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Jean-Claude NÉDÉLEC Directeur de thèse
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Universidad Católica de Chile.

Many thanks also to all the people in the Centro de Minerı́a of the Pontificia Uni-
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RÉSUMÉ

Dans cette thèse on calcule la fonction de Green des équations de Laplace et Helmholtz

en deux et trois dimensions dans un demi-espace avec une condition à la limite d’impédance.

Pour les calculs on utilise une transformée de Fourier partielle, le principe d’absorption lim-

ite, et quelques fonctions spéciales de la physique mathématique. La fonction de Green est

après utilisée pour résoudre numériquement un problème de propagation des ondes dans

un demi-espace qui est perturbé de manière compacte, avec impédance, en employant des

techniques des équations intégrales et la méthode d’éléments de frontière. La connaissance

de son champ lointain permet d’énoncer convenablement la condition de radiation qu’on a

besoin. Des expressions pour le champ proche et lointain de la solution sont données, dont

l’existence et l’unicité sont discutées brièvement. Pour chaque cas un problème benchmark

est résolu numériquement.

On expose étendument le fond physique et mathématique et on inclut aussi la théorie

des problèmes de propagation des ondes dans l’espace plein qui est perturbé de manière

compacte, avec impédance. Les techniques mathématiques développées ici sont appliquées

ensuite au calcul de résonances dans un port maritime. De la même façon, ils sont appliqués

au calcul de la fonction de Green pour l’équation de Laplace dans un demi-plan bidimen-

sionnel avec une condition à la limite de dérivée oblique.

Mots Clé: Fonction de Green, équation de Laplace, équation de Helmholtz,

problème direct de diffraction des ondes, condition à la lim-

ite d’impédance, condition de radiation, techniques d’équations

intégrales, demi-espace avec une perturbation compacte, métode

d’éléments de frontière, résonances dans un port maritime, condi-

tion à la limite de dérivée oblique.
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ABSTRACT

In this thesis we compute the Green’s function of the Laplace and Helmholtz equa-

tions in a two- and three-dimensional half-space with an impedance boundary condition.

For the computations we use a partial Fourier transform, the limiting absorption principle,

and some special functions that appear in mathematical physics. The Green’s function is

then used to solve a compactly perturbed impedance half-space wave propagation problem

numerically by using integral equation techniques and the boundary element method. The

knowledge of its far field allows stating appropriately the required radiation condition. Ex-

pressions for the near and far field of the solution are given, whose existence and uniqueness

are briefly discussed. For each case a benchmark problem is solved numerically.

The physical and mathematical background is extensively exposed, and the theory of

compactly perturbed impedance full-space wave propagation problems is also included.

The herein developed mathematical techniques are then applied to the computation of har-

bor resonances in coastal engineering. Likewise, they are applied to the computation of the

Green’s function for the Laplace equation in a two-dimensional half-plane with an oblique-

derivative boundary condition.

Keywords: Green’s function, Laplace equation, Helmholtz equation, direct scatter-

ing problem, impedance boundary condition, radiation condition, inte-

gral equation techniques, compactly perturbed half-space, boundary ele-

ment method, harbor resonances, oblique-derivative boundary condition.
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I. INTRODUCTION

1.1 Foreword

In this thesis we are essentially interested in the mathematical modeling of wave prop-

agation phenomena by using Green’s functions and integral equation techniques. As some

poet from the ancient Roman Empire inspired by the Muses might have said (Hein 2006):

Non fluctus numerare licet iam machinatori,

Invenienda est nam functio Viridii.

This Latin epigram can be translated more or less as “to count the waves is no longer

permitted for the engineer, since to be found has the function of Green”. An epigram is a

short, pungent, and often satirical poem, which was very popular among the ancient Greeks

and Romans. It consists commonly of one elegiac couplet, i.e., a hexameter followed by a

pentameter. Two possible questions that arise from our epigram are: “why does someone

want to count waves?”, and even more: “what is a function of Green and for what purpose

do we want to find it?” Let us hence begin with the first question.

Since the dawn of mankind have waves, specifically water waves, been a source of

wonder and admiration, but also of fear and respect. Giant sea waves caused by storms have

drowned thousands of ships and adventurous sailors, who blamed for their fate the wrath of

the mighty gods of antiquity. On more quite days, though, it was always a delightful plea-

sure to watch from afar the sea waves braking against the coast. For the ancient Romans, in

fact, the expression of counting sea waves (fluctus numerare) was used in the sense of hav-

ing leisure time (otium), as opposed to working and doing business (negotium). Therefore

the message is clear: the leisure time is over and the engineer has work to be done. In fact,

even if it is not specifically mentioned, it is implicitly understood that this premise applies

as much to the civil engineer (machinator) as to the military engineer (munitor). A straight

interpretation of the hexameter is also perfectly allowed. To count the waves individually

as they pass by before our eyes is usually not the best way to try to comprehend and re-

produce the behavior of wave propagation phenomena, so as to be afterwards used for our

convenience. Hence, to understand and treat waves, what sometimes can be quite difficult,

we need powerful theoretical tools and efficient mathematical methods.

This takes us now to our second question, which is closely related to the first one. A

function of Green (functio Viridii), usually referred to as a “Green’s function”, has no direct

relationship with the green color as may be wrongly inferred from a straight translation that

disregards the little word play lying behind. The word for Green (Viridii) is in the genitive

singular case, i.e., it stands not for the adjective green (viridis), but rather as a (quite rare)

singular of the plural neuter noun of the second declension for green things (viridia), which

usually refers to green plants, herbs, and trees. Its literal translation, when we consider it

as a proper noun, is then “of the Green” or “of Green”, which in English is equivalent

to “Green’s”. A Green’s function is, in fact, a mathematical tool that allows us to solve

wave propagation problems, as I hope should become clear throughout this thesis. The first

person who used this kind of functions, and after whom they are named, was the British
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mathematician and physicist George Green (1793–1841), hence the word play with the

color of the same name. They were introduced by Green (1828) in his research on potential

theory, where he considered a particular case of them. A Green’s function helps us also to

solve other kinds of physical problems, but is particularly useful when dealing with infinite

exterior domains, since it achieves to synthesize the physical properties of the underlying

system. It is therefore in our best interest to find (invenienda est) such a Green’s function.

1.2 Motivation and overview

1.2.1 Wave propagation

Waves, as summarized in the insightful review by Keller (1979), are disturbances that

propagate through space and time, usually by transference of energy. Propagation is the

process of travel or movement from one place to another. Thus wave propagation is an-

other name for the movement of a physical disturbance, often in an oscillatory manner.

The example which has been recognized longest is that of the motion of waves on the sur-

face of water. Another is sound, which was known to be a wave motion at least by the

time of the magnificent English physicist, mathematician, astronomer, natural philosopher,

alchemist, and theologian Sir Isaac Newton (1643–1727). In 1690 the Dutch mathemati-

cian, astronomer, and physicist Christiaan Huygens (1629–1695) proposed that light is also

a wave motion. Gradually other types of waves were recognized. By the end of the nine-

teenth century elastic waves of various kinds were known, electromagnetic waves had been

produced, etc. In the twentieth century matter waves governed by quantum mechanics were

discovered, and an active search is still underway for gravitational waves. A discussion on

the origin and development of the modern concept of wave is given by Manacorda (1991).

The laws of physics provide systems of one or more partial differential equations gov-

erning each type of wave. Any particular case of wave propagation is governed by the

appropriate equations, together with certain auxiliary conditions. These may include ini-

tial conditions, boundary conditions, radiation conditions, asymptotic decaying conditions,

regularity conditions, etc. The differential equations together with the auxiliary condi-

tions constitute a mathematical problem for the determination of the wave motion. These

problems are the subject matter of the mathematical theory of wave propagation. Some

references on this subject that we can mention are Courant & Hilbert (1966), Elmore &

Heald (1969), Felsen & Marcuwitz (2003), and Morse & Feshbach (1953).

Maxwell’s equations of electromagnetic theory and Schrödinger’s equation in quantum

mechanics are both usually linear. They are named after the Scottish mathematician and

theoretical physicist James Clerk Maxwell (1831–1879) and the Austrian physicist Erwin

Rudolf Josef Alexander Schrödinger (1887–1961). Furthermore, the equations governing

most waves can be linearized to describe small amplitude waves. Examples of these lin-

earized equations are the scalar wave equation of acoustics and its time-harmonic version,

the Helmholtz equation, which receives its name from the German physician and physicist

Hermann Ludwig Ferdinand von Helmholtz (1821–1894). Another example is the Laplace

equation in hydrodynamics, in which case it is the boundary condition which is linearized
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and not the equation itself. This equation is named after the French mathematician and

astronomer Pierre Simon, marquis de Laplace (1749–1827). Such linear equations with

linear auxiliary conditions are the subject of the theory of linear wave propagation. It is

this theory which we shall consider.

The classical researchers were concerned with obtaining exact and explicit expressions

for the solutions of wave propagation problems. Because the problems were linear, they

constructed these expressions by superposition, i.e., by linear combination, of particular

solutions. The particular solutions had to be simple enough to be found explicitly and the

problem had to be special enough for the coefficients in the linear combination to be found.

One of the devised methods is the image method (cf., e.g., Morse & Feshbach 1953), in

which the particular solution is that due to a point source in the whole space. The domains

to which the method applies must be bounded by one or several planes on which the field

or its normal derivative vanishes. In some cases it is possible to obtain the solution due to

a point source in such a domain by superposing the whole space solution due to the source

and the whole space solutions due to the images of the source in the bounding planes. Un-

fortunately the scope of this method is very limited, but when it works it yields a great deal

of insight into the solution and a simple expression for it. The image method also applies

to the impedance boundary condition, in which a linear combination of the wave function

and its normal derivative vanishes on a bounding plane. Then the image of a point source is

a point source plus a line of sources with exponentially increasing or decreasing strengths.

The line extends from the image point to infinity in a direction normal to the plane. These

results can be also extended for impedance boundary conditions with an oblique derivative

instead of a normal derivative (cf. Gilbarg & Trudinger 1983, Keller 1981), in which case

the line of images is parallel to the direction of differentiation.

The major classical method is nonetheless that of separation of variables (cf., e.g.,

Evans 1998, Weinberger 1995). In this method the particular solutions are products of

functions of one variable each, and the desired solution is a series or integral of these

product solutions, with suitable coefficients. It follows from the partial differential equation

that the functions of one variable each satisfy certain ordinary differential equations. Most

of the special functions of classical analysis arose in this way, such as those of Bessel,

Neumann, Hankel, Mathieu, Struve, Anger, Weber, Legendre, Hermite, Laguerre, Lamé,

Lommel, etc. To determine the coefficients in the superposition of the product solutions,

the method of expanding a function as a series or integral of orthogonal functions was

developed. In this way the theory of Fourier series originated, and also the method of

integral transforms, including those of Fourier, Laplace, Hankel, Mellin, Gauss, etc.

Despite its much broader scope than the image method, the method of separation of

variables is also quite limited. Only very special partial differential equations possess

enough product solutions to be useful. For example, there are only 13 coordinate systems

in which the three-dimensional Laplace equation has an adequate number of such solu-

tions, and there are only 11 coordinate systems in which the three-dimensional Helmholtz

equation does. Furthermore only for very special boundaries can the expansion coefficients
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be found by the use of orthogonal functions. Generally they must be complete coordinate

surfaces of a coordinate system in which the equation is separable.

Another classical method is the one of eigenfunction expansions (cf. Morse & Fes-

hbach 1953, Butkov 1968). In this case the solutions are expressed as sums or integrals

of eigenfunctions, which are themselves solutions of partial differential equations. This

method was developed by Lord Rayleigh and others as a consequence of partial separation

of variables. They sought particular solutions which were products of a function of one

variable (e.g., time) multiplied by a function of several variables (e.g., spatial coordinates).

This method led to the use of eigenfunction expansions, to the introduction of adjoint prob-

lems, and to other aspects of the theory of linear operators. It also led to the use of vari-

ational principles for estimating eigenvalues and approximating eigenfunctions, such as

the Rayleigh-Ritz method. These procedures are needed because there exists no way for

finding eigenvalues and eigenfunctions explicitly in general. However, if the eigenfunction

problem is itself separable, it can be solved by the method of separation of variables.

Finally, there is the method of converting a problem into an integral equation with the

aid of a Green’s function (cf., e.g., Courant & Hilbert 1966). But generally the integral

equation cannot be solved explicitly. In some cases it can be solved by means of integral

transforms, but then the original problem can also be solved in this way.

In more recent times several other methods have also been developed, which use, e.g.,

asymptotic analysis, special transforms, among other theoretical tools. A brief account on

them can be found in Keller (1979).

1.2.2 Numerical methods

All the previously mentioned methods to solve wave propagation problems are analytic

and they require that the involved domains have some rather specific geometries to be used

satisfactorily. In the method of variable separation, e.g., the domain should be described

easily in the chosen coordinate system so as to be used effectively. The advent of modern

computers and their huge calculation power made it possible to develop a whole new range

of methods, the so-called numerical methods. These methods are not concerned with find-

ing an exact solution to the problem, but rather with obtaining an approximate solution that

stays close enough to the exact one. The basic idea in any numerical method for differ-

ential equations is to discretize the given continuous problem with infinitely many degrees

of freedom to obtain a discrete problem or system of equations with only finitely many

unknowns that may be solved using a computer. At the end of the discretization procedure,

a linear matrix system is obtained, which is what finally is programmed into the computer.

a) Bounded domains

Two classes of numerical methods are mainly used to solve boundary-value prob-

lems on bounded domains: the finite difference method (FDM) and the finite element

method (FEM). Both yield sparse and banded linear matrix systems. In the FDM, the

discrete problem is obtained by replacing the derivatives with difference quotients involv-

ing the values of the unknown at certain (finitely many) points, which conform the discrete
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mesh and which are placed typically at the intersections of mutually perpendicular lines.

The FDM is easy to implement, but it becomes very difficult to adapt it to more complicated

geometries of the domain. A reference for the FDM is Rappaz & Picasso (1998).

The FEM, on the other hand, uses a Galerkin scheme on the variational or weak formu-

lation of the problem. Such a scheme discretizes a boundary-value problem from its weak

formulation by approximating the function space of the solution through a finite set of

basis functions, and receives its name from the Russian mathematician and engineer Boris

Grigoryevich Galerkin (1871–1945). The FEM is thus based on the discretization of the so-

lution’s function space rather than of the differential operator, as is the case with the FDM.

The FEM is not so easy to implement as the FDM, since finite element interaction inte-

grals have to be computed to build the linear matrix system. Nevertheless, the FEM is very

flexible to be adapted to any reasonable geometry of the domain by choosing adequately

the involved finite elements. It was originally introduced by engineers in the late 1950’s as

a method to solve numerically partial differential equations in structural engineering, but

since then it was further developed into a general method for the numerical solution of all

kinds of partial differential equations, having thus applications in many areas of science

and engineering. Some references for this method are Ciarlet (1979), Gockenbach (2006),

and Johnson (1987).

Meanwhile, several other classes of numerical methods for the treatment of differ-

ential equations have arisen, which are related to the ones above. Among them we can

mention the collocation method (CM), the spectral method (SM), and the finite volume

method (FVM). In the CM an approximation is sought in a finite element space by requir-

ing the differential equation to be satisfied exactly at a finite number of collocation points,

rather than by an orthogonality condition. The SM, on the other hand, uses globally defined

functions, such as eigenfunctions, rather than piecewise polynomials approximating func-

tions, and the discrete solution may be determined by either orthogonality or collocation.

The FVM applies to differential equations in divergence form. This method is based on

approximating the boundary integral that results from integrating over an arbitrary volume

and transforming the integral of the divergence into an integral of a flux over the bound-

ary. All these methods deal essentially with bounded domains, since infinite unbounded

domains cannot be stored into a computer with a finite amount of memory. For further

details on these methods we refer to Sloan et al. (2001).

b) Unbounded domains

In the case of wave propagation problems, and in particular of scattering problems,

the involved domains are usually unbounded. To deal with this situation, two different

approaches have been devised: domain truncation and integral equation techniques. Both

approaches result in some sort of bounded domains, which can then be discretized numer-

ically without problems.

In the first approach, i.e., the truncation of the domain, some sort of boundary condi-

tion has to be imposed on the truncated (artificial) boundary. Techniques that operate in this

way are the Dirichlet-to-Neumann (DtN) or Steklov-Poincaré operator, artificial boundary
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conditions (ABC), perfectly matched layers (PML), and the infinite element method (IEM).

The DtN operator relates on the truncated boundary curve the Dirichlet and the Neumann

data, i.e., the value of the solution and of its normal derivative. Thus, the knowledge of the

problem’s solution outside the truncated domain, either by a series or an integral represen-

tation, allows its use as a boundary condition for the problem inside the truncated domain.

Explicit expressions for the DtN operator are usually quite difficult to obtain, except for

some few specific geometries. We refer to Givoli (1999) for further details on this operator.

In the case of an ABC, a condition is imposed on the truncated boundary that allows the

passage only of outgoing waves and eliminates the ingoing ones. The ABC has the disad-

vantage that it is a global boundary condition, i.e., it specifies a coupling of the values of the

solution on the whole artificial boundary by some integral expression. The same holds for

the DtN operator, which can be regarded as some sort of ABC. There exist in general only

approximations for an ABC, which work well when the wave incidence is nearly normal,

but not so well when it is very oblique. Some references for ABC are Nataf (2006) and

Tsynkov (1998). In the case of PML, an absorbing layer of finite depth is placed around

the truncated boundary so as to absorb the outgoing waves and reduce as much as possi-

ble their reflections back into the truncated domain’s interior. On the absorbing layer, the

problem is stated using a dissipative wave equation. For further details on PML we refer to

Johnson (2008). The IEM, on the other hand, avoids the need of an artificial boundary by

partitioning the complement of the truncated domain into a finite amount of so-called infi-

nite elements. These infinite elements reduce to finite elements on the coupling surface and

are described in some appropriate coordinate system. References for the IEM and likewise

for the other techniques are Ihlenburg (1998) and Marburg & Nolte (2008). Interesting re-

views of several of these methods can be also found in Thompson (2005) and Zienkiewicz

& Taylor (2000). On the whole, once the domain is truncated with any one of the men-

tioned techniques, the problem can be solved numerically by using the FEM, the FDM,

or some other numerical method that works well with bounded domains. This approach

has nonetheless the drawback that the discretization of the additional truncated boundary

may produce undesired reflections of the outgoing waves back towards the interior of the

truncated domain, due the involved numerical approximations.

It is in fact the second approach, i.e., the integral equation techniques, the one that is of

our concern throughout this thesis. This approach takes advantage of the fact that the wave

propagation problem can be converted into an integral equation with the help of a Green’s

function. The integral equation is built in such a way that its support lies on a bounded

region, e.g., the domain’s boundary. Even though we mentioned that this approach may not

be so practical to find an analytic solution, it becomes very useful when it is combined with

an appropriate numerical method to solve the integral equation. Typically either a colloca-

tion method or a finite element method is used for this purpose. The latter is based on a

variational formulation and is thus numerically more stable and accurate than the former,

particularly when the involved geometries contain corners or are otherwise complicated.

At the end, the general solution of the problem is retrieved by means of an integral rep-

resentation formula that requires the solution of the previously solved integral equation.

Of course, integral equation techniques can be likewise used to solve wave propagation
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problems in bounded domains. A big advantage of these techniques is their simplicity to

represent the far field of the solution. Some references on integral equation techniques are

the books of Hsiao & Wendland (2008), Nédélec (2001), and Steinbach (2008).

The drawback of integral equation techniques is their more complex mathematical

treatment and the requirement of knowing the Green’s function of the system. It is the

Green’s function that stores the information of the system’s physics throughout the consid-

ered domain and which allows to collapse the problem towards an integral equation. The

Green’s function is usually problematic to integrate, since it corresponds to the solution of

the homogeneous system subject to a singularity load, e.g., the electrical field arising from

a point charge. Integrating such singular fields is not easy in general. For simple element

geometries, like straight segments or planar triangles, analytical integration can be used.

For more general elements it is possible to design purely numerical schemes that adapt to

the singularity, but at a great computational cost. When the source point and target element

where the integration is done are far apart, then the integration becomes easier due to the

smooth asymptotic decay of the Green’s function. It is this feature that is typically em-

ployed in schemes designed to accelerate the involved computations, e.g., in fast multipole

methods (FMM). A reference for these methods is Gumerov & Duraiswami (2004).

In some particular cases the differential problem can be stated equivalently as a bound-

ary integral equation, whose support lies on the bounded boundary. For example, this

occurs in (bounded) obstacle scattering, where fields in linear homogeneous media are in-

volved. Some kind of Green’s integral theorem is typically used for this purpose. This

way, to solve the wave propagation problem, only the calculation of boundary values is

required rather than of values throughout the unbounded exterior domain. The technique

that solves such a boundary integral equation by means of the finite element method is

called the boundary element method (BEM). It is sometimes also known as the method

of moments (MoM), specifically in electromagnetics, or simply as the boundary integral

equation method (BIEM). The BEM is in a significant manner more efficient in terms of

computational resources for problems where the surface versus volume ratio is small. The

dimension of a problem expressed in the domain’s volume is therefore reduced towards

its boundary surface, i.e., one dimension less. The matrix resulting from the numerical

discretization of the problem, though, becomes full, and to build it, as already mentioned,

singular integrals have to be evaluated. The application of the BEM can be schematically

described through the following steps:

1. Definition of the differential problem.

2. Calculation of the Green’s function.

3. Derivation of the integral representation.

4. Development of the integral equation.

5. Rearrangement as a variational formulation.

6. Implementation of the numerical discretization.

7. Construction of the linear matrix system.

8. Computational resolution of the problem.

9. Graphical representation of the results.
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The BEM is only applicable to problems for which Green’s functions can be calcu-

lated, which places considerable restrictions on the range and generality of the problems

to which boundary elements can be usefully applied. We remark that non-linearities and

inhomogeneous media can be also included in the formulation, although they generally in-

troduce volume integrals in the integral equation, which of course require the volume to

be discretized before attempting to solve the problem, and thus removing one of the main

advantages of the BEM. A good general survey on the BEM can be found in the article of

Costabel (1986). Its implementation in obstacle scattering and some notions on FMM can

be found in Terrasse & Abboud (2006). Other references for this method are Becker (1992),

Chen & Zhou (1992), and Kirkup (2007). We note also the interesting historical remarks

on boundary integral operators performed by Costabel (2007).

We mention finally that there is still an active research going on to study these numer-

ical methods more deeply, existing also a great variety of so-called hybrid methods, where

two or more of the techniques are combined together. A reference on this subject is the

book of Brezzi & Fortin (1991).

1.2.3 Wave scattering and impedance half-spaces

Scattering is a general physical process whereby waves of some form, e.g., light,

sound, or moving particles, are forced to deviate from a straight trajectory by one or more

localized non-uniformities in the medium through which they pass. These non-uniformities

are called scatterers or scattering centers. There exist many types of scatterers, ranging

from microscopic particles to macroscopic targets, including bubbles, density fluctuations

in fluids, surface roughness, defects in crystalline solids, among many others. In mathemat-

ics and physics, the discipline that deals with the scattering of waves and particles is called

scattering theory. This theory studies basically how the solutions of partial differential

equations without scatterer, i.e., freely propagating waves or particles, change when inter-

acting with its presence, typically a boundary condition or another particle. We speak of a

direct scattering problem when the scattered radiation or particle flux is to be determined,

based on the known characteristics of the scatterer. In an inverse scattering problem, on the

other hand, some unknown characteristic of an object is to be determined, e.g., its shape

or internal constitution, from measurement data of its radiation or its scattered particles.

Some references on scattering are Felsen & Marcuwitz (2003), Lax & Phillips (1989), and

Pike & Sabatier (2002). For inverse scattering we refer to Potthast (2001).

Our concern throughout the thesis is specifically about direct obstacle scattering, where

the scatterer (i.e., the obstacle) is given by an impenetrable macroscopic target that is mod-

eled through a boundary condition. For a better understanding of the involved phenomena

and due their inherent complexity, we consider only scalar linear wave propagation in time-

harmonic regime, i.e., the partial differential equation of our model is given either by the

Helmholtz or the Laplace equation. We observe that the latter equation is in fact the limit

case of the former as the frequency tends towards zero. The time-harmonic regime implies

that the involved system is independent of time and that only a single frequency is taken into

account. If desired, time-dependent solutions of the system can be then constructed with
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the help of the Fourier transform (vid. Section A.7), by combining the solutions obtained

for different frequencies. Alternatively, the solutions of a time-dependent system can be

directly computed by means of retarded potentials (cf. Barton 1989, Butkov 1968, Felsen

& Marcuwitz 2003). Time-dependent scattering is also considered in Wilcox (1975). Once

the models for these scalar linear partial differential equations are well understood, then

more complex types of waves can be taken into account, e.g., electromagnetic or elastic

waves. The Helmholtz and Laplace equations can be thus regarded as a more simplified

case of other wave equations.

The resolution of scattering problems for bounded obstacles with arbitrary shape by

means of integral equation techniques is in general well-known, particularly when dealing

with Dirichlet or Neumann boundary conditions. A Dirichlet boundary condition, named

after the German mathematician Johann Peter Gustav Lejeune Dirichlet (1805–1859), spec-

ifies the value of the field at the boundary. A Neumann boundary condition, on the other

hand, specifies the value of the field’s normal derivative at the boundary, and receives its

name from the German mathematician Carl Gottfried Neumann (1832–1925), who is con-

sidered one of the initiators of the theory of integral equations. The Green’s function of

the system is of course also well-known, and it is obtained directly from the fundamental

solution of the involved wave equation, i.e., the Helmholtz or the Laplace equation. This

applies also to the radiation condition to be imposed at infinity, which is known as the Som-

merfeld radiation condition in honor of the German theoretical physicist Arnold Johannes

Wilhelm Sommerfeld (1868–1951), who made invaluable contributions to quantum theory

and to the classical theory of electromagnetism. We remark that in particular the problem

of the Laplace equation around a bounded obstacle is not strictly speaking a wave scat-

tering problem but rather a perturbation problem, and likewise at infinity we speak of an

asymptotic decaying condition rather than of a radiation condition. Some references that

we can mention, among the many that exist, are Kress (2002), Nédélec (2001), and Terrasse

& Abboud (2006). We mention also the interesting results about radiation conditions in a

rather general framework described by Costabel & Dauge (1997).

In the case of an impedance boundary condition, the general agreement is that the the-

ory for bounded obstacles is well-known, but it is rather scarcely discussed in the literature.

An impedance boundary condition specifies a linear combination of the field’s value and

of its normal derivative at the boundary, i.e., it acts as a weighted combination of Dirichlet

and Neumann boundary conditions. It is also known as a third type or Robin boundary

condition, after the French mathematical analyst and applied mathematician Victor Gus-

tave Robin (1855–1897). Usually the emphasis is given to Dirichlet and Neumann bound-

ary conditions, probably because they are simpler to treat and because with an impedance

boundary condition the existence and uniqueness of the problem can be only ensured al-

most always, but not always. Some of the references that include the impedance boundary

condition are Alber & Ramm (2009), Colton & Kress (1983), Hsiao & Wendland (2008),

Filippi, Bergassoli, Habault & Lefebvre (1999), and Kirsch & Grinberg (2008).

When the obstacle in a scattering problem is no longer bounded, then usually a dif-

ferent Green’s function and a different radiation condition have to be taken into account to
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find a solution by means of integral equation techniques. These work well only when the

scattering problem is at most a compact perturbation of the problem for which the Green’s

function was originally determined, i.e., when these problems differ only on a compact

portion of their involved domains. An unbounded obstacle, e.g., an infinite half-space,

constitutes clearly a non-compact perturbation of the full-space.

We are particularly interested in solving scattering problems either on two- or three-

dimensional half-spaces, where the former are also simply referred to as half-planes and

the latter just as half-spaces. If Dirichlet or Neumann boundary conditions are considered,

then the Green’s function is directly found through the image method. Furthermore, the

same Sommerfeld radiation condition continues to hold in this case.

For an impedance half-space, i.e., when an impedance boundary condition is used on

a half-space, the story is not so straightforward. As we already pointed out, the image

method can be also used in this case to compute the Green’s function, but the results are

far from being explicit and some of the obtained terms are only known in integral form, as

so-called Sommerfeld-type integrals (cf. Casciato & Sarabandi 2000, Taraldsen 2005). The

difficulties arise from the fact that an impedance boundary condition allows the propagation

of surface waves along the boundary, whose relation with a point source is far from simple.

Another method that we can mention and that is used to solve this kind of problems is the

Wiener-Hopf technique, which yields an exact solution to complex integral equations and

is based on integral transforms and analyticity properties of complex functions. Further

details can be found in Davies (2002), Dettman (1984), and Wright (2005).

We remark that in scattering problems on half-spaces, or likewise on compact pertur-

bations of them, there appear two different kinds of waves: volume and surface waves.

Volume waves propagate throughout the domain and behave in the same manner as waves

propagating in free-space. They are linked to the wave equation under consideration, i.e.,

to the Helmholtz equation, since for the Laplace equation there are no volume waves. Sur-

face waves, on the other hand, propagate only near the boundary and are related to the

considered boundary condition. They decrease exponentially towards the interior of the

domain and may appear as much for the Helmholtz as for the Laplace equation. They exist

only when the boundary condition is of impedance-type, but not when it is of Dirichlet- or

Neumann-type, which may explain why the latter conditions are simpler in their treatment.

a) Helmholtz equation

The impedance half-space wave propagation problem for the Helmholtz equation was

at first formulated by Sommerfeld (1909), who was strongly motivated by the around 1900

newly established wireless telegraphy of Maxwell, Hertz, Bose, Tesla, and Marconi, among

others. Sommerfeld wanted to explain why radio waves could travel long distances across

the ocean, and thus overcome the curvature of the Earth. In his work, he undertook a de-

tailed analysis of the radiation problem for an infinitesimal vertical Hertzian dipole over

a lossy medium, and as part of the solution he found explicitly a radial Zenneck surface

wave, named after the German physicist and electrical engineer Jonathan Adolf Wilhelm

Zenneck (1871–1959), who first described them (Zenneck 1907). Thus both Zenneck and
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Sommerfeld obtained results that lent considerable credence to the view of the Italian

inventor and marchese Guglielmo Marconi (1874–1937), that the electromagnetic waves

were guided along the surface. Sommerfeld’s solution was later criticized by the German

mathematician Hermann Klaus Hugo Weyl (1885–1955), who published on the same sub-

ject (Weyl 1919) and who obtained a solution very similar to the one found by Sommerfeld,

but without the surface-wave term. Sommerfeld (1926) returned later to the same problem

and solved it using a different approach, where he confirmed the correctness of Weyl’s solu-

tion. The apparent inclusion of a sign error in Sommerfeld’s original work, which he never

admitted, prompted much debate over several decades on the existence of a Zenneck-type

surface wave and its significance in the fields generated by a vertical electric dipole. A

more detailed account can be found in Collin (2004). The corrected formulation confirmed

the existence of a surface wave for certain values of impedance and observation angles, but

showed its contribution to the total field only significant within a certain range of distances,

dependent on the impedance of the half-space. Thus, the concept of the surface wave as

being the important factor for long-distance propagation lost favor. Further references on

this historical discussion can be also found in the articles of Casciato & Sarabandi (2000),

Nobile & Hayek (1985), Sarabandi, Casciato & Koh (1992), and Taraldsen (2004, 2005).

Just to finish the story, Kennelly (1902) and, independently, Heaviside (1902), had

predicted before the existence of an ionized layer at considerable height above the Earth’s

surface. It was thought that such a layer could possibly reflect the electromagnetic waves

back to Earth. Although it was not until Breit & Tuve (1926) showed experimentally that

radio waves were indeed reflected from the ionosphere, that this became finally the accepted

mechanism for the long-distance propagation of radio waves. We refer to Anduaga (2008)

for a more detailed historical essay on the concept of the ionosphere.

Nonetheless, even if Sommerfeld’s explanation proved later to be wrong, its problem

remained (and still remains) of great theoretical interest. Since its first publication, it is an

understatement to say that this problem has received a significant amount of attention in

the literature with literally hundreds of papers published on the subject. Besides electro-

magnetic waves, the problem is also important for outdoor sound propagation (cf. Morse

& Ingard 1961, Embleton 1996) and for water waves in shallow waters near the coast (cf.

Mei, Stiassnie & Yue 2005, Herbich 1999).

Thus, as a way to state a brief account on the problem, Sommerfeld (1909), work-

ing in the field of electromagnetism, was the first to solve the spherical wave reflection

problem, stated as a dipole source on a finitely conducting earth. Weyl (1919) reformu-

lated the problem by modeling the radiation from a point source located above the earth

as a superposition of an infinite number of elementary plane waves, propagating in differ-

ent (complex) directions. Sommerfeld (1926) solved his problem again using integrals that

were afterwards called of Sommerfeld-type. Van der Pol (1935) applied several ingenious

substitutions that simplified the integrals appearing in the derivations. Norton (1936, 1937)

expanded upon these and other results from Van der Pol & Niessen (1930) and, with the

aid of equations by Wise (1931), generated the most useful results up to that time. Baños

& Wesley (1953, 1954) and Baños (1966) obtained similar solutions by using the double
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saddle point method. Further developments on the propagation of radio waves can be also

found in the book of Sommerfeld (1949). We remark that in electromagnetic scattering,

the impedance boundary condition describes an obstacle which is not perfectly conducting,

but does not allow the electromagnetic field to penetrate deeply into the scattering domain.

The greatest interest in the problem stemmed nonetheless from the acoustics commu-

nity, to describe outdoor sound propagation. The acoustical problem of spherical wave

reflection was first attacked by Rudnick (1947), who relied heavily on the electromagnetic

theories of Van der Pol and Norton. Subsequently, Lawhead & Rudnick (1951a,b) and In-

gard (1951) obtained approximate solutions in terms of the error function. Wenzel (1974)

and Chien & Soroka (1975, 1980) obtained solutions containing a surface-wave term. Ex-

haustive lists of references with other solutions for the problem can be found in Habault

& Filippi (1981) and in Nobile & Hayek (1985). We can mention on this behalf also the

articles of Briquet & Filippi (1977), Attenborough, Hayek & Lawther (1980), Li, Wu &

Seybert (1994), and Attenborough (2002), and more recently also Ochmann (2004) and

Ochmann & Brick (2008), among the many others that exist. For the two-dimensional

case, in particular, we can refer to the articles of Chandler-Wilde & Hothersall (1995a,b)

and Granat, Tahar & Ha-Duong (1999).

The purpose of these articles is essentially the same: they try to compute in one way

or the other the reflection of spherical waves (in three dimensions) or cylindrical waves (in

two dimensions) on an impedance boundary. This corresponds to the computation of the

Green’s function for the problem, since spherical and cylindrical waves are originated by

a point source. Books that consider this problem and other aspects of Green’s functions

are the ones of Greenberg (1971), DeSanto (1992), and Duffy (2001). The great variety of

results for the same problem reflects its difficulty and its interest. The expressions found

for the Green’s function contain typically either complicated integrals, which derive from

a Fourier transform or some other kind of integral transform, or unpractical infinite series

expansions, which do not hold for all conditions or everywhere. There exists no relatively

simple expression in terms of known elementary or special functions. For the treatment of

the integrals, special integration contours are taken into account and at the end some parts

are approximated by methods of asymptotic analysis like the ones of stationary phase or of

steepest descent, the latter also known as the saddle-point approximation. Some references

for these asymptotic methods are Bender & Orszag (1978), Estrada & Kanwal (2002),

Murray (1984), and Wong (2001).

It is notably on this behalf that using a Fourier transform yields a manageable expres-

sion for the spectral Green’s function (cf. Durán, Muga & Nédélec 2005a,b, 2006, 2009). In

two dimensions, we considered this expression to compute numerically the spatial Green’s

function with the help of a fast Fourier transform (FFT) for the regular part, whereas its

singular part was treated analytically (Durán, Hein & Nédélec 2007a,b). Further details

of these calculations can be found in Hein (2006, 2007). This method allows to compute

effectively the Green’s function, without the use of asymptotic approximations, but it can

become quite burdensome when building bigger matrixes for the BEM due the multiple

evaluations required for the FFT.
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Outdoor sound propagation is in fact the classic application for the Helmholtz equation

stated in an impedance half-space, where the acoustic waves propagate freely in the upper

half-space and interact with the ground, i.e., the impenetrable lower half-space, through

an impedance boundary condition on their common boundary. The Helmholtz equation

is derived directly from the scalar acoustic wave equation by assuming a time-harmonic

regime. The acoustic impedance in this case corresponds to a (complex) proportionality

coefficient that relates the normal velocity of the fluid, where the sound propagates, to

the excess pressure on the boundary. A real impedance implies that the boundary is non-

dissipative, whereas a strictly complex (i.e., non-real) impedance is associated with an ab-

sorbing boundary. We remark that the limit cases of the boundary condition of impedance-

type, the ones of Dirichlet- and Neumann-type, correspond respectively to sound-soft and

sound-hard boundary surfaces. For more details on the physics of the problem, we refer

to DeSanto (1992), Embleton (1996), Filippi et al. (1999), and Morse & Ingard (1961).

The use of an impedance boundary condition is validated and discussed in the articles of

Attenborough (1983) and Bermúdez, Hervella-Nieto, Prieto & Rodrı́guez (2007).

There exists also some literature on experimental measurements for this topic. Exten-

sive experimental studies of sound propagation horizontally near the ground, mainly over

grass, are performed by Embleton, Piercy & Olson (1976), who even suggest the presence

of surface waves. Different impedance versus frequency models for various types of ground

surface are compared by Attenborough (1985). Studies of acoustic wave propagation over

grassland and snow are developed by Albert & Orcutt (1990). In the paper of Albert (2003),

experimental evidence is given that confirms the existence of acoustic surface waves in a

natural outdoor setting, which in this case is above a snow cover. For a study of sound

propagation in forests we refer to Tarrero et al. (2008). Extensive measurement results and

theoretical models are also discussed by Attenborough, Li & Horoshenkov (2007).

The use of some BEM to solve the problem has also received some attention in the lit-

erature. Further references can be found in De Lacerda, Wrobel & Mansur (1997), De Lac-

erda, Wrobel, Power & Mansur (1998), and Li et al. (1994). For some two-dimensional ap-

plications of the BEM we cite Chen & Waubke (2007), Durán, Hein & Nédélec (2007a,b),

and Granat, Tahar & Ha-Duong (1999). Some integral equations for this case are also

treated in Chandler-Wilde (1997) and Chandler-Wilde & Peplow (2005). Integral equa-

tions in three dimensions for Dirichlet and Neumann boundary conditions, and the low-

frequency case, can be found in Dassios & Kleinman (1999). For the appropriate radiation

condition of the problem, and likewise for its existence and uniqueness, we refer to Durán,

Muga & Nédélec (2005a,b, 2006, 2009).

b) Laplace equation

The impedance half-space wave propagation problem for the Laplace equation is par-

ticularly of great importance in hydrodynamics, since it describes linear surface waves on

water of infinite depth. The interest for this problem can be traced back to December 1813,

when the French Académie des Sciences announced a mathematical prize competition

on the subject of surface wave propagation on liquid of indefinite depth. The prize was
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awarded in 1816 to the French mathematician and early pioneer of analysis Augustin Louis

Cauchy (1789–1857), who submitted his entry in September 1815 and which was eventu-

ally published in Cauchy (1827). Another memoir, to record his independent work, was

deposited in October 1815 by the French mathematician, geometer, and physicist Siméon

Denis Poisson (1781–1840), one of the judges of the competition, which was published in

Poisson (1818). Both memoirs are classical works in the field of hydrodynamics. For a

more detailed historical account on the water-wave theory we refer to Craik (2004).

With the passage of time, the interest in the description of wave motion in the presence

of submerged or floating bodies increased. The first study of wave motion caused by a sub-

merged obstacle was carried out in the classical (and often reprinted) text of Lamb (1916),

who analyzed the two-dimensional wave motion due to a submerged cylinder. Further

studies dealing with simple submerged obstacles were done by Havelock (1917, 1927), for

spheres and doublets, and by Dean (1945), for plane barriers.

A major breakthrough in the field arrived nonetheless with the classic works on the

motion of floating bodies by John (1949, 1950), who showed how the boundary-value

problem could be reduced to an integral equation over the wetted portion of the partly im-

mersed body. John studied the problem in general form, stating necessary conditions for the

uniqueness of its solution. He also gave expressions in the form of discrete eigenfunction

expansions for the Green’s functions of the problem, in two and three dimensions, and con-

sidering finite and infinite water depth. His work inspired (and still inspires) a vast amount

of literature, particularly in the subjects of the existence and uniqueness of solutions, the

computation of Green’s functions, and the development of integral equation methods.

A standard reference that synthesizes the known theory up to its time is the thorough

and insightful article by Wehausen & Laitone (1960). It includes also the known expres-

sions for Green’s functions. A closely related article is Wehausen (1971). More recent ref-

erences on these topics are the books of Mei (1983), Linton & McIver (2001), Kuznetsov,

Maz’ya & Vainberg (2002), and Mei, Stiassnie & Yue (2005). The classical representa-

tion of these Green’s functions, in three dimensions, is in terms of a semi-infinite integral

involving a Bessel function (vid. Subsection A.2.4) and a Cauchy principal-value singu-

larity (vid. Subsection A.6.5). Separate expressions exist for infinite and finite (constant)

depth of the fluid, but their forms are similar and the infinite-depth limit can be recovered as

a special case of the finite-depth integral representation. According to Newman (1985), the

principal drawback of these expressions is that they are extremely time-consuming to eval-

uate numerically. Some articles dealing with the finite-depth Green’s function are the ones

of Angell, Hsiao & Kleinman (1986), Black (1975), Chakrabarti (2001), Fenton (1978),

Linton (1999), Macaskill (1979), Mei (1978), Pidcock (1985), and Xia (2001).

In the case of infinite-depth water in three dimensions, a simpler analytic representa-

tion for the source potential or Green’s function exists as the sum of a finite integral, with a

monotonic integrand involving elementary transcendental functions, and a wave-like term

of closed form involving Bessel and Struve functions (vid. Subsection A.2.7). This ex-

pression, which was suggested by Havelock (1955), has been rederived or publicized in

different forms by Kim (1965), Hearn (1977), Noblesse (1982), Newman (1984b, 1985),
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Pidcock (1985), and Chakrabarti (2001). Other expressions for this Green’s function were

developed by Moran (1964), Hess & Smith (1967), Dautray & Lions (1987), and Peter &

Meylan (2004). Likewise, analogous expressions for the two-dimensional Green’s function

are considered in the works of Thorne (1953), Kim (1965), Macaskill (1979), and Green-

berg (1971). A more general two-dimensional case that takes surface tension into account

was considered by Harter, Abrahams & Simon (2007), Harter, Simon & Abrahams (2008),

and Motygin & McIver (2009), using potentials expressed in terms of exponential inte-

grals (vid. Subsection A.2.3). Analogous observations to the ones of the Helmholtz equa-

tion can be made also for the case of the Laplace equation.

Water-wave motion near floating or submerged bodies is the classic application for

the Laplace equation stated in an impedance half-space. The Laplace equation is obtained

by considering the dynamic of an incompressible inviscid fluid, as is the case with water.

The impedance boundary condition corresponds to the linearized free-surface condition,

which allows the propagation of (water) surface waves. The impedance in this case can be

regarded as a wave number for the surface waves, which acts in an equivalent manner as the

wave number for the Helmholtz equation, but now only along the boundary surface. Again,

a real impedance implies that the boundary is non-dissipative, whereas a strictly complex

impedance is associated with an absorbing boundary. Further details on the physical aspects

of the problem can be found in Kuznetsov, Maz’ya & Vainberg (2002) and Wehausen &

Laitone (1960).

Reviews of numerical methods to solve water-wave problems and further references

can be found in Mei (1978) and Yeung (1982). A review of ocean waves interacting with

ice is done by Squire, Dugan, Wadhams, Rottier & Liu (1995). A computation of a Green’s

function for this case can be found in Squire & Dixon (2001). Boundary integral equations

are developed in Angell, Hsiao & Kleinman (1986) and Sayer (1980). For the use of the

BEM we refer to the articles of Hess & Smith (1967), Hochmuth (2001), Lee, Newman &

Zhu (1996) and Liapis (1992, 1993). Resonances for water-wave problems are studied in

Hazard & Lenoir (1993, 1998, 2002).

1.2.4 Applications

Wave propagation problems in impedance half-spaces, or in compact perturbations of

them, have many applications in science and engineering. We already mentioned the appli-

cations to outdoor sound propagation (Filippi et al. 1999, Morse & Ingard 1961), to radio

wave propagation above the ground (Sommerfeld 1949), and to water waves in shallow wa-

ters near the coast (Mei et al. 2005, Herbich 1999), in the case of the Helmholtz equation,

and to the motion of water waves near floating or submerged bodies (Kuznetsov et al. 2002,

Wehausen & Laitone 1960), in the case of the Laplace equation. Further specific ap-

plications include the scattering of light by a photonic crystal (Joannopoulos et al. 2008,

Sakoda 2005, Yasumoto 2006, Durán, Guarini & Jerez-Hanckes 2009), the computation of

harbor resonances in coastal engineering (Mei et al. 2005, Panchang & Demirbilek 2001),

and the treatment of elliptic partial differential equations, specifically the Laplace equation,
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with an oblique-derivative boundary condition (Gilbarg & Trudinger 1983, Keller 1981,

Paneah 2000). This thesis is concerned with the latter two of these applications.

a) Harbor resonances in coastal engineering

A harbor (sometimes also spelled as harbour) is a partially enclosed body of water

connected through one or more openings to the sea. Conventional harbors are built along a

coast where a shielded area may be provided by natural indentations and/or by breakwaters

protruding seaward from the coast. Harbors provide anchorage and a place of refuge for

ships. Key features of all harbors include shelter from both long and short period open sea

waves, easy safe access to the sea in all types of weather, adequate depth and maneuvering

room within the harbor, shelter from storm winds, and minimal navigation channel dredg-

ing. A harbor can be sometimes subject to a so-called harbor oscillation or surging, which

corresponds to a nontidal vertical water movement. Usually these vertical motions are low,

but when oscillations are excited by a tsunami or a storm surge, they may become quite

large. Variable winds, air oscillations, or surf beat may also cause oscillations. Nonethe-

less, the most studied excitation is caused by incident tsunamis, which have typical periods

from a few minutes to an hour, and are originated from distant earthquakes. If the total du-

ration of the tsunami is sufficiently long, oscillations excited in the harbor may persist for

days, resulting in broken mooring lines, damaged fenders, hazards in berthing and loading

or in navigation through the entrance, and so on. Sometimes incoming ships have to wait

outside the harbor until oscillations within subside, causing costly delays. Harbor oscil-

lations are discussed in the books of Mei (1983), Mei et al. (2005), and Herbich (1999).

For a single and comprehensive technical document about coastal projects we refer to the

Coastal Engineering Manual of the U.S. Army Corps of Engineers (2002).

To understand roughly the physical mechanism of these oscillations, we consider a

harbor with the entrance in line with a long and straight coastline. Onshore waves are partly

reflected and partly absorbed along the coast. A small portion is however diffracted through

the entrance into the harbor and reflected repeatedly by the interior boundaries. Some of

the reflected wave energy escapes the harbor and radiates again to the ocean, while some

of it stays inside. If the wavetrain is of long duration, and the incident wave frequency is

close to a standing-wave frequency in the closed basin, then a so-called resonance occurs

in the basin, i.e., even a relatively weak incident wave of such characteristics can induce

a large response in the harbor. When a harbor is closed and the damping is neglected, the

free-wave motion is known to be the superposition of normal modes of standing waves

with a discrete spectrum of characteristic frequencies. When a harbor has a small opening

and is subject to incident waves we may expect a resonance whenever the frequency of the

incident waves is close to a characteristic frequency of the closed harbor.

Resonances are therefore closely related to the phenomena of seiching (in lakes and

harbors) and sloshing (in coffee cups and storage tanks), which correspond to standing

waves in enclosed or partially enclosed bodies of water. These phenomena have been ob-

served already since very early times. Forel (1895) quotes a vivid description of seiching

in the Lake of Constance in 1549 from “Les Chroniques de Cristophe Schulthaiss”, and
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Darwin (1899) refers to seiching in the Lake of Geneva in 1600 with a peak-to-peak ampli-

tude of over one meter. Observations in cups and pots doubtless predate recorded history.

Scientific studies date from Merian (1828) and Poisson (1828–1829), and especially from

the observations in the Lake of Geneva by Forel (1895), which began in 1869. A thorough

and historical review of the seiching phenomenon in harbors and further references can be

found in Miles (1974).

A resonance of a different type is given by the so-called Helmholtz mode when the

oscillatory motion inside the harbor is much slower than each of the normal modes (Bur-

rows 1985). It corresponds to the resonant mode with the longest period, where the water

appears to move up and down unison throughout the harbor, which seems to have been first

studied by Miles & Munk (1961). This very long period mode appears to be particularly

significant for harbors responding to the energy of a tsunami, and for several harbors on the

Great Lakes that respond to long-wave energy spectra generated by storms. We remark that

from the mathematical point of view, resonances correspond to poles of the scattering and

radiation potentials when they are extended to the complex frequency domain (cf. Poisson

& Joly 1991). Harbor resonance should be avoided or minimized in harbor planning and

operation to reduce adverse effects such as hazardous navigation and mooring of vessels,

deterioration of structures, and sediment deposition or erosion within the harbor.

Examples of harbor resonances are the Ciutadella inlet in the Menorca Island on the

Western Mediterranean (Marcos, Monserrat, Medina & Lomónaco 2005), the Duluth-

Superior Harbor in Minnesota on the Lake Superior (Jordan, Stortz & Sydor 1981), the

Port Kembla Harbour on the central coast of New South Wales in Australia (Luick & Hin-

wood 2008), the Los Angeles Harbor Pier 400 in California (Seabergh & Thomas 1995),

and the port of Ploče in Croatia on the Adriatic Sea (Vilibić & Mihanović 2005).

Considerable effort has been devoted to achieving a good understanding of the phe-

nomena of harbor resonance. Lamb (1916) analyzed the free oscillation in closed rect-

angular and circular basins. His solutions then clarified the natural periods and modes of

free surface oscillations related to these special configurations. As the first but important

step to approach the practical situation, McNown (1952) studied the forced oscillation in a

circular harbor which is connected to the open sea through a narrow mouth. He made the

assumption that standing wave conditions are always formed at the harbor entrance when

resonance occurs. Since the radiation effect was ruled out, he showed that a resonant harbor

behaves the same as a closed basin. Similar research was also carried out by Kravtchenko

& McNown (1955) on rectangular harbors.

Since the paper of Miles & Munk (1961), who first treated harbor oscillations by a

scattering theory, the study of harbor resonance has been steadily progressing both the-

oretically and experimentally. Miles & Munk (1961) considered the wave energy radia-

tion effect expanding offshore from the harbor entrance and applied a Green’s function

to analyze the harbor oscillation. They even found that the wider the harbor mouth, the

smaller the amplitude of the resonant oscillation. That is, narrowing the harbor entrance

does not diminish resonant oscillation, which contradicts common sense based on the con-

ventional reasoning for a non-resonant harbor, where less wave energy is expected to be
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transmitted into the harbor through a smaller opening. Miles & Munk (1961) referred to

this phenomenon as the harbor paradox. Additional important contributions were made by

Le Méhauté (1961), Ippen & Goda (1963), Raichlen & Ippen (1965), and Raichlen (1966).

These studies considered the effect of radiation through the entrance of the harbor and

the resulting frequency responses of the harbor oscillations became fairly close to the ex-

perimentally observed ones. Other rigorous solutions for the problem were presented by

Lee (1969, 1971), who considered rectangular and circular harbors with openings located

on a straight coastline. He discovered that the trapping of energy by the harbor leads to an

amplitude of oscillation that is far greater than the one of the incident wave. Similarly, Mei

& Petroni (1973) dealt with a circular harbor protruding halfway into the open sea. Theo-

ries to deal with arbitrary harbor configurations were available after Hwang & Tuck (1970)

and Lee (1969, 1971), who worked with boundary integral equation methods to calculate

the oscillation in harbors of constant depth with arbitrary shape. Mei & Chen (1975) de-

veloped a hybrid-boundary-element technique to also study harbors of arbitrary geometry.

Harbor resonances using the FEM are likewise computed in Walker & Brebbia (1978). A

comprehensive list of references can be found in Yu & Chwang (1994).

The mild-slope equation, which describes the combined effects of refraction and diffrac-

tion of linear water waves, was first suggested by Eckart (1952) and later rederived by

Berkhoff (1972a,b, 1976), Smith & Sprinks (1975), and others, and is now well-accepted

as the method for estimating coastal wave conditions. The underlying assumption of this

equation is that evanescent modes (locally emanated waves) are not important, and that the

rate of change of depth and current within a wavelength is small. The mild-slope equa-

tion is a usually expressed in an elliptic form, and it turns into the Helmholtz equation for

uniform water depths. Since then, different kinds of mild-slope equations have been de-

rived (Liu & Shi 2008). A detailed survey of the literature on the mild-slope and its related

equations is provided by Hsu, Lin, Wen & Ou (2006). Some examinations on the validity

of the theory are performed by Booij (1983) and Ehrenmark & Williams (2001).

Along rigid, impermeable vertical walls a Neumann boundary condition is used, since

there is no flow normal to the surface. However, in general an impedance boundary condi-

tion is used along coastlines or permeable structures, to account for a partial reflection of

the flow on the boundary (Demirbilek & Panchang 1998). A study of harbor resonances

using an approximated DtN operator and a model based on the Helmholtz equation with an

impedance boundary condition on the coast was done by Quaas (2003).

An alternative parabolic equation method to solve the problem was developed by Rad-

der (1979) and Kirby & Dalrymple (1983), which approximates the mild-slope equation.

A sea-bottom friction and absorption boundary was considered by Chen (1986) for a hy-

brid BEM to analyze wave-induced oscillation in a harbor with arbitrary shape and depth.

Berkhoff, Booy & Radder (1982) described and compared the computational results for the

models of refraction, of parabolic refraction-diffraction, and of full refraction-diffraction.

Tsay, Zhu & Liu (1989) considered the effects of topographical variation and energy dis-

sipation, and developed a finite element numerical model to investigate wave refraction,

diffraction, reflection, and dissipation. Chou & Han (1993) employed a boundary element
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method and under the consideration of the effect of partial reflection along boundaries to

develop a numerical method for predicting wave height distribution in a harbor of arbitrary

shape and variable water depth. Nardini & Brebbia (1982) proposed a DRBEM (dual reci-

procity boundary element method), which was also studied by Hsiao, Lin & Fang (2001)

and Hsiao, Lin & Hu (2002). The infinite element method was applied to the problem by

Chen (1990). Interesting reviews of the theoretical advances on wave propagation model-

ing in coastal engineering can be found in Mei & Liu (1993) and Liu & Losada (2002). A

review that brings together the large amount of literature on the analytical study of free-

surface wave motion past porous structures is performed by Chwang & Chan (1998).

The study of harbor resonances becomes particularly important for countries with high

seismicity and maritime harbors subject to tsunamis such as Chile. A tragical and recent

example of the involved devastation was given by the 2010 Chilean earthquake, which

occurred offshore from the Maule Region in south central Chile on February 27, 2010.

Noteworthy, it had already been predicted by Ruegg et al. (2009). After the earthquake, the

coast was afflicted by tsunami waves. At the port city of Talcahuano waves with amplitude

up to 5 meters high were observed and the sea level rose above 2.4 meters. The tsunami

caused serious damage to port facilities and lifted boats out of the water. A good harbor

design should protect the waters of the harbor from such events as best as possible, and it

is therefore of great interest to have a good knowledge of the appearing resonances.

b) Oblique-derivative half-plane Laplace problem

As a more theoretical application, we are interested in the study of elliptic partial differ-

ential operators, particularly the Laplace equation, with an oblique-derivative (impedance)

boundary condition. This kind of operators is characterized by the inclusion of tangential

derivatives in the boundary condition. We speak of a (purely) oblique-derivative boundary

condition when it combines only tangential and normal derivatives, whereas a combina-

tion of tangential derivatives and an impedance boundary condition is referred to as an

oblique-derivative impedance boundary condition.

The purely oblique-derivative problem for a second-order elliptic partial differential

operator was first stated by the great French mathematician, theoretical physicist, and

philosopher of science Jules Henri Poincaré (1854–1912) in his studies on the theory of

tides (Poincaré 1910). Since then, the so-called Poincaré problem has been the subject of

many publications (cf. Egorov & Kondrat’ev 1969, Paneah 2000), and it arises naturally

when determining the gravitational fields of celestial bodies. Its main interest lies in the

fact that it corresponds to a typical degenerate elliptic boundary-value problem where the

vector field of its solution is tangent to the boundary of the domain on some subset. The

Poincaré problem for harmonic functions, in particular, arises in semiconductor physics and

considers constant coefficients for the oblique derivative in the boundary condition (Kru-

titskii & Chikilev 2000). It allows to describe the Hall effect, i.e., when the direction of

an electric current and the direction of an electric field do not coincide in a semiconduc-

tor due the presence of a magnetic field (Krutitskii, Krutitskaya & Malysheva 1999). The
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two-dimensional Poincaré problem for the Laplace equation is treated in Lesnic (2007),

Trefethen & Williams (1986), and further references can be also found in Lions (1956).

Of special interest is the oblique-derivative impedance Laplace problem stated in a

half-space, and particularly the determination of its Green’s function, which describes out-

going oblique surface waves that emanate from a point source and which increase or de-

crease exponentially along the boundary, depending on the obliqueness of the derivative in

the boundary condition. An integral representation for this Green’s function in half-spaces

of three and higher dimensions was developed by Gilbarg & Trudinger (1983). Using an

image method, it was later generalized by Keller (1981) to a wider class of equations, in-

cluding the wave equation, the heat equation, and the Laplace equation. Its use for more

general linear uniformly elliptic equations with discontinuous coefficients can be found in

the articles of Di Fazio & Palagachev (1996) and Palagachev, Ragusa & Softova (2000).

The generalization of this image method to wedges is performed by Gautesen (1988).

For the two-dimensional case and when dealing with the Laplace equation, there exists

no representation of the Green’s function, except the already mentioned cases when the

oblique derivative becomes a normal one.

1.3 Objectives

The main objective of this thesis is to compute the Green’s function for the Laplace

and Helmholtz equations in two- and three-dimensional impedance half-spaces, and to use

it for solving direct wave scattering problems in compactly perturbed half-spaces by de-

veloping appropriate integral equation techniques and a corresponding boundary element

method. The goal is to give a numerically effective and efficient expression for the Green’s

function, and to determine its far field. The developed integral equations are to be sup-

ported only on a bounded portion of the boundary, and they have to work well for arbitrary

compact perturbations towards the upper half-space, as long as the considered boundary is

regular enough. It is also of interest to derive expressions for the far field of the solution of

the scattering problem. The developed techniques are to be programmed in Fortran, imple-

menting benchmark problems to test these calculations and the computational subroutines.

Thus the idea in this thesis is to continue and extend the preliminary work performed in

Hein (2006, 2007) and in Durán, Hein & Nédélec (2007a,b).

Another objective is to use the developed expressions and techniques to solve some

interesting applications in science and engineering. One of the applications to consider

deals with the computation of harbor resonances in coastal engineering, enhancing the

model of Quaas (2003) by working with an impedance boundary condition and solving

the problem by using integral equations instead of a DtN operator. The other application

considers the calculation of the Green’s function for the oblique-derivative impedance half-

plane Laplace problem, which generalizes the techniques used in the computation of the

other Green’s functions from this thesis.

The interest behind this study is to comprehend better, from the mathematical point

of view, the interaction between volume and surface waves caused by a point source in
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impedance half-spaces, and their application to some scattering problems in engineering.

Only the linear, scalar, and time-harmonic cases are considered here, to simplify the anal-

ysis and to avoid additional complications. We include the study of the Laplace equation,

where only surface waves appear, since the problem is somewhat simpler and permits a

far better understanding of the treatment for the Helmholtz equation, particularly in the

two-dimensional case.

To allow a better comprehension of the treated topics, this thesis is intended to be as

self-contained as possible. Therefore a quick survey of the most important aspects of the

mathematical and physical background and a detailed analysis of the relatively well-known

full-space problems are also included. Additionally, a comprehensive list of references is

given whenever possible, so as to ensure extensive further reading on the involved subjects

if such an interest arises.

1.4 Contributions

Essentially, this thesis concentrates and recreates some of the most important elements

of the widely dispersed knowledge on full- and half-space Green’s functions for the Laplace

and Helmholtz operators, and their associated integral equations, in a single document with

a coherent and homogeneous notation. By doing so, new expressions are found and a better

understanding of the involved techniques is achieved.

The main contribution of the thesis is the rigorous development of expressions for the

Green’s functions of the Helmholtz and Laplace operators in impedance half-spaces, in two

and three dimensions, and their use to solve direct wave scattering problems by means of

boundary integral equations. These expressions are characterized in terms of finite com-

binations of elementary functions, known special functions, and their primitives. In the

case of the two-dimensional Laplace equation even a new explicit representation is found,

based on exponential integrals and expressed in (2.94). A more general representation,

based likewise on exponential integrals, is also developed for the Green’s function of the

oblique-derivative half-plane Laplace problem, which has not been computed before and

is given explicitly in (7.41). For the other cases, effective numerical procedures are de-

rived to evaluate the Green’s functions everywhere and on all the values of interest. For

the two-dimensional Helmholtz equation, we perform an improvement over our previous

results in the numerical procedure (Durán et al. 2007a,b), which is now more efficient,

uses a numerical quadrature formula instead of a fast Fourier transform, works better with

complex impedances and wave numbers, and may be also evaluated in the complemen-

tary half-plane. The details are delineated in Section 3.5. The series-based representation

for the Green’s function of the three-dimensional Laplace equation (4.113), even if it is

similar in a certain way to others found in the literature (cf., e.g., Noblesse 1982), it is

derived in an rigorous and independent manner that sheds new light on its properties. The

evaluation of the representation for the three-dimensional Helmholtz equation, specified in

Section 5.5, corresponds to a direct numerical integration of the primitive-based expression

of the Green’s function, which can be adapted without difficulty to the other cases.
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Another important contribution is the proper understanding of the limiting absorption

principle and its interpretation, in the sense of distributions, as the appearance of additional

Dirac masses for the spectral Green’s function. This effect, which has not been particularly

pointed out in the literature, allows us to treat all the involved Fourier integrals in the sense

of Cauchy principal values and is expressed in (2.64), (3.59), (4.70), and (5.65). A different

approach for the same topic is undertaken in Section 7.3 for the oblique-derivative case,

where the additional appearing terms are interpreted as the solution of the homogeneous

problem with a proper scaling, which is justified from the radiation condition, and their

effect is expressed in (7.22).

The derived expressions for the Green’s function yield better light on the interaction

between the volume and the surface wave parts of the system’s response to a point source,

even in the presence of dissipation, and are coherent with results for the complex image

method used to solve this problem (cf. Casciato & Sarabandi 2000, Taraldsen 2004, 2005).

In particular, they retrieve the image source point on the complementary half-space and the

continuous source distribution that stems from this point towards infinity along a line that

is perpendicular to the half-space’s boundary, increasing exponentially.

The herein treated wave scattering problems consider arbitrary compact perturbations

towards the upper half-space and the associated integral representations and equations used

to solve them are derived with great detail and have their support only on the perturbed

portion of the boundary. In particular, a correct expression is given for the boundary integral

representation on the unperturbed portion of the boundary (cf. Durán et al. 2007a,b). The

integral equations are solved by using a boundary element method, and neither hybrid

techniques nor domain truncation are required. Compact perturbations towards the lower

half-space are not considered herein, but the thorough study of the singularities of the

Green’s functions (another contribution of this thesis) is the first step towards that direction

to develop them in the near future.

A state of the art is developed for the full-space impedance Laplace and Helmholtz

problems, since the theory for them is more or less well-known and they are closely related

to the half-space problems. The main singularity of the associated Green’s functions is the

same, and several other aspects are analogous in both kinds of problems.

Another contribution is the development of computational subroutines to solve the

considered problems, and the numerical results that are obtained by their execution. The

programming is in general not easy and requires a careful treatment of the involved singular

integrals (due the singularities of the Green’s functions) to build the full matrixes that stem

from the boundary element method. The subroutines are likewise programmed and tested

for the full-space problems.

The application of the developed techniques to the computation of harbor resonances

in coastal engineering is also a contribution of this thesis, which shows their use in the

resolution of a practical problem in engineering.
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1.5 Outline

To fulfill the objectives, this thesis is structured in eight chapters and five appendixes.

Each chapter and each appendix is in his turn divided into sections and further into subsec-

tions in order to expose the contents in the hopefully most clear and accessible way for the

reader. Each one starts with a short introduction that yields more light about its contents.

A list of references is also included in each one of them.

Chapter I, the current chapter, presents a broad introduction to the thesis. The more

general aspects are discussed and the framework that connects its different parts is de-

scribed. It includes a short foreword, the motivation and overview, the objectives, the

contributions, and the current outline.

In Chapters II, III, IV, and V we study the perturbed half-space impedance problems

of the Laplace and Helmholtz equations in two and three dimensions respectively, using

integral equation techniques and the boundary element method. These chapters include the

main contributions of this thesis, particularly the computation of the Green’s functions and

their far-field expressions, and the development of the associated integral equations.

The following two chapters contain the applications of the developed techniques. Chap-

ter VI deals with the computation of harbor resonances in coastal engineering, and in Chap-

ter VII the Green’s function for the oblique-derivative half-plane Laplace problem is de-

rived and given explicitly.

Chapter VIII incorporates the conclusion of this thesis, including a short discussion on

the results and some perspectives for future research. It is followed by the bibliographical

references and afterwards by the appendixes.

In Appendix A we present a short survey of the mathematical and physical background

of the thesis. The most important aspects are discussed and several references are given for

each topic. It is intended as a quick reference guide to understand or refresh some deeper

technical aspects mentioned throughout the thesis.

Appendixes B, C, D, and E, on the other hand, deal with the perturbed full-space

impedance problems of the Laplace and Helmholtz equations in two and three dimensions

respectively, using integral equation techniques and the boundary element method. These

problems are relatively well-known (at least in theory) and the full extent of the mathemat-

ical techniques are illustrated on them.

For the not so experienced reader it is recommended to read first, after this introduc-

tion, Appendix A, and particularly the sections which contain lesser-known subjects. The

references mentioned throughout should be consulted whenever some topic is not so well

understood. Afterwards we recommend to read at least one of the appendixes that contain

the full-space problems, i.e., Appendixes B, C, D, and E. The most detailed account of

the theory is given in Appendix B, so that other chapters and appendixes may refer to it

whenever necessary. Of course, if the reader is more interested in the Helmholtz equation

or in the three-dimensional problems, then the corresponding appendixes should be con-

sulted, since they contain all the important and related details. The experienced reader, on
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the other hand, may prefer eventually to pass straightforwardly to Chapter II. By following

this itinerary, the reading experience of this thesis should be (hopefully) more delightful

and instructive.
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II. HALF-PLANE IMPEDANCE LAPLACE PROBLEM

2.1 Introduction

In this chapter we study the perturbed half-plane impedance Laplace problem using

integral equation techniques and the boundary element method.

We consider the problem of the Laplace equation in two dimensions on a compactly

perturbed half-plane with an impedance boundary condition. The perturbed half-plane

impedance Laplace problem is a surface wave scattering problem around the bounded

perturbation, which is contained in the upper half-plane. In water-wave scattering the

impedance boundary-value problem appears as a consequence of the linearized free-surface

condition, which allows the propagation of surface waves (vid. Section A.10). This prob-

lem can be regarded as a limit case when the frequency of the volume waves, i.e., the

wave number in the Helmholtz equation, tends towards zero (vid. Chapter III). The three-

dimensional case is considered in Chapter IV, whereas the full-plane impedance Laplace

problem with a bounded impenetrable obstacle is treated thoroughly in Appendix B. The

case of an oblique-derivative boundary condition is discussed in Chapter VII.

The main application of the problem corresponds to linear water-wave propagation in

a liquid of indefinite depth, which was first studied in the classical works of Cauchy (1827)

and Poisson (1818). A study of wave motion caused by a submerged obstacle was carried

out by Lamb (1916). The major impulse in the field came after the milestone papers on

the motion of floating bodies by John (1949, 1950), who considered a Green’s function

and integral equations to solve the problem. Other expressions for the Green’s function in

two dimensions were derived by Thorne (1953), Kim (1965), and Macaskill (1979), and

likewise by Greenberg (1971) and Dautray & Lions (1987). A more general problem that

takes surface tension into account was considered by Harter, Abrahams & Simon (2007),

Harter, Simon & Abrahams (2008), and Motygin & McIver (2009). The main references

for the problem are the classical article of Wehausen & Laitone (1960) and the books of

Mei (1983), Linton & McIver (2001), Kuznetsov, Maz’ya & Vainberg (2002), and Mei,

Stiassnie & Yue (2005). Reviews of the numerical methods that have been used to solve

water-wave problems can be found in Mei (1978) and Yeung (1982).

The Laplace equation does not allow the propagation of volume waves inside the con-

sidered domain, but the addition of an impedance boundary condition permits the propaga-

tion of surface waves along the boundary of the perturbed half-plane. The main difficulty

in the numerical treatment and resolution of our problem is the fact that the exterior do-

main is unbounded. We solve it therefore with integral equation techniques and a boundary

element method, which require the knowledge of the associated Green’s function. This

Green’s function is computed using a Fourier transform and taking into account the lim-

iting absorption principle, following Durán, Muga & Nédélec (2005a, 2006) and Durán,

Hein & Nédélec (2007a,b), but here an explicit expression is found for it in terms of a finite

combination of elementary and special functions.
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This chapter is structured in 12 sections, including this introduction. The direct scatter-

ing problem of the Laplace equation in a two-dimensional compactly perturbed half-plane

with an impedance boundary condition is presented in Section 2.2. The computation of

the Green’s function and its far field expression are developed respectively in Sections 2.3

and 2.4. The use of integral equation techniques to solve the direct scattering problem is

discussed in Section 2.5. These techniques allow also to represent the far field of the so-

lution, as shown in Section 2.6. The appropriate function spaces and some existence and

uniqueness results for the solution of the problem are presented in Section 2.7. The dissipa-

tive problem is studied in Section 2.8. By means of the variational formulation developed

in Section 2.9, the obtained integral equation is discretized using the boundary element

method, which is described in Section 2.10. The boundary element calculations required

to build the matrix of the linear system resulting from the numerical discretization are ex-

plained in Section 2.11. Finally, in Section 2.12 a benchmark problem based on an exterior

half-circle problem is solved numerically.

2.2 Direct scattering problem

2.2.1 Problem definition

We consider the direct scattering problem of linear time-harmonic surface waves on

a perturbed half-plane Ωe ⊂ R
2
+, where R

2
+ = {(x1, x2) ∈ R

2 : x2 > 0}, where the

incident field uI is known, and where the time convention e−iωt is taken. The goal is to

find the scattered field u as a solution to the Laplace equation in the exterior open and

connected domain Ωe, satisfying an outgoing surface-wave radiation condition, and such

that the total field uT , which is decomposed as uT = uI + u, satisfies a homogeneous

impedance boundary condition on the regular boundary Γ = Γp ∪ Γ∞ (e.g., of class C2).

The exterior domain Ωe is composed by the half-plane R
2
+ with a compact perturbation

near the origin that is contained in R
2
+, as shown in Figure 2.1. The perturbed boundary is

denoted by Γp, while Γ∞ denotes the remaining unperturbed boundary of R
2
+, which extends

towards infinity on both sides. The unit normal n is taken outwardly oriented of Ωe and the

complementary domain is denoted by Ωc = R
2 \ Ωe.

Γ∞, Z∞ Γ∞, Z∞

x1

x2

Ωe

n

Γp, Z(x)

Ωc

FIGURE 2.1. Perturbed half-plane impedance Laplace problem domain.
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The total field uT satisfies thus the Laplace equation

∆uT = 0 in Ωe, (2.1)

which is also satisfied by the incident field uI and the scattered field u, due linearity. For

the total field uT we take the homogeneous impedance boundary condition

− ∂uT
∂n

+ ZuT = 0 on Γ, (2.2)

where Z is the impedance on the boundary, which is decomposed as

Z(x) = Z∞ + Zp(x), x ∈ Γ, (2.3)

being Z∞ > 0 real and constant throughout Γ, and Zp(x) a possibly complex-valued

impedance that depends on the position x and that has a bounded support contained in Γp.

The case of a complex Z∞ will be discussed later. For linear water waves, the free-surface

condition considers Z∞ = ω2/g, where ω is the radian frequency or pulsation and g de-

notes the acceleration caused by gravity. If Z = 0 or Z = ∞, then we retrieve respectively

the classical Neumann or Dirichlet boundary conditions. The scattered field u satisfies the

non-homogeneous impedance boundary condition

− ∂u

∂n
+ Zu = fz on Γ, (2.4)

where the impedance data function fz is known, has its support contained in Γp, and is

given, because of (2.2), by

fz =
∂uI
∂n

− ZuI on Γ. (2.5)

An outgoing surface-wave radiation condition has to be also imposed for the scattered

field u, which specifies its decaying behavior at infinity and eliminates the non-physical

solutions, e.g., ingoing surface waves or exponential growth inside Ωe. This radiation con-

dition can be stated for r → ∞ in a more adjusted way as




|u| ≤ C

r
and

∣∣∣∣
∂u

∂r

∣∣∣∣ ≤
C

r2
if x2 >

1

Z∞
ln(1 + Z∞πr),

|u| ≤ C and

∣∣∣∣
∂u

∂r
− iZ∞u

∣∣∣∣ ≤
C

r
if x2 ≤

1

Z∞
ln(1 + Z∞πr),

(2.6)

for some constantsC > 0, where r = |x|. It implies that two different asymptotic behaviors

can be established for the scattered field u, which are shown in Figure 2.2. Away from the

boundary Γ and inside the domain Ωe, the first expression in (2.6) dominates, which is

related to the asymptotic decaying condition (B.7) of the Laplace equation on the exterior

of a bounded obstacle. Near the boundary, on the other hand, the second part of the second

expression in (2.6) resembles a Sommerfeld radiation condition like (C.8), but only along

the boundary, and is therefore related to the propagation of surface waves. It is often

expressed also as ∣∣∣∣
∂u

∂|x1|
− iZ∞u

∣∣∣∣ ≤
C

|x1|
. (2.7)
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Γ∞ Γ∞

n

Γp

Ωe

Surface waves

Asymptotic decaying

Surface waves

Ωc

x1

x2

FIGURE 2.2. Asymptotic behaviors in the radiation condition.

Analogously as done by Durán, Muga & Nédélec (2005a, 2006) for the Helmholtz

equation, the radiation condition (2.6) can be stated alternatively as




|u| ≤ C

r1−α and

∣∣∣∣
∂u

∂r

∣∣∣∣ ≤
C

r2−α if x2 > Crα,

|u| ≤ C and

∣∣∣∣
∂u

∂r
− iZ∞u

∣∣∣∣ ≤
C

r1−α if x2 ≤ Crα,

(2.8)

for 0 < α < 1 and some constants C > 0, being the growth of Crα bigger than the

logarithmic one at infinity. Equivalently, the radiation condition can be expressed in a more

weaker and general formulation as




lim
R→∞

∫

S1
R

|u|2
R

dγ = 0 and lim
R→∞

∫

S1
R

R

∣∣∣∣
∂u

∂r

∣∣∣∣
2

dγ = 0,

lim
R→∞

∫

S2
R

|u|2
lnR

dγ <∞ and lim
R→∞

∫

S2
R

1

lnR

∣∣∣∣
∂u

∂r
− iZ∞u

∣∣∣∣
2

dγ = 0,

(2.9)

where

S1
R =

{
x ∈ R

2
+ : |x| = R, x2 >

1

Z∞
ln(1 + Z∞πR)

}
, (2.10)

S2
R =

{
x ∈ R

2
+ : |x| = R, x2 <

1

Z∞
ln(1 + Z∞πR)

}
. (2.11)

We observe that in this case∫

S1
R

dγ = O(R) and

∫

S2
R

dγ = O(lnR). (2.12)

The portions S1
R and S2

R of the half-circle and the terms depending on S2
R of the radiation

condition (2.9) have to be modified when using instead the polynomial curves of (2.8). We

refer to Stoker (1956) for a discussion on radiation conditions for surface waves.
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The perturbed half-plane impedance Laplace problem can be finally stated as




Find u : Ωe → C such that

∆u = 0 in Ωe,

−∂u
∂n

+ Zu = fz on Γ,

+ Outgoing radiation condition as |x| → ∞,

(2.13)

where the outgoing radiation condition is given by (2.6).

2.2.2 Incident field

To determine the incident field uI , we study the solutions of the unperturbed and homo-

geneous wave propagation problem with neither a scattered field nor an associated radiation

condition. The solutions are searched in particular to be physically admissible, i.e., solu-

tions which do not explode exponentially in the propagation domain, depicted in Figure 2.3.

We analyze thus the half-plane impedance Laplace problem




∆uI = 0 in R
2
+,

∂uI
∂x2

+ Z∞uI = 0 on {x2 = 0}.
(2.14)

{x2 = 0}, Z∞

x1

x2

R
2
+

n

FIGURE 2.3. Positive half-plane R
2
+.

The solutions uI of the problem (2.14) are given, up to an arbitrary scaling factor, by

the progressive plane surface waves

uI(x) = eiksx1e−Z∞x2 , k2
s = Z2

∞. (2.15)

They correspond to progressive plane volume waves of the form eik·x with a complex wave

propagation vector k = (ks, iZ∞). It can be observed that these surface waves are guided

along the half-plane’s boundary, and decrease exponentially towards its interior, hence their

name. They vanish completely for classical Dirichlet (Z∞ = ∞) or Neumann (Z∞ = 0)

boundary conditions.
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2.3 Green’s function

2.3.1 Problem definition

The Green’s function represents the response of the unperturbed system to a Dirac

mass. It corresponds to a function G, which depends on the impedance Z∞, on a fixed

source point x ∈ R
2
+, and on an observation point y ∈ R

2
+. The Green’s function is

computed in the sense of distributions for the variable y in the half-plane R
2
+ by placing at

the right-hand side of the Laplace equation a Dirac mass δx, centered at the point x. It is

therefore a solution for the radiation problem of a point source, namely




Find G(x, ·) : R
2
+ → C such that

∆yG(x,y) = δx(y) in D′(R2
+),

∂G

∂y2

(x,y) + Z∞G(x,y) = 0 on {y2 = 0},

+ Outgoing radiation condition as |y| → ∞.

(2.16)

The outgoing radiation condition, in the same way as in (2.6), is given here as |y| → ∞ by




|G| ≤ C

|y| and

∣∣∣∣
∂G

∂ry

∣∣∣∣ ≤
C

|y|2 if y2 >
1

Z∞
ln
(
1 + Z∞π|y|

)
,

|G| ≤ C and

∣∣∣∣
∂G

∂ry
− iZ∞G

∣∣∣∣ ≤
C

|y| if y2 ≤
1

Z∞
ln
(
1 + Z∞π|y|

)
,

(2.17)

for some constants C > 0, which are independent of r = |y|.
2.3.2 Special cases

When the Green’s function problem (2.16) is solved using either homogeneous Dirich-

let or Neumann boundary conditions, then its solution is found straightforwardly using the

method of images (cf., e.g., Morse & Feshbach 1953).

a) Homogeneous Dirichlet boundary condition

We consider in the problem (2.16) the particular case of a homogeneous Dirichlet

boundary condition, namely

G(x,y) = 0, y ∈ {y2 = 0}, (2.18)

which corresponds to the limit case when the impedance is infinite (Z∞ = ∞). In this

case, the Green’s function G can be explicitly calculated using the method of images,

since it has to be antisymmetric with respect to the axis {y2 = 0}. An additional image

source point x̄ = (x1,−x2), located on the lower half-plane and associated with a nega-

tive Dirac mass, is placed for this purpose just opposite to the upper half-plane’s source

point x = (x1, x2). The desired solution is then obtained by evaluating the full-plane

Green’s function (B.23) for each Dirac mass, which yields finally

G(x,y) =
1

2π
ln |y − x| − 1

2π
ln |y − x̄|. (2.19)
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b) Homogeneous Neumann boundary condition

We consider in the problem (2.16) the particular case of a homogeneous Neumann

boundary condition, namely

∂G

∂ny

(x,y) = 0, y ∈ {y2 = 0}, (2.20)

which corresponds to the limit case when the impedance is zero (Z∞ = 0). As in the

previous case, the method of images is again employed, but now the half-plane Green’s

function G has to be symmetric with respect to the axis {y2 = 0}. Therefore, an additional

image source point x̄ = (x1,−x2), located on the lower half-plane, is placed just opposite

to the upper half-plane’s source point x = (x1, x2), but now associated with a positive

Dirac mass. The desired solution is then obtained by evaluating the full-plane Green’s

function (B.23) for each Dirac mass, which yields

G(x,y) =
1

2π
ln |y − x| + 1

2π
ln |y − x̄|. (2.21)

2.3.3 Spectral Green’s function

a) Boundary-value problem

To solve (2.16) in the general case, we use a modified partial Fourier transform on the

horizontal y1-axis, taking advantage of the fact that there is no horizontal variation in the

geometry of the problem. To obtain the corresponding spectral Green’s function, we follow

the same procedure as the one performed in Durán et al. (2005a). We define the forward

Fourier transform of a function F
(
x, (·, y2)

)
: R → C by

F̂ (ξ; y2, x2) =
1√
2π

∫ ∞

−∞
F (x,y) e−iξ(y1−x1) dy1, ξ ∈ R, (2.22)

and its inverse by

F (x,y) =
1√
2π

∫ ∞

−∞
F̂ (ξ; y2, x2) e

iξ(y1−x1) dξ, y1 ∈ R. (2.23)

To ensure a correct integration path for the Fourier transform and correct physical

results, the calculations have to be performed in the framework of the limiting absorption

principle, which allows to treat all the appearing integrals as Cauchy principal values. For

this purpose, we take a small dissipation parameter ε > 0 into account and consider the

problem (2.16) as the limit case when ε→ 0 of the dissipative problem




Find Gε(x, ·) : R
2
+ → C such that

∆yGε(x,y) = δx(y) in D′(R2
+),

∂Gε

∂y2

(x,y) + ZεGε(x,y) = 0 on {y2 = 0},
(2.24)

where Zε = Z∞ + iε. This choice ensures a correct outgoing dissipative surface-wave

behavior. Further references for the application of this principle can be found in Lenoir &
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Martin (1981) and in Hazard & Lenoir (1998). For its application to the finite-depth case,

we refer to Doppel & Hochmuth (1995).

Applying thus the Fourier transform (2.22) on the system (2.24) leads to a linear second

order ordinary differential equation for the variable y2, with prescribed boundary values,

given by 



∂2Ĝε

∂y2
2

(ξ) − ξ2Ĝε(ξ) =
δ(y2 − x2)√

2π
, y2 > 0,

∂Ĝε

∂y2

(ξ) + ZεĜε(ξ) = 0, y2 = 0.

(2.25)

We use the method of undetermined coefficients, and solve the homogeneous differ-

ential equation of the problem (2.25) respectively in the strip {y ∈ R
2
+ : 0 < y2 < x2}

and in the half-plane {y ∈ R
2
+ : y2 > x2}. This gives a solution for Ĝε in each domain,

as a linear combination of two independent solutions of an ordinary differential equation,

namely

Ĝε(ξ) =

{
a e|ξ|y2 + b e−|ξ|y2 for 0 < y2 < x2,

c e|ξ|y2 + d e−|ξ|y2 for y2 > x2.
(2.26)

The unknowns a, b, c, and d, which depend on ξ and x2, are determined through the bound-

ary condition, by imposing continuity, and by assuming an outgoing wave behavior.

b) Spectral Green’s function with dissipation

Now, thanks to (2.26), the computation of Ĝε is straightforward. From the boundary

condition of (2.25) a relation for the coefficients a and b can be derived, which is given by

a
(
Zε + |ξ|

)
+ b
(
Zε − |ξ|

)
= 0. (2.27)

On the other hand, since the solution (2.26) has to be bounded at infinity as y2 → ∞, it

follows then necessarily that

c = 0. (2.28)

To ensure the continuity of the Green’s function at the point y2 = x2, it is needed that

d = a e|ξ|2x2 + b. (2.29)

Using relations (2.27), (2.28), and (2.29) in (2.26), we obtain the expression

Ĝε(ξ) = a e|ξ|x2

[
e−|ξ||y2−x2| −

(
Zε + |ξ|
Zε − |ξ|

)
e−|ξ|(y2+x2)

]
. (2.30)

The remaining unknown coefficient a is determined by replacing (2.30) in the differential

equation of (2.25), taking the derivatives in the sense of distributions, particularly

∂

∂y2

{
e−|ξ||y2−x2|} = −|ξ| sign(y2 − x2) e

−|ξ||y2−x2|, (2.31)

and
∂

∂y2

{
sign(y2 − x2)

}
= 2 δ(y2 − x2). (2.32)
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So, the second derivative of (2.30) becomes

∂2Ĝε

∂y2
2

(ξ) = a e|ξ|x2

[
ξ2e−|ξ||y2−x2| − 2|ξ|δ(y2 − x2) −

(
Zε + |ξ|
Zε − |ξ|

)
ξ2e−|ξ|(y2+x2)

]
. (2.33)

This way, from (2.30) and (2.33) in the first equation of (2.25), we obtain that

a = − e−|ξ|x2

√
8π |ξ|

. (2.34)

Finally, the spectral Green’s function Ĝε with dissipation ε is given by

Ĝε(ξ; y2, x2) = −e
−|ξ||y2−x2|
√

8π |ξ|
+

(
Zε + |ξ|
Zε − |ξ|

)
e−|ξ|(y2+x2)

√
8π |ξ|

. (2.35)

c) Analysis of singularities

To obtain the spectral Green’s function Ĝ without dissipation, the limit ε → 0 has to

be taken in (2.35). This can be done directly wherever the limit is regular and continuous

on ξ. Singular points, on the other hand, have to be analyzed carefully to fulfill correctly

the limiting absorption principle. Thus we study first the singularities of the limit function

before applying this principle, i.e., considering just ε = 0, in which case we have

Ĝ0(ξ) = −e
−|ξ||y2−x2|
√

8π |ξ|
+

(
Z∞ + |ξ|
Z∞ − |ξ|

)
e−|ξ|(y2+x2)

√
8π |ξ|

. (2.36)

Possible singularities for (2.36) may only appear when ξ = 0 or when |ξ| = Z∞, i.e., when

the denominator of the fractions is zero. Otherwise the function is regular and continuous.

For ξ = 0 the function (2.36) is continuous. This can be seen by writing it, analogously

as in Durán, Muga & Nédélec (2006), in the form

Ĝ0(ξ) =
H
(
|ξ|
)

|ξ| , (2.37)

where

H(β) =
1√
8π

(
−e−β |y2−x2| +

Z∞ + β

Z∞ − β
e−β (y2+x2)

)
, β ∈ C. (2.38)

Since H(β) is an analytic function in β = 0, since H(0) = 0, and since

lim
ξ→0

Ĝ0(ξ) = lim
ξ→0

H
(
|ξ|
)
−H(0)

|ξ| = H ′(0), (2.39)

we can easily obtain that

lim
ξ→0

Ĝ0(ξ) =
1√
8π

(
1 +

1

Z∞
+ |y2 − x2| − (y2 + x2)

)
, (2.40)

being thus Ĝ0 bounded and continuous on ξ = 0.

For ξ = Z∞ and ξ = −Z∞, the function (2.36) presents two simple poles, whose

residues are characterized by

lim
ξ→±Z∞

(ξ ∓ Z∞) Ĝ0(ξ) = ∓ 1√
2π

e−Z∞(y2+x2). (2.41)
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To analyze the effect of these singularities, we study now the computation of the inverse

Fourier transform of

ĜP (ξ) =
1√
2π

e−Z∞(y2+x2)

(
1

ξ + Z∞
− 1

ξ − Z∞

)
, (2.42)

which has to be done in the frame of the limiting absorption principle to obtain the correct

physical results, i.e., the inverse Fourier transform has to be understood in the sense of

GP (x,y) = lim
ε→0

{
1

2π
e−Zε(y2+x2)

∫ ∞

−∞

(
1

ξ + Zε
− 1

ξ − Zε

)
eiξ(y1−x1)dξ

}
. (2.43)

To perform correctly the computation of (2.43), we apply the residue theorem of com-

plex analysis (cf., e.g., Arfken & Weber 2005, Bak & Newman 1997, Dettman 1984) on

the complex meromorphic mapping

F (ξ) =

(
1

ξ + ξp
− 1

ξ − ξp

)
eiξ(y1−x1), (2.44)

which admits two simple poles at ξp and −ξp, where Im{ξp} > 0. We consider also the

closed complex integration contours C+
R,ε and C−

R,ε, which are associated respectively with

the values (y1 − x1) ≥ 0 and (y1 − x1) < 0, and are depicted in Figure 2.4.

S+

R

Re{ξ}

Im{ξ}

ξp
ε

R
Sε

−ξp

(a) Contour C+

R,ε

S−

R

Re{ξ}

Im{ξ}

R

Sε

ξp

−ξp

ε

(b) Contour C−

R,ε

FIGURE 2.4. Complex integration contours using the limiting absorption principle.

Since the contoursC+
R,ε andC−

R,ε enclose no singularities, the residue theorem of Cauchy

implies that the respective closed path integrals are zero, i.e.,
∮

C+
R,ε

F (ξ) dξ = 0, (2.45)

and ∮

C−

R,ε

F (ξ) dξ = 0. (2.46)
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By considering (y1 −x1) ≥ 0 and working with the contour C+
R,ε in the upper complex

plane, we obtain from (2.45) that
∫

Re{ξp}

−R
F (ξ) dξ +

∫

Sε

F (ξ) dξ +

∫ R

Re{ξp}
F (ξ) dξ +

∫

S+
R

F (ξ) dξ = 0. (2.47)

Performing the change of variable ξ − ξp = εeiφ for the integral on Sε yields
∫

Sε

F (ξ) dξ = i eiξp(y1−x1)

∫ −π/2

3π/2

(
εeiφ

εeiφ + 2ξp
− 1

)
eε(i cosφ−sinφ)(y1−x1) dφ. (2.48)

By taking then the limit ε→ 0 we obtain

lim
ε→0

∫

Sε

F (ξ) dξ = i2πeiξp(y1−x1). (2.49)

In a similar way, taking ξ = Reiφ for the integral on S+
R yields

∫

S+
R

F (ξ) dξ =

∫ π

0

(
iReiφ

Reiφ + ξp
− iReiφ

Reiφ − ξp

)
eR(i cosφ−sinφ)(y1−x1) dφ. (2.50)

Since |eiR cosφ(y1−x1)| ≤ 1 and R sinφ ≥ 0 for 0 ≤ φ ≤ π, when taking the limit R → ∞
we obtain

lim
R→∞

∫

S+
R

F (ξ) dξ = 0. (2.51)

Thus, taking the limits ε→ 0 and R → ∞ in (2.47) yields
∫ ∞

−∞
F (ξ) dξ = −i2πeiξp(y1−x1), (y1 − x1) ≥ 0. (2.52)

By considering now (y1 − x1) < 0 and working with the contour C−
R,ε in the lower

complex plane, we obtain from (2.46) that
∫

Re{−ξp}

R

F (ξ) dξ +

∫

Sε

F (ξ) dξ +

∫ −R

Re{−ξp}
F (ξ) dξ +

∫

S−

R

F (ξ) dξ = 0. (2.53)

Performing the change of variable ξ + ξp = εeiφ for the integral on Sε yields
∫

Sε

F (ξ) dξ = i e−iξp(y1−x1)

∫ −3π/2

π/2

(
1 − εeiφ

εeiφ − 2ξp

)
eε(i cosφ−sinφ)(y1−x1) dφ. (2.54)

By taking then the limit ε→ 0 we obtain

lim
ε→0

∫

Sε

F (ξ) dξ = −i2πe−iξp(y1−x1). (2.55)

In a similar way, taking ξ = Reiφ for the integral on S−
R yields

∫

S−

R

F (ξ) dξ =

∫ 0

−π

(
iReiφ

Reiφ + ξp
− iReiφ

Reiφ − ξp

)
eR(i cosφ−sinφ)(y1−x1) dφ. (2.56)
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Since |eiR cosφ(y1−x1)| ≤ 1 and R sinφ ≤ 0 for −π ≤ φ ≤ 0, when taking the limit R → ∞
we obtain

lim
R→∞

∫

S−

R

F (ξ) dξ = 0. (2.57)

Thus, taking the limits ε→ 0 and R → ∞ in (2.53) yields
∫ ∞

−∞
F (ξ) dξ = −i2πe−iξp(y1−x1), (y1 − x1) < 0. (2.58)

In conclusion, from (2.52) and (2.58) we obtain that
∫ ∞

−∞
F (ξ) dξ = −i2πeiξp|y1−x1|, (y1 − x1) ∈ R. (2.59)

Using (2.59) for ξp = Z∞ yields then that the inverse Fourier transform of (2.42), when

considering the limiting absorption principle, is given by

GL
P (x,y) = −i e−Z∞(y2+x2)eiZ∞|y1−x1|. (2.60)

We observe that this expression describes the asymptotic behavior of the surface waves,

which are linked to the presence of the poles in the spectral Green’s function.

If the limiting absorption principle is not considered, i.e., if Im{ξp} = 0, then the

inverse Fourier transform of (2.42) could be computed in the sense of the principal value

with the residue theorem by considering, instead of C+
R,ε and C−

R,ε, the contours depicted in

Figure 2.5. In this case we would obtain, instead of (2.59), the quantity
∫ ∞

−∞
F (ξ) dξ = 2π sin

(
ξp|y1 − x1|

)
, (y1 − x1) ∈ R. (2.61)

The inverse Fourier transform of (2.42) would be in this case

GNL
P (x,y) = e−Z∞(y2+x2) sin

(
Z∞|y1 − x1|

)
, (2.62)

which is correct from the mathematical point of view, but yields only a standing surface

wave, and not a desired outgoing progressive surface wave as in (2.60).

S+

R

Re{ξ}

Im{ξ}

ξp

ε

R
S+

ε

−ξp

ε
S+

ε

(a) Contour C+

R,ε

S−

R

Re{ξ}

Im{ξ}

−ξp

ε

R

S−

ε

ξp

ε
S−

ε

(b) Contour C−

R,ε

FIGURE 2.5. Complex integration contours without using the limiting absorption principle.
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The effect of the limiting absorption principle, in the spatial dimension, is then given

by the difference between (2.60) and (2.62), i.e., by

GL(x,y) = GL
P (x,y) −GNL

P (x,y) = −i e−Z∞(y2+x2) cos
(
Z∞(y1 − x1)

)
, (2.63)

whose Fourier transform, and therefore the spectral effect, is given by

ĜL(ξ) = ĜL
P (ξ) − ĜNL

P (ξ) = −i
√
π

2
e−Z∞(y2+x2)

[
δ(ξ − Z∞) + δ(ξ + Z∞)

]
. (2.64)

d) Spectral Green’s function without dissipation

The spectral Green’s function Ĝ without dissipation is therefore obtained by taking the

limit ε → 0 in (2.35) and considering the effect of the limiting absorption principle for the

appearing singularities, summarized in (2.64). Thus we obtain in the sense of distributions

Ĝ(ξ; y2, x2) = − e−|ξ||y2−x2|
√

8π |ξ|
+

(
Z∞ + |ξ|
Z∞ − |ξ|

)
e−|ξ|(y2+x2)

√
8π |ξ|

− i

√
π

2
e−Z∞(y2+x2)

[
δ(ξ − Z∞) + δ(ξ + Z∞)

]
. (2.65)

For our further analysis, this spectral Green’s function is decomposed into four terms

according to

Ĝ = Ĝ∞ + ĜD + ĜL + ĜR, (2.66)

where

Ĝ∞(ξ; y2, x2) = −e
−|ξ||y2−x2|
√

8π |ξ|
, (2.67)

ĜD(ξ; y2, x2) =
e−|ξ|(y2+x2)

√
8π |ξ|

, (2.68)

ĜL(ξ; y2, x2) = −i
√
π

2
e−Z∞(y2+x2)

[
δ(ξ − Z∞) + δ(ξ + Z∞)

]
, (2.69)

ĜR(ξ; y2, x2) =
e−|ξ|(y2+x2)

√
2π
(
Z∞ − |ξ|

) . (2.70)

2.3.4 Spatial Green’s function

a) Spatial Green’s function as an inverse Fourier transform

The desired spatial Green’s function is then given by the inverse Fourier transform of

the spectral Green’s function (2.65), namely by

G(x,y) = − 1

4π

∫ ∞

−∞

e−|ξ||y2−x2|

|ξ| eiξ(y1−x1)dξ

+
1

4π

∫ ∞

−∞

(
Z∞ + |ξ|
Z∞ − |ξ|

)
e−|ξ|(y2+x2)

|ξ| eiξ(y1−x1)dξ

− i e−Z∞(y2+x2) cos
(
Z∞(y1 − x1)

)
. (2.71)

37



Due the linearity of the Fourier transform, the decomposition (2.66) applies also in the

spatial domain, i.e., the spatial Green’s function is decomposed in the same manner by

G = G∞ +GD +GL +GR. (2.72)

b) Term of the full-plane Green’s function

The first term in (2.71) corresponds to the inverse Fourier transform of (2.67), and can

be rewritten as

G∞(x,y) = − 1

2π

∫ ∞

0

e−ξ|y2−x2|

ξ
cos
(
ξ(y1 − x1)

)
dξ. (2.73)

This integral is divergent in the classical sense (cf., e.g. Gradshteyn & Ryzhik 2007, equa-

tion 3.941–2) and has to be understood in the sense of homogeneous distributions (cf.

Gel’fand & Shilov 1964). It can be computed as the primitive of a well-defined and known

integral, e.g., with respect to the y1-variable, namely

∂G∞
∂y1

(x,y) =
1

2π

∫ ∞

0

e−ξ|y2−x2| sin
(
ξ(y1 − x1)

)
dξ =

y1 − x1

2π|y − x|2 . (2.74)

The primitive of (2.74), and therefore the value of (2.73), is readily given by

G∞(x,y) =
1

2π
ln |y − x|, (2.75)

where the integration constant is taken as zero to fulfill the outgoing radiation condition.

We observe that (2.75) is, in fact, the full-plane Green’s function of the Laplace equation.

Thus GD +GL +GR represents the perturbation of the full-plane Green’s function G∞ due

the presence of the impedance half-plane.

c) Term associated with a Dirichlet boundary condition

The inverse Fourier transform of (2.68) is computed in the same manner as the termG∞.

In this case we consider in the sense of homogeneous distributions

GD(x,y) =
1

2π

∫ ∞

0

e−ξ(y2+x2)

ξ
cos
(
ξ(y1 − x1)

)
dξ, (2.76)

which has to be again understood as the primitive of a well-defined integral, e.g., with

respect to the y1-variable, namely

∂GD
∂y1

(x,y) = − 1

2π

∫ ∞

0

e−ξ(y2+x2) sin
(
ξ(y1 − x1)

)
dξ = − y1 − x1

2π|y − x̄|2 , (2.77)

where x̄ = (x1,−x2) corresponds to the image point of x in the lower half-plane. The

primitive of (2.77), and therefore the value of (2.76), is given by

GD(x,y) = − 1

2π
ln |y − x̄|, (2.78)

which represents the additional term that appears in the Green’s function due the method

of images when considering a Dirichlet boundary condition, as in (2.19).
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d) Term associated with the limiting absorption principle

The term GL, the inverse Fourier transform of (2.69), is associated with the effect of

the limiting absorption principle on the Green’s function, and has been already calculated

in (2.63). It yields the imaginary part of the Green’s function, and is given by

GL(x,y) = −i e−Z∞(y2+x2) cos
(
Z∞(y1 − x1)

)
. (2.79)

e) Remaining term

The remaining term GR, the inverse Fourier transform of (2.70), can be computed as

the integral

GR(x,y) =
1

π

∫ ∞

0

e−ξ(y2+x2)

Z∞ − ξ
cos
(
ξ(y1 − x1)

)
dξ. (2.80)

We consider the change of notation

GR(x,y) =
1

π
e−Z∞(y2+x2)GB(x,y), (2.81)

where

GB(x,y) =

∫ ∞

0

e(Z∞−ξ)(y2+x2)

Z∞ − ξ
cos
(
ξ(y1 − x1)

)
dξ. (2.82)

From the derivative of (2.76) and (2.78) with respect to y2 we obtain the relation
∫ ∞

0

e−ξ(y2+x2) cos
(
ξ(y1 − x1)

)
dξ =

y2 + x2

|y − x̄|2 . (2.83)

Consequently we have for the y2-derivative of GB that

∂GB
∂y2

(x,y) = eZ∞(y2+x2)

∫ ∞

0

e−ξ(y2+x2) cos
(
ξ(y1 − x1)

)
dξ

=
y2 + x2

|y − x̄|2 e
Z∞(y2+x2). (2.84)

The value of the inverse Fourier transform (2.80) can be thus obtained by means of the

primitive with respect to y2 of (2.84), i.e.,

GR(x,y) =
1

π
e−Z∞(y2+x2)

∫ y2+x2

−∞

η eZ∞η

(y1 − x1)2 + η2
dη. (2.85)

An integration by parts (or using the term associated with a Neumann instead of a Dirichlet

boundary condition) would yield similar expressions for the Green’s function as those de-

rived by Greenberg (1971, page 86) and Dautray & Lions (1987, volume 2, page 745), who

adapt the method of Moran (1964) and do not consider the limiting absorption principle.

It is noteworthy that the value of the primitive in (2.85) has an explicit expression. To

see this, we start again with the computation by rewriting (2.80) as

GR(x,y) =
1

2π

∫ ∞

0

e−ξ(y2+x2)

Z∞ − ξ

(
eiξ(y1−x1) + e−iξ(y1−x1)

)
dξ. (2.86)

By performing the change of variable η = ξ − Z∞, and by defining

v1 = y1 − x1 and v2 = y2 + x2, (2.87)
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we obtain

GR(x,y) = −e
−Z∞v2

2π

(
eiZ∞v1

∫ ∞

−Z∞

e−(v2−iv1)η

η
dη + e−iZ∞v1

∫ ∞

−Z∞

e−(v2+iv1)η

η
dη

)
. (2.88)

Redefining the integration limits inside the complex plane by replacing respectively in the

integrals ζ = η(v2 − iv1) and ζ = η(v2 + iv1), yields

GR(x,y) = −e
−Z∞v2

2π

(
eiZ∞v1

∫

L−

e−ζ

ζ
dζ + e−iZ∞v1

∫

L+

e−ζ

ζ
dζ

)
, (2.89)

where the integration curves L− and L+ are the half-lines depicted in Figure 2.6. We

observe that these integrals correspond to the exponential integral function (A.57) with

complex arguments. This special function is defined as a Cauchy principal value by

Ei(z) = −−
∫ ∞

−z

e−t

t
dt = −

∫ z

−∞

et

t
dt

(
| arg z| < π

)
, (2.90)

and it can be characterized in the whole complex plane by means of the series expansion

Ei(z) = γ + ln z +
∞∑

n=1

zn

nn!

(
| arg z| < π

)
, (2.91)

where γ denotes Euler’s constant (A.43) and where the principal value of the logarithm is

taken. Its derivative is readily given by

d

dz
Ei(z) =

ez

z
. (2.92)

Further details on the exponential integral function can be found in Subsection A.2.3. Thus

the inverse Fourier transform of the remaining term is given by

GR(x,y) =
e−Z∞(y2+x2)

2π

{
eiZ∞(y1−x1) Ei

(
Z∞
(
(y2 + x2) − i(y1 − x1)

))

+ e−iZ∞(y1−x1) Ei
(
Z∞
(
(y2 + x2) + i(y1 − x1)

))}
. (2.93)

Re{ζ}

Im{ζ}

−Z∞v2

Z∞v1

L−

(a) Half-line L−

Re{ζ}

Im{ζ}

−Z∞v2

−Z∞v1

L+

(b) Half-line L+

FIGURE 2.6. Complex integration curves for the exponential integral function.
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f) Complete spatial Green’s function

The desired complete spatial Green’s function is finally obtained, as stated in (2.72),

by adding the terms (2.75), (2.78), (2.79), and (2.93). It is depicted graphically for Z∞ = 1

and x = (0, 2) in Figures 2.7 & 2.8, and given explicitly by

G(x,y) =
1

2π
ln |y − x| − 1

2π
ln |y − x̄| − i e−Z∞(y2+x2) cos

(
Z∞(y1 − x1)

)

+
e−Z∞(y2+x2)

2π

{
eiZ∞(y1−x1) Ei

(
Z∞
(
(y2 + x2) − i(y1 − x1)

))

+ e−iZ∞(y1−x1) Ei
(
Z∞
(
(y2 + x2) + i(y1 − x1)

))}
. (2.94)
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FIGURE 2.7. Contour plot of the complete spatial Green’s function.
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FIGURE 2.8. Oblique view of the complete spatial Green’s function.
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By using the notation (2.87), this can be equivalently and more compactly expressed as

G(x,y) =
1

2π
ln |y − x| − 1

2π
ln |y − x̄| − i e−Z∞v2 cos(Z∞v1)

+
e−Z∞v2

2π

{
eiZ∞v1 Ei

(
Z∞(v2 − iv1)

)
+ e−iZ∞v1 Ei

(
Z∞(v2 + iv1)

)}
. (2.95)

Its gradient can be computed straightforwardly and is given by

∇yG(x,y) =
y − x

2π|y − x|2 +
y − x̄

2π|y − x̄|2 + iZ∞e
−Z∞v2

[
sin(Z∞v1)

cos(Z∞v1)

]

− Z∞
2π

e−Z∞v2

{[−i
1

]
eiZ∞v1 Ei

(
Z∞(v2 − iv1)

)
+

[
i

1

]
e−iZ∞v1 Ei

(
Z∞(v2 + iv1)

)}
. (2.96)

We can likewise define a gradient with respect to the x variable by

∇xG(x,y) =
x − y

2π|x − y|2 +
x − ȳ

2π|x − ȳ|2 + iZ∞e
−Z∞v2

[− sin(Z∞v1)

cos(Z∞v1)

]

− Z∞
2π

e−Z∞v2

{[−i
1

]
e−iZ∞v1 Ei

(
Z∞(v2 + iv1)

)
+

[
i

1

]
eiZ∞v1 Ei

(
Z∞
(
v2 − iv1)

)}
, (2.97)

and a double-gradient matrix by

∇x∇yG(x,y) = − I

2π|x − y|2 +
(x − y) ⊗ (x − y)

π|x − y|4 +
(x − ȳ) ⊗ (x̄ − y)

π|x − ȳ|4

− Ī

2π|x − ȳ|2 − iZ2
∞e

−Z∞v2

[
cos(Z∞v1) − sin(Z∞v1)

sin(Z∞v1) cos(Z∞v1)

]

+
Z2

∞
2π

e−Z∞v2

{[
1 i

−i 1

]
e−iZ∞v1 Ei

(
Z∞(v2 + iv1)

)

+

[
1 −i
i 1

]
eiZ∞v1 Ei

(
Z∞(v2 − iv1)

)}
− Z∞
π|x − ȳ|2

[
v2 −v1

v1 v2

]
, (2.98)

where ȳ = (y1,−y2) and x̄ = (x1,−x2), where I denotes the 2 × 2 identity matrix and Ī

the 2 × 2 image identity matrix, given by

Ī =

[
1 0

0 −1

]
, (2.99)

and where ⊗ denotes the dyadic or outer product of two vectors, which results in a matrix

and is defined in (A.573).

2.3.5 Extension and properties

The half-plane Green’s function can be extended in a locally analytic way towards

the full-plane R
2 in a straightforward and natural manner, just by considering the expres-

sion (2.94) valid for all x,y ∈ R
2, instead of just for R

2
+. This extension possesses two

singularities of logarithmic type at the points x and x̄, and is continuous otherwise. The

behavior of these singularities is characterized by

G(x,y) ∼ 1

2π
ln |y − x|, y −→ x, (2.100)
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G(x,y) ∼ 1

2π
ln |y − x̄|, y −→ x̄. (2.101)

For the y1-derivative there appears a jump across the half-line Υ = {y1 = x1, y2 < −x2},

due the effect of the analytic branch cut of the exponential integral functions, shown in

Figure 2.9. We denote this jump by

J(x,y) = lim
y1→x+

1

{
∂G

∂y1

}
− lim

y1→x−1

{
∂G

∂y1

}
=

∂G

∂y+
1

∣∣∣∣
y1=x1

− ∂G

∂y−1

∣∣∣∣
y1=x1

. (2.102)

{y2 = 0}
y1

y2
R

2

n

x = (x1, x2)

x̄ = (x1,−x2)

Υ

FIGURE 2.9. Domain of the extended Green’s function.

Since the singularity of the exponential integral function is of logarithmic type, and since

the analytic branch cuts of the logarithms fulfill, due (A.21) and for all v2 < 0,

lim
ε→0+

{
ln(v2 + iε) − ln(v2 − iε)

}
− lim

ε→0−

{
ln(v2 + iε) − ln(v2 − iε)

}
= 4πi, (2.103)

therefore we can easily derive from (2.96) that the jump has a value of

J(x,y) = 2Z∞e
−Z∞(y2+x2). (2.104)

We remark that the Green’s function (2.94) itself and its y2-derivative are continuous across

the half-line Υ, since for v2 < 0 the analytic branch cuts cancel out and it holds that

lim
ε→0+

{
ln(v2 + iε) + ln(v2 − iε)

}
− lim

ε→0−

{
ln(v2 + iε) + ln(v2 − iε)

}
= 0. (2.105)

As long as x2 6= 0, it is clear that the impedance boundary condition in (2.16) continues

to be homogeneous. Nonetheless, if the source point x lies on the half-plane’s boundary,

i.e., if x2 = 0, then the boundary condition ceases to be homogeneous in the sense of

distributions. This can be deduced from the expression (2.71) by verifying that

lim
y2→0+

{
∂G

∂y2

(
(x1, 0),y

)
+ Z∞G

(
(x1, 0),y

)}
= δx1(y1). (2.106)

Since the impedance boundary condition holds only on {y2 = 0}, therefore the right-hand

side of (2.106) can be also expressed by

δx1(y1) =
1

2
δx(y) +

1

2
δx̄(y), (2.107)

which illustrates more clearly the contribution of each logarithmic singularity to the Dirac

mass in the boundary condition.
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It can be seen now that the Green’s function extended in the abovementioned way

satisfies, for x ∈ R
2, in the sense of distributions, and instead of (2.16), the problem





Find G(x, ·) : R
2 → C such that

∆yG(x,y) = δx(y) + δx̄(y) + J(x,y)δΥ(y) in D′(R2),

∂G

∂y2

(x,y) + Z∞G(x,y) =
1

2
δx(y) +

1

2
δx̄(y) on {y2 = 0},

+ Outgoing radiation condition for y ∈ R
2
+ as |y| → ∞,

(2.108)

where δΥ denotes a Dirac mass distribution along the Υ-curve. We retrieve thus the known

result that for an impedance boundary condition the image of a point source is a point

source plus a half-line of sources with exponentially increasing strengths in the lower half-

plane, and which extends from the image point source towards infinity along the half-

plane’s normal direction (cf. Keller 1979, who refers to decreasing strengths when dealing

with the opposite half-plane).

We note that the half-plane Green’s function (2.94) is symmetric in the sense that

G(x,y) = G(y,x) ∀x,y ∈ R
2, (2.109)

and it fulfills similarly

∇yG(x,y) = ∇yG(y,x) and ∇xG(x,y) = ∇xG(y,x). (2.110)

Another property is that we retrieve the special case (2.19) of a homogenous Dirichlet

boundary condition in R
2
+ when Z∞ → ∞. Likewise, we retrieve the special case (2.21) of

a homogenous Neumann boundary condition in R
2
+ when Z∞ → 0, except for an additive

constant due the extra term (2.79) that can be disregarded.

At last, we observe that the expression for the Green’s function (2.94) is still valid

if a complex impedance Z∞ ∈ C such that Im{Z∞} > 0 and Re{Z∞} ≥ 0 is used,

which holds also for its derivatives (2.96), (2.97), and (2.98). The analytic branch cuts of

the logarithms that are contained in the exponential integral functions, though, have to be

treated very carefully in this case, since they have to stay on the negative v2-axis, i.e., on the

half-line Υ. A straightforward evaluation of these logarithms with a complex impedance

rotates the cuts in the (v1, v2)-plane and generates thus two discontinuous half-lines for the

Green’s function in the half-plane v2 < 0. This undesired behavior of the branch cuts can

be avoided if the complex logarithms are taken in the sense of

ln
(
Z∞(v2 − iv1)

)
= ln(v2 − iv1) + ln(Z∞), (2.111)

ln
(
Z∞(v2 + iv1)

)
= ln(v2 + iv1) + ln(Z∞), (2.112)

where the principal value is considered for the logarithms on the right-hand side. For the

remaining terms of the Green’s function, the complex impedance Z∞ can be evaluated

straightforwardly without any problems.

On the account of performing the numerical evaluation of the exponential integral func-

tion for complex arguments, we mention the algorithm developed by Amos (1980, 1990a,b)
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and the software based on the technical report by Morris (1993), taking care with the defi-

nition of the analytic branch cuts. Further references are listed in Lozier & Olver (1994).

2.3.6 Complementary Green’s function

The complementary Green’s function is the Green’s function that corresponds to the

lower half-plane R
2
− = {(y1, y2) ∈ R

2 | y2 < 0}. We denote it by G̃ and it satisfies,

for x ∈ R
2
− and instead of (2.16), the problem





Find G̃(x, ·) : R
2
− → C such that

∆yG̃(x,y) = δx(y) in D′(R2
−),

−∂G̃

∂y2

(x,y) + Z∞G̃(x,y) = 0 on {y2 = 0},

+ Outgoing radiation condition as |y| → ∞.

(2.113)

The radiation condition, which considers outgoing surface waves and an exponential de-

crease towards the lower half-plane R
2
−, is given in this case as |y| → ∞ by





∣∣G̃
∣∣ ≤ C

|y| and

∣∣∣∣∣
∂G̃

∂ry

∣∣∣∣∣ ≤
C

|y|2 if y2 < − 1

Z∞
ln
(
1 + Z∞π|y|

)
,

∣∣G̃
∣∣ ≤ C and

∣∣∣∣∣
∂G̃

∂ry
− iZ∞G̃

∣∣∣∣∣ ≤
C

|y| if y2 ≥ − 1

Z∞
ln
(
1 + Z∞π|y|

)
,

(2.114)

for some constants C > 0, which are independent of r = |y|. This Green’s function is

given explicitly by

G̃(x,y) =
1

2π
ln |y − x| − 1

2π
ln |y − x̄| − i eZ∞(y2+x2) cos

(
Z∞(y1 − x1)

)

+
eZ∞(y2+x2)

2π

{
eiZ∞(y1−x1) Ei

(
Z∞
(
− (y2 + x2) − i(y1 − x1)

))

+ e−iZ∞(y1−x1) Ei
(
Z∞
(
− (y2 + x2) + i(y1 − x1)

))}
. (2.115)

It can be extended towards the full-plane R
2 in the same way as done before, i.e., just by

considering the expression (2.115) valid for all x,y ∈ R
2. Since

|ȳ − x̄| = |y − x| and |ȳ − x| = |y − x̄|, (2.116)

therefore the complementary Green’s function can be characterized by

G̃(x,y) = G(x̄, ȳ) ∀x,y ∈ R
2. (2.117)

The logarithmic singularities are the same as before, i.e., (2.100) and (2.101) continue to

be true, but now the y1-derivative has a jump along the half-line Υ̃ = {y1 = x1, y2 > x2},

which instead of (2.104) adopts a value of

J̃(x,y) = J(x̄, ȳ) = 2Z∞e
Z∞(y2+x2). (2.118)
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2.4 Far field of the Green’s function

2.4.1 Decomposition of the far field

The far field of the Green’s function, which we denote by Gff, describes its asymptotic

behavior at infinity, i.e., when |x| → ∞ and assuming that y is fixed. For this purpose,

the terms of highest order at infinity are searched. Likewise as done for the radiation con-

dition, the far field can be decomposed into two parts, each acting on a different region as

shown in Figure 2.2. The first part, denoted by Gff
A , is linked with the asymptotic decaying

condition at infinity observed when dealing with bounded obstacles, and acts in the interior

of the half-plane while vanishing near its boundary. The second part, denoted by Gff
S , is

associated with surface waves that propagate along the boundary towards infinity, which

decay exponentially towards the half-plane’s interior. We have thus that

Gff = Gff
A +Gff

S . (2.119)

2.4.2 Asymptotic decaying

The asymptotic decaying acts only in the interior of the half-plane and is related to

the logarithmic terms in (2.94), and also to the asymptotic behavior as x2 → ∞ of the

exponential integral terms. In fact, due (A.81) we have for z ∈ C that

Ei(z) ∼ ez

z
as Re{z} → ∞. (2.120)

By considering the behavior (2.120) in (2.94) and by neglecting the exponentially decreas-

ing terms as x2 → ∞, we obtain that

G(x,y) ∼ 1

2π
ln |x − y| − 1

2π
ln |x − ȳ| + x2 + y2

Z∞π|x − ȳ|2 , (2.121)

being ȳ = (y1,−y2). The logarithm can be expanded according to

ln |x−y| =
1

2
ln
(
|x|2

)
+

1

2
ln

( |x − y|2
|x|2

)
= ln |x|+1

2
ln

(
1 − 2

y · x
|x|2 +

|y|2
|x|2

)
. (2.122)

Using a Taylor expansion for the logarithm around one yields

ln |x − y| = ln |x| − y · x
|x|2 + O

(
1

|x|2
)
. (2.123)

Analogously, since |x| = |x̄|, we have that

ln |y − x̄| = ln |x − ȳ| = ln |x| − ȳ · x
|x|2 + O

(
1

|x|2
)
. (2.124)

Therefore it holds for the two logarithmic terms that

1

2π
ln |y − x| − 1

2π
ln |y − x̄| = −(y − ȳ) · x

2π|x|2 + O
(

1

|x|2
)
. (2.125)

By using another Taylor expansion, it holds that

1

|x − ȳ|2 =
1

|x|2
(

1 − 2
x · ȳ
|x|2 +

|ȳ|2
|x|2

)−1

=
1

|x|2 + O
(

1

|x|3
)
, (2.126)
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and therefore
x2 + y2

Z∞π|x − ȳ|2 =
x2

Z∞π|x|2
+ O

(
1

|x|2
)
. (2.127)

We express the point x as x = |x| x̂, being x̂ = (cos θ, sin θ) a unitary vector. Hence,

from (2.121) and due (2.125) and (2.127), the asymptotic decaying of the Green’s function

is given by

Gff
A (x,y) =

sin θ

Z∞π|x|
(1 − Z∞y2). (2.128)

Similarly, we have for its gradient with respect to y, that

∇yG
ff
A (x,y) = − sin θ

Z∞π|x|

[
0

Z∞

]
, (2.129)

for its gradient with respect to x, that

∇xG
ff
A (x,y) =

1 − Z∞y2

Z∞π|x|2
[− sin(2θ)

cos(2θ)

]
, (2.130)

and for its double-gradient matrix, that

∇x∇yG
ff
A (x,y) = − 1

π|x|2
[

0 − sin(2θ)

0 cos(2θ)

]
. (2.131)

2.4.3 Surface waves in the far field

An expression for the surface waves in the far field can be obtained by studying the

residues of the poles of the spectral Green’s function, which determine entirely their as-

ymptotic behavior. We already computed the inverse Fourier transform of these residues

in (2.60), using the residue theorem of Cauchy and the limiting absorption principle. This

implies that the Green’s function behaves asymptotically, when |x1| → ∞, as

G(x,y) ∼ −i e−Z∞(x2+y2)eiZ∞|x1−y1|. (2.132)

Analogous computations for the Helmholtz equation, and more detailed, can be found in

Durán, Muga & Nédélec (2005a, 2006). Similarly as in (C.36), we can use Taylor expan-

sions to obtain the estimate

|x1 − y1| = |x1| − y1 signx1 + O
(

1

|x1|

)
. (2.133)

Therefore, as for (C.38), we have that

eiZ∞|x1−y1| = eiZ∞|x1|e−iZ∞y1 signx1

(
1 + O

(
1

|x1|

))
. (2.134)

The surface-wave behavior of the Green’s function, due (2.132) and (2.134), becomes thus

Gff
S (x,y) = −i e−Z∞x2eiZ∞|x1|e−Z∞y2e−iZ∞y1 signx1 . (2.135)

Similarly, we have for its gradient with respect to y, that

∇yG
ff
S (x,y) = −Z∞e

−Z∞x2eiZ∞|x1|e−Z∞y2e−iZ∞y1 signx1

[
signx1

−i

]
, (2.136)
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for its gradient with respect to x, that

∇xG
ff
S (x,y) = Z∞e

−Z∞x2eiZ∞|x1|e−Z∞y2e−iZ∞y1 signx1

[
signx1

i

]
, (2.137)

and for its double-gradient matrix, that

∇x∇yG
ff
S (x,y) = −Z2

∞e
−Z∞x2eiZ∞|x1|e−Z∞y2e−iZ∞y1 signx1

[
i signx1

− signx1 i

]
. (2.138)

2.4.4 Complete far field of the Green’s function

On the whole, the asymptotic behavior of the Green’s function as |x| → ∞ can be

characterized through the addition of (2.121) and (2.132), namely

G(x,y) ∼ 1

2π
ln |x − y| − 1

2π
ln |x − ȳ| + x2 + y2

Z∞π|x − ȳ|2
− i e−Z∞(x2+y2)eiZ∞|x1−y1|. (2.139)

Consequently, the complete far field of the Green’s function, due (2.119), is given by the

addition of (2.128) and (2.135), i.e., by

Gff (x,y) =
sin θ

Z∞π|x|
(1 − Z∞y2) − i e−Z∞x2eiZ∞|x1|e−Z∞y2e−iZ∞y1 signx1 . (2.140)

The expressions for its derivatives can be obtained by considering the corresponding addi-

tions of (2.129) and (2.136), of (2.130) and (2.137), and finally of (2.131) and (2.138).

It is this far field (2.140) that justifies the radiation condition (2.17) when exchanging

the roles of x and y. When the first term in (2.140) dominates, i.e., the asymptotic de-

caying (2.128), then it is the first expression in (2.17) that matters. Conversely, when the

second term in (2.140) dominates, i.e., the surface waves (2.135), then the second expres-

sion in (2.17) is the one that holds. The interface between both asymptotic behaviors can

be determined by equating the amplitudes of the two terms in (2.140), i.e., by searching

values of x at infinity such that

1

Z∞π|x|
= e−Z∞x2 , (2.141)

where the values of y can be neglected, since they remain relatively near the origin. By

taking the logarithm in (2.141) and perturbing somewhat the result so as to avoid a singular

behavior at the origin, we obtain finally that this interface is described by

x2 =
1

Z∞
ln
(
1 + Z∞π|x|

)
. (2.142)

We remark that the asymptotic behavior (2.139) of the Green’s function and the expres-

sion (2.140) of its complete far field do no longer hold if a complex impedance Z∞ ∈ C

such that Im{Z∞} > 0 and Re{Z∞} ≥ 0 is used, specifically the parts (2.132) and (2.135)

linked with the surface waves. A careful inspection shows that in this case the surface-wave
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behavior of the Green’s function, as |x1| → ∞, decreases exponentially and is given by

G(x,y) ∼
{

−i e−|Z∞|(x2+y2)eiZ∞|x1−y1| if (x2 + y2) > 0,

−i e−Z∞(x2+y2)eiZ∞|x1−y1| if (x2 + y2) ≤ 0.
(2.143)

Therefore the surface-wave part of the far field can be now expressed as

Gff
S (x,y) =

{
−i e−|Z∞|x2eiZ∞|x1|e−|Z∞| y2e−iZ∞y1 signx1 if x2 > 0,

−i e−Z∞x2eiZ∞|x1|e−Z∞y2e−iZ∞y1 signx1 if x2 ≤ 0.
(2.144)

The asymptotic decaying (2.121) and its far-field expression (2.128), on the other hand,

remain the same when we use a complex impedance. We remark further that if a complex

impedance is taken into account, then the part of the surface waves of the outgoing radiation

condition is redundant, and only the asymptotic decaying part is required, i.e., only the first

two expressions in (2.17), but now holding for y2 > 0.

2.5 Integral representation and equation

2.5.1 Integral representation

We are interested in expressing the solution u of the direct scattering problem (2.13) by

means of an integral representation formula over the perturbed portion of the boundary Γp.

For this purpose, we extend this solution by zero towards the complementary domain Ωc,

analogously as done in (B.124). We define by ΩR,ε the domain Ωe without the ball Bε of

radius ε > 0 centered at the point x ∈ Ωe, and truncated at infinity by the ball BR of

radius R > 0 centered at the origin. We consider that the ball Bε is entirely contained

in Ωe. Therefore, as shown in Figure 2.10, we have that

ΩR,ε =
(
Ωe ∩BR

)
\Bε, (2.145)

where

BR = {y ∈ R
2 : |y| < R} and Bε = {y ∈ Ωe : |y − x| < ε}. (2.146)

We consider similarly, inside Ωe, the boundaries of the balls

S+
R = {y ∈ R

2
+ : |y| = R} and Sε = {y ∈ Ωe : |y − x| = ε}. (2.147)

We separate furthermore the boundary as Γ = Γ0 ∪ Γ+, where

Γ0 = {y ∈ Γ : y2 = 0} and Γ+ = {y ∈ Γ : y2 > 0}. (2.148)

The boundary Γ is likewise truncated at infinity by the ball BR, namely

ΓR = Γ ∩BR = ΓR0 ∪ Γ+ = ΓR∞ ∪ Γp, (2.149)

where

ΓR0 = Γ0 ∩BR and ΓR∞ = Γ∞ ∩BR. (2.150)

The idea is to retrieve the domain Ωe and the boundary Γ at the end when the limitsR → ∞
and ε→ 0 are taken for the truncated domain ΩR,ε and the truncated boundary ΓR.
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ΩR,ε
S+

R
n = r

x
ε

R
Sε

On

Γ+

Γ0
RΓ0

R

FIGURE 2.10. Truncated domain ΩR,ε for x ∈ Ωe.

We apply now Green’s second integral theorem (A.613) to the functions u and G(x, ·)
in the bounded domain ΩR,ε, yielding

0 =

∫

ΩR,ε

(
u(y)∆yG(x,y) −G(x,y)∆u(y)

)
dy

=

∫

S+
R

(
u(y)

∂G

∂ry
(x,y) −G(x,y)

∂u

∂r
(y)

)
dγ(y)

−
∫

Sε

(
u(y)

∂G

∂ry
(x,y) −G(x,y)

∂u

∂r
(y)

)
dγ(y)

+

∫

ΓR

(
u(y)

∂G

∂ny

(x,y) −G(x,y)
∂u

∂n
(y)

)
dγ(y). (2.151)

The integral on S+
R can be rewritten as

∫

S2
R

[
u(y)

(
∂G

∂ry
(x,y) − iZ∞G(x,y)

)
−G(x,y)

(
∂u

∂r
(y) − iZ∞u(y)

)]
dγ(y)

+

∫

S1
R

(
u(y)

∂G

∂ry
(x,y) −G(x,y)

∂u

∂r
(y)

)
dγ(y), (2.152)

which for R large enough and due the radiation condition (2.6) tends to zero, since
∣∣∣∣∣

∫

S2
R

u(y)

(
∂G

∂ry
(x,y) − iZ∞G(x,y)

)
dγ(y)

∣∣∣∣∣ ≤
C

R
lnR, (2.153)

∣∣∣∣∣

∫

S2
R

G(x,y)

(
∂u

∂r
(y) − iZ∞u(y)

)
dγ(y)

∣∣∣∣∣ ≤
C

R
lnR, (2.154)

and ∣∣∣∣∣

∫

S1
R

(
u(y)

∂G

∂ry
(x,y) −G(x,y)

∂u

∂r
(y)

)
dγ(y)

∣∣∣∣∣ ≤
C

R2
, (2.155)

for some constants C > 0. If the function u is regular enough in the ball Bε, then the

second term of the integral on Sε in (2.151), when ε→ 0 and due (2.100), is bounded by
∣∣∣∣
∫

Sε

G(x,y)
∂u

∂r
(y) dγ(y)

∣∣∣∣ ≤ Cε ln ε sup
y∈Bε

∣∣∣∣
∂u

∂r
(y)

∣∣∣∣, (2.156)
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for some constant C > 0 and tends to zero. The regularity of u can be specified afterwards

once the integral representation has been determined and generalized by means of density

arguments. The first integral term on Sε can be decomposed as
∫

Sε

u(y)
∂G

∂ry
(x,y) dγ(y) = u(x)

∫

Sε

∂G

∂ry
(x,y) dγ(y)

+

∫

Sε

∂G

∂ry
(x,y)

(
u(y) − u(x)

)
dγ(y), (2.157)

For the first term in the right-hand side of (2.157), by considering (2.100) we have that
∫

Sε

∂G

∂ry
(x,y) dγ(y) −−−→

ε→0
1, (2.158)

while the second term is bounded by
∣∣∣∣
∫

Sε

(
u(y) − u(x)

)∂G
∂ry

(x,y) dγ(y)

∣∣∣∣ ≤ sup
y∈Bε

|u(y) − u(x)|, (2.159)

which tends towards zero when ε → 0. Finally, due the impedance boundary condi-

tion (2.4) and since the support of fz vanishes on Γ∞, the term on ΓR in (2.151) can be

decomposed as
∫

Γp

(
∂G

∂ny

(x,y) − Z(y)G(x,y)

)
u(y) dγ(y) +

∫

Γp

G(x,y)fz(y) dγ(y)

−
∫

ΓR
∞

(
∂G

∂y2

(x,y) + Z∞G(x,y)

)
u(y) dγ(y), (2.160)

where the integral on ΓR∞ vanishes due the impedance boundary condition in (2.16). There-

fore this term does not depend on R and has its support only on the bounded and perturbed

portion Γp of the boundary.

In conclusion, when the limits R → ∞ and ε→ 0 are taken in (2.151), then we obtain

for x ∈ Ωe the integral representation formula

u(x) =

∫

Γp

(
∂G

∂ny

(x,y) − Z(y)G(x,y)

)
u(y) dγ(y) +

∫

Γp

G(x,y)fz(y) dγ(y), (2.161)

which can be alternatively expressed as

u(x) =

∫

Γp

(
u(y)

∂G

∂ny

(x,y) −G(x,y)
∂u

∂n
(y)

)
dγ(y). (2.162)

It is remarkable in this integral representation that the support of the integral, namely the

curve Γp, is bounded. Let us denote the traces of the solution and of its normal derivative

on Γp respectively by

µ = u|Γp and ν =
∂u

∂n

∣∣∣∣
Γp

. (2.163)

We can rewrite now (2.161) and (2.162) in terms of layer potentials as

u = D(µ) − S(Zµ) + S(fz) in Ωe, (2.164)

u = D(µ) − S(ν) in Ωe, (2.165)
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where we define for x ∈ Ωe respectively the single and double layer potentials as

Sν(x) =

∫

Γp

G(x,y)ν(y) dγ(y), (2.166)

Dµ(x) =

∫

Γp

∂G

∂ny

(x,y)µ(y) dγ(y). (2.167)

We remark that from the impedance boundary condition (2.4) it is clear that

ν = Zµ− fz. (2.168)

2.5.2 Integral equation

To determine entirely the solution of the direct scattering problem (2.13) by means

of its integral representation, we have to find values for the traces (2.163). This requires

the development of an integral equation that allows to fix these values by incorporating the

boundary data. For this purpose we place the source point x on the boundary Γ, as shown in

Figure 2.11, and apply the same procedure as before for the integral representation (2.161),

treating differently in (2.151) only the integrals on Sε. The integrals on S+
R still behave well

and tend towards zero as R → ∞. The Ball Bε, though, is split in half by the boundary Γ,

and the portion Ωe ∩ Bε is asymptotically separated from its complement in Bε by the

tangent of the boundary if Γ is regular. If x ∈ Γ+, then the associated integrals on Sε
give rise to a term −u(x)/2 instead of just −u(x) as before for the integral representation.

Therefore we obtain for x ∈ Γ+ the boundary integral representation

u(x)

2
=

∫

Γp

(
∂G

∂ny

(x,y) − Z(y)G(x,y)

)
u(y) dγ(y) +

∫

Γp

G(x,y)fz(y) dγ(y). (2.169)

On the contrary, if x ∈ Γ0, then the logarithmic behavior (2.101) contributes also to the

singularity (2.100) of the Green’s function and the integrals on Sε give now rise to two

terms −u(x)/2, i.e., on the whole to a term −u(x). For x ∈ Γ0 the boundary integral

representation is instead given by

u(x) =

∫

Γp

(
∂G

∂ny

(x,y) − Z(y)G(x,y)

)
u(y) dγ(y) +

∫

Γp

G(x,y)fz(y) dγ(y). (2.170)

We must notice that in both cases, the integrands associated with the boundary Γ admit an

integrable singularity at the point x. In terms of boundary layer potentials, we can express

these boundary integral representations as

u

2
= D(µ) − S(Zµ) + S(fz) on Γ+, (2.171)

u = D(µ) − S(Zµ) + S(fz) on Γ0, (2.172)

where we consider, for x ∈ Γ, the two boundary integral operators

Sν(x) =

∫

Γp

G(x,y)ν(y) dγ(y), (2.173)

Dµ(x) =

∫

Γp

∂G

∂ny

(x,y)µ(y) dγ(y). (2.174)
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We can combine (2.171) and (2.172) into a single integral equation on Γp, namely

(1 + I0)
µ

2
+ S(Zµ) −D(µ) = S(fz) on Γp, (2.175)

where I0 denotes the characteristic or indicator function of the set Γ0, i.e.,

I0(x) =

{
1 if x ∈ Γ0,

0 if x /∈ Γ0.
(2.176)

It is the solution µ on Γp of the integral equation (2.175) which finally allows to char-

acterize the solution u in Ωe of the direct scattering problem (2.13) through the integral

representation formula (2.164). The trace of the solution u on the boundary Γ is then found

simultaneously by means of the boundary integral representations (2.171) and (2.172). In

particular, when x ∈ Γ∞ and since Γ∞ ⊂ Γ0, therefore it holds that

u = D(µ) − S(Zµ) + S(fz) on Γ∞. (2.177)

ΩR,ε
S+

R
n = r

x
ε

R

Sε

On

Γ+

Γ0
RΓ0

R

FIGURE 2.11. Truncated domain ΩR,ε for x ∈ Γ.

2.6 Far field of the solution

The asymptotic behavior at infinity of the solution u of (2.13) is described by the far

field. It is denoted by uff and is characterized by

u(x) ∼ uff (x) as |x| → ∞. (2.178)

Its expression can be deduced by replacing the far field of the Green’s function Gff and its

derivatives in the integral representation formula (2.162), which yields

uff (x) =

∫

Γp

(
∂Gff

∂ny

(x,y)µ(y) −Gff (x,y)ν(y)

)
dγ(y). (2.179)

By replacing now (2.140) and the addition of (2.129) and (2.136) in (2.179), we obtain that

uff (x) = − sin θ

Z∞π|x|

∫

Γp

([
0

Z∞

]
· ny µ(y) + (1 − Z∞y2)ν(y)

)
dγ(y)

− e−Z∞x2eiZ∞|x1|
∫

Γp

e−Z∞y2e−iZ∞y1 signx1

(
Z∞

[
signx1

−i

]
· ny µ(y) − iν(y)

)
dγ(y).(2.180)
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The asymptotic behavior of the solution u at infinity, as |x| → ∞, is therefore given by

u(x) =
1

|x|

{
uA∞(x̂) + O

(
1

|x|

)}
+ e−Z∞x2eiZ∞|x1|

{
uS∞(x̂s) + O

(
1

|x1|

)}
, (2.181)

where x̂s = signx1 and where we decompose x = |x| x̂, being x̂ = (cos θ, sin θ) a vector

of the unit circle. The far-field pattern of the asymptotic decaying is given by

uA∞(x̂) = − sin θ

Z∞π

∫

Γp

([
0

Z∞

]
· ny µ(y) + (1 − Z∞y2)ν(y)

)
dγ(y), (2.182)

whereas the far-field pattern for the surface waves adopts the form

uS∞(x̂s) =

∫

Γp

e−Z∞y2e−iZ∞y1signx1

(
Z∞

[− signx1

i

]
· ny µ(y) + iν(y)

)
dγ(y). (2.183)

Both far-field patterns can be expressed in decibels (dB) respectively by means of the scat-

tering cross sections

QA
s (x̂) [dB] = 20 log10

( |uA∞(x̂)|
|uA0 |

)
, (2.184)

QS
s (x̂s) [dB] = 20 log10

( |uS∞(x̂s)|
|uS0 |

)
, (2.185)

where the reference levels uA0 and uS0 are taken such that |uA0 | = |uS0 | = 1 if the incident

field is given by a surface wave of the form (2.15).

We remark that the far-field behavior (2.181) of the solution is in accordance with the

radiation condition (2.6), which justifies its choice.

2.7 Existence and uniqueness

2.7.1 Function spaces

To state a precise mathematical formulation of the herein treated problems, we have to

define properly the involved function spaces. Since the considered domains and boundaries

are unbounded, we need to work with weighted Sobolev spaces, as in Durán, Muga &

Nédélec (2005a, 2006). We consider the classic weight functions

̺ =
√

1 + r2 and log ̺ = ln(2 + r2), (2.186)

where r = |x|. We define the domains

Ω1
e =

{
x ∈ Ωe : x2 >

1

Z∞
ln(1 + Z∞πr)

}
, (2.187)

Ω2
e =

{
x ∈ Ωe : x2 <

1

Z∞
ln(1 + Z∞πr)

}
. (2.188)
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It holds that the solution of the direct scattering problem (2.13) is contained in the weighted

Sobolev space

W 1(Ωe) =

{
v :

v

̺ log ̺
∈ L2(Ωe), ∇v ∈ L2(Ωe)

2,
v√
̺
∈ L2(Ω1

e),
∂v

∂r
∈ L2(Ω1

e),

v

log ̺
∈ L2(Ω2

e),
1

log ̺

(
∂v

∂r
− iZ∞v

)
∈ L2(Ω2

e)

}
. (2.189)

With the appropriate norm, the space W 1(Ωe) becomes also a Hilbert space. We have

likewise the inclusion W 1(Ωe) ⊂ H1
loc(Ωe), i.e., the functions of these two spaces differ

only by their behavior at infinity.

Since we are dealing with Sobolev spaces, even a strong Lipschitz boundary Γ ∈ C0,1

is admissible. The fact that this boundary Γ is also unbounded implies that we have to use

weighted trace spaces like in Amrouche (2002). For this purpose, we consider the space

W 1/2(Γ) =

{
v :

v√
̺ log ̺

∈ H1/2(Γ)

}
. (2.190)

Its dual space W−1/2(Γ) is defined via W 0-duality, i.e., considering the pivot space

W 0(Γ) =

{
v :

v√
̺ log ̺

∈ L2(Γ)

}
. (2.191)

Analogously as for the trace theorem (A.531), if v ∈ W 1(Ωe) then the trace of v fulfills

γ0v = v|Γ ∈ W 1/2(Γ). (2.192)

Moreover, the trace of the normal derivative can be also defined, and it holds that

γ1v =
∂v

∂n
|Γ ∈ W−1/2(Γ). (2.193)

We remark further that the restriction of the trace of v to Γp is such that

γ0v|Γp = v|Γp ∈ H1/2(Γp), (2.194)

γ1v|Γp =
∂v

∂n
|Γp ∈ H−1/2(Γp), (2.195)

and its restriction to Γ∞ yields

γ0v|Γ∞ = v|Γ∞ ∈ W 1/2(Γ∞), (2.196)

γ1v|Γ∞ =
∂v

∂n
|Γ∞ ∈ W−1/2(Γ∞). (2.197)

2.7.2 Application to the integral equation

The existence and uniqueness of the solution for the direct scattering problem (2.13),

due the integral representation formula (2.164), can be characterized by using the integral

equation (2.175). For this purpose and in accordance with the considered function spaces,

we take µ ∈ H1/2(Γp) and ν ∈ H−1/2(Γp). Furthermore, we consider that Z ∈ L∞(Γp) and

that fz ∈ H−1/2(Γp), even though strictly speaking fz ∈ H̃−1/2(Γp).
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It holds that the single and double layer potentials defined respectively in (2.166)

and (2.167) are linear and continuous integral operators such that

S : H−1/2(Γp) −→ W 1(Ωe) and D : H1/2(Γp) −→ W 1(Ωe). (2.198)

The boundary integral operators (2.173) and (2.174) are also linear and continuous appli-

cations, and they are such that

S : H−1/2(Γp) −→ W 1/2(Γ) and D : H1/2(Γp) −→ W 1/2(Γ). (2.199)

When we restrict them to Γp, then it holds that

S|Γp : H−1/2(Γp) −→ H1/2(Γp) and D|Γp : H1/2(Γp) −→ H1/2(Γp). (2.200)

Let us now study the integral equation (2.175), which is given in terms of boundary

layer potentials, for µ ∈ H1/2(Γp), by

(1 + I0)
µ

2
+ S(Zµ) −D(µ) = S(fz) in H1/2(Γp). (2.201)

We have the following mapping properties

µ ∈ H1/2(Γp) 7−→ (1 + I0)
µ

2
∈ H1/2(Γp), (2.202)

Zµ ∈ L2(Γp) 7−→ S(Zµ) ∈ H1(Γp) →֒c H1/2(Γp), (2.203)

µ ∈ H1/2(Γp) 7−→ D(µ) ∈ H3/2(Γp) →֒c H1/2(Γp), (2.204)

fz ∈ H−1/2(Γp) 7−→ S(fz) ∈ H1/2(Γp). (2.205)

We observe that (2.202) is like the identity operator, and that (2.203) and (2.204) are com-

pact, due the imbeddings of Sobolev spaces. Thus the integral equation (2.201) has the

form of (A.441) and the Fredholm alternative holds.

Since the Fredholm alternative applies to the integral equation, therefore it applies

also to the direct scattering problem (2.13) due the integral representation formula. The

existence of the scattering problem’s solution is thus determined by its uniqueness, and the

values for the impedance Z ∈ C for which the uniqueness is lost constitute a countable set,

which we call the impedance spectrum of the scattering problem and denote it by σZ . The

existence and uniqueness of the solution is therefore ensured almost everywhere. The same

holds obviously for the solution of the integral equation, whose impedance spectrum we

denote by ςZ . Since the integral equation is derived from the scattering problem, it holds

that σZ ⊂ ςZ . The converse, though, is not necessarily true. In any way, the set ςZ \ σZ is

at most countable. In conclusion, the scattering problem (2.13) admits a unique solution u

if Z /∈ σZ , and the integral equation (2.175) admits a unique solution µ if Z /∈ ςZ .

2.8 Dissipative problem

The dissipative problem considers surface waves that lose their amplitude as they travel

along the half-plane’s boundary. These waves dissipate their energy as they propagate and
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are modeled by a complex impedance Z∞ ∈ C whose imaginary part is strictly posi-

tive, i.e., Im{Z∞} > 0. This choice ensures that the surface waves of the Green’s func-

tion (2.94) decrease exponentially at infinity. Due the dissipative nature of the medium,

it is no longer suited to take progressive plane surface waves in the form of (2.15) as the

incident field uI . Instead, we have to take a source of surface waves at a finite distance

from the perturbation. For example, we can consider a point source located at z ∈ Ωe, in

which case the incident field is given, up to a multiplicative constant, by

uI(x) = G(x, z), (2.206)

where G denotes the Green’s function (2.94). This incident field uI satisfies the Laplace

equation with a source term in the right-hand side, namely

∆uI = δz in D′(Ωe), (2.207)

which holds also for the total field uT but not for the scattered field u, in which case the

Laplace equation remains homogeneous. For a general source distribution gs, whose sup-

port is contained in Ωe, the incident field can be expressed by

uI(x) = G(x, z) ∗ gs(z) =

∫

Ωe

G(x, z) gs(z) dz. (2.208)

This incident field uI satisfies now

∆uI = gs in D′(Ωe), (2.209)

which holds again also for the total field uT but not for the scattered field u.

It is not difficult to see that all the performed developments for the non-dissipative

case are still valid when considering dissipation. The only difference is that now a complex

impedance Z∞ such that Im{Z∞} > 0 has to be taken everywhere into account.

2.9 Variational formulation

To solve the integral equation we convert it to its variational or weak formulation,

i.e., we solve it with respect to a certain test function in a bilinear (or sesquilinear) form.

Basically, the integral equation is multiplied by the (conjugated) test function and then the

equation is integrated over the boundary of the domain. The test function is taken in the

same function space as the solution of the integral equation.

The variational formulation for the integral equation (2.201) searches µ ∈ H1/2(Γp)

such that ∀ϕ ∈ H1/2(Γp) we have that
〈
(1 + I0)

µ

2
+ S(Zµ) −D(µ), ϕ

〉
=
〈
S(fz), ϕ

〉
. (2.210)

2.10 Numerical discretization

2.10.1 Discretized function space

The scattering problem (2.13) is solved numerically with the boundary element method

by employing a Galerkin scheme on the variational formulation of the integral equation. We
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use on the boundary curve Γp Lagrange finite elements of type P1. As shown in Figure 2.12,

the curve Γp is approximated by the discretized curve Γhp , composed by I rectilinear seg-

ments Tj , sequentially ordered from left to right for 1 ≤ j ≤ I , such that their length |Tj|
is less or equal than h, and with their endpoints on top of Γp.

n

Γp

Tj−1

Tj
Tj+1 Γh

p

FIGURE 2.12. Curve Γhp , discretization of Γp.

The function space H1/2(Γp) is approximated using the conformal space of continuous

piecewise linear polynomials with complex coefficients

Qh =
{
ϕh ∈ C0(Γhp ) : ϕh|Tj

∈ P1(C), 1 ≤ j ≤ I
}
. (2.211)

The space Qh has a finite dimension (I + 1), and we describe it using the standard base

functions for finite elements of type P1, denoted by {χj}I+1
j=1 and expressed as

χj(x) =





|x − rj−1|
|Tj−1|

if x ∈ Tj−1,

|rj+1 − x|
|Tj|

if x ∈ Tj,

0 if x /∈ Tj−1 ∪ Tj,

(2.212)

where segment Tj−1 has as endpoints rj−1 and rj , while the endpoints of segment Tj are

given by rj and rj+1.

In virtue of this discretization, any function ϕh ∈ Qh can be expressed as a linear

combination of the elements of the base, namely

ϕh(x) =
I+1∑

j=1

ϕj χj(x) for x ∈ Γhp , (2.213)

where ϕj ∈ C for 1 ≤ j ≤ I + 1. The solution µ ∈ H1/2(Γp) of the variational formula-

tion (2.210) can be therefore approximated by

µh(x) =
I+1∑

j=1

µj χj(x) for x ∈ Γhp , (2.214)

where µj ∈ C for 1 ≤ j ≤ I + 1. The function fz can be also approximated by

fhz (x) =
I+1∑

j=1

fj χj(x) for x ∈ Γhp , with fj = fz(rj). (2.215)

58



2.10.2 Discretized integral equation

To see how the boundary element method operates, we apply it to the variational for-

mulation (2.210). We characterize all the discrete approximations by the index h, includ-

ing also the impedance and the boundary layer potentials. The numerical approximation

of (2.210) leads to the discretized problem that searches µh ∈ Qh such that ∀ϕh ∈ Qh〈
(1 + Ih0 )

µh
2

+ Sh(Zhµh) −Dh(µh), ϕh

〉
=
〈
Sh(f

h
z ), ϕh

〉
. (2.216)

Considering the decomposition of µh in terms of the base {χj} and taking as test functions

the same base functions, ϕh = χi for 1 ≤ i ≤ I + 1, yields the discrete linear system

I+1∑

j=1

µj

(
1

2

〈
(1 + Ih0 )χj, χi

〉
+ 〈Sh(Zhχj), χi〉 − 〈Dh(χj), χi〉

)
=

I+1∑

j=1

fj 〈Sh(χj), χi〉.

(2.217)

This constitutes a system of linear equations that can be expressed as a linear matrix system:
{

Find µ ∈ C
I+1 such that

Mµ = b.
(2.218)

The elements mij of the matrix M are given, for 1 ≤ i, j ≤ I + 1, by

mij =
1

2

〈
(1 + Ih0 )χj, χi

〉
+ 〈Sh(Zhχj), χi〉 − 〈Dh(χj), χi〉, (2.219)

and the elements bi of the vector b by

bi =
〈
Sh(f

h
z ), χi

〉
=

I+1∑

j=1

fj 〈Sh(χj), χi〉 for 1 ≤ i ≤ I + 1. (2.220)

The discretized solution uh, which approximates u, is finally obtained by discretizing

the integral representation formula (2.164) according to

uh = Dh(µh) − Sh(Zhµh) + Sh(fhz ), (2.221)

which, more specifically, can be expressed as

uh =
I+1∑

j=1

µj
(
Dh(χj) − Sh(Zhχj)

)
+

I+1∑

j=1

fj Sh(χj). (2.222)

We remark that the resulting matrix M is in general complex, full, non-symmetric,

and with dimensions (I + 1) × (I + 1). The right-hand side vector b is complex and

of size I + 1. The boundary element calculations required to compute numerically the

elements of M and b have to be performed carefully, since the integrals that appear become

singular when the involved segments are adjacent or coincident, due the singularity of the

Green’s function at its source point. On Γ0, the singularity of the image source point has to

be taken additionally into account for these calculations.
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2.11 Boundary element calculations

The boundary element calculations build the elements of the matrix M resulting from

the discretization of the integral equation, i.e., from (2.218). They permit thus to compute

numerically expressions like (2.219). To evaluate the appearing singular integrals, we adapt

the semi-numerical methods described in the report of Bendali & Devys (1986).

We use the same notation as in Section B.12, and the required boundary element inte-

grals, for a, b ∈ {0, 1}, are again

ZAa,b =

∫

K

∫

L

(
s

|K|

)a(
t

|L|

)b
G(x,y) dL(y) dK(x), (2.223)

ZBa,b =

∫

K

∫

L

(
s

|K|

)a(
t

|L|

)b
∂G

∂ny

(x,y) dL(y) dK(x). (2.224)

All the integrals that stem from the numerical discretization can be expressed in terms

of these two basic boundary element integrals. The impedance is again discretized as a

piecewise constant function Zh, which on each segment Tj adopts a constant value Zj ∈ C.

