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Introduction

Why things break? Understanding and modeling the mechanisms that result in ma-

terial failure is of technological importance. The answer to these questions has then

been the motivation of many groups of research. Since the pioneering work of Grif-

fith, crack propagation has been shown to be basic mechanism responsible for material

failure. Over the last century and since the pioneering work of Mott, a coherent theo-

retical framework, the so-called Linear Elastic Fracture Mechanics has developed and,

within elastodynamics continuum theory, it provides a quantitative description of the

motion of a crack front in linear elastic material. This framework describes fairly well

experimental observations at low velocities. However, some questions remain to be

answered at high velocities: First, it is predicted that the maximum velocity at which

a crack can propagate is the so called Rayleigh wave velocity, cR, while experimental

observations report a maximum crack velocity in brittle disordered materials ranging

between 0.6−0.7× cR. Second, the theory predicts smooth crack paths at continuum

scales, in apparent contradiction with fractography experiments that report rough

fracture surfaces at high velocities.

To shed light on these apparent discrepancies has been the focus of my PhD work.

We have designed an experimental setup that has allowed us to probe the dissipa-

tion expand mechanisms and the dynamics of crack propagation in a model brittle

amorphous material, PMMA, over a wide range of velocities, at both macroscopic

and microscopic scale.

This manuscript is divided into 4 chapters: In chapter 1, we start with an examina-

tion of the theories derived from continuum elastodynamics to describe the conditions

for crack propagation and the selection of crack velocity in a perfectly brittle material.

We then review briefly the experiments performed in dynamic fracture over the last

decades to examine the limits/applicability of these theories and underline the open

1



2 Introduction

questions.

Chapter 2 is devoted to the presentation of our experimental setup. We choose to

make crack propagate in PMMA through a so-called wedge splitting geometry. This

geometry has allowed us to generate stable dynamic crack propagation over a wide

range of velocities. Instantaneous crack velocity was measured through a method

inspired from the potential drop method, and the stress field at the tip of the propa-

gating crack was estimated through a combination of finite element computations.

The fracture energy, i.e. the energy dissipated as the crack front propagated over

a unit surface was then measured experimentally in PMMA for various conditions

using this experimental set-up. The analysis of this quantity is provided in chapter 3.

Its evolution as a function of the crack velocity exhibits an abrupt 3-fold increase at

a well-defined critical velocity of va ' 0.19×cR. This critical velocity is much smaller

than the critical velocities reported in the literature at higher values (about 0.4× cR)

that correspond to the onset of micro-branching instabilities, i.e. the onset beyond

which the crack front splits into a multi-crack state. Fractography analysis reveals

that this critical velocity va corresponds also to the appearance of conic marks on the

fracture surfaces. These conics marks are the signature of damage spreading through

microcracks nucleating ahead of the propagating crack front.

The dynamics of damage spreading is then studied at the microscopic scale in

chapter 4. In particular, it is shown how one can reconstruct the dynamics of main

crack propagation, microcrack nucleation and microcrack growth, from the conic

marks observed on the fracture surfaces. These reconstructions are used to anal-

yse the statistics of microcracking events and to relate both the process zone and the

macroscopic velocity to the microcrack dynamics.



Chapter 1

An overview about fracture

theories, experiments and analyses.

1.1 Onset of fracture: Linear elastic fracture me-

chanics theory

What is fracture? The simplest answer would be ”the process of breaking” or

”the condition of being broken”. Another way to define fracture is a response of a

body to a stress (or strain) applied externally or generated internally by differential

changes within the solid caused by temperature gradients, shrinkage, and/or chemical

changes. The fracture process involves the nucleation and propagation of a crack.

The distinction between nucleation and propagation is not always clear. Often, large

cracks result from the coalescence of multiple small cracks. In this chapter, we will

not focus on nucleation, but only on the existing criteria that predict when, and at

which velocity, a single crack propagates.

In order to understand why things break, we begin this chapter with an exploration

of the models proposed in the fracture mechanics field. This field is concerned with

the quantitative description of the mechanical state of a deformable body containing

a crack. More specifically this field concentrates on characterizing and measuring the

resistance of materials to crack growth. Mathematical models are frequently used to

describe mechanical states of a particular system. These models are typically built on

an idealized description of: (i) the geometrical configuration of the deformable body;

3



4 Chapter 1: An overview about fracture theories, experiments and analyses.

(ii) an empirical relationship between internal stress and deformation; and (iii) the

relevant balance laws of physics dealing with mechanical quantities.

The field of fracture mechanics was initiated by Kolosov with his the 1909 PhD

thesis [1]. He created basic mathematical tools which he in turn used in the study

of the growth of preexisting macroscopic cracks. Some years later, in 1913, Inglis [2],

also solved a basic crack problem. Following Inglis’ publication, Hopkinson suggested

that the nonlinear phenomena near the crack tip should be taken into account. This

was indirectly done by Griffith [3, 4] in 1920, through energy considerations and

the use of the concept of surface energy, γs. His experiments with thin glass rods

prompted Weibull [5] to establish a statistical theory of fracture. In 1952, Orowan [6]

extended the Griffith’s approach to all cases of small scale yielding (in which plastic

flow is confined to small region near the crack edge) by inclusion of all dissipative

energy, essentially surface energy and plastic work. Then in 1957, new concepts were

introduced by Irwin [1, 7]: (i) the stress intensity factor K and (ii) the energy release

rate G. In the following subsection these successive developments are explained in

more detail.

1.1.1 LEFM: the evolution of fracture mechanics by Inglis’s,

Griffith’s and Irwing’s ideas

In an ideal linear elastic material, the relations between the stress components, σij,

and the strain components, εij, are given by Hooke’s law. In the first approximation,

the material can be sketched as a network of spring of length a (inter-atomic bond)

and stiffness E (Young modulus). Let us now apply a normal stress, σ, uniformly

distributed over two opposite sides, as shown in Fig. 1.1. An elongation of the

distance between atoms δa, which are normally separated by a can be expressed as

follows:

δa

a
= ε =

σ

E
(1.1)

where ε is the normal tensile strain. Now, suppose that a bond is broken when

two connected atoms move apart by εc = 20% (for more details see [8]), i.e. for a

elongation δac = a
5
. Then, the failure of the material is obtained for the critical stress

σc = E
5

. This value is orders of magnitude larger than typical strengths, σc, measured
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Figure 1.1: An ideal solid submitted to external normal stress,σ, uniformly dis-
tributed. This solid is built of inter-atomic bonds described by springs of stiffness,
E, and length, a.

experimentally (typical values range between 0.0001E and 0.01E). The difference is

accounted for by defects which are not present in this simple model.

Figure 1.2: Plate containing an elliptical defect of semi-axes b and c, subjected a
uniform applied tension σ
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Let us then introduce an elliptical defect of semi-axes b and c inside the loaded

solid, as is represented in Fig. 1.2. The first to perform this analysis was Inglis

[2] in 1913. Several assumptions are made in Inglis analysis: (i) Hooke’s law holds

everywhere in the plate; (ii) the boundary of the hole is stress free; and (iii) b and c

are small in comparison with the plate dimensions. Hence one can demonstrate that

the maximum tensile stress acts at the point C where the curvature ρC = b2

c
has the

minimal value. This stress is given by:

σC = σ(1 + 2
(c
b

)1/2
) (1.2)

when b� c, ρC is very small, Eq. 1.2 can be approximated by:

σC
σ
' 2

(
c

ρC

)1/2

(1.3)

Inglis’s solution illustrates stress concentration at the tip of defects. The stress-

concentration can take values orders of magnitude larger than unity for micrometer-

size defects with ρC set by the inter-atomic spacing. One can also note that the stress

concentration depends on the shape of the hole rather than on the size [9, 10].

Predicting whether or not a specimen will break boils down to predicting whether

pre-existing defects or micro-cracks will propagate or not. Griffith proposed, in 1920,

to define this onset through a thermodynamic balance [3, 4]. Let us consider an elastic

body containing a plane-crack of length c subjected to a load applied at the outer

boundary (e.g. the situation depicted in figure 1.2 with b → 0). The total energy

U(c) of the system can be expressed as the sum of two terms:

U = UM + US (1.4)

where UM denotes the mechanical energy stored in the system and US is the energy

stored in the free surface of the crack. Let us see how US, UM and U are modified

when the crack length is slightly increased: c→ c+dc. The energy component stored

in the crack surfaces, US, is directly proportional to the crack length, c, and hence

increases. Calling γs the surface energy of the material, (i.e. the energy needed to

create a surface of unit area), one gets:
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dUS
dc

= 2γs (1.5)

On the other hand, the mechanical energy UM stored in the specimen decreases

as c increases. One then usually defines the mechanical energy release rate, G, as:

G = −dUM
dc

(1.6)

Then, depending on the values of G and γs, two cases can then be distinguished:

◦ If G < 2γs, U increases as c increases. Hence, the crack then remains stable.

◦ If G > 2γs, U decreases as c increases. The crack then propagates and yields

structural failure.

The so-called Griffith’s criterion for fracture onset is then:

G ≥ 2γs (1.7)

Note that in this thermodynamic balance, energy dissipation resides only in the

creation of two additional surfaces as the crack extends. In real materials, other

sources of dissipation are likely to occur, e.g. plastic deformation [11], microcracking

[12], temperature elevation, among others. In this respect, it was proposed, first by

Irwin [7], to replace 2γs by an effective term Γ, called fracture energy. Γ encodes all

the damage and dissipative processes occurring at the crack tip as the crack progresses

over a unit length. The Griffith’s criterion for fracture onset can then be recast as:

G ≥ Γ (1.8)

1.1.2 Stress field at cracks tip

The application of Griffith’s criterion requires the computation and comparison of

two quantities: (i) the fracture energy, Γ, and (ii) the mechanical energy release rate,

G. On the one hand, what sets the value of Γ in a given material remains far from
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being understood. However Γ is known to depend crucially on the complex damage

and the dissipative processes occurring within a small zone at the crack tip. This zone

is frequently referred to as the fracture process zone, and it is defined as the region

where the material stops behaving as a linear elastic material. There is no firm basic

principle allowing the prediction of its size from chemical and microstructural com-

position. To better understand how its value changes as the crack velocity increases

constitutes one of the main goals of this PhD. On the other hand, the second term is

given by the stress, strain and displacement fields outside the process zone and can

be computed using finite element methods.

Figure 1.3: Co-ordinate system around crack tip. r and θ are the polar coordinates.
Stresses σxx, σyy and σxy act on the faces of the square element.

Consider an infinite plate containing a crack normal to the applied load as is

shown in Fig. 1.3. Using this co-ordinate system the stresses close to the crack tip

can be written as [7, 6]:

σij '
K(c)√

2πr
fij(θ) (1.9)

where the functions fij(θ) are universal and given by:

fxx(θ) = cos(
θ

2
)

[
1− sin(

θ

2
) sin(3

θ

2
)

]
fxy(θ) = cos(

θ

2
)

[
1 + sin(

θ

2
) cos(3

θ

2
)

]
(1.10)

fyy(θ) = sin(
θ

2
) cos(

θ

2
) cos(3

θ

2
)
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As pointed out by Irwin [9, 7], the knowledge of the prefactor K(c) in Eq. 1.9

characterizes entirely the stress field in the vicinity of the crack tip. This parameter,

called stress intensity factor, depends on both the applied load and the specimen

geometry. In the case of a sharp elastic crack of length 2c embedded in an infinitely

wide plate considered by Griffith, K = σ
√
πc. More generally, K can be expressed

as K = σ
√
πcf(geometry), where the dimensionless function f can be determined

through finite element computations, as in the present work (for more details see

section 2.4).

From the crack tip stress field, one can deduce the mechanical energy release rate,

G, that intervenes in the Griffith’s criterion (Eq. 1.8). This last one is given by:

G =
K2

E ′
plane stress (1.11)

G =
K2

E ′
(1− ν2) plane strain (1.12)

1.1.3 Plane stress, plane strain

It should be emphasized that, all the calculations presented up to now are for two-

dimensional systems, while realistic structures are three-dimensional. Nevertheless,

many situations can be approximated by an equivalent two-dimensional state of stress.

The reduction of dimensions can be considered in two cases, (At this point, it is

important to set the co-ordinate system. In all the following, x refers to the direction

of crack growth, y to the direction of tensile loading, and z to the direction parallel

to the crack front) as described below:

◦ Plane stress: A thin plate is loaded by forces remaining within the plane of

the plate and distributed uniformly over the thickness. The stress components

associated with the z-direction are zero on both faces of the plate and are

assumed to be zero within the plate. As a result, the stress components are

functions of x and y, only.

◦ Plane strain: A thick plate is loaded by forces remaining within the plane of the

plate and distributed uniformly over the thickness. The stress in the z direction

can be deduced from the stress components in x and y directions. Hence, the
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plane strain reduces to the determination of stresses in the x and y direction

[13].

Subsequent chapters of this thesis will assume plane stress conditions (see. e.g.

section 2.4).

1.1.4 Various failure modes

Equation 1.9 gives the stress field near the crack tip when loaded in tension (see

fig.1.3). However, it can be generalized to any loading conditions. In this respect, it

is useful to distinguish three basic modes of crack loading:

◦ Mode I: Opening or tensile mode which corresponds to normal separation of the

crack walls under the action of tensile stress (Fig 1.4 a).

◦ Mode II: Sliding mode which corresponds to longitudinal shearing of the crack

walls in a direction normal to the crack front (Fig 1.4 b).

◦ Mode III: Tearing mode which corresponds to lateral shearing parallel to the

crack front(Fig 1.4 c).

Figure 1.4: Modes of fracture: a) opening, b) sliding and c) tearing.

To each of these three modes, one can associate a stress intensity factor KI , KII

and KIII . Mode I, is by far the most relevant to crack propagation in isotropic

solids. Brittle cracks have a tendency to seek out an orientation which minimizes the

shear/tear loading (see section 1.2.3).
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1.2 Dynamically growing cracks: Elastodynamic

continuum theory

All fracture surfaces are generated by cracks, that can move extremely fast (over

1000 m/s), or slowly (less than 1 mm/year). The majority of cracks grow rapidly,

their velocity or speed is dependent on the loading conditions and material properties.

Dynamic processes in a cracked body fall into two basic categories: dynamic crack

propagation and dynamic loading of bodies with stationary cracks. Often a mixture

of these two kinds of processes appears. For instance when dynamic loading on a body

containing a stationary crack causes dynamic crack propagation (or when dynamic

crack propagation generates waves) which, after reflection at an outer boundary of

the body, impinge on the crack.

