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Introduction

There is no absolute, unique notion of truth. In mathematics, we usually think
of a true statement as one that can be proved. The late 19th century and the
20th century saw considerable efforts to formalise mathematics, in an attempt to
set the bases of sound reasoning that everyone would agree on. As a byproduct
of this effort, the development of proof theory provides formal ways to rep-
resent mathematical proofs, but also gives the ability to reason about proofs
themselves. A proof is a comprehensive collection of arguments establishing the
truth of a statement. It is a self-contained object, that can be written once and
for all.

However, proofs are not the only way to convince someone of the truth of
a statement. Consider two persons called the Player and the Opponent. If the
Player wants to convince the Opponent of the truth of a statement, she might opt
for an interactive approach by letting the Opponent ask questions and delivering
her arguments as needed. Debating is an example of such an interaction, and
varies in its rules and degrees of formality. Logicians incorporate elements of
game theory to study interaction. In the context of computer science, this
line of research provides models of the interaction between a program and the
environment it is running in.

Determining the relationship between the static notion of truth defined by
proofs, and the dynamic one defined by interaction, is a vast field of research.
Paul Lorenzen, who developed dialogue games, even considered games as prim-
itive objects serving as a foundation for logic. A session of interaction, or play
in the game-theoretic terminology, will typically involve only some of the argu-
ments that can be found in a proof, much like in an examination: the examiner—
the Opponent—tests the examinee—the Player—’s knowledge by asking some
questions and verifying the answers given by the examinee, but she is not likely
to test the whole subject in a single session. The important point is that the
examiner has the power to ask any question pertaining to the subject. The only
way for the examinee to be absolutely sure to pass the test is to know the whole
subject. In the same fashion, a proof can be seen as a winning strategy allowing
the Player to succeed in every play.

This fundamental asymmetry between the examinee and the examiner, or
the Player and the Opponent, is pervasive in mainstream game semantics for
logic. If a statement is provable, then the Player is able to defend it against all
possible attacks by the Opponent. Conversely, if a statement is not provable,
then the Opponent is able to defeat the Player by asking the right questions.
In the former case, the Player’s winning strategy can be seen as a proof. In the
latter case, nothing much is done with the Opponent’s winning strategy, which
is merely seen as a refutation of the Player’s arguments. An interesting question
is whether the Opponent’s strategy can be seen as a proof of the negation of
the Player’s statement. In this thesis, we develop an original neutral approach
to proof search. In our games, the two players have symmetric roles. Instead of
being an examiner and an examinee, they are two parties attempting to prove
opposite statements. The winning strategies of either player are seen as proofs
of the statement she defends.

Our work is part of the computation-as-proof-search tradition. Instead of
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2 INTRODUCTION

considering proofs as preexisting objects that can be seen as winning strategies in
the interaction, we see each step of the interaction as a step in two simultaneous
exhaustive searches for the proofs of two dual formulae. We will work in the
multiplicative and additive fragment of linear logic (MALL), which has two
important advantages. Firstly, it is symmetric enough to allow a single process
to perform two orthogonal proof searches. Secondly, it is not complete, i.e.
the fact that a formula is not provable does not imply that its negation is.
In other words, refuting a statement is necessarily different from proving its
negation, highlighting the relevance of our approach. The formalism of choice
for representing proofs will be sequent calculus, as it is the perfect basis for
proof search and enjoys the symmetries we require. Moreover, the property of
focalisation of linear logic will be thoroughly used in this thesis, and we will
demonstrate its significance in interaction.

Outline of the thesis

• Chapter 1 introduces the fundamental notions used in our work. In par-
ticular, the reader will find a presentation of sequent calculus, linear logic,
and focalisation. We also present briefly the scope of the neutral approach
and put it into the perspective of the history of logic and games.

• Chapter 2 develops the neutral approach in the restricted additive setting
for which it was first designed by Miller and Saurin [MS06]. The focus is
put on the particularities of dual proof search and the properties that will
be preserved in the games for MALL.

• Chapter 3 describes a neutral game for MALL which is sequential in na-
ture. The game-theoretic model is simple and the main result establishes
the equivalence, for each player, between the provability of the player’s
statement and the existence of a winning strategy. Some of this material
was covered in our publications [DM08, DMS09].

• Chapter 4 introduces a new game model allowing for enough concurrency
to establish a correspondence between proofs and winning strategies.

• Chapter 5 investigates a few extensions of our game model. In particular,
we discuss the introduction of explicit cut moves in the game.

• Chapters 6 and 7 discuss related and future work and summarise the
contributions of the thesis.



Chapter 1

Preliminaries

This chapter presents core concepts that will be used throughout this thesis. We
introduce linear logic through its sequent calculus, obtained by restricting the
structural rules of the sequent calculus LK for classical logic. We also discuss
focalisation, perhaps the most outstanding result on linear logic, and one of its
extensions, multifocalisation. We finally introduce dialogue games for logic and
our neutral approach.

1.1 First-order classical logic

Logic manipulates formulae which are mathematical statements written in a
formal language. The features of a specific language determine the expressive-
ness of the logic. The more constructions the language allows, the richer the
logic will be. Propositional languages allow logics to describe finite behaviour.
Expressing finite statements about infinitely many objects requires at least a
first-order language. With such a language, it is possible to quantify over the
elements of a set, as in “there exists an element of the set such that . . . ” or “for
all elements of the set, . . . ”, which is familiar to any mathematician. Other,
higher-order settings exist, in which it is possible to quantify over more complex
objects such as relations.

A first-order language consists of
• a countable set of function symbols, each one being associated with a
natural number called its arity,

• a countable set of variables,
• a countable set of predicate symbols, each one being associated with a

natural number called its arity.

Function symbols with arity 0 are also referred to as constant symbols. We
will now assume that a first-order language is fixed. Terms are inductively
defined as follows. A variable is a term. If f is a function symbol with arity n,
and t1, . . . , tn are terms, then f(t1, . . . , tn) is a term.

We can now define formulae. Formulae of first-order classical logic are in-
ductively defined by the following grammar.

F, F ′ ::= P (~t) | F ∨ F ′ | ⊥ | F ∧ F ′ | ⊤ | F → F ′ | ∀xF | ∃xF | ¬F

where P is a predicate symbol of arity n, ~t = t1, . . . , tn is a list of n terms, and
x is a variable. A formula of the form P (~t) is an atom. ∨, ⊥, ∧, ⊤, →, ∀, ∃, and
¬ respectively represent disjunction, falsehood, conjunction, truth, implication,
universal quantification, existential quantification, and negation. F ≡ G is an
abbreviation for (F → G) ∧ (G → F ).

3



4 CHAPTER 1. PRELIMINARIES

1.2 Sequent calculus

Proof theory is the formal study of mathematical proofs. There are many ways
to represent proofs formally, and the one we are particularly interested in is
sequent calculus. Sequent calculus was introduced by Gentzen [Gen69] as a
proof system for classical logic named LK, and has been adapted to other logics
since then. One of the strengths of this formalism is its symmetry.

A sequent is an expression of the form x1, . . . , xm;F1, . . . , Fn ⊢ G1, . . . , Gp,
where x1, . . . , xm is a list of distinct variables called the signature and F1, . . . , Fn

and G1, . . . , Gp are formulae. The sequent x1, . . . , xm;F1, . . . , Fn ⊢ G1, . . . , Gp

is a formal way of expressing the statement ∀x1 . . . ∀xm F1 ∧ . . . ∧ Fn → G1 ∨
. . . ∨Gp, i.e. that the disjunction of the Gi holds under the assumption of the
conjunction of the Fi. In sequent calculus, reasoning is expressed by inference
rules of the form

P1 . . . Pn

C

where P1, . . . , Pn are sequents called the premises of the rule and C is a sequent
called the conclusion of the rule. An inference rule formalises a step of reasoning
in a proof, expressing that the conclusion follows from the premises. Figure 1.1
gives the rules of LK. Σ stands for a list of variables, Γ and ∆ for lists of formulae,
x for a variable, and F , F1 and F2 for formulae. Notice that the signature of a
sequent is almost never modified by a rule. As a result it is usually omitted.

A proof is built by combining inference rules in a tree structure. For example,
we can formally prove in LK the syllogism “all humans are mortal; Socrates is
human; therefore Socrates is mortal”. We encode this syllogism as the formula
(∀x (H(x) → M(x))) ∧H(s) → M(s). The proof is

H(s) ⊢ H(s)
init

M(s) ⊢ M(s)
init

H(s) → M(s), H(s) ⊢ M(s)
→L

∀x (H(x) → M(x)), H(s) ⊢ M(s)
∀L

∀x (H(x) → M(x)), (∀x (H(x) → M(x))) ∧H(s) ⊢ M(s)
∧L2

(∀x (H(x) → M(x))) ∧H(s), (∀x (H(x) → M(x))) ∧H(s) ⊢ M(s)
∧L1

(∀x (H(x) → M(x))) ∧H(s) ⊢ M(s)
CL

⊢ (∀x (H(x) → M(x))) ∧H(s) → M(s)
→R

in which we omitted the XL and XR rules for the sake of brevity.
The sequent at the bottom of a proof is called its conclusion. The notion

of derivation generalises the notion of proof. In a proof, all the sequents at the
leaves of the tree are the conclusions of rules with no premises. In a derivation,
such a leaf is said to be closed. An open leaf is simply a sequent which is not the
conclusion of any rule. The collection of all the open leaves is called the frontier
of the derivation. A derivation thus expresses that its conclusion follows from
its frontier.

