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Abstract

Robots have been given sophisticated ”eyes” to make them ”see” and understand their en-
vironments. These eyes (cameras, ladars, sonars, radars, etc...) collect a huge amount of
data that need to be correctly processed to be useful. Processing this information is what a
perception system is intended to perform.

For almost half a century now, various perception algorithms have been proposed to tackle
one or several of the underlying issues that arise when addressing the perception problem.
Well known tracking, detection, mapping, localization and classification algorithms can con-
sequently be combined to design complete perception algorithms that work well for a given
application in most situations.

The problem is that some real world applications (autonomous driving, etc...) require per-
ception systems that do better than working well in most situations. An autonomous vehicle
driving in a crowded urban center would need indeed to be equipped with a perception system
that works well in every situation.

This dissertation addresses the specific problem of perception systems reliability when con-
fronted to highly changing dense environment.

First a detailed analysis of the fundamental limitations undermining the performances of
existing approaches is given. Then an original approach - based on a unified grid-based
formulation of the five perceptual subproblems - is proposed and proves to be capable of
solving issues that most existing systems cannot solve.

The relevance of this analysis and the experimental validity of the proposed approach is
assessed through an experimental comparison of two fully detailed original perception systems
specifically designed for pedestrian detection purposes in urban environments.
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Résumé

La plupart des systèmes robotiques sont équipés de capteurs sophistiqués censés leur don-
ner la capacité de ”voir” et en conséquence de comprendre l’environnement dans lequel ils
évoluent. Cependant, la quantité impressionnante d’information que ces capteurs collectent
régulièrement n’est réellement mise à profit que si le robot qui en est doté possède la capacité
de les traiter correctement.

Depuis plusieures décennies, une grande variété d’algorithmes de perception a été proposée
à cet effet. Il est donc déjà possible d’assembler des algorithmes bien connus de détection,
de pistage, de classification, de cartographie et de localisation pour concevoir des systèmes
de perception complets capables d’opérer, pour une application donnée, dans la plupart des
situations.

Malheureusement, un certain nombre d’applications concrètes exigent des systèmes de per-
ception qui font bien mieux que de fonctionner la plupart du temps. Un véhicule automatique
(sans conducteur) évoluant dans un centre ville ne pourra par exemple se satisfaire que d’un
système de perception qui fonctionne dans toutes les situations.

Ce mémoire de thèse traite précisément du problème de fiabilité inhérent aux systèmes de
perception actuels lorsqu’ils sont confrontés à des environnements complexes et changeants.

Une analyse détaillée des causes de ce manque de fiabilité est d’abord proposée. Nous pro-
posons et décrivons ensuite une approche nouvelle du problème de perception basée sur une
formulation unifiée de ses cinq problèmes sous-jacents (détection, pistage, classification, car-
tographie et localisation). Nous montrons ainsi que cette approche permet de contourner
naturellement les difficultés qui bornent les performances de la plupart des systèmes exis-
tants.

La pertinence de l’analyse présentée dans ce document ainsi que la validité expérimentale des
solutions proposées sont évaluées au travers d’une comparaison concrète entre deux systèmes
de perception originaux conçus pour ”percevoir” des piétons en environnement urbain.
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Chapter 1

Introduction

Contents

1.1 Mobile Robots, Perception and Reliability . . . . . . . . . . . . . . . 1

1.2 A Specific Application: Collision Avoidance . . . . . . . . . . . . . . 2

1.3 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Outlines of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1 Mobile Robots, Perception and Reliability

Robots have been used for almost half a century now in a great number of situations. Indus-
trial production, planetary or mines exploration are domains where robots play a decisive role
but surprisingly, in far less extreme everyday life environments, robots have still difficulties
to find their ways.

The main reason of this is arguably the fact that most everyday life situations are much
less predictable than the highly structured environment of a plant or the static landscape
of a planet. In other words, mobile robots should be able to cope with highly changing
environments to start helping us in our daily duties.

Cleaning, driving, lawn mowing are all examples of everyday life tasks that robots might be
able to perform autonomously and safely one day. This is unfortunately conditional to their
ability to ”perceive” and ”understand” the highly dynamical environments related to these
tasks.

Over the last fifty years, significant efforts have been carried out to build sensors capable
of making observations about the environment and to design autonomous perception system
able to process and disambiguate the huge amount of data collected by these sensors.

As a result, a great variety of different approaches have been proposed to solve the different
issues that arise when tackling the perception problem. However, most approaches are only
intended to work under specific assumptions and are not always scalable to highly changing
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2 CHAPTER 1. INTRODUCTION

outdoor environments. These algorithms are nevertheless commonly used to tackle the chal-
lenging environments they were not originally designed to deal with and reasonable results
can in practice be obtained.

This is at least the case in most situations where objects in the scene happen to be easy to
discriminate and to classify. But unfortunately because of their original limitations, these
algorithms will inexorably and regularly face more uncommon situations where they will fail
to correctly understand what is going on.

Most perception approaches for highly changing environments are consequently
”satisfactory” in many situations but unfortunately not ”reliable”. These systems
are then only usable in applications where a potential failure do not endanger human security.

This lack of reliability of perception algorithms is probably the main reason that explains
why we are still driving our cars, washing our knives or mowing our lawns.

The main objective of this dissertation is to address this problem by analyzing first what
makes existing perception systems inherently unreliable and by then proposing an original
solution to reliable perception of highly changing environments.

1.2 A Specific Application: Collision Avoidance

1.2.1 Motivations

The work presented in this dissertation has been initially motivated by a specific potential ap-
plication: onboard collision avoidance systems. Detecting pedestrians in urban environments
for collision avoidance purposes is indeed a typical example where a high level of reliability is
of paramount importance. Besides, the typical complexity of urban environments makes the
perception task especially demanding due to the great variety of objects that they contain
and because of the severe occlusions that usually undermine the sensor measurements.

Pedestrian perception in urban centers is consequently the specific application to which
is confronted the analysis and the contributions proposed in this dissertation.

To fully understand the extent of this dissertation a brief overview of what a vehicle-to-
pedestrian collision avoidance is expected to do is given in the next sections as well as the
main requirements that its perception subsystem should meet.
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1.2.2 Principles

Pedestrian casualties related to collisions with vehicles is still a worrying problem. In 2005,
635 pedestrians (' 1.75/day) were killed on french roads and 13,609 were injured (' 37/day)1.
Moreover, 2/3 of these accidents occur in urban areas and 75% of these pedestrians are injured
while crossing a street. Studies show also that the great majority of these accidents is due
to the driver lack of attention.

Parallel investigations have shown that the death probability of a pedestrian in a collision
with a vehicle is highly dependent on its speed and decreases quickly between 60km/h and
40km/h as shown in figure 1.1.

Figure 1.1: The evolution of the probability that a pedestrian dies in a collision with a vehicle
of a given speed (from the European Transport Safety Council).

Based on this statistic analysis, it is then possible to imagine a driver assistance system that
if not capable of autonomously avoiding a collision with a pedestrian can at least decrease
its probability of death.

The idea is simple: when the system detects a pedestrian that is likely to be injured, an
alarm is released that makes the driver focus on the situation and initiate the appropriate
emergency braking. By shortening the reaction time of the driver, the driver brakes sooner,
the collision speed and the probability of death are then decreased. This is schematized in
figure 1.2.

It is important to note that despite its name a collision avoidance system does not necessarily
avoid a collision but is instead expected to lower its gravity (the term of ”pre-crash system”
is hence sometimes used).

12005 Statistics of French Road Safety, Ministry of Transport, June 2006.
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Figure 1.2: Schematic view of a vehicle-to-pedestrian collision avoidance (pre-crash) system.

1.2.3 Requirements

A pedestrian perception module intended to feed such a system should consequently provide
a list of all the pedestrians that could be injured by the sensing vehicle in a next future to the
risk analysis module. This former module is indeed expected to decide which pedestrian is
threatened and is likely to require at least the following features for each detected pedestrian:

• Coordinates of the pedestrian in a frame centered on the vehicle.

• Current velocity of the pedestrian. This estimate can be relative to the speed of the
vehicle, but an estimate of the absolute speed is desirable.

• An indicator of the uncertainty related to the information provided above.

The perception system should be able to release these features while simultaneously satisfying
three constraints.

Precision

Because releasing a false alarm can potentially provoke unpredictable driver reactions and
hazardous situations, a high level of precision is here a critical requirement. The precision of
the whole collision avoidance system is naturally dependent on the perception module ability
to detect ”only” pedestrians. It is interesting to note that missing a pedestrian (sometimes
called the recall capability of the system) is a less critical requirement as doing nothing is
probably safer than doing bad things in this case.
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Robustness

Another facet of what usually falls under the general term of ”reliability” is what can be
called the robustness of a perception system. This specifically refers to the ability of the
perception system to work with the same degree of precision in various situations including
bad weather conditions, extreme illumination conditions (day/night), crowded areas, etc...

Computational friendship

Finally, because the power of onboard computer units is limited, such a perception module
should be very reasonable in terms of computational load and memory requirements.

1.2.4 Collaboration with Automotive Companies

Utilizing this specific application as a test bed for the work presented in this dissertation
is also motivated by the fact that the work presented in this dissertation has benefited
from the guidance of two major actors of the automotive industry RENAULT and VALEO
through a national research project named LOVe which stands for (Logiciels d’Observation
des Vulnérables - Perception Systems for Vulnerable Pedestrians ).

The rich experience provided by these two companies along with the constructive research
work performed by the 10 academic contributors of this project made of this specific ap-
plication the ideal starting point for constructing the more general analysis of autonomous
perception in complex environments presented in this dissertation.

1.3 Thesis Statement

This dissertation is intended to meet two objectives.

1. Give a comprehensive analysis of the fundamental limitations that undermine the reli-
ability of existing perception approaches in highly changing environments.

2. Propose a powerful approach that overcomes these limitations and enables a new level
of reliability.

This analysis is based on the successive and detailed presentations of two different pedestrian
perception algorithms whose performances are compared on a set of real situations especially
difficult to handle.

1.4 Outlines of the Dissertation

The presentation of this work is organized in 6 chapters with the following underlying logic.
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Chapter 2

A complete overview of state of the art perception algorithms is given in Chapter 2 as well
as the necessary definitions and mathematical foundations needed to understand the scope
of this dissertation. This chapter is not intended to enumerate a set of methods but aims
instead at building a taxonomy of existing algorithms based on the specific problems they
address (Detection, Tracking, Classification, Mapping, Localization) and on their capacity
to handle uncertainties.

Chapter 3

Based on this analysis, a first pedestrian perception system is entirely detailed in chapter 3.
This perception algorithm is intended to be an objective example of what can be achieved
using existing perception approaches. This system based on the contribution of a ladar
and a camera is however innovative in the way uncertainties are managed throughout the
process and in its capability to track both pedestrians and groups of people. Extensive
online experiments results are presented and the precision of this algorithm is quantitatively
assessed to serve as a reference for the analysis given in Chapter 4.

Chapter 4

Based on the system presented in Chapter 3, a detailed analysis is given about the four main
issues that no existing approach is able to simultaneously handle. This analysis leads to the
identification of a set of specific situations where the algorithm presented in Chapter 3 will
inexorably fail as would presumably do most existing approaches. The capabilities of some
recent so called SLAM with DATMO algorithms are also discussed.

Chapter 5

In Chapter 5, an original grid-based approach is proposed to overcome simultaneously the
four limitations identified in Chapter 4. The principles of this approach as well as the mathe-
matical foundations necessary to implement this approach are presented. The general outlines
of a grid-based general perception algorithm are also given. This algorithm is described in a
general context and does not specifically focus on the pedestrian perception problem.

Chapter 6

To assess the benefit of the approach proposed in Chapter 5, a second pedestrian system is
thoroughly detailed in chapter 6. This practical implementation of the theoretical concepts
presented in Chapter 5 allows to valid on simulated data some of its important capabilities.
Finally, the last sections of this chapter are dedicated to the evaluation of this new pedestrian
system on the set of challenging real situations identified in Chapter 4.

Chapter 7

In Chapter 7, a brief summary as well as possible extensions to this work are presented.



Résumé en français du chapitre 2

Nous tentons de fournir au lecteur de ce chapitre une vue générale de l’état de l’art dans le
domaine de la perception automatique ainsi que les notions mathématiques et l’explication
des termes techniques nécessaires à la lecture de ce mémoire. Ce chapitre à pour principal
objectif de présenter et de catégoriser les algorithmes existants en fonction du sous-problème
qu’ils tentent de résoudre (détection, pistage, classification, cartographie et localisation) et
de leur capacité à prendre en compte l’incertitude des données sur lesquelles ils travaillent
ainsi que celle qu’ils générent immanquablement.
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Chapter 2

Foundations of Autonomous
Perception

Contents
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2.1 Introduction

This chapter is intended to meet two objectives. First, it aims at defining and clarifying
scientific terms that will be used in the rest of this dissertation as shortcuts for referring to
a very specific concept or problem.

Second, it gives a comprehensive and synthetic overview of state of the art approaches to
autonomous perception problems in mobile Robotics. This is indeed a crucial prerequisite
for an objective appreciation of the original approaches proposed in chapter 5 and 6 of this
document.

9
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2.2 Definitions

It is important to define first the terms of the perception vocabulary in order to fully under-
stand the scope of this dissertation.

2.2.1 Sensing Platform

Any device (static or not) equipped with one or several sensors will be referred to as a sensing
platform. Although this dissertation is mainly concerned with sensing vehicles applications,
the vast majority of the material presented here can be directly used on any other type of
mobile devices equipped with sensors. The term sensing platform will be used consequently
to refer to any of these mobile devices.

Figure 2.1: Different types of sensing platforms that are considered in this dissertation. The
two vehicles are INRIA and Mines ParisTech sensing platforms used as test platform in this
thesis work. The bottom left picture show the mobile robot designed by Willow Garage and
the bottom right picture shows the platform developed by Aldebaran Robotics.



2.2. DEFINITIONS 11

2.2.2 Environment and Scene

The environment refers to the context within which a sensing platform collects data. Note
that a sensing platform will rarely be able to collect data of its whole environment at the
same time. That is why, the visible portion of the environment from the sensing platform
point of view will be called a scene.

Figure 2.2: The portion of the environment that is visible from a specific sensor is referred
to as a scene in this dissertation.

2.2.3 Objects

We consider in this dissertation that the environment can be decomposed into several objects
(pedestrians, vehicles, walls, sidewalks, tags on a wall, herbs, trees, etc...). It is however
important to point out that the nature of what will be referred to as objects will vary a lot
depending on the application.

A robot intended to gather apples in a tree will probably have to consider every single
branch as an object while a robot only intended to navigate safely in a given environment
will probably only consider the whole tree as an object.

While taking into consideration that there is not a unique way to decompose an environment
into objects, this environment theoretical representation will be used throughout this disser-
tation for simplicity. An example of the same scene being decomposed into objects differently
depending on applications is given in figure 2.3.

We will also assume that each object in the environment can be described by a vector in a state
space. In most situations, this space is of course of high dimension and will not be directly
used in practice. Low dimension, simplified state spaces will be used instead to represent the
knowledge acquired by a perception system about its environment as discussed in the section
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2.4 of this chapter. The elements of an object state vector (position, dimensions, velocity,
color, etc...) will be referred to as state parameters or object features in the following.

Figure 2.3: On the left: Ideal decomposition of a scene into objects for obstacle avoidance
applications. On the right: Ideal decomposition of a scene into objects for road signs detection
applications.
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2.2.4 Perception Tasks

Perception is also a term that needs to be defined. In a dictionary, the following definition
can be found:

Perception is the process of transforming sensations into knowledge about the world.
This knowledge is then summarised into an internal representation, which is the result

of the perception process.

In the context of autonomous perception this definition can be refined. It is assumed in this
dissertation that perceiving a scene can be seen as solving five perceptual tasks: Detection,
Tracking, Classification, Mapping and Localization.

Consequently, solving the perception problem will in principles directly lead to the accom-
plishment of these five tasks. In the following paragraphs, a brief description of every per-
ceptual task is given.

Detection

Decide which sensors measurements or equivalent entities belong to the same objects in the
scene.

Sensors collect regularly information about a scene and send a batch of raw data that is not
specific to one object in the scene but instead is a representation of ”all” the visible objects
in the scene. The detection problem (sometimes called the segmentation problem) aims at
grouping sensors measurements that relate to the same object. This task, simple for humans,
can be very difficult for autonomous systems as sensor data do not always provide directly
all the relevant data for accurate detection.

Figure 2.4: Schematic view of a detection process from ladar raw data.
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Tracking

Estimate the spatiotemporal trajectory of every ”detected objects” or equivalent entities over
time.

The need to track objects in the environment comes from the fact that sensors provide data
that are both incomplete and noisy. As a consequence, some important features (like object
velocities) may not be measured by a sensor and measurements that are collected do not
reflect the reality perfectly. By keeping a trace of every previously detected object, it is
possible to smooth the knowledge of the system about measured features and to estimate
unobserved ones.

Tracking is thus a term that hides two different questions. The first is concerned with the
association of previously detected objects with the new sensor observations and is usually
referred to as the data association or registration problem. The second one is concerned with
the way the former knowledge about an object is combined with the new data and is usually
called the filtering problem.

It is important to note that tracking can be used to estimate many different object features
and not just its real position and velocity. In that sense, tracking should not necessarily refer
to spatiotemporal trajectory estimation. However, because object positions and velocities are
usually needed to ensure correct motion prediction and subsequent good data association, the
term tracking is in practice always linked to object kinematics estimation in the literature.
As a result, the process of estimating the real objects positions and velocities will be referred
to as tracking in this dissertation even if it can be seen as a confusion between the name of
a problem (object kinematics estimation) and the name of a method to solve it (tracking).

An object that is currently tracked and from which some kinematics features are estimated
is usually called a tracked object or a track.

Figure 2.5: Schematic view of a tracking process from ladar raw data.
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Classification

Decide what is the ”type” of all the objects present in the scene.

Applications usually (but not always) require some autonomous recognition of the objects
present in a scene. For example, classification can be mandatory for applications such as cars
Auto-Cruise Control where only surrounding vehicles should be considered for the speed
regulation of the sensing car. Classifying objects is difficult for two reasons.
First, it is a task that heavily depends on the accurate computation of the detection and the
tracking tasks as they usually provide useful information for classification (geometry, colour,
velocities, etc...).
Second, real objects are rarely similar to any theoretical models. As a consequence the system
needs to use criteria that are vague enough to be independent from a particular object within
a specific class (”a pedestrian is between 1m and 2m tall”) and at the same time specific
enough to allow discrimination with objects belonging to other classes.

Figure 2.6: Schematic view of a classification process from ladar raw data.

Mapping

Build and refine over time the outlines of every ”object” in the scene.

A sensors is usually unable to collect relevant information about its entire surrounding en-
vironment directly. At a certain point in time, some objects are out of its reach while some
others are partially or totally occluded. In any case, the currently visible outlines of objects
might be insufficient to describe the environment correctly. In many application, it is thus
desirable to build over time a complete description of object outlines. This description is
usually represented as a map as depicted in figure 2.7.
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Figure 2.7: Schematic view of a mapping process from ladar raw data.

Localization

Compute an estimate of the robot pose and orientation in the environment.

Localization is a critical issue for any mobile platform that needs to autonomously go from
one point in space to another. Localization can be achieved using a lot of approaches. Specific
devices like GPS receivers, odometers or IMU can of course be used to locate the sensing
platform. But a very natural way for a mobile platform to quantify its displacement is to
look at the induced displacement of the objects present in the scene. The main difficulties
lay in the fact that a correct localization is only achieved if the kinematics of the objects
present in the scene are known.

Figure 2.8: Schematic view of a localization process from ladar raw data.
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2.2.5 Interdependence of the five perceptual tasks

It is crucial to note that the five perceptual tasks presented in the previous section are the
five facets of the same global problem. The computation of any given perceptual task is as
a result highly dependent on any other perceptual tasks.

Indeed, by providing kinematics estimates of some entities, an efficient tracking can help
the detection process. Conversely, tracking depends on the accurate detection of the entities
of interest in the raw data. A good object mapping can help the classification process by
giving refined geometrical information. The tracking process is highly dependent on a correct
sensing platform localization, etc...

To prove that the five perceptual tasks are all mutually beneficial, a systematic description
of the possible interactions that could be used between every task is given.

Figure 2.9: The accurate computation of a perceptual task depends in principle on the
accurate computation of the remaining perceptual tasks.

Description of the interactions between the perceptual tasks

1. By computing objects kinematical features, tracking can help detection.

2. By grouping sensor observations into (parts of) objects, detection can facilitate
tracking.

3. By computing objects kinematical features, tracking can help classification.
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4. By indicating the nature of an object, classification can help tracking to use the right
motion model for prediction and data association to find realistic correspondences.

5. By indicating the nature of an object previously seen in a specific area, classification
can facilitate the correct clustering of sensor measurements.

6. By grouping sensor measurements into objects, detection is almost a prerequisite
before classification.

7. By indicating the nature of an object, an algorithm that estimates objects outlines
can be oriented.

8. By producing accurate geometrical information about an object, mapping can be
very useful to classification.

9. As tracking only deals with already seen objects, a good localization can be neces-
sary to use the sensor observations relevant for the classification of a moving object
seen for the first time.

10. By providing the static or moving nature of scene objects, classification can be very
useful to localization.

11. By providing a reference to which can be compared new sensor observations, map-
ping is a prerequisite to environment based localization.

12. As tracking only deals with already seen objects, localization is necessary to incor-
porate sensor observations that are seen for the first time into the map.

13. By providing detected objects in the environment, detection allows the number
of possible trajectories to be decreased (the sensing platform will not go through
obstacles) and the localization is thus facilitated.

14. By allowing the correct alignment of sensor observations unrelated to any previously
seen objects with the map, localization permits for example the detection of moving
objects (being those that fall into previously unoccupied space.).

15. Knowing that two entities in the map belong to the same real object can permit
for example to homogenize the map of this object.

16. Conversely, by providing rich geometrical descriptions of entities, the clustering of
such entities into relevant objects can be facilitated.

17. By finding the correspondence between the current map and the new measurements,
a correct tracking can permit to compute accurate maps of both static and moving
objects.

18. By providing rich geometrical description of objects, mapping can enable accurate
data association.
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19. By solving the data association problem between two scans, tracking is necessary
for accurate localization.

20. A good sensing platform localization is necessary to estimate accurate object dy-
namical features and hence to ensure correct object tracking.

2.2.6 Partial perception systems

Because of the interdependent nature of the five perception tasks, they should in principle be
all performed simultaneously. However, the vast majority of existing perception systems make
the implicit assumption that some of the perceptual tasks mentioned above can be treated
independently or at least sequentially. This assumption is arguably the most commonly
made in perception systems design. This even led to the emergence of two distinct scientific
communities: the multiple-object tracking (MOT ) community that addresses the detection,
tracking and classification problems and the simultaneous localization and mapping (SLAM )
community that aims at solving the mapping and localization problems.
Of course, there are two good reasons for that:

1. Satisfying performances can usually be obtained on specific applications without taking
into account full dependencies between the perceptual tasks.

2. In most situations, solving properly the five perceptual tasks simultaneously is impos-
sible in practice as it can be seen as a hard inference problem in highly dimensional
continuous spaces.

If systems that solve only some of the five perceptual task can perform well in lot of situations,
they tend to be very sensitive to some specific situations where unestimated features are
needed to correctly disambiguate the data. Unfortunately, those difficult situations arise
frequently in highly changing environments. A complete analysis of these difficult situations
is given in chapter 4.

Figure 2.10: Historically, perceptual tasks have been addressed separately by the SLAM and
the MOT communities.
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2.3 Sensors

Designing a perception system is usually very dependent on the sensor used to collect data
for at least two reasons. First, the nature of the data that is collected varies with the
type of sensor leading directly to different requirements in the processing of the perceptual
tasks. Second, data sent by a sensor is always noisy and as such make the processing of
the perceptual tasks even more demanding. Depending on the specification of the sensor,
autonomous perception systems will thus have to handle the uncertainties generated by the
sensor noisy measurements.

Because sensors have a direct impact on perception algorithms, a brief description of existing
sensing technologies is given in this section. This section aims also at underlining the com-
parative advantages and disadvantages of every technology. This brief analysis will be used
in the next chapter to propose a first perception strategy for pedestrian detection in urban
environments.

2.3.1 Sensing technologies

Range Sensors

Four types of sensors have the ability to collect range data: ladar, radar, sonar and stereo-
vision based sensors. Ladars, radars and sonars analyse the response of a scene to signals
they emit. Stereo-vision based sensors use one or several cameras to compute (along time
when only one camera is used) depth information.

Ladars (laser scanners)

They operate by the emission of pulsated beams of light in the near-infrared frequencies. The
range to an object is measured using the pulse time of flight. Beams are usually directed so
that the widest part of the environment can be scanned with a reasonable angular precision.
The high accuracy of theirs range measurements allows to retrieve the objects precise geom-
etry. However, their relatively high cost and fragility slow down their deployment in many
applications.

Radars

They detect the reflection of radiated electromagnetic energy (much higher frequencies than
ladars) and measure ranges using either pulses time of flight, or frequency modulations be-
tween sent and received signals (Frequency Modulated Continuous Wave (FMCW) radars).
The angular resolution of a radar is usually much lower than with ladars. As a result, they
are usually unable to provide precise geometrical information. However, no other sensor can
reach the range measure accuracy of a radar at long ranges and under adverse atmospheric
conditions.
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Figure 2.11: The ladar used in the experimental setup of chapter 6.

