
1

Résumé

Les travaux présentés dans cette thèse se déroulent dans le cadre des réseaux de recou-
vrement (overlay networks). Un réseau de recouvrement est un réseau construit au-dessus
d’un autre réseau. A chaque nœud du réseau de recouvrement correspond un nœud du
réseau recouvert. Les réseaux de recouvrement ont été popularisés par l’expension des
réseaux pair-à-pair (peer-to-peer networks) dans les années 2000. Il existe de nombreux
types de réseaux de recouvrement, certains sont extensibles d’autres non, certains ont pour
rôle d’assurer une topologie résiliente, certain offre un service de routage fiable, etc. Mais
aucun des réseaux de recouvrement n’est adaptable à différents types de réseaux recou-
vert et ne propose un large éventail de services. Tout réseau de recouvrement existant
est uniquement dédié à une tâche particulière. On peut imaginer un réseau qui pourrait
être déployé à cheval sur de nombreux types différents de réseau et ne se consacrant pas
seulement à une tâche particulière. Ma thèse a pour objectif de définir les bases et de
développer un tel réseau de recouvrement.

Dans ces travaux de recherches, nous proposons un nouveau réseau de recouvrement
appelé ROSA. ROSA est conçu de façon à pouvoir facilement être adapté aux différents
réseaux physiques et d’être en mesure de fournir un large éventail de services différents.
Les nœuds de ROSA sont organisés en cluster appelé grumeaux (lump) et ROSA peut être
considéré comme un enchevêtrement de grumeaux. Les nœuds organisent leurs ensembles
de voisins en fonction des densités associées à ces grumeaux. ROSA est extensible car le
nombre maximal de voisins qu’un noeud peut avoir est borné, et cette limite ne dépend pas
du nombre total de nœuds participant au réseau. ROSA est adaptable car la définition de
la densité des grumeaux peut être modifiée et adaptée aux propriétés du réseau recouvert.
La densité définit le comportement de ROSA.

Afin d’offrir un routage efficace sur ROSA, nous développons une table de hachage
distribuée qui peut être déployée sur ROSA. Cette DHT peut être ajoutée à ROSA, sans
avoir à modifier le protocole initial. Puisque les services complexes qui sont proposés sur
ROSA sont basés sur cette DHT, la DHT doit posséder un service de recherche efficace.
Ce service de recherche doît être par conséquent extensible.

Cette thèse propose également un service de stockage de fichiers fiable et un service
de routage résilient sur ROSA. Le stockage de fichiers fiable utilise la DHT et son service
de recherche pour permettre aux utilisateurs de stocker des fichiers sur l’ensemble des
grumeaux de ROSA. Le service de routage résilient est également basé sur la DHT, elle
permet à chaque nœud de ROSA de communiquer de façon directe avec un autre noeud.
Ces deux services montrent qu’il est possible de proposer des services complexes sur ROSA.

Keywords: Overlay network, network virtualization, Distributed HashTable, Resiliency,
Routing, File Storage

2

3

Abstract

The works presented in this thesis take place within the context of the overlay network.
An overlay network is a network built on top another network. To each node of the overlay
network corresponds a node of the underlying network. These overlay networks have been
popularized with the rise of the peer-to-peer networks (that belong to a sub-class of the
overlay networks) in the years 2000. There exists many kinds of overlay networks, some
are scalable, some ensure a resilient topology, some offers a reliable routing service, etc.
But none of the existing overlay network are adaptable to different kind of covered network
and propose a large set of services. Any existing overlay network is only dedicated to a
particular task. One can imagine an overlay network that could be deployed astride many
different kind of underlying network and not dedicating to only a particular task. My
thesis aims to define the basis and develop such an overlay network.

In this PhD research we propose an new overlay network called ROSA. ROSA is de-
signed to be used easily adaptable to different physical networks and to be able to
provide a large set of different services. The nodes of ROSA are organized in cluster
called lumps and ROSA can be seen as an entanglement of lumps. The nodes organize
their neighbor sets according to the lumps and to the densities associated to these lumps.
ROSA is scalable because the maximum number of neighbors that a node can have is
bounded, and this bound does not depend on the total number of nodes participating to
the network. ROSA is adaptable because the definition of the density of the lumps can be
adapted to the properties of the underlying network. The density defines the behavior of
ROSA.

In order to provide an efficient routing over ROSA, we develop a Distributed HashTable
that can be deployed over ROSA. This DHT can be added to ROSA without modifying
the initial protocol. Since some efficient complex services must be built over ROSA using
this DHT, the DHT proposed provides an efficient lookup service. This lookup service is
scalable.

This thesis also proposes a reliable file storage service and a resilient routing service
over ROSA endowed with the DHT. The reliable file storage uses the DHT and its lookup
service to allow users to store file over the set of lumps of ROSA. The resilient routing
service is also based of the DHT, it allows a node of ROSA to communicate in a direct way
to any other node. These two services demonstrate that it is possible to propose complex
services over ROSA.

Keywords: Overlay network, network virtualization, Distributed HashTable, Resiliency,
Routing, File Storage

4

5

Contents

0 Résumé 9
0.1 Le principe de ROSA . 13
0.2 Representation d’un nœud, d’un voisin et d’un grumeau 13
0.3 Protocole . 14

0.3.1 Connexion et initialisation de ROSA 14
0.3.2 Quitter ROSA . 14
0.3.3 Joindre un grumeau . 15
0.3.4 Quitter un grumeau . 15
0.3.5 Scission d’un grumeau . 16
0.3.6 Boucle principale de ROSA . 16
0.3.7 Gestion des liens virtuels brisés . 16
0.3.8 Limitation du nombre de voisins par nœuds 17
0.3.9 Gestion des absorptions des grumeaux 17
0.3.10 Augmentation de la densité globale 18

0.4 La chaîne de grumeaux . 19
0.4.1 Description . 19
0.4.2 Construction et maintenance de la ’chaîne de grumeaux’ 21

0.4.2.1 Initialisation de la ’chaîne de grumeaux’ 21
0.4.2.2 Réaction aux absorptions de grumeaux 21
0.4.2.3 Reaction aux scissions de grumeaux 22

0.4.3 Utilisation de la ’chaîne de grumeaux’ 22
0.4.3.1 Stockage d’une paire <clé, valeur> 22
0.4.3.2 Récupération d’une valeur 24
0.4.3.3 Envoi d’un paquet de donnée à un grumeau donné 25

0.5 Un système résilient de stockage de fichiers 27
0.5.1 Stockage d’un fichier . 27
0.5.2 Récupération d’un fichier . 28
0.5.3 Mettre à jour, modifier, effacer un fichier et quelques autres choses . 28

0.6 Routage résilient de nœud à nœud . 28
0.6.1 Construction et maintenance des tables de routage 28
0.6.2 Routage d’un message à un nœud . 29

0.7 Densité . 31
0.7.1 Densité par défaut . 31
0.7.2 Densité résiliente . 32
0.7.3 Densité mobile . 32

6 CONTENTS

0.8 ROSA dans un cas réel . 33
0.8.1 Contexte . 33
0.8.2 Description . 34
0.8.3 Experimentation sur le réseau de Télécom ParisTech 35

0.9 Analyse . 36
0.9.1 Extensibilité de ROSA . 36
0.9.2 Efficacité du routage sur la ’chaîne de grumeaux’ 37

0.10 Conclusion . 37

1 State of the art 43
1.1 Introduction . 43
1.2 The Overlay Networks . 45

1.2.1 Definition . 45
1.2.2 Classification of overlay networks . 46

1.2.2.1 Participative / Non participative overlay networks 47
1.2.2.2 Manually organized / self-organizing overlay networks . . . 47
1.2.2.3 Centralized / Decentralized Architectures 49
1.2.2.4 Structured / Unstructured overlay Networks 50
1.2.2.5 Conclusion . 56

1.2.3 Classification of applications . 56
1.2.3.1 Indexing and locating resources 57
1.2.3.2 Resource Sharing . 59
1.2.3.3 Sharing CPU cycles . 61
1.2.3.4 Routing . 63
1.2.3.5 Security . 70
1.2.3.6 Conclusion . 79

1.2.4 Security of the overlay networks . 80
1.2.4.1 Attacks manipulating the topology 80
1.2.4.2 Attacks manipulating routing 83
1.2.4.3 Attacks against applications 85

1.2.5 Reputation system . 85
1.2.5.1 Introduction . 85
1.2.5.2 Examples . 86

2 The protocol ROSA 89
2.1 Principles of ROSA . 89
2.2 The constants of ROSA . 90
2.3 Representation of a node, a neighbor and a lump in the memory of a node . 90
2.4 Protocol . 92

2.4.1 Connecting to or initiating ROSA . 92
2.4.2 Leaving ROSA . 94
2.4.3 Sending a message to all the nodes of a lump 95
2.4.4 Joining a lump . 96
2.4.5 Leaving a lump . 98
2.4.6 Splitting a lump . 98
2.4.7 Main loop of ROSA . 100

7

2.4.8 Handling the broken links . 100
2.4.9 Limiting the number of neighbors . 101
2.4.10 Handling the lumps absorptions . 103
2.4.11 Increasing the overall density . 104

3 Distributed HashTable over ROSA 107
3.1 Introduction to the DHTs . 107

3.1.1 Definition . 107
3.1.2 Properties . 108
3.1.3 Example . 109

3.1.3.1 Chord . 109
3.1.3.2 Kademlia . 110

3.2 The chain of lumps . 111
3.2.1 Description . 111
3.2.2 Building and maintaining the ’chain of lumps’ 114

3.2.2.1 Initializing the ’chain of lumps’ 114
3.2.2.2 Reacting to the absorptions of a lump 115
3.2.2.3 Reacting to the split of a lump 116
3.2.2.4 Maintaining the predecessors and successors nodes identi-

fiers lists . 121
3.2.3 Using the ’chain of lumps’ . 122

3.2.3.1 Storing a <key, value> pair 122
3.2.3.2 Retrieving a value . 124
3.2.3.3 Sending data packets to a given lump 125
3.2.3.4 Dealing with the nodes do not handle any keys 126

3.2.4 Operating proof . 127
3.2.4.1 All the sub-intervals are allocated 127
3.2.4.2 A lump and its successor share at least a common node . . 128

3.2.5 Optimization . 129
3.2.5.1 Load balancing . 129
3.2.5.2 Reducing the number of sub-intervals 134

4 A reliable storage over ROSA 137
4.1 Introduction to distributed file storage systems 137

4.1.1 Definition . 137
4.1.2 Properties . 138
4.1.3 Example . 138

4.1.3.1 PAST . 138
4.1.3.2 CFS . 139

4.2 The ROSA reliable storage system . 140
4.2.1 Files indexes . 141
4.2.2 Storing a file . 141
4.2.3 Retrieving a file . 142
4.2.4 Updating and modifying a file . 144
4.2.5 Deleting a file . 146
4.2.6 Preservation of indexes and stored files 149

8 CONTENTS

4.2.6.1 Preservation of indexes . 149
4.2.6.2 Preservation of stored files 150
4.2.6.3 The node replica substitution process 151

5 Routing from node to node 155
5.1 Description . 155

5.1.1 Building and maintaining routing tables 155
5.1.2 Routing a message to a node . 158
5.1.3 Dealing with nodes that does not handle any key 160

5.2 Finding an appropriate node identifier . 161
5.2.1 Introduction to mixing functions . 161
5.2.2 Computing the ROSA node identifier 162

5.2.2.1 The chosen mixing function 162
5.2.2.2 Evaluating the mixing function 164

6 Density 167
6.1 Introduction . 167
6.2 Default density . 167
6.3 Resilient density . 169
6.4 Mobile density . 173

7 Analysis 177
7.1 Scalability of ROSA . 177
7.2 Efficiency of the routing over the ’chain of lumps’ 178

7.2.1 Formal analysis of the worst case . 179
7.2.2 Simulation of real cases . 181

7.2.2.1 Influence of the number of sub-intervals 181
7.2.2.2 Influence of the number of shortcuts per node 184

7.3 Load of a node . 187

8 ROSA in a real case 191
8.1 Introduction . 191
8.2 Computing the SA values of the entities of a network 194

8.2.1 Definition . 194
8.2.2 Evaluating the SA value of the network components 196

8.2.2.1 Workstation . 197
8.2.2.2 Server . 197
8.2.2.3 Router . 197

8.2.3 Evaluating the SA value of the sub networks 198
8.2.4 Evaluating the SA value of the whole network 198

8.3 Experimentation on the Telecom ParisTech network 198

Appendix 205

Bibliography 218

9

Chapter 0

Résumé

Contexte

Récemment, il est devenu possible de faire tourner un système d’exploitation sur une
architecture matérielle pour laquelle il n’était pas destiné. Cette technologie s’appelle la
virtualisation. La virtualisation fait tourner chacun des OS invités dans un environnement
fermé. Ces environnements virtualisés sont gérés par la couche de virtualisation qui doit
être implémentée pour beaucoup de systèmes hôtes. Il doit également être en mesure
d’exécuter un grand nombre d’OS. Par conséquent, la virtualisation peut se décomposer
en trois couches, la couche host (ou la couche physique), la couche de virtualisation et de
la couche guest. Ceci est schématisé dans la figure ci-dessous.

Ce concept de virtualisation peut également être appliqué aux réseaux. Aujourd’hui,
il existe une grande disparité dans les réseaux: Internet, le réseau GSM, les réseaux ad
hoc, etc. Chacun de ces réseaux est basé sur différents supports physisques et différents
protocoles. Il serait intéressant d’avoir un réseau virtuel qui unifie tous ces réseaux. En
outre, la convergence des appareils électroniques numériques facilite le développement d’un
tel réseau virtuel. En effet, les appareils, tels que les téléphones de nouvelle génération,

10 0. Résumé

sont à cheval sur plusieurs réseaux physiques (IP, WiFi et GSM/GPRS) et peuvent servir
de passerelles entre ces différents réseaux physiques.

Le modèle de ce réseau virtuel global est definit en trois couches: la couche physique, la
couche virtuelle, et la couche de services. La couche physique est un ensemble de réseaux
physiques et les différents dispositifs qui les composent. La couche virtuelle est un réseau
virtuel construit au-dessus de ces réseaux physiques ainsi que l’interfaçage avec chacun de
ces réseaux. La couche de services consiste en un ensemble de services fournis au dessus
du réseau virtuel. Les services peuvent être des services de routage résilient, services de
stockage fiable, etc Ce modèle est schématisé dans la figure ci-dessous.

Une des principale conditions qu’un tel réseau virtuel doit respecter est l’extensibilité.
Si l’on considère que beaucoup de dispositifs sont susceptibles de participer, il faut que le
trafic supplémentaire généré soit le plus bas possible et si possible que ce traffic ne dépende
pas du nombre de participants. Le réseau virtuel doit également avoir les mêmes qualités
(résistance, etc.) que les réseaux sur lesquels il est déployé. Pour finir, ce réseau virtuel
doit être facilement adaptable à un grand nombre de réseaux physiques différents.

Les réseaux de recouvrement sont de très bons candidats pour être utilisé comme un
réseau virtuel. Un réseau overlay est un réseau construit sur un autre réseau. Pour chaque
nœud du réseau overlay correspond un nœud du réseau sous-jacent. Ces réseaux de recou-
vrement ont été popularisés par les réseaux pair-à-pair dans les années 2000. Il existe de
nombreux types de réseaux de recouvrement, certains sont extensibles, certains assurent
une topologie résiliente, certains offrent un service d’acheminement fiable, etc. Néanmoins,
aucun de ces réseaux existants ne peut être utilisé pour être le réseau virtuel, puisque
ces réseaux sont généralement dédiés à un seul service et ne peuvent être déployées que
sur un seul type de réseau physique. Afin d’utiliser un réseau de recouvrement en tant

11

que réseau virtuel, celui-ci doit être facilement adaptable à un grand nombre de réseaux
physiques différents et proposer de nombreux services. C’est suite à ces observations, que
les objectifs de cette thèse ont été définis:

• concevoir et construire un réseau de recouvrement adaptable et facile à déployer sur
de nombreux types des réseaux physiques;

• proposer un ensemble de services au dessus de ce réseau de recouvrement.

Contributions majeures

Cette recherche de doctorat contribue à l’élaboration du réseau recouvrement de la couche
virtuelle défini dans le modèle présenté précédemment par:

Premièrement, la conception d’un réseau de recouvrement appelé ROSA. Les nœuds
de ROSA sont organisés en cluster appelé grumeaux et ROSA peut être considéré comme
un enchevêtrement de grumeaux. Les nœuds organisent leur ensemble de voisins selon les
densités associées à ces grumeaux. ROSA est extensible car le nombre maximal de voisins
qu’un noeud peut avoir est borné, et cette limite ne dépend pas du nombre total de noeuds
participant au réseau. ROSA est adaptable car la définition de la densité des grumeaux
peut être adaptée aux propriétés du réseau sous-jacent. ROSA remplit les conditions
nécessaires pour être le réseau virtuel.

Deuxièmement, la conception d’une table de hachage distribuée sur le réseau de recou-
vrement ROSA. Cette DHT peut être ajouté à ROSA sans modifier le protocole initial.
Etant donné que certain des services proposés au dessus de ROSA sont complexes et
doivent utiliser cette DHT, la DHT doit fournir un service de recherche efficace. Ce service
de recherche doit aussi être extensible.

Troisièmement, la conception d’un service de stockage de fichiers fiable et d’un service
de routage résilient. Le stockage de fichiers fiable utilise la DHT et son service de recherche
pour permettre aux utilisateurs de stocker des fichiers sur l’ensemble des grumeaux de
ROSA. Le service de routage résilient est également basé sur la DHT et permet à un
nœud de ROSA de communiquer de façon directe avec un autre noeud. Ces deux services
montrent qu’il est possible de proposer des services complexes sur ROSA.

12 0. Résumé

13

Le protocole de ROSA

0.1 Le principe de ROSA

Les nœuds de ROSA sont organisés en clusters appelés grumeaux. Un grumeau est un
ensemble de noeuds entièrement connectés. En théorie des graphes de tels objets sont
appelés cliques. Une clique dans un graphe non orienté est un sous-ensemble de l’ensemble
des sommets, tel que pour chaque pair de sommets du sous-ensemble, il existe une arête
reliant les deux sommets. ROSA peut être représenté par un enchevêtrement de grumeaux.
Chaque noeud de ROSA appartient à au moins un des grumeaux. A chacun des grumeaux
de ROSA est associé une mesure appelée densité. Il y a plusieurs types de densités et c’est
le choix de cette densité qui définit les caractéristiques de ROSA.

Nous appelons la gestion de la topologie la façon dont le graphe composé des nœuds
et des liens et l’ensemble des grumeaux de ROSA évolue au cours du temps et selon les
événements.

Le principe de gestion de la topologie de ROSA est semblable à une recette de pâte
à crêpe. Dans une recette d’une pâte à crêpe, on doit diluer les grumeaux avec de fortes
densités afin d’augmenter la densité des zones avec moins de farine. Dans ROSA, les nœuds
calculent périodiquement la densité des grumeaux auxquels ils appartiennent, partagent
leur connaissance à propos des grumeaux de faibles densités avec leurs voisins et quittent
les grumeaux ayant des densités élevées pour joindre les grumeaux avec de faibles densités
et ainsi augmenter la densité de ces grumeaux.

0.2 Representation d’un nœud, d’un voisin et d’un grumeau

Chaque nœud de ROSA a un identifiant, une liste des voisins et une liste de grumeaux.
L’identifiant d’un nœud est un entier appartenant à [1, 2128 − 1]. Nous considérerons pour
l’instant, que l’identificateur d’un nœud est choisi au hasard. La liste des grumeaux d’un
nœud est une liste de grumeaux auquel le nœud appartient. La liste des voisins d’un
nœud est une liste des identifiants et des adresses physiques des noeuds auxquels il est lié.
Chaque noeud possède aussi un indicateur ’connecté’. Cet indicateur est défini à true si
le noeud est connecté à ROSA et mis à false sinon. Pour compléter la représentation d’un
nœud nous ajoutons une liste de grumeaux de faible densité et une liste des identificateurs
des derniers messages reçus. Ces deux listes sont initialisées à vide. La premiere sera
utilisée pour stocker la connaissance que chaque noeud a à propos des grumeaux de faibles
densités dans son entourage. La seconde sera utilisée pour permettre à tous les nœuds d’un
grumeau de recevoir un message, malgré les échecs de transmission.

14 0. Résumé

Un voisin d’un nœud est représenté par le couple (id, phy) où id est l’identifiant de ce
voisin dans ROSA et phy son adresse physique sur le réseau sur lequel ROSA est déployé.
Un indicateur ’vivant’ complète cette représentation. Cet indicateur est défini sur true par
défaut et sera utilisé pour la détection des pannes.

Un grumeaux possède un identifiant, la liste des identifiants des noeuds qui le composent
et toutes les informations permettant à chacun de ces nœud de calculer sa densité. Les
informations nécessaires pour calculer la densité dépendent de la définition de la densité
choisie. L’identifiant d’un grumeau est un entier appartenant à [1, 2128 − 1]. Un lump
possède aussi une liste des adresses physiques des noeuds qui le composent.

0.3 Protocole

Dans cette section, nous présentons la base du protocole de ROSA. Nous nous concentrerons
sur quelques fonctions primitives utilisées par les nœuds de ROSA, comme par exemple la
fonction qui permet à un noeud de se connecter, de quitter ROSA, etc.

0.3.1 Connexion et initialisation de ROSA

Pour se connecter à ROSA un nœud doit connaître un noeud déjà connecté à ROSA, ce
nœud est appelé bootstrap_node. Si le noeud ne peut pas trouver un tel bootstrap_node,
il doit initialiser le réseau.

Dans l’implémentation actuelle, la découverte d’un bootstrap_node se fait en utilisant
un serveur central appelé bootserver. Ce serveur maintient une liste de nœuds actifs sur
ROSA. Pour se connecter à ROSA, un nœud doit communiquer avec le bootserver. Celui-
ci répond avec l’adresse physique d’un noeud déjà connecté. Le bootserver sélectionne ce
nœud au hasard dans sa liste. Si la liste est vide, le bootserver réponses avec l’adresse
null. Cette adresse null indique au nœud qui veut se connecter à ROSA qu’il est le premier
nœud et qu’il doit initialiser ROSA.

Afin de maintenir à jour la liste des noeuds connectés à ROSA, tous les noeuds connectés
doivent périodiquement donner des signes de vie au bootserver. Le bootserver supprime
de sa liste de tous les nœuds qui ne font pas cela.

Si le nœud désirant se connecter à ROSA est le premier il doit initialiser ROSA. Pour
cela, le nœud crée un grumeau uniquement composé de lui-même. Ensuite le noeud ajoute
le grumeau nouvellement créé à sa liste de grumeaux. Nous verrons plus tard que ce
grumeau est le seul qui sera créé à partir de rien. Tous les autres grumeaux de ROSA
résultent d’une scission d’un grumeau déjà existant. Pour terminer le noeud positionne
son indicateur ’connecté’ à true.

0.3.2 Quitter ROSA

Deux méthodes s’offrent à un nœud qui veut quitter ROSA. La première est la bonne méth-
ode et doit être utilisée chaque fois que cela est possible. L’autre méthode est beaucoup
moins élégante.

La première méthode consiste pour un nœud à appeler la fonction LeaveROSA. Un
nœud utilisant la première méthode se contente d’envoyer un message LeaveROSA à tous
ses voisins. Un noeud qui reçoit un message LeaveROSA supprime de sa liste de voisins

15

le nœud ayant envoyer le message. Il modifie également sa liste de grumeaux afin qu’elle
reflète ce changement.

L’autre méthode n’est appliquée que lorsqu’un nœud ne donne aucun signe de vie à
ses voisins. Comme il est décrit dans la section à la Section 0.3.7, quand un nœud ne
donne plus signe de vie à ses voisins, ces voisins suppriment progressivement ce nœud de
leur liste de voisins. Normalement, la première méthode devrait être privilégiée car elle
génère moins de bande passante et utilise moins de cycles de CPU. La seconde méthode
devrait être utilisée que quand un nœud tombe en panne ou quand il est dans l’incapacité
d’appliquer la première méthode.

0.3.3 Joindre un grumeau

Un nœud joint un grumeau signifie que ce noeud crée des liens virtuels avec les nœuds qui
composent ce grumeau. Hors il n’est pas toujours possible de créer un lien virtuel entre
deux noeuds. Dans ce cas, un noeud peut joindre partiellement un grumeau. Dans cette
partie nous allons voir comment un noeud joint un grumeau.

Pour joindre un grumeau, un nœud doit connaître la représentation de ce grumeau.
Une fois en possession de cette représentation, le nœud doit d’abord vérifier s’il peut créer
des liens virtuels avec tous les nœuds qui composent le grumeau. Cela se fait avec l’aide de
l’utilitaire ping (Muuss [1983]) sur les réseaux IP ou avec tout autre utilitaire qui effectue
la même action sur les réseaux non-IP. Une fois la vérification terminée le nœud détermine
la joinRatio. Le joinRatio est égal à 1 moins le ratio entre le nombre de liens virtuels que
le noeud peut créer et le nombre de nœuds qui composent le grumeau. Si le joinRatio est
égale à zéro, nous sommes dans le cas d’une pleine adhésion. Si elle excède la limite fixée
par joinRationLimit il est alors impossible pour le nœud de joindre le grumeau. Et dans
les autres cas, le nœud effectue une jonction partielle.

Après le calcul du joinRatio et s’il est possible pour ce nœud de joindre le grumeau, le
noeud modifie la représentation du grumeau afin de refléter le fait que le noeud l’ait joint.
Il ajoute son identifiant dans la liste des identifiants des nœuds et son adresse physique
dans la liste des adresses physiques. Le noeud modifie également toutes les informations
nécessaires pour calculer la densité du grumeau. Enfin, le noeud envoie par l’intermédiaire
d’un message UpdateLump, la nouvelle représentation du grumeau à tous les nœuds qui le
composent. Les nœuds qui reçoivent le message, mettent à jour leur liste de grumeaux avec
l’aide de la représentation du grumeau contenu dans le message UpdateLump. La différence
entre une jonction complète et une jonction partielle et réside dans le fait que des gestions
de liens brisés survienent après une jonction partielle puisque lors d’une jonction partielle,
il a été impossible d’établir des liens virtuels avec certains des nœuds du grumeau.

0.3.4 Quitter un grumeau

Quitter un grumeau consiste pour un nœud à modifier la représentation du grumeau que
le nœud veut quiter. La représentation doit refléter le fait que le nœud ne compose plus
le grumeau. Les modifications que le noeud doit accomplir sont les inverses de ceux que
doit effectuer noeud quand il veut joindre un grumeau. Une fois la représentation du
grumeau modifiée, le nœud l’envoie à l’aide d’un message UpdateLump à tous les nœuds
qui composent le grumeau. Chaque nœud qui reçoit la nouvelle représentation met à jour

16 0. Résumé

sa liste de grumeaux.

0.3.5 Scission d’un grumeau

La scission d’un grumeau peut se produire lors de deux occasions, quand un lien virtuel
est cassé ou au cours de la limitation du nombre de noeuds par grumeaux. La scission
d’un grumeau est organisée autour de deux des nœuds du grumeau. Il consiste à diviser le
grumeau en vue d’obtenir deux autres grumeaux. Les nœuds qui composent le premier des
deux grumeaux qui résultent d’une scission sont les nœuds du grumeau scindé moins un
des deux nœuds autour de laquelle la scission est organisée. Les nøeuds qui composent le
second grumeau résultant de la scission sont ceux du grumeau scindé moins l’autre noeud
autour de laquelle la scission est organisée.

Quand un nœud veut scinder un grumeau autour de lui et l’un des autres nœuds qui
composent le grumeau, il construit la représentation des deux grumeaux qui résultent de la
scission. Ensuite, le nœud envoie ces représentations des grumeaux résultant de la scission
aux nœuds concernés par celle-ci à l’aide de messages SplitLump. Ces messages contiennent,
en plus de la représentation des grumeaux, l’identifiant de grumeau qui est scindé. Un nœud
qui reçoit un message SplitLump, recherche dans sa liste de grumeaux celui qui possède
l’identifiant contenu dans le message et remplace dans sa liste de grumeaux, le grumeau
qui est scindé par les deux grumeaux contenus dans le message.

0.3.6 Boucle principale de ROSA

La boucle principale exécutée par un nœud de ROSA est répétée à chaque ńIntervalleż
de temps. Ce paramètre doit être défini de façon expérimentale en fonction des capacités
du réseau sur lequel ROSA est utilisé. La boucle principale de ROSA est composée de
5 fonctions: checkFailure, checkAbsorption, checkMemberLimit, checkLumpLimit et en-
hanceROSA. La première fonction a pour but de détecter la panne survenant sur les liens
virtuels et à réagir à celle-ci. Le rôle de la fonction checkAbsorption est de détecter et de
gérer l’absorption d’un grumeau de la liste de grumeaux par un autre grumeau de cette
liste. Les objectifs des fonctions checkMemberLimit et checkLumpLimit sont de limiter le
nombre de voisins par nœud. Le fonction enhanceROSA est responsable de l’optimisation
de ROSA. Cette fonction décide dans quels cas le nœud doit quitter un grumeau de haute
densité afin d’augmenter la densité d’un grumeau avec une faible densité.

0.3.7 Gestion des liens virtuels brisés

Un avantage majeur de ROSA est que son protocole permet de détecter rapidement les
défaillances des liens virtuels entre les noeuds et de modifier la topologie du réseau afin
de refléter de telles pannes. La gestion des liens virtuels brisés est réalisée par la fonction
checkFailure. La gestion des liens brisés se déroule en deux étapes, la détection des pannes
et la modification de topologie.

La première étape consiste pour chaque nœud à donner signe de vie à ses voisins en
leur envoyant un message Alive. Si un lien entre deux nœuds est brisés, l’envoi de ces
messages Alive est interrompu. Les messages Alive sont également utilisés pour diffuser
les connaissances sur les grumeaux ayant une faible densité. Dans chaque message Alive
envoyé par un noeud est encapsulé un grumeau. Ce grumeau est le grumeau de plus faible

17

densité dans sa liste des grumeaux. Quand un noeud reçoit un message Alive, il extrait le
grumeau contenu dans le message et l’ajoute à sa liste de grumeaux connus. Ainsi, chaque
noeud connaît le grumeau avec la plus faible densité à laquelle appartient chacun de ses
voisins.

Une fois qu’un noeud détecte un lien brisé par l’absence de message Alive de la part
de l’un de ses voisins, la deuxième étape consiste pour ce nœud à modifier sa liste de
grumeaux de façon à prendre en compte la panne sur ce lien. Quand un nœud détecte que
la lien virtuel entre lui et un voisin est brisé, il recherche dans sa liste de grumeaux ceux
qui contiennent le voisin défaillant. Quand un nœud rencontre un tel grumeau, il le scinde
autour de lui et de son voisin. La scission d’un grumeau est décrite dans la Section 0.3.5.

0.3.8 Limitation du nombre de voisins par nœuds

Pour que ROSA soit extensible, le nombre de voisins par nœud est borné. Plutôt que de
fixer une taille maximale sur la liste des voisins et d’imposer à un nœud de se séparer
d’un de ses voisins lorsque la capacité de la liste des voisins est atteint, c’est en imposant
un nombre maximum de noeuds par grumeaux et un nombre maximal de grumeaux par
nœuds que le protocole de ROSA limite le nombre de voisins. La limitation du nombre
de nœuds par grumeaux est faîte par la fonction checkNpL et la limitation du nombre des
grumeaux par nœuds est faîte par la fonction checkLpN.

Pour limiter le nombre de nœuds qui composent un grumeau, un nœud cherche dans sa
liste de grumeaux ceux dont le nombre de nœuds dépasse la limite. Quand un tel grumeau
est trouvé, le nœud peut quitter ce grumeau ou bien le scinder . Un nœud peut quitter un
grumeau qui a atteint le nombre maximal de nœud si le nœud appartient à au moins un
autre grumeau et si le fait de quitter le grumeau n’entraine pas une perte de densité. Si
une de ces conditions n’est pas remplie, le nœud doit sélectionner une paire de nœuds dans
le but de scinder le grumeau autour de ces deux noeuds. Cette sélection se fait comme
suit, le nœud parcourt la liste des nœuds qui composent le grumeau, pour chaque paire
d’éléments de cette liste, le nœud calcule ce que serait la densité des deux grumeaux qui
résulteraient de la scission du grumeau si il était scindé autour de ces éléments. Enfin, le
noeud choisit la paire qui maximise la densité de grumeaux qui résulteront de la scission.

La limitation du nombre de noeuds par grumeaux est la première des deux étapes
de la limitation du nombre de voisins par nœuds. La deuxième étape consiste à limiter
le nombre de grumeaux auxquels un noeud peut appartenir. Pour limiter le nombre de
grumeaux auxquels il appartient, un nœud regarde la taille de sa liste de grumeaux. Si
cette liste excède la taille limite, le nœud sélectionne un grumeau à quitter. Ce choix est
fondé sur la densité hypothétique qu’aurait le grumeau si le noeud le quittait. Le nœud
sélectionne le grumeau qui aura la plus grande densité théorique et le quitte.

0.3.9 Gestion des absorptions des grumeaux

Lorsque l’ensemble des noeuds qui composent un grumeau contient tous les nœuds qui
composent un autre grumeau, il se produit une absorption de second grumeau par le
premier. Il en résulte la disparition du grumeau absordé des listes de grumeaux de tous les
noeuds concernés. La gestion de l’absorption ne peut se faire sans l’échange de messages
entre les nœuds qui composent le grumeau absorbé. Puisque l’ensemble des noeuds qui

18 0. Résumé

composent un grumeau peut être inclus dans les ensembles de nœuds de plusieurs grumeaux
différents, plusieurs grumeaux sont susceptibles d’absorber un même grumeau. Ce choix
doit être la même pour tous les nœuds qui composent le grumeau absorbé.

La détection et la gestion des absorptions de grumeaux se fait par les nœuds à l’aide de
la fonction checkAbsoprtion. Un noeud détecte l’absorption d’un grumeau en parcourant
sa liste de grumeaux. Pour chaque grumeau de cette liste, il vérifie s’il y a un autre grumeau
de la liste qui peut l’absorber. Si un tel couple de grumeaux est trouvé, le noeud modifie sa
liste des grumeaux afin de refléter l’absorption et avertis les autres nœuds de ces grumeaux
de propos de cette absorption. Ceci est fait à l’aide de messages AbsorbLump. Ces messages
contiennent l’identifiant du grumeau absorbé et l’identifiant du grumeau absorbant. Un
noeud qui reçoit un message AbsorbLump supprime de sa liste de grumeaux le grumeau
correspondant référencé par l’identifiant du grumeau absorbé.

0.3.10 Augmentation de la densité globale

Nous avons vu dans la Section 0.3.7 traîtant de la gestion des liens brisés que chaque
noeud reçoit périodiquement des messages Alive de ses voisins. Ces messages contiennent
des grumeaux avec des densités faibles. Nous allons voir dans cette section comment, à
partir de cette liste de la grumeaux reçus, chaque nœud augmente localement la densité
de ROSA.

La première étape consiste pour un nœud à parcourir la liste des grumeaux reçus de
ses voisins. Pour chacun de ces grumeaux, le nœud compare la densité actuelle de ce
grumeau à la densité hypothétique que le grumeau aura si le nœud le joint. Le calcul de
cette densité est effectué avec la fonction getRMDJ. Cette fonction effectue une copie de
la représentation du grumeau et simule les changements causés par la jonction du nœud.
Dans le cas où le grumeau a atteint le nombre maximum de noeuds, la fonction getRMDJ
simule également la scission résultant de la jonction. Ensuite, la fonction renvoie la densité
hypothétique du grumeau obtenue lors de la simulation. Après avoir comparé les densités
actuelles des grumeaux reçus à leurs densités hypothétiques, le nœud retire de cette liste
chacun des grumeaux dont la densité hypothétique est égale ou inférieure à sa densité
actuelle. Le noeud possède désormais une liste des grumeaux dont il peut augmenter la
densité. Si cette liste est vide, le processus s’arrête, sinon il se poursuit.

Considérons que la liste des grumeaux dont la densité peut être augmentée par le
noeud n’est pas vide. Le noeud essaye de joindre le grumeau de cette liste qui a la plus
faible densité. Si le nombre maximal de grumeaux auxquels un noeud peut appartenir
n’est pas atteint, le nœud joint le grumeau. Dans le cas où la limite de grumeaux est
atteinte, le nœud doit quitter un grumeau s’il veut en joindre un nouveau. Cela signifie
que, pour augmenter la densité d’un grumeau, le noeud peut diminuer la densité d’un autre
grumeau. Par conséquent, avant de joindre le grumeau le nœud s’assure que la jonction
augmentera effectivement la densité locale du nœud et ne la diminuera pas. Le noeud
parcours donc sa liste de grumeaux, et pour chacun de ces grumeaux il compare la densité
à la densité hypothétique que le grumeau aura si le nœud le quitte. Ces comparaisons
sont effectuées par la fonction getRMDL. La fonction getRMDL, d’une façon similaire à la
fonction getRMDJ, simule les grumeaux obtenus si le nœud quitte un grumeau. Le nœud
peut joindre le grumeau et accroître sa densité que si la densité actuelle de ce grumeau est
inférieure à la densité hypothétique qu’aurait le grumeau que le nœud aurait à quitter.

19

Une table de hashage distribuée pour
ROSA

0.4 La chaîne de grumeaux

Dans ROSA, il est possible d’organiser l’enchevêtrement de grumeaux en une DHT. Cette
DHT est appelée la ’chaîne de grumeaux’. La ’chaîne de grumeaux’ évolue en fonction
des modifications qui se produisent dans ROSA. Dans cette section, nous allons d’abord
décrire la ’chaîne de grumeaux’. En second, nous allons voir comment les modifications
de l’ensemble des grumeaux affectent la ’chaîne de grumeaux’ et la façon dont les nœuds
réagissent aux changements afin de maintenir la ’chaîne de grumeaux’. Pour terminer
nous allons montrer comment la ’chaîne de grumeaux’ peut être utilisée pour acheminer
les paquets de données d’un noeud à un grumeau.

0.4.1 Description

La ’chaîne de grumeaux’ est une DHT construite sur ROSA. L’espace des clés de cette
DHT est un intervalle entier appelé Iinit. Iinit et définie comme: Iinit = [0, 2128 − 1].
Chaque grumeau de ROSA gère une partie de cet espace de clé et Iinit est projeté sur tous
l’enchevêtrement des grumeaux afin de former une chaîne. La projection est réalisée en
partitionant Iinit en sous-intervalles. Ces sous-intervalles sont attribués aux grumeaux afin
de satisfaire les conditions suivantes:

• Tous les sous-intervalles sont attribués (1) ;

• Deux grumeaux qui possèdent des sous-intervalles contigus partagent au moins un
nœud (2);

• Chaque grumeau gère au moins un sous-intervalle (3).

Afin d’être effective la ’chaîne de grumeaux’ doit impérativement satisfaire les condi-
tions (1) et (2) à tout moment. La condition (3) assure seulement un bon rendement et
un équilibrage de charge des grumeaux.

Considérons un grumeau l qui gère un sous-intervalle I de Iinit. Le grumeau l est
appelé le grumeau propriétaire de I. Le grumeau qui gère le sous-intervalle juste avant est
appelé le prédécesseur de l. Un grumeau et son successeur sont des grumeaux consécutifs.
Le grumeau qui possède le sous-intervalle juste après I est appelé le successeur l. Un lump
a autant de prédécesseurs et successeurs comme de sous-intervalles qu’il gère. Afin d’être

20 0. Résumé

plus efficaces le premier et dernier grumeau de la chaîne sont respectivement prédécesseur
et successeur l’un de l’autre. De cette façon, les grumeaux forment une chaîne circulaire.
Comme un noeud peut appartenir à plusieurs grumeaux, il existe des raccourcis dans la
’chaîne de grumeaux’, c’est à dire une manière de passer d’un grumeau à l’autre sans passer
par les grumeaux intermédiaires qui sont situés entre eux dans la ’chaîne de grumeaux’.
La figure 2.1 montre la projection de l’enchevêtrement de blocs de Iinit. Sur cette figure,
les nœuds sont représentés par les cercles verts, les grumeaux par des formes en pointillés
violets et les raccourcis par des courbes rouges.

Figure 1: The transformation of the entanglement of lumps into a ’chain of lumps’.

Il est nécessaire d’ajouter la liste des sous-intervalles gérés par un grumeau à la représen-
tation de celui-ci. Nous avons également à présenter la représentation d’un sous-intervalle.
La représentation d’un sous-intervalle est composée de la borne inférieure et la borne
supérieure de ce sous-intervalle. Cette représentation est complétée par l’identifiant du
grumeau propriétaire, les listes des noeuds qui composent le prédécesseur et le successeur
du lump propriétaire et une liste des entrées de DHT. Une entrée de DHT est une valeur
qu’un nœud a stocké sur la ’chaîne de grumeaux’ ainsi que la clé qui lui est associée.

Dans le reste de ce chapitre, le sous-intervalle qui précède le sous-intervalle I est ap-
pelé le prédecesseur de I et le sous-intervalle succède I s’appelle le successeur de I. Le
prédécesseur et le successeur de I sont respectivement notés I− et I+. Le grumeau qui
gère un sous-intervalle I est noté lI . Nous appellerons, le grumeau prédécesseur et le
grumeau successeur d’un sous-intervalle I, respectivement, le grumeau gérant I− et le
grumeau gérant I+ En conséquence, en ce qui concerne un sous-intervalle I, nous noterons
le grumeau prédécesseur de lI lI− et le grumeau successeur de lI , lI+. La liste des identi-
fiants des nœuds qui composent lI−, sera nommée la liste des prédécesseurs et la liste des
identifiants des nœuds qui composent lI+ sera nommée dans la liste des successeurs.

21

0.4.2 Construction et maintenance de la ’chaîne de grumeaux’

0.4.2.1 Initialisation de la ’chaîne de grumeaux’

Lors de l’initialisation de ROSA, le premier nœud crée le premier grumeau. Le premier
grumeau doit gérer l’intervalle initial Iinit. Comme il est expliqué dans la suite de ce
document les sous-intervalles gérés par les grumeaux peuvent être scindés lors de la scis-
sion des grumeaux, mais ni les absorptions, ni les scissions des grumeaux ne causent la
perte de sous-intervalles. Par conséquent, cela implique que la condition (1) est satisfaitt.
L’initialisation de la ’chaîne de grumeaux’ contraint à modifier la fonction initROSA().

Ces modifications consistent à confier Iinit au premier grumeau. Comme il n’existe,
pour l’instant qu’un unique grumeau, selon la définition de la ’chaîne du grumeau’ ce
premier grumeau est son propre prédécesseur et successeur. C’est pourquoi les listes des
identifiants des nœuds qui composent le prédécesseur et le successeur est égal à la liste des
identifiants des nœuds du premier grumeau. Pour finir le nœud qui initie ROSA ajoute la
représentation de Iinit à la liste des sous-intervalles gérés par le premier grumeau.

0.4.2.2 Réaction aux absorptions de grumeaux

Quand un grumeau est absorbé par un autre, les sous-intervalles gérés par le grumeau
absorbé doivent être confiés au grumeau absorbant. Ceci est schématisé dans la Figure 3.7.
Dans la partie supérieure de la figure on peut voir deux grumeaux, lI− et lI , ainsi qu’une
partie de ’la chaîne de grumeaux’. Le grumeau lI− gère le sous-intervalle I− = [a, b)
et le grumeau lI gère le sous-intervalle I = [b, c). Le nœud n joint le grumeau lI . Par
conséquent l’ensemble des nœuds qui composent lI comprend l’ensemble des noeuds qui
composent lI−, et le grumeau lI absorbe le grumeau lI−. Dans la partie inférieure de la
figure on peut voir que le sous-intervalle gérés par lI− est donnée au grumeau lI . Après la
jonction, le grumeau doit gérer le sous-intervalle [a, c).

Figure 2: Une Absorption et son impact sur la ’chaîne de grumeaux’

22 0. Résumé

La détection et la gestion des absorptions des grumeaux sont traitées dans la Sec-
tion 0.3.9. Nous avons vu que la détection consiste en la vérifier si l’un des grumeaux de sa
liste de grumeaux d’un nœud peut en absorber un autre. Si une telle paire de grumeaux est
trouvée le nœud envoie des messages AbsorbLump aux nœuds qui composent la grumeau
absorbant. La ’chaîne de grumeaux’ oblige à modifier le contenu des messages AbsorbLump
et la façon dont les nœuds traîtent ces messages.

0.4.2.3 Reaction aux scissions de grumeaux

Quand un grumeau est scindé en deux nouveaux grumeaux. Les sous-intervalles gérés par le
grumeau scindé doivent être gérés par les deux grumeaux résultant de la scission. Certains
de ces sous-intervalles doivent être scindés et distribués aux grumeaux qui résultent de la
scission et certains doivent être confiés (sans être scindés) à un des grumeaux qui résulte
de la scission.

Un grumeau l possède un prédecesseur et un successeur pour chaque sous-intevalle
I = [a, b) qu’il gère. Soit lI− le grumeau prédecesseur et lI+ le grumeau successeur de l
correspondant à I. Soit sI , sI− et sI+ l’ensemble des nœuds qui composent les grumeaux
lI , lI− and lI+. Si nous nous référons à la définition de la ’chaîne de grumeaux’ nous avons
sI− ∩ sI 6= ∅ and sI ∩ sI+ 6= ∅. Cette propriété est vraie lors de la création de la ’chaîne
de grumeaux’. De la scission du grumeau lI résultent deux grumeau l1 et l2. L’ensemble
des nœds de l1 est s1 et celui de l2 est s2. Si la taille de lI est plus grande que 2 alors
s1∩s2 6= ∅. Le sous-intervalle I = [a, b) peut être scindé en deux nouveaux sous-intervalles
I ′ = [a, ba+b

2 c) et I ′+ = [ba+b
2 c, b) si une de ces deux conditions:

sI− ∩ s1 6= ∅ and sI+ ∩ s2 6= ∅ (4)

sI− ∩ s2 6= ∅ and sI+ ∩ s1 6= ∅ (5)
est respectée.

Il peut ariver qu’aucune des conditions (4, 5) soit satisfaite. Dans ce cas I ne peut être
scindé. Cependant, puisque sI− ∩ sI 6= ∅ et sI ∩ sI+ 6= ∅ cela signifie que soit:

sI− ∩ s1 6= ∅ and sI+ ∩ s1 6= ∅ (6)

ou
sI− ∩ s2 6= ∅ and sI+ ∩ s2 6= ∅ (7)

Dans le premier cas I doit être confié à l1 et sinon confié à l2. Si une des conditions (4, 5)
est satisfaite, I ′ et I ′+ doivent être confiés à l1 et l2. Cela est schématisé dans la Figure 3.9.

Dans la partie supérieure de cette figure, la nœud n1 détecte que le lien virtuel avec le
nœud n2 est brisé. Le grumeau lI qui est composée de n1, n2 et d’autres nœuds doit être
scindé autour n1 et n2. Il résulte de cette scission deux grumeaux l1 et l2. Dans la partie
inférieure de la figure le sous-intervalle [a, b) est scindé en deux sous-intervalles et celui de
gauche est donné à l1 tandis que la droite est donné à l2.

0.4.3 Utilisation de la ’chaîne de grumeaux’

0.4.3.1 Stockage d’une paire <clé, valeur>

Dans cette section, nous allons voir comment un nœud peut stocker une paire <clé, valeur>
sur la ’chaîne de grumeaux’. Pour stocker une valeur sur la ’chaîne de grumeaux’, un nœud

23

Figure 3: A split and its impact on the ’chain of lumps’

doit d’abord calculer la clé associée à la valeur. Cette clé est un entier qui doit appartenir
à [0, 2128 − 1). Afin de calculer cette clé, nous pouvons utiliser une fonction de hachage
existantes sur les octets de la valeur. La clé est finalisé en effectuant un modulo 2128 sur
la résultat donné par la fonction de hachage. Une fois que cette clé est calculée, le nœud
peut démarrer le processus de stockage.

La première étape du processus de stockage par un nœud n consiste à savoir si le nœud
gère la clé. Si le nœud gère cette clé, le nœud construit un message StoreHere. Soit Ikey le
sous-intevralle gérant la clé et lIkey le grumeau gérant Ikey. Le message StoreHere contient
la paire <clé, valeur> et la borne inférieure de Ikey. Le nœud n envoie ce message à
likey. Un nœud qui reçoit un message StoreHere, cherche le sous-intervalle dont la borne
inférieure est égale à celle contenue dans le message. Une fois ce sous-intervalle trouve,
le nœud complète la liste des paires <clé, valeurs> de Ikey avec la paire <clé, valeur>
contenue dans le message.

Si le nœud n qui veut stocker la paire <clé, valeur> ne gère pas la clé, il envoie un
message GetDistance à ses voisins. Ce message contient uniquement la clé. Un nœud
qui reçoit un tel message, récupère la clé contenue dans le message et calcule la distance
entre lui-même et la clé. La distance entre un nœud n et une clé k est définie comme la
distance minimale entre la clé et les grumeaux de sa liste de grumeaux, la distance entre
un grumeau l et d’une clé k est la distance minimale entre k et les sous-intervalles gérés
par l et la distance entre un sous-intervalle I et la clé k est défini comme suit:

dist(I, k) =
{
min(|k − I.lowBound|, |k − I.upBound|) if k 6∈ I
0 if k ∈ I

Une fois la distance calculée, un nœud qui a reçu un message GetDistance répond par
un message Distance. Ce message contient la distance calculée. Le nœud n qui envoie
les messages GetDistance reçoit éventuellement de ses voisins un ensemble de messages

24 0. Résumé

Figure 4: A step of the store process

Distance. Alors n sélectionne le voisin qui a envoyé le message qui contient la plus petite
distance et construit un message Store. Ce message contient la paire <clé, valeur> que
le nœud souhaite stocker. Enfin n envoie ce message au voisin sélectionné. Un nœud qui
reçoit un message Store répéte le processus et ce processus sera répété jusqu’à ce que la
paire <clé, valeur> atteigne le grumeau appropriée. La Figure 3.12 montre une étape de
ce processus.

0.4.3.2 Récupération d’une valeur

Pour récupérer une valeur stockée sur la ’chaîne de grumeaux’ un nœud n doii connaître la
clé k qui correspond à la valeur. Si n connait k, il peut démarrer le processus de recherche.
D’abord n vérifie si il gère k. Si oui, le nœud peut récupérer la valeur désirée sur le grumeau
qui gère k. Sinon le nœud construit et envoie un message Lookup. Ce message contient
la clé k, l’identifiant et l’emplacement de n. L’emplacement d’un nœud est constitué par
son identifiant et les bornes des sous-intervalles gérés par les grumeaux auxquels le nœud
appartient.

Un nœud qui reçoit un message Lookup vérifie s’il gère k. Si le nœud gère cette clé,
il récupère la valeur qui correspond à k, et construit un message Datapacket contenant
la valeur désirée. Ensuite, le nœud envoie le message au nœud n. Afin d’être en mesure
d’envoyer le message, le nœud doit trouver une clé qui est géré par n, avec l’aide de
l’emplacement de n qui est contenu dans le message Lookup. Une fois qu’une clé est

25

trouvée, le nœud envoie la valeur récupérée à n comme dans le procédé décrit dans la
Section 0.4.3.3.

Si un nœud qui reçoit un message Lookup ne gère pas la clé k, il envoie un message
GetDistance à ses voisins. Ensuite, le nœud sélectionne le voisin qui a répondu avec la
plus petite distance, et lui transmet le message Lookup. Ce processus sera répété jusqu’à
ce que le message Lookup atteint un nœud qui gère la clé k.

0.4.3.3 Envoi d’un paquet de donnée à un grumeau donné

Il est possible d’étendre le processus de stockage afin de permettre à un nœud d’envoyer
des paquets de données vers le grumeau gérant une clé donnée. Soit un nœud n qui veut
envoyer des paquets de données aux nœuds du grumeau qui gère une clé k donnée. Le
nœud n construit un message Datapacket message. Ce message contient la clé k et les
données à transmettre. Ensuite, le nœud vérifie qu’il n’appartient pas au grumeau qui gère
k. Si n appartient à un tel grumeau, il envoie le message Datapacket à tous les nœuds
qui composent le grumeau. Si le nœud n’appartient pas à un tel grumeau, il envoie des
messages GetDistance à ses voisins, reçoit un ensemble de messages Distance, sélectionne
le voisin qui est le plus proche de k et transmet le message Datapacket au voisin selectioné.