Inference rules are classified into groups. The identity group consists of the
rules that identify two formulae: the init and cut rules. The init rule expresses
a fundamental axiom of logic: a formula implies itself. The cut rule allows
to introduce lemmas in a proof. It combines two proofs, one of them having
the lemma as a conclusion, the other one having the lemma as a hypothesis.
The logical rules express the logical meaning of the connectives. Each logical
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Identity

Σ;F ⊢ F
init

Σ; Γ1 ⊢ ∆1, F Σ;Γ2, F ⊢ ∆2

Σ;Γ1,Γ2 ⊢ ∆1,∆2
cut

Logical rules

Σ;Γ, F1 ⊢ ∆ Σ;Γ, F2 ⊢ ∆

Σ;Γ, F1 ∨ F2 ⊢ ∆
∨L

Σ; Γ ⊢ ∆, F1

Σ;Γ ⊢ ∆, F1 ∨ F2
∨R1

Σ;Γ ⊢ ∆, F2

Σ;Γ ⊢ ∆, F1 ∨ F2
∨R2

Σ;Γ ⊢ ∆

Σ;Γ,⊤ ⊢ ∆
⊤L

Σ; Γ ⊢ ∆,⊤
⊤R

Σ;Γ, F1 ⊢ ∆

Σ;Γ, F1 ∧ F2 ⊢ ∆
∧L1

Σ;Γ, F2 ⊢ ∆

Σ;Γ, F1 ∧ F2 ⊢ ∆
∧L2

Σ;Γ ⊢ ∆, F1 Σ;Γ ⊢ ∆, F2

Σ;Γ ⊢ ∆, F1 ∧ F2
∧R

Σ;Γ,⊥ ⊢ ∆
⊥L

Σ; Γ ⊢ ∆

Σ;Γ ⊢ ∆,⊥
⊥R

Σ;Γ1 ⊢ ∆1, F1 Σ;Γ2, F2 ⊢ ∆2

Σ;Γ1,Γ2, F1 → F2 ⊢ ∆1,∆2
→L

Σ; Γ, F1 ⊢ ∆, F2

Σ;Γ ⊢ ∆, F1 → F2
→R

Σ, x; Γ, F ⊢ ∆

Σ;Γ, ∃xF ⊢ ∆
∃L

Σ; Γ ⊢ ∆, F{t/x}

Σ;Γ ⊢ ∆, ∃xF
∃R

Σ;Γ, F{t/x} ⊢ ∆

Σ;Γ, ∀xF ⊢ ∆
∀L

Σ, x; Γ ⊢ ∆, F

Σ;Γ ⊢ ∆, ∀xF
∀R

Σ;Γ ⊢ ∆, F

Σ;Γ,¬F ⊢ ∆
¬L

Σ; Γ, F ⊢ ∆

Σ;Γ ⊢ ∆,¬F
¬R

Structural rules

Σ;Γ ⊢ ∆

Σ;Γ, F ⊢ ∆
WL

Σ;Γ ⊢ ∆

Σ;Γ ⊢ ∆, F
WR

Σ;Γ, F, F ⊢ ∆

Σ;Γ, F ⊢ ∆
CL

Σ;Γ ⊢ ∆, F, F

Σ;Γ ⊢ ∆, F
CR

Σ;Γ1, F2, F1,Γ2 ⊢ ∆

Σ;Γ1, F1, F2,Γ2 ⊢ ∆
XL

Σ;Γ ⊢ ∆1, F2, F1,∆2

Σ;Γ ⊢ ∆1, F1, F2,∆2
XR

In the ∀L and ∃R rules, t is a term containing variables from Σ only. In the ∃L
and ∀R rules, x is not free in the conclusion.

Figure 1.1: Sequent calculus for classical logic.
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rule deals with the main connective of a specific formula, called the principal
formula, leaving the other formulae of the sequent, which form the context,
unchanged. Each inference rule is named after that connective. The suffixes “L”
and “R” after the name of an inference rule mean that the principal formula is
respectively on the left and on the right of the ⊢ symbol. The structural rules
have no logical content, but express properties of the sequents themselves. In
particular, they imply that in a sequent Γ ⊢ ∆, the order and multiplicities of
the formulae in Γ and ∆ do not matter. In other words that Γ and ∆ could be
seen as sets.

LK is highly symmetric. For each one of the pairs of connectives ∨/∧, ⊥/⊤,
and ∃/∀, the right rule of a connective behaves like the left rule of the other. This
is the well-known De Morgan duality. The following equivalences are provable.

¬(F1 ∨ F2) ≡ ¬F1 ∧ ¬F2 ¬(F1 ∧ F2) ≡ ¬F1 ∨ ¬F2

¬⊥ ≡ ⊤ ¬⊤ ≡ ⊥

¬∃xF ≡ ∀x¬F ¬∀xF ≡ ∃x¬F

F1 → F2 ≡ ¬F1 ∨ F2 ¬¬F ≡ F

It is therefore possible to put formulae in negation normal form where negation
is applied to atoms only, and where there is no implication. An atom or the
negation of an atom is called a literal.

The fundamental property of LK is cut admissibility. An inference rule is
admissible when removing this rule from the proof system does not change the
set of provable sequents.

Theorem 1.2.1 (Cut admissibility). The cut rule of LK is admissible.

Although Gentzen originally stated this result in this way, he proved a
stronger result: every LK proof can be effectively transformed into a cut-free
proof. This procedure pushes cuts higher in a proof. For example pushing a cut
through a disjunction is done as follows:

π3

Γ1 ⊢ ∆1, Fi

Γ1 ⊢ ∆1, F1 ∨ F2
∨Ri

π1

Γ2, F1 ⊢ ∆2

π2

Γ2, F2 ⊢ ∆2

Γ2, F1 ∨ F2 ⊢ ∆2
∨L

Γ1,Γ2 ⊢ ∆1,∆2
cut

 

π3

Γ1 ⊢ ∆1, Fi

πi

Γ2, Fi ⊢ ∆2

Γ1,Γ2 ⊢ ∆1,∆2
cut

The cut elimination procedure gives a computational interpretation of se-
quent calculus. In particular, the Curry-Howard isomorphism sees proofs as
programs, and cut elimination corresponds to program execution.

An immediate corollary is the consistency of the logic. A logic is inconsis-
tent when two dual formulae F and ¬F are provable. If classical logic were
inconsistent, then the empty sequent would be provable by the cut rule

⊢ F ⊢ ¬F
⊢

cut

and, by the admissibility of cut, there would be a cut-free proof of the empty
sequent. A case analysis shows that there is no cut-free proof of any sequent of
the form ⊢ ⊥, . . . ,⊥.
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Cut admissibility makes cut-free proofs objects worthy of consideration.
Provability is preserved when eliminating cut. Cut-free derivations have a useful
property.

Proposition 1.2.2. In a cut-free derivation, every formula is a subformula of
a formula occurring in the conclusion.

Here, F is a subformula of G if it is a subtree of an instance Gσ of G.
This result holds because the cut rule is the only one to introduce brand new
formulae (reading derivations bottom-up). With this result we recast cut-free
sequent calculus by replacing the notion of formula with the notion of formula
occurrence, which is formally a location in the syntactic tree of a formula. For
example, the formula F ∨ F has two distinct occurrences of the subformula F .

Another useful property of LK is that the init rule can be restricted to atoms.

Proposition 1.2.3. Restricting the init rule to the atomic case does not affect
provability.

Later on, we will consider a logic without atoms. The init rule will then be
admissible.

1.3 Linear logic

Linear logic was introduced by Girard [Gir87]. It emerged from a semantic study
of polymorphic λ-calculus. We choose a syntactic approach by introducing it
through its sequent calculus LL, obtained by restricting the structural rules of
LK.

The weakening (WL and WR) and contraction (CL and CR) rules of LK
express that one can always weaken a statement by requiring an additional
hypothesis or allowing an additional conclusion, and that multiple occurrences
of a formula are as good as one. In a sequent Γ ⊢ ∆, the lists Γ and ∆ can
be considered as sets. Linear logic is obtained by removing the weakening and
contraction rules. In our presentation we also internalise the XL and XR rules.
In other words, Γ and ∆ are now multisets of formulae.

One of the interesting consequences is that previously interchangeable sets
of inference rules for the logical connectives are not equivalent any more. For
example we chose the following right rules for disjunction in LK:

Γ ⊢ ∆, F1

Γ ⊢ ∆, F1 ∨ F2
∨R1

Γ ⊢ ∆, F2

Γ ⊢ ∆, F1 ∨ F2
∨R2

but we could have chosen the following rule instead:

Γ ⊢ ∆, F1, F2

Γ ⊢ ∆, F1 ∨ F2
∨R

Those two presentations can be proved equivalent only with the structural rules.
Therefore we obtain two distinct disjunctions in linear logic, respectively de-
noted to by ⊕ and `. Similarly, we get two conjunctions & and ⊗:

Γ ⊢ ∆, F1 Γ ⊢ ∆, F2

Γ ⊢ ∆, F1 & F2
&

Γ1 ⊢ ∆1, F1 Γ2 ⊢ ∆2, F2

Γ1,Γ2 ⊢ ∆1,∆2, F1 ⊗ F2
⊗
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The same goes for the units ⊥ and ⊤, which become four units: 0 for ⊕, ⊥ for
`, ⊤ for &, and 1 for ⊗. In that context, the De Morgan dual pairs are ⊕/&,
0/⊤, ⊗/`, and 1/⊥. ⊕, &, 0, and ⊤ make up the additive fragment of linear
logic (ALL). ⊗, `, 1, and ⊥ make up the multiplicative fragment of linear logic
(MLL). All eight of them make up the multiplicative and additive fragment of
linear logic (MALL).

We will mostly be interested in MALL, which has a highly symmetric sequent
calculus well suited to our approach. Its provability is decidable, more precisely
PSPACE-complete [LMSS92, Kan94]. However, we present the full first-order
linear logic here. The formulae of first-order linear logic are inductively defined
by the following grammar.

F, F ′ ::= P (~t) | P (~t)⊥ | F ⊕ F ′ | 0 | F & F ′ | ⊤ | F ⊗ F ′ | 1 | F ` F ′ | ⊥

| !F | ?F | ∀xF | ∃xF

where P is a predicate symbol of arity n, ~t = t1, . . . , tn is a list of n terms, and
x is a variable. A formula of the form P (~t) is an atom.

In addition to the MALL connectives and first-order quantifiers, linear logic
contains two connectives ! and ? called exponentials. Girard included them to
recover the weakening and contraction rules in a controlled way. This allows
intuitionistic logic to be encoded into linear logic, for example.

