presented at the end of

this section confirm the delay-tolerance of the code.

3.2.1 Asynchronous Signal Model

Consider the MAC with K single-antenna users (nt = 1) and one receiver equipped with

nr receive antennas illustrated in Fig. 3.1. When the users are synchronous, the channel

is modeled as in Eq. 1.7 where, at each channel use, the signals of all the users reach

the destination simultaneously. The K × nt joint codeword matrix X in this synchronous

scenario can be written as

X =









x11 x12 . . . x1T

x21 x22 . . . x2T

...
... . . .

...

xK1 xK2 . . . xKT









(3.40)

where xkj is the j-th transmitted symbol from the k-th user.

When the users are asynchronous, the transmitted codeword spans over more than T

symbol intervals due to the delays. We assume that the users are synchronized at the frame

level such that the beginning and the end of each codeword can be aligned for different

users by transmitting zero symbols. In this case, there is no interference between the

transmitted codewords. The fractional delays are absorbed in multi path, so asynchronous

delays are integer factors of the symbol interval. Furthermore, it is assumed that the

delays are unknown at the users, but, along with the channel matrix, are known at the

base station receiver.

To model the asynchronous MAC, denote δk the relative transmission delay of user k,

which corresponds to the number of symbol periods before the arrival of the signal of user

k at the receiver relative to the earliest received user and

∆ , (δ1, δ2, . . . , δK)

the delay profile associated with the set of K users. If the asynchronous transmission of

one single codeword is considered, the shifted codeword matrix is as follows
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X∆ =









0
δ1 x11 . . . x1T 0

δmax−δ1

0
δ2 x21 . . . x2T 0

δmax−δ1

...
...

. . .
. . .

...

0
δK xK1 . . . xKT 0

δmax−δ1









(3.41)

where 0
l denote an all-zero vector of length l and δmax is the maximum relative delay.

The received signal in the asynchronous case where the previous K × (T + δmax) code-

word matrix is transmitted rather than the K × T matrix given in Eq. 3.40 is

Y = HX∆ + Z (3.42)

Example 3.2.1 Consider a two-user MAC with single transmit antenna. Let the following

matrix of length 2 denote the transmitted codeword in the synchronous scenario

X =

[

x11 x12

x21 x22

]

Now, if the first user is considered to be delayed by one symbol instant with respect to the

second user, i.e., ∆ = (1, 0), the new length 3 asynchronous codeword matrix is

X∆ =

[

0 x11 x12

x21 x22 0

]

At the receiver side, the received signal is given by

[

y1 y2

]

=
[

h1 h2

]
[

0 x11 x12

x21 x22 0

]

+
[

z1 z2

]

(3.43)

The main goal here is to design a coding scheme that, even with asynchronous users,

does not loose its diversity order. We start by deriving the code design criteria for an

asynchronous MAC before investigating a delay-tolerant Space-Time construction for this

channel.

3.2.2 Code Design Criteria

Code design criteria for synchronous MACs were provided in Subsection 3.2.2 based on

an error event analysis. Recall that rate regions where single-user error events dominate

can be treated by using well known space-time codes designed for the single-user case.

However, the rate regions where the event of more than one user being in error dominates,

require a joint code design. In both cases, the rank and eigenvalue criteria derived in [2]
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should be verified.

The generalization of these design criteria to the asynchronous MAC follows from the

analysis presented in [45] for the asynchronous cooperative relays:

Definition 3.2.1 A multiple-access Space-Time code X is τ -delay tolerant for an asyn-

chronous MAC if for all distinct codewords X,X
′ ∈ X , the difference matrix X − X

′
is

full rank when the rows of the codewords are transmitted with arbitrary delays of duration

at most τ symbols.

Definition 3.2.2 X is called fully delay-tolerant if it is τ -delay tolerant for any τ .

Remark 3.2.1 It is very important to note that the particular error event we are interested

in is the joint error event where all the users are in error. Thus, a given user k has two

different messages in X ,X
′
.

3.2.3 Delay-Tolerant Multiple-Access Space-Time Code

Consider the single-antenna MAC and let us show that the new family of STBCs proposed

in Subsection 3.1.2, is delay-tolerant. In other words, we prove that the diversity order of

the code, corresponding to the rank of the difference between distinct codewords, is the

same when the users are transmitting asynchronously. We first consider the two-user MAC

with asynchronous users. The effect of asynchronism on the coding scheme constructed

in Subsection 3.1.3 is studied. This code is shown to provide full diversity despite the

asynchronous transmission. The generalization of this result to the K-user MAC is then

presented.

As a first approach to the problem, we do not deal with the interference resulting from

either the next or the previous codewords. It is assumed that the users insert enough guard

interval (i.e., filling symbols) between every two consecutive codewords to ensure that the

constructed space-time code is received without any interference. The case where all the

users transmit continuously without any delay guard will be considered later in Section

3.2.4.

Two-user MAC

A codeword matrix of the BB-code constructed in Subsection 3.1.3 for the two-user MAC

is given by

X =

[

x1 σ (x1)

γx2 σ (x2)

]

=

[

α(s11 + s12ϕ) ᾱ(s11 + s12ϕ̄)

γα(s21 + s22ϕ) ᾱ(s21 + s22ϕ̄)

]

(3.44)
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Each row of this codeword matrix corresponds to the codeword transmitted by each user.

Assuming that the two users do not share a common timing reference leads to an asyn-

chronous reception of the transmitted information and equivalently, to an arbitrary shifted

codeword per user. The idea is to show that, even with arbitrary shifted rows, the difference

between two codewords,

X∆ − X
′

∆ (3.45)

is of full rank. It is important to note that in this scenario, the full diversity, d = 2,

becomes significant for the error event 2 , i.e., both users are in error: xk 6= x
′

k, k = 1, 2.

Since proving delay tolerance for either one of the two delay profiles ∆1 = (1, 0) and

∆2 = (0, 1) requires the same reasoning, we consider the following shifted codeword matrix

X∆ =

[

0 x1 σ (x1)

γx2 σ (x2) 0

]

(3.46)

that should be of full rank when sk 6= 0. This is shown by considering the 2× 2 submatrix

X∆ =

[

x1 σ (x1)

σ (x2) 0

]

(3.47)

whose determinant σ (x1)σ (x2) 6= 0 if sk 6= 0, k = 1, 2 which is the case for the error event

2 , i.e., when both users are in error.

K-user MAC

For the K-user MAC, the BB-code was constructed in Subsection 3.1.2. The equivalent

codeword is in this case a K × K matrix

X =









x1 σ(x1) σ2(x1) . . . σK−1(x1)

γx2 σ(x2) σ2(x2) . . . σK−1(x2)
...

. . .
. . .

. . .
...

γxK γσ (xK) . . . . . . σK−1 (xK)









(3.48)

To verify the delay tolerance of this code, one needs to show that all the codeword

difference matrices are full rank for all delay profiles ∆. Define the matrices A and C as

follows
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A ,











1 1 1 . . . 1

γ 1 1 . . . 1

γ γ 1 . . . 1
...

. . .
...

γ γ . . . γ 1











(3.49)

and

C =









x1 σ(x1) . . . σK−1(x1)

x2 σ(x2) . . . σK−1(x2)
...

...
...

xK σ(xK) . . . σK−1(xK)









(3.50)

The K-user codeword matrix (Eq. 3.48) can be written as multiples of A

X = C ⊙ A

such that, when delays are introduced, it is sufficient to show that A∆ is full rank for

arbitrary delay profiles ∆ since C has non-zero coefficients when considering the joint

error event. Note that each row of C corresponds to the codeword transmitted by one

user and is independent of all other users’ codewords. Thus, all the rows of a codeword

difference matrix C −C
′
are independent and all the elements are nonzero when all users

are in error, i.e., error event K .

The idea is to find the largest square submatrix S of A∆ with nonzero determinant.

Because of the form of the original matrix A in Eq. 3.49, S can be constructed as follows:

the (K − i − 1)-th column, i = 0, . . . ,K − 2, is chosen such that it contains a γ at the

(K − i)-th row and the last column contains a nonzero element, 1, at the first row. S is a

K × K matrix given by

S =











⋆ ⋆ ⋆ . . . 1

γ ⋆ . . . ⋆ ⋆

⋆ γ ⋆ . . . ⋆
...

. . .
...

⋆ ⋆ . . . γ ⋆











(3.51)

where ⋆ can be zero or any element of A∆. With such column selection, S has at least one

thread with all nonzero elements containing (K − 1) elements equal to γ. Its determinant

is a polynomial function of γ with degree K − 1
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detS = γK−1 + P (γ) (3.52)

where P (γ) is a polynomial in γ of degree K − 2. As the coefficients of the codeword are

algebraic numbers and since γ is chosen to be a transcendental number, it follows that

detS is nonzero.

3.2.4 Delay-Tolerant MAC Codes with Overlapped Codewords

The assumption made on the guard intervals in the previous section, limits the transmission

rate and restricts the applications of the scheme. To avoid these drawbacks, a more practi-

cal scenario where the users are assumed to transmit continuously without any delay guard

between codewords is considered in this section. In other words, the interference resulting

from either the previous or the next transmitted codewords is taken into consideration.

We show that, when the maximum delay between the users is confined to the delay

length of the code, the overlapped code is delay-tolerant for every delay profile. For the

sake of simplicity, the two-user scenario is only considered. The generalization for the

K-user case is straightforward.