Sonars

They share the same basic time of flight principle but emit sound instead of electromagnetic
waves. They typically operate around 45KHz. Sonars are usually cheaper than other types
of range sensors but have a very limited angular resolution and are usually limited to a range
of 10m.

Stereo-vision based sensors

They mimic the human visual system by making use of several cameras to infer depth in-
formation. This is done through the correlation of points of interests, patches or features
in the images captured by the different cameras. The depth information is very dependent
on pictures resolution, cameras calibration and light conditions and usually not very precise
at long ranges. Another issue is the computational power that is needed to correlate in real
time two or more images.

Vision sensors

While not being able to directly measure ranges, cameras are widely used sensors and the art
of processing the images - computer vision - is a very dynamic research area. Data collected
by cameras is complementary to the data collected by range sensors. Range sensors are blind
to colours (except stereo-vision based sensors), textures and have much lower vertical and
horizontal resolutions. Cameras are then very useful for classification. The most common
cameras are sensitive to the visible spectrum and are as such limited to decent light conditions.
Cameras operating in the far infrared spectrum are also widely used in robotics. They tend
to be more expensive but offer interesting features like hot spot detection and allow night
operations.
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Figure 2.12: The camera used in the experimental setup of chapter 6.

2.3.2 Sensor modelling

Formalisation

As stated in the previous section, sensors collect data that are both incomplete (objects states
are only partially measurable) and imperfect (measures are noisy). In order to make the most
of the information sent by sensors, it is crucial to model the relation between objects true
states and the corresponding observations made by sensors. Assuming that no uncertainties
are involved, this relation can take the following form at time k:

Zk = hk(xk)

, where

• xk is the true object state,

• Zk =
[
z1k, z

2
k, ..., z

n
k

]
is the set of observation collected by the sensor from this object

(there can be more than one measurement for one object),

• hk is a nonlinear function from the state space to the observation space.

Uncertainties are usually modelled through an additive realisation of a random vector:

Zk = hk(xk) +
[
w1k, w

2
k, ..., w

n
k

]

, where (wik)1≤i≤n are n realisations of a random vector Wk. In a probabilistic framework,
this relation is usually referred to as the following probability density p(Zk|xk) usually called
measurements perceptual model.

Range sensors modelling

For range sensors, a single measurement is expressed as:

zik =

[
rik
θik

]
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, where rik is a range and θ
i
k is a bearing measurement. This measurement is usually directly

modelled from the specific point ẑik = (r̂
i
k, θ̂
i
k) of the object that was measured by the sensor.

A bivariate Normal distribution is then commonly used as a density for the noise vector Wk
(Blackman & Popoli, 1999; Brown & Hwang, 1997).

Wk ∼ N(μ =

[
r̂ik
θ̂ik

]

,Σ =

[
σ2r 0
0 σ2θ

]

)

This model can then be transformed into the global reference frame using the following
equations:

xik = xplatform + r
i
k cos(θ

i
k + θplatform) (2.1)

yik = yplatform + r
i
k sin(θ

i
k + θplatform)

When transformed through the above nonlinear equations, the bivariate normal distribution

p(zik|ẑ
i
k) becomes the density function p((x

i
k, y
i
k)|

̂(xik, y
i
k)) depicted in figure 2.13. This density

describes the likelihood that the real point that originated the measurement be in ̂(xik, y
i
k)

given that the sensor made an observation in (xik, y
i
k).

Figure 2.13: On the left: uncertainty model p((xik, y
i
k)|

̂(xik, y
i
k)) in the global reference frame.

On the right: the uncertainty model function of the positive occupancy of a point ci in the
global reference frame.

However, the sensor model sometimes appears in a slightly different form usually referred
to as the sensor occupancy model. This density function represent the likelihood that a
point ci in the global reference frame is occupied having made a sensor observation (x

i
k, y
i
k).

This former density contains additional information about the characteristics of the sensor
regarding occlusions. The basic idea being that if a measurement is made in (xik, y

i
k), the

space between this point and the sensor is likely to be free while the area around that point
is likely to be occupied. The sensor occupancy model that will be used in chapter 5 is shown
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in figure 2.13. The computation of such model is out of the scope of this dissertation but
more details can be found in (Elfes, 1989b; Papoulis & Pillai, 2002).

2.4 Environment representation

2.4.1 Foundations

Perceptual information continuously coming from sensors should be ultimately used to build
an accurate environment representation. By considering that all objects can be represented
as a vector in a state space, this environment representation should contain all the objects
states current estimates produced by the perception algorithms.

But it should also contain information about the uncertainties related to these estimates.
Note that because sensors will gradually acquire more and more measurements about the
same objects in the scene, uncertainties are expected to decrease progressively. These obser-
vations lead to the following possible definition:

An environment representation is a knowledge base that contains the current estimates
of some of the environment objects true states and the uncertainties related to them.

An environment representation is indeed only supposed to contain estimates of some of
the environment objects true states. First, no sensor is capable of observing all the state
parameters of an object. Second, depending on the application, some of the observable state
parameters are useless and as a result are not represented.

As mentioned before, each object state space contains in principle an infinite number of
dimensions. It is impossible to represent entirely the full state of an object with a finite
number of parameters. As a result, and because for a specific application it is not relevant
to represent the full objects states, a much smaller set of objects features will be chosen
and a knowledge representation will be built accordingly. For example a perception system
intended to feed a collision avoidance device is likely to be only storing information about
the position, speed and dimensions of the environment objects. However, even with reduced
state spaces, optimal representation of the estimates are usually difficult to implement. This
is mainly due to the fact that most objects parameters and uncertainties are continuous
information which is usually difficult to store directly.

As a result, further simplifications are usually needed to build usable representations. Over
the years, several options have been proposed that are all relevant trade-offs between these
four criteria:
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• Precision of the representation

• Precision of the uncertainty modelling

• Computation and storage requirements

• Capacity to represent the knowledge related to all the perception tasks.

A brief description of the most widely used environment representations is given in the next
sections.

2.4.2 Common environment representations

Features based representation

In features based representations, objects states are drastically reduced to a small number
of continuous or discrete parameters (e.g. cartesian position, speed, width and length of
each object) that are hopefully representative enough for the considered application. The
environment representation is then made of the list of these parameters estimates for each
object and is as such very efficient in terms of storage requirements. Uncertainties on state
parameters estimates are usually modelled using parametric probability density functions
such as Normal distributions allowing memory efficient storage.

The main drawback of features based representations is arguably the fact that unstructured
environment can not usually be precisely represented by low dimension state vectors. Features
based representations are, as a result, usually used for well structured environments where
objects can typically be correctly described by some geometrical primitives.

Figure 2.14: Example of a features based representation where the position, velocity vector
and dimension of the outlining box is estimated for each object in the environment.
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Grid based representation

In grid based representations, the environment is not directly described as a set of objects as
for the features based representation. The environment is instead subdivided into an array
or grid of rectangular cells and a probability value is stored for each of these cells. This value
measures historically (Elfes, 1989a) the probability for that cell to be occupied but can in
principle represents any other probability. The main advantage of this representation is to
allow precise modelling of uncertainties for the state parameter that is represented. However,
the memory requirements are usually high to reach sufficient resolutions for most applications.
Some methods known as quadtrees (Kraetzschmar et al., 2004) or multiresolution grid map
(Montemerlo & Thrun, 2004) have been proposed over the years to address this problem and
to allow lower memory usage.

Figure 2.15: Example of an occupancy map representation. White cells are free and black
ones occupied.

Direct representation

When precise measurements are available, it is possible to represent the environment as a
registered list of raw scans. Of course, the memory requirement for storing such a map grows
very quickly. However, because scans usually overlap, it is possible to regularly simplify the
point cloud using decimation. The representation of object shapes and positions can be very
precise but uncertainties are usually not modelled at all. Besides, this representation only
stores information about the object features that the sensor directly measures which limits
the use of this type of representation to low interpretation level (i.e position and geometrical
features). More details on this type of representation can be found in (Gutmann & Schlegel,
1996) and (Chen & Medioni, 1991).
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Gaussian based representation

Gaussian based representations have been proposed as a kind of intermediary solutions be-
tween grid based and direct representations. The idea is to represent uncertainties about
object positions as sums of Gaussians. In (Bailey, 2002), a scaled Gaussian is centered on
each sensor measurement to model sensors uncertainties. Even if the resulting density has
not a clear mathematical signification, efficient methods based on gradient descent can be
used for scans registration. However, the problem of merging multiple registered scans is
not addressed. In (Biber, 2003), a similar Gaussian based approach is proposed, but the
number of Gaussians present in the sum is contained. Like occupancy grids, a subdivision
of the environment is established. In cells where at least three sensor measurements were
made, a Gaussian is initially created. Then, each Gaussian in the sum is iteratively updated
using the new measurements that fall into the corresponding cell. The known gradient of
Normal densities can again be used for scan registration while the memory growth over time
is contained. This interesting environment representation is limited to geometrical map rep-
resentation and cannot directly store detection, classification or tracking results. Besides, it
is important to note that free spaces are not directly represented (unlike occupancy grids).

Figure 2.16: Example of environment representation using variable number of Gaussians
(Bailey, 2002) (on the left) and a fixed number of Gaussians (Biber, 2003) (on the right).

Hybrid representation

Because no paradigm is completely satisfactory, it is possible to use at the same time different
map representations. The objective is to benefit from the advantages of each of them. In
(Wang & Thorpe, 2004) an hybrid environment representation called hierarchical object based
representation is proposed. A direct representation is used to register the successive scans,
an occupancy grid based map is used to store the geometrical features of the objects and
a feature representation is employed to store objects position and velocity estimates and to
construct large scale representations.
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Figure 2.17: Example of an environment represented through the hierarchical object based
representation proposed in (Wang & Thorpe, 2004).
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2.5 Multiple Object Detection, Tracking and Classification

In this section a brief summary of the principles and technics used to detect, track and
classify static and moving objects is given. Over the last decades a massive amount of
different methods based on all types of sensors have been proposed. As a result this review
cannot pretend to be exhaustive. However, most of these proposed algorithms are in fact
variants of a small number of influential approaches. More than enumerating all the existing
technics, this section is thus intended to present the few main paradigms under which can be
grouped the vast majority of past and current research works in multiple objects detection,
tracking and classification.

It is important to note that the detection, tracking and classification of all the objects - static
or moving - in the environment is considered. While detection and tracking applied to moving
objects is usually referred to as DATMO algorithms for Detection And Tracking of Moving
Objects (Wang et al., 2007; Vu & Aycard, 2009; Benenson, 2008), the following abbreviation
DETAC for any type of object DEtection, Tracking And Classification is preferred here and
will be used in this dissertation.

2.5.1 Tracking

Even if tracking is usually not the first task to be solved in the data flow, this task is the
best formulated and the one that received historically the best attention. In their early days,
tracking technics were indeed employed for defense applications in very specific environments
and detecting or classifying air fighters or cruisers in unobstructed environments was less
problematic than estimating their real trajectories. As a consequence, tracking is usually
solved independently from the other tasks making the assumption that objects are correctly
detected beforehand. In the vast majority of existing DETAC systems, the perceptual tasks
are solved sequentially in that order: detection, tracking and then classification. As will
be seen in chapter 4, this lead to sub-optimal algorithms and solutions have recently been
proposed.

Figure 2.18: Data flow used in most objects detection, tracking and classification systems
(DETAC )
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As mentioned at the beginning of this chapter, the tracking problem is the combination of
two important and different sub-problems: the filtering problem and the data association
problem.

Filtering

A filtering algorithm aims at (iteratively) estimating the real state of an object based on
successive sensor measurements related to that object. This problem can be formulated on
various forms but the most commonly used in the autonomous perception field is certainly the
Bayesian formulation of this problem following the influential work of R.E. Kalman (Kalman,
1960).

The object state vector is usually described as a random variable noted Xk ∈ Rn and its
corresponding measurement zk ∈ Rm. The problem of estimating Xk from all the measure-
ments collected up to time k is then regarded as estimating the density p(Xk|Z0:k), where
Z0:k = {z0, ..., zk}. This estimation can be formally written as follows:

p(Xk|Z0:k) =
p(zk|Xk, Z0:k−1)
p(zk|Z0:k−1)︸ ︷︷ ︸
Correction Term

∫

Xk−1

p(Xk|Xk−1, Z0:k−1)p(Xk−1|Z0:k−1)dXk−1
︸ ︷︷ ︸

Prediction Term

(2.2)

Unfortunately, there exist no closed form solution for this equation without using additional
assumptions on the state dynamics p(Xk|Xk−1, Z0:k−1), sensor model p(zk|Xk, Z0:k−1) and on
the uncertainty representation. Depending on these assumptions, a great amount of famous
solutions have been proposed that can be grouped into two groups: single model and multiple
models approaches.

Single model approaches

When the object stateXk verifies the Markov property, the general form of the state dynamics
can be simplified as follows:

p(Xk|Xk−1, Z0:k−1) = p(Xk|Xk−1) (2.3)

This means that Xk only depends on Xk−1 and on some independent noise random variable.
This simplification usually holds when a single dynamic model (constant velocity model,
constant acceleration model, bicycle model, etc...) is employed, hence the name given to
these approaches. Precisely describing the various technics that are used to solve the filtering
problem in that case is both out of the scope of this thesis and already widely discussed in
the literature.

To name just a few of them, the Kalman filter addresses the filtering problem with the
additional assumption that the state dynamics are linear and the independent noise Gaussian.
The extended Kalman and the unscented Kalman filters are both sub-optimal variants that
handle nonlinear dynamics. The particle filter, a sampling (Monte-Carlo) based approach has
been given a lot of attention in the last decade. This former approach allows to consider both
nonlinear dynamics and non Gaussian noises (Herman, 2002; Arulampalam et al., 2001).
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Multiple models approaches

Depending on the application, single model dynamics might be insufficient to model the
behavior of an object. This is especially true when the object is prone to quick behavior
changes (walking, stopping, turning, running, etc...). In that case, an additional discrete
random variable rk ∈ R can be used to drive Xk using multiple models (one for each simple
behavior). The simplification of the equation 2.3 is not valid anymore and has now to be
derived as follows:

p(Xk|Xk−1, Z0:k−1) =
∑

ri∈R

p(Xk|Xk−1, rk = r
i) p(rk = r

i|Z0:k−1) (2.4)

As a consequence, even if the noises are Gaussian and every single model linear, the filtering
problem stays significantly more difficult than in the corresponding single model case. Indeed,
the marginalisation over the motion mode rk leads overtime to highly multi-modal densities
(exponentially growing mixture of Gaussians in the Gaussian case). If particle filters can in
principle deal with that problem, ensuring a correct description of such multi-modal densities
with particles is a difficult task. Hence, more appropriate methods have been developed. Most
common approaches use a fixed number of Gaussian to approximate densities. Depending on
when and how these Gaussians are merged to contain the exponential growth, these technics
are called Generalised Pseudo-Bayesian approaches (GPB) (Tugnait, 1981) or Interactive
Multiple Model (IMM) (Blom & Bar-Shalom, 1988) approaches. More details about these
technics can be found in (Andrieu et al., 2003) and (Wang, 2004).

Data association

All the filtering methods presented above assume that the correct observation is retrieved
at each time step for every tracked object. In practice, associating incoming measurements
with the appropriate tracked object is a complicated task. It is possible to categorize the
existing approaches depending on the nature of the result they produce in terms of uncertainty
management. Indeed, associating an observation with an already tracked object cannot be
done with certainty and dealing with this uncertainty can be done in several ways.

Full Posterior Densities approaches

Optimal solutions should of course produce a full posterior probability density over all the
possible associations between an object and the current sensor observations. Unfortunately,
this is intractable in most situations as it requires in principle to marginalize on all the past
possible associations (usually a huge number of possibilities). Indeed, the correct association
between objects and measurements depends on both current and past measurements and not
just on the previously computed associations (to put it differently, the considered random
process is not Markovian).

A first simplification known as Joint Probabilistic Data Association Filter (JPDA) (Bar-
Shalom & Fortman, 1987; Schulz et al., 2001) consists in considering only the possible
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associations with the current measurements and computing as a result a single scan sub-
optimal posterior density about the possible associations. In the filtering process, the state
density p(Xk|Z0:k) is then obtained by summing (marginalizing) over the weighted possible
associations with current measurements.

A more recent simplification known as Markov Chain Monte-Carlo Data Association (MCM-
CDA) (Zhao et al., 2008; Song & Nevatia, 2005; Oh et al., 2004) aims at estimating the
full posterior density through sampling. The general idea of Monte-Carlo approaches is to
compute estimates of probability densities under the form of a set of weighted samples. Un-
der specific assumptions, it is indeed possible to draw samples of a density without knowing
it explicitly. In other words, the density of interest is estimated through the estimation of
the probability of some well chosen association hypothesis (samples) instead of a greedy and
impossible enumeration of all the possible hypothesis.

Maximum A Posteriori (MAP) approaches

Instead of trying to estimate the full posterior association density, it is also possible to find
only the most probable association hypothesis (the hypothesis that maximises the above full
posterior density). In that case, the computation of the state density p(Xk|Z0:k) is simpler
as only one association hypothesis is considered. However, it still requires that all possible
associations over time be considered and is thus subject to growing complexity. This approach
was introduced by (Reid, 1978) under the name of Multiple Hypothesis Tracking (MHT) and
have been adapted ever since to control its growing complexity (Blackman, 2004).

Maximum Likelihood (ML) approaches

Finally, a widely used set of methods assume that correct association can be obtained with-
out considering any past measurements nor previous knowledge about possible associations.
These methods compute the association hypothesis that best fits the current measurement.
In a Bayesian framework, this kind of approaches are said to maximise the measurements
likelihood. The Nearest Neighbor (Blackman & Popoli, 1999) technics is a typical ML ap-
proach that consists in finding the association that minimizes a distance between objects and
associated measurements. If this method is obviously less robust than those presented above,
its computational requirements are very low and its efficiency acceptable in many situations.
As result, this is still a widely used technic for real time perception systems.

2.5.2 Detection

As seen above, the tracking algorithm needs to be feeded regularly with state variables
measurements. Unfortunately, sensors do not provide this information directly. Instead a
great number of unordered raw points is collected that need to be grouped before being
associated with tracked objects. Categorizing detection technics using the statistical nature
of the algorithm is not possible here as most existing methods do not handle uncertainties. It
is indeed important to notice that detection is not a problem that is as well mathematically
formalised as tracking. However, detection approaches can be classified in two groups :
geometry based methods and behavioral based methods.
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Geometry based methods

A widely used approach is to use heuristics about the spatial repartition of the raw data to
infer object detection. Methods that fall in this class are of two types. Model free detection
technics (Fayad & Cherfaoui, 2007; Schulz et al., 2001; Gate & Nashashibi, 2009) use simple
distance criteria between raw data to segment the scan in what is supposed to be objects.
On the contrary, Model based detection technics make use of a predefined model about the
particular objects that should be detected and select the raw data sets that best fit with this
model. While being more robust than the model free methods in most cases, they tend to be
limited to the detection of highly structured objects that can easily fit with a specific model.
An interesting example of a model based pedestrian detection through a kernel function based
model is given in (Gidel et al., 2008).

Behavioral based methods

A good manner to refine detection is to look at raw data evolution over time. Unfortunately,
dynamic information (such are velocities or accelerations) are not measured by sensors (except
for Radars) and has to be inferred. Tracking algorithms are specifically designed to solve
these tasks but initiating trackers on each raw data is not feasible in practice as the data
association would be impossible to solve due to the fact that none of the successive raw points
are related to the same real object points over time. This problem is arguably one of the
most important cause of failure in DETAC systems and has paradoxically received a limited
attention in the last decade compared to tracking issues.

Without being able to completely discriminate all the objects in the scene, methods have
been proposed to classify raw data as coming from static or moving objects using simple
heuristics. Indeed, given a correct localization of the sensing platform, it is possible to
detect that a group of raw data is currently located in a place that was unoccupied in the
previous scans. Moving object detectors of this type are employed in (Wang et al., 2007)
or (Wolf & Sukhatme, 2005) for example but are recognised in (Wang et al., 2007) to be
prone to limited performances when objects are moving slowly. Besides, such detector do not
solve the problem of discriminating moving objects from one another. A simple geometrical
criteria is then usually used to do so and as such inherits from the limitation of the approaches
presented above.

However, insightful work has recently been done in (Vu & Aycard, 2009) that built on
(Petrovskaya & Thrun, 2008) to propose an interesting and viable solution to this problem.
Tracking and detection are performed simultaneously using a predefined shape model for
every considered type of objects. AMAP estimate of this joint inference problem is computed
efficiently using a MCMC approach. If this approach is limited to objects that can effectively
fit with basic primitives and required the use of a pre-detection routine intended to detect
parts of objects, it certainly is a novel and promising direction. In chapter 5, a model free
approach to that problem is proposed that shows similar properties.
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2.5.3 Classification

Most applications requires that the detected and tracked object be classified. Classification
strategies fall in two categories: Heuristics based methods, and learning based methods.

Heuristics based methods

Provided that some relevant object features can be estimated through detection or tracking
(dimensions, velocity, etc...), it is possible to use experimental rules to classify objects. The
main advantage of this approach is that it is both simple to implement and computationally
efficient. But there are at least two main drawbacks. First, as these heuristics are based on
high level features that are not directly measured by sensors, performances are highly depen-
dent on the estimators (detection or tracking algorithms) that produce the employed features
estimates. Second, it is in practice often difficult to find a set of rules that are specific enough
to filter undesired objects and vague enough to adapt to all the different types of objects
that exist within a class (big cars and small cars have both to be classified as ”vehicles”).
Examples of such rules can be found for pedestrian detection in (Fayad & Cherfaoui, 2007;
Fayad et al., 2008; Gate et al., 2009) and for vehicle detection in (Petrovskaya & Thrun,
2009; Fayad & Cherfaoui, 2007).

Learning based methods

Due to the fundamental limitations of the heuristics based methods mentioned above, a
different approach has been given a lot of attention over the last three decades in all computer
science fields where classification or recognition problems are considered. Instead of finding
explicit rules to classify entities, these approaches are based on the idea that these rules
can be found automatically. In the autonomous perception domain, learning routines are
very rarely applied on unprocessed raw data. Instead, relevant features are estimated that
are then used by the learning algorithm to find the optimal classifier. Besides, the learning
process is made off-line in a supervised way (labelled data) in most cases. While significantly
more demanding in terms of implementation, these approaches have been proven to be far
more efficient than heuristics in lots of applications. A huge number of such classification
methods has been proposed in the recent literature. For example, implementations for ladar
based pedestrian classification can be found in (Spinello et al., 2008) and (Wender et al.,
2005).
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2.6 Simultaneous Localization and Mapping

2.6.1 Principles

The localization and mapping problem are two perception tasks that are highly dependent
on one another and are as such usually addressed as a joint inference problem of the following
density:

p(Xk,Mk|U0:k, Z0:k) (2.5)

, where Mk = {m1k,m
2
k, ...,m

n
k} is random vector representing the map of the environment

(as a list of so called landmarks), Xk is the global position and speed of the sensing vehicle at
time k, U0:k = {u1, u2, ..., uk} are the measurements coming from the proprioceptive sensors
and Z0:k = {z0, z1, ..., zk} are the measurements from the perception sensors. The SLAM
problem can then be written as a recursive Bayesian inference problem:

p(Xk,Mk|U0:k, Z0:k)︸ ︷︷ ︸
Posterior

∝ p(zk|Xk,Mk)︸ ︷︷ ︸
Measurement likelihood∫

dXk−1

∫

dMk−1

p(Xk,Mk|Xk−1,Mk−1, uk) p(xk−1,Mk−1|Z0:k−1, U0:k−1)

︸ ︷︷ ︸
Prior

dMk−1dXk−1 (2.6)

In this form, this inference problem is very difficult as it requires a marginalization (weighted
summation) over all the possible mapsMk−1 whose corresponding space is of high dimension-
ality. Besides, in practice moving objects are often too unpredictable to help localization.
These two observations lead to the static world assumption used by the vast majority of
mapping algorithms. Making the additional assumption that the sensing platform moves
independently from the map (which is not always true in practice), a simplified form is
obtained.

p(Xk,M |U0:k, Z0:k) ∝

p(zk|Xk,M)︸ ︷︷ ︸
Measurement perceptual model

∫

dXk−1

p(Xk|Xk−1, uk)︸ ︷︷ ︸
Sensing platform motion model

p(Xk−1,M |Z0:k−1, U0:k−1)dXk−1

(2.7)

Similarly to tracking technics, the existing methods can be categorized on the nature of the
computed density estimate. A brief overview of the most common approaches is given in
the following section. For a more detailed review, the interested reader can refer to (Thrun,
2002).

2.6.2 Common Technics

Full posterior density approaches

Depending on the assumptions made on the nature of the motion model, the perceptual
model and the posterior density that has to be estimated, two main paradigms are used.
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When models are assumed to be linear and noises and successive posterior densities Gaus-
sians, classical Kalman equations can be employed. This approach known as Kalman Filter
SLAM makes use of features based representations of the static map where static and easily
distinguishable landmarks have to be selected and sequentially associated with new incoming
measurements. This approach is very much similar to Kalman filter based tracking approach
and suffers from the same limitations: the Gaussian and linear assumptions can be too re-
strictive (sensing platform motion model are usually nonlinear) and the association problem
has to be handled separately. These two limitations lead to practical implementation difficul-
ties as using a growing set of landmarks brings association ambiguities and using too few of
them does not produce very rich maps and can lead to localization ambiguities incompatible
with the unimodal Gaussian assumption.