Quand un nœud reçoit un message Datapacket il vérifie s’il gère la clé k contenue dans
le message. Si le nœud gère cette clé, il extrait d’abord les données contenues dans le
message. Ensuite, il vérifie si le nœud qui envoie le message gère également k. Cette
vérification consiste à regarder si le nœud expéditeur est l’un des nœuds qui composent le
grumeau qui gère k. Si le nœud expéditeur ne gère pas k, le nœud qui a reçu le message
Datapacket le transmet à tous les nœuds du grumeau qui gère k. Si le nœud qui a reçu le
message Datapacket ne gère pas de k, le nœud répète le procédé mentionné ci-dessus et ce
processus est répété jusqu’à ce que le message Datapacket atteigne un nœud qui gère k.

26 0. Résumé

27

Services sur ROSA

0.5 Un système résilient de stockage de fichiers

ROSA doté de la ’chaîne de grumeaux’ offre un réseau et une table de hachage distribuée
résistants. Ce système de stockage possède déjà les avantages de la résilience de la ’chaîne
de grumeaux’ et afin d’assurer une meilleure tolérance aux pannes chaque fichier stocké
sur ROSA est stocké plusieurs fois. Chacune des répliques d’un fichier est stockée par un
nœud. Le nombre de répliques est un paramètre qui doit être décidé lorsque le fichier est
stocké. De cette façon, les fichiers importants peuvent être stockés avec de nombreuses
répliques tandis que les fichiers les plus négligeables ne seront stockés qu’avec seulement
quelques répliques. Afin de permettre à un nœud de savoir où les répliques d’un fichier
donné sont situées, pour chaque fichier un index est également stocké sur ROSA. L’index
d’un fichier contient l’identificateur de fichier, certaines données facultatives sur le fichier,
un drapeau, les listes de l’emplacement des répliques et la liste des identifiants des nœuds
qui est propriétaire de ce fichier.

0.5.1 Stockage d’un fichier

Un nœud qui souhaite stocker un fichier sur ROSA calcule l’identifiant du fichier. Cet
identifiant est obtenu en utilisant une fonction de hachage sur le nom du fichier. Ensuite,
le nœud détermine le nombre de répliques nécessaires et les nœuds qui sont autorisés à
accéder au fichier. Pour terminer le nœud doit construire un message StrFile. Ce message
contient l’identifiant de nœud d’envoi et son emplacement, l’identificateur de fichier, une
description facultative du fichier, le nombre de répliques voulues, la liste des propriétaires
et le fichier lui-même.

Une fois le message construit, le nœud l’envoie par la DHT au grumeau index de
ce fichier. Le grumeau index de ce fichier est le grumeau qui gère le sous-intervalle qui
contient l’identifiant du fichier. Quand un nœud du grumeau index reçoit un message
StrFile il construit et envoie un message à StrIdx aux autres nœuds du grumeau index.
Ces nœuds stockent l’index de ce fichier. Le message StrIdx contient l’index de ce fichier.

Le nœud qui reçoit le message StrFile sélectionne aléatoirement N éléments de Iinit, où
N est le nombre de répliques voulu. Nous désignerons ces éléments ki, i ∈ [1, N]. Ensuite,
le nœud construit un message ScttrRep qui contient l’identificateur de fichier et le fichier
lui-même. Pour conclure, le nœud envoie une copie du message ScttrRep à chacun des
grumeaux qui gèrent les ki. Ces messages sont également envoyés en utilisant le procédé
décrit dans la Section 0.4.3.3.

Ce processus garantit que les messages ScttrRep atteignent des nœuds ordinaires de

28 0. Résumé

l’un des grumeaux qui gère l’un des ki. Lorsque l’un de ces nœuds reçoit un tel message,
il choisit au hasard un nœud du grumeau qui gère le ki et envoie un message StrRep à ce
nœud. Ce message informe le nœud de réception qu’il doit stocker une réplique du fichier.
Un message StrRep contient l’identifiant et une copie du fichier.

0.5.2 Récupération d’un fichier

Un nœud qui veut récupérer un fichier doit connaître l’identifiant de fichier. Afin de
récupérer un fichier, le nœud doit envoyer un message RtrvFile au grumeau du fichier en
utilisant le procédé décrit dans la Section 0.4.3.3. Un message RtrvFile contient l’identifiant
du fichier à récupérer, l’identifiant et l’emplacement du nœud qui veut récupérer le fichier.
Quand un nœud du grumeau index reçoit un tel message, il répond avec un message RepLoc.
Un message RepLoc doit contenir l’emplacement des répliques et la version actuelle du
fichier.

Une fois que le nœud qui veut récupérer le fichier connaît l’emplacement des nœuds
stockant les répliques, il sélectionne celui qui est le plus proche (dans le sens de la ’chaîne
de grumeaux’) et envoie un message RtrvRep. Ce message contient l’identifiant du fichier
à récupérer. Un nœud qui reçoit un tel message doit répondre par un message HereItIs
qui contient la réplique du fichier voulu.

0.5.3 Mettre à jour, modifier, effacer un fichier et quelques autres choses

Ce système résilient de stockage de fichiers permet aux utilisateurs de mettre à jour, modi-
fier un fichier. Il est capable de gérer (de façon peu efficace) les modifications concurrentes
d’un même fichier. Ce système permet aussi d’effacer un fichier. Il dispose d’un mécan-
isme permettant le remplacement d’un nœud réplique par un autre en cas de panne. Il
dispose également d’un système de droit qui donne l’accès au fichier seulement aux nœuds
autorisés.

0.6 Routage résilient de nœud à nœud

0.6.1 Construction et maintenance des tables de routage

Comme décrit dans le Chapitre 0.3.10, la ’chaîne de grumeaux’ permet à n’importe quel
nœud de ROSA d’envoyer des paquets de données vers les nœuds composant un grumeau
gérant une clé donnée. La ’chaîne de grumeaux’ peut être directement utilisée dans le cas
où certains services de réseau sont confiés à des grumeaux. Les nœuds peuvent avoir accès
à ces services en envoyant des requêtes aux grumeaux concernés. Quand un nœud veut
communiquer avec le nœud qui possède un identificateur donné, il doit utiliser le service
de routage. Ce service de routage utilise la ’chaîne de grumeaux’ et se base sur des tables
de routage. Ces tables de routage sont stockées par les gros grumeaux et sont accessibles
via la chaîne de grumeaux.

Chaque nœud de ROSA qui veut recevoir des paquets de données d’autres nœuds doit
bâtir et maintenir sa table de routage. La table de routage d’un nœud est composée de
son identifiant, son emplacement et un indicateur. Si l’indicateur est défini à TRUE cela
signifie que le nœud gère une clé de la ’chaîne de grumeaux’. Si l’indicateur est défini à
FALSE, cela signifie que le nœud ne gère pas de clé.

29

Quand un nœud se connecte à ROSA, il doit créer sa table de routage. Une fois
construite, le nœud l’inclut dans un message StrTable. Le nœud envoie ce message, en
utilisant la procédure décrite dans la Section 0.4.3.3, aux nœuds qui composent le grumeau
qui gère la clé correspondant à l’identifiant de nœud. Le nœud garde aussi une copie de
sa table de routage actuelle. Quand un nœud du grumeau concerné reçoit le message
StrTable il extrait de la table du message et la stocke. Par conséquent, chacun des nœuds
qui compose ce grumeau stocke la table. Un nœud qui veut recevoir des paquets de données
doit maintenir sa table à jour.

0.6.2 Routage d’un message à un nœud

Soit id1 l’identifiant d’un nœud n1 de ROSA. Quand un nœud n2 avec l’identifiant id2

veut envoyer un paquet de données vers au nœud n1, il encapsule le paquet de données
dans un message SendToTable. Ce message, en plus de paquet de données contient les
identifiants du nœud d’envoi id2 et du nœud cible id1. Ensuite, le nœud n2 envoie le
message SendToTable au grumeau qui gère la clé correspondant à id1.

Les nœuds qui composent ce grumeau stockent la table de routage de n1, si n1 a voulu
le publier. Quand un nœud qui compose le grumeau censé stocker la table de n1 reçoit le
message SendToTable elle vérifie que le nœud n1 a publié sa table de routage. Si le nœud a
publié sa table de routage, le nœud qui a reçu le message SendToTable regarde la liste des
emplacements figurant dans le table de routage et détermine celle qui est la plus proche
en terme de ’chaîne de grumeaux’.

Une fois cet emplacement déterminé, le nœud qui a reçu le message SendToTable,
extrait une clé de cet emplacement et envoie un message SendToNode au grumeau gérant
cette clé. Le nœud n1 est dans ce grumeau, car les emplacements qui sont dans la table de
routage du n1 correspondent aux bornes des sous-intervalles gérés par les grumeaux que
n1 compose. Le message SendToNode contient le paquet de données, les identifiants du
nœud d’envoi id2 et du nœud cible id1.

Dès qu’un nœud du grumeau ciblé reçoit le message SendToNode, il l’envoie au nœud
n1. Puisque tous les nœuds qui composent un grumeau sont des voisins, la dernière étape
n’est pas un problème sauf si la table n’est pas à jour ou si n1 ne gère pas les clés. Ceci ne
sera pas décrit dans ce document.

30 0. Résumé

31

Densité

0.7 Densité

Nous avons vu dans le Chapitre 0, que la gestion de la topologie de la ROSA consiste
en un calcul par nœuds de la densité des grumeaux auxquels ils appartiennent. Chaque
nœud envoie à ses voisins de la représentation du grumeau qui a la plus faible densité
dans sa liste de grumeaux. Par conséquent, tous les nœuds de ROSA ont connaissance de
quelques grumeaux qui ont de faibles densités. Selon cette connaissance sur les densités
des grumeaux, les nœuds quittent les grumeaux avec de fortes densités afin de joindre et
d’augmenter la densité des grumeaux avec des densités faibles.

La densité est le paramètre qui définit le comportement de ROSA. Si deux instances
de ROSA sont déployées sur le même réseau mais avec deux définitions différentes de la
densité. Les nœuds de chaque instance qui choisissent les grumeaux à quitter et à joindre
selon la définition de la densité de l’instance. Par conséquent, l’ensemble des grumeaux de
ces deux instances de ROSA sera complètement différent. La densité est le paramètre le
plus important de ROSA, la densité d’une instance de ROSA doit être choisie pour tenir
compte de l’objectif que ROSA est censé atteindre.

0.7.1 Densité par défaut

La densité par défaut d’un grumeau est égale à la taille du grumeau. C’est la plus simple
des densités. Sa première utilité est de tester la manière dont le processus de gestion de
la topologie de ROSA se comporte. Néanmoins, cette densité peut être utilisée pour la
maximiser la moyenne du nombre de nœuds par grumeau. Cette densité a trois avantages:

• Elle ne nécessite pas de données supplémentaires pour permettre aux nœuds de le
calculer ;

• Elle est facilement calculable ;

• Elle peut être utilisée par ROSA sur tous types de réseaux.

Nous avons effectuer quelques simulations qui confirment que cette densité peut être
utilisée pour maximiser le nombre de nœuds par grumeau et donc le nombre de voisins par
nœud (le nombre maximal de voisin par nœud est égal au nombre maximal de nœuds par
grumeaux multiplié par la nombre maximal de grumeaux par nœud).

32 0. Résumé

0.7.2 Densité résiliente

Le but de la densité résiliente est de rendre ROSA extrêmement résistant aux pannes. La
densité est définie comme le nombre minimal de pannes sur les éléments des liens virtuels
du grumeau qui sont nécessaires pour isoler un nœud du grumeau. De telle manière que si
le nombre de pannes est inférieur à la densité, nous pouvons affirmer qu’il existe un chemin
entre deux nœuds du grumeau et que les nœuds sont encore en mesure de communiquer
entre eux. On peut remarquer que si tous les liens entre les nœuds d’un capital sont
disjoints, la densité de la masse est simplement égale au cardinal du grumeau moins un, à
savoir #l - 1.

Un nœud qui veut calculer la densité d’un grumeau doit construire le graphe du
réseau recouvert correspondant à l’aide d’informations sur la topologie des liens virtuels
du grumeau. Si l’on considère que les sommets et les arêtes peuvent tomber en pannes,
pour calculer la densité de l’un des grumeaux un nœud doit d’abord calculer le st-cutsets
minimal séparant chaque paire de nœuds du grumeau. La densité est égale au cardinal
du plus petit des cutsets calculés. Le st-cutset minimal séparant deux sommets source et
terminal, est l’ensemble minimal des sommets et des arêtes dont la suppression déconnecte
la source du terminal.

0.7.3 Densité mobile

La densité mobile a été créée en vue d’adapter ROSA à un réseau mobile AdHoc dense.
La densité mobile est conçu pour examiner les caractéristiques de nœuds mobiles. Ces
caractéristiques des nœuds mobiles sont leur position relative, la vitesse et la direction.

Pour proposer une définition de cette densité adaptée aux réseaux AdHoc dense réseau,
nous introduisons le concept de viabilité du lien entre deux nœuds. La viabilité du lien
entre deux nœuds mobiles est une mesure qui fournit des informations sur la qualité et la
durabilité de la connexion entre ces deux nœuds. Par exemple, deux nœuds mobiles allant
dans des directions opposées ne seront pas à portée de communication aussi longtemps que
deux nœuds proches suivant la même trajectoire.

La viabilité d’un lien entre deux nœuds mobiles n1 et n2 est calculable avec la formule
suivante:

viability(n1, n2) = 1−
(

1− cos(~̂s1, ~s2)
2

+
d2

d2
max

+
||~s1 − ~s2||2

(2.vmax)2

)
/3

Où ~s1 et ~s2 sont respectivement les vecteurs d’état représentant la direction, la vitesse des
nœuds n1 et n2. La distance entre deux nœuds est notée d et dmax represente la distance
au delà de laquelle deux nœuds ne peuvent communiquer et vmax represente la vitesse
maximale qu’un nœud peut atteindre. L’utilisation de la densité mobile implique que les
nœuds soient équipés d’un système de GSP embarqué.

La densité d’un lump est la somme des viabilités des liens entres les nœuds qui com-
posent le grumeau. Soit l un grumeau, sa densité est égale à:

density(l) =
a1∈l∑
a1

a2∈l−{a1}∑
a2

viability(a1, a2)

33

Conclusion

0.8 ROSA dans un cas réel

0.8.1 Contexte

ROSA et la densité résiliente ont été utilisés dans dans le cadre du projet DESEREC.
Ce projet vise à fournir des méthodes et des outils pour surveiller, analyser, concevoir,
modéliser, simuler et optimiser le plan de configuration des communications et des systèmes
d’information (CIS). Le cadre DESEREC doit effectuer 3 missions qui sont:

• Modélisation. Cette tâche consiste à planifier et à définir l’utilisation et la configura-
tion optimale de fonctionnement du CIS. Cela permet de définir le mode cohérent et
opérationnel du CIS. Cela permet la détection des attaques ou des défaillances par
comparaison au mode optimal de fonctionnement du CIS.

• Détection et prévention. Pour obtenir le mode de fonctionnement actuel du CIS, cer-
tains capteurs doivent permettre de mesurer la caractéristique du CIS. Les capteurs
doivent détecter les signes avant coureur d’une défaillance ou d’une attaque.

• Reaction. Certaines initiatives et contre-mesures assistées par ordinateur et automa-
tisée doivent être prises en cas de défaillance ou d’une détection d’attaque. Ces
réponses doivent être rapides et adaptées à la nature des incidents détectés.

L’outil de suivi proposé dans le cadre de DESEREC consiste en un ensemble de cap-
teurs distribués et un ensemble de mécanismes de détection pour détecter les attaques, les
défaillances ou les bogues des services qui peuvent se produire dans le système. Quand un
tel incident est détecté, l’outil doit réagir de manière rapide et appropriée conformément
à une politique de sécurité. La politique de sécurité peut impliquer le système et la re-
configuration des services. L’outil proposé au cours du projet DESEREC est en mesure
d’identifier les événements de malveillance et d’isoler les entités soupçonnées afin d’éviter
la propagation de menaces ou d’un effet en cascade.

Puisque cet outil est destiné à être déployé sur le réseau d’une entreprise et puisqu’un
tel réseau pourrait être partagé sur de nombreux pays et donc sur de nombreux systèmes
autonomes et de sous-réseaux, nous ne pouvons pas tolérer que des pannes empêchent
les capteurs partagé par ces sous-réseaux différents de communiquer. L’outil proposé par
DESEREC, doit avoir des garanties sur l’efficacité de l’acheminement de ses données. Les
capteurs doivent communiquer à l’aide d’un réseau résilient. Pour cette raison, ROSA a
été choisi pour supporter cet outil.

34 0. Résumé

0.8.2 Description

Un ensemble de capteurs est installé sur toutes les entités du réseau mesurables. Les
capteurs installés sur une entité donnée dépend du type de cette entité. Les capteurs
peuvent mesurer la charge du processeur, l’utilisation du disque, l’utilisation des interfaces
réseau, la production de logiciels anti-virus, les erreurs dans les services, les fichiers logs et
ainsi de suite.

L’outil utilise les données de surveillance de sortie des capteurs pour calculer une valeur
d’assurance de sécurité tel que décrit par Pham et Riguidel dans Pham and Riguidel [2007].

De nombreux types d’entités peuvent composer un réseau, les entités peuvent être
des postes de travail, passerelles, imprimantes, routeurs, sous-réseaux et ainsi de suite.
Chaque type d’entités a sa propre définition de la valeur SA. La valeur SA d’une entité
peut être calculée au niveau local ou à distance en fonction de sa nature. La valeur SA
d’une imprimante ne peut pas être calculée sur place puisqu’ une imprimante ne dispose
pas de capacités de calcul. La valeur SA de certaines entités, comme les sous-réseaux, doit
être calculée de manière distribuée.

Une fois les valeurs SA calculées, la politique de sécurité doit être appliquée. De nos
jours, la politique de sécurité se compose de deux règles qui sont:

• Si la valeur SA d’une entité de routage (routeur ou une passerelle) passe sous un
seuil donné, l’outil essaie de trouver une entité de routage alternative pour tous les
sous-réseaux qui dépend de l’entité ayant une faible valeur SA. Si aucune alternative
de routage ne peut être trouvée, pour un sous-réseau donné, le sous-réseau est isolé
jusqu’à ce que la valeur de l’entité SA soit au-dessus du seuil. Si un autre entité est
trouveé la table de routage des entités concernées est modifiée afin d’utiliser l’entité
de remplacement.

• Si une valeur d’un sous-réseau SA passe sous un seuil donné ce sous-réseau est isolé.
Cela signifie que toutes les entités du réseau doivent ignorer les paquets de données
émanant du sous-réseau avec la faible valeur SA.

Les seuils des valeurs SA en dessous desquels la politique de sécurité exige une réac-
tion doivent être déterminés expérimentalement par l’étalonnage des capteurs du réseau
surveillé pendant une période où aucune attaque et aucune panne n’est rencontré rencontré.
Cette période doit être suffisamment longue afin d’obtenir des seuils significatifs.

Beaucoup d’autres règles pourraient être ajoutées à la politique de sécurité en fonction
des services fonctionnant sur le réseau surveillé. Imaginons qu’un serveur Web est exécuté
sur le réseau surveillé et que les serveurs web de substitution existent. Si la valeur de SA
du serveur Web principal diminue trop, l’un des serveur web alternatif est activé par l’outil
de surveillance tandis que celui avec la faible valeur SA est désactivé. On peut imaginer
autant de règles que l’on veut.

La Figure 8.2 illustre l’application des règles de la politique de sécurité en fonction de la
valeur SA calculée par l’outil de surveillance. On peut voir que c’est l’outil de surveillance
qui est chargé à la propagation de la reconfiguration des commandes.

ROSA et la densité résiliente sont utilisés comme l’épine dorsale de cet outil. Sa
topologie, son service de routage résilient et sa fiabilité apportent une bonne assurance que
les différents dispositifs de l’outil de surveillance sont en mesure de communiquer malgré

35

Figure 5: L’outil DESEREC interprétant les valeurs SA et appliquant la politique de
sécurité

les pannes, les attaques et les modifications des tables de routage des entités du réseau par
l’outil de surveillance.

0.8.3 Experimentation sur le réseau de Télécom ParisTech

L’outil de surveillance a été mis en œuvre et déployé sur le réseau du département InfRes
de Télécom ParisTech. Ce réseau compte environ 50 postes de travail, plusieurs routeurs
CISCO et est divisé en plusieurs sous-réseaux.

Dans cette expérimentation, nous avons utilisé de vrais capteurs sauf pour le cap-
teur de virus car nous ne voulions pas vraiment propager un virus ou un ver sur ce réseau
opérationnel. Nous sommes en mesure de simuler l’existence d’une attaque de ver ou la dé-
faillance d’un élément du réseau. En ce qui concerne la politique de sécurité, seuls les deux
règles déjà mentionnées dans les sections ci-dessus ont été mises en œuvre. L’application
des règles de politique de sécurité ont été mises en œuvre virtuellement puisqu’une fois de
plus, nous ne voulions pas interférer avec l’exploitation du réseau.

Chaque poste de travail et serveurs du réseau surveillé agissent en tant que nœud de
ROSA et en tant que nœud de l’outil de surveillance. Toutes les communications entre les
nœuds de l’outil de surveillance transitent à travers ROSA.

Afin de compléter l’outil de surveillance et de permettre des démonstrations un outil
de contrôle a été conçu. Cet outil de contrôle est appelé le cockpit de sécurité. Le cockpit

36 0. Résumé

Figure 6: Le cockpit de contrôle de DESEREC

de sécurité consiste en une applet java qui affiche une représentation du réseau surveillé.
Cette applet s’exécutait sur un serveur du réseau. Sur cette applet sont également affichés
les liens virtuels de ROSA et les valeurs SA des différentes entités du réseau. La Figure 8.3
est une capture d’écran du cockpit de sécurité. On peut voir sur cette figure les postes
de travail sous forme de carrés verts, les serveurs des carrés violets et les routeurs par
des carrés oranges. Les carrés du bas en rouge correspond aux différents sous-réseaux du
réseau surveillé.

0.9 Analyse

0.9.1 Extensibilité de ROSA

ROSA assure son extensibilité en limitant le nombre de voisins par nœud. Nous avons
effectué quelques simulations afin de vérifier l’extensibilité de ROSA. Cette simulation
a consisté à créer plusieurs instances différentes de ROSA. Chacune de ces instances de
ROSA ont un nombre différent de nœuds. Puis, nous mesurons le nombre moyen de bits
que les nœuds de ROSA envoient à chaque intervalle de temps. Le graphique 7.1 montre
le résultat de l’une de ces simulations.

Pour la simulation correspondant à la figure, le nombre maximal de noeuds par for-
faitaire est fixé à 10, le nombre maximal de grumeaux par nœud est fixé à 2 et la densité
utilisé est la densité par défaut.

On peut voir dans la figure que la taille moyenne des données envoyées par un nœud
pendant un intervalle de temps ne dépend pas du nombre de noeuds de ROSA. Les autres
simulations effectuées montrent le même fait. On peut considérer ROSA comme extensible.

37

.

Figure 7: Nombre moyen de bytes envoyer par un nœud en fonction du nombre de nœuds
du réseau

0.9.2 Efficacité du routage sur la ’chaîne de grumeaux’

Le pire des cas pour l’efficacité de la ’chaîne de grumeaux’ est l’absence de raccourcis. Dans
le pire des cas, nous avons démontré formellement que le nombre de sauts nécessaires pour
acheminer un paquet de données à partir d’un nœud choisi aléatoirement à un grumeau
choisi aléatoirement est inférieur ou égal à N/4 où N est le nombre de sous-intervalles
qui composent la ’chaîne de grumeaux’. L’algorithme de routage utilisant la ’chaîne de
grumeaux’ est en O(N).

Nous avons simulé le comportement de la ’chaîne de grumeaux’ dans des conditions
proches de celles rencontrées dans la réalité. Dans ces simulations, nous avons construit
plusieurs instances de ROSA avec une ’chaîne de grumeaux’ composée par de plus en plus
de sous-intervalles. Le résultat d’une de ces simulations se trouve dans le graphique 7.5.

Chacun peut voir que le nombre de sauts ne croit pas linéairement en fonction du
nombre de sous-intervalles et finit même par devenir constant. Ce résultat s’explique par
un phénomène de ’petit monde’.

0.10 Conclusion

Les recherches de cette thèse apportent des contributions dans deux domaines. Ces do-
maines sont le domaine des réseaux de recouvrement et le domane des tables de hachage
distribuées. Cette thèse a également proposé deux services qui peuvent être déployées sur
ROSA. Ces services tirent avantage des propriétés de ROSA.

Dans le domaine des réseaux de recouvrement, cette thèse propose un nouveau réseau
appelé ROSA. ROSA surpasse la vision des réseaux de recouvrement en graphe avec des
nœuds et des liens à l’aide d’une couche d’abstraction: dans ROSA, les noeuds sont or-
ganisés en clusters appelés grumeaux. Un grumeau est un ensemble de nœuds entièrement
connectés et ROSA peut alors être représentée par un enchevêtrement de grumeaux. ROSA

38 0. Résumé

Figure 8: Nombre moyen de saut en fonction du nombre de sous-intervalles avec 2.5 rac-
courcis par nœud

est un réseau auto-organisant, paramétrable, extensible et auto-guérissant.
Dans le domaine des DHTs cette thèse propose la ’chaîne de grumeaux’. La ’chaîne

de grumeaux’ est une DHT construite sur ROSA. Cette ’chaîne de grumeaux’ doit remplir
quelques conditions: la ’chaîne de grumeaux’ ne doit pas réduire l’extensibilité de ROSA
et ne doit pas modifier sa topologie non plus. La ’chaîne de grumeaux’ est construite
sur l’enchevêtrement des grumeaux. Les grumeaux sont organisés de façon à former une
chaîne, cette chaîne est complétée par des raccourcis puisque les nœuds peuvent appartenir
à plus d’un grumeau. Cette chaîne permet de router des paquets de données en un nombre
de sauts bornés.

39

Introduction

Context of research

Recently, it has been possible to run an operating system on a hardware architecture for
which the OS was not intended for. This technology is called virtualization. Virtualization
runs each guest OS in a closed environment. These virtualized environments are managed
by the virtualization layer that is implemented for a lot of host systems. It must also
be able to run a large number of OS. Therefore, the virtualization is composed of three
layers, the host layer (or physical layer), the virtualization layer and the guest layer. This
is schematized in the Figure below.

The Virtualization has allowed companies with a disparate set of computers to virtu-
ally have only a single type of computer. The benefits for a company to have its entire
fleet computers identical are considerable. Moreover, all the effort needed is made by the
designers of the virtualization layer. Therefore the installation of a new machine consists
simply to copy a virtualized environment of an existing machine on the new one.

This concept of virtualization can also be applied to networks. Today there exists a
great disparity of networks: Internet, the GSM network, ad hoc networks, etc. Each of these
networks is based on different supports and protocols. It would be interesting to have a

40 0. Résumé

virtual network to unify all these networks. Moreover, the convergence of digital electronic
devices facilitates the development of such a virtual network. Indeed devices, such as new
generation phones, spanning several physical network (IP, WiFi and GSM/GPRS) could
serve as bridges between these physical networks.

The model for this global virtual network would be, by analogy with the virtualization
of computers, as follows: the physical layer, the virtual layer, and the services layer. The
physical layer is of a set of physical networks and the different devices that compose them.
The virtual layer is a virtual network built over each of the physical network of the physical
layer. The services layer consists in a set services provided on top of the virtual network of
the virtual network. The services can be resilient routing services, reliable storage services,
etc. This model is schematized in the Figure below.

In this Figure are represented at the physical layer 4 networks: Internet, 2 ad hoc
networks and the GSM/GPRS network. Above the physical layer is built the virtual
layer. This layer consists in a virtual network deployed over each of the networks of the
physical layer. This virtual network provides common services for all the devices of the
physical networks, these services are represented on the top of the Figure. With such a
model, one would have similar benefits for networks to those provided by virtualization
to computers. The different devices using the virtual network could communicate without
worrying about the physical networks. One could also able to change the physical support
without worrying about routing. One could also migrate to another type of routing with a
negligible cost compared with the migration from IPv4 to IPv6, for example. To perform
such a migration it is only needed to change the routing service provided by the services
layer. All the works and efforts would be made in the implementation of the virtual layer
for the different networks and physical supports.

41

A prerequisite for such a virtual network is the scalability. If one considers that a lot
of devices will use it, we need the extra traffic generated the lowest possible. An overhead
that does not depend or grow linearly on the number of devices would be ideal. The virtual
network would also have the same qualities (resilience, etc..) that the networks on which
it is deployed. The virtual network must be easily adaptable to a lot of different physical
networks.

A class of network are very good candidates to be used as a virtual network: the overlay
networks. An overlay network is a network built on top another network. To each node of
the overlay network corresponds a node of the underlying network. These overlay networks
have been popularized with the rise of the peer-to-peer networks (that belong to a sub-class
of the overlay networks) in the years 2000. There exists many kinds of overlay networks,
some are scalable, some ensure a resilient topology, some offers a reliable routing service,
etc. Nevertheless the existing overlay networks cannot be used to be the virtual network
since these networks are usually dedicated to only one service and can only be deployed
over a single type of physical network. In order to use an overlay network as the virtual
network, this one must be easily adaptable to a lot of different physical networks and must
propose a lot of services. This is, in regard with these observations, that the goals of this
PhD Thesis was defined:

• designing and building an overlay network adaptable and deployable over many kinds
of physical networks ;

• proposing a set of services over the overlay network.

Major contributions

This PhD research contributes to the elaboration of the virtual network of the virtual layer
in the model defined above by:

Firstly, designing an overlay network called ROSA. The nodes of ROSA are organized
in cluster called lumps and ROSA can be seen as an entanglement of lumps. The nodes
organize their neighbor sets according to the lumps and to the densities associated to these
lumps. ROSA is scalable because the maximum number of neighbors that a node can have
is bounded, and this bound does not depend on the total number of nodes participating
to the network. ROSA is adaptable because the definition of the density of the lumps
can be adapted to the properties of the underlying network. ROSA fulfills the necessary
conditions to be the virtual network. Secondly, designing a Distributed HashTable over the
ROSA overlay network. This DHT can be added to ROSA without modifying the initial
protocol. Since some efficient complex services must be built over ROSA using this DHT,
the DHT must provide an efficient lookup service. This lookup service has to be scalable.
Thirdly, designing a reliable file storage service and a resilient routing service over ROSA
endowed with the DHT. The reliable file storage uses the DHT and its lookup service to
allow users to store file over the set of lumps of ROSA. The resilient routing service is also
based of the DHT, it allows a node of ROSA to communicate in a direct way to any other

42 0. Résumé

node. These two services demonstrate that it is possible to propose complex services over
ROSA.

Structure of the thesis

The thesis is organized in 8 chapters as following:

Chapter 1 presents the state of the art of the overlay networks. It introduces a
classification of the different overlay networks and the different applications built over
these networks.

Chapter 2 deals with the principle of ROSA. It introduces the basic notion allowing
to understand how ROSA works. It also introduces the protocols in charge of initializing,
building and maintaining the topology of ROSA.

Chapter 3 presents a Distributed HashTable builds over ROSA. It describes in detail
the protocol used to build and maintain the DHT. One can see in this chapter that the
implementation of the DHT does not imply to modify the protocol presented in the Chapter
3. This DHT allows to build sophisticated services over ROSA.

Chapter 4 presents a reliable file storage service developed over the ROSA overlay
network endowed with the DHT. This service allows user to store and retrieve a file over
the nodes of ROSA in a reliable way. This service include primitive methods to manage
the access rights of the users.

Chapter 5 presents a resilient node to node routing service built on top of ROSA
endowed with the DHT. This chapter also introduce a way of computing the identifiers of
the nodes of ROSA based on a reversible mixing function.

Chapter 6 introduces the notion of density. The density is a flexible parameter that
allows ROSA to be adaptable and deployable over a large set of different physical networks.
This chapter presents three different definitions of the density.

Chapter 7 presents the analyses of ROSA. In this chapter we study the scalability of
ROSA, the efficiency of the DHT built on top of ROSA and the average load of each nodes
of ROSA according to the fluctuation of some parameters such: the number of nodes,
the maximum number of neighbors per node, etc. Most of these analyses are based on
simulations.

Chapter 8 presents an real experimentation of ROSA. In this experimentation, which
took place in the network of the INFRES department of the Telecom ParisTech school,
ROSA was used to support a distributed tool in charge of monitoring the network.

43

Chapter 1

State of the art

1.1 Introduction

Internet obeys to simple and well known architectural principles and protocol: intelligence
(that is to say, computing and information) is rejected at the periphery (network intelli-
gence is a flat electroencephalogram), separation between computation and communication
is affirmed by the dogma of the OSI seven layer model, the best effort delivery of messages
in an asynchronous mode, split into packets formatted according to a description of incom-
pleteness. Incompleteness means that the you can add functions, over the developments in
the IP format, such as security of IPSec or the MPLS component (see Rosen et al. [2001]).

Since its inception, the networks developed on the Internet adopted an architecture
in which resources and information from these networks were stored on servers with large
processing capabilities and storage. Clients then access these resources and information
by sending queries to these servers. The servers treat each query and return the resources
or information to customers who had requested. The most popular networks developed
on the Internet is the World Wide Web, where websites are stored on Web servers, and
accessed by clients via http requests.

The routing of messages on the Internet is organized around entities dedicated to it.
These entities called routers are responsible to deliver or disseminate the packets from one
source to one or more (in case of multicast IP), destination(s) following the IP protocol,
possibly using different routes for packets of the same message. Today, IP provides the
best effort routing of packets. This means that IP offers no guarantee that packets are
properly routed to their destination, nor guarantees the performance or scheduling of the
packages.

The sole warranty regarding the reliability of the IP routing is the ability to control the
errors on the packet using a checksum. This lack of control and reliability was deliberate,
because it has the advantage of reducing the level of complexity operations to be performed
by the routers.

The choice of client-server architecture is obvious when the capabilities of the com-
puters of the users are weak in terms of computing power and bandwidth. This choice of
architecture remains valid today for a new generation of customers with limited resources,
such as the RFID chips for example. However the difference between the capacity of the
servers and those of older types of customers is becoming weaker and, consequently, many

44 1. State of the art

servers are thus unable to effectively perform their tasks, because of the demand ever more
important of the various customers.

One solution is to increase the capacities of the servers or at least their numbers.
This is the solution chosen by Meebo (Meebo [2005]). Meebo offers its users a service to
simultaneously connect to multiple instant messaging systems. Meebo is composed of a
large number of servers and a Web interface. An user wishing to connect simultaneously
to AIM and MSN, enters its MSN and AIM identifiers via the web interface. A MSN client
and an AIM client are then launched on a server of Meebo. These clients use the identifiers
entered by the user to connect to their respective messaging services. The user may then
communicate with these clients through the Web interface. Meebo therefore gives the user
the impression of being directly connected to MSN and AIM, but it is only connected to a
server of Meebo. There are also now more and more services that use a large farm of servers
behind a curtain. The search engines such Google (Google [1998]), the applications Web2
such SecondLife (SecondLife [2003]) or Wikipedia (Wikipedia [2001]) have an impressive
number of servers in parallel.

The alternative is to break with the client-server architecture to move towards an
architecture where information, resources and calculations that was confided to the servers
are distributed across a set of network entities.

It is also possible to criticize the mode of routing proposed by IP. Nowadays, the
capacities of the routers have greatly increased, and it does not seem absurd to make them
run a routing algorithm more complex and more efficient. That is what the MPLS routers
do (although the comparison between IP and MPLS is not entirely justified given that IP is
a protocol of layer 3, while MPLS is a protocol astride layer 2 and 3 of the OSI model). It
would be welcome to replace IP by another protocol. But the replacement of IP would be
costly in term of finance and in terms of the duration of migration. This would require, for
example, rewrite all the applications that use the network so that they take into account
the new protocol. From these observations arose the overlay networks. They allow, as
it will be described, to build networks architectures where the routing protocols perform
more than simple best effort routing. Overlay networks can be deployed without having
to change the algorithms used by Internet routers. Subsequently, the overlay networks
have proven to be good candidates as an infrastructure for applications such as shared
resources (data, CPU cycles, disk space), data dissemination (multicast distribution of
content) and some others. Some applications running on overlay networks are designed to
ensure a certain quality of service or to increase security covered of the covered networks,
protecting them against and ensuring the detection of external attacks. But if these new
architectures can provide solutions for security and dependability of networks covered, they
also raise new issues about their own safety. In fact, the overlay networks are also targets
of attacks exploiting their characteristics. In the remainder of this Chapter, we give a
description and definition of the overlay networks, present various applications developed
on the overlay networks and some attacks used against these networks.

45

1.2 The Overlay Networks

1.2.1 Definition

An overlay network is a virtual network built on top of another network, this other network
may itself be virtual or not. A network dial-up (connection by modem), for example, an
overlay network on the telephonic network. However, in the context of this Chapter, the
networks studied are primarily those covering the IP network or other overlay networks
for the simple and good reason that no or very few documents and research papers dealing
with overlay networks on another network technology that IP, which is a shame because
the need to create overlay networks on 3G networks or to create an overlay network astride
the Internet and other communication networks is real.

In the current literature, an overlay network is defined as a set of nodes and a set of
virtual links connecting these nodes. These links correspond to paths (one or several) at the
covered network layer. The virtual links may be encrypted and therefore theoretically make
it difficult to listen or falsification of communications between two network nodes of an
overlay network. However, the issue of the availability is not solved by this encryption, and
the denial of services can disrupt such overlay networks. Each node in an overlay network
has an unique identifier, often different from its identifier in the underlying network. A node
also has a table of other nodes, neighbors. In this table can be found the correspondence
between the identifiers on the overlay network and the identifiers on the underlying network
of these neighbors. The advantage of this architecture is to create a virtual topology of
"neighbors".

It is possible to define an overlay network of as a set of entities, belonging to one or
more networks, that share and respect the same initialization, maintenance and endogenous
routing services. We shall see later in this chapter what these services are. This new
definition has the advantage of simply considering what might be a coexistence, cooperation
or competition between two overlay networks. For example, two overlay networks are said
to coexisting if they have common entities. And we say that two overlay networks coexist
and cooperate if they also have the same endogenous routing service.

When we deal with the overlay networks, we must make a distinction between an
overlay network and its applications. This distinction is often ignored and even in this
article that proposes a new overlay network. To give an example of this non-distinction,
it is often mistakenly declare that Kademlia (Maymounkov and Mazières [2002]) is a file-
sharing protocol, however Kademlia can be used as a botmaster during a botnet attack
(Gunther et al. [2008]). It remains clear that the topology of overlay networks predisposes
them to be carriers for certain types of applications: a topology tree is such a topology to
build an efficient multicast service, this predisposition is not restrictive.

In this Chapter, an overlay network is characterized by a set of initialization services,
a set of maintenance services and a set of routing endogenous services:

• Initialization services are services which allow the overlay network to acquire desired
topology. If they are virtually nonexistent in the static or manually managed overlay
networks, they gain importance in the self-organizing networks, they are particularly
responsible for adding new node.

• Maintenance services are designed to maintain the properties and invariants of the

46 1. State of the art

overlay networks. For example, when adding or removing nodes, in case of failure,
attacks or other disturbances, it is sometimes necessary to reconfigure the virtual
links of the network so that overlay network is still able to function properly .

• Endogenous routing services are in charge of exchanging information between the
different nodes of the overlay networks

It is possible that overlay networks do not have initialization or maintenance services.
However, there is no overlay network with no endogenous routing service. It is also im-
portant to understand the distinction between overlay and peer-to-peer networks. The set
of the peer-to-peer networks is a subset of the overlay networks. The confusion between
these two are very frequent. A peer-to-peer network are participative overlay network
where each node has the same rights and duties. Often on the peer-to-peer network each
new user brings a new node to the network and there is not (at least initially) distinction
between the roles played by each of the nodes of the network. To illustrate this distinction,
it is possible to take the example of the overlay network SOS (Secure Overlay Services in
Keromytis et al. [2002]). SOS is a network that aims to protect a target of attacks like
Denial of Service. It consists of several nodes of four different types (SOS will be described
more fully later in this Chapter) around the target to protect, these nodes do not belongs
to many users but only the one that deployed SOS. SOS absolutely does not have any com-
mon point with a peer-to-peer network, but is an overlay network. This distinction must be
made when talking about grid computing and current applications of overlay networks to
share computation cycle. Grids are typically composed of powerful machines always avail-
able connected together with high performance networks. The resource discovery is based
on a centralized model. In Globus (Luis et al. [2003]), for example, a user or application
may access to an information about the resources of a given node by sending a request to
a server application running on him or server holding information on a set of nodes. This
system is therefore valid only in the case of grids arranged where the servers are known
in advance. While overlay networks dedicated to sharing computing cycles are generally
composed of a large number of machines running without any guarantee of availability and
efficiency. The table 1.1 summarizes the usual differences between grid computing and
overlay networks dedicated to sharing computing cycles.

Now that the basic notions on overlay networks have been presented, a classification
of different overlay networks will be discussed, followed by a classification of different
applications of overlay networks, both illustrated by some examples.

1.2.2 Classification of overlay networks

Establishing a classification of the overlay networks is not easy as there are many different
networks. There is still a commonly used classification which is to categorize the overlay
networks according to the network architecture that is centralized (pseudo-centralized) or
decentralized, and then determine if its topology is structured or unstructured.

This classification does not appear to cover all the varieties of the overlay networks, it
is important to add the concepts previously mentioned the concept of participative net-
works (or non-participative) and the notion of self-organizing networks and those requiring
organization "manual". These concepts are closely related to security.

47

Types Computing grids
Overlay networks
dedicated to CPU
cycles sharing

Architecture and
Connectivity

Static configuration,
limited scalability

Flexibility of the
overlay networks

Control and operation
Model

Centralized Control,
static set of known

participants

May use centralized or
decentralized control,

dynamic set of
participants

Security, privacy and
reliability

Confidence
guaranteed, more
secure with known

participants

Reputation system at
the nodes level and
hierarchical security

topology

Table 1.1: Differences between grid computing and overlay networks dedicated to CPU
cycles sharing

In the remainder of this section will be defined and explained these different concepts.
These definitions will also be accompanied by examples of overlay networks that best
illustrate each concept.

1.2.2.1 Participative / Non participative overlay networks

An overlay network is a participative one if its operation depends on the cooperation of
all users and if each node of this network is controlled by a user. Peer-to-peer networks
are good examples of participative networks. Indeed, each user brings a new node, new re-
sources to the network and collaborates with the other users. These participative networks
are by definition very vulnerable to attacks because any user can cooperate and there is
no guarantee that these users are not malicious. The dangers caused by the participative
overlay networks are discussed in the Section 1.2.4. The participative overlay networks
are in opposition to the non participative overlay networks where all nodes belong to one
individual or one organization.

1.2.2.2 Manually organized / self-organizing overlay networks

Manually organized overlay networks
The popularity of peer-to-peer has largely helped spread the idea that the overlay networks
do not require any human intervention during their initialization and configuration. The
fact remains that this idea is false. In fact, some overlay networks do not have initialization
and maintenance services and need to be configured manually. These networks are not
scalable. There are tools facilitating the initialization and management of such overlay
networks, the most famous of them is X-Bone (Touch and Hotz [1998] and Touch et al.
[2005]).

X-Bone is a distributed system for the deployment and management of overlay networks
over the IP network. It is composed of some Resource Daemons (RDs), some Overlay Man-

48 1. State of the art

agers (OMs) and a GUI. A user wishing to create an overlay network sends a query through
the GUI to a OM. The graphical interface allows you to specify the desired topology, the
method of choice for identifying those nodes, the type of application to run on the net-
work and other settings, but these options are limited. When OM receives a user query,
it transforms the query into an invitation containing the necessary conditions to become a
node of the overlay network in initialization. This invitation is subsequently broadcasted
(using multicast UDP). The RDs, who are responsible for managing the resources of host
on which they runs, listen to these invitations and respond positively to this invitation if
the available resources meet the demands of the invitation. The OM, in cases where there
is a sufficient number of favorable responses, selects an arbitrary subset of the replying
RDs equals with a cardinal equals to the number of nodes wanted for the overlay network.
Then TCP/SSL tunnels are drawn between these RDs in agreement with the topology
desired by the user. In case of insufficient number of responses, a warning is sent through
the GUI to the user, indicating the failure of the creation of the overlay network. Once the
overlay network is created, the OM periodically sends reminder pulses to nodes in order to
maintain a view of the status of these nodes. In case of failure or malfunction one of these
nodes, the OM’s replaces the failing node by another RD and reconfigures the network.

Self-organizing overlay networks
The majority of the overlay networks do not need to be configured manually. They have
automated initialization services that handle the addition of nodes and the acquisition of
the desired topology. These networks are therefore more scalable and easy to deploy as
requiring no human intervention. There are two major groups of initialization services:
services using third party and fully distributed services.

The initialization services using a third party have the advantage of avoiding any con-
flict because they have an overview of the entire overlay network. The main drawback is
that the third party responsible for initialization of the overlay network is a single point
of failure. Indeed, in case of failure of such third party, no more new node can be added.
The third party is a very easy target in the case of participative overlay networks. Since
the overlay network can be joined by anyone, the third party has to be known by everyone.
Consequently, it is also known by a potential attacker. The overlay network Skype (Baset
and Schulzrinne [2006]) uses a initialization service based on a third party. Every Skype
user contacts the login server via its client. The role of the login server is to elect the
machine of an user as a super-node if resources of the machine permits it, or redirect the
machine to a super-node if its resources are not sufficient. The login server then manages
the addition of node and the network topology. Generally, this type of initialization ser-
vices is not used by the overlay networks with decentralized architectures. These overlay
networks privileges the decentralized initialization services.

Most of these decentralized initialization services operate as follows: initially, the new
node must contact a node already present in the overlay network. Then, a place in the
network topology is allocated to the new node and the new node integrates the endogenous
routing service. These decentralized services have the advantage of being a solution to
the problem of the single point of failure of the centralized initializations services. As
drawbacks, these decentralized services require a way for locating at least one node of
the overlay network from the underlying network. Kademlia (Maymounkov and Mazières
[2002]) uses this type of services. If the user connects to the Kademlia network for the first

49

time, it can download a list of active nodes of Kademlia through the World Wide Web
(from http://download.overnet2000.de/nodes.dat for example). If the user has already
connected to Kademlia, its client has stored a list of nodes that were present at its last
connection. These nodes will eventually spread the existence of the new node to the other
nodes in the overlay network, and so the new node could participate in the endogenous
routing service. The identifier, and then the location in the topology of the new node,
is calculated using a hash function on a set of private customer data (IP address, MAC,
etc..). The workings of Kademlia will be discussed in more detail in this chapter.

1.2.2.3 Centralized / Decentralized Architectures

Centralized Architectures
An overlay network with a centralized architecture is a strong central node around which
other nodes are grouped. This is the first architecture adopted by the overlay networks
and is primarily a network architecture especially suitable for developing applications for
indexing, locating and sharing resources. The server has the task of indexing resources and
allows nodes to locate and access it.

It is the architecture adopted by the overlay networks dedicated to distributed comput-
ing such BOINC (Anderson [2004]) and XtremWeb (Fedak et al. [2001]) that are described
in more detail later in this chapter. In these networks, the nodes, in order to perform
the calculations, are organized around a task server which distributes the calculation to
perform to them.

Napster (Napster [1999]) also adopted this architecture. Each user that wishes to join
the Napster network must identify themselves to a central server. Once connected, the
server sent information about the files it wishes to share. It stored these in its database.
An user that wishes to find a file, queries the central server, which according to its database
sends a list of nodes owning that file. Then, a series of transactions between the node
requester and the node owner are performed. These transactions may lead to the download
of the file. The main server of Napster was shut in 2001.

The developer of BitTorrent (BitTorrent [2005]) also chooses this architecture for its
network. In BitTorrent, a user wishing to download a file must first find (usually on the
Web) the torrent file corresponding to the requested file. Each torrent file contains the
address of one or more trackers. These trackers have a list of nodes downloading the desired
file. The user then contacts one of the trackers that the torrent file contains. The tracker
adds the IP address of the new node to its database and returns the list of other nodes
downloading this file to the node. The nodes downloading the same file, can connect with
each other and exchange parts (called chunks) of this file.

The advantage of this architecture is that it allows any node to directly contacts the
other nodes that own chunks of the requested file. This is made possible by the fact that the
server has a view of the whole network. In general in the case of a centralized architecture
routing messages between any two nodes in the overlay network has a complexity of O(1).

The main drawback of this architecture is that the central server is a single point
of failure of the network. In case of failure or attack against it, the whole network is
decommissioned. Another shortcoming is that the central server has finite capacity, it is
therefore quite conceivable that if too many nodes join the overlay network the central
server is overloaded.

50 1. State of the art

Pseudo-centralized architectures
In order to remedy to the defects of the overlay network with centralized architecture the
pseudo-centralized architectures have emerged. In these architectures, the central server
is replaced by a collection of smallest servers communicating with each other. This is the
solution adopted by FastTrack and Skype whose authors are the same.

FastTrack is the an overlay network that supported the KaZaA application (Liang
et al. [2005]). KaZaA was an application for indexing and sharing files between different
nodes. In Skype and FastTrack, nodes with larger capacities are elected as super nodes,
these super-nodes are interconnected and act as a central server. If the overlay networks
with pseudo-centralized architecture have the same routing properties as the networks with
centralized architecture, they are much more scalable. To give an order of magnitude, there
was before the shut of KaZaA (in 2005 due to copyright infringement) over 3 million users
simultaneously present. But be careful, if indeed FastTrack allows indexing the files of
3 million users, however it is unable to simultaneously process 3 million accesses to the
index.

Decentralized architectures
An overlay network with a decentralized architecture is a network where routing does not
require any central authority. The endogenous routing service is distributed. Each node
then has a knowledge about the local network, i.e. it knows all other nodes to which it is
connected. A message is then routed from source node to destination node by a series of
successive hops. Each node is using local knowledge at its disposal to bring the message
closer to the destination. The performance in terms of complexity of these protocols are
lower than those of centralized protocols but these overlay networks are much more flexible
and scalable. These overlay networks with decentralized architecture can be divided into
two classes, structured overlay networks and unstructured overlay networks.

1.2.2.4 Structured / Unstructured overlay Networks

Unstructured overlay network
The unstructured overlay network are the first overlay networks with decentralized archi-
tectures that have emerged. Usually on these networks the set of neighbors of each node is
randomly chosen. We can often see the unstructured overlay networks as random graphs.
These overlay networks have the advantage of being easy to implement and easily deploy-
able. The endogenous routing service in these networks consists most often in a flooding
service. A node wishing to send a message to another node of the overlay network sends
it to all its neighbors. The neighbors at first receipt of the message, also send to all their
neighbors and ignores the message if it receives it again, and so on. This system ensures
that the message reaches the destination node.

However, the routing by flood can lead to congestion of the network if it is composed of
too many nodes. This type of network is not very scalable. A solution to avoid congestion
is to assign each message a maximum number of hops (the equivalent of what may be the
TTLs in IP). Whenever a copy of a message is received by a node, the field maximum
hop count is decremented. When the field drops to zero, the copy is simply ignored. The
disadvantage of this solution is that no longer any guarantee that the message reaches
the destination node. Indeed, if the shorter distance (in number of virtual links) between

51

the source and destination nodes is larger than the maximum number of hops permitted,
the message cannot be transmitted. A probabilistic calculation determining the minimum
distance between any two nodes of the network is needed to determine the maximum
number of hops needed. This is not an easy thing to do, especially if the network is very
dynamic and that a large number of nodes leaves and enters the overlay network. Another
solution is to assign each node a number of neighbors proportional to its capacity, CPU and
bandwidth, therefore the network load is distributed according to the capabilities of each
nodes. This solution, without completely eliminating the risk of overloading the network,
greatly reduces it.

Now we will present two overlay networks, both unstructured and used for sharing files
between users. The first one called Gnutella, avoid congestion using the first solution. The
second one, Gia, is an improved version of Gnutella, it has opted for the second solution
to decongest the network.