In order to understand how cracks grow dynamically let’s have a brief exploration

of the theories proposed in the elastodynamics continuum. A general approach to

the dynamic fracture problem was outlined by Mott [10]. His work consists basically

in incorporating an inertial term known as kinetic energy, UK , into the total system

energy (see eq. 1.4) for a straight crack. Following the analyses presented by Mott;

Dulaney and Brace [14] slightly improved Mott’s work. This improvement consisted

in a dimensional analysis clarifying basic physical processes (despite being wrong in

many details) and consists of writing down an energy balance equation for crack

propagation [15]. From the analysis above decribed, it is not possible to deduce

the maximum crack tip velocity. Theoretical treatments by Yoffe [16], Broberg [17]

and Craggs [18] showed that the nature of the field near the tip of a propagating

crack changes with velocity, and Schardin [19] demonstrated that cracks tends to

accelerate to a maximum velocity. In this context Stroh [20] correctly argued that

the maximum velocity should be the Rayleigh wave speed, the speed at which sound

waves travel over a free surface. But then, in the 1970’s some doubts arouse about

the uniqueness for each instantaneous crack velocity of the singular terms, even if this

velocity is (continuously) varying. Detailed investigations performed by Freund and

Clifton [21], Nilsson [22], and Achenbach and Bazant [23] confirmed the uniqueness.

Later work, explicitly showed how the angular distributions of nonsingular terms are

not unique. They depend not only on the instantaneous crack velocity, but also on

the crack edge acceleration demonstrated by Rosakis [24, 25].

Now after the brief introduction about some of the theories proposed in elasto-
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dynamics, we will focus on the expressions that are used to deduce the dynamic

properties in our experiments.

1.2.1 Stress field singularity for a propagating crack

We now focus on the elastodynamic equations used to interpret our experimental

data. As for the situations with static cracks presented in section 1.1.3, the stress

field, σij, is singular in the vicinity of a moving crack tip and can be written as:

σij '
Kd(c, v)√

2πr
fij(θ, v) (1.13)

where c is the crack length, v is the crack velocity, Kd(c, v) is the dynamic stress

intensity factor, and fij(θ, v) are universal functions given by:

fxx(θ, v) =
1

R

(
(1 + α2

s)(1 + 2α2
d − α2

s)
cos θd/2√

γd
− 4αsαd

cos θs/2√
γs

)
fxy(θ, v) =

2αd(1 + α2
s)

R

(
sin1

2
θd√
γd
−
sin1

2
θs√
γs

)
(1.14)

fyy(θ, v) = − 1

R

(
(1 + α2

s)
2 cos θd/2√

γd
− 4αsαd

cos θs/2√
γs

)
(1.15)

where the parameters αs, αd, θs, θd, γs, and γd are related to v, θ, the transverse

waves speed (cs) and the dilatational wave speed (cd) through:

αs =
√

1− (v/cs)2, αd =
√

1− (v/cd)2, R = 4αsαd − (1 + α2
s)

2, (1.16)

tan θd = αd tan θ, tan θs = αs tan θ, (1.17)

γd =
√

1− (v sin θ/cd)2, γs =
√

1− (v sin θ/cs)2 (1.18)

R refers to the Rayleigh function:

R = 4αsαd − (1 + α2
s)

2 (1.19)
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It is worth to mention at this point that the Rayleigh speed, cR, is defined as the first

root of this function. This velocity sets then the limiting speed for crack propagation

since R vanishes for v → cR and hence, σij →∞ for v → cR.

It is also interesting to note that the dynamic stress intensity factor, Kd(c, v),

is related to the static effective one K(c) computed for the same crack length c, in

the same geometry, and with the same loading condition, but for an immobile crack

(v = 0). The relation is as follows

Kd(c, v) = k(v)K(c) with k(v) ' 1− v/cR√
1− v/cd

(1.20)

where k(v) is the function of crack speed, and it depends on the material properties

through the elastic waves speed. However it is independent of the loading conditions

of the specimen. This will be used after in this PhD to estimate the dynamic stress

intensity factor for the quasi-static finite element analysis.

1.2.2 Equation of motion

The form taken by the stress field at the crack tip (Eq. 1.13) allows us to evaluate

the mechanical energy flux at the crack tip. Under small scale yielding conditions

(i.e. all of the complex non-linear processes are embodied in a small zone at the crack

tip), one can assume that the equation of motion is given by balancing this energy

flux with the fracture energy, Γ [26, 21, 27], this yields:

A(v)
Kd(c, v)2

E
= Γ with A(v) =

v2αD
(1− ν)c2SR

(1.21)

The function A(v) is a universal function, in the sense that it does not depend on

the details of the applied loading or the configuration of the specimen. In this work,

calculations of Γ are made by computing K(c) for quasi-static conditions via finite

element analysis. Recasting this equation of motion and making use of equation 1.20,

this yields [21, 28]:

Γ =

(
1− v

cR

)
K2(c)

E
(1.22)
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1.2.3 Path equation

Finally, to complete the continuum theory of crack growth, one has to add a path

criterion. This is provided by the Principle of Local Symmetry (PLS) of Goldstein

and Salganik [29] which states that a moving crack progresses along a direction so

as to remain in pure tension. In 2D systems, the crack is loaded by a combination

of mode I and II only, and PLS implies that the direction of crack propagation is

chosen so that KII = 0. In 3D systems, the crack loading can also contain a mode III

component. In order to cancel KIII and to propagate in pure mode I, the crack front

would need to twist abruptly around the direction of propagation, which would yield

unphysical discontinuities in the crack path. In this situation, the front is commonly

observed to split into many pieces and to form ”lances” [30].

1.2.4 Predictions

There are two separate lines of inquiry pulling people into dynamic fracture of

brittle materials. Both correspond to current puzzles about dynamic fracture:

◦ The first line is about the dynamics of cracks. Equation 1.13 predicts that a

crack maximum velocity in elastic media it is the Rayleigh wave speed, cR.

◦ The second line concerns the roughness of post-mortem fracture surfaces. The

principle of local symmetry, described above predicts smooth surfaces at contin-

uum scales, i.e. at scales over which the mechanical properties of the considered

brittle material are homogeneous.

1.3 Experiments in dynamic fracture

Many important experimental researches on dynamic fracture of brittle materials

were carried out in parallel with the development of the dynamic fracture mechanics

concepts presented in the preceding section. These experiments were often done on

glasses or other model brittle materials. These experiments providing qualitative

observations and quantitative data have been vital importance on the development

of dynamic fracture mechanics. Indeed, a number of crucial observations on the

behavior of growing cracks in glass were made in the 1940’s and 1950’s. Despite the
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time delay, these observations are only partially understood and described from a

theoretical point of view.

In addition to the importance of the experimental research, the significance of the

experimental techniques developed all along should be recognized. One such leap was

the development of the full-field optical methods, observation and special techniques

of high speed photography. These developments have helped researchers greatly in

the understandings of crack front dynamics.

Historically, much attention has focused on the maximum attainable crack ve-

locity. The theoretical analysis presented in the previous section suggests that this

velocity should coincide with the Rayleigh wave speed, cR, for mode I cracks. How-

ever, experimental results point stubbornly to substantially lower velocities, at most

0.6 − 0.7 × cR [31, 1, 15, 32, 28]. It was also proposed that this maximum velocity

(made dimensionless by dividing by cR) might not be a material property [33, 34].

A divergence of energy flux flowing into the process region predicted as the crack

velocity approaches the limit has been observed. Some researchers have observed

an energy flux up to 50 times larger than that observed at slow crack velocity [35].

However, experiments carried out at small scale demonstrate that a unique relation-

ship between this energy flux and the crack velocity does not exist, in contrast with

theoretical predictions (see e.g. [1] for a review). Fractography experiments show

that the increase in energy flux is accompanied by an increase of the fracture surface

roughness [36, 33, 31, 37, 38, 39, 40, 41, 28]. This last one seems to depend on both

the dynamic stress intensity factor, Kd(c, v), and the crack velocity, v.

In the following we will describe in detail experimental techniques and methods

and analytical methods which have permitted measurements of propagating cracks,

observations of the patterns and roughness of the resulting fracture surfaces, and

measurements of the acoustic emissions emitted by the propagating cracks. Discrep-

ancies between the experimental observations and the theoretical predictions will be

emphasized.

1.3.1 Limiting speed

Measuring crack velocities in a laboratory frame work is a challenging task. Four

methods are commonly employed in experimental mechanics (see e.g. [32] for a re-

view):
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◦ High speed cameras are used enable to observe in real time the dynamics crack

propagation in transparent materials [42, 40]. Nowadays, temporal and spa-

tial resolution down to 1 µs and 100 µm, receptivity can easily be achieved.

Moreover, the recorded images can be used to determine the crack fields pa-

rameters through photoelasticity [43], caustics [40, 44], or DIC [45, 46]. The

main drawback of such methods resides in they high price.

◦ Wallner lines can be used to determine the crack speed quite accurately [9, 47].

These corrugations, observed on post-mortem fracture surfaces, result from the

interaction between propagating crack fronts and shear waves radiated from

the fracture [47]. From the location of the wave sources and the knowledge

of the speed of transverse waves, one can indeed deduce both the direction of

crack propagation and the crack speed along these Wallner lines [48, 9]. This

technique for crack speed measurements can be improved by modulated crack

surfaces by a continuous mode II perturbation of the crack with a shear wave

at a frequency of about f = 1 MHz. This gives rise to the technique called

stress wave fractography (see [9, 49] for a review). The main drawback of

this technique resides in the its spatial resolution; which is set by the typical

wavelength of the Wallner lines, about 1 mm in PMMA [50].

◦ Potential drop methods consist in depositing a thin conductive layer at the sur-

face of the specimen [31, 51, 52, 53]. As the crack propagates, it cuts through

the layer and increases the resistance. This increase is monitored at high speed

(up to few tens of MHz) and the time evolution of the crack length is then

deduced. The main difficulty in this method is that the layer resistance is not

proportional to the crack length, but increases slowly at the beginning and di-

verges as the crack breaks completely the layer. Moreover, the relation between

crack length and the resistance is extremely dependent of local variations of the

film thickness. However, spatial resolution down to 200 µm were obtained using

this technique [52].

◦ Electrical resistance grid technique consist in depositing a number of electrical

wires (typically around 10-20) along the crack paths [54, 55]. Those are succes-

sively broken as the crack propagates, and the obtained electrical signal allows

the estimation of the crack length and hence the crack speed. The estimated

crack speed can be very high. However, as before, the electrical signal is usually

not proportional to the crack length which prevents the placement of a large
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number of wires.

A large number of velocity measurements have been done using one or several of these

techniques. Quite surprisingly, measurements suggest that in amorphous materials,

the maximum velocity is significantly smaller than the Rayleigh wave speed predicted

by fracture mechanics theory. As it is shown in table 1.1, the limiting crack velocity

is only a fraction of cR and lies within the range ∼ 0.4− 0.7× cR.

Table 1.1: Limiting crack velocity for noncrystalline materials. From K. Ravi-
Chandar [32]

Material Author limiting crack velocity, v/cR
Glass Bowden et al, 0.51

Edgerton and Bartow 0.47
Schardin and Struth 0.52
Anthony et al, 0.66
Sharon and Fineberg 0.55

PMMA Cotterell 0.58
Paxon and Lucas 0.62
Dulaney and Brace 0.62
Sharon and Fineberg 0.6
Boudet and Ciliberto 0.7

Homalite-100 Beebe 0.33
Kobayashi and Mall 0.37
Dally 0.38
Ravi-Chandar and Knauss 0.45
Haunch and Marder 0.37

The origin of the limiting velocity less than cR yielded many studies. Schardin

[19] suggested that the limiting crack velocity could be considered as a new physical

constant, and perhaps, it is related to other physical parameters that govern the

fracture process. Cotterell [56] proposed that the maximum crack velocity depends

mostly on the material properties. Then, Ravi-Chandar and Knauss [34] suggested

that fracture is accompanied by a significant process zone in which nucleation, growth

and coalescence of microcracks occur. This process zone is more important as crack

velocity is large, which yields a rate and state-dependent fracture energy, Γ. Boudet

and Ciliberto [57] showed that the value of the relevant Rayleigh wave speed can

depend on the crack velocity: In most amorphous materials, the Young modulus

depends on the solicitation rate. And the high-frequency acoustic waves emitted by
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the crack propagation can interact with the crack after reflection on the boundaries

of the specimen. Boudet and Ciliberto proposed that this interaction should be

incorporated into any description of crack motion. Finally, more recently Fineberg et

al [58] observed that cracks running faster than 0.36× cR in PMMA exhibited rapid

oscillations in the crack velocity, triggered primarily by small microbranches issued

from the main crack. They suggested that this dynamic path instability is the reason

for the observed limiting speed.

1.3.2 Evidence of large-scale roughness at high velocities

In all the experiments concerning dynamic crack propagation, the morphology of

post-mortem fracture surfaces can provide interesting information. As was described

in previous section 1.2.2; the principle of local symmetry predicts that a moving crack

progresses along a direction so has to remain in pure tension (mode I). This predicts

smooth fracture surfaces at macroscopic scales. However quantitative fractography

reports the existence of three zones with different roughness successively called mirror,

mist and hackle surfaces.

Figure 1.5: a) Mirror, mist and hackle zones on the fracture surface of a glass rod
broken in simple tension (×20) b) Schematic representation of the fracture zones.
From Johnson and Holloway [37].

These terms were introduced by Johnson and Holloway [37] and can be understood

as followed:

◦ the mirror zone corresponds to smooth surfaces with no roughness apparent to
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the nacked eye.

◦ the mist zone surrounds the mirror region and exhibits a slight roughness that

start to be apparent.

◦ the hackle zone coincides with relatively large irregularly oriented facets.

Figure 1.5 shows a microscope image with these three zones observed on the fracture

surface of a glass rode broken in tension and its schematic representation.

A large number of experiments have been done to find a relationship between mir-

ror, mist and hackle regions with both the fracture energy, Γ, and the crack velocity,

v. Mecholsky et al, [39] deduce Γ from the radii of the initial flaw and the mirror

region on silicate and non silicate glasses. Their calculations are in agreement with

the results of double-cantilever-beam measurements. Ravi-Chandar and Knauss [34],

using high-speed photomicrograph, observed the dynamic growth mechanisms in the

mirror, mist and hackle zones in Homalite-100. They found the following evolutions

for the crack front: (i)in the mirror zone, the crack front exhibits a thumb-nail shape,

reminiscent of quasi-static crack propagation; (ii) in the mist region, several small

cracks propagate simultaneously and the ensemble crack front is nearly straight; (iii)

in the hackle zone, crack growth occurs by the same physical process than in the mist

zone, except that the size scale of the microfracturing increases. They also showed

that the stress intensity factor, K, increases, as the crack front changes from mirror

to hackle regions. With respect to the surface roughness, experiments carried out in

Homalite-100[34], Araldite, thermosetting epoxy [9] and various transparent plastics

including PMMA [33] showed that the roughness varies almost continuously along

the crack path and increases with K. These results are presented in Fig. 1.6

In the literature one can find other processes that cause observed patterns on

dynamic fracture surfaces in a large number of brittle materials, called conic marks.