For a two-user MAC, the resulted overlapped codeword constructed by concatenating

the consecutive transmitted codewords X(i) (as in Eq. 3.47) without any guard interval,

has the following form

X =




x

(1)
1 σ

(

x
(1)
1

)

| . . . . . . | x
(i)
1 σ

(

x
(i)
1

)

| . . .

γx
(1)
2 σ

(

x
(1)
2

)

| . . . . . . | γx
(i)
2 σ

(

x
(i)
2

)

| . . .



 (3.53)

The event of interest is the error event 2 for which, preserving the diversity order 2

of the code is mandatory. In this case, ∃x
(i)
1 6= 0 and x

(k)
2 6= 0 such that the following

submatrix of X∆ has a nonzero determinant

[

x
(i)
1 σ

(

x
(i)
1

)

⋆ γx
(k)
2

]

(3.54)

where ⋆ can be zero or any element of X. If ⋆ is zero, the determinant of the previous

matrix is γx
(i)
1 x

(k)
2 6= 0. For any other value of ⋆, the structure of the code (c.f. 3.2.3)

guarantees a nonzero determinant.

3.2.5 Numerical Results

In this section, we present some performance results of the discussed codes in terms of the

codeword error rate versus the received signal-to-noise ratio (SNR) in dB. A two-user MAC
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Figure 3.10: Error Performance of the two-user BB-code, synchronous scenario, nr = nt =
1.

is considered with single transmit antenna and nr = 1 and 2 receive antennas. Joint ML

decoding is performed at the receiver.

The performance of the BB-coding scheme for the two-user MAC is shown in Fig. 3.10

for nr = 1 and in Fig. 3.11 for nr = 2. The users are assumed to transmit their information

synchronously. Similar numerical results were presented in Subsection 3.1.4 and are plotted

again here for comparison purposes.

The total error probability, as well as the probability of the error event 2 are plotted.

For the former, the diversity order d equals 1 while for the latter that corresponds to the

event where both users are in error, a higher diversity order, 2 × nr, is observed. This

diversity order is the one we are interested in preserving when the users are asynchronous.

The error behavior of the BB-coding scheme in an asynchronous scenario is shown in

Fig. 3.12 for nr = 1 and in Fig. 3.13 for nr = 2. We assume that one of the users,

say user 1, is delayed by one symbol instant with respect to the other user. These curves

show that the code does not lose its diversity order with asynchronism and thus, confirm

(numerically) its delay-tolerance.

Remark 3.2.2 A sub-optimality in terms of the coding gain is observed compared to the

synchronous scenario. This is due to the fact that, the rate of the code is reduced to K
T+δmax

symbols per channel use in the asynchronous case while it is K
T symbols per channel use in

the synchronous case.
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Figure 3.11: Error Performance of the two-user BB-code, synchronous scenario, nr = 2.
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Figure 3.12: PE2 for 4 and 16-QAM constellations. Synchronous vs asynchronous scenario,
K = 2, nt = nr = 1.
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Figure 3.13: PE2 for 4 and 16-QAM constellations. Synchronous vs asynchronous scenario,
K = 2, nr = 2.
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Chapter 4

Space-Time Block Coding for MIMO

Multiple-Access Channels

Multiple-Input Multiple-Output (MIMO) technique that uses multiple antennas at both

the transmitter and the receiver sides, is well known to significantly improve the reliability

of a transmission by increasing the spatial diversity and to offer higher data rate by pro-

viding spatial multiplexing. These advantages naturally hold in a multiple-access scenario

where multiple antennas are deployed at the transmitters and at the receiver. Motivated

by the promising gain obtained by the multiple-access coding scheme constructed in Chap-

ter 3, the multiple-antenna multiple-access channel (MIMO-MAC) is considered in this

chapter. A new family of multiple-access STBCs is proposed for this channel and different

coding schemes constructed in some related works [2, 7, 19] are discussed.

After recalling the channel model in Section 4.1, a preliminary analysis is presented

in Section 4.2 where the first jointly designed code, proposed by Gärtner and Bölcskei in

[2], is compared to the best single-user code in a two-user multiple-access scenario. This

comparison highlights the importance of the joint design and motivates the construction

of new codes that exploit the channel capabilities in a better way. In Section 4.3, the

coding scheme proposed by Hong and Viterbo in [7] (HV-code) for a K-user MAC with

two transmit and two receive antennas is presented. The joint HV-code achieves the full

diversity order, d = Knt, and therefore, outperforms the GB-code in the two-user case.

A new family of codes (MIMO-BB code) for a general K-user MAC is proposed in

Section 4.4 followed by an explicit example for the two-user MAC with two transmit

antennas. A similar construction proposed by Lu et al. in [19] is then presented in Section

4.5. Section 4.6 is dedicated for different numerical results. The theoretical limit of the

channel is first analyzed based on its outage behavior. The use of the best single-user

coding scheme is then shown to improve the performance of the system as compared to

time-sharing. The MIMO-BB code and Lu et al.’s code both exploiting the multiuser nature

of the channel are shown to have comparable error behavior and to offer a significant gain.

Finally, a DMT-analysis of the proposed MIMO-BB code is presented in Section 4.7.

69
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4.1 Channel Model

The MIMO-MAC consists of K users equipped with nt transmit antennas communicating

with one base station with nr receive antennas (Fig. 1.1). The users are not allowed to

cooperate together and are assumed to transmit synchronously.

Recall the signal model presented in Section 1.1 where the received signal is given by

Y = HX + Z (4.1)

H denotes the equivalent MIMO-MAC resulting from the (horizontal) concatenation of all

the users’ channels matrices, i.e.,

H =
[

H1 H2 . . . HK

]

and X the Knt × T joint codeword matrix, i.e.,

XT =
[

X1 X2 . . . XK

]

The goal here is to optimally design the joint codebook X , X ∈ X in order to exploit all

the capabilities of the MIMO-MAC.

4.2 Preliminary Analysis and Motivation

In this section a two-user MIMO-MAC with two transmit antennas per user is considered.

Gärtner and Bölcskei proposed in [2] the first first joint coding scheme (GB-code) for the

two-user MIMO-MAC with nt = nr = 2, that shows the importance of the joint code

design as compared to the single-user code (SU-code).

The construction of the GB-code is based on the Alamouti structure that is extended

to the multiple-access scenario in a way to achieve a diversity order of d = 3 for the error

event 2 (Subsection 2.2.3). The joint codeword matrix is as follows:

X =








s1,1 s1,2 s1,3 s1,4

−s∗1,2 s∗1,1 −s∗1,4 s∗1,3

s2,1 s2,3 s2,2 s2,4

−s∗2,2 −s∗2,4 s∗2,1 s∗2,3








(4.2)

In order to highlight the performance gain offered by the GB-code, its performance is

compared to that of the optimal single-user STBC. The single-user channel in this scenario

is a 2×nr MIMO channel, in which case, using the golden code is optimal (c.f. Subsection

2.1.4). Hence, to study the performance of the single-user code in the multiple-access

scenario, it is assumed that the users are transmitting simultaneously their information

using the golden code. Each user’s codeword matrix is thus given by:
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Figure 4.1: PE2 of the SU-code and GB-code, K = nt = nr = 2, 4-QAM (2 bits pcu).

Xk =

[

xk,1 xk,2

iσ(xk,2) σ(xk,1)

]

=

[

α (sk,1 + sk,2θ) α (sk,3 + sk,4θ)

iᾱ
(
sk,3 + sk,4θ̄

)
ᾱ
(
sk,1 + sk,2θ̄

)

]

(4.3)

Fig. 4.1 recalls the performance of GB-code in terms of the probability of the error

event 2 as compared to the SU-code, previously presented in Chapter 2.2.4. The higher

diversity order achieved by the GB-code when both users are in error (d = 3), explains the

performance gain (2 dB at Pe = 10−4) compared to the SU-code (d = 2).

4.3 Hong and Viterbo (HV) Code

Hong and Viterbo derived in [7, 48] design criteria using a truncated union-bound ap-

proximation of the total error probability. Based on these criteria, they proposed a code

(HV-code) for the general K-users MAC with nt = 2 transmit antennas per user and

nr = 2 receive antennas that outperforms the GB-code. The construction of the HV-code

is based on full-diversity algebraic rotations used for the construction of Perfect codes (c.f.,

Subsection 2.1.4).

For the general K-user MAC, an ideal I of the ring of integers OL of an algebraic field

extension L of degree N = 2K over Q(i) is considered. From the canonical embedding of

an integral basis of this ideal, a unitary transform matrix is extracted and applied to each

user’s information symbol vector, generating the following vector:
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xk =
[

xk σ(xk) . . . σN−1(xk)
]

(4.4)

and the users’ codewords are constructed as in (4.5). The xk’s are elements of the ideal I

and hence, are linear combinations of N QAM symbols.

X1 =

[

x1 σ(x1) . . . σN−1(x1)

γσN−1(x1) x1 . . . σN−2(x1)

]

X2 =

[

γσN−2(x2) γσN−1(x2) . . . σN−3(x2)

γσN−3(x2) γσN−2(x2) σN−1(x2) . . . σN−4(x2)

]

(4.5)

...
. . .

Xk =

[

γσN−(ntk−nt)(xk) . . . γxk σN−3(xk)

γσN−(ntk−nt)−1(xk) γσN−(ntk−nt)(xk) . . . γxk . . . σN−(ntk−nt)−2(xk)

]

where γ 6= 1 is chosen to be transcendental in order to guarantee the full-rank property

([7, Lemma 1 and 2]).