• Gnutella (Gnutella [2003]) is a participative self-organizing overlay network. It uses a
decentralized initialization service and therefore it is necessary for a user that wants
to join Gnutella to know at least one node on the network. In this purpose, it can
contact a server responsible for maintaining a list of connected nodes. The new node
signals its presence by flooding the network with a query containing the IP address,
network nodes receiving this request reply with their IP addresses. The new node
selects a predefined number of nodes that responded and establish virtual links with
them. These nodes will be its neighbors. When a user wants to download a file on
Gnutella, it sends a search query containing a description of the file desired and a
maximum number of hops. This number is a parameter imposed by the network when
connecting. Each node receiving this query searches through the files he wants to
share if there is one who fits the description. If such file is found, it replies positively
to the node that initiated the request. These responses, in early versions of Gnutella,
follows the same path that the query took. Nowadays, the request contains the IP
address of the node that initiate them and a tunnel is then drawn between the node
that owns the file and the node searching the file. There then follows a series of
transactions that lead eventually to the download of the file.

• The idea of Gia (Dufour and Trajković [2006]) has been inspired by the authors
in observing the gain in terms of scalability has obtained FastTrack using the het-
erogeneous nodes in a overlay network. Its authors applied this same principle to
Gnutella. In Gia, to avoid that the nodes be overloaded, a search query is propagated
only to nodes allowing it. Each node of Gia, when joining, distributes tokens to its
neighbors. Each token allows a neighbor of the node to send one search query to
the node. These tokens are redistributed when the search query is performed. Each
node also controls its bandwidth. Once it exceeds a certain level of use, the node
will not redistribute the tokens to its neighbors, warning them that it does no more
search queries for the moment. Once the use of its bandwidth is sufficiently low,
the node starts again the distribution of tokens to its neighbors which can therefore
forwards search queries to it. This solution is effective when all the nodes actually
play the game, but a malicious node can abuse the system by keeping its token to
save its bandwidth. This attack called free riding will be treated in the section on
overlay network security. In order to consume less bandwidth, Gia uses a routing

52 1. State of the art

algorithm based on a random walk rather than a flooding one. A copy of the message
is propagated to only one neighbor randomly determined for each hop.

One of the shortcomings of these unstructured overlay networks is that they are starved
of security (confidentiality, in particular). Indeed, whether in the case of a flood routing or
by random walk, any node in the network may have at some time in hand a clear message
that was not destined to it. These items are discussed in more detail in the sections dealing
with the security of the overlay networks.

To finish with these unstructured overlay networks, it is important to note that most
of these networks do not have complex maintenance service. This is due to the lack of
problems when a node fails or leaves the network. Usually when a node does not receive
no more signs of life from one of its neighbors, it replaces it by another node in the network
and updates its neighborhood table.

To give an order of the scalability of such networks, there was at its apogee about 1 to
2 million users online and indexing files on Gnutella. And since an average user indexes
between 5 and 50 files, one estimated the number of files indexed at 50 million.

Structured overlay networks
The use of the inefficient routing algorithms such flooding or random walk ones is the
weak point of the unstructured overlay network. To allow the use of more clever rout-
ing algorithm, new overlay network topologies were studied. Structured overlay network
emerged from this studies. The structured overlay networks have, as their name suggests,
a structured topology. The nodes have a position in the network topology, and are dis-
tributed (with a very high probability) on a regular basis. These overlay networks are often
organized as Distributed HashTable.

This allow to use efficient routing protocols with a bounded complexity. When a node
wants to send a message to another node, it is possible, knowing the position of the
destination node, to route the message to its neighbor closest to the destination node.
This neighbor will do the same, and so on until the message reaches the destination node.
We must pay attention to the meaning of distance, the distance between two nodes is by
no means the geographical distance separating them, each network implements its own
distance. A distance in a mathematical meaning is defined as d : E × E → R such that:

∀u, v ∈ E : d(u, v) = d(v, u)

∀u, v ∈ E : d(u, v) = 0⇔ u = v

∀u, v, w ∈ E : d(u,w) ≤ d(u, v) + d(v, w)

where E is the set of nodes in the network.
However most of the structured overlay networks use pseudo-distances where some of

these three conditions are not always respected. The symmetry (first condition) as the
triangle inequality (second condition) are often ignored in the definition of these networks.
Let us consider the case of a network organized in a directed ring and composed byN nodes.
The nodes are identified by their relative position to a given node with 0 as identifier. On
this network, let ui and uj be two nodes, the distance between ui and uj is defined as:
d(ui, uj) = j − i mod(N). With this distance the symmetry is not respected since:

53

d(ui, uj) = d(uj , ui) ⇔ j − i mod(N) = i− j mod(N)

d(ui, uj) = d(uj , ui) ⇔ 2j = 2i mod(N)

d(ui, uj) = d(uj , ui) ⇔ j = i mod(N/2)

Similarly it is quite possible to consider distances that do not meet the last condition.
Consider then the IP network and define the distance as the response time to a ping. Ex-
perience shows that this distance does not respect the triangle inequality. In the remainder
of this section will be presented four structured overlay networks frequently encountered.

The Plaxton mesh (Plaxton et al. [1997]) is a distributed data structure optimized to
support overlay networks. Pastry (Rowstron and Druschel [2001]) and Tapestry (Zhao
et al. [2004]) are based on a Plaxton mesh.

In a Plaxton mesh network, each node has an unique identifier, this identifier is a
sequence of m digits in base b. This identifier is obtained by using a hash function, SHA-
1 for example, on specific data of the node. Using a hash function ensures with a high
probability an homogeneous distribution of nodes on the space of identifiers.

Each node n also has a table of neighbors. This table has m levels and b entries at
each level. The ith entry of jth level contains the identifier and the position of the nearest
node whose id ends in suffix i+ (n, j − 1). To give an example, in a Plaxton mesh where
the identifiers are sequences of 10 base 8 digits, the 6th entry of 8th level of the node whose
identifier is 3426742075 is the node whose identifier is nearest and ends by in 66742075.
The distance used in plaxton mesh network is the alphabetical distance.

The routing protocol in a Plaxton mesh consists in routing messages from source node
incrementally digit by digit until the messages reach the destination node. Each node
receiving a message and that is not the destination node consults in its neighbors table
the level corresponding to the number of hops already done and thus determines the next
node that should receive the message. This protocol ensures that a message reaches the
destination node by performing a maximum number of hops equals to m. The Figure 1.1
shows an example of routing in a Plaxton mesh where identifiers are sequences of 5 digits
of base 3, the 21,022 node sending a message to node 10,211.

A Plaxton mesh is static by definition, there is no initialization and maintenance ser-
vices. However, the overlay networks based on a Plaxton mesh implement these services.

Chord (Morris et al. [2001]) illustrates the overlay networks structured into rings. Each
node in Chord has an unique identifier. This identifier is a sequence of m bits, which
accordingly sets the maximum number of nodes in Chord to 2m. The identifiers are
obtained, as in the case of plaxton mesh network, by using a hash function on specific data
of the nodes. Initially, each node only knows its successor on the ring. However in order
to improve routing performance, each node knows its predecessor and also maintains a
neighborhood table called finger-table . The ith entry of the finger-table of a node contains
the node identifier of the first successor to a minimum distance of 2i − 1 on the ring.

The endogenous routing of Chord consists in routing the messages from the source
nodes to the destination nodes through other nodes in the network. Each node receiving the
message consults its finger-table and sends the message to the node nearest the destination
node. In this way, a message is routed to its destination in O(log(N)), where N is the total

54 1. State of the art

Figure 1.1: Routing a message from the node 21,022 to the node 10,211 in a Plaxton mesh

number of node on the network. More details concerning the routing of Chord is given in
the Section 3.1.3.1.

The initialization service of Chord requires that any node wishing to join Chord already
knows a node already present in the network. This node is called bootstrap node. The
bootstrap node has to perform two operations. It first helps the new node to build its
finger-table by determining the predecessor and successor of the new node according to
its identifier. Then the bootstrap node fills the ith entry of the finger-tables of the nodes
whose the ith entry is the successor of the new node.

The maintenance service is responsible for ensuring the invariant of Chord, namely
that each finger-table must be properly filled. Three scenarios may affect this invariant,
the departure of a node, the failure of a node or the case where multiple nodes joins Chord
in the same time. The case departure of a node is not hard to deal with, because the
node has to notice another node from its departure. This noticed node has to perform the
inverse of the second operation performed by a bootstrap node during the join of a node.
The function stabilize handles the two other cases. If a node does not give sign of life,
the node that detect the non-responsive node contacts another node in its finger-table and
asked the identifier of the successor of the node that does not anymore gives sign of life.
It replaces in its finger-table the identifier of the non-responsive node by the new identifier
received.

Kademlia (Maymounkov and Mazières [2002]) is another structured overlay network.
Each Kademlia node has a 160-bit identifier, that identifier is obtained in the same way
as Chord and the Plaxton mesh. Each node n stores for all k, k ∈ [0, 160], a list of k
triples <IP, UDP, Identifiant> nodes whose distance to n belong to the interval [2i, 2i+1].
These lists are called k-buckets. The distance used in Kademlia is given by the XOR
function: Let n and n′ be two nodes of Kademlia, the distance d(n, n′) is equal to n⊕ n′.
From the definition of this distance we can deduce that all nodes present in a single k-
bucket share the same prefix. Each time a node receives a message, the triplet <IP, UDP,

55

Identifiant> corresponding to the node that sent the message is placed at the beginning of
the k-bucket and the corresponding kth element of the k-bucket is lost in this way k-buckets
are compounds that the node seen recently.

The endogenous routing of Kademlia consists, for a node that wants to a message to
another node in the network, in obtaining the triplet <IP, UDP, Identifiant> corresponding
to the destination node. To get this triplet, the node chooses, in the k-bucket corresponding
to the identifier of the destination node, the node closest to the destination node. Then the
node sends a message asking the selected node to do the same, and this until the destination
node is found. If the destination node exits it returns its triplet to the requesting node.
Otherwise a message indicating the failure location is returned in place of the triplet.
Once the triplet target node in its possession, the node can send messages directly to that
node. This type of routing is called iterative routing. This will be addressed later in the
document. The Kademlia routing is detailed in the Section 3.1.3.1.

The initialization service of Kademlia is quite ingenious and simple, it takes advantage
of the endogenous routing service. A node that wants to join Kademlia needs to know a
node already connected. It sends through an already connected node a request in the hope
of locating itself. Since it is not known on the network, this request will be unsuccessful
and the node will receive a series of messages noticing this fail. Thanks to the properties
of routing protocol, these messages come from nodes close to him. The node will use the
nodes that have replied to initialize its k-bucket. Moreover, the nodes receiving the request
of the new node, have added to their k-buckets, and it is now known on the network.

There is no maintenance service in Kademlia at the opposite of most of the structured
overlay networks. If a node fails or leaves the network, it will be automatically phased out
of the k-buckets of the other nodes.

CAN (Ratnasamy et al. [2001]) is a structured overlay network of using the Euclidean
distance. The IDs of nodes in a CAN network are Cartesian coordinates of dimension d.
A CAN network can be viewed as a d-dimensional torus. The whole torus is partitioned
between different nodes, each node is (from all at least) responsible for an area whose center
is the identifier of the node. Each node then maintains a list of neighborhood containing
the list of nodes which are geographically close.

The endogenous routing service of CAN is based on a greedy algorithm. When a
node wants to send a message to another node in the network, it sends to its neighbor
geographically closest to the destination node. This neighbor does the same and so on
until the message reaches the destination node. This routing algorithm has a complexity
of O(d.N1/2).

The initialization service of CAN is divided into four stages. The new node randomly
chooses a point P in the spatial coordinates of CAN and, through a node already present
in the network sends a JOIN request to this destination. The node responsible for the
area which belongs to P, divide the area into two sub-areas and assigned one of these sub-
areas the new node. Neighbors of the shared area are warned of the change and modify
their neighbors table in function of the topology change. Finally, the new node obtains its
neighborhood table asking the node that gives its sub-area to it.

The use of a maintenance service, during the addition, the departure or failure of a
node is essential in CAN. Indeed the two invariants of a CAN network is that all space
must be assigned and that each node should be responsible for only one area of space. But

56 1. State of the art

Figure 1.2: Example of Routing in a CAN network in two dimensions

the departure of a node can force such a neighbor of this node need to manage more than
one area. A decentralized algorithm is used periodically to ensure these invariants.

To give an order of magnitude of the scalability of such structured overlay networks, it
is estimated between 3.5 and 5 million users on Kademlia and approximately between 500
million and 1 billion files indexed.

1.2.2.5 Conclusion

We just defined a simple classification for different types of services initialization, endoge-
nous routing and maintenance used by these different overlay networks. This is summarized
in the table 1.2.

This table is correct in most cases. However, it is possible to find exceptions among
the wide variety of the existing overlay networks. One might cite the case of ALMI (Pen-
darakis et al. [2001]) described later in this document, which is an unstructured overlay
network, which therefore belong to the decentralized architecture overlay networks classes
but, nevertheless, has a centralized initialization service.

1.2.3 Classification of applications

Now that a classification of the overlay networks has been established, it remains to classify
the applications developed on these networks. We can decompose all of these applications
into four groups. The first group deals with applications for indexing, locating resources.
The second group consists of applications that allow users to share their resources. A third
group will be composed by applications of overlay networks for routing. And the last one
includes applications designed to increase the security of the underlying network. There
also are applications that do not fit into any of these four categories, they will be listed in
a fifth group.

57

Services / Network Manually organized
self-organizing

Centralized Pseudo-
centralized

Decentralized
Unstructured Structured

Initialization none

Simple
centralized
service
O(1)

Simple
centralized
service
O(1)

Simple
centralized
service
O(1)

Complex
decentral-

ized
services
(complex-
ity often
equals to
those of

the routing
protocol)

Endogenous routing Undefined

Simple
centralized
service
O(1)

Simple de-
centralized
service
O(1)

Decentralized
service (by
flooding or
random
walk)

Complex
decentral-
ized service
(O(log(N),
O(N1/2),

etc.)

Maintenance none none none none
Complex
distributed
service

Table 1.2: Classification of different overlay networks

1.2.3.1 Indexing and locating resources

The applications of this first group aim to allow the users to index and locate resources on
an overlay network. These resources may be, for example files in the case of applications
for file sharing, or identifiers of a contact person in case of application of voice over IP.

We must be careful in a lot of document these applications are not considered as
application for indexing resources but they are considered as distributed file storage storage
or voice over IP applications. This is not totally false, since the user uses the index of these
applications to exchange files or looking for an interlocutor. But here’s a short example in
which it will be shown that it is possible to make voice over IP over Kademlia the same
way as Skype without changing the initialization, maintenance and endogenous routing
services of Kademlia. This proves that there is no real difference between the functionality
of these two networks and the only difference lies in their respective uses.

Let us imagine that an user, called Lambda, has in its file shared with Kademlia a
zero length file named voiceLambda.voip. A search for this file through a normal Kademlia
client results in obtaining the IP address of anyone who owns this file and download this
file. Consider now a modified Kademlia client that, when it obtains the IP address of
an user that stores a .voip file, no longer seeks to establish a connection leading to the
download of the file but instead it contacts the person with the file in order to establish a
voice conversation over IP. If the person with the .voip file also have a modified Kademlia
client that accepts connection for voice over IP conversation. It is then possible to use
Kademlia to initiate voice conversations over IP just as it does with Skype and without
modifying Kademlia. This explains why we have defined the applications running on these
networks as indexing application.

58 1. State of the art

The first type of overlay networks which have been developed such applications are
centralized ones. The central server acting as an centralized index. This is the case
of Napster and BitTorrent. In both overlay networks a central server lists files and IP
addresses that the users have. A user wishing to download a given file, consult the index
(server) to obtain the IP addresses of users with the desired file. Once in possession of these
addresses, it can initiate a series of transactions at the underlying network level leading
eventually to the download of the desired file.

The part on iVisit (iVisit [1997]) that consists in the search for a given interlocutor
also works this way. A central server identifies the users connected and allows a search
according to their IDs. It is then possible for users to connect directly to establish a video
conference connection over IP.

The second generation of indexing applications was developed on overlay networks with
pseudo-centralized architectures. This is the case of KaZaA, an application for indexing
files and linking users with the intention of sharing those files. This application was de-
veloped on the FastTrack network previously described in this document. It is also the
architecture which was chosen for Skype concerning the establishment of the telephone
communication over IP. The section on management of the telephone itself will be dis-
cussed later. These applications developed on centralized architectures have the advantage
of allowing search queries as complex as one wants.

However, these applications suffer from the same defects as the networks on which they
run, i.e. they are subject to interruptions if the main servers fail or are saturated. Then
to remedy these defects, indexing applications were developed on overlay networks with a
fully decentralized architecture.

Gnutella was the first overlay network used for files indexing. In Gnutella, search queries
are sent by flooding all the nodes of the network. Sending queries by flood allows complexity
of these queries as big as you want. But these overlay networks have disadvantages to not
be very scalable, which may be detrimental to a network aiming to index the files of millions
of users.

The latest generation of applications uses the structured overlay network as basis.
This applies to applications using the network Kademlia for sharing files, eMule, AMule,
Overnet and many others.

• When a user wants to index a file, it uses a hash function on some specific data of
the file (such filename or keywords), thus obtains an identifier for this file. It then
searches the node with identifier closest to the obtained file identifier and asks this
node to store its IP associated to the file identifier.

• When a user tries to download a file, it searches the node with the identifier that is
the closest of the file identifier. This node returns a list of IP addresses of the users
that indexes the file. The node wishing to retrieve a file contacts one the node storing
the file. Then it follows a series of transactions leading eventually to the download
of the file.

The main drawback of the indexing applications developed on such overlay networks
is that they no longer allow complex search queries. But they have the advantage to be
particularly scalable.

59

1.2.3.2 Resource Sharing

The applications of this second group aim to enable resources sharing between the users.
These resources can be of free disk space or CPU cycles. In fact, one could also mention
the applications to share the unused bandwidth users. This is done in some applications
providing a multicast service. But these applications are classified in the group devoted to
routing.

Regarding the applications for sharing free disk space, it is very important not to
confuse them with the applications dedicated to the files sharing. Indeed, in the files
sharing applications the files shared by a user are stored on the node of this user. Users of
applications dedicated to the sharing of disk space, meanwhile, store information on the
disks of all the nodes that participate to the application without knowing exactly where
this information is stored.

Sharing free disk space
There are two kinds of sharing disk space applications, the publications/consultations
systems and the distributed file systems. Publications/consultations systems allow users
to publish or to view content on a network, much like Websites. These systems have the
advantage of allowing redundancy of publications and the anonymity of users that publish
and consult the contents. Two publications/consultations systems developed on overlay
networks will now be presented.

Freenet (Clarke et al. [2001]) is the first publications/consultations system developed over
an overlay network. Its purpose is to provide a reliable means for the anonymous exchange
of information and provide freedom of expression as text websites or PDF documents
whose publication is subject to censorship in the web. It can also provide redundant data
availability. Each node of the overlay network has an identifier and a table of other nodes
near him on the network. The routing is done as follows: a node wishing to send a message
to another network node, the node sends it to the node whose identifier is the closest to
the destination node identifier, and so on until reaching the destination node. When a user
of Freenet wants to publish content, it computes the identifier of the content and sends a
query including the content and the identifier to the node whose identifier is closest to the
content identifier. When a user wants to view content, it sends a query to the node whose
identifier is closest to the identifier of the content it is looking for. This query contains the
identifier of the node that performs the query and the identifier of the content. If this node
does not have the desired content, which is possible because nodes could join the network
after the publication of content, it forwards the request to the second nearest node, and
so on. In the case of a successful query, the node that owns the content returns it through
the other nodes of the overlay network until the node that performs the query. Each node
on the way back also stores this content. This mechanism allows nodes to specialize the
content that they store according to their identifiers. In an attempt to hide the identity of
the users posting or consulting the contents, Freenet allows the nodes to replace the source
identifier of a request by its own identifier.

Free Haven (Dingledine et al. [2000]) has exactly the same goals as Freenet. Free Haven
provides a publications/consultations service as anonymous as possible. When a user wants
to publish content on Free Haven, he must first decompose the content into n parts in such
a way that only k parts are sufficient to recreate the contents, 1 < k < n. Each part

60 1. State of the art

associated to the identifier of the content is stored on a node. When an user wants to
retrieve a given content, it floods the entire network with a query containing the content
identifier and the address of an anonymous remailer such Mixmaster (anonymous remailer).
The nodes that owns the parts of the queried contents send them to the querying user via
the remailer address. When the user has k parts, he can reconstruct the queried content.
To ensure more anonymity, the nodes periodically exchange parts of content. This also
allows a node wishing to leave the network to get rid of the parts it has and so does not
make them disappear along with it.

It seems clear that the overlay networks are interesting platforms on which we can de-
velop all kinds of distributed applications. It is therefore not surprising to see distributed
file systems appearing on these networks. As publications/consultations systems the dis-
tributed file systems allow users to store content in a distributed way on a network. The
difference between these two systems is the lack of rules of access control in the publica-
tions/consultations systems. The overlay networks used to support these distributed file
systems are structured ones. The possibility of using these networks as distributed hash ta-
bles is an advantage to develop such a system because it allows efficient indexing and access
to the files. Many distributed file systems are developed on overlay networks, there exists
PAST (Druschel and Rowstron [2001]), Ivy (Muthitacharoen et al. [2002]), Farsite (Adya
et al. [2002]), Kelips (Gupta et al. [2003]), Frangipani (Thekkath et al. [1997]), CFS (Dabek
et al. [2001]) and OceanStore (Kubiatowicz et al. [2000]).

PAST PAST is a large scale persistent file system. PAST is built on top of the Pastry
overlay network. The files have an identifier that is a SHA-1 hash of the file name and
the public key of the client that wants to store it. The file is stored in many replicas
on the nodes that have the closest identifier to the one of the file. PAST allows users to
perform three operations that are: storing a file replicated k times, k being a user specified
number, retrieving a copy of the file identified by an identifier if the file exists in PAST
and reclaiming the storage occupied by k copies of a given file. PAST is described more in
detail in the Section 4.1.3.

IVY is a read/write file systems that is deployed over Dhash (a distributed HashTable
deployed over the Chord overlay network). IVY is able to support multiple users concur-
rently. The system is based on a set of logs stored over the network. These logs reflect the
changes made to the files stored on IVY. From the point of view of the user IVY provides
an NFS-like file system and is able to detect conflicting modifications. it also benefits of
the failure tolerance of Chord.

Farsite is a distributed file system that is able to deal with the untrusted clients. Farsite
aims to provide high availability and reliability for file storage, security and resistance to
Byzantine threats. Reliability and availability is ensured through replication of the whole
file. Farsite has a collection of interacting and Byzantine-fault-tolerant replica groups ar-
ranged in a tree overlaying the file system namespace. File stored on Farsite are encrypted
and replicated in a non-byzantine way. Digital signatures are used to prevent an unau-
thorized user to write a file. After encryption, replicas of the file are made and they are
distributed to other client machines.

Kelips is an overlay network structured into a Distributed HashTable that achieves a
fast look-up. Specifically, it achieves O(1) lookup time, at the cost of memory usage of

61

square root N where N is the number of nodes of the network. In Kelips, each node has
k affinity groups and maintains group views (entries for all nodes within the group) and
and a constant number of contacts for all other groups. A node that wants to store a file
computes its identifier using a hash function and sends an insert query to the group that
corresponds to the computed identifier. A random node of the group is chosen to store the
file. A node that wants to retrieve a file sends a lookup query to a member of the group,
and then retrieving the file.

Frangipani is a distributed file system developed on PETAL system. PETAL allows a
collection of network-connected servers to cooperatively manage a pool of physical disks.
The pool of disks appears to the servers as a single large virtual disk. Petal provides a copy-
on-write snapshot mechanism. When creating a snapshot, PETAL pauses applications
briefly (for less than one second).

CFS is a file system built on top of Chord. It offers a system of reading and writing,
write privileges are reserved to the user who inserted the file to CFS. The CFS files are
stored in blocks, each block is replicated on multiple nodes to avoid data loss in case of
failure. These nodes are nodes whose IDs are closest identifiers blocks. CFS does not offer
permanent storage, a user that has inserted a file in CFS must periodically access it if it
does not want that the file be deleted. In this way CFS automatically removes obsolete or
not maintained data. CFS is described more in detail in the Section 4.1.3.

OceanStore is a distributed file system developed upon Tapestry (Zhao et al. [2004].
In OceanStore, each file has an identifier belonging to the same namespace as Tapestry
nodes. The files are then stored on the node with ID closest to file. In fact, to avoid losing
data in case of failures, multiple replicas of a file are stored on nodes with similar IDs.
OceanStore supports two types of access control, restrictions on writing and restrictions
reading. To prevent read access unauthorized files are encrypted and the encryption keys
are only issued to users with read permissions. There is no real way to prevent a user
has access rights to modify a file. But all these records must be signed and all changes to
files are kept with the files. So a user can check a list of access control entries that were
authorized and otherwise read a previous version of the file. The list of access control is a
file stored on OceanStore which the read access is given to all users and write access are
reserved to the system.

1.2.3.3 Sharing CPU cycles

In the case of sharing CPU cycles applications using an overlay network, we must distin-
guish if this is a participative application or not.

In the first case, it is often a single organization that disposes of large set of proprietary
machines. These machines are organized in overlay networks and provide a platform to
allow to perform distributed computing. Safety is ensured by the fact that the risk that
a node be malicious is relatively low, since all machines belong to the same organization.
However, the computational capacity of such a system is limited. Indeed, as large as
possible the organization it is, it does not have an unlimited number of machines.

In the case of participative applications, there are a lot of different users who choose to
collaboratively perform distributed computing. The computing capacities of these systems
greatly exceeds the capabilities of non-participative systems. However, in participative

62 1. State of the art

applications each user owns a node. It can act maliciously, providing wrong results in
order to distort the final calculation.

Take the example of an extraterrestrial that landed on earth to prepare an invasion.
It could, by participating with his computer to the SETI program, hide that there exists
another forms of life and prevent the detection of the invasion. Consequently, this kind of
participative overlay networks used for the distributed computation are generally endowed
with reputation systems or duplication of calculation systems in order to detect erroneous
results.

Once this distinction is done, we must now consider the types of overlay networks
that are the most suitable for the applications dedicated to distributed computing. A
distributed computing application is in general organized around a central tasks server.
This server distributes tasks to other machines that have to perform calculations. These
machines, once the calculation is done, returns the results to the tasks server. The server
continues this distribution calculations and the retrieving of the partial results until the
final result is achieved. If one considers this vision of the distributed computing, the overlay
networks which will be used to developed these distributed computing applications, must
have a centralized architecture. XtremWeb (Fedak et al. [2001]) and BOINC (Anderson
[2004]) are two examples corresponding to this philosophy.

BOINC stands for Berkeley Open Infrastructure for Network Computing. It is on this
platform that the calculations of SetiHome and EinsteinHome projects are performed. Each
user connecting to BOINC must choose a project among the list of the proposed projects.
The user nodes are connected to a central server (different for each project). This server
can be divided into three parts, one part manages the database of users, another manages
scientific data, and the third part (the largest) manages the storage and distribution of
tasks that the nodes will have to perform . A node user can then request a task to the
server that returns it. Once the calculation is finished, the user returns the result to the
server which stores it in the scientific database. To be sure that the result is correct, a
task is distributed more than once, and different results are also stored.

Another architecture used for this application is the pseudo-centralized architecture,
the idea is to replace the central server by a collection of connected central servers. This is
the choice of CX (Cappello and Mourloukos [2002]) and Self Organizing Flock of Condor
(Litzkow et al. [1988]).

CX assigns the distribution of the tasks to a set of tasks servers. The number of servers
is proportional to the number of nodes performing calculations. In addition to being
resistant to failure, the status of each server must be recoverable at any time. The servers
are organized in sibling-connected tree (see Figure 1.3). The status of each server is then
replicated on his sibbling on the tree.

When a failure is detected by a node performing calculations or by another server tasks,
it is reported to the root server on the tree or to a sibling node if the root server is down.
The root server then directs the next server joining the network to the position of the failed
server. During the period required for replacement the twin of the failing server is used.

Condor is a mechanism for sharing unused processor cycles. The machines joining Condor
are organized around a central server, which is simply one of those machines whose role
is to organize distributed computations, and they form a Condor pool. To avoid a single
point of failure that represents a single central server and to allow multiple Condor pools

63

Figure 1.3: A sibling-connected tree

to share their resources and their calculations, a grouping mechanism has been proposed.
This mechanism allows to combine the central servers of different Condor pools into an
overlay network. However the creation and configuration of it must be done manually.
To override this default, an overlay network: self-organizing Condor pools was presented
(Butt et al. [2006]).

But it is also possible to share CPU cycles to different nodes of a overlay network in
decentralized architecture.

N-Cycle(Bölöni et al. [2005]) for example, creates an overlay network with a decentralized
architecture. This network can be viewed as a directed graph with N cycles, each node
has n predecessors and n successors. Each node sends tasks to perform at its successors
and receives the results of its predecessors. Thus each node receives tasks to perform from
its predecessors and returns the results to its successors. Then there are two strategies
described in Bölöni et al. [2006] for the distribution of tasks. In the first one, a node
receiving a task executes it if it not already running another task and else sends it to one
of his randomly chosen successors. In the second strategy, each node owns and maintains
a "weight . This weight is calculated from its weight and resources of its successors. A
node that receives a task executes it, if it not already running another, and sends it to its
successor with a probability proportional to their weight.

1.2.3.4 Routing

In this group are listed applications using an overlay networks and the aims to offers a
best routing than IP for some criteria. Since the overlay networks have the advantage to
be able to bypass the IP routing it is quite logical to find such applications. There are
currently three major challenges regarding routing:

• providing a multicast service at large extent ;

• ensuring an efficient content delivery ;

• ensuring a quality of service.

Multicast
The term multicast was created by an American doctoral student who wrote "the" thesis

64 1. State of the art

on multicast, it is a contraction of "multiplexed broadcast”. This is the name given to the
process that allows a source to deliver information to a large number of hosts using for
this purpose the most effective strategy in order not to be limited by the bandwidth of the
source.

In the IP protocol, a multicast group is defined as a dynamic set of machines designated
by an IP address (the address range reserved for multicast consists of IP addresses 224.0.0.1
to 239.255.255.254). When a computer wants to multicast a packet to a multicast group, it
sends it to the IP address identifying the group. This package is then routed to the router
that will be responsible for distributing it to members of the group. To join a multicast
group, a machine must use IGMP (Internet Group Management Protocol).

The IP multicast is nowadays mainly limited to ISPs or universities, forming small
multicast islands in the unicast ocean that is the Internet and it seems that the IP multicast
will never be largely used.

We can distinguish two groups of overlay networks applied to multicast. In the first
group, the multicast service, is called hybrid. The hybrid multicast services aim to connect
the existing multicast islands together. The overlay networks in the second group provides
an applicative layered multicast.

Mbone (Eriksson [1994]) is a best example of the first group. In Mbone, in each IP
multicast island, a node called mrouted is designated. These mrouted nodes are then
linked together to form an overlay network. When a multicast IP user wishes to multicast
a packet, it sends it to the router responsible for its own island. This router then distributes
the packet to all members of the group in this island. The mrouted node of this group
receives the packet, and forwards it to another one of the mrouted nodes that compose
the overlay network. The mrouted node sends the packet to the router responsible for his
island and forwards it to a another mrouted node. The package will be IP multicasted
to the members of this island. To avoid network congestion due to the presence of old
packets, a Time To Live flag is inserted in the packet.

In the second group of multicast services deployed on overlay networks, the IP multicast
islands are no longer used. The multicast service is then made possible by the construction
and use of the overlay networks to efficiently deliver multicast information. It therefore
seems judicious to choose overlay networks with decentralized architectures when one wants
to develop such services.

Several protocols exist to build such networks. One approach is to assign a controller
to each multicast group. This controller is then responsible for placing new nodes and
construct the topology of the overlay network. Such a strategy has be chosen by the
creators of ALMI (Pendarakis et al. [2001]).

ALMI is an overlay network that support a multicast service. When a node wants to join a
multicast session, it contacts the session controller. The session controller adds that node in
its table of participants and then designates another participant in its table to be the parent
of the new node. The session controller organizes the overlay network as a tree. To ensure
that this tree is efficient, a reorganization of the tree is periodically performed by the session
controller. This reorganization is based on the current quality of the connections between
the nodes. To obtain the information necessary for this reorganization, the controller
assigns to each node the role of measuring the round-trip delay time between itself and
some other nodes selected by the session controller. To leave a multicast session, a node

65

notices the session controller of its departure. The controller sets the parent of the node
that leaves the session as the new parent of the sons of the leaving node. Using a controller
to build and maintain the tree has the advantage of building effective trees. The controller
is supposed to have a comprehensive knowledge of all nodes and their capabilities. However
the detection of failures remains problematic. Indeed, the only indicators of a failure are
the measurements made by the nodes. However, these measures should not be too frequent
otherwise the network could be overloaded. The detection of a failure can take considerable
time. The repair of failures is also problematic. In case of a detected failure, the same
protocol used for the departure of a node could be used. However, in the case of too many
simultaneous failures, the tree obtained could be very inefficient.

To overcome the problems raised by the centralized initialization and maintenance
service, one can use distributed ones. This solution has the advantage of providing a
better detection of the failures. In the other hand, the trees obtained with the decentralized
algorithms are less efficient.

Overcast (Jannotti et al. [2000]), which also provides a multicast service on a overlay
network, chooses this solution. When a node wishes to join a multicast group, it contacts
the owner of this group. The owner is the root of the multicast distribution tree. The
new node then compares the free bandwidth of the owner with the one of its son. If the
bandwidth offered by a son of the root is greater than the bandwidth of the root, the new
node compares the bandwidth offered by the son with those of the sons of that son. This
operation is repeated until there is no more improvement. It is illustrated in the Figure 1.4

Figure 1.4: An example of constructing broadcast tree in Overcast

The last solution presented in this document, consists in deploying a multicast service
over an structured overlay network with decentralized architecture and defining a covering
tree among the nodes of the overlay network.

Bayeux (Zhuang et al. [2001b]) is deployed over the overlay network Tapestry. Bayeux
provides a multicast service based on the above strategy. When a new node wants to
subscribe to a multicast group, it sends to the root node responsible for that group a JOIN
query. The root node replies to this node with message TREE containing the ID of the
subscriber and the identifier of the multicast session. All the nodes through which passes
the request TREE include in their multicast table, the identifier of the new node and the
identifier of the multicast session. Subsequently, when the root node decides to send data
to a multicast group, it sends data to its neighbors on Tapestry. These neighbors look into
their routing table if they have registered users in the multicast session, and if so, they
route the multicast data to users. A similar protocol is used to allow nodes belonging to

66 1. State of the art

a multicast group to leave it. Nodes wishing to leave the group send LEAVE requests at
the root node of the group. The root node responds with a request PRUNE containing the
identifier of the node wishing to leave the group and the identifier of the multicast session.
The nodes through which passes the request delete the concerned multicast table entries.
This process of construction and modification of trees is summarized in the Figure 1.5

Figure 1.5: Two nodes and a group joining a multicast session

The advantage of this solution is that one has not to worry anymore about routing or
detection of failures and repairs, since these services are assured by Tapestry.

Content Delivery
An overlay network that offers a content delivery service is a network where the content
of a server is cached on a large set of nodes in order to ensure the most efficient and fastest
delivery possible.

A content delivery service must satisfy three conditions:

• the contents must be distributed on a large set of nodes and the service must maintain
the consistency of the content on the various nodes even if local updates occur.

• It should redirect a query performed by an user to the node that is in the condition
to deliver the content most efficiently. It uses several factors to decide how queries
will be distributed to customers (response time, proximity, closeness in the network
...).

• It must always be able to deliver content (fault tolerance).

The content delivered can be, as in the case of Globule (Pierre and van Steen [2006])
or from Akamai (Akamai [1998]), pages of websites.

Globule is a participative overlay network in which each website is hosted on a small
proportion of the network nodes. Users can then share their bandwidth in order to effec-
tively and collectively host their websites. In Globule, at each website is assigned a home
node, which is usually the node of the user that owns the site. It contains the sovereign
documents for the Web site and is responsible for spreading the web site on the other
nodes involved. These nodes, called replicates, are strategically placed to meet the quality
requirements defined in advance. These replicates are connected to the home node in such
a way that they can retrieve, in case of an update, the current version of the site. For each
site, the original node must be reachable at any time by the replicates. However, since this
node can fail, the home node can be replaced in case of failure. For each website, a number

67

of nodes of the overlay network are designated as forwarders. These nodes are connected
to replicates and their role is to redirect requests from users wishing to consult the website
to the replicate node that can deliver the website in the best possible conditions.

Akamai is a private overlay network. It consists of servers distributed around the world.
These servers contain a cache a version of the Web sites of the Akamai customers, including
Apple, Logitech, Pixmania, or Reuters, and the newspaper Liberation. However, there
is very few information about the inner workings of Akamai, for reasons of safety and
competition, since Akamai has a commercial purpose.

The delivered content can also be a streaming video or audio content. PROMISE
(Hefeeda et al. [2003a]), GnuStream (Jiang et al. [2003]) and DoNet (Zhang et al. [2005])
deliver such content. PROMISE and GnuStream allow a user wishing to attend a media
stream to use an overlay network, such CollectCast (Hefeeda et al. [2003b]) and Gnutella
to find a large number of users with the requested media. Once these users are known,
PROMISE and GnuStream, select a subset of these users, sufficient large to allow a content
delivery accurate to a predefined quality of service. Then, the user connects to these nodes
and the delivery can begin. For the sake of fault tolerance, when a source does not fulfill its
role properly, it can then be exchanged with another (or a group of others) user(s) owning
the media.

This strategy where the media to stream is initially owned by several nodes, is opposed
to the design strategy of the single source. DoNet has opted for this strategy. In DoNet, a
video stream is divided into segments of uniform size. Each stream can then be represented
by a "Buffer Map" which is nothing but a sequence of bits, one for each segment of the
stream, set to 0 or 1 depending on the availability of stream segments. The "Buffer Map"
are then exchanged between the neighbors in the overlay network. Each node has then to
choose among all its neighbors which will give him the missing segments, this choice must
then take into account two constraints:

• The continuous reading of the stream: in other words, when a node has finished
reading a segment of the stream, the next segment must be ready to be read.

• The bandwidth of the neighbors must be load balanced: in order to have information
on this subject, along with the "Buffer Map", the network nodes also exchanges
information on their reserves of bandwidth.

Quality of service
Quality of service means the control mechanisms that can assign different priorities to
different users and different types of data. It also means the mechanisms that guarantee
a certain level of network performance. In the current context, where the capacity of our
networks are limited and where the routing of packets based on the best effort routing
does not give guarantees regarding the performance thereof, the quality of service is highly
desired by many applications. These applications includes synchronous video conference
over IP or streaming media. Indeed, the data must be sent and received on a continuous
flow with an uniform and adequate rate. We can assess the quality of service according
to four main criteria (there exist other ones, but they cannot be taken into account in the
seventh layer of the OSI model, and consequently by the overlay networks). These criteria
are:

68 1. State of the art

• Bandwidth: or rather the capacity and rate of the bandwidth. This criterion defines
the maximum amount of bits per time unit.

• Packet loss. This criterion defines the number of packets that are lost on the network
between source and destination.

• Latency. This criterion defines the delay between transmission of a packet and its
receipt by the addressee.

• The order of packets. This criterion sets, as its name suggests, the differences in the
order of packets sent and the order in which they are received. This criterion may
have important consequences for streaming applications.

Some solutions have been developed to provide QoS mechanisms at the IP level, in-
cluding IntServ (Braden et al. [1994]), DiffServ (Nichols et al. [1998]) and MPLS. IntServ
defines a number of mechanisms to support a QoS policy without affecting the operation
of IP. IntServ is based on IP routers that are able to reserve resources at their disposal for
data streams. There are two services offered by Intserv: Guaranteed Service and Controlled
Load. The first guarantees the bandwidth and a maximum transit time. The second is
equivalent to a service delivery at best effort in a not overloaded environment. DiffServ
consists in a set of mechanisms proposing to ensure a QoS policy over IP networks. DiffServ
applies a QoS policy to the IP packets rather than data stream. MPLS is a technology
network whose primary role is to combine the concepts of IP routing (Layer 3) and the
switching mechanisms (level 2). MPLS allows you to specify a QoS policy. The prob-
lem with these three alternatives is as follows: the deployment of these QoS mechanisms
at large-scale requires to change a large majority of IP routers. To be efficient, IntServ
must be deployed on a lot of routers of the network. If IntServ was deployed only on a
few routers, these routers will reserve bandwidth as defined by the QoS policy but other
routers will not do the same, and thus the quality of service can not be assured.

That is why today these solutions are only used on private networks. One have thought,
since the overlay networks can specify routing, to develop mechanisms that ensure QoS at
the application level with the help of the overlay networks.

There exists three distinct strategies to achieve QoS with overlay networks. The first
strategy consists in finding the best possible path between the source node and destination
node, and reserves capacities (bandwidth, etc..) on the nodes that compose this path.
That is how QSON (Lao et al. [2006]) works.

QSON has two different types of nodes, users nodes and proxy nodes. These are connected
to form a random graph. Each user node is then attached to this graph via a proxy node. A
proxy node stores the capacity of the available bandwidth of each virtual link that directly
connect itself to the another proxy nodes. They also store a list of paths connecting itself
to other proxy nodes. To limit the amount of information that each proxy node must store,
a management protocol can be applied to exclude from the lists of paths the paths that are
too long. When a user wants to open a connection with a guaranteed bandwidth b between
itself and another node. It first contacts the proxy node to which it is connected. Then the
node communicates the bandwidth and the proxy node of the user with whom it wishes
to establish the connection. Then the proxy node looks in its list of paths for the best
path that is able to ensure such communication. Once this path known, it reserves on each

69

nodes that compose the path the necessary bandwidth. The mechanism for searching and
booking a path that ensures a certain bandwidth between two nodes proxy is as follows:

• In order to find a path, the proxy node probes all possible paths. It probes the
first node in the path by sending a search query containing the value of the required
bandwidth and the list of other nodes forming the path to explore.

• In the case where a node belongs to several paths to test, it is possible to probe it
only once by providing the sets of node of the various paths in a single search query.

• When a proxy node receives a search query, it probes the next node on the path.
And so on until the query reaches the destination proxy node or that the available
bandwidth of a virtual link connecting the next node in the path probed is less than
what was requested.

• If the request reaches the destination proxy node, it responds with a reservation
request along the same path as the search query. Each node receiving this request
reserves the required bandwidth on the virtual links forming the path.

• Upon receipt of this reservation request, the initiator node proxy notifies the user
that the connection is established.

One can also rely on a efficient routing mechanism. There are no controls or predefined
paths. The quality of service is achieved by ensuring that the routing within the network
is optimal. This is often achieved by a rearrangement of the virtual links according to the
capabilities of each node. Detour (Savage et al. [1999]), QRON (Li and Mohapatra [2004])
and RON (Andersen et al. [2001]) are good examples of this strategy.

RON, which stands for Resilient Overlay Network, can find alternative more attractive
routes or bypasses a failure occurring on the underlying network. As will be shown a little
lower, RON can also specify a QoS. RON is composed of interconnected nodes, each node
is directly connected to all other nodes by a virtual link, thus forming a fully connected
graph. Each node RON actively checks the state of virtual links connecting itself to others
by asking them periodically about their statements (latency, rate of packet loss and value
of available bandwidth). These probes limit the scalability of RON. Today RON can
handle a maximum of one hundred of nodes. At each incoming packet of RON is assigned
an identifier indicating which flow this packet belongs. The nodes in RON route all the
packets belonging to the same flow by the same route. When a node receives a packet with
an identifier of an unknown flow, it then considers the QoS associated with the flow (it is
in the header of each packet flow) and then defines the next node which has to send the
packet. It notes in its routing table that packets of this flow must be sent to this node.

The last possibility is to assign to the nodes the charge of distributing the capacity of
the virtual links between each data stream types in accordance with the QoS policy.

OverQoS(Subramanian et al. [2004]) opted for this strategy. Each virtual link in
OverQos is associated with an CLVL (Controlled-Loss Virtual Link) abstraction. This
abstraction provides a value q on the amount of lost packets per time unit. This value
is computed using a combination of FEC (Forward Error Correction) and ARQ (Auto-
matic Repeat reQuest). The CLVL abstraction also provides a value for the bandwidth c,

70 1. State of the art

this value is the maximum rate above which the virtual link can not guarantee that the
amount of lost packets per time unit is less than q. Nodes can then distribute the band-
width between the different flows of applications running on OverQoS. A node of OverQoS
is composed of two modules, one handling the traffic management and a CLVL module.
The CLVL module determines the level of redundancy necessary to achieve an amount of
lost packets per time unit less than q, and then deducts the bandwidth c. The module
handling the traffic management distributes the computed bandwidth between the flows
going through the node, in accordance with the priorities defined by the QoS policy. A
diagram of a node OverQoS is described in the Figure 1.6.

Figure 1.6: A node in OverQoS

1.2.3.5 Security

This group deals with the overlay networks and with the applications built on those net-
works designed to increase the underlying network security. There is three main security
objectives: confidentiality, availability, integrity. The essential security functions of the
overlay networks are the functions relating to identity, hidden identity (anonymity), proof
of identity (authentication), identification and traceability of this identity by functions of
observability (observability).

Confidentiality
The International Organization for Standardization (ISO) has defined confidentiality as the
assurance that information is available only to subjects with permission. Confidentiality
is usually implemented by cryptographic mechanisms, using symmetric algorithms (DES,
AES) for files or long messages, or asymmetric algorithms (Diffie-Hellman and RSA) for
short messages.

To create a service upon an overlay network that increase the confidentiality of the un-
derlying network one must take into account the characteristics of the underlying network.
Indeed, establishing the confidentiality of the information circulating on the virtual links,
or in other words the encryption of this information often relies on a public/private key
mechanism which occurs at a lower level than the overlay network. Consequently it seems
difficult to increase confidentiality by an overlay network. Nevertheless there exists some
methods to do so.

The first method is the stochastic routing (Bohacek et al. [2002]), which consists in
randomly routing the data packets in the overlay network. Then, the attacker is not able
to identify the used virtual links. The second method uses a routing protocol based on a
protocol resistant to to Byzantine attacks (Malkhi et al. [2001]) This solution assumes that
the attacker can listen to only a bounded number of virtual links, let m be this bound.

71

Then when one want to send a message, it transforms it into m + 1 different encrypted
parts in such a way that all the parts are necessary to decode the message. The m + 1
encrypted parts are routed over the overlay network using m + 1 distinct routes. The
attacker is no longer able to access information. From a practical point of view these two
methods can use some virtual links that can actually share the same physical links on the
underlying network. If the attacker knows where are these physical links, it may increase
its chances of obtaining the desired information.

Availability
In a computer security context, the system availability is the ability of this system to
provide the service for which it was designed. The main attacks against the availability are
the attacks called denial of service (DoS). These attacks aim to degrade the performance of
parts or of the whole the network by monopolizing its resources (CPU cycles, bandwidth,
disk space, etc..). The DoS attacks can be initiated by a single entity. However, the power
of these attacks mainly depends on the resources of the attacker. Nobody can today, with a
single computer, launch a DoS attack against an Apache server by sending a huge amount
of queries to the overload. The power and the bandwidth of the server surpassing by far
those of the attacker. It is much more common nowadays to see these attacks using a
large set of coordinated computers. These attacks are called distributed denial of service
(DDoS). There exist some overlay networks that protect a target against this type of attack.
They use two different strategies.

The first strategy is to hide the potential target of the DDoS attacks behind an overlay
network. The access to the service offered by the target is then carried through the overlay
network. This strategy is one that has been chosen by SOS (Keromytis et al. [2002]).

SOS is an application, deployed over Chord, that acts as a filter around a potential target.
The packets from the DoS attack are ignored and only legitimate packets can pass through
the filter. This filter is composed of servers with large capacity. These servers are configured
to only accept packets from a small subset of nodes in the overlay network. The IP addresses
of the servers are kept secret. Users are not able to contact them. To reach the target,
users must first have access to the overlay network. To do this, users should contact a
SOAP (Secure Overlay Access Point) node. The SOAP nodes are a small subset of nodes
in the overlay network. They are responsible for receiving and verifying packets that are
not yet registered as legitimate. Only the traffic coming from SOAP nodes is allowed on
the overlay network. The SOAP nodes acts as a distributed firewall. When a packet is
declared legitimate by a SOAP node, SOS adds the hash of the IP address of the target as
the key to the packet. The packet is then routed using the routing protocol of Chord to the
node whose identifier is closest to the key. This node is called beacon node. To continue
to operate despite the failure of the beacon node, several beacon nodes are obtained using
several different hash functions. The beacon nodes are the only nodes that knows the IP
addresses of the secret server. The use of a service protected by SOS is described in the
Figure 1.7. An user connects to a SOAP node, authenticates and then sends packets to the
SOAP node. These packets are then routed using Chord until the packets reach a beacon
node. The beacon node sends the packets to a node secret servlet, that sends the packets
to the target.

Another solution is proposed by RON and Rewire (Bu et al. [2006]). These two overlay
networks are designed to withstand fault caused by DoS attacks.

72 1. State of the art

Figure 1.7: Using SOS

Rewire as SOS is designed to protect a server from DoS attacks. Three types of nodes
composing Rewire:

• The gateway nodes that have the same role as the SOAP nodes of SOS.

• The target nodes are the only ones who know the IP address of the protected server.

• The router nodes that route packets from gateway nodes to target nodes

To be as efficient as possible, Rewire must satisfy three conditions:

• The router nodes must form a strongly connected graph. When a virtual link failure
is detected, the router node that detects the failure must create a virtual link with
another router node.

• The router nodes route the packets until the target nodes. Each router node must
select the best path possible.

• Rewire must be scalable and can be deployed on a large area.

The first two conditions can be satisfied by collecting information about the overlay
network topology and about the status of nodes and virtual links. This information are
obtained, as in RON, by probing the nodes and the virtual links. However, the authors of
Rewire then propose a more elaborate way of probing than RON. Instead of probing each
nodes at regular time interval, the nodes in Rewire probes their nodes and the virtual links
according to their frequencies of use. The idea is that the fluctuations on the most used
virtual links have more impact on performance that fluctuations on the other virtual links.

73

To determine the frequency of probes, the nodes are organized in a hierarchical binary
structure (see Figure 1.8), the rank of a node in this hierarchy determines its frequency of
probe. So, if for each node the total number of other neighbors is equal to N the number
of nodes probed at each time interval is blog(N − 1)c+ 1 for Rewire and N − 1 RON .

Figure 1.8: The probes interval in Rewire

Rewire combines the advantages of SOS and RON. Indeed, just as SOS, the protected
server can no longer be the target of DoS attack because its direct IP address is unknown.
The only potential target is the overlay network acting as filter around the target. But
as RON, Rewire is resistant to failures, limiting the impact of a DoS attack against the
overlay network.

Integrity
In the computer security context, the term integrity refers to both the integrity of the
system and integrity of the data circulating over the system. A system where data integrity
is a system where:

• The information circulating on the system are complete.

• The information are not modified, regardless of any operations performed by the
system.

• The information is protected from malicious intentional modification.

The solution the most often used in networks to ensure the data integrity consists in
digitally signing the data circulating on the networks. It does not prevent any attacker
to alter the data, but any modifications invalidate the signatures and therefore reveal the
fact that data integrity is no longer maintained. Some Message Authentication Code are
also used, but these codes also only allow a verification of the integrity. Moreover, these
methods are based on the use of a third party, or this third party becomes a single point
of failure of the network (this can be an issue in the case of DoS attack). DSO (Gu et al.
[2006]) has been created in order to remove this single point of failure.

DSO stands for "Dependable Signing Overlay", it is an overlay network that acts as a
third party that provides a digital signing service. DSO is resistant to DoS attacks because

74 1. State of the art

it has an architecture similar to the architecture of SOS. There are four kinds of nodes in
DSO, the routing nodes, the access point nodes, the beacon nodes and the SH nodes. DSO
users only know the IP addresses of the access point nodes. All the requests for signature
must be sent via the access point node. DSO can manage multiple signature services, each
of these services are designated by a service key.

Any services of DSO must first be initialized. To do this, m routing nodes are selected
to become the SH nodes of this service. The SH nodes share, using the method of the
secret sharing of Shamir, the private key of the service. Each SH node finally selects a
small number of other routing nodes, elects these as SH nodes and gives them their portion
of the private key of the service. This replication process enables the service to be always
available even if a SH node fails. The SH nodes warn the beacon nodes that they are the
SH nodes responsible for this service. Once the service is initialized, an user can send a
request via an access point node. The request contains the data to sign. This request is
then routed as in SOS to a beacon node. The beacon node will forward the request to SH
nodes in charge of this service. When a SH node receives a request from a node beacon,
it uses its key portion of key to generate a part of the signature. The SH node sends this
part of the signature to the beacon node. The beacon node, once in possession of all the
parts of the signature, build the final signature and send it to the user that initiates the
request.