Quite logically, the same Kalman filter extensions used in the tracking problem are em-
ployed here to accommodate some nonlinearities and in particular a well known particle
filter (Monte-Carlo) based approach known as FastSLAM allows nonlinearities and free form
densities to be handled efficiently. In its pure form, the particle filter would consist in sam-
pling the joint density p(X0:k,M |U0:k, Z0:k). The considered sample space would contain
many dimensions (depending on the number of landmarks) and would lead to limited com-
putational efficiency. FastSLAM earned its name by using an exact factorization of the joint
probability:

p(X0:k,M |U0:k, Z0:k) = p(M |X0:k, Z0:k)︸ ︷︷ ︸
Map estimation with known poses

p(X0:k|U0:k, Z0:k)︸ ︷︷ ︸
Poses estimation

(2.8)

, and by using the Rao-Blackwell theorem ensuring that in this product if one of the two terms
can be computed analytically, sampling the remaining term suffices to compute samples of
the joint density. In other words, the SLAM problem can be reduced to the combination of
a sampling problem in a reduced space and an analytical mapping with known poses prob-
lem. This approach is proved to be significantly faster than Kalman filter based approaches
allowing much more landmarks to be added to the map and hence better environment rep-
resentation.

Maximum Likelihood approaches

Instead of trying to compute an estimate of the full joint density p(X0:k,M |U0:k, Z0:k), algo-
rithms have been proposed to compute at each time step the most likely map and robot pose.
In particular, the expectation-maximisation (EM) family of algorithms have received lots of
attention for maximum likelihood problems with what is called latent variables. Indeed,
finding the most likely map M̂ can be written as the following maximisation problem:

M̂ = argmax
M
p(Z0:k|M) (2.9)

However, maximising the above likelihood is usually intractable as it hides a missing (or
latent) variable: the robot pose. Computing the above problem would indeed require a
marginalization over all the possible robot trajectories. EM algorithms consists in computing
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a series of map estimates M̂ [0], M̂ [1], ..., M̂ [i] that converge to the most likely map M̂ . This
is done through the iterative computation of two steps.

1. Expectation step: the expected value of the log likelihood function is computed with re-
spect to the current estimation of the robot pose posterior given the current estimation
of the map:

Q(M |M [i]) = EXk|M [i],Z0:k [log p(Z0:k, Xk|M)] (2.10)

2. Maximisation step: the new map estimate is computed from the maximisation of the
function computed in the previous step.

M [i+1] = argmax
M
Q(M |M [i]) (2.11)

Various methods are used to solve the maximisation step and to compute successively es-
timations of the robot pose posterior given the current estimation of the map. The main
advantage of the EM approach over the full posterior approaches described above is that the
association problem is implicitly handled. Using the robot pose posterior density in the E-
step allows to maintain different hypothesis about where the robot might be, hence different
association hypothesis. While bringing an elegant solution to the data association prob-
lem, EM algorithms are not well suited for online implementation (because of their iterative
nature) and simplifications are commonly used.

A very popular and much simpler ML approaches called incremental maximum likelihood
methods can be seen as an EM algorithms with no Expectation steps. At each time step k,
an estimate of the map M̂k and of the robot pose X̂k using previously made estimates M̂k−1
and of the robot pose X̂k−1 is computed.

〈
M̂k, X̂k

〉
= arg max

Mk,Xk
p(Z0:k|Mk, Xk) p(Mk, Xk|M̂k−1, X̂k−1) (2.12)

Because uncertainties related to the robot pose are lost at each new computation, this method
is less robust than EM approaches. It is consequently difficult to map large cyclic environ-
ments using this method as errors in robot pose is likely to grow over time and to prevent
the system from being able to ”close the loop”. However, this approach is fast and simple
and has been proven to work well in practice.
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2.7 SLAM with DATMO

As shown in the last two sections, significant efforts have been carried out to propose satisfac-
tory solutions for every perceptual task. Because of their direct and explicit interdependen-
cies, localization and mapping have historically been addressed as a joint inference problem
assuming that the world is static in most situations. At the same time, with less explicit
interdependencies, the three remaining perceptual tasks: detection, tracking and classifica-
tion have been addressed separately as independent problems by a slightly different scientific
community.

Recently, significant efforts have been made to fill the gap that still exists between these
tasks. The SLAM community is slowly heading to dynamic environment mapping problems
while a part of the MOT community is looking at mobile object mapping and environment
based localization routines. SLAM and DATMO have been recognized as mutually beneficial
and pioneering approaches have been proposed to compute these tasks together.

All of them propose original methods to compute SLAM with DATMO (classification is
not addressed directly in these works) based on the idea that a robust localization of the
sensing platform can be used to efficiently detect moving objects in the scene while this
latter knowledge allows in return better localization and static objects mapping (moving
objects can be filtered out before SLAM computation). A brief overview of these works is
given in the next paragraphs.

Interesting systems have been first proposed to deal with indoor environments. In (Prassler
et al., 1999), a dead-reckoning localization (localization without the help of external sensors)
is performed to construct over time a grid based map of the stationary objects. At the same
time a simple heuristic is used to detect mobile objects and a analytical tracking scheme is
initiated on each of them. While being quite simple, this approach was proven to be efficient
in indoor environments with slow moving sensing platforms.

In (Hahnel et al., 2003) and (Montesano et al., 2005), two similar systems are proposed
with however a more probabilistic approach. Incremental maximum likelihood methods are
used for localization and mapping while extended Kalman filter (Montesano et al., 2005) or
particle filters (Hahnel et al., 2003) are used to track moving objects. Perceptual knowledge
is stored in an occupancy map for static objects and in a features based map for mobile
objects. Similarly to (Prassler et al., 1999), mobile object detection is performed by detecting
new sensor observations that fall into spaces previously unoccupied (free space violation).
However, this simple heuristic is integrated in a Bayesian framework. Indeed, every new
sensor observation is given a probability to be related to a mobile object. During SLAM
computation, the use of every sensor observation is weighted by this probability, making the
whole process less dependent on mobile objects detection failures.

At the same time, (Wang, 2004) proposed a comparable system whose main originality lies in
its ability to scale to large outdoor. This is achieved by using a relevant mix of a direct, grid
and features based environment representation called hierarchical object based representation,
a direct ML method for SLAM (scan matching through an Iterative Closest Point (ICP)
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based algorithm) and a IMM based mobile objects tracking. Although the detection of
moving object is also based on free space violation, this classification is not embedded in a
Bayesian framework and is as such a sensitive part of the system.

More recently another insightful SLAM with DATMO approach has been proposed by (Vu &
Aycard, 2009). While being very similar to Wang, except that SLAM is computed using an
incremental ML method, the proposed method makes use of a sampling based approach to
solve simultaneously the detection and tracking of moving objects. A computer efficient MAP
estimate of the detection and tracking joint density is computed by using a Markov chain
Monte-Carlo (MCMC) sampler as already mentioned in paragraph 2.5.2 of this dissertation.

All the systems presented in this section compute SLAM and DATMO at the same time
but with still noticeable boundaries between the five perceptual tasks. Indeed, these systems
can arguably and mostly be seen as a juxtaposition of a SLAM algorithm and a DATMO
algorithm that share limited information. In other words, there are still important boundaries
between localization and mapping on the first hand and detection, tracking and classification
on the other hand.

Figure 2.19: Schematic view of current SLAM with DATMO algorithms.

The main implication is that all these systems require a clear distinction between sensor
observations that belong to static objects and those belonging to moving objects. In practice
such a distinction might be difficult for slow moving object like pedestrians as described in
(Wang et al., 2007). Besides, only a small number of possible interactions between the tasks
is exploited.

2.8 Conclusion

In this chapter, a brief but hopefully clear overview of existing autonomous perception al-
gorithms is given. As seen in the last section, significant efforts have been recently carried
out to put efficient SLAM algorithms and DATMO algorithms together in the same system.
Interesting approaches have been proposed but the interactions between the five perceptual
tasks are still very limited. Indeed, in all SLAM with DATMO systems, SLAM provides to
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DATMO a refined localization and a rough classification of sensors measurements as moving
or static. Symmetrically, DATMO provides to SLAM a list of currently tracked objects that
should not be incorporated in its next computation.

Making use of such an interaction is undoubtedly a good way to enhance globally the ca-
pabilities of perception systems. However, we believe that this effort should be extended to
design a perception system where localization, mapping, detection, tracking and classification
are computed within the same mathematical framework allowing every possible interaction
between the tasks to be elegantly exploited.

To objectively quantify the benefit of such an approach (presented in Chapter 5 and 6 of this
dissertation), it is critical first to analyze what state-of-the-art perception algorithms such
as those described in this section can do and most importantly what they cannot achieve
in practice. Using the pedestrian perception problem in urban environment as a test-bed,
we investigate in the following chapter what can be achieved with common perception ap-
proaches.

Figure 2.20: Schematic view of what can be achieved with the approach proposed in Chapter
5.



Résumé en français du chapitre 3

Ce chapitre présente de manière objective un système de perception complet représentatif,
nous l’espérons, de ce qu’il est possible de construire avec les algorithmes déjà proposés dans
la littérature. Ce système basé sur la contribution d’un capteur LIDAR et d’une caméra
reste cependant innovant dans la façon dont les incertitudes sont traitées et dans sa capacité
à ”percevoir” les piétons et les groupes de piétons. Nous présentons en détail les performances
de ce système qui serviront de ”références” dans la suite de ce mémoire.

41



42 Résumé
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3.1 Introduction

We present in this chapter a system that addresses the problem of pedestrians perception in
urban environments. As mentioned earlier, the work presented in this chapter is expected to
meet two objectives:

1. Design a fast pedestrian perception system from state-of-the-art approaches.

2. Produce quantitative results on the performances of such a system to allow an objective
analysis about what such systems can achieve in terms of reliability.

It is worth noting that the algorithm presented in this chapter is now an important con-
tribution to a research project called LOVe1 (”Logiciels d’Observation des VulnerablEs”)
sponsored by the French government and accompanied by two companies: RENAULT (car
manufacturer) and VALEO (automotive supplier).

1The LOVe project is under the coordination of Professor L. Trassoudaine, LASMEA, 63177 Aubiere,
France
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3.2 Existing systems and related work

3.2.1 Pedestrian perception systems already commercialized

In the last five years, some pedestrian perception systems have started to be commercialized
by the automotive industry to serve pre-crash purposes. These systems, equipping usually
high-end cars, have some strong limitations that are mainly due to the nature of the sensors
they are based on.

Night vision systems

The vast majority of pedestrian perception systems that have appeared on vehicles in the
recent years are based on infrared cameras. By being sensitive to light in the infrared or ultra-
violet spectrum, these sensors are able to ”see” objects that are normally not visible at night
to human eyes. Some of these sensors are aided by an appropriate infrared illumination of
the scene. Because objects that are particularly hot naturally emit infrared radiations, these
sensors present interesting capabilities. Objects detection and classification are consequently
made much easier (as seen in figure 3.1) by using such sensing strategies. Unfortunately, all
these advantages disappear during daylight where every kind of object in the scene is likely
to emit infrared radiations. Besides, as explained in the previous chapter, it is not clear how
a precise range information can be extracted from systems using a single monocular camera.
Almost all automotive brand that produce high-end cars have developed their own night
vision system based on that principle.

Figure 3.1: The night vision system of a famous german automotive company.

Daylight systems

There are a much lower number of commercialized pedestrian perception systems that work
at the same time on daylight and on mobile platforms. One of them is designed by a com-
pany called Mobileye and will presumably be launched in 2010 with the contribution of the



3.2. EXISTING SYSTEMS AND RELATED WORK 45

automotive company Volvo. This system will apparently be based on the contribution of a
radar and a monocular visible camera.

Communication based systems

It is interesting to mention an effort that is currently undertaken by the automotive company
Nissan to address the problem of pedestrian safety in a original way. Instead of trying
to detect pedestrians from perceptual sensors (cameras, ladars, radars, etc...), this firm is
investigating the possibility to detect and locate pedestrians through their cell phones. This
approach would have the big advantage to solve at the same time all the classic perceptual
tasks by relying directly on signals transmitted by surrounding pedestrians. This approach
is however limited to pedestrians lucky enough to be equipped with appropriate cell phones.

Figure 3.2: Schematic view of the pedestrian approach adopted by Nissan.

3.2.2 Pedestrian perception in French and European research projects

In the recent years a significant number of research projects implying both academic and
industrial entities have been elaborated and have generated a great variety of work related to
pedestrians perception with various sensor strategies. A non-exhaustive list is given below:

• PROTECTOR2 (2000-2002) and SAVE-U3 (2002-2005) led by Gravila and his team at
Daimler AG.

• INTERSAFE4 (ending in 2007) led by IBEO.

• WATCHOVER5 (2005-2008) related to pedestrian safety through communication and
vision based strategies.

• CAMELLIA (ended in 2005)

2www.gravila.net
3www.save-u.org
4www.prevent-ip.org
5www.watchover-eu.org
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• LOVE6(2006-2009)

• AKTIV7 (2006-2010)

These research projects that involve(d) some of the major european automotive companies
show the interest of both industrial and governmental authorities into pedestrian safety.

3.2.3 Pedestrian perception systems based on ladar in the literature

In the scientific literature, a significant number of complete pedestrian perception systems
have been proposed over the last decade. In practice, because the accurate estimation of
object range is a prerequisite to efficient collision avoidance systems, these solutions are very
often based on ladar sensors. As ladar will also be employed in the system described in this
chapter, we give in this section a brief overview of some of the pedestrian detection systems
based on ladar that proved to be usable in real time.

All these methods can of course be differentiated from the approaches chosen to solve se-
quentially the detection, tracking and classification problems. However, we believe that the
classification method that is employed accounts for the most part of these systems respective
performances. Indeed, the detection methods are usually very much similar to one another
(usually based on some distance criteria) and perfect tracking is not directly of paramount
importance for such applications. Indeed, missing the fact that two pedestrians sequentially
detected are in fact the same real pedestrian is not crucial provided that dynamical features
are still well estimated to maintain correct classification. In this overview, existing systems
are consequently categorized from the classification strategy they propose.

Heuristics based pedestrian classification

In (Fuerstenberg et al., 2002) and (Streller et al., 2002) the current dimensions of the detected
objects are used for classification. However, because objects can be occluded at certain point
in time, these approaches have a limited efficiency in complex scenes. A natural turnaround
is to incorporate such geometry based classification rules into a Bayesian framework.

In (Zhao et al., 2006; Premebida & Nunes, 2006; Mendes et al., 2004; Fayad & Cherfaoui,
2007) a Bayesian filter is used to iteratively update a posterior probability mass function
over the possible objects classes. The dimensions of the currently detected objects are then
incorporated in the filter as a likelihood. Consequently, if an object is temporarily occluded
and its visible dimensions modified, the system can still ensure accurate objects classification.

When pedestrian legs are visible on ladar raw data (this depends mainly on the object range
and on the angular resolution of the sensor), a classification can be made on this feature as
shown in (Xavier et al., 2005; Shao et al., 2007; Cui et al., 2007; Zhao & Shibasaki, 2005;
Fuerstenberg et al., 2003). All of the above approaches use a ladar to classify pedestrians

6http://love.univ-bpclermont.fr
7www.aktiv-online.org
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but interesting shape based classification method can also be used with cameras as shown in
(Bertozzi et al., 2003).

Learning based pedestrian classification

As mentioned in chapter 2, over the years learning based classification methods have been
proven to be more efficient than heuristics based technics in many applications. This is
particularly true when sensors provide rich information content, usually complex to handle
through heuristics. Consequently, learning based methods are much more common in com-
puter vision than in ladar based processing. However, some interesting efforts have been
made to apply learning based approaches to ladar classification.

In (Spinello et al., 2008), a cascade of support vector machines is used to classify clustered
raw data. In (Wender et al., 2005), a trained neural network is used to classify objects from
extracted features. In (Zivkovic & Krose, 2007) a trained leg detector is used for classification.
Finally, in (Arras et al., 2007) a boosting algorithm based on a set of geometrical features
extracted from clusters is employed. Even if these approaches give satisfying results, their
benefits over simpler classification schemes for ladar data classification is not well established.

Some multi-sensor strategies have also been recently proposed. In (Spinello et al., 2008),
the classification scheme mentioned above is combined with an implicit shape model (ISM)
based classification method for refining object classification using the corresponding region
of interest in the camera image.
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3.3 Principles

3.3.1 Requirements

As mentioned in Chapter 1, a perception system intended to feed an onboard collision avoid-
ance system is expected to meet three constraints:

1. Precision

2. Robustness

3. Computational efficiency

It is important to note that, if a system able to retrieve every pedestrian in a scene is
desirable, it should not be to the detriment of the system precision: its ability to detect only
pedestrians.

The perception system is intended to output the list of the pedestrians present in the envi-
ronment. Every pedestrian should at least be defined by an estimate of his position in the
sensing platform frame and an estimate of his velocity in a global Galilean frame. These
objects features are indeed required to subsequently compute a collision risk indicator for
each pedestrian.

3.3.2 Sensors choice

These criteria can in principle be met by using several sensing strategies. Indeed, any combi-
nation of a range sensor and a camera can in some way meet these requirements: the range
sensor is usually not sensible to illumination and only partly sensible to weather conditions,
whereas cameras allow for precise classification.

However, as mentioned in chapter 2, range sensors are not all equivalent. First, due to their
low maximum range and to their limited angular resolution, sonars do not appear to be suit-
able for pre-crash applications. Radars could in principle be an appropriate solution because
of their high maximum range and their robustness to weather conditions. Unfortunately,
after some experiments, the radar that we used turned out to be not capable of generating
data from pedestrians located too far away from the sensing platform as shown in figure 3.3.
Consequently, although we still believe that pedestrians perception is possible with radars,
we were unable to pursue our work with ours and we used a 4-layers ladar instead.

Due to the high cost of infrared cameras, a visible spectrummonocular camera was chosen
to complement the system.

3.3.3 Sensor combination strategy

Due to the respective characteristics of ladars and cameras, and because processing a whole
camera image is usually more computationally demanding than processing a ladar scan, it
seems relevant to use ladar measurements for detection, tracking and rough classification
and monocular images for a refined classification of the objects released by the ladar based
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Figure 3.3: A situation where the radar do not provide any data related to the pedestrians
present in the scene.

Figure 3.4: The chosen sensing strategy.

sub-system. This sensor combination strategy can be schematized as shown in figure 3.5 and
summarized as follows:

• Use a ladar based sub-system to generate candidates (regions of interest in the corre-
sponding image).

• Then use a vision based sub-system to classify the corresponding regions of interest
and to filter out candidates that are not pedestrians.
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Figure 3.5: Schematic view of the combination strategy.

Three components are needed to implement this strategy:

1. A ladar based system has to be designed to produce pedestrians candidates.

2. A vision based system has to be designed to classify the regions of interest in the image
related to each pedestrian candidate.

3. A method has to be designed to handle elegantly the uncertainties generated by the
two sub-systems.

3.3.4 Uncertainty management

As shown in chapter 2, all the algorithms used to solve the perceptual tasks do not handle
uncertainty with the same level of precision. Some of these algorithms compute posterior
probability densities and hence provide a good estimate of the uncertainty involved in the
result they provide. But when computational efficiency is required most usable algorithms
compute estimates deprived of any uncertainty modelling. As a result, using a processing
chain of three or four such fast algorithms can rapidly lead to non robust outputs.

To retain ”artificially” some of these uncertainties throughout the process, we propose to
maintain for each detected object a small number of additional estimates called scores that
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will correspond to the estimated values of these three probabilities:

• Detection score Δik: estimate of the probability P (D
i
k|Z0:k)

with Dik: ”the detected object i at time k is a real object”.

• Classification scores Φik = (φ
i,j
k )1≤j≤n: estimates of the probabilities
(
P (Ci,jk |D

i
k, Z0:k)

)

1≤j≤n

with Ci,jk : ”the detected object i at time k belongs to class j”.

• Tracking score Ψik: estimate of the probability P (T
i
k|D

i
k, Z0:k)

with T ik: ”the trajectory of the tracked object i at time k is perfectly known”.

These scores will be called uncertainty scores in the following. In this chapter only three of
the five perceptual tasks will be addressed: detection, tracking and classification. Existing
approaches for DETAC systems are mostly based on the sequential computation of these
three tasks. Maintaining these three scores for each initially detected objects, will allow every
single sequential algorithm to potentially refine these scores. In other words, it is a simple
but efficient way to authorize a certain level of interaction between sequential algorithms and
to keep traces of the uncertainties generated by each of them. Besides, most intermediary
hard decisions about the detected objects that are always a possible source of errors can now
be postponed to the end of the process using the consolidated information aggregated into
the scores. This uncertainty management strategy can be schematized as seen in figure 3.6.

As each algorithm can potentially refine some of these scores, methods that are used to
combine the former scores with the new information brought by the current algorithm are
also detailed in this chapter. The process of combining some knowledge coming from different
algorithms is usually and will be in this dissertation referred to as fusion.

Δik, Φ
i
k and Ψ

i
k denote the estimates values at the end of the perception algorithm. Inter-

mediary estimates of these probabilities during the process will be indicated with additional
indices. For example, the final detection score Δik for object i at time k will be the result of
successive incomplete estimates: Δik,1, Δ

i
k,2, ... ,Δ

i
k,n = Δ

i
k (each one being an intermediate

estimate produced along the process).

Although this approach can be applied to the detection, tracking and classification of many
different types of objects at the same time (a classification score is then produced for every
class of objects), only two exclusive classes (n = 2) will be used in this chapter : pedestrians
and groups of pedestrians for reasons explained later in this chapter.

In the following sections, we present successively the ladar based algorithms used to produce
pedestrians candidates, the vision based algorithms used to refine classification, and the final
fusion rule used to combine the different scores estimates coming from the vision and ladar
based sub-systems.
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Figure 3.6: Schematic view of how uncertainties are artificially maintained throughout the
process.
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3.4 Ladar based algorithm

3.4.1 Principles

In this application we are primary interested in objects positions and velocities. Hence, a
precise mapping and sensing platform localization is a priori not required. As a result, a
feature-based representation of the environment is used. Every object in the environment is
modelled as follows:

Xik =







xik
yik
vix,k
viy,k





 (3.1)

, where xik and y
i
k are the cartesian positions of the object in the sensing platform frame and

vix,k and v
i
y,k are the cartesian components of the object velocity in a Galilean referential but

expressed also in the sensing platform frame. The data flow that is used is similar to most
existing ladar based perception systems and can be schematized as follows.

Figure 3.7: Schematic view of the ladar sub-system data flow.

3.4.2 Objects Detection

Algorithms

The range image provided by a ladar is made of a fixed number of points that need to
be grouped into objects. Ideally, all the points belonging to the same real object should be
clustered together. In the absence of any dynamic information about these points, two simple
geometrical observations can be used to decide if two points are likely to belong to the same
object:

• Proximity: ladar impacts that are close are likely to belong to the same real object.

• Alignments: ladar impacts that are perfectly aligned are likely to belong to the same
object even if they are not close.

To implement these two ideas, ladar raw data are first processed using a deterministic line
fitting algorithm called Ramer algorithm and described in (Mendes et al., 2004). This line
fitting algorithm output a list of segments that is a simplified representation of the ladar raw
scan. Segments contained in the list are then grouped together using the following simple
distance criteria.
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Two segments closer than d are grouped together

Note that the distance used between two segments is the minimum cartesian distance between
two of their extremities.

Figure 3.8: Schematic view of the ladar based detection process.

Ladar multi-layers management

The ladar used in this study features 4 sensing layers, consequently the detection algorithms
described above are performed on each layer. As a result, a specific set of ”detected objects”
is generated on each layer. Of course, these 4 sets are strongly related to one another as a
real obstacle is likely to be observed on more than one layer. This redundancy is used at
this point to refine the list of detected objects that will be sent to subsequent (tracking and
classification) algorithms.

We make the assumption that one of the ladar layer remains horizontal and should as such
be able to collect data from all the obstacles in the scene. This layer is called the ”layer of
reference”. For every detected obstacle in the layer of reference, the theoretical number of
other layers that should observe the same obstacle is computed through simple geometrical
considerations as depicted in figure 3.9. This depends of course on the range distance of the
considered detected object and on the expected height of the considered obstacle. Because
this system focuses on pedestrians, a height of 1.70m is used (a smaller value should be used
for children detection).

Finally, a basic routine is used to filter out all the detected objects of the ”reference layer”
that do not appear on the expected number of other layers. The refined list of detected objects
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Figure 3.9: Schematic view of the number of layers that should observe a pedestrian of a
given height depending on his range distance.

obtained in this way is then used in the subsequent steps of the pedestrian perception system
described in this chapter without taking into account other layers anymore.

The main drawback of this multi-layer management approach is that the layer chosen as
the reference layer rarely remains horizontal in practice and might occasionally miss some
obstacles. A better multi-layer management strategy can certainly be designed if the vehicle
pitch can be estimated (this is however not the case in our experimental setup).