The integrals of interest are the same as for the full-plane impedance Laplace problem and

we consider furthermore that

〈
(1 + Ih0 )χj, χi

〉
=

{
〈χj, χi〉 if rj ∈ Γ+,

2 〈χj, χi〉 if rj ∈ Γ0.
(2.225)

To compute the boundary element integrals (2.223) and (2.224), we can easily isolate

the singular part (2.100) of the Green’s function (2.94), which corresponds in fact to the

Green’s function of the Laplace equation in the full-plane, and therefore the associated in-

tegrals are computed in the same way. The same applies also for its normal derivative. In

the case when the segments K and L are are close enough, e.g., adjacent or coincident, and

when L ∈ Γh0 or K ∈ Γh0 , being Γh0 the approximation of Γ0, we have to consider addi-

tionally the singular behavior (2.101), which is linked with the presence of the impedance

half-plane. This behavior can be straightforwardly evaluated by replacing x by x̄ in for-

mulae (B.340) to (B.343), i.e., by computing the quantities ZFb(x̄) and ZGb(x̄) with the

corresponding adjustment of the notation. Otherwise, if the segments are not close enough

and for the non-singular part of the Green’s function, a two-point Gauss quadrature formula

is used. All the other computations are performed in the same manner as in Section B.12

for the full-plane Laplace equation.

2.12 Benchmark problem

As benchmark problem we consider the particular case when the domain Ωe ⊂ R
2
+ is

taken as the exterior of a half-circle of radius R > 0 that is centered at the origin, as shown

in Figure 2.13. We decompose the boundary of Ωe as Γ = Γp ∪ Γ∞, where Γp corresponds
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to the upper half-circle, whereas Γ∞ denotes the remaining unperturbed portion of the half-

plane’s boundary which lies outside the half-circle and which extends towards infinity on

both sides. The unit normal n is taken outwardly oriented of Ωe, e.g., n = −r on Γp.

Γ∞, Z Γ∞, Z

x1

x2

Ωe

n

Γp, Z

Ωc

FIGURE 2.13. Exterior of the half-circle.

The benchmark problem is then stated as




Find u : Ωe → C such that

∆u = 0 in Ωe,

−∂u
∂n

+ Zu = fz on Γ,

+ Outgoing radiation condition as |x| → ∞,

(2.226)

where we consider a constant impedance Z ∈ C throughout Γ and where the radiation

condition is as usual given by (2.6). As incident field uI we consider the same Green’s

function, namely

uI(x) = G(x, z), (2.227)

where z ∈ Ωc denotes the source point of our incident field. The impedance data func-

tion fz is hence given by

fz(x) =
∂G

∂nx

(x, z) − ZG(x, z), (2.228)

and its support is contained in Γp. The analytic solution for the benchmark problem (2.226)

is then clearly given by

u(x) = −G(x, z). (2.229)

The goal is to retrieve this solution numerically with the integral equation techniques and

the boundary element method described throughout this chapter.

For the computational implementation and the numerical resolution of the benchmark

problem, we consider integral equation (2.175). The linear system (2.218) resulting from

the discretization (2.216) of its variational formulation (2.210) is solved computationally

with finite boundary elements of type P1 by using subroutines programmed in Fortran 90,

by generating the mesh Γhp of the boundary with the free software Gmsh 2.4, and by repre-

senting graphically the results in Matlab 7.5 (R2007b).
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We consider a radius R = 1, a constant impedance Z = 5, and for the incident field

a source point z = (0, 0). The discretized perturbed boundary curve Γhp has I = 120

segments and a discretization step h = 0.02618, being

h = max
1≤j≤I

|Tj|. (2.230)

We observe that h ≈ π/I .

The numerically calculated trace of the solution µh of the benchmark problem, which

was computed by using the boundary element method, is depicted in Figure 2.14. In the

same manner, the numerical solution uh is illustrated in Figures 2.15 and 2.16. It can be

observed that the numerical solution is quite close to the exact one.
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FIGURE 2.14. Numerically computed trace of the solution µh.
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FIGURE 2.15. Contour plot of the numerically computed solution uh.
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FIGURE 2.16. Oblique view of the numerically computed solution uh.

Likewise as in (B.368), we define the relative error of the trace of the solution as

E2(h,Γ
h
p ) =

‖Πhµ− µh‖L2(Γh
p )

‖Πhµ‖L2(Γh
p )

, (2.231)

where Πhµ denotes the Lagrange interpolating function of the exact solution’s trace µ, i.e.,

Πhµ(x) =
I+1∑

j=1

µ(rj)χj(x) and µh(x) =
I+1∑

j=1

µj χj(x) for x ∈ Γhp . (2.232)

In our case, for a step h = 0.02618, we obtained a relative error of E2(h,Γ
h
p ) = 0.02763.

As in (B.372), we define the relative error of the solution as

E∞(h,ΩL) =
‖u− uh‖L∞(ΩL)

‖u‖L∞(ΩL)

, (2.233)

being ΩL = {x ∈ Ωe : ‖x‖∞ < L} for L > 0. We consider L = 3 and approximate ΩL

by a triangular finite element mesh of refinement h near the boundary. For h = 0.02618,

the relative error that we obtained for the solution was E∞(h,ΩL) = 0.01314.

The results for different mesh refinements, i.e., for different numbers of segments I

and discretization steps h, are listed in Table 2.1. These results are illustrated graphically

in Figure 2.17. It can be observed that the relative errors are approximately of order h.
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TABLE 2.1. Relative errors for different mesh refinements.

I h E2(h,Γ
h
p ) E∞(h,ΩL)

12 0.2611 2.549 · 10−1 1.610 · 10−1

40 0.07852 7.426 · 10−2 3.658 · 10−2

80 0.03927 4.014 · 10−2 1.903 · 10−2

120 0.02618 2.763 · 10−2 1.314 · 10−2

240 0.01309 1.431 · 10−2 7.455 · 10−3

500 0.006283 7.008 · 10−3 3.785 · 10−3

1000 0.003142 3.538 · 10−3 1.938 · 10−3
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FIGURE 2.17. Logarithmic plots of the relative errors versus the discretization step.
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III. HALF-PLANE IMPEDANCE HELMHOLTZ PROBLEM

3.1 Introduction

In this chapter we study the perturbed half-plane impedance Helmholtz problem using

integral equation techniques and the boundary element method.

We consider the problem of the Helmholtz equation in two dimensions on a compactly

perturbed half-plane with an impedance boundary condition. The perturbed half-plane

impedance Helmholtz problem is a wave scattering problem around the bounded pertur-

bation, which is contained in the upper half-plane. In acoustic scattering the impedance

boundary-value problem appears when we suppose that the normal velocity is propor-

tional to the excess pressure on the boundary of the impenetrable perturbation or obsta-

cle (vid. Section A.11). The special case of frequency zero for the volume waves has

been treated already in Chapter II. The three-dimensional case is considered in Chapter V,

whereas the full-plane impedance Helmholtz problem with a bounded impenetrable obsta-

cle is treated thoroughly in Appendix C.

The main application of the problem corresponds to outdoor sound propagation, but it

is also used to describe the propagation of radio waves above the ground and of water waves

in shallow waters near the coast (harbor oscillations). The problem was at first considered

by Sommerfeld (1909) to describe the long-distance propagation of electromagnetic waves

above the earth. Different results for the electromagnetic problem were then obtained by

Weyl (1919) and later again by Sommerfeld (1926). After the articles of Van der Pol &

Niessen (1930), Wise (1931), and Van der Pol (1935), the most useful results up to that

time were generated by Norton (1936, 1937). We can likewise mention the later works of

Baños & Wesley (1953, 1954) and Baños (1966). The application of the problem to out-

door sound propagation was initiated by Rudnick (1947). Other approximate solutions to

the problem were thereafter found by Lawhead & Rudnick (1951a,b) and Ingard (1951).

Solutions containing surface-wave terms were obtained by Wenzel (1974) and Chien &

Soroka (1975, 1980). Further references are listed in Nobile & Hayek (1985). Other arti-

cles that attempt to solve the problem are Briquet & Filippi (1977), Attenborough, Hayek

& Lawther (1980), Filippi (1983), Li et al. (1994), and Attenborough (2002), and more

recently also Habault (1999), Ochmann (2004), and Ochmann & Brick (2008), among oth-

ers. For the two-dimensional case, in particular, we mention the articles of Chandler-Wilde

& Hothersall (1995a,b) and Granat, Tahar & Ha-Duong (1999). The problem can be also

found in the books of Greenberg (1971) and DeSanto (1992). The physical aspects of out-

door sound propagation can be found in Morse & Ingard (1961) and Embleton (1996). For

the propagation of water waves in shallow waters near the coast (harbor oscillations) we

cite the articles of Hsiao, Lin & Fang (2001) and Liu & Losada (2002), and the book of

Mei, Stiassnie & Yue (2005).

The Helmholtz equation allows the propagation of volume waves inside the considered

domain, and when it is supplied with an impedance boundary condition, then it allows also

the propagation of surface waves along the boundary of the perturbed half-plane. The

main difficulty in the numerical treatment and resolution of our problem is the fact that the
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exterior domain is unbounded. We solve it therefore with integral equation techniques and a

boundary element method, which require the knowledge of the associated Green’s function.

This Green’s function is computed using a Fourier transform and taking into account the

limiting absorption principle, following Durán, Muga & Nédélec (2005a, 2006) and Durán,

Hein & Nédélec (2007a,b), but here an explicit expression is found for it in terms of a finite

combination of elementary functions, special functions, and their primitives.

This chapter is structured in 13 sections, including this introduction. The direct scat-

tering problem of the Helmholtz equation in a two-dimensional compactly perturbed half-

plane with an impedance boundary condition is presented in Section 3.2. The computation

of the Green’s function, its far field, and its numerical evaluation are developed respec-

tively in Sections 3.3, 3.4, and 3.5. The use of integral equation techniques to solve the

direct scattering problem is discussed in Section 3.6. These techniques allow also to repre-

sent the far field of the solution, as shown in Section 3.7. The appropriate function spaces

and some existence and uniqueness results for the solution of the problem are presented in

Section 3.8. The dissipative problem is studied in Section 3.9. By means of the variational

formulation developed in Section 3.10, the obtained integral equation is discretized using

the boundary element method, which is described in Section 3.11. The boundary element

calculations required to build the matrix of the linear system resulting from the numerical

discretization are explained in Section 3.12. Finally, in Section 3.13 a benchmark problem

based on an exterior half-circle problem is solved numerically.

3.2 Direct scattering problem

3.2.1 Problem definition

We consider the direct scattering problem of linear time-harmonic acoustic waves on

a perturbed half-plane Ωe ⊂ R
2
+, where R

2
+ = {(x1, x2) ∈ R

2 : x2 > 0}, where the

incident field uI and the reflected field uR are known, and where the time convention e−iωt

is taken. The goal is to find the scattered field u as a solution to the Helmholtz equation

in the exterior open and connected domain Ωe, satisfying an outgoing radiation condition,

and such that the total field uT , decomposed as uT = uI +uR+u, satisfies a homogeneous

impedance boundary condition on the regular boundary Γ = Γp ∪ Γ∞ (e.g., of class C2).

The exterior domain Ωe is composed by the half-plane R
2
+ with a compact perturbation

near the origin that is contained in R
2
+, as shown in Figure 3.1. The perturbed boundary is

denoted by Γp, while Γ∞ denotes the remaining unperturbed boundary of R
2
+, which extends

towards infinity on both sides. The unit normal n is taken outwardly oriented of Ωe and

the complementary domain is denoted by Ωc = R
2 \ Ωe. A given wave number k > 0 is

considered, which depends on the pulsation ω and the speed of wave propagation c through

the ratio k = ω/c.

The total field uT satisfies thus the Helmholtz equation

∆uT + k2uT = 0 in Ωe, (3.1)
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Γ∞, Z∞ Γ∞, Z∞

x1

x2

Ωe

n

Γp, Z(x)

Ωc

FIGURE 3.1. Perturbed half-plane impedance Helmholtz problem domain.

which is also satisfied by the incident field uI , the reflected field uR, and the scattered

field u, due linearity. For the total field uT we take the homogeneous impedance boundary

condition

− ∂uT
∂n

+ ZuT = 0 on Γ, (3.2)

where Z is the impedance on the boundary, which is decomposed as

Z(x) = Z∞ + Zp(x), x ∈ Γ, (3.3)

being Z∞ > 0 real and constant throughout Γ, and Zp(x) a possibly complex-valued

impedance that depends on the position x and that has a bounded support contained in Γp.

The case of complex Z∞ and k will be discussed later. If Z = 0 or Z = ∞, then we retrieve

respectively the classical Neumann or Dirichlet boundary conditions. The scattered field u

satisfies the non-homogeneous impedance boundary condition

− ∂u

∂n
+ Zu = fz on Γ, (3.4)

where the impedance data function fz is known, has its support contained in Γp, and is

given, because of (3.2), by

fz =
∂uI
∂n

− ZuI +
∂uR
∂n

− ZuR on Γ. (3.5)

An outgoing radiation condition has to be also imposed for the scattered field u, which

specifies its decaying behavior at infinity and eliminates the non-physical solutions, e.g.,

ingoing volume or surface waves. This radiation condition can be stated for r → ∞ in a

more adjusted way as




|u| ≤ C√
r

and

∣∣∣∣
∂u

∂r
− iku

∣∣∣∣ ≤
C

r
if x2 >

1

2Z∞
ln(1 + βr),

|u| ≤ C and

∣∣∣∣
∂u

∂r
− i
√
Z2

∞ + k2u

∣∣∣∣ ≤
C

r
if x2 ≤

1

2Z∞
ln(1 + βr),

(3.6)

for some constants C > 0, where r = |x| and β = 8πkZ2
∞/(Z

2
∞ + k2). It implies that

two different asymptotic behaviors can be established for the scattered field u, which are

shown in Figure 3.2. Away from the boundary Γ and inside the domain Ωe, the first expres-

sion in (3.6) dominates, which corresponds to a classical Sommerfeld radiation condition
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like (C.8) and is associated with volume waves. Near the boundary, on the other hand, the

second expression in (3.6) resembles a Sommerfeld radiation condition, but only along the

boundary and having a different wave number, and is therefore related to the propagation

of surface waves. It is often expressed also as
∣∣∣∣
∂u

∂|x1|
− i
√
Z2

∞ + k2u

∣∣∣∣ ≤
C

|x1|
. (3.7)

Γ∞ Γ∞

x1

x2

Ωe

n

Γp

Surface waves

Volume waves

Surface waves

Ωc

FIGURE 3.2. Asymptotic behaviors in the radiation condition.

Analogously as done by Durán, Muga & Nédélec (2005a, 2006), the radiation condi-

tion (3.6) can be stated alternatively as




|u| ≤ C√
r

and

∣∣∣∣
∂u

∂r
− iku

∣∣∣∣ ≤
C

r1−α if x2 > Crα,

|u| ≤ C and

∣∣∣∣
∂u

∂r
− i
√
Z2

∞ + k2u

∣∣∣∣ ≤
C

r1−2α
if x2 ≤ Crα,

(3.8)

for 0 < α < 1/2 and some constants C > 0, being the growth of Crα bigger than the

logarithmic one at infinity. Equivalently, the radiation condition can be expressed in a more

weaker and general formulation as




lim
R→∞

∫

S1
R

|u|2 dγ <∞ and lim
R→∞

∫

S1
R

∣∣∣∣
∂u

∂r
− iku

∣∣∣∣
2

dγ = 0,

lim
R→∞

∫

S2
R

|u|2
lnR

dγ <∞ and lim
R→∞

∫

S2
R

1

lnR

∣∣∣∣
∂u

∂r
− i
√
Z2

∞ + k2u

∣∣∣∣
2

dγ = 0,

(3.9)

where

S1
R =

{
x ∈ R

2
+ : |x| = R, x2 >

1

2Z∞
ln(1 + βR)

}
, (3.10)

S2
R =

{
x ∈ R

2
+ : |x| = R, x2 <

1

2Z∞
ln(1 + βR)

}
. (3.11)
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We observe that in this case∫

S1
R

dγ = O(R) and

∫

S2
R

dγ = O(lnR). (3.12)

The portions S1
R and S2

R of the half-circle and the terms depending on S2
R of the radiation

condition (3.9) have to be modified when using instead the polynomial curves of (3.8). We

refer to Stoker (1956) for a discussion on radiation conditions for surface waves.

The perturbed half-plane impedance Helmholtz problem can be finally stated as




Find u : Ωe → C such that

∆u+ k2u = 0 in Ωe,

−∂u
∂n

+ Zu = fz on Γ,

+ Outgoing radiation condition as |x| → ∞,

(3.13)

where the outgoing radiation condition is given by (3.6).

3.2.2 Incident and reflected field

To determine the incident field uI and the reflected field uR, we study the solutions uT
of the unperturbed and homogeneous wave propagation problem with neither a scattered

field nor an associated radiation condition, being uT = uI +uR. The solutions are searched

in particular to be physically admissible, i.e., solutions which do not explode exponen-

tially in the propagation domain, depicted in Figure 3.1. We analyze thus the half-plane

impedance Helmholtz problem




∆uT + k2uT = 0 in R
2
+,

∂uT
∂x2

+ Z∞uT = 0 on {x2 = 0}.
(3.14)

{x2 = 0}, Z∞

x1

x2

R
2
+

n

FIGURE 3.3. Positive half-plane R
2
+.

Two different kinds of independent solutions uT exist for the problem (3.14). They

are obtained by studying the way how progressive plane waves of the form eik·x can be

adjusted to satisfy the boundary condition, where the wave propagation vector k = (k1, k2)

is such that (k · k) = k2.
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The first kind of solution corresponds to a linear combination of two progressive plane

volume waves and is given, up to an arbitrary multiplicative constant, by

uT (x) = eik·x −
(
Z∞ + ik2

Z∞ − ik2

)
eik̄·x, (3.15)

where k ∈ R
2 and k̄ = (k1,−k2). Due the involved physics, we consider that k2 ≤ 0. The

first term of (3.15) can be interpreted as an incident plane volume wave, while the second

term represents the reflected plane volume wave due the presence of the boundary with

impedance. Thus

uI(x) = eik·x, (3.16)

uR(x) = −
(
Z∞ + ik2

Z∞ − ik2

)
eik̄·x. (3.17)

It can be observed that the solution (3.15) vanishes when k2 = 0, i.e., when the wave

propagation is parallel to the half-plane’s boundary. The wave propagation vector k, by

considering a parametrization through the angle of incidence θI for 0 ≤ θI ≤ π, can be

expressed as k = (−k cos θI ,−k sin θI). In this case the solution is described by

uT (x) = e−ik(x1 cos θI+x2 sin θI) −
(
Z∞ − ik sin θI
Z∞ + ik sin θI

)
e−ik(x1 cos θI−x2 sin θI). (3.18)

The second kind of solution, up to an arbitrary scaling factor, corresponds to a progres-

sive plane surface wave, and is given by

uT (x) = uI(x) = eiksx1e−Z∞x2 , k2
s = Z2

∞ + k2. (3.19)

It can be observed that plane surface waves correspond to plane volume waves with a com-

plex wave propagation vector k = (ks, iZ∞), are guided along the half-plane’s boundary,

and decrease exponentially towards its interior, hence their name. In this case there exists

no reflected field, since the waves travel along the boundary. We remark that the plane

surface waves vanish completely for classical Dirichlet (Z∞ = ∞) or Neumann (Z∞ = 0)

boundary conditions.

3.3 Green’s function

3.3.1 Problem definition

The Green’s function represents the response of the unperturbed system to a Dirac

mass. It corresponds to a function G, which depends on the wave number k, on the

impedance Z∞, on a fixed source point x ∈ R
2
+, and on an observation point y ∈ R

2
+.

The Green’s function is computed in the sense of distributions for the variable y in the

half-plane R
2
+ by placing at the right-hand side of the Helmholtz equation a Dirac mass δx,

centered at the point x. It is therefore a solution for the radiation problem of a point source,
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namely 



Find G(x, ·) : R
2
+ → C such that

∆yG(x,y) + k2G(x,y) = δx(y) in D′(R2
+),

∂G

∂y2

(x,y) + Z∞G(x,y) = 0 on {y2 = 0},

+ Outgoing radiation condition as |y| → ∞.

(3.20)

The outgoing radiation condition, in the same way as in (3.6), is given here as |y| → ∞ by




|G| ≤ C√
|y|

and

∣∣∣∣
∂G

∂ry
− ikG

∣∣∣∣ ≤
C

|y| if y2 >
ln
(
1 + β|y|

)

2Z∞
,

|G| ≤ C and

∣∣∣∣
∂G

∂ry
− i
√
Z2

∞ + k2G

∣∣∣∣ ≤
C

|y| if y2 ≤
ln
(
1 + β|y|

)

2Z∞
,

(3.21)

for some constants C > 0, independent of r = |y|, where β = 8πkZ2
∞/(Z

2
∞ + k2).

3.3.2 Special cases

When the Green’s function problem (3.20) is solved using either homogeneous Dirich-

let or Neumann boundary conditions, then its solution is found straightforwardly using the

method of images (cf., e.g., Morse & Feshbach 1953).

a) Homogeneous Dirichlet boundary condition

We consider in the problem (3.20) the particular case of a homogeneous Dirichlet

boundary condition, namely

G(x,y) = 0, y ∈ {y2 = 0}, (3.22)

which corresponds to the limit case when the impedance is infinite (Z∞ = ∞). In this

case, the Green’s function G can be explicitly calculated using the method of images,

since it has to be antisymmetric with respect to the axis {y2 = 0}. An additional image

source point x̄ = (x1,−x2), located on the lower half-plane and associated with a nega-

tive Dirac mass, is placed for this purpose just opposite to the upper half-plane’s source

point x = (x1, x2). The desired solution is then obtained by evaluating the full-plane

Green’s function (C.23) for each Dirac mass, which yields finally

G(x,y) = − i

4
H

(1)
0

(
k|y − x|

)
+
i

4
H

(1)
0

(
k|y − x̄|

)
. (3.23)

b) Homogeneous Neumann boundary condition

We consider in the problem (3.20) the particular case of a homogeneous Neumann

boundary condition, namely

∂G

∂ny

(x,y) = 0, y ∈ {y2 = 0}, (3.24)

which corresponds to the limit case when the impedance is zero (Z∞ = 0). As in the

previous case, the method of images is again employed, but now the half-plane Green’s

function G has to be symmetric with respect to the axis {y2 = 0}. Therefore, an additional
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image source point x̄ = (x1,−x2), located on the lower half-plane, is placed just opposite

to the upper half-plane’s source point x = (x1, x2), but now associated with a positive

Dirac mass. The desired solution is then obtained by evaluating the full-plane Green’s

function (C.23) for each Dirac mass, which yields

G(x,y) = − i

4
H

(1)
0

(
k|y − x|

)
− i

4
H

(1)
0

(
k|y − x̄|

)
. (3.25)

3.3.3 Spectral Green’s function

a) Boundary-value problem

To solve (3.20) in the general case, we use a modified partial Fourier transform on the

horizontal y1-axis, taking advantage of the fact that there is no horizontal variation in the

geometry of the problem. To obtain the corresponding spectral Green’s function, we follow

the same procedure as the one performed in Durán et al. (2005a). We define the forward

Fourier transform of a function F
(
x, (·, y2)

)
: R → C by

F̂ (ξ; y2, x2) =
1√
2π

∫ ∞

−∞
F (x,y) e−iξ(y1−x1) dy1, ξ ∈ R, (3.26)

and its inverse by

F (x,y) =
1√
2π

∫ ∞

−∞
F̂ (ξ; y2, x2) e

iξ(y1−x1) dξ, y1 ∈ R. (3.27)

To ensure a correct integration path for the Fourier transform and correct physical

results, the calculations have to be performed in the framework of the limiting absorption

principle, which allows to treat all the appearing integrals as Cauchy principal values. For

this purpose, we take a small dissipation parameter ε > 0 into account and consider the

problem (3.20) as the limit case when ε→ 0 of the dissipative problem




Find Gε(x, ·) : R
2
+ → C such that

∆yGε(x,y) + k2
εGε(x,y) = δx(y) in D′(R2

+),

∂Gε

∂y2

(x,y) + Z∞Gε(x,y) = 0 on {y2 = 0},
(3.28)

where kε = k + iε. This choice ensures a correct outgoing dissipative volume-wave be-

havior. In the same way as for the Laplace equation, the impedance Z∞ could be also

incorporated into this dissipative framework, i.e., by considering Zε = Z∞ + iε, but it is

not really necessary since the use of a dissipative wave number kε is enough to take care

of all the appearing issues. Further references for the application of this principle can be

found in Bonnet-BenDhia & Tillequin (2001), Hazard & Lenoir (1998), and Nosich (1994).

Applying thus the Fourier transform (3.26) on the system (3.28) leads to a linear second

order ordinary differential equation for the variable y2, with prescribed boundary values,

72



given by 



∂2Ĝε

∂y2
2

(ξ) − (ξ2 − k2
ε)Ĝε(ξ) =

δ(y2 − x2)√
2π

, y2 > 0,

∂Ĝε

∂y2

(ξ) + Z∞Ĝε(ξ) = 0, y2 = 0.

(3.29)

We use the method of undetermined coefficients, and solve the homogeneous differ-

ential equation of the problem (3.29) respectively in the strip {y ∈ R
2
+ : 0 < y2 < x2}

and in the half-plane {y ∈ R
2
+ : y2 > x2}. This gives a solution for Ĝε in each domain,

as a linear combination of two independent solutions of an ordinary differential equation,

namely

Ĝε(ξ) =





a e
√
ξ2−k2

ε y2 + b e−
√
ξ2−k2

ε y2 for 0 < y2 < x2,

c e
√
ξ2−k2

ε y2 + d e−
√
ξ2−k2

ε y2 for y2 > x2.
(3.30)

The unknowns a, b, c, and d, which depend on ξ and x2, are determined through the bound-

ary condition, by imposing continuity, and by assuming an outgoing wave behavior. The

complex square root in (3.30) is defined in such a way that its real part is always positive.

b) Complex square roots

Due the application of the limiting absorption principle, the square root that appears in

the general solution (3.30) has to be understood as a complex map ξ 7→
√
ξ2 − k2

ε , which

is decomposed as the product between
√
ξ − kε and

√
ξ + kε, and has its two analytic

branch cuts on the complex ξ plane defined in such a way that they do not intersect the

real axis. Further details on complex branch cuts can be found in the books of Bak &

Newman (1997) and Felsen & Marcuwitz (2003). The arguments are taken in such a way

that arg (ξ − kε) ∈ (−3π
2
, π

2
) for the map

√
ξ − kε, and arg (ξ + kε) ∈ (−π

2
, 3π

2
) for the

map
√
ξ + kε. These maps can be therefore defined by (Durán et al. 2005a)

√
ξ − kε = −i

√
|kε| e

i
2
arg(kε) exp

(
1

2

∫ ξ

0

dη

η − kε

)
, (3.31)

and
√
ξ + kε =

√
|kε| e

i
2
arg(kε) exp

(
1

2

∫ ξ

0

dη

η + kε

)
. (3.32)

Consequently
√
ξ2 − k2

ε is even and analytic in the domain shown in Figure 3.4. It can be

hence defined by

√
ξ2 − k2

ε =
√
ξ − kε

√
ξ + kε = −ikε exp

(∫ ξ

0

η

η2 − k2
ε

dη

)
, (3.33)

and is characterized, for ξ, k ∈ R, by

√
ξ2 − k2 =

{ √
ξ2 − k2, ξ2 ≥ k2,

−i
√
k2 − ξ2, ξ2 < k2.

(3.34)
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FIGURE 3.4. Analytic branch cuts of the complex map
√

ξ2 − k2
ε .

We remark that if ξ ∈ R, then arg(ξ − kε) ∈ (−π, 0) and arg(ξ + kε) ∈ (0, π). This

proceeds from the fact that arg(kε) ∈ (0, π), since by the limiting absorption principle it

holds that Im{kε} = ε > 0. Thus arg
(√

ξ − kε
)
∈ (−π

2
, 0), arg

(√
ξ + kε

)
∈ (0, π

2
),

and arg
(√

ξ2 − k2
ε

)
∈ (−π

2
, π

2
). Hence, the real part of the complex map

√
ξ2 − k2

ε for

real ξ is strictly positive, i.e., Re
{√

ξ2 − k2
ε

}
> 0. Therefore the function e−

√
ξ2−k2

ε y2 is

even and exponentially decreasing as y2 → ∞.

c) Spectral Green’s function with dissipation

Now, thanks to (3.30), the computation of Ĝε is straightforward. From the boundary

condition of (3.29) a relation for the coefficients a and b can be derived, which is given by

a
(
Z∞ +

√
ξ2 − k2

ε

)
+ b
(
Z∞ −

√
ξ2 − k2

ε

)
= 0. (3.35)

On the other hand, since the solution (3.30) has to be bounded at infinity as y2 → ∞, and

since Re
{√

ξ2 − k2
ε

}
> 0, it follows then necessarily that

c = 0. (3.36)

To ensure the continuity of the Green’s function at the point y2 = x2, it is needed that

d = a e
√
ξ2−k2

ε 2x2 + b. (3.37)

Using relations (3.35), (3.36), and (3.37) in (3.30), we obtain the expression

Ĝε(ξ) = a e
√
ξ2−k2

ε x2

[
e−

√
ξ2−k2

ε |y2−x2| −
(
Z∞ +

√
ξ2 − k2

ε

Z∞ −
√
ξ2 − k2

ε

)
e−

√
ξ2−k2

ε (y2+x2)

]
. (3.38)

The remaining unknown coefficient a is determined by replacing (3.38) in the differential

equation of (3.29), taking the derivatives in the sense of distributions, particularly

∂

∂y2

{
e−

√
ξ2−k2

ε |y2−x2|
}

= −
√
ξ2 − k2

ε sign(y2 − x2) e
−
√
ξ2−k2

ε |y2−x2|, (3.39)

and
∂

∂y2

{
sign(y2 − x2)

}
= 2 δ(y2 − x2). (3.40)
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So, the second derivative of (3.38) becomes

∂2Ĝε

∂y2
2

(ξ) = a e
√
ξ2−k2

ε x2

[
(ξ2 − k2

ε) e
−
√
ξ2−k2

ε |y2−x2| − 2
√
ξ2 − k2

ε δ(y2 − x2)

−
(
Z∞ +

√
ξ2 − k2

ε

Z∞ −
√
ξ2 − k2

ε

)
(ξ2 − k2

ε) e
−
√
ξ2−k2

ε (y2+x2)

]
. (3.41)

This way, from (3.38) and (3.41) in the first equation of (3.29), we obtain that

a = − e−
√
ξ2−k2

ε x2

√
8π
√
ξ2 − k2

ε

. (3.42)

Finally, the spectral Green’s function Ĝε with dissipation ε is given by

Ĝε(ξ; y2, x2) = −e
−
√
ξ2−k2

ε |y2−x2|
√

8π
√
ξ2 − k2

ε

+

(
Z∞ +

√
ξ2 − k2

ε

Z∞ −
√
ξ2 − k2

ε

)
e−

√
ξ2−k2

ε (y2+x2)

√
8π
√
ξ2 − k2

ε

. (3.43)

d) Analysis of singularities

To obtain the spectral Green’s function Ĝ without dissipation, the limit ε → 0 has to

be taken in (3.43). This can be done directly wherever the limit is regular and continuous

on ξ. Singular points, on the other hand, have to be analyzed carefully to fulfill correctly

the limiting absorption principle. Thus we study first the singularities of the limit function

before applying this principle, i.e., considering just ε = 0, in which case we have

Ĝ0(ξ) = −e
−
√
ξ2−k2 |y2−x2|

√
8π
√
ξ2 − k2

+

(
Z∞ +

√
ξ2 − k2

Z∞ −
√
ξ2 − k2

)
e−

√
ξ2−k2 (y2+x2)

√
8π
√
ξ2 − k2

. (3.44)

Possible singularities for (3.44) may only appear when |ξ| = k or when |ξ| = ξp, being

ξp =
√
Z2

∞ + k2, i.e., when the denominator of the fractions is zero. Otherwise the function

is regular and continuous.

For ξ = k and ξ = −k the function (3.44) is continuous. This can be seen by writing

it, analogously as in Durán, Muga & Nédélec (2006), in the form

Ĝ0(ξ) =
H
(
g(ξ)

)

g(ξ)
, (3.45)

where

g(ξ) =
√
ξ2 − k2, (3.46)

and

H(β) =
1√
8π

(
−e−β |y2−x2| +

Z∞ + β

Z∞ − β
e−β (y2+x2)

)
, β ∈ C. (3.47)

Since H(β) is an analytic function in β = 0, since H(0) = 0, and since

lim
ξ→±k

Ĝ0(ξ) = lim
ξ→±k

H
(
g(ξ)

)
−H(0)

g(ξ)
= H ′(0), (3.48)
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we can easily obtain that

lim
ξ→±k

Ĝ0(ξ) =
1√
8π

(
1 +

1

Z∞
+ |y2 − x2| − (y2 + x2)

)
, (3.49)

being thus Ĝ0 bounded and continuous on ξ = k and ξ = −k.

For ξ = ξp and ξ = −ξp, where ξp =
√
Z2

∞ + k2, the function (3.44) presents two

simple poles, whose residues are characterized by

lim
ξ→±ξp

(ξ ∓ ξp) Ĝ0(ξ) = ∓ Z∞√
2π ξp

e−Z∞(y2+x2). (3.50)

To analyze the effect of these singularities, we have to study the computation of the inverse

Fourier transform of

ĜP (ξ) =
Z∞√
2π ξp

e−Z∞(y2+x2)

(
1

ξ + ξp
− 1

ξ − ξp

)
, (3.51)

which has to be done in the frame of the limiting absorption principle to obtain the correct

physical results, i.e., the inverse Fourier transform has to be understood in the sense of

GP (x,y) = lim
ε→0

{
Z∞
2πξp

e−Z∞(y2+x2)

∫ ∞

−∞

(
1

ξ + ξp
− 1

ξ − ξp

)
eiξ(y1−x1)dξ

}
, (3.52)

where now ξp =
√
Z2

∞ + k2
ε , which is such that Im{ξp} > 0.

To perform correctly the computation of (3.52), we apply the residue theorem of com-

plex analysis (cf., e.g., Arfken & Weber 2005, Bak & Newman 1997, Dettman 1984) on

the complex meromorphic mapping

F (ξ) =

(
1

ξ + ξp
− 1

ξ − ξp

)
eiξ(y1−x1), (3.53)

which admits two simple poles at ξp and −ξp, where Im{ξp} > 0. We already did this

computation for the Laplace equation and obtained the expression (2.59), namely
∫ ∞

−∞
F (ξ) dξ = −i2πeiξp|y1−x1|, (y1 − x1) ∈ R. (3.54)

Using (3.54) for ξp =
√
Z2

∞ + k2 yields that the inverse Fourier transform of (3.51),

when considering the limiting absorption principle, is given by

GL
P (x,y) = −iZ∞

ξp
e−Z∞(y2+x2)eiξp|y1−x1|. (3.55)

We observe that this expression describes the asymptotic behavior of the surface waves,

which are linked to the presence of the poles in the spectral Green’s function.

If the limiting absorption principle is not considered, i.e., if Im{ξp} = 0, then the

inverse Fourier transform of (3.51) could be again computed in the sense of the principal

value with the residue theorem. In this case we would obtain, instead of (3.54) and just as

the expression (2.61) for the Laplace equation, the quantity
∫ ∞

−∞
F (ξ) dξ = 2π sin

(
ξp|y1 − x1|

)
, (y1 − x1) ∈ R. (3.56)
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The inverse Fourier transform of (3.51) would be in this case

GNL
P (x,y) =

Z∞
ξp

e−Z∞(y2+x2) sin
(
ξp|y1 − x1|

)
, (3.57)

which is correct from the mathematical point of view, but yields only a standing surface

wave, and not a desired outgoing progressive surface wave as in (3.55).

The effect of the limiting absorption principle, in the spatial dimension, is then given

by the difference between (3.55) and (3.57), i.e., by

GL(x,y) = GL
P (x,y) −GNL

P (x,y) = −iZ∞
ξp

e−Z∞(y2+x2) cos
(
ξp(y1 − x1)

)
, (3.58)

whose Fourier transform, and therefore the spectral effect, is given by

ĜL(ξ) = ĜL
P (ξ) − ĜNL

P (ξ) = −iZ∞
ξp

√
π

2
e−Z∞(y2+x2)

[
δ(ξ − ξp) + δ(ξ + ξp)

]
. (3.59)

e) Spectral Green’s function without dissipation

The spectral Green’s function Ĝ without dissipation is therefore obtained by taking the

limit ε → 0 in (3.43) and considering the effect of the limiting absorption principle for the

appearing singularities, summarized in (3.59). Thus we obtain in the sense of distributions

Ĝ(ξ; y2, x2) = − e−
√
ξ2−k2 |y2−x2|

√
8π
√
ξ2 − k2

+

(
Z∞ +

√
ξ2 − k2

Z∞ −
√
ξ2 − k2

)
e−

√
ξ2−k2 (y2+x2)

√
8π
√
ξ2 − k2

− iZ∞
ξp

√
π

2
e−Z∞(y2+x2)

[
δ(ξ − ξp) + δ(ξ + ξp)

]
. (3.60)

For our further analysis, this spectral Green’s function is decomposed into four terms

according to

Ĝ = Ĝ∞ + ĜD + ĜL + ĜR, (3.61)

where

Ĝ∞(ξ; y2, x2) = −e
−
√
ξ2−k2 |y2−x2|

√
8π
√
ξ2 − k2

, (3.62)

ĜD(ξ; y2, x2) =
e−

√
ξ2−k2 (y2+x2)

√
8π
√
ξ2 − k2

, (3.63)

ĜL(ξ; y2, x2) = −iZ∞
ξp

√
π

2
e−Z∞(y2+x2)

[
δ(ξ − ξp) + δ(ξ + ξp)

]
, (3.64)

ĜR(ξ; y2, x2) =
e−

√
ξ2−k2 (y2+x2)

√
2π
(
Z∞ −

√
ξ2 − k2

) . (3.65)
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3.3.4 Spatial Green’s function

a) Spatial Green’s function as an inverse Fourier transform

The desired spatial Green’s function is then given by the inverse Fourier transform of

the spectral Green’s function (3.60), namely by

G(x,y) = − 1

4π

∫ ∞

−∞

e−
√
ξ2−k2 |y2−x2|
√
ξ2 − k2

eiξ(y1−x1)dξ

+
1

4π

∫ ∞

−∞

(
Z∞ +

√
ξ2 − k2

Z∞ −
√
ξ2 − k2

)
e−

√
ξ2−k2 (y2+x2)

√
ξ2 − k2

eiξ(y1−x1)dξ

− iZ∞
ξp

e−Z∞(y2+x2) cos
(
ξp(y1 − x1)

)
. (3.66)

Due the linearity of the Fourier transform, the decomposition (3.61) applies also in the

spatial domain, i.e., the spatial Green’s function is decomposed in the same manner by

G = G∞ +GD +GL +GR. (3.67)

b) Term of the full-plane Green’s function

The first term in (3.66) corresponds to the inverse Fourier transform of (3.62), and is

given by

G∞(x,y) = − 1

4π

∫ ∞

−∞

e−
√
ξ2−k2 |y2−x2|
√
ξ2 − k2

eiξ(y1−x1)dξ. (3.68)

The value for this integral can be derived either from Magnus & Oberhettinger (1954,

page 33 or 118), from Gradshteyn & Ryzhik (2007, equations 3.914–4 or 6.616–3), or

from Bateman (1954, equation 1.13–59), and yields the result that

− 1

4π

∫ ∞

−∞

e−
√
ξ2−k2 |y2−x2|
√
ξ2 − k2

eiξ(y1−x1) dξ = − i

4
H

(1)
0

(
k|y − x|

)
, (3.69)

being H
(1)
0 the zeroth order Hankel function of the first kind (vid. Subsection A.2.4). This

way, the inverse Fourier transform of (3.62) is readily given by

G∞(x,y) = − i

4
H

(1)
0

(
k|y − x|

)
. (3.70)

We observe that (3.70) is, in fact, the full-plane Green’s function of the Helmholtz equation.

Thus GD +GL +GR represents the perturbation of the full-plane Green’s function G∞ due

the presence of the impedance half-plane.

c) Term associated with a Dirichlet boundary condition

The inverse Fourier transform of (3.63) is computed in the same manner as the termG∞.

It is given by

GD(x,y) =
1

4π

∫ ∞

−∞

e−
√
ξ2−k2 (y2+x2)

√
ξ2 − k2

eiξ(y1−x1)dξ, (3.71)
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and in this case, instead of (3.69), we consider the relation

1

4π

∫ ∞

−∞

e−
√
ξ2−k2 (y2+x2)

√
ξ2 − k2

eiξ(y1−x1) dξ =
i

4
H

(1)
0

(
k|y − x̄|

)
, (3.72)

where x̄ = (x1,−x2) corresponds to the image point of x in the lower half-plane. The

inverse Fourier transform of (3.63) is therefore given by

GD(x,y) =
i

4
H

(1)
0

(
k|y − x̄|

)
, (3.73)

which represents the additional term that appears in the Green’s function due the method

of images when considering a Dirichlet boundary condition, as in (3.23).

d) Term associated with the limiting absorption principle

The term GL, the inverse Fourier transform of (3.64), is associated with the effect of

the limiting absorption principle on the Green’s function, and has been already calculated

in (3.58). It is given by

GL(x,y) = −iZ∞
ξp

e−Z∞(y2+x2) cos
(
ξp(y1 − x1)

)
. (3.74)

e) Remaining term

The remaining term GR, the inverse Fourier transform of (3.65), can be computed as

the integral

GR(x,y) =
1

2π

∫ ∞

−∞

e−
√
ξ2−k2 (y2+x2)

Z∞ −
√
ξ2 − k2

eiξ(y1−x1) dξ. (3.75)

To simplify the notation, we define

v1 = y1 − x1 and v2 = y2 + x2, (3.76)

and we consider

GR(x,y) = e−Z∞v2GB(v1, v2), (3.77)

where

GB(v1, v2) =
eZ∞v2

2π

∫ ∞

−∞

e−
√
ξ2−k2 v2

Z∞ −
√
ξ2 − k2

eiξv1 dξ. (3.78)

From the derivative of (3.72) with respect to y2 we obtain that

1

4π

∫ ∞

−∞
e−

√
ξ2−k2 v2eiξv1 dξ =

ik

4
H

(1)
1

(
k|y − x̄|

) v2

|y − x̄| . (3.79)

Due (3.79), we have for the y2-derivative of GB that

∂GB
∂y2

(v1, v2) =
eZ∞v2

2π

∫ ∞

−∞
e−

√
ξ2−k2 v2eiξv1 dξ =

ik

2
H

(1)
1

(
k|y − x̄|

)v2 e
Z∞v2

|y − x̄| . (3.80)

The value of the inverse Fourier transform (3.75) can be thus obtained by means of the

primitive with respect to y2 of (3.80), i.e.,

GR(x,y) =
ik

2
e−Z∞v2

∫ v2

−∞
H

(1)
1

(
k
√
v2

1 + η2
) η eZ∞η

√
v2

1 + η2
dη. (3.81)
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The expression (3.81) contains an integral with an unbounded lower limit, but even so, due

the exponential decrease of its integrand, it could be adapted to be well suited for numerical

evaluation, as is done, e.g., in Chapter V. Its advantage lies in the fact that it expresses

intuitively the term GR as a primitive of known functions. We observe that further related

expressions can be obtained through integration by parts, e.g.,

GR(x,y) = − i

2
H

(1)
0

(
k|y − x̄|

)
+
iZ∞
2

e−Z∞v2

∫ v2

−∞
H

(1)
0

(
k
√
v2

1 + η2
)
eZ∞η dη. (3.82)

Formulae of this kind seem to be absent in the literature, but they resemble in their structure

the expressions described in Ochmann (2004) and Ochmann & Brick (2008) for the three-

dimensional case.

In Hein (2006, 2007) and Durán, Hein & Nédélec (2007b), the remaining term GR was

computed numerically by using an inverse fast Fourier transform (IFFT) for the expres-

sion (3.75). In our case, due parity, we can consider the equivalent expression

GR(x,y) =
1

π

∫ ∞

0

e−
√
ξ2−k2 v2

Z∞ −
√
ξ2 − k2

cos(ξv1) dξ, (3.83)

which can be likewise treated by using numerical integration. In both cases, the involved

integrals become divergent when v2 < 0. We note that the expression (3.83) has the ad-

vantage of requiring only half as many values as the one considered for the IFFT. It can

be also observed that (3.75) and (3.83) are slowly decreasing when v2 = 0 and decrease

exponentially when v2 > 0.

To obtain an expression that is practical for numerical computation and which holds

for all v2 ∈ R, similarly as in Pidcock (1985), we can separate (3.81) according to

GR(x,y) = e−Z∞v2

(
GB(v1, 0) +

ik

2

∫ v2

0

H
(1)
1

(
k
√
v2

1 + η2
) η eZ∞η

√
v2

1 + η2
dη

)
, (3.84)

where

GB(v1, 0) =
1

π

∫ ∞

0

cos(ξv1)

Z∞ −
√
ξ2 − k2

dξ. (3.85)

The expression (3.84) is valid for any v2 ∈ R and it can be computed numerically without

difficulty since the integration limits are bounded.

It remains to be discussed how to compute effectively (3.83) and (3.85), which re-

quires to isolate the poles of the spectral Green’s function and to treat adequately the slow

decrease at infinity when v2 = 0. When the impedance is comparatively bigger than the

wave number, i.e., when |Z∞| > |k|, then both goals can be obtained simultaneously by

considering the fact that

Z∞
πξp

∫ ∞

0

e−Z∞ξv2/ξp

ξp − ξ
cos(ξv1) dξ =

Z∞
2πξp

e−Z∞v2
{
eiξpv1 Ei(Z∞v2 − iξpv1)

+ e−iξpv1 Ei(Z∞v2 + iξpv1)
}
. (3.86)
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which is computed analogously as done for the Laplace equation in (2.93). The expression

in the left-hand side of (3.86) contains completely the behavior of the poles in the spectral

domain and includes most of the slow decrease at infinity, which improves as |Z∞| → ∞.

As a consequence, (3.83) can be computed more effectively as

GR(x,y) =
1

π

∫ ∞

0

(
e−

√
ξ2−k2 v2

Z∞ −
√
ξ2 − k2

− Z∞
ξp

e−Z∞ξv2/ξp

ξp − ξ

)
cos(ξv1) dξ

+
Z∞
2πξp

e−Z∞v2
{
eiξpv1 Ei(Z∞v2 − iξpv1) + e−iξpv1 Ei(Z∞v2 + iξpv1)

}
, (3.87)

where Ei denotes the exponential integral function (vid. Subsection A.2.3). The integral

in (3.87) is computed numerically. When the impedance is smaller than the wave number,

i.e., when |Z∞| < |k|, then the expression inside the integral in (3.87) does no longer

behave so well numerically and it becomes more convenient to remove the poles and the

slow decrease independently. For the poles, as computed in (2.59), it holds that

2Z∞
π

e−Z∞v2

∫ ∞

0

cos(ξv1)

ξ2
p − ξ2

dξ = −iZ∞
ξp

e−Z∞v2eiξp|v1|. (3.88)

When k is near the real axis, then for the slow decrease at infinity it holds that

1

π

∫ ∞

0

e−
√
ξ2+k2 v2

√
ξ2 + k2

cos(ξv1) dξ =
i

2
H

(1)
0

(
ik|y − x̄|

)
=

1

π
K0

(
k|y − x̄|

)
, (3.89)

where K0 denotes the modified Bessel function of the second kind of order zero (vid. Sub-

section A.2.5). Hence, when |Z∞| < |k| and arg(k) < π/4, then (3.83) can be computed

more effectively as

GR(x,y) =
1

π

∫ ∞

0

(
e−

√
ξ2−k2 v2

Z∞ −
√
ξ2 − k2

− 2Z∞e
−Z∞v2

ξ2
p − ξ2

− e−
√
ξ2+k2 v2

√
ξ2 + k2

)
cos(ξv1) dξ

− iZ∞
ξp

e−Z∞v2eiξp|v1| +
i

2
H

(1)
0

(
ik|y − x̄|

)
. (3.90)

When k is near the imaginary axis, then instead of (3.89) it is better to consider for the slow

decrease at infinity the expression

1

π

∫ ∞

0

e−
√
ξ2−k2 v2

√
ξ2 − k2

cos(ξv1) dξ =
i

2
H

(1)
0

(
k|y − x̄|

)
, (3.91)

Now, when |Z∞| < |k| and arg(k) > π/4, then (3.83) is computed more effectively as

GR(x,y) =
1

π

∫ ∞

0

(
e−

√
ξ2−k2 v2

Z∞ −
√
ξ2 − k2

− 2Z∞e
−Z∞v2

ξ2
p − ξ2

− e−
√
ξ2−k2 v2

√
ξ2 − k2

)
cos(ξv1) dξ

− iZ∞
ξp

e−Z∞v2eiξp|v1| +
i

2
H

(1)
0

(
k|y − x̄|

)
. (3.92)

The expressions (3.87), (3.90), and (3.92) are likewise valid when v2 = 0, which allows to

evaluate the term GB in (3.85).
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f) Complete spatial Green’s function

The desired complete spatial Green’s function is finally obtained, as stated in (3.67),

by adding the terms (3.70), (3.73), (3.74), and (3.81). It can be appreciated graphically in

Figures 3.5 & 3.6 for k = 1.2, Z∞ = 1, and x = (0, 2), and it is given explicitly by

G(x,y) = − i

4
H

(1)
0

(
k|y − x|

)
+
i

4
H

(1)
0

(
k|y − x̄|

)
− iZ∞

ξp
e−Z∞v2 cos(ξpv1)

+
ik

2
e−Z∞v2

∫ v2

−∞
H

(1)
1

(
k
√
v2

1 + η2
) η eZ∞η

√
v2

1 + η2
dη, (3.93)

where we use the notation (3.76). The integral in (3.93) can be computed either as (3.83)

or as (3.84), depending on wether v2 > 0 or v2 < 0. The involved Fourier integrals of the

remaining term GR are computed according to the expressions (3.87), (3.90), and (3.92).
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FIGURE 3.5. Contour plot of the complete spatial Green’s function.
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FIGURE 3.6. Oblique view of the complete spatial Green’s function.
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For the derivative of the Green’s function with respect to the y2-variable, it holds that

∂G

∂y2

(x,y) =
ik

4
H

(1)
1

(
k|y − x|

)y2 − x2

|y − x| +
ik

4
H

(1)
1

(
k|y − x̄|

) v2

|y − x̄|

+
iZ2

∞
ξp

e−Z∞v2 cos(ξpv1) −
ikZ∞

2
e−Z∞v2

∫ v2

−∞
H

(1)
1

(
k
√
v2

1 + η2
) η eZ∞η

√
v2

1 + η2
dη. (3.94)

The integral in (3.94) is computed the same way as in (3.93). The derivative with respect

to the y1-variable, on the other hand, is given by

∂G

∂y1

(x,y) =
ik

4
H

(1)
1

(
k|y − x|

) v1

|y − x| −
ik

4
H

(1)
1

(
k|y − x̄|

) v1

|y − x̄|

+ iZ∞e
−Z∞v2 sin(ξpv1) +

ik2

2
e−Z∞v2

∫ v2

−∞
H

(1)
0

(
k
√
v2

1 + η2
) v2

1

v2
1 + η2

eZ∞η dη

+
ik

2
e−Z∞v2

∫ v2

−∞
H

(1)
1

(
k
√
v2

1 + η2
) η2 − v2

1

(v2
1 + η2)3/2

eZ∞η dη. (3.95)

The integrals in (3.95) are related with the remaining term GR and are computed respec-

tively as the y1-derivative of (3.84), (3.87), (3.90), and (3.92), e.g., the y1-derivative of the

Fourier integral (3.83) becomes

∂GR
∂y1

(x,y) = − 1

π

∫ ∞

0

ξ e−
√
ξ2−k2 v2

Z∞ −
√
ξ2 − k2

sin(ξv1) dξ. (3.96)

The other cases are modified analogously.

3.3.5 Extension and properties

The half-plane Green’s function can be extended in a locally analytic way towards

the full-plane R
2 in a straightforward and natural manner, just by considering the expres-

sion (3.93) valid for all x,y ∈ R
2, instead of just for R

2
+. This extension possesses two

singularities of logarithmic type at the points x and x̄, and is continuous otherwise. The

behavior of these singularities is characterized by

G(x,y) ∼ 1

2π
ln |y − x|, y −→ x, (3.97)

G(x,y) ∼ 1

2π
ln |y − x̄|, y −→ x̄. (3.98)

For the y1-derivative there appears a jump across the half-line Υ = {y1 = x1, y2 < −x2},

due the effect of the analytic branch cut of the exponential integral functions, shown in

Figure 3.7. We denote this jump by

J(x,y) = lim
y1→x+

1

{
∂G

∂y1

}
− lim

y1→x−1

{
∂G

∂y1

}
=

∂G

∂y+
1

∣∣∣∣
y1=x1

− ∂G

∂y−1

∣∣∣∣
y1=x1

. (3.99)

This jump across Υ is the same as for the Laplace equation in (2.104), since the involved

singularities are the same, i.e., it has a value of

J(x,y) = 2Z∞e
−Z∞(y2+x2). (3.100)
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{y2 = 0}
y1

y2
R

2

n

x = (x1, x2)

x̄ = (x1,−x2)

Υ

FIGURE 3.7. Domain of the extended Green’s function.

We remark that the Green’s function (3.93) itself and its y2-derivative are continuous across

the half-line Υ.

As long as x2 6= 0, it is clear that the impedance boundary condition in (3.20) continues

to be homogeneous. Nonetheless, if the source point x lies on the half-plane’s boundary,

i.e., if x2 = 0, then the boundary condition ceases to be homogeneous in the sense of

distributions. This can be deduced from the expression (3.66) by verifying that

lim
y2→0+

{
∂G

∂y2

(
(x1, 0),y

)
+ Z∞G

(
(x1, 0),y

)}
= δx1(y1). (3.101)

Since the impedance boundary condition holds only on {y2 = 0}, therefore the right-hand

side of (3.101) can be also expressed by

δx1(y1) =
1

2
δx(y) +

1

2
δx̄(y), (3.102)

which illustrates more clearly the contribution of each logarithmic singularity to the Dirac

mass in the boundary condition.

It can be seen now that the Green’s function extended in the abovementioned way

satisfies, for x ∈ R
2, in the sense of distributions, and instead of (3.20), the problem





Find G(x, ·) : R
2 → C such that

∆yG(x,y) + k2G(x,y) = δx(y) + δx̄(y) + J(x,y)δΥ(y) in D′(R2),

∂G

∂y2

(x,y) + Z∞G(x,y) =
1

2
δx(y) +

1

2
δx̄(y) on {y2 = 0},

+ Outgoing radiation condition for y ∈ R
2
+ as |y| → ∞,

(3.103)

where δΥ denotes a Dirac mass distribution along the Υ-curve. We retrieve thus the known

result that for an impedance boundary condition the image of a point source is a point

source plus a half-line of sources with exponentially increasing strengths in the lower half-

plane, and which extends from the image point source towards infinity along the half-

plane’s normal direction (cf. Keller 1979, who refers to decreasing strengths when dealing

with the opposite half-plane).

We note that the half-plane Green’s function (3.93) is symmetric in the sense that

G(x,y) = G(y,x) ∀x,y ∈ R
2, (3.104)
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and it fulfills similarly

∇yG(x,y) = ∇yG(y,x) and ∇xG(x,y) = ∇xG(y,x). (3.105)

Another property is that we retrieve the special case (3.23) of a homogenous Dirichlet

boundary condition in R
2
+ when Z∞ → ∞. Likewise, we retrieve the special case (3.25) of

a homogenous Neumann boundary condition in R
2
+ when Z∞ → 0, except for an additive

constant due the extra term (3.74) that can be disregarded.

At last, we observe that the expression for the Green’s function (3.93) is still valid if

a complex wave number k ∈ C, such that Im{k} > 0 and Re{k} ≥ 0, and a complex

impedance Z∞ ∈ C, such that Im{Z∞} > 0 and Re{Z∞} ≥ 0, are used, which holds also

for its derivatives. The logarithms, though, have to be interpreted analogously as in (2.111)

and (2.112) to avoid an undesired behavior in the lower half-plane, i.e., as

ln
(
Z∞v2 − iξpv1

)
= ln

(
v2 − iv1ξp/Z∞

)
+ ln(Z∞), (3.106)

ln
(
Z∞v2 + iξpv1

)
= ln

(
v2 + iv1ξp/Z∞

)
+ ln(Z∞), (3.107)

where the principal value is considered for the logarithms on the right-hand side.

3.4 Far field of the Green’s function

3.4.1 Decomposition of the far field

The far field of the Green’s function, which we denote by Gff, describes its asymptotic

behavior at infinity, i.e., when |x| → ∞ and assuming that y is fixed. For this purpose, the

terms of highest order at infinity are searched. Likewise as done for the radiation condition,

the far field can be decomposed into two parts, each acting on a different region as shown

in Figure 3.2. The first part, denoted by Gff
V , is linked with the volume waves, and acts in

the interior of the half-plane while vanishing near its boundary. The second part, denoted

byGff
S , is associated with surface waves that propagate along the boundary towards infinity,

which decay exponentially towards the half-plane’s interior. We have thus that

Gff = Gff
V +Gff

S . (3.108)

3.4.2 Volume waves in the far field

The volume waves in the far field act only in the interior of the half-plane and are

related to the terms of the Hankel functions in (3.93), and also to the asymptotic behavior

as x2 → ∞ of the regular part. The behavior of the volume waves can be obtained by apply-

ing the stationary phase technique on the integrals in (3.66), as performed by Durán, Muga

& Nédélec (2005a, 2006). This technique gives an expression for the leading asymptotic

behavior of highly oscillating integrals in the form of

I(λ) =

∫ b

a

f(s)eiλφ(s) ds, (3.109)

as λ → ∞ along the positive real axis, where φ(s) is a regular real function, where |f(s)|
is integrable, and where the real integration limits a and b may be unbounded. Further
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references on the stationary phase technique are Bender & Orszag (1978), Dettman (1984),

Evans (1998), and Watson (1944). Integrals in the form of (3.109) are called generalized

Fourier integrals. They tend towards zero very rapidly with λ, except at the so-called

stationary points for which the derivative of the phase becomes zero, where the integrand

vanishes less rapidly. If s0 is such a stationary point, i.e., if φ′(s0) = 0, and if φ′′(s0) > 0,

then the main asymptotic contribution of the integral (3.109) is given by

I(λ) ∼ eiπ/4

√
2π

λφ′′(s0)
f(s0)e

iλφ(s0). (3.110)

Moreover, the residue is uniformly bounded by Cλ−3/2 for some constant C > 0 if the

point s0 is not an end-point of the integration domain.

The asymptotic behavior of the volume waves is related with the terms in (3.66) which

do not decrease exponentially as x2 → ∞, i.e., with the integral terms for which
√
ξ2 − k2

is purely imaginary, which occurs when |ξ| < k. Hence, as x2 → ∞ it holds that

G(x,y) ∼− 1

4π

∫

|ξ|<k

e−
√
ξ2−k2 |x2−y2|
√
ξ2 − k2

e−iξ(x1−y1)dξ

+
1

4π

∫

|ξ|<k

(
Z∞ +

√
ξ2 − k2

Z∞ −
√
ξ2 − k2

)
e−

√
ξ2−k2 (x2+y2)

√
ξ2 − k2

e−iξ(x1−y1)dξ. (3.111)

By using the change of variable ξ = −k cosψ, for 0 ≤ ψ ≤ π, we obtain that

G(x,y) ∼ i

4π

∫ π

0

(
−1 +

Z∞ − ik sinψ

Z∞ + ik sinψ
e2iky2 sinψ

)
eik|x−y| cos(ψ−α)dψ, (3.112)

where α is such that

cosα =
x1 − y1

|x − y| and sinα =
x2 − y2

|x − y| . (3.113)

The phase φ(ψ) = k cos(ψ − α) has only one stationary point, namely ψ = α, which lies

inside the interval (0, π). Hence, from (3.110) we obtain that

G(x,y) ∼ eiπ/4√
8πk

eik|x−y|
√

|x − y|

(
−1 +

Z∞ − ik sinα

Z∞ + ik sinα
e2iky2 sinα

)
, (3.114)

Due the asymptotic behavior (A.139) of the Hankel function H
(1)
0 , it holds that

H
(1)
0

(
k|x − y|

)
∼ e−iπ/4

√
2

πk

eik|x−y|
√
|x − y|

, (3.115)

H
(1)
0

(
k|x − ȳ|

)
∼ e−iπ/4

√
2

πk

eik|x−ȳ|
√
|x − ȳ|

, (3.116)

as |x| → ∞, where ȳ = (y1,−y2). Since |x − ȳ| ∼ |x − y| as x2 → ∞, this implies that

the asymptotic behavior (3.114) can be equivalently stated as

G(x,y) ∼ − i

4
H

(1)
0

(
k|x − y|

)
+
i

4

(
Z∞ − ik sinα

Z∞ + ik sinα

)
H

(1)
0

(
k|x − ȳ|

)
. (3.117)

86



By performing Taylor expansions, as in (C.37) and (C.38), we have that

eik|x−y|
√

|x − y|
=
eik|x|√
|x|

e−iky·x/|x|
(

1 + O
(

1

|x|

))
, (3.118)

eik|x−ȳ|
√

|x − ȳ|
=
eik|x|√
|x|

e−ikȳ·x/|x|
(

1 + O
(

1

|x|

))
. (3.119)

We express the point x as x = |x| x̂, being x̂ = (cos θ, sin θ) a unitary vector. Similar

Taylor expansions as before yield that

Z∞ − ik sinα

Z∞ + ik sinα
=
Z∞ − ik sin θ

Z∞ + ik sin θ

(
1 + O

(
1

|x|

))
. (3.120)

The volume-wave behavior of the Green’s function, from (3.114) and due (3.118), (3.119),

and (3.120), becomes thus

Gff
V (x,y) =

eiπ/4√
8πk

eik|x|√
|x|

e−ikx̂·y
(
−1 +

Z∞ − ik sin θ

Z∞ + ik sin θ
e2iky2 sin θ

)
, (3.121)

and its gradient with respect to y is given by

∇yG
ff
V (x,y) = e−iπ/4

√
k

8π

eik|x|√
|x|

e−ikx̂·y
(
−x̂ +

Z∞ − ik sin θ

Z∞ + ik sin θ
e2iky2 sin θ

[
cos θ

− sin θ

])
.

(3.122)

3.4.3 Surface waves in the far field

An expression for the surface waves in the far field can be obtained by studying the

residues of the poles of the spectral Green’s function, which determine entirely their as-

ymptotic behavior. We already computed the inverse Fourier transform of these residues

in (3.55), using the residue theorem of Cauchy and the limiting absorption principle. This

implies that the Green’s function behaves asymptotically, when |x1| → ∞, as

G(x,y) ∼ −iZ∞
ξp

e−Z∞(x2+y2)eiξp|x1−y1|, (3.123)

where ξp =
√
Z2

∞ + k2. More detailed computations can be found in Durán, Muga &

Nédélec (2005a, 2006). Similarly as in (C.36), we can use Taylor expansions to obtain

|x1 − y1| = |x1| − y1 signx1 + O
(

1

|x1|

)
. (3.124)

Therefore, as for (C.38), we have that

eiξp|x1−y1| = eiξp|x1|e−iξpy1 signx1

(
1 + O

(
1

|x1|

))
. (3.125)

The surface-wave behavior of the Green’s function, due (3.123) and (3.125), becomes thus

Gff
S (x,y) = −iZ∞

ξp
e−Z∞x2eiξp|x1|e−Z∞y2e−iξpy1 signx1 , (3.126)
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and its gradient with respect to y is given by

∇yG
ff
S (x,y) = −Z∞

ξp
e−Z∞x2eiξp|x1|e−Z∞y2e−iξpy1 signx1

[
ξp signx1

−iZ∞

]
. (3.127)

3.4.4 Complete far field of the Green’s function

On the whole, the asymptotic behavior of the Green’s function as |x| → ∞ can be

characterized through the addition of (3.117) and (3.123), namely

G(x,y) ∼ − i

4
H

(1)
0

(
k|x − y|

)
+
i

4

(
Z∞ − ik sinα

Z∞ + ik sinα

)
H

(1)
0

(
k|x − ȳ|

)

− iZ∞
ξp

e−Z∞(x2+y2)eiξp|x1−y1|. (3.128)

Consequently, the complete far field of the Green’s function, due (3.108), is given by the

addition of (3.121) and (3.126), i.e., by

Gff (x,y) =
eiπ/4√
8πk

eik|x|√
|x|

e−ikx̂·y
(
−1 +

Z∞ − ik sin θ

Z∞ + ik sin θ
e2iky2 sin θ

)

− iZ∞
ξp

e−Z∞x2eiξp|x1|e−Z∞y2e−iξpy1 signx1 . (3.129)

Its derivative with respect to y is likewise given by the addition of (3.122) and (3.127).

It is this far field (3.129) that justifies the radiation condition (3.21) when exchang-

ing the roles of x and y. When the first term in (3.129) dominates, i.e., the volume

waves (3.121), then it is the first expression in (3.21) that matters. Conversely, when the

second term in (3.129) dominates, i.e., the surface waves (3.126), then the second expres-

sion in (3.21) is the one that holds. The interface between both asymptotic behaviors can

be determined by equating the amplitudes of the two terms in (3.129), i.e., by searching

values of x at infinity such that

1√
8πk|x|

=
Z∞
ξp

e−Z∞x2 , (3.130)

where the values of y can be neglected, since they remain relatively near the origin. By

taking the logarithm in (3.130) and perturbing somewhat the result so as to avoid a singular

behavior at the origin, we obtain finally that this interface is described by

x2 =
1

Z∞
ln

(
1 +

8πkZ2
∞

Z2
∞ + k2

|x|
)
. (3.131)

We remark that the asymptotic behavior (3.128) of the Green’s function and the expres-

sion (3.129) of its complete far field do no longer hold if a complex impedance Z∞ ∈ C

such that Im{Z∞} > 0 and Re{Z∞} ≥ 0 is used, specifically the parts (3.123) and (3.126)

linked with the surface waves. A careful inspection shows that in this case the surface-wave
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behavior of the Green’s function, as |x1| → ∞, decreases exponentially and is given by

G(x,y) ∼





−iZ∞
ξp

e−|Z∞|(x2+y2)eiξp|x1−y1| if (x2 + y2) > 0,

−iZ∞
ξp

e−Z∞(x2+y2)eiξp|x1−y1| if (x2 + y2) ≤ 0.

(3.132)

Therefore the surface-wave part of the far field can be now expressed as

Gff
S (x,y) =





−iZ∞
ξp

e−|Z∞|x2eiξp|x1|e−|Z∞| y2e−iξpy1 signx1 if x2 > 0,

−iZ∞
ξp

e−Z∞x2eiξp|x1|e−Z∞y2e−iξpy1 signx1 if x2 ≤ 0.

(3.133)

The volume-waves part (3.117) and its far-field expression (3.121), on the other hand, re-

main the same when we use a complex impedance. We remark further that if a complex

impedance or a complex wave number are taken into account, then the part of the surface

waves of the outgoing radiation condition is redundant, and only the volume-waves part is

required, i.e., only the first two expressions in (3.21), but now holding for y2 > 0.

3.5 Numerical evaluation of the Green’s function

For the numerical evaluation of the Green’s function, we separate the plane R
2 into

three regions: an upper near field, a lower near field, and a far field. The near field is given

by the region |k| |v| ≤ 24 and the far field encompasses |k| |v| > 24, being v = y − x̄.

The upper near field considers v2 ≥ 0 and the lower near field v2 < 0. In the upper

near field, when |Z∞| ≥ |k| and 2|ξp| ≥ |Z∞|, the Green’s function is computed by using

the expression (3.87). The second condition is required, since the spectral part of (3.87)

becomes slowly decreasing when |ξp| is very small compared with |Z∞|, i.e., in the case

when Z∞ ≈ ik. When |Z∞| < |k| or when 2|ξp| < |Z∞|, the Green’s function is eval-

uated in the upper near field using (3.90) and (3.92), depending on wether arg(k) ≤ π/4

or arg(k) > π/4, respectively. In the lower near field, on the other hand, we use the expres-

sion (3.84) to compute the Green’s function, where the term GB is computed analogously

as the Green’s function in the upper near field, but considering v2 = 0. The numerical in-

tegration of the Fourier integrals is performed by means of a trapezoidal rule, discretizing

the spectral variable ξ into ξj = j∆ξ for j = 0, . . . ,M , where

∆ξ =
2π|k|
12 · 24

and ξM = M∆ξ ≈ |k|
(
2 + 8 e−4v2|Z∞|/|k|

)
, (3.134)

taking thus at least 12 samples per oscillation and increasing the size of the integration

interval as v2 approaches to zero. This discretization contains all the relevant information

for an accurate numerical integration.

In the far field, the Green’s function can be computed either by using (3.128) or by con-

sidering the exponential integral functions for the surface-wave terms, i.e., by considering
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that as |x| → ∞ it holds that

G(x,y) ∼ − i

4
H

(1)
0

(
k|x − y|

)
+
i

4

(
Z∞ − ik sinα

Z∞ + ik sinα

)
H

(1)
0

(
k|x − ȳ|

)

+
Z∞
2πξp

e−Z∞v2
{
eiξpv1 Ei(Z∞v2 − iξpv1) + e−iξpv1 Ei(Z∞v2 + iξpv1)

}

− iZ∞
ξp

e−Z∞v2 cos(ξpv1). (3.135)

The Bessel functions can be evaluated either by using the software based on the tech-

nical report by Morris (1993) or the subroutines described in Amos (1986, 1995). The

exponential integral function for complex arguments can be computed by using the algo-

rithm developed by Amos (1980, 1990a,b) or the software based on the technical report

by Morris (1993), taking care with the definition of the analytic branch cuts. Further ref-

erences are listed in Lozier & Olver (1994). The biggest numerical error, excepting the

singularity-distribution along the half-line Υ, is committed near the boundaries of the three

described regions, and is more or less of order 6 |k| / |Z∞| · 10−3.

3.6 Integral representation and equation

3.6.1 Integral representation

We are interested in expressing the solution u of the direct scattering problem (3.13) by

means of an integral representation formula over the perturbed portion of the boundary Γp.

For this purpose, we extend this solution by zero towards the complementary domain Ωc,

analogously as done in (C.107). We define by ΩR,ε the domain Ωe without the ball Bε of

radius ε > 0 centered at the point x ∈ Ωe, and truncated at infinity by the ball BR of

radius R > 0 centered at the origin. We consider that the ball Bε is entirely contained

in Ωe. Therefore, as shown in Figure 3.8, we have that

ΩR,ε =
(
Ωe ∩BR

)
\Bε, (3.136)

where

BR = {y ∈ R
2 : |y| < R} and Bε = {y ∈ Ωe : |y − x| < ε}. (3.137)

We consider similarly, inside Ωe, the boundaries of the balls

S+
R = {y ∈ R

2
+ : |y| = R} and Sε = {y ∈ Ωe : |y − x| = ε}. (3.138)

We separate furthermore the boundary as Γ = Γ0 ∪ Γ+, where

Γ0 = {y ∈ Γ : y2 = 0} and Γ+ = {y ∈ Γ : y2 > 0}. (3.139)

The boundary Γ is likewise truncated at infinity by the ball BR, namely

ΓR = Γ ∩BR = ΓR0 ∪ Γ+ = ΓR∞ ∪ Γp, (3.140)

where

ΓR0 = Γ0 ∩BR and ΓR∞ = Γ∞ ∩BR. (3.141)
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The idea is to retrieve the domain Ωe and the boundary Γ at the end when the limitsR → ∞
and ε→ 0 are taken for the truncated domain ΩR,ε and the truncated boundary ΓR.

ΩR,ε
S+

R
n = r

x
εR

Sε

On
Γ+

Γ0
RΓ0

R

FIGURE 3.8. Truncated domain ΩR,ε for x ∈ Ωe.

We apply now Green’s second integral theorem (A.613) to the functions u and G(x, ·)
in the bounded domain ΩR,ε, by subtracting their respective Helmholtz equations, yielding

0 =

∫

ΩR,ε

(
u(y)∆yG(x,y) −G(x,y)∆u(y)

)
dy

=

∫

S+
R

(
u(y)

∂G

∂ry
(x,y) −G(x,y)

∂u

∂r
(y)

)
dγ(y)

−
∫

Sε

(
u(y)

∂G

∂ry
(x,y) −G(x,y)

∂u

∂r
(y)

)
dγ(y)

+

∫

ΓR

(
u(y)

∂G

∂ny

(x,y) −G(x,y)
∂u

∂n
(y)

)
dγ(y). (3.142)

The integral on S+
R can be rewritten as

∫

S2
R

[
u(y)

(
∂G

∂ry
(x,y) − iZ∞G(x,y)

)
−G(x,y)

(
∂u

∂r
(y) − iZ∞u(y)

)]
dγ(y)

+

∫

S1
R

[
u(y)

(
∂G

∂ry
(x,y) − ikG(x,y)

)
−G(x,y)

(
∂u

∂r
(y) − iku(y)

)]
dγ(y), (3.143)

which for R large enough and due the radiation condition (3.6) tends to zero, since
∣∣∣∣∣

∫

S2
R

u(y)

(
∂G

∂ry
(x,y) − i

√
Z2

∞ + k2G(x,y)

)
dγ(y)

∣∣∣∣∣ ≤
C

R
lnR, (3.144)

∣∣∣∣∣

∫

S2
R

G(x,y)

(
∂u

∂r
(y) − i

√
Z2

∞ + k2 u(y)

)
dγ(y)

∣∣∣∣∣ ≤
C

R
lnR, (3.145)

and ∣∣∣∣∣

∫

S1
R

u(y)

(
∂G

∂ry
(x,y) − ikG(x,y)

)
dγ(y)

∣∣∣∣∣ ≤
C√
R
, (3.146)
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∣∣∣∣∣

∫

S1
R

G(x,y)

(
∂u

∂r
(y) − iku(y)

)
dγ(y)

∣∣∣∣∣ ≤
C√
R
, (3.147)

for some constants C > 0. If the function u is regular enough in the ball Bε, then the

second term of the integral on Sε in (3.142), when ε→ 0 and due (3.97), is bounded by
∣∣∣∣
∫

Sε

G(x,y)
∂u

∂r
(y) dγ(y)

∣∣∣∣ ≤ Cε ln ε sup
y∈Bε

∣∣∣∣
∂u

∂r
(y)

∣∣∣∣, (3.148)

for some constant C > 0 and tends to zero. The regularity of u can be specified afterwards

once the integral representation has been determined and generalized by means of density

arguments. The first integral term on Sε can be decomposed as
∫

Sε

u(y)
∂G

∂ry
(x,y) dγ(y) = u(x)

∫

Sε

∂G

∂ry
(x,y) dγ(y)

+

∫

Sε

∂G

∂ry
(x,y)

(
u(y) − u(x)

)
dγ(y), (3.149)

For the first term in the right-hand side of (3.149), by considering (3.97) we have that
∫

Sε

∂G

∂ry
(x,y) dγ(y) −−−→

ε→0
1, (3.150)

while the second term is bounded by
∣∣∣∣
∫

Sε

(
u(y) − u(x)

)∂G
∂ry

(x,y) dγ(y)

∣∣∣∣ ≤ sup
y∈Bε

|u(y) − u(x)|, (3.151)

which tends towards zero when ε → 0. Finally, due the impedance boundary condi-

tion (3.4) and since the support of fz vanishes on Γ∞, the term on ΓR in (3.142) can be

decomposed as
∫

Γp

(
∂G

∂ny

(x,y) − Z(y)G(x,y)

)
u(y) dγ(y) +

∫

Γp

G(x,y)fz(y) dγ(y)

−
∫

ΓR
∞

(
∂G

∂y2

(x,y) + Z∞G(x,y)

)
u(y) dγ(y), (3.152)

where the integral on ΓR∞ vanishes due the impedance boundary condition in (3.20). There-

fore this term does not depend on R and has its support only on the bounded and perturbed

portion Γp of the boundary.

In conclusion, when the limits R → ∞ and ε→ 0 are taken in (3.142), then we obtain

for x ∈ Ωe the integral representation formula

u(x) =

∫

Γp

(
∂G

∂ny

(x,y) − Z(y)G(x,y)

)
u(y) dγ(y) +

∫

Γp

G(x,y)fz(y) dγ(y), (3.153)

which can be alternatively expressed as

u(x) =

∫

Γp

(
u(y)

∂G

∂ny

(x,y) −G(x,y)
∂u

∂n
(y)

)
dγ(y). (3.154)

It is remarkable in this integral representation that the support of the integral, namely the

curve Γp, is bounded. Let us denote the traces of the solution and of its normal derivative
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on Γp respectively by

µ = u|Γp and ν =
∂u

∂n

∣∣∣∣
Γp

. (3.155)

We can rewrite now (3.153) and (3.154) in terms of layer potentials as

u = D(µ) − S(Zµ) + S(fz) in Ωe, (3.156)

u = D(µ) − S(ν) in Ωe, (3.157)

where we define for x ∈ Ωe respectively the single and double layer potentials as

Sν(x) =

∫

Γp

G(x,y)ν(y) dγ(y), (3.158)

Dµ(x) =

∫

Γp

∂G

∂ny

(x,y)µ(y) dγ(y). (3.159)

We remark that from the impedance boundary condition (3.4) it is clear that

ν = Zµ− fz. (3.160)

3.6.2 Integral equation

To determine entirely the solution of the direct scattering problem (3.13) by means

of its integral representation, we have to find values for the traces (3.155). This requires

the development of an integral equation that allows to fix these values by incorporating

the boundary data. For this purpose we place the source point x on the boundary Γ and

apply the same procedure as before for the integral representation (3.153), treating differ-

ently in (3.142) only the integrals on Sε. The integrals on S+
R still behave well and tend

towards zero as R → ∞. The Ball Bε, though, is split in half by the boundary Γ, and the

portion Ωe ∩ Bε is asymptotically separated from its complement in Bε by the tangent of

the boundary if Γ is regular. If x ∈ Γ+, then the associated integrals on Sε give rise to a

term −u(x)/2 instead of just −u(x) as before for the integral representation. Therefore

we obtain for x ∈ Γ+ the boundary integral representation

u(x)

2
=

∫

Γp

(
∂G

∂ny

(x,y) − Z(y)G(x,y)

)
u(y) dγ(y) +

∫

Γp

G(x,y)fz(y) dγ(y). (3.161)

On the contrary, if x ∈ Γ0, then the logarithmic behavior (3.98) contributes also to the

singularity (3.97) of the Green’s function and the integrals on Sε give now rise to two

terms −u(x)/2, i.e., on the whole to a term −u(x). For x ∈ Γ0 the boundary integral

representation is instead given by

u(x) =

∫

Γp

(
∂G

∂ny

(x,y) − Z(y)G(x,y)

)
u(y) dγ(y) +

∫

Γp

G(x,y)fz(y) dγ(y). (3.162)

We must notice that in both cases, the integrands associated with the boundary Γ admit an

integrable singularity at the point x. In terms of boundary layer potentials, we can express

these boundary integral representations as

u

2
= D(µ) − S(Zµ) + S(fz) on Γ+, (3.163)
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u = D(µ) − S(Zµ) + S(fz) on Γ0, (3.164)

where we consider, for x ∈ Γ, the two boundary integral operators

Sν(x) =

∫

Γp

G(x,y)ν(y) dγ(y), (3.165)

Dµ(x) =

∫

Γp

∂G

∂ny

(x,y)µ(y) dγ(y). (3.166)

We can combine (3.163) and (3.164) into a single integral equation on Γp, namely

(1 + I0)
µ

2
+ S(Zµ) −D(µ) = S(fz) on Γp, (3.167)

where I0 denotes the characteristic or indicator function of the set Γ0, i.e.,

I0(x) =

{
1 if x ∈ Γ0,

0 if x /∈ Γ0.
(3.168)

It is the solution µ on Γp of the integral equation (3.167) which finally allows to char-

acterize the solution u in Ωe of the direct scattering problem (3.13) through the integral

representation formula (3.156). The trace of the solution u on the boundary Γ is then found

simultaneously by means of the boundary integral representations (3.163) and (3.164). In

particular, when x ∈ Γ∞ and since Γ∞ ⊂ Γ0, therefore it holds that

u = D(µ) − S(Zµ) + S(fz) on Γ∞. (3.169)

3.7 Far field of the solution

The asymptotic behavior at infinity of the solution u of (3.13) is described by the far

field. It is denoted by uff and is characterized by

u(x) ∼ uff (x) as |x| → ∞. (3.170)

Its expression can be deduced by replacing the far field of the Green’s function Gff and its

derivatives in the integral representation formula (3.154), which yields

uff (x) =

∫

Γp

(
∂Gff

∂ny

(x,y)µ(y) −Gff (x,y)ν(y)

)
dγ(y). (3.171)

By replacing now (3.129) and the addition of (3.122) and (3.127) in (3.171), we obtain that

uff (x) =
eiπ/4√
8πk

eik|x|√
|x|

∫

Γp

e−ikx̂·y

(
ikx̂ · ny µ(y) + ν(y)

− Z∞ − ik sin θ

Z∞ + ik sin θ
e2iky2 sin θ

(
ik

[
cos θ

− sin θ

]
· ny µ(y) + ν(y)

))
dγ(y)

− Z∞
ξp

e−Z∞x2eiZ∞|x1|
∫

Γp

e−Z∞y2e−iZ∞y1 signx1

([
ξp signx1

−iZ∞

]
· ny µ(y) − iν(y)

)
dγ(y).

(3.172)
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The asymptotic behavior of the solution u at infinity, as |x| → ∞, is therefore given by

u(x) =
eik|x|√
|x|

{
uV∞(x̂) + O

(
1

|x|

)}
+ e−Z∞x2eiξp|x1|

{
uS∞(x̂s) + O

(
1

|x1|

)}
, (3.173)

where x̂s = signx1 and where we decompose x = |x| x̂, being x̂ = (cos θ, sin θ) a vector

of the unit circle. The far-field pattern of the volume waves is given by

uV∞(x̂) =
eiπ/4√
8πk

∫

Γp

e−ikx̂·y

(
ikx̂ · ny µ(y) + ν(y)

− Z∞ − ik sin θ

Z∞ + ik sin θ
e2iky2 sin θ

(
ik

[
cos θ

− sin θ

]
· ny µ(y) + ν(y)

))
dγ(y), (3.174)

whereas the far-field pattern for the surface waves adopts the form

uS∞(x̂s) = −Z∞
ξp

∫

Γp

e−Z∞y2e−iZ∞y1 signx1

([
ξp signx1

−iZ∞

]
·ny µ(y)−iν(y)

)
dγ(y). (3.175)

Both far-field patterns can be expressed in decibels (dB) respectively by means of the scat-

tering cross sections

QV
s (x̂) [dB] = 20 log10

( |uV∞(x̂)|
|uV0 |

)
, (3.176)

QS
s (x̂s) [dB] = 20 log10

( |uS∞(x̂s)|
|uS0 |

)
, (3.177)

where the reference levels uV0 and uS0 are taken such that |uV0 | = |uS0 | = 1 if the incident

field is given either by a volume wave of the form (3.16) or by a surface wave of the

form (3.19).

We remark that the far-field behavior (3.173) of the solution is in accordance with the

radiation condition (3.6), which justifies its choice.

3.8 Existence and uniqueness

3.8.1 Function spaces

To state a precise mathematical formulation of the herein treated problems, we have to

define properly the involved function spaces. Since the considered domains and boundaries

are unbounded, we need to work with weighted Sobolev spaces, as in Durán, Muga &

Nédélec (2005a, 2006). We consider the classic weight functions

̺ =
√

1 + r2 and log ̺ = ln(2 + r2), (3.178)

where r = |x|. We define the domains

Ω1
e =

{
x ∈ Ωe : x2 >

1

2Z∞
ln

(
1 +

8πkZ2
∞

Z2
∞ + k2

r

)}
, (3.179)

Ω2
e =

{
x ∈ Ωe : x2 <

1

2Z∞
ln

(
1 +

8πkZ2
∞

Z2
∞ + k2

r

)}
. (3.180)
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It holds that the solution of the direct scattering problem (3.13) is contained in the weighted

Sobolev space

W 1(Ωe) =

{
v :

v

̺ log ̺
∈ L2(Ωe),

∇v
̺ log ̺

∈ L2(Ωe)
2,

v√
̺
∈ L2(Ω1

e),

∂v

∂r
− ikv ∈ L2(Ω1

e),
v

log ̺
∈ L2(Ω2

e),
1

log ̺

(
∂v

∂r
− iξpv

)
∈ L2(Ω2

e)

}
, (3.181)

where ξp =
√
Z2

∞ + k2. With the appropriate norm, the space W 1(Ωe) becomes also a

Hilbert space. We have likewise the inclusion W 1(Ωe) ⊂ H1
loc(Ωe), i.e., the functions of

these two spaces differ only by their behavior at infinity.

Since we are dealing with Sobolev spaces, even a strong Lipschitz boundary Γ ∈ C0,1

is admissible. The fact that this boundary Γ is also unbounded implies that we have to use

weighted trace spaces like in Amrouche (2002). For this purpose, we consider the space

W 1/2(Γ) =

{
v :

v√
̺ log ̺

∈ H1/2(Γ)

}
. (3.182)

Its dual space W−1/2(Γ) is defined via W 0-duality, i.e., considering the pivot space

W 0(Γ) =

{
v :

v√
̺ log ̺

∈ L2(Γ)

}
. (3.183)

Analogously as for the trace theorem (A.531), if v ∈ W 1(Ωe) then the trace of v fulfills

γ0v = v|Γ ∈ W 1/2(Γ). (3.184)

Moreover, the trace of the normal derivative can be also defined, and it holds that

γ1v =
∂v

∂n
|Γ ∈ W−1/2(Γ). (3.185)

We remark further that the restriction of the trace of v to Γp is such that

γ0v|Γp = v|Γp ∈ H1/2(Γp), (3.186)

γ1v|Γp =
∂v

∂n
|Γp ∈ H−1/2(Γp), (3.187)

and its restriction to Γ∞ yields

γ0v|Γ∞ = v|Γ∞ ∈ W 1/2(Γ∞), (3.188)

γ1v|Γ∞ =
∂v

∂n
|Γ∞ ∈ W−1/2(Γ∞). (3.189)

3.8.2 Application to the integral equation

The existence and uniqueness of the solution for the direct scattering problem (3.13),

due the integral representation formula (3.156), can be characterized by using the integral

equation (3.167). For this purpose and in accordance with the considered function spaces,

we take µ ∈ H1/2(Γp) and ν ∈ H−1/2(Γp). Furthermore, we consider that Z ∈ L∞(Γp) and

that fz ∈ H−1/2(Γp), even though strictly speaking fz ∈ H̃−1/2(Γp).
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It holds that the single and double layer potentials defined respectively in (3.158)

and (3.159) are linear and continuous integral operators such that

S : H−1/2(Γp) −→ W 1(Ωe) and D : H1/2(Γp) −→ W 1(Ωe). (3.190)

The boundary integral operators (3.165) and (3.166) are also linear and continuous appli-

cations, and they are such that

S : H−1/2(Γp) −→ W 1/2(Γ) and D : H1/2(Γp) −→ W 1/2(Γ). (3.191)

When we restrict them to Γp, then it holds that

S|Γp : H−1/2(Γp) −→ H1/2(Γp) and D|Γp : H1/2(Γp) −→ H1/2(Γp). (3.192)

Let us consider the integral equation (3.167), which is given in terms of boundary layer

potentials, for µ ∈ H1/2(Γp), by

(1 + I0)
µ

2
+ S(Zµ) −D(µ) = S(fz) in H1/2(Γp). (3.193)

Due the imbedding properties of Sobolev spaces and in the same way as for the half-plane

impedance Laplace problem, it holds that the left-hand side of the integral equation corre-

sponds to an identity and two compact operators, and thus Fredholm’s alternative holds.

Since the Fredholm alternative applies to the integral equation, therefore it applies

also to the direct scattering problem (3.13) due the integral representation formula. The

existence of the scattering problem’s solution is thus determined by its uniqueness, and the

wave numbers k ∈ C and impedances Z ∈ C for which the uniqueness is lost constitute a

countable set, which we call respectively wave number spectrum and impedance spectrum

of the scattering problem and denote it by σk and σZ . The spectrum σk considers a fixed Z

and, conversely, the spectrum σZ considers a fixed k. The existence and uniqueness of

the solution is therefore ensured almost everywhere. The same holds obviously for the

solution of the integral equation, whose wave number spectrum and impedance spectrum

we denote respectively by ςk and ςZ . Since each integral equation is derived from the

scattering problem, it holds that σk ⊂ ςk and σZ ⊂ ςZ . The converse, though, is not

necessarily true. In any way, the sets ςk \ σk and ςZ \ σZ are at most countable.

In conclusion, the scattering problem (3.13) admits a unique solution u if k /∈ σk
and Z /∈ σZ , and the integral equation (3.167) admits in the same way a unique solution µ

if k /∈ ςk and Z /∈ ςZ .

3.9 Dissipative problem

The dissipative problem considers waves that dissipate their energy as they propagate

and are modeled by considering a complex wave number or a complex impedance. The

use of a complex wave number k ∈ C whose imaginary part is strictly positive, i.e., such

that Im{k} > 0, ensures an exponential decrease at infinity for both the volume and the

surface waves. On the other hand, the use of a complex impedance Z∞ ∈ C with a strictly

positive imaginary part, i.e., Im{Z∞} > 0, ensures only an exponential decrease at infinity

for the surface waves. In the first case, when considering a complex wave number k, and
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due the dissipative nature of the medium, it is no longer suited to take progressive plane

volume waves in the form of (3.16) and (3.17) respectively as the incident field uI and the

reflected field uR. In both cases, likewise, it is no longer suited to take progressive plane

surface waves in the form of (3.19) as the incident field uI . Instead, we have to take a wave

source at a finite distance from the perturbation. For example, we can consider a point

source located at z ∈ Ωe, in which case we have only an incident field, which is given, up

to a multiplicative constant, by

uI(x) = G(x, z), (3.194)

where G denotes the Green’s function (3.93). This incident field uI satisfies the Helmholtz

equation with a source term in the right-hand side, namely

∆uI + k2uI = δz in D′(Ωe), (3.195)

which holds also for the total field uT but not for the scattered field u, in which case the

Helmholtz equation remains homogeneous. For a general source distribution gs, whose

support is contained in Ωe, the incident field can be expressed by

uI(x) = G(x, z) ∗ gs(z) =

∫

Ωe

G(x, z) gs(z) dz. (3.196)

This incident field uI satisfies now

∆uI + k2uI = gs in D′(Ωe), (3.197)

which holds again also for the total field uT but not for the scattered field u.

It is not difficult to see that all the performed developments for the non-dissipative

case are still valid when considering dissipation. The only difference is that now either

a complex wave number k such that Im{k} > 0, or a complex impedance Z∞ such

that Im{Z∞} > 0, or both, have to be taken everywhere into account.

3.10 Variational formulation

To solve the integral equation we convert it to its variational or weak formulation,

i.e., we solve it with respect to a certain test function in a bilinear (or sesquilinear) form.

Basically, the integral equation is multiplied by the (conjugated) test function and then the

equation is integrated over the boundary of the domain. The test function is taken in the

same function space as the solution of the integral equation.

The variational formulation for the integral equation (3.193) searches µ ∈ H1/2(Γp)

such that ∀ϕ ∈ H1/2(Γp) we have that
〈
(1 + I0)

µ

2
+ S(Zµ) −D(µ), ϕ

〉
=
〈
S(fz), ϕ

〉
. (3.198)
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3.11 Numerical discretization

3.11.1 Discretized function spaces

The scattering problem (3.13) is solved numerically with the boundary element method

by employing a Galerkin scheme on the variational formulation of the integral equation. We

use on the boundary curve Γp Lagrange finite elements of type P1. As shown in Figure 3.9,

the curve Γp is approximated by the discretized curve Γhp , composed by I rectilinear seg-

ments Tj , sequentially ordered from left to right for 1 ≤ j ≤ I , such that their length |Tj|
is less or equal than h, and with their endpoints on top of Γp.

n
Γp

Tj−1
Tj

Tj+1

Γh
p

FIGURE 3.9. Curve Γhp , discretization of Γp.

The function space H1/2(Γp) is approximated using the conformal space of continuous

piecewise linear polynomials with complex coefficients

Qh =
{
ϕh ∈ C0(Γhp ) : ϕh|Tj

∈ P1(C), 1 ≤ j ≤ I
}
. (3.199)

The space Qh has a finite dimension (I + 1), and we describe it using the standard base

functions for finite elements of type P1, denoted by {χj}I+1
j=1 and expressed as

χj(x) =





|x − rj−1|
|Tj−1|

if x ∈ Tj−1,

|rj+1 − x|
|Tj|

if x ∈ Tj,

0 if x /∈ Tj−1 ∪ Tj,

(3.200)

where segment Tj−1 has as endpoints rj−1 and rj , while the endpoints of segment Tj are

given by rj and rj+1.

In virtue of this discretization, any function ϕh ∈ Qh can be expressed as a linear

combination of the elements of the base, namely

ϕh(x) =
I+1∑

j=1

ϕj χj(x) for x ∈ Γhp , (3.201)

where ϕj ∈ C for 1 ≤ j ≤ I + 1. The solution µ ∈ H1/2(Γp) of the variational formula-

tion (3.198) can be therefore approximated by

µh(x) =
I+1∑

j=1

µj χj(x) for x ∈ Γhp , (3.202)
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where µj ∈ C for 1 ≤ j ≤ I + 1. The function fz can be also approximated by

fhz (x) =
I+1∑

j=1

fj χj(x) for x ∈ Γhp , with fj = fz(rj). (3.203)

3.11.2 Discretized integral equation

To see how the boundary element method operates, we apply it to the variational for-

mulation (3.198). We characterize all the discrete approximations by the index h, includ-

ing also the impedance and the boundary layer potentials. The numerical approximation

of (3.198) leads to the discretized problem that searches µh ∈ Qh such that ∀ϕh ∈ Qh〈
(1 + Ih0 )

µh
2

+ Sh(Zhµh) −Dh(µh), ϕh

〉
=
〈
Sh(f

h
z ), ϕh

〉
. (3.204)

Considering the decomposition of µh in terms of the base {χj} and taking as test functions

the same base functions, ϕh = χi for 1 ≤ i ≤ I + 1, yields the discrete linear system

I+1∑

j=1

µj

(
1

2

〈
(1 + Ih0 )χj, χi

〉
+ 〈Sh(Zhχj), χi〉 − 〈Dh(χj), χi〉

)
=

I+1∑

j=1

fj 〈Sh(χj), χi〉.

(3.205)

This constitutes a system of linear equations that can be expressed as a linear matrix system:
{

Find µ ∈ C
I+1 such that

Mµ = b.
(3.206)

The elements mij of the matrix M are given, for 1 ≤ i, j ≤ I + 1, by

mij =
1

2

〈
(1 + Ih0 )χj, χi

〉
+ 〈Sh(Zhχj), χi〉 − 〈Dh(χj), χi〉, (3.207)

and the elements bi of the vector b by

bi =
〈
Sh(f

h
z ), χi

〉
=

I+1∑

j=1

fj 〈Sh(χj), χi〉 for 1 ≤ i ≤ I + 1. (3.208)

The discretized solution uh, which approximates u, is finally obtained by discretizing

the integral representation formula (3.156) according to

uh = Dh(µh) − Sh(Zhµh) + Sh(fhz ), (3.209)

which, more specifically, can be expressed as

uh =
I+1∑

j=1

µj
(
Dh(χj) − Sh(Zhχj)

)
+

I+1∑

j=1

fj Sh(χj). (3.210)

We remark that the resulting matrix M is in general complex, full, non-symmetric,

and with dimensions (I + 1) × (I + 1). The right-hand side vector b is complex and

of size I + 1. The boundary element calculations required to compute numerically the

elements of M and b have to be performed carefully, since the integrals that appear become

singular when the involved segments are adjacent or coincident, due the singularity of the
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Green’s function at its source point. On Γ0, the singularity of the image source point has to

be taken additionally into account for these calculations.

3.12 Boundary element calculations

The boundary element calculations build the elements of the matrix M resulting from

the discretization of the integral equation, i.e., from (3.206). They permit thus to compute

numerically expressions like (3.207). To evaluate the appearing singular integrals, we adapt

the semi-numerical methods described in the report of Bendali & Devys (1986).

We use the same notation as in Section B.12, and the required boundary element inte-

grals, for a, b ∈ {1, 2}, are again

ZAa,b =

∫

K

∫

L

(
s

|K|

)a(
t

|L|

)b
G(x,y) dL(y) dK(x), (3.211)

ZBa,b =

∫

K

∫

L

(
s

|K|

)a(
t

|L|

)b
∂G

∂ny

(x,y) dL(y) dK(x). (3.212)

All the integrals that stem from the numerical discretization can be expressed in terms

of these two basic boundary element integrals. The impedance is again discretized as a

piecewise constant function Zh, which on each segment Tj adopts a constant value Zj ∈ C.

The integrals of interest are the same as for the full-plane impedance Helmholtz problem

and we consider furthermore that

〈
(1 + Ih0 )χj, χi

〉
=

{
〈χj, χi〉 if rj ∈ Γ+,

2 〈χj, χi〉 if rj ∈ Γ0.
(3.213)

To compute the boundary element integrals (3.211) and (3.212), we can easily isolate

the singular part (3.97) of the Green’s function (3.93), which corresponds in fact to the

Green’s function of the Laplace equation in the full-plane, and therefore the associated in-

tegrals are computed in the same way. The same applies also for its normal derivative. In

the case when the segments K and L are are close enough, e.g., adjacent or coincident, and

when L ∈ Γh0 or K ∈ Γh0 , being Γh0 the approximation of Γ0, we have to consider addi-

tionally the singular behavior (3.98), which is linked with the presence of the impedance

half-plane. This behavior can be straightforwardly evaluated by replacing x by x̄ in for-

mulae (B.340) to (B.343), i.e., by computing the quantities ZFb(x̄) and ZGb(x̄) with the

corresponding adjustment of the notation. Otherwise, if the segments are not close enough

and for the non-singular part of the Green’s function, a two-point Gauss quadrature formula

is used. All the other computations are performed in the same manner as in Section B.12

for the full-plane Laplace equation.

3.13 Benchmark problem

As benchmark problem we consider the particular case when the domain Ωe ⊂ R
2
+ is

taken as the exterior of a half-circle of radius R > 0 that is centered at the origin, as shown
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in Figure 3.10. We decompose the boundary of Ωe as Γ = Γp ∪ Γ∞, where Γp corresponds

to the upper half-circle, whereas Γ∞ denotes the remaining unperturbed portion of the half-

plane’s boundary which lies outside the half-circle and which extends towards infinity on

both sides. The unit normal n is taken outwardly oriented of Ωe, e.g., n = −r on Γp.

Γ∞, Z Γ∞, Z

x1

x2

Ωe

n

Γp, Z

Ωc

FIGURE 3.10. Exterior of the half-circle.

The benchmark problem is then stated as




Find u : Ωe → C such that

∆u+ k2u = 0 in Ωe,

−∂u
∂n

+ Zu = fz on Γ,

+ Outgoing radiation condition as |x| → ∞,

(3.214)

where we consider a wave number k ∈ C, a constant impedance Z ∈ C throughout Γ, and

where the radiation condition is as usual given by (3.6). As incident field uI we consider

the same Green’s function, namely

uI(x) = G(x, z), (3.215)

where z ∈ Ωc denotes the source point of our incident field. The impedance data func-

tion fz is hence given by

fz(x) =
∂G

∂nx

(x, z) − ZG(x, z), (3.216)

and its support is contained in Γp. The analytic solution for the benchmark problem (3.214)

is then clearly given by

u(x) = −G(x, z). (3.217)

The goal is to retrieve this solution numerically with the integral equation techniques and

the boundary element method described throughout this chapter.

For the computational implementation and the numerical resolution of the benchmark

problem, we consider integral equation (3.167). The linear system (3.206) resulting from

the discretization (3.204) of its variational formulation (3.198) is solved computationally

with finite boundary elements of type P1 by using subroutines programmed in Fortran 90,
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by generating the mesh Γhp of the boundary with the free software Gmsh 2.4, and by repre-

senting graphically the results in Matlab 7.5 (R2007b).

We consider a radius R = 1, a wave number k = 3, a constant impedance Z = 5,

and for the incident field a source point z = (0, 0). The discretized perturbed boundary

curve Γhp has I = 120 segments and a discretization step h = 0.02618, being

h = max
1≤j≤I

|Tj|. (3.218)

We observe that h ≈ π/I .

The numerically calculated trace of the solution µh of the benchmark problem, which

was computed by using the boundary element method, is depicted in Figure 3.11. In the

same manner, the numerical solution uh is illustrated in Figures 3.12 and 3.13. It can be

observed that the numerical solution is quite close to the exact one.
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FIGURE 3.11. Numerically computed trace of the solution µh.
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FIGURE 3.12. Contour plot of the numerically computed solution uh.
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FIGURE 3.13. Oblique view of the numerically computed solution uh.

Likewise as in (B.368), we define the relative error of the trace of the solution as

E2(h,Γ
h
p ) =

‖Πhµ− µh‖L2(Γh
p )

‖Πhµ‖L2(Γh
p )

, (3.219)

where Πhµ denotes the Lagrange interpolating function of the exact solution’s trace µ, i.e.,

Πhµ(x) =
I+1∑

j=1

µ(rj)χj(x) and µh(x) =
I+1∑

j=1

µj χj(x) for x ∈ Γhp . (3.220)

In our case, for a step h = 0.02618, we obtained a relative error of E2(h,Γ
h
p ) = 0.08631.

As in (B.372), we define the relative error of the solution as

E∞(h,ΩL) =
‖u− uh‖L∞(ΩL)

‖u‖L∞(ΩL)

, (3.221)

being ΩL = {x ∈ Ωe : ‖x‖∞ < L} for L > 0. We consider L = 3 and describe ΩL by

a triangular finite element mesh of refinement h near the boundary. For h = 0.02618, the

relative error that we obtained for the solution was E∞(h,ΩL) = 0.06178.

The results for different mesh refinements, i.e., for different numbers of segments I

and discretization steps h, are listed in Table 3.1. These results are illustrated graphically

in Figure 3.14. It can be observed that the relative errors are approximately of order h for

bigger values of h.
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TABLE 3.1. Relative errors for different mesh refinements.

I h E2(h,Γ
h
p ) E∞(h,ΩL)

12 0.2611 8.483 · 10−1 7.702 · 10−1

40 0.07852 2.843 · 10−1 1.899 · 10−1

80 0.03927 1.316 · 10−1 9.362 · 10−2

120 0.02618 8.631 · 10−2 6.178 · 10−2

240 0.01309 5.076 · 10−2 3.177 · 10−2

500 0.006283 4.587 · 10−2 2.804 · 10−2

1000 0.003142 4.873 · 10−2 2.695 · 10−2
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FIGURE 3.14. Logarithmic plots of the relative errors versus the discretization step.
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IV. HALF-SPACE IMPEDANCE LAPLACE PROBLEM

4.1 Introduction

In this chapter we study the perturbed half-space impedance Laplace problem using

integral equation techniques and the boundary element method.

We consider the problem of the Laplace equation in three dimensions on a compactly

perturbed half-space with an impedance boundary condition. The perturbed half-space

impedance Laplace problem is a surface wave scattering problem around the bounded

perturbation, which is contained in the upper half-space. In water-wave scattering the

impedance boundary-value problem appears as a consequence of the linearized free-surface

condition, which allows the propagation of surface waves (vid. Section A.10). This prob-

lem can be regarded as a limit case when the frequency of the volume waves, i.e., the

wave number in the Helmholtz equation, tends towards zero (vid. Chapter V). The two-

dimensional case is considered in Chapter II, whereas the full-space impedance Laplace

problem with a bounded impenetrable obstacle is treated thoroughly in Appendix D.

The main application of the problem corresponds to linear water-wave propagation in

a liquid of indefinite depth, which was first studied in the classical works of Cauchy (1827)

and Poisson (1818). A study of wave motion caused by a submerged obstacle was carried

out by Lamb (1916). The major impulse in the field came after the milestone papers on

the motion of floating bodies by John (1949, 1950), who considered a Green’s function

and integral equations to solve the problem. Another expression for the Green’s function

was suggested by Havelock (1955), which was later rederived or publicized in different

forms by Kim (1965), Hearn (1977), Noblesse (1982), and Newman (1984b, 1985), Pid-

cock (1985), and Chakrabarti (2001). Other expressions for this Green’s function can be

found in the articles of Moran (1964), Hess & Smith (1967), and Peter & Meylan (2004),

and likewise in the books of Dautray & Lions (1987) and Duffy (2001). The main refer-

ences for the problem are the classical article of Wehausen & Laitone (1960) and the books

of Mei (1983), Linton & McIver (2001), Kuznetsov, Maz’ya & Vainberg (2002), and Mei,

Stiassnie & Yue (2005). Reviews of the numerical methods used to solve water-wave prob-

lems can be found in Mei (1978) and Yeung (1982).

The Laplace equation does not allow the propagation of volume waves inside the con-

sidered domain, but the addition of an impedance boundary condition permits the propaga-

tion of surface waves along the boundary of the perturbed half-space. The main difficulty

in the numerical treatment and resolution of our problem is the fact that the exterior do-

main is unbounded. We solve it therefore with integral equation techniques and a boundary

element method, which require the knowledge of the associated Green’s function. This

Green’s function is computed using a Fourier transform and taking into account the lim-

iting absorption principle, following Durán, Muga & Nédélec (2005b, 2009), but here an

explicit expression is found for it in terms of a finite combination of elementary functions,

special functions, and their primitives.
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This chapter is structured in 13 sections, including this introduction. The direct scatter-

ing problem of the Laplace equation in a three-dimensional compactly perturbed half-space

with an impedance boundary condition is presented in Section 4.2. The computation of the

Green’s function, its far field, and its numerical evaluation are developed respectively in

Sections 4.3, 4.4, and 4.5. The use of integral equation techniques to solve the direct scat-

tering problem is discussed in Section 4.6. These techniques allow also to represent the far

field of the solution, as shown in Section 4.7. The appropriate function spaces and some ex-

istence and uniqueness results for the solution of the problem are presented in Section 4.8.

The dissipative problem is studied in Section 4.9. By means of the variational formulation

developed in Section 4.10, the obtained integral equation is discretized using the boundary

element method, which is described in Section 4.11. The boundary element calculations

required to build the matrix of the linear system resulting from the numerical discretization

are explained in Section 4.12. Finally, in Section 4.13 a benchmark problem based on an

exterior half-sphere problem is solved numerically.

4.2 Direct scattering problem

4.2.1 Problem definition

We consider the direct scattering problem of linear time-harmonic surface waves on

a perturbed half-space Ωe ⊂ R
3
+, where R

3
+ = {(x1, x2, x3) ∈ R

3 : x3 > 0}, where

the incident field uI is known, and where the time convention e−iωt is taken. The goal

is to find the scattered field u as a solution to the Laplace equation in the exterior open

and connected domain Ωe, satisfying an outgoing surface-wave radiation condition, and

such that the total field uT , which is decomposed as uT = uI + u, satisfies a homogeneous

impedance boundary condition on the regular boundary Γ = Γp∪Γ∞ (e.g., of classC2). The

exterior domain Ωe is composed by the half-space R
3
+ with a compact perturbation near the

origin that is contained in R
3
+, as shown in Figure 4.1. The perturbed boundary is denoted

by Γp, while Γ∞ denotes the remaining unperturbed boundary of R
3
+, which extends towards

infinity on every horizontal direction. The unit normal n is taken outwardly oriented of Ωe

and the complementary domain is denoted by Ωc = R
3 \ Ωe.

n

Γ∞

Γp x2

x3

x1

Ωe

Ωc

FIGURE 4.1. Perturbed half-space impedance Laplace problem domain.
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The total field uT satisfies thus the Laplace equation

∆uT = 0 in Ωe, (4.1)

which is also satisfied by the incident field uI and the scattered field u, due linearity. For

the total field uT we take the homogeneous impedance boundary condition

− ∂uT
∂n

+ ZuT = 0 on Γ, (4.2)

where Z is the impedance on the boundary, which is decomposed as

Z(x) = Z∞ + Zp(x), x ∈ Γ, (4.3)

being Z∞ > 0 real and constant throughout Γ, and Zp(x) a possibly complex-valued

impedance that depends on the position x and that has a bounded support contained in Γp.

The case of a complex Z∞ will be discussed later. For linear water waves, the free-surface

condition considers Z∞ = ω2/g, where ω is the radian frequency or pulsation and g de-

notes the acceleration caused by gravity. If Z = 0 or Z = ∞, then we retrieve respectively

the classical Neumann or Dirichlet boundary conditions. The scattered field u satisfies the

non-homogeneous impedance boundary condition

− ∂u

∂n
+ Zu = fz on Γ, (4.4)

where the impedance data function fz is known, has its support contained in Γp, and is

given, because of (4.2), by

fz =
∂uI
∂n

− ZuI on Γ. (4.5)

An outgoing surface-wave radiation condition has to be also imposed for the scattered

field u, which specifies its decaying behavior at infinity and eliminates the non-physical

solutions, e.g., ingoing surface waves or exponential growth inside Ωe. This radiation con-

dition can be stated for r → ∞ in a more adjusted way as




|u| ≤ C

r2
and

∣∣∣∣
∂u

∂r

∣∣∣∣ ≤
C

r3
if x3 >

1

2Z∞
ln
(
1 + 2πZ∞r

3
)
,

|u| ≤ C√
r

and

∣∣∣∣
∂u

∂r
− iZ∞u

∣∣∣∣ ≤
C

r
if x3 ≤

1

2Z∞
ln
(
1 + 2πZ∞r

3
)
,

(4.6)

for some constants C > 0, where r = |x|. It implies that two different asymptotic be-

haviors can be established for the scattered field u. Away from the boundary Γ and inside

the domain Ωe, the first expression in (4.6) dominates, which is related to the asymptotic

decaying condition (D.5) of the Laplace equation on the exterior of a bounded obstacle.

Near the boundary, on the other hand, the second part of the second expression in (4.6)

resembles a Sommerfeld radiation condition like (E.8), but only along the boundary, and is

therefore related to the propagation of surface waves. It is often expressed also as
∣∣∣∣
∂u

∂|xs|
− iZ∞u

∣∣∣∣ ≤
C

|xs|
, (4.7)

where xs = (x1, x2).
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Analogously as done by Durán, Muga & Nédélec (2005b, 2009) for the Helmholtz

equation, the radiation condition (4.6) can be stated alternatively as




|u| ≤ C

r2−2α
and

∣∣∣∣
∂u

∂r

∣∣∣∣ ≤
C

r3−2α
if x3 > Crα,

|u| ≤ C√
r

and

∣∣∣∣
∂u

∂r
− iZ∞u

∣∣∣∣ ≤
C

r1−α if x3 ≤ Crα,

(4.8)

for 0 < α < 1/2 and some constants C > 0, being the growth of Crα bigger than the

logarithmic one at infinity. Equivalently, the radiation condition can be expressed in a more

weaker and general formulation as




lim
R→∞

∫

S1
R

|u|2 dγ = 0 and lim
R→∞

∫

S1
R

R2

∣∣∣∣
∂u

∂r

∣∣∣∣
2

dγ = 0,

lim
R→∞

∫

S2
R

|u|2
lnR

dγ <∞ and lim
R→∞

∫

S2
R

1

lnR

∣∣∣∣
∂u

∂r
− iZ∞u

∣∣∣∣
2

dγ = 0,

(4.9)

where

S1
R =

{
x ∈ R

3
+ : |x| = R, x3 >

1

2Z∞
ln
(
1 + 2πZ∞R

3
)}
, (4.10)

S2
R =

{
x ∈ R

3
+ : |x| = R, x3 <

1

2Z∞
ln
(
1 + 2πZ∞R

3
)}
. (4.11)

We observe that in this case∫

S1
R

dγ = O(R2) and

∫

S2
R

dγ = O(R lnR). (4.12)

The portions S1
R and S2

R of the half-sphere and the terms depending on S2
R of the radiation

condition (4.9) have to be modified when using instead the polynomial curves of (4.8). We

refer to Stoker (1956) for a discussion on radiation conditions for surface waves.

The perturbed half-space impedance Laplace problem can be finally stated as




Find u : Ωe → C such that

∆u = 0 in Ωe,

−∂u
∂n

+ Zu = fz on Γ,

+ Outgoing radiation condition as |x| → ∞,

(4.13)

where the outgoing radiation condition is given by (4.6).

4.2.2 Incident field

To determine the incident field uI , we study the solutions of the unperturbed and homo-

geneous wave propagation problem with neither a scattered field nor an associated radiation

condition. The solutions are searched in particular to be physically admissible, i.e., solu-

tions which do not explode exponentially in the propagation domain, depicted in Figure 4.2.
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We analyze thus the half-space impedance Laplace problem




∆uI = 0 in R
3
+,

∂uI
∂x3

+ Z∞uI = 0 on {x3 = 0}.
(4.14)

{x3 = 0}, Z∞

R
3
+

n

x2

x3

x1

FIGURE 4.2. Positive half-space R
3
+.

The solutions uI of the problem (4.14) are given, up to an arbitrary scaling factor, by

the progressive plane surface waves

uI(x) = eiks·xse−Z∞x3 , (ks · ks) = Z2
∞, xs = (x1, x2). (4.15)

They correspond to progressive plane volume waves of the form eik·x with a complex wave

propagation vector k = (ks, iZ∞), where ks ∈ R
2. It can be observed that these surface

waves are guided along the half-space’s boundary, and decrease exponentially towards its

interior, hence their name. They vanish completely for classical Dirichlet (Z∞ = ∞) or

Neumann (Z∞ = 0) boundary conditions.

4.3 Green’s function

4.3.1 Problem definition

The Green’s function represents the response of the unperturbed system to a Dirac

mass. It corresponds to a function G, which depends on the impedance Z∞, on a fixed

source point x ∈ R
3
+, and on an observation point y ∈ R

3
+. The Green’s function is

computed in the sense of distributions for the variable y in the half-space R
3
+ by placing at

the right-hand side of the Laplace equation a Dirac mass δx, centered at the point x. It is

therefore a solution for the radiation problem of a point source, namely




Find G(x, ·) : R
3
+ → C such that

∆yG(x,y) = δx(y) in D′(R3
+),

∂G

∂y3

(x,y) + Z∞G(x,y) = 0 on {y3 = 0},

+ Outgoing radiation condition as |y| → ∞.

(4.16)
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The outgoing radiation condition, in the same way as in (4.6), is given here as |y| → ∞ by




|G| ≤ C

|y|2 and

∣∣∣∣
∂G

∂ry

∣∣∣∣ ≤
C

|y|3 if y3 >
ln
(
1 + 2πZ∞|y|3

)

2Z∞
,

|G| ≤ C√
|y|

and

∣∣∣∣
∂G

∂ry
− iZ∞G

∣∣∣∣ ≤
C

|y| if y3 ≤
ln
(
1 + 2πZ∞|y|3

)

2Z∞
,

(4.17)

for some constants C > 0, which are independent of r = |y|.
4.3.2 Special cases

When the Green’s function problem (4.16) is solved using either homogeneous Dirich-

let or Neumann boundary conditions, then its solution is found straightforwardly using the

method of images (cf., e.g., Morse & Feshbach 1953).

a) Homogeneous Dirichlet boundary condition

We consider in the problem (4.16) the particular case of a homogeneous Dirichlet

boundary condition, namely

G(x,y) = 0, y ∈ {y3 = 0}, (4.18)

which corresponds to the limit case when the impedance is infinite (Z∞ = ∞). In this

case, the Green’s function G can be explicitly calculated using the method of images,

since it has to be antisymmetric with respect to the plane {y3 = 0}. An additional im-

age source point x̄ = (x1, x2,−x3), located on the lower half-space and associated with a

negative Dirac mass, is placed for this purpose just opposite to the upper half-space’s source

point x = (x1, x2, x3). The desired solution is then obtained by evaluating the full-space

Green’s function (D.20) for each Dirac mass, which yields finally

G(x,y) = − 1

4π|y − x| +
1

4π|y − x̄| . (4.19)

b) Homogeneous Neumann boundary condition

We consider in the problem (4.16) the particular case of a homogeneous Neumann

boundary condition, namely

∂G

∂ny

(x,y) = 0, y ∈ {y3 = 0}, (4.20)

which corresponds to the limit case when the impedance is zero (Z∞ = 0). As in the

previous case, the method of images is again employed, but now the half-space Green’s

function G has to be symmetric with respect to the plane {y3 = 0}. Therefore, an addi-

tional image source point x̄ = (x1, x2,−x3), located on the lower half-space, is placed just

opposite to the upper half-space’s source point x = (x1, x2, x3), but now associated with

a positive Dirac mass. The desired solution is then obtained by evaluating the full-space

Green’s function (D.20) for each Dirac mass, which yields

G(x,y) = − 1

4π|y − x| −
1

4π|y − x̄| . (4.21)
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4.3.3 Spectral Green’s function

a) Boundary-value problem

To solve (4.16) in the general case, we use a modified partial Fourier transform on the

horizontal (y1, y2)-plane, taking advantage of the fact that there is no horizontal variation

in the geometry of the problem. To obtain the corresponding spectral Green’s function, we

follow the same procedure as the one performed in Durán et al. (2005b). We define the

forward Fourier transform of a function F
(
x, (·, ·, y3)

)
: R

2 → C by

F̂ (ξ; y3, x3) =
1

2π

∫

R2

F (x,y) e−iξ·(ys−xs) dys, ξ = (ξ1, ξ2) ∈ R
2, (4.22)

and its inverse by

F (x,y) =
1

2π

∫

R2

F̂ (ξ; y3, x3) e
iξ·(ys−xs) dξ, ys = (y1, y2) ∈ R

2, (4.23)

where xs = (x1, x2) ∈ R
2 and thus x = (xs, x3).

To ensure a correct integration path for the Fourier transform and correct physical

results, the calculations have to be performed in the framework of the limiting absorption

principle, which allows to treat all the appearing integrals as Cauchy principal values. For

this purpose, we take a small dissipation parameter ε > 0 into account and consider the

problem (4.16) as the limit case when ε→ 0 of the dissipative problem




Find Gε(x, ·) : R
3
+ → C such that

∆yGε(x,y) = δx(y) in D′(R3
+),

∂Gε

∂y3

(x,y) + ZεGε(x,y) = 0 on {y3 = 0},
(4.24)

where Zε = Z∞ + iε. This choice ensures a correct outgoing dissipative surface-wave

behavior. Further references for the application of this principle can be found in Lenoir &

Martin (1981) and in Hazard & Lenoir (1998).

Applying thus the Fourier transform (4.22) on the system (4.24) leads to a linear second

order ordinary differential equation for the variable y3, with prescribed boundary values,

given by 



∂2Ĝε

∂y2
3

(ξ) − |ξ|2Ĝε(ξ) =
δ(y3 − x3)

2π
, y3 > 0,

∂Ĝε

∂y3

(ξ) + ZεĜε(ξ) = 0, y3 = 0.

(4.25)

To describe the (ξ1, ξ2)-plane, we use henceforth the system of signed polar coordinates

ξ =





√
ξ2
1 + ξ2

2 if ξ2 > 0,

ξ1 if ξ2 = 0,

−
√
ξ2
1 + ξ2

2 if ξ2 < 0,

and ψ = arccot

(
ξ1
ξ2

)
, (4.26)

where −∞ < ξ < ∞ and 0 ≤ ψ < π. From (4.25) it is not difficult to see that the

solution Ĝε depends only on |ξ|, and therefore only on ξ, since |ξ| = |ξ|. We remark that
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the inverse Fourier transform (4.23) can be stated equivalently as

F (x,y) =
1

2π

∫ ∞

−∞

∫ π

0

F̂ (ξ, ψ; y3, x3)|ξ| eiξ{(y1−x1) cosψ+(y2−x2) sinψ} dψ dξ. (4.27)

We use the method of undetermined coefficients, and solve the homogeneous differ-

ential equation of the problem (4.25) respectively in the zone {y ∈ R
3
+ : 0 < y3 < x3}

and in the half-space {y ∈ R
3
+ : y3 > x3}. This gives a solution for Ĝε in each domain,

as a linear combination of two independent solutions of an ordinary differential equation,

namely

Ĝε(ξ) =

{
a e|ξ|y3 + b e−|ξ|y3 for 0 < y3 < x3,

c e|ξ|y3 + d e−|ξ|y3 for y3 > x3.
(4.28)

The unknowns a, b, c, and d, which depend on ξ and x3, are determined through the bound-

ary condition, by imposing continuity, and by assuming an outgoing wave behavior.

b) Spectral Green’s function with dissipation

Now, thanks to (4.28), the computation of Ĝε is straightforward. From the boundary

condition of (4.25) a relation for the coefficients a and b can be derived, which is given by

a
(
Zε + |ξ|

)
+ b
(
Zε − |ξ|

)
= 0. (4.29)

On the other hand, since the solution (4.28) has to be bounded at infinity as y3 → ∞, it

follows then necessarily that

c = 0. (4.30)

To ensure the continuity of the Green’s function at the point y3 = x3, it is needed that

d = a e|ξ|2x3 + b. (4.31)

Using relations (4.29), (4.30), and (4.31) in (4.28), we obtain the expression

Ĝε(ξ) = a e|ξ|x3

[
e−|ξ||y3−x3| −

(
Zε + |ξ|
Zε − |ξ|

)
e−|ξ|(y3+x3)

]
. (4.32)

The remaining unknown coefficient a is determined by replacing (4.32) in the differential

equation of (4.25), taking the derivatives in the sense of distributions, particularly

∂

∂y3

{
e−|ξ||y3−x3|} = −|ξ| sign(y3 − x3) e

−|ξ||y3−x3|, (4.33)

and
∂

∂y3

{
sign(y3 − x3)

}
= 2 δ(y3 − x3). (4.34)

So, the second derivative of (4.32) becomes

∂2Ĝε

∂y2
3

(ξ) = a e|ξ|x3

[
|ξ|2e−|ξ||y3−x3| − 2|ξ|δ(y3 − x3) −

(
Zε + |ξ|
Zε − |ξ|

)
|ξ|2e−|ξ|(y3+x3)

]
. (4.35)

This way, from (4.32) and (4.35) in the first equation of (4.25), we obtain that

a = −e
−|ξ|x3

4π|ξ| . (4.36)
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Finally, the spectral Green’s function Ĝε with dissipation ε is given by

Ĝε(ξ; y3, x3) = −e
−|ξ||y3−x3|

4π|ξ| +

(
Zε + |ξ|
Zε − |ξ|

)
e−|ξ|(y3+x3)

4π|ξ| . (4.37)

c) Analysis of singularities

To obtain the spectral Green’s function Ĝ without dissipation, the limit ε → 0 has to

be taken in (4.37). This can be done directly wherever the limit is regular and continuous

on ξ. Singular points, on the other hand, have to be analyzed carefully to fulfill correctly

the limiting absorption principle. Thus we study first the singularities of the limit function

before applying this principle, i.e., considering just ε = 0, in which case we have

Ĝ0(ξ) = −e
−|ξ||y3−x3|

4π|ξ| +

(
Z∞ + |ξ|
Z∞ − |ξ|

)
e−|ξ|(y3+x3)

4π|ξ| . (4.38)

Possible singularities for (4.38) may only appear when |ξ| = 0 or when |ξ| = Z∞, i.e., when

the denominator of the fractions is zero. Otherwise the function is regular and continuous.

For |ξ| = 0 the function (4.38) is continuous. This can be seen by writing it, analo-

gously as in Durán, Muga & Nédélec (2005b), in the form

Ĝ0(ξ) =
H
(
|ξ|
)

|ξ| , (4.39)

where

H(β) =
1

4π

(
−e−β |y3−x3| +

Z∞ + β

Z∞ − β
e−β (y3+x3)

)
, β ∈ C. (4.40)

Since H(β) is an analytic function in β = 0, since H(0) = 0, and since

lim
|ξ|→0

Ĝ0(ξ) = lim
|ξ|→0

H
(
|ξ|
)
−H(0)

|ξ| = H ′(0), (4.41)

we can easily obtain that

lim
|ξ|→0

Ĝ0(ξ) =
1

4π

(
1 +

1

Z∞
+ |y3 − x3| − (y3 + x3)

)
, (4.42)

being thus Ĝ0 bounded and continuous on |ξ| = 0.

For ξ = Z∞ and ξ = −Z∞, the function (4.38) presents two simple poles, whose

residues are characterized by

lim
ξ→±Z∞

(ξ ∓ Z∞)Ĝ0(ξ) = ∓ 1

2π
e−Z∞(y3+x3). (4.43)

To analyze the effect of this singularity, we study now the computation of the inverse

Fourier transform of

ĜP (ξ) =
1

2π
e−Z∞(y3+x3)

(
1

ξ + Z∞
− 1

ξ − Z∞

)
, (4.44)
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which has to be done in the frame of the limiting absorption principle to obtain the correct

physical results, i.e., the inverse Fourier transform has to be understood in the sense of

GP (x,y) = lim
ε→0

{
e−Zε(y3+x3)

4π2

∫ π

0

∫ ∞

−∞

(
1

ξ + Zε
− 1

ξ − Zε

)
|ξ| eiξr sin θ cos(ψ−ϕ) dξ dψ

}
,

(4.45)

being the spatial variables inside the integrals expressed through the spherical coordinates




y1 − x1 = r sin θ cosϕ,

y2 − x2 = r sin θ sinϕ,

y3 − x3 = r cos θ,

for





0 ≤ r <∞,

0 ≤ θ ≤ π,

− π < ϕ ≤ π.

(4.46)

To perform correctly the computation of (4.45), we apply the residue theorem of com-

plex analysis (cf., e.g., Arfken & Weber 2005, Bak & Newman 1997, Dettman 1984) on

the complex meromorphic mapping

F (ξ) =

(
1

ξ + ξp
− 1

ξ − ξp

)
|ξ| eiξτ, (4.47)

which admits two simple poles at ξp and −ξp, where Im{ξp} > 0 and τ ∈ R. We consider

also the closed complex integration contours C+
R,ε and C−

R,ε, which are associated respec-

tively with the values τ ≥ 0 and τ < 0, and are depicted in Figure 4.3.

S+

R

Re{ξ}

Im{ξ}

ξp
ε

R
Sε

−ξp

(a) Contour C+

R,ε

S−

R

Re{ξ}

Im{ξ}

R

Sε

ξp

−ξp

ε

(b) Contour C−

R,ε

FIGURE 4.3. Complex integration contours using the limiting absorption principle.

Since the contoursC+
R,ε andC−

R,ε enclose no singularities, the residue theorem of Cauchy

implies that the respective closed path integrals are zero, i.e.,
∮

C+
R,ε

F (ξ) dξ = 0, (4.48)

and ∮

C−

R,ε

F (ξ) dξ = 0. (4.49)
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By considering τ ≥ 0 and working with the contour C+
R,ε in the upper complex plane,

we obtain from (4.48) that
∫

Re{ξp}

−R
F (ξ) dξ +

∫

Sε

F (ξ) dξ +

∫ R

Re{ξp}
F (ξ) dξ +

∫

S+
R

F (ξ) dξ = 0. (4.50)

Performing the change of variable ξ − ξp = εeiφ for the integral on Sε yields
∫

Sε

F (ξ) dξ = i eiξpτ
∫ −π/2

3π/2

(
εeiφ

εeiφ + 2ξp
− 1

)
|ξp + εeiφ| eετ(i cosφ−sinφ) dφ. (4.51)

By taking then the limit ε→ 0 we obtain

lim
ε→0

∫

Sε

F (ξ) dξ = i2π|ξp|eiξpτ. (4.52)

In a similar way, taking ξ = Reiφ for the integral on S+
R yields

∫

S+
R

F (ξ) dξ =

∫ π

0

(
iR2eiφ

Reiφ + ξp
− iR2eiφ

Reiφ − ξp

)
eRτ(i cosφ−sinφ) dφ. (4.53)

Since |eiRτ cosφ| ≤ 1 and R sinφ ≥ 0 for 0 ≤ φ ≤ π, when taking the limit R → ∞ we

obtain

lim
R→∞

∫

S+
R

F (ξ) dξ = 0. (4.54)

Thus, taking the limits ε→ 0 and R → ∞ in (4.50) yields
∫ ∞

−∞
F (ξ) dξ = −i2π|ξp|eiξpτ, τ ≥ 0. (4.55)

By considering now τ < 0 and working with the contour C−
R,ε in the lower complex

plane, we obtain from (4.49) that
∫

Re{−ξp}

R

F (ξ) dξ +

∫

Sε

F (ξ) dξ +

∫ −R

Re{−ξp}
F (ξ) dξ +

∫

S−

R

F (ξ) dξ = 0. (4.56)

Performing the change of variable ξ + ξp = εeiφ for the integral on Sε yields
∫

Sε

F (ξ) dξ = i e−iξpτ
∫ −3π/2

π/2

(
1 − εeiφ

εeiφ − 2ξp

)
|ξp − εeiφ| eετ(i cosφ−sinφ) dφ. (4.57)

By taking then the limit ε→ 0 we obtain

lim
ε→0

∫

Sε

F (ξ) dξ = −i2π|ξp|e−iξpτ. (4.58)

In a similar way, taking ξ = Reiφ for the integral on S−
R yields

∫

S−

R

F (ξ) dξ =

∫ 0

−π

(
iR2eiφ

Reiφ + ξp
− iR2eiφ

Reiφ − ξp

)
eRτ(i cosφ−sinφ) dφ. (4.59)

Since |eiRτ cosφ| ≤ 1 and R sinφ ≤ 0 for −π ≤ φ ≤ 0, when taking the limit R → ∞ we

obtain

lim
R→∞

∫

S−

R

F (ξ) dξ = 0. (4.60)
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Thus, taking the limits ε→ 0 and R → ∞ in (4.56) yields
∫ ∞

−∞
F (ξ) dξ = −i2π|ξp|e−iξpτ, τ < 0. (4.61)

In conclusion, from (4.55) and (4.61) we obtain that
∫ ∞

−∞
F (ξ) dξ = −i2π|ξp|eiξp|τ |, τ ∈ R. (4.62)

Using (4.62) for ξp = Z∞ and τ = r sin θ cos(ψ − ϕ) yields then that the inverse

Fourier transform of (4.44), when considering the limiting absorption principle, is given by

GL
P (x,y) = −iZ∞

2π
e−Z∞(y3+x3)

∫ π

0

eiZ∞r sin θ |cos(ψ−ϕ)| dψ. (4.63)

It can be observed that the integral in (4.63) is independent of the angle ϕ, which we can

choose without problems as ϕ = π/2 and therefore |cos(ψ − ϕ)| = sinψ. Since

r sin θ = |ys − xs|, (4.64)

we can express (4.63) as

GL
P (x,y) = −iZ∞

2π
e−Z∞(y3+x3)

∫ π

0

eiZ∞|ys−xs| sinψ dψ. (4.65)

We observe that this expression describes the asymptotic behavior of the surface waves,

which are linked to the presence of the poles in the spectral Green’s function. Due (A.112)

and (A.244), we can rewrite (4.65) more explicitly as

GL
P (x,y) = −iZ∞

2
e−Z∞(y3+x3)

[
J0

(
Z∞|ys − xs|

)
+ iH0

(
Z∞|ys − xs|

)]
, (4.66)

where J0 denotes the Bessel function of order zero (vid. Subsection A.2.4) and H0 the

Struve function of order zero (vid. Subsection A.2.7).

If the limiting absorption principle is not considered, i.e., if Im{ξp} = 0, then the

inverse Fourier transform of (4.44) could be computed in the sense of the principal value

with the residue theorem by considering, instead of C+
R,ε and C−

R,ε, the contours depicted in

Figure 4.4. In this case we would obtain, instead of (4.62), the quantity
∫ ∞

−∞
F (ξ) dξ = 2π|ξp| sin

(
ξp|τ |

)
, τ ∈ R. (4.67)

The inverse Fourier transform of (4.44) would be in this case

GNL
P (x,y) =

Z∞
2
e−Z∞(y3+x3)H0

(
Z∞|ys − xs|

)
, (4.68)

which is correct from the mathematical point of view, but yields only a standing surface

wave, and not a desired outgoing progressive surface wave as in (4.66).

The effect of the limiting absorption principle, in the spatial dimension, is then given

by the difference between (4.66) and (4.68), i.e., by

GL(x,y) = GL
P (x,y) −GNL

P (x,y) = −iZ∞
2

e−Z∞(y3+x3)J0

(
Z∞|ys − xs|

)
, (4.69)
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S+

R

Re{ξ}

Im{ξ}

ξp

ε

R
S+

ε

−ξp

ε
S+

ε

(a) Contour C+

R,ε

S−

R

Re{ξ}

Im{ξ}

−ξp

ε

R

S−

ε

ξp

ε
S−

ε

(b) Contour C−

R,ε

FIGURE 4.4. Complex integration contours without using the limiting absorption principle.

whose Fourier transform, and therefore the spectral effect, is given by

ĜL(ξ) = ĜL
P (ξ) − ĜNL

P (ξ) = −iZ∞
2|ξ| e

−Z∞(y3+x3)
[
δ(ξ − Z∞) + δ(ξ + Z∞)

]
. (4.70)

d) Spectral Green’s function without dissipation

The spectral Green’s function Ĝ without dissipation is therefore obtained by taking the

limit ε → 0 in (4.37) and considering the effect of the limiting absorption principle for the

appearing singularities, summarized in (4.70). Thus we obtain in the sense of distributions

Ĝ(ξ; y3, x3) = − e−|ξ||y3−x3|

4π|ξ| +

(
Z∞ + |ξ|
Z∞ − |ξ|

)
e−|ξ|(y3+x3)

4π|ξ|

− iZ∞
2|ξ| e

−Z∞(y3+x3)
[
δ(ξ − Z∞) + δ(ξ + Z∞)

]
. (4.71)

For our further analysis, this spectral Green’s function is decomposed into four terms

according to

Ĝ = Ĝ∞ + ĜN + ĜL + ĜR, (4.72)

where

Ĝ∞(ξ; y3, x3) = −e
−|ξ||y3−x3|

4π|ξ| , (4.73)

ĜN(ξ; y3, x3) = −e
−|ξ|(y3+x3)

4π|ξ| , (4.74)

ĜL(ξ; y3, x3) = −iZ∞
2|ξ| e

−Z∞(y3+x3)
[
δ(ξ − Z∞) + δ(ξ + Z∞)

]
, (4.75)

ĜR(ξ; y3, x3) =
Z∞e

−|ξ|(y3+x3)

2π|ξ|
(
Z∞ − |ξ|

) . (4.76)
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4.3.4 Spatial Green’s function

a) Spatial Green’s function as an inverse Fourier transform

The desired spatial Green’s function is then given by the inverse Fourier transform of

the spectral Green’s function (4.71), namely by

G(x,y) = − 1

8π2

∫ ∞

−∞

∫ π

0

e−|ξ||y3−x3| eiξr sin θ cos(ψ−ϕ) dψ dξ

+
1

8π2

∫ ∞

−∞

∫ π

0

(
Z∞ + |ξ|
Z∞ − |ξ|

)
e−|ξ|(y3+x3) eiξr sin θ cos(ψ−ϕ) dψ dξ

− iZ∞
2

e−Z∞(y3+x3)J0

(
Z∞|ys − xs|

)
, (4.77)

where the spherical coordinates (4.46) are used again inside the integrals.

Due the linearity of the Fourier transform, the decomposition (4.72) applies also in the

spatial domain, i.e., the spatial Green’s function is decomposed in the same manner by

G = G∞ +GN +GL +GR. (4.78)

b) Term of the full-space Green’s function

The first term in (4.77) corresponds to the inverse Fourier transform of (4.73), and can

be rewritten, due (A.794), as the Hankel transform

G∞(x,y) = − 1

4π

∫ ∞

0

e−ρ|y3−x3|J0

(
ρ|ys − xs|

)
dρ. (4.79)

The value for this integral can be obtained either from Watson (1944, page 384), by using

Sommerfeld’s formula (Magnus & Oberhettinger 1954, page 34) for k = 0, i.e.,
∫ ∞

0

e−ρ|y3−x3|J0

(
ρ|ys − xs|

)
dρ =

1

|y − x| , (4.80)

from Gradshteyn & Ryzhik (2007, equation 6.611–1), or by directly computing the two

integrals appearing in the first term of (4.77), beginning with the exterior one. This way,

the inverse Fourier transform of (4.73) is readily given by

G∞(x,y) = − 1

4π|y − x| . (4.81)

We observe that (4.81) is, in fact, the full-space Green’s function of the Laplace equation.

Thus GN +GL +GR represents the perturbation of the full-space Green’s function G∞ due

the presence of the impedance half-space.

c) Term associated with a Neumann boundary condition

The inverse Fourier transform of (4.74) is computed in the same manner as the termG∞.

It is given by

GN(x,y) = − 1

4π

∫ ∞

0

e−ρ(y3+x3)J0

(
ρ|ys − xs|

)
dρ, (4.82)
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and in this case, instead of (4.80), Sommerfeld’s formula becomes
∫ ∞

0

e−ρ(y3+x3)J0

(
ρ|ys − xs|

)
dρ =

1

|y − x̄| , (4.83)

where x̄ = (x1, x2,−x3) corresponds to the image point of x in the lower half-space. The

inverse Fourier transform of (4.74) is therefore given by

GN(x,y) = − 1

4π|y − x̄| , (4.84)

which represents the additional term that appears in the Green’s function due the method

of images when considering a Neumann boundary condition, as in (4.21).

d) Term associated with the limiting absorption principle

The term GL, the inverse Fourier transform of (4.75), is associated with the effect of

the limiting absorption principle on the Green’s function, and has been already calculated

in (4.69). It yields the imaginary part of the Green’s function, and is given by

GL(x,y) = −iZ∞
2

e−Z∞(y3+x3)J0

(
Z∞|ys − xs|

)
. (4.85)

e) Remaining term

The remaining term GR, the inverse Fourier transform of (4.76), can be computed as

the integral

GR(x,y) =
Z∞
2π

∫ ∞

0

e−ρ(y3+x3)

Z∞ − ρ
J0

(
ρ|ys − xs|

)
dρ. (4.86)

We denote

̺s = |ys − xs| and v3 = y3 + x3, (4.87)

and we consider the change of notation

GR(x,y) =
Z∞
2π

e−Z∞v3GB(̺s, v3), (4.88)

being

GB(̺s, v3) =

∫ ∞

0

e(Z∞−ρ)v3

Z∞ − ρ
J0(̺sρ) dρ. (4.89)

Consequently, by considering (4.83) we have for the y3-derivative of GB that

∂GB
∂y3

(̺s, v3) = eZ∞v3

∫ ∞

0

e−ρv3J0(̺sρ) dρ =
eZ∞v3

|y − x̄| . (4.90)

Following Pidcock (1985), the integral (4.86) can be thus expressed by

GR(x,y) =
Z∞
2π

e−Z∞v3

(
GB(̺s, 0) +

∫ v3

0

eZ∞η

√
̺2
s + η2

dη

)
, (4.91)

where

GB(̺s, 0) =

∫ ∞

0

J0(̺sρ)

Z∞ − ρ
dρ. (4.92)
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To evaluate the integral (4.92), we consider the closed complex integration contour CR,ε
depicted in Figure 4.5 and use the fact that

∮

CR,ε

H
(1)
0 (̺sρ)

Z∞ − ρ
dρ = 0, (4.93)

whereH
(1)
0 denotes the zeroth order Hankel function of the first kind (vid. Subsection A.2.4).

Re{ρ}

Im{ρ}

Z∞

ε

R

CR,ε

R

FIGURE 4.5. Complex integration contour CR,ε.

We can express (4.93) more explicitly as
∫ Z∞−ε

0

H
(1)
0 (̺sρ)

Z∞ − ρ
dρ− i

∫ 0

π

H
(1)
0

(
̺s
(
Z∞ + εeiθ

))
dθ +

∫ R

Z∞+ε

H
(1)
0 (̺sρ)

Z∞ − ρ
dρ

− i

∫ π/2

0

H
(1)
0

(
̺sRe

iθ
)

Z∞ −Reiθ
Reiθ dθ − 2

π

∫ R

0

K0(̺sτ)

Z∞ − iτ
dτ = 0, (4.94)

where we use the relation (A.153) for ν = 0 and where K0 denotes the zeroth order modi-

fied Bessel function of the second kind (vid. Subsection A.2.5). By taking the limits ε→ 0

and R → ∞ we obtain that
∫ ∞

0

H
(1)
0 (̺sρ)

Z∞ − ρ
dρ+ iπH

(1)
0 (Z∞̺s) −

2

π

∫ ∞

0

(
Z∞ + iτ

Z2
∞ + τ 2

)
K0(̺sτ) dτ = 0, (4.95)

where the integral on R tends to zero due the asymptotic behavior (A.139) of the Hankel

function H
(1)
0 . Considering the real part in (4.95) and rearranging yields

∫ ∞

0

J0(̺sρ)

Z∞ − ρ
dρ = πY0(Z∞̺s) +

2Z∞
π

∫ ∞

0

K0(̺sτ)

Z2
∞ + τ 2

dτ, (4.96)

where Y0 denotes the Neumann function of order zero. The integral on the right-hand side

of (4.96) is given by (Gradshteyn & Ryzhik 2007, equation 6.566–4)

2Z∞
π

∫ ∞

0

K0(̺sτ)

Z2
∞ + τ 2

dτ =
π

2

[
H0(Z∞̺s) − Y0(Z∞̺s)

]
. (4.97)

Hence, from (4.96) and (4.97) we get that

GB(̺s, 0) =
π

2

[
H0(Z∞̺s) + Y0(Z∞̺s)

]
. (4.98)
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By replacing in (4.91), we can express the remaining term GR as

GR(x,y) =
Z∞
4
e−Z∞v3

(
Y0(Z∞̺s) + H0(Z∞̺s) +

2

π

∫ v3

0

eZ∞η

√
̺2
s + η2

dη

)
, (4.99)

which corresponds to the representation derived by Kim (1965) and which was implicit in

the work of Havelock (1955). For the remaining integral in (4.99), we consider the fact that
∫ v3

0

eZ∞η

√
̺2
s + η2

dη =

∫ Z∞v3

0

eα√
Z2

∞̺
2
s + α2

dα, (4.100)

where we appreciate that the impedance Z∞ appears only as a scaling factor for the vari-

ables ̺s and v3. We can hence simplify the notation, by assuming temporarily that Z∞ = 1

and by scaling the result at the end correspondingly by Z∞. The power series expan-

sion (A.8) of the exponential function implies that
∫ v3

0

eη√
̺2
s + η2

dη =
∞∑

n=0

∫ v3

0

ηn

n!
√
̺2
s + η2

dη. (4.101)

Let us denote

In =

∫ v3

0

ηn

n!
√
̺2
s + η2

dη, (4.102)

in which case we can show by mathematical induction and by computing carefully (using,

e.g., Gradshteyn & Ryzhik 2007, Dwight 1957, or Prudnikov et al. 1992) that

I0 = ln
(
v3 +

√
̺2
s + v2

3

)
, (4.103)

I1 =
√
̺2
s + v2

3 , (4.104)

I2n =
√
̺2
s + v2

3

n−1∑

m=0

(−1)m
22n−2m−2

(
(n−m− 1)!

)2

(2n− 2m− 1)! 22n(n!)2
v2n−2m−1

3 ̺2m
s

+
(−1)n

(n!)2

(̺s
2

)2n
(

ln
(
v3 +

√
̺2
s + v2

3

)
− ln(̺s)

)
(n = 1, 2, . . .), (4.105)

I2n+1 =
√
̺2
s + v2

3

n∑

m=0

(−1)m
(2n− 2m)!

22n−2m
(
(n−m)!

)2
(

2n n!

(2n+ 1)!

)2

v2n−2m
3 ̺2m

s

− (−1)n
22n(n!)2

(
(2n+ 1)!

)2 ̺2n+1
s (n = 1, 2, . . .). (4.106)

We remark that (4.106) can be equivalently expressed as

I2n+1 =
1

(2n+ 1)!

n∑

m=0

n!

m! (n−m)!
(−1)m̺2m

s

(√
̺2
s + v2

3

)2n−2m+1

2n− 2m+ 1

− (−1)n
22n(n!)2

(
(2n+ 1)!

)2 ̺2n+1
s (n = 1, 2, . . .). (4.107)

We observe that the second term in (4.105) is linked with the series expansion (A.99) of

the Bessel function J0, whereas the second term in (4.106) and (4.107) is associated with
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the series expansion (A.239) of the Struve function H0. Replacing these values in the

right-hand side of (4.101) and rearranging yields
∫ v3

0

eη√
̺2
s + η2

dη = J0(̺s)

(
ln
(
v3 +

√
̺2
s + v2

3

)
− ln(̺s)

)
− π

2
H0(̺s)

+
√
̺2
s + v2

3

(
So(̺s, v3) + Se(̺s, v3)

)
, (4.108)

where

So(̺s, v3) =
∞∑

n=0

∞∑

m=0

(−1)m
22n(n!)2 v2n+1

3 ̺2m
s

(2n+ 1)! 22(m+n+1)
(
(m+ n+ 1)!

)2 , (4.109)

Se(̺s, v3) =
∞∑

n=0

∞∑

m=0

(−1)m
(2n)!

22n(n!)2

(
2m+n(m+ n)!

(2n+ 2m+ 1)!

)2

v2n
3 ̺2m

s . (4.110)

Due (4.107), we could express (4.110) alternatively as

Se(̺s, v3) =
∞∑

n=0

1

(2n+ 1)!

n∑

m=0

n!

m! (n−m)!

(
− ̺2

s

)m
(√

̺2
s + v2

3

)2n−2m

2n− 2m+ 1
. (4.111)

Similar series expansions can be found in the article of Noblesse (1982). Scaling again the

variables ̺s and v3 by Z∞ in (4.108) and replacing in (4.99) implies that

GR(x,y) =
Z∞
2π

e−Z∞v3J0(Z∞̺s) ln
(
Z∞v3 + Z∞

√
̺2
s + v2

3

)

+
Z∞
4
e−Z∞v3

(
Y0(Z∞̺s) −

2

π
J0(Z∞̺s) ln(Z∞̺s)

)

+
Z2

∞
2π

√
̺2
s + v2

3 e
−Z∞v3

(
So
(
Z∞̺s, Z∞v3

)
+ Se

(
Z∞̺s, Z∞v3

))
. (4.112)

f) Complete spatial Green’s function

The desired complete spatial Green’s function is finally obtained, as stated in (4.78), by

adding the terms (4.81), (4.84), (4.85), and (4.112). It is depicted graphically for Z∞ = 1

and x = (0, 0, 2) in Figures 4.6 & 4.7, and given explicitly by

G(x,y) = − 1

4π|y − x| −
1

4π|y − x̄| −
iZ∞
2

e−Z∞v3J0(Z∞̺s)

+
Z∞
2π

e−Z∞v3J0(Z∞̺s) ln
(
Z∞v3 + Z∞

√
̺2
s + v2

3

)

+
Z∞
4
e−Z∞v3

(
Y0(Z∞̺s) −

2

π
J0(Z∞̺s) ln(Z∞̺s)

)

+
Z2

∞
2π

√
̺2
s + v2

3 e
−Z∞v3

(
So
(
Z∞̺s, Z∞v3

)
+ Se

(
Z∞̺s, Z∞v3

))
, (4.113)

where the notation (4.87) is used and where the functions So and Se are defined respectively

in (4.109) and (4.110).
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FIGURE 4.6. Contour plot of the complete spatial Green’s function.
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FIGURE 4.7. Oblique view of the complete spatial Green’s function.

For the derivative of the Green’s function with respect to the y3-variable, it holds that

∂G

∂y3

(x,y) =
y3 − x3

4π|y − x|3 +
v3

4π|y − x̄|3 +
iZ2

∞
2

e−Z∞v3J0(Z∞̺s)

− Z∞GR(x,y) +
Z∞

2π|y − x̄| , (4.114)

where GR is computed according to (4.112). The derivatives for the variables y1 and y2 can

be calculated by means of

∂G

∂y1

=
∂G

∂̺s

∂̺s
∂y1

=
∂G

∂̺s

v1

̺s
and

∂G

∂y2

=
∂G

∂̺s

∂̺s
∂y2

=
∂G

∂̺s

v2

̺s
, (4.115)
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where

∂G

∂̺s
(x,y) =

̺s
4π|y − x|3 +

̺s
4π|y − x̄|3 +

iZ2
∞

2
e−Z∞v3J1(Z∞̺s)

− Z2
∞

2π
e−Z∞v3J1(Z∞̺s) ln

(
Z∞v3 + Z∞

√
̺2
s + v2

3

)

+
Z∞
2π

e−Z∞v3
̺sJ0(Z∞̺s)√

̺2
s + v2

3

(
v3 +

√
̺2
s + v2

3

)

− Z2
∞
4
e−Z∞v3

(
Y1(Z∞̺s) −

2

π
J1(Z∞̺s) ln(Z∞̺s) +

2

πZ∞̺s
J0(Z∞̺s)

)

+
Z2

∞
2π

̺s√
̺2
s + v2

3

e−Z∞v3
(

So
(
Z∞̺s, Z∞v3

)
+ Se

(
Z∞̺s, Z∞v3

))

+
Z3

∞
2π

√
̺2
s + v2

3 e
−Z∞v3

(
∂ So

∂̺s

(
Z∞̺s, Z∞v3

)
+
∂ Se

∂̺s

(
Z∞̺s, Z∞v3

))
, (4.116)

being

∂ So

∂̺s
(̺s, v3) =

∞∑

n=0

∞∑

m=1

(−1)m
m 22n+1(n!)2 v2n+1

3 ̺2m−1
s

(2n+ 1)! 22(m+n+1)
(
(m+ n+ 1)!

)2 , (4.117)

∂ Se

∂̺s
(̺s, v3) =

∞∑

n=0

∞∑

m=1

(−1)m
m (2n)!

22n−1(n!)2

(
2m+n(m+ n)!

(2n+ 2m+ 1)!