A second approach consists in basing the routing of the overlay network on a tolerant
Byzantine attacks protocol (Malkhi et al. [2001]). This solution assumes that the attacker
can only a modify the data circulating over a predetermined maximum number of virtual
links of the network. Let m be this number. If one wants to ensure the integrity of the
data, it duplicates it into 2m + 1 identical copies. These copies are sent over the overlay
network. The attacker can then change only m copies. To be sure of the integrity of the
data, it only requires to have m+ 1 copies.

A system with integrity can be defined as a system where none of the elements of
this system is corrupt. An elements is corrupt if it is controlled by an attacker or by an
unauthorized entity. Preventing such an intrusion is what the firewalls aim to do. There
exist alternative ways to prevent an attacker from entering a computer networks. But the
efficiency of the solution that aims to prevent the intrusions is only relative and is often
obtained at the expense of freedom of the authorized users. But if we can not efficiently
prevent an intrusions, we can at least try to detect. It is shown in Dnad [2004] that the
intrusion detection can be done efficiently only in a distributed way.

DOMINO (Yegneswaran et al. [2004]) is an overlay network that was designed for this
purpose. Three types of nodes composing DOMINO, the Axis nodes, nodes the Satellite
nodes and the Terrestrial nodes. The first nodes are responsible for sharing information
regarding the detected intrusions. Each Axis node maintains updated:

• A database of malicious activities: the database keeps the logs concerning the packets,
the global and local summaries, as well as the vulnerabilities and the alerts ;

• An Active Sink: A sinkhole is a large group of unallocated IP addresses. The Active
Sink oversees the traffic sent to the IP addresses of the sinkhole and simulates virtual
machines by providing a certain level of interaction. The Active Sink reviews the
packets with the intention of revealing attacks associated with specific vulnerabilities.

75

• A Firewall: This firewall provides security rules for the traffic to accept or not, and
a large number of attack signatures.

The Axis nodes periodically exchange information on intrusion attempts. These in-
formation packets are called summary. Each node Axis retrieves information from the
Satellite nodes to which it is connected. It combines these information into summary and
multicasts these summaries to the other Axis nodes.

The Satellite nodes are nodes that implement a local version of DOMINO. They are
hierarchically organized. The information sent by these nodes are considered less reliable
than those from Axis nodes.

Terrestrial Nodes are the largest source of information. However, they are very un-
reliable because these nodes do not implement a version of DOMINO and use their own
resources to collect information. They are attached to the DOMINO network through an
access point. The DOMINO architecture is summarized in the Figure 1.9.

Figure 1.9: DOMINO

DOMINO is not the only overlay network used for intrusion detection, Indra (Janaki-
raman et al. [2001]) was also designed to detect intrusion.

Indra is an overlay network that provides network intrusion detection and prevention. It
is built on top of the Pastry overlay network. Each node runs an Indra daemon. This one
listens and looks for suspicious activity such as multiple failed login attempts, port-scan
or suspicious system-call sequences. When a suspicious activity is detected by one node

76 1. State of the art

of the overlay network, it multicasts an alert to all the other nodes using Scribe. Scribe
is a publish/subscribe system developed on top of the Pastry network. To avoid that an
attacker can launch a false alert, in the prototype version Indra relies on trusted certificate
authorities. But authors think that it would be more realistic to use a Web of Trust model
to determine if an alert must be considered serious or as a fake one. Once a valid alert is
propagated, it belongs to Indra nodes to decide which solutions will be employed. Solutions
can range from paranoia to indifference.

Authentication
Authentication is a security feature that allow an entity to convince others that it has
secret information sufficient to prove his identity. It is usually done through cryptographic
protocols and algorithms. The public key certificates are the basis of most authentication
mechanisms on computer networks. The public key certificates or identity certificates
are certificates that use a digital signature to associate a public key to the identity of
an entity. The certificate can then be used to verify that the public key belongs to an
entity. Authentication can prevent attacks like man-in-the-middle attacks. Usually these
certificates are provided by a third party, therefore, becomes a single point of failure in the
network. One can imagine, eliminating this weak point by using DSO or another overlay
network that offers a digital signature service.

Another possibility is to interpret the authentication on a network such as the continuity
of a relationship between entities or as it is formulated in Schneier [2004] to "know who
to trust or not, this new definition makes the concept of system reputation and trust
management, these concepts will be discussed in more detail later in this document.

Anonymity
The anonymity in computer security means many things. If we use the term anonymity
about a communication network, this refers to the anonymity of the source and destina-
tion. In other words, nobody can guess, by listening to the communication, from where
it originates and to whom it is intended. If we use the term anonymity about a publi-
cations/consultations service, it refers to the identity of the publisher of a document and
the identity of users consulting this document. In addition to these different means of the
term anonymity in computer science, there are different degrees of anonymity, partial or
absolute anonymity. The partial anonymity means that there is no possibility of breaking
this anonymity directly, but that it is possible to collect a little more information each
time that anonymity is used. Let us consider the example of an entity that wishes to hide
the identity of the recipient of a message. It can send the message to set of addresses that
includes the recipient address. The attacker may not know who the actual recipient is,
but still knows that the address of the recipient is among the set of addresses. With an
absolute anonymity, in contrast to the partial anonymity, an attacker cannot obtain any
information about the identity of the source or the recipient.

It has already been presented in this paper some overlay networks that offers anonymous
publications/consultations services (Freenet and Free Haven). It will now be presented
an overlay network that offers an anonymity service Tor (Dingledine et al. [2004]) and
Cashmere (Zhuang et al. [2005]).

Tor consists of a set of nodes, called onion router. Each onion router is connected via a
virtual link with each other "onion routers". Tor can be seen as a fully connected graph.
Each user node, called onion proxy is connected to one or several onion routers. The onion

77

proxy role is to form circuits in the graph formed by the onion routers through which the
flows anonymously go. The creation of a circuit is costly in time and cycles calculation,
it requires successive ciphers based on public key algorithms. Each onion proxy creates in
advance several circuits. And to limit the chances for an attacker to break the circuit when
anonymity is used many times, it is abandoned and exchanged for another. Meanwhile, a
new circuit is created to replace the abandoned one. To open a TCP connection with an
anonymous host at a given address and a given port, a user asks his onion proxy to connect
instead of itself. The onion proxy selects the last open circuit (or create one if necessary)
and designates the best suited onion router for the circuit output. Usually it is the last
onion router in the circuit. Then the onion proxy opens the anonymous stream by sending
a cell "relay begin" to the onion router designated for the output (one cell is a message
containing the identifier of the circuit, identifying the flow and figures). The encrypted
data of this cell contains the IP address and port of the host to contact. The onion router
designated to be output decrypts the encrypted data contained in the cell, and contacting
the host with corresponding to the IP address and the port contained in the data. Once the
connection is done the onion router sends a cell "relay connected" using the circuit to the
onion proxy of the user. The onion proxy sends a request “SOCKS” to the user to notice
him of the the successful establishment of the connection. From there, all requests to be
sent anonymously to this host will be sent in the same way. The Figure 1.10 illustrates
the anonymous communications between a user and a website through a circuit composed
of two onion routers.

Figure 1.10: A user visiting a Web site anonymously through Tor

The anonymity of the user is guaranteed, as neither a attacker nor the contacted host
can access to the IP address of the user because the host is contacted by any onion router.
All the communications are encrypted: the only means by which an attacker to obtain
information about the identity of the user is to study the traffic to find a relationship
between circuits and the onion proxy user. However his chances of achieving that are

78 1. State of the art

reduced because the circuit changes are frequent.

Cashmere is a resilient anonymous routing overlay network. It is designed to provide
both source anonymity and unlinkability of source and destination (and also payload con-
fidentiality). Unlinkability means that even if one can determine that a node participate
to a communication process, it is not possible to determine if this node is the source, the
destination or only a simple routing node. Cashmere affirms to be able to fulfil all these
requirements even if an attacker controls some nodes in the network and even if these
nodes are able to collude and share all information such as private keys. In order to do
so, Cashmere uses a set of nodes that act as a virtual relay, instead as using a single node
at each hops as most of the other overlay networks, these sets of nodes are called relay
groups. In this perspective a forwarding path consists not anymore of a sequence of single
nodes but of a sequence of relay groups, since all the members of a relay group share a
common public/private key pair, it is possible to decrypt the forwarding path information
for a message and so to forward it to the next relay group. These public/private key pairs
are assumed to be distributed offline by a certified authority. Relay groups are anycast
groups and the forwarding of a message is analogous to anycasting it to the next relay
group. Cashmere is built on top of a Pastry overlay network, and the dynamic creation
and maintenance as well as the routing between relay groups are delegated to it. One have
to remember that nodes in Pastry overlay network possess an unique ID that is a sequence
of k bits, then each relay group also has an unique identifier that is a sequence of m bits,
with m smaller than k, a node is member of a relay group if the relay group identifier is a
prefix of its identifier. Since nodes identifiers are randomly assigned (by the hash of their
IP address), relay groups are random subsets of the overlay nodes. When a node wants to
route anonymously a message to another node that is not in its own relay group, it selects
a random sequence of m relay group identifier and randomly insert in it the relay group
of the destination node. These identifiers are then used to construct the forwarding path.
Since the source node randomly selects the forwarding path this one cannot be predicted
by others. Since the relay group of the destination node is randomly inserted, an attacker
may at most determine which are the nodes that will receive the message. The source
node n encrypts the forwarding path in multiple layers using the public key associated to
each relay group, and then sends the message to the first relay group in the forwarding
path. When any matching with the current prefix receives the message, it uses the private
key of the relay group to decrypt the next relay group of the path, and then routes the
message to it, and so on until the message reaches the end of the path. To avoid that any
nodes in the routing path may read the content of the message, the source node also have
to encrypt it in order to obtain:

Payloadi =
{
< Payloadi+1 >Ri 1 ≤ i ≤ L
< M >PubKeyB i = L+ 1

Where L is the number of relay groups, Ri is a symmetric key shared by the source node
and the ith relay group, these keys will be added to the encrypted forwarding path. This
solution provides payload confidentiality; however there is no guarantee that when the
message reaches the destination node relay group the messages will also reach the destina-
tion node, so to ensure that, in a relay group the first node which receives the message in
addition to path decryption and message forwarding this node also has to broadcast the

79

payload to its entire relay group.

Residual group
There is four main groups of applications of overlay networks. However, any distributed
application can be implemented on an overlay network. It is therefore not surprising to
find other applications do not fit into any of the groups previously defined.

Venus (Klara et al. [2004]) is an overlay network that offers an audio conferencing over
IP service. Venus tends to distribute the voice mixing service to a set of nodes. This voice
mixing service is usually centralized of the conferencing systems. The nodes participating
in a conference are divided into groups according to the "node gateway" by which they
joined Venus. The "nodes gateway" elects in each group, a node as the "mixer node".
The "mixers nodes" are interconnected to form a path. Each node participating in the
conversation is linked to his "mixer node" respectively. The role of "mixer nodes" is to
mix the signals received and then send the results to other "mixer nodes” Their role is also
to spread the communications to the nodes in their group. The functioning of Venus is
shown in the Figure 1.11.

Figure 1.11: An audio conference on Venus with six participants (the "+" means the
operation of mixing)

Twinverse (Twinverse [2008]) is a virtual world deployed over an overlay network with
a decentralized architecture. Twinverse is at the beginning empty. Only users, creating
entities and the hosts on their own machines, fill Twinverse. Its distributed architecture
allows Twinverse, according to its creators, to handle 10 million users. Twinverse provides a
display of 2D avatars, and allows users to communicate and share media. In the Figure 1.12
is a screenshot of what users can see in Twinverse.

1.2.3.6 Conclusion

Now that the various groups of applications of the overlay networks are defined. It is
interesting to see what kinds of overlay networks is more suitable for the development of
each class of applications. The relationships between the types of applications and their
overlay network are summarized in the Table 1.3.

80 1. State of the art

Figure 1.12: Twinverse screenshot

1.2.4 Security of the overlay networks

It is first important to realize that most attacks against overlay networks are against the
participative overlay networks. Indeed, in these networks, each user owns a node. Adding
a node is generally an automated process and therefore nothing prevent an attacker to
insert a malicious node it the overlay network. This section will therefore focus mainly
on security issues raised by the participative overlay networks. It will first be presented
attacks using flaws in the initialization and maintenance services of the overlay networks
to take control of part or of the whole network. Then it will be presented several attack
patterns of using the flaws in the endogenous routing services of the overlay networks.

1.2.4.1 Attacks manipulating the topology

Partitioning the network
In the overlay networks with decentralized architectures, the mechanism the most often
used to enable a node joining the network is to contact a node that is already on the
network and retrieving the necessary information to join the overlay network. A malicious
node can give information to the new node, in order to make the new node join only a part
or a parallel version of the overlay network. Attackers can then use the control they have on
the parallel network in order to gather information about users for example. Furthermore,
if another user tries to join the network through the node that was previously abused by
attackers, this new user also join the network under the control of attackers. This type of
attack creates a partition of the network, this partition is completely under the influence

81

Applications Overlay networks

Indexation

Indexing Applications are used to index the
information held by the users on a overlay
network are deployed by definition over
participative overlay networks. The first

generation of these applications were based
on network with centralized architectures.

Today it is the networks with structured and
decentralized architectures that are chosen

for this type of applications.

Resources
sharing

free disk space
The best materials for such applications are
structured and participative overlay networks

with decentralized architectures.

CPU cycles

These applications are often developed over
participative overlay networks with

centralized architectures. But there are
participative overlay networks with

decentralized architecture that supports such
applications

Routing

Multicast

It is very difficult to define what type of
overlay networks most likely to support a

multicast service, as most of overlay networks
supporting such services are hybrids. We can
still say they are largely participative ones.

Content Delivery

Delivery Networks refers to decentralized
architecture. There are as many content

delivery applications deployed on
participative overlay networks as on
non-participative overlay networks.

QoS Non-participative overlay networks are often
used to support such applications

Security

Confidentiality The diversity of the overlay networks used to
support applications designed to increase

network security is too large to define a best
type. Nevertheless, the overlay networks

must be non-participative to prevent an easy
takeover of a node by an attacker. These
overlay networks must have a decentralized
architecture to avoid have a single point of

failure.

Integrity

Availability

Authentication

Anonymity

Table 1.3: Relations between type of applications and types of overlay network

of the attackers. There are no miracle solutions to counter such attacks. One solution
is to join the network only via trusted nodes. The problem is to determine which nodes
can be trusted. These nodes are known to via a public list as in the case of Kademlia, or
referenced by the server as in the case of Gnutella. It is also possible for the nodes that
have already been connected to a network and being "satisfied" of the network during the
last connection to keep a list of trusted nodes. These nodes will serve to connect to the
network a possible next time. This solution, however the disadvantage of being of no help
in a passive attack. Indeed, nothing prevents a sub-network under the control of attackers
from operating normally if the attackers just, for example, passively collect information

82 1. State of the art

about the users. Another solution consists in creating multiple nodes via several different
nodes on the network, then to launch on each of these nodes the same query and then
compare the results. If the result coming from a node differs greatly from results obtained
with the other nodes, one can suspect this node belongs to part a corrupt partition of the
network.

Strategic positioning on the network
This attack takes place only in structured overlay networks. In a structured network, the
position of a node in the topology of the network depends on its identifier. An attacker
can strategically place nodes under his control into strategical point in the topology of the
network by choosing adequately the identifiers of the nodes under its influence. This could
allow an attacker, within the context of resources sharing application over a structured
network, to take control of a resource. On most overlay networks, the identifiers are
created using a hash function applied to specific data nodes and verifiable by other network
nodes connected to them (IP address, port, etc..) the attacker can not directly choose its
identifier. It may, however, in these cases modify its own data to obtain the wished
identifier. However, this research may be fastidious and empirical or it would mean that
the hash algorithm has been broken. In most cases using a hash function allows to verify
that a node is the "owner" of the identifier it has on the overlay network. Another possible
solution is to entrust the distribution of identifiers to a third independent party. However,
that third party then becomes a single point of failure in the network and contrasts with
the philosophy of the fully decentralized architecture.

Sybil attacks (Douceur [2002])
Sybil attacks are attacks where a malicious node fakes having multiple identities and pre-
tends to be several distinct nodes. This allows the attacker to strategically position its
node in many different point of the network topology, or to gain importance in a reputa-
tion or trust management systems (such systems will be discussed later in this document).
A simple and obvious solution is to use a central authority that controls the allocation
of identities by checking that they are associated with only one node. For example, it
might be required for the registration number identifying the person as the card number
or identity of the social security. This solution is not scalable, it only applies in the case of
small overlay networks where the central authority can maintain the authentication data.
For large overlay network, a solution is proposed in Douceur [2002]. This solution is based
on the idea that two distinct nodes are at different distances from other nodes in the net-
work, these distances can be obtained for example by calculating the round trip delay time.
However, the node with multiple identities may delay responses for some of their identities
in order to change the distance and therefore mislead the detection system.

Eclipse attacks (Singh et al. [2006])
Eclipse attacks are attacks where the attackers takes control or creates a large number
of nodes in the network. Attackers can then use these nodes, if they are strategically
positioned, to obscure a part of the overlay network by not forwarding anymore the query
from the other users for example. The part of the network becomes invisible to the non
malicious users.

A solution to protect overlay networks against these attacks was presented in Castro
et al. [2002]. This article recommends the use of constrained routing tables (CRT). These
tables impose strong structural constraints on all neighboring nodes. Identifiers of the

83

nodes are chosen randomly and the set of neighbors of a node is composed of nodes whose
identifiers are closest to the identifier of the node. This method has the advantage to
prevent an attacker to strategically place its nodes. It has the disadvantage of reducing
the flexibility of the network. Another solution was presented in Singh et al. [2006]. This
solution is based on a study that shows that the eclipse attacks are only effective if they
are launched on a network with nodes having a high degree of connectivity. The solution
proposed consists in limiting the degree of connectivity of the nodes.

1.2.4.2 Attacks manipulating routing

Shortcut attack
This type of attack is only possible on overlay networks that use a flood based routing
algorithm. This attacks are mainly launched on unstructured networks with decentralized
architecture. In such networks, a message is sent by flooding to all nodes in the network.
However, the destination node only replies to the first copy of each message it will receive.
If an attacker know which path the reply will go through will may sabots the path by
controlling or causing an failure on a node that composes the path. The reply will not
reach the node whose it is addressed and no further response will be sent because the
various copies of the message will be ignored thereafter. A shortcut attack is represented
in the Figure 1.13.

Figure 1.13: A shortcut attack

One solution to counter this type of attack is proposed in Misha [2003]. This paper
proposes Cascade, an overlay network that introduces the concept of recursive and iterative
routing. The recursive routing is the type of routing the most commonly used in the
overlay networks. A node wishing to send a message, using the recursive routing, sends
the message to one its neighbors, that neighbor will send it to one of its neighbors, and
so on until the message reaches the destination node. A node wishing to send a message,
using the iterative routing, try to obtain the underlying network address of the destination
node using the overlay network. Once the node has the physical address of the destination
node it sends the message using the underlying network. The combination of routing and
iterative routing by flooding can therefore ignore the failures caused by malicious node, as
there exists with high probability, still uncorrupted path between two nodes in the network.

84 1. State of the art

Man-In-The-Middle attacks
Man-In-The-Middle attacks is the name given to the attacks where the attacker node is
placed between two nodes of the network in order to intercept their communications and/or
act on the communication. The attacker may, if the communication is not encrypted, eaves-
drops the communication. The attacker also may, if no authentication processes are used,
usurps the identity of one of the interlocutors. The overlay networks with decentralized
architecture are vulnerable to this kind of attacks since with distributed routing proto-
cols a large number of nodes act as intermediary. One solution to prevent a malicious
node to eavesdrops a communication between two nodes is to encrypt the communication.
However, if the encryption keys are exchanged over the overlay networks the attacker may
intercept the keys or provide wrong encryption keys. The best solution would be to encrypt
communications with keys distributed by a third party.

Attacks on the routing tables
In participative overlay networks with decentralized architectures, each node has to build
its routing table with other network nodes. A malicious node can attempt to corrupt the
routing table of the other nodes by providing bad information. A node with a corrupted
routing table may unintentionally spread bad information extracted to its table to the other
nodes In overlay networks where the routing tables are built according to the proximity of
the nodes in the network topology and where the attackers are able to place their nodes
where they wish, this attack can target only a part of the network and makes its detection
more difficult. The attacker only needs to position its nodes in the part of the topology
that it wants to compromise and since the tables are built based on the proximity of nodes,
it may target the nodes that will have their routing table corrupted. A solution for a node
to counter this attacks is to check each entry in its routing table. In CAN for example, a
node has to verify that there is not two areas that overlap.

Selective forwarding attacks
Selective forwarding attacks are launched by one or more malicious nodes of the overlay
network. In these attacks, the attackers do not properly forwards the messages that pass
through their nodes. They can create "black holes" that no messages can not escape. The
more node the attacker controls the more important the "black hole" is. With a sufficient
number of nodes, the attacker can paralyze the whole network. A more advanced version of
this attack consists in blocking only the messages coming from one or more target nodes.
This more advanced version is much more discreet. If the “black hole” is close to the
targeted node, or, if the attacker ensures that the traffic destined to the targeted node
passes through the "black hole", the attacker can completely isolate the targeted node. A
simple solution to avoid this kind of attack is to repeatedly sent the same message through
different paths. The probability that the "black hole" intercepts all the copies of the
message will be decreased. A second solution can be applied to the more advanced version
of the attack, it is to prevent the attacker to distinguish the messages. If the attacker
cannot determine which node is the source of the message, he can not decide if he must
let the message pass or not.

85

1.2.4.3 Attacks against applications

Poisoning attacks
Poisoning attacks consists in deliberately, distort the index in the cases of the indexing ap-
plications or falsifying the data or the result of a calculation on the case of sharing resources
applications. An example of a poisoning index attack, is the case of some companies that
wants to fight against illegal sharing of songs on their catalog. These companies may join
the overlay network and fills- the index with wrong information. The users that want to
download the song will look in the poisoned index, and obtain some information that do
not allow them to download the requested song. An example of a poisoning resources
attack, is the case of the distributed computing. The attacks consists in returning a wrong
answer to a calculation For this type of attack by poisoning, using a reputation system is
an interesting solution.

Viruses and worms
Generally, viruses are mainly present on applications that index files. The virus is caught
like a classic virus, by downloading a corrupted file. A new generation of virus has emerged
on the overlay networks. They take advantage of the endogenous routing service. Indeed,
a classic virus, in order to quickly spread must retrieve a list of new hosts to infect at each
infection. The most effective method was to retrieve email addresses stored by the user
and thus spread through the messaging application. The routing tables of the nodes in
the overlay networks possess a large set of IP addresses. Some viruses have been designed
to use an expansion based on these IP addresses. As an example, the virus VBS.Gnutella
once it has infected a Gnutella user, infects the files hosted and shared across the Gnutella
network. The best solution is to use a reliable anti-virus.

Free riding
The “free riding” attack is a passive attack is that takes advantage of the applications
running over the overlay networks without contributing. This kind of attack applies to the
applications that index files and applications that share resources. One solution is to keep
a trace of the activity of the users. But most applications do not implement this function
at a network level. In the case in BitTorrent or eDonkey network the client software has
to regulate itself. If this solution is valid for users with no programming knowledge, it is
however less for other users. It has emerged modified versions of eMule called eChamblar
for example that allows to download files from other nodes without contributing.

1.2.5 Reputation system

1.2.5.1 Introduction

In a distributed system where it is impossible to prevent an entity of the system from
maliciously acting, the best security solution is to assign important roles only to entities
that we can trust. The problem is then to make the process of reputation attribution a
distributed process.

In first, it is necessary that each user can give its opinion on an other user or on a
transaction. It is the second time, a distributed mechanism has to aggregate these local
inputs to achieve an overall score for each user. To finish, the overall scores must be
available for all users.

86 1. State of the art

The two important points of a reputation system are:

• The aggregate function.

• The storage of the overall score.

To be accurate, the aggregate function must take into account the fact that even
malicious users can express their opinions on the other users. This function must also
take into account the date of issuance of each opinion. An old opinion should have less
impact on the overall score a recent opinion. Finally, the context in which has been issued
the opinion must also be taken into account. Everyone must be able to access to the overall
scores without being able to modify them. It is also inconceivable that an user stores his
own global mark. Storage should be either anonymous, encrypted, or even shared.

The centralized reputation systems operate on a simple principle: a server stores the
opinions given by the users. This server is also responsible for aggregating the opinions
that it receives and for storing the overall scores. The server must sent the score of a given
user to any user who requests it. These systems suffer from defects inherent to all the
centralized systems (congestion and single point of failure).

The decentralized reputation systems, however, are more effective and more in accord
with the philosophy of the overlay networks. There are two subclasses of distributed
reputation systems. Local systems and global systems. In the local ones, each user stores
the overall scores he attributes to the other users. Consequently, there are several scores
for each user. In the global ones, the overall score assigned to each user is stored over the
network and there is a single note for each user. In addition to these subclasses, there exist
two philosophies for the reputation systems, the first philosophy consist in considering that
any node has a low reputation until the node acquires reputation points, the second one
considers that any node is acting properly considered until a charge is brought against him
by the other nodes.

1.2.5.2 Examples

It will now be presented two reputation systems deployed over an overlay network.

PeerTrust (Xiong et al. [2004]) provides a distributed reputation system over an overlay
network. Each node in the network can deliver an opinion on the transactions performed
with the other nodes. PeerTrust was originally developed on P-Grid (Aberer [2001]) , but
it can be developed on any structured overlay network. The overall score is stored on
some network nodes. To identify these nodes, a hash function is used on the identifier of
the node whose the reputation is evaluated in order to obtain a key. The nodes that will
be responsible for storing the overall score are those whose identifier is closest to the key.
When a node wants to give an opinion on another node of the overlay network, it sends it
to these nodes. The overall reputation score is calculated using the following function T :

T (n) = α

I(n)∑
i=1

S(n, i)× Cr(p(n, i))× TF (n, i) + βCF (n)

Where I(n) is the total number of transactions performed by the node n, p(n, i) is the
set of the other nodes that have participated in the ith transaction of the node n, S(n, i)

87

the amount of satisfaction that the node n has received for p(n, i), Cr(m) is the confidence
in the opinion submitted by the node m, TF (n, i) the context of the ith transaction of the
node n and FC(n) the adaptive context assigned to the community for the node n. To
better understand the above formula, let us only note of a transaction. For a transaction,
the rating is calculated by the following formula:

S(n)× Cr(p(n))× TF (n)

S(n) is the satisfaction that the node n received for the transaction. The satisfaction
is multiplied by Cr(p(n)). This value corresponds to the reputation of the nodes that
have participated and judged the transaction. This reduces the impact of the opinion of
the malicious nodes. Since a malicious node has a low reputation its opinion will be less
considered. The last value is the context in which the node has completed the transaction.
Thus if a node performs a transaction correctly in a critical time during an attack such
as the note assigned to the transaction will be more important. The reputation score of a
node is the sum of the scores obtained for all the transactions that the node have performed
to which we add FC(n). This is the context given by the community node. The values α
and β, which have not been mentioned are parameters that allow to give the priority to
the context or notes of transactions.

Fireflies (Johansen et al. [2006]) is an overlay network endowed with reputation system.
In fireflies, a node have a state that can be: correct nodes that are nodes following the
protocol of Fireflies, stopped nodes that are nodes that encounter momentary failures and
byzantine nodes that are nodes that no longer follow the protocol. Initially, all the nodes
are in the correct state and then it is in a distributed way that the nodes will decide of their
states. Each node in a correct state has a view, a table of neighbors, and a communication
channel that can be used to send a message to the all the nodes (the nodes in the byzantine
state can also use this channel). The view of a node is a subset of the nodes of Fireflies.
The view of a node is filled by the nodes that it considers in a correct state. If a node
is not in the view of another node, it means that the second node considers that the first
node is in a stopped state. The routing table of a node is a subset of the view of this node.

In Fireflies, the nodes are organized in 2t + 1 rings. The value of t depends on the
degree of intrusion that Fireflies must be able to tolerate: the more this value is large, the
more fireflies will be tolerant. Each node of Fireflies belong to each ring and its position
is calculated using a hash function on the identifier of the node concatenated with the
identifier of the ring. Consequently, the order of a node on each ring is different with a
high probability. When a node suspects its successor on a given ring to be in the stopped
state, it sends a signed report through the communication channel to the other nodes. This
report contains the identifiers of the ring and of the suspected node. The suspected node
has a finite amount of time to emit a counter-report over the communication channel. In
the lack of counter-report, the suspected node is removed from the view of all the nodes
of Fireflies. If a node sends two many unjustified report, the nodes declare this node as
in byzantine state and remove the byzantine node from their views. In the Figure 1.14 is
represented a Fireflies network with 7 nodes and 3 rings. In this Figure, the valid report
are represented by plain arrows and invalid report by dotted arrows. The report from D
against B on the middle ring is considered valid because there is no node between B and
D on the ring. The report from C against A on the outer ring is valid because there is a

88 1. State of the art

Figure 1.14: A fireflies overlay network with 3 rings

valid report against B. The report from E against A is invalid because there is no valid
accusation against F.

89

Chapter 2

The protocol ROSA

We have seen in the last chapter that the type of an overlay network must be chosen in
function of the purpose of this overlay network. In our case, we want to develop ROSA
as an adaptable overlay network, i.e. an overlay network with a parametrizable purpose.
So ROSA must belong to the bouncier type of overlay network, the unstructured overlay
network. Making ROSA an unstructured overlay network allows to build a topology man-
agement protocol that depends of the purpose and the underlying network type. This is
presented in the Chapter 2

Once this topology management protocol is built, it remains to define a routing algo-
rithm more efficient that the flooding routing algorithm generally used over the unstruc-
tured network. In order to do so, we have built over ROSA a Distributed HashTable. Once
endowed with this DHT ROSA possesses the benefits of the unstructured and structured
overlay networks. This is presented in the Chapter 3

If we refer to the classification given of the overlay network given in the last Chapter
(Chapter 1), ROSA cannot be classified. It is quite logical since we have seen that the
type of the overlay network depends on the goal of this overlay network and that ROSA is
generic template of an overlay network. Indeed the purpose of ROSA is set when one sets
the definition of the density (see Chapter 6) that will be used on ROSA.

2.1 Principles of ROSA

ROSA nodes are organized in cluster called lumps. A lump is a set of fully connected
nodes. In graph theory such objects are called cliques. A clique in an undirected graph is
a subset of the vertex set, such that for every two vertices in the subset, there exists an edge
connecting the two. ROSA can be represented by a entanglement of lumps. Each node of
ROSA belongs to at least one of the lumps. Each of the lumps of ROSA is associated with
a metric called density. We shall see in Chapter 6 there are several kinds of densities and
that the choice of this density that defines the characteristics of ROSA.

We call the topology management the way of how the graph composed of the nodes
and the links and the set of lumps of ROSA evolves during the time and according to the
events.

The principle of management of the topology of ROSA is similar to a recipe for pancake
batter. In a recipe of pancake batter one should dilute the lumps with high densities to

90 2. The protocol ROSA

increase the density of the areas with less flour. In ROSA, the nodes calculate the density
of lumps which they belong, share with their neighbors about the knowledge of the low
densities lumps, and leave lumps having high densities to increase the lumps with low
densities.

2.2 The constants of ROSA

A number of parameter sets the properties of ROSA. There is the definition of the density.
A chapter of this thesis is dedicated to the density, Chapter 6. There is also few constants
that all the nodes of ROSA must share that any new node can acquire when it connect
to ROSA. In this section we list these constants, explain their roles and influences on the
behavior of ROSA.

Interval : The constant Interval sets time that a node has to wait between two executions
of the main loop. This constant determines the relation between the efficiency and the
speed of reaction of ROSA and the network bandwidth and computational use necessary
to the functioning of ROSA. The smaller the Interval will be, the faster the reaction to
failure will be. In return the excess use of bandwidth and computing will be great. Unlike,
the greater the Interval will be, the less greedy ROSA will be. But Rosa will also be less
responsive and effective.

MessageIdNumMax : Each node of ROSA keeps a list of the identifiers of the last
messages he received. The constant MessageIdNumMax sets the maximum size of this
list. The risks taken when choosing a value MessageIdNumMax too small is to contrast
with the consumption of resources brought caused by a too high value of this constant. If
MessageIdNumMax is too small then a node may receive a message and may not realize
that it has already received this message. If MessageIdNumMax is too large then looking
up the list of identifiers of recent messages take more time than necessary. And the list
would be over-dimensioned in order to achieve the goal that the list is supposed to do.

LumpSizeLimit : This constant is one of the two constants which limit the number of
neighbors per node. This limitation is explained in detail in Section 2.4.9. The constant
LumpSizeLimit sets the maximum number of nodes that can compose a lump. When a
lump is composed of more nodes than LumpSizeLimit, some of the nodes of the lump must
leave it.

LumpNumberLimit : The constant LumpNumberLimit sets the maximum number of
lumps to which a node can belong. This constant has a dual role. The first role is,
with the constant LumpSizeLimit, to limit the number of neighbors that a node can have.
The second reason for the constant LumpNumberLimit is to set the maximum number of
shortcuts in the ’chain of lump’. All the details concerning the second role of this constant
are given in Chapter 3.

2.3 Representation of a node, a neighbor and a lump in the
memory of a node

Each node in ROSA has an identifier, a list of neighbors and a list of lumps. The identifier
of a node is an integer belonging to [1, 2128 − 1]. We consider for now, that the identifier

91

of a node is randomly chosen. The list of lumps of a node is a list of lumps which the
node belongs. The list of neighbors of a node is a list of the identifiers and the physical
addresses of nodes to which it is virtually linked. This list of neighbors must reflect every
changes on the list of lumps. Each node also possesses one flag ’connected’. This flag is
set to true if the node is connected to ROSA and else is set to false. To complete the
representation of a node we add a list of lumps with low density and a list of the last
received messages identifiers. These two list are initialized to empty. The first one is used
to store the knowledge of the nodes about the lumps with low densities in its neighborhood.
The second one is used to allow every nodes of a lump to receive a message despite failures
(see Section 2.4.3).

A neighbor of a node is represented by the pair <id, phy> where id is the identifier
of this neighbor in ROSA and phy is its physical address on the network on which ROSA
is deployed. A flag ’alive’ complete this representation. This flag is set to true by default
and will be used for the detection of failures.

A lump has an identifier, a list of the identifiers of the nodes which composes it and all
the information allowing each node to calculate its density. The information necessary to
compute the density depends on the definition of the density chosen, further details will
be given in the Chapter 6 dealing with the density. The identifier of a lump is an integer
belonging to [1, 2128 − 1]. As for the node this identifier is randomly chosen. A lump also
has a list of physical addresses of the nodes that compose it.

Node

id : integer ; // rand(0, 2128 − 1)
neighbor_list : list<neighbor> ; // nodes linked to node
lump_list : list<lump> ; // lumps to which node belongs
connected : boolean ; // true if node is connected
know_lump_list : list<lump> ; // low densities lumps
message_id_list : list<integer> ; // Ids of received messages

Neighbor

id : integer ; // identifier of neighbor
phy : physical address ; // physical address of neighbor
alive : boolean ; // true if neighbor alive

Lump

id : integer ; // rand(0, 2128 − 1)
nodeId_list : list<(integer> ; // Ids
nodePhy_list : list<(physical address> ; // physical addresses
data_density : ... ; // cf (Chapter 6)

Figure 2.1: Representations of nodes and lumps

92 2. The protocol ROSA

2.4 Protocol

In this section we deal with the basis of the ROSA protocol. We focus on a few primitive
functions used by the nodes of ROSA, such for example the function that allows a node to
connect and to leave ROSA, or the function that allows a node to send a message to all
other nodes in a lump without the failures on the virtual links prevent the message from
reaching its destination. Next, we see the main loop of ROSA and the different functions
that compose it. Thus we see first how the failures on the links are detected and managed
in ROSA. Then we see how the protocol limits the number of neighbors per node. We see
how a node optimizes the ROSA density in its neighborhood. To finish we see how the
absorptions of the lumps are managed.

2.4.1 Connecting to or initiating ROSA

To join ROSA a node must know a node already connected to ROSA, this node is called
bootstrap_node. If the node cannot find such a bootstrap_node, it must initiate the
network. This is described in the pseudo-code 2.2.

In the current implementation the discovery of a bootstrap_node is done using a central
server called bootserver. This server maintains a list of active nodes of ROSA. To connect
to ROSA, a node must contact the bootserver. It responds with the physical address of
a node connected. This address is randomly selected in its list. If the list is empty, the
bootserver replies with the void address. This void address tells a node wanting to join
that ROSA that is the first node and that it must initiate ROSA.

Node.connectROSA

bootstrap_node ← findBootsrapNode() ;1:

if bootstrap_node = void then2:

initROSA() ;3:

else4:

send(Hello()) to bootstrap_node ;5:

Figure 2.2: The connectROSA function

To keep up to date the list of the nodes connected to ROSA, every connected nodes
must periodically give signs of life to the bootserver. The bootserver deletes from its list
all the nodes that do not do this.

This solution based on a central server is not a very good solution. The main drawback
of this solution is that if the bootserver fails or suffers a DDOS attack, no more nodes
can join ROSA. Another possible solution, but that has not been implemented yet, is that
each node connected to ROSA acts as bootserver. In this solution, a node willing to join
should broadcast a request over its physical network. The nodes connected to ROSA will
wait for these requests and will reply with the physical address of one of their neighbors.

Once in possession of the physical address of a node already present on ROSA, a node
can start the procedure of connection. This procedure consists in sending a message Hello

93

to the bootstrap_node.

Node.initROSA

lump ← new lump ;1:

lump.nodeId_list ← id ;2:

lump.nodePhy_list ← phy ;3:

lump_list ← lump ;4:

connected ← true ;5:

Figure 2.3: The initROSA function

At the reception of this message, the bootstrap_node looks down its list of lumps,
selects the lump with the lowest density, encapsulates the selected lump in a message
BootstrapLump and sends it to the node that wants to connect to ROSA. As soon as the
node willing to connect to ROSA receives this message, it verifies that it is not already
connected. If it is already connected and it has received a message BootstrapLump by
mistake, it simply ignores the message. Otherwise it extracts the lump contained in the
message and tries to join this lump. We will see in Section 2.4.4 how a node joins a lump
and which are the conditions that the node has to satisfy in order to join a lump. If the
node is not able to join this lump the procedure of connection must be started again from
the beginning. The pseudo code of this process is described in the Figure 2.4.

Messages handling
...

upon receive Hello() do1:

if connected then2:

return ;3:

sender ← getSender(Hello()) ;4:

lump_to_send ← getWeakestLump() ;5:

send(BootstrapLump(lump_to_send)) to sender ;6:

upon receive BootstrapLump(lump) do7:

if joinLump(lump) then8:

connected ← true9:

else10:

connectROSA() ;11:

...

Figure 2.4: Handing Hello and BootstapLump messages

If this node is the first one, it must initiate ROSA. In order to initiate ROSA, the node
creates a lump composed by only itself. Afterwards the node adds the newly created lump

94 2. The protocol ROSA

to its list of lump. We will see later that this lump is the only lump that is created from
scratch. All the other lumps of ROSA result from a split of an already existing lump. To
finish the node positions its connected flag to true as described in the pseudo code in the
Figure 2.3).

2.4.2 Leaving ROSA

Two methods are available to a node that wants to leave ROSA. The first one is the good
method and must be used whenever it is possible. The other method is much less elegant.
These two methods are described in this section.

The first method consists for a node in calling the function leaveROSA. A node using
the first method has only to send a message LeaveROSA to all its neighbors. A node
receiving a message LeaveROSA gets the identifier of the sending node. Afterwards the
node that received the message, removes form its list of lumps the identifier, the physical
address and all the data concerning the sending node. This method is described in the
pseudo code in the Figure 2.5.

Node.leaveROSA

for all neighbor ∈ neighbor_list do1:

send(LeaveROSA()) to neighbor ;2:

Messages handling
...
upon receive LeaveROSA() do3:

sender ← getSender(LeaveROSA()) ;4:

for all lump ∈ lump_list do5:

if sender ∈ lump.nodesIdList then6:

lump.nodesIdList ← lump.nodesIdList - sender.id ;7:

lump.nodesIdList ← lump.nodesIpList - sender.phy ;8:

/*
removing the data concerning sender from lump.data_density
*/

...

Figure 2.5: The good method for a node to leave ROSA

The other method is applied when the node does not give any sign of life to its neighbors.
As discussed in Section 2.4.8 when a node does not give sign of life anymore to its neighbors,
these neighbors gradually remove the failing node from their list of lumps and neighbors.
Normally, the first method should be preferred because it generates less bandwidth and
CPU cycle use. The second method should be used only when a node fails or when it is in
the inability to apply the first method.

95

2.4.3 Sending a message to all the nodes of a lump

Some messages, that are needed for the good working of ROSA, have to be sent to all
the nodes that compose a lump. This is particularly the case for all the messages that
are intended to tell the nodes about the changes (splits and absorptions) of the set of the
lumps of ROSA.

To send a message to all the nodes that compose a lump, a node could simply and
directly send the message to all the other nodes of the lump. But some failures could
disrupt the communication on the virtual links between the nodes composing the lump. In
this case the message could not reach some nodes of the lump. To prevent that the failures
interfere with the communication between the nodes of a single lump, each message has
a unique identifier. This identifier is an integer randomly chosen in [1, 2128 − 1] and each
node of ROSA keeps a list of the identifiers of the last messages (see MessageIdNumMax
in the Section 2.2) that it received.

Figure 2.6: Propagating a message to all the other nodes of a lump

So any node is able to distinguish the new messages from the ones that it has already
received and handled. When a node receives a message destined to all the nodes of a lump,
it checks in its list of the already received messages identifiers if the received message is
a new one. If the message was already received before, the node ignores it. If it is the
first time that the node receives this message, the node handles it and forwards it to the
other nodes that compose the lump. This way, despite the presence of some failures, if
there exists a path composed by the virtual links between the nodes that goes through all
the nodes of the lump, it is sure that the messages will reach all the nodes to which it is
intended.

96 2. The protocol ROSA

In Figure 2.6 is represented a node sending a message to all nodes in a lump despite
many failures. The nodes are represented by green circles. Virtual links by lines connecting
the nodes, solid lines for valid and dashed lines for links experiencing failures. The sending
of the message are represented by blue arrows. In the figure the nodes n1 wants to send a
message to all nodes in the lump. Some failures only allow the node to send the message
to nodes n2 and n5. In the remainder of the figure one can see that the message spreads
from node to node to reach all nodes in the lump. Everyone can also see that a node does
not propagate the message that it has already received it.

2.4.4 Joining a lump

In this Section, first we see what it means to join a lump for a node. We then see how a
node joins a lump and notice the other nodes of this lump about the join.

A node joins a lump means that the node creates virtual links with the nodes that
compose the lump. But it is not always possible to create a virtual link between two
nodes. In this case a node can perform a partial join of a lump. We will see the differences
between all possible cases: the case where a node can join a lump and the case where it is
unable to join this lump.

Node.join(lump) (Input:lump; Output:boolean)

joinRatio ← 1 - checkLinks(lump) / lump.size ;1:

if joinRatio > joinRatioLimit then2:

return false ;3:

lump.nodeId_list ← lump.nodeId_list ∪ node.Id ;4:

lump.nodePhy_list ← lump.nodePhy_list ∪ node.Phy ;5:

/* adding some data to lump.data_density */

send(UpdateLump(lump)) to lump ;6:

return true ;7:

Messages handling
...
upon receive UpdateLump(lump1) do8:

for all lump2 ∈ lump_list do9:

if lump1.id = lump2.id then10:

lump2 leftarrow lump1 ;11:

return ;12:

...

Figure 2.7: Joining a lump

To join a lump, a node must be aware of this lump, i.e. be in possession of the
representation of the lump. Once in possession of the representation of the lump, the node
must first check if it can create virtual links with all the nodes that compose the lump.
This is done with the help of the the ping utility (Muuss [1983]) on IP networks or with

97

any other utility that performs the same action on non-IP networks. Once verification is
complete the node determines the joinRatio. The joinRatio is equal to 1 minus the ratio
between the number of virtual links that the node can create and the number of nodes
that compose the lump, i.e. 1 − checkLinks(lump)/lump.size. The pseudo code of the
CheckLinks function can be found in the Appendix.

If the joinRatio is equal to zero, we are in the case of a full join. If it exceeds the limit
sets by joinRatioLimit then it is impossible for the node join this lump. And in other cases
the node performs a partial join of the lump.

After the computation of the joinRatio and if it does not prevent the node to join the
lump, the node modifies the representation of the lump in order to reflect the fact that
the node has joined the lump. It adds its identifier in the list of the node identifiers and
its physical address in the list of the physical addresses. The node also modifies all the
information necessary to compute the density of the lump (more details will be given in
the Chapter 6).

Figure 2.8: The partial join of a lump

Finally the node sends through the intermediary of a message UpdateLump, the new
representation of the lump to all the nodes that compose the lump. The nodes receiving
the message, extract the new representation and update their list of lumps, replacing the
old with the new representation. The join procedure is summarized in the pseudo code of
the Figure 2.7.

The difference between a complete join and a partial join is the handling of the broken
links that will occurs after the partial join. Indeed after the partial join procedure, since
it has been impossible to establish virtual links with some nodes of the lump, the partial

98 2. The protocol ROSA

join leads to many lump splits.
The joinRatio is used to limit the number of split that will occur after a join. It is not

productive, for example, to join a lump composed of 5 nodes if it is not possible to create
virtual links with 3 of these nodes. This would create a significant number of lumps and
would generate a substantial network usage.

In the Figure 2.8 is schematized the partial join of a lump. The nodes are represented
by green circles. The lumps are represented by purple dashed shapes. The pings are
represented by arrows, blue for the successful pings and red by the failing ones. The
broken virtual links are represented by dashed black lines. In a), the node n1 wants to
join a lump composed of 4 nodes. The node can only create virtual links with 3 of these
nodes as it is described in b). The computed joinRatio is equal to 0.25. In this example,
we assume that the joinRatio is less than the joinRatioLimit. The node n1 is allowed to
join the lump. It results a new lump from from this join. The missing virtual link between
n1 and n2 leads to the split of the new lump.

2.4.5 Leaving a lump

Leaving a lump consists in a node modifying the representation of the lump that the node
wants to leave. The representation must reflect the fact that the node does not compose the
lump anymore. The modifications that the node must perform are the inverses of those
that node must perform when it wants to join a lump. Once the representation of the
lump up to date, the node send it with a message UpdateLump to the nodes that compose
the lump. Each node that receives the new representation updates its list of lumps. The
pseudo code corresponding to the handling of the messages UpdateLump is shown in the
Figure 2.7.

Node.leave(lump) (Input:lump)

lump.nodeId_list ← lump.nodeId_list - node.Id ;1:

lump.nodePhy_list ← lump.nodePhy_list - node.Phy ;2:

/* removing some data to lump.data_density */

send(UpdateLump(lump)) to lump ;3:

Figure 2.9: Leaving a lump

2.4.6 Splitting a lump

The split of a lump happens for two reasons, when a virtual link is broken or during the
limitation of the number of nodes per lumps. The split of a lump is organized around two
nodes of the lump, it consists in splitting the lump in order to obtain two lumps. The
nodes that compose the first lump that results from a split are the nodes of the split lump
minus one of the two nodes around which the split is organized. The nodes that compose
the second lump that results from a split are the nodes of the split lump minus the other
node around which the split is organized.

99

Node.split(lump, neighborId) (Input:lump, integer)

split(lump, pair(node.id, neighborId)) ;1:

Node.split(lump, ids) (Input:lump, pair<integer>)

lump1 ← lump.without(ids[1]) ;2:

lump2 ← lump.without(ids[2]) ;3:

send(SplitLump(lump.id, lump1, lump2)) to lump ;4:

Messages handling
...
upon receive SplitLump(lumpId, lump1, lump2) do5:

for all lumptmp ∈ lump_list do6:

if lumptmp.id = lumpId then7:

lump_list ← lump_list - lump_list.get(lumpId) ;8:

lump_list ← lump_list ∪ lump1 ;9:

lump_list ← lump_list ∪ lump2 ;10:

return ;11:

...

Figure 2.10: Splitting a lump

Let n1 and n2 be some nodes that belong to the set of the nodes that compose a lump.
Let lump be this lump. More formally split of lump around the pair of node <n1, n2>
means:

split(lump,< n1, n2 >) → {lump1, lump2}

such that:
lump1.nodeId_list = lump.nodeId_list - n2.id
lump1.nodePhy_list = lump.nodePhy_list - n2.phy
lump1.data_density = lump.data_density - all the data concerning n2

and:
lump2.nodeId_list = lump.nodeId_list - n1.id
lump2.nodePhy_list = lump.nodePhy_list - n1.phy
lump2.data_density = lump.data_density - all the data concerning n1

When a node wants to split a lump around itself and one of the other nodes that
compose the lump, it builds the representation of the two lumps that result from the
split. Then the node sends the representations of the lumps resulting from the split to
the affected nodes via some messages SplitLump. These messages contain, in addition to
representation of the resulting lumps, the identifier of the split lump. A node that receives
a message SplitLump, looks in its list of lumps the one that has the identifier contained in
the message. If the node does not find such a lump, it ignores the message. Otherwise it
replaces in its list of lumps, the split lump by the two lumps contained in the messages.
The Figure 2.10 contains the pseudo code relative to the split of lump.

100 2. The protocol ROSA

2.4.7 Main loop of ROSA

The main loop of a ROSA node is in pseudo-code in the Figure 2.11. This loop is repeated
every ’Interval’. This parameter must be defined experimentally according to the capacities
of the network on which ROSA will be used. More details concerning the role of ’Interval’
can be found in Section 2.2.

The main loop of ROSA consists of 5 functions: checkFailure, checkAbsorption, check-
MemberLimit, checkLumpLimit et enhanceROSA. The first function aims to detect the
failure occurring on the virtual links and to react to these failures. The role of the function
checkAbsorption is to detect and manage the absorption of a lump of the list lump_list by
another lump of this list. The functions checkMemberLimit and checkLumpLimit aim to
limit the number of neighbors per node. The function enhanceROSA is responsible for the
optimization of ROSA. This function decides in which cases the node must leave a lump
of high density to increase the density of a lump with low density.

Node.main

while connected do
checkFailure() ;1:

checkAbsorption() ;2:

checkNpL() ;3:

checkLpN() ;4:

enhanceRosa() ;5:

sleep(Interval) ;6:

Figure 2.11: The main loop of ROSA

We will see in the Chapter 3 concerning the chain of lumps that the main loop will be
completed and modified.

2.4.8 Handling the broken links

A major advantage of ROSA is that the protocol can quickly detect the failures occurring
on the virtual links between the nodes and modify the topology of the network to reflect
such failures. The handling of the broken virtual links is done by the function checkFailure
of the main loop of ROSA. The handling of the broken links consists of two steps, the
failures detection and the topology modification.

The first step consists for each node in giving signs of life to its neighbors by sending a
message Alive. If a link between two nodes was broken then the sending of these messages
Alive are interrupted. The messages Alive were also used to spread the knowledge about
the lumps with low density. In each message Alive sent by a node is encapsulated a lump.
This lump is the lump with the lowest density in list of lumps. When a node receives
a message Alive, it extracts the lump contained in the message and adds it to its list of
known lumps. This way each node knows the lump with the lowest density to which belong
each of its neighbors.

101

Node.checkFailure

for all neighbor ∈ neighbor_list do1:

if neighbor.alive = true then2:

send(Alive(getWeakestLump())) to neighbor ;3:

neighbor.alive ← false ;4:

else5:

for all lump ∈ lump_list do6:

if neighbor ∈ lump.nodesId_list then7:

split(lump, neighbor.id) ;8:

Messages handling
...
upon receive Alive(lump) do9:

sender ← getSender(Alive(lump)) ;10:

know_lump_list ← know_lump_list ∪ lump ;11:

neighbor_list.get(sender).alive ← true ;12:

...

Figure 2.12: Handling the failures of the virtual links

Once a node detects a broken link by the lack of message Alive from one of its neighbors,
the second step is for a node to modify its list of lumps to take into account the failure
of this link. When a lump detects that the virtual link between itself and a neighbor is
broken, it looks down through his list of lumps for the lumps that contains the failing
neighbors. When a node encounters such a lump, it splits the lump around itself and
the failing neighbor. The split of a lump is described in Section 2.4.6. The pseudo code
concerning the detection and the handling of the broken links is shown in Figure 2.12.