We did not include negation and implication as actual connectives. Like in
LK, the ability to put formulae in negation normal form makes them superfluous.
In the grammar, P (~t)⊥ is a negated atom. Negation is an involution, inductively
defined as

(F1 ⊕ F2)
⊥ = F⊥

1 & F⊥
2 (F1 & F2)

⊥ = F⊥
1 ⊕ F⊥

2

0⊥ = ⊤ ⊤⊥ = 0

(F1 ⊗ F2)
⊥ = F⊥

1 ` F⊥
2 (F1 ` F2)

⊥ = F⊥
1 ⊗ F⊥

2

1⊥ = ⊥ ⊥⊥ = 1

(!F )⊥ = ?F⊥ (?F )⊥ = !F⊥

(∃xF )⊥ = ∀xF⊥ (∀xF )⊥ = ∃xF⊥

Linear implication F1⊸ F2 is defined as F⊥
1 ` F2.

The sequent calculus for linear logic, LL, is presented in Figure 1.2. Due
to the perfect symmetry of left and right rules, we opted for the mono-sided
presentation, i.e. with sequents of the form ⊢ Γ. A sequent Γ ⊢ ∆ is replaced
with ⊢ Γ⊥,∆.

Many properties of LK are preserved in LL, including Theorem 1.2.1 and
Propositions 1.2.2 and 1.2.3. The cut elimination step for additives is of partic-
ular interest. When pushing a cut through a pair of dual formulae F1&F2/F

⊥
1 ⊕

F⊥
2

π1

⊢ Γ1, F1

π2

⊢ Γ1, F2

⊢ Γ1, F1 & F2
&

π3

⊢ Γ2, F
⊥
i

⊢ Γ2, F
⊥
1 ⊕ F⊥

2

⊕i

⊢ Γ1,Γ2
cut
 

πi

⊢ Γ1, Fi

π3

⊢ Γ2, F
⊥
i

⊢ Γ1,Γ2
cut

only one of π1 and π2 is kept. In the context of such an interaction between
the ⊕ and & connectives, it is natural to isolate one of the two branches of a
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Identity

⊢ F, F⊥
init

⊢ Γ1, F ⊢ Γ2, F
⊥

⊢ Γ1,Γ2
cut

Additives

⊢ Γ, F1

⊢ Γ, F1 ⊕ F2
⊕1

⊢ Γ, F2

⊢ Γ, F1 ⊕ F2
⊕2

⊢ Γ, F1 ⊢ Γ, F2

⊢ Γ, F1 & F2
&

⊢ Γ,⊤
⊤

Multiplicatives

⊢ Γ1, F1 ⊢ Γ2, F2

⊢ Γ1,Γ2, F1 ⊗ F2
⊗

⊢ 1
1

⊢ Γ, F1, F2

⊢ Γ, F1 ` F2
` ⊢ Γ

⊢ Γ,⊥
⊥

Quantifiers

⊢ Γ, F{t/x}

⊢ Γ, ∃xF
∃

⊢ Γ, F

⊢ Γ, ∀xF
∀

Exponentials

⊢ ?Γ, F

⊢ ?Γ, !F
!

⊢ Γ, F

⊢ Γ, ?F
?D

⊢ Γ
⊢ Γ, ?F

?W
⊢ Γ, ?F, ?F

⊢ Γ, ?F
?C

Figure 1.2: Mono-sided sequent calculus for linear logic.

& rule in a derivation. Such an operation is called slicing a derivation, and the
resulting object is an (additive) slice. We will use the following notation for
instances of the & rule where a slice is taken:

⊢ Γ, F1

⊢ Γ, F1 & F2
&1

⊢ Γ, F2

⊢ Γ, F1 & F2
&2

1.4 Focalisation

Andreoli [And92] proved a fundamental result about linear logic. With efficient
logic programming in mind, Andreoli developed deep insights into the structure
of the cut-free proofs in LL in an effort to reduce non-determinism in proof
search.

For some inference rules it is the case that the premises are provable if and
only if the conclusion is. Those rules are said to be invertible. For example the
& rule is invertible since each premise ⊢ Γ, Fi can be derived from the conclusion
⊢ Γ, F1 & F2:

⊢ Γ, F1 & F2

⊢ F⊥
i , Fi

init

⊢ F⊥
1 ⊕ F⊥

2 , Fi

⊕i

⊢ Γ, Fi
cut

During proof search, all the invertible rules can be applied eagerly without losing
completeness. This inspired Andreoli to establish a classification of connectives
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of linear logic:
• the connectives &, ⊤, `, ⊥, ? and ∀ are called asynchronous; their intro-
duction rules are invertible;

• their duals ⊕, 0, ⊗, 1, !, and ∃ are called synchronous.
A formula which is not a literal is synchronous (resp. asynchronous) iff its main
connective is. An inference rule introducing a connective is synchronous (resp.
asynchronous) iff that connective is.

Andreoli proved that proof search can be forced to follow a specific strategy
without losing completeness.

1. As long as the current sequent contains asynchronous formulae, asyn-
chronous rules can be applied, in any order. Those rules are not only
invertible, they also commute.

2. When no more asynchronous rules can be applied, one must select a (syn-
chronous) formula and focus on it: hereditarily apply synchronous rules to
that formula and its descendants, until they become asynchronous again.
Then, go back to the previous point.

Those two modes alternate in a proof. The first mode is called an asynchronous
phase and the second one a synchronous phase.

Although the restriction to that behaviour does not affect provability, it
drastically constrains the shape of proofs. Andreoli extended the classification
of synchronous/asynchronous formulae to literals. For each pair of dual liter-
als P (~t)/P (~t)⊥, one arbitrarily chooses a bias by declaring one of them to be
synchronous (or positive) and the other one to be asynchronous (or negative).
Again, this choice does not affect the provability of a formula, but it has a major
impact on the shape of its proofs and can be used to control it [LM07].

Extending the classification of formulae to literals makes sense. Logically
speaking, an atom is a placeholder for a generic formula that will never be
inspected. Therefore, one expects a proof of a formula to be roughly unchanged
if an atom is uniformly replaced with an arbitrary formula. With focalisation,
the synchrony of a formula determines the shape of a proof. Thanks to the
classification of atoms, a focused proof can be trivially adapted if an atom is
uniformly replaced with a formula, as long as that formula and that atom have
the same synchrony.

For any pair of dual formulae F/F⊥, F+ will denote the synchronous (or
positive) one, and F− will denote the asynchronous (or negative) one. Figure 1.3
shows the focused proof system for linear logic. Sequents are of one of the two
forms ⊢ Θ : Γ ⇓ F or ⊢ Θ : Γ ⇑ ∆. Those sequents should be read in the
unfocused sequent calculus as ⊢ ?Θ,Γ, F and ⊢ ?Θ,Γ,∆ respectively. Θ is a
set of formulae, Γ is a multiset of positive formulae and negative literals, F is
a formula, and ∆ is a multiset of formulae. A sequent of the form ⊢ Θ : Γ ⇓ F
is in a synchronous phase, and focuses on the formula F . A sequent of the
form ⊢ Θ : Γ ⇑ ∆ is in an asynchronous phase, and ∆ is the multiset of the
potentially asynchronous formulae that need to be taken care of before the end
of the phase.

The structure of focused proofs suggests abstracting away from the details
of the phases. We may consider synchronous (resp. asynchronous) phases as
large synthetic inference rules [Cur05] introducing a full layer of synchronous
(resp. asynchronous) connectives. In particular, we will identify two focused
proofs which only differ by a permutation of inference rules within a phase. It
should be pointed out that although the order in which individual rules are
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Synchronous rules

⊢ Θ : L− ⇓ L+
[init1]

⊢ Θ, L− :⇓ L+
[init2]

⊢ Θ : Γ ⇓ F1

⊢ Θ : Γ ⇓ F1 ⊕ F2
[⊕1]

⊢ Θ : Γ ⇓ F2

⊢ Θ : Γ ⇓ F1 ⊕ F2
[⊕2]

⊢ Θ : Γ1 ⇓ F1 ⊢ Θ : Γ2 ⇓ F2

⊢ Θ : Γ1,Γ2 ⇓ F1 ⊗ F2
[⊗]

⊢ Θ :⇓ 1
[1]

⊢ Θ : Γ ⇓ F{t/x}

⊢ Θ : Γ ⇓ ∃xF
[∃]

⊢ Θ :⇑ F

⊢ Θ :⇓ !F
[!]

Asynchronous rules

⊢ Θ : Γ ⇑ F1,∆ ⊢ Θ : Γ ⇑ F2,∆

⊢ Θ : Γ ⇑ F1 & F2,∆
[&]

⊢ Θ : Γ ⇑ ⊤,∆
[⊤]

⊢ Θ : Γ ⇑ F1, F2,∆

⊢ Θ : Γ ⇑ F1 ` F2,∆
[`]

⊢ Θ : Γ ⇑ ∆

⊢ Θ : Γ ⇑ ⊥,∆
[⊥]

⊢ Θ : Γ ⇑ F,∆

⊢ Θ : Γ ⇑ ∀xF,∆
[∀]

⊢ Θ, F : Γ ⇑ ∆

⊢ Θ : Γ ⇑ ?F,∆
[?]

Phase changes

⊢ Θ : Γ ⇑ F−

⊢ Θ : Γ ⇓ F−
[R⇓]

⊢ Θ : G,Γ ⇑ ∆

⊢ Θ : Γ ⇑ G,∆
[R⇑]

⊢ Θ : Γ ⇓ F+

⊢ Θ : Γ, F+ ⇑
[D1]

⊢ Θ, F+ : Γ ⇓ F+

⊢ Θ, F+ : Γ ⇑
[D2]

F+ (resp. F−) stands for a positive (resp. negative) formula. L+ (resp. L−)
stands for a positive (resp. negative) literal. In [R⇑], G is either a positive
formula or a negative literal.