4.3.1 Explicit HV-code Construction

Let us consider a design example to study the performance of this code. Consider the case

where K = 2 users each equipped with two transmit antennas (nt = 2). At the receiver,

the number of antennas nr = 2. In this scenario, the HV-code spans N = 4 channel uses

and is constructed as follows.

Consider L = Q(i, ζ15 + ζ−1
15 ) a field extension of degree N = 4 over Q(i) with cyclic

Galois group Gal(L/Q(i)) = 〈σ〉 and the ideal I ⊆ OL. The following unitary transform

matrix can be extracted

M =








0.26 − 0.31i 0.35 − 0.42i −0.42 + 0.51i −0.21 + 0.26i

0.26 + 0.09i 0.47 + 0.16i 0.16 + 0.05i 0.76 + 0.26i

0.26 + 0.21i −0.51 + 0.16i −0.42 − 0.36i 0.31 + 0.26i

0.26 − 0.76i −0.05 + 0.16i 0.16 − 0.47i −0.09 + 0.26i








and applied to the 4-QAM symbols of each user, leading to the following codeword matrices:

X1 =

[

x11 σ(x11) σ2(x11) σ3(x11)

γσ3(x11) x11 σ(x11) σ2(x11)

]
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Figure 4.2: Total error probability Pe for HV-code, GB-code and Time-Sharing. Two-user
MAC, nt = nr = 2, 4-QAM (2 bits pcu).

X2 =

[

γσ2(x21) γσ3(x21) x21 σ(x21)

γσ(x21) γσ2(x21) γσ3(x21) x21

]

The choice of the transcendental number γ was numerically optimized in [7] based on

the criteria the authors derived: γ = exp(iλ) with λ = 3 for 4-QAM signaling. The rank

of each user codeword matrix is 2 while the joint codeword matrix has rank 4.

4.3.2 Error Performance

The performance of the HV-code is compared to that of the GB-code in Fig. 4.2. The

error performance of the time-sharing, where the users access the channel orthogonally and

transmit their information using the golden code, is plotted for comparison purpose. The

total error probability, taking into account all the error events, is plotted.

The same diversity order, d = ntnr = 4, is achieved for all the schemes. As expected,

the time-sharing scheme has the worst performance while HV-code slightly outperforms

GB-code. This can be explained by analyzing the probability of the error event 2 with

the different schemes, plotted in Fig. 4.3 where the single-user code performance is plotted

for comparison purpose. Note that, the rank of the joint codeword matrices is 3 for the

GB-code and 4 for the HV-code, whereas it is 2 for the SU-code. These higher diversity

orders reduce the probability of error event 2 for the jointly designed codes, HV and GB

codes, and thus, explain the observed gain (0.3 dB at Pe = 10−4).

Remark 4.3.1 Lu et al. considered in [19] the problem of designing STBCs for the two-

user MAC with nt = 2 that are sphere decodable in order to preserve ML performance.
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Figure 4.3: PE2 of HV-code, GB-code, SU-code. Two-user MAC, nt = nr = 2, 4-QAM (2
bits pcu).

With two receive antennas, nr = 2, each user’s code should be sphere decodable with a

single receive antenna, or equivalently, rmax = min{nt, nr/K} = 1 symbol pcu per user.

Note that GB-code as well as HV-code are sphere decodable in a two-user scenario with

nt = nr = 2. Lu et al. proposed a coding scheme for the same scenario. They considered

the following algebra

A =
(

Q(i,
√

(2))/Q(
√

(2)), σ,−1
)

(4.6)

such that each user’s code is optimized, i.e., has a better coding gain. Lu et al.’s code

takes advantage of the multi-block structure, offers a diversity 4 and slightly outperforms

HV-code (0.8 dB at Pe = 10−4 for a 4-QAM constellation [19]) thanks to the better coding

gain of the single-user code. The code construction and the corresponding performance are

not presented in this thesis for the case of nr = 2 but will be discussed in the following

sections for different scenarios.

4.4 Proposed Code: The MIMO-BB Code

Independently from HV’s construction [7], we propose the following STBC for the MIMO-

MAC based on the construction of STBCs for parallel MIMO channels presented in Section

2.1.5.

Remark 4.4.1 Despite the problem of rank deficiency that we tackle using the MMSE-

DFE combined with lattice decoding if nr < Knt, we will focus in the rest of this chapter

on a different construction approach, valid for an arbitrary number of receive antennas.



4.4. Proposed Code: The MIMO-BB Code 75

4.4.1 General K-user MIMO-MAC

Let F denote a Galois extension of degree K, the number of users, over the base number

field Q(i), with Galois group:

Gal(F/Q(i)) = {1, τ, τ2, . . . , τK−1}

and K a cyclic extension of degree nt, the number of transmit antennas per user, on F

with σ denoting the generator of its Galois group. Note that the extension K/F remains

cyclic with the same Galois group as Gal(L/Q(i)) where L = Q(i, θ) is a cyclic extension

of degree nt on Q(i) satisfying F ∩ L = Q(i) (Fig. 4.4). There exists a suitable non-norm

element η ∈ F such that A = (K/F, σ, η) is a CDA.

Denote Ξ the matrix representation of an element of this algebra, given by:

Ξ =









x1 x2 . . . xnt

ησ(xnt) σ(x1) . . . σ(xnt−1)
...

...
. . .

...

ησnt−1(x2) ησnt−1(x3) . . . σnt−1(x1)









(4.7)

Each user transmits a multi-block matrix Xk with information symbols of user k, given

by

Xk =
[

Ξk τ(Ξk) . . . τK−1(Ξk)
]

(4.8)

The equivalent joint codeword matrix, using Kn2
t information symbols per user, is con-

structed as follows

X =









Ξ1 τ(Ξ1) . . . τK−1(Ξ1)

ΓΞ2 τ(Ξ2) . . . τK−1(Ξ2)
...

...
. . .

...

ΓΞK Γτ(ΞK) . . . τK−1(ΞK)









(4.9)

where Γ is a multiplication matrix for the k − 1 first matrices of Xk added to guarantee

the full-rank criteria, i.e., det X 6= 0.

Theorem 4.4.1 Let Γ = γInt. Choosing γ transcendental guarantees that MIMO-BB

code is full rank.

Proof: The reasoning is similar to that in the single-antenna case. The codeword

matrix defined in (4.9) is a K × K multi-block matrix ( with K2 blocks). It can be easily

verified that the codeword determinant is a polynomial function of Γ = γInt denoted

PX(γ). If the degree of PX(γ) is zero, i.e. for γ = 0, we have:
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Q(i)

F L ! Q(i,
√

5)

K ! F(
√

5)

σ τ

τ σ

Figure 4.4: Field extension tower.

PX(γ) = detX =
K∏

k=0

det
(

τk−1(Ξk)
)

=

K∏

k=0

τk−1 (detΞk) (4.10)

that is a non-zero element of Z(i) for Ξk 6= 0. Otherwise, choosing γ transcendental

guarantees a non zero determinant.

4.4.2 Explicit Two-User MIMO-BB Code

Consider a two-user MAC with two transmit antennas per user, i.e., K = 2, nt = 2. Each

user’s codeword is in this case a 2×4 multi-block matrix and the equivalent joint codeword

matrix is a 4 × 4 matrix constructed as follows.

Let F = Q(ζ8) be an extension of Q(i) of degree K = 2, with ζ8 = e
iπ
4 and K =

F(
√

5) = Q(ζ8,
√

5). Denote

OK = {a + bθ | a, b ∈ Z[ζ8]}

the ring of integers of K. Let θ = 1+
√

5
2 , α = 1 + i− iθ and σ : θ 7→ θ̄ = 1−

√
5

2 . The chosen

ideal is principle, i.e., I = (α)OK with α = 1 + i − iθ. User’s k codeword Xk is:

Xk =
[

Ξk τ(Ξk)
]

(4.11)

where τ maps ζ8 into −ζ8 and Ξk is the matrix representation of an element of A and is

defined as:

Ξk =

1√
5

[

α(sk,1 + sk,2ζ8 + sk,3θ + sk,4ζ8θ) α(sk,5 + sk,6ζ8 + sk,7θ + sk,8ζ8θ)

ζ8ᾱ(sk,5 + sk,6ζ8 + sk,7θ̄ + sk,8ζ8θ̄) ᾱ(sk,1 + sk,2ζ8 + sk,3θ̄ + sk,4ζ8θ̄)

]

(4.12)
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and

τ (Ξk) =

1√
5

[

α(sk,1 − sk,2ζ8 + sk,3θ − sk,4ζ8θ) α(sk,5 − sk,6ζ8 + sk,7θ − sk,8ζ8θ)

−ζ8ᾱ(sk,5 − sk,6ζ8 + sk,7θ̄ − sk,8ζ8θ̄) ᾱ(sk,1 − sk,2ζ8 + sk,3θ̄ − sk,4ζ8θ̄)

]

(4.13)

where skj denotes the j-th QAM information symbol of user k. η = ζ8 has been proven,

in [35], to be a non-norm element in K. This guarantees that detΞk, element of OF, is

non-zero. The equivalent joint codeword matrix of the proposed code is:

X =

[

Ξ1 τ(Ξ1)

ΓΞ2 τ(Ξ2)

]

(4.14)

Choosing Γ = γInt with γ transcendental guarantees a fully diverse code. However,

in this case the codeword determinant can be analytically derived leading to necessary

conditions that the matrix Γ should verify.