2.4.9 Limiting the number of neighbors

To be scalable, the number of neighbors of a ROSA node is bounded. Rather than setting
a maximum size to the list of neighbors and to force a node to separate from one of its
neighbors when the capacity of the list of neighbors is reached, it is by imposing a maximum
number of nodes per lump and a maximum number of lumps per node that the protocol of
ROSA limits the number of neighbors per node. Limiting the number of nodes per lump
is done with the function checkNpL and limiting the number lumps per node is done with
the function checkLpN.

To limit the number of nodes that compose a lump, a node looks down its list of lumps
for the lumps whose the number of nodes exceeds the limit. When such a lump is found,
the node may leave or split this lump.

A node can leave a lump that has reached the maximum number of node if the node
belongs to at least another lump and if the leave of the lump does not imply a loss of
density. If either of these conditions is not satisfied, the node must select a pair of nodes

102 2. The protocol ROSA

Node.checkNpL

for all lump ∈ lump_list do1:

if lump.size > LumpSizeLimit then2:

if canLeave(lump) then3:

leave(lump) ;4:

else5:

split(lump, findNodeForSplit(lump)) ;6:

Node.canLeave(lump) (Input:lump; Output:boolean)

if lump_list.size > 1 then7:

if lump.density() = lump.without(node).density() then8:

return true ;9:

return false ;10:

Node.findNodeForSplit(lump) (Input:lump; Output:pair<integer>)

result_density ← infinity ;11:

result_pair ← null ;12:

for all id1 ∈ lump.nodeId_list do13:

for all id2 ∈ lump.nodeId_list and id1 6= id2 do14:

tmp_pair ← pair(id1, id2);15:

if getSMD(lump,tmp_pair) < resulting_density then16:

result_density ← getSMD(lump,tmp_pair) ;17:

result_pair lestarrow tmp_pair ;18:

return result_pair ;19:

Figure 2.13: Limiting the number of nodes per lump

in order to split the lump around these two nodes. This selection is done as follows, the
node looks down the list of the nodes that compose the lump. For every pair of elements
of this list, the node computes what would be the density of the two lumps resulting from
the split if the lump was split around these elements. Finally the node selects the pair that
maximizes the densities of lumps that will result from the split.

The pseudo code of the function checkNpL is in Figure 2.13. The function getSMD (see
The Appendix) is a function that returns the minimum density obtained if a node splits a
lump around the nodes given in argument

We have seen the limitation of the number of nodes per lump. This limitation is the
first of the two steps of the limitation of the number of neighbors per node. The second
step consists in limiting the number of lumps to which a node can belong. To limit the
number of lumps to which it belongs, a node looks at the size of its list of lumps. While
the size of the list exceeds the limit, the node has to select a lump to leave. This choice
is based on the hypothetical density that will have the lump if the node left it. The node

103

selects the lump that will have the greatest theoretical density and leaves it. This is done
by the function checkLpN, its pseudo code is in Figure 2.14.

Node.checkLpN

while lump_list.size > LumpNumberLimit do1:

leave(findLTL()) ;2:

Node.findLTL() (Output:lump)

result ← null ;3:

for all lump ∈ lump_list do4:
lump1 ← lump.without(node.id) ;
lump2 ← result.without(node.id) ;
if lump = null or lump1.density() > lump2.density() then5:

result ← lump ;6:

return result ;7:

Figure 2.14: Limiting the number of lumps per node

We shall see in the Chapter 3 concerning the ’chain of lumps’ that these two functions
will be completed and modified.

2.4.10 Handling the lumps absorptions

When the set of nodes that compose a lump contains all the nodes that compose another
lump, it happens an absorption of the second lump by the first one. It results from this,
the disappearance of the absorbed lump from the list of lumps of all the concerned nodes.
The handling of such absorption cannot be done without exchanging messages between
the nodes that compose the absorbed lump. Since all the nodes that compose a lump can
be included in the sets of nodes of several different lumps, many lumps are susceptible to
absorb the lump. The nodes must choose one lump among the set of possible absorber
lumps. This choice should be the same for all nodes that compose the absorbed lump.

The detection and the handling of the absorptions of lumps is done by the nodes with
the help of the function checkAbsoprtion. A node detects the absorption of a lump in
looking down its list of lumps. For each lump of this list it checks if there is another lump
on the list that can absorb it. If such a couple of lumps is found, the node modifies its
list of lumps in order to reflect the absorption and notices the other nodes of the lumps
about this absorption. This is done using messages AbsorbLump. These messages contain
the identifier of the absorbed lump and the identifier of the absorbing lump. A node that
receives a message AbsorbLump removes from its list of lumps the lumps corresponding to
the identifier of the absorbed lump. We will see in the Chapter 3 dealing with the ’chain
of lumps’ how the identifier of the absorbing lump is used. The pseudo code corresponding
to the detection and the handling of the absorptions of lumps is in the Figure 2.15.

104 2. The protocol ROSA

Node.checkAbsorption

for all lump1 ∈ lump_list do1:

for all lump2 ∈ lump_list do2:

if lump1.canAbsorb(lump2) then3:

send(AbsorbLump(lump1.id lump2.id)) to lump ;4:

Lump.canAbsorb(otherLump) (Input:lump; Output:boolean)

for all id1 ∈ otherLump.nodesId_list do5:

found ← false ;6:

for all id2 ∈ lump.nodesId_list do7:

if id1 = id2 then8:

found ← true ;9:

break ;10:

if not found then11:

return false ;12:

return true ;13:

Messages handling
...
upon receive AsorbLump(absorbedLumpId, absorbingLumpId) do14:

lump_list ← lump_list - lump_list.get(absorbedLumpId) ;15:

...

Figure 2.15: Handling the absorptions of the lumps

2.4.11 Increasing the overall density

We saw in Section 2.4.8 dealing with the handling of the broken links that each node
periodically receives messages Alive from its neighbors. These messages contain some
lumps with low densities. We show in this section how, from this list of the received lumps
with low densities, each node locally increases the density of ROSA. A node increase the
density with the help of the function enhanceROSA of the main loop of ROSA.

The first step consists in a node browsing the list of the lumps received from its neigh-
bors. For each of these lumps, the node compares the current density of the lump to the
hypothetical density that the lump will have if the node joins it.

The calculation of this density is done with the function getRMDJ. The pseudo code for
this function is in the the Appendix. This function performs a copy of the representation
of the lump and simulates the changes caused by the join of the node. In the case where
the lump have reached the maximum number of nodes per lump, the function getRMDJ
also simulates the split resulting from the join. Then the function returns the hypothetical
density of the lump(s) obtained during the simulation.

After comparing the densities of lumps received from its neighbors to their hypothetical
densities if the node joins them, the node removes from this list each of the lump with an

105

hypothetical density less of equal to their current density. The node now possesses a list
of lumps that it can increase the density. If this list is empty, the increasing process stops,
else it continues.

Let us consider that the list of the lumps which the density may be increased by the
node is not empty. The node tries to join the lump of this list which has the lowest density.
If the maximum number of lumps which a node can belong is not reached, the node joins
the lump. In case where the limit of lumps is reached, the node must leave a lump if it
wants to join a new one. It means that in order to increase the density of the lump, the
node may have to decrease the density of another lump. Consequently, before joining the
lump the node ensures that the join will effectively increase the local density of the node
and not decrease it. The node looks down its list of lumps, and for each lump it compares
the current density to the hypothetical density that the lump will have if the node leaves
it.

Node.enhanceROSA()

toEnhance ← null ;1:

for all lump ∈ know_lump_list do2:

if lump.density() ≤ getRMDJ(lump) then3:

if toEnhance = null or lump.density() < toEnhance.density()4:

then
toEnhance ← lump ;5:

if toEnhance = null then6:

return ;7:

if lump_list.size > LumpNumberLimit then8:

foundLumpToLeave ← false ;9:

for all lump ∈ lump_list do10:

if getRMDL(lump) > toEnhance.density() then11:

foundLumpToLeave ← true ;12:

break ;13:

if not foudLumpToLeave then14:
return ;

joinLump(toEnhance) ;

Figure 2.16: Increasing the local density of a node

This comparison is done with the help of the function getRMDL. The function getR-
MDL, in a similar way that the function getRMDJ, simulates the lumps obtained by the
fact that the node leaves the lump and returns the density of these hypothetical lumps.
The pseudo code of the function getRMDJ can be found in the Appendix. The node can
join the lump to increase its density only if the current density of the lump is less than the
hypothetical density that will have the lump that the node has to leave.

The whole procedure described above is in the pseudo code of the function enhanceROSA

106 2. The protocol ROSA

that can be found in the Figure 2.16.

107

Chapter 3

Distributed HashTable over ROSA

3.1 Introduction to the DHTs

DHT is an acronym that stands forDistributedHashTable. In this section we introduce all
the necessary concepts for the understanding of the DHT. First, we present the definition
of the DHT the most commonly accepted. Then we explain the general properties and
common to all the DHTs. We also see how we can class the different DHTs into several
different classes. Finally we see some examples of well known DHTs.

3.1.1 Definition

An HashTable is a data structure that efficiently associates keys to data values using a
hash function. One can access to a value of the table using its keys. The access to an
element is performed by transforming, using the hash function, its associated key into an
HashTable index value. The HashTable index value allows to retrieve the desired element.

Figure 3.1: Distributed HashTable

A DHT is a decentralized system that acts as an HashTable. The key space is uniformly
allocated over the set of the participating nodes in such a way that the pairs <key, value>
are uniformly distributed over the nodes. In addition to this uniform distribution, the
DHT provides a lookup service that allows any participating node of the DHT to efficiently

108 3. Distributed HashTable over ROSA

retrieve any element stored on the table.
The maintenance of the mapping and of the consistency must be a distributed process

and in order to a DHT be scalable the network and CPU cycles used for nodes failures,
arrivals and departures must not depends on the size of the table.

The DHTs were popularized in 2001 with the introduction of the first DHTs implemen-
tation, Chord (Morris et al. [2001]), Pastry (Rowstron and Druschel [2001]), CAN (Rat-
nasamy et al. [2001]) and Tapestry (Zhao et al. [2004], Zhuang et al. [2001a]). The first
researches about DHT were motivated by the needs of the peer-to-peer systems. The needs
of these peer-to-peer systems, mainly used for sharing files, are to achieve a complete de-
centralization in order to avoid disruptions due to failures and to achieve an efficient <key,
value> lookup.

3.1.2 Properties

There is three main properties that the DHTs must have: scalability, correctness and fault
tolerance. Other non obligatory properties exist such the anonymity of the nodes or the
protection against malicious nodes. But since these properties are implemented only by
few DHTs we will not deal with these in this Section.

The correctness of a DHT is achieved when, for any pair <key, value> stored over the
DHT, any participating node is able to retrieve the value if the node possesses the key. It
means that any data stored on the DHT can be accessed from any point of the DHT. This
is not the case for the other type of distributed system. Gia (Chawathe et al. [2003]) does
not give such an assurance. A resilient lookup protocol is the base of the correctness of a
DHT, but a smart failures, node arrivals and departures management protocol is needed
too.

The fault tolerance property is linked to the correctness, since the fault tolerance assures
that the presence of failures will not prevent the lookup protocol to achieve correctly its
goal. It consists in finding a substitute for the failing nodes. When a node fails, the pairs
<key, value> that were stored by the failing node must be confided to another node of
the DHTs. The failure tolerance also relies on the lookup protocol. This protocol must be
able to operate in the presence of failures.

The scalability of a DHT is its capacity to bound its network and CPU cycle usage by
a limit that does not depend on the number of nodes that participate. A scalable DHT
should function efficiently with thousands of nodes. The scalability is reached by using a
distributed lookup protocol and a good distribution of the keys over the nodes.

The scalability and the efficiency of the lookup protocol are intrinsically tied with the
number of neighbors that a node has. The maximum number of neighbors that a node
can have is called maximum node degree. The efficiency of the lookup protocol is the
maximum number of hops in any route that any lookup request needs. It obvious that the
length of the route between two nodes, i.e. the number of hops needed for one of these
two nodes to access to a value stored by the other node, is low when the maximum node
degree is high. And the lengths of the routes between any nodes of the DHT is high when
the maximum degree is low. It is possible to classify the different DHTs according the
maximum degree and the route length. Using the Bachmann-Landau notation we have
the four classes described in the Table 3.1. Most of the implemented DHTs belong to the
third class. Since the node degree of ROSA is a constant, ROSA belongs to the first class.

109

More details about the theoretical and measured route length in ROSA will be given in
the Chapter 7 that deals with the performances.

Node degree Route length
O(1) O(n)

O(log(n)) O(log(n)/log(log(n)))
O(log(n)) O(log(n))
O(
√
n) O(1)

Table 3.1: The DHTs classification according to node degree and route length

3.1.3 Example

In order to gain a better understanding of what the DHTs are, we will now see two examples
of DHTs. The first one, Chord (Morris et al. [2001]), is one of the four pioneer of the DHTs
(Chord, CAN, Pastry, Tapestry). It was developed at MIT in 2001 by Ion Stoica, Robert
Morris, David Karger, Frans Kaashoek, and Hari Balakrishnan. The second one that will
be studied is Kademlia (Morris et al. [2001]). Kademlia is famous because it is one of the
most used DHT protocol. This protocol was adopted by a lot of file-sharing clients and is
the first that have reached such acceptance in a worldwide file-sharing community. It was
developed by by Petar Maymounkov and David Mazières.

3.1.3.1 Chord

In the Chord protocol the identifiers of the nodes are organized into a circle modulo 2m

where m is the length in bits of the identifiers. Therefore the identifier space is equal
to [0, 2m]. Chord can be composed of at most 2m nodes. The identifiers of a node is
computed using ’consistent hashing’ (Karger et al. [1997]). The use of ’consistent hashing’
to determine a node identifier ensures that each node receives the same number of keys.

Each key k, k ∈ [0, 2m], is confided to the first node whose the identifier is equal to or
follow k. This node is the ’successor node’ of the key k.

A node in Chord stores in its routing table, called finger table, the information necessary
to connect to other nodes of Chord. A finger table of a node contains m entries, so a node
can connect to m other nodes. So the node degree of Chord is in O(log(N)) where N is
the number of nodes of Chord.

Let id be the identifier of a node, the ith entry of finger table of this node is the first
node found whose the identifier is included in:[

(id+ 2i−1) mod 2m, (id+ 2i) mod 2m
)

. The lookup protocol of Chord consists, given a key k, in a node sending the request
to the node contained in its finger table that has the identifier that is the closest to k.
This process is repeated until the request reaches the targeted node. It was analytically
demonstrated that the lookup can be performed in O(log(N)), i.e. the route length in
Chord is in O(log(N)), where N is the number of nodes of Chord. In fact the real value,

110 3. Distributed HashTable over ROSA

obtained experimentally, is roughly 1
2 log2(N). The Figure 3.2 represents an instance of

Chord with m = 3 (i.e. with 8 possible identifiers). In this figure there is 4 nodes with the
identifiers 0, 1, 4 and 6. one can see the ’finger table’ and the set of keys managed by the
node that possesses the identifier 4.

Figure 3.2: An example of Chord DHT

3.1.3.2 Kademlia

The protocol of Kademlia is based on the XOR metrics. The distance between two identi-
fiers i1 and i2 is equal to i1⊕i2. The Kademlia identifiers system also relies on a ’consistent
hashing’. The first time that a node joins Kademlia, it computes its IDs using a consistent
hash function. Afterwards, this identifier will be used each time the node connects to
Kademlia. In Kademlia the nodes are organized as the leafs of a binary tree where the
position of a node is determined by the bits of its identifier.

Each node in Kademlia stores as many lists as the length in bits of its identifier. The
size of these lists are bounded by an integer k and are so called ’k-buckets’. The k-buckets
contains the necessary information for a node to join another node. Let id be the identifier
of a node, the ith k-buckets of this node is filled with the information concerning nodes
that are at a distance (using the XOR metrics) i of the node, i.e. filled with information
concerning nodes with identifiers that differ from i bits to id. The Kademlia protocol
ensures that every k-buckets contains at least one entry. A node can obtain these entries
by exchanging messages FIND_NODE with other nodes of Kademlia. When a k-buckets
is full a node only keeps the entries of last seen nodes. The node degree of Kademlia is in

111

O(log(N)) where N is the size of the network. In the Figure 3.3 is represented the binary
tree of a Kademlia DHT where the identifiers of the nodes have a length of 3 bits. In the
figure is also represented the 3-buckets of the node 101.

Figure 3.3: An example of a Kademlia binary tree, with the 3-buckets of the node 101.

In Kademlia the key space must be equal to the node identifier space and each pair
<key, value> is assigned to the node whose the identifier is the closer of the key. In
Kademlia, given a key, the lookup protocol consists in a node sending the request to the
node of its k-buckets that is the closest to key. This process is run iteratively until the
node that manages the key receives the request. The distance between the request and the
node that manages the key is reducing by at least 1/2 at each step. Since the height of
the binary tree is in O(log(N)) where N is the number of nodes of Kademlia. The route
length is also in O(log(N)).

3.2 The chain of lumps

In ROSA it is possible to organize the entanglements of lumps into a DHT. This DHT
will be called the ’chain of lumps’. The ’chain of lumps’ has to evolve according to the
modifications that occur in ROSA. In this section we first describe the ’chain of lumps’.
In second we see how the modifications of the entanglement of lumps affect the ’chain of
lumps’ and how the nodes react to the changes in order to maintain the ’chain of lumps’.
To finish we show how the ’chain of lumps’ can be used to route data packets from node
to lump. The advantages of the ’chain of lumps’ is that this DHT is compatible with
the ROSA protocol. To use the ’chain of lumps’ over ROSA it is only needed to add
some information to the messages exchanged between the nodes and to perform some light
modification on how the messages are handled by the nodes.

3.2.1 Description

The ’chain of lumps’ is a DHT built over ROSA. The key space of this DHT is an integer
interval called Iinit. Iinit is defined as : Iinit = [0, 2128 − 1]. Each lump of ROSA will have
to handle a part of this key space and the entanglement of lump is projected into Iinit in
order to form a chain. The projection is achieved by partitioning Iinit into sub-intervals.
These sub-intervals are attributed to the lumps in order to satisfy the following conditions:

112 3. Distributed HashTable over ROSA

• All the sub-intervals are allocated (1) ;

• Two lumps that possess contiguous sub-intervals share at least a common node (2) ;

• Each lump has at least one sub-interval (3).

In order to be operative the ’chain of lumps’ must imperatively satisfy the conditions
(1) and (2) at anytime. We will show further that any modification of the ’chain of lumps’
keeps these two conditions satisfied. The condition (3) only ensures a good efficiency and
load-balancing over the lumps.

Let consider a lump l that handles one sub-interval I of Iinit. The lump l is called
the lump owner of I. The lump that possesses the sub-interval just before I is called
the predecessor of l. A lump and its predecessor are consecutive lumps. The lump that
possess the sub-interval just after I is called lump the successor of l. A lump has as
many predecessors and successors as the number of sub-intervals that it handles. In order
to be more efficient the last ans first lumps of the chain are respectively predecessor and
successor of each other. This way the lumps form a circular chain. Since a node can belong
to LumpNumberLimit lumps, there is shortcuts in the ’chain of lumps’, i.e. a way to jump
from a lump to another lump without going through the lumps that are between them in
the ’chain of lumps’. The Figure 3.4 shows the projection of the entanglement of lumps
over Iinit. On this figure the nodes are represented by the green circles, the lumps by the
purple dashed shapes and the shortcuts by the red curves.

Figure 3.4: The transformation of the entanglement of lumps into a ’chain of lumps’.

113

The projection of the whole entanglement of lumps onto an integer interval combined
with the fact that any sub-interval is allocated to a lump and the fact that any lump has a
member in common with its predecessors and its successors ensures that there exists a path
composed by the nodes that links the first lump to the last lump of the chain. This property
is fundamental because it will guarantee that the routing algorithms proposed further in
this section will terminate. The projection onto a greater dimensional space would allow
for better routing quality, but the construction and maintenance of the resulting structure
would have been much more complex. Consequently the gain made at the cost of routing
would have been lost by the increased cost of maintenance.

The ’chain of lump’ constrains to modify the representation of a lump that is shown
in the Section 2.3. It is necessary to add the list of the sub-interval handled by the lump.
We also have to present the representation of a sub-interval. The representation of a sub-
interval is composed by the lower bound and the upper bound of the sub-interval. This
representation is completed by the identifier of the lump owner, the lists of the nodes that
compose the predecessor and the successor of the lump owner and a list of DHT entries. A
DHT entry is value that a node wanted to store on the ’chain of lumps’ and its associated
key. We will see in the Section 3.2.2 that when a lump is split into two other lumps,
the sub-intervals handled by the lump have to be split and shared over the two lumps
resulting from the split. The two lists containing the identifiers of the nodes composing
the predecessor and the successor of the owner will be helpful during this process. The
representation of a sub-interval is represented in Figure 3.11.

Lump
...
subInt_list : list<subinterval> ; // sub-interval handled by lump
...

SubInterval
lowBound : integer ;
upBound : integer ;
ownerId : integer ;
predId_list : list<integer> ;
succId_list : list<integer> ;
DHTentry_list : list<dhtentry> ;

DHTEntry
key : integer ;
value : data ;

Figure 3.5: Completion of the representation of a lump and representation of a sub-interval
and a DHTentry.

In the remainder of this chapter, the sub-interval that just precedes a given sub-interval
I is called the predecessor of I and the sub-interval that just follows I is called the successor
of I. The predecessor and the successor of I are respectively noted I− and I+. The lump
that handles a sub-interval I is denoted to lI . We refer as the lump predecessor and the
lump successor of a sub-interval I to respectively the lump handling I− and the lump

114 3. Distributed HashTable over ROSA

handling I+. Consequently in regard to a sub-interval I, we refer to the lump predecessor
of lI as lI− and to the lump successor of lI as lI+. The list of the identifiers of the nodes
that compose lI− is named the predecessor list and the list of the identifiers of the nodes
that compose lI+ is named the successor list.

3.2.2 Building and maintaining the ’chain of lumps’

The ROSA protocol (described in Chapter 2) consists in nodes leaving some lumps in order
to join other lumps and increase the overall density. When a lump is composed by too
much nodes, this lump has to be split into two smaller lumps. The lumps are also split
when a virtual link is broken.

When the set of the nodes that compose a lump includes the set of the nodes composing
another lump, the first lump absorbs the second one. The absorption of a lump by another
one may happen after a join. Let us consider two lumps l1, l2 with their corresponding set
of nodes s1 and s2 (s1 6= s2 and s1 6⊂ s2). Considers that there exists a node n1 ∈ s2 such
that s1∪n1 ⊂ s2. If n1 joins l2 the lump l2 absorbs l1. Here is an example of a join leading
to a lump absorption, let the set of the nodes that compose l1 be {n1, n2} and the set the
nodes that compose l2 be {n2, n3}. If the node n1 joins the lump l2, the set of nodes of l2
becomes {n1, n2, n3} and includes the set of the nodes of l1. Therefore the lump l2 absorbs
the lump l1.

The absorption of a lump may also happen after a split. Let us consider two other
lumps l3, l4 and their corresponding set of nodes s3 and s4. Let scommon ⊂ s3 and n4

a node such that n4 6∈ s3 and s4 = scommon ∪ n4. If the the lump l4 is split around n4

and another node n of s4 two lumps are created. The set of nodes of the first lump is
s4 − n4 = scommon ⊂ s3 and the set of nodes of the second lump is s4 − n. Therefore l3
will absorb the first lump resulting from the split. Below is an example of a split leading
to a lump absorption, considers that the sets of the nodes that compose the lumps l3 and
l4 are respectively equal to {n1, n2, n3} and {n1, n2, n4}. Let us consider that the virtual
link between n1 and n3 is broken, the lump l3 has to be split around these two nodes. The
lumps that results from the split are l31 and l32 respectively composed bu the nodes of the
sets {n2, n3} {n1, n2}. The lump l32 is absorbed by l4.

In ROSA new lumps are only created during the split of an already existing one and
the lumps only disappear during this absorption process. The ’chain of lumps’ must react
and reconfigure itself according to the splits and the absorptions. The initialization of the
’chain of lumps’ is presented in the Section 3.2.2.1. In the Sections 3.2.2.2 and 3.2.2.3 we
see how the ’chain of lumps’ handles the absorptions and the splits of the lumps. The
’chain of lumps’ constrains to complete and modify some functions of the initial ROSA
protocol. These changes are described in this Chapter.

3.2.2.1 Initializing the ’chain of lumps’

During the initialization of ROSA the first node creates the first lump. The first node has
to handle the initial interval Iinit. As it is shown further, the sub-intervals handled by the
lumps could be split during the split of the lumps handling them but neither the absorptions
nor the splits must cause the loss of some sub-intervals, consequently, this implies that the
condition (1) satisfied. The initialization of the ’chain of lumps’ constrains to modify the

115

initROSA() function as described in the Figure 3.6.

Node.initROSA
...

6: Iinit.lowBound ← 0 ;
7: Iinit.upBound ← 2128 − 1 ;
8: Iinit.owner ← lump.id ;
9: Iinit.predId_list ← lump.nodeId_list ;

10: Iinit.succId_list ← lump.nodeId_list ;
11: lump.subInt_list ← subInt_list ∪ Iinit;...

Figure 3.6: The completion initROSA function for the ’chain of lumps’

These modifications consist in setting the first lump as the owner of Iinit. Since there
is, for the present a single lump, in ROSA and according to the definition of the ’chain of
lump’ this first lump is its own predecessor and its own successor. That is why the lists of
the identifiers of the nodes that compose the predecessor and the successor is equal to the
list of the identifiers of the nodes of the first lump. To finish the node that initiates ROSA
adds the representation of Iinit to the list of the sub-intervals handled by the first lump.

3.2.2.2 Reacting to the absorptions of a lump

When a lump is absorbed by another one, the sub-intervals handled by the absorbed lump
must be handled by the absorbing one. This is schematized in the Figure 3.7. In the upper
part of the figure one can see two lumps lI− and lI and a part of ’the chain of lumps’. The
lump lI− handles the sub-interval I− = [a, b) and the lump lI handles the sub-interval
I = [b, c). The node n joins the lump lI . Consequently the set of the nodes that compose
lI includes the set of the nodes that compose lI− and the lump lI absorbs the lump lI−.
On the lower part on the figure one can see that the sub-interval handled by lI− is given
to the lump lI . After the join, the lump lI have to handle the sub-interval [a, c) .

The detection and the management of the absorptions of the lumps are dealt in the
Section 2.4.10. We have seen that it consists in a node checking if one of the lumps of its list
of lumps can absorb another one. If such a pair of lumps is found the node sends messages
AbsorbLump to the nodes that compose the absorbing lump. The ’chain of lumps’ forces
to modify the content of the messages AbsorbLump and the way how the nodes handle
these.

A message AbsorbLump, that is sent to notice that a lump absorbs another one, contains
the identifiers of the absorbed and absorbing lumps. In order to be compatible with the
’chain of lumps’ it is necessary to add the list of the sub-intervals that was handled by the
absorbed lump to the message AbsorbLump. When a node receives a message AbsorbLump,
it removes the absorbed lump from its list of lumps and adds the sub-intervals contained
in the message to the list of the sub-intervals that the absorbing lump handles. The node
also has to check if the absorbing lump does not handle now two contiguous sub-intervals.
If contiguous sub-intervals are found, then these sub-intervals have to be merged. Let us

116 3. Distributed HashTable over ROSA

Figure 3.7: An absorption and its impact on the ’chain of lumps’

consider two contiguous sub-intervals I and I+, such that I+ is the sub-interval that just
follows I in the ’chain of lumps’. To merge I and I+ a node creates a new sub-interval
Imerged whose the lower bound is set to the lower bound of I and the upper bound is set
to the upper bound of I+. The predecessor and successor lists of Imerged are respectively
the predecessor list of I and the successor list of I+.

The modified and completed pseudo code concerning the absorption of a lump is shown
in the Figure 3.8. The functions contiguous and merge are described in the Appendix.
The function contiguous takes two sub-intervals and returns true if the sub-intervals are
contiguous. The function merge takes two contiguous sub-intervals in argument and returns
the sub-interval that results from the merge of the arguments.

3.2.2.3 Reacting to the split of a lump

When a lump is split into two new lumps, the sub-intervals handled by the split lump
must be handled by the two new lumps. Some of these sub-interval have to be split and
distributed to the lumps that result from the split. Some of these, have to be confided
(without splitting these) to the resulting lumps. We see in first in this Section, how a
sub-interval is split and distributed and we also see in which case a sub-interval cannot be
split. Afterwards we see in which cases it suits to split and to distribute a sub-interval and
in which cases the best solution is to keep a sub-interval unchanged and to confide it to
one of the lumps that result from the split.

A lump l possesses a predecessor lump and a successor lump, for each sub-interval
I = [a, b) that it handles. Let us call lI− the lump predecessor of l and lI+ the successor of

117

Messages handling
...
upon receive AsorbLump(absorbedLumpId ,1:

absorbingLumpId,
subInterval_list)

do
lump_list ← lump_list - lump_list.get(absorbedLumpId) ;2:

lump ← lump_list.get(absorbingLumpId) ;3:

for all subint1 ∈ lump.subInt_list do4:

for all subint2 ∈ subInterval_list do5:

if contiguous(subint1, subint2) then6:

subint2 ← merge(subint1, subint2) ;7:

lump.subInt_list ← lump.subInt_list - subint1 ;8:

subint2.owner ← lump.id ;9:

lump.subInt_list ← lump.subInt_list ∪ subint2 ;10:

...

Figure 3.8: Handling the absorption of a lump

l corresponding to I. Considers now the set of the nodes that compose lI , lI− and lI+, let
us call these subsets sI , sI− and sI+. If we refer to the definition of the ’chain of lumps’
we have sI− ∩ sI 6= ∅ and sI ∩ sI+ 6= ∅. One can remark that this property is true when
the ’chain of lumps’ is created. Indeed since at the beginning Iinit is handled by a single
lump, this single lump is its own predecessor and successor. From the split of the lump lI
results two lumps l1 and l2. The set of the nodes of l1 is s1 and the set of the nodes of l2
is s2. If the size of lI is greater than 2 then s1 ∩ s2 6= ∅. The sub-interval I = [a, b) can
be split into two other sub-intervals I ′ = [a, ba+b

2 c) and I ′+ = [ba+b
2 c, b) if one of the two

conditions:
sI− ∩ s1 6= ∅ and sI+ ∩ s2 6= ∅ (4)

sI− ∩ s2 6= ∅ and sI+ ∩ s1 6= ∅ (5)

is respected. It may happen that none of the conditions (4, 5) is satisfied. In this case I
cannot be split. However, since sI− ∩ sI 6= ∅ and sI ∩ sI+ 6= ∅ it means that either:

sI− ∩ s1 6= ∅ and sI+ ∩ s1 6= ∅ (6)

or
sI− ∩ s2 6= ∅ and sI+ ∩ s2 6= ∅ (7)

In the first case I must be given to l1 and else must be given to l2. Else if one of the
conditions (4, 5) is satisfied, I ′ and I ′+ could be given to l1 and l2. This is schematized in
the Figure 3.9.

In the upper part of this Figure, the node n1 detects that the virtual link with the
node n2 is broken. The lump lI that is composed by n1, n2 and some other nodes has to

118 3. Distributed HashTable over ROSA

Figure 3.9: A split and its impact on the ’chain of lumps’

be split around n1 and n2. It results from this split two lumps l1 and l2. In the lower part
of the Figure The sub-interval [a, b) is split in two sub-intervals and the left one is given
to l1 while the right one is given to l2.

Since the conditions (4, 5) could be true together it is necessary to define a strategy for
the distribution of I ′ and I ′+. Two distributions are possible. In the distribution 1, the
sub-intervals I ′ and I ′+ are confided to respectively l1 and l2. In the distribution 2, the
sub-intervals I ′ and I ′+ are confided to respectively l2 and l1. This strategy is summarized
in the Table 3.2. The cells with ’confided’ in, correspond to the cases where the sub-
interval cannot be split. In this cases the sub-interval is given to the resulting lump that
can handle the sub-interval. A lump can handle a sub-interval I if it shares some nodes
with the two lumps that handle the sub-intervals that are contiguous to I. The cells in
grey corresponds to the cases where the sub-interval cannot neither be split nor confided to
one of the resulting lumps. In this cases the chain of lumps is broken because the condition
(2) is not satisfied anymore. However, it is demonstrated in the Section dealing with the
operating proof (Section 3.2.4) that, if before the split the condition (2) is satisfied and
if the size of the split lump is greater than 2, these cases cannot be encountered. The
bottom left cell corresponds to the case where the conditions (4, 5) are both satisfied. In
this case the sub-intervals resulting from the split can be distributed following the both
way, therefore we follow the way that maximize the number of nodes in common between
the resulting lumps and the predecessor and successor.

The number of sub-intervals that compose the ’chain of lumps’ has an effect on the
efficiency of the routing algorithm. The greater the number of sub-intervals is, the greater

119

s1 ∩ sI− = ∅
and

s1 ∩ sI+ = ∅

s1 ∩ sI− 6= ∅
and

s1 ∩ sI+ = ∅

s1 ∩ sI− = ∅
and

s1 ∩ sI+ 6= ∅

s1 ∩ sI− 6= ∅
and

s1 ∩ sI+ 6= ∅

s2 ∩ sI− = ∅
and

s2 ∩ sI+ = ∅
confided to l1

s2 ∩ sI− 6= ∅
and

s2 ∩ sI+ = ∅
distribution 2 distribution 2

s2 ∩ sI− = ∅
and

s2 ∩ sI+ 6= ∅
distribution 1 distribution 1

s2 ∩ sI− 6= ∅
and

s2 ∩ sI+ 6= ∅
confided to l2 distribution 1 distribution 2

if
min#(s1 ∩ sI−, s2 ∩ sI+)

>
min#(s2 ∩ sI−, s1 ∩ sI+)

distribution 1
else distribution 2

Table 3.2: The sub-intervals distribution strategy

the number of hops needed to perform a lookup is. That is why it is interesting to reduce
the number of the sub-intervals that compose the ’chain of lumps’. Ideally the number
of sub-intervals of the ’chain of lumps’ must be equal to the number of lumps in ROSA.
Accordingly, the splits of the sub-intervals have to be avoided when it is possible. Let us
consider that a lump lI is split into l1 and l2. The split of one of its sub-intervals I is
avoidable if I can be handled by l1 or l2 and if l1 and l2 handle each one at least one
sub-interval after that all the sub-intervals handled by lI have been split and distributed
or confided to l1 or l2.

Once ROSA endowed with the ’chain of lumps’, a node that wants to split a lump
must deal with the sub-intervals that this lump handles. If the lump handles only one
sub-interval, this sub-interval is split and distributed to the lumps resulting from the split
(or simply confided to one of these lumps if the sub-interval cannot be split). If the lump
that is split handles more than one sub-interval, for each of the sub-intervals the node
determines if the sub-interval can be handled by one or both of the resulting lumps or
if the sub-interval must be split. Once it is done, the nodes shares out the sub-intervals
over the two resulting lumps in such a way that both of the resulting lumps have at least
one sub-interval and that any sub-intervals is confided to a lump that can handle it. This
distribution is done in order to minimize the difference between the number of sub-intervals
handled by each of the two resulting lumps. During this process a node must split a sub-

120 3. Distributed HashTable over ROSA

Node.split(lump, ids) (Input:lump, pair<integer>)

lump1 ← lump.without(ids[1]) ;1:

lump2 ← lump.without(ids[2]) ;2:

for all subinterval ∈ lump.subInt_list do3:

which ← none ;4:

if lump1.canHandle(subinterval) then which ← l1;5:

if lump2.canHandle(subinterval) then6:

if which = l1 then which ← both;7:

else which ← l2 ;8:

switch which do9:

case none10:

subinterval.splitOver(lump1, lump2) ;11:

case l112:

lump1.subInt_list ← lump1.subInt_list ∪ subinterval ;13:

case l214:

lump2.subInt_list ← lump2.subInt_list ∪ subinterval ;15:

case both16:

if lump1.subInt_list.size() < lump2.subInt_list.size() then17:

lump1.subInt_list ← lump1.subInt_list ∪ subinterval;18:

else19:

lump2.subInt_list ← lump2.subInt_list ∪ subinterval ;20:

for i ∈ {1,2} do21:

if lumpi.subInt_list.size() = 0 then22:

for all subinterval ∈ lumpi+1 mod 2.subInt_list do23:

if subinterval.canSplitOver(lump1, lump2) then24:

lumpi+1 mod 2.subInt_list ←25:

lumpi+1 mod 2.subInt_list - subinterval ;
subinterval.splitOver(lump1, lump2) ;26:

return send(SplitLump(lump.id, lump1, lump2)) to lump ;27:

return send(SplitLump(lump.id, lump1, lump2)) to lump ;28:

Figure 3.10: The modified split function

interval only if the sub-interval cannot be handled by one of the resulting lumps or if one
of the resulting lumps does not handle any sub-interval. The pseudo code of the modified
split function is shown in the Figure 3.10. The pseudo code of the functions splitOver,
canSplitOver and canHandle can be found in the Appendix. The splitOver function splits
a sub-interval into two contiguous sub-intervals and distributes these over the two lumps
given in argument and according to the strategy resumed in the Table 3.2. This function

121

also shares out the DHT entries of the sub-interval split to the resulting sub-intervals.
The function canSplitOver returns true if the sub-interval can be distributed following
the distribution 1 or the distribution 2 and else it returns false. The function canHandle
returns true if the lump can handle the sub-interval given in argument and else it returns
false.

3.2.2.4 Maintaining the predecessors and successors nodes identifiers lists

In order to determine if and how a sub-interval I can be split, the predecessor and successor
lists are essential. However it may happen that these lists are not up to date. Let us
consider a lump lI that handles the sub-interval I and a node ni that wants to join lI .
After that the node ni joins lI the successor list corresponding to I− and the predecessor
list corresponding to I+ are not up to date anymore. Indeed the identifier of ni is not an
element of these lists. Consider now that a node nj leaves lI , in this case the identifier of
the node nl has to be removed from the predecessor and successor lists mentioned above.
The absorption of a lump may also lead to an inadequacy of the predecessor and successor
lists of some sub-intervals.

keepSubIntUTD

for all lumpI ∈ lump_list do1:

for all lumpI+ ∈ lump_list do2:

if succeed(lumpI , lumpI+) then3:

for all pair ∈ getSuccSubIntPair(lump1, lump2) do4:

if not checkPredList(lumpI , lumpI+, pair) then5:

send UpdtPred(lumpI .nodeId_list, pair[0].lowBound)6:

to lumpI+;
if not checkSuccList(lumpI , lumpI+, pair) then7:

send UpdtSucc(lumpI+.nodeId_list, pair[1].lowBound)8:

to lumpI ;

Messages handling
...
upon receive UpdtPred(Id_list, bound) do9:

sub_int ← findSubInt(bound) ;10:

sub_int.predId_list ← Id_list ;11:

upon receive UpdtSucc(Id_list, bound) do12:

sub_int ← findSubInt(bound) ;13:

sub_int.succId_list ← Id_list ;14:

...

Figure 3.11: Maintaining the predecessor and successor lists of the sub-intervals

To keep these lists up to date, a function has to be added to the main loop of ROSA.
This is the function keepSubIntUTD. This function consists in a node checking if it belongs

122 3. Distributed HashTable over ROSA

to both a lump and its successor. Let us consider that the node finds such a couple of
lumps and let us call lI the first lump and lI+ its successor. The node looks down the
list of the sub-interval handled by these two lumps in order to find the concerned pairs of
sub-intervals. It may happen that there is more than one pair if the lumps handle more
than one sub-interval. For each of these pairs <I, I+>, the node checks that the list of
the identifiers of the nodes composing lI is equal to the predecessor list of I+. If these
lists are not equal, the node sends a message UpdtPred to the lump lI+. This message
contains the list of the identifiers of the nodes that compose lI and the lower bound of
I. Afterwards, the node checks that the list of the identifiers of the nodes composing lI+

is equal to the successor list of I. If these lists are not equal, the node sends a message
UpdtSucc to the lump lI+. This message contains the list of the identifiers of the nodes that
compose lI+ and the lower bound of I+. The node can performs these checks and builds
such messages because it belongs to both lI and lI+. A node receiving a message UpdtPred
or UpdtSucc updates the predecessor or successor list of the corresponding sub-interval
with the list of the identifiers contained in the message. The pseudo code of the function
keepSubIntUTD is shown in Figure 3.11. The function succeed determines if the second
lump given in argument is a successor of the first lump given in argument. This function
returns true if this is the case and false else. The function getSuccSubIntPair takes two
lumps in argument and returns a list of pairs of sub-intervals. These pairs are composed
of a sub-interval and its successor, the first one must belong to the first lump given in
argument and the second one must belong to the second lump given in argument. The
functions checkPredList and checkSuccList return true if the corresponding predecessor
and successor list are up to date and return false else. The pseudo-code of these functions
can be found in the Appendix.

3.2.3 Using the ’chain of lumps’

In a DHT any participating node can store a <key, value> pair over the DHT. Generally,
this pair will be stored by a node of the DHT. In the ’chain of lumps’ a given <key, value>
pair is stored by all the nodes of a lump. This confers to the ’chain of lumps’ a better
failure tolerance. Indeed, with the DHT in which a pair is only stored by one node, the
failure of this nodes leads to the loss of all the pairs that the node manages. With the
’chain of lumps’ the failure of a node does not cause such a loss. In the remainder of this
section, we refer to the lump that handles the sub-interval that contains a given key k as
the lump that handles k. And we said that a node handles a key k if this node belongs to
the lump that handles k.

In this Section we see how a node can store a <key, value> pair over the ’chain of
lumps’ (see 3.2.3.1). Afterwards we see how a node proceeds to retrieve a pair stored over
the ’chain of lumps’ (see 3.2.3.2). Then we see how we can generalized these processes to
send data packets to the nodes that handle a given key (see 3.2.3.3). To finish, we explain
how we deal with the nodes that do not handle any key (see 3.2.3.4).

3.2.3.1 Storing a <key, value> pair

In this section we see how a node can store a <key. value> pair over the ’chain of lumps’.
To store a value over the ’chain of lumps’, a node must first compute the key associated to

123

the value. This key is an integer that must belong to [0, 2128−1). In order to compute this
key we can use an existing hash function on the bytes of the value. The key is finalized
by performing a modulo 2128 over the value given by the hash function. Once this key is
computed, the node can start the store process.

Figure 3.12: A step of the store process

The first step of the store process consists in a node n checking if the node handles the
key. If the node handles this key, the node builds a message StoreHere. Let the sub-interval
containing the key be Ikey and the lump handling the key be lIkey. The message StoreHere
contains the <key, value> pair and the lower bound of Ikey. The node n sends this message
to lIkey. A node that receives a message StoreHere, looks for the sub-interval Ikey whose
the lower bound is equal to the one contained in the message. Once this sub-interval is

124 3. Distributed HashTable over ROSA

found, the node completes the list of the <key, value> pairs of Ikey with the <key, value>
pair contained in the message.

If the node n that wants to store the <key, value> does not handle the key, it sends
a message GetDistance to its neighbors. This messages only contains the key. A node
that receives such a message retrieves the key contained in the message and computes the
distance between itself and the key. The distance between a node n and a key k is defined
as the distance minimum between the lumps of its list of lumps, the distance between a
lump l and a key k is the minimum distance between k and the sub-intervals handled by
l and the distance between a sub-interval I and the key k is defined as follows:

dist(I, k) =
{
min(|k − I.lowBound|, |k − I.upBound|) if k 6∈ I
0 if k ∈ I

Once the distance is computed a node that received a message GetDistance replies
with a message Distance. This message contains the computed distance. The node n
that sends a message GetDistance eventually receives from its neighbors a set of messages
Distance. Then n selects the neighbor that sent the message that contains the smallest
distance and builds a message Store. This message contains the <key, value> pair that the
node wants to store. Finally n sends this message to the selected neighbor. A node that
receives a message Store repeats the whole process. This process will be repeated until
the <key, value> pair reaches the appropriate lump. The figure 3.12 shows a step of this
process. In the top of this figure a part of the ’chain of lumps’ is represented. In order to
simplify the figure we deliberately ignore the shortcuts, i.e. we consider that each node of
ROSA only belongs to only one lump. In the rest of the figure, we focus on the node n.
This node n wants to store a value on the ’chain of lumps’. The corresponding key of this
value is 143. In b) n sends the messages GetDistance to its neighbors. In c) each of the
neighbors of n replies with a message Distance. In d), n sends the message Store to the
neighbors that is the closest to 143. This neighbor is n3.

3.2.3.2 Retrieving a value

To retrieve a value stored over the ’chain of lumps’ a node n must know the key k that
corresponds to the value. If n knows k, it can start the lookup process. First n checks if
it handles k. In this case the node can retrieve from the lump that handles k the wanted
value. Else the node builds and sends a message Lookup. This message contains the key k,
the identifier and the location of n. The location of a node is constituted by its identifier
and the bounds of the sub-intervals handled by the lumps whose the node belongs.

A node that receives a message Lookup checks if it handles k. If the node handles
this key, it retrieves the value that corresponds to k, and builds a message DataPacket
containing the wished value. Afterwards, the node sends the message to the node n. In
order to be able to send the message, the node finds a key that is handled by n with the
help of the location of n that is contained in the message Lookup. Once such a key is found,
the node sends the retrieved value to n as in the process described in the Section 3.2.3.3.

If a node that receives a message Lookup does not handle the key k, it sends a message
GetDistance to its neighbors. Therefore, the node selects the neighbor that replies with the
message Distance that contains the smallest distance, and forwards the message Lookup to

125

this neighbor. This process will be repeated until the message Lookup reaches a node that
handles the key k.

3.2.3.3 Sending data packets to a given lump

It is possible to extend the store process in order to allow a node to send data packets to
the nodes handling a given key. This process can be used to build a resilient file storage.
It will also used to build algorithm that enables the routing from node to node.

sendDataPacket(key, packet) (Input:integer, data)

for all lump ∈ lump_list do1:

if lump.handle(key) then2:

return send DataPacket(key, packet) to lump ;3:

return forwardDataPacket(key, packet) ;4:

forwardDataPacket(key, packet) (Input:integer, data)

for all neighbor ∈ neighbor_list do5:

send GetDistance(key) to neighbor.phy ;6:

wait until rcv_list(Distance(distance)).size() = neighbor_list.size() do7:

nextHop ← null ;8:

distancenextHop ← infinity ;9:

for all message ∈ rcv_list(Distance(distance)) do10:

if message.distance < distancenextHop then11:

distancenextHop ← message.distance ;12:

nextHop ← getSender(message) ;13:

return send DataPacket(key, packet) to nextHop ;14:

Messages handling
...
upon receive DataPacket(key, packet) do15:

if handle(key) then16:

sender ← getSender(DataPacket(key, packet)) ;17:

if not sender.handle(key) then18:

sendDataPacket(key, packet) ;19:

/* extract data from packet */
return ;20:

return forwardDataPacket(key, packet) ;21:

...

Figure 3.13: Sending a data packet to the nodes handling a given key

A node n that wants to send data packets to the nodes that handles a given key k
builds a message DataPacket. This message contains the key k and the data to convey.

126 3. Distributed HashTable over ROSA

Afterwards, the node checks that it does not belong to the lump that handles k. If n
belongs to such a lump, it sends the message DataPacket to all the nodes that compose
the lump. If the node does not belong to such a lump, it sends messages GetDistance to
its neighbors, receive a set of messages Distance, selects the neighbor that is the closest to
k and forwards the message DataPacket previously built to this neighbor.

When a node receives a message DataPacket it checks if it handles the key k contained
in the message. If the node handles this key, it first extracts the data contained in the
message. Afterwards, the node checks if the node that sends the message also handles k.
This verification consists in looking if the sender node is one of the nodes that compose
the lump that handles k. If the sender node does not handle k, the node that received the
message DataPacket forwards it to all the nodes that compose the lump that handles k.
If the node that received the message DataPacket does not handle k, the node repeats the
process mentioned above. This process is repeated until the message DataPacket reaches
one node that handles k.

The pseudo code corresponding to this process is shown in the Figure 3.13. The function
handle takes a key as argument and returns true if the caller, node or lump, handles the
key. It returns false else. The rcv_list(Distance(distance)) is filled with the messages
Distance(distance) received by the node.

3.2.3.4 Dealing with the nodes do not handle any keys

It may happen that after the split of a lump, in the worst case, one of the resulting lumps
does not handle any sub-interval and it may also happen that a node only belongs to lumps
without sub-interval.

In this case a node is not able to compute the distance between itself and a given
key. Consequently, it is possible that all the neighbors of a node are in such a case. The
process described in 3.2.3.3 cannot be used by the node to send data packets. If this node
wants to send a data packet to the nodes handling a given key, it has to build a message
RandomDataPacket(key, data) to one of its neighbor. This message contains the key and
the data to convey. When a node receives such a message, the node checks if it handle a
key. If this is not the case, the node forwards the message to one of its neighbors randomly
chosen. If the node handles a key, it starts the procedure described in 3.2.3.3 to send
the data packet to the nodes handling the key. This is detailed in the pseudo-code of the
Figure 3.14. The function getRand returns a random element of the caller. The random
walk algorithm can be replaced by a flooding algorithm. With the flooding algorithm the
message RandomDataPacket(key, data) reaches a node handling a key faster than with the
random walk algorithm. However, the flooding algorithm generates more network usage.

When a node does not belong to a lump that handles a sub-interval it does not have
any location. Let us recall that the location of a node is the set of the bounds of the sub-
intervals handled by the lumps whose the node belongs. The node location is for example
needed to retrieve a <key, value> pair stored on the ’chain of lumps’. Let us consider a
node n, that does not handle any key, wishing to retrieve a value stored over the ’chain
of lumps’. The node n sends a message RandomLookup to one of its neighbors randomly
chosen. A message RandomLookup is similar as a message Lookup described in 3.2.3.2
excepted that it does not has any location field. The messages RandomLookup are routed
as the messages RandomDataPacket. When a message RandomLookup is received by a

127

sendRandomDataPacket(key, packet) (Input:integer, data)

neighbor ← neighbor_list.getRand() ;1:

send RandomDataPacket(key, packet) to neighbor ;2:

Messages handling
...
upon receive RandomDataPacket(key, packet) do3:

for all lump ∈ lump_list do4:

if lump.subInt_list.size() 6= 0 then5:

return sendDataPacket(key, packet) ;6:

neighbor ← neighbor_list.getRand() ;7:

send RandomDataPacket(key, packet) to neighbor ;8:

...

Figure 3.14: Sending a data packet from a lump that does not handle any key

node handling a key, let nrelay be this node, nrelay transforms it into a message Lookup
with its own location in. When the message DataPacket, containing the value that has to
be retrieved, reaches n, the node nrelay builds a message FloodDataPacket containing the
value and the identifier of n. Afterwards, this message is flooded over the nodes that do
not handle any key until the message reaches n. In a more general way a node that wants
to be personally contacted by another node must communicate its location and this is not
possible nodes that do not handle any key.

3.2.4 Operating proof

We have seen in the Section 3.2.1 that the ’chain of lumps’ must satisfy the conditions (1)
and (2) in order to be operative. In the Section 3.2.4.1 we see that the condition (1) is
always respected since the whole interval initial Iinit is shared over the entanglement of
lumps. In the Section 3.2.4.2 we see under which hypothesis we are sure that the condition
(2) is satisfied.

3.2.4.1 All the sub-intervals are allocated

At the initialization of the ’chain of lumps’ the initial interval Iinit is confided to the first
lump. Afterwards, the sub-intervals are split or merged according to the modifications of
the entanglement of lumps. A sub-interval may be split when its lump owner is split and
two sub-intervals may be merged when a lump absorbs another one. But at no moment, a
sub-interval can disappear or be lost if the nodes strictly follows the protocol. Consequently,
it is obvious that the condition (1) is always satisfied.

128 3. Distributed HashTable over ROSA

3.2.4.2 A lump and its successor share at least a common node

Let lI be a lump and sI the set of the nodes that compose lI such that:

sI = {n1, n2} ∪ s′I
where n1 and n2 are some ordinary nodes that compose lI and s′l is the set of the other
nodes that compose lI .