Figure 1.3: Focalisation for linear logic.
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applied is nondeterministic, there is only one asynchronous phase with a given
conclusion. In other words, all the non-deterministic choices are grouped in
synchronous phases, which does not come as a surprise since asynchronous rules
are invertible. As we shall see in this thesis, focalisation is adapted to an
interactive interpretation: a synchronous phase corresponds to choices that we
make, and an asynchronous phase to choices that an opponent makes.

As we will mostly be interested in MALL, the proof systems we will con-
sider will be simpler. The non-linear Θ zone is not needed in the absence of
exponentials.

1.5 Multifocalisation

Although focalisation provides an abstraction from individual inference rules,
it forces the decomposition of synchronous formulae to be sequentialised. The
[D1] and [D2] rules start a synchronous phase by picking a formula as focus, and
the other synchronous formulae have to wait for their turn. Consider the two
following MLL focused proofs.

⊢ L− ⇓ L+
[init1]

⊢ L+, L− ⇑
[D1]

⊢ L+ ⇑ L− `⊥
[`,R⇑,⊥]

⊢ L+ ⇓ (L− `⊥)⊗ 1
[⊗,R⇓, 1]

⊢ (L− `⊥)⊗ 1, L+ ⇑
[D1]

⊢ (L− `⊥)⊗ 1 ⇑ L+ `⊥
[`,R⇑,⊥]

⊢ (L− `⊥)⊗ 1 ⇓ (L+ `⊥)⊗ 1
[⊗,R⇓, 1]

⊢ (L+ `⊥)⊗ 1, (L− `⊥)⊗ 1 ⇑
[D1]

⊢ L− ⇓ L+

⊢ L−, L+ ⇑

⊢ L− ⇑ L+ `⊥

⊢ L− ⇓ (L+ `⊥)⊗ 1

⊢ (L+ `⊥)⊗ 1, L− ⇑

⊢ (L+ `⊥)⊗ 1 ⇑ L− `⊥

⊢ (L+ `⊥)⊗ 1 ⇓ (L− `⊥)⊗ 1

⊢ (L+ `⊥)⊗ 1, (L− `⊥)⊗ 1 ⇑

Those proofs only differ by the order in which the phases are scheduled. Chaud-
huri, Miller and Saurin propose in [CMS08] to extend focalisation by allowing
several foci to be selected for a synchronous phase, a feature known as mul-
tifocalisation. They introduce a sequent calculus for MALL (see Figure 1.4).
Saurin provides a multifocused sequent calculus for the full logic in [Sau08b].
Multifocused sequent calculus is clearly sound and complete with respect to
LL. Soundness is seen by removing focusing annotations from sequents, and
completeness follows from the completeness of single focalisation.

In addition to the two sequentialised proofs above, multifocusing allows a
proof in which the synchronous formulae are decomposed concurrently:

⊢ L− ⇓ L+
[init]

⊢ L+, L− ⇑
[D]

⊢⇑ L+ `⊥, L− `⊥
[`,R⇑,⊥]

⊢⇓ (L+ `⊥)⊗ 1, (L− `⊥)⊗ 1
[⊗,R⇓, 1]

⊢ (L+ `⊥)⊗ 1, (L− `⊥)⊗ 1 ⇑
[D]

The authors of [CMS08] show that maximally multifocused MLL proofs cor-
respond to MLL proof nets. We will not cover this topic here, but we will
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Additives

⊢ Γ ⇓ Fi,∆

⊢ Γ ⇓ F1 ⊕ F2,∆
[⊕i]

⊢ Γ ⇑ F1,∆ ⊢ Γ ⇑ F2,∆

⊢ Γ ⇑ F1 & F2,∆
[&]

⊢ Γ ⇑ ⊤,∆
[⊤]

Multiplicatives

⊢ Γ1 ⇓ F1,∆1 ⊢ Γ2 ⇓ F2,∆2

⊢ Γ1,Γ2 ⇓ F1 ⊗ F2,∆1,∆2
[⊗]

⊢⇓ 1
[1]

⊢ Γ ⇑ F1, F2,∆

⊢ Γ ⇑ F1 ` F2,∆
[`]

⊢ Γ ⇑ ∆

⊢ Γ ⇑ ⊥,∆
[⊥]

Identity

⊢ L− ⇓ L+
[init]

Phase changes

⊢ Γ ⇑ ∆−

⊢ Γ ⇓ ∆−
[R⇓]

⊢ G,Γ ⇑ ∆

⊢ Γ ⇑ G,∆
[R⇑]

⊢ Γ ⇓ ∆+

⊢ Γ,∆+ ⇑
[D⇓]

In [R⇑], G is either a positive formula or a negative literal. In [D⇓], ∆+ is not
empty.

Figure 1.4: Multifocalisation for MALL.

use multifocalisation as a way to improve the concurrency of focused sequent
calculus.

1.6 Proof theory and computation

In the general context of the study of computation, approaches to proof theory
traditionally fall into two categories.

In the computation-as-proof-normalisation approach, proofs model programs
in functional languages. The computational content of this model is seen in the
correspondence between proof normalisation and program execution. In that
setting, a formula is a type, and a proof is a term of that type. A formula is
true iff its type is not empty. Implication corresponds to the “arrow” constructor
for types and plays a fundamental role. Proofs of A → B are functions mapping
proofs of A to proofs of B. Proof normalisation corresponds to β-reduction in
λ-calculus.

In the computation-as-proof-search approach, the state of the computation is
seen as a sequent, and the computation itself as the search for a cut-free proof
of that sequent. This is the basis for logic programming [MNPS91]. In that
tradition, the specific features of a proof system are used to model proof search
strategies. For example, the bias assignment to the atoms in a focused proof
system can force forward-chaining or back-chaining [LM07].
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1.7 Games and logic

The connections between logic and games have a long and rich history, although
they remained informal until the 1950s. It is known since Aristotle that a debate
can be seen as a game. The twentieth century saw the development of game
theory, and connections were then made to logic. From the point of view of
game theorists in general, the kinds of games studied in logic are quite specific.
They typically involve two players with distinct roles, are not concerned with
probabilities, and usually have two outcomes: a win for a player or for the
opponent.

In a typical game for logic, the two players, called the Player and the Op-
ponent, or Élöıse and Abélard, build a sequence of moves called a play. For
each finite sequence of moves, the rules of the game specify which player shall
be the one to extend the sequence with a move, and which moves are at her
disposal for doing so. Plays may be infinite in general, but there may also be
some finite sequences of moves that cannot be extended with additional moves.
In either case, the rules of the game classify maximal plays into those won by
Élöıse and those won by Abélard. The plays are the uni-dimensional objects of
the games. There are also bi-dimensional objects of interest called strategies.
Strategies represent move policies that players may follow. A typical strategy is
simply a set of plays that a player is prepared to follow. An important question
about the game is whether a specific player can play according to some strategy
which ensures her victory. If the answer is positive, then such strategies, called
winning strategies, are formal witnesses to this fact. Similarly, proofs are wit-
nesses to the truth of a formula. The games we are interested in tend to make
this connection between games/formulae, provability/the existence of a winning
strategy, proofs/winning strategies, and computation/dynamics of interaction.

Dialogue games were formalised by Lorenzen [Lor61]. In those games, the
Player tries to establish the truth of a formula while the Opponent tries to
establish its falsehood. Informally, the Opponent plays the role of an examiner
and the Player plays the role of an examinee. For example, if the formula is
a conjunction, the Opponent chooses a conjunct and challenges the Player to
prove it; if it is a disjunction, the Player chooses which disjunct to prove.

Lorenzen’s work inspired mainstream game semantics in the computation-as-
proof-normalisation tradition. The main idea is to interpret proofs as strategies,
and to define an operation of composition of two strategies corresponding to the
cut of the two proofs. This line of work began with Blass’ game semantics for
linear logic [Bla92]. Major advances allowed to solve long-standing problems
such as the full-abstraction problem for the language PCF [AJM00, HO00]. The
objective was to establish a correspondence between strategies and programs,
and this required controlling the information available to the players to choose
moves. Hyland and Ong developed the adequate notion of innocent strategy
to this end. Theses approaches also provided models for logics capturing the
dynamics of cut elimination [AJ94, AM99]. Another major problem investigated
in this line of research was the ability to represent concurrent programs in
games. Abramsky and Melliès developed concurrent games [AM99] in which
moves are performed concurrently in maximal chunks. Melliès also developed
asynchronous games in which the traces of computation (sequences of moves) are
equipped with a homotopy relation giving a geometric reading of concurrency.
In this framework, it is possible to see innocence as positionality [Mel04].
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Game-theoretical studies of logic programming are less common. Some
of them model Prolog engines, beginning with [vE86] which connected Pro-
log computations and two-person games using the αβ-algorithm. Loddo et
al. [CLN98, Lod02] further developed this line of research with constraint logic
programming [LC00]. Galanaki et al. [GRW08] accounted for negation in logic
programming. Some other game-theoretic studies are more fundamentally con-
cerned with proof search, as a foundation of logic programming. The games
of Pym and Ritter [PR04] model the search for uniform proofs with backtrack-
ing. More recently, Saurin [Sau08b, Sau08a] investigated proof search in Lu-
dics [Gir01] guided by interaction with tests.

1.8 The neutral approach

The approach we develop in this thesis is inspired by dialogue games, but it
clearly lies in the computation-as-proof-search tradition. The major novelty of
this work is a change of perspective: instead of considering asymmetric settings
in which the Player provides the arguments and the Opponent only aims at
refuting them, we adopt a neutral approach with players having the same sta-
tus. Both players attempt to prove a formula and to refute its negation. The
computation can be seen as the simultaneous search for two orthogonal proofs,
or dual proof search.

The neutral approach was first designed by Miller and Saurin in [MS06] in
an essentially additive setting (see Chapter 2). A more subtle role assignment
than the usual Player/Opponent dichotomy can be motivated by considering
a common approach to proving the completeness of first-order classical logic,
following, say, Smullyan [Smu95]. Proving completeness can be done by at-
tempting to progressively build a sequent calculus derivation of a formula F .
Each step extends the derivation with inference rules at the open leaves. If
this is done in a systematic fashion, all the leaves are eventually closed, or the
derivation ends up with a possibly infinite open branch. In the first case, there
is a proof of F and in the second case, the open branch provides a falsifying
model of F . This process can be seen as an interaction where one of the players
attempts to complete the proof while the other one looks for an infinite branch.
Exactly one of the players succeeds at their task.