These markings were observed in silicate glasses [61], polystyrene [62], cellulose ac-

etates, steel and stainless steel [63, 64, 65], polystyrene [9], solithane [66], polymethyl-

methacrylate [55, 67, 66, 68] and spherulitic nylon [69], this last material being a

semi-crystalline polymer. Figure 1.7 depicts several examples of surface markings.

The high-stress field around a growing crack causes micro-cracking in the material

ahead of the crack. These individual cracks grow and eventually link up with the

main front. The volume of material under σ increases as K increases and with this,

the damage zone also increases in size.
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Figure 1.6: a)Graph showing the maximum depth of the fracture surface as a function
of crack position and also K (MPa), from Ravi-Chandar and Knauss [34] b) Variation
of roughness, Rq, across mirror transition determined by atomic force microscope
(AFM), c)Dynamic stress intensity factor, Kd (MNm3/2), crack velocity, Vc (ms−1),
and surface roughness, λ (µm) as a function of the crack length (mm) b) and c) are
from D. Hull [59, 60].
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Figure 1.7: Conic marks observed on dynamic fracture surfaces of a)glass from [70]
b) polystyrene and polyurethane, from [9]

.

The origin of conic marks was originally postulated by Smekal [61] in 1953. His

model consisted in the enhanced stress field of a primary crack inhomogeneity or defect

triggered by the initiation of a secondary microcrack ahead of it. The secondary crack

may not be in the same plane as the primary front, and when these two fronts intersect

in space and time, the ligament separating the two cracks breaks up leaving a conic

marking on the fracture surface. The conic marking thus indicates a boundary level

difference, marking the common space-time interaction of the two fracture fronts.

The focus of the conic corresponds to the origin of the second fracture front. Yang

and Ravi-Chandar [66] analysed the contour of a large surface images to then fit

these markings with a second order equation to determinate shape(eccentricity) and

the distance to the focus. They considered a planar crack front approaching a micro-

crack nucleus with a velocity vc, when the distance between the crack front and

nucleus is dn the microcrack begins to grow radially and symmetrically at a velocity

vcl. dn is the critical nucleation distance and is presumably dictated by the inherent

characteristic of the material and the stress field. Then, they assumed that a second

nucleus is at a spacing, s, from the first nucleus. The spacing s will in generally follow

some statistical distribution, perhaps dictated by the local stress field and material

microstructure. When the distance between the growing front of the first microcrack

and the second nucleus is equal to dn, the second nucleus starts to grow with a velocity

vc2 (see schema in Fig. 1.8). For simplicity, assume that the velocities of the main

crack and microcraks are identical and equal to v. Then the equation describing conic

markings on the fracture surface is given by [32]:
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(2x1 + s− dn)2

(s− dn)2
− 4x22

(2s− dn)dn
= 1 (1.23)

Figure 1.8: Geometrical model of formation of conic marks due to nucleation and
growth of microcracks, courtesy of [32]

.

The statistic of the surface markings has been widely studied [55, 67, 66, 68].

These observations caused a controversy in the scientific community because some

investigators proposed that the shape and density are dependent of the stress intensity

factor and/or crack velocity [55, 66] and some others pointed out that they depend

of the molecular weight in the case of polymers [67]. The observations of conic marks

on the dynamic crack surfaces might indicate the onset of the mist zone with an

increasing K, but further investigations are needed to clarify this suggestion.

The next question that one may have in mind is: what is the exact origin of the

hackle zone is there another structured observed on dynamic fracture surfaces? As

described above, surrounding the mist zone, a very rough region appears, the so-

called hackle zone, as shown in Fig.1.5. In the hackle region, K seems to be much

higher than in the mist region. Then, observations made by Johnson and Holloway

[37] demonstrated the existence of macroscopic cracks which branch away from the

main crack. This pattern has been observed subsequently in polystyrene[60] and

Homalite-100 [40].

What is the mechanism at the origin of this pattern? A wide number of experi-

ments were carried out to understand the origin of the micro and macro-branching.

Here follows a brief summary of the observations about micro-branching:

◦ Ravi-Chandar and Knauss [40], Yang and Ravi-Chandar [66] proposed that



Chapter 1: An overview about fracture theories, experiments and analyses. 23

micro-branching is the result of the nucleation, growth and coalescence of micro-

cracks which appear on the process zone due to an increase in the stress intensity

factor, K.

◦ Hull [60] suggested that micro-branching is the result of a multiplicity of in-

dividual crack-tilting events involving the creation of mixed mode I/III stress

fields and a highly complex array of crack fronts.

◦ Fineberg et al, [15, 28] suggested that the origin of micro-branching is a dynamic

instability that is triggered at a critical crack velocity.

And now what about the macro-branching? There is a large number of experi-

mental and theoretical work carried out to understand the mechanism of the macro-

branching and its relationship with the fracture roughness. Yoffe [16] in 1951 at-

tempted to explain branching from an analysis of the problem of a crack of constant

length that translates with a constant velocity in an unbounded medium. She found

that the maximum stress acted normal to the lines and make an angle of 60 with the

direction of crack propagation when the crack velocity exceeds 60% of the shear wave

speed. Therefore, she suggested that this might cause the crack to branch whenever

the crack velocity exceeded that value [34]. However, there is a discrepancy with

[71, 72, 73, 74, 34] the predictions of Yoffe. Indeed, in the experiments the maxi-

mum branching angle that has actually been observed was limited, experimentally,

by diffraction. In the case of micro-branching, the largest angle observed by Sharon

et al, [75] in PMMA was reported to be 30 at a 3µm distance from the bifurca-

tion point. On the other hand, the values of the ”branching angle” for macroscopic

branching that are reported in the literature are measured at distances typically of

the order of 100− 300µm from the branching onset [15]. The mechanism giving way

to the macro-branching origin is still under discussion. Some workers believe that

this process is due to the excess of fracture energy and a kind of transformation of

the micro-branching [59, 60, 37, 39]. Experimental observations in PMMA show that,

during crack propagation, several instabilities controlled by the local velocity, v(c),

appear at a critical velocity vc ∼ 0.32−0.36×cR. They are characterized by the onset

of velocity oscillations, a continuous high frequency sound emission of f ∼ 150kHz

and surface roughness increases as v(c) is increasing. When v(c) ≈ 0.45×cR the crack

branches in several different paths instability [31, 76, 15]. Another point of view was

proposed by Ravi-Chandar and Knauss [34]. In their experiments they measured the

dynamic stress intensity factor Kd during crack propagation. They observed that Kd
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increases from 0.45 MPa
√

m to 1.2 MPa
√

m during the propagation at constant veloc-

ity. Then, when Kd > 1.2 MPa
√

m the crack branched into three distinct parts with

an angle of 65 for one crack, and the two others of 70, then instantaneously the Kd of

the main crack dropped significantly to a value close to the initiation toughness Kc.

From these observations they pointed out that when the crack reaches a critical stage

identified macroscopically by Kd, it splits into two or more branches. They suggested

that the mechanism for crack growth and branching is multiple-microcracking.

1.3.3 Acoustic emission

Dynamic crack propagation is accompanied by acoustic emission. Measuring the

acoustic emission provides a useful tool to detect and localize the damage processes

occurring at small scale prior to the catastrophic failure of a given specimen or struc-

ture (for more details see [77]). In this respect, acoustic emission measurements are

widely used by seismologists to investigate earthquakes (see [78]). Experimental in-

vestigations were carried out on the acoustic emission that accompanied the dynamic

crack propagation in glass and PMMA [31, 79]. In these experiments, the acoustic

spectra of these two materials were measured for increasing velocities in both materi-

als. The results of these experiments showed that the behavior of the acoustic spectra

changed dramatically in both materials at values of v ≈ 0.36×cR ∼ vc in PMMA and

v ≈ 0.42× cR ∼ vc in glass. This change coincide with the onset of micro-branching

instability [80]. Above this critical velocity, high intensity peaks are observed in the

acoustic emissions. In PMMA, the frequency of these peaks was on the order of the

characteristic time scale observed in the velocity oscillations (about 2− 3 µs). In the

case of glass the spectrum observed was peaked around 2− 3 MHz[15]. Experiments

carried out by Boudet et al [31] in PMMA showed that the maximum sound energy in

the fastest crack corresponds to about 1.5 J/m2 which is roughly 1% of the minimum

fracture surface energy, Γ. In these experiments they also observed that the acoustic

emissions are weak until the propagating crack reaches a velocity of v = 120±10 m/s.

They suggests that the acoustic emission increases when the surface becomes rough,

as was previously observed [15, 80].
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1.4 Scenarii and relevant experiments

After this brief introduction about the more relevant experiments carried out pre-

viously, we summarize and highlight the three scenarios which explained the discrep-

ancies between the elastodynamics continuum theory, and the resulting observations:

• Damage spreading through microcracking at high velocity.

Ravi-Chandar et al., carried out a large number of experiments in polymer plates

(Homalite-100, PMMA, solithane, polycarbonate) and glasses of 500 × 300 ×
4.76mm3 dimensions. They used an electromagnetic loading device to generate

stress wave loading on the crack surface. The crack tip stress field is monitored

by the method of caustics in conjunction with a high speed camera. From the

high speed cinematographs, they measured KID(v) the dynamic fracture surface

toughness and with this the dynamic stress intensity factor Kd(t, v) = KID(v).

High speed cinematographs allow them to obtain the crack extension histories

and thus to deduce the crack velocity, v(c). Along this line, Ravi-Chandar

observed that initially a crack propagates at the level of the initiation stress in-

tensity factor generating a mirror-like fracture surface. The crack cuts through

voids that may be present or which have nucleated due to the crack tip stress

field, with some of the voids diverging the crack to propagate along different

planes, these are the origin of fracture surface roughening. When Kd(t, v) be-

comes sufficiently high, the voids grow into microcracks well ahead of arrival of

the main crack. This interaction leads to the well-known conic markings on the

fracture surface. The idea of a single crack is no longer applicable at the scale

of the fracture process zone. The microcracks within the fracture process zone

interact with each other and under suitable conditions repel each other; these

deviated microcracks then appear as microbranches. The experimental obser-

vations realized by Ravi-Chandar suggest that as the dynamic stress intensity

factor Kd increases more microcracks will be activated in the fracture process

zone. This mechanism of nucleation, growth, and coalescence of microcracks

and their interaction with the crack front is responsible for the limiting crack

velocity v(c) ≤ 0.6× cR and the roughness observed on the fracture surfaces.

• Interaction of sound with fast crack propagation.

Some years later, dynamic fracture experimental observations in PMMA were

carried out by Boudet and Ciliberto [31]. Their experimental set-up was con-
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sisting of a tensile machine with a sample of dimension 290mm in length, either

100 or 200mm in height, and the thickness varied from 1 to 10 mm. The ve-

locity and the position of the moving crack was measured using an improved

version of potential drop method (as described in section 1.3.1). The fracture

energy was computed according Griffith criterion using Γ = πp2lc
2E

where lc is

the notch length, p is stress applied, and E is the Young’s modulus. From

their experiments they observed that: (i) the dynamic properties of a moving

crack do not depend on the sample thickness. They are basically controlled by

the steady state velocity as well as local crack velocity v(l), and (ii) the surface

roughness increases dramatically at a velocity of v(l) ' 0.5×cR, associated with

a strong sound emission and broad band velocity oscillation. Then, the appear-

ance of macro-branching was observed at v(l) ' 0.65× cR, but this phenomena

was only observed in fast cracks with a limiting velocity of v(l) ' 0.75 × cR.

In order to understand the interaction of the sound emission with the moving

crack, they improved their experimental set-up. The results show that in the

case of viscoelastic materials as PMMA, the Young’s modulus changes with the

frequency of the sound emitted. In this scenario, they define two Rayleigh wave

speeds, called static Rayleigh wave speed for low frequencies and the dynamic

Rayleigh wave speed for high frequencies. Experimentally, they showed that

both Rayleigh wave speeds are relevant to describe the crack motion, depend-

ing on the presence of a high-frequency acoustic wave. This wave is emitted

by the crack and interacts with the crack after the reflection on the bound-

aries. They proposed to incorporate this interaction into any description of

crack motion. Indeed, this interaction generates a constant terminal velocity

jump [57].

• Microbranching instability and the dynamic fracture.

Finally, the proposal suggested by Fineberg et al [15, 28]. Their experiments

were carried out in PMMA and glass. The experimental setup used is a ten-

sile machine loaded by uniform displacement of the vertical boundaries. The

samples are sheets of size 380× 440mm2 in the x (propagation) and y(loading)

directions, and thickness 2 and 3mm, respectively. The crack velocity was mea-

sured by potential drop method (see section 1.3.1 for more details). The energy

release rate G(l) = K2

E
was computed numerically for the precise geometry of the

plates used to then, deduced Γ from the equation of motion: Γ = G(l)
(

1− v
cR

)
.

From these experiments, they observed an instability that occurs above a criti-
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cal velocity, v(l)c < 0.4× cR, which leads to the apparent failure of equation of

motion. At velocities above vc, a single straight crack is no longer stable and

undergoes a repetitive processes of micro-branching events. This leads to large

oscillations in the crack velocity and roughening of the fracture surface, which

are well-defined functions of the mean crack velocity. They observed that, even

if the PMMA and glass are different materials, the appearance and subsequent

evolution of many aspects of the instability are nearly identical. Thus, their

proposal was based on the fact that at a critical velocity vc ≥ 0.6 × cR the

equation of motion is not appropriate to describe a moving crack, because this

equation describes the motion of a single-crack state. Furthermore it fails when

we attempt to use it to describe the mean velocity of a multi-crack state. The

high peaks in the velocity measurements correspond to these single-crack states,

because, when several cracks are propagating simultaneously, the available en-

ergy is distributed between them, and the front velocity drops.

1.5 Conclusions and Objectives

What can be gleaned from that? Because of stress concentration, crack propaga-

tion is the basic mechanism that leads to material failure. Presently, there exists a

coherent framework, Linear Elastic Fracture Mechanics, predicting both the onset of

crack propagation (Griffith’s theory) and the crack velocity above this onset. This

theory calls for the definition of a new quantity, the fracture energy, Γ, that encodes

all the damage and dissipative processes occurring in a small zone at the crack tip,

the so called process-zone. What sets precisely the value of Γ remains only partially

understood.