Note that the whole pedestrian perception system described in this chapter is directly scalable
to mono-layer ladar by simply skipping the process mentioned in this section.

The problem of groups of pedestrians

Using the above method, good detection can usually be achieved when objects are both dense
(generate a high number of impacts) and not too close from each others. Unfortunately, for
pedestrians these two requirements do not always hold. In urban environment, pedestrians
tend to move in groups (crossings, sidewalks) and are as such often very close from each
others and highly occluded. As a result, they can not always be easily discriminated from
one another using a ladar. Using distance based detection algorithms, several pedestrians
can be detected as one unique object that is likely to be ultimately classified as a not a
pedestrian (e.g. usually for dimensions reasons) as seen in figure 3.10.

Decreasing the distance criteria d in the detection algorithm is a way to achieve better
discrimination. Unfortunately this leads to incorrect detection of bigger objects. This is
not satisfactory either as it can lead to a high number of false positive. A vehicle wrongly
detected as two small objects can potentially generate two erroneous pedestrian candidates.

Instead of trying to discriminate every single pedestrian in a group, we propose to compute
for each detected object an additional classification score related to the following object class:
groups of pedestrians.
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Figure 3.10: An example of the limited performances of distance based detection algorithms
for groups of people detection.

First estimate of the detection probability

The detection algorithm described in the previous paragraph does not compute any uncer-
tainty measure. As already mentioned, the goal of the uncertainty scores is to maintain how-
ever a fair amount of uncertainty management throughout the process. It is then necessary
to compute artificially a measure of the uncertainty generated by the detection algorithm.

As bad detected objects usually contain segments that are far from each others (at distance
just below the threshold d used in the detection algorithm), the following simple estimator
has been proved to be relevant in practice.

Δik,1 = 1−
Maximum distance between segments

Threshold d used for detection
(3.2)

First estimate of the pedestrian classification probability

After detection, the dimensions of every detected object can be estimated and first a estima-
tion of the classification probability mass function (classification scores) can be made. For
pedestrians, two simple ideas can be used to compute a relevant classification score:

1. A pedestrian must appear as a detected object with small dimensions, provided that
he is correctly detected.

2. A pedestrian is likely to be either a totally occluded or a totally visible detected object
when he is not walking in a group. This has to be understood in the sense that occluded
small detected objects are likely to be parts of bigger objects.
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As a consequence, a first pedestrian classification score is computed through the combination
of two terms corresponding to those two heuristics.

φ
i,pedestrian
k,1 = Γ1(w

i
k, l
i
k, α

i
k)︸ ︷︷ ︸

Size criterion

× Θ(occludedik)︸ ︷︷ ︸
Occlusion criterion

(3.3)

, where (lik, w
i
k) are the measured dimensions of the object i outlining rectangle and α

i
k the

angle between its rectangle center of gravity and the x axis of the sensing platform as shown
in figure 3.11.

Size criterion

The size of the every detected object is represented by the dimensions of the corresponding
outlining rectangle (lik, w

i
k). Based on the fact that a pedestrian can be detected as a rectangle

whose dimensions can vary a lot depending on its angular position in the platform frame, the
dimensions of the objects outlining rectangle should be used with care as seen in figure 3.11.

Figure 3.11: On the left: a pedestrian modelled as a cylinder can be detected as a rectangle
of varying size depending on its angular position. On the right: the pedestrian model and
corresponding notations.

The term Γ1(w
i
k, l
i
k) of equation 3.3 can be regarded as the following likelihood:

Γ1(w
i
k, l
i
k, α

i
k) = P (w

i
k, l
i
k|C

i,pedestrian
k , Dik, α

i
k) (3.4)

As for a given outlining rectangle of dimensions (wik, l
i
k), there exists a unique (∀α

i
k 6= π/4)

enclosed rectangle of dimensions (aik, b
i
k), this likelihood can be computed directly as follows:
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P (wik, l
i
k|C

i,pedestrian
k , Dik, α

i
k) = P (a

i
k|C

i,pedestrian
k , Dik)× P (b

i
k|C

i,pedestrian
k , Dik) (3.5)

, where ∀αik 6=
π
4 ,

aik =
lik cos

∣
∣αik
∣
∣− wik sin

∣
∣αik
∣
∣

cos
∣
∣2αik

∣
∣ (3.6)

bik =
wik cos

∣
∣αik
∣
∣− lik sin

∣
∣αik
∣
∣

cos
∣
∣2αik

∣
∣ (3.7)

It is now possible to use simple estimations of the two likelihoods exhibited in equation 3.5.
In practice we measured that a pedestrian has a width between 20cm and 80cm and a visible
depth that does not tap 40cm on ladar raw data. The following likelihood can then be used:

Figure 3.12: An example of two likelihoods that proved to work well in practice.

An example of the likelihood Γ1(w
i
k, l
i
k, α

i
k) computed for three typical angular position is

given in figure 3.13. These results are consistent with the fact that a pedestrian in front of
the vehicle (αik = 10) should be detected as a horizontal rectangle, a pedestrian on the side
of the vehicle (αik = 80) should appear as a vertical rectangle and a pedestrian located in
between these two extremes (αik = 50) should be detected almost as a square.
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(a) αik = 10 degrees

(b) αik = 50 degrees

(c) αik = 80 degrees

Figure 3.13: Example of Γ1(w
i
k, l
i
k, α

i
k) for different value of α

i
k.
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Occlusions criterion

As mentioned above, in practice, single pedestrians are rarely partially occluded. They can
of course be occluded but they are then either totally invisible to sensor measurements or
in a group (that case is addressed later in this section). As a result, the term Θ is used to
penalize objects that are partially occluded.

Figure 3.14: Object i is labelled as occluded depending on the relative position of objects
i− 1 and objects i+ 1 using the rule below.

That is why, using the notation of figure 3.14, each detected object i at time k is labeled
either as ”occluded” or ”not occluded” following the rule:

occludedik =

{
1 if (α < resolution) ∧ (dRi−1 < d

L
i ) ∨ (β < resolution) ∧ (d

R
i > d

L
i+1) = 1

0 else
(3.8)

The term resolution refers to the angular horizontal resolution of the ladar used (this reso-
lution is for example equal to 0.5 degree in our experiments). Then, the term Θ is given a
binary value as follows:

Θ(occludedik) =

{
1 if occludedik = 0
0 else

(3.9)

First estimate of the group classification probability

If some of the previous classification principles might apply to a group of people, the size
criterion need of course to be altered and an additional criteria should be used to differen-
tiate for example groups of people from all the vehicles that are usually present in urban
scenes. Groups of people usually appear as relatively big obstacles made of a high number
of unordered segments. On the contrary, many other obstacles of similar size are composed
of highly structured segments configuration.

The segment configuration of a detected object i at time k is noted as follows:

segik =
{
sik,1, s

i
k,2, ..., s

i
k,n

}
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, where (sik,j)1≤j≤n are the segments that have been produced and grouped together by
detection algorithms on the horizontal ladar layer (layer of reference).

A good first estimate of the groups classification probability can be computed using the
following combination:

φ
i,groups
k,1 = Δ(segik)︸ ︷︷ ︸

Segment configuration criterion

× Γ2(w
i
k, l
i
k)︸ ︷︷ ︸

Size criterion

× Θ(occludedik)︸ ︷︷ ︸
Occlusion criterion

(3.10)

While the last term of the above equation remains identical to the one used in equation 3.3,
the first two terms need to be explained:

Size criterion

A group can include several pedestrians and the method described above to compute the like-
lihood that a detected object with an outlining rectangle of given dimensions is a pedestrian
do not scale well to groups.

In fact, the dimensions of such obstacles do not have any upper bound. A group of 100
people can indeed be detected as a very big obstacle. However, these dimensions are unlikely
to be lower than a specific set of values (wmin, lmin) that depend on the angular position of
the group. We propose to build a simple likelihood function from the estimation of these
minimum dimensions.

Figure 3.15: The group model used to compute the minimum dimensions that such obstacles
should have depending on α.
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We assume that the smallest group is made of two pedestrians at a distance dmin as shown
in figure 3.15. The minimum dimensions of the resulting outlining box are given by:

wmin = amin cosα+ bmin sinα+ dmin |sin(θ − α)| (3.11)

lmin = amin sinα+ bmin cosα+ dmin |cos(θ − α)| (3.12)

As a consequence, for a given object angular position αik, the dimensions (w
i
k, l
i
k) of the

outlining box should meet the following requirements:

{
wik ≥ wmin
lik ≥ lmin

=⇒






(wik −A)
2 + (lik −B)

2 ≥ d2min
wik ≥ A

lik ≥ B

(3.13)

, with A = amin cosα
i
k + bmin sinα

i
k and B = amin sinα

i
k + bmin cosα

i
k.

The above algebraic equations only define the minimum dimensions of a group of people as a
function of α. A simple likelihood Γ2(w

i
k, l
i
k, α

i
k) can be obtained by forcing Γ2(w

i
k, l
i
k, α

i
k) = 1

when wik > wmin or l
i
k > lmin and Γ2(w

i
k, l
i
k, α

i
k) = 0 in any other situation. The transition

between these two states is made linear as shown in figure 3.16.

Γ2(w
i
k, l
i
k, α

i
k) = P (w

i
k, l
i
k|C

i,groups
k , Dik, α

i
k) (3.14)

The examples shown in figure 3.16 are consistent with the fact that the smallest possible
group will be seen as a horizontal rectangle when αik is small and as a vertical rectangle when
αik is bigger.

Segments configuration criterion

In order to penalize big obstacles that are not groups of people, the following observation
is used: groups of people tend to be composed of unordered small segments as opposed to
other big obstacles (vehicles, walls, bus, etc...) that tend to be made of a few number of big
segments.

Δ(segik) =
∏

1≤j≤n

f(
∥
∥sik,j

∥
∥) (3.15)

where f is a trapezoidal function that penalizes both small and very large segments:

f(x) =






0 ∀x < a1, x ≥ a4
x−a1
a2−a1

∀a1 ≤ x < a2
1 ∀a2 ≤ x < a3
a4−x
a4−a3

∀a3 ≤ x < a4

(3.16)
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(a) αik = 10 degrees

(b) αik = 50 degrees

(c) αik = 80 degrees

Figure 3.16: Example of Γ2(w
i
k, l
i
k, α

i
k) for different values of α

i
k.
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In our experiments, the following values were chosen:

(a1, a2, a3, a4) = (0.2m, 0.4m, 0.6m, 0.8m)

This simple criterion proved to be surprisingly efficient in discriminating groups of people
from other ”big” obstacles as shown later in this chapter.

Conclusion

By discriminating all the objects in the scene and providing rich geometrical information
about them, the detection algorithms used allow to compute relevant initial estimates for the
detection and classification probabilities as schematized in figure 3.17.

Figure 3.17: The detection algorithms alter the detection and classification scores.



3.4. LADAR BASED ALGORITHM 65

3.4.3 Objects Tracking

Algorithms

Data association

As mentioned above, detection algorithms can produce erroneous obstacles: a real object
detected as one object at time t can unfortunately be detected as two separate objects at
time t + 1. As a consequence, the association of more than one detected object to one
tracked object should be made possible. This can be easily implemented using the joint
probabilistic data association approach (JPDA) detailed in chapter 2. Every tracked object
is associated with all the currently detected objects that are in its vicinity (distance ≤ α)
and an association probability βi,j is computed for each possible association between tracked
object i and the currently detected object j whose center of gravity coordinates are noted
X
j
k.

βi,j ∝ N (Xjk, μ
i
k,Σ

i
k)︸ ︷︷ ︸

Mahalanobis distance

× Δjk,1︸︷︷︸
Detection score

The Mahalanobis distance is commonly used in the computation of such association proba-
bilities. But the additional information contained in the detection score Δjk,1 proved to be
relevant in practice as it decreases the influence in the filtering process of the detected objects
that are likely to be erroneous.

Filtering

Assuming that the density probability of the random state vector (xik, y
i
k, v
i
x,k, v

i
y,k) and the

noises of in the motion and measurement model are Gaussian, Kalman filters are used to
recursively estimate the tracked objects state vectors from all the weighted association hy-
pothesis. In practice a constant velocity motion model is used.

Note that to be useful for subsequent classification probabilities estimations, the velocity of
each tracked object is estimated in a global and Galilean reference frame. Doing so requires
additional data related to the state of the sensing vehicle (vehicle speed and orientation).
These data can be inferred from the perception sensors (localization task) or can be directly
measured through inertial sensors on the sensing platform. In this chapter, the localization
of the sensing platform is directly inferred from proprioceptive measurements. The tracking
process can be schematized as shown in figure 3.18.

Tracked objects creation and deletion

Every time a new objet is detected and not associated with any previously seen tracked
objects, a new tracker is initialized on that object. When a tracked object is not seen anymore
in the data, it remains tracked until the trace of its state covariance matrix (estimated through
Kalman filtering) reaches a certain value.
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Figure 3.18: Schematic view of the ladar based tracking process.

First estimation of the tracking probability

The Kalman filter based filtering approach offers a relevant measure of the confidence that
is placed in tracking accuracy. Indeed, the covariance P ik of the state estimate X

i
k of object

i contain information about the uncertainties related to the state estimate. Based on this
covariance matrix, we compute a scalar tracking score as follows:

Ψik,2 =

√
trace(Pfinal)

trace(P ik)
(3.17)

, where Pfinal is the theoretical value of P
i
k after convergence of the Kalman filter. For

simplicity, Pfinal is estimated experimentally (the noise matrices in the Kalman equations are
then set to a fixed value and should not be modified without resetting the value of Pfinal).

Refined estimation of the detection and classification probabilities

Initial classification scores have already been computed by the detection algorithms. However,
these estimations can be refined in two ways using the tracking algorithms. First, velocity
estimates are now available and can help to penalise non human obstacles (when velocities
are too high). Second, tracking can be used to smooth these scores over time.

As a human obstacle should have a bounded velocity the following term is used:

Ω(vik) =

{
1 if vik ≤ vmax
0 else

(3.18)
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Then the filtering strategy based on the JPDA association scheme is applied to the detection
and classifications scores as follows:

Δik,2 ∝ Δik−1,2︸ ︷︷ ︸
Prior

∑

j

Δjk,1︸︷︷︸
Conditional Likelihood

× βi,j︸︷︷︸
Association probability

(3.19)

For the classification scores, the velocity criterion is added in the filtering equations:

Φi,pedestriank,2 ∝ Ω(vik)× Φ
i,pedestrian
k−1,2

∑

j

Φj,pedestriank,1 × βi,j (3.20)

Φi,groupsk,2 ∝ Ω(vik)× Φ
i,groups
k−1,2

∑

j

Φj,groupsk,1 × βi,j (3.21)

Conclusion

By solving the data association problem and estimating tracked objects velocities, the track-
ing algorithms allow to refine existing detection and classification scores and to compute a
first relevant tracking score. It is also an efficient way to compute smooth estimates of object
positions in the environment. Uncertainty management at this point of the process can be
schematized as shown in figure 3.19.

Figure 3.19: The tracking algorithms alter the detection, classification and tracking scores.
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3.4.4 Objects Rough Classification

Algorithms

To avoid any anticipated decisions, no objects are discarded during the detection and tracking
processes. In other words, all detected objects are tracked. While maintaining a high number
of tracked objects in our features-based representation is not prohibitive in term of computa-
tional requirements, processing a great number of regions of interest in the monocular image
is very demanding.

To avoid unnecessary computations of the vision based algorithms, tracked objects that are
unlikely to be pedestrians or groups of people are discarded.

This screening process is naturally based on the information successively aggregated in the
uncertainty scores. In the context of our experiments whose results are presented later in
this chapter, only the tracked obstacles satisfying the following thresholds are projected into
the corresponding monocular image and sent to the vision based algorithm.

Detection score Δik,2 ≥ 0.3

Classification score (pedestrian or group) Φi,jk,2 ≥ 0.6
Tracking score Ψik,2 ≥ 0.5

Figure 3.20: Schematic view of the ladar based rough classification process.

Scores handling

This simple classification algorithm do not alter any uncertainty scores. However for clarity, at
this point the current uncertainty scores are indexed with the word ”ladar” as they represent
the last scores estimated by the ladar based algorithms as seen in figure 3.21.
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Conclusion

The rough classification operated by the screening algorithm presented above is mostly based
on the uncertainty scores computed in the previous phases of the process. In that sense,
the overall classification of the detected objects is spread in all the successive perception
algorithms used in the ladar sub-system. An overview of the ladar based perception sub-
system is shown in figure 3.21.

Figure 3.21: Schematic view of the uncertainty management within the ladar based percep-
tion sub-system.
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3.5 Vision based classification algorithm

3.5.1 Camera Image Projection

Every pedestrian or group candidate sent by the ladar based perception sub-system is pro-
jected in the corresponding (closest in time) calibrated camera image. This projection is
performed assuming that the sensing platform is neither rolling nor pitching and using the
flat world assumption.

This projection is of course dependent on a precise calibration of the intrinsic parameters
of the camera (focal, distortion parameters...) and on a correct estimation of the camera
location compared to the location of the ladar. These tasks have been performed with the
help of the calibration routines available in the OpenCV 8 package.

Each candidate notedX ik,ladar sent by the ladar based sub-system produces a region of interest

Xik,camera in the corresponding image. As the height of pedestrians and groups cannot be
known precisely from the ladar data, this parameter is set to a standard value. In practice,
a significant number of candidates are also out of the camera field of view after projection.
These invisible objects on the monocular image are not discarded but will not be further
classified by the vision based sub-system. Regions of interest that are in the camera field and
processed by the algorithm described below.

3.5.2 A Boosting classification based approach: AdaBoost

The AdaBoost algorithm, introduced in 1995 by Y. Freund and R. Shapire (Freund &
Schapire, 1995; Freund & Schapire, 1999) is based on the idea that a series of trained weak
classifiers can build a strong and efficient classifier as depicted in figure 3.22.

Figure 3.22: Principle of Boosting.

Viola and Jones proposed in (Viola & Jones, 2001; Viola et al., 2003) weak classifiers based on
Haar-like features that provide interesting face and pedestrian detection capabilities. More

8OpenCV (Open Source Computer Vision) is a library of programming functions for real time computer
vision under BSD license. http://opencv.willowgarage.com
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recent works introduced novel types of features that proved to be even more efficient such as
the ”control points” (Abramson et al., 2007) and the ”connected control points” (Stanciulescu
et al., 2007). A complete overview of monocular approaches for pedestrian detection can
be found in (Enzweiler & Gavrila, 2009). The former type of features allows both faster
computation (140000 36pixels × 36pixels images per second on a 2.5GHz core) and better
performance as shown in (Stanciulescu et al., 2007).

The vision based classification algorithm used here is based on 500 connected control points
features that were learned using a genetic algorithm on a database of 4800 positive and
8400 negative images. Positive images were labelled by hand but through a specific software
designed to assist the user in this repetitive task.

Two problems have to be handled. First, because the robot can roll or pitch, there can be
an offset between the position of the projected region and the real obstacle. And second,
groups candidates can produce large regions of interest with several pedestrians in the image
while the vision based algorithm described above is specifically and only intended to classify
a region as being a pedestrian or not. To overcome these two difficulties, all the relevant
zones that are likely to contain a single pedestrian around or within the projected region is
processed by the algorithm.

To accelerate the search of the vision-based classification algorithm inside the large regions
that are generated by ”groups”candidates, we experimented to use before image projection
a simple distance based clustering algorithm (detection algorithm) to discriminate roughly
where individual pedestrians might be located inside these detected objects classified as
groups. While not being very precise, this method allows for smaller projected image regions
and accelerates the vision-based algorithm process.

In both cases, the projected region Xik,camera is decomposed into n different regions:

(Xi,pk,camera)1≤p≤n

Each one of these n regions is processed by the vision based classification algorithm and is
given a voting value Υi,pk corresponding to the sum of the weighted combination of the 500
weak classifiers (wl)1≤l≤500.

Υi,pk =
∑

1≤l≤500

αlwl(X
i,p
k,camera) (3.22)

Finally, for each projected image Xik,camera a global classification score is computed as follows:

Φi,pedestriank,camera = Φi,groupk,camera = max1≤p≤n
Υi,pk ∀ regions inside camera FoV (3.23)

Pedestrian or group candidates that are out of the camera field of view (FoV ) are given a
non informative camera based classification score:

Φi,groupk,camera = Φ
i,group
k,camera = 0.5 ∀ regions outside camera FoV (3.24)
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3.5.3 Uncertainty management

As the vision based algorithm described above is only trained to compute a classification
probability for a given region to be a pedestrian, no detection or tracking information can
be deduced from such a result. However, as explained above every projected region in the
image is given a new classification scores Φik,camera.

For any given object i at time k, these vision based classification scores are of course in-
dependent and different from the uncertainty scores already computed by the ladar based
sub-system as depicted in figure 3.23. The fusion rule used to combine those different scores
is detailed in the next section.

Figure 3.23: Schematic view of the uncertainty scores computed by the two sub-systems.
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3.6 Final Fusion Rule

3.6.1 Principle

Data Fusion is an active scientific research area where lots of approaches based on different
mathematical formalisms have been proposed over the years. The theory of possibilities
(Dubois, 1985) and the belief theory (or Dempster-Shafer theory) (Dempster, 2008; Shafer,
1976) have enjoyed a growing popularity in a recent past but the more common probability
theory is still of wide use. If using the possibility or belief theories can undoubtedly lead to
efficient fusion algorithms, the deployment of a sophisticated fusion scheme was not the main
objective here. In fact, the simple probability based fusion rule detailed below turned out to
be quite efficient in practice.

As shown in figure 3.23, two different estimates of the same probabilities P (Ci,jk |D
i
k, Z0:k)

have to be combined with j ∈ {pedestrian, group}. These estimates have been computed by
algorithms that are of course subject to uncertainties. As a consequence, each estimate can
be rewritten as follows:

P (Ci,jk |D
i
k, Ak) = Φ

i,j
k,ladar (3.25)

P (Ci,jk |D
i
k, Bk) = Φ

i,j
k,camera (3.26)

, where Ak: ”Ladar based algorithms have produced the perfect estimate given Z0:k” and Bk:
”Vision based algorithms have produced the perfect estimate given Z0:k”. Assuming that Ak
and Bk are independent, the following fusion rule can be derived from basic Probability rules:

P (Ci,jk |D
i
k, Z0:k) ' P (C

i,j
k |D

i
k, Ak)P (Ak)P (Bk) + P (C

i,j
k |D

i
k, Bk)P (Ak)P (Bk)

+ P (Ci,jk |D
i
k, Ak, Bk)P (Ak)P (Bk) + P (C

i,j
k |D

i
k, Ak, Bk, Z0:k)P (Ak)P (Bk) (3.27)

, where

P (Ci,jk |D
i
k, Ak) ' Φi,jk,ladar

P (Ci,jk |D
i
k, Bk) ' Φi,jk,camera

P (Ci,jk |D
i
k, Ak, Bk) ' (Φi,jk,ladarP (Ak) + Φ

i,j
k,cameraP (Bk))(P (Ak) + P (Bk))

−1

P (Ci,jk |D
i
k, Ak, Bk, Z0:k) ' ε (a priori classification probabilities)

(3.28)

This fusion rule can then be written as follows:

Φi,jk,final = Φ
i,j
k,ladarP (Ak)P (Bk) + Φ

i,j
k,cameraP (Ak)P (Bk)

+
Φi,jk,ladarP (Ak) + Φ

i,j
k,cameraP (Bk))

P (Ak) + P (Bk)
P (Ak)P (Bk) + εP (Ak)P (Bk) (3.29)

In our experiments, whose results are presented in the next section, the a priori classification
probabilities was set to 0.1 for both pedestrians and groups, the confidence placed in the
ability of the ladar based sub-system to produce a correct estimate was set to 0.4 and the
similar confidence related to the vision based sub-system was set to 0.8. This fusion rule can
be schematized as shown in figure 3.24.
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Figure 3.24: Schematic view of the fusion rule with P (Ak) = 0.4, P (Bk) = 0.8 and
P (Ci,jk |D

i
k, Ak, Bk, Z0:k) = 0.1.

3.6.2 Uncertainty management

It is important to note that only the classification scores are combined using the above fusion
rules. The detection and tracking scores computed by the ladar based sub-system are not
altered neither by the vision based sub-system nor by the fusion scheme. At this point of
the process, final estimates for the detection, classification and tracking probabilities are
available.

Δik,final = Δ
i
k,ladar

Φi,jk,final = ffusion rule(Φ
i,j
k,ladar,Φ

i,j
k,camera)

Ψik,final = Ψ
i
k,ladar

(3.30)

3.6.3 Conclusion

The list of objects that is now available is similar to the one provided by the ladar sub-
system (Xik,final)1≤i≤N = (X

i
k,ladar)1≤i≤N with however corresponding scores that have been

consolidated by the fusion process. An appropriate screening can now be performed on these
scores to retain only the relevant pedestrians and groups. A global view of the perception
system described in this chapter is given in figure 3.25.
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Figure 3.25: Global view of the perception system proposed in this chapter.
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3.7 Experiments

3.7.1 Experimental setup

The results presented in this section have been obtained from real data recorded in various
urban environments in the context of the french national research project LOVe mentioned
in the introduction of this dissertation. An overview of the specifications of the monocular
camera and of the ladar that have been used is given below.

