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RESUME

Dans cette these on calcule la fonction de Green des équations de Laplace et Helmholtz
en deux et trois dimensions dans un demi-espace avec une condition a la limite d’impédance.
Pour les calculs on utilise une transformée de Fourier partielle, le principe d’absorption lim-
ite, et quelques fonctions spéciales de la physique mathématique. La fonction de Green est
apres utilisée pour résoudre numériquement un probleme de propagation des ondes dans
un demi-espace qui est perturbé de maniere compacte, avec impédance, en employant des
techniques des équations intégrales et la méthode d’éléments de frontiere. La connaissance
de son champ lointain permet d’énoncer convenablement la condition de radiation qu’on a
besoin. Des expressions pour le champ proche et lointain de la solution sont données, dont
I’existence et ’unicité sont discutées brievement. Pour chaque cas un probleme benchmark
est résolu numériquement.

On expose étendument le fond physique et mathématique et on inclut aussi la théorie
des problemes de propagation des ondes dans 1’espace plein qui est perturbé de maniere
compacte, avec impédance. Les techniques mathématiques développées ici sont appliquées
ensuite au calcul de résonances dans un port maritime. De la méme facon, ils sont appliqués
au calcul de la fonction de Green pour 1’équation de Laplace dans un demi-plan bidimen-
sionnel avec une condition a la limite de dérivée oblique.

Mots Clé: Fonction de Green, équation de Laplace, équation de Helmholtz,
probleme direct de diffraction des ondes, condition a la lim-
ite d’impédance, condition de radiation, techniques d’équations
intégrales, demi-espace avec une perturbation compacte, métode
d’éléments de frontiere, résonances dans un port maritime, condi-
tion a la limite de dérivée oblique.
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ABSTRACT

In this thesis we compute the Green’s function of the Laplace and Helmholtz equa-
tions in a two- and three-dimensional half-space with an impedance boundary condition.
For the computations we use a partial Fourier transform, the limiting absorption principle,
and some special functions that appear in mathematical physics. The Green’s function is
then used to solve a compactly perturbed impedance half-space wave propagation problem
numerically by using integral equation techniques and the boundary element method. The
knowledge of its far field allows stating appropriately the required radiation condition. Ex-
pressions for the near and far field of the solution are given, whose existence and uniqueness
are briefly discussed. For each case a benchmark problem is solved numerically.

The physical and mathematical background is extensively exposed, and the theory of
compactly perturbed impedance full-space wave propagation problems is also included.
The herein developed mathematical techniques are then applied to the computation of har-
bor resonances in coastal engineering. Likewise, they are applied to the computation of the
Green’s function for the Laplace equation in a two-dimensional half-plane with an oblique-
derivative boundary condition.

Keywords: Green’s function, Laplace equation, Helmholtz equation, direct scatter-
ing problem, impedance boundary condition, radiation condition, inte-
gral equation techniques, compactly perturbed half-space, boundary ele-
ment method, harbor resonances, oblique-derivative boundary condition.
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I. INTRODUCTION

1.1 Foreword

In this thesis we are essentially interested in the mathematical modeling of wave prop-
agation phenomena by using Green’s functions and integral equation techniques. As some
poet from the ancient Roman Empire inspired by the Muses might have said (Hein 2006):

Non fluctus numerare licet iam machinatori,
Invenienda est nam functio Viridii.

This Latin epigram can be translated more or less as “to count the waves is no longer
permitted for the engineer, since to be found has the function of Green”. An epigram is a
short, pungent, and often satirical poem, which was very popular among the ancient Greeks
and Romans. It consists commonly of one elegiac couplet, i.e., a hexameter followed by a
pentameter. Two possible questions that arise from our epigram are: “why does someone
want to count waves?”, and even more: “what is a function of Green and for what purpose
do we want to find it?” Let us hence begin with the first question.

Since the dawn of mankind have waves, specifically water waves, been a source of
wonder and admiration, but also of fear and respect. Giant sea waves caused by storms have
drowned thousands of ships and adventurous sailors, who blamed for their fate the wrath of
the mighty gods of antiquity. On more quite days, though, it was always a delightful plea-
sure to watch from afar the sea waves braking against the coast. For the ancient Romans, in
fact, the expression of counting sea waves (fluctus numerare) was used in the sense of hav-
ing leisure time (otium), as opposed to working and doing business (negotium). Therefore
the message is clear: the leisure time is over and the engineer has work to be done. In fact,
even if it is not specifically mentioned, it is implicitly understood that this premise applies
as much to the civil engineer (machinator) as to the military engineer (munitor). A straight
interpretation of the hexameter is also perfectly allowed. To count the waves individually
as they pass by before our eyes is usually not the best way to try to comprehend and re-
produce the behavior of wave propagation phenomena, so as to be afterwards used for our
convenience. Hence, to understand and treat waves, what sometimes can be quite difficult,
we need powerful theoretical tools and efficient mathematical methods.

This takes us now to our second question, which is closely related to the first one. A
function of Green (functio Viridii), usually referred to as a “Green’s function”, has no direct
relationship with the green color as may be wrongly inferred from a straight translation that
disregards the little word play lying behind. The word for Green (Viridii) is in the genitive
singular case, i.e., it stands not for the adjective green (viridis), but rather as a (quite rare)
singular of the plural neuter noun of the second declension for green things (viridia), which
usually refers to green plants, herbs, and trees. Its literal translation, when we consider it
as a proper noun, is then “of the Green” or “of Green”, which in English is equivalent
to “Green’s”. A Green’s function is, in fact, a mathematical tool that allows us to solve
wave propagation problems, as I hope should become clear throughout this thesis. The first
person who used this kind of functions, and after whom they are named, was the British



mathematician and physicist George Green (1793-1841), hence the word play with the
color of the same name. They were introduced by Green (1828) in his research on potential
theory, where he considered a particular case of them. A Green’s function helps us also to
solve other kinds of physical problems, but is particularly useful when dealing with infinite
exterior domains, since it achieves to synthesize the physical properties of the underlying
system. It is therefore in our best interest to find (invenienda est) such a Green’s function.

1.2 Motivation and overview

1.2.1 Wave propagation

Waves, as summarized in the insightful review by Keller (1979), are disturbances that
propagate through space and time, usually by transference of energy. Propagation is the
process of travel or movement from one place to another. Thus wave propagation is an-
other name for the movement of a physical disturbance, often in an oscillatory manner.
The example which has been recognized longest is that of the motion of waves on the sur-
face of water. Another is sound, which was known to be a wave motion at least by the
time of the magnificent English physicist, mathematician, astronomer, natural philosopher,
alchemist, and theologian Sir Isaac Newton (1643—1727). In 1690 the Dutch mathemati-
cian, astronomer, and physicist Christiaan Huygens (1629-1695) proposed that light is also
a wave motion. Gradually other types of waves were recognized. By the end of the nine-
teenth century elastic waves of various kinds were known, electromagnetic waves had been
produced, etc. In the twentieth century matter waves governed by quantum mechanics were
discovered, and an active search is still underway for gravitational waves. A discussion on
the origin and development of the modern concept of wave is given by Manacorda (1991).

The laws of physics provide systems of one or more partial differential equations gov-
erning each type of wave. Any particular case of wave propagation is governed by the
appropriate equations, together with certain auxiliary conditions. These may include ini-
tial conditions, boundary conditions, radiation conditions, asymptotic decaying conditions,
regularity conditions, etc. The differential equations together with the auxiliary condi-
tions constitute a mathematical problem for the determination of the wave motion. These
problems are the subject matter of the mathematical theory of wave propagation. Some
references on this subject that we can mention are Courant & Hilbert (1966), Elmore &
Heald (1969), Felsen & Marcuwitz (2003), and Morse & Feshbach (1953).

Maxwell’s equations of electromagnetic theory and Schrédinger’s equation in quantum
mechanics are both usually linear. They are named after the Scottish mathematician and
theoretical physicist James Clerk Maxwell (1831-1879) and the Austrian physicist Erwin
Rudolf Josef Alexander Schrodinger (1887-1961). Furthermore, the equations governing
most waves can be linearized to describe small amplitude waves. Examples of these lin-
earized equations are the scalar wave equation of acoustics and its time-harmonic version,
the Helmholtz equation, which receives its name from the German physician and physicist
Hermann Ludwig Ferdinand von Helmholtz (1821-1894). Another example is the Laplace
equation in hydrodynamics, in which case it is the boundary condition which is linearized



and not the equation itself. This equation is named after the French mathematician and
astronomer Pierre Simon, marquis de Laplace (1749-1827). Such linear equations with
linear auxiliary conditions are the subject of the theory of linear wave propagation. It is
this theory which we shall consider.

The classical researchers were concerned with obtaining exact and explicit expressions
for the solutions of wave propagation problems. Because the problems were linear, they
constructed these expressions by superposition, i.e., by linear combination, of particular
solutions. The particular solutions had to be simple enough to be found explicitly and the
problem had to be special enough for the coefficients in the linear combination to be found.

One of the devised methods is the image method (cf., e.g., Morse & Feshbach 1953), in
which the particular solution is that due to a point source in the whole space. The domains
to which the method applies must be bounded by one or several planes on which the field
or its normal derivative vanishes. In some cases it is possible to obtain the solution due to
a point source in such a domain by superposing the whole space solution due to the source
and the whole space solutions due to the images of the source in the bounding planes. Un-
fortunately the scope of this method is very limited, but when it works it yields a great deal
of insight into the solution and a simple expression for it. The image method also applies
to the impedance boundary condition, in which a linear combination of the wave function
and its normal derivative vanishes on a bounding plane. Then the image of a point source is
a point source plus a line of sources with exponentially increasing or decreasing strengths.
The line extends from the image point to infinity in a direction normal to the plane. These
results can be also extended for impedance boundary conditions with an oblique derivative
instead of a normal derivative (cf. Gilbarg & Trudinger 1983, Keller 1981), in which case
the line of images is parallel to the direction of differentiation.

The major classical method is nonetheless that of separation of variables (cf., e.g.,
Evans 1998, Weinberger 1995). In this method the particular solutions are products of
functions of one variable each, and the desired solution is a series or integral of these
product solutions, with suitable coefficients. It follows from the partial differential equation
that the functions of one variable each satisfy certain ordinary differential equations. Most
of the special functions of classical analysis arose in this way, such as those of Bessel,
Neumann, Hankel, Mathieu, Struve, Anger, Weber, Legendre, Hermite, Laguerre, Lamé,
Lommel, etc. To determine the coefficients in the superposition of the product solutions,
the method of expanding a function as a series or integral of orthogonal functions was
developed. In this way the theory of Fourier series originated, and also the method of
integral transforms, including those of Fourier, Laplace, Hankel, Mellin, Gauss, etc.

Despite its much broader scope than the image method, the method of separation of
variables is also quite limited. Only very special partial differential equations possess
enough product solutions to be useful. For example, there are only 13 coordinate systems
in which the three-dimensional Laplace equation has an adequate number of such solu-
tions, and there are only 11 coordinate systems in which the three-dimensional Helmholtz
equation does. Furthermore only for very special boundaries can the expansion coefficients



be found by the use of orthogonal functions. Generally they must be complete coordinate
surfaces of a coordinate system in which the equation is separable.

Another classical method is the one of eigenfunction expansions (cf. Morse & Fes-
hbach 1953, Butkov 1968). In this case the solutions are expressed as sums or integrals
of eigenfunctions, which are themselves solutions of partial differential equations. This
method was developed by Lord Rayleigh and others as a consequence of partial separation
of variables. They sought particular solutions which were products of a function of one
variable (e.g., time) multiplied by a function of several variables (e.g., spatial coordinates).
This method led to the use of eigenfunction expansions, to the introduction of adjoint prob-
lems, and to other aspects of the theory of linear operators. It also led to the use of vari-
ational principles for estimating eigenvalues and approximating eigenfunctions, such as
the Rayleigh-Ritz method. These procedures are needed because there exists no way for
finding eigenvalues and eigenfunctions explicitly in general. However, if the eigenfunction
problem is itself separable, it can be solved by the method of separation of variables.

Finally, there is the method of converting a problem into an integral equation with the
aid of a Green’s function (cf., e.g., Courant & Hilbert 1966). But generally the integral
equation cannot be solved explicitly. In some cases it can be solved by means of integral
transforms, but then the original problem can also be solved in this way.

In more recent times several other methods have also been developed, which use, e.g.,
asymptotic analysis, special transforms, among other theoretical tools. A brief account on
them can be found in Keller (1979).

1.2.2 Numerical methods

All the previously mentioned methods to solve wave propagation problems are analytic
and they require that the involved domains have some rather specific geometries to be used
satisfactorily. In the method of variable separation, e.g., the domain should be described
easily in the chosen coordinate system so as to be used effectively. The advent of modern
computers and their huge calculation power made it possible to develop a whole new range
of methods, the so-called numerical methods. These methods are not concerned with find-
ing an exact solution to the problem, but rather with obtaining an approximate solution that
stays close enough to the exact one. The basic idea in any numerical method for differ-
ential equations is to discretize the given continuous problem with infinitely many degrees
of freedom to obtain a discrete problem or system of equations with only finitely many
unknowns that may be solved using a computer. At the end of the discretization procedure,
a linear matrix system is obtained, which is what finally is programmed into the computer.

a) Bounded domains

Two classes of numerical methods are mainly used to solve boundary-value prob-
lems on bounded domains: the finite difference method (FDM) and the finite element
method (FEM). Both yield sparse and banded linear matrix systems. In the FDM, the
discrete problem is obtained by replacing the derivatives with difference quotients involv-
ing the values of the unknown at certain (finitely many) points, which conform the discrete



mesh and which are placed typically at the intersections of mutually perpendicular lines.
The FDM is easy to implement, but it becomes very difficult to adapt it to more complicated
geometries of the domain. A reference for the FDM is Rappaz & Picasso (1998).

The FEM, on the other hand, uses a Galerkin scheme on the variational or weak formu-
lation of the problem. Such a scheme discretizes a boundary-value problem from its weak
formulation by approximating the function space of the solution through a finite set of
basis functions, and receives its name from the Russian mathematician and engineer Boris
Grigoryevich Galerkin (1871-1945). The FEM is thus based on the discretization of the so-
lution’s function space rather than of the differential operator, as is the case with the FDM.
The FEM is not so easy to implement as the FDM, since finite element interaction inte-
grals have to be computed to build the linear matrix system. Nevertheless, the FEM is very
flexible to be adapted to any reasonable geometry of the domain by choosing adequately
the involved finite elements. It was originally introduced by engineers in the late 1950’s as
a method to solve numerically partial differential equations in structural engineering, but
since then it was further developed into a general method for the numerical solution of all
kinds of partial differential equations, having thus applications in many areas of science
and engineering. Some references for this method are Ciarlet (1979), Gockenbach (2006),
and Johnson (1987).

Meanwhile, several other classes of numerical methods for the treatment of differ-
ential equations have arisen, which are related to the ones above. Among them we can
mention the collocation method (CM), the spectral method (SM), and the finite volume
method (FVM). In the CM an approximation is sought in a finite element space by requir-
ing the differential equation to be satisfied exactly at a finite number of collocation points,
rather than by an orthogonality condition. The SM, on the other hand, uses globally defined
functions, such as eigenfunctions, rather than piecewise polynomials approximating func-
tions, and the discrete solution may be determined by either orthogonality or collocation.
The FVM applies to differential equations in divergence form. This method is based on
approximating the boundary integral that results from integrating over an arbitrary volume
and transforming the integral of the divergence into an integral of a flux over the bound-
ary. All these methods deal essentially with bounded domains, since infinite unbounded
domains cannot be stored into a computer with a finite amount of memory. For further
details on these methods we refer to Sloan et al. (2001).

b) Unbounded domains

In the case of wave propagation problems, and in particular of scattering problem:s,
the involved domains are usually unbounded. To deal with this situation, two different
approaches have been devised: domain truncation and integral equation techniques. Both
approaches result in some sort of bounded domains, which can then be discretized numer-
ically without problems.

In the first approach, i.e., the truncation of the domain, some sort of boundary condi-
tion has to be imposed on the truncated (artificial) boundary. Techniques that operate in this
way are the Dirichlet-to-Neumann (DtN) or Steklov-Poincaré operator, artificial boundary



conditions (ABC), perfectly matched layers (PML), and the infinite element method (IEM).
The DtN operator relates on the truncated boundary curve the Dirichlet and the Neumann
data, i.e., the value of the solution and of its normal derivative. Thus, the knowledge of the
problem’s solution outside the truncated domain, either by a series or an integral represen-
tation, allows its use as a boundary condition for the problem inside the truncated domain.
Explicit expressions for the DtN operator are usually quite difficult to obtain, except for
some few specific geometries. We refer to Givoli (1999) for further details on this operator.
In the case of an ABC, a condition is imposed on the truncated boundary that allows the
passage only of outgoing waves and eliminates the ingoing ones. The ABC has the disad-
vantage that it is a global boundary condition, i.e., it specifies a coupling of the values of the
solution on the whole artificial boundary by some integral expression. The same holds for
the DtN operator, which can be regarded as some sort of ABC. There exist in general only
approximations for an ABC, which work well when the wave incidence is nearly normal,
but not so well when it is very oblique. Some references for ABC are Nataf (2006) and
Tsynkov (1998). In the case of PML, an absorbing layer of finite depth is placed around
the truncated boundary so as to absorb the outgoing waves and reduce as much as possi-
ble their reflections back into the truncated domain’s interior. On the absorbing layer, the
problem is stated using a dissipative wave equation. For further details on PML we refer to
Johnson (2008). The IEM, on the other hand, avoids the need of an artificial boundary by
partitioning the complement of the truncated domain into a finite amount of so-called infi-
nite elements. These infinite elements reduce to finite elements on the coupling surface and
are described in some appropriate coordinate system. References for the IEM and likewise
for the other techniques are Ihlenburg (1998) and Marburg & Nolte (2008). Interesting re-
views of several of these methods can be also found in Thompson (2005) and Zienkiewicz
& Taylor (2000). On the whole, once the domain is truncated with any one of the men-
tioned techniques, the problem can be solved numerically by using the FEM, the FDM,
or some other numerical method that works well with bounded domains. This approach
has nonetheless the drawback that the discretization of the additional truncated boundary
may produce undesired reflections of the outgoing waves back towards the interior of the
truncated domain, due the involved numerical approximations.

It is in fact the second approach, i.e., the integral equation techniques, the one that is of
our concern throughout this thesis. This approach takes advantage of the fact that the wave
propagation problem can be converted into an integral equation with the help of a Green’s
function. The integral equation is built in such a way that its support lies on a bounded
region, e.g., the domain’s boundary. Even though we mentioned that this approach may not
be so practical to find an analytic solution, it becomes very useful when it is combined with
an appropriate numerical method to solve the integral equation. Typically either a colloca-
tion method or a finite element method is used for this purpose. The latter is based on a
variational formulation and is thus numerically more stable and accurate than the former,
particularly when the involved geometries contain corners or are otherwise complicated.
At the end, the general solution of the problem is retrieved by means of an integral rep-
resentation formula that requires the solution of the previously solved integral equation.
Of course, integral equation techniques can be likewise used to solve wave propagation
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problems in bounded domains. A big advantage of these techniques is their simplicity to
represent the far field of the solution. Some references on integral equation techniques are
the books of Hsiao & Wendland (2008), Nédélec (2001), and Steinbach (2008).

The drawback of integral equation techniques is their more complex mathematical
treatment and the requirement of knowing the Green’s function of the system. It is the
Green’s function that stores the information of the system’s physics throughout the consid-
ered domain and which allows to collapse the problem towards an integral equation. The
Green’s function is usually problematic to integrate, since it corresponds to the solution of
the homogeneous system subject to a singularity load, e.g., the electrical field arising from
a point charge. Integrating such singular fields is not easy in general. For simple element
geometries, like straight segments or planar triangles, analytical integration can be used.
For more general elements it is possible to design purely numerical schemes that adapt to
the singularity, but at a great computational cost. When the source point and target element
where the integration is done are far apart, then the integration becomes easier due to the
smooth asymptotic decay of the Green’s function. It is this feature that is typically em-
ployed in schemes designed to accelerate the involved computations, e.g., in fast multipole
methods (FMM). A reference for these methods is Gumerov & Duraiswami (2004).

In some particular cases the differential problem can be stated equivalently as a bound-
ary integral equation, whose support lies on the bounded boundary. For example, this
occurs in (bounded) obstacle scattering, where fields in linear homogeneous media are in-
volved. Some kind of Green’s integral theorem is typically used for this purpose. This
way, to solve the wave propagation problem, only the calculation of boundary values is
required rather than of values throughout the unbounded exterior domain. The technique
that solves such a boundary integral equation by means of the finite element method is
called the boundary element method (BEM). It is sometimes also known as the method
of moments (MoM), specifically in electromagnetics, or simply as the boundary integral
equation method (BIEM). The BEM is in a significant manner more efficient in terms of
computational resources for problems where the surface versus volume ratio is small. The
dimension of a problem expressed in the domain’s volume is therefore reduced towards
its boundary surface, i.e., one dimension less. The matrix resulting from the numerical
discretization of the problem, though, becomes full, and to build it, as already mentioned,
singular integrals have to be evaluated. The application of the BEM can be schematically
described through the following steps:

1. Definition of the differential problem.
Calculation of the Green’s function.

Derivation of the integral representation.
Development of the integral equation.
Rearrangement as a variational formulation.
Implementation of the numerical discretization.
Construction of the linear matrix system.
Computational resolution of the problem.
Graphical representation of the results.
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The BEM is only applicable to problems for which Green’s functions can be calcu-
lated, which places considerable restrictions on the range and generality of the problems
to which boundary elements can be usefully applied. We remark that non-linearities and
inhomogeneous media can be also included in the formulation, although they generally in-
troduce volume integrals in the integral equation, which of course require the volume to
be discretized before attempting to solve the problem, and thus removing one of the main
advantages of the BEM. A good general survey on the BEM can be found in the article of
Costabel (1986). Its implementation in obstacle scattering and some notions on FMM can
be found in Terrasse & Abboud (2006). Other references for this method are Becker (1992),
Chen & Zhou (1992), and Kirkup (2007). We note also the interesting historical remarks
on boundary integral operators performed by Costabel (2007).

We mention finally that there is still an active research going on to study these numer-
ical methods more deeply, existing also a great variety of so-called hybrid methods, where
two or more of the techniques are combined together. A reference on this subject is the
book of Brezzi & Fortin (1991).

1.2.3 Wave scattering and impedance half-spaces

Scattering is a general physical process whereby waves of some form, e.g., light,
sound, or moving particles, are forced to deviate from a straight trajectory by one or more
localized non-uniformities in the medium through which they pass. These non-uniformities
are called scatterers or scattering centers. There exist many types of scatterers, ranging
from microscopic particles to macroscopic targets, including bubbles, density fluctuations
in fluids, surface roughness, defects in crystalline solids, among many others. In mathemat-
ics and physics, the discipline that deals with the scattering of waves and particles is called
scattering theory. This theory studies basically how the solutions of partial differential
equations without scatterer, i.e., freely propagating waves or particles, change when inter-
acting with its presence, typically a boundary condition or another particle. We speak of a
direct scattering problem when the scattered radiation or particle flux is to be determined,
based on the known characteristics of the scatterer. In an inverse scattering problem, on the
other hand, some unknown characteristic of an object is to be determined, e.g., its shape
or internal constitution, from measurement data of its radiation or its scattered particles.
Some references on scattering are Felsen & Marcuwitz (2003), Lax & Phillips (1989), and
Pike & Sabatier (2002). For inverse scattering we refer to Potthast (2001).

Our concern throughout the thesis is specifically about direct obstacle scattering, where
the scatterer (i.e., the obstacle) is given by an impenetrable macroscopic target that is mod-
eled through a boundary condition. For a better understanding of the involved phenomena
and due their inherent complexity, we consider only scalar linear wave propagation in time-
harmonic regime, i.e., the partial differential equation of our model is given either by the
Helmholtz or the Laplace equation. We observe that the latter equation is in fact the limit
case of the former as the frequency tends towards zero. The time-harmonic regime implies
that the involved system is independent of time and that only a single frequency is taken into
account. If desired, time-dependent solutions of the system can be then constructed with



the help of the Fourier transform (vid. Section A.7), by combining the solutions obtained
for different frequencies. Alternatively, the solutions of a time-dependent system can be
directly computed by means of retarded potentials (cf. Barton 1989, Butkov 1968, Felsen
& Marcuwitz 2003). Time-dependent scattering is also considered in Wilcox (1975). Once
the models for these scalar linear partial differential equations are well understood, then
more complex types of waves can be taken into account, e.g., electromagnetic or elastic
waves. The Helmholtz and Laplace equations can be thus regarded as a more simplified
case of other wave equations.

The resolution of scattering problems for bounded obstacles with arbitrary shape by
means of integral equation techniques is in general well-known, particularly when dealing
with Dirichlet or Neumann boundary conditions. A Dirichlet boundary condition, named
after the German mathematician Johann Peter Gustav Lejeune Dirichlet (1805-1859), spec-
ifies the value of the field at the boundary. A Neumann boundary condition, on the other
hand, specifies the value of the field’s normal derivative at the boundary, and receives its
name from the German mathematician Carl Gottfried Neumann (1832-1925), who is con-
sidered one of the initiators of the theory of integral equations. The Green’s function of
the system is of course also well-known, and it is obtained directly from the fundamental
solution of the involved wave equation, i.e., the Helmholtz or the Laplace equation. This
applies also to the radiation condition to be imposed at infinity, which is known as the Som-
merfeld radiation condition in honor of the German theoretical physicist Arnold Johannes
Wilhelm Sommerfeld (1868—-1951), who made invaluable contributions to quantum theory
and to the classical theory of electromagnetism. We remark that in particular the problem
of the Laplace equation around a bounded obstacle is not strictly speaking a wave scat-
tering problem but rather a perturbation problem, and likewise at infinity we speak of an
asymptotic decaying condition rather than of a radiation condition. Some references that
we can mention, among the many that exist, are Kress (2002), Nédélec (2001), and Terrasse
& Abboud (2006). We mention also the interesting results about radiation conditions in a
rather general framework described by Costabel & Dauge (1997).

In the case of an impedance boundary condition, the general agreement is that the the-
ory for bounded obstacles is well-known, but it is rather scarcely discussed in the literature.
An impedance boundary condition specifies a linear combination of the field’s value and
of its normal derivative at the boundary, i.e., it acts as a weighted combination of Dirichlet
and Neumann boundary conditions. It is also known as a third type or Robin boundary
condition, after the French mathematical analyst and applied mathematician Victor Gus-
tave Robin (1855-1897). Usually the emphasis is given to Dirichlet and Neumann bound-
ary conditions, probably because they are simpler to treat and because with an impedance
boundary condition the existence and uniqueness of the problem can be only ensured al-
most always, but not always. Some of the references that include the impedance boundary
condition are Alber & Ramm (2009), Colton & Kress (1983), Hsiao & Wendland (2008),
Filippi, Bergassoli, Habault & Lefebvre (1999), and Kirsch & Grinberg (2008).

When the obstacle in a scattering problem is no longer bounded, then usually a dif-
ferent Green’s function and a different radiation condition have to be taken into account to



find a solution by means of integral equation techniques. These work well only when the
scattering problem is at most a compact perturbation of the problem for which the Green’s
function was originally determined, i.e., when these problems differ only on a compact
portion of their involved domains. An unbounded obstacle, e.g., an infinite half-space,
constitutes clearly a non-compact perturbation of the full-space.

We are particularly interested in solving scattering problems either on two- or three-
dimensional half-spaces, where the former are also simply referred to as half-planes and
the latter just as half-spaces. If Dirichlet or Neumann boundary conditions are considered,
then the Green’s function is directly found through the image method. Furthermore, the
same Sommerfeld radiation condition continues to hold in this case.

For an impedance half-space, i.e., when an impedance boundary condition is used on
a half-space, the story is not so straightforward. As we already pointed out, the image
method can be also used in this case to compute the Green’s function, but the results are
far from being explicit and some of the obtained terms are only known in integral form, as
so-called Sommerfeld-type integrals (cf. Casciato & Sarabandi 2000, Taraldsen 2005). The
difficulties arise from the fact that an impedance boundary condition allows the propagation
of surface waves along the boundary, whose relation with a point source is far from simple.
Another method that we can mention and that is used to solve this kind of problems is the
Wiener-Hopf technique, which yields an exact solution to complex integral equations and
is based on integral transforms and analyticity properties of complex functions. Further
details can be found in Davies (2002), Dettman (1984), and Wright (2005).

We remark that in scattering problems on half-spaces, or likewise on compact pertur-
bations of them, there appear two different kinds of waves: volume and surface waves.
Volume waves propagate throughout the domain and behave in the same manner as waves
propagating in free-space. They are linked to the wave equation under consideration, i.e.,
to the Helmholtz equation, since for the Laplace equation there are no volume waves. Sur-
face waves, on the other hand, propagate only near the boundary and are related to the
considered boundary condition. They decrease exponentially towards the interior of the
domain and may appear as much for the Helmholtz as for the Laplace equation. They exist
only when the boundary condition is of impedance-type, but not when it is of Dirichlet- or
Neumann-type, which may explain why the latter conditions are simpler in their treatment.

a) Helmholtz equation

The impedance half-space wave propagation problem for the Helmholtz equation was
at first formulated by Sommerfeld (1909), who was strongly motivated by the around 1900
newly established wireless telegraphy of Maxwell, Hertz, Bose, Tesla, and Marconi, among
others. Sommerfeld wanted to explain why radio waves could travel long distances across
the ocean, and thus overcome the curvature of the Earth. In his work, he undertook a de-
tailed analysis of the radiation problem for an infinitesimal vertical Hertzian dipole over
a lossy medium, and as part of the solution he found explicitly a radial Zenneck surface
wave, named after the German physicist and electrical engineer Jonathan Adolf Wilhelm
Zenneck (1871-1959), who first described them (Zenneck 1907). Thus both Zenneck and
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Sommerfeld obtained results that lent considerable credence to the view of the Italian
inventor and marchese Guglielmo Marconi (1874-1937), that the electromagnetic waves
were guided along the surface. Sommerfeld’s solution was later criticized by the German
mathematician Hermann Klaus Hugo Weyl (1885-1955), who published on the same sub-
ject (Weyl 1919) and who obtained a solution very similar to the one found by Sommerfeld,
but without the surface-wave term. Sommerfeld (1926) returned later to the same problem
and solved it using a different approach, where he confirmed the correctness of Weyl’s solu-
tion. The apparent inclusion of a sign error in Sommerfeld’s original work, which he never
admitted, prompted much debate over several decades on the existence of a Zenneck-type
surface wave and its significance in the fields generated by a vertical electric dipole. A
more detailed account can be found in Collin (2004). The corrected formulation confirmed
the existence of a surface wave for certain values of impedance and observation angles, but
showed its contribution to the total field only significant within a certain range of distances,
dependent on the impedance of the half-space. Thus, the concept of the surface wave as
being the important factor for long-distance propagation lost favor. Further references on
this historical discussion can be also found in the articles of Casciato & Sarabandi (2000),
Nobile & Hayek (1985), Sarabandi, Casciato & Koh (1992), and Taraldsen (2004, 2005).

Just to finish the story, Kennelly (1902) and, independently, Heaviside (1902), had
predicted before the existence of an ionized layer at considerable height above the Earth’s
surface. It was thought that such a layer could possibly reflect the electromagnetic waves
back to Earth. Although it was not until Breit & Tuve (1926) showed experimentally that
radio waves were indeed reflected from the ionosphere, that this became finally the accepted
mechanism for the long-distance propagation of radio waves. We refer to Anduaga (2008)
for a more detailed historical essay on the concept of the ionosphere.

Nonetheless, even if Sommerfeld’s explanation proved later to be wrong, its problem
remained (and still remains) of great theoretical interest. Since its first publication, it is an
understatement to say that this problem has received a significant amount of attention in
the literature with literally hundreds of papers published on the subject. Besides electro-
magnetic waves, the problem is also important for outdoor sound propagation (cf. Morse
& Ingard 1961, Embleton 1996) and for water waves in shallow waters near the coast (cf.
Mei, Stiassnie & Yue 2005, Herbich 1999).

Thus, as a way to state a brief account on the problem, Sommerfeld (1909), work-
ing in the field of electromagnetism, was the first to solve the spherical wave reflection
problem, stated as a dipole source on a finitely conducting earth. Weyl (1919) reformu-
lated the problem by modeling the radiation from a point source located above the earth
as a superposition of an infinite number of elementary plane waves, propagating in differ-
ent (complex) directions. Sommerfeld (1926) solved his problem again using integrals that
were afterwards called of Sommerfeld-type. Van der Pol (1935) applied several ingenious
substitutions that simplified the integrals appearing in the derivations. Norton (1936, 1937)
expanded upon these and other results from Van der Pol & Niessen (1930) and, with the
aid of equations by Wise (1931), generated the most useful results up to that time. Bafios
& Wesley (1953, 1954) and Baios (1966) obtained similar solutions by using the double
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saddle point method. Further developments on the propagation of radio waves can be also
found in the book of Sommerfeld (1949). We remark that in electromagnetic scattering,
the impedance boundary condition describes an obstacle which is not perfectly conducting,
but does not allow the electromagnetic field to penetrate deeply into the scattering domain.

The greatest interest in the problem stemmed nonetheless from the acoustics commu-
nity, to describe outdoor sound propagation. The acoustical problem of spherical wave
reflection was first attacked by Rudnick (1947), who relied heavily on the electromagnetic
theories of Van der Pol and Norton. Subsequently, Lawhead & Rudnick (1951a,b) and In-
gard (1951) obtained approximate solutions in terms of the error function. Wenzel (1974)
and Chien & Soroka (1975, 1980) obtained solutions containing a surface-wave term. Ex-
haustive lists of references with other solutions for the problem can be found in Habault
& Filippi (1981) and in Nobile & Hayek (1985). We can mention on this behalf also the
articles of Briquet & Filippi (1977), Attenborough, Hayek & Lawther (1980), Li, Wu &
Seybert (1994), and Attenborough (2002), and more recently also Ochmann (2004) and
Ochmann & Brick (2008), among the many others that exist. For the two-dimensional
case, in particular, we can refer to the articles of Chandler-Wilde & Hothersall (1995a,b)
and Granat, Tahar & Ha-Duong (1999).

The purpose of these articles is essentially the same: they try to compute in one way
or the other the reflection of spherical waves (in three dimensions) or cylindrical waves (in
two dimensions) on an impedance boundary. This corresponds to the computation of the
Green’s function for the problem, since spherical and cylindrical waves are originated by
a point source. Books that consider this problem and other aspects of Green’s functions
are the ones of Greenberg (1971), DeSanto (1992), and Duffy (2001). The great variety of
results for the same problem reflects its difficulty and its interest. The expressions found
for the Green’s function contain typically either complicated integrals, which derive from
a Fourier transform or some other kind of integral transform, or unpractical infinite series
expansions, which do not hold for all conditions or everywhere. There exists no relatively
simple expression in terms of known elementary or special functions. For the treatment of
the integrals, special integration contours are taken into account and at the end some parts
are approximated by methods of asymptotic analysis like the ones of stationary phase or of
steepest descent, the latter also known as the saddle-point approximation. Some references
for these asymptotic methods are Bender & Orszag (1978), Estrada & Kanwal (2002),
Murray (1984), and Wong (2001).

It is notably on this behalf that using a Fourier transform yields a manageable expres-
sion for the spectral Green’s function (cf. Durdn, Muga & Nédélec 2005a,b, 2006, 2009). In
two dimensions, we considered this expression to compute numerically the spatial Green’s
function with the help of a fast Fourier transform (FFT) for the regular part, whereas its
singular part was treated analytically (Durdn, Hein & Nédélec 2007a,b). Further details
of these calculations can be found in Hein (2006, 2007). This method allows to compute
effectively the Green’s function, without the use of asymptotic approximations, but it can
become quite burdensome when building bigger matrixes for the BEM due the multiple
evaluations required for the FFT.
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Outdoor sound propagation is in fact the classic application for the Helmholtz equation
stated in an impedance half-space, where the acoustic waves propagate freely in the upper
half-space and interact with the ground, i.e., the impenetrable lower half-space, through
an impedance boundary condition on their common boundary. The Helmholtz equation
is derived directly from the scalar acoustic wave equation by assuming a time-harmonic
regime. The acoustic impedance in this case corresponds to a (complex) proportionality
coefficient that relates the normal velocity of the fluid, where the sound propagates, to
the excess pressure on the boundary. A real impedance implies that the boundary is non-
dissipative, whereas a strictly complex (i.e., non-real) impedance is associated with an ab-
sorbing boundary. We remark that the limit cases of the boundary condition of impedance-
type, the ones of Dirichlet- and Neumann-type, correspond respectively to sound-soft and
sound-hard boundary surfaces. For more details on the physics of the problem, we refer
to DeSanto (1992), Embleton (1996), Filippi et al. (1999), and Morse & Ingard (1961).
The use of an impedance boundary condition is validated and discussed in the articles of
Attenborough (1983) and Bermudez, Hervella-Nieto, Prieto & Rodriguez (2007).

There exists also some literature on experimental measurements for this topic. Exten-
sive experimental studies of sound propagation horizontally near the ground, mainly over
grass, are performed by Embleton, Piercy & Olson (1976), who even suggest the presence
of surface waves. Different impedance versus frequency models for various types of ground
surface are compared by Attenborough (1985). Studies of acoustic wave propagation over
grassland and snow are developed by Albert & Orcutt (1990). In the paper of Albert (2003),
experimental evidence is given that confirms the existence of acoustic surface waves in a
natural outdoor setting, which in this case is above a snow cover. For a study of sound
propagation in forests we refer to Tarrero et al. (2008). Extensive measurement results and
theoretical models are also discussed by Attenborough, Li & Horoshenkov (2007).

The use of some BEM to solve the problem has also received some attention in the lit-
erature. Further references can be found in De Lacerda, Wrobel & Mansur (1997), De Lac-
erda, Wrobel, Power & Mansur (1998), and Li et al. (1994). For some two-dimensional ap-
plications of the BEM we cite Chen & Waubke (2007), Durdn, Hein & Nédélec (2007a,b),
and Granat, Tahar & Ha-Duong (1999). Some integral equations for this case are also
treated in Chandler-Wilde (1997) and Chandler-Wilde & Peplow (2005). Integral equa-
tions in three dimensions for Dirichlet and Neumann boundary conditions, and the low-
frequency case, can be found in Dassios & Kleinman (1999). For the appropriate radiation
condition of the problem, and likewise for its existence and uniqueness, we refer to Durén,
Muga & Nédélec (2005a,b, 2006, 2009).

b) Laplace equation

The impedance half-space wave propagation problem for the Laplace equation is par-
ticularly of great importance in hydrodynamics, since it describes linear surface waves on
water of infinite depth. The interest for this problem can be traced back to December 1813,
when the French Académie des Sciences announced a mathematical prize competition
on the subject of surface wave propagation on liquid of indefinite depth. The prize was
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awarded in 1816 to the French mathematician and early pioneer of analysis Augustin Louis
Cauchy (1789-1857), who submitted his entry in September 1815 and which was eventu-
ally published in Cauchy (1827). Another memoir, to record his independent work, was
deposited in October 1815 by the French mathematician, geometer, and physicist Siméon
Denis Poisson (1781-1840), one of the judges of the competition, which was published in
Poisson (1818). Both memoirs are classical works in the field of hydrodynamics. For a
more detailed historical account on the water-wave theory we refer to Craik (2004).

With the passage of time, the interest in the description of wave motion in the presence
of submerged or floating bodies increased. The first study of wave motion caused by a sub-
merged obstacle was carried out in the classical (and often reprinted) text of Lamb (1916),
who analyzed the two-dimensional wave motion due to a submerged cylinder. Further
studies dealing with simple submerged obstacles were done by Havelock (1917, 1927), for
spheres and doublets, and by Dean (1945), for plane barriers.

A major breakthrough in the field arrived nonetheless with the classic works on the
motion of floating bodies by John (1949, 1950), who showed how the boundary-value
problem could be reduced to an integral equation over the wetted portion of the partly im-
mersed body. John studied the problem in general form, stating necessary conditions for the
uniqueness of its solution. He also gave expressions in the form of discrete eigenfunction
expansions for the Green’s functions of the problem, in two and three dimensions, and con-
sidering finite and infinite water depth. His work inspired (and still inspires) a vast amount
of literature, particularly in the subjects of the existence and uniqueness of solutions, the
computation of Green’s functions, and the development of integral equation methods.

A standard reference that synthesizes the known theory up to its time is the thorough
and insightful article by Wehausen & Laitone (1960). It includes also the known expres-
sions for Green’s functions. A closely related article is Wehausen (1971). More recent ref-
erences on these topics are the books of Mei (1983), Linton & Mclver (2001), Kuznetsov,
Maz’ya & Vainberg (2002), and Mei, Stiassnie & Yue (2005). The classical representa-
tion of these Green’s functions, in three dimensions, is in terms of a semi-infinite integral
involving a Bessel function (vid. Subsection A.2.4) and a Cauchy principal-value singu-
larity (vid. Subsection A.6.5). Separate expressions exist for infinite and finite (constant)
depth of the fluid, but their forms are similar and the infinite-depth limit can be recovered as
a special case of the finite-depth integral representation. According to Newman (1985), the
principal drawback of these expressions is that they are extremely time-consuming to eval-
uate numerically. Some articles dealing with the finite-depth Green’s function are the ones
of Angell, Hsiao & Kleinman (1986), Black (1975), Chakrabarti (2001), Fenton (1978),
Linton (1999), Macaskill (1979), Mei (1978), Pidcock (1985), and Xia (2001).

In the case of infinite-depth water in three dimensions, a simpler analytic representa-
tion for the source potential or Green’s function exists as the sum of a finite integral, with a
monotonic integrand involving elementary transcendental functions, and a wave-like term
of closed form involving Bessel and Struve functions (vid. Subsection A.2.7). This ex-
pression, which was suggested by Havelock (1955), has been rederived or publicized in
different forms by Kim (1965), Hearn (1977), Noblesse (1982), Newman (1984b, 1985),
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Pidcock (1985), and Chakrabarti (2001). Other expressions for this Green’s function were
developed by Moran (1964), Hess & Smith (1967), Dautray & Lions (1987), and Peter &
Meylan (2004). Likewise, analogous expressions for the two-dimensional Green’s function
are considered in the works of Thorne (1953), Kim (1965), Macaskill (1979), and Green-
berg (1971). A more general two-dimensional case that takes surface tension into account
was considered by Harter, Abrahams & Simon (2007), Harter, Simon & Abrahams (2008),
and Motygin & Mclver (2009), using potentials expressed in terms of exponential inte-
grals (vid. Subsection A.2.3). Analogous observations to the ones of the Helmholtz equa-
tion can be made also for the case of the Laplace equation.

Water-wave motion near floating or submerged bodies is the classic application for
the Laplace equation stated in an impedance half-space. The Laplace equation is obtained
by considering the dynamic of an incompressible inviscid fluid, as is the case with water.
The impedance boundary condition corresponds to the linearized free-surface condition,
which allows the propagation of (water) surface waves. The impedance in this case can be
regarded as a wave number for the surface waves, which acts in an equivalent manner as the
wave number for the Helmholtz equation, but now only along the boundary surface. Again,
a real impedance implies that the boundary is non-dissipative, whereas a strictly complex
impedance is associated with an absorbing boundary. Further details on the physical aspects
of the problem can be found in Kuznetsov, Maz’ya & Vainberg (2002) and Wehausen &
Laitone (1960).

Reviews of numerical methods to solve water-wave problems and further references
can be found in Mei (1978) and Yeung (1982). A review of ocean waves interacting with
ice is done by Squire, Dugan, Wadhams, Rottier & Liu (1995). A computation of a Green’s
function for this case can be found in Squire & Dixon (2001). Boundary integral equations
are developed in Angell, Hsiao & Kleinman (1986) and Sayer (1980). For the use of the
BEM we refer to the articles of Hess & Smith (1967), Hochmuth (2001), Lee, Newman &
Zhu (1996) and Liapis (1992, 1993). Resonances for water-wave problems are studied in
Hazard & Lenoir (1993, 1998, 2002).

1.2.4 Applications

Wave propagation problems in impedance half-spaces, or in compact perturbations of
them, have many applications in science and engineering. We already mentioned the appli-
cations to outdoor sound propagation (Filippi et al. 1999, Morse & Ingard 1961), to radio
wave propagation above the ground (Sommerfeld 1949), and to water waves in shallow wa-
ters near the coast (Mei et al. 2005, Herbich 1999), in the case of the Helmholtz equation,
and to the motion of water waves near floating or submerged bodies (Kuznetsov et al. 2002,
Wehausen & Laitone 1960), in the case of the Laplace equation. Further specific ap-
plications include the scattering of light by a photonic crystal (Joannopoulos et al. 2008,
Sakoda 2005, Yasumoto 2006, Durdn, Guarini & Jerez-Hanckes 2009), the computation of
harbor resonances in coastal engineering (Mei et al. 2005, Panchang & Demirbilek 2001),
and the treatment of elliptic partial differential equations, specifically the Laplace equation,

15



with an oblique-derivative boundary condition (Gilbarg & Trudinger 1983, Keller 1981,
Paneah 2000). This thesis is concerned with the latter two of these applications.

a) Harbor resonances in coastal engineering

A harbor (sometimes also spelled as harbour) is a partially enclosed body of water
connected through one or more openings to the sea. Conventional harbors are built along a
coast where a shielded area may be provided by natural indentations and/or by breakwaters
protruding seaward from the coast. Harbors provide anchorage and a place of refuge for
ships. Key features of all harbors include shelter from both long and short period open sea
waves, easy safe access to the sea in all types of weather, adequate depth and maneuvering
room within the harbor, shelter from storm winds, and minimal navigation channel dredg-
ing. A harbor can be sometimes subject to a so-called harbor oscillation or surging, which
corresponds to a nontidal vertical water movement. Usually these vertical motions are low,
but when oscillations are excited by a tsunami or a storm surge, they may become quite
large. Variable winds, air oscillations, or surf beat may also cause oscillations. Nonethe-
less, the most studied excitation is caused by incident tsunamis, which have typical periods
from a few minutes to an hour, and are originated from distant earthquakes. If the total du-
ration of the tsunami is sufficiently long, oscillations excited in the harbor may persist for
days, resulting in broken mooring lines, damaged fenders, hazards in berthing and loading
or in navigation through the entrance, and so on. Sometimes incoming ships have to wait
outside the harbor until oscillations within subside, causing costly delays. Harbor oscil-
lations are discussed in the books of Mei (1983), Mei et al. (2005), and Herbich (1999).
For a single and comprehensive technical document about coastal projects we refer to the
Coastal Engineering Manual of the U.S. Army Corps of Engineers (2002).

To understand roughly the physical mechanism of these oscillations, we consider a
harbor with the entrance in line with a long and straight coastline. Onshore waves are partly
reflected and partly absorbed along the coast. A small portion is however diffracted through
the entrance into the harbor and reflected repeatedly by the interior boundaries. Some of
the reflected wave energy escapes the harbor and radiates again to the ocean, while some
of it stays inside. If the wavetrain is of long duration, and the incident wave frequency is
close to a standing-wave frequency in the closed basin, then a so-called resonance occurs
in the basin, i.e., even a relatively weak incident wave of such characteristics can induce
a large response in the harbor. When a harbor is closed and the damping is neglected, the
free-wave motion is known to be the superposition of normal modes of standing waves
with a discrete spectrum of characteristic frequencies. When a harbor has a small opening
and is subject to incident waves we may expect a resonance whenever the frequency of the
incident waves is close to a characteristic frequency of the closed harbor.

Resonances are therefore closely related to the phenomena of seiching (in lakes and
harbors) and sloshing (in coffee cups and storage tanks), which correspond to standing
waves in enclosed or partially enclosed bodies of water. These phenomena have been ob-
served already since very early times. Forel (1895) quotes a vivid description of seiching
in the Lake of Constance in 1549 from “Les Chroniques de Cristophe Schulthaiss”, and
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Darwin (1899) refers to seiching in the Lake of Geneva in 1600 with a peak-to-peak ampli-
tude of over one meter. Observations in cups and pots doubtless predate recorded history.
Scientific studies date from Merian (1828) and Poisson (1828-1829), and especially from
the observations in the Lake of Geneva by Forel (1895), which began in 1869. A thorough
and historical review of the seiching phenomenon in harbors and further references can be
found in Miles (1974).

A resonance of a different type is given by the so-called Helmholtz mode when the
oscillatory motion inside the harbor is much slower than each of the normal modes (Bur-
rows 1985). It corresponds to the resonant mode with the longest period, where the water
appears to move up and down unison throughout the harbor, which seems to have been first
studied by Miles & Munk (1961). This very long period mode appears to be particularly
significant for harbors responding to the energy of a tsunami, and for several harbors on the
Great Lakes that respond to long-wave energy spectra generated by storms. We remark that
from the mathematical point of view, resonances correspond to poles of the scattering and
radiation potentials when they are extended to the complex frequency domain (cf. Poisson
& Joly 1991). Harbor resonance should be avoided or minimized in harbor planning and
operation to reduce adverse effects such as hazardous navigation and mooring of vessels,
deterioration of structures, and sediment deposition or erosion within the harbor.

Examples of harbor resonances are the Ciutadella inlet in the Menorca Island on the
Western Mediterranean (Marcos, Monserrat, Medina & Lomodnaco 2005), the Duluth-
Superior Harbor in Minnesota on the Lake Superior (Jordan, Stortz & Sydor 1981), the
Port Kembla Harbour on the central coast of New South Wales in Australia (Luick & Hin-
wood 2008), the Los Angeles Harbor Pier 400 in California (Seabergh & Thomas 1995),
and the port of PloCe in Croatia on the Adriatic Sea (Vilibi¢ & Mihanovi¢ 2005).

Considerable effort has been devoted to achieving a good understanding of the phe-
nomena of harbor resonance. Lamb (1916) analyzed the free oscillation in closed rect-
angular and circular basins. His solutions then clarified the natural periods and modes of
free surface oscillations related to these special configurations. As the first but important
step to approach the practical situation, McNown (1952) studied the forced oscillation in a
circular harbor which is connected to the open sea through a narrow mouth. He made the
assumption that standing wave conditions are always formed at the harbor entrance when
resonance occurs. Since the radiation effect was ruled out, he showed that a resonant harbor
behaves the same as a closed basin. Similar research was also carried out by Kravtchenko
& McNown (1955) on rectangular harbors.

Since the paper of Miles & Munk (1961), who first treated harbor oscillations by a
scattering theory, the study of harbor resonance has been steadily progressing both the-
oretically and experimentally. Miles & Munk (1961) considered the wave energy radia-
tion effect expanding offshore from the harbor entrance and applied a Green’s function
to analyze the harbor oscillation. They even found that the wider the harbor mouth, the
smaller the amplitude of the resonant oscillation. That is, narrowing the harbor entrance
does not diminish resonant oscillation, which contradicts common sense based on the con-
ventional reasoning for a non-resonant harbor, where less wave energy is expected to be
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transmitted into the harbor through a smaller opening. Miles & Munk (1961) referred to
this phenomenon as the harbor paradox. Additional important contributions were made by
Le Méhauté (1961), Ippen & Goda (1963), Raichlen & Ippen (1965), and Raichlen (1966).
These studies considered the effect of radiation through the entrance of the harbor and
the resulting frequency responses of the harbor oscillations became fairly close to the ex-
perimentally observed ones. Other rigorous solutions for the problem were presented by
Lee (1969, 1971), who considered rectangular and circular harbors with openings located
on a straight coastline. He discovered that the trapping of energy by the harbor leads to an
amplitude of oscillation that is far greater than the one of the incident wave. Similarly, Mei
& Petroni (1973) dealt with a circular harbor protruding halfway into the open sea. Theo-
ries to deal with arbitrary harbor configurations were available after Hwang & Tuck (1970)
and Lee (1969, 1971), who worked with boundary integral equation methods to calculate
the oscillation in harbors of constant depth with arbitrary shape. Mei & Chen (1975) de-
veloped a hybrid-boundary-element technique to also study harbors of arbitrary geometry.
Harbor resonances using the FEM are likewise computed in Walker & Brebbia (1978). A
comprehensive list of references can be found in Yu & Chwang (1994).

The mild-slope equation, which describes the combined effects of refraction and diffrac-
tion of linear water waves, was first suggested by Eckart (1952) and later rederived by
Berkhoff (1972a,b, 1976), Smith & Sprinks (1975), and others, and is now well-accepted
as the method for estimating coastal wave conditions. The underlying assumption of this
equation is that evanescent modes (locally emanated waves) are not important, and that the
rate of change of depth and current within a wavelength is small. The mild-slope equa-
tion is a usually expressed in an elliptic form, and it turns into the Helmholtz equation for
uniform water depths. Since then, different kinds of mild-slope equations have been de-
rived (Liu & Shi 2008). A detailed survey of the literature on the mild-slope and its related
equations is provided by Hsu, Lin, Wen & Ou (2006). Some examinations on the validity
of the theory are performed by Booij (1983) and Ehrenmark & Williams (2001).

Along rigid, impermeable vertical walls a Neumann boundary condition is used, since
there is no flow normal to the surface. However, in general an impedance boundary condi-
tion is used along coastlines or permeable structures, to account for a partial reflection of
the flow on the boundary (Demirbilek & Panchang 1998). A study of harbor resonances
using an approximated DtN operator and a model based on the Helmholtz equation with an
impedance boundary condition on the coast was done by Quaas (2003).