Several discrepancies are evident when the theory predictions are compared to ex-

periments. First, the limiting or maximum crack velocity is observed to be much lower

than the Rayleigh wave speed predicted by the theory. Second, large scale roughness

are observed at high speeds while continuum theory would predict smooth fracture

surfaces. The understanding of these discrepancies yielded many investigations over

the last decades. Several scenarii were imagined: (i) it was in particular suggested [32]

that damage spreading through microcracking at high velocity provides the relevant

additional dissipation mechanism responsible for the abnormal limiting velocity; (ii)

it was also proposed [31] that the acoustic waves emitted by the propagating crack
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front can modify locally the material rheology at the crack tip, and hence the local

value of the Rayleigh wave speed, by perturbing at high rate the crack loading; and

(iii) it was finally conjectured [81] that the micro-branching instabilities observed at

high velocities provides the relevant mechanism responsible for the discrepancy be-

tween theory and experiments. Note that the micro-branching onset coincides with

an acoustic emission.

All these mechanisms are found to intervene at high enough velocity. This Ph.D.

thesis is dedicated to the experimental investigation of dynamic crack growth in a

brittle material, Plexiglas, over intermediate ranges of crack velocity, below the onset

of micro-branching instability and acoustic emission. The experimental set-up de-

signed to reach this goal is described in chapter 2. We will see, in chapter 3, that

the fracture energy exhibits an anomalous increase from its value at crack initiation

at a well-defined critical velocity, below the one associated to the onset of micro-

branching instability. This transition is associated with the appearance of conics

patterns on fracture surfaces. Conic marks, in many materials, are the signature of

damage spreading through the nucleation and growth of micro-cracks. In chapter 4,

we will see how the dynamics of crack propagation and microcracking can be recon-

structed at the microscopic scale (micrometer/microsecond scale) from the analyses

of the post-mortem fracture surfaces.

.



Chapter 2

Materials, experimental setup and

methods.

In this chapter, we present the experimental setup developed during this PhD

thesis to investigate dynamic crack propagation in nominally brittle materials. This

setup fulfills three main requirements:

◦ Allows for the growth of a stable dynamic crack in a controlled manner.

◦ To follow in real time (at the microsecond scale) the relevant macroscopic quan-

tities in dynamic fracture, namely the instantaneous crack velocity and the

instantaneous (quasi-static) stress intensity factor.

◦ To probe the damage and fracture processes responsible for dynamic crack

growth at the micro-scale.

The materials, experimental setup and analysis methods which have been selected

and/or developed to reach these objectives are presented hereafter. PMMA was

chosen as the archetype of a brittle amorphous material and most of the experiments

were conducted using PMMA. Preliminary experiments were performed using soda-

lime glass. The properties of these two materials are described in section 2.1. The

following 3 sections of this chapter detail each component composing our experimental

setup: (i) the various geometries of fracture test designed during this work. (section

2.2); and (ii) the method we developed to measure the crack velocity (section 2.3).

Then, section 2.4 presents the finite element simulations used to compute various

29



30 Chapter 2: Materials, experimental setup and methods.

parameters allowing for the characterization in real-time of the stress field evolution

in the vicinity of the dynamic crack. The last part of this chapter, describes the

microscopy techniques employed to obtain the fracture surface images for the post-

mortem analysis.

2.1 Materials

The first step was to find a model experimental material in which dynamic cracks

can be generated and propagated in a controlled manner. Glass appears as the

archetype of brittle materials and was then naturally our first choice. However,

because of the extremely high Young modulus (3GPa and 70GPa for the PMMA

and soda-lime glass respectively), the typical values of the displacement in a frac-

ture experiment are very small (around 5µm to 1mm behind the crack tip in our

typical experiments). This makes the stability of dynamic cracks very dependent on

slight misalignments, inaccuracies and asymmetries in the design and machining of

the experimental set-up and the various specimens. Therefore, most of the experi-

ments described in the next chapters were conducted in PMMA. Its lower value in

Young modulus makes the experiments far less sensitive to the small inaccuracy and

misalignments. All the experiments were carried out in ambient conditions. The

mechanical properties of both Soda-lime and PMMA are reported in table 2.1, while

the methods used to measure these quantities are described below.

2.1.1 Soda-lime glass

Soda-lime glass is a homogeneous, isotropic and brittle material, with unique op-

tical properties. Indeed glass is perfectly homogeneous at length scales much smaller

than those of optical wavelength. Moreover, it exhibits a hardness significantly larger

than that of steels. The glass transition is observed at the critical temperature

Tg ' 700◦C. At ambient temperature, the viscosity is larger than 1019 Pa.s. Therefore

it can be considered as a perfect elastic brittle solid at ambient temperature.

Density of soda lime is simply measured using the weight and the well defined

dimensions of a parallelepiped specimen. It is found to be ρ = 3.03 ± 0.1kg/dm3.

Elastic modulus, E, and Poisson ratio, ν, are evaluated using acoustic techniques:

Both dilational and shear pulses of frequency f = 5 MHz are sent into a specimen
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of thickness 20mm and the successive echoes are recorded via an oscilloscope (Figure

2.1). From the successive arrival times of the pulse at the transducer, one can deduce

the dilational, Cd, and shear, Cs, wave speeds. They are found to be:

Cd = 5700± 20m/s Cs = 3400± 10m/s (2.1)

From the velocities Cd and Cs, one can deduce the values of the Poisson ratio and

the Young modulus [32]:

ν =
Cd
Cs
, E =

C2
s

ρ

3C2
d/ρ− 4C2

s/ρ

C2
d/ρ− C2

s/ρ
(2.2)

yielding:

ν = 0.22± 0.01, E = 73± 0.2 GPa (2.3)

As explained in section 1.2.1, the relevant velocity for fracture is the Rayleigh

speed cR. This velocity is given by the first root of the Rayleigh function (see section

1.2.1):

R(c) = 4αdαs− (1+α2
s)

2 with αd = (1−c2/C2
d)

1
2 and αs = (1−c2/C2

s )
1
2 (2.4)

From the values of Cd and Cs given in equation 2.1, one gets in soda-lime glass:

cR = 3120± 10m/s (2.5)

2.1.2 Polymethylmethacrylate (PMMA)

PMMA is a linear polymer with a glass transition at Tg ' 100◦C . At ambient

temperature, it can be considered as an elastic material. This kind of material is

considered as one of the archetype of brittle elastic material and, as such, as been

widely investigated in dynamic fracture experiments.

The density of PMMA is measured to be ρ = 2.8 ± 0.2 kg/dm3. The speed

of bulk waves are computed using the same acoustic techniques as those used in
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Figure 2.1: Speed of dilational, Cd, and shear waves, Cs: a) and b) Soda-lime glass,
c) and d) PMMA.

soda-lime glass (Figure 2.1). They were found to be Cd = 2650 ± 160 m/s and

Cs = 1290 ± 150 m/s, respectively. From these values, the Poisson ratio and Young

modulus are computed using Eq. 2.2. They are found to be:

ν = 0.33± 0.08, E = 5.4± 0.1 GPa (2.6)

These values should be noted. The Young modulus is significantly higher (about

two times larger) than those usually reported in the literature (see e.g. [32]). To

understand this apparent discrepancy, it is important to note that our measurements

were performed at a frequency of f = 5 MHz. And contrary to Soda-lime, the PMMA

rheology is expected to depend significantly on f at such high values (see e.g. [57]).

The Poisson ratio is expected to remain approximately constant [57]. This value of

E is then irrelevant when one seeks to estimate the mechanical energy in a PMMA

specimen during its breaking. The relevant one is the one measured at low frequencies,
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where E becomes independent of f [57, 15, 32].

In order to overcome this difficulty, we refine our estimation of the elastic modulus

using a standard mechanical test providing with quasi-static information: we perform

a Dynamic Mechanical Analysis (DMA), in collaboration with Unit Mixte at Saint-

Gobain Research. DMA works by applying a sinusoidal deformation to a sample of

known geometry. The sample is subjected to a controlled stress or controlled strain.

For a known stress, the sample will then deform a certain amount. In DMA this

is done sinusoidally at various different frequencies (see Figure 2.2). How much it

deforms is related to its stiffness. A force motor is used to generate the sinusoidal

wave, and this is transmitted to the sample via a drive shaft. Hence, the stress is

computed as a function of the deformation. The Young’s modulus, is then calculated

from the slope of the initial part of a stress-strain curve, and it is found to be E =

2.8± 0.2 GPa.

Figure 2.2: Young modulus of PMMA computed from DMA tests at various frequen-
cies. Each color represent a test.

Correct values of Poisson ratio and Young modulus to consider when one is inter-

ested in interpreting the fracture experiments described in the next sections is:

ν = 0.3251± 0.076, E = 2.8± 0.2 GPa (2.7)
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The values of the dilational and shear wave speeds can then be deduced through [32]:

Cd =

√
λ+ 2µ

ρ
, Cs =

√
µ

ρ
with λ =

νE

(1 + ν)(1 + 2ν)
, µ =

λ− 2λν

2ν
(2.8)

yielding:

Cd = 2000± 360 m/s, Cs = 950± 10 m/s (2.9)

Furthermore the Rayleigh speed is found to be::

cR = 880± 20m/s (2.10)

Table 2.1: Mechanical properties of soda-lime glass and PMMA used in our fracture
experiments

E(GPa) ν Density ρ(kg/dm3) Cd (m/s) Cs (m/s) cR (m/s)
Glass 73± 0.3 0.22± 0.01 3.03± 0.1 5700± 20 3410± 10 3120± 10
PMMA 2.8± 0.2 0.33± 0.08 2.8± 0.2 2000± 360 950± 10 880± 20

2.2 Mechanical device

The next step was to design and machine an apparatus (tension/compression) for

fracture tests in which we could get: (i) a stable dynamic crack growth (which means

velocities ranging between 0.7cR ∼ 0.1cR); and (ii) a ”single” macroscopic crack front

(which means fracture surfaces free of macro-branches).

The apparatus used to carry out the experiments was home made(see Fig. 2.8).

One jaw of the machine is fixed while the other moves via a step motor (Oriental

motor EMP400 Series) allowing incremental tunable displacements as small as 40 nm.

In all the experiments presented herein, the velocity of the moving jaw is set to

40µm/s. The force is measured , either in tension or compression, up to 20 kN

thanks to a S-type Vishay load cell 363 Series. The effective compliance of the loading
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apparatus was measured by loading in compression a rectangular glass specimen of

length L = 200 mm, width W = 50 mm and thickness H = 20 mm. It was found to

be kapp = 2.4× 107N/m.

2.2.1 Thin strip configuration

The first fracture tests were driven in the so-called thin strip configuration, i.e.

by applying a constant displacement to the parallel boundaries of a thin rectangular

specimen (see figure 2.3). This geometry was our first choice since:(i) It allows to

drive steady cracks that propagate a constant velocity and constant mechanical energy

release rate G over a significant portion of the specimen as it is; (ii) G can be simply

estimated and related to E, ν and the width extension δ of the specimen at fracture

onset : G = Eδ2

2w(1−ν2) ; and (iii) lastly because it is a standard mechanical configuration

used in many labs to study dynamic fracture experiments (see e.g. [31, 52, 82]). In

this geometry, it is expected that the crack propagates at a constant velocity which

can be controlled as it only depends upon the geometry (i.e. radius of curvature and

length) of the pre-crack or notch which is introduced in the sample.

Figure 2.3: Sketch of the so-called thin strip configuration.

Both soda-lime glass and PMMA were broken in strip configurations (see Tab. 2.1
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for relevant mechanical properties). The samples have a rectangular shape of length

L = 200 mm, width W = 50 mm and thickness H = 20 mm. In all the following, the

x-direction, y-direction and z-direction are defined as the direction of propagation (L-

direction), direction of the tensile stress at the crack tip (W -direction), and direction

of the crack front(H-direction), respectively. The sample is glued with cyanoacrylate

adhesive to steel frames (see figure 2.3) that are subsequently clamped to the jaws

of the loading machine. Prior to the loading, a small 10 mm-long ‘seed’ crack is

introduced at the edge of the sample, midway between the steel frames. One of the

two jaws is then pulled at a constant velocity of 40 µm/s, which imposes a constant

width extension. At a given point, a crack propagates dynamically, and the specimen

breaks.

Figure 2.4: Samples broken with the thin strip device.

We carried out a large number of experiments of this kind. Unfortunately, in

almost all, the crack path is unstable. Sometimes, it departs rapidly from the sym-

metry axis and reaches one of the two boundaries (as can be seen on Fig. 2.4b). In

some other cases, we observe fragmentation and macro-branching (as shown in figure

2.4c). The only occasion where we obtained stable crack propagation (figure 2.4a)

was when a 1 mm-deep groove is dug on the surface to guide the crack along the

long edge. But the presence of this guide imposes mixed mode in the loading of the
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moving crack. This geometry was therefore given up.

2.2.2 Wedge splitting geometry

In order to have a stable crack propagation, we had the idea to break our samples

in opening mode (mode I) while imposing a compression parallel to the direction of

crack propagation. Within these conditions, if the crack deviates from straightness,

its front is loaded under compression, and therefore goes back along the symmetry

direction. The geometry which allowed us to reach this objective is the so-called

wedge splitting geometry [83, 50, 84]. In this test, a steel wedge is slowly pushed into

a seed crack (see figure 2.5). In this geometry, the specimen is compressed along the

direction of crack propagation (x-axis) while the crack loading remains in opening

mode.

Such fracture tests were performed in both PMMA and Soda-lime glass. A

schematic of the sample is shown in figure 2.5. A thin rectangular notch (length

of 10 mm, thickness of 2 mm) was cut out of one of the edges of plate of length L =

140mm (x-direction), of wide W = 120mm (y-direction) and thickness H = 15mm

(z-direction). A steel triangular wedge is then slowly pushed (velocity of 40 µm) into

the notch up to crack initiation.

In this so-called wedge splitting geometry, the release mechanical energy G de-

creases as the crack length, c, increases, thus, one should expect to have a decreasing

velocity as the crack length is increasing. To obtain dynamic failure, we then intro-

duced a hole of tunable diameter from 2 mm to 8mm at the end of the seed crack

(see figure 2.6). The hole diameter determines the crack dynamics: The larger the

hole is, the higher the stored energy in the sample at the onset of cracking is, and

hence, the faster the crack. This hole blunts the seed crack and hence will determi-

nate the amount of mechanical energy stored in the sample is high, the crack starts

to propagate at high velocity, and it decreases as the crack length increases.

This geometry allows us to reached most of our objectives since it allows the prop-

agation of a stable dynamic crack with velocities ranging from 0.7× cR to 0.5× cR in

both PMMA and soda lime glass. However, the force is applied on a single point at

the notch inducing local plastic deformation and also friction at the contact point be-

tween the notch and the specimen. This prevents to estimate properly the mechanical

energy release rate, G, in the system. This lead us to improve this geometry.
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Figure 2.5: Schematic representation of the wedge splitting configuration

Figure 2.6: Image showing a PMMA notch configuration designed for the wedge
splitting experiments. To do this, the sample was placed between two cross-polarizers,
which allows to observe the stress distribution around the loaded hole as PMMA is a
birefringent material.