Ladar Ibeo Alasca XT

Number of layers 4
Horizontal angular resolution 0.5 degree
Vertical angular resolution 0.8 degree
Maximum range 200 meters
Field of view 150 degrees
Acquisition rate 10Hz

Camera Cypress Smal

Type Black and White
Resolution 480 × 640 pixels
Acquisition rate 30 images per seconds
Digital SNR 45 dB

Proprioceptive sensors

Vehicle Speed Odometers through CAN bus
Vehicle Yaw rate IMU Gyroscopes through CAN bus

Figure 3.26: Overview of the ladar used in the experiments presented in this section.
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3.7.2 Methods of evaluation

To quantitatively assess the benefit of our approach, we constructed manually a ground truth
representing every single pedestrian that a perfect pedestrian perception system would detect.
The output of our algorithm is then automatically compared to the perfect detector output
on each camera frame. The usual ”Precision” and ”Recall” parameters are used to quantify
the performances. Because only pedestrians have been labelled on data sequences, it is not
directly possible to assess the capabilities of the system as a ”pure” obstacle detector. In the
same manner, the tracking performances are not evaluated here.

Precision =
Valid pedestrians given by the algorithm

All pedestrians given by the algorithm

Recall =
Valid pedestrians given by the algorithm

All pedestrians present in the scene

Several couples (Precision,Recall) can of course be obtained depending on the set of thresh-
olds (αdetection, αpedestrian, αgroup, αtracking) applied to the corresponding uncertainty scores
that are chosen to finally decide which objects should be released by the system.

3.7.3 Optimisation procedure

Before presenting any results, a brief overview of the procedure followed to set some of the
above threshold is given in this paragraph. Indeed, the influence of the four thresholds cannot
be easily analysed without setting some of them beforehand.

The influence of the detection and tracking thresholds have first been analysed with fixed
values for the classification scores. It appeared that αdetection = 0.2 and αtracking = 0.5 are
both values that work well in practice.

Then with these two specific values, the influence of αpedestrian and αgroup were analysed
through a set of Precision VS Recall curves shown in figure 3.27. It was thus possible to
define a simple staircase function g to drive these two thresholds at the same time from one
single global threshold αclassification.

(αpedestrian, αgroup) = g(αclassification)

The main objective of this function is to allow a quick tuning of the system through a single
parameter in order to adapt its performances to specific situations. In the remaining of
this chapter, unless stated otherwise Precision VS Recall curves are obtained by successively
modifying the setting of this global classification threshold, all other thresholds being set to
the values detailed in this paragraph.
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Figure 3.27: The set of Precision VS Recall curves obtained by modifying the two classifica-
tion threshold (pedestrian, group) at the same time.

3.7.4 Quantitative results

Before presenting the results of the proposed global perception system, we detail in the two
next subsections the benefit of the two main contributions proposed in this chapter: the ladar
based pedestrian classification and the ability of the perception system to classify groups of
people.

A data set containing ' 90 pedestrians

All the results shown in this section have been obtained by testing the algorithms detailed in
this chapter on real data recorded in Paris suburb areas. A sequence of interesting situations
has then been used to produce the curves presented below. This sequence is about 5 minutes
long and contains approximatively 90 different pedestrians in all sorts of situations. Some
views of this sequence are shown in figure 3.33.

Evaluation of the ladar based classification method

In this chapter we proposed an original and advanced methods to extract classification infor-
mation from the dimensions of detected objects outlining rectangles. To assess the benefit of
this approach a classification approach based only on the visible width of the objects has also
been implemented and tested within the same global framework (without modifying anything
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else). The object visible width is computed through the diameter of the outlining circle as
proposed in some ladar based pedestrian classification algorithms (Fayad & Cherfaoui, 2007).

For simplicity, in this comparison the vision based sub-system is disabled and the classification
results are directly analysed at the output of the ladar based sub-system. Besides, the group
classification is also disabled αgroup = 1 so only αpedestrian is used to compute Precision VS
Recall curves.

Figure 3.28: Comparative Performances of the proposed system with the proposed classifi-
cation method (plain line) and the usually used visible width classification method (dashed

line). Curves obtained with a varying threshold on Φi,pedestriank,ladar .

The two Precision VS Results curves of figure 3.28 show that the proposed classification
method increases both the precision and the recall rates for any chosen classification thresh-
old.

Evaluation of the group perception capabilities

The evaluation of the system ability to classify groups of pedestrian is performed by com-
paring the classification performances of the ladar sub-system with and without the group
classification function enabled. It is important to note that a correctly detected group of
pedestrian has the ability to ”valid” at the same time several pedestrians labelled as ”real
pedestrians” in the ground truth sequence. To counterbalance this effect, when a group of
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pedestrian is wrongly detected, this is counted as a number of n false positives equivalent to
the number of pedestrians that this group could have validated.

Figure 3.29: Comparative performances of the proposed system with Group classification
enabled (plain line) and disabled (dashed line).

As shown in figure 3.29, the ability of the system to ”see” groups of people allows a benefit
on both the precision and recall rate of the system. The performances of this sub-system are
illustrated in figures 3.32.

Evaluation of the sensors combination strategy

Finally it is interesting to compare the benefit of the sensors combination strategy presented in
this chapter over a single sensor solution. The vision based sub-system has not been designed
here to be used alone. On the contrary, the ladar based sub-system can give satisfactory
results when used alone. A first comparison of the global system and on the ladar sub-
system performances is given in figure 3.30.

As expected the precision of the global system is significantly enhanced compared to the
precision of the ladar based sub-system. However, this precision is obtained to the detriment
of the recall rate. It can be observed in practice that if lots of erroneous pedestrian candidates
are efficiently filtered out by the vision based sub-system, good pedestrian candidates can
also be regularly wrongly screened. This results in a ”blinking effect” that impacts directly
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Figure 3.30: Comparative performances of the fusion based global system proposed in this
chapter (plain line) over the ladar only based sub-system (dashed line).

the global system recall rate. This blinking ”effect” is mainly due to the hard thresholding
that is performed at the end of the process for definitive classification.

By using an additional Kalman filter based tracking algorithm after thresholding, this effect
can be significantly attenuated. The benefit of the sensing strategy becomes then more
homogeneous as both precision and recall capabilities are now enhanced as seen in figure
3.31. Typical outputs of the proposed system are shown in figures 3.33 to illustrate its
capabilities in some interesting situations.
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Figure 3.31: Comparative performances of the fusion based global system proposed in this
chapter (plain line), the ladar only based sub-system (dashed line) and the global fusion based
system where an additional simple tracking algorithm is used after thresholding (dotted line).
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Figure 3.32: Example of the proposed ladar sub-system output in real situations. Obstacles
detected as groups are shown as white rectangle. The three numbers visible above each
rectangles are the three estimated scores mentioned in this chapter. Note that three first
figures show obstacles being wrongly classified as groups or pedestrians.
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Figure 3.33: Example of the proposed complete system output in real situations. The corre-
sponding output of the ladar sub-system is also given for comparison below each snapshot.
Obstacles detected as groups are shown as blue rectangles (the basic routine mentioned in
section 3.5.2 is used here to discriminate roughly pedestrians inside ”groups”). The three
numbers visible below each rectangles are the three uncertainty scores mentioned in this
chapter. The two last figures show situations where the system fails to compute the correct
list of pedestrians present in the scene.
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3.8 Conclusion

In this chapter a complete pedestrian perception system has been described. This system
intended to be integrated to an onboard precrash setup has been designed to achieve a high
precision rate (85 %) and to be easily implemented on onboard CPU units. Relevant trade-
offs between efficiency and complexity have systematically been found to propose a realistic
solution to pedestrian perception in highly changing environments. When executed on a
desktop single 2GHz core, the global system takes 11ms on average to process an entire
ladar scan and provide a new list of pedestrians and groups.

While quite satisfactory in lots of situations, this perception system is of course not flawless.
Some pedestrians will indeed stay inexorably undetected, while some specific obstacle con-
figurations will unfortunately always produce some erroneous detections. If some of these
limitations can undoubtedly be overcome by using more efficient detection, classification or
tracking algorithms, we believe that most of them can only be overcome by using totally
different approaches.

In the following chapter, a complete analysis of the fundamental limitations of existing DE-
TAC systems (such as the one presented in this chapter) is given and a novel approach to
DETAC problems is then proposed in Chapter 5 and 6.
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Résumé en français du chapitre 4

Nous nous appuyons, dans ce chapitre, sur le système de perception proposé au chapitre 3
pour fournir une étude détaillée des 4 difficultés principales qu’aucun système de perception
actuel n’est capable de contourner simultanément et qui sont, à notre avis, les causes de leur
manque de fiabilité. Nous appuyons cette analyse sur des exemples de situations concrètes
où le système présenté au chapitre 3, comme tout autre système équivalent, échoue à fournir
une analyse satisfaisante de la scène. Les performances des algorithmes dit ”SLAMMOT”
récemment proposés dans la litérature sont aussi discutées.

87



88 Résumé



Chapter 4

Fundamental Limitations of
Existing Approaches
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4.1 Introduction

As seen in the previous chapter, a perception system based on common DETAC approaches
is able to achieve a satisfactory level of precision in lots of urban situations. However, this
level of performances is still arguably far under what is required for efficient precrash setups.
As such perception strategies are indeed intended to interfere with the driver, a far better
precision and recall rates are likely to be required. In fact, if most common situations can
perfectly be handled by common DETAC systems, such systems will inexorably fail in some
specific but yet common situations.

These failures are particularly problematic as they cannot be easily overcome using better
detection, tracking or classification algorithms. They are instead due to the fundamental
limitations imposed by the common sequential approaches used to solve DETAC problems.

In this chapter, a complete description of these critical limitations is given and because some
efforts have recently been made to address some of them, an overview of the solutions that
already exist for each problem is also presented. However, these recent approaches are still
not capable to solve simultaneously all the limitations presented in this chapter. That is
why, we will propose in the next chapters an original solution that addresses simultaneously
all these needs.
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4.2 Detection failures

4.2.1 The geometry based detection problem

The main issue with most DETAC systems is arguably the fact that detection is performed
first and independently from tracking. For ladar based systems, this leads to detection
algorithms being only based on some geometrical criteria as no other information (such as
velocities) is directly available.

Unfortunately, in dense environments, objects are regularly located at small distances from
each others and discriminating each of them can be hard using only geometrical features. This
is for example the case when pedestrians are walking along other bigger obstacles (buildings,
vehicles, etc...). In figure 4.1, the close proximity of the pedestrian and the vehicle prevents
the pedestrian from being correctly discriminated by the system presented in chapter 3.
It is important to note that decreasing the threshold d used in the detection algorithm is not
satisfactory either. If the pedestrian is eventually correctly detected, many bigger obstacles
will then probably be detected as several small objects leading to other issues.

Figure 4.1: Example of a problematic detection failure.

The same detection problem also occurs on pedestrian crossings where people are close from
each others but also heavily occluded from sensor observations. Figure 4.2 shows a situation
where several pedestrians are crossing the street, the detection performed by the system
presented in chapter 3 is also shown. As expected, the detection algorithms are unable to
handle the situation and the output released by the system are incorrect.

4.2.2 Solutions

Two solutions can be proposed. Modifying the sensing strategy of the system is the first one.
Some radars are collecting velocity measures about obstacles and could presumably handle
such situations. However, the geometrical information collected about each object is likely to
be less precise than with ladar. This is unfortunately likely to make subsequent classification
or tracking problems harder.
Several ladars can also be used to prevent occlusions as proposed in (Zhao & Shibasaki, 2005)
where several static ladars are used to detect pedestrians. Unfortunately, this solution is not
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Figure 4.2: Pedestrians crossing the streets are very difficult to detect using a ladar based
system.

easily scalable to mobile platforms.

A more natural solution is to infer obstacles dynamic features before detection. This is
usually what the tracking algorithm is expected to do, but existing tracking approaches
cannot be performed on ladar impacts directly. Indeed, a given laser ray never impacts the
same physical point of an object. As a result, even if solving the data association problem
was easily feasible, such a tracking approach would only track the variation of impacts ranges
but not the objects of the scene. Such an impact based tracking would of course be useless
here.

Tracking and detection should instead be addressed simultaneously or at least concurrently.
A very interesting approach to that problem is proposed in (Vu & Aycard, 2009) following
the work of (Petrovskaya & Thrun, 2008). The authors use a sampling approach (Monte-
Carlo Markov Chain) to solve simultaneously the detection and tracking problems for moving
objects. Although, the proposed method is only applicable to objects whose outlines can be
correctly approximated with basic primitives (squares, lines, points), preliminary results are
encouraging. However, in the situation shown in figure 4.2, it is not clear wether crossing
pedestrians can correctly be matched with basic primitives. The insightful solution proposed
in (Vu & Aycard, 2009) should be further tested in specific difficult configurations to evaluate
its benefit in this case.

It is clear from this analysis that this detection problem can only be address by enabling a
higher level of interaction between the Detection and the Tracking tasks.

Problem Interaction needed

Geometry based Detection Detection ⇐⇒ Tracking
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4.3 Tracking failures

4.3.1 The point-based tracking problem

Most existing tracking approaches are based on an object point-based representation. Sadly,
tracking the same object point over time is not an easy task. An object point visible at time
k can indeed be occluded at time k + 1.

For this reason, it is usually easier to track a ”virtual” point of an object (eg. its center of
gravity) than one of its physical point. Even if the orientation of the object changes, it is
then still possible to compute a good estimate of its center of gravity. Unfortunately this
approach becomes problematic when tracked objects are heavily occluded. In such situations,
the estimated position of the object center of gravity is likely to be erroneous leading directly
to non relevant velocity estimates or critical data association failures.

In figure 4.3 a typical situation where a vehicle is improperly tracked due to that problem
is shown. In this case, the only consequence of the tracking failure is an incorrect velocity
estimate for the considered vehicle.

(a) Time t = t0

(b) Time t = t0 + T

Figure 4.3: Situation where the point based tracking is not sufficient to track a moving vehicle
(indicated by the red arrow).

Furthermore, this tracking limitation can also produce data association errors that are likely
to generate misclassified system outputs as shown in figure 4.4. In this specific situation, a
pedestrian located in front of the sensor is occluding the middle portion of a passing vehicle.
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The JPDA based tracking algorithm is unable to track correctly this vehicle and generates a
false pedestrian detection. The same result would also probably be obtained with any other
point-based tracking scheme.

(a) Time t = t0

(b) Time t = t0 + T

Figure 4.4: Situation where a data association failure leads to a false pedestrian generated
by the system and indicated on the image by the 3D white parallelepiped (red arrow).

4.3.2 Solutions

These tracking failures due to point-based approaches can naturally be solved by tracking
objects real outlines. As mentioned above, this is not an easy task as the visible outlines are
expected to vary a lot over time.

(Wang et al., 2007) propose to store the current visible outlines of every tracked object in an
occupancy grid. Tracked objects and new detected objects are then associated using first a
multi-hypothesis (MHT) algorithm for rough association and then an Iterative Closest Point
(ICP) based algorithm to refine the registration. This approach is an interesting solution to
the considered problem but is still highly dependent on accurate detection.

Interestingly, the simultaneous detection and tracking approach proposed in (Vu & Aycard,
2009) and mentioned in the previous section allows also to solve the tracking failures related
to point-based representations. By approximating objects physical outlines by a paramet-
ric shapes (rectangles, lines or points), the proposed method is indeed capable of handling
correctly the situations presented above.
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It is important to note that the problem of tracking physical outlines is thus strongly related
to the way tracked objects outlines are approximated and stored. In that sense, this tracking
problem can be seen as closely related to the problem of moving object mapping that is
discussed in the next section.

Problem Interaction needed

Point-based Tracking Tracking ⇐⇒ Moving object Mapping

4.4 Classification failures

4.4.1 The ”stair effect” classification problem

Classification failures can obviously be induced by previous detection or tracking problems.
But there are also specific situations where classification can fail even if tracking and detection
are performed correctly. We are not referring here to situations where the classification task
is made very difficult by too few relevant sensing data for example. In that case, even a
perfect perception system would fail. We are interested instead in situations that lead to
classification failures even if the data collected by the sensor over time is still informative
enough to allow any trained person to identify easily the nature of any objects in the scene.

This type of classification failures regularly occurs when the same real object appear under
various outlines in a short sequence of raw data. A caricatural example is shown in figure
4.5. Because of the sensing platform pitching, the stair is never entirely visible on one single
scan (single layer ladar), but is easily identifiable by looking at few scans.

Figure 4.5: Illustration of the mapping benefit for classification

This ”stair effect” can in fact happen with all objects (static or moving) having different
shapes when horizontally cut at various height (cars, trucks, trees, etc...). In real situations,
the ladar layer is likely to hit the same object at different heights over time and to produce
impact configurations that are not easily identifiable by looking at just one scan.
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A classification failure example due to that problem is shown in figure 4.6. A truck is indeed
seen by the ladar as an unordered set of points that is really difficult to handle on any single
scan. As a result, the end of the truck is here wrongly classified as a group of people by the
ladar based sub-system proposed in chapter 3. With single layer ladars, we believe that such
obstacles can only be correctly classified by aggregating overtime relevant information about
their physical outlines.

Note that using multi-layer sensing technologies in a appropriate way might mitigate this
problem. However, in the situation shown in figure 4.6, all of the four ladar layers are hitting
the frame of the truck and collect spurious data.

Figure 4.6: An example of a moving obstacle that cannot be easily identified on a single ladar
scan. The system presented in chapter 3 wrongly classifies the rear of the truck as a group
of people (blue rectangle on the camera image).

4.4.2 Solutions

Aggregating the information over time to construct objects real outlines is what the map-
ping task is expected to do. Unfortunately, as described in chapter 2, most existing mapping
approaches are based on a static world assumption and cannot be directly used to address
these classification failures. It is important to note that most works related to dynamic envi-
ronments mapping propose methods to build a consistent maps of static objects by correctly
filtering the moving objects. But mapping of moving objects is usually not addressed.

This problem is in fact strongly related to the tracking problem mentioned above. If a tracking
algorithm is capable of registering accurately new observations with the stored outlines of the
currently tracked objects, it is indeed also capable in principle to build over time a relevant
map for each tracked object.

The two interesting approaches that are able to solve the tracking problems mentioned above
are thus good candidates for that problem too. Unfortunately, as handling unstructured
obstacles is a prerequisite here, the method proposed in (Vu & Aycard, 2009) cannot be
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adapted to cope with this mapping problem. As already mentioned, this approach is indeed
based on the assumption that moving objects are structured enough to fit basic primitives.

On the contrary, the SLAM with DATMO approach proposed in (Wang et al., 2007) could
in principle be extended to moving object mapping, provided that the objects are initially
correctly detected. Indeed, unlike (Vu & Aycard, 2009), this approach do not solve the
critical detection problems described above.

From this analysis, it is clear that this classification issue called ”stair effect” problem is
strongly related to the problem of moving objects mapping.

Problem Interaction needed

”Stair effect” Classification problem Classification ⇐⇒ Moving objects Mapping

4.5 Uncertainty management of interacting tasks

We saw in the previous sections of this chapter that recent SLAM with DATMO approaches
can locally solve some of the tough problems discussed above. These approaches, based on
an increased level of interaction between some of the perceptual tasks raise a set of new
questions related to uncertainty management. These issues are discussed in the following
paragraphs.

4.5.1 The problem of heterogeneity for interacting tasks

As stated several time before, maintaining throughout the perception process an appropriate
knowledge about the uncertainties generated by the successive perception algorithms is criti-
cal. This knowledge is indeed mandatory to allow at the end of the process optimal decisions
to be made by the system.

These uncertainties are however usually related to high dimensional continuous spaces and
are as such always difficult to compute and to store.

Consequently, all existing perceptual algorithms handle a certain level of uncertainty through
specific assumptions and using various different representations. In the same perception
system, uncertainties might for example be modelled by Gaussians in tracking, occupancy
maps in mapping and through Monte-Carlo samples in localization.

This is of course due to the fact that the uncertainty representation is directly dependent
on the nature of the algorithm that is used to compute a perceptual task. Because most
perceptual tasks have historically been addressed separately, a great variety of uncertainty
representation have been adopted. Consequently, perception systems that make use of these
algorithms are usually dealing simultaneously with different uncertainty representations.

This heterogeneity leads to theoretical and practical problems when an algorithm that uses a
particular mathematical formalism for uncertainties is expected to handle the uncertainties
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generated by another algorithm using a different framework. Indeed, a specific uncertainty
representation (eg. sampling representation) is usually directly linked to some specific as-
sumptions (eg. nonlinear models, multi-modal densities) and as such can not necessarily be
converted to a different framework (eg. Gaussians).

4.5.2 The problem of ML and MAP estimates for interacting tasks

This second problem can be seen as a direct consequence of the heterogeneity problem.
Indeed a fast but sub-optimal way to make interactions between algorithms easier is to
do it through most probable estimates (ML or MAP estimates) that are deprived of their
uncertainty information.

In the recent literature related to SLAM with DATMO systems, the localization result is
for example usually transmitted to DATMO algorithms as a most probable estimate. Any
localization failure can in this case presumably lead to moving objects detection and tracking
failures.

In SLAM with DATMO approaches where the objects classification as moving or static is con-
versely only incorporated in the SLAM computation as a most probable estimate, DATMO
failure is likely to induce SLAM failures in the same manner.

In other words, instead of being mutually beneficial, SLAM and DATMO can easily become
mutually destructing if uncertainties are not handled with care. This situation is schematized
in figure 4.7.

Figure 4.7: Illustration of a possible vicious circle that can be initiated if a localization or a
classification failure occurs.

4.5.3 Summary

As detailed in this chapter and as proved by recent works, reliable perception systems can be
built by addressing concurrently the five perceptual tasks. But we believe that the benefit
of exploiting many interactions between the tasks can only be ensured:
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1. if a common mathematical framework is used to compute and to store algorithms
uncertainties related to all the interacting tasks.

2. if most probable estimates are not used in such a way that a vicious circle can be
initiated.

An schematic example of an interacting perception system that meets these two criteria
is given in figure 4.8. When an algorithm receive an information as a full posterior density
(Bayesian estimate) from another task, a failure vicious circle is less likely to happen. Indeed,
even if the most probable estimate of this full posterior density is erroneous, this density
contains also the true estimate. Providing that this true estimate has still a significant
weight in the density, the receiving algorithm has a chance to recover from the failure of the
sending algorithm.

Figure 4.8: Example of an interacting perception system with a satisfactory uncertainty
management.
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4.6 Conclusion

In this chapter a detailed description of the main limitations undergone by current DETAC
systems is given. This analysis is based both on the results of the pedestrian perception
system proposed in Chapter 3 and on SLAM with DATMO approaches recently proposed in
the literature.

Four main problems have been identified:

1. The geometric based Detection problem

2. The point-based Tracking problem

3. The ”stair effect” Classification problem

4. The problem of uncertainty management for interacting tasks

If no existing approaches is capable of solving all this problems at the same time, recent
works in the SLAM with DATMO literature are locally capable of solving on or several of
these issues. It is interesting to observe that the three first issues can be solved by pushing
the level of interaction between the perceptual tasks to a higher level.

Problems Interaction needed

Geometric-based Detection Detection ⇐⇒ Tracking
Point-based Tracking Tracking ⇐⇒ Mapping
”Stair effect” Classification Classification ⇐⇒ Mapping

The fourth problem, related to uncertainty management, can be solved by using a common
mathematical formalism to address interacting tasks and by avoiding cycling use of most
probable estimates.

This analysis motivated the work presented in the next chapters where an original grid-based
approach is proposed to solve simultaneously these four problems.
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Résumé en français du chapitre 5

Ce chapitre pose les bases théoriques d’une approche basée sur une représentation par grille
du problème de perception qui permet de contourner simultanément les 4 écueils présentés
au chapitre 4. Un présentation générale des principales étapes d’un algorithme de perception
reposant sur cette approche est aussi donnée.
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Grid-based Global Approach for
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5.1 Introduction

In Chapter 4, four important limitations that affect most existing perception systems were
identified. It has been shown that while three of them can be efficiently overcome by using ap-
propriate interactions between perceptual tasks, a careful uncertainty management strategy
needs also to be deployed to ensure mutually beneficial interactions.

To our knowledge, none of the existing approaches to perception problems can be extended
to cope with these four issues at the same time. The reason for this is simple: handling these
issues is computationally demanding and most existing approaches are designed to be usable
on reasonable onboard architectures.

The computational criteria should however be considered with care. If it is true that, with
limited processing units, being fast will forever be a fundamental requirement for perception
systems, this should not prevent more demanding approach from being investigated.

Following this idea, we propose in this chapter to compute the five perceptual tasks using a
unified mathematical formalism. This framework based on grids of cells allows first to natu-
rally compute discrete Bayesian estimates for each task and second to incorporate elegantly
all the possible tasks interactions. This chapter is only intended to present the theoretical
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principles of this approach and to discuss its benefits. In chapter 6 of this thesis, a spe-
cific implementation of these concepts for pedestrian perception is described and preliminary
results in real situations are presented.

5.2 Principles

5.2.1 Grid-based Uncertainty Representation

In a Bayesian framework, the notion of uncertainties can be embedded in probability density
functions. Probability density functions are neither easy to compute nor easy to store. In
most problems, these densities are indeed related to highly dimensional continuous spaces.
To allow Bayesian estimates (full posterior densities) to be computed, approximations are
usually needed. Mixture of Gaussians or sampling representations can thus be adapted to
describe these uncertainties. However, maintaining a good density representation through
samples or through Gaussians is usually not an easy task as discussed for example in (Leal,
2003).