This example relates the proof-theoretic notion of provability to the semantic
notion of validity. In a decidable logic, models are expected to be finite, and so
are the open branches of the derivation of F . In that case, it may be possible
to extract a proof of ¬F from the counter-model for F read from an open
branch. The interactive process would then be seen as two players building
derivations of opposite formulae. However, models and proofs are objects which
are different in nature and, even though the development of the derivation and
of the counter-model of F are closely related at each step, there is no reason to
expect the derivation of ¬F extracted from the counter-model to be related to
the derivation of F .

The neutral approach solves this issue with a symmetric two-player game in
which both players play with the same rules. If a player has a winning strategy,
she is able to construct a proof: for one of the players, this would be a proof of F
while dually for the other player, this would be a proof of ¬F . Each step extends
the two orthogonal derivations with an inference rule of sequent calculus.
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The core part of this thesis consists in defining neutral games for MALL.
MALL has the advantage of having an extremely symmetric sequent calculus,
which is required in our approach. The provability for MALL is PSPACE-
complete, and MALL is incomplete. That is, there are formulae F such that
neither F nor F⊥ are provable; take, for example, F = 1` 0. It means that the
neutral approach is not trivial in that logic: refuting a formula is not the same
as proving its negation. Therefore, the game is not determinate: in some cases
no player has a winning strategy. Some plays are not won by any player and,
as a result, plays need to continue after one of the player has failed; it has yet
to be determined whether the other player will win or not.

Chapter 3 presents a neutral game for MALL with a simple model in which
the provability of a formula is equivalent to the existence of a winning strategy
for the corresponding player. Chapter 4 switches to a radically different game
model allowing for some concurrent behaviour, in which proofs are related to
winning strategies.

Note that we follow a conventional angle. We aim at finding the suitable
notion of game to bring the neutral approach to an existing logic with an existing
notion of proof and refutation. In doing so, we stress the deep dualities of the
logic, not only concerning proofs themselves, but also concerning the dynamics of
proof search. The individual steps of proof search are performed simultaneously
in the two orthogonal derivations. In contrast, Ludics [Gir01], while sharing
some similarities with our work, takes another direction by radically departing
from logic and making interaction the primitive notion.



Chapter 2

Additive neutral games

This chapter introduces the neutral approach first developed by Miller and
Saurin [MS06], restricting it to an additive setting in which refuting a formula is
the same as proving its negation. Starting from a Hintikka-style dialogue game,
we introduce a neutral syntax and discuss the remarkable properties that we
wish to preserve in the game for MALL. In addition, we briefly revisit the sim-
ple games, an extension to a fragment of MALL keeping this additive behaviour,
yet expressive enough to encode numerous examples.

In the two-player games we consider, the players will be named 0 and 1. The
symbol λ will typically denote a player. For every player λ ∈ {0, 1}, λ = 1− λ
will denote the opponent.

2.1 An additive neutral game

2.1.1 Hintikka’s additive game for truth

Jaakko Hintikka (see, for example, [Hod04]) presented a two player game to de-
fine a notion of truth of a formula of first-order classical logic. One of Hintikka’s
key observations was that playing on the negation of a formula F was the same
as playing on F and exchanging the two players.

Two players, Élöıse and Abélard, play on a single formula. Élöıse tries to es-
tablish the truth of the formula while Abélard tries to establish its falsehood. In
this section, we present a propositional version of this game, using the propo-
sitional additive fragment of linear logic (ALL). We recall the syntax of the
formulae of this fragment:

F,G ::= F ⊕G | 0 | F &G | ⊤

Hintikka’s original motivation was to provide an interactive definition of
truth. In this presentation we take an alternate approach by switching to proof-
theoretic notions. This distinction might seem shallow at first, since validity and
provability are equivalent notions. However, seeing interaction as orthogonal
proof search is at the heart of our approach, and applying this methodology to
the richer MALL will provide insights into its proof theory.

The sequent calculus for ALL is straightforward:

⊢ Ei

⊢ E1 ⊕ E2
⊕i for i ∈ {1, 2}

⊢ E1 ⊢ E2

⊢ E1 & E2
&

⊢ ⊤
⊤

Formally, the game consists of an arena, which is a directed graph whose
vertices, called positions, are the formulae occurrences, and whose arcs are called
moves. Each move has an associated player, which can be either Élöıse or
Abélard. The following definition lists the moves of each player.

17
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Definition 2.1.1. Élöıse has two moves from every position of the form F ⊕G,
to F and G respectively. Abélard has two moves from every position of the form
F &G, to F and G respectively.

We use the notation p → p′ to denote a move from a position p to a position
p′.

The positions from which there is no move, which are the occurrences of 0
and ⊤, are called terminal. A play p is a finite sequence p1, . . . , pn of positions
such that pi−1 → pi for 1 < i ≤ n. A play is maximal iff its last position is
terminal. A maximal play p1, . . . , pn is won by Élöıse iff pn = ⊤, and by Abélard
iff pn = 0.

Informally, Élöıse and Abélard discuss the truth of a formula by challenging
each other. Each player aims at bringing the other player to a contradiction.
Their argument is formally represented by a play, starting from the initial for-
mula, and each move represents a step in the argument. When considering a
disjunction F ⊕G, Élöıse gets to choose a disjunct with which to continue the
discussion. Since she tries to establish the truth of F ⊕ G, and since F ⊕ G
is true iff F is or G is, her task is to point out which one is. Abélard, who
tries to establish that F ⊕ G is false, must be able to argue that F and G are
both false. It seems therefore natural that Élöıse be the one to make the choice
between F and G: she simultaneously chooses which disjunct she believes to
be true, and challenges Abélard to prove her wrong. Dually, when playing on
a conjunction, Abélard is the one to make the choice between the conjuncts.
When the play reaches a terminal position, representing the undeniable truth
(⊤) or the undeniable falsehood (0), the player who is undeniably right wins
the argument.

It is important to understand that there are, in general, many different plays
starting from a given position, and that not all of them are won by the same
player. In a real-life debate, someone defending a valid point may make some
mistakes and end up losing an argument when confronted by a skilled opponent.

Example 2.1.2. The tree of the plays starting at the true formula (⊤ ⊕ (0 ⊕
⊤)) & ((0 &⊤)⊕⊤) is

(⊤⊕ (0⊕⊤)) & ((0 &⊤)⊕⊤)

⊤⊕ (0⊕⊤)

⊤ 0⊕⊤

0 ⊤

(0 &⊤)⊕⊤

0 &⊤

0 ⊤

⊤

Clearly, some of the maximal ones are won by Élöıse, some others by Abélard.

As illustrated by this example, a play is a uni-dimensional object which does
not contain enough information to decide the truth of a formula. It is, however,
a trace of a debate which ends with a player failing to prove her point. This
does not come as a surprise, since objects establishing the truth of a formula,
like proofs, are usually bi-dimensional. In games, a player sometimes has a way
to play which ensure her victory, no matter how the opponent chooses to play.
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A strategy is an object representing how a player is willing to play. A strategy
is winning when the player wins all the terminal plays in which she follows the
strategy. Strategies are bi-dimensional objects, formalised here as the set of
plays the player is willing to play.

Definition 2.1.3 (Strategy). Let λ be a player. A λ-strategy for a position p
is a minimal prefixed-closed set σ of plays such that:

• p ∈ σ,
• if p1, . . . , pn ∈ σ and player λ moves at pn, then there is exactly one

position pn+1 such that pn → pn+1 and the play p1, . . . , pn+1 is in σ,
• if p1, . . . , pn ∈ σ and player λ moves at pn, then for every position pn+1

such that pn → pn+1, the play p1, . . . , pn+1 is in σ.
A λ-strategy is winning iff λ wins all its maximal plays.

Here we require strategies to be deterministic (whenever the player has to
move, the strategy must specify at most one move) and total (whenever the
player has to move, the strategy specifies at least one move; when the opponent
has to move, the strategy accepts all possible moves).

In Example 2.1.2, Élöıse has two winning strategies:
• one consisting of the plays (⊤ ⊕ (0 ⊕ ⊤)) & ((0 & ⊤) ⊕ ⊤), ⊤ ⊕ (0 ⊕ ⊤),
⊤ and (⊤ ⊕ (0 ⊕ ⊤)) & ((0 & ⊤) ⊕ ⊤), (0 & ⊤) ⊕ ⊤, ⊤, along with their
prefixes;

• one consisting of the plays (⊤ ⊕ (0 ⊕ ⊤)) & ((0 & ⊤) ⊕ ⊤), ⊤ ⊕ (0 ⊕ ⊤),
0⊕⊤, ⊤ and (⊤⊕ (0⊕⊤)) & ((0 &⊤)⊕⊤), (0 &⊤)⊕⊤, ⊤, along with
their prefixes.

Winning strategies allow a player to win against all attacks. The two play-
ers cannot both have winning strategies at the same time. Otherwise playing
them against each other would yield a play won by the two players, which is
impossible. Not surprisingly, having a winning strategy means that the player
playing it is correct at establishing the truth.

Theorem 2.1.4. Let E be a formula. E is true iff Élöıse has a winning strategy
for E. E is false iff Abélard has a winning strategy for E

Proof. If E = ⊤, Élöıse has a trivial winning strategy. If E = 0, Élöıse has no
winning strategy. If E is of the form F ⊕ G, Élöıse has a winning strategy iff
she has a winning strategy for F or a winning strategy for G. If E is of the form
F &G, Élöıse has a winning strategy iff she has a winning strategy for F and a
winning strategy for G. Those cases exactly match the truth semantics of the
logic, hence the theorem. The dual result for Abélard is equally obvious.