Theorem 4.4.2 Any matrix Γ satisfying ±1 not an eigenvalue of Γ yields non-zero de-

terminant.

Proof: The determinant of the transmitted codeword (4.14) is given by:

detX = det
(
τ (Ξ2) − ΓΞ2Ξ

−1
1 τ (Ξ1)

)
detΞ1

detX = 0 if

τ (Ξ2) − ΓΞ2Ξ
−1
1 τ (Ξ1) = 0

One can rewrite the previous expression as:

ΓΘ = τ(Θ)

or equivalently

(Γ + Int)Θ = Tr (Θ)

for some Θ = Ξ2Ξ
−1
1 verifying Θ ∈ Q(i,

√
5) or Θ ∈ ζ8Q(i,

√
5). These conditions yield:

(Γ ± Int) = 0

As a conclusion,

detX = 0 ⇔ det (Γ ± Int) = 0 (4.15)

We choose the following matrix Γ:
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Γ =

[

0 1

i 0

]

(4.16)

Before studying the performance of the proposed code, in the next section a similar

code designed by Lu et al. in [19] for the two-user MIMO-MAC is presented.

4.5 Lu et al.’s Code

Lu et al focused in their work [19] on sphere decodable codes for multiple-access scenarios

in order to preserve ML performance. Therefore, the code of each user must be sphere

decodable with nr

2 receive antennas.

Lu et al.’s construction in the two-transmit antennas multiple-access scenario is based

on the following algebra:

A =

(

Q(ξ)/Q(ζ8), σ,
2 + i

2 − i

)

where ξ = ζ16 = eπi/8, ζ8 = 1+i√
2

and σ maps ζ16 into −ζ16. Note that this algebra has been

already used in [49, 50]. Each user codeword is constructed as in (4.11),

Xk =
[

Ξk τ(Ξk)
]

(4.17)

where

τ : ζ16 7→ iζ16

ζ8 7→ −ζ8

and Ξk is the matrix representation of an element of A, given by

Ξk =

[

sk,1 + sk,2ζ8 + sk,3ξ + sk,4ζ8ξ
2+i
2−i(sk,5 + sk,6ζ8 − sk,7ξ − sk,8ζ8ξ)

sk,5 + sk,6ζ8 + sk,7ξ + sk,8ζ8ξ sk,1 + sk,2ζ8 − sk,3ξ − sk,4ζ8ξ

]

(4.18)

The equivalent joint codeword matrix resulting from the concatenation of the codeword

matrices of both users is as follows:

[

Ξ1 τ(Ξ1)

Ξ2 τ(Ξ2)

]

(4.19)

In order to get a fully diverse code, i.e., non-singular codeword matrix X, authors in [19]

suggested to add the following matrix:

Γ =

[

ζ7 0

0 ζ7

]

(4.20)
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(b) nr = 4

Figure 4.5: Outage performance of a two-user MAC with nt = 2, R = 4 bits pcu.

yielding the following joint codeword matrix

X =

[

ΓΞ1 τ(Ξ1)

Ξ2 Γτ(Ξ2)

]

(4.21)

4.6 Numerical Results

In this section, a two-user MAC with two transmit antennas and an arbitrary number of

receive antennas is considered. A preliminary analysis based on the outage behavior of the

channel is first presented giving insights on the expected achievable performance.

The error performance of the proposed MIMO-BB code as well as Lu et al.’s code is

then presented, in terms of the total error probability and the the probability of the error

event 2 that highlights the advantages of the joint code design.

4.6.1 Outage Probability

Fig. 4.5(a) and 4.5(b) illustrate the outage behavior of the two-user MAC with nr = 2 and

nr = 4, respectively. The total outage probability, i.e., the probability of the outage event

O where at least one user is in outage, as well as the probability of the outage event O2

where both users are in outage are shown. For comparison purposes, the outage probability

of the channel when the time-sharing technique is considered is also shown. The spectral

efficiency is fixed to R = 4 bits pcu.

These outage curves show that the two schemes (multiple-access and time-sharing)

achieve the same diversity order (d = 2nr) but time-sharing is significantly sub-optimal.

This observation numerically confirms the DMT analysis presented in Subsection 1.4.6.

This is explained by the fact that the time-sharing scheme does not optimally exploit the

spatial degrees of freedom of the channel. It is obvious that, to do so, the users should

transmit simultaneously. This outage analysis shows that, with nr = 2, a gain of 6.5 dB
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Figure 4.6: Error probability of the Single-User (SU) code and Time-Sharing, K = nt = 2,
4-QAM (4 bits pcu).

is to be expected if the users are transmitting simultaneously using an optimal coding

scheme. This gain equals 5 dB for nr = 4.

4.6.2 Single-User Code

What if the users transmit simultaneously the optimal single-user STBC?

Let us study the performance of the single-user code in the multiple-access scenario. As-

sume that the users are transmitting simultaneously using the golden code. The corre-

sponding error probability is shown in Fig. 4.6(a) and (b) together with the time-sharing

scheme for nr = 2 and 4, respectively.

The two schemes achieve the same diversity order d = 2 but the SU-code offers a

significant coding gain. For nr = 2, this gain is equal to 5 dB at Pe = 10−4 while for nr = 4,

it is equal to 4.4 dB. The use of the optimal single-user code at the transmission allows

the users to simultaneously exploit their individual channel’s degrees of freedom which

explains the performance improvement. However, as observed in the outage behaviors

analysis, a better gain can be obtained using a more convenient coding scheme, especially

for a small number of receive antennas. Indeed, as already explained in Subsection 1.4.6,

when the number of receive antennas increases, the impact of the antenna pooling regime

on the achievable DMT region decreases. In terms of error probability, this means that the

impact of the probability of error event 2 on the total error probability decreases when

the number of receive antennas increases. This is confirmed numerically in Fig. 4.7(a)

and 4.7(b) that illustrate the different error events probabilities for nr = 2 and nr = 4,

respectively.
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Figure 4.7: Different error events of the Single-User (SU) code, K = nt, 4-QAM (4 bits
pcu).

4.6.3 Error Probability

Fig. 4.8(a) shows a comparison between the performance of the MIMO-BB code, the HV-

code and time-sharing. The three schemes achieve the same diversity order, ntnr = 4.

Both HV-code and MIMO-BB code offer a significant performance gain (3.2 dB and 6

dB, respectively, at Pe = 10−4) compared to the time-sharing scheme that makes a very

poor use of the available degrees of freedom. Moreover, it can be noticed that the MIMO-

BB code outperforms the HV-code (by 2.8 dB). Interestingly, compared to the outage

performance of the channel (4.5(a)), the MIMO-BB code seems to have similar behaviors.

This proves (numerically) the optimality of the proposed coding scheme.

The probability of error event 2 is plotted in Fig. 4.8(b) where the SU-code perfor-

mance is also considered. It is clear that both the MIMO-BB code and the HV-code have

an equal diversity order while the SU-code has a smaller diversity order. Nevertheless, the

SU-code outperforms HV-code for a large range of SNR. For high SNR, the higher diversity

order of HV-code explains its better performance. On the other hand, the MIMO-BB code

outperforms the two other codes for a large SNR range.

The MIMO-BB code is finally compared to Lu et al.’s code in Fig. 4.9 and 4.10 for

nr = 2 and nr = 4, respectively. For nr = 2, the two codes have the same error behavior

while for nr = 4, Lu et al.’s code slightly outperforms the MIMO-BB code.

4.6.4 The influence of Γ

The importance of the matrix Γ that has been added to guarantee the full rank property, is

studied in Fig. 4.11 and 4.12 in terms of the total error probability and the probability of

event 2 , respectively. Fig. 4.11 shows that it is irrelevant whether the matrix Γ is added

or not. In other words, verifying the full-rank property of the code appears to be optional

in the SNR range of the simulations. Indeed, in the considered SNR range, even the error
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Figure 4.8: Error performance, MIMO-BB code, K = nt = 2, 4-QAM.
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Figure 4.9: Error probability of the MIMO-BB code and Lu et al.’s code, K = nt = nr = 2,
4-QAM.



4.7. DMT Analysis 83

10-5

10-4

10-3

10-2

10-1

100

 0  3  6  9  12  15  18

E
rr

or
 P

ro
ba

bi
li

ty

SNR (dB)

MIMO-BB code 
Lu et al. code 

Figure 4.10: Error probability of the MIMO-BB code and Lu et al.’s code, K = nt = 2,
nr = 4, 4-QAM.

probability of the event where both users are in error is not affected by the presence of

matrix Γ.

Remark 4.6.1 This observation is in line with the results presented by Lu et al. in [19]

that drew the attention on the irrelevance of Γ. The authors derived in this paper a relaxed

DMT-optimal design criteria allowing the codeword matrix to be singular, i.e., omitting Γ.

The probability of this event was shown numerically to be extremely small and to get closer

to zero when the size of the constellation increases. Therefore, even without the matrix Γ,

the code is of full rank with a probability close to 1.