On the contrary, grids of cells offer a polyvalent and powerful solution to that problem. Grid
representations are based on a appropriate discrete approximation of a particular space. In
(Elfes, 1989b), such a representation was proposed to represent uncertainties generated by
mapping algorithms. Every cell was in this case representing the probability of a specific
area in the environment to be occupied by an object or not.

Grids of cells can however be used to represent a great variety of discrete probability mass
functions (pmf ). This representation has two main advantages:

1. Free form multi-modal densities can be represented

2. Cells-based representation are easy to handle with a computer

But the main inconvenient of this representation is certainly the relatively high computational
and memory requirements that it requires, at least in its ”simple” form. Grid-based represen-
tation are indeed originally based on a uniform repartition of the cells over all the available
space. This can be problematic in practice as the number of cell required to reach a good
representation of large spaces grows very quickly. This problem has nevertheless received over
the last decade some interesting solutions such as those discussed in (Kraetzschmar et al.,
2004; Montemerlo & Thrun, 2004).

Our approach is based on the idea that grids of cells can be used as a unified mathematical
formalism to

1. Compute naturally every perceptual task.

2. Store efficiently the results of these computations as probability mass functions.

3. Allow any given perceptual task to elegantly interact with any other task.
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In this chapter, the probability mass functions (noted pmf ) that should be computed to
solve each perceptual task are first detailed. Then, two mathematical methods are discussed
to simplify the intractable joint probability mass functions that arise in the computations.
Finally, the outlines of a global algorithm solving sequentially every perceptual task in this
framework are described.

5.2.2 Perceptual Tasks description in a Grid-based Representation

The Mapping problem in a Grid-based Representation

The area of interest around the sensing platform is represented as a grid of N cells noted
E = {xi}1≤i≤N , where xi refers to the centroid of a square cell of dimension a. Let Mk be a
random variable such that at time k, ∀xi ∈ E,

Mk(xi) = {
1 if xi is occupied
0 if xi is not occupied

The mapping problem at time k can then be expressed as the estimation of the following
probability mass function (pmf):

P (Mk(xi) = 1|Z0:k) ∀xi ∈ E (5.1)

This pmf can be represented as a usual occupancy grid as shown in figure 5.1.

Figure 5.1: A schematic view of the Mapping pmf.
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The Localisation problem in a Grid-based Representation

Let Lk be the discrete random vector that represent the state vector of the sensing platform
at time k:

Lk =







xk
yk
vx,k
vy,k







The localisation problem at time k can then be expressed as:

P (Lk = lj |Zo:k) ∀lj ∈ E × V (5.2)

, where V is the discrete space of possible speeds. Because the dimensionality (4D) of this
probability mass function is too high to be correctly represented a schematic view of this pmf
is given in figure 5.2.

Figure 5.2: A schematic view of the Localization pmf superimposed with the Mapping pmf
mentioned above.

The Tracking problem in a Grid-based Representation

As stated in chapter 2, the tracking problem has two objectives:

1. Find the correspondence between the new incoming data and the already tracked enti-
ties. This is referred to as a registration or (data-)association problem.

2. Use the association results to make estimations about the dynamic features of these
entities (velocity, acceleration, etc...). This can be seen as a filtering problem. However,
because many other estimations in this chapter can be seen as filtering problems, this
particular estimation will be referred to as the Velocity Estimation problem for clarity.
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Association subproblem

By noting Xnextk−1 (xi) the coordinates at time k of the physical point located in xi at time
k − 1, the Association problem can be seen as the estimation of the following pmf :

P (Xnextk−1 (xi) = xj |Mk−1(xi) = 1, Z0:k) ∀(xi, xj) ∈ E2 (5.3)

Velocity Estimation subproblem

We note Vk(xi) the random variable that represents the dynamic features of the physical
point that occupies the cell xi at time k (such as its velocities, accelerations, etc...).

As this problem is only relevant if the corresponding cell is occupied, the Velocity Estimation
problem can be regarded as the estimation of the following pmf :

P (Vk(xi) = vj |Mk(xi) = 1, Z0:k) ∀(vj , xi) ∈ V × E (5.4)

It is important to note that the above formulation implies that the Tracking will be performed
at the cell level. This will be discussed later in this chapter.

Figure 5.3: Schematic view of the Velocity Estimation pmf (5.4) superimposed with the other
pmfs described above.

The Detection problem in a Grid-based Representation

Let us note Dk(xi, xj) the binary random variable that is only equal to one if the cells xi
and xj are occupied by the same object. The detection problem can then be rewritten as the
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estimation of the following pmf :

P (Dk(xi, xj) = 1|Mk(xi) = 1,Mk(xj) = 1, Z0:k) ∀(xi, xj) ∈ E2 (5.5)

Figure 5.4: Schematic view of the Detection pmf (represented here as most probable estimates
for simplicity) superimposed with the other pmfs described previously.

The Classification problem in a Grid-based Representation

We define C as the set of all possible types of objects present in the scene and Ck(xi) the
random variable that refers to the class to which the object occupying the cell xi belongs.
The classification problem can be seen as the estimation of the following pmf :

P (Ck(xi) = cj |Mk(xi) = 1, Z0:k) ∀(cj , xi) ∈ C × E (5.6)
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Figure 5.5: Schematic view of the Classification pmf (represented here as most probable
estimates for simplicity) superimposed with the other pmf.
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5.3 Joint Probability Mass Functions Approximations

One of the objectives of this chapter is to propose an elegant way to compute at each cycle
and for all the cells xi ∈ E, the 6 probability mass functions described in the previous sec-
tions. Unfortunately, each one of these computations will induce a marginalization (weighted
summation) over highly dimensional joint probability mass functions that are intractable in
most cases.

Indeed, in the proposed grid-based representation, a given local random variable Ak(xi) (with
A referring to any random variable introduced above) is usually strongly dependent on the
value taken by the random variable on neighbouring cells Ak(xj) (∀xj ∈ E), as some of the
neighbouring cells are likely to be occupied by the same real object. Hence, the computation
of P (Ak(xi)|Z0:k) should then be derived from the above joint pmf :

P (Ak(xi)|Z0:k) =
∑
P (Ak(x1), ..., Ak(xN )|Z0:k) (5.7)

=
∑
P (Ak|Z0:k) (5.8)

, where variables of the form Ak refer to the random vector (Ak(x1), ..., Ak(xN )).

Besides, because all perception tasks are interdependent problems, a given local random
variable Ak(xi) is also dependent on the random variables related to the other perceptual
tasks at any other location (Bk(xj), Ck(xl), ...) ∀xj , xl, ... ∈ E.

Consequently, the computation of any given pmf related to a specific perceptual task needs
in principle to be derived from the following general joint pmf :

P (Ak(xi)|Z0:k) =
∑
P (Mk, Lk, Vk, Dk, Ck, X

next
k−1 |Z0:k) (5.9)

Even if this joint pmf is defined over discrete spaces, its estimation remains far from being
tractable in practice (highly dimensional joint space). To make the computation of each
perceptual task feasible we detail in this section a 2-steps procedure to compute joint pmfs of
the form seen in equation (5.9). This 2 steps approach will be then used in the computation
of the Localization, Association, Mapping, Velocity Estimation, Detection and Classification
problems as detailed in section 5.4 of this chapter.

1st Step: Interactions with the other cells (Global Computation)

As mentioned above, because neighbouring cells are likely to be occupied by the same real
object, the computation of P (Ak(xi)|Z0:k) has to be derived from the joint pmf below:

P (Ak(x1), ..., Ak(xN )|Z0:k)

The number of cells in the environment N is expected to be high, the estimation of this joint
pmf is then a difficult problem. To solve this problem, we make a first assumption:
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Joint probability mass function of the form P (Ak(x1), ..., Ak(xN )|Z0:k) can be approxi-
mated as follows:

P (Ak(x1), ..., Ak(xN )|Z0:k) '

{
∏

1≤i≤N

Plocal(Ak(xi)|Z0:k) } Φ(Ak(x1), ..., Ak(xN ), Z0:k) (5.10)

, where Φ is a RN → R function that penalizes unlikely configurations and Plocal is the
probability mass function related to a cell considered as independent from the others.

The pmf related to each cell can then be obtained by marginalizing the above joint pmf.

P (Ak(xi) = ak(xi)|Z0:k) '

∑

ak∈A











∏

1≤j≤N

Plocal(Ak(xj)|Z0:k)





Φ(Ak(x1), ..., Ak(xN ), Z0:k)





(5.11)

, where A contains all the possible realisations of Ak such that Ak(xi) = ak(xi).

It is important to note that any available information can be used in the potential function
Φ in addition to the random vector configuration ak.

All the necessary interactions with other cells should then be incorporated in the potential
function Φ allowing the pmf Plocal(Ak(xj)|Z0:k) to be computed without taking care of the
neighbouring cells. However, the computation of this local pmf should still take into account
the other perceptual tasks.

2nd Step: Interactions with the other tasks (Local Computation)

We assume that the pmf Plocal(Ak(xj)|Z0:k) should now be computed locally from the fol-
lowing simplified joint pmf to take into account the other perceptual tasks:

Plocal(Ak(xj) = a|Z0:k) '
∑
P (Ak(xj) = a,Bk(xj), ...|Z0:k) (5.12)

, where Bk designates the random variable related to any other perceptual task.

The computation of the joint pmf (5.12) is still intractable in practice and further simplifi-
cations are needed. We propose to simplify the computation of this joint pmf by making the
following second assumption.



112CHAPTER 5. GRID-BASED GLOBAL APPROACH FOR RELIABLE PERCEPTION

Joint probability mass functions of the form P (Ak(xi), Bk(xi)|Z0:k) can be correctly ap-
proximated by P (Ak(xi), Bk−1(x

a
i )|Z0:k) if the sensors acquisition period Δt is small com-

pared to the time constant of the dynamical system related to Bk (x
a
i being the cell that

was occupied at time k − 1 by the object occupying the cell xi at time k).

As a result, equation (5.12) can be rewritten as follows:

Plocal(Ak(xj) = a|Z0:k) '
∑
P (Ak(xj) = a,Bk−1(x

a
j ), ...|Z0:k) (5.13)

This assumption is motivated by the fact that some of the pmfs described above are likely
to evolve slowly over time. For example, the pmf related to object dynamic features at time
k−1 can still be of great use to compute the detection pmf at time k. However, this requires
to solve first a correspondence problem as an object point occupying a given cell (xai ) can
potentially occupy another cell (xi) at time k.

This former assumption implies that none of the perceptual tasks are computed simultane-
ously. The computation of each perceptual task pmf is addressed sequentially and makes use
of all the other perceptual tasks pmfs already estimated (one step before if necessary). This
approximation still allows a high level of interaction between the tasks.

Summary

Exact computations of the pmfs related to each perceptual task would lead directly to the
computation of intractable joint pmfs. A 2 steps approach is proposed to compute a pmf of
the form P (Ak(xi)|Z0:k).

First, this global computation is reduced to a local problem by modelling all the interactions
between others cells through a potential function Φ that penalizes configurations that are
globally unlikely.

Then, the local computation of Plocal(Ak(xi)|Z0:k) is performed by integrating all the possible
interactions with the other perceptual tasks. A perfect integration of these interactions would
impose to address all the tasks simultaneously. Unfortunately, this implies, as seen above, to
marginalize over another intractable joint pmf. That is why we propose instead to address
each perceptual task sequentially. Each local computation being aided by all the other
perceptual tasks pmfs already estimated.
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5.4 The Algorithm in Practice

5.4.1 Introduction

We have only presented so far the basic principles of the proposed approach along with the
necessary approximation to make them tractable in theory. We give now the outlines of
the elegant perception algorithm that can be derived from these concepts in practice. This
section is intended to meet two objectives.

1. Describe the chronological steps of this algorithm

2. Indicate for each step how the successive local an global computation of a given pmf
can be implemented in practice.

The algorithm described in this chapter is not derived for any specific application nor any
particular sensor. As a consequence, the practical functionality of every term derived in the
following sections will be detailed, but no specific motion or measurement models will be
described in this chapter as they depend mainly on applications. The implementation of this
algorithm for the specific case of pedestrian perception is thoroughly detailed in chapter 6.

5.4.2 Step 0 - Initial Status

To start with, it is assumed that all the probability mass functions related to each perceptual
tasks are available at time k − 1. At time k new measurements zk are received from the
sensors. The knowledge stored at this point in the algorithm can be summed up as follows.

Measurements zk Current

Localization P (Lk−1 = lj |Zo:k−1) Previous

Association P (Xnextk−2 (xi) = xj |Mk−2(xi) = 1, Z0:k−1) Previous

Mapping P (Mk−1(xi) = 1|Z0:k−1) Previous

Dynamic Filtering P (Vk−1(xi) = vj |Mk−1(xi) = 1, Z0:k−1) Previous

Detection P (Dk−1(xi, xj) = 1|Mk−1(xi) = 1,Mk−1(xj) = 1, Z0:k−1) Previous
Classification P (Ck−1(xi) = cj |Mk−1(xi) = 1, Z0:k−1) Previous

5.4.3 Step 1 - Computation of the Localization problem

The computation of the Localization problem is different from the computation of the other
tasks as it does not need to be done in every cell of the environment. Hence, the approxi-
mation mentioned above related to cells interactions does not need to be used. It is besides
important to address the Localization problem as the first step of this algorithm. Indeed,
new sensor observations will only be correctly used if the new location of the sensing plat-
form is correctly estimated. The situation that has to be disambiguated by the Localization
computation can be schematized as shown in figure 5.6.
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Figure 5.6: Schematic view of the information available at this point of the process. The
localization of the sensing platform needs to be inferred.

The computation of the Localization pmf can be decomposed as an usual Bayesian filtering
problem:

P (Lk|Z0:k) = η P (zk|Lk, Z0:k−1)︸ ︷︷ ︸
Correction Term

P (Lk|Z0:k−1)︸ ︷︷ ︸
Prediction Term

(5.14)

The prediction term can be directly computed from the previous localization pmf and the
motion model of the sensing platform:

P (Lk|Z0:k−1) =
∑

lk∈E×V

P (Lk|Lk−1 = lj , Z0:k−1)︸ ︷︷ ︸
Motion Model

P (Lk−1 = lj |Z0:k−1)︸ ︷︷ ︸
Previous Localization pmf

(5.15)

It is interesting to note that the motion model can be further derived to incorporate informa-
tion about the previous Mapping and Detection pmfs for example. This would allow to use a
motion model that takes into account the possible interactions between the sensing platform
and the objects in the environment.

The correction term should be derived to incorporate the information available about the
currently occupied cells. Unfortunately, this knowledge is only available for time k − 1. As
computing a prediction of a whole map is usually not easy, only the cells that have been
classified as static may be incorporated in this computation. This can be done by using the
available information (pmfs) related to Classification and Velocity Estimation. The resulting
term would then take the following form:
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P (zk|Lk, Z0:k−1) =
∑

ck−1,vk−1,mk−1

P (zk|Ck−1, Vk−1,Mk−1, Lk)︸ ︷︷ ︸
Observation Likelihood

(5.16)

P (Ck−1|, Vk−1,Mk−1, Z0:k−1)︸ ︷︷ ︸
Previous Classification pmf

P (Vk−1|Mk−1, Z0:k−1)︸ ︷︷ ︸
Previous Velocity pmf

P (Mk−1|Z0:k−1)︸ ︷︷ ︸
Previous Mapping pmf

To alleviate the computational burden that such a summation represents, some of these pmfs
can be approximated by their most probable values (maximum a posteriori estimate).

Localizing the platform from the surrounding moving objects is possible in theory if their
velocity in the street reference frame is known precisely. But in practice, precise localization
(without using GPS ) can only be computed if static obstacles are seen regularly.

Summary

At the end of this first step, a hopefully correct new Localization pmf is available. This new
information can be depicted as shown in figure 5.7. Note that the Localization information
allows also to roughly align the new sensors measurements with the former occupancy map.

Figure 5.7: Schematic view of the Localization information available at this point of the
process.

Interactions between the perceptual tasks that are potentially used in this computation can
be schematized as described in figure 5.8. Available pmfs at this point can be summed up as
follows.
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Measurements zk Current

Localization P (Lk = lj |Zo:k) Current

Association P (Xnextk−2 (xi) = xj |Mk−2(xi) = 1, Z0:k−1) Previous

Mapping P (Mk−1(xi) = 1|Z0:k−1) Previous

Velocity Estimation P (Vk−1(xi) = vj |Mk−1(xi) = 1, Z0:k−1) Previous

Detection P (Dk−1(xi, xj) = 1|Mk−1(xi) = 1,Mk−1(xj) = 1, Z0:k−1) Previous
Classification P (Ck−1(xi) = cj |Mk−1(xi) = 1, Z0:k−1) Previous

Figure 5.8: Dependencies with other perception tasks used in the localization computation.

5.4.4 Step 2 - Computation of the Association problem

Objects in the environment are all potentially moving. As a result, an object point occupying
cell A at time k − 1 is likely to be located in an other cell B at time k. Solving this
correspondence problem is crucial as lot of information can be extracted from it.

To solve this problem we use a greedy approach that is well adapted to grid-based represen-
tation. For any given cell whose occupancy probability is not null, every possible association
is first investigated locally before being integrated globally using a potential function that
penalizes unlikely global association.

Local computation

A first local computation of where a point occupying a cell at time k− 1 might be at time k
is performed using the available pmfs. This corresponds to the computation of the following
intermediate pmf :

Plocal(X
next
k−1 (xj)|Mk−1(xj) = 1, Z0:k)
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Figure 5.9: Schematic view of the greedy approach used to solve the Association problem.

As mentioned above, the subscript local in this probability indicates that the computation
is temporarily made without taking care of surrounding cells (local computation). This local
computation is based on an usual Bayesian filtering equation where a prediction is computed
first and then corrected by the current sensor observations.

Plocal(X
next
k−1 (xj)|Mk−1(xj) = 1, Z0:k) =

η Plocal(zk|X
next
k−1 (xj),Mk−1(xj) = 1, Z0:k−1)︸ ︷︷ ︸

Local Correction

Plocal(X
next
k−1 (xj)|Mk−1(xj) = 1, Z0:k−1)︸ ︷︷ ︸

Local Prediction

(5.17)

A good prediction of where a given cell xi at time k− 1 might go at time k can be computed
using the available information about the speed and the class of the point occupying that
cell. This can be done by using an appropriate motion model that takes these two param-
eters into account. Because the velocity and the classification information are available as
pmfs, the computation of this prediction term should be performed through an appropriate
marginalization over all the possible velocities and classes for the given cell.

The local correction term is derived using an appropriate sensor model and the Localization
pmf computed at step 1. Indeed, to locally know which sensor measurement should be used
for the update, the information about the current Localization is needed. Besides, the sensor
model is expected to put the sensor information into a probabilistic form. Such sensor models
are discussed in (Leal, 2003) for example.
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Interaction with other cells

Such a local computation is of course insufficient to solve correctly the global Association
problem but is still useful to compute the final Association pmf. As mentioned in section 5.3,
the final Association pmf can be approximated by the following equation.

P (Xnextk−1 (xi) = x̂|Mk−1(xi) = 1, Z0:k) '

∑

ak∈A











∏

1≤j≤N

Plocal(X
next
k−1 (xj)|Mk−1(xi) = 1, Z0:k)





Φassociation(ak, E, Z0:k)





(5.18)

, where A is the set of all the possible global associations such that Xnextk−1 (xi) = x̂.

This procedure is an efficient way to correct local computations through the use of a global
function Φregistration that penalizes globally impossible or conflicting associations. This po-
tential function should of course depends directly on the proposed global configuration ak
but can also uses any other information available at this point of the process.

This function can be designed to penalize the global configurations that are not consistent
with the following heuristics:

• Two points belonging to the same incompressible object should stay at the same dis-
tance from one another.

• Two points belonging to different objects should not converge to the same cell.

• The association of the points with new sensor measurements should be able to ”explain”
the maximum number of new sensor observations.

It is important to note that the two first heuristics are based on Detection and Classification
information that is available at this point of the process as two pmfs computed at time k−1.

Summary

At the end of this second step, a new Association pmf is available that can be schematized
as seen in picture 5.10 (using the corresponding MAP estimates).

The available pmfs at this point of the algorithms can be summarized as follows.

Measurements zk Current

Localization P (Lk = lj |Zo:k) Current

Association P (Xnextk−1 (xi) = xj |Mk−1(xi) = 1, Z0:k) Current

Mapping P (Mk−1(xi) = 1|Z0:k−1) Previous

Velocity Estimation P (Vk−1(xi) = vj |Mk−1(xi) = 1, Z0:k−1) Previous

Detection P (Dk−1(xi, xj) = 1|Mk−1(xi) = 1,Mk−1(xj) = 1, Z0:k−1) Previous
Classification P (Ck−1(xi) = cj |Mk−1(xi) = 1, Z0:k−1) Previous
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Figure 5.10: Schematic view of the new Association pmf represented here as most probable
estimates for clarity.

Figure 5.11: Dependencies with other perception tasks used in the Association problem
computation.
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The computation of the Association problem is thus potentially based on all these available
pmfs. These interactions can be schematized as shown in figure 5.11

5.4.5 Step 3 - Computation of the Mapping problem

Since the Association problem is solved, it now possible to compute the new occupancy
probability of every cell. As before, this computation is first performed locally without
taking into account the interactions with the neighbouring cells.

Local computation

If the cell xi is occupied at time k, this event has two possible causes: the point located in
cell xi has already been seen before or it is a new point that is seen for the first time. In the
following we note Sk(xi) the random variable such that:

Sk(xi) =

{
1 if ”the point located in xi at time k (if it exists) has already been seen” is true

0 else

By using this notation, the local probability for a cell to be occupied at time k can be
decomposed as follows.

Plocal(Mk(xi) = 1|Z0:k) = (5.19)

Plocal(Mk(xi) = 1|Sk(xi) = 1, Z0:k)︸ ︷︷ ︸
Occupancy if already seen

P (Sk(xi) = 1|Z0:k)︸ ︷︷ ︸
Status of the cell

+Plocal(Mk(xi) = 1|Sk(xi) = 0, Z0:k)︸ ︷︷ ︸
Occupancy if never seen

P (Sk(xi) = 0|Z0:k)

Status of the cell

This probability can be computed from the available Association pmf. Indeed, if a cell xi
contains a point that has already been seen before then this point must have been registered
during the association process performed in step 2. This information can be extracted from
the Association pmf in many ways but the following solution proved to be efficient in practice:

P (Sk(xi) = 1|Z0:k) =
{
γ if ∃xj ∈ E st xi = argmaxxl P (X

next
k−1 (xj) = xl|Mk−1(xj) = 1, Z0:k)

1− γ else
(5.20)

, with γ ∈ [0, 1].
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This equation makes use of a simple heuristic: only the current cells that correspond to the
most probable association with a previous cell are given a high probability to have already
been seen before.

Occupancy if already seen

If the point that is located in a given cell has already been seen before, then the Association
pmf contains information about where that point was located before. As a consequence, by
summing over all the possible cells that this point might have occupied before (weighted by
the appropriate association probability), it is possible to infer the occupancy probability of
this cell from the occupancy probability of the previous cells. This process is depicted on
figure 5.12.

Figure 5.12: If a point occupying a cell has already been seen before, all the possible previ-
ous cells where this point might have been are investigated to compute the new occupancy
probability of that cell.

Occupancy if never seen

When a point occupying a cell is seen for the first time, the occupancy of that cell is naturally
directly computed from the sensor observation. This requires first to transform the sensors
observations as an occupancy observation. This is usually called a sensor occupancy model.
Further details about occupancy models can be found in (Leal, 2003). This computation also
requires information about the sensing platform localization to use the appropriate sensor
observation for a given cell. This information can of course be extracted from the Localization
pmf estimated in step 1 of this algorithm.
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Interaction with other cells

Taking into account the interactions with the other cells is not critical in mapping computa-
tion. In fact, most of the important interactions between cells are already embodied in the
Association pmf that is used to solve mapping. However, it is still possible to make use of the
information contain in the Detection and Classification pmf (estimated at time k − 1 here)
to refine the map of some object. It would for example be possible to increase the occupancy
probability of cells that are located inside what has been classified as a building or a vehicle.

Summary

At the end of this process, the new occupancy map of the environment is available. It is
critical to note that this approach allow to both map static and moving objects as schema-
tized in figure 5.13. The interactions with the other tasks that are potentially used in the
mapping computation are depicted in figure 5.14. Finally, available pmfs at this point can
be summarized as shown below.

Measurements zk Current

Localization P (Lk = lj |Zo:k) Current

Association P (Xnextk−1 (xi) = xj |Mk−1(xi) = 1, Z0:k) Current

Mapping P (Mk(xi) = 1|Z0:k) Current

Velocity Estimation P (Vk−1(xi) = vj |Mk−1(xi) = 1, Z0:k−1) Previous

Detection P (Dk−1(xi, xj) = 1|Mk−1(xi) = 1,Mk−1(xj) = 1, Z0:k−1) Previous
Classification P (Ck−1(xi) = cj |Mk−1(xi) = 1, Z0:k−1) Previous

Figure 5.13: The proposed approach is able to map both static and moving objects as depicted
here.
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Figure 5.14: Dependencies with other perception tasks used in the mapping computation.