2.2.3 Improved wedge splitting geometry

To prevent the appearance of plastic deformations around the notch of the sample,

we modify the geometry of our setup and samples so that the force applied by the
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loading machine is spread over a significant contact area within the specimen (see

e.g.[85, 86]). In this context, a rectangular grove is now cut out of one of the specimen

edges. Two steel blocks equipped with rollers are then placed on both sides of this

mouth (see figure 2.7). The specimen is then loaded by pushing a wedge (semi-angle

of 15) at constant velocity 40 µms−1 in between these two blocks (see figure 2.7).

Then, the force is applied on a very small contact area at the extremity of the notch.

This modification allows to spread the loading force over a large contact area and

prevents the formation of plastic deformations.

Figure 2.7: Schematic representation of the modified wedge splitting device

To be more precise, the specimen are prepared from 140 × 125 × 15mm3 paral-

lelepipeds. A rectangular mouth of 25×25mm2 is cut out of one of the 125mm×15mm

edges. An additional rectangular 10 mm-long 2 mm-thick notch is dug deeper in the

middle of this mouth. As before, a hole of adjustable diameter ranging from 2 to

8 mm is drilled at the end of the groove to tune the crack dynamics. Figure 2.8 shows

a picture of this new configuration.

Only PMMA samples are broken in these series of experiments. The maximum

crack velocity is observed at the onset of crack propagation and ranges between 0.7×cR
and 0.5 × cR. Then the velocity decreases as the crack length increases. The crack

propagation ends at low velocity, typically around 0.05× cR.

In all the tests described above, both displacement and force are recorded via a

computer with a time-resolution of 1 s, limitation set by a multimeter. The last value
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Figure 2.8: Image showing the modified wedge splitting device

of the applied force is registered when the crack starts to propagate. This is the value

used in the finite element analyses described in section 2.4.

2.3 Crack velocity measurements

The next goal of the experimental setup was to measure the instantaneous crack

velocity. There are 4 methods commonly used in experimental mechanics to obtain

the instantaneous crack velocity (see e.g. 1.3.1 for a review).

In our experiments, we used a modified version of the electrical resistance grid

technique [54, 31, 55, 52], as is shown in the sample of figure 2.8. A large number of

conductive bands are arranged such that an accurancy of 40 µm and 0.1 µs in space

and time respectively is obtained. Our setup was developed in two stages.

In the preliminary setup, 25 graphite stripes were printed on the surface. They

were painted by hand using a metallic mask as a guide. Their dimensions are ∼ 1 mm

in width (along the x-direction) and 100 mm of length (along the y-direction). The

first strip is located 15 mm away from the tip of the seed crack. The others are

positioned parallel to the first one, every 4 mm. The last one is 10 mm away from the

back edge. Each strip is connected in series to a resistor R = 120 KΩ. This resistor

was chosen to be extremely high with respect to that of the strip (about few Ω) so

that this last one is negligible. All of these circuits (stripes+R) are then connected
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in parallel, together with an additional resistor, R. The effective resistance of this

circuit is then directly proportional to the number N of stripes that will be cut, i.e. of

the crack length. Finally, a small resistance RM = 1 Ω is added in series, the whole

electronic circuit is alimented with a voltage source that imposes a constant tension

Ve = 16 V, and the tension VM is read at the boundaries of RM . As the crack front

propagates, the conductive graphite strips are cut at successive times, N increases by

steps, and VM increases by steps of sizes RMV/R. The time location of these jumps

are detected with an oscilloscope and allows to compute the crack velocity.

In the refined version of this setup, 90 stripes are deposited on the sample surface.

This was using polymer masks fabricated by APTETUDE glued on a sample surface.

Stripes width and length are 500 µm and 100 mm, respectively. They are separated

by gaps of 500 µm. The first strip starts at 500 µm from the seed crack, and the last

one is localized at 5 mm before the end. The conductive layers are then deposited on

the specimen through the polymer mask at the Laboratoire de Chimie des Surfaces

et Interfaces (LCSI) at SPCSI, CEA Saclay. It consists of the superposition of two

successive layers: A 2.4 nm-thick chromium layer, and an additional 23 nm- thick gold

layer. The chromium improves adhesion between the conductive gold layer and the

PMMA or Soda-lime substrate. The accuracy of the stripe thickness was measured

to be 40 µm.

The 90 conductive stripes are connected in series to 90 resistors of 30 KΩ each.

The advantage to using gold and chromium instead of graphite is that their resistence

is very low (less than 1 Ω). In order to have a better resolution and less noise to

capture the entire length of the crack with high spatial resolution, four channels of the

oscilloscope are cascaded, each with different offset, so that each channel is triggered

as the previous one gets out of its range. Figure 2.9a and b shows the measured

signal. As VM = V (Rmes

R
)N varies with the crack length measuring the raw voltage

signal provides us with the crack length, c, as a function of time (see figure 2.9 c).

From this signal we compute the crack velocity as a function of c, as shown in figure

2.9 d.

This technique allows us to follow the crack progression along 90 points separated

by a distance of 1mm, with spatial and temporal accuracy of 40 µm and 0.1 µs

respectively.
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Figure 2.9: Images showing the methodology used to compute the results obtained
from the modified potential drop method during our fracture tests a) Voltage (VM)
as a function of time (t) from the signal registered with the oscilloscope. b) Zoom on
the oscilloscope signal, we can clearly see the steps corresponding to successive cuts
of conductive lines as the crack front advances. c) Crack front position as a function
of time and d) crack velocity calculated at 90 crack positions.
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2.4 Finite element method

Fracture experiments span typically over a few hundreds of microseconds. This

time scale is far too short to follow in real-time the time evolution of the loading

force or the jaw displacement. Hence, finite element analysis is used to estimate

the evolution of the mechanical parameters during crack progression. It was verified

experimentally that over a time scale of a few hundreds of microseconds, the load cell

did not respond to the changes related to crack propagation. This is due to the time

required for sound waves to travel back and forth between the crack tip and the load

cell within the PMMA sample and the steel loading apparatus. As a result, the jaws

displacements will be assumed to be constant during the crack propagation. For finite

element calculations this translates into constant displacement boundary conditions.

Figure 2.10: Typical meshing used for finite element calculations, in order to access
the stress/strain fields in the experiments. Red: polymeric layer. Black: sample.
Blue: rectangular mouth. Red line: cracked line.

Figure 2.10 represents the meshing of the complete system, including the sample

(black), a polymeric layer between the sample and the loading apparatus (red) and

mouth (blue). The average mesh size is 1 mm and reduces logarithmically down to

10 nm at the crack tip, in order to resolve in space the crack tip opening. Only half

of the system is required for symmetry reasons. For each sample, the equilibrium

position of the wedge yielding the measured applied load at the onset of crack propa-

gation was determined using a plane stress static finite element code (Castem 2007).

During crack propagation, the point of the mouth corresponding to the roller axis is

allowed to move along the wedge side, i.e. at the wedge angle of 15.

The quasi-static stress intensity factor is then determined, for each crack length
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Figure 2.11: Static stress intensity factor, K, as a function of the crack length, c.

c using the J-integral method [87]. A typical result is shown in figure 2.11. Such

calculations are performed for increasing crack length, c, between the hole and the

end of the sample. Note that the first and last 5 mm were not accessible because of

the size of the transition zone of the meshing around the crack tip.

As was explained in section 1.2.1, these values of the quasi-static crack tip stress

field allows, using the equation of motion, and along with the velocity measurements,

to deduce the dynamic fracture energy.

2.5 Topography measurements of fracture surfaces

Finally, in addition to previous measurements, we investigated post mortem mor-

phology of the fracture surfaces and correlated it with other quantities. Indeed, post

mortem fracture surfaces preserve information of the local interactions between the

crack front and material defects and, as such, reflect the various damage processes oc-

curring at the microscale. In this section we will describe in detail the two microscopes

that were used for these analysis.
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2.5.1 Optical microscope

.

A Leica DM2500 microscope was used to image the fracture surface. Most of the

images were taken with a ×5 objective, with polarized light at 135 between the two

layers of polarizers. The resulting images are 1.4 × 1 mm2 in size, with a pixel size

of 677 nm. In order to gather statistics for the post mortem analyses, 150 images all

the long were taken from all the dynamic fracture surfaces. Figure 2.12 shows a few

representative images.

Figure 2.12: Microscope images ×5 objective taken from the dynamic fracture
surfaces.

These images provide us large amounts of information of the dynamic fracture

surfaces, but only in 2 dimensions. For this reason, we imaged the fracture surfaces

with an optical profiler which allows one to gather information in 3D.

2.5.2 Optical profiler

.

Three dimensional images were obtained via an optical profilometer (produced

by FOGALE Nanotech). This work was done in collaboration with the group of

Systmes Biologiques Intgrs located in the Laboratoire de Physique Statistique at

Ecole Normale Superieur de Paris. The images were taken with a ×5 objective,

giving a physical resolution of 1.86 um per pixel in-plane and 0.1 nm out-of-plane.

The image size is 1.4 mm × 1 mm. Figure 2.13 shows an image (a) and a profile
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(b) taken with this profilometer on a typical zone of a dynamic fracture surface in

PMMA.

Figure 2.13: a) Example of an optical profilometer image taken from the fracture
surface of PMMA, b) Profile taken from the optical profilometer image (red line)

2.6 Conclusion

The experimental setup and associated analysis tools have been presented. We

are now able to:

◦ Propagate a dynamic crack in nominally brittle materials like oxide glass and

PMMA in a stable and controlled manner over a wide range of velocities.

◦ Record in real time by a combination of measurements the instantaneous spa-

tially averaged crack velocity. Subsequently, we can calculate via finite element

simulations the (quasi-static) stress intensity factor. These two quantities give

an estimation of the instantaneous mechanical energy released as the crack

propagates and the stress field singularity in the vicinity of the crack tip.

◦ Probe the resulting post-mortem fracture surfaces which contains information

on the local damage and fracture processes.

In a first step, one will see how the data obtained from this experimental setup

can be used to determine a macroscopic equation of motion for cracks (see Eq. 1.22).
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In this equation, all the dissipation processes are gathered into a single quantity, the

fracture energy, Γ, which will be determined experimentally as described in the next

chapter. Chapter 4 details damage processes at the microscopic scale. Hence one can

better understand the nature of the dissipation processes.



Chapter 3

Macroscopic study: Nominally

brittle to quasi-brittle transition in

dynamic fracture

This chapter is dedicated to the study of dynamic crack propagation in brittle

amorphous materials at the macroscopic scale. The theoretical reference of this work

is Linear Elastic Fracture Mechanics (LEFM). It states that all energetic dissipations

can be gathered into a single material-dependent quantity, the fracture energy (Γ).

The crack growth velocity, v, is then selected by the balance between the energy flux

and the dissipation rate, which leads to (see section 1.2.2):

Γ ' (1− v/cR)
K(c)2

E
(3.1)

where cR and E are the Rayleigh wave speed and the elastic modulus of the material,

respectively, and K(c) is the Stress Intensity Factor for a quasi-static crack of length

c. K depends only on the applied loading and specimen geometry, and it characterizes

entirely the stress field in the vicinity of the crack front.

Large discrepancies between LEFM predictions and experiments have been re-

ported at large velocities (see chapter 1.3 or [15, 32] for reviews). In particular:

◦ The measured maximum crack speeds lie in the range 0.5 − 0.7 × cR, i.e. far

lower than the limiting speed cR predicted by equation 3.1.

48
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◦ Fracture surfaces become rough at high velocities, contrary to the smooth sur-

faces predicted by PLS.

Careful measurements of the velocity dependence of Γ have recently yielded im-

portant insights on the fracture mechanisms within the velocity range 0.2− 0.9× cR.

In particular, it has been observed that beyond a critical velocity, vb ' 0.4 × cR

(vb ' 0.35 × cR in PMMA (see ref. [81]), the crack front splits into multiple-cracks

formed by repetitive, frustrated micro-branching events. The micro-branching insta-

bility origin is frequently disputed between theoreticians and experimentalist. How-

ever, they reconcile their differences when the velocity is lower than vb [28].

Despite this reconciliation, a number of puzzling observations remain at smaller

velocities. In particular, even for velocities much less than vb: (i) the measured

dynamic fracture energy is generally significantly larger than that at crack initiation

[88, 89, 90, 28] and (ii) fracture surfaces roughen over length scales greater than the

microstructure scale (”mist” patterns) [9].

In this chapter, we report measurements of Γ in PMMA at crack velocities within

the range 0.05− 0.5× cR (section 3.1). Our results show for the first time an abrupt

3-fold increase in Γ at a new critical velocity va ' 0.19 × cR. A detailed post-

mortem analysis of the fracture surface samples reveals that this velocity corresponds

exactly to the onset of the appearance of conic marks on the fracture surface (section

3.2). Such conic marks result from damage spreading through the nucleation and

the growth of micro-cracks ahead of the propagating crack. The observed transition

can thus be associated with this well-identified dissipating fracture mechanism. A

simple model relates both the energetic and fractographic measurements (section

3.3). Consequences are subsequently discussed (section 3.4).

3.1 Fracture energy measurements: A new critical

velocity

The experimental setup described in the previous chapter is used to drive dynamic

cracks in PMMA. The dynamic fracture energy, Γ, is deduced directly from Eq. 3.1.

Methods for acquiring input data of equation 3.1 are described in section 2.3 for the

velocity and section 2.4 for the quasi-static stress intensity factor. Variations of K
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and Γ as a function of the crack length c in a typical experiment are presented in Fig.

3.1.

Figure 3.1: a) Quasi-static stress intensity factor K(c) and b) Dynamic fracture
energy Γ(c) both as a function of the crack length c in a typical experiment.

The variation of Γ as a funtion of v is shown in Fig. 3.2. These results are the

same in all our experiments and are weakly dependent on the initial stored mechanical

energy, U0 (tuned by the radius of the hole at the seed-crack, see section 2.2.2). This

curve provides evidence for three regimes, separated by two critical velocities. For

low crack velocities, Γ, remains on the order of Gc = K2
c /E ' 0.42±0.07J/m2, where

Kc refers to material toughness and Gc is the critical mechanical energy release rate.

Then, as v reaches the first critical value va ' 165 m/s = 0.19× cR, fracture energy

increases abruptly to approximately 3 times the fracture energy at Gc. Beyond va,

Γ increases slowly with v up to a second critical value, vb = 0.36 × cR ' 317 m/s,

then Γ again diverges with v. The second critical velocity corresponds to the onset

of the micro-branching instability, widely discussed in the literature (see Sec. 1.4 and

references [52, 28] for instance). To the very best of our knowledge, the first critical

velocity va ' 0.19× cR is reported herein for the first time.