4.7 DMT Analysis

The best DMT that a coding scheme can achieve in the multiple-antenna scenario, is given

in Theorem 1.4.3 by

dMA-MAC(r) =







dnt,nr(r), r ≤ min(1, nr

K+1)

dKnt,nr(Kr), r ≥ min(1, nr

K+1)

(4.22)

According to Theorem 2.2.2, a family of codes X (SNR) is optimal in the sense of the

DMT if, for the dominant outage set, i.e., for s = s∗, it satisfies (2.37),

Ψs∗nt
ms∗

(SNR) ≥̇ SNR
−(s∗r−ǫ) (4.23)
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Figure 4.11: The influence of Γ, Pe of the MIMO-BB code and Lu et al.’s code, K = nt = 2,
4-QAM.
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and for every other set, i.e., s 6= s∗, the following condition is satisfied:

Ψsnt
ms

(SNR) ≥̇ SNR
−(ρs(r)−ǫ) (4.24)

where

0 ≤ ρs(r) ≤ rsnt,nr (ds∗nt,nr(s
∗r)) (4.25)

Lemma 4.7.1 Consider a n × nm matrix A resulting form the horizontal concatenation

of m n × n matrices Ai, i.e.,

A =
[

A1 A2 . . . Am

]

.

It can be verified that:

det
(

AA†
)

≥ mn

(
m∏

i=1

|det(Ai)|
)2/m

.

MIMO-BB coding scheme

Consider the coding scheme proposed in Section 4.4 and let the data rate R(SNR) scale

as r log SNR and assume nr ≥ Knt. Each user k transmits Kn2
t information symbols, sk,l,

chosen from the following QAM constellation:

Ck(SNR) =

{

(m + in) :
−SNR

r
2nt

2
≤ m,n ≤ SNR

r
2nt

2

}

, m, n ∈ Z. (4.26)

These information symbols are then coded into the following codeword matrix:

Xk =
[

Ξk τ(Ξk) . . . τK−1(Ξk)
]

that satisfies:

max ‖Xk‖2
F = max

(
K∑

i=1

‖τ i−1(Ξk)‖2
F

)

=

K∑

i=1

Tint

(

SNR
r

nt

2

)

= Tnt

(

SNR
r

nt

2

)

(4.27)

where Ti is the length of each block Ξk of the codeword matrix Xk. Define κ2 = SNR

r
nt

2 ,

used to scale the transmit codeword as follows:

X̃k =
1

κ
Xk
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X̃k satisfies the power constraint (1.1), i.e., max ‖X̃k‖2
F = Tnt. Let D̃k denote the per

user difference matrix:

D̃k = X̃k − X̃
′

k

=
1

κ

[

Ξk − Ξ
′

k τ(Ξk − Ξ
′

k) . . . τK−1(Ξk − Ξ
′

k)
]

(4.28)

For s = 1 and ms = min(snt, nr) = nt, one can write:

Ψnt
nt

(SNR) = min
D̃k=X̃k−X̃

′

k

nt∏

l=1

λl = min
D̃k=X̃k−X̃

′

k

|det D̃k|2

= κ−2nt min
D=X−X

′
|det Dk|2 (4.29)

≥ κ−2nt Knt

(
K∏

k=1

det
(

τk−1(Ξk − Ξ
′

k)
)
)2/K

(4.30)

≥ κ−2nt Knt

(
K∏

k=1

τk−1
(

det
(

Ξk − Ξ
′

k

))
)2/K

where (4.30) follows from (4.29) using Lemma 4.7.1. Hence,

Ψnt
nt

(SNR) ≥̇ SNR
−(r−ǫ) (4.31)

resulting from the non-vanishing determinant of each block Ξk. For s = K, the overall

codeword matrix X is given in (4.9) and is scaled as follows:

X̃ =
1

κ
X

Let D̃ denote the overall difference matrix, X̃ − X̃
′

. ms = Knt and

ΨKnt

Knt
(SNR) = min

D̃=X̃−X̃
′

Knt∏

l=1

λl = min
D̃=X̃−X̃

′
|det D̃|2

= κ−2Knt min
D=X−X

′
|det D|2

.
= SNR

−(Kr−ǫ
′
) Ω(SNR) (4.32)

where

Ω(SNR) = min
D=X−X

′
|det D|2 (4.33)
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Let β denote the decay exponent of the determinant of the considered coding scheme, i.e.,

lim
SNR→∞

− log Ω(SNR)

log SNR
= β

such that (4.32) can be rewritten as

ΨKnt

Knt
(SNR) = SNR

−(Kr+β−ǫ
′
) (4.34)

Example: Two-user MAC

Consider the two-user MIMO-MAC with nt = 2, nr = 4 and ms = min(2s, nr) = 2s.

(4.31) and (4.34) are in this case given by:

Ψ2
2(SNR) ≥̇ SNR

−(r−ǫ) (4.35)

Ψ4
4(SNR) ≥ SNR

−(2r+β−ǫ) (4.36)

Consider the case where the dominant outage set is S∗ = {1, 2}, or equivalently, when

the system is operating in the antenna pooling regime, r ≥ 4/3. In this regime, Ψ4
4(SNR)

should satisfy condition (4.23) for s∗ = 2. This is only possible in case of a sub-polynomial

decay of Ω(SNR) (β = 0). Otherwise, (4.36) clearly decays faster than required in (4.23).

In the single-user regime, i.e., r ≤ 4/3 and s∗ = 1, Ψ2
2(SNR) satisfies (4.23). On the

other hand, in order for Ψ4
4(SNR) to satisfy (4.24) for s = 2, the following condition should

be satisfied:

2r + β ≤ r4,4(d2,4(r)) (4.37)

However, the decay behavior of the minimum determinant of the proposed MIMO-BB

code Ω(SNR) is yet to be determined.
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Chapter 5

Space-Time Block Codes

Construction for the Multiple-Access

Relay Channel

Cooperative diversity techniques such as relaying, known to significantly improve the re-

liability of a wireless network, have received considerable interest in the last few years.

Relaying helps a source in exploiting the distributed spatial diversity in order to combat

the channel fading. Since its introduction in [51, 52], this subject has been largely studied

in the literature [53, 54, 55, 56, 57, 58]. Different cooperation protocols have been devel-

oped and can be categorized into two principle classes, the amplify-and-forward (AF) and

the decode-and-forward (DF). In the former, the relays simply amplify the received signal

before forwarding it, whereas with the DF strategy, the relays decode the signal, re-encode

it and re-transmit it to the destination once decoded reliably.

In this chapter, we consider relaying in a multiple-access scenario where the terminals

are all half-duplex, i.e., they cannot transmit and receive simultaneously. In practice,

most cooperative techniques suffer from a significantly high complexity and cost due to

the coordination required among terminals. This is not the case here where an alternative

scheme, the Multiple-Access Relay (MAR) channel, is considered. In a MAR channel,

first introduced in [20], multiple users communicate with a single destination with the

help of one or more relays. The users are not allowed to cooperate together and need not

to be aware of the existence of the relays, leading to a reduced cost and complexity. We

focus on the two-user single-relay MAR channel with single-antenna terminals. A practical

application of this model might be a network where two terminals cannot cooperate to help

each other i.e., due to practical limitations, but can both send their information to another

terminal of the network. Sharing this terminal helps the transmitting terminals reach their

destination and significantly improves the reliability of the communication.

The cooperative MAC, where the users cooperate together, was compared to the MAR

channel in [59] using a partial decode-and-forward strategy where the half-duplex relay

only decodes a part of each user’s transmitted message. The MAR channel is shown to

89
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achieve higher rates than the cooperative MAC. Using a full-duplex relay, Kramer et al.

showed in [60, Theorem 10] that the decode-and-forward strategy achieves the capacity

of the AWGN-MAR channel if the users and the relay are geometrically close to each

other. In [4], the Dynamic Decode-Forward (DDF) protocol was applied to the MAR

channel. In the DDF strategy, both users transmit their information symbols throughout

an entire block. The relay decodes the information it receives only when it has sufficient

information for a correct detection. Then the relay re-encodes the message and transmits

it to the destination. It is shown in [4] that the DDF protocol achieves the optimal

DMT for low multiplexing gains while being suboptimal for high multiplexing gains. The

Compress-and-Forward (CF) relaying strategy was applied to the MAR channel in [61]. In

the CF protocol, the relay uses source coding to compress its received signal and forward

it to the destination. It was shown that this strategy achieves the optimal DMT for high

multiplexing gains, however it suffers from a diversity loss for a low multiplexing gain. In

a recent work, Azarian et al. [4] derived an upper bound on the achievable DMT for the

MAR channel. As in the case of point-to-point and multiple-access systems, the DMT

framework turns out to be an interesting theoretical tool to evaluate the behavior and

compare different cooperative strategies.

This work focuses on the class of AF protocols for two reasons. First, these have a

low relaying complexity. In fact, avoiding power-consuming data processing makes the

cooperation practically implementable for small terminals such as the mobile handsets

and sensors. Second, the linearity nature of the AF facilitates the analysis of the system

performance, since an AF scheme converts the network into an equivalent multiple-input

multiple-output multiple-access channel (MIMO-MAC). It is thus possible to apply the

results obtained for the MIMO-MAC to the MAR channel. More precisely, we consider

the Multi-Access Amplify-and-Forward (MAF) protocol introduced by Chen et al. in [5]

assuming a half-duplex relay. The MAF protocol was shown to provide significant gains

in addition to the complexity reduction it offers compared to other protocols. Moreover,

authors in [5] derived the DMT of the two-user MAF relay channel and showed that their

protocol achieves the optimal DMT in some cases. Based on the DMT framework, the

main contribution of this chapter is the construction of a new family of distributed space-

time block codes for a K-user MAF relay channel by applying the code designed for the

MIMO-MAC in Chapter 4 in a distributed way.