)2

v2n
3 ̺2m−1

s . (4.118)

4.3.5 Extension and properties

The half-space Green’s function can be extended in a locally analytic way towards

the full-space R
3 in a straightforward and natural manner, just by considering the expres-

sion (4.113) valid for all x,y ∈ R
3, instead of just for R

3
+. As shown in Figure 4.8,

this extension possesses two pole-type singularities at the points x and x̄, a logarithmic

singularity-distribution along the half-line Υ = {y1 = x1, y2 = x2, y3 < −x3}, and is

continuous otherwise. The behavior of the pole-type singularities is characterized by

G(x,y) ∼ − 1

4π|y − x| , y −→ x, (4.119)

G(x,y) ∼ − 1

4π|y − x̄| , y −→ x̄. (4.120)

The logarithmic singularity-distribution stems from the fact that when v3 < 0, then

G(x,y) ∼ −iZ∞
2

e−Z∞v3H
(1)
0 (Z∞̺s), (4.121)

being H
(1)
0 the zeroth order Hankel function of the first kind, whose singularity is of loga-

rithmic type. We observe that (4.121) is related to the two-dimensional free-space Green’s

function of the Helmholtz equation (C.22), multiplied by the exponential weight

J(x,y) = 2Z∞e
−Z∞v3 . (4.122)
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FIGURE 4.8. Domain of the extended Green’s function.

As long as x3 6= 0, it is clear that the impedance boundary condition in (4.16) continues

to be homogeneous. Nonetheless, if the source point x lies on the half-space’s boundary,

i.e., if x3 = 0, then the boundary condition ceases to be homogeneous in the sense of

distributions. This can be deduced from the expression (4.77) by verifying that

lim
y3→0+

{
∂G

∂y3

(
(xs, 0),y

)
+ Z∞G

(
(xs, 0),y

)}
= δxs(ys), (4.123)

where xs = (x1, x2) and ys = (y1, y2). Since the impedance boundary condition holds

only on {y3 = 0}, therefore the right-hand side of (4.123) can be also expressed by

δxs(ys) =
1

2
δx(y) +

1

2
δx̄(y), (4.124)

which illustrates more clearly the contribution of each pole-type singularity to the Dirac

mass in the boundary condition.

It can be seen now that the Green’s function extended in the abovementioned way

satisfies, for x ∈ R
3, in the sense of distributions, and instead of (4.16), the problem





Find G(x, ·) : R
3 → C such that

∆yG(x,y) = δx(y) + δx̄(y) + J(x,y)δΥ(y) in D′(R3),

∂G

∂y3

(x,y) + Z∞G(x,y) =
1

2
δx(y) +

1

2
δx̄(y) on {y3 = 0},

+ Outgoing radiation condition for y ∈ R
3
+ as |y| → ∞,

(4.125)

where δΥ denotes a Dirac mass distribution along the Υ-curve. We retrieve thus the known

result that for an impedance boundary condition the image of a point source is a point

source plus a half-line of sources with exponentially increasing strengths in the lower half-

plane, and which extends from the image point source towards infinity along the half-

space’s normal direction (cf. Keller 1979, who refers to decreasing strengths when dealing

with the opposite half-space).

We note that the half-space Green’s function (4.113) is symmetric in the sense that

G(x,y) = G(y,x) ∀x,y ∈ R
3, (4.126)

and it fulfills similarly

∇yG(x,y) = ∇yG(y,x) and ∇xG(x,y) = ∇xG(y,x). (4.127)
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Another property is that we retrieve the special case (4.19) of a homogenous Dirichlet

boundary condition in R
3
+ when Z∞ → ∞. Likewise, we retrieve the special case (4.21)

of a homogenous Neumann boundary condition in R
3
+ when Z∞ → 0.

At last, we observe that the expression for the Green’s function (4.113) is still valid if

a complex impedance Z∞ ∈ C such that Im{Z∞} > 0 and Re{Z∞} ≥ 0 is used, which

holds also for its derivatives (4.115), and (4.116).

4.4 Far field of the Green’s function

4.4.1 Decomposition of the far field

The far field of the Green’s function, which we denote by Gff, describes its asymptotic

behavior at infinity, i.e., when |x| → ∞ and assuming that y is fixed. For this purpose, the

terms of highest order at infinity are searched. Likewise as done for the radiation condition,

the far field is decomposed into two parts, each acting on a different region. The first part,

denoted by Gff
A , is linked with the asymptotic decaying condition at infinity observed when

dealing with bounded obstacles, and acts in the interior of the half-space while vanishing

near its boundary. The second part, denoted by Gff
S , is associated with surface waves that

propagate along the boundary towards infinity, which decay exponentially towards the half-

space’s interior. We have thus that

Gff = Gff
A +Gff

S . (4.128)

4.4.2 Asymptotic decaying

The asymptotic decaying acts only in the interior of the half-space and is related to the

pole-type terms in (4.113), and also to the asymptotic behavior as x3 → ∞ of the remaining

terms. We remember that

G(x,y) = − 1

4π|x − y| −
1

4π|x − ȳ| −
iZ∞
2

e−Z∞v3J0(Z∞̺s) +GR(x,y), (4.129)

being ȳ = (y1, y2,−y3), and where different expressions for GR were already presented

in (4.86), (4.99), and (4.112). Due the axial symmetry around the axis {̺s = 0}, i.e.,

by using the same arguments as for (4.65), we can express the inverse Fourier transform

of (4.76) as

GR(x,y) =
Z∞
4π2

∫ π

0

∫ ∞

−∞

e−|ξ|v3

Z∞ − |ξ| e
iξ̺s sinψ dξ dψ. (4.130)

This integral can be rewritten as

GR(x,y) =
Z∞
π2

∫ π/2

0

∫ ∞

0

e−ρv3

Z∞ − ρ
cos
(
ρ̺s sinψ

)
dρ dψ. (4.131)

The innermost integral in (4.131) is the same as the one that appears for the two-dimensional

case in (2.80), and can be computed in the same way. It corresponds to exponential integral

functions Ei (vid. Subsection A.2.3). By comparing (2.80) and (2.93), and by performing

a change of variables on the second term to account for a sign difference, we obtain the
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integral representation

GR(x,y) =
Z∞
2π2

e−Z∞v3

∫ π/2

−π/2
eiZ∞̺s sinψ Ei

(
Z∞v3 − iZ∞̺s sinψ

)
dψ, (4.132)

which can be rewritten also as

GR(x,y) =
Z∞
2π2

∫ 1

−1

e−Z∞(v3−i̺sη)

√
1 − η2

Ei
(
Z∞(v3 − i̺sη)

)
dη. (4.133)

Now, as x3 → ∞, we can consider the asymptotic behavior of the exponential integral

in (4.133). In fact, due (A.81) we have for z ∈ C that

Ei(z) ∼ ez

z
as Re{z} → ∞. (4.134)

Hence, as x3 → ∞ it holds that

GR(x,y) ∼ 1

2π2

∫ 1

−1

dη

(v3 − i̺sη)
√

1 − η2
=

1

2π|x − ȳ| . (4.135)

The Green’s function (4.129) behaves thus asymptotically, when x3 → ∞, as

G(x,y) ∼ − 1

4π|x − y| +
1

4π|x − ȳ| . (4.136)

By using Taylor expansions as in (D.29), we obtain that

− 1

4π|x − y| +
1

4π|x − ȳ| = −(y − ȳ) · x
4π|x|3 + O

(
1

|x|3
)
. (4.137)

We express the point x as x = |x| x̂, being x̂ = (sin θ cosϕ, sin θ sinϕ, cos θ) a vector of

the unit sphere. The asymptotic decaying of the Green’s function is therefore given by

Gff
A (x,y) = −y3 cos θ

2π|x|2 , (4.138)

and its gradient with respect to y by

∇yG
ff
A (x,y) = − cos θ

2π|x|2




0

0

1


. (4.139)

4.4.3 Surface waves in the far field

An expression for the surface waves in the far field can be obtained by studying the

residues of the poles of the spectral Green’s function, which determine entirely their as-

ymptotic behavior. We already computed the inverse Fourier transform of these residues

in (4.66), using the residue theorem of Cauchy and the limiting absorption principle. This

implies that the Green’s function behaves asymptotically, when |xs| → ∞, as

G(x,y) ∼ −iZ∞
2

e−Z∞v3
[
J0(Z∞̺s) + iH0(Z∞̺s)

]
for v3 > 0. (4.140)

This expression works well in the upper half-space, but fails to retrieve the logarithmic

singularity-distribution (4.121) in the lower half-space at ̺s = 0. In this case, the Struve

function H0 in (4.140) has to be replaced by the Neumann function Y0, which has the same
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behavior at infinity, but additionally a logarithmic singularity at its origin. Hence in the

lower half-space, the Green’s function behaves asymptotically, when |xs| → ∞, as

G(x,y) ∼ −iZ∞
2

e−Z∞v3H
(1)
0 (Z∞̺s) for v3 < 0. (4.141)

In general, away from the axis {̺s = 0}, the Green’s function behaves, when |xs| → ∞
and due the asymptotic expansions of the Struve and Bessel functions, as

G(x,y) ∼ −i
√

Z∞
2π̺s

e−Z∞v3ei(Z∞̺s−π/4). (4.142)

By performing Taylor expansions, as in (C.37) and (C.38), we have that

eiZ∞̺s

√
̺s

=
eiZ∞|xs|
√

|xs|
e−iZ∞ys·xs/|xs|

(
1 + O

(
1

|xs|

))
. (4.143)

We express the point xs on the surface as xs = |xs| x̂s, being x̂s = (cosϕ, sinϕ) a unitary

surface vector. The surface-wave behavior of the Green’s function, due (4.142) and (4.143),

becomes thus

Gff
S (x,y) = −i e−iπ/4

√
Z∞

2π|xs|
e−Z∞x3eiZ∞|xs|e−Z∞y3e−iZ∞ys·x̂s , (4.144)

and its gradient with respect to y is given by

∇yG
ff
S (x,y) = − Z

3/2
∞√

2π|xs|
e−iπ/4e−Z∞x3eiZ∞|xs|e−Z∞y3e−iZ∞ys·x̂s




cosϕ

sinϕ

−i


. (4.145)

4.4.4 Complete far field of the Green’s function

On the whole, the asymptotic behavior of the Green’s function as |x| → ∞ can be

characterized in the upper half-space through the addition of (4.136) and (4.140), and in

the lower half-space by adding (4.136) and (4.141). Thus if v3 > 0, then it holds that

G(x,y) ∼ − 1

4π|x − y| +
1

4π|x − ȳ| −
iZ∞
2

e−Z∞v3
[
J0(Z∞̺s) + iH0(Z∞̺s)

]
, (4.146)

and if v3 < 0, then

G(x,y) ∼ − 1

4π|x − y| +
1

4π|x − ȳ| −
iZ∞
2

e−Z∞v3H
(1)
0 (Z∞̺s). (4.147)

Consequently, the complete far field of the Green’s function, due (4.128), should be given

by the addition of (4.138) and (4.144), i.e., by

Gff (x,y) = −y3 cos θ

2π|x|2 − i e−iπ/4

√
Z∞

2π|xs|
e−Z∞x3eiZ∞|xs|e−Z∞y3e−iZ∞ys·x̂s . (4.148)

Its derivative with respect to y is likewise given by the addition of (4.139) and (4.145).

The expression (4.148) retrieves correctly the far field of the Green’s function, except in

the upper half-space at the vicinity of the axis {̺s = 0}, due the presence of a singularity-

distribution of type 1/
√

|xs|, which does not appear in the original Green’s function. A
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way to deal with this issue is to consider in each region only the most dominant asymptotic

behavior at infinity. Since there are two different regions, we require to determine appro-

priately the interface between them. This can be achieved by equating the amplitudes of

the two terms in (4.148), i.e., by searching values of x at infinity such that

1

2π|x|2 =

√
Z∞

2π|x| e
−Z∞x3 , (4.149)

where we neglected the values of y, since they remain relatively near the origin. Further-

more, since the interface stays relatively close to the half-space’s boundary, we can also

approximate |xs| ≈ |x|. By taking the logarithm in (4.149) and perturbing somewhat the

result so as to avoid a singular behavior at the origin, we obtain finally that this interface is

described by

x3 =
1

2Z∞
ln
(
1 + 2πZ∞|x|3

)
. (4.150)

We can say now that it is the far field (4.148) which justifies the radiation condi-

tion (4.17) when exchanging the roles of x and y, and disregarding the undesired sin-

gularity around {̺s = 0}. When the first term in (4.148) dominates, i.e., the asymptotic

decaying (4.138), then it is the first expression in (4.17) that matters. Conversely, when the

second term in (4.148) dominates, i.e., the surface waves (4.144), then the second expres-

sion in (4.17) is the one that holds. The interface between both is described by (4.150).

We remark that the asymptotic behavior (4.146) of the Green’s function and the expres-

sion (4.148) of its complete far field do no longer hold if a complex impedance Z∞ ∈ C

such that Im{Z∞} > 0 and Re{Z∞} ≥ 0 is used, specifically the parts (4.140) and (4.144)

linked with the surface waves. A careful inspection shows that in this case the surface-wave

behavior of the Green’s function, as |xs| → ∞, decreases exponentially and is given by

G(x,y) ∼ −iZ∞
2

e−|Z∞|v3
[
J0(Z∞̺s) + iH0(Z∞̺s)

]
for v3 > 0, (4.151)

whereas (4.141) continues to hold. Likewise, the surface-wave part of the far field is ex-

pressed for x3 > 0 as

Gff
S (x,y) = −i e−iπ/4

√
Z∞

2π|xs|
e−|Z∞|x3eiZ∞|xs|e−|Z∞|y3e−iZ∞ys·x̂s , (4.152)

but for x3 < 0 the expression (4.144) is still valid. The asymptotic decaying (4.136) and

its far-field expression (4.138), on the other hand, remain the same when we use a complex

impedance. We remark further that if a complex impedance is taken into account, then the

part of the surface waves of the outgoing radiation condition is redundant, and only the

asymptotic decaying part is required, i.e., only the first two expressions in (4.17), but now

holding for y3 > 0.

4.5 Numerical evaluation of the Green’s function

For the numerical evaluation of the Green’s function, we separate the space R
3 into

three regions: a near field, an upper far field, and a lower far field. In the near field,
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when |Z∞| |v| ≤ 15, being v = y − x̄, we use the expression (4.113) to compute

the Green’s function, truncating the double series of the functions So and Se, in (4.109)

and (4.110) respectively, after the first 30 terms for n and m. In the upper far field,

when |Z∞| |v| > 15 and |Z∞| v3 > log
(
1 + 2π|Z∞|̺3

s

)
, we have from (4.146) that

G(x,y) = − 1

4π|x − y| +
1

4π|x − ȳ| −
iZ∞
2

e−Z∞v3
[
J0(Z∞̺s) + iH0(Z∞̺s)

]
. (4.153)

Similarly in the lower far field, when |Z∞| |v| > 15 and |Z∞| v3 ≤ log
(
1 + 2π|Z∞|̺3

s

)
, it

holds from (4.147) that

G(x,y) = − 1

4π|x − y| +
1

4π|x − ȳ| −
iZ∞
2

e−Z∞v3H
(1)
0 (Z∞̺s). (4.154)

The Bessel functions can be evaluated either by using the software based on the technical

report by Morris (1993) or the subroutines described in Amos (1986, 1995). The Struve

function can be computed by means of the software described in MacLeod (1996). Further

references are listed in Lozier & Olver (1994). The biggest numerical error, excepting the

singularity-distribution along the half-line Υ, is committed near the boundaries of the three

described regions, and amounts to less than |Z∞| · 10−3.

4.6 Integral representation and equation

4.6.1 Integral representation

We are interested in expressing the solution u of the direct scattering problem (4.13) by

means of an integral representation formula over the perturbed portion of the boundary Γp.

For this purpose, we extend this solution by zero towards the complementary domain Ωc,

analogously as done in (D.98). We define by ΩR,ε the domain Ωe without the ball Bε of

radius ε > 0 centered at the point x ∈ Ωe, and truncated at infinity by the ball BR of

radius R > 0 centered at the origin. We consider that the ball Bε is entirely contained

in Ωe. Therefore, as shown in Figure 4.9, we have that

ΩR,ε =
(
Ωe ∩BR

)
\Bε, (4.155)

where

BR = {y ∈ R
3 : |y| < R} and Bε = {y ∈ Ωe : |y − x| < ε}. (4.156)

We consider similarly, inside Ωe, the boundaries of the balls

S+
R = {y ∈ R

3
+ : |y| = R} and Sε = {y ∈ Ωe : |y − x| = ε}. (4.157)

We separate furthermore the boundary as Γ = Γ0 ∪ Γ+, where

Γ0 = {y ∈ Γ : y3 = 0} and Γ+ = {y ∈ Γ : y3 > 0}. (4.158)

The boundary Γ is likewise truncated at infinity by the ball BR, namely

ΓR = Γ ∩BR = ΓR0 ∪ Γ+ = ΓR∞ ∪ Γp, (4.159)

where

ΓR0 = Γ0 ∩BR and ΓR∞ = Γ∞ ∩BR. (4.160)
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The idea is to retrieve the domain Ωe and the boundary Γ at the end when the limitsR → ∞
and ε→ 0 are taken for the truncated domain ΩR,ε and the truncated boundary ΓR.

ΩR,εS+

R
n = rx

ε

R Sε

O nΓpΓR
∞

FIGURE 4.9. Truncated domain ΩR,ε for x ∈ Ωe.

We apply now Green’s second integral theorem (A.613) to the functions u and G(x, ·)
in the bounded domain ΩR,ε, yielding

0 =

∫

ΩR,ε

(
u(y)∆yG(x,y) −G(x,y)∆u(y)

)
dy

=

∫

S+
R

(
u(y)

∂G

∂ry
(x,y) −G(x,y)

∂u

∂r
(y)

)
dγ(y)

−
∫

Sε

(
u(y)

∂G

∂ry
(x,y) −G(x,y)

∂u

∂r
(y)

)
dγ(y)

+

∫

ΓR

(
u(y)

∂G

∂ny

(x,y) −G(x,y)
∂u

∂n
(y)

)
dγ(y). (4.161)

The integral on S+
R can be rewritten as

∫

S2
R

[
u(y)

(
∂G

∂ry
(x,y) − iZ∞G(x,y)

)
−G(x,y)

(
∂u

∂r
(y) − iZ∞u(y)

)]
dγ(y)

+

∫

S1
R

(
u(y)

∂G

∂ry
(x,y) −G(x,y)

∂u

∂r
(y)

)
dγ(y), (4.162)

which for R large enough and due the radiation condition (4.6) tends to zero, since
∣∣∣∣∣

∫

S2
R

u(y)

(
∂G

∂ry
(x,y) − iZ∞G(x,y)

)
dγ(y)

∣∣∣∣∣ ≤
C√
R

lnR, (4.163)

∣∣∣∣∣

∫

S2
R

G(x,y)

(
∂u

∂r
(y) − iZ∞u(y)

)
dγ(y)

∣∣∣∣∣ ≤
C√
R

lnR, (4.164)

and ∣∣∣∣∣

∫

S1
R

(
u(y)

∂G

∂ry
(x,y) −G(x,y)

∂u

∂r
(y)

)
dγ(y)

∣∣∣∣∣ ≤
C

R3
, (4.165)
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for some constants C > 0. If the function u is regular enough in the ball Bε, then the

second term of the integral on Sε in (4.161), when ε→ 0 and due (4.119), is bounded by
∣∣∣∣
∫

Sε

G(x,y)
∂u

∂r
(y) dγ(y)

∣∣∣∣ ≤ Cε sup
y∈Bε

∣∣∣∣
∂u

∂r
(y)

∣∣∣∣, (4.166)

for some constant C > 0 and tends to zero. The regularity of u can be specified afterwards

once the integral representation has been determined and generalized by means of density

arguments. The first integral term on Sε can be decomposed as
∫

Sε

u(y)
∂G

∂ry
(x,y) dγ(y) = u(x)

∫

Sε

∂G

∂ry
(x,y) dγ(y)

+

∫

Sε

∂G

∂ry
(x,y)

(
u(y) − u(x)

)
dγ(y), (4.167)

For the first term in the right-hand side of (4.167), by considering (4.119) we have that
∫

Sε

∂G

∂ry
(x,y) dγ(y) −−−→

ε→0
1, (4.168)

while the second term is bounded by
∣∣∣∣
∫

Sε

(
u(y) − u(x)

)∂G
∂ry

(x,y) dγ(y)

∣∣∣∣ ≤ sup
y∈Bε

|u(y) − u(x)|, (4.169)

which tends towards zero when ε → 0. Finally, due the impedance boundary condi-

tion (4.4) and since the support of fz vanishes on Γ∞, the term on ΓR in (4.161) can be

decomposed as
∫

Γp

(
∂G

∂ny

(x,y) − Z(y)G(x,y)

)
u(y) dγ(y) +

∫

Γp

G(x,y)fz(y) dγ(y)

−
∫

ΓR
∞

(
∂G

∂y2

(x,y) + Z∞G(x,y)

)
u(y) dγ(y), (4.170)

where the integral on ΓR∞ vanishes due the impedance boundary condition in (4.16). There-

fore this term does not depend on R and has its support only on the bounded and perturbed

portion Γp of the boundary.

In conclusion, when the limits R → ∞ and ε→ 0 are taken in (4.161), then we obtain

for x ∈ Ωe the integral representation formula

u(x) =

∫

Γp

(
∂G

∂ny

(x,y) − Z(y)G(x,y)

)
u(y) dγ(y) +

∫

Γp

G(x,y)fz(y) dγ(y), (4.171)

which can be alternatively expressed as

u(x) =

∫

Γp

(
u(y)

∂G

∂ny

(x,y) −G(x,y)
∂u

∂n
(y)

)
dγ(y). (4.172)

It is remarkable in this integral representation that the support of the integral, namely the

curve Γp, is bounded. Let us denote the traces of the solution and of its normal derivative
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on Γp respectively by

µ = u|Γp and ν =
∂u

∂n

∣∣∣∣
Γp

. (4.173)

We can rewrite now (4.171) and (4.172) in terms of layer potentials as

u = D(µ) − S(Zµ) + S(fz) in Ωe, (4.174)

u = D(µ) − S(ν) in Ωe, (4.175)

where we define for x ∈ Ωe respectively the single and double layer potentials as

Sν(x) =

∫

Γp

G(x,y)ν(y) dγ(y), (4.176)

Dµ(x) =

∫

Γp

∂G

∂ny

(x,y)µ(y) dγ(y). (4.177)

We remark that from the impedance boundary condition (4.4) it is clear that

ν = Zµ− fz. (4.178)

4.6.2 Integral equation

To determine entirely the solution of the direct scattering problem (4.13) by means

of its integral representation, we have to find values for the traces (4.173). This requires

the development of an integral equation that allows to fix these values by incorporating

the boundary data. For this purpose we place the source point x on the boundary Γ and

apply the same procedure as before for the integral representation (4.171), treating differ-

ently in (4.161) only the integrals on Sε. The integrals on S+
R still behave well and tend

towards zero as R → ∞. The Ball Bε, though, is split in half by the boundary Γ, and the

portion Ωe ∩ Bε is asymptotically separated from its complement in Bε by the tangent of

the boundary if Γ is regular. If x ∈ Γ+, then the associated integrals on Sε give rise to a

term −u(x)/2 instead of just −u(x) as before for the integral representation. Therefore

we obtain for x ∈ Γ+ the boundary integral representation

u(x)

2
=

∫

Γp

(
∂G

∂ny

(x,y) − Z(y)G(x,y)

)
u(y) dγ(y) +

∫

Γp

G(x,y)fz(y) dγ(y). (4.179)

On the contrary, if x ∈ Γ0, then the pole-type behavior (4.120) contributes also to the

singularity (4.119) of the Green’s function and the integrals on Sε give now rise to two

terms −u(x)/2, i.e., on the whole to a term −u(x). For x ∈ Γ0 the boundary integral

representation is instead given by

u(x) =

∫

Γp

(
∂G

∂ny

(x,y) − Z(y)G(x,y)

)
u(y) dγ(y) +

∫

Γp

G(x,y)fz(y) dγ(y). (4.180)

We must notice that in both cases, the integrands associated with the boundary Γ admit an

integrable singularity at the point x. In terms of boundary layer potentials, we can express

these boundary integral representations as

u

2
= D(µ) − S(Zµ) + S(fz) on Γ+, (4.181)
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u = D(µ) − S(Zµ) + S(fz) on Γ0, (4.182)

where we consider, for x ∈ Γ, the two boundary integral operators

Sν(x) =

∫

Γp

G(x,y)ν(y) dγ(y), (4.183)

Dµ(x) =

∫

Γp

∂G

∂ny

(x,y)µ(y) dγ(y). (4.184)

We can combine (4.181) and (4.182) into a single integral equation on Γp, namely

(1 + I0)
µ

2
+ S(Zµ) −D(µ) = S(fz) on Γp, (4.185)

where I0 denotes the characteristic or indicator function of the set Γ0, i.e.,

I0(x) =

{
1 if x ∈ Γ0,

0 if x /∈ Γ0.
(4.186)

It is the solution µ on Γp of the integral equation (4.185) which finally allows to char-

acterize the solution u in Ωe of the direct scattering problem (4.13) through the integral

representation formula (4.174). The trace of the solution u on the boundary Γ is then found

simultaneously by means of the boundary integral representations (4.181) and (4.182). In

particular, when x ∈ Γ∞ and since Γ∞ ⊂ Γ0, therefore it holds that

u = D(µ) − S(Zµ) + S(fz) on Γ∞. (4.187)

4.7 Far field of the solution

The asymptotic behavior at infinity of the solution u of (4.13) is described by the far

field. It is denoted by uff and is characterized by

u(x) ∼ uff (x) as |x| → ∞. (4.188)

Its expression can be deduced by replacing the far field of the Green’s function Gff and its

derivatives in the integral representation formula (4.172), which yields

uff (x) =

∫

Γp

(
∂Gff

∂ny

(x,y)µ(y) −Gff (x,y)ν(y)

)
dγ(y). (4.189)

By replacing now (4.148) and the addition of (4.139) and (4.145) in (4.189), we obtain that

uff (x) = − cos θ

2π|x|2
∫

Γp






0

0

1


· ny µ(y) − y3ν(y)


 dγ(y)

+ i e−iπ/4

√
Z∞

2π|xs|
e−Z∞x3eiZ∞|xs|

∫

Γp

e−Z∞y3e−iZ∞ys· x̂s


Z∞




cosϕ

sinϕ

1


· ny µ(y) + ν(y)


 dγ(y). (4.190)
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The asymptotic behavior of the solution u at infinity, as |x| → ∞, is therefore given by

u(x) =
1

|x|2
{
uA∞(x̂) + O

(
1

|x|

)}
+
e−Z∞x3eiZ∞|xs|

√
|xs|

{
uS∞(x̂s) + O

(
1

|xs|

)}
, (4.191)

where we decompose x = |x| x̂, being x̂ = (sin θ cosϕ, sin θ sinϕ, cos θ) a vector of the

unit sphere, and xs = |xs| x̂s, being x̂s = (cosϕ, sinϕ) a vector of the unit circle. The

far-field pattern of the asymptotic decaying is given by

uA∞(x̂) = −cos θ

2π

∫

Γp






0

0

1


· ny µ(y) − y3ν(y)


 dγ(y), (4.192)

whereas the far-field pattern for the surface waves adopts the form

uS∞(x̂s) =
iZ

1/2
∞√
2π

e−iπ/4
∫

Γp

e−Z∞y3e−iZ∞ys· x̂s


Z∞




cosϕ

sinϕ

1


· ny µ(y) + ν(y)


 dγ(y).

(4.193)

Both far-field patterns can be expressed in decibels (dB) respectively by means of the scat-

tering cross sections

QA
s (x̂) [dB] = 20 log10

( |uA∞(x̂)|
|uA0 |

)
, (4.194)

QS
s (x̂s) [dB] = 20 log10

( |uS∞(x̂s)|
|uS0 |

)
, (4.195)

where the reference levels uA0 and uS0 are taken such that |uA0 | = |uS0 | = 1 if the incident

field is given by a surface wave of the form (4.15).

We remark that the far-field behavior (4.191) of the solution is in accordance with the

radiation condition (4.6), which justifies its choice.

4.8 Existence and uniqueness

4.8.1 Function spaces

To state a precise mathematical formulation of the herein treated problems, we have to

define properly the involved function spaces. Since the considered domains and boundaries

are unbounded, we need to work with weighted Sobolev spaces, as in Durán, Muga &

Nédélec (2005b, 2009). We consider the classic weight functions

̺ =
√

1 + r2 and log ̺ = ln(2 + r2), (4.196)

where r = |x|. We define the domains

Ω1
e =

{
x ∈ Ωe : x3 >

1

2Z∞
ln
(
1 + 2πZ∞r

3
)
,

}
, (4.197)

Ω2
e =

{
x ∈ Ωe : x3 <

1

2Z∞
ln
(
1 + 2πZ∞r

3
)
,

}
. (4.198)
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It holds that the solution of the direct scattering problem (4.13) is contained in the weighted

Sobolev space

W 1(Ωe) =

{
v :

v

̺
∈ L2(Ωe), ∇v ∈ L2(Ωe)

2,
v√
̺
∈ L2(Ω1

e),
∂v

∂r
∈ L2(Ω1

e),

v

log ̺
∈ L2(Ω2

e),
1

log ̺

(
∂v

∂r
− iZ∞v

)
∈ L2(Ω2

e)

}
. (4.199)

With the appropriate norm, the space W 1(Ωe) becomes also a Hilbert space. We have

likewise the inclusion W 1(Ωe) ⊂ H1
loc(Ωe), i.e., the functions of these two spaces differ

only by their behavior at infinity.

Since we are dealing with Sobolev spaces, even a strong Lipschitz boundary Γ ∈ C0,1

is admissible. The fact that this boundary Γ is also unbounded implies that we have to use

weighted trace spaces like in Amrouche (2002). For this purpose, we consider the space

W 1/2(Γ) =

{
v :

v√
̺ log ̺

∈ H1/2(Γ)

}
. (4.200)

Its dual space W−1/2(Γ) is defined via W 0-duality, i.e., considering the pivot space

W 0(Γ) =

{
v :

v√
̺ log ̺

∈ L2(Γ)

}
. (4.201)

Analogously as for the trace theorem (A.531), if v ∈ W 1(Ωe) then the trace of v fulfills

γ0v = v|Γ ∈ W 1/2(Γ). (4.202)

Moreover, the trace of the normal derivative can be also defined, and it holds that

γ1v =
∂v

∂n
|Γ ∈ W−1/2(Γ). (4.203)

We remark further that the restriction of the trace of v to Γp is such that

γ0v|Γp = v|Γp ∈ H1/2(Γp), (4.204)

γ1v|Γp =
∂v

∂n
|Γp ∈ H−1/2(Γp), (4.205)

and its restriction to Γ∞ yields

γ0v|Γ∞ = v|Γ∞ ∈ W 1/2(Γ∞), (4.206)

γ1v|Γ∞ =
∂v

∂n
|Γ∞ ∈ W−1/2(Γ∞). (4.207)

4.8.2 Application to the integral equation

The existence and uniqueness of the solution for the direct scattering problem (4.13),

due the integral representation formula (4.174), can be characterized by using the integral

equation (4.185). For this purpose and in accordance with the considered function spaces,

we take µ ∈ H1/2(Γp) and ν ∈ H−1/2(Γp). Furthermore, we consider that Z ∈ L∞(Γp) and

that fz ∈ H−1/2(Γp), even though strictly speaking fz ∈ H̃−1/2(Γp).

138



It holds that the single and double layer potentials defined respectively in (4.176)

and (4.177) are linear and continuous integral operators such that

S : H−1/2(Γp) −→ W 1(Ωe) and D : H1/2(Γp) −→ W 1(Ωe). (4.208)

The boundary integral operators (4.183) and (4.184) are also linear and continuous appli-

cations, and they are such that

S : H−1/2(Γp) −→ W 1/2(Γ) and D : H1/2(Γp) −→ W 1/2(Γ). (4.209)

When we restrict them to Γp, then it holds that

S|Γp : H−1/2(Γp) −→ H1/2(Γp) and D|Γp : H1/2(Γp) −→ H1/2(Γp). (4.210)

Let us consider the integral equation (4.185), which is given in terms of boundary layer

potentials, for µ ∈ H1/2(Γp), by

(1 + I0)
µ

2
+ S(Zµ) −D(µ) = S(fz) in H1/2(Γp). (4.211)

Due the imbedding properties of Sobolev spaces and in the same way as for the half-plane

impedance Laplace problem, it holds that the left-hand side of the integral equation corre-

sponds to an identity and two compact operators, and thus Fredholm’s alternative holds.

Since the Fredholm alternative applies to the integral equation, therefore it applies

also to the direct scattering problem (4.13) due the integral representation formula. The

existence of the scattering problem’s solution is thus determined by its uniqueness, and the

values for the impedance Z ∈ C for which the uniqueness is lost constitute a countable set,

which we call the impedance spectrum of the scattering problem and denote it by σZ . The

existence and uniqueness of the solution is therefore ensured almost everywhere. The same

holds obviously for the solution of the integral equation, whose impedance spectrum we

denote by ςZ . Since the integral equation is derived from the scattering problem, it holds

that σZ ⊂ ςZ . The converse, though, is not necessarily true. In any way, the set ςZ \ σZ is

at most countable. In conclusion, the scattering problem (4.13) admits a unique solution u

if Z /∈ σZ , and the integral equation (4.185) admits a unique solution µ if Z /∈ ςZ .

4.9 Dissipative problem

The dissipative problem considers surface waves that lose their amplitude as they travel

along the half-space’s boundary. These waves dissipate their energy as they propagate and

are modeled by a complex impedance Z∞ ∈ C whose imaginary part is strictly posi-

tive, i.e., Im{Z∞} > 0. This choice ensures that the surface waves of the Green’s func-

tion (4.113) decrease exponentially at infinity. Due the dissipative nature of the medium,

it is no longer suited to take progressive plane surface waves in the form of (4.15) as the

incident field uI . Instead, we have to take a source of surface waves at a finite distance

from the perturbation. For example, we can consider a point source located at z ∈ Ωe, in

which case the incident field is given, up to a multiplicative constant, by

uI(x) = G(x, z), (4.212)
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where G denotes the Green’s function (4.113). This incident field uI satisfies the Laplace

equation with a source term in the right-hand side, namely

∆uI = δz in D′(Ωe), (4.213)

which holds also for the total field uT but not for the scattered field u, in which case the

Laplace equation remains homogeneous. For a general source distribution gs, whose sup-

port is contained in Ωe, the incident field can be expressed by

uI(x) = G(x, z) ∗ gs(z) =

∫

Ωe

G(x, z) gs(z) dz. (4.214)

This incident field uI satisfies now

∆uI = gs in D′(Ωe), (4.215)

which holds again also for the total field uT but not for the scattered field u.

It is not difficult to see that all the performed developments for the non-dissipative

case are still valid when considering dissipation. The only difference is that now a complex

impedance Z∞ such that Im{Z∞} > 0 has to be taken everywhere into account.

4.10 Variational formulation

To solve the integral equation we convert it to its variational or weak formulation,

i.e., we solve it with respect to a certain test function in a bilinear (or sesquilinear) form.

Basically, the integral equation is multiplied by the (conjugated) test function and then the

equation is integrated over the boundary of the domain. The test function is taken in the

same function space as the solution of the integral equation.

The variational formulation for the integral equation (4.211) searches µ ∈ H1/2(Γp)

such that ∀ϕ ∈ H1/2(Γp) we have that
〈
(1 + I0)

µ

2
+ S(Zµ) −D(µ), ϕ

〉
=
〈
S(fz), ϕ

〉
. (4.216)

4.11 Numerical discretization

4.11.1 Discretized function spaces

The scattering problem (4.13) is solved numerically with the boundary element method

by employing a Galerkin scheme on the variational formulation of the integral equation.

We use on the boundary surface Γp Lagrange finite elements of type P1. The surface Γp is

approximated by the triangular mesh Γhp , composed by T flat triangles Tj , for 1 ≤ j ≤ T ,

and I nodes ri ∈ R
3, 1 ≤ i ≤ I . The triangles have a diameter less or equal than h, and

their vertices or corners, i.e., the nodes ri, are on top of Γp, as shown in Figure 4.10. The

diameter of a triangle K is given by

diam(K) = sup
x,y∈K

|y − x|. (4.217)
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FIGURE 4.10. Mesh Γhp , discretization of Γp.

The function space H1/2(Γp) is approximated using the conformal space of continuous

piecewise linear polynomials with complex coefficients

Qh =
{
ϕh ∈ C0(Γhp ) : ϕh|Tj

∈ P1(C), 1 ≤ j ≤ T
}
. (4.218)

The space Qh has a finite dimension I , and we describe it using the standard base func-

tions for finite elements of type P1, which we denote by {χj}Ij=1. The base function χj is

associated with the node rj and has its support suppχj on the triangles that have rj as one

of their vertices. On rj it has a value of one and on the opposed edges of the triangles its

value is zero, being linearly interpolated in between and zero otherwise.

In virtue of this discretization, any function ϕh ∈ Qh can be expressed as a linear

combination of the elements of the base, namely

ϕh(x) =
I∑

j=1

ϕj χj(x) for x ∈ Γhp , (4.219)

where ϕj ∈ C for 1 ≤ j ≤ I . The solution µ ∈ H1/2(Γp) of the variational formula-

tion (4.216) can be therefore approximated by

µh(x) =
I∑

j=1

µj χj(x) for x ∈ Γhp , (4.220)

where µj ∈ C for 1 ≤ j ≤ I . The function fz can be also approximated by

fhz (x) =
I∑

j=1

fj χj(x) for x ∈ Γhp , with fj = fz(rj). (4.221)

4.11.2 Discretized integral equation

To see how the boundary element method operates, we apply it to the variational for-

mulation (4.216). We characterize all the discrete approximations by the index h, includ-

ing also the impedance and the boundary layer potentials. The numerical approximation

of (4.216) leads to the discretized problem that searches µh ∈ Qh such that ∀ϕh ∈ Qh〈
(1 + Ih0 )

µh
2

+ Sh(Zhµh) −Dh(µh), ϕh

〉
=
〈
Sh(f

h
z ), ϕh

〉
. (4.222)
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Considering the decomposition of µh in terms of the base {χj} and taking as test functions

the same base functions, ϕh = χi for 1 ≤ i ≤ I , yields the discrete linear system

I∑

j=1

µj

(
1

2

〈
(1 + Ih0 )χj, χi

〉
+ 〈Sh(Zhχj), χi〉 − 〈Dh(χj), χi〉

)
=

I∑

j=1

fj 〈Sh(χj), χi〉.

(4.223)

This constitutes a system of linear equations that can be expressed as a linear matrix system:
{

Find µ ∈ C
I such that

Mµ = b.
(4.224)

The elements mij of the matrix M are given, for 1 ≤ i, j ≤ I , by

mij =
1

2

〈
(1 + Ih0 )χj, χi

〉
+ 〈Sh(Zhχj), χi〉 − 〈Dh(χj), χi〉, (4.225)

and the elements bi of the vector b by

bi =
〈
Sh(f

h
z ), χi

〉
=

I∑

j=1

fj 〈Sh(χj), χi〉 for 1 ≤ i ≤ I. (4.226)

The discretized solution uh, which approximates u, is finally obtained by discretizing

the integral representation formula (4.174) according to

uh = Dh(µh) − Sh(Zhµh) + Sh(fhz ), (4.227)

which, more specifically, can be expressed as

uh =
I∑

j=1

µj
(
Dh(χj) − Sh(Zhχj)

)
+

I∑

j=1

fj Sh(χj). (4.228)

We remark that the resulting matrix M is in general complex, full, non-symmetric,

and with dimensions I × I . The right-hand side vector b is complex and of size I . The

boundary element calculations required to compute numerically the elements of M and b

have to be performed carefully, since the integrals that appear become singular when the

involved segments are adjacent or coincident, due the singularity of the Green’s function at

its source point. On Γ0, the singularity of the image source point has to be taken additionally

into account for these calculations.

4.12 Boundary element calculations

The boundary element calculations build the elements of the matrix M resulting from

the discretization of the integral equation, i.e., from (4.224). They permit thus to compute

numerically expressions like (4.225). To evaluate the appearing singular integrals, we adapt

the semi-numerical methods described in the report of Bendali & Devys (1986).
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We use the same notation as in Section D.12, and the required boundary element inte-

grals, for a, b ∈ {0, 1} and c, d ∈ {1, 2, 3}, are again

ZAc,da,b =

∫

K

∫

L

(
sc
hKc

)a(
td
hLd

)b
G(x,y) dL(y) dK(x), (4.229)

ZBc,d
a,b =

∫

K

∫

L

(
sc
hKc

)a(
td
hLd

)b
∂G

∂ny

(x,y) dL(y) dK(x). (4.230)

All the integrals that stem from the numerical discretization can be expressed in terms

of these two basic boundary element integrals. The impedance is again discretized as a

piecewise constant function Zh, which on each triangle Tj adopts a constant value Zj ∈ C.

The integrals of interest are the same as for the full-space impedance Laplace problem and

we consider furthermore that

〈
(1 + Ih0 )χj, χi

〉
=

{
〈χj, χi〉 if rj ∈ Γ+,

2 〈χj, χi〉 if rj ∈ Γ0.
(4.231)

To compute the boundary element integrals (4.229) and (4.230), we can easily isolate

the singular part (4.119) of the Green’s function (4.113), which corresponds in fact to the

Green’s function of the Laplace equation in the full-space, and therefore the associated in-

tegrals are computed in the same way. The same applies also for its normal derivative. In

the case when the triangles K and L are are close enough, e.g., adjacent or coincident, and

when L ∈ Γh0 or K ∈ Γh0 , being Γh0 the approximation of Γ0, we have to consider addi-

tionally the singular behavior (4.120), which is linked with the presence of the impedance

half-space. This behavior can be straightforwardly evaluated by replacing x by x̄ in for-

mulae (D.295) to (D.298), i.e., by computing the quantities ZF d
b (x̄) and ZGd

b(x̄) with the

corresponding adjustment of the notation. Otherwise, if the triangles are not close enough

and for the non-singular part of the Green’s function, a three-point Gauss-Lobatto quadra-

ture formula is used. All the other computations are performed in the same manner as in

Section D.12 for the full-space Laplace equation.

4.13 Benchmark problem

As benchmark problem we consider the particular case when the domain Ωe ⊂ R
3
+ is

taken as the exterior of a half-sphere of radiusR > 0 that is centered at the origin, as shown

in Figure 4.11. We decompose the boundary of Ωe as Γ = Γp∪Γ∞, where Γp corresponds to

the upper half-sphere, whereas Γ∞ denotes the remaining unperturbed portion of the half-

space’s boundary which lies outside the half-sphere and which extends towards infinity.

The unit normal n is taken outwardly oriented of Ωe, e.g., n = −r on Γp.
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FIGURE 4.11. Exterior of the half-sphere.

The benchmark problem is then stated as




Find u : Ωe → C such that

∆u = 0 in Ωe,

−∂u
∂n

+ Zu = fz on Γ,

+ Outgoing radiation condition as |x| → ∞,

(4.232)

where we consider a constant impedance Z ∈ C throughout Γ and where the radiation

condition is as usual given by (4.6). As incident field uI we consider the same Green’s

function, namely

uI(x) = G(x, z), (4.233)

where z ∈ Ωc denotes the source point of our incident field. The impedance data func-

tion fz is hence given by

fz(x) =
∂G

∂nx

(x, z) − ZG(x, z), (4.234)

and its support is contained in Γp. The analytic solution for the benchmark problem (4.232)

is then clearly given by

u(x) = −G(x, z). (4.235)

The goal is to retrieve this solution numerically with the integral equation techniques and

the boundary element method described throughout this chapter.

For the computational implementation and the numerical resolution of the benchmark

problem, we consider integral equation (4.185). The linear system (4.224) resulting from

the discretization (4.222) of its variational formulation (4.216) is solved computationally

with finite boundary elements of type P1 by using subroutines programmed in Fortran 90,

by generating the mesh Γhp of the boundary with the free software Gmsh 2.4, and by repre-

senting graphically the results in Matlab 7.5 (R2007b).

We consider a radius R = 1, a constant impedance Z = 5, and for the incident field

a source point z = (0, 0, 0). The discretized perturbed boundary curve Γhp has I = 641

nodes, T = 1224 triangles and a discretization step h = 0.1676, being

h = max
1≤j≤T

diam(Tj). (4.236)
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The numerically calculated trace of the solution µh of the benchmark problem, which

was computed by using the boundary element method, is depicted in Figure 4.12. In the

same manner, the numerical solution uh is illustrated in Figures 4.13 and 4.14 for an an-

gle ϕ = 0. It can be observed that the numerical solution is close to the exact one.
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FIGURE 4.12. Numerically computed trace of the solution µh.
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FIGURE 4.13. Contour plot of the numerically computed solution uh for ϕ = 0.

Likewise as in (D.346), we define the relative error of the trace of the solution as

E2(h,Γ
h
p ) =

‖Πhµ− µh‖L2(Γh
p )

‖Πhµ‖L2(Γh
p )

, (4.237)

where Πhµ denotes the Lagrange interpolating function of the exact solution’s trace µ, i.e.,

Πhµ(x) =
I∑

j=1

µ(rj)χj(x) and µh(x) =
I∑

j=1

µj χj(x) for x ∈ Γhp . (4.238)
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FIGURE 4.14. Oblique view of the numerically computed solution uh for ϕ = 0.

In our case, for a step h = 0.1676, we obtained a relative error of E2(h,Γ
h
p ) = 0.05359.

As in (D.350), we define the relative error of the solution as

E∞(h,ΩL) =
‖u− uh‖L∞(ΩL)

‖u‖L∞(ΩL)

, (4.239)

being ΩL = {x ∈ Ωe : ‖x‖∞ < L} for L > 0. We consider L = 3 and approximate ΩL

by a triangular finite element mesh of refinement h near the boundary. For h = 0.1676, the

relative error that we obtained for the solution was E∞(h,ΩL) = 0.05509.

The results for different mesh refinements, i.e., for different numbers of triangles T ,

nodes I , and discretization steps h for Γhp , are listed in Table 4.1. These results are illus-

trated graphically in Figure 4.15. It can be observed that the relative errors are approxi-

mately of order h2.

TABLE 4.1. Relative errors for different mesh refinements.

T I h E2(h,Γ
h
p ) E∞(h,ΩL)

46 30 0.7071 2.863 · 10+1 4.582 · 10+1

168 95 0.4320 3.096 · 10−1 4.131 · 10−1

466 252 0.2455 1.233 · 10−1 1.373 · 10−1

700 373 0.1987 8.414 · 10−2 9.262 · 10−2

1224 641 0.1676 5.359 · 10−2 5.509 · 10−2

2100 1090 0.1286 3.182 · 10−2 4.890 · 10−2
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V. HALF-SPACE IMPEDANCE HELMHOLTZ PROBLEM

5.1 Introduction

In this chapter we study the perturbed half-space impedance Helmholtz problem using

integral equation techniques and the boundary element method.

We consider the problem of the Helmholtz equation in three dimensions on a compactly

perturbed half-space with an impedance boundary condition. The perturbed half-space

impedance Helmholtz problem is a wave scattering problem around the bounded pertur-

bation, which is contained in the upper half-space. In acoustic scattering the impedance

boundary-value problem appears when we suppose that the normal velocity is propor-

tional to the excess pressure on the boundary of the impenetrable perturbation or obsta-

cle (vid. Section A.11). The special case of frequency zero for the volume waves has

been treated already in Chapter IV. The two-dimensional case is considered in Chapter III,

whereas the full-space impedance Helmholtz problem with a bounded impenetrable obsta-

cle is treated thoroughly in Appendix E.

The main application of the problem corresponds to outdoor sound propagation, but

it is also used to describe the propagation of radio waves above the ground. The problem

was at first considered by Sommerfeld (1909) to describe the long-distance propagation of

electromagnetic waves above the earth. Different results for the electromagnetic problem

were then obtained by Weyl (1919) and later again by Sommerfeld (1926). After the arti-

cles of Van der Pol & Niessen (1930), Wise (1931), and Van der Pol (1935), the most useful

results up to that time were generated by Norton (1936, 1937). We can likewise mention

the later works of Baños & Wesley (1953, 1954) and Baños (1966). The application of the

problem to outdoor sound propagation was initiated by Rudnick (1947). Other approxi-

mate solutions to the problem were thereafter found by Lawhead & Rudnick (1951a,b) and

Ingard (1951). Solutions containing surface-wave terms were obtained by Wenzel (1974)

and Chien & Soroka (1975, 1980). Further references are listed in Nobile & Hayek (1985).

Other important articles that attempt to solve the problem are the ones of Briquet & Fil-

ippi (1977), Attenborough, Hayek & Lawther (1980), Filippi (1983), Li et al. (1994),

and Attenborough (2002), and more recently also Habault (1999), Ochmann (2004), and

Ochmann & Brick (2008), among others. The problem can be likewise found in the book

of DeSanto (1992). The physical aspects of outdoor sound propagation can be found in

Morse & Ingard (1961) and Embleton (1996).

The Helmholtz equation allows the propagation of volume waves inside the considered

domain, and when it is supplied with an impedance boundary condition, then it allows also

the propagation of surface waves along the boundary of the perturbed half-space. The

main difficulty in the numerical treatment and resolution of our problem is the fact that the

exterior domain is unbounded. We solve it therefore with integral equation techniques and a

boundary element method, which require the knowledge of the associated Green’s function.

This Green’s function is computed using a Fourier transform and taking into account the

limiting absorption principle, following Durán, Muga & Nédélec (2005b, 2009), but here an
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explicit expression is found for it in terms of a finite combination of elementary functions,

special functions, and their primitives.

This chapter is structured in 13 sections, including this introduction. The direct scat-

tering problem of the Helmholtz equation in a three-dimensional compactly perturbed half-

space with an impedance boundary condition is presented in Section 5.2. The computation

of the Green’s function, its far field, and its numerical evaluation are developed respec-

tively in Sections 5.3, 5.4, and 5.5. The use of integral equation techniques to solve the

direct scattering problem is discussed in Section 5.6. These techniques allow also to repre-

sent the far field of the solution, as shown in Section 5.7. The appropriate function spaces

and some existence and uniqueness results for the solution of the problem are presented in

Section 5.8. The dissipative problem is studied in Section 5.9. By means of the variational

formulation developed in Section 5.10, the obtained integral equation is discretized using

the boundary element method, which is described in Section 5.11. The boundary element

calculations required to build the matrix of the linear system resulting from the numerical

discretization are explained in Section 5.12. Finally, in Section 5.13 a benchmark problem

based on an exterior half-sphere problem is solved numerically.

5.2 Direct scattering problem

5.2.1 Problem definition

We consider the direct scattering problem of linear time-harmonic acoustic waves on

a perturbed half-space Ωe ⊂ R
3, where R

3
+ = {(x1, x2, x3) ∈ R

3 : x3 > 0}, where the

incident field uI and the reflected field uR are known, and where the time convention e−iωt

is taken. The goal is to find the scattered field u as a solution to the Helmholtz equation

in the exterior open and connected domain Ωe, satisfying an outgoing radiation condition,

and such that the total field uT , decomposed as uT = uI +uR+u, satisfies a homogeneous

impedance boundary condition on the regular boundary Γ = Γp∪Γ∞ (e.g., of classC2). The

exterior domain Ωe is composed by the half-space R
3
+ with a compact perturbation near the

origin that is contained in R
3
+, as shown in Figure 5.1. The perturbed boundary is denoted

by Γp, while Γ∞ denotes the remaining unperturbed boundary of R
3
+, which extends towards

infinity on every horizontal direction. The unit normal n is taken outwardly oriented of Ωe

and the complementary domain is denoted by Ωc = R
3\Ωe. A given wave number k > 0 is

considered, which depends on the pulsation ω and the speed of wave propagation c through

the ratio k = ω/c.

The total field uT satisfies thus the Helmholtz equation

∆uT + k2uT = 0 in Ωe, (5.1)

which is also satisfied by the incident field uI , the reflected field uR, and the scattered

field u, due linearity. For the total field uT we take the homogeneous impedance boundary

condition

− ∂uT
∂n

+ ZuT = 0 on Γ, (5.2)
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FIGURE 5.1. Perturbed half-space impedance Helmholtz problem domain.

where Z is the impedance on the boundary, which is decomposed as

Z(x) = Z∞ + Zp(x), x ∈ Γ, (5.3)

being Z∞ > 0 real and constant throughout Γ, and Zp(x) a possibly complex-valued

impedance that depends on the position x and that has a bounded support contained in Γp.

The case of complex Z∞ and k will be discussed later. If Z = 0 or Z = ∞, then we retrieve

respectively the classical Neumann or Dirichlet boundary conditions. The scattered field u

satisfies the non-homogeneous impedance boundary condition

− ∂u

∂n
+ Zu = fz on Γ, (5.4)

where the impedance data function fz is known, has its support contained in Γp, and is

given, because of (5.2), by

fz =
∂uI
∂n

− ZuI +
∂uR
∂n

− ZuR on Γ. (5.5)

An outgoing radiation condition has to be also imposed for the scattered field u, which

specifies its decaying behavior at infinity and eliminates the non-physical solutions, e.g.,

ingoing volume or surface waves. This radiation condition can be stated for r → ∞ in a

more adjusted way as




|u| ≤ C

r
and

∣∣∣∣
∂u

∂r
− iku

∣∣∣∣ ≤
C

r2
if x3 >

1

2Z∞
ln(1 + βr),

|u| ≤ C√
r

and

∣∣∣∣
∂u

∂r
− i
√
Z2

∞ + k2u

∣∣∣∣ ≤
C

r
if x3 ≤

1

2Z∞
ln(1 + βr),

(5.6)

for some constants C > 0, where r = |x| and β = 8πZ2
∞/
√
Z2

∞ + k2. It implies that

two different asymptotic behaviors can be established for the scattered field u. Away from

the boundary Γ and inside the domain Ωe, the first expression in (5.6) dominates, which

corresponds to a classical Sommerfeld radiation condition like (E.8) and is associated with

volume waves. Near the boundary, on the other hand, the second expression in (5.6) resem-

bles a Sommerfeld radiation condition, but only along the boundary and having a different
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wave number, and is therefore related to the propagation of surface waves. It is often ex-

pressed also as ∣∣∣∣
∂u

∂|xs|
− i
√
Z2

∞ + k2u

∣∣∣∣ ≤
C

|xs|
, (5.7)

where xs = (x1, x2).

Analogously as done by Durán, Muga & Nédélec (2005b, 2009), the radiation condi-

tion (5.6) can be stated alternatively as




|u| ≤ C

r1−α and

∣∣∣∣
∂u

∂r
− iku

∣∣∣∣ ≤
C

r2−α if x3 > Crα,

|u| ≤ C√
r

and

∣∣∣∣
∂u

∂r
− i
√
Z2

∞ + k2u

∣∣∣∣ ≤
C

r1−α if x3 ≤ Crα,

(5.8)

for 0 < α < 1/2 and some constants C > 0, being the growth of Crα bigger than the

logarithmic one at infinity. Equivalently, the radiation condition can be expressed in a more

weaker and general formulation as




lim
R→∞

∫

S1
R

|u|2
R

dγ = 0 and lim
R→∞

∫

S1
R

R

∣∣∣∣
∂u

∂r
− iku

∣∣∣∣
2

dγ = 0,

lim
R→∞

∫

S2
R

|u|2
lnR

dγ <∞ and lim
R→∞

∫

S2
R

1

lnR

∣∣∣∣
∂u

∂r
− i
√
Z2

∞ + k2u

∣∣∣∣
2

dγ = 0,

(5.9)

where

S1
R =

{
x ∈ R

3
+ : |x| = R, x3 >

1

2Z∞
ln(1 + βR)

}
, (5.10)

S2
R =

{
x ∈ R

3
+ : |x| = R, x3 <

1

2Z∞
ln(1 + βR)

}
. (5.11)

We observe that in this case∫

S1
R

dγ = O(R2) and

∫

S2
R

dγ = O(R lnR). (5.12)

The portions S1
R and S2

R of the half-sphere and the terms depending on S2
R of the radiation

condition (5.9) have to be modified when using instead the polynomial curves of (5.8). We

refer to Stoker (1956) for a discussion on radiation conditions for surface waves.

The perturbed half-space impedance Helmholtz problem can be finally stated as




Find u : Ωe → C such that

∆u+ k2u = 0 in Ωe,

−∂u
∂n

+ Zu = fz on Γ,

+ Outgoing radiation condition as |x| → ∞,

(5.13)

where the outgoing radiation condition is given by (5.6).
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5.2.2 Incident and reflected field

To determine the incident field uI and the reflected field uR, we study the solutions uT
of the unperturbed and homogeneous wave propagation problem with neither a scattered

field nor an associated radiation condition, being uT = uI +uR. The solutions are searched

in particular to be physically admissible, i.e., solutions which do not explode exponen-

tially in the propagation domain, depicted in Figure 5.1. We analyze thus the half-space

impedance Helmholtz problem




∆uT + k2uT = 0 in R
3
+,

∂uT
∂x3

+ Z∞uT = 0 on {x3 = 0}.
(5.14)

{x3 = 0}, Z∞

R
3
+

n

x2

x3

x1

FIGURE 5.2. Positive half-space R
3
+.

Two different kinds of independent solutions uT exist for the problem (5.14). They are

obtained by studying the way how progressive plane waves of the form eik·x can be adjusted

to satisfy the boundary condition, where the wave propagation vector k = (k1, k2, k3) is

such that (k · k) = k2.

The first kind of solution corresponds to a linear combination of two progressive plane

volume waves and is given, up to an arbitrary multiplicative constant, by

uT (x) = eik·x −
(
Z∞ + ik3

Z∞ − ik3

)
eik̄·x, (5.15)

where k ∈ R
3 and k̄ = (k1, k2,−k3). Due the involved physics, we consider that k3 ≤ 0.

The first term of (5.15) can be interpreted as an incident plane volume wave, while the

second term represents the reflected plane volume wave due the presence of the boundary

with impedance. Thus

uI(x) = eik·x, (5.16)

uR(x) = −
(
Z∞ + ik3

Z∞ − ik3

)
eik̄·x. (5.17)

It can be observed that the solution (5.15) vanishes when k3 = 0, i.e., when the wave

propagation is parallel to the half-space’s boundary. The wave propagation vector k, by

considering a parametrization through the angles of incidence θI and ϕI for 0 ≤ θI ≤ π/2
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and −π < ϕI ≤ π, can be expressed as k = (−k sin θI cosϕI ,−k sin θI sinϕI ,−k cos θI).

In this case the solution is described by

uT (x) = e−ik(x1 sin θI cosϕI+x2 sin θI sinϕI+x3 cos θI)

−
(
Z∞ − ik cos θI
Z∞ + ik cos θI

)
e−ik(x1 sin θI cosϕI+x2 sin θI sinϕI−x3 cos θI). (5.18)

The second kind of solution, up to an arbitrary scaling factor, corresponds to a progres-

sive plane surface wave, and is given by

uT (x) = uI(x) = eiks·xse−Z∞x3 , (ks · ks) = Z2
∞ + k2, xs = (x1, x2). (5.19)

It can be observed that plane surface waves correspond to plane volume waves with a com-

plex wave propagation vector k = (ks, iZ∞), where ks ∈ R
2. They are guided along the

half-space’s boundary, and decrease exponentially towards its interior, hence their name.

In this case there exists no reflected field, since the waves travel along the boundary. We

remark that the plane surface waves vanish completely for classical Dirichlet (Z∞ = ∞)

or Neumann (Z∞ = 0) boundary conditions.

5.3 Green’s function

5.3.1 Problem definition

The Green’s function represents the response of the unperturbed system to a Dirac

mass. It corresponds to a function G, which depends on the wave number k, on the

impedance Z∞, on a fixed source point x ∈ R
3
+, and on an observation point y ∈ R

3
+.

The Green’s function is computed in the sense of distributions for the variable y in the

half-space R
3
+ by placing at the right-hand side of the Helmholtz equation a Dirac mass δx,

centered at the point x. It is therefore a solution for the radiation problem of a point source,

namely 



Find G(x, ·) : R
3
+ → C such that

∆yG(x,y) + k2G(x,y) = δx(y) in D′(R3
+),

∂G

∂y3

(x,y) + Z∞G(x,y) = 0 on {y3 = 0},

+ Outgoing radiation condition as |y| → ∞.

(5.20)

The outgoing radiation condition, in the same way as in (5.6), is given here as |y| → ∞ by




|G| ≤ C

|y| and

∣∣∣∣
∂G

∂ry
− ikG

∣∣∣∣ ≤
C

|y|2 if y3 >
ln
(
1 + β|y|

)

2Z∞
,

|G| ≤ C√
|y|

and

∣∣∣∣
∂G

∂ry
− i
√
Z2

∞ + k2G

∣∣∣∣ ≤
C

|y| if y3 ≤
ln
(
1 + β|y|

)

2Z∞
,

(5.21)

for some constants C > 0, independent of r = |y|, where and β = 8πZ2
∞/
√
Z2

∞ + k2.
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5.3.2 Special cases

When the Green’s function problem (5.20) is solved using either homogeneous Dirich-

let or Neumann boundary conditions, then its solution is found straightforwardly using the

method of images (cf., e.g., Morse & Feshbach 1953).

a) Homogeneous Dirichlet boundary condition

We consider in the problem (5.20) the particular case of a homogeneous Dirichlet

boundary condition, namely

G(x,y) = 0, y ∈ {y3 = 0}, (5.22)

which corresponds to the limit case when the impedance is infinite (Z∞ = ∞). In this

case, the Green’s function G can be explicitly calculated using the method of images,

since it has to be antisymmetric with respect to the plane {y3 = 0}. An additional im-

age source point x̄ = (x1, x2,−x3), located on the lower half-space and associated with a

negative Dirac mass, is placed for this purpose just opposite to the upper half-space’s source

point x = (x1, x2, x3). The desired solution is then obtained by evaluating the full-space

Green’s function (E.22) for each Dirac mass, which yields finally

G(x,y) = − eik|y−x|

4π|y − x| +
eik|y−x̄|

4π|y − x̄| = − ik

4π
h

(1)
0

(
k|y−x|

)
+
ik

4π
h

(1)
0

(
k|y− x̄|

)
. (5.23)

b) Homogeneous Neumann boundary condition

We consider in the problem (5.20) the particular case of a homogeneous Neumann

boundary condition, namely

∂G

∂ny

(x,y) = 0, y ∈ {y3 = 0}, (5.24)

which corresponds to the limit case when the impedance is zero (Z∞ = 0). As in the

previous case, the method of images is again employed, but now the half-space Green’s

function G has to be symmetric with respect to the plane {y3 = 0}. Therefore, an addi-

tional image source point x̄ = (x1, x2,−x3), located on the lower half-space, is placed just

opposite to the upper half-space’s source point x = (x1, x2, x3), but now associated with

a positive Dirac mass. The desired solution is then obtained by evaluating the full-space

Green’s function (E.22) for each Dirac mass, which yields

G(x,y) = − eik|y−x|

4π|y − x| −
eik|y−x̄|

4π|y − x̄| = − ik

4π
h

(1)
0

(
k|y−x|

)
− ik

4π
h

(1)
0

(
k|y− x̄|

)
. (5.25)

5.3.3 Spectral Green’s function

a) Boundary-value problem

To solve (5.20) in the general case, we use a modified partial Fourier transform on the

horizontal (y1, y2)-plane, taking advantage of the fact that there is no horizontal variation

in the geometry of the problem. To obtain the corresponding spectral Green’s function, we

follow the same procedure as the one performed in Durán et al. (2005b). We define the
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forward Fourier transform of a function F
(
x, (·, ·, y3)

)
: R

2 → C by

F̂ (ξ; y3, x3) =
1

2π

∫

R2

F (x,y) e−iξ·(ys−xs) dys, ξ = (ξ1, ξ2) ∈ R
2, (5.26)

and its inverse by

F (x,y) =
1

2π

∫

R2

F̂ (ξ; y3, x3) e
iξ·(ys−xs) dξ, ys = (y1, y2) ∈ R

2, (5.27)

where xs = (x1, x2) ∈ R
2 and thus x = (xs, x3).

To ensure a correct integration path for the Fourier transform and correct physical

results, the calculations have to be performed in the framework of the limiting absorption

principle, which allows to treat all the appearing integrals as Cauchy principal values. For

this purpose, we take a small dissipation parameter ε > 0 into account and consider the

problem (5.20) as the limit case when ε→ 0 of the dissipative problem




Find Gε(x, ·) : R
3
+ → C such that

∆yGε(x,y) + k2
εGε(x,y) = δx(y) in D′(R3

+),

∂Gε

∂y3

(x,y) + Z∞Gε(x,y) = 0 on {y3 = 0},
(5.28)

where kε = k + iε. This choice ensures a correct outgoing dissipative volume-wave be-

havior. In the same way as for the Laplace equation, the impedance Z∞ could be also

incorporated into this dissipative framework, i.e., by considering Zε = Z∞ + iε, but it is

not really necessary since the use of a dissipative wave number kε is enough to take care

of all the appearing issues. Further references for the application of this principle can be

found in Bonnet-BenDhia & Tillequin (2001), Hazard & Lenoir (1998), and Nosich (1994).

Applying thus the Fourier transform (5.26) on the system (5.28) leads to a linear second

order ordinary differential equation for the variable y3, with prescribed boundary values,

given by




∂2Ĝε

∂y2
3

(ξ) −
(
|ξ|2 − k2

ε

)
Ĝε(ξ) =

δ(y3 − x3)

2π
, y3 > 0,

∂Ĝε

∂y3

(ξ) + Z∞Ĝε(ξ) = 0, y3 = 0.

(5.29)

To describe the (ξ1, ξ2)-plane, we use henceforth the system of signed polar coordinates

ξ =





√
ξ2
1 + ξ2

2 if ξ2 > 0,

ξ1 if ξ2 = 0,

−
√
ξ2
1 + ξ2

2 if ξ2 < 0,

and ψ = arccot

(
ξ1
ξ2

)
, (5.30)

where −∞ < ξ < ∞ and 0 ≤ ψ < π. From (5.29) it is not difficult to see that the

solution Ĝε depends only on |ξ|, and therefore only on ξ, since |ξ| = |ξ|. We remark that

the inverse Fourier transform (5.27) can be stated equivalently as

F (x,y) =
1

2π

∫ ∞

−∞

∫ π

0

F̂ (ξ, ψ; y3, x3)|ξ| eiξ{(y1−x1) cosψ+(y2−x2) sinψ} dψ dξ. (5.31)
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We use the method of undetermined coefficients, and solve the homogeneous differ-

ential equation of the problem (5.29) respectively in the zone {y ∈ R
3
+ : 0 < y3 < x3}

and in the half-space {y ∈ R
3
+ : y3 > x3}. This gives a solution for Ĝε in each domain,

as a linear combination of two independent solutions of an ordinary differential equation,

namely

Ĝε(ξ) =





a e
√
ξ2−k2

ε y3 + b e−
√
ξ2−k2

ε y3 for 0 < y3 < x3,

c e
√
ξ2−k2

ε y3 + d e−
√
ξ2−k2

ε y3 for y3 > x3.
(5.32)

The unknowns a, b, c, and d, which depend on ξ and x3, are determined through the bound-

ary condition, by imposing continuity, and by assuming an outgoing wave behavior.

b) Complex square roots

Due the application of the limiting absorption principle, the square root that appears in

the general solution (5.32) has to be understood as a complex map ξ 7→
√
ξ2 − k2

ε , which

is decomposed as the product between
√
ξ − kε and

√
ξ + kε, and has its two analytic

branch cuts on the complex ξ plane defined in such a way that they do not intersect the

real axis. Further details on complex branch cuts can be found in the books of Bak &

Newman (1997) and Felsen & Marcuwitz (2003). The arguments are taken in such a way

that arg (ξ − kε) ∈ (−3π
2
, π

2
) for the map

√
ξ − kε, and arg (ξ + kε) ∈ (−π

2
, 3π

2
) for the

map
√
ξ + kε. These maps can be therefore defined by (Durán et al. 2005b)

√
ξ − kε = −i

√
|kε| e

i
2
arg(kε) exp

(
1

2

∫ ξ

0

dη

η − kε

)
, (5.33)

and
√
ξ + kε =

√
|kε| e

i
2
arg(kε) exp

(
1

2

∫ ξ

0

dη

η + kε

)
. (5.34)

Consequently
√
ξ2 − k2

ε is even and analytic in the domain shown in Figure 5.3. It can be

hence defined by

√
ξ2 − k2

ε =
√
ξ − kε

√
ξ + kε = −ikε exp

(∫ ξ

0

η

η2 − k2
ε

dη

)
, (5.35)

and is characterized, for ξ, k ∈ R, by

√
ξ2 − k2 =

{ √
ξ2 − k2, ξ2 ≥ k2,

−i
√
k2 − ξ2, ξ2 < k2.

(5.36)

We remark that if ξ ∈ R, then arg(ξ − kε) ∈ (−π, 0) and arg(ξ + kε) ∈ (0, π). This

proceeds from the fact that arg(kε) ∈ (0, π), since by the limiting absorption principle it

holds that Im{kε} = ε > 0. Thus arg
(√

ξ − kε
)
∈ (−π

2
, 0), arg

(√
ξ + kε

)
∈ (0, π

2
),

and arg
(√

ξ2 − k2
ε

)
∈ (−π

2
, π

2
). Hence, the real part of the complex map

√
ξ2 − k2

ε for

real ξ is strictly positive, i.e., Re
{√

ξ2 − k2
ε

}
> 0. Therefore the function e−

√
ξ2−k2

ε y3 is

even and exponentially decreasing as y3 → ∞.
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kε

−kε Re{ξ}

Im{ξ}

FIGURE 5.3. Analytic branch cuts of the complex map
√

ξ2 − k2
ε .

c) Spectral Green’s function with dissipation

Now, thanks to (5.32), the computation of Ĝε is straightforward. From the boundary

condition of (5.29) a relation for the coefficients a and b can be derived, which is given by

a
(
Z∞ +

√
ξ2 − k2

ε

)
+ b
(
Z∞ −

√
ξ2 − k2

ε

)
= 0. (5.37)

On the other hand, since the solution (5.32) has to be bounded at infinity as y3 → ∞, and

since Re
{√

ξ2 − k2
ε

}
> 0, it follows then necessarily that

c = 0. (5.38)

To ensure the continuity of the Green’s function at the point y3 = x3, it is needed that

d = a e
√
ξ2−k2

ε 2x3 + b. (5.39)

Using relations (5.37), (5.38), and (5.39) in (5.32), we obtain the expression

Ĝε(ξ) = a e
√
ξ2−k2

ε x3

[
e−

√
ξ2−k2

ε |y3−x3| −
(
Z∞ +

√
ξ2 − k2

ε

Z∞ −
√
ξ2 − k2

ε

)
e−

√
ξ2−k2

ε (y3+x3)

]
. (5.40)

The remaining unknown coefficient a is determined by replacing (5.40) in the differential

equation of (5.29), taking the derivatives in the sense of distributions, particularly

∂

∂y3

{
e−

√
ξ2−k2

ε |y3−x3|
}

= −
√
ξ2 − k2

ε sign(y3 − x3) e
−
√
ξ2−k2

ε |y3−x3|, (5.41)

and
∂

∂y3

{
sign(y3 − x3)

}
= 2 δ(y3 − x3). (5.42)

So, the second derivative of (5.40) becomes

∂2Ĝε

∂y2
3

(ξ) = a e
√
ξ2−k2

ε x3

[
(ξ2 − k2

ε) e
−
√
ξ2−k2

ε |y3−x3| − 2
√
ξ2 − k2

ε δ(y3 − x3)

−
(
Z∞ +

√
ξ2 − k2

ε

Z∞ −
√
ξ2 − k2

ε

)
(ξ2 − k2

ε) e
−
√
ξ2−k2

ε (y3+x3)

]
. (5.43)
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This way, from (5.40) and (5.43) in the first equation of (5.29), we obtain that

a = − e−
√
ξ2−k2

ε x3

4π
√
ξ2 − k2

ε

. (5.44)

Finally, the spectral Green’s function Ĝε with dissipation ε is given by

Ĝε(ξ; y3, x3) = −e
−
√
ξ2−k2

ε |y3−x3|

4π
√
ξ2 − k2

ε

+

(
Z∞ +

√
ξ2 − k2

ε

Z∞ −
√
ξ2 − k2

ε

)
e−

√
ξ2−k2

ε (y3+x3)

4π
√
ξ2 − k2

ε

. (5.45)

d) Analysis of singularities

To obtain the spectral Green’s function Ĝ without dissipation, the limit ε → 0 has to

be taken in (5.45). This can be done directly wherever the limit is regular and continuous

on ξ. Singular points, on the other hand, have to be analyzed carefully to fulfill correctly

the limiting absorption principle. Thus we study first the singularities of the limit function

before applying this principle, i.e., considering just ε = 0, in which case we have

Ĝ0(ξ) = −e
−
√
ξ2−k2 |y3−x3|

4π
√
ξ2 − k2

+

(
Z∞ +

√
ξ2 − k2

Z∞ −
√
ξ2 − k2

)
e−

√
ξ2−k2 (y3+x3)

4π
√
ξ2 − k2

. (5.46)

Possible singularities for (5.46) may only appear when |ξ| = k or when |ξ| = ξp, being

ξp =
√
Z2

∞ + k2, i.e., when the denominator of the fractions is zero. Otherwise the function

is regular and continuous.

For ξ = k and ξ = −k the function (5.46) is continuous. This can be seen by writing

it, analogously as in Durán, Muga & Nédélec (2005b), in the form

Ĝ0(ξ) =
H
(
g(ξ)

)

g(ξ)
, (5.47)

where

g(ξ) =
√
ξ2 − k2, (5.48)

and

H(β) =
1

4π

(
−e−β |y3−x3| +

Z∞ + β

Z∞ − β
e−β (y3+x3)

)
, β ∈ C. (5.49)

Since H(β) is an analytic function in β = 0, since H(0) = 0, and since

lim
ξ→±k

Ĝ0(ξ) = lim
ξ→±k

H
(
g(ξ)

)
−H(0)

g(ξ)
= H ′(0), (5.50)

we can easily obtain that

lim
ξ→±k

Ĝ0(ξ) =
1

4π

(
1 +

1

Z∞
+ |y3 − x3| − (y3 + x3)

)
, (5.51)

being thus Ĝ0 bounded and continuous on ξ = k and ξ = −k.
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For ξ = ξp and ξ = −ξp, where ξp =
√
Z2

∞ + k2, the function (5.46) presents two

simple poles, whose residues are characterized by

lim
ξ→±ξp

(ξ ∓ ξp) Ĝ0(ξ) = ∓ Z∞
2πξp

e−Z∞(y3+x3). (5.52)

To analyze the effect of these singularities, we have to study the computation of the inverse

Fourier transform of

ĜP (ξ) =
Z∞
2πξp

e−Z∞(y3+x3)

(
1

ξ + ξp
− 1

ξ − ξp

)
, (5.53)

which has to be done in the frame of the limiting absorption principle to obtain the correct

physical results, i.e., the inverse Fourier transform has to be understood in the sense of

GP (x,y) = lim
ε→0

{
Z∞e

−Z∞(y3+x3)

4π2ξp

∫ π

0

∫ ∞

−∞

(
1

ξ + ξp
− 1

ξ − ξp

)
|ξ| eiξr sin θ cos(ψ−ϕ) dξ dψ

}
,

(5.54)

where now ξp =
√
Z2

∞ + k2
ε , which is such that Im{ξp} > 0, and where the spatial vari-

ables inside the integrals are expressed through the spherical coordinates




y1 − x1 = r sin θ cosϕ,

y2 − x2 = r sin θ sinϕ,

y3 − x3 = r cos θ,

for





0 ≤ r <∞,

0 ≤ θ ≤ π,

− π < ϕ ≤ π.

(5.55)

To perform correctly the computation of (5.54), we apply the residue theorem of com-

plex analysis (cf., e.g., Arfken & Weber 2005, Bak & Newman 1997, Dettman 1984) on

the complex meromorphic mapping

F (ξ) =

(
1

ξ + ξp
− 1

ξ − ξp

)
|ξ| eiξτ, (5.56)

which admits two simple poles at ξp and −ξp, where Im{ξp} > 0 and τ ∈ R. We already

did this computation for the Laplace equation and obtained the expression (4.62), namely
∫ ∞

−∞
F (ξ) dξ = −i2π|ξp|eiξp|τ |, τ ∈ R. (5.57)

Using (5.57) for ξp =
√
Z2

∞ + k2 and τ = r sin θ cos(ψ − ϕ) yields then that the

inverse Fourier transform of (5.53), when considering the limiting absorption principle, is

given by

GL
P (x,y) = −iZ∞

2π
e−Z∞(y3+x3)

∫ π

0

eiξpr sin θ |cos(ψ−ϕ)| dψ. (5.58)

It can be observed that the integral in (5.58) is independent of the angle ϕ, which we can

choose without problems as ϕ = π/2 and therefore |cos(ψ − ϕ)| = sinψ. Since

r sin θ = |ys − xs|, (5.59)

we can express (5.58) as

GL
P (x,y) = −iZ∞

2π
e−Z∞(y3+x3)

∫ π

0

eiξp|ys−xs| sinψ dψ. (5.60)
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We observe that this expression describes the asymptotic behavior of the surface waves,

which are linked to the presence of the poles in the spectral Green’s function. Due (A.112)

and (A.244), we can rewrite (5.60) more explicitly as

GL
P (x,y) = −iZ∞

2
e−Z∞(y3+x3)

[
J0

(
ξp|ys − xs|

)
+ iH0

(
ξp|ys − xs|

)]
, (5.61)

where J0 denotes the Bessel function of order zero (vid. Subsection A.2.4) and H0 the

Struve function of order zero (vid. Subsection A.2.7).

If the limiting absorption principle is not considered, i.e., if Im{ξp} = 0, then the

inverse Fourier transform of (5.53) could be again computed in the sense of the principal

value with the residue theorem. In this case we would obtain, instead of (5.57) and just as

the expression (4.67) for the Laplace equation, the quantity
∫ ∞

−∞
F (ξ) dξ = 2π|ξp| sin

(
ξp|τ |

)
, τ ∈ R. (5.62)

The inverse Fourier transform of (5.53) would be in this case

GNL
P (x,y) =

Z∞
2
e−Z∞(y3+x3)H0

(
ξp|ys − xs|

)
, (5.63)

which is correct from the mathematical point of view, but yields only a standing surface

wave, and not a desired outgoing progressive surface wave as in (5.61).

The effect of the limiting absorption principle, in the spatial dimension, is then given

by the difference between (5.61) and (5.63), i.e., by

GL(x,y) = GL
P (x,y) −GNL

P (x,y) = −iZ∞
2

e−Z∞(y3+x3)J0

(
ξp|ys − xs|

)
, (5.64)

whose Fourier transform, and therefore the spectral effect, is given by

ĜL(ξ) = ĜL
P (ξ) − ĜNL

P (ξ) = −iZ∞
2|ξ| e

−Z∞(y3+x3)
[
δ(ξ − ξp) + δ(ξ + ξp)

]
. (5.65)

e) Spectral Green’s function without dissipation

The spectral Green’s function Ĝ without dissipation is therefore obtained by taking the

limit ε → 0 in (5.45) and considering the effect of the limiting absorption principle for the

appearing singularities, summarized in (5.65). Thus we obtain in the sense of distributions

Ĝ(ξ; y3, x3) = − e−
√
ξ2−k2 |y3−x3|

4π
√
ξ2 − k2

+

(
Z∞ +

√
ξ2 − k2

Z∞ −
√
ξ2 − k2

)
e−

√
ξ2−k2 (y3+x3)

4π
√
ξ2 − k2

− iZ∞
2|ξ| e

−Z∞(y3+x3)
[
δ(ξ − ξp) + δ(ξ + ξp)

]
. (5.66)

For our further analysis, this spectral Green’s function is decomposed into four terms

according to

Ĝ = Ĝ∞ + ĜN + ĜL + ĜR, (5.67)
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where

Ĝ∞(ξ; y3, x3) = −e
−
√
ξ2−k2 |y3−x3|

4π
√
ξ2 − k2

, (5.68)

ĜN(ξ; y3, x3) = −e
−
√
ξ2−k2 (y3+x3)

4π
√
ξ2 − k2

, (5.69)

ĜL(ξ; y3, x3) = −iZ∞
2|ξ| e

−Z∞(y3+x3)
[
δ(ξ − ξp) + δ(ξ + ξp)

]
, (5.70)

ĜR(ξ; y3, x3) =
Z∞e

−
√
ξ2−k2 (y3+x3)

2π
√
ξ2 − k2

(
Z∞ −

√
ξ2 − k2

) . (5.71)

5.3.4 Spatial Green’s function

a) Spatial Green’s function as an inverse Fourier transform

The desired spatial Green’s function is then given by the inverse Fourier transform of

the spectral Green’s function (5.66), namely by

G(x,y) = − 1

8π2

∫ ∞

−∞

∫ π

0

e−
√
ξ2−k2 |y3−x3|
√
ξ2 − k2

|ξ|eiξr sin θ cos(ψ−ϕ) dψ dξ

+
1

8π2

∫ ∞

−∞

∫ π

0

(
Z∞ +

√
ξ2 − k2

Z∞ −
√
ξ2 − k2

)
e−

√
ξ2−k2 (y3+x3)

√
ξ2 − k2

|ξ|eiξr sin θ cos(ψ−ϕ) dψ dξ

− iZ∞
2

e−Z∞(y3+x3)J0

(
ξp|ys − xs|

)
, (5.72)

where the spherical coordinates (5.55) are used again inside the integrals.

Due the linearity of the Fourier transform, the decomposition (5.67) applies also in the

spatial domain, i.e., the spatial Green’s function is decomposed in the same manner by

G = G∞ +GN +GL +GR. (5.73)

b) Term of the full-space Green’s function

The first term in (5.72) corresponds to the inverse Fourier transform of (5.68), and can

be rewritten, due (A.794), as the Hankel transform

G∞(x,y) = − 1

4π

∫ ∞

0

e−
√
ρ2−k2 |y3−x3|
√
ρ2 − k2

J0

(
ρ|ys − xs|

)
ρ dρ. (5.74)

The value for this integral can be obtained by using Sommerfeld’s formula (Magnus &

Oberhettinger 1954, page 34)

∫ ∞

0

e−
√
ρ2−k2 |y3−x3|
√
ρ2 − k2

J0

(
ρ|ys − xs|

)
ρ dρ =

eik|y−x|

|y − x| . (5.75)
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This way, the inverse Fourier transform of (5.68) is readily given by

G∞(x,y) = − eik|y−x|

4π|y − x| = − ik

4π
h

(1)
0

(
k|y − x|

)
, (5.76)

where h
(1)
0 denotes the spherical Hankel function of order zero of the first kind (vid. Sub-

section A.2.6). We observe that (5.76) is, in fact, the full-space Green’s function of the

Helmholtz equation. Thus GN + GL + GR represents the perturbation of the full-space

Green’s function G∞ due the presence of the impedance half-space.

c) Term associated with a Neumann boundary condition

The inverse Fourier transform of (5.69) is computed in the same manner as the termG∞.

It is given by

GN(x,y) = − 1

4π

∫ ∞

0

e−
√
ρ2−k2 (y3+x3)

√
ρ2 − k2

J0

(
ρ|ys − xs|

)
ρ dρ, (5.77)

and in this case, instead of (5.75), Sommerfeld’s formula becomes

∫ ∞

0

e−
√
ρ2−k2 (y3+x3)

√
ρ2 − k2

J0

(
ρ|ys − xs|

)
ρ dρ =

eik|y−x̄|

|y − x̄| , (5.78)

where x̄ = (x1, x2,−x3) corresponds to the image point of x in the lower half-space. The

inverse Fourier transform of (5.69) is therefore given by

GN(x,y) = − eik|y−x̄|

4π|y − x̄| = − ik

4π
h

(1)
0

(
k|y − x̄|

)
, (5.79)

which represents the additional term that appears in the Green’s function due the method

of images when considering a Neumann boundary condition, as in (5.25).

d) Term associated with the limiting absorption principle

The term GL, the inverse Fourier transform of (5.70), is associated with the effect of

the limiting absorption principle on the Green’s function, and has been already calculated

in (5.64). It is given by

GL(x,y) = −iZ∞
2

e−Z∞(y3+x3)J0

(
ξp|ys − xs|

)
. (5.80)

e) Remaining term

The remaining term GR, the inverse Fourier transform of (5.71), can be computed as

the integral

GR(x,y) =
Z∞
2π

∫ ∞

0

e−
√
ρ2−k2 (y3+x3)

√
ρ2 − k2

(
Z∞ −

√
ρ2 − k2

)J0

(
ρ|ys − xs|

)
ρ dρ. (5.81)

To simplify the notation, we define

̺s = |ys − xs| and v3 = y3 + x3, (5.82)
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and we consider

GR(x,y) =
Z∞
2π

e−Z∞v3GB(̺s, v3), (5.83)

where

GB(̺s, v3) = eZ∞v3

∫ ∞

0

e−
√
ρ2−k2v3

√
ρ2 − k2

(
Z∞ −

√
ρ2 − k2

)J0(ρ̺s) ρ dρ. (5.84)

Consequently, by considering (5.78) we have for the y3-derivative of GB that

∂GB
∂y3

(̺s, v3) = eZ∞v3

∫ ∞

0

e−
√
ρ2−k2 v3

√
ρ2 − k2

J0(ρ̺s) ρ dρ

=
eik|y−x̄|

|y − x̄| e
Z∞v3 . (5.85)

The value of the inverse Fourier transform (5.81) can be thus obtained by means of the

primitive with respect to y3 of (5.85), i.e.,

GR(x,y) =
Z∞
2π

e−Z∞v3

∫ v3

−∞

eik
√
̺2s+η2

√
̺2
s + η2

eZ∞η dη. (5.86)

Formulae of this kind, but without the term linked to the limiting absorption principle, were

developed in Ochmann (2004) and Ochmann & Brick (2008) by using the complex equiv-

alent source method, a more generalized image method. The expression (5.86) contains

an integral with an unbounded lower limit, but even so, due the exponential decrease of its

integrand, it can be adapted to be well suited for numerical evaluation. Its advantage lies

in the fact that it expresses intuitively the term GR as a primitive of known functions. We

observe that further related expressions can be obtained through integration by parts.

To compute (5.86) numerically, we can represent it in an equivalent manner as

GR(x,y) =
Z∞
2π

e−Z∞v3

(
GB(̺s, w3) +

∫ v3

w3

eik
√
̺2s+η2

√
̺2
s + η2

eZ∞η dη

)
, (5.87)

for some w3 ∈ R. If the term GB(̺s, w3) can be estimated satisfactorily in some way, then

the remaining integral in (5.87) can be evaluated without difficulty by means of numerical

quadrature formulae, since its integration limits are finite. One way to achieve this is to

consider the asymptotic behavior of GB(̺s, w3) as w3 → −∞, which is given by

GB(̺s, w3) ∼ πY0(ξp̺s). (5.88)

The behavior (5.88) stems from the asymptotic behavior (5.127) of the Green’s function,

and particularly from (5.121), which is discussed later in Section 5.4. The term GR can be

thus computed numerically as

GR(x,y) ≈ Z∞
2π

e−Z∞v3

(
πY0(ξp̺s) +

∫ v3

w3

eik
√
̺2s+η2

√
̺2
s + η2

eZ∞η dη

)
, (5.89)

which works quite well even for not so negative values of w3 < 0. The expression (5.89),

though, becomes unstable around ̺s = 0 and has to be modified accordingly near these
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value. To deal with this issue, we consider the remaining term of the half-space Green’s

function for the Laplace equation, expressed in (4.99) and represented explicitly in (4.112).

Due its asymptotic behavior (4.147), and particularly (4.141), we can characterize it as

GRL(x,y) ≈ Z∞
2π

e−Z∞v3

(
πY0(Z∞̺s) +

∫ v3

w3

eZ∞η

√
̺2
s + η2

dη

)
. (5.90)

Therefore, when ̺s is close to zero and instead of (5.89), we consider rather the expression

GR(x,y) ≈ Z∞
2π

e−Z∞v3

(
πY0(ξp̺s) − πY0(Z∞̺s) +

∫ v3

w3

eik
√
̺2s+η2 − 1√
̺2
s + η2

eZ∞η dη

)

+GRL(x,y), (5.91)

where the term GRL is computed as explained in Section 4.3, i.e., as (4.112). We remark

that the expressions (5.89) and (5.91) require an exponential decrease of the integrand to

work well, i.e., that Re{Z∞} > 0.

f) Complete spatial Green’s function

The desired complete spatial Green’s function is finally obtained, as stated in (5.73), by

adding the terms (5.76), (5.79), (5.80), and (5.86). It is depicted graphically in Figures 5.4

& 5.5 for k = 1.2, Z∞ = 1, and x = (0, 0, 2), and it is given explicitly by

G(x,y) = − eik|y−x|

4π|y − x| −
eik|y−x̄|

4π|y − x̄| −
iZ∞
2

e−Z∞v3J0(ξp̺s)

+
Z∞
2π

e−Z∞v3

∫ v3

−∞

eik
√
̺2s+η2

√
̺2
s + η2

eZ∞η dη, (5.92)

where the notation (5.82) is used. The integral in (5.92) is computed numerically as (5.91),

when ̺s is close to zero, and as (5.89) elsewhere.
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FIGURE 5.4. Contour plot of the complete spatial Green’s function.
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FIGURE 5.5. Oblique view of the complete spatial Green’s function.

For the derivative of the Green’s function with respect to the y3-variable, it holds that

∂G

∂y3

(x,y) =
v3 e

ik|y−x|

4π|y − x|3
(
1 − ik|y − x|

)
+

v3 e
ik|y−x̄|

4π|y − x̄|3
(
1 − ik|y − x̄|

)

+
iZ2

∞
2

e−Z∞v3J0(ξp̺s) − Z∞GR(x,y) +
Z∞e

ik|y−x̄|

2π|y − x̄| , (5.93)

where GR is given in (5.86) and computed according to (5.89) or (5.91). The derivatives

for the variables y1 and y2 can be calculated by means of

∂G

∂y1

=
∂G

∂̺s

∂̺s
∂y1

=
∂G

∂̺s

v1

̺s
and

∂G

∂y2

=
∂G

∂̺s

∂̺s
∂y2

=
∂G

∂̺s

v2

̺s
, (5.94)

where

∂G

∂̺s
(x,y) =

̺s e
ik|y−x|

4π|y − x|3
(
1 − ik|y − x|

)
+

̺s e
ik|y−x̄|

4π|y − x̄|3
(
1 − ik|y − x̄|

)

+
iZ∞ξp

2
e−Z∞v3J1(ξp̺s) +

Z∞
2π

e−Z∞v3

∫ v3

−∞

̺s e
ik
√
̺2s+η2

(̺2
s + η2)3/2

(
ik
√
̺2
s + η2 − 1

)
eZ∞η dη.

(5.95)

The integral in (5.95) is computed numerically in the same way as the term GR, namely in

the sense of (5.91), when ̺s is close to zero, and in the sense of (5.89) elsewhere.

5.3.5 Extension and properties

The half-space Green’s function can be extended in a locally analytic way towards

the full-space R
3 in a straightforward and natural manner, just by considering the ex-

pression (5.92) valid for all x,y ∈ R
3, instead of just for R

3
+. As shown in Figure 5.6,

this extension possesses two pole-type singularities at the points x and x̄, a logarithmic

singularity-distribution along the half-line Υ = {y1 = x1, y2 = x2, y3 < −x3}, and is

continuous otherwise. The behavior of the pole-type singularities is characterized by

G(x,y) ∼ − 1

4π|y − x| , y −→ x, (5.96)
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G(x,y) ∼ − 1

4π|y − x̄| , y −→ x̄. (5.97)

The logarithmic singularity-distribution stems from the fact that when v3 < 0, then

G(x,y) ∼ −iZ∞
2

e−Z∞v3H
(1)
0 (ξp̺s), (5.98)

being H
(1)
0 the zeroth order Hankel function of the first kind, whose singularity is of loga-

rithmic type. We observe that (5.98) is related to the two-dimensional free-space Green’s

function of the Helmholtz equation (C.22), multiplied by the exponential weight

J(x,y) = 2Z∞e
−Z∞v3 . (5.99)

{y3 = 0} y1

y3
R

3

n

x = (x1, x2, x3)

x̄ = (x1, x2,−x3)

Υ

y2

FIGURE 5.6. Domain of the extended Green’s function.

As long as x3 6= 0, it is clear that the impedance boundary condition in (5.20) continues

to be homogeneous. Nonetheless, if the source point x lies on the half-space’s boundary,

i.e., if x3 = 0, then the boundary condition ceases to be homogeneous in the sense of

distributions. This can be deduced from the expression (5.72) by verifying that

lim
y3→0+

{
∂G

∂y3

(
(xs, 0),y

)
+ Z∞G

(
(xs, 0),y

)}
= δxs(ys), (5.100)

where xs = (x1, x2) and ys = (y1, y2). Since the impedance boundary condition holds

only on {y3 = 0}, therefore the right-hand side of (5.100) can be also expressed by

δxs(ys) =
1

2
δx(y) +

1

2
δx̄(y), (5.101)

which illustrates more clearly the contribution of each pole-type singularity to the Dirac

mass in the boundary condition.
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It can be seen now that the Green’s function extended in the abovementioned way

satisfies, for x ∈ R
3, in the sense of distributions, and instead of (5.20), the problem





Find G(x, ·) : R
3 → C such that

∆yG(x,y) + k2G(x,y) = δx(y) + δx̄(y) + J(x,y)δΥ(y) in D′(R3),

∂G

∂y3

(x,y) + Z∞G(x,y) =
1

2
δx(y) +

1

2
δx̄(y) on {y3 = 0},

+ Outgoing radiation condition for y ∈ R
3
+ as |y| → ∞,

(5.102)

where δΥ denotes a Dirac mass distribution along the Υ-curve. We retrieve thus the known

result that for an impedance boundary condition the image of a point source is a point

source plus a half-line of sources with exponentially increasing strengths in the lower half-

plane, and which extends from the image point source towards infinity along the half-

space’s normal direction (cf. Keller 1979, who refers to decreasing strengths when dealing

with the opposite half-space).

We note that the half-space Green’s function (5.92) is symmetric in the sense that

G(x,y) = G(y,x) ∀x,y ∈ R
3, (5.103)

and it fulfills similarly

∇yG(x,y) = ∇yG(y,x) and ∇xG(x,y) = ∇xG(y,x). (5.104)

Another property is that we retrieve the special case (5.23) of a homogenous Dirichlet

boundary condition in R
3
+ when Z∞ → ∞. Likewise, we retrieve the special case (5.25)

of a homogenous Neumann boundary condition in R
3
+ when Z∞ → 0. A particularly

interesting case occurs when Z∞ = ik, in which case ξp = 0 and the primitive term

of (5.92) can be characterized explicitly, namely

G(x,y) = − eik|y−x|

4π|y − x| −
eik|y−x̄|

4π|y − x̄| +
k

2
e−ikv3

+
ik

2π
e−ikv3 Ei

(
ikv3 + ik

√
̺2
s + v2

3

)
, (5.105)

where Ei denotes the exponential integral function (vid. Subsection A.2.3). Analogously,

when k = iZ∞, we have again that ξp = 0 and that the primitive term of (5.92) can be

characterized explicitly, namely

G(x,y) = − e−Z∞|y−x|

4π|y − x| −
e−Z∞|y−x̄|

4π|y − x̄| −
iZ∞
2

e−Z∞v3

− Z∞
2π

e−Z∞v3 Ei
(
Z∞v3 − Z∞

√
̺2
s + v2

3

)
. (5.106)

At last, we observe that the expression for the Green’s function (5.92) is still valid if

a complex wave number k ∈ C, such that Im{k} > 0 and Re{k} ≥ 0, and a complex

impedance Z∞ ∈ C, such that Im{Z∞} > 0 and Re{Z∞} ≥ 0, are used, which holds also

for its derivatives.
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5.4 Far field of the Green’s function

5.4.1 Decomposition of the far field

The far field of the Green’s function, which we denote by Gff, describes its asymptotic

behavior at infinity, i.e., when |x| → ∞ and assuming that y is fixed. For this purpose,

the terms of highest order at infinity are searched. Likewise as done for the radiation

condition, the far field can be decomposed into two parts, each acting on a different region.

The first part, denoted by Gff
V , is linked with the volume waves, and acts in the interior

of the half-space while vanishing near its boundary. The second part, denoted by Gff
S , is

associated with surface waves that propagate along the boundary towards infinity, which

decay exponentially towards the half-space’s interior. We have thus that

Gff = Gff
V +Gff

S . (5.107)

5.4.2 Volume waves in the far field

The volume waves in the far field act only in the interior of the half-space and are

related to the terms of the spherical Hankel functions in (5.92), and also to the asymptotic

behavior as x3 → ∞ of the regular part. The behavior of the volume waves can be obtained

by applying the stationary phase technique on the integrals in (5.72), as performed by

Durán, Muga & Nédélec (2005b, 2009). This technique gives an expression for the leading

asymptotic behavior of highly oscillating integrals in the form of

I(λ) =

∫

Ω

f(s)eiλφ(s) ds, (5.108)

as λ→ ∞, where φ(s) is a regular real function, where |f(s)| is integrable, and where the

domain Ω ⊂ R
2 may be unbounded. Further references on the stationary phase technique

are Bender & Orszag (1978), Dettman (1984), Evans (1998), and Watson (1944). Integrals

in the form of (5.108) are called generalized Fourier integrals. They tend towards zero

very rapidly with λ, except at the so-called stationary points for which the gradient of the

phase ∇φ becomes a zero vector, where the integrand vanishes less rapidly. If s0 is such a

stationary point, i.e., if ∇φ(s0) = 0, and if the double-gradient or Hessian matrix Hφ(s0)

is non-singular, then the main asymptotic contribution of the integral (5.108) is given by

I(λ) ∼ 2π

λ

ei
π
4

sign{Hφ(s0)}
√

| det Hφ(s0)|
f(s0)e

iλφ(s0), (5.109)

where sign{Hφ} is the signature of the Hessian matrix, which denotes the number of

positive eigenvalues minus the number of negative eigenvalues. Moreover, the residue is

uniformly bounded by Cλ−2 for some constant C > 0 if the point s0 is not on the boundary

of the integration domain.

The asymptotic behavior of the volume waves is related with the terms in (5.72) which

do not decrease exponentially as x3 → ∞, i.e., with the integral terms for which
√
ξ2 − k2
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is purely imaginary, which occurs when |ξ| < k. Hence, as x3 → ∞ it holds that

G(x,y) ∼ − 1

8π2

∫ k

−k

∫ π

0

e−
√
ξ2−k2 |x3−y3|
√
ξ2 − k2

|ξ|e−iξr sinα cos(ψ−β)dψ dξ

+
1

8π2

∫ k

−k

∫ π

0

(
Z∞ +

√
ξ2 − k2

Z∞ −
√
ξ2 − k2

)
e−

√
ξ2−k2 (x3+y3)

√
ξ2 − k2

|ξ|e−iξr sinα cos(ψ−β)dψ dξ, (5.110)

where we use the notation



x1 − y1 = r sinα cos β,

x2 − y2 = r sinα sin β,

x3 − y3 = r cosα,

for





0 ≤ r <∞,

0 ≤ α ≤ π,

− π < β ≤ π.

(5.111)

By considering the representation (5.27), we can express (5.110) equivalently as

G(x,y) ∼ i

8π2

∫

|ξ|<k

(
Z∞ − i

√
k2 − ξ2

Z∞ + i
√
k2 − ξ2

e2i
√
k2−ξ2 y3 − 1

)
eirφ(ξ)

√
k2 − ξ2

dξ, (5.112)

where

φ(ξ) =
√
k2 − ξ2

1 − ξ2
2 cosα− ξ1 sinα cos β − ξ2 sinα sin β. (5.113)

The phase φ has only one stationary point, namely ξ = (−k sinα cos β,−k sinα sin β),

which is such that |ξ| < k. Hence, from (5.109) and as x3 → ∞, we obtain that

G(x,y) ∼ − eik|x−y|

4π|x − y| +

(
Z∞ − ik cosα

Z∞ + ik cosα

)
eik|x−ȳ|

4π|x − ȳ| , (5.114)

where ȳ = (y1, y2,−y3). By performing Taylor expansions, as in (E.34) and (E.35), we

have that

eik|x−y|

|x − y| =
eik|x|

|x| e−iky·x/|x|
(

1 + O
(

1

|x|

))
, (5.115)

eik|x−ȳ|

|x − ȳ| =
eik|x|

|x| e−ikȳ·x/|x|
(

1 + O
(

1

|x|

))
. (5.116)

We express the point x as x = |x| x̂, being x̂ = (sin θ cosϕ, sin θ sinϕ, cos θ) a vector of

the unit sphere. Similar Taylor expansions as before yield that

Z∞ − ik cosα

Z∞ + ik cosα
=
Z∞ − ik cos θ

Z∞ + ik cos θ

(
1 + O

(
1

|x|

))
. (5.117)

The volume-wave behavior of the Green’s function, from (5.114) and due (5.115), (5.116),

and (5.117), becomes thus

Gff
V (x,y) =

eik|x|

4π|x| e
−ikx̂·y

(
−1 +

Z∞ − ik cos θ

Z∞ + ik cos θ
e2iky3 cos θ

)
, (5.118)
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and its gradient with respect to y is given by

∇yG
ff
V (x,y) =

ik eik|x|

4π|x| e
−ikx̂·y


x̂ − Z∞ − ik cos θ

Z∞ + ik cos θ
e2iky3 cos θ




sin θ cosϕ

sin θ sinϕ

− cos θ




. (5.119)

5.4.3 Surface waves in the far field

An expression for the surface waves in the far field can be obtained by studying the

residues of the poles of the spectral Green’s function, which determine entirely their as-

ymptotic behavior. We already computed the inverse Fourier transform of these residues

in (5.61), using the residue theorem of Cauchy and the limiting absorption principle. This

implies that the Green’s function behaves asymptotically, when |xs| → ∞, as

G(x,y) ∼ −iZ∞
2

e−Z∞v3
[
J0(ξp̺s) + iH0(ξp̺s)

]
for v3 > 0. (5.120)

This expression works well in the upper half-space, but fails to retrieve the logarithmic

singularity-distribution (5.98) in the lower half-space at ̺s = 0. In this case, the Struve

function H0 in (5.120) has to be replaced by the Neumann function Y0, which has the same

behavior at infinity, but additionally a logarithmic singularity at its origin. Hence in the

lower half-space, the Green’s function behaves asymptotically, when |xs| → ∞, as

G(x,y) ∼ −iZ∞
2

e−Z∞v3H
(1)
0 (ξp̺s) for v3 < 0. (5.121)

In general, away from the axis {̺s = 0}, the Green’s function behaves, when |xs| → ∞
and due the asymptotic expansions of the Struve and Bessel functions, as

G(x,y) ∼ − iZ∞√
2πξp̺s

e−Z∞v3ei(ξp̺s−π/4). (5.122)

By performing Taylor expansions, as in (C.37) and (C.38), we have that

eiξp̺s

√
̺s

=
eiξp|xs|
√
|xs|

e−iξpys·xs/|xs|
(

1 + O
(

1

|xs|

))
. (5.123)

We express the point xs on the surface as xs = |xs| x̂s, being x̂s = (cosϕ, sinϕ) a unitary

surface vector. The surface-wave behavior of the Green’s function, due (5.122) and (5.123),

becomes thus

Gff
S (x,y) = − iZ∞√

2πξp|xs|
e−iπ/4e−Z∞x3eiξp|xs|e−Z∞y3e−iξpys·x̂s , (5.124)

and its gradient with respect to y is given by

∇yG
ff
S (x,y) = − Z∞√

2πξp|xs|
e−iπ/4e−Z∞x3eiξp|xs|e−Z∞y3e−iξpys·x̂s



ξp cosϕ

ξp sinϕ

−iZ∞


. (5.125)

5.4.4 Complete far field of the Green’s function

On the whole, the asymptotic behavior of the Green’s function as |x| → ∞ can be

characterized in the upper half-space through the addition of (5.114) and (5.120), and in
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the lower half-space by adding (5.114) and (5.121). Thus if v3 > 0, then it holds that

G(x,y) ∼ − eik|x−y|

4π|x − y| +

(
Z∞ − ik cosα

Z∞ + ik cosα

)
eik|x−ȳ|

4π|x − ȳ|

− iZ∞
2

e−Z∞v3
[
J0(ξp̺s) + iH0(ξp̺s)

]
, (5.126)

and if v3 < 0, then

G(x,y) ∼ − eik|x−y|

4π|x − y|+
(
Z∞ − ik cosα

Z∞ + ik cosα

)
eik|x−ȳ|

4π|x − ȳ| −
iZ∞
2

e−Z∞v3H
(1)
0 (ξp̺s). (5.127)

Consequently, the complete far field of the Green’s function, due (5.107), should be given

by the addition of (5.118) and (5.124), i.e., by

Gff (x,y) =
eik|x|

4π|x| e
−ikx̂·y

(
−1 +

Z∞ − ik cos θ

Z∞ + ik cos θ
e2iky3 cos θ

)

− iZ∞√
2πξp|xs|

e−iπ/4e−Z∞x3eiξp|xs|e−Z∞y3e−iξpys·x̂s . (5.128)

Its derivative with respect to y is likewise given by the addition of (5.119) and (5.125).

The expression (5.128) retrieves correctly the far field of the Green’s function, except in

the upper half-space at the vicinity of the axis {̺s = 0}, due the presence of a singularity-

distribution of type 1/
√

|xs|, which does not appear in the original Green’s function. A

way to deal with this issue is to consider in each region only the most dominant asymptotic

behavior at infinity. Since there are two different regions, we require to determine appro-

priately the interface between them. This can be achieved by equating the amplitudes of

the two terms in (5.128), i.e., by searching values of x at infinity such that

1

4π|x| =
Z∞√

2πξp|x|
e−Z∞x3 , (5.129)

where we neglected the values of y, since they remain relatively near the origin. Further-

more, since the interface stays relatively close to the half-space’s boundary, we can also

approximate |xs| ≈ |x|. By taking the logarithm in (5.129) and perturbing somewhat the

result so as to avoid a singular behavior at the origin, we obtain finally that this interface is

described by

x3 =
1

2Z∞
ln

(
1 +

8πZ2
∞

ξp
|x|
)
. (5.130)

We can say now that it is the far field (5.128) which justifies the radiation condi-

tion (5.21) when exchanging the roles of x and y, and disregarding the undesired sin-

gularity around {̺s = 0}. When the first term in (5.128) dominates, i.e., the volume

waves (5.118), then it is the first expression in (5.21) that matters. Conversely, when the

second term in (5.128) dominates, i.e., the surface waves (5.124), then the second expres-

sion in (5.21) is the one that holds. The interface between both is described by (5.130).

We remark that the asymptotic behavior (5.126) of the Green’s function and the expres-

sion (5.128) of its complete far field do no longer hold if a complex impedance Z∞ ∈ C

such that Im{Z∞} > 0 and Re{Z∞} ≥ 0 is used, specifically the parts (5.120) and (5.124)
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linked with the surface waves. A careful inspection shows that in this case the surface-wave

behavior of the Green’s function, as |xs| → ∞, decreases exponentially and is given by

G(x,y) ∼ −iZ∞
2

e−|Z∞|v3
[
J0(ξp̺s) + iH0(ξp̺s)

]
for v3 > 0, (5.131)

whereas (5.121) continues to hold. Likewise, the surface-wave part of the far field is ex-

pressed for x3 > 0 as

Gff
S (x,y) = − iZ∞√

2πξp|xs|
e−iπ/4e−|Z∞|x3eiξp|xs|e−|Z∞|y3e−iξpys·x̂s , (5.132)

but for x3 < 0 the expression (5.124) is still valid. The volume-waves part (5.114) and its

far-field expression (5.118), on the other hand, remain the same when we use a complex

impedance. We remark further that if a complex impedance or a complex wave number are

taken into account, then the part of the surface waves of the outgoing radiation condition is

redundant, and only the volume-waves part is required, i.e., only the first two expressions

in (5.21), but now holding for y3 > 0.

5.5 Numerical evaluation of the Green’s function

For the numerical evaluation of the Green’s function, we separate the space R
3 into

four regions: a near field close to the ̺s-axis, a near field, an upper far field, and a lower

far field. In the near field close to the ̺s-axis, when |ξp| |v| ≤ 24 and |ξp| ̺s ≤ 2/5,

being v = y − x̄, the integral in (5.92) is computed numerically according to (5.91) by

using a trapezoidal rule. In the near field, when |ξp| |v| ≤ 24 and |ξp| ̺s > 2/5, this in-

tegral is likewise computed by using a trapezoidal quadrature formula, but now according

to (5.89). In both cases, satisfactory numerical results are obtained when w3 = −10/|Z∞|
and when the integration variable η is discretized into ηj = w3 + j∆η for j = 0, . . . ,M ,

where ∆η = 2π/(50 |ξp|), i.e., 50 samples are taken per wavelength. We remark that the

termGRL in (5.91) is computed as explained in Sections 4.3 & 4.5, i.e., considering (4.112)

for the near field and adapting (4.153) and (4.154) for the far field by isolating the contri-

bution of the remaining term. We remark that the integrals of the derivatives, particularly

the one in (5.95), are computed following the same numerical strategy.

In the upper far field, when |ξp| |v| > 24 and |Z∞| v3 > log
(
1 + 8π̺s|Z2

∞/ξp|
)
/2, we

describe the Green’s function numerically by means of the expression (5.126). In the lower

far field, on the other hand, when |ξp| |v| > 24 and |Z∞| v3 < log
(
1 + 8π̺s|Z2

∞/ξp|
)
/2, it

is described by using (5.127).

The Bessel functions can be evaluated either by using the software based on the techni-

cal report by Morris (1993) or the subroutines described in Amos (1986, 1995). The Struve

function can be computed by means of the software described in MacLeod (1996). Further

references are listed in Lozier & Olver (1994).

173



5.6 Integral representation and equation

5.6.1 Integral representation

We are interested in expressing the solution u of the direct scattering problem (5.13) by

means of an integral representation formula over the perturbed portion of the boundary Γp.

For this purpose, we extend this solution by zero towards the complementary domain Ωc,

analogously as done in (E.104). We define by ΩR,ε the domain Ωe without the ball Bε of

radius ε > 0 centered at the point x ∈ Ωe, and truncated at infinity by the ball BR of

radius R > 0 centered at the origin. We consider that the ball Bε is entirely contained

in Ωe. Therefore, as shown in Figure 5.7, we have that

ΩR,ε =
(
Ωe ∩BR

)
\Bε, (5.133)

where

BR = {y ∈ R
3 : |y| < R} and Bε = {y ∈ Ωe : |y − x| < ε}. (5.134)

We consider similarly, inside Ωe, the boundaries of the balls

S+
R = {y ∈ R

3
+ : |y| = R} and Sε = {y ∈ Ωe : |y − x| = ε}. (5.135)

We separate furthermore the boundary as Γ = Γ0 ∪ Γ+, where

Γ0 = {y ∈ Γ : y3 = 0} and Γ+ = {y ∈ Γ : y3 > 0}. (5.136)

The boundary Γ is likewise truncated at infinity by the ball BR, namely

ΓR = Γ ∩BR = ΓR0 ∪ Γ+ = ΓR∞ ∪ Γp, (5.137)

where

ΓR0 = Γ0 ∩BR and ΓR∞ = Γ∞ ∩BR. (5.138)

The idea is to retrieve the domain Ωe and the boundary Γ at the end when the limitsR → ∞
and ε→ 0 are taken for the truncated domain ΩR,ε and the truncated boundary ΓR.

ΩR,εS+

R
n = rx

ε

R Sε

O nΓpΓR
∞

FIGURE 5.7. Truncated domain ΩR,ε for x ∈ Ωe.
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We apply now Green’s second integral theorem (A.613) to the functions u and G(x, ·)
in the bounded domain ΩR,ε, by subtracting their respective Helmholtz equations, yielding

0 =

∫

ΩR,ε

(
u(y)∆yG(x,y) −G(x,y)∆u(y)

)
dy

=

∫

S+
R

(
u(y)

∂G

∂ry
(x,y) −G(x,y)

∂u

∂r
(y)

)
dγ(y)

−
∫

Sε

(
u(y)

∂G

∂ry
(x,y) −G(x,y)

∂u

∂r
(y)

)
dγ(y)

+

∫

ΓR

(
u(y)

∂G

∂ny

(x,y) −G(x,y)
∂u

∂n
(y)

)
dγ(y). (5.139)

The integral on S+
R can be rewritten as

∫

S2
R

[
u(y)

(
∂G

∂ry
(x,y) − iZ∞G(x,y)

)
−G(x,y)

(
∂u

∂r
(y) − iZ∞u(y)

)]
dγ(y)

+

∫

S1
R

[
u(y)

(
∂G

∂ry
(x,y) − ikG(x,y)

)
−G(x,y)

(
∂u

∂r
(y) − iku(y)

)]
dγ(y), (5.140)

which for R large enough and due the radiation condition (5.6) tends to zero, since
∣∣∣∣∣

∫

S2
R

u(y)

(
∂G

∂ry
(x,y) − i

√
Z2

∞ + k2G(x,y)

)
dγ(y)

∣∣∣∣∣ ≤
C√
R

lnR, (5.141)

∣∣∣∣∣

∫

S2
R

G(x,y)

(
∂u

∂r
(y) − i

√
Z2

∞ + k2 u(y)

)
dγ(y)

∣∣∣∣∣ ≤
C√
R

lnR, (5.142)

and ∣∣∣∣∣

∫

S1
R

u(y)

(
∂G

∂ry
(x,y) − ikG(x,y)

)
dγ(y)

∣∣∣∣∣ ≤
C

R
, (5.143)

∣∣∣∣∣

∫

S1
R

G(x,y)

(
∂u

∂r
(y) − iku(y)

)
dγ(y)

∣∣∣∣∣ ≤
C

R
, (5.144)

for some constants C > 0. If the function u is regular enough in the ball Bε, then the

second term of the integral on Sε in (5.139), when ε→ 0 and due (5.96), is bounded by
∣∣∣∣
∫

Sε

G(x,y)
∂u

∂r
(y) dγ(y)

∣∣∣∣ ≤ Cε sup
y∈Bε

∣∣∣∣
∂u

∂r
(y)

∣∣∣∣, (5.145)

for some constant C > 0 and tends to zero. The regularity of u can be specified afterwards

once the integral representation has been determined and generalized by means of density

arguments. The first integral term on Sε can be decomposed as
∫

Sε

u(y)
∂G

∂ry
(x,y) dγ(y) = u(x)

∫

Sε

∂G

∂ry
(x,y) dγ(y)

+

∫

Sε

∂G

∂ry
(x,y)

(
u(y) − u(x)

)
dγ(y), (5.146)
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For the first term in the right-hand side of (5.146), by considering (5.96) we have that
∫

Sε

∂G

∂ry
(x,y) dγ(y) −−−→

ε→0
1, (5.147)

while the second term is bounded by
∣∣∣∣
∫

Sε

(
u(y) − u(x)

)∂G
∂ry

(x,y) dγ(y)

∣∣∣∣ ≤ sup
y∈Bε

|u(y) − u(x)|, (5.148)

which tends towards zero when ε → 0. Finally, due the impedance boundary condi-

tion (5.4) and since the support of fz vanishes on Γ∞, the term on ΓR in (5.139) can be

decomposed as
∫

Γp

(
∂G

∂ny

(x,y) − Z(y)G(x,y)

)
u(y) dγ(y) +

∫

Γp

G(x,y)fz(y) dγ(y)

−
∫

ΓR
∞

(
∂G

∂y2

(x,y) + Z∞G(x,y)

)
u(y) dγ(y), (5.149)

where the integral on ΓR∞ vanishes due the impedance boundary condition in (5.20). There-

fore this term does not depend on R and has its support only on the bounded and perturbed

portion Γp of the boundary.

In conclusion, when the limits R → ∞ and ε→ 0 are taken in (5.139), then we obtain

for x ∈ Ωe the integral representation formula

u(x) =

∫

Γp

(
∂G

∂ny

(x,y) − Z(y)G(x,y)

)
u(y) dγ(y) +

∫

Γp

G(x,y)fz(y) dγ(y), (5.150)

which can be alternatively expressed as

u(x) =

∫

Γp

(
u(y)

∂G

∂ny

(x,y) −G(x,y)
∂u

∂n
(y)

)
dγ(y). (5.151)

It is remarkable in this integral representation that the support of the integral, namely the

curve Γp, is bounded. Let us denote the traces of the solution and of its normal derivative

on Γp respectively by

µ = u|Γp and ν =
∂u

∂n

∣∣∣∣
Γp

. (5.152)

We can rewrite now (5.150) and (5.151) in terms of layer potentials as

u = D(µ) − S(Zµ) + S(fz) in Ωe, (5.153)

u = D(µ) − S(ν) in Ωe, (5.154)

where we define for x ∈ Ωe respectively the single and double layer potentials as

Sν(x) =

∫

Γp

G(x,y)ν(y) dγ(y), (5.155)

Dµ(x) =

∫

Γp

∂G

∂ny

(x,y)µ(y) dγ(y). (5.156)
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We remark that from the impedance boundary condition (5.4) it is clear that

ν = Zµ− fz. (5.157)

5.6.2 Integral equation

To determine entirely the solution of the direct scattering problem (5.13) by means

of its integral representation, we have to find values for the traces (5.152). This requires

the development of an integral equation that allows to fix these values by incorporating

the boundary data. For this purpose we place the source point x on the boundary Γ and

apply the same procedure as before for the integral representation (5.150), treating differ-

ently in (5.139) only the integrals on Sε. The integrals on S+
R still behave well and tend

towards zero as R → ∞. The Ball Bε, though, is split in half by the boundary Γ, and the

portion Ωe ∩ Bε is asymptotically separated from its complement in Bε by the tangent of

the boundary if Γ is regular. If x ∈ Γ+, then the associated integrals on Sε give rise to a

term −u(x)/2 instead of just −u(x) as before for the integral representation. Therefore

we obtain for x ∈ Γ+ the boundary integral representation

u(x)

2
=

∫

Γp

(
∂G

∂ny

(x,y) − Z(y)G(x,y)

)
u(y) dγ(y) +

∫

Γp

G(x,y)fz(y) dγ(y). (5.158)

On the contrary, if x ∈ Γ0, then the pole-type behavior (5.97) contributes also to the

singularity (5.96) of the Green’s function and the integrals on Sε give now rise to two

terms −u(x)/2, i.e., on the whole to a term −u(x). For x ∈ Γ0 the boundary integral

representation is instead given by

u(x) =

∫

Γp

(
∂G

∂ny

(x,y) − Z(y)G(x,y)

)
u(y) dγ(y) +

∫

Γp

G(x,y)fz(y) dγ(y). (5.159)

We must notice that in both cases, the integrands associated with the boundary Γ admit an

integrable singularity at the point x. In terms of boundary layer potentials, we can express

these boundary integral representations as

u

2
= D(µ) − S(Zµ) + S(fz) on Γ+, (5.160)

u = D(µ) − S(Zµ) + S(fz) on Γ0, (5.161)

where we consider, for x ∈ Γ, the two boundary integral operators

Sν(x) =

∫

Γp

G(x,y)ν(y) dγ(y), (5.162)

Dµ(x) =

∫

Γp

∂G

∂ny

(x,y)µ(y) dγ(y). (5.163)

We can combine (5.160) and (5.161) into a single integral equation on Γp, namely

(1 + I0)
µ

2
+ S(Zµ) −D(µ) = S(fz) on Γp, (5.164)
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where I0 denotes the characteristic or indicator function of the set Γ0, i.e.,

I0(x) =

{
1 if x ∈ Γ0,

0 if x /∈ Γ0.
(5.165)

It is the solution µ on Γp of the integral equation (5.164) which finally allows to char-

acterize the solution u in Ωe of the direct scattering problem (5.13) through the integral

representation formula (5.153). The trace of the solution u on the boundary Γ is then found

simultaneously by means of the boundary integral representations (5.160) and (5.161). In

particular, when x ∈ Γ∞ and since Γ∞ ⊂ Γ0, therefore it holds that

u = D(µ) − S(Zµ) + S(fz) on Γ∞. (5.166)

5.7 Far field of the solution

The asymptotic behavior at infinity of the solution u of (5.13) is described by the far

field. It is denoted by uff and is characterized by

u(x) ∼ uff (x) as |x| → ∞. (5.167)

Its expression can be deduced by replacing the far field of the Green’s function Gff and its

derivatives in the integral representation formula (5.151), which yields

uff (x) =

∫

Γp

(
∂Gff

∂ny

(x,y)µ(y) −Gff (x,y)ν(y)

)
dγ(y). (5.168)

By replacing now (5.128) and the addition of (5.119) and (5.125) in (5.168), we obtain that

uff (x) =
eik|x|

4π|x|

∫

Γp

e−ikx̂·y



ikx̂ · ny µ(y) + ν(y)

−Z∞ − ik cos θ

Z∞ + ik cos θ
e2iky3 cos θ


ik




sin θ cosϕ

sin θ sinϕ

− cos θ


· ny µ(y) + ν(y)





 dγ(y)

− Z∞e
−iπ/4

√
2πξp|xs|

e−Z∞x3eiξp|xs|
∫

Γp

e−Z∞y3e−iξpys·x̂s





ξp cosϕ

ξp sinϕ

−iZ∞


· ny µ(y) − iν(y)


dγ(y).

(5.169)

The asymptotic behavior of the solution u at infinity, as |x| → ∞, is therefore given by

u(x) =
eik|x|

|x|

{
uV∞(x̂) + O

(
1

|x|

)}
+ e−Z∞x3

eiξp|xs|
√
|xs|

{
uS∞(x̂s) + O

(
1

|xs|

)}
, (5.170)

where we decompose x = |x| x̂, being x̂ = (sin θ cosϕ, sin θ sinϕ, cos θ) a vector of the

unit sphere, and xs = |xs| x̂s, being x̂s = (cosϕ, sinϕ) a vector of the unit circle. The
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far-field pattern of the volume waves is given by

uV∞(x̂) =
1

4π

∫

Γp

e−ikx̂·y



ikx̂ · ny µ(y) + ν(y)

−Z∞ − ik cos θ

Z∞ + ik cos θ
e2iky3 cos θ


ik




sin θ cosϕ

sin θ sinϕ

− cos θ


· ny µ(y) + ν(y)





 dγ(y), (5.171)

whereas the far-field pattern for the surface waves adopts the form

uS∞(x̂s)=−Z∞e
−iπ/4

√
2πξp

∫

Γp

e−Z∞y3e−iξpys·x̂s





ξp cosϕ

ξp sinϕ

−iZ∞


· ny µ(y) − iν(y)


dγ(y).(5.172)

Both far-field patterns can be expressed in decibels (dB) respectively by means of the scat-

tering cross sections

QV
s (x̂) [dB] = 20 log10

( |uV∞(x̂)|
|uV0 |

)
, (5.173)

QS
s (x̂s) [dB] = 20 log10

( |uS∞(x̂s)|
|uS0 |

)
, (5.174)

where the reference levels uV0 and uS0 are taken such that |uV0 | = |uS0 | = 1 if the incident

field is given either by a volume wave of the form (5.16) or by a surface wave of the

form (5.19).

We remark that the far-field behavior (5.170) of the solution is in accordance with the

radiation condition (5.6), which justifies its choice.

5.8 Existence and uniqueness

5.8.1 Function spaces

To state a precise mathematical formulation of the herein treated problems, we have to

define properly the involved function spaces. Since the considered domains and boundaries

are unbounded, we need to work with weighted Sobolev spaces, as in Durán, Muga &

Nédélec (2005b, 2009). We consider the classic weight functions

̺ =
√

1 + r2 and log ̺ = ln(2 + r2), (5.175)

where r = |x|. We define the domains

Ω1
e =

{
x ∈ Ωe : x3 >

1

2Z∞
ln

(
1 +

8πZ2
∞√

Z2
∞ + k2

r

)}
, (5.176)

Ω2
e =

{
x ∈ Ωe : x3 <

1

2Z∞
ln

(
1 +

8πZ2
∞√

Z2
∞ + k2

r

)}
. (5.177)
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It holds that the solution of the direct scattering problem (5.13) is contained in the weighted

Sobolev space

W 1(Ωe) =

{
v :

v

̺
∈ L2(Ωe),

∇v
̺

∈ L2(Ωe)
2,

v√
̺
∈ L2(Ω1

e),
∂v

∂r
− ikv ∈ L2(Ω1

e),

v

log ̺
∈ L2(Ω2

e),
1

log ̺

(
∂v

∂r
− iξpv

)
∈ L2(Ω2

e)

}
, (5.178)

where ξp =
√
Z2

∞ + k2. With the appropriate norm, the space W 1(Ωe) becomes also a

Hilbert space. We have likewise the inclusion W 1(Ωe) ⊂ H1
loc(Ωe), i.e., the functions of

these two spaces differ only by their behavior at infinity.

Since we are dealing with Sobolev spaces, even a strong Lipschitz boundary Γ ∈ C0,1

is admissible. The fact that this boundary Γ is also unbounded implies that we have to use

weighted trace spaces like in Amrouche (2002). For this purpose, we consider the space

W 1/2(Γ) =

{
v :

v√
̺ log ̺

∈ H1/2(Γ)

}
. (5.179)

Its dual space W−1/2(Γ) is defined via W 0-duality, i.e., considering the pivot space

W 0(Γ) =

{
v :

v√
̺ log ̺

∈ L2(Γ)

}
. (5.180)

Analogously as for the trace theorem (A.531), if v ∈ W 1(Ωe) then the trace of v fulfills

γ0v = v|Γ ∈ W 1/2(Γ). (5.181)

Moreover, the trace of the normal derivative can be also defined, and it holds that

γ1v =
∂v

∂n
|Γ ∈ W−1/2(Γ). (5.182)

We remark further that the restriction of the trace of v to Γp is such that

γ0v|Γp = v|Γp ∈ H1/2(Γp), (5.183)

γ1v|Γp =
∂v

∂n
|Γp ∈ H−1/2(Γp), (5.184)

and its restriction to Γ∞ yields

γ0v|Γ∞ = v|Γ∞ ∈ W 1/2(Γ∞), (5.185)

γ1v|Γ∞ =
∂v

∂n
|Γ∞ ∈ W−1/2(Γ∞). (5.186)

5.8.2 Application to the integral equation

The existence and uniqueness of the solution for the direct scattering problem (5.13),

due the integral representation formula (5.153), can be characterized by using the integral

equation (5.164). For this purpose and in accordance with the considered function spaces,

we take µ ∈ H1/2(Γp) and ν ∈ H−1/2(Γp). Furthermore, we consider that Z ∈ L∞(Γp) and

that fz ∈ H−1/2(Γp), even though strictly speaking fz ∈ H̃−1/2(Γp).
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It holds that the single and double layer potentials defined respectively in (5.155)

and (5.156) are linear and continuous integral operators such that

S : H−1/2(Γp) −→ W 1(Ωe) and D : H1/2(Γp) −→ W 1(Ωe). (5.187)

The boundary integral operators (5.162) and (5.163) are also linear and continuous appli-

cations, and they are such that

S : H−1/2(Γp) −→ W 1/2(Γ) and D : H1/2(Γp) −→ W 1/2(Γ). (5.188)

When we restrict them to Γp, then it holds that

S|Γp : H−1/2(Γp) −→ H1/2(Γp) and D|Γp : H1/2(Γp) −→ H1/2(Γp). (5.189)

Let us consider the integral equation (5.164), which is given in terms of boundary layer

potentials, for µ ∈ H1/2(Γp), by

(1 + I0)
µ

2
+ S(Zµ) −D(µ) = S(fz) in H1/2(Γp). (5.190)

Due the imbedding properties of Sobolev spaces and in the same way as for the half-plane

impedance Laplace problem, it holds that the left-hand side of the integral equation corre-

sponds to an identity and two compact operators, and thus Fredholm’s alternative holds.

Since the Fredholm alternative applies to the integral equation, therefore it applies

also to the direct scattering problem (5.13) due the integral representation formula. The

existence of the scattering problem’s solution is thus determined by its uniqueness, and the

wave numbers k ∈ C and impedances Z ∈ C for which the uniqueness is lost constitute a

countable set, which we call respectively wave number spectrum and impedance spectrum

of the scattering problem and denote it by σk and σZ . The spectrum σk considers a fixed Z

and, conversely, the spectrum σZ considers a fixed k. The existence and uniqueness of

the solution is therefore ensured almost everywhere. The same holds obviously for the

solution of the integral equation, whose wave number spectrum and impedance spectrum

we denote respectively by ςk and ςZ . Since each integral equation is derived from the

scattering problem, it holds that σk ⊂ ςk and σZ ⊂ ςZ . The converse, though, is not

necessarily true. In any way, the sets ςk \ σk and ςZ \ σZ are at most countable.

In conclusion, the scattering problem (5.13) admits a unique solution u if k /∈ σk
and Z /∈ σZ , and the integral equation (5.164) admits in the same way a unique solution µ

if k /∈ ςk and Z /∈ ςZ .

5.9 Dissipative problem

The dissipative problem considers waves that dissipate their energy as they propagate

and are modeled by considering a complex wave number or a complex impedance. The

use of a complex wave number k ∈ C whose imaginary part is strictly positive, i.e., such

that Im{k} > 0, ensures an exponential decrease at infinity for both the volume and the

surface waves. On the other hand, the use of a complex impedance Z∞ ∈ C with a strictly

positive imaginary part, i.e., Im{Z∞} > 0, ensures only an exponential decrease at infinity

for the surface waves. In the first case, when considering a complex wave number k, and
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due the dissipative nature of the medium, it is no longer suited to take progressive plane

volume waves in the form of (5.16) and (5.17) respectively as the incident field uI and the

reflected field uR. In both cases, likewise, it is no longer suited to take progressive plane

surface waves in the form of (5.19) as the incident field uI . Instead, we have to take a wave

source at a finite distance from the perturbation. For example, we can consider a point

source located at z ∈ Ωe, in which case we have only an incident field, which is given, up

to a multiplicative constant, by

uI(x) = G(x, z), (5.191)

where G denotes the Green’s function (5.92). This incident field uI satisfies the Helmholtz

equation with a source term in the right-hand side, namely

∆uI + k2uI = δz in D′(Ωe), (5.192)

which holds also for the total field uT but not for the scattered field u, in which case the

Helmholtz equation remains homogeneous. For a general source distribution gs, whose

support is contained in Ωe, the incident field can be expressed by

uI(x) = G(x, z) ∗ gs(z) =

∫

Ωe

G(x, z) gs(z) dz. (5.193)

This incident field uI satisfies now

∆uI + k2uI = gs in D′(Ωe), (5.194)

which holds again also for the total field uT but not for the scattered field u.

It is not difficult to see that all the performed developments for the non-dissipative

case are still valid when considering dissipation. The only difference is that now either

a complex wave number k such that Im{k} > 0, or a complex impedance Z∞ such

that Im{Z∞} > 0, or both, have to be taken everywhere into account.

5.10 Variational formulation

To solve the integral equation we convert it to its variational or weak formulation,

i.e., we solve it with respect to a certain test function in a bilinear (or sesquilinear) form.

Basically, the integral equation is multiplied by the (conjugated) test function and then the

equation is integrated over the boundary of the domain. The test function is taken in the

same function space as the solution of the integral equation.

The variational formulation for the integral equation (5.190) searches µ ∈ H1/2(Γp)

such that ∀ϕ ∈ H1/2(Γp) we have that
〈
(1 + I0)

µ

2
+ S(Zµ) −D(µ), ϕ

〉
=
〈
S(fz), ϕ

〉
. (5.195)
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5.11 Numerical discretization

5.11.1 Discretized function spaces

The scattering problem (5.13) is solved numerically with the boundary element method

by employing a Galerkin scheme on the variational formulation of the integral equation.

We use on the boundary surface Γp Lagrange finite elements of type P1. The surface Γp is

approximated by the triangular mesh Γhp , composed by T flat triangles Tj , for 1 ≤ j ≤ T ,

and I nodes ri ∈ R
3, 1 ≤ i ≤ I . The triangles have a diameter less or equal than h, and

their vertices or corners, i.e., the nodes ri, are on top of Γp, as shown in Figure 5.8. The

diameter of a triangle K is given by

diam(K) = sup
x,y∈K

|y − x|. (5.196)

Γp

Γh
p

FIGURE 5.8. Mesh Γhp , discretization of Γp.

The function space H1/2(Γp) is approximated using the conformal space of continuous

piecewise linear polynomials with complex coefficients

Qh =
{
ϕh ∈ C0(Γhp ) : ϕh|Tj

∈ P1(C), 1 ≤ j ≤ T
}
. (5.197)

The space Qh has a finite dimension I , and we describe it using the standard base func-

tions for finite elements of type P1, which we denote by {χj}Ij=1. The base function χj is

associated with the node rj and has its support suppχj on the triangles that have rj as one

of their vertices. On rj it has a value of one and on the opposed edges of the triangles its

value is zero, being linearly interpolated in between and zero otherwise.

In virtue of this discretization, any function ϕh ∈ Qh can be expressed as a linear

combination of the elements of the base, namely

ϕh(x) =
I∑

j=1

ϕj χj(x) for x ∈ Γhp , (5.198)

where ϕj ∈ C for 1 ≤ j ≤ I . The solution µ ∈ H1/2(Γp) of the variational formula-

tion (5.195) can be therefore approximated by

µh(x) =
I∑

j=1

µj χj(x) for x ∈ Γhp , (5.199)
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where µj ∈ C for 1 ≤ j ≤ I . The function fz can be also approximated by

fhz (x) =
I∑

j=1

fj χj(x) for x ∈ Γhp , with fj = fz(rj). (5.200)

5.11.2 Discretized integral equation

To see how the boundary element method operates, we apply it to the variational for-

mulation (5.195). We characterize all the discrete approximations by the index h, includ-

ing also the impedance and the boundary layer potentials. The numerical approximation

of (5.195) leads to the discretized problem that searches µh ∈ Qh such that ∀ϕh ∈ Qh〈
(1 + Ih0 )

µh
2

+ Sh(Zhµh) −Dh(µh), ϕh

〉
=
〈
Sh(f

h
z ), ϕh

〉
. (5.201)

Considering the decomposition of µh in terms of the base {χj} and taking as test functions

the same base functions, ϕh = χi for 1 ≤ i ≤ I , yields the discrete linear system

I∑

j=1

µj

(
1

2

〈
(1 + Ih0 )χj, χi

〉
+ 〈Sh(Zhχj), χi〉 − 〈Dh(χj), χi〉

)
=

I∑

j=1

fj 〈Sh(χj), χi〉.

(5.202)

This constitutes a system of linear equations that can be expressed as a linear matrix system:
{

Find µ ∈ C
I such that

Mµ = b.
(5.203)

The elements mij of the matrix M are given, for 1 ≤ i, j ≤ I , by

mij =
1

2

〈
(1 + Ih0 )χj, χi

〉
+ 〈Sh(Zhχj), χi〉 − 〈Dh(χj), χi〉, (5.204)

and the elements bi of the vector b by

bi =
〈
Sh(f

h
z ), χi

〉
=

I∑

j=1

fj 〈Sh(χj), χi〉 for 1 ≤ i ≤ I. (5.205)

The discretized solution uh, which approximates u, is finally obtained by discretizing

the integral representation formula (5.153) according to

uh = Dh(µh) − Sh(Zhµh) + Sh(fhz ), (5.206)

which, more specifically, can be expressed as

uh =
I∑

j=1

µj
(
Dh(χj) − Sh(Zhχj)

)
+

I∑

j=1

fj Sh(χj). (5.207)

We remark that the resulting matrix M is in general complex, full, non-symmetric,

and with dimensions I × I . The right-hand side vector b is complex and of size I . The

boundary element calculations required to compute numerically the elements of M and b

have to be performed carefully, since the integrals that appear become singular when the

involved segments are adjacent or coincident, due the singularity of the Green’s function at
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its source point. On Γ0, the singularity of the image source point has to be taken additionally

into account for these calculations.

5.12 Boundary element calculations

The boundary element calculations build the elements of the matrix M resulting from

the discretization of the integral equation, i.e., from (5.203). They permit thus to compute

numerically expressions like (5.204). To evaluate the appearing singular integrals, we adapt

the semi-numerical methods described in the report of Bendali & Devys (1986).

We use the same notation as in Section D.12, and the required boundary element inte-

grals, for a, b ∈ {0, 1} and c, d ∈ {1, 2, 3}, are again

ZAc,da,b =

∫

K

∫

L

(
sc
hKc

)a(
td
hLd

)b
G(x,y) dL(y) dK(x), (5.208)

ZBc,d
a,b =

∫

K

∫

L

(
sc
hKc

)a(
td
hLd

)b
∂G

∂ny

(x,y) dL(y) dK(x). (5.209)

All the integrals that stem from the numerical discretization can be expressed in terms

of these two basic boundary element integrals. The impedance is again discretized as a

piecewise constant function Zh, which on each triangle Tj adopts a constant value Zj ∈ C.

The integrals of interest are the same as for the full-space impedance Helmholtz problem

and we consider furthermore that

〈
(1 + Ih0 )χj, χi

〉
=

{
〈χj, χi〉 if rj ∈ Γ+,

2 〈χj, χi〉 if rj ∈ Γ0.
(5.210)

To compute the boundary element integrals (5.208) and (5.209), we can easily isolate

the singular part (5.96) of the Green’s function (5.92), which corresponds in fact to the

Green’s function of the Laplace equation in the full-space, and therefore the associated in-

tegrals are computed in the same way. The same applies also for its normal derivative. In

the case when the triangles K and L are are close enough, e.g., adjacent or coincident, and

when L ∈ Γh0 or K ∈ Γh0 , being Γh0 the approximation of Γ0, we have to consider addi-

tionally the singular behavior (5.97), which is linked with the presence of the impedance

half-space. This behavior can be straightforwardly evaluated by replacing x by x̄ in for-

mulae (D.295) to (D.298), i.e., by computing the quantities ZF d
b (x̄) and ZGd

b(x̄) with the

corresponding adjustment of the notation. Otherwise, if the triangles are not close enough

and for the non-singular part of the Green’s function, a three-point Gauss-Lobatto quadra-

ture formula is used. All the other computations are performed in the same manner as in

Section D.12 for the full-space Laplace equation.

5.13 Benchmark problem

As benchmark problem we consider the particular case when the domain Ωe ⊂ R
3
+ is

taken as the exterior of a half-sphere of radiusR > 0 that is centered at the origin, as shown
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in Figure 5.9. We decompose the boundary of Ωe as Γ = Γp ∪Γ∞, where Γp corresponds to

the upper half-sphere, whereas Γ∞ denotes the remaining unperturbed portion of the half-

space’s boundary which lies outside the half-sphere and which extends towards infinity.

The unit normal n is taken outwardly oriented of Ωe, e.g., n = −r on Γp.

n

Γ∞

Γp

Ωe

Ωc

x2

x3

x1

FIGURE 5.9. Exterior of the half-sphere.

The benchmark problem is then stated as




Find u : Ωe → C such that

∆u+ k2u = 0 in Ωe,

−∂u
∂n

+ Zu = fz on Γ,

+ Outgoing radiation condition as |x| → ∞,

(5.211)

where we consider a wave number k ∈ C, a constant impedance Z ∈ C throughout Γ and

where the radiation condition is as usual given by (5.6). As incident field uI we consider

the same Green’s function, namely

uI(x) = G(x, z), (5.212)

where z ∈ Ωc denotes the source point of our incident field. The impedance data func-

tion fz is hence given by

fz(x) =
∂G

∂nx

(x, z) − ZG(x, z), (5.213)

and its support is contained in Γp. The analytic solution for the benchmark problem (5.211)

is then clearly given by

u(x) = −G(x, z). (5.214)

The goal is to retrieve this solution numerically with the integral equation techniques and

the boundary element method described throughout this chapter.

For the computational implementation and the numerical resolution of the benchmark

problem, we consider integral equation (5.164). The linear system (5.203) resulting from

the discretization (5.201) of its variational formulation (5.195) is solved computationally

with finite boundary elements of type P1 by using subroutines programmed in Fortran 90,

by generating the mesh Γhp of the boundary with the free software Gmsh 2.4, and by repre-

senting graphically the results in Matlab 7.5 (R2007b).
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We consider a radius R = 1, a wave number k = 3.5, a constant impedance Z = 3,

and for the incident field a source point z = (0, 0, 0). The discretized perturbed boundary

curve Γhp has I = 641 nodes, T = 1224 triangles and a discretization step h = 0.1676,

being

h = max
1≤j≤T

diam(Tj). (5.215)

The numerically calculated trace of the solution µh of the benchmark problem, which

was computed by using the boundary element method, is depicted in Figure 5.10. In the

same manner, the numerical solution uh is illustrated in Figures 5.11 and 5.12 for an an-

gle ϕ = 0. It can be observed that the numerical solution is close to the exact one.
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FIGURE 5.10. Numerically computed trace of the solution µh.
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FIGURE 5.11. Contour plot of the numerically computed solution uh for ϕ = 0.
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FIGURE 5.12. Oblique view of the numerically computed solution uh for ϕ = 0.

Likewise as in (D.346), we define the relative error of the trace of the solution as

E2(h,Γ
h
p ) =

‖Πhµ− µh‖L2(Γh
p )

‖Πhµ‖L2(Γh
p )

, (5.216)

where Πhµ denotes the Lagrange interpolating function of the exact solution’s trace µ, i.e.,

Πhµ(x) =
I∑

j=1

µ(rj)χj(x) and µh(x) =
I∑

j=1

µj χj(x) for x ∈ Γhp . (5.217)

In our case, for a step h = 0.1676, we obtained a relative error of E2(h,Γ
h
p ) = 0.08726.

As in (D.350), we define the relative error of the solution as

E∞(h,ΩL) =
‖u− uh‖L∞(ΩL)

‖u‖L∞(ΩL)

, (5.218)

being ΩL = {x ∈ Ωe : ‖x‖∞ < L} for L > 0. We consider L = 3 and approximate ΩL

by a triangular finite element mesh of refinement h near the boundary. For h = 0.1676, the

relative error that we obtained for the solution was E∞(h,ΩL) = 0.08685.

The results for different mesh refinements, i.e., for different numbers of triangles T ,

nodes I , and discretization steps h for Γhp , are listed in Table 5.1. These results are illus-

trated graphically in Figure 5.13. It can be observed that the relative errors are more or less

of order h, but they tend to stagnate due the involved accuracy of the Green’s function.
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TABLE 5.1. Relative errors for different mesh refinements.

T I h E2(h,Γ
h
p ) E∞(h,ΩL)

46 30 0.7071 1.617 · 10−1 3.171 · 10−1

168 95 0.4320 8.714 · 10−2 1.574 · 10−1

466 252 0.2455 8.412 · 10−2 9.493 · 10−2

700 373 0.1987 8.537 · 10−2 9.071 · 10−2

1224 641 0.1676 8.726 · 10−2 8.685 · 10−2

2100 1090 0.1286 8.868 · 10−2 8.399 · 10−2
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FIGURE 5.13. Logarithmic plots of the relative errors versus the discretization step.
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VI. HARBOR RESONANCES IN COASTAL ENGINEERING

6.1 Introduction

In this chapter we consider the application of the half-plane Helmholtz problem de-

scribed in Chapter III to the computation of harbor resonances in coastal engineering.

We consider the problem of computing resonances for the Helmholtz equation in a

two-dimensional compactly perturbed half-plane with an impedance boundary condition.

One of its main applications corresponds to coastal engineering, acting as a simple model

to determine the resonant states of a maritime harbor. In this model the sea is modeled as an

infinite half-plane, which is locally perturbed by the presence of the harbor, and the coast is

represented by means of an impedance boundary condition. Some references on the harbor

oscillations that are responsible for these resonances are Mei (1983), Mei et al. (2005),

Herbich (1999), and Panchang & Demirbilek (2001).

Resonances are closely related to the phenomena of seiching (in lakes and harbors) and

sloshing (in coffee cups and storage tanks), which correspond to standing waves in enclosed

or partially enclosed bodies of water. These phenomena have been observed already since

very early times. Scientific studies date from Merian (1828) and Poisson (1828–1829),

and especially from the observations in the Lake of Geneva by Forel (1895), which began

in 1869. A thorough and historical review of the seiching phenomenon in harbors and

further references can be found in Miles (1974).

Oscillations in harbors, though, were first studied for circular and rectangular closed

basins by Lamb (1916). More practical approaches for the same kind of basins, but now

connected to the open sea through a narrow mouth, were then implemented respectively by

McNown (1952) and Kravtchenko & McNown (1955).

But it was the paper of Miles & Munk (1961), the first to treat harbor oscillations by

a scattering theory, which really arose the research interest on the subject. Their work,

together with the contributions of Le Méhauté (1961), Ippen & Goda (1963), Raichlen &

Ippen (1965), and Raichlen (1966), made the description of harbor oscillations to become

fairly close to the experimentally observed one. Theories to deal with arbitrary harbor con-

figurations were available after Hwang & Tuck (1970) and Lee (1969, 1971), who worked

with boundary integral equation methods to calculate the oscillation in harbors of constant

depth with arbitrary shape. Mei & Chen (1975) developed a hybrid-boundary-element

technique to also study harbors of arbitrary geometry. Harbor resonances using the finite

element method are likewise computed in Walker & Brebbia (1978). A comprehensive list

of references can be found in Yu & Chwang (1994).

The mild-slope equation, which describes the combined effects of refraction and diffrac-

tion of linear water waves, was first suggested by Eckart (1952) and later rederived by

Berkhoff (1972a,b, 1976), Smith & Sprinks (1975), and others, and is now well-accepted as

the method for estimating coastal wave conditions. It corresponds to an approximate model

developed in the framework of the linear water-wave theory (vid. Section A.10), which as-

sumes waves of small amplitude and a mild slope on the bottom of the sea, i.e., a slowly
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varying bathymetry. The mild-slope equation models the propagation and transformation

of water waves, as they travel through waters of varying depth and interact with lateral

boundaries such as cliffs, beaches, seawalls, and breakwaters. As a result, it describes the

variations in wave amplitude, or equivalently wave height. From the wave amplitude, the

amplitude of the flow velocity oscillations underneath the water surface can also be com-

puted. These quantities, wave amplitude and flow-velocity amplitude, may subsequently

be used to determine the wave effects on coastal and offshore structures, ships and other

floating objects, sediment transport and resulting geomorphology changes of the sea bed

and coastline, mean flow fields and mass transfer of dissolved and floating materials. Most

often, the mild-slope equation is solved by computers using methods from numerical anal-

ysis. The mild-slope equation is a usually expressed in an elliptic form, and it turns into the

Helmholtz equation for uniform water depths. Different kinds of mild-slope equations have

been derived (Liu & Shi 2008). A detailed survey of the literature on the mild-slope and its

related equations is provided by Hsu, Lin, Wen & Ou (2006). Some examinations on the

validity of the theory are performed by Booij (1983) and Ehrenmark & Williams (2001).

A resonance of a different type is given by the so-called Helmholtz mode when the

oscillatory motion inside the harbor is much slower than each of the normal modes (Bur-

rows 1985). It corresponds to the resonant mode with the longest period, where the water

appears to move up and down unison throughout the harbor, which seems to have been first

studied by Miles & Munk (1961) and which appears to be particularly significant for har-

bors responding to the energy of a tsunami. We remark that from the mathematical point of

view, resonances correspond to poles of the scattering and radiation potentials when they

are extended to the complex frequency domain (cf. Poisson & Joly 1991). Harbor reso-

nance should be avoided or minimized in harbor planning and operation to reduce adverse

effects such as hazardous navigation and mooring of vessels, deterioration of structures,

and sediment deposition or erosion within the harbor.

Along rigid, impermeable vertical walls a Neumann boundary condition is used, since

there is no flow normal to the surface. However, in general an impedance boundary condi-

tion is used along coastlines or permeable structures, to account for a partial reflection of

the flow on the boundary (Demirbilek & Panchang 1998). A study of harbor resonances us-

ing an approximated Dirichlet-to-Neumann operator and a model based on the Helmholtz

equation with an impedance boundary condition on the coast was done by Quaas (2003). In

the current chapter this problem is extended to be solved with integral equation techniques,

by profiting from the knowledge of the Green’s function developed in Chapter III.

This chapter is structured in 4 sections, including this introduction. The harbor scat-

tering problem is presented in Section 6.2. Section 6.3 describes the computation of res-

onances for the harbor scattering problem by using integral equation techniques and the

boundary element method. Finally, in Section 6.4 a benchmark problem based on a rectan-

gular harbor is presented and solved numerically.
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6.2 Harbor scattering problem

We are interested in computing the resonances of a maritime harbor, as the one depicted

in Figure 6.1 The sea is modeled as the compactly perturbed half-plane Ωe ⊂ R
2
+, where

R
2
+ = {(x1, x2) ∈ R

2 : x2 > 0} and where the perturbation represents the presence of the

harbor. We denote its boundary by Γ, which is regular (e.g., of class C2) and decomposed

according to Γ = Γp ∪Γ∞. The perturbed boundary describing the harbor is denoted by Γp,

while Γ∞ denotes the remaining unperturbed boundary of R
2
+, which represents the coast

and extends towards infinity on both sides. The unit normal n is taken outwardly oriented

of Ωe and the land is represented by the complementary domain Ωc = R
2 \ Ωe.

Γ∞, Z∞ Γ∞, Z∞

x1

x2

Ωe

n

Γp, Z(xs)

Ωc

FIGURE 6.1. Harbor domain.