An alternative parabolic equation method to solve the problem was developed by Rad-
der (1979) and Kirby & Dalrymple (1983), which approximates the mild-slope equation.
A sea-bottom friction and absorption boundary was considered by Chen (1986) for a hy-
brid BEM to analyze wave-induced oscillation in a harbor with arbitrary shape and depth.
Berkhoff, Booy & Radder (1982) described and compared the computational results for the
models of refraction, of parabolic refraction-diffraction, and of full refraction-diffraction.
Tsay, Zhu & Liu (1989) considered the effects of topographical variation and energy dis-
sipation, and developed a finite element numerical model to investigate wave refraction,
diffraction, reflection, and dissipation. Chou & Han (1993) employed a boundary element
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method and under the consideration of the effect of partial reflection along boundaries to
develop a numerical method for predicting wave height distribution in a harbor of arbitrary
shape and variable water depth. Nardini & Brebbia (1982) proposed a DRBEM (dual reci-
procity boundary element method), which was also studied by Hsiao, Lin & Fang (2001)
and Hsiao, Lin & Hu (2002). The infinite element method was applied to the problem by
Chen (1990). Interesting reviews of the theoretical advances on wave propagation model-
ing in coastal engineering can be found in Mei & Liu (1993) and Liu & Losada (2002). A
review that brings together the large amount of literature on the analytical study of free-
surface wave motion past porous structures is performed by Chwang & Chan (1998).

The study of harbor resonances becomes particularly important for countries with high
seismicity and maritime harbors subject to tsunamis such as Chile. A tragical and recent
example of the involved devastation was given by the 2010 Chilean earthquake, which
occurred offshore from the Maule Region in south central Chile on February 27, 2010.
Noteworthy, it had already been predicted by Ruegg et al. (2009). After the earthquake, the
coast was afflicted by tsunami waves. At the port city of Talcahuano waves with amplitude
up to 5 meters high were observed and the sea level rose above 2.4 meters. The tsunami
caused serious damage to port facilities and lifted boats out of the water. A good harbor
design should protect the waters of the harbor from such events as best as possible, and it
is therefore of great interest to have a good knowledge of the appearing resonances.

b) Oblique-derivative half-plane Laplace problem

As amore theoretical application, we are interested in the study of elliptic partial differ-
ential operators, particularly the Laplace equation, with an oblique-derivative (impedance)
boundary condition. This kind of operators is characterized by the inclusion of tangential
derivatives in the boundary condition. We speak of a (purely) oblique-derivative boundary
condition when it combines only tangential and normal derivatives, whereas a combina-
tion of tangential derivatives and an impedance boundary condition is referred to as an
oblique-derivative impedance boundary condition.

The purely oblique-derivative problem for a second-order elliptic partial differential
operator was first stated by the great French mathematician, theoretical physicist, and
philosopher of science Jules Henri Poincaré (1854—1912) in his studies on the theory of
tides (Poincaré 1910). Since then, the so-called Poincaré problem has been the subject of
many publications (cf. Egorov & Kondrat’ev 1969, Paneah 2000), and it arises naturally
when determining the gravitational fields of celestial bodies. Its main interest lies in the
fact that it corresponds to a typical degenerate elliptic boundary-value problem where the
vector field of its solution is tangent to the boundary of the domain on some subset. The
Poincaré problem for harmonic functions, in particular, arises in semiconductor physics and
considers constant coefficients for the oblique derivative in the boundary condition (Kru-
titskii & Chikilev 2000). It allows to describe the Hall effect, i.e., when the direction of
an electric current and the direction of an electric field do not coincide in a semiconduc-
tor due the presence of a magnetic field (Krutitskii, Krutitskaya & Malysheva 1999). The

19



two-dimensional Poincaré problem for the Laplace equation is treated in Lesnic (2007),
Trefethen & Williams (1986), and further references can be also found in Lions (1956).

Of special interest is the oblique-derivative impedance Laplace problem stated in a
half-space, and particularly the determination of its Green’s function, which describes out-
going oblique surface waves that emanate from a point source and which increase or de-
crease exponentially along the boundary, depending on the obliqueness of the derivative in
the boundary condition. An integral representation for this Green’s function in half-spaces
of three and higher dimensions was developed by Gilbarg & Trudinger (1983). Using an
image method, it was later generalized by Keller (1981) to a wider class of equations, in-
cluding the wave equation, the heat equation, and the Laplace equation. Its use for more
general linear uniformly elliptic equations with discontinuous coefficients can be found in
the articles of Di Fazio & Palagachev (1996) and Palagachev, Ragusa & Softova (2000).
The generalization of this image method to wedges is performed by Gautesen (1988).

For the two-dimensional case and when dealing with the Laplace equation, there exists
no representation of the Green’s function, except the already mentioned cases when the
oblique derivative becomes a normal one.

1.3 Objectives

The main objective of this thesis is to compute the Green’s function for the Laplace
and Helmholtz equations in two- and three-dimensional impedance half-spaces, and to use
it for solving direct wave scattering problems in compactly perturbed half-spaces by de-
veloping appropriate integral equation techniques and a corresponding boundary element
method. The goal is to give a numerically effective and efficient expression for the Green’s
function, and to determine its far field. The developed integral equations are to be sup-
ported only on a bounded portion of the boundary, and they have to work well for arbitrary
compact perturbations towards the upper half-space, as long as the considered boundary is
regular enough. It is also of interest to derive expressions for the far field of the solution of
the scattering problem. The developed techniques are to be programmed in Fortran, imple-
menting benchmark problems to test these calculations and the computational subroutines.
Thus the idea in this thesis is to continue and extend the preliminary work performed in
Hein (2006, 2007) and in Duran, Hein & Nédélec (2007a,b).

Another objective is to use the developed expressions and techniques to solve some
interesting applications in science and engineering. One of the applications to consider
deals with the computation of harbor resonances in coastal engineering, enhancing the
model of Quaas (2003) by working with an impedance boundary condition and solving
the problem by using integral equations instead of a DtN operator. The other application
considers the calculation of the Green’s function for the oblique-derivative impedance half-
plane Laplace problem, which generalizes the techniques used in the computation of the
other Green’s functions from this thesis.

The interest behind this study is to comprehend better, from the mathematical point
of view, the interaction between volume and surface waves caused by a point source in
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impedance half-spaces, and their application to some scattering problems in engineering.
Only the linear, scalar, and time-harmonic cases are considered here, to simplify the anal-
ysis and to avoid additional complications. We include the study of the Laplace equation,
where only surface waves appear, since the problem is somewhat simpler and permits a
far better understanding of the treatment for the Helmholtz equation, particularly in the
two-dimensional case.

To allow a better comprehension of the treated topics, this thesis is intended to be as
self-contained as possible. Therefore a quick survey of the most important aspects of the
mathematical and physical background and a detailed analysis of the relatively well-known
full-space problems are also included. Additionally, a comprehensive list of references is
given whenever possible, so as to ensure extensive further reading on the involved subjects
if such an interest arises.

1.4 Contributions

Essentially, this thesis concentrates and recreates some of the most important elements
of the widely dispersed knowledge on full- and half-space Green’s functions for the Laplace
and Helmholtz operators, and their associated integral equations, in a single document with
a coherent and homogeneous notation. By doing so, new expressions are found and a better
understanding of the involved techniques is achieved.

The main contribution of the thesis is the rigorous development of expressions for the
Green'’s functions of the Helmholtz and Laplace operators in impedance half-spaces, in two
and three dimensions, and their use to solve direct wave scattering problems by means of
boundary integral equations. These expressions are characterized in terms of finite com-
binations of elementary functions, known special functions, and their primitives. In the
case of the two-dimensional Laplace equation even a new explicit representation is found,
based on exponential integrals and expressed in (2.94). A more general representation,
based likewise on exponential integrals, is also developed for the Green’s function of the
oblique-derivative half-plane Laplace problem, which has not been computed before and
is given explicitly in (7.41). For the other cases, effective numerical procedures are de-
rived to evaluate the Green’s functions everywhere and on all the values of interest. For
the two-dimensional Helmholtz equation, we perform an improvement over our previous
results in the numerical procedure (Duran et al. 2007a,b), which is now more efficient,
uses a numerical quadrature formula instead of a fast Fourier transform, works better with
complex impedances and wave numbers, and may be also evaluated in the complemen-
tary half-plane. The details are delineated in Section 3.5. The series-based representation
for the Green’s function of the three-dimensional Laplace equation (4.113), even if it is
similar in a certain way to others found in the literature (cf., e.g., Noblesse 1982), it is
derived in an rigorous and independent manner that sheds new light on its properties. The
evaluation of the representation for the three-dimensional Helmholtz equation, specified in
Section 5.5, corresponds to a direct numerical integration of the primitive-based expression
of the Green’s function, which can be adapted without difficulty to the other cases.
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Another important contribution is the proper understanding of the limiting absorption
principle and its interpretation, in the sense of distributions, as the appearance of additional
Dirac masses for the spectral Green’s function. This effect, which has not been particularly
pointed out in the literature, allows us to treat all the involved Fourier integrals in the sense
of Cauchy principal values and is expressed in (2.64), (3.59), (4.70), and (5.65). A different
approach for the same topic is undertaken in Section 7.3 for the oblique-derivative case,
where the additional appearing terms are interpreted as the solution of the homogeneous
problem with a proper scaling, which is justified from the radiation condition, and their
effect is expressed in (7.22).

The derived expressions for the Green’s function yield better light on the interaction
between the volume and the surface wave parts of the system’s response to a point source,
even in the presence of dissipation, and are coherent with results for the complex image
method used to solve this problem (cf. Casciato & Sarabandi 2000, Taraldsen 2004, 2005).
In particular, they retrieve the image source point on the complementary half-space and the
continuous source distribution that stems from this point towards infinity along a line that
is perpendicular to the half-space’s boundary, increasing exponentially.

The herein treated wave scattering problems consider arbitrary compact perturbations
towards the upper half-space and the associated integral representations and equations used
to solve them are derived with great detail and have their support only on the perturbed
portion of the boundary. In particular, a correct expression is given for the boundary integral
representation on the unperturbed portion of the boundary (cf. Duran et al. 2007a,b). The
integral equations are solved by using a boundary element method, and neither hybrid
techniques nor domain truncation are required. Compact perturbations towards the lower
half-space are not considered herein, but the thorough study of the singularities of the
Green’s functions (another contribution of this thesis) is the first step towards that direction
to develop them in the near future.

A state of the art is developed for the full-space impedance Laplace and Helmholtz
problems, since the theory for them is more or less well-known and they are closely related
to the half-space problems. The main singularity of the associated Green’s functions is the
same, and several other aspects are analogous in both kinds of problems.

Another contribution is the development of computational subroutines to solve the
considered problems, and the numerical results that are obtained by their execution. The
programming is in general not easy and requires a careful treatment of the involved singular
integrals (due the singularities of the Green’s functions) to build the full matrixes that stem
from the boundary element method. The subroutines are likewise programmed and tested
for the full-space problems.

The application of the developed techniques to the computation of harbor resonances
in coastal engineering is also a contribution of this thesis, which shows their use in the
resolution of a practical problem in engineering.
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1.5 Outline

To fulfill the objectives, this thesis is structured in eight chapters and five appendixes.
Each chapter and each appendix is in his turn divided into sections and further into subsec-
tions in order to expose the contents in the hopefully most clear and accessible way for the
reader. Each one starts with a short introduction that yields more light about its contents.
A list of references is also included in each one of them.

Chapter I, the current chapter, presents a broad introduction to the thesis. The more
general aspects are discussed and the framework that connects its different parts is de-
scribed. It includes a short foreword, the motivation and overview, the objectives, the
contributions, and the current outline.

In Chapters II, III, IV, and V we study the perturbed half-space impedance problems
of the Laplace and Helmholtz equations in two and three dimensions respectively, using
integral equation techniques and the boundary element method. These chapters include the
main contributions of this thesis, particularly the computation of the Green’s functions and
their far-field expressions, and the development of the associated integral equations.

The following two chapters contain the applications of the developed techniques. Chap-
ter VI deals with the computation of harbor resonances in coastal engineering, and in Chap-
ter VII the Green’s function for the oblique-derivative half-plane Laplace problem is de-
rived and given explicitly.

Chapter VIII incorporates the conclusion of this thesis, including a short discussion on
the results and some perspectives for future research. It is followed by the bibliographical
references and afterwards by the appendixes.

In Appendix A we present a short survey of the mathematical and physical background
of the thesis. The most important aspects are discussed and several references are given for
each topic. It is intended as a quick reference guide to understand or refresh some deeper
technical aspects mentioned throughout the thesis.

Appendixes B, C, D, and E, on the other hand, deal with the perturbed full-space
impedance problems of the Laplace and Helmholtz equations in two and three dimensions
respectively, using integral equation techniques and the boundary element method. These
problems are relatively well-known (at least in theory) and the full extent of the mathemat-
ical techniques are illustrated on them.

For the not so experienced reader it is recommended to read first, after this introduc-
tion, Appendix A, and particularly the sections which contain lesser-known subjects. The
references mentioned throughout should be consulted whenever some topic is not so well
understood. Afterwards we recommend to read at least one of the appendixes that contain
the full-space problems, i.e., Appendixes B, C, D, and E. The most detailed account of
the theory is given in Appendix B, so that other chapters and appendixes may refer to it
whenever necessary. Of course, if the reader is more interested in the Helmholtz equation
or in the three-dimensional problems, then the corresponding appendixes should be con-
sulted, since they contain all the important and related details. The experienced reader, on
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the other hand, may prefer eventually to pass straightforwardly to Chapter II. By following
this itinerary, the reading experience of this thesis should be (hopefully) more delightful
and instructive.
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II. HALF-PLANE IMPEDANCE LAPLACE PROBLEM

2.1 Introduction

In this chapter we study the perturbed half-plane impedance Laplace problem using
integral equation techniques and the boundary element method.

We consider the problem of the Laplace equation in two dimensions on a compactly
perturbed half-plane with an impedance boundary condition. The perturbed half-plane
impedance Laplace problem is a surface wave scattering problem around the bounded
perturbation, which is contained in the upper half-plane. In water-wave scattering the
impedance boundary-value problem appears as a consequence of the linearized free-surface
condition, which allows the propagation of surface waves (vid. Section A.10). This prob-
lem can be regarded as a limit case when the frequency of the volume waves, i.e., the
wave number in the Helmholtz equation, tends towards zero (vid. Chapter III). The three-
dimensional case is considered in Chapter IV, whereas the full-plane impedance Laplace
problem with a bounded impenetrable obstacle is treated thoroughly in Appendix B. The
case of an oblique-derivative boundary condition is discussed in Chapter VII.

The main application of the problem corresponds to linear water-wave propagation in
a liquid of indefinite depth, which was first studied in the classical works of Cauchy (1827)
and Poisson (1818). A study of wave motion caused by a submerged obstacle was carried
out by Lamb (1916). The major impulse in the field came after the milestone papers on
the motion of floating bodies by John (1949, 1950), who considered a Green’s function
and integral equations to solve the problem. Other expressions for the Green’s function in
two dimensions were derived by Thorne (1953), Kim (1965), and Macaskill (1979), and
likewise by Greenberg (1971) and Dautray & Lions (1987). A more general problem that
takes surface tension into account was considered by Harter, Abrahams & Simon (2007),
Harter, Simon & Abrahams (2008), and Motygin & Mclver (2009). The main references
for the problem are the classical article of Wehausen & Laitone (1960) and the books of
Mei (1983), Linton & Mclver (2001), Kuznetsov, Maz’ya & Vainberg (2002), and Mei,
Stiassnie & Yue (2005). Reviews of the numerical methods that have been used to solve
water-wave problems can be found in Mei (1978) and Yeung (1982).

The Laplace equation does not allow the propagation of volume waves inside the con-
sidered domain, but the addition of an impedance boundary condition permits the propaga-
tion of surface waves along the boundary of the perturbed half-plane. The main difficulty
in the numerical treatment and resolution of our problem is the fact that the exterior do-
main is unbounded. We solve it therefore with integral equation techniques and a boundary
element method, which require the knowledge of the associated Green’s function. This
Green’s function is computed using a Fourier transform and taking into account the lim-
iting absorption principle, following Durdn, Muga & Nédélec (2005a, 2006) and Duran,
Hein & Nédélec (2007a,b), but here an explicit expression is found for it in terms of a finite
combination of elementary and special functions.
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This chapter is structured in 12 sections, including this introduction. The direct scatter-
ing problem of the Laplace equation in a two-dimensional compactly perturbed half-plane
with an impedance boundary condition is presented in Section 2.2. The computation of
the Green’s function and its far field expression are developed respectively in Sections 2.3
and 2.4. The use of integral equation techniques to solve the direct scattering problem is
discussed in Section 2.5. These techniques allow also to represent the far field of the so-
lution, as shown in Section 2.6. The appropriate function spaces and some existence and
uniqueness results for the solution of the problem are presented in Section 2.7. The dissipa-
tive problem is studied in Section 2.8. By means of the variational formulation developed
in Section 2.9, the obtained integral equation is discretized using the boundary element
method, which is described in Section 2.10. The boundary element calculations required
to build the matrix of the linear system resulting from the numerical discretization are ex-
plained in Section 2.11. Finally, in Section 2.12 a benchmark problem based on an exterior
half-circle problem is solved numerically.

2.2 Direct scattering problem

2.2.1 Problem definition

We consider the direct scattering problem of linear time-harmonic surface waves on
a perturbed half-plane 2, C R3, where R? = {(x1,25) € R* : 25 > 0}, where the
incident field u; is known, and where the time convention e~ ™! is taken. The goal is to
find the scattered field v as a solution to the Laplace equation in the exterior open and
connected domain ., satisfying an outgoing surface-wave radiation condition, and such
that the total field u,, which is decomposed as ur = u; + u, satisfies a homogeneous
impedance boundary condition on the regular boundary I' = T, U [, (e.g., of class C?).
The exterior domain 2. is composed by the half-plane R? with a compact perturbation
near the origin that is contained in R?, as shown in Figure 2.1. The perturbed boundary is
denoted by T, while I, denotes the remaining unperturbed boundary of R? , which extends
towards infinity on both sides. The unit normal n is taken outwardly oriented of €2, and the
complementary domain is denoted by Q. = R?\ Q...

FIGURE 2.1. Perturbed half-plane impedance Laplace problem domain.
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The total field uy satisfies thus the Laplace equation
Aur =0 in ., (2.1)

which is also satisfied by the incident field u; and the scattered field u, due linearity. For
the total field u; we take the homogeneous impedance boundary condition

0
ST Zup =0  on T, 2.2)
on
where 7 is the impedance on the boundary, which is decomposed as
Z(x) = Zoo + Zy(x), xel, (2.3)

being Z,, > 0 real and constant throughout I', and Z,(x) a possibly complex-valued
impedance that depends on the position x and that has a bounded support contained in I',.
The case of a complex Z,, will be discussed later. For linear water waves, the free-surface
condition considers Z,, = w?/g, where w is the radian frequency or pulsation and g de-
notes the acceleration caused by gravity. If Z = 0 or Z = oo, then we retrieve respectively
the classical Neumann or Dirichlet boundary conditions. The scattered field u satisfies the
non-homogeneous impedance boundary condition

0
_ M = f. on T, (2.4)
on
where the impedance data function f, is known, has its support contained in I,, and is

given, because of (2.2), by

£ = % — Zu;  on T. (2.5)

An outgoing surface-wave radiation condition has to be also imposed for the scattered
field u, which specifies its decaying behavior at infinity and eliminates the non-physical
solutions, e.g., ingoing surface waves or exponential growth inside €2.. This radiation con-
dition can be stated for » — oo in a more adjusted way as

C ou C 1
< — — < = i R
lu| < . and o if xo > 7. In(1+ Zymr),
(2.6)
ou . C ) 1
’U' < C and E — ZZOOU < ? if To < Z ln(l + Zooﬂ'?“),

for some constants C' > 0, where = ||. It implies that two different asymptotic behaviors
can be established for the scattered field u, which are shown in Figure 2.2. Away from the
boundary I' and inside the domain 2., the first expression in (2.6) dominates, which is
related to the asymptotic decaying condition (B.7) of the Laplace equation on the exterior
of a bounded obstacle. Near the boundary, on the other hand, the second part of the second
expression in (2.6) resembles a Sommerfeld radiation condition like (C.8), but only along
the boundary, and is therefore related to the propagation of surface waves. It is often
expressed also as

< —. 2.7)
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Q. Asymptotic decaying

FIGURE 2.2. Asymptotic behaviors in the radiation condition.

Analogously as done by Durdn, Muga & Nédélec (2005a, 2006) for the Helmholtz
equation, the radiation condition (2.6) can be stated alternatively as

C ou C . N
lu| < e and e < a if xo > Cre
(2.8)
0
lu| < C  and a_u — i Z50u| < — if xo < Cre,
T riTe

for 0 < a < 1 and some constants C' > 0, being the growth of C'r® bigger than the
logarithmic one at infinity. Equivalently, the radiation condition can be expressed in a more
weaker and general formulation as

|u? ou|?
lim / ——dy=0 and lim R|—| dy=0,
R—oo Sé R R—oo S}% r
| |2 ar ) (2.9)
U U
li —d d li — | — —1Zyu| dy =0,
Rgrolo /51% IHR " <0 an Rglolo S}% lIlR 87" ! Y "
where
1
Sp = {m eERY: x| =R, x2> Z—ln(l + ZOOWR)}, (2.10)
1
SF%: {.’BGRi : |CU| =R, 29< Z—ln(1+Zoo7TR>} 2.11)
We observe that in this case
/ dy = O(R) and / dy = O(InR). (2.12)
Sk Sk

The portions Sj and S of the half-circle and the terms depending on S3 of the radiation
condition (2.9) have to be modified when using instead the polynomial curves of (2.8). We
refer to Stoker (1956) for a discussion on radiation conditions for surface waves.
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The perturbed half-plane impedance Laplace problem can be finally stated as
[ Find u : (). — C such that

Au - 0 ln Qe’
2.13
—@ +Zu=f, on [, 1)
on

+ Outgoing radiation condition as || — oo,
where the outgoing radiation condition is given by (2.6).

2.2.2 Incident field

To determine the incident field u;, we study the solutions of the unperturbed and homo-
geneous wave propagation problem with neither a scattered field nor an associated radiation
condition. The solutions are searched in particular to be physically admissible, i.e., solu-
tions which do not explode exponentially in the propagation domain, depicted in Figure 2.3.
We analyze thus the half-plane impedance Laplace problem

Au; =0 in R%,
ou (2.14)
a_,Ié+ZOOUI =0 on {[L’Q :O}

Ai /

FIGURE 2.3. Positive half-plane Ri.

The solutions wu; of the problem (2.14) are given, up to an arbitrary scaling factor, by
the progressive plane surface waves

ur(x) = ehem1em %otz k2 =72, (2.15)

ik-x

They correspond to progressive plane volume waves of the form e"** with a complex wave
propagation vector k = (k;,1Z,). It can be observed that these surface waves are guided
along the half-plane’s boundary, and decrease exponentially towards its interior, hence their
name. They vanish completely for classical Dirichlet (Z,, = o0) or Neumann (Z,, = 0)
boundary conditions.
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2.3 Green’s function

2.3.1 Problem definition

The Green’s function represents the response of the unperturbed system to a Dirac
mass. It corresponds to a function G, which depends on the impedance 7., on a fixed
source point & € R?%, and on an observation point y € R%. The Green’s function is
computed in the sense of distributions for the variable y in the half-plane R? by placing at
the right-hand side of the Laplace equation a Dirac mass d,, centered at the point . It is
therefore a solution for the radiation problem of a point source, namely

( Find G(x, ) : RY — C such that

AyG(z,y) = 02(y) in D'(R2),
oG (2.16)
ay (w7 y) + ZooG(CU, y) =0 on {y2 = O}7

2

|+ Outgoing radiation condition as |y| — oo.
The outgoing radiation condition, in the same way as in (2.6), is given here as |y| — oo by
C oG C
|G| < — and —| <=5
Yy Ory Y|

|G| <C and 'a—G—iZOOG
Ory

1
if o > Z—ln(l + Zomlyl),
> 2.17)

1

] 0
for some constants C' > 0, which are independent of r = |y|.

2.3.2 Special cases

When the Green’s function problem (2.16) is solved using either homogeneous Dirich-
let or Neumann boundary conditions, then its solution is found straightforwardly using the
method of images (cf., e.g., Morse & Feshbach 1953).

a) Homogeneous Dirichlet boundary condition

We consider in the problem (2.16) the particular case of a homogeneous Dirichlet
boundary condition, namely

G(z,y)=0, ye{yp=0} (2.18)
which corresponds to the limit case when the impedance is infinite (Z,, = o0). In this
case, the Green’s function GG can be explicitly calculated using the method of images,
since it has to be antisymmetric with respect to the axis {yo = 0}. An additional image
source point £ = (1, —x2), located on the lower half-plane and associated with a nega-
tive Dirac mass, is placed for this purpose just opposite to the upper half-plane’s source
point © = (1,x2). The desired solution is then obtained by evaluating the full-plane
Green’s function (B.23) for each Dirac mass, which yields finally

G(z,y) = 1

1
5 1n|y—:c|—%ln]y—a_c\. (2.19)
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b) Homogeneous Neumann boundary condition

We consider in the problem (2.16) the particular case of a homogeneous Neumann
boundary condition, namely
oG
an,
which corresponds to the limit case when the impedance is zero (Z,, = 0). As in the
previous case, the method of images is again employed, but now the half-plane Green’s
function G has to be symmetric with respect to the axis {yo = 0}. Therefore, an additional
image source point Z = (x1, —x2), located on the lower half-plane, is placed just opposite
to the upper half-plane’s source point * = (x1,z), but now associated with a positive
Dirac mass. The desired solution is then obtained by evaluating the full-plane Green’s
function (B.23) for each Dirac mass, which yields

(x,y) =0, y € {y2 = 0}, (2.20)

1 1 )
Gla,y) = 5-Inly — 2|+ —Inly — 2| (2.21)

2.3.3 Spectral Green’s function
a) Boundary-value problem

To solve (2.16) in the general case, we use a modified partial Fourier transform on the
horizontal y;-axis, taking advantage of the fact that there is no horizontal variation in the
geometry of the problem. To obtain the corresponding spectral Green’s function, we follow
the same procedure as the one performed in Durdn et al. (2005a). We define the forward
Fourier transform of a function F(z, (-,3»)) : R — C by

~ 1 o0 .
F(&y2,x0) = E/ F(x,y) e~ W= dy, § ER, (2.22)

and its inverse by
1 RPN ,
Fle.y) = 7= / F(&ya, )0 de, yr €R. (2.23)

To ensure a correct integration path for the Fourier transform and correct physical
results, the calculations have to be performed in the framework of the limiting absorption
principle, which allows to treat all the appearing integrals as Cauchy principal values. For
this purpose, we take a small dissipation parameter € > 0 into account and consider the
problem (2.16) as the limit case when € — 0 of the dissipative problem

Find G.(x,) : R2 — C such that

AyGa(m>y) = 0z(y) in 'D/(]Rﬁ_), (2.24)
0G.
o (.’L‘, y) + ZEGa(mvy) =0 on {92 = 0}7

Y2

where Z. = Z, + ic. This choice ensures a correct outgoing dissipative surface-wave
behavior. Further references for the application of this principle can be found in Lenoir &
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Martin (1981) and in Hazard & Lenoir (1998). For its application to the finite-depth case,
we refer to Doppel & Hochmuth (1995).

Applying thus the Fourier transform (2.22) on the system (2.24) leads to a linear second
order ordinary differential equation for the variable -, with prescribed boundary values,
given by

o~

62G5 ~ 6(y2 - $2)

—(5) - €2G€(§) = Yo > 07

@ag% Vor (2.25)
B &)+ Z.G.(§) =0, y2 = 0.

We use the method of undetermined coefficients, and solve the homogeneous differ-
ential equation of the problem (2.25) respectively in the strip {y € Ri : 0 < yo < 19}
and in the half-plane {y € R : y» > z,}. This gives a solution for @E in each domain,
as a linear combination of two independent solutions of an ordinary differential equation,
namely

(2.26)

~ aelflvz 4 pelElv2 for 0 < yp < @9,
G.(§) =

celflvz g ol€ly for yo > o
The unknowns a, b, ¢, and d, which depend on £ and z, are determined through the bound-
ary condition, by imposing continuity, and by assuming an outgoing wave behavior.

b) Spectral Green’s function with dissipation

Now, thanks to (2.26), the computation of 65 is straightforward. From the boundary
condition of (2.25) a relation for the coefficients a and b can be derived, which is given by

a(Z: +1€]) +b(Z- — |¢]) = 0. (2.27)

On the other hand, since the solution (2.26) has to be bounded at infinity as y, — ©0, it
follows then necessarily that

c=0. (2.28)
To ensure the continuity of the Green’s function at the point y, = -, it is needed that
d=aellP™ 4+, (2.29)
Using relations (2.27), (2.28), and (2.29) in (2.26), we obtain the expression
G(€) = a clile [emywz _ (%ED elé(mm)]_ (2.30)

The remaining unknown coefficient a is determined by replacing (2.30) in the differential
equation of (2.25), taking the derivatives in the sense of distributions, particularly

9] . el
o {eEllamezl} — —¢] sign(yy — w,) e Elv7e2], (2.31)
and 5
@{Sign(yz —x3)} = 20(y2 — x2). (2.32)
2

32



So, the second derivative of (2.30) becomes

892G Z: + [¢]
2 — qelélz2 | 20— [Ellyz—22l _ 9¢|85(0s — 20~ [El(y2t+22) | (0 33
(€)= ackn [ €0 20 - (518 ) e 3y
This way, from (2.30) and (2.33) in the first equation of (2.25), we obtain that
—[€|z2
P (2.34)

Verl¢|

Finally, the spectral Green’s function CA;’E with dissipation ¢ is given by

e~ I€lly2—z2| (Z 4 ‘5’) e~ €l(y2+z2)
V8T [¢] Ze—IEl) VBrlel

G (& yo, 1) = — (2.35)

¢) Analysis of singularities

To obtain the spectral Green’s function G without dissipation, the limit ¢ — 0 has to
be taken in (2.35). This can be done directly wherever the limit is regular and continuous
on . Singular points, on the other hand, have to be analyzed carefully to fulfill correctly
the limiting absorption principle. Thus we study first the singularities of the limit function
before applying this principle, i.e., considering just € = 0, in which case we have

~ —[€l|ly2—w2] Zoo + |€] e [Ellyataz)
- i ()
&) == —e) Ve

Possible singularities for (2.36) may only appear when £ = 0 or when |{| = Z, i.e., when
the denominator of the fractions is zero. Otherwise the function is regular and continuous.

(2.36)

For ¢ = 0 the function (2.36) is continuous. This can be seen by writing it, analogously
as in Durdn, Muga & Nédélec (2006), in the form

5 H([¢]
Go(§) = H (1) : (2.37)
€
where . p 5
_'_
H(B) = —— [ —e Pl 22— 0 <y2+f€2>>, e C. 2.38
Since H ([3) is an analytic function in 5 = 0, since H(0) = 0, and since
5 H(|¢]) — H(0)
lim G = li = H'(0), 2.39
we can easily obtain that
~ 1 1
lim G = —— 1+ —=— 4|y — 22| — + x9) |, 2.40
iy Gol€) = = (1 5 + b =l = G+ 240
being thus CAJO bounded and continuous on £ = 0.
For ¢ = Z, and £ = —Z, the function (2.36) presents two simple poles, whose
residues are characterized by
~ 1
lim (€ F Zso) Go(€) = F—= e Zocliztaz), (2.41)

§—+Z00 V2T

33



To analyze the effect of these singularities, we study now the computation of the inverse
Fourier transform of

Grl€) = —

e—Zoo(y2+ﬂ?2) ( 1 . 1 >’
AV 27’(’ 5 ‘I’ Zoo f - Zoo
which has to be done in the frame of the limiting absorption principle to obtain the correct
physical results, i.e., the inverse Fourier transform has to be understood in the sense of

1 VAR | 1 .
G = lim { — e~ Z(v2F2) / — Bme)qe s (2.43
P(T,y) 613%{% e ez z)° 3 (2.43)

(2.42)

To perform correctly the computation of (2.43), we apply the residue theorem of com-
plex analysis (cf., e.g., Arfken & Weber 2005, Bak & Newman 1997, Dettman 1984) on
the complex meromorphic mapping

1 1 ,
F(E) = - € (y1—21) 2.44

which admits two simple poles at &, and —¢,, where Jm{¢,} > 0. We consider also the
closed complex integration contours Cy;, and Cy _, which are associated respectively with
the values (y; — 1) > 0 and (y; — 1) < 0, and are depicted in Figure 2.4.

Jm{c}d Jm{c}4
Sk
r |5
gp € gp'
_ Re () At
-5,
(a) Contour C;{, . (b) Contour CR_’ R

FIGURE 2.4. Complex integration contours using the limiting absorption principle.

Since the contours Cyf _ and Cj; _ enclose no singularities, the residue theorem of Cauchy
implies that the respective closed path integrals are zero, i.e.,

j{ F(&)d¢ =0, (2.45)
c};js
and

7{  F(9de=0. (2.46)

R,e
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By considering (y; — 1) > 0 and working with the contour Cg’ . in the upper complex
plane, we obtain from (2.45) that

[ r@aes [ reacs [ peacs [ Foa=o e
~R . Re{éy} Sk
Performing the change of variable £ — &, = ¢'? for the integral on S yields
/ F(&)d¢ = i eiép(y1—1) /—Tr/2 (i _ 1) e i cos p—sin §) (y1 —z1) dep. (2.48)
3 sn2 \ €€ +2¢,
By taking then the limit ¢ — 0 we obtain

lim [ F(&)d¢ = i2me’rtn—=1), (2.49)

e—0 S,
In a similar way, taking £ = Re'? for the integral on S yields
T iRe' iRe'? , .
F f déﬁ — / ( : _ : ) eR(zcosqﬁfsm(j))(ylfxl) d¢ (250)
/Sg (€) o \Re?®+¢&, Re?—¢,

Since |eftcos¢wi—z1)| < 1 and Rsin¢ > 0 for 0 < ¢ < 7, when taking the limit R — oo
we obtain

lim [ F(¢)d¢ =0. 2.51)

R—o0 Sg
Thus, taking the limits ¢ — 0 and R — oo in (2.47) yields
/ F(€) d¢ = —i2metrn—a1), (y1 — x1) > 0. (2.52)

—00

By considering now (y; — 21) < 0 and working with the contour Cj, _ in the lower
complex plane, we obtain from (2.46) that

[ rgacs [ Feas [ Feoacs [ Foa=o ey
R A Re{ 6} Sg
Performing the change of variable £ + £, = e’ for the integral on S; yields
[ P iesinm [ (1Y oo gs, @t
. N /2 gei® — 2¢, o
By taking then the limit ¢ — 0 we obtain

lim [ F(¢€)de = —i2me 1), (2.55)

e—0 S,

In a similar way, taking £ = Re'? for the integral on Sy, yields

0 ( iRe" iRe™ . .
F(&)d¢ = / ( : - — ) efilicoso=sind)(yr =) 4, (2.56)
/SR (€) L \Re® +§&,  Re? -,
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Since |e'ficos¢i—21)| < 1 and Rsin¢ < 0 for —7 < ¢ < 0, when taking the limit R — oo
we obtain

lim [ F(&)dé =0. (2.57)

R—o0 S-
R

Thus, taking the limits ¢ — 0 and R — oo in (2.53) yields

/ F(£)dé = —i2mern—a1), (y1 — x1) < 0. (2.58)
In conclusion, from (2.52) and (2.58) we obtain that
/ F(€)d¢ = —i2metvln—ail, (y1 — z1) €R. (2.59)

Using (2.59) for £, = Z yields then that the inverse Fourier transform of (2.42), when
considering the limiting absorption principle, is given by

GL(x,y) = —i e Zeolvztua)giZeclyi—m], (2.60)

We observe that this expression describes the asymptotic behavior of the surface waves,

which are linked to the presence of the poles in the spectral Green’s function.

If the limiting absorption principle is not considered, i.e., if Jm{{,} = 0, then the
inverse Fourier transform of (2.42) could be computed in the sense of the principal value
with the residue theorem by considering, instead of C}{ . and CP: .» the contours depicted in
Figure 2.5. In this case we would obtain, instead of (2.59), the quantity

/ ) F(&)d¢ =2msin(&lyr — =),  (y1— =) € R (2.61)

oo

The inverse Fourier transform of (2.42) would be in this case
GHE(z,y) = e 7=t ) gin(Z |y — 1), (2.62)

which is correct from the mathematical point of view, but yields only a standing surface
wave, and not a desired outgoing progressive surface wave as in (2.60).

Jm{c}4 Jm{¢}A

R

[ A

—& & Re{¢)

(a) Contour C;; . (b) Contour C’I{ R

FIGURE 2.5. Complex integration contours without using the limiting absorption principle.
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The effect of the limiting absorption principle, in the spatial dimension, is then given
by the difference between (2.60) and (2.62), i.e., by

Gr(z,y) = GH(z,y) — GpE(z, y) = —ie 20T cos(Zo(y1 — 21)),  (2.63)

whose Fourier transform, and therefore the spectral effect, is given by

~

G (€) = Gp(€) — G (&) = —i @ eI [5(E = Zu) +0(E + Zoc)] (2.64)

d) Spectral Green’s function without dissipation

The spectral Green’s function G without dissipation is therefore obtained by taking the
limit ¢ — 0 in (2.35) and considering the effect of the limiting absorption principle for the
appearing singularities, summarized in (2.64). Thus we obtain in the sense of distributions

e~ ¢llya—w2| (Zoo + |§|) e~ €l (ya+w2)
V8T €] Zoo —€l) V8¢

_ \/g L) [ — 2) £ 06+ Zu)].  (2.65)

G(&; ya, 2) =

For our further analysis, this spectral Green’s function is decomposed into four terms
according to

G = Gy + Gp + Gp, + Gg, (2.66)
where
@ e~ 8llyz—z2| 5 67
o 7 7I - T = .
e~ 1€l (y2+z2)

Gp(&; 9o, 1) = (2.68)

Ve ¢
GL(& 1y, 12) = —i \/g e et [§(6 — Zo0) + 6(€ + Zoo)] (2.69)

e l€l(y2+22)

\/ﬁ(zoo - ’5‘) .

2.3.4 Spatial Green’s function

Gr(&; 2, 12) = (2.70)

a) Spatial Green’s function as an inverse Fourier transform

The desired spatial Green’s function is then given by the inverse Fourier transform of
the spectral Green’s function (2.65), namely by

1 o0 o—[&llyz—z2|

Gz, y) = — eiﬁ(yl—rl)dg

ar | €]
1 o (Zoo + ’f‘) e~ 1€l (y2+m2) ) ¢
4T oo \ Zoo — |€| €]
— j e Zoolyata2) cos(Zoo(yl — 3:1)) 2.71)
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Due the linearity of the Fourier transform, the decomposition (2.66) applies also in the
spatial domain, i.e., the spatial Green’s function is decomposed in the same manner by

G =Gy + Gp + G, + Gg. 2.72)

b) Term of the full-plane Green’s function

The first term in (2.71) corresponds to the inverse Fourier transform of (2.67), and can
be rewritten as
1 [ e—¢ly2—=2|
)y €
This integral is divergent in the classical sense (cf., e.g. Gradshteyn & Ryzhik 2007, equa-
tion 3.941-2) and has to be understood in the sense of homogeneous distributions (cf.
Gel’fand & Shilov 1964). It can be computed as the primitive of a well-defined and known
integral, e.g., with respect to the y;-variable, namely

Go(x,y) = cos(&(yr — x1))dE. (2.73)

0G, L[ el Y1 —
0 _ - Ely2—a2| _ dé¢ = —/— 2.74
@) =g [ el —a)ae = SR @
The primitive of (2.74), and therefore the value of (2.73), is readily given by
1
2m

where the integration constant is taken as zero to fulfill the outgoing radiation condition.
We observe that (2.75) is, in fact, the full-plane Green’s function of the Laplace equation.
Thus Gp + Gf, + Gg, represents the perturbation of the full-plane Green’s function G, due
the presence of the impedance half-plane.

¢) Term associated with a Dirichlet boundary condition

The inverse Fourier transform of (2.68) is computed in the same manner as the term G,
In this case we consider in the sense of homogeneous distributions

1 [ e—&y2ta2)
Gp(z,y) = %/0 TCOS@(% - xl))dfa (2.76)

which has to be again understood as the primitive of a well-defined integral, e.g., with

respect to the y;-variable, namely

oG 1 [ , _
5y (@) = €0t sin (€ (1 — 1)) dE = — 5

where £ = (x1, —x2) corresponds to the image point of x in the lower half-plane. The
primitive of (2.77), and therefore the value of (2.76), is given by

(2.77)

o, 27|y — |2’

1 _

which represents the additional term that appears in the Green’s function due the method
of images when considering a Dirichlet boundary condition, as in (2.19).

38



d) Term associated with the limiting absorption principle

The term Gy, the inverse Fourier transform of (2.69), is associated with the effect of
the limiting absorption principle on the Green’s function, and has been already calculated
in (2.63). It yields the imaginary part of the Green’s function, and is given by

Gr(x,y) = —1i e~ Zooly2te2) cos(Zoo(yl — 931)) (2.79)

e) Remaining term

The remaining term Gg, the inverse Fourier transform of (2.70), can be computed as
the integral

1 o0 6*5(3/24“932)
GR(.flj,y) = ;/ Z—_g COS(é(yl — .Tl))df (280)
0 o]

We consider the change of notation

1
Gr(®,y) = —e =Gy (@, y), (2:81)

where
00 o(Zoo =€) (y2+a2)

Gp(z,y) = / 7€ cos(&(yr — x1))dE. (2.82)
0 oo T
From the derivative of (2.76) and (2.78) with respect to y, we obtain the relation

R " Yo + X2
/0 (& £(y2ta2) COS(&(yl — I1)>d€ = m (283)
Consequently we have for the y,-derivative of G that
oG, o
8yf (x,y) = eZoc(y2+2) /0 e~ EWatm2) (oo (£<y1 _ .T1))d§
- |ZQ—_+ : e, (2.84)

The value of the inverse Fourier transform (2.80) can be thus obtained by means of the
primitive with respect to y of (2.84), i.e.,

1
Gr(z,y) = — eZm(yﬁ”?)/
w(®@Y) ™ oo (= 2)? 4P

An integration by parts (or using the term associated with a Neumann instead of a Dirichlet
boundary condition) would yield similar expressions for the Green’s function as those de-
rived by Greenberg (1971, page 86) and Dautray & Lions (1987, volume 2, page 745), who
adapt the method of Moran (1964) and do not consider the limiting absorption principle.

y2+x2 n 6Zoo7]

dn. (2.85)

It is noteworthy that the value of the primitive in (2.85) has an explicit expression. To
see this, we start again with the computation by rewriting (2.80) as

1 0 ,—E(y2tw2) , ,
%@w—%éfit?@%mwemwﬂ@. (2.86)

By performing the change of variable n = £ — Z, and by defining
V1 =Y — 1 and Vg = Yo + Ta, (287)
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we obtain

—ZooV2 ] 0o —(v2—iv1)n ) 0o —(va+ivi)n
GR(CC, y) _ _6 (ezZoom/ 6— d77 + eZZoo’Ul/ eT dn) . (288)

2m Zoo n ~Zeo
Redefining the integration limits inside the complex plane by replacing respectively in the
integrals ( = n(vy — ivy) and ¢ = n(ve + ivy), yields

e_ZOOUQ VAN e_C —1 2oV e_C
GR(:c,y):— o € wl/TdC—i—e 001/L+Tdc , (2.89)

where the integration curves L~ and L™ are the half-lines depicted in Figure 2.6. We
observe that these integrals correspond to the exponential integral function (A.57) with
complex arguments. This special function is defined as a Cauchy principal value by

oo —t z t
Ei(z) = —][ 67 dt :][ %dt (|arg 2| < ), (2.90)
and it can be characterized in the whole complex plane by means of the series expansion
o0 Zn
Ei(z) = 1 < 291
i(z) =7+ nz—l—;nn! (|arg 2| <), (2.91)

where vy denotes Euler’s constant (A.43) and where the principal value of the logarithm is
taken. Its derivative is readily given by

d e?

— Ei(z) = —. 2.92

dz i(z) z (2.92)
Further details on the exponential integral function can be found in Subsection A.2.3. Thus
the inverse Fourier transform of the remaining term is given by
{1 (2 (e 20 — it~ )

e—Zoo(y2+$2)

+ g Zoo(yr—21) Ei(Zoo((?h +29) +i(yr — 951))) } (2.93)

Im{C}4 Jm{C}4

Lt

—Z oo e {C) | Re(¢)
L >~ /= 1= 4V1

(a) Half-line L~ (b) Half-line Lt

FIGURE 2.6. Complex integration curves for the exponential integral function.
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f) Complete spatial Green’s function

The desired complete spatial Green’s function is finally obtained, as stated in (2.72),
by adding the terms (2.75), (2.78), (2.79), and (2.93). It is depicted graphically for Z,, = 1
and = = (0, 2) in Figures 2.7 & 2.8, and given explicitly by

1 1 . x
Gz, y) = P Inly — x| — %ln ly — &| —ie 2wt cos(Zoo (y1 — 1))

e*Zoo(y2+€E2)

+ —27T {eizm(yl_ml) Ei <Zoo((y2 + $2) — Z(yl — Il))>

+ e lima) By (Zoo ((y2 + 22) + iy — xl))) } (2.94)

8 8
6 6
4 4

Y2

N
z

Y1

(a) Real part (b) Imaginary part

FIGURE 2.7. Contour plot of the complete spatial Green’s function.

14 -2
1 0
15
0 . 0 5, - o
-10 45 8 Y2 -10 _15 8 Y2
Y1 Y1
(a) Real part (b) Imaginary part

FIGURE 2.8. Oblique view of the complete spatial Green’s function.
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By using the notation (2.87), this can be equivalently and more compactly expressed as

1 1
G(z,y) = Py Inly — x| — Dy In|y — &| —ie %" cos(Zuov)
—ZOOUQ . .

B (Zao (02 — 1)) + €A B (Zoo(va + i) o (299)

2m
Its gradient can be computed straightforwardly and is given by

)

y—x Yy—T . -z
V,G(z,y) — 7. e o0
WO ) = Sy o Ty —ap | A {

- 2—6_2"0”2{ [ 12} 7" Bi(Zoo(vg — iv1)) + {ﬂ e Ei(Zoo (v + wl))}. (2.96)
T
We can likewise define a gradient with respect to the x variable by
—sin(Zv1)
co8(Zoov1)

T—Y T—Y , —Zoov
V.G(x,y) = Lo 22
S PR P ER [

oo _ v —t —i1 700V TP . ' i Zo0¥1 T2 .
-5 Foo {{ 12}6 7o Bi(Zoo (02 + iv7) ) + mezw VEi(Zoo (02 — zvl))},(2.97)

and a double-gradient matrix by
I  ([-yo@-y E-98E-y)

VaVy,G(x,y) = — —
e N L P
B I e c08(Zoo1)  — sin(Zoovy)
27r|lx — gl|? > sin(Zwv1)  €o8(Zoovy)
Zgo —Z oV 1 l —1 200V : :
—l—%e > 2{|:—Z 1:| € > 1E1(ZOO(U2—|—ZU1))

+[1. Ii}efzwvl}zi(zoo(w—m))} L[W _”1}, (2.98)

i e —gP v v

where 4 = (y1, —y2) and & = (2, —x5), where I denotes the 2 x 2 identity matrix and T
the 2 X 2 image identity matrix, given by

_ (10
I:[o _1}, (2.99)

and where ® denotes the dyadic or outer product of two vectors, which results in a matrix
and is defined in (A.573).

2.3.5 Extension and properties

The half-plane Green’s function can be extended in a locally analytic way towards
the full-plane R? in a straightforward and natural manner, just by considering the expres-
sion (2.94) valid for all ,y € R?, instead of just for ]Ri. This extension possesses two
singularities of logarithmic type at the points « and &, and is continuous otherwise. The
behavior of these singularities is characterized by

1
Glay) ~ - hly—=z,  y—= (2.100)
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1
G(x,y) ~ %ln|y — x|, y— T. (2.101)

For the y;-derivative there appears a jump across the half-line T = {y; = z1,92 < —2},
due the effect of the analytic branch cut of the exponential integral functions, shown in
Figure 2.9. We denote this jump by
oG oG oG oG
Jx,y)= lim ¢ —p— lim < —p = —
(@.9) 11—z {ayl} y1—T] {891 } (9yf'

- — (2.102)
a?/l

Yy1=2x1 Yy1=x1

FIGURE 2.9. Domain of the extended Green’s function.

Since the singularity of the exponential integral function is of logarithmic type, and since
the analytic branch cuts of the logarithms fulfill, due (A.21) and for all v, < 0,
lim {In(vy + ie) — In(vy — ie)} — lim {In(vs +ic) — In(vy — ic) } = 4mi, (2.103)
e—0 e—0—

therefore we can easily derive from (2.96) that the jump has a value of
J(x,y) = 27, e Feolvzte), (2.104)

We remark that the Green’s function (2.94) itself and its y»-derivative are continuous across
the half-line T, since for vy < 0 the analytic branch cuts cancel out and it holds that

lim {In(vy + ie) + In(vy —ic) } — lim {In(vy +ie) + In(vy —ie)} = 0.  (2.105)

e—0 e—0~

Aslong as x5 # 0, it is clear that the impedance boundary condition in (2.16) continues
to be homogeneous. Nonetheless, if the source point « lies on the half-plane’s boundary,
re., if zo = 0, then the boundary condition ceases to be homogeneous in the sense of
distributions. This can be deduced from the expression (2.71) by verifying that

lim {g—i((xl,()),y) + ZOOG((xl,O),y)} =64, (11). (2.106)

y2—0F

Since the impedance boundary condition holds only on {y, = 0}, therefore the right-hand
side of (2.106) can be also expressed by
1 1
0z (1) = 502(y) + S0a2(y), (2.107)
which illustrates more clearly the contribution of each logarithmic singularity to the Dirac

mass in the boundary condition.
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It can be seen now that the Green’s function extended in the abovementioned way
satisfies, for € R?, in the sense of distributions, and instead of (2.16), the problem

( Find G(z,-) : R? — C such that

AG(,y) = 6a(y) + 0a(y) + J(z,y)or(y)  in D'(R?),
g—i(w,y) + ZoG(w,y) = %6m(y) + %553(3/) on {y» = 0},

+ Outgoing radiation condition for y € R? as |y| — oo,

(2.108)

\
where dy denotes a Dirac mass distribution along the Y-curve. We retrieve thus the known
result that for an impedance boundary condition the image of a point source is a point
source plus a half-line of sources with exponentially increasing strengths in the lower half-
plane, and which extends from the image point source towards infinity along the half-
plane’s normal direction (cf. Keller 1979, who refers to decreasing strengths when dealing
with the opposite half-plane).

We note that the half-plane Green’s function (2.94) is symmetric in the sense that
G(x,y)=Gy,x) Vx,ycR? (2.109)
and it fulfills similarly
V,G(z,y) = V,G(y, x) and ViGl(x,y) = V.G(y, x). (2.110)

Another property is that we retrieve the special case (2.19) of a homogenous Dirichlet
boundary condition in R%r when Z,, — oo. Likewise, we retrieve the special case (2.21) of
a homogenous Neumann boundary condition in R2 when Z,, — 0, except for an additive
constant due the extra term (2.79) that can be disregarded.

At last, we observe that the expression for the Green’s function (2.94) is still valid
if a complex impedance Z., € C such that Im{Z..} > 0 and Re{Z..} > 0 is used,
which holds also for its derivatives (2.96), (2.97), and (2.98). The analytic branch cuts of
the logarithms that are contained in the exponential integral functions, though, have to be
treated very carefully in this case, since they have to stay on the negative v,-axis, i.e., on the
half-line Y. A straightforward evaluation of these logarithms with a complex impedance
rotates the cuts in the (vq, v3)-plane and generates thus two discontinuous half-lines for the
Green’s function in the half-plane v, < 0. This undesired behavior of the branch cuts can
be avoided if the complex logarithms are taken in the sense of

In(Zoo(va — iv1)) = In(va — iv1) + In(Zs), (2.111)
In(Zso (s +iv1)) = In(vs + ivy) + In(Zs), (2.112)

where the principal value is considered for the logarithms on the right-hand side. For the
remaining terms of the Green’s function, the complex impedance Z,, can be evaluated
straightforwardly without any problems.

On the account of performing the numerical evaluation of the exponential integral func-
tion for complex arguments, we mention the algorithm developed by Amos (1980, 1990a,b)
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and the software based on the technical report by Morris (1993), taking care with the defi-
nition of the analytic branch cuts. Further references are listed in Lozier & Olver (1994).

2.3.6 Complementary Green’s function

The complementary Green’s function is the Green’s function that corresponds to the
lower half-plane R? = {(y1,12) € R?|y, < 0}. We denote it by G and it satisfies,
for z € R? and instead of (2.16), the problem

( Find G(x, ) : R2 — C such that

A Gz, y) = ,(y) in D'(R2),
e ~ (2.113)
—@($,y) + ZOOG(w> y) =0 on {y? = 0}7
2

|+ Outgoing radiation condition as |y| — oco.