Modelling truth is one of the objectives of the connections between logic
and games, but we can do better. Since winning strategies are formal objects
establishing the truth of a formula, it is natural to question how they relate
to proofs. Depending on the game model and proof system, winning strategies
may not correspond to proofs at all, correspond exactly to proofs, or correspond
to classes of proofs.

In the case of our additive game, the correspondence is clearly one-to-one.

Theorem 2.1.5. Let E be a formula. There is a one-to-one correspondence
between the cut-free ALL proofs of E and Élöıse’s winning strategies for E.
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For example, Élöıse’s winning strategies for Example 2.1.2 correspond to the
two proofs of (⊤⊕ (0⊕⊤)) & ((0 &⊤)⊕⊤):

⊢ ⊤
⊤

⊢ ⊤⊕ (0⊕⊤)
⊕1

⊢ ⊤
⊤

⊢ (0 &⊤)⊕⊤
⊕2

⊢ (⊤⊕ (0⊕⊤)) & ((0 &⊤)⊕⊤)
&

and

⊢ ⊤
⊤

⊢ 0⊕⊤
⊕2

⊢ ⊤ ⊕ (0⊕⊤)
⊕2

⊢ ⊤
⊤

⊢ (0 &⊤)⊕⊤
⊕2

⊢ (⊤⊕ (0⊕⊤)) & ((0 &⊤)⊕⊤)
&

Remark 2.1.6. In sequent calculus, the two proofs of ⊢ ⊤⊕⊤ are distinct. We
define the positions of the game as formula occurrences instead of plain formulae
to make the same distinction. Otherwise the two disjuncts of ⊤ ⊕ ⊤ would be
identified and Élöıse would only have one winning strategy for this formula.

2.1.2 A neutral presentation

An important feature of ALL is its completeness. For every formula E, either
E or E⊥ is provable. Making this observation explicit in sequent calculus is not
easy, but it can be done in the game. The game is symmetric in the sense that
disjunction (⊕ and 0) is treated in the same way by Élöıse as conjunction (&
and ⊤) by Abélard. What matters is not the current formula in a play, but who
plays. If we negate all formulae in a game, the strategies of Élöıse and Abélard
are swapped.

Corollary 2.1.7. Let E be a formula. There is a one-to-one correspondence
between the proofs of E⊥ and Abélard’s winning strategies in E.

This is a stronger statement than the mere completeness of the logic: not
only is E⊥ provable if and only if E is not, but the refutations of E (witnesses
that it is unprovable) are in one-to-one correspondence with the proofs of E⊥.

Therefore, the game can be seen as the simultaneous development of two
dual derivations, in which Élöıse attempts to derive E while Abélard attempts
to derive E⊥. Both derivations are built from the bottom up. Whenever one of
the players faces a sequent of the form ⊢ F1 ⊕F2, she picks one of the disjuncts
Fi by extending the derivation with the rule ⊕i. Simultaneously her opponent
faces ⊢ F⊥

1 & F⊥
2 and, depending on the choice of her opponent, is challenged

to prove either ⊢ F⊥
1 or ⊢ F⊥

2 . Even if only one of the conjuncts is picked
during a given play, the opponent must be able to accommodate to any of the
two choices of the player, and her winning strategies are indeed composed of
two separate sub-strategies, exactly like the proofs of ⊢ F⊥

1 & F⊥
2 . Whenever

one of the players faces ⊢ ⊤, she can close her derivation and wins; while her
opponent, who faces ⊢ 0, cannot close her derivation and loses.

Note that since a given play only explores one branch of each conjunction,
it is not a derivation per se, rather an additive slice of a derivation.

This duality motivates the introduction of a neutral syntax replacing that
of formulae. Conjunction and disjunction will be replaced by a single neutral
connective +, its unit will be denoted to by ✵, and we will denote the change of
player by ˜.
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[E1 + E2]
+ = [E1]

+ ⊕ [E2]
+ [E1 + E2]

− = [E1]
− & [E2]

−

[✵]+ = 0 [✵]− = ⊤

[˜E]+ = [E]− [˜E]− = [E]+

Figure 2.1: Positive and negative translations of additive neutral expressions
into ALL.

Definition 2.1.8 (Additive neutral expressions). The additive neutral expres-
sions E and guarded additive neutral expressions G are inductively defined as
follows.

G,G′ ::= E + E′ | ✵

E,E′ ::= G | ˜G

An additive neutral expression can be seen as a pair of two dual formulae of
ALL called its positive and negative translations. Figure 2.1 defines them.

We can now reformulate the game in terms of neutral expressions instead of
formulae.

Definition 2.1.9 (Propositional additive game). The game on a neutral ex-
pression E consists of positions and moves. The positions are the occurrences
of the sub-expressions of E. Consider the rewrite rules

E1 + E2 7→ E1 E1 + E2 7→ E2

There is a move E → F iff E 7→∗ ˜F . A position from which there is no move
is terminal. Plays are defined as before.

Definition 2.1.10 (Strategy). A strategy for a position p is a minimal prefixed-
closed set σ of plays such that:

• p ∈ σ,
• if p1, . . . , pn ∈ σ is not maximal and n is odd, then there is exactly one

position pn+1 such that pn → pn+1 and the play p1, . . . , pn+1 is in σ,
• if p1, . . . , pn ∈ σ is not maximal and n is even, then for every position
pn+1 such that pn → pn+1, the play p1, . . . , pn+1 is in σ.

A strategy is winning iff all its maximal plays have even length, and counter-
winning iff all its maximal plays have odd length.

Theorem 2.1.11. Let E be a neutral expression. There is a one-to-one corre-
spondence between the proofs of [E]+ and the winning strategies for E. There is
a one-to-one correspondence between the proofs of [E]− and the counter-winning
strategies for E.

Additive behaviour is well captured by this game, with the benefit of im-
proved symmetry. In Hintikka’s game, the same player might move several times
in a row, as long as the principal connective of the formula remains the same.
In our game these moves correspond to individual rewrite steps and a move is
a maximal sequence of such steps, which ensures a strict alternation of players.
From the point of view of the proof objects, a rewrite step (a.k.a. a micro-move)
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corresponds to the introduction of an individual connective or unit, while a move
(a.k.a. a macro-move) corresponds to a full phase. The games for MALL we
develop in the next chapters are more complex but their moves still have those
two levels.

With this neutral syntax it is even clearer that this game may be seen as
a process accounting for the simultaneous development of two dual derivations:
starting from a neutral expression E, the player who begins sees the game as
an attempt to derive ⊢ [E]+, while her opponent sees it as an attempt to derive
⊢ [E]−. With this in mind, each player develops what she sees as synchronous
phases during her turn and leaves it to her opponent to decompose asynchronous
phases.

Let us revisit Example 2.1.2 and describe it in terms of neutral expressions.
The formula (⊤⊕(0⊕⊤))&((0&⊤)⊕⊤) is replaced with the neutral expression
˜(˜✵+(✵+ ˜✵))+ ˜(˜(˜✵+ ✵)+ ˜✵), of which it is the negative translation. We
draw the tree of plays starting from this neutral expression:

˜(˜✵+ (✵+ ˜✵)) + ˜(˜(˜✵+ ✵) + ˜✵)

˜✵+ (✵+ ˜✵)

✵ ✵

˜(˜✵+ ✵) + ˜✵

˜✵+ ✵

✵

✵

In the original game, Abélard was the one to begin and Élöıse had winning
strategies. Therefore the winning player was the one who did not start. It must
also be the case in the neutral version of the game. In our terminology, there is
a counter-winning strategy.

In the neutral game, there is a strict alternation of players. In contrast, Élöıse
would play twice in a row at ⊤ ⊕ (0 ⊕ ⊤) in the original game, for example.
Those possible sequences of moves by Élöıse are replaced in the neutral game
with the macro-moves from ˜✵ + (✵ + ˜✵) to ✵ and ✵ (distinct occurrences).
Those macro-moves correspond respectively to the sequences of micro-moves
˜✵+ (✵+ ˜✵) 7→ ˜✵ and ˜✵+ (✵+ ˜✵) 7→ ✵+ ˜✵ 7→ ˜✵. Since players alternate
strictly, the parity of the length of a maximal play determines its winner.

There are two counter-winning strategies, corresponding to the two winning
strategies of Élöıse in the original game. The first one is composed of the plays
˜(˜✵ + (✵ + ˜✵)) + ˜(˜(˜✵ + ✵) + ˜✵), ˜✵ + (✵ + ˜✵), ✵ and ˜(˜✵ + (✵ + ˜✵)) +
˜(˜(˜✵+ ✵) + ˜✵), ˜(˜✵+ ✵) + ˜✵, ✵. Its corresponding proof is, unsurprisingly,
the same as the one corresponding to the original winning strategy. If we rewrite
it in a focused proof system

⊢⇑ ⊤
[⊤]

⊢⇓ ⊤
[R⇓]

⊢⇓ ⊤ ⊕ (0⊕⊤)
[⊕1]

⊢ ⊤ ⊕ (0⊕⊤) ⇑
[D]

⊢⇑ ⊤ ⊕ (0⊕⊤)
[R⇑]

⊢⇑ ⊤
[⊤]

⊢⇓ ⊤
[R⇓]

⊢⇓ (0 &⊤)⊕⊤
[⊕2]

⊢ (0 &⊤)⊕⊤ ⇑
[D]

⊢⇑ (0 &⊤)⊕⊤
[R⇑]

⊢⇑ (⊤⊕ (0⊕⊤)) & ((0 &⊤)⊕⊤)
[&]
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it becomes clear that micro-moves are read as individual inference rules while
macro-moves are read as phases. Synchronous phases are macro-moves by the
player, and asynchronous phases are macro-moves by the opponent. The intro-
duction of focalisation in ALL for this single remark may seem overkill, even
more so because focalisation is trivial in that context. The abstraction provided
by focalisation will prove useful when we introduce multiplicatives in the game.