It is also interesting to note about the abrupt Γ increase around va: At this point,

slight variations of crack velocity, v, seems to induce significant changes in fracture

energy. This provides a direct interpretation for the repeated observation of cracks

that span a wide range of fracture energies but propagate at a nearly constant velocity,

approximately 0.2× cR (see e.g. [32, 91]).
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Figure 3.2: Fracture energy, Γ, vs v for various experiments with different stored
mechanical energies, U0, at crack initiation. The two vertical dashed lines correspond
to va = 0.19 × cR and vb = 0.4 × cR. The two horizontal dashed lines indicate the
confidence interval for the measured fracture energy, K2

c /E, at crack initiation.
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3.2 Fractographic observations

3.2.1 Appearance of conic marks beyond the new critical ve-

locity

To shed light on the local mechanisms responsible for the transition at va, we

looked at the morphology of the fracture surfaces. Fracture surfaces were observed

with the optical microscope presented in chapter 2.5.1. Typical snapshots of post-

mortem fracture surfaces recorded at velocities lower than va, between va and vb, and

greater than vb are presented in Fig 3.3. The side of the specimens were also inspected

(see fig. 3.4). Three cases could be distinguished:

◦ When v < va, fracture surfaces and specimen sides remain smooth at the optical

scale.

◦ When va < v < vb, conic marks can be observed on the fracture surfaces. The

specimen sides remain smooth at the scale of observation. .

◦ When vb < v, conics marks continue to be observed on the fracture surfaces.

Patterns reminiscent of micro-branches [81] are also observed on the specimen

sides.

Figure 3.3: Microscope images (1.4 × 1 mm2 field of view) of the fracture surfaces,
taken at: (a) v = 110± 10 m/s; (b) v = 250± 20 m/s; (c) v = 450± 50 m/s. Crack
propagation is from left to right.

These observations confirm that the second critical velocity (vb) observed in the

Γ(v) curve, coincides with the onset of micro-branching. They also suggests that

the first critical velocity, va, should be associated to the onset of conic marks in the

fracture surface.
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Figure 3.4: Microscope images (0.5 × 0.7 mm2 field of view) of the sample side. (a)
v = 120 ± 20 m/s, K2/E = 1k J/m2; (b) v = 260 ± 30 m/s, K2/E = 2k J/m2; (c)
v = 650± 100 m/s, K2/E = 7k J/m2. Crack propagation is from left to right.

Figure 3.5: Density of conic marks, ρ, as a function of crack velocity for all our five
experiments. The image were recorded at ×5 magnification (scan-size: 1.4× 1 mm2,
pixel size: 677 nm). The error bars denote the standard deviation on the measurement
of ρ for a fixed value of v.

The number per unit area ρ of conic marks is plotted as a function of crack

velocity, v, in figure 3.5. The images used to compute this curve were taken with a ×5

magnification (scan-size: 1.4× 1 mm2, pixel size: 677 nm). The various experiments

collapse fairly well onto a single master curve. Two regimes can be distinguished:
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◦ Below the critical velocity va, no conic marks are observed. It is worth to

emphasize that no conic marks were observed, even when one is increasing the

magnification up to ×50.

◦ Above va, ρ increases almost linearly with v − va (see figure 3.5).

The fact that conic marks become visible on fracture surfaces at the very same critical

velocity va where Γ exhibits an abrupt increase strongly suggests that both phenomena

are associated with the same transition.

3.2.2 Interpretation of the conic marks: Signature of micro-

cracking.

The observation of conic marks in PMMA is not new and has been reported

e.g. in [67, 92, 91, 93]. Similar conic marks were reported on the post-mortem

fracture of many other amorphous brittle materials (see [9, 32] and references therein),

including polystyrene [62], silica glasses [61], cellulose acetate [65], Homalite [91] and

polycrystalline materials [64] (see figure 3.6).

Figure 3.6: Observations of conic marks in various materials. a) glass from [70] b)
polystyrene and polyurethane, from [9].

Their formation is thought to arise from inherent toughness fluctuations at the

micro-structure scale due to material heterogeneities randomly distributed throughout

the material [91, 61]. The enhanced stress field in the vicinity of the main crack front

activates some of the low toughness zones (nucleation sites) and triggers the initiation

of secondary penny-shaped micro-cracks ahead of the crack front. Each micro-crack

grows radially under the stress associated with the main crack along a plane different
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from it. When two micro-cracks intersect in space and time, the ligament separating

them breaks up, leaving a visible conic marking on the post-mortem fracture surface.

In this scenario, the focus of a given conic pattern corresponds to the nucleation

center of the micro-crack. Furthermore the distance between the conic’s focus and

apex is set by the distance, dn, between the triggering main crack front and the

nucleation center at the onset of micro-cracking. In regions where micro-cracks are

observed, but micro-branches are not, dn is found to be in the range 10−100 µm, which

is consistent with the above scenario for micro-cracks (see figure 3.7). A nucleation

center in the material will initiate a micro-crack when it is submitted to a stress

of the order of the intrinsic strength σ∗ of the material (σ∗ ' 500 MPa in PMMA

[94]). Due to the square root stress singularity at the crack tip, the stress level at a

distance dn from the main crack front is ' K/
√
dn. Hence we recover the observed

range dn ' (K/σ∗)2 ' 10 − 60 µm for K in the range 2 − 4 MPa explored in the

experiments (see e.g. figure 3.7).

Figure 3.7: Nucleation distance, dn, as a function of the crack velocity for various frac-
ture experiments. The error-bars denote the standard deviation on the measurement
of dn for a fixed value of v.
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3.3 Macroscopic scenario: damage spreading and

energy dissipation

We turn now to the interpretation of the variations in the fracture energy, Γ, as

a function of the crack velocity, v. In this respect, it is interesting to plot Γ as a

function of the dynamic stress intensity factor, Kd(v). This quantity can be related

to the static stress intensity factor, K, through this approximation: Kd(v) = k(v)K

where k(v) ' (1− v/cR)/
√

1− v/cD (see section 1.2.1). This curve is plotted in Fig.

3.8.

Figure 3.8: Variation of Γ as a function of K2
d/E. The value Ka corresponds to the

value of Kd(v = va) at the microcracking onset. The red lines are linear fits using
Eqs. 3.4 and 3.8, respectively.

Below the microcracking onset (i.e. for Kd(v) ≤ Ka) Γ is found to vary linearly

with Kd(v)2 (Fig. 3.8). This scaling is to compare to that of the size Rc(v) of the

fracture process zone [10]):

Rc = (
Kd(v)

aσY
)2 (3.2)

where σY refers to the yield stress and a is a dimensionless constant which depends
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on the precise model. In other words, the fact that Γ is proportional to Kd indicates

that Γ is proportional to Rc. Hence that the volume dissipation energy, ε, within the

fracture process zone is constant. Indeed, the volume scanned by the fracture process

zone when the crack propagates over an increment δc is RcHδc where H refers to the

specimen thickness. The dissipated energy, ΓHδc, is then given by γsHδc+εRc(v)Hδc

where γs is the standard ”Griffith” surface energy. Hence:

Γ = γs + εRc(v) (3.3)

Furthermore, since Γ(v = 0) = K2
c /E, one finally gets before the microcracking onset

(i.e. for v ≤ va). This is a postulate:

Γ(v) = α
Kd(v)2

E
+ (1− α)

K2
c

E
with α =

εE

aσ2
Y

(3.4)

A linear fit to the data gives α = 1.17± 0.05 and K2
c /E = 0.3± 0.2 kJ.m−2 (see Fig.

3.8). The latter value is compatible with the measurements of the fracture energy at

crack initiation.

By combining this last equation with the motion equation (Eq. 3.1), one can

express Γ as a function of v:

Γ(v) =
1− α

1− α 1−v/cR
1−v/cD

K2
c

E
(3.5)

This reproduces very well the regime below the microcracking onset, v ≤ va (Fig.

3.9). This expression for Γ exhibits a divergence of the dissipated energy for a finite

velocity v′a given by:

v′a = (α− 1)cRcD/(αcD − cR) ' 200 m.s−1 ' 0.23cR (3.6)

This value is slightly larger than va. In the absence of micro-cracks, this velocity v′a
would have set the limiting macroscopic crack velocity.

Let us now turn to the dissipation mechanism above the microcracking onset, i.e.

for v ≥ va. The existence of a threshold for microcracking appears surprising as it

cannot be accounted for in just a stress-driven nucleation mechanism. We believe that
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Figure 3.9: Variation of fracture energy, Γ, as a function of the crack velocity, v.
Comparison between theory and experiments. The red lines corresponds to Eq. 3.5
below va, and Eq. 3.9 above va.

the conic marks observed here at the optical scale coincide with microcracks that had

time to develop. In standard interpretation [91, 61], the conic eccentricity is given

by the ratio between the velocity of the nucleated micro-crack and that of the main

crack front. When the microcrack goes slower than the main crack, one expects to

observe an ellipse. Hence, the FPZ size should permit the nucleation of micro-cracks

at distances far enough from the main crack so that the micro-crack has enough time

to reach a sufficient velocity and leave a conic mark visible at the optical scale. In

this scenario, one expects to observe elliptic marks at sub-micrometric scales, even

for v ≤ va.

To interpret the curve Γ(v) within the micro-cracking regime, i.e. for va ≤ v,

we invoke the existence of an excluded volume, V , around each micro-crack where

stresses are screened and therefore, no further dissipation can occur. As before, it is

interesting to plot the surface density of conic marks ρ as a function of Kd (Fig. 3.10).

Note that in the micro-cracking regime, the local dynamic stress intensity factor, Kd,

is not equal to the macroscopic one anymore, but corresponds to that at the individual

micro-crack tips. This local Kd is then estimated by setting the local velocity to va

and using the quasi-static K at the length c in Eq. 1.20. Each micro-crack can be
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Figure 3.10: Variation of ρ as a function of K2
d/E. The red line is a linear fit and

corresponds to Eq. 3.7.

considered locally as a single crack, the limiting velocity of which has been shown to

be v′a & va. Above va, it is natural to assume that all micro-cracks propagate at the

same velocity, va. Hence, in the micro-cracking regime, Kd(v) = k(v′a)K. Between

Ka and Kb, the values of Kd at va and vb respectively, ρ scales as:

ρ = α
Kd(v)2 −K2

a

E
(3.7)

where a fit to the data gives α =33±3 kJ−1. This square dependency indicates that

the number of conic marks is proportional to the FPZ size and suggests that the

density of nucleation sites for micro-cracks is constant within the material. In the

micro-cracking regime, the energy Γ(v)Hδc dissipated when the crack length increases

by δc is γHδc+ ε(Rc(v)Hδc− ρ(v)HδcV ), yielding:

Γ(v) = Γa + χ
Kd(v)2 −K2

a

E
with χ = α− εβV (3.8)

where Γa is the fracture energy obtained at v = va using Eq. 3.5. Equation (3.8) pre-

dicts a linear dependence of Γ with Kd(c, v)2/E, which is in agreement with the mea-

surements for K2
d/E > K2

a/E (Fig. 3.11). A linear fit to the data gives χ=0.67±0.01.
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Figure 3.11: Velocity profiles measured experimentally in each of the five performed
experiments (points) and predicted theoretically assuming that the fracture energy is
given by Eq. 3.5 below va, and Eq. 3.9 above va.

As before, this last equation can be combined with the motion equation (Eq. 3.1)

to express Γ as a function of v:

Γ(v) =
1− v/cR

1− k(va)2χ− v/cR

(
Γa − χ

K2
a

E

)
(3.9)
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The corresponding predicted Γ(v) reproduces very well the high velocity regime

v ≥ va (Fig. 3.9) and exhibits a divergence of the dissipated energy for v∞ given by:

v∞ = cR(1− χk(v′a)
2) ' 450 m.s−1 ' 0.52cR (3.10)

This limiting velocity is very close to the observed maximum crack speed in brittle

amorphous materials.

One can finally use the fracture energy variation as a function of velocity (given by

Eqs 3.5 and 3.9) and combine it with the finite element estimation of the the profiles

K(c) to predict the velocity profiles in the various experiments performed herein.

The comparisons between these predictions and the measurements are provided in

Fig. 3.11. The agreement is fairly good.

3.4 Conclusion

In this chapter, we have investigated dynamic fracture experiments in Plexiglas

(the archetype of brittle amorphous material). The fracture energy was found to

exhibit an abrupt change at a well-defined critical velocity, va 0.19× cR, well before

the micro-branching instability onset [81]. The nature of the transition was uncov-

ered through fractographic observations. Above va, damage spreading through the

nucleation and growth of micro-cracks occurs and yields conics patterns visible on

the post-mortem fracture surfaces.

A simple scenario has been proposed and succeeds to capture the form taken by

the fracture energy below and above va. This scenario is based on the fact that energy

dissipated per unit volume within the process zone is constant and the existence of

a volume around the nucleated micro-cracks where stresses are screened and hence

no dissipation occurs. This has allowed a fit of the variation fracture energy with

respect to the crack velocity. This fit along with the equation of motion has allowed

us to reproduce all the experimental profiles measured. It should be noted that our

experiments were performed with decelerating crack propagation. Il will be interesting

if this transition still exists with accelerating cracks.

The evidence of such a nominally brittle to quasi-brittle transition in dynamic

fracture provides a rigorous energetical definition of the ”mirror-mist” transition em-
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pirically defined in fractography [9]. This definition completes the observation carried

out by Sharon et al [28, 81] which associates the microbranching onset to the hackle

transition.

In the next chapter we will investigate in greater detail the damage spreading

within the process zone and characterize it to mechanisms at the microscale.



Chapter 4

Microscopic study: deterministic

reconstruction and statistical

analysis.

In the preceding chapter, we have investigated dynamic crack propagation in

PMMA. The fracture energy, Γ, was measured as a function of the crack velocity,

v, (Fig. 3.2). This curve exhibits an abrupt 3-folds increase at a well-defined velocity,

va ' 165 m/s ' 0.19× cR, which is significantly less than the microbranching onset,

vb ' 317 m/s ' 0.35 × cR. Fractography observations revealed three regions (Fig.

3.5):

◦ When v < va, the post mortem observations show smooth fracture surfaces and

specimen sides at the optical scale.

◦ When va < v < vb, one observes conic markings on the fracture surfaces the

density of which increases linearly with v. The specimen sides remain smooth.

◦ When v > vb, micro-branches are observed on the specimen sides. Also conic

marks continue to be observed on the fracture surfaces.

These conic marks are thought to be the signature of damage spreading through

microcracking ahead of the main crack. From these experimental observations, we

proposed a scenario which allows us to relate Γ variations to v and subsequently to

the conic marks density assuming: (i) a constant volume energy dissipation within the

63
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process zone and (ii) stress screening around the nucleated micro-cracks for v ≥ va.