The radiation condition, which considers outgoing surface waves and an exponential de-
crease towards the lower half-plane R? , is given in this case as |y| — oo by

~ _C G| _ C 1
G| <— and — < — if yo < ———1In(1+ Zo7|yl),
= 1y ) = TP 2= L 2ol
_ (2.114)
~ 1
‘G‘ <(C and a—G — 174Gl < 2 if yo > ——1n(1 +Zoo7r]y|),
L 8ry |y| Zoo

for some constants C' > 0, which are independent of » = |y|. This Green’s function is
given explicitly by

1 1 _ . "
Gz, y) = %lfﬂy —z| - %lﬂ |y — & — i e”>21%) cos(Zoo (31 — 1))

eZoo (y2+z2)

+ T{Gizm(ylwl) Ei (Zoo( — (yz + JIQ) — Z(yl — .731)))

4 o2 (1—21) (Zoo( — (yo + x2) + i(y1 — xl))> } (2.115)
It can be extended towards the full-plane R? in the same way as done before, i.e., just by
considering the expression (2.115) valid for all x, y € R?. Since
G-z =ly—2  ad  |g-a|=|y-=| (2.116)
therefore the complementary Green’s function can be characterized by
G(x,y) = G(x,§) Vao,yecR> (2.117)

The logarithmic singularities are the same as before, i.e., (2.100) and (2.101) continue to
be true, but now the y;-derivative has a jump along the half-line T = {y; = 21,92 > 22},
which instead of (2.104) adopts a value of

J(x,y) = J(T,§) = 2Zc7=Wte2), (2.118)
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2.4 Far field of the Green’s function

2.4.1 Decomposition of the far field

The far field of the Green’s function, which we denote by G/, describes its asymptotic
behavior at infinity, i.e., when || — oo and assuming that y is fixed. For this purpose,
the terms of highest order at infinity are searched. Likewise as done for the radiation con-
dition, the far field can be decomposed into two parts, each acting on a different region as
shown in Figure 2.2. The first part, denoted by ij , 1s linked with the asymptotic decaying
condition at infinity observed when dealing with bounded obstacles, and acts in the interior
of the half-plane while vanishing near its boundary. The second part, denoted by Ggf, is
associated with surface waves that propagate along the boundary towards infinity, which
decay exponentially towards the half-plane’s interior. We have thus that

G =all + G¥ (2.119)

2.4.2 Asymptotic decaying

The asymptotic decaying acts only in the interior of the half-plane and is related to
the logarithmic terms in (2.94), and also to the asymptotic behavior as x5 — oo of the
exponential integral terms. In fact, due (A.81) we have for z € C that

z

Ei(z) ~ % as Me{z} — 0. (2.120)

By considering the behavior (2.120) in (2.94) and by neglecting the exponentially decreas-
ing terms as ro — 00, we obtain that
To + Yo

m, (2.121)

1 1
Gla,y) ~ 5-Inle —y| — o—ln|e—g]+
being § = (y1, —y2). The logarithm can be expanded according to

1 1. (|z—yf 1 y-z |y
1 =21 AN | ~ I ) =1 —In({1—-2"=——+==]. (2.122
n|z—yl 5 n(|;[:| )—|—2 n( =L n|$|+2 n |2 + |2 ( )

Using a Taylor expansion for the logarithm around one yields

. 1
njz—yl =z - L2 +0f — ). (2.123)
|2 ||
Analogously, since || = |Z|, we have that
_ _ Yy-x 1
Injy—Z|=In|z—g|=In|z| - PE +O(W>. (2.124)
Therefore it holds for the two logarithmic terms that
1 1 _ (y—9) -« 1
—1 —x|— —1 -z =—"—"——4+0| — ). 2.125
2 nly - x| o nly - 2| 27| x|? * |z|? ( )

By using another Taylor expansion, it holds that

.19 7|2 -1
1 1 (1_2:13 y+ﬂ) _LJF@(L), (2.126)

[z —gP? |z > ]
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and therefore

To + Yo To 1
= o — ). 2.127
Tl — G ZoonlaP (|w12) 127

We express the point  as * = |x|&, being & = (cosd,sinf) a unitary vector. Hence,
from (2.121) and due (2.125) and (2.127), the asymptotic decaying of the Green’s function
is given by

in 6
el =Yz, 2.128
A (wvy) Zoo7T|w|( y2) ( )
Similarly, we have for its gradient with respect to vy, that
in 0 0
Gl - 2.129

for its gradient with respect to x, that

1 — Zys | —sin(20)
waf — e 2.130
Vel (@) ZooT||? [ cos(26) |’ ( )
and for its double-gradient matrix, that
I |0 —sin(20)
If _
VeV Gy (2, y) = e {o cos(20) ] (2.131)

2.4.3 Surface waves in the far field

An expression for the surface waves in the far field can be obtained by studying the
residues of the poles of the spectral Green’s function, which determine entirely their as-
ymptotic behavior. We already computed the inverse Fourier transform of these residues
in (2.60), using the residue theorem of Cauchy and the limiting absorption principle. This
implies that the Green’s function behaves asymptotically, when |z;| — o0, as

G(x,y) ~ —ie Zelr2tyz) giZelri—ul (2.132)

Analogous computations for the Helmholtz equation, and more detailed, can be found in
Duran, Muga & Nédélec (2005a, 2006). Similarly as in (C.36), we can use Taylor expan-
sions to obtain the estimate

) 1
|[E1 —y1| = |[L’1| — U Slgnl’l—FO(m). (2133)
1
Therefore, as for (C.38), we have that
eyl — piZocler] o =iZccyr signa (1 +0 (L) ) . (2.134)
| 1]
The surface-wave behavior of the Green’s function, due (2.132) and (2.134), becomes thus
GSff(CC, y) — _j e eow2 piZooltr| p=Zooy2 o —iZcoyr signar (2.135)
Similarly, we have for its gradient with respect to y, that
Vngf(a:, y) = _Zooe—Zoomez‘zoo\mle—zooyze—izooyl signzy |:Sign-$1:| ’ (2.136)
—1
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for its gradient with respect to x, that

Vngf(:B, y) = Zooe—Zooazz giZoolt1l o= Zooy2 o ~iZooy1 signa {Slgr.l 1'1] ’ (2.137)
1
and for its double-gradient matrix, that
— sign zy 1

2.4.4 Complete far field of the Green’s function

On the whole, the asymptotic behavior of the Green’s function as || — oo can be
characterized through the addition of (2.121) and (2.132), namely

1 1 _ T2 + Yo
(iﬂ,y) o n|m y| o n|a: y| + Zooﬂ‘w_gP
_ i e Zeo(@aty2) piZoolmi—u1 | (2.139)

Consequently, the complete far field of the Green’s function, due (2.119), is given by the
addition of (2.128) and (2.135), i.e., by

sin
ZooT| x|
The expressions for its derivatives can be obtained by considering the corresponding addi-
tions of (2.129) and (2.136), of (2.130) and (2.137), and finally of (2.131) and (2.138).

It is this far field (2.140) that justifies the radiation condition (2.17) when exchanging
the roles of & and y. When the first term in (2.140) dominates, i.e., the asymptotic de-
caying (2.128), then it is the first expression in (2.17) that matters. Conversely, when the
second term in (2.140) dominates, i.e., the surface waves (2.135), then the second expres-
sion in (2.17) is the one that holds. The interface between both asymptotic behaviors can
be determined by equating the amplitudes of the two terms in (2.140), i.e., by searching
values of x at infinity such that

G (x,y) = (1 = Zooipp) — i e~ Zv2giZecltrlg=Zocyz pmiZeoyisignen (3 14()

]_ -7 9
= oo 2.141
Tl = (2.141)

where the values of y can be neglected, since they remain relatively near the origin. By

taking the logarithm in (2.141) and perturbing somewhat the result so as to avoid a singular
behavior at the origin, we obtain finally that this interface is described by

1

Ty = Z—ln(l + Zoom||). (2.142)

We remark that the asymptotic behavior (2.139) of the Green’s function and the expres-

sion (2.140) of its complete far field do no longer hold if a complex impedance 7., € C

such that Im{ 7.} > 0and Re{Z..} > 0is used, specifically the parts (2.132) and (2.135)

linked with the surface waves. A careful inspection shows that in this case the surface-wave
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behavior of the Green’s function, as |z;| — oo, decreases exponentially and is given by

—j e\ Zelmt) giZoclei—uil f (1, 4 y) > 0,
Clay) ~ | (2.143)
— e—Zoo(x2+y2)eZZoc|x1_y1| if (332 + 92) <0.
Therefore the surface-wave part of the far field can be now expressed as
e —j e ool giZoc|mr] g=|Zool Y2 g—iZooyrsignar i x9 >0,
_ 2.144
S (w7 y) —Z efzooxgeizookl‘l|€*Zooy2e*iZooyl sign a1 lf To S 0 ( )

The asymptotic decaying (2.121) and its far-field expression (2.128), on the other hand,
remain the same when we use a complex impedance. We remark further that if a complex
impedance is taken into account, then the part of the surface waves of the outgoing radiation
condition is redundant, and only the asymptotic decaying part is required, i.e., only the first
two expressions in (2.17), but now holding for y, > 0.

2.5 Integral representation and equation

2.5.1 Integral representation

We are interested in expressing the solution u of the direct scattering problem (2.13) by
means of an integral representation formula over the perturbed portion of the boundary I',,.
For this purpose, we extend this solution by zero towards the complementary domain 2.,
analogously as done in (B.124). We define by {2z . the domain €2, without the ball B, of
radius ¢ > 0 centered at the point x € ()., and truncated at infinity by the ball Bg of
radius R > 0 centered at the origin. We consider that the ball B. is entirely contained
in €).. Therefore, as shown in Figure 2.10, we have that

Qre = (2N Bg) \ B, (2.145)
where
Br={y € R*: |y| < R} and B.={yeQ. :|ly—=x|<e}  (2.146)
We consider similarly, inside €., the boundaries of the balls
St={yeR:: |y =R} and S.={yecQ.: |ly—=x|=¢}  (2.147)

We separate furthermore the boundary as I' = I, U T, where

Lh={yel: y, =0} and Iy ={yel: y, >0} (2.148)
The boundary I' is likewise truncated at infinity by the ball By, namely
[r=TNBr=TFUl, =TEUT,, (2.149)
where
I['=TyNBr  and % =T, N Bk (2.150)

The idea is to retrieve the domain €2, and the boundary I" at the end when the limits R — oo
and ¢ — 0 are taken for the truncated domain 1 . and the truncated boundary I'y.
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FIGURE 2.10. Truncated domain Qg . for x € ).

We apply now Green’s second integral theorem (A.613) to the functions u and G(x, -)
in the bounded domain Q2 ., yielding

0= / (u(y) AyG(a y) — Gl y)Au(y))dy

— /S+ <u(y)g—g(ﬂ?,y) - G(fv,y)%(y)) dv(y)

R

-/ (u@)g_i(x,y) - G5 )) bl

oG ou

o [ (s - G Giw) b @151)

The integral on Sy can be rewritten as

oG , ou :
[ (@ - i@ ) - 6w (Grw - izautw) | ariw)
S}% Ty T
oG ou
[ (wiiey-cevge)nw. e
which for R large enough and due the radiation condition (2.6) tends to zero, since

[ (Go@y) - iz o) < Gun, @iy

S}% er R
[ G (G - iZautw)) doto)| < S1om 2.154)

S}% T R

and

(2.155)

/s,% (u(y)g—g(:my) - G(m,y)%(y)) dy(y)

for some constants C' > 0. If the function u is regular enough in the ball B., then the
second term of the integral on S; in (2.151), when € — 0 and due (2.100), is bounded by

<
_R27

ou U
< —_— .
G(w,y)ar (y) dv(y)‘ < Celne sup ar (y)|. (2.156)

Se yEeB:
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for some constant C' > 0 and tends to zero. The regularity of u can be specified afterwards
once the integral representation has been determined and generalized by means of density
arguments. The first integral term on S. can be decomposed as

/S 5 u(y)?—i(zc, y) dy(y) = u(=) /S | g—% y) dy(y)

oG
+ | 5@y (uy) - u(@)) di(y), (2.157)
S. Oy
For the first term in the right-hand side of (2.157), by considering (2.100) we have that
oG
— d 1 2.158
| renne — 1 @158
while the second term is bounded by
oG
[ (6t~ ) 52 ) o) < sup o)~ )], 2159)
Se Ty yeBe

which tends towards zero when ¢ — (. Finally, due the impedance boundary condi-
tion (2.4) and since the support of f, vanishes on I',,, the term on I'z in (2.151) can be
decomposed as

[ (et ) - 26wy utw) i)+ [ Gle it
-/, (St + 2.Glaw) ) ulw) 2 (o). (2.160

where the integral on ' vanishes due the impedance boundary condition in (2.16). There-
fore this term does not depend on R and has its support only on the bounded and perturbed
portion I, of the boundary.

In conclusion, when the limits R — oo and € — 0 are taken in (2.151), then we obtain
for € (), the integral representation formula

@) = [ (fetew) - 2@y Juw) i) + [ Gefv)d). @
which can be alternatively expressed as
ww) = [ () @) - Genfim)hw. e

It is remarkable in this integral representation that the support of the integral, namely the
curve I}, is bounded. Let us denote the traces of the solution and of its normal derivative
on I, respectively by

0
p=ulr, and = | (2.163)
on r,
We can rewrite now (2.161) and (2.162) in terms of layer potentials as
u="D(u)—S(Zu) +S(f.) in Q, (2.164)
u="D(u)—S{) in ., (2.165)
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where we define for & € (), respectively the single and double layer potentials as

Svi) = | Gl@yvly)dily), (2.166)
Du@) = [ 5 (e u)nly) 41 (w) 2167

We remark that from the impedance boundary condition (2.4) it is clear that

v=2Zu— f.. (2.168)

2.5.2 Integral equation

To determine entirely the solution of the direct scattering problem (2.13) by means
of its integral representation, we have to find values for the traces (2.163). This requires
the development of an integral equation that allows to fix these values by incorporating the
boundary data. For this purpose we place the source point  on the boundary I', as shown in
Figure 2.11, and apply the same procedure as before for the integral representation (2.161),
treating differently in (2.151) only the integrals on S.. The integrals on S}, still behave well
and tend towards zero as R — oo. The Ball B., though, is split in half by the boundary I,
and the portion {2, N B. is asymptotically separated from its complement in B. by the
tangent of the boundary if I is regular. If * € T';, then the associated integrals on S.
give rise to a term —u(x)/2 instead of just —u(ax) as before for the integral representation.
Therefore we obtain for € I'; the boundary integral representation

:/F (%(m,y)—Z(y)G(w,y))u(y) dw(y)+/FG(:r,,y)fz(y) dv(y). (2.169)

On the contrary, if € I}, then the logarithmic behavior (2.101) contributes also to the
singularity (2.100) of the Green’s function and the integrals on S, give now rise to two
terms —u(x)/2, i.e., on the whole to a term —u(x). For & € T} the boundary integral
representation is instead given by

@)= [ (52 ) - 2)Glay) Juw) i) + [ Gl fy) di(w). @170)

We must notice that in both cases, the integrands associated with the boundary I' admit an
integrable singularity at the point . In terms of boundary layer potentials, we can express
these boundary integral representations as

u(@)
2

S =D —S(Zw+S(f.)  on L., @.171)
u=D(p) — S(Zp) + S(f.) on I, (2.172)
where we consider, for € I', the two boundary integral operators
s(e) = | Gla.yy)di(w) @.173)
FP

oG
Dulx) = | 5 =(z,y)uly) dy(y). (2.174)

L, 9Ny
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We can combine (2.171) and (2.172) into a single integral equation on I, namely

(1 +IU)§ +8(Zp) — D(u) = S(f.)  on L, (2.175)
where 7, denotes the characteristic or indicator function of the set I, i.e.,
1 if x ey,
Zo(x) = (2.176)
0 if x¢T.

It is the solution p on I, of the integral equation (2.175) which finally allows to char-
acterize the solution u in €2, of the direct scattering problem (2.13) through the integral
representation formula (2.164). The trace of the solution « on the boundary I" is then found
simultaneously by means of the boundary integral representations (2.171) and (2.172). In
particular, when @ € I'y, and since Iy, C I, therefore it holds that

u=D(u)—S(Zu)+ S(f.) on I'y. (2.177)

)
O 1Y

0
'y n R

FIGURE 2.11. Truncated domain Qg . forx € I'.

2.6 Far field of the solution
The asymptotic behavior at infinity of the solution u of (2.13) is described by the far
field. It is denoted by u// and is characterized by
u(x) ~ uf (x) as |x| — oc. (2.178)

Its expression can be deduced by replacing the far field of the Green’s function G// and its
derivatives in the integral representation formula (2.162), which yields

OGIf
o) = [ (G @) - e wrly) )y @179
I Ty
By replacing now (2.140) and the addition of (2.129) and (2.136) in (2.179), we obtain that
o sin 6 0| 1_
) ==z [ ([ 2] e+ 0= o)) v

— e Dzl / ¢ It ilom Sig”l(zoo [Slgnf“} -y ply) — w(y)) dy(y).(2.180)
iy

P
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The asymptotic behavior of the solution w at infinity, as || — oo, is therefore given by

u(x) = % {ufo(ic) + O(é) } + e~ Zoom2 giZoola1] {uio(fcs) +0 (ﬁ) } (2.181)

where &, = sign x; and where we decompose = |x| &, being & = (cos ), sin #) a vector
of the unit circle. The far-field pattern of the asymptotic decaying is given by

@)=~ [ ([ ] mnw)+ 0= Zanpw) ww, s

whereas the far-field pattern for the surface waves adopts the form

ufo(i,s) — / e*Zocl/Qe*iZooyISigHII (ZOO |:_ Sl%n I1‘| . ny M(y) —+ le(y)) dfy(y) (2.183)
I;

P

Both far-field patterns can be expressed in decibels (dB) respectively by means of the scat-
tering cross sections

A /4
QA(&) [dB] = 201og10(’“<’>°27>|), (2.184)
Up
S A
QS(2,) [dB] = 2010g, (’“‘”—(f,)’) (2.185)
Ug
where the reference levels uj and uj are taken such that |uj| = |uj| = 1 if the incident

field is given by a surface wave of the form (2.15).

We remark that the far-field behavior (2.181) of the solution is in accordance with the
radiation condition (2.6), which justifies its choice.

2.7 Existence and uniqueness

2.7.1 Function spaces

To state a precise mathematical formulation of the herein treated problems, we have to
define properly the involved function spaces. Since the considered domains and boundaries
are unbounded, we need to work with weighted Sobolev spaces, as in Durdn, Muga &
Nédélec (2005a, 2006). We consider the classic weight functions

o=V1+7r2  and log o = In(2 + r?), (2.186)

where r = |x|. We define the domains

1

Ol = {zc €Qu:my > —In(l+ Zoom“)}, (2.187)
1

02 = {:c €N : 19 < Z—ln(l + Zoom“)}. (2.188)
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It holds that the solution of the direct scattering problem (2.13) is contained in the weighted
Sobolev space

ov
WHQ) = v —— € L(Q), Vv e LX(Q)? —= € LA(Q)), = € LX),
(){Qlogg() ()\/5(>ar()
1 ov
L?(Q? — —iZ L*(Q3) 5. 2.1

With the appropriate norm, the space W!(),) becomes also a Hilbert space. We have
likewise the inclusion W'(€.) C H\..(Q.), i.e., the functions of these two spaces differ
only by their behavior at infinity.

Since we are dealing with Sobolev spaces, even a strong Lipschitz boundary I' € C%!
is admissible. The fact that this boundary I is also unbounded implies that we have to use
weighted trace spaces like in Amrouche (2002). For this purpose, we consider the space

WY = {U; Y e HYVT } (2.190)
)= {2 oy € H2D)
Its dual space W ~1/2(T") is defined via W°-duality, i.e., considering the pivot space
WoT :{v: ~ Y err } (2.191)
1) =175 iogg € PO
Analogously as for the trace theorem (A.531), if v € W (€2,) then the trace of v fulfills
Yov = v|p € WY(T). (2.192)
Moreover, the trace of the normal derivative can be also defined, and it holds that
v
= —|r € WVA(T). 2.193
o = o fr € WVAT) 2.193)
We remark further that the restriction of the trace of v to I, is such that
You|r, = v|r, € HY*(T,), (2.194)
v
= —|r, € H (T, 2.195
7], an|rp € (L), ( )
and its restriction to I, yields
Yov|r, = vln, € W2 (), (2.196)
0
Nl = %Irw =W (2.197)

2.7.2 Application to the integral equation

The existence and uniqueness of the solution for the direct scattering problem (2.13),
due the integral representation formula (2.164), can be characterized by using the integral
equation (2.175). For this purpose and in accordance with the considered function spaces,
we take y € HY/?(T},) and v € H~'/%(T},)). Furthermore, we consider that Z € L>°(T},) and
that f, € H~Y/2(L,), even though strictly speaking f, € H~Y/2(L}).
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It holds that the single and double layer potentials defined respectively in (2.166)
and (2.167) are linear and continuous integral operators such that

S:H VAT, — W'Y(Q,) and D:HY*T,) — WY(Q). (2.198)

The boundary integral operators (2.173) and (2.174) are also linear and continuous appli-
cations, and they are such that

S:HY*T,) — WYXI) and  D:HYXT,) — WYT). (2.199)
When we restrict them to I}, then it holds that
Slr, : HY4(T,) — HY*(T,)  and D, : HY*(,) — HY*(T}).  (2.200)

P

Let us now study the integral equation (2.175), which is given in terms of boundary
layer potentials, for u € H'/?(T},), by

(L+Z0)5 +5(Zp) = D) = S(£.)  in H'(T,). (2.201)
We have the following mapping properties
pe HAL) — (1 +Io)g e H'(T,), (2.202)
Zu € LAT,) — S(Zp) € HY(T,) <% HY*(T,), (2.203)
pe€ HYXT,) — D(u) € H¥*(T,) <% HY*(T,), (2.204)
f. € HYVAT,) — S(f.) € HYA(T,). (2.205)

We observe that (2.202) is like the identity operator, and that (2.203) and (2.204) are com-
pact, due the imbeddings of Sobolev spaces. Thus the integral equation (2.201) has the
form of (A.441) and the Fredholm alternative holds.

Since the Fredholm alternative applies to the integral equation, therefore it applies
also to the direct scattering problem (2.13) due the integral representation formula. The
existence of the scattering problem’s solution is thus determined by its uniqueness, and the
values for the impedance Z € C for which the uniqueness is lost constitute a countable set,
which we call the impedance spectrum of the scattering problem and denote it by 0. The
existence and uniqueness of the solution is therefore ensured almost everywhere. The same
holds obviously for the solution of the integral equation, whose impedance spectrum we
denote by ¢z. Since the integral equation is derived from the scattering problem, it holds
that 0, C ¢z. The converse, though, is not necessarily true. In any way, the set ¢z \ o is
at most countable. In conclusion, the scattering problem (2.13) admits a unique solution «
if Z ¢ 0, and the integral equation (2.175) admits a unique solution p if Z ¢ ¢.

2.8 Dissipative problem

The dissipative problem considers surface waves that lose their amplitude as they travel
along the half-plane’s boundary. These waves dissipate their energy as they propagate and
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are modeled by a complex impedance Z,, € C whose imaginary part is strictly posi-
tive, i.e., Jm{Z.} > 0. This choice ensures that the surface waves of the Green’s func-
tion (2.94) decrease exponentially at infinity. Due the dissipative nature of the medium,
it is no longer suited to take progressive plane surface waves in the form of (2.15) as the
incident field u;. Instead, we have to take a source of surface waves at a finite distance
from the perturbation. For example, we can consider a point source located at z € €2, in
which case the incident field is given, up to a multiplicative constant, by

ur(xz) = Gz, z), (2.206)

where G denotes the Green’s function (2.94). This incident field u; satisfies the Laplace
equation with a source term in the right-hand side, namely

Au; =6, in D'(Q), (2.207)

which holds also for the total field ur but not for the scattered field «, in which case the
Laplace equation remains homogeneous. For a general source distribution g5, whose sup-
port is contained in 2., the incident field can be expressed by

ur(®) = Gz, z) *x gs(2) = / G(x, z) gs(z) dz. (2.208)

e

This incident field u; satisfies now
Auy = g, in D'(Q.), (2.209)
which holds again also for the total field up but not for the scattered field w.

It 1s not difficult to see that all the performed developments for the non-dissipative
case are still valid when considering dissipation. The only difference is that now a complex
impedance Z., such that Jm{Z,,} > 0 has to be taken everywhere into account.

2.9 Variational formulation

To solve the integral equation we convert it to its variational or weak formulation,
1.e., we solve it with respect to a certain test function in a bilinear (or sesquilinear) form.
Basically, the integral equation is multiplied by the (conjugated) test function and then the
equation is integrated over the boundary of the domain. The test function is taken in the
same function space as the solution of the integral equation.

The variational formulation for the integral equation (2.201) searches ;1 € H'Y?(T},)
such that V¢ € H'/2(T,) we have that

(14205 +S(Zn) = D), 0) = (S(£.), ). (2:210)
2.10 Numerical discretization

2.10.1 Discretized function space

The scattering problem (2.13) is solved numerically with the boundary element method
by employing a Galerkin scheme on the variational formulation of the integral equation. We
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use on the boundary curve I, Lagrange finite elements of type ;. As shown in Figure 2.12,
the curve I, is approximated by the discretized curve FI?, composed by [ rectilinear seg-
ments 77, sequentially ordered from left to right for 1 < j < I, such that their length |7}|
is less or equal than h, and with their endpoints on top of I’,.

FIGURE 2.12. Curve F]?, discretization of I,

The function space H'/ 2(T;,) is approximated using the conformal space of continuous
piecewise linear polynomials with complex coefficients

Qn={pn € COTY) : @ulr, € P1(C), 1<j<TI}. 2.211)

The space (), has a finite dimension (I + 1), and we describe it using the standard base
functions for finite elements of type P;, denoted by {x; }jﬁ and expressed as

)
|z — ;4

| if €e€Tj,
x;(x) = \ﬂT}T$| it xeT) (2.212)
j
o it x¢ T),UT;,

where segment 7;_; has as endpoints 7;_; and 7;, while the endpoints of segment 7 are
given by 7; and 7.
In virtue of this discretization, any function ¢, € (), can be expressed as a linear
combination of the elements of the base, namely
I+1

on(@) =Y @jxi(x)  for z €T, (2.213)
j=1

where p; € Cfor1 < j <1 + 1. The solution 1 € H 1/ 2(T,) of the variational formula-
tion (2.210) can be therefore approximated by

I+1
pn(@) = pixi(@)  for x €T}, (2.214)
j=1
where p; € Cfor 1 < j < I + 1. The function f, can be also approximated by
I+1
@) =) fix(x) for x €L}, with f;= fu(r)). (2.215)
j=1
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2.10.2 Discretized integral equation

To see how the boundary element method operates, we apply it to the variational for-
mulation (2.210). We characterize all the discrete approximations by the index h, includ-
ing also the impedance and the boundary layer potentials. The numerical approximation
of (2.210) leads to the discretized problem that searches ), € @), such that Vi, € Q)

<(1 + I 5 T Su(Znptn) — Dh(ﬂh)»¢h> = (Sh(f1), en)- (2.216)

Considering the decomposition of /1, in terms of the base {x;} and taking as test functions
the same base functions, ¢, = x; for 1 < ¢ < [ 4 1, yields the discrete linear system
I+1 I+1

Zug( (L +Z3) x5, xi) + (Su(Znxy) xa) — (Da(x;), xz) ij (Sn(xj) xi)-

(2.217)
This constitutes a system of linear equations that can be expressed as a linear matrix system:

Find p € C'*! such that
(2.218)
Mup =b.
The elements m,; of the matrix M are given, for 1 < 4,5 <1+ 1, by
1
mij = 5 ((1+Z)x5Xi) + (S(Znxs), xa) = (Dr(xs), 3, (2.219)
and the elements b; of the vector b by
I+1
= (Su(fM)xa) = D i (Sulx),xi)  for 1<i<T+1. (2.220)

The discretized solution u;,, which approximates u, is finally obtained by discretizing
the integral representation formula (2.164) according to

up = Dy(pn) — Su(Znin) + Su(fL), (2.221)

which, more specifically, can be expressed as
I+1 I+1

up = > 115 (Du(xs) = Su(Zixs)) + > fi Su(x;)- (2.222)

J=1 J=1

We remark that the resulting matrix M is in general complex, full, non-symmetric,
and with dimensions (I 4+ 1) x (I 4+ 1). The right-hand side vector b is complex and
of size I + 1. The boundary element calculations required to compute numerically the
elements of M and b have to be performed carefully, since the integrals that appear become
singular when the involved segments are adjacent or coincident, due the singularity of the
Green’s function at its source point. On 1§, the singularity of the image source point has to
be taken additionally into account for these calculations.
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2.11 Boundary element calculations

The boundary element calculations build the elements of the matrix M resulting from
the discretization of the integral equation, i.e., from (2.218). They permit thus to compute
numerically expressions like (2.219). To evaluate the appearing singular integrals, we adapt
the semi-numerical methods described in the report of Bendali & Devys (1986).

We use the same notation as in Section B.12, and the required boundary element inte-
grals, for a,b € {0, 1}, are again

ZAuy = /K /L (%)K%)bc;(m,y) dL(y) dK (z), (2.223)

ZBM,:/K/L(%)a(%)bg—ri(m,y)duy)dk(m). (2.224)

All the integrals that stem from the numerical discretization can be expressed in terms
of these two basic boundary element integrals. The impedance is again discretized as a
piecewise constant function Z;, which on each segment 7; adopts a constant value Z; € C.
The integrals of interest are the same as for the full-plane impedance Laplace problem and
we consider furthermore that

(X xa) if 7 eIy,

L+IMxix) = (2.225)
{1+ T xa) 2(y; i) if r; €T

To compute the boundary element integrals (2.223) and (2.224), we can easily isolate
the singular part (2.100) of the Green’s function (2.94), which corresponds in fact to the
Green’s function of the Laplace equation in the full-plane, and therefore the associated in-
tegrals are computed in the same way. The same applies also for its normal derivative. In
the case when the segments K and L are are close enough, e.g., adjacent or coincident, and
when L € T} or K € T}, being " the approximation of Iy, we have to consider addi-
tionally the singular behavior (2.101), which is linked with the presence of the impedance
half-plane. This behavior can be straightforwardly evaluated by replacing x by & in for-
mulae (B.340) to (B.343), i.e., by computing the quantities ZF,(&) and ZG,(Z) with the
corresponding adjustment of the notation. Otherwise, if the segments are not close enough
and for the non-singular part of the Green’s function, a two-point Gauss quadrature formula
is used. All the other computations are performed in the same manner as in Section B.12
for the full-plane Laplace equation.

2.12 Benchmark problem

As benchmark problem we consider the particular case when the domain Q. C R? is
taken as the exterior of a half-circle of radius R > 0 that is centered at the origin, as shown
in Figure 2.13. We decompose the boundary of (2. as I' = I, U I'y,, where I, corresponds
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to the upper half-circle, whereas I, denotes the remaining unperturbed portion of the half-
plane’s boundary which lies outside the half-circle and which extends towards infinity on
both sides. The unit normal 72 is taken outwardly oriented of €2, e.g., m = —r on [},.

FIGURE 2.13. Exterior of the half-circle.

The benchmark problem is then stated as

[ Find u : ), — C such that

Au - 0 ln Qea
(2.226)
—% +Zu=f, on [’
on

+ Outgoing radiation condition as || — oo,

where we consider a constant impedance Z € C throughout I' and where the radiation
condition is as usual given by (2.6). As incident field u; we consider the same Green’s
function, namely

ur(x) = G(x, z), (2.227)
where z € (). denotes the source point of our incident field. The impedance data func-
tion f, is hence given by

oG
fz<3'}) = anw

and its support is contained in I},. The analytic solution for the benchmark problem (2.226)
is then clearly given by

(x,2z) — ZG(x, z), (2.228)

u(x) = —G(x, 2). (2.229)
The goal is to retrieve this solution numerically with the integral equation techniques and
the boundary element method described throughout this chapter.

For the computational implementation and the numerical resolution of the benchmark
problem, we consider integral equation (2.175). The linear system (2.218) resulting from
the discretization (2.216) of its variational formulation (2.210) is solved computationally
with finite boundary elements of type P; by using subroutines programmed in Fortran 90,
by generating the mesh F;l of the boundary with the free software Gmsh 2.4, and by repre-
senting graphically the results in Matlab 7.5 (R2007b).
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We consider a radius R = 1, a constant impedance Z = 5, and for the incident field
a source point z = (0,0). The discretized perturbed boundary curve F;L has I = 120
segments and a discretization step h = 0.02618, being

h = max |T}]. (2.230)

1<j<I
We observe that h ~ 7 /1.

The numerically calculated trace of the solution i, of the benchmark problem, which
was computed by using the boundary element method, is depicted in Figure 2.14. In the
same manner, the numerical solution wy, is illustrated in Figures 2.15 and 2.16. It can be
observed that the numerical solution is quite close to the exact one.

1
0.8
0.6
Zo4
£
&
O'Z\A/
O 4
-0.2 ‘ . . : ‘ ‘ -0.2 . ‘ . : ‘ ‘
05 L 15 2 25 3 0o 05 1 15 2 25 3
0 0
(a) Real part (b) Imaginary part

FIGURE 2.14. Numerically computed trace of the solution .

(a) Real part (b) Imaginary part

FIGURE 2.15. Contour plot of the numerically computed solution uy,.
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(b) Imaginary part

(a) Real part
FIGURE 2.16. Oblique view of the numerically computed solution uy,.

Likewise as in (B.368), we define the relative error of the trace of the solution as
(2.231)

Y

[ = il 2oy

Eo(h, T =
L) = e

where 11,1 denotes the Lagrange interpolating function of the exact solution’s trace , i.e.,
I+1

I+1
Myu(x) =Y p(ry) xi(x)  and (@) = pyx(x) for x €. (2232)
j=1 j=1

In our case, for a step h = 0.02618, we obtained a relative error of Fy(h, Fz?) = 0.02763.
(2.233)

_ Nl = unllze o
)

As in (B.372), we define the relative error of the solution as

E(h,Qp) =
[[l| oo ()
being Q= {x € Q. : ||z||c < L} for L > 0. We consider L = 3 and approximate 2,
by a triangular finite element mesh of refinement / near the boundary. For h = 0.02618,

the relative error that we obtained for the solution was F..(h, 1) = 0.01314.

The results for different mesh refinements, i.e., for different numbers of segments /
and discretization steps h, are listed in Table 2.1. These results are illustrated graphically
in Figure 2.17. It can be observed that the relative errors are approximately of order h.
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TABLE 2.1. Relative errors for different mesh refinements.

T 0 BT Boo(h, )

12 02611 2.549-10" 1.610-107"T

40  0.07852 7.426-10"% 3.658-1072

80  0.03927 4.014-10"? 1.903-102

120  0.02618 2.763-1072 1.314-1072

240 0.01309 1.431-10"2 7.455-1073

500 0.006283 7.008-10"3 3.785-1073

1000 0.003142 3.538-1073 1.938-1073
10° 10°
w0’ 10"

= &

= 107 lﬂg 107
3 10—3

(a) Relative error Ey(h,T")

h

(b) Relative error Eo.(h, )

FIGURE 2.17. Logarithmic plots of the relative errors versus the discretization step.



III. HALF-PLANE IMPEDANCE HELMHOLTZ PROBLEM

3.1 Introduction

In this chapter we study the perturbed half-plane impedance Helmholtz problem using
integral equation techniques and the boundary element method.

We consider the problem of the Helmholtz equation in two dimensions on a compactly
perturbed half-plane with an impedance boundary condition. The perturbed half-plane
impedance Helmholtz problem is a wave scattering problem around the bounded pertur-
bation, which is contained in the upper half-plane. In acoustic scattering the impedance
boundary-value problem appears when we suppose that the normal velocity is propor-
tional to the excess pressure on the boundary of the impenetrable perturbation or obsta-
cle (vid. Section A.11). The special case of frequency zero for the volume waves has
been treated already in Chapter II. The three-dimensional case is considered in Chapter V,
whereas the full-plane impedance Helmholtz problem with a bounded impenetrable obsta-
cle is treated thoroughly in Appendix C.

The main application of the problem corresponds to outdoor sound propagation, but it
is also used to describe the propagation of radio waves above the ground and of water waves
in shallow waters near the coast (harbor oscillations). The problem was at first considered
by Sommerfeld (1909) to describe the long-distance propagation of electromagnetic waves
above the earth. Different results for the electromagnetic problem were then obtained by
Weyl (1919) and later again by Sommerfeld (1926). After the articles of Van der Pol &
Niessen (1930), Wise (1931), and Van der Pol (1935), the most useful results up to that
time were generated by Norton (1936, 1937). We can likewise mention the later works of
Bafios & Wesley (1953, 1954) and Banos (1966). The application of the problem to out-
door sound propagation was initiated by Rudnick (1947). Other approximate solutions to
the problem were thereafter found by Lawhead & Rudnick (1951a,b) and Ingard (1951).
Solutions containing surface-wave terms were obtained by Wenzel (1974) and Chien &
Soroka (1975, 1980). Further references are listed in Nobile & Hayek (1985). Other arti-
cles that attempt to solve the problem are Briquet & Filippi (1977), Attenborough, Hayek
& Lawther (1980), Filippi (1983), Li et al. (1994), and Attenborough (2002), and more
recently also Habault (1999), Ochmann (2004), and Ochmann & Brick (2008), among oth-
ers. For the two-dimensional case, in particular, we mention the articles of Chandler-Wilde
& Hothersall (1995a,b) and Granat, Tahar & Ha-Duong (1999). The problem can be also
found in the books of Greenberg (1971) and DeSanto (1992). The physical aspects of out-
door sound propagation can be found in Morse & Ingard (1961) and Embleton (1996). For
the propagation of water waves in shallow waters near the coast (harbor oscillations) we
cite the articles of Hsiao, Lin & Fang (2001) and Liu & Losada (2002), and the book of
Mei, Stiassnie & Yue (2005).

The Helmholtz equation allows the propagation of volume waves inside the considered
domain, and when it is supplied with an impedance boundary condition, then it allows also
the propagation of surface waves along the boundary of the perturbed half-plane. The
main difficulty in the numerical treatment and resolution of our problem is the fact that the
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exterior domain is unbounded. We solve it therefore with integral equation techniques and a
boundary element method, which require the knowledge of the associated Green’s function.
This Green’s function is computed using a Fourier transform and taking into account the
limiting absorption principle, following Durdn, Muga & Nédélec (20054, 2006) and Duran,
Hein & Nédélec (2007a,b), but here an explicit expression is found for it in terms of a finite
combination of elementary functions, special functions, and their primitives.

This chapter is structured in 13 sections, including this introduction. The direct scat-
tering problem of the Helmholtz equation in a two-dimensional compactly perturbed half-
plane with an impedance boundary condition is presented in Section 3.2. The computation
of the Green’s function, its far field, and its numerical evaluation are developed respec-
tively in Sections 3.3, 3.4, and 3.5. The use of integral equation techniques to solve the
direct scattering problem is discussed in Section 3.6. These techniques allow also to repre-
sent the far field of the solution, as shown in Section 3.7. The appropriate function spaces
and some existence and uniqueness results for the solution of the problem are presented in
Section 3.8. The dissipative problem is studied in Section 3.9. By means of the variational
formulation developed in Section 3.10, the obtained integral equation is discretized using
the boundary element method, which is described in Section 3.11. The boundary element
calculations required to build the matrix of the linear system resulting from the numerical
discretization are explained in Section 3.12. Finally, in Section 3.13 a benchmark problem
based on an exterior half-circle problem is solved numerically.

3.2 Direct scattering problem

3.2.1 Problem definition

We consider the direct scattering problem of linear time-harmonic acoustic waves on
a perturbed half-plane Q. C R?, where R2 = {(z1,22) € R? : x5 > 0}, where the
incident field u; and the reflected field uy are known, and where the time convention e %"
is taken. The goal is to find the scattered field u as a solution to the Helmholtz equation
in the exterior open and connected domain €., satisfying an outgoing radiation condition,
and such that the total field uy, decomposed as up = u; + ug + u, satisfies a homogeneous
impedance boundary condition on the regular boundary I' = T, U I'y, (e.g., of class C?).
The exterior domain €. is composed by the half-plane R? with a compact perturbation
near the origin that is contained in R2 , as shown in Figure 3.1. The perturbed boundary is
denoted by I, while I, denotes the remaining unperturbed boundary of R? , which extends
towards infinity on both sides. The unit normal n is taken outwardly oriented of {2, and
the complementary domain is denoted by Q. = R? \ Q.. A given wave number k& > 0 is
considered, which depends on the pulsation w and the speed of wave propagation c through
the ratio k = w/c.

The total field uy satisfies thus the Helmholtz equation
Aur +Kur =0 in Q, (3.1)
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FIGURE 3.1. Perturbed half-plane impedance Helmholtz problem domain.

which is also satisfied by the incident field u;, the reflected field ug, and the scattered
field u, due linearity. For the total field u; we take the homogeneous impedance boundary
condition

0
9T Zup =0 on T, (3.2)
on
where 7 is the impedance on the boundary, which is decomposed as
Z(x) = Zoo + Zy(x), xel, (3.3)

being Z,, > 0 real and constant throughout I', and Z,(x) a possibly complex-valued
impedance that depends on the position x and that has a bounded support contained in I',.
The case of complex Z, and k will be discussed later. If Z = 0 or Z = oo, then we retrieve
respectively the classical Neumann or Dirichlet boundary conditions. The scattered field u
satisfies the non-homogeneous impedance boundary condition

_ Ou +Zu=f, on T, (3.4)
on

where the impedance data function f, is known, has its support contained in I,, and is
given, because of (3.2), by

ou ou
fo= L — Zur+—2—Zugr  on I. (3.5)

on on
An outgoing radiation condition has to be also imposed for the scattered field u, which
specifies its decaying behavior at infinity and eliminates the non-physical solutions, e.g.,
ingoing volume or surface waves. This radiation condition can be stated for » — oo in a

more adjusted way as

C ou C 1
< — 2 ikul < 2 ; =t
lu| < 7 and e iku| < . if xo > 7 In(1 + gr),
(3.6)
ou . C ) 1
lul| < C  and E—z\/Zgo—i—k?u g? if :cggfln(l—kﬁr),

for some constants C' > 0, where r = |z| and 8 = 87kZ2 /(Z% + k?). It implies that
two different asymptotic behaviors can be established for the scattered field u, which are
shown in Figure 3.2. Away from the boundary I" and inside the domain €2, the first expres-
sion in (3.6) dominates, which corresponds to a classical Sommerfeld radiation condition
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like (C.8) and is associated with volume waves. Near the boundary, on the other hand, the
second expression in (3.6) resembles a Sommerfeld radiation condition, but only along the
boundary and having a different wave number, and is therefore related to the propagation
of surface waves. It is often expressed also as

a(|%| /7 R < £ 3.7)
€

._'L'1|

FIGURE 3.2. Asymptotic behaviors in the radiation condition.

Analogously as done by Durdn, Muga & Nédélec (2005a, 2006), the radiation condi-
tion (3.6) can be stated alternatively as

C 0 C
lu| <— and au_ tku| < if 2o > Cr°,
VT or ri-«
3.8)
0
lu| < C and a—“ — /72 4 FPu| < — if 2, < Cr°
r riTee

for 0 < a < 1/2 and some constants C' > 0, being the growth of Cr® bigger than the
logarithmic one at infinity. Equivalently, the radiation condition can be expressed in a more
weaker and general formulation as

o 2
lim lu?dy < oo and  lim T ik dy =0,
R—o0 SI% R—o00 Sé 87’
) 3.9
lim/ wd < oo and lim L@—z\/ZQ—l—/’#u dvy=20
R—oo S}g{ InR i R—o0 S}% InR | Or oo T
where
1
Sﬁz = {w € Ri Cxl =R, xg > ﬁln(l +6R)}, (3.10)
1
S}%:{weRi: x| = R, $2<ﬁln(1+ﬁR)}. (3.11)
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We observe that in this case
/ dy=O(R)  and / dy = O(InR). (3.12)
Sk Sk

The portions Si and Sj of the half-circle and the terms depending on Sj of the radiation
condition (3.9) have to be modified when using instead the polynomial curves of (3.8). We
refer to Stoker (1956) for a discussion on radiation conditions for surface waves.

The perturbed half-plane impedance Helmholtz problem can be finally stated as
Find u : Q2. — C such that

Au+k*u=0 in Q,,
3.13
—@ +Zu=f, on [’ G-
on

+ Outgoing radiation condition as || — oo,
where the outgoing radiation condition is given by (3.6).

3.2.2 Incident and reflected field

To determine the incident field u; and the reflected field uy, we study the solutions up
of the unperturbed and homogeneous wave propagation problem with neither a scattered
field nor an associated radiation condition, being u; = u; + ug. The solutions are searched
in particular to be physically admissible, i.e., solutions which do not explode exponen-
tially in the propagation domain, depicted in Figure 3.1. We analyze thus the half-plane
impedance Helmholtz problem

Aur + Eup =0 in R?,
(3.14)
% + Zour =0 on {xs =0}.
4& /

FIGURE 3.3. Positive half-plane R?.

Two different kinds of independent solutions up exist for the problem (3.14). They
are obtained by studying the way how progressive plane waves of the form ¢’*® can be

adjusted to satisfy the boundary condition, where the wave propagation vector k = (k1, k2)
is such that (k - k) = k2.
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The first kind of solution corresponds to a linear combination of two progressive plane
volume waves and is given, up to an arbitrary multiplicative constant, by
, Zoo ik T
ik-x o0 2 ik-x
xT) = — | =—

ur(x) =e (Zoo—ik‘z)e :
where k € R and k = (k1, —k2). Due the involved physics, we consider that ks < 0. The
first term of (3.15) can be interpreted as an incident plane volume wave, while the second

term represents the reflected plane volume wave due the presence of the boundary with
impedance. Thus

(3.15)

ur(x) = e*, (3.16)

un(®) = — (%) ik
It can be observed that the solution (3.15) vanishes when &k, = 0, i.e., when the wave
propagation is parallel to the half-plane’s boundary. The wave propagation vector k, by
considering a parametrization through the angle of incidence #; for 0 < 6; < 7, can be
expressed as k = (—k cos 7, —ksin 6;). In this case the solution is described by

(3.17)

up(x) = e~ H@icosbrrazsindr) _ (w) g~ k(@1 cosbr—zzsinfy) (3.18)

Zoo + 1k sin Oy

The second kind of solution, up to an arbitrary scaling factor, corresponds to a progres-
sive plane surface wave, and is given by

up(x) = up(x) = eherem ootz k2 =272 + k2 (3.19)

It can be observed that plane surface waves correspond to plane volume waves with a com-
plex wave propagation vector k = (k,iZ,), are guided along the half-plane’s boundary,
and decrease exponentially towards its interior, hence their name. In this case there exists
no reflected field, since the waves travel along the boundary. We remark that the plane
surface waves vanish completely for classical Dirichlet (Z,, = o) or Neumann (Z,, = 0)
boundary conditions.

3.3 Green’s function

3.3.1 Problem definition

The Green’s function represents the response of the unperturbed system to a Dirac
mass. It corresponds to a function G, which depends on the wave number £, on the
impedance Z.., on a fixed source point € R2, and on an observation point y € R?.
The Green’s function is computed in the sense of distributions for the variable y in the
half-plane R? by placing at the right-hand side of the Helmholtz equation a Dirac mass dy,
centered at the point z. It is therefore a solution for the radiation problem of a point source,
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namely
( Find G(x,-) : R — C such that

AG(z,y) + K°G(z,y) = 6z(y) in D'(R%),
oG (3.20)
o (z,y) + ZooG(z,y) =0 on {y, =0},

2

|+ Outgoing radiation condition as |y| — oo.
The outgoing radiation condition, in the same way as in (3.6), is given here as |y| — oo by

C G C : In(1+ Slyl)
< 9= < = i St AV
|G| and o sz‘ if yo > 5 :

Vil ~ |yl

In(1
|G| <C and oG _ i/ZZ + k2G| < O Yy < In{ +ﬁ|y|)7
Ory | 27

for some constants C' > 0, independent of r = |y|, where 3 = 87k Z2 /(Z% + k?).

(3.21)

3.3.2 Special cases

When the Green’s function problem (3.20) is solved using either homogeneous Dirich-
let or Neumann boundary conditions, then its solution is found straightforwardly using the
method of images (cf., e.g., Morse & Feshbach 1953).

a) Homogeneous Dirichlet boundary condition

We consider in the problem (3.20) the particular case of a homogeneous Dirichlet
boundary condition, namely

G(x,y) =0,  ye{y=0} (3.22)
which corresponds to the limit case when the impedance is infinite (Z,, = o0). In this
case, the Green’s function GG can be explicitly calculated using the method of images,
since it has to be antisymmetric with respect to the axis {yo» = 0}. An additional image
source point £ = (x1, —x2), located on the lower half-plane and associated with a nega-
tive Dirac mass, is placed for this purpose just opposite to the upper half-plane’s source
point * = (z1,x2). The desired solution is then obtained by evaluating the full-plane
Green'’s function (C.23) for each Dirac mass, which yields finally

Glz,y) = —iHél)(k|y—a:|) +%Hél)(k|y—:i|). (3.23)

b) Homogeneous Neumann boundary condition

We consider in the problem (3.20) the particular case of a homogeneous Neumann
boundary condition, namely

oG
a_(wa y) - 07 yc {y2 = 0}7 (324)

Ny
which corresponds to the limit case when the impedance is zero (Z,, = 0). As in the
previous case, the method of images is again employed, but now the half-plane Green’s

function G has to be symmetric with respect to the axis {yo = 0}. Therefore, an additional
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image source point Z = (x1, —x2), located on the lower half-plane, is placed just opposite

to the upper half-plane’s source point * = (x1,z), but now associated with a positive

Dirac mass. The desired solution is then obtained by evaluating the full-plane Green’s
function (C.23) for each Dirac mass, which yields

1

Glx,y)=—7

187 (ly — ) — 5" (Hly — @) (.25)

3.3.3 Spectral Green’s function
a) Boundary-value problem

To solve (3.20) in the general case, we use a modified partial Fourier transform on the
horizontal y;-axis, taking advantage of the fact that there is no horizontal variation in the
geometry of the problem. To obtain the corresponding spectral Green’s function, we follow
the same procedure as the one performed in Durén et al. (2005a). We define the forward
Fourier transform of a function F'(z, (-, y2)) : R — C by

—~ 1 o0 .
F(& o, 9) = Ton / F(z,y)e *@==)dy,,  ¢eR, (3.26)

and its inverse by
1 RN ’
Flz,y) = \/_27/ F(&ys za) e e,y € R. (3.27)

To ensure a correct integration path for the Fourier transform and correct physical
results, the calculations have to be performed in the framework of the limiting absorption
principle, which allows to treat all the appearing integrals as Cauchy principal values. For
this purpose, we take a small dissipation parameter £ > 0 into account and consider the
problem (3.20) as the limit case when € — 0 of the dissipative problem

Find G.(z,-) : R2 — C such that

AyGE(ZE, y) + kgGa(ma Y) = 0z(y) in 'D/(Ri), (3.28)
G,
P) (wu y) + ZooGe(mv y) =0 on {yQ = O};

Yo

where k. = k + ic. This choice ensures a correct outgoing dissipative volume-wave be-
havior. In the same way as for the Laplace equation, the impedance Z., could be also
incorporated into this dissipative framework, i.e., by considering Z. = Z,, + i¢, but it is
not really necessary since the use of a dissipative wave number k. is enough to take care
of all the appearing issues. Further references for the application of this principle can be
found in Bonnet-BenDhia & Tillequin (2001), Hazard & Lenoir (1998), and Nosich (1994).

Applying thus the Fourier transform (3.26) on the system (3.28) leads to a linear second
order ordinary differential equation for the variable y,, with prescribed boundary values,
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given by

82@5 2 2\ A O(y2 — 5152)
(@ —1)a.(6) = 22 0,

We use the method of undetermined coefficients, and solve the homogeneous differ-
ential equation of the problem (3.29) respectively in the strip {y € RZ : 0 < yo < 22}
and in the half-plane {y € R? : y, > z,}. This gives a solution for G, in each domain,
as a linear combination of two independent solutions of an ordinary differential equation,
namely

a © aeVERYy L e VER Y for 0 < yo < @o, (3.30)
ceVERv e VEK Y for vy > xs. .
The unknowns a, b, ¢, and d, which depend on £ and x4, are determined through the bound-
ary condition, by imposing continuity, and by assuming an outgoing wave behavior. The
complex square root in (3.30) is defined in such a way that its real part is always positive.

b) Complex square roots

Due the application of the limiting absorption principle, the square root that appears in
the general solution (3.30) has to be understood as a complex map £ — /&2 — k2, which
is decomposed as the product between /¢ — k. and /¢ + k., and has its two analytic
branch cuts on the complex & plane defined in such a way that they do not intersect the
real axis. Further details on complex branch cuts can be found in the books of Bak &
Newman (1997) and Felsen & Marcuwitz (2003). The arguments are taken in such a way
that arg (£ — k.) € (=27, Z) for the map /€ — k., and arg ({ + k.) € (—3,2F) for the
map /€ + k.. These maps can be therefore defined by (Durén et al. 2005a)

. Lar (ke) 1 ¢ d77
V& — k.= —in/|k| 2?8 exp 3 , (3.31)
0

77—7%

and

i 1 [¢
VE+ ke = /|k.| e228%<) exp (5/ dn > (3.32)
0

n+ ke
Consequently /&2 — k2 is even and analytic in the domain shown in Figure 3.4. It can be
hence defined by

3
\/52_1@2\/ﬁ—k:g\/f—kkez—iksexp(/o nziden), (3.33)

and is characterized, for £, k € R, by

e | VE-R g2k
£2 - k2 = { _i\/m’ o (3.34)
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—ket Re{c}

FIGURE 3.4. Analytic branch cuts of the complex map /&2 — k2.