2.1.3 Computation as dual proof search

In the above example, the player who starts does not have a winning strategy.
Determining it requires to explore the arena much like a search space in proof
search. This graph exploration progressively partitions the positions in two
sets, starting from the terminal ones, depending on which player has a winning
strategy for them. This process not only does this classification, but it also
builds winning strategies. Since steps in the game (micro-moves and macro-
moves) correspond to steps in proofs (rules and phases), it is clear that the
exploration of the arena builds derivations gradually. In this respect, this game
is deeply rooted in the tradition of computation as proof search. An interesting
aspect of this computation is that we always get a winning strategy in the
end (hence a proof), but we do not know for which player until we finish.
Hence, the computation can be seen as the simultaneous development of two
dual derivations, one of which will eventually be closed to become a proof.

In the above example, the maximal play ˜(˜✵+(✵+˜✵))+˜(˜(˜✵+✵)+˜✵),
˜(˜✵ + ✵) + ˜✵, ˜✵ + ✵, ✵ is seen as two dual derivation slices. From the point
of view of the player who begins—and attempts to prove (0 & (⊤& 0))⊕ ((⊤⊕
0) & 0)—, the play corresponds to the slice

⊢⇑ ⊤
[⊤]

⊢⇓ ⊤
[R⇓]

⊢⇓ ⊤ ⊕ 0
[⊕1]

⊢ ⊤ ⊕ 0 ⇑
[D]

⊢⇑ ⊤ ⊕ 0
[R⇑]

⊢⇑ (⊤⊕ 0) & 0
[&1]

⊢⇓ (⊤⊕ 0) & 0
[R⇓]

⊢⇓ (0 & (⊤& 0))⊕ ((⊤⊕ 0) & 0)
[⊕2]

while from the point of view of the player who does not begin—and attempts
to prove (⊤⊕ (0⊕⊤)) & ((0 &⊤)⊕⊤)—, the play corresponds to the slice

⊢⇓ 0
[z]

⊢ 0 ⇑
[D]

⊢⇑ 0
[R⇑]

⊢⇑ 0 &⊤
[&1]

⊢⇓ 0 &⊤
[R⇓]

⊢⇓ (0 &⊤)⊕⊤
[⊕1]

⊢ (0 &⊤)⊕⊤ ⇑
[D]

⊢⇑ (0 &⊤)⊕⊤
[R⇑]

⊢⇑ (⊤⊕ (0⊕⊤)) & ((0 &⊤)⊕⊤)
[&2]
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⊢⇑ ⊤
[⊤]

⊢⇓ ⊤
[R⇓]

⊢⇓ ⊤ ⊕ 0
[⊕1]

⊢ ⊤ ⊕ 0 ⇑
[D]

⊢⇑ ⊤ ⊕ 0
[R⇑]

....
⊢⇑ 0

⊢⇑ (⊤⊕ 0) & 0
[&]

⊢⇓ (⊤⊕ 0) & 0
[R⇓]

⊢⇓ (0 & (⊤& 0))⊕ ((⊤⊕ 0) & 0)
[⊕2]

....
⊢⇑ (0 &⊤)⊕⊤

⊢⇓ 0
[z]

⊢ 0 ⇑
[D]

⊢⇑ 0
[R⇑]

....
⊢⇑ ⊤

⊢⇑ 0 &⊤
[&]

⊢⇓ 0 &⊤
[R⇓]

⊢⇓ (0 &⊤)⊕⊤
[⊕1]

⊢ (0 &⊤)⊕⊤ ⇑
[D]

⊢⇑ (0 &⊤)⊕⊤
[R⇑]

⊢⇑ (⊤⊕ (0⊕⊤)) & ((0 &⊤)⊕⊤)
[&]

⊢
cut

Figure 2.2: Two dual derivations cut together. We have omitted the details
of the derivations/strategies that will not be explored by the cut elimination
procedure/in the play resulting from the interaction.

which we closed with the special rule daimon [z], named by analogy with Lu-
dics [Gir01]. This rule stands for a “joker” allowing to close any branch. Of
course, a derivation using the daimon is not a proof, but it is still an interesting
object for our purpose. Here this rule is used as evidence that the branch cannot
be closed, and plays a dual role to [⊤], which is applied by the other player. It
does not come as a surprise that the winner of the play closes her branch legally
with [⊤] and that the loser closes it with [z].

This observation can be generalised to two-dimensional objects: strategies
and closed derivations. The exploration of the arena is seen as the simultane-
ous development of two dual derivations. A strategy corresponds to a closed
derivation, and a strategy is winning iff its derivation does not use [z] i.e. is a
proof.

2.1.4 Interaction as proof normalisation

Another approach to the computational content of this game is to view a play
as the result of the interaction of two strategies. In proof-theoretic terms, two
dual derivations interact with each other through cut elimination. For example,
going back to our favourite example, let us consider the play ˜(˜✵+(✵+ ˜✵))+
˜(˜(˜✵+ ✵)+ ˜✵), ˜(˜✵+ ✵)+ ˜✵, ✵ once again. We can complete the two slices
given in the previous section to obtain derivations representing strategies for
each player, and cut them together. Figure 2.2 shows the obtained derivation.

The admissibility of cut states that no proof of the empty sequent can exist.
However, with the [z] rule, closed derivations of the empty sequent do exist.
In game theoretic terms, this condition expresses that it is impossible for both
players to have a winning strategy for the same position.

Clearly, the cut elimination procedure maintains the invariant that two dual
closed derivations are cut together to infer the empty sequent, and the successive
pairs of dual formulae being cut form the two slices presented before, or, in game
theoretic terms, the play resulting from the interaction of the two strategies.

This observation relates the game to the tradition of computation as proof
normalisation. The computational content of interaction lies in the cut elimi-
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[E1 + E2]
+ = [E1]

+ ⊕ [E2]
+ [E1 + E2]

− = [E1]
− & [E2]

−

[✵]+ = 0 [✵]− = ⊤

[E1 × E2]
+ = [E1]

+ ⊗ [E2]
+ [E1 × E2]

− = [E1]
− ` [E2]

−

[✶]+ = 1 [✶]− = ⊥

[˜E]+ = [E]− [˜E]− = [E]+

Figure 2.3: Positive and negative translations of additive and multiplicative
neutral expressions into MALL.

nation procedure.

2.2 Simple games for a fragment of MALL

Our objective is to define a neutral game with not only additive but also mul-
tiplicative behaviour. In [MS06] the authors investigate such a game for a
fragment of multiplicative and additive linear logic. In that fragment, mul-
tiplicatives of opposite polarities (⊗ and `) are not allowed to interact. We
present a slight variation of that fragment here. It is considerably simpler to
handle than MALL. Again, we restrict our presentation to the propositional
case.

Neutral expressions are extended to incorporate a multiplicative connective
× and its unit ✶. Figure 2.3 shows their translations into MALL.

G,G′ ::= E + E′ | ✵ | E × E′ | ✶

E,E′ ::= G | ˜G

The fragment to which our study is restricted is presented further down. In
the additive case, sequents only consisted of one formula. Positive and negative
phases were of the form

Positive phase Negative phase

⊢⇑ [Gk]
−

⊢⇓
⊕n

i=1[Gi]
−

{⊢ [Gi]
+ ⇑|1 ≤ i ≤ n}

⊢⇑
˘n

i=1[Gi]
+

for some k ∈ {1, . . . , n}.

Plays correspond to additive slices, which consist of a single branch. We want to
keep the same additive structure to the game, only introducing multiplicatives
inside phases. A slice of a phase is allowed at most one premise, which must be
a sequent with at most one formula. In other words, a positive phase needs to
be either of the form

⊢⇓ G1 . . . ⊢⇓ Gi−1

⊢⇑ H

⊢⇓ Gi ⊢⇓ Gi+1 . . . ⊢⇓ Gn

⊢⇓ F
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or of the form

⊢⇓ G1 . . . ⊢⇓ Gn

⊢⇓ F

and a slice of a negative phase needs to be of one of the forms

⊢ H ⇑

⊢⇑ G1, . . . , Gn

⊢⇑ F

⊢
⊢⇑ G1, . . . , Gn

⊢⇑ F

⊢⇑ G1, . . . , Gn

⊢⇑ F

With this restriction, derivations have the following shape:
• in positive phases, there are one or more branches and sequents contain
exactly one formula;

• in negative phase slices, there is exactly one branch; the sequent contains
zero or more formulae.

This particular shape suggests using multisets of neutral expression occur-
rences to represent the state of a game in this fragment. A multiset {E1, . . . , En}
will be read positively as the collection of sequents ⊢⇓ [E1]

+,. . . ,⊢⇓ [En]
+ and

negatively as the sequent ⊢⇑ [E1]
−, . . . , [En]

−.
The micro-moves of the game are the following rewrite steps on multisets of

neutral expression occurrences:

Γ, ✶ 7→ Γ Γ, E1 × E2 7→ Γ, E1, E2

Γ, E1 + E2 7→ Γ, E1 Γ, E1 + E2 7→ Γ, E2

where the comma denotes the multiset union.
Rewriting terminates since the total number of symbols of the neutral ex-

pressions in a multiset strictly decreases. Neutral expressions of the form ˜G
do not rewrite (they are to be passed to the other player), and neither does ✵.

The restriction we want to impose on the logic corresponds to neutral expres-
sions which yield, through rewriting, multisets containing at most one neutral
expression of the form ˜G. Formally, we define a measure ♮(E) representing the
maximal number of neutral expressions of the form ˜G in a multiset that can
be obtained from E through rewriting.

♮(✵) = ♮(✶) = 0 ♮(E1 + E2) = max(♮(E1), ♮(E2))

♮(˜G) = 1 ♮(E1 × E2) = ♮(E1) + ♮(E2)

Definition 2.2.1 (Simple neutral expressions). A neutral expression E is sim-
ple iff ♮(E) ≤ 1 and all sub-expressions of E are simple.

Alternatively, simple neutral expressions E and guarded simple neutral ex-
pressions G are defined with the following grammar:

Z,Z ′ ::= Z + Z ′ | ✵ | Z × Z ′ | ✶

G ::= Z | E × Z | Z × E

E ::= G | ˜G

We can now define the arena of the game.