This scenario predicts that the crack velocity diverges at a value v∞ ' 0.52× cR, in

good agreement with experiments reported in the literature.

In this chapter, we examine the damage spreading ahead of the crack front at the

microscopic scale. In section 4.1, we will see how one can reconstruct the dynamics of

crack propagation and that of microcrack nucleation from the conic patterns observed

on post-mortem fracture surfaces. The statistics of damage spreading at the micro-

scale will be characterized in section 4.2. Finally, in section 4.3, we will see how one

can estimate the size of the process zone using this reconstruction.

4.1 Reconstruction of dynamic crack propagation

at the microscopic scale.

4.1.1 Assumptions of the model

A simple geometrical model was suggested in the literature [91, 61, 66] to explain

the geometry of the conic marks.

Figure 4.1: a) Microscope image (×10, 0.5 × 0.7mm2) showing conic marks on the
fracture surfaces of PMMA. The quantity dn denotes the critical distance from which
conic marks start to nucleate. This distance is twice the distance between the conics
focus and apex. b) Schematic representation of the formation of conic marks due
to the interaction between the main crack front, growing at a velocity vf , and the
nucleated microcrack that grows ahead of the main crack front with a velocity vc.

The idea is to consider a crack front that propagates along a given plane with
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a velocity vf . During its propagation, it can encounter inhomogeneities. As the

crack front approaches a critical distance, dn, from one of these inhomogeneities, a

secondary micro-crack nucleates at the inhomogeneity. This secondary microcrack

grows radially, as a penny shape crack, with a velocity vc along a plane parallel but

at a different height from the primary crack front. The intersection between the main

crack front and the secondary microcrack leaves a visible trace (marked by a height

difference) on the fracture surfaces. Assuming that both velocities vf and vc are equal,

this trace takes the form of a conic. The focus of conics coincides with the location

of the initial inhomogeneity, and the eccentricity of which depends on dn (see Figure

4.1). The nucleation distance, dn, is twice the distance between the conic focus and

the conic apex.

Figure 4.2: Snapshots of the conic marks simulation. a) Snapshot taken before the
linear crack front starts to propagate. The three red + represent the nucleation centers
of the conic markings. b) When the main crack front is at the critical distance dn
from the nucleation sites, those open and start to grow radially. c) and d) Trace left
from the interactions between the main crack front and the growing micro-cracks.
This trace is expected to be the one observed on the fracture surface.

In this scenario, the next step consists in developing a model and making a crack
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front propagate and interact with several inhomogeneities. Figure 4.2a, depicts a

model system consisting of three nucleation sites (red crosses) of secondary micro-

cracks placed randomly. Then, a planar primary crack front was propagated from

left to right as is shown in Fig. 4.2b. At a given critical distance, dn, between the

nucleation sites and the primary crack front, the secondary microcracks start to grow

radially. This scenario can be observed in Fig. 4.2b. The intersections between the

penny-shape microcracks and the primary crack front leave conics (Fig 4.2c and d)

similar to what is observed on real fracture surfaces. The origin of the color scale in

fig. 4.2c and d is the following: When a microcrack is nucleated, the code attributes

to it a specific number. When a pixel of the image is reached by a propagating micro-

crack, its value is switched to the one of this microcrack. Thus, all the pixels activated

by the same microcrack share a unique value yielding a zone of given color in the fi-

nal image. When a pixel is activated simultaneously (at the same time step) by two

microcracks, it receives a value equal to the sum of the two microcracks. Then, the

intersections become visible as the color scale correspond to the value of each pixel.

4.1.2 Reconstruction algorithm

Now we are able to simulate the formation of surface markings from the knowledge

of two parameters, namely the position of nucleation sites and the critical nucleation

distance dn. Let us turn our attention to how this compares to the fracture surfaces

obtained in the various experiments presented in the preceding chapter. Several areas

of the fracture surfaces were observed. For each of them, nine optical profilometer

images (see section 2.5.2) were recorded. These images were chosen so that they

overlap partially and can then be gathered into a single large image (this ensures

adequate statistics in the following analyses). The areas of analyses were chosen at

various velocities above the microcracking onset va, ranging from 200 m/s to 450 m/s

with increments of 50 m/s. The methodology to extract the data is the following:

We record the coordinates x, y and z of the focus for each surface conics. Then,

we estimate the nucleation distance, dn, by ”guessing”, for each conics, what was

the primary microcrack (mother microcrack) the progression of which triggers the

nucleation of the considered conics (family criterion). The apex of the considered

conics is then defined as the intersection between the segment linking the mother

focus to the considered focus and the conic marks (see Fig. 4.3). The distance, dn,

is then defined as twice the distance from the apex to the focus. This procedure is
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used to compute dn for each mark of the image.

Figure 4.3: Sketch showing the algorithm used to compute the focus and apex of each
conics visible on profilometer images.

To perform the reconstruction, we first mark all the nucleation sites (focus) with

the coordinates computed from the profilometer images. Secondly a crack front is

made to propagate from left to right, at a velocity of 1pixel/timestep. Once the

distance between the secondary microcrack nucleation site and the primary crack

front reaches dn (computed from the experimental images), the secondary microcrack

grows radially at the same velocity (1pixel/timestep). This assumption of a constant

velocity for all (micro-)crack fronts is justified from the discussion in section 3.3 which

suggests that at the microscopic scale, the front velocity saturates to a limit velocity

v′a slightly larger than va. After each reconstruction, we superpose the profilometer

image to the reconstructed one (see images of Fig. 4.5c) to ensure that the data chosen

as inputs for the reconstruction were correct. When this is not the case, we modify the

family scheme accordingly and repeat the process. This procedure is performed till

we get a good superposition between the experimental and the reconstructed images.

Figures 4.4 show some snapshots of the reconstruction at two different velocities.

Images on the left side (marked with the letter a) corresponds to a velocity of 250 m/s,

and the images on the right side (marked with the letter b) are the snapshots of the

reconstruction for a crack with a velocity 450 m/s. Interesting information is observed

in these reconstructions. First, one can appreciate that the main crack front is no

longer straight, but wiggly (see 4.4 from up to down) even if the initial front is assumed

to be straight. For v = 250 m/s, the snapshots also show that microcracks nucleate

one after the other, each of them coalescing with the main front before the nucleation
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Figure 4.4: Successive snapshots of the crack front propagation and the microcrack
nucleation as observed from the reconstructions. The crack propagates from left to
right. a) 250 m/s and b) 450 m/s. The data for this reconstruction is taken from
optical profilometer images of ×5 resolution, size of 2.5×2.5 mm2 and 3.5×2.5 mm2,
respectively.
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of the following one. At this velocity, the density of conic marks is ρ ' 26 mm−2, and

the conics present a hyperbolic shape of large size. On the other hand, at v = 450

m/s, the crack front sees an ensemble of microcracks ahead of it. In this case the

density of the surface markings increases to ρ ' 62 mm−2, more than twice the value

observed at 250 m/s. At this velocity, the conic marks change in shape and do not

resemble hyperbolas any more. These complex forms result in the coalescence of

several microcracks, before they merged with the main front.

Figure 4.5 compares the reconstructions to the experimental surfaces for the var-

ious velocities. The profilometer images are on the left, the reconstructed ones are

in the center, and the comparison between the two are on the right. These pictures

allow us to appreciate the evolution of conic marks as a function of the crack velocity.

First of all, we confirm with these results that the conics density increases with v, as

was previously presented in Fig.3.5. The conics change also in shape with velocity.

At low velocities, they look like hyperbolas. In this velocity range, they result, almost

every time, from the interaction between the main crack front and the nucleation of a

single microcrack. At higher velocity, they present more complex shapes. This comes

from the fact that a single conic mark can be the result of the merging of several

microcracks. One can also appreciate the good agreement between our reconstruc-

tions and the experimental observations. It is interesting to note at this point, that

two quantities only are introduced in these reconstruction, namely the position of

nucleation sites and the nucleation distances. In particular, no information about the

conic orientation is needed to obtain such a good reconstruction.

Finally, snapshots of the dynamic crack front at the various velocities are shown in

Fig. 4.6. In these images, the velocity of both the main crack front and the nucleated

microcracks was set to 1 pixel/time-step. The time interval between two successive

snapshots is 100 time-steps. The final ”tortuosity” of the front is observed to increase

with the velocity. The number of simultaneously nucleated microcracks is also ob-

served to increase with velocity. This last observation confirms earlier observations

[15, 59, 60, 32]: as the crack velocity increases, the main crack front splits into an

ensemble of secondary microcracks.

Smekal’s geometry model [61] has allowed us to reconstruct the dynamics of the

crack front and the associated damage spreading from the patterns observed on the

post-mortem PMMA fracture surfaces. It is interesting to note that the resolution of

these reconstructions are set by the spatial resolution of the images of the fracture
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Figure 4.5: Left side: Optical profilometer images taken from the fracture surfaces at
velocities of a) 200 m/s, b) 250 m/s, c) 300 m/s, d) 350 m/s, e) 400 m/s and f) 450
m/s. Center: final image reconstruction of surface markings. Right: Superposition
of the optical profilometer images vs. the reconstructions (red lines) for each given
velocity
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Figure 4.6: Successive snapshots of the crack front at velocities of a) 200 m/s, b)
250 m/s, c) 300 m/s, d) 350 m/s, e) 400 m/s and f) 450 m/s. The velocity of both
the main crack front and the nucleated microcracks is set to 1 pixel/time-step. The
time interval between two successive snapshots is 100 time-steps.
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surfaces, ' 1 µm.

4.1.3 Statistical analyses of nucleation distances and posi-

tions.

The reconstruction algorithm presented before needs the knowledge of two quan-

tities: the position of nucleation sites and the associated nucleation distance, dn. It

is then interesting to characterize their statistics.

To characterize the local density of nucleation sites, Vorono tessellation was carried

out. This analysis consists in computing, for each nucleation site (Fig. 4.7a), the

associated Vorono polygon (Fig. 4.7b) defined as the polygon that embeds all the

points of the area of interest closer to the considered site than to any other. This

technic allows us to define a density measure at the smallest accessible scale, that is

a single conic mark. The local density,ρ, can then be defined at the microscopic scale

as ρ = 1/A where A is the area of the polygon.

Figure 4.7: a) Position of the nucleation sites computed from one of the profilometer
images (250 m/s). b) Associated Vorono tessellation. The color-scale of each Vorono
polygon encodes the density according to the color-bar on the right.

The probability distribution function of the local density P (ρ) was computed and

plotted in Fig. 4.8 (left column). Note that the lack of statistics ( 300 conics per

image) makes the estimation of P not very reliable. In this respect, we computed the

cumulative distribution function P>(ρ) =
∫∞
ρ
P (x)dx as well (Fig. 4.8, right column).

The density distribution is found to be fairly well described by a Gamma function:



Chapter 4: Microscopic study: deterministic reconstruction and statistical analysis73

P (ρ) = ρk−1
exp

(−ρ
θ

)k
θkΓ(k)

(4.1)

where Γ(k) is the Euler function. This probability function is characterized by two

parameters: a scale parameter (k) and a shape parameter (θ). The variation of these

parameters as a function of crack velocity is plotted in fig. 4.9. Within the errorbars,

the scale parameter is found to be roughly constant. On the other hand, θ increases

with v.

Figure 4.8: Statistical analyses of the local density as computed from Vorono analysis.
Left column: probability distribution function. Right column: cumulative distribu-
tion function. a) v = 250 m/s and b) v = 450 m/s.

Finally, we characterized the statistics of the nucleation distance dn. Figure 4.10

shows the probability distribution function and the cumulative distribution function

for two velocities, namely v = 250 m/s and v = 450 m/s. Up to now, we have not

found a fitting function for these distributions.
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Figure 4.9: Statistic parameters k and θ which characterize the Gamma distribution
of the local density of nucleation sites are plotted against crack velocity v. The error
bars correspond to a 95% confidence interval.

Figure 4.10: Statistical analyses of the nucleation distance. Left column: prob-
ability distribution function. Right column: cumulative distribution function. a)
v = 250 m/s and b) v = 450 m/s.
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4.2 Statistical analyses of damage at microscopic

scale.

The reconstruction presented in section 4.1 allows us to probe damage spreading

ahead of the crack front at the microscopic scale. It is then interesting to characterize

the statistics of microcrack nucleation.

4.2.1 Time interval between the nucleation of two successive

microcracks

In a first step, we analyse the waiting time ∆t between two successive nucleation

events.

Figure 4.11: Statistical analyses of the interval time of nucleation between two suc-
cessive microcracks. Left column: probability distribution function. Right column:
cumulative distribution function. a) v = 200 m/s and b) v = 450 m/s.
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Figure 4.12: Evolution of τ that characterizes the exponential distribution of waiting
time between two successive nucleation events as a function of the crack velocity v.
The error bars correspond to a 95% confidence interval.

The probability and cumulative distribution functions are plotted in Fig. 4.11 for

velocities of 200 m/s and 450 m/s. For all velocities ranging from 200 m/s to 450 m/s,

one observes exponential distributions:

P (∆t) =
1

τ ∗
exp

[
−∆t

τ ∗

]
P>(∆t) = exp

[
−∆t

τ ∗

]
(4.2)

where the parameter τ diverges as the velocity decrease down to the microcracking

onset va (Fig. 4.12). The observation of such an exponential distribution between

two successive nucleation events indicates that there is no correlation between two

successive events.

4.2.2 Time interval between the nucleation of a microcrack

and its daughter

In a second step, we looked at the time interval ∆t between the nucleation of a

primary microcrack (mother) and that of a secondary one triggered by this primary

one (daughter). The probability and cumulative distribution functions are plotted in

Fig. 4.13 for 200 m/s and 450 m/s. The resulting distribution is well approximated

by a Weibull distribution:



Chapter 4: Microscopic study: deterministic reconstruction and statistical analysis77

P (∆t) =
k

τ ∗

(
∆t

τ ∗

)k−1
exp

[
−∆t

τ ∗

]k
, P>(∆t) = 1− exp

[
−∆t

τ ∗

]k
(4.3)

This kind of distribution is characterized by two parameters, a shape parameter (k)

and a scale parameter (τ ∗). Their evolution as a function of the crack velocity is

plotted in Fig. 4.14. It is interesting to note that the shape parameter is constant,

k ' 1.4. On the other hand, the scale parameter diverge when v decreases to the

microcracking onset va. Such Weibull distribution is often observed when one looks at

the strength distribution in heterogeneous materials. The origin of such a distribution

in the present case is presently not understood.