We remark that if { € R, then arg(§ — k.) € (—m,0) and arg(§ + k) € (0, 7). This
proceeds from the fact that arg(k.) € (0, ), since by the limiting absorption principle it

holds that Jm{k.} = ¢ > 0. Thus arg (v& —k.) € (-%,0), arg (VE+k.) € (0,3),
and arg (\ /€2 — kg) € (=5, %). Hence, the real part of the complex map /&§? — k2 for

real { is strictly positive, i.e., Re {\/ €2 — kg} > (. Therefore the function e~ V&~ jg
even and exponentially decreasing as y, — o0.

c¢) Spectral Green’s function with dissipation

Now, thanks to (3.30), the computation of @a is straightforward. From the boundary
condition of (3.29) a relation for the coefficients a and b can be derived, which is given by

0 (Zoe + V@ R2) 41 (2o = VE—RZ) =0 (3.35)
On the other hand, since the solution (3.30) has to be bounded at infinity as yo — oo, and
since Re {\ /E2 — k?} > 0, it follows then necessarily that

c=0. (3.36)
To ensure the continuity of the Green’s function at the point y, = o, it is needed that
d=aeV& M2 4y, (3.37)
Using relations (3.35), (3.36), and (3.37) in (3.30), we obtain the expression
R 2 2
G.(&) = aeVEH [ VR a2l _ (Z +v 52 Re ) o-vETR e | (338)
VA

The remaining unknown coefficient a is determined by replacing (3.38) in the differential
equation of (3.29), taking the derivatives in the sense of distributions, particularly

O f{ervERmnil - /TR sign(ys — za) e VER (330)

3 Yo
and

0
8—y2{sign(y2 —I2)} =20(y2 — x2). (3.40)
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So, the second derivative of (3.38) becomes

=
’ G; (6) =aevetin [<52 — k2 e VETRE Tl 9\ /e2 — k2 5(ys — 1)

y3
(z ' m) ) F<>] G4
Zoo —/EE— K2 )

This way, from (3.38) and (3.41) in the first equation of (3.29), we obtain that

e~ VK2 z2
4= — ) (3.42)

Finally, the spectral Green’s function CAJE with dissipation € is given by

o~ V/E k2 y2— x2| Zoo+/E—R2\ e VE2 k2 (yata2) 343
e \new) wee o0

d) Analysis of singularities

@a(f; Y2, $2)

To obtain the spectral Green’s function G without dissipation, the limit £ — 0 has to
be taken in (3.43). This can be done directly wherever the limit is regular and continuous
on . Singular points, on the other hand, have to be analyzed carefully to fulfill correctly
the limiting absorption principle. Thus we study first the singularities of the limit function
before applying this principle, i.e., considering just € = 0, in which case we have

o © e~V &k y2— xz\ Zoo + /€2 — k2 VE k2 (ya+a2)
= (3.44)

ol \/87n/52 P\ z.— oo \/87\/52 e

Possible singularities for (3.44) may only appear when |§| = k or when [¢| = &, being

& =V2Z 2+ k2,1i.e., when the denominator of the fractions is zero. Otherwise the function
is regular and continuous.

For £ = k and £ = —F the function (3.44) is continuous. This can be seen by writing
it, analogously as in Durdn, Muga & Nédélec (2006), in the form
A H(g(6))
Go(€) = ——2, (3.45)
T
where
9(&) = V& — k2, (3.46)
and . p 5
+
H(B) = —=— [ —ePlemml 22 & eﬁ@?*m)), € C. 3.47

Since H(3) is an analytic function in 8 = 0, since H(0) = 0, and since

& H(g(&)—H(0)
gl_lgclk Go(§) = gl—lgclk g(¢)

= H'(0), (3.48)
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we can easily obtain that

~ 1 1
lim G =—— 14+ — 4 |ys — 22| — + xz9) |, 3.49
Eth 0(5) \/8_7T ( 7 |y2 2| (y2 2)> ( )
being thus @0 bounded and continuous on ¢ = k and £ = —k.

For { = ¢, and & = —¢,, where §, = \/Z2 + k2, the function (3.44) presents two
simple poles, whose residues are characterized by

~ Z
Jm (EF &) Gol() = V.3

To analyze the effect of these singularities, we have to study the computation of the inverse
Fourier transform of

g Zoo(v2tu2) (3.50)

~ Z 1 1
G — X o~ Zoo(y2+2) — .

which has to be done in the frame of the limiting absorption principle to obtain the correct
physical results, i.e., the inverse Fourier transform has to be understood in the sense of

Z, ° 1 1 ,
Gp(z,y) = lim{ 2 g Zeolate) / ( — ) e@“yl“)dé}, (3.52)
PE V)= 05 o, e \EHE £ 6
where now &, = \/Z2 + k2, which is such that Jm{&,} > 0.

To perform correctly the computation of (3.52), we apply the residue theorem of com-
plex analysis (cf., e.g., Arfken & Weber 2005, Bak & Newman 1997, Dettman 1984) on
the complex meromorphic mapping

1 1 )
F(&) = — #lyr=21) 3.53

which admits two simple poles at &, and —¢,, where Jm{{,} > 0. We already did this
computation for the Laplace equation and obtained the expression (2.59), namely

/ h F(€)dé = —i2metteli—mil, (y1 — 1) € R. (3.54)

[e.9]

Using (3.54) for §, = \/Z2 + k? yields that the inverse Fourier transform of (3.51),
when considering the limiting absorption principle, is given by

Gﬁ(a;’ y) = ——= o~ Zoo (Y2 ta2) pibplyr—a1| (3.55)
We observe that this expression describes the asymptotic behavior of the surface waves,

which are linked to the presence of the poles in the spectral Green’s function.

If the limiting absorption principle is not considered, i.e., if Jm{{,} = 0, then the
inverse Fourier transform of (3.51) could be again computed in the sense of the principal
value with the residue theorem. In this case we would obtain, instead of (3.54) and just as
the expression (2.61) for the Laplace equation, the quantity

/ F(§)d¢ = 2msin(&lyr — 21]), (y1 —x1) €R (3.56)

(e 9]
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The inverse Fourier transform of (3.51) would be in this case

Loo )
GHl(z,y) = = e~ Zeelvte) gin (&, [yr — 11]), (3.57)
D

which is correct from the mathematical point of view, but yields only a standing surface
wave, and not a desired outgoing progressive surface wave as in (3.55).

The effect of the limiting absorption principle, in the spatial dimension, is then given
by the difference between (3.55) and (3.57), i.e., by

iZs i
Cola,y) = Gh(w.y) — G (wy) = — = 0 cos(g oy —m). B.59)
D

whose Fourier transform, and therefore the spectral effect, is given by

GL(€) = GE(e) - Gh(¢) = - ? \Fezw vt [§(¢ — &)+ 3(E+E)].  (3.59)
D

e) Spectral Green’s function without dissipation

The spectral Green’s function G without dissipation is therefore obtained by taking the
limit ¢ — 0 in (3.43) and considering the effect of the limiting absorption principle for the
appearing singularities, summarized in (3.59). Thus we obtain in the sense of distributions

o~ V€22 [y2—22] N Zoo +/E -\ € ek (ko)
Forve—E \ oo veE) Veve=r

Zf \f e P [5(E — £,) +0(E+6,)). (5-60)

For our further analysis, this spectral Green’s function is decomposed into four terms
according to

@(5;92,962) =

G =Gy +Gp+ G+ G, (3.61)
where

o~V ly2 2]

CoolE:2,72) = ——= N (3.62)
N e~ V& -k (y2+w2)
GD(§§y2>$2) (3.63)

\/g /62 L2’

@L(f;yg,ma)z—f“\/;e‘zw wtr) (56— &)+ 6(E+ &), (3.64)

e~V -k (y2+w2)
Vor (2o - V@)

Gr(&: 2, 12) = (3.65)
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3.3.4 Spatial Green’s function
a) Spatial Green’s function as an inverse Fourier transform

The desired spatial Green’s function is then given by the inverse Fourier transform of
the spectral Green’s function (3.60), namely by

1 00 o=/ E2—k? [y2—a2|
Cdm | /€2 — |2
0o —\/E2—k2 x
1 (Zoo N/ k2> o~ V/E—R (o) et g

G(z,y) = eiﬁ(ylfrrl)dé

AT J_ oo \ Zoo — /€2 — K2 /€2 — |2
7
_ Z€—°° e 7 te2) o (g, (1 — 1)), (3.66)
'Y

Due the linearity of the Fourier transform, the decomposition (3.61) applies also in the
spatial domain, i.e., the spatial Green’s function is decomposed in the same manner by

G = Gx + Gp + G, + Gk. (3.67)

b) Term of the full-plane Green’s function

The first term in (3.66) corresponds to the inverse Fourier transform of (3.62), and is

given by
1 [ e~ VEF yz—a2|

Goo(way> = _E - \/m

The value for this integral can be derived either from Magnus & Oberhettinger (1954,
page 33 or 118), from Gradshteyn & Ryzhik (2007, equations 3.914—4 or 6.616-3), or
from Bateman (1954, equation 1.13-59), and yields the result that

1 00 o=/ E2—k? [y2—a2|
A - /€2 — |2 €
being Hél) the zeroth order Hankel function of the first kind (vid. Subsection A.2.4). This
way, the inverse Fourier transform of (3.62) is readily given by
1
Goo ) =~
(®,y) =~

We observe that (3.70) is, in fact, the full-plane Green’s function of the Helmholtz equation.
Thus Gp + Gy, + Gr represents the perturbation of the full-plane Green’s function G, due
the presence of the impedance half-plane.

ez qe, (3.68)

?

i€(y1—=1) dé = —
4

HY (kly —z[),  (3.69)
HY (kly — ). (3.70)

¢) Term associated with a Dirichlet boundary condition

The inverse Fourier transform of (3.63) is computed in the same manner as the term G,

It is given by
1 00 o=V E2—k? (y2+u2)

GD(fB,y):E . Ve R

et g, (3.71)
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and in this case, instead of (3.69), we consider the relation
e~ V&K (y2tw2) i

- &y —z1) dé = -

A J_oo A2 — K2 4

where £ = (x1, —x2) corresponds to the image point of @ in the lower half-plane. The
inverse Fourier transform of (3.63) is therefore given by

i _
Gplz,y) = ZHél) (kly — 2|), (3.73)
which represents the additional term that appears in the Green’s function due the method
of images when considering a Dirichlet boundary condition, as in (3.23).

Hg (kly — @), (3.72)

d) Term associated with the limiting absorption principle

The term G, the inverse Fourier transform of (3.64), is associated with the effect of
the limiting absorption principle on the Green’s function, and has been already calculated
in (3.58). It is given by
140
GL(mv y) = =
&

e~ Zoewat2) cos (&, (y1 — x1)). (3.74)

e) Remaining term

The remaining term Gp, the inverse Fourier transform of (3.65), can be computed as
the integral

1 [ o~ VEK (atzz)
Gr(@,y) = o / SRy efi—a) g (3.75)
To simplify the notation, we define
v =Y — T and Vg = Yo + To, (3.76)
and we consider
Gr(x,y) = e 2"2Gp(v1, va), 3.77)

where

Gp(v, 1) = e de. (3.78)

eZooUQ o0 e*\/é.ka‘Z v2
27T /—oo Zoo - 52 - ka
From the derivative of (3 72) with respect to yz we obtain that

e Vet de = T H) (Kly — @)

47r (3.79)

Due (3.79), we have for the y»-derivative of GB that
oG ZOOUQ Zoov2
5 / Ve R gitn e H“ (kly — &) 25— (3.80)
dys ly — |
The value of the inverse Fourier transform (3.75) can be thus obtained by means of the
primitive with respect to ¥, of (3.80), i.e.,

Cutwns) = oo [ ()

Iy z|

( 171)2

(3.81)

Zoon
ne
e dn.
VU7 1)
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The expression (3.81) contains an integral with an unbounded lower limit, but even so, due
the exponential decrease of its integrand, it could be adapted to be well suited for numerical
evaluation, as is done, e.g., in Chapter V. Its advantage lies in the fact that it expresses
intuitively the term G as a primitive of known functions. We observe that further related
expressions can be obtained through integration by parts, e.g.,

Z,

Gr(z,y) = —%HO(I) (kly — x|) + ZTOO e doov / H (k\/vf + 7}2) eZ=ndn. (3.82)

Formulae of this kind seem to be absent in the literature, but they resemble in their structure
the expressions described in Ochmann (2004) and Ochmann & Brick (2008) for the three-
dimensional case.

In Hein (2006, 2007) and Duran, Hein & Nédélec (2007b), the remaining term Gg was
computed numerically by using an inverse fast Fourier transform (IFFT) for the expres-
sion (3.75). In our case, due parity, we can consider the equivalent expression

N
GR(w7y):_/o 7 52_[{:

m
which can be likewise treated by using numerical integration. In both cases, the involved
integrals become divergent when v, < 0. We note that the expression (3.83) has the ad-
vantage of requiring only half as many values as the one considered for the IFFT. It can
be also observed that (3.75) and (3.83) are slowly decreasing when vy = 0 and decrease
exponentially when vy > 0.

- cos(&wy) d¢, (3.83)

To obtain an expression that is practical for numerical computation and which holds
for all v € R, similarly as in Pidcock (1985), we can separate (3.81) according to

n

: V2 Z
= o7 k[ g (ko) e
Gr(m,y) = e <G3<v1,0>+2 /0 H" (ky/oF+7) v%—i—nzdn)’ (3.84)

where

Gp(v1,0) = % /O 0 ?% de. (3.85)

The expression (3.84) is valid for any v, € R and it can be computed numerically without
difficulty since the integration limits are bounded.

It remains to be discussed how to compute effectively (3.83) and (3.85), which re-
quires to isolate the poles of the spectral Green’s function and to treat adequately the slow
decrease at infinity when v, = 0. When the impedance is comparatively bigger than the
wave number, i.e., when |Z,,| > |k|, then both goals can be obtained simultaneously by
considering the fact that

oo /oo e~ Feotualty Zo _g ‘
— —  cos(&vy ) d€ = e w”Q{eZ&’”l Ei(Z vy — i&yv
ﬂ_fp 0 gp _6 ( 1) 2/]_{_5]) ( 2 D 1)

b e B (7,0, + prvl)}. (3.86)
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which is computed analogously as done for the Laplace equation in (2.93). The expression
in the left-hand side of (3.86) contains completely the behavior of the poles in the spectral
domain and includes most of the slow decrease at infinity, which improves as |Z..,| — oc.
As a consequence, (3.83) can be computed more effectively as

- 1 00 e~V £2—k2 vy Zoo 6_2005”2/517 ( )d€
T, y) =~ —— —— | cos(&v
r(z,y) 7T/O - Ve & &—¢ Sor
Z : :
+ —27:5 e*Zw”'Z{elip”l Bi(Zsova — i&u1) + e " Ei(Zoovs + iépvl)}7 (3.87)
P

where Ei denotes the exponential integral function (vid. Subsection A.2.3). The integral
in (3.87) is computed numerically. When the impedance is smaller than the wave number,
i.e., when |Z,| < |k|, then the expression inside the integral in (3.87) does no longer
behave so well numerically and it becomes more convenient to remove the poles and the
slow decrease independently. For the poles, as computed in (2.59), it holds that

2 zos [T OSEN) g e s it (3.88)

@ 0 fﬁ —& &p
When £ is near the real axis, then for the slow decrease at infinity it holds that
1 00 o=/ £2+4k2 vy

;o \/m 5711 d§ =

where K denotes the modified Bessel function of the second kind of order zero (vid. Sub-
section A.2.5). Hence, when |Z,| < |k| and arg(k) < m/4, then (3.83) can be computed
more effectively as

1
;Hgn (ikly = &)) = ~Ko(kly - 2[),  (3.89)

1 0 e—\/f2——k2v2 2ZOO€—Zoov2 e—\/§2+—k2vz
A e Ja ) e
o) P
"
—Zg e~ v ’5P‘”1|+2H (ikly — ). (3.90)
D

When £ is near the imaginary axis, then instead of (3.89) it is better to consider for the slow
decrease at infinity the expression

| 0 o—v/EREu ;
- cos(€vy) d¢ = §H§> (kly — &), (3.91)

WO\/i

Now, when |Z| < |k| and arg(k) > 7/4, then (3.83) is computed more effectively as

1 o0 67\/627_162’02 2Zooe—Zoov2 67\/@’02 q
Gr(z,y) = ;/0 7o — e - e - T cos(§vy) d§
s e~ Zoov2gibplut| 4 2 H (k|y — ). (3.92)
&p 2

The expressions (3.87), (3.90), and (3.92) are likewise valid when v, = 0, which allows to
evaluate the term G in (3.85).
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f) Complete spatial Green’s function

The desired complete spatial Green’s function is finally obtained, as stated in (3.67),
by adding the terms (3.70), (3.73), (3.74), and (3.81). It can be appreciated graphically in
Figures 3.5 & 3.6 for k = 1.2, Z, = 1, and = (0, 2), and it is given explicitly by
1450

i i . s
Gla.y) == 7Ho" (kly — al) + 11" (kly — @) = == e cos(gu1)
p
FELES A / C o (k\/UQ n 772) UL (3.93)
2 o 1 1 /—U% + 172 Y

where we use the notation (3.76). The integral in (3.93) can be computed either as (3.83)
or as (3.84), depending on wether vo > 0 or v, < 0. The involved Fourier integrals of the
remaining term Gy are computed according to the expressions (3.87), (3.90), and (3.92).

(a) Real part (b) Imaginary part

FIGURE 3.5. Contour plot of the complete spatial Green’s function.
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(a) Real part (b) Imaginary part

FIGURE 3.6. Oblique view of the complete spatial Green’s function.

82



For the derivative of the Green’s function with respect to the y,-variable, it holds that

oG ik 1) ) ik (1) _ (%]
— I\, = — kly —x + — kly—x —
3y2( Y) 1 ( ly |) H, ( Y D]y— |

ly—x[ 4
iz: iKZoo 5 . 7
20 e Zee os(E vy ) — 5 € oo 2/_00 (k\/v1+77) \/7

dn. (3.94
3 n.(3.94)

The integral in (3.94) is computed the same way as in (3.93). The derivative with respect
to the y;-variable, on the other hand, is given by
oG ik 1) Zk
oy ) = T (K — al) o - =

k U2
+ i Z e P2 gin(Euy) + % —Zoovz / H(l) (k:« /02 4+ ) S + - Zoom dp

+ % e Fr / HY (k:\/vl +1 ) 13 5 €7 dn. (3.95)

v—l—n

H (kly — wl)

The integrals in (3.95) are related with the remaining term G and are computed respec-
tively as the y;-derivative of (3.84), (3.87), (3.90), and (3.92), e.g., the y;-derivative of the
Fourier integral (3.83) becomes

GGR 1 & ée* V §—k? vz .
a—yl(a:,y) = _;/o Z. —Je sin(&wy) d€. (3.96)

The other cases are modified analogously.
3.3.5 Extension and properties

The half-plane Green’s function can be extended in a locally analytic way towards
the full-plane R? in a straightforward and natural manner, just by considering the expres-
sion (3.93) valid for all x,y € R?, instead of just for R%. This extension possesses two
singularities of logarithmic type at the points « and &, and is continuous otherwise. The
behavior of these singularities is characterized by

1

1
Glay)~ - lly—al,  y—= (3.98)

For the y;-derivative there appears a jump across the half-line T = {y; = z1,y2 < —x2},

due the effect of the analytic branch cut of the exponential integral functions, shown in
Figure 3.7. We denote this jump by

oG oG oG

J(x,y) = lim { }— lim {—}:—

y1—>m1 8y1 Yy1—r] ayl ayf_

9

- — (3.99)
Yy1=71 ayl

Yy1=21

This jump across T is the same as for the Laplace equation in (2.104), since the involved
singularities are the same, i.e., it has a value of

J(x,y) = 2Z e Zelvaten) (3.100)
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FIGURE 3.7. Domain of the extended Green’s function.

We remark that the Green’s function (3.93) itself and its y,-derivative are continuous across
the half-line Y.

As long as x5 # 0, it is clear that the impedance boundary condition in (3.20) continues
to be homogeneous. Nonetheless, if the source point & lies on the half-plane’s boundary,
1e., if zo = 0, then the boundary condition ceases to be homogeneous in the sense of
distributions. This can be deduced from the expression (3.66) by verifying that

. oG
lim {_((5517 0),y) + ZG ((21,0), y)} = 0z, (Y1)- (3.101)
y2—0+ | Oya
Since the impedance boundary condition holds only on {y, = 0}, therefore the right-hand
side of (3.101) can be also expressed by
1 1

Oy (Y1) = §5w(y) + 55@(24), (3.102)
which illustrates more clearly the contribution of each logarithmic singularity to the Dirac
mass in the boundary condition.

It can be seen now that the Green’s function extended in the abovementioned way
satisfies, for € R?, in the sense of distributions, and instead of (3.20), the problem

Find G(z, -) : R? — C such that

AG(z,y) + K*G(z,y) = 0:(y) + 0a(y) + J(z,y)or(y) in D'(R?),

(3.103)

oG 1 1
50, (B Y) + ZeG(@,y) = S02(y) + 50a(y) on {y» =0},
Y2 2 2

+ Outgoing radiation condition for y € R as |y| — oo,

\
where dy denotes a Dirac mass distribution along the Y-curve. We retrieve thus the known
result that for an impedance boundary condition the image of a point source is a point
source plus a half-line of sources with exponentially increasing strengths in the lower half-
plane, and which extends from the image point source towards infinity along the half-
plane’s normal direction (cf. Keller 1979, who refers to decreasing strengths when dealing
with the opposite half-plane).

We note that the half-plane Green’s function (3.93) is symmetric in the sense that

Glx,y)=G(y.x) Va,yecR? (3.104)
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and it fulfills similarly
V,G(z,y) = V,G(y, x) and VoG(x,y) = VuG(y, x). (3.105)

Another property is that we retrieve the special case (3.23) of a homogenous Dirichlet
boundary condition in R% when Z., — oo. Likewise, we retrieve the special case (3.25) of
a homogenous Neumann boundary condition in RZ when Z,, — 0, except for an additive
constant due the extra term (3.74) that can be disregarded.

At last, we observe that the expression for the Green’s function (3.93) is still valid if
a complex wave number k£ € C, such that Jm{k} > 0 and Re{k} > 0, and a complex
impedance Z., € C, such that Im{Z,} > 0 and Re{Z, } > 0, are used, which holds also
for its derivatives. The logarithms, though, have to be interpreted analogously as in (2.111)
and (2.112) to avoid an undesired behavior in the lower half-plane, i.e., as

In(Zoova — i&u1) = In(vs — 01,/ Z0s) + In(Zs), (3.106)
In(Zoov + i&pv1) = In(vy + 1118/ Zoo) + In(Zso), (3.107)

where the principal value is considered for the logarithms on the right-hand side.

3.4 Far field of the Green’s function

3.4.1 Decomposition of the far field

The far field of the Green’s function, which we denote by G/, describes its asymptotic
behavior at infinity, i.e., when |x| — oo and assuming that y is fixed. For this purpose, the
terms of highest order at infinity are searched. Likewise as done for the radiation condition,
the far field can be decomposed into two parts, each acting on a different region as shown
in Figure 3.2. The first part, denoted by G{,f, is linked with the volume waves, and acts in
the interior of the half-plane while vanishing near its boundary. The second part, denoted
by Ggf , s associated with surface waves that propagate along the boundary towards infinity,
which decay exponentially towards the half-plane’s interior. We have thus that

G =acll +c¥ (3.108)

3.4.2 Volume waves in the far field

The volume waves in the far field act only in the interior of the half-plane and are
related to the terms of the Hankel functions in (3.93), and also to the asymptotic behavior
as ro — oo of the regular part. The behavior of the volume waves can be obtained by apply-
ing the stationary phase technique on the integrals in (3.66), as performed by Durdn, Muga
& Nédélec (20054, 2006). This technique gives an expression for the leading asymptotic
behavior of highly oscillating integrals in the form of

b
I\ = / f(s)e?® ds, (3.109)

as A — oo along the positive real axis, where ¢(s) is a regular real function, where | f(s)|
is integrable, and where the real integration limits ¢ and b may be unbounded. Further
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references on the stationary phase technique are Bender & Orszag (1978), Dettman (1984),
Evans (1998), and Watson (1944). Integrals in the form of (3.109) are called generalized
Fourier integrals. They tend towards zero very rapidly with A, except at the so-called
stationary points for which the derivative of the phase becomes zero, where the integrand
vanishes less rapidly. If s, is such a stationary point, i.e., if ¢'(s¢) = 0, and if ¢"(s¢) > 0,
then the main asymptotic contribution of the integral (3.109) is given by

27
A‘b/,(SO)

Moreover, the residue is uniformly bounded by CA=3/2 for some constant C' > 0 if the
point s is not an end-point of the integration domain.

I(\) ~ eim/4 f(sg)erets0), (3.110)

The asymptotic behavior of the volume waves is related with the terms in (3.66) which
do not decrease exponentially as xy — o0, i.e., with the integral terms for which /&2 — k?
is purely imaginary, which occurs when |¢| < k. Hence, as x5 — oo it holds that

1 \/52 k2 |za—yo|
AT Jigew /€2 — K2
1 Zoo /€2 _ |2 52 k2 (z2t+y2)
+ = ( Ve ) e ®@-yge.  (3.111)
€| <k

4m oo — \/E* — k2 £ — k?
By using the change of variable ¢ = —k cos v, for 0 < ¢ < 7, we obtain that

v 7 Loo —tksiny o, ,
G ~ —1 o) 2iky2 sin zk:\m—y\cos(z/}—a)d 3.112
(@) 47 /0 ( + Zoo + ik sine ¢ c ¥ ( )

G(a:’y) ~ — —lf(ﬂﬁl—yl)dg

where « is such that

— and sina = _ y2.
|z — y| T — y|

The phase ¢(¢) = k cos(¢) — «) has only one stationary point, namely ¢) = «, which lies
inside the interval (0, 7). Hence, from (3.110) we obtain that

eir/4 giklz—yl < 7o —iksina o, .
Glx,y) ~ . R Sma>, (3.114)
(@,y) V8rk \/|x — y| Zoo + ik sin «

Due the asymptotic behavior (A.139) of the Hankel function /, (U it holds that

cosa =

(3.113)

. 2 eiklm_y‘
HY (k@ — y|) ~ e /4 | (3.115)
( ) LURVAEREY]
. 9 iklz—l|
HY (k| — g|) ~ e/ ° (3.116)

m /lz — gl
as |x| — oo, where § = (y1, —y2). Since |x — y| ~ |x — y| as 25 — oo, this implies that
the asymptotic behavior (3.114) can be equivalently stated as

[ Zoo — ik Sina (1) _
——H klx — ——— |Hy  (k|lx — . 3.117
Glay) ~ 41 (Mo —y) + (e ) (e —g). (17
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By performing Taylor expansions, as in (C.37) and (C.38), we have that

¢ — & ikya/lal (1 e) (—)) , (3.118)
Vie—yl V|

||
ik|lz—y| ik|x| e
€ _ L __ -ikwal/al (1 +0 (i)) (3.119)
Vie—gl izl ||
We express the point @ as @ = |x| &, being & = (cosf,sinf) a unitary vector. Similar
Taylor expansions as before yield that
Zo —itksina  Zo, —iksinf 1
= === 1+01—) ). 3.120
Zoo + tksina ZooJriksinQ( N <|:c|>) ( )

The volume-wave behavior of the Green’s function, from (3.114) and due (3.118), (3.119),
and (3.120), becomes thus

€ € 1k sin
fo — —ik&-y -1 oo MBSV 2ikys sind 3121
V(ili,y) Rk —|:13| e + Zoo+iksin96 , ( )
and its gradient with respect to y is given by
VyG(/f(ZB, y) = e /4 * el —ik&y (_a} + Ze — thsind 2ikys sin 6 { cos 0 })

81 /|| ¢ Lo + 1k sin 6 —sin(@3 )

3.4.3 Surface waves in the far field

An expression for the surface waves in the far field can be obtained by studying the
residues of the poles of the spectral Green’s function, which determine entirely their as-
ymptotic behavior. We already computed the inverse Fourier transform of these residues
in (3.55), using the residue theorem of Cauchy and the limiting absorption principle. This
implies that the Green’s function behaves asymptotically, when |z;| — o0, as

" |
Gz, y) ~ —=2 : e Zoo(@atu2) gifple1—un| (3.123)
p

where ¢, = /Z2 + k2. More detailed computations can be found in Durdn, Muga &
Nédélec (2005a, 2006). Similarly as in (C.36), we can use Taylor expansions to obtain

. 1
|zy — y1| = |z1| — y1signay + O(W) (3.124)
1
Therefore, as for (C.38), we have that
cilplri—uil — pibplai] —igpyr signa (1 + 0O (L)> . (3.125)
|21
The surface-wave behavior of the Green’s function, due (3.123) and (3.125), becomes thus
oo . , .
Ggf(a:, y) = —Zg— e~ Zoom2 pilplil o= Zooyz o mibpyr sign a1 (3.126)
P
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and its gradient with respect to y is given by

Vngf (x,y) = _Z;’o e~ Lo piplT1] o= Zooy2 p—i€py1 sign x1 &p Si.gn T . (3.127)
gp —ZZOO
3.4.4 Complete far field of the Green’s function

On the whole, the asymptotic behavior of the Green’s function as || — oo can be
characterized through the addition of (3.117) and (3.123), namely
1 1) 1 Zoo — ik sin o (1) _
G ~ — —H" (k|lz — |\ —————F |Hy (k| —
@) ~ = 1 (= ) + 5 (Y Y o~ )
(VA
&p
Consequently, the complete far field of the Green’s function, due (3.108), is given by the
addition of (3.121) and (3.126), i.e., by

/4 ik AP

¢~ oo (@aty2) ilplz1—y1| (3.128)

——c
V8rk \/|x| Zoo + ik sin 6
_ Z.?OO eonoxzeiﬁplxl\eonoygefiﬁpyl signz (3.129)
D

Its derivative with respect to y is likewise given by the addition of (3.122) and (3.127).

It is this far field (3.129) that justifies the radiation condition (3.21) when exchang-
ing the roles of  and y. When the first term in (3.129) dominates, i.e., the volume
waves (3.121), then it is the first expression in (3.21) that matters. Conversely, when the
second term in (3.129) dominates, i.e., the surface waves (3.126), then the second expres-
sion in (3.21) is the one that holds. The interface between both asymptotic behaviors can
be determined by equating the amplitudes of the two terms in (3.129), i.e., by searching
values of « at infinity such that

1  Zo

VErkla] &

where the values of y can be neglected, since they remain relatively near the origin. By

taking the logarithm in (3.130) and perturbing somewhat the result so as to avoid a singular
behavior at the origin, we obtain finally that this interface is described by

1 8rkZ2

e FooT2, (3.130)

We remark that the asymptotic behavior (3.128) of the Green’s function and the expres-
sion (3.129) of its complete far field do no longer hold if a complex impedance 7., € C
such that Jm{Z..} > 0and Re{Z,,} > 0is used, specifically the parts (3.123) and (3.126)
linked with the surface waves. A careful inspection shows that in this case the surface-wave
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behavior of the Green’s function, as |z;| — oo, decreases exponentially and is given by

_z'?)o e~ Zl@atu) gibolor=nl i (7, 4 gp) > 0,
Cloy) ~ 'Zp (3.132)
10 g Zalartm) il f (3, 4 y) < 0.
&p
Therefore the surface-wave part of the far field can be now expressed as
_iZOO ef|Zoo|w2€i5p|11|€7|Z°°|yzeiigpyl signz1 if Ty > 0’
G (z,y) = ép o
¢ §°° = Zoo2 pibp|71| o= Zooy2 o —ibpy1 signa: if zy <0.
P

The volume-waves part (3.117) and its far-field expression (3.121), on the other hand, re-
main the same when we use a complex impedance. We remark further that if a complex
impedance or a complex wave number are taken into account, then the part of the surface
waves of the outgoing radiation condition is redundant, and only the volume-waves part is
required, i.e., only the first two expressions in (3.21), but now holding for y, > 0.

3.5 Numerical evaluation of the Green’s function

For the numerical evaluation of the Green’s function, we separate the plane R? into
three regions: an upper near field, a lower near field, and a far field. The near field is given
by the region |k| |v| < 24 and the far field encompasses |k| |v| > 24, being v = y — Z.

The upper near field considers v, > 0 and the lower near field v, < 0. In the upper
near field, when |Z,,| > |k| and 2|{,| > |Z|, the Green’s function is computed by using
the expression (3.87). The second condition is required, since the spectral part of (3.87)
becomes slowly decreasing when |,| is very small compared with |Z|, i.e., in the case
when Z., ~ ik. When |Z,| < |k| or when 2|{,| < |Z|, the Green’s function is eval-
uated in the upper near field using (3.90) and (3.92), depending on wether arg(k) < 7 /4
or arg(k) > m/4, respectively. In the lower near field, on the other hand, we use the expres-
sion (3.84) to compute the Green’s function, where the term Gg is computed analogously
as the Green’s function in the upper near field, but considering vo = 0. The numerical in-
tegration of the Fourier integrals is performed by means of a trapezoidal rule, discretizing
the spectral variable £ into §; = jAE for j = 0,..., M, where
27 |k|
1224
taking thus at least 12 samples per oscillation and increasing the size of the integration
interval as v, approaches to zero. This discretization contains all the relevant information
for an accurate numerical integration.

AE = and &y = MAE ~ |k (2 + 86—4v2‘2w‘/|kl>, (3.134)

In the far field, the Green’s function can be computed either by using (3.128) or by con-
sidering the exponential integral functions for the surface-wave terms, i.e., by considering
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that as |x| — oo it holds that

i) 1 [ oo —iksina
G ~ ——H;’ (klx — A\ e
(z,y) 7o (klz —yl) + <Zoo+ik:sinoz

. )Hé” (Ml —5])

Zoo ; : ; .
+ — e_Zw”Q{elgpvl Ei(Zoovy — i&u1) + e " Ei(Z vy + zfpvl)}
2méy,
7.
- 25 =22 cos(E,01). (3.135)
P

The Bessel functions can be evaluated either by using the software based on the tech-
nical report by Morris (1993) or the subroutines described in Amos (1986, 1995). The
exponential integral function for complex arguments can be computed by using the algo-
rithm developed by Amos (1980, 1990a,b) or the software based on the technical report
by Morris (1993), taking care with the definition of the analytic branch cuts. Further ref-
erences are listed in Lozier & Olver (1994). The biggest numerical error, excepting the
singularity-distribution along the half-line T, is committed near the boundaries of the three
described regions, and is more or less of order 6 |k| / | Z4| - 1073,

3.6 Integral representation and equation

3.6.1 Integral representation

We are interested in expressing the solution u of the direct scattering problem (3.13) by
means of an integral representation formula over the perturbed portion of the boundary I',,.
For this purpose, we extend this solution by zero towards the complementary domain §2,,
analogously as done in (C.107). We define by {2y . the domain (2, without the ball B, of
radius € > 0 centered at the point * € ()., and truncated at infinity by the ball By of
radius R > 0 centered at the origin. We consider that the ball B. is entirely contained
in €).. Therefore, as shown in Figure 3.8, we have that

Qre = (Qe N Bg) \ Be, (3.136)
where
Br={y €¢R*: |y| < R} and B.={yeQ. :|ly—z|<e}. (3.137)
We consider similarly, inside €., the boundaries of the balls
St={yeR:: |y =R} and Se={yeQ.: |ly—xz|=¢}. (3.138)

We separate furthermore the boundary as I' = Iy U [y, where

[h={yel: y =0} and Iy ={yel: y, >0} (3.139)
The boundary I is likewise truncated at infinity by the ball Br, namely
I =TNBr=T7Ul, =TEUT, (3.140)
where
I=T,NnBg and ' =T, N Bg. (3.141)
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The idea is to retrieve the domain (), and the boundary I at the end when the limits R — oo
and ¢ — 0 are taken for the truncated domain (25 . and the truncated boundary I's.

FIGURE 3.8. Truncated domain Q)p . for & € ().

We apply now Green'’s second integral theorem (A.613) to the functions v and G(x, -)
in the bounded domain 2 ., by subtracting their respective Helmholtz equations, yielding

0= [ (uw)2Gle.y) - Gl y)duly)dy

- (5w - 6@ n G ) s
- [ (5w - e fiw ) o)
+ /FR (u(y)g—i(w,y) —G(z y)%@)) dy(y). (3.142)

The integral on S can be rewritten as

/S}% {u(y) (g—i(m,y) — @ZOOG(%y)) - G(z,y) (%(y) - izoou(y)ﬂ dy(y)

- é ) (5 (w9~ ikGle.w) ) = Glay) () = thaly) )| i), G143

which for R large enough and due the radiation condition (3.6) tends to zero, since

[ (5w - WATEG@y o) < Gur. G
S2 Ty R
g G(x,vy) (%(y) — i/ Z2 + k2 u(y)) dy(y)| < %lnR, (3.145)
and |
oG . C
/S S (a—%@,y) —sz(w,m) )| <= (3.146)
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C
< — 3.147
<75 ( )

for some constants C' > 0. If the function u is regular enough in the ball B., then the
second term of the integral on S in (3.142), when ¢ — 0 and due (3.97), is bounded by

du ou
- < —_—
/S Gz, y) 5 (y) dv(y)’ < Celne sup |57(y)

for some constant C' > 0 and tends to zero. The regularity of u can be specified afterwards
once the integral representation has been determined and generalized by means of density
arguments. The first integral term on S, can be decomposed as

/S u<y>§—i<w,y> ity) = ufa) | g—g@,w d(y)

/Sé G(z,y) (%(y) - z’ku(y)> d(y)

: (3.148)

Se
0G
+ | 5o (@ y)(uly) - u(@)) di(y), (3.149)
S Oy
For the first term in the right-hand side of (3.149), by considering (3.97) we have that
0G
| Gmvam — 1 (3.150)
while the second term is bounded by
oG
[ (6t~ ) 32 ) )| < sup o) — )], sy
e Ty yeB:

which tends towards zero when ¢ — 0. Finally, due the impedance boundary condi-
tion (3.4) and since the support of f, vanishes on I, the term on I' in (3.142) can be
decomposed as

/F(a—G(az,y)—Z(y)G(w,y)) wy)dy(y) + [ Gx,y)f(y) dy(y)

Ony T,

oG

- . (5o @)+ 2uGlew) ) ) dr(w) (3.152)

where the integral on I'? vanishes due the impedance boundary condition in (3.20). There-
fore this term does not depend on R and has its support only on the bounded and perturbed
portion I, of the boundary.

In conclusion, when the limits R — oo and € — 0 are taken in (3.142), then we obtain
for € (), the integral representation formula

w@) = [ (G @) - 26w )uw) diw) + [ Gef o)), 615y
which can be alternatively expressed as
)= [ (05w ) -G nGiw ) bw). Gk

It is remarkable in this integral representation that the support of the integral, namely the
curve I}, is bounded. Let us denote the traces of the solution and of its normal derivative
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on I, respectively by

0
p=uly, and = | (3.155)
on r,
We can rewrite now (3.153) and (3.154) in terms of layer potentials as
u="D(p) - S(Zu)+S(f.)  in Q, (3.156)
u="D(u) —S) in €, (3.157)
where we define for & € (), respectively the single and double layer potentials as
svia) = [ Glaywiy)diy) (3.158)
Ip
0G
Du(@) = | 7 (@ y)uly)dr(y). (3.159)
L, Oy
We remark that from the impedance boundary condition (3.4) it is clear that
v=_2Zu— f,. (3.160)

3.6.2 Integral equation

To determine entirely the solution of the direct scattering problem (3.13) by means
of its integral representation, we have to find values for the traces (3.155). This requires
the development of an integral equation that allows to fix these values by incorporating
the boundary data. For this purpose we place the source point  on the boundary I' and
apply the same procedure as before for the integral representation (3.153), treating differ-
ently in (3.142) only the integrals on S.. The integrals on S, still behave well and tend
towards zero as R — oo. The Ball B,, though, is split in half by the boundary I', and the
portion 2, N B. is asymptotically separated from its complement in 5. by the tangent of
the boundary if I" is regular. If € I',, then the associated integrals on S, give rise to a
term —u(ax)/2 instead of just —u(x) as before for the integral representation. Therefore
we obtain for € I'; the boundary integral representation

- / (aa_vi(“”” } Z@)G@’y))u(y) dy(y) + /FPG<w7y>fz<y> dy(y). (3.161)

On the contrary, if € I, then the logarithmic behavior (3.98) contributes also to the
singularity (3.97) of the Green’s function and the integrals on S. give now rise to two
terms —u(x)/2, i.e., on the whole to a term —u(x). For & € T the boundary integral
representation is instead given by

@)= [ (52 @) - 2)Gla) Ju) dw) + [ Gle)fv) dw). G162

We must notice that in both cases, the integrands associated with the boundary I' admit an
integrable singularity at the point . In terms of boundary layer potentials, we can express
these boundary integral representations as

S =D —S(Zw+S(f.)  on L, (3.163)
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u=D(u) = 5(Zp) + S(f) on Iy, (3.164)

where we consider, for € I', the two boundary integral operators

su@) = [ Glayviy) drw), (.16
Dut@) = [ G @ty dr () (.16

We can combine (3.163) and (3.164) into a single integral equation on I’,, namely

(1 +zo)g +8(Zp) — D(u) = S(f.)  on T, (3.167)
where Z, denotes the characteristic or indicator function of the set I, i.e.,
1 if x eIy,
Io(x) = (3.168)
0 if ¢ ¢TI

It is the solution p on I, of the integral equation (3.167) which finally allows to char-
acterize the solution « in €2, of the direct scattering problem (3.13) through the integral
representation formula (3.156). The trace of the solution « on the boundary I' is then found
simultaneously by means of the boundary integral representations (3.163) and (3.164). In
particular, when x € I'y, and since Iy, C I, therefore it holds that

u=D(p)—S(Zp)+ S(f.) on ['.. (3.169)
3.7 Far field of the solution
The asymptotic behavior at infinity of the solution « of (3.13) is described by the far
field. It is denoted by u// and is characterized by
u(x) ~ uf (x) as |x| — oc. (3.170)

Its expression can be deduced by replacing the far field of the Green’s function G/ and its
derivatives in the integral representation formula (3.154), which yields

ff
wiie) - | (%ﬁ <w,y>u<y>—fo<w,y>u<y>) Hy). G

By replacing now (3.129) and the addition of (3.122) and (3.127) in (3.171), we obtain that

6i7r/4 ezk\w\

8k /x| Jr,

Zoo —iksin® o oo ., | cost
Zoo T INETT 2ikye 9<zk[ }-nyu(yHV(y)))d’ﬂy)

uff () e ey <zk:§: ‘g 1(y) + v(y)
_Zoo+iksin9 —sind

7. . o i ,
_ 250 T iz / ¢~ Zeet2 i Slgm“( F” Slgnxl] iy (y) — w(y)> dy(y).
Iy

Sp _ZZOO
(3.172)
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The asymptotic behavior of the solution u at infinity, as || — oo, is therefore given by

w22 o)) e o o{ )} o

where &, = sign x; and where we decompose « = |x| &, being & = (cos ), sin #) a vector
of the unit circle. The far-field pattern of the volume waves is given by

i7r/4

NG e kY (zk:ﬁ 1y u(y) + v(y)

u (&) =

Zoo —iksin® o, . o( [ cosf
_ m 2ikya sin 6 (Zl{j |:—sin@:| ‘T ,u(y) + V(g)))dy(y), (3.174)

whereas the far-field pattern for the surface waves adopts the form

A , - i
WS (&) = _;oo/ o~ Zooyz p—iZocy1 sign a1 ( Fp sgnm}.nyu(y) —iu(y))dv(y). (3.175)
& Jr, —is

Both far-field patterns can be expressed in decibels (dB) respectively by means of the scat-
tering cross sections

14 A
Q! (@) [a8] = 20105,y (=) 3.176)
[ug |
QS (i) [dB] = 20 logm('“| ool - ”), (3.177)
Up
where the reference levels 1} and wuj are taken such that |u§ | = |u§| = 1 if the incident

field is given either by a volume wave of the form (3.16) or by a surface wave of the
form (3.19).

We remark that the far-field behavior (3.173) of the solution is in accordance with the
radiation condition (3.6), which justifies its choice.

3.8 Existence and uniqueness

3.8.1 Function spaces

To state a precise mathematical formulation of the herein treated problems, we have to
define properly the involved function spaces. Since the considered domains and boundaries
are unbounded, we need to work with weighted Sobolev spaces, as in Durdn, Muga &
Nédélec (2005a, 2006). We consider the classic weight functions

o=V1+7r2  and log 0 = In(2 4 7%), (3.178)
where = |x|. We define the domains
1 SrkZ2,
Qi:{weQe:x2>ﬁl (1+h )} (3.179)
1 8rkZ2,
Qg:{w6961$2<71( +Z2+/{52 )} (3.180)
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It holds that the solution of the direct scattering problem (3.13) is contained in the weighted
Sobolev space

<

v Vo v
wWhQ,) = { ; oTog o c L*(,), 2Tos 0 € L2(Q,)2, ﬁ e L*(QY),

. 2/01 v 2/()2 1 v 2/()2
o ikv e L*(9,), loggeL (Q2), oz o \ or i | € L7(€2) », (3.181)

where &, = \/Z2 + k2. With the appropriate norm, the space W*'(2,) becomes also a
Hilbert space. We have likewise the inclusion W(Q.) C HL.(£.), i.e., the functions of
these two spaces differ only by their behavior at infinity.

Since we are dealing with Sobolev spaces, even a strong Lipschitz boundary I" € C'%!
is admissible. The fact that this boundary I' is also unbounded implies that we have to use
weighted trace spaces like in Amrouche (2002). For this purpose, we consider the space

WYA(T) = {u: — Y e V(T } (3.182)
D=7 Zoiogg € H0
Its dual space W ~1/2(I") is defined via 1¥°-duality, i.e., considering the pivot space
v
wo(r) = {v: c L*(T } (3.183)
(D) =17 Zoiogg € V0
Analogously as for the trace theorem (A.531), if v € W'(€,) then the trace of v fulfills
Yov = v|p € WY(D). (3.184)
Moreover, the trace of the normal derivative can be also defined, and it holds that
ov
1 = %h e WY(T). (3.185)
We remark further that the restriction of the trace of v to I, is such that
Youlr, = v|r, € HY*(T,), (3.186)
ov
= |, e H VAT 3.187
|, 8n|rp (L), ( )
and its restriction to [y, yields
00|, = vlr, € WYA(I), (3.188)
0
Y10|r. = a—vlroo & W) (3.189)
n

3.8.2 Application to the integral equation

The existence and uniqueness of the solution for the direct scattering problem (3.13),
due the integral representation formula (3.156), can be characterized by using the integral
equation (3.167). For this purpose and in accordance with the considered function spaces,
we take € HY2(T},) and v € H~Y/%(T},)). Furthermore, we consider that Z € L>°(T},) and
that f. € H~'/2(T},), even though strictly speaking f., € HY/2(L,).
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It holds that the single and double layer potentials defined respectively in (3.158)
and (3.159) are linear and continuous integral operators such that

S:HYVXT,) — W) and D:HYXT,) — WYQ,). (3.190)

The boundary integral operators (3.165) and (3.166) are also linear and continuous appli-
cations, and they are such that

S:HY*T,) — WYXT) and  D:HY*T,) — WY3(T). (3.191)
When we restrict them to I, then it holds that
S|y, : HY4(T,) — HY*(T,)  and D, : HY*(T,) — HY*(T,). (3.192)

Let us consider the integral equation (3.167), which is given in terms of boundary layer
potentials, for 1 € H'/%(T},), by

(1 +Io)% +8(Zu) — D(u) = S(f.)  in HYA(T)). (3.193)

Due the imbedding properties of Sobolev spaces and in the same way as for the half-plane
impedance Laplace problem, it holds that the left-hand side of the integral equation corre-
sponds to an identity and two compact operators, and thus Fredholm’s alternative holds.

Since the Fredholm alternative applies to the integral equation, therefore it applies
also to the direct scattering problem (3.13) due the integral representation formula. The
existence of the scattering problem’s solution is thus determined by its uniqueness, and the
wave numbers k € C and impedances Z € C for which the uniqueness is lost constitute a
countable set, which we call respectively wave number spectrum and impedance spectrum
of the scattering problem and denote it by o, and 0. The spectrum o}, considers a fixed Z
and, conversely, the spectrum o considers a fixed k. The existence and uniqueness of
the solution is therefore ensured almost everywhere. The same holds obviously for the
solution of the integral equation, whose wave number spectrum and impedance spectrum
we denote respectively by ¢, and ¢z. Since each integral equation is derived from the
scattering problem, it holds that o, C ¢, and 0z C <z. The converse, though, is not
necessarily true. In any way, the sets ¢, \ 0 and ¢z \ o are at most countable.

In conclusion, the scattering problem (3.13) admits a unique solution u if k& ¢ oy
and Z ¢ oz, and the integral equation (3.167) admits in the same way a unique solution p
ifk ¢ ¢, and Z ¢ .

3.9 Dissipative problem

The dissipative problem considers waves that dissipate their energy as they propagate
and are modeled by considering a complex wave number or a complex impedance. The
use of a complex wave number £ € C whose imaginary part is strictly positive, i.e., such
that Jm{k} > 0, ensures an exponential decrease at infinity for both the volume and the
surface waves. On the other hand, the use of a complex impedance Z,, € C with a strictly
positive imaginary part, i.e., Jm{Z,} > 0, ensures only an exponential decrease at infinity
for the surface waves. In the first case, when considering a complex wave number k£, and
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due the dissipative nature of the medium, it is no longer suited to take progressive plane
volume waves in the form of (3.16) and (3.17) respectively as the incident field u; and the
reflected field ug. In both cases, likewise, it is no longer suited to take progressive plane
surface waves in the form of (3.19) as the incident field ;. Instead, we have to take a wave
source at a finite distance from the perturbation. For example, we can consider a point
source located at z € ()., in which case we have only an incident field, which is given, up
to a multiplicative constant, by

ur(x) = Gz, 2), (3.194)
where GG denotes the Green’s function (3.93). This incident field u; satisfies the Helmholtz
equation with a source term in the right-hand side, namely

Aup+ Kup =6,  in D'(Q), (3.195)

which holds also for the total field ur but not for the scattered field «, in which case the
Helmholtz equation remains homogeneous. For a general source distribution g5, whose
support is contained in (2., the incident field can be expressed by

ur(z) = Gz, z) * gs(z) = / G(x, z) gs(z) d=. (3.196)

e

This incident field u; satisfies now
Auy + kuy =g, in D'(Q), (3.197)
which holds again also for the total field u, but not for the scattered field w.

It is not difficult to see that all the performed developments for the non-dissipative
case are still valid when considering dissipation. The only difference is that now either
a complex wave number k such that Jm{k} > 0, or a complex impedance 7, such
that Jm{Z,} > 0, or both, have to be taken everywhere into account.

3.10 Variational formulation

To solve the integral equation we convert it to its variational or weak formulation,
1.e., we solve it with respect to a certain test function in a bilinear (or sesquilinear) form.
Basically, the integral equation is multiplied by the (conjugated) test function and then the
equation is integrated over the boundary of the domain. The test function is taken in the
same function space as the solution of the integral equation.

The variational formulation for the integral equation (3.193) searches ;1 € H'/?(T},)
such that Vo € H'/?(T,) we have that

((1+20)5 +5(Zw) = Dln). o) = (S(£). 9): (3.198)
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3.11 Numerical discretization

3.11.1 Discretized function spaces

The scattering problem (3.13) is solved numerically with the boundary element method
by employing a Galerkin scheme on the variational formulation of the integral equation. We
use on the boundary curve I, Lagrange finite elements of type P;. As shown in Figure 3.9,
the curve I, is approximated by the discretized curve F;, composed by [ rectilinear seg-
ments 77, sequentially ordered from left to right for 1 < j < I, such that their length |7}
is less or equal than h, and with their endpoints on top of T’,.

FIGURE 3.9. Curve I‘Ii‘, discretization of I,.

The function space H'/2(T},) is approximated using the conformal space of continuous
piecewise linear polynomials with complex coefficients

Qun={pn € COTY) : @ulr, € B1(C), 1<j<I}. (3.199)

The space (), has a finite dimension (I + 1), and we describe it using the standard base
functions for finite elements of type P;, denoted by { Jlii and expressed as

/

’“"Tj—ri’” if ©eT
xj(@)=q -z o (3.200)
751 "
0 if ©¢T;1UTy,

\
where segment 7;_; has as endpoints 7;_; and r;, while the endpoints of segment 7 are
given by r; and 7.

In virtue of this discretization, any function ¢, € (), can be expressed as a linear
combination of the elements of the base, namely
I+1

on(@) =Y @jx;(x)  for €T, (3.201)
j=1

where p; € Cfor1 < j < I+ 1. The solution 1 € H 1/ %(T,) of the variational formula-
tion (3.198) can be therefore approximated by
I+1

pn() = pixi(@)  for x €T}, (3.202)
j=1
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where 1, € C for 1 < j <[ + 1. The function f, can be also approximated by

I+1

@) => fixjl@) for xel), with f; = f.(r;). (3.203)
j=1

3.11.2 Discretized integral equation

To see how the boundary element method operates, we apply it to the variational for-
mulation (3.198). We characterize all the discrete approximations by the index A, includ-
ing also the impedance and the boundary layer potentials. The numerical approximation
of (3.198) leads to the discretized problem that searches p;, € @), such that Vo, € @,

<(1 +Ig)% + Sn(Znpn) — Dr(pin), SDh> = (Sh(f1), on)- (3.204)

Considering the decomposition of 1, in terms of the base {x;} and taking as test functions
the same base functions, ¢, = y; for 1 <17 < I 4 1, yields the discrete linear system
I+1 I+1

Zuj (%<(1 + I3)x50 Xi) + (Su(Znx;), xi) — <Dh(Xj)7Xi>) = ij (Su(x3)s Xa)-

(3.205)
This constitutes a system of linear equations that can be expressed as a linear matrix system:

Find g € CI*! such that
(3.206)
Mup=b.
The elements m;; of the matrix M are given, for 1 <<¢,5 < I+ 1, by
1
mij = §<(1 +I0)x50 Xi) + (Su(Znx;) s xi) — (Da(x;)s Xi), (3.207)
and the elements b; of the vector b by
I+1
bi=(Su(f2).xi) =D fi(Sulxs)oxa)  for 1<i<I+4+1. (3.208)
j=1

The discretized solution uy,, which approximates u, is finally obtained by discretizing
the integral representation formula (3.156) according to

up, = Dp(pn) — Sh(Znpn) + Sn(f1), (3.209)

which, more specifically, can be expressed as

I+1 I+1
un = > 115(Du(xs) = Su(Znxs)) + > f5 Su(x;)- (3.210)
=1 =1

We remark that the resulting matrix M is in general complex, full, non-symmetric,
and with dimensions (/ + 1) x (I + 1). The right-hand side vector b is complex and
of size I + 1. The boundary element calculations required to compute numerically the
elements of M and b have to be performed carefully, since the integrals that appear become
singular when the involved segments are adjacent or coincident, due the singularity of the
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Green’s function at its source point. On 1§, the singularity of the image source point has to
be taken additionally into account for these calculations.