The rest of the chapter is divided into two main sections. In section 5.1, the single-user

relay channel is considered. After modeling the channel, the Amplify-and-Forward protocol

is defined in the single-user scenario and it is shown that the channel is equivalent in this

case to a virtual point-to-point MIMO channel in Subsections 5.1.1 and 5.1.2, respectively.

In Subsection 5.1.3, it is shown how single-user STBCs can be applied to the relay channel

in a distributed manner. In the second part of this chapter (Section 5.2), the multiple-

access relay channel is considered. We start by modeling the system and defining the

assumptions we made. The MAF protocol is defined in Subsection 5.2.1 and the MAF

relay channel is shown to be equivalent to a virtual MIMO-MAC in Subsection 5.2.2. A

DMT analysis comparing different multiple-access scenarios and showing the advantages
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Figure 5.1: Cooperation in a half-duplex single-user NAF relay channel.

of relaying is presented in Subsection 5.2.3. Subsection 5.2.4 shows the construction of the

proposed coding scheme followed by an explicit example and some numerical results.

5.1 The Single-User Relay Channel

In this first section, the single-user relay channel illustrated in Fig. 5.1(a) is considered.

A source is communicating with its destination with the help of a single half-duplex relay.

A half-duplex relay cannot transmit and receive at the same time. The variables hs,r,

hr,d and hs,d represent the source-relay, relay-destination and source-destination channel

coefficients, respectively. The source transmits its signal to both the destination (via

a direct link) and the relay. With such cooperation, the reliability of the communication

may be significantly improved. Indeed, if the direct link is in deep fade or under shadowing,

exploiting the distributed spatial diversity by transmitting the source signal by the relay,

helps the destination better decode the received signal.

Different relaying strategies were considered in the literature. In order to evaluate and

compare the performance of different relaying strategies, the DMT framework is used. The

cut-set bound is used to upper-bound the DMT and thus, to determine the best DMT that

a relaying strategy can achieve.

Proposition 5.1.1 The optimal DMT for a single-user relay channel, and equivalently

the DMT of any relaying strategy R, is upper-bounded by

dR(r) ≤ min{ds,rd(r), dsr,d(r)} (5.1)

where ds,rd(r) and dsr,d(r) are the DMTs of the channel from the two possible cuts.

Example 5.1.1 Consider a single-user relay channel with single-antenna terminals. In

this case, the first possible cut leads to a 1× 2 SIMO channel and the second cut leads to a

2 × 1 MISO channel. ds,rd(r) and dsr,d(r) are both equal to 2(1 − r)+ in this case and the

DMT of any relaying strategy R is upper-bounded by

dR(r) ≤ 2(1 − r) (5.2)
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5.1.1 The Amplify-and-Forward Protocol

As already stated, we focus in this work on the amplify-and-forward class of relaying

strategies characterized by their low complexity. Depending on whether the source is

allowed to transmit simultaneously with the relay or not, leads to a non-orthogonal scheme

(NAF) or an orthogonal scheme (OAF). Each cooperative protocol is described by its

cooperation frame structure determining the role (transmitting/listening) of each node at

each phase of the transmission. Without loss of generality, the cooperation frame consists

of two phases, each composed of T/2 symbols times, as illustrated in Fig. 5.1 where T

denotes the cooperation frame length. In the first phase, the source transmits while the

destination is listening. The relay scales the received signal and re-transmits it in the

second phase. If the source does not transmit during the second phase, the scheme is

orthogonal (OAF). Otherwise, the scheme is non-orthogonal (NAF) and clearly achieves

the maximum multiplexing gain in contrast with the OAF. The NAF is shown to be the

optimal cooperative scheme for the AF single-relay single-antenna case.

Theorem 5.1.1 The NAF protocol achieves the optimal DMT of an AF single-relay chan-

nel with single-antenna terminals:

dNAF (r) = (1 − r) + (1 − 2r) (5.3)

Proof: See [56].

5.1.2 Virtual MIMO Channel

Cooperation is known to be a solution to benefit from the advantages of MIMO systems

when the number of antennas at the terminals is limited due to practical constraints.

Indeed, the re-transmission of the source signal by the relay creates a virtual antenna

array and the cooperative network can be modeled as a virtual MIMO channel.

In order to show how to obtain the equivalent MIMO channel, consider the single-

antenna scenario. T denotes the cooperation frame length assumed to be smaller than

the channel coherence time and thus, the channel is assumed to stay constant during the

transmission of a frame. For the NAF scheme whose corresponding cooperation frame is

illustrated in Fig. 5.1(b), the following signal model is obtained:







y1 =
√

P1hs,dx1 + z1

yr =
√

P1hs,rx1 + w

y2 =
√

Prhr,d(byr) +
√

P2hs,dx2 + z2

(5.4)

where xi,yi ∈ CT/2, i = 1, 2 are the transmitted signals from the source and the received

signals at the destination, respectively, in the ith slot. yr ∈ CT/2 is the received signal at

the relay in the first slot. zi and w ∈ CT/2 are independent AWGN with normalized i.i.d.

entries. b is the normalization factor satisfying E
{
‖byr‖2

}
≤ T

2 SNR. P1, P2 and Pr denote

the transmission powers of the source during the first and second slot and the transmission
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Figure 5.2: NAF cooperation frame with the distributed Golden code.

power of the relay, respectively. Each power is a fraction of the average received SNR at

each time slot. The channel model (5.4) can be rewritten as

Y =

[ √
P1hs,d 0√

P1P3bhs,rhr,d

√
P2hs,d

]

X +

[

0 0√
P3bhr,d 0

]

W + Z (5.5)

where A ,
[
a⊤

1 a⊤
2

]⊤
, A replacing X , Y , W and Z. After whitening the noise and

normalizing the system, the equivalent channel model can be written as

Ỹ = H̃X + Z̃ (5.6)

where Z̃ is the equivalent whitened noise and H̃ the equivalent channel matrix

H̃ ,

[ √
P1hs,d 0

√
P1P3

1+Pr |bhr,d|2 bhs,rhr,d

√
P2

1+Pr |bhr,d|2 hs,d

]

(5.7)

5.1.3 Distributed Space-Time Block codes

Since the relay channel can be viewed as a virtual MIMO channel, STBCs already de-

signed for point-to-point MIMO channels [13, 8, 12] can be used for the relay channel in

a distributed way. In [62, 63], the authors proposed algebraic distributed STBCs that are

optimal in the sense of the DMT.

Example 5.1.2 (Distributed Golden Code) The DMT of the NAF cooperative protocol

given in (5.3) can be achieved using the optimal 2 × 2 STBC, the Golden code, in a dis-

tributed manner [62]. The codeword matrix of the Golden code, that is denoted here M

(mother codeword), is given in (2.23). When applied in a distributed way, the codeword

matrix is as follows

X , [M(1 : 1, 1 : 2) M(2 : 2, 1 : 2)] (5.8)

Equivalently, the first row of M is transmitted by the source during the first phase. During

the second phase, the source transmits the second row of M while the relay transmits a

scaled version of the first row. The corresponding cooperation frame of length T = 4 is
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Figure 5.3: The general multiple-access relay channel.

illustrated in Fig. 5.2 where plain line slots represent transmission mode and dashed line

slots represent listening mode.

5.2 The Multiple-Access Relay Channel

The general K-user MAR channel is a K-user MAC with N relays helping the users to

communicate with the destination while the cooperation between the users is not allowed.

Let nt, nr and nd denote the number of antennas at each user, at the relay and at the des-

tination, respectively. The channel model is illustrated in Fig. 5.3, where Hk,ri
∈ Cnd×nt ,

Hri,d ∈ Cnr×nt and Hk,d ∈ Cnd×nr , k = 1, . . . ,K, i = 1, . . . , N are independent chan-

nel matrices modeling the kth user-destination, kth user-ith relay and ith relay-destination

MIMO channels, respectively. All these matrices have zero-mean unit variance i.i.d. Gaus-

sian entries, i.e., hi,j ∼ CN (0, 1).

All the fading coefficients remain constant within one cooperation frame of length T

but change independently from one frame to the other. It is assumed that the CSI can

be tracked at the receiver, though it is not available at the transmitters. Note that it is

assumed that the receiver has knowledge of all CSIs, including those of the user-relay links.

In the following, we focus on the single-relay scenario, N = 1.

5.2.1 Multi-Access Amplify-and-Forward

The Multi-Access Amplify-and-Forward (MAF) protocol was recently introduced by Chen

et al. in [5] for a MAR channel with a single relay. The main advantage of the MAF is

the balance between complexity and performance it provides, compared to other protocols,

such as the DDF and CF that add a significant complexity to the relaying terminal. In

addition to the low complexity of the MAF, authors in [5] showed that it outperforms both

the DDF in the high multiplexing regime and the CF protocol in the low multiplexing

regime.
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Figure 5.4: MAF cooperation frame structure.

In the MAF protocol both users transmit their informations throughout an entire co-

operation frame (two phases). Due to the half-duplex constraint, the relay listens to both

users during the first phase, then, during the second phase, it simply scales the source sig-

nal before forwarding it to the destination. A MAF cooperation frame can be illustrated

as in the Fig. 5.4 where plain line slots represent transmission mode, whereas dashed slots

represent listening mode. The matrices Xkt ∈ Cnt×T
2 with i.i.d. unit variance entries,

represent the Space-Time codeword matrices transmitted from the kth user at the tth slot.