To describe the propagation of time-harmonic linear water waves over a slowly vary-

ing bathymetry we consider for the wave amplitude or surface elevation η the mild-slope

equation (Herbich 1999)

div(ccg∇η) + k2ccgη = 0 in Ωe, (6.1)

where k is the wave number, where c and cg denote respectively the local phase and group

velocities of a plane progressive wave of angular frequency ω, and where the time conven-

tion e−iωt is used. The local phase and group velocities are given respectively by

c =
ω

k
and cg =

dω

dk
=
c

2

(
1 +

2kh

sinh(2kh)

)
, (6.2)

where h denotes the local water depth. The wave number k and the local depth h vary

slowly in the horizontal directions x1 and x2 according to the frequency dispersion relation

ω2 = gk tanh(kh), (6.3)

where g is the gravitational acceleration. We remark that the mild-slope equation (6.1)

holds also for the velocity potential φ, since it is related to the wave height η through

gη = iωφ. (6.4)
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We observe furthermore that through the transformation ψ =
√
ccg η, the mild-slope equa-

tion (6.1) can be cast in the form of a Helmholtz equation, i.e.,

∆ψ + k2
cψ = 0, where k2

c = k2 − ∆(ccg)
1/2

(ccg)1/2
. (6.5)

In shallow water, when kh ≪ 1, the difference k2
c − k2 may become appreciable. In this

case tanh(kh) ≈ kh and sinh(kh) ≈ kh, and thus we have from (6.3) that (Radder 1979)

k2 ≈ ω2

gh
, c ≈ cg ≈

√
gh, and k2

c ≈
ω2

gh
− ∆h

2h
+

|∇h|2
4h2

. (6.6)

It follows that kc may be approximated by k if

|∆h| ≪ 2ω2/g and |∇h|2 ≪ 4ω2h/g, (6.7)

implying a slowly varying depth and a small bottom slope, or high-frequency wave prop-

agation. Hence, if (6.7) is satisfied for shallow water, then we can readily work with the

Helmholtz equation

∆ψ + k2ψ = 0 in Ωe. (6.8)

On the other hand, for short waves in deep water, when kh ≫ 1, we have that cg ≈ c/2 is

more or less constant and thus again the Helmholtz equation (6.8) applies. We observe that

the Helmholtz equation holds as well whenever the depth h is constant, i.e.,

∆η + k2η = 0 in Ωe. (6.9)

On coastline and surface-protruding structures, the following impedance or partial re-

flection boundary condition is used (cf., e.g., Berkhoff 1976, Tsay et al. 1989):

− ∂η

∂n
+ Zη = 0 on Γ, (6.10)

where the impedance Z is taken as purely imaginary and typically represented by means of

a reflection coefficient Kr as (Herbich 1999)

Z = ik
1 −Kr

1 +Kr

. (6.11)

The coefficient Kr varies between 0 and 1, and specific values for different types of re-

flecting surfaces have been compiled by Thompson, Chen & Hadley (1996). Values of Kr

are normally chosen based on the boundary material and shape, e.g., for a natural beach

0.05 ≤ Kr ≤ 0.2 and for a vertical wall with the crown above the water 0.7 ≤ Kr ≤ 1.0.

Effects such as slope, permeability, relative depth, wave period, breaking, and overtopping

can be considered in selecting values within these fairly wide ranges. We note that Z is

equal to zero for fully reflective boundaries (Kr = 1) and it is equal to ik for fully absorb-

ing boundaries (Kr = 0). Thus the reflection characteristics of boundaries that are not fully

reflective will inherently have some dependence on local wavelength through k. In prac-

tice, wave periods range from about 6 s to 20 s. For a representative water depth of 10 m,

the value of k ranges from 0.03 m−1 to 0.13 m−1. For long waves, k and Z become small,

and boundaries may behave as nearly full reflectors regardless of the value of Kr. It may

be verified that (6.10) is strictly valid only for fully reflecting boundaries (Kr = 1). For
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partially reflecting boundaries, it is valid only if waves approach the boundary normally.

For other conditions (6.10) is approximate and may produce distortions. More accurate

boundary conditions are described in Panchang & Demirbilek (2001). In our model, we

assume that the impedance can be decomposed as

Z(x) = Z∞ + Zp(x), x ∈ Γ, (6.12)

being Z∞ constant throughout Γ, and depending Zp(x) on the position x with a bounded

support contained in Γp.

We consider now the direct scattering problem of linear water waves around a harbor.

The total field η is decomposed as η = uI + uR + u, where uI and uR are respectively the

known incident and reflected fields, and where u denotes the unknown scattered field. The

goal is to find u as a solution to the Helmholtz equation in Ωe, satisfying an outgoing radia-

tion condition, and such that the total field η satisfies a homogeneous impedance boundary

condition on Γ. We have thus for the scattered field that

− ∂u

∂n
+ Zu = fz on Γ, (6.13)

where fz is known, has its support contained in Γp, and is given by

fz =
∂uI
∂n

− ZuI +
∂uR
∂n

− ZuR on Γ. (6.14)

As uI we take an incident plane volume wave of the form (3.16), with a wave propagation

vector k ∈ R
2 such that k2 ≤ 0. The reflected field uR is thus of the form (3.17) and has a

wave propagation vector k̄ = (k1,−k2). Hence,

uI(x) = eik·x and uR(x) = −
(
Z∞ + ik2

Z∞ − ik2

)
eik̄·x. (6.15)

To eliminate the non-physical solutions, we have to impose also an outgoing radiation

condition in the form of (3.6) for the scattered field u, i.e., when r → ∞ it is required that




|u| ≤ C√
r

and

∣∣∣∣
∂u

∂r
− iku

∣∣∣∣ ≤
C

r
if x2 >

1

2Z∞
ln(1 + βr),

|u| ≤ C and

∣∣∣∣
∂u

∂r
− iξpu

∣∣∣∣ ≤
C

r
if x2 ≤

1

2Z∞
ln(1 + βr),

(6.16)

for some constants C > 0, where r = |x|, β = 8πkZ2
∞/ξ

2
p , and ξp =

√
Z2

∞ + k2. The

harbor scattering problem is thus given by




Find u : Ωe → C such that

∆u+ k2u = 0 in Ωe,

−∂u
∂n

+ Zu = fz on Γ,

+ Outgoing radiation condition as |x| → ∞,

(6.17)

where the outgoing radiation condition is stated in (6.16).
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The problem of finding harbor resonances amounts to search wave numbers k for

which the scattering problem (6.17) without excitation, i.e., with fz = 0, admits non-zero

solutions u. The harbor resonance problem can be hence stated as




Find k ∈ C and u : Ωe → C, u 6= 0, such that

∆u+ k2u = 0 in Ωe,

−∂u
∂n

+ Zu = 0 on Γ,

+ Outgoing radiation condition as |x| → ∞.

(6.18)

6.3 Computation of resonances

The resonance problem (6.18) is solved in the same manner as the half-plane impedance

Helmholtz problem described in Chapter III, by using integral equation techniques and the

boundary element method. The required Green’s function G is expressed in (3.93). If we

denote the trace of the solution on Γp by µ = u|Γp , then we have from (3.156) that the

solution u admits the integral representation

u = D(µ) − S(Zµ) in Ωe, (6.19)

where we define for x ∈ Ωe the single and double layer potentials respectively by

Sν(x) =

∫

Γp

G(x,y)ν(y) dγ(y) and Dµ(x) =

∫

Γp

∂G

∂ny

(x,y)µ(y) dγ(y). (6.20)

If the boundary is decomposed as Γ = Γ0 ∪ Γ+, being

Γ0 = {y ∈ Γ : y2 = 0} and Γ+ = {y ∈ Γ : y2 > 0}, (6.21)

then u admits also, from (3.163) and (3.164), the boundary integral representation

u

2
= D(µ) − S(Zµ) on Γ+, (6.22)

u = D(µ) − S(Zµ) on Γ0, (6.23)

where the boundary integral operators, for x ∈ Γ, are defined by

Sν(x) =

∫

Γp

G(x,y)ν(y) dγ(y) and Dµ(x) =

∫

Γp

∂G

∂ny

(x,y)µ(y) dγ(y). (6.24)

It holds that (6.22) and (6.23) can be combined on Γp into the single integral equation

(1 + I0)
µ

2
+ S(Zµ) −D(µ) = 0 on Γp, (6.25)

where I0 denotes the characteristic or indicator function of the set Γ0, i.e.,

I0(x) =

{
1 if x ∈ Γ0,

0 if x /∈ Γ0.
(6.26)

The desired resonances are thus given by the wave numbers k for which the integral

equation (6.25) admits non-zero solutions µ. Care has to be taken, though, with possible

spurious resonances that may appear for the integral equation, which are not resonances of
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the original problem (6.18) and which are related with a resonance problem in the com-

plementary domain Ωc. To find the resonances, we use the boundary element method on

the variational formulation of (6.25). This variational formulation, as indicated in (3.198),

searches k ∈ C and µ ∈ H1/2(Γp), µ 6= 0, such that ∀ϕ ∈ H1/2(Γp) we have that
〈
(1 + I0)

µ

2
+ S(Zµ) −D(µ), ϕ

〉
= 0. (6.27)

As performed in Section 3.11 and with the same notation, we discretize (6.27) em-

ploying a Galerkin scheme. We use on the boundary curve Γp Lagrange finite elements of

type P1. The curve Γp is approximated by the discretized curve Γhp , composed by I recti-

linear segments Tj , sequentially ordered from left to right for 1 ≤ j ≤ I , such that their

length |Tj| is less or equal than h, and with their endpoints on top of Γp. The function

space H1/2(Γp) is approximated using the conformal space of continuous piecewise linear

polynomials with complex coefficients

Qh =
{
ϕh ∈ C0(Γhp ) : ϕh|Tj

∈ P1(C), 1 ≤ j ≤ I
}
. (6.28)

The space Qh has a finite dimension (I + 1), and we describe it using the standard base

functions for finite elements of type P1, denoted by {χj}I+1
j=1 . We approximate the solu-

tion µ ∈ H1/2(Γp) by µh ∈ Qh, being

µh(x) =
I+1∑

j=1

µj χj(x) for x ∈ Γhp , (6.29)

where µj ∈ C for 1 ≤ j ≤ I + 1. We characterize all the discrete approximations by the

index h, including also the wave number, the impedance and the boundary layer potentials.

The numerical approximation of (6.27) becomes searching µh ∈ Qh such that ∀ϕh ∈ Qh〈
(1 + Ih0 )

µh
2

+ Sh(Zhµh) −Dh(µh), ϕh

〉
= 0. (6.30)

Considering this decomposition of µh in terms of the base {χj} and taking as test functions

the same base functions, ϕh = χi for 1 ≤ i ≤ I + 1, yields the discrete linear system

I+1∑

j=1

µj

(
1

2

〈
(1 + Ih0 )χj, χi

〉
+ 〈Sh(Zhχj), χi〉 − 〈Dh(χj), χi〉

)
= 0. (6.31)

This can be expressed as the linear matrix system
{

Find kh ∈ C and µ ∈ C
I+1, µ 6= 0, such that

M(kh) µ = 0.
(6.32)

The elements mij of the matrix M(kh) are given, for 1 ≤ i, j ≤ I + 1, by

mij =
1

2

〈
(1 + Ih0 )χj, χi

〉
+ 〈Sh(Zhχj), χi〉 − 〈Dh(χj), χi〉. (6.33)

The desired resonances of the discretized system (6.32) are given by the values of kh
for which the matrix M(kh) becomes singular, i.e., non-invertible. Since the dependence

on kh is highly non-linear (through the Green’s function and eventually the impedance), it

is in general not straightforward to find these resonances. One alternative is to consider, as
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done by Durán et al. (2007b), the function of resonance-peaks

gλ(kh) =
|λmax(kh)|
|λmin(kh)|

, (6.34)

where λmax(kh) and λmin(kh) denote respectively the biggest and smallest eigenvalues in

modulus of the matrix M(kh). This function possesses a countable amount of singularities

in the complex plane, which correspond to the resonances. The computation of the eigen-

values can be performed by means of standard eigenvalue computation subroutines based

on the QR-factorization (Anderson et al. 1999) or by means of power methods (cf., e.g.,

Burden & Faires 2001). Alternatively, instead of the eigenvalues we could also take into ac-

count in (6.34) the diagonal elements of the U -matrix that stems from the LU-factorization

of M(kh), as done by Durán, Nédélec & Ossandón (2009).

To compute the resonant states or eigenstates associated to each resonance, we can

take advantage of the knowledge of the eigenvector related with the smallest eigenvalue,

e.g., obtained from some power method. If k∗h denotes a resonance, then M(k∗h) becomes

singular and λmin(k
∗
h) = 0. The corresponding eigenstate µ∗ fulfills thus

M(k∗h) µ∗ = λmin(k
∗
h) µ∗ = 0, µ∗ 6= 0. (6.35)

Consequently, it can be seen that the desired eigenstate µ∗ corresponds to the eigenvector

of M(k∗h) that is associated to λmin(k
∗
h).

6.4 Benchmark problem

6.4.1 Characteristic frequencies of the rectangle

As benchmark problem we consider the particular case of a rectangular harbor with a

small opening. Resonances for a harbor of this kind are expected whenever the frequency

of an incident wave is close to a characteristic frequency of the closed rectangle. To obtain

the characteristic frequencies and oscillation modes of such a closed rectangle we have to

solve first the problem




Find k ∈ C and u : Ωr → C, u 6= 0, such that

∆u+ k2u = 0 in Ωr,

∂u

∂n
= 0 on Γr,

(6.36)

where we denote the domain encompassed by the rectangle as Ωr and its boundary as Γr.

The unit normal n is taken outwardly oriented of Ωr. The rectangle is assumed to be

of length a and width b. The eigenfrequencies and eigenstates of the rectangle are well-

known and can be determined analytically by using the method of variable separation. For

this purpose we separate

u(x) = v(x1)w(x2), (6.37)

placing the origin at the lower left corner of the rectangle, as shown in Figure 6.2.
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Ωr

a
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FIGURE 6.2. Closed rectangle.

Replacing now (6.37) in the Helmholtz equation, dividing by vw, and rearranging yields

− v′′(x1)

v(x1)
=
w′′(x2)

w(x2)
+ k2. (6.38)

Since both sides of the differential equation (6.38) depend on different variables, conse-

quently they must be equal to a constant, denoted for convenience by κ2, i.e.,

− v′′(x1)

v(x1)
=
w′′(x2)

w(x2)
+ k2 = κ2. (6.39)

This way we obtain the two independent ordinary differential equations

v′′(x1) + κ2v(x1) = 0, (6.40)

w′′(x2) + (k2 − κ2)w(x2) = 0. (6.41)

The solutions of (6.40) and (6.41) are respectively of the form

v(x1) = Av cos(κx1) +Bv sin(κx1), (6.42)

w(x2) = Aw cos
(√

k2 − κ2 x2

)
+Bw sin

(√
k2 − κ2 x2

)
, (6.43)

where Av, Bv, Aw, Bw are constants to be determined. This is performed by means of the

boundary condition in (6.36), which implies that

v′(0) = v′(a) = w′(0) = w′(b) = 0. (6.44)

Since v′(0) = w′(0) = 0, thus Bv = Bw = 0. From the fact that v′(a) = 0 we get

that κa = mπ for m ∈ Z. Hence

κ =
mπ

a
. (6.45)

On the other hand, w′(b) = 0 implies that
√
k2 − κ2 b = nπ for n ∈ Z. By rearranging and

replacing (6.45) we obtain the real eigenfrequencies

k =

√(mπ
a

)2

+
(nπ
b

)2

, m, n ∈ Z. (6.46)

The corresponding eigenstates, up to an arbitrary multiplicative constant, are then given by

u(x) = cos
(mπ
a
x1

)
cos
(nπ
b
x2

)
, m, n ∈ Z. (6.47)

For the particular case of a rectangle with length a = 800 and width b = 400, the charac-

teristic frequencies are listed in Table 6.1.
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TABLE 6.1. Eigenfrequencies of the rectangle in the range from 0 to 0.02.

n
0 1 2

m

0 0.00000 0.00785 0.01571

1 0.00393 0.00878 0.01619

2 0.00785 0.01111 0.01756

3 0.01178 0.01416 0.01963

4 0.01571 0.01756

5 0.01963

6.4.2 Rectangular harbor problem

We consider now the particular case when the domain Ωe ⊂ R
2
+ is taken as a rectangu-

lar harbor with a small opening d, such as the domain depicted in Figure 6.3. We take for

the rectangle a length a = 800, a width b = 400, and a small opening of size d = 20.

Γ∞

x1
x2

Ωe

n

Γp

d

Γ∞

FIGURE 6.3. Rectangular harbor domain.

To simplify the problem, on Γ∞ we consider an impedance boundary condition with

a constant impedance Z∞ = 0.02 and on Γp we take a Neumann boundary condition into

account. The rectangular harbor problem can be thus stated as




Find k ∈ C and u : Ωe → C, u 6= 0, such that

∆u+ k2u = 0 in Ωe,

∂u

∂n
= 0 on Γp,

−∂u
∂n

+ Z∞u = 0 on Γ∞,

+ Outgoing radiation condition as |x| → ∞,

(6.48)

where the outgoing radiation condition is stated in (6.16).

The boundary curve Γp is discretized into I = 135 segments with a discretization

step h = 40.4959, as illustrated in Figure 6.4. The problem is solved computationally with

finite boundary elements of type P1 by using subroutines programmed in Fortran 90, by
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generating the mesh Γhp of the boundary with the free software Gmsh 2.4, and by represent-

ing graphically the results in Matlab 7.5 (R2007b). The eigenvalues of the matrix M(kh),

required to build the function of resonance-peaks (6.34), are computed by using the Lapack

subroutines for complex nonsymmetric matrixes (cf. Anderson et al. 1999).

−600 −400 −200 0 200 400 600
0

100

200

300

400

500

600

700

800

x1

x
2

FIGURE 6.4. Mesh Γhp of the rectangular harbor.

The numerical results for the resonances, considering a step ∆k = 5 · 10−5 between

wave number samples, are illustrated in Figure 6.5. It can be observed that the peaks tend

to coincide with the eigenfrequencies of the rectangle, which are represented by the dashed

vertical lines. The first six oscillation modes are depicted in Figures 6.6, 6.7 & 6.8. Only

the real parts are displayed, since the imaginary parts are close to zero. We remark that the

first observed resonance corresponds to the so-called Helmholtz mode, since its associated

eigenmode is constant.

0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
0
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200
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g λ
(k

h
)

FIGURE 6.5. Resonances for the rectangular harbor.
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FIGURE 6.6. Oscillation modes: (a) Helmholtz mode; (b) Mode (1,0).
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FIGURE 6.7. Oscillation modes: (a) Modes (0,1) and (2,0); (b) Mode (1,1).
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FIGURE 6.8. Oscillation modes: (a) Mode (2,1); (b) Mode (0,3).
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VII. OBLIQUE-DERIVATIVE HALF-PLANE LAPLACE PROBLEM

7.1 Introduction

In this chapter we apply the developed techniques to the computation of the Green’s

function for the oblique-derivative (impedance) half-plane Laplace problem.

We consider the problem of finding the Green’s function for the Laplace equation in

a two-dimensional half-plane with an oblique-derivative (impedance) boundary condition.

Essentially, this Green’s function describes outgoing oblique surface waves that emanate

from a point source and which increase or decrease exponentially along the boundary, de-

pending on the obliqueness of the derivative in the boundary condition.

An integral representation for this Green’s function in half-spaces of three and higher

dimensions was developed by Gilbarg & Trudinger (1983, page 121). Using an image

method, it was later generalized by Keller (1981) to a wider class of equations, including

the wave equation, the heat equation, and the Laplace equation. Its use for more general

linear uniformly elliptic equations with discontinuous coefficients can be found in the ar-

ticles of Di Fazio & Palagachev (1996) and Palagachev, Ragusa & Softova (2000). The

generalization of this image method to wedges is performed by Gautesen (1988). When

dealing with time-harmonic problems, this representation of the Green’s function has to be

supplied with an additional term to account for an outgoing surface-wave behavior, e.g.,

the terms (2.63) and (3.58) associated with the limiting absorption principle.

In the particular case when the oblique derivative becomes a normal derivative, we

speak of a free-surface or impedance boundary condition, and the response to the point

source is referred to as an infinite-depth free-surface Green’s function, which is of great

importance in linear water-wave theory (vid. Section A.10). An explicit representation for

this Green’s function in two dimensions was derived in Chapter II and its main relevance is

that it allows to solve boundary value problems stated on compactly perturbed half-planes

by using boundary integral equations and the boundary element method (Durán, Hein &

Nédélec 2007b). Boundary layer potentials constructed by using Green’s functions are also

important for such different topics as proving solvability theorems and computing resonant

states (Kuznetsov, Maz’ya & Vainberg 2002).

Poincaré was the first to state an oblique-derivative problem for a second-order elliptic

partial differential operator in his studies on the theory of tides (Poincaré 1910). Since then,

the so-called Poincaré problem has been the subject of many publications (cf. Egorov &

Kondrat’ev 1969, Paneah 2000), and it arises naturally when determining the gravitational

fields of celestial bodies. In this problem, the impedance of the boundary condition is

taken as zero. Its main interest lies in the fact that it corresponds to a typical degenerate

elliptic boundary value problem where the vector field of its solution is tangent to the

boundary of the domain on some subset. The Poincaré problem for harmonic functions,

in particular, arises in semiconductor physics and considers constant coefficients for the

oblique derivative in the boundary condition (Krutitskii & Chikilev 2000). It allows to

describe the Hall effect, i.e., when the direction of an electric current and the direction
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of an electric field do not coincide in a semiconductor due the presence of a magnetic

field (Krutitskii, Krutitskaya & Malysheva 1999). The two-dimensional Poincaré problem

for the Laplace equation is treated in Lesnic (2007), Trefethen & Williams (1986), and

further references can be also found in Lions (1956).

The main goal of this chapter is to derive rigorously an explicit representation for the

half-plane Green’s function of the Laplace equation with an oblique-derivative impedance

boundary condition by extending and adapting the results obtained in Chapter II. Excepting

the particular cases mentioned before, there has been no attempt to compute it explicitly.

The aim is to express the Green’s function in terms of a finite combination of known special

and elementary functions, so as to be practical for numerical computation. It is also of

interest to extend this representation, e.g., towards the complementary half-plane or by

considering a complex impedance instead of a real one. There is likewise the interest of

having adjusted expressions for the far field of the Green’s function and to state the involved

radiation condition accordingly.

The differential problem for the Green’s function is stated in the upper half-plane and

is defined in Section 7.2. In Section 7.3, the spectral Green’s function is determined by us-

ing a partial Fourier transform along the horizontal axis. By computing its inverse Fourier

transform, the desired spatial Green’s function is then obtained in Section 7.4. Some prop-

erties and extensions of the Green’s function are presented in Section 7.5, particularly its

extension towards the lower half-plane and its extension to consider a complex impedance.

The far field of the Green’s function is determined in Section 7.6.

7.2 Green’s function problem

We consider the radiation problem of oblique surface waves in the upper half-plane

R
2
+ = {y ∈ R

2 : y2 > 0} emanating from a fixed source point x ∈ R
2
+, as shown in

Figure 7.1. The Green’s function G corresponds to the solution of this problem, computed

in the sense of distributions for the variable y in the half-plane R
2
+ by placing at the right-

hand side of the Laplace equation a Dirac mass δx, which is located at x. It is hence a

solution G(x, ·) : R
2
+ → C of

∆yG(x,y) = δx(y) in D′(R2
+), (7.1a)

subject to the oblique-derivative impedance boundary condition

∂G

∂sy

(x,y) + Z G(x,y) = 0 on {y2 = 0}, (7.1b)

where the oblique, skew, or directional derivative is given by

∂G

∂sy

(x,y) = s · ∇yG(x,y) = s1
∂G

∂y1

(x,y) + s2
∂G

∂y2

(x,y), (7.1c)

and is taken in the direction of the vector

s = (s1, s2) = (cosσ, sinσ), |s| =
√
s2
1 + s2

2 = 1. (7.1d)
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The boundary condition (7.1b) is expressed in terms of a real impedance Z > 0 and the

unit vector s is constant and such that s2 > 0, i.e., such that 0 < σ < π. The case of

complex Z is discussed later in Section 7.5.

{y2 = 0}
y1

y2

R
2
+

s

x

σ

FIGURE 7.1. Domain of the Green’s function problem.

To obtain outgoing oblique surface waves for the radiation problem and to ensure the

uniqueness of its solution, an outgoing radiation condition has to be imposed additionally

at infinity. We express it in its more adjusted form, as in (2.17), which is later justified

from the far field of the Green’s function, developed in Section 7.6. The outgoing radiation

condition is given, as |y| → ∞, by

|G| ≤ C

|y| and

∣∣∣∣
∂G

∂|y|

∣∣∣∣ ≤
C

|y|2 if y · s > 1

Z
ln
(
1 + Zπ|y|

)
, (7.1e)

|G| ≤ Ce−Zy·s and

∣∣∣∣
∂G

∂|y × s| − iZG

∣∣∣∣ ≤
Ce−Zy·s

|y × s|

if y · s < 1

Z
ln
(
1 + Zπ|y|

)
, (7.1f)

for some constants C > 0, which are independent of y, and where

y · s = s1y1 + s2y2 and y × s = s2y1 − s1y2. (7.2)

This radiation condition specifies two regions of different asymptotic behaviors for the

Green’s function, analogously as shown in Figure 2.2. Both behaviors are separated by

rotated logarithmic curves. Above and away from the line y · s = 0, the behavior (7.1e)

dominates, which is related to the asymptotic decaying of the fundamental solution for

the Laplace equation. Below and near the line y · s = 0, on the other hand, the be-

havior (7.1f) resembles a Sommerfeld radiation condition, and is therefore associated to

surface waves propagating in an oblique direction, i.e., to oblique surface waves. Along

the boundary {y2 = 0}, these waves decrease or increase exponentially, and their real and

imaginary parts have the same amplitude.

To solve the Green’s function problem (7.1), we separate its solution G into a homo-

geneous and a particular part, namely G = GH + GP . The homogeneous solution GH ,

appropriately scaled, corresponds to the additional term that is required to ensure an ap-

propriate outgoing behavior for the oblique surface waves. In the particular case when the

oblique derivative becomes normal, as in Chapter II, then a limiting absorption principle
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can be used to explain its presence. The solution GH of the homogeneous problem, i.e.,

of (7.1a–b) without the Dirac mass, can be conveniently expressed as

GH(x,y) = α e−Z(s2+is1)(v2−iv1) + β e−Z(s2−is1)(v2+iv1), (7.3)

where the notation

v1 = y1 − x1 and v2 = y2 + x2 (7.4)

is used. The constants α, β ∈ C in (7.3) are arbitrary and may depend on x. These constants

are fixed later on by means of the radiation condition, once the particular solution GP
of (7.1) has been better determined.

7.3 Spectral Green’s function

7.3.1 Spectral boundary-value problem

The particular solution GP satisfies (7.1a–b) and has to remain bounded as y2 → ∞.

To compute it, we use a modified partial Fourier transform on the horizontal y1-axis, taking

advantage of the fact that there is no horizontal variation in the geometry of the problem.

We define the Fourier transform of a function F
(
x, (·, y2)

)
: R → C by

F̂ (ξ; y2, x2) =
1√
2π

∫ ∞

−∞
F (x,y) e−iξ(y1−x1) dy1, ξ ∈ R. (7.5)

Applying the Fourier transform (7.5) on (7.1a–b) leads to a second-order boundary-

value problem for the variable y2, given by

∂2ĜP
∂y2

2

(ξ) − ξ2ĜP (ξ) =
δ(y2 − x2)√

2π
, y2 > 0, (7.6a)

s2
∂ĜP
∂y2

(ξ) +
(
is1ξ + Z

)
ĜP (ξ) = 0, y2 = 0. (7.6b)

We use undetermined coefficients and solve the differential equation (7.6a) respec-

tively in the strip {y ∈ R
2
+ : 0 < y2 < x2} and in the half-plane {y ∈ R

2
+ : y2 > x2}.

This gives a solution for ĜP in each domain, as a linear combination of two independent

solutions of an ordinary differential equation, namely

ĜP (ξ) =

{
a e|ξ|y2 + b e−|ξ|y2 for 0 < y2 < x2,

c e|ξ|y2 + d e−|ξ|y2 for y2 > x2.
(7.7)

The unknowns a, b, c, and d, which depend on ξ and x2, are determined through the bound-

ary condition and by considering continuity and the behavior at infinity.

7.3.2 Particular spectral Green’s function

Now, thanks to (7.7), the computation of ĜP is straightforward. From (7.6b) a relation

for the coefficients a and b can be derived, which is given by

a
(
Z + s2|ξ| + is1ξ

)
+ b
(
Z − s2|ξ| + is1ξ

)
= 0. (7.8)
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Since the solution (7.7) has to remain bounded at infinity as y2 → ∞, it follows that

c = 0. (7.9)

To ensure continuity for the Green’s function at the point y2 = x2, it is needed that

d = a e|ξ|2x2 + b. (7.10)

Using relations (7.8), (7.9), and (7.10) in (7.7), we obtain the expression

ĜP (ξ) = a e|ξ|x2

[
e−|ξ||y2−x2| −

(
Z + s2|ξ| + is1ξ

Z − s2|ξ| + is1ξ

)
e−|ξ|(y2+x2)

]
. (7.11)

By computing the second derivative of (7.11) in the sense of distributions and by replacing

it in (7.6a), we obtain that

a = − e−|ξ|x2

√
8π |ξ|

. (7.12)

Finally, the particular spectral Green’s function ĜP is given by

ĜP (ξ; y2, x2) = −e
−|ξ||y2−x2|
√

8π |ξ|
+

(
Z + s2|ξ| + is1ξ

Z − s2|ξ| + is1ξ

)
e−|ξ|(y2+x2)

√
8π |ξ|

. (7.13)

7.3.3 Analysis of singularities

We have to analyze now the singularities of the particular spectral Green’s function ĜP ,

so as to obtain its asymptotic behavior and thus determine the constants α, β of the homoge-

neous solution (7.3). For this purpose, we extend the Fourier variable towards the complex

domain, i.e., ξ ∈ C, in which case the absolute value |ξ| has to be understood as the square

root
√
ξ2, where −π/2 < arg

√
ξ2 ≤ π/2, that is, always the root with the nonnegative

real part is taken. This square root presents two branch cuts, which are located respectively

on the positive and on the negative imaginary axis of ξ. The particular spectral Green’s

function ĜP , for ξ ∈ C, becomes therefore

ĜP (ξ) = −e
−
√
ξ2 |y2−x2|

√
8π
√
ξ2

+

(
Z + s2

√
ξ2 + is1ξ

Z − s2

√
ξ2 + is1ξ

)
e−

√
ξ2 (y2+x2)

√
8π
√
ξ2

. (7.14)

This function is continuous on ξ along the real axis and it incorporates a removable sin-

gularity at ξ = 0, in the same manner as shown in Section 2.3. The function ĜP has also

branch cuts on the positive and negative imaginary axis. Finally, (7.14) presents two simple

poles at ξ = Z(s2 + is1) and ξ = −Z(s2 − is1), whose residues are characterized by

lim
ξ→±Z(s2±is1)

(
ξ ∓ Z(s2 ± is1)

)
ĜP (ξ) = ∓ s2√

2π
(s2 ± is1)e

−Z(s2±is1)v2 . (7.15)

Otherwise the function ĜP is regular and continuous. To analyze the effect of the poles, we

study at first the inverse Fourier transform of

P̂ (ξ) = − s2√
2π

(s2 + is1)
e−Z(s2+is1)v2

ξ − Z(s2 + is1)
+

s2√
2π

(s2 − is1)
e−Z(s2−is1)v2

ξ + Z(s2 − is1)
. (7.16)
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This can be achieved by considering the Fourier transform of the sign function, i.e.,

sign(v1)
F−−−−→ −i

√
2

π

1

ξ
, (7.17)

whose right-hand side is to be interpreted in the sense of the principal value, and by using

the translation, scaling, and linearity properties of the Fourier transform, as much in the

spatial as in the spectral domain (cf., e.g., Gasquet & Witomski 1999). The inverse Fourier

transform of (7.16) is then given by

P (x,y) = − i
s2

2
(s2 + is1) sign(v1) e

−Z(s2v2+s1v1)eiZ(s2v1−s1v2)

+ i
s2

2
(s2 − is1) sign(v1) e

−Z(s2v2+s1v1)e−iZ(s2v1−s1v2). (7.18)

The exponential terms in (7.18) are compatible with the asymptotic behavior of the Green’s

function, as will be seen later, but the one-dimensional nature of the Fourier transform does

not allow to retrieve correctly the direction of the cut that is present due the sign function.

Instead of being vertical along the v2-axis as in (7.18), the direction of this cut has to

coincide with the oblique vector s in the (v1, v2)-plane. To account for this issue we can

consider, instead of (7.16), the expression

Q̂(ξ) = − s2√
2π

(s2 + is1) e
−i s1

s2
v2(ξ−Z(s2+is1)) e−Z(s2+is1)v2

ξ − Z(s2 + is1)

+
s2√
2π

(s2 − is1) e
−i s1

s2
v2(ξ+Z(s2−is1)) e−Z(s2−is1)v2

ξ + Z(s2 − is1)
, (7.19)

which also describes correctly the residues of the poles, but incorporating an additional

exponential behavior that treats properly the v2-variable. We remark that this additional

exponential factor becomes unity when s1 = 0, i.e., when the oblique derivative becomes

normal. By using again (7.17) and the same properties of the Fourier transform as before,

we obtain that the inverse Fourier transform of (7.19) is readily given by

Q(x,y) = − i
s2

2
(s2 + is1) sign(s2v1 − s1v2) e

−Z(s2v2+s1v1)eiZ(s2v1−s1v2)

+ i
s2

2
(s2 − is1) sign(s2v1 − s1v2) e

−Z(s2v2+s1v1)e−iZ(s2v1−s1v2). (7.20)

Now the cut due the sign function coincides correctly with the oblique vector s and retrieves

appropriately the asymptotic behavior of the oblique surface waves.

It can be observed that (7.20) describes the asymptotic behavior of stationary oblique

surface waves, since its imaginary part is zero. In order to obtain an outgoing-wave behav-

ior, this missing imaginary part is provided by the homogeneous solution (7.3), which has

to be scaled according to

GH(x,y) = − i
s2

2
(s2 + is1) e

−Z(s2v2+s1v1)eiZ(s2v1−s1v2)

− i
s2

2
(s2 − is1) e

−Z(s2v2+s1v1)e−iZ(s2v1−s1v2). (7.21)

208



The Fourier transform of (7.21) contains two Dirac masses and is given by

ĜH(ξ; y2, x2) = − i

√
π

2
s2(s2 + is1) e

−Z(s2+is1)v2 δ
(
ξ − Z(s2 + is1)

)

− i

√
π

2
s2(s2 − is1) e

−Z(s2−is1)v2 δ
(
ξ + Z(s2 − is1)

)
. (7.22)

7.3.4 Complete spectral Green’s function

The complete spectral Green’s function, decomposed as Ĝ = ĜP+ĜH , is thus obtained

by adding the particular solution (7.13) and the homogeneous solution (7.22), which yields

Ĝ(ξ; y2, x2) = − e−|ξ||y2−x2|
√

8π |ξ|
+

(
Z + s2|ξ| + is1ξ

Z − s2|ξ| + is1ξ

)
e−|ξ|(y2+x2)

√
8π |ξ|

− i

√
π

2
s2(s2 + is1) e

−Z(s2+is1)(y2+x2)δ
(
ξ − Z(s2 + is1)

)

− i

√
π

2
s2(s2 − is1) e

−Z(s2−is1)(y2+x2)δ
(
ξ + Z(s2 − is1)

)
. (7.23)

For our further analysis, we decompose the particular solution (7.13) into three terms,

namely ĜP = Ĝ∞ + ĜD + ĜR, where

Ĝ∞(ξ; y2, x2) = −e
−|ξ||y2−x2|
√

8π |ξ|
, (7.24)

ĜD(ξ; y2, x2) =
e−|ξ|(y2+x2)

√
8π |ξ|

, (7.25)

ĜR(ξ; y2, x2) =
s2 e

−|ξ|(y2+x2)

√
2π
(
Z − s2|ξ| + is1ξ

) . (7.26)

7.4 Spatial Green’s function

7.4.1 Decomposition

The particular spatial Green’s function GP is given by the inverse Fourier transform

of (7.13), namely by

GP (x,y) = − 1

4π

∫ ∞

−∞

e−|ξ||y2−x2|

|ξ| eiξ(y1−x1)dξ

+
1

4π

∫ ∞

−∞

(
Z + s2|ξ| + is1ξ

Z − s2|ξ| + is1ξ

)
e−|ξ|(y2+x2)

|ξ| eiξ(y1−x1)dξ. (7.27)

Due the linearity of the Fourier transform, the decomposition GP = G∞ +GD +GR holds

also in the spatial domain. We compute now each term in an independent manner and add

the results at the end.
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7.4.2 Term of the full-plane Green’s function

The first term in (7.27) corresponds to the inverse Fourier transform of (7.24), and can

be rewritten as

G∞(x,y) = − 1

2π

∫ ∞

0

e−ξ|y2−x2|

ξ
cos
(
ξ(y1 − x1)

)
dξ. (7.28)

This integral is divergent in the classical sense (cf., e.g., Gradshteyn & Ryzhik 2007, equa-

tion 3.941–2) and yields, as for (2.75), the full-plane Green’s function of the Laplace equa-

tion, namely

G∞(x,y) =
1

2π
ln |y − x|. (7.29)

7.4.3 Term associated with a Dirichlet boundary condition

The inverse Fourier transform of (7.25) is obtained in the same manner as the termG∞.

In this case we have that

GD(x,y) =
1

2π

∫ ∞

0

e−ξ(y2+x2)

ξ
cos
(
ξ(y1 − x1)

)
dξ, (7.30)

which implies that

GD(x,y) = − 1

2π
ln |y − x̄|, (7.31)

being x̄ = (x1,−x2) the image point of x in the lower half-plane. It represents the addi-

tional term that appears in the Green’s function due the method of images when considering

a Dirichlet boundary condition.

7.4.4 Remaining term

The remaining term GR, the inverse Fourier transform of (7.26), can be expressed as

GR(x,y) =
s2

2π

∫ ∞

−∞

e−|ξ|v2

Z − s2|ξ| + is1ξ
eiξv1 dξ. (7.32)

Separating positive and negative values of ξ in the integral and rearranging, yields

GR(x,y) =
s2

2π
(s2 + is1)

∫ ∞

0

e−ξ(v2−iv1)

Z(s2 + is1) − ξ
dξ

+
s2

2π
(s2 − is1)

∫ ∞

0

e−ξ(v2+iv1)

Z(s2 − is1) − ξ
dξ. (7.33)

By performing respectively in the first and second integrals of (7.33) the change of vari-

able η = (v2 − iv1)
(
ξ − Z(s2 + is1)

)
and η = (v2 + iv1)

(
ξ − Z(s2 − is1)

)
, we obtain

GR(x,y) =
s2

2π
(s2 + is1) e

−Zv·s+iZv×s Ei
(
Zv · s − iZv × s

)

+
s2

2π
(s2 − is1) e

−Zv·s−iZv×s Ei
(
Zv · s + iZv × s

)
, (7.34)

where we use the notation

v · s = s2v2 + s1v1 and v × s = s2v1 − s1v2, (7.35)
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and where Ei denotes the exponential integral function (vid. Subsection A.2.3). This special

function is defined as a Cauchy principal value by

Ei(z) = −−
∫ ∞

−z

e−t

t
dt = −

∫ z

−∞

et

t
dt

(
| arg z| < π

)
, (7.36)

and it can be characterized in the whole complex plane through the series expansion

Ei(z) = γ + ln z +
∞∑

n=1

zn

nn!

(
| arg z| < π

)
, (7.37)

where γ denotes Euler’s constant and where the principal value of the logarithm is taken,

i.e., the branch cut runs along the negative real axis. Its derivative is

d

dz
Ei(z) =

ez

z
. (7.38)

For large arguments, as x → ∞ along the real line and as |y| → ∞ along the imaginary

axis, the exponential integral admits the asymptotic divergent series expansions

Ei(x) =
ex

x

∞∑

n=0

n!

xn
(x > 0), (7.39)

Ei(iy) = iπ sign(y) +
eiy

iy

∞∑

n=0

n!

(iy)n
(y ∈ R). (7.40)

7.4.5 Complete spatial Green’s function

The complete spatial Green’s function is finally obtained by adding the terms (7.22),

(7.29), (7.31), and (7.34), and is thus given explicitly by

G(x,y) =
1

2π
ln |y − x| − 1

2π
ln |y − x̄|

+
s2

2π
(s2 + is1) e

−Zv·s+iZv×s
(

Ei
(
Zv · s − iZv × s

)
− iπ

)

+
s2

2π
(s2 − is1) e

−Zv·s−iZv×s
(

Ei
(
Zv · s + iZv × s

)
− iπ

)
, (7.41)

where x̄ = (x1,−x2) and where the notations (7.4) and (7.35) are used.

The numerical evaluation of the Green’s function (7.41) can be performed straightfor-

wardly in Mathematica, by using the function ExpIntegralEi, and almost directly in

Fortran, by adapting the computational subroutines described in Morris (1993) or, alterna-

tively, the algorithm delineated in Amos (1990a,b). Great care has to be taken in the latter

case, though, with the correct definition of the exponential integral, and particularly with

the analytic branch cut. The case for Z = 1, σ = 5π/11, and x = (0, 2) is illustrated in

Figures 7.2 & 7.3.

7.5 Extension and properties

The spatial Green’s function can be extended in a locally analytic way towards the full-

plane R
2 in a straightforward and natural manner, just by considering the expression (7.41)
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FIGURE 7.2. Contour plot of the complete spatial Green’s function.

−10−50510

0
2

4
6

8

−1 

−0.5 

0

0.5

1

y1y2

ℜe
{G

}

(a) Real part

−10−50510

0
2

4
6

8

−1 

−0.5 

0

0.5

1

y1y2

ℑm
{G

}

(b) Imaginary part

FIGURE 7.3. Oblique view of the complete spatial Green’s function.

valid for all x,y ∈ R
2, instead of just for R

2
+. This extension has two singularities of

logarithmic type at the points x and x̄, whose behavior is characterized by

G(x,y) ∼ 1

2π
ln |y − x|, y −→ x, (7.42)

G(x,y) ∼
(

2s2 − 1

2π

)
ln |y − x̄|, y −→ x̄. (7.43)

Across the half-line Υ = {y ∈ R
2 : y = x̄ − αs, α > 0}, as shown in Figure 7.4, a jump

appears for the Green’s function due the analytic branch cut of the exponential integral

functions, which is given by

K(x,y) = G|+ −G|− = 2s1s2 e
−Z(s2v2+s1v1). (7.44)
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For the same reason, there exists also a jump for the perpendicular oblique derivative

across Υ, which is represented by

J(x,y) =
∂G

∂ty

∣∣∣∣
+

− ∂G

∂ty

∣∣∣∣
−

= 2Zs2
2 e

−Z(s2v2+s1v1), (7.45)

where ∂G/∂ty = t · ∇yG, being t = (s2,−s1).

{y2 = 0}
y1

y2
R

2

x̄

Υ

s

σ
x

+−

s

t

FIGURE 7.4. Domain of the extended Green’s function.

As long as x2 6= 0 the boundary condition (7.1b) continues to be homogeneous.

Nonetheless, if the source point x lies on the half-plane’s boundary, i.e., if x2 = 0, then

the boundary condition ceases to be homogeneous in the sense of distributions. This can

be deduced from (7.22) and (7.27) by verifying that

lim
y2→0+

{
∂G

∂sy

(
(x1, 0),y

)
+ Z G

(
(x1, 0),y

)}
= s2 δx1(y1). (7.46)

To illustrate more clearly the contribution of each logarithmic singularity to the Dirac mass

in the boundary condition, which holds only on {y2 = 0}, we express the right-hand side

of (7.46) as

s2 δx1(y1) =
1

2
δx(y) +

(
s2 −

1

2

)
δx̄(y). (7.47)

It can be seen now that the Green’s function extended in the abovementioned way

satisfies, for x ∈ R
2, in the sense of distributions, and instead of (7.1), the problem of

finding G(x, ·) : R
2 → C such that

∆yG = δx + (2s2 − 1) δx̄ + JδΥ +K
∂δΥ
∂t

in D′(R2), (7.48a)

∂G

∂sy

+ Z G =
1

2
δx +

(
s2 −

1

2

)
δx̄ on {y2 = 0}, (7.48b)

and such that the radiation condition (7.1e–f ) is satisfied as |y| → ∞ for y ∈ R
2
+, where δΥ

denotes a Dirac-mass distribution along the Υ-curve.

We note that the half-plane Green’s function (7.41) is not symmetric in x and y in the

general case since the differential operator is not self-adjoint, but it holds that

G(x,y) = G(−ȳ,−x̄) ∀x,y ∈ R
2, (7.49)

where again x̄ = (x1,−x2) and ȳ = (y1,−y2).
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When the oblique derivative becomes a normal derivative, i.e., when s2 = 1, then the

expression (7.41) effectively corresponds to the infinite-depth free-surface Green’s function

expressed in (2.94).

Another property is that we retrieve with (7.41) the special case of a homogenous

Dirichlet boundary condition in R
2
+ when Z → ∞, namely

G(x,y) =
1

2π
ln |y − x| − 1

2π
ln |y − x̄|. (7.50)

The same Green’s function (7.50) is also obtained when s2 = 0. Likewise, we retrieve

with (7.41) the special case of the Poincaré problem in R
2
+ when Z → 0, i.e.,

G(x,y) =
1

2π
ln |y − x| − 1

2π
ln |y − x̄|

+
s2

2π
(s2 + is1) ln(v · s − iv × s) +

s2

2π
(s2 − is1) ln(v · s + iv × s), (7.51)

except for an additive complex constant that can be disregarded. When s2 = 1, then (7.51)

turns moreover into the Green’s function resulting from a homogeneous Neumann bound-

ary condition in R
2
+ when Z → 0, namely

G(x,y) =
1

2π
ln |y − x| + 1

2π
ln |y − x̄|, (7.52)

excepting again an additive complex constant.

At last, we observe that the expression for the Green’s function (7.41) is still valid if

a complex impedance Z ∈ C such that Im{Z} > 0 and Re{Z} ≥ 0 is used, which is

associated with dissipative wave propagation. The branch cuts of the logarithms that are

contained in the exponential integral functions, though, have to be treated very carefully in

this case, since they have to stay on the half-line Υ. A straightforward evaluation of these

logarithms with a complex impedance rotates the branch cuts in the (v1, v2)-plane and gen-

erates thus two discontinuous half-lines for the Green’s function in the half-plane v · s < 0.

This undesired behavior of the branch cuts can be avoided if the complex logarithms are

taken in the sense of

ln
(
Zv · s − iZv × s

)
= ln(v · s − iv × s) + ln(Z), (7.53a)

ln
(
Zv · s + iZv × s

)
= ln(v · s + iv × s) + ln(Z), (7.53b)

where the principal value is considered for the logarithms on the right-hand side. For

the remaining terms of the Green’s function, the complex impedance Z can be evaluated

directly without any problems.

7.6 Far field of the Green’s function

7.6.1 Decomposition of the far field

The far field of the Green’s function (7.41), denoted by Gff, describes its asymptotic

behavior at infinity, i.e., when |y| → ∞ and assuming that x is fixed. For this purpose, the

terms of highest order at infinity are searched. Likewise as for the radiation condition, the
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far field can be also decomposed into two parts, namely

Gff = Gff
A +Gff

S . (7.54)

The first part, Gff
A , is linked with the asymptotic decaying of the fundamental solution for

the Laplace equation, whereas the second part, Gff
S , is associated with the oblique surface

waves.

7.6.2 Asymptotic decaying

The asymptotic decaying acts above and away from the line y · s = 0, and is related

to the logarithmic terms in (7.41), and also to the asymptotic behavior as y · s → ∞ of the

exponential integral terms. In fact, due (7.39) we have for z ∈ C that

Ei(z) ∼ ez

z
as Re{z} → ∞. (7.55)

By considering the behavior (7.55) in (7.41), by remembering (7.1d), and by neglecting the

exponentially decreasing terms as y · s → ∞, we obtain that

G(x,y) ∼ 1

2π
ln |y − x| − 1

2π
ln |y − x̄| + s2

Zπ

y2 + x2

|y − x̄|2 . (7.56)

Using Taylor expansions as in Section 2.4, we have that

1

2π
ln |y − x| − 1

2π
ln |y − x̄| = −(x − x̄) · y

2π|y|2 + O
(

1

|y|2
)
, (7.57)

and likewise that
s2

Zπ

y2 + x2

|y − x̄|2 =
s2

Zπ

y2

|y|2 + O
(

1

|y|2
)
. (7.58)

We consider y = |y| ŷ, being ŷ = (cos θ, sin θ) a unitary vector. Hence, from (7.56) and

due (7.57) and (7.58), the asymptotic decaying of the Green’s function is given by

Gff
A (x,y) =

sin θ

Zπ|y|
(
s2 − Zx2

)
. (7.59)

7.6.3 Surface waves in the far field

The oblique surface waves present in the far field are found by studying the poles of

the spectral Green’s function, which determine their asymptotic behavior and which wad

already done. The expression that describes them is obtained by adding (7.20) and (7.21),

which implies that the Green’s function behaves asymptotically, when |y × s| → ∞, as

G(x,y) ∼ − i
s2

2
(s2 + is1)

(
1 + sign(v × s)

)
e−Zv·s+iZv×s

− i
s2

2
(s2 − is1)

(
1 − sign(v × s)

)
e−Zv·s−iZv×s, (7.60)

or, equivalently, as

G(x,y) ∼ −is2

(
s2 + is1 sign(v × s)

)
e−Zv·s+iZ|v×s|. (7.61)

We can use again Taylor expansions to obtain the estimates

|v × s| = |y × s| − (x̄ × s) sign(y × s) + O
(

1

|y × s|

)
, (7.62)
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sign(v × s) = sign(y × s) + O
(

1

|y × s|

)
. (7.63)

Therefore we have that

eiZ|v×s| = eiZ|y×s|e−iZ(x̄×s) sign(y×s)

(
1 + O

(
1

|y × s|

))
. (7.64)

The surface-wave behavior, due (7.61), (7.63), and (7.64), is thus given by

Gff
S (x,y) = −is2

(
s2 + is1 sign(y × s)

)
e−Zy·s+iZ|y×s|eZx̄·s−iZ(x̄×s) sign(y×s). (7.65)

7.6.4 Complete far field of the Green’s function

On the whole, the asymptotic behavior of the Green’s function as |y| → ∞ can be

characterized through the addition of (7.56) and (7.61), namely

G(x,y) ∼ 1

2π
ln |y − x| − 1

2π
ln |y − x̄| + s2

Zπ

y2 + x2

|y − x̄|2
− is2

(
s2 + is1 sign(v × s)

)
e−Zv·s+iZ|v×s|. (7.66)

Consequently, the complete far field of the Green’s function, due (7.54), is given by the

addition of (7.59) and (7.65), i.e., by

Gff (x,y) =
sin θ

Zπ|y|
(
s2 − Zx2

)

− is2

(
s2 + is1 sign(y × s)

)
e−Zy·s+iZ|y×s|eZx̄·s−iZ(x̄×s) sign(y×s). (7.67)

It is this far field (7.67) that justifies the radiation condition (7.1e–f ). When the first

term in (7.67) dominates, i.e., the asymptotic decaying (7.59), then it is the behavior (7.1e)

that matters. Conversely, when the second term in (7.67) dominates, i.e., the oblique surface

waves (7.65), then (7.1f) is the one that holds. The interface between both asymptotic

behaviors can be determined by equating the amplitudes of the two terms in (7.67), i.e., by

searching values of y at infinity such that

s2

Zπ|y| = s2 e
−Zy·s, (7.68)

where the values of x can be neglected, since they remain relatively near the origin. By

taking the logarithm in (7.68) and perturbing somewhat the result so as to avoid a singular

behavior at the origin, we obtain finally that this interface is described by

y · s =
1

Z
ln
(
1 + Zπ|y|

)
. (7.69)

We remark that the asymptotic behavior (7.66) of the Green’s function and the ex-

pression (7.67) of its complete far field do no longer hold if a complex impedance Z such

that Im{Z} > 0 and Re{Z} ≥ 0 is used, specifically the parts (7.61) and (7.65) linked
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with the oblique surface waves. A careful inspection shows that in this case the surface-

wave behavior, as |y × s| → ∞, decreases exponentially and is given by

G(x,y) ∼
{

−is2

(
s2 + is1 sign(v × s)

)
e−|Z|v·s+iZ|v×s| if v · s > 0,

−is2

(
s2 + is1 sign(v × s)

)
e−Zv·s+iZ|v×s| if v · s ≤ 0.

(7.70)

Therefore the surface-wave part of the far field is now expressed, if y · s > 0, as

Gff
S (x,y) = −is2

(
s2 + is1 sign(y × s)

)
e−|Z|y·s+iZ|y×s|e|Z|x̄·s−iZ(x̄×s) sign(y×s), (7.71)

and if y · s ≤ 0, then it becomes

Gff
S (x,y) = −is2

(
s2 + is1 sign(y × s)

)
e−Zy·s+iZ|y×s|eZx̄·s−iZ(x̄×s) sign(y×s). (7.72)

The asymptotic decaying (7.56) and its far-field expression (7.59), on the other hand, re-

main the same when a complex impedance is used.
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VIII. CONCLUSION

8.1 Discussion

The main conclusion of this thesis is that the desired Green’s functions were computed

and used effectively to solve direct wave scattering problems by means of integral equation

techniques and the boundary element method.

For the two-dimensional Laplace and Helmholtz equations we derived respectively

the expressions (2.94) and (3.93), whereas for their three-dimensional counterparts we ob-

tained respectively (4.113) and (5.92). Detailed procedures were implemented to evaluate

these expressions numerically, everywhere, and for all values of interest. We analyzed like-

wise their properties and developed expressions for their far fields. These Green’s functions

were then used to solve direct wave scattering problems in compactly perturbed half-spaces,

like (2.13), by using integral equations in the form of (2.175). The considered arbitrary

compact perturbations of the domain were contained in the upper half-space. The integral

equations were solved by using the boundary element method, which was programmed in

Fortran. To validate the computations, appropriate benchmark problems were developed

and solved numerically.

Low relative error bounds were obtained in the resolution of the benchmark problems,

which decreased as the discretization step became smaller. The best results among the half-

space problems were acquired for the two-dimensional Laplace equation, since its Green’s

function was determined explicitly and was computed with very high accuracy (vid. Fig-

ure 2.17). In the other half-space problems some sort of lower bound for the relative error

could be observed, which was related to the accuracy of the corresponding Green’s func-

tion (vid. Figures 3.14, 4.15 & 5.13). If the accuracy of the Green’s function is increased,

then this lower bound becomes smaller. The drawbacks of refining the proposed numerical

procedures, to attain higher accuracy, are much higher computation times and the need of

more precise expressions for the Green’s function, e.g., taking more integration nodes for

the quadrature formulae or increasing the far-field radius, among others.

As one of the applications for the developed expressions and techniques, we achieved

to compute harbor resonances in coastal engineering. A benchmark problem based on a

rectangular harbor was developed and the computed resonances coincided with the pre-

dicted eigenfrequencies, as shown in Figure 6.5. Additionally, as a more theoretical appli-

cation we derived the explicit representation (7.41) for the Green’s function of the oblique-

derivative impedance half-plane Laplace problem, discussing some of its properties and

determining its far field.

A detailed theoretical background for the involved mathematics and physics was in-

cluded in the appendix, allowing thus a far deeper comprehension of the presented topics

and an extensive list of references. The theory of wave scattering problems for bounded

obstacles with an impedance boundary condition was also enclosed in the appendix, due

its relevance in the proper understanding of the half-space problems and since, even if it

is assumed to be a known topic, its literature is widespread and not always so complete as
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desired for our purposes. These full-space problems were also treated by means of inte-

gral equation techniques and the boundary element method, and corresponding benchmark

problems were implemented and solved. In their resolution low relative error bounds were

obtained and the accuracy of the involved Green’s functions, which were known explicitly,

was enough so that no lower bounds could be appreciated in Figures B.18, C.9, D.18 & E.9.

In conclusion, the objectives outlined in Section 1.3 were fulfilled satisfactorily.

8.2 Perspectives for future research

The interest in the subject of this thesis began over a hundred years ago and it still

remains an active field of research with an enormous potential. Based on the present work

and on the obtained insight, many perspectives for future research can be established.

A first topic that can be thought of on this behalf is the need of even more accurate

numerical expressions for the Green’s functions of the half-space Helmholtz problems and

of the three-dimensional half-space Laplace problem. In particular, it would be very useful

to have polynomial approximations of high accuracy to describe them, as much in the near

field as in the far field. The highest achievement would be nonetheless the development of

an explicit representation formula for them.

The herein developed techniques can be adapted and extended to other interesting

cases, e.g., half-space problems in linear elasticity and in electromagnetism. They can

be also applied to impedance problems in infinite strips and in finite-depth infinite layers,

which are of particular interest for the water-wave problem in linear water-wave theory.

They can be likewise adapted to solve time-dependent problems through retarded poten-

tials or even through time-reversal techniques.

A still pending topic is the development of appropriate integral equations in impedance

half-space problems when the compact perturbation is partially or entirely contained in the

complementary half-space, in which case the other appearing singularities of the Green’s

function, i.e., the image source point x̄ and the image half-line Υ, have to be also taken

into account. The integral equations are supported in this case not only on the perturbed

boundary but also on the portion of its image surface contained in the upper half-space and

on the space between them.

The considered problems can be likewise extended to consider inhomogeneous me-

dia, which implies integral equations supported also on the volume encompassed by the

inhomogeneity, i.e., so-called Lippmann-Schwinger-type equations.

Further studies can be performed on the stability of the developed method with respect

to different geometrical configurations and regularities of the boundary surface. The results

can be also compared with other numerical methods like perfectly matched layers, absorb-

ing boundary conditions, and the Dirichlet-to-Neumann operator. These methods could be

even combined into new hybrid methods, to exploit better certain common advantages.
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The derived Green’s functions and their related integral equations are of great impor-

tance for the treatment of inverse scattering problems in impedance half-spaces, where an

active field of research is still in development.

On behalf of the first application, the study of harbor resonances could be extended to

the case of a more variable bottom slope by considering directly the mild-slope equation.

Further modeling can be performed for real maritime harbors and the results compared

with experimental and real-life observations. Practical approaches to filter out spurious

resonances are likewise of great interest.

For the oblique-derivative half-plane Laplace problem, corresponding integral equa-

tions can be derived and solved numerically. Further oblique-derivative problems can be

considered for the three-dimensional Laplace equation, for the Helmholtz equation, etc.

As further applications to consider we may mention the scattering of light by a photonic

crystal, acoustic and electromagnetic scattering above ground, and water-wave scattering

for floating or submerged bodies, among many others.

The possibilities for new applications and techniques are almost infinite and therefore

the perspectives for future research on the field look very promising. . . .
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physique, Rapport interne, Centre de Mathématiques Appliquées, École Polytechnique,
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Villards, Paris.

Poisson, O. & Joly, P. (1991), Calculs des pôles de résonance associés à la diffraction
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ture notes, Majeure Sciences de l’Ingénieur et Calcul Scientifique, Département de
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A. MATHEMATICAL AND PHYSICAL BACKGROUND

A.1 Introduction

A short survey of the mathematical and physical background of the thesis is presented

in this appendix. The most important aspects are discussed and several references are given

for each topic. It is thus intended as a quick reference guide to understand or refresh some

deeper technical (and sometimes more obscure) aspects mentioned throughout the thesis.

This appendix is structured in 11 sections, including this introduction. In Section A.2

we present several special functions that appear in mathematical physics and which are

closely related to our work. Some notions of functional analysis are introduced in Sec-

tion A.3, in particular Lax-Milgram’s theorem and Fredholm’s alternative. The Sobolev

spaces are introduced in Section A.4, which constitute the natural function spaces in which

the solutions of boundary-value problems are searched. In Section A.5 we present some

operators and integral theorems that appear in vector calculus and in elementary differen-

tial geometry. The powerful mathematical tool of the theory of distributions is described

in Section A.6. In Section A.7 we describe multi-dimensional Fourier transforms and their

properties in the framework of the theory of distributions. In Section A.8 a general outline

of Green’s functions and fundamental solutions is found. In section A.9 we present a brief

survey of wave propagation and some related topics. Linear water-wave theory, which is

one of the main applications for the Laplace equation, is shown in Section A.10. Finally, in

Section A.11 we study some aspects of the linear acoustic theory, which is one of the main

applications for the Helmholtz equation.

A.2 Special functions

The special functions of mathematical physics, also known as higher transcendental

functions, are functions that play a fundamental role in a great variety of physical and

mathematical applications. They can not be described as a composition of a finite number

of elementary functions. Elementary functions are functions which are built upon a finite

combination of constant functions, elementary field operations (addition, subtraction, mul-

tiplication, division, and root extraction), and algebraic, exponential, trigonometric, and

logarithmic functions and their inverses under repeated compositions. Elementary func-

tions are divided into algebraic and transcendental functions. An algebraic function is a

function which can be constructed using only a finite number of the elementary field oper-

ations together with the inverses of functions capable of being so constructed. A transcen-

dental function is a function that is not algebraic, e.g., the exponential and trigonometric

functions and their inverses are transcendental. The higher transcendental functions are

functions which go even beyond the transcendental functions, and can only be described

by means of integral representations and infinite series expansions. Some of them, though,

are widely studied due their multiple applications, and are therefore called special func-

tions.
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Definitions and some properties of several special functions, which are used through-

out this thesis, are presented in this section. We begin with the complex exponential and

logarithm. They are only transcendental functions, but they allow to comprehend better the

other special functions, particularly their properties in the complex plane. The singular-

ities of the Green’s functions studied herein for two-dimensional problems are always of

logarithmic type. Afterwards we present the gamma or generalized factorial function. The

exponential integral and its related functions appear in the computation of the half-plane

Green’s function for the Laplace equation. Bessel and Hankel functions play an important

role in problems with circular or cylindrical symmetry. They are also known as cylindri-

cal harmonics and appear in the computation of the Green’s function for the Helmholtz

equation in two dimensions. Closely related to them are the modified Bessel functions.

Spherical Bessel and Hankel functions appear in problems with spherical symmetry and, in

particular, in the computation of the Green’s function for the Helmholtz equation in three

dimensions. Struve functions can be seen as some sort of perturbed Bessel and Hankel

functions, and appear when taking primitives of them. They also appear in some impedance

calculations. Finally we present the Legendre functions, the associated Legendre functions,

and the spherical harmonics, which are all closely related, and which appear in problems

with spherical symmetry.

The special functions and their properties are deeply linked with the theory of complex

variables. To understand the former, some knowledge is required of the latter, which deals

with the complex imaginary unit, i =
√
−1, and with related topics, such as complex inte-

gration contours, residue calculus, analytic continuation, etc. Some references for the com-

plex variable theory are Arfken & Weber (2005), Bak & Newman (1997), Dettman (1984),

and Morse & Feshbach (1953). Further interesting topics are the theory of asymptotic

expansions (Courant & Hilbert 1966, Dettman 1984, Estrada & Kanwal 2002), and the

methods of stationary phase and steepest descent (Bender & Orszag 1978, Dettman 1984,

Watson 1944). Specific references for special functions are given in each subsection. In

particular, some references which are useful for almost all of these special functions are

Abramowitz & Stegun (1972), Erdélyi (1953), and Magnus & Oberhettinger (1954). An-

other somewhat older but still quite interesting reference is Jahnke & Emde (1945).

A.2.1 Complex exponential and logarithm

a) Complex exponential

The complex exponential and logarithm are trascendental functions that play a cen-

tral role in the theory of complex functions. Even though they are not considered to be

special functions, their intrinsic properties allow a far better comprehension of the lat-

ter, and are therefore listed herein. Some references are Abramowitz & Stegun (1972),

Bak & Newman (1997), Dettman (1984), Jahnke & Emde (1945), and Weisstein (2002).

The complex exponential is an analytic function in the entire complex z-plane, being thus

an entire function, and it coincides with the usual exponential function for real arguments,

which is shown in Figure A.1. It is defined by

exp z = ez = exeiy = ex cos y + i ex sin y, z = x+ iy, (A.1)
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FIGURE A.1. Exponential, logarithm, and trigonometric functions for real arguments.

where e denotes Euler’s number

e = lim
n→∞

(
1 +

1

n

)n
=

∞∑

n=0

1

n!
= 2.718281828 . . . , (A.2)

which receives its name from the Swissborn Russian mathematician and physicist Leonhard

Euler (1707–1783), who is considered one of the greatest mathematicians of all time. Some

properties of the complex exponential are

ez1ez2 = ez1+z2 , (A.3)

ez1/ez2 = ez1−z2 , (A.4)

|ez| = ex, (A.5)

ez+2πi = ez. (A.6)

Property (A.5) implies that exp z has no zeros, and property (A.6) means that exp z is

periodic with period 2πi. The derivative and the primitive of the complex exponential,

omitting the integration constant, is the function itself:

d

dz
ez = ez,

∫
ez dz = ez. (A.7)

It has the power series expansion

ez =
∞∑

n=0

zn

n!
. (A.8)

The complex exponential allows us also to define the complex trigonometric functions

sin z =
eiz − e−iz

2i
, (A.9)

cos z =
eiz + e−iz

2
, (A.10)

tan z =
sin z

cos z
= −i e

iz − e−iz

eiz + e−iz
, (A.11)
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and likewise the complex hyperbolic functions

sinh z =
ez − e−z

2
= −i sin(iz), (A.12)

cosh z =
ez + e−z

2
= cos(iz), (A.13)

tanh z =
sinh z

cosh z
=
ez − e−z

ez + e−z
= −i tan(iz). (A.14)

The sine and cosine trigonometric functions for real arguments are illustrated in Figure A.1.

b) Complex logarithm

The complex logarithm ln z is an extension of the natural logarithm function for real

arguments (vid. Figure A.1) into the whole complex z-plane, and is thus the inverse func-

tion of the complex exponential exp z. There is, however, a difficulty in trying to define

this inverse function due the periodicity of the exponential, i.e., due the fact that

ez+i2πn = ez, n ∈ Z. (A.15)

The complex logarithm has to be understood thus as a multi-valued function, which can

become properly single-valued when the domain of the exponential is restricted, e.g., to

the strip −π < Im z ≤ π. In this specific case, the function is one-to-one and an inverse

does exist, called the principal value of the logarithm, which is given by

ln z = ln |z| + i arg z, −π < arg z ≤ π, (A.16)

or, equivalently in polar and cartesian coordinates, by

ln z = ln r + iθ, − π < θ ≤ π, (A.17)

ln z = ln
√
x2 + y2 + i arctan

y

x
, − π < arctan

y

x
≤ π, (A.18)

where

z = reiθ = x+ iy. (A.19)

So defined, the logarithm ln z is holomorphic for all complex numbers which do not lie on

the negative real axis including the origin, and has the property

eln z = z, z 6= 0. (A.20)

We see that it is not defined at z = 0 and is discontinuous on the negative real axis, which

means that the function cannot be analytic at these points. In fact, the jump across the

negative real axis is given by

ln(x+ i0) − ln(x− i0) = i2π ∀x < 0. (A.21)

Elsewhere the function is differentiable, and its derivative and primitive, omitting the inte-

gration constant, are given by

d

dz
ln z =

1

z
,

∫
ln z dz = z ln z − z, z 6= 0. (A.22)
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Particularly, it holds that

ln(i) =
iπ

2
. (A.23)

It admits also the power series expansions

ln z =
∞∑

n=0

2

2n+ 1

(
z − 1

z + 1

)2n+1

, Re z > 0, (A.24)

ln(z + 1) =
∞∑

n=1

(−1)n+1 z
n

n
, |z| < 1. (A.25)

There exist consequently many logarithm functions depending on the restriction that is

placed on the argument arg z to make the function single-valued. The complex logarithm

can be conceived as having many branches, each of which is single-valued and fits the

definition of a proper function. If we take the argument arg z satisfying the above restriction

for the principal value, then

Ln z = ln |z| + i(arg z ± 2πn), −π < arg z ≤ π, n = 0, 1, 2, . . . , (A.26)

is a multi-valued function with infinitely many branches, each for a different integer n, and

each single-valued. This general logarithmic function can be defined by

Ln z =

∫ z

1

dt

t
, (A.27)

where the integration path does not pass through the origin. Another way to work with

the complex logarithm function is using a more complicated surface consisting of infin-

itely many planes joined together so that the function varies continuously when passing

from one plane to the next. Such a surface is called Riemann surface in honor of the Ger-

man mathematician Georg Friedrich Bernhard Riemann (1826–1866), who made important

contributions to analysis and differential geometry. The discontinuity of the complex log-

arithm at the negative real axis was introduced in a rather arbitrary way as a restriction on

the arg z to make the function single-valued. This line of discontinuity is called a branch

cut and can be moved at will by defining different branches of the function. It does not

even need to be a straight line, but it must start at z = 0, where the logarithm fails to be

analytic. This point is called a branch point and is a more basic type of singularity than

the points on a particular branch cut. The branch cut connects thus the branch point z = 0

with infinity, which is the other branch point. Working with Riemann surfaces avoids the

use of branch cuts, but gives up the simplicity of defining a function on a set of points in a

single complex plane, which is the reason why we will not use them, and deal with branch

cuts instead throughout this work. For the multi-valued complex logarithm Ln z the usual

properties of the real logarithm hold, e.g.,

Ln(z1z2) = Ln z1 + Ln z2, (A.28)

Ln(z1/z2) = Ln z1 − Ln z2, (A.29)
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which also holds for the single-valued complex logarithm ln z, provided that care is ex-

ercised in selecting the branches. The complex logarithm allows also to define the func-

tion za, where a is any complex constant, due

za = eaLn z. (A.30)

If a = m, an integer, then (A.30) is single-valued due the periodicity of the complex

exponential. If a = p/q, where p and q are integers, then (A.30) has q distinct values. And

finally, if a is irrational or complex, then there are infinitely many values of za. We have

also that, except at the branch point z = 0 and on a branch cut, za is analytic and, omitting

the integration constant,

d

dz
za = aza−1,

∫
za dz =

za+1

a+ 1
. (A.31)

In particular, the complex square root is defined by
√
z = z1/2 = e

1
2

Ln z, (A.32)

and we characterize its principal value as

√
z =

√
x+ iy =

√
r eiθ/2 =

√
r + x

2
+

iy√
2(r + x)

(−π < θ ≤ π). (A.33)

The complex logarithm allows in the same way to define several other functions, which

have branch cuts or have to be considered as multi-valued. Among these are, e.g., the

inverse trigonometric functions

arcsin z = −iLn
(
iz +

√
1 − z2

)
, (A.34)

arccos z = −iLn
(
z +

√
z2 − 1

)
=
π

2
− arcsin z, (A.35)

arctan z =
i

2

(
Ln(1 − iz) − Ln(1 + iz)

)
, (A.36)

and the inverse hyperbolic functions

arcsinh z = Ln
(
z +

√
1 + z2

)
= −i arcsin(iz), (A.37)

arccosh z = Ln
(
z +

√
z2 − 1

)
= i arccos z, (A.38)

arctanh z =
1

2

(
Ln(1 + z) − Ln(1 − z)

)
= −i arctan(iz). (A.39)

Finally we remark that throughout this work, unless it is specifically stated otherwise, al-

ways the principal value for the complex logarithm is used, which has a branch cut along

the negative real axis, and has the advantage of reducing itself to the usual natural logarithm

when z is real and positive. This consideration is applied also to complex functions that are

derived from the complex logarithm.
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A.2.2 Gamma function

a) Definition

The gamma function is a special function that is defined to be an extension of the

factorial function to complex and real number arguments. Some references on this function

are the books of Abramowitz & Stegun (1972), Arfken & Weber (2005), Erdélyi (1953),

Jahnke & Emde (1945), Magnus & Oberhettinger (1954), Spiegel & Liu (1999), and the

one of Weisstein (2002). It is defined by

Γ(z) =

∫ ∞

0

tz−1e−t dt (Re z > 0). (A.40)

It can be also defined by Euler’s formula

Γ(z) = lim
n→∞

n!nz

z(z + 1)(z + 2) . . . (z + n)
(z 6= 0,−1,−2,−3, . . .). (A.41)

A third definition is given by Euler’s infinite product formula

1

Γ(z)
= z eγz

∞∏

n=1

[(
1 +

z

n

)
e−z/n

]
, (A.42)

where γ denotes Euler’s constant (sometimes also called Euler-Mascheroni constant), which

he discovered in 1735 and which is given by

γ = lim
n→∞

(
n∑

p=1

1

p
− ln(n)

)
= −

∫ ∞

0

e−t ln t dt = 0.5772156649 . . . . (A.43)

Euler’s constant can be also represented as

γ =

∫ ∞

0

1

t

(
1

t+ 1
− e−t

)
dt =

∫ ∞

0

(
1

1 − e−t
− 1

t

)
e−t dt. (A.44)

The gamma function is graphically depicted in Figure A.2.
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FIGURE A.2. Gamma function for real arguments.
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b) Properties

The gamma function Γ(z) is single-valued and analytic over the entire complex plane,

save for the points z = −n (n = 0, 1, 2, 3, . . .), where it possesses simple poles with

residues (−1)n/n!. Its reciprocal 1/Γ(z) is an entire function possessing simple zeros at

the points z = −n (n = 0, 1, 2, 3, . . .). There are no points z where Γ(z) = 0. The gamma

function satisfies the recurrence relation

Γ(z + 1) = zΓ(z), (A.45)

and the reflection formula

Γ(z)Γ(1 − z) =
π

sin(πz)
(z /∈ Z). (A.46)

The gamma function satisfies also the duplication formula

Γ(2z) = (2π)−
1
2 22z− 1

2 Γ(z)Γ

(
z +

1

2

)
, (A.47)

and, in general, the Gauss’ multiplication formula

Γ(nz) = (2π)
1
2
(1−n)2nz−

1
2

n−1∏

k=0

Γ

(
z +

k

n

)
, (A.48)

which receives its name from the German mathematician and scientist of profound genius

Carl Friedrich Gauss (1777–1855), who contributed significantly to many fields in mathe-

matics and science. The gamma function is linked with the factorial function, for integer

arguments, through

Γ(n+ 1) = n! (n = 0, 1, 2, 3, . . .), (A.49)

where, in particular,

Γ(1) = 0! = 1. (A.50)

Special values for the gamma function are

Γ

(
1

2

)
=

√
π, (A.51)

Γ

(
n+

1

2

)
=

(2n)!
√
π

n! 22n
(n = 0, 1, 2, 3, . . .), (A.52)

Γ

(
−n+

1

2

)
=

(−1)nn! 22n
√
π

(2n)!
(n = 0, 1, 2, 3, . . .). (A.53)

The derivative of the gamma function is given by

d

dz
Γ(z) = −Γ(z)

[
γ +

1

z
+

∞∑

n=1

(
1

n+ z
− 1

n

)]
, (A.54)

and a power series expansion for its logarithm is

ln Γ(z) = − ln(z) − γz −
∞∑

n=1

[
ln
(
1 +

z

n

)
− z

n

]
. (A.55)
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The Γ function, for large arguments as |z| → ∞, has the asymptotic expansion

Γ(z) ∼
√

2π e−zzz−
1
2

[
1 +

1

12z
+

1

288z2
− 139

51840z3
− 571

2488320z4
+ · · ·

]
, (A.56)

which is called Stirling’s formula, named in honor of the Scottish mathematician James

Stirling (1692–1770).

A.2.3 Exponential integral and related functions

a) Definition

The exponential integral, the cosine integral, and the sine integral functions are spe-

cial functions that appear frequently in physical problems. Some references for them

are Abramowitz & Stegun (1972), Arfken & Weber (2005), Chaudhry & Zubair (2002),

Erdélyi (1953), Glaisher (1870), Jahnke & Emde (1945), and Weisstein (2002). The expo-

nential integral is defined by

Ei(z) = −−
∫ ∞

−z

e−t

t
dt = −

∫ z

−∞

et

t
dt

(
| arg z| < π

)
. (A.57)

Analytic continuation of (A.57) yields a multi-valued function with branch points at z = 0

and z = ∞. It is a single-valued function in the complex z-plane cut along the negative real

axis. Since 1/t diverges at t = 0, the integral has to be understood in terms of the Cauchy

principal value (cf., e.g., Arfken & Weber 2005, or vid. Subsection A.6.5), named after the

French mathematician and early pioneer of analysis Augustin Louis Cauchy (1789–1857).

We introduce also the complementary exponential integral function

Ein(z) =

∫ z

0

et − 1

t
dt, (A.58)

which is an entire function and whose relation with (A.57) is given by

Ein(z) = Ei(z) − γ − ln z, (A.59)

where γ denotes Euler’s constant (A.43). For the cosine integral function, there exist at

least three definitions, which are

Ci(z) = γ + ln z +

∫ z

0

cos t− 1

t
dt

(
| arg z| < π

)
, (A.60)

ci(z) = −
∫ ∞

z

cos t

t
dt

(
| arg z| < π

)
, (A.61)

Cin(z) =

∫ z

0

cos t− 1

t
dt. (A.62)

The cosine integral ci(z) is the primitive of cos(z)/z which is zero for z = ∞. In the same

manner as the exponential integral (A.57), the cosine integral functions (A.60) and (A.61)

have also a branch cut along the negative real axis. They are related by

ci(z) = Ci(z)
(
| arg z| < π

)
, (A.63)

Cin(z) = Ci(z) − γ − ln z. (A.64)

253



For the sine integral function, two different definitions exist, which are

Si(z) =

∫ z

0

sin t

t
dt, (A.65)

si(z) = −
∫ ∞

z

sin t

t
dt. (A.66)

The sine integral Si(z) is the primitive of sin(z)/z which is zero for z = 0, while si(z) is

the primitive of sin(z)/z which is zero for z = ∞. They are both analytic in the whole

complex z-plane, and are related by

si(z) = Si(z) − π

2
. (A.67)

The exponential integral and its related trigonometric integrals are illustrated in Figure A.3.
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FIGURE A.3. Exponential integral and trigonometric integrals for real arguments.

b) Properties

The exponential integral, the cosine integral, and the sine integral functions satisfy the

relations

Ei(iz) = Ci(z) + i
(
Si(z) +

π

2

)
(Re z > 0), (A.68)

Ei(−iz) = Ci(z) − i
(
Si(z) +

π

2

)
(Re z > 0), (A.69)

Ci(z) =
1

2

[
Ei(iz) + Ei(−iz)

]
(Re z > 0), (A.70)

Si(z) =
1

2i

[
Ei(iz) − Ei(−iz)

]
− π

2
(Re z > 0), (A.71)

Their derivatives and primitives, omitting the integration constants, are given by

d

dz
Ei(z) =

ez

z
,

∫
Ei(z) dz = z Ei(z) − ez, (A.72)
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d

dz
Ci(z) =

cos z

z
,

∫
Ci(z) dz = zCi(z) − sin z, (A.73)

d

dz
Si(z) =

sin z

z
,

∫
Si(z) dz = z Si(z) + cos z. (A.74)

For small arguments z, the exponential, cosine, and sine integral functions have the

convergent series expansions

Ei(z) = γ + ln z +
∞∑

n=1

zn

nn!
, (A.75)

Ci(z) = γ + ln z +
∞∑

n=1

(−1)nz2n

2n(2n)!
, (A.76)

Si(z) =
∞∑

n=0

(−1)nz2n+1

(2n+ 1)(2n+ 1)!
, (A.77)

which can be alternatively used to define them. They can be derived from the integral

representations. For instance, (A.75) results from considering the primitive of the first ex-

pression in (A.72), replacing the exponential function by its series expansion (A.8). Hence

Ei(z) = C + ln z +
∞∑

n=1

zn

nn!
. (A.78)

To find the remaining integration constant C we can take, in the sense of the principal value

for the appearing integrals, the limit

C = lim
ε→0+

{
Ei(ε) − ln(ε)

}
= lim

ε→0+

{
−
∫ ∞

ε

e−t

t
dt+

∫ ∞

ε

1

t(t+ 1)
dt− ln(1 + ε)

}

=

∫ ∞

0

1

t

(
1

t+ 1
− e−t

)
dt = γ, (A.79)

where we considered (A.44) and the fact that

ln(z) = ln(1 + z) −
∫ ∞

z

1

t(t+ 1)
dt. (A.80)

For large arguments, as x→ ∞ along the real line, these exponential and trigonometric

integrals have the asymptotic divergent series expansions

Ei(x) =
ex

x

∞∑

n=0

n!

xn
, (A.81)

Ci(x) =
sin x

x

∞∑

n=0

(−1)n(2n)!

x2n
− cosx

x

∞∑

n=0

(−1)n(2n+ 1)!

x2n+1
, (A.82)

Si(x) =
π

2
− cosx

x

∞∑

n=0

(−1)n(2n)!

x2n
− sin x

x

∞∑

n=0

(−1)n(2n+ 1)!

x2n+1
. (A.83)
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Therefore on the imaginary axis, as |y| → ∞ for y ∈ R, the exponential integral has the

asymptotic divergent series expansion

Ei(iy) = iπ sign(y) +
eiy

iy

∞∑

n=0

n!

(iy)n
. (A.84)

A.2.4 Bessel and Hankel functions

a) Differential equation and definition

Bessel functions, also called cylinder functions or cylindrical harmonics, are special

functions that, together with the closely related Hankel functions, appear in a wide variety

of physical problems. Some references on them are Abramowitz & Stegun (1972), Arfken

& Weber (2005), Courant & Hilbert (1966), Erdélyi (1953), Jackson (1999), Jahnke &

Emde (1945), Luke (1962), Magnus & Oberhettinger (1954), Morse & Feshbach (1953),

Sommerfeld (1949), Spiegel & Liu (1999), Watson (1944), and Weisstein (2002). We

consider the Bessel differential equation of order ν for a function W : C → C, given by

z2 d2W

dz2
(z) + z

dW

dz
(z) + (z2 − ν2)W (z) = 0, (A.85)

where, in general, ν ∈ C is an unrestricted value. The Bessel differential equation is named

after the German mathematician and astronomer Friedrich Wilhelm Bessel (1784–1846),

who generalized and systemized thoroughly the Bessel functions, although it was the Dutch-

born Swiss mathematician Daniel Bernoulli (1700–1782) who in fact first defined them. In-

dependent solutions of this equation are the Bessel functions of the first kind Jν(z) and of

the second kind Yν(z), the latter also known as Neumann or Weber function, named respec-

tively after the German mathematicians Franz Ernst Neumann (1798–1895) and Heinrich

Martin Weber (1842–1913). They are depicted in Figure A.4 and related through

Yν(z) =
Jν(z) cos(νπ) − J−ν(z)

sin(νπ)
, ν /∈ Z, (A.86)

Yn(z) = lim
ν→n

Jν(z) cos(νπ) − J−ν(z)

sin(νπ)
, n ∈ Z. (A.87)

It holds in particular that

Yn+1/2(z) = (−1)n+1J−n−1/2(z), n ∈ Z. (A.88)

The Hankel functions of the first kind H
(1)
ν (z) and of the second kind H

(2)
ν (z), also known

as Bessel functions of the third kind, are also linearly independent solutions of the differ-

ential equation (A.85). They receive their name from the German mathematician Hermann

Hankel (1839–1873), and are related to the Bessel functions of the first and second kinds

through the complex linear combinations

H(1)
ν (z) = Jν(z) + iYν(z), (A.89)

H(2)
ν (z) = Jν(z) − iYν(z). (A.90)
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FIGURE A.4. Bessel and Neumann functions for real arguments.

The three kinds of Bessel functions are holomorphic functions of z throughout the complex

z-plane cut along the negative real axis, and for fixed z (6= 0) each is an entire function of ν.

When ν = n, for n ∈ Z, then Jν(z) has no branch point and is an entire function of z. It

holds that Jν(z), for Re ν ≥ 0, is bounded as z → 0 in any bounded range of arg z.

The functions Jν(z) and J−ν(z) are linearly independent except when ν is an integer. The

functions Jν(z) and Yν(z) are linearly independent for all values of ν. The functionH
(1)
ν (z)

tends to zero as |z| → ∞ in the sector 0 < arg z < π and the function H
(2)
ν (z) tends to

zero as |z| → ∞ in the sector −π < arg z < 0. For all values of ν, H
(1)
ν (z) and H

(2)
ν (z)

are linearly independent. The Bessel functions satisfy also the relations:

J−n(z) = (−1)nJn(z), Y−n(z) = (−1)nYn(z), (A.91)

H
(1)
−ν (z) = eνπiH(1)

ν (z), H
(2)
−ν (z) = e−νπiH(2)

ν (z). (A.92)

When using complex conjugate arguments, then for ν ∈ R follows

Jν(z̄) = Jν(z), Yν(z̄) = Yν(z), (A.93)

H(1)
ν (z̄) = H

(2)
ν (z), H(2)

ν (z̄) = H
(1)
ν (z). (A.94)

b) Ascending series

The Bessel function Jν(z) has the power series expansion

Jν(z) =
∞∑

m=0

(−1)m

m! Γ(ν +m+ 1)

(z
2

)2m+ν

, (A.95)

where Γ stands for the gamma function (A.40). For an integer order n ≥ 0, the Bessel

function Jn(z) has the power series expansion

Jn(z) =
∞∑

m=0

(−1)m

m! (m+ n)!

(z
2

)2m+n

, (A.96)
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and for the Neumann function Yn(z) it is given by

Yn(z) =
2

π
Jn(z)

(
ln
z

2
+ γ
)
− 1

π

n−1∑

m=0

(n−m− 1)!

m!

(z
2

)2m−n

− 1

π

∞∑

m=0

(−1)m
ψ(m+ n) + ψ(m)

m! (m+ n)!

(z
2

)2m+n

, (A.97)

where

ψ(0) = 0, ψ(m) =
m∑

p=1

1

p
(m = 1, 2, . . .), (A.98)

and γ denotes Euler’s constant (A.43). For n = 0 the following expansions hold

J0(z) = 1 − z2/4

(1!)2
+

(z2/4)
2

(2!)2
− (z2/4)

3

(3!)2
+ . . . , (A.99)

Y0(z) =
2

π
J0(z)

(
ln
z

2
+ γ
)

+
2

π

{
z2/4

(1!)2
−
(

1 +
1

2

)
(z2/4)

2

(2!)2
+

(
1 +

1

2
+

1

3

)
(z2/4)

3

(3!)2
− . . .

}
. (A.100)

Similarly, if n = 1, then

J1(z) =
z

2

{
1 − z2/4

2 (1!)2
+

(z2/4)
2

3 (2!)2
− (z2/4)

3

4 (3!)2
+ . . .

}
, (A.101)

Y1(z) =
2

π
J1(z)

(
ln
z

2
+ γ
)
− 2

πz

+
1

π

{
−z

2
+

2
(
1 + 1

2

)
− 1

2

2 (1!)2

(z
2

)3

− 2
(
1 + 1

2
+ 1

3

)
− 1

3

3 (2!)2

(z
2

)5

+ . . .

}
. (A.102)

c) Generating function and associated series

The Bessel function Jn(z) has the generating function

e
1
2
z(t− 1

t ) =
∞∑

m=−∞
Jm(z) tm (t 6= 0). (A.103)

This function allows, for an angle θ, the series expansions in terms of Bessel functions:

cos(z sin θ) = J0(z) + 2
∞∑

m=1

J2m(z) cos(2mθ), (A.104)

sin(z sin θ) = 2
∞∑

m=0

J2m+1(z) sin
(
(2m+ 1)θ

)
, (A.105)

cos(z cos θ) = J0(z) + 2
∞∑

m=1

J2m(z) cos(2mθ), (A.106)
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sin(z cos θ) = 2
∞∑

m=0

(−1)mJ2m+1(z) cos
(
(2m+ 1)θ

)
. (A.107)

By combining (A.106) and (A.107) we obtain the Jacobi-Anger expansion

eiz cos θ =
∞∑

m=−∞
imJm(z) eimθ, (A.108)

named after the Prussian mathematician Carl Gustav Jacob Jacobi (1804–1851) and the

German mathematician and astronomer Carl Theodor Anger (1803–1858). It describes the

expansion of a plane wave in terms of cylindrical waves. Other related special series are

1 = J0(z) + 2
∞∑

m=1

J2m(z), (A.109)

cos z = J0(z) + 2
∞∑

m=1

(−1)mJ2m(z), (A.110)

sin z = 2
∞∑

m=0

(−1)mJ2m+1(z). (A.111)

d) Integral representations

The Bessel functions of order zero admit the integral representations

J0(z) =
1

π

∫ π

0

cos(z sin θ) dθ =
1

π

∫ π

0

cos(z cos θ) dθ, (A.112)

Y0(z) =
4

π2

∫ π/2

0

cos(z cos θ)
{
γ + ln(2z sin2θ)

}
dθ. (A.113)

For arbitrary orders and for | arg z| < π/2 we have

Jν(z) =
1

π

∫ π

0

cos(z sin θ − νθ) dθ − sin(νπ)

π

∫ ∞

0

e−z sinh t−νt dt, (A.114)

Yν(z) =
1

π

∫ π

0

sin(z sin θ − νθ) dθ − 1

π

∫ ∞

0

{
eνt + e−νt cos(νπ)

}
e−z sinh t dt. (A.115)

The Hankel functions admit the integral representations

H(1)
ν (z) =

1

πi

∫ ∞+πi

−∞
ez sinh t−νt dt

(
| arg z| < π/2

)
, (A.116)

H(2)
ν (z) = − 1

πi

∫ ∞−πi

−∞
ez sinh t−νt dt

(
| arg z| < π/2

)
. (A.117)

e) Recurrence relations

If Wν is used to denote Jν , Yν , H
(1)
ν , H

(2)
ν , or any linear combination of these functions

whose coefficients are independent of z and ν, then the following recurrence relations hold
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for all of them:

2ν

z
Wν(z) = Wν−1(z) +Wν+1(z), (A.118)

2
dWν

dz
(z) = Wν−1(z) −Wν+1(z), (A.119)

dWν

dz
(z) = Wν−1(z) −

ν

z
Wν(z), (A.120)

dWν

dz
(z) = −Wν+1(z) +

ν

z
Wν(z), (A.121)

dW0

dz
(z) = −W1(z). (A.122)

Particular cases for the above are

dW1

dz
(z) = W0(z) −

1

z
W1(z), (A.123)

W2(z) =
2

z
W1(z) −W0(z), (A.124)

dW2

dz
(z) =

(
1 − 4

z2

)
W1(z) +

2

z
W0(z) = W1(z) −

2

z
W2(z). (A.125)

For the derivatives, considering m = 0, 1, 2, . . . , it also holds that
(

1

z

d

dz

)m {
zνWν(z)

}
= zν−mWν−m(z), (A.126)

(
1

z

d

dz

)m {
z−νWν(z)

}
= (−1)mz−ν−mWν+m(z). (A.127)

Some primitives of Bessel functions, omitting the integration constants, are given by
∫
W0(z) dz =

πz

2

{
W0(z)H−1(z) +W1(z)H0(z)

}
, (A.128)

∫
W1(z) dz = −W0(z), (A.129)

where Hν denotes the Struve function of order ν (vid. Subsection A.2.7).

f) Asymptotic behavior

For small arguments, when ν is fixed and z → 0, the Bessel functions behave like

Jν(z) ∼
1

Γ(ν + 1)

(z
2

)ν
(ν 6= −1,−2,−3, . . .), (A.130)

Y0(z) ∼ −iH(1)
0 (z) ∼ iH

(2)
0 (z) ∼ 2

π
ln z, (A.131)

Yν(z) ∼ −iH(1)
ν (z) ∼ iH(2)

ν (z) ∼ −Γ(ν)

π

(
2

z

)ν
(Re ν > 0). (A.132)
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The asymptotic forms of the Bessel functions, when ν is fixed and |z| → ∞, are given by

Jν(z) ∼
√

2

πz
cos
(
z − νπ

2
− π

4

)
, | arg z| < π, (A.133)

Yν(z) ∼
√

2

πz
sin
(
z − νπ

2
− π

4

)
, | arg z| < π, (A.134)

H(1)
ν (z) ∼

√
2

πz
ei(z−

νπ
2
−π

4 ), − π < arg z < 2π, (A.135)

H(2)
ν (z) ∼

√
2

πz
e−i(z−

νπ
2
−π

4 ), − 2π < arg z < π. (A.136)

In particular, the zeroth and first order Hankel functions behave at the origin, for z → 0, as

H
(1)
0 (z) ∼ 2i

π
ln z, H

(2)
0 (z) ∼ −2i

π
ln z, (A.137)

H
(1)
1 (z) ∼ − 2i

πz
, H

(2)
1 (z) ∼ 2i

πz
. (A.138)

At infinity, for |z| → ∞, they behave like

H
(1)
0 (z) ∼

√
2

πz
ei(z−

π
4
), H

(2)
0 (z) ∼

√
2

πz
e−i(z−

π
4
), (A.139)

H
(1)
1 (z) ∼

√
2

πz
ei(z−

3π
4

), H
(2)
1 (z) ∼

√
2

πz
e−i(z−

3π
4

). (A.140)

g) Addition theorems

If Wν denotes any linear combination of Bessel, Neumann, or Hankel functions, then

Neumann’s addition theorem for u, v ∈ C asserts that

Wν(u± v) =
∞∑

m=−∞
Wν∓m(u)Jm(v)

(
|v| < |u|

)
. (A.141)

The restriction |v| < |u| is unnecessary when Wν = Jν and ν is an integer or zero. We

have similarly Graf’s addition theorem, which states that

Wν(w)eiνχ =
∞∑

m=−∞
Wν+m(u)Jm(v)eimα

(
|ve±iα| < |u|

)
, (A.142)

where

w =
√
u2 + v2 − 2uv cosα, (A.143)

and

u− v cosα = w cosχ, v sinα = w sinχ, (A.144)

being the branches chosen so that w → u and χ→ 0 as v → 0. If u, v are real and positive,

and 0 ≤ α ≤ π, then w, χ are real and nonnegative, and the geometrical relationship of

the variables is shown in Figure A.5. Again, the restriction |ve±iα| < |u| is unnecessary

when Wν = Jν and ν is an integer or zero.
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FIGURE A.5. Geometrical relationship of the variables for Graf’s addition theorem.

The addition theorem of Graf allows us to establish, for x,y ∈ R
2 and k ∈ C, the

addition theorem for the Hankel functions

H(1)
ν

(
k|x − y|

)
eiνϕ =

∞∑

m=−∞
H

(1)
ν+m

(
k|x|

)
Jm
(
k|y|

)
eimθ

(
|y| < |x|

)
, (A.145)

where

cos θ =
x · y
|x| |y| cosϕ =

x · (x − y)

|x| |x − y| . (A.146)

In the particular case when ν = 0, the addition theorem for |y| < |x| becomes

H
(1)
0

(
k|x − y|

)
= H

(1)
0

(
k|x|

)
J0

(
k|y|

)
+ 2

∞∑

m=1

H(1)
m

(
k|x|

)
Jm
(
k|y|

)
cos(mθ). (A.147)

A.2.5 Modified Bessel functions

a) Differential equation and definition

Modified Bessel functions are special functions that appear also in a wide variety

of physical problems. Roughly speaking, they correspond to Bessel and Hankel func-

tions (vid. Subsection A.2.4) with a purely imaginary argument and therefore they do

not oscillate on the real axis as the former but rather increase or decrease exponentially.

Some references for them are Abramowitz & Stegun (1972), Arfken & Weber (2005),

Erdélyi (1953), Jackson (1999), Jahnke & Emde (1945), Luke (1962), Magnus & Ober-

hettinger (1954), Morse & Feshbach (1953), Spiegel & Liu (1999), Watson (1944), and

Weisstein (2002). We consider the modified Bessel differential equation of order ν for a

function W : C → C, which is given by

z2 d2W

dz2
(z) + z

dW

dz
(z) − (z2 + ν2)W (z) = 0, (A.148)

where, in general, ν ∈ C is an unrestricted value. Independent solutions of this equation are

the modified Bessel functions of the first kind Iν(z) and of the second kindKν(z). They are

depicted in Figure A.6. Each is a regular function of z throughout the z-plane cut along the

negative real axis, and for fixed z (6= 0) each is an entire function of ν. When ν = n,

for n ∈ Z, then Iν(z) is an entire function of z. The function Iν(z), for Re ν ≥ 0,

is bounded as z → 0 in any bounded range of arg z. The functions Iν(z) and I−ν(z)
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are linearly independent except when ν is an integer. The function Kν(z) tends to zero

as |z| → ∞ in the sector | arg z| < π/2, and for all values of ν, Iν(z) and Kν(z) are

linearly independent. The functions Iν(z) and Kν(z) are real and positive when ν > −1

and z > 0. The function Kν(z) is related to Iν(z) through

Kν(z) =
π

2

(
I−ν(z) − Iν(z)

sin(νπ)

)
, ν /∈ Z, (A.149)

Kn(z) = lim
ν→n

π

2

(
I−ν(z) − Iν(z)

sin(νπ)

)
, n ∈ Z. (A.150)
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(a) Modified Bessel function In(x), n = 0, 1, 2
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(b) Modified Bessel function Kn(x), n = 0, 1, 2

FIGURE A.6. Modified Bessel functions for real arguments.

The modified Bessel function Iν(z) is related to the Bessel function Jν(z) through

Iν(z) = e−iνπ/2Jν
(
z eiπ/2

)
, −π < arg z ≤ π

2
, (A.151)

Iν(z) = e3iνπ/2Jν
(
z e−3iπ/2

)
, −π

2
< arg z ≤ π, (A.152)

and Kν(z) is related to the Hankel functions H
(1)
ν (z) and H

(2)
ν (z) through

Kν(z) =
iπ

2
eiνπ/2H(1)

ν

(
z eiπ/2

)
, −π < arg z ≤ π

2
, (A.153)

Kν(z) = −iπ
2
e−iνπ/2H(2)

ν

(
z e−iπ/2

)
, −π

2
< arg z ≤ π. (A.154)

For the Neumann function Yν(z) it holds that

Yν(z) = ei(ν+1)π/2Iν(z) −
2

π
e−iνπ/2Kν(z), −π < arg z ≤ π

2
. (A.155)

For negative orders it holds also that

I−n(z) = In(z), n ∈ Z, (A.156)

K−ν(z) = Kν(z), ν ∈ C. (A.157)
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When using complex conjugate arguments, then for ν ∈ R follows

Iν(z̄) = Iν(z), Kν(z̄) = Kν(z). (A.158)

Most of the properties of modified Bessel functions can be deduced immediately from those

of ordinary Bessel functions by the application of these relations.

b) Ascending series

The modified Bessel function Iν(z) has the power series expansion

Iν(z) =
∞∑

m=0

1

m! Γ(ν +m+ 1)

(z
2

)2m+ν

, (A.159)

where Γ stands for the gamma function (A.40). For an integer order n ≥ 0, the modified

Bessel function In(z) has the power series expansion

In(z) =
∞∑

m=0

1

m! (m+ n)!

(z
2

)2m+n

, (A.160)

and for the function Kn(z) it is given by

Kn(z) = (−1)n+1In(z)
(
ln
z

2
+ γ
)

+
1

2

n−1∑

m=0

(−1)m
(n−m− 1)!

m!

(z
2

)2m−n

+
(−1)n

2

∞∑

m=0

ψ(m+ n) + ψ(m)

m! (m+ n)!

(z
2

)2m+n

, (A.161)

where

ψ(0) = 0, ψ(m) =
m∑

p=1

1

p
(m = 1, 2, . . .), (A.162)

and γ denotes Euler’s constant (A.43). For n = 0 the following expansions hold

I0(z) = 1 +
z2/4

(1!)2
+

(z2/4)
2

(2!)2
+

(z2/4)
3

(3!)2
+ . . . , (A.163)

K0(z) = −I0(z)
(
ln
z

2
+ γ
)

+
z2/4

(1!)2
+

(
1 +

1

2

)
(z2/4)

2

(2!)2
+

(
1 +

1

2
+

1

3

)
(z2/4)

3

(3!)2
+ . . . . (A.164)

Similarly, if n = 1, then

I1(z) =
z

2

{
1 +

z2/4

2 (1!)2
+

(z2/4)
2

3 (2!)2
+

(z2/4)
3

4 (3!)2
+ . . .

}
, (A.165)

K1(z) = I1(z)
(
ln
z

2
+ γ
)

+
1

z

− 1

2

{
z

2
+

2
(
1 + 1

2

)
− 1

2

2 (1!)2

(z
2

)3

+
2
(
1 + 1

2
+ 1

3

)
− 1

3

3 (2!)2

(z
2

)5

+ . . .

}
. (A.166)
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c) Generating function and associated series

The modified Bessel function In(z) has the generating function

e
1
2
z(t+ 1

t ) =
∞∑

m=−∞
Im(z) tm (t 6= 0), (A.167)

which allows, for an angle θ, the series expansions in terms of modified Bessel functions:

ez cos θ = I0(z) + 2
∞∑

m=1

Im(z) cos(mθ), (A.168)

ez sin θ = I0(z) + 2
∞∑

m=0

(−1)mI2m+1(z) sin
(
(2m+ 1)θ

)

+ 2
∞∑

m=1

(−1)mI2m(z) cos
(
2mθ

)
. (A.169)

Other related special series are

1 = I0(z) + 2
∞∑

m=1

(−1)mI2m(z), (A.170)

ez = I0(z) + 2
∞∑

m=1

Im(z), (A.171)

e−z = I0(z) + 2
∞∑

m=1

(−1)mIm(z), (A.172)

cosh z = I0(z) + 2
∞∑

m=1

I2m(z), (A.173)

sinh z = 2
∞∑

m=0

I2m+1(z). (A.174)

d) Integral representations

The modified Bessel functions of order zero admit the integral representations

I0(z) =
1

π

∫ π

0

e±z cos θ dθ =
1

π

∫ π

0

cosh(z cos θ) dθ, (A.175)

K0(z) = − 1

π

∫ π

0

e±z cos θ
{
γ + ln(2z sin2θ)

}
dθ. (A.176)

For arbitrary orders and for | arg z| < π/2 we have that

Iν(z) =
1

π

∫ π

0

ez cos θ cos(νθ) dθ − sin(νπ)

π

∫ ∞

0

e−z cosh t−νt dt, (A.177)

Kν(z) =

∫ ∞

0

e−z cosh t cosh(νt) dt. (A.178)
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e) Recurrence relations

If Wν is used to denote Iν , eνπiKν , or any linear combination of these functions whose

coefficients are independent of z and ν, then the following recurrence relations hold:

2ν

z
Wν(z) = Wν−1(z) −Wν+1(z), (A.179)

2
dWν

dz
(z) = Wν−1(z) +Wν+1(z), (A.180)

dWν

dz
(z) = Wν−1(z) −

ν

z
Wν(z), (A.181)

dWν

dz
(z) = Wν+1(z) +

ν

z
Wν(z), (A.182)

dI0
dz

(z) = I1(z),
dK0

dz
(z) = −K1(z). (A.183)

For the derivatives, considering m = 0, 1, 2, . . . , it also holds that
(

1

z

d

dz

)m {
zνWν(z)

}
= zν−mWν−m(z), (A.184)

(
1

z

d

dz

)m {
z−νWν(z)

}
= z−ν−mWν+m(z). (A.185)

f) Asymptotic behavior

Modified Bessel functions behave for small arguments, when ν is fixed and z → 0, as

Iν(z) ∼
1

Γ(ν + 1)

(z
2

)ν
(ν 6= −1,−2,−3, . . .), (A.186)

K0(z) ∼ − ln z, (A.187)

Kν(z) ∼
Γ(ν)

2

(
2

z

)ν
(Re ν > 0). (A.188)

The asymptotic forms of the modified Bessel functions, when ν is fixed and |z| → ∞, are

Iν(z) ∼
ez√
2πz

, | arg z| < π

2
, (A.189)

Kν(z) ∼
√

π

2z
e−z, | arg z| < 3π

2
. (A.190)

A.2.6 Spherical Bessel and Hankel functions

a) Differential equation and definition

Spherical Bessel functions or Bessel functions of fractional order are special functions

that play the role of Bessel or cylinder functions for spherical problems. Some references

are Abramowitz & Stegun (1972), Arfken & Weber (2005), Erdélyi (1953), Jackson (1999),
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and Weisstein (2002). They satisfy the spherical Bessel differential equation

z2 d2w

dz2
(z) + 2z

dw

dz
(z) +

(
z2 − ν(ν + 1)

)
w(z) = 0 (ν ∈ C), (A.191)

which can be obtained by applying separation of spherical variables to the Helmholtz equa-

tion. Particular linearly independent solutions of this equation are the spherical Bessel

functions of the first kind

jν(z) =

√
π

2z
Jν+1/2(z), (A.192)

and the spherical Bessel functions of the second kind or spherical Neumann functions

yν(z) =

√
π

2z
Yν+1/2(z), (A.193)

where Jν+1/2 and Yν+1/2 denote respectively the Bessel function of the first kind and the

Bessel function of the second kind or Neumann function. They are shown in Figure A.7.

Other independent solutions of (A.191) are the spherical Hankel functions of the first and

second kinds, also known as spherical Bessel functions of the third kind, given by

h(1)
ν (z) = jν(z) + iyν(z) =

√
π

2z
H

(1)
ν+1/2(z), (A.194)

h(2)
ν (z) = jν(z) − iyν(z) =

√
π

2z
H

(2)
ν+1/2(z), (A.195)

where H
(1)
ν+1/2 and H

(2)
ν+1/2 denote respectively the Hankel functions of the first and second

kinds. The Bessel and Hankel functions are thoroughly discussed in Subsection A.2.4.

The spherical Bessel and Hankel functions are most commonly encountered in the case

where ν = n, being n a positive integer or zero. They satisfy for n ∈ Z the relations

yn(z) = (−1)n+1j−n−1(z), (A.196)

and

h
(1)
−n−1(z) = i(−1)nh(1)

n (z), h
(2)
−n−1(z) = −i(−1)nh(2)

n (z). (A.197)

0 5 10 15
−0.5 

0

0.5

1

x

j n
(x

)

j0(x)

j1(x)

j2(x)

(a) Spherical Bessel function jn(x), n = 0, 1, 2
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(b) Spherical Neumann function yn(x), n = 0, 1, 2

FIGURE A.7. Spherical Bessel and Neumann functions for real arguments.
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b) Ascending series

The spherical Bessel function jν(z) has the ascending series expansion

jν(z) =

√
π

2

∞∑

m=0

(−1)m

m! Γ(ν +m+ 3/2)

(z
2

)2m+ν

, (A.198)

where Γ denotes the gamma function (A.40). For the spherical Neumann function yν(z) it

is given by

yν(z) =
(−1)ν+1

2νzν+1

∞∑

m=0

(−1)m4ν−m
√
π

m! Γ(m− ν + 1/2)
z2m. (A.199)

For an integer order n ≥ 0 they are given by

jn(z) = 2nzn
∞∑

m=0

(−1)m(m+ n)!

m! (2n+ 2m+ 1)!
z2m, (A.200)

and

yn(z) =
(−1)n+1

2nzn+1

∞∑

m=0

(−1)m(m− n)!

m! (2m− 2n)!
z2m. (A.201)

For the spherical Hankel functions we have also the exact formulae

h(1)
n (z) = (−i)n+1 e

iz

z

n∑

m=0

im

m! (2z)m
(n+m)!

(n−m)!
, (A.202)

h(2)
n (z) = in+1 e

−iz

z

n∑

m=0

(−i)m
m! (2z)m

(n+m)!

(n−m)!
. (A.203)

c) Special values

The spherical Bessel function jn(z) adopts, for n = 0, 1, 2, the values

j0(z) =
sin z

z
, (A.204)

j1(z) =
sin z

z2
− cos z

z
, (A.205)

j2(z) =

(
3

z3
− 1

z

)
sin z − 3

z2
cos z. (A.206)

For n = 0, 1, 2 the spherical Neumann function yn(z) adopts the values

y0(z) = −j−1(z) = −cos z

z
, (A.207)

y1(z) = −j−2(z) = −cos z

z2
− sin z

z
, (A.208)

y2(z) = −j−3(z) =

(
− 3

z3
+

1

z

)
cos z − 3

z2
sin z. (A.209)
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For the spherical Hankel functions, these values are given by

h
(1)
0 (z) = − i

z
eiz, h

(2)
0 (z) =

i

z
e−iz, (A.210)

h
(1)
1 (z) =

(
−1

z
− i

z2

)
eiz, h

(2)
1 (z) =

(
−1

z
+

i

z2

)
e−iz, (A.211)

h
(1)
2 (z) =

(
i

z
− 3

z2
− 3i

z3

)
eiz, h

(2)
2 (z) =

(
− i

z
− 3

z2
+

3i

z3

)
e−iz. (A.212)

d) Recurrence relations

If wn is used to denote jn, yn, h
(1)
n , h

(2)
n , or any linear combination of these functions

whose coefficients are independent of z and n, then the following recurrence relations hold:

2n+ 1

z
wn(z) = wn−1(z) + wn+1(z), (A.213)

(2n+ 1)
dwn
dz

(z) = nwn−1(z) − (n+ 1)wn+1(z). (A.214)

dwn
dz

(z) = wn−1(z) −
n+ 1

z
wn(z). (A.215)

dwn
dz

(z) =
n

z
wn(z) − wn+1(z). (A.216)

dw0

dz
(z) = −w1(z). (A.217)

Rearranging these relations yields

d

dz

{
zn+1wn(z)

}
= zn+1wn−1(z), (A.218)

d

dz

{
z−nwn(z)

}
= −z−nwn+1(z). (A.219)

By mathematical induction we can establish also the Rayleigh formulae

jn(z) = (−1)nzn
(

1

z

d

dz

)n{
sin z

z

}
, (A.220)

yn(z) = −(−1)nzn
(

1

z

d

dz

)n{cos z

z

}
, (A.221)

h(1)
n (z) = −i(−1)nzn

(
1

z

d

dz

)n{
eiz

z

}
, (A.222)

h(2)
n (z) = i(−1)nzn

(
1

z

d

dz

)n{
e−iz

z

}
. (A.223)
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e) Limiting values

The asymptotic limiting values of the spherical Bessel functions for small arguments,

i.e., as z → 0 and for fixed n, are given by

jn(z) ∼
2nn!

(2n+ 1)!
zn, (A.224)

yn(z) ∼ −(2n)!

2nn!
z−n−1. (A.225)

The asymptotic forms of the spherical Bessel and Hankel functions for large arguments,

as |z| → ∞ and for fixed n, are, likewise as for the Bessel and Hankel functions, given by

jn(z) ∼
1

z
sin
(
z − nπ

2

)
, (A.226)

yn(z) ∼ −1

z
cos
(
z − nπ

2

)
, (A.227)

h(1)
n (z) ∼ (−i)n+1 e

iz

z
= −ie

i(z−nπ/2)

z
, (A.228)

h(2)
n (z) ∼ in+1 e

−iz

z
= i

e−i(z−nπ/2)

z
. (A.229)

f) Addition theorems

The spherical Bessel functions satisfy, for arbitrary complex u, v, λ, θ, the addition

theorems

j0(λw) =
∞∑

n=0

(2n+ 1)jn(λu)jn(λv)Pn(cos θ), (A.230)

y0(λw) =
∞∑

n=0

(2n+ 1)yn(λu)jn(λv)Pn(cos θ)
(
|ve±iθ| < |u|

)
, (A.231)

where

w =
√
u2 + v2 − 2uv cos θ, (A.232)

and where Pn(z) denotes the Legendre polynomial of degree n (vid. Subsection A.2.8).

Similarly, for the spherical Hankel functions we have that

h
(1)
0 (λw) =

∞∑

n=0

(2n+ 1)h(1)
n (λu)jn(λv)Pn(cos θ)

(
|ve±iθ| < |u|

)
. (A.233)

As for cylindrical functions, we have the Jacobi-Anger expansion

eiλ cos θ =
∞∑

n=0

in(2n+ 1)jn(λ)Pn(cos θ), (A.234)

which describes the expansion of a plane wave in terms of spherical waves.
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A.2.7 Struve functions

a) Differential equation and definition

Struve functions are special functions that occur in many places in physics and ap-

plied mathematics, e.g., in optics, in fluid dynamics, and quite prominently in acoustics

for impedance calculations. Some references for Struve functions are Abramowitz & Ste-

gun (1972), Erdélyi (1953), Jahnke & Emde (1945), Magnus & Oberhettinger (1954), and

Weisstein (2002). They satisfy for a function W : C → C the following non-homogeneous

Bessel differential equation of order ν:

z2 d2W

dz2
(z) + z

dW

dz
(z) + (z2 − ν2)W (z) =

4 (z/2)ν+1

√
π Γ(ν + 1/2)

, (A.235)

where, in general, ν ∈ C is an unrestricted value, and Γ denotes the gamma function (A.40).

The general solution of (A.235) is given by

W (z) = a Jν(z) + b Yν(z) + Hν(z) (a, b ∈ C), (A.236)

where Jν(z) and Yν(z) are the Bessel and Neumann functions of order ν (cf. Subsec-

tion A.2.4), and where z−νHν(z) is an entire function of z. The function Hν(z) is known

as the Struve function of order ν, and is named after the Russian-born German astronomer

Karl Hermann Struve (1854–1920), who was part of the famous Struve family of as-

tronomers. It is illustrated in Figure A.8 for real arguments and some integer orders.
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n
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H2(x)

H

H

H

FIGURE A.8. Struve function Hn(x) for real arguments, where n = 0, 1, 2.

b) Power series expansion

The Struve function Hν(z) admits the power series expansion

Hν(z) =
(z

2

)ν+1
∞∑

m=0

(−1)m(z/2)2m

Γ(m+ 3/2)Γ(m+ ν + 3/2)
. (A.237)

By considering n as a positive integer, we have for half integer orders that

Hn+1/2(z) = Yn+1/2(z) +
1

π

n∑

m=0

Γ(m+ 1/2)

Γ(n−m+ 1)

(z
2

)−2m+n−1/2

. (A.238)
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Particular power series expansions are

H0(z) =
2

π

{
z − z3

12 · 32
+

z5

12 · 32 · 52
− . . .

}
, (A.239)

and

H1(z) =
2

π

{
z2

12 · 3 − z4

12 · 32 · 5 +
z6

12 · 32 · 52 · 7 − . . .

}
. (A.240)

c) Integral representations

If Re ν > −1/2, then the Struve function Hν(z) has the integral representation

Hν(z) =
2 (z/2)ν√
π Γ(ν + 1/2)

∫ 1

0

(1 − t2)ν−1/2 sin(zt) dt. (A.241)

Under the same condition, it admits also the integral representations

Hν(z) =
2 (z/2)ν√
π Γ(ν + 1/2)

∫ π/2

0

sin(z cos θ) sin2νθ dθ, (A.242)

and, for | arg z| < π/2, also

Hν(z) = Yν(z) +
2 (z/2)ν√
π Γ(ν + 1/2)

∫ ∞

0

e−zt(1 + t2)ν−1/2 dt. (A.243)

In particular, it holds that

H0(z) =
1

π

∫ π

0

sin(z sin θ) dθ =
2

π

∫ π/2

0

sin(z cos θ) dθ, (A.244)

and

H1(z) =
z

π

∫ π

0

sin(z sin θ) cos2θ dθ =
2z

π

∫ π/2

0

sin(z cos θ) sin2θ dθ. (A.245)

d) Recurrence relations

The Struve function Hν(z) satisfies the recurrence relations

Hν−1(z) + Hν+1(z) =
2ν

z
Hν(z) +

(z/2)ν√
π Γ(ν + 3/2)

, (A.246)

Hν−1(z) − Hν+1(z) = 2
dHν

dz
(z) − (z/2)ν√

π Γ(ν + 3/2)
, (A.247)

dH0

dz
(z) =

2

π
− H1(z) = H−1(z). (A.248)

For the derivatives it also holds that

d

dz

{
zνHν(z)

}
= zνHν−1(z), (A.249)

d

dz

{
z−νHν(z)

}
=

1√
π 2νΓ(ν + 3/2)

− z−νHν+1(z). (A.250)
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e) Special properties

For an integer n ≥ 0 holds

H−n−1/2(z) = (−1)nJn+1/2(z). (A.251)

Special values are

H1/2(z) =

√
2

πz
(1 − cos z), (A.252)

H3/2(z) =

√
z

2π

(
1 +

2

z2

)
−
√

2

πz

(
sin z +

cos z

z

)
. (A.253)

Struve functions can be be also expanded in terms of Bessel functions according to

H0(z) =
4

π

∞∑

m=0

J2m+1(z)

2m+ 1
, (A.254)

H1(z) =
2

π
− 2

π
J0(z) +

4

π

∞∑

m=1

J2m(z)

4m2 − 1
. (A.255)

f) Integrals

The Struve function H0(z) satisfies
∫ ∞

z

t−1H0(t) dt =
π

2
− 2

π

{
z − z3

12 · 32 · 3 +
z5

12 · 32 · 52 · 5 − . . .

}
, (A.256)

and in particular ∫ ∞

0

t−1H0(t) dt =
π

2
. (A.257)

Its primitive is given by
∫ z

0

H0(t) dt =
π

2

{
z2

2
− z4

12 · 32 · 4 +
z6

12 · 32 · 52 · 6 − . . .

}
. (A.258)

We have also that ∫ ∞

z

t−2H1(t) dt =
1

2z
H1(t) +

1

2

∫ ∞

z

t−1H0(t) dt. (A.259)

For higher orders we have
∫ z

0

t−νHν+1(t) dt =
z√

π 2νΓ(ν + 3/2)
− z−νHν(z). (A.260)

If |Reµ| < 1 and Re ν > Reµ− 3/2, then
∫ ∞

0

tµ−ν−1Hν(t) dt =
Γ(µ/2) 2µ−ν−1 tan(µπ/2)

Γ(ν − µ/2 + 1)
. (A.261)
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If Re ν > −1/2, then we have also that
∫ z

0

tν+1Hν+1(t) dt = (2ν + 1)

∫ z

0

tνHν(t) dt− zν+1Hν(t)

+
z2ν+2

(ν + 1) 2ν+1
√
π Γ(ν + 3/2)

. (A.262)

g) Asymptotic expansions for large arguments

The Struve functions behave asymptotically for large arguments, as |z| → ∞ and

considering | arg z| < π, as

Hν(z) − Yν(z) =
1

π

n−1∑

m=0

Γ(n+ 1/2)

Γ(ν −m+ 1/2)

(
2

z

)ν−2m−1

+Rn, (A.263)

where Rn = O
(
|z|ν−2n−1

)
. If ν is real, z positive, and n+1/2−ν ≥ 0, then the remainder

after n terms is of the same sign and numerically less than the first term neglected. In

particular, for | arg z| < π, it holds that

H0(z) − Y0(z) ∼
2

π

{
1

z
− 1

z3
+

12 · 32

z5
− 12 · 32 · 52

z7
+ . . .

}
, (A.264)

and

H1(z) − Y1(z) ∼
2

π

{
1 +

1

z2
− 12 · 3

z4
+

12 · 32 · 5
z6

− . . .

}
. (A.265)

For primitives of H0(z) we have also, for | arg z| < π, that
∫ z

0

{
H0(t) − Y0(t)

}
dt− 2

π

{
ln(2z) + γ

}
∼ 2

π

∞∑

m=1

(−1)m+1(2m)!(2m− 1)!

(m!)2(2z)2m
, (A.266)

and ∫ ∞

z

t−1
{
H0(t) − Y0(t)

}
dt ∼ 2

πz

∞∑

m=0

(−1)m{(2m)!}2

(m!)2(2m+ 1)(2z)2m
, (A.267)

where γ denotes Euler’s constant (A.43).

A.2.8 Legendre functions

a) Differential equation and definition

Legendre functions are special functions that appear in many mathematical and phys-

ical situations. They receive their name from the French mathematician Adrien-Marie Le-

gendre (1752–1833). Some references for them are Abramowitz & Stegun (1972), Arfken

& Weber (2005), Courant & Hilbert (1966), Erdélyi (1953), Jackson (1999), Jahnke &

Emde (1945), Magnus & Oberhettinger (1954), and Morse & Feshbach (1953), and like-

wise Spiegel & Liu (1999), Sommerfeld (1949), and Weisstein (2002). We use the conven-

tion z = x + iy, where x, y are reals, and in particular, x always means a real number in

the interval −1 ≤ x ≤ 1 with cos θ = x, where θ is likewise a real number. We consider

also ν ∈ C unrestricted and n a positive integer or zero.
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Legendre functions of degree ν are the solutions of the Legendre differential equation

(1 − z2)
d2P

dz2
(z) − 2z

dP

dz
(z) + ν(ν + 1)P (z) = 0, (A.268)

which can be also rewritten as

d

dz

{
(1 − z2)

dP

dz
(z)

}
+ ν(ν + 1)P (z) = 0. (A.269)

The Legendre differential equation has nonessential singularities at z = 1, −1, and ∞.

Since the Legendre differential equation is a second-order ordinary differential equation, it

has two linearly independent solutions. A solution Pν(z), which is regular at finite points,

is called a Legendre function of the first kind, while a solution Qν(z), which is singular at

the points z = ±1, is called a Legendre function of the second kind.

For an integer degree ν = n (n = 0, 1, 2, . . .), the Legendre function of the first kind

reduces to a polynomial Pn(z), known as the Legendre polynomial. It is a polynomial of

n-th degree, and can be represented by the Rodrigues formula

Pn(z) =
1

2nn!

dn

dzn
{
(z2 − 1)n

}
, (A.270)

which is named after the French banker, mathematician, and social reformer Benjamin

Olinde Rodrigues (1795–1851).

In a similar way, for an integer degree ν = n (n ∈ N0) and for all z that do not lie on

the real line segment [−1, 1], we can represent the Legendre function of the second kind by

Qn(z) =
1

2nn!

dn

dzn

{
(z2 − 1)n ln

(
z + 1

z − 1

)}
− 1

2
Pn(z) ln

(
z + 1

z − 1

)
, (A.271)

which can be rewritten as

Qn(z) =
1

2
Pn(z) ln

(
z + 1

z − 1

)
−Wn−1(z), (A.272)

where

Wn−1(z) =
n∑

m=1

1

m
Pm−1(z)Pn−m(z), n ≥ 1, (A.273)

W−1(z) = 0. (A.274)

The function Qn(z) is single-valued and has a branch cut on the real axis between the

branch points −1 and +1. Values of Qn(z) on the cut line are customarily assigned by the

relation

Qn(x) =
1

2

{
Qn(x+ i0) +Qn(x− i0)

}
, −1 < x < 1, (A.275)

where the arithmetic average approaches from both the positive imaginary side and the

negative imaginary side. Thus, in formulae like (A.271) and (A.272) we have only to

replace

ln

(
z + 1

z − 1

)
by ln

(
1 + x

1 − x

)
(A.276)
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to obtain valid expressions that hold on the cut line −1 < x < 1. For example, (A.272) has

to be replaced in this case by

Qn(x) =
1

2
Pn(x) ln

(
1 + x

1 − x

)
−Wn−1(x) − 1 < x < 1. (A.277)

For a non-integer degree ν, the Legendre function of the first kind Pν can be defined

by means of the Schläfli integral

Pν(z) =
1

2πi

∮

C

(t2 − 1)ν

2ν(t− z)ν+1
dt, (A.278)

where C is a simple complex integration contour around the points t = z and t = 1, but

not crossing the cut line −1 to −∞. This integral is named after the Swiss mathematician

Ludwig Schläfli (1814–1895), who among other important contributions gave the integral

representations of the Bessel and gamma functions.

The Legendre function of the second kind Qν , for a non-integer degree ν, is obtained

from the Schläfli integral, and defined by

Qν(z) =
−1

4i sin(νπ)

∮

D

(t2 − 1)ν

2ν(z − t)ν+1
dt, ν /∈ Z, (A.279)

where the integration contour D has the form of a figure eight and it does not enclose the

point t = z. Furthermore, we have that arg(t2−1) = 0 on the intersection of the integration

contour D with the positive real axis at the right of t = 1. The function Qν thus obtained

is regular and single-valued in the complex z-plane which has been cut along the real axis

from +1 to −∞. In case that the real part of ν + 1 is positive, we can contract the path of

integration and write (A.279) as

Qν(z) =
1

2ν+1

∫ 1

−1

(1 − t2)ν

(z − t)ν+1
dt, (A.280)

being this formula now applicable for nonnegative integral ν also.

b) Properties on the complex plane

The Legendre functions Pν satisfy, for all z ∈ C and for unrestricted degree ν, the

recurrence relations

(2ν + 1)zPν(z) = (ν + 1)Pν+1(z) + νPν−1(z), (A.281)

(2ν + 1)Pν(z) =
dPν+1

dz
(z) − dPν−1

dz
(z), (A.282)

(ν + 1)Pν(z) =
dPν+1

dz
(z) − z

dPν
dz

(z), (A.283)

νPν(z) = z
dPν
dz

(z) − dPν−1

dz
(z), (A.284)

(z2 − 1)
dPν
dz

(z) = νzPν(z) − νPν−1(z), (A.285)

(z2 − 1)
dPν
dz

(z) = (ν + 1)Pν+1(z) − (ν − 1)zPν(z), (A.286)

276



which hold also for Qν and for any linear combination of Pν and Qν . In particular, they

hold also on the cut line −1 < x < 1. With respect to the degree ν we have the identities

Pν(z) = P−ν−1(z), (A.287)

Qν(z) = Q−ν−1(z). (A.288)

c) Properties on the cut line

On the cut line −1 < x < 1 and for an integer degree n, the Legendre polynomials Pn
satisfy the recurrence relations

(2n+ 1)xPn(x) = (n+ 1)Pn+1(x) + nPn−1(x), (A.289)

(2n+ 1)Pn(x) =
dPn+1

dx
(x) − dPn−1

dx
(x), (A.290)

(n+ 1)Pn(x) =
dPn+1

dx
(x) − x

dPn
dx

(x), (A.291)

nPn(x) = x
dPn
dx

(x) − dPn−1

dx
(x), (A.292)

(x2 − 1)
dPn
dx

(x) = nxPn(x) − nPn−1(x), (A.293)

(x2 − 1)
dPn
dx

(x) = (n+ 1)Pn+1(x) − (n− 1)xPn(x), (A.294)

which holds also for Qn and for any linear combination of Pn and Qn. The Legendre

functions Pn and Qn on the cut line are represented graphically in Figure A.9 for some

integer orders. We have similarly for negative arguments that

Pn(−x) = (−1)nPn(x), (A.295)

Qn(−x) = (−1)n+1Qn(x). (A.296)

With respect to the degree n we have the identities

Pn(x) = P−n−1(x), (A.297)

Qn(x) = Q−n−1(x). (A.298)

A generating function for the Legendre polynomials is given by

1√
1 − 2tx+ t2

=
∞∑

n=0

Pn(x)t
n, |t| < 1. (A.299)

Another generating function is given by

etxJ0

(
t
√

1 − x2
)

=
∞∑

n=0

Pn(x)

n!
tn, (A.300)

where J0(x) is a zeroth order Bessel function of the first kind (vid. Subsection A.2.4).

Expanding the Rodrigues formula (A.270) yields the sum formula

Pn(z) =
1

2n

[n/2]∑

m=0

(−1)m(2n− 2m)!

m! (n−m)! (n− 2m)!
zn−2m, (A.301)
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where [r] denotes the floor function of r, i.e., the highest integer smaller than r. Another

sum formula is

Pn(z) =
1

2n

n∑

m=0

(
n!

m! (n−m)!

)2

(z − 1)n−m(z + 1)m. (A.302)

The Legendre polynomials are orthogonal in the interval [−1, 1], and satisfy the relation
∫ 1

−1

Pn(x)Pm(x) dx =
2

2n+ 1
δnm, (A.303)

where δnm denotes the delta of Kronecker,

δnm =

{
1 if n = m,

0 if n 6= m,
(A.304)

named after the German mathematician and logician Leopold Kronecker (1823–1891).
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FIGURE A.9. Legendre functions on the cut line.

Some special values of the Legendre polynomials Pn are

Pn(1) = 1, (A.305)

Pn(−1) = (−1)n. (A.306)

On the origin it holds that

Pn(0) =





(−1)n/2
1 · 3 · 5 · · · (n− 1)

2 · 4 · 6 · · ·n if n even,

0 if n odd.
(A.307)

We have also the bound

|Pn(x)| ≤ 1, −1 < x < 1. (A.308)

For the Legendre function of the second kind Qn we have the special values

Qn(1) = ∞, (A.309)
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Qn(∞) = 0. (A.310)

On the origin it holds that

Qn(0) =





(−1)(n+1)/2 2 · 4 · 6 · · · (n− 1)

1 · 3 · 5 · 7 · · ·n if n odd,

0 if n even,
(A.311)

being, in particular, Q1(0) = −1.

d) Explicit expressions

Some explicit expressions of Legendre polynomials, for 0 ≤ n ≤ 4 and considering

respectively −1 ≤ x ≤ 1 and cos θ = x, are

P0(x) = 1, P0(cos θ) = 1, (A.312)

P1(x) = x, P1(cos θ) = cos θ, (A.313)

P2(x) =
1

2
(3x2 − 1), P2(cos θ) =

1

2
(3 cos2θ − 1), (A.314)

P3(x) =
1

2
(5x3 − 3x), P3(cos θ) =

1

2
cos θ(5 cos2θ − 3), (A.315)

P4(x) =
1

8
(35x4 − 30x2 + 3), P4(cos θ) =

1

8
(35 cos4θ − 30 cos2θ + 3). (A.316)

For the Legendre functions of the second kind, when considering the values on the

branch cut −1 < x < 1, we have the expressions

Q0(x) =
1

2
ln

(
1 + x

1 − x

)
, (A.317)

Q1(x) =
x

2
ln

(
1 + x

1 − x

)
− 1, (A.318)

Q2(x) =
1

4
(3x2 − 1) ln

(
1 + x

1 − x

)
− 3x

2
, (A.319)

Q3(x) =
1

4
(5x3 − 3x) ln

(
1 + x

1 − x

)
− 5x2

2
+

2

3
, (A.320)

Q4(x) =
1

16
(35x4 − 30x2 + 3) ln

(
1 + x

1 − x

)
− 35x3

8
+

55x

24
. (A.321)

We remark that formulae (A.312)–(A.316) can be extended straightforwardly from x

to z ∈ C. To extend formulae (A.317)–(A.321) in such a way, though, we have to consider

the replacement done in (A.276).

A.2.9 Associated Legendre functions

a) Differential equation and definition

The associated Legendre functions or Legendre functions of higher order are special

functions that can be regarded as a generalization of the Legendre functions (vid. Subsec-

tion A.2.8). They are also important for many mathematical and physical situations. Some
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references for them are Abramowitz & Stegun (1972), Arfken & Weber (2005), Courant &

Hilbert (1966), Erdélyi (1953), Jackson (1999), Jahnke & Emde (1945), Magnus & Ober-

hettinger (1954), Morse & Feshbach (1953), Sommerfeld (1949), Spiegel & Liu (1999),

and Weisstein (2002). We use the convention z = x + iy, where x, y are reals, and in par-

ticular, x always means a real number in the interval −1 ≤ x ≤ 1 with cos θ = x, where θ

is likewise a real number. We consider also ν, µ ∈ C unrestricted and n,m positive integers

or zero. We follow mainly the notation of Abramowitz & Stegun (1972), Jackson (1999),

and Magnus & Oberhettinger (1954).

Associated Legendre functions of degree ν and order µ are the solutions of the associ-

ated Legendre differential equation

(1 − z2)
d2P

dz2
(z) − 2z

dP

dz
(z) +

(
ν(ν + 1) +

µ2

1 − z2

)
P (z) = 0, (A.322)

which can be rewritten as

d

dz

{
(1 − z2)

dP

dz
(z)

}
+

(
ν(ν + 1) +

µ2

1 − z2

)
P (z) = 0. (A.323)

The associated Legendre differential equation has nonessential singularities at z = 1, −1

and ∞, which are ordinary branch points. Since the associated Legendre differential equa-

tion is a second-order ordinary differential equation, it has two linearly independent solu-

tions. A solution P µ
ν (z), which is regular at finite points, is called an associated Legendre

function of the first kind, while a solution Qµ
ν (z), which is singular at the points z = ±1, is

called an associated Legendre function of the second kind.

For integer degree ν = n (n ∈ N0), integer order µ = m (m ∈ N0), and for all z

that do not lie on the real line segment [−1, 1], we can represent the associated Legendre

functions of the first and second kind by the Rodrigues’ formulae

Pm
n (z) = (z2 − 1)m/2

dm

dzm
Pn(z) =

(z2 − 1)m/2

2nn!

dm+n

dzm+n

{
(z2 − 1)n

}
, (A.324)

and

Qm
n (z) = (z2 − 1)m/2

dm

dzm
Qn(z), (A.325)

where Pn(z) and Qn(z) denote respectively the Legendre functions of the first and second

kind. Both functions, Pm
n (z) and Qm

n (z), are single-valued and have a branch cut on the

real axis between the branch points −1 and +1. The appearing square roots have to be

considered in such a way that

(z2 − 1)m/2 = (z − 1)m/2(z + 1)m/2, (A.326)

where

| arg(z ± 1)| < π, | arg(z)| < π. (A.327)

The values of Pm
n (z) and Qm

n (z) on the cut line −1 < x < 1 are customarily assigned by

the relations

Pm
n (x) =

1

2

{
eiπm/2Pm

n (x+ i0) + e−iπm/2Pn(x− i0)
}
, (A.328)
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and

Qm
n (x) =

1

2
e−iπm

{
e−iπm/2Qm

n (x+ i0) + eiπm/2Qn(x− i0)
}
. (A.329)

These formulae are obtained through the replacement of z − 1 by (1 − x)e±iπ, (z2 − 1)

by (1 − x2)e±iπ, and z + 1 by 1 + x, for z = x ± i0. Thus, on the cut line −1 < x < 1,

formulae (A.324) and (A.325) have to be taken as

Pm
n (x) = (−1)m(1 − x2)m/2

dm

dxm
Pn(x), (A.330)

and

Qm
n (x) = (−1)m(1 − x2)m/2

dm

dxm
Qn(x). (A.331)

We remark that some authors define the associated Legendre functions on the cut line omit-

ting the factor (−1)m.

Further extensions of the associated Legendre functions for a complex degree ν or a

complex order µ can be performed by adapting the Schläfli integrals (A.278) and (A.279).

They can be also expressed in terms of hypergeometric functions.

b) Properties on the complex plane

The associated Legendre functions P µ
ν satisfy, for all z ∈ C outside the cut line [−1, 1],

and for unrestricted degree ν and order µ, the recurrence relations

(2ν + 1)zP µ
ν (z) = (ν − µ+ 1)P µ

ν+1(z) + (ν + µ)P µ
ν−1(z), (A.332)

(z2 − 1)1/2P µ+1
ν (z) = (ν − µ)zP µ

ν (z) − (ν + µ)P µ
ν−1(z), (A.333)

(z2 − 1)
dP µ

ν

dz
(z) = (ν + µ)(ν − µ+ 1)(z2 − 1)1/2P µ−1

ν (z) − µzP µ
ν (z), (A.334)

(z2 − 1)
dP µ

ν

dz
(z) = νzP µ

ν (z) − (ν + µ)P µ
ν−1(z), (A.335)

P µ
ν+1(z) = P µ

ν−1(z) + (2ν + 1)(z2 − 1)1/2P µ−1
ν (z), (A.336)

(z2 − 1)1/2P µ+1
ν (z) = (ν + µ)(ν − µ+ 1)(z2 − 1)1/2P µ−1

ν (z) − 2µzP µ
ν (z), (A.337)

which hold also for Qµ
ν and for any linear combination of P µ

ν and Qµ
ν . They hold also on

the cut line −1 < x < 1, when we replace

(z2 − 1)1/2 by (1 − x2)1/2. (A.338)

The associated Legendre functions of order zero are simply the Legendre functions, i.e.,

P 0
ν (z) = Pν(z), (A.339)

Q0
ν(z) = Qν(z). (A.340)

With respect to the degree ν we have the identities

P µ
ν (z) = P µ

−ν−1(z), (A.341)

Qµ
ν (z) = Qµ

−ν−1(z). (A.342)
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c) Properties on the cut line

For an integer degree n and an integer order m, the associated Legendre functions Pm
n

satisfy, on the cut line −1 < x < 1, the recurrence relations

(2n+ 1)xPm
n (x) = (n−m+ 1)Pm

n+1(x) + (n+m)Pm
n−1(x), (A.343)

√
1 − x2Pm+1

n (x) = (n−m)xPm
n (x) − (n+m)Pm

n−1(x), (A.344)

(x2 − 1)
dPm

n

dx
(x) = (n+m)(n−m+ 1)

√
1 − x2Pm−1

n (x) −mxPm
n (x), (A.345)

(x2 − 1)
dPm

n

dx
(x) = nxPm

n (x) − (n+m)Pm
n−1(x), (A.346)

Pm
n+1(x) = Pm

n−1(x) + (2n+ 1)
√

1 − x2Pm−1
n (x), (A.347)

√
1 − x2Pm+1

n (x) = (n+m)(n−m+ 1)
√

1 − x2Pm−1
n (x) − 2mxPm

n (x), (A.348)

which hold also for Qm
n and for any linear combination of Pm

n and Qm
n . The associated

Legendre functions Pm
n and Qm

n on the cut line are represented graphically in Figure A.10

for some integer orders. On the cut line, the associated Legendre functions of order zero

are again the Legendre functions, i.e.,

P 0
n(x) = Pn(x), (A.349)

Q0
n(x) = Qn(x). (A.350)

With respect to the integer degree n we have the identities

Pm
n (x) = Pm

−n−1(x), (A.351)

Qm
n (x) = Qm

−n−1(x). (A.352)

If the order m is higher than the degree n, then the associated Legendre function of the first

kind Pm
n is zero, namely

Pm
n (x) = 0, m > n, (A.353)

which does not apply to the function Qm
n . For negative arguments we have that

Pm
n (−x) = (−1)n+mPm

n (x), (A.354)

For a negative order m ∈ {0, 1, . . . , n} it holds that

P−m
n (x) = (−1)m

(n−m)!

(n+m)!
Pm
n (x), (A.355)

Q−m
n (x) = (−1)m

(n−m)!

(n+m)!
Qm
n (x). (A.356)

Additional identities are

P n
n (x) = (−1)n

(2n)!

2nn!
(1 − x2)n/2, (A.357)

P n
n+1(x) = x(2n+ 1)P n

n (x), (A.358)

P−n
n (x) =

1

2nn!
(1 − x2)n/2, (A.359)
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P−n
n+1(x) =

(−1)n

(2n)!
xP n

n (x). (A.360)

A generating function for the associated Legendre functions of the first kind is

(−1)m(2m)!(1 − x2)m/2tm

2mm!(1 − 2tx+ t2)m+1/2
=

∞∑

n=m

Pm
n (x)tn, |t| < 1. (A.361)
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FIGURE A.10. Associated Legendre functions on the cut line.

The associated Legendre functions of the first kind are orthogonal in the interval [−1, 1]

with respect to degree, and satisfy the relation
∫ 1

−1

Pm
n (x)Pm

l (x) dx =
2

(2n+ 1)

(n+m)!

(n−m)!
δnl, m ∈ {0, 1, . . . , n}, (A.362)

where δnl denotes the delta of Kronecker. They are also orthogonal in the interval [−1, 1]

with respect to order when using the weighting function (1 − x2)−1, namely
∫ 1

−1

Pm
n (x)P k

n (x)

(1 − x2)
dx =

(n+m)!

m(n−m)!
δmk, m, k ∈ {0, 1, . . . , n}, (A.363)

when m and k are not simultaneously zero.

d) Explicit expressions

Some explicit expressions for associated Legendre functions of the first kind, consid-

ering respectively −1 ≤ x ≤ 1 and cos θ = x, for 1 ≤ n ≤ 3 and 1 ≤ m ≤ n, are

P 1
1 (x) = −

√
1 − x2, P 1

1 (cos θ) = − sin θ, (A.364)

P 1
2 (x) = −3x

√
1 − x2, P 1

2 (cos θ) = −3 cos θ sin θ, (A.365)

P 2
2 (x) = 3(1 − x2), P 2

2 (cos θ) = 3 sin2θ, (A.366)

P 1
3 (x) = −3

2
(5x2 − 1)

√
1 − x2, P 1

3 (cos θ) = −3

2
(5 cos2θ − 1) sin θ, (A.367)
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P 2
3 (x) = 15x(1 − x2), P 2

3 (cos θ) = 15 cos θ sin2θ, (A.368)

P 3
3 (x) = −15(1 − x2)3/2, P 3

3 (cos θ) = −15 sin3θ. (A.369)

For the associated Legendre functions of the second kind, considering 0 ≤ n ≤ 2

and m ∈ {1, 2}, we have that

Q1
0(x) = − 1√

1 − x2
, (A.370)

Q2
0(x) =

2x

1 − x2
, (A.371)

Q1
1(x) = −1

2

√
1 − x2 ln

(
1 + x

1 − x

)
− x√

1 − x2
, (A.372)

Q2
1(x) =

2

1 − x2
, (A.373)

Q1
2(x) = −3x

2

√
1 − x2 ln

(
1 + x

1 − x

)
− 3x2 − 2√

1 − x2
, (A.374)

Q2
2(x) =

3

2
(1 − x2) ln

(
1 + x

1 − x

)
− x(3x2 − 5)

1 − x2
. (A.375)

We remark that to extend formulae (A.364)–(A.369) from x to z ∈ C, we have to

consider the replacement done in (A.338). For the formulae (A.370)–(A.375), additionally

the replacement done in (A.276) has to be taken into account.

A.2.10 Spherical harmonics

a) Differential equation and definition

Spherical harmonics, also known as surface harmonics or tesseral and sectoral harmon-

ics, are special functions that appear when solving Laplace’s equation using separation of

variables in spherical coordinates. They represent the angular portion of the solution, and

are formed by products between trigonometric functions and associated Legendre func-

tions (cf. Subsection A.2.9). The spherical harmonics constitute thus an orthonormal basis

over the unit sphere. Some of the references for them are Abramowitz & Stegun (1972),

Arfken & Weber (2005), Erdélyi (1953), Jackson (1999), Magnus & Oberhettinger (1954),

Nédélec (2001), Sommerfeld (1949), and Weisstein (2002). For the spherical harmonics,

we follow mainly the notation of Jackson (1999) and Weisstein (2002).

We consider in R
3 the system of spherical coordinates (r, θ, ϕ), which is described

with the convention normally used in physics, i.e., reversing the roles of θ and ϕ. Thus, we

denote by r the radius (0 ≤ r <∞), by θ the polar or colatitudinal coordinate (0 ≤ θ ≤ π),

and by ϕ the azimuthal or longitudinal coordinate (−π < ϕ ≤ π), as shown in Figure A.11.

The spherical coordinates (r, θ, ϕ) and the cartesian coordinates (x, y, z) are related through

r =
√
x2 + y2 + z2, x = r sin θ cosϕ, (A.376)

θ = arctan

(√
x2 + y2

z

)
, y = r sin θ sinϕ, (A.377)
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ϕ = arctan
(y
x

)
, z = r cos θ. (A.378)

x

ϕ

θ

y

z

r

P

O

FIGURE A.11. Spherical coordinates.

By considering in R
3 the angular part of Laplace’s equation in spherical coordinates,

i.e., working on the unit sphere with r = 1, we obtain the spherical harmonic differential

equation of degree l = 0, 1, 2, . . ., given by

1

sin θ

∂

∂θ

{
sin θ

∂Y

∂θ
(θ, ϕ)

}
+

1

sin2θ

∂2Y

∂ϕ2
(θ, ϕ) + l(l + 1)Y (θ, ϕ) = 0. (A.379)

The solutions of this differential equation are the spherical harmonics

Y m
l (θ, ϕ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pm
l (cos θ)eimϕ, (A.380)

wherem ∈ {−l,−(l−1), . . . , 0, . . . , (l−1), l} and Pm
l (x) denotes the associated Legendre

function of degree l and order m. Some spherical harmonics are illustrated in Figure A.12.

|Y 0
0 (θ,ϕ)| |Y 0

1 (θ,ϕ)| |Y 1
1 (θ,ϕ)| |Y 0

2 (θ,ϕ)| |Y 1
2 (θ,ϕ)|

|Y 2
2 (θ,ϕ)| |Y 0

3 (θ,ϕ)| |Y 1
3 (θ,ϕ)| |Y 2

3 (θ,ϕ)| |Y 3
3 (θ,ϕ)|

FIGURE A.12. Spherical harmonics in absolute value.
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b) Properties

The spherical harmonics form a complete orthogonal set on the surface of the unit

sphere in the two indices l,m. Their orthonormality implies that
∫ 2π

0

∫ π

0

Y m
l (θ, ϕ)Y k

n (θ, ϕ) sin θ dθ dϕ = δlnδmk, (A.381)

where z denotes the complex conjugate of z, and δln the delta of Kronecker for the coeffi-

cients l and n. For a negative order m it holds that

Y −m
l (θ, ϕ) = (−1)mY m

l (θ, ϕ). (A.382)

Spherical harmonics are bounded by

|Y m
l (θ, ϕ)| ≤

√
2l + 1

4π
. (A.383)

Some particular cases of spherical harmonics are

Y l
l (θ, ϕ) =

(−1)l

2ll!

√
(2l + 1)!

4π
sinlθ eilϕ, (A.384)

Y 0
l (θ, ϕ) =

√
2l + 1

4π
Pl(cos θ), (A.385)

Y −l
l (θ, ϕ) =

1

2ll!

√
(2l + 1)!

4π
sinlθ e−ilϕ, (A.386)

where Pl(x) denotes the Legendre polynomial of degree l.

c) Addition theorem

We consider two different directions (θ1, ϕ1) and (θ2, ϕ2) in the spherical coordinate

system on the unit sphere, which are separated by an angle β, as shown in Figure A.13.

These angles satisfy the trigonometric identity

cos β = cos θ1 cos θ2 + sin θ1 sin θ2 cos(ϕ1 − ϕ2). (A.387)

x

ϕ1

θ1

y

z

P1

O

P2

ϕ2

θ2

β

FIGURE A.13. Angles for the addition theorem of spherical harmonics.
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The addition theorem for spherical harmonics asserts that

Pn(cos β) =
4π

2n+ 1

n∑

m=−n
(−1)mY m

n (θ1, ϕ1)Y
−m
n (θ2, ϕ2), (A.388)

or, equivalently,

Pn(cos β) =
4π

2n+ 1

n∑

m=−n
Y m
n (θ1, ϕ1)Y m

n (θ2, ϕ2). (A.389)

In terms of the associated Legendre functions the addition theorem is

Pn(cos β) = Pn(cos θ1)Pn(cos θ2)

+ 2
n∑

m=1

(n−m)!

(n+m)!
Pm
n (cos θ1)P

m
n (cos θ2) cos

(
m(ϕ1 − ϕ2)

)
, (A.390)

being the expression (A.387) the particular case of the theorem when n = 1.

d) Explicit expressions

Some explicit expressions of spherical harmonics are

Y 0
0 (θ, ϕ) =

1√
4π
, Y −1

1 (θ, ϕ) =

√
3

8π
sin θ e−iϕ, (A.391)

Y 0
1 (θ, ϕ) =

√
3

4π
cos θ, Y 1

1 (θ, ϕ) = −
√

3

8π
sin θ eiϕ, (A.392)

Y −2
2 (θ, ϕ) =

√
15

32π
sin2θ e−2iϕ, Y −1

2 (θ, ϕ) =

√
15

8π
sin θ cos θ e−iϕ, (A.393)

Y 0
2 (θ, ϕ) =

√
5

16π
(3 cos2θ − 1), Y 1

2 (θ, ϕ) = −
√

15

8π
sin θ cos θ eiϕ, (A.394)

Y 2
2 (θ, ϕ) =

√
15

32π
sin2θ e2iϕ, Y −3

3 (θ, ϕ) =

√
35

64π
sin3θ e−3iϕ, (A.395)

Y −2
3 (θ, ϕ) =

√
105

32π
sin2θ cos θ e−2iϕ, (A.396)

Y −1
3 (θ, ϕ) =

√
21

64π
sin θ(5 cos2θ − 1) e−iϕ, (A.397)

Y 0
3 (θ, ϕ) =

√
7

16π
(5 cos3θ − 3 cos θ), (A.398)

Y 1
3 (θ, ϕ) = −

√
21

64π
sin θ(5 cos2θ − 1) eiϕ, (A.399)

Y 2
3 (θ, ϕ) = −

√
105

32π
sin2θ cos θ e2iϕ, (A.400)

Y 3
3 (θ, ϕ) = −

√
35

64π
sin3θ e3iϕ, (A.401)
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A.3 Functional analysis

Functional analysis is the branch of mathematics, and specifically of analysis, that is

concerned with the study of infinite-dimensional vector spaces (mainly function spaces)

and operators acting upon them. It is an essential tool in the proper understanding of all

kind of problems in pure and applied mathematics, physics, biology, economics, etc. Func-

tional analysis is particularly useful to state the adequate framework for the existence and

uniqueness of the solution of these problems, and to characterize its dependence on dif-

ferent parameters of them. Some classical references are Brezis (1999) and Rudin (1973).

Other references are Griffel (1985), Reed & Simon (1980), and Werner (1997).