3.12 Boundary element calculations

The boundary element calculations build the elements of the matrix M resulting from
the discretization of the integral equation, i.e., from (3.206). They permit thus to compute
numerically expressions like (3.207). To evaluate the appearing singular integrals, we adapt
the semi-numerical methods described in the report of Bendali & Devys (1986).

We use the same notation as in Section B.12, and the required boundary element inte-
grals, for a,b € {1, 2}, are again

ZAa,bz/K/L(ﬁ)a(ﬁ)be(m,y)dL(y)dK(x), (3.211)

ZBa,b—/K/L(%)a(%)bg—Z(w,y)dL(y)dK(a:). (3.212)

All the integrals that stem from the numerical discretization can be expressed in terms
of these two basic boundary element integrals. The impedance is again discretized as a
piecewise constant function Zj, which on each segment 7; adopts a constant value Z; € C.
The integrals of interest are the same as for the full-plane impedance Helmholtz problem
and we consider furthermore that

(s xi) it rjely,

1+ Iy, x) = (3.213)

To compute the boundary element integrals (3.211) and (3.212), we can easily isolate
the singular part (3.97) of the Green’s function (3.93), which corresponds in fact to the
Green’s function of the Laplace equation in the full-plane, and therefore the associated in-
tegrals are computed in the same way. The same applies also for its normal derivative. In
the case when the segments K and L are are close enough, e.g., adjacent or coincident, and
when L € T or K € T}, being [} the approximation of I}y, we have to consider addi-
tionally the singular behavior (3.98), which is linked with the presence of the impedance
half-plane. This behavior can be straightforwardly evaluated by replacing @ by & in for-
mulae (B.340) to (B.343), i.e., by computing the quantities ZF,(&) and ZG,(Z) with the
corresponding adjustment of the notation. Otherwise, if the segments are not close enough
and for the non-singular part of the Green’s function, a two-point Gauss quadrature formula
is used. All the other computations are performed in the same manner as in Section B.12
for the full-plane Laplace equation.

3.13 Benchmark problem

As benchmark problem we consider the particular case when the domain Q. C R? is

taken as the exterior of a half-circle of radius R > 0 that is centered at the origin, as shown
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in Figure 3.10. We decompose the boundary of (2, as I' = I, U I'y,, where I, corresponds
to the upper half-circle, whereas I, denotes the remaining unperturbed portion of the half-
plane’s boundary which lies outside the half-circle and which extends towards infinity on
both sides. The unit normal 7 is taken outwardly oriented of €2, e.g., m = —r on I,.

FIGURE 3.10. Exterior of the half-circle.

The benchmark problem is then stated as

[ Find u : (). — C such that

Au+ku=0 in €,
(3.214)
—% + Zu=f, on I,
on

+ Outgoing radiation condition as || — oo,

where we consider a wave number k € C, a constant impedance Z € C throughout I', and
where the radiation condition is as usual given by (3.6). As incident field u; we consider
the same Green’s function, namely

ur(x) = Gz, z), (3.215)

where z € (). denotes the source point of our incident field. The impedance data func-
tion f, is hence given by

and its support is contained in I’,. The analytic solution for the benchmark problem (3.214)
is then clearly given by

u(x) = —G(x, 2). (3.217)
The goal is to retrieve this solution numerically with the integral equation techniques and
the boundary element method described throughout this chapter.

For the computational implementation and the numerical resolution of the benchmark
problem, we consider integral equation (3.167). The linear system (3.206) resulting from
the discretization (3.204) of its variational formulation (3.198) is solved computationally
with finite boundary elements of type P; by using subroutines programmed in Fortran 90,
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by generating the mesh Fg of the boundary with the free software Gmsh 2.4, and by repre-
senting graphically the results in Matlab 7.5 (R2007b).

We consider a radius R = 1, a wave number k£ = 3, a constant impedance Z = 5,
and for the incident field a source point z = (0,0). The discretized perturbed boundary
curve F;‘ has I = 120 segments and a discretization step h = 0.02618, being

h = max |T}]. (3.218)

1<5<1
We observe that h =~ 7 /1.

The numerically calculated trace of the solution y;, of the benchmark problem, which
was computed by using the boundary element method, is depicted in Figure 3.11. In the
same manner, the numerical solution wy, is illustrated in Figures 3.12 and 3.13. It can be
observed that the numerical solution is quite close to the exact one.

Zoa ]
QO
=
° w
0 ]
-02 ‘ : ‘ : ‘ : . ‘ : ‘ : ‘ :
05 1 15 2 25 3 o 05 1 15 2 25 3
0 0
(a) Real part (b) Imaginary part

FIGURE 3.11. Numerically computed trace of the solution py,.

&1

(a) Real part (b) Imaginary part

FIGURE 3.12. Contour plot of the numerically computed solution uy,.
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Smf{uy, }

(a) Real part (b) Imaginary part

FIGURE 3.13. Oblique view of the numerically computed solution uy,.

Likewise as in (B.368), we define the relative error of the trace of the solution as

I — gl 2oy (3.219)
ol |

E2(h’> F;?) =

where I1; 10 denotes the Lagrange interpolating function of the exact solution’s trace p, i.e.,

I+1 I+1
Myp(x) = Zu(’rj) xj(x) and pu(x) = Zuj xj(x) for x e . (3.220)
j=1 j=1

In our case, for a step & = 0.02618, we obtained a relative error of Fy(h, FI?) = 0.08631.

As in (B.372), we define the relative error of the solution as

(b, ) = Ju = wnlli=@n) (3.221)

|ul| Lo )

being Q, = {x € Q. : ||z|| < L} for L > 0. We consider L = 3 and describe 2, by
a triangular finite element mesh of refinement / near the boundary. For i = 0.02618, the
relative error that we obtained for the solution was Eo.(h, ;) = 0.06178.

The results for different mesh refinements, i.e., for different numbers of segments
and discretization steps h, are listed in Table 3.1. These results are illustrated graphically
in Figure 3.14. It can be observed that the relative errors are approximately of order / for

bigger values of h.
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TABLE 3.1. Relative errors for different mesh refinements.

T 7 BT Eoo(h, 1)
12 0.2611 8.483-10~' 7.702-107!
40 0.07852 2.843-10"! 1.899-107!
80  0.03927 1.316-10"' 9.362-1072
120 0.02618 8.631-10"% 6.178-1072
240 0.01309 5.076-10"%2 3.177-1072
500 0.006283 4.587-10"2 2.804-1072
1000 0.003142 4.873-1072 2.695-1072
10° 10°
< 10 < 10
S f
107 : 107
10° 10° 10" 10° 10° 107 10

h
(a) Relative error Ey(h,T")

h

(b) Relative error Eo.(h, )

10

FIGURE 3.14. Logarithmic plots of the relative errors versus the discretization step.
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IV. HALF-SPACE IMPEDANCE LAPLACE PROBLEM

4.1 Introduction

In this chapter we study the perturbed half-space impedance Laplace problem using
integral equation techniques and the boundary element method.

We consider the problem of the Laplace equation in three dimensions on a compactly
perturbed half-space with an impedance boundary condition. The perturbed half-space
impedance Laplace problem is a surface wave scattering problem around the bounded
perturbation, which is contained in the upper half-space. In water-wave scattering the
impedance boundary-value problem appears as a consequence of the linearized free-surface
condition, which allows the propagation of surface waves (vid. Section A.10). This prob-
lem can be regarded as a limit case when the frequency of the volume waves, i.e., the
wave number in the Helmholtz equation, tends towards zero (vid. Chapter V). The two-
dimensional case is considered in Chapter II, whereas the full-space impedance Laplace
problem with a bounded impenetrable obstacle is treated thoroughly in Appendix D.

The main application of the problem corresponds to linear water-wave propagation in
a liquid of indefinite depth, which was first studied in the classical works of Cauchy (1827)
and Poisson (1818). A study of wave motion caused by a submerged obstacle was carried
out by Lamb (1916). The major impulse in the field came after the milestone papers on
the motion of floating bodies by John (1949, 1950), who considered a Green’s function
and integral equations to solve the problem. Another expression for the Green’s function
was suggested by Havelock (1955), which was later rederived or publicized in different
forms by Kim (1965), Hearn (1977), Noblesse (1982), and Newman (1984b, 1985), Pid-
cock (1985), and Chakrabarti (2001). Other expressions for this Green’s function can be
found in the articles of Moran (1964), Hess & Smith (1967), and Peter & Meylan (2004),
and likewise in the books of Dautray & Lions (1987) and Duffy (2001). The main refer-
ences for the problem are the classical article of Wehausen & Laitone (1960) and the books
of Mei (1983), Linton & Mclver (2001), Kuznetsov, Maz’ya & Vainberg (2002), and Mei,
Stiassnie & Yue (2005). Reviews of the numerical methods used to solve water-wave prob-
lems can be found in Mei (1978) and Yeung (1982).

The Laplace equation does not allow the propagation of volume waves inside the con-
sidered domain, but the addition of an impedance boundary condition permits the propaga-
tion of surface waves along the boundary of the perturbed half-space. The main difficulty
in the numerical treatment and resolution of our problem is the fact that the exterior do-
main is unbounded. We solve it therefore with integral equation techniques and a boundary
element method, which require the knowledge of the associated Green’s function. This
Green’s function is computed using a Fourier transform and taking into account the lim-
iting absorption principle, following Durdn, Muga & Nédélec (20055, 2009), but here an
explicit expression is found for it in terms of a finite combination of elementary functions,
special functions, and their primitives.
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This chapter is structured in 13 sections, including this introduction. The direct scatter-
ing problem of the Laplace equation in a three-dimensional compactly perturbed half-space
with an impedance boundary condition is presented in Section 4.2. The computation of the
Green’s function, its far field, and its numerical evaluation are developed respectively in
Sections 4.3, 4.4, and 4.5. The use of integral equation techniques to solve the direct scat-
tering problem is discussed in Section 4.6. These techniques allow also to represent the far
field of the solution, as shown in Section 4.7. The appropriate function spaces and some ex-
istence and uniqueness results for the solution of the problem are presented in Section 4.8.
The dissipative problem is studied in Section 4.9. By means of the variational formulation
developed in Section 4.10, the obtained integral equation is discretized using the boundary
element method, which is described in Section 4.11. The boundary element calculations
required to build the matrix of the linear system resulting from the numerical discretization
are explained in Section 4.12. Finally, in Section 4.13 a benchmark problem based on an
exterior half-sphere problem is solved numerically.

4.2 Direct scattering problem

4.2.1 Problem definition

We consider the direct scattering problem of linear time-harmonic surface waves on
a perturbed half-space Q. C R3, where R} = {(x1,22,23) € R® : z3 > 0}, where
~wt is taken. The goal
is to find the scattered field u as a solution to the Laplace equation in the exterior open

the incident field u; is known, and where the time convention e

and connected domain (2., satisfying an outgoing surface-wave radiation condition, and
such that the total field uy, which is decomposed as u; = u; + u, satisfies a homogeneous
impedance boundary condition on the regular boundary I' = T,,UT, (e.g., of class C?). The
exterior domain 2, is composed by the half-space R? with a compact perturbation near the
origin that is contained in R3 , as shown in Figure 4.1. The perturbed boundary is denoted
by T, while I, denotes the remaining unperturbed boundary of R3 , which extends towards
infinity on every horizontal direction. The unit normal 7 is taken outwardly oriented of €2,
and the complementary domain is denoted by 2, = R? \ Q.

FIGURE 4.1. Perturbed half-space impedance Laplace problem domain.
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The total field uy satisfies thus the Laplace equation
Aur =0 in ., 4.1)

which is also satisfied by the incident field u; and the scattered field u, due linearity. For
the total field u; we take the homogeneous impedance boundary condition

0
ST Zup =0  on T, 4.2)
on
where 7 is the impedance on the boundary, which is decomposed as
Z(x) = Zoo + Zy(x), xel, 4.3)

being Z,, > 0 real and constant throughout I', and Z,(x) a possibly complex-valued
impedance that depends on the position x and that has a bounded support contained in I',.
The case of a complex Z,, will be discussed later. For linear water waves, the free-surface
condition considers Z,, = w?/g, where w is the radian frequency or pulsation and g de-
notes the acceleration caused by gravity. If Z = 0 or Z = oo, then we retrieve respectively
the classical Neumann or Dirichlet boundary conditions. The scattered field u satisfies the
non-homogeneous impedance boundary condition

0
M Zu=f on T, 4.4)
on
where the impedance data function f, is known, has its support contained in I,, and is

given, because of (4.2), by

£ = % — Zu;  on T. (4.5)

An outgoing surface-wave radiation condition has to be also imposed for the scattered
field u, which specifies its decaying behavior at infinity and eliminates the non-physical
solutions, e.g., ingoing surface waves or exponential growth inside €2.. This radiation con-
dition can be stated for » — oo in a more adjusted way as

C oul C . 1 3
|U| < ﬁ and E < ﬁ if x3 > mlﬂ(l 4+ 27 2o ),
(4.6)
C 0 C 1
|’LL‘ < W and a_:’t — ZZOOU < 7 if T3 < %ln(l + 27TZOO7”3),
for some constants C' > 0, where r = |z|. It implies that two different asymptotic be-

haviors can be established for the scattered field u. Away from the boundary I' and inside
the domain €2, the first expression in (4.6) dominates, which is related to the asymptotic
decaying condition (D.5) of the Laplace equation on the exterior of a bounded obstacle.
Near the boundary, on the other hand, the second part of the second expression in (4.6)
resembles a Sommerfeld radiation condition like (E.8), but only along the boundary, and is
therefore related to the propagation of surface waves. It is often expressed also as

4.7)

where &, = (1, 23).
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Analogously as done by Durdn, Muga & Nédélec (2005b, 2009) for the Helmholtz
equation, the radiation condition (4.6) can be stated alternatively as

C ou|  C , .
|U,| S m and 5 M if T3 > Cr s
(4.8)
C 0 C
lu| < 7 and a_u iZoot| < —— if 23 < Cr
r r rt«

for 0 < o < 1/2 and some constants C' > 0, being the growth of C'r® bigger than the
logarithmic one at infinity. Equivalently, the radiation condition can be expressed in a more
weaker and general formulation as

2

0
lim [ |ufdy=0 and lim | R?|%%| dy=0,
R—o0 S}l{ R—o0 Sl-lt 87"
, y - ) 4.9)
u u
li —d d li — | — —iZyu| dy =0,
REEO/SI%mR Teee me G Jg R o Y
where
1
51; = {w c Ri Dzl =R, 23> ﬁln(l + QWZOOR?’)}, (4.10)
1
SE = {xeRi: x| =R, 23 < ﬁln(l—i—%rZooR?’)}. (4.11)
We observe that in this case
/ dy=0O(R?)  and / dy = O(RInR). (4.12)
Sk Si

The portions Si and S3 of the half-sphere and the terms depending on S3 of the radiation
condition (4.9) have to be modified when using instead the polynomial curves of (4.8). We
refer to Stoker (1956) for a discussion on radiation conditions for surface waves.

The perturbed half-space impedance Laplace problem can be finally stated as

[ Find u : (). — C such that

Au - O ln Qea
4.13
—@ + Zu=f, on I, (*-15)
on

+ Outgoing radiation condition as || — oo,
where the outgoing radiation condition is given by (4.6).

4.2.2 Incident field

To determine the incident field u;, we study the solutions of the unperturbed and homo-
geneous wave propagation problem with neither a scattered field nor an associated radiation
condition. The solutions are searched in particular to be physically admissible, i.e., solu-
tions which do not explode exponentially in the propagation domain, depicted in Figure 4.2.
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We analyze thus the half-space impedance Laplace problem

AuI =0 in Ri,
0 (4.14)
8—Z+Zoou120 on {z3=0}.
RY
T3
'J—bl'g
€1
{163 = 0}, Zoo
h

FIGURE 4.2. Positive half-space Ri.

The solutions wu; of the problem (4.14) are given, up to an arbitrary scaling factor, by
the progressive plane surface waves
o~ Foos (ks ky) =72, xs = (21, 22). (4.15)

u(z) = e

They correspond to progressive plane volume waves of the form ¢?*® with a complex wave

propagation vector k = (k,,1Z,,), where k, € R?. It can be observed that these surface
waves are guided along the half-space’s boundary, and decrease exponentially towards its
interior, hence their name. They vanish completely for classical Dirichlet (Z,, = o0) or
Neumann (Z,, = 0) boundary conditions.

4.3 Green’s function

4.3.1 Problem definition

The Green’s function represents the response of the unperturbed system to a Dirac
mass. It corresponds to a function G, which depends on the impedance 7., on a fixed
source point & € R?%, and on an observation point y € R%. The Green’s function is
computed in the sense of distributions for the variable y in the half-space R? by placing at
the right-hand side of the Laplace equation a Dirac mass d,, centered at the point . It is
therefore a solution for the radiation problem of a point source, namely

( Find G(x, ) : R} — C such that

AyG(z,y) = d2(y) in D'(R3),
oG (4.16)
ayg (CU, y) =+ ZOOG(CU, y) =0 on {y3 = O},

|+ Outgoing radiation condition as |y| — oo.
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The outgoing radiation condition, in the same way as in (4.6), is given here as |y| — oo by

C 0G| C In(1 + 27 Z|y|?)
Gl < — d |=—=|< = if ys3 >
R P R e n 220
C oG C In(1+ 27 Zso|yl?) 10
|G| < —— and ——iZOOG‘S— ify3§n Toold ;
V1l Ory [yl 225

for some constants C' > 0, which are independent of r = |y|.
4.3.2 Special cases

When the Green’s function problem (4.16) is solved using either homogeneous Dirich-
let or Neumann boundary conditions, then its solution is found straightforwardly using the
method of images (cf., e.g., Morse & Feshbach 1953).

a) Homogeneous Dirichlet boundary condition

We consider in the problem (4.16) the particular case of a homogeneous Dirichlet
boundary condition, namely

G(x,y) =0, y € {ys = 0}, (4.18)

which corresponds to the limit case when the impedance is infinite (Z,, = o0). In this
case, the Green’s function GG can be explicitly calculated using the method of images,
since it has to be antisymmetric with respect to the plane {y3 = 0}. An additional im-
age source point & = (z1, T2, —r3), located on the lower half-space and associated with a
negative Dirac mass, is placed for this purpose just opposite to the upper half-space’s source
point ® = (x1, x5, x3). The desired solution is then obtained by evaluating the full-space
Green’s function (D.20) for each Dirac mass, which yields finally
1 1

“lnly—=| Ay - @]

Gla,y) = (4.19)

b) Homogeneous Neumann boundary condition

We consider in the problem (4.16) the particular case of a homogeneous Neumann
boundary condition, namely

oG

a_ny(wa y) = 07 (/RS {y?) = 0}7 (420)

which corresponds to the limit case when the impedance is zero (Z,, = 0). As in the
previous case, the method of images is again employed, but now the half-space Green’s
function G has to be symmetric with respect to the plane {y; = 0}. Therefore, an addi-
tional image source point Z = (1, x2, —x3), located on the lower half-space, is placed just
opposite to the upper half-space’s source point @ = (x1, 22, x3), but now associated with
a positive Dirac mass. The desired solution is then obtained by evaluating the full-space
Green’s function (D.20) for each Dirac mass, which yields

1 1
Gla,y) = — - ‘
(@9 =~y =2~ Ty =

(4.21)
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4.3.3 Spectral Green’s function
a) Boundary-value problem

To solve (4.16) in the general case, we use a modified partial Fourier transform on the
horizontal (y;, y2)-plane, taking advantage of the fact that there is no horizontal variation
in the geometry of the problem. To obtain the corresponding spectral Green’s function, we
follow the same procedure as the one performed in Durén et al. (2005b). We define the
forward Fourier transform of a function F' (:I:, (v, yg)) :R? — C by

~ 1 )
F(&ys,ws) = - / Fz,y)e €®=dy, &= (6,&) R, (422)
R2
and its inverse by
1 ~ :
F($7 y) = %\/ F(E7 yg,l’g) 615'(?/5—2135) dsv Ys = (yla 92) € RQv (423)
R2

where ¢, = (71, 75) € R? and thus © = (z,, 73).

To ensure a correct integration path for the Fourier transform and correct physical
results, the calculations have to be performed in the framework of the limiting absorption
principle, which allows to treat all the appearing integrals as Cauchy principal values. For
this purpose, we take a small dissipation parameter € > 0 into account and consider the
problem (4.16) as the limit case when ¢ — 0 of the dissipative problem

Find G.(x,) : R3 — C such that

AyG.(z,y) = 02(y) in D/(Ri)’ (4.24)
0G,
a_(ma y) + ZeGa(w> y) =0 on {y3 = 0}7

Ys

where Z. = Z, + te. This choice ensures a correct outgoing dissipative surface-wave
behavior. Further references for the application of this principle can be found in Lenoir &
Martin (1981) and in Hazard & Lenoir (1998).

Applying thus the Fourier transform (4.22) on the system (4.24) leads to a linear second
order ordinary differential equation for the variable y3, with prescribed boundary values,
given by

9*G. N Sua —

ToE @) - lea =y,

aé/ii (4.25)
2 (€) + 2.GulE) = . 5 =0

To describe the (&7, &)-plane, we use henceforth the system of signed polar coordinates
G+& if £>0, ¢
£ = & if & =0, and 1) = arccot (5—1) (4.26)
2
—VE+E  if & <0,

where —o0o < ¢ < oo and 0 < ¥ < w. From (4.25) it is not difficult to see that the
solution GG depends only on |£|, and therefore only on &, since || = |€|. We remark that
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the inverse Fourier transform (4.23) can be stated equivalently as
1 o) T ) '
F(x,y) = Py / / F(&,4;ys, x3)|€] eiéllyr—a) cos bt (ya—a2) sin ¥} Qo ¢ 4.27)
T J_0oJo

We use the method of undetermined coefficients, and solve the homogeneous differ-
ential equation of the problem (4.25) respectively in the zone {y € R? : 0 < y3 < 23}
and in the half-space {y € R? : y3 > x3}. This gives a solution for G. in each domain,
as a linear combination of two independent solutions of an ordinary differential equation,
namely

Ge(§) =

I€ly3 —1&lys
~ ae*® +be for 0 < ys3 < x3,
{ o= (4.28)

celflys 1 g e l€lys for ys3 > 3.
The unknowns a, b, ¢, and d, which depend on £ and x3, are determined through the bound-
ary condition, by imposing continuity, and by assuming an outgoing wave behavior.

b) Spectral Green’s function with dissipation

Now, thanks to (4.28), the computation of @E is straightforward. From the boundary
condition of (4.25) a relation for the coefficients a and b can be derived, which is given by

a(Z. +€&]) +b(Z. — [¢]) = 0. (4.29)

On the other hand, since the solution (4.28) has to be bounded at infinity as y3 — o0, it
follows then necessarily that

c=0. (4.30)
To ensure the continuity of the Green’s function at the point y3 = x3, it is needed that
d=aelPs £, (4.31)
Using relations (4.29), (4.30), and (4.31) in (4.28), we obtain the expression
@Jg)zaesmskmwsxs__(gi§%§>emwwmw} 4.32)

The remaining unknown coefficient a is determined by replacing (4.32) in the differential
equation of (4.25), taking the derivatives in the sense of distributions, particularly

aiyg {e*\€||y3*$3|} _ —|f‘ Sign(y3 _ xg) e*\§||y3*$3|’ (4.33)
and 9
a—yS{Sign(y:’, —x3)} = 20(ys — x3). (4.34)
So, the second derivative of (4.32) becomes
092G Z. +I¢]
€ — |€|xs 2= lEllys—z3] _ 9 _ _ 2 20— 1€l(ys+3) | (4.
(€)= ackie e €0 20) - (15l | a9
This way, from (4.32) and (4.35) in the first equation of (4.25), we obtain that
e_lglxii
a=— e (4.36)
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Finally, the spectral Green’s function CA}’E with dissipation ¢ is given by

e~ [Ellys—zs3] (Z‘6 + |§|) e~ l&l(ys+z3)
+
Am|¢] Ze—El) Anle]

G(& s, w3) = — (4.37)

¢) Analysis of singularities

To obtain the spectral Green’s function G without dissipation, the limit € — 0 has to
be taken in (4.37). This can be done directly wherever the limit is regular and continuous
on . Singular points, on the other hand, have to be analyzed carefully to fulfill correctly
the limiting absorption principle. Thus we study first the singularities of the limit function
before applying this principle, i.e., considering just € = 0, in which case we have

e~ éllya—w3] (Zoo + |§|) e~ l&l(ys+w3)
4r¢] Zoo = I€| ) Aml¢]

Possible singularities for (4.38) may only appear when |£| = 0 or when |{| = Z,, i.e., when
the denominator of the fractions is zero. Otherwise the function is regular and continuous.

Go(€) = - (4.38)

For |¢| = 0 the function (4.38) is continuous. This can be seen by writing it, analo-
gously as in Durdn, Muga & Nédélec (2005b), in the form

5 H{(J¢|
Go(€) = |(§| ) : (4.39)
where . p 5
_|_
H _ = | _,—Blys—zsl > B (y3+x3) . 4.4
Since H([3) is an analytic function in 5 = 0, since H(0) = 0, and since
A H(|¢]) — H(0)
lim G = lim = H'(0), 441
I£]—0 0(5) 1£]=0 |§| ( ) ( )
we can easily obtain that
. A 1 1
égo Go(€) = (1 Tzt lys — @3] — (ys + x3)>, (4.42)
being thus G bounded and continuous on |¢| = 0.
For ¢ = Z, and £ = —Z, the function (4.38) presents two simple poles, whose
residues are characterized by
~ 1
lim (& F Zoo)Go(&) = Fo— e Zoeluatas), (4.43)

E—tZ00 27

To analyze the effect of this singularity, we study now the computation of the inverse
Fourier transform of

~ 1 1 1
Gp(g) = — eiZOO(yiiJFxS) (g n — 5_ 7 )7 (444)
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which has to be done in the frame of the limiting absorption principle to obtain the correct
physical results, i.e., the inverse Fourier transform has to be understood in the sense of

G I e_ZE(y3+x3) Y 1 1 i€r sin 0 cos(v—¢) ded

v =t { o [ (7 - =2 ) e cav}
(4.45)

being the spatial variables inside the integrals expressed through the spherical coordinates

Yy — x1 = rsinf cos p, 0<r<oo,
Ya — To = 1rsinfsin p, for 0<6<m, (4.46)
Y3 — xr3 = 1rcosb, —T<p<m.

To perform correctly the computation of (4.45), we apply the residue theorem of com-
plex analysis (cf., e.g., Arfken & Weber 2005, Bak & Newman 1997, Dettman 1984) on
the complex meromorphic mapping

1 1 .
F(&) = — wr 4.4

which admits two simple poles at £, and —¢&,, where Jm{¢,} > 0 and 7 € R. We consider
also the closed complex integration contours Cy; . and Cj ., which are associated respec-
tively with the values 7 > 0 and 7 < 0, and are depicted in Figure 4.3.

Jm{¢}4 Jm{¢}4
R
fp'
, Refe)
-, R
(a) Contour C}{ E (b) Contour Cp; .

FIGURE 4.3. Complex integration contours using the limiting absorption principle.

Since the contours Cjf _ and Cj; _ enclose no singularities, the residue theorem of Cauchy
implies that the respective closed path integrals are zero, i.e.,

]{ F(§)d¢ =0, (4.48)
C,;js
and

t%F@ﬁM:O. (4.49)

R,e
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By considering 7 > 0 and working with the contour CI;: . in the upper complex plane,
we obtain from (4.48) that

Re{€p} R
[ r@acs [ Foacs [ F@dgs [ a0 @so
-R . Re{&p} S
Performing the change of variable £ — &, = ¢'? for the integral on S yields
d 23 s ee'” i} (icosg—sing) 4 4.5
F — 7 p¥%pT - 1 + ce'®| e (Ecos g—sin ‘ 51
[ P@ac=ien [ (e 1) g e 6. @D
By taking then the limit ¢ — 0 we obtain
lim [ F(&)d¢ = i2n|&, e (4.52)

e—0
€

In a similar way, taking & = Re'? for the integral on S yields
T iR%? iR%e™ , :
F(¢)d¢ = . - — eftr(icoso=sind) g 4.53
/sg = | (Rew TE  Rew- §p> ’ (33

Since |eif#7cs¢| < 1 and Rsing > 0 for 0 < ¢ < m, when taking the limit R — oo we
obtain

lim F(&)d¢ = 0. (4.54)
R—oo Sg
Thus, taking the limits ¢ — 0 and R — oo in (4.50) yields
/ F(€)d€E = —i2m|&, |, 7> 0. (4.55)

By considering now 7 < 0 and working with the contour Cy _ in the lower complex
plane, we obtain from (4.49) that

[ rgacs [ Feas [ Feoace [ Foa=o s
R € Re{—&p} Sg
Performing the change of variable £ + £, = e’ for the integral on S: yields
F e —ibT —3m/2 €€i¢ i¢| e7(icos d—sin @)
/E () dE =ie"r /ﬂ/Q (1—M> &, —ee™?| e do. (4.57)
By taking then the limit ¢ — 0 we obtain

lim [ F(€)dE = —i2r|&|e . (4.58)

e—0 S,
In a similar way, taking £ = Re'? for the integral on Sy, yields
0 D2 i D2 i
1R%e 1R%e . .
F(&)d¢ = / < , - ) gfirlicose—sing) 4y (4.59)
/SR (&) 2 \Re? 4§, Re? -,

Since |e?f7s¢| < 1 and Rsin¢ < 0 for —7 < ¢ < 0, when taking the limit R — oo we
obtain

lim [ F(¢)d¢=0. (4.60)

R—o00 Sy
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Thus, taking the limits ¢ — 0 and R — o0 in (4.56) yields

/ F(€)d¢ = —i2m|&,|e T, T <0. (4.61)
In conclusion, from (4.55) and (4.61) we obtain that
/ F(€)d¢ = —i2n|&,|erll, T €R. (4.62)

Using (4.62) for {, = Z., and 7 = rsinfcos(¢) — ) yields then that the inverse
Fourier transform of (4.44), when considering the limiting absorption principle, is given by
GIE’(:L' y) _ _ZZoo 6—Zoo(y3+l‘3) /ﬂ— 6@'Zoorsin0|cos(w—<p)\ d@b (463)

’ 27 0

It can be observed that the integral in (4.63) is independent of the angle ¢, which we can
choose without problems as ¢ = 7/2 and therefore |cos(¢) — ¢)| = sint). Since

rsinf = |y, — x|, (4.64)
we can express (4.63) as
1 oo T A
Gﬁ(w7y) - _22_ e—Zoo(ya-i-x:a)/ eiZeolys—s|siny di. (4.65)
n 0

We observe that this expression describes the asymptotic behavior of the surface waves,
which are linked to the presence of the poles in the spectral Green’s function. Due (A.112)
and (A.244), we can rewrite (4.65) more explicitly as
7. .
GE(x,y) = _ZT o Zoo(ystasa) [jo (Zoo|ys — :v5|) + ZHO(ZOO|yS - w8|)} , (4.66)
where J; denotes the Bessel function of order zero (vid. Subsection A.2.4) and H, the

Struve function of order zero (vid. Subsection A.2.7).

If the limiting absorption principle is not considered, i.e., if Jm{¢,} = 0, then the
inverse Fourier transform of (4.44) could be computed in the sense of the principal value
with the residue theorem by considering, instead of C}{ - and Cp_, the contours depicted in
Figure 4.4. In this case we would obtain, instead of (4.62), the quantity

/OO F(§) d¢ = 27|&,| sin(&,|7]), T € R. (4.67)

o0

The inverse Fourier transform of (4.44) would be in this case
o
Gt (,y) = == e =0 Hy (Zooly, — ). (4.68)
which is correct from the mathematical point of view, but yields only a standing surface
wave, and not a desired outgoing progressive surface wave as in (4.66).

The effect of the limiting absorption principle, in the spatial dimension, is then given
by the difference between (4.66) and (4.68), i.e., by

(/S .
Gr(z,y) = GE(z,y) — Gi(x,y) = ——5 ¢ Zoolyst 3)J0(Zoo\ys —x]), (4.69)
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FIGURE 4.4. Complex integration contours without using the limiting absorption principle.

whose Fourier transform, and therefore the spectral effect, is given by

Gu(€) = GL(e) — G (g) = — oozt [§(c — 7.) + 3(6 + Zo)].  (470)

d) Spectral Green’s function without dissipation

The spectral Green’s function G without dissipation is therefore obtained by taking the
limit ¢ — 0 in (4.37) and considering the effect of the limiting absorption principle for the
appearing singularities, summarized in (4.70). Thus we obtain in the sense of distributions

. - o~ [€llys —as| T + |§| e~ |€l(ya+w3)
G(& s, w3) = — Ar|€] (Zoo — |§|> 47 |€|
_ ZQZ|_§OT o~ Zoolys+us) [5(5 — 7o) +0(E+ ZOO)}. 4.71)

For our further analysis, this spectral Green’s function is decomposed into four terms
according to

G = G + Gy + Gp, + Gp, (4.72)
where
R e~ l&llys—z3]
Goo(& Y3, 03) = —T’f" (4.73)
—~ €*|§\(y3+x3)
Gn(& ys, x3) = T 4.74)
~ 1 _ -
CL(& s ma) =~ e ZoWstms) [§(€ — Zoo) + (€ + Zo0)] (4.75)
~ 7 e~ 8l(yz+w3)
Gr(&ys, 13) = — : (4.76)
27"‘6’(200 - ’5‘)
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4.3.4 Spatial Green’s function
a) Spatial Green’s function as an inverse Fourier transform

The desired spatial Green’s function is then given by the inverse Fourier transform of
the spectral Green’s function (4.71), namely by

G —|¢]lyz—z3| lETSlnGcosuz ®) duv d
(@, 8#2/ / Y dg
/ / (Z + |§|> e*‘§|(y3+x3) 6i§rsin9c05(¢—<p) dw df
— [¢]
_ —2 e_Zoo(y3+333 (Z |y8 ‘)7 4.77)

where the spherical coordinates (4.46) are used again inside the integrals.

Due the linearity of the Fourier transform, the decomposition (4.72) applies also in the
spatial domain, i.e., the spatial Green’s function is decomposed in the same manner by

G = Gy + Gy + G + Gp. (4.78)

b) Term of the full-space Green’s function

The first term in (4.77) corresponds to the inverse Fourier transform of (4.73), and can
be rewritten, due (A.794), as the Hankel transform
1 o0
Gool@,y) = = [ 77N (ply, — =.[) dp. (4.79)
T Jo

The value for this integral can be obtained either from Watson (1944, page 384), by using
Sommerfeld’s formula (Magnus & Oberhettinger 1954, page 34) for k = 0, i.e.,

o 1
/ e =8l g (ply, — 4]) dp = ——,
0 ly — x|

from Gradshteyn & Ryzhik (2007, equation 6.611-1), or by directly computing the two
integrals appearing in the first term of (4.77), beginning with the exterior one. This way,
the inverse Fourier transform of (4.73) is readily given by

1
Goo(mu y) - =

Aty — x|
We observe that (4.81) is, in fact, the full-space Green’s function of the Laplace equation.
Thus Gy + G, + GR represents the perturbation of the full-space Green’s function G, due
the presence of the impedance half-space.

(4.80)

(4.81)

¢) Term associated with a Neumann boundary condition

The inverse Fourier transform of (4.74) is computed in the same manner as the term G,

It is given by
1 o0
GN(Q?, y) = T

= e~ te3) I, (ply, — 4]) dp, (4.82)
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and in this case, instead of (4.80), Sommerfeld’s formula becomes

o 1
/ ePu+a) I (oly — ) dp = —— (4.83)
0 ly — x|
where & = (21, x9, —x3) corresponds to the image point of « in the lower half-space. The
inverse Fourier transform of (4.74) is therefore given by
1

SR 4.84
4|y — | ( )

GN(w’y) =

which represents the additional term that appears in the Green’s function due the method
of images when considering a Neumann boundary condition, as in (4.21).

d) Term associated with the limiting absorption principle

The term G, the inverse Fourier transform of (4.75), is associated with the effect of
the limiting absorption principle on the Green’s function, and has been already calculated
in (4.69). It yields the imaginary part of the Green’s function, and is given by

7.
Gul@,y) = =% e =0 Jy (Zy, - @), (4.85)

e) Remaining term

The remaining term Gg, the inverse Fourier transform of (4.76), can be computed as
the integral

Zoo [ e rlustas)
Gl y) = 5 / ool — @]} dp (4.86)
We denote
0s = |y, — x| and U3 = Y3 + T3, (4.87)
and we consider the change of notation
Gr(z,y) = i;: e =" Gp(0s,v3), (4.88)

being
o0 e(ZOO —p)vs

Gp(0s,v3) = / ————Jo(osp) dp- (4.89)
0 Zoo - p
Consequently, by considering (4.83) we have for the ys-derivative of G that

%% (00 v3) = 7 /0 e Jo(0sp) dp — IZZTU;I' (4.90)
Following Pidcock (1985), the integral (4.86) can be thus expressed by
Gr(z,y) = Zeo Cat (GB(QS 0) + /”3 e dn) 4.91)
where -
Cp(0,,0) = /0 ﬁigjp ; dp. (4.92)
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To evaluate the integral (4.92), we consider the closed complex integration contour Cr .
depicted in Figure 4.5 and use the fact that

Hy'(0:p)

dp =0, (4.93)
CRE ZOO - p

where H ) denotes the zeroth order Hankel function of the first kind (vid. Subsection A.2.4).

A Jm{p}
R

CR,E

7 R Re{p}

FIGURE 4.5. Complex integration contour Cg ..

We can express (4.93) more explicitly as

Zoo—t H(l) . 0 ' R H(l) \
/ o (0sP) dp_i/ H(()l)<QS(ZOO+8619)>d9+/ Zo (0sp) dp
0 T

Zeo =P Zoote Loo TP
/2 H(l) (Q Rez@ K
S 19 0
- do — =0 4.94
Z/O " Zo — Rei / - ZT ’ (4.94)

where we use the relation (A.153) for v = 0 and where K o denotes the zeroth order modi-
fied Bessel function of the second kind (vid. Subsection A.2.5). By taking the limits ¢ — 0
and R — oo we obtain that
> Hé”(gsp) (1) 2 [ ([ Zy +iT
—d Hy ' (Zyos) — — ———— | Ko(os7)dT =0, 4.95

| i o) - 2 [ (55 ) Balen)dr =0, @99
where the integral on R tends to zero due the asymptotic behavior (A.139) of the Hankel
function H(()l). Considering the real part in (4.95) and rearranging yields

o JO(QS/)) 2Z<>o o KO(QST)
——dp =7Yy(Zos) + — ———=dr, 4.96
/0 Zuw—p"" TYo(Zeos) + ™ Jo Zgo“‘TQT (350

where Y, denotes the Neumann function of order zero. The integral on the right-hand side
of (4.96) is given by (Gradshteyn & Ryzhik 2007, equation 6.566—4)

27 [ Ko(osT) T
=) 72 e 47 = g [Ho(Zeo) ~Yo(Zxe)]. (4.97)
Hence, from (4.96) and (4.97) we get that
s
GB(QSa O) - 5 [HO(ZOOQS) + }/E)(ZOOQS>:| : (498)
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By replacing in (4.91), we can express the remaining term Gy as

Z,

GR(ma y) === e_Zoov3 (YO(ZOOQS) + HO oogs (499)

4

[ )

which corresponds to the representation derived by Kim (1965) and which was implicit in
the work of Havelock (1955). For the remaining integral in (4.99), we consider the fact that

v3 eZoon ZooV3 e
/0 \/QETH / = Qs n a2 ———da, (4.100)
where we appreciate that the impedance Z, appears only as a scaling factor for the vari-
ables o, and v3. We can hence simplify the notation, by assuming temporarily that Z,, = 1
and by scaling the result at the end correspondingly by Z,,. The power series expan-
sion (A.8) of the exponential function implies that

v3 el 0 U3 nn
———dnp = / ————dn (4.101)
/o Vo:+n? ; o nly/02+n?
Let us denote v
,'777,
I, = —d 4.102
nly/0% + n? 7 ( )

in which case we can show by mathematical induction and by computing carefully (using,
e.g., Gradshteyn & Ryzhik 2007, Dwight 1957, or Prudnikov et al. 1992) that

I = ln<v3 + 2+ v§>, (4.103)
I =+ 02, (4.104)

n—1 2n—2m—2 2
22=2m=2((n —m — 1))
. SO NY) _1\m 2n—2m—1 2m
Lo = viei ¥ o3 ZO( D (2n — 2m — 1)!1227(n!)? o =

N ((;!1))2" (%)2" <1D<U3 n m) In(o,) ) (n=1,2,...), (4.105)

" 2n —2m)! ol \® o o o

— 22n=2m ((n — m)!) 2n+1
n 27?5y
—1,2,..)). (4106
( (2n+ 1)!)2 ’ (n ) )

We remark that (4.106) can be equivalently expressed as

Vo3t

In — —1)™ Qm(

2ntd (2n—|—1)!mzzom!(n—m) )he; 2n —2m + 1

1" 22" () i
(2n+1))*

We observe that the second term in (4.105) is linked with the series expansion (A.99) of
the Bessel function J,, whereas the second term in (4.106) and (4.107) is associated with

) 2n—2m+1

|
—~
|

(n=1,2,...). (4.107)
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the series expansion (A.239) of the Struve function H,. Replacing these values in the
right-hand side of (4.101) and rearranging yields

dn = Jo(os) (1n<v3 + 02+ v3> In(os ) — gHO(QS)

+ /Rt <So(gs,vg)+Se(gs,v3)), (4.108)

| v
o Vet

where
92n (n|)2 2n+1 2m

% - (4.109)
(2n 4 1)1 220m+n40) ((m 4 n + 1)1)

m <2n)' 2m+n(m + TL)' ? 2n 2m
Se(os,v3) = > Y (1) ol \@nram 1) e (4.110)
Due (4.107), we could express (4.110) alternatively as

- (\/m)Qn—%n

2
Se(gs, v3) = Z 2n+1'z_:m' — Q)" A @D

Similar series expansions can be found in the article of Noblesse (1982). Scaling again the
variables o, and v3 by Z, in (4.108) and replacing in (4.99) implies that

oo _7 o
Gr(x,y) = o e~ %o 3 Jo(Z oo 0s) ln<Zoov3 + Zoor/ 0% + v%)
ZOO _Z v3 2
+ T € < %(ZOOQS) - ;JO(ZOOQS) ln(Zoon)
2

+ %’:\/ R R ( S0(Z o005, Zov3) + Se(Zoo 05, Zoovg)). (4.112)

f) Complete spatial Green’s function

The desired complete spatial Green’s function is finally obtained, as stated in (4.78), by
adding the terms (4.81), (4.84), (4.85), and (4.112). It is depicted graphically for Z,, = 1
and = (0,0, 2) in Figures 4.6 & 4.7, and given explicitly by

1 1 VA
G - _ - — =X o2 J(Z 05
@Y == =2 y—a 2 ° 0(Zoots)

Lo

+ 2_ e*Zoovsj (Zoogs) ln<ZooU3 + Zoo V Qg + U?2>>

T

Zeo _g vs 2

+ T € * }/O(ZOOQS) - %JO(ZOOQS) 1H(Zoogs)

2

+ %\/gg T 02 e Zous ( S0(Zo0s, Zoovs) + Se(Zso0s, Zoovg)), (4.113)

where the notation (4.87) is used and where the functions So and Se are defined respectively
in (4.109) and (4.110).
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(a) Real part (b) Imaginary part

FIGURE 4.6. Contour plot of the complete spatial Green’s function.

Im{G}

-20 8

_ 8
20 0s

(a) Real part (b) Imaginary part

FIGURE 4.7. Oblique view of the complete spatial Green’s function.

For the derivative of the Green’s function with respect to the y3-variable, it holds that

oG Ys — I3 U3 ZZ2 —Zoov3

el _ o0 U3 ] Zoo X

8y3($’y) Ar|ly — x| Aw|ly —x3 e 0(Zoo0s)
Zoo

where Gy is computed according to (4.112). The derivatives for the variables y; and y, can
be calculated by means of
Q_G:(?_Gﬁgszﬁ_Gﬂ 8_G:8_G8Q5:3_G@ (4.115)
Oy 0os Oy1 - os 0s Oy2  0os Oyz o, 05
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where

oG 0s 0s 22,
: 00 %oU3 Zoo X
90, Y = taly —ap Ty -ap T 2 ¢ {Zoots)
2

A
— 2—00 e~ Zoovs J1(Zs0s) In (Zoovg + ZoornJ 0% + V3 )
T

+ Z_ —ZooU3 QSJO(ZOOQS)

2 ErE (nr A

2

A 2

h(Zes))

oS

o &5 7Zoov3

ooQ57 oov3) + Se(Zoona Zoov3)>

D% JomT 7 T
+% 0} +vie Zoos(

0Se
oon; 00713) + 9 (ZoonaZoov3)); (4116)
0s
being
aS e o 22n+1 |2 2n+1 2m—1
o) =30 Y (e @
aQs n=0 m=1 (2n + 1)' 22(m+n+1)<(m +n+ 1)')

0 Se = = m m(2n)! 2t (m 4 n)! 2 20 2m-1
—— (0 v3)=>_ > (1) Tt ()7 ((2n+2m+1)! w2 (4.118)

4.3.5 Extension and properties

The half-space Green’s function can be extended in a locally analytic way towards
the full-space R? in a straightforward and natural manner, just by considering the expres-
sion (4.113) valid for all ,y € R?, instead of just for R?. As shown in Figure 4.8,
this extension possesses two pole-type singularities at the points  and &, a logarithmic
singularity-distribution along the half-line T = {y; = x1, yo = 9, y3 < —x3}, and is
continuous otherwise. The behavior of the pole-type singularities is characterized by

1
G, y) ~ ———, Yy —x (4.119)
drr|ly — x|
1 _
Gz, y) ~ ————0, y — Z. (4.120)
Ar|ly — Z|
The logarithmic singularity-distribution stems from the fact that when v3 < 0, then
7.
G(xz,y) ~ —ZT e’Z““Hél)(Zoogs), (4.121)

being H, él) the zeroth order Hankel function of the first kind, whose singularity is of loga-
rithmic type. We observe that (4.121) is related to the two-dimensional free-space Green’s
function of the Helmholtz equation (C.22), multiplied by the exponential weight

J(x,y) = 22 e~ 73, (4.122)
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@ = (Il,IQ,Ig)

FIGURE 4.8. Domain of the extended Green’s function.

Aslong as x3 # 0, it is clear that the impedance boundary condition in (4.16) continues
to be homogeneous. Nonetheless, if the source point  lies on the half-space’s boundary,
ie., if z3 = 0, then the boundary condition ceases to be homogeneous in the sense of
distributions. This can be deduced from the expression (4.77) by verifying that

. oG
lim {— ((:1:5, 0), y) + ZOOG((CBS, 0), y)} = 0, (Y,), (4.123)
y3—0t 8y3

where ; = (z1,22) and y, = (y1,¥2). Since the impedance boundary condition holds
only on {y3 = 0}, therefore the right-hand side of (4.123) can be also expressed by

1 1
Oz, (Ys) = §5w(y) + 5553(&/), (4.124)

which illustrates more clearly the contribution of each pole-type singularity to the Dirac
mass in the boundary condition.

It can be seen now that the Green’s function extended in the abovementioned way
satisfies, for £ € R3, in the sense of distributions, and instead of (4.16), the problem

( Find G(z,-) : R?* — C such that

AyG(x,y) = 04(y) + 0z(y) + J(z,y)dr(y) in D'(R‘?)’
g—g(w,y) + ZooG(z,y) = %535(:(/) + %553@) on {ys — 0},

+ Outgoing radiation condition for y € R? as |y| — oo,

(4.125)

\

where dy denotes a Dirac mass distribution along the Y-curve. We retrieve thus the known
result that for an impedance boundary condition the image of a point source is a point
source plus a half-line of sources with exponentially increasing strengths in the lower half-
plane, and which extends from the image point source towards infinity along the half-
space’s normal direction (cf. Keller 1979, who refers to decreasing strengths when dealing
with the opposite half-space).

We note that the half-space Green’s function (4.113) is symmetric in the sense that
G(z,y) =Gy, x) Ve, y € R? (4.126)
and it fulfills similarly
VyG(x,y) = V,G(y, x) and VoG, y) = VuG(y, x). (4.127)
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Another property is that we retrieve the special case (4.19) of a homogenous Dirichlet
boundary condition in Ri when Z,, — oo. Likewise, we retrieve the special case (4.21)
of a homogenous Neumann boundary condition in R} when Z,, — 0.

At last, we observe that the expression for the Green’s function (4.113) is still valid if
a complex impedance Z,, € C such that Im{Z,} > 0 and Re{Z,} > 0 is used, which
holds also for its derivatives (4.115), and (4.116).

4.4 Far field of the Green’s function

4.4.1 Decomposition of the far field

The far field of the Green’s function, which we denote by G/, describes its asymptotic
behavior at infinity, i.e., when |x| — oo and assuming that y is fixed. For this purpose, the
terms of highest order at infinity are searched. Likewise as done for the radiation condition,
the far field is decomposed into two parts, each acting on a different region. The first part,
denoted by ij , 1s linked with the asymptotic decaying condition at infinity observed when
dealing with bounded obstacles, and acts in the interior of the half-space while vanishing
near its boundary. The second part, denoted by Ggf , 1s associated with surface waves that
propagate along the boundary towards infinity, which decay exponentially towards the half-
space’s interior. We have thus that

G =g +a¥ (4.128)

4.4.2 Asymptotic decaying

The asymptotic decaying acts only in the interior of the half-space and is related to the
pole-type terms in (4.113), and also to the asymptotic behavior as x5 — oo of the remaining
terms. We remember that

1 1 VA !
G(z,y) = 1200 o~ Zevs J(Zs0) + Gr(m,y),  (4.129)

CAnle —y|  Anlz—g| 2

being § = (y1, Y2, —Yys3), and where different expressions for G were already presented
in (4.86), (4.99), and (4.112). Due the axial symmetry around the axis {0, = 0}, i.e.,
by using the same arguments as for (4.65), we can express the inverse Fourier transform
of (4.76) as

GR(ZI} y) — Z;’O /7r /OO ﬂ ei€os siny dé du. (4.130)
’ A2 Jo J_oo Zo — €]

This integral can be rewritten as

Zos T2 poo ,—pus .
Gr(zx,y) = ?/0 /0 y— cos(pgs smw) dpdi. (4.131)

The innermost integral in (4.131) is the same as the one that appears for the two-dimensional
case in (2.80), and can be computed in the same way. It corresponds to exponential integral
functions Ei (vid. Subsection A.2.3). By comparing (2.80) and (2.93), and by performing
a change of variables on the second term to account for a sign difference, we obtain the
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integral representation

Zoo /2 ) )
Gr(x,y) = o g~ Zeovs / €70 MY B (Zovg — i 2005 Sin Q) dep, (4.132)
m —m/2
which can be rewritten also as
Zo 1 e Zoolvs—ican)
GR(CU, y) =

== ——— Ei(Zs(v3 —ipsm)) dn.
Sl Iy i(Zoo(vs — i0sm)) dn
Now, as x3 — 00, we can consider the asymptotic behavior of the exponential integral

in (4.133). In fact, due (A.81) we have for z € C that

62

Bi(2) ~ — as Re{z} — oo. (4.134)

(4.133)

Hence, as x3 — oo it holds that
I dn 1
Gr(x,y) ~ —/ = —. (4.135)
2m% J1 (vg —igan)/1 = 27|z — g
The Green’s function (4.129) behaves thus asymptotically, when z3 — oo, as
1 1

G ~ — ) 4.136
Y ey il gl 130
By using Taylor expansions as in (D.29), we obtain that
1 1 (y—9)-= 1
_ =— @) . 4.137
oyl " ire g e O \JaP R

We express the point & as * = |x| &, being & = (sin # cos ¢, sin # sin ¢, cos #) a vector of
the unit sphere. The asymptotic decaying of the Green’s function is therefore given by

Y3 cos 6

G (z,y) = - ol (4.138)
and its gradient with respect to y by
cos 6 0
VG (z.y) = el (4.139)
1

4.4.3 Surface waves in the far field

An expression for the surface waves in the far field can be obtained by studying the
residues of the poles of the spectral Green’s function, which determine entirely their as-
ymptotic behavior. We already computed the inverse Fourier transform of these residues
in (4.66), using the residue theorem of Cauchy and the limiting absorption principle. This
implies that the Green’s function behaves asymptotically, when |xs| — oo, as

7. -
G(x,y) ~ —ZT e %% | Jo(Zso0s) + 1 Hy(Zoo0s) for vg > 0. (4.140)
This expression works well in the upper half-space, but fails to retrieve the logarithmic
singularity-distribution (4.121) in the lower half-space at o, = 0. In this case, the Struve
function Hj in (4.140) has to be replaced by the Neumann function Y{,, which has the same
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behavior at infinity, but additionally a logarithmic singularity at its origin. Hence in the
lower half-space, the Green’s function behaves asymptotically, when |x| — oo, as

7.
ZT e 2V (Z o)) for vy < 0. (4.141)
In general, away from the axis {gs = 0}, the Green’s function behaves, when |z;| — oo
and due the asymptotic expansions of the Struve and Bessel functions, as

Zoo ,
G(x,y) ~ —iy | om0 e~ Zoovs pilZoo0sm/4), (4.142)

By performing Taylor expansions, as in (C.37) and (C.38), we have that

et eIl ey '(1 0( 1 >> (4.143)
— 671 c0Yg ' Ls/|Ls + . .
Vos ]z ]

We express the point  on the surface as x, = |x,| &5, being & = (cos @, sin ¢) a unitary
surface vector. The surface-wave behavior of the Green’s function, due (4.142) and (4.143),
becomes thus

G(mvy) ~ =

. 7 . . .
Gl (x,y) = —ie7/4 Wzl e~ Zoos giloo|s| o= Zooys o120 Ys s (4.144)
S

and its gradient with respect to y is given by

ik A A . Cos
Vngf(ma Y) = ———— /A Do pilecl sl = Zooys o mi 2oy s | i o | (4.145)

\/ 27| x| i

4.4.4 Complete far field of the Green’s function

On the whole, the asymptotic behavior of the Green’s function as || — oo can be
characterized in the upper half-space through the addition of (4.136) and (4.140), and in
the lower half-space by adding (4.136) and (4.141). Thus if v3 > 0, then it holds that

1 1 7 ,
1000 (~Zoovs | 1 (Zoo0) + iHo(Zao0s) |, (4.146)

Gla,y) ~ - -
@Y~ ey T ey 2

and if v3 < 0, then
1 1 (Y
— _|_ — —
Am|le —y|  Ar|x — g| 2

Gz, y) ~ e 2= Y (7 0,). (4.147)

Consequently, the complete far field of the Green’s function, due (4.128), should be given
by the addition of (4.138) and (4.144), i.e., by

Cyscost | Zs

6—Zooﬂ?36’LZoo‘ws|e_zooy36_ZZOCys'wS' (4148)

GFf ’ —

@Y) =5 ap on[a,]
Its derivative with respect to y is likewise given by the addition of (4.139) and (4.145).
The expression (4.148) retrieves correctly the far field of the Green’s function, except in
the upper half-space at the vicinity of the axis {o; = 0}, due the presence of a singularity-
distribution of type 1/4/|xs|, which does not appear in the original Green’s function. A

130



way to deal with this issue is to consider in each region only the most dominant asymptotic
behavior at infinity. Since there are two different regions, we require to determine appro-
priately the interface between them. This can be achieved by equating the amplitudes of
the two terms in (4.148), i.e., by searching values of x at infinity such that

1 oo

= oot 4.149
ol \2ma]© (4.149)

where we neglected the values of vy, since they remain relatively near the origin. Further-
more, since the interface stays relatively close to the half-space’s boundary, we can also
approximate |xs| ~ |x|. By taking the logarithm in (4.149) and perturbing somewhat the
result so as to avoid a singular behavior at the origin, we obtain finally that this interface is
described by

1 ‘
T3 = ﬁln(l + 271 Z o | ]?). (4.150)

We can say now that it is the far field (4.148) which justifies the radiation condi-
tion (4.17) when exchanging the roles of « and y, and disregarding the undesired sin-
gularity around {po, = 0}. When the first term in (4.148) dominates, i.e., the asymptotic
decaying (4.138), then it is the first expression in (4.17) that matters. Conversely, when the
second term in (4.148) dominates, i.e., the surface waves (4.144), then the second expres-
sion in (4.17) is the one that holds. The interface between both is described by (4.150).