From the split of a lump lI around the two arbitrary nodes n1 and n2 results two lumps
l1 and l2 with their corresponding sets of nodes s1 and s2 such:

s1 = {n1} ∪ s′I and s2 = {n2} ∪ s′I
In regard with a sub-interval I owned by lI , let lI− and lI+ be respectively the lump
predecessor and lump successor of lI and their corresponding sets of nodes sI− and sI+.
Let us consider that the condition (2) is satisfied, we have:

sI− ∩ sI 6= ∅ and sI ∩ sI+ 6= ∅

Proposition. If the condition (2) is satisfied, the split of lump with a size greater than 2
will let the condition (2) satisfied.

Proof. If the size of the lump lI is greater than two we can affirm that:

s1 ∩ s2 = s′I 6= ∅
therefore the condition (2) still be satisfied if:

sI− ∩ s1 6= ∅ or sI− ∩ s2 6= ∅

and:
s1 ∩ sI+ 6= ∅ or s2 ∩ sI+ 6= ∅

Since sI− ∩ sI 6= ∅ and sI = s1 ∪ s2 we have:

sI− ∩ s1 = ∅ ⇒ sI− ∩ s2 6= ∅
and

sI− ∩ s2 = ∅ ⇒ sI− ∩ s1 6= ∅
And since sI ∩ sI+ 6= ∅ and sI = s1 ∪ s2 we have:

s1 ∩ sI+ = ∅ ⇒ s2 ∩ sI+ 6= ∅
and

s2 ∩ sI+ = ∅ ⇒ s1 ∩ sI+ 6= ∅
Consequently, the condition (2) is satisfied, the split of lump with a size greater than 2
will let the condition (2) satisfied.

�
At the initialization of the ’chain of lumps’ the initial interval Iinit is confided to the

first lump. At this moment the condition (2) is satisfied. The condition (2) still be satisfied
if no split of lump with a size less than 3 occurs.

129

3.2.5 Optimization

In this Section we study how the nodes can optimize the ’chain of lumps’. There is two
different kinds of optimization, the first one that is presented in the Section 3.2.5.1, consists
in making the nodes sharing the same number of keys. The second kind of optimization
is to reduce the number of the sub-intervals of the ’chain of lumps’. The reduction of the
number of sub-intervals is explained in the Section 3.2.5.2.

3.2.5.1 Load balancing

The load balancing consists in fairly distributing the <key, value> pairs over the nodes of
the ’chain of lumps’. In order to do this, the sub-intervals must be fairly shared out over
the set of the lumps. There exists three strategies in order to balance the load. In the
first strategy the length of each sub-interval should be equal. In the second strategy, the
cumulative length of the handled sub-intervals should be equal for each lump. In the third
strategy, the cumulative length of the handled sub-intervals must be proportional to their
size, i.e. the cumulative length of the sub-intervals handled by a lump multiplied by its
size must be the same for each lump. The choice of the strategy must be done before that
ROSA is initiated.

To ensure that the load balancing of the chosen strategy, each node looks down in its
list of lumps for a pair of consecutive lumps. We denote this pair <lI , lI+>, where lI+ is
the successor of lI . Afterwards, the nodes checks that these two lumps are in accordance
with the strategy. If it is not the case, the node have to find a pair of sub-intervals <I,
I+>, I handled by lI and I+ handled by lI+. The pair <I, I+>, must satisfy the following
conditions:

• I+ must be a successor of I

• The length of I+ must be greater than the length of I

If the node is unable to find such a pair, the load balancing process stops. Else if the node
can find such pairs, the node selects a pair among all the possible pairs. The selection
criteria depend of the chosen strategy. Once I and I+ are found, the node modifies the
length of the sub-intervals I and I+ in accord with the chosen strategy. The modification
of the sub-intervals length consists in setting the upper bound of the representation of
I and the lower bound of the representation of I+ to a new value that depends on the
chosen strategy. The node also has to reattributes the <key, value> pairs of the list of
DHT entries of I and I+ in order to reflect these changes. Afterwards, the node sends to
the nodes that compose lI and lI+ the modifications done on I and I+.

The load balancing is done by the function loadBalance. This function has to be added
to the added to the ROSA main loop. The pseudo code of the function loadBalance can
be found in the Figure 3.15. The function reattributeDHTEntry takes two contiguous
sub-intervals in argument and modifies their DHT entries lists in order to be compatible
with the bounds of the sub-intervals. The function inAccordance checks if the two lumps
given in arguments are in accord with the chosen load balancing strategy. The function
findPairToAccord returns a pair of contiguous sub-intervals. This pair is the best pair
among the possible ones according to the load balancing strategy. The function getNew-
Bound returns the new value for the upper bound and the lower bound of respectively the

130 3. Distributed HashTable over ROSA

loadBalance

for all lumpI ∈ lump_list do1:

for all lumpI+ ∈ lump_list do2:

if succeed(lumpI , lumpI+) then3:

if not inAccordance(lumpI , lumpI+) then4:

return loadBalance(lumpI , lumpI+) ;5:

loadBalance(lumpI , lumpI+) (Input:lump, lump)

toAccord ← findPairToAccord(lumpI , lumpI+) ;6:

if toAccord = null then7:

return ;8:

accordLength(toAccord, lumpI , lumpI+) ;9:

send UpdateSubInt(toAccord[0]) to lumpI ;10:

send UpdateSubInt(toAccord[1]) to lumpI+ ;11:

accordLength(toAccord, lumpI , lumpI+)
(Input:pair<subinterval, subinterval>, lump, lump)

newBound ← getNewBound(toAccord) ;12:

pair[0].upBound ← newBound ;13:

pair[1].lowBound ← newBound ;14:

reattributeDHTEntry(pair[0], pair[1]) ;15:

Messages handling
...
upon receive UpdateSubInt(subinterval1) do16:

for all lump ∈ lump_list do17:

for all subinterval2 ∈ lump.subInt_list do18:

lump.subInt_list ← lump.subInt_list - subinterval2 ;19:

lump.subInt_list ← lump.subInt_list ∪ subinterval1 ;20:

...

Figure 3.15: The load balancing function

first and the second element of the pair of sub-intervals given in argument. These three
functions depend on the chosen strategy. Below, we explain the selection criteria and we
detail the functions mentioned above for each strategy.

Lengths of sub-intervals equal
A lump lI and its successor lI+ are not in accordance with this strategy if there exists a
pair of sub-intervals <I, I+>, I handled by lI and I+ handled by lI+ such the length
of I is different from the length of I+ and greater that a given threshold. The threshold
must be chosen in order to have a good load balancing without performing too many load
balancing operations. The smaller the threshold is, the better the load balancing is but

131

the greater the number of load balancing operations needed is. If many pairs are found by
the node that performs the load balancing, the node has to select one. The selected pair
is the pair of sub-intervals with the difference of length that is the greater.

Once the pair <I, I+> is selected, the value for the upper bound and the lower bound
of respectively I and I+ is computed as:⌊

lowerBound(I) + upperBound(I+)
2

⌋
where lowerBound(I) and upperBound(I+) are respectively the lower bound of I and the
upper bound of I+. The pseudo code of the functions inAccordance, findPairToAccord
and getNewBound of the first strategy are shown in the Figure 3.16.

inAccordance(lumpI , lumpI+) (Input:lump, lump)

for all pair ∈ getSuccSubIntPair(lumpI , lumpI+) do1:

if |pair[0].getLength() - pair[1].getLength()| ≥ threshold then2:

return false ;3:

return true ;4:

findPairToAccord(lumpI , lumpI+)
(Input:lump, lump; Output:pair<subinterval, subinterval>)

diffLength ← 0 ;5:

toAccord ← null ;6:

for all pair ∈ getSuccSubIntPair(lumpI , lumpI+) do7:

diffCurrLength ← |pair[0].getLength() - pair[1].getLength()| ;8:

if diffCurrLength > diffLength then9:

diffLength ← diffCurrLength ;10:

toAccord ← pair ;11:

return toAccord ;12:

getNewBound(toAccord, lumpI , lumpI+)
(Input:pair<subinterval, subinterval>, lump, lump; Output:integer)

return b(toAccord[1].upBound+ toAccord[0].lowBound)/2c ;13:

Figure 3.16: Functions for the first load balancing strategy

Cumulative lengths of the lumps equal
A lump lI and its successor lI+ are not in accordance with this strategy if the difference
between the cumulative length of the sub-intervals handled by lI and the cumulative length
of the sub-intervals handled by lI+ is greater than a given threshold. As for the first
strategy, the threshold must be chosen in order to have a good load balancing without
performing to many load balancing operations.

The node that finds two lumps lI and lI+ that are not in accordance has to find a
pair of sub-intervals <I, I+>, I handled by lI and I+ handled by lI+ such that I+ is

132 3. Distributed HashTable over ROSA

the successor of I and such that the length of I+ is greater than the length of I if the
cumulative length of the sub-intervals handled by lI is less the cumulative length of the
sub-intervals handled by lI+ and such that the length of I+ is less than the length of I
else. If the node is unable to find such a pair, the load balancing process stops. Else if
the node can find such pairs, the node selects a pair among all the possible pairs. The
selection criterion is that the difference between the length of two sub-intervals I and I+
must be the closer to the difference between the cumulative length of lI and lI+

inAccordance(lumpI , lumpI+) (Input:lump, lump)

if |lumpI .getCSL() - lumpI+.getCSL()| ≥ threshold then1:

return false ;2:

return true ;3:

findPairToAccord(lumpI , lumpI+)
(Input:lump, lump; Output:pair<subinterval, subinterval>)

diffLength ← infinity ;4:

toAccord ← null ;5:

clI ← lumpI .getCSL() ;6:

clI+ ← lumpI+.getCSL() ;7:

diffCL ← |clI - clI+| ;8:

for all pair ∈ getSuccSubIntPair(lumpI , lumpI+) do9:

length0 ← pair[0].getLength() ;10:

length1 ← pair[1].getLength() ;11:

if length0 < length1 and clI < clI+ or12:

length0 > length1 and clI > clI+ then
diffCurrLength ← |length0 - length1| ;13:

if |diffCurrLength - diffCL| < diffLength then14:

diffLength ← diffCurrLength - diffCL;15:

toAccord ← pair ;16:

return toAccord ;17:

Figure 3.17: Functions for the second load balancing strategy

Once the pair <I, I+> is selected, the value for the upper bound and the lower bound of
respectively I and I+ is computed as:⌊

lowerBound(I) + upperBound(I+)
2

⌋
Where lowerBound(I) and upperBound(I+) are respectively the lower bound of I and
the upper bound of I+. One can remark that this is the same value as for the first load
balancing strategy, consequently the pseudo code of the function getNewBound is not
detailed. The pseudo code of the functions inAccordance, findPairToAccord of the second

133

strategy are shown in the Figure 3.17. The function getCSL returns the sum of the lengths
of the sub-intervals handled by the lump caller and its pseudo code is in the Appendix.

Cumulative lengths of the lumps proportional to their size
To determine if a lump lI and its successor lI+ are not in accordance with this strategy,
a node has to compute the difference between the cumulative length ratio of lI and the
cumulative length ratio of lI+. The cumulative length ratio of a lump is the ratio of the
sum of the lengths of the sub-intervals handled by the lump over its size. If the difference
is computed is greater than a given threshold, the node start the load balancing process.
As for the two precedent strategies, the load balancing process consists in first finding
pairs of sub-intervals <I, I+>, I handled by lI and I+ handled by lI+ such that I+ is
the successor of I and such that the length of I+ is greater than the length of I if the
cumulative length ratio of lI is less the cumulative ratio of lI+ and such that the length
of I+ is less than the length of I else. If the node is unable to find such a pair, the load
balancing process stops. Else if the node can find such pairs, the node selects a pair among
all the possible pairs. The selection criterion is that the difference between the length
of two sub-intervals I and I+ must be the greater possible. Once the pair <I, I+> is
selected, the value for the upper bound and the lower bound of respectively I and I+ is
computed.

Let us consider the case where, the cumulative length ratio of lI is greater than the
cumulative length ratio of lI+. Let crI and crI+ respectively be the cumulative length
ratio of lI and the cumulative length ratio of lI+. Let lengthI be the length of I and
lengthI+ be the length of I+. Since crI > crI+ the pair <I, I+> was chosen such that
lengthI > lengthI+. Let upperBoundI be the upper bound of the sub-interval I, sizeI be
the size of lI and sizeI+ be the size of lI+.
The value of the new bound is denoted newbound.

newbound = upperBoundI + vadd

where vadd is the greatest value that satisfies:

vadd < 1/3lengthI+ (l1)

vadd ≤ (sizeI × sizeI+)(sizeI+ × crI − sizeI × crI+)
2

(l2)

The condition (l1) ensures that at most a third of the length of the sub-interval I+ can
be given to the sub-interval I. If the cumulative length of the lump lI still be less than the
one the lump lI+, the process will be repeated. The condition (l2) ensures that the length
of the sub-interval I+ that is given to the sub-interval I does not make the cumulative
length of the lump lI+ less than the one the lump lI .

In the case where, the cumulative length ratio of lI+ is greater than the cumulative
length ratio of lI , vadd is computed in the same way but in inverting respectively sizeI ,
crI and lengthI with sizeI+, crI+ and lengthI+. The value of the new bound newbound
is equal to upperBoundI+ + vadd.

The pseudo code of the function inAccordance, findPairToAccorf and getNewBound
are shown in the Figure 3.18.

134 3. Distributed HashTable over ROSA

inAccordance(lumpI , lumpI+) (Input:lump, lump)

crI ← lumpI .getSCL() / lumpI .nodeId_list.size() ;1:

crI+ ← lumpI+.getSCL() / lumpI+.nodeId_list.size() ;2:

if |crI - crI+| ≥ threshold then return false ;3:

return true ;4:

findPairToAccord(lumpI , lumpI+)
(Input:lump, lump; Output:pair<subinterval, subinterval>)

diffLength ← 0 ;5:

toAccord ← null ;6:

clI ← lumpI .getCSL() ;7:

clI+ ← lumpI+.getCSL() ;8:

for all pair ∈ getSuccSubIntPair(lumpI , lumpI+) do9:

length0 ← pair[0].getLength() ;10:

length1 ← pair[1].getLength() ;11:

if length0 < length1 and clI < clI+ or12:

length0 > length1 and clI > clI+ then
diffCurrLength ← |length0 - length1| ;13:

if diffCurrLength > diffLength then14:

diffLength ← diffCurrLength ;15:

toAccord ← pair ;16:

return toAccord ;17:

getNewBound(toAccord, lumpI , lumpI+)
(Input:pair<subinterval, subinterval>, lump, lump; Output:integer)

crI ← lumpI .getSCL() / lumpI .nodeId_list.size() ;18:

crI+ ← lumpI+.getSCL() / lumpI+.nodeId_list.size() ;19:

if crI < crI+ then20:

return getNewBound(pair<toAccord[1], toAccord[0]>,21:

lumpI+, lumpI) ;
limit_1 ← 1/3 toAccord[1].getLength();22:

limit_2 ← (lumpI .size() × lumpI+.size)23:

(lumpI .size() × crI - lumpI+.size × crI+) / 2 ;
vadd ← 0 ;24:

while vadd < limit1 and vadd ≤ limit2 do vadd ← vadd + 1;25:

return lumpI .infBound + vadd ;26:

Figure 3.18: Functions for the third load balancing strategy

3.2.5.2 Reducing the number of sub-intervals

The number of hops needed to perform a lookup over a DHT determines the efficiency
of this DHT. The number of hops needed to perform a lookup over the ’chain of lumps’

135

depends on the number of sub-intervals. Therefore, reducing the number of sub-intervals
that compose the ’chain of lumps’ is a good way to improve its efficiency.

Since sub-intervals cannot be suppressed the only way to reduce the number of sub-
intervals is to merge some of them. We have already seen in the section dealing with the
absorptions of a lump (Section 3.2.2.2) how two sub-intervals are merged. In order to
increase the number of merges that occur a lump l with more than one sub-interval may
confide one of its sub-interval I to another lump l′ that satisfies the following conditions:

• l′ can handle the sub-interval I ;

• l′ handles another sub-interval I ′ such I and I ′ are contiguous (and consequently be
merged) ;

Once I is confided to l′ the sub-intervals I and I ′ are merged.

reduceSubIntNumber

for all lumpI in lump_list do1:

for all lumpI′ in lump_list s.t. lumpI 6=lumpI′ do2:

if lumpI .subInt_list.size() > 1 then3:

toConfide ← getSubIntToConfide(lumpI , lumpI′) ;4:

if toConfide 6= null then5:

confide(lumpI , lumpI′ , toConfide) ;6:

send RemoveSubInt(lumpI .id, toConfide) to lumpI ;7:

send AddSubInt(lumpI′ .id, toConfide) to lumpI′ ;8:

Messages handling
...
upon receive RemoveSubInt(id, subint) do9:

for all lump in lump_list do10:

if lump.id = id then11:

lump.subInt_list ← lump.subInt_list - subint ;12:

upon receive AddSubInt(id, subint1) do13:

if lump.id = id then14:

for all subint2 in lump.subInt_list do15:

if contiguous(subint1, subint2) then16:

subint1 ← merge(subint1, subint2) ;17:

lump.subInt_list ← lump.subInt_list - subint2 ;18:

subint1.owner ← lump.id ;19:

lump.subInt_list ← lump.subInt_list ∪ subint1 ;20:

...

Figure 3.19: Reduction of the number of sub-intervals

136 3. Distributed HashTable over ROSA

A node that wants to reduce the number of sub-intervals looks down its list of lumps
in order to find two lumps l and l′ such that l handles more than one sub-interval. If the
node finds such lumps, it look for two sub-intervals I and I ′, respectively handled by l and
l′ such that I and I ′ are contiguous and I can be handled by l′. If such I and I ′ are found,
the node modifies the representations of l and l′ in order to reflect that the sub-interval I
is not handled anymore by l but by l′. The representation of l′ is also modified in order
to reflect that I and I ′ are merged. The node sends the new representation of l and l′ to
respectively the nodes that compose these lumps.

This reduction of the sub-intervals of the ’chain of lumps’ is done with the help of
the function reduceSubIntNumber. This function has to be added to the main loop of
ROSA. The pseudo code of the function reduceSubIntNumber is in the Figure 3.19. The
function getSubIntToConfide returns a sub-interval of the first lump given in argument.
This subinterval is chosen in order to satisfy the conditions described above. If such a
sub-interval cannot be found the function returns null.

137

Chapter 4

A reliable storage over ROSA

4.1 Introduction to distributed file storage systems

A distributed file storage system is a system that allows the participating nodes to store,
retrieve and delete files. In the Section 4.1.1 we introduce all the notions necessary to the
understanding of the distributed file storage systems. Then in the Section4.1.2 we detail
the main properties of such systems. And since the file storage system deployed over ROSA
will use the ’chain of lumps’ we present, in the Section 4.1.3 some example of distributed
file storage systems that use some DHTs as backbones.

4.1.1 Definition

Distributed storage systems became the preferential method of data storage for the dis-
tributed applications. Some big companies, like Google, Amazon and Yahoo!, use such
systems for their web applications. The distributed storage systems are preferred over the
traditional storage system because of their fundamental properties such the scalability, the
availability and their failure tolerance.

A distributed storage system is composed of many memory units. The files stored over
such a system are shared over these memory units. The advantages of a distributed storage
system is that it does not have a single point of failure and the large number of memory
units endows the storage system to an unlimited storage capacity.

On these systems, depending of the chosen solution, the file can be stored in one block
of a single memory unit or can be split and distributed over many memory units. Since
there is many memory units, a node that wants to retrieve a file must discover on which
units the file or its different parts are stored. This implies that a distributed storage system
must benefit from a file lookup mechanism. In order to be more reliable, some distributed
storage system, stores many copies of the same file. Such storage systems have to be
endowed with a mechanism that ensures the consistency of the system.

Some distributed storage systems use a DHT as backbone platform. CFS (Dabek et al.
[2001]) deployed over Chord (Morris et al. [2001]), PAST (Druschel and Rowstron [2001])
deployed over Pastry (Rowstron and Druschel [2001]) and OceanStore (Kubiatowicz et al.
[2000]) deployed over Tapestry (Zhao et al. [2004]) are the first storage systems relying on
DHT based backbones. Using a DHT as a backbone is judicious because the concerned
storage systems benefits of all the interesting properties of the supporting DHTs, such

138 4. A reliable storage over ROSA

the scalability and the load balancing. Moreover on the DHT based storage systems, the
lookup mechanism is confided to the DHT.

4.1.2 Properties

In order to be effective a distributed storage system must have a fast data lookup. On
these systems the data are distributed in diverse memory units and an user must be able
to store and retrieve a file in a efficient way in term of bandwidth usage. The systems
based on a DHT usually allow the user to store and retrieve usage with the same cost as
the lookup mechanism of the DHT. The scalability of the distributed storage system is its
capacity to store a large amount of file without the efficiency of the storage and retrieve
mechanisms are deteriorated as well as its capacity to be composed by a large amount
of memory units. The scalability is the other deciding factor in the performance of the
system.

The persistence of the data stored over a reliable system is another important property.
An efficient distributed storage system should be able to ensure a persistent access to data.
Some mechanisms must ensure that in the presence of memory units failures, the data
stored in the system are preserved and still be accessible to any user.

Another interesting property is the possibility for an user to modify the content of
a file stored over the system. The storage systems that do not allow users to modify
or update a stored file are told read-only, the storage systems that allow users to perform
modification on stored files are read/write systems. Achieving the consistency of read/write
storage systems that store many copies of the same file is a serious issue. Indeed, when
an user performs a modification on a file stored on such system the modification has to be
reverberated on all the copies.

4.1.3 Example

Since the reliable storage system deployed over ROSA is based on the ’chain of lumps’
and in order to have a better understanding of how such storage systems works, we show
in this section two examples of DHT based distributed storage systems. The first one,
CFS (Dabek et al. [2001]) is based on Chord (Morris et al. [2001]). The second one is
Past (Druschel and Rowstron [2001]). Past uses Pastry (Rowstron and Druschel [2001]) as
backbone platform.

4.1.3.1 PAST

PAST is a large-scale storage utility developed by Microsoft Research in 2001. Past uses
the Pastry lookup and routing mechanisms. Each node in PAST acts as client access point
and memory unit and is identified by an unique 128-bit identifier. Each user of PAST has
a storage quota. Each time that an user stores a file, this quota is decremented from the
file size. An user is not allowed to store a file over PAST if its storage quota is less than
the file size. PAST allows users to perform three operations, insertion, lookup and reclaim.

The insertion operation stores a file on PAST. The user must compute the 160-bit
identifier of the file. This identifier is obtained by hashing the name of the file, the 128-bit
identifier of the node inserting the file, the number of replica wanted and the file itself.
The file is then routed by Pastry to the nodes whose identifiers are numerically closest to

139

the 128 most significant bits of the file identifier. This is an invariant of PAST, and must
be maintained over the lifetime of a file, despite the arrival, failure and recovery of PAST
nodes.

The file size is subtracted from the storage quota of the user for each stored replica.
The files are inserted in a immutable way. It means that the same file cannot be inserted
multiple time. This operation also ensures that the set of nodes storing the file is fairly
chosen among the nodes of the network and therefore that the number of files assigned to
each node is roughly balanced.

Given a file identifier, the lookup operation retrieves a copy of the file corresponding to
the identifier if it exists in PAST. Consequently, a node that wants to retrieve a file needs
the file identifier. The lookup request is confided to Pastry and is routed to the closest live
node among the nodes that store a copy of the file to the PAST node issuing the lookup
(in terms of the Pastry proximity metric).

Since an user is only allowed to store a limited amount of data over PAST, an operation
allows users to reclaim the storage occupied by the copies of a file. An user that wants to
perform such operation sends a request containing the identifier of the file. This reclaim
request is routed using Pastry to the nodes storing the copies of the file.

4.1.3.2 CFS

CFS stands for Cooperative File System. It was developed at MIT in 2001. CFS allows
any user to store and update their own file over the system, and provides read-only access
to other users. CFS performs load balancing, is failure tolerant and has a restriction
mechanism that controls the amount of data that an user is allowed to store.

CFS is not directly based on Chord but is based on DHash (Brunskill [2001]). DHash
is a distributed block storage system built over Chord. DHash provides an interface that
allows user to put and get blocks of data over Chord. The DHash lookup requests are
confided to Chord.

To insert a data block over DHash under a given key, the key has to be hashed to
produce a Chord identifier k. The block has to be stored by the node of Chord that is
the successor of k. The lookup request is performed analogously, to retrieve a block stored
under a given key, the key has to be hashed into the Chord identifier k. The lookup request
is routed by Chord to the successor of k. The transfers of the data blocks between the
nodes are accomplished by an RPC distinct of Chord.

In order to ensure a better reliability DHash stores each block of data associated with
a given key not only on the direct successor of the key, but also on the next n successors.
Where n is a parameter that is decided by the node that wants to store the data block.
DHash also maintains the number of replicas despite the failures of nodes or the fact that
some nodes join or leave the network.

The files stored in CFS are split in data blocks and the blocks are managed by DHash.
A third layer, called FS, interprets the data blocks as files and provides a file system
interface to the users and to the applications.

The three layers of CFS are represented in the Figure 4.1. On the left part of this
figure one can see a node publishing a file over CFS. The file is confided by the node to
the FS layer. The FS layer splits the file in data blocks and confides them to the DHash
layer. The DHash confides each of these data blocks to one or many nodes of the Chord

140 4. A reliable storage over ROSA

layer. In the right part of the figure the inverse process is represented. A user asks the
FS layer for a file. The FS layer asks for the data blocks to the DHash layer. The DHash
layer retrieves the data blocks and gives them to the FS layer that returns the file to the
user that requested it.

Figure 4.1: CFS

4.2 The ROSA reliable storage system

The ROSA protocol endowed with the ’chain of lumps’ offers a resilient network topology
and a resilient distributed HashTable. In this section we explain how a reliable file storage
system can be built over the ’chain of lumps’. This storage system already benefits of the
resiliency of the ’chain of lumps’ and in order to ensure a better failure tolerance each
file stored over ROSA is stored in many replicas. Each replica is stored by a node. The
number of replicas is a parameter that has to be decided when the file is stored. In this way
important files could be stored in many replicas while negligible ones in only few replicas.
In order to allow a node to discover where the replicas of a given file are located, for each
file an index is also stored over ROSA. The storage system of ROSA ensures a better
reliability than CFS because the system also handles the transfer of the copies of the files,
therefore the file transfer is not confided to an external RPC and benefits of the resiliency
of ROSA. In Section 4.2.1 we explain what are the files indexes. In the Sections 4.2.2
and 4.2.3 we detail how a node stores and retrieves a file. In the Sections 4.2.4 and 4.2.5

141

we see how some nodes can update, modify or delete a file. In Section 4.2.6 we explain
how the whole storage system is maintained despite the presence of failures.

4.2.1 Files indexes

The files indexes allow nodes to retrieve the location of the replicas of the files. The index
of a file contains, the file identifier, some optional data about the file, a flag, the lists of
the locations of the replicas and the list of the identifiers of the nodes that owns this file.
A file index is described in Figure 4.2. The file identifier identify the file over the ’chain

File ID Version Flag
IDfile Version nb flag

File data
File name, description, etc.

Replicas
IDnode1 : [a1, b1]; [a2, b2]; ...

IDnode2 : [a3, b3]; ...
...

Owners ID
IDowner1

IDowner2

...

Figure 4.2: A file index

of lumps’. This identifier is an integer and must belong to the key space Iinit. The data
is optional, it could be a file name, a description of the file or some comments from the
owners of the file. The flag contained in the index describes the state of the file. A file can
be currently available, updated or deleted. The version of the file is an integer. Each time
a file is updated the version is incremented. A location of a replica is constituted by the
identifier and the bounds of the sub-intervals handled by the lumps whose the nodes that
store the replicas belong. The list of the owners is the list of the identifiers of the nodes
that are allowed to access, update and delete the file. If the owners list is void, it means
that every participating node is an owner of the file. The index of a file is stored by the
nodes that compose the lump that handles the file identifier. This lump will be called the
lump index of this file.

4.2.2 Storing a file

A node that wants to store a file upon ROSA, computes the identifier of the file. This
identifier is obtained by using a hash function over the name. Afterwards, the node deter-
mines the number of replicas needed and which nodes are allowed to access the file. To
finish the node has to build a message StrFile. This message, as described in Figure 4.3,
contains the sending node identifier and location, the file identifier, an optional description
of the file, the number of replicas wanted, the list of the owners and the file itself.

Once the message is built, the node sends it over the DHT to the lump index of this
file. The lump index of the file is the lump that handles the sub-interval that contains

142 4. A reliable storage over ROSA

StrFile
Node ID Node location
File ID File description
Rep. nb Owners

File

Figure 4.3: A message StrFile

the file identifier. The node sends the message using the process described in Chapter 3,
Section 3.2.3.3 with the message StrFile as a data packet.

When a node of the lump index receives a message StrFile, if a file with the same
identifier is already stored, the node replies with a message BadId. This message contains
the non suitable file identifier. Else, it builds and sends a message StrIdx to the nodes of
the lump index. These nodes will store the index of this file. The message StrIdx contains
the index of this file, built with the content of the message StrFile and where the Flag is
set to ’available’ and the Version to 1.

The node that receives the message StrFile also randomly chooses N elements of Iinit,
where N is the number of replicas wanted. We denote these elements ki, i ∈ [1, N]. Af-
terwards, the node builds a message ScttrRep that contains the file identifier and the file
itself. To conclude, the node sends a copy of the message ScttrRep to each one of the lumps
that handles one of the ki. These messages are also sent as data packets using the process
described in the Chapter 3, Section 3.2.3.3.

The process ensures that the messages ScttrRep reach ordinary nodes of one of the
lumps that handles one of the ki. When one of these nodes receives such a message it
randomly choose a node of the lump that handles the ki and sends a message StrRep to
this node. This message informs the receiving node that it has to store a replica of the file.
A message StrRep contains the file identifier and a copy of the file.

When a node willing to store a file receives a message BadId it modifies the file name,
computes a new file identifier and starts again the whole process.

The pseudo code of the store process is described in the Figure 4.4. A file possesses
a name, a description and a size. The function computeId computes the identifier of a
file. The functions buildStrFile, buildStrIdx, buildScttrRep, buildBadId and buildStrRep
respectively build the messages StrFile, buildStrIdx, buildScttrRep, badId and buildStrRep.
The function sendDHT is a function that, given a key in Iinit, sends the data packet given
in argument to a node of the lump handling the key. The function getKeyIn returns a
key corresponding to the node location given in argument. The functions storeIndex and
storeReplica respectively make the node stores the file index and replica given in argument.

4.2.3 Retrieving a file

A node that wants to retrieve a file must be aware of the file identifier. In order to retrieve
a file, the node has to send a message RtrvFile to the lump index of the file using the
process described in Chapter 3, Section 3.2.3.3. A message RtrvFile contains the identifier
of the file to retrieve, the identifier and the location of the node that wants to retrieve the

143

storeFile(toStore, rep_nb) (Input:file, integer)

file_id ← computeId(file) ;1:

strFile_mess ← buildStrFile(node, file, rep_nb, file_id) ;2:

sendDHT(strFile_mess) to file_id ;3:

Messages handling
...
upon receiveDHT StrFile do4:

if alreadyStored(StrFile.content.file_id) then5:

key ← getKeyIn(StrFile.content.snd_loc) ;6:

return sendDHT(buildBadID()) to key ;7:

scttrRep_mess ← buildScttrRep(StrFile.content);8:

for all i ∈ [1, StrFile.content.rep_nb] do9:

sendDHT(scttrRep_mess) to rand(0, 2128 − 1) ;10:

for all lump ∈ lump_list do11:

if lump.handle(StrFile.content.file_id)) then12:

return send(buildStrIdx(StrFile.content)) to lump ;13:

upon receiveDHT ScttrRep do14:

for all lump ∈ lump_list do15:

if lump.handle(ScttrRep.dst_key)) then16:

return send(buildStrRep(ScttrRep.content)) to lump ;17:

upon receiveDHT StrIdx do18:

storeIndex(StrIdx.content) ;19:

upon receiveDHT StrRep do20:

storeReplica(StrRep.content) ;21:

...

Figure 4.4: The store process

file. A message RtrvFile is described in Figure 4.5.
When a node of the lump index receives such a message, it checks first that the file ex-

ists. The node performs this check by looking in its stored indexes if the appropriate index
can be found. If the node cannot find such an index it replies with a message FileNotFnd.
Else the node checks in the corresponding stored index that the sender identifier is in the
owners list field or that the owners list is void. The node replies with a message NotAllwd
if the sender is not an owner of the file. Else, the node replies with a message Wait if the
flag in the index is not set to ’available’ and with a message RepLoc in the other cases. A
message RepLoc must contain the locations of the replicas and the current file version.

Once the node that wants to retrieve the file is knows the locations of the replicas, it
selects the replica that is the closer (in the meaning of the ’chain of lumps’) to itself and
sends a message RtrvRep. This message contains the identifier of the file to retrieve. A

144 4. A reliable storage over ROSA

RtrvFile
Node ID Node location

File ID

Figure 4.5: A message RtrvFile

node that receives such a message has to reply with a message HereItIs that contains the
replica of the wanted file. If after sending a message RtrvRep and a chosen amount of time
a node do not receive the message HereItIs, it selects another replica location and sends
again a message RtrvRep.

The role of the messages Wait, that are sent when the flag of the file is not set to
available, is to inform the node that wants to retrieve the file that it has to wait an indefinite
amount of time before receiving the message RepLoc. We will see in the Section 4.2.4
and 4.2.5 in which cases it happens.

The pseudo code of the retrieve process is shown in the Figure 4.6. The function
getIndex returns the index corresponding to the file identifier given in argument stored by
the node. The function getCloserLocation takes a list of locations in argument and returns
the one that is the closer in the ’chain of lumps’ to the caller. The function isOwner
return true if the identifier given in argument is in the owners list of the coressponding
index or if this list is void. this function returns false in all the other cases. The functions
buildRtrvFile, buildFileNotFnd, buildNotAllwd, buildWait, buildRepLoc, buildRtrvRep
and buildHereItIs respectively build the messages RtrvFile, FileNotFnd, NotAllwd, Wait,
RepLoc, RtrvRep and HereItIs.

4.2.4 Updating and modifying a file

Updating or modifying a file is basically the same process, the only difference resides in
the fact that in the case of a complete update the whole file will be sent again. In the
other case only the differences between the old version of the file and the new one have to
be sent.

Since all the nodes that owned the same file are able to update or modify it, the first
step for a node to update a file is to retrieve the last version of the file and the version
number. This is done as described in the Section 4.2.3. Once in possession of a copy and
of the version number of the file, the node performs the needed changes on the file then
computes the differences between the retrieved file and the new one. These differences
are obtained using the differential file comparison utility diff (Hunt and McIlroy [1976]).
Afterwards, the node has to send a message UpdtFile to the lump index of the file. This
message must contain the node sender identifier and location, the file identifier and the
version number obtained when retrieving the file and the computed changes. This message
is described in the Figure 4.7.
When a node of the lump index receives such a message, since the file may have been
deleted, it checks first that the file still exist. The node performs this check by looking
in its stored indexes if the appropriate index can be found. If the node cannot find such
an index, it replies to the sender of the message UpdtFile with a message FileNotFound.
If the file exist, the node checks that the update request is done by a node owner of the
file. If the update request does not come from an owner the file, the node replies with a

145

retrieveFile(file_id) (Input:integer)

rtrvFile_mess ← buildRtrvFile(node, file_id) ;1:

sendDHT(rtrvFile_mess) to file_id ;2:

Messages handling
...
upon receiveDHT RtrvFile do3:

key ← getKeyIn(RtrvFile.content.snd_loc) ;4:

file_index ← getIndex(RtrvFile.content.file_id) ;5:

if file_index = null then6:

return sendDHT(buildFileNotFnd()) to key ;7:

if not file_index.isOwner(RtrvFile.content.snd_id) then8:

return sendDHT(buildNotAllwd()) to key ;9:

if file_index.flag 6= available then10:

return sendDHT(buildWait()) to key ;11:

return sendDHT(buildRepLoc(file_index.replica_location)) to key ;12:

upon receiveDHT RepLoc do13:

while RepLoc.content.size() > 0 and not received(HereItIs) do14:

loc ← getCloserLocation(RepLoc.content) ;15:

RepLoc.content ← RepLoc.content - loc ;16:

key ← getKeyIn(loc) ;17:

sendDHT(buildRtrvRep()) to key ;18:

sleep(interval) ;19:

upon receiveDHT RtrvRep do20:

sendDHT(buildHereItIs()) to getKey(RtrvRep.snd_loc) ;21:

upon receiveDHT HereItIs do22:

extractFile(HereItIs.content) ;23:

...

Figure 4.6: The retrieve process

message NotAllwd. If the update request concerns a valid file and comes from an owner
of the file, the node that received the message UpdtFile checks that the flag in the index
is set to ’available’ and that the version number contained in the message UpdtFile is the
same that the version number of the index. If the flag is not equal to ’available’ the node
replies with a message FileBusy and if the file version numbers do not match the node
replies with a message FileMdfd.

A message FileBusy indicates that another node is currently performing some operation
on the file. The update request has to be repeated later. A message FileMdfd indicates
that another node has modified the file, consequently the node that wants to update the
file must retrieve the new version of the file and must start again the whole process.

If all the checks are successfully passed, the node that received the message UpdtFile

146 4. A reliable storage over ROSA

UpdtFile
Node ID Node location
File ID File version number

Changes

Figure 4.7: A message UpdtFile

sends a message SetBusy to all the nodes that compose the lump index of the concerned
file. This message contains the file identifier. Each node receiving this message sets the
flag in the corresponding index to ’busy’.

The node that received the message UpdtFile also sends a message UpdtRep to each
node that stores a replica of the file. This message contains the file identifier and the
changes to apply to the file that are contained in the message UpdtRep. The message is
sent using the node identifier and the location of the replica contained in the file index.
When a node of the lump handling the sub-interval corresponding to the location receives
the message it forwards it to the node that stores the replica of the file (if this node is not
storing the replica itself).

When a node that stores the replica receives the message UpdtRep, it updates the
replica stored with the data contained in the message and sends a message ACKUpdt to
all the nodes that compose the lump index. The messages ACKUpdt contains the file
identifier. When a node of the lump index receives a message ACKUpdt, the node checks
that it stores the index corresponding to the file identifier and if it is the case the node set
the flag of the corresponding index to ’available’. If after a determined amount of time a
message ACKUpdt still missing, the replica is declared lost and a node replica substitution
process is engaged. This process is described in Section 4.2.6.3.

The pseudo code of the update process is shown in the Figure 4.8. In this figure, we
assume that a copy and the version number of the file are already retrieved. The diff
and patch utilities are used to compute and apply the difference between the old and
the new version of the file. The function getReplica takes a file identifier in argument
and returns the corresponding replica stored by the caller. If the caller does not store
such a replica it returns null. The functions buildUpdtFile, buildFileBusy, buildFileMdfd,
buildSetBusy and buildRepNotFnd respectively build the messages UpdtFile, FileBusy,
FileMdfd, SetBusy and RepNotFnd.

4.2.5 Deleting a file

To delete a file stored over the ’chain of lumps’, a node has to know the corresponding
identifier. Once in possession of this identifier, the node sends a message DltFile to the
lump index of the file. This message contains the identifier of the file. At the receipt of
this message a node of the lump index checks if it store an index that corresponds to the
identifier contained in the message. If such an index cannot be found the node replies with
a message FileNotFound. Else it checks if the sender of the message DltFile is an owner of
the file. If not, it replies with a message NotAllwd. If the delete request concerns a valid
file and the requester is an owner of the file, the node that received the message DltFile

147

updateFile(file_id, old_file, new_file, vernum)
(Input:integer, file, file, integer)

change ← diff(old_file, new_file) ;1:

updtFile_mess ← buildUpdtFile(file_id, vernum, change) ;2:

sendDHT(updtFile_mess) to file_id ;3:

Messages handling
...
upon receiveDHT UpdtFile do4:

key ← getKeyIn(UpdtFile.content.snd_loc) ;5:

file_id ← UpdtFile.content.file_id ;6:

change ← UpdtFile.content.change ;7:

file_index ← getIndex(file_id) ;8:

if file_index = null then9:

return sendDHT(buildFileNotFnd(file_id)) to key ;10:

if not file_index.isOwner(UpdtFile.content.snd_id) then11:

return sendDHT(buildNotAllwd()) to key ;12:

if file_index.flag 6= available then13:

return sendDHT(buildFileBusy()) to key ;14:

if UpdtFile.content.vernum 6= file_index.vernum then15:

return sendDHT(buildFileMdfd()) to key ;16:

sendDHT(buildSetBusy(file_id)) to file_id ;17:

updtRep_mess ← buildUpdtRep(file_id, change) ;18:

for all loc ∈ file_index.replica_location do19:
sendDHT(updtRep_mess) to getKeyIn(loc) ;

upon receiveDHT SetBusy do20:

file_id ← SetBusy.content.file_id ;21:

file_index ← getIndex(file_id) ;22:

if file_index = null then23:

return sendDHT(buildFileNotFnd(file_id)) to key ;24:

file_index.flag ← busy ;25:

upon receiveDHT UpdtRep do26:

file_id ← UpdtRep.content.file_id ;27:

file_replica ← getReplica(file_id) ;28:

if file_index = null then29:

return sendDHT(buildRepNotFnd(file_id)) to key ;30:

file_replica ← patch(file_replica, change) ;31:

...

Figure 4.8: The update process

148 4. A reliable storage over ROSA

waits until the flag of the index is set to ’available’ and sends a message DltIdx to the
other nodes that composes the lump index. These messages only contain the identifier of
the file.

When a node of the lump index receives a message DltIdx it looks for the index corre-
sponding to the identifier contained in the message in its stored index. If the node finds
such an index it deletes it. The nodes that received the message DltFile also has to notice
the nodes that store the replicas about the deletion of the file. In order to do that, with
the help of the replica location contained in the index, the node sends messages DltRep to
the nodes storing the replicas of the file. This message contains the identifier of the file.
To finish this node has to delete his own copy of the index.

When a node of the lump handling the sub-interval corresponding to the location
receives the message, it forwards it to the node that stores the replica of the file (if this
node is not storing the replica itself). When such a node receives this kind of messages,
it looks for the replica corresponding to the file identifier contained in the message. If the
node finds such a replica among those that it stores, it deletes it.

The pseudo code of the delete process is shown in the Figure 4.9. The functions
buildDltIdx and buildDltRep respectively build the messages DltIdx and DltRep.

updateFile(file_id) (Input:integer)

sendDHT(buildDltFile(file_id)) to file_id ;1:

Messages handling
...
upon receiveDHT DltFile do2:

key ← getKeyIn(DltFile.content.snd_loc) ;3:

file_id ← DltFile.content.file_id ;4:

file_index ← getIndex(file_id) ;5:

if file_index = null then6:

return sendDHT(buildFileNotFnd(file_id)) to key ;7:

if not file_index.isOwner(DltFile.content.snd_id) then8:

return sendDHT(buildNotAllwd()) to key ;9:

while file_index.flag 6= available do10:

sleep(interval) ;11:

sendDHT(buildDltIdx(file_id)) to file_id ;12:

for all loc ∈ file_index.replica_location do13:
sendDHT(buildDltRep(file_id)) to getKeyIn(loc) ;

upon receiveDHT DltIdx do14:

removeIndex(DltFile.content.file_id) ;15:

upon receiveDHT DltRep do16:

removeReplica(DltRep.content.file_id) ;17:

...

Figure 4.9: The delete process

149

4.2.6 Preservation of indexes and stored files

As shown in the previous Chapter 2, ROSA can be seen as an entanglement of lumps and
these lumps can be split or absorbed by other lumps during the reconfiguration process or
when failures occur. During these modifications of the set of lumps the sub-intervals could
also be split or merged, and since the index of a file is stored by all the nodes of a lump
these modifications affect the way of how the indexes of the files are stored.

The optimizations introduced in the Section 3.2.5.1 and in the Section 3.2.5.2 also
modify the distribution of the sub-intervals handled by the lumps. Consequently it also
affect the mapping of the file indexes over the lumps.

The failures can also affect the nodes that stores the replicas. If all the nodes that store
the replicas of a file fail the file is lost. In order to avoid such losses, a mechanism checks
at regular interval that any nodes storing a replica still able to work properly.

If the mechanism finds that a node storing a replica has failed, another mechanism is
in charge of substituting the failing node by a node working correctly. This mechanism
consist in modifying the corresponding file index in confiding a copy of the file to the new
selected node.

In the Section 4.2.6.1 we detail how the indexes of the files are redistributed in order to
reflect the changes on the set of lumps. In the Section 4.2.6.2 we see how the failures of the
nodes that stores the replicas are detected. In the Section ?? we deal with the substitution
of a failing node storing a replica by a new node that works correctly.

4.2.6.1 Preservation of indexes

When a lump is split into two new lumps, the sub-intervals that the lump handled are
distributed to the two resulting lumps. Consequently, the indexes of the files that was
stored by the split lump have to be distributed too. Some of these index will have to be
stored by the first resulting lump and the other by the second one. Consequently, it may
happen that a node stores the index of a file when it does not have to anymore. In this
case this node has to discard this index.

When a lump is absorbed by another lump, the sub-intervals that the absorbed lump
handled are confided to the absorbing lump. Consequently the indexes of the files that
was stored by the absorbed lump must be stored by the absorbing one. It may happen
that the nodes that compose the absorbing lump but not the absorbed one do not have
the copy of some indexes. We have seen in the Section 3.2.2.2 that when a node detects
an absorption, it notices the other concerned nodes of this absorption with a message
AbsorbLump. In order to maintain the good mapping of the file indexes, the node that
detects the absorption also has to send a message AddIdx to the nodes of the absorbing
lump that did not compose the absorbed lump. This message contains the file indexes that
was stored by the absorbed lump. When a node receives this message, it checks for each
of the file indexes contained in the message if it has to store it and if it is the case it stores
it.

When optimizations, such the load balancing or the reduction of the sub-intervals
number, are used over the ’chain of lumps’ the mapping of the files indexes may be inap-
propriate. As seen in the Section 3.2.5.1, during the load balancing a node may modify the
lengths and the bounds of two contiguous sub-intervals, I and I+. A node is allowed to
perform such a load balancing if the node belongs to the two lumps that handles the two

150 4. A reliable storage over ROSA

concerned sub-intervals, respectively lI and lI+. In order to maintain the good mapping of
the file indexes, the node that performs the load balancing have to send messages AddIdx
and DltIdx to the nodes that compose lI and lI+. The messages AddIdx that are sent to
the nodes composing lI and lI+ are respectively composed by the file indexes that have
to be stored now by lI and those that have to be stored by lI+. The messages DltIdx
sent to the nodes composing lI and lI+ point out the indexes to delete. The reduction of
the sub-intervals number shown in the Section 3.2.5.2 consists in a node confiding a sub-
interval handled by a lump to another lump. Here again the mapping of the files indexes
may be inappropriate. The node that confides the sub-interval to another lump must sens
messages DltIdx to the nodes composing the lump that previously handled the sub-interval
and messages AddIdx to the nodes of the lump that will have to handle the sub-interval.
The messages DltIdx and AddIdx contains the file indexes that have to be reattributed.
When a node receive a message DltIdx it deletes the corresponding file indexes contained
in the message.

4.2.6.2 Preservation of stored files

The nodes storing the replicas of the files may have failures or leave the network, therefore
the number of replicas requested for a file may not be maintained. These failures have to
be detected in order to readjust the number of nodes that own a copy of the file.

A node that stores a replica of a file must periodically send a message RepAlv to the
lump index of the corresponding file. This message contains the sender identifier, the
sender location and the file identifier. This message possesses two roles. The first one is to
notice the nodes that compose the lump index that the sender still works properly. The
second role of this message is to keep up to date the list of the replicas location contained
in the index of the file.

When a node of the lump index receives this message, it checks that it stores the index
that corresponds to the file identifier contained in the message. If it cannot finds such an
index it discards the message. If this condition is respected it replies to the sender with a
message ACKRepAlv. Afterwards, the node that has received the message RepAlv forwards
it to the other nodes of the lump index. These nodes do not have to send ACKRepAlv.

If, after a determined amount of time, a node of the lump index of a file has not received
a message RepAlv from one of the node storing a replica, it considers that the node storing
the replica is failing and a node replica substitution process is engaged. This process is
described in the Section 4.2.6.3.

The pseudo code of this process is shown in the Figure 4.10. The function keepStorage-
UpToDate is in charge of sending the messages RepAlv to the corresponding lump index
for each replicas that the caller stores. This function is also in charge of checking for each
stored file index that all the nodes storing a replica of the file still work correctly. The
function notAlive returns true if the node given in argument has recently sent a message
RepAlv and false else. The function substitute is detailed in the Section 4.2.6.3. Its role
is to start the substitution process. The function updateIndex takes a index and a list of
locations in argument, it updates the index with the locations. The functions buildRepAlv
and buildACKRepAlv respectively build the messages RepAlv and ACKRepAlv.

It may also happen that during the deletion of a file (see Section 4.2.5), a node storing
a replica did not receive the message DltRep. In this case, it may happen that a node

151

keepStorageUpToDate

for all file ∈ file_stored do1:

sendDHT(buildRepAlv()) to file.file_id ;2:

for all index ∈ index_stored do3:

file_id ← index.file_id ;4:

for all replica ∈ index.replica do5:

if notAlive(replica) then substitute(file_id) ;6:

Messages handling
...
upon receiveDHT RepAlv do7:

snd_id ← RepAlv.snd_id ;8:

tgt_id ← RepAlv.key ;9:

file_index ← getIndex(RepAlv.content.file_id) ;10:

if file_index = null then return ;11:

for all lump ∈ lump_list do12:

if lump.handle(tgt_id) then13:

loc ← RepAlv.content.loc ;14:

if not lump.nodeId_list.contain(snd_id) then15:

sendDHT(buildACKRepAlv()) to getKeyIn(loc) ;16:

sendDHT(RepAlv) to tgt_id ;17:

return updateIndex(file_index, loc) ;18:

...

Figure 4.10: Preservation of the stored files

stores a copy of a file whereas it does not have to do anymore. To prevent that waste files
encumber the network, the nodes storing the replicas, which have not received a message
ACKRepAlv since a determined amount of time, have to delete their replicas.

4.2.6.3 The node replica substitution process

When a node that stores the replica of a file does not periodically send messages RepAlv
or does not reply to a message ACKUpdt, the node is considered as failing. The detection
of such a failure can only be done by a node of the concerned lump index.

The node that detects this failure must engage a substitution process. To start the
process, a node has to first sends a message SetBusy to the nodes that compose the
lump index. At the receipt of this message the nodes of the lump index set the flag of
the corresponding index to ’busy’. Afterwards, the nodes that performs the substitution
process retrieves a copy of the file from the other nodes storing a replica using the process
described in Section 4.2.3 .

If the node is unable to retrieve a copy of the file, it means that the file is lost, therefore
the node stops the substitution process and starts a forced deletion process. The forced

152 4. A reliable storage over ROSA

deletion process is similar as the process described in the Section 4.2.5, where the message
DltFile is replaced by the message FrcDltFile. The forced deletion process can only be
started by a node that compose the lump index of the concerned file.

If the node performing the substitution process succeeds in retrieving the file, it ran-
domly chooses an element of Iinit. Then, it sends a message ScttrRep using the ’chain of
lumps’ with the chosen element as key. When one node of the lump that handles the key
receives such a message it randomly choose a node of the lump and sends a message StrRep
to this node. The message StrRep is described in the Section 4.2.2. This message informs
the receiving node that it has to store a replica of the file.

substitute(file_id) (Input:integer)

file ← retrieveFile(file_id) ;1:

if file = null then2:

return sendDHT(buildFrcDltFile()) to file_id ;3:

scttrRep_mess ← buildScttrRep(file, file_id) ;4:

key ← rand(0, 2128 − 1) ;5:

sendDHT(scttrRep_mess) to key ;6:

Messages handling
...
upon receiveDHT FrcDltFile do7:

key ← getKeyIn(FrcDltFile.content.snd_loc) ;8:

file_id ← DltFile.content.file_id ;9:

file_index ← getIndex(file_id) ;10:

if file_index = null then11:

return sendDHT(buildFileNotFnd(file_id)) to key ;12:

lump_index ← getLumpIndex(file_id) ;13:

if lump_index = null then14:

return ;15:

snd_id ← FrcDltFile.content.snd_id ;16:

if not lump_index.nodeId_list.contains(snd_id) then17:

return sendDHT(buildNotAllwd()) to key ;18:

sendDHT(buildDltIdx(file_id)) to file_id ;19:

for all loc ∈ file_index.replica_location do20:
sendDHT(buildDltRep(file_id)) to getKeyIn(loc) ;

...