A.3.1 Normed vector spaces

A vector space is a set E for which the operations of vector addition and scalar mul-

tiplication are well defined, i.e., such that the addition of any two elements of E (called

vectors) belongs to E, and such that the multiplication of any element of E by a scalar of a

field K (either C or R) belongs also to E. A normed vector space corresponds to a vector

space E that is supplied with a norm, i.e., with an application ‖ · ‖E : E → R+ that fulfills

for all u, v ∈ E and α ∈ K:

‖u‖E = 0 ⇔ u = 0E, (A.402)

‖αu‖E = |α| ‖u‖E, (A.403)

‖u+ v‖E ≤ ‖u‖E + ‖v‖E, (A.404)

where 0E denotes the null element or zero vector of E. A norm induces a distance on

the set E that determines how far apart its elements are between each other. The dis-

tance d(u, v) between any two elements u, v ∈ E is then defined by

d(u, v) = ‖u− v‖E. (A.405)

A norm characterizes the topology on E and thus the notion of convergence on this set.

a) Banach spaces

A Banach space is essentially a normed vector space that is complete with respect to

the metric induced by the norm. It receives its name from the eminent Polish mathemati-

cian and university professor Stefan Banach (1892–1945), who was one of the founders

of functional analysis. A normed vector space (E, ‖ · ‖E) is said to be complete if every

Cauchy sequence in E has a limit in E. A sequence {un} ⊂ E is of Cauchy if for all ε > 0

there exists an integer M such that ‖un − um‖E ≤ ε for all n,m ≥ M . In other words, it

holds in a Banach space that if the elements of a sequence become closer to each other as

the sequence progresses, then the sequence is convergent.

b) Hilbert spaces

A Hilbert space H is a Banach space where the norm is defined by an inner product. It

is named after the German mathematician David Hilbert (1862–1943), who is recognized

as one of the most influential and universal mathematicians of the 19th and early 20th

centuries. A Hilbert space is thus an abstract vector space that has geometric properties.
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An inner or scalar product is a positive-definite sesquilinear form (·, ·)H : H × H → K,

which satisfies for all u, v, w, x ∈ H and α, β ∈ K:

(u, u)H > 0, u 6= 0H , (A.406)

(u, v)H = (v, u)H , (A.407)

(u+ v, w + x)H = (u,w)H + (u, x)H + (v, w)H + (v, x)H , (A.408)

(αu, βv)H = αβ (u, v)H , (A.409)

where β denotes the complex conjugate of β. The property (A.406) implies the positive-

definiteness, whereas the sesquilinearity is given by (A.408) and (A.409). In the case that

the underlying field is real, i.e., K = R, the sesquilinearity turns into bilinearity and the

inner product becomes symmetric due (A.407). The induced norm ‖ · ‖H is defined by

‖u‖H =
√

(u, u)H ∀u ∈ H, (A.410)

and it satisfies the Cauchy-Schwartz inequality

|(u, v)H | ≤ ‖u‖H‖v‖H ∀u, v ∈ H. (A.411)

A.3.2 Linear operators and dual spaces

LetE and F be two Banach spaces with norms ‖·‖E and ‖·‖F , respectively. We define

a linear operator as an application L : E → F that satisfies for all u, v ∈ E and α, β ∈ K:

L(αu+ βv) = αL(u) + βL(v). (A.412)

The linear operator L is continuous or bounded if there exists a constant C such that

‖L(v)‖F ≤ C‖v‖E ∀v ∈ E. (A.413)

We denote in particular by L (E,F ) the space of all linear and continuous operators fromE

to F , which is also a Banach space when it is supplied with the norm

‖L‖L (E,F ) = sup
v 6=0E

‖L(v)‖F
‖v‖E

= sup
‖v‖E≤1

‖L(v)‖F = sup
‖v‖E=1

‖L(v)‖F . (A.414)

It holds therefore that

‖L(v)‖F ≤ ‖L‖L (E,F )‖v‖E ∀v ∈ E, ∀L ∈ L (E,F ). (A.415)

The kernel, nucleus, or nullspace of a linear operator L ∈ L (E,F ) is defined by

N (L) = {v ∈ E : L(v) = 0F}, (A.416)

whereas its image or rang is given by

R(L) = {w ∈ F : w = L(v), v ∈ E}. (A.417)

When F = E, then we abbreviate L (E,E) simply by L (E).

a) Dual spaces

The dual space E ′ of a Banach space E corresponds to the space L (E,K) of all linear

and continuous functionals from E to the field K. The dual space E ′ is also a Banach space
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when it is supplied with the norm

‖L‖E′ = sup
v 6=0E

|L(v)|
‖v‖E

= sup
‖v‖E≤1

|L(v)| = sup
‖v‖E=1

|L(v)|. (A.418)

We denote by 〈·, ·〉E′,E : E ′×E → K the scalar duality product between both spaces, which

is a bilinear form. If L ∈ E ′ is given, then the application 〈L, ·〉E′,E : E → K is linear and

continuous. For L ∈ E ′ and v ∈ E, the notation 〈L, v〉E′,E is thus equivalent to L(v), but

can be also understood as v(L). The duality product, analogously as in (A.415), fulfills

|〈L, v〉E′,E| ≤ ‖L‖E′‖v‖E ∀v ∈ E, ∀L ∈ E ′. (A.419)

When the underlying field K is the set of complex numbers C, then the dual space E ′ is

frequently taken as the space A (E,K) of all antilinear and continuous functionals from E

to the field K. In this case the duality product becomes a sesquilinear form, i.e., a form that

is linear in one argument and antilinear in the other. An operator A ∈ A (E,K) is said to

be antilinear or conjugate linear if for all u, v ∈ E and α, β ∈ K:

A(αu+ βv) = αA(u) + βA(v). (A.420)

The topological properties of linear and antilinear operators are the same, and they differ

only on the issue of the complex conjugation. Clearly, if K = R, then the distinction

between linearity and antilinearity disappears, and the sesquilinear forms become bilinear.

We remark that the roles of linearity and antilinearity can be assigned at will in the duality

product, when consistency is preserved. Duality can be thus understood either in a bilinear

or in a sesquilinear sense (and even a biantilinear sense could be also used).

We can also define the bidual, double dual, or second dual space E ′′ of E, i.e., the dual

space of E ′, which is the space L (E ′,K) of all linear and continuous functionals from E ′

to K. In this case we consider the duality product 〈·, ·〉E′,E′′ : E ′×E ′′ → K, which is again

a bilinear (or sesquilinear) form. The space E can be then identified with a subspace of E ′′

if we use a linear mapping J : E → E ′′ defined by

〈L, J(v)〉E′,E′′ = 〈L, v〉E′,E ∀v ∈ E, ∀L ∈ E ′. (A.421)

The subspace J(E) is closed in E ′′ and J is an isometry, i.e.,

‖J(v)‖E′′ = ‖v‖E ∀v ∈ E. (A.422)

Thus J is an isometric isomorphism of E onto a closed subspace of E ′′. Frequently E is

identified with J(E), in which case E is regarded as a subspace of E ′′. The spaces for

which J(E) = E ′′ are called reflexive.

b) Orthogonal vector subspaces

Let E be a Banach space, E ′ its dual space, and 〈·, ·〉E′,E their duality product. We

consider the vector subspaces M ⊂ E and N ⊂ E ′. We define the orthogonal vector

space M⊥ of M by

M⊥ = {A ∈ E ′ : 〈A, v〉E′,E = 0 ∀v ∈M}, (A.423)
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which is a closed vector subspace of E ′. In the same way we define the orthogonal vector

space N⊥ of N by

N⊥ = {v ∈ E : 〈A, v〉E′,E = 0 ∀A ∈ N}, (A.424)

which is a closed vector subspace of E. If the duality product between A ∈ E ′ and v ∈ E

becomes zero, then both elements can be considered as being in some way orthogonal,

similarly as the orthogonality concept for the inner product in Hilbert spaces.

c) Riesz’s representation theorem for Hilbert spaces

Every Hilbert space H is reflexive, i.e., it can be naturally identified with its double

dual space H ′′. Furthermore, the Riesz representation theorem (cf., e.g. Brezis 1999),

named after the Hungarian mathematician Frigyes Riesz (1880–1956), gives a complete

and convenient description of the dual space H ′ of H , which is itself also a Hilbert space.

It states that for each L ∈ H ′ there exists a unique u ∈ H such that

〈L, v〉H′,H = (u, v)H ∀v ∈ H, (A.425)

where

‖u‖H = ‖L‖H′ . (A.426)

This theorem implies that every linear and continuous functional L on H can be repre-

sented with the help of the inner product (·, ·)H . The application L 7→ u is an isometric

isomorphism that identifies H and H ′. We note that this identification is done often, but

not always, since the simultaneous identification between a subspace of the Hilbert space

and its dual does not work and yields absurd results (cf. Brezis 1999).

A.3.3 Adjoint and compact operators

Let E and F be two Banach spaces, whose dual spaces are given respectively by E ′

and F ′. We define the adjoint operator of a linear operator T ∈ L (E,F ) as the unique

linear operator T ∗ ∈ L (F ′, E ′), or antilinear operator T ∗ ∈ A (F ′, E ′), that satisfies

〈w, Tv〉F ′,F = 〈T ∗w, v〉E′,E ∀v ∈ E, ∀w ∈ F ′, (A.427)

depending respectively on whether the duality product is bilinear or sesquilinear. Moreover,

and depending again on the type of duality, the adjoint operator T ∗ is such that

‖T‖L (E,F ) = ‖T ∗‖L (F ′,E′) or ‖T‖L (E,F ) = ‖T ∗‖A (F ′,E′). (A.428)

The adjoint operator T ∗ is thus either linear or antilinear. In finite-dimensional normed

vector spaces, the linear operator T can be represented by a matrix and, in this case, its lin-

ear adjoint corresponds to its transposed matrix, whereas its antilinear adjoint corresponds

to its hermitian matrix, i.e., its transposed and conjugated matrix.

In the case of a Hilbert space H , the adjoint of a linear operator T ∈ L (H) is the

unique antilinear operator T ∗ ∈ A (H) that satisfies

(w, Tv)H = (T ∗w, v)H ∀v, w ∈ H, (A.429)

which is also such that

‖T‖L (H) = ‖T ∗‖A (H). (A.430)
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The following properties hold for S, T ∈ L (H) and α ∈ K:

(S + T )∗ = S∗ + T ∗, (αT )∗ = αT ∗, (A.431)

(ST )∗ = T ∗S∗, T ∗∗ = T. (A.432)

A linear operator T ∈ L (E,F ) is said to be compact if and only if for each bounded

sequence {un} ⊂ E, the sequence {Tun} ⊂ F admits a convergent subsequence. A

compact operator thus maps bounded sets in E into a relatively compact sets in F , i.e.,

into sets whose closure is compact in F . It holds that any linear combination of compact

operators is compact. Furthermore, the operator T is compact if and only if its adjoint

operator T ∗ ∈ L (F ′, E ′) is also compact. If G denotes another Banach space, then the

composition or product ST ∈ L (E,F ) of two continuous linear operators S ∈ L (E,G)

and T ∈ L (G,F ) is compact if one of the two operators S or T is compact.

A.3.4 Imbeddings

Let E and F be two Banach spaces such that E ⊆ F . We say that E is continuously

imbedded in F , written as E →֒ F , if E is a vector subspace of F and if the identity

operator I : E → F defined by I(v) = v for all v ∈ E is continuous, i.e., if there exists a

constant C such that

‖v‖F ≤ C‖v‖E ∀v ∈ E. (A.433)

Moreover, the space E is said to be compactly imbedded in F , written as E →֒c F ,

if E is continuously imbedded in F and if the identity operator I : E → F is a compact

operator, i.e., if each bounded sequence in E admits a convergent subsequence in F .

A.3.5 Lax-Milgram’s theorem

Lax-Milgram’s theorem gives a sufficient condition to ensure the existence and unique-

ness for the solution of a linear problem, which makes it a simple and powerful tool to solve

partial differential equations of elliptic type. It was first established and proved by Lax &

Milgram (1954) and constitutes a particular case of the projection theorem on convex closed

sets in Hilbert spaces (cf., e.g., Brezis 1999).

The theorem is stated as follows. Let H be a Hilbert space and H ′ its dual space.

Let a : H ×H → K be a sesquilinear form on H , i.e., such that for all u, v, w, x ∈ H and

for all α, β ∈ K:

a(u+ v, w + x) = a(u,w) + a(u, x) + a(v, w) + a(v, x), (A.434)

a(αu, βv) = αβ a(u, v). (A.435)

We suppose that the form a(·, ·) is continuous and coercive on H ×H , i.e., that there exist

some constants M > 0 and α > 0 such that for all u, v ∈ H:

|a(u, v)| ≤M ‖u‖H‖v‖H , (A.436)

Re{a(u, u)} ≥ α ‖u‖2
H . (A.437)
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Then, for any f ∈ H ′ there exists a unique solution u ∈ H such that

a(u, v) = 〈f, v〉H′,H ∀v ∈ H. (A.438)

Moreover, the solution u depends continuously on f :

‖u‖H ≤ 1

α
‖f‖H′ . (A.439)

Lax-Milgram’s theorem allows thus to state a sufficient condition to solve a linear

problem of the form

Au = f, (A.440)

where A : H → H ′ is a continuous linear operator and f ∈ H ′. Typically (A.440) repre-

sents the differential problem, while (A.438) denotes its variational formulation.

A.3.6 Fredholm’s alternative

The alternative of Fredholm is a theorem that characterizes the existence and unique-

ness of the solution for a compactly perturbed linear problem. It is named after the Swedish

mathematician Erik Ivar Fredholm (1866–1927), who established the modern theory of in-

tegral equations. The theorem generalizes the existence and uniqueness of the solution for

a linear system in a finite-dimensional space. Some references are Brezis (1999), Colton &

Kress (1983), Hsiao & Wendland (2008), and Ramm (2001, 2005).

Fredholm’s alternative states that ifE is a Banach space and if T ∈ L (E) is a compact

operator, then

1. N (I − T ) is of finite dimension,

2. R(I − T ) is closed, i.e., R(I − T ) = N (I − T ∗)⊥,

3. N (I − T ) = {0E} ⇔ R(I − T ) = E,

4. dimN (I − T ) = dimN (I − T ∗).

When solving an equation of the form u−Tu = f , the alternative is thus stated as follows.

Either for any f ∈ E the equation u − Tu = f admits a unique solution u ∈ E that

depends continuously on f ; or the homogeneous equation u − Tu = 0E admits n linearly

independent solutions u1, u2, . . . , un ∈ N (I−T ) ⊂ E and, in this case, the inhomogeneous

equation u − Tu = f is solvable (not necessarily uniquely) if and only if f satisfies n

orthogonality conditions, i.e., f ∈ R(I − T ) = N (I − T ∗)⊥, which is of finite dimension.

The importance of Fredholm’s alternative lies in the fact that it transforms the existence

problem for the solution of the inhomogeneous equation u− Tu = f , which is quite diffi-

cult, into a uniqueness problem that removes the non-trivial solutions for the homogeneous

equation u − Tu = 0E , which is easier to accomplish. In other words, this theorem tells

us that a compact perturbation of the identity operator is injective if and only if it is surjec-

tive. We remark that the alternative still remains valid when we replace I − T by S − T ,

where S ∈ L (E) is a continuous and invertible linear operator whose inverse S−1 is also

continuous. This stems from the fact that an equation of the form Su−Tu = f can then be

readily transformed into the equivalent form u− S−1Tu = S−1f , where S−1T is compact

since T is compact.
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Another way to express Fredholm’s alternative is by considering the four operator

equations

u− Tu = f in E, (A.441)

u− Tu = 0E in E, (A.442)

w − T ∗w = g in E ′, (A.443)

w − T ∗w = 0E′ in E ′. (A.444)

If T ∈ L (E) is a compact operator, then the following alternative holds. Either (A.442)

has only the trivial solution u = 0E , and then (A.444) has only the trivial solution w = 0E′ ,

and equations (A.441) and (A.443) are uniquely solvable for any right-hand sides f ∈ E

and g ∈ E ′; or (A.442) has exactly n linearly independent solutions uj , 1 ≤ j ≤ n, and

then (A.444) has also n linearly independent solutionswj , 1 ≤ j ≤ n, and equations (A.441)

and (A.443) are solvable if and only if correspondingly

〈wj, f〉E′,E = 0 and 〈g, uj〉E′,E = 0, for all 1 ≤ j ≤ n. (A.445)

If they are solvable, then their solutions are not unique and their general solutions are,

respectively,

u = up +
n∑

j=1

αjuj and w = wp +
n∑

j=1

βjwj, (A.446)

where αj and βj are arbitrary scalar constants in K, and up and wp are some particular

solutions to (A.441) and (A.443), respectively.

Fredholm’s alternative can be also interpreted from the point of view of eigenvalues

and eigenvectors. It holds that the eigenvalues of a compact operator T ∈ L (E) form a

discrete set in the complex plane, with zero as the only possible limit, and for each eigen-

value there are only a finite number of linearly independent eigenvectors. Roughly speak-

ing, the eigenvalues λ ∈ C and eigenvectors v ∈ E, v 6= 0E , of an operator T ∈ L (E) are

such that (T − λI)v = 0E . The resolvent set is defined as

ρ(T ) = {λ ∈ C : (T − λI) is bijective from E to E}. (A.447)

We remark that if λ ∈ ρ(T ), then (T − λI)−1 ∈ L (E). We define the spectrum σ(T ) of T

as the complement of the resolvent set, i.e., σ(T ) = C \ ρ(T ). The spectrum σ(T ) is a

compact set and such that

λ ∈ σ(T ) ⇒ |λ| ≤ ‖T‖L (E). (A.448)

We say that λ ∈ C is an eigenvalue, written as λ ∈ EV(T ), if N (T − λI) 6= {0E},

where N (T − λI) is the eigenspace associated with λ. We have that EV(T ) ⊂ σ(T ).

If T ∈ L (E) is a compact operator and E an infinite-dimensional Banach space, then

1. 0 ∈ σ(T ),

2. σ(T ) \ {0} = EV(T ) \ {0},

3. one of the following holds:

• σ(T ) = {0},

• σ(T ) \ {0} is finite,
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• σ(T ) \ {0} is a sequence that tends towards zero.

In other words, the elements of σ(T )\{0} are isolated points and at most countably infinite.

Fredholm’s alternative can be thus restated in the following form: a nonzero λ is either an

eigenvalue of T , or it lies in the resolvent set ρ(T ).

Furthermore, a generalization to Lax-Milgram’s theorem can be stated by setting Fred-

holm’s alternative in the framework of variational forms. We consider in this case a Hilbert

space H with an inner product (·, ·)H and a dual space H ′, where the duality product is de-

noted by 〈·, ·〉H′,H . Let a : H ×H → C be a continuous sesquilinear form, and we suppose

that it satisfies a Gårding inequality of the form

Re
{
a(u, u) + (Cu, u)H

}
≥ α‖u‖2

H ∀u ∈ H, (A.449)

for some constant α > 0 and for some compact linear operator C : H → H . This

inequality is named after the Swedish mathematician Lars Gårding, and it generalizes the

coercitivity condition (A.437) that is required for the Lax-Milgram theorem. We consider

the four variational problems

a(u, v) = 〈f, v〉H′,H ∀v ∈ H, (A.450)

a(u, v) = 0 ∀v ∈ H, (A.451)

a(v, w) = 〈g, v〉H′,H ∀v ∈ H, (A.452)

a(v, w) = 0 ∀v ∈ H. (A.453)

Then there holds the following alternative. Either (A.450) has exactly one solution u ∈ H

for every given f ∈ H ′ and (A.452) has exactly one solutionw ∈ H for every given g ∈ H ′;

or the homogeneous problems (A.451) and (A.453) have finite-dimensional nullspaces of

the same dimension k > 0, and the non-homogeneous problems (A.450) and (A.452) admit

solutions if and only if respectively the orthogonality conditions

〈f, wj〉H′,H = 0 and 〈g, uj〉H′,H = 0 for all 1 ≤ j ≤ n (A.454)

are satisfied, where {uj}kj=1 spans the eigenspace of (A.451) and {wj}kj=1 spans the eigen-

space of (A.453), respectively.
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A.4 Sobolev spaces

Sobolev spaces are function spaces which play a fundamental role in the modern the-

ory of partial differential equations (PDE). A wider range of solutions of PDE, so-called

weak solutions, are naturally found in Sobolev spaces rather than in the classical spaces of

continuous functions and with the derivatives understood in the classical sense. Sobolev

spaces allow an easy characterization of the regularity of these solutions. They are named

after the Russian mathematician Sergei L’vovich Sobolev (1908–1989), who introduced

these spaces together with the notion of generalized functions or distributions.

In particular, the solutions of the wave propagation problems treated in this thesis are

searched in Sobolev spaces. Other boundary-value problems of PDE may require some-

times adaptations of Sobolev spaces, so-called weighted spaces, which are not discussed

here. Complete surveys of Sobolev spaces can be found in Adams (1975), Brezis (1999),

Grisvard (1985), Hsiao & Wendland (2008), Lions & Magenes (1972), and Ziemer (1989).

For further applications and properties of Sobolev spaces we mention also the references

Atkinson & Han (2005), Bony (2001), Chen & Zhou (1992), Nédélec (1977, 2001), Raviart

& Thomas (1983), and Steinbach (2008).

We consider a domain Ω in R
N with a regular boundary Γ = ∂Ω. By domain we

understand an open nonempty and connected set. What is understood by the regularity of

the boundary is specified later on. For the moment let us assume simply that the domain

lies locally on only one side of Γ, and that Γ does not have cusps. Thus the situations in

Figure A.14 are ruled out.

Ω

Ω

Γ Γ

FIGURE A.14. Nonadmissible domains Ω.

Let f be a real-, or more generally, a complex-valued function defined on the domain Ω.

Let α = (α1, α2, . . . , αN) ∈ N
N
0 be a multi-index of nonnegative integers. We write

Dαf =

(
∂

∂x1

)α1
(

∂

∂x2

)α2

· · ·
(

∂

∂xN

)αN

f (A.455)

to denote a mixed partial derivative of f of order

|α| = α1 + α2 + · · · + αN . (A.456)
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A.4.1 Continuous function spaces

We denote by Cm(Ω) the space of all continuous functions whose derivatives up until

order m ∈ N0 exist and are continuous in Ω. Thus, for m = 0, the space of all the con-

tinuous functions defined in Ω is denoted by C0(Ω) or simply by C(Ω). Similarly, C∞(Ω)

denotes the space of infinitely differentiable functions in Ω, which is such that

C∞(Ω) =
⋂

m∈N0

Cm(Ω). (A.457)

It clearly holds that C∞(Ω) ⊂ Cm+1(Ω) ⊂ Cm(Ω) for allm ∈ N0. We remark that since Ω

is open, the functions in Cm(Ω) need not to be bounded on Ω.

We represent by Cm
0 (Ω) the space of functions in Cm(Ω) that have a compact support

in Ω. By the support of a function we mean the closure of the set of points where the

function is different from zero. A set in R
N is said to be compact if it is closed and bounded.

In the same way as before, we denote by C∞
0 (Ω) the set of all infinitely differentiable

functions which, together with all of their derivatives, have compact support in Ω.

Similarly, one can defineCm(Ω) to be the space of functions inCm(Ω) which, together

with their derivatives of order ≤ m, have continuous extensions to Ω = Ω ∪ Γ. If Ω is

bounded and m <∞, then Cm(Ω) is a Banach space (vid. Section A.3) with the norm

‖f‖Cm(Ω) =
∑

|α|≤m
sup
x∈Ω

|Dαf(x)|. (A.458)

If the domain Ω is unbounded, then we consider as Cm(Ω) the space of all functions of

class Cm that are bounded in Ω. This space is a Banach space with the norm (A.458).

A function f that is defined in Ω is said to be Hölder continuous with exponent α,

for 0 < α < 1, if there exists a constant C > 0 such that

|f(x) − f(y)| ≤ C |x − y|α ∀x,y ∈ Ω. (A.459)

If f fulfills (A.459) for α = 1, then the function is said to be Lipschitz continuous. We

say that f is locally Hölder or Lipschitz continuous with exponent α in Ω if it is Hölder or

Lipschitz continuous with exponent α in every compact subset of Ω, respectively. These

names were given after the German mathematicians Otto Ludwig Hölder (1859–1937) and

Rudolf Otto Sigismund Lipschitz (1832–1903).

By Cm,α(Ω), m ∈ N0, 0 < α ≤ 1, we denote the space of functions in Cm(Ω) whose

derivatives of orderm are locally Hölder or Lipschitz continuous with exponent α in Ω. We

remark that Hölder continuity may be viewed as a fractional differentiability. For α = 0,

we set Cm,0(Ω) = Cm(Ω).

Further, by Cm,α(Ω) we denote the subspace of Cm(Ω) consisting of functions which

have m-th order Hölder or Lipschitz continuous derivatives of exponent α in Ω. If Ω is

bounded, then we define the Hölder or Lipschitz norm by

‖f‖Cm,α(Ω) = ‖f‖Cm(Ω) +
∑

|β|=m
sup

x,y∈Ω
x6=y

|Dβf(x) −Dβf(y)|
|x − y|α . (A.460)
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The so-called Hölder space Cm,α(Ω), equipped with the norm ‖ · ‖Cm,α(Ω), becomes a

Banach space. Again, for an unbounded domain Ω we consider as Cm,α(Ω) the Banach

space of all bounded functions of class Cm. We have for 0 < β < α ≤ 1 the inclusions

Cm,α(Ω) ⊂ Cm,β(Ω) ⊂ Cm(Ω). (A.461)

It is also clear that Cm,1(Ω) ⊂/ Cm+1(Ω). In general Cm+1(Ω) ⊂/ Cm,1(Ω) either, but for

some particular domains Ω the inclusion applies, e.g., for convex domains.

Let m ∈ N0 and let 0 < β < α ≤ 1, then we have the continuous imbeddings

Cm+1(Ω) →֒ Cm(Ω), (A.462)

Cm,α(Ω) →֒ Cm(Ω), (A.463)

Cm,α(Ω) →֒ Cm,β(Ω). (A.464)

If Ω is bounded, then the imbeddings (A.463) and (A.464) are compact. Furthermore, if Ω

is convex, then we have also the continuous imbeddings

Cm+1(Ω) →֒ Cm,1(Ω), (A.465)

Cm+1(Ω) →֒ Cm,α(Ω). (A.466)

If Ω is convex and bounded, then the imbeddings (A.462) and (A.466) are compact.

A.4.2 Lebesgue spaces

The Lebesgue or Lp spaces correspond to classes of Lebesgue measurable functions

defined on the domain Ω ⊂ R
N . They are defined, for 1 ≤ p ≤ ∞, by

Lp(Ω) = {f : Ω → C | ‖f‖Lp(Ω) <∞}, (A.467)

where the Lp-norm is given by

‖f‖Lp(Ω) =





(∫

Ω

|f(x)|p dx

)1/p

, 1 ≤ p <∞,

ess sup
x∈Ω

|f(x)|, p = ∞.
(A.468)

The appearing integrals have to be understood in the sense of Lebesgue (cf. Royden 1988),

which is named after the French mathematician Henri Léon Lebesgue (1875–1941), who

became famous for his theory of integration. We say that two functions are equal almost

everywhere if they are equal except on a set of measure zero. Functions which are equal

almost everywhere in the domain Ω are therefore identified together in Lp(Ω). The essential

supremum is likewise defined in this sense by

ess sup
x∈Ω

|f(x)| = inf{C > 0 : |f(x)| ≤ C almost everywhere in Ω}. (A.469)

We remark that Lp spaces, supplied with the Lp-norm, are Banach spaces. A normed vector

space is said to be separable if it contains a countable dense subset. For 1 < p < ∞, we

have that the space Lp(Ω) is separable, reflexive, and its dual space Lp(Ω)′ is identified

with Lq(Ω), where 1
p

+ 1
q

= 1. The space L1(Ω) is separable, but not reflexive, and its dual

space L1(Ω)′ is identified with L∞(Ω). The space L∞(Ω) is neither separable nor reflexive,
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and its dual space L∞(Ω)′ is strictly contained in L1(Ω). If

fi ∈ Lpi(Ω) (1 ≤ i ≤ n) with
1

p
=

n∑

i=1

1

pi
≤ 1, 1 ≤ pi ≤ ∞, (A.470)

then the multiplication of these functions fi is such that

f = f1f2 · · · fn ∈ Lp(Ω), (A.471)

and furthermore

‖f‖Lp(Ω) ≤ ‖f‖Lp1 (Ω)‖f‖Lp2 (Ω) · · · ‖f‖Lpn (Ω). (A.472)

If f ∈ Lp(Ω) ∩ Lq(Ω) with 1 ≤ p ≤ q ≤ ∞, then f ∈ Lr(Ω) for all p ≤ r ≤ q, and we

have moreover the interpolation inequality

‖f‖Lr(Ω) ≤ ‖f‖αLp(Ω)‖f‖1−α
Lq(Ω), where

1

r
=
α

p
+

1 − α

q
(0 ≤ α ≤ 1). (A.473)

In the particular case when p = 2, it holds that L2(Ω) is also a Hilbert space with respect

to the inner product

(f, g)L2(Ω) =

∫

Ω

f(x) g(x) dx, ∀f, g ∈ L2(Ω). (A.474)

Its dual space L2(Ω)′ is identified with the space L2(Ω) itself.

We can likewise define the Lploc spaces by

Lploc(Ω) = {f : Ω → C | f ∈ Lp(K) ∀K ⊂ Ω, K compact}, (A.475)

which behave locally as Lp spaces, i.e., on each compact subset K of Ω. These locally

defined functional spaces can not be supplied with reasonable norms, but nevertheless a

Fréchet space structure may be defined for them (cf. Bony 2001). Fréchet spaces are certain

topological vector spaces which are locally convex and complete with respect to a trans-

lation invariant metric. They receive their name from the French mathematician Maurice

Fréchet (1878–1973), who is responsible for introducing the concept of metric spaces.

A.4.3 Sobolev spaces of integer order

We define now the Sobolev spaces Wm,p, for 1 ≤ p ≤ ∞ and m ∈ N0, by

Wm,p(Ω) = {f : Ω → C | Dαf ∈ Lp(Ω) ∀α ∈ N
N
0 , |α| ≤ m}, (A.476)

or alternatively, by

Wm,p(Ω) = {f : Ω → C | ‖f‖Wm,p(Ω) <∞}, (A.477)

where the Wm,p-norm is given by

‖f‖Wm,p(Ω) =





(
∑

|α|≤m
‖Dαf‖pLp(Ω)

)1/p

, 1 ≤ p <∞,

max
|α|≤m

‖Dαf‖L∞(Ω), p = ∞.

(A.478)
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The Sobolev spaces Wm,p are actually Banach spaces, provided that the derivatives are

taken in the sense of distributions (vid. Section A.6). If m = 0, then we retrieve

W 0,p(Ω) = Lp(Ω), 1 ≤ p ≤ ∞. (A.479)

For p = 2 the space Wm,2(Ω) becomes a Hilbert space, and is denoted in particular by

Hm(Ω) = Wm,2(Ω). (A.480)

The space Hm(Ω) is supplied with the inner product

(f, g)Hm(Ω) =
∑

|α|≤m

∫

Ω

Dαf(x)Dαg(x) dx ∀f, g ∈ Hm(Ω), (A.481)

and hence with the norm

‖f‖Hm(Ω) =

(
∑

|α|≤m

∫

Ω

|Dαf(x)|2 dx

)1/2

∀f ∈ Hm(Ω). (A.482)

We refer toHm(Ω) as the Sobolev space of orderm. Sobolev spaces of higher order contain

elements with a higher degree of smoothness or regularity. We remark that if f ∈ Hm(Ω),

then ∂f/∂xi ∈ Hm−1(Ω) for 1 ≤ i ≤ N .

Due density, we can define now the space Hm
0 (Ω) as the closure of Cm

0 (Ω) under

the Hm-norm (A.482), i.e.,

Hm
0 (Ω) = Cm

0 (Ω)
‖·‖Hm(Ω)

. (A.483)

We remark that if the domain Ω is regular enough, then the space Hm(Ω) can be defined

alternatively as the completion of C∞(Ω) with respect to the norm ‖ · ‖Hm(Ω), which means

that for every f ∈ Hm(Ω) there exists a sequence {fk}k∈N ⊂ C∞(Ω) such that

lim
k→∞

‖f − fk‖Hm(Ω) = 0. (A.484)

In the same manner as for the Lp spaces, we can also consider locally defined Hm
loc

Sobolev spaces, given by

Hm
loc(Ω) = {f : Ω → C | f ∈ Hm(K) ∀K ⊂ Ω, K compact}, (A.485)

which behave as Hm spaces on each compact subset K of Ω, and can be treated in the

framework of Fréchet spaces.

A.4.4 Sobolev spaces of fractional order

Sobolev spaces can be also defined for non-integer values of m, so-called fractional

orders and denoted by s. For this we consider first the particular case when the domain Ω

is the full space R
N , in which case the Sobolev spaces of fractional order are defined by

means of a Fourier transform (vid. Section A.7). For a real value s we use the norm

‖f‖Hs(RN ) =

(∫

RN

(1 + |ξ|2)s|f̂(ξ)|2 dξ

)1/2

, (A.486)
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where f̂ denotes the Fourier transform of f . The weighting factor (1 + |ξ|2)s/2 is known as

Bessel’s potential of order s. The expression (A.486) defines an equivalent norm to (A.482)

in Hm(RN) if s = m, but holds also for non-integer and even negative values of s. If s is

real and positive, then the Sobolev spaces of fractional order are defined by

Hs(RN) = {f ∈ L2(RN) : ‖f‖Hs(RN ) <∞}, (A.487)

which is equivalent to the definition given previously, when s = m. If we allow negative

values for s, then the definition (A.487) has to be extended to admit as well tempered

distributions in S ′(RN) (vid. Sections A.6 & A.7). Thus in general, if s ∈ R, then the

Sobolev spaces of fractional order are defined by

Hs(RN) = {f ∈ S ′(RN) : ‖f‖Hs(RN ) <∞}. (A.488)

We observe that the Sobolev space H−s(RN) is the dual space of Hs(RN).

If we consider now a proper subdomain Ω of R
N , then the Sobolev spaces of fractional

order, for s ≥ 0, are defined by

Hs(Ω) = {f : Ω → C | ∃F ∈ Hs(RN) such that F |Ω = f}, (A.489)

and have the norm

‖f‖Hs(Ω) = inf{‖F‖Hs(RN ) : F |Ω = f}. (A.490)

We remark that if Ω is a pathological domain such as those depicted in Figure A.14, then

the new definition (A.489) is not equivalent to the old one for Hm(Ω) if s = m.

Since C∞
0 (Ω) ⊂ C∞(Ω), where for any f ∈ C∞

0 (Ω) the trivial extension f̃ by zero

outside of Ω is in C∞
0 (RN), we define the space H̃s(Ω) for s ≥ 0 to be the completion

of C∞
0 (Ω) with respect to the norm

‖f‖H̃s(Ω) = ‖f̃‖Hs(RN ). (A.491)

This definition implies that

H̃s(Ω) = {f ∈ Hs(RN) : supp f ⊂ Ω}. (A.492)

We remark that the space H̃s(Ω) is often also denoted as Hs
00(Ω) (cf., e.g., Lions & Ma-

genes 1972). If Ω = R
N , then the Hs and H̃s spaces coincide, i.e.,

H̃s(RN) = Hs(RN). (A.493)

For negative orders we have that H−s(Ω) is the dual space of H̃s(Ω), i.e.,

H−s(Ω) = H̃s(Ω)′, (A.494)

where the norm is defined by means of the inner product in L2(Ω), namely

‖f‖H−s(Ω) = sup
0 6=ϕ∈H̃s(Ω)

|(f, ϕ)L2(Ω)|
‖ϕ‖H̃s(Ω)

, s > 0. (A.495)

In the same way, the space H̃−s(Ω) is the dual space of Hs(Ω), i.e.,

H̃−s(Ω) = Hs(Ω)′, (A.496)
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and is provided with the norm of the dual space

‖f‖H̃−s(Ω) = sup
0 6=ψ∈Hs(Ω)

|(f, ψ)L2(Ω)|
‖ψ‖Hs(Ω)

, s > 0. (A.497)

It can be shown that the definition (A.492) applies also for s < 0 if Ω is regular enough.

For s > 0 we obtain the inclusions

H̃s(Ω) ⊂ Hs(Ω) ⊂ L2(Ω) ⊂ H̃−s(Ω) ⊂ H−s(Ω). (A.498)

It holds in particular for 0 ≤ s < 1
2

that H̃s(Ω) = Hs(Ω) and H̃−s(Ω) = H−s(Ω),

which is not true anymore for s ≥ 1
2
. We have in this chain that L2(Ω) is the only

Sobolev space that is identified with its dual space, and is therefore called pivot space.

It is a standard practice to represent the duality pairings among Sobolev spaces just as in-

ner products in L2(Ω), that is, the integral notation is maintained even if the elements are

no longer L2-integrable. In fact, the norm definitions (A.495) and (A.497) for the dual

spaces V ′ = H−s(Ω) and H̃−s(Ω) for s > 0 are based on this representation. In this case,

if f ∈ V ′ but f /∈ L2(Ω), then we define

〈f, ϕ〉V ′,V = lim
n→∞

(fn, ϕ)L2(Ω) = lim
n→∞

∫

Ω

fn(x)ϕ(x) dx ∀ϕ ∈ V, (A.499)

where V is correspondingly either H̃s(Ω) or Hs(Ω), where 〈·, ·〉V ′,V denotes the sesquilin-

ear duality product between V ′ and V , and where {fn} ⊂ L2(Ω) is a sequence such that

lim
n→∞

‖f − fn‖V ′ = 0. (A.500)

We know that the sequence {fn} exists and that (A.499) makes sense, since H−s(Ω) is the

completion of L2(Ω) with respect to the norm of the dual space (A.495). We write thus

〈f, ϕ〉V ′,V = (f, ϕ)L2(Ω) (A.501)

for the duality pairing (f, ϕ) ∈ V ′ × V , where the L2-inner product on the right-hand side

is understood in the sense of (A.499) for f /∈ L2(Ω).

For s > t it holds also that Hs(Ω) ⊂ H t(Ω) and H̃s(Ω) ⊂ H̃ t(Ω), i.e., as the order of

the Sobolev spaces increases, so does the smoothness of their elements. If s = m+ σ ≥ 0,

for m ∈ N0 and 0 < σ < 1, then the space H̃s(Ω) can be characterized as the completion

of the space Cm+1
0 (Ω) with respect to the norm (A.491), namely

H̃s(Ω) = Cm+1
0 (Ω)

‖·‖
Hs(RN )

. (A.502)

A closely related space is

Hs
0(Ω) = Cm+1

0 (Ω)
‖·‖Hs(Ω)

, (A.503)

which considers the closure of Cm+1
0 (Ω), but now under the norm (A.490). It holds that

H̃s(Ω) = Hs
0(Ω) ∀s = m+ σ, m ∈ N0, |σ| < 1

2
, (A.504)

and when s = m+ 1/2, then the space H̃s(Ω) is strictly contained in Hs
0(Ω).
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We observe that the Sobolev space Hs(Ω) of fractional order s = m + σ, for m ∈ N0

and 0 < σ < 1, can be alternatively defined as

Hs(Ω) = {f ∈ L2(Ω) : ‖f‖Hs(Ω) <∞}, (A.505)

by means of the norm

‖f‖Hs(Ω) =

(
‖f‖2

Hm(Ω) +
∑

|α|=m

∫

Ω

∫

Ω

|Dαf(x) −Dαf(y)|2
|x − y|N+2σ

dx dy

)1/2

, (A.506)

where ‖ · ‖Hm(Ω) is the norm for the Sobolev space of integer order m defined in (A.482).

For further details we refer to Hsiao & Wendland (2008).

A.4.5 Trace spaces

Trace spaces are Sobolev spaces for functions defined on the boundary. If f ∈ Hs(Ω)

is continuous up to the boundary Γ of Ω, then one can say that the value which f takes

on Γ is the restriction to Γ (of the extension by continuity to Ω) of the function f , which is

denoted by f |Γ. In general, however, the elements of Hs(Ω) are defined except for a set of

N -dimensional zero measure and it is meaningless therefore to speak of their restrictions

to Γ (which has anN -dimensional zero measure). Therefore we use the concept of the trace

of a function on Γ, which substitutes and generalizes that of the restriction f |Γ whenever

the latter in the classical sense is inapplicable.

We follow the approach found in standard text books of identifying the boundary Γ

with R
N−1 by means of local parametric representations of Γ. Roughly speaking, we define

the trace spaces to be isomorphic to the Sobolev spaces Hs(RN−1).

a) Regularity of the boundary

To characterize properly the regularity of the domain Ω, its boundary Γ is described

locally by the graph of a function ϕ, and the properties of Γ are then specified through the

properties of ϕ. We say that the boundary Γ is of class Cm,α, for m ∈ N0 and 0 ≤ α ≤ 1, if

for each x ∈ Γ there exists a neighborhood Θ of x in R
N and a new orthogonal coordinate

system y = (ys, yN) ∈ R
N , being ys = (y1, . . . , yN−1) ∈ R

N−1, such that

1. for some δ, ε > 0 the neighborhood Θ is a hypercylinder in the new coordinates:

Θ = {y ∈ R
N : |ys| < δ, |yN | < ε}; (A.507)

2. there exists a function ϕ of class Cm,α defined on Q = {ys : |ys| < δ} such that

|ϕ(ys)| ≤
ε

2
∀ys ∈ Q, (A.508)

Ω ∩ Θ = {y ∈ Θ : yN < ϕ(ys)}, (A.509)

Γ ∩ Θ = {y ∈ Θ : yN = ϕ(ys)}. (A.510)

In other words, in a neighborhood Θ of x, the domain Ω is below the graph of ϕ and

consequently the boundary Γ is the graph of ϕ, as illustrated in Figure A.15. The pair (Θ, ϕ)

is called a local chart of Γ. The relation between the new coordinates y ∈ R
N and the old
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ones x ∈ R
N is given by

x = b + T (y), (A.511)

where b ∈ R
N is a constant translation vector (eventually b ∈ Γ), and where T is an

orthogonal linear transformation, i.e., an orthogonal N ×N matrix.

Γ

yN

x

Ω

ys

ε

δ

Q

Θ

ε

δ

yN = ϕ(ys)

FIGURE A.15. Local chart of Γ.

For α = 0, we say simply that Γ is of class Cm. By the regularity of the domain Ω

we mean the regularity of its boundary Γ, and thus we may write indistinctly Ω ∈ Cm

or Γ ∈ Cm. The boundary Γ is said to be of class C∞ if Γ ∈ ∩∞
m=0C

m.

In the case when Γ ∈ C0,1, the boundary is called a Lipschitz boundary (with a strong

Lipschitz property) and Ω is called a (strong) Lipschitz domain, written as Ω ∈ C0,1. Such a

boundary lies locally on only one side of Γ and does not have cusps, but can contain conical

points or edges, which are not continuously differentiable. In particular, the domains shown

in Figure A.14 are not strong Lipschitz domains. For strong Lipschitz domains a unique

unit normal vector can be defined almost everywhere on Γ. These domains are useful for

almost all practical purposes and they are regular enough so that the different definitions of

Sobolev spaces on them usually coincide.

A boundary Γ ∈ C1,α with 0 < α < 1 is called a Lyapunov boundary, and it has the

property that a unique unit normal vector can be defined everywhere on Γ. It is named after

the Russian mathematician and physicist Aleksandr Mikhailovich Lyapunov (1857–1918).

In particular, we have the inclusions

C2,0 ⊂ C1,1 ⊂ C1,α ⊂ C1,0 ⊂ C0,1, (A.512)

and, more in general,

Cm+1 ⊂ Cm,1 ⊂ Cm,α ⊂ Cm ∀m ∈ N0, 0 < α < 1. (A.513)

To prove them, let us consider a point x ∈ Γ, which is contained in some local chart (Θ, ϕ)

and described as xN = ϕ(xs), where x = (xs, xN). Then there exists a neighborhood

of xs whose closure is convex and contained in the definition domain Q of the function ϕ.

Hence, from (A.463), (A.464), and (A.465), we obtain the inclusions (A.512) and (A.513).

304



b) Definition of the trace spaces

Now let L2(Γ) be the completion of C0(Γ), the space of all continuous functions on Γ,

with respect to the norm

‖f‖L2(Γ) =

(∫

Γ

|f(x)|2 dγ(x)

)1/2

, (A.514)

which is a Hilbert space with the scalar product

(f, g)L2(Γ) =

∫

Γ

f(x) g(x) dγ(x) ∀f, g ∈ L2(Γ). (A.515)

For a strong Lipschitz domain Ω ∈ C0,1 it can be shown that there exists a unique linear

mapping γ0 : H1(Ω) → L2(Γ) such that if f ∈ C0(Ω) then γ0f = f |Γ. For f ∈ H1(Ω) we

call γ0f the trace of f on Γ and the mapping γ0 the trace operator (of order 0). However,

in order to characterize all those elements in L2(Γ) which can be the trace of elements

of H1(Ω), we introduce also the trace spaces Hs(Γ). For s = 0 we set H0(Γ) = L2(Γ).

Let the boundary Γ be bounded, in which case there exists a covering of Γ by a finite

union of open neighborhoods Θj ⊂ R
N in the form of (A.507), for 1 ≤ j ≤ p < ∞,

such that Γ is enclosed in the set
⋃p
j=1 Θj . Such an open covering of Γ and the collection

of all the local parametric representations ϕj of Γ on each neighborhood Θj is called a

finite atlas. Each function ϕj has a definition domain Qj and is described by a different

orthogonal coordinate system, which is obtained by means of a translation vector bj and

an orthogonal linear transformation Tj , as described in (A.511). If the boundary Γ is un-

bounded, we still suppose that there exists a finite atlas of Γ, i.e., there is a finite amount of

local charts that encompasses the unbounded portions of Γ, and therefore the same results

apply also to this case. We consider now the parametric representation of Γ through the

mappings Φj : Qj → Γ defined by

x = Φj(ys) = bj + Tj

(
ys, ϕj(ys)

)
, ys ∈ Qj, x ∈ Γ. (A.516)

For Γ ∈ Cm,α, this allows us to define in a first step the trace space Hs(Γ), for all s

with 0 ≤ s < m+ α for non-integer m+ α or 0 ≤ s ≤ m+ α for integer m+ α, by

Hs(Γ) = {f ∈ L2(Γ) : f ◦ Φj ∈ Hs(Qj), 1 ≤ j ≤ p}, (A.517)

where ◦ denotes the composition of two functions. This space is equipped with the norm

‖f‖Hs(Γ) =

(
p∑

j=1

‖f ◦ Φj‖2
Hs(Qj)

)1/2

, (A.518)

and it becomes a Hilbert space with the inner product

(f, g)Hs(Γ) =

p∑

j=1

(f ◦ Φj, g ◦ Φj)Hs(Qj) ∀f, g ∈ Hs(Γ). (A.519)

We note that the above restrictions for s are necessary since otherwise the differentiations

with respect to ys required in (A.518) and (A.519) may not be well defined. In an addi-

tional step, these definitions, (A.518) and (A.519), can be rewritten in terms of the Sobolev
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spacesHs(RN−1) by using a partition of unity, i.e., a set of positive functions λj ∈ C∞
0 (Θj)

such that
p∑

j=1

λj(x) = 1 (A.520)

in some neighborhood of Γ. For f given on Γ, we define the extended function on R
N−1 by

(λ̃jf)(ys) =

{
(λjf)

(
Φj(ys)

)
for ys ∈ Qj,

0 otherwise.
(A.521)

This allows us to redefine the trace space (A.517) as

Hs(Γ) = {f ∈ L2(Γ) : λ̃jf ∈ Hs(RN−1), 1 ≤ j ≤ p}. (A.522)

The corresponding norm now reads

‖f‖Hs(Γ) =

(
p∑

j=1

‖λ̃jf‖2
Hs(RN−1)

)1/2

, (A.523)

and is associated with the scalar product

(f, g)Hs(Γ) =

p∑

j=1

(λ̃jf, λ̃jg)Hs(RN−1) ∀f, g ∈ Hs(Γ). (A.524)

Since the extended functions λ̃jf are defined on R
N−1 having compact supports in Qj , and

since in (A.523) and (A.524) we are using Hs(RN−1), we can introduce via L2-duality the

whole scale of Sobolev spaces Hs(Γ), for all s with −m − α < s < m + α for non-

integer m+α or −m−α ≤ s ≤ m+α for integer m+α. We have that H−s(Γ) is the dual

space of Hs(Γ), and for s > 0 it can be defined as the completion of L2(Γ) with respect to

the norm

‖f‖H−s(Γ) = sup
‖ϕ‖Hs(Γ)=1

|(ϕ, f)L2(Γ)|. (A.525)

The trace spaces can be alternatively defined in terms of boundary norms. We define

the space Hs(Γ), for 0 < s < 1, as the completion of C0(Γ) with respect to the norm

‖f‖Hs(Γ) =

(
‖f‖2

L2(Γ) +

∫

Γ

∫

Γ

|f(x) − f(y)|2
|x − y|N−1+2s

dx dy

)1/2

, (A.526)

which means that we can define

Hs(Γ) = {f ∈ L2(Γ) : ‖f‖Hs(Γ) <∞}. (A.527)

Again, Hs(Γ) is a Hilbert space when equipped with the inner product

(f, g)Hs(Γ) = (f, g)L2(Γ) +

∫

Γ

∫

Γ

(
f(x) − f(y)

)(
g(x) − g(y)

)

|x − y|N−1+2s
dx dy. (A.528)

To use this definition for s ≥ 1 is more complicated. Further details can be found in the

book of Hsiao & Wendland (2008).
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A third alternative to define the trace spaces on Γ is to use extensions of functions

defined on Γ to Sobolev spaces defined in Ω. For s > 0 we define the Sobolev space

Hs(Γ) = {f ∈ L2(Γ) : ∃ f̃ ∈ Hs+ 1
2 (Ω) such that γ0f̃ = f̃ |Γ = f on Γ}, (A.529)

which is supplied with the norm

‖f‖Hs(Γ) = inf
γ0f̃=f

‖f̃‖Hs+1/2(Ω). (A.530)

We observe that this definition for trace spaces can be used without problem for any s > 0,

and it fulfills in a natural way the trace theorem.

As mentioned in Grisvard (1985), we remark that when a function f is a solution in Ω

of an elliptic partial differential equation, then f has traces on the boundary provided it

belongs to any Sobolev space, without any restriction to s.

c) Trace theorem

The trace theorem characterizes the conditions for the existence of the so-called trace

operator. Let Ω be a domain with a boundary Γ of class Cm,1 with m ∈ N0 and where s is

taken such that 1
2
< s ≤ m+ 1. Under these conditions, the trace theorem states that there

exists a linear continuous trace operator γ0 with

γ0 : Hs(Ω) −→ Hs− 1
2 (Γ), (A.531)

which is an extension of

γ0f = f |Γ for f ∈ C0(Ω). (A.532)

The theorem characterizes also traces of higher order. For a domain Ω with a boundary Γ

of class Cm,1, we consider j,m ∈ N0 and we take s such that 1
2

+ j < s ≤ m + 1. Then

there exists a linear continuous trace operator γj with

γj : Hs(Ω) −→ Hs−j− 1
2 (Γ), (A.533)

which is an extension of the normal derivatives of order j

γjf =
∂jf

∂nj
|Γ = (n · ∇)jf |Γ for f ∈ Cℓ(Ω) with s+ j ≤ ℓ ∈ N, (A.534)

where n denotes the unit boundary normal vector that points outwards of the domain Ω.

Moreover, the trace theorem states that under these conditions all the different definitions

of trace spaces are equivalent.

d) The spaces H1/2(Γ), H−1/2(Γ), and H1(∆; Ω)

Of particular interest in our case are the trace spaces H1/2(Γ) and H−1/2(Γ). The trace

space H1/2(Γ) can be defined either by (A.522), (A.527), or (A.529) for s = 1
2
, where the

norm is given respectively by (A.523), (A.526), or (A.530). If Γ ∈ C0,1, then the three

presented alternative definitions for H1/2(Γ) coincide. Its dual space H−1/2(Γ) is given by

the completion of L2(Γ) with respect to the norm of the dual space (A.525).
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As mentioned in Raviart (1991), we have that a particularly interesting space to work

with traces is

H1(∆; Ω) = {f ∈ H1(Ω) : ∆f ∈ L2(Ω)}, (A.535)

provided with the norm

‖f‖H1(∆;Ω) =
(
‖f‖2

H1(Ω) + ‖∆f‖2
L2(Ω)

)1/2

, (A.536)

since this space is adjusted enough so as to still allow to define the trace of the normal

derivative. In fact, for f ∈ H1(∆; Ω) and due the trace theorem, we have that

γ0f = f |Γ ∈ H1/2(Γ), (A.537)

γ1f =
∂f

∂n
|Γ ∈ H−1/2(Γ). (A.538)

e) Trace spaces on an open surface

In some applications we need trace spaces on an open connected part Γ0 ⊂ Γ of a

closed boundary Γ. Let us assume that Γ ∈ Cm,1 with m ∈ N0. In the two-dimensional

case Γ0 ⊂ Γ = ∂Ω with Ω ∈ R
2, the boundary of Γ0 is denoted by γ = ∂Γ0 and consists

just of two endpoints γ = {z1, z2}. In the three-dimensional case, the boundary ∂Γ0 of Γ0

is a closed curve γ. We assume that s satisfies |s| ≤ m+ 1, and thus all the definitions for

the trace space Hs(Γ) coincide. As before, let us introduce the space of trivial extensions

from Γ0 to Γ of functions f defined on Γ0 by zero outside of Γ0, which are denoted by f̃ .

Thus we define

H̃s(Γ0) = {f ∈ Hs(Γ) : f |Γ\Γ0
= 0} = {f ∈ Hs(Γ) : supp f ⊂ Γ0} (A.539)

as a subspace of Hs(Γ) with the corresponding norm

‖f‖H̃s(Γ0) = ‖f̃‖Hs(Γ). (A.540)

By definition, H̃s(Γ0) ⊂ Hs(Γ). For s ≥ 0 we also introduce the space

Hs(Γ0) = {f = F |Γ0 : F ∈ Hs(Γ)}, (A.541)

equipped with the norm

‖f‖Hs(Γ0) = inf
F∈Hs(Γ)
F |Γ0=f

‖F‖Hs(Γ). (A.542)

Clearly H̃s(Γ0) ⊂ Hs(Γ0). The dual space H−s(Γ0) with respect to the inner product

in L2(Γ0) is well defined by the completion of L2(Γ0) with respect to the norm

‖f‖H−s(Γ0) = sup
0 6=ϕ∈H̃s(Γ0)

|(f, ϕ)L2(Γ0)|
‖ϕ‖H̃s(Γ0)

, s > 0. (A.543)

Correspondingly, we also have the dual space H̃−s(Γ0) with the norm

‖f‖H̃−s(Γ0) = sup
0 6=ψ∈Hs(Γ0)

|(f, ψ)L2(Γ0)|
‖ψ‖Hs(Γ0)

, s > 0. (A.544)
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It holds therefore that

H−s(Γ0) = H̃s(Γ0)
′, (A.545)

H̃−s(Γ0) = Hs(Γ0)
′. (A.546)

We have for s > 0 also the inclusions

H̃s(Γ0) ⊂ Hs(Γ0) ⊂ L2(Γ0) ⊂ H̃−s(Γ0) ⊂ H−s(Γ0). (A.547)

Similar as before, if s < 1
2
, then H̃s(Γ0) = Hs(Γ0). For s > 1

2
, we note that f ∈ H̃s(Γ0)

satisfies f |γ = 0. Hence, we can introduce the space Hs
0(Γ0) as the completion of H̃s(Γ0)

with respect to the norm ‖ · ‖Hs(Γ0). It holds then that H̃s(Γ0) = Hs
0(Γ0) if s 6= m + 1

2

for m ∈ N0, and that H̃m+1/2(Γ0) is strictly contained in H
m+1/2
0 (Γ0).

A.4.6 Imbeddings of Sobolev spaces

It is primarily the imbedding characteristics (vid. Section A.3) of Sobolev spaces that

render these spaces so useful in analysis, especially in the study of differential and integral

operators. By knowing the mapping properties of such an operator in terms of Sobolev

spaces, for example, it can be determined whether the operator is continuous or compact.

In R
N we have the continuous imbedding

Hs(RN) →֒ H t(RN) for −∞ < t ≤ s <∞. (A.548)

If m ∈ N0 and 0 ≤ α < 1, then it holds that

Hs(RN) →֒ Cm,α(RN) for s > m+ α+
N

2
, (A.549)

which holds also if s = m+ α+ N
2

and 0 < α < 1.

We consider now a bounded strong Lipschitz domain Ω ∈ C0,1. Then we have the

compact and continuous imbeddings

Hs(Ω) →֒c H t(Ω) for −∞ < t < s <∞, (A.550)

H̃s(Ω) →֒c H̃ t(Ω) for −∞ < t < s <∞, (A.551)

Hs(Ω) →֒c Cm,α(Ω) for s > m+ α− N

2
, 0 ≤ α < 1, m ∈ N0. (A.552)

We have also the continuous imbedding

Hs(Ω) →֒ Cm,α(Ω) for s = m+ α− N

2
, 0 < α < 1, m ∈ N0. (A.553)

Let Γ be a boundary of class Ck,1, k ∈ N0, and let |t|, |s| ≤ k + 1
2
. Then we have the

compact imbeddings

Hs(Γ) →֒c H t(Γ) for t < s, (A.554)

Hs(Γ) →֒c Cm,α(Γ) for s > m+ α+
N

2
− 1

2
, 0 ≤ α < 1, m ∈ N0. (A.555)
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A.5 Vector calculus and elementary differential geometry

Vector calculus, also known as vector analysis, is a field in mathematics that is con-

cerned with multi-variable real or complex analysis of vectors. Vector calculus is con-

cerned with scalar fields, which associate a scalar to every point in space, and vector fields,

which associate a vector to every point in space. Differential geometry is a mathematical

discipline that uses the methods of differential and integral calculus to study problems in

geometry. It has grown into a field that is concerned more generally with geometric struc-

tures on differentiable manifolds, being closely related to differential topology and with the

geometric aspects of the theory of differential equations.

Our goal is not to give a complete survey, but rather to define roughly operators that

arise in these disciplines and use them to state some important integral theorems, which

are used throughout this thesis. The main references for our approach on these subjects are

Lenoir (2005), Nédélec (2001), and Terrasse & Abboud (2006).

A.5.1 Differential operators on scalar and vector fields

We are herein interested in defining differential operators that act on complex scalar

and vector fields in R
N, in particular for N = 2 or 3. We define the scalar, inner, or dot

product of two vectors a, b ∈ C
N by the scalar quantity

a · b =
N∑

i=1

aibi, (A.556)

where z stands for the complex conjugate of z ∈ C. Some properties of the dot product,

for a, b, c ∈ C
N , are

a · a = |a|2, (A.557)

a · b = b · a, (A.558)

a · (b + c) = a · b + a · c. (A.559)

The vector or cross product of two vectors, on the other hand, is particular to three-

dimensional space (N = 3). It is defined, for a, b ∈ C
3, by the vector

a×b =

∣∣∣∣∣∣

x̂1 x̂2 x̂3

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣
= (a2b3−a3b2)x̂1 +(a3b1−a1b3)x̂2 +(a1b2−a2b1)x̂3, (A.560)

where x̂1, x̂2, and x̂3 are the canonical cartesian unit vectors in R
3. We can define also a

cross product in two dimensions (N = 2), which yields for a, b ∈ C
2 the scalar value

a × b =

∣∣∣∣
a1 a2

b1 b2

∣∣∣∣ = a1b2 − a2b1. (A.561)

The cross product satisfies, for a, b, c ∈ C
N and α ∈ C, the identities

a × a = 0, (A.562)

a × b = −b × a, (A.563)
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a × (b + c) = a × b + a × c, (A.564)

(αa) × b = a × (αb) = α(a × b). (A.565)

In particular when N = 3, the dot and cross products satisfy, for a, b, c,d ∈ C
3,

a · (b × c) = b · (c × a) = c · (a × b), (A.566)

a × (b × c) = (a · c)b − (a · b)c, (A.567)

(a × b) · (c × d) = (a · c)(b · d) − (a · d)(b · c). (A.568)

For N = 2 and a, b, c,d ∈ C
2, it holds that

a(b × c) = b(a × c) − c(a × b), (A.569)

(a × b)(c × d) = (a · c)(b · d) − (a · d)(b · c). (A.570)

Another vector operation is given by the dyadic, tensor, or outer product of two vectors,

which results in a matrix and is defined, for a, b ∈ C
N , by

a ⊗ b = a b∗ = a b
T
, (A.571)

where b∗ stands for the conjugated transpose of b, being bT the transposed vector. In three

dimensions (N = 3) it is given by

a ⊗ b =



a1

a2

a3


 [ b1 b2 b3

]
=



a1b1 a1b2 a1b3
a2b1 a2b2 a2b3
a3b1 a3b2 a3b3


, (A.572)

whereas in two dimensions (N = 2) it takes the form of

a ⊗ b =

[
a1

a2

] [
b1 b2

]
=

[
a1b1 a1b2
a2b1 a2b2

]
. (A.573)

The dyadic product satisfies, for a, b, c ∈ C
N and α ∈ C, the properties

(αa) ⊗ b = a ⊗ (αb) = α(a ⊗ b), (A.574)

a ⊗ (b + c) = a ⊗ b + a ⊗ c, (A.575)

(a + b) ⊗ c = a ⊗ c + b ⊗ c. (A.576)

It is interesting to observe that the N ×N identity matrix I can be expressed as

I =
N∑

i=1

x̂i ⊗ x̂i, (A.577)

being x̂i, for 1 ≤ i ≤ N , the canonical vectors in R
N.

We define the gradient of a scalar field f : R
N → C as the vector field whose compo-

nents are the partial derivatives of f , i.e.,

grad f = ∇f =

(
∂f

∂x1

,
∂f

∂x2

, . . . ,
∂f

∂xN

)
. (A.578)
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The divergence of a vector field v : R
N → C

N is defined as the scalar field

div v = ∇ · v =
N∑

i=1

∂vi
∂xi

. (A.579)

The common notation ∇ · v for the divergence is a convenient mnemonic, although it

constitutes a slight abuse of notation and therefore we rather denote it by div v.

The curl or rotor of a vector field has no general formula that holds for all dimensions.

It is particular to three-dimensional space, although generalizations to other dimensions

have been performed by using exterior or wedge products. In three dimensions and in

cartesian coordinates, the curl of a vector field v : R
3 → C

3 is defined as the vector field

curl v = ∇× v =

(
∂v3

∂x2

− ∂v2

∂x3

)
x̂1 +

(
∂v1

∂x3

− ∂v3

∂x1

)
x̂2 +

(
∂v2

∂x1

− ∂v1

∂x2

)
x̂3. (A.580)

The curl can be also rewritten as a determinant or a matrix operation, namely

curl v =

∣∣∣∣∣∣

x̂1 x̂2 x̂3
∂
∂x1

∂
∂x2

∂
∂x3

v1 v2 v3

∣∣∣∣∣∣
=




0 − ∂
∂x3

∂
∂x2

∂
∂x3

0 − ∂
∂x1

− ∂
∂x2

∂
∂x1

0


v. (A.581)

In two dimensions we can define two different curls, a scalar and a vectorial one, which are

respectively given, for v : R
2 → C

2 and f : R
2 → C, by

curl v = ∇× v =

∣∣∣∣
∂
∂x1

∂
∂x2

v1 v2

∣∣∣∣ =
∂v2

∂x1

− ∂v1

∂x2

, (A.582)

Curl f =

∣∣∣∣
x̂1 x̂2
∂f
∂x1

∂f
∂x2

∣∣∣∣ =
∂f

∂x2

x̂1 −
∂f

∂x1

x̂2. (A.583)

The Laplace operator for a scalar field f : R
N → C is defined by

∆f =
N∑

i=1

∂2f

∂x2
i

, (A.584)

whereas the Laplace operator for a vectorial field v : R
N → C

N is given by

∆v =
N∑

i=1

∂2v

∂x2
i

. (A.585)

The double-gradient or Hessian matrix of a scalar field f : R
N → C is the square

matrix of its second-order partial derivatives, which is defined by

∇∇f = Hf = ∇⊗∇f =




∂2f

∂x2
1

· · · ∂2f

∂x1∂xN
...

. . .
...

∂2f

∂xN∂x1

· · · ∂2f

∂x2
N



. (A.586)
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The following vector identities hold for v : R
N → C

N and f, g : R
N → C:

∇(fg) = f∇g + g∇f, (A.587)

div(fv) = f div v + ∇f · v, (A.588)

curl(fv) = f curl v + ∇f × v, (A.589)

In three dimensions, for v,u : R
3 → C

3 and f : R
3 → C, we have in particular that

∆v = ∇ div v − curl curl v, (A.590)

∆f = div∇f, (A.591)

div(u × v) = v · curl u − u · curl v, (A.592)

curl(u × v) = (v · ∇)u − (u · ∇)v − v div u + u div v, (A.593)

∇(u · v) = (v · ∇)u + (u · ∇)v + v × curl u + u × curl v, (A.594)

div curl v = 0, (A.595)

curl∇f = 0, (A.596)

whereas in two dimensions, for v,u : R
2 → C

2 and f, g : R
2 → C, it holds that

∆v = ∇ div v − Curl curl v, (A.597)

∆f = div∇f = − curl Curl f, (A.598)

Curl(fg) = f Curl g + gCurl f, (A.599)

Curl(u · v) = u⊥ div v + v⊥ div u + (v ×∇)u + (u ×∇)v, (A.600)

Curl(u × v) = u div v − v div u + (v · ∇)u − u · ∇)v, (A.601)

∇(u · v) = u div v + v div u − (v ×∇)u⊥ − (u ×∇)v⊥, (A.602)

∇(u × v) = u curl v − v curl u − (v ×∇)u + (u ×∇)v, (A.603)

Curl f × v = ∇f · v, (A.604)

Curl f = ∇f⊥, (A.605)

div Curl f = 0, (A.606)

Curl div v = 0, (A.607)

curl∇f = 0, (A.608)

∇curl v = 0, (A.609)

where v⊥ = (v2,−v1) denotes the orthogonal vector to v, which fulfills v · v⊥ = 0.

A.5.2 Green’s integral theorems

The Green’s integral theorems constitute a generalization of the known integration-

by-parts formula of integral calculus to functions with several variables. As is the case

with the Green’s function, these theorems are also named after the British mathematician

and physicist George Green (1793–1841). They play a crucial role in the development of

integral representations and equations for harmonic and scattering problems.
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As shown in Figure A.16, we consider an open and bounded domain Ω ⊂ R
N , that has

a regular (strong Lipschitz) boundary Γ = ∂Ω, and where the unit surface normal n points

outwards of Ω.

n

Ω

Γ

FIGURE A.16. Domain Ω for the Green’s integral theorems.

The Gauss-Green theorem states that if u ∈ H1(Ω), then
∫

Ω

∂u

∂xi
dx =

∫

Γ

uni dγ (i = 1, . . . , N), (A.610)

which is directly related to the divergence theorem for a vector field (stated below).

The integration-by-parts formula in several variables is given, for u, v ∈ H1(Ω), by
∫

Ω

∂u

∂xi
v dx = −

∫

Ω

u
∂v

∂xi
dx +

∫

Γ

u v ni dγ (i = 1, . . . , N), (A.611)

which is obtained by applying the Gauss-Green theorem (A.610) to u v.

Green’s first integral theorem states, for u ∈ H2(Ω) and v ∈ H1(Ω), that
∫

Ω

∆u v dx = −
∫

Ω

∇u · ∇v dx +

∫

Γ

∂u

∂n
v dγ, (A.612)

obtained by employing (A.611) with v = ∂u/∂xi. The theorem still remains valid for

somewhat less regular functions u, v such that u, v ∈ H1(Ω) and ∆u ∈ L2(Ω), that is,

when u ∈ H1(∆; Ω). In this case the integral on Γ in (A.612) has to be understood in

general in the sense of the duality product between H−1/2(Γ) and H1/2(Γ).

Similarly, by combining adequately u and v in (A.612) we obtain Green’s second inte-

gral theorem, given, for u, v ∈ H2(Ω), by
∫

Ω

(u∆v − v∆u) dx =

∫

Γ

(
u
∂v

∂n
− v

∂u

∂n

)
dγ, (A.613)

which holds also for u, v ∈ H1(Ω) such that ∆u,∆v ∈ L2(Ω), i.e., for u, v ∈ H1(∆; Ω).

Again, in the latter case we have to consider in general the integrals on Γ in the sense of

the duality product between H−1/2(Γ) and H1/2(Γ).

A.5.3 Divergence integral theorem

The divergence theorem, also known as Gauss’s theorem, is related to the divergence of

a vector field. It states that if Ω ⊂ R
N is an open and bounded domain with a regular (strong
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Lipschitz) boundary Γ and with a unit surface normal n pointing outwards of Ω as shown

in Figure A.16, then we have for all u ∈ H1(Ω) and v ∈ H1(Ω)N that
∫

Ω

div(uv) dx =

∫

Ω

(∇u · v + u div v) dx =

∫

Γ

uv · n dγ. (A.614)

By considering u = 1 we obtain the following simpler version of the divergence theorem:
∫

Ω

div v dx =

∫

Γ

v · n dγ. (A.615)

The divergence theorem can be proven from the integration-by-parts formula (A.611). In

three-dimensional space, in particular, the divergence theorem relates a volume integral

over Ω (on the left-hand side) with a surface integral on Γ (on the right-hand side). More

adjusted functional spaces for the divergence theorem that still allow to define traces on the

boundary can be found in the book of Nédélec (2001).

A.5.4 Curl integral theorem

The curl theorem, also known as Stokes’ theorem after the Irish mathematician and

physicist Sir George Gabriel Stokes (1819–1903), is related with the curl of a vector field

and holds in three-dimensional space. There are, though, adaptations for other dimensions.

n

Λ

Γ

τ

τ

FIGURE A.17. Surface Γ for Stokes’ integral theorem.

This integral theorem considers an oriented smooth surface Γ ⊂ R
3 that is bounded

by a simple, closed, and smooth boundary curve Λ = ∂Γ. The curve Λ has thus a posi-

tive orientation, i.e., it is described counterclockwise according to the direction of the unit

tangent τ when the unit normal n of the surface Γ points towards the viewer, as shown in

Figure A.17, following the right-hand rule. The curl theorem states then for u ∈ H1(Γ)

and v ∈ H1(Γ)3 that
∫

Γ

(∇u× v + u curl v) · n dγ =

∫

Λ

uv · τ dλ. (A.616)

By considering u = 1 we obtain the following simpler version of the curl theorem:
∫

Γ

curl v · n dγ =

∫

Λ

v · τ dλ. (A.617)
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The curl theorem relates thus a surface integral over Γ with a line integral on Λ. We remark

that if the surface Γ is closed, then the line integrals on Λ, located on the right-hand side

of (A.616) and (A.617), become zero. As with Green’s theorems, more adjusted functional

spaces so as to still allow to define traces on the boundary can be also defined for the curl

theorem. We refer to the book of Nédélec (2001) for further details.

A.5.5 Other integral theorems

We can derive also other integral theorems from the previous ones, being particularly

useful for this purpose the integration-by-parts formula (A.611). Let Ω be a domain in R
N ,

for N = 2 or 3, whose boundary Γ is regular and whose unit normal points outwards of the

domain, as shown in Figure A.16.

In three-dimensional space (N = 3) and for u,v ∈ H1(Ω)3 it holds that
∫

Ω

(v · curl u − u · curl v) dx =

∫

Γ

u · (v × n) dγ. (A.618)

In two dimensions (N = 2), for u ∈ H1(Ω) and v ∈ H1(Ω)2, we have that
∫

Ω

(v · Curlu− u curl v) dx =

∫

Γ

u (v × n) dγ. (A.619)

By considering now the Gauss-Green theorem (A.610) and a function u ∈ H2(Ω), we

obtain the relation∫

Ω

∂2u

∂xi∂xj
dx =

∫

Γ

∂u

∂xj
ni dγ =

∫

Γ

∂u

∂xi
nj dγ i, j = 1, . . . , N. (A.620)

A.5.6 Elementary differential geometry

When dealing with trace spaces, we need to work sometimes with differential operators

on a regular surface Γ that is defined by a system of local charts, as the one shown in

Figure A.15. We are interested herein in a short and elementary introduction to this kind of

operators, and for simplicity we will avoid the language of differential forms that is usual in

differential geometry, although all the operators which we will describe are of such nature.

Let Γ be the regular boundary (e.g., of class C2) of a domain Ω in R
N , for N = 2 or 3,

which has a unit normal n that points outwards of Ω, as depicted in Figure A.16. For every

point x ∈ R
N we denote by d(x,Γ) the distance from x to the boundary Γ, given by

d(x,Γ) = inf
y∈Γ

|x − y|. (A.621)

A collection of points whose distance to the boundary is less than ε is called a tubular

neighborhood of Γ. Such a neighborhood Ωε is thus defined by

Ωε = {x ∈ R
N : d(x,Γ) < ε} = Ω+

ε ∪ Γ ∪ Ω−
ε , (A.622)

where

Ω+
ε = {x ∈ Ω

c
: d(x,Γ) < ε} and Ω−

ε = {x ∈ Ω : d(x,Γ) < ε}. (A.623)
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For ε small enough and when the boundary is regular and oriented, any point x in such a

neighborhood Ωε has a unique projection xΓ = PΓ(x) on the boundary Γ which satisfies

|x − xΓ| = d(x,Γ). (A.624)

For a regular boundary Γ that admits a tangent plane at the point xΓ, the line x − xΓ is

directed along the normal of the boundary at this point. Inside Ωε the function d(x,Γ) is

regular. We introduce the vector field

n(x) =

{
∇d(x,Γ) if x ∈ Ω+

ε ,

−∇d(x,Γ) if x ∈ Ω−
ε ,

(A.625)

which extends in a continuous manner the unit normal n on Γ, and is such that

n(x) = n(xΓ) ∀x ∈ Ωε, where xΓ = PΓ(x). (A.626)

Any point x in the tubular neighborhood Ωε can be parametrically described by

x = x(xΓ, s) = xΓ + sn(xΓ), −ε ≤ s ≤ ε, (A.627)

where xΓ ∈ Γ and

s =

{
d(x,Γ), if x ∈ Ω+

ε ,

−d(x,Γ), if x ∈ Ω−
ε .

(A.628)

The tubular neighborhood can be parametrized as

Ωε = {x = xΓ + sn(xΓ) : xΓ ∈ Γ, −ε < s < ε}, (A.629)

and similarly

Ω+
ε = {x = xΓ + sn(xΓ) : xΓ ∈ Γ, 0 < s < ε}, (A.630)

Ω−
ε = {x = xΓ + sn(xΓ) : xΓ ∈ Γ, −ε < s < 0}. (A.631)

For any fixed s such that −ε < s < ε, we introduce the surface

Γs = {x = xΓ + sn(xΓ) : xΓ ∈ Γ}. (A.632)

The field n(x) is always normal to Γs. We remark that

n(x) = ∇s(x) ∀x ∈ Ωε. (A.633)

The derivative with respect to s of a regular function defined on the tubular neighbor-

hood Ωε is confounded with the normal derivative of the function on Γs. Let u be a regular

scalar function defined on Γ. We denote now by ũ the lifting of u defined on Ωε that is

constant along the normal direction, and thus given by

ũ(x) = ũ
(
xΓ + sn(xΓ)

)
= u(xΓ). (A.634)

We introduce now some differential operators, which act on functions defined on the

surfaces Γ and Γs. The tangential gradient ∇Γu is defined as

∇Γu = gradΓu = ∇ũ|Γ, (A.635)

which is the gradient of ũ restricted to Γ. In the same way we can define the operator ∇Γsu.

It can be proven that if u is any regular function defined on the tubular neighborhood Ωε,
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then for any point x = xΓ + sn(xΓ), and in particular for s = 0, it holds that

∇u = ∇Γsu+
∂u

∂s
n. (A.636)

The tangential curl or rotational of the scalar function u is defined as

CurlΓ u =

{
curl(ũn)|Γ if N = 3,

Curl ũ|Γ if N = 2.
(A.637)

The field of normals is a gradient, which implies that when N = 3, then

curl n = 0. (A.638)

By using (A.589) we obtain that the tangential curl in three dimensions is also given by

CurlΓ u = ∇Γu× n. (A.639)

The definition of a tangential vector field’s lifting is not so straightforward as in (A.634)

for a scalar field (cf. Nédélec 2001). In this case we have to consider also a curvature

operator of the form

Rs = ∇n = ∇⊗ n, (A.640)

where the gradient of a vector is understood again in the sense of a dyadic or tensor product.

The curvature operator Rs is a symmetric tensor acting on the tangent plane, and its normal

derivative is given by
∂

∂s
Rs = −R2

s. (A.641)

On the surface Γ (when s = 0), we omit the index s. The diffeomorphism from Γ onto Γs
defined by x = xΓ + sn(xΓ) has now xΓ = x − sn(x) as its inverse, and it satisfies

R(xΓ) −Rs(x) = sRs(x)R(xΓ) = sR(xΓ)Rs(x), (A.642)
(
I + sR(xΓ)

)−1
= I − sRs(x). (A.643)

A regular tangential vector field v defined on Γ has to be extended towards the tubular

neighborhood Ωε as

ṽ(x) = v(xΓ) − sRs(x)v(xΓ), (A.644)

which corresponds to a constant extension along the normal direction, where the tangential

components of the vector are rotated proportionally with the distance s. We note that in two

dimensions the curvature operator has no effect, but it is important in three dimensions due

the degrees of freedom of the tangent planes. The surface divergence of the vector field v

is now defined as

divΓ v = div ṽ|Γ, (A.645)

while its surface curl is given by the scalar field

curlΓ v =

{
(curl ṽ · n)|Γ if N = 3,

curl ṽ|Γ if N = 2.
(A.646)

For N = 3 it holds that

curlΓ v = divΓ(v × n). (A.647)
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Similarly as in (A.639), we have in the two-dimensional case (N = 2) that

curlΓ(un) = ∇Γu× n. (A.648)

The Laplace-Beltrami operator or scalar surface Laplacian is defined by

∆Γu = divΓ ∇Γu = − curlΓ CurlΓ u, (A.649)

whereas the Hodge operator or vectorial Laplacian is given by

∆Γv = ∇Γ divΓ v − CurlΓ curlΓ v. (A.650)

It holds also that

divΓ CurlΓ u = 0, CurlΓ divΓ v = 0, (A.651)

curlΓ ∇Γu = 0, ∇Γ curlΓ v = 0. (A.652)

If Γ is a closed boundary surface, u ∈ C1(Γ) a scalar function, and v ∈ C1(Γ)N−1 a

tangential vector field, then the following Stokes’ identities hold:
∫

Γ

∇Γu · v dγ = −
∫

Γ

u divΓ v dγ, (A.653)

∫

Γ

CurlΓ u · v dγ =

∫

Γ

u curlΓ v dγ. (A.654)

Similarly, if u, v ∈ C1(Γ), then we have also that
∫

Γ

uCurlΓ v dγ = −
∫

Γ

vCurlΓ u dγ. (A.655)

For u ∈ C2(Γ) and v ∈ C1(Γ) it holds that

−
∫

Γ

∆Γu v dγ =

∫

Γ

∇Γu · ∇Γv dγ =

∫

Γ

CurlΓ u · CurlΓ v dγ. (A.656)

If u ∈ C2(Γ)N−1 and v ∈ C1(Γ)N−1 are tangential vector fields, then

−
∫

Γ

∆Γu · v dγ =

∫

Γ

divΓ u divΓ v dγ +

∫

Γ

curlΓ u curlΓ v dγ. (A.657)

Finally, by considering (A.620) and u ∈ C2(Γ) we can derive the Stokes’ type formulae
∫

Γ

(∇Γu× n) dγ =

∫

Γ

CurlΓ u dγ = 0 (N = 3), (A.658)

∫

Γ

(∇Γu× n) dγ =

∫

Γ

curlΓ(un) dγ = 0 (N = 2). (A.659)
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A.6 Theory of distributions

The theory of generalized functions or distributions was invented in order to give a

solid theoretical foundation to the Dirac delta function. The solid foundation of the the-

ory was developed in 1945 by the French mathematician Laurent Schwartz (1915–2002).

Today, this theory is fundamental in the study of partial differential equations, and comes

naturally into use in the treatment of boundary integral equations. Of special importance is

the notion of weak or distributional derivative of an integrable function, which is used in

the definition of Sobolev spaces (vid. Section A.4).

The computation of Green’s functions is performed naturally in the framework of the

theory of distributions, due the appearance of Dirac masses in its definition. It is therefore

important to have some notions of its characteristics. A complete survey of the theory

of distributions can be found in Gel’fand & Shilov (1964) and Schwartz (1978). Other

references for this theory and its applications are Bony (2001), Bremermann (1965), Chen

& Zhou (1992), Estrada & Kanwal (2002), Gasquet & Witomski (1999), Griffel (1985),

Hsiao & Wendland (2008), and Rudin (1973).

A.6.1 Definition of distribution

Let Ω be a domain in R
N. We denote as test functions in Ω the elements of the

space C∞
0 (Ω) of indefinitely differentiable functions with compact support in Ω. The sup-

port of a function is the closure of the set of points where the function does not vanish. The

space C∞
0 (Ω) is also denoted by D(Ω) and has a Fréchet space structure. We say that a se-

quence {ϕn} of test functions converges to ϕ in D(Ω) if there exists a compact set K ⊂ Ω

such that supp(ϕn − ϕ) ⊂ K for every n, and if for each multi-index α ∈ N
N
0 ,

lim
n→∞

Dαϕn(x) = Dαϕ(x), uniformly on K. (A.660)

We define a continuous linear functional T on D(Ω) as a mapping from D(Ω) to the

field K (either C or R), denoted by 〈T, ϕ〉 for ϕ ∈ D(Ω), that satisfies

〈T, αϕ1 + βϕ2〉 = α 〈T, ϕ1〉 + β 〈T, ϕ2〉 ∀α, β ∈ K, ∀ϕ1, ϕ2 ∈ D(Ω), (A.661)

and is such that

ϕn → 0 in D(Ω) =⇒ 〈T, ϕn〉 → 0 in K. (A.662)

Such a continuous linear functional is called a distribution or generalized function. The

space of (Schwartz) distributions is denoted by D′(Ω) and corresponds to the dual space

of D(Ω). Thus, the bilinear form 〈·, ·〉 : D′(Ω)×D(Ω) → K represents the duality product

between both spaces. Strictly speaking, when the underlying field K is taken as C, then

the duality product should be considered as a sesquilinear form and the distributions as

antilinear functionals. Nonetheless, for the sake of simplicity this is not usually done,

since the results in D′(Ω) are the same with the exception of a complex conjugation on

the test functions in D(Ω). We note that the space D′(Ω) has the weak∗-topology of the

dual space (cf. Rudin 1973). The vector space and convergence operations in D′(Ω) can be
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summarized, if T, S, Tn ∈ D′(Ω) and α, β ∈ K, by

〈αT + βS, ϕ〉 = α 〈T, ϕ〉 + β 〈S, ϕ〉 ∀ϕ ∈ D(Ω), (A.663)

and

Tn → T in D′(Ω) ⇐⇒ 〈Tn, ϕ〉 → 〈T, ϕ〉 in K ∀ϕ ∈ D(Ω). (A.664)

Distributions may be also multiplied by indefinitely differentiable functions to form new

distributions. If T ∈ D′(Ω) and η ∈ C∞(Ω), then the product η T ∈ D′(Ω) is defined by

〈η T, ϕ〉 = 〈T, η ϕ〉 ∀ϕ ∈ D(Ω). (A.665)

We remark, however, that the product of two distributions is not well-defined in general.

Every locally integrable function f ∈ L1
loc(Ω) defines a distribution via

〈f, ϕ〉 =

∫

Ω

f(x)ϕ(x) dx ∀ϕ ∈ D(Ω). (A.666)

The distribution f is said to be generated by the function f . A distribution that is generated

by a locally integrable function is called a regular distribution. All other distributions are

called singular. This suggests the notation

〈T, ϕ〉 =

∫

Ω

T (x)ϕ(x) dx (A.667)

for a continuous linear functional T even when T is not an L1
loc function.

A.6.2 Differentiation of distributions

Let us now define the important operation of differentiation on distributions. For

any T ∈ D′(Ω), we define DαT to be a linear functional such that

〈DαT, ϕ〉 = (−1)|α|〈T,Dαϕ〉 ∀ϕ ∈ D(Ω), (A.668)

for a given multi-index α ∈ N
N
0 . It is not difficult to see that DαT itself is again a contin-

uous linear functional, i.e., a distribution. When T is a function such that DβT ∈ L1
loc(Ω)

for all |β| ≤ |α|, then the definition (A.668) amounts to no more than integration by parts.

But when T does not admit classical derivatives, then (A.668) still allows to differentiate in

the sense of distributions, shifting the burden of differentiability from T to ϕ. Thus every

distribution in D′(Ω) possesses derivatives of arbitrary orders. This is particularly useful

when dealing with discontinuous functions, since even for them there exist well-defined

derivatives in the distributional sense.

We now define the concept of a weak or distributional derivative of a locally inte-

grable function f ∈ L1
loc(Ω). There may or may not exist a function gα ∈ L1

loc(Ω) such

that Dαf = gα in D′(Ω). If such a gα exists, it is unique up to sets of measure zero, it is

called the weak or distributional partial derivative of f , and it satisfies
∫

Ω

gα(x)ϕ(x) dx = (−1)|α|
∫

Ω

f(x)Dαϕ(x) dx ∀ϕ ∈ D(Ω). (A.669)
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If f is sufficiently smooth to have a continuous partial derivativeDαf in the classical sense,

then Dαf is also a distributional partial derivative of f . Of course Dαf may exist in the

distributional sense without existing in the classical sense.

A.6.3 Primitives of distributions

Taking a primitive from a distribution amounts to the same as when dealing with

functions. Let us begin with the case N = 1 by supposing that Ω ⊂ R. In this case,

if T ∈ D′(Ω), then a distribution S such that

〈S ′, ϕ〉 = 〈T, ϕ〉 ∀ϕ ∈ D(Ω) (A.670)

is called a primitive or antiderivative of T . Any distribution T ∈ D′(Ω) has a primitive S

in D′(Ω) which is unique up to an additive constant, i.e., all the primitives of T are of the

form S + C, where C is some constant.

We have further that any distribution T ∈ D′(Ω), for N = 1, has primitives of any

order. A primitive of m-th order of T is a distribution R ∈ D′(Ω) such that

〈R(m), ϕ〉 = 〈T, ϕ〉 ∀ϕ ∈ D(Ω). (A.671)

The primitive of m-th order is unique up to an additive polynomial of order m− 1.

Furthermore, in the general case when N ≥ 1, for any T ∈ D′(Ω) there exists a

distribution S such that ∂S/∂xj = T in D′(Ω), being j ∈ {1, . . . , N}. This primitive is

unique up to an additive locally integrable function that does not depend upon xj . Thus

every distribution possesses primitives of arbitrary order.

A.6.4 Dirac’s delta function

The Dirac delta or impulse function δ, which is not strictly speaking a function, was

introduced by the British theoretical physicist Paul Adrien Maurice Dirac (1902–1984) as

a technical device in the mathematical formulation of quantum mechanics. The Dirac delta

vanishes everywhere except at the origin, where its value is infinite, and so that its integral

has a value of one. It is therefore defined by

δ(x) =

{ ∞ if x = 0,

0 if x 6= 0,
(A.672)

and has the property ∫

Ω

δ(x) dx = 1 if 0 ∈ Ω. (A.673)

There exists no function with these properties. However, the Dirac delta is well-defined

as a distribution, in which case it associates to each test function ϕ its value at the origin.

Assuming that 0 ∈ Ω, the Dirac delta is defined as the distribution δ that satisfies
∫

Ω

δ(x)ϕ(x) dx = ϕ(0) ∀ϕ ∈ D(Ω). (A.674)

The linear functional δ defined on D(Ω) by

〈δ, ϕ〉 = ϕ(0) (A.675)
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is continuous, and hence clearly a distribution on Ω.

From (A.674) several other properties for the Dirac delta δ can be derived. It is a

symmetric distribution, i.e., δ(x) = δ(−x), and its support is the point x = 0. The shifted

Dirac mass, δa(x) = δ(x − a), has its mass concentrated at the point a ∈ Ω. It thus picks

out the conjugated value of a test function ϕ at the point a, namely

〈δa, ϕ〉 = 〈δ(x − a), ϕ(x)〉 = 〈δ(x), ϕ(x + a)〉 = ϕ(a) ∀ϕ ∈ D(Ω). (A.676)

A scaling of the Dirac mass by λ ∈ K, λ 6= 0, yields

〈δ(λx), ϕ(x)〉 = |λ|−N〈δ(x), ϕ(x/λ)〉 = |λ|−Nϕ(0) ∀ϕ ∈ D(Ω), (A.677)

and hence

δ(λx) = |λ|−Nδ(x). (A.678)

An arbitrary derivative of the dirac Delta function, Dαδ, is given by

〈Dαδ, ϕ〉 = (−1)|α|Dαϕ(0) ∀ϕ ∈ D(Ω). (A.679)

We remark that the multi-dimensional Dirac mass can be decomposed as a multiplica-

tion of one-dimensional Dirac deltas, namely

δ(x) =
N∏

j=1

δ(xj). (A.680)

An important fact is that Dirac distributions appear when differentiating functions that

have jumps. To see this, we consider, e.g., for Ω = R, the Heaviside step function

H(x) =

{
1 if x > 0,

0 if x < 0,
(A.681)

which is named after the self-taught English electrical engineer, mathematician, and physi-

cist Oliver Heaviside (1850–1925), who developed this function among several other im-

portant contributions. The Heaviside function belongs to L1
loc(R), and defines thus a regular

distribution, namely

〈H,ϕ〉 =

∫ ∞

0

ϕ(x) dx ∀ϕ ∈ D(R). (A.682)

The function H is differentiable everywhere with pointwise derivative zero, except at the

origin, where it is non-differentiable in the classical sense. The distributional derivative H ′

of H satisfies

〈H ′, ϕ〉 = −〈H,ϕ′〉 = −
∫ ∞

0

ϕ′(x) dx = ϕ(0). (A.683)

Therefore we have

H ′(x) = δ(x) in R. (A.684)

The Dirac delta can be also generalized to consider line or surface mass distributions.

For a line or a surface Γ ⊂ Ω, we define the Dirac distribution δΓ as

〈δΓ, ϕ〉 =

∫

Γ

ϕ(x) dγ(x) ∀ϕ ∈ D(Ω). (A.685)
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This type of Dirac distributions appear, e.g., when differentiating over a jump that extends

along a line or a surface. Further generalizations of the Dirac distribution that use the

language of differential forms can be found in Gel’fand & Shilov (1964).

A.6.5 Principal value and finite parts

Let us study some special singular distributions. For the sake of simplicity we con-

sider Ω = R, i.e., N = 1. In this case, the function f(x) = 1/x, defined for x 6= 0, is not

integrable around the origin. Thus we cannot associate a distribution with f , and we will

have the same problem with any rational function having a real pole. The difficulty is that

the integrand has a singularity so strong that it must be excised from the domain and the

integral has to be defined by a limiting process, the result of which is called an improper

integral. This inconvenient, though, can be solved. Although f is not locally integrable, its

primitive F (x) = ln |x| is locally integrable, being its indefinite integral x ln |x| − x. The

distribution that helps to solve our problem is simply the derivative of F in the sense of

distributions. This distribution is now well-defined and is called the principal value, being

denoted by pv(1/x). We take symmetric limits (ǫ and −ǫ) around the origin and obtain

lim
ǫ→0+

{∫ −ǫ

−∞

ϕ(x)

x
dx+

∫ ∞

ǫ

ϕ(x)

x
dx

}
= −

∫ ∞

−∞
ln |x|ϕ′(x) dx ∀ϕ ∈ D(R). (A.686)

The distribution pv(1/x), which is the natural choice for a distribution corresponding

to 1/x, is thus defined by

〈pv(1/x), ϕ〉 = −〈ln |x|, ϕ′〉 ∀ϕ ∈ D(R). (A.687)

We can interpret this equation as follows: to evaluate the improper integral
∫∞
−∞ ϕ(x)/x dx,

integrate it by parts as if it were a convergent integral. The result is the convergent inte-

gral
∫∞
−∞ ln |x|ϕ′(x) dx. The integration by parts is not justified, but this procedure gives

the result (A.687) of our rigorous definitions, and can be therefore regarded as a formal

procedure to obtain the results of the correct theory. The principal value of 1/x satisfies

x pv

(
1

x

)
= 1, (A.688)

and is characterized by

pv

(
1

x

)
= (ln |x|)′. (A.689)

The converse of (A.688), though, does not apply. A distribution T satisfies xT = 1 if and

only if for some constant C

T (x) = pv

(
1

x

)
+ C δ(x). (A.690)

In general, if f is a function defined for x 6= 0, then we define the (Cauchy) principal

value of the integral
∫∞
−∞ f(x) dx by

pv

(∫ ∞

−∞
f(x) dx

)
= −
∫ ∞

−∞
f(x) dx = lim

ǫ→0+

∫

|x|≥ǫ
f(x) dx, (A.691)
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whenever the limit exists. As expressed in (A.691), the notation −
∫

is also used to denote a

Cauchy principal value for the integral.

We remark that the concept of principal value applies likewise and more in general to

contour integrals in the complex plane. In this case we consider a complex-valued func-

tion f(z), for z ∈ C, with a pole on the integration contour L. The pole is enclosed with a

circle of radius ǫ and the portion of the path lying outside this circle is denoted byL(ǫ). Pro-

vided that the function f(z) is integrable over L(ǫ), the Cauchy principal value is defined

now as the limit

pv

(∫

L

f(z) dz

)
= −
∫

L

f(z) dz = lim
ǫ→0

∫

L(ǫ)

f(z) dz. (A.692)

We can define distributions corresponding to other negative powers of x, but the prin-

cipal value cannot be used to assign a definite value to
∫∞
−∞ ϕ(x)/xn dx, because it does not

exist if n > 1. In this case the integral is truly divergent. We therefore define negative pow-

ers directly as derivatives of ln |x|. For any integer n > 1, we define the distribution x−n to

be the n-th derivative of

F (x) =
(−1)n−1

(n− 1)!
ln |x|. (A.693)

This procedure is known as extracting the finite part of a divergent integral, and is denoted

by fp(1/xn). It is equivalent to

〈fp(1/xn), ϕ〉 =
(−1)n−1

(n− 1)!
〈ln |x|, ϕ(n)〉 ∀ϕ ∈ D(R), (A.694)

and can be again interpreted as integrating n times by parts until the integral becomes

convergent. This formal procedure was invented in 1932 by the French mathematician

Jacques Salomon Hadamard (1865–1963), long before the development of the theory of

distributions, as a convenient device for dealing with divergent integrals appearing in the

theory of wave propagation.
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A.7 Fourier transforms

The Fourier transform is a special integral transform that decomposes a function de-

scribed in the spatial (or temporal) domain into a continuous spectrum of its frequency

components. It is named in honor of the French mathematician and physicist Jean Bap-

tiste Joseph Fourier (1768–1830), who initiated the investigation of Fourier series and their

application to problems of heat flow. Fourier transforms have many applications, particu-

larly because they allow to treat differential equations as algebraic equations in the spectral

domain. Sobolev spaces of fractional order are also defined by means of Fourier trans-

forms (vid. Section A.4).

Fourier transforms are frequently used in the computation of Green’s functions in free-

space or in half-spaces, since usually explicit expressions of them in the spectral domain

can easily be found. It is, however, sometimes quite difficult to find the corresponding

spatial counterpart. In this thesis, in particular, we deal widely with Fourier transforms to

find Green’s functions in the half-space problems. Some references are Bony (2001), Bre-

mermann (1965), Gasquet & Witomski (1999), Griffel (1985), Reed & Simon (1980), and

Weisstein (2002). Applications for Fourier transforms in signal analysis and complex vari-

ables may be found respectively in Irarrázaval (1999) and Weinberger (1995). For further

studies on signals and wavelets we refer to Mallat (2000), and for applications in biomed-

ical imaging, to Ammari (2008). Useful tables of integrals to compute Fourier transforms

can be found in Bateman (1954) and Gradshteyn & Ryzhik (2007). Other Fourier trans-

forms of special functions, particularly of Bessel functions and their spherical versions, are

listed in Magnus & Oberhettinger (1954).

A.7.1 Definition of Fourier transform

We define the direct or forward Fourier transform f̂ = F{f} of an integrable func-

tion f ∈ L1(RN) as

f̂(ξ) =
1

(2π)N/2

∫

RN

f(x) e−iξ·x dx, ξ ∈ R
N, (A.695)

and its inverse or backward Fourier transform f = F−1{f̂ } by

f(x) =
1

(2π)N/2

∫

RN

f̂(ξ) eiξ·x dξ, x ∈ R
N. (A.696)

We remark that there exist several different definitions for the Fourier transform. Some

authors do not distribute the (2π)N coefficient that lies before the integrals symmetrically

between both transforms as we do, but assign it completely to the inverse Fourier transform.

Other authors prefer to consider in the Fourier domain a frequency variable ν instead of

our pulsation variable ξ, being their relation ξ = 2πν, and avoiding thus the need of the

beforementioned coefficient (2π)N . Thus, care has to be taken to identify the definition

used by each author, since different Fourier transform pairs result from them.

The Fourier transforms (A.695) and (A.696) can be used also for a more general class

of functions f , such as for functions in L2(RN) or even for tempered distributions in the
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space S ′(RN), the dual of the Schwartz space of rapidly decreasing functions

S(RN) =
{
f ∈ C∞(RN) | xβDαf ∈ L∞(RN) ∀α,β ∈ N

N
0

}
, (A.697)

where xβ = xβ1

1 x
β2

2 · · ·xβN

N for a multi-index β ∈ N
N
0 . The space S(RN) has the important

property of being invariant under Fourier transforms, i.e., ϕ ∈ S(RN) ⇔ ϕ̂ ∈ S(RN).

We have in particular the inclusion D(RN) ⊂ S(RN), and thus S ′(RN) ⊂ D′(RN). The

convergence in S ′(RN) is the same as for distributions (vid. Section A.6), but with respect

to test functions in S(RN). In effect, if Tn, T ∈ S ′(RN), then

Tn → T in S ′(RN) ⇐⇒ 〈Tn, ϕ〉 → 〈T, ϕ〉 in K ∀ϕ ∈ S(RN). (A.698)

A distribution T ∈ D′(RN) is at the same time a tempered distribution, i.e., T ∈ S ′(RN),

if and only if T is a continuous linear functional on D(RN) in the topology of S(RN).

In particular, every function in Lp(RN), p ≥ 1, is a tempered distribution. Every slowly

increasing function f ∈ L1
loc(R

N) such that

|f(x)| ≤ C
(
1 + |x|M

)
∀x ∈ R

N, (A.699)

for some constant C > 0 and some integer M ∈ N, is also a tempered distribution. In

general, for any tempered distribution T ∈ S ′(RN), there are integers n1, n2, . . . , np and

slowly increasing continuous functions f1, f2, . . . , fp such that

T =

p∑

j=1

f
(nj)
j . (A.700)

The direct Fourier transform T̂ = F{T} of a tempered distribution T ∈ S ′(RN) is

now defined by

〈T̂ , ϕ〉 = 〈T, ϕ̂〉 ∀ϕ ∈ S(RN). (A.701)

We have that T̂ is also a tempered distribution, because the Fourier transform is a continu-

ous linear operator on S(RN). Formula (A.701) extends the Fourier transform fromL1(RN)

or L2(RN) to tempered distributions. The inverse Fourier transform T = F−1{T̂} of a tem-

pered distribution T̂ ∈ S ′(RN) is defined by

〈T, ϕ̂〉 = 〈T̂ , ϕ〉 ∀ϕ̂ ∈ S(RN). (A.702)

The Fourier transform is thus a linear, 1-to-1, bicontinuous mapping from S ′(RN) to S ′(RN).

For all T ∈ S ′(RN) we have

F−1 {F{T}} = F
{
F−1{T}

}
= T. (A.703)

A.7.2 Properties of Fourier transforms

In what follows, we consider arbitrary distributions S, T ∈ S ′(RN), and arbitrary

constants α, β ∈ K, a ∈ R
N , and b ∈ R. We write

T (x)
F−−−−→ T̂ (ξ) (A.704)
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to denote that T̂ (ξ) is the Fourier transform of T (x), i.e., T̂ = F{T}. The linearity of the

Fourier transform implies that

αS(x) + β T (x)
F−−−−→ α Ŝ(ξ) + β T̂ (ξ). (A.705)

The duality or symmetry property of the Fourier transform means that

T̂ (x)
F−−−−→ T (−ξ). (A.706)

The reflection property yields

T (−x)
F−−−−→ T̂ (−ξ). (A.707)

The translation or shifting property states that

T (x − a)
F−−−−→ e−ia·ξ T̂ (ξ), (A.708)

eia·x T (x)
F−−−−→ T̂ (ξ − a). (A.709)

The scaling property, for a1, a2, . . . , aN 6= 0, yields

T

(
x1

a1

,
x2

a2

, . . . ,
xN
aN

)
F−−−−→ |a1a2 · · · aN | T̂ (a1ξ1, a2ξ2, . . . , aNξN), (A.710)

T (a1x1, a2x2, . . . , aNxN)
F−−−−→ 1

|a1a2 · · · aN |
T̂

(
ξ1
a1

,
ξ2
a2

, . . . ,
ξN
aN

)
, (A.711)

and, in particular, for b 6= 0,

T
(x

b

)
F−−−−→ |b|N T̂ (b ξ), (A.712)

T (bx)
F−−−−→ 1

|b|N T̂

(
ξ

b

)
. (A.713)

The modulation property implies that

T (x) cos(a · x)
F−−−−→ 1

2

(
T̂ (ξ − a) + T̂ (ξ + a)

)
, (A.714)

1

2

(
T (x − a) + T (x + a)

)
F−−−−→ T̂ (ξ) cos(a · ξ). (A.715)

The parity property of the Fourier transform involves that

T even
F−−−−→ T̂ even, (A.716)

T odd
F−−−−→ T̂ odd, (A.717)

T real and even
F−−−−→ T̂ real and even, (A.718)

T real and odd
F−−−−→ T̂ imaginary and odd, (A.719)

T imaginary and even
F−−−−→ T̂ imaginary and even, (A.720)

T imaginary and odd
F−−−−→ T̂ real and odd. (A.721)

For the complex conjugation we have that

T (x)
F−−−−→ T̂ (−ξ). (A.722)
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The important derivation property of the Fourier transform, that transforms derivatives

into multiplications by monomials, is given by

∂T

∂xj
(x)

F−−−−→ iξj T̂ (ξ), j ∈ {1, 2, . . . , N}, (A.723)

DαT (x)
F−−−−→ (iξ)α T̂ (ξ), α ∈ N

N
0 , (A.724)

which holds also for the inverses

−ixj T (x)
F−−−−→ ∂T̂

∂ξj
(ξ), j ∈ {1, 2, . . . , N}, (A.725)

(−ix)α T (x)
F−−−−→ DαT̂ (ξ), α ∈ N

N
0 . (A.726)

The integration property, for j ∈ {1, 2, . . . , N}, states that
∫ xj

−∞
T |xj=yj

(x) dyj
F−−−−→ T̂ (ξ)

iξj
+ πδ(ξj)T̂ |ξj=0(ξ), (A.727)

and similarly

− T (x)

ixj
+ πδ(xj)T |xj=0(x)

F−−−−→
∫ ξj

−∞
T̂ |ξj=ηj

(ξ) dηj. (A.728)

We say that a distribution T ∈ S ′(RN), is separable if there exist some distribu-

tions Tj ∈ S ′(R), for j ∈ {1, 2, . . . , N}, such that

T (x) = T1(x1)T2(x2) · · ·TN(xN). (A.729)

The separability property of the Fourier transform states that if T is a separable distribution,

then so is T̂ , i.e.,

T1(x1)T2(x2) · · ·TN(xN)
F−−−−→ T̂1(ξ1)T̂2(ξ2) · · · T̂N(ξN). (A.730)

This means that for separable distributions we can compute independently the partial Fourier

transform of each factor, and multiply the results at the end. This property holds also if a

distribution is partially separable, i.e., separable for only some of its variables.

We have that if f ∈ L2(RN), then its Fourier transform f̂ is in L2(RN) too. We have

also, for f, g ∈ L1(RN) or f, g ∈ L2(RN), that
∫

RN

f̂(x)g(x) dx =

∫

RN

f(x)ĝ(x) dx. (A.731)

Furthermore, if f, g ∈ L2(RN), then we have Parseval’s formula
∫

RN

f(x)g(x) dx =

∫

RN

f̂(ξ)ĝ(ξ) dξ, (A.732)

named after the French mathematician Marc-Antoine Parseval des Chênes (1755–1836). In

particular, when f = g, then (A.732) turns into Plancherel’s formula
∫

RN

|f(x)|2 dx =

∫

RN

|f̂(ξ)|2 dξ, (A.733)

which is named after the Swiss mathematician Michel Plancherel (1885–1967).
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A.7.3 Convolution

We define the convolution or faltung f ∗ g of two functions f and g from R
N to K, if

it exists, as

f(x) ∗ g(x) =

∫

RN

f(y)g(x − y) dy =

∫

RN

f(x − y)g(y) dy. (A.734)

The convolution has the property of regularizing a function by averaging, and is a

commutative operation, i.e.,

f(x) ∗ g(x) = g(x) ∗ f(x). (A.735)

The convolution is well-defined if f, g ∈ L2(RN). It can be further shown that the

convolution Lp(RN) ∗Lq(RN) is well-defined for p, q, r ≥ 1 and such that 1
p
+ 1

q
− 1 = 1

r
.

In this case, if f ∈ Lp(RN) and g ∈ Lq(RN), then f ∗g is in Lr(RN). Moreover, the notion

of convolution can be extended to the framework of distributions, in which case the convo-

lutions D(RN) ∗ D′(RN), S(RN) ∗ S ′(RN), E(RN) ∗ E ′(RN), and even E ′(RN) ∗ S ′(RN)

and E ′(RN) ∗ D′(RN) are well-defined. By E ′(RN) we denote the subspace of D′(RN) of

those distributions that have compact support, which is the dual of E(RN) = C∞(RN). It

can be shown that E ′(RN) is also a linear subspace of S ′(RN). The inclusions are such that

D ⊂ E ′, S ⊂ S ′, E ⊂ D′, D ⊂ S ⊂ E , and E ′ ⊂ S ′ ⊂ D′. (A.736)

If T ∈ D′(RN) and ϕ ∈ C∞(RN), then the convolution T ∗ ϕ is defined by

T (x) ∗ ϕ(x) = 〈T (y), ϕ(x − y)〉 = 〈T (x − y), ϕ(y)〉. (A.737)

If S ∈ E ′(RN) and T ∈ D′(RN), then

ψT (y) = 〈T (x), ϕ(x + y)〉 ∈ C∞(RN), (A.738)

ψS(y) = 〈S(x), ϕ(x + y)〉 ∈ D(RN), (A.739)

and therefore the convolution S ∗ T is defined by

〈S(x) ∗T (x), ϕ(x)〉 =
〈
S(y), 〈T (x), ϕ(x+y)〉

〉
=
〈
T (y), 〈S(x), ϕ(x+y)〉

〉
(A.740)

for all ϕ ∈ D(RN).

Let T ∈ D′(RN) be a distribution. Then the Dirac delta function δ acts like a unit

element for the convolution, namely

Dαδ ∗ T = T ∗Dαδ = DαT, α ∈ N
N
0 , (A.741)

and is, in particular, its neuter element, i.e.,

δ ∗ T = T ∗ δ = T. (A.742)

The δ-function allows also to shift arguments by means of

δa(x) ∗ T (x) = T (x) ∗ δa(x) = T (x − a). (A.743)
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The convolution has the property of distributing the derivatives among its members.

Thus, if S ∈ E ′(RN) and T ∈ D′(RN), then

∂

∂xj
{S ∗ T} =

∂S

∂xj
∗ T = S ∗ ∂T

∂xj
, j ∈ {1, 2, . . . , N}, (A.744)

and, more generally,

Dα{S ∗ T} = DαS ∗ T = S ∗DαT, α ∈ N
N
0 . (A.745)

An important property of the Fourier transform is that it turns convolutions into multi-

plications and viceversa. Thus, if S ∈ E ′(RN) and T ∈ S ′(RN), then we have that

T (x) ∗ S(x)
F−−−−→ (2π)N/2 T̂ (ξ)Ŝ(ξ), (A.746)

(2π)N/2 T (x)S(x)
F−−−−→ T̂ (ξ) ∗ Ŝ(ξ). (A.747)

A.7.4 Some Fourier transform pairs

We consider now some Fourier transform pairs, defined on R
N, that use the defini-

tions (A.695) and (A.696). For the Dirac delta δ holds that

δ(x)
F−−−−→ 1

(2π)N/2
, (A.748)

1

(2π)N/2
F−−−−→ δ(ξ). (A.749)

The complex exponential function, for a ∈ R
N , satisfies

eia·x
F−−−−→ (2π)N/2δ(ξ − a), (A.750)

(2π)N/2δ(x + a)
F−−−−→ eia·ξ. (A.751)

For the cosine function we have

cos(a · x)
F−−−−→ (2π)N/2

2

(
δ(ξ − a) + δ(ξ + a)

)
, (A.752)

(2π)N/2

2

(
δ(x + a) + δ(x − a)

) F−−−−→ cos(a · ξ), (A.753)

and for the sine function we have

sin(a · x)
F−−−−→ (2π)N/2

2 i

(
δ(ξ − a) − δ(ξ + a)

)
, (A.754)

(2π)N/2

2 i

(
δ(x + a) − δ(x − a)

) F−−−−→ sin(a · ξ). (A.755)

Powers of monomials, for n ∈ N0 and j ∈ {1, 2, . . . , N}, yield

xnj
F−−−−→ in(2π)N/2

∂nδ

∂ξnj
(ξ), (A.756)

(−i)n(2π)N/2
∂nδ

∂xnj
(x)

F−−−−→ ξnj , (A.757)
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and, for the general case when α ∈ N
N
0 is a multi-index, yield

xα F−−−−→ i|α|(2π)N/2Dαδ(ξ), (A.758)

(−i)|α|(2π)N/2Dαδ(x)
F−−−−→ ξα. (A.759)

A.7.5 Fourier transforms in 1D

The direct Fourier transform f̂ of an integrable function or tempered distribution f in

the one-dimensional case, i.e., when N = 1, is defined by

f̂(ξ) =
1√
2π

∫ ∞

−∞
f(x) e−iξx dx, ξ ∈ R, (A.760)

and its inverse Fourier transform by

f(x) =
1√
2π

∫ ∞

−∞
f̂(ξ) eiξx dξ, x ∈ R. (A.761)

Several signals, either functions or distributions, are commonly used for the 1D case.

Among them we have the Heaviside step function H(x), which is defined in (A.681). We

have further the sign function

sign(x) =

{
1 if x > 0,

−1 if x < 0.
(A.762)

The rect function ⊓(x) is defined by

⊓(x) =

{
1 if |x| < 1

2
,

0 if |x| > 1
2
.

(A.763)

The triangle function ∧(x) is given by

∧(x) =

{
1 − |x| if |x| ≤ 1,

0 if |x| > 1.
(A.764)

We have now the 1D Fourier transform pairs

δ(x)
F−−−−→ 1√

2π
, (A.765)

1√
2π

F−−−−→ δ(ξ), (A.766)

sign(x)
F−−−−→ −i

√
2

π
pv

(
1

ξ

)
, (A.767)

H(x)
F−−−−→ 1

i
√

2π
pv

(
1

ξ

)
+

√
π

2
δ(ξ), (A.768)

xn
F−−−−→ in

√
2π δ(n)(ξ) (n ≥ 1), (A.769)

pv

(
1

x

)
F−−−−→ −i

√
π

2
sign(ξ), (A.770)
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fp

(
1

xn

)
F−−−−→ −i

√
π

2

(−iξ)n−1

(n− 1)!
sign(ξ) (n ≥ 1), (A.771)

⊓(x)
F−−−−→ 1√

2π

sin(ξ/2)

ξ/2
, (A.772)

∧(x)
F−−−−→ 1√

2π

(
sin(ξ/2)

ξ/2

)2

, (A.773)

sin(πx)

πx

F−−−−→ 1√
2π

⊓
(
ξ

2π

)
, (A.774)

e−a|x|
F−−−−→

√
2

π

a

a2 + ξ2
(Re a > 0), (A.775)

e−ax
2 F−−−−→ 1√

2a
e−ξ

2/4a (a > 0), (A.776)

e−axH(x)
F−−−−→ 1√

2π (a+ iξ)
(Re a > 0), (A.777)

cos(ax)
F−−−−→

√
π

2

(
δ(ξ + a) + δ(ξ − a)

)
(a ∈ R), (A.778)

sin(ax)
F−−−−→ i

√
π

2

(
δ(ξ + a) − δ(ξ − a)

)
(a ∈ R), (A.779)

1√
|x|

F−−−−→ 1√
|ξ|
. (A.780)

In the sense of homogeneous distributions (cf. Gel’fand & Shilov 1964), we have that

ln
(√

x2 + a2
)

F−−−−→ −
√
π

2

e−|a||ξ|

|ξ| (a ∈ R). (A.781)

Some Fourier transforms involving Bessel and Hankel functions (vid. Subsection A.2.4),

for a ∈ R and b > 0, are

J0(x)
F−−−−→

√
2

π

⊓(ξ/2)√
1 − ξ2

, (A.782)

J0

(
b
√
x2 + a2

)
F−−−−→

√
2

π

⊓(ξ/2b)√
b2 − ξ2

cos
(√

b2 − ξ2 |a|
)
, (A.783)

Y0

(
b
√
x2 + a2

)
F−−−−→

√
2

π

⊓(ξ/2b)√
b2 − ξ2

sin
(√

b2 − ξ2 |a|
)

−
√

2

π

e−
√
ξ2−b2 |a|

√
ξ2 − b2

(
1 − ⊓(ξ/2b)

)
, (A.784)

H
(1)
0

(
b
√
x2 + a2

)
F−−−−→ −i

√
2

π

e−
√
ξ2−b2 |a|

√
ξ2 − b2

, (A.785)

where the complex square root in (A.785) is defined in such a way that
√
ξ2 − b2 = −i

√
b2 − ξ2. (A.786)
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A.7.6 Fourier transforms in 2D

The direct Fourier transform f̂ of an integrable function or tempered distribution f in

the two-dimensional case, i.e., when N = 2, is defined by

f̂(ξ1, ξ2) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
f(x1, x2) e

−i(ξ1x1+ξ2x2) dx1 dx2, ξ1, ξ2 ∈ R, (A.787)

and its inverse Fourier transform by

f(x1, x2) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
f̂(ξ1, ξ2) e

i(ξ1x1+ξ2x2) dξ1 dξ2, x1, x2 ∈ R. (A.788)

To express the radial components we use the notation

r = |x| =
√
x2

1 + x2
2 and ρ = |ξ| =

√
ξ2
1 + ξ2

2 . (A.789)

It holds that the two-dimensional Fourier transform of a circularly symmetric function is

also circularly symmetric and the same is true for the converse. The 2D Fourier transform

turns in this case into the Hankel transform of order zero, which is given by

f̂(ρ) =

∫ ∞

0

f(r)J0(ρr) r dr, ρ ≥ 0, (A.790)

and its inverse by

f(r) =

∫ ∞

0

f̂(ρ)J0(ρr) ρ dρ, r ≥ 0. (A.791)

This relation between both integral transforms stems from the integral representation of the

zeroth-order Bessel function (A.112), which implies that

J0(ρr) =
1

2π

∫ 2π

0

eiρr cosψ dψ =
1

2π

∫ 2π

0

e−iρr cosψ dψ. (A.792)

If we denote the polar angles by

θ = arctan

(
x2

x1

)
and ψ = arctan

(
ξ2
ξ1

)
, (A.793)

then we can relate (A.788) and (A.791), due (A.792), by means of

f(x1, x2) = f(r) =
1

2π

∫ ∞

0

∫ 2π

0

f̂(ρ) ρ eiρr(cos θ cosψ+sin θ sinψ) dψ dρ

=
1

2π

∫ ∞

0

f̂(ρ) ρ

∫ 2π

0

eiρr cos(ψ−θ) dψ dρ

=

∫ ∞

0

f̂(ρ)J0(ρr) ρ dρ. (A.794)

The relation between (A.787) and (A.790) can be proved using a similar development.

For the 2D case there are also several signals that are commonly used. Among them

we have the two-dimensional rect function ⊓(x1, x2), defined by

⊓(x1, x2) = ⊓(x1)⊓(x2) =

{
1 if |x1| < 1

2
and |x2| < 1

2
,

0 elsewhere,
(A.795)
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and the circ function, defined by

⊓(r) =

{
1 if r < 1

2
,

0 elsewhere.
(A.796)

We have now the 2D Fourier transform pairs

δ(x1, x2)
F−−−−→ 1

2π
, (A.797)

1

2π

F−−−−→ δ(ξ1, ξ2), (A.798)

δ(x1)
F−−−−→ δ(ξ2), (A.799)

δ(x2)
F−−−−→ δ(ξ1), (A.800)

⊓(x1, x2)
F−−−−→ 1

2π

sin(ξ1/2)

ξ1/2

sin(ξ2/2)

ξ2/2
, (A.801)

⊓(r)
F−−−−→ J1(ρ/2)

2ρ
, (A.802)

e−ar
2 F−−−−→ 1

2a
e−ρ

2/4a (a > 0), (A.803)

1

r

F−−−−→ 1

ρ
. (A.804)

Other interesting 2D Fourier transforms, for a ∈ R and b > 0, are

1√
r2 + a2

F−−−−→ e−ρ|a|

ρ
, (A.805)

sin
(
b
√
r2 + a2

)

√
r2 + a2

F−−−−→
cos
(√

b2 − ρ2 |a|
)

√
b2 − ρ2

⊓
(
ξ1
2b
,
ξ2
2b

)
, (A.806)

cos
(
b
√
r2 + a2

)

√
r2 + a2

F−−−−→ −
sin
(√

b2 − ρ2 |a|
)

√
b2 − ρ2

⊓
(
ξ1
2b
,
ξ2
2b

)

+
e−

√
ρ2−b2 |a|

√
ρ2 − b2

(
1 − ⊓

(
ξ1
2b
,
ξ2
2b

))
, (A.807)

eib
√
r2+a2

√
r2 + a2

F−−−−→ e−
√
ρ2−b2 |a|

√
ρ2 − b2

, (A.808)

where the complex square root in (A.808) is defined in such a way that
√
ρ2 − b2 = −i

√
b2 − ρ2. (A.809)

We observe that the left-hand side of the expressions (A.806), (A.807), and (A.808) is

closely related with the spherical Bessel and Hankel functions j0, y0, and h
(1)
0 , respectively.

For further details, see Subsection A.2.6.
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A.8 Green’s functions and fundamental solutions

Green’s functions are used to solve inhomogeneous boundary-value problems for dif-

ferential equations subject to boundary conditions. They receive their name from the British

mathematician and physicist George Green (1793–1841), who was the first to study a spe-

cial case of this type of functions in his research on potential theory, which he developed

in a famous essay (Green 1828).

The concept of a Green’s function is essential throughout this thesis, so it becomes im-

portant to understand properly their significance. Our main references for these functions,

treated in the sense of distributions, are Griffel (1985) and Terrasse & Abboud (2006).

A more classical treatment of Green’s functions in the context of mathematical physics

can be found, e.g., in Bateman (1932), Courant & Hilbert (1966), and Morse & Fesh-

bach (1953). There exist also several books that are almost entirely dedicated to Green’s

functions, like Barton (1989), DeSanto (1992), Duffy (2001), and Greenberg (1971). An

exhaustive amount of them are likewise listed in Polyanin (2002).

The Green’s function of a boundary-value problem for a linear differential equation is

the fundamental solution of this equation satisfying homogeneous boundary conditions. It

is thus the kernel of the integral operator that is the inverse of the differential operator gen-

erated by the given differential equation and the homogeneous boundary conditions. The

Green’s function yields therefore solutions for the inhomogeneous boundary-value prob-

lem. Finding the Green’s function reduces the study of the properties for the differential

operator to the study of similar properties for the corresponding integral operator.

A.8.1 Fundamental solutions

Technically, a fundamental solution for a partial differential operator L, linear, with

constant coefficients, and defined on the space of distributions D′(RN), is a distribution E

that satisfies

LE = δ in D′(RN), (A.810)

where δ is the Dirac delta or impulse function, centered at the origin. The main interest

of such a fundamental solution lies in the fact that if the convolution has a sense, then the

solution of

Lu = f in D′(RN), (A.811)

for a known data function f , is given by

u = E ∗ f. (A.812)

In fact, due the linearity of L, since E is a fundamental solution, and since δ is the neutral

element of the convolution, we have

Lu = L{E ∗ f} = LE ∗ f = δ ∗ f = f. (A.813)

By adding to the fundamental solution non-trivial solutions for the homogeneous problem,

new fundamental solutions can be obtained. The fundamental solution for a well-posed

problem is unique, if additional conditions are specified for the behavior of the solution,

e.g., the decaying behavior at infinity, being these conditions often determined through
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physical considerations. In the construction of the fundamental solution it is permissible

to use any methods to find the solutions of the equation, provided that the result is then

justified by rigorous arguments.

We remark also that from the fundamental solution other solutions can be derived

when, in the sense of distributions, derivatives of the Dirac delta function δ appear on the

right-hand side. For example, the solution of

LF =
∂δ

∂xi
in D′(RN) (A.814)

is given by

F = E ∗ ∂δ

∂xi
=
∂E

∂xi
∗ δ =

∂E

∂xi
. (A.815)

A.8.2 Green’s functions

In the case of the Green’s function, the fundamental solution considers also homoge-

neous boundary conditions, and the Dirac delta function is no longer centered at the origin,

but at a fixed source point. Thus, a Green’s function of a partial differential operator Ly

with homogeneous boundary conditions, linear, with constant coefficients, acting on the

variable y, and defined on the space of distributions D′(RN), is a distribution G such that

Ly{G(x,y)} = δx(y) in D′(RN), (A.816)

where δx is the Dirac delta or impulse function with the Dirac mass centered at the source

point x, i.e., δx(y) = δ(y−x). The Green’s function represents thus the impulse response

of the operator Ly with respect to the source point x, being therefore the nucleus or kernel

of the inverse operator of Ly, denoted by L−1
y , which corresponds to an integral operator,

andG(x,y) = L−1
y {δx(y)}. The Green’s function, differently as the fundamental solution,

is searched in some particular domain Ω ⊂ R
N and satisfies some boundary conditions, but

for simplicity we consider here just Ω = R
N.

The solution of the inhomogeneous partial differential boundary-value problem

Lx{u(x)} = f(x) in D′(RN), (A.817)

is in this case given, if the convolution has a sense, by

u(x) = G(x,y) ∗ f(y), (A.818)

where G is the Green’s function of the operator Lx, which is symmetric, i.e.,

G(x,y) = G(y,x). (A.819)

Again, as for the fundamental solution, we have

Lx{u(x)} = Lx{G(x,y) ∗ f(y)} = Lx{G(x,y)} ∗ f(y)

= δx(y) ∗ f(y) = f(x). (A.820)

We observe that the free- or full-space Green’s function, i.e., without boundary condi-

tions, is linked to the fundamental solution through the relation

G(x,y) = E(x − y) = E(y − x). (A.821)
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A.8.3 Some free-space Green’s functions

We consider now some examples of free-space Green’s functions of our interest. The

free-space Green’s function for the Laplace equation satisfies in the sense of distributions

∆yG(x,y) = δx(y) in D′(RN), (A.822)

and is given by (Polyanin 2002)

G(x,y) =





|y − x|
2

for N = 1,

1

2π
ln |y − x| for N = 2,

− 1

4π|y − x| for N = 3,

− Γ
(
N
2

)

2πN/2(N − 2)|y − x|N−2
for N ≥ 4,

(A.823)

where Γ denotes the gamma function (vid. Subsection A.2.2).

The free-space Green’s function of outgoing-wave behavior for the Helmholtz equa-

tion, on the other hand, satisfies in the sense of distributions

∆yG(x,y) + k2G(x,y) = δx(y) in D′(RN), (A.824)

and has to be supplied with the Sommerfeld radiation condition

lim
|y|→∞

|y|N−1
2

(
∂G

∂|y|(x,y) − ikG(x,y)

)
= 0, (A.825)

where k ∈ C corresponds to the wave number. By adapting the expressions listed in

Polyanin (2002) we acquire in this case that

G(x,y) =





− i

2k
eik|y−x| for N = 1,

− i

4
H

(1)
0

(
k|y − x|

)
for N = 2,

− eik|y−x|

4π|y − x| for N = 3,

− i

4

(
k

2π|y − x|

)N−2
2

H
(1)
N−2

2

(
k|y − x|

)
for N ≥ 4,

(A.826)

where H
(1)
ν denotes the Hankel function of the first kind of order ν (vid. Subsection A.2.4).
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A.9 Wave propagation

Wave propagation is a complex physical phenomenon, whose mathematical description

is in general not easy to accomplish. Some generalities concerning wave propagation and

its mathematical modeling are presented below. Some references are Nédélec (2001), Jack-

son (1999), Kuttruff (2007), Wilcox (1975), Strauss (1992), and Evans (1998). An interest-

ing survey of several research areas in wave propagation can be found in Keller (1979). A

thorough discussion on the amount of samples per wavelength required in the discretization

procedure and on some other related aspects is given in Marburg (2008).

A.9.1 Generalities on waves

A wave is a disturbance that propagates with time through a certain medium transfer-

ring energy progressively from point to point. The medium through which the wave travels

may experience some local oscillations around fixed positions as the wave passes, but the

particles in the medium do not travel with the wave, and are thus not displaced permanently.

The medium could even be the vacuum as in the case of electromagnetic waves. The dis-

turbance may take any of a number of shapes, from a finite width pulse to an infinitely

long sine wave. Several kinds of waves exist, e.g., mechanical (sound, elastic, seismic, and

ocean surface waves), electromagnetic (visible light, radio waves, X-rays), temperature, or

gravitational waves.

Waves are characterized by crests and troughs, either perpendicular or parallel to the

wave’s motion. Waves in which the propagating disturbance is perpendicular to its motion

are called transverse waves (waves on a string or electromagnetic waves), while waves in

which it is parallel are called longitudinal waves (sound or pressure waves). Transverse

waves can be polarized. Unpolarized waves can oscillate in any direction in the plane per-

pendicular to the direction of travel, while polarized waves oscillate in only one direction

perpendicular to the line of travel.

All waves have a common behavior under a number of standard situations. They all

can experience the phenomena of rectilinear propagation, interference, reflection, refrac-

tion, diffraction, and scattering. Rectilinear propagation states that waves in a homoge-

neous medium move or spread out in straight lines. Interference is the superposition of two

or more waves resulting in a new wave pattern. The principle of linear superposition of

waves states that the resultant displacement at a given point is equal to the sum of the dis-

placements of different waves at that point. Reflection is an abrupt change in direction of a

wave at an interface between two dissimilar media so that the wave returns into the medium

from which it originated. Refraction is the change in direction of a wave due to a change in

its velocity when entering a new medium with different refractive index. Diffraction is the

bending of waves when they meet one (or more) partial obstacles, which deform the shape

of the wavefronts as they pass. Scattering or dispersion is the process whereby waves are

forced to deviate from a straight trajectory into many directions by one or more localized

non-uniformities (called scatterers) in the medium through which they pass. Scattering is

therefore a form of reflection in which a portion of the incident waves is redistributed into

many directions by a scatterer.
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A.9.2 Wave modeling

Waves are modeled physically and mathematically as solutions of a wave equation.

Each kind of waves has its own wave equation and associated auxiliary conditions, e.g.,

boundary conditions, that can be applied. The most studied wave equation is probably the

scalar wave equation of linear acoustics, which describes the propagation of sound in a

homogeneous medium in the space R
N (N = 1, 2, or 3). It takes the form of the hyperbolic

partial differential equation

∂2p

∂t2
− c2∆p = 0, x ∈ R

N, t ∈ R+, (A.827)

where c is the speed of sound and p = p(x, t) is the induced pressure. By ∆ we denote the

Laplace operator

∆p =
N∑

j=1

∂2p

∂x2
j

, (A.828)

named in honor of the French mathematician and astronomer Pierre-Simon, marquis de

Laplace (1749–1827), whose work was pivotal to the development of mathematical astron-

omy. He formulated Laplace’s equation and invented the Laplace transform, which appears

in many branches of mathematical physics, a field that he took a leading role in forming.

After a mathematical trick attributed to the French mathematician, mechanician, physi-

cist, and philosopher Jean le Rond d’Alembert (1717–1783), in a space of dimensionN = 1

all regular solutions of (A.827) are of the form

p(x, t) = f(x− c t) + g(x+ c t), (A.829)

where f and g are arbitrary functions. This expression shows that if the functions f and g

have compact support, then the solution propagates at a finite speed equal to c. Finite speed

propagation is one of the essential characteristics of hyperbolic equations.

A time-harmonic solution of the wave equation (A.827) is a function of the form

p(x, t) = Re
{
u(x)e−iωt

}
, (A.830)

where u is the amplitude of the pressure and i denotes the complex imaginary unit, which

represents the square root of −1. The quantity ω is called the pulsation or angular frequency

of the harmonic wave. Here the time convention e−iωt has been taken, which determines the

sign of ingoing and outgoing waves, and thus also of the outgoing radiation condition when

dealing with unbounded domains. After applying this separation of variables to (A.827),

the function u becomes a solution of the Helmholtz equation

∆u+ k2u = 0, k =
ω

c
. (A.831)

The number k is called wave number. The quantity f = ω/2π is called frequency and the

length λ = c/f = 2π/k is called wavelength. This equation carries the name of the German

physician and physicist Hermann Ludwig Ferdinand von Helmholtz (1821–1894), for his

contributions to mathematical acoustics and electromagnetism. When the frequency (or the
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wave number) is zero, then we obtain the Laplace equation

∆u = 0, ω = 0. (A.832)

The Helmholtz equation has a very special family of solutions called plane waves. Up

to a multiplicative factor, they are the complex-valued functions of the form

u(x) = eik·x, (k · k) = k2. (A.833)

They correspond to wavefronts that travel with velocity c in the direction given by the wave

propagation vector k. The vector k can be real, in which case k = |k| and these solutions

are of modulus 1. When the vector k is complex, then the solutions are exponentially de-

creasing in a half-space determined by the imaginary part of the vector k and exponentially

increasing in the other half-space, i.e., where they explode. They are called plane waves

because ei(k·x−ωt) is constant on the planes (k · x − ωt) = constant.

A.9.3 Discretization requirements

Wave propagation problems dealing with geometries that are too complex to solve an-

alytically are nowadays solved with the help of computers, by using appropriate numerical

methods and discretization procedures. For this purpose, the considered geometry is dis-

cretized using a finite mesh to describe it. In computational linear time-harmonic wave

propagation modeling, it is widely accepted that the appropriate refinement and configu-

ration of this discretized mesh, i.e., the placement of its discretization nodes, should be

related to the wavelength. The commonly applied rule of thumb is to use a fixed number of

nodes per wavelength. In many cases, this number of nodes per wavelength varies typically

between three and ten, although it is advised to use at least five or even six of them. Obvi-

ously, this number is closely related to a certain desired accuracy. Often the error is of an

acceptable magnitude, which depends on the user and on certain technical requirements. A

sine-wave discretization for different numbers of nodes per wavelength for an equidistant

node distribution is depicted in Figure A.18.

Ns = 1 Ns = 2 Ns = 3 Ns = 4 Ns = 5

Ns = 6 Ns = 7 Ns = 8 Ns = 9 Ns = 10

FIGURE A.18. Sine-wave discretization for different numbers of nodes per wavelength.
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The idea of using a fixed number of nodes per wavelength is most likely a conse-

quence of the Nyquist-Shannon sampling theorem, also known as Nyquist’s sampling the-

orem, Shannon’s sampling theorem, or simply as the sampling theorem. It is named after

the Swedish electronic engineer Harry Nyquist (1889–1976) and the American electronic

engineer and mathematician Claude Elwood Shannon (1916–2001), who laid the founda-

tions that led to the development of information theory. Some references for this theorem

are the extensive survey articles of Jerry (1977, 1979) and Unser (2000), and the books

of Gasquet & Witomski (1999) and Irarrázaval (1999). The Nyquist-Shannon sampling

theorem is of fundamental importance in wave propagation and in vibration analysis for

experimental measurements and frequency detection. It states that at least two points per

wavelength (or period of an oscillating function) are necessary to detect the corresponding

frequency. However, a simple detection cannot be sufficient to approximate the function,

as stated in Marburg (2008), who refers to several other authors and performs an extensive

analysis on the discretization requirements for wave propagation problems, considering

different types of finite elements. It is mentioned there that two points per wavelength are

strictly sufficient, but would still not lead to an accurate reconstruction of the function,

and it is therefore advised to take rather an amount of six to ten nodes per wavelength. In

particular for boundary element methods, the common rule is to use six constant or lin-

ear boundary elements per wavelength. The concluding remarks recommend the use of

discontinuous boundary elements with nodes located at the zeros of Legendre polynomi-

als (vid. Subsection A.2.8), provided that the involved problem is essentially related to the

inversion of the double layer potential operator. It is also mentioned that in the case of

mixed problems and when the hypersingular operator is used, then probably other optimal

locations for the nodes will be found.
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A.10 Linear water-wave theory

The linear water-wave theory is concerned with the propagation of waves on the sur-

face of the water, considered as small perturbations so that they can be linearly described.

The study of these waves has many applications, including naval architecture, ocean en-

gineering, and geophysical hydrodynamics. For example, it is required for predicting the

behavior of floating structures (immersed totally or partially), such as ships, submarines,

and tension-leg platforms, and for describing flows over bottom topography. Furthermore,

the investigation of wave patterns of ships and other vehicles in forward motion is closely

related to the calculation of the wave-making resistance and other hydrodynamic charac-

teristics that are used in marine design. Another area of application is the mathematical

modeling of unsteady waves resulting from such phenomena as underwater earthquakes,

blasts, etc. We are herein interested in the derivation of the governing differential equa-

tions of these waves, obtained on the basis of general dynamics of an inviscid incompress-

ible fluid (water is the standard example of such a fluid), and their linearization.

We are particularly devoted to waves arising in two closely related phenomena, which

are radiation of waves by oscillating immersed bodies and scattering of incoming progres-

sive waves by an obstacle (a floating body or variable bottom topography). Mathematically

these phenomena give rise to a boundary-value problem that is usually referred to as the

water-wave problem. The difficulty of this problem stems from several facts. First, it is es-

sential that the water domain is infinite. Second, there is a spectral parameter (it is related

to the radian frequency of waves) in a boundary condition on a semi-infinite part of the

boundary (referred to as the free surface of water). Above all, the free surface may consist

of more than one component as occurs for a surface-piercing toroidal body.

Good and complete references for the linear theory of water waves are Kuznetsov,

Maz’ya & Vainberg (2002) and Wehausen & Laitone (1960), which are closely followed

herein, in particular the former. Other references on this topic are Hazard & Lenoir (1998),

Howe (2007), John (1949, 1950), Lamb (1916), Linton & McIver (2001), Mei (1983), Mei,

Stiassnie & Yue (2005), Stoker (1957), and Wehausen (1971).

Water waves, also known as gravity waves, ocean surface waves, or simply surface

waves, are created normally by a gravitational force in the presence of a free surface along

which the pressure is constant. There are two ways to describe these waves mathematically.

It is possible to trace the paths of individual particles (a Lagrangian description), but in this

thesis an alternative form of equations (usually referred to as Eulerian) is adopted. The first

description receives its name from the Italian-French mathematician and astronomer Joseph

Louis Lagrange (1736–1813), who made important contributions to classical and celestial

mechanics and to number theory. The second description is named after the already men-

tioned great Swissborn Russian mathematician and physicist Leonhard Euler (1707–1783).

The motion is determined by the velocity field in the domain occupied by water at every

moment of the time t.
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Water is assumed to occupy a certain domain Ω bounded by one or more moving or

fixed surfaces that separate water from some other medium. Actually we consider bound-

aries of two types: the above-mentioned free surface separating water from the atmosphere,

and rigid surfaces including the bottom and surfaces of bodies floating in and/or beneath

the free surface.

It is convenient to use rectangular coordinates x = (x1, x2, x3) ∈ R
3 with the origin

in the free surface at rest (which coincides with the mean free surface), and with the x3

axis directed opposite to the acceleration caused by gravity. For the sake of brevity we will

write xs instead of (x1, x2). Two-dimensional problems can be treated simultaneously by

considering the variables (xs, x3) ∈ R
2, i.e., taking a scalar xs instead of the vectorial xs,

and renaming eventually x3 by x2. Two-dimensional problems form an important class of

problems considering water motions that are the same in every plane orthogonal to a certain

direction. As usual, ∇u = (∂u/∂x1, ∂u/∂x2, ∂u/∂x3), and the horizontal component of ∇
will be denoted by ∇s, that is, ∇su = (∂u/∂x1, ∂u/∂x2, 0).

A.10.1 Equations of motion and boundary conditions

In the Eulerian formulation one seeks the velocity vector v, the pressure p, and the

fluid density ρ as functions of x ∈ Ω and t ≥ t0, where t0 denotes a certain initial moment.

Assuming the fluid to be inviscid without surface tension, one obtains the equations of

motion from conservation laws. The conservation of mass implies the continuity equation

∂ρ

∂t
+ ∇ · (ρv) = 0 in Ω. (A.834)

Under the assumption that the fluid is incompressible (which is usual in the water-wave

theory), the last equation becomes

∇ · v = 0 in Ω. (A.835)

The conservation of momentum in inviscid fluid leads to the so-called Euler equations.

Taking into account the gravity force, one can write these three (or two) equations in the

vector form
∂v

∂t
+ v · ∇v = −1

ρ
∇p+ g in Ω. (A.836)

Here g is the vector of the gravity force having zero horizontal components and the vertical

one equal to −g, where g denotes the acceleration caused by gravity.

An irrotational character of motion is another usual assumption in the theory, i.e.,

∇× v = 0 in Ω. (A.837)

Note that one can prove that the motion is irrotational if it has this property at the initial

moment. The last equation guarantees the existence of a velocity potential φ so that

v = ∇φ in Ω. (A.838)

This is obvious for simply connected domains, otherwise (for example, when one considers

a two-dimensional problem for a totally immersed body), the so-called no-flow condition

should be taken into account (vid. (A.843) below).
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From (A.835) and (A.838) one obtains the Laplace equation

∆φ = 0 in Ω. (A.839)

This greatly facilitates the theory but, in general, solutions of (A.839) do not manifest wave

character. Waves are created by the boundary conditions on the free surface.

Let x3 = η(xs, t) be the equation of the free surface valid for xs ∈ Γ, where Γ

is a union of some domains (generally depending on t) in R
N−1, with N = 2, 3. The

pressure is prescribed to be equal to the constant atmospheric pressure p0 on x3 = η(xs, t),

and the surface tension is neglected. From (A.837) and (A.838) one immediately obtains

Bernoulli’s equation

∂φ

∂t
+

|∇φ|2
2

= −p
ρ
− gx3 + C in Ω, (A.840)

where C is a function of t alone. Indeed, applying ∇ to both sides in (A.840) and us-

ing (A.837) and (A.838), one obtains ∇C = 0. Then, by changing φ by a suitable additive

function of t, one can convert C into a constant having, for example, the value

C =
p0

ρ
. (A.841)

Now (A.840) gives the dynamic boundary condition on the free surface

gη +
∂φ

∂t
+

|∇φ|2
2

= 0 for x3 = η(xs, t), xs ∈ Γ. (A.842)

Another boundary condition holds on every “physical” surface S bounding the fluid

domain Ω and expressing the kinematic property that there is no transfer of matter across S.

Let s(xs, x3, t) = 0 be the equation of S, then

ds

dt
= v · ∇s+

∂s

∂t
= 0 on S. (A.843)

Under assumption (A.838) this takes the form of

∂φ

∂n
= − 1

|∇s|
∂s

∂t
= vn on S, (A.844)

where vn denotes the normal velocity of S. Thus the kinematic boundary condition (A.844)

means that the normal velocity of particles is continuous across a physical boundary.

On the fixed part of S, (A.844) takes the form of

∂φ

∂n
= 0. (A.845)

On the free surface, condition (A.843), written as follows,

∂η

∂t
+ ∇sφ · ∇sη −

∂φ

∂x3

= 0 for x3 = η(xs, t), xs ∈ Γ, (A.846)

complements the dynamic condition (A.842). Thus, in the present approach, two non-linear

conditions (A.842) and (A.846) on the unknown boundary are responsible for waves, which

constitutes the main characteristic feature of water-surface wave theory.
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This brief account of governing equations can be summarized as follows. In the

water-wave problem one seeks the velocity potential φ(xs, x3, t) and the free surface el-

evation η(xs, t) satisfying (A.839), (A.842), (A.844), and (A.846). The initial values of φ

and η should also be prescribed, as well as the conditions at infinity (for unbounded Ω) to

complete the problem, which is known as the Cauchy-Poisson problem.

A.10.2 Energy and its flow

Let Ω0 be a subdomain of Ω, bounded by a “geometric” surface ∂Ω0 that may not be

related to physical obstacles, and that is permitted to vary in time independently of moving

water unlike the “physical” surfaces described below. Let s0(xs, x3, t) = 0 be the equation

of ∂Ω0. The total energy contained in Ω0 consists of kinetic and potential components, and

is given by

E = ρ

∫

Ω0

(
gx3 +

|∇φ|2
2

)
dx. (A.847)

The first term related to the vertical displacement of a water particle corresponds to the

potential energy, whereas the second one gives the kinetic energy that is proportional to the

velocity squared. Using (A.840) and (A.841), one can write this in the form of

E = −
∫

Ω0

(
ρ
∂φ

∂t
+ p− p0

)
dx. (A.848)

Differentiating (A.848) with respect to t we get (John 1949, Lamb 1916)

dE

dt
= ρ

∫

Ω0

∇φ · ∇∂φ

∂t
dx +

∫

∂Ω0

1

|∇s0|
∂s0

∂t

(
ρ
∂φ

∂t
+ p− p0

)
dγ(x). (A.849)

Green’s first integral theorem (A.612) applied to the first integral of (A.849) leads to

dE

dt
=

∫

∂Ω0

{
ρ
∂φ

∂t

(
∂φ

∂n
− vn

)
− (p− p0)vn

}
dγ(x), (A.850)

where (A.839) is taken into account and vn denotes the normal velocity of ∂Ω0. Hence

the integrand in (A.850) is the rate of energy flow from Ω0 through ∂Ω0 taken per units of

time and area. The velocity of energy propagation is known as the group velocity. Further

details can be found for this topic in Wehausen & Laitone (1960).

If a portion of ∂Ω0 is a fixed geometric surface, then vn = 0 on this portion. The rate

of energy flow is given by −ρ(∂φ/∂t)(∂φ/∂n).

If a portion of ∂Ω0 is a “physical” boundary that is not penetrable by water particles,

then (A.844) shows that the integrand in (A.850) is equal to (p0 − p)vn. Therefore, there is

no energy flow through this portion of ∂Ω0 if either of two factors vanishes. In particular,

this is true for the free surface (p = p0) and for the bottom (vn = 0).

A.10.3 Linearized unsteady problem

The presented problem is quite general, and it is very complicated to find an explicit

solution for these equations. The difficulties arising from the fact that φ is a solution of the

potential equation determined by non-linear boundary conditions on a variable boundary

are considerable. A large number of papers has been published and great progress has been
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achieved in the mathematical treatment of non-linear water-wave problems. However, all

rigorous results in this direction are concerned with water waves in the absence of floating

bodies, although some numerical results treating different aspects of the non-linear problem

have been achieved.

To be in a position to describe water waves in the presence of bodies, the equations

should be approximated by more tractable ones. The usual and rather reasonable simpli-

fication consists in a linearization of the problem under certain assumptions concerning

the motion of a floating body. An example of such assumptions (there are other ones

leading to the same conclusions) suggests that a body’s motion near the equilibrium posi-

tion is so small that it produces only waves having a small amplitude and a small wave-

length. There are three characteristic geometric parameters: a typical value of the wave

height H , a typical wavelength L, and the water depth D. They give three characteristic

quotients: H/L, H/D, and L/D. The relative importance of these quotients is different in

different situations. Nevertheless, it was found that if

H

D
≪ 1 and

H

L

(
L

D

)3

≪ 1, (A.851)

then the linearization can be justified by some heuristic considerations. The last parame-

ter (H/L)(L/D)3 = (H/D)(L/D2) is usually referred to as Ursell’s number.

The linearized theory leads to results that are in a rather good agreement with exper-

iments and observations. Furthermore, there is mathematical evidence that the linearized

problem provides an approximation to the non-linear one. For the Cauchy-Poisson prob-

lem describing waves in a water layer caused by prescribed initial conditions, the linear

approximation is justified rigorously. More precisely, under the assumption that the undis-

turbed water occupies a layer of constant depth, the following are proved. The non-linear

problem is solvable for sufficiently small values of the linearization parameter. As this pa-

rameter tends to zero, solutions of the non-linear problem do converge to the solution of

the linearized problem in the norm of some suitable function space.

A formal perturbation procedure leading to a sequence o linear problems can be devel-

oped as follows. Let us assume that the velocity potential φ and the free surface elevation η

admit expansions with respect to a certain small parameter ǫ:

φ(xs, x3, t) = ǫφ(1)(xs, x3, t) + ǫ2φ(2)(xs, x3, t) + ǫ3φ(3)(xs, x3, t) + . . . , (A.852)

η(xs, t) = η(0)(xs, t) + ǫη(1)(xs, t) + ǫ2η(2)(xs, t) + . . . , (A.853)

where φ(1), φ(2), . . . , η(0), η(1), . . . , and all their derivatives are bounded. Consequently,

the velocities of water particles are supposed to be small (proportional to ǫ), and ǫ = 0

corresponds to water permanently at rest.

Substituting (A.852) into (A.839) gives

∆φ(k) = 0 in Ω, k = 1, 2, . . . . (A.854)

Furthermore, η(0) describing the free surface at rest cannot depend on t. When the

expansions for φ and η are substituted into the Bernoulli boundary condition (A.842) and
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grouped according to powers of ǫ, one obtains

η(0) = 0 for xs ∈ Γ. (A.855)

This and Taylor’s expansion of φ(xs, η(xs, t), t) in powers of ǫ yield the following for

orders higher than zero:

∂φ(1)

∂t
+ gη(1) = 0 for x3 = 0, xs ∈ Γ, (A.856)

∂φ(2)

∂t
+ gη(2) = −η(1)∂

2φ(1)

∂t∂x3

− |∇φ(1)|2
2

for x3 = 0, xs ∈ Γ, (A.857)

and so on, i.e., all these conditions hold on the mean position of the free surface at rest.

Similarly, the kinematic condition (A.846) leads to

∂φ(1)

∂x3

− ∂η(1)

∂t
= 0 for x3 = 0, xs ∈ Γ, (A.858)

∂φ(2)

∂x3

− ∂η(2)

∂t
= −η(1)∂

2φ(1)

∂x2
3

+ ∇sφ(1) · ∇η(1) for x3 = 0, xs ∈ Γ, (A.859)

and so on. Eliminating η(1) between (A.856) and (A.858), one finds the classical first-order

linear free-surface condition

∂2φ(1)

∂t2
+ g

∂φ(1)

∂x3

= 0 for x3 = 0, xs ∈ Γ. (A.860)

In the same way, for x3 = 0 and xs ∈ Γ, one obtains from (A.857) and (A.859) that

∂2φ(2)

∂t2
+ g

∂φ(2)

∂x3

= −∂φ
(1)

∂t
∇2
s φ

(1) − 1

g2

∂

∂t

{
∂φ(1)

∂t

∂3φ(1)

∂t3
+ |∇sφ(1)|2

}
. (A.861)

Further free-surface conditions can be obtained for terms in (A.852) having higher orders

in ǫ. All these conditions have the same operator in the left-hand side, and the right-hand

term depends non-linearly on terms of smaller orders. It is worth mentioning that all of the

high-order problems are formulated in the same domain Ω occupied by the water at rest. In

particular, the free-surface boundary conditions are imposed at {x3 = 0, xs ∈ Γ}.

A.10.4 Boundary condition on an immersed rigid surface

First, we note that the homogeneous Neumann condition (A.845) is linear on fixed

surfaces. Hence, this condition is true for φ(k), k = 1, 2, . . .. The situation reverses for

the inhomogeneous Neumann condition (A.844) on a moving surface S, which can be sub-

jected, for example, to a prescribed motion or freely floating. The problem of a body freely

floating near its equilibrium position will not be treated here, and we restrict ourselves to

the linearization of (A.844) for S = S(t, ǫ) undergoing a given small amplitude motion

near an equilibrium position S, i.e., when S(t, ǫ) tends to S as ǫ→ 0.

It is convenient to carry out the linearization locally. Let us consider a neighbor-

hood of (x
(0)
s , x

(0)
3 ) ∈ S, where the surface is given explicitly in local cartesian coordi-

nates (ξs, ξ3), being in the three-dimensional case ξs = (ξ1, ξ2), and having an origin

at (x
(0)
s , x

(0)
3 ) and the ξ3 axis directed into water normally to S. Let ξ3 = ζ(0)(ξs) be the
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equation of S, and S(t, ǫ) be given by ξ3 = ζ(ξs, t, ǫ), where

ζ(ξs, t, ǫ) = ζ(0)(ξs) + ǫζ(1)(ξs, t) + ǫ2ζ(2)(ξs, t) + . . . . (A.862)

After substituting (A.852) and s = ξ3 − ζ(ξs, t, ǫ) into (A.843), we use (A.838), (A.862),

and Taylor’s expansion in the same way as, e.g., in (A.856). This gives the first-order

equation

∂φ(1)

∂ξ3
(ξs, ζ

(0), t) −∇sφ(1)(ξs, ζ
(0), t) · ∇sζ(0)(ξs) =

∂ζ(1)

∂t
(ξs, t), (A.863)

which implies the linearized boundary condition

∂φ(1)

∂n
= v(1)

n on S, (A.864)

where

v(1)
n =

∂ζ(1)/∂t√
(1 + |∇sζ(0)|2)

(A.865)

is the first-order approximation of the normal velocity of S(t, ǫ).

The second-order boundary condition on S has the form

∂φ(2)

∂n
=

∂ζ(2)/∂t√
(1 + |∇sζ(0)|2)

− ζ(1)∂
2φ(1)

∂n2
−
√

1 + |∇sζ(1)|2
1 + |∇sζ(0)|2

∂φ(1)

∂n(1)
, (A.866)

where ∂φ(1)/∂n(1) is the derivative in the direction of normal ξ3 = ζ(1)(ξs, t) calculated

on S. In addition, further conditions on S of the Neumann type can be obtained for terms

of higher order in ǫ.

Thus, all φ(k) satisfy the same linear boundary-value problem with different right-

hand side terms in conditions on the free surface at rest and on the equilibrium surfaces of

immersed bodies. These right-hand side terms depend on solutions obtained on previous

steps. Solving these problems successively, beginning with problems (A.854), (A.860),

and (A.864) complemented by some initial conditions, one can, generally speaking, find

a solution to the non-linear problem in the form of (A.852) and (A.853). However, this

procedure is not justified mathematically up to the present time. Therefore, we restrict

ourselves to the first-order approximation, which on its own right gives rise to an extensive

mathematical theory.

We summarize now the boundary-value problem for the first-order velocity poten-

tial φ(1)(xs, x3, t). It is defined in Ω occupied by water at rest with a boundary consisting

of the free surface Γ, the bottom B, and the wetted surface of immersed bodies S, and it

must satisfy

∆φ(1) = 0 in Ω, (A.867)

∂2φ(1)

∂t2
+ g

∂φ(1)

∂x3

= 0 for x3 = 0, xs ∈ Γ, (A.868)

∂φ(1)

∂n
= v(1)

n on S, (A.869)
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∂φ(1)

∂n
= 0 on B, (A.870)

φ(1)(xs, 0, 0) = φ0(xs) and
∂φ(1)

∂t
(xs, 0, 0) = −gη0(xs), (A.871)

where φ0, v
(1)
n , and η0 are given functions, and η0(xs) = η(1)(xs, 0) (see (A.856)). Then

η(1)(xs, t) = −1

g

∂φ(1)

∂t
(xs, 0, t) (A.872)

gives the first-order approximation for the elevation of the free surface.

A.10.5 Linear time-harmonic waves

We are interested in the study of the steady-state problem of radiation and scattering

of water waves by bodies floating in and/or beneath the free surface, assuming all motions

to be simple harmonic in the time. The corresponding radian frequency is denoted by ω.

Thus, the right-hand side term in (A.864) is

v(1)
n = Re{e−iωtf} on S, (A.873)

where f is a complex function independent of t, and the first-order velocity potential φ(1)

can then be written in the form

φ(1)(xs, x3, t) = Re{e−iωtu(xs, x3)}. (A.874)

The latter assumption is justified by the so-called limiting amplitude principle, which

is concerned with large-time behavior of a solution to the initial-boundary-value problem

having (A.873) as the right-hand side term. According to this principle, such a solution

tends to the potential (A.874) as t → ∞, and u satisfies a steady-state problem. The

limiting amplitude principle has general applicability in the theory of wave motions. Thus

the problem of our interest describes waves developing at large time from time-periodic

disturbances.