We remark that the asymptotic behavior (4.146) of the Green’s function and the expres-
sion (4.148) of its complete far field do no longer hold if a complex impedance Z,, € C
such that Jm{Z..} > 0and Re{Z,,} > 0is used, specifically the parts (4.140) and (4.144)
linked with the surface waves. A careful inspection shows that in this case the surface-wave
behavior of the Green’s function, as |xs| — 0o, decreases exponentially and is given by

7. .
Gla,y) ~ 52 7l | Jo(Zocs) + iHo(Zc0s) for vy >0,  (4.151)
whereas (4.141) continues to hold. Likewise, the surface-wave part of the far field is ex-
pressed for x3 > 0 as

Ggf(a:, y) = —ie /4 oo e 1%o0lm3 giZco|@s| g | Zoclys g =i Zooys s (4.152)
27| x|

but for z3 < 0 the expression (4.144) is still valid. The asymptotic decaying (4.136) and
its far-field expression (4.138), on the other hand, remain the same when we use a complex
impedance. We remark further that if a complex impedance is taken into account, then the
part of the surface waves of the outgoing radiation condition is redundant, and only the
asymptotic decaying part is required, i.e., only the first two expressions in (4.17), but now
holding for y3 > 0.

4.5 Numerical evaluation of the Green’s function

For the numerical evaluation of the Green’s function, we separate the space R? into
three regions: a near field, an upper far field, and a lower far field. In the near field,
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when |Z||v| < 15, being v = y — &, we use the expression (4.113) to compute
the Green’s function, truncating the double series of the functions So and Se, in (4.109)
and (4.110) respectively, after the first 30 terms for n and m. In the upper far field,
when |Z| [v| > 15 and | Zso| v3 > log (1 + 27| Zo|0%), we have from (4.146) that

. iz
Al —y|  Ar|x — y| 2

Glx,y) = e 7 | Jo(Zos0s) + iHy( Zoc0y) | (4153)

Similarly in the lower far field, when |Z| |v| > 15 and | Zo| v3 < log (1 + 27| Zs|03), it
holds from (4.147) that

G(z,y) =

The Bessel functions can be evaluated either by using the software based on the technical
report by Morris (1993) or the subroutines described in Amos (1986, 1995). The Struve
function can be computed by means of the software described in MacLeod (1996). Further
references are listed in Lozier & Olver (1994). The biggest numerical error, excepting the
singularity-distribution along the half-line T, is committed near the boundaries of the three
described regions, and amounts to less than |Z| - 1073,

L iZ
Al —y|  Aw|x — g| 2

e 7= (7 0,). (4.154)

4.6 Integral representation and equation

4.6.1 Integral representation

We are interested in expressing the solution u of the direct scattering problem (4.13) by
means of an integral representation formula over the perturbed portion of the boundary I',,.
For this purpose, we extend this solution by zero towards the complementary domain 2.,
analogously as done in (D.98). We define by (1. the domain (2. without the ball B, of
radius € > 0 centered at the point * € ()., and truncated at infinity by the ball By of
radius R > 0 centered at the origin. We consider that the ball B. is entirely contained
in €).. Therefore, as shown in Figure 4.9, we have that

Qre = (Q. N Bg) \ Be, (4.155)
where
Br={y e R®: |y| < R} and B.={yeQ. :|ly—=z|<e}  (4.156)
We consider similarly, inside €., the boundaries of the balls
St={yeR’: |y =R} and S.={yeQ.:|ly—=z|=¢}. (4157

We separate furthermore the boundary as I' = I\ U 'y, where

[h={yel: y;=0} and I ={yel: y;>0} (4.158)
The boundary I is likewise truncated at infinity by the ball Br, namely
[r=TNBr =T Ul =T8UT, (4.159)
where
I['=TyNBr  and I'f =T, N Bpg. (4.160)
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The idea is to retrieve the domain (), and the boundary I at the end when the limits R — oo
and ¢ — 0 are taken for the truncated domain (25 . and the truncated boundary I's.

FIGURE 4.9. Truncated domain Qg . for © € ().

We apply now Green'’s second integral theorem (A.613) to the functions v and G(x, -)
in the bounded domain 2 ., yielding

0= [ (uw)AGle.y) - Gl p)duly)dy

- [ (w5e - cenie ) aw
- [ (w5 @)~ e 5rw)) drw
+ /FR (u(y)g—i(w,y) ~G(z y)%@)) dy(y). (4.161)

The integral on S5 can be rewritten as

oG 0
[ o) (5 @) - ize6w) - 6w (5w - izaw)) | o)
SI% Ty T
oG ou
o (w5 ey -cevGo)aw.  we
which for R large enough and due the radiation condition (4.6) tends to zero, since
oG , C
/ S (Gt w) -izeGley)) dilw) < k@163
G(x,vy) (@(y) — iZoou(y)) dy(y)| < il InR (4.164)
s 0 \or SVETT
and
oG 0
[ (w5 @y -cevgio)aw < g @i
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for some constants C' > 0. If the function w is regular enough in the ball B., then the
second term of the integral on S, in (4.161), when € — 0 and due (4.119), is bounded by

/ G(z, y)%(y) dy(y)

for some constant C' > 0 and tends to zero. The regularity of u can be specified afterwards
once the integral representation has been determined and generalized by means of density
arguments. The first integral term on S, can be decomposed as

ou

—(y)

r

< (e sup
yEB:

, (4.166)

oG oG
| 5@y dm) =@ [ ey aw)
oG
[ Slwy) - u@)dy), @6
Se Ty
For the first term in the right-hand side of (4.167), by considering (4.119) we have that
G
/SE 8—@(w,y) dyy) — 1 (4.168)
while the second term is bounded by
oG
[ ) - we) G e )] < sup ) —u(@), @169
Se Ty yeB:

which tends towards zero when ¢ — (. Finally, due the impedance boundary condi-
tion (4.4) and since the support of f, vanishes on I, the term on I'z in (4.161) can be
decomposed as

/rp (ﬁ(w’ y) - Zly)G(, y)> u(y) dy(y) + /F G(z,y)/-(y) dy(y)

Ony,
oG
N / (a_(“” Y) + ZeGlz, y)) u(y) dy(y), (4.170)
rs Y2

where the integral on I['Z vanishes due the impedance boundary condition in (4.16). There-
fore this term does not depend on R and has its support only on the bounded and perturbed
portion I, of the boundary.

In conclusion, when the limits R — oo and € — 0 are taken in (4.161), then we obtain
for € (), the integral representation formula

@)= [ (5 @) - 2)Gla) Juw) ) + [ Gl fly) diw), @17
which can be alternatively expressed as
)= [ (uw)g @) - GewGie) ) diw. @i

It is remarkable in this integral representation that the support of the integral, namely the
curve [, is bounded. Let us denote the traces of the solution and of its normal derivative
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on I, respectively by

0
p=uly, and = | (4.173)
on r,
We can rewrite now (4.171) and (4.172) in terms of layer potentials as
u="D(u) —8(Zpn)+S(f) in €, (4.174)
u="D(u) —S) in €, (4.175)
where we define for & € (), respectively the single and double layer potentials as
svia) = [ Glaywiy)diy) (4.176)
Fp
0G
Du(@) = | 7 (@ y)uly)dr(y). (4.177)
L, Oy
We remark that from the impedance boundary condition (4.4) it is clear that
v=_2Zu— f,. (4.178)

4.6.2 Integral equation

To determine entirely the solution of the direct scattering problem (4.13) by means
of its integral representation, we have to find values for the traces (4.173). This requires
the development of an integral equation that allows to fix these values by incorporating
the boundary data. For this purpose we place the source point  on the boundary I' and
apply the same procedure as before for the integral representation (4.171), treating differ-
ently in (4.161) only the integrals on S.. The integrals on S, still behave well and tend
towards zero as R — oo. The Ball B,, though, is split in half by the boundary I', and the
portion 2, N B. is asymptotically separated from its complement in 5. by the tangent of
the boundary if I" is regular. If € I',, then the associated integrals on S, give rise to a
term —u(ax)/2 instead of just —u(x) as before for the integral representation. Therefore
we obtain for € I'; the boundary integral representation

- / (ﬁ(“’ y) - Zw)G@, y>)u<y> dy(y) + / Gl y) () Y(y). @179)

On the contrary, if £ € I, then the pole-type behavior (4.120) contributes also to the
singularity (4.119) of the Green’s function and the integrals on S. give now rise to two
terms —u(x)/2, i.e., on the whole to a term —u(x). For & € T the boundary integral
representation is instead given by

@)= [ (52 @) - 20)Glay) Juw) i) + [ Gl fy) di(w). @150

We must notice that in both cases, the integrands associated with the boundary I' admit an
integrable singularity at the point . In terms of boundary layer potentials, we can express
these boundary integral representations as

S =D —S(Zw+S(f.)  on L, (4.181)
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u=D(p)—S(Zp)+ S(f.) on Ty, (4.182)

where we consider, for € I', the two boundary integral operators

su@) = [ Glayviy) drw), (.18
Dut@) = [ G @ty dr () (4,184

We can combine (4.181) and (4.182) into a single integral equation on I’,, namely

(1 +Io)g +S(Zu) — D(p) = S(f.)  on T, (4.185)
where Z, denotes the characteristic or indicator function of the set I, i.e.,
1 if x eIy,
Io(x) = (4.186)
0 if ¢ ¢TI

It is the solution p on I, of the integral equation (4.185) which finally allows to char-
acterize the solution « in €2, of the direct scattering problem (4.13) through the integral
representation formula (4.174). The trace of the solution « on the boundary I' is then found
simultaneously by means of the boundary integral representations (4.181) and (4.182). In
particular, when x € I'y, and since Iy, C I, therefore it holds that

u=D(p)—S(Zu)+ S(f.) on I'. (4.187)
4.7 Far field of the solution

The asymptotic behavior at infinity of the solution u of (4.13) is described by the far
field. It is denoted by u// and is characterized by

u(x) ~ uf (x) as |x| — oc. (4.188)

Its expression can be deduced by replacing the far field of the Green’s function G/ and its
derivatives in the integral representation formula (4.172), which yields

oG
@)= [ (G wuty) - e wrly) ) drly). @189
I ny
By replacing now (4.148) and the addition of (4.139) and (4.145) in (4.189), we obtain that
cos 0 0
u(x) = — —— 0| -7y p(y) — ysv(y) | dy(y)
27 || T, 1
+i efm/él ZOO eonoxgezZoo|a:s|
27| x|
coS ¢
/ e P [ 7 sing | -my, u(y) +v(y) | dyy). (4.190)
1% 1
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The asymptotic behavior of the solution u at infinity, as || — oo, is therefore given by

u(x) = L {uA (&) + O(L)} + M {us (& )—{—O(L)} (4.191)
CER e Ed V] o EXYS

where we decompose « = |x| &, being & = (sin  cos p, sin # sin @, cos #) a vector of the

unit sphere, and x; = |x,| &,, being &, = (cos g, sin ) a vector of the unit circle. The
far-field pattern of the asymptotic decaying is given by
cosf U
@ =5 [ [0 [-nynw) - w) | ). @
m L 1

whereas the far-field pattern for the surface waves adopts the form

iz ' ) Ccos
S (&) = e | Py ey B [ 7 | gin g p1(y) +v(y) | dy(y).

U (&) = —F—

g = e | :
(4.193)

Both far-field patterns can be expressed in decibels (dB) respectively by means of the scat-

tering cross sections

A A
QA(&) [dB] = 20log,, ( |“T°£f’”)|>, (4.194)
Up
S A
Q3(@.) [a8] = 2010, ), @.195)
Ug
where the reference levels uj and uj are taken such that |uj| = |uj| = 1 if the incident

field is given by a surface wave of the form (4.15).

We remark that the far-field behavior (4.191) of the solution is in accordance with the
radiation condition (4.6), which justifies its choice.

4.8 Existence and uniqueness

4.8.1 Function spaces

To state a precise mathematical formulation of the herein treated problems, we have to
define properly the involved function spaces. Since the considered domains and boundaries
are unbounded, we need to work with weighted Sobolev spaces, as in Durdn, Muga &
Nédélec (2005b, 2009). We consider the classic weight functions

o=+vV1+r2  and log 0 = In(2 4 7?), (4.196)

where r = |x|. We define the domains

1

Qi = {m e x3> 27 ln(l + 27rZoor3), }, 4.197)
1

0?2 = {a: €0 a3 < ﬁln(l + 21 Zoor?), } (4.198)
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It holds that the solution of the direct scattering problem (4.13) is contained in the weighted
Sobolev space

ov
WHQ) = v:s € L), Vv e LX), —= € LX(QY), = ¢ LA(Q)),
() { . () () /e ( )07“ (%)
1 ov
L*(Q? — —iZ L2(Q3) 5. 4.1

With the appropriate norm, the space W!(),) becomes also a Hilbert space. We have
likewise the inclusion W'(,) C H\.(Q.), i.e., the functions of these two spaces differ
only by their behavior at infinity.

Since we are dealing with Sobolev spaces, even a strong Lipschitz boundary I' € C%!
is admissible. The fact that this boundary I is also unbounded implies that we have to use
weighted trace spaces like in Amrouche (2002). For this purpose, we consider the space

WY = {v: Y e HYT } (4.200)
1) =17 iogg € HV0)
Its dual space W ~/2(T") is defined via W°-duality, i.e., considering the pivot space
WoT :{v: ~Y err } (4.201)
1) =10 oy € 20
Analogously as for the trace theorem (A.531), if v € W' (£2,) then the trace of v fulfills
Yov = v|r € WYET). (4.202)
Moreover, the trace of the normal derivative can be also defined, and it holds that
0
N = oo|p € WYAT). (4.203)
on
We remark further that the restriction of the trace of v to I, is such that
Youlr, = v|r, € HY*(T}), (4.204)
0
nol, = 5|, € HVA(T,), (4.205)
on
and its restriction to I, yields
Wvlr. = vl € W (), (4.206)
0
nolr, = %m e WV2(T). (4.207)

4.8.2 Application to the integral equation

The existence and uniqueness of the solution for the direct scattering problem (4.13),
due the integral representation formula (4.174), can be characterized by using the integral
equation (4.185). For this purpose and in accordance with the considered function spaces,
we take 1 € HY/2(T},) and v € H~'/%(T},)). Furthermore, we consider that Z € L>°(T},) and
that f, € H~Y/(L,), even though strictly speaking f, € H~Y/2(L}).
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It holds that the single and double layer potentials defined respectively in (4.176)
and (4.177) are linear and continuous integral operators such that

S:HYVXT,) — W) and D:HYXT,) — WYQ,). (4.208)

The boundary integral operators (4.183) and (4.184) are also linear and continuous appli-
cations, and they are such that

S:HY*T,) — WYXT) and  D:HY*T,) — WY3(T). (4.209)
When we restrict them to I, then it holds that
S|y, : HY4(T,) — HY*(T,)  and D, : HY*(T,) — HY*(T,). (4.210)

Let us consider the integral equation (4.185), which is given in terms of boundary layer
potentials, for 1 € H'/%(T},), by

(L+Z0)5 +S(Zp) = D) = S(£.)  in H(T,). @211)

Due the imbedding properties of Sobolev spaces and in the same way as for the half-plane
impedance Laplace problem, it holds that the left-hand side of the integral equation corre-
sponds to an identity and two compact operators, and thus Fredholm’s alternative holds.

Since the Fredholm alternative applies to the integral equation, therefore it applies
also to the direct scattering problem (4.13) due the integral representation formula. The
existence of the scattering problem’s solution is thus determined by its uniqueness, and the
values for the impedance Z € C for which the uniqueness is lost constitute a countable set,
which we call the impedance spectrum of the scattering problem and denote it by 0. The
existence and uniqueness of the solution is therefore ensured almost everywhere. The same
holds obviously for the solution of the integral equation, whose impedance spectrum we
denote by ¢z. Since the integral equation is derived from the scattering problem, it holds
that 0, C ;. The converse, though, is not necessarily true. In any way, the set ¢, \ o is
at most countable. In conclusion, the scattering problem (4.13) admits a unique solution u
if Z ¢ 04, and the integral equation (4.185) admits a unique solution p if Z ¢ <.

4.9 Dissipative problem

The dissipative problem considers surface waves that lose their amplitude as they travel
along the half-space’s boundary. These waves dissipate their energy as they propagate and
are modeled by a complex impedance Z,, € C whose imaginary part is strictly posi-
tive, i.e., Jm{Z.} > 0. This choice ensures that the surface waves of the Green’s func-
tion (4.113) decrease exponentially at infinity. Due the dissipative nature of the medium,
it is no longer suited to take progressive plane surface waves in the form of (4.15) as the
incident field u;. Instead, we have to take a source of surface waves at a finite distance
from the perturbation. For example, we can consider a point source located at z € €2, in
which case the incident field is given, up to a multiplicative constant, by

ur(x) = G(x, z), (4.212)

139



where GG denotes the Green’s function (4.113). This incident field u; satisfies the Laplace
equation with a source term in the right-hand side, namely

Au; =06, in D'(Q), (4.213)

which holds also for the total field w7 but not for the scattered field u, in which case the
Laplace equation remains homogeneous. For a general source distribution g, whose sup-
port is contained in €., the incident field can be expressed by

ur(z) = G(x, z) * gs(z) = /Q G(x, z) gs(z) dz. (4.214)

This incident field u; satisfies now
Aur = g in D'(), (4.215)
which holds again also for the total field u, but not for the scattered field w.

It is not difficult to see that all the performed developments for the non-dissipative
case are still valid when considering dissipation. The only difference is that now a complex
impedance 7, such that Jm{Z,.} > 0 has to be taken everywhere into account.

4.10 Variational formulation

To solve the integral equation we convert it to its variational or weak formulation,
i.e., we solve it with respect to a certain test function in a bilinear (or sesquilinear) form.
Basically, the integral equation is multiplied by the (conjugated) test function and then the
equation is integrated over the boundary of the domain. The test function is taken in the
same function space as the solution of the integral equation.

The variational formulation for the integral equation (4.211) searches . € H'/%(T},)
such that Vo € H'/2(T},,) we have that

((1+20)5 +5(Zw) = D). @) = (S(£). ). (4216)
4.11 Numerical discretization

4.11.1 Discretized function spaces

The scattering problem (4.13) is solved numerically with the boundary element method
by employing a Galerkin scheme on the variational formulation of the integral equation.
We use on the boundary surface I, Lagrange finite elements of type ;. The surface I, is
approximated by the triangular mesh I'", composed by T flat triangles 7}, for 1 < j < T,
and I nodes r; € R?, 1 < i < I. The triangles have a diameter less or equal than A, and
their vertices or corners, i.e., the nodes 7;, are on top of I, as shown in Figure 4.10. The
diameter of a triangle K is given by

diam(K) = sup |y — x|. (4.217)

xz,ye K
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FIGURE 4.10. Mesh in‘, discretization of I,.

The function space H'/2(T},) is approximated using the conformal space of continuous
piecewise linear polynomials with complex coefficients

Qn={pn € CO)) : @nlr, € P1(C), 1< <T}. (4.218)

The space ()5, has a finite dimension /, and we describe it using the standard base func-
tions for finite elements of type [P, which we denote by {x; }§:1. The base function y; is
associated with the node 7; and has its support supp ) ; on the triangles that have r; as one
of their vertices. On 7; it has a value of one and on the opposed edges of the triangles its
value is zero, being linearly interpolated in between and zero otherwise.

In virtue of this discretization, any function ¢, € (), can be expressed as a linear
combination of the elements of the base, namely

I
on(@) = ¢ x;(x) for & € T, (4.219)
j=1

where ¢; € C for 1 < j < I. The solution u € H'?(T},) of the variational formula-
tion (4.216) can be therefore approximated by

I
pn(x) = Z,uj X () for © €T}, (4.220)
j=1

where y1; € Cfor 1 < j < I. The function f, can be also approximated by
I
f(x) = ij X () for eI}, with f; = f.(r)). (4.221)
j=1

4.11.2 Discretized integral equation

To see how the boundary element method operates, we apply it to the variational for-
mulation (4.216). We characterize all the discrete approximations by the index A, includ-
ing also the impedance and the boundary layer potentials. The numerical approximation

of (4.216) leads to the discretized problem that searches i, € @), such that Vi, € Qp,
Hh

<(1 +I§)7 + Sn(Znpn) — Dn(pn), 90h> = (Su(f1), on)- (4.222)
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Considering the decomposition of 1, in terms of the base {x;} and taking as test functions
the same base functions, ¢, = y; for 1 <17 < I, yields the discrete linear system

Zuj (%<(1 +I3)X5, X + (Su(Znx;)s xi) — (Da(x;), Xi>) = Z fi (Sh(x4), xa)-

(4.223)
This constitutes a system of linear equations that can be expressed as a linear matrix system:

Find g € C! such that
(4.224)
Mup=b.
The elements m;; of the matrix M are given, for 1 <+¢,5 < I, by
1
Mmij = §<(1 +I0)x5: Xi) + (Su(Znx;), xi) — (Da(x;)s Xi), (4.225)
and the elements b; of the vector b by
I
bi = (Su(f1),xi) =D fi(Su(xg)xa)  for 1<i<T. (4.226)

Jj=1

The discretized solution uy,, which approximates u, is finally obtained by discretizing
the integral representation formula (4.174) according to

up, = Dp(pn) — Sh(Znpn) + Sn(f1), (4.227)

which, more specifically, can be expressed as

up = Zﬂj (Dr(x) — Su(Znx;)) + ij Sn(x;)- (4.228)

Jj=1 Jj=1

We remark that the resulting matrix M is in general complex, full, non-symmetric,
and with dimensions I x I. The right-hand side vector b is complex and of size I. The
boundary element calculations required to compute numerically the elements of M and b
have to be performed carefully, since the integrals that appear become singular when the
involved segments are adjacent or coincident, due the singularity of the Green’s function at
its source point. On [, the singularity of the image source point has to be taken additionally
into account for these calculations.

4.12 Boundary element calculations

The boundary element calculations build the elements of the matrix M resulting from
the discretization of the integral equation, i.e., from (4.224). They permit thus to compute
numerically expressions like (4.225). To evaluate the appearing singular integrals, we adapt
the semi-numerical methods described in the report of Bendali & Devys (1986).
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We use the same notation as in Section D.12, and the required boundary element inte-
grals, for a,b € {0,1} and ¢, d € {1, 2, 3}, are again

c c ‘ t '
zig= [ [ () (i) G i ixia) (4229)

7B = s\ ()" 96 )dL(y) dK () (4.230)
a,b—/K/L B @ 8—%(33,3/ Y (). .

All the integrals that stem from the numerical discretization can be expressed in terms
of these two basic boundary element integrals. The impedance is again discretized as a
piecewise constant function Zj,, which on each triangle 7} adopts a constant value Z; € C.
The integrals of interest are the same as for the full-space impedance Laplace problem and
we consider furthermore that

(Xj» Xi) if r;ell,

(1+Z8)x5: xi) = (4.231)
< 0 ! > 2 <XJ7XZ> if 'f’j & F().

To compute the boundary element integrals (4.229) and (4.230), we can easily isolate
the singular part (4.119) of the Green’s function (4.113), which corresponds in fact to the
Green’s function of the Laplace equation in the full-space, and therefore the associated in-
tegrals are computed in the same way. The same applies also for its normal derivative. In
the case when the triangles K and L are are close enough, e.g., adjacent or coincident, and
when L € T} or K € T}, being T the approximation of Iy, we have to consider addi-
tionally the singular behavior (4.120), which is linked with the presence of the impedance
half-space. This behavior can be straightforwardly evaluated by replacing « by & in for-
mulae (D.295) to (D.298), i.e., by computing the quantities ZF(&) and ZG{(&) with the
corresponding adjustment of the notation. Otherwise, if the triangles are not close enough
and for the non-singular part of the Green’s function, a three-point Gauss-Lobatto quadra-
ture formula is used. All the other computations are performed in the same manner as in
Section D.12 for the full-space Laplace equation.

4.13 Benchmark problem

As benchmark problem we consider the particular case when the domain Q. C R is
taken as the exterior of a half-sphere of radius /2 > 0 that is centered at the origin, as shown
in Figure 4.11. We decompose the boundary of €} as I' = I, UI'y, where I, corresponds to
the upper half-sphere, whereas I, denotes the remaining unperturbed portion of the half-
space’s boundary which lies outside the half-sphere and which extends towards infinity.
The unit normal n is taken outwardly oriented of ()., e.g., m = —r on I,.
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FIGURE 4.11. Exterior of the half-sphere.

The benchmark problem is then stated as

[ Find u : (). — C such that

Au=0 in €,
(4.232)
—% + Zu=f, on I,
on

+ Outgoing radiation condition as || — oo,

where we consider a constant impedance Z € C throughout I' and where the radiation
condition is as usual given by (4.6). As incident field u; we consider the same Green’s
function, namely

ur(x) = Gz, 2), (4.233)
where z € (). denotes the source point of our incident field. The impedance data func-
tion f, is hence given by

fa(x) = {(;)S (x,z) — ZG(x, 2), (4.234)

and its support is contained in I},. The analytic solution for the benchmark problem (4.232)
is then clearly given by

u(x) = —G(x, 2). (4.235)
The goal is to retrieve this solution numerically with the integral equation techniques and
the boundary element method described throughout this chapter.

For the computational implementation and the numerical resolution of the benchmark
problem, we consider integral equation (4.185). The linear system (4.224) resulting from
the discretization (4.222) of its variational formulation (4.216) is solved computationally
with finite boundary elements of type P; by using subroutines programmed in Fortran 90,
by generating the mesh FZ? of the boundary with the free software Gmsh 2.4, and by repre-
senting graphically the results in Matlab 7.5 (R2007b).

We consider a radius R = 1, a constant impedance Z = 5, and for the incident field
a source point z = (0,0,0). The discretized perturbed boundary curve sz has I = 641
nodes, T' = 1224 triangles and a discretization step h = 0.1676, being

h = max diam(7}). (4.236)

1<j<T
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The numerically calculated trace of the solution y;, of the benchmark problem, which

was computed by using the boundary element method, is depicted in Figure 4.12. In the
same manner, the numerical solution wy, is illustrated in Figures 4.13 and 4.14 for an an-

gle ¢ = 0. It can be observed that the numerical solution is close to the exact one.

-0.1
0.2 Q&\\\\\\\Q\\Q\\Q\\\\\Q

Smfpn}

Re{pn}

(b) Imaginary part

(a) Real part
FIGURE 4.12. Numerically computed trace of the solution py,.

1

(b) Imaginary part

Z1
(a) Real part
FIGURE 4.13. Contour plot of the numerically computed solution uy, for ¢ = 0.

Likewise as in (D.346), we define the relative error of the trace of the solution as
I, — 2(ph
[Tk pe — pinl| 2 (Th) (4.237)

Y

Eyo(h,Th) =
2< p) ||HhM||L2(r;)
where 11,1 denotes the Lagrange interpolating function of the exact solution’s trace u, i.e.,
I I
() =Y p(ry) xi(x) and (@) =D pjx;(x) for z €T} (4.238)
j=1 j=1
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(a) Real part (b) Imaginary part

FIGURE 4.14. Oblique view of the numerically computed solution uy, for ¢ = 0.

In our case, for a step h = 0.1676, we obtained a relative error of Fs(h, F;}) = 0.05359.
As in (D.350), we define the relative error of the solution as
(b, ) — Lu = =@y (4.239)

|ul| Lo )

being Q;, = {x € Q. : ||| < L} for L > 0. We consider L = 3 and approximate {2,
by a triangular finite element mesh of refinement % near the boundary. For & = 0.1676, the
relative error that we obtained for the solution was E..(h, Q21) = 0.05509.

The results for different mesh refinements, i.e., for different numbers of triangles 7',
nodes [, and discretization steps h for F]?, are listed in Table 4.1. These results are illus-
trated graphically in Figure 4.15. It can be observed that the relative errors are approxi-
mately of order 12

TABLE 4.1. Relative errors for different mesh refinements.

T 1 h Ea(h 1) Ex(h, )
46 30 0.7071 2.863-107T 4.582-107!
168 95 04320 3.096-10"' 4.131-10"
466 252 0.2455 1.233-107! 1.373-10°
700 373 0.1987 8.414-1072 9.262- 1072
1224 641 0.1676 5.359-102 5.509 - 1072
2100 1090 0.1286 3.182-1072 4.890- 102
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FIGURE 4.15. Logarithmic plots of the relative errors versus the discretization step.
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V. HALF-SPACE IMPEDANCE HELMHOLTZ PROBLEM

5.1 Introduction

In this chapter we study the perturbed half-space impedance Helmholtz problem using
integral equation techniques and the boundary element method.

We consider the problem of the Helmholtz equation in three dimensions on a compactly
perturbed half-space with an impedance boundary condition. The perturbed half-space
impedance Helmholtz problem is a wave scattering problem around the bounded pertur-
bation, which is contained in the upper half-space. In acoustic scattering the impedance
boundary-value problem appears when we suppose that the normal velocity is propor-
tional to the excess pressure on the boundary of the impenetrable perturbation or obsta-
cle (vid. Section A.11). The special case of frequency zero for the volume waves has
been treated already in Chapter IV. The two-dimensional case is considered in Chapter III,
whereas the full-space impedance Helmholtz problem with a bounded impenetrable obsta-
cle is treated thoroughly in Appendix E.

The main application of the problem corresponds to outdoor sound propagation, but
it is also used to describe the propagation of radio waves above the ground. The problem
was at first considered by Sommerfeld (1909) to describe the long-distance propagation of
electromagnetic waves above the earth. Different results for the electromagnetic problem
were then obtained by Weyl (1919) and later again by Sommerfeld (1926). After the arti-
cles of Van der Pol & Niessen (1930), Wise (1931), and Van der Pol (1935), the most useful
results up to that time were generated by Norton (1936, 1937). We can likewise mention
the later works of Bafios & Wesley (1953, 1954) and Bafios (1966). The application of the
problem to outdoor sound propagation was initiated by Rudnick (1947). Other approxi-
mate solutions to the problem were thereafter found by Lawhead & Rudnick (1951a,b) and
Ingard (1951). Solutions containing surface-wave terms were obtained by Wenzel (1974)
and Chien & Soroka (1975, 1980). Further references are listed in Nobile & Hayek (1985).
Other important articles that attempt to solve the problem are the ones of Briquet & Fil-
ippi (1977), Attenborough, Hayek & Lawther (1980), Filippi (1983), Li et al. (1994),
and Attenborough (2002), and more recently also Habault (1999), Ochmann (2004), and
Ochmann & Brick (2008), among others. The problem can be likewise found in the book
of DeSanto (1992). The physical aspects of outdoor sound propagation can be found in
Morse & Ingard (1961) and Embleton (1996).

The Helmholtz equation allows the propagation of volume waves inside the considered
domain, and when it is supplied with an impedance boundary condition, then it allows also
the propagation of surface waves along the boundary of the perturbed half-space. The
main difficulty in the numerical treatment and resolution of our problem is the fact that the
exterior domain is unbounded. We solve it therefore with integral equation techniques and a
boundary element method, which require the knowledge of the associated Green’s function.
This Green’s function is computed using a Fourier transform and taking into account the
limiting absorption principle, following Durdn, Muga & Nédélec (20055, 2009), but here an
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explicit expression is found for it in terms of a finite combination of elementary functions,
special functions, and their primitives.

This chapter is structured in 13 sections, including this introduction. The direct scat-
tering problem of the Helmholtz equation in a three-dimensional compactly perturbed half-
space with an impedance boundary condition is presented in Section 5.2. The computation
of the Green’s function, its far field, and its numerical evaluation are developed respec-
tively in Sections 5.3, 5.4, and 5.5. The use of integral equation techniques to solve the
direct scattering problem is discussed in Section 5.6. These techniques allow also to repre-
sent the far field of the solution, as shown in Section 5.7. The appropriate function spaces
and some existence and uniqueness results for the solution of the problem are presented in
Section 5.8. The dissipative problem is studied in Section 5.9. By means of the variational
formulation developed in Section 5.10, the obtained integral equation is discretized using
the boundary element method, which is described in Section 5.11. The boundary element
calculations required to build the matrix of the linear system resulting from the numerical
discretization are explained in Section 5.12. Finally, in Section 5.13 a benchmark problem
based on an exterior half-sphere problem is solved numerically.

5.2 Direct scattering problem

5.2.1 Problem definition

We consider the direct scattering problem of linear time-harmonic acoustic waves on
a perturbed half-space Q. C R3, where R? = {(z1,72,73) € R® : z3 > 0}, where the
incident field u; and the reflected field uy are known, and where the time convention e~**
is taken. The goal is to find the scattered field u as a solution to the Helmholtz equation
in the exterior open and connected domain €., satisfying an outgoing radiation condition,
and such that the total field u;, decomposed as up = u; + ug + u, satisfies a homogeneous
impedance boundary condition on the regular boundary I' = T,,UT, (e.g., of class C?). The
exterior domain €2, is composed by the half-space R? with a compact perturbation near the
origin that is contained in R3 , as shown in Figure 5.1. The perturbed boundary is denoted
by I, while I, denotes the remaining unperturbed boundary of R? , which extends towards
infinity on every horizontal direction. The unit normal n is taken outwardly oriented of €2,
and the complementary domain is denoted by 2, = R?\ Q... A given wave number k > 0 is
considered, which depends on the pulsation w and the speed of wave propagation c through
the ratio k = w/c.

The total field uy satisfies thus the Helmholtz equation
Aur+Kur =0 in Q, (5.1

which is also satisfied by the incident field u;, the reflected field ug, and the scattered
field u, due linearity. For the total field u; we take the homogeneous impedance boundary

condition

T =0 on T (5.2)
on
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FIGURE 5.1. Perturbed half-space impedance Helmholtz problem domain.

where Z is the impedance on the boundary, which is decomposed as
Z(x) = Zoo + Zy(x), xel, (5.3)

being Z,, > 0 real and constant throughout I', and Z,(x) a possibly complex-valued
impedance that depends on the position x and that has a bounded support contained in I',.
The case of complex Z, and k will be discussed later. If Z = 0 or Z = oo, then we retrieve
respectively the classical Neumann or Dirichlet boundary conditions. The scattered field u
satisfies the non-homogeneous impedance boundary condition

_ Ou + Zu=f, on T, (5.4)
on

where the impedance data function f, is known, has its support contained in I},, and is
given, because of (5.2), by

ou ou
fo=—L — Zur+—2—Zugr  on I. (5.5)

on on
An outgoing radiation condition has to be also imposed for the scattered field u, which
specifies its decaying behavior at infinity and eliminates the non-physical solutions, e.g.,
ingoing volume or surface waves. This radiation condition can be stated for » — oo in a

more adjusted way as

C ou C 1
< — — = < = if ——In(1
lu| < " and 5 thu| < = i T3> 57 n(l+ pr),
(5.6)
1
lu| < % and % — i/ Z2 4+ K?u| < g if 253 < ﬁln(l + Br),

for some constants C' > 0, where r = |z| and 3 = 8772 /\/Z% + k2. It implies that
two different asymptotic behaviors can be established for the scattered field u. Away from
the boundary I' and inside the domain (2., the first expression in (5.6) dominates, which
corresponds to a classical Sommerfeld radiation condition like (E.8) and is associated with
volume waves. Near the boundary, on the other hand, the second expression in (5.6) resem-
bles a Sommerfeld radiation condition, but only along the boundary and having a different
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wave number, and is therefore related to the propagation of surface waves. It is often ex-

pressed also as
0
’a|u| BN
T

<

(5.7)

’ws”

where x; = (1, x2).

Analogously as done by Durdn, Muga & Nédélec (20055, 2009), the radiation condi-
tion (5.6) can be stated alternatively as

lu] < — and ? —iku| < 20 if x5 > COre,
reTe T reTe
(5.8)
C 0 C
”LL| S W and a—;j: — i\/ Zgo + k2u S E if I3 S C’f’a,

for 0 < o < 1/2 and some constants C' > 0, being the growth of Cr® bigger than the
logarithmic one at infinity. Equivalently, the radiation condition can be expressed in a more
weaker and general formulation as

2 2
lim/ ﬂdfy:O and  lim R@—z’ku dy =0,
R—o00 S}}{ R R—o00 SI}E 87‘
) 5.9
lim/ @d < and lim/ L %—z\/Z2+k;2u dv=0
R—o00 5122 lnR " >0 R—o0 SI% IHR 8r ee T
where
1
Sp = {mGRi: x| = R, m3>ﬁln(1+ﬁR)}, (5.10)
1
Sp = {xGRi: x| = R, x3<ﬁln(1+ﬁR)}. (5.11)
We observe that in this case
/ dy=0O(R?)  and / dy = O(RInR). (5.12)
Sk Si

The portions St and S3 of the half-sphere and the terms depending on S? of the radiation
condition (5.9) have to be modified when using instead the polynomial curves of (5.8). We
refer to Stoker (1956) for a discussion on radiation conditions for surface waves.

The perturbed half-space impedance Helmholtz problem can be finally stated as
[ Find u : (). — C such that

Au+Eu=0 in €,
(5.13)
—@ +Zu=f, on I,
on

+ Outgoing radiation condition as |x| — oo,

where the outgoing radiation condition is given by (5.6).
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5.2.2 Incident and reflected field

To determine the incident field u; and the reflected field up, we study the solutions up
of the unperturbed and homogeneous wave propagation problem with neither a scattered
field nor an associated radiation condition, being u; = u; + ug. The solutions are searched
in particular to be physically admissible, i.e., solutions which do not explode exponen-
tially in the propagation domain, depicted in Figure 5.1. We analyze thus the half-space
impedance Helmholtz problem

Aup + Eup =0 in R3,
(5.149)
g% + Zoour =0 on {z3=0}.
R
T3
}»1‘2
X1
{.%’3 = 0}, Zoo
3

FIGURE 5.2. Positive half-space Ri.

Two different kinds of independent solutions wu exist for the problem (5.14). They are
obtained by studying the way how progressive plane waves of the form e?*® can be adjusted
to satisfy the boundary condition, where the wave propagation vector k = (ky, ko, k3) is
such that (k - k) = k2.

The first kind of solution corresponds to a linear combination of two progressive plane
volume waves and is given, up to an arbitrary multiplicative constant, by
, Zoo +1k3\ &
ik-x o ik-x
ur(x) =e"* — | —— | e
r(®) (Zoo — ik;g)
where k € R? and k = (ki, ko, —k3). Due the involved physics, we consider that k3 < 0.
The first term of (5.15) can be interpreted as an incident plane volume wave, while the

second term represents the reflected plane volume wave due the presence of the boundary
with impedance. Thus

, (5.15)

ur(xz) = e*?, (5.16)

B Zoo +iks\ ik

up(x) = (Zoo — ik;g) [

It can be observed that the solution (5.15) vanishes when k3 = 0, i.e., when the wave
propagation is parallel to the half-space’s boundary. The wave propagation vector k, by
considering a parametrization through the angles of incidence #; and ¢; for 0 < 0; < 7/2

(5.17)
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and —m < ¢; < 7, can be expressed as k = (—k sin 0 cos ¢y, —k sin 6y sin ¢y, —k cos ;).
In this case the solution is described by

UT<1:> _ e—zk(xl sin 6 cos pr+x2 sin 0y sin py+x3 cos )

B (Zoo — ik cos O

: efik(zl sin 07 cos pr+x2 sin @y sin pr—x3 cosGI). (518)
Lo + ik cosO;

The second kind of solution, up to an arbitrary scaling factor, corresponds to a progres-
sive plane surface wave, and is given by

up(x) = ur(x) = gths ®s g ZooTs (ks - k) = Zfo + k2 s = (r1,22). (5.19)

It can be observed that plane surface waves correspond to plane volume waves with a com-
plex wave propagation vector k = (k,iZ,,), where k, € R?. They are guided along the
half-space’s boundary, and decrease exponentially towards its interior, hence their name.
In this case there exists no reflected field, since the waves travel along the boundary. We
remark that the plane surface waves vanish completely for classical Dirichlet (Z,, = o0)
or Neumann (Z,, = 0) boundary conditions.

5.3 Green’s function

5.3.1 Problem definition

The Green’s function represents the response of the unperturbed system to a Dirac
mass. It corresponds to a function G, which depends on the wave number k, on the
impedance Z,, on a fixed source point € R?, and on an observation point y € R3.
The Green’s function is computed in the sense of distributions for the variable y in the
half-space R? by placing at the right-hand side of the Helmholtz equation a Dirac mass d,
centered at the point . It is therefore a solution for the radiation problem of a point source,

namely
( Find G(z, ) : R} — C such that

AyG(x,y) + kG (x, y) = 62(y) in D'(R3),
0G (5.20)
8 Us (CB y) + Z G(m y) =0 on {y3 = 0}7

|+ Outgoing radiation condition as |y| — oo.

The outgoing radiation condition, in the same way as in (5.6), is given here as |y| — oo by

¢ oG ¢ . In(1+ 5lyl)
f kSl LA VA
G| < Tl and 8ry —ikG| < B if y3 > 7.
| (5.21)
1
G| < O e | —z\/Z2 + k2G < s < n( +5’y|)7
V1Yl (% 27 o,

for some constants C' > 0, independent of r = |y|, where and 3 = 8772 /\/Z2 + k2.
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5.3.2 Special cases

When the Green’s function problem (5.20) is solved using either homogeneous Dirich-
let or Neumann boundary conditions, then its solution is found straightforwardly using the
method of images (cf., e.g., Morse & Feshbach 1953).

a) Homogeneous Dirichlet boundary condition

We consider in the problem (5.20) the particular case of a homogeneous Dirichlet
boundary condition, namely

which corresponds to the limit case when the impedance is infinite (Z,, = o0). In this
case, the Green’s function G can be explicitly calculated using the method of images,
since it has to be antisymmetric with respect to the plane {y3 = 0}. An additional im-
age source point & = (1, x2, —x3), located on the lower half-space and associated with a
negative Dirac mass, is placed for this purpose just opposite to the upper half-space’s source
point @ = (z1,x9,x3). The desired solution is then obtained by evaluating the full-space
Green’s function (E.22) for each Dirac mass, which yields finally
etkly—=| etkly—z| ik

ik
- =~ (Kly —2[) + = (kly — 7). (523
47T|y—90\+47rly—a‘c] Ar 0 (kly w‘)+4ﬂ o (kly—x[). (5.23)

G(z,y) =

b) Homogeneous Neumann boundary condition

We consider in the problem (5.20) the particular case of a homogeneous Neumann
boundary condition, namely

oG

a_ny(wu y) - Oa Yy e {y?) = 0}7 (524)

which corresponds to the limit case when the impedance is zero (Z,, = 0). As in the
previous case, the method of images is again employed, but now the half-space Green’s
function G has to be symmetric with respect to the plane {y3 = 0}. Therefore, an addi-
tional image source point Z = (1, x2, —z3), located on the lower half-space, is placed just
opposite to the upper half-space’s source point @ = (1, 2, x3), but now associated with
a positive Dirac mass. The desired solution is then obtained by evaluating the full-space
Green’s function (E.22) for each Dirac mass, which yields

eik‘y_ml eikly_:a Zk

&
Y (kly — ) — —h" (kly — Z). (5.25)

G(z,y) = ym

Tnly—x| Anly—&| 4«
5.3.3 Spectral Green’s function
a) Boundary-value problem

To solve (5.20) in the general case, we use a modified partial Fourier transform on the
horizontal (y1, y2)-plane, taking advantage of the fact that there is no horizontal variation
in the geometry of the problem. To obtain the corresponding spectral Green’s function, we
follow the same procedure as the one performed in Durén et al. (2005b0). We define the
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forward Fourier transform of a function F'(, (-, -, y3)) : R? — C by

~ 1 )
F(€’ yg,l'g) = %/ F(m’ y) 6_15‘(ys_w5) dy57 E = (51752) € R27 (526)
R2
and its inverse by
1 ~ ,
F(z,y) = o /2 F(&ys, m3) €5 W7®) dg, Y, = (y1,12) € R? (5.27)
R

where ¢, = (71, 75) € R? and thus ¢ = (x,, 13).

To ensure a correct integration path for the Fourier transform and correct physical
results, the calculations have to be performed in the framework of the limiting absorption
principle, which allows to treat all the appearing integrals as Cauchy principal values. For
this purpose, we take a small dissipation parameter € > 0 into account and consider the
problem (5.20) as the limit case when € — 0 of the dissipative problem

Find G.(z,-) : RS — C such that

AyGe(x,y) + Gz, y) = 02(y) in D/(R3), (5.28)
0G.
gy B Y) + ZocGe(,y) =0 on {yz =0},

Y3

where k. = k + ic. This choice ensures a correct outgoing dissipative volume-wave be-
havior. In the same way as for the Laplace equation, the impedance Z., could be also
incorporated into this dissipative framework, i.e., by considering Z. = Z., + ic, but it is
not really necessary since the use of a dissipative wave number k. is enough to take care
of all the appearing issues. Further references for the application of this principle can be
found in Bonnet-BenDhia & Tillequin (2001), Hazard & Lenoir (1998), and Nosich (1994).

Applying thus the Fourier transform (5.26) on the system (5.28) leads to a linear second
order ordinary differential equation for the variable y3, with prescribed boundary values,
given by

9*G. . 5(ys —

PO e (1~ k2)Gute) = Lo

853 (5.29)
dys (5) + ZooGa(g) =0, y3 = 0.

To describe the (&1, £>)-plane, we use henceforth the system of signed polar coordinates
g+ if &>0,
&= & if & =0, and 1) = arccot (?), (5.30)
2
—VEE+Eif & <0,

where —o0o < £ < oo and 0 < ¥ < 7. From (5.29) it is not difficult to see that the
solution G depends only on ||, and therefore only on &, since |¢| = |€]. We remark that
the inverse Fourier transform (5.27) can be stated equivalently as

1 > " ] —x1) Ccos —x2) sin
Flz,y) = o / / F(€ 5 ys, wg)lg] et comvtnmed il dy dg. - (5.31)
—oo J 0
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We use the method of undetermined coefficients, and solve the homogeneous differ-
ential equation of the problem (5.29) respectively in the zone {y € R? : 0 < y3 < 3}
and in the half-space {y € Rf’r : y3 > x3}. This gives a solution for G, in each domain,
as a linear combination of two independent solutions of an ordinary differential equation,
namely

G-(€) aeVEHm ppe VIR for 0 <y < (5.32)
ceVERys 4 JemVE s for y3 > x3. .
The unknowns a, b, ¢, and d, which depend on £ and x5, are determined through the bound-
ary condition, by imposing continuity, and by assuming an outgoing wave behavior.

b) Complex square roots

Due the application of the limiting absorption principle, the square root that appears in
the general solution (5.32) has to be understood as a complex map £ — /&2 — k2, which
is decomposed as the product between /¢ — k. and /¢ + k., and has its two analytic
branch cuts on the complex ¢ plane defined in such a way that they do not intersect the
real axis. Further details on complex branch cuts can be found in the books of Bak &
Newman (1997) and Felsen & Marcuwitz (2003). The arguments are taken in such a way
that arg (£ — k.) € (=27, Z) for the map /& — k., and arg ({ + k.) € (—3,2F) for the
map /€ + k.. These maps can be therefore defined by (Durén et al. 2005b)

i 1 /¢ d
VE — ke = —in/|k| e2®8®e) exp (5/ il ) (5.33)
0

77—7%

and

i 1 [¢
VE+ ke = /|k.| e228%<) exp (5/ dn ) (5.34)
0

n+ ke
Consequently /&2 — k2 is even and analytic in the domain shown in Figure 5.3. It can be
hence defined by

3
VE K =€~k E T ke = —ikeexp ( / ﬁ dn), (5.35)
0 €

and is characterized, for £, k € R, by

52 - kzy 52 Z k27
/2 2 = { _Vi\/m’ e (5.36)

We remark that if £ € R, then arg({ — k.) € (—m,0) and arg(§ + k.) € (0,7). This
proceeds from the fact that arg(k.) € (0, ), since by the limiting absorption principle it
holds that Jm{k.} = ¢ > 0. Thus arg (v€—k.) € (—3,0), arg (VE+ k) € (0,%),
and arg <\/§2 — k:g) € (—Z,Z). Hence, the real part of the complex map /&2 — k2 for

272
real £ is strictly positive, i.e., Re {\ /£ — kg} ~ 0. Therefore the function e~ V& k2 us g
even and exponentially decreasing as y3 — oo.

157



Jm{c}A

FIGURE 5.3. Analytic branch cuts of the complex map /&2 — k2.

¢) Spectral Green’s function with dissipation

Now, thanks to (5.32), the computation of @E is straightforward. From the boundary
condition of (5.29) a relation for the coefficients a and b can be derived, which is given by

a <Zoo +Ee— k2> +b (ZOO _Jeo k:2> —0. (5.37)
On the other hand, since the solution (5.32) has to be bounded at infinity as y3; — oo, and
since Re {\ /&2 — k?} > (), it follows then necessarily that

c=0. (5.38)
To ensure the continuity of the Green’s function at the point y3 = x3, it is needed that
d=aeVe 2 (5.39)
Using relations (5.37), (5.38), and (5.39) in (5.32), we obtain the expression

ée(f) — qeVE&kws [6—\/52—k‘§ lys—z3| _ (2 T v 22 Zz) 52 k2 (ys+zs ] (5.40)

The remaining unknown coefficient a is determined by replacing (5.40) in the differential
equation of (5.29), taking the derivatives in the sense of distributions, particularly

3 { —\/&2—k2 ys— rsl} —\/€2 — ]{;52 sign(ys - xg) e VE k2 |y37r3|’ (5.41)
Ys
and 9
a—{sign(y;; —x3)} = 20(ys — x3). (5.42)
Y3

So, the second derivative of (5.40) becomes

TG (¢) = q eV [<52 ) e VIRl _ g [ 5y — )

dy3
_ (Zoo + \/@> (€ — 1) e VERustas) | (543
Zoo — /& — K2 )
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This way, from (5.40) and (5.43) in the first equation of (5.29), we obtain that

e~V &2—k2 x3
a= . (5.44)

/€% — k2

Finally, the spectral Green’s function @5 with dissipation ¢ is given by

—\/ E2—k2 |yz—x3] Z 2 k2 52 k2 (y3+x3)
¢ + Ve - (5.45)
A /€2 — k2 Zoo — /&2 — K2 47‘(‘\/52— k2

d) Analysis of singularities

és(f;y:s,x?)) - =

To obtain the spectral Green’s function G without dissipation, the limit £ — 0 has to
be taken in (5.45). This can be done directly wherever the limit is regular and continuous
on . Singular points, on the other hand, have to be analyzed carefully to fulfill correctly
the limiting absorption principle. Thus we study first the singularities of the limit function
before applying this principle, i.e., considering just £ = 0, in which case we have

R e~V &2—k? lyz—wx3| Zoo + /52 k2 52 kz (y3+w3)
G = — + . (5.46)

olé) N Zoo — /E— k2 4m/§2 e
Possible singularities for (5.46) may only appear when || = k or when |{| = &,, being

& = /22 + k2, 1i.e., when the denominator of the fractions is zero. Otherwise the function
is regular and continuous.