5.4.6 Step 4 - Computation of the Velocity Estimation problem

The dynamical features of the points occupying every cells can be now be estimated. Note
that although this problem is called for simplicity the Velocity Estimation problem, all relevant
features related to the dynamic behavior of a point occupying a cell can be estimated here
(such accelerations, etc...).

Local computation

By considering the computation of the Velocity Estimation problem in a cell as independent
from the similar computation in the neighbouring cells, a good estimate of the velocity of
a given cell can be obtained from the association result. Indeed, if the previous location of
a point occupying a cell is known, information about its speed can be inferred. However, a
given cell might also be occupied by an object point that is seen for the first time, in that
case no information can be extracted from the Association pmf. This local computation can
then be decomposed in the same way as the computation of the Mapping problem described
above.

Plocal(Vk(xi)|Mk(xi) = 1, Z0:k) = (5.21)

Plocal(Vk(xi)|Sk(xi) = 1,Mk(xi) = 1, Z0:k)︸ ︷︷ ︸
Velocity if already seen

P (Sk(xi) = 1|Z0:k)︸ ︷︷ ︸
Status of the cell

+Plocal(Vk(xi)|Sk(xi) = 0,Mk(xi) = 1, Z0:k)︸ ︷︷ ︸
Velocity if never seen

P (Sk(xi) = 0|Z0:k)

Status of the cell

Estimating this probability is a problem that has already been discussed in the computation
of the new occupancy map. The same solutions can naturally be used.



124CHAPTER 5. GRID-BASED GLOBAL APPROACH FOR RELIABLE PERCEPTION

Velocity if already seen

As stated above, when the point located in xi is considered as already seen, its velocity
(and acceleration) can be directly derived from the velocity of the cell where this point was
before. Of course, this estimation should be performed by marginalizing over all the possible
association and velocity hypothesis. This strategy is depicted in figure 5.15. It should be
noted that any sensor observation related to objects dynamic features can also be integrated
in this computation. Similarly, the Classification pmf estimated at time k − 1 can be used
to feed the motion model that this computation requires.

Figure 5.15: If a point occupying a cell has already been seen, its velocity can be derived by
investigating all the possible association hypothesis with previous cells.

Velocity if never seen

If the point located in a given cell is seen for the first time, the above strategy cannot be
used. If sensors are able to collect data about objects speed or acceleration, this information
can be used to compute this term (through the Localization pmf ). Else, a non informative
prior can be used. In chapter 6, the following prior is used:

Plocal(Vk(xi)|Sk(xi) = 0,Mk(xi) = 1, Z0:k) =
1

card(V )
(5.22)

Interaction with other cells

Taking into account the interaction is not critical here to compute relevant velocities. Indeed,
as this computation is mainly based on the Association pmf, most of the interactions have
already been taken into accounts. However, the detection and classification information (at
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time k − 1) could be used to homogenize velocities over the different points of a same given
object.

Summary

The process described in this paragraph is intended to produce a relevant map of the velocities
in the environment as shown in figure 5.16. Interactions that can potentially be used in this
computation are depicted in figure 5.17. Finally, the set of probability mass functions that
are available at this point of the process can be summarised as seen in the table below.

Measurements zk Current

Localization P (Lk = lj |Zo:k) Current

Association P (Xnextk−1 (xi) = xj |Mk−1(xi) = 1, Z0:k) Current

Mapping P (Mk(xi) = 1|Z0:k) Current

Velocity Estimation P (Vk(xi) = vj |Mk(xi) = 1, Z0:k) Current

Detection P (Dk−1(xi, xj) = 1|Mk−1(xi) = 1,Mk−1(xj) = 1, Z0:k−1) Previous
Classification P (Ck−1(xi) = cj |Mk−1(xi) = 1, Z0:k−1) Previous

Figure 5.16: Schematic view of the velocity pmf that is computed in this section. Only the
most probable estimates are represented here for clarity reasons.
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Figure 5.17: Dependencies with other perception tasks used in the computation of the Ve-
locity Estimation problem.

5.4.7 Step 5 - Computation of the Detection problem

At this point of the process, the information that is necessary to compute accurately the
Detection problem is available. Indeed, velocity (acceleration) estimates are available for any
given cell (provided that its probability of being occupied is not equal to zero). An accurate
Detection based both on geometric and dynamic criteria is then possible.

Local computation

Let us introduce for simplicity the random variable Sk(xi, xj) and M(xi, xj) such that:

Sk(xi, xj) =

{
1 if Sk(xi) = Sk(xj) = 1

0 else
(5.23)

Mk(xi, xj) =

{
1 if Mk(xi) =Mk(xj) = 1

0 else
(5.24)

As for the computations of most of the other tasks, a distinction has to be made based on
whether the two cells that are considered (xi and xj) have already been seen before or not.
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Plocal(Dk(xi, xj) = 1|Mk(xi, xj) = 1, Z0:k) =

Plocal(Dk(xi, xj) = 1|Sk(xi, xj) = 1,Mk(xi, xj) = 1, Z0:k)︸ ︷︷ ︸
Detection if already seen

P (Sk(xi, xj) = 1|Z0:k)︸ ︷︷ ︸
Status of the cells

+

Plocal(Dk(xi, xj) = 1|Sk(xi, xj) = 0,Mk(xi, xj) = 1, Z0:k)︸ ︷︷ ︸
Detection if never seen

P (Sk(xi, xj) = 0|Z0:k)

Status of the cells

The estimation of this probability can be performed in many ways. In chapter 6, it is assumed
that this estimation can be performed as if Sk(xi) and Sk(xj) were independent ∀(xi, xj) ∈ E2

although there are obviously not. This leads to the following equation:

P (Sk(xi, xj) = 1|Mk(xi, xj) = 1) =

P (Sk(xi) = 1|Mk(xi) = 1)× P (Sk(xj) = 1|Mk(xj) = 1) (5.25)

, where the terms of the product are computed as discussed in the previous steps of this
algorithm. This assumption is not correct but turned out to be a satisfactory approximation
in practice.

Detection if already seen

When the two points related to the two given cells (xi and xj) have already been seen, the
local detection probability can be computed from a combination of four different sources.

1. The information contained in the current occupancy ”map” (geometric based detec-
tion). Indeed two occupied cells that are close from one another are likely to belong to
the same object.

2. The information contained in the velocity ”map” computed at step 4 (dynamic based
detection). Two points occupying two cells and having similar velocities are likely to
belong to the same object even if they are not very close.

3. The information contained in the Detection pmf estimated at time k − 1. Two points
that belong to the same object at time k− 1 are likely to belong to the same object at
time k.

4. The information contained in the Classification pmf estimated at time k − 1. Two
points that were classified as being parts of a vehicle are likely to belong to the same
vehicle.
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This information is available as four different pmfs and should consequently be incorporated
as weighted sums (marginalization) into the computation of this term.

Detection if never seen

If one of the points occupying the two given cells (xi and xj) is seen for the first time, most
of the above information sources are useless. In this case, the Detection is only based on
geometric criteria extracted from the current occupancy map (Mapping pmf ).

Interaction with the other cells

As the computation of the local Detection pmf already involves two cells, some of this
interaction is already managed. However, it might be still useful to make use of a potential
function Φdetection to homogenize globally the detection pmf computed locally. Indeed, if cell
A is likely to belong to the same object as cell B, and if cell A is also likely to belong to the
same object as cell C, then cell A and cell C are likely to belong to the same object. This
cannot be ensured by only computing the Detection pmf locally.

Summary

The current Detection probability mass function is now available. This computation implies
potentially several other perceptual tasks as shown in figure 5.19. The information available
at this point can be summarized in the table below.

Measurements zk Current

Localization P (Lk = lj |Zo:k) Current

Association P (Xnextk−1 (xi) = xj |Mk−1(xi) = 1, Z0:k) Current

Mapping P (Mk(xi) = 1|Z0:k) Current

Velocity Estimation P (Vk(xi) = vj |Mk(xi) = 1, Z0:k) Current

Detection P (Dk(xi, xj) = 1|Mk(xi) = 1,Mk(xj) = 1, Z0:k) Current
Classification P (Ck−1(xi) = cj |Mk−1(xi) = 1, Z0:k−1) Previous
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Figure 5.18: Schematic view of the Detection pmf computed in this section. Only the most
probable estimates are represented here for clarity reasons.

Figure 5.19: Dependencies with other perception tasks used in the computation of the De-
tection problem.
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5.4.8 Step 6 - Computation of the Classification problem

The last step of the proposed algorithm is the computation of the Classification problem.
Interactions between cells are crucial in the computation of this problem. Indeed, a cell
can not be classified as being part of a ”vehicle” if the surrounding cells are not classified
accordingly. But it is still possible and potentially useful to perform a first computation
locally.

Local computation

Without taking into account the neighbouring cells, the classification of a given cell xi can
still be inferred from the various pmfs that are available at this point in the algorithm.
However, this should be decomposed first depending on whether the point occupying that
cell is seen for the first time or has already been seen.

Plocal(Ck(xi)|Mk(xi) = 1, Z0:k) = (5.26)

Plocal(Ck(xi)|Sk(xi) = 1,Mk(xi) = 1, Z0:k)︸ ︷︷ ︸
Classification if already seen

P (Sk(xi) = 1|Z0:k)︸ ︷︷ ︸
Status of the cell

+Plocal(Ck(xi)|Sk(xi) = 0,Mk(xi) = 1, Z0:k)︸ ︷︷ ︸
Classification if never seen

P (Sk(xi) = 0|Z0:k)

Status of the cells

The computation of this probability is already discussed in the other sections of this chapter.

Classification if already seen

When the point occupying a given cell xi has already been seen before, then a combination
of the three following information sources is possible.

1. The information contained in the current Velocity Estimation pmf for the considered
cell gives information about the possible objects classes the point occupying that cell
might belong to.

2. The information contained in the Classification pmf estimated at time k − 1 and ac-
cessible through the Association pmf can also be useful. Indeed, a point classified as
belonging to a vehicle at time k − 1 is likely to belong to the same class of objects at
time k.

3. The sensor can directly make observations about the class of an object. This informa-
tion accessible through the Localization pmf can be integrated to this local computa-
tion. Cameras can indeed provide information about objects colors into a given area
(a given cell here) that could be incorporated in this way.
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Classification if never seen

If the object point occupying a cell has never been seen before, most of the above information
are still usable. Indeed, provided that the velocity estimate corresponding to that point is
relevant (directly measured by the sensor for example), this information can be used to
infer locally a classification. Sensors observations can also be integrated as mentioned above.
However, because this point seen for the first time has not been registered yet, no information
from time k − 1 can be used.

Interaction with other cells

The local computation of the classification problem is useful but not sufficient. Indeed, a cell
cannot be appropriately classified without looking at the neighbouring cells. Most existing
classification algorithms are indeed based on objects and their use should be made possible.
To do so, an object-based representation has to be derived from our framework. Passing
from a grid-based representation to an object-based representation should be performed
while retaining a high level of uncertainty modelling.

In our framework an object at time k can be described as a set of cells that satisfy the
following condition.

Oδk(xi) = {xj ∈ E \ P (Dk(xi, xj) = 1|Mk(xi, xj) = 1, Z0:k) ≥ δ} (5.27)

Depending on the value chosen for δ, an object Oδk(xi) defined by this equation will be more or
less likely to correspond to a real object in the scene. It is possible to express this probability
as the following product:

P (Oδk(xi) is real|Z0:k) =
∏

(xi,xj)∈E2

P (Dk(xi, xj) = 1|Mk(xi, xj) = 1, Z0:k)

P (Mk(xi) = 1|Z0:k) P (Mk(xj) = 1|Z0:k) (5.28)

Equations (5.27) and (5.28) offer an elegant way to pass naturally from a grid-based rep-
resentation to an object based representation while retaining a high level of uncertainty
representation.

To compute the global Classification pmf for any given cell xi ∈ E, the method proposed in
section 5.3 is used as follows.

P (Ck(xi) = ĉ|Mk(xi) = 1, Z0:k) '

∑

ak∈A











∏

1≤j≤N

Plocal(Ck(xj)|Mk(xi) = 1, Z0:k)





ΦClassification(ak)





(5.29)

, whereA is the set of all the possible global Classification configurations such that Ck(xi) = ĉ.
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The potential function ΦClassification is intended to penalize the classification configurations
that are globally unlikely. This can be performed by any existing classification algorithm
to which appropriate objects are given. This could be implemented through the following
potential function:

ΦClassification(ak) =
∏

xi∈E

P (Ck(xi) = ci|Oδk(xi) is real, Z0:k)︸ ︷︷ ︸
Computed by an object-based classification algorithm

(5.30)

, with a value of δ being chosen to feed the object-based classification algorithm with a
realistic object. However, this process does not maintain any uncertainties about the object
that is sent to the object-based classification algorithm. Any badly identified object can
prevent the process to perform relevant Classification.

This potential function should be adapted to make use of the uncertainty information avail-
able for each object. This can be done by the following modified function where a marginal-
ization is performed over all the possible objects hypothesis.

ΦClassification(ak) =

∏

xi∈E

β(xi)
∑

δi∈Δ

P (Ck(xi) = ci|O
δi
k (xi) is real, Z0:k)︸ ︷︷ ︸

Computed by an object-based classification algorithm

P (Oδik (xi) is real|Z0:k) (5.31)

, with β(xi) = (
∑
δi∈Δ P (O

δi
k (xi) is real|Z0:k))

−1 and Δ = {δ1, ..., δm} ∈ [0, 1]m.

This former potential function formulation requires more computational power but is a way to
maintain a high level of uncertainty management. It should be noted that any pmf currently
available can be given to the object-based classification algorithm if necessary.

Summary

At the end of this sixth step, a new Classification pmf is now available. This pmf can be
depicted as seen in figure 5.20 and the interactions with other tasks that this computation
might use are summarized in figure 5.21.

Measurements zk Current

Localization P (Lk = lj |Zo:k) Current

Association P (Xnextk−1 (xi) = xj |Mk−1(xi) = 1, Z0:k) Current

Mapping P (Mk(xi) = 1|Z0:k) Current

Velocity Estimation P (Vk(xi) = vj |Mk(xi) = 1, Z0:k) Current

Detection P (Dk(xi, xj) = 1|Mk(xi) = 1,Mk(xj) = 1, Z0:k) Current
Classification P (Ck(xi) = cj |Mk(xi) = 1, Z0:k) Current
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Figure 5.20: Schematic view of the Classification pmf computed in this section. Only the
most probable estimates are represented here.

Figure 5.21: Dependencies with other perception tasks used in the computation of the Clas-
sification problem.



134CHAPTER 5. GRID-BASED GLOBAL APPROACH FOR RELIABLE PERCEPTION

5.5 Conclusion

In this chapter, an original algorithm is proposed to solve sequentially all the perceptual tasks.
This perception algorithm is based on an unified and powerful grid-based representation that
allows the efficient representation of all the uncertainty generated by the system as probability
mass functions (pmfs). Besides, in this framework, any given perceptual task can be solved
sequentially as an usual discrete inference problem where any relevant information coming
from the other tasks can be elegantly introduced.

The main strength of this approach is certainly its capacity to embed all the facets of the
perception problem (Detection, Tracking, Classification, Mapping and Localization) into the
same mathematical formalism. This unified mathematical approach is then an elegant way
to enable any required interaction between two perceptual tasks. As a result, the algorithm
described in this chapter is able to simultaneously solve all the critical issues of common
approaches discussed in Chapter 4. This particular point will be proven on real data in
Chapter 6.

The main weakness of this perception algorithm however is certainly the inherent compu-
tational burden involved by most of its steps. But this computational load can be greatly
soften while still preserving most of the interesting properties of this approach as shown in
the next chapter.



Résumé en français du chapitre 6

Dans le but d’évaluer la validité des concepts théoriques présentés au chapitre 5, nous
détaillons dans ce chapitre un deuxième système de perception de piétons directement basé
sur l’approche présentée au chapitre précédent. Une partie importante de ce chapitre est
consacrée à la comparaison des performances de ce système avec celui présenté au chapitre 3
sur le critère qui nous intéresse ici : la fiabilité.
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Chapter 6

Pedestrian Perception - Reliable
System
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6.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

6.1 Introduction

In this chapter, we present an attempt to adapt the grid-based approach presented in Chapter
5 to the specific problem of pedestrian perception with a ladar. The framework presented in
the previous chapter is powerful but can imply heavy computational requirements depending
on the level of interaction that is implemented.

For any given application, it is in fact possible to adapt the algorithm for reasonable execution
time while still retaining most of its benefits. This can be made for example by only
implementing interactions that are especially needed. In Chapter 4, three major
interactions have been identified as important to reach better performances:

1. Detection ⇐⇒ Tracking

2. Tracking ⇐⇒ Mapping

3. Classification ⇐⇒ Mapping
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Consequently we propose in this chapter a grid-based perception algorithm where these
three interactions are elegantly integrated. The precise computations performed to solve
each perceptual task are successively detailed in the next sections.

We also present experimental results based both on simulated data to valid the key function-
alities of the system and on real data to prove the benefit of this approach in the difficult
situations presented in Chapter 4.

6.2 Principles

In this section, a brief overview of the three main types of simplifications used in this chapter
to implement the proposed pedestrian perception system is given.

6.2.1 Known Localization

Because solving the Localization problem using a perceptual approach did not appear as a
critical requirement in our study of pedestrian perception systems, we assume in this chapter
that the localization of the sensing platform is known. In our experiments, this localization
is provided by the proprioceptive sensors of the sensing platform.

6.2.2 Occupied Cells Sets

The grid-based approach presented in chapter 5 is based on the computation of six probability
mass functions in every cell of the environment E (provided that P (Mk(xi) = 1|Z0:k) 6= 0 for
all pmf except the Mapping one). In practice, most of these pmf are only relevant in cells
that have a high probability to be occupied. Indeed, computing the velocity estimates of
cells that are unlikely to be occupied is feasible but slows down the computations in practice.

It is thus possible to alleviate the computational burden of the whole process by only com-
puting the perceptual pmfs on the smaller set of cells that are likely to be occupied. This
set noted OCCk is computed at time k as follows:

OCCk = {xi ∈ E/P (Mk(xi) = 1|Z0:k) ≥ δ} ∀δ ∈ [0, 1] (6.1)

It is interesting to note that by modifying the value chosen for δ, the set OCCk can alterna-
tively be very small or as big as E. δ = 0.9 proved to work well in our experiments.

6.2.3 Most Probable Estimates Interactions

Most of the computational burden implied by the grid-based perception approach is linked to
the use of discrete summations for integrating the pmfs related to other tasks. The use of pmf
is relevant in lots of situations as multi-modal uncertainty information can for example only
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be transmitted properly in this way. However, the most probable value of a given pmf (MAP
estimate) can sometimes be sufficient to transmit relevant information to another task.

As a result, maximum a posteriori (MAP) estimates will regularly be used instead of marginal-
izing (summing) over the whole corresponding pmf. These MAP estimates are indicated by
a hat accent as shown below (Ak and Bk can refer to any random variable introduced in
Chapter 5).

P (Ak(xi)|Z0:k) =
∑

b∈B

P (Ak(xi)|Bk(xi) = b, Z0:k)P (Bk(xi) = b|Z0:k)

︸ ︷︷ ︸
Information integrated as a pmf

(6.2)

' P (Ak(xi)|Bk(xi) = b̂, Z0:k)
∑

b∈B

P (Bk(xi) = b|Z0:k)

︸ ︷︷ ︸
= 1

' P (Ak(xi)|Bk(xi) = b̂, Z0:k)︸ ︷︷ ︸
Information integrated as a MAP estimate

Finally, interactions that are not critical for pedestrian perception will simply not be imple-
mented at all.

6.2.4 Outlines of this chapter

The next sections present successively how these simplifications are used to compute suc-
cessively each perceptual task. For each task, the precise computations performed to solve
the problem both locally and globally are detailed and results based on simulated data are
shown to present the key characteristic of the system. Finally the last sections of this chapter
are dedicated to the analysis on real data of the benefits that such a system can bring to
pedestrian perception in highly changing environment.
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6.3 Computation of the Association problem

Figure 6.1: Schematic view of the simplifications made in the computation of the Association
problem.

6.3.1 Local computation

The local computation of the Association pmf is performed on the set OCCk−1 as detailed
below:

∀xi ∈ OCCk−1,

Plocal(X
next
k−1 (xj)|Mk−1(xj) = 1,Z0:k) ' (6.3)

η P (zk|X
next
k−1 (xj), l̂k,Mk−1(xj) = 1)︸ ︷︷ ︸
Sensor Occupancy model

∑

vj∈V

∑

cj∈C

P (Xnextk−1 (xj)|Ck−1(xj) = cj , Vk−1(xj) = vj ,Mk−1(xj) = 1)︸ ︷︷ ︸
Motion model

P (Ck−1(xj) = cj |Mk−1(xj) = 1, Z0:k−1)︸ ︷︷ ︸
Classification pmf

P (Vk−1(xj) = vj |Mk−1(xj) = 1, Z0:k−1)︸ ︷︷ ︸
Velocity Estimation pmf

The sensor occupancy model is similar to the one used in (Elfes, 1989b) and the motion
model is a constant velocity model.

6.3.2 Global computation

The global computation of the association process should normally be performed as proposed
in chapter 5:
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Figure 6.2: Example of a sensor occupancy model (right picture) extracted from the ladar
measurements.

∀xi ∈ OCCk−1,

P (Xnextk−1 (xi) = x̂|Mk−1(xi) = 1, Z0:k) '

∑

xnextk−1 ∈A(OCCk−1)











∏

1≤j≤N

Plocal(X
next
k−1 (xj)|Mk−1(xi) = 1, Z0:k)






Φassociation(x
next
k−1 ,OCCk−1, Z0:k) (6.4)

, where A(OCCk−1) is the set of all the possible global realisations of the reduced random
vector {Xnextk−1 (y)}y∈OCCk−1 such that X

next
k−1 (xi) = x̂.

Unfortunately the size of A(OCCk−1) makes this process very computationally demanding in
practice. To make the computation of the global Association pmf faster, we use the following
observations.

1. All the cells contained in the set OCCk−1 belong to a small number of objects. As
a result the Association pmf of all the cells of an object can be deduced from the
Association pmf of a few number of specific cells that are called ”key cells” and grouped
in a set noted KCk−1.

2. The set A(OCCk−1) of all the possible global association realisations contains some
realisations that are very unlikely in practice. For example, investigating a realisation
where all the points belonging to a same given object converge to the same cell is useless
(its probability of realisation is null). This set can then be reduced to contain only the
configurations that are most likely. The corresponding reduced set is noted B(OCCk−1).

Based on these observations, the computation of the global Association pmfs is performed in
two steps. First, only ”key cells” are associated. Then, all the remaining cells are handled
based on the ”key cells” Association pmfs obtained before. This can be mathematically
described as follows:
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Step 1 - Global Association of ”key cells”

∀xi ∈ KCk−1,

P (Xnextk−1 (xi) = x̂|Mk−1(xi) = 1, Z0:k) '

∑

xnextk−1 ∈B(OCCk−1)






∏

xj∈OCCk−1

Plocal(X
next
k−1 (xj) = x

next
k−1 (xj)|Mk−1(xj) = 1, Z0:k)






× ΦAssociation(x
next
k−1 ,OCCk−1, Z0:k) (6.5)

Step 2 - Global Association of the remaining cells

∀xi ∈ OCCk−1/KCk−1,

P (Xnextk−1 (xi) = x̂|Mk−1(xi) = 1, Z0:k) '

∑

xnextk−1 ∈B(KCk−1)






∏

xj∈KCk−1

P (Xnextk−1 (xj) = x
next
k−1 (xj)|Mk−1(xj) = 1, Z0:k)︸ ︷︷ ︸

Computed in step 1






× ΦAssociation(x
next
k−1 ,KCk−1, Z0:k) (6.6)

Key Cells Selection

To select ”key cells”, the object-based representation introduced in the previous chapter
is used to decide which cells belong to the same objects in the environment based on the
information available in the Detection pmf.

Objects are first grouped in a set noted OBJ δk−1:

OBJ δk−1 =
{
Oδk−1(xi)

}

xi∈OCCk−1

, where

Oδk−1(xi) = {xj ∈ E \ P (Dk−1(xi, xj) = 1|Mk−1(xi, xj) = 1, Z0:k−1) ≥ δ}

Finally, for each object obj ∈ OBJ δk−1, a maximum of two ”key cells” xa ∈ obj and xb ∈ obj
are selected such that:

(xa, xb) = arg max
(xi,xj)∈obj2

|xi − xj |

It is important to note that depending on the value chosen for δ, the size of the set KCk−1
can vary a lot (equal to OCCk−1 if δ = 0).
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(a) δ = 0.9 (b) δ = 0.4

Figure 6.3: Example of Key Cells selected with different values for δ.

Note that selecting very few ”key cells” will ensure fast computations but amounts performing
anticipated and potentially erroneous object detection. By selecting a fair amount of ”key
cells”, we ensure that potential errors on the estimated pmf of Dk−1 will not undermine the
association procedure.