A complex function u in (A.874) is also referred to as velocity potential (but in this

case with respect to time-harmonic dependence). We recall that u is defined in the fixed

domain Ω occupied by water at rest outside any bodies present. The boundary ∂Ω consists

of three disjoint sets: (i) S, which is the union of the wetted surfaces of bodies in equilib-

rium; (ii) Γ, denoting the free surface at rest that is the part of x3 = 0 outside all the bodies;

and (iii) B, which denotes the bottom positioned below Γ ∪ S. Sometimes Ω is considered

unbounded below and corresponding to infinitely deep water. This is the case in this thesis

and it involves that ∂Ω = Γ ∪ S.

Substituting thus (A.873) and (A.874) into (A.867)–(A.870) gives the boundary-value

problem for u:

∆u = 0 in Ω, (A.875)

∂u

∂x3

− νu = 0 on Γ, (A.876)
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∂u

∂n
= f on S, (A.877)

∂u

∂n
= 0 on B, (A.878)

where ν = ω2/g. We suppose that the normal n to a surface is always directed outwards

of the water domain Ω.

For deep water (B = ∅), condition (A.878) should be replaced by something like

sup
(xs,x3)∈Ω

|u(xs, x3)| <∞. (A.879)

This condition has no direct hydrodynamic meaning, apart from stating that the solution

has to remain bounded in Ω. It implies the natural asymptotic behavior for the velocity

field given by

|∇u| −→ 0 as x3 −→ −∞, (A.880)

that is, the water motion decays with depth. Conditions at infinity that are similar to the

last two conditions are usually imposed in the boundary-value problems for the Laplacian

in domains exterior to a compact set in R
2 and R

3. A natural requirement that a solution

to (A.875)–(A.879) should be unique also imposes a certain restriction on the behavior of u

as |xs| → ∞. We will return again to this topic below.

Let us consider now some simple examples of waves existing in the absence of bodies.

The corresponding potentials can be easily obtained by separation of variables.

For a layer Ω of constant depth d, we consider the free surface Γ = {xs ∈ R
2, x3 = 0}

and the bottom B = {xs ∈ R
2, x3 = −d}. A plane progressive wave propagating in the

direction of a wave vector ks = (k1, k2) has the velocity potential

Re
{
A exp(iks · xs − iωt)

}
cosh{ks(x3 + d)}. (A.881)

Here A is an arbitrary complex constant, ks = |ks|, and the following relationship,

ν =
ω2

g
= ks tanh(ksd), (A.882)

holds between ω and ks. Tending d to infinity, we note that ks becomes equal to ν and,

instead of (A.881), we have

Re
{
A exp(iks · xs − iωt)

}
eνx3 (A.883)

for the velocity potential of a plane progressive wave in deep water.

A sum of two potentials (A.881) corresponding to identical progressive waves prop-

agating in opposite directions gives a standing wave. Putting the term exp(νx3) instead

of cosh{ks(x3 + d)} in (A.881) and omitting tanh(ksd) in (A.882), one gets the potential

of a progressive wave in deep water.

A standing cylindrical wave in a water layer of depth d has the potential

wst(xs, x3) cos(ωt), (A.884)
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where

wst(xs, x3) = C1 cosh{ks(x3 + d)}J0(ks|xs|), (A.885)

and where ks is defined by (A.882),C1 is a real constant, and J0 denotes the Bessel function

of order zero (vid. Subsection A.2.4). The same manipulation as above gives the standing

wave in deep water.

A cylindrical wave having an arbitrary phase at infinity may be obtained as a combi-

nation of wst and a similar potential with J0 replaced by Y0, the Neumann function of order

zero. This allows one to construct a potential of outgoing waves as

Re
{
e−iωtwout(xs, x3)

}
, (A.886)

where

wout(xs, x3) = C2 cosh{ks(x3 + d)}H(1)
0 (ks|xs|), (A.887)

and where ks is defined by (A.882), C2 is a complex constant, and H
(1)
0 denotes the zeroth

order Hankel function of the first kind. The outgoing behavior of this wave becomes clear

from the asymptotic formula

H
(1)
0 (ks|xs|) =

√
2

πks|xs|
ei(ks|xs|−π/4)(1 + O(|xs|−1)

)
as |xs| → ∞, (A.888)

where O(·) denotes the highest order of the remaining terms at infinity. Therefore, the

wave wout behaves at large distances like a radially outgoing progressive wave, but it is sin-

gular on the axis |xs| = 0. This is natural from a physical point of view, because outgoing

waves should be radiated by a certain disturbance. In the case under consideration, the wave

is produced by sources distributed with a suitable density over {|xs| = 0, −d < x3 < 0}.

Replacing H
(1)
0 in (A.887) by the zeroth order Hankel function of the second kind, H

(2)
0 ,

one obtains an incoming wave.

A.10.6 Radiation conditions

The examples of waves existing in the absence of bodies, e.g., plane progressive and

cylindrical waves, demonstrate that problem (A.875)–(A.878) should be complemented by

an appropriate condition as |xs| → ∞ to avoid non-uniqueness of the solution, which

follows from the fact that there are infinitely many solutions in the form of (A.881). On

the other hand, the energy dissipates when waves are radiated or scattered, i.e., there exists

a flow of energy to infinity. On the contrary, there is no such flow for standing waves

and no net flow for progressive waves. Since we are interested in describing radiation and

scattering phenomena, a condition should be introduced to eliminate waves having no flow

of energy to infinity. For this purpose a mathematical expression is used that is known as

a radiation condition. To formulate this condition, we have to specify the geometry of the

water domain at infinity.

Let Ω be an N -dimensional domain (N = 2, 3), which at infinity coincides with the

layer {xs ∈ R
N−1, −d < x3 < 0}, where 0 < d ≤ ∞. We say that u satisfies the radiation
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condition of the Sommerfeld type if

∂u

∂|xs|
− iksu = σ(x3)O(|xs|(2−N)/2) as |xs| → ∞, uniformly in x3, θ. (A.889)

Here σ(x3) = (1 + |x3|)−N+1 if d = ∞, σ(x3) = 1 if d < ∞, ks is defined by (A.882)

for d <∞, and ks = ν for d = ∞, and θ ∈ [0, 2π) is the polar angle in the plane {x3 = 0}.

Uniformity in θ should be imposed only for the three-dimensional problem (N = 3).

Let us show that (A.889) guarantees dissipation of energy. For the sake of simplicity

we assume that d < ∞. By Cr we denote a cylindrical surface Ω ∩ {|xs| = r} contained

inside Ω. By (A.850) the average energy flow to infinity through Cr over one period of

oscillations is equal to

Fr = −ρω
2π

∫ 2π/ω

0

∫

Cr

∂φ

∂t

∂φ

∂|xs|
dγ dt. (A.890)

Substituting (A.874) and taking into account that
∫ 2π/ω

0

e±2iωt dt = 0, (A.891)

one finds that

Fr = −ρω
2

8π

∫ 2π/ω

0

∫

Cr

(ieiωtū− ie−iωtu)

(
e−iωt

∂u

∂|xs|
+ eiωt

∂ū

∂|xs|

)
dγ dt

= −ρω
4π

∫

Cr

(
iū

∂u

∂|xs|
− iu

∂ū

∂|xs|

)
dγ =

ρω

2
Im

∫

Cr

ū
∂u

∂|xs|
dγ. (A.892)

This can be written as

Fr =
ρω

4ks

{∫

Cr

(∣∣∣∣
∂u

∂|xs|

∣∣∣∣
2

+ k2
s |u|2

)
dγ −

∫

Cr

∣∣∣∣
∂u

∂|xs|
− iksu

∣∣∣∣
2

dγ

}
. (A.893)

Moreover, Fr does not depend on r when the obstacle surface S lies inside the cylin-

der {|xs| = r}, which can be proved as follows.

By Ωr and Γr we denote Ω ∩ {|xs| < r} and Γ ∩ {|xs| < r}, respectively. Let us

multiply (A.875) by ū and integrate the result over Ωr. By applying then Green’s theorem

we obtain ∫

Ωr

|∇u|2 dxs dx3 =

∫

∂Ωr

ū
∂u

∂n
dγ, (A.894)

where the normal n is directed outside of Ωr. Using (A.876) and (A.878) we get
∫

Ωr

|∇u|2 dxs dx3 = ν

∫

Γr

|u|2 dxs +

∫

Cr

ū
∂u

∂|xs|
dγ −

∫

S

ū
∂u

∂n
dγ. (A.895)

Comparing this with (A.892) we find that

Fr =
ρω

2
Im

∫

S

ū
∂u

∂|xs|
dγ (A.896)

is independent of r.
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This fact yields that Fr ≥ 0 because (A.889) implies that the last integral in (A.893)

tends to zero as r → ∞.

The crucial point in the proof that Fr ≥ 0 is the equality (A.893), which suggests

that (A.889) can be replaced by a weaker radiation condition of the Rellich type
∫

Cr

∣∣∣∣
∂u

∂|xs|
− iksu

∣∣∣∣
2

dγ = O(1) as r → ∞. (A.897)

Actually, (A.889) and (A.897) are equivalent.

So, problem (A.875)–(A.878) has to be complemented by either (A.889) or (A.897). In

various papers this problem appears under different names: the floating body problem, the

sea-keeping problem, the wave-body interaction problem, the water-wave radiation (scat-

tering) problem, and so on.
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A.11 Linear acoustic theory

The linear acoustic theory is concerned with the propagation of sound waves consid-

ered as small perturbations in a fluid or gas. Consequently the equations of acoustics are

obtained by linearization of the equations for the motion of fluids. The two main media

for the propagation and scattering of sound waves are air and water (underwater acoustics).

A third important medium with properties close to those of water is the human body, i.e.,

biological tissue (ultrasound). We are herein interested in obtaining the differential equa-

tions that govern the acoustic wave propagation, whose linearization yields the scalar wave

equation of acoustics. By considering simple-harmonic waves for the wave equation, we

obtain finally the Helmholtz equation. When the frequency is zero, this equation turns into

the Poisson or the Laplace equation. The corresponding boundary conditions are also de-

veloped, in particular the impedance boundary condition. A good and complete reference

for the linear acoustic theory is the article by Morse & Ingard (1961), which is closely fol-

lowed herein. Other references are DeSanto (1992), Elmore & Heald (1969), Howe (2007),

Kinsler, Frey, Coppens & Sanders (1999), Kress (2002), and Strutt (1877).

Acoustic motion is, almost by definition, a perturbation. The slow compressions and

expansions of materials, studied in thermodynamics, are not thought of as acoustical phe-

nomena, nor is the steady flow of air usually called sound. It is only when the compression

is irregular enough so that overall thermodynamic equilibrium may not be maintained, or

when the steady flow is deflected by some obstacles so that wave motion is produced, that

we consider part of the motion to be acoustical. In other words, we think of sound as a by-

product, wanted or unwanted, of slower, more regular mechanical processes. And, whether

the generating process be the motion of a violin bow or the rush of gas from a turbo-jet, the

part of motion we call sound usually carries but a minute fraction of the energy present in

the primary process, which is not considered to be acoustical.

This definition of acoustical motion as being the small, irregular part of some larger,

more regular motion of matter, gives rise to difficulties when we try to develop a consistent

mathematical representation of its behavior. When the irregularities are large enough, for

example, there is no clear-cut way of separating the acoustical from the non-acoustical

part of the motion. In fact, only in the cases where the non-steady motions are first-order

perturbations of some larger, steady-state motion can one hope to make a self-consistent

definition which separates acoustic from non-acoustic motion and, even here, there are

ambiguities in the case of some types of near field. Thus it is not surprising that the earliest

work in acoustic theory, and even now a vast quantity, has to do with situations where

the acoustical part of the motion is small enough so that linear approximations can be used.

These are our cases of interest in this thesis. Strictly speaking, the equations to be discussed

here are valid only when the acoustical component of the motion is ”sufficiently” small, but

it is only in this limit that we can unequivocably separate the total motion into its acoustical

and its non-acoustical parts.

Still another limitation of the validity of acoustical theory is imposed by the atomic-

ity of matter. The thermal motions of individual molecules, for instance, are not usually
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representable by the equations of sound. These equations are meant to represent the aver-

age behavior of large assemblies of molecules. Thus, for instance, when we speak of an

element of volume we implicitly assume that its dimensions, while being smaller than any

wavelength of acoustical motion present, are large compared to inter-molecular spacings.

A.11.1 Differential equations

a) Basic equations of motion

Considering the fluid as a continuous medium, two points of view can be adopted in

describing its motion. In the first, the Lagrangian motion, the history of each individual

fluid element, or particle, is recorded in terms of its position x as a function of the time t.

Each particle is identified by means of a parameter, which is usually chosen to be the

position vector x0 of the element at t = 0. The Lagrangian description of fluid motion is

expressed by the set of functions x = x(x0, t).

In the second, or Eulerian, description, on the other hand, the fluid motion is described

in terms of a velocity field V(x, t) in which the position x and the time t are independent

variables. The variation of V with time, or of any other fluid property in this description,

refers thus to a fixed point in space rather than to a specific fluid element, as is the case

with the Lagrangian description.

If a field quantity is denoted by ΨL in the Lagrangian and by ΨE in the Eulerian de-

scription, then the relation between the time derivatives in the two descriptions is

dΨL
dt

=
∂ΨE
∂t

+ (V · ∇)ΨE. (A.898)

We remark that in the case of linear acoustics for a homogeneous medium at rest we

need not be concerned about the difference between (dΨL/dt) and (∂ΨE/∂t), since the

term (V · ∇)ΨE is then of second order. However, in a moving or inhomogeneous medium

the distinction must be maintained even in the linear approximation.

We shall ordinarily use the Eulerian description and, if we ever need the Lagrangian

time derivative, we shall express it as the right-hand side of (A.898), omitting the sub-

scripts. We express herein the fluid motion in terms of the three velocity components Vi of

the velocity vector V . We denote further the velocity amplitude as V = |V |. In addition,

the state of the fluid is described in terms of two independent thermodynamic variables

such as pressure and temperature or density and entropy. We assume that thermodynamic

equilibrium is maintained within each volume element. Thus in all we have five field vari-

ables: the three velocity components and the two independent thermodynamic variables. In

order to determine these functions of x and t we need five equations. These turn out to be

conservation laws: conservation of mass (one equation), conservation of momentum (three

equations), and conservation of energy (one equation).

If the density of the fluid is denoted by ̺ and i, j ∈ {1, 2, 3}, then the mass flow in the

fluid can be expressed by the vector components

̺Vi (A.899)
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and the total momentum flux by the tensor

tij = Pij + ̺ViVj, (A.900)

in which the first term is the contribution from the thermal motion and the second term the

contribution from the gross motion of the fluid. The term Pij is the fluid stress tensor

Pij = (P − ε∇ · V )δij − 2ηUij = Pδij −Dij, (A.901)

where P is the total pressure in the fluid, δij is the delta of Kronecker, Dij is the viscous

stress tensor, ε and η are two coefficients of viscosity, and

Uij =
1

2

(
∂Vi
∂xj

+
∂Vj
∂xi

)
(A.902)

is the shear-strain tensor. In this notation the bulk viscosity would be 3ε + 2η, and if this

were zero (as Stokes assumed for an ideal gas), then η would equal −3ε/2. However,

acoustical measurement shows that bulk viscosity is not usually zero (in some cases it may

be considerably larger than η) so it will be assumed that ε and η are independent parameters

of the fluid. In addition, we define the energy density of the fluid as

h =
1

2
̺V 2 + ̺E, (A.903)

the sum of its kinetic energy and the internal energy (E denotes the internal energy per unit

mass), and the energy flow vector as

Ii = hVi +
∑

j

PijVj −K
∂T

∂xi
, (A.904)

in which T is the temperature, K is the thermal conductivity constant, and ∂T/∂xi is the

temperature gradient in the location of interest. Thus −K(∂T/∂xi) corresponds to the heat

flow vector. The term
∑

j PijVj contains the work done by the pressure as well as the

dissipation caused by the viscous stresses.

The basic equations of motion for the fluid, representing the conservation of mass,

momentum, and energy, can thus be written in the forms

∂̺

∂t
+
∑

i

∂(̺Vi)

∂xi
= Q(x, t), (A.905)

∂(̺Vi)

∂t
+
∑

j

∂tij
∂xj

= Fi(x, t), (A.906)

∂h

∂t
+
∑

i

∂Ii
∂xi

= H(x, t), (A.907)

where Q, Fi, and H are source terms representing the time rate of introduction of mass,

momentum, and heat energy into the fluid, per unit volume. The energy equation (A.907)

can be rewritten in the somewhat different form

̺
dE

dt
= ̺

(
∂E

∂t
+ V · ∇E

)
= K∆T +D − P∇ · V +H, (A.908)
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which represents the fact that a given element of fluid has its internal energy changed either

by heat flow, or by viscous dissipation

D =
∑

ij

DijUij = ε
∑

j

U2
jj + 2η

∑

ij

U2
ij, (A.909)

or by direct change of volume, or else by direct injection of heat from outside the system.

This last form of energy equation can be obtained directly from the first law of thermody-

namics
dE

dt
= T

dS

dt
+
P

̺2

d̺

dt
, (A.910)

if, for the rate of entropy production per unit mass dS/dt, we introduce

T
dS

dt
=
K

̺
∆T +

D

̺
+
H

̺
, (A.911)

and, for the density change d̺/dt we use

d̺

dt
=
∂̺

∂t
+ V · ∇̺ = −̺∇ · V . (A.912)

If we wish to change from one pair of thermodynamic variables to another we usually make

use of the equation of state of the gas

P = P (̺, T ). (A.913)

For a perfect gas, it is given by

P = R̺T, (A.914)

being R = 8.314472 [J/◦K/mol] the (ideal) gas constant.

b) Wave equation

Returning to equations (A.905) to (A.907), by elimination of ∂2(̺Vi)/∂xi∂t from the

first two, we obtain

∂2̺

∂t2
− c20∆̺ =

∂Q

∂t
−
∑

i

∂Fi
∂xi

+ ∆(P − c20̺) +
∑

ij

(
∂2Dij

∂xi∂xj
+
∂2(̺ViVj)

∂xi∂xj

)
. (A.915)

We have subtracted the term c20∆̺ from both sides of the equation, where c0 is the space

average of the velocity of sound (c0 can depend on t). The right-hand terms will vanish for

a homogeneous, lossless, and source-free medium at rest, in which case we obtain for the

density ̺ the familiar wave equation

∆̺− 1

c20

∂2̺

∂t2
= 0. (A.916)

Under all other circumstances the right-hand side of (A.915) will not vanish, but will rep-

resent some sort of sound source, either produced by external forces or injections of fluid

or by inhomogeneities, motions, or losses in the fluid itself.

The first term, representing the injection of fluid, gives rise to a monopole wave. For

air-flow sirens and pulsed-jet engines, for example, it represents the major source term. The

second term, corresponding to body forces on the fluid, gives rise to dipole waves. Even
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when this term is independent of time it may have an effect on sound transmission, as, e.g.,

in the case of the force of gravity.

The third term represents several effects. The variation of pressure is produced both

by a density and an entropy variation. If the fluid changes are isentropic, then the third

term corresponds to the scattering or refraction of sound by variations in temperature or

composition of the medium. It may also correspond to a source of sound, in the case of

a fluctuating temperature in a turbulent medium. If the motion is not isentropic, then the

term ∆(P − c20̺) also contains contributions from entropy fluctuations in the medium.

These effects will include losses produced by heat conduction and also the generation of

sound by heat sources.

The fourth term, the double divergence of Dij , represents the effects of viscous losses

and/or the generation of sound by oscillating viscous stresses in a moving medium. If the

coefficients of viscosity should vary from point to point, one would have also the effect

of scattering from such inhomogeneities, but these are usually quite negligible. Finally,

the fifth term, the double divergence of the term ̺ViVj , represents the scattering or the

generation of sound caused by the motion of the medium. If the two previous terms are

thought of as stresses produced by thermal motion, this last term can be considered as

representing the Reynolds stress of the gross motion. It is the major source of sound in

turbulent flow and produces quadrupole radiation.

c) Linear approximation

After having summarized the possible effects in fluid motion, we shall now consider

the problem of linearisation of the equations (A.905) to (A.907) and the interpretation of

its results. These equations are non-linear in the variables ̺ and Vi. Not only are there

terms where the product ̺Vi occurs explicitly, but also terms such as h and Ii implicitly

depend on ̺ and Vi in a non-linear way. Furthermore, the momentum flux tij is not usually

linearly related to the other field variables. In the first place the gross motion of the fluid,

if there is one, contributes a stress ̺ViVj and in the second place there is a non-linear

relationship between the pressure P and the other thermodynamic variables. For example,

in an isentropic motion we have (P/P0) = (̺/̺0)
γ , and for a non-isentropic motion we

have
P

P0

=

(
̺

̺0

)γ
e(S−S0)/Cv . (A.917)

A Taylor expansion of this last equation around the equilibrium state (̺0, S0) yields

P −P0 = c2(̺−̺0)+
P0

Cv
(S−S0)+

1

2
(γ−1)c2(̺−̺0)

2 +
P0

2C2
v

(S−S0)
2 + . . . (A.918)

where Cp and Cv are respectively the specific heats at constant pressure and constant vol-

ume, γ = Cp/Cv, and c2 = γP0/̺0. Thus, only when the deviation of P from the equilib-

rium value P0 is small enough is the linear relation

P ≈ P0 + c2(̺− ̺0) +
P0

Cv
(S − S0) (A.919)
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a good approximation. As we already mentioned, in acoustics we are usually concerned

with the effects of some small, time-dependent deviations from some equilibrium state of

the system. When the equilibrium state is homogeneous and static, the perturbation can

easily be separated off and the resulting first order equations are relatively simple. But

when the equilibrium state involves inhomogeneities or steady flows the separation is less

straightforward. Even here, however, if the inhomogeneities are confined to a finite region

of space, the equilibrium state outside this region being homogeneous and static, then the

separating out of the acoustic motions in the outer region is not difficult.

In any case, we assume that the medium in the equilibrium state is described by the

field quantities V0 = v, P0, ̺0, T0, and S0, for example, and define the acoustic velocity,

pressure, density, temperature, and entropy as the differences between the actual values and

the equilibrium values

u = V − V0 = V − v, p = P − P0, δ = ̺− ̺0,

θ = T − T0, σ = S − S0.
(A.920)

If u, p, etc., are small enough we can obtain reasonably accurate equations, involving these

acoustic variables to the first order, in terms of the equilibrium values (not necessarily

to the first order). If we have already solved for the equilibrium state, the equilibrium

values V0 = v, P0, etc., may be regarded as known parameters, being u, p, etc., the

unknowns. Thus the first order relationship between the acoustic pressure, density, and

entropy arising from (A.918) is

p ≈ c2δ +
P0

Cv
σ. (A.921)

Our procedure will thus be to replace the quantities ̺, V , T , etc., in equations (A.905)

to (A.908) by (̺0 + δ), (v + u), (T0 + θ), etc., and to keep only terms in first order of

the acoustic quantities δ, u, θ, etc. The terms containing only ̺0, v, T0 (which we call

inhomogeneous terms) need not be considered when we are computing the propagation of

sound. On the other hand, in the study of the generation of sound these inhomogeneous

terms are often the source terms.

In general, the linear approximations thus obtained will be valid if the mean acoustic

velocity amplitude u = |u| is small compared to the wave velocity c. There are exceptions

however. In the problem of the diffraction of sound by a semi-infinite screen, for example,

the acoustic velocity becomes very large in the regions close to the edge of the screen. In

such regions non-linear effects are to be expected.

The linearized forms for the equations of mass, momentum, and energy conservation,

and the equation of state (perfect gas), for a moving, inhomogeneous medium, are

∂δ

∂t
+ δ

∑

i

∂vi
∂xi

+ ̺0

∑

i

∂ui
∂xi

+
∑

i

ui
∂̺0

∂xi
≈ Q, (A.922)

∂

∂t
(̺0ui + δvi) +

∑

j

∂

∂xj

{
̺0(uivj + ujvi) + δvivj + pij

}
≈ Fi, (A.923)
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̺0T0

(
∂σ

∂t
+ u · ∇S0

)
+
p

R

dS0

dt
≈ K∆θ + 4η

∑

ij

uijvij +H, (A.924)

p ≈ R̺0θ +RT0δ = c2δ +
P0

Cv
σ, (A.925)

where

d

dt
=

∂

∂t
+ (V · ∇), (A.926)

uij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, (A.927)

and

pij = pδij − dij, (A.928)

dij = ε div(u)δij + 2ηuij, (A.929)

are acoustic counterparts of the quantities defined earlier. The source terms Q, F , and H

are the non-equilibrium parts of the fluid injection, body force, and heat injection. The

equilibrium part of Q, for example, has been canceled against (∂̺0/∂t) + div(̺0v) from

the left-hand side of (A.905).

These results are so general as to be impractical to use without further specialization.

For example, one has to assume that div(v) = 0 (usually a quite allowable assumption)

before one can obtain the linear form of the general wave equation
(
∂

∂t
+ v · ∇

)2

δ − ∆p ≈ ∂Q

∂t
−∇ · F + ∇ · D · ∇, (A.930)

where the last term is the double divergence of the tensor D, which has elements dij . In

order to obtain a wave equation in terms of acoustic pressure p alone, we must determine δ

and dij in terms of p. To do this in the most general case is not a particularly rewarding

exercise, it is much more useful to do it for a number of specific situations which are of

practical interest.

But, before we go to special cases, it is necessary to say a few words about the meaning

of such quadratic quantities as acoustic intensity, acoustic energy, density, and the like. For

example, the energy flow vector

I =

(
1

2
̺V 2 + ̺E

)
V + P · V −K∇T, (A.931)

where P is the fluid stress tensor, with elements Pij . The natural definition of the acoustic

energy flow would be

i = (I)with sound − (I)without sound = I − I0, (A.932)

with corresponding expressions for the acoustic energy density, w = h−h0, and mass flow

vector, (̺V)with sound − (̺0V0). Similarly with the momentum flow tensor, from which the

acoustic radiation pressure tensor is obtained, i.e.,

mij = (Pij + ̺ViVj)with sound − (Pij + ̺ViVj)without sound. (A.933)
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These quantities clearly will contain second order terms in the acoustic variables, there-

fore their rigorous calculation would require acoustic equations which are correct to the

second order. As with equation (A.930), it is not very useful to perform this calculation

in the most general case. It is sufficient to point out here that the acoustic energy flow,

etc., correct to second order, can indeed be expressed in terms of products of the first order

acoustic variables.

In the general acoustic equations (A.922) to (A.925) we have included the source terms

Q, F , and H , corresponding to the rate of transfer of mass, momentum, and heat energy

from external sources. The sound field produced by these sources can be expressed in terms

of volume integrals over these source functions. As mentioned above, we have not included

terms, such as ̺ViVj or ∆P0, which do not include acoustic variables. The justification for

this omission is that these terms balance each other locally in the equations of motion, for

example fluctuations in velocities are balanced by local pressure fluctuations, and the like.

These fluctuations produce sound (i.e., acoustic radiation), but in the region where the fluc-

tuations occur (the near field), the acoustic radiation is small compared to the fluctuations

themselves. However, the acoustic radiation produced produced by the fluctuations extends

outside the region of fluctuation, into regions where the fluid is otherwise homogeneous and

at rest (the far field), and here it can more easily be computed (and, experimentally, more

easily measured).

Thus, in the study of the generation of sound by fluctuations in the fluid itself, it is

essential to retain in the source terms the terms which do not contain the acoustic vari-

ables themselves. Within the region of fluctuation, the differentiation between sound and

equilibrium motion is quite artificial (the local fluid motion could be regarded as part of

the acoustic near field), and in many cases it is more straightforward to use the original

equations (A.905) to (A.908) and (A.915) in their integral form, where the net effect of the

sources appears as an integral over the region of fluctuation.

d) Acoustic equations for a fluid at rest

We discuss herein the special forms taken on by equations (A.922) to (A.933) when the

equilibrium state of the fluid involves only a few of the various possible effects discussed

above. At first we will assume that, in the equilibrium state, the fluid is at rest and that the

acoustic changes in density are isentropic (σ = 0). In this case the relation between the

acoustic pressure p and the acoustic density δ, from equation (A.921), is simply

p = c2δ, c2 =
γP

̺
. (A.934)

From here on we will omit the subscript 0 from the symbols for equilibrium values in

situations like that of equation (A.934), where the difference between P and P0 or ̺ and ̺0

would make only a second-order difference in the equations. We also will use the symbol =

instead of ≈, since from now on we commit ourselves to the linear equations. The wave

equation (A.930) then reduces to the familiar

∆p− 1

c2
∂2p

∂t2
= 0. (A.935)

362



Once the pressure has been computed, the other acoustic variables follow from the

equations defined previously:

Velocity u = −1

̺

∫
∇p dt, (A.936)

Displacement d =

∫
u dt, (A.937)

Temperature θ = (γ − 1)
T

̺c2
p,

(
γ =

Cp
Cv

)
(A.938)

Density δ =
p

c2
. (A.939)

All these variables satisfy a homogeneous wave equation such as (A.935).

Waves with simple-harmonic time dependence are of the form

p = p0e
−iωt, ω = kc, (A.940)

where p0 does not depend on t, and where i denotes the complex imaginary unit, ω the

pulsation, and k the wave number. These are single-frequency waves and have a time

factor e−iωt. For these waves, the acoustic variables of velocity and displacement are given,

in particular, by

Velocity u = − 1

ik̺c
∇p, (A.941)

Displacement d = − 1

k2̺c2
∇p. (A.942)

For a plane sound wave, which has the general form

p = f(c t− n · x), (A.943)

being n a unit vector normal to the wave front, the acoustic velocity is

u =
n

̺c
f(c t− n · x). (A.944)

The quantity ̺c is called the characteristic acoustic impedance of the medium. Since div(d)

is the relative volume change of the medium, we can use equation (A.934) to obtain another

relation between d and p, namely

p = −̺c2 div(d), (A.945)

which states that the isentropic compressibility of the fluid is equal to 1/(̺c2).

The sound energy flow vector (the sound intensity) is

i = pu = ̺cu2n =
p2

̺c
n. (A.946)

It is tempting to consider this equation as self-evident, but it should be remembered that i

is a second-order quantity, which must be evaluated from equation (A.932). In the special
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case of a homogeneous medium at rest, the other second-order terms cancel out and equa-

tion (A.946) is indeed correct to second order. In a moving medium, the result is not so

simple.

The situation is also not so straightforward in regard to the mass flow vector. One

might assume that it equals δu, but this would result in a non-zero, time-average, mass

flow for a plane wave, an erroneous result. In this case, the additional second-order terms

in the basic equations do contribute, making the mass flow vector zero in the second-order

approximation.

On the other hand, the magnitude of the acoustic momentum flux is correctly given

by the expression ̺u2 to the second order. The rate of momentum transfer is equal to the

radiation pressure on a perfect absorber.

Generally we are interested in the time average of these quantities. For single-frequency

waves (time factor e−iωt), these are

i =
1

2
Re{pū}, (A.947)

where ū denotes the complex conjugate of u. For a plane wave, like (A.943), we have

i =
1

2
̺cu2n =

n

2̺c
|p|2. (A.948)

The acoustic density is

w =
1

2
̺u2 +

1

2̺c2
|p|2, (A.949)

where the first term is the kinetic energy density and the second term the potential energy

density. In a plane wave these are equal. We note that the magnitude of the acoustic

radiation pressure is thus equal to the acoustic energy density.

The simple wave equation (A.935) is modified when there are body forces or inhomo-

geneities present, even though there is no motion of the fluid in the equilibrium state, as

two examples will suffice to show. For example, the force of gravity has a direct effect on

the wave motion, in addition to the indirect effect produced by the change in density with

height. In this case, the body force F is equal to ̺ g, where g is the acceleration of gravity,

being g = |g|, and thus the term div(F ) in equation (A.930) becomes g ·∇̺+̺∇·g, where

the magnitude of the second term is to that of the first as the wavelength is to the radius of

the Earth, so the second term can usually be neglected. Therefore the wave equation in the

presence of the force of gravity is

∂2p

∂t2
= c2∆p+ g · ∇p. (A.950)

The added term has the effect of making the medium anisotropic. For a simple-

harmonic, plane wave exp(ikn · x − iωt), if n is perpendicular to g, then k = ω/c,

but if n is parallel to g, the propagation constant k is

kg = i
g

2c2
+
ω

c

√
1 − g2

4c2ω2
. (A.951)
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We note that a wave propagating downward (in the direction of the acceleration of grav-

ity g) is attenuated at a rate e−αx3 , where α = (g/2c2), independent of frequency, and its

phase velocity is c/
√

1 − (g2/4c2ω2). If the frequency of the wave is less than (g/4πc),

there will be no wave motion downward.

A similar anisotropy occurs when the anisotropy is not produced by a body force, but

is caused by an inhomogeneity in one of the characteristics of the medium. In a solid or

liquid medium the elasticity or the density may vary from point to point (as is caused by

a salinity gradient in sea-water, for instance). If the medium is a gas, the inhomogeneity

must manifest itself by changes in temperature and/or entropy density. For a source-free

medium at rest, equation (A.930) shows that (∂2δ/∂t2) = ∆p, but this equation reduces to

the usual wave equation (A.935) only when the equilibrium entropy density is uniform and

the acoustical motions are isentropic. If the equilibrium entropy density S0 is not uniform

the wave equation is modified, even though the acoustic motion is still isentropic.

If the acoustic disturbance is isentropic, then (dS/dt) = (∂S/∂t) + u · ∇S = 0, and

if the equilibrium entropy density S0 is a function of position but not of time, then

∂σ

∂t
+ u · ∇S0 = 0. (A.952)

Referring to equations (A.921) and (A.936), we obtain

∂δ

∂t
=

1

c2
∂p

∂t
− ̺

Cp

∂σ

∂t
=

1

c2
∂p

∂t
+

̺

Cp
u · ∇S0, (A.953)

and thus
∂2δ

∂t2
=

1

c2
∂2p

∂t2
− 1

Cp
∇p · ∇S0, (A.954)

which, when inserted into equation (A.930) for a source-free medium at rest finally pro-

duces the equation
1

c2
∂2p

∂t2
= ∆p+

1

Cp
∇p · ∇S0, (A.955)

which has the same form as equation (A.950) representing the effect of gravity. Thus an

entropy gradient in the equilibrium state will produce anisotropy in sound propagation. As

with the solutions for equation (A.950), sound will be attenuated in the direction of entropy

increase, will be amplified in the direction of decreasing S0. However, a much larger effect

arises from the fact that a change in entropy will produce a change in c from point to point,

so that the coefficient of (∂2p/∂t2) in equation (A.955) will depend on position.

Further effects of fluid motion, transport phenomena, and internal energy losses can be

appreciated in Morse & Ingard (1961).

e) Simple-harmonic waves

Simple-harmonic waves are used when the sources and fields have a single frequency,

or else, when the total field has been analyzed into its frequency components and we are

studying one of these components. These waves acquire thus the form of equation (A.940).

Here all aspects of the wave have a common time factor e−iωt and the space part of the

pressure or density wave (vid. equations (A.915) and (A.930)) satisfies the inhomogeneous
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Helmholtz equation in the variable x, namely

∆Ψ + k2Ψ = q(x), k =
ω

c
, (A.956)

where Ψ may be the density ̺, in which case q represents −(1/c20) times the quantities

on the right-hand side of equation (A.915), with time factor e−iωt divided out, or else,

if we are using the linear approximations, Ψ may be the acoustic pressure p, in which

case q may be some of the terms on the right-hand side of equation (A.930). Some of

these quantities are truly inhomogeneous terms, being completely specified functions of

the spatial coordinates x, other terms are linear in the unknown Ψ or its derivatives, and

still other terms are quadratic in Ψ and its derivatives (the quadratic terms are neglected

in our present discussion). From Ψ, of course, we can obtain the other properties of the

wave, its fluid velocity, displacement, temperature, etc., by means of the relations given in

equations (A.936) to (A.939).

The Helmholtz equation (A.956) can be solved for any wave number k. If we assume,

in the equilibrium state, that the fluid is at rest and that the acoustic changes in density are

isentropic, then we obtain the familiar homogeneous Helmholtz equation

∆Ψ + k2Ψ = 0. (A.957)

A particular case of this equation is when the frequency f is zero, being f = ω/2π, in

which case the Laplace equation appears, namely

∆Ψ = 0, k = 0. (A.958)

Similarly, if the frequency is zero for the inhomogeneous Helmholtz equation (A.956), then

we obtain the Poisson equation

∆Ψ = q(x), k = 0. (A.959)

A.11.2 Boundary conditions

a) Reaction of the surface to sound

We discuss now the behavior of sound in the neighborhood of a boundary surface, and

see whether we can express this behavior in terms of boundary conditions on the acoustic

field. It turns out that in many cases the sorts of boundary conditions familiar in the classical

theory of boundary-value problems, such as that the ratio of value to normal gradient of

pressure is specified at every point on the boundary, is at least approximately valid.

At first sight it may seem surprising that the ratio of pressure to its normal gradient,

which to first order equals the ratio of pressure to normal velocity at the surface, could be

specified, even approximately, at each point of the surface, independently of the configura-

tion of the incident wave (vid. equation (A.936)). Of course, if the wall is perfectly rigid so

that the value of the ratio is infinite everywhere, then the assumption that this ratio is inde-

pendent of the nature of the incident wave is not so surprising. But many actual boundary

surfaces are not very rigid, and in many problems in theoretical acoustics the effect of the

yielding of the boundary to the sound pressure is the essential part of the problem. When

the boundary does yield, for the classical boundary conditions to be valid would imply that
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the ratio of incident pressure to normal displacement of the boundary would be a character-

istic of each point of the surface by itself, independent of what happens at any other point

of the surface. To see what this implies, regarding the acoustic nature of the boundary sur-

face, and when it is likely to be valid, let us discuss the simple case of the incidence of a

plane wave of sound on a plane boundary surface.

Suppose the boundary is the x2-x3 plane, with the boundary material occupying the

region of positive x1 and the fluid carrying the incident sound wave occupying the region

of negative x1, to the left of the boundary plane. Suppose also that the incident wave has

frequency f = ω/2π and that its direction of propagation is at the angle of incidence φ

to the x1 axis, the direction normal to the boundary. The incident wave, therefore, has a

pressure and fluid velocity distribution, within the fluid (vid. equation (A.944)), given by

p = pi exp(ikx1 cosφ+ ikx2 sinφ− iωt), (A.960)

u =
p

̺c
(a1 cosφ+ a2 sinφ), k =

ω

c
=

2π

λ
, (A.961)

where ̺ is the fluid density, c is the velocity of sound waves, and λ the wavelength of the

wave in the fluid in the region x1 < 0.

At x1 = 0 the wave is modified because the boundary surface does not move in re-

sponse to the pressure in the same way that the free fluid does. In general, the presence of

the acoustic pressure p produces motion of the surface, but the degree of motion depends

on the nature of the boundary material and its structure. If the fluid viscosity is small,

we can safely assume that the tangential component of fluid velocity close to the surface

need not be equal to the tangential velocity of the boundary itself, thus a discontinuity in

tangential velocity is allowed at the boundary. But there must be continuity in normal ve-

locity through the boundary surface, and there must also be continuity in pressure across

the surface.

If the surface is porous, so that the fluid can penetrate into the surface material, then

there can be an average fluid velocity into the surface without motion of the boundary

material itself. If the pores do not interconnect, then it would be true that the mean normal

velocity of penetration of the fluid into the pores would bear a simple ratio to the pressure

at the surface, independent of the pressure and velocity of the wave at other points on the

surface. In this case we could expect the ratio between pressure and normal velocity at the

surface to be a point property of the surface, perhaps dependent on the frequency of the

incident wave, but independent of its configuration.

b) Acoustic impedance

The ratio between pressure and velocity normal to a boundary surface is called the

normal acoustic impedance zn of the surface. When it is a point property of the surface,

independent of the configuration of the incident wave (and we have indicated that this is the

case in practice for many porous surfaces), then the classical type of boundary condition

is applicable. For a wave of frequency f = ω/2π, the normal fluid velocity just outside

the surface is equal to (1/iω̺) times the normal gradient of the pressure there. Thus the
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ratio of pressure to its normal gradient at a point of the surface would equal the value of the

normal impedance of the surface at the point, divided by ik̺c, where k = ω/c = 2π/λ,

and where ̺c is the characteristic impedance of the fluid medium (vid. equation (A.944)):

p

∂p/∂n
=

zn
ik̺c

=
ζ

ik
=

1

ik
(χ− iξ), (A.962)

where ζ is the dimensionless specific impedance of the surface, and χ and ξ are its resistive

and reactive components. If zn is a point property of the surface, then classical boundary

conditions can be used for single-frequency incident waves.

For example, for the conditions of equations (A.960) and (A.961), the ratio between

the reflected amplitude pr and the incident amplitude pi in in the region x1 < 0, being the

total wave

p =
(
pie

ikx1cosφ + pre
−ikx1cosφ

)
eikx2 sinφ−iωt, (A.963)

is easily shown from equation (A.962) to be

R =
pr
pi

=
−1 + ζ cosφ

1 + ζ cosφ
= −(1 − χ cosφ) + iξ cosφ

(1 + χ cosφ) − iξ cosφ
, (A.964)

and the ratio of reflected to incident intensity is

|R|2 = 1 − α =
(1 − χ cosφ)2 + ξ2 cos2φ

(1 + χ cosφ)2 + ξ2 cos2φ
, (A.965)

where α is called the absorption coefficient of the surface. If χ and ξ are point properties

of the surface, independent of the configuration of the incident wave (independent, in this

case, of the angle of incidence φ), then the problem is solved. The fraction α of energy

absorbed by the surface can be computed from equation (A.965) as a function of the in-

cident angle φ, considering χ and ξ to be independent of φ. For example, if the specific

resistance χ is larger than unity, then the absorption coefficient has a maximum for an angle

of incidence φ = arccos(1/χ), dropping to zero at grazing incidence, φ = 90◦.

But if zn = ̺cζ is not a point function of position on the boundary surface, then the

problem is not really solved, for the value of zn will depend on the configuration of the

motion of the boundary surface itself, and to obtain the appropriate values of χ and ξ to use

in equation (A.965), we will have to investigate the behavior of the sound wave inside the

boundary material, an investigation we do not need to undertake when zn is a point function

of position and the classical boundary conditions of equation (A.962) can be used.

c) Exceptions to the classical boundary conditions

To appreciate the nature of difficulties which can arise, let us continue to discuss the

simple example of the equations (A.960) and (A.961), that of a plane wave incident on

a plane boundary, for the case where we do have to consider the wave motion inside the

boundary. To keep the example simple, we suppose the material forming the boundary to

fill the region x1 > 0 uniformly. We will also suppose that the material is homogeneous

to the extent that we can talk about a mean displacement and velocity of the material. The

wave properties of the material may not be isotropic, however, we shall assume that the

wave velocity in the x1 direction is cn and that in a direction parallel to the boundary plane
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it is ct, where both these quantities may be complex and also frequency dependent. In

other words, pressure waves are possible in the material, the wave equation and the relation

between pressure and material velocity,

c2n
∂2p

∂x2
1

+ c2t

(
∂2p

∂x2
2

+
∂2p

∂x2
3

)
+ ω2p = 0, (A.966)

u1 =
1

iω̺n

∂p

∂x1

, u2 =
1

iω̺t

∂p

∂x2

, u3 =
1

iω̺t

∂p

∂x3

, (A.967)

serving to define the quantities cn, ct, ̺n and ̺t.

If the pressure inside the boundary (x1 > 0) is to satisfy this wave equation and also

to fit the wave form of equation (A.963) at x1 = 0, then the pressure and velocity waves

inside the material must be

p = pt exp

(
iknx1

√
1 −

(ct
c

)2
sin2φ+ ikx2 sinφ− iωt

)
, (A.968)

u =
p

̺ncn
a1

√
1 −

(ct
c

)2
sin2φ+

p

̺tct
a2
ct
c

sinφ, (A.969)

where kn = ω/cn, k = ω/c, and c is the sound velocity in the fluid outside the bound-

ary (x1 < 0). Equating p and u1 at x1 = 0 with those from equation (A.963), we find for

the ratio of reflected to incident pressures, outside the boundary surface, that

R =
pr
pi

=
−
√

1 − (ct/c)2 sin2φ+ (̺ncn/̺c) cosφ√
1 − (ct/c)2 sin2φ+ (̺ncn/̺c) cosφ

. (A.970)

The absorption coefficient α is 1 − |R|2, as before.

Comparison with equation (A.964) shows that the specific surface impedance in this

instance is

ζ(φ) =
̺ncn
̺c

{
1 −

(ct
c

)2
sin2φ

}−1/2

, (A.971)

which is not independent of φ unless ct, the transverse velocity in the boundary material,

is negligibly small compared to c, the wave velocity in the fluid outside the boundary.

Unless ct is small compared to c, the impedance of the surface is not a point property of the

surface, independent of the configuration of the incident wave (in the example, independent

of φ), and to find its value for any specific configuration of incident wave we must work

out the corresponding wave configuration inside the boundary material.

From the point of view of the theoretical acoustician, therefore, there are two gen-

eral types of boundary-value problems which are encountered. The first type is where the

boundary material is such that its normal acoustic impedance is a point property of the

surface, independent of the configuration of the incident wave. For this type the ratio of

pressure to normal gradient of pressure at each point of the boundary is uniquely specified

for each frequency, and the well-known methods of the classical theory of boundary-value

problems can be employed. The second type is where it is not possible to consider the

surface impedance to be independent of the configuration of the incident wave. In these
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types of problems it is not possible to substitute a surface impedance for an analysis of the

wave inside the boundary, here the internal wave must be studied in detail and its reaction

to the incident external wave must be calculated for each configuration of incident wave.

These types of problems are usually much more difficult to solve than are the first type.

For further effects on the boundary conditions by the relative motion of fluid and

boundary, and for viscous and conduction losses near the boundary we refer to the arti-

cle by Morse & Ingard (1961).
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B. FULL-PLANE IMPEDANCE LAPLACE PROBLEM

B.1 Introduction

In this appendix we study the perturbed full-plane or free-plane impedance Laplace

problem, also known as the exterior impedance Laplace problem in 2D, using integral

equation techniques and the boundary element method.

We consider the problem of the Laplace equation in two dimensions on the exterior of

a bounded obstacle. The Laplace equation for an exterior domain, using typically either

Dirichlet or Neumann boundary conditions, is a good example to illustrate the complexity

of the integral equation techniques. For a more general treatment and in order to allow a

better comparison with the development performed before for half-spaces, we consider in

particular an impedance boundary condition. The perturbed full-plane impedance Laplace

problem is not strictly speaking a wave scattering problem, but it can be regarded as a limit

case of such a problem when the frequency tends towards zero (vid. Appendix C). It can be

also regarded as a surface wave problem around a bounded two-dimensional obstacle. The

three-dimensional case is treated thoroughly in Appendix D.

For the problem treated herein we follow mainly Nédélec (1977, 1979, 2001) and

Raviart (1991). Further related books and doctorate theses are Chen & Zhou (1992),

Evans (1998), Giroire (1987), Hsiao & Wendland (2008), Kellogg (1929), Kress (1989),

Muskhelishvili (1953), Rjasanow & Steinbach (2007), and Steinbach (2008). Some arti-

cles that consider the Laplace equation with an impedance boundary condition are Ahner

& Wiener (1991), Lanzani & Shen (2004), and Medková (1998). Wendland, Stephan &

Hsiao (1979) treat the mixed boundary-value problem. Interesting theoretical details on

transmission problems can be found in Costabel & Stephan (1985). The boundary element

calculations are performed in Bendali & Devys (1986). The coupling of boundary integral

equations and finite element methods is done in Johnson & Nédélec (1980). The use of

cracked domains is studied by Medková & Krutitskii (2005), and the inverse problem by

Fasino & Inglese (1999) and Lin & Fang (2005). Applications of the Laplace problem can

be found, among others, for electrostatics (Jackson 1999), for conductivity in biomedical

imaging (Ammari 2008), and for incompressible plane potential flows (Spurk 1997).

The Laplace equation does not allow the propagation of volume waves inside the con-

sidered domain, but the addition of an impedance boundary condition permits the prop-

agation of surface waves along the boundary of the obstacle. The main difficulty in the

numerical treatment and resolution of these problems is the fact that the exterior domain

is unbounded. We treat this issue by using integral equation techniques and the boundary

element method. The idea behind these techniques is to use Green’s integral theorems to

transform the problem and express it on the boundary of the obstacle, which is bounded.

These methods require thus only the calculation of boundary values, rather than values

throughout the unbounded exterior domain. They are in a significant manner more efficient

in terms of computational resources for problems where the surface versus volume ratio is

small. The drawback of these techniques is a more complex mathematical treatment and

the requirement of knowing the Green’s function of the system. It is the Green’s function
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which stores the information of the system’s physics throughout the exterior domain and

which allows to collapse the problem to hold only on the boundary. The dimension of a

problem expressed in a volume is therefore reduced towards a surface, i.e., one dimension

less, which is what makes these methods so interesting to consider.

This appendix is structured in 13 sections, including this introduction. The direct per-

turbation problem of the Laplace equation in a two-dimensional exterior domain with an

impedance boundary condition is presented in Section B.2. The Green’s function and its

far-field expression are computed respectively in Sections B.3 and B.4. Extending the direct

perturbation problem towards a transmission problem, as done in Section B.5, allows its

resolution by using integral equation techniques, which is discussed in Section B.6. These

techniques allow also to represent the far field of the solution, as shown in Section B.7.

A particular problem that takes as domain the exterior of a circle is solved analytically in

Section B.8. The appropriate function spaces and some existence and uniqueness results

for the solution of the problem are presented in Section B.9. By means of the variational

formulation developed in Section B.10, the obtained integral equation is discretized using

the boundary element method, which is described in Section B.11. The boundary element

calculations required to build the matrix of the linear system resulting from the numerical

discretization are explained in Section B.12. Finally, in Section B.13 a benchmark problem

based on the exterior circle problem is solved numerically.

B.2 Direct perturbation problem

We consider an exterior open and connected domain Ωe ⊂ R
2 that lies outside a

bounded obstacle Ωi and whose boundary Γ = ∂Ωe = ∂Ωi is regular (e.g., of class C2),

as shown in Figure B.1. As a perturbation problem, we decompose the total field uT
as uT = uW + u, where uW represents the known field without obstacle, and where u

denotes the perturbed field due its presence, which has bounded energy. The direct pertur-

bation problem of interest is to find the perturbed field u that satisfies the Laplace equation

in Ωe, an impedance boundary condition on Γ, and a decaying condition at infinity. We con-

sider that the origin is located in Ωi and that the unit normal n is taken always outwardly

oriented of Ωe, i.e., pointing inwards of Ωi.

x1

x2
Ωe

n

Ωi

Γ

FIGURE B.1. Perturbed full-plane impedance Laplace problem domain.
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The total field uT satisfies the Laplace equation

∆uT = 0 in Ωe, (B.1)

which is also satisfied by the fields uW and u, due linearity. For the perturbed field u we

take also the inhomogeneous impedance boundary condition

− ∂u

∂n
+ Zu = fz on Γ, (B.2)

where Z is the impedance on the boundary, and where the impedance data function fz is

assumed to be known. If Z = 0 or Z = ∞, then we retrieve respectively the classical

Neumann or Dirichlet boundary conditions. In general, we consider a complex-valued

impedance Z(x) depending on the position x. The function fz(x) may depend on Z

and uW , but is independent of u. If a homogeneous impedance boundary condition is

desired for the total field uT , then due linearity we can express the function fz as

fz =
∂uW
∂n

− ZuW on Γ. (B.3)

The Laplace equation (B.1) admits different kinds of non-trivial solutions uW , when

we consider the domain Ωe as the unperturbed full-plane R
2. One kind of solutions are the

harmonic polynomials

uW (x) = Re{P (z)}, (B.4)

where P (z) denotes a polynomial in the complex variable z = x1 + ix2. There exist in R
2

likewise non-polynomial solutions of the form

uW (x) = Re{φ(z)}, (B.5)

where φ(z) is an entire function in the variable z, e.g., the exponential function ez. From

Liouville’s theorem in complex variable theory (cf. Bak & Newman 1997), we know that

the growth at infinity of such a function φ is bigger than for any polynomial. Any such

function can be taken as the known field without perturbation uW , which holds in particular

for all the constant and linear functions in R
2.

For the perturbed field u in the exterior domain Ωe, though, these functions represent

undesired non-physical solutions, which have to be avoided in order to ensure uniqueness

of the solution u. To eliminate them, it suffices to impose for u an asymptotic decaying

behavior at infinity that excludes the polynomials. This decaying condition involves finite

energy throughout Ωe and can be interpreted as an additional boundary condition at infinity.

In our case it is given, for a great value of |x|, by

u(x) = O
(

1

|x|

)
and |∇u(x)| = O

(
1

|x|2
)
. (B.6)

where O(·) describes the asymptotic upper bound in terms of simpler functions, known

as the big O. The asymptotic decaying condition (B.6) can be expressed equivalently, for

some constants C > 0, by

|u(x)| ≤ C

|x| and |∇u(x)| ≤ C

|x|2 as |x| → ∞. (B.7)
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In fact, the decaying condition can be even stated as

u(x) = O
(

1

|x|α
)

and |∇u(x)| = O
(

1

|x|1+α
)

for 0 < α ≤ 1, (B.8)

or as the more weaker and general formulation

lim
R→∞

∫

SR

|u|2
R

dγ = 0 and lim
R→∞

∫

SR

R |∇u|2 dγ = 0, (B.9)

where SR = {x ∈ R
2 : |x| = R} is the circle of radius R and where the boundary

differential element in polar coordinates is given by dγ = R dθ. A different way to express

the decaying condition, which is used, e.g., by Costabel & Stephan (1985), is to specify

some constants a, b ∈ C such that

|u(x)| = a+
b

2π
ln |x| + O

(
1

|x|

)
and |∇u(x)| =

b

2π|x| + O
(

1

|x|2
)
. (B.10)

For simplicity, in our development we consider just a = b = 0.

The perturbed full-plane impedance Laplace problem can be finally stated as




Find u : Ωe → C such that

∆u = 0 in Ωe,

−∂u
∂n

+ Zu = fz on Γ,

|u(x)| ≤ C

|x| as |x| → ∞,

|∇u(x)| ≤ C

|x|2 as |x| → ∞.

(B.11)

B.3 Green’s function

The Green’s function represents the response of the unperturbed system (without an

obstacle) to a Dirac mass. It corresponds to a function G, which depends on a fixed source

point x ∈ R
2 and an observation point y ∈ R

2. The Green’s function is computed in the

sense of distributions for the variable y in the full-plane R
2 by placing at the right-hand

side of the Laplace equation a Dirac mass δx, centered at the point x. It is therefore a

solution G(x, ·) : R
2 → C for the radiation problem of a point source, namely

∆yG(x,y) = δx(y) in D′(R2). (B.12)

Due to the radial symmetry of the problem (B.12), it is natural to look for solutions in

the form G = G(r), where r = |y − x|. By considering only the radial component, the

Laplace equation in R
2 becomes

1

r

d

dr

(
r
dG

dr

)
= 0, r > 0. (B.13)

The general solution of (B.13) is of the form

G(r) = C1 ln r + C2, (B.14)
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for some constants C1 and C2. The choice of C2 is arbitrary, while C1 is fixed by the pres-

ence of the Dirac mass in (B.12). To determine C1, we have to perform thus a computation

in the sense of distributions (cf. Gel’fand & Shilov 1964), using the fact that G is harmonic

for r 6= 0. For a test function ϕ ∈ D(R2), we have by definition that

〈∆yG,ϕ〉 = 〈G,∆ϕ〉 =

∫

R2

G∆ϕ dy = lim
ε→0

∫

r≥ε
G∆ϕ dy. (B.15)

We apply here Green’s second integral theorem (A.613), choosing as bounded domain the

circular shell ε ≤ r ≤ a, where a is large enough so that the test function ϕ(y), of bounded

support, vanishes identically for r ≥ a. Then
∫

r≥ε
G∆ϕ dy =

∫

r≥ε
∆yGϕ dy −

∫

r=ε

G
∂ϕ

∂r
dγ +

∫

r=ε

∂G

∂ry
ϕ dγ, (B.16)

where dγ is the line element on the circle r = ε. Now
∫

r≥ε
∆yGϕ dy = 0, (B.17)

since outside the ball r ≤ ε the function G is harmonic. As for the other terms, by replac-

ing (B.14), we obtain that
∫

r=ε

G
∂ϕ

∂r
dγ = (C1 ln ε+ C2)

∫

r=ε

∂ϕ

∂r
dγ = O(ε ln ε), (B.18)

and ∫

r=ε

∂G

∂ry
ϕ dγ =

C1

ε

∫

r=ε

ϕ dγ = 2πC1Sε(ϕ), (B.19)

where Sε(ϕ) is the mean value of ϕ(y) on the circle of radius ε and centered at x. In the

limit as ε→ 0, we obtain that Sε(ϕ) → ϕ(x), so that

〈∆yG,ϕ〉 = lim
ε→0

∫

r≥ε
G∆ϕ dy = 2πC1ϕ(x) = 2πC1〈δx, ϕ〉. (B.20)

Thus if C1 = 1/2π, then (B.12) is fulfilled. When we consider not only radial solutions,

then the general solution of (B.12) is given by

G(x,y) =
1

2π
ln |y − x| + φ(x,y), (B.21)

where φ(x,y) is any harmonic function in the variable y, i.e., such that ∆yφ = 0 in R
2,

which means that φ acquires the form of (B.4) or (B.5).

If we impose additionally, for a fixed x, the asymptotic decaying condition

|∇yG(x,y)| = O
(

1

|y|

)
as |y| −→ ∞, (B.22)

then we eliminate any polynomial (or bigger) growth at infinity, but we admit constant and

logarithmic growth. By choosing arbitrarily that any constant has to be zero, we obtain

finally that our Green’s function satisfying (B.12) and (B.22) is given by

G(x,y) =
1

2π
ln |y − x|, (B.23)

375



being its gradient

∇yG(x,y) =
y − x

2π|y − x|2 . (B.24)

We can likewise define a gradient with respect to the x variable by

∇xG(x,y) =
x − y

2π|x − y|2 , (B.25)

and a double-gradient matrix by

∇x∇yG(x,y) =




∂2G

∂x1∂y1

∂2G

∂x1∂y2

∂2G

∂x2∂y1

∂2G

∂x2∂y2


 = − I

2π|x − y|2 +
(x − y) ⊗ (x − y)

π|x − y|4 , (B.26)

where I denotes a 2 × 2 identity matrix and where ⊗ denotes the dyadic or outer product

of two vectors, which results in a matrix and is defined in (A.573).

We note that the Green’s function (B.23) is symmetric in the sense that

G(x,y) = G(y,x), (B.27)

and it fulfills similarly

∇yG(x,y) = ∇yG(y,x) = −∇xG(x,y) = −∇xG(y,x), (B.28)

and

∇x∇yG(x,y) = ∇y∇xG(x,y) = ∇x∇yG(y,x) = ∇y∇xG(y,x). (B.29)

B.4 Far field of the Green’s function

The far field of the Green’s function describes its asymptotic behavior at infinity, i.e.,

when |x| → ∞ and assuming that y is fixed. For this purpose, we search the terms of

highest order at infinity by expanding the logarithm according to

ln |x − y| =
1

2
ln
(
|x|2

)
+

1

2
ln

( |x − y|2
|x|2

)

= ln |x| + 1

2
ln

(
1 − 2

y · x
|x|2 +

|y|2
|x|2

)
. (B.30)

Using a Taylor expansion of the logarithm around one yields

ln |x − y| = ln |x| − y · x
|x|2 + O

(
1

|x|2
)
. (B.31)

We express the point x as x = |x| x̂, being x̂ a unitary vector. The far field of the Green’s

function, as |x| → ∞, is thus given by

Gff (x,y) =
1

2π
ln |x| − y · x̂

2π|x| . (B.32)

Similarly, as |x| → ∞, we have for its gradient with respect to y, that

∇yG
ff (x,y) = − x̂

2π|x| , (B.33)

376



for its gradient with respect to x, that

∇xG
ff (x,y) =

x̂

2π|x| , (B.34)

and for its double-gradient matrix, that

∇x∇yG
ff (x,y) = − I

2π|x|2 +
x̂ ⊗ x̂

π|x|2 . (B.35)

B.5 Transmission problem

We are interested in expressing the solution u of the direct perturbation problem (B.11)

by means of an integral representation formula over the boundary Γ. To study this kind of

representations, the differential problem defined on Ωe is extended as a transmission prob-

lem defined now on the whole plane R
2 by combining (B.11) with a corresponding interior

problem defined on Ωi. For the transmission problem, which specifies jump conditions

over the boundary Γ, a general integral representation can be developed, and the partic-

ular integral representations of interest are then established by the specific choice of the

corresponding interior problem.

A transmission problem is then a differential problem for which the jump conditions

of the solution field, rather than boundary conditions, are specified on the boundary Γ. As

shown in Figure B.1, we consider the exterior domain Ωe and the interior domain Ωi, taking

the unit normal n pointing towards Ωi. We search now a solution u defined in Ωe ∪Ωi, and

use the notation ue = u|Ωe and ui = u|Ωi
. We define the jumps of the traces of u on both

sides of the boundary Γ as

[u] = ue − ui and

[
∂u

∂n

]
=
∂ue
∂n

− ∂ui
∂n

. (B.36)

The transmission problem is now given by




Find u : Ωe ∪ Ωi → C such that

∆u = 0 in Ωe ∪ Ωi,

[u] = µ on Γ,
[
∂u

∂n

]
= ν on Γ,

+ Decaying condition as |x| → ∞,

(B.37)

where µ, ν : Γ → C are known functions. The decaying condition is still (B.7), and it is

required to ensure uniqueness of the solution.

B.6 Integral representations and equations

B.6.1 Integral representation

To develop for the solution u an integral representation formula over the boundary Γ,

we define by ΩR,ε the domain Ωe ∪ Ωi without the ball Bε of radius ε > 0 centered at the
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point x ∈ Ωe ∪ Ωi, and truncated at infinity by the ball BR of radius R > 0 centered at the

origin. We consider that the ball Bε is entirely contained either in Ωe or in Ωi, depending

on the location of its center x. Therefore, as shown in Figure B.2, we have that

ΩR,ε =
(
(Ωe ∪ Ωi) ∩BR

)
\Bε, (B.38)

where

BR = {y ∈ R
2 : |y| < R} and Bε = {y ∈ R

2 : |y − x| < ε}. (B.39)

We consider similarly the boundaries of the balls

SR = {y ∈ R
2 : |y| = R} and Sε = {y ∈ R

2 : |y − x| = ε}. (B.40)

The idea is to retrieve the domain Ωe ∪ Ωi at the end when the limits R → ∞ and ε → 0

are taken for the truncated domain ΩR,ε.

ΩR,ε

n

SR

Γ

n = r

x
ε

R

Sε

O

FIGURE B.2. Truncated domain ΩR,ε for x ∈ Ωe ∪ Ωi.

We apply now Green’s second integral theorem (A.613) to the functions u and G(x, ·)
in the bounded domain ΩR,ε, yielding

0 =

∫

ΩR,ε

(
u(y)∆yG(x,y) −G(x,y)∆u(y)

)
dy

=

∫

SR

(
u(y)

∂G

∂ry
(x,y) −G(x,y)

∂u

∂r
(y)

)
dγ(y)

−
∫

Sε

(
u(y)

∂G

∂ry
(x,y) −G(x,y)

∂u

∂r
(y)

)
dγ(y)

+

∫

Γ

(
[u](y)

∂G

∂ny

(x,y) −G(x,y)

[
∂u

∂n

]
(y)

)
dγ(y). (B.41)

For R large enough, the integral on SR tends to zero, since
∣∣∣∣
∫

SR

u(y)
∂G

∂ry
(x,y) dγ(y)

∣∣∣∣ ≤
C

R
, (B.42)
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and ∣∣∣∣
∫

SR

G(x,y)
∂u

∂r
(y) dγ(y)

∣∣∣∣ ≤
C

R
lnR, (B.43)

for some constants C > 0, due the asymptotic decaying behavior at infinity (B.7). If the

function u is regular enough in the ball Bε, then the second term of the integral on Sε,

when ε→ 0 and due (B.23), is bounded by
∣∣∣∣
∫

Sε

G(x,y)
∂u

∂r
(y) dγ(y)

∣∣∣∣ ≤ ε ln ε sup
y∈Bε

∣∣∣∣
∂u

∂r
(y)

∣∣∣∣, (B.44)

and tends to zero. The regularity of u can be specified afterwards once the integral repre-

sentation has been determined and generalized by means of density arguments. The first

integral term on Sε can be decomposed as
∫

Sε

u(y)
∂G

∂ry
(x,y) dγ(y) = u(x)

∫

Sε

∂G

∂ry
(x,y) dγ(y)

+

∫

Sε

∂G

∂ry
(x,y)

(
u(y) − u(x)

)
dγ(y), (B.45)

For the first term in the right-hand side of (B.45), by replacing (B.24), we have that
∫

Sε

∂G

∂ry
(x,y) dγ(y) = 1, (B.46)

while the second term is bounded by
∣∣∣∣
∫

Sε

(
u(y) − u(x)

)∂G
∂ry

(x,y) dγ(y)

∣∣∣∣ ≤ sup
y∈Bε

|u(y) − u(x)|, (B.47)

which tends towards zero when ε→ 0.

In conclusion, when the limits R → ∞ and ε→ 0 are taken in (B.41), then the follow-

ing integral representation formula holds for the solution u of the transmission problem:

u(x) =

∫

Γ

(
[u](y)

∂G

∂ny

(x,y) −G(x,y)

[
∂u

∂n

]
(y)

)
dγ(y), x ∈ Ωe ∪ Ωi. (B.48)

We observe thus that if the values of the jump of u and of its normal derivative are

known on Γ, then the transmission problem (B.37) is readily solved and its solution given

explicitly by (B.48), which, in terms of µ and ν, becomes

u(x) =

∫

Γ

(
µ(y)

∂G

∂ny

(x,y) −G(x,y)ν(y)

)
dγ(y), x ∈ Ωe ∪ Ωi. (B.49)

To determine the values of the jumps, an adequate integral equation has to be developed,

i.e., an equation whose unknowns are the traces of the solution on Γ.

An alternative way to demonstrate the integral representation (B.48) is to proceed in

the sense of distributions. We consider in this case a test function ϕ ∈ D(R2) and use

Green’s second integral theorem (A.613) to obtain that

〈∆u, ϕ〉 = 〈u,∆ϕ〉 =

∫

Ωe

u∆ϕ dx =

∫

Γ

(
[u]
∂ϕ

∂n
−
[
∂u

∂n

]
ϕ

)
dγ. (B.50)
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For any function f , e.g., continuous over Γ, we define the distributions fδΓ and ∂
∂n

(fδΓ)

of D′(R2) respectively by

〈fδΓ, ϕ〉 =

∫

Γ

fϕ dγ and

〈
∂

∂n
(fδΓ), ϕ

〉
= −

∫

Γ

f
∂ϕ

∂n
dγ. (B.51)

From a physical or mechanical point of view, the distribution fδΓ can be considered as a

distribution of sources with density f over Γ, while ∂
∂n

(fδΓ) is a distribution of dipoles

oriented according to the unit normal n and of density f over Γ. Using the notation (B.51)

we have thus from (B.50) in the sense of distributions that

∆u = − ∂

∂n

(
[u]δΓ

)
−
[
∂u

∂n

]
δΓ in R

2. (B.52)

Hence ∆u can be interpreted as the sum of a distribution of sources and of a distribution

of dipoles over Γ. Since the Green’s function (B.23) is the fundamental solution of the

Laplace operator ∆, we have that a solution in D′(R2) of the equation (B.52) is given by

u = G ∗
(
− ∂

∂n

(
[u]δΓ) −

[
∂u

∂n

]
δΓ

)
. (B.53)

This illustrates clearly how the solution u is obtained as a convolution with the Green’s

function. Furthermore, the asymptotic decaying condition (B.7) implies that the solu-

tion (B.53) is unique. To obtain (B.48) it remains only to make (B.53) explicit. The term
{
G ∗

[
∂u

∂n

]
δΓ

}
(x) =

∫

Γ

G(x,y)

[
∂u

∂n

]
(y) dγ(y) (B.54)

is called single layer potential, associated with the distribution of sources [∂u/∂n]δΓ, while
{
G ∗ ∂

∂n

(
[u]δΓ

)}
(x) = −

∫

Γ

∂G

∂ny

(x,y)[u](y) dγ(y) (B.55)

represents a double layer potential, associated with the distribution of dipoles ∂
∂n

([u]δΓ).

Combining (B.54) and (B.55) yields finally the desired integral representation (B.48).

We note that to obtain the gradient of the integral representation (B.48) we can pass

directly the derivatives inside the integral, since there are no singularities if x ∈ Ωe ∪ Ωi.

Therefore we have that

∇u(x) =

∫

Γ

(
[u](y)∇x

∂G

∂ny

(x,y) −∇xG(x,y)

[
∂u

∂n

]
(y)

)
dγ(y). (B.56)

We remark also that the asymptotic decaying behavior (B.7) and Green’s first integral

theorem (A.612) imply that
∫

Γ

∂ue
∂n

dγ =

∫

Γ

∂ui
∂n

dγ = 0, (B.57)

since∫

Γ

∂ue
∂n

dγ =

∫

Ωe∩BR

∆ue dx −
∫

SR

∂ue
∂r

dγ = −
∫

SR

∂ue
∂r

dγ −−−−−→
R→∞

0, (B.58)
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and ∫

Γ

∂ui
∂n

dγ = −
∫

Ωi

∆ui dx = 0. (B.59)

Reciprocally, by using the integral representation formula (B.48) it can be verified that this

hypothesis (B.57) implies the asymptotic decaying behavior (B.7).

B.6.2 Integral equations

To determine the values of the traces that conform the jumps for the transmission prob-

lem (B.37), an integral equation has to be developed. For this purpose we place the source

point x on the boundary Γ, as shown in Figure B.3, and apply the same procedure as before

for the integral representation (B.48), treating differently in (B.41) only the integrals on Sε.

The integrals on SR still behave well and tend towards zero as R → ∞. The Ball Bε,

though, is split in half into the two pieces Ωe ∩ Bε and Ωi ∩ Bε, which are asymptotically

separated by the tangent of the boundary if Γ is regular. Thus the associated integrals on Sε
give rise to a term −(ue(x)+ui(x))/2 instead of just −u(x) as before. We must notice that

in this case, the integrands associated with the boundary Γ admit an integrable singularity

at the point x. The desired integral equation related with (B.48) is then given by

ue(x) + ui(x)

2
=

∫

Γ

(
[u](y)

∂G

∂ny

(x,y) −G(x,y)

[
∂u

∂n

]
(y)

)
dγ(y), x ∈ Γ. (B.60)

By choosing adequately the boundary condition of the interior problem, and by considering

also the boundary condition of the exterior problem and the jump definitions (B.36), this

integral equation can be expressed in terms of only one unknown function on Γ. Thus,

solving the problem (B.11) is equivalent to solve (B.60) and then replace the obtained

solution in (B.48).

ΩR,ε

n

SR

Γ

n = r

x
ε

R

Sε

O

FIGURE B.3. Truncated domain ΩR,ε for x ∈ Γ.

We remark that the integral equation (B.60) has to be understood in the sense of a mean

between the traces of the solution u on both sides of Γ, as illustrated in Figure B.4. It gives

information only for the jumps, but not for the solution of the problem. The true value of

the solution on the boundary Γ for the exterior and the interior problems is always given
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by the limit case as x tends towards Γ respectively from Ωe and Ωi of the representation

formula (B.48).

ui

ue

ue + ui

2

ΓΩi Ωe

FIGURE B.4. Jump over Γ of the solution u.

The integral equation holds only when the boundary Γ is regular (e.g., of class C2).

Otherwise, taking the limit ε → 0 can no longer be well-defined and the result is false

in general. In particular, if the boundary Γ has an angular point at x ∈ Γ, as shown in

Figure B.5 and where θ represents the angle in radians (0 < θ < 2π) of the tangents of

the boundary on that particular point x measured over Ωe, then the left-hand side of the

integral equation (B.60) is modified on that point according to the portion of the ball Bε

that remains inside Ωe, namely

θ

2π
ue(x)+

(
1− θ

2π

)
ui(x) =

∫

Γ

(
[u](y)

∂G

∂ny

(x,y) −G(x,y)

[
∂u

∂n

]
(y)

)
dγ(y). (B.61)

The solution u usually presents singularities on those points where Γ fails to be regular.

Ωe

Γ

x
θΩi

FIGURE B.5. Angular point x of the boundary Γ.

Another integral equation can be also derived for the normal derivative of the solu-

tion u on the boundary Γ, by studying the jump properties of the single and double layer

potentials. Its derivation is more complicated than for (B.60), being the specific details

explicited below in the subsection of boundary layer potentials. If the boundary is regular

at x ∈ Γ, then we obtain

1

2

∂ue
∂n

(x) +
1

2

∂ui
∂n

(x) =

∫

Γ

(
[u](y)

∂2G

∂nx∂ny

(x,y) − ∂G

∂nx

(x,y)

[
∂u

∂n

]
(y)

)
dγ(y). (B.62)

This integral equation is modified in the same way as (B.61) if x is an angular point.
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B.6.3 Integral kernels

The integral kernels G, ∂G/∂ny, and ∂G/∂nx are weakly singular, and thus inte-

grable, whereas the kernel ∂2G/∂nx∂ny has a strong singularity at the point x, which is

not integrable and therefore referred to as a hypersingular kernel.

In general, a kernel K(x,y) of an integral operator of the form

Tϕ(x) =

∫

Γ

K(x,y)ϕ(y) dγ(y), x ∈ Γ ⊂ R
N, (B.63)

is said to be weakly singular if it is defined and continuous for x 6= y, and if there exist

some constants C > 0 and 0 < λ < N − 1 such that

|K(x,y)| ≤ C

|x − y|λ ∀x,y ∈ Γ, (B.64)

in which case the integral operator (B.63) is improper, but integrable, i.e., such that
∫

Γ

|K(x,y)| dγ(y) <∞. (B.65)

If K(x,y) requires λ ≥ N − 1 in (B.64), then the kernel is said to be hypersingular.

The kernel G defined in (B.23) is logarithmic and thus fulfills (B.64) for any λ > 0.

The kernels ∂G/∂ny and ∂G/∂nx are less singular along Γ than they appear at first sight,

due the regularizing effect of the normal derivatives. They are given respectively by

∂G

∂ny

(x,y) =
(y − x) · ny

2π|y − x|2 and
∂G

∂nx

(x,y) =
(x − y) · nx

2π|x − y|2 . (B.66)

Let us consider first the kernel ∂G/∂ny. A regular boundary Γ can be described in the

neighborhood of a point y as the graph of a regular function ϕ that takes variables on the

tangent line at y. We write η2 = ϕ(η1), being the origin of the coordinate system (η1, η2)

located at y, where η2 is aligned with ny, and where η1 lies on the tangent line at y, as

shown in Figure B.6. It holds thus that ϕ(0) = 0 and ϕ′(0) = 0. A Taylor expansion around

the origin yields

η2 = ϕ(0) + ϕ′(0)η1 + O(|η1|2) = O(|η1|2), (B.67)

and therefore

(x − y) · ny = η2 = ϕ(η1) = O(|η1|2). (B.68)

Since, on the other hand, we have

|y − x|2 = |η1|2 + |η2|2 = O(|η1|2), (B.69)

consequently we obtain that

(y − x) · ny = O(|y − x|2). (B.70)

By inversing the roles, the same holds also when considering nx instead of ny, i.e.,

(x − y) · nx = O(|x − y|2). (B.71)
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This means that

∂G

∂ny

(x,y) = O(1) and
∂G

∂nx

(x,y) = O(1). (B.72)

The singularities of the kernels ∂G/∂ny and ∂G/∂nx along Γ are thus only apparent and

can be repaired by redefining the value of these kernels at y = x.

y

Γ xη2

η1

ny

ϕ(η1)

FIGURE B.6. Graph of the function ϕ on the tangent line of Γ.

The kernel ∂2G/∂nx∂ny, on the other hand, is strongly singular along Γ. It adopts the

expression

∂2G

∂nx∂ny

(x,y) = − nx · ny

2π|y − x|2 −
(
(x − y) · nx

)(
(y − x) · ny

)

π|y − x|4 . (B.73)

The regularizing effect of the normal derivatives applies only to its second term, but not to

the first, since

nx · ny = O(1). (B.74)

Hence the kernel (B.73) is clearly hypersingular, with λ = 2, and it holds that

∂2G

∂nx∂ny

(x,y) = O
(

1

|y − x|2
)
. (B.75)

This kernel is no longer integrable and the associated integral operator has to be thus inter-

preted in some appropriate sense as a divergent integral (cf., e.g., Hsiao & Wendland 2008,

Lenoir 2005, Nédélec 2001).

B.6.4 Boundary layer potentials

We regard now the jump properties on the boundary Γ of the boundary layer poten-

tials that have appeared in our calculations. For the development of the integral represen-

tation (B.49) we already made acquaintance with the single and double layer potentials,

which we define now more precisely for x ∈ Ωe ∪ Ωi as the integral operators

Sν(x) =

∫

Γ

G(x,y)ν(y) dγ(y), (B.76)

Dµ(x) =

∫

Γ

∂G

∂ny

(x,y)µ(y) dγ(y). (B.77)

The integral representation (B.49) can be now stated in terms of the layer potentials as

u = Dµ− Sν. (B.78)
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We remark that for any functions ν, µ : Γ → C that are regular enough, the single and

double layer potentials satisfy the Laplace equation, namely

∆Sν = 0 in Ωe ∪ Ωi, (B.79)

∆Dµ = 0 in Ωe ∪ Ωi. (B.80)

For the integral equations (B.60) and (B.62), which are defined for x ∈ Γ, we require

the four boundary integral operators:

Sν(x) =

∫

Γ

G(x,y)ν(y) dγ(y), (B.81)

Dµ(x) =

∫

Γ

∂G

∂ny

(x,y)µ(y) dγ(y), (B.82)

D∗ν(x) =

∫

Γ

∂G

∂nx

(x,y)ν(y) dγ(y), (B.83)

Nµ(x) =

∫

Γ

∂2G

∂nx∂ny

(x,y)µ(y) dγ(y). (B.84)

The operator D∗ is in fact the adjoint of the operator D. As we already mentioned, the

kernel of the integral operatorN defined in (B.84) is not integrable, yet we write it formally

as an improper integral. An appropriate sense for this integral will be given below. The

integral equations (B.60) and (B.62) can be now stated in terms of the integral operators as

1

2
(ue + ui) = Dµ− Sν, (B.85)

1

2

(
∂ue
∂n

+
∂ui
∂n

)
= Nµ−D∗ν. (B.86)

These integral equations can be easily derived from the jump properties of the single

and double layer potentials. The single layer potential (B.76) is continuous and its normal

derivative has a jump of size −ν across Γ, i.e.,

Sν|Ωe = Sν = Sν|Ωi
, (B.87)

∂

∂n
Sν|Ωe =

(
−1

2
+D∗

)
ν, (B.88)

∂

∂n
Sν|Ωi

=

(
1

2
+D∗

)
ν. (B.89)

The double layer potential (B.77), on the other hand, has a jump of size µ across Γ and its

normal derivative is continuous, namely

Dµ|Ωe =

(
1

2
+D

)
µ, (B.90)

Dµ|Ωi
=

(
−1

2
+D

)
µ, (B.91)
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∂

∂n
Dµ|Ωe = Nµ =

∂

∂n
Dµ|Ωi

. (B.92)

The integral equation (B.85) is obtained directly either from (B.87) and (B.90), or

from (B.87) and (B.91), by considering the appropriate trace of (B.78) and by defining the

functions µ and ν as in (B.37). These three jump properties are easily proven by regarding

the details of the proof for (B.60).

Similarly, the integral equation (B.86) for the normal derivative is obtained directly

either from (B.88) and (B.92), or from (B.89) and (B.92), by considering the appropriate

trace of the normal derivative of (B.78) and by defining again the functions µ and ν as

in (B.37). The proof of these other three jump properties is done below.

a) Jump of the normal derivative of the single layer potential

Let us then study first the proof of (B.88) and (B.89). The traces of the normal deriva-

tive of the single layer potential are given by

∂

∂n
Sν(x)|Ωe = lim

Ωe∋z→x
∇Sν(z) · nx, (B.93)

∂

∂n
Sν(x)|Ωi

= lim
Ωi∋z→x

∇Sν(z) · nx. (B.94)

Now we have that

∇Sν(z) · nx =

∫

Γ

nx · ∇zG(z,y)ν(y) dγ(y). (B.95)

For ε > 0 we denote Γε = Γ ∩ Bε, i.e., the portion of Γ contained inside the ball Bε of

radius ε and centered at x. By decomposing the integral we obtain that

∇Sν(z) ·nx =

∫

Γ\Γε

nx ·∇zG(z,y)ν(y) dγ(y)+

∫

Γε

nx ·∇zG(z,y)ν(y) dγ(y). (B.96)

For the first integral in (B.96) we can take without problems the limit z → x, since for a

fixed ε the integral is regular in x. Since the singularity of the resulting kernel ∂G/∂nx is

integrable, Lebesgue’s dominated convergence theorem (cf. Royden 1988) implies that

lim
ε→0

∫

Γ\Γε

∂G

∂nx

(x,y)ν(y) dγ(y) =

∫

Γ

∂G

∂nx

(x,y)ν(y) dγ(y) = D∗ν(x). (B.97)

Let us treat now the second integral in (B.96), which is again decomposed in different

integrals in such a way that
∫

Γε

nx · ∇zG(z,y)ν(y) dγ(y) =

∫

Γε

(nx − ny) · ∇zG(z,y)ν(y) dγ(y)

+

∫

Γε

ny · ∇zG(z,y)
(
ν(y) − ν(x)

)
dγ(y) + ν(x)

∫

Γε

ny · ∇zG(z,y) dγ(y). (B.98)

When ε is small, and since Γ is supposed to be regular, therefore Γε resembles a straight

line segment of length 2ε. Thus we have that

lim
ε→0

∫

Γε

(nx − ny) · ∇zG(z,y)ν(y) dγ(y) = 0. (B.99)
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If ν is regular enough, then we have also that

lim
ε→0

∫

Γε

ny · ∇zG(z,y)
(
ν(y) − ν(x)

)
dγ(y) = 0. (B.100)

For the remaining term in (B.98) we consider the angle θ under which the almost straight

line segment Γε is seen from point z (cf. Figure B.7). If we denote R = y−z andR = |R|,
and consider an oriented boundary differential element dγ = nydγ(y) seen from point z,

then we can express the angle differential element by

dθ =
R

R2
· dγ =

R · ny

R2
dγ(y) = 2πny · ∇yG(z,y) dγ(y). (B.101)

Integrating over the segment Γε and considering (B.28) yields the angle θ, namely

θ =

∫

Γε

dθ = 2π

∫

Γε

ny · ∇yG(z,y) dγ(y) = −2π

∫

Γε

ny · ∇zG(z,y) dγ(y), (B.102)

where −π ≤ θ ≤ π. The angle θ is positive when the vectors R and ny point towards the

same side of Γε, and negative when they oppose each other. Thus if z is very close to x and

if ε is small enough so that Γε behaves as a straight line segment, then
∫

Γε

ny · ∇zG(z,y) dγ(y) ≈
{ −1/2 if z ∈ Ωe,

1/2 if z ∈ Ωi.
(B.103)

Hence we obtain the desired jump formulae (B.88) and (B.89).

Γε

x

θ

z

ε ε

y

FIGURE B.7. Angle under which Γε is seen from point z.

b) Continuity of the normal derivative of the double layer potential

We are now interested in proving the continuity of the normal derivative of the double

layer potential across Γ, as expressed in (B.92). This will allow us at the same time to

define an appropriate sense for the improper integral (B.84). This integral is divergent in

a classical sense, but it can be nonetheless properly defined in a weak or distributional

sense by considering it as a linear functional acting on a test function ϕ ∈ D(R2). By

considering (B.80) and Green’s first integral theorem (A.612), we can express our values

of interest in a weak sense as〈
∂

∂n
Dµ|Ωe , ϕ

〉
=

∫

Γ

∂

∂n
Dµ(x)|Ωe ϕ(x) dγ(x) =

∫

Ωe

∇Dµ(x) · ∇ϕ(x) dx, (B.104)

〈
∂

∂n
Dµ|Ωi

, ϕ

〉
=

∫

Γ

∂

∂n
Dµ(x)|Ωi

ϕ(x) dγ(x) = −
∫

Ωi

∇Dµ(x) · ∇ϕ(x) dx. (B.105)
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From (A.588) and (B.28) we obtain the relation

∂G

∂ny

(x,y) = ny · ∇yG(x,y) = −ny · ∇xG(x,y) = − divx

(
G(x,y)ny

)
. (B.106)

Thus for the double layer potential (B.77) we have that

Dµ(x) = − div

∫

Γ

G(x,y)µ(y)ny dγ(y) = − divS(µny)(x), (B.107)

being its gradient given by

∇Dµ(x) = −∇ div

∫

Γ

G(x,y)µ(y)ny dγ(y). (B.108)

From (A.589) we have that

curlx
(
G(x,y)ny

)
= ∇xG(x,y) × ny. (B.109)

Hence, by considering (A.597), (B.80), and (B.109) in (B.108), we obtain that

∇Dµ(x) = Curl

∫

Γ

(
ny ×∇xG(x,y)

)
µ(y) dγ(y). (B.110)

From (B.28) and (A.659) we have that
∫

Γ

(
ny ×∇xG(x,y)

)
µ(y) dγ(y) = −

∫

Γ

ny ×
(
∇yG(x,y)µ(y)

)
dγ(y)

=

∫

Γ

ny ×
(
G(x,y)∇µ(y)

)
dγ(y), (B.111)

and consequently

∇Dµ(x) = Curl

∫

Γ

G(x,y)
(
ny ×∇µ(y)

)
dγ(y). (B.112)

Now, considering (A.608) and (A.619), and replacing (B.112) in (B.104), implies that
∫

Ωe

∇Dµ(x) · ∇ϕ(x) dx = −
∫

Γ

∫

Γ

G(x,y)
(
∇µ(y)×ny

)(
∇ϕ(x)×nx

)
dγ(y) dγ(x).

(B.113)

Analogously, when replacing in (B.105) we have that
∫

Ωi

∇Dµ(x) · ∇ϕ(x) dx =

∫

Γ

∫

Γ

G(x,y)
(
∇µ(y) × ny

)(
∇ϕ(x) × nx

)
dγ(y) dγ(x).

(B.114)

Hence, from (B.104), (B.105), (B.113), and (B.114) we conclude the proof of (B.92). The

integral operator (B.84) is thus properly defined in a weak sense for ϕ ∈ D(R2) by

〈Nµ(x), ϕ〉 = −
∫

Γ

∫

Γ

G(x,y)
(
∇µ(y) × ny

)(
∇ϕ(x) × nx

)
dγ(y) dγ(x). (B.115)

B.6.5 Calderón projectors

The surface layer potentials (B.81)–(B.84) are linked together by means of the so-

called Calderón relations, which receive their name from the Argentine mathematician Al-

berto Pedro Calderón (1920–1998), who is best known for his work on the theory of partial

differential equations and singular integral operators. The exterior and interior traces of a
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function u defined by (B.78) can be characterized, due (B.85) and (B.86), by



ue
∂ue
∂n


 =



I

2
+D −S

N
I

2
−D∗



(
µ

ν

)
=

(
I

2
+H

)(
µ

ν

)
, (B.116)




ui
∂ui
∂n


 =




−I
2

+D −S

N −I
2
−D∗



(
µ

ν

)
=

(
−I

2
+H

)(
µ

ν

)
, (B.117)

where

H =

(
D −S
N −D∗

)
, (B.118)

and where the vector (µ, ν)T is known as the Cauchy data on Γ. We define the exterior and

interior Calderón projectors respectively by the operators

Ce =
I

2
+H and Ci =

I

2
−H, (B.119)

which satisfy

C2
e = Ce, C2

i = Ci, Ce + Ci = I. (B.120)

The identities (B.120) are equivalent to the set of relations

H2 =
I

4
, (B.121)

or more explicitly

DS = SD∗, D2 − SN =
I

4
, (B.122)

ND = D∗N, D∗2 −NS =
I

4
. (B.123)

Calderón projectors and relations synthesize in another way the structure of the integral

equations, and are used more for theoretical purposes (e.g., matrix preconditioning).

B.6.6 Alternatives for integral representations and equations

By taking into account the transmission problem (B.37), its integral representation for-

mula (B.48), and its integral equations (B.60) and (B.62), several particular alternatives

for integral representations and equations of the exterior problem (B.11) can be developed.

The way to perform this is to extend properly the exterior problem towards the interior do-

main Ωi, either by specifying explicitly this extension or by defining an associated interior

problem, so as to become the desired jump properties across Γ. The extension has to satisfy

the Laplace equation (B.1) in Ωi and a boundary condition that corresponds adequately to

the impedance boundary condition (B.2). The obtained system of integral representations

and equations allows finally to solve the exterior problem (B.11), by using the solution of

the integral equation in the integral representation formula.
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a) Extension by zero

An extension by zero towards the interior domain Ωi implies that

ui = 0 in Ωi. (B.124)

The jumps over Γ are characterized in this case by

[u] = ue = µ, (B.125)
[
∂u

∂n

]
=
∂ue
∂n

= Zue − fz = Zµ− fz, (B.126)

where µ : Γ → C is a function to be determined.

An integral representation formula of the solution, for x ∈ Ωe ∪ Ωi, is given by

u(x) =

∫

Γ

(
∂G

∂ny

(x,y) − Z(y)G(x,y)

)
µ(y) dγ(y)+

∫

Γ

G(x,y)fz(y) dγ(y). (B.127)

Since
1

2

(
ue(x) + ui(x)

)
=
µ(x)

2
, x ∈ Γ, (B.128)

we obtain, for x ∈ Γ, the Fredholm integral equation of the second kind

µ(x)

2
+

∫

Γ

(
Z(y)G(x,y) − ∂G

∂ny

(x,y)

)
µ(y) dγ(y) =

∫

Γ

G(x,y)fz(y) dγ(y), (B.129)

which has to be solved for the unknown µ. In terms of boundary layer potentials, the

integral representation and the integral equation can be respectively expressed by

u = D(µ) − S(Zµ) + S(fz) in Ωe ∪ Ωi, (B.130)

µ

2
+ S(Zµ) −D(µ) = S(fz) on Γ. (B.131)

Alternatively, since

1

2

(
∂ue
∂n

(x) +
∂ui
∂n

(x)

)
=
Z(x)

2
µ(x) − fz(x)

2
, x ∈ Γ, (B.132)

we obtain also, for x ∈ Γ, the Fredholm integral equation of the second kind

Z(x)

2
µ(x) +

∫

Γ

(
− ∂2G

∂nx∂ny

(x,y) + Z(y)
∂G

∂nx

(x,y)

)
µ(y) dγ(y)

=
fz(x)

2
+

∫

Γ

∂G

∂nx

(x,y)fz(y) dγ(y), (B.133)

which in terms of boundary layer potentials becomes

Z

2
µ−N(µ) +D∗(Zµ) =

fz
2

+D∗(fz) on Γ. (B.134)
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b) Continuous impedance

We associate to (B.11) the interior problem




Find ui : Ωi → C such that

∆ui = 0 in Ωi,

−∂ui
∂n

+ Zui = fz on Γ.

(B.135)

The jumps over Γ are characterized in this case by

[u] = ue − ui = µ, (B.136)
[
∂u

∂n

]
=
∂ue
∂n

− ∂ui
∂n

= Z(ue − ui) = Zµ, (B.137)

where µ : Γ → C is a function to be determined. In particular it holds that the jump of the

impedance is zero, namely
[
−∂u
∂n

+ Zu

]
=

(
−∂ue
∂n

+ Zue

)
−
(
−∂ui
∂n

+ Zui

)
= 0. (B.138)

An integral representation formula of the solution, for x ∈ Ωe ∪ Ωi, is given by

u(x) =

∫

Γ

(
∂G

∂ny

(x,y) − Z(y)G(x,y)

)
µ(y) dγ(y). (B.139)

Since

− 1

2

(
∂ue
∂n

(x) +
∂ui
∂n

(x)

)
+
Z(x)

2

(
ue(x) + ui(x)

)
= fz(x), x ∈ Γ, (B.140)

we obtain, for x ∈ Γ, the Fredholm integral equation of the first kind
∫

Γ

(
− ∂2G

∂nx∂ny

(x,y) + Z(y)
∂G

∂nx

(x,y)

)
µ(y) dγ(y)

+ Z(x)

∫

Γ

(
∂G

∂ny

(x,y) − Z(y)G(x,y)

)
µ(y) dγ(y) = fz(x), (B.141)

which has to be solved for the unknown µ. In terms of boundary layer potentials, the

integral representation and the integral equation can be respectively expressed by

u = D(µ) − S(Zµ) in Ωe ∪ Ωi, (B.142)

−N(µ) +D∗(Zµ) + ZD(µ) − ZS(Zµ) = fz on Γ. (B.143)

c) Continuous value

We associate to (B.11) the interior problem




Find ui : Ωi → C such that

∆ui = 0 in Ωi,

−∂ue
∂n

+ Zui = fz on Γ.

(B.144)
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The jumps over Γ are characterized in this case by

[u] = ue − ui =
1

Z

(
∂ue
∂n

− fz

)
− 1

Z

(
∂ue
∂n

− fz

)
= 0, (B.145)

[
∂u

∂n

]
=
∂ue
∂n

− ∂ui
∂n

= ν, (B.146)

where ν : Γ → C is a function to be determined.

An integral representation formula of the solution, for x ∈ Ωe ∪ Ωi, is given by the

single layer potential

u(x) = −
∫

Γ

G(x,y)ν(y) dγ(y). (B.147)

Since

− 1

2

(
∂ue
∂n

(x) +
∂ui
∂n

(x)

)
+
Z(x)

2

(
ue(x) + ui(x)

)
=
ν(x)

2
+ fz(x), x ∈ Γ, (B.148)

we obtain, for x ∈ Γ, the Fredholm integral equation of the second kind

ν(x)

2
+

∫

Γ

(
Z(x)G(x,y) − ∂G

∂nx

(x,y)

)
ν(y) dγ(y) = −fz(x), (B.149)

which has to be solved for the unknown ν. In terms of boundary layer potentials, the

integral representation and the integral equation can be respectively expressed by

u = −S(ν) in Ωe ∪ Ωi, (B.150)

ν

2
+ ZS(ν) −D∗(ν) = −fz on Γ. (B.151)

d) Continuous normal derivative

We associate to (B.11) the interior problem




Find ui : Ωi → C such that

∆ui = 0 in Ωi,

−∂ui
∂n

+ Zue = fz on Γ.

(B.152)

The jumps over Γ are characterized in this case by

[u] = ue − ui = µ, (B.153)
[
∂u

∂n

]
=
∂ue
∂n

− ∂ui
∂n

=
(
Zue − fz

)
−
(
Zue − fz

)
= 0, (B.154)

where µ : Γ → C is a function to be determined.

An integral representation formula of the solution, for x ∈ Ωe ∪ Ωi, is given by the

double layer potential

u(x) =

∫

Γ

∂G

∂ny

(x,y)µ(y) dγ(y). (B.155)
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Since when x ∈ Γ,

− 1

2

(
∂ue
∂n

(x) +
∂ui
∂n

(x)

)
+
Z(x)

2

(
ue(x) + ui(x)

)
= −Z(x)

2
µ(x) + fz(x), (B.156)

we obtain, for x ∈ Γ, the Fredholm integral equation of the second kind

Z(x)

2
µ(x) +

∫

Γ

(
− ∂2G

∂nx∂ny

(x,y) + Z(x)
∂G

∂ny

(x,y)

)
µ(y) dγ(y) = fz(x), (B.157)

which has to be solved for the unknown µ. In terms of boundary layer potentials, the

integral representation and the integral equation can be respectively expressed by

u = D(µ) in Ωe ∪ Ωi, (B.158)

Z

2
µ−N(µ) + ZD(µ) = fz on Γ. (B.159)

B.6.7 Adjoint integral equations

Due Fredholm’s alternative, there is a close relation between the solution of an integral

equation and the one of its adjoint counterpart. The so-called adjoint integral equation is

obtained by taking the adjoint of the integral operators that appear in the integral equation,

disregarding the source terms at the right-hand side. For a function ϕ : Γ ⊂ R
N → C, the

linear adjoint of an integral operator of the form

Tϕ(x) =

∫

Γ

K(x,y)ϕ(y) dγ(y), x ∈ Γ, (B.160)

is given by the integral operator

T ∗ϕ(x) =

∫

Γ

K(y,x)ϕ(y) dγ(y), x ∈ Γ. (B.161)

It is not difficult to see that the boundary layer potentials S and N are self-adjoint due their

symmetric kernels, and that D and D∗ are mutually adjoint, i.e.,

S∗ = S, N∗ = N, and D∗ = D. (B.162)

When we include also the impedance, then it holds that
(
S(Zϕ)

)∗
= ZS(ϕ),

(
D∗(Zϕ)

)∗
= ZD(ϕ),

(
ZS(Zϕ)

)∗
= ZS(Zϕ). (B.163)

It can be seen now that the integral equations (B.131) of the first extension by zero

and (B.151) of the continuous value are mutually adjoint. The same holds for the integral

equations (B.134) of the second extension by zero and (B.159) of the continuous normal

derivative, which are also mutually adjoint. The integral equation (B.143) of the continuous

impedance, on the other hand, is self-adjoint.

B.7 Far field of the solution

The asymptotic behavior at infinity of the solution u of (B.11) is described by the far

field. It is denoted by uff and is characterized by

u(x) ∼ uff (x) as |x| → ∞. (B.164)
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Its expression can be deduced by replacing the far field of the Green’s function Gff and its

derivatives in the integral representation formula (B.48), which yields

uff (x) =

∫

Γ

(
[u](y)

∂Gff

∂ny

(x,y) −Gff (x,y)

[
∂u

∂n

]
(y)

)
dγ(y). (B.165)

By replacing now (B.32) and (B.33) in (B.165), we obtain that

uff (x) = − 1

2π|x|

∫

Γ

(
x̂ · ny [u](y) − x̂ · y

[
∂u

∂n

]
(y)

)
dγ(y)

− 1

2π
ln |x|

∫

Γ

[
∂u

∂n

]
(y) dγ(y). (B.166)

Due (B.57) the second integral in (B.166) is zero. Thus the far field of the solution u is

uff (x) = − 1

2π|x|

∫

Γ

(
x̂ · ny [u](y) − x̂ · y

[
∂u

∂n

]
(y)

)
dγ(y). (B.167)

The asymptotic behavior of the solution u at infinity is therefore given by

u(x) =
1

|x|

{
u∞(x̂) + O

(
1

|x|

)}
, |x| → ∞, (B.168)

uniformly in all directions x̂ on the unit circle, where

u∞(x̂) = − 1

2π

∫

Γ

(
x̂ · ny [u](y) − x̂ · y

[
∂u

∂n

]
(y)

)
dγ(y) (B.169)

is called the far-field pattern of u. It can be expressed in decibels (dB) by means of the

asymptotic cross section

Qs(x̂) [dB] = 20 log10

( |u∞(x̂)|
|u0|

)
, (B.170)

where the reference level u0 may typically depend on uW , but for simplicity we take u0 = 1.

We remark that the far-field behavior (B.168) of the solution is in accordance with the

decaying condition (B.7), which justifies its choice.

B.8 Exterior circle problem

To understand better the resolution of the direct perturbation problem (B.11), we study

now the particular case when the domain Ωe ⊂ R
2 is taken as the exterior of a circle of

radius R > 0. The interior of the circle is then given by Ωi = {x ∈ R
2 : |x| < R} and its

boundary by Γ = ∂Ωe, as shown in Figure B.8. We place the origin at the center of Ωi and

we consider that the unit normal n is taken outwardly oriented of Ωe, i.e., n = −r.
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Γ

FIGURE B.8. Exterior of the circle.

The exterior circle problem is then stated as




Find u : Ωe → C such that

∆u = 0 in Ωe,

∂u

∂r
+ Zu = fz on Γ,

+ Decaying condition as |x| → ∞,

(B.171)

where we consider a constant impedance Z ∈ C and where the asymptotic decaying con-

dition is as usual given by (B.7).

Due the particular chosen geometry, the solution u of (B.171) can be easily found

analytically by using the method of variable separation, i.e., by supposing that

u(x) = u(r, θ) = h(r)g(θ), (B.172)

where r ≥ 0 and −π < θ ≤ π are the polar coordinates in R
2, characterized by

r =
√
x2

1 + x2
2 and θ = arctan

(
x2

x1

)
. (B.173)

If the Laplace equation in (B.171) is expressed using polar coordinates, then

∆u =
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂θ2
= 0. (B.174)

By replacing now (B.172) in (B.174) we obtain

h′′(r)g(θ) +
1

r
h′(r)g(θ) +

1

r2
h(r)g′′(θ) = 0. (B.175)

Multiplying by r2, dividing by gh, and rearranging according to each variable yields

r2h
′′(r)

h(r)
+ r

h′(r)

h(r)
= −g

′′(θ)

g(θ)
. (B.176)

Since both sides in equation (B.176) involve different variables, therefore they are equal to

a constant, denoted for convenience by n2, and we have that

r2h
′′(r)

h(r)
+ r

h′(r)

h(r)
= −g

′′(θ)

g(θ)
= n2. (B.177)
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From (B.177) we obtain the two ordinary differential equations

g′′(θ) + n2g(θ) = 0, (B.178)

r2h′′(r) + rh′(r) − n2h(r) = 0. (B.179)

The solutions for (B.178) have the general form

g(θ) = an cos(nθ) + bn sin(nθ), n ∈ N0, (B.180)

where an, bn ∈ C are arbitrary constants. The requirement that n ∈ N0 stems from the

periodicity condition

g(θ) = g(θ + 2πn) ∀n ∈ Z, (B.181)

where we segregate positive and negative values for n. The solutions for (B.179), on the

other hand, have the general form

h(r) = cnr
−n + dnr

n, n > 0, (B.182)

and for the particular case n = 0, as already done in (B.14), it holds that

h(r) = c0 + d0 ln r, (B.183)

where cn, dn ∈ C are again arbitrary constants. The general solution for the Laplace equa-

tion considers the linear combination of all the solutions in the form of (B.172), namely

u(r, θ) = a0(c0 + d0 ln r) +
∞∑

n=1

(
cnr

−n + dnr
n
)(
an cos(nθ) + bn sin(nθ)

)
. (B.184)

The decaying condition (B.7) implies that

c0 = d0 = dn = 0, n ∈ N. (B.185)

Thus the general solution (B.184) turns into

u(r, θ) =
∞∑

n=1

r−n
(
ane

inθ + bne
−inθ), (B.186)

where all the undetermined constants have been merged into an and bn, due their arbitrari-

ness. The radial derivative of (B.186) is given by

∂u

∂r
(r, θ) = −

∞∑

n=1

nr−(n+1)
(
ane

inθ + bne
−inθ). (B.187)

The constants an and bn in (B.186) are determined through the impedance boundary condi-

tion on Γ. For this purpose, we expand the impedance data function fz as a Fourier series:

fz(θ) =
∞∑

n=−∞
fne

inθ, −π < θ ≤ π, (B.188)

where

fn =
1

2π

∫ π

−π
fz(θ)e

−inθ dθ, n ∈ Z. (B.189)
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The impedance boundary condition considers r = R and thus takes the form

∞∑

n=1

(
ZR− n

Rn+1

)(
ane

inθ + bne
−inθ) = fz(θ) =

∞∑

n=−∞
fne

inθ. (B.190)

We observe that the constants an and bn can be uniquely determined only if f0 = 0 and

if ZR 6= n, for n ∈ N and n ≥ 1. The first condition, which is usually referred to as a

compatibility condition, is necessary to ensure the existence of the solution u, and can be

restated as ∫

Γ

fz dγ = 0. (B.191)

The second condition is more related with the loss of the solution’s uniqueness. Therefore,

if we suppose, for n ∈ N and n ≥ 1, that ZR 6= n and (B.191) hold, then

an =
Rn+1fn
ZR− n

and bn =
Rn+1f−n
ZR− n

. (B.192)

The unique solution for the exterior circle problem (B.171) is then given by

u(r, θ) =
∞∑

n=1

(
Rn+1

ZR− n

)
r−n
(
fne

inθ + f−ne
−inθ). (B.193)

If we consider now the case when ZR = m, for some particular integer m ≥ 1,

then the solution u is not unique. The constants am and bm are then no longer defined

by (B.192), and can be chosen in an arbitrary manner. For the existence of a solution in

this case, however, we require, together with the compatibility condition (B.191), also the

orthogonality conditions fm = f−m = 0, which are equivalent to
∫ π

−π
fz(θ)e

imθ dθ =

∫ π

−π
fz(θ)e

−imθ dθ = 0. (B.194)

Instead of (B.193), the solution of (B.171) is now given by the infinite family of functions

u(r, θ) =
∑

1≤n6=m

(
Rn+1

ZR− n

)
r−n
(
fne

inθ + f−ne
−inθ)+ α

eimθ

rm
+ β

e−imθ

rm
, (B.195)

where α, β ∈ C are arbitrary and where their associated terms have the form of surface

waves, i.e., waves that propagate along Γ and decrease towards the interior of Ωe. Thus,

if the compatibility condition (B.191) is satisfied, then the exterior circle problem (B.171)

admits a unique solution u, except on a countable set of values for ZR. And even in

this last case there exists a solution, although not unique, if two orthogonality conditions

are additionally satisfied. This behavior for the existence and uniqueness of the solution

is typical of the Fredholm alternative, which applies when solving problems that involve

compact perturbations of invertible operators.

We remark that when a non-constant impedance Z(θ) is taken, then the compatibility

condition (B.191) is no longer required for the existence of the solution u, a fact that can

be inferred from (B.190) by considering the Fourier series terms of the impedance. An

analytic formula for the solution is more difficult to obtain in this case, but it holds again

that this solution will exist and be unique, except possibly for some at most countable set
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of values where the uniqueness is lost and where additional orthogonality conditions have

to be satisfied, which depend on Z(θ).

B.9 Existence and uniqueness

B.9.1 Function spaces

To state a precise mathematical formulation of the herein treated problems, we have to

define properly the involved function spaces. For the associated interior problems defined

on the bounded set Ωi we use the classical Sobolev space (vid. Section A.4)

H1(Ωi) =
{
v : v ∈ L2(Ωi), ∇v ∈ L2(Ωi)

2
}
, (B.196)

which is a Hilbert space and has the norm

‖v‖H1(Ωi) =
(
‖v‖2

L2(Ωi)
+ ‖∇v‖2

L2(Ωi)2

)1/2

. (B.197)

For the exterior problem defined on the unbounded domain Ωe, on the other hand, we

introduce the weighted Sobolev space (cf., e.g., Raviart 1991)

W 1(Ωe) =

{
v :

v√
1 + r2 ln(2 + r2)

∈ L2(Ωe),
∂v

∂xi
∈ L2(Ωe) ∀i ∈ {1, 2}

}
, (B.198)

where r = |x|. If W 1(Ωe) is provided with the norm

‖v‖W 1(Ωe) =

(∥∥∥∥
v√

1 + r2 ln(2 + r2)

∥∥∥∥
2

L2(Ωe)

+ ‖∇v‖2
L2(Ωe)2

)1/2

, (B.199)

then it becomes a Hilbert space. The restriction to any bounded open set B ⊂ Ωe of the

functions of W 1(Ωe) belongs to H1(B), i.e., we have the inclusion W 1(Ωe) ⊂ H1
loc(Ωe),

and the functions in these two spaces differ only by their behavior at infinity. We remark

that the spaceW 1(Ωe) contains the constant functions and all the functions ofH1
loc(Ωe) that

satisfy the decaying condition (B.7). The justification for the use of these function spaces

lies in the variational formulation of the differential problem, and they remain valid even

when considering a source term with the same decaying behavior in the right-hand side of

the Laplace equation, i.e., when working with the Poisson equation.

When dealing with Sobolev spaces, even a strong Lipschitz boundary Γ ∈ C0,1 is

admissible. In this case, and due the trace theorem (A.531), if v ∈ H1(Ωi) or v ∈ W 1(Ωe),

then the trace of v fulfills

γ0v = v|Γ ∈ H1/2(Γ). (B.200)

Moreover, the trace of the normal derivative can be also defined, and it holds that

γ1v =
∂v

∂n
|Γ ∈ H−1/2(Γ), (B.201)

since ∆v = 0 ∈ L2(Ωi∪Ωe). This way we do not need to work with the more cumbersome

spaces H1(∆; Ωi) and W 1(∆; Ωe), being the former defined in (A.535) and the latter in an

analogous manner, but for (B.198).
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B.9.2 Regularity of the integral operators

The boundary integral operators (B.81), (B.82), (B.83), and (B.84) can be character-

ized as linear and continuous applications such that

S : H−1/2+s(Γ) −→ H1/2+s(Γ), D : H1/2+s(Γ) −→ H3/2+s(Γ), (B.202)

D∗ : H−1/2+s(Γ) −→ H1/2+s(Γ), N : H1/2+s(Γ) −→ H−1/2+s(Γ). (B.203)

This result holds for any s ∈ R if the boundary Γ is of class C∞, which can be derived

from the theory of singular integral operators with pseudo-homogeneous kernels (cf., e.g.,

Nédélec 2001). Due the compact injection (A.554), it holds also that the operators

D : H1/2+s(Γ) −→ H1/2+s(Γ) and D∗ : H−1/2+s(Γ) −→ H−1/2+s(Γ) (B.204)

are compact. For a strong Lipschitz boundary Γ ∈ C0,1, on the other hand, these results

hold only when |s| < 1 (cf. Costabel 1988). In the case of more regular boundaries, the

range for s increases, but remains finite. For our purposes we use s = 0, namely

S : H−1/2(Γ) −→ H1/2(Γ), D : H1/2(Γ) −→ H1/2(Γ), (B.205)

D∗ : H−1/2(Γ) −→ H−1/2(Γ), N : H1/2(Γ) −→ H−1/2(Γ), (B.206)

which are all linear and continuous operators, and where the operators D and D∗ are com-

pact. Similarly, we can characterize the single and double layer potentials defined respec-

tively in (B.76) and (B.77) as linear and continuous integral operators such that

S : H−1/2(Γ) −→ W 1(Ωe ∪ Ωi) and D : H1/2(Γ) −→ W 1(Ωe ∪ Ωi). (B.207)

B.9.3 Application to the integral equations

It is not difficult to see that if µ ∈ H1/2(Γ) and ν ∈ H−1/2(Γ) are given, then the

transmission problem (B.37) admits a unique solution u ∈ W 1(Ωe ∪ Ωi), as a conse-

quence of the integral representation formula (B.49). For the direct perturbation prob-

lem (B.11), though, this is not always the case, as was appreciated in the exterior circle

problem (B.171). Nonetheless, if the Fredholm alternative applies, then we know that the

existence and uniqueness of the problem can be ensured almost always, i.e., except on a

countable set of values for the impedance.

We consider an impedance Z∈L∞(Γ) and an impedance data function fz∈H−1/2(Γ).

In both cases all the continuous functions on Γ are included. We remark that the product of a

function f ∈ L∞(Γ) by a function g ∈ H1/2(Γ) most likely does not appertain to H1/2(Γ),

but is rather such that fg ∈ H1/2−ǫ(Γ) for some ǫ > 0. What we can state for sure in this

case is that fg ∈ L2(Γ), since H1/2(Γ) ⊂ L2(Γ) and the product of a function in L∞(Γ) by

a function in L2(Γ) is in L2(Γ), as stated in (A.471). It holds similarly that if f ∈ L∞(Γ)

and g ∈ H1(Γ), then fg ∈ H1(Γ).
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a) First extension by zero

Let us study the first integral equation of the extension-by-zero alternative (B.129),

which is given in terms of boundary layer potentials, for µ ∈ H1/2(Γ), by

µ

2
+ S(Zµ) −D(µ) = S(fz) in H1/2(Γ). (B.208)

The following mapping properties hold:

µ ∈ H1/2(Γ) 7−→ µ

2
∈ H1/2(Γ), (B.209)

Zµ ∈ L2(Γ) 7−→ S(Zµ) ∈ H1(Γ) →֒c H1/2(Γ), (B.210)

µ ∈ H1/2(Γ) 7−→ D(µ) ∈ H3/2(Γ) →֒c H1/2(Γ), (B.211)

fz ∈ H−1/2(Γ) 7−→ S(fz) ∈ H1/2(Γ). (B.212)

We observe that (B.209) is the identity operator (disregarding the multiplicative constant),

and that (B.210) and (B.211) are compact, due the imbeddings of Sobolev spaces. Thus the

integral equation (B.208) has the form of (A.441) and the Fredholm alternative holds.

b) Second extension by zero

The second integral equation of the extension-by-zero alternative (B.133) is given in

terms of boundary layer potentials, for µ ∈ H1/2(Γ), by

Z

2
µ−N(µ) +D∗(Zµ) =

fz
2

+D∗(fz) in H−1/2(Γ). (B.213)

In this case we have the mapping properties:

µ ∈ H1/2(Γ) 7−→ Z

2
µ ∈ L2(Γ) →֒c H−1/2(Γ), (B.214)

µ ∈ H1/2(Γ) 7−→ N(µ) ∈ H−1/2(Γ), (B.215)

Zµ ∈ L2(Γ) 7−→ D∗(Zµ) ∈ H1(Γ) →֒c H−1/2(Γ), (B.216)

fz ∈ H−1/2(Γ) 7−→ fz
2

∈ H−1/2(Γ), (B.217)

fz ∈ H−1/2(Γ) 7−→ D∗(fz) ∈ H1/2(Γ) →֒c H−1/2(Γ). (B.218)

We see that the operators (B.214) and (B.216) are compact, whereas (B.215) represents the

term of leading order and plays the role of the identity. In fact, by applying the operator S

on the integral equation (B.213) and due the second Calderón identity in (B.122), the re-

sulting operator SN can be decomposed as an identity and a compact operator. Thus again

the Fredholm alternative holds.

c) Continuous impedance

The integral equation of the continuous-impedance alternative (B.141) is given in terms

of boundary layer potentials, for µ ∈ H1/2(Γ), by

−N(µ) +D∗(Zµ) + ZD(µ) − ZS(Zµ) = fz in H−1/2(Γ). (B.219)

400



We have the mapping properties:

µ ∈ H1/2(Γ) 7−→ N(µ) ∈ H−1/2(Γ), (B.220)

Zµ ∈ L2(Γ) 7−→ D∗(Zµ) ∈ H1(Γ) →֒c H−1/2(Γ), (B.221)

µ ∈ H1/2(Γ) 7−→ ZD(µ) ∈ H1(Γ) →֒c H−1/2(Γ), (B.222)

Zµ ∈ L2(Γ) 7−→ ZS(Zµ) ∈ H1(Γ) →֒c H−1/2(Γ), (B.223)

fz ∈ H−1/2(Γ) 7−→ fz ∈ H−1/2(Γ). (B.224)

The operators (B.221), (B.222), and (B.223) are compact, whereas (B.220) plays the role

of the identity. Thus the Fredholm alternative applies.

d) Continuous value

The integral equation of the continuous-value alternative (B.149) is given in terms of

boundary layer potentials, for ν ∈ H−1/2(Γ), by

ν

2
+ ZS(ν) −D∗(ν) = −fz in H−1/2(Γ). (B.225)

We have the mapping properties:

ν ∈ H−1/2(Γ) 7−→ ν

2
∈ H−1/2(Γ), (B.226)

ν ∈ H−1/2(Γ) 7−→ ZS(ν) ∈ L2(Γ) →֒c H−1/2(Γ), (B.227)

ν ∈ H−1/2(Γ) 7−→ D∗(ν) ∈ H1/2(Γ) →֒c H−1/2(Γ), (B.228)

fz ∈ H−1/2(Γ) 7−→ −fz ∈ H−1/2(Γ). (B.229)

We observe that (B.226) is the identity operator, whereas (B.227) and (B.228) are compact.

Thus the Fredholm alternative holds.

e) Continuous normal derivative

The integral equation of the continuous-normal-derivative alternative (B.157) is given

in terms of boundary layer potentials, for µ ∈ H1/2(Γ), by

Z

2
µ−N(µ) + ZD(µ) = fz in H−1/2(Γ). (B.230)

We have the following mapping properties:

µ ∈ H1/2(Γ) 7−→ Z

2
µ ∈ L2(Γ) →֒c H−1/2(Γ), (B.231)

µ ∈ H1/2(Γ) 7−→ N(µ) ∈ H−1/2(Γ), (B.232)

µ ∈ H1/2(Γ) 7−→ ZD(µ) ∈ H1(Γ) →֒c H−1/2(Γ), (B.233)

fz ∈ H−1/2(Γ) 7−→ fz ∈ H−1/2(Γ). (B.234)

The operators (B.231) and (B.233) are compact, whereas (B.232) plays the role of the

identity. Thus the Fredholm alternative again applies.
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B.9.4 Consequences of Fredholm’s alternative

Since the Fredholm alternative applies to each integral equation, therefore it applies

also to the exterior differential problem (B.11) due the integral representation formula.

The existence of the exterior problem’s solution is thus determined by its uniqueness, and

the impedances Z ∈ C for which the uniqueness is lost constitute a countable set, which

we call the impedance spectrum of the exterior problem and denote it by σZ . The exis-

tence and uniqueness of the solution is therefore ensured almost everywhere. The same

holds obviously for the solution of the integral equation, whose impedance spectrum we

denote by ςZ . Since each integral equation is derived from the exterior problem, it holds

that σZ ⊂ ςZ . The converse, though, is not necessarily true and depends on each particular

integral equation. In any way, the set ςZ \ σZ is at most countable.

Fredholm’s alternative applies as much to the integral equation itself as to its adjoint

counterpart, and equally to their homogeneous versions. Moreover, each integral equation

solves at the same time an exterior and an interior differential problem. The loss of unique-

ness of the integral equation’s solution appears when the impedance Z is an eigenvalue

of some associated interior problem, either of the homogeneous integral equation or of its

adjoint counterpart. Such an impedance Z is contained in ςZ .

The integral equation (B.131) is associated with the extension by zero (B.124), for

which no eigenvalues appear. Nevertheless, its adjoint integral equation (B.151) of the

continuous value is associated with the interior problem (B.144), whose solution is unique

for all Z 6= 0.

The integral equation (B.134) is also associated with the extension by zero (B.124),

for which no eigenvalues appear. Nonetheless, its adjoint integral equation (B.159) of

the continuous normal derivative is associated with the interior problem (B.152), whose

solution is unique for all Z, without restriction.

The integral equation (B.143) of the continuous impedance is self-adjoint and is asso-

ciated with the interior problem (B.135), which has a countable quantity of eigenvalues Z.

Let us consider now the transmission problem generated by the homogeneous exterior

problem 



Find ue : Ωe → C such that

∆ue = 0 in Ωe,

−∂ue
∂n

+ Zue = 0 on Γ,

+ Decaying condition as |x| → ∞,

(B.235)

and the associated homogeneous interior problem




Find ui : Ωi → C such that

∆ui = 0 in Ωi,

∂ui
∂n

+ Zui = 0 on Γ,

(B.236)
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where the asymptotic decaying condition is as usual given by (B.7), and where the unit

normal n always points outwards of Ωe. Its jumps are characterized by

[u] = ue − ui =
1

Z

(
∂ue
∂n

+
∂ui
∂n

)
, (B.237)

[
∂u

∂n

]
=
∂ue
∂n

− ∂ui
∂n

= Z
(
ue + ui

)
. (B.238)

It holds that the integral equations for this transmission problem composed by (B.235)

and (B.236) have either the same left-hand side or are mutually adjoint to all other pos-

sible alternatives of integral equations that can be built for the exterior problem (B.11),

and in particular to all the alternatives that were mentioned in the last subsection. The

eigenvalues Z of the homogeneous interior problem (B.236) are thus also contained in ςZ .

To see this, let us construct the corresponding integral equations. By adding the Calderón

relations (B.116) and (B.117) for the jumps (B.237) and (B.238), we obtain a system of

integral equations that only relates these jumps, namely

1

2




ue + ui
∂ue
∂n

+
∂ui
∂n


 =

(
D −S
N −D∗

)


[u][
∂u

∂n

]

 =




1

2Z

[
∂u

∂n

]

Z

2
[u]


. (B.239)

We observe that even if the problems (B.235) and (B.236) are homogeneous, any possible

jump condition can be assigned to them. The resulting system of integral equations can

then be always combined in such a way that it has the same left-hand side or is mutually

adjoint to any integral equation derived for the exterior problem (B.11).

In the case of the extension by zero we use the jumps (B.125) and (B.126). By replac-

ing them in (B.239), we obtain the integral equations

µ

2
+ S(Zµ) −D(µ) = S(fz) +

fz
2Z

in H1/2(Γ), (B.240)

Z

2
µ−N(µ) +D∗(Zµ) = D∗(fz) in H−1/2(Γ). (B.241)

It can be clearly observed that the equations (B.240) and (B.241) have the same left-hand

side as (B.208) and (B.213), respectively.

For the continuous impedance we use the jumps (B.136) and (B.137). By replacing

them in (B.239), multiplying the first row by Z, and subtracting it from the second row, we

obtain the integral equation

−N(µ) +D∗(Zµ) + ZD(µ) − ZS(Zµ) = 0 in H−1/2(Γ). (B.242)

This integral equation has the same left-hand side as (B.219).

In the case of the continuous value we consider the jumps (B.145) and (B.146). By

replacing them in (B.239) and subtracting the second row from the first, we obtain the

integral equation

ν

2
+ ZS(ν) −D∗(ν) = 0 in H−1/2(Γ). (B.243)
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Again, this integral equation has the same left-hand side as (B.225).

For the continuous normal derivative we use the jumps (B.153) and (B.154). By re-

placing them in (B.239), multiplying the first row by Z and adding the second row to the

first, we obtain the integral equation

Z

2
µ−N(µ) + ZD(µ) = 0 in H−1/2(Γ). (B.244)

This integral equation has the same left-hand side as (B.230).

We remark that additional alternatives for integral representations and equations based

on non-homogeneous versions of the problem (B.236) can be also derived for the exterior

impedance problem (cf. Ha-Duong 1987).

The determination of the impedance spectrum σZ of the exterior problem (B.11) is not

so easy, but can be achieved for simple geometries where an analytic solution is known.

In conclusion, the exterior problem (B.11) admits a unique solution u if Z /∈ σZ , and

each integral equation admits a unique solution, either µ or ν, if Z /∈ ςZ .

B.9.5 Compatibility condition

As we appreciated for the exterior circle problem, if a constant impedance Z ∈ C is

considered, then the impedance data function fz has to satisfy some sort of compatibility

condition like ∫

Γ

fz dγ = 0, (B.245)

which is required for the existence of a solution u of the exterior problem (B.11). To un-

derstand this better, we assume that u is the solution of (B.11) and that fz satisfies (B.245).

If we consider a constant f0 ∈ C and a constant impedance Z 6= 0, then

ũ = u+
f0

Z
(B.246)

satisfies the Laplace equation

∆ũ = ∆

(
u+

f0

Z

)
= 0 in Ωe, (B.247)

and the impedance boundary condition

− ∂ũ

∂n
+ Zũ = −∂u

∂n
+ Zu+ f0 = fz + f0 = f̃z on Γ, (B.248)

where ∫

Γ

f̃z dγ = f0. (B.249)

Nonetheless, we observe that the function ũ does not fulfill the decaying condition (B.7)

if f0 6= 0 and is thus not admissible as a solution for the exterior problem with the

impedance data function f̃z.

If we consider now a Neumann boundary condition (Z = 0), then the compatibility

condition (B.245) is obtained by replacing the data function fz in (B.57).
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In any case, it is the decaying condition (B.7) that generates the need of the compat-

ibility condition (B.245). If we disregard the latter, then the exterior problem (B.11) still

admits a solution that not necessarily satisfies the decaying condition.

B.10 Variational formulation

To solve a particular integral equation we convert it to its variational or weak formu-

lation, i.e., we solve it with respect to certain test functions in a bilinear (or sesquilinear)

form. Basically, the integral equation is multiplied by the (conjugated) test function and

then the equation is integrated over the boundary of the domain. The test functions are

taken in the same function space as the solution of the integral equation.

a) First extension by zero

The variational formulation for the first integral equation (B.208) of the extension-by-

zero alternative searches µ ∈ H1/2(Γ) such that ∀ϕ ∈ H1/2(Γ)
〈µ

2
+ S(Zµ) −D(µ), ϕ

〉
=
〈
S(fz), ϕ

〉
, (B.250)

which in terms of integrals is expressed as
∫

Γ

∫

Γ

(
Z(y)G(x,y) − ∂G

∂ny

(x,y)

)
µ(y)ϕ(x) dγ(y) dγ(x)

+
1

2

∫

Γ

µ(x)ϕ(x) dγ(x) =

∫

Γ

∫

Γ

G(x,y)fz(y)ϕ(x) dγ(y) dγ(x). (B.251)

b) Second extension by zero

The variational formulation for the second integral equation (B.213) of the extension-

by-zero alternative searches µ ∈ H1/2(Γ) such that ∀ϕ ∈ H1/2(Γ)
〈
Z

2
µ−N(µ) +D∗(Zµ), ϕ

〉
=

〈
fz
2

+D∗(fz), ϕ

〉
, (B.252)

which in terms of integrals is expressed as
∫

Γ

∫

Γ

G(x,y)
(
∇µ(y) × ny

)(
∇ϕ(x) × nx

)
dγ(y) dγ(x)

+

∫

Γ

∫

Γ

Z(y)
∂G

∂nx

(x,y)µ(y)ϕ(x) dγ(y) dγ(x) +
1

2

∫

Γ

Z(x)µ(x)ϕ(x) dγ(x)

=
1

2

∫

Γ

fz(x)ϕ(x) dγ(x) +

∫

Γ

∫

Γ

∂G

∂nx

(x,y)fz(y)ϕ(x) dγ(y) dγ(x). (B.253)

c) Continuous impedance

The variational formulation for the integral equation (B.219) of the alternative of the

continuous-impedance searches µ ∈ H1/2(Γ) such that ∀ϕ ∈ H1/2(Γ)
〈
−N(µ) +D∗(Zµ) + ZD(µ) − ZS(Zµ), ϕ

〉
=
〈
fz, ϕ

〉
, (B.254)
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which in terms of integrals is expressed as
∫

Γ

∫

Γ

G(x,y)
[(
∇µ(y) × ny

)(
∇ϕ(x) × nx

)
− Z(x)Z(y)µ(y)ϕ(x)

]
dγ(y) dγ(x)

+

∫

Γ

∫

Γ

(
Z(y)

∂G

∂nx

(x,y) + Z(x)
∂G

∂ny

(x,y)

)
µ(y)ϕ(x) dγ(y) dγ(x)

=

∫

Γ

fz(x)ϕ(x) dγ(x). (B.255)

d) Continuous value

The variational formulation for the integral equation (B.225) of the continuous-value

alternative searches ν ∈ H−1/2(Γ) such that ∀ψ ∈ H−1/2(Γ)
〈ν

2
+ ZS(ν) −D∗(ν), ψ

〉
=
〈
− fz, ψ

〉
, (B.256)

which in terms of integrals is expressed as
∫

Γ

∫

Γ

(
Z(x)G(x,y) − ∂G

∂nx

(x,y)

)
ν(y)ψ(x) dγ(y) dγ(x)

+
1

2

∫

Γ

ν(x)ψ(x) dγ(x) = −
∫

Γ

fz(x)ψ(x) dγ(x). (B.257)

e) Continuous normal derivative

The variational formulation for the integral equation (B.230) of the continuous-normal-

derivative alternative searches µ ∈ H1/2(Γ) such that ∀ϕ ∈ H1/2(Γ)
〈
Z

2
µ−N(µ) + ZD(µ), ϕ

〉
=
〈
fz, ϕ

〉
, (B.258)

which in terms of integrals is expressed as
∫

Γ

∫

Γ

G(x,y)
(
∇µ(y) × ny

)(
∇ϕ(x) × nx

)
dγ(y) dγ(x)

+

∫

Γ

∫

Γ

Z(x)
∂G

∂ny

(x,y)µ(y)ϕ(x) dγ(y) dγ(x) +
1

2

∫

Γ

Z(x)µ(x)ϕ(x) dγ(x)

=

∫

Γ

fz(x)ϕ(x) dγ(x). (B.259)

B.11 Numerical discretization

B.11.1 Discretized function spaces

The exterior problem (B.11) is solved numerically with the boundary element method

by employing a Galerkin scheme on the variational formulation of an integral equation. We

use on the boundary curve Γ Lagrange finite elements of type either P1 or P0. As shown

in Figure B.9, the curve Γ is approximated by the discretized curve Γh, composed by I

rectilinear segments Tj , sequentially ordered in clockwise direction for 1 ≤ j ≤ I , such

that their length |Tj| is less or equal than h, and with their endpoints on top of Γ.
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Tj−1

Γh

Tj

n

Γ

Tj+1

FIGURE B.9. Curve Γh, discretization of Γ.

The function space H1/2(Γ) is approximated using the conformal space of continuous

piecewise linear polynomials with complex coefficients

Qh =
{
ϕh ∈ C0(Γh) : ϕh|Tj

∈ P1(C), 1 ≤ j ≤ I
}
. (B.260)

The space Qh has a finite dimension I , and we describe it using the standard base functions

for finite elements of type P1, denoted by {χj}Ij=1, shown in Figure B.10, and expressed as

χj(x) =





|x − rj−1|
|Tj−1|

if x ∈ Tj−1,

|rj+1 − x|
|Tj|

if x ∈ Tj,

0 if x /∈ Tj−1 ∪ Tj,

(B.261)

where segment Tj−1 has as endpoints rj−1 and rj , while the endpoints of segment Tj are

given by rj and rj+1.

Tj−1

ΓhTj

χj
1

0
rj−1

rj+1

rj

FIGURE B.10. Base function χj for finite elements of type P1.

The function space H−1/2(Γ), on the other hand, is approximated using the conformal

space of piecewise constant polynomials with complex coefficients

Ph =
{
ψh : Γh → C | ψh|Tj

∈ P0(C), 1 ≤ j ≤ I
}
. (B.262)
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The space Ph has a finite dimension I , and is described using the standard base functions

for finite elements of type P0, denoted by {κj}Ij=1, shown in Figure B.11, and expressed as

κj(x) =

{
1 if x ∈ Tj,

0 if x /∈ Tj.
(B.263)

Again, we denote by rj and rj+1 the endpoints of segment Tj .

ΓhTj

κj

1

0
rj+1

rj

FIGURE B.11. Base function κj for finite elements of type P0.

In virtue of this discretization, any function ϕh ∈ Qh or ψh ∈ Ph can be expressed as

a linear combination of the elements of the base, namely

ϕh(x) =
I∑

j=1

ϕj χj(x) and ψh(x) =
I∑

j=1

ψj κj(x) for x ∈ Γh, (B.264)

where ϕj, ψj ∈ C for 1 ≤ j ≤ I . The solutions µ ∈ H1/2(Γ) and ν ∈ H−1/2(Γ) of the

variational formulations can be therefore approximated respectively by

µh(x) =
I∑

j=1

µj χj(x) and νh(x) =
I∑

j=1

νj κj(x) for x ∈ Γh, (B.265)

where µj, νj ∈ C for 1 ≤ j ≤ I . The function fz can be also approximated by

fhz (x) =
I∑

j=1

fj χj(x) for x ∈ Γh, with fj = fz(rj), (B.266)

or

fhz (x) =
I∑

j=1

fj κj(x) for x ∈ Γh, with fj =
fz(rj) + fz(rj+1)

2
, (B.267)

depending on whether the original integral equation is stated in H1/2(Γ) or in H−1/2(Γ).

B.11.2 Discretized integral equations

a) First extension by zero

To see how the boundary element method operates, we apply it to the first integral equa-

tion of the extension-by-zero alternative, i.e., to the variational formulation (B.250). We

characterize all the discrete approximations by the index h, including also the impedance

and the boundary layer potentials. The numerical approximation of (B.250) leads to the
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discretized problem that searches µh ∈ Qh such that ∀ϕh ∈ Qh∫

Γh

∫

Γh

(
Zh(y)G(x,y) − ∂G

∂ny

(x,y)

)
µh(y)ϕh(x) dγ(y) dγ(x)

+
1

2

∫

Γh

µh(x)ϕh(x) dγ(x) =

∫

Γh

∫

Γh

G(x,y)fhz (y)ϕh(x) dγ(y) dγ(x), (B.268)

which in terms of boundary layer potentials becomes
〈µh

2
+ Sh(Zhµh) −Dh(µh), ϕh

〉
=
〈
Sh(f

h
z ), ϕh

〉
. (B.269)

Considering the decomposition of µh in terms of the base {χj} and taking as test functions

the same base functions, ϕh = χi for 1 ≤ i ≤ I , yields the discrete linear system

I∑

j=1

µj

(
1

2
〈χj, χi〉 + 〈Sh(Zhχj), χi〉 − 〈Dh(χj), χi〉

)
=

I∑

j=1

fj 〈Sh(χj), χi〉. (B.270)

This constitutes a system of linear equations that can be expressed as a linear matrix system:
{

Find µ ∈ C
I such that

Mµ = b.
(B.271)

The elements mij of the matrix M are given by

mij =
1

2
〈χj, χi〉 + 〈Sh(Zhχj), χi〉 − 〈Dh(χj), χi〉 for 1 ≤ i, j ≤ I, (B.272)

and the elements bi of the vector b by

bi =
〈
Sh(f

h
z ), χi

〉
=

I∑

j=1

fj 〈Sh(χj), χi〉 for 1 ≤ i ≤ I. (B.273)

The discretized solution uh, which approximates u, is finally obtained by discretizing

the integral representation formula (B.127) for x ∈ Ωe ∪ Ωi according to

uh(x) =

∫

Γh

(
∂G

∂ny

(x,y) − Zh(y)G(x,y)

)
µh(y) dγ(y) +

∫

Γh

G(x,y)fhz (y) dγ(y),

(B.274)

or, in terms of boundary layer potentials, according to

uh = Dh(µh) − Sh(Zhµh) + Sh(fhz ). (B.275)

More specifically, the solution is computed by

uh =
I∑

j=1

µj
(
Dh(χj) − Sh(Zhχj)

)
+

I∑

j=1

fj Sh(χj). (B.276)

By proceeding in the same way, the discretization of all the other alternatives of inte-

gral equations can be also expressed as a linear matrix system like (B.271). The resulting

matrix M is in general complex, full, non-symmetric, and with dimensions I × I . The

right-hand side vector b is complex and of size I . The boundary element calculations re-

quired to compute numerically the elements of M and b have to be performed carefully,
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since the integrals that appear become singular when the involved segments are adjacent or

coincident, due the singularity of the Green’s function at its source point.

b) Second extension by zero

In the case of the second integral equation of the extension-by-zero alternative, i.e., of

the variational formulation (B.252), the elements mij that constitute the matrix M of the

linear system (B.271) are given by

mij =
1

2
〈Zhχj, χi〉 − 〈Nh(χj), χi〉 + 〈D∗

h(Zhχj), χi〉 for 1 ≤ i, j ≤ I, (B.277)

whereas the elements bi of the vector b are expressed as

bi =
I∑

j=1

fj

(
1

2
〈χj, χi〉 + 〈D∗

h(Zhχj), χi〉
)

for 1 ≤ i ≤ I. (B.278)

The discretized solution uh is again computed by (B.276).

c) Continuous impedance

In the case of the continuous-impedance alternative, i.e., of the variational formula-

tion (B.254), the elements mij that constitute the matrix M of the linear system (B.271)

are given, for 1 ≤ i, j ≤ I , by

mij = −〈Nh(χj), χi〉+ 〈D∗
h(Zhχj), χi〉+ 〈ZhDh(χj), χi〉 − 〈ZhSh(Zhχj), χi〉, (B.279)

whereas the elements bi of the vector b are expressed as

bi =
I∑

j=1

fj 〈χj, χi〉 for 1 ≤ i ≤ I. (B.280)

It can be observed that for this particular alternative the matrix M turns out to be symmet-

ric, since the integral equation is self-adjoint. The discretized solution uh, due (B.142), is

then computed by

uh =
I∑

j=1

µj
(
Dh(χj) − Sh(Zhχj)

)
. (B.281)

d) Continuous value

In the case of the alternative of the continuous-value, i.e., of the variational formula-

tion (B.256), the elements mij that constitute the matrix M , now of the linear system
{

Find ν ∈ C
I such that

Mν = b,
(B.282)

are given by

mij =
1

2
〈κj, κi〉 + 〈ZhSh(κj), κi〉 − 〈D∗

h(κj), κi〉 for 1 ≤ i, j ≤ I, (B.283)
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whereas the elements bi of the vector b are expressed as

bi = −
I∑

j=1

fj 〈κj, κi〉 for 1 ≤ i ≤ I. (B.284)

The discretized solution uh, due (B.150), is then computed by

uh = −
I∑

j=1

νj Sh(κj). (B.285)

e) Continuous normal derivative

In the case of the continuous-normal-derivative alternative, i.e., of the variational for-

mulation (B.258), the elementsmij that conform the matrix M of the linear system (B.271)

are given by

mij =
1

2
〈Zhχj, χi〉 − 〈Nh(χj), χi〉 + 〈ZhDh(χj), χi〉 for 1 ≤ i, j ≤ I, (B.286)

whereas the elements bi of the vector b are expressed as

bi =
I∑

j=1

fj 〈χj, χi〉 for 1 ≤ i ≤ I. (B.287)

The discretized solution uh, due (B.158), is then computed by

uh =
I∑

j=1

µj Dh(χj). (B.288)

B.12 Boundary element calculations

B.12.1 Geometry

The boundary element calculations build the elements of the matrix M resulting from

the discretization of the integral equation, i.e., from (B.271) or (B.282). They permit thus to

compute numerically expressions like (B.272). To evaluate the appearing singular integrals,

we use the semi-numerical methods described in the report of Bendali & Devys (1986).

Let us consider the elemental interactions between two straight segments TK and TL
of a discrete closed curve Γh, which is composed by rectilinear segments and described in

clockwise direction. The unit normal points always inwards of the domain encompassed

by the curve Γh (vid. Figure B.9).

We denote the segments more simply just as K = TK and L = TL. As depicted in

Figure B.12, the following notation is used:

• |K| denotes the length of segment K.

• |L| denotes the length of segment L.

• τK , τL denote the unit tangents of segments K and L.

• nK ,nL denote the unit normals of segments K and L.

• rK1 , r
K
2 denote the endpoints of segment K.
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• rL1 , r
L
2 denote the endpoints of segment L.

• r(x) denotes a variable location on segment K (dependent on variable x).

• r(y) denotes a variable location on segment L (dependent on variable y).

K

L

O

s

t

τK

τL

nK

nL

rK
1

rK
2

rL
1

rL
2

r(x) r(y)

FIGURE B.12. Geometric characteristics of the segments K and L.

Segment K is parametrically described by

r(x) = rK1 + s τK , 0 ≤ s ≤ |K|. (B.289)

In the same manner, segment L is parametrically described by

r(y) = rL1 + t τL, 0 ≤ t ≤ |L|. (B.290)

Thus the parameters s and t can be expressed as

s =
(
r(x) − rK1

)
· τK , (B.291)

t =
(
r(y) − rL1

)
· τL. (B.292)

The lengths of the segments are given by

|K| =
∣∣rK2 − rK1

∣∣, (B.293)

|L| =
∣∣rL2 − rL1

∣∣. (B.294)

The unit tangents of the segments, τK = (τK1 , τ
K
2 ) and τL = (τL1 , τ

L
2 ), are calculated as

τK =
rK2 − rK1

|K| , (B.295)

τL =
rL2 − rL1

|L| . (B.296)

The unit normals of the segments, nK = (nK1 , n
K
2 ) and nL = (nL1 , n

L
2 ), are perpendicular

to the tangents and can be thus calculated as

(nK1 , n
K
2 ) = (τK2 ,−τK1 ), (B.297)
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(nL1 , n
L
2 ) = (τL2 ,−τL1 ). (B.298)

For the elemental interactions between a point x on segment K and a point y on

segment L, the following notation is also used:

• R denotes the vector pointing from the point x towards the point y.

• R denotes the distance between the points x and y.

These values are given by

R = r(y) − r(x), (B.299)

R = |R| = |y − x|. (B.300)

For the singular integral calculations, when considering the point x as a parameter, the

following notation is also used (vid. Figure B.13):

• RL
1 ,R

L
2 denote the vectors pointing from x towards the endpoints of segment L.

• RL
1 , R

L
2 denote the distances from x to the endpoints of segment L.

• dL denotes the signed distance from x to the line that contains segment L.

• θL denotes the angle formed by the vectors RL
1 and RL

2 (−π ≤ θL ≤ π).

Thus on segment L the following holds:

RL
1 = rL1 − r(x), RL

1 = |RL
1 |, (B.301)

RL
2 = rL2 − r(x), RL

2 = |RL
2 |. (B.302)

Likewise as before, we have that

R = RL
1 + t τL, 0 ≤ t ≤ |L|, (B.303)

t =
(
R − RL

1

)
· τL. (B.304)

The signed distance dL is constant on L and is characterized by

dL = R · nL = RL
1 · nL = RL

2 · nL. (B.305)

Finally the signed angle θL is given by

θL = arccos

(
RL

1 · RL
2

RL
1 R

L
2

)
sign(dL), −π ≤ θL ≤ π. (B.306)

RL
1

RL
2

RL

x

θL
L

y

t

τL

nL

FIGURE B.13. Geometric characteristics of the singular integral calculations.
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B.12.2 Boundary element integrals

The boundary element integrals are the basic integrals needed to perform the boundary

element calculations. In our case, by considering a, b ∈ {0, 1}, they can be expressed as

ZAa,b =

∫

K

∫

L

(
s

|K|

)a(
t

|L|

)b
G(x,y) dL(y) dK(x), (B.307)

ZBa,b =

∫

K

∫

L

(
s

|K|

)a(
t

|L|

)b
∂G

∂ny

(x,y) dL(y) dK(x), (B.308)

ZCa,b =

∫

K

∫

L

(
s

|K|

)a(
t

|L|

)b
∂G

∂nx

(x,y) dL(y) dK(x), (B.309)

where the parameters s and t depend respectively on the variables x and y, as stated

in (B.291) and (B.292). When the segments have to be specified, i.e., ifK = Ti andL = Tj ,

then we use respectively also the notation ZAi,ja,b, ZB
i,j
a,b, or ZCi,j

a,b, e.g.,

ZAi,ja,b =

∫

Ti

∫

Tj

(
s

|K|

)a(
t

|L|

)b
G(x,y) dγ(y) dγ(x). (B.310)

It should be observed that (B.309) can be expressed in terms of (B.308):

ZCi,j
a,b = ZBj,i

b,a, (B.311)

since the involved operators are self-adjoint. It occurs therefore that all the integrals that

stem from the numerical discretization can be expressed in terms of the two basic boundary

element integrals (B.307) and (B.308).

For this to hold true, the impedance is discretized as a piecewise constant function Zh,

which on each segment Tj adopts a constant value Zj ∈ C, e.g.,

Zh|Tj
= Zj =

1

2

(
Z(rj) + Z(rj+1)

)
. (B.312)

Now we can compute all the integrals of interest. We begin with the ones that are

related with the finite elements of type P0, which are easier. It can be observed that

〈κj, κi〉 =

∫

Γh

κj(x)κi(x) dγ(x) =

{
|Ti| if j = i,

0 if j 6= i.
(B.313)

We have likewise that

〈ZhSh(κj), κi〉 =

∫

Γh

∫

Γh

Zh(x)G(x,y)κj(y)κi(x) dγ(y) dγ(x) = ZiZA
i,j
0,0. (B.314)

It holds similarly that

〈D∗
h(κj), κi〉 =

∫

Γh

∫

Γh

∂G

∂nx

(x,y)κj(y)κi(x) dγ(y) dγ(x) = ZBj,i
0,0. (B.315)
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We consider now the integrals for the finite elements of type P1. We have that

〈χj, χi〉 =

∫

Γh

χj(x)χi(x) dγ(x) =





|Ti−1|/6 if j = i− 1,(
|Ti−1| + |Ti|

)
/3 if j = i,

|Ti|/6 if j = i+ 1,

0 if j /∈ {i− 1, i, i+ 1}.
(B.316)

In the same way, it occurs that

〈Zhχj, χi〉 =





Zi−1|Ti−1|/6 if j = i− 1,(
Zi−1|Ti−1| + Zi|Ti|

)
/3 if j = i,

Zi|Ti|/6 if j = i+ 1,

0 if j /∈ {i− 1, i, i+ 1}.
(B.317)

We have also that

〈Sh(χj), χi〉 =

∫

Γh

∫

Γh

G(x,y)χj(y)χi(x) dγ(y) dγ(x)

= ZAi−1,j−1
1,1 + ZAi,j−1

0,1 − ZAi,j−1
1,1 + ZAi−1,j

1,0 − ZAi−1,j
1,1

+ ZAi,j0,0 − ZAi,j0,1 − ZAi,j1,0 + ZAi,j1,1. (B.318)

Additionally it holds that

〈Sh(Zhχj), χi〉 =

∫

Γh

∫

Γh

Zh(y)G(x,y)χj(y)χi(x) dγ(y) dγ(x)

= Zj−1

(
ZAi−1,j−1

1,1 + ZAi,j−1
0,1 − ZAi,j−1

1,1

)

+ Zj
(
ZAi−1,j

1,0 − ZAi−1,j
1,1 + ZAi,j0,0 − ZAi,j0,1 − ZAi,j1,0 + ZAi,j1,1

)
. (B.319)

Furthermore we see that

〈ZhSh(Zhχj), χi〉 =

∫

Γh

∫

Γh

Zh(x)Zh(y)G(x,y)χj(y)χi(x) dγ(y) dγ(x)

= Zi−1Zj−1ZA
i−1,j−1
1,1 + ZiZj−1

(
ZAi,j−1

0,1 − ZAi,j−1
1,1

)

+ Zi−1Zj
(
ZAi−1,j

1,0 − ZAi−1,j
1,1

)
+ ZiZj

(
ZAi,j0,0 − ZAi,j0,1 − ZAi,j1,0 + ZAi,j1,1

)
. (B.320)

Likewise it occurs that

〈Dh(χj), χi〉 =

∫

Γh

∫

Γh

∂G

∂ny

(x,y)χj(y)χi(x) dγ(y) dγ(x)

= ZBi−1,j−1
1,1 + ZBi,j−1

0,1 − ZBi,j−1
1,1 + ZBi−1,j

1,0 − ZBi−1,j
1,1

+ ZBi,j
0,0 − ZBi,j

0,1 − ZBi,j
1,0 + ZBi,j

1,1. (B.321)

It holds moreover that

〈ZhDh(χj), χi〉 =

∫

Γh

∫

Γh

Zh(x)
∂G

∂ny

(x,y)χj(y)χi(x) dγ(y) dγ(x)

= Zi−1

(
ZBi−1,j−1

1,1 + ZBi−1,j
1,0 − ZBi−1,j

1,1

)

+ Zi
(
ZBi,j−1

0,1 − ZBi,j−1
1,1 + ZBi,j

0,0 − ZBi,j
0,1 − ZBi,j

1,0 + ZBi,j
1,1

)
. (B.322)
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We have also that

〈D∗
h(χj), χi〉 =

∫

Γh

∫

Γh

∂G

∂nx

(x,y)χj(y)χi(x) dγ(y) dγ(x)

= ZBj−1,i−1
1,1 + ZBj−1,i

1,0 − ZBj−1,i
1,1 + ZBj,i−1

0,1 − ZBj,i−1
1,1

+ ZBj,i
0,0 − ZBj,i

1,0 − ZBj,i
0,1 + ZBj,i

1,1. (B.323)

Similarly it occurs that

〈D∗
h(Zhχj), χi〉 =

∫

Γh

∫

Γh

Zh(y)
∂G

∂nx

(x,y)χj(y)χi(x) dγ(y) dγ(x)

= Zj−1

(
ZBj−1,i−1

1,1 + ZBj−1,i
1,0 − ZBj−1,i

1,1

)

+ Zj
(
ZBj,i−1

0,1 − ZBj,i−1
1,1 + ZBj,i

0,0 − ZBj,i
1,0 − ZBj,i

0,1 + ZBj,i
1,1

)
. (B.324)

And finally, for the hypersingular term we have that

〈Nh(χj), χi〉 = −
∫

Γh

∫

Γh

G(x,y)
(
∇χj(y) × ny

)(
∇χi(x) × nx

)
dγ(y) dγ(x)

= −ZAi−1,j−1
0,0

(τ j−1 × nj−1)

|Tj−1|
(τ i−1 × ni−1)

|Ti−1|
+ ZAi,j−1

0,0

(τ j−1 × nj−1)

|Tj−1|
(τ i × ni)

|Ti|

+ ZAi−1,j
0,0

(τ j × nj)

|Tj|
(τ i−1 × ni−1)

|Ti−1|
− ZAi,j0,0

(τ j × nj)

|Tj|
(τ i × ni)

|Ti|
. (B.325)

We remark that these formulae hold when the segments Ti−1 and Ti, as well as the seg-

ments Tj−1 and Tj , exist and are adjacent.