Figure 4.11: The replica substitution process

The pseudo code of the substitution process is shown in the Figure 4.11. The function
retrieveFile takes a file identifier as argument and returns the file if it can be retrieved using
the process described in 4.2.3. The function returns null if the file cannot be retrieved.
The function getLumpIndex returns the representation of the lump that stores the index
corresponding to the file identifier given in argument. If such a lump cannot be found in

153

the list of lumps of the caller the function returns null. The function buildFrcFile builds a
message FrcFile.

154 4. A reliable storage over ROSA

155

Chapter 5

Routing from node to node

The ROSA protocol endowed with the ’chain of lumps’ offers a resilient network topology
and a resilient distributed HashTable. We have seen in the previous section how a reli-
able storage system can be built using the ’chain of lump’. In the Section 5.1 we detail
how we can also build a resilient and routing service over the ’chain of lumps’. And in
the Section 5.2 is described another way to compute the nodes identifiers in order to be
compatible with the identification system of the network over which ROSA is deployed.

5.1 Description

As described in the Chapter 3, the ’chain of lump’ allows any node of ROSA to send
data packets to the nodes of the lump handling a given key. The ’chain of lumps’ can be
directly used in the case where some network services are confided to lumps. The nodes
can access to these services by sending requests to the concerned lumps. When a node
wants to communicate with the node that has a given identifier, it has to use the routing
service. This routing service uses the ’chain of lumps’ and is based on a routing tables
systems. The routing tables are stored by the lumps and are accessed via the chain of
lumps. In the Section 5.1.1 we detail how the routing tables are built and maintained. In
the Section 5.1.2 the routing process itself is described. And to finish we describe, in the
Section 5.1.3, how the nodes that do not handle any key can send data packets to a node
or receive some from another nodes.

5.1.1 Building and maintaining routing tables

Each node of ROSA that wants to receive data packets form other nodes must build and
maintain its own routing table. The routing table of a node is composed of its identifier, its
location and a flag. We recall that the identifier of a node is a 128 bit value. We also recall
that the node location is the bounds of the sub-internals handled by the lumps whose the
node belongs.

A routing table is described in the Figure 5.1. In this table we can see the identifier of
the node (IDn), a flag and the node locations. If the flag is set to TRUE it specifies that
the node handles a key of the ’chain of lumps’. If the flag is set to FALSE it means that
the node does not handle any key. The Section 5.1.3 is consecrated to this last case.

When a node connects to ROSA it has to build its initial routing table. This initial

156 5. Routing from node to node

Node ID sub-interval flag Sub-intervals
I1 = [a1, b1]

IDn TRUE I2 = [a2, b2]
...

Figure 5.1: The routing table used for routing to the node n.

routing table contains the bounds of the sub-intervals handled by the first lump that the
node joins. Once that the node has built the table, it includes it in a message StrTable.
The node sends this message, using the process described in Section 3.2.3.3, to the nodes
composing the lump that handles the key corresponding to the node identifier. The node
also keeps a copy of its current routing table.

storeTable()

table ← buildTable(node.id, node.lump_list) ;1:

strTable_mess ← buildStrTable(table) ;2:

sendDHT(strTable) to node.id ;3:

node.currentTable ← table ;4:

updateTable()

table ← buildTable(node.id, node.lump_list) ;5:

if table 6= node.currentTable then6:

updtTable_mess ← buildUpdtTable(table, node.currentTable) ;7:

sendDHT(updtTable) to node.id ;8:

node.currentTable ← table ;9:

return ;10:

sendDHT(buildTableAlv()) to node.id ;11:

Messages handling
...
upon receiveDHT StrTable do12:

storeTable(StrTable.content.table) ;13:

upon receiveDHT UpdtTable do14:

updateTable(UpdtTable.content) ;15:

...

Figure 5.2: The store and update table process

When a node of the concerned lump receives the message StrTable, it extracts the table
from the message and stores it. Consequently, each node that composes this lump stores
the table.

A node that wants to receive data packets also has to keep its table up to date. In
order to do so, at regular time interval the node looks down its list of lumps and checks,
by comparison with the currently stored table, if its table has to be updated. The table

157

of a node must be updated when the node joins or leaves a lump, or when the set of the
sub-intervals handled by the lump whose the node belongs is modified. If the table has
to be updated the node builds a message UpdtTable and sends it to the lump that is in
charge of its table. This message contains all the necessary information to update the
table. When these nodes receive the message UpdtTable, they update the corresponding
table. If the table does not need to be updated, the node must sent a message TableAlv
to the lump that is in charge of storing its table. This message is used to notice the nodes
storing the table that the table must not be deleted.

The pseudo code corresponding to the store and update table process is described in
Figure 5.2. The function updateTable has to be added to the ROSA main loop. This
function performs the check and the update of the routing tables when it is necessary.
The function buildTable builds the table of the caller node. This function uses the node
identifier and list of lumps to build the table. The function fills the entry of the table
corresponding to the location of the node according to the sub-intervals handled by the
lumps of the list. If no such a sub-interval is found the function lets this entry empty and
sets the flag to FALSE. Else the function sets the flag to TRUE. The functions storeTable
and updateTable respectively store and update the table contained in the messages given in
argument. The functions buildStrTable, buildUpdtTable and buildTableAlv respectively
build the messages StrTable, UpdtTable and TableAlv.

The fact that the routing tables are stored by the lumps, implies that when the lumps
are modified the tables have to be redistributed. When a lump is split, and therefore some
sub-intervals are split too, the tables have to be redistributed. Since after a split the list of
lumps of the nodes is modified, it may happen that a node stores the table of a node with
an identifier that is not anymore contained in the handled sub-intervals. In this case, this
node has to discard this table. When a lump is absorbed, tables have to be redistributed
too. When a lump is absorbed, some nodes become members of lumps that possess sub-
intervals that were not possessed by the lumps of their old lumps set. The corresponding
tables have to be forwarded to these nodes by the other nodes.

The tables have also to be redistributed when the ’chain of lumps’ is modified during
an optimization. When optimization, such the load balancing or the reduction of the
sub-interval number, are used over the ’chain of lumps’ the distribution of the tables may
be inappropriate. As seen in the Section 3.2.5.1, during the load balancing a node may
modify the lengths and the bounds of two contiguous sub-intervals. The reduction of the
sub-intervals number shown in the Section 3.2.5.2 consists in a node confiding a sub-interval
handled by a lump to another lump. In order to maintain the good distribution of the tables
the node that performs these optimizations send messages AddTable and DltTable. These
messages are equivalent to the messages AddIdx and DltIdx shown in the Section 4.2.6.1
dealing with the preservation of the file indexes of the storage system.

In order to avoid that the tables of the nodes that have failed or left the network, or
that the table of the node that does not anymore want to publish their locations encumber
the network, the routing system is endowed with a cleaning mechanism. The node that
stores the table of a node and that have not received messages UpdtTable or TableAlv since
a given amount of time must delete the corresponding table.

158 5. Routing from node to node

5.1.2 Routing a message to a node

Let id1 be the identifier of a node n1 of ROSA. When a node n2 with the identifier id2

wants to send a data packet to the node n1, it first encapsulates the data packet into a
message SendToTable. This message in addition to the data packet contains the identifiers
of the sending node id2 and of the targeted node id1. Afterwards, the node n2 sends the
message SendToTable to the lump that handles the key corresponding to id1.

The nodes that compose this lump may store the routing table of the node n1, if n1 has
wished publish it. When a node that composed the lump supposed to store the routing
table of n1 receives the message SendToTable, it checks that the node n1 has published its
routing table. If not, it replies with a message TableNotFound. If the node n1 has published
its routing table, the node that received the message SendToTable looks down the node
location list contained in the table and determines the one that is the closer to itself in
term of ’chain of lumps’. Once this node location is determined, the node that received
the message SendToTable, extracts a key from this node location and sends a message
SendToNode to the lump handling the extracted key. This node n1 is in this lump, since
the node locations that are in the routing table of n1 corresponds to the bounds of a sub-
interval handled by a the lumps that n1 composes. The message SendToNode contains the
data packet,the identifiers of the sending node id2 and of the targeted node id1

Upon the receipt of the message SendToNode, a node of the targeted lump sends it to
the node n1 (if the node that received the message is not n1 itself). Since all the nodes
that compose a lump are neighbors, the last step is not a problem except if the table is not
up to date or if n1 does not handle any key. The last case will dealt in the Section 5.1.3.

It may happen that the table is not up to date if the node n1 has a failure, leaves
the network, etc. In this case, the node that received the message SendToNode sends a
message NodeNotFnd to the lump that stores the routing table of n1. Once this message
reaches a node of this lump, the node sends a message DltLoc to the nodes of the lump
and checks if there is another node location in the table of n1. If this location exists then
the message is sent again using the new node location, else the message is discarded. A
message DltLoc contains a node identifier and a node location. A node receiving a message
DltLoc checks if it stores the routing table corresponding to the node identifier contained
in the message. If it does, it removes the node location from the routing table.

The pseudo code of this process is described in the Figure 5.3. The function get-
Table returns the table corresponding to the node identifier passed in argument. If the
caller does not store such a table, the function returns null. The function removeLoc
removes the location corresponding to the key given in argument from the table. The
functions buildTableNotFnd, buildSendToTable, buildDltLoc respectively build the mes-
sages TableNotFnd, SendToTable and DltLoc.

The average number of hops needed for a node to send a data packet to a another
node is obviously equals to twice the average number of hops needed for a node to send
a data packet to a specified lump as it is described in the Figure 5.4. In this figure the
node shortcuts are deliberately ignored in the purpose of more clarity. In this figure, a
node wants to send a data packet to the node that has 276 as identifier. The node sends
through the ’chain of lumps’ the data packet encapsulated in a message SendToTable to
the lump handling the routing table of the node 276. When the message reaches the lump,
the closest node location is chosen and a message SendToNode is sent using the ’chain of

159

sendToNode(id, packet) (Input:integer, data)

sendDHT(buildSendToTable(packet, id, node.id)) to id ;1:

Messages handling
...
upon receiveDHT SendToTable do2:

table ← getTable(SendToTable.key) ;3:

if table = null then4:

key ← SendToTable.content.send_id ;5:

return sendDHT(buildTableNotFnd()) to key ;6:

loc ← getCloserLocation(table.loc_list) ;7:

key ← getKeyIn(loc) ;8:

sendDHT(buildSendToNode(packet, id, node.id)) to key ;9:

upon receive SendToNode do10:

if node.id = SendToNode.content.dest_id then11:

extractDataPacket(SendToNode.content) ;12:

upon receiveDHT SendToNode do13:

dest_id ← SendToNode.content.dest_id ;14:

for all lump ∈ lump_list do15:

if lump.handle(SendToNode.key) then16:

if lump.nodeId_list.contains(dest_id) then17:

send(SendToNode) to dest_id ;18:

sendDHT(builDltLoc(SendToNode.key)) to dest_id ;19:

upon receiveDHT DltLoc do20:

table ← getTable(DltLoc.key) ;21:

if table = null then22:

key ← DltLoc.content.send_id ;23:

return sendDHT(buildTableNotFnd()) to key ;24:

table.removeLoc(DltLoc) ;25:

loc ← getCloserLocation(table.loc_list) ;26:

key ← getKeyIn(loc) ;27:

sendDHT(buildSendToTable(packet, id, node.id)) to key ;28:

...

Figure 5.3: Routing a data packet from a node to another node

lumps’ to the lump that corresponds to this node location. Once the message reaches the
lump, the data packet is sent to the node 276.

160 5. Routing from node to node

Figure 5.4: A node to node routing example

5.1.3 Dealing with nodes that does not handle any key

It may happen that after the split of a lump, in the worst case, one of the resulting lumps
does not handle any sub-interval and it may also happen that a node only belongs to lumps
without sub-interval.

This is very rare case but it is interesting that these nodes can also send and receive
data packets.

To build and to maintain its routing table, a node that does not handle any key has
to periodically send a message updateTable to its neighbors. Let the identifier of this node
be id. This message only contains the node identifier, no sub-intervals and the flag set to
FALSE. This message is forwarded from node to node using a random walk algorithm until
the message reaches a node that handles a key. When such a node receives the message, it
completes it with its own location and sends it using the ’chain of lumps’ to the lump that
handles id. The updateTable message is then handled as any other updateTable message.

To allow a node that does not handle any key to receive a data packet, a similar process
than the one described in the Section 5.1.2 is used. The message SendToNode is replaced
with a message SendToNoKeyNode. This message is sent by the sender node to the lump
that corresponds to the node location contained in the routing table. The first node of the
lump that receives this message sends it to its neighbors. Then the neighbor that receives
this message and that does not handle any key checks if it is the destination node and

161

if it is not, it sends it to their neighbors. This process does not ensure that destination
node will be reached by the message. It depends if its routing table is up to date. If the
destination node is not reached the message is lost.

5.2 Finding an appropriate node identifier

Since the nodes of ROSA are already identified by an physical address, it could be inter-
esting to define the nodes identifier in such a way that given a node identifier one is able to
retrieve the corresponding physical address. Consequently, to compute the identifier of a
node one must use a reversible function. This function has also to ensure a fair distribution
of the node identifier among Iinit. The reversible mixing functions are functions that can
be used to obtain the nodes identifiers. In the Section 5.2.1 we present the concept of
reversing mixing functions. Then we detail, in the Section 5.2.2, how we can compute the
nodes identifiers compatible with the IP identification.

5.2.1 Introduction to mixing functions

The mixing functions are the main component of the hash function. The purpose of a
mixing function is to take an input, to mix and transform the bits, and to return an
output of the size of the input. A good mixing function have for attributes an uniform
distribution and a strong collision resistance. If the mixing function is reversible, it is
obvious that collisions are guaranteed not to happen.

A mixing function is reversible if it is a combination of reversible operations. In the
Table 5.1 are listed some reversible and non reversible operations on unsigned n-bit integer.
These operation must be performed modulo 2n. The bitwise left and right shift operations
and respectively noted << and >> and c is a constant.

Non-reversible operations Reversible operations
output = input & c output = input ⊕ c
output = input << c output = input + c (1)
output = input >> c output = input − c (2)
output = input | c output = input × (2 × c + 1)
output = input × (2 × c) output = input ⊕ (input << c) (3)
output = input / c output = input ⊕ (input >> c) (4)
output = input % c output = input ⊕ (input << c)
output = input + (input >> c) output = input + (input << c)

Table 5.1: The non reversible and reversible operations

In the mixing function that is proposed in Section 5.2.2.1 we use the reversible opera-
tions (1), (2), (3) and (4). In the Table 5.2 are shown the corresponding inverse operations.
In this table n refers to the n bits of the input and c is a constant.

A mixing function achieves an uniform distribution if it satisfies the avalanche criterion
of degree 1 also called strict avalanche criterion. The strict avalanche criterion of degree 1
is respected if whenever a single input bit is complemented, each of the output bits changes
with a probability of one half. This criterion was introduced by Webster and Tavares in

162 5. Routing from node to node

Operations Inverse operations
output = input + c output = input − c
output = input − c output = input + c

output = input ⊕ input << c output =
i<n/c⊕
i=0

input << c × i

output = input ⊕ input >> c output =
i<n/c⊕
i=0

input >> c × i

Table 5.2: The chosen reversible operations and their inverse operations

1985 (Webster and Tavares [1986]). It is not possible to prove for large inputs that a
mixing function satisfies the strict avalanche condition. For large inputs only probabilistic
evaluations are possible.

5.2.2 Computing the ROSA node identifier

In this Section and according to the definition of the mixing function described in Sec-
tion 5.2.1, we propose the reversible mixing function that is used to compute the nodes
identifier. We also evaluate if the proposed reversible mixed function satisfy the strict
avalanche condition.

5.2.2.1 The chosen mixing function

To build the mixed function we take inspiration from the article ’Reversible data mixing
procedure for efficient public-key encryption’ (Matyas et al. [1998]). The mixing process
described in this article consists of dividing the block of data into a left-hand part L and
a right-hand part R. It is preferable from a security point of view that these parts are
equal-sized. Then the mixing process consists in performing some mixing operations on
one of the part and Exclusive-ORing it with the other part. Four iterations of this mixing
process are sufficient to ensure that the strict avalanche condition is satisfied. To finish
the two parts are concatenated in order to obtain the final output.

Our reversible mixed process takes an IP address in input and must return a 128-bit
output. An IP address is composed of 4 8-bit unsigned integer. Each of these unsigned
integer are transformed into 32-bit unsigned integers. These 4 32-bit integers will be the
four parts that will manipulate our mixed function. Given an IP address A.B.C.D the
resulting parts will respectively be PA, PB, PC and PD. As for the previously described
mixing process described only four steps are sufficient to ensure that the strict avalanche
condition is satisfied.

The four steps of our mixing process are:

• PA is mixed to obtain P 1
A. The function used to mix PA is a reversible mixing

function and will be described further in this Section. Then PB, PC and PD are
Exclusive-ORed with P 1

A to respectively obtain P 1
B, P

1
C and P 1

D.

• P 1
B is mixed to obtain P 2

B. Then P 1
A, P

1
C and P 1

D are Exclusive-ORed with P 2
B to

respectively obtain P 2
A, P

2
C and P 2

D.

163

• P 2
C is mixed to obtain P 3

C . Then P 2
A, P

2
B and P 2

D are Exclusive-ORed with P 3
C to

respectively obtain P 3
A, P

3
C and P 3

D.

• P 3
D is mixed to obtain P 4

D. Then P 3
A, P

3
B and P 3

C are Exclusive-ORed with P 4
D to

respectively obtain P 4
A, P

4
B and P 4

C .

Since the function used to mix PA, P 1
B, P

2
C and P 3

D is a reversible function. The
unmixing process exists and consists in simply the inverse of the mixing process and will
not be detailed. The mixing process is schematized in the Figure 5.5.

Figure 5.5: Mixing process

In order to be reversible, the function mix used to mix PA, P 1
B, P

2
C and P 3

D must be a
combination of reversible operations on unsigned 32-bit integer. The reversible operations
chosen are the operations (1), (2), (3) and (4) of the Table 5.2. The algorithm of the
mix function is represented in the Figure 5.6. This function was found empirically. Many
different functions were tested until one makes the whole mixing process satisfy the strict
avalanche condition.

164 5. Routing from node to node

mix(part) (Input:integer ; Output:integer)

result ← part + 944 ;1:

result ← result ⊕ result << 1 ;2:

result ← result − 66240 ;3:

result ← result ⊕ result >> 2 ;4:

result ← result + 439654944 ;5:

result ← result ⊕ result << 4 ;6:

result ← result − 1937066240 ;7:

result ← result ⊕ result >> 8 ;8:

result ← result + 419501280;9:

result ← result ⊕ result << 16 ;10:

result ← result − 2516448256 ;11:

result ← result ⊕ result >> 1 ;12:

result ← result + 1402087808 ;13:

result ← result ⊕ result << 2 ;14:

result ← result − 2699718400 ;15:

result ← result ⊕ result >> 4 ;16:

result ← result + 2132352512 ;17:

result ← result ⊕ result << 8 ;18:

result ← result − 1240660480 ;19:

result ← result ⊕ result >> 16 ;20:

result ← result + 4009274112 ;21:

result ← result ⊕ result << 3 ;22:

result ← result − 129839136 ;23:

result ← result ⊕ result >> 9 ;24:

result ← result + 234628412 ;25:

result ← result ⊕ result << 9 ;26:

result ← result − 56931536 ;27:

result ← result ⊕ result >> 3 ;28:

return result ;29:

Figure 5.6: The mix function

5.2.2.2 Evaluating the mixing function

Since the size of the input is equal to 128 bits the avalanche behavior cannot be formally
determined. In order to estimate it for the proposed mixed function we randomly choose
an important number of input values. For each of these values, we first compute the output
value, then toggle each bits of this input value and for each of the new input values obtained
we compute the output value and compare it to the initial output value. The result for
each randomly chosen input is stored. When a sufficient number of input values are tested
we have a good estimation of the probabilities that a given input bit affects a given output
bit. The number of random input values used in our evaluation is equal to 109.

165

The Figure 5.7 represents the evaluation of the probabilities of the proposed mixing
function. The figure is composed of a grid of 128 coloured squares of width and 128
coloured squares of height. The color of the square located at (i,j) on the grid corresponds
to the probability that the bit ith bits of the input affects bit jth bit of the output. One
can remark that all these probabilities are included between 49,4% and 50,6% and that the
majority of these probability are nearly equal to 50%. Consequently, the proposed mixing
function is an appropriate mixing function for our purpose.

Figure 5.7: Propagation of the mixing function

166 5. Routing from node to node

167

Chapter 6

Density

In this Chapter we deal with the density. We introduce the notion of density and recall
when and why the density is necessary in the Section 6.1. Afterwards we present the three
densities that was conceived during this thesis. In Section 6.2 we detail the default density.
In Section 6.3, we detail the density used to deploy ROSA over an IP network and offer a
strong tolerance to underlying network failures. And in Section 6.4 we present a density
that can be used to deploy ROSA over large and dense mobile network.

6.1 Introduction

We have seen in the Chapter 2 that the topology management of ROSA consists in the
nodes computing the density of lumps which they belong. Each node sends to its neighbors
the representation of the lump of that has the lowest density in its list of lumps. Conse-
quently, every node of ROSA is aware of some lumps that have low densities. According to
this knowledge about the densities of the lumps, the nodes leave lumps with high densities
in order to join and to increase the density of the lumps with low densities.

The density is the parameter that defines the behavior of ROSA. If two instances
of ROSA were deployed over the same network (i.e same nodes, same failures and same
network topology) but with two different definitions of the density, the nodes of each
instance will choose which lumps to leave or to join according to the definition of the
density of the instance. Consequently, the set of lumps of these instances of ROSA will be
completely different.

The density is the most important parameter of the ROSA protocol, the density of an
instance of ROSA must be chosen to reflect the goal whose ROSA is intended to achieve.
During this thesis, three definitions of the density were proposed, they will be presented
further in this Chapter. But one can define a new density in order to use ROSA for another
purpose. ROSA can be adapted to many usages simply in modifying the definition of the
density, this is a very strong point of ROSA

6.2 Default density

The default density of a lump is equal to size of the lump. This is the simplest density. It
was first used for the purpose of testing how the topology management process of ROSA

168 6. Density

behaves. Nevertheless, this density can be used to average and maximise the number of
nodes per lump. This density has three advantages:

• it does not require any additional data to allow nodes to compute it ;

• it is easily computable ;

• it can be used by ROSA on any types of networks.

We performed a simulation to see how this density affects the network. The simulation
shows how the average number of nodes per lump evolves from the initialization of ROSA
to a state of stability (i.e. a state where if no failure occur no more changes happen in
the topology). The time in this simulation is measured in ROSA cycles. A ROSA cycle
is the time that is necessary to the nodes to run the ROSA main loop described in the
Section 2.4.7. The number of nodes involved in this simulation is equal to 100 and the
maximum number of nodes that can compose a lump is equal to 10. The first 100 cycles
correspond to the initialization of ROSA. During this initialization a node joins every cycle.
The results of this simulation are represented in the graphics Figure 6.1 and Figure 6.2.
The first graph shows the average number of nodes of the lumps in function of the number
of ROSA cycles elapsed. The second graph shows the distribution of lumps in percentage
in function of the number of nodes that compose these.

Figure 6.1: Average number of nodes per lumps

In the Figure 6.1, one can see that the final average number of nodes per lump is
about 9.3. One can remark that the process, described in the Section 2.4.11, in charge of

169

optimizing the average density of the lumps of ROSA (in the present case the number of
nodes per lump) works well since from the ROSA cycle 100 to the ROSA cycle 500 the
average number of nodes per lump increases from 8.8 to 9.3. The fluctuations occurring in
the first 100 ROSA cycles are due to the nodes connecting to ROSA.

Figure 6.2: Distribution of the lumps according to their number of nodes

In the Figure 6.2 one can see that the minimum number of nodes per lump is equal
to 8 and that only 3.9% of the lumps are only composed of 8 nodes. Most of the lumps,
64.7%, are composed by 9 nodes. And 31.3% of the lumps are composed by 10 nodes, i.e.
the maximum number of nodes possible.

This simulation confirms the fact that this density can be used to maximize the number
of nodes per lump and therefore the number of neighbors per node (the maximum number
of neighbors per node is equal to the maximum number of nodes per lump multiplied by
the maximum number of lumps per node).

6.3 Resilient density

The purpose of the resilient density is to make ROSA extremely resistant to failures.
Since computer-based systems are nowadays present in the economy, medical processes
and equipment, power and communication infrastructures, it is essential to protect these
systems from network failures. Studies from Paxson [1998] and Zhang et al. [2000] have
demonstrated that Internet connectivity failures are not rare. In 1.5% to 3.3% of time,
failures prevent pair of hosts from communicating.

Since BGP Rekhter and Li [1995] can take much time, many minutes sometimes, to
discover a failure and to reorganize the routes in a consistent form Labovitz et al. [2000],
we have defined a density in order to make ROSA able to assure a resilient routing to these
computer-based systems. It means that ROSA will be deployed over an IP network.

170 6. Density

A lot of Overlay Networks have already dealt with the problem of resilient routing.
The most famous is undoubtedly RON (Resilient Overlay Network) Andersen et al. [2001].
RON maintains a virtual link between all pairs of nodes. Each node in RON checks the
availability and the capacity of the virtual links between itself and the other nodes. Each
node decides then, based on its knowledge, if it should let packets flow directly to other
nodes, or if some indirections via other RON nodes could be useful. But since each node
in RON is linked with all the other nodes, RON cannot exceed more than one hundred of
nodes.

Figure 6.3: To examples of resilient density for two lumps

This limit on the maximum number of nodes does not allow to use RON as a backbone
for large network. To improve RON scalability, the solution chosen by DG-RON Qazi
and Moors [2007] consists in splitting the network into logical zones in such a way that
each node has to maintain and exchange information only with nodes of its logical zone.
But this solution does not take into account of the specificities of the topology of the
underlying network. A solution proposed in Akihiro et al. [2006] consists in exploring the
underlay network topology in order to make the nodes efficiently choose these neighbors.
Nevertheless, the algorithm proposed can only be used to construct static network. The
static network are not able to react to failures and therefore are not very resilient.

From these observations, we decided to define a density that will force the node of
ROSA to dynamically reorganizes their neighbors sets according to:

• the topology of the network which ROSA is deployed on ;

171

• the failures on the elements of the links between two nodes.

Let l be a lump, the density of l is the quantification of its capacity to maintain a path
between all the nodes that compose if despite the presence of virtual link failures. We
assume that each node is able to identify and distinguish the elements of the underlying
network composing the virtual links that connect it to its neighbors. If ROSA is deployed
on an IP network the traceroute utility (Jacobson [1989]) allows any node to do this.

The density is defined as the minimal number of failures on the elements of the virtual
links of the lump that are necessary to isolate a node of the lump. In such a way that if the
number of failures is less than the density, we can affirm that there exist a path between
any two nodes of the lump and that the nodes of the lump still able to communicate each
other. One can remark that if all the links between the nodes of a lump are disjoints, the
density of the lump is simply equal to the cardinal of the lump minus one, i.e. #l - 1.

In the Figure 6.3 are represented two lumps and the graph of the elements of the
underlying network that correspond to these lumps. Each lump is displayed above its
corresponding underlay graph. The green circle are the nodes, they are present in the
lumps and in the underlay graph. The little black dots are the underlay elements. One can
see that the size of the first lump (a)is equal to 5 and the size of the second (b) is equal to
4. The density of the first lump is equal to 1 since the failures of the underlay red circled
element failure are sufficient to isolate the nodes of the left to the nodes of the right. The
density of the second lump is equal to 4 since all the links are disjoints.

In order to compute the density of a lump, a node needs to know the graph of the
underlay elements that compose the links between the nodes of the lump. That is why
when a node joins a lump, it explores the underlay topology of the links between itself
and the other nodes of the lump. This information about the topology of the links is
added to the representation of the lump when the node joins. Since as it was shown in the
Section 2.4.4, this representation is sent to the other nodes of the lump during the join,
any node of the lump has the capability to compute the density.

Figure 6.4: An example of s-t cutset

A node that wants to compute the density of a lump must build the underlay graph
corresponding to the information about the topology of the links of the lump. If ROSA is

172 6. Density

deployed over an IP network, the vertices of the resulting graph are the router, gateway,
etc, and the edges of the resulting graph are the cables linking the vertices. Once the graph
is built, if we consider that both the vertices and the edges fail, to compute the density of
the lump one must first compute the minimal s-t cutsets separating every pair of nodes of
the lump. The density is equal to the cardinal of the smallest of the computed minimal
cutsets.

The minimal s-t cutset, separating two vertices source and terminal, is the minimal set
of vertices and edges whose removal disconnects the vertex source from the vertex terminal.
In the Figure 6.4, is shown a graph, one of the minimal s-t cutset separating the vertices
S and T is equal to {v1, e1} (dashed in the figure).

We have looked, in the literature dealing with the graph theory, for a solution to, given
a graph, a source and a terminal vertex, compute the cardinal of the minimal s-t cutset
separating the source from the terminal. Since in a graph composed of n vertices there
are 2n − 1 minimal s-t cutsets, finding the minimal cutsets of a graph is an hard problem.
Many solutions exist in the literature but the one proposed by Fard and Lee Fard and Lee
[1999] retained our attention.

computeDensity(lump) (Input:lump; Output:integer)

graph ← computeGraph(lump) ;1:

density ← ∞ ;2:

for all n1 ∈ lump.nodeId_list do3:

for all n2 ∈ lump.nodeId_list such n1 6= n2 do4:

tmp_density ← getCardMinSTCutSet(n1, n2, graph) ;5:

if tmp_density < density then density ← tmp_density ;6:

return tmp_density ;7:

getCardMinSTCutSet(id1, id2, graph)
(Input:integer, integer, graph; Output:integer)

st_min_edge_cutset_list ← getMinEdgeCS(id1, id2, graph) ;8:

st_min_cutset_list ← void ;9:

for all cs ∈ st_min_edge_cutset_list do10:

st_min_cutset_list ← st_min_cutset_list ∪ getMinCS(id1, id2,11:

graph, cs) ;
cardinal ← ∞ ;12:

for all cs ∈ st_min_cutset_list do13:

if #(cs) < cardinal then cardinal ← #(cs) ;14:

return cardinal ;15:

Figure 6.5: Computing the resilient density

The first step of this solution consists in enumerating all the minimal s-t edge cutsets
that separates the source from the terminal. A minimal s-t edge cutset, separating two
vertices is the minimal set of edges whose removal disconnects these two vertices. In the

173

Figure 6.4 {e1, e5}, {e3, e4} and {e1, e4, e6, e7} are s-t edge cutsets that separate the
vertex S from the vertex T (there exist many other). To enumerate these s-t edge cutsets
one can use the algorithm proposed in 1990 by Ahmad S. [1990].

Once the minimal s-t edge cutsets are enumerated, the second step is to use the algo-
rithm presented by Fard and Lee to build the minimal s-t cutsets from the minimal s-t edge
cutsets previously computed. The concept used to build the minimal s-t edge cutsets is
that the failure of a vertex inhibits the working of all the edges incident from it. Therefore,
given a minimal s-t edge cutsets the algorithm builds a set of minimal s-t cutsets by adding
one or many vertices and removing the edges incident from these. The vertices to add are
combination of vertices that are linked by the edge of the minimal s-t edge.

The pseudo code of the function that given a lump computes the density of this lump is
shown in the Figure 6.5. The function computeGraph returns the graph corresponding to
the links between the nodes of the lump given in argument. The function getMinEdgeCS
enumerates the s-t edge cutsets between the nodes given in argument. This is the algorithm
described in S. [1990]. The function getMinCS generates the s-t cutset from the s-t edge
cutset passed in argument. This is the algorithm presented in Fard and Lee [1999].

In the case where only the vertices are susceptible to fail, the density can be computed
as the vertex connectivity of the graph corresponding to the links of the lump. The vertex
connectivity of a graph is the smallest number of vertices whose the deletion separates the
graph. An efficient algorithm to compute the was proposed by Henzinger, Rao and Gabow
in 2000 Henzinffer et al. [1996].

6.4 Mobile density

The mobile density was created in order to adapt ROSA to dense mobile Ad-Hoc network.
ROSA cannot be deployed on every Ad Hoc networks. The Ad Hoc network on which

ROSA can be deployed must:

• be dense

• possess a Ad Hoc layer protocol that takes in charge the neighbor discovery and a
resilient node to neighbor routing process

Dense means that any node has a large number of potential neighbors. If the network is
not dense enough ROSA may fail to constitute lumps big enough to support simultaneous
communication failures (that can happen with a non negligible probability on the Ad Hoc
network). The inner protocol of the Ad Hoc network on which ROSA can be deployed
must be incharge of the discovery of the Ad Hoc neighbors of a node in such a way that
any node of ROSA can choose a subset of the Ad Hoc neighbors as the ROSA neighbors.
The inner protocol of the Ad Hoc network must also handle the temporary disruption of
communication between a node and one of its ROSA neighbors.

In fact, only few Ad Hoc networks possess the necessary capacities to support the ROSA
protocol. We show in this Section of these Ad Hoc network, the Aeronautical network.

The mobile density is designed to consider the characteristics of mobile nodes. These
characteristics are namely their relative positions, speed and direction. We introduce the
concept of the viability of the link between two nodes. The viability of the link between

174 6. Density

two mobile nodes is a measure that provides information on the quality and durability
of the connection between these two nodes. For example, two mobile nodes going in
opposite directions will not be within communication range as long as two near mobile
nodes following the same way.

The viability of the link between two mobile nodes n1 and n2 is described in the formula
below:

viability(n1, n2) = 1−
(

1− cos(~̂s1, ~s2)
2

+
d2

d2
max

+
||~s1 − ~s2||2

(2.vmax)2

)
/3

Where ~s1 and ~s2 are respectively the state vector representing the direction and velocity of
the nodes n1 and n2. The distance between the two nodess is noted d and dmax represents
the distance beyond which the two mobile nodes cannot communicate and vmax represents
the maximum speed that a node can reach.

The usage of mobile density assumes that the nodes are able to compute their state
vector. This can be done with the help of a embedded GPS (Global Positioning System
see Botton et al. [1997]).

The first part of the formula:
1− cos(~̂s1, ~s2)

2
varies from 1 if the mobile nodes go in

opposite direction to 0 if the nodes go in the same direction. The second part:
d2

d2
max

is the

ratio of the distance between the nodes distance over the maximum distance. The more
this value is close to 0, the more the nodes are close and the more it is close to 1, the

more the nodes are distant. The last part:
||~s1 − ~s2||2

(2.vmax)2
compares the relative speeds of the

nodes. The more this value is close to 1, the more the difference between the speeds is
high and when this value approaches 0 the speeds are equivalent.

A node joining a lump computes the viability of the links between itself and the other
nodes of the lumps. These information are added to the representation of the lump. Any
node of a lump is then able to compute its density. The density of a lump is the sum of the
viability of the communication between the nodes composing the lump. Let l be a lump
the density is equal to:

density(l) =
a1∈l∑
a1

a2∈l−{a1}∑
a2

viability(a1, a2)

The Figure 6.6 shows 2 lumps and their relative densities.
On the lump of the left, the four nodes go in the same direction and their relative speeds
are equal to 0. The density of this lump is equal to 5.93. On the lump on the right, one
node goes in the opposite direction therefore the density of this lump must theoretically
be less than the density of the previous lump. Indeed the density of the lump on the right
is equal to 3.94.

The aeronautical network is an Ad Hoc network on which ROSA can be deployed.
Three types of devices composed an aeronautical network. We have by altitude order (from
bottom to top), airports, aircrafts and satellites (that can be replace by High Altitude
Platforms Grace et al. [2005]). Airports and satellites compose the backbone network.
Each of this device has its own coverage and as show in the Figure 6.7 there is some areas

175

Figure 6.6: Two examples of mobile densities

that are not covered by any airport or any satellite. To connect the aircrafts cruising
in this uncovered area to the backbone network, paths among these aircraft have to be
maintained and consequently these aircrafts compose a mobile Ad Hoc network.

This aeronautical mobile Ad Hoc network are composed by a large number of aircrafts
connected by VHF (Very High Frequency) links. The range of the VHF links may reach
many hundreds of kilometers. It means that this Ad Hoc network is dense, indeed, the
aircrafts have potentially a large number of Ad Hoc neighbors. But the aircrafts are only
equipped with a bounded number of antennas and so an aircraft can only have an effective
limited number of neighbors. These neighbors have to be appropriately chosen according
to the distance between each aircrafts, their relative speeds and directions. ROSA endowed
with the mobile density is especially adapted for this purpose.

The discovery of the potentially Ad Hoc neighbors of an aircraft is achieved with a non
directional antenna and an existing protocol specific to the aeronautical network. Moreover
the aircrafts are endowed with the ADS-B system (CASCADE Project Eurocontrol [2008]),
that is a system that returns the state vector of an equipped aircraft.

176 6. Density

Figure 6.7: The aeronautical network with the three types of devices: airports (ground),
aircrafts (mid altitude) and satellite (high altitude).

177

Chapter 7

Analysis

In this Chapter we analyse the performances of ROSA and the ’chain of lumps’. In the
Section 7.1 we study the scalability of ROSA and show that the bandwidth used by a node
does not depend on the number of the nodes involved in ROSA. In the Section 7.2 we focus
on the efficiency of the routing algorithm of the routing over the ’chain of lumps’. Finally,
in the Section 7.3 we deal with the parameters that impact the load of the nodes.

7.1 Scalability of ROSA

ROSA ensures its scalability by bounding the number of neighbors per node by a constant.
This bound is equal to the maximum number of nodes per lump multiplied by the number
of lumps per node.

The size of the messages exchanged for the inner functioning of ROSA is also bounded.
The messages with the highest size bound are the messages AbsorbLump. A message Ab-
sorbLump contains the representation of a lump, two identifiers of lumps and the identifier
of the node that sends the message. The size of an identifier is equal to 128 bits (for the
lumps and for the nodes). If we refer to the definition of the representation of a lump given
in the Section 2.1, the bound on the size of the representation of the lump is equal to:

bound = LumpSizeLimit× (sizeof(nodeid) + sizeof(nodephy)) + sizeof(datadensity)
bound = 256 bits× LumpSizeLimit+ sizeof(datadensity)

where LumpSizeLimit is the maximum number of nodes per lump. The value of the size of
datadensity depends on the definition of the density. If the definition of the density used is
equal to the default density (i.e. the number of nodes that compose a lump) then the bound
on the size on the representation of a lump is equal to 8 bytes × LumpSizeLimit. One
can also notice that in order to ROSA be scalable, the definition of the density used over
ROSA must allow to compute it with a bounded size of datadensity. Indeed, if datadensity

depends on the number of nodes, ROSA is not scalable anymore.
We have performed simulations in order to verify the scalability of ROSA. These sim-

ulations consisted in running many different instances of ROSA. Each of these instances
of ROSA has a different number of nodes. Then we measure the average number of bytes
that the nodes of ROSA send at each interval. The Figure 7.1 shows the result of one of
these simulations.

178 7. Analysis

For the simulation corresponding to the Figure, the maximum number of nodes per
lump is set to 10, the maximum number of lumps per node is set to 2 and the density is
the default density.

.

Figure 7.1: Average number of bytes sent by a node in function of the number of nodes

One can see in the Figure that the average size of the data sent by a node during a
time interval does not depend on the number of nodes of ROSA. The other simulations
performed show the same fact. One can consider the management of the topology of ROSA
as a scalable process.

7.2 Efficiency of the routing over the ’chain of lumps’

In this section we show the performances of the routing algorithm based on the ’chain of
lumps’. In the Section 7.2.1 we present a formal analysis of the efficiency of the routing
algorithm in the worst case. We show that the routing algorithm is in O(N) where N is
the number of sub-intervals that are implied in the ’chain of lumps’. In the Section 7.2.2
we present the results of some simulations. These simulations aim to reflect the behavior
of the routing algorithm in real cases. Consequently, the simulations aim to show the real
efficiency of the routing algorithm based on the ’chain of lumps’. The efficiency of the
routing algorithm is measured by the number of hops that a data packet must do when a
random node wants to send this data packet to a random lump.

179

7.2.1 Formal analysis of the worst case

The ’chain of lumps’ is composed of lumps that share a initial interval Iinit into sub-intervals
such:

• All the sub-intervals are allocated ;

• Two lumps that possess contiguous sub-intervals share at least a common node ;

• Each lump has at least one sub-interval.

Two lumps that share contiguous sub-intervals are called predecessors and successors
accordingly to the position of their sub-intervals on the ’chain of lumps’. In order to
be more efficient the last and first lumps of the chain are respectively predecessor and
successor of each other. This way the lumps form a circular chain. There exists shortcuts
in the chain since the node are allowed to compose more than one lump.

We call distance between a node n and a lump l, the minimum number of lumps that
separate n from l in the ’chain of lumps’. The worst case for the efficiency of the ’chain of
lumps’ is the lack of shortcuts. In this worst case, the distance between a node and a lump
is equal to the number of hops that a data packet sent by the node would do to reach the
lump.

Let, now and until the end of this Section, us consider the worst case. In order to
determine the efficiency of the routing algorithm, one has to determine the probability
that a node is at a given distance from a lump. This distance is at most equal to bN/2c.
The probability that a randomly chosen node is at a distance d from a randomly chosen
lump on a ’chain of lumps’ without shortcuts and composed by N sub-intervals is noted
PN (d). To determine these PN (d), we have to consider two cases, N is even or N is odd.
If N is even, let p = N/2, we have :

PN (d) =

1/N if d = 0
2/N if 1 ≤ d < p
1/N if d = p

If N is , let p = (N − 1)/2, we have :

PN (d) =
{

1/N if d = 0
2/N if 1 ≤ d ≤ p

The efficiency of the routing algorithm is the number of hops that a data packet, sent by
a randomly chosen node to a randomly chosen lump, will do. Since there is no shortcuts
in the ’chain of lumps’ in the worst case, the number of hops is equal to the distance
between the randomly chosen node and the randomly chosen lump. This number of hops
on a ’chain of lumps’ composed by N sub-intervals is noted Hop(N). This number of hops
Hop(N) is equal to the sum, for all the possible values that the distance between the node
and the lump can takes, of the value multiplied the probabilities that the distance between
the node and the lump equals this value:

Hop(N) =
∑

i

Pn(i)× i

180 7. Analysis

Since the probabilities depend of the parity of N , we have to consider two cases: N is even
or N is odd.
If N is even, let p = N/2, and :

Hop(N) =
p−1∑

i

Pn(i)× i+ p

N

Hop(N) =
p−1∑

i

2
N
× i+ p

N

Hop(N) =
2
N
× p(p− 1)

2
+

p

N

Hop(N) =
N
2 (N

2 − 1) + N
2

N

Hop(N) =
N

4

If N is odd, let p = (N − 1)/2, and :

Hop(N) =
p∑
i

Pn(i)× i

Hop(N) =
p∑
i

2
N
× i

Hop(N) =
2
N
× p(p+ 1)

2

Hop(N) =
N−1

2
N+1

2

N

Hop(N) =
N

4
− 1

4N

We can conclude that in the worst case, the number of hops that a data packet does
between a random node to a random lump is less or equal to N/4 where N is the number
of the sub-intervals that compose the ’chain of lumps’. The routing algorithm using the
’chain of lumps’ is in O(N).

To verify experimentally that the number of hops to route a data packet from random
node to a random lump is less or equal to N/4, some simulations were performed. In
these simulations, the number of nodes per lump is equal to 15 and the number of lumps
per node is set to 1. Consequently, there is no shortcuts in the ’chain of lumps’ and the
simulations were performed in the worst case. Then we built several instances of ROSA
with a ’chain of lumps’ composed by more and more sub-intervals (these instances are
obtained by adding more and more nodes to an initial instance of ROSA). Then a node
and a lump are randomly chosen and the number of hops needed to route a data packet
from the node to the lump is measured. The result of these simulations are shown in the

181

Figure 7.2. One can see that the theoretical number of hops corresponds to the number of
hops obtained with the simulation.

Figure 7.2: The average number of hops in function of the number of sub-intervals in the
worst case

7.2.2 Simulation of real cases

In this Section we simulate the behavior of the ’chain of lumps’ in conditions near to those
encountered in the reality. We study the impact, on the efficiency of the routing algorithm
of two parameters. These parameters are the number of sub-intervals that compose the
’chain of lumps’ and the number of shortcuts present on the ’chain of lumps’. The influence
of the number of sub-intervals is shown on the Section 7.2.2.1. The influence of the number
of shortcuts is shown in the Section 7.2.2.2.

7.2.2.1 Influence of the number of sub-intervals

In order to understand how the number of sub-intervals influences the number of hops
needed to route a message from a random node to a random lump we performed many
simulations.

In the first simulation, the number of nodes per lump is equal to 20 and the number of
shortcuts per node is equal to 0.5. It means that a node belongs to 1.5 lumps in average.
This is due to the fact that some nodes are unable to join more that one lump according

182 7. Analysis

to the network topology. Then we built several instances of ROSA with a ’chain of lumps’
composed by more and more sub-intervals by adding more and more nodes to ROSA. To
give an order of height, the number of nodes to obtain 500 sub-intervals is about 1300
nodes.

We measure the average number of hops needed to route a message from a node to
a lump. The node and the lump are randomly chosen. The results of this simulation
are shown in the Figure 7.3. On this graph is also represented the standard deviation
corresponding to the average number of hops and the theoretical worst case routing bound.

Figure 7.3: The average number of hops in function of the number of sub-intervals with
0.5 shortcuts per node

One can see in this Figure that the average number of hops needed to route a message
is less than theoretical worst case bound and seems to linearly grows. One can also see
that the standard deviation is important. The average number of hops needed to route
messages in a ‘chain of lumps’ with 500 sub-intervals is about 37.

The parameters of the second simulation differ from those of the first one in the number
of nodes par lump that is equal to 15 and in the number of shortcuts that is equal to 1.5
(the nodes belong to 2.5 lumps in average). The results of this simulation are shown in
the graph of the Figure 7.4.

One can see in this Figure that the average number of hops needed does not grow
linearly in function of the number of sub-intervals. It seems to be due to the number of
shortcuts in the ’chain of lumps’. The average number of hops needed to route messages

183

Figure 7.4: The average number of hops in function of the number of sub-intervals with
1.5 shortcuts per node

in a ‘chain of lumps’ with 500 sub-intervals is about 8.3.
The parameters of the third simulation are the same than those of the precedent sim-

ulations excepted for the number of nodes per lump and the number of shortcuts. In this
simulation the number of nodes per lump is set to 10 and the number of shortcuts is set to
2.5 (the nodes belong to 3.5 lumps in average). The results of this simulation are shown
in the graph of the Figure 7.5.

One can see in this Figure that the average number of hops needed first grows until
300 sub-intervals and then stagnates at a average number of hops about to 5.25 number
of hops. This simulation shows that if the number of shortcuts is sufficient the number of
sub-intervals in the ’chain of lumps’ does not influence anymore the number of hops needed
to route messages.

One can also remark that the maximum number of neighbors per node that is equal
to the maximum number of nodes per lump multiplied by the maximum number of lumps
per node is nearly the same for the three simulations (1.5× 25 = 37.5, 2.5× 15 = 37.5 and
3.5 × 10 = 35). One can remark that this number of neighbors is small compared of the
total number of nodes needed to reach 500 sub-intervals in the ’chain of lumps’.

184 7. Analysis

Figure 7.5: The average number of hops in function of the number of sub-intervals with
2.5 shortcuts per node

7.2.2.2 Influence of the number of shortcuts per node

Let us recall first that the number of shortcuts is a function of the number of lumps per
node, but also depends of the topology of the network on which ROSA is deployed. Indeed,
it is not sure that given a topology the nodes are able to join a number of lumps equals to
the maximum number of nodes per lump allowed. In a general way, one can increase the
number of shortcuts per node by increasing the number of lumps per node. Nevertheless,
one cannot predict the number of shortcuts per node that it will obtain. Consequently the
number of shortcuts per node has to be empirically determined. It is however possible to
determine the average number of lumps per node given the number of shortcuts per node:
the average number of lumps per node is equal to the number of shortcuts per lumps plus
one.

One could think that in order to benefit of a really efficient routing protocol, it is
sufficient to increase the number of shortcuts per node. Nevertheless, increasing the number
of shortcuts per node also means increasing the number of the representation of lumps that
a node must store. Consequently, the gain for the routing is obtained to the detriment of
time that each node needs to execute the main loop of ROSA and to the detriment of the
amount of data that each node must store.

In order to determine the ideal number of lumps per nodes we have performed many
simulations to see the influence of the number of shortcuts on the number of hops needed

185

to route messages on the ’chain of lumps’. These simulation consists in running different
instance of ROSA endowed with a ’chain of lumps’ composed by the same number of sub-
intervals but with different number of shortcuts for the ’chain of lumps’ of the different
instances of ROSA.

The results of this simulation with 500 sub-intervals in the ’chain of lumps’ are shown
in the graph of the Figure 7.6.

Figure 7.6: The average number of hops in function of the number of shortcuts per node

One can see that as the number of shortcuts in the ’chain of lumps’ increases the average
number hops exponentially decreases and finally stagnates around 5.25 hops. Consequently,
having a number of shortcuts per node greater than 2.5 (i.e. number of 3.5 lumps per nodes)
does not bring anymore gain in the routing. The simulations performed with other values
for the number of sub-intervals gave nearly the same results.

The phenomenon appearing in the results of these simulations is similar to a small-
world phenomenon. In a network under the influence of a small-world phenomenon, most
of the nodes are not neighbors, but most nodes can reach every other nodes by a small
number of hops. A network under the influence of a small-world phenomenon is called
small world network.

The small-world networks are based on the six degrees of separation concept. This
concept affirms that if a person is one step away from each person they know, and if a
person is at two steps away from each person who is known by people that are at one step
away from the person then each person on earth is at most six steps away from any other

186 7. Analysis

person on Earth.
The concept of six degrees of separation were popularized, in the context of the com-

puters network, first in 2001 by Duncan Watts. It performs a mail based experiments
that consists of an email message that has to be delivered to 19 targets. The network
used in this experiments consist in 48000 senders shared over 157 countries, each sender
knowing only a small set of the other senders. Watts founds during this experiments that
the number of intermediaries sender was around 6. This concept has been revised to the
seven degrees of separation since a 2008 study (Leskovec and Horvitz [2008]).

Figure 7.7: A Watts and Strogatz network

The ’chain of lumps’ can be compared to the Watts and Strogatz small world model
(Watts and Strogatz [1998]), that is a network where the nodes are organized to form a
circle. Some random long links connect pair of nodes that are not neighbors on the circle.
The Figure 7.7 represents the Watts and Strogatz small world network. The long links are
represented in red in this Figure.

As for the Watts and Strogatz network our simulations show that the distribution of
the shortcuts depends of the length of these shortcuts. There are many shortcuts with
small length and only few with long length. In the Figure 7.8 are shown the results of
these simulations. On the y-axis are represented the number of shortcuts in percentage
in function of the x-axis where are represented the lengths of the shortcuts. There is two
curves one corresponding to a simulation involving a ’chain of lump’ with 500 sub-intervals
and one corresponding to a simulation involving a ’chain of lumps’ with 800 sub-intervals.

One can remark, on this Figure, that the number of sub-intervals that compose the
’chain of lumps’ does not impact the distribution of the lengths of the shortcuts. This fact
was verified by more of our simulations.

The next simulation aims to show the influence of the number of shortcuts per node
of the distribution on the lengths of the shortcuts. On the Figure 7.9 three curves are
represented. These curves correspond to three instances of ROSA endowed with a ’chain
of lumps’ composed of 500 sub-intervals with respectively 0.5, 2.5 and 5.5 shortcuts per
nodes.

This Figure shows the fact of passing from a value of 0.5 to a value of 2.5 shortcuts per
node changes the distribution of the lengths of the shortcuts. Indeed the higher the value

187

Figure 7.8: Distribution of the shortcuts according to the shortcuts length

of the shortcuts per node is, the higher the proportion of long shortcuts is. One can also
see, on this Figure, that once the value of 2.5 shortcuts per node is reach, increasing the
number of shortcuts per node does not impact a lot the distribution of the length of the
shortcuts. It explain why, as shown in the Figure 7.6, increasing the number of shortcuts
per nodes above a given value is not interesting from a routing point of view.