Feasible Realisation Selection

Because the sets B(OCCk−1) and B(KCk−1) are intended to only contain the association
realisation that are globally feasible, these sets are selected using the potential function
ΦAssociation as follow:

B(OCCk−1) = {a ∈ A(OCCk−1)/ΦAssociation(a,OCCk−1, Z0:k) ≥ γ }

B(KCk−1) = {a ∈ A(KCk−1)/ΦAssociation(a,KCk−1, Z0:k) ≥ γ }

It is also important to mention that the computational burden implied by the computation of
the Association problem can vary a lot depending on the value given to γ. Note for example
that a heavy but complete computation over all the possible realisations can be obtained by
setting γ = 0.

Potential Function ΦAssociation

The function ΦAssociation(E, a, Z0:k) is implemented in such a way that the two following
situations are penalized.

• In the association realisation a, the distance between two points belonging to the same
object undergoes a severe distortion.

• In the association realisation a, two points belonging to different objects are converging
to the same cell.
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To implement these two simple heuristics, the information contained in the Detection pmf is
required. This is done as follows.

ΦAssociation(x
next
k−1 ,H, Z0:k) =

∏

(x,y)∈H

α(xnextk−1 , x, y)P (Dk−1(x, y) = 1|Mk−1(x, y) = 1, Z0:k−1)

(6.7)

+β(xnextk−1 , x, y)P (Dk−1(x, y) = 0|Mk−1(x, y) = 1, Z0:k−1)

, where the terms α and β are chosen such that the two heuristics mentioned above are
implemented. In our experiments we used:

α(xnextk−1 , x, y) = 1− ρ

∣
∣
∣
∣
∣

∣
∣xnext(x)− xnext(y)

∣
∣

|x− y|
− 1

∣
∣
∣
∣
∣

β(xnextk−1 , x, y) = (1− ε)11xnext(x) 6=xnext(y) + ε11xnext(x)=xnext(y)

, where ρ and ε are parameters chosen appropriately.

6.3.3 Experimental validation

The association method described in this section allows to successfully associate the for-
mer occupancy map with the new measurements as shown on simulated data in figure 6.4.
Experiments conducted on real data will be presented in the last sections of this chapter.
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Figure 6.4: Association example on simulated data. The sensing vehicle is on the left of
each top-view pictures. The top-left picture shows the occupancy map at time k − 1. The
top-right picture shows the new incoming ladar data at time k. The bottom-left pictures
shows the ”key cells” detected for association and the bottom-right picture show the most
probable association solution (maximum a posteriori).
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6.4 Computation of the Mapping problem

Figure 6.5: Schematic view of the simplification made in the computation of the Mapping
problem.

6.4.1 Local computation

The local computation of the Mapping pmf is performed on every environment cell as detailed
below:

∀xi ∈ E,

Plocal(Mk(xi) = 1|Z0:k) = (6.8)

Plocal(Mk(xi) = 1|Sk(xi) = 1, Z0:k)︸ ︷︷ ︸
Mapping if already seen

P (Sk(xi) = 1|Z0:k)︸ ︷︷ ︸
Status of the cell

+Plocal(Mk(xi) = 1|Sk(xi) = 0, Z0:k)︸ ︷︷ ︸
Mapping if never seen

P (Sk(xi) = 0|Z0:k)

Status of the cell

As already mentioned in chapter 5, the following method is used to estimate the probability
for a cell to be seen for the first time.

P (Sk(xi) = 1|Z0:k) =
{
γ if ∃xj ∈ E st xi = argmaxxl P (X

next
k−1 (xj) = xl|Mk−1(xj) = 1, Z0:k)

1− γ else
(6.9)

Mapping if already seen

In this computation, the information contained in the previous Mapping pmf is used to
update the new occupancy of each cell. This is naturally performed by summing over all the
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association hypothesis with former cells (weighted by the Association pmf ). No interaction
with the Classification task is implemented here.

Plocal(Mk(xi) = 1|Sk(xi) = 1, Z0:k) = (6.10)

βη
∑

xj∈E

P (zk|Mk(xi) = 1, X
next
k−1 (xj) = xi,Mk−1(xj) = 1, l̂j)︸ ︷︷ ︸

Sensor Free Space model

P (Mk(xi) = 1|Mk−1(xj) = 1, X
next
k−1 (xj) = xi)︸ ︷︷ ︸

Occupancy Evolution model

P (Mk−1(xj) = 1|Z0:k−1)︸ ︷︷ ︸
Mapping pmf

P (Xnextk−1 (xj) = xi|Mk−1(xj) = 1, Z0:k)︸ ︷︷ ︸
Association pmf

, where β = (
∑
xj∈E P (X

next
k−1 (xj) = xi|Mk−1(xj) = 1, Z0:k))

−1.

Two models need to be defined here. The first is the evolution model of the occupancy of
one cell given the fact that it was occupied one step before. We chose to estimate this model
as a simplistic constant value μ. This value is important as it parameterizes the ability of
the system to maintain in the map object points that are not visible anymore. A high value
of μ will lead to highly detailed map (aggregating all the past measurements) while a small
value of this parameter will make the estimated objects outlines past away progressively.

The sensor free space model is derived from the common sensor occupancy model. It differs
however from the sensor occupancy model by only penalizing free spaces in the environment.
Occupied cells and unknown cells are given the same high probability. Using this specific
sensor model is necessary to allow object points that have been seen before to be maintained
in areas where they are not visible anymore. A representation of this model is given in picture
6.6.

Figure 6.6: The sensor free space model (right) compared to the sensor occupancy model
(left).
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Mapping if never seen

If the cell is seen for the first time, its probability of occupancy is directly derived from the
sensor observation weighted by the prior probability of a cell to be occupied .

Plocal(Mk(xi) = 1|Sk(xi) = 0, Z0:k) = (6.11)

η P (zk|Mk(xi) = 1, l̂j)︸ ︷︷ ︸
Sensor Occupancy model

P (Mk(xi) = 1|Sk(xi) = 0, Z0:k−1)︸ ︷︷ ︸
Probability of Apparition

The prior probability of occupancy can be derived from the proximity of that cell with the
edges of the sensor field of view for example. In our experiment, a simple constant value ν
was chosen.

6.4.2 Global computation

It is assumed here that a correct Mapping can be achieved without taking into account
interactions with the others cells. Hence,
∀xi ∈ E,

P (Mk(xi) = 1|Z0:k) ' Plocal(Mk(xi) = 1|Z0:k) (6.12)

This assumption proved to be valid in practice as most of the relevant information about
interactions between neighbouring cells is already embedded in the Association pmf used in
the Mapping computation.

6.4.3 Experimental results

Figure 6.7 shows an example of a scene where a vehicle is moving from the left of the sensing
vehicle to the right and a pedestrian is moving in the opposite direction along a wall. In this
example, the proposed algorithm is able to build a relevant map of the changing environment.
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Figure 6.7: Mapping example on simulated data. The sensing vehicle is on the left of each
picture. The successive occupancy maps show the progressive estimation of the tracked
vehicle outlines. Note that the outlines of the ”pedestrian” are also maintained even when
they are temporarily occluded.
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6.5 Computation of the Velocity Estimation problem

Figure 6.8: Schematic view of the simplification made in the computation of the Velocity
Estimation problem.

6.5.1 Local computation

The local computation of the Velocity Estimation problem is performed using the equations
below. Note that this computation is only performed on cells that are likely to be occupied
(OCCk).

∀xi ∈ OCCk,

Plocal(Vk(xi)|Mk(xi) = 1, Z0:k) = (6.13)

Plocal(Vk(xi)|Sk(xi) = 1,Mk(xi) = 1, Z0:k)︸ ︷︷ ︸
Velocity Estimation if already seen

P (Sk(xi) = 1|Z0:k)︸ ︷︷ ︸
Status of the cell

(6.14)

+Plocal(Vk(xi)|Sk(xi) = 0,Mk(xi) = 1, Z0:k)︸ ︷︷ ︸
Velocity Estimation if never seen

P (Sk(xi) = 0|Z0:k) (6.15)

Status of the cell

This probability is computed as shown in the previous sections.

Velocity Estimation if already seen

If the point occupying a cell xi has already been seen before, the estimation of its new velocity
(acceleration, etc...) is based on its previous velocity and on the information given by the
Association pmf about its last displacement.
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Plocal(Vk(xi)|Sk(xi) = 1,Mk(xi) = 1, Z0:k) = (6.16)

β
∑

xj∈E

∑

vj∈V

P (Vk(xi)|Vk−1(xj) = vj , X
next
k−1 (xj) = xi,Mk(xi) = 1,Mk−1(xi) = 1)︸ ︷︷ ︸

Velocity evolution model

×P (Vk−1(xj) = vj |Mk−1(xj) = 1, Z0:k−1)︸ ︷︷ ︸
Velocity Estimation pmf

×P (Xnextk−1 (xj) = xi|Mk−1(xj) = 1, Z0:k)︸ ︷︷ ︸
Association pmf

The velocity evolution model is based on a Gaussian:

P (Vk(xi) = vi|Vk−1(xj) = vj , X
next
k−1 (xj) = xi,Mk(xi) = 1,Mk−1(xi) = 1) = N (vi, μ,Σ)

μ =
xi − xj
Δt

Σ =

(
σ2 0
0 σ2

)

Velocity if never seen

When the point occupying a cell xi has never been seen before, a non informative prior is
used:

P (Vk(xi)|Sk(xi) = 0,Mk(xi) = 1, Z0:k) =
1

card(V )
(6.17)

6.5.2 Global computation

It is assumed here that a satisfying Velocity Estimation can be obtained without taking into
account the other cells directly. Hence:

∀xi ∈ OCCk,

P (Vk(xi)|Mk(xi) = 1, Z0:k) ' Plocal(Vk(xi)|Mk(xi) = 1, Z0:k) (6.18)

6.5.3 Experimental results

Figure 6.9 shows an example of the Velocity estimations performed on simulated ladar data
in a specific situation. It is interesting to note that the algorithm is in this case able to
correctly estimate the objects velocities. A point-based algorithm would certainly fail due to
the progressive occlusion of the ”wall”.
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Figure 6.9: Tracking example on simulated data. The two cells moving closely to the wall
are successfully tracked.
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6.6 Computation of the Detection problem

Figure 6.10: Schematic view of the simplification made in the computation of the Detection
problem.

6.6.1 Local computation

The local computation of the Detection pmf is performed based on the geometric infor-
mation contained in the Mapping pmf and on the dynamic information estimated through
the computation of the Velocity Estimation pmf. This can be described by the following
equations:

∀(xi, xj) ∈ (OCCk)2,

Plocal(Dk(xi, xj) = 1|Mk(xi, xj) = 1, Z0:k) = (6.19)

Plocal(Dk(xi, xj) = 1|Sk(xi, xj) = 1,Mk(xi, xj) = 1, Z0:k)︸ ︷︷ ︸
Detection if already seen

P (Sk(xi, xj) = 1|Z0:k)︸ ︷︷ ︸
Status of the cells

+Plocal(Dk(xi, xj) = 1|Sk(xi, xj) = 0,Mk(xi, xj) = 1, Z0:k)︸ ︷︷ ︸
Detection if never seen before

P (Sk(xi, xj) = 0|Z0:k)

Status of the cells

This term is computed as follows:

P (Sk(xi, xj) = 1|Mk(xi, xj) = 1) =

P (Sk(xi) = 1|Mk(xi) = 1)× P (Sk(xj) = 1|Mk(xj) = 1) (6.20)

, where the terms of the product are computed as discussed in the previous steps of this
algorithm.
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Detection if already seen

The two cells implied in this computation make the use of whole pmf computationally de-
manding. Therefore, the interaction with the Classification task is not implemented here and
the information coming from the Velocity Estimation task is integrated as a MAP estimate.

P (Dk(xi, xj) = 1|Sk(xi, xj) = 1,Mk(xi, xj) = 1, Z0:k) =

P (Dk(xi, xj) = 1|Vk(xi) = v̂i, Vk(xj) = v̂j , Sk(xi, xj) = 1,Mk(xi, xj) = 1, Z0:k) (6.21)

To compute this term, a trapezoidal function g is used as follows:

P (Dk(xi, xj) = 1|Vk(xi) = v̂i, Vk(xj) = v̂j , Sk(xi, xj) = 1,Mk(xi, xj) = 1, Z0:k) =

g(|v̂j − v̂i|)(α1,α2) × g(|xj − xi|)(α′1,α′2) (6.22)

, where

g(y)(α1,α2) =






1 if 0 ≤ y < α1
α2−y
α2−α1

if α1 ≤ y < α2
0 if α2 ≤ y

Detection if never seen

When one of the two points occupying the cells (xi, xj) has never been seen before, the
Detection computation is only based on the proximity of the two points:

Plocal(Dk(xi, xj) = 1|Sk(xi, xj) = 1,Mk(xi, xj) = 1, Z0:k) = g(|xj − xi|)(α′1,α′2) (6.23)

6.6.2 Global computation

As mentioned in the previous chapter, the local computation of the Detection pmf is not
sufficient to obtain a consistent global Detection pmf. Indeed, cells A and B can be estimated
as belonging to the same object, as cells B and C, but the probability that A and C belong to
the same object can still being equal to zero. To address this problem, a simple deterministic
approach is used such that, ∀(xA, xB, xC) ∈ (OCCk)3,

P (D(xA, xC)|Mk(xA, xC) = 1, Z0:k) =

P (D(xA, xB)|Mk(xA, xB) = 1, Z0:k)× P (D(xB, xC)|Mk(xB , xC) = 1, Z0:k) (6.24)

6.6.3 Experimental results

Figure 6.11 shows a situation where the two moving cells are successfully grouped together
and discriminated from the wall. This is a situation that would probably be misleading for
algorithms using common approaches.
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Figure 6.11: Example of a situation where dynamical features are required to solve correctly
the Detection problem. Indeed, without the help of the velocity estimation, the two cells
representing the pedestrian walking along a wall in the figure above would certainly have
been merged with the ”wall”.
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6.7 Computation of the Classification problem

Figure 6.12: Schematic view of the simplification made in the computation of the Classifica-
tion problem.

6.7.1 Local computation

No local computation of the Classification pmf is performed here.

6.7.2 Global computation

For simplicity, the computation of the global Classification pmf is only performed through
the following equation:

P (Ck(xi)|Mk(xi) = 1, Z0:k) = P (Ck(xi)|V (Oδ(xi)) = v,Oδ(xi) is real,Mk(xi) = 1, Z0:k)︸ ︷︷ ︸
Computed by an object-based algorithm

(6.25)

The computation of this term is performed using the ladar-based classification algorithm
detailed in chapter 3. Note that the Classification pmf of time k − 1 is not directly used
here. While this would certainly lead to inconsistent Classification using common approaches
(when objects are temporarily occluded for example), it is not critical in this approach to
integrate the former Classification knowledge in this computation. Indeed, the information
contained in the Mapping pmf is richer than in common approaches (the map of the moving
objects are estimated) and is sufficient to ensure reliable Classification in practice.
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6.8 Results for Pedestrian Perception in Difficult Situations

This section is intended to valid the original approach proposed in Chapter 5 and 6 by
analysing its benefits on real ladar data collected in highly changing environments. These
benefits are in particular assessed on the three specific situations described in Chapter 4
where most common approaches fail.

6.8.1 Computationally Demanding Approach

The first experimental result that should be presented is the computational requirements im-
plied by the proposed approach. Despite the simplifications detailed in this chapter to adapt
the general approach proposed in Chapter 5, this algorithm is still more computationally
demanding than the pedestrian perception system presented in Chapter 3.

First, this algorithm is slower than many existing approaches. In our experiments, processing
a ladar scan takes approximatively 800 milliseconds when the system described in Chapter 3
only needs 12 milliseconds. This difference is significant and is undoubtedly a critical problem
for onboard implementations on nowadays architectures.

Second, storing the probability mass functions related to the five perceptual tasks requires a
significant amount of memory. Memory requirements are highly dependent on the resolution
and the size of the grid used to model the environment. For reasonable resolutions (cells of
10cm × 10cm) and with a modelled environment of 20m × 20m, the system requires '500Mo.

This new pedestrian perception system is thus undoubtedly more computationally demanding
that the system proposed in Chapter 3. We should mention nevertheless that significant
improvements can certainly be achieved on these aspects by using solutions proposed in
the literature to alleviate the computational burden implied by grid-based approaches. In
particular multi-resolution approaches as proposed in (Kraetzschmar et al., 2004) would
certainly allow better computational performances.

However, while being, in its current form, more demanding in terms of computational power
than most existing approaches, the proposed system has uncommon and noticeable perception
capabilities that are described in the next paragraphs.

6.8.2 Enhanced Detection

Description

The first type of situations that are very difficult to handle for a perception system are
situations where objects are moving very closely from each others and are heavily occluded.
As discussed in Chapter 4, the accurate detection of these obstacles is problematic. By
enabling the interaction between Detection and Tracking, the algorithm proposed in this
chapter is now able to cope with this situation elegantly. Presenting these results is not easy
in a written document. An overview of the algorithm behavior in this situation is nevertheless
given through successive representations of the system pmfs and the visualisation of the
system output on a calibrated camera image.
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Results - Example 1
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Results - Example 2
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Analysis

On these two examples all the pedestrians present in this sequence are correctly detected
despite the severe occlusions that deteriorate the ladar measurements. This correct detection
is achieved thanks to the accurate occupancy map that is iteratively estimated and the
velocity estimations that permit to discriminate every object despite their close proximity.
Handling groups of pedestrians in this way is a very desirable capability for a pedestrian
perception system.

6.8.3 Enhanced Tracking

Description

Situations where objects are heavily occluded are also problematic for point-based tracking
algorithms. Such a situation is described in Chapter 4 where a portion of a moving vehicle
is wrongly classified as a pedestrian by the system of Chapter 3 because of an uncorrect
tracking. The same situation processed by the algorithm proposed in this chapter is easily
handled as shown in the following figures. Note that the detected car is projected on the
camera image for clarity and does not correspond to a misclassified pedestrian.

Results
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Analysis

These results show that the proposed approach is able to track objects in situations where
point-based tracking algorithms would presumably fail. It is interesting to note that thanks
to mapping, the association procedure is not an issue here. Indeed, even when the moving
car is partially occluded, the system keeps its outlines in memory and is then naturally able
to ”understand” why an other object is appearing on the other side of the pedestrian. A
great variety of similar situations are perfectly handled by the algorithm proposed in this
chapter while leading to significant failures when processed by the algorithm presented in
Chapter 3.

6.8.4 Enhanced Classification

Finally, an important classification issue due to ”stair effects” was described in Chapter 4.
Objects being seen on various shapes along time are indeed usually difficult to accurately
classify. Besides these objects are usually badly structured making any model based approach
impossible. By refining the outlines of all objects in the environment, the algorithm proposed
in this chapter is able for example to handle this complex situation where a truck can only
be accurately detected and classified by aggregating sensor observations over time.

Results - Example 1
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Analysis - Example 1

These results illustrate the ability of the proposed algorithm to cope with badly structured
objects. Indeed, the truck shown in this situation is not seen by the sensor as a usual
rectilinear object. Because laser impacts are probably hitting a great variety of different
surfaces on the truck frame, this moving object is difficult to classify by only looking at
successive ladar scans. The original capability of the system to map moving objects is here
particularly useful. The consistent estimated map along with the velocity estimates allow
to detect the truck as one single object and to provide rich information to a potential truck
classifier.

Results - Example 2

This second situation is not related to the ”stair effect” problem but shows another type of
situations where the original capabilities of the proposed system can facilitate classification.
In this scenario, a car is turning in front of the sensing vehicle. From a ladar point of
view, this car will alternatively be seen as a single line or a L-shape object. The mapping
capabilities of the proposed approach allow for the exact outlines of the car to be refined over
time as seen in the figures below.
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Analysis - Example 2

No classification failures are at stake here, but we believe that the ability of the proposed
system to construct over time the exact outlines of all the objects in the scene (including
moving ones) can facilitate significantly the classification of objets that are well tracked and
detected but whose outlines are only periodically visible (which is the case of this car here).
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6.9 Conclusion

This chapter presents a pedestrian perception system based on the grid-based approach
proposed in Chapter 5. This algorithm is specifically designed to implement three important
interactions between the perceptual tasks:

1. Detection ⇐⇒ Tracking

2. Tracking ⇐⇒ Mapping

3. Classification ⇐⇒ Mapping

These interactions have indeed been identified as critical in Chapter 4 to overcome the main
fundamental limitations of perception systems based on existing approaches (like the system
proposed in Chapter 3). Experiments based on both simulated data and real data show
that all the limitations discussed in chapter 4 are simultaneously solved by the proposed
algorithm.

First, Tracking is made before Detection allowing robust Detection in situations where the
objects are at the same time close from each others and heavily occluded.

Second, Tracking benefits from the algorithm ability to build consistent maps for every object
in the environment. This enables the system to handle situations where point-based tracking
algorithms would normally fail.

Third, building over time the map of every object in the environment is also an efficient way
to solve the problems related to the ”stair effect” mentioned in Chapter 4 and to reach better
classification performance.

Finally, the proposed algorithm solves the Mapping, Detection, Tracking and Classification
tasks in the same mathematical framework. This allows to naturally exploit interactions
between perceptual tasks through summation over probability mass functions and to maintain
over time a significant level of uncertainty modelling.

While still being more computationally demanding than most existing approaches, the system
proposed in this chapter is an original solution to the main problems implied by highly
changing environment perception.
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Conclusion

7.1 Summary

This dissertation has two main objectives. First, this work is an attempt to provide a compre-
hensive analysis about what makes most existing perception systems so sensitive to complex
situations. The idea that this was mainly due to under exploited interactions between the
perceptual tasks has progressively gain some popularity in the recent years. This led to very
interesting and insightful approaches that were mentioned a great number of times in this
dissertation.

However, we believe that these recent works referred to as SLAM with DATMO approaches
only address a tiny part of a bigger problem. By directly implementing the interaction
between the SLAM module and the DATMO module, these approaches are indeed able to
cope reasonably well with dynamic environments. But because the level of implemented
interactions is still very low, most of these approaches are unable to handle the difficult
situations detailed in Chapter 4.

One recent work is however pushing the level of interactivity to the next level. Indeed, Vu
and his co-authors have proposed an efficient algorithm that enables the interaction between
Detection and Tracking. This simple interaction allows to solve at least two critical issues
encountered by most existing approaches. Both detection and tracking are then enhanced
provided that the objects of interest can be easily matched with basic primitives.

The work presented in this dissertation can be seen as a natural extension of this movement
toward fully interacting perceptual systems. Based on the observation made in Chapter
2 that all the possible interactions between Detection, Tracking, Classification, Mapping
and Localization can be mutually beneficial, we proposed in Chapter 5 a unified grid-based
framework where all these possible interactions can be elegantly implemented.

Defining such a unified mathematical framework to solve every perceptual task is also a
way to ensure that uncertainties can be correctly transmitted from one task to another. As
discussed in Chapter 4, modelling and transmitting correctly the uncertainties generated by
each algorithm is indeed essential to achieve a high level of reliability.

173



174 CHAPTER 7. CONCLUSION

To prove the validity of this approach, a complete pedestrian system based on the grid-based
framework proposed in Chapter 5 is described in Chapter 6. The three critical interactions
identified in Chapter 4 have of course been specifically enabled in this system. Experiments
conducted on real data show that this algorithm is able, as a consequence, to handle the
challenging situations that no other existing approach is capable of managing simultaneously.
Unfortunately, this algorithm is also for the moment more computationally demanding than
most existing approaches.

7.2 Future extensions

The unified grid-based formalism proposed in this dissertation raises several questions that
are not directly addressed in this dissertation. Here are some thoughts about the numerous
possible extensions of this work.

Real time Processing

The benefits of the grid-based approach proposed in this dissertation are significant but the
implied computational burden is also a significant limitation for onboard implementations.
Some interesting methods have been proposed in the last decade to alleviate the compu-
tational requirements of grid-based mapping algorithms by using multi-resolution grids. It
would be very interesting to adapt these technics to the grid-based general approach proposed
in this dissertation and to investigate the possibility to decrease the execution time from one
order of magnitude.

Fusion Capabilities

The algorithm derived in Chapter 6 is explicitly designed to process ladar data but the general
framework proposed might also be a powerful formalism to fuse heterogeneous data coming
from different types of sensors. Data collected by a calibrated camera could for example
be directly exploited inside this framework. Color data could for example be used to assist
the detection computation, being directly integrated as a measurement likelihood. Velocity
information provided by radars could also be integrated in the computation of the velocity
estimation and detection problem.

Integration of Higher Level Tasks

The grid-based general approach offers a powerful mathematical paradigm to naturally ex-
press the five perceptual tasks as probability mass functions pmf estimation problems. While
the perception problem is well addressed through these five tasks, higher level tasks related
to scene understanding issues could also be implemented within the same framework. For
example an additional pmf could be introduced to model the location where a point occupy-
ing a cell is heading to, at different point in time, in the immediate future or the probability
that in a particular cell a collision happen in the next 2 seconds... While not being directly
a perception task, the computation of this task would certainly be mutually beneficial with
some of them.
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7.3 Conclusion

We hope that this work will prove that enabling rich interactions (in terms of uncertainty
management) between the five perceptual tasks is an efficient and arguably the only possible
way to design perception systems that are truly reliable. It is also our hope that the proposed
grid-based framework serves as an insightful basis for further work on the perception of highly
changing environments and on the wider problem of autonomous scene understanding.
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