It remains now to compute the integrals (B.307) and (B.308), which are calculated in

two steps with a semi-numerical integration, i.e., the singular parts are calculated analyti-

cally and the other parts numerically. First the internal integral for y is computed, then the

external one for x. This can be expressed as

ZAa,b =

∫

K

(
s

|K|

)a
ZFb(x) dK(x), (B.326)

ZFb(x) =

∫

L

(
t

|L|

)b
G(x,y) dL(y), (B.327)

and

ZBa,b =

∫

K

(
s

|K|

)a
ZGb(x) dK(x), (B.328)

ZGb(x) =

∫

L

(
t

|L|

)b
∂G

∂ny

(x,y) dL(y). (B.329)

This kind of integrals can be also used to compute the terms associated with the dis-

cretized solution uh. Using an analogous notation as in (B.310), we have that

Sh(κj) =

∫

Γh

G(x,y)κj(y) dγ(y) = ZF j
0 (x). (B.330)
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Similarly it holds that

Sh(χj) =

∫

Γh

G(x,y)χj(y) dγ(y) = ZF j−1
1 (x) + ZF j

0 (x) − ZF j
1 (x), (B.331)

and

Sh(Zhχj) =

∫

Γh

Zh(y)G(x,y)χj(y) dγ(y)

= Zj−1ZF
j−1
1 (x) + Zj

(
ZF j

0 (x) − ZF j
1 (x)

)
. (B.332)

The remaining term is computed as

Dh(χj) =

∫

Γh

∂G

∂ny

(x,y)χj(y) dγ(y) = ZGj−1
1 (x) + ZGj

0(x) − ZGj
1(x). (B.333)

B.12.3 Numerical integration for the non-singular integrals

The numerical integration of the non-singular integrals of the boundary element cal-

culations is performed by a two-point Gauss quadrature formula (cf., e.g., Abramowitz &

Stegun 1972). The points considered on each segment are denoted as

x1 = α1r
K
1 + α2r

K
2 , x2 = α2r

K
1 + α1r

K
2 , (B.334)

y1 = α1r
L
1 + α2r

L
2 , y2 = α2r

L
1 + α1r

L
2 , (B.335)

where

α1 =
1

2

(
1 +

1√
3

)
and α2 =

1

2

(
1 − 1√

3

)
. (B.336)

When considering a function ϕ : L→ C, this formula is given by
∫ rL

2

rL
1

(
t

|L|

)b
ϕ(y) dL(y) ≈ |L|

2

(
αb2ϕ(y1) + αb1ϕ(y2)

)
. (B.337)

An equivalent formula is used when considering a function φ : K → C, given by
∫ rK

2

rK
1

(
s

|K|

)a
φ(x) dK(x) ≈ |K|

2

(
αa2φ(x1) + αa1φ(x2)

)
. (B.338)

The Gauss quadrature formula can be extended straightforwardly to a function of two vari-

ables, Φ : K × L→ C, using both formulas shown above. Therefore
∫ rK

2

rK
1

∫ rL
2

rL
1

(
s

|K|

)a(
t

|L|

)b
Φ(x,y) dL(y)dK(x) ≈ |K| |L|

4

(
αa+b2 Φ(x1,y1)

+ αa2α
b
1Φ(x1,y2) + αa1α

b
2Φ(x2,y1) + αa+b1 Φ(x2,y2)

)
. (B.339)

The points on which the non-singular integrals have to be evaluated to perform the numer-

ical integration are depicted in Figure B.14.

We have that the integrals on K, (B.326) and (B.328), are non-singular and thus eval-

uated numerically with the two-point Gauss quadrature formula (B.338).

For the integrals on L, (B.327) and (B.329), two different cases have to be taken into

account. If the segments K and L are not close together, e.g., neither adjacent nor equal,
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FIGURE B.14. Evaluation points for the numerical integration.

then (B.327) and (B.329) can also be numerically integrated using the formula (B.337), i.e.,

in the whole, the integrals ZAa,b and ZBa,b are calculated employing (B.339).

For the computation of the discretized solution uh, the quadrature formula (B.337)

is taken into account if x /∈ Γh. Otherwise we use the analytical formulae for singular

integrals that are below.

The quadrature formula (B.337) is likewise used in the computation of the far field,

namely for the discretization of the far-field pattern (B.169).

B.12.4 Analytical integration for the singular integrals

If the segments K and L are close together, then the integrals (B.327) and (B.329) are

calculated analytically, treating x as a given parameter. They are specifically given by

ZF0(x) =

∫

L

lnR

2π
dL(y), (B.340)

ZF1(x) =

∫

L

t
lnR

2π|L| dL(y), (B.341)

and

ZG0(x) =

∫

L

R · nL

2πR2
dL(y), (B.342)

ZG1(x) =

∫

L

t
R · nL

2πR2|L| dL(y). (B.343)

a) Computation of ZG0(x)

The integral (B.342) is closely related with Gauss’s divergence theorem. If we consider

an oriented surface differential element dγ = nLdL(y) seen from point x, then we can

express the angle differential element by

dθ =
R

R2
· dγ =

R · nL

R2
dL(y) = 2π

∂G

∂ny

(x,y) dL(y). (B.344)

Integrating over segment L yields the angle θL, as expressed in (B.306), namely

θL =

∫

L

dθ (−π ≤ θL ≤ π). (B.345)
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The angle θL is positive when the vectors R and nL point towards the same side of L. Thus

integral (B.342) is obtained by integrating (B.344), which yields

ZG0(x) =

∫

L

R · nL

2πR2
dL(y) =

θL
2π
. (B.346)

b) Computation of ZF1(x)

For the integral (B.341) we have that

ZF1(x) =
1

2π|L|

∫

L

ln(R)
(
R − RL

1

)
· τL dL(y)

=
1

2π|L|

∫

L

R ln(R)
R

R
· τL dL(y) − RL

1 · τL
|L| ZF0(x). (B.347)

If we denote the primitive of R lnR that vanishes for R = 0 by

v(R) =
R2

2

(
lnR− 1

2

)
, (B.348)

then (B.347) can be rewritten as

ZF1(x) =
1

2π|L|

∫

L

∂v

∂t
dL(y) − RL

1 · τL
|L| ZF0(x), (B.349)

and therefore ZF1(x) can be finally calculated as

ZF1(x) =
v(RL

2 ) − v(RL
1 )

2π|L| − RL
1 · τL
|L| ZF0(x). (B.350)

c) Computation of ZF0(x)

We consider now a function w = w(R) that is bounded in the vicinity of zero and is

such that

∆w =
1

R

d

dR

(
R

dw

dR

)
= lnR. (B.351)

Hence, taking a primitive that vanishes at zero, it holds that

dw

dR
=
R

2

(
lnR− 1

2

)
. (B.352)

We turn now to the local orthonormal variables t and n, where

R = RL
1 + t τL + nnL. (B.353)

Since the Laplace operator ∆ is invariant under orthonormal variable changes, we have

from (B.351) that

ZF0(x) =
1

2π

∫

L

(
∂2w

∂t2
+
∂2w

∂n2

)
dL(y). (B.354)

By considering (B.352) we obtain that

∇w =
dw

dR

R

R
=

1

2

(
lnR− 1

2

)
R, (B.355)
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∂w

∂t
= ∇w · τL =

1

2

(
lnR− 1

2

)
R · τL, (B.356)

∂w

∂n
= ∇w · nL =

1

2

(
lnR− 1

2

)
R · nL, (B.357)

∂2w

∂n2
=

1

2
R · nL

∂

∂n
lnR +

1

2

(
lnR− 1

2

)
. (B.358)

The first integral in (B.354) is therefore given by

1

2π

∫

L

∂2w

∂t2
dL(y) =

1

4π

(
lnRL

2 − 1

2

)
RL

2 · τL − 1

4π

(
lnRL

1 − 1

2

)
RL

1 · τL, (B.359)

while for the second one, due (B.305), it holds that

1

2π

∫

L

∂2w

∂n2
dL(y) =

dL
2
ZG0(x) +

1

2
ZF0(x) − |L|

8π
. (B.360)

From (B.346), (B.354), (B.359), and (B.360), we obtain the desired expression

ZF0(x) =
1

2π

(
RL

2 · τL lnRL
2 − RL

1 · τL lnRL
1 − |L| + dLθL

)
. (B.361)

d) Computation of ZG1(x)

The integral (B.343) is found straightforwardly by replacing (B.304), yielding

ZG1(x) =

∫

L

R · nL

2πR2|L|
(
R − RL

1

)
· τL dL(y)

=

∫

L

R · nL

2πR2|L| R · τL dL(y) − RL
1 · τL
|L| ZG0(x). (B.362)

Due (B.305) we have then

ZG1(x) =
ln(RL

2 /R
L
1 )

2π|L| RL
1 · nL − RL

1 · τL
|L| ZG0(x). (B.363)

e) Final computation of the singular integrals

In conclusion, the singular integrals (B.327) and (B.329) are computed using the for-

mulae (B.346), (B.350), (B.361), and (B.363).

It should be observed that ZBa,b = 0 when the segments coincide, i.e., when K = L,

since in this case dL = 0, and thus (B.346) and (B.363) become zero.

B.13 Benchmark problem

As benchmark problem we consider the exterior circle problem (B.171), whose domain

is shown in Figure B.8. The exact solution of this problem is stated in (B.193), and the idea

is to retrieve it numerically with the integral equation techniques and the boundary element

method described throughout this chapter.
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For the computational implementation and the numerical resolution of the bench-

mark problem, we consider only the first integral equation of the extension-by-zero al-

ternative (B.129), which is given in terms of boundary layer potentials by (B.208). The

linear system (B.271) resulting from the discretization (B.269) of its variational formula-

tion (B.250) is solved computationally with finite boundary elements of type P1 by using

subroutines programmed in Fortran 90, by generating the mesh Γh of the boundary with the

free software Gmsh 2.4, and by representing graphically the results in Matlab 7.5 (R2007b).

We consider a radius R = 1 and a constant impedance Z = 0.8. The discretized

boundary curve Γh has I = 120 segments and a discretization step h = 0.05235, being

h = max
1≤j≤I

|Tj|. (B.364)

We observe that h ≈ 2π/I . As the known field without obstacle we take

uW (r, θ) =
eiθ

r
=
x1 + ix2

x2
1 + x2

2

, (B.365)

which implies that the impedance data function is given by

fz(θ) = −∂uW
∂r

(R, θ) − ZuW (R, θ) = −e
iθ

R2
(ZR− 1). (B.366)

The exact solution of the problem and its trace on the boundary are thus given by

u(x) = −uW (r, θ) = −e
iθ

r
and µ(θ) = −uW (R, θ) = −e

iθ

R
. (B.367)

The numerically calculated trace of the solution µh of the benchmark problem, which

was computed by using the boundary element method, is depicted in Figure B.15. In the

same manner, the numerical solution uh is illustrated in Figures B.16 and B.17. It can be

observed that the numerical solution is quite close to the exact one.
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FIGURE B.15. Numerically computed trace of the solution µh.
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FIGURE B.16. Contour plot of the numerically computed solution uh.
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FIGURE B.17. Oblique view of the numerically computed solution uh.

We define the relative error of the trace of the solution as

E2(h,Γ
h) =

‖Πhµ− µh‖L2(Γh)

‖Πhµ‖L2(Γh)

, (B.368)

where Πhµ denotes the Lagrange interpolating function of the exact solution’s trace µ, i.e.,

Πhµ(x) =
I∑

j=1

µ(rj)χj(x) and µh(x) =
I∑

j=1

µj χj(x) for x ∈ Γh. (B.369)

It holds therefore that

‖Πhµ− µh‖2
L2(Γh) = (µ̃ − µ)∗A (µ̃ − µ) and ‖Πhµ‖2

L2(Γh) = µ̃∗A µ̃, (B.370)

where µ(rj) and µj are respectively the elements of vectors µ̃ and µ, for 1 ≤ j ≤ I , and

where the elements aij of the matrix A are specified in (B.316) and given by

aij = 〈χj, χi〉 for 1 ≤ i, j ≤ I. (B.371)

In our case, for a step h = 0.05235, we obtained a relative error of E2(h,Γ
h) = 0.004571.
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Similarly as for the trace, we define the relative error of the solution as

E∞(h,ΩL) =
‖u− uh‖L∞(ΩL)

‖u‖L∞(ΩL)

, (B.372)

being ΩL = {x ∈ Ωe : ‖x‖∞ < L} for L > 0, and where

‖u− uh‖L∞(ΩL) = max
x∈ΩL

|u(x) − uh(x)| and ‖u‖L∞(ΩL) = max
x∈ΩL

|u(x)|. (B.373)

We consider L = 3 and approximate ΩL by a triangular finite element mesh of refinement h

near the boundary. For h = 0.05235, the relative error that we obtained for the solution

was E∞(h,ΩL) = 0.004870.

The results for different mesh refinements, i.e., for different numbers of segments I and

discretization steps h for Γh, are listed in Table B.1. These results are illustrated graphically

in Figure B.18. It can be observed that the relative errors are approximately of order h2.

TABLE B.1. Relative errors for different mesh refinements.

I h E2(h,Γ
h) E∞(h,ΩL)

12 0.5176 4.330 · 10−1 4.330 · 10−1

40 0.1569 4.100 · 10−2 4.100 · 10−2

80 0.07852 1.027 · 10−2 1.082 · 10−2

120 0.05235 4.571 · 10−3 4.870 · 10−3

240 0.02618 1.143 · 10−3 1.239 · 10−3

500 0.01257 2.633 · 10−4 2.879 · 10−4

1000 0.006283 6.581 · 10−5 7.222 · 10−5
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FIGURE B.18. Logarithmic plots of the relative errors versus the discretization step.
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C. FULL-PLANE IMPEDANCE HELMHOLTZ PROBLEM

C.1 Introduction

In this appendix we study the perturbed full-plane or free-plane impedance Helmholtz

problem, also known as the exterior impedance Helmholtz problem in 2D, using integral

equation techniques and the boundary element method.

We consider the problem of the Helmholtz equation in two dimensions on the exte-

rior of a bounded obstacle with an impedance boundary condition. The perturbed full-

plane impedance Helmholtz problem is a wave scattering problem around a bounded two-

dimensional obstacle. In acoustic obstacle scattering the impedance boundary-value prob-

lem appears when we suppose that the normal velocity is proportional to the excess pressure

on the boundary of the impenetrable obstacle. The special case of frequency zero for the

volume waves has been treated already in Appendix B, since then we deal with the Laplace

equation. The three-dimensional Helmholtz problem is treated thoroughly in Appendix E.

The main references for the problem treated herein are Kress (2002), Lenoir (2005),

Nédélec (2001), and Terrasse & Abboud (2006). Additional related books and doctorate

theses are the ones of Chen & Zhou (1992), Colton & Kress (1983), Ha-Duong (1987),

Hsiao & Wendland (2008), Rjasanow & Steinbach (2007), and Steinbach (2008). Articles

that take the Helmholtz equation with an impedance boundary condition into account are

Angell & Kleinman (1982), Angell & Kress (1984), Angell, Kleinman & Hettlich (1990),

Cakoni, Colton & Monk (2001), and Krutitskii (2002, 2003a,b). Interesting theoretical

details on transmission problems can be found in Costabel & Stephan (1985). For more

information on resonances of volume waves we refer to Poisson & Joly (1991). Eigenvalues

for the far-field operator are computed in Colton & Kress (1995). The boundary element

calculations are performed in the report of Bendali & Devys (1986) and in the article of

Bendali & Souilah (1994). Hypersingular integral equations are considered by Feistauer,

Hsiao & Kleinman (1996) and Kress (1995). The use of cracked domains is studied by

Kress & Lee (2003), and the inverse problem in the articles of Cakoni et al. (2001) and

Smith (1985). An optimal control problem is treated by Kirsch (1981). Applications for

the Helmholtz problem can be found, among others, for acoustics (Morse & Ingard 1961)

and for ultrasound imaging (Ammari 2008).

The Helmholtz equation allows the propagation of volume waves inside the considered

domain, and when supplied with an impedance boundary condition it allows also the propa-

gation of surface waves along the domain’s boundary. The main difficulty in the numerical

treatment and resolution of our problem is the fact that the exterior domain is unbounded.

We solve it therefore with integral equation techniques and the boundary element method,

which require the knowledge of the Green’s function.

This appendix is structured in 14 sections, including this introduction. The direct scat-

tering problem of the Helmholtz equation in a two-dimensional exterior domain with an

impedance boundary condition is presented in Section C.2. The Green’s function and its
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far-field expression are computed respectively in Sections C.3 and C.4. Extending the di-

rect scattering problem towards a transmission problem, as done in Section C.5, allows its

resolution by using integral equation techniques, which is discussed in Section C.6. These

techniques allow also to represent the far field of the solution, as shown in Section C.7. A

particular problem that takes as domain the exterior of a circle is solved analytically in Sec-

tion C.8. The appropriate function spaces and some existence and uniqueness results for

the solution of the problem are presented in Section C.9. The dissipative problem is studied

in Section C.10. By means of the variational formulation developed in Section C.11, the

obtained integral equation is discretized using the boundary element method, which is de-

scribed in Section C.12. The boundary element calculations required to build the matrix of

the linear system resulting from the numerical discretization are explained in Section C.13.

Finally, in Section C.14 a benchmark problem based on the exterior circle problem is solved

numerically.

C.2 Direct scattering problem

We consider the direct scattering problem of linear time-harmonic acoustic waves on

an exterior domain Ωe ⊂ R
2, lying outside a bounded obstacle Ωi and having a regular

boundary Γ = ∂Ωe = ∂Ωi, as shown in Figure C.1. The time convention e−iωt is taken

and the incident field uI is known. The goal is to find the scattered field u as a solution to

the Helmholtz equation in Ωe, satisfying an outgoing radiation condition, and such that the

total field uT , decomposed as uT = uI + u, satisfies a homogeneous impedance boundary

condition on the regular boundary Γ (e.g., of class C2). The unit normal n is taken out-

wardly oriented of Ωe. A given wave number k > 0 is considered, which depends on the

pulsation ω and the speed of wave propagation c through the ratio k = ω/c.

x1

x2

Ωe

n

Ωi

Γ

FIGURE C.1. Perturbed full-plane impedance Helmholtz problem domain.

The total field uT satisfies thus the Helmholtz equation

∆uT + k2uT = 0 in Ωe, (C.1)
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which is also satisfied by the incident field uI and the scattered field u, due linearity. For

the total field uT we take the homogeneous impedance boundary condition

− ∂uT
∂n

+ ZuT = 0 on Γ, (C.2)

where Z is the impedance on the boundary. If Z = 0 or Z = ∞, then we retrieve respec-

tively the classical Neumann or Dirichlet boundary conditions. In general, we consider

a complex-valued impedance Z(x) that depends on the position x and that may depend

also on the pulsation ω. The scattered field u satisfies the non-homogeneous impedance

boundary condition

− ∂u

∂n
+ Zu = fz on Γ, (C.3)

where the impedance data function fz is given by

fz =
∂uI
∂n

− ZuI on Γ. (C.4)

The solutions of the Helmholtz equation (C.1) in the full-plane R
2 are the so-called

plane waves, which we take as the known incident field uI . Up to an arbitrary multiplicative

factor, they are given by

uI(x) = eik·x, (k · k) = k2, (C.5)

where the wave propagation vector k is taken such that k ∈ R
2 to obtain physically ad-

missible waves which do not explode towards infinity. By considering a parametrization

through the angle of incidence θI , for 0 ≤ θI < 2π, we can express the wave propagation

vector as k = (−k cos θI ,−k sin θI). The plane waves can be thus also represented as

uI(x) = e−ik(x1 cos θI+x2 sin θI). (C.6)

An outgoing radiation condition is also imposed for the scattered field u, which spec-

ifies its decaying behavior at infinity and eliminates the non-physical solutions, e.g., plane

waves and ingoing waves from infinity. It is known as the Sommerfeld radiation condi-

tion and receives its name from the German theoretical physicist Arnold Johannes Wilhelm

Sommerfeld (1868–1951). This radiation condition allows only outgoing waves, i.e., waves

moving away from the obstacle, and therefore characterizes an outward energy flux. It is

also closely related with causality and fixes the positive sense of time (cf. Terrasse & Ab-

boud 2006). The described outgoing waves have bounded energy and are thus physically

admissible. The Sommerfeld radiation condition is stated either as

∂u

∂r
− iku = O

(
1

r

)
(C.7)

for r = |x|, or, for some constant C > 0, by
∣∣∣∣
∂u

∂r
− iku

∣∣∣∣ ≤
C

r
as r → ∞. (C.8)
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Alternatively it can be also expressed as

lim
r→∞

√
r

(
∂u

∂r
− iku

)
= 0, (C.9)

or even as
∂u

∂r
− iku = O

(
1

rα

)
for

1

2
< α <

3

2
. (C.10)

Likewise, a weaker and more general formulation of this radiation condition is

lim
R→∞

∫

SR

∣∣∣∣
∂u

∂r
− iku

∣∣∣∣
2

dγ = 0, (C.11)

where SR = {x ∈ R
2 : |x| = R} is the circle of radius R that is centered at the origin. If

the opposite sign is taken, then we obtain a radiation condition for ingoing waves, namely

lim
r→∞

√
r

(
∂u

∂r
+ iku

)
= 0. (C.12)

It describes ingoing waves of unbounded energy coming from infinity, which are not phys-

ically admissible and therefore not appropriate for our scattering problem. We remark that

the correct sign for the ingoing and outgoing radiation conditions is determined exclu-

sively by the chosen time convention. If we used the time convention eiωt instead of e−iωt,

then (C.12) would have been the outgoing radiation condition and (C.9) the ingoing one.

The perturbed full-plane impedance Helmholtz problem can be finally stated as




Find u : Ωe → C such that

∆u+ k2u = 0 in Ωe,

−∂u
∂n

+ Zu = fz on Γ,
∣∣∣∣
∂u

∂r
− iku

∣∣∣∣ ≤
C

r
as r → ∞.

(C.13)

C.3 Green’s function

The Green’s function represents the response of the unperturbed system (without an

obstacle) to a Dirac mass. It corresponds to a function G, which depends on a fixed source

point x ∈ R
2 and an observation point y ∈ R

2. The Green’s function is computed in the

sense of distributions for the variable y in the full-plane R
2 by placing at the right-hand

side of the Helmholtz equation a Dirac mass δx, centered at the point x. It is therefore a

solution G(x, ·) : R
2 → C for the radiation problem of a point source, namely

∆yG(x,y) + k2G(x,y) = δx(y) in D′(R2). (C.14)

The solution of this equation is not unique, and therefore its behavior at infinity has to be

specified. For this purpose we impose on the Green’s function also the outgoing radiation

condition (C.8).

Due to the radial symmetry of the problem (C.14), it is natural to look for solutions in

the form G = G(r), where r = |y − x|. By considering only the radial component, the
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Helmholtz equation in R
2 becomes

1

r

d

dr

(
r
dG

dr

)
+ k2G = 0, r > 0. (C.15)

Replacing now z = kr and considering ψ(z) = G(r) yields dG
dr

= k dψ
dz

and consequently

k2

z

(
z
d2ψ

dz2
+

dψ

dz

)
+ k2ψ = 0, (C.16)

which is equivalent to the zeroth order Bessel differential equation (vid. Subsection A.2.4)

z2 d2ψ

dz2
+ z

dψ

dz
+ z2ψ = 0. (C.17)

Independent solutions for this equation are the zeroth order Bessel functions of the first and

second kinds, J0(z) and Y0(z), and equally the zeroth order Hankel functions of the first

and second kinds, H
(1)
0 (z) and H

(2)
0 (z). The latter satisfy respectively the outgoing and

ingoing radiation conditions and behave for small arguments, as z → 0, like

H
(1)
0 (z) ∼ 2i

π
ln(z), H

(2)
0 (z) ∼ −2i

π
ln(z). (C.18)

For large arguments, as |z| → ∞, they behave like

H
(1)
0 (z) ∼

√
2

πz
ei (z−

π
4
), H

(2)
0 (z) ∼

√
2

πz
e−i (z−

π
4
). (C.19)

Thus the solution of (C.17) is given by

ψ(z) = αH
(1)
0 (z) + βH

(2)
0 (z), α, β ∈ C, (C.20)

and consequently

G(r) = αH
(1)
0 (kr) + βH

(2)
0 (kr), α, β ∈ C. (C.21)

An outgoing wave behavior for the Green’s function implies that β = 0, due (C.8). We

know from (C.18) that the singularity of the Green’s function is of logarithmic type. The

multiplicative constant α can be thus determined in the same way as for the Green’s func-

tion of the Laplace equation in (B.20) by means of a computation in the sense of distri-

butions for (C.14). The unique radial outgoing fundamental solution of the Helmholtz

equation turns out to be

G(r) = − i

4
H

(1)
0 (kr). (C.22)

The Green’s function for outgoing waves is then finally given by

G(x,y) = − i

4
H

(1)
0

(
k|y − x|

)
. (C.23)

We remark that the Green’s function for ingoing waves would have been

G(x,y) =
i

4
H

(2)
0

(
k|y − x|

)
. (C.24)
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To compute the derivatives of the Green’s function we require some additional proper-

ties of Hankel functions. It holds that

d

dz
H

(1)
0 (z) = −H(1)

1 (z),
d

dz
H

(2)
0 (z) = −H(2)

1 (z), (C.25)

and

d

dz
H

(1)
1 (z) = H

(1)
0 (z) − 1

z
H

(1)
1 (z),

d

dz
H

(2)
1 (z) = H

(2)
0 (z) − 1

z
H

(2)
1 (z), (C.26)

where H
(1)
1 (z) and H

(2)
1 (z) denote the first order Hankel functions of the first and second

kinds, respectively. For small arguments, as z → 0, they behave like

H
(1)
1 (z) ∼ − 2i

πz
, H

(2)
1 (z) ∼ 2i

πz
, (C.27)

and for large arguments, as |z| → ∞, they behave like

H
(1)
1 (z) ∼

√
2

πz
ei (z−

3π
4

), H
(2)
1 (z) ∼

√
2

πz
e−i (z−

3π
4

). (C.28)

The gradient of the Green’s function (C.23) is therefore given by

∇yG(x,y) =
ik

4
H

(1)
1

(
k|y − x|

) y − x

|y − x| , (C.29)

and the gradient with respect to the x variable by

∇xG(x,y) =
ik

4
H

(1)
1

(
k|x − y|

) x − y

|x − y| . (C.30)

The double-gradient matrix is given by

∇x∇yG(x,y) =
ik

4
H

(1)
1

(
k|x − y|

)(
− I

|x − y| + 2
(x − y) ⊗ (x − y)

|x − y|3
)

− ik2

4
H

(1)
0

(
k|x − y|

)(x − y) ⊗ (x − y)

|x − y|2 , (C.31)

where I denotes a 2 × 2 identity matrix and where ⊗ denotes the dyadic or outer product

of two vectors, which results in a matrix and is defined in (A.573).

We note that the Green’s function (C.23) is symmetric in the sense that

G(x,y) = G(y,x), (C.32)

and it fulfills similarly

∇yG(x,y) = ∇yG(y,x) = −∇xG(x,y) = −∇xG(y,x), (C.33)

and

∇x∇yG(x,y) = ∇y∇xG(x,y) = ∇x∇yG(y,x) = ∇y∇xG(y,x). (C.34)

Furthermore, due the exponential decrease of the Hankel functions at infinity, we ob-

serve that the expression (C.23) of the Green’s function for outgoing waves is still valid

if a complex wave number k ∈ C such that Im{k} > 0 is used, which holds also for its

derivatives (C.29), (C.30), and (C.31). In the case of ingoing waves, the expression (C.24)
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and its derivatives are valid if a complex wave number k ∈ C now such that Im{k} < 0 is

taken into account.

On the account of performing the numerical evaluation of the Hankel functions, for

real and complex arguments, we mention the polynomial approximations described in

Abramowitz & Stegun (1972) and Newman (1984a), and the algorithms developed by

Amos (1986, 1990c, 1995) and Morris (1993).

C.4 Far field of the Green’s function

The far field of the Green’s function describes its asymptotic behavior at infinity, i.e.,

when |x| → ∞ and assuming that y is fixed. In this case and due (C.19), we have that

H
(1)
0

(
k|x − y|

)
∼ e−iπ/4

√
2

πk

eik|x−y|
√

|x − y|
. (C.35)

By using a Taylor expansion we obtain that

|x − y| = |x|
(

1 − 2
y · x
|x|2 +

|y|2
|x|2

)1/2

= |x| − y · x
|x| + O

(
1

|x|

)
. (C.36)

A similar expansion yields

1√
|x − y|

=
1√
|x|

+ O
(

1

|x|3/2
)
, (C.37)

and we have also that

eik|x−y| = eik|x|e−iky·x/|x|
(

1 + O
(

1

|x|

))
. (C.38)

We express the point x as x = |x| x̂, being x̂ a unitary vector. The far field of the Green’s

function, as |x| → ∞, is thus given by

Gff (x,y) = − eiπ/4√
8πk

eik|x|√
|x|

e−ikx̂·y. (C.39)

Similarly, as |x| → ∞, we have for its gradient with respect to y, that

∇yG
ff (x,y) = i eiπ/4

√
k

8π

eik|x|√
|x|

e−ikx̂·y x̂, (C.40)

for its gradient with respect to x, that

∇xG
ff (x,y) = −i eiπ/4

√
k

8π

eik|x|√
|x|

e−ikx̂·y x̂, (C.41)

and for its double-gradient matrix, that

∇x∇yG
ff (x,y) = −eiπ/4

√
k3

8π

eik|x|√
|x|

e−ikx̂·y (x̂ ⊗ x̂). (C.42)
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We remark that these far fields are still valid if a complex wave number k ∈ C such

that Im{k} > 0 is used, in which case the appearing complex square root is taken in such

a way that its real part is nonnegative.

C.5 Transmission problem

We are interested in expressing the solution u of the direct scattering problem (C.13)

by means of an integral representation formula over the boundary Γ. To study this kind

of representations, the differential problem defined on Ωe is extended as a transmission

problem defined now on the whole plane R
2 by combining (C.13) with a corresponding

interior problem defined on Ωi. For the transmission problem, which specifies jump con-

ditions over the boundary Γ, a general integral representation can be developed, and the

particular integral representations of interest are then established by the specific choice of

the corresponding interior problem.

A transmission problem is then a differential problem for which the jump conditions

of the solution field, rather than boundary conditions, are specified on the boundary Γ. As

shown in Figure C.1, we consider the exterior domain Ωe and the interior domain Ωi, taking

the unit normal n pointing towards Ωi. We search now a solution u defined in Ωe ∪Ωi, and

use the notation ue = u|Ωe and ui = u|Ωi
. We define the jumps of the traces of u on both

sides of the boundary Γ as

[u] = ue − ui and

[
∂u

∂n

]
=
∂ue
∂n

− ∂ui
∂n

. (C.43)

The transmission problem is now given by




Find u : Ωe ∪ Ωi → C such that

∆u+ k2u = 0 in Ωe ∪ Ωi,

[u] = µ on Γ,
[
∂u

∂n

]
= ν on Γ,

+ Outgoing radiation condition as |x| → ∞,

(C.44)

where µ, ν : Γ → C are known functions. The outgoing radiation condition is still (C.8),

and it is required to ensure uniqueness of the solution.

C.6 Integral representations and equations

C.6.1 Integral representation

To develop for the solution u an integral representation formula over the boundary Γ,

we define by ΩR,ε the domain Ωe ∪ Ωi without the ball Bε of radius ε > 0 centered at the

point x ∈ Ωe ∪ Ωi, and truncated at infinity by the ball BR of radius R > 0 centered at the

origin. We consider that the ball Bε is entirely contained either in Ωe or in Ωi, depending
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on the location of its center x. Therefore, as shown in Figure C.2, we have that

ΩR,ε =
(
(Ωe ∪ Ωi) ∩BR

)
\Bε and ΩR = (Ωe ∪ Ωi) ∩BR, (C.45)

where

BR = {y ∈ R
2 : |y| < R} and Bε = {y ∈ R

2 : |y − x| < ε}. (C.46)

We consider similarly the boundaries of the balls

SR = {y ∈ R
2 : |y| = R} and Sε = {y ∈ R

2 : |y − x| = ε}. (C.47)

The idea is to retrieve the domain Ωe ∪ Ωi at the end when the limits R → ∞ and ε → 0

are taken for the truncated domains ΩR,ε and ΩR.

ΩR,ε

n

SR

Γ

n = r

x
ε

R

Sε

O

FIGURE C.2. Truncated domain ΩR,ε for x ∈ Ωe ∪ Ωi.

Let us analyze first the asymptotic decaying behavior of the solution u, which satisfies

the Helmholtz equation and the Sommerfeld radiation condition. For more generality, we

assume here that the wave number k (6= 0) is complex and such that Im{k} ≥ 0. We

consider the weakest form of the radiation condition, namely (C.11), and develop

∫

SR

∣∣∣∣
∂u

∂r
− iku

∣∣∣∣
2

dγ =

∫

SR

[∣∣∣∣
∂u

∂r

∣∣∣∣
2

+ |k|2|u|2 + 2 Im

{
ku
∂ū

∂r

}]
dγ. (C.48)

From the divergence theorem (A.614) applied on the truncated domain ΩR and considering

the complex conjugated Helmholtz equation we have

k

∫

SR

u
∂ū

∂r
dγ + k

∫

Γ

u
∂ū

∂n
dγ = k

∫

ΩR

div(u∇ū) dx

= k

∫

ΩR

|∇u|2 dx − kk̄2

∫

ΩR

|u|2 dx. (C.49)
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Replacing the imaginary part of (C.49) in (C.48) and taking the limit as R → ∞, yields

lim
R→∞

[∫

SR

(∣∣∣∣
∂u

∂r

∣∣∣∣
2

+ |k|2|u|2
)

dγ + 2 Im{k}
∫

ΩR

(
|∇u|2 + |k|2|u|2

)
dx

]

= 2 Im

{
k

∫

Γ

u
∂ū

∂n
dγ

}
. (C.50)

Since the right-hand side is finite and since the left-hand side is nonnegative, we see that
∫

SR

|u|2 dγ = O(1) and

∫

SR

∣∣∣∣
∂u

∂r

∣∣∣∣
2

dγ = O(1) as R → ∞, (C.51)

and therefore it holds for a great value of r = |x| that

u = O
(

1√
r

)
and |∇u| = O

(
1√
r

)
. (C.52)

We apply now Green’s second integral theorem (A.613) to the functions u and G(x, ·)
in the bounded domain ΩR,ε, by subtracting their respective Helmholtz equations, yielding

0 =

∫

ΩR,ε

(
u(y)∆yG(x,y) −G(x,y)∆u(y)

)
dy

=

∫

SR

(
u(y)

∂G

∂ry
(x,y) −G(x,y)

∂u

∂r
(y)

)
dγ(y)

−
∫

Sε

(
u(y)

∂G

∂ry
(x,y) −G(x,y)

∂u

∂r
(y)

)
dγ(y)

+

∫

Γ

(
[u](y)

∂G

∂ny

(x,y) −G(x,y)

[
∂u

∂n

]
(y)

)
dγ(y). (C.53)

The integral on SR can be rewritten as
∫

SR

[
u(y)

(
∂G

∂ry
(x,y) − ikG(x,y)

)
−G(x,y)

(
∂u

∂r
(y) − iku(y)

)]
dγ(y), (C.54)

which for R large enough and due the radiation condition (C.8) tends to zero, since
∣∣∣∣
∫

SR

u(y)

(
∂G

∂ry
(x,y) − ikG(x,y)

)
dγ(y)

∣∣∣∣ ≤
C√
R
, (C.55)

and ∣∣∣∣
∫

SR

G(x,y)

(
∂u

∂r
(y) − iku(y)

)
dγ(y)

∣∣∣∣ ≤
C√
R
, (C.56)

for some constants C > 0. If the function u is regular enough in the ball Bε, then the

second term of the integral on Sε, when ε→ 0 and due (C.23), is bounded by
∣∣∣∣
∫

Sε

G(x,y)
∂u

∂r
(y) dγ(y)

∣∣∣∣ ≤
πε

2

∣∣∣H(1)
0 (kε)

∣∣∣ sup
y∈Bε

∣∣∣∣
∂u

∂r
(y)

∣∣∣∣, (C.57)

and tends to zero due (C.18). The regularity of u can be specified afterwards once the in-

tegral representation has been determined and generalized by means of density arguments.
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The first integral term on Sε can be decomposed as
∫

Sε

u(y)
∂G

∂ry
(x,y) dγ(y) = u(x)

∫

Sε

∂G

∂ry
(x,y) dγ(y)

+

∫

Sε

∂G

∂ry
(x,y)

(
u(y) − u(x)

)
dγ(y), (C.58)

For the first term in the right-hand side of (C.58), by replacing (C.29), we have that
∫

Sε

∂G

∂ry
(x,y) dγ(y) =

ikπε

2
H

(1)
1 (kε) −−−→

ε→0
1, (C.59)

which tends towards one due (C.27), while the second term is bounded by
∣∣∣∣
∫

Sε

(
u(y) − u(x)

)∂G
∂ry

(x,y) dγ(y)

∣∣∣∣ ≤
kπε

2

∣∣∣H(1)
1 (kε)

∣∣∣ sup
y∈Bε

|u(y) − u(x)|, (C.60)

which tends towards zero when ε→ 0.

In conclusion, when the limits R → ∞ and ε→ 0 are taken in (C.53), then the follow-

ing integral representation formula holds for the solution u of the transmission problem:

u(x) =

∫

Γ

(
[u](y)

∂G

∂ny

(x,y) −G(x,y)

[
∂u

∂n

]
(y)

)
dγ(y), x ∈ Ωe ∪ Ωi. (C.61)

We observe thus that if the values of the jump of u and of its normal derivative are

known on Γ, then the transmission problem (C.44) is readily solved and its solution given

explicitly by (C.61), which, in terms of µ and ν, becomes

u(x) =

∫

Γ

(
µ(y)

∂G

∂ny

(x,y) −G(x,y)ν(y)

)
dγ(y), x ∈ Ωe ∪ Ωi. (C.62)

To determine the values of the jumps, an adequate integral equation has to be developed,

i.e., an equation whose unknowns are the traces of the solution on Γ.

An alternative way to demonstrate the integral representation (C.61) is to proceed in

the sense of distributions, in the same way as done in Section B.6. Again we obtain the

single layer potential
{
G ∗

[
∂u

∂n

]
δΓ

}
(x) =

∫

Γ

G(x,y)

[
∂u

∂n

]
(y) dγ(y) (C.63)

associated with the distribution of sources [∂u/∂n]δΓ, and the double layer potential
{
G ∗ ∂

∂n

(
[u]δΓ

)}
(x) = −

∫

Γ

∂G

∂ny

(x,y)[u](y) dγ(y) (C.64)

associated with the distribution of dipoles ∂
∂n

([u]δΓ). Combining properly (C.63) and (C.64)

yields the desired integral representation (C.61).

We note that to obtain the gradient of the integral representation (C.61) we can pass

directly the derivatives inside the integral, since there are no singularities if x ∈ Ωe ∪ Ωi.

Therefore we have that

∇u(x) =

∫

Γ

(
[u](y)∇x

∂G

∂ny

(x,y) −∇xG(x,y)

[
∂u

∂n

]
(y)

)
dγ(y). (C.65)
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C.6.2 Integral equations

To determine the values of the traces that conform the jumps for the transmission prob-

lem (C.44), an integral equation has to be developed. For this purpose we place the source

point x on the boundary Γ and apply the same procedure as before for the integral rep-

resentation (C.61), treating differently in (C.53) only the integrals on Sε. The integrals

on SR still behave well and tend towards zero as R → ∞. The Ball Bε, though, is split

in half into the two pieces Ωe ∩ Bε and Ωi ∩ Bε, which are asymptotically separated by

the tangent of the boundary if Γ is regular. Thus the associated integrals on Sε give rise to

a term −(ue(x) + ui(x))/2 instead of just −u(x) as before. We must notice that in this

case, the integrands associated with the boundary Γ admit an integrable singularity at the

point x. The desired integral equation related with (C.61) is then given by

ue(x) + ui(x)

2
=

∫

Γ

(
[u](y)

∂G

∂ny

(x,y) −G(x,y)

[
∂u

∂n

]
(y)

)
dγ(y), x ∈ Γ. (C.66)

By choosing adequately the boundary condition of the interior problem, and by considering

also the boundary condition of the exterior problem and the jump definitions (C.43), this

integral equation can be expressed in terms of only one unknown function on Γ. Thus,

solving the problem (C.13) is equivalent to solve (C.66) and then replace the obtained

solution in (C.61).

The integral equation holds only when the boundary Γ is regular (e.g., of class C2).

Otherwise, taking the limit ε → 0 can no longer be well-defined and the result is false in

general. In particular, if the boundary Γ has an angular point at x ∈ Γ, then the left-hand

side of the integral equation (C.66) is modified on that point according to the portion of the

angle that remains inside Ωe, in the same way as in (B.61).

Another integral equation can be also derived for the normal derivative of the solu-

tion u on the boundary Γ, by studying the jump properties of the single and double layer

potentials. It is performed in the same manner as for the Laplace equation. If the boundary

is regular at x ∈ Γ, then it holds that

1

2

∂ue
∂n

(x) +
1

2

∂ui
∂n

(x) =

∫

Γ

(
[u](y)

∂2G

∂nx∂ny

(x,y) − ∂G

∂nx

(x,y)

[
∂u

∂n

]
(y)

)
dγ(y). (C.67)

This integral equation is modified correspondingly if x is an angular point.

C.6.3 Integral kernels

In the same manner as for the Laplace equation, the integral kernels G, ∂G/∂ny,

and ∂G/∂nx are weakly singular, and thus integrable, whereas the kernel ∂2G/∂nx∂ny

is not integrable and therefore hypersingular.

The kernel G defined in (C.23) has the same logarithmic singularity as the Laplace

equation, namely

G(x,y) ∼ 1

2π
ln |x − y| as x → y. (C.68)

It fulfills therefore (B.64) for any λ > 0. The kernels ∂G/∂ny and ∂G/∂nx are less

singular along Γ than they appear at first sight, due the regularizing effect of the normal
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derivatives. They are given respectively by

∂G

∂ny

(x,y) =
ik

4
H

(1)
1

(
k|y − x|

)(y − x) · ny

|y − x| , (C.69)

and
∂G

∂nx

(x,y) =
ik

4
H

(1)
1

(
k|x − y|

)(x − y) · nx

|x − y| , (C.70)

and their singularities, as x → y for x,y ∈ Γ, adopt the form

∂G

∂ny

(x,y) ∼ (y − x) · ny

2π|y − x|2 and
∂G

∂nx

(x,y) ∼ (x − y) · nx

2π|x − y|2 . (C.71)

Since the singularities are the same as for the Laplace equation, the estimates (B.70)

and (B.71) continue to hold. Therefore we have that

∂G

∂ny

(x,y) = O(1) and
∂G

∂nx

(x,y) = O(1). (C.72)

The singularities of the kernels ∂G/∂ny and ∂G/∂nx along Γ are thus only apparent and

can be repaired by redefining the value of these kernels at y = x.

The kernel ∂2G/∂nx∂ny, on the other hand, adopts the form

∂2G

∂nx∂ny

(x,y) =
ik

4
H

(1)
1

(
k|x − y|

)
(
−nx · ny

|x − y| − 2

(
(x − y) · nx

)(
(y − x) · ny

)

|x − y|3

)

+
ik2

4
H

(1)
0

(
k|x − y|

)((x − y) · nx

)(
(y − x) · ny

)

|x − y|2 . (C.73)

Its singularity, when x → y for x,y ∈ Γ, expresses itself as

∂2G

∂nx∂ny

(x,y) ∼ − nx · ny

2π|y − x|2 −
(
(x − y) · nx

)(
(y − x) · ny

)

π|y − x|4 . (C.74)

The regularizing effect of the normal derivatives applies only to its second term, but not to

the first. Hence this kernel is hypersingular, with λ = 2, and it holds that

∂2G

∂nx∂ny

(x,y) = O
(

1

|y − x|2
)
. (C.75)

The kernel is no longer integrable and the associated integral operator has to be thus inter-

preted in some appropriate sense as a divergent integral (cf., e.g., Hsiao & Wendland 2008,

Lenoir 2005, Nédélec 2001).

C.6.4 Boundary layer potentials

We regard now the jump properties on the boundary Γ of the boundary layer poten-

tials that have appeared in our calculations. For the development of the integral represen-

tation (C.62) we already made acquaintance with the single and double layer potentials,

which we define now more precisely for x ∈ Ωe ∪ Ωi as the integral operators

Sν(x) =

∫

Γ

G(x,y)ν(y) dγ(y), (C.76)
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Dµ(x) =

∫

Γ

∂G

∂ny

(x,y)µ(y) dγ(y). (C.77)

The integral representation (C.62) can be now stated in terms of the layer potentials as

u = Dµ− Sν. (C.78)

We remark that for any functions ν, µ : Γ → C that are regular enough, the single and

double layer potentials satisfy the Helmholtz equation, namely

(∆ + k2)Sν = 0 in Ωe ∪ Ωi, (C.79)

(∆ + k2)Dµ = 0 in Ωe ∪ Ωi. (C.80)

For the integral equations (C.66) and (C.67), which are defined for x ∈ Γ, we require

the four boundary integral operators:

Sν(x) =

∫

Γ

G(x,y)ν(y) dγ(y), (C.81)

Dµ(x) =

∫

Γ

∂G

∂ny

(x,y)µ(y) dγ(y), (C.82)

D∗ν(x) =

∫

Γ

∂G

∂nx

(x,y)ν(y) dγ(y), (C.83)

Nµ(x) =

∫

Γ

∂2G

∂nx∂ny

(x,y)µ(y) dγ(y). (C.84)

The operator D∗ is in fact the adjoint of the operator D. As we already mentioned, the

kernel of the integral operatorN defined in (C.84) is not integrable, yet we write it formally

as an improper integral. An appropriate sense for this integral will be given below. The

integral equations (C.66) and (C.67) can be now stated in terms of the integral operators as

1

2
(ue + ui) = Dµ− Sν, (C.85)

1

2

(
∂ue
∂n

+
∂ui
∂n

)
= Nµ−D∗ν. (C.86)

These integral equations can be easily derived from the jump properties of the single

and double layer potentials. The single layer potential (C.76) is continuous and its normal

derivative has a jump of size −ν across Γ, i.e.,

Sν|Ωe = Sν = Sν|Ωi
, (C.87)

∂

∂n
Sν|Ωe =

(
−1

2
+D∗

)
ν, (C.88)

∂

∂n
Sν|Ωi

=

(
1

2
+D∗

)
ν. (C.89)
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The double layer potential (C.77), on the other hand, has a jump of size µ across Γ and its

normal derivative is continuous, namely

Dµ|Ωe =

(
1

2
+D

)
µ, (C.90)

Dµ|Ωi
=

(
−1

2
+D

)
µ, (C.91)

∂

∂n
Dµ|Ωe = Nµ =

∂

∂n
Dµ|Ωi

. (C.92)

The integral equation (C.85) is obtained directly either from (C.87) and (C.90), or

from (C.87) and (C.91), by considering the appropriate trace of (C.78) and by defining the

functions µ and ν as in (C.44). These three jump properties are easily proven by regarding

the details of the proof for (C.66).

Similarly, the integral equation (C.86) for the normal derivative is obtained directly

either from (C.88) and (C.92), or from (C.89) and (C.92), by considering the appropriate

trace of the normal derivative of (C.78) and by defining again the functions µ and ν as

in (C.44). The proof of the jump properties (C.88) and (C.89) is the same as for the Laplace

equation, since the same singularities are involved, whereas the proof of (C.92) is similar,

but with some differences, and is therefore replicated below.

a) Continuity of the normal derivative of the double layer potential

Differently as in the proof for the Laplace equation, in this case an additional term ap-

pears for the operatorN , since it is the Helmholtz equation (C.80) that has to be considered

in (B.104) and (B.105), yielding now for a test function ϕ ∈ D(R2) that
〈
∂

∂n
Dµ|Ωe , ϕ

〉
=

∫

Ωe

∇Dµ(x) · ∇ϕ(x) dx − k2

∫

Ωe

Dµ(x)ϕ(x) dx, (C.93)

〈
∂

∂n
Dµ|Ωi

, ϕ

〉
= −

∫

Ωi

∇Dµ(x) · ∇ϕ(x) dx + k2

∫

Ωi

Dµ(x)ϕ(x) dx. (C.94)

From (A.588) and (C.33) we obtain the relation

∂G

∂ny

(x,y) = ny · ∇yG(x,y) = −ny · ∇xG(x,y) = − divx

(
G(x,y)ny

)
. (C.95)

Thus for the double layer potential (C.77) we have that

Dµ(x) = − div

∫

Γ

G(x,y)µ(y)ny dγ(y) = − divS(µny)(x), (C.96)

being its gradient given by

∇Dµ(x) = −∇ div

∫

Γ

G(x,y)µ(y)ny dγ(y). (C.97)

From (A.589) we have that

curlx
(
G(x,y)ny

)
= ∇xG(x,y) × ny. (C.98)
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Hence, by considering (A.597), (C.80), and (C.98) in (C.97), we obtain that

∇Dµ(x) = Curl

∫

Γ

(
ny×∇xG(x,y)

)
µ(y) dγ(y)+k2

∫

Γ

G(x,y)µ(y)ny dγ(y). (C.99)

From (C.33) and (A.659) we have that
∫

Γ

(
ny ×∇xG(x,y)

)
µ(y) dγ(y) = −

∫

Γ

ny ×
(
∇yG(x,y)µ(y)

)
dγ(y)

=

∫

Γ

ny ×
(
G(x,y)∇µ(y)

)
dγ(y), (C.100)

and consequently

∇Dµ(x) = Curl

∫

Γ

G(x,y)
(
ny×∇µ(y)

)
dγ(y)+k2

∫

Γ

G(x,y)µ(y)ny dγ(y). (C.101)

Now, the first expression in (C.93), due (A.608), (A.619), and (C.101), is given by
∫

Ωe

∇Dµ(x) · ∇ϕ(x) dx = −
∫

Γ

∫

Γ

G(x,y)
(
∇µ(y) × ny

)(
∇ϕ(x) × nx

)
dγ(y) dγ(x)

+ k2

∫

Ωe

(∫

Γ

G(x,y)µ(y)ny dγ(y)

)
· ∇ϕ(x) dx. (C.102)

Applying (A.614) on the second term of (C.102) and considering (C.96), yields
∫

Ωe

∇Dµ(x) · ∇ϕ(x) dx = −
∫

Γ

∫

Γ

G(x,y)
(
∇µ(y) × ny

)(
∇ϕ(x) × nx

)
dγ(y) dγ(x)

+ k2

∫

Ωe

Dµ(x)ϕ(x) dx +

∫

Γ

∫

Γ

G(x,y)µ(y)ϕ(x)(ny · nx) dγ(y) dγ(x). (C.103)

By replacing (C.103) in (C.93) we obtain finally that
〈
∂

∂n
Dµ|Ωe , ϕ

〉
= −

∫

Γ

∫

Γ

G(x,y)
(
∇µ(y) × ny

)(
∇ϕ(x) × nx

)
dγ(y) dγ(x)

+ k2

∫

Γ

∫

Γ

G(x,y)µ(y)ϕ(x)(ny · nx) dγ(y) dγ(x). (C.104)

The analogous development for (C.94) yields
〈
∂

∂n
Dµ|Ωi

, ϕ

〉
= −

∫

Γ

∫

Γ

G(x,y)
(
∇µ(y) × ny

)(
∇ϕ(x) × nx

)
dγ(y) dγ(x)

+ k2

∫

Γ

∫

Γ

G(x,y)µ(y)ϕ(x)(ny · nx) dγ(y) dγ(x). (C.105)

This concludes the proof of (C.92), and shows that the integral operator (C.84) is properly

defined in a weak sense for ϕ ∈ D(R2), instead of (B.115), by

〈Nµ(x), ϕ〉 = −
∫

Γ

∫

Γ

G(x,y)
(
∇µ(y) × ny

)(
∇ϕ(x) × nx

)
dγ(y) dγ(x)

+ k2

∫

Γ

∫

Γ

G(x,y)µ(y)ϕ(x)(ny · nx) dγ(y) dγ(x). (C.106)
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C.6.5 Alternatives for integral representations and equations

By taking into account the transmission problem (C.44), its integral representation for-

mula (C.61), and its integral equations (C.66) and (C.67), several particular alternatives

for integral representations and equations of the exterior problem (C.13) can be developed.

The way to perform this is to extend properly the exterior problem towards the interior

domain Ωi, either by specifying explicitly this extension or by defining an associated in-

terior problem, so as to become the desired jump properties across Γ. The extension has

to satisfy the Helmholtz equation (C.1) in Ωi and a boundary condition that corresponds

adequately to the impedance boundary condition (C.3). The obtained system of integral

representations and equations allows finally to solve the exterior problem (C.13), by using

the solution of the integral equation in the integral representation formula.

a) Extension by zero

An extension by zero towards the interior domain Ωi implies that

ui = 0 in Ωi. (C.107)

The jumps over Γ are characterized in this case by

[u] = ue = µ, (C.108)
[
∂u

∂n

]
=
∂ue
∂n

= Zue − fz = Zµ− fz, (C.109)

where µ : Γ → C is a function to be determined.

An integral representation formula of the solution, for x ∈ Ωe ∪ Ωi, is given by

u(x) =

∫

Γ

(
∂G

∂ny

(x,y) − Z(y)G(x,y)

)
µ(y) dγ(y)+

∫

Γ

G(x,y)fz(y) dγ(y). (C.110)

Since
1

2

(
ue(x) + ui(x)

)
=
µ(x)

2
, x ∈ Γ, (C.111)

we obtain, for x ∈ Γ, the Fredholm integral equation of the second kind

µ(x)

2
+

∫

Γ

(
Z(y)G(x,y) − ∂G

∂ny

(x,y)

)
µ(y) dγ(y) =

∫

Γ

G(x,y)fz(y) dγ(y), (C.112)

which has to be solved for the unknown µ. In terms of boundary layer potentials, the

integral representation and the integral equation can be respectively expressed by

u = D(µ) − S(Zµ) + S(fz) in Ωe ∪ Ωi, (C.113)

µ

2
+ S(Zµ) −D(µ) = S(fz) on Γ. (C.114)

Alternatively, since

1

2

(
∂ue
∂n

(x) +
∂ui
∂n

(x)

)
=
Z(x)

2
µ(x) − fz(x)

2
, x ∈ Γ, (C.115)
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we obtain also, for x ∈ Γ, the Fredholm integral equation of the second kind

Z(x)

2
µ(x) +

∫

Γ

(
− ∂2G

∂nx∂ny

(x,y) + Z(y)
∂G

∂nx

(x,y)

)
µ(y) dγ(y)

=
fz(x)

2
+

∫

Γ

∂G

∂nx

(x,y)fz(y) dγ(y), (C.116)

which in terms of boundary layer potentials becomes

Z

2
µ−N(µ) +D∗(Zµ) =

fz
2

+D∗(fz) on Γ. (C.117)

b) Continuous impedance

We associate to (C.13) the interior problem




Find ui : Ωi → C such that

∆ui + k2ui = 0 in Ωi,

−∂ui
∂n

+ Zui = fz on Γ.

(C.118)

The jumps over Γ are characterized in this case by

[u] = ue − ui = µ, (C.119)
[
∂u

∂n

]
=
∂ue
∂n

− ∂ui
∂n

= Z(ue − ui) = Zµ, (C.120)

where µ : Γ → C is a function to be determined. In particular it holds that the jump of the

impedance is zero, namely
[
−∂u
∂n

+ Zu

]
=

(
−∂ue
∂n

+ Zue

)
−
(
−∂ui
∂n

+ Zui

)
= 0. (C.121)

An integral representation formula of the solution, for x ∈ Ωe ∪ Ωi, is given by

u(x) =

∫

Γ

(
∂G

∂ny

(x,y) − Z(y)G(x,y)

)
µ(y) dγ(y). (C.122)

Since

− 1

2

(
∂ue
∂n

(x) +
∂ui
∂n

(x)

)
+
Z(x)

2

(
ue(x) + ui(x)

)
= fz(x), x ∈ Γ, (C.123)

we obtain, for x ∈ Γ, the Fredholm integral equation of the first kind
∫

Γ

(
− ∂2G

∂nx∂ny

(x,y) + Z(y)
∂G

∂nx

(x,y)

)
µ(y) dγ(y)

+ Z(x)

∫

Γ

(
∂G

∂ny

(x,y) − Z(y)G(x,y)

)
µ(y) dγ(y) = fz(x), (C.124)

which has to be solved for the unknown µ. In terms of boundary layer potentials, the

integral representation and the integral equation can be respectively expressed by

u = D(µ) − S(Zµ) in Ωe ∪ Ωi, (C.125)
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−N(µ) +D∗(Zµ) + ZD(µ) − ZS(Zµ) = fz on Γ. (C.126)

We observe that the integral equation (C.126) is self-adjoint.

c) Continuous value

We associate to (C.13) the interior problem




Find ui : Ωi → C such that

∆ui + k2ui = 0 in Ωi,

−∂ue
∂n

+ Zui = fz on Γ.

(C.127)

The jumps over Γ are characterized in this case by

[u] = ue − ui =
1

Z

(
∂ue
∂n

− fz

)
− 1

Z

(
∂ue
∂n

− fz

)
= 0, (C.128)

[
∂u

∂n

]
=
∂ue
∂n

− ∂ui
∂n

= ν, (C.129)

where ν : Γ → C is a function to be determined.

An integral representation formula of the solution, for x ∈ Ωe ∪ Ωi, is given by the

single layer potential

u(x) = −
∫

Γ

G(x,y)ν(y) dγ(y). (C.130)

Since

− 1

2

(
∂ue
∂n

(x) +
∂ui
∂n

(x)

)
+
Z(x)

2

(
ue(x) + ui(x)

)
=
ν(x)

2
+ fz(x), x ∈ Γ, (C.131)

we obtain, for x ∈ Γ, the Fredholm integral equation of the second kind

−ν(x)

2
+

∫

Γ

(
∂G

∂nx

(x,y) − Z(x)G(x,y)

)
ν(y) dγ(y) = fz(x), (C.132)

which has to be solved for the unknown ν. In terms of boundary layer potentials, the

integral representation and the integral equation can be respectively expressed by

u = −S(ν) in Ωe ∪ Ωi, (C.133)

ν

2
+ ZS(ν) −D∗(ν) = −fz on Γ. (C.134)

We observe that the integral equation (C.134) is mutually adjoint with (C.114).

d) Continuous normal derivative

We associate to (C.13) the interior problem




Find ui : Ωi → C such that

∆ui + k2ui = 0 in Ωi,

−∂ui
∂n

+ Zue = fz on Γ.

(C.135)
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The jumps over Γ are characterized in this case by

[u] = ue − ui = µ, (C.136)
[
∂u

∂n

]
=
∂ue
∂n

− ∂ui
∂n

=
(
Zue − fz

)
−
(
Zue − fz

)
= 0, (C.137)

where µ : Γ → C is a function to be determined.

An integral representation formula of the solution, for x ∈ Ωe ∪ Ωi, is given by the

double layer potential

u(x) =

∫

Γ

∂G

∂ny

(x,y)µ(y) dγ(y). (C.138)

Since when x ∈ Γ,

− 1

2

(
∂ue
∂n

(x) +
∂ui
∂n

(x)

)
+
Z(x)

2

(
ue(x) + ui(x)

)
= −Z(x)

2
µ(x) + fz(x), (C.139)

we obtain, for x ∈ Γ, the Fredholm integral equation of the second kind

Z(x)

2
µ(x) +

∫

Γ

(
− ∂2G

∂nx∂ny

(x,y) + Z(x)
∂G

∂ny

(x,y)

)
µ(y) dγ(y) = fz(x), (C.140)

which has to be solved for the unknown µ. In terms of boundary layer potentials, the

integral representation and the integral equation can be respectively expressed by

u = D(µ) in Ωe ∪ Ωi, (C.141)

Z

2
µ−N(µ) + ZD(µ) = fz on Γ. (C.142)

We observe that the integral equation (C.142) is mutually adjoint with (C.117).

C.7 Far field of the solution

The asymptotic behavior at infinity of the solution u of (C.13) is described by the far

field uff . Its expression can be deduced by replacing the far field of the Green’s func-

tion Gff and its derivatives in the integral representation formula (C.61), which yields

uff (x) =

∫

Γ

(
[u](y)

∂Gff

∂ny

(x,y) −Gff (x,y)

[
∂u

∂n

]
(y)

)
dγ(y). (C.143)

By replacing now (C.39) and (C.40) in (C.143), we have that the far field of the solution is

uff (x) =
eik|x|√
|x|

eiπ/4√
8πk

∫

Γ

e−ikx̂·y
(
ikx̂ · ny [u](y) +

[
∂u

∂n

]
(y)

)
dγ(y). (C.144)

The asymptotic behavior of the solution u at infinity is therefore given by

u(x) =
eik|x|√
|x|

{
u∞(x̂) + O

(
1

|x|

)}
, |x| → ∞, (C.145)

uniformly in all directions x̂ on the unit circle, where

u∞(x̂) =
eiπ/4√
8πk

∫

Γ

e−ikx̂·y
(
ikx̂ · ny [u](y) +

[
∂u

∂n

]
(y)

)
dγ(y) (C.146)
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is called the far-field pattern of u. It can be expressed in decibels (dB) by means of the

scattering cross section

Qs(x̂) [dB] = 20 log10

( |u∞(x̂)|
|u0|

)
, (C.147)

where the reference level u0 is typically taken as u0 = uI when the incident field is given

by a plane wave of the form (C.5), i.e., |u0| = 1.

We remark that the far-field behavior (C.145) of the solution is in accordance with the

Sommerfeld radiation condition (C.8), which justifies its choice.

C.8 Exterior circle problem

To understand better the resolution of the direct scattering problem (C.13), we study

now the particular case when the domain Ωe ⊂ R
2 is taken as the exterior of a circle of

radius R > 0. The interior of the circle is then given by Ωi = {x ∈ R
2 : |x| < R} and its

boundary by Γ = ∂Ωe, as shown in Figure C.3. We place the origin at the center of Ωi and

we consider that the unit normal n is taken outwardly oriented of Ωe, i.e., n = −r.

x1

x2
Ωe

n

Ωi

Γ

FIGURE C.3. Exterior of the circle.

The exterior circle problem is then stated as




Find u : Ωe → C such that

∆u+ k2u = 0 in Ωe,

∂u

∂r
+ Zu = fz on Γ,

+ Outgoing radiation condition as |x| → ∞,

(C.148)

where we consider a constant impedance Z ∈ C, a wave number k > 0, and where the

radiation condition is as usual given by (C.8). As the incident field uI we consider a plane

wave in the form of (C.5), in which case the impedance data function fz is given by

fz = −∂uI
∂r

− ZuI on Γ. (C.149)
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Due the particular chosen geometry, the solution u of (C.148) can be easily found

analytically by using the method of variable separation, i.e., by supposing that

u(x) = u(r, θ) = h(r)g(θ), (C.150)

where r ≥ 0 and −π < θ ≤ π are the polar coordinates in R
2. If the Helmholtz equation

in (C.148) is expressed using polar coordinates, then

∆u+ k2u =
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂θ2
+ k2u = 0. (C.151)

By replacing now (C.150) in (C.151) we obtain

h′′(r)g(θ) +
1

r
h′(r)g(θ) +

1

r2
h(r)g′′(θ) + k2h(r)g(θ) = 0. (C.152)

Multiplying by r2, dividing by gh, and rearranging according to each variable yields

r2h
′′(r)

h(r)
+ r

h′(r)

h(r)
+ k2r2 = −g

′′(θ)

g(θ)
. (C.153)

Since both sides in equation (C.153) involve different variables, therefore they are equal to

a constant, denoted for convenience by n2, and we have that

r2h
′′(r)

h(r)
+ r

h′(r)

h(r)
+ k2r2 = −g

′′(θ)

g(θ)
= n2. (C.154)

From (C.154) we obtain the two ordinary differential equations

g′′(θ) + n2g(θ) = 0, (C.155)

r2h′′(r) + rh′(r) + (k2r2 − n2)h(r) = 0. (C.156)

The solutions for (C.155) have the general form

g(θ) = an cos(nθ) + bn sin(nθ), n ∈ N0, (C.157)

where an, bn ∈ C are arbitrary constants. The requirement that n ∈ N0 stems from the

periodicity condition

g(θ) = g(θ + 2πn) ∀n ∈ Z, (C.158)

where we segregate positive and negative values for n. By considering for (C.156) the

change of variables z = kr and expressing ψ(z) = h(r), we obtain the Bessel differential

equation of order n, namely

z2ψ′′(z) + zψ′(z) + (z2 − n2)ψ(z) = 0. (C.159)

The independent solutions of (C.159) are H
(1)
n (z) and H

(2)
n (z), the Hankel functions of

order n, and therefore the solutions of (C.156) have the general form

h(r) = cnH
(1)
n (kr) + dnH

(2)
n (kr), n ≥ 0, (C.160)

where cn, dn ∈ C are again arbitrary constants. The general solution for the Helmholtz

equation considers the linear combination of all the solutions in the form of (C.150), namely

u(r, θ) =
∞∑

n=0

(
cnH

(1)
n (kr) + dnH

(2)
n (kr)

)(
an cos(nθ) + bn sin(nθ)

)
. (C.161)
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The radiation condition (C.8) implies that

dn = 0, n ∈ N0. (C.162)

Thus the general solution (C.161) turns into

u(r, θ) =
∞∑

n=0

H(1)
n (kr)

(
ane

inθ + bne
−inθ), (C.163)

where all the undetermined constants have been merged into an and bn, due their arbitrari-

ness. Due the recurrence relation (A.121), the radial derivative of (C.163) is given by

∂u

∂r
(r, θ) =

∞∑

n=0

(n
r
H(1)
n (kr) − kH

(1)
n+1(kr)

) (
ane

inθ + bne
−inθ). (C.164)

The constants an and bn in (C.163) are determined through the impedance boundary condi-

tion on Γ. For this purpose, we expand the impedance data function fz as a Fourier series:

fz(θ) =
∞∑

n=−∞
fne

inθ, −π < θ ≤ π, (C.165)

where

fn =
1

2π

∫ π

−π
fz(θ)e

−inθ dθ, n ∈ Z. (C.166)

In particular, for a plane wave in the form of (C.5) we have the Jacobi-Anger expansion

uI(x) = eik·x = e−ikr cos(θ−θP) =
∞∑

n=−∞
inJn(kr)e

in(θ−θP), (C.167)

where Jn is the Bessel function of order n, where θP = θI + π is the propagation angle of

the plane wave, and where

k =

(
k1

k2

)
= k

(
cos θP
sin θP

)
, x =

(
x1

x2

)
= r

(
cos θ

sin θ

)
. (C.168)

For a plane wave, the impedance data function (C.149) can be thus expressed as

fz(θ) = −
∞∑

n=−∞
in
((
Z +

n

R

)
Jn(kR) − kJn+1(kR)

)
ein(θ−θP), (C.169)

which implies that

fn = −in
((
Z +

n

R

)
Jn(kR) − kJn+1(kR)

)
e−inθP , n ∈ Z. (C.170)

The impedance boundary condition takes therefore the form

∞∑

n=0

((
Z +

n

R

)
H(1)
n (kR) − kH

(1)
n+1(kR)

) (
ane

inθ + bne
−inθ) =

∞∑

n=−∞
fne

inθ. (C.171)

We observe that the constants an and bn can be uniquely determined only if
(
Z +

n

R

)
H(1)
n (kR) − kH

(1)
n+1(kR) 6= 0 for n ∈ N0. (C.172)
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If this condition is not fulfilled, then the solution is no longer unique. The values k, Z ∈ C

for which this occurs form a countable set. In particular, for a fixed k, the impedances Z

which do not fulfill (C.172) can be explicitly characterized by

Z = k
H

(1)
n+1(kR)

H
(1)
n (kR)

− n

R
for n ∈ N0. (C.173)

The wave numbers k which do not fulfill (C.172), for a fixed Z, can only be characterized

implicitly through the relation
(
Z +

n

R

)
H(1)
n (kR) − kH

(1)
n+1(kR) = 0 for n ∈ N0. (C.174)

If we suppose now that (C.172) takes place, then

a0 = b0 =
f0

2ZH
(1)
0 (kR) − 2kH

(1)
1 (kR)

, (C.175)

an =
Rfn

(ZR + n)H
(1)
n (kR) − kRH

(1)
n+1(kR)

(n ≥ 1), (C.176)

bn =
Rf−n

(ZR + n)H
(1)
n (kR) − kRH

(1)
n+1(kR)

(n ≥ 1). (C.177)

In the case of a plane wave we consider for fn and f−n the expression (C.170). The unique

solution for the exterior circle problem (C.148) is then given by

u(r, θ) =
H

(1)
0 (kr)f0

ZH
(1)
0 (kR) − kH

(1)
1 (kR)

+
∞∑

n=1

RH
(1)
n (kr)

(
fne

inθ + f−ne
−inθ)

(ZR + n)H
(1)
n (kR) − kRH

(1)
n+1(kR)

. (C.178)

We remark that there is no need here for an additional compatibility condition like (B.191).

If the condition (C.172) does not hold for some particular m ∈ N0, then the solution u

is not unique. The constants am and bm are then no longer defined by (C.176) and (C.176),

and can be chosen in an arbitrary manner. For the existence of a solution in this case,

however, we require also the orthogonality conditions fm = f−m = 0. Instead of (C.178),

the solution of (C.148) is now given by the infinite family of functions

u(r, θ) =
∞∑

n=1

RH
(1)
n (kr)

(
fne

inθ + f−ne
−inθ)

(ZR + n)H
(1)
n (kR) − kRH

(1)
n+1(kR)

+ αH
(1)
0 (kr) (m = 0), (C.179)

u(r, θ) =
H

(1)
0 (kr)f0

ZH
(1)
0 (kR) − kH

(1)
1 (kR)

+
∑

1≤n6=m

RH
(1)
n (kr)

(
fne

inθ + f−ne
−inθ)

(ZR + n)H
(1)
n (kR) − kRH

(1)
n+1(kR)

+H(1)
m (kr)

(
αeimθ + βe−imθ

)
(m ≥ 1), (C.180)

where α, β ∈ C are arbitrary and where their associated terms have the form of volume

waves, i.e., waves that propagate inside Ωe. The exterior circle problem (C.148) admits

thus a unique solution u, except on a countable set of values for k and Z which do not

fulfill the condition (C.172). And even in this last case there exists a solution, although

not unique, if two orthogonality conditions are additionally satisfied. This behavior for
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the existence and uniqueness of the solution is typical of the Fredholm alternative, which

applies when solving problems that involve compact perturbations of invertible operators.

C.9 Existence and uniqueness

C.9.1 Function spaces

To state a precise mathematical formulation of the herein treated problems, we have to

define properly the involved function spaces. For the associated interior problems defined

on the bounded set Ωi we use the classical Sobolev space (vid. Section A.4)

H1(Ωi) =
{
v : v ∈ L2(Ωi), ∇v ∈ L2(Ωi)

2
}
, (C.181)

which is a Hilbert space and has the norm

‖v‖H1(Ωi) =
(
‖v‖2

L2(Ωi)
+ ‖∇v‖2

L2(Ωi)2

)1/2

. (C.182)

For the exterior problem defined on the unbounded domain Ωe, on the other hand, we

introduce the weighted Sobolev space (cf., e.g., Nédélec 2001)

W 1(Ωe) =

{
v :

v√
1 + r2 ln(2 + r2)

∈ L2(Ωe),

∇v√
1 + r2 ln(2 + r2)

∈ L2(Ωe)
2,
∂v

∂r
− ikv ∈ L2(Ωe)

}
, (C.183)

where r = |x|. If W 1(Ωe) is provided with the norm

‖v‖W 1(Ωe) =

(∥∥∥∥
v√

1 + r2 ln(2 + r2)

∥∥∥∥
2

L2(Ωe)

+

∥∥∥∥
∇v√

1 + r2 ln(2 + r2)

∥∥∥∥
2

L2(Ωe)2

+

∥∥∥∥
∂v

∂r
− ikv

∥∥∥∥
2

L2(Ωe)

)1/2

, (C.184)

then it becomes a Hilbert space. The restriction to any bounded open set B ⊂ Ωe of the

functions of W 1(Ωe) belongs to H1(B), i.e., we have the inclusion W 1(Ωe) ⊂ H1
loc(Ωe),

and the functions in these two spaces differ only by their behavior at infinity. We remark

that the spaceW 1(Ωe) contains the constant functions and all the functions ofH1
loc(Ωe) that

satisfy the radiation condition (C.8).

When dealing with Sobolev spaces, even a strong Lipschitz boundary Γ ∈ C0,1 is

admissible. In this case, and due the trace theorem (A.531), if v ∈ H1(Ωi) or v ∈ W 1(Ωe),

then the trace of v fulfills

γ0v = v|Γ ∈ H1/2(Γ). (C.185)

Moreover, the trace of the normal derivative can be also defined, and it holds that

γ1v =
∂v

∂n
|Γ ∈ H−1/2(Γ). (C.186)
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C.9.2 Regularity of the integral operators

The boundary integral operators (C.81), (C.82), (C.83), and (C.84) can be character-

ized as linear and continuous applications such that

S : H−1/2+s(Γ) −→ H1/2+s(Γ), D : H1/2+s(Γ) −→ H3/2+s(Γ), (C.187)

D∗ : H−1/2+s(Γ) −→ H1/2+s(Γ), N : H1/2+s(Γ) −→ H−1/2+s(Γ). (C.188)

This result holds for any s ∈ R if the boundary Γ is of class C∞, which can be derived

from the theory of singular integral operators with pseudo-homogeneous kernels (cf., e.g.,

Nédélec 2001). Due the compact injection (A.554), it holds also that the operators

D : H1/2+s(Γ) −→ H1/2+s(Γ) and D∗ : H−1/2+s(Γ) −→ H−1/2+s(Γ) (C.189)

are compact. For a strong Lipschitz boundary Γ ∈ C0,1, on the other hand, these results

hold only when |s| < 1 (cf. Costabel 1988). In the case of more regular boundaries, the

range for s increases, but remains finite. For our purposes we use s = 0, namely

S : H−1/2(Γ) −→ H1/2(Γ), D : H1/2(Γ) −→ H1/2(Γ), (C.190)

D∗ : H−1/2(Γ) −→ H−1/2(Γ), N : H1/2(Γ) −→ H−1/2(Γ), (C.191)

which are all linear and continuous operators, and where the operators D and D∗ are com-

pact. Similarly, we can characterize the single and double layer potentials defined respec-

tively in (C.76) and (C.77) as linear and continuous integral operators such that

S : H−1/2(Γ) −→ W 1(Ωe ∪ Ωi) and D : H1/2(Γ) −→ W 1(Ωe ∪ Ωi). (C.192)

C.9.3 Application to the integral equations

It is not difficult to see that if µ ∈ H1/2(Γ) and ν ∈ H−1/2(Γ) are given, then the trans-

mission problem (C.44) admits a unique solution u ∈ W 1(Ωe∪Ωi), as a consequence of the

integral representation formula (C.62). For the direct scattering problem (C.13), though,

this is not always the case, as was appreciated in the exterior circle problem (C.148).

Nonetheless, if the Fredholm alternative applies, then we know that the existence and

uniqueness of the problem can be ensured almost always, i.e., except on a countable set

of values for the wave number and for the impedance.

We consider an impedanceZ ∈ L∞(Γ) and an impedance data function fz ∈ H−1/2(Γ).

In both cases all the continuous functions on Γ are included.

a) First extension by zero

Let us consider the first integral equation of the extension-by-zero alternative (C.112),

which is given in terms of boundary layer potentials, for µ ∈ H1/2(Γ), by

µ

2
+ S(Zµ) −D(µ) = S(fz) in H1/2(Γ). (C.193)

Due the imbedding properties of Sobolev spaces and in the same way as for the full-plane

impedance Laplace problem, it holds that the left-hand side of the integral equation corre-

sponds to an identity and two compact operators, and thus Fredholm’s alternative applies.
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b) Second extension by zero

The second integral equation of the extension-by-zero alternative (C.116) is given in

terms of boundary layer potentials, for µ ∈ H1/2(Γ), by

Z

2
µ−N(µ) +D∗(Zµ) =

fz
2

+D∗(fz) in H−1/2(Γ). (C.194)

The operator N plays the role of the identity and the other terms on the left-hand side are

compact, thus Fredholm’s alternative holds.

c) Continuous impedance

The integral equation of the continuous-impedance alternative (C.124) is given in terms

of boundary layer potentials, for µ ∈ H1/2(Γ), by

−N(µ) +D∗(Zµ) + ZD(µ) − ZS(Zµ) = fz in H−1/2(Γ). (C.195)

Again, the operatorN plays the role of the identity and the remaining terms on the left-hand

side are compact, thus Fredholm’s alternative applies.

d) Continuous value

The integral equation of the continuous-value alternative (C.132) is given in terms of

boundary layer potentials, for ν ∈ H−1/2(Γ), by

ν

2
+ ZS(ν) −D∗(ν) = −fz in H−1/2(Γ). (C.196)

On the left-hand side we have an identity operator and the remaining operators are compact,

thus Fredholm’s alternative holds.

e) Continuous normal derivative

The integral equation of the continuous-normal-derivative alternative (C.140) is given

in terms of boundary layer potentials, for µ ∈ H1/2(Γ), by

Z

2
µ−N(µ) + ZD(µ) = fz in H−1/2(Γ). (C.197)

As before, Fredholm’s alternative again applies, since on the left-hand side we have the

operator N and two compact operators.

C.9.4 Consequences of Fredholm’s alternative

Since the Fredholm alternative applies to each integral equation, therefore it applies

also to the exterior differential problem (C.13) due the integral representation formula. The

existence of the exterior problem’s solution is thus determined by its uniqueness, and the

wave numbers k ∈ C and impedances Z ∈ C for which the uniqueness is lost constitute a

countable set, which we call respectively wave number spectrum and impedance spectrum

of the exterior problem and denote them by σk and σZ . The spectrum σk considers a fixed Z

and, conversely, the spectrum σZ considers a fixed k. The existence and uniqueness of the

solution is therefore ensured almost everywhere. The same holds obviously for the solution

of the integral equation, whose wave number spectrum and impedance spectrum we denote

respectively by ςk and ςZ . Since each integral equation is derived from the exterior problem,
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it holds that σk ⊂ ςk and σZ ⊂ ςZ . The converse, though, is not necessarily true and

depends on each particular integral equation. In any way, the sets ςk \ σk and ςZ \ σZ are at

most countable.

Fredholm’s alternative applies as much to the integral equation itself as to its adjoint

counterpart, and equally to their homogeneous versions. Moreover, each integral equa-

tion solves at the same time an exterior and an interior differential problem. The loss of

uniqueness of the integral equation’s solution appears when the wave number k and the

impedance Z are eigenvalues of some associated interior problem, either of the homoge-

neous integral equation or of its adjoint counterpart. Such a wave number k or impedance Z

are contained respectively in ςk or ςZ .

The integral equation (C.114) is associated with the extension by zero (C.107), for

which no eigenvalues appear. Nevertheless, its adjoint integral equation (C.134) of the

continuous value is associated with the interior problem (C.127), which has a countable

amount of eigenvalues k, but behaves otherwise well for all Z 6= 0.

The integral equation (C.117) is also associated with the extension by zero (C.107),

for which no eigenvalues appear. Nonetheless, its adjoint integral equation (C.142) of the

continuous normal derivative is associated with the interior problem (C.135), which has a

countable amount of eigenvalues k, but behaves well for all Z, without restriction.

The integral equation (C.126) of the continuous impedance is self-adjoint and is asso-

ciated with the interior problem (C.118), which has a countable quantity of eigenvalues k

and Z.

Let us consider now the transmission problem generated by the homogeneous exterior

problem 



Find ue : Ωe → C such that

∆ue + k2ue = 0 in Ωe,

−∂ue
∂n

+ Zue = 0 on Γ,

+ Outgoing radiation condition as |x| → ∞,

(C.198)

and the associated homogeneous interior problem




Find ui : Ωi → C such that

∆ui + k2ui = 0 in Ωi,

∂ui
∂n

+ Zui = 0 on Γ,

(C.199)

where the radiation condition is as usual given by (C.8), and where the unit normal n

always points outwards of Ωe.

As for the Laplace equation, it holds again that the integral equations for this trans-

mission problem have either the same left-hand side or are mutually adjoint to all other

possible alternatives of integral equations that can be built for the exterior problem (C.13),

and in particular to all the alternatives that were mentioned in the last subsection. The
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eigenvalues k and Z of the homogeneous interior problem (C.199) are thus also contained

respectively in ςk and ςZ .

We remark that additional alternatives for integral representations and equations based

on non-homogeneous versions of the problem (C.199) can be also derived for the exterior

impedance problem (cf. Ha-Duong 1987).

The determination of the wave number spectrum σk and the impedance spectrum σZ
of the exterior problem (C.13) is not so easy, but can be achieved for simple geometries

where an analytic solution is known.

In conclusion, the exterior problem (C.13) admits a unique solution u if k /∈ σk, and

Z /∈ σZ , and each integral equation admits a unique solution, either µ or ν, if k /∈ ςk
and Z /∈ ςZ .

C.10 Dissipative problem

The dissipative problem considers waves that lose their amplitude as they travel through

the medium. These waves dissipate their energy as they propagate and are modeled by a

complex wave number k ∈ C whose imaginary part is strictly positive, i.e., Im{k} > 0.

This choice ensures that the Green’s function (C.23) decreases exponentially at infinity.

Due the dissipative nature of the medium, it is no longer suited to take plane waves in the

form of (C.5) as the incident field uI . Instead, we have to take a source of volume waves

at a finite distance from the obstacle. For example, we can consider a point source located

at z ∈ Ωe, in which case the incident field is given, up to a multiplicative constant, by

uI(x) = G(x, z) = − i

4
H

(1)
0

(
k|x − z|

)
. (C.200)

This incident field uI satisfies the Helmholtz equation with a source term in the right-hand

side, namely

∆uI + k2uI = δz in D′(Ωe), (C.201)

which holds also for the total field uT but not for the scattered field u, in which case the

Helmholtz equation remains homogeneous. For a general source distribution gs, whose

support is contained in Ωe, the incident field can be expressed by

uI(x) = G(x, z) ∗ gs(z) =

∫

Ωe

G(x, z) gs(z) dz. (C.202)

This incident field uI satisfies now

∆uI + k2uI = gs in D′(Ωe), (C.203)

which holds again also for the total field uT but not for the scattered field u.

The dissipative nature of the medium implies also that a radiation condition like (C.8) is

no longer required. The ingoing waves are readily ruled out, since they verify Im{k} < 0.
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The dissipative scattering problem can be therefore stated as




Find u : Ωe → C such that

∆u+ k2u = 0 in Ωe,

−∂u
∂n

+ Zu = fz on Γ,

(C.204)

where the impedance data function fz is again given by

fz =
∂uI
∂n

− ZuI on Γ. (C.205)

The solution is now such that u ∈ H1(Ωe) (cf., e.g., Hazard & Lenoir 1998, Lenoir 2005),

therefore, instead of (C.55) and (C.56), we obtain that
∣∣∣∣
∫

SR

(
u(y)

∂G

∂ry
(x,y) −G(x,y)

∂u

∂r
(y)

)
dγ(y)

∣∣∣∣ ≤
C√
R
e−RIm{k}. (C.206)

It is not difficult to see that all the other developments performed for the non-dissipative

case are also valid when considering dissipation. The only difference is that now a complex

wave number k such that Im{k} > 0 has to be taken everywhere into account and that the

outgoing radiation condition is no longer needed.

C.11 Variational formulation

To solve a particular integral equation we convert it to its variational or weak formu-

lation, i.e., we solve it with respect to certain test functions in a bilinear (or sesquilinear)

form. Basically, the integral equation is multiplied by the (conjugated) test function and

then the equation is integrated over the boundary of the domain. The test functions are

taken in the same function space as the solution of the integral equation.

a) First extension by zero

The variational formulation for the first integral equation (C.193) of the extension-by-

zero alternative searches µ ∈ H1/2(Γ) such that ∀ϕ ∈ H1/2(Γ)
〈µ

2
+ S(Zµ) −D(µ), ϕ

〉
=
〈
S(fz), ϕ

〉
. (C.207)

b) Second extension by zero

The variational formulation for the second integral equation (C.194) of the extension-

by-zero alternative searches µ ∈ H1/2(Γ) such that ∀ϕ ∈ H1/2(Γ)
〈
Z

2
µ−N(µ) +D∗(Zµ), ϕ

〉
=

〈
fz
2

+D∗(fz), ϕ

〉
. (C.208)

c) Continuous impedance

The variational formulation for the integral equation (C.195) of the alternative of the

continuous-impedance searches µ ∈ H1/2(Γ) such that ∀ϕ ∈ H1/2(Γ)
〈
−N(µ) +D∗(Zµ) + ZD(µ) − ZS(Zµ), ϕ

〉
=
〈
fz, ϕ

〉
. (C.209)
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d) Continuous value

The variational formulation for the integral equation (C.196) of the continuous-value

alternative searches ν ∈ H−1/2(Γ) such that ∀ψ ∈ H−1/2(Γ)
〈ν

2
+ ZS(ν) −D∗(ν), ψ

〉
=
〈
− fz, ψ

〉
. (C.210)

e) Continuous normal derivative

The variational formulation for the integral equation (C.197) of the continuous-normal-

derivative alternative searches µ ∈ H1/2(Γ) such that ∀ϕ ∈ H1/2(Γ)
〈
Z

2
µ−N(µ) + ZD(µ), ϕ

〉
=
〈
fz, ϕ

〉
. (C.211)

C.12 Numerical discretization

C.12.1 Discretized function spaces

The exterior problem (C.13) is solved numerically with the boundary element method

by employing a Galerkin scheme on the variational formulation of an integral equation. We

use on the boundary curve Γ Lagrange finite elements of type either P1 or P0. As shown

in Figure C.4, the curve Γ is approximated by the discretized curve Γh, composed by I

rectilinear segments Tj , sequentially ordered in clockwise direction for 1 ≤ j ≤ I , such

that their length |Tj| is less or equal than h, and with their endpoints on top of Γ.

Tj−1

Γh

Tj

n

Γ

Tj+1

FIGURE C.4. Curve Γh, discretization of Γ.

The function space H1/2(Γ) is approximated using the conformal space of continuous

piecewise linear polynomials with complex coefficients

Qh =
{
ϕh ∈ C0(Γh) : ϕh|Tj

∈ P1(C), 1 ≤ j ≤ I
}
. (C.212)

The space Qh has a finite dimension I , and we describe it using the standard base functions

for finite elements of type P1, which we denote by {χj}Ij=1 as in (B.261) and where rj
and rj+1 represent the endpoints of segment Tj .

The function space H−1/2(Γ), on the other hand, is approximated using the conformal

space of piecewise constant polynomials with complex coefficients

Ph =
{
ψh : Γh → C | ψh|Tj

∈ P0(C), 1 ≤ j ≤ I
}
. (C.213)

455



The space Ph has a finite dimension I , and is described using the standard base functions

for finite elements of type P0, which we denote by {κj}Ij=1 as in (B.263).

In virtue of this discretization, any function ϕh ∈ Qh or ψh ∈ Ph can be expressed as

a linear combination of the elements of the base, namely

ϕh(x) =
I∑

j=1

ϕj χj(x) and ψh(x) =
I∑

j=1

ψj κj(x) for x ∈ Γh, (C.214)

where ϕj, ψj ∈ C for 1 ≤ j ≤ I . The solutions µ ∈ H1/2(Γ) and ν ∈ H−1/2(Γ) of the

variational formulations can be therefore approximated respectively by

µh(x) =
I∑

j=1

µj χj(x) and νh(x) =
I∑

j=1

νj κj(x) for x ∈ Γh, (C.215)

where µj, νj ∈ C for 1 ≤ j ≤ I . The function fz can be also approximated by

fhz (x) =
I∑

j=1

fj χj(x) for x ∈ Γh, with fj = fz(rj), (C.216)

or

fhz (x) =
I∑

j=1

fj κj(x) for x ∈ Γh, with fj =
fz(rj) + fz(rj+1)

2
, (C.217)

depending on whether the original integral equation is stated in H1/2(Γ) or in H−1/2(Γ).

C.12.2 Discretized integral equations

a) First extension by zero

To see how the boundary element method operates, we apply it to the first integral equa-

tion of the extension-by-zero alternative, i.e., to the variational formulation (C.207). We

characterize all the discrete approximations by the index h, including also the impedance

and the boundary layer potentials. The numerical approximation of (C.207) leads to the

discretized problem that searches µh ∈ Qh such that ∀ϕh ∈ Qh〈µh
2

+ Sh(Zhµh) −Dh(µh), ϕh

〉
=
〈
Sh(f

h
z ), ϕh

〉
. (C.218)

Considering the decomposition of µh in terms of the base {χj} and taking as test functions

the same base functions, ϕh = χi for 1 ≤ i ≤ I , yields the discrete linear system

I∑

j=1

µj

(
1

2
〈χj, χi〉 + 〈Sh(Zhχj), χi〉 − 〈Dh(χj), χi〉

)
=

I∑

j=1

fj 〈Sh(χj), χi〉. (C.219)

This constitutes a system of linear equations that can be expressed as a linear matrix system:
{

Find µ ∈ C
I such that

Mµ = b.
(C.220)
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The elements mij of the matrix M are given by

mij =
1

2
〈χj, χi〉 + 〈Sh(Zhχj), χi〉 − 〈Dh(χj), χi〉 for 1 ≤ i, j ≤ I, (C.221)

and the elements bi of the vector b by

bi =
〈
Sh(f

h
z ), χi

〉
=

I∑

j=1

fj 〈Sh(χj), χi〉 for 1 ≤ i ≤ I. (C.222)

The discretized solution uh, which approximates u, is finally obtained by discretizing

the integral representation formula (C.110) according to

uh = Dh(µh) − Sh(Zhµh) + Sh(fhz ), (C.223)

which, more specifically, can be expressed as

uh =
I∑

j=1

µj
(
Dh(χj) − Sh(Zhχj)

)
+

I∑

j=1

fj Sh(χj). (C.224)

By proceeding in the same way, the discretization of all the other alternatives of inte-

gral equations can be also expressed as a linear matrix system like (C.220). The resulting

matrix M is in general complex, full, non-symmetric, and with dimensions I × I . The

right-hand side vector b is complex and of size I . The boundary element calculations re-

quired to compute numerically the elements of M and b have to be performed carefully,

since the integrals that appear become singular when the involved segments are adjacent or

coincident, due the singularity of the Green’s function at its source point.

b) Second extension by zero

In the case of the second integral equation of the extension-by-zero alternative, i.e., of

the variational formulation (C.208), the elements mij that constitute the matrix M of the

linear system (C.220) are given by

mij =
1

2
〈Zhχj, χi〉 − 〈Nh(χj), χi〉 + 〈D∗

h(Zhχj), χi〉 for 1 ≤ i, j ≤ I, (C.225)

whereas the elements bi of the vector b are expressed as

bi =
I∑

j=1

fj

(
1

2
〈χj, χi〉 + 〈D∗

h(Zhχj), χi〉
)

for 1 ≤ i ≤ I. (C.226)

The discretized solution uh is again computed by (C.224).

c) Continuous impedance

In the case of the continuous-impedance alternative, i.e., of the variational formula-

tion (C.209), the elements mij that constitute the matrix M of the linear system (C.220)

are given, for 1 ≤ i, j ≤ I , by

mij = −〈Nh(χj), χi〉+ 〈D∗
h(Zhχj), χi〉+ 〈ZhDh(χj), χi〉 − 〈ZhSh(Zhχj), χi〉, (C.227)

457



whereas the elements bi of the vector b are expressed as

bi =
I∑

j=1

fj 〈χj, χi〉 for 1 ≤ i ≤ I. (C.228)

It can be observed that for this particular alternative the matrix M turns out to be symmet-

ric, since the integral equation is self-adjoint. The discretized solution uh, due (C.125), is

then computed by

uh =
I∑

j=1

µj
(
Dh(χj) − Sh(Zhχj)

)
. (C.229)

d) Continuous value

In the case of the continuous-value alternative, that is, of the variational formula-

tion (C.210), the elements mij that constitute the matrix M , now of the linear system
{

Find ν ∈ C
I such that

Mν = b,
(C.230)

are given by

mij =
1

2
〈κj, κi〉 + 〈ZhSh(κj), κi〉 − 〈D∗

h(κj), κi〉 for 1 ≤ i, j ≤ I, (C.231)

whereas the elements bi of the vector b are expressed as

bi = −
I∑

j=1

fj 〈κj, κi〉 for 1 ≤ i ≤ I. (C.232)

The discretized solution uh, due (B.150), is then computed by

uh = −
I∑

j=1

νj Sh(κj). (C.233)

e) Continuous normal derivative

In the case of the continuous-normal-derivative alternative, i.e., of the variational for-

mulation (C.211), the elementsmij that conform the matrix M of the linear system (C.220)

are given by

mij =
1

2
〈Zhχj, χi〉 − 〈Nh(χj), χi〉 + 〈ZhDh(χj), χi〉 for 1 ≤ i, j ≤ I, (C.234)

whereas the elements bi of the vector b are expressed as

bi =
I∑

j=1

fj 〈χj, χi〉 for 1 ≤ i ≤ I. (C.235)

The discretized solution uh, due (C.141), is then computed by

uh =
I∑

j=1

µj Dh(χj). (C.236)
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C.13 Boundary element calculations

The boundary element calculations build the elements of the matrix M resulting from

the discretization of the integral equation, i.e., from (C.220) or (C.230). They permit thus to

compute numerically expressions like (C.221). To evaluate the appearing singular integrals,

we use the semi-numerical methods described in the report of Bendali & Devys (1986).

We use the same notation as in Section B.12, and the required boundary element inte-

grals, for a, b ∈ {0, 1}, are again

ZAa,b =

∫

K

∫

L

(
s

|K|

)a(
t

|L|

)b
G(x,y) dL(y) dK(x), (C.237)

ZBa,b =

∫

K

∫

L

(
s

|K|

)a(
t

|L|

)b
∂G

∂ny

(x,y) dL(y) dK(x). (C.238)

All the integrals that stem from the numerical discretization can be expressed in terms of

these two basic boundary element integrals. The impedance is again discretized as a piece-

wise constant function Zh, which on each segment Tj adopts a constant value Zj ∈ C. The

integrals of interest are the same as for the Laplace equation, except for the hypersingular

term, which is now given by

〈Nh(χj), χi〉 = −
∫

Γh

∫

Γh

G(x,y)
(
∇χj(y) × ny

)(
∇χi(x) × nx

)
dγ(y) dγ(x)

+ k2

∫

Γh

∫

Γh

G(x,y)χj(y)χi(x)(ny · nx) dγ(y) dγ(x)

= −ZAi−1,j−1
0,0

(τ j−1 × nj−1)

|Tj−1|
(τ i−1 × ni−1)

|Ti−1|
+ ZAi,j−1

0,0

(τ j−1 × nj−1)

|Tj−1|
(τ i × ni)

|Ti|

+ ZAi−1,j
0,0

(τ j × nj)

|Tj|
(τ i−1 × ni−1)

|Ti−1|
− ZAi,j0,0

(τ j × nj)

|Tj|
(τ i × ni)

|Ti|
+ k2

(
ZAi−1,j−1

1,1 (nj−1 · ni−1) +
(
ZAi,j0,0 − ZAi,j0,1 − ZAi,j1,0 + ZAi,j1,1

)
(nj · ni)

+
(
ZAi,j−1

0,1 − ZAi,j−1
1,1

)
(nj−1 · ni) +

(
ZAi−1,j

1,0 − ZAi−1,j
1,1

)
(nj · ni−1)

)
. (C.239)

To compute the boundary element integrals (C.237) and (C.238), we isolate the singu-

lar part of the Green’s function G according to

G(R) ≈ ln(R)

2π
+ φ(R) if |kR| ≤ 3

4
, (C.240)

where φ(R) is a non-singular function, which due (A.99) and (A.100) is given by

φ(R) ≈ ln(k)

2π
+ J0(kR)

{
− i

4
+
γ − ln(2)

2π

}

+
1

2π

{(
kR

2

)2

− 3

8

(
kR

2

)4

+
11

216

(
kR

2

)6

− 25

6912

(
kR

2

)8
}
. (C.241)
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For the derivative G′(R) we have similarly that

G′(R) ≈ 1

2πR
+ φ′(R) if |kR| ≤ 3

4
, (C.242)

where φ′(R) is also a non-singular function, which due (A.101) and (A.102) is given by

φ′(R) ≈− k

2π
J1(kR)

{
−iπ

2
+ ln

(
kR

2

)
+ γ

}

− k

4π

{
−kR

2
+

5

4

(
kR

2

)3

− 5

18

(
kR

2

)5

+
47

1728

(
kR

2

)7
}
. (C.243)

We observe that
∂G

∂ny

(x,y) = G′(R)
R

R
· ny. (C.244)

It is not difficult to see that the singular part corresponds to the Green’s function of the

Laplace equation, and therefore the associated integrals are computed in the same way,

if the corresponding segments are close enough. Otherwise, and in the same way for the

integrals associated with φ(R) and φ′(R), which are non-singular, a two-point Gauss quad-

rature formula is used. All the other computations are performed in the same manner as in

Section B.12 for the Laplace equation.

C.14 Benchmark problem

As benchmark problem we consider the exterior circle problem (C.148), whose domain

is shown in Figure C.3. The exact solution of this problem is stated in (C.178), and the idea

is to retrieve it numerically with the integral equation techniques and the boundary element

method described throughout this chapter.

For the computational implementation and the numerical resolution of the bench-

mark problem, we consider only the first integral equation of the extension-by-zero al-

ternative (C.112), which is given in terms of boundary layer potentials by (C.193). The

linear system (C.220) resulting from the discretization (C.218) of its variational formula-

tion (C.207) is solved computationally with finite boundary elements of type P1 by using

subroutines programmed in Fortran 90, by generating the mesh Γh of the boundary with the

free software Gmsh 2.4, and by representing graphically the results in Matlab 7.5 (R2007b).

We consider a radiusR = 1, a wave number k = 3, and a constant impedance Z = 0.8.

The discretized boundary curve Γh consists of I = 120 segments and has a discretization

step h = 0.05235, being

h = max
1≤j≤I

|Tj|. (C.245)

We observe that h ≈ 2π/I . As incident field uI we consider a plane wave in the form

of (C.5) with a wave propagation vector k = (1, 0), i.e., such that the angle of incidence

in (C.6) is given by θI = π.
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From (C.178), we can approximate the exact solution as the truncated series

u(r, θ) =
H

(1)
0 (kr)f0

ZH
(1)
0 (kR) − kH

(1)
1 (kR)

+
40∑

n=1

RH
(1)
n (kr)

(
fne

inθ + f−ne
−inθ)

(ZR + n)H
(1)
n (kR) − kRH

(1)
n+1(kR)

, (C.246)

being its trace on the boundary of the circle approximated by

µ(θ) =
H

(1)
0 (kR)f0

ZH
(1)
0 (kR) − kH

(1)
1 (kR)

+
40∑

n=1

RH
(1)
n (kR)

(
fne

inθ + f−ne
−inθ)

(ZR + n)H
(1)
n (kR) − kRH

(1)
n+1(kR)

. (C.247)

The terms fn related to the impedance data function are specified in (C.170).

The numerically calculated trace of the solution µh of the benchmark problem, which

was computed by using the boundary element method, is depicted in Figure C.5. In the

same manner, the numerical solution uh is illustrated in Figures C.6 and C.7. It can be

observed that the numerical solution is quite close to the exact one.
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FIGURE C.5. Numerically computed trace of the solution µh.

−3 −2 −1 0 1 2 3
−3 

−2 

−1 

0

1

2

3

x1

x
2

(a) Real part

−3 −2 −1 0 1 2 3
−3 

−2 

−1 

0

1

2

3

x1

x
2

(b) Imaginary part

FIGURE C.6. Contour plot of the numerically computed solution uh.
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FIGURE C.7. Oblique view of the numerically computed solution uh.

On behalf of the far field, two scattering cross sections are shown in Figure C.8. The

bistatic radiation diagram represents the far-field pattern of the solution for a particular

incident field in all observation directions. The monostatic radiation diagram, on the other

hand, depicts the backscattering of incident fields from all directions, i.e., the far-field

pattern in the same observation direction as for each incident field.

  −10

  −5

  0

  5

30

210

60

240

90

270

120

300

150

330

180 0

(a) Bistatic radiation diagram for θI = π
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FIGURE C.8. Scattering cross sections in [dB].

Likewise as in (B.368), we define the relative error of the trace of the solution as

E2(h,Γ
h) =

‖Πhµ− µh‖L2(Γh)

‖Πhµ‖L2(Γh)

, (C.248)
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where Πhµ denotes the Lagrange interpolating function of the exact solution’s trace µ, i.e.,

Πhµ(x) =
I∑

j=1

µ(rj)χj(x) and µh(x) =
I∑

j=1

µj χj(x) for x ∈ Γh. (C.249)

In our case, for a step h = 0.05235, we obtained a relative error of E2(h,Γ
h) = 0.04185.

As in (B.372), we define the relative error of the solution as

E∞(h,ΩL) =
‖u− uh‖L∞(ΩL)

‖u‖L∞(ΩL)

, (C.250)

being ΩL = {x ∈ Ωe : ‖x‖∞ < L} for L > 0. We consider L = 3 and approximate ΩL

by a triangular finite element mesh of refinement h near the boundary. For h = 0.05235,

the relative error that we obtained for the solution was E∞(h,ΩL) = 0.03906.

The results for different mesh refinements, i.e., for different numbers of segments I

and discretization steps h, are listed in Table C.1. These results are illustrated graphically

in Figure C.9. It can be observed that the relative errors are approximately of order h.

TABLE C.1. Relative errors for different mesh refinements.

I h E2(h,Γ
h) E∞(h,ΩL)

12 0.5176 5.563 · 10−1 4.604 · 10−1

40 0.1569 1.344 · 10−1 1.270 · 10−1

80 0.07852 6.383 · 10−2 5.979 · 10−2

120 0.05235 4.185 · 10−2 3.906 · 10−2

240 0.02618 2.058 · 10−2 1.914 · 10−2

500 0.01257 9.794 · 10−3 9.091 · 10−3

1000 0.006283 4.878 · 10−3 4.524 · 10−3
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FIGURE C.9. Logarithmic plots of the relative errors versus the discretization step.
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D. FULL-SPACE IMPEDANCE LAPLACE PROBLEM

D.1 Introduction

In this appendix we study the perturbed full-space or free-space impedance Laplace

problem, also known as the exterior impedance Laplace problem in 3D, using integral

equation techniques and the boundary element method.

We consider the problem of the Laplace equation in three dimensions on the exterior

of a bounded obstacle with an impedance boundary condition. The perturbed full-space

impedance Laplace problem is not strictly speaking a wave scattering problem, but it can be

regarded as a limit case of such a problem when the frequency tends towards zero (vid. Ap-

pendix E). It can be also regarded as a surface wave problem around a bounded three-

dimensional obstacle. The two-dimensional problem has been already treated thoroughly

in Appendix B.

For the problem treated herein we follow mainly Nédélec (1977, 1979, 2001) and

Raviart (1991). Further related books and doctorate theses are Chen & Zhou (1992),

Evans (1998), Giroire (1987), Hsiao & Wendland (2008), Johnson (1987), Kellogg (1929),

Kress (1989), Rjasanow & Steinbach (2007), and Steinbach (2008). Some articles that deal

specifically with the Laplace equation with an impedance boundary condition are Ahner &

Wiener (1991), Lanzani & Shen (2004), and Medková (1998). The mixed boundary-value

problem is treated by Wendland, Stephan & Hsiao (1979). Interesting theoretical details on

transmission problems can be found in Costabel & Stephan (1985). The boundary element

calculations can be found in Bendali & Devys (1986). The use of cracked domains is stud-

ied by Medková & Krutitskii (2005), and the inverse problem by Fasino & Inglese (1999)

and Lin & Fang (2005). Applications of the Laplace problem can be found, among others,

for electrostatics (Jackson 1999), for conductivity in biomedical imaging (Ammari 2008),

and for incompressible three-dimensional potential flows (Spurk 1997).

The Laplace equation does not allow the propagation of volume waves inside the con-

sidered domain, but the addition of an impedance boundary condition permits the prop-

agation of surface waves along the boundary of the obstacle. The main difficulty in the

numerical treatment and resolution of our problem is the fact that the exterior domain is

unbounded. We solve it therefore with integral equation techniques and the boundary ele-

ment method, which require the knowledge of the Green’s function.

This appendix is structured in 13 sections, including this introduction. The differential

problem of the Laplace equation in a three-dimensional exterior domain with an impedance

boundary condition is presented in Section D.2. The Green’s function and its far-field

expression are computed respectively in Sections D.3 and D.4. Extending the differential

problem towards a transmission problem, as done in Section D.5, allows its resolution by

using integral equation techniques, which is discussed in Section D.6. These techniques

allow also to represent the far field of the solution, as shown in Section D.7. A particular

problem that takes as domain the exterior of a sphere is solved analytically in Section D.8.

The appropriate function spaces and some existence and uniqueness results for the solution
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of the problem are presented in Section D.9. By means of the variational formulation

developed in Section D.10, the obtained integral equation is discretized using the boundary

element method, which is described in Section D.11. The boundary element calculations

required to build the matrix of the linear system resulting from the numerical discretization

are explained in Section D.12. Finally, in Section D.13 a benchmark problem based on the

exterior sphere problem is solved numerically.

D.2 Direct perturbation problem

We consider an exterior open and connected domain Ωe ⊂ R
3 that lies outside a

bounded obstacle Ωi and whose boundary Γ = ∂Ωe = ∂Ωi is regular (e.g., of class C2),

as shown in Figure D.1. As a perturbation problem, we decompose the total field uT
as uT = uW + u, where uW represents the known field without obstacle, and where u

denotes the perturbed field due its presence, which has bounded energy. The direct pertur-

bation problem of interest is to find the perturbed field u that satisfies the Laplace equation

in Ωe, an impedance boundary condition on Γ, and a decaying condition at infinity. We con-

sider that the origin is located in Ωi and that the unit normal n is taken always outwardly

oriented of Ωe, i.e., pointing inwards of Ωi.

x2

x3

Ωe

n

Ωi

Γ

x1

FIGURE D.1. Perturbed full-space impedance Laplace problem domain.

The total field uT satisfies the Laplace equation

∆uT = 0 in Ωe, (D.1)

which is also satisfied by the fields uW and u, due linearity. For the perturbed field u we

take also the inhomogeneous impedance boundary condition

− ∂u

∂n
+ Zu = fz on Γ, (D.2)

where Z is the impedance on the boundary, and where the impedance data function fz is

assumed to be known. If Z = 0 or Z = ∞, then we retrieve respectively the classical

Neumann or Dirichlet boundary conditions. In general, we consider a complex-valued

impedance Z(x) depending on the position x. The function fz(x) may depend on Z

and uw, but is independent of u.
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The Laplace equation (D.1) admits different kinds of non-trivial solutions uW , when

we consider the domain Ωe as the unperturbed full-space R
3. One kind of solutions are

the harmonic polynomials in R
3. There exist likewise other harmonic non-polynomial

functions that satisfy the Laplace equation in R
3, but which have a bigger growth at infinity

than any polynomial, e.g., the exponential functions

uW (x) = ea·x, where a ∈ C
3 and a2

1 + a2
2 + a2

3 = 0. (D.3)

Any such function can be taken as the known field without perturbation uW , which holds

in particular for all the constant and linear functions in R
3.

For the perturbed field u in the exterior domain Ωe, though, these functions represent

undesired non-physical solutions, which have to be avoided in order to ensure uniqueness

of the solution u. To eliminate them, it suffices to impose for u an asymptotic decaying

behavior at infinity that excludes the polynomials. This decaying condition involves finite

energy throughout Ωe and can be interpreted as an additional boundary condition at infinity.

In our case it is given, for a great value of |x|, by

u(x) = O
(

1

|x|

)
and |∇u(x)| = O

(
1

|x|2
)
. (D.4)

It can be expressed equivalently, for some constants C > 0, by

|u(x)| ≤ C

|x| and |∇u(x)| ≤ C

|x|2 as |x| → ∞. (D.5)

In fact, the decaying condition can be even stated as

u(x) = O
(

1

|x|α
)

and |∇u(x)| = O
(

1

|x|1+α
)

for 0 < α ≤ 1, (D.6)

or as the more weaker and general formulation

lim
R→∞

∫

SR

|u|2
R2

dγ = 0 and lim
R→∞

∫

SR

|∇u|2 dγ = 0, (D.7)

where SR = {x ∈ R
3 : |x| = R} is the sphere of radius R and where the boundary

differential element in spherical coordinates is given by dγ = R2 sin θ dθ dϕ.

The perturbed full-space impedance Laplace problem can be finally stated as




Find u : Ωe → C such that

∆u = 0 in Ωe,

−∂u
∂n

+ Zu = fz on Γ,

|u(x)| ≤ C

|x| as |x| → ∞,

|∇u(x)| ≤ C

|x|2 as |x| → ∞.

(D.8)
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D.3 Green’s function

The Green’s function represents the response of the unperturbed system (without an

obstacle) to a Dirac mass. It corresponds to a function G, which depends on a fixed source

point x ∈ R
3 and an observation point y ∈ R

3. The Green’s function is computed in the

sense of distributions for the variable y in the full-space R
3 by placing at the right-hand

side of the Laplace equation a Dirac mass δx, centered at the point x. It is therefore a

solution G(x, ·) : R
3 → C for the radiation problem of a point source, namely

∆yG(x,y) = δx(y) in D′(R3). (D.9)

Due to the radial symmetry of the problem (D.9), it is natural to look for solutions in

the form G = G(r), where r = |y − x|. By considering only the radial component, the

Laplace equation in R
3 becomes

1

r2

d

dr

(
r2 dG

dr

)
= 0, r > 0. (D.10)

The general solution of (D.10) is of the form

G(r) =
C1

r
+ C2, (D.11)

for some constants C1 and C2. The choice of C2 is arbitrary, while C1 is fixed by the pres-

ence of the Dirac mass in (D.9). To determine C1, we have to perform thus a computation

in the sense of distributions (cf. Gel’fand & Shilov 1964), using the fact that G is harmonic

for r 6= 0. For a test function ϕ ∈ D(R3), we have by definition that

〈∆yG,ϕ〉 = 〈G,∆ϕ〉 =

∫

R3

G∆ϕ dy = lim
ε→0

∫

r≥ε
G∆ϕ dy. (D.12)

We apply here Green’s second integral theorem (A.613), choosing as bounded domain the

spherical shell ε ≤ r ≤ a, where a is large enough so that the test function ϕ(y), of

bounded support, vanishes identically for r ≥ a. Then
∫

r≥ε
G∆ϕ dy =

∫

r≥ε
∆yGϕ dy −

∫

r=ε

G
∂ϕ

∂r
dγ +

∫

r=ε

∂G

∂ry
ϕ dγ, (D.13)

where dγ is the line element on the sphere r = ε. Now
∫

r≥ε
∆yGϕ dy = 0, (D.14)

since outside the ball r ≤ ε the function G is harmonic. As for the other terms, by replac-

ing (D.11), we obtain that
∫

r=ε

G
∂ϕ

∂r
dγ =

(
C1

ε
+ C2

)∫

r=ε

∂ϕ

∂r
dγ = O(ε), (D.15)

and ∫

r=ε

∂G

∂ry
ϕ dγ = −C1

ε2

∫

r=ε

ϕ dγ = −4πC1Sε(ϕ), (D.16)
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where Sε(ϕ) is the mean value of ϕ(y) on the sphere of radius ε and centered at x. In the

limit as ε→ 0, we obtain that Sε(ϕ) → ϕ(x), so that

〈∆yG,ϕ〉 = lim
ε→0

∫

r≥ε
G∆ϕ dy = −4πC1ϕ(x) = −4πC1〈δx, ϕ〉. (D.17)

Thus if C1 = −1/4π, then (D.9) is fulfilled. When we consider not only radial solutions,

then the general solution of (D.9) is given by

G(x,y) = − 1

4π|y − x| + φ(x,y), (D.18)

where φ(x,y) is any harmonic function in the variable y, i.e., such that ∆yφ = 0 in R
3,

e.g., an harmonic polynomial in R
3 or a function of the form of (D.3).

If we impose additionally, for a fixed x, the asymptotic decaying condition

|∇yG(x,y)| = O
(

1

|y|2
)

as |y| −→ ∞, (D.19)

then we eliminate any polynomial (or bigger) growth at infinity, including constant and

logarithmic growth. The Green’s function satisfying (D.9) and (D.19) is finally given by

G(x,y) = − 1

4π|y − x| , (D.20)

being its gradient

∇yG(x,y) =
y − x

4π|y − x|3 . (D.21)

We can likewise define a gradient with respect to the x variable by

∇xG(x,y) =
x − y

4π|x − y|3 , (D.22)

and a double-gradient matrix by

∇x∇yG(x,y) = − I

4π|x − y|3 +
3(x − y) ⊗ (x − y)

4π|x − y|5 , (D.23)

where I denotes a 3 × 3 identity matrix and where ⊗ denotes the dyadic or outer product

of two vectors, which results in a matrix and is defined in (A.572).

We note that the Green’s function (D.20) is symmetric in the sense that

G(x,y) = G(y,x), (D.24)

and it fulfills similarly

∇yG(x,y) = ∇yG(y,x) = −∇xG(x,y) = −∇xG(y,x), (D.25)

and

∇x∇yG(x,y) = ∇y∇xG(x,y) = ∇x∇yG(y,x) = ∇y∇xG(y,x). (D.26)

D.4 Far field of the Green’s function

The far field of the Green’s function describes its asymptotic behavior at infinity, i.e.,

when |x| → ∞ and assuming that y is fixed. For this purpose, we search the terms of
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highest order at infinity by expanding with respect to the variable x the expressions

|x − y|2 = |x|2
(

1 − 2x · y
|x|2 +

|y|2
|x|2

)
, (D.27)

|x − y| = |x|
(

1 − x · y
|x|2 + O

(
1

|x|2
))

, (D.28)

1

|x − y| =
1

|x|

(
1 +

x · y
|x|2 + O

(
1

|x|2
))

. (D.29)

We express the point x as x = |x|x̂, being x̂ a unitary vector. The far field of the Green’s

function, as |x| → ∞, is thus given by

Gff (x,y) = − 1

4π|x| −
y · x̂

4π|x|2 . (D.30)

Similarly, as |x| → ∞, we have for its gradient with respect to y, that

∇yG
ff (x,y) = − x̂

4π|x|2 , (D.31)

for its gradient with respect to x, that

∇xG
ff (x,y) =

x̂

4π|x|2 , (D.32)

and for its double-gradient matrix, that

∇x∇yG
ff (x,y) = − I

4π|x|3 +
3(x̂ ⊗ x̂)

4π|x|3 . (D.33)

D.5 Transmission problem

We are interested in expressing the solution u of the direct perturbation problem (D.8)

by means of an integral representation formula over the boundary Γ. To study this kind of

representations, the differential problem defined on Ωe is extended as a transmission prob-

lem defined now on the whole space R
3 by combining (D.8) with a corresponding interior

problem defined on Ωi. For the transmission problem, which specifies jump conditions

over the boundary Γ, a general integral representation can be developed, and the partic-

ular integral representations of interest are then established by the specific choice of the

corresponding interior problem.

A transmission problem is then a differential problem for which the jump conditions

of the solution field, rather than boundary conditions, are specified on the boundary Γ. As

shown in Figure D.1, we consider the exterior domain Ωe and the interior domain Ωi, taking

the unit normal n pointing towards Ωi. We search now a solution u defined in Ωe ∪Ωi, and

use the notation ue = u|Ωe and ui = u|Ωi
. We define the jumps of the traces of u on both

sides of the boundary Γ as

[u] = ue − ui and

[
∂u

∂n

]
=
∂ue
∂n

− ∂ui
∂n

. (D.34)
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The transmission problem is now given by




Find u : Ωe ∪ Ωi → C such that

∆u = 0 in Ωe ∪ Ωi,

[u] = µ on Γ,
[
∂u

∂n

]
= ν on Γ,

+ Decaying condition as |x| → ∞,

(D.35)

where µ, ν : Γ → C are known functions. The decaying condition is still (D.5), and it is

required to ensure uniqueness of the solution.

D.6 Integral representations and equations

D.6.1 Integral representation

To develop for the solution u an integral representation formula over the boundary Γ,

we define by ΩR,ε the domain Ωe ∪ Ωi without the ball Bε of radius ε > 0 centered at the

point x ∈ Ωe ∪ Ωi, and truncated at infinity by the ball BR of radius R > 0 centered at the

origin. We consider that the ball Bε is entirely contained either in Ωe or in Ωi, depending

on the location of its center x. Therefore, as shown in Figure D.2, we have that

ΩR,ε =
(
(Ωe ∪ Ωi) ∩BR

)
\Bε, (D.36)

where

BR = {y ∈ R
3 : |y| < R} and Bε = {y ∈ R

3 : |y − x| < ε}. (D.37)

We consider similarly the boundaries of the balls

SR = {y ∈ R
3 : |y| = R} and Sε = {y ∈ R

3 : |y − x| = ε}. (D.38)

The idea is to retrieve the domain Ωe ∪ Ωi at the end when the limits R → ∞ and ε → 0

are taken for the truncated domain ΩR,ε.

ΩR,ε

SR
n = rx

ε
R

Sε

O nΓ

FIGURE D.2. Truncated domain ΩR,ε for x ∈ Ωe ∪ Ωi.
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We apply now Green’s second integral theorem (A.613) to the functions u and G(x, ·)
in the bounded domain ΩR,ε, yielding

0 =

∫

ΩR,ε

(
u(y)∆yG(x,y) −G(x,y)∆u(y)

)
dy

=

∫

SR

(
u(y)

∂G

∂ry
(x,y) −G(x,y)

∂u

∂r
(y)

)
dγ(y)

−
∫

Sε

(
u(y)

∂G

∂ry
(x,y) −G(x,y)

∂u

∂r
(y)

)
dγ(y)

+

∫

Γ

(
[u](y)

∂G

∂ny

(x,y) −G(x,y)

[
∂u

∂n

]
(y)

)
dγ(y). (D.39)

For R large enough, the integral on SR tends to zero, since
∣∣∣∣
∫

SR

u(y)
∂G

∂ry
(x,y) dγ(y)

∣∣∣∣ ≤
C

R
, (D.40)

and ∣∣∣∣
∫

SR

G(x,y)
∂u

∂r
(y) dγ(y)

∣∣∣∣ ≤
C

R
, (D.41)

for some constants C > 0, due the asymptotic decaying behavior at infinity (D.5). If the

function u is regular enough in the ball Bε, then the second term of the integral on Sε,

when ε→ 0 and due (D.20), is bounded by
∣∣∣∣
∫

Sε

G(x,y)
∂u

∂r
(y) dγ(y)

∣∣∣∣ ≤ ε sup
y∈Bε

∣∣∣∣
∂u

∂r
(y)

∣∣∣∣, (D.42)

and tends to zero. The regularity of u can be specified afterwards once the integral repre-

sentation has been determined and generalized by means of density arguments. The first

integral term on Sε can be decomposed as
∫

Sε

u(y)
∂G

∂ry
(x,y) dγ(y) = u(x)

∫

Sε

∂G

∂ry
(x,y) dγ(y)

+

∫

Sε

∂G

∂ry
(x,y)

(
u(y) − u(x)

)
dγ(y), (D.43)

For the first term in the right-hand side of (D.43), by replacing (D.21), we have that
∫

Sε

∂G

∂ry
(x,y) dγ(y) = 1, (D.44)

while the second term is bounded by
∣∣∣∣
∫

Sε

(
u(y) − u(x)

)∂G
∂ry

(x,y) dγ(y)

∣∣∣∣ ≤ sup
y∈Bε

|u(y) − u(x)|, (D.45)

which tends towards zero when ε→ 0.

In conclusion, when the limits R → ∞ and ε→ 0 are taken in (D.39), then the follow-

ing integral representation formula holds for the solution u of the transmission problem:

u(x) =

∫

Γ

(
[u](y)

∂G

∂ny

(x,y) −G(x,y)

[
∂u

∂n

]
(y)

)
dγ(y), x ∈ Ωe ∪ Ωi. (D.46)
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We observe thus that if the values of the jump of u and of its normal derivative are

known on Γ, then the transmission problem (D.35) is readily solved and its solution given

explicitly by (D.46), which, in terms of µ and ν, becomes

u(x) =

∫

Γ

(
µ(y)

∂G

∂ny

(x,y) −G(x,y)ν(y)

)
dγ(y), x ∈ Ωe ∪ Ωi. (D.47)

To determine the values of the jumps, an adequate integral equation has to be developed,

i.e., an equation whose unknowns are the traces of the solution on Γ.

An alternative way to demonstrate the integral representation (D.46) is to proceed in

the sense of distributions, in the same way as done in Section B.6. Again we obtain the

single layer potential
{
G ∗

[
∂u

∂n

]
δΓ

}
(x) =

∫

Γ

G(x,y)

[
∂u

∂n

]
(y) dγ(y) (D.48)

associated with the distribution of sources [∂u/∂n]δΓ, and the double layer potential
{
G ∗ ∂

∂n

(
[u]δΓ

)}
(x) = −

∫

Γ

∂G

∂ny

(x,y)[u](y) dγ(y) (D.49)

associated with the distribution of dipoles ∂
∂n

([u]δΓ). Combining properly (D.48) and (D.49)

yields the desired integral representation (D.46).

We note that to obtain the gradient of the integral representation (D.46) we can pass

directly the derivatives inside the integral, since there are no singularities if x ∈ Ωe ∪ Ωi.

Therefore we have that

∇u(x) =

∫

Γ

(
[u](y)∇x

∂G

∂ny

(x,y) −∇xG(x,y)

[
∂u

∂n

]
(y)

)
dγ(y). (D.50)

We remark also that Green’s first integral theorem (A.612) implies for the solution ui
of the interior problem that

∫

Γ

∂ui
∂n

dγ = −
∫

Ωi

∆ui dx = 0. (D.51)

Nonetheless a three-dimensional equivalent of (B.58) does no longer apply, since this inte-

gral converges to a constant as R → ∞, which is not necessarily zero.

D.6.2 Integral equation

To determine the values of the traces that conform the jumps for the transmission prob-

lem (D.35), an integral equation has to be developed. For this purpose we place the source

point x on the boundary Γ and apply the same procedure as before for the integral rep-

resentation (D.46), treating differently in (D.39) only the integrals on Sε. The integrals

on SR still behave well and tend towards zero as R → ∞. The Ball Bε, though, is split

in half into the two pieces Ωe ∩ Bε and Ωi ∩ Bε, which are asymptotically separated by

the tangent of the boundary if Γ is regular. Thus the associated integrals on Sε give rise to

a term −(ue(x) + ui(x))/2 instead of just −u(x) as before. We must notice that in this

case, the integrands associated with the boundary Γ admit an integrable singularity at the
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point x. The desired integral equation related with (D.46) is then given by

ue(x) + ui(x)

2
=

∫

Γ

(
[u](y)

∂G

∂ny

(x,y) −G(x,y)

[
∂u

∂n

]
(y)

)
dγ(y), x ∈ Γ. (D.52)

By choosing adequately the boundary condition of the interior problem, and by considering

also the boundary condition of the exterior problem and the jump definitions (D.34), this

integral equation can be expressed in terms of only one unknown function on Γ. Thus, solv-

ing the problem (D.8) is equivalent to solve (D.52) and then replace the obtained solution

in (D.46).

The integral equation holds only when the boundary Γ is regular (e.g., of class C2).

Otherwise, taking the limit ε → 0 can no longer be well-defined and the result is false in

general. In particular, if the boundary Γ has an angular point at x ∈ Γ, then the left-hand

side of the integral equation (D.52) is modified on that point according to the portion of

the ball Bε that remains inside Ωe, analogously as was done for the two-dimensional case

in (B.61), but now for solid angles.

Another integral equation can be also derived for the normal derivative of the solu-

tion u on the boundary Γ, by studying the jump properties of the single and double layer

potentials. Its derivation is more complicated than for (D.52), being the specific details ex-

plicited in the subsection of boundary layer potentials. If the boundary is regular at x ∈ Γ,

then we obtain

1

2

∂ue
∂n

(x) +
1

2

∂ui
∂n

(x) =

∫

Γ

(
[u](y)

∂2G

∂nx∂ny

(x,y) − ∂G

∂nx

(x,y)

[
∂u

∂n

]
(y)

)
dγ(y). (D.53)

This integral equation is modified correspondingly if x is an angular point.

D.6.3 Integral kernels

In the same manner as in the two-dimensional case, the integral kernels G, ∂G/∂ny,

and ∂G/∂nx are weakly singular, and thus integrable, whereas the kernel ∂2G/∂nx∂ny is

not integrable and therefore hypersingular.

The kernel G defined in (D.20) fulfills evidently (B.64) with λ = 1. On the other hand,

the kernels ∂G/∂ny and ∂G/∂nx are less singular along Γ than they appear at first sight,

due the regularizing effect of the normal derivatives. They are given respectively by

∂G

∂ny

(x,y) =
(y − x) · ny

4π|y − x|3 and
∂G

∂nx

(x,y) =
(x − y) · nx

4π|x − y|3 . (D.54)

It can be shown that the estimates (B.70) and (B.71) hold also in three dimensions, by using

the same reasoning as in the two-dimensional case for the graph of a regular function ϕ that

takes variables now on the tangent plane. Therefore we have that

∂G

∂ny

(x,y) = O
(

1

|y − x|

)
and

∂G

∂nx

(x,y) = O
(

1

|x − y|

)
, (D.55)

and hence these kernels satisfy (B.64) with λ = 1.
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The kernel ∂2G/∂nx∂ny, on the other hand, adopts the form

∂2G

∂nx∂ny

(x,y) = − nx · ny

4π|y − x|3 − 3
(
(x − y) · nx

)(
(y − x) · ny

)

4π|y − x|5 . (D.56)

The regularizing effect of the normal derivatives applies only to its second term, but not to

the first. Hence this kernel is hypersingular, with λ = 3, and it holds that

∂2G

∂nx∂ny

(x,y) = O
(

1

|y − x|3
)
. (D.57)

The kernel is no longer integrable and the associated integral operator has to be thus inter-

preted in some appropriate sense as a divergent integral (cf., e.g., Hsiao & Wendland 2008,

Lenoir 2005, Nédélec 2001).

D.6.4 Boundary layer potentials

We regard now the jump properties on the boundary Γ of the boundary layer poten-

tials that have appeared in our calculations. For the development of the integral represen-

tation (D.47) we already made acquaintance with the single and double layer potentials,

which we define now more precisely for x ∈ Ωe ∪ Ωi as the integral operators

Sν(x) =

∫

Γ

G(x,y)ν(y) dγ(y), (D.58)

Dµ(x) =

∫

Γ

∂G

∂ny

(x,y)µ(y) dγ(y). (D.59)

The integral representation (D.47) can be now stated in terms of the layer potentials as

u = Dµ− Sν. (D.60)

We remark that for any functions ν, µ : Γ → C that are regular enough, the single and

double layer potentials satisfy the Laplace equation, namely

∆Sν = 0 in Ωe ∪ Ωi, (D.61)

∆Dµ = 0 in Ωe ∪ Ωi. (D.62)

For the integral equations (D.52) and (D.53), which are defined for x ∈ Γ, we require

the four boundary integral operators:

Sν(x) =

∫

Γ

G(x,y)ν(y) dγ(y), (D.63)

Dµ(x) =

∫

Γ

∂G

∂ny

(x,y)µ(y) dγ(y), (D.64)

D∗ν(x) =

∫

Γ

∂G

∂nx

(x,y)ν(y) dγ(y), (D.65)

Nµ(x) =

∫

Γ

∂2G

∂nx∂ny

(x,y)µ(y) dγ(y). (D.66)

The operator D∗ is in fact the adjoint of the operator D. As we already mentioned, the

kernel of the integral operatorN defined in (D.66) is not integrable, yet we write it formally
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as an improper integral. An appropriate sense for this integral will be given below. The

integral equations (D.52) and (D.53) can be now stated in terms of the integral operators as

1

2
(ue + ui) = Dµ− Sν, (D.67)

1

2

(
∂ue
∂n

+
∂ui
∂n

)
= Nµ−D∗ν. (D.68)

These integral equations can be easily derived from the jump properties of the single

and double layer potentials. The single layer potential (D.58) is continuous and its normal

derivative has a jump of size −ν across Γ, i.e.,

Sν|Ωe = Sν = Sν|Ωi
, (D.69)

∂

∂n
Sν|Ωe =

(
−1

2
+D∗

)
ν, (D.70)

∂

∂n
Sν|Ωi

=

(
1

2
+D∗

)
ν. (D.71)

The double layer potential (D.59), on the other hand, has a jump of size µ across Γ and its

normal derivative is continuous, namely

Dµ|Ωe =

(
1

2
+D

)
µ, (D.72)

Dµ|Ωi
=

(
−1

2
+D

)
µ, (D.73)

∂

∂n
Dµ|Ωe = Nµ =

∂

∂n
Dµ|Ωi

. (D.74)

The integral equation (D.67) is obtained directly either from (D.69) and (D.72), or

from (D.69) and (D.73), by considering the appropriate trace of (D.60) and by defining the

functions µ and ν as in (D.35). These three jump properties are easily proven by regarding

the details of the proof for (D.52).

Similarly, the integral equation (D.68) for the normal derivative is obtained directly

either from (D.70) and (D.74), or from (D.71) and (D.74), by considering the appropriate

trace of the normal derivative of (D.60) and by defining again the functions µ and ν as

in (D.35). The proof of these other three jump properties is done below.

a) Jump of the normal derivative of the single layer potential

Let us then study first the proof of (D.70) and (D.71). The traces of the normal deriva-

tive of the single layer potential are given by

∂

∂n
Sν(x)|Ωe = lim

Ωe∋z→x
∇Sν(z) · nx, (D.75)

∂

∂n
Sν(x)|Ωi

= lim
Ωi∋z→x

∇Sν(z) · nx. (D.76)
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Now we have that

∇Sν(z) · nx =

∫

Γ

nx · ∇zG(z,y)ν(y) dγ(y). (D.77)

For ε > 0 we denote Γε = Γ ∩ Bε, i.e., the portion of Γ contained inside the ball Bε of

radius ε and centered at x. By decomposing the integral we obtain that

∇Sν(z)·nx =

∫

Γ\Γε

nx ·∇zG(z,y)ν(y) dγ(y)+

∫

Γε

nx ·∇zG(z,y)ν(y) dγ(y). (D.78)

For the first integral in (D.78) we can take without problems the limit z → x, since for a

fixed ε the integral is regular in x. Since the singularity of the resulting kernel ∂G/∂nx is

integrable, Lebesgue’s dominated convergence theorem (cf. Royden 1988) implies that

lim
ε→0

∫

Γ\Γε

∂G

∂nx

(x,y)ν(y) dγ(y) =

∫

Γ

∂G

∂nx

(x,y)ν(y) dγ(y) = D∗ν(x). (D.79)

Let us treat now the second integral in (D.78), which is again decomposed in different

integrals in such a way that
∫

Γε

nx · ∇zG(z,y)ν(y) dγ(y) =

∫

Γε

(nx − ny) · ∇zG(z,y)ν(y) dγ(y)

+

∫

Γε

ny · ∇zG(z,y)
(
ν(y) − ν(x)

)
dγ(y) + ν(x)

∫

Γε

ny · ∇zG(z,y) dγ(y). (D.80)

When ε is small, and since Γ is supposed to be regular, therefore Γε resembles a flat disc of

radius ε. Thus we have that

lim
ε→0

∫

Γε

(nx − ny) · ∇zG(z,y)ν(y) dγ(y) = 0. (D.81)

If ν is regular enough, then we have also that

lim
ε→0

∫

Γε

ny · ∇zG(z,y)
(
ν(y) − ν(x)

)
dγ(y) = 0. (D.82)

For the remaining term in (D.80) we consider the solid angle Θ under which the almost flat

disc Γε is seen from point z (cf. Figure D.3). If we denote R = y − z and R = |R|, and

consider an oriented surface differential element dγ = nydγ(y) seen from point z, then

we can express the solid angle differential element by (cf. Terrasse & Abboud 2006)

dΘ =
R

R3
· dγ =

R · ny

R3
dγ(y) = 4πny · ∇yG(z,y) dγ(y). (D.83)

Integrating over the disc Γε and considering (D.25) yields the solid angle Θ, namely

Θ =

∫

Γε

dΘ = 4π

∫

Γε

ny · ∇yG(z,y) dγ(y) = −4π

∫

Γε

ny · ∇zG(z,y) dγ(y), (D.84)

where −2π ≤ Θ ≤ 2π. The solid angle Θ is positive when the vectors R and ny point

towards the same side of Γε, and negative when they oppose each other. Thus if z is very

close to x and if ε is small enough so that Γε behaves as a flat disc, then
∫

Γε

ny · ∇zG(z,y) dγ(y) ≈
{ −1/2 if z ∈ Ωe,

1/2 if z ∈ Ωi.
(D.85)
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Hence we obtain the desired jump formulae (D.70) and (D.71).

Γε

Θ

εx

z

y

FIGURE D.3. Solid angle under which Γε is seen from point z.

b) Continuity of the normal derivative of the double layer potential

We are now interested in proving the continuity of the normal derivative of the double

layer potential across Γ, as expressed in (D.74). This will allow us at the same time to

define an appropriate sense for the improper integral (D.66). This integral is divergent in

a classical sense, but it can be nonetheless properly defined in a weak or distributional

sense by considering it as a linear functional acting on a test function ϕ ∈ D(R3). By

considering (D.62) and Green’s first integral theorem (A.612), we can express our values

of interest in a weak sense as〈
∂

∂n
Dµ|Ωe , ϕ

〉
=

∫

Γ

∂

∂n
Dµ(x)|Ωe ϕ(x) dγ(x) =

∫

Ωe

∇Dµ(x) · ∇ϕ(x) dx, (D.86)

〈
∂

∂n
Dµ|Ωi

, ϕ

〉
=

∫

Γ

∂

∂n
Dµ(x)|Ωi

ϕ(x) dγ(x) = −
∫

Ωi

∇Dµ(x) · ∇ϕ(x) dx. (D.87)

From (A.588) and (D.25) we obtain the relation

∂G

∂ny

(x,y) = ny · ∇yG(x,y) = −ny · ∇xG(x,y) = − divx

(
G(x,y)ny

)
. (D.88)

Thus for the double layer potential (D.59) we have that

Dµ(x) = − div

∫

Γ

G(x,y)µ(y)ny dγ(y) = − divS(µny)(x), (D.89)

being its gradient given by

∇Dµ(x) = −∇ div

∫

Γ

G(x,y)µ(y)ny dγ(y). (D.90)

From (A.589) we have that

curlx
(
G(x,y)ny

)
= ∇xG(x,y) × ny. (D.91)

Hence, by considering (A.590), (D.62), and (D.91) in (D.90), we obtain that

∇Dµ(x) = curl

∫

Γ

(
ny ×∇xG(x,y)

)
µ(y) dγ(y). (D.92)

478



From (D.25) and (A.658) we have that
∫

Γ

(
ny ×∇xG(x,y)

)
µ(y) dγ(y) = −

∫

Γ

ny ×
(
∇yG(x,y)µ(y)

)
dγ(y)

=

∫

Γ

ny ×
(
G(x,y)∇µ(y)

)
dγ(y), (D.93)

and consequently

∇Dµ(x) = curl

∫

Γ

G(x,y)
(
ny ×∇µ(y)

)
dγ(y). (D.94)

Now, considering (A.596) and (A.618), and replacing (D.94) in (D.86), implies that
∫

Ωe

∇Dµ(x) ·∇ϕ(x) dx = −
∫

Γ

∫

Γ

G(x,y)
(
∇µ(y)×ny

)
·
(
∇ϕ(x)×nx

)
dγ(y) dγ(x).

(D.95)

Analogously, when replacing in (D.87) we have that
∫

Ωi

∇Dµ(x) · ∇ϕ(x) dx =

∫

Γ

∫

Γ

G(x,y)
(
∇µ(y) × ny

)
·
(
∇ϕ(x) × nx

)
dγ(y) dγ(x).

(D.96)

Hence, from (D.86), (D.87), (D.95), and (D.96) we conclude the proof of (D.74). The

integral operator (D.66) is thus properly defined in a weak sense for ϕ ∈ D(R3) by

〈Nµ(x), ϕ〉 = −
∫

Γ

∫

Γ

G(x,y)
(
∇µ(y) × ny

)
·
(
∇ϕ(x) × nx

)
dγ(y) dγ(x). (D.97)

D.6.5 Alternatives for integral representations and equations

By taking into account the transmission problem (D.35), its integral representation

formula (D.46), and its integral equations (D.52) and (D.53), several particular alternatives

for integral representations and equations of the exterior problem (D.8) can be developed.

The way to perform this is to extend properly the exterior problem towards the interior do-

main Ωi, either by specifying explicitly this extension or by defining an associated interior

problem, so as to become the desired jump properties across Γ. The extension has to satisfy

the Laplace equation (D.1) in Ωi and a boundary condition that corresponds adequately to

the impedance boundary condition (D.2). The obtained system of integral representations

and equations allows finally to solve the exterior problem (D.8), by using the solution of

the integral equation in the integral representation formula.

a) Extension by zero

An extension by zero towards the interior domain Ωi implies that

ui = 0 in Ωi. (D.98)

The jumps over Γ are characterized in this case by

[u] = ue = µ, (D.99)
[
∂u

∂n

]
=
∂ue
∂n

= Zue − fz = Zµ− fz, (D.100)
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where µ : Γ → C is a function to be determined.

An integral representation formula of the solution, for x ∈ Ωe ∪ Ωi, is given by

u(x) =

∫

Γ

(
∂G

∂ny

(x,y) − Z(y)G(x,y)

)
µ(y) dγ(y)+

∫

Γ

G(x,y)fz(y) dγ(y). (D.101)

Since
1

2

(
ue(x) + ui(x)

)
=
µ(x)

2
, x ∈ Γ, (D.102)

we obtain, for x ∈ Γ, the Fredholm integral equation of the second kind

µ(x)

2
+

∫

Γ

(
Z(y)G(x,y) − ∂G

∂ny

(x,y)

)
µ(y) dγ(y) =

∫

Γ

G(x,y)fz(y) dγ(y), (D.103)

which has to be solved for the unknown µ. In terms of boundary layer potentials, the

integral representation and the integral equation can be respectively expressed by

u = D(µ) − S(Zµ) + S(fz) in Ωe ∪ Ωi, (D.104)

µ

2
+ S(Zµ) −D(µ) = S(fz) on Γ. (D.105)

Alternatively, since

1

2

(
∂ue
∂n

(x) +
∂ui
∂n

(x)

)
=
Z(x)

2
µ(x) − fz(x)

2
, x ∈ Γ, (D.106)

we obtain also, for x ∈ Γ, the Fredholm integral equation of the second kind

Z(x)

2
µ(x) +

∫

Γ

(
− ∂2G

∂nx∂ny

(x,y) + Z(y)
∂G

∂nx

(x,y)

)
µ(y) dγ(y)

=
fz(x)

2
+

∫

Γ

∂G

∂nx

(x,y)fz(y) dγ(y), (D.107)

which in terms of boundary layer potentials becomes

Z

2
µ−N(µ) +D∗(Zµ) =

fz
2

+D∗(fz) on Γ. (D.108)

b) Continuous impedance

We associate to (D.8) the interior problem




Find ui : Ωi → C such that

∆ui = 0 in Ωi,

−∂ui
∂n

+ Zui = fz on Γ.

(D.109)

The jumps over Γ are characterized in this case by

[u] = ue − ui = µ, (D.110)
[
∂u

∂n

]
=
∂ue
∂n

− ∂ui
∂n

= Z(ue − ui) = Zµ, (D.111)
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where µ : Γ → C is a function to be determined. In particular it holds that the jump of the

impedance is zero, namely
[
−∂u
∂n

+ Zu

]
=

(
−∂ue
∂n

+ Zue

)
−
(
−∂ui
∂n

+ Zui

)
= 0. (D.112)

An integral representation formula of the solution, for x ∈ Ωe ∪ Ωi, is given by

u(x) =

∫

Γ

(
∂G

∂ny

(x,y) − Z(y)G(x,y)

)
µ(y) dγ(y). (D.113)

Since

− 1

2

(
∂ue
∂n

(x) +
∂ui
∂n

(x)

)
+
Z(x)

2

(
ue(x) + ui(x)

)
= fz(x), x ∈ Γ, (D.114)

we obtain, for x ∈ Γ, the Fredholm integral equation of the first kind
∫

Γ

(
− ∂2G

∂nx∂ny

(x,y) + Z(y)
∂G

∂nx

(x,y)

)
µ(y) dγ(y)

+ Z(x)

∫

Γ

(
∂G

∂ny

(x,y) − Z(y)G(x,y)

)
µ(y) dγ(y) = fz(x), (D.115)

which has to be solved for the unknown µ. In terms of boundary layer potentials, the

integral representation and the integral equation can be respectively expressed by

u = D(µ) − S(Zµ) in Ωe ∪ Ωi, (D.116)

−N(µ) +D∗(Zµ) + ZD(µ) − ZS(Zµ) = fz on Γ. (D.117)

We observe that the integral equation (D.117) is self-adjoint.

c) Continuous value

We associate to (D.8) the interior problem




Find ui : Ωi → C such that

∆ui = 0 in Ωi,

−∂ue
∂n

+ Zui = fz on Γ.

(D.118)

The jumps over Γ are characterized in this case by

[u] = ue − ui =
1

Z

(
∂ue
∂n

− fz

)
− 1

Z

(
∂ue
∂n

− fz

)
= 0, (D.119)

[
∂u

∂n

]
=
∂ue
∂n

− ∂ui
∂n

= ν, (D.120)

where ν : Γ → C is a function to be determined.

An integral representation formula of the solution, for x ∈ Ωe ∪ Ωi, is given by the

single layer potential

u(x) = −
∫

Γ

G(x,y)ν(y) dγ(y). (D.121)
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Since

− 1

2

(
∂ue
∂n

(x) +
∂ui
∂n

(x)

)
+
Z(x)

2

(
ue(x) + ui(x)

)
=
ν(x)

2
+ fz(x), x ∈ Γ, (D.122)

we obtain, for x ∈ Γ, the Fredholm integral equation of the second kind

−ν(x)

2
+

∫

Γ

(
∂G

∂nx

(x,y) − Z(x)G(x,y)

)
ν(y) dγ(y) = fz(x), (D.123)

which has to be solved for the unknown ν. In terms of boundary layer potentials, the

integral representation and the integral equation can be respectively expressed by

u = −S(ν) in Ωe ∪ Ωi, (D.124)

ν

2
+ ZS(ν) −D∗(ν) = −fz on Γ. (D.125)

We observe that the integral equation (D.125) is mutually adjoint with (D.105).

d) Continuous normal derivative

We associate to (D.8) the interior problem




Find ui : Ωi → C such that

∆ui = 0 in Ωi,

−∂ui
∂n

+ Zue = fz on Γ.

(D.126)

The jumps over Γ are characterized in this case by

[u] = ue − ui = µ, (D.127)
[
∂u

∂n

]
=
∂ue
∂n

− ∂ui
∂n

=
(
Zue − fz

)
−
(
Zue − fz

)
= 0, (D.128)

where µ : Γ → C is a function to be determined.

An integral representation formula of the solution, for x ∈ Ωe ∪ Ωi, is given by the

double layer potential

u(x) =

∫

Γ

∂G

∂ny

(x,y)µ(y) dγ(y). (D.129)

Since when x ∈ Γ,

− 1

2

(
∂ue
∂n

(x) +
∂ui
∂n

(x)

)
+
Z(x)

2

(
ue(x) + ui(x)

)
= −Z(x)

2
µ(x) + fz(x), (D.130)

we obtain, for x ∈ Γ, the Fredholm integral equation of the second kind

Z(x)

2
µ(x) +

∫

Γ

(
− ∂2G

∂nx∂ny

(x,y) + Z(x)
∂G

∂ny

(x,y)

)
µ(y) dγ(y) = fz(x), (D.131)

which has to be solved for the unknown µ. In terms of boundary layer potentials, the

integral representation and the integral equation can be respectively expressed by

u = D(µ) in Ωe ∪ Ωi, (D.132)
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Z

2
µ−N(µ) + ZD(µ) = fz on Γ. (D.133)

We observe that the integral equation (D.133) is mutually adjoint with (D.108).

D.7 Far field of the solution

The asymptotic behavior at infinity of the solution u of (D.8) is described by the far

field uff . Its expression can be deduced by replacing the far field of the Green’s func-

tion Gff and its derivatives in the integral representation formula (D.46), which yields

uff (x) =

∫

Γ

(
[u](y)

∂Gff

∂ny

(x,y) −Gff (x,y)

[
∂u

∂n

]
(y)

)
dγ(y). (D.134)

By replacing now (D.30) and (D.31) in (D.134), we have that the far field of the solution is

uff (x) = − 1

4π|x|2
∫

Γ

(
x̂ · ny [u](y) − x̂ · y

[
∂u

∂n

]
(y)

)
dγ(y)

+
1

4π|x|

∫

Γ

[
∂u

∂n

]
(y) dγ(y). (D.135)

The asymptotic behavior of the solution u at infinity is therefore given by

u(x) =
C

|x| +
u∞(x̂)

|x|2 + O
(

1

|x|3
)
, |x| → ∞, (D.136)

uniformly in all directions x̂ on the unit sphere, where C is a constant, given by

C =
1

4π

∫

Γ

[
∂u

∂n

]
(y) dγ(y), (D.137)

and where

u∞(x̂) = − 1

4π

∫

Γ

(
x̂ · ny [u](y) − x̂ · y

[
∂u

∂n

]
(y)

)
dγ(y) (D.138)

is called the far-field pattern of u. It can be expressed in decibels (dB) by means of the

asymptotic cross section

Qs(x̂) [dB] = 20 log10

( |u∞(x̂)|
|u0|

)
, (D.139)

where the reference level u0 may typically depend on uW , but for simplicity we take u0 = 1.

We remark that the far-field behavior (D.136) of the solution is in accordance with the

decaying condition (D.5), which justifies its choice.

D.8 Exterior sphere problem

To understand better the resolution of the direct perturbation problem (D.8), we study

now the particular case when the domain Ωe ⊂ R
3 is taken as the exterior of a sphere of

radius R > 0. The interior of the sphere is then given by Ωi = {x ∈ R
3 : |x| < R} and its

boundary by Γ = ∂Ωe, as shown in Figure D.4. We place the origin at the center of Ωi and

we consider that the unit normal n is taken outwardly oriented of Ωe, i.e., n = −r.
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FIGURE D.4. Exterior of the sphere.

The exterior sphere problem is then stated as




Find u : Ωe → C such that

∆u = 0 in Ωe,

∂u

∂r
+ Zu = fz on Γ,

+ Decaying condition as |x| → ∞,

(D.140)

where we consider a constant impedance Z ∈ C and where the asymptotic decaying con-

dition is as usual given by (D.5).

Due the particular chosen geometry, the solution u of (D.140) can be easily found

analytically by using the method of variable separation, i.e., by supposing that

u(x) = u(r, θ, ϕ) =
h(r)

r
g(θ)f(ϕ), (D.141)

where the radius r ≥ 0, the polar angle 0 ≤ θ ≤ π, and the azimuthal angle −π < ϕ ≤ π

denote the spherical coordinates in R
3, which are characterized by

r =
√
x2

1 + x2
2 + x2

3 , θ = arctan

(√
x2 + y2

z

)
, ϕ = arctan

(y
x

)
. (D.142)

If the Laplace equation in (D.140) is expressed using spherical coordinates, then

∆u =
1

r

∂2

∂r2
(ru) +

1

r2 sin θ

∂

∂θ

(
sin θ

∂u

∂θ

)
+

1

r2 sin2θ

∂2u

∂ϕ2
= 0. (D.143)

By replacing now (D.141) in (D.143) we obtain

h′′(r)

r
g(θ)f(ϕ) +

h(r)f(ϕ)

r3 sin θ

d

dθ

(
sin θ

dg

dθ
(θ)

)
+
h(r)g(θ)f ′′(ϕ)

r3 sin2θ
= 0. (D.144)

Multiplying by r3 sin2θ, dividing by hgf , and rearranging yields

r2 sin2θ

[
h′′(r)

h(r)
+

1

g(θ)r2 sin θ

d

dθ

(
sin θ

dg

dθ
(θ)

)]
+
f ′′(ϕ)

f(ϕ)
= 0. (D.145)
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The dependence on ϕ has now been isolated in the last term. Consequently this term must

be equal to a constant, which for convenience we denote by −m2, i.e.,

f ′′(ϕ)

f(ϕ)
= −m2. (D.146)

The solution of (D.146), up to a multiplicative constant, is of the form

f(ϕ) = e±imϕ. (D.147)

For f(ϕ) to be single-valued, m must be an integer if the full azimuthal range is allowed.

By similar considerations we find the following separate equations for g(θ) and h(r):

1

sin θ

d

dθ

(
sin θ

dg

dθ
(θ)

)
+

(
l(l + 1) − m2

sin2θ

)
g(θ) = 0, (D.148)

r2h′′(r) − l(l + 1)h(r) = 0, (D.149)

where l(l+1) is another conveniently denoted real constant. The solution h(r) of the radial

equation (D.149) is easily found to be

h(r) = al r
l−1 + bl r

−l, (D.150)

where al, bl ∈ C are arbitrary constants and where l is still undetermined. For the equation

of the polar angle θ we consider the change of variables x = cos θ. In this case (D.148)

turns into
d

dx

(
(1 − x2)

dg

dx
(x)

)
+

(
l(l + 1) − m2

1 − x2

)
g(x) = 0, (D.151)

which corresponds to the generalized or associated Legendre differential equation (A.323),

whose solutions on the interval −1 ≤ x ≤ 1 are the associated Legendre functions Pm
l

and Qm
l , which are characterized respectively by (A.330) and (A.331). If the solution

is to be single-valued, finite, and continuous in −1 ≤ x ≤ 1, then we have to exclude

the solutions Qm
l , take l as a positive integer or zero, and admit for the integer m only

the values −l,−(l − 1), . . . , 0, . . . , (l − 1), l. The solution of (D.148), up to an arbitrary

multiplicative constant, is therefore given by

g(θ) = Pm
l (cos θ). (D.152)

It is practical to combine the angular factors g(θ) and f(ϕ) into orthonormal functions over

the unit sphere, the so-called spherical harmonics Y m
l (θ, ϕ), which are defined in (A.380).