Figure 4.13: Statistical analyses of the interval time of nucleation between two microc-
racks mother-daughter. Left column: Probability distribution function, right column:
Cumulative distribution function. a) v = 250m/s and b) v = 450m/s. The time is
expressed without units since no time unit are considered in the reconstruction.
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Figure 4.14: Statistic parameters k and τ that characterize the Weibull distribution
of the time interval between a primary microcrack and its daughter. Evolution as a
function of the crack velocity, v. The time is expressed without units since time is
unitless in the reconstruction. The error bars correspond to a 95% confidence interval.

4.2.3 Distances between the nucleation center of a microc-

rack and its daughter

Finally, to complete the analysis, we now look at the statistics of the position of

the nucleation center of a given microcrack with respect to that of its mother. Let us

call ∆x and ∆z the distance between the two along the direction of crack propagation

and along the mean crack front, respectively (Fig. 4.15).

Figure 4.15: Definition of the quantities ∆x and ∆z that characterize the distance
between the nucleation center of a primary microcrack and its daughter.

Figure 4.16 shows the probability density function and the cumulative distribution

of both ∆x and ∆z for two velocities (250 m/s in the left column and 450 m/s in the
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Figure 4.16: Statistical analysis of the distance between the nucleation sites of a
primary microcrack and its daughter. Top: probability distribution function in ∆x.
Middle: probability distribution function in ∆z. Bottom: cumulative distribution
function for both directions ∆x and ∆z. a) v = 250 m/s and b) v = 450 m/s.
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Figure 4.17: Evolution of statistical parameters that characterize the Gaussian distri-
bution of the distances ∆x and ∆z between a primary microcrack and its daughter.
(a) mean values µx, µz as a function of v. (b) standard deviations σx, σz as a function
of v. The errorbars correspond to a 95% confident interval.

right column). These distributions fit fairly well a Gaussian distribution:

P (∆x) =
1√

2πσ2
x

exp

[
− (∆x− µx)2

2σ2
x

]
, P (∆z) =

1√
2πσ2

z

exp

[
− (∆z − µz)2

2σ2
x

]
(4.4)

To be more precise, the Gaussian distribution fits fairly well the data for ∆z over

the whole range of velocity, but departs from the Gaussian is observed for ∆x as the

velocity gets closer to va. The mean values µx, µz and the standard deviations σx,

σz are plotted as a function of the velocity in Fig. 4.17. Along the z direction, the

mean value remains null over the whole velocity range, as expected from symmetry.

The standard deviation does not depend on v: σz ' 40 µm. Along the direction x of

crack propagation, both mean value, µx, and standard deviation, σx, diverge as the

velocity decreases down to the threshold value va.

4.2.4 Discussion

It is interesting to compare the distribution of silent times and distances between

the nucleation of a mother microcrack to a daughter to the ones observed in: (i)

earthquakes (see e.g. [95, 96, 78] for reviews); (ii) the acoustic emission which accom-

panies the failure of brittle heterogeneous materials (see e.g. [97, 78] for reviews); and
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(iii) the crackling dynamics observed in the numerical simulations of lattice models

so-called Random Fuse Models which sketch a heterogeneous material as a network of

fuses with randomly distributed breakdown (see e.g. [98] for a review). In all cases,

a power-law distribution is observed for the waiting time and the distances between

epicenters. This is very different from what is observed here, for dynamically induced

damage spreading in a nominally brittle material: (i) a Weibull distribution for the

waiting time and (ii) Gaussian distributions for distances between nucleation centers.

This can be understood as follows: In the ”common” situations met in earthquakes,

random fuse models and fracture experiments with acoustic emission, the power-law

distribution is thought to be selected because of the competition between the local

disorder in the material microstructure and the long range coupling because of the

elastic load redistribution after local breakdown. In the dynamic situations met in

our experiments, the front propagates at velocities that stop to be negligible with

respect to sound speed and the time delay induced by the dynamic stress transfer

limits the range of the elastic coupling after each nucleation event.

4.3 Analyses of the reconstruction: back to the

macroscopic scale!

It is now time to use this reconstruction at the microscopic scale to investigate how

macroscopic quantities (namely the process zone size and the effective crack length)

relate to microcracking at the microscopic scale.

4.3.1 Process zone size

The primary plane crack front is observed to become more and more tortuous as

the crack velocity increases (Fig. 4.6). The size of the process zone Rc can then be

estimated as the typical width σ of the zone where microcracks are observed. Calling

f(z, t) the line that limits the zone beyond which no broken material is observed,

the process zone size is given by Rc(t) =< (f(z, t)− < f(z, t) >)2 >1/2 where the

average <> is restricted to the center of each snapshot to avoid boundary effects.

Then, we average Rc =< Rc > (t) in the steady regime (i.e. for times larger than

the time where no straight parts can be observed on the front, and smaller than the
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time where a first microcrack touches the boundary). The mean process zone size as a

function of the crack velocity is shown in Fig. 4.18. These results show that the mean

of the process zone size increases with the crack velocity up to v = 350 m/s where it

saturates. It is interesting to note that this value is fairly close to the microbranching

onset (vb = 317 m/s). Whether or not it is a concidence remains to be uncovered.

Figure 4.18: Evolution of the process zone size as a function of the crack velocity v.

To estimate the tortuosity of the crack front, we plot in Fig. 4.19a the evolution

of the crack front length (normalized by the box thickness), as a function of the

normalized time. This normalized length fluctuates with time, than crack velocity is

more important. An average value is defined on the steady range. This mean value

is found to increase with velocity, as is shown in Fig. 4.19b.

Figure 4.19: a) Time evolution of the normalized crack length for all the velocities.
b) Averaged value of the normalized crack length as a function of the crack velocity
v. The error bars indicate the standard deviation.
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4.3.2 Macroscopic crack velocity vs microscopic front veloc-

ity

Finally, it is interesting to look at the dynamics of the main crack front on the

microscopic scale. In this respect, figure 4.20 presents the time evolution of two given

points of the crack front at two different velocities (v = 250 m/s and v = 450 m/s).

Locally, the front propagation is jerky, with sudden jumps that correspond to the

coalescence events with microcracks. These jumps make the crack velocity measured

at the continuum scale much larger than the actual velocity of the various fronts at

the microscopic scale (set to 1 pixel per time step in the reconstruction).

Figure 4.20: Time evolution of two local points of the main crack front as observed
in the reconstruction obtained for v = 250 m/s and v = 450 m/s.

In figure 4.21a, the mean position of the primary crack front is plotted as a func-

tion of time for the various velocities. The higher the mean crack velocity, the higher

the microcrack density and the higher the number of coalescence events. As a con-

sequence, for a constant microscale front velocity (vwcm = 1 pixel/timestep), the

macroscopic crack velocity vcm is increased with the v measured experimentally. The

ratio between vcm and vwcm is plotted in figure 4.21a.

From the knowledge of this ratio, we can deduce the microscale velocity of the

various fronts (primary crack and microcracks nucleated ahead) yielding the fracture

surfaces presented in figure 4.5. These values are presented in Table 4.1. It is in-

teresting to note that the resulting velocities are gathering around a value close to

220 m/s, i.e. close to the value v′a ' 200 m/s estimated in the preceding chapter (see

section 3.3).
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Figure 4.21: a) Time evolution of mean position of the crack front as a function of
time for the various velocity, ranging from v = 200 m/s to v = 450 m/s. b) Ratio
between the macroscale velocity Vcm and the microscale one Vwcm.

Macroscopic crack velocity 200 m/s 250 m/s 300 m/s 350 m/s 400 m/s 450 m/s
Velocity ratio 1.02 1.16 1.41 1.66 1.73 1.92
Microscopic front velocity 196 m/s 215 m/s 213 m/s 213 m/s 231 m/s 234 m/s

Table 4.1: Macroscopic crack velocity and microscopic front velocity.

4.4 Conclusion

In this chapter, we have investigated the dynamics of damage spreading at the

microscopic scale. Indeed, a geometrical reconstruction allows us to compute the

dynamics of the main crack and the nucleation and growth of microcracks , the rem-

nants of which are conic marks on the post-mortem fracture surfaces. The resolution

of the reconstructed dynamics is set by that of the experimental image, ∼ 1 µm.

The microcracking statistics has been characterized. The time delay between

a primary microcrack and its daughter is found to be distributed according to a

Weibull law. The distance between the nucleation center of a primary microcrack

and its daughter follows a Gaussian distribution. It is interesting to note that these

distributions for damage spreading ahead of a dynamically growing crack are different

from what was observed in slow fracture regimes as e.g. in earthquakes. In this latter

case, power-laws are observed. The origin of these difference is believed to be in the

dynamic stress transfers occurring in the dynamic case.

Finally, these microscale reconstructions has allowed us to compare the effective

crack velocity, observed at the macroscopic scale, to the microscale velocity of the

microcrack fronts. We showed that the microscale front velocity saturates at a value
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close to 230 m/s, in agreement to what was suggested in the scenario presented at

the end of the preceding chapter.



Conclusion

This experimental study has focused on dynamic crack propagation in brittle mate-

rials. Its goal was to shed light on the dissipation mechanisms during dynamic crack

growth.

In this respect, we have designed an efficient experimental setup that grows dy-

namic cracks in PMMA (the archetype of brittle material) in a stable manner. We

have adapted the potential drop method to measure precisely the instantaneous crack

velocity. Subsequently finite element calculations were steady to estimate the mechan-

ical state in the vicinity of the propagating crack.

With these data, we were able to estimate the fracture energy, and its evolution

as a function of crack velocity. This curve reveals an abrupt increase at a well-defined

critical velocity, va ' 0.19 × cR. This transition was shown to coincide with the

appearance of conics patterns on the post-mortem fracture surfaces, which are the

signature of damage spreading through the nucleation and growth of microcracks

occurring ahead of the crack front. These experimental results allowed us to propose

a simple scenario to explain the form taken by the fracture energy below and above

va, thus capturing the variation of the fracture energy with respect to the crack

velocity. Together with the equation of motion, we can reproduce the experimental

velocity profiles. This also provides an explanation of the maximum velocity observed

in PMMA, and the ”mist” texture of fracture surfaces observed at high velocity. It

is interesting to note also that in this scenario, the crack velocity observed at the

macroscale is larger than the growth velocities of the microcracks observed at the

microscale.

In the second step, we investigated the damage mechanisms at the microscale from

the post-mortem fracture surfaces. Using a model proposed initially by Smekal [61]

86
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and later developed by Yang and Ravi-Chandar [66], we were able to reconstruct the

propagation dynamics of the main crack front and that of the microcrack nucleation

and growth. From the reconstructions we study the event statistics as a function of

the fracture velocity. It is shown in particular that this statistics is very different

from what is observed in slow failure situations, as in earthquakes for instance. These

reconstructions have allowed us to compare the effective crack velocity, observed at the

macroscopic scale, to the microscale velocity of the microcrack fronts. This analysis

allowed to confirm what was conjectured from the macroscopic study and the variation

of the fracture energy as a function of velocity below va (namely that the microscale

velocity saturates at a value close to 0.2cR, i.e. much smaller than what is observed

at the macroscale).

Now, what comes next? I sincerely think that the next important question to

answer concerns the mechanisms that cause the nucleation of these microcracks in

PMMA? This question remains debated in the polymer community. It has been

proposed that these nucleations are due to preexisting cavities in the material. It has

also been proposed that they are the consequence of crazing. To shed light on this

question, we have looked at conic focii at atomic scales. Figure 4.22 shows three force

atomic microscope images, at various resolutions. In these images, we can clearly see

a spherical ball at the center of the conic marks, the size of which is around 200 nm.

This is more reminiscent of cavitation processes than from crazing. To understand

what is at the origin of these nucleation centers provides an interesting challenge for

future studies.

Figure 4.22: Atomic force microscope images showing conic focii a)10 µm2, b)3.4 µm2

and a)1.1 µm2.
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Résumé- La propagation de fissures est le mécanisme fondamental responsable de la rupture 
catastrophique des matériaux fragiles. Celle-ci est décrite traditionnellement par la Mécanique 
Linéaire Elastique de la Rupture. Or, si ce cadre théorique apparait performant pour décrire des 
fissures lentes, il échoue largement à haute vitesse. En particulier, il ne permet pas de rendre 
compte des vitesses de rupture maximales observées expérimentalement, ni de la rugosité des faciès 
observée à haute vitesse. Pour explorer ces phénomènes, nous avons mis en place un dispositif 
expérimental qui permet d'étudier les mécanismes de rupture dans un matériau fragile modèle - 
nous avons opté pour le Plexiglas - sur une large gamme de vitesse, aux petites échelles d'espace et 
de temps. Ce dispositif nous a permis de mettre en évidence une nouvelle vitesse critique au delà de 
laquelle, la propagation de la fissure s'accompagne d'endommagements macroscopiques sous forme 
de nucléation et de croissance de microfissures en avant du front. Un scénario simple permet de 
prendre en compte cet endommagement pour quantifier la variation de l’énergie dite de fracture, 
i.e. l’énergie dissipée par le matériau lorsque la fissure se propage d’un incrément de surface,  et 
expliquer la valeur anormalement basse de la vitesse limite de rupture observée dans les matériaux 
fragiles. Il explique aussi la nature grenue des faciès de rupture observés. Nous avons par ailleurs 
pu montrer qu'il était possible, à partir des faciès de rupture, de reconstruire de manière 
déterministe, à l'échelle du micromètre et de la microseconde la dynamique de propagation du front 
de fissure et le développement d'endommagement associé. 
 
Mots-clés : rupture dynamique, matériaux fragiles,  marques coniques. 
 
 
Abstract- Crack propagation is the fundamental mechanism responsible for catastrophic 
breakdown of brittle materials, and is usually described by the Linear Elastic theory of fracture. 
However, this theoretical framework is only relevant to slow crack propagation and fails 
dramatically at high velocities.  In particular, it accounts neither for the experimentally observed 
maximal crack velocities, nor for the roughness of the post-mortem fracture surfaces obtained in 
the high velocity regime. In order to investigate these phenomena, we have designed an 
experimental setup that allows to study the fracture mechanisms in a model brittle material, namely 
PMMA, over a wide range of velocities at small space and time scales. This apparatus has enabled 
us to evidence a new critical velocity beyond which crack propagation is accompanied by 
macroscopic damage through the nucleation and growth of microcracks ahead of the front. A 
simple scenario allows to take this damage into account in the so-called fracture energy, i.e. the 
energy dissipated as the crack propagates over a surface increment, and may succeed to explain the 
abnormally low limiting crack velocity observed in brittle materials. It explains also the “mist” 
nature of the resulting post mortem fracture surfaces above a given velocity. Moreover, we have 
shown that it is possible to reconstruct deterministically the dynamics of the crack front and the 
associated damage spreading, at the micrometer/microsecond scale, from the patterns observed on 
the post mortem fracture surfaces. 
 
Keywords : dynamic fracture, brittle materials,  conic marks . 
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