7.3 Load of a node

The load of a node in a ROSA network endowed with a ’chain of lumps’ is the cumulative
length of the sub-intervals handled by the lumps to which the node belongs. The load of
the nodes is an important parameter. If we consider the case where the reliable file storage
of ROSA is used, a node with a important load will have to theoretically handles and stores
an important number of indexes and files. Consequently the load of the nodes must be as
low as possible.

In this Section we study the load of the nodes according the number of sub-intervals. We
performed few simulations. On these simulations we first study the impact of the variation
of the number on the loads of the nodes. We also study the impact of the number of lumps
per node on the load of the nodes.

The Figure 7.10 shows how the average load of the nodes evolved in function of the
number of the sub-intervals that compose the ’chain of lumps’. On the x-axis are repre-

188 7. Analysis

Figure 7.9: Distribution of the shortcuts according to the shortcuts length for three values
of shortcuts per node

sented the number of sub-intervals and on the y-axis are represented the average load of
the nodes in percentage of the length of the initial interval (Iinit). One can see on this
Figure the curves corresponding to the load of the nodes in function of the number of
sub-intervals for three different number of lumps per node (1.5, 2.5 and 3.5).

Two facts were revealed by these simulations. The first one is that the average load
of the nodes decreases as the number of sub-intervals in the ’chain of lumps’ increase. It
is an obvious fact since in the initialization of ROSA, there is a single lump and a single
sub-interval, and therefore all the nodes of the first lump have an load equal to 100%. One
can also remark that the higher the number of lumps per node is, the higher the average
load of the nodes is.

189

Figure 7.10: Average load of a node in function of the number of sub-intervals for three
values of shortcuts per node

190 7. Analysis

191

Chapter 8

ROSA in a real case

In this Chapter we present a distributed monitoring tool that uses ROSA as backbone. In
the Section 8.1 we introduce the distributed monitoring tool. The monitoring tool is based
on the computation of the Security Assurance of the different entities of the monitored
network. The Section 8.2 explains how the Security Assurance of each kind of entities is
computed. The Section 8.3 deals with an implementation and an experimentation of the
monitoring tool over a real network.

8.1 Introduction

ROSA and the resilient density were used in within the context of the DESEREC project1.
This project aims to provides methods and tools to monitor, analyze, design, model, sim-
ulate and plan the optimized configuration of Communications and Information Systems
(CIS).

The DESEREC framework has to perform 3 tasks that are:

• Modelling. This task consists in planning and defining the optimal operational con-
figuration of the CIS. This allow defining coherent and operational mode of the CIS.
By the way, this allow the detection of the attacks or failures by comparison with
the optimal operational mode of the CIS.

• Detection and Prevention. To obtain the current operational mode of the CIS, some
sensors must allow to measure the characteristic of the CIS. The sensors must detect
the forerunners of a failure or an attack.

• Reaction. Some computer-aided and automated counter-measures initiatives have to
be taken when a failure or an attack is detected. These responses must be quick and
appropriate to the kind of detected incidents.

The monitoring tool proposed within the context of DESEREC consists in a distributed
set of multi-technology sensors and a set of detection mechanisms to detect attacks, failures
or services bugs that can occur in the system. When such an incident is detected, the
tool must respond in a quick and appropriate way according to a security policy. The
security policy may imply system and services reconfiguration. The tool proposed during
the DESEREC project is able to identify malicious events and to isolate the suspected
entities to avoid the propagation of threats or a cascading effect.

1 IST FP6 DESEREC Project (CN: 026600) of the European Union.

192 8. ROSA in a real case

Since this tool is destined to be deployed on the network of a company and since
such network could be shared over many countries and therefore over many autonomous
systems and subnetworks we cannot tolerate that some failures prevent the sensors shared
by these different subnetworks from communicating. The tool proposed by DESEREC,
needs to have guarantees on the efficiency of the routing of its data. The sensors must
communicate using a resilient network.

A set of sensors is installed on every measurable entities of the network. The sensors
installed on a given entity depends on the type of this entity. The sensors may measure the
load of the processor, the disk usage, the use of network interfaces, the output of anti-virus
softwares, the errors in the services log files and so on.

The monitoring tool uses the sensors output data to compute a Security Assurance
(SA) Values. Many kind of entities can compose a network, entities can be workstations,
gateways, printers, routers, subnetworks and so on. Each kind of entities has its own
definition of the SA value. The SA value of a entity can be computed locally or distantly
depending on its kind. The SA value of a printer cannot be locally computed since a printer
does not have computing capabilities. The SA value of some entities, such as subnetworks,
has to be computed in a distributed way.

The monitoring tool must detect quickly the attacks, failures or services bugs, it implies
that the SA values of the different entities must be permanently recomputed. The frequency
of computation of the SA value of an entity depends on the kind of the entity. The SA
values of critical entities or those of the entities with state that change quickly must be
recomputed very often while the SA values of entities with low impact on the network, such
as the printers, could be computed less often. The SA values of an entity is computed from
data retrieved from the sensors. The data needed to compute the SA value of a given entity
are also retrieved at different time interval according to the type of data. The Table 8.1
shows the different time intervals for some data that have to be retrieved to compute the
SA value of a workstation.

The Figure 8.1 schematizes the monitoring tool and the network whose the tool is
deployed. On the bottom of the figure, one can see the sensors as blue polygons, the
entities as green circles and the Ethernet link between the entities. The sensors returns
some values that are interpreted by the monitoring tool. The monitoring tool is represented
on the top of the figure. One can see the lumps of ROSA (supporting the tool) as dashed
purple shapes and the computed SA values as orange circles.

Once the SA values are computed the Security Policy has to be applied. Nowadays the
Security Policy consists in two rules that are:

• If the SA value of a routing entity (router or a gateway) goes under a given thresh-
old, then the monitoring tool tries to find an alternative routing entity for all the
subnetworks that depends of the entity with a low SA value. If no alternative routing
entity can be found, for a given subnetwork, the subnetwork is isolated until the SA
value of the entity is above the threshold. If an alternative routing entity is found
the routing table of the concerned entities is modified in order to use the alternative
entity. This rule supposes that if the SA value of a routing entity is low, this routing
entity may be under attacks and consequently an eavesdropper could inject malicious
data or spy the communications that transit through the routing entity.

• If a SA value of a subnetwork goes under a given threshold this network is isolated.

193

Figure 8.1: The DESEREC tool retrieving the sensors output and computing the SA values

It means that all the entity of the network must discard the data packet emanating
from the subnetwork with the low SA value. This rule supposes that if the SA value
of a subnetwork is low, the entities that compose the subnetwork may be victims of a
virus. The isolation of the subnetwork mitigates the propagation of the virus. Once
the virus is removed, the SA value of the subnetwork goes above the threshold and
the subnetwork is not maintained in quarantine anymore.

The thresholds of the SA values below which the Security Policy requires a reaction
have to be experimentally determined by calibrating the sensors of the monitored network
during a period where no attacks or no failures are encountered. This period must be
sufficiently long in order to obtain significant thresholds.

Many other rules could be added to the Security Policy according to the services running

194 8. ROSA in a real case

Retrieved data Frequency
Input packet rate 10 seconds
Input packet error rate 10 seconds
Output packet rate 10 seconds
Output packet error rate 10 seconds
Packet collision rate 10 seconds
Number of UDP ports 30 seconds
Number of datagrams dis-
carded because no route
could be found rate

30 seconds

Number of received UDP
datagrams for which there
was no applications at the
destination port rate

30 seconds

Number of TCP connections
rate 1 minutes

Table 8.1: The retrieved data and their corresponding frequencies for a workstation

on the monitored network. Let us imagine that a web server is running on the monitored
network and that alternative web servers exist. If the SA value of the main web server
decreases too much, one of the alternative web server is activated by the monitoring tool
while the one with the low SA value is deactivated. One can imagine as many rules that
one wants.

The Figure 8.2 illustrates the applications of the rules of the Security Policy according
to the SA value computed by the monitoring tool. One can see that that is the monitoring
tool that is in charge to propagation the reconfiguration commands.

ROSA and the resilient density are used as the backbone of this tool. Its self-healing
resilient topology and its reliable routing bring a good insurance that the different devices
of the monitoring tool are able to communicate despite the failures, the attack and since
the monitoring tool may modify the routing tables of the entities of the monitored network,
despite the decisions taken by the monitoring tool itself.

8.2 Computing the SA values of the entities of a network

The computation of the SA values of the different entities of the monitored network is not
in the scope of this thesis. This part of the work was done by Nguyen Pham at Telecom
Paristech. A short summary of this work is presented in this Section. This summary is
based on Pham and Riguidel [2007] and Pham et al. [2008].

8.2.1 Definition

The direct measurement of SA value of a network entity is desirable, but not always
directly possible. In some cases, the network entity has to be decomposed into network

195

Figure 8.2: The DESEREC tool interpreting the SA values and applying the Security
Policy

subentities. Then the SA value of the network entity is computed from the SA values of the
subentites obtained by the decomposition of the initial entity using aggregation methods.
An aggregation method combines the SA values of the subentities by taking account of
the relations between these subentities to obtain the desired SA value. Consequently, the
computation of the SA value of an entire network consists in 5 steps that are:

196 8. ROSA in a real case

• Modelling. It consists in decomposing the network into irreducible entities. An entity
is irreducible if it is possible to compute its SA value without needing the aggregation
of the SA values of other entities.

• Metrics assignment. It consists in determining which metrics has to be observed to
compute the SA values of each kind of entities.

• Measurement. It consists in measuring the SA values of the irreducible entities.

• Aggregation. It consists in computing the SA values of non irreducible entities using
the aggregation methods and the already computed SA values.

• Evaluation and Interpretation. It consists in computing the SA values of the entire
network and interpreting the resulting values to determine the overall assurance level
of the network.

8.2.2 Evaluating the SA value of the network components

In this section we present how the SA value of each kind of entity is evaluated. Within
the context of the monitoring tool that we propose, we define the SA values for 5 kinds of
network entities that are defined as below:

• Workstation. A workstation is a microcomputer designed for technical or scientific
applications. It is intended to be used by one person at a time.

• Server. A server is a computer designed to provide services to clients.

• Router. A router is a computer that connects two or more computers or other
electronic devices to each other.

• Subnetwork. A subnetwork is a set of computers that have a common, designated
IP address routing prefix.

• Network. A network is the reunion of all those network entities.

The SA value of a network entity is calculated through a combination of its local
processing capability (e.g. CPU utilization, allocated memory), its network capability
(e.g. number of established connections, number of packets received). Since the failure of
the local processing capability or the network capability will result in the inability of the
entity to carry out its functionalities, we take the min operator to represent this relation,
therefore the general formula for the SA values (SAV) of an entity is:

SAVentity = min(SAVlocal, SAVnetwork)

The data needed to evaluate the SAVs are collected using SNMP or some local shell scripts.
The data collected have to be normalized before that can be used to compute SA values.

197

8.2.2.1 Workstation

Each workstation computes its own SAV according to the formula:

SAVlocal = min(CPU Utilization, Used disk space, Allocated memory) ×
min(Number of process, Number of users)

and the formula:

SAVnetwork = min(Number of input packets, Input packet error rate,
Number of output packets, Output packet error rate,
Packet collision rate, Number of possible routes,
Number of links to server) ×

min(Number of TCP connections, Number of UDP connections,
Number of discarded datagrams, Number of UDP datagrams)

8.2.2.2 Server

The SAV of a server is computed in the same way that the SAV of a workstation. However,
in the case of a server that can have many IP addresses, the SAVnetwork is calculated with
the following formula:

SAVnetwork = SAVtmp × (1 / Number of IP addresses)

where SAVtmp is computed with the formula used to compute the SAVnetwork of a work-
station. The SAV of a server is locally computed by the server itself.

8.2.2.3 Router

The SAV of a router are distantly computed. Since each entity of the network is susceptible
to fail or be attacked at every moment, it is not judicious to confide the evaluation of the
SAV of the routers to a dedicated workstation or server. We have chosen to use the
following solution: each workstation and server, at each given interval of time, is open to
compute the value of a router with a probability of 1 / (Number of stations + Number of
servers). This assures, in a probabilistic way, that the SAVs of a routers is computed at
each interval of time.

The formula used to compute the SAVloceal of a router is:

SAVlocal = min(CPU utilization, Allocated memory)

and the formula used to compute SAVnetwork of a router is:

SAVnetwork = min(Input packet, Input packet error rate,
Output packet rate, Output packet error rate,
Packet collision rate, Number of network interface)×

(1 / Number of IP addresses)

198 8. ROSA in a real case

8.2.3 Evaluating the SA value of the sub networks

As for the routers and for the same reasons each workstation and server at each given
interval of time, is open to compute the value of a sub network with a probability of
1 / (Number of stations + Number of servers). The SAV of a sub network is computed
according to the formula:

SAVsubnet = min(Average workstations,
Average perimeter servers and router,
SAVnetwork)

where “Average stations” is the average value of SA values of all workstations, “Average
perimeter servers and router” is the average value of SA values of all the servers and routers
belonging to the subnetwork.

The SAVnetwork is computed as it follows:

SAVnetwork = min(Input packet rate, Input packet error rate,
Output packet rate, Output packet error rate,
Packet collision rate)

In order to compute the SAV of a sub network, a workstation (or a server) needs to have
the SA values of all the workstations and servers that belong to the subnetwork.

8.2.4 Evaluating the SA value of the whole network

To decide the SA value of the whole network, we apply the weighted-sum operator to
the values of subnetworks that compose it. Therefore, the SAV of the whole is computed
according to the formula:

SAVnetwork =
∑5

i=1wiSAVi

where

wi = Number of machines in subnetwork i /
Total number of machines in the whole network

The value SAVi is the SAV of the subnetwork i.

8.3 Experimentation on the Telecom ParisTech network

The monitoring tool has been implemented and deployed on the Computer Sciences and
Networking department network at TELECOM ParisTech. This network has around 50
workstations, several CISCO routers and is divided into several subnetworks.

199

In this experimentation, we have used true sensors except for the Virus Sensor since we
do not want to really propagate virus or worms on this operational network. We are able
to simulate the existence of a worm attack or the failure of a network element. Concerning
the Security Policy, only the two rules already mentioned in the above sections have been
implemented. The application of Security Policy Rules, that is the reconfiguration com-
mands, have been virtually implemented since, once again, we did not want to interfere
with the department operational network.

Each workstation and servers of the monitored network acts as a node of ROSA and a
node of the monitoring tool. All the communications between the nodes of the monitoring
tool transit through ROSA. Each node of ROSA computes its SA value according to its
type and the formulas presented in the Section 8.2.

When a node wants to compute the SA value of the subinterval, it broadcasts a request
to retrieve the SA value of all the workstations and servers of the subnetwork. These
workstations and servers reply to the requesting node with their SA values. Once the
node that wants to compute the SA value has received the SA values of the devices of the
subnetwork, it computes the SA value of the sub network and broadcast it to all the nodes
of the monitoring tool. This way if the SA value of the sub network is under the threshold,
each node of the monitoring tool can apply the appropriate rule of the Security Policy.

When a node wants to compute the SA value of a router, it retrieves the needed values
using the SNMP protocol. This protocol exposes management data in the form of variables
which describe the device configuration. These variables can then be queried. A SNMP
daemon runs on each router of the monitored network. Once the necessary values are in
possession of the node, it computes the SA value of the router. This SA value is broadcasted
to the devices of the subnetwork that use this router. If the SA value of the router is low,
the nodes of the monitoring tool try to find an alternate router and modify the routing
table of the devices according to the Security Policy.

When a node wants to compute the SA value of the whole network it simply applies the
formula of the Section 8.2 since it already possesses the SA values of all the subnetworks.

The result is that the system is able to quickly react to failures and attacks. The CPU
usage is negligible on each computing device. The network usage can also be considered as
negligible. While testing the system, we detected unpredicted events such as the system
engineer reconfiguring the servers. From this point of view, the experimentation was a
success.

In order to complete the monitoring tool and allow some demonstrations a control
tool has been implemented. This control tool is called the security cockpit. The security
cockpit consists in a java applet that display a representation of the monitored network.
This applet is running on a server of the network. On this applet are also displayed the
virtual links of ROSA and the SA values of the different network entities. The Figure 8.3 is
a screenshot of the security cockpit. One can see on this Figure the workstations as green
squares, the servers as purple squares and the routers as oranges squares. The bottom red
squares corresponds to the different subnetworks of the monitored network.

200 8. ROSA in a real case

Figure 8.3: The screenshot of the DESEREC tool cockpit control

201

Conclusion

Original contribution

The PhD research done bring some contributions in two fields. These fields are the overlay
networks and the Distributed HashTable. This PhD thesis also proposed two services that
can be deployed over ROSA. These services take advantage of the properties of ROSA.

In the field of the overlay network this PhD thesis proposes a new overlay network called
ROSA. ROSA oversteps the view of the overlay network as graph with nodes and links by
using an abstraction layer: in ROSA, the nodes are organized into cluster called lumps. A
lump is a set of fully connected nodes and ROSA can be represented by a entanglement
of lumps. ROSA is a self-organizing, parametrizable, self-healing and scalable overlay
network.

Self-organizing
Each node of ROSA belongs to at least one of the lumps. Each of the lumps of ROSA is
associated with a metric called density. In ROSA, the nodes calculate the density of lumps
which they belong, share with their neighbors about the knowledge of the low densities
lumps, and leave lumps having high densities to increase the lumps with low densities. The
density of the overall network is homogenized and maximized.

Parametrizable
The nodes homogenizes and maximizes the density of the lumps of ROSA. Consequently,
one can change the behavior of ROSA by simply changing the definition of the density. In
this thesis we proposed three kinds of density, the default density, the resilient density and
the mobile density. Each of these densities has a purpose and an application field. The
default density maximizes the number of nodes per lump and can be applied to all the
networks. The resilient density id designed to be applied on IP networks and make ROSA
resilient to the underlying network failures. The mobile density maintains and optimizes
the connectivity between the nodes of ROSA in large and dense Ad Hoc networks.

Self-healing
ROSA possesses a process that detects the failure of the nodes. When a node detects a
failure the entanglement of lumps is modified in order to reflect this failure and the nodes
that was neighbors with the failing node may choose another node as neighbors. This

202 8. ROSA in a real case

modification of the set of neighbors of the nodes in done during the optimization of the
densities of the lumps.

Scalability
The number of neighbors per node is bounded by a constant. Consequently, the deploy-
ment, the self-organization and of the self-healing of ROSA do not depend either on the
number of nodes that participates to ROSA. The scalability of ROSA with regard to the
Bachmann-Landau notation is in O(1). Simulations have demonstrated this result. All
these properties of ROSA designs it as a good candidate to be used as the virtual layer in
the virtualization of network model proposed in the introduction.

In the field of the DHT this PhD thesis proposes the ’chain of lumps’. The ’chain of lumps’
is a DHT built over ROSA. This ’chain of lumps’ must satisfy some conditions: the ’chain
of lumps’ must not reduce the scalability of ROSA and must not modify the topology
of ROSA. The ’chain of lumps’ is built over the entanglement of lumps. The lumps are
organized in order to form a chain, this chain is complemented with shortcuts since the
nodes may belong to more than one lump.

Scalability
In order to let ROSA as scalable that it is without the ’chain of lumps’ (i.e. O(1)), the
building and the maintenance of the ’chain of lumps’ is achieved by simply adding some
additional data in the message already exchanged by the nodes of ROSA. These data have
a bounded size. The ’chain of lumps’ allows any nodes of the network to send data packet
to any lump of the ’chain of lumps’. This process is also scalable. Despite the fact that
the theoretical average number of hops needed to route data packets is in O(N) where N
is the number of lumps that composes the ’chain of lumps’, the simulations have shown
that if the number of shortcuts per node is sufficient (around 2.3 shortcuts per nodes), the
number of hops effectively needed to route data packets is in O(1). This is due to a small
world phenomenon.

Passive building
The ’chain of lumps’ can be opposed to the other existing DHTs in the way of how it is
built. Usually the nodes participating to a DHT choose their neighbors in order to make
the topology of the network adequate for the DHT. The DHT is actively built to obtain
the desired topology. In ROSA the set of the neighbors of each node is chosen in order to
maximize the densities of the lumps. Consequently, the ’chain of lumps’ is passively built
despite the topology of ROSA.

Reliability
The ’chain of lumps’ is a reliable DHT. Since any pair of <key, value> stored over the
’chain of lumps’ is stored by all the nodes of the lumps responsible for the key. The nodes
that joins a lump will have to store the <key, value> pairs that the lump stores. This
implies that unless a great number of simultaneous failures occurs, the ’chain of lumps’ still
will be consistent. These properties of the ’chain of lumps’ fulfills the conditions mentioned
above.

203

This PhD thesis proposed two services built over ROSA endowed with the ’chain of lumps’.
A resilient routing service and a reliable file storage service. These services take advantage
of the properties of ROSA and of the ’chain of lumps’.

The resilient routing service
The ’chain of lumps’ allows any node of ROSA to send data packet to a given lump. The
resilient routing service allows any node to communicate directly with any other node of
ROSA. This services is based on a set of routing tables used to locate the nodes. Each
node maintains its routing table that is stored in a resilient way over the ’chain of lumps’.
This routing service benefits of the reliability of the ’chain of lumps’.

The reliable storage service
This service allows node to store files over ROSA and the ’chain of lumps’. In order to
ensure a reliable storage the files are stored by many nodes of ROSA. An index is stored
on the ’chain of lumps’ in order to locate the multiples replicas of a file stored on ROSA.
This storage service benefits of the reliability of the ’chain of lumps’

The PhD research led to the publication of four articles:

• L. Baud, N. Pham, and P. Bellot. Robust Overlay Network with Self-Adaptive
Topology: Protocol Description. In 2008 IEEE International Conference on Re-
search, Innovation and Vision for the Future (RIVF 2008), Vietnam, Ho Chi Minh
City, July 2008. Baud et al. [2008]

• L. Baud. Robust overlay network with self-adaptive topology: The reliable file stor-
age layer. In The 2009 IEEE - RIVF International Conference on Computing and
Communication Technologies (RIVF 2009), Da Nang, Viet Nam, July 2009. Baud
[2009]

• L. Baud and P. Bellot. Robust overlay network with self-adaptive topology: The
chain of lumps structure. In 2009 International Workshop on Peer-To-Peer Net-
working (P2pNet 2009), St. Pertersburg, July 2009. Baud and Bellot [2009b]

• L. Baud and P. Bellot. The ROSA protocol adapted to aeronautical mobile ad-hoc
network. In 8th Innovative Research Workshop & Exhibition (INO 2009), Brétigny
sur Orge, France, Dec. 2009. Baud and Bellot [2009a]

Perspectives

Concerning a global point of view, the research perspectives that income from the works
done during this thesis are the realization of the of the model described in the introduc-
tion of this thesis. It implies finding a definition of the density adapted to non dense Ad
Hoc network and one adapted to the GSM/GPRS networks. It also implies finding a way
to produce mixed densities for the lumps composed by nodes corresponding to devices

204 8. ROSA in a real case

from different physical networks. The implementation of ROSA for each kind of physi-
cal networks has also to be considered in order to use ROSA as the virtual layer of the
virtualization network model.

Concerning the Distributed HashTable point of view, the research perspectives that income
from the works done during this thesis are the study and the creation of the passively built
DHT. Indeed, the ’chain of lumps’ has shown that it is possible to passively built DHTs. A
passive built of a DHT consists in not modifying the neighbors sets of the nodes and simply
maintaining the consistency DHT by adding some additional data to the message already
exchanged by the nodes. The authors of the most known DHTs (Pastry, Chord, CAN,
Kademlia, etc.) have not considered this possiblity and in the overlay network literature
DHTs built in a passive way cannot be found.

Concerning the ROSA point of view, the research perspectives that income from the works
done during this thesis are the development of new services over ROSA. Some seriously
envisaged services are a fully distributed computing service over ROSA and a anonymous
web-like service. The fully distributed computing service could perform a calculus as
follow: the calculus is ’hashed’ to obtain its identifier, the lumps handling the identifier of
the calculus is in charge to distribute the tasks to the other lumps of ROSA. Each node
of a lump that has to calculate a part of the initial calculus, performs the partial calculus
and return the result to the lump that distributes the tasks. The lump that distributes the
tasks would receive many partial results for the same part of the initial calculus. It would
ensure that a malicious node cannot distort the calculus. The anonymous web-like service
could be based on a similar system that Tor (Dingledine et al. [2004]) uses. Circuit of
lumps could be created to hide the identity of the nodes publishing or consulting a content
over ROSA.

205

Appendix

Node.initROSA

lump ← new lump ;1:

lump.nodeId_list ← id ;2:

lump.nodePhy_list ← phy ;3:

lump_list ← lump ;4:

connected ← true ;5:

Figure 4: The initROSA function

Node.getWeakestLump (Output:lump)

result ← null ;1:

for all lump ∈ lump_list do2:

if lump = null or lump.density() < result.density() then3:

result ← lump ;4:

return result ;5:

Figure 5: The getWeakestLump() function

Node.getSMD(lump,id) (Input:lump, integer ; Output:float)

lump1 ← lump.without(node.id) ;1:

lump2 ← lump.without(id) ;2:

return min(lump1.density(), lump2.density()) ;3:

Figure 6: The getSMD(lump,id) function

206 8. ROSA in a real case

Node.checkLinks(lump) (Input:lump; Output:integer)

result ← 0 ;1:

for all phy ∈ nodePhy_list do2:

if ping(phy) then3:

result ← result + 1 ;4:

return result ;5:

Figure 7: The checkLinks(lump) function

Lump.without(nodeId) (Input:integer ; Output:lump)

result ← Lump() ;1:

result.id ← rand(0, 2128 − 1) ;2:

for 0 ≥ i < nodeId_list.length do3:

if nodeId_list[i] 6= nodeId then4:
result.nodeId_list ← result.nodeId_list ∪ nodeId_list[i] ;
result.nodePhy_list ← result.nodePhy_list ∪ nodePhy_list[i] ;

/*
adding the data concerning the node to result.data_density
*/

result.subInt_list ← subInt_list ;
return result ;5:

Figure 8: The without(lump) function

Lump.contiguous(subInt1, subInt2)
(Input:subinterval, subinterval ; Output:boolean)

if subInt1.infBound = subInt2.supBound or1:

subInt1.supBound = subInt2.infBound
then

return true ;2:

return false ;3:

Figure 9: The contiguous(subInt1, subInt2) function

207

Lump.merge(subInt1, subInt2)
(Input:subinterval, subinterval ; Output:subinterval)

if subInt1.infBound > subInt2.infBound then1:

return merge(subInt2, subInt1) ;2:

if subInt1.upBound 6= subInt2.lowBound then3:

return null ;4:

result ← Subinterval() ;5:

result.lowBound ← subInt1.lowBound ;6:

result.upBound ← subInt2.upBound ;7:

result.predId_list ← subInt1.predId_list ;8:

result.succId_list ← subInt2.succId_list ;9:

return result ;10:

Figure 10: The merge(subInt1, subInt2) function

Node.getRMDJ(lump) (Input:lump; Output:float)

hyp_lump ← joinLump(lump) ;1:

if hyp_lump.size() < LumpSizeLimit then2:

return hyp_lump.density ;3:

else
split_hyp_lump ← splitLump(hyp_lump) ;4:

return min(split_hyp_lump[0].density, split_hyp_lump[1].density) ;5:

Figure 11: The getRMDJ(lump) function

Lump.canHandle(subint) (Input:subinterval ; Output:boolean)
pred ← false ;
succ ← false ;
for all id ∈ nodeId_list do1:

if id ∈ subint.predId then pred ← true ;2:

if id ∈ subint.succId then succ ← true ;3:

return pred AND succ ;4:

Figure 12: The canHandle(subint) function

208 8. ROSA in a real case

Interval.splitOver(lump1, lump2) (Input:lump, lump);

subint_pair ← subint.split() ;1:

if lump1.canHandle(subint_pair[0]) then2:

lump1.subInt_list ← lump1.subInt_list ∪ subint_pair[0] ;3:

lump2.subInt_list ← lump2.subInt_list ∪ subint_pair[1] ;4:

else
lump1.subInt_list ← lump1.subInt_list ∪ subint_pair[1] ;5:

lump2.subInt_list ← lump2.subInt_list ∪ subint_pair[0] ;6:

Figure 13: The splitOver(lump, lump) function

Interval.canSplitOver(lump1, lump2) (Input:lump, lump);

subint_pair ← subint.split() ;1:

return (lump1.canHandle(subint_pair[0]) AND2:

lump2.canHandle(subint_pair[1])) OR
(lump1.canHandle(subint_pair[1]) AND
lump2.canHandle(subint_pair[2])) ;

Figure 14: The canSplitOver(lump, lump) function

Node.checkPredList(lumpI , lumpI+, subInt_pair)
(Input:lump, lump, <subinterval, subinterval>; Output:boolean)

if lumpI .nodeId_list 6= subint_pair[0] then1:

return false ;2:

return true ;3:

Figure 15: The checkPredList(lump, lump, <subint, subint>) function

Node.checkSuccList(lumpI , lumpI+, subInt_pair)
(Input:lump, lump, <subinterval, subinterval>; Output:boolean)

if lumpI+.nodeId_list 6= subint_pair[1] then1:

return false ;2:

return true ;3:

Figure 16: The checkSuccList(lump, lump, <subint, subint>) function

209

Lump.getCSL (Output:boolean)

result ← 0 ;1:

for all subint ∈ subInt_list do2:

result ← result + subint.getLength() ;3:

return result ;4:

Figure 17: The getCSL() function

Lump.getKeyIn (Input:node_location;Output:integer)

for all subint ∈ node_location do1:

return getIntegerBetween(subint.lowBound, subint.upBound) ;2:

Figure 18: The getKeyIn() function

210 8. ROSA in a real case

211

Bibliography

K. Aberer. P-grid: A self-organizing access structure for p2p information systems. In In
CoopIS, pages 179–194, 2001.

A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R. Chaiken, J. R. Douceur, Jon, J. Howell,
J. R. Lorch, M. Theimer, and R. P. Wattenhofer. Farsite: Federated, available, and
reliable storage for an incompletely trusted environment. In In Proceedings of the 5th
Symposium on Operating Systems Design and Implementation (OSDI, pages 1–14, 2002.

Akamai. http://www.akamai.com/, 1998.

N. Akihiro, P. Larry, and B. Andy. Scalable routing overlay networks. SIGOPS Oper. Syst.
Rev., 40:49–61, 2006.

D. G. Andersen, H. Balakrishnan, and G. Andersen. Resilient overlay networks. In Sym-
posium on Operating Systems Principles, pages 131–145, 2001.

D. P. Anderson. Boinc: A system for public-resource computing and storage. In GRID ’04:
Proceedings of the 5th IEEE/ACM International Workshop on Grid Computing, pages
4–10. IEEE Computer Society, 2004. ISBN 0-7695-2256-4.

M. anonymous remailer. http://mixmaster.sourceforge.net/.

S. Baset and H. Schulzrinne. An analysis of the skype peer-to-peer internet telephony
protocol. In Proceedings of the 25th IEEE International Conference on Computer Com-
munications, Joint Conference of the IEEE Computer and Communications Societies,
2006.

L. Baud. Robust overlay network with self-adaptive topology: The reliable file storage layer.
In The 2009 IEEE - RIVF International Conference on Computing and Communication
Technologies, Da Nang, Viet Nam, July 2009.

L. Baud and P. Bellot. The rosa protocol adapted to aeronautical mobile ad-hoc network. In
8th Innovative Research Workshop & Exhibition (INO 2009), Brétigny sur Orge, France,
Dec. 2009a.

L. Baud and P. Bellot. Robust overlay network with self-adaptive topology: The chain
of lumps structure. In 2009 International Workshop on Peer-To-Peer Networking, St.
Pertersburg, July 2009b.

212 BIBLIOGRAPHY

L. Baud, N. Pham, and P. Bellot. Robust Overlay Network with Self-Adaptive Topology:
Protocol Description. In 2008 IEEE International Conference on Research, Innovation
and Vision for the Future (RIVF 2008), Vietnam, Ho Chi Minh City, July 2008.

BitTorrent. http://www.bittorrent.com/, 2005.

S. Bohacek, J. Hespanha, K. Obraczka, J. Lee, and C. Lim. Enhancing security via stochas-
tic routing. In Computer Communications and Networks, 2002. Proceedings. Eleventh
International Conference on, pages 58–62, 2002.

L. Bölöni, D. Turgut, and D. C. Marinescu. n-Cycle: a set of algorithms for task distri-
bution on a commodity grid. In IEEE International Symposium on Cluster Computing
and the Grid (CCGrid’05), volume 2, pages 615–622, May 2005.

L. Bölöni, D. Turgut, and D. C. Marinescu. Task distribution with a random overlay
network. Future Gener. Comput. Syst., 22(6):676–687, 2006. ISSN 0167-739X.

S. Botton, F. Duquenne, Y. Egels, and P. Wiliis. GPS: localisation et navigation. Edition
Hermès, 1997.

R. Braden, D. Clark, and S. Shenker. Integrated Services in the Internet Architecture: an
Overview. RFC 1633 (Informational), 1994.

E. Brunskill. Building peer-to-peer systems with chord, a distributed lookup service. In
HOTOS ’01: Proceedings of the Eighth Workshop on Hot Topics in Operating Systems,
page 81, Washington, DC, USA, 2001. IEEE Computer Society.

T. Bu, S. Norden, and T. Woo. A survivable dos-resistant overlay network. Comput. Netw.,
50(9):1281–1301, 2006.

A. R. Butt, R. Zhang, and Y. C. Hu. A self-organizing flock of condors. J. Parallel Distrib.
Comput., 66(1):145–161, 2006. ISSN 0743-7315. doi: http://dx.doi.org/10.1016/j.jpdc.
2005.06.022.

P. Cappello and D. Mourloukos. Cx: A scalable, robust network for parallel computing.
Sci. Program., 10(2):159–171, 2002. ISSN 1058-9244.

CASCADE Project Eurocontrol. Preliminary safety case for enhanced air traffic services
in non-radar areas using ads-b surveillance. 2008.

M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. S. Wallach. Secure routing for
structured peer-to-peer overlay networks. SIGOPS Oper. Syst. Rev., 36:299–314, 2002.
ISSN 0163-5980.

Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S. Shenker. Making gnutella-
like p2p systems scalable. In SIGCOMM ’03: Proceedings of the 2003 conference on
Applications, technologies, architectures, and protocols for computer communications,
pages 407–418, 2003.

I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet: A distributed anonymous
information storage and retrieval system. Lecture Notes in Computer Science, 2009:46+,
2001.

213

F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica. Wide-area cooperative
storage with cfs. In SOSP ’01: Proceedings of the eighteenth ACM symposium on Op-
erating systems principles, pages 202–215, New York, NY, USA, 2001. ACM. ISBN
1-58113-389-8.

R. Dingledine, M. J. Freedman, and D. Molnar. The free haven project: Distributed anony-
mous storage service. In Proceedings of the Workshop on Design Issues in Anonymity
and Unobservability, volume 2009 of Lecture Notes in Computer Science, pages 67–95.
Springer, 2000.

R. Dingledine, N. Mathewson, and P. Syverson. Tor: The second-generation onion router.
In In Proceedings of the 13th USENIX Security Symposium, pages 303–320, 2004.

C. U. Dnad. On the feasibility of distributed intrusion detection, 2004.

J. R. Douceur. The sybil attack. In IPTPS ’01: Revised Papers from the First International
Workshop on Peer-to-Peer Systems, pages 251–260. Springer-Verlag, 2002.

P. Druschel and A. Rowstron. Past: A large-scale, persistent peer-to-peer storage utility.
In In HotOS VIII, pages 75–80, 2001.

A. Dufour and L. Trajković. Improving gnutella network performance using synthetic
coordinates. In QShine ’06: Proceedings of the 3rd international conference on Quality
of service in heterogeneous wired/wireless networks, page 31. ACM, 2006.

H. Eriksson. Mbone: the multicast backbone. Commun. ACM, 37(8):54–60, 1994. ISSN
0001-0782. doi: http://doi.acm.org/10.1145/179606.179627.

N. S. Fard and T.-H. Lee. Cutset enumeration of network systems with link and node
failures. Reliability Engineering and System Safety, 65(2):141–146, 1999.

G. Fedak, C. Germain, V. Neri, and F. Cappello. Xtremweb: A generic global computing
system. In CCGRID ’01: Proceedings of the 1st International Symposium on Cluster
Computing and the Grid, page 582. IEEE Computer Society, 2001.

Gnutella. The annotated gnutella protocol specification v0.4., 2003.

Google. http://www.google.com, 1998.

D. Grace, M. Oodo, and P. Mitchell. An overview of the capanina project and its proposed
radio regulatory strategy for aerial platforms. 2005.

G. Gu, P. Fogla, W. Lee, and D. Blough. DSO: Dependable Signing Overlay. In Proceedings
of the 2006 International Conference on Applied Cryptography and Network Security
(ACNS’06), June 2006.

S. Gunther, K. Christopher, and K. Engin. Overbot - a botnet protocol based on kadem-
lia. In SecureComm 2008, 4th International Conference on Security and Privacy in
Communication Networks, 09 2008.

214 BIBLIOGRAPHY

I. Gupta, K. P. Birman, P. Linga, A. J. Demers, and R. van Renesse. Kelips: Building
an efficient and stable p2p dht through increased memory and background overhead.
In Proceedings of the Peer-to-Peer Systems II, Second International Workshop, IPTPS
2003, pages 160–169, 2003.

M. Hefeeda, A. Habib, B. Botev, D. Xu, and B. K. Bhargava. Promise: peer-to-peer
media streaming using collectcast. In Proceedings of the Eleventh ACM International
Conference on Multimedia, pages 45–54, 2003a.

M. Hefeeda, A. Habib, D. Xu, B. Bhargava, and B. Botev. Collectcast: A peer-to-peer
service for media streaming. ACM Multimedia 2003, 11:68–81, 2003b.

M. Henzinffer, S. Rao, and H. Gabow. Computing vertex connectivity: new bounds from
old techniques. Foundations of Computer Science, Annual IEEE Symposium on, 0:462,
1996.

J. W. Hunt and M. D. McIlroy. An algorithm for differential file comparison. Technical
Report CSTR 41, Bell Laboratories, Murray Hill, NJ, 1976.

iVisit. http://www.ivisit.com/, 1997.

V. Jacobson. traceroute: ftp://ftp.ee.lbl.gov/traceroute.tar.gz, 1989.

R. Janakiraman, M. Waldvogel, and Q. Zhang. Indra: A peer-to-peer approach to network
intrusion detection and prevention. In In Proceedings of the IEEE International Work-
shops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WET-
ICE), Workshop on Enterprise Security, pages 226–231, 2001.

J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek, and J. W. O’Toole, Jr. Over-
cast: reliable multicasting with on overlay network. In OSDI’00: Proceedings of the 4th
conference on Symposium on Operating System Design & Implementation, pages 14–14,
Berkeley, CA, USA, 2000. USENIX Association.

X. Jiang, Y. Dong, D. Xu, and B. Bhargava. Gnustream: A p2p media streaming sys-
tem prototype. In Proceedings of the International Conference on Multimedia and Expo
(ICME, pages 325–328, 2003.

H. Johansen, A. Allavena, and R. van Renesse. Fireflies: scalable support for intrusion-
tolerant network overlays. SIGOPS Oper. Syst. Rev., 40(4):3–13, 2006. ISSN 0163-5980.

D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin, and R. Panigrahy. Consistent
hashing and random trees: Distributed caching protocols for relieving hot spots on the
world wide web. In In ACM Symposium on Theory of Computing, pages 654–663, 1997.

A. D. Keromytis, V. Misra, and D. Rubenstein. Sos: secure overlay services. In Proceedings
of the ACM SIGCOMM 2002 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communication, pages 61–72, 2002.

X. G. Klara, X. Gu, K. Nahrstedt, R. N. Chang, and Z. yin Shae. An overlay based
qos-aware voice-over-ip conferencing system. In IEEE Intern. Conf. on Multimedia and
Expo (ICME2004, pages 27–30, 2004.

215

J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels, R. Gummadi,
S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao. OceanStore: An ar-
chitecture for global-scale persistent storage. In Proceeedings of the Ninth International
Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS 2000), pages 190–201, November 2000.

C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian. Delayed internet routing convergence.
In in Proc. ACM SIGCOMM, pages 175–187, 2000.

L. Lao, S. S. Gokhale, and J.-H. Cui. Distributed qos routing for backbone overlay net-
works. In Networking, volume 3976 of Lecture Notes in Computer Science, pages 1014–
1025. Springer, 2006.

J. Leskovec and E. Horvitz. Planetary-scale views on an instant-messaging network, 2008.
URL http://www.citebase.org/abstract?id=oai:arXiv.org:0803.0939.

Z. Li and P. Mohapatra. Qron: Qos-aware routing in overlay networks. Selected Areas in
Communications, IEEE Journal on, 22(1):29–40, Jan. 2004.

J. Liang, R. Kumar, and K. W. Ross. The kazaa overlay: A measurement study. Computer
Networks Journal (Elsevier, 2005.

M. J. Litzkow, M. Livny, and M. W. Mutka. Condor - a hunter of idle workstations. In
ICDCS, pages 104–111, 1988.

F. Luis, B. Viktors, A. Jonathan, K. Mike, N. Andreas, M. Takagi, B. Richard, A. Adeeb,
M. Ryo, H. Olegario, M. James, and B. Norbert. Introduction to grid computing with
globus. IBM Corp., 2003.

D. Malkhi, O. Rodeh, M. K. Reiter, and Y. Sella. Efficient update diffusion in byzantine
environments. In SRDS, pages 90–98. IEEE Computer Society, 2001.

M. Matyas, M. Peyravian, A. Roginsky, and N. Zunic. Reversible data mixing procedure
for efficient public-key encryption. Computers & Security, 17(3):265–272, 1998.

P. Maymounkov and D. Mazières. Kademlia: A peer-to-peer information system based on
the xor metric. In IPTPS ’01: Revised Papers from the First International Workshop
on Peer-to-Peer Systems, pages 53–65, London, UK, 2002. Springer-Verlag. ISBN 3-540-
44179-4.

Meebo. http://www.meebo.com/, 2005.

M. Misha. Cascade : an attack resistant peer-to-peer system. 2003.

R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord: A scalable peer-to-peer
lookup service for internet applications. In ACM SIGCOMM 2001, pages 149–160, 2001.

A. Muthitacharoen, R. Morris, T. M. Gil, and B. Chen. Ivy: a read/write peer-to-peer file
system. SIGOPS Oper. Syst. Rev., 36(SI):31–44, 2002. ISSN 0163-5980.

M. Muuss. ping, 1983.

216 BIBLIOGRAPHY

Napster, 1999.

K. Nichols, S. Blake, F. Baker, and D. Black. Definition of the Differentiated Services Field
(DS Field) in the IPv4 and IPv6 Headers. RFC 2474 (Proposed Standard), 1998.

V. E. Paxson. Measurements and analysis of end-to-end Internet dynamics. PhD thesis,
1998.

D. Pendarakis, S. Shi, D. Verma, and M. Waldvogel. Almi: an application level multicast
infrastructure. In USITS’01: Proceedings of the 3rd conference on USENIX Symposium
on Internet Technologies and Systems, pages 5–5, Berkeley, CA, USA, 2001. USENIX
Association.

N. Pham and M. Riguidel. Security assurance aggregation for it infrastructures. In IC-
SNC ’07: Proceedings of the Second International Conference on Systems and Networks
Communications, page 72. IEEE Computer Society, 2007.

N. Pham, L. Baud, P. Bellot, and M. Riguidel. Towards a security cockpit. isa, 0:374–379,
2008.

G. Pierre and M. van Steen. Globule: a collaborative content delivery network. IEEE
Communications Magazine, 44(8):127–133, 2006.

C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing nearby copies of replicated
objects in a distributed environment. In SPAA ’97: Proceedings of the ninth annual
ACM symposium on Parallel algorithms and architectures, pages 311–320. ACM, 1997.

S. Qazi and T. Moors. Scalable resilient overlay networks using destination-guided detour-
ing. In Proceedings of the IEEE International Conference on Communications (ICC),
2007.

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker. A scalable content-
addressable network. In SIGCOMM ’01: Proceedings of the 2001 conference on Appli-
cations, technologies, architectures, and protocols for computer communications, pages
161–172, 2001.

Y. Rekhter and T. Li. A border gateway protocol 4 (bgp-4), 1995.

E. Rosen, A. Viswanathan, and R. Callon. Multiprotocol label switching architecture,
2001.

A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location, and routing
for large-scale peer-to-peer systems. In Lecture Notes in Computer Science, pages 329–
350, 2001.

A. H. S. Enumeration of minimal cutsets of an undirected graph. Microelectronics and
reliability, 30(1):23–26, 1990.

S. Savage, T. Anderson, A. Aggarwal, D. Becker, N. Cardwell, A. Collins, E. Hoffman,
J. Snell, A. Vahdat, G. Voelker, and J. Zahorjan. Detour: Informed internet routing and
transport. IEEE Micro, 19(1):50–59, 1999.

217

B. Schneier. Secrets and Lies: Digital Security in a Networked World. John Wiley & Sons,
2004.

SecondLife. http://www.secondlife.com, 2003.

A. Singh, T.-W. Ngan, P. Druschel, and D. S. Wallach. Eclipse attacks on overlay networks:
Threats and defenses. In INFOCOM 2006. 25th IEEE International Conference on
Computer Communications. Proceedings, pages 1–12, 2006.

L. Subramanian, I. Stoica, H. Balakrishnan, and R. Katz. OverQoS: An Overlay Based
Architecture for Enhancing Internet QoS. In 1st Symposium on Networked Systems
Design and Implementation (NSDI), San Francisco, CA, March 2004.

C. A. Thekkath, T. Mann, and E. K. Lee. Frangipani: A scalable distributed file system.
In In Proceedings of the 16th ACM Symposium on Operating Systems Principles, pages
224–237, 1997.

J. Touch and S. Hotz. The x-bone. In Proceedings of the 3rd Global Internet Mini-
Conference/Globecom, 1998.

J. D. Touch, Y.-S. Wang, V. Pingali, L. Eggert, R. Zhou, and G. G. Finn. A global x-bone
for network experiments. In Proceedings of the First International Conference on Testbeds
and Research Infrastructures for the DEvelopment of NeTworks and COMmunities, pages
194–203, 2005.

Twinverse. http://twinverse.com/, 2008.

D. J. Watts and S. H. Strogatz. Collective dynamics of’small-world’networks. Nature, 393
(6684):409–10, 1998.

A. F. Webster and S. E. Tavares. On the design of s-boxes. In CRYPTO ’85: Advances in
Cryptology, pages 523–534, London, UK, 1986. Springer-Verlag. ISBN 3-540-16463-4.

Wikipedia. http://www.wikipedia.org, 2001.

L. Xiong, L. Liu, and I. C. Society. Peertrust: Supporting reputation-based trust for peer-
to-peer electronic communities. IEEE Transactions on Knowledge and Data Engineering,
16:843–857, 2004.

V. Yegneswaran, P. Barford, and S. Jha. Global intrusion detection in the domino over-
lay system. In In Proceedings of Network and Distributed System Security Symposium
(NDSS, 2004.

X. Zhang, J. Liu, B. Li, and T.-S. P. Yum. Coolstreaming/donet: a data-driven overlay
network for peer-to-peer live media streaming. In Proceedings of INFOCOM. 24th Annual
Joint Conference of the IEEE Computer and Communications Societies, pages 2102–
2111, 2005.

Y. Zhang, V. Paxson, and S. Shenker. The stationarity of internet path properties: routing,
loss, and throughput. Technical report, In ACIRI Technical Report, 2000.

218 BIBLIOGRAPHY

B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. D. Kubiatowicz.
Tapestry: A resilient global-scale overlay for service deployment. IEEE Journal on
Selected Areas in Communications, 22:41–53, 2004.

L. Zhuang, F. Zhou, B. Y. Zhao, and A. Rowstron. Cashmere: resilient anonymous routing.
In NSDI’05: Proceedings of the 2nd conference on Symposium on Networked Systems De-
sign & Implementation, pages 301–314, Berkeley, CA, USA, 2005. USENIX Association.

S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. H. Katz, and J. D. Kubiatowicz. Bayeux: an
architecture for scalable and fault-tolerant wide-area data dissemination. In NOSSDAV
’01: Proceedings of the 11th international workshop on Network and operating systems
support for digital audio and video, pages 11–20, New York, NY, USA, 2001a. ACM
Press.

S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. H. Katz, and J. D. Kubiatowicz. Bayeux: an
architecture for scalable and fault-tolerant wide-area data dissemination. In NOSSDAV
’01: Proceedings of the 11th international workshop on Network and operating systems
support for digital audio and video, pages 11–20, New York, NY, USA, 2001b. ACM.

219

Index

Akamai, 67
ALMI, 56, 64
anonymity, 70, 76–78, 81
authentication, 70, 76, 81, 82, 84
availability, 70, 71, 81

Bayeux, 65, 108
BitTorrent, 49
BOINC, 49, 62

CAN, 55, 108
Cascade, 83
Cashmere, 78
centralized architecture, 49, 58, 62, 81, 86
CFS, 61, 137–139
chain of lumps, 111
Chord, 53, 71, 108, 109, 137, 138
classification, 46
CollectCast, 67
Condor, 62
confidentiality, 70, 78, 81
content delivery application, 66
content delivery application, 67, 81
cutset, 172
CX, 62

decentralized architecture, 58
decentralized architecture, 50, 63, 80–84, 86
default density, 167
deleting a file (ROSA), 146
density, 167, 169, 171, 173
DG-RON, 170
DHash, 139
DHT, 52, 60, 107
distributed file system, 60
distributed computing, 49
distributed file system, 59–61
Distributed Hashtable, 107
DOMINO, 74

DoNet, 67
DSO, 73

Eclipse attack, 82
endogenous routing service, 46, 53, 55
endogenous service, 55

Farsite, 60
file index (ROSA), 141
Fireflies, 87
Frangipani, 61
Free Haven, 59
free riding attack, 51
Freenet, 59

Gia, 51, 108
Globule, 66
Gnustream, 67
Gnutella, 51, 58

Hashtable, 107

indexing, 49, 50, 57, 58, 60, 81, 85
Indra, 75
initialization service, 45, 48, 51, 54–56
integrity, 70, 73, 74, 81
iterative routing, 55
iVisit, 58
IVY, 60

Kademlia, 45, 48, 54, 57, 58, 110
KaZaA, 50
Kelips, 60

load, 187
lump, 89

maintenance service, 45, 52, 54, 55
manually organized, 47
Mbone, 64

220 INDEX

Meebo, 44
mixing function, 161
mobile density, 173
MPLS, 43
multicast, 63–66, 75, 76, 81

N-Cycle algorithm, 63
Napster, 49

OceanStore, 61
Oceanstore, 137
OSI, 44
OverBot, 45
Overcast, 65
OverQoS, 69

P-Grid, 86
P2P, 46, 47
participative, 46, 47, 51, 61, 62, 66, 80, 81,

84
PAST, 60, 137, 138
Pastry, 53, 108, 137, 138
peer-to-peer, 46, 47
PeerTrust, 86
Plaxton Mesh, 53
pluto, 170
PROMISE, 67
pseudo-centralized architecture, 62
pseudo-centralized architecture, 50, 58
publications/consultations system, 59
publications/consultations system, 59, 60, 76

QoS, 67–70, 81
QSON, 68

reputation system, 85
resilient density, 169
retrieving a file (ROSA), 142
Rewire, 72
RON, 69, 170
routing application, 63
routing node-to-node (ROSA), 158
routing service, 155
routing table, 155
routing table (ROSA), 155

s-t cutset, 172
scalability, 47, 51, 52, 56, 69, 177

security assurance, 191
security policy, 191
self-organizing, 48, 51, 57, 63
sending data packets, 125
sharing, 49–51, 57–59, 61, 62, 81, 82, 85
single point of failure, 48, 73, 76, 81, 82
six degrees of separation, 186
small-world, 185
SOS, 71
storing a file (ROSA), 141
structured, 46, 50, 52–58, 60, 65, 81, 82, 86
super-node, 50
Sybil attack, 82

Taperstry, 108
Tapestry, 53, 137
third party, 48
topology management, 167
Tor, 76
Twinverse, 79

unstructured, 46, 50–52, 56, 57, 83
updating a file (ROSA), 144

Venus, 79

XBone, 47
XtremWeb, 49