The general solution for the Laplace equation considers the linear combination of all the

solutions in the form (D.141), namely

u(r, θ, ϕ) =
∞∑

l=0

l∑

m=−l

(
Alm r

l +Blm r
−(l+1)

)
Y m
l (θ, ϕ), (D.153)

for some undetermined arbitrary constants Alm, Blm ∈ C. The decaying condition (D.5)

implies that

Alm = 0, −l ≤ m ≤ l, l ≥ 0. (D.154)
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Thus the general solution (D.153) turns into

u(r, θ, ϕ) =
∞∑

l=0

l∑

m=−l
Blm r

−(l+1) Y m
l (θ, ϕ), (D.155)

and its radial derivative is given by

∂u

∂r
(r, θ, ϕ) = −

∞∑

l=0

l∑

m=−l
(l + 1)Blm r

−(l+2) Y m
l (θ, ϕ). (D.156)

The constants Blm in (D.155) are determined through the impedance boundary condition

on Γ. For this purpose, we expand the impedance data function fz into spherical harmonics:

fz(θ, ϕ) =
∞∑

l=0

l∑

m=−l
flm Y

m
l (θ, ϕ), 0 ≤ θ ≤ π, −π < ϕ ≤ π, (D.157)

where

flm =

∫ π

−π

∫ π

0

fz(θ, ϕ)Y m
l (θ, ϕ) sin θ dθ dϕ, m ∈ Z, −l ≤ m ≤ l. (D.158)

The impedance boundary condition considers r = R and thus takes the form

∞∑

l=0

l∑

m=−l

(
ZR− (l + 1)

Rl+2

)
Blm Y

m
l (θ, ϕ) = fz(θ, ϕ) =

∞∑

l=0

l∑

m=−l
flm Y

m
l (θ, ϕ). (D.159)

We observe that the constants Blm can be uniquely determined only if ZR 6= (l + 1)

for l ∈ N0. If this condition is not fulfilled, then the solution is no longer unique. Therefore,

if we suppose that ZR 6= (l + 1) for l ∈ N0, then

Blm =
Rl+2flm

ZR− (l + 1)
. (D.160)

The unique solution for the exterior sphere problem (D.140) is then given by

u(r, θ, ϕ) =
∞∑

l=0

l∑

m=−l

(
Rl+2flm

ZR− (l + 1)

)
r−(l+1) Y m

l (θ, ϕ). (D.161)

We remark that there is no need here for an additional compatibility condition like (B.191).

If we consider now the case when ZR = (n + 1), for some particular integer n ∈ N0,

then the solution u is not unique. The constants Bnm for −n ≤ m ≤ n are then no

longer defined by (D.160), and can be chosen in an arbitrary manner. For the existence

of a solution in this case, however, we require also the orthogonality conditions fnm = 0

for −n ≤ m ≤ n, which are equivalent to
∫ π

−π

∫ π

0

fz(θ, ϕ)Y m
n (θ, ϕ) sin θ dθ dϕ = 0, −n ≤ m ≤ n. (D.162)

Instead of (D.161), the solution of (D.140) is now given by the infinite family of functions

u(r, θ, ϕ) =
∑

0≤l 6=n

l∑

m=−l

(
Rl+2flm

ZR− (l + 1)

)
r−(l+1)Y m

l (θ, ϕ)+
n∑

m=−n

αm
rn+1

Y m
n (θ, ϕ), (D.163)

486



where αm ∈ C for −n ≤ m ≤ n are arbitrary and where their associated terms have the

form of surface waves, i.e., waves that propagate along Γ and decrease towards the interior

of Ωe. The exterior sphere problem (D.140) admits thus a unique solution u, except on a

countable set of values for ZR. And even in this last case there exists a solution, although

not unique, if 2n + 1 orthogonality conditions are additionally satisfied. This behavior for

the existence and uniqueness of the solution is typical of the Fredholm alternative, which

applies when solving problems that involve compact perturbations of invertible operators.

D.9 Existence and uniqueness

D.9.1 Function spaces

To state a precise mathematical formulation of the herein treated problems, we have to

define properly the involved function spaces. For the associated interior problems defined

on the bounded set Ωi we use the classical Sobolev space (vid. Section A.4)

H1(Ωi) =
{
v : v ∈ L2(Ωi), ∇v ∈ L2(Ωi)

3
}
, (D.164)

which is a Hilbert space and has the norm

‖v‖H1(Ωi) =
(
‖v‖2

L2(Ωi)
+ ‖∇v‖2

L2(Ωi)3

)1/2

. (D.165)

For the exterior problem defined on the unbounded domain Ωe, on the other hand, we

introduce the weighted Sobolev space (cf. Nédélec 2001)

W 1(Ωe) =

{
v :

v

(1 + r2)1/2
∈ L2(Ωe),

∂v

∂xi
∈ L2(Ωe) ∀i ∈ {1, 2, 3}

}
, (D.166)

where r = |x|. If W 1(Ωe) is provided with the norm

‖v‖W 1(Ωe) =

(∥∥∥∥
v

(1 + r2)1/2

∥∥∥∥
2

L2(Ωe)

+ ‖∇v‖2
L2(Ωe)3

)1/2

, (D.167)

then it becomes a Hilbert space. The restriction to any bounded open set B ⊂ Ωe of the

functions of W 1(Ωe) belongs to H1(B), i.e., we have the inclusion W 1(Ωe) ⊂ H1
loc(Ωe),

and the functions in these two spaces differ only by their behavior at infinity. We remark

that the spaceW 1(Ωe) contains the constant functions and all the functions ofH1
loc(Ωe) that

satisfy the decaying condition (D.5).

When dealing with Sobolev spaces, even a strong Lipschitz boundary Γ ∈ C0,1 is

admissible. In this case, and due the trace theorem (A.531), if v ∈ H1(Ωi) or v ∈ W 1(Ωe),

then the trace of v fulfills

γ0v = v|Γ ∈ H1/2(Γ). (D.168)

Moreover, the trace of the normal derivative can be also defined, and it holds that

γ1v =
∂v

∂n
|Γ ∈ H−1/2(Γ). (D.169)
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D.9.2 Regularity of the integral operators

The boundary integral operators (D.63), (D.64), (D.65), and (D.66) can be character-

ized as linear and continuous applications such that

S : H−1/2+s(Γ) −→ H1/2+s(Γ), D : H1/2+s(Γ) −→ H3/2+s(Γ), (D.170)

D∗ : H−1/2+s(Γ) −→ H1/2+s(Γ), N : H1/2+s(Γ) −→ H−1/2+s(Γ). (D.171)

This result holds for any s ∈ R if the boundary Γ is of class C∞, which can be derived

from the theory of singular integral operators with pseudo-homogeneous kernels (cf., e.g.,

Nédélec 2001). Due the compact injection (A.554), it holds also that the operators

D : H1/2+s(Γ) −→ H1/2+s(Γ) and D∗ : H−1/2+s(Γ) −→ H−1/2+s(Γ) (D.172)

are compact. For a strong Lipschitz boundary Γ ∈ C0,1, on the other hand, these results

hold only when |s| < 1 (cf. Costabel 1988). In the case of more regular boundaries, the

range for s increases, but remains finite. For our purposes we use s = 0, namely

S : H−1/2(Γ) −→ H1/2(Γ), D : H1/2(Γ) −→ H1/2(Γ), (D.173)

D∗ : H−1/2(Γ) −→ H−1/2(Γ), N : H1/2(Γ) −→ H−1/2(Γ), (D.174)

which are all linear and continuous operators, and where the operators D and D∗ are com-

pact. Similarly, we can characterize the single and double layer potentials defined respec-

tively in (D.58) and (D.59) as linear and continuous integral operators such that

S : H−1/2(Γ) −→ W 1(Ωe ∪ Ωi) and D : H1/2(Γ) −→ W 1(Ωe ∪ Ωi). (D.175)

D.9.3 Application to the integral equations

It is not difficult to see that if µ ∈ H1/2(Γ) and ν ∈ H−1/2(Γ) are given, then the trans-

mission problem (D.35) admits a unique solution u ∈ W 1(Ωe∪Ωi), as a consequence of the

integral representation formula (D.47). For the direct perturbation problem (D.8), though,

this is not always the case, as was appreciated in the exterior sphere problem (D.140).

Nonetheless, if the Fredholm alternative applies, then we know that the existence and

uniqueness of the problem can be ensured almost always, i.e., except on a countable set

of values for the impedance.

We consider an impedanceZ ∈ L∞(Γ) and an impedance data function fz ∈ H−1/2(Γ).

In both cases all the continuous functions on Γ are included.

a) First extension by zero

Let us consider the first integral equation of the extension-by-zero alternative (D.103),

which is given in terms of boundary layer potentials, for µ ∈ H1/2(Γ), by

µ

2
+ S(Zµ) −D(µ) = S(fz) in H1/2(Γ). (D.176)

Due the imbedding properties of Sobolev spaces and in the same way as for the full-plane

impedance Laplace problem, it holds that the left-hand side of the integral equation corre-

sponds to an identity and two compact operators, and thus Fredholm’s alternative applies.
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b) Second extension by zero

The second integral equation of the extension-by-zero alternative (D.107) is given in

terms of boundary layer potentials, for µ ∈ H1/2(Γ), by

Z

2
µ−N(µ) +D∗(Zµ) =

fz
2

+D∗(fz) in H−1/2(Γ). (D.177)

The operator N plays the role of the identity and the other terms on the left-hand side are

compact, thus Fredholm’s alternative holds.

c) Continuous impedance

The integral equation of the continuous-impedance alternative (D.115) is given in

terms of boundary layer potentials, for µ ∈ H1/2(Γ), by

−N(µ) +D∗(Zµ) + ZD(µ) − ZS(Zµ) = fz in H−1/2(Γ). (D.178)

Again, the operatorN plays the role of the identity and the remaining terms on the left-hand

side are compact, thus Fredholm’s alternative applies.

d) Continuous value

The integral equation of the continuous-value alternative (D.123) is given in terms of

boundary layer potentials, for ν ∈ H−1/2(Γ), by

ν

2
+ ZS(ν) −D∗(ν) = −fz in H−1/2(Γ). (D.179)

On the left-hand side we have an identity operator and the remaining operators are compact,

thus Fredholm’s alternative holds.

e) Continuous normal derivative

The integral equation of the continuous-normal-derivative alternative (D.131) is given

in terms of boundary layer potentials, for µ ∈ H1/2(Γ), by

Z

2
µ−N(µ) + ZD(µ) = fz in H−1/2(Γ). (D.180)

As before, Fredholm’s alternative again applies, since on the left-hand side we have the

operator N and two compact operators.

D.9.4 Consequences of Fredholm’s alternative

Since the Fredholm alternative applies to each integral equation, therefore it applies

also to the exterior differential problem (D.8) due the integral representation formula. The

existence of the exterior problem’s solution is thus determined by its uniqueness, and the

impedances Z ∈ C for which the uniqueness is lost constitute a countable set, which

we call the impedance spectrum of the exterior problem and denote it by σZ . The exis-

tence and uniqueness of the solution is therefore ensured almost everywhere. The same

holds obviously for the solution of the integral equation, whose impedance spectrum we

denote by ςZ . Since each integral equation is derived from the exterior problem, it holds

that σZ ⊂ ςZ . The converse, though, is not necessarily true and depends on each particular

integral equation. In any way, the set ςZ \ σZ is at most countable.
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Fredholm’s alternative applies as much to the integral equation itself as to its adjoint

counterpart, and equally to their homogeneous versions. Moreover, each integral equation

solves at the same time an exterior and an interior differential problem. The loss of unique-

ness of the integral equation’s solution appears when the impedance Z is an eigenvalue

of some associated interior problem, either of the homogeneous integral equation or of its

adjoint counterpart. Such an impedance Z is contained in ςZ .

The integral equation (D.105) is associated with the extension by zero (D.98), for

which no eigenvalues appear. Nevertheless, its adjoint integral equation (D.125) of the

continuous value is associated with the interior problem (D.118), whose solution is unique

for all Z 6= 0.

The integral equation (D.108) is also associated with the extension by zero (D.98),

for which no eigenvalues appear. Nonetheless, its adjoint integral equation (D.133) of

the continuous normal derivative is associated with the interior problem (D.126), whose

solution is unique for all Z, without restriction.

The integral equation (D.117) of the continuous impedance is self-adjoint and is asso-

ciated with the interior problem (D.109), which has a countable quantity of eigenvalues Z.

Let us consider now the transmission problem generated by the homogeneous exterior

problem 



Find ue : Ωe → C such that

∆ue = 0 in Ωe,

−∂ue
∂n

+ Zue = 0 on Γ,

+ Decaying condition as |x| → ∞,

(D.181)

and the associated homogeneous interior problem




Find ui : Ωi → C such that

∆ui = 0 in Ωi,

∂ui
∂n

+ Zui = 0 on Γ,

(D.182)

where the asymptotic decaying condition is as usual given by (D.5), and where the unit

normal n always points outwards of Ωe.

As in the two-dimensional case, it holds again that the integral equations for this trans-

mission problem have either the same left-hand side or are mutually adjoint to all other

possible alternatives of integral equations that can be built for the exterior problem (D.8),

and in particular to all the alternatives that were mentioned in the last subsection. The

eigenvalues Z of the homogeneous interior problem (D.182) are thus also contained in ςZ .

We remark that additional alternatives for integral representations and equations based

on non-homogeneous versions of the problem (D.182) can be also derived for the exterior

impedance problem (cf. Ha-Duong 1987).
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The determination of the impedance spectrum σZ of the exterior problem (D.8) is not

so easy, but can be achieved for simple geometries where an analytic solution is known.

In conclusion, the exterior problem (D.8) admits a unique solution u if Z /∈ σZ , and

each integral equation admits a unique solution, either µ or ν, if Z /∈ ςZ .

D.10 Variational formulation

To solve a particular integral equation we convert it to its variational or weak formu-

lation, i.e., we solve it with respect to certain test functions in a bilinear (or sesquilinear)

form. Basically, the integral equation is multiplied by the (conjugated) test function and

then the equation is integrated over the boundary of the domain. The test functions are

taken in the same function space as the solution of the integral equation.

a) First extension by zero

The variational formulation for the first integral equation (D.176) of the extension-by-

zero alternative searches µ ∈ H1/2(Γ) such that ∀ϕ ∈ H1/2(Γ)
〈µ

2
+ S(Zµ) −D(µ), ϕ

〉
=
〈
S(fz), ϕ

〉
. (D.183)

b) Second extension by zero

The variational formulation for the second integral equation (D.177) of the extension-

by-zero alternative searches µ ∈ H1/2(Γ) such that ∀ϕ ∈ H1/2(Γ)
〈
Z

2
µ−N(µ) +D∗(Zµ), ϕ

〉
=

〈
fz
2

+D∗(fz), ϕ

〉
. (D.184)

c) Continuous impedance

The variational formulation for the integral equation (D.178) of the alternative of the

continuous-impedance searches µ ∈ H1/2(Γ) such that ∀ϕ ∈ H1/2(Γ)
〈
−N(µ) +D∗(Zµ) + ZD(µ) − ZS(Zµ), ϕ

〉
=
〈
fz, ϕ

〉
. (D.185)

d) Continuous value

The variational formulation for the integral equation (D.179) of the continuous-value

alternative searches ν ∈ H−1/2(Γ) such that ∀ψ ∈ H−1/2(Γ)
〈ν

2
+ ZS(ν) −D∗(ν), ψ

〉
=
〈
− fz, ψ

〉
. (D.186)

e) Continuous normal derivative

The variational formulation for the integral equation (D.180) of the continuous-normal-

derivative alternative searches µ ∈ H1/2(Γ) such that ∀ϕ ∈ H1/2(Γ)
〈
Z

2
µ−N(µ) + ZD(µ), ϕ

〉
=
〈
fz, ϕ

〉
. (D.187)
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D.11 Numerical discretization

D.11.1 Discretized function spaces

The exterior problem (D.8) is solved numerically with the boundary element method

by employing a Galerkin scheme on the variational formulation of an integral equation.

We use on the boundary surface Γ Lagrange finite elements of type either P1 or P0. The

surface Γ is approximated by the triangular mesh Γh, composed by T flat triangles Tj ,

for 1 ≤ j ≤ T , and I nodes ri ∈ R
3, 1 ≤ i ≤ I . The triangles have a diameter less or

equal than h, and their vertices or corners, i.e., the nodes ri, are on top of Γ, as shown in

Figure D.5. The diameter of a triangle K is given by

diam(K) = sup
x,y∈K

|y − x|. (D.188)

Γ

Γh

FIGURE D.5. Mesh Γh, discretization of Γ.

The function space H1/2(Γ) is approximated using the conformal space of continuous

piecewise linear polynomials with complex coefficients

Qh =
{
ϕh ∈ C0(Γh) : ϕh|Tj

∈ P1(C), 1 ≤ j ≤ T
}
. (D.189)

The space Qh has a finite dimension I , and we describe it using the standard base functions

for finite elements of type P1, denoted by {χj}Ij=1 and illustrated in Figure D.6. The base

function χj is associated with the node rj and has its support suppχj on the triangles that

have rj as one of their vertices. On rj it has a value of one and on the opposed edges of

the triangles its value is zero, being linearly interpolated in between and zero otherwise.

Γh

χj

rj0

1

FIGURE D.6. Base function χj for finite elements of type P1.
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The function space H−1/2(Γ), on the other hand, is approximated using the conformal

space of piecewise constant polynomials with complex coefficients

Ph =
{
ψh : Γh → C | ψh|Tj

∈ P0(C), 1 ≤ j ≤ T
}
. (D.190)

The space Ph has a finite dimension T , and is described using the standard base functions

for finite elements of type P0, denoted by {κj}Tj=1, shown in Figure D.7, and expressed as

κj(x) =

{
1 if x ∈ Tj,

0 if x /∈ Tj.
(D.191)

Γh

κj

Tj

0

1

FIGURE D.7. Base function κj for finite elements of type P0.

In virtue of this discretization, any function ϕh ∈ Qh or ψh ∈ Ph can be expressed as

a linear combination of the elements of the base, namely

ϕh(x) =
I∑

j=1

ϕj χj(x) and ψh(x) =
T∑

j=1

ψj κj(x) for x ∈ Γh, (D.192)

where ϕj, ψj ∈ C. The solutions µ ∈ H1/2(Γ) and ν ∈ H−1/2(Γ) of the variational

formulations can be therefore approximated respectively by

µh(x) =
I∑

j=1

µj χj(x) and νh(x) =
T∑

j=1

νj κj(x) for x ∈ Γh, (D.193)

where µj, νj ∈ C. The function fz can be also approximated by

fhz (x) =
I∑

j=1

fj χj(x) for x ∈ Γh, with fj = fz(rj), (D.194)

or

fhz (x) =
T∑

j=1

fj κj(x) for x ∈ Γh, with fj =
fz(r

j
1) + fz(r

j
2) + fz(r

j
3)

3
, (D.195)

depending on whether the original integral equation is stated in H1/2(Γ) or in H−1/2(Γ).

We denote by r
j
d , for d ∈ {1, 2, 3}, the three vertices of triangle Tj .
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D.11.2 Discretized integral equations

a) First extension by zero

To see how the boundary element method operates, we apply it to the first integral equa-

tion of the extension-by-zero alternative, i.e., to the variational formulation (D.183). We

characterize all the discrete approximations by the index h, including also the impedance

and the boundary layer potentials. The numerical approximation of (D.183) leads to the

discretized problem that searches µh ∈ Qh such that ∀ϕh ∈ Qh〈µh
2

+ Sh(Zhµh) −Dh(µh), ϕh

〉
=
〈
Sh(f

h
z ), ϕh

〉
. (D.196)

Considering the decomposition of µh in terms of the base {χj} and taking as test functions

the same base functions, ϕh = χi for 1 ≤ i ≤ I , yields the discrete linear system

I∑

j=1

µj

(
1

2
〈χj, χi〉 + 〈Sh(Zhχj), χi〉 − 〈Dh(χj), χi〉

)
=

I∑

j=1

fj 〈Sh(χj), χi〉. (D.197)

This constitutes a system of linear equations that can be expressed as a linear matrix system:
{

Find µ ∈ C
I such that

Mµ = b.
(D.198)

The elements mij of the matrix M are given by

mij =
1

2
〈χj, χi〉 + 〈Sh(Zhχj), χi〉 − 〈Dh(χj), χi〉 for 1 ≤ i, j ≤ I, (D.199)

and the elements bi of the vector b by

bi =
〈
Sh(f

h
z ), χi

〉
=

I∑

j=1

fj 〈Sh(χj), χi〉 for 1 ≤ i ≤ I. (D.200)

The discretized solution uh, which approximates u, is finally obtained by discretizing

the integral representation formula (D.104) according to

uh = Dh(µh) − Sh(Zhµh) + Sh(fhz ), (D.201)

which, more specifically, can be expressed as

uh =
I∑

j=1

µj
(
Dh(χj) − Sh(Zhχj)

)
+

I∑

j=1

fj Sh(χj). (D.202)

By proceeding in the same way, the discretization of all the other alternatives of integral

equations can be also expressed as a linear matrix system like (D.198). The resulting

matrix M is in general complex, full, non-symmetric, and with dimensions I × I for

elements of type P1 and T × T for elements of type P0. The right-hand side vector b is

complex and of size either I or T . The boundary element calculations required to compute

numerically the elements of M and b have to be performed carefully, since the integrals

that appear become singular when the involved triangles are coincident, or when they have

a common vertex or edge, due the singularity of the Green’s function at its source point.
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b) Second extension by zero

In the case of the second integral equation of the extension-by-zero alternative, i.e., of

the variational formulation (D.184), the elements mij that constitute the matrix M of the

linear system (D.198) are given by

mij =
1

2
〈Zhχj, χi〉 − 〈Nh(χj), χi〉 + 〈D∗

h(Zhχj), χi〉 for 1 ≤ i, j ≤ I, (D.203)

whereas the elements bi of the vector b are expressed as

bi =
I∑

j=1

fj

(
1

2
〈χj, χi〉 + 〈D∗

h(Zhχj), χi〉
)

for 1 ≤ i ≤ I. (D.204)

The discretized solution uh is again computed by (D.202).

c) Continuous impedance

In the case of the continuous-impedance alternative, i.e., of the variational formula-

tion (D.185), the elements mij that constitute the matrix M of the linear system (D.198)

are given, for 1 ≤ i, j ≤ I , by

mij = −〈Nh(χj), χi〉+ 〈D∗
h(Zhχj), χi〉+ 〈ZhDh(χj), χi〉 − 〈ZhSh(Zhχj), χi〉, (D.205)

whereas the elements bi of the vector b are expressed as

bi =
I∑

j=1

fj 〈χj, χi〉 for 1 ≤ i ≤ I. (D.206)

It can be observed that for this particular alternative the matrix M turns out to be symmet-

ric, since the integral equation is self-adjoint. The discretized solution uh, due (D.116), is

then computed by

uh =
I∑

j=1

µj
(
Dh(χj) − Sh(Zhχj)

)
. (D.207)

d) Continuous value

In the case of the continuous-value alternative, that is, of the variational formula-

tion (D.186), the elements mij that constitute the matrix M , now of the linear system
{

Find ν ∈ C
T such that

Mν = b,
(D.208)

are given by

mij =
1

2
〈κj, κi〉 + 〈ZhSh(κj), κi〉 − 〈D∗

h(κj), κi〉 for 1 ≤ i, j ≤ T, (D.209)

whereas the elements bi of the vector b are expressed as

bi = −
T∑

j=1

fj 〈κj, κi〉 for 1 ≤ i ≤ T. (D.210)
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The discretized solution uh, due (D.124), is then computed by

uh = −
T∑

j=1

νj Sh(κj). (D.211)

e) Continuous normal derivative

In the case of the continuous-normal-derivative alternative, i.e., of the variational for-

mulation (D.187), the elementsmij that conform the matrix M of the linear system (D.198)

are given by

mij =
1

2
〈Zhχj, χi〉 − 〈Nh(χj), χi〉 + 〈ZhDh(χj), χi〉 for 1 ≤ i, j ≤ I, (D.212)

whereas the elements bi of the vector b are expressed as

bi =
I∑

j=1

fj 〈χj, χi〉 for 1 ≤ i ≤ I. (D.213)

The discretized solution uh, due (D.132), is then computed by

uh =
I∑

j=1

µj Dh(χj). (D.214)

D.12 Boundary element calculations

D.12.1 Geometry

The boundary element calculations build the elements of the matrix M resulting from

the discretization of the integral equation, i.e., from (D.198) or (D.208). They permit thus to

compute numerically expressions like (D.199). To evaluate the appearing singular integrals,

we use the semi-numerical methods described in the report of Bendali & Devys (1986).

We consider the elemental interactions between two triangles TK and TL of a mesh Γh.

The unit normal points always inwards of the domain encompassed by the mesh Γh.

We denote the triangles more simply just as K = TK and L = TL. As depicted in

Figure D.8, the following notation is used:

• |K| denotes the area of triangle K.

• |L| denotes the area of triangle L.

• rK1 , r
K
2 , r

K
3 denote the ordered vertices or corners of triangle K.

• rL1 , r
L
2 , r

L
3 denote the ordered vertices or corners of triangle L.

• nK ,nL denote the unit normals of triangles K and L (oriented with the vertices).

The vertices of the triangles are obtained by renumbering locally the nodes ri, 1 ≤ i ≤ I .

Furthermore, as shown in Figure D.9, we also use the notation:

• hK1 , hK2 , hK3 denote the heights of triangle K.

• hL1 , hL2 , hL3 denote the heights of triangle L.

• τK1 , τ
K
2 , τ

K
3 denote the unit edge tangents of triangle K.
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K

L

O

nK

nL

rK
1

rK
2

rL
1

rL
2

rK
3

rL
3

FIGURE D.8. Vertices and unit normals of triangles K and L.

• τL1 , τ
L
2 , τ

L
3 denote the unit edge tangents of triangle L.

• νK1 ,ν
K
2 ,ν

K
3 denote the unit edge normals of triangle K.

• νL1 ,ν
L
2 ,ν

L
3 denote the unit edge normals of triangle L.

The unit edge tangents and normals are located on the same plane as the respective triangle.

K

νK
1

rK
1

rK
2

rL
1

rL
2

rK
3

rL
3

hK
1

hK
3

hK
2

L

hL
1 hL

3

hL
2

τK
2

τK
1

νK
2

νK
3

τK
3 νL

2

τL
2

νL
1

τL
1

τL
3

νL
3

FIGURE D.9. Heights and unit edge normals and tangents of triangles K and L.

For the parametric description of the triangles, shown in Figure D.10, we take into

account the notation:

• r(x) denotes a variable location on triangle K (dependent on variable x).

• r(y) denotes a variable location on triangle L (dependent on variable y).
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• rKc , r
L
d denote the vertices of triangles K and L, being c, d ∈ {1, 2, 3}.

Triangle K can be parametrically described by

r(x) = rKc + sc ν
K
c + pcτ

K
c , 0 ≤ sc ≤ hKc , c ∈ {1, 2, 3}, (D.215)

where

− s1

hK1
(rK1 − rK2 ) · τK1 ≤ p1 ≤

s1

hK1
(rK3 − rK1 ) · τK1 , (D.216)

− s2

hK2
(rK2 − rK3 ) · τK2 ≤ p2 ≤

s2

hK2
(rK1 − rK2 ) · τK2 , (D.217)

− s3

hK3
(rK3 − rK1 ) · τK3 ≤ p3 ≤

s3

hK3
(rK2 − rK3 ) · τK3 . (D.218)

Similarly, triangle L can be parametrically described by

r(y) = rLd + td νLd + qdτ
L
d , 0 ≤ td ≤ hLd , d ∈ {1, 2, 3}, (D.219)

where

− t1
hL1

(rL1 − rL2 ) · τL1 ≤ q1 ≤
t1
hL1

(rL3 − rL1 ) · τL1 , (D.220)

− t2
hL2

(rL2 − rL3 ) · τL2 ≤ q2 ≤
t2
hL2

(rL1 − rL2 ) · τL2 , (D.221)

− t3
hL3

(rL3 − rL1 ) · τL3 ≤ q3 ≤
t3
hL3

(rL2 − rL3 ) · τL3 . (D.222)

Thus the parameters pc, sc, qd, and td can be expressed as

pc =
(
r(x) − rKc

)
· τKc , c ∈ {1, 2, 3}, (D.223)

sc =
(
r(x) − rKc

)
· νKc , c ∈ {1, 2, 3}, (D.224)

qd =
(
r(y) − rLd

)
· τLd , d ∈ {1, 2, 3}. (D.225)

td =
(
r(y) − rLd

)
· νLd , d ∈ {1, 2, 3}. (D.226)

The areas of the triangles K and L are given by

|K| =
1

2
hK1 |rK3 − rK2 | =

1

2
hK2 |rK3 − rK1 | =

1

2
hK3 |rK2 − rK1 |, (D.227)

|L| =
1

2
hL1 |rL3 − rL2 | =

1

2
hL2 |rL3 − rL1 | =

1

2
hL3 |rL2 − rL1 |. (D.228)

The unit normals nK and nL can be computed as

nK =
τK1 × τK2
|τK1 × τK2 | =

τK2 × τK3
|τK2 × τK3 | =

τK3 × τK1
|τK3 × τK1 | , (D.229)

nL =
τL1 × τL2
|τL1 × τL2 |

=
τL2 × τL3
|τL2 × τL3 |

=
τL3 × τL1
|τL3 × τL1 |

. (D.230)

For the unit edge tangents τKc and τLd we have that

τK1 =
rK3 − rK2
|rK3 − rK2 | , τK2 =

rK1 − rK3
|rK1 − rK3 | , τK3 =

rK2 − rK1
|rK2 − rK1 | , (D.231)
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τL1 =
rL3 − rL2
|rL3 − rL2 |

, τL2 =
rL1 − rL3
|rL1 − rL3 |

, τL3 =
rL2 − rL1
|rL2 − rL1 |

, (D.232)

and for the unit edge normals νKc and νLd , that

νKc = τKc × nK , c ∈ {1, 2, 3}, (D.233)

νLd = τLd × nL, d ∈ {1, 2, 3}. (D.234)

K

νK
c

rK
c

rL
d

hK
c

L
hL

d

νL
d

r(x)

sc

r(y)

tdτK
c

τL
d

qd

pc

FIGURE D.10. Parametric description of triangles K and L.

The triangles K and L can be also parametrically described using barycentric coordi-

nates λKc and λLd , i.e.,

r(x) =
3∑

c=1

λKc rKc ,
3∑

c=1

λKc = 1, 0 ≤ λKc ≤ 1, (D.235)

r(y) =
3∑

d=1

λLd r
L
d ,

3∑

d=1

λLd = 1, 0 ≤ λLd ≤ 1. (D.236)

For the elemental interactions between a point x on triangle K and a point y on trian-

gle L, the following notation is also used:

• R denotes the vector pointing from the point x towards the point y.

• R denotes the distance between the points x and y.

These values are given by

R = r(y) − r(x), (D.237)

R = |R| = |y − x|. (D.238)

For the singular integral calculations, when considering the point x as a parameter, the

following notation is also used (vid. Figure D.11):

• RL
1 ,R

L
2 ,R

L
3 denote the vectors pointing from x towards the vertices of triangleL.
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• RL
1 , R

L
2 , R

L
3 denote the distances from x to the vertices of triangle L.

• CL
1 , C

L
2 , C

L
3 denote the edges or sides of triangle L.

• dL denotes the signed distance from x to the plane that contains triangle L.

• ΘL denotes the solid angle formed by the vectors RL
1 , RL

2 , and RL
3 , through which

triangle L is seen from point x (−2π ≤ ΘL ≤ 2π).

L

RL
1

RL
2

RL
3

x ΘL

y

CL
1

CL
2

CL
3

FIGURE D.11. Geometric characteristics for the singular integral calculations.

Thus on triangle L the following holds:

RL
d = rLd − r(x), RL

d = |RL
d |, d ∈ {1, 2, 3}. (D.239)

Likewise as before, we have for d ∈ {1, 2, 3} that

R = RL
d + td νLd + qd τLd , (D.240)

td =
(
R − RL

d

)
· νLd , (D.241)

qd =
(
R − RL

d

)
· τLd . (D.242)

In particular, the edges CL
d are parametrically described by

R = RL
d + hLd νLd + qd τLd . (D.243)

The signed distance dL is constant on L and is characterized by

dL = R · nL = RL
1 · nL = RL

2 · nL = RL
3 · nL. (D.244)

Finally, the solid angle ΘL can be computed by using the formula described in the article

of Van Oosterom & Strackee (1983):

tan

(
ΘL

2

)
=

[
RL

1 RL
2 RL

3

]

RL
1R

L
2R

L
3 + (RL

1 · RL
2 )RL

3 + (RL
1 · RL

3 )RL
2 + (RL

2 · RL
3 )RL

1

, (D.245)

where −2π ≤ ΘL ≤ 2π and where the triple scalar product
[
RL

1 RL
2 RL

3

]
= RL

1 · (RL
2 × RL

3 ) = RL
2 · (RL

3 × RL
1 ) = RL

3 · (RL
1 × RL

2 ) (D.246)

represents the signed volume of the parallelepiped spanned by the vectors RL
1 , RL

2 , and RL
3 .
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D.12.2 Boundary element integrals

The boundary element integrals are the basic integrals needed to perform the boundary

element calculations. In our case, by considering a, b ∈ {0, 1} and c, d ∈ {1, 2, 3}, they

can be expressed as

ZAc,da,b =

∫

K

∫

L

(
sc
hKc

)a(
td
hLd

)b
G(x,y) dL(y) dK(x), (D.247)

ZBc,d
a,b =

∫

K

∫

L

(
sc
hKc

)a(
td
hLd

)b
∂G

∂ny

(x,y) dL(y) dK(x), (D.248)

ZCc,d
a,b =

∫

K

∫

L

(
sc
hKc

)a(
td
hLd

)b
∂G

∂nx

(x,y) dL(y) dK(x), (D.249)

where the parameters sc and td depend respectively on the variables x and y, as stated

in (D.224) and (D.226). When the triangles have to be specified, i.e., ifK = Ti and L = Tj ,

then we state it respectively as ZAc,da,b(Ti, Tj), ZB
c,d
a,b(Ti, Tj), or ZCc,d

a,b(Ti, Tj), e.g.,

ZAc,da,b(Ti, Tj) =

∫

Ti

∫

Tj

(
sc
hKc

)a(
td
hLd

)b
G(x,y) dγ(y) dγ(x). (D.250)

It should be observed that (D.249) can be expressed in terms of (D.248):

ZCc,d
a,b(Ti, Tj) = ZBd,c

b,a(Tj, Ti), (D.251)

since the involved operators are self-adjoint. It occurs therefore that all the integrals that

stem from the numerical discretization can be expressed in terms of the two basic boundary

element integrals (D.247) and (D.248).

For this to hold true, the impedance is discretized as a piecewise constant function Zh,

which on each triangle Tj adopts a constant value Zj ∈ C, e.g.,

Zh|Tj
= Zj =

1

3

(
Z
(
r
Tj

1

)
+ Z

(
r
Tj

2

)
+ Z

(
r
Tj

3

))
. (D.252)

Now we can compute all the integrals of interest. We begin with the ones that are

related with the finite elements of type P0, which are easier. It can be observed that

〈κj, κi〉 =

∫

Γh

κj(x)κi(x) dγ(x) =

{
|Ti| if j = i,

0 if j 6= i.
(D.253)

We have likewise that

〈ZhSh(κj), κi〉 =

∫

Γh

∫

Γh

Zh(x)G(x,y)κj(y)κi(x) dγ(y) dγ(x)

= ZiZA
c,d
0,0(Ti, Tj), (D.254)

which is independent of c, d ∈ {1, 2, 3}. It holds similarly that

〈D∗
h(κj), κi〉 =

∫

Γh

∫

Γh

∂G

∂nx

(x,y)κj(y)κi(x) dγ(y) dγ(x) = ZBd,c
0,0(Tj, Ti), (D.255)
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which is again independent of c, d ∈ {1, 2, 3}. We consider now the integrals for the finite

elements of type P1. By taking as zero the sum over an empty set, we have that

〈χj, χi〉 =

∫

Γh

χj(x)χi(x) dγ(x) =





∑

K∋ri

|K|
6

if j = i,

∑

K∋ri,rj

|K|
12

if i 6= j.
(D.256)

In the same way, it occurs that

〈Zhχj, χi〉 =





∑

K∋ri

ZK |K|
6

if j = i,

∑

K∋ri,rj

ZK |K|
12

if i 6= j.
(D.257)

We have also that

〈Sh(χj), χi〉 =

∫

Γh

∫

Γh

G(x,y)χj(y)χi(x) dγ(y) dγ(x)

=
∑

K∋ri

∑

L∋rj

(
ZA

cKi , d
L
j

0,0 − ZA
cKi , d

L
j

0,1 − ZA
cKi , d

L
j

1,0 + ZA
cKi , d

L
j

1,1

)
, (D.258)

where the local subindexes cKi and dLj are always such that

rKcKi
= ri and rLdL

j
= rj, (D.259)

and where we use the more simplified notation

ZA
cKi , d

L
j

a,b = ZA
cKi , d

L
j

a,b (K,L). (D.260)

Additionally it holds that

〈Sh(Zhχj), χi〉 =

∫

Γh

∫

Γh

Zh(y)G(x,y)χj(y)χi(x) dγ(y) dγ(x)

=
∑

K∋ri

∑

L∋rj

ZL

(
ZA

cKi , d
L
j

0,0 − ZA
cKi , d

L
j

0,1 − ZA
cKi , d

L
j

1,0 + ZA
cKi , d

L
j

1,1

)
. (D.261)

Furthermore we see that

〈ZhSh(Zhχj), χi〉 =

∫

Γh

∫

Γh

Zh(x)Zh(y)G(x,y)χj(y)χi(x) dγ(y) dγ(x)

=
∑

K∋ri

∑

L∋rj

ZKZL

(
ZA

cKi , d
L
j

0,0 − ZA
cKi , d

L
j

0,1 − ZA
cKi , d

L
j

1,0 + ZA
cKi , d

L
j

1,1

)
. (D.262)

Likewise it occurs that

〈Dh(χj), χi〉 =

∫

Γh

∫

Γh

∂G

∂ny

(x,y)χj(y)χi(x) dγ(y) dγ(x)

=
∑

K∋ri

∑

L∋rj

(
ZB

cKi , d
L
j

0,0 − ZB
cKi , d

L
j

0,1 − ZB
cKi , d

L
j

1,0 + ZB
cKi , d

L
j

1,1

)
. (D.263)
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It holds moreover that

〈ZhDh(χj), χi〉 =

∫

Γh

∫

Γh

Zh(x)
∂G

∂ny

(x,y)χj(y)χi(x) dγ(y) dγ(x)

=
∑

K∋ri

∑

L∋rj

ZK

(
ZB

cKi , d
L
j

0,0 − ZB
cKi , d

L
j

0,1 − ZB
cKi , d

L
j

1,0 + ZB
cKi , d

L
j

1,1

)
. (D.264)

We have also that

〈D∗
h(χj), χi〉 =

∫

Γh

∫

Γh

∂G

∂nx

(x,y)χj(y)χi(x) dγ(y) dγ(x)

=
∑

K∋ri

∑

L∋rj

(
ZB

dL
j , c

K
i

0,0 − ZB
dL

j , c
K
i

1,0 − ZB
dL

j , c
K
i

0,1 + ZB
dL

j , c
K
i

1,1

)
, (D.265)

where the change in index order is understood as

ZB
dL

j , c
K
i

b,a = ZB
dL

j , c
K
i

b,a (L,K). (D.266)

Similarly it occurs that

〈D∗
h(Zhχj), χi〉 =

∫

Γh

∫

Γh

Zh(y)
∂G

∂nx

(x,y)χj(y)χi(x) dγ(y) dγ(x)

=
∑

K∋ri

∑

L∋rj

ZL

(
ZB

dL
j , c

K
i

0,0 − ZB
dL

j , c
K
i

1,0 − ZB
dL

j , c
K
i

0,1 + ZB
dL

j , c
K
i

1,1

)
. (D.267)

And finally, for the hypersingular term we have that

〈Nh(χj), χi〉 = −
∫

Γh

∫

Γh

G(x,y)
(
∇χj(y) × ny

)
·
(
∇χi(x) × nx

)
dγ(y) dγ(x)

= −
∑

K∋ri

∑

L∋rj

ZA
cKi , d

L
j

0,0

hK
cKi
hL
dL

j

(
νKcKi

× nK

)
·
(
νLdL

j
× nL

)
. (D.268)

It remains now to compute the integrals (D.247) and (D.248), which are calculated in

two steps with a semi-numerical integration, i.e., the singular parts are calculated analyti-

cally and the other parts numerically. First the internal integral for y is computed, then the

external one for x. This can be expressed as

ZAc,da,b =

∫

K

(
sc
hKc

)a
ZF d

b (x) dK(x), (D.269)

ZF d
b (x) =

∫

L

(
td
hLd

)b
G(x,y) dL(y), (D.270)

and

ZBc,d
a,b =

∫

K

(
sc
hKc

)a
ZGd

b(x) dK(x), (D.271)

ZGd
b(x) =

∫

L

(
td
hLd

)b
∂G

∂ny

(x,y) dL(y). (D.272)
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This kind of integrals can be also used to compute the terms associated with the dis-

cretized solution uh. Using an analogous notation as in (D.250), we have that

Sh(κj) =

∫

Γh

G(x,y)κj(y) dγ(y) = ZF d
0 (Tj)(x), (D.273)

which is independent of d ∈ {1, 2, 3}. Similarly it holds that

Sh(χj) =

∫

Γh

G(x,y)χj(y) dγ(y) =
∑

L∋rj

(
ZF

dL
j

0 (L)(x) − ZF
dL

j

1 (L)(x)

)
, (D.274)

and

Sh(Zhχj) =

∫

Γh

Zh(y)G(x,y)χj(y) dγ(y) =
∑

L∋rj

ZL

(
ZF

dL
j

0 (L)(x) − ZF
dL

j

1 (L)(x)

)
.

(D.275)

The remaining term is computed as

Dh(χj) =

∫

Γh

∂G

∂ny

(x,y)χj(y) dγ(y) =
∑

L∋rj

(
ZG

dL
j

0 (L)(x) − ZG
dL

j

1 (L)(x)

)
. (D.276)

D.12.3 Numerical integration for the non-singular integrals

For the numerical integration of the non-singular integrals of the boundary element

calculations we use three-point and six-point Gauss-Lobatto quadrature formulae (cf., e.g.

Cowper 1973, Dunavant 1985). We describe the trianglesK and L by means of barycentric

coordinates as done in (D.235) and (D.236).

a) Three-point Gauss-Lobatto quadrature formulae

As shown in Figure D.12, for the three-point Gauss-Lobatto quadrature we consider,

respectively on the triangles K and L, the points

x1 =
2

3
rK1 +

1

6
rK2 +

1

6
rK3 , y1 =

2

3
rL1 +

1

6
rL2 +

1

6
rL3 , (D.277)

x2 =
1

6
rK1 +

2

3
rK2 +

1

6
rK3 , y2 =

1

6
rL1 +

2

3
rL2 +

1

6
rL3 , (D.278)

x3 =
1

6
rK1 +

1

6
rK2 +

2

3
rK3 , y3 =

1

6
rL1 +

1

6
rL2 +

2

3
rL3 . (D.279)

When considering a function ϕ : L→ C, the quadrature formula is given by

∫

L

(
td
hLd

)b
ϕ(y) dL(y) ≈ |L|

3

3∑

q=1

{(
yq − rLd

)
· νLd

hLd

}b

ϕ(yq). (D.280)

An equivalent formula is used when considering a function φ : K → C, given by

∫

K

(
sc
hKc

)a
φ(x) dK(x) ≈ |K|

3

3∑

p=1

{(
xp − rKc

)
· νKc

hKc

}a

φ(xp). (D.281)
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The Gauss-Lobatto quadrature formula can be extended straightforwardly to a function of

two variables, Φ : K × L→ C, using both formulas shown above. Therefore
∫

K

∫

L

(
sc
hKc

)a(
td
hLd

)b
Φ(x,y) dL(y)dK(x)

≈ |K| |L|
9

3∑

p=1

3∑

q=1

{(
xp − rKc

)
· νKc

hKc

}a{(
yq − rLd

)
· νLd

hLd

}b

Φ(xp,yq). (D.282)

K

rK
1

rK
2

rL
1

rL
2

rK
3

rL
3

Lx1
x3

x2

y2y3

y1

FIGURE D.12. Evaluation points for the three-point Gauss-Lobatto quadrature formulae.

b) Six-point Gauss-Lobatto quadrature formulae

For the six-point Gauss-Lobatto quadrature we consider respectively on the trianglesK

and L, as depicted in Figure D.13, the points

x1 = α1r
K
1 + α2r

K
2 + α2r

K
3 , y1 = α1r

L
1 + α2r

L
2 + α2r

L
3 , (D.283)

x2 = α2r
K
1 + α1r

K
2 + α2r

K
3 , y2 = α2r

L
1 + α1r

L
2 + α2r

L
3 , (D.284)

x3 = α2r
K
1 + α2r

K
2 + α1r

K
3 , y3 = α2r

L
1 + α2r

L
2 + α1r

L
3 , (D.285)

x̃1 = β1r
K
1 + β2r

K
2 + β2r

K
3 , ỹ1 = β1r

L
1 + β2r

L
2 + β2r

L
3 , (D.286)

x̃2 = β2r
K
1 + β1r

K
2 + β2r

K
3 , ỹ2 = β2r

L
1 + β1r

L
2 + β2r

L
3 , (D.287)

x̃3 = β2r
K
1 + β2r

K
2 + β1r

K
3 , ỹ3 = β2r

L
1 + β2r

L
2 + β1r

L
3 , (D.288)

where

α1 = 0.816847572980459, α2 = 0.091576213509771, (D.289)

β1 = 0.108103018168070, β2 = 0.445948490915965. (D.290)

The weights are given by

αw = 0.109951743655322, βw = 0.223381589678011. (D.291)
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When considering a function ϕ : L→ C, the quadrature formula is given by

∫

L

(
td
hLd

)b
ϕ(y) dL(y) ≈ αw|L|

3∑

q=1

{(
yq − rLd

)
· νLd

hLd

}b

ϕ(yq)

+ βw|L|
3∑

q=1

{(
ỹq − rLd

)
· νLd

hLd

}b

ϕ(ỹq). (D.292)

An equivalent formula is used when considering a function φ : K → C, given by

∫

K

(
sc
hKc

)a
φ(x) dK(x) ≈ αw|K|

3∑

p=1

{(
xp − rKc

)
· νKc

hKc

}a

φ(xp)

+ βw|K|
3∑

p=1

{(
x̃p − rKc

)
· νKc

hKc

}a

φ(x̃p). (D.293)

The Gauss-Lobatto quadrature formula can be extended straightforwardly to a function of

two variables, Φ : K × L→ C, using both formulas shown above. Therefore
∫

K

∫

L

(
sc
hKc

)a(
td
hLd

)b
Φ(x,y) dL(y)dK(x)

≈ α2
w|K| |L|

3∑

p=1

3∑

q=1

{(
xp − rKc

)
· νKc

hKc

}a{(
yq − rLd

)
· νLd

hLd

}b

Φ(xp,yq)

+ β2
w|K| |L|

3∑

p=1

3∑

q=1

{(
x̃p − rKc

)
· νKc

hKc

}a{(
ỹq − rLd

)
· νLd

hLd

}b

Φ(x̃p, ỹq)

+ αwβw|K| |L|
3∑

p=1

3∑

q=1

{(
x̃p − rKc

)
· νKc

hKc

}a{(
yq − rLd

)
· νLd

hLd

}b

Φ(x̃p,yq)

+ αwβw|K| |L|
3∑

p=1

3∑

q=1

{(
xp − rKc

)
· νKc

hKc

}a{(
ỹq − rLd

)
· νLd

hLd

}b

Φ(xp, ỹq). (D.294)

K

rK
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rK
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rL
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rL
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Lx1
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x2
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x̃3

x̃2

ỹ3

ỹ1

ỹ2

FIGURE D.13. Evaluation points for the six-point Gauss-Lobatto quadrature formulae.
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c) Overall numerical integration

For the overall numerical integration we consider two different cases to achieve enough

accuracy in the computations and to minimize the calculation time.

If the triangles K and L are not adjacent nor equal, then the integrals on K, (D.269)

and (D.271), and the integrals on L, (D.270) and (D.272), are computed respectively using

three-point Gauss-Lobatto quadrature formulae, i.e., (D.281) and (D.280), since in this

case they are non-singular. Thus, in the whole, the integrals ZAc,da,b and ZBc,d
a,b are calculated

employing (D.282).

On the other hand, if the triangles K and L have at least a common vertex, then the in-

tegrals on K are evaluated using the six-point Gauss-Lobatto quadrature formula (D.293),

while the integrals on L, which become singular, are evaluated using the analytical formu-

lae described next.

D.12.4 Analytical integration for the singular integrals

If the triangles K and L are close together, then the integrals (D.270) and (D.272) are

calculated analytically, treating x as a given parameter. They are specifically given by

ZF d
0 (x) = −

∫

L

1

4πR
dL(y), (D.295)

ZF d
1 (x) = −

∫

L

td
4πRhLd

dL(y), (D.296)

and

ZGd
0(x) =

∫

L

R · nL

4πR3
dL(y), (D.297)

ZGd
1(x) =

∫

L

td
R · nL

4πR3 hLd
dL(y). (D.298)

a) Computation of ZGd
0(x)

The integral (D.297) is closely related with Gauss’s divergence theorem. If we consider

an oriented surface differential element dγ = nLdL(y) seen from point x, then we can

express the solid angle differential element by (cf. Terrasse & Abboud 2006)

dΘ =
R

R3
· dγ =

R · nL

R3
dL(y) = 4π

∂G

∂ny

(x,y) dL(y). (D.299)

Integrating over triangle L yields the solid angle ΘL, as expressed in (D.245), namely

ΘL =

∫

L

dΘ (−2π ≤ ΘL ≤ 2π). (D.300)

The solid angle ΘL is positive when the vectors R and nL point towards the same side

of L. Thus integral (D.297) is obtained by integrating (D.299), which yields

ZGd
0(x) =

∫

L

R · nL

4πR3
dL(y) =

ΘL

4π
. (D.301)
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b) Computation of ZF d
0 (x)

For the integral (D.295) we consider before some vectorial identities and properties.

We have that

∆R =
1

R2

∂

∂R

(
R2∂R

∂R

)
=

2

R
. (D.302)

On the other hand, by using the relation (A.590) with the vector RnL and performing

afterwards a dot product with nL yields

∆R =
∂2R

∂n2
− curl curl(RnL) · nL. (D.303)

Since

∇R =
R

R
and ∇∇R =

1 ⊗ 1

R
− R ⊗ R

R3
, (D.304)

therefore we obtain that

∂R

∂n
=

R · nL

R
and

∂2R

∂n2
=

1

R
− (R · nL)2

R3
. (D.305)

Hence, considering (D.302), (D.303), and (D.305), yields

1

R
= −(R · nL)2

R3
− curl curl(RnL) · nL. (D.306)

This way the integral (D.295) can be rewritten as

ZF d
0 (x) =

∫

L

(R · nL)2

4πR3
dL(y) +

1

4π

∫

L

curl curl(RnL) · nL dL(y). (D.307)

Considering (D.244) and (D.301) for the first integral, and applying to the second one the

curl theorem (A.617), yields

ZF d
0 (x) =

dLΘL

4π
+

1

4π

3∑

m=1

∫

CL
m

curl(RnL) · τLm dC(y). (D.308)

We have additionally, from (A.566), (A.589), and (D.234), that

curl(RnL) · τLm = (∇R× nL) · τLm = −R

R
· (τLm × nL) = −R · νLm

R
. (D.309)

Since R · νLm is constant on CL
m , we can compute it as

R · νLm = (RL
m + hLmνLm) · νLm. (D.310)

Hence (D.308) turns into

ZF d
0 (x) =

dLΘL

4π
− 1

4π

3∑

m=1

(RL
m + hLmνLm) · νLm

∫

CL
m

1

R
dC(y), (D.311)

where only the computation of the integral on CL
m remains to be done.
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c) Computation of ZF d
1 (x)

The integral (D.296) is somewhat simpler to treat. By replacing (D.241) inside this

integral we obtain

ZF d
1 (x) = − 1

4πhLd

∫

L

1

R

(
R − RL

d

)
· νLd dL(y)

= − 1

4πhLd

∫

L

R

R
· νLd dL(y) − RL

d · νLd
hLd

ZF d
0 (x). (D.312)

It holds now that
R

R
= ∇R =

∂R

∂n
nL + ∇LR, (D.313)

where ∇L denotes the surface gradient with respect to the parametrization of the plane of

the triangle L. From (D.312) we obtain therefore

ZF d
1 (x) = − νLd

4πhLd
·
(∫

L

∂R

∂n
nL dL(y) +

∫

L

∇LR dL(y)

)
− RL

d · νLd
hLd

ZF d
0 (x). (D.314)

For the first integral in (D.314) we consider (D.244) and (D.305), which yields
∫

L

∂R

∂n
nL dL(y) = dLnL

∫

L

1

R
dL(y) = −4πdLnLZF

d
0 (x). (D.315)

For the second integral in (D.314) we apply the Gauss-Green theorem (A.610) on the plane

of the triangle L, which implies that

∫

L

∇LR dL(y) =
3∑

m=1

νLm

∫

CL
m

R dC(y). (D.316)

Hence, by considering (D.315) and (D.316) in (D.314), we obtain

ZF d
1 (x) = − νLd

4πhLd
·

3∑

m=1

νLm

∫

CL
m

R dC(y) +
νLd
hLd

·
(
dLnL − RL

d

)
ZF d

0 (x), (D.317)

where only the computation of the integral on CL
m remains to be done.

d) Computation of ZGd
1(x)

By replacing (D.241) and (D.244) inside the integral (D.298), we obtain

ZGd
1(x) =

∫

L

R · nL

4πR3 hLd

(
R − RL

d

)
· νLd dL(y)

=
dLν

L
d

4πhLd
·
∫

L

R

R3
dL(y) − RL

d · νLd
hLd

ZGd
0(x). (D.318)

Similarly as before, it holds that

− R

R3
= ∇ 1

R
=

∂

∂n

1

R
nL + ∇L

1

R
, (D.319)
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where ∇L denotes again the surface gradient with respect to the parametrization of the

plane of the triangle L. From (D.318) we obtain therefore

ZGd
1(x) = −dLν

L
d

4πhLd
·
(∫

L

∂

∂n

1

R
nL dL(y) +

∫

L

∇L
1

R
dL(y)

)
−RL

d · νLd
hLd

ZGd
0(x). (D.320)

For the first integral in (D.320) we consider (D.301), which yields
∫

L

∂

∂n

1

R
nL dL(y) = −nL

∫

L

R · nL

R3
dL(y) = −4πnLZG

d
0(x). (D.321)

For the second integral in (D.320), as before, we apply the Gauss-Green theorem (A.610)

on the plane of the triangle L, which implies that

∫

L

∇L
1

R
dL(y) =

3∑

m=1

νLm

∫

CL
m

1

R
dC(y). (D.322)

Hence, by considering (D.321) and (D.322) in (D.320), we obtain

ZGd
1(x) = −dLν

L
d

4πhLd
·

3∑

m=1

νLm

∫

CL
m

1

R
dC(y) +

νLd
hLd

·
(
dLnL − RL

d

)
ZGd

0(x), (D.323)

where only the computation of the integral on CL
m remains to be done.

e) Computation of the integrals on each edge CL
m

The integrals on each edge CL
m that remain to be computed are

∫

CL
m

1

R
dC(y) and

∫

CL
m

R dC(y). (D.324)

To simplify the notation, we drop the indexes and denote the edge segment CL
m just as C.

Similarly, and as depicted in Figure D.14, we use also the notation:

• |C| denotes the length of segment C.

• R0,R1 denote the endpoints of segment C, belonging to {RL
1 ,R

L
2 ,R

L
3 }.

• τ denotes the unit tangent of segment C, coinciding with τLm.

• σ denotes the unit vector orthogonal to C that lies in the same plane as x and C.

R0

R1

R

x

C
y

ℓ

τ

σ

FIGURE D.14. Geometric characteristics for the calculation of the integrals on the edges.
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We consider that the segment C is parametrically described by

R = R0 + ℓτ , 0 ≤ ℓ ≤ |C|, (D.325)

and thus the parameter ℓ can be expressed as

ℓ = (R − R0) · τ = |R − R0|. (D.326)

We have furthermore that

|C| = |R1 − R0| and R1 = R0 + |C|τ . (D.327)

The unit vector σ that is orthogonal to C is given by

σ = (R0 × τ ) × τ . (D.328)

Since we parametrized by ℓ, therefore all derivatives are taken with respect to this variable.

It holds in particular that

RR′ = R · ∂R
∂ℓ

= R · τ , (D.329)

and hence

R(R + R · τ )′ = R · τ +R. (D.330)

Consequently, by rearranging (D.330) we obtain

(R + R · τ )′

R + R · τ =
1

R
. (D.331)

Thus the first of the desired integrals in (D.324) is given by
∫

C

1

R
dℓ = ln

(
R1 + R1 · τ
R0 + R0 · τ

)
. (D.332)

We have also, from (D.329), that

ℓR′ =
R

R
· (ℓτ ) = R− R0 ·

R

R
. (D.333)

Expressing R0,R in terms of σ and τ yields

R0 = (R0 · σ)σ + (R0 · τ )τ , (D.334)

R = (R0 · σ)σ + (R · τ )τ , (D.335)

R0 · R = (R0 · σ)2 + (R0 · τ )(R · τ ), (D.336)

and therefore, considering also (D.329), we obtain

ℓR′ = R− R0 ·
R

R
= R− 1

R
(R0 · σ)2 − (R0 · τ )R′. (D.337)

By integrating we have that
∫ |C|

0

ℓR′ dℓ =

∫

C

R dℓ− (R0 · σ)2

∫

C

1

R
dℓ− (R0 · τ )(R1 −R0). (D.338)

An integration by parts on the left-hand side of (D.338) and a rearrangement of the terms

yields finally the second of the desired integrals in (D.324), which is given by
∫

C

R dℓ =
1

2

(
|C|R1 + (R0 · σ)2

∫

C

1

R
dℓ+ (R0 · τ )(R1 −R0)

)
. (D.339)
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We remark that from (D.336) we can express

(R0 · σ)2 = R0 · R0 − (R0 · τ )2. (D.340)

f) Final computation of the singular integrals

In conclusion, the singular integrals (D.270) and (D.272) are computed using the for-

mulae (D.301), (D.311), (D.317), and (D.323), where the integrals on the edges are calcu-

lated using (D.332) and (D.339).

It should be observed that ZBc,d
a,b = 0 when the triangles coincide, i.e., when K = L,

since in this case dL = 0, and thus (D.301) and (D.323) become zero.

D.13 Benchmark problem

As benchmark problem we consider the exterior sphere problem (D.140), whose do-

main is shown in Figure D.4. The exact solution of this problem is stated in (D.161), and

the idea is to retrieve it numerically with the integral equation techniques and the boundary

element method described throughout this chapter.

For the computational implementation and the numerical resolution of the benchmark

problem, we consider only the first integral equation of the extension-by-zero alterna-

tive (D.103), which is given in terms of boundary layer potentials by (D.176). The lin-

ear system (D.198) resulting from the discretization (D.196) of its variational formula-

tion (D.183) is solved computationally with finite boundary elements of type P1 by using

subroutines programmed in Fortran 90, by generating the mesh Γh of the boundary with the

free software Gmsh 2.4, and by representing graphically the results in Matlab 7.5 (R2007b).

We consider a radius R = 1 and a constant impedance Z = 0.8. The discretized

boundary surface Γh has I = 702 nodes, T = 1400 triangles, and a step h = 0.2136, being

h = max
1≤j≤T

diam(Tj). (D.341)

As the known field without obstacle we take

uW (r, θ, ϕ) =
sin θ eiϕ + cos θ

r2
=

x1 + ix2 + x3

(x2
1 + x2

2 + x2
3)

3/2
, (D.342)

which implies that the impedance data function is given by

fz(θ, ϕ) = −∂uW
∂r

(R, θ, ϕ) − ZuW (R, θ, ϕ) = −ZR− 2

R3
(sin θ eiϕ + cos θ). (D.343)

The exact solution of the problem and its trace on the boundary are thus given by

u(x) = −uW (r, θ, ϕ) = −sin θ eiϕ + cos θ

r2
, (D.344)

µ(θ, ϕ) = −uW (R, θ, ϕ) = −sin θ eiϕ + cos θ

R2
. (D.345)

The numerically calculated trace of the solution µh of the benchmark problem, which

was computed by using the boundary element method, is depicted in Figure D.15. In the
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FIGURE D.15. Numerically computed trace of the solution µh.
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FIGURE D.16. Contour plot of the numerically computed solution uh for θ = π/2.
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FIGURE D.17. Oblique view of the numerically computed solution uh for θ = π/2.
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same manner, the numerical solution uh is illustrated in Figures D.16 and D.17 for an

angle θ = π/2. It can be observed that the numerical solution is close to the exact one.

We define the relative error of the trace of the solution as

E2(h,Γ
h) =

‖Πhµ− µh‖L2(Γh)

‖Πhµ‖L2(Γh)

, (D.346)

where Πhµ denotes the Lagrange interpolating function of the exact solution’s trace µ, i.e.,

Πhµ(x) =
I∑

j=1

µ(rj)χj(x) and µh(x) =
I∑

j=1

µj χj(x) for x ∈ Γh. (D.347)

It holds therefore that

‖Πhµ− µh‖2
L2(Γh) = (µ̃ − µ)∗A (µ̃ − µ) and ‖Πhµ‖2

L2(Γh) = µ̃∗A µ̃, (D.348)

where µ(rj) and µj are respectively the elements of vectors µ̃ and µ, for 1 ≤ j ≤ I , and

where the elements aij of the matrix A are specified in (D.256) and given by

aij = 〈χj, χi〉 for 1 ≤ i, j ≤ I. (D.349)

In our case, for a step h = 0.2136, we obtained a relative error of E2(h,Γ
h) = 0.01302.

Similarly as for the trace, we define the relative error of the solution as

E∞(h,ΩL) =
‖u− uh‖L∞(ΩL)

‖u‖L∞(ΩL)

, (D.350)

being ΩL = {x ∈ Ωe : ‖x‖∞ < L} for L > 0, and where

‖u− uh‖L∞(ΩL) = max
x∈ΩL

|u(x) − uh(x)| and ‖u‖L∞(ΩL) = max
x∈ΩL

|u(x)|. (D.351)

We consider L = 3 and approximate ΩL by a triangular finite element mesh of refinement h

near the boundary. For h = 0.2136, the relative error that we obtained for the solution

was E∞(h,ΩL) = 0.02142.

The results for different mesh refinements, i.e., for different numbers of triangles T ,

nodes I , and discretization steps h for Γh, are listed in Table D.1. These results are illus-

trated graphically in Figure D.18. It can be observed that the relative errors are approxi-

mately of order h2.

TABLE D.1. Relative errors for different mesh refinements.

T I h E2(h,Γ
h) E∞(h,ΩL)

32 18 1.0000 5.112 · 10−1 5.162 · 10−1

90 47 0.7071 2.163 · 10−1 2.277 · 10−1

336 170 0.4334 5.664 · 10−2 7.218 · 10−2

930 467 0.2419 1.965 · 10−2 2.653 · 10−2

1400 702 0.2136 1.302 · 10−2 2.142 · 10−2

2448 1226 0.1676 6.995 · 10−3 1.086 · 10−2
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FIGURE D.18. Logarithmic plots of the relative errors versus the discretization step.
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E. FULL-SPACE IMPEDANCE HELMHOLTZ PROBLEM

E.1 Introduction

In this appendix we study the perturbed full-space or free-space impedance Helmholtz

problem, also known as the exterior impedance Helmholtz problem in 3D, using integral

equation techniques and the boundary element method.

We consider the problem of the Helmholtz equation in three dimensions on the ex-

terior of a bounded obstacle with an impedance boundary condition. The perturbed full-

plane impedance Helmholtz problem is a wave scattering problem around a bounded three-

dimensional obstacle. In acoustic obstacle scattering the impedance boundary-value prob-

lem appears when we suppose that the normal velocity is proportional to the excess pressure

on the boundary of the impenetrable obstacle. The special case of frequency zero for the

volume waves has been treated already in Appendix D, since then we deal with the Laplace

equation. The two-dimensional Helmholtz problem was treated thoroughly in Appendix C.

The main references for the problem treated herein are Kress (2002), Lenoir (2005),

Nédélec (2001), and Terrasse & Abboud (2006). Additional related books and doctorate

theses are the ones of Chen & Zhou (1992), Colton & Kress (1983), Ha-Duong (1987),

Hsiao & Wendland (2008), Kirsch & Grinberg (2008), Rjasanow & Steinbach (2007), and

Steinbach (2008). Articles where the Helmholtz equation with an impedance boundary

condition is taken into account are Ahner (1978), Angell & Kleinman (1982), Angell &

Kress (1984), Angell, Kleinman & Hettlich (1990), Dassios & Kamvyssas (1997), Krutit-

skii (2003a,b), and Lin (1987). Theoretical details on transmission problems are given in

Costabel & Stephan (1985). The inverse problem is studied in Colton & Kirsch (1981). The

boundary element calculations can be found in the report of Bendali & Devys (1986) and in

the article by Bendali & Souilah (1994). Applications for the impedance Helmholtz prob-

lem can be found, among others, for acoustics (Morse & Ingard 1961) and for ultrasound

imaging (Ammari 2008).

The Helmholtz equation allows the propagation of volume waves inside the considered

domain, and when supplied with an impedance boundary condition it allows also the propa-

gation of surface waves along the domain’s boundary. The main difficulty in the numerical

treatment and resolution of our problem is the fact that the exterior domain is unbounded.

We solve it therefore with integral equation techniques and the boundary element method,

which require the knowledge of the Green’s function.

This appendix is structured in 14 sections, including this introduction. The direct scat-

tering problem of the Helmholtz equation in a three-dimensional exterior domain with an

impedance boundary condition is presented in Section E.2. The Green’s function and its

far-field expression are computed respectively in Sections E.3 and E.4. Extending the di-

rect scattering problem towards a transmission problem, as done in Section E.5, allows its

resolution by using integral equation techniques, which is discussed in Section E.6. These

techniques allow also to represent the far field of the solution, as shown in Section E.7.

A particular problem that takes as domain the exterior of a sphere is solved analytically in
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Section E.8. The appropriate function spaces and some existence and uniqueness results for

the solution of the problem are presented in Section E.9. The dissipative problem is studied

in Section E.10. By means of the variational formulation developed in Section E.11, the

obtained integral equation is discretized using the boundary element method, which is de-

scribed in Section E.12. The boundary element calculations required to build the matrix of

the linear system resulting from the numerical discretization are explained in Section E.13.

Finally, in Section E.14 a benchmark problem based on the exterior sphere problem is

solved numerically.

E.2 Direct scattering problem

We consider the direct scattering problem of linear time-harmonic acoustic waves on

an exterior domain Ωe ⊂ R
3, lying outside a bounded obstacle Ωi and having a regular

boundary Γ = ∂Ωe = ∂Ωi, as shown in Figure E.1. The time convention e−iωt is taken

and the incident field uI is known. The goal is to find the scattered field u as a solution to

the Helmholtz equation in Ωe, satisfying an outgoing radiation condition, and such that the

total field uT , decomposed as uT = uI + u, satisfies a homogeneous impedance boundary

condition on the regular boundary Γ (e.g., of class C2). The unit normal n is taken out-

wardly oriented of Ωe. A given wave number k > 0 is considered, which depends on the

pulsation ω and the speed of wave propagation c through the ratio k = ω/c.

x2

x3

Ωe

n

Ωi

Γ

x1

FIGURE E.1. Perturbed full-space impedance Helmholtz problem domain.

The total field uT satisfies thus the Helmholtz equation

∆uT + k2uT = 0 in Ωe, (E.1)

which is also satisfied by the incident field uI and the scattered field u, due linearity. For

the total field uT we take the homogeneous impedance boundary condition

− ∂uT
∂n

+ ZuT = 0 on Γ, (E.2)

where Z is the impedance on the boundary. If Z = 0 or Z = ∞, then we retrieve respec-

tively the classical Neumann or Dirichlet boundary conditions. In general, we consider

a complex-valued impedance Z(x) that depends on the position x and that may depend

also on the pulsation ω. The scattered field u satisfies the non-homogeneous impedance
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boundary condition

− ∂u

∂n
+ Zu = fz on Γ, (E.3)

where the impedance data function fz is given by

fz =
∂uI
∂n

− ZuI on Γ. (E.4)

The solutions of the Helmholtz equation (E.1) in the full-space R
3 are the so-called

plane waves, which we take as the known incident field uI . Up to an arbitrary multiplicative

factor, they are given by

uI(x) = eik·x, (k · k) = k2, (E.5)

where the wave propagation vector k is taken such that k ∈ R
3 to obtain physically ad-

missible waves which do not explode towards infinity. By considering a parametrization

through the angles of incidence θI and ϕI for 0 ≤ θI ≤ π and −π < ϕI ≤ π, we can

express the wave propagation vector as k = (−k sin θI cosϕI ,−k sin θI sinϕI ,−k cos θI).

The plane waves can be thus also represented as

uI(x) = e−ik(x1 sin θI cosϕI+x2 sin θI sinϕI+x3 cos θI). (E.6)

An outgoing radiation condition is also imposed for the scattered field u, which speci-

fies its decaying behavior at infinity and eliminates the non-physical solutions. It is known

as a Sommerfeld radiation condition and is stated either as

∂u

∂r
− iku = O

(
1

r2

)
(E.7)

for r = |x|, or, for some constant C > 0, by
∣∣∣∣
∂u

∂r
− iku

∣∣∣∣ ≤
C

r2
as r → ∞. (E.8)

Alternatively it can be also expressed as

lim
r→∞

r

(
∂u

∂r
− iku

)
= 0, (E.9)

or even as
∂u

∂r
− iku = O

(
1

rα

)
for 1 < α < 3. (E.10)

Likewise, a weaker and more general formulation of this radiation condition is

lim
R→∞

∫

SR

∣∣∣∣
∂u

∂r
− iku

∣∣∣∣
2

dγ = 0, (E.11)

where SR = {x ∈ R
3 : |x| = R} is the sphere of radius R that is centered at the origin.

We remark that an ingoing radiation condition would have the opposite sign, namely

lim
r→∞

r

(
∂u

∂r
+ iku

)
= 0. (E.12)
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The perturbed full-space impedance Helmholtz problem can be finally stated as




Find u : Ωe → C such that

∆u+ k2u = 0 in Ωe,

−∂u
∂n

+ Zu = fz on Γ,
∣∣∣∣
∂u

∂r
− iku

∣∣∣∣ ≤
C

r2
as r → ∞.

(E.13)

E.3 Green’s function

The Green’s function represents the response of the unperturbed system (without an

obstacle) to a Dirac mass. It corresponds to a function G, which depends on a fixed source

point x ∈ R
3 and an observation point y ∈ R

3. The Green’s function is computed in the

sense of distributions for the variable y in the full-space R
3 by placing at the right-hand

side of the Helmholtz equation a Dirac mass δx, centered at the point x. It is therefore a

solution G(x, ·) : R
3 → C for the radiation problem of a point source, namely

∆yG(x,y) + k2G(x,y) = δx(y) in D′(R3). (E.14)

The solution of this equation is not unique, and therefore its behavior at infinity has to be

specified. For this purpose we impose on the Green’s function also the outgoing radiation

condition (E.8).

Due to the radial symmetry of the problem (E.14), it is natural to look for solutions in

the form G = G(r), where r = |y − x|. By considering only the radial component, the

Helmholtz equation in R
3 becomes

1

r2

d

dr

(
r2 dG

dr

)
+ k2G = 0, r > 0. (E.15)

Replacing now z = kr and considering ψ(z) = G(r) yields dG
dr

= k dψ
dz

and consequently

k2 d2ψ

dz2
+

2k2

z

dψ

dz
+ k2ψ = 0, (E.16)

which is equivalent to the zeroth order spherical Bessel differential equation (vid. Subsec-

tion A.2.6)

z2 d2ψ

dz2
+ 2z

dψ

dz
+ z2ψ = 0. (E.17)

Independent solutions for this equation are the zeroth order spherical Bessel functions of

the first and second kinds, j0(z) and y0(z), and equally the zeroth order spherical Hankel

functions of the first and second kinds, h
(1)
0 (z) and h

(2)
0 (z). The latter satisfy respectively

the outgoing and ingoing radiation conditions and are expressed by

h
(1)
0 (z) = − i

z
eiz, h

(2)
0 (z) =

i

z
e−iz. (E.18)

Thus the solution of (E.17) is given by

ψ(z) = α
eiz

z
+ β

e−iz

z
, α, β ∈ C, (E.19)
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and consequently

G(r) = α
eikr

r
+ β

e−ikr

r
, α, β ∈ C, (E.20)

where α and β are different than before, but still arbitrary. An outgoing wave behavior

for the Green’s function implies that β = 0, due (E.8). We observe from (E.18) that the

singularity of the Green’s function has the form 1/z. The multiplicative constant α can

be thus determined in the same way as for the Green’s function of the Laplace equation

in (D.17) by means of a computation in the sense of distributions for (E.14). The unique

radial outgoing fundamental solution of the Helmholtz equation turns out to be

G(r) = − eikr

4πr
= − ik

4π
h

(1)
0 (kr). (E.21)

The Green’s function for outgoing waves is then finally given by

G(x,y) = − eik|y−x|

4π|y − x| = − ik

4π
h

(1)
0

(
k|y − x|

)
. (E.22)

We remark that the Green’s function for ingoing waves would have been

G(x,y) =
e−ik|y−x|

4π|y − x| = − ik

4π
h

(2)
0

(
k|y − x|

)
. (E.23)

To compute the derivatives of the Green’s function we require some additional proper-

ties of spherical Hankel functions. It holds that

d

dz
h

(1)
0 (z) = −h(1)

1 (z),
d

dz
h

(2)
0 (z) = −h(2)

1 (z), (E.24)

and

d

dz
h

(1)
1 (z) = h

(1)
0 (z) − 2

z
h

(1)
1 (z),

d

dz
h

(2)
1 (z) = h

(2)
0 (z) − 2

z
h

(2)
1 (z), (E.25)

where h
(1)
1 (z) and h

(2)
1 (z) denote the first order spherical Hankel functions of the first and

second kinds, respectively, which are expressed as

h
(1)
1 (z) =

(
−1

z
− i

z2

)
eiz, h

(2)
1 (z) =

(
−1

z
+

i

z2

)
e−iz. (E.26)

The gradient of the Green’s function (E.22) is therefore given by

∇yG(x,y) =
eik|y−x|

4π

(
1 − ik|y − x|

) y − x

|y − x|3 =
ik2

4π
h

(1)
1

(
k|y − x|

) y − x

|y − x| , (E.27)

and the gradient with respect to the x variable by

∇xG(x,y) =
eik|x−y|

4π

(
1 − ik|x − y|

) x − y

|x − y|3 =
ik2

4π
h

(1)
1

(
k|x − y|

) x − y

|x − y| . (E.28)

The double-gradient matrix is given by

∇x∇yG(x,y) =
ik2

4π
h

(1)
1

(
k|x − y|

)(
− I

|x − y| + 3
(x − y) ⊗ (x − y)

|x − y|3
)

− ik3

4π
h

(1)
0

(
k|x − y|

)(x − y) ⊗ (x − y)

|x − y|2 , (E.29)
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where I denotes a 3 × 3 identity matrix and where ⊗ denotes the dyadic or outer product

of two vectors, which results in a matrix and is defined in (A.572).

We note that the Green’s function (E.22) is symmetric in the sense that

G(x,y) = G(y,x), (E.30)

and it fulfills similarly

∇yG(x,y) = ∇yG(y,x) = −∇xG(x,y) = −∇xG(y,x), (E.31)

and

∇x∇yG(x,y) = ∇y∇xG(x,y) = ∇x∇yG(y,x) = ∇y∇xG(y,x). (E.32)

Furthermore, due the exponential decrease of the spherical Hankel functions at infin-

ity, we observe that the expression (E.22) of the Green’s function for outgoing waves is

still valid if a complex wave number k ∈ C such that Im{k} > 0 is used, which holds

also for its derivatives (E.27), (E.28), and (E.29). In the case of ingoing waves, the ex-

pression (E.23) and its derivatives are valid if a complex wave number k ∈ C now such

that Im{k} < 0 is taken into account.

E.4 Far field of the Green’s function

The far field of the Green’s function describes its asymptotic behavior at infinity, i.e.,

when |x| → ∞ and assuming that y is fixed. By using a Taylor expansion we obtain that

|x − y| = |x|
(

1 − 2
y · x
|x|2 +

|y|2
|x|2

)1/2

= |x| − y · x
|x| + O

(
1

|x|

)
. (E.33)

A similar expansion yields

1

|x − y| =
1

|x| + O
(

1

|x|2
)
, (E.34)

and we have also that

eik|x−y| = eik|x|e−iky·x/|x|
(

1 + O
(

1

|x|

))
. (E.35)

We express the point x as x = |x| x̂, being x̂ a unitary vector. The far field of the Green’s

function, as |x| → ∞, is thus given by

Gff (x,y) = − eik|x|

4π|x|e
−ikx̂·y. (E.36)

Similarly, as |x| → ∞, we have for its gradient with respect to y, that

∇yG
ff (x,y) =

ikeik|x|

4π|x| e
−ikx̂·y x̂, (E.37)

for its gradient with respect to x, that

∇xG
ff (x,y) = −ike

ik|x|

4π|x| e
−ikx̂·y x̂, (E.38)
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and for its double-gradient matrix, that

∇x∇yG
ff (x,y) = −k

2eik|x|

4π|x| e
−ikx̂·y (x̂ ⊗ x̂). (E.39)

We remark that these far fields are still valid if a complex wave number k ∈ C such

that Im{k} > 0 is used.

E.5 Transmission problem

We are interested in expressing the solution u of the direct scattering problem (E.13)

by means of an integral representation formula over the boundary Γ. To study this kind

of representations, the differential problem defined on Ωe is extended as a transmission

problem defined now on the whole space R
3 by combining (E.13) with a corresponding

interior problem defined on Ωi. For the transmission problem, which specifies jump con-

ditions over the boundary Γ, a general integral representation can be developed, and the

particular integral representations of interest are then established by the specific choice of

the corresponding interior problem.

A transmission problem is then a differential problem for which the jump conditions

of the solution field, rather than boundary conditions, are specified on the boundary Γ. As

shown in Figure E.1, we consider the exterior domain Ωe and the interior domain Ωi, taking

the unit normal n pointing towards Ωi. We search now a solution u defined in Ωe ∪Ωi, and

use the notation ue = u|Ωe and ui = u|Ωi
. We define the jumps of the traces of u on both

sides of the boundary Γ as

[u] = ue − ui and

[
∂u

∂n

]
=
∂ue
∂n

− ∂ui
∂n

. (E.40)

The transmission problem is now given by




Find u : Ωe ∪ Ωi → C such that

∆u+ k2u = 0 in Ωe ∪ Ωi,

[u] = µ on Γ,
[
∂u

∂n

]
= ν on Γ,

+ Outgoing radiation condition as |x| → ∞,

(E.41)

where µ, ν : Γ → C are known functions. The outgoing radiation condition is still (E.8),

and it is required to ensure uniqueness of the solution.

E.6 Integral representations and equations

E.6.1 Integral representation

To develop for the solution u an integral representation formula over the boundary Γ,

we define by ΩR,ε the domain Ωe ∪ Ωi without the ball Bε of radius ε > 0 centered at the

point x ∈ Ωe ∪ Ωi, and truncated at infinity by the ball BR of radius R > 0 centered at the

523



origin. We consider that the ball Bε is entirely contained either in Ωe or in Ωi, depending

on the location of its center x. Therefore, as shown in Figure E.2, we have that

ΩR,ε =
(
(Ωe ∪ Ωi) ∩BR

)
\Bε and ΩR = (Ωe ∪ Ωi) ∩BR, (E.42)

where

BR = {y ∈ R
3 : |y| < R} and Bε = {y ∈ R

3 : |y − x| < ε}. (E.43)

We consider similarly the boundaries of the balls

SR = {y ∈ R
3 : |y| = R} and Sε = {y ∈ R

3 : |y − x| = ε}. (E.44)

The idea is to retrieve the domain Ωe ∪ Ωi at the end when the limits R → ∞ and ε → 0

are taken for the truncated domains ΩR,ε and ΩR.

ΩR,ε

SR
n = rx

ε
R

Sε

O nΓ

FIGURE E.2. Truncated domain ΩR,ε for x ∈ Ωe ∪ Ωi.

Let us analyze first the asymptotic decaying behavior of the solution u, which satisfies

the Helmholtz equation and the Sommerfeld radiation condition. For more generality, we

assume here that the wave number k (6= 0) is complex and such that Im{k} ≥ 0. We

consider the weakest form of the radiation condition, namely (E.11), and develop

∫

SR

∣∣∣∣
∂u

∂r
− iku

∣∣∣∣
2

dγ =

∫

SR

[∣∣∣∣
∂u

∂r

∣∣∣∣
2

+ |k|2|u|2 + 2 Im

{
ku
∂ū

∂r

}]
dγ. (E.45)

From the divergence theorem (A.614) applied on the truncated domain ΩR and considering

the complex conjugated Helmholtz equation we have

k

∫

SR

u
∂ū

∂r
dγ + k

∫

Γ

u
∂ū

∂n
dγ = k

∫

ΩR

div(u∇ū) dx

= k

∫

ΩR

|∇u|2 dx − kk̄2

∫

ΩR

|u|2 dx. (E.46)
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Replacing the imaginary part of (E.46) in (E.45) and taking the limit as R → ∞, yields

lim
R→∞

[∫

SR

(∣∣∣∣
∂u

∂r

∣∣∣∣
2

+ |k|2|u|2
)

dγ + 2 Im{k}
∫

ΩR

(
|∇u|2 + |k|2|u|2

)
dx

]

= 2 Im

{
k

∫

Γ

u
∂ū

∂n
dγ

}
. (E.47)

Since the right-hand side is finite and since the left-hand side is nonnegative, we see that
∫

SR

|u|2 dγ = O(1) and

∫

SR

∣∣∣∣
∂u

∂r

∣∣∣∣
2

dγ = O(1) as R → ∞, (E.48)

and therefore it holds for a great value of r = |x| that

u = O
(

1

r

)
and |∇u| = O

(
1

r

)
. (E.49)

We apply now Green’s second integral theorem (A.613) to the functions u and G(x, ·)
in the bounded domain ΩR,ε, by subtracting their respective Helmholtz equations, yielding

0 =

∫

ΩR,ε

(
u(y)∆yG(x,y) −G(x,y)∆u(y)

)
dy

=

∫

SR

(
u(y)

∂G

∂ry
(x,y) −G(x,y)

∂u

∂r
(y)

)
dγ(y)

−
∫

Sε

(
u(y)

∂G

∂ry
(x,y) −G(x,y)

∂u

∂r
(y)

)
dγ(y)

+

∫

Γ

(
[u](y)

∂G

∂ny

(x,y) −G(x,y)

[
∂u

∂n

]
(y)

)
dγ(y). (E.50)

The integral on SR can be rewritten as
∫

SR

[
u(y)

(
∂G

∂ry
(x,y) − ikG(x,y)

)
−G(x,y)

(
∂u

∂r
(y) − iku(y)

)]
dγ(y), (E.51)

which for R large enough and due the radiation condition (E.8) tends to zero, since
∣∣∣∣
∫

SR

u(y)

(
∂G

∂ry
(x,y) − ikG(x,y)

)
dγ(y)

∣∣∣∣ ≤
C

R
, (E.52)

and ∣∣∣∣
∫

SR

G(x,y)

(
∂u

∂r
(y) − iku(y)

)
dγ(y)

∣∣∣∣ ≤
C

R
, (E.53)

for some constants C > 0. If the function u is regular enough in the ball Bε, then the

second term of the integral on Sε, when ε→ 0 and due (E.22), is bounded by
∣∣∣∣
∫

Sε

G(x,y)
∂u

∂r
(y) dγ(y)

∣∣∣∣ ≤ ε |eikε| sup
y∈Bε

∣∣∣∣
∂u

∂r
(y)

∣∣∣∣, (E.54)

and tends to zero. The regularity of u can be specified afterwards once the integral repre-

sentation has been determined and generalized by means of density arguments. The first
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integral term on Sε can be decomposed as
∫

Sε

u(y)
∂G

∂ry
(x,y) dγ(y) = u(x)

∫

Sε

∂G

∂ry
(x,y) dγ(y)

+

∫

Sε

∂G

∂ry
(x,y)

(
u(y) − u(x)

)
dγ(y), (E.55)

For the first term in the right-hand side of (E.55), by replacing (E.27), we have that
∫

Sε

∂G

∂ry
(x,y) dγ(y) = (1 − ikε) eikε −−−→

ε→0
1, (E.56)

which tends towards one, while the second term is bounded by
∣∣∣∣
∫

Sε

(
u(y) − u(x)

)∂G
∂ry

(x,y) dγ(y)

∣∣∣∣ ≤ |1 − ikε| |eikε| sup
y∈Bε

|u(y) − u(x)|, (E.57)

which tends towards zero when ε→ 0.

In conclusion, when the limits R → ∞ and ε→ 0 are taken in (E.50), then the follow-

ing integral representation formula holds for the solution u of the transmission problem:

u(x) =

∫

Γ

(
[u](y)

∂G

∂ny

(x,y) −G(x,y)

[
∂u

∂n

]
(y)

)
dγ(y), x ∈ Ωe ∪ Ωi. (E.58)

We observe thus that if the values of the jump of u and of its normal derivative are

known on Γ, then the transmission problem (E.41) is readily solved and its solution given

explicitly by (E.58), which, in terms of µ and ν, becomes

u(x) =

∫

Γ

(
µ(y)

∂G

∂ny

(x,y) −G(x,y)ν(y)

)
dγ(y), x ∈ Ωe ∪ Ωi. (E.59)

To determine the values of the jumps, an adequate integral equation has to be developed,

i.e., an equation whose unknowns are the traces of the solution on Γ.

An alternative way to demonstrate the integral representation (E.58) is to proceed in

the sense of distributions, in the same way as done in Section B.6. Again we obtain the

single layer potential
{
G ∗

[
∂u

∂n

]
δΓ

}
(x) =

∫

Γ

G(x,y)

[
∂u

∂n

]
(y) dγ(y) (E.60)

associated with the distribution of sources [∂u/∂n]δΓ, and the double layer potential
{
G ∗ ∂

∂n

(
[u]δΓ

)}
(x) = −

∫

Γ

∂G

∂ny

(x,y)[u](y) dγ(y) (E.61)

associated with the distribution of dipoles ∂
∂n

([u]δΓ). Combining properly (E.60) and (E.61)

yields the desired integral representation (E.58).

We note that to obtain the gradient of the integral representation (E.58) we can pass

directly the derivatives inside the integral, since there are no singularities if x ∈ Ωe ∪ Ωi.

Therefore we have that

∇u(x) =

∫

Γ

(
[u](y)∇x

∂G

∂ny

(x,y) −∇xG(x,y)

[
∂u

∂n

]
(y)

)
dγ(y). (E.62)
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E.6.2 Integral equations

To determine the values of the traces that conform the jumps for the transmission prob-

lem (E.41), an integral equation has to be developed. For this purpose we place the source

point x on the boundary Γ and apply the same procedure as before for the integral rep-

resentation (E.58), treating differently in (E.50) only the integrals on Sε. The integrals

on SR still behave well and tend towards zero as R → ∞. The Ball Bε, though, is split

in half into the two pieces Ωe ∩ Bε and Ωi ∩ Bε, which are asymptotically separated by

the tangent of the boundary if Γ is regular. Thus the associated integrals on Sε give rise to

a term −(ue(x) + ui(x))/2 instead of just −u(x) as before. We must notice that in this

case, the integrands associated with the boundary Γ admit an integrable singularity at the

point x. The desired integral equation related with (E.58) is then given by

ue(x) + ui(x)

2
=

∫

Γ

(
[u](y)

∂G

∂ny

(x,y) −G(x,y)

[
∂u

∂n

]
(y)

)
dγ(y), x ∈ Γ. (E.63)

By choosing adequately the boundary condition of the interior problem, and by considering

also the boundary condition of the exterior problem and the jump definitions (E.40), this

integral equation can be expressed in terms of only one unknown function on Γ. Thus,

solving the problem (E.13) is equivalent to solve (E.63) and then replace the obtained

solution in (E.58).

The integral equation holds only when the boundary Γ is regular (e.g., of class C2).

Otherwise, taking the limit ε → 0 can no longer be well-defined and the result is false in

general. In particular, if the boundary Γ has an angular point at x ∈ Γ, then the left-hand

side of the integral equation (E.63) is modified on that point according to the portion of

the ball Bε that remains inside Ωe, analogously as was done for the two-dimensional case

in (B.61), but now for solid angles.

Another integral equation can be also derived for the normal derivative of the solu-

tion u on the boundary Γ, by studying the jump properties of the single and double layer

potentials. It is performed in the same manner as for the Laplace equation. If the boundary

is regular at x ∈ Γ, then it holds that

1

2

∂ue
∂n

(x) +
1

2

∂ui
∂n

(x) =

∫

Γ

(
[u](y)

∂2G

∂nx∂ny

(x,y) − ∂G

∂nx

(x,y)

[
∂u

∂n

]
(y)

)
dγ(y). (E.64)

This integral equation is modified correspondingly if x is an angular point.

E.6.3 Integral kernels

In the same manner as for the Laplace equation, the integral kernels G, ∂G/∂ny,

and ∂G/∂nx are weakly singular, and thus integrable, whereas the kernel ∂2G/∂nx∂ny

is not integrable and therefore hypersingular.

The kernel G defined in (E.22) has the same singularity as the Laplace equation,

namely

G(x,y) ∼ − 1

4π|x − y| as x → y. (E.65)
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It fulfills therefore (B.64) with λ = 1. The kernels ∂G/∂ny and ∂G/∂nx are less singular

along Γ than they appear at first sight, due the regularizing effect of the normal derivatives.

They are given respectively by

∂G

∂ny

(x,y) =
eik|y−x|

4π

(
1 − ik|y − x|

)(y − x) · ny

|y − x|3 , (E.66)

and
∂G

∂nx

(x,y) =
eik|y−x|

4π

(
1 − ik|y − x|

)(x − y) · nx

|y − x|3 , (E.67)

and their singularities, as x → y for x,y ∈ Γ, adopt the form

∂G

∂ny

(x,y) ∼ (y − x) · ny

4π|y − x|3 and
∂G

∂nx

(x,y) ∼ (x − y) · nx

4π|x − y|3 . (E.68)

The appearing singularities are the same as for the Laplace equation and it can be shown

that for the singularity the estimates (B.70) and (B.71) hold also in three dimensions, by us-

ing the same reasoning as in the two-dimensional case for the graph of a regular function ϕ

that takes variables now on the tangent plane. Therefore we have that

∂G

∂ny

(x,y) = O
(

1

|y − x|

)
and

∂G

∂nx

(x,y) = O
(

1

|x − y|

)
, (E.69)

and hence these kernels satisfy (B.64) with λ = 1.

The kernel ∂2G/∂nx∂ny, on the other hand, adopts the form

∂2G

∂nx∂ny

(x,y) =
ik2

4π
h

(1)
1

(
k|x − y|

)
(
−nx · ny

|x − y| − 3

(
(x − y) · nx

)(
(y − x) · ny

)

|x − y|3

)

+
ik3

4π
h

(1)
0

(
k|x − y|

)((x − y) · nx

)(
(y − x) · ny

)

|x − y|2 . (E.70)

Its singularity, when x → y for x,y ∈ Γ, expresses itself as

∂2G

∂nx∂ny

(x,y) ∼ − nx · ny

4π|y − x|3 − 3
(
(x − y) · nx

)(
(y − x) · ny

)

4π|y − x|5 . (E.71)

The regularizing effect of the normal derivatives applies only to its second term, but not to

the first. Hence this kernel is hypersingular, with λ = 3, and it holds that

∂2G

∂nx∂ny

(x,y) = O
(

1

|y − x|3
)
. (E.72)

The kernel is no longer integrable and the associated integral operator has to be thus inter-

preted in some appropriate sense as a divergent integral (cf., e.g., Hsiao & Wendland 2008,

Lenoir 2005, Nédélec 2001).

E.6.4 Boundary layer potentials

We regard now the jump properties on the boundary Γ of the boundary layer poten-

tials that have appeared in our calculations. For the development of the integral represen-

tation (E.59) we already made acquaintance with the single and double layer potentials,
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which we define now more precisely for x ∈ Ωe ∪ Ωi as the integral operators

Sν(x) =

∫

Γ

G(x,y)ν(y) dγ(y), (E.73)

Dµ(x) =

∫

Γ

∂G

∂ny

(x,y)µ(y) dγ(y). (E.74)

The integral representation (E.59) can be now stated in terms of the layer potentials as

u = Dµ− Sν. (E.75)

We remark that for any functions ν, µ : Γ → C that are regular enough, the single and

double layer potentials satisfy the Helmholtz equation, namely

(∆ + k2)Sν = 0 in Ωe ∪ Ωi, (E.76)

(∆ + k2)Dµ = 0 in Ωe ∪ Ωi. (E.77)

For the integral equations (E.63) and (E.64), which are defined for x ∈ Γ, we require

the four boundary integral operators:

Sν(x) =

∫

Γ

G(x,y)ν(y) dγ(y), (E.78)

Dµ(x) =

∫

Γ

∂G

∂ny

(x,y)µ(y) dγ(y), (E.79)

D∗ν(x) =

∫

Γ

∂G

∂nx

(x,y)ν(y) dγ(y), (E.80)

Nµ(x) =

∫

Γ

∂2G

∂nx∂ny

(x,y)µ(y) dγ(y). (E.81)

The operator D∗ is in fact the adjoint of the operator D. As we already mentioned, the

kernel of the integral operatorN defined in (E.81) is not integrable, yet we write it formally

as an improper integral. An appropriate sense for this integral will be given below. The

integral equations (E.63) and (E.64) can be now stated in terms of the integral operators as

1

2
(ue + ui) = Dµ− Sν, (E.82)

1

2

(
∂ue
∂n

+
∂ui
∂n

)
= Nµ−D∗ν. (E.83)

These integral equations can be easily derived from the jump properties of the single

and double layer potentials. The single layer potential (E.73) is continuous and its normal

derivative has a jump of size −ν across Γ, i.e.,

Sν|Ωe = Sν = Sν|Ωi
, (E.84)

∂

∂n
Sν|Ωe =

(
−1

2
+D∗

)
ν, (E.85)
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∂

∂n
Sν|Ωi

=

(
1

2
+D∗

)
ν. (E.86)

The double layer potential (E.74), on the other hand, has a jump of size µ across Γ and its

normal derivative is continuous, namely

Dµ|Ωe =

(
1

2
+D

)
µ, (E.87)

Dµ|Ωi
=

(
−1

2
+D

)
µ, (E.88)

∂

∂n
Dµ|Ωe = Nµ =

∂

∂n
Dµ|Ωi

. (E.89)

The integral equation (E.82) is obtained directly either from (E.84) and (E.87), or

from (E.84) and (E.88), by considering the appropriate trace of (E.75) and by defining the

functions µ and ν as in (E.41). These three jump properties are easily proven by regarding

the details of the proof for (E.63).

Similarly, the integral equation (E.83) for the normal derivative is obtained directly

either from (E.85) and (E.89), or from (E.86) and (E.89), by considering the appropriate

trace of the normal derivative of (E.75) and by defining again the functions µ and ν as

in (E.41). The proof of the jump properties (E.85) and (E.86) is the same as for the Laplace

equation, since the same singularities are involved, whereas the proof of (E.89) is similar,

but with some differences, and is therefore replicated below.

a) Continuity of the normal derivative of the double layer potential

Differently as in the proof for the Laplace equation, in this case an additional term ap-

pears for the operator N , since it is the Helmholtz equation (E.77) that has to be considered

in (D.86) and (D.87), yielding now for a test function ϕ ∈ D(R3) that
〈
∂

∂n
Dµ|Ωe , ϕ

〉
=

∫

Ωe

∇Dµ(x) · ∇ϕ(x) dx − k2

∫

Ωe

Dµ(x)ϕ(x) dx, (E.90)

〈
∂

∂n
Dµ|Ωi

, ϕ

〉
= −

∫

Ωi

∇Dµ(x) · ∇ϕ(x) dx + k2

∫

Ωi

Dµ(x)ϕ(x) dx. (E.91)

From (A.588) and (E.31) we obtain the relation

∂G

∂ny

(x,y) = ny · ∇yG(x,y) = −ny · ∇xG(x,y) = − divx

(
G(x,y)ny

)
. (E.92)

Thus for the double layer potential (E.74) we have that

Dµ(x) = − div

∫

Γ

G(x,y)µ(y)ny dγ(y) = − divS(µny)(x), (E.93)

being its gradient given by

∇Dµ(x) = −∇ div

∫

Γ

G(x,y)µ(y)ny dγ(y). (E.94)
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From (A.589) we have that

curlx
(
G(x,y)ny

)
= ∇xG(x,y) × ny. (E.95)

Hence, by considering (A.590), (E.77), and (E.95) in (E.94), we obtain that

∇Dµ(x) = curl

∫

Γ

(
ny×∇xG(x,y)

)
µ(y) dγ(y)+k2

∫

Γ

G(x,y)µ(y)ny dγ(y). (E.96)

From (E.31) and (A.658) we have that
∫

Γ

(
ny ×∇xG(x,y)

)
µ(y) dγ(y) = −

∫

Γ

ny ×
(
∇yG(x,y)µ(y)

)
dγ(y)

=

∫

Γ

ny ×
(
G(x,y)∇µ(y)

)
dγ(y), (E.97)

and consequently

∇Dµ(x) = curl

∫

Γ

G(x,y)
(
ny ×∇µ(y)

)
dγ(y) + k2

∫

Γ

G(x,y)µ(y)ny dγ(y). (E.98)

Now, the first expression in (E.90), due (A.596), (A.618), and (E.98), is given by
∫

Ωe

∇Dµ(x) · ∇ϕ(x) dx = −
∫

Γ

∫

Γ

G(x,y)
(
∇µ(y) × ny

)
·
(
∇ϕ(x) × nx

)
dγ(y) dγ(x)

+ k2

∫

Ωe

(∫

Γ

G(x,y)µ(y)ny dγ(y)

)
· ∇ϕ(x) dx. (E.99)

Applying (A.614) on the second term of (E.99) and considering (E.93), yields
∫

Ωe

∇Dµ(x) · ∇ϕ(x) dx = −
∫

Γ

∫

Γ

G(x,y)
(
∇µ(y) × ny

)
·
(
∇ϕ(x) × nx

)
dγ(y)dγ(x)

+ k2

∫

Ωe

Dµ(x)ϕ(x) dx +

∫

Γ

∫

Γ

G(x,y)µ(y)ϕ(x)(ny · nx) dγ(y) dγ(x). (E.100)

By replacing (E.100) in (E.90) we obtain finally that
〈
∂

∂n
Dµ|Ωe , ϕ

〉
= −

∫

Γ

∫

Γ

G(x,y)
(
∇µ(y) × ny

)
·
(
∇ϕ(x) × nx

)
dγ(y) dγ(x)

+ k2

∫

Γ

∫

Γ

G(x,y)µ(y)ϕ(x)(ny · nx) dγ(y) dγ(x). (E.101)

The analogous development for (E.91) yields
〈
∂

∂n
Dµ|Ωi

, ϕ

〉
= −

∫

Γ

∫

Γ

G(x,y)
(
∇µ(y) × ny

)
·
(
∇ϕ(x) × nx

)
dγ(y) dγ(x)

+ k2

∫

Γ

∫

Γ

G(x,y)µ(y)ϕ(x)(ny · nx) dγ(y) dγ(x). (E.102)
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This concludes the proof of (E.89), and shows that the integral operator (E.81) is properly

defined in a weak sense for ϕ ∈ D(R3), instead of (D.97), by

〈Nµ(x), ϕ〉 = −
∫

Γ

∫

Γ

G(x,y)
(
∇µ(y) × ny

)
·
(
∇ϕ(x) × nx

)
dγ(y) dγ(x)

+ k2

∫

Γ

∫

Γ

G(x,y)µ(y)ϕ(x)(ny · nx) dγ(y) dγ(x). (E.103)

E.6.5 Alternatives for integral representations and equations

By taking into account the transmission problem (E.41), its integral representation for-

mula (E.58), and its integral equations (E.63) and (E.64), several particular alternatives

for integral representations and equations of the exterior problem (E.13) can be developed.

The way to perform this is to extend properly the exterior problem towards the interior

domain Ωi, either by specifying explicitly this extension or by defining an associated in-

terior problem, so as to become the desired jump properties across Γ. The extension has

to satisfy the Helmholtz equation (E.1) in Ωi and a boundary condition that corresponds

adequately to the impedance boundary condition (E.3). The obtained system of integral

representations and equations allows finally to solve the exterior problem (E.13), by using

the solution of the integral equation in the integral representation formula.

a) Extension by zero

An extension by zero towards the interior domain Ωi implies that

ui = 0 in Ωi. (E.104)

The jumps over Γ are characterized in this case by

[u] = ue = µ, (E.105)
[
∂u

∂n

]
=
∂ue
∂n

= Zue − fz = Zµ− fz, (E.106)

where µ : Γ → C is a function to be determined.

An integral representation formula of the solution, for x ∈ Ωe ∪ Ωi, is given by

u(x) =

∫

Γ

(
∂G

∂ny

(x,y) − Z(y)G(x,y)

)
µ(y) dγ(y)+

∫

Γ

G(x,y)fz(y) dγ(y). (E.107)

Since
1

2

(
ue(x) + ui(x)

)
=
µ(x)

2
, x ∈ Γ, (E.108)

we obtain, for x ∈ Γ, the Fredholm integral equation of the second kind

µ(x)

2
+

∫

Γ

(
Z(y)G(x,y) − ∂G

∂ny

(x,y)

)
µ(y) dγ(y) =

∫

Γ

G(x,y)fz(y) dγ(y), (E.109)

which has to be solved for the unknown µ. In terms of boundary layer potentials, the

integral representation and the integral equation can be respectively expressed by

u = D(µ) − S(Zµ) + S(fz) in Ωe ∪ Ωi, (E.110)
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µ

2
+ S(Zµ) −D(µ) = S(fz) on Γ. (E.111)

Alternatively, since

1

2

(
∂ue
∂n

(x) +
∂ui
∂n

(x)

)
=
Z(x)

2
µ(x) − fz(x)

2
, x ∈ Γ, (E.112)

we obtain also, for x ∈ Γ, the Fredholm integral equation of the second kind

Z(x)

2
µ(x) +

∫

Γ

(
− ∂2G

∂nx∂ny

(x,y) + Z(y)
∂G

∂nx

(x,y)

)
µ(y) dγ(y)

=
fz(x)

2
+

∫

Γ

∂G

∂nx

(x,y)fz(y) dγ(y), (E.113)

which in terms of boundary layer potentials becomes

Z

2
µ−N(µ) +D∗(Zµ) =

fz
2

+D∗(fz) on Γ. (E.114)

b) Continuous impedance

We associate to (E.13) the interior problem




Find ui : Ωi → C such that

∆ui + k2ui = 0 in Ωi,

−∂ui
∂n

+ Zui = fz on Γ.

(E.115)

The jumps over Γ are characterized in this case by

[u] = ue − ui = µ, (E.116)
[
∂u

∂n

]
=
∂ue
∂n

− ∂ui
∂n

= Z(ue − ui) = Zµ, (E.117)

where µ : Γ → C is a function to be determined. In particular it holds that the jump of the

impedance is zero, namely
[
−∂u
∂n

+ Zu

]
=

(
−∂ue
∂n

+ Zue

)
−
(
−∂ui
∂n

+ Zui

)
= 0. (E.118)

An integral representation formula of the solution, for x ∈ Ωe ∪ Ωi, is given by

u(x) =

∫

Γ

(
∂G

∂ny

(x,y) − Z(y)G(x,y)

)
µ(y) dγ(y). (E.119)

Since

− 1

2

(
∂ue
∂n

(x) +
∂ui
∂n

(x)

)
+
Z(x)

2

(
ue(x) + ui(x)

)
= fz(x), x ∈ Γ, (E.120)
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we obtain, for x ∈ Γ, the Fredholm integral equation of the first kind
∫

Γ

(
− ∂2G

∂nx∂ny

(x,y) + Z(y)
∂G

∂nx

(x,y)

)
µ(y) dγ(y)

+ Z(x)

∫

Γ

(
∂G

∂ny

(x,y) − Z(y)G(x,y)

)
µ(y) dγ(y) = fz(x), (E.121)

which has to be solved for the unknown µ. In terms of boundary layer potentials, the

integral representation and the integral equation can be respectively expressed by

u = D(µ) − S(Zµ) in Ωe ∪ Ωi, (E.122)

−N(µ) +D∗(Zµ) + ZD(µ) − ZS(Zµ) = fz on Γ. (E.123)

We observe that the integral equation (E.123) is self-adjoint.

c) Continuous value

We associate to (E.13) the interior problem




Find ui : Ωi → C such that

∆ui + k2ui = 0 in Ωi,

−∂ue
∂n

+ Zui = fz on Γ.

(E.124)

The jumps over Γ are characterized in this case by

[u] = ue − ui =
1

Z

(
∂ue
∂n

− fz

)
− 1

Z

(
∂ue
∂n

− fz

)
= 0, (E.125)

[
∂u

∂n

]
=
∂ue
∂n

− ∂ui
∂n

= ν, (E.126)

where ν : Γ → C is a function to be determined.

An integral representation formula of the solution, for x ∈ Ωe ∪ Ωi, is given by the

single layer potential

u(x) = −
∫

Γ

G(x,y)ν(y) dγ(y). (E.127)

Since

− 1

2

(
∂ue
∂n

(x) +
∂ui
∂n

(x)

)
+
Z(x)

2

(
ue(x) + ui(x)

)
=
ν(x)

2
+ fz(x), x ∈ Γ, (E.128)

we obtain, for x ∈ Γ, the Fredholm integral equation of the second kind

−ν(x)

2
+

∫

Γ

(
∂G

∂nx

(x,y) − Z(x)G(x,y)

)
ν(y) dγ(y) = fz(x), (E.129)

which has to be solved for the unknown ν. In terms of boundary layer potentials, the

integral representation and the integral equation can be respectively expressed by

u = −S(ν) in Ωe ∪ Ωi, (E.130)

ν

2
+ ZS(ν) −D∗(ν) = −fz on Γ. (E.131)

We observe that the integral equation (E.131) is mutually adjoint with (E.111).
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d) Continuous normal derivative

We associate to (E.13) the interior problem




Find ui : Ωi → C such that

∆ui + k2ui = 0 in Ωi,

−∂ui
∂n

+ Zue = fz on Γ.

(E.132)

The jumps over Γ are characterized in this case by

[u] = ue − ui = µ, (E.133)
[
∂u

∂n

]
=
∂ue
∂n

− ∂ui
∂n

=
(
Zue − fz

)
−
(
Zue − fz

)
= 0, (E.134)

where µ : Γ → C is a function to be determined.

An integral representation formula of the solution, for x ∈ Ωe ∪ Ωi, is given by the

double layer potential

u(x) =

∫

Γ

∂G

∂ny

(x,y)µ(y) dγ(y). (E.135)

Since when x ∈ Γ,

− 1

2

(
∂ue
∂n

(x) +
∂ui
∂n

(x)

)
+
Z(x)

2

(
ue(x) + ui(x)

)
= −Z(x)

2
µ(x) + fz(x), (E.136)

we obtain, for x ∈ Γ, the Fredholm integral equation of the second kind

Z(x)

2
µ(x) +

∫

Γ

(
− ∂2G

∂nx∂ny

(x,y) + Z(x)
∂G

∂ny

(x,y)

)
µ(y) dγ(y) = fz(x), (E.137)

which has to be solved for the unknown µ. In terms of boundary layer potentials, the

integral representation and the integral equation can be respectively expressed by

u = D(µ) in Ωe ∪ Ωi, (E.138)

Z

2
µ−N(µ) + ZD(µ) = fz on Γ. (E.139)

We observe that the integral equation (E.139) is mutually adjoint with (E.114).

E.7 Far field of the solution

The asymptotic behavior at infinity of the solution u of (E.13) is described by the far

field uff . Its expression can be deduced by replacing the far field of the Green’s func-

tion Gff and its derivatives in the integral representation formula (E.58), which yields

uff (x) =

∫

Γ

(
[u](y)

∂Gff

∂ny

(x,y) −Gff (x,y)

[
∂u

∂n

]
(y)

)
dγ(y). (E.140)

By replacing now (E.36) and (E.37) in (E.140), we have that the far field of the solution is

uff (x) =
eik|x|

4π|x|

∫

Γ

e−ikx̂·y
(
ikx̂ · ny [u](y) +

[
∂u

∂n

]
(y)

)
dγ(y). (E.141)

535



The asymptotic behavior of the solution u at infinity is therefore given by

u(x) =
eik|x|

|x|

{
u∞(x̂) + O

(
1

|x|

)}
, |x| → ∞, (E.142)

uniformly in all directions x̂ on the unit sphere, where

u∞(x̂) =
1

4π

∫

Γ

e−ikx̂·y
(
ikx̂ · ny [u](y) +

[
∂u

∂n

]
(y)

)
dγ(y) (E.143)

is called the far-field pattern of u. It can be expressed in decibels (dB) by means of the

scattering cross section

Qs(x̂) [dB] = 20 log10

( |u∞(x̂)|
|u0|

)
, (E.144)

where the reference level u0 is typically taken as u0 = uI when the incident field is given

by a plane wave of the form (E.5), i.e., |u0| = 1.

We remark that the far-field behavior (E.142) of the solution is in accordance with the

Sommerfeld radiation condition (E.8), which justifies its choice.

E.8 Exterior sphere problem

To understand better the resolution of the direct scattering problem (E.13), we study

now the particular case when the domain Ωe ⊂ R
3 is taken as the exterior of a sphere of

radius R > 0. The interior of the sphere is then given by Ωi = {x ∈ R
3 : |x| < R} and its

boundary by Γ = ∂Ωe, as shown in Figure E.3. We place the origin at the center of Ωi and

we consider that the unit normal n is taken outwardly oriented of Ωe, i.e., n = −r.

x2

x3

Ωe

n
ΩiΓ

x1

FIGURE E.3. Exterior of the sphere.

The exterior sphere problem is then stated as




Find u : Ωe → C such that

∆u+ k2u = 0 in Ωe,

∂u

∂r
+ Zu = fz on Γ,

+ Outgoing Radiation condition as |x| → ∞,

(E.145)
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where we consider a constant impedance Z ∈ C, a wave number k > 0, and where the

radiation condition is as usual given by (E.8). As the incident field uI we consider a plane

wave in the form of (E.5), in which case the impedance data function fz is given by

fz = −∂uI
∂r

− ZuI on Γ. (E.146)

Due the particular chosen geometry, the solution u of (E.145) can be easily found

analytically by using the method of variable separation, i.e., by supposing that

u(x) = u(r, θ, ϕ) = h(r)g(θ)f(ϕ), (E.147)

where the radius r ≥ 0, the polar angle 0 ≤ θ ≤ π, and the azimuthal angle −π < ϕ ≤ π

denote the spherical coordinates in R
3. If the Helmholtz equation in (E.145) is expressed

using spherical coordinates, then

∆u+ k2u =
1

r

∂2

∂r2
(ru) +

1

r2 sin θ

∂

∂θ

(
sin θ

∂u

∂θ

)
+

1

r2 sin2θ

∂2u

∂ϕ2
+ k2u = 0. (E.148)

By replacing now (E.147) in (E.148) we obtain

h′′(r)g(θ)f(ϕ) +
2

r
h′(r)g(θ)f(ϕ) +

h(r)f(ϕ)

r2 sin θ

d

dθ

(
sin θ

dg

dθ
(θ)

)

+
h(r)g(θ)f ′′(ϕ)

r2 sin2θ
+ k2h(r)g(θ)f(ϕ) = 0. (E.149)

Multiplying by r2 sin2θ, dividing by hgf , and rearranging yields

r2 sin2θ

[
h′′(r)

h(r)
+

2

r

h′(r)

h(r)
+

1

g(θ)r2 sin θ

d

dθ

(
sin θ

dg

dθ
(θ)

)
+ k2

]
+
f ′′(ϕ)

f(ϕ)
= 0. (E.150)

The dependence on ϕ has now been isolated in the last term. Consequently this term must

be equal to a constant, which for convenience we denote by −m2, i.e.,

f ′′(ϕ)

f(ϕ)
= −m2. (E.151)

The solution of (E.151), up to a multiplicative constant, is of the form

f(ϕ) = e±imϕ. (E.152)

For f(ϕ) to be single-valued, m must be an integer if the full azimuthal range is allowed.

By similar considerations we find the following separate equations for g(θ) and h(r):

1

sin θ

d

dθ

(
sin θ

dg

dθ
(θ)

)
+

(
l(l + 1) − m2

sin2θ

)
g(θ) = 0, (E.153)

r2h′′(r) + 2rh′(r) +
(
k2r2 − l(l + 1)

)
h(r) = 0, (E.154)

where l(l + 1) is another conveniently denoted real constant. For the equation of the polar

angle θ we consider the change of variables x = cos θ. In this case (E.153) turns into

d

dx

(
(1 − x2)

dg

dx
(x)

)
+

(
l(l + 1) − m2

1 − x2

)
g(x) = 0, (E.155)
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which corresponds to the generalized or associated Legendre differential equation (A.323),

whose solutions on the interval −1 ≤ x ≤ 1 are the associated Legendre functions Pm
l

and Qm
l , which are characterized respectively by (A.330) and (A.331). If the solution

is to be single-valued, finite, and continuous in −1 ≤ x ≤ 1, then we have to exclude

the solutions Qm
l , take l as a positive integer or zero, and admit for the integer m only

the values −l,−(l − 1), . . . , 0, . . . , (l − 1), l. The solution of (E.153), up to an arbitrary

multiplicative constant, is therefore given by

g(θ) = Pm
l (cos θ). (E.156)

As for the Laplace equation, we combine the angular factors g(θ) and f(ϕ) into the spher-

ical harmonics Y m
l (θ, ϕ), which are defined in (A.380). For the radial equation (E.154)

we consider the change of variables z = kr and express ψ(z) = h(r), which yields the

spherical Bessel differential equation of order l, namely

z2ψ′′(z) + 2zψ′(z) +
(
z2 − l(l + 1)

)
ψ(z) = 0. (E.157)

The independent solutions of (E.157) are h
(1)
l (z) and h

(2)
l (z), the spherical Hankel functions

of order l, and therefore the solutions of (E.154) have the general form

h(r) = al h
(1)
l (kr) + bl h

(2)
l (kr), l ≥ 0, (E.158)

where al, bl ∈ C are arbitrary constants. The general solution for the Helmholtz equation

considers the linear combination of all the solutions in the form (E.147), namely

u(r, θ, ϕ) =
∞∑

l=0

l∑

m=−l

(
Alm h

(1)
l (kr) +Blm h

(2)
l (kr)

)
Y m
l (θ, ϕ), (E.159)

for some undetermined arbitrary constants Alm, Blm ∈ C. The radiation condition (E.8)

implies that

Blm = 0, −l ≤ m ≤ l, l ≥ 0. (E.160)

Thus the general solution (E.159) turns into

u(r, θ, ϕ) =
∞∑

l=0

l∑

m=−l
Alm h

(1)
l (kr)Y m

l (θ, ϕ). (E.161)

Due the recurrence relation (A.216), the radial derivative of (E.161) is given by

∂u

∂r
(r, θ, ϕ) =

∞∑

l=0

l∑

m=−l
Alm

(
l

r
h

(1)
l (kr) − kh

(1)
l+1(kr)

)
Y m
l (θ, ϕ). (E.162)

The constants Alm in (E.161) are determined through the impedance boundary condition

on Γ. For this purpose, we expand the impedance data function fz into spherical harmonics:

fz(θ, ϕ) =
∞∑

l=0

l∑

m=−l
flm Y

m
l (θ, ϕ), 0 ≤ θ ≤ π, −π < ϕ ≤ π, (E.163)

where

flm =

∫ π

−π

∫ π

0

fz(θ, ϕ)Y m
l (θ, ϕ) sin θ dθ dϕ, m ∈ Z, −l ≤ m ≤ l. (E.164)
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In particular, for a plane wave in the form of (E.5) we have the Jacobi-Anger expansion

uI(x) = eik·x = 4π
∞∑

l=0

iljl(kr)
l∑

m=−l
Y m
l (θP , ϕP )Y m

l (θ, ϕ), (E.165)

where jl is the spherical Bessel function of order l, and where θP = π−θI and ϕP = ϕI−π
are the propagation angles of the plane wave, i.e., of the wave vector k. We observe that

the expression (E.165) can be also written in a more compact manner by using the addition

theorem (A.389) and eventually also the relation (A.385). For a plane wave, the impedance

data function (E.146) can be thus expressed as

fz(θ) = −4π
∞∑

l=0

il
((

Z +
l

R

)
jl(kR) − kjl+1(kR)

) l∑

m=−l
Y m
l (θP , ϕP )Y m

l (θ, ϕ), (E.166)

which implies that

flm = −4πil
((

Z +
l

R

)
jl(kR) − kjl+1(kR)

)
Y m
l (θP , ϕP ). (E.167)

The impedance boundary condition takes therefore the form

∞∑

l=0

l∑

m=−l
Alm

((
Z +

l

R

)
h

(1)
l (kR) − kh

(1)
l+1(kR)

)
Y m
l (θ, ϕ) =

∞∑

l=0

l∑

m=−l
flm Y

m
l (θ, ϕ).

(E.168)

We observe that the constants Alm can be uniquely determined only if
(
Z +

l

R

)
h

(1)
l (kR) − kh

(1)
l+1(kR) 6= 0 for l ∈ N0. (E.169)

If this condition is not fulfilled, then the solution is no longer unique. The values k, Z ∈ C

for which this occurs form a countable set. In particular, for a fixed k, the impedances Z

which do not fulfill (E.169) can be explicitly characterized by

Z = k
h

(1)
l+1(kR)

h
(1)
l (kR)

− l

R
for l ∈ N0. (E.170)

The wave numbers k which do not fulfill (E.169), for a fixed Z, can only be characterized

implicitly through the relation
(
Z +

l

R

)
h

(1)
l (kR) − kh

(1)
l+1(kR) = 0 for l ∈ N0. (E.171)

If we suppose now that (E.169) takes place, then

Alm =
Rflm

(ZR + l)h
(1)
l (kR) − kRh

(1)
l+1(kR)

. (E.172)

In the case of a plane wave we consider for flm the expression (E.167). The unique solution

for the exterior sphere problem (E.145) is then given by

u(r, θ, ϕ) =
∞∑

l=0

l∑

m=−l

Rflm h
(1)
l (kr)Y m

l (θ, ϕ)

(ZR + l)h
(1)
l (kR) − kRh

(1)
l+1(kR)

. (E.173)
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We remark that there is no need here for an additional compatibility condition like (B.191).

If the condition (E.169) does not hold for some particular n ∈ N0, then the solution u

is not unique. The constants Anm are then no longer defined by (E.172), and can be chosen

in an arbitrary manner. For the existence of a solution in this case, however, we require also

the orthogonality conditions fnm = 0 for −n ≤ m ≤ n. Instead of (E.173), the solution

of (E.145) is now given by the infinite family of functions

u(r, θ, ϕ) =
∑

0≤l 6=n

l∑

m=−l

Rflm h
(1)
l (kr)Y m

l (θ, ϕ)

(ZR + l)h
(1)
l (kR) − kRh

(1)
l+1(kR)

+
n∑

m=−n
αm h

(1)
n (kr)Y m

n (θ, ϕ),

(E.174)

where αm ∈ C for −n ≤ m ≤ n are arbitrary and where their associated terms have

the form of volume waves, i.e., waves that propagate inside Ωe. The exterior sphere prob-

lem (E.145) admits thus a unique solution u, except on a countable set of values for k

and Z which do not fulfill the condition (E.169). And even in this last case there exists a

solution, although not unique, if 2n+ 1 orthogonality conditions are additionally satisfied.

This behavior for the existence and uniqueness of the solution is typical of the Fredholm

alternative, which applies when solving problems that involve compact perturbations of

invertible operators.

E.9 Existence and uniqueness

E.9.1 Function spaces

To state a precise mathematical formulation of the herein treated problems, we have to

define properly the involved function spaces. For the associated interior problems defined

on the bounded set Ωi we use the classical Sobolev space (vid. Section A.4)

H1(Ωi) =
{
v : v ∈ L2(Ωi), ∇v ∈ L2(Ωi)

3
}
, (E.175)

which is a Hilbert space and has the norm

‖v‖H1(Ωi) =
(
‖v‖2

L2(Ωi)
+ ‖∇v‖2

L2(Ωi)3

)1/2

. (E.176)

For the exterior problem defined on the unbounded domain Ωe, on the other hand, we

introduce the weighted Sobolev space (cf. Nédélec 2001)

W 1(Ωe) =

{
v :

v

(1 + r2)1/2
∈ L2(Ωe),

∇v
(1 + r2)1/2

∈ L2(Ωe)
3,
∂v

∂r
− ikv ∈ L2(Ωe)

}
,

(E.177)

where r = |x|. If W 1(Ωe) is provided with the norm

‖v‖W 1(Ωe) =

(∥∥∥∥
v

(1 + r2)1/2

∥∥∥∥
2

L2(Ωe)

+

∥∥∥∥
∇v

(1 + r2)1/2

∥∥∥∥
2

L2(Ωe)3
+

∥∥∥∥
∂v

∂r
− ikv

∥∥∥∥
2

L2(Ωe)

)1/2

,

(E.178)

then it becomes a Hilbert space. The restriction to any bounded open set B ⊂ Ωe of the

functions of W 1(Ωe) belongs to H1(B), i.e., we have the inclusion W 1(Ωe) ⊂ H1
loc(Ωe),

and the functions in these two spaces differ only by their behavior at infinity. We remark
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that the spaceW 1(Ωe) contains the constant functions and all the functions ofH1
loc(Ωe) that

satisfy the radiation condition (E.8).

When dealing with Sobolev spaces, even a strong Lipschitz boundary Γ ∈ C0,1 is

admissible. In this case, and due the trace theorem (A.531), if v ∈ H1(Ωi) or v ∈ W 1(Ωe),

then the trace of v fulfills

γ0v = v|Γ ∈ H1/2(Γ). (E.179)

Moreover, the trace of the normal derivative can be also defined, and it holds that

γ1v =
∂v

∂n
|Γ ∈ H−1/2(Γ). (E.180)

E.9.2 Regularity of the integral operators

The boundary integral operators (E.78), (E.79), (E.80), and (E.81) can be characterized

as linear and continuous applications such that

S : H−1/2+s(Γ) −→ H1/2+s(Γ), D : H1/2+s(Γ) −→ H3/2+s(Γ), (E.181)

D∗ : H−1/2+s(Γ) −→ H1/2+s(Γ), N : H1/2+s(Γ) −→ H−1/2+s(Γ). (E.182)

This result holds for any s ∈ R if the boundary Γ is of class C∞, which can be derived

from the theory of singular integral operators with pseudo-homogeneous kernels (cf., e.g.,

Nédélec 2001). Due the compact injection (A.554), it holds also that the operators

D : H1/2+s(Γ) −→ H1/2+s(Γ) and D∗ : H−1/2+s(Γ) −→ H−1/2+s(Γ) (E.183)

are compact. For a strong Lipschitz boundary Γ ∈ C0,1, on the other hand, these results

hold only when |s| < 1 (cf. Costabel 1988). In the case of more regular boundaries, the

range for s increases, but remains finite. For our purposes we use s = 0, namely

S : H−1/2(Γ) −→ H1/2(Γ), D : H1/2(Γ) −→ H1/2(Γ), (E.184)

D∗ : H−1/2(Γ) −→ H−1/2(Γ), N : H1/2(Γ) −→ H−1/2(Γ), (E.185)

which are all linear and continuous operators, and where the operators D and D∗ are com-

pact. Similarly, we can characterize the single and double layer potentials defined respec-

tively in (E.73) and (E.74) as linear and continuous integral operators such that

S : H−1/2(Γ) −→ W 1(Ωe ∪ Ωi) and D : H1/2(Γ) −→ W 1(Ωe ∪ Ωi). (E.186)

E.9.3 Application to the integral equations

It is not difficult to see that if µ ∈ H1/2(Γ) and ν ∈ H−1/2(Γ) are given, then the trans-

mission problem (E.41) admits a unique solution u ∈ W 1(Ωe∪Ωi), as a consequence of the

integral representation formula (E.59). For the direct scattering problem (E.13), though,

this is not always the case, as was appreciated in the exterior sphere problem (E.145).

Nonetheless, if the Fredholm alternative applies, then we know that the existence and

uniqueness of the problem can be ensured almost always, i.e., except on a countable set

of values for the wave number and for the impedance.

We consider an impedanceZ ∈ L∞(Γ) and an impedance data function fz ∈ H−1/2(Γ).

In both cases all the continuous functions on Γ are included.
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a) First extension by zero

Let us consider the first integral equation of the extension-by-zero alternative (E.109),

which is given in terms of boundary layer potentials, for µ ∈ H1/2(Γ), by

µ

2
+ S(Zµ) −D(µ) = S(fz) in H1/2(Γ). (E.187)

Due the imbedding properties of Sobolev spaces and in the same way as for the full-plane

impedance Laplace problem, it holds that the left-hand side of the integral equation corre-

sponds to an identity and two compact operators, and thus Fredholm’s alternative applies.

b) Second extension by zero

The second integral equation of the extension-by-zero alternative (E.113) is given in

terms of boundary layer potentials, for µ ∈ H1/2(Γ), by

Z

2
µ−N(µ) +D∗(Zµ) =

fz
2

+D∗(fz) in H−1/2(Γ). (E.188)

The operator N plays the role of the identity and the other terms on the left-hand side are

compact, thus Fredholm’s alternative holds.

c) Continuous impedance

The integral equation of the continuous-impedance alternative (E.121) is given in terms

of boundary layer potentials, for µ ∈ H1/2(Γ), by

−N(µ) +D∗(Zµ) + ZD(µ) − ZS(Zµ) = fz in H−1/2(Γ). (E.189)

Again, the operatorN plays the role of the identity and the remaining terms on the left-hand

side are compact, thus Fredholm’s alternative applies.

d) Continuous value

The integral equation of the continuous-value alternative (E.129) is given in terms of

boundary layer potentials, for ν ∈ H−1/2(Γ), by

ν

2
+ ZS(ν) −D∗(ν) = −fz in H−1/2(Γ). (E.190)

On the left-hand side we have an identity operator and the remaining operators are compact,

thus Fredholm’s alternative holds.

e) Continuous normal derivative

The integral equation of the continuous-normal-derivative alternative (E.137) is given

in terms of boundary layer potentials, for µ ∈ H1/2(Γ), by

Z

2
µ−N(µ) + ZD(µ) = fz in H−1/2(Γ). (E.191)

As before, Fredholm’s alternative again applies, since on the left-hand side we have the

operator N and two compact operators.
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E.9.4 Consequences of Fredholm’s alternative

Since the Fredholm alternative applies to each integral equation, therefore it applies

also to the exterior differential problem (E.13) due the integral representation formula. The

existence of the exterior problem’s solution is thus determined by its uniqueness, and the

wave numbers k ∈ C and impedances Z ∈ C for which the uniqueness is lost constitute a

countable set, which we call respectively wave number spectrum and impedance spectrum

of the exterior problem and denote them by σk and σZ . The spectrum σk considers a fixed Z

and, conversely, the spectrum σZ considers a fixed k. The existence and uniqueness of the

solution is therefore ensured almost everywhere. The same holds obviously for the solution

of the integral equation, whose wave number spectrum and impedance spectrum we denote

respectively by ςk and ςZ . Since each integral equation is derived from the exterior problem,

it holds that σk ⊂ ςk and σZ ⊂ ςZ . The converse, though, is not necessarily true and

depends on each particular integral equation. In any way, the sets ςk \ σk and ςZ \ σZ are at

most countable.

Fredholm’s alternative applies as much to the integral equation itself as to its adjoint

counterpart, and equally to their homogeneous versions. Moreover, each integral equa-

tion solves at the same time an exterior and an interior differential problem. The loss of

uniqueness of the integral equation’s solution appears when the wave number k and the

impedance Z are eigenvalues of some associated interior problem, either of the homoge-

neous integral equation or of its adjoint counterpart. Such a wave number k or impedance Z

are contained respectively in ςk or ςZ .

The integral equation (E.111) is associated with the extension by zero (E.104), for

which no eigenvalues appear. Nevertheless, its adjoint integral equation (E.131) of the

continuous value is associated with the interior problem (E.124), which has a countable

amount of eigenvalues k, but behaves otherwise well for all Z 6= 0.

The integral equation (E.114) is also associated with the extension by zero (E.104),

for which no eigenvalues appear. Nonetheless, its adjoint integral equation (E.139) of the

continuous normal derivative is associated with the interior problem (E.132), which has a

countable amount of eigenvalues k, but behaves well for all Z, without restriction.

The integral equation (E.123) of the continuous impedance is self-adjoint and is asso-

ciated with the interior problem (E.115), which has a countable quantity of eigenvalues k

and Z.

Let us consider now the transmission problem generated by the homogeneous exterior

problem 



Find ue : Ωe → C such that

∆ue + k2ue = 0 in Ωe,

−∂ue
∂n

+ Zue = 0 on Γ,

+ Outgoing radiation condition as |x| → ∞,

(E.192)
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and the associated homogeneous interior problem




Find ui : Ωi → C such that

∆ui + k2ui = 0 in Ωi,

∂ui
∂n

+ Zui = 0 on Γ,

(E.193)

where the radiation condition is as usual given by (E.8), and where the unit normal n

always points outwards of Ωe.

As in the two-dimensional case, it holds again that the integral equations for this trans-

mission problem have either the same left-hand side or are mutually adjoint to all other

possible alternatives of integral equations that can be built for the exterior problem (E.13),

and in particular to all the alternatives that were mentioned in the last subsection. The

eigenvalues k and Z of the homogeneous interior problem (E.193) are thus also contained

respectively in ςk and ςZ .

We remark that additional alternatives for integral representations and equations based

on non-homogeneous versions of the problem (E.193) can be also derived for the exterior

impedance problem (cf. Ha-Duong 1987).

The determination of the wave number spectrum σk and the impedance spectrum σZ
of the exterior problem (E.13) is not so easy, but can be achieved for simple geometries

where an analytic solution is known.

In conclusion, the exterior problem (E.13) admits a unique solution u if k /∈ σk, and

Z /∈ σZ , and each integral equation admits a unique solution, either µ or ν, if k /∈ ςk
and Z /∈ ςZ .

E.10 Dissipative problem

The dissipative problem considers waves that lose their amplitude as they travel through

the medium. These waves dissipate their energy as they propagate and are modeled by a

complex wave number k ∈ C whose imaginary part is strictly positive, i.e., Im{k} > 0.

This choice ensures that the Green’s function (E.22) decreases exponentially at infinity.

Due the dissipative nature of the medium, it is no longer suited to take plane waves in the

form of (E.5) as the incident field uI . Instead, we have to take a source of volume waves

at a finite distance from the obstacle. For example, we can consider a point source located

at z ∈ Ωe, in which case the incident field is given, up to a multiplicative constant, by

uI(x) = G(x, z) = − eik|x−z|

4π|x − z| = − ik

4π
h

(1)
0

(
k|x − z|

)
. (E.194)

This incident field uI satisfies the Helmholtz equation with a source term in the right-hand

side, namely

∆uI + k2uI = δz in D′(Ωe), (E.195)

which holds also for the total field uT but not for the scattered field u, in which case the

Helmholtz equation remains homogeneous. For a general source distribution gs, whose
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support is contained in Ωe, the incident field can be expressed by

uI(x) = G(x, z) ∗ gs(z) =

∫

Ωe

G(x, z) gs(z) dz. (E.196)

This incident field uI satisfies now

∆uI + k2uI = gs in D′(Ωe), (E.197)

which holds again also for the total field uT but not for the scattered field u.

The dissipative nature of the medium implies also that a radiation condition like (E.8)

is no longer required. The ingoing waves are ruled out, since they verify Im{k} < 0. The

dissipative scattering problem can be therefore stated as




Find u : Ωe → C such that

∆u+ k2u = 0 in Ωe,

−∂u
∂n

+ Zu = fz on Γ,

(E.198)

where the impedance data function fz is again given by

fz =
∂uI
∂n

− ZuI on Γ. (E.199)

The solution is now such that u ∈ H1(Ωe) (cf., e.g., Hazard & Lenoir 1998, Lenoir 2005),

therefore, instead of (E.52) and (E.53), we obtain that
∣∣∣∣
∫

SR

(
u(y)

∂G

∂ry
(x,y) −G(x,y)

∂u

∂r
(y)

)
dγ(y)

∣∣∣∣ ≤
C

R
e−RIm{k}. (E.200)

It is not difficult to see that all the other developments performed for the non-dissipative

case are also valid when considering dissipation. The only difference is that now a complex

wave number k such that Im{k} > 0 has to be taken everywhere into account and that the

outgoing radiation condition is no longer needed.

E.11 Variational formulation

To solve a particular integral equation we convert it to its variational or weak formu-

lation, i.e., we solve it with respect to certain test functions in a bilinear (or sesquilinear)

form. Basically, the integral equation is multiplied by the (conjugated) test function and

then the equation is integrated over the boundary of the domain. The test functions are

taken in the same function space as the solution of the integral equation.

a) First extension by zero

The variational formulation for the first integral equation (E.187) of the extension-by-

zero alternative searches µ ∈ H1/2(Γ) such that ∀ϕ ∈ H1/2(Γ)
〈µ

2
+ S(Zµ) −D(µ), ϕ

〉
=
〈
S(fz), ϕ

〉
. (E.201)
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b) Second extension by zero

The variational formulation for the second integral equation (E.188) of the extension-

by-zero alternative searches µ ∈ H1/2(Γ) such that ∀ϕ ∈ H1/2(Γ)
〈
Z

2
µ−N(µ) +D∗(Zµ), ϕ

〉
=

〈
fz
2

+D∗(fz), ϕ

〉
. (E.202)

c) Continuous impedance

The variational formulation for the integral equation (E.189) of the alternative of the

continuous-impedance searches µ ∈ H1/2(Γ) such that ∀ϕ ∈ H1/2(Γ)
〈
−N(µ) +D∗(Zµ) + ZD(µ) − ZS(Zµ), ϕ

〉
=
〈
fz, ϕ

〉
. (E.203)

d) Continuous value

The variational formulation for the integral equation (E.190) of the continuous-value

alternative searches ν ∈ H−1/2(Γ) such that ∀ψ ∈ H−1/2(Γ)
〈ν

2
+ ZS(ν) −D∗(ν), ψ

〉
=
〈
− fz, ψ

〉
. (E.204)

e) Continuous normal derivative

The variational formulation for the integral equation (E.191) of the continuous-normal-

derivative alternative searches µ ∈ H1/2(Γ) such that ∀ϕ ∈ H1/2(Γ)
〈
Z

2
µ−N(µ) + ZD(µ), ϕ

〉
=
〈
fz, ϕ

〉
. (E.205)

E.12 Numerical discretization

E.12.1 Discretized function spaces

The exterior problem (E.13) is solved numerically with the boundary element method

by employing a Galerkin scheme on the variational formulation of an integral equation.

We use on the boundary surface Γ Lagrange finite elements of type either P1 or P0. The

surface Γ is approximated by the triangular mesh Γh, composed by T flat triangles Tj ,

1 ≤ j ≤ T , and I nodes ri ∈ R
3, 1 ≤ i ≤ I . The triangles have a diameter less or

equal than h, and their vertices or corners, i.e., the nodes ri, are on top of Γ, as shown in

Figure E.4. The diameter of a triangle K is given by

diam(K) = sup
x,y∈K

|y − x|. (E.206)

The function space H1/2(Γ) is approximated using the conformal space of continuous

piecewise linear polynomials with complex coefficients

Qh =
{
ϕh ∈ C0(Γh) : ϕh|Tj

∈ P1(C), 1 ≤ j ≤ T
}
. (E.207)

The space Qh has a finite dimension I , and we describe it using the standard base func-

tions for finite elements of type P1, which we denote by {χj}Ij=1. The base function χj is
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Γ

Γh

FIGURE E.4. Mesh Γh, discretization of Γ.

associated with the node rj and has its support suppχj on the triangles that have rj as one

of their vertices. On rj it has a value of one and on the opposed edges of the triangles its

value is zero, being linearly interpolated in between and zero otherwise.

The function space H−1/2(Γ), on the other hand, is approximated using the conformal

space of piecewise constant polynomials with complex coefficients

Ph =
{
ψh : Γh → C | ψh|Tj

∈ P0(C), 1 ≤ j ≤ T
}
. (E.208)

The space Ph has a finite dimension T , and is described using the standard base functions

for finite elements of type P0, which we denote by {κj}Tj=1.

In virtue of this discretization, any function ϕh ∈ Qh or ψh ∈ Ph can be expressed as

a linear combination of the elements of the base, namely

ϕh(x) =
I∑

j=1

ϕj χj(x) and ψh(x) =
T∑

j=1

ψj κj(x) for x ∈ Γh, (E.209)

where ϕj, ψj ∈ C. The solutions µ ∈ H1/2(Γ) and ν ∈ H−1/2(Γ) of the variational

formulations can be therefore approximated respectively by

µh(x) =
I∑

j=1

µj χj(x) and νh(x) =
T∑

j=1

νj κj(x) for x ∈ Γh, (E.210)

where µj, νj ∈ C. The function fz can be also approximated by

fhz (x) =
I∑

j=1

fj χj(x) for x ∈ Γh, with fj = fz(rj), (E.211)

or

fhz (x) =
T∑

j=1

fj κj(x) for x ∈ Γh, with fj =
fz(r

j
1) + fz(r

j
2) + fz(r

j
3)

3
, (E.212)

depending on whether the original integral equation is stated in H1/2(Γ) or in H−1/2(Γ).

We denote by r
j
d , for d ∈ {1, 2, 3}, the three vertices of triangle Tj .
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E.12.2 Discretized integral equations

a) First extension by zero

To see how the boundary element method operates, we apply it to the first integral equa-

tion of the extension-by-zero alternative, i.e., to the variational formulation (E.201). We

characterize all the discrete approximations by the index h, including also the impedance

and the boundary layer potentials. The numerical approximation of (E.201) leads to the

discretized problem that searches µh ∈ Qh such that ∀ϕh ∈ Qh〈µh
2

+ Sh(Zhµh) −Dh(µh), ϕh

〉
=
〈
Sh(f

h
z ), ϕh

〉
. (E.213)

Considering the decomposition of µh in terms of the base {χj} and taking as test functions

the same base functions, ϕh = χi for 1 ≤ i ≤ I , yields the discrete linear system

I∑

j=1

µj

(
1

2
〈χj, χi〉 + 〈Sh(Zhχj), χi〉 − 〈Dh(χj), χi〉

)
=

I∑

j=1

fj 〈Sh(χj), χi〉. (E.214)

This constitutes a system of linear equations that can be expressed as a linear matrix system:
{

Find µ ∈ C
I such that

Mµ = b.
(E.215)

The elements mij of the matrix M are given by

mij =
1

2
〈χj, χi〉 + 〈Sh(Zhχj), χi〉 − 〈Dh(χj), χi〉 for 1 ≤ i, j ≤ I, (E.216)

and the elements bi of the vector b by

bi =
〈
Sh(f

h
z ), χi

〉
=

I∑

j=1

fj 〈Sh(χj), χi〉 for 1 ≤ i ≤ I. (E.217)

The discretized solution uh, which approximates u, is finally obtained by discretizing

the integral representation formula (E.110) according to

uh = Dh(µh) − Sh(Zhµh) + Sh(fhz ), (E.218)

which, more specifically, can be expressed as

uh =
I∑

j=1

µj
(
Dh(χj) − Sh(Zhχj)

)
+

I∑

j=1

fj Sh(χj). (E.219)

By proceeding in the same way, the discretization of all the other alternatives of inte-

gral equations can be also expressed as a linear matrix system like (E.215). The resulting

matrix M is in general complex, full, non-symmetric, and with dimensions I × I for el-

ements of type P1 and T × T for elements of type P0. The right-hand side vector b is

complex and of size either I or T . The boundary element calculations required to compute

numerically the elements of M and b have to be performed carefully, since the integrals

that appear become singular when the involved triangles are coincident, or when they have

a common vertex or edge, due the singularity of the Green’s function at its source point.
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b) Second extension by zero

In the case of the second integral equation of the extension-by-zero alternative, i.e., of

the variational formulation (E.202), the elements mij that constitute the matrix M of the

linear system (E.215) are given by

mij =
1

2
〈Zhχj, χi〉 − 〈Nh(χj), χi〉 + 〈D∗

h(Zhχj), χi〉 for 1 ≤ i, j ≤ I, (E.220)

whereas the elements bi of the vector b are expressed as

bi =
I∑

j=1

fj

(
1

2
〈χj, χi〉 + 〈D∗

h(Zhχj), χi〉
)

for 1 ≤ i ≤ I. (E.221)

The discretized solution uh is again computed by (E.219).

c) Continuous impedance

In the case of the continuous-impedance alternative, i.e., of the variational formula-

tion (E.203), the elements mij that constitute the matrix M of the linear system (E.215)

are given, for 1 ≤ i, j ≤ I , by

mij = −〈Nh(χj), χi〉 + 〈D∗
h(Zhχj), χi〉 + 〈ZhDh(χj), χi〉 − 〈ZhSh(Zhχj), χi〉, (E.222)

whereas the elements bi of the vector b are expressed as

bi =
I∑

j=1

fj 〈χj, χi〉 for 1 ≤ i ≤ I. (E.223)

It can be observed that for this particular alternative the matrix M turns out to be symmet-

ric, since the integral equation is self-adjoint. The discretized solution uh, due (E.122), is

then computed by

uh =
I∑

j=1

µj
(
Dh(χj) − Sh(Zhχj)

)
. (E.224)

d) Continuous value

In the case of the continuous-value alternative, that is, of the variational formula-

tion (E.204), the elements mij that constitute the matrix M , now of the linear system
{

Find ν ∈ C
T such that

Mν = b,
(E.225)

are given by

mij =
1

2
〈κj, κi〉 + 〈ZhSh(κj), κi〉 − 〈D∗

h(κj), κi〉 for 1 ≤ i, j ≤ T, (E.226)

whereas the elements bi of the vector b are expressed as

bi = −
T∑

j=1

fj 〈κj, κi〉 for 1 ≤ i ≤ T. (E.227)
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The discretized solution uh, due (E.130), is then computed by

uh = −
T∑

j=1

νj Sh(κj). (E.228)

e) Continuous normal derivative

In the case of the continuous-normal-derivative alternative, i.e., of the variational for-

mulation (E.205), the elementsmij that conform the matrix M of the linear system (E.215)

are given by

mij =
1

2
〈Zhχj, χi〉 − 〈Nh(χj), χi〉 + 〈ZhDh(χj), χi〉 for 1 ≤ i, j ≤ I, (E.229)

whereas the elements bi of the vector b are expressed as

bi =
I∑

j=1

fj 〈χj, χi〉 for 1 ≤ i ≤ I. (E.230)

The discretized solution uh, due (E.138), is then computed by

uh =
I∑

j=1

µj Dh(χj). (E.231)

E.13 Boundary element calculations

The boundary element calculations build the elements of the matrix M resulting from

the discretization of the integral equation, i.e., from (E.215) or (E.225). They permit thus to

compute numerically expressions like (E.216). To evaluate the appearing singular integrals,

we use the semi-numerical methods described in the report of Bendali & Devys (1986).

We use the same notation as in Section D.12, and the required boundary element inte-

grals, for a, b ∈ {0, 1} and c, d ∈ {1, 2, 3}, are again

ZAc,da,b =

∫

K

∫

L

(
sc
hKc

)a(
td
hLd

)b
G(x,y) dL(y) dK(x), (E.232)

ZBc,d
a,b =

∫

K

∫

L

(
sc
hKc

)a(
td
hLd

)b
∂G

∂ny

(x,y) dL(y) dK(x), (E.233)

All the integrals that stem from the numerical discretization can be expressed in terms of

these two basic boundary element integrals. The impedance is again discretized as a piece-

wise constant function Zh, which on each triangle Tj adopts a constant value Zj ∈ C. The

integrals of interest are the same as for the Laplace equation, except for the hypersingular
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term, which is now given by

〈Nh(χj), χi〉 = −
∫

Γh

∫

Γh

G(x,y)
(
∇χj(y) × ny

)
·
(
∇χi(x) × nx

)
dγ(y) dγ(x)

+ k2

∫

Γh

∫

Γh

G(x,y)χj(y)χi(x)(ny · nx) dγ(y) dγ(x)

= −
∑

K∋ri

∑

L∋rj

ZA
cKi , d

L
j

0,0

hK
cKi
hL
dL

j

(
νKcKi

× nK

)
·
(
νLdL

j
× nL

)

+ k2
∑

K∋ri

∑

L∋rj

(
ZA

cKi , d
L
j

0,0 − ZA
cKi , d

L
j

0,1 − ZA
cKi , d

L
j

1,0 + ZA
cKi , d

L
j

1,1

)
(nL · nK). (E.234)

To compute the boundary element integrals (E.232) and (E.233), we isolate the singular

part of the Green’s function G according to

G(R) = − 1

4πR
+ φ(R), (E.235)

where φ(R) is a non-singular function, which is given by

φ(R) =
1 − eikR

4πR
. (E.236)

For the derivative G′(R) we have similarly that

G′(R) =
1

4πR2
+ φ′(R), (E.237)

where φ′(R) is also a non-singular function, which is given by

φ′(R) = −1 − (1 − ikR)eikR

4πR2
. (E.238)

We observe that
∂G

∂ny

(x,y) = G′(R)
R

R
· ny. (E.239)

It is not difficult to see that the singular part corresponds to the Green’s function of the

Laplace equation, and therefore the associated integrals are computed in the same way. For

the integrals associated with φ(R) and φ′(R), which are non-singular, a three-point Gauss-

Lobatto quadrature formula is used. All the other computations are performed in the same

manner as in Section D.12 for the Laplace equation.

E.14 Benchmark problem

As benchmark problem we consider the exterior sphere problem (E.145), whose do-

main is shown in Figure E.3. The exact solution of this problem is stated in (E.173), and

the idea is to retrieve it numerically with the integral equation techniques and the boundary

element method described throughout this chapter.

For the computational implementation and the numerical resolution of the bench-

mark problem, we consider only the first integral equation of the extension-by-zero al-

ternative (E.109), which is given in terms of boundary layer potentials by (E.187). The
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linear system (E.215) resulting from the discretization (E.213) of its variational formula-

tion (E.201) is solved computationally with finite boundary elements of type P1 by using

subroutines programmed in Fortran 90, by generating the mesh Γh of the boundary with the

free software Gmsh 2.4, and by representing graphically the results in Matlab 7.5 (R2007b).

We consider a radiusR = 1, a wave number k = 3, and a constant impedance Z = 0.8.

The discretized boundary surface Γh has I = 702 nodes, T = 1400 triangles, and a dis-

cretization step h = 0.2136, being

h = max
1≤j≤T

diam(Tj). (E.240)

As incident field uI we consider a plane wave in the form of (E.5) with a wave propagation

vector k = (0, 1, 0), i.e., such that the angles of incidence in (E.6) are given by θI = π/2

and ϕI = −π/2.

From (E.173) and (E.167), we can approximate the exact solution as the truncated

series

u(r, θ, ϕ) = −4π
40∑

l=0

il
(ZR + l) jl(kR) − kR jl+1(kR)

(ZR + l)h
(1)
l (kR) − kRh

(1)
l+1(kR)

h
(1)
l (kr)Υl(θ, ϕ), (E.241)

where

Υl(θ, ϕ) =
l∑

m=−l
Y m
l (θ, ϕ)Y m

l (θP , ϕP ) =
2l + 1

4π

(
Pl(cos θ)Pl(cos θP )

+ 2
l∑

m=1

(l −m)!

(l +m)!
Pm
l (cos θ)Pm

l (cos θP ) cos
(
m(ϕ− ϕP )

)
)
, (E.242)

and where the trace on the boundary of the sphere is approximated by

µ(θ, ϕ) = −4π
40∑

l=0

il
(ZR + l) jl(kR) − kR jl+1(kR)

(ZR + l)h
(1)
l (kR) − kRh

(1)
l+1(kR)

h
(1)
l (kR)Υl(θ, ϕ). (E.243)

The numerically calculated trace of the solution µh of the benchmark problem, which

was computed by using the boundary element method, is depicted in Figure E.5. In the

same manner, the numerical solution uh is illustrated in Figures E.6 and E.7 for an an-

gle θ = π/2. It can be observed that the numerical solution is close to the exact one.

On behalf of the far field, two scattering cross sections are shown in Figure E.8. The

bistatic radiation diagram represents the far-field pattern of the solution for a particular

incident field in all observation directions. The monostatic radiation diagram, on the other

hand, depicts the backscattering of incident fields from all directions, i.e., the far-field

pattern in the same observation direction as for each incident field.

Likewise as in (D.346), we define the relative error of the trace of the solution as

E2(h,Γ
h) =

‖Πhµ− µh‖L2(Γh)

‖Πhµ‖L2(Γh)

, (E.244)
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FIGURE E.5. Numerically computed trace of the solution µh.
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FIGURE E.6. Contour plot of the numerically computed solution uh for θ = π/2.
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FIGURE E.7. Oblique view of the numerically computed solution uh for θ = π/2.
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FIGURE E.8. Scattering cross sections ranging from -14 to 6 [dB].

where Πhµ denotes the Lagrange interpolating function of the exact solution’s trace µ, i.e.,

Πhµ(x) =
I∑

j=1

µ(rj)χj(x) and µh(x) =
I∑

j=1

µj χj(x) for x ∈ Γh. (E.245)

In our case, for a step h = 0.2136, we obtained a relative error of E2(h,Γ
h) = 0.01400.

As in (D.350), we define the relative error of the solution as

E∞(h,ΩL) =
‖u− uh‖L∞(ΩL)

‖u‖L∞(ΩL)

, (E.246)

being ΩL = {x ∈ Ωe : ‖x‖∞ < L} for L > 0. We consider L = 3 and approximate ΩL

by a triangular finite element mesh of refinement h near the boundary. For h = 0.2136, the

relative error that we obtained for the solution was E∞(h,ΩL) = 0.01667.

The results for different mesh refinements, i.e., for different numbers of triangles T ,

nodes I , and discretization steps h for Γh, are listed in Table E.1. These results are illus-

trated graphically in Figure E.9. It can be observed that the relative errors are approximately

of order h2.

TABLE E.1. Relative errors for different mesh refinements.

T I h E2(h,Γ
h) E∞(h,ΩL)

32 18 1.0000 4.286 · 10−1 5.753 · 10−1

90 47 0.7071 1.954 · 10−1 1.986 · 10−1

336 170 0.4334 5.821 · 10−2 6.207 · 10−2

930 467 0.2419 2.020 · 10−2 2.148 · 10−2

1400 702 0.2136 1.400 · 10−2 1.667 · 10−2

2448 1226 0.1676 7.892 · 10−3 8.745 · 10−3
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