Y 1 and Y 2 are the received signal at the destination during the first and second phase,

respectively. Y r is the received signal at the relay during the first phase.

5.2.2 Signal Model: Virtual MIMO-MAC

Based on the cooperation frame structure described above, the following signal model is

obtained:







Y 1 =
∑

k

√

Pk1Hk,dXk1 + V 1

Y r =
∑

k

√

Pk1Hk,rXk1 + W

Y 2 =
√

PrHr,dBY r +
∑

k

√

Pk2Hk,dXk2 + V 2

(5.9)

where Hk,d and Hk,r, k = 1, . . . ,K, denote the kth user-destination and the kth user-relay

channels, respectively. V 1, V 2 and W are independent AWGN matrices with normalized

i.i.d. entries. Pkt, t = 1, 2 and Pr denote user k’s transmission power at the tth slot and

the relay’s transmission power, respectively.

Each power is a fraction (πkt and πr) of the average received SNR at the destination.

The total transmit power in both time slots is (nt
∑

k,t πkt + nrπr)SNR. Since the channel

coefficients and the AWGN are normalized, (nt
∑

k,t πkt +nrπr)SNR represents the average

received SNR for both time slots. The values of π’s are chosen such that they satisfy

nt
∑

k,t πkt + nrπr = 2. B is an nr × nr normalization matrix subject to the power

constraint
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Figure 5.5: Cooperation in a half-duplex two-user MAF relay channel.

E

{
||BY r||2F

}
≤ T

2
nr

As in the single-user case, the signal model (5.9) can be rewritten as a virtual MIMO-MAC,

Ỹ =

K∑

k=1

H̃kXk + Z̃ (5.10)

where Xk ,
[
XT

k1 XT
k2

]T
and Ỹ ,

[
Y T

1 Y T
2

]T
. Z̃ is the equivalent whitened AWGN, the

equivalent 2nt × 2nd channel matrix of user k is

H̃k ,

[ √
Pk1Hk,d 0nd×nt√

PrPk1ΥHr,dBHk,r

√
Pk2ΥHk,d

]

(5.11)

where Υ is the whitening matrix satisfying

(Υ†
Υ)−1 = (ΥΥ

†)−1 = I + Pr(Hr,dB)B†H†
r,d (5.12)

5.2.3 DMT Analysis

Using the DMT framework, we present here a theoretical analysis highlighting performance

enhancement that the users can benefit from by sharing a relay that helps them reach the

destination. We also compare the DMT of the MAF relay channel to the best DMT that

can be achieved by any relaying protocol: the upper-bound on the DMT of the MAR

channel obtained using the min-cut max-flow theorem.

Remark 5.2.1 While the channel is modeled for an arbitrary number of antennas at all

the terminals, we focus in the following DMT analysis on the scenario with single-antenna

at all terminals for simplicity of presentation, i.e. K = 2, N = 1. The channel model as

well as the corresponding MAF cooperation frame are illustrated in Fig. 5.5.

Theorem 5.2.1 The optimal diversity gain for the symmetric two-users MAR channel
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with single-antenna terminals is upper bounded by

dMAR(r) ≤
{

2 − r, 0 ≤ r ≤ 1
2

3 (1 − r) , 1
2 ≤ r ≤ 1

(5.13)

Proof: Using a simple min-cut max-flow examination of the scheme in figure 5.5(a),

one gets:

dMAR(r) ≤ min
{

d3×1(r), d2×2(r), d2×1(
r

2
), d1×2(

r

2
)
}

≤ min
{

3(1 − r), 2(2 − r), 2(1 − r

2
)
}

≤
{

2 − r, 0 ≤ r ≤ 1
2

3 (1 − r) , 1
2 ≤ r ≤ 1

Note that the upper-bound (5.13) also constitutes an upper-bound on the DMT of any

relaying protocol. Now, what about the DMT achieved by the MAF relaying strategy?

The following theorem can be deduced from from [5, Theorem 1]

Theorem 5.2.2 For a symmetric two-user MAR channel with one relay, the DMT of the

MAF protocol is given by

dMAF (r) =

{

2 − 3
2r, 0 ≤ r ≤ 2

3

3 (1 − r) , 2
3 ≤ r ≤ 1

(5.14)

Proof: See [5].

For comparison purposes, recall the DMT achieved by a 2-user MAC (Theorem 1.4.3) with

nt = nr = 1 given by

dMAC(r) =

{

1 − r
2 , 0 ≤ r ≤ 2

3

2 (1 − r) , 2
3 ≤ r ≤ 1

(5.15)

Figure 5.6 compares these DMTs given in (5.13), (5.14) and (5.15) as well as the DMT

achieved by a time-sharing scheme. This comparison reveals the significant advantage

that multiple users can potentially gain from a single MAF relay helping them reach the

destination. The MAF protocol is shown to achieve the optimal DMT for 2/3 ≤ r ≤ 1.

Moreover, this comparison shows the sub-optimality of the time-sharing strategy in both

multiple-access scenarios. Note that, if time-sharing is considered, the system without

relaying is equivalent to a point-to-point scheme, i.e.,

dTS = (1 − r), 0 ≤ r ≤ 1.
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Figure 5.6: DMT of a two-user MAR, MAF relay channel and MAC, nt = nr = nd = 1.

On the other hand, if relaying is considered, the MAF protocol is equivalent to the NAF

protocol. The corresponding DMT is given in Eq. 5.3:

dNAF(r) = (1 − r) + (1 − 2r).

5.2.4 General Code Construction

We propose here a new family of Space-Time block codes for the MAF relay channel

shown in (5.10) to be equivalent to a virtual MIMO-MAC. Therefore, the idea is to apply

the coding scheme designed in Chapter 4 for the MIMO-MAC, to the MAR channel in a

distributed manner.

Codewords Structure

Let F be a Galois extension of degree K, the number of users, over Q(i) with Galois

group Gal(F/Q(i)) = {τ1, τ2, . . . , τK}. K is a cyclic extension of degree 2nt on F and σ

the generator of its Galois group. Based on (4.8), define the mother codeword of user k,

denoted M k, as a single-user component of a codeword of X given by

M k =
[

Γτ1(Ξk) Γτ2(Ξk) . . . τK(Ξk)
]

where Γ is a multiplication matrix for the k−1 first matrices of Mk chosen as in Theorem

4.4.1. Now consider an equivalent code C whose codewords (per user) are in the form

Ck , [Mk(1 : nt, 1 : 2Knt) Mk(nt + 1 : 2nt, 1 : 2Knt)]
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Figure 5.7: MAF cooperation frame with the distributed MIMO-BB code.

The constructed code C for the K-user MAF channel with nt transmit antennas per user

is of length T = 4Knt and consists in transmitting Ck by user k, k = 1, . . . ,K in each

cooperation frame. For the sake of simplicity, we focus in the following on the two-user

MAR channel where one single-antenna relay node is assigned to assist the two multiple-

access users.

5.2.5 Explicit Construction: Two-user MAF Relay channel

First, let us design each user’s mother codeword. Let F = Q(ζ8) be an extension of Q(i) of

degree K = 2, with ζ8 = e
iπ
4 and K = F(

√
5) = Q(ζ8,

√
5). Let σ : θ = 1+

√
5

2 7→ θ̄ = 1−
√

5
2 ,

α = 1 + i− iθ and ᾱ = 1 + i− iθ̄. User k’s equivalent mother codeword Xk is constructed

as in (4.11):

Mk =
[

Ξk τ(Ξk)
]

(5.16)

where τ changes ζ8 into −ζ8. skj denotes the jth information symbol of user k and Ξk is

defined by

Ξk =
1√
5

[

α.(sk,1 + sk,2ζ8 + sk,3θ + sk,4ζ8θ) α.(sk,5 + sk,6ζ8 + sk,7θ + sk,8ζ8θ)

ζ8ᾱ.(sk,5 + sk,6ζ8 + sk,7θ̄ + sk,8ζ8θ̄) ᾱ.(sk,1 + sk,2ζ8 + sk,3θ̄ + sk,4ζ8θ̄)

]

(5.17)

This code uses 8 QAM symbols per user. Finally, the following equivalent mother codeword

matrix is obtained:

M =

[

M1

M2

]

=

[

Ξ1 τ(Ξ1)

ΓΞ2 τ(Ξ2)

]

(5.18)

with

Γ =

[

0 1

i 0

]

. (5.19)

The equivalent code C has per user codewords, of length T = 4Knt = 8, in the form

Ck , [Mk(1 : 1, 1 : 4)M k(2 : 2, 1 : 4)] (5.20)
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Both users transmit simultaneously the first row of their mother codewords, Mk, during

the first phase. During the second phase, each user transmits the second row of its mother

codeword M k while the relay transmits a scaled version of the first rows. The correspond-

ing cooperation frame of length T = 8 is illustrated in Fig. 5.7 where plain line slots

represent transmission mode and dashed line slots represent listening mode.

5.2.6 Numerical Results

Outage behavior

The outage behavior of the two-user MARC is illustrated in Fig. 5.8 for R = 2 bits pcu.