For ¢ = k and £ = —F the function (5.46) is continuous. This can be seen by writing
it, analogously as in Durdn, Muga & Nédélec (2005b), in the form
5 H(g(¢))
Go(§) @ (5.47)
where
9(&) = V& — k2, (5.48)
and
H(B) = L (-aﬁw-m LR <y3+~’03>), BecC. (5.49)
AT Zow —

Since H ([3) is an analytic function in 5 = 0, since H(0) = 0, and since

H(g(¢)) — H(0)

lim Go(&) = i = H'(0), 5.50
g_lgclk () g_lgzlk g(&) (0) ( )
we can easily obtain that
.o~ 1 1
i, Co©) = - (1 5+l =l = (42, (551
being thus @0 bounded and continuous on ¢ = k and £ = —k.
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For £ = &, and £ = —¢,, where §, = \/Z2 + k2, the function (5.46) presents two
simple poles, whose residues are characterized by

: al _ Zos —Zoo(y3+x3)
gggb@fF@)GdO——$2W@e : (5.52)

To analyze the effect of these singularities, we have to study the computation of the inverse
Fourier transform of

-~ Zoo — . . 1 1
Grl§) = 2z e~ mtit ) (§+£ e ) (5.53)

which has to be done in the frame of the limiting absorption principle to obtain the correct
physical results, i.e., the inverse Fourier transform has to be understood in the sense of

7 e Zoo(ystms) [m oo 1 1 o
G x, — lim oo / / ( o ) ez{’rsm@cos(zﬁ—ap) ded }’
P( y) e—0 { 471'25}7 0 . 6 + gp 5 _ €p |€’ 5(57724)

where now &, = \/Z2 + k2, which is such that Jm{¢,} > 0, and where the spatial vari-
ables inside the integrals are expressed through the spherical coordinates

Y1 — 1 = rsinf cos @, 0<r <o,
Ys — Tg = rsinfsin p, for 0<6<m, (5.55)
Y3 — X3 = rcosb, —T<p<T.

To perform correctly the computation of (5.54), we apply the residue theorem of com-
plex analysis (cf., e.g., Arfken & Weber 2005, Bak & Newman 1997, Dettman 1984) on
the complex meromorphic mapping

B 1 ier
r0= (g ) 20

which admits two simple poles at £, and —¢,, where Jm{&,} > 0 and 7 € R. We already
did this computation for the Laplace equation and obtained the expression (4.62), namely

/MF@ym:—ﬁﬂ@w%i T €R. (5.57)

[e.9]

Using (5.57) for &, = \/Z2 + k% and 7 = rsinfcos(y) — ) yields then that the
inverse Fourier transform of (5.53), when considering the limiting absorption principle, is
given by _

GE(x,y) = _ZZ_OO e—Zoo(y3+x3)/ eieersindlcos(=e)l 4y, (5.58)
’ 27 0
It can be observed that the integral in (5.58) is independent of the angle ¢, which we can

choose without problems as ¢ = 7/2 and therefore |cos(¢) — ¢)| = sint). Since

rsinf = |y, — x4, (5.59)
we can express (5.58) as
oo T .
GIQ(;’;’ y) = __22 e—Zoo(y3+$3)/ etplYs—as|siny d. (5.60)
m 0
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We observe that this expression describes the asymptotic behavior of the surface waves,
which are linked to the presence of the poles in the spectral Green’s function. Due (A.112)
and (A.244), we can rewrite (5.60) more explicitly as

Zoo . .
G (z,y) = —ZT e~ Zoolustas) |:J0(€p‘ys —x,|) + iHo(&y, — ws’)]7 (5.61)

where J; denotes the Bessel function of order zero (vid. Subsection A.2.4) and H, the
Struve function of order zero (vid. Subsection A.2.7).

If the limiting absorption principle is not considered, i.e., if Jm{{,} = 0, then the
inverse Fourier transform of (5.53) could be again computed in the sense of the principal
value with the residue theorem. In this case we would obtain, instead of (5.57) and just as
the expression (4.67) for the Laplace equation, the quantity

/OO F(§) d¢ = 2m|& | sin(&,7]), T €R. (5.62)

[e.9]

The inverse Fourier transform of (5.53) would be in this case
Zoo
Gpl(m,y) = == e =T H (& |y, — ), (5.63)

which is correct from the mathematical point of view, but yields only a standing surface
wave, and not a desired outgoing progressive surface wave as in (5.61).

The effect of the limiting absorption principle, in the spatial dimension, is then given
by the difference between (5.61) and (5.63), i.e., by
Gr(z,y) = Gp(z,y) — Gpl(x,y) = —MTW e Bt m) I (& ly, —my[),  (5.64)
whose Fourier transform, and therefore the spectral effect, is given by
Gi() = Gp(&) — G (€) = —ﬁ—g eI [5(6 — ) + 36 +8)]. (565

e) Spectral Green’s function without dissipation

The spectral Green’s function G without dissipation is therefore obtained by taking the
limit ¢ — 0 in (5.45) and considering the effect of the limiting absorption principle for the
appearing singularities, summarized in (5.65). Thus we obtain in the sense of distributions

;0 e V&l Zoo + /€ — K e~ VE R (ys+as)
G(&ys,x3) = — Arr/E2 — k2 + Zoo —JE—R2) dm\/E—R2
_ ZQZ|_§°<|> e P (¢ — €)1+ 5(E +,)]. (5.66)

For our further analysis, this spectral Green’s function is decomposed into four terms
according to
G = Gy + Gy + G, + Gpg, (5.67)
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where

e~V &=k lyz—xs3]

Goo(& Yz, 73) = — , 5.68
(5 Y3 .Tg) 47‘_\/@ ( )

—~ e~V £2—k2 (y3+=3)

Gn (& Y3, 13) = — (5.69)

/e — k2
;Z’—g e Zeate) [5(¢ — &)+ 8(E+E)], (5.70)
Zooe—\/ £2—k2? (y3+x3)

2= (2o — O F)

5.3.4 Spatial Green’s function

@L(f;ys,f?,) = =

Gr(&;ys, x3) = (5.71)

a) Spatial Green’s function as an inverse Fourier transform

The desired spatial Green’s function is then given by the inverse Fourier transform of
the spectral Green’s function (5.66), namely by

1 OO ﬂe_ &2 lys —s| &7 sin 0 cos(yP—
Gl == g | | e e awg

Z + 52 k2 52 k2 (ysts) &7 sin 6 cos(yY—
I TEAN =R —

g

—Te*Zw@S”S o(&oly, — @5]) (5.72)

where the spherical coordinates (5.55) are used again inside the integrals.

Due the linearity of the Fourier transform, the decomposition (5.67) applies also in the
spatial domain, i.e., the spatial Green’s function is decomposed in the same manner by

G = Gy + Gy + G, + Gp. (5.73)

b) Term of the full-space Green’s function

The first term in (5.72) corresponds to the inverse Fourier transform of (5.68), and can
be rewritten, due (A.794), as the Hankel transform

1 e~V PP—k? |ys—m3|

The value for this integral can be obtained by using Sommerfeld’s formula (Magnus &
Oberhettinger 1954, page 34)

e_ V p2_k2 |y3—x3\ ( | |) d eZk|y_m‘
‘]0 PlYs — Tg|)paAp = —.
0 \p?—k? ly — x|

Go(,y) = — Jo(plys — s]) pdp. (5.74)

(5.75)
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This way, the inverse Fourier transform of (5.68) is readily given by
eyl

Go(x,y) = Ty —a| _Eh (k|y — ), (5.76)

where h(()l) denotes the spherical Hankel function of order zero of the first kind (vid. Sub-
section A.2.6). We observe that (5.76) is, in fact, the full-space Green’s function of the
Helmholtz equation. Thus Gy + G, + Gg represents the perturbation of the full-space
Green'’s function GG, due the presence of the impedance half-space.

¢) Term associated with a Neumann boundary condition

The inverse Fourier transform of (5.69) is computed in the same manner as the term G,
It is given by

1 00 e*\/pL_kQ(strfES)
— J —
T A ey (ply,

and in this case, instead of (5.75), Sommerfeld’s formula becomes
e~V P*—k? (y3+w3) ( | |) etkly—=|
JO PlYs — Ls pdp = —1
0 VP —k? ly — z|

where & = (z1, 9, —x3) corresponds to the image point of « in the lower half-space. The
inverse Fourier transform of (5.69) is therefore given by

Gy(z,y) = — z,|) pdp, (5.77)

(5.78)

67Lk|y—i:\ Z]C
Cy(@,y) = =077 = —3h0 (kly — &), (5.79)
which represents the additional term that appears in the Green’s function due the method
of images when considering a Neumann boundary condition, as in (5.25).

d) Term associated with the limiting absorption principle

The term G, the inverse Fourier transform of (5.70), is associated with the effect of
the limiting absorption principle on the Green’s function, and has been already calculated
in (5.64). Itis given by

Gr(m,y) = ———= e Zst®) Iy (¢ |y, — a4)). (5.80)

e) Remaining term

The remaining term Gpg, the inverse Fourier transform of (5.71), can be computed as
the integral

G / —\/ p?—k? (y3+z3)
(z,y)
o m( S VFR)

To simplify the notation, we define

Jo(ply, — ®s[) pdp.  (5.81)

Os = |ys - 115| and U3 = Y3 + T3, (582)
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and we consider

Gr(m,y) = == e 7="Gp(0s,v3), (5.83)

27r
where

m( N

Consequently, by considering (5.78) we have for the ys-derivative of G that

ile? ©eVr R

G (987 U3

) Jo(pos) pdp. (5.84)

Oy @) = | = Tolee pdp
— —— eZoovs (5.85)

The value of the inverse Fourier transform (5.81) can be thus obtained by means of the
primitive with respect to y3 of (5.85), i.e.,
7 , vs giky/02+n? g
G = 2 Ao ——e“"dn. 5.86

R(ma y) ot € - \/W € n ( )
Formulae of this kind, but without the term linked to the limiting absorption principle, were
developed in Ochmann (2004) and Ochmann & Brick (2008) by using the complex equiv-
alent source method, a more generalized image method. The expression (5.86) contains
an integral with an unbounded lower limit, but even so, due the exponential decrease of its
integrand, it can be adapted to be well suited for numerical evaluation. Its advantage lies
in the fact that it expresses intuitively the term G as a primitive of known functions. We
observe that further related expressions can be obtained through integration by parts.

To compute (5.86) numerically, we can represent it in an equivalent manner as

p zk o2+n? Z
e =" | Gp(os, w3) Tdn |, (5.87)
ws \/QSTU
for some w3 € R. If the term Gp( s, w3) can be estimated satisfactorily in some way, then
the remaining integral in (5.87) can be evaluated without difficulty by means of numerical
quadrature formulae, since its integration limits are finite. One way to achieve this is to

consider the asymptotic behavior of Gg(gs, w3) as ws — —oo, which is given by

GB(QSawi’)) ~ 7TY’O(prs)- (588)

The behavior (5.88) stems from the asymptotic behavior (5.127) of the Green’s function,
and particularly from (5.121), which is discussed later in Section 5.4. The term G can be
thus computed numerically as

G ( ) Zoo —ZooV3 ( Y (5 ) + /v3 eik v QngnQ Z, n d (5 89)
R\T,Y) = e ”> Yo st e ni, .
2 ws 02+ n?

which works quite well even for not so negative values of w3 < 0. The expression (5.89),
though, becomes unstable around g, = 0 and has to be modified accordingly near these

Zos

Grl@,y) = o~
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value. To deal with this issue, we consider the remaining term of the half-space Green’s
function for the Laplace equation, expressed in (4.99) and represented explicitly in (4.112).
Due its asymptotic behavior (4.147), and particularly (4.141), we can characterize it as

Z v e
Gri(x,y) = =2 g7 Zeovs <7TYO(ZOOQS) +/ ——dn|. (5.90)
2 ws /Qz + 12

Therefore, when p; is close to zero and instead of (5.89), we consider rather the expression

Gl y) ~ 2 ¢ ( Yol6y0.) = 7ol Zug) + [ e =Lz
RZT,Y)~R—e 7% TYo\GpOs) — TYo(LooOs ———c"7'an
21 ws /034—7]2

+ GRL(way)v (591)

where the term Gy, is computed as explained in Section 4.3, i.e., as (4.112). We remark
that the expressions (5.89) and (5.91) require an exponential decrease of the integrand to
work well, i.e., that Re{ 7.} > 0.

f) Complete spatial Green’s function

The desired complete spatial Green’s function is finally obtained, as stated in (5.73), by
adding the terms (5.76), (5.79), (5.80), and (5.86). It is depicted graphically in Figures 5.4
&55fork=12,7Z, =1,and x = (0,0, 2), and it is given explicitly by

etkly—| etkly—z| iZ00 g
— . _ - oovSJ
Tly—a Gy—a 2 ¢ &)

7 v3 iky/03+n? P

RSP ASY o
+ o e . —Q§+7726 7,
where the notation (5.82) is used. The integral in (5.92) is computed numerically as (5.91),
when g, is close to zero, and as (5.89) elsewhere.

G(CC, y) =

(5.92)

(a) Real part (b) Imaginary part

FIGURE 5.4. Contour plot of the complete spatial Green’s function.
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FIGURE 5.5. Oblique view of the complete spatial Green’s function.

For the derivative of the Green’s function with respect to the ys-variable, it holds that

oy, @ Y) 47T|y_m|3( ikly w|)+47r|y_j|3( ikly —
i22 Zoovs Zooelkly z|
1000 (=Zovs (¢ o) — 7. Gl 5.93

where Gp is given in (5.86) and computed according to (5.89) or (5 .91). The derivatives
for the variables y; and y, can be calculated by means of

oG  0G 0o, 0G vy oG  0G 0o, 0G vy
dy Do, Dy1 oy o, and dy2 Doy Oy Do o) G99
where
oG 0s etkly—=| ‘ 05 etkly—z| ' _
a—gs(a},y) = m(l — ikly — @) + m(l — ikly — )
' 0247
e 0+ L [ B ) ey

(5.95)

The integral in (5.95) is computed numerically in the same way as the term G, namely in
the sense of (5.91), when g, is close to zero, and in the sense of (5.89) elsewhere.

5.3.5 Extension and properties

The half-space Green’s function can be extended in a locally analytic way towards
the full-space R? in a straightforward and natural manner, just by considering the ex-
pression (5.92) valid for all ,y € R?, instead of just for R?. As shown in Figure 5.6,
this extension possesses two pole-type singularities at the points = and &, a logarithmic
singularity-distribution along the half-line T = {y; = x1, yo = 9, y3 < —x3}, and is
continuous otherwise. The behavior of the pole-type singularities is characterized by

1
G(m7 y) ~ =

P — Yy —x, (5.96)
Ar|ly — x|
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1

Glx,y) ~ ——, y— T (5.97)
dr|ly — &
The logarithmic singularity-distribution stems from the fact that when v3 < 0, then
o _z
G@,y) ~ === H (6,0,), (5.98)

being H(()l) the zeroth order Hankel function of the first kind, whose singularity is of loga-
rithmic type. We observe that (5.98) is related to the two-dimensional free-space Green’s
function of the Helmholtz equation (C.22), multiplied by the exponential weight

J(x,y) = 2706 2", (5.99)

(?) T = (.7,'1,33'2, _xS)
|

i

T

FIGURE 5.6. Domain of the extended Green’s function.

Aslong as x3 # 0, it is clear that the impedance boundary condition in (5.20) continues
to be homogeneous. Nonetheless, if the source point x lies on the half-space’s boundary,
1.e., if 3 = 0, then the boundary condition ceases to be homogeneous in the sense of
distributions. This can be deduced from the expression (5.72) by verifying that

. oG
lim {—((ws, 0),y) + ZoG (s, 0), y)} = 0z, (y,), (5.100)
ys—0t | Oy

where ¢, = (71, 22) and y, = (y1,y2). Since the impedance boundary condition holds
only on {ys = 0}, therefore the right-hand side of (5.100) can be also expressed by

1 1
Oz, (Y,) = §5m(y) + 55@(3/)7 (5.101)

which illustrates more clearly the contribution of each pole-type singularity to the Dirac
mass in the boundary condition.
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It can be seen now that the Green’s function extended in the abovementioned way
satisfies, for € R?, in the sense of distributions, and instead of (5.20), the problem

( Find G(z,-) : R* — C such that

AyG(z,y) + kG, y) = 6(y) + 6z(y) + J(x,y)dr(y) in D'(R?),

oG 1 1 (5.102)

a (w, y) + ZooG(wa y) - §6m(y) + 55:7:(3/) on {y?) - 0}7
Ys

+ Outgoing radiation condition for y € R? as |y| — oo,

\
where dy denotes a Dirac mass distribution along the Y-curve. We retrieve thus the known
result that for an impedance boundary condition the image of a point source is a point
source plus a half-line of sources with exponentially increasing strengths in the lower half-
plane, and which extends from the image point source towards infinity along the half-
space’s normal direction (cf. Keller 1979, who refers to decreasing strengths when dealing
with the opposite half-space).

We note that the half-space Green’s function (5.92) is symmetric in the sense that
G(x,y)=Gy,x) Vr,ycR® (5.103)
and it fulfills similarly
V,G(z,y) = V,G(y, x) and ViGl(x,y) = V.G(y, x). (5.104)

Another property is that we retrieve the special case (5.23) of a homogenous Dirichlet
boundary condition in Ri when Z,, — oo. Likewise, we retrieve the special case (5.25)
of a homogenous Neumann boundary condition in R? when Z,, — 0. A particularly
interesting case occurs when Z,, = ik, in which case {, = 0 and the primitive term
of (5.92) can be characterized explicitly, namely

ik|y—a| ik|y—ax|
€ € —ikvs

Gz, y) = e

Ty —=| dny—a 2
e

+ ;—5”““3 Ei(z’kvg ik +v§), (5.105)
T

where Ei denotes the exponential integral function (vid. Subsection A.2.3). Analogously,

when k = iZ,, we have again that {, = 0 and that the primitive term of (5.92) can be
characterized explicitly, namely

e_ZOO‘y_a:l e_ZOOIy_:E‘ ZZ
G = — — _ X —Zoovs
@Y == =z mw—a 2
Lo
- 2 e Ei(Zoovg —ZoJ P+ v§>. (5.106)
T

At last, we observe that the expression for the Green’s function (5.92) is still valid if
a complex wave number & € C, such that Jm{k} > 0 and Re{k} > 0, and a complex
impedance 7, € C, such that Im{Z,} > 0 and Re{Z, } > 0, are used, which holds also
for its derivatives.
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5.4 Far field of the Green’s function

5.4.1 Decomposition of the far field

The far field of the Green’s function, which we denote by G/, describes its asymptotic
behavior at infinity, i.e., when || — oo and assuming that y is fixed. For this purpose,
the terms of highest order at infinity are searched. Likewise as done for the radiation
condition, the far field can be decomposed into two parts, each acting on a different region.
The first part, denoted by G{/f, is linked with the volume waves, and acts in the interior
of the half-space while vanishing near its boundary. The second part, denoted by Ggf , 18
associated with surface waves that propagate along the boundary towards infinity, which
decay exponentially towards the half-space’s interior. We have thus that

G =all +c¥ (5.107)

5.4.2 Volume waves in the far field

The volume waves in the far field act only in the interior of the half-space and are
related to the terms of the spherical Hankel functions in (5.92), and also to the asymptotic
behavior as x3 — oo of the regular part. The behavior of the volume waves can be obtained
by applying the stationary phase technique on the integrals in (5.72), as performed by
Duran, Muga & Nédélec (2005b, 2009). This technique gives an expression for the leading
asymptotic behavior of highly oscillating integrals in the form of

I(\) = / f(s)e¥®) ds, (5.108)
Q

as A — oo, where ¢(s) is a regular real function, where |f(s)| is integrable, and where the
domain 2 C R? may be unbounded. Further references on the stationary phase technique
are Bender & Orszag (1978), Dettman (1984), Evans (1998), and Watson (1944). Integrals
in the form of (5.108) are called generalized Fourier integrals. They tend towards zero
very rapidly with ), except at the so-called stationary points for which the gradient of the
phase V¢ becomes a zero vector, where the integrand vanishes less rapidly. If s, is such a
stationary point, i.e., if V@(sg) = 0, and if the double-gradient or Hessian matrix H ¢(so)
is non-singular, then the main asymptotic contribution of the integral (5.108) is given by

I(\) ~

o etasign{He(so)}

N /] det Holsy)] f(so

where sign{ H ¢} is the signature of the Hessian matrix, which denotes the number of
positive eigenvalues minus the number of negative eigenvalues. Moreover, the residue is
uniformly bounded by C'A\~? for some constant C' > 0 if the point s is not on the boundary
of the integration domain.

)ei>@5(30)

, (5.109)

The asymptotic behavior of the volume waves is related with the terms in (5.72) which
do not decrease exponentially as x3 — oo, i.e., with the integral terms for which /£? — k2
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is purely imaginary, which occurs when |£| < k. Hence, as x3 — oo it holds that

G \/éTkQ |z3—ys| —igr sjnacos(d}*ﬁ)d d
" SWQ// N €le Y d¢

Z 3 ]{52 52 k2 (z34y3) . .
82/ A ( +F ) e smeess =04y dg, (5.110)
m

— K2 k2

where we use the notation

r1 — Yy = rsinacos g, 0<r<oo,
— Yo = rsinasin [, for 0<a<lm, (5.111)
XT3 — Y3 = rCosq, —m<pB<.

By considering the representation (5.27), we can express (5.110) equivalently as

G(x,y) ~ L/ Zoo ZIV R Z & aifiTE g Lmdg, (5.112)
812 Jigl<k \ Zoo + i1/ k2 — €2 k2 — ¢

H(&) =/ k2 — & — &2 cosa — & sinacos 3 — & sinasin S. (5.113)

The phase ¢ has only one stationary point, namely & = (—k sin «a cos 3, —k sin asin f3),
which is such that |£| < k. Hence, from (5.109) and as x3 — 0o, we obtain that

where

etklz—yl Zo —ikcosa e*lz=1l
G ~N—_— > 5.114
(@) 4r|x — y| (Zoo—i—z'kcosa) Al — g’ ( )
where y = (yl, Yo, —y3). By performing Taylor expansions, as in (E.34) and (E.35), we
have that

¢ _ & oikya/lal (1 n (’)( )) (5.115)

lz -yl |z ||

ik|z—7g| ik|x| o 1
= -ikwa/lal (1 + O( )) (5.116)

lz—g| |z ||

We express the point x as = |x| &, being & = (sin 0 cos ¢, sin f sin ¢, cos #) a vector of
the unit sphere. Similar Taylor expansions as before yield that

Lo —itkcosa  Z, —ikcosf 1
s === 1 — . 5.117
Zoo + ik cos a Zoo—i—ik:cos0< +O(|m|)> ( )

The volume-wave behavior of the Green’s function, from (5.114) and due (5.115), (5.116),
and (5.117), becomes thus

e

- Zo —tkcost .
—tkxy [ 1 o 2ikys cos 0 5.118
drlz| © ( +Zoo+ik‘cos9€ )’ ( )

170



and its gradient with respect to y is given by

o . in 0 cos
ike®l=l Zoo —ikcost St
VG (z,y) = e"they [ 22 7 p2ikyscost | infsing | |. (5.119)
4r|x| Zoo + ik cos O " cosd

5.4.3 Surface waves in the far field

An expression for the surface waves in the far field can be obtained by studying the
residues of the poles of the spectral Green’s function, which determine entirely their as-
ymptotic behavior. We already computed the inverse Fourier transform of these residues
in (5.61), using the residue theorem of Cauchy and the limiting absorption principle. This
implies that the Green’s function behaves asymptotically, when |xs| — oo, as

G(z,y) ~ —ZZTOO e 23| Jo(£,04) + iHo(ﬁpgs)] for v > 0. (5.120)
This expression works well in the upper half-space, but fails to retrieve the logarithmic
singularity-distribution (5.98) in the lower half-space at p;, = 0. In this case, the Struve
function Hj in (5.120) has to be replaced by the Neumann function Y{,, which has the same
behavior at infinity, but additionally a logarithmic singularity at its origin. Hence in the
lower half-space, the Green’s function behaves asymptotically, when |x,;| — oo, as
(VA
2
In general, away from the axis {os = 0}, the Green’s function behaves, when |z;| — oo
and due the asymptotic expansions of the Struve and Bessel functions, as

1o

V 277-£st

By performing Taylor expansions, as in (C.37) and (C.38), we have that

eigpgs e’fp‘m3| . ( ( 1 ))
_ —i€pYs ks /|xs]

= e 1+0 . (5.123)
vV Os \/|$5| |£B5|

We express the point & on the surface as x; = |x;| &5, being &5 = (cos @, sin ¢) a unitary
surface vector. The surface-wave behavior of the Green’s function, due (5.122) and (5.123),
becomes thus

Glx,y) ~ ——= e 7= gD (¢,0,) for vy < 0. (5.121)

G(z,y) ~ — e~ Zoevsciltposmm/), (5.122)

1L
/21,

and its gradient with respect to y is given by

e—z7r/4€—Zooxg ezép\:cs|e—Zwyge—zﬁpysms’ (5 124)

p & cos o
= e iT/A g Lot ikpl|@s| o= Zooys o —ikp Y Bs Epsing | . (5.125)

\/ 2mEy|xs| —iZ.

5.4.4 Complete far field of the Green’s function

Vngf(wv y) = -

On the whole, the asymptotic behavior of the Green’s function as || — oo can be
characterized in the upper half-space through the addition of (5.114) and (5.120), and in
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the lower half-space by adding (5.114) and (5.121). Thus if v3 > 0, then it holds that

etklz—yl Zoo —ikcosa) etlz—dl
Gz, ) ~ +( )

dnlx — g Zoo + ik cosa ) 4|z — g|
iZoo g, |
- S e D) + iHo(Ge.)| (5.126)

and if v3 < 0, then
etklz—yl <ZOO — ik cos a> etkle=gl 7

Gz, y) ~ e 7= HV (¢, 0,). (5.127)

Zoo +ikcosa ) Am|le — G| 2

Consequently, the complete far field of the Green’s function, due (5.107), should be given
by the addition of (5.118) and (5.124), i.e., by

drz — gy

etl=l Lo — ik cost o,
fo — —ik&-y -1 00 2ikys cos 6
(@) 47| | ‘ * Zoo + ik cos ‘
i Zo —im /4 o= Zoows ilp|®s| ;= Zooys n—ikpYs s (5.128)

/216, |z,

Its derivative with respect to y is likewise given by the addition of (5.119) and (5.125).
The expression (5.128) retrieves correctly the far field of the Green’s function, except in
the upper half-space at the vicinity of the axis {o; = 0}, due the presence of a singularity-
distribution of type 1/+/|xs
way to deal with this issue is to consider in each region only the most dominant asymptotic

, which does not appear in the original Green’s function. A

behavior at infinity. Since there are two different regions, we require to determine appro-
priately the interface between them. This can be achieved by equating the amplitudes of
the two terms in (5.128), i.e., by searching values of x at infinity such that

1 Lo

Arlx| |\ /2nE, ||

where we neglected the values of y, since they remain relatively near the origin. Further-

e o3, (5.129)

more, since the interface stays relatively close to the half-space’s boundary, we can also
approximate |xs| ~ |x|. By taking the logarithm in (5.129) and perturbing somewhat the
result so as to avoid a singular behavior at the origin, we obtain finally that this interface is

described by 2
1 ITZZ,
T3 = %ln (1 + ‘o |a:]) (5.130)

We can say now that it is the far field (5.128) which justifies the radiation condi-
tion (5.21) when exchanging the roles of « and y, and disregarding the undesired sin-
gularity around {go; = 0}. When the first term in (5.128) dominates, i.e., the volume
waves (5.118), then it is the first expression in (5.21) that matters. Conversely, when the
second term in (5.128) dominates, i.e., the surface waves (5.124), then the second expres-
sion in (5.21) is the one that holds. The interface between both is described by (5.130).

We remark that the asymptotic behavior (5.126) of the Green’s function and the expres-
sion (5.128) of its complete far field do no longer hold if a complex impedance 7., € C
such that Im{ 7.} > 0and Re{Z..} > 0is used, specifically the parts (5.120) and (5.124)
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linked with the surface waves. A careful inspection shows that in this case the surface-wave
behavior of the Green’s function, as |xs| — oo, decreases exponentially and is given by
7. .

Gla,y) ~ == e y(g0.) +iHo(Ge,)|  for v >0, (513D
whereas (5.121) continues to hold. Likewise, the surface-wave part of the far field is ex-
pressed for x5 > 0 as

1450
\/2mEp x|
but for x3 < 0 the expression (5.124) is still valid. The volume-waves part (5.114) and its
far-field expression (5.118), on the other hand, remain the same when we use a complex
impedance. We remark further that if a complex impedance or a complex wave number are
taken into account, then the part of the surface waves of the outgoing radiation condition is
redundant, and only the volume-waves part is required, i.e., only the first two expressions
in (5.21), but now holding for y3 > 0.

Ggf(a:,y) =— e~ /A e Zoolz3 pibpls| o= |Zoolys o mipys By (5.132)

5.5 Numerical evaluation of the Green’s function

For the numerical evaluation of the Green’s function, we separate the space R? into
four regions: a near field close to the ps-axis, a near field, an upper far field, and a lower
far field. In the near field close to the ps-axis, when |&,||v| < 24 and |§,| 0, < 2/5,
being v = y — &, the integral in (5.92) is computed numerically according to (5.91) by
using a trapezoidal rule. In the near field, when |¢,||v| < 24 and [¢,| 0; > 2/5, this in-
tegral is likewise computed by using a trapezoidal quadrature formula, but now according
to (5.89). In both cases, satisfactory numerical results are obtained when ws = —10/|Z|
and when the integration variable 7 is discretized into 7; = w3 + jAn for j = 0,..., M,
where An = 27/(50 |€,]), i.e., 50 samples are taken per wavelength. We remark that the
term Gy, in (5.91) is computed as explained in Sections 4.3 & 4.5, i.e., considering (4.112)
for the near field and adapting (4.153) and (4.154) for the far field by isolating the contri-
bution of the remaining term. We remark that the integrals of the derivatives, particularly
the one in (5.95), are computed following the same numerical strategy.

In the upper far field, when |&,| [v| > 24 and | Zs| v3 > log (1 + 8mo,| Z2 /&,]) /2, we
describe the Green’s function numerically by means of the expression (5.126). In the lower
far field, on the other hand, when [&,| [v| > 24 and | Zoo| v < log (1 + 8o, Z2 /&,]) /2, it
is described by using (5.127).

The Bessel functions can be evaluated either by using the software based on the techni-
cal report by Morris (1993) or the subroutines described in Amos (1986, 1995). The Struve
function can be computed by means of the software described in MacLeod (1996). Further
references are listed in Lozier & Olver (1994).
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5.6 Integral representation and equation

5.6.1 Integral representation

We are interested in expressing the solution u of the direct scattering problem (5.13) by
means of an integral representation formula over the perturbed portion of the boundary I',,.
For this purpose, we extend this solution by zero towards the complementary domain (2.,
analogously as done in (E.104). We define by () . the domain (2, without the ball B, of
radius € > 0 centered at the point * € ()., and truncated at infinity by the ball By of
radius R > 0 centered at the origin. We consider that the ball B. is entirely contained
in €).. Therefore, as shown in Figure 5.7, we have that

Qre = (Q.N Bg) \ B, (5.133)
where
Br={y eR®: |y| < R} and B.={yeQ. :|ly—=z|<e}  (5134)
We consider similarly, inside €., the boundaries of the balls
St={yeR:: |y =R} and S.={yeQ.:|ly—=z|=¢}. (5135

We separate furthermore the boundary as I' = Iy U ['y, where

lh={yeTl: y3 =0} and Iy ={yel: y3>0}. (5.136)
The boundary I is likewise truncated at infinity by the ball B, namely
Ir=TNBr =T Ul =TEUT, (5.137)
where
[=T,NnBr and ' =T, N B (5.138)

The idea is to retrieve the domain €2, and the boundary I" at the end when the limits R — oo
and € — 0 are taken for the truncated domain (25 . and the truncated boundary I'r.

FIGURE 5.7. Truncated domain Qg . for © € €Q,.
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We apply now Green’s second integral theorem (A.613) to the functions u and G(x, -)
in the bounded domain (2 ., by subtracting their respective Helmholtz equations, yielding

0= / (u(y) AyC( y) — Gl y)Au(y))dy

— [ () @) - ) P w) ) drtw)

/s; < Iry or

_ / (u(y)g—fy(zc,y) - G(a:,y)%(y)) dy(y)

4 /FR (u(y)g—i(w,y) —G(x y)%(y)) dy(y). (5.139)

The integral on S, can be rewritten as

/S}% {u(y) (g—g(m,y) - z'ZOOG(‘L'ay)) - G(z,y) <%(y) — zzoou(y)ﬂ dy(y)

- é 1) (G )~ i66(ay) ) - Glany) (G~ ihuly) )| ). 6.140)

which for R large enough and due the radiation condition (5.6) tends to zero, since

/S,% u(y) (g—g(w,y) — i/ 22, + k? G(%:u)) dy(y)| < %lnR, (5.141)
[ Gew (Grw - WZETEw)) v < Zmr G
SA
and

0G . C
[ (G - ikwy ) diw) < 5.143)

0 C
/S Gy (8—Z<y> —z’ku(y)) by <& (5.144)

for some constants C' > 0. If the function u is regular enough in the ball B., then the
second term of the integral on S in (5.139), when € — 0 and due (5.96), is bounded by

/ G(z, y)%(y) dvy(y)

for some constant C' > 0 and tends to zero. The regularity of u can be specified afterwards
once the integral representation has been determined and generalized by means of density
arguments. The first integral term on S. can be decomposed as

/S u<y>§—g<w,y> hily) = ula) [ g—im) d(y)

Se

ou

—(y)

r

< Ce sup
y€eBe

: (5.145)

T / | g—% y) (u(y) — u()) dy(y). (5.146)
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For the first term in the right-hand side of (5.146), by considering (5.96) we have that

oG
— — 1 147
| GrEnae — 1 (5,147
while the second term is bounded by
oG
[ (1)~ @) 5o @) 41 (w)] < sup fuly) — (el G148)
Se Ty yeBe

which tends towards zero when ¢ — 0. Finally, due the impedance boundary condi-
tion (5.4) and since the support of f, vanishes on Iy, the term on I'z in (5.139) can be
decomposed as

[ (et ) - 269 ) utw) i) + [ Gla ity

Bl /Fgg (g—Z@w) T ZooG(way)) u(y) dy(y), (5.149)

where the integral on I'Z vanishes due the impedance boundary condition in (5.20). There-
fore this term does not depend on R and has its support only on the bounded and perturbed
portion I, of the boundary.

In conclusion, when the limits R — oo and € — 0 are taken in (5.139), then we obtain
for € (), the integral representation formula

@) = [ (Getew) - 20w Juw) i) + [ Ge)fv)d). 6150
which can be alternatively expressed as
ww) = [ (g @) - Cewfiw) b, G5

It is remarkable in this integral representation that the support of the integral, namely the
curve I}, is bounded. Let us denote the traces of the solution and of its normal derivative
on I, respectively by

p = ulr, and v = 8_u ) (5.152)
on r,
We can rewrite now (5.150) and (5.151) in terms of layer potentials as
u="D(u) —S(Zp) +S(f.) in Q., (5.153)
u="D(u) —S(v) in Q, (5.154)
where we define for « € (), respectively the single and double layer potentials as
svie) = [ Gle.y(y)di(w) (5.159)
FP
oG
Du(x) = | 2 —(@ y)u(y) dy(y). (5.156)
I, Ty
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We remark that from the impedance boundary condition (5.4) it is clear that

v="2u—f. (5.157)

5.6.2 Integral equation

To determine entirely the solution of the direct scattering problem (5.13) by means
of its integral representation, we have to find values for the traces (5.152). This requires
the development of an integral equation that allows to fix these values by incorporating
the boundary data. For this purpose we place the source point  on the boundary I' and
apply the same procedure as before for the integral representation (5.150), treating differ-
ently in (5.139) only the integrals on S.. The integrals on S}, still behave well and tend
towards zero as R — oo. The Ball B,, though, is split in half by the boundary I', and the
portion €2, N B, is asymptotically separated from its complement in B, by the tangent of
the boundary if I is regular. If © € I';, then the associated integrals on S, give rise to a
term —u(x)/2 instead of just —u(x) as before for the integral representation. Therefore
we obtain for & € I'; the boundary integral representation

- [ (e @) - 26w Jutv) 1w+ [ Gl )b w). 6159

On the contrary, if £ € [, then the pole-type behavior (5.97) contributes also to the
singularity (5.96) of the Green’s function and the integrals on S. give now rise to two
terms —u(x)/2, i.e., on the whole to a term —u(x). For € Iy the boundary integral
representation is instead given by

ww) = [ (G @y - 26y )uw) ) + [ Gefm)d). 6159

We must notice that in both cases, the integrands associated with the boundary I' admit an
integrable singularity at the point . In terms of boundary layer potentials, we can express
these boundary integral representations as

u(w)
2

5 =D —S(Zw+S(f.)  on L., (5.160)
u=D(p) = S(Zp) + 5(f) on Ty, (5.161)
where we consider, for € I', the two boundary integral operators
s(e) = | Gla.yy)di(w) (5162
FP

oG
Dp(x) = / o (@ YY) dy(y). (5.163)

T, Ty

We can combine (5.160) and (5.161) into a single integral equation on I, namely

(1 +Io)g +8(Zp) — D(u) = S(f.)  on T, (5.164)
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where 7, denotes the characteristic or indicator function of the set I}, i.e.,

1 if z e,
0 if @¢T

It is the solution p on I, of the integral equation (5.164) which finally allows to char-
acterize the solution w in €2, of the direct scattering problem (5.13) through the integral
representation formula (5.153). The trace of the solution « on the boundary I" is then found
simultaneously by means of the boundary integral representations (5.160) and (5.161). In
particular, when @ € 'y, and since [y, C I, therefore it holds that

u=D(u)—S(Zu)+ S(f.) on T'. (5.166)

Io(x) = (5.165)

5.7 Far field of the solution
The asymptotic behavior at infinity of the solution u of (5.13) is described by the far
field. It is denoted by u// and is characterized by
u(x) ~ u’ () as |x| — oc. (5.167)

Its expression can be deduced by replacing the far field of the Green’s function G/ and its
derivatives in the integral representation formula (5.151), which yields

oGt
@) = [ (G - @) | o). G168
T, Ty
By replacing now (5.128) and the addition of (5.119) and (5.125) in (5.168), we obtain that
eik|m| o
@) = g J, | @) )
oo — 1k cos sin § cos o
—m R K7 Siiii?g@ ny u(y) +r(y) | pdy(y)
7 e—im/4 A o §pcos
_ sl G—Zooa:gezé"pwsl/ e Zooys o= EpYs&s fp Singp o ,u(y) _ il/(y) dv(y).
v/ 2mEp| 5| Ty —iZ.

(5.169)

The asymptotic behavior of the solution w at infinity, as || — oo, is therefore given by

_ eik|w| Vo O i 7wa36i§p|w5\ 5 . O L
u(x) 2] u¥ (&) + 2] +e —\/W us (&) + =] . (5.170)

where we decompose « = |x| &, being & = (sin  cos p, sin f sin ¢, cos #) a vector of the
unit sphere, and x, = |x,| &,, being &, = (cos p, sin ) a vector of the unit circle. The
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far-field pattern of the volume waves is given by

1 _
@) = o [ ik ) - viy)
47 T,
7 ikcosh sin 0 cos ¢
_m 2ikys cos6 | ;. siiisisn;p .ny#(y)ij(y) dv(y), (5.171)

whereas the far-field pattern for the surface waves adopts the form

7 e—im/4 o §p COS
— e | e TemeT B | G sing |-y u(y) — iv(y) | dy(y).(5.172)
Both far-field patterns can be expressed in decibels (dB) respectively by means of the scat-
tering cross sections

ufo(:f:s) =

. ul (&
Q! (@) [a8] = 20105,y (=) 6.173)
0
3 us (&
QS (#,) [dB] = 20log, (%) (5.174)
0
where the reference levels 1} and uj are taken such that |u | = |u§| = 1 if the incident

field is given either by a volume wave of the form (5.16) or by a surface wave of the
form (5.19).

We remark that the far-field behavior (5.170) of the solution is in accordance with the
radiation condition (5.6), which justifies its choice.

5.8 Existence and uniqueness

5.8.1 Function spaces

To state a precise mathematical formulation of the herein treated problems, we have to
define properly the involved function spaces. Since the considered domains and boundaries
are unbounded, we need to work with weighted Sobolev spaces, as in Durdn, Muga &
Nédélec (2005b, 2009). We consider the classic weight functions

o=V1+7r2  and log 0 = In(2 4 1%), (5.175)

where = |x|. We define the domains

O deco ims Lmfi1e 5%, (5.176)
e e - 43 2Zoo \/W ) .

0% = meQ-x<Lln 1+%r (5.177)
e — e - 3 QZOO \/m . .
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It holds that the solution of the direct scattering problem (5.13) is contained in the weighted
Sobolev space

Vo ) ov
WHQ) = vt e L), — € L2(Q,)? —— € L(QY), 25 — ikv € LX),
(){Q(>Q ()\/E()ﬁr (2.)
1 ov
L3 (Q? — — L2 (02 1
IOgQE ( e)? 10gQ<87’ Z&pv) E ( e)}7 (5 78)

where &, = \/Z2 + k2. With the appropriate norm, the space W*'(2,) becomes also a
Hilbert space. We have likewise the inclusion W(Q.) C HL.(£.), i.e., the functions of
these two spaces differ only by their behavior at infinity.

Since we are dealing with Sobolev spaces, even a strong Lipschitz boundary I" € C'%!
is admissible. The fact that this boundary I' is also unbounded implies that we have to use
weighted trace spaces like in Amrouche (2002). For this purpose, we consider the space

WYA(T) = {u: Y e HYVT } (5.179)
D=7 Zoiogg € H0
Its dual space W ~1/2(I") is defined via 1¥°-duality, i.e., considering the pivot space
v
wo(r) = {v: c L*(T } (5.180)
(D) =17 Zoiogg € V0
Analogously as for the trace theorem (A.531), if v € W'(€,) then the trace of v fulfills
Yov = v|p € WY(D). (5.181)
Moreover, the trace of the normal derivative can be also defined, and it holds that
ov
M = %h e WY(T). (5.182)
We remark further that the restriction of the trace of v to I, is such that
Youlr, = v|r, € HY*(T,), (5.183)
ov
= —|r, € HV4(T 5.184
|, 8n|rp (L), ( )
and its restriction to [y, yields
00|, = vlr, € WYA(I), (5.185)
0
Y10|r. = a—v|roo & W) (5.186)
n

5.8.2 Application to the integral equation

The existence and uniqueness of the solution for the direct scattering problem (5.13),
due the integral representation formula (5.153), can be characterized by using the integral
equation (5.164). For this purpose and in accordance with the considered function spaces,
we take € HY2(T},) and v € H~Y/%(T},)). Furthermore, we consider that Z € L>°(T},) and
that f. € H~'/2(T},), even though strictly speaking f., € HY/2(L,).
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It holds that the single and double layer potentials defined respectively in (5.155)
and (5.156) are linear and continuous integral operators such that

S:HYVXT,) — W) and D:HYXT,) — WYQ,). (5.187)

The boundary integral operators (5.162) and (5.163) are also linear and continuous appli-
cations, and they are such that

S:HY*T,) — WYXT) and  D:HY*T,) — WY3(T). (5.188)
When we restrict them to I, then it holds that
S|y, : HY4(T,) — HY*(T,)  and D, : HY*(T,) — HY*(T}). (5.189)

Let us consider the integral equation (5.164), which is given in terms of boundary layer
potentials, for 1 € H'/%(T},), by

(1 +Io)% +8(Zu) — D(u) = S(f.)  in HYA(T)). (5.190)

Due the imbedding properties of Sobolev spaces and in the same way as for the half-plane
impedance Laplace problem, it holds that the left-hand side of the integral equation corre-
sponds to an identity and two compact operators, and thus Fredholm’s alternative holds.

Since the Fredholm alternative applies to the integral equation, therefore it applies
also to the direct scattering problem (5.13) due the integral representation formula. The
existence of the scattering problem’s solution is thus determined by its uniqueness, and the
wave numbers k € C and impedances Z € C for which the uniqueness is lost constitute a
countable set, which we call respectively wave number spectrum and impedance spectrum
of the scattering problem and denote it by o, and 0. The spectrum o}, considers a fixed Z
and, conversely, the spectrum o considers a fixed k. The existence and uniqueness of
the solution is therefore ensured almost everywhere. The same holds obviously for the
solution of the integral equation, whose wave number spectrum and impedance spectrum
we denote respectively by ¢, and ¢z. Since each integral equation is derived from the
scattering problem, it holds that o, C ¢, and 0z C <z. The converse, though, is not
necessarily true. In any way, the sets ¢, \ 0 and ¢z \ o are at most countable.

In conclusion, the scattering problem (5.13) admits a unique solution u if k& ¢ oy,
and Z ¢ oz, and the integral equation (5.164) admits in the same way a unique solution p
ifk ¢ ¢, and Z ¢ .

5.9 Dissipative problem

The dissipative problem considers waves that dissipate their energy as they propagate
and are modeled by considering a complex wave number or a complex impedance. The
use of a complex wave number £ € C whose imaginary part is strictly positive, i.e., such
that Jm{k} > 0, ensures an exponential decrease at infinity for both the volume and the
surface waves. On the other hand, the use of a complex impedance Z,, € C with a strictly
positive imaginary part, i.e., Jm{Z,} > 0, ensures only an exponential decrease at infinity
for the surface waves. In the first case, when considering a complex wave number k£, and

181



due the dissipative nature of the medium, it is no longer suited to take progressive plane
volume waves in the form of (5.16) and (5.17) respectively as the incident field u; and the
reflected field ug. In both cases, likewise, it is no longer suited to take progressive plane
surface waves in the form of (5.19) as the incident field ;. Instead, we have to take a wave
source at a finite distance from the perturbation. For example, we can consider a point
source located at z € ()., in which case we have only an incident field, which is given, up
to a multiplicative constant, by

ur(x) = Gz, 2), (5.191)
where GG denotes the Green’s function (5.92). This incident field u; satisfies the Helmholtz
equation with a source term in the right-hand side, namely

Aup + kuy = 6, in D'(Q,), (5.192)

which holds also for the total field ur but not for the scattered field «, in which case the
Helmholtz equation remains homogeneous. For a general source distribution g5, whose
support is contained in (2., the incident field can be expressed by

ur(z) = Gz, z) * gs(z) = / G(x, z) gs(z) d=. (5.193)

e

This incident field u; satisfies now
Auy + kuy =g, in D'(Q), (5.194)
which holds again also for the total field u, but not for the scattered field w.

It is not difficult to see that all the performed developments for the non-dissipative
case are still valid when considering dissipation. The only difference is that now either
a complex wave number k such that Jm{k} > 0, or a complex impedance 7, such
that Jm{Z,} > 0, or both, have to be taken everywhere into account.

5.10 Variational formulation

To solve the integral equation we convert it to its variational or weak formulation,
1.e., we solve it with respect to a certain test function in a bilinear (or sesquilinear) form.
Basically, the integral equation is multiplied by the (conjugated) test function and then the
equation is integrated over the boundary of the domain. The test function is taken in the
same function space as the solution of the integral equation.

The variational formulation for the integral equation (5.190) searches ;1 € H'/?(T},)
such that Vo € H'/?(T,) we have that

((1+20)5 +5(Zw) = Dln). o) = (S(£). 9): (5.195)
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5.11 Numerical discretization

5.11.1 Discretized function spaces

The scattering problem (5.13) is solved numerically with the boundary element method
by employing a Galerkin scheme on the variational formulation of the integral equation.
We use on the boundary surface I, Lagrange finite elements of type IP;. The surface I, is
approximated by the triangular mesh FI?, composed by T flat triangles T}, for 1 < j < T,
and I nodes r; € R®, 1 < i < I. The triangles have a diameter less or equal than h, and
their vertices or corners, i.e., the nodes r;, are on top of I},, as shown in Figure 5.8. The
diameter of a triangle K is given by

diam(K) = sup |y — x| (5.196)

x,yc K

Y
/ 4 V‘
“hvf‘“‘iﬁ r

FIGURE 5.8. Mesh I‘;, discretization of I,.

The function space H'/2(T},) is approximated using the conformal space of continuous
piecewise linear polynomials with complex coefficients

Qn={pn € C°(}) : @nlr, € P1(C), 1< < T} (5.197)

The space (J;, has a finite dimension /, and we describe it using the standard base func-
tions for finite elements of type P;, which we denote by {; }§=1~ The base function ; is
associated with the node 7; and has its support supp ; on the triangles that have r; as one
of their vertices. On 7; it has a value of one and on the opposed edges of the triangles its
value is zero, being linearly interpolated in between and zero otherwise.

In virtue of this discretization, any function ¢, € (), can be expressed as a linear
combination of the elements of the base, namely

x) = Zcpj X () for @ € I, (5.198)

where p; € C for 1 < j < I. The solution pn € H 1/ 2(Fp) of the variational formula-
tion (5.195) can be therefore approximated by

x) =Y pixj@)  for x €I}, (5.199)
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where 1, € C for 1 < j < I. The function f, can be also approximated by
I
@) => fixjl@) for zel), with f; = f.(r;). (5.200)
j=1

5.11.2 Discretized integral equation

To see how the boundary element method operates, we apply it to the variational for-
mulation (5.195). We characterize all the discrete approximations by the index A, includ-
ing also the impedance and the boundary layer potentials. The numerical approximation
of (5.195) leads to the discretized problem that searches p;, € @), such that Vo, € @,

<(1 +Ig)% + Sn(Znpn) — Dr(pin), SDh> = (Sh(f1), on)- (5.201)

Considering the decomposition of 1, in terms of the base {x;} and taking as test functions
the same base functions, ¢, = y; for 1 <17 < I, yields the discrete linear system

Zuj (%<(1 + I3)x50 Xi) + (Su(Znx;), xi) — <Dh(Xj)7Xi>) = ij (Su(x3)s Xa)-

(5.202)
This constitutes a system of linear equations that can be expressed as a linear matrix system:

Find g € C’ such that
(5.203)
Mup=b.
The elements m;; of the matrix M are given, for 1 <+, 5 < I, by
1
mij = §<(1 +I0)x50 Xi) + (Su(Znx;) s xi) — (Da(x;)s Xi), (5.204)
and the elements b; of the vector b by
I
bi = (Su(f1),xi) =D fi (Su(xg)xa)  for 1<i<T. (5.205)

Jj=1

The discretized solution u;, which approximates u, is finally obtained by discretizing
the integral representation formula (5.153) according to

up, = Dp(pn) — Sh(Znpn) + Sn(f1), (5.206)

which, more specifically, can be expressed as

un = 15 (Pu(xs) = Su(Znx;)) + D £ Slx;)- (5.207)

Jj=1 Jj=1

We remark that the resulting matrix M is in general complex, full, non-symmetric,
and with dimensions I x I. The right-hand side vector b is complex and of size I. The
boundary element calculations required to compute numerically the elements of M and b
have to be performed carefully, since the integrals that appear become singular when the
involved segments are adjacent or coincident, due the singularity of the Green’s function at
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its source point. On Iy, the singularity of the image source point has to be taken additionally
into account for these calculations.

5.12 Boundary element calculations

The boundary element calculations build the elements of the matrix M resulting from
the discretization of the integral equation, i.e., from (5.203). They permit thus to compute
numerically expressions like (5.204). To evaluate the appearing singular integrals, we adapt
the semi-numerical methods described in the report of Bendali & Devys (1986).

We use the same notation as in Section D.12, and the required boundary element inte-
grals, for a,b € {0,1} and ¢, d € {1,2, 3}, are again

c c ‘ t '
ZAQ:‘;:/K/L(%> (é) G(z,y)dL(y)dK(z), (5.208)

7B = / / s )" t—d)bﬁ(w y) dL(y) dK (z) (5.209)
ab KJIL h? hdL any ’ ' )

All the integrals that stem from the numerical discretization can be expressed in terms
of these two basic boundary element integrals. The impedance is again discretized as a
piecewise constant function Z;, which on each triangle 7); adopts a constant value Z; € C.
The integrals of interest are the same as for the full-space impedance Helmholtz problem
and we consider furthermore that

(X, Xi) if r; eIy,

L+ IMx %) = (5.210)

To compute the boundary element integrals (5.208) and (5.209), we can easily isolate
the singular part (5.96) of the Green’s function (5.92), which corresponds in fact to the
Green’s function of the Laplace equation in the full-space, and therefore the associated in-
tegrals are computed in the same way. The same applies also for its normal derivative. In
the case when the triangles K and L are are close enough, e.g., adjacent or coincident, and
when L € T} or K € T}, being T the approximation of Iy, we have to consider addi-
tionally the singular behavior (5.97), which is linked with the presence of the impedance
half-space. This behavior can be straightforwardly evaluated by replacing x by & in for-
mulae (D.295) to (D.298), i.e., by computing the quantities ZF{(Z) and ZG{ (&) with the
corresponding adjustment of the notation. Otherwise, if the triangles are not close enough
and for the non-singular part of the Green’s function, a three-point Gauss-Lobatto quadra-
ture formula is used. All the other computations are performed in the same manner as in
Section D.12 for the full-space Laplace equation.

5.13 Benchmark problem

As benchmark problem we consider the particular case when the domain Q. C R? is
taken as the exterior of a half-sphere of radius R > 0 that is centered at the origin, as shown
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in Figure 5.9. We decompose the boundary of €2, as I' = I', UT'y,, where I}, corresponds to
the upper half-sphere, whereas 'y, denotes the remaining unperturbed portion of the half-
space’s boundary which lies outside the half-sphere and which extends towards infinity.
The unit normal n is taken outwardly oriented of )., e.g., n = —r on I,.

FIGURE 5.9. Exterior of the half-sphere.

The benchmark problem is then stated as

[ Find v : ). — C such that

Au+Ku=0 in €,
(5.211
—@ + Zu=f, on [, )
on

+ Outgoing radiation condition as || — oo,

where we consider a wave number k € C, a constant impedance Z € C throughout I" and
where the radiation condition is as usual given by (5.6). As incident field u; we consider
the same Green’s function, namely

ur(x) = Gz, 2), (5.212)

where z € (). denotes the source point of our incident field. The impedance data func-
tion f, is hence given by

oG
f-(x) = on

and its support is contained in I’,. The analytic solution for the benchmark problem (5.211)
is then clearly given by

(x,z) — ZG(x, 2), (5.213)

u(x) = —G(x, z). (5.214)
The goal is to retrieve this solution numerically with the integral equation techniques and
the boundary element method described throughout this chapter.