These curves show the sub-optimality of the time-sharing strategy and to highlight the

benefit of relaying. The outage probabilities of the channel are compared in four different

scenarios: 1- the users are transmitting simultaneously with the help of the relay using

the MAF protocol (labeled MAF); 2- the users are transmitting simultaneously without

relaying (labeled MAC); 3- time-sharing with relaying using NAF protocol (labeled NAF);

4- time-sharing without relaying (labeled Time-Sharing). The time-sharing and the MAC

outage curves achieve the same diversity order (d = 1 for nd = 1) but time-sharing is

clearly sub-optimal. A significant gain can be achieved by letting the users transmit si-

multaneously, and thus exploiting the multiple-access nature of the channel. The same

interpretation holds for the NAF as compared to the MAF. NAF and MAF both achieve

the same diversity order (d = 2 for nd = 1). It is clear that the existence of a relay

helping the users to reach the destination offers a significant gain in both multi-access and

time-sharing schemes.

Code performance

The performance of the proposed scheme is compared in Fig. 5.9 to the time-sharing

scheme and the single-user code (using the distributed Golden code), for nd = 1 and a

4-QAM constellation. The proposed code achieves the same diversity order (d = 2 for

nd = 1) but offers a significant performance gain. At Pe = 10−3, performance gains of

8 dB and 3 dB are observed as compared to the time-sharing scheme and the single-user

code, respectively. Interestingly, if the performance of the coded scheme is compared to

the outage performance of the channel, similar behaviors are observed.
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Conclusion and Perspectives

In this thesis, the Space-Time coding design for some elementary channels constituting

a large wireless communication network is considered. Specifically, Multiple-Access and

Multiple-Access Relay channels illustrated in Fig. 5.10 are studied. Undoubtedly, time-

sharing among the users in a multiple-access scenario is sub-optimal since it makes very

poor use of the degrees of freedom of the channel. New multiple-access Space-Time block

codes that better exploit the channel’s capabilities and offer significant performance im-

provements are designed. In addition to a numerical performance evaluation, a DMT-

oriented analysis of the proposed coding schemes is presented.

(a) MAC (b) MAR Channel

Figure 5.10: Decomposition of a network into elementary channels.

For multiple-access channels, the single transmit antenna users case and the multi-

antenna users case were separated. In the former, two scenarios are considered: the

synchronous and the asynchronous scenario. The Space-Time coding scheme proposed

for the synchronous MAC offers a significant performance gain and is shown to satisfy

the DMT-optimal design criteria derived in [27] for a special range of multiplexing gains.

Moreover, the proposed code is shown to be delay-tolerant. In other words, the advantages

of the coding scheme are preserved despite the structure change that may be induced by

an asynchronism at the transmitters side. One interesting perspective resulting form this

work would be a more information theoretic analysis of asynchronism in MACs, such as

the characterization of the diversity-multiplexing tradeoff of the asynchronous MAC and

its achievability.

For the MIMO case, a new coding scheme is proposed. It is shown to outperform or

to offer at least similar performance as compared to other existing schemes. A partial

DMT-analysis of the code is presented, but the DMT-optimality in this case is yet to be

determined.

For multiple-access relay channels, an AF cooperation protocol was considered. This
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protocol known as the MAF experiences low complexity at the relay and achieves the

optimal DMT for a special range of multiplexing gains. As a result of the linear nature

of the relaying scheme, the MAF relay channel can be modeled as an equivalent MIMO-

MAC to which the multiple-access coding scheme can be applied in a distributed way. The

distributed Space-Time code, used to profit from the gain offered by the existence of the

relay compared to a system without relaying, is shown to offer a significant enhancement

of the performance.

The DMT-achievability of the coding scheme proposed for the MIMO-MAC and hence,

that of the distributed code applied to the MAR channel, remain an open problem to solve.

Figure 5.11: The interference channel.

More generally, the decomposition of a large wireless network into elementary channels

leads to more complex channels such as the interference channel illustrated in Fig. 5.11.

The interference channel models a communication between M unrelated transmitters and

M independent receivers. Space-Time code construction for fading interference channel is

an interesting direction for future research.



Appendix A

Algebraic Tools for STB Coding

The aim of this Appendix is to provide a (brief) overview of the most relevant algebraic

tools that are used in this thesis. For the proofs of these results and for a more detailed

introduction, we let the reader refer to [33].

Let Z be the set of rational integers, Q be the set of rational numbers and C the set of

complex numbers.

Definition A.1 (Field extension) Let F and L be two fields. L is said to be a field exten-

sion of F if F ⊆ L. Such extension is denoted L/F. The dimension of L as a vector

space over F is called the degree of L over F.

Example A.1 Consider the field Q and the element i such that i2 = −1 that is not an

element Q. Q(i) is a field extension of degree 2 of Q built by adding i to Q. An element of

x of Q(i) can be written as x = a + ib where a, b ∈ Q. The dimension of Q(i) as a vector

space over Q is 2.

Similarly, Q(i,
√

5) can be built by adding
√

5 to Q(i). An element w of Q(i,
√

5) can

be written as w = x+ y
√

5 where x, y ∈ Q(i). Q(i,
√

5) is a field extension of degree 2 over

Q(i) or of degree 4 over Q.

Definition A.2 A finite field extension of Q is called a number field.

Definition A.3 (Algebraic number) An element α of L is algebraic over F if there exists

a non-zero irreducible monic polynomial p ∈ F[x] (with highest coefficient equal to 1) such

that p(α) = 0.

Definition A.4 K is called an algebraic extension of Q, if all the elements of K are alge-

braic.

Definition A.5 (Transcendental number) If α is not algebraic, it is said to be transcen-

dental (does not belong to any finite algebraic extension).

Definition A.6 (Ring of integers) α ∈ L is an algebraic integer if it is a root of a monic

polynomial with coefficients in Z. The set of algebraic integers of L is a ring called the ring

of integers of L and is denoted OL.
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Definition A.7 An ideal I of a commutative ring A is an additive subgroup of A stable

under multiplication by A, i.e., aI ⊆ I,∀a ∈ A. I is said to be principal if it is of the form

I = (x)A = {xy, y ∈ A}, x ∈ I.

Definition A.8 Gal(L/F) denotes the Galois group of L/F defined as the group of the

F-automorphisms of L under compositions of maps. L/F is called a Galois extension.

Gal(L/F) is said to be a cyclic group if it is generated by one element. In the sequel, 〈σ〉
will denote a cyclic Galois group with σ being its generator.

Definition A.9 (Cyclic Algebra) Consider an algebraic number field F and assume that

L/F is a cyclic extension of degree n with the Galois group Gal(L/F) = 〈σ〉. An associative

F−algebra can be defined as follows

A = (L/F, σ, γ) = L ⊕ L · e ⊕ L · e2 ⊕ · · · ⊕ L · en−1 (A.1)

where e ∈ A satisfies

λ · e = e · σ(λ) ∀λ ∈ L and en = γ ∈ F∗

where F∗ is the set of non-zero elements of F. A is called a cyclic algebra and the field F

its center.

Definition A.10 (Cyclic Division Algebra, CDA) A cyclic algebra is a division algebra iff

all the non-zero elements of the algebra are invertible.

Definition A.11 Let L/F be a field extension of degree n. σ1, . . . , σn denote the n relative

embeddings of L. For an element x of L, σ1(x), σ2(x), . . . , σn(x) are called the conjugates

of x. We define the norm and trace of x as follows

NL/F(x) =

n∏

i=1

σi(x) (A.2)

TrL/F(x) =

n∑

i=1

σi(x) (A.3)

The norm and the trace of an element x ∈ L are elements of F, i.e., NL/F(x),TrL/F(x) ∈ F.

If x ∈ O(L), NL/F(x) and TrL/F(x) ∈ F.

Proposition A.1 (Non-norm Element) A = (L/F, σ, γ) of degree n is a division algebra

iff the only t for which γt is the norm of some element of F∗ is n, i.e., γ is referred to as

non-norm element.

Definition A.12 Consider the CDA A = (L/F, σ, γ). Every element x of A, i.e.,

x = x0 + x1 . e + . . . ,+xn−1 . en−1
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has the following matrix representation











x0 x1 x2 . . . xn−1

γσ(xn−1) σ(x0) σ(x1) . . . σ(xn−2)
...

...

γσn−2(x2) γσn−2(x3) γσ(x4) . . . σn−2(x1)

γσn−1(x1) γσn−1(x2) γσn−1(x3) . . . σn−1(x0)











(A.4)

where xi ∈ L. Since all the elements of a cyclic division algebra are invertible, the above

matrix representation has a non-zero determinant.

Example A.2 Let n = 2 and L = Q(i,
√

5). An element x ∈ A is written as

x = x0 + x1 · e

where x0 = a0 +
√

5b0 and x1 = a1 +
√

5b1 with a0, a1, b0, b1 ∈ Q(i). The corresponding

matrix representation is in this case as follows

(

x0 x1

γσ(x1) σ(x0)

)

Note that QAM symbols are elements of Z[i], thus, they belong to the base field Q(i)and

each xi encodes 2 QAM symbols. In the general case, since an element x of A has n

coefficients, it encodes n2 information symbols.

The determinant of the above matrix is given by

det

(

x0 x1

γσ(x1) σ(x0)

)

= x0σ(x0) − γx1σ(x1) = NL/Q(i)(x0) − γNL/Q(i)(x1)

which is clearly non-zero if A is a CDA, i.e., γ a non-norm element of L.
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