For the computational implementation and the numerical resolution of the benchmark
problem, we consider integral equation (5.164). The linear system (5.203) resulting from
the discretization (5.201) of its variational formulation (5.195) is solved computationally
with finite boundary elements of type [P, by using subroutines programmed in Fortran 90,
by generating the mesh F]? of the boundary with the free software Gmsh 2.4, and by repre-
senting graphically the results in Matlab 7.5 (R2007b).
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We consider a radius R = 1, a wave number £ = 3.5, a constant impedance Z = 3,
and for the incident field a source point z = (0,0, 0). The discretized perturbed boundary
curve FI? has I = 641 nodes, T" = 1224 triangles and a discretization step h = 0.1676,
being

h = max diam(7j). (5.215)

1<G<T

The numerically calculated trace of the solution i, of the benchmark problem, which
was computed by using the boundary element method, is depicted in Figure 5.10. In the
same manner, the numerical solution wy, is illustrated in Figures 5.11 and 5.12 for an an-
gle ¢ = 0. It can be observed that the numerical solution is close to the exact one.

i
\\\\\\\\\\\\\\\\QQQQ\\

15

(a) Real part (b) Imaginary part

FIGURE 5.10. Numerically computed trace of the solution .

1

(a) Real part (b) Imaginary part

FIGURE 5.11. Contour plot of the numerically computed solution uy, for ¢ = 0.
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FIGURE 5.12. Oblique view of the numerically computed solution uy for ¢ = 0.

Likewise as in (ID.346), we define the relative error of the trace of the solution as
pp — pnl| L2
111, nllze oy (5.216)

Es(h, T =
2( 7 p) ||HhM||L2(r;) 7

where 11,1 denotes the Lagrange interpolating function of the exact solution’s trace u, i.e.,
I I
Mpu(x) = Zu(rj) x;j(x) and pp(x) = Zﬂj xj(x) for x € FI?. (5.217)
j=1 j=1

In our case, for a step h = 0.1676, we obtained a relative error of Es(h, Fg) = (0.08726.

As in (D.350), we define the relative error of the solution as
Eoo(h, QL) — ||U - uhHLOC(QL)
[ull 2 (@)

(5.218)

being 0, = {x € Q. : ||| < L} for L > 0. We consider L = 3 and approximate {2,
by a triangular finite element mesh of refinement / near the boundary. For i = 0.1676, the
relative error that we obtained for the solution was F..(h, ;) = 0.08685.

The results for different mesh refinements, i.e., for different numbers of triangles 7',
nodes [, and discretization steps h for I’;‘, are listed in Table 5.1. These results are illus-
trated graphically in Figure 5.13. It can be observed that the relative errors are more or less

of order h, but they tend to stagnate due the involved accuracy of the Green’s function.
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TABLE 5.1. Relative errors for different mesh refinements.

T I h

EQ(ha F]il)

Eoo(ha QL)

46 30 0.7071
168 95 0.4320
466 252 0.2455
700 373 0.1987
1224 641 0.1676
2100 1090 0.1286

1.617-1071 3.171-107"
-1072 1.574-1071
-107%2 9.493-1072
8.537-1072 9.071- 102
-107% 8.685-1072
-107% 8.399-10°2

8.714
8.412

8.726
8.868

10

)

10°F

Ey(h,T

2|

M

10
10

-1

h

(a) Relative error By (h,T")

Eoo (h’1 QL)

10

=

-1

h

(b) Relative error Eo,(h, )

10

FIGURE 5.13. Logarithmic plots of the relative errors versus the discretization step.
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VI. HARBOR RESONANCES IN COASTAL ENGINEERING

6.1 Introduction

In this chapter we consider the application of the half-plane Helmholtz problem de-
scribed in Chapter III to the computation of harbor resonances in coastal engineering.

We consider the problem of computing resonances for the Helmholtz equation in a
two-dimensional compactly perturbed half-plane with an impedance boundary condition.
One of its main applications corresponds to coastal engineering, acting as a simple model
to determine the resonant states of a maritime harbor. In this model the sea is modeled as an
infinite half-plane, which is locally perturbed by the presence of the harbor, and the coast is
represented by means of an impedance boundary condition. Some references on the harbor
oscillations that are responsible for these resonances are Mei (1983), Mei et al. (2005),
Herbich (1999), and Panchang & Demirbilek (2001).

Resonances are closely related to the phenomena of seiching (in lakes and harbors) and
sloshing (in coffee cups and storage tanks), which correspond to standing waves in enclosed
or partially enclosed bodies of water. These phenomena have been observed already since
very early times. Scientific studies date from Merian (1828) and Poisson (1828-1829),
and especially from the observations in the Lake of Geneva by Forel (1895), which began
in 1869. A thorough and historical review of the seiching phenomenon in harbors and
further references can be found in Miles (1974).

Oscillations in harbors, though, were first studied for circular and rectangular closed
basins by Lamb (1916). More practical approaches for the same kind of basins, but now
connected to the open sea through a narrow mouth, were then implemented respectively by
McNown (1952) and Kravtchenko & McNown (1955).

But it was the paper of Miles & Munk (1961), the first to treat harbor oscillations by
a scattering theory, which really arose the research interest on the subject. Their work,
together with the contributions of Le Méhauté (1961), Ippen & Goda (1963), Raichlen &
Ippen (1965), and Raichlen (1966), made the description of harbor oscillations to become
fairly close to the experimentally observed one. Theories to deal with arbitrary harbor con-
figurations were available after Hwang & Tuck (1970) and Lee (1969, 1971), who worked
with boundary integral equation methods to calculate the oscillation in harbors of constant
depth with arbitrary shape. Mei & Chen (1975) developed a hybrid-boundary-element
technique to also study harbors of arbitrary geometry. Harbor resonances using the finite
element method are likewise computed in Walker & Brebbia (1978). A comprehensive list
of references can be found in Yu & Chwang (1994).

The mild-slope equation, which describes the combined effects of refraction and diffrac-
tion of linear water waves, was first suggested by Eckart (1952) and later rederived by
Berkhoff (1972a,b, 1976), Smith & Sprinks (1975), and others, and is now well-accepted as
the method for estimating coastal wave conditions. It corresponds to an approximate model
developed in the framework of the linear water-wave theory (vid. Section A.10), which as-
sumes waves of small amplitude and a mild slope on the bottom of the sea, i.e., a slowly
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varying bathymetry. The mild-slope equation models the propagation and transformation
of water waves, as they travel through waters of varying depth and interact with lateral
boundaries such as cliffs, beaches, seawalls, and breakwaters. As a result, it describes the
variations in wave amplitude, or equivalently wave height. From the wave amplitude, the
amplitude of the flow velocity oscillations underneath the water surface can also be com-
puted. These quantities, wave amplitude and flow-velocity amplitude, may subsequently
be used to determine the wave effects on coastal and offshore structures, ships and other
floating objects, sediment transport and resulting geomorphology changes of the sea bed
and coastline, mean flow fields and mass transfer of dissolved and floating materials. Most
often, the mild-slope equation is solved by computers using methods from numerical anal-
ysis. The mild-slope equation is a usually expressed in an elliptic form, and it turns into the
Helmholtz equation for uniform water depths. Different kinds of mild-slope equations have
been derived (Liu & Shi 2008). A detailed survey of the literature on the mild-slope and its
related equations is provided by Hsu, Lin, Wen & Ou (2006). Some examinations on the
validity of the theory are performed by Booij (1983) and Ehrenmark & Williams (2001).

A resonance of a different type is given by the so-called Helmholtz mode when the
oscillatory motion inside the harbor is much slower than each of the normal modes (Bur-
rows 1985). It corresponds to the resonant mode with the longest period, where the water
appears to move up and down unison throughout the harbor, which seems to have been first
studied by Miles & Munk (1961) and which appears to be particularly significant for har-
bors responding to the energy of a tsunami. We remark that from the mathematical point of
view, resonances correspond to poles of the scattering and radiation potentials when they
are extended to the complex frequency domain (cf. Poisson & Joly 1991). Harbor reso-
nance should be avoided or minimized in harbor planning and operation to reduce adverse
effects such as hazardous navigation and mooring of vessels, deterioration of structures,
and sediment deposition or erosion within the harbor.

Along rigid, impermeable vertical walls a Neumann boundary condition is used, since
there is no flow normal to the surface. However, in general an impedance boundary condi-
tion is used along coastlines or permeable structures, to account for a partial reflection of
the flow on the boundary (Demirbilek & Panchang 1998). A study of harbor resonances us-
ing an approximated Dirichlet-to-Neumann operator and a model based on the Helmholtz
equation with an impedance boundary condition on the coast was done by Quaas (2003). In
the current chapter this problem is extended to be solved with integral equation techniques,
by profiting from the knowledge of the Green’s function developed in Chapter III.

This chapter is structured in 4 sections, including this introduction. The harbor scat-
tering problem is presented in Section 6.2. Section 6.3 describes the computation of res-
onances for the harbor scattering problem by using integral equation techniques and the
boundary element method. Finally, in Section 6.4 a benchmark problem based on a rectan-
gular harbor is presented and solved numerically.
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6.2 Harbor scattering problem

We are interested in computing the resonances of a maritime harbor, as the one depicted
in Figure 6.1 The sea is modeled as the compactly perturbed half-plane , C R?, where
R? = {(z1,22) € R* : x5 > 0} and where the perturbation represents the presence of the
harbor. We denote its boundary by T, which is regular (e.g., of class C*?) and decomposed
according to I' = I}, UT'y. The perturbed boundary describing the harbor is denoted by I,
while T, denotes the remaining unperturbed boundary of R? , which represents the coast
and extends towards infinity on both sides. The unit normal 7 is taken outwardly oriented
of €2, and the land is represented by the complementary domain 2. = R? \ Q...

FIGURE 6.1. Harbor domain.

To describe the propagation of time-harmonic linear water waves over a slowly vary-
ing bathymetry we consider for the wave amplitude or surface elevation 7 the mild-slope
equation (Herbich 1999)

div(cc,Vn) + k*cc,n =0 in Q,, (6.1)

where £ is the wave number, where c and c, denote respectively the local phase and group

velocities of a plane progressive wave of angular frequency w, and where the time conven-
i

tion e~ is used. The local phase and group velocities are given respectively by
w dw ¢ 2kh
et d = — =14 ——-- 6.2
T AT ( i sinh(2kh)>’ 62)

where h denotes the local water depth. The wave number £ and the local depth & vary
slowly in the horizontal directions z; and x5 according to the frequency dispersion relation

w? = gktanh(kh), (6.3)

where ¢ is the gravitational acceleration. We remark that the mild-slope equation (6.1)
holds also for the velocity potential ¢, since it is related to the wave height 1 through

gn = iwao. (6.4)
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We observe furthermore that through the transformation ) = , /cc, 1), the mild-slope equa-
tion (6.1) can be cast in the form of a Helmholtz equation, i.e.,

A(ccy)V?
(ccg)t/?

In shallow water, when kh < 1, the difference k> — k* may become appreciable. In this
case tanh(kh) ~ kh and sinh(kh) ~ kh, and thus we have from (6.3) that (Radder 1979)

2 2 2
2 Y ~ 2, Y Ah |Vh]|
k* ~ e crR ¢y RN/ gh, and kZ ~ _gh > + TR (6.6)

It follows that k. may be approximated by k if
|Ah| < 2w?/g and |Vh|? < 4w?h/g, (6.7)

A+ k2p =0, where k2 = k* — (6.5)

implying a slowly varying depth and a small bottom slope, or high-frequency wave prop-
agation. Hence, if (6.7) is satisfied for shallow water, then we can readily work with the
Helmholtz equation

A+ k*p =0 in Q.. (6.8)
On the other hand, for short waves in deep water, when kh >> 1, we have that ¢, ~ c/2is
more or less constant and thus again the Helmholtz equation (6.8) applies. We observe that
the Helmholtz equation holds as well whenever the depth A is constant, i.e.,

An+k*n=0 in Q. (6.9)

On coastline and surface-protruding structures, the following impedance or partial re-
flection boundary condition is used (cf., e.g., Berkhoff 1976, Tsay et al. 1989):

—@Jan:O on I, (6.10)
on

where the impedance Z is taken as purely imaginary and typically represented by means of
a reflection coefficient K. as (Herbich 1999)
1- K,
1+ K,
The coefficient K, varies between 0 and 1, and specific values for different types of re-
flecting surfaces have been compiled by Thompson, Chen & Hadley (1996). Values of K,
are normally chosen based on the boundary material and shape, e.g., for a natural beach
0.05 < K, < 0.2 and for a vertical wall with the crown above the water 0.7 < K, < 1.0.
Effects such as slope, permeability, relative depth, wave period, breaking, and overtopping
can be considered in selecting values within these fairly wide ranges. We note that 7 is
equal to zero for fully reflective boundaries (X, = 1) and it is equal to ¢k for fully absorb-
ing boundaries (K, = 0). Thus the reflection characteristics of boundaries that are not fully
reflective will inherently have some dependence on local wavelength through k. In prac-
tice, wave periods range from about 6 s to 20 s. For a representative water depth of 10 m,
the value of £ ranges from 0.03 m~!t00.13 m~!. For long waves, k and Z become small,
and boundaries may behave as nearly full reflectors regardless of the value of K. It may
be verified that (6.10) is strictly valid only for fully reflecting boundaries (/, = 1). For

Z =ik

6.11)
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partially reflecting boundaries, it is valid only if waves approach the boundary normally.
For other conditions (6.10) is approximate and may produce distortions. More accurate
boundary conditions are described in Panchang & Demirbilek (2001). In our model, we
assume that the impedance can be decomposed as

Z(x) = Zoo + Zy(x), wET, (6.12)

being Z., constant throughout I', and depending Z,(x) on the position « with a bounded
support contained in I,

We consider now the direct scattering problem of linear water waves around a harbor.
The total field 7 is decomposed as n = u; 4+ ur + u, where u; and up, are respectively the
known incident and reflected fields, and where « denotes the unknown scattered field. The
goal is to find u as a solution to the Helmholtz equation in €., satisfying an outgoing radia-
tion condition, and such that the total field 7 satisfies a homogeneous impedance boundary
condition on I'. We have thus for the scattered field that

0
— —u—l—Zu: f- on I, (6.13)
on
where f, is known, has its support contained in I',, and is given by
0 0
=2 zuy+ 2 Zup on T (6.14)
on on

As u; we take an incident plane volume wave of the form (3.16), with a wave propagation
vector k € R? such that k; < 0. The reflected field up is thus of the form (3.17) and has a
wave propagation vector k = (k;, —ks). Hence,

(6.15)

. Zoo +iks\ 2
ur(xz) = e** and up(x) = — ( il 2) etk

oo — tko
To eliminate the non-physical solutions, we have to impose also an outgoing radiation
condition in the form of (3.6) for the scattered field u, i.e., when r — oo it is required that

C ou C 1
< — — —jkul < = i _
lu| < NG and B iku| < . if zy > 57 In(1 + gr),
(6.16)
ou C 1
< — —1 < = i <
lul < C  and o i&pu| < . if 2y < 27 In(1+ gr),

for some constants C' > 0, where r = ||, § = 87kZ2 /&2, and &, = /Z2 + k?. The
harbor scattering problem is thus given by

[ Find u : ). — C such that

Au+ku=0 in Q,,
{ 6.17
—@ +Zu=f, on I ( )
on

+ Outgoing radiation condition as || — oo,

where the outgoing radiation condition is stated in (6.16).
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The problem of finding harbor resonances amounts to search wave numbers £ for
which the scattering problem (6.17) without excitation, i.e., with f, = 0, admits non-zero
solutions u. The harbor resonance problem can be hence stated as

( Find k € Cand u : 2. — C, u # 0, such that

Au+k*u=0 in €,
6.18
—%—l—Zu:O on [ ( )
on

+ Outgoing radiation condition as || — oc.
6.3 Computation of resonances

The resonance problem (6.18) is solved in the same manner as the half-plane impedance
Helmholtz problem described in Chapter III, by using integral equation techniques and the
boundary element method. The required Green’s function G is expressed in (3.93). If we
denote the trace of the solution on I, by 1 = wu|r,, then we have from (3.156) that the
solution v admits the integral representation

u="D(u) —S(Zp) in €., (6.19)
where we define for « € (2, the single and double layer potentials respectively by
oG
Sv(z) = / Gz, y)r(y)dyy) and Dux)= | == (z,y)u(y)dr(y). (6.20)
FP I“p Y
If the boundary is decomposed as I' = I[; U I, being
Lh={yel: y,=0} and Iy ={yel: y >0}, (6.21)
then v admits also, from (3.163) and (3.164), the boundary integral representation
5 = D) = S(zp) on I, 6.22)
u=D(u)—S(Zu) on I, (6.23)

where the boundary integral operators, for & € I, are defined by

oG

Sv(x) = [ Gz yp(y)dy(y) and  Du(z)= | - (@,y)uy)dr(y). (6.24)
FP Fp Yy
It holds that (6.22) and (6.23) can be combined on I, into the single integral equation
(1 +IO)§ +8(Zu)—D(w) =0  on L), (6.25)
where Z, denotes the characteristic or indicator function of the set Iy, i.e.,
1 if x ey,
To(x) = (6.26)
0 if ¢ ¢TI

The desired resonances are thus given by the wave numbers & for which the integral
equation (6.25) admits non-zero solutions p. Care has to be taken, though, with possible
spurious resonances that may appear for the integral equation, which are not resonances of
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the original problem (6.18) and which are related with a resonance problem in the com-
plementary domain €2.. To find the resonances, we use the boundary element method on
the variational formulation of (6.25). This variational formulation, as indicated in (3.198),
searches k € C and pp € H'/%(T},), 1 # 0, such that Vo € H'2(T,) we have that

<(1 + Ig)g +8(Zp) — D(u), ¢> —0. (6.27)

As performed in Section 3.11 and with the same notation, we discretize (6.27) em-
ploying a Galerkin scheme. We use on the boundary curve I, Lagrange finite elements of
type P;. The curve I, is approximated by the discretized curve F;}, composed by [ recti-
linear segments 7, sequentially ordered from left to right for 1 < j < I, such that their
length |T7] is less or equal than h, and with their endpoints on top of I},. The function
space H'/?(T,) is approximated using the conformal space of continuous piecewise linear
polynomials with complex coefficients

Qn = {en € C°(T}) : pulr, e P1(C), 1<j<T}. (6.28)
The space @), has a finite dimension (I + 1), and we describe it using the standard base
functions for finite elements of type P;, denoted by {x; ]I;L% We approximate the solu-
tion € HY2(T,) by iy € Qp, being

I+1

pn(x) = Z,uj X () for © € T}, (6.29)
j=1

where ;1; € Cfor1 < j < I+ 1. We characterize all the discrete approximations by the
index h, including also the wave number, the impedance and the boundary layer potentials.
The numerical approximation of (6.27) becomes searching y;, € ), such that Vo, € @),

<(1 +I(})l)% + Sn(Znpin) — Du(pn), 90h> = 0. (6.30)

Considering this decomposition of 1, in terms of the base {),} and taking as test functions
the same base functions, ¢, = x; for 1 <1 < I 4 1, yields the discrete linear system
I+1

Zﬂj (%«1 + I, xi) + (Su(Znxs), xi) — <Dh(Xj>aXi>> = 0. (6.31)

This can be expressed as the linear matrix system

Find kj, € C and pu € C'*1, pu # 0, such that 6.32)
M(kp) p = 0. '
The elements m;; of the matrix M(k),) are given, for 1 <i,j < I+ 1, by
1
mi; = =((L+Z)x;, Xi) + (Su(Znxi)s Xa) — (Da(x5), Xi)- (6.33)

2

The desired resonances of the discretized system (6.32) are given by the values of £y,
for which the matrix M(k;,) becomes singular, i.e., non-invertible. Since the dependence
on ky, is highly non-linear (through the Green’s function and eventually the impedance), it
is in general not straightforward to find these resonances. One alternative is to consider, as
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done by Durén et al. (2007b), the function of resonance-peaks

ga(kn) = —Mmax(kh)',

|/\min(kh)|
where Ay (k) and A\pin(ky,) denote respectively the biggest and smallest eigenvalues in
modulus of the matrix M (kj,). This function possesses a countable amount of singularities
in the complex plane, which correspond to the resonances. The computation of the eigen-
values can be performed by means of standard eigenvalue computation subroutines based
on the QR-factorization (Anderson et al. 1999) or by means of power methods (cf., e.g.,
Burden & Faires 2001). Alternatively, instead of the eigenvalues we could also take into ac-
count in (6.34) the diagonal elements of the U -matrix that stems from the LU-factorization
of M(ky,), as done by Duran, Nédélec & Ossandon (2009).

(6.34)

To compute the resonant states or eigenstates associated to each resonance, we can
take advantage of the knowledge of the eigenvector related with the smallest eigenvalue,
e.g., obtained from some power method. If £; denotes a resonance, then M (k,*l) becomes
singular and Ayin(kj;) = 0. The corresponding eigenstate p* fulfills thus

M(k;) p* = Auin(Kj) ¥ = 0, w 0. (6.35)

Consequently, it can be seen that the desired eigenstate pu* corresponds to the eigenvector
of M(k;) that is associated to Apin (k7).

6.4 Benchmark problem

6.4.1 Characteristic frequencies of the rectangle

As benchmark problem we consider the particular case of a rectangular harbor with a
small opening. Resonances for a harbor of this kind are expected whenever the frequency
of an incident wave is close to a characteristic frequency of the closed rectangle. To obtain
the characteristic frequencies and oscillation modes of such a closed rectangle we have to
solve first the problem

Find k € Cand u : 2, — C, u # 0, such that
Au+Ku=0 in Q,,

% =0 on Ij,
where we denote the domain encompassed by the rectangle as (), and its boundary as I..
The unit normal n is taken outwardly oriented of {2.. The rectangle is assumed to be
of length a and width b. The eigenfrequencies and eigenstates of the rectangle are well-
known and can be determined analytically by using the method of variable separation. For
this purpose we separate

(6.36)

u(x) = v(x)w(xs), (6.37)

placing the origin at the lower left corner of the rectangle, as shown in Figure 6.2.
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)

FIGURE 6.2. Closed rectangle.

Replacing now (6.37) in the Helmholtz equation, dividing by vw, and rearranging yields

2 "
_ V) _wi(@s) e (6.38)
v(z1) w(2)
Since both sides of the differential equation (6.38) depend on different variables, conse-

quently they must be equal to a constant, denoted for convenience by 2, i.e.,

,U//(l,l) w”(flfg)

~ o) w(m) T K = k% (6.39)
This way we obtain the two independent ordinary differential equations
v"(11) + K*o(x1) = 0, (6.40)
w” (x5) + (k* — k*)w(xs) = 0. (6.41)
The solutions of (6.40) and (6.41) are respectively of the form
v(z1) = A, cos(kzy) + By sin(kzy), (6.42)
w(zz) = Ay cos(\/m xg) + B sin (m x2> , (6.43)

where A,, B,, Ay, By, are constants to be determined. This is performed by means of the
boundary condition in (6.36), which implies that

v'(0) =v'(a) = w'(0) = w'(b) = 0. (6.44)

Since v'(0) = w'(0) = 0, thus B, = B,, = 0. From the fact that v'(a) = 0 we get
that ka = mm for m € Z. Hence
K=—-: (6.45)

a
On the other hand, w’(b) = 0 implies that \/k? — k2 b = nx for n € Z. By rearranging and
replacing (6.45) we obtain the real eigenfrequencies

k= \/(%f n (”%)2 m,n € 7. (6.46)

The corresponding eigenstates, up to an arbitrary multiplicative constant, are then given by

u(x) = COS(%ZL@) cos(%@), m,n € 7. (6.47)

For the particular case of a rectangle with length a = 800 and width b = 400, the charac-
teristic frequencies are listed in Table 6.1.
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TABLE 6.1. Eigenfrequencies of the rectangle in the range from 0 to 0.02.

n

0 1 2
0.00000 0.00785 0.01571
0.00393 0.00878 0.01619
0.00785 0.01111 0.01756
0.01178 0.01416 0.01963
0.01571 0.01756
0.01963

N~ WD = O

6.4.2 Rectangular harbor problem

We consider now the particular case when the domain 2, C R? is taken as a rectangu-
lar harbor with a small opening d, such as the domain depicted in Figure 6.3. We take for
the rectangle a length a = 800, a width b = 400, and a small opening of size d = 20.

FIGURE 6.3. Rectangular harbor domain.

To simplify the problem, on I\, we consider an impedance boundary condition with
a constant impedance Z,, = 0.02 and on I, we take a Neumann boundary condition into

account. The rectangular harbor problem can be thus stated as
(

Find k € Cand u : 2, — C, u # 0, such that
Au+k*u=0 in Q,,
ou
on " on L, (6.48)
—%—i—Zoou:O on I,
on
[+ Outgoing radiation condition as |x| — oo,

where the outgoing radiation condition is stated in (6.16).

The boundary curve I, is discretized into / = 135 segments with a discretization
step h = 40.4959, as illustrated in Figure 6.4. The problem is solved computationally with
finite boundary elements of type PP; by using subroutines programmed in Fortran 90, by
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generating the mesh FI? of the boundary with the free software Gmsh 2.4, and by represent-
ing graphically the results in Matlab 7.5 (R2007b). The eigenvalues of the matrix M (ky,),
required to build the function of resonance-peaks (6.34), are computed by using the Lapack
subroutines for complex nonsymmetric matrixes (cf. Anderson et al. 1999).

800
700}
6001 F \ ( \

5001

&' 400}

3001

2001

100p

0 . . . . .
-600 -400 -200 0 200 400 600
1

FIGURE 6.4. Mesh FI? of the rectangular harbor.

The numerical results for the resonances, considering a step Ak = 5 - 107° between
wave number samples, are illustrated in Figure 6.5. It can be observed that the peaks tend
to coincide with the eigenfrequencies of the rectangle, which are represented by the dashed
vertical lines. The first six oscillation modes are depicted in Figures 6.6, 6.7 & 6.8. Only
the real parts are displayed, since the imaginary parts are close to zero. We remark that the
first observed resonance corresponds to the so-called Helmholtz mode, since its associated
eigenmode is constant.

500

400~

3001~

gx (kn)

100~

[ |
0.002 0.004 0.006 0.008 %01 0.012 0.014 0.016 0.018 0.02
h

FIGURE 6.5. Resonances for the rectangular harbor.
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(b) kp, = 0.00393

FIGURE 6.6. Oscillation modes: (a) Helmholtz mode; (b) Mode (1,0).
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FIGURE 6.7. Oscillation modes: (a) Modes (0,1) and (2,0); (b) Mode (1,1).
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VII. OBLIQUE-DERIVATIVE HALF-PLANE LAPLACE PROBLEM

7.1 Introduction

In this chapter we apply the developed techniques to the computation of the Green’s
function for the oblique-derivative (impedance) half-plane Laplace problem.

We consider the problem of finding the Green’s function for the Laplace equation in
a two-dimensional half-plane with an oblique-derivative (impedance) boundary condition.
Essentially, this Green’s function describes outgoing oblique surface waves that emanate
from a point source and which increase or decrease exponentially along the boundary, de-
pending on the obliqueness of the derivative in the boundary condition.

An integral representation for this Green’s function in half-spaces of three and higher
dimensions was developed by Gilbarg & Trudinger (1983, page 121). Using an image
method, it was later generalized by Keller (1981) to a wider class of equations, including
the wave equation, the heat equation, and the Laplace equation. Its use for more general
linear uniformly elliptic equations with discontinuous coefficients can be found in the ar-
ticles of Di Fazio & Palagachev (1996) and Palagachev, Ragusa & Softova (2000). The
generalization of this image method to wedges is performed by Gautesen (1988). When
dealing with time-harmonic problems, this representation of the Green’s function has to be
supplied with an additional term to account for an outgoing surface-wave behavior, e.g.,
the terms (2.63) and (3.58) associated with the limiting absorption principle.

In the particular case when the oblique derivative becomes a normal derivative, we
speak of a free-surface or impedance boundary condition, and the response to the point
source is referred to as an infinite-depth free-surface Green’s function, which is of great
importance in linear water-wave theory (vid. Section A.10). An explicit representation for
this Green’s function in two dimensions was derived in Chapter II and its main relevance is
that it allows to solve boundary value problems stated on compactly perturbed half-planes
by using boundary integral equations and the boundary element method (Durdn, Hein &
Nédélec 2007h). Boundary layer potentials constructed by using Green’s functions are also
important for such different topics as proving solvability theorems and computing resonant
states (Kuznetsov, Maz’ya & Vainberg 2002).

Poincaré was the first to state an oblique-derivative problem for a second-order elliptic
partial differential operator in his studies on the theory of tides (Poincaré 1910). Since then,
the so-called Poincaré problem has been the subject of many publications (cf. Egorov &
Kondrat’ev 1969, Paneah 2000), and it arises naturally when determining the gravitational
fields of celestial bodies. In this problem, the impedance of the boundary condition is
taken as zero. Its main interest lies in the fact that it corresponds to a typical degenerate
elliptic boundary value problem where the vector field of its solution is tangent to the
boundary of the domain on some subset. The Poincaré problem for harmonic functions,
in particular, arises in semiconductor physics and considers constant coefficients for the
oblique derivative in the boundary condition (Krutitskii & Chikilev 2000). It allows to
describe the Hall effect, i.e., when the direction of an electric current and the direction
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of an electric field do not coincide in a semiconductor due the presence of a magnetic
field (Krutitskii, Krutitskaya & Malysheva 1999). The two-dimensional Poincaré problem
for the Laplace equation is treated in Lesnic (2007), Trefethen & Williams (1986), and
further references can be also found in Lions (1956).

The main goal of this chapter is to derive rigorously an explicit representation for the
half-plane Green’s function of the Laplace equation with an oblique-derivative impedance
boundary condition by extending and adapting the results obtained in Chapter II. Excepting
the particular cases mentioned before, there has been no attempt to compute it explicitly.
The aim is to express the Green’s function in terms of a finite combination of known special
and elementary functions, so as to be practical for numerical computation. It is also of
interest to extend this representation, e.g., towards the complementary half-plane or by
considering a complex impedance instead of a real one. There is likewise the interest of
having adjusted expressions for the far field of the Green’s function and to state the involved
radiation condition accordingly.

The differential problem for the Green’s function is stated in the upper half-plane and
is defined in Section 7.2. In Section 7.3, the spectral Green’s function is determined by us-
ing a partial Fourier transform along the horizontal axis. By computing its inverse Fourier
transform, the desired spatial Green’s function is then obtained in Section 7.4. Some prop-
erties and extensions of the Green’s function are presented in Section 7.5, particularly its
extension towards the lower half-plane and its extension to consider a complex impedance.
The far field of the Green’s function is determined in Section 7.6.

7.2 Green’s function problem

We consider the radiation problem of oblique surface waves in the upper half-plane
R? = {y € R* : y, > 0} emanating from a fixed source point € R?, as shown in
Figure 7.1. The Green’s function GG corresponds to the solution of this problem, computed
in the sense of distributions for the variable y in the half-plane R? by placing at the right-
hand side of the Laplace equation a Dirac mass d,, which is located at . It is hence a
solution G(z, -) : RZ — C of

AyG(x,y) = 0z(y) in D'(R%), (7.1a)
subject to the oblique-derivative impedance boundary condition
oG
0sy
where the oblique, skew, or directional derivative is given by
oG oG oG
_(wu y) =8 VyG(a’a y) - 81—($,y> + 52_(w7 y)v (710)

05y

and is taken in the direction of the vector

s = (s1,82) = (coso, sino), || = /s + 53 =1. (7.1d)

oy s
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The boundary condition (7.1b) is expressed in terms of a real impedance Z > 0 and the
unit vector s is constant and such that sy > 0, i.e., such that 0 < ¢ < m. The case of
complex Z is discussed later in Section 7.5.

FIGURE 7.1. Domain of the Green’s function problem.

To obtain outgoing oblique surface waves for the radiation problem and to ensure the
uniqueness of its solution, an outgoing radiation condition has to be imposed additionally
at infinity. We express it in its more adjusted form, as in (2.17), which is later justified
from the far field of the Green’s function, developed in Section 7.6. The outgoing radiation
condition is given, as |y| — oo, by

C oG C 1
G| < — and — | < — if y-s>—=In(l1+Zrly|), (7.1e)
6] |yl lyl| ~ |yl Z ( )
—Zy-s
Gl < Ce?*  and ’a—G—iZG‘ L G
dly x s| ly x s

1
Hy-&<zm@+Zﬂm% (7.1f)
for some constants C' > 0, which are independent of y, and where

Y-8 =511Y + S22 and Y X 8 = SaY1 — S1Y2. (7.2)

This radiation condition specifies two regions of different asymptotic behaviors for the
Green’s function, analogously as shown in Figure 2.2. Both behaviors are separated by
rotated logarithmic curves. Above and away from the line y - s = 0, the behavior (7.1e)
dominates, which is related to the asymptotic decaying of the fundamental solution for
the Laplace equation. Below and near the line y - s = 0, on the other hand, the be-
havior (7.1f) resembles a Sommerfeld radiation condition, and is therefore associated to
surface waves propagating in an oblique direction, i.e., to oblique surface waves. Along
the boundary {y, = 0}, these waves decrease or increase exponentially, and their real and
imaginary parts have the same amplitude.

To solve the Green’s function problem (7.1), we separate its solution G into a homo-
geneous and a particular part, namely G = Gy + Gp. The homogeneous solution Gy,
appropriately scaled, corresponds to the additional term that is required to ensure an ap-
propriate outgoing behavior for the oblique surface waves. In the particular case when the
oblique derivative becomes normal, as in Chapter II, then a limiting absorption principle
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can be used to explain its presence. The solution G of the homogeneous problem, i.e.,
of (7.1a—b) without the Dirac mass, can be conveniently expressed as

GH(Q:, y> — ae—Z(SQ—‘risl)(Ug—i’Ul) _|_ /6e—Z(SQ—7:81)(1)2—%-7:1)1)7 (73)

where the notation
v =Y — 1 and Vg = Yo + T2 (7.4)
is used. The constants o, € Cin (7.3) are arbitrary and may depend on x. These constants

are fixed later on by means of the radiation condition, once the particular solution Gp
of (7.1) has been better determined.

7.3 Spectral Green’s function

7.3.1 Spectral boundary-value problem

The particular solution Gp satisfies (7.1a—b) and has to remain bounded as y, — oc.
To compute it, we use a modified partial Fourier transform on the horizontal y;-axis, taking
advantage of the fact that there is no horizontal variation in the geometry of the problem.
We define the Fourier transform of a function F'(z, (-,3»)) : R — C by

—~ 1 o0 .
F(&ya, x0) = E/ F(x,y) et qy, §eR. (7.5)

Applying the Fourier transform (7.5) on (7.1a-b) leads to a second-order boundary-
value problem for the variable y,, given by

82@]3 -~ . 5(y2 - 1'2)

2
8y§ (é) _5 GP(é-) - \/ﬁ ) Yo > 07 (763)
8@p . -~
S9 o (&) + (is1€ + Z)Gp(§) = 0, ys = 0. (7.6b)

We use undetermined coefficients and solve the differential equation (7.6a) respec-
tively in the strip {y € R? : 0 < y» < 2} and in the half-plane {y € R? : yo > z5}.
This gives a solution for @p in each domain, as a linear combination of two independent
solutions of an ordinary differential equation, namely

~ { aelflvz 4 pelélv: for 0 <y < @9,

Gp(§) = (7.7)

celélvz 4 g el€lv for yo > xs.

The unknowns a, b, ¢, and d, which depend on £ and x5, are determined through the bound-
ary condition and by considering continuity and the behavior at infinity.

7.3.2 Particular spectral Green’s function

Now, thanks to (7.7), the computation of @p is straightforward. From (7.6b) a relation
for the coefficients a and b can be derived, which is given by

a(Z + s9/&| + islg) + b(Z — s9/&| + islf) =0. (7.8)
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Since the solution (7.7) has to remain bounded at infinity as y, — c0, it follows that
c=0. (7.9)
To ensure continuity for the Green’s function at the point y, = xo, it is needed that
d = ael?2 4, (7.10)

Using relations (7.8), (7.9), and (7.10) in (7.7), we obtain the expression
~ _ _ Z+ solél +is16\
En(£) = g kil [e €llya—a] _ ( o-lelute) | 711
(&) 7 — $3l€| + is1€ (7.11)
By computing the second derivative of (7.11) in the sense of distributions and by replacing
it in (7.6a), we obtain that

6_‘5|m2 (7 12)
Qg = ————. .
V8T ¢
Finally, the particular spectral Green’s function Gp is given by
. - (Z + 52/¢| + z’slg) o 1€l(w>+2)
Gp(& Y2, 02) = ——F——— + : . (7.13)
P&y @) VT |€] 7 —slel+isiE) Rrle|

7.3.3 Analysis of singularities

We have to analyze now the singularities of the particular spectral Green’s function CAJP,
so as to obtain its asymptotic behavior and thus determine the constants «, (3 of the homoge-
neous solution (7.3). For this purpose, we extend the Fourier variable towards the complex
domain, i.e., £ € C, in which case the absolute value |£| has to be understood as the square
root \/5_2, where —7/2 < arg \/E < m/2, that is, always the root with the nonnegative
real part is taken. This square root presents two branch cuts, which are located respectively
on the positive and on the negative imaginary axis of £&. The particular spectral Green’s
function ép, for £ € C, becomes therefore

@(5)_—6_\/5_2|y2_x2+ Z+52\/£_2+i81£ 6_\/5_2(3/24'12)
T VE e VRV

This function is continuous on £ along the real axis and it incorporates a removable sin-
gularity at £ = 0, in the same manner as shown in Section 2.3. The function Gp has also
branch cuts on the positive and negative imaginary axis. Finally, (7.14) presents two simple
poles at £ = Z(s9 + is1) and £ = —Z (s — is1), whose residues are characterized by

lim  (§F Z(s2+1is1)) Gp(€) = F

E—+Z(s2tist)

(7.14)

S .

2 (59 & isy)eZlsaistv, (7.15)
V2w
Otherwise the function @p is regular and continuous. To analyze the effect of the poles, we
study at first the inverse Fourier transform of

ﬁ So e—Z(SQ—i-isl)vg So e—Z(sz—is1)v2
= ———(s2 s — + Sy — 1S o)
(5) \/%( 2 1)§—Z(SQ+281> \/%< 2 1)£—|—Z(52—281)

(7.16)
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This can be achieved by considering the Fourier transform of the sign function, i.e.,

sign(vy) N —i \/g% (7.17)

whose right-hand side is to be interpreted in the sense of the principal value, and by using
the translation, scaling, and linearity properties of the Fourier transform, as much in the
spatial as in the spectral domain (cf., e.g., Gasquet & Witomski 1999). The inverse Fourier
transform of (7.16) is then given by

s .
P(x,y) = — 7:52(32 + isy) sign(vy ) e~ Z(s2v2ts101) iZ(s201=s102)

+ 2'82_2(82 — is1) sign(vy ) e~ Zs2vatsivn) pmiZ{szvi=siva), (7.18)
The exponential terms in (7.18) are compatible with the asymptotic behavior of the Green’s
function, as will be seen later, but the one-dimensional nature of the Fourier transform does
not allow to retrieve correctly the direction of the cut that is present due the sign function.
Instead of being vertical along the wvs-axis as in (7.18), the direction of this cut has to
coincide with the oblique vector s in the (v, v9)-plane. To account for this issue we can
consider, instead of (7.16), the expression

s . —Z(s2+1is1)v2
-~ 59 . —i g (6—Z(s2+is1)) €

= — So +151)e 2 ;
Q(f) \/%( 2 1) f — Z(Sz + 281)

—Z(s2—1s1)v2

52 . —iZ vy (642 (sa—is1)) €

N AU E+ Z(s—is1)
which also describes correctly the residues of the poles, but incorporating an additional
exponential behavior that treats properly the vo-variable. We remark that this additional
exponential factor becomes unity when s; = 0, i.e., when the oblique derivative becomes
normal. By using again (7.17) and the same properties of the Fourier transform as before,
we obtain that the inverse Fourier transform of (7.19) is readily given by

+

(7.19)

Qx,y) = — i%(sz + is1) sign(sqvy — S1vg) e Z(s2v2ts1v) piZ(s201=s8102)
+ i%(SQ — i51) sign(savy — s510y) e~ 2202t s1v1) gmiZ(s2v1=s1v) (7.20)

Now the cut due the sign function coincides correctly with the oblique vector s and retrieves
appropriately the asymptotic behavior of the oblique surface waves.

It can be observed that (7.20) describes the asymptotic behavior of stationary oblique
surface waves, since its imaginary part is zero. In order to obtain an outgoing-wave behav-
ior, this missing imaginary part is provided by the homogeneous solution (7.3), which has
to be scaled according to

S .
GH(CE, y) — 'L.EQ(SQ + ’iSl) e—Z(52v2+51v1)€zZ(sgvl—slvg)
— z’%(sg — isy) e~ Zvatmvn) gi(savimsia) (7.21)
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The Fourier transform of (7.21) contains two Dirac masses and is given by

A y n N — S92 isl V2 .
Gr (&5 Y2, 12) = —1\/;32(524—@31)@ Z(sz+is1) 5(§—Z(82+231))

—1 \/gsg(sg — isp) e Zlszmis)e §(&+ Z(s2 —is1)). (7.22)

7.3.4 Complete spectral Green’s function

The complete spectral Green’s function, decomposed as G = @p—l—éH, is thus obtained
by adding the particular solution (7.13) and the homogeneous solution (7.22), which yields

é(£ T ) _ 67‘€||92*12| (Z + 82|§| + ZSlg) e —1€)(y2+z2)
Yo, To) = V8T €] Z —s|é|+isi€) V3r|¢|

—1 \/?SQ(SQ + iSl) S_Z(s2+isl)(y2+w2)(5(§ — Z(SQ + iSl))

—1 \/?82(52 — 7;81) €7Z(827i81)(y2+$2)(5(§ + Z(SQ - i81)> . (723)

For our further analy51s we decompose the particular solution (7.13) into three terms,
namely Gp = G + GD + GR, where

~ e~ [Ellyz—z2|

Goo(&5 Y2, T2) = _Wv (7.24)
~ e~ l€l(y2+22)

GD(f;?JQ;@) = \/S—Tma (7.25)
—~ S €—|§\(y2+x2)

Gr(&;ya, 12) = 2 (7.26)

V21 (Z — 52| +is1€) '
7.4 Spatial Green’s function

7.4.1 Decomposition

The particular spatial Green’s function Gp is given by the inverse Fourier transform
of (7.13), namely by

1 [ e lEllyz—z2|

GP<w7y) = E ’£| elﬁ(y17w1)d£
1 Z + sol€| +is1€ e léllvate2) £ (g —21)
— ¢ *dE. 7.27
* 4 ( Z — solé| +is1& €] ¢ $ ( )

Due the linearity of the Fourier transform, the decomposition Gp = G, + Gp + Gg holds
also in the spatial domain. We compute now each term in an independent manner and add
the results at the end.
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7.4.2 Term of the full-plane Green’s function

The first term in (7.27) corresponds to the inverse Fourier transform of (7.24), and can
be rewritten as
1 [ e—Ely2—m2
)y €
This integral is divergent in the classical sense (cf., e.g., Gradshteyn & Ryzhik 2007, equa-
tion 3.941-2) and yields, as for (2.75), the full-plane Green’s function of the Laplace equa-
tion, namely

Geo(x,y) = cos(&(yr — 1)) dE. (7.28)

1

7.4.3 Term associated with a Dirichlet boundary condition

The inverse Fourier transform of (7.25) is obtained in the same manner as the term G...
In this case we have that

1 0 e—£(y2+x2)
Gp(z,y) = 2—/ ————cos(&(yr — 1)) dE, (7.30)
T™Jo §
which implies that
1

being T = (x1, —x2) the image point of « in the lower half-plane. It represents the addi-
tional term that appears in the Green’s function due the method of images when considering
a Dirichlet boundary condition.

7.4.4 Remaining term

The remaining term G, the inverse Fourier transform of (7.26), can be expressed as

Cr(z,y) = 2 / e ey (7.32)
R\T: Y _271' 7OOZ—SQ|5|—|—Z'81€ ' .

Separating positive and negative values of £ in the integral and rearranging, yields

e—&(v2—ivi)

So . o
Gr(x,y) = —(s9 + is / 4 d
w(@.y) 27r( ? 1) o Z(sg+isy) —&
oo —&(v2+ivy)
S9 . (&
+ —(s9 — 15 - d¢. 7.33
22 1)/0 Z(sg —is1) =& ‘ 733

By performing respectively in the first and second integrals of (7.33) the change of vari-
able ) = (vy — iv1) (€ — Z(s2 + is1)) and g = (vy + iv1) (€ — Z(s5 — is1)), we obtain

Gr(z,y) = ;—;(32 +isy) e PV Ei(Zv - s — iZv X )

X 23_;(52 . iSl) eva-sfinXs EI(Z’U -s+iJv % S)7 (7.34)

where we use the notation

V-8 = S9Uy + S1V1 and V X 8 = S9U1 — S1V9, (735)
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and where Ei denotes the exponential integral function (vid. Subsection A.2.3). This special
function is defined as a Cauchy principal value by

ooe—t z et
Ei(z) = —][ —dt :][ ?dt (|arg 2| < m), (7.36)

—Zz t o0

and it can be characterized in the whole complex plane through the series expansion

ZTL

Ei(z) :'y—l—lnz—l—z (|arg 2| < m), (7.37)
n=1

— nn!
where v denotes Euler’s constant and where the principal value of the logarithm is taken,
i.e., the branch cut runs along the negative real axis. Its derivative is

d e*

— Ei(z) = —. 7.38

dz i(z) z ( )
For large arguments, as * — oo along the real line and as |y| — oo along the imaginary

axis, the exponential integral admits the asymptotic divergent series expansions

z X |
Bi(z) = — > — (z > 0), (7.39)
r = "
e~ nl
Ei(y) = imsign(y) + — , y eR). (7.40)
(i) W+ 2oy WER

7.4.5 Complete spatial Green’s function

The complete spatial Green’s function is finally obtained by adding the terms (7.22),
(7.29), (7.31), and (7.34), and is thus given explicitly by

1 1 _
G(zx,y) Zglnly—wl—%lnw—wl

+ 22 (5, + isy) e ZUatiZxs <Ei(Z'u 8 —iZv X s) — m)

27

n 5—;(52 — is;) e~ ZvaiZuxs <Ei(Zv -8+ i1v X s) — 2'7r>, (7.41)

where & = (x1, —z3) and where the notations (7.4) and (7.35) are used.

The numerical evaluation of the Green’s function (7.41) can be performed straightfor-
wardly in Mathematica, by using the function ExpIntegralEi, and almost directly in
Fortran, by adapting the computational subroutines described in Morris (1993) or, alterna-
tively, the algorithm delineated in Amos (1990a,b). Great care has to be taken in the latter
case, though, with the correct definition of the exponential integral, and particularly with
the analytic branch cut. The case for Z = 1, 0 = 57 /11, and = (0, 2) is illustrated in
Figures 7.2 & 7.3.

7.5 Extension and properties

The spatial Green’s function can be extended in a locally analytic way towards the full-
plane R? in a straightforward and natural manner, just by considering the expression (7.41)
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FIGURE 7.2. Contour plot of the complete spatial Green’s function.
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FIGURE 7.3. Oblique view of the complete spatial Green’s function.

valid for all z,y € R?2, instead of just for Ri. This extension has two singularities of
logarithmic type at the points x and &, whose behavior is characterized by

1
G, y) ~ or ly — x|, Yy — T, (7.42)
259 — 1
G(z,y) ~ (322—7?) In|y — &|, Yy — T. (7.43)

Across the half-line Y = {y e R : y = T — as, « > 0}, as shown in Figure 7.4, a jump
appears for the Green’s function due the analytic branch cut of the exponential integral
functions, which is given by

K(z,y) = G|y — G|_ = 2515y e~ Z2w2to10n), (7.44)
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For the same reason, there exists also a jump for the perpendicular oblique derivative
across 1, which is represented by

oG oG

J = —| — | =2Zsie Zlvatany) 7.45

(may> 8ty N aty - Sy¢ ) ( )

where 0G /0t =t - V,,G, being t = (52, —51).
R2
Y2 P _-=-,8
_______________ P D Lo
{y2 =0} -
®

FIGURE 7.4. Domain of the extended Green’s function.

As long as o # 0 the boundary condition (7.1b) continues to be homogeneous.
Nonetheless, if the source point x lies on the half-plane’s boundary, i.e., if x5 = 0, then
the boundary condition ceases to be homogeneous in the sense of distributions. This can
be deduced from (7.22) and (7.27) by verifying that

lim {g_i((xlao)ay) + ZG((I'I; O)7y)} = 52 5x1(y1) (746)

y2—0t

To illustrate more clearly the contribution of each logarithmic singularity to the Dirac mass
in the boundary condition, which holds only on {y, = 0}, we express the right-hand side

of (7.46) as

1

1

It can be seen now that the Green’s function extended in the abovementioned way
satisfies, for # € R?, in the sense of distributions, and instead of (7.1), the problem of
finding G(z, -) : R* — C such that

AyG = 6p+ (250 — 1) 6z + Jor + K%L; in D'(R?), (7.48a)
oG 1 1

and such that the radiation condition (7.1e—f) is satisfied as |y| — oo for y € R?, where dy
denotes a Dirac-mass distribution along the Y-curve.

We note that the half-plane Green’s function (7.41) is not symmetric in  and y in the
general case since the differential operator is not self-adjoint, but it holds that

G(fB, y) = G<_va _ZE) VCC, Yy e RQa (749)

where again & = (z1, —x2) and ¥ = (y1, —12).
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When the oblique derivative becomes a normal derivative, i.e., when s; = 1, then the
expression (7.41) effectively corresponds to the infinite-depth free-surface Green’s function
expressed in (2.94).

Another property is that we retrieve with (7.41) the special case of a homogenous
Dirichlet boundary condition in R% when Z — oo, namely

1 1
Gx,y) = —Injly—x| — —Inly — Z|. (7.50)
21 21
The same Green’s function (7.50) is also obtained when sy = 0. Likewise, we retrieve
with (7.41) the special case of the Poincaré problem in R? when Z — 0, i.e.,

1 1 _
G(z,y) Zgln!y—w\ —%ln\y—wl

+ 28—2(82 +is1)In(v-s—iv x 8) + 28—2(52 —is1)In(v-s+iv x s), (7.51)
m m

except for an additive complex constant that can be disregarded. When s, = 1, then (7.51)
turns moreover into the Green’s function resulting from a homogeneous Neumann bound-
ary condition in R? when Z — 0, namely

1 1
G(a:,y):%ln\y—w|+%1n|y—i|, (7.52)

excepting again an additive complex constant.

At last, we observe that the expression for the Green’s function (7.41) is still valid if
a complex impedance Z € C such that Jm{Z} > 0 and Re{Z} > 0 is used, which is
associated with dissipative wave propagation. The branch cuts of the logarithms that are
contained in the exponential integral functions, though, have to be treated very carefully in
this case, since they have to stay on the half-line Y. A straightforward evaluation of these
logarithms with a complex impedance rotates the branch cuts in the (v, v3)-plane and gen-
erates thus two discontinuous half-lines for the Green’s function in the half-plane v - s < 0.
This undesired behavior of the branch cuts can be avoided if the complex logarithms are
taken in the sense of

In(Zv-s—iZv xs) =In(v-s—iv x s) +In(Z), (7.53a)
In(Zv-s+iZv x s) =In(v-s+iv x s) +In(2), (7.53b)

where the principal value is considered for the logarithms on the right-hand side. For
the remaining terms of the Green’s function, the complex impedance Z can be evaluated
directly without any problems.

7.6 Far field of the Green’s function

7.6.1 Decomposition of the far field

The far field of the Green’s function (7.41), denoted by G/, describes its asymptotic
behavior at infinity, i.e., when |y| — oo and assuming that @ is fixed. For this purpose, the
terms of highest order at infinity are searched. Likewise as for the radiation condition, the
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far field can be also decomposed into two parts, namely
G =alil +a¥ (7.54)

The first part, G¥_ is linked with the asymptotic decaying of the fundamental solution for
the Laplace equation, whereas the second part, Ggf, is associated with the oblique surface
waves.

7.6.2 Asymptotic decaying

The asymptotic decaying acts above and away from the line y - s = 0, and is related
to the logarithmic terms in (7.41), and also to the asymptotic behavior as y - s — oo of the
exponential integral terms. In fact, due (7.39) we have for z € C that

z

Ei(z) ~ % as Me{z} — 0. (7.55)

By considering the behavior (7.55) in (7.41), by remembering (7.1d), and by neglecting the
exponentially decreasing terms as y - s — 00, we obtain that

1 1 _ S9 yg—f-l'g
G ~—1 —x| - —1 — i —— 7.56
(@.y) 27 nly —al o ly -l + Zm |y — T|? (7.56)
Using Taylor expansions as in Section 2.4, we have that
1 1 _ (x—&) -y 1
—1 —z| — —1 - =——7+0| — 7.57
e e T )
and likewise that |
Sz Y2 + T2 Sz Y2 ( )
_— == — |. (7.58)
Zm ly—x*  Zm [yl lyl?

We consider y = |y| g, being § = (cosf, sin ) a unitary vector. Hence, from (7.56) and

due (7.57) and (7.58), the asymptotic decaying of the Green’s function is given by
sin 6

7.6.3 Surface waves in the far field

The oblique surface waves present in the far field are found by studying the poles of
the spectral Green’s function, which determine their asymptotic behavior and which wad
already done. The expression that describes them is obtained by adding (7.20) and (7.21),
which implies that the Green’s function behaves asymptotically, when |y x s| — oo, as

G(z,y) ~ — z'%(SQ 1isy) (1 + sign(v x 5)) e~ ZosHiZoxs

- i%(sg —is1)(1 —sign(v x s)) e”7Ve7A