Definition 2.2.2. The positions are the simple neutral expression occurrences.
If {E} 7→∗ {}, then there is a macro-move from E to ✵. If {E} 7→∗ {˜E′}, then
there is a macro-move from E to E′.
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Plays, strategies, winning and counter winning strategies are defined as in
the additive game. The main result is similar.

Theorem 2.2.3. Let E be a simple neutral expression. There is a one-to-
one correspondence between the winning strategies for E and the focused proofs
of [E]+. There is a one-to-one correspondence between the counter winning
strategies for E and the focused proofs of [E]−.

We refer to [MS06, DMS09] for further details. In contrast to the additive
game, focalisation plays a non-trivial role in this case. The internal multiplica-
tive structure of the macro-moves is abstracted away, and the precise ordering of
micro-moves is irrelevant. This corresponds to the level of abstraction provided
by focalisation on the proof-theoretic side.

For example, a multiset {(E1 + E2)× (F1 + F2)} rewrites to {Ei, Fj} for
any i, j ∈ {1, 2} and by two paths, depending on the order in which the micro-
move replacing E1 + E2 with Ei and the one replacing F1 + F2 with Fj are
scheduled. This order is irrelevant once we move to the macro-move level. On
the proof-theoretic side, the two derivations seen by the players will be

⊢⇓ [Ei]
+

⊢⇓ [E1]
+ ⊕ [E2]

+
[⊕i]

⊢⇓ [Fj ]
+

⊢⇓ [F1]
+ ⊕ [F2]

+
[⊕j ]

⊢⇓ ([E1]
+ ⊕ [E2]

+)× ([F1]
+ ⊕ [F2]

+)
[⊗]

by the player, and

⊢⇑ [E1]
−, [F1]

− ⊢⇑ [E1]
−, [F2]

−

⊢⇑ [E1]
−, [F1]

− & [F2]
−

[&]
⊢⇑ [E2]

−, [F1]
− ⊢⇑ [E2]

−, [F2]
−

⊢⇑ [E2]
−, [F1]

− & [F2]
−

[&]

⊢⇑ [E1]
− & [E2]

−, [F1]
− & [F2]

−
[&]

⊢⇑ ([E1]
− & [E2]

−)` ([F1]
− & [F2]

−)
[`]

by the opponent. Note that, in the latter derivation, we arbitrarily chose a
sequential presentation in which [E1]

− & [E2]
− is introduced below [F1]

− &
[F2]

−, but focalisation precisely equates that derivation with the one obtained
by commuting those rules:

⊢⇑ [E1]
−, [F1]

− ⊢⇑ [E2]
−, [F1]

−

⊢⇑ [E1]
− & [E2]

−, [F1]
−

[&]
⊢⇑ [E1]

−, [F2]
− ⊢⇑ [E2]

−, [F2]
−

⊢⇑ [E1]
− & [E2]

−, [F2]
−

[&]

⊢⇑ [E1]
− & [E2]

−, [F1]
− & [F2]

−
[&]

⊢⇑ ([E1]
− & [E2]

−)` ([F1]
− & [F2]

−)
[`]

thus providing the adequate level of abstraction.
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Chapter 3

A sequential neutral game

for MALL

Additive behaviour is built in the structure of games. In a strategy, a player
must pick a move among possibly several choices, and must be ready to accom-
modate to all the possible moves of the opponent. The neutral approach thus
fits naturally in additive games. Multiplicative behaviour is more difficult to
handle. Extending to the fragment of simple expressions yields a richer setting,
expressive enough to encode numerous examples like bisimulation [MS06]. The
game is essentially additive and has a simple and elegant structure. In this
chapter, we introduce a new game which pushes the neutral approach to the
full propositional fragment of multiplicative and additive linear logic. In that
fragment, multiplicatives are allowed to interact, which requires the introduc-
tion of complex graph structures to represent the state of the game. Moreover,
the game is not determinate any more. This chapter covers some of the material
published in [DM08, DMS09].

3.1 Unrestricted multiplicatives

In this chapter we will be dealing with the propositional multiplicative and
additive fragment of linear logic (MALL). We recall the syntax of formulae:

F,G ::= A | A⊥ | F ⊕G | 0 | F &G | ⊤ | F ⊗G | 1 | F `G | ⊥

where A stands for an atom. For each pair of dual formulae F and F⊥ (including
literals), F+ will denote the positive one and F− the negative one.

3.1.1 Incompleteness

The two neutral games presented so far were based on two fragments of linear
logic: the additive fragment and the simple multiplicative and additive fragment.
Those fragments have the property of being complete, that is, for every pair of
dual formulae in the fragment, one of the formulae is provable. As a result,
the two games are determinate, i.e. at each position some player has a winning
strategy. A play ends as soon as the current player cannot develop her derivation
any more, making her opponent win immediately.

In game semantics for logic players usually play non-symmetric roles. Élöıse
(a.k.a. the player) aims at proving a formula while the Abélard (a.k.a. the
opponent or environment) aims at refuting it. That kind of game is determinate
since a formula is either provable or not. Better yet, one can hope to get counter-
models witnessing the non provability of the formula from Abélard’s winning
strategies.

29
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In contrast, our neutral approach features two players with symmetric roles
who aim at proving dual formulae. In the additive game (Section 2.1), this
slight change is not visible: the logic is complete and the refutations of a for-
mula are the same as the proofs of its negation. The simple fragment studied
in Section 2.2 is no different in this regard. This is not the case any more in
an incomplete logic like MALL. For example, the dual formulae ⊥ ⊗ ⊤ and
1 ` 0 are both unprovable. As a consequence, neutral games can no longer be
determinate. We keep the proof-theoretic reading of each move as the simulta-
neous development of two dual derivations, but, when one of the players fails
to complete her derivation, we cannot conclude that her opponent wins as we
did before. The play must continue until the opponent completes her derivation
(thus winning the play) or fails as well (thus ending the play in a tie). The
derivations must therefore be richer objects which leave some room for failure.
For example, consider the following dual derivations:

⊢ A,⊥ ⊢ ⊤

⊢ A,⊥⊗⊤

⊢ A` (⊥⊗⊤)

⊢ A⊥

⊢ 1, 0

⊢ 1` 0

⊢ A⊥ ⊗ (1` 0)

Clearly inference rules are applied dually up to the point where ⊤ is introduced
on the left. At that point there is no dual rule to apply on the right. As a
matter of fact the sequent ⊢ 1, 0 is not provable. However, we still need a way
to challenge the left derivation, which may or may not be completed into a
proof, depending on A. In order to preserve the reading of each micro-move as
the simultaneous application of a rule in both derivations, we shall enrich our
proof system with a rule acting as a “joker” allowing to recover from a failure.
We call this rule the “daimon” by analogy with Ludics [Gir01]. A proof is now a
closed derivation which does not use the daimon rule. A player who uses daimon
cannot win, but may try to make her opponent fail as well. In the last example,
the derivation on the left closes the branch with ⊤. The dual operation consists
in using the daimon rule to get rid of 0 in the derivation on the right:

⊢ A,⊥ ⊢ ⊤

⊢ A,⊥⊗⊤

⊢ A` (⊥⊗⊤)

⊢ A⊥

⊢ 1
⊢ 1, 0

z

⊢ 1` 0

⊢ A⊥ ⊗ (1` 0)

where z stands for the daimon rule. Naturally, the right derivation cannot be
completed into a proof because of this daimon rule, but interaction can continue.
Indeed, it is now possible to introduce ⊥ on the left and, dually, 1 on the right:

⊢ A
⊢ A,⊥ ⊢ ⊤

⊢ A,⊥⊗⊤

⊢ A` (⊥⊗⊤)

⊢ A⊥

⊢ 1
⊢ 1, 0

z

⊢ 1` 0

⊢ A⊥ ⊗ (1` 0)

This is just an informal example however, as our proof system will be focused,
as explained below.

3.1.2 Concurrency and focusing

In the additive game, moves must be done in sequence: at any point, there is only
one connective to consider, which is the main connective of the current formula.
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The introduction of multiplicatives changes that. We saw in Section 2.2 that
focalisation allows to abstract away from the order in which individual rules are
applied in a phase, in the same way macro-moves abstract away from the local
scheduling of micro-moves.

Focusing is the adequate abstraction for the game presented in Section 2.2.
A proof collapses to its phase boundaries. In that fragment, a proof slice is a
stack of bipoles

⊢⇓ I1 . . . ⊢⇓ Ii−1

⊢⇑ Ii
⊢⇓ Ii ⊢⇓ Ii+1 . . . ⊢⇓ Ip

⊢⇓ H

⊢ H ⇑

⊢⇑ G1, . . . , Gn

⊢⇑ F

which collapse to uni-dimensional objects:

⊢⇑ Ii
⊢⇓ Ii

⊢⇓ H

⊢ H ⇑

⊢⇑ F

which matches the structure of a play.
In the full MALL, this does not hold any more. Although focusing still

allows for some abstraction, proof slices are bi-dimensional and modelling them
requires a notion of concurrency in the game. This chapter presents a sequential
game for MALL in which provability corresponds to the existence of winning
strategies, but winning strategies themselves do not correspond to proofs. That
issue will be addressed in the next chapter.

3.2 Proof system

In our neutral approach, a single (neutral) object accounts for two dual deriva-
tions being developed simultaneously, each player “viewing” one of them. Fo-
calisation plays an important role and brings some symmetry. However, se-
quent calculus lacks some important features and this motivates a change. As
explained above, we extend the proof system with the daimon rule to allow syn-
tactic objects representing refutations while not being counter-proofs. Another
shortcoming of Andreoli’s Σ3 [And92] is the fact that one formula is selected
and decomposed in a synchronous phase, while all formulae are decomposed
in an asynchronous phase. This asymmetry does not fit well in our neutral
setting, which forces formulae to be decomposed simultaneously in two dual
derivations. We recover some of the symmetry with multifocalisation [CMS08],
i.e. by allowing several foci to be selected in a synchronous phase; moreover,
we allow some, not necessarily all, asynchronous formulae to be decomposed in
an asynchronous phase.

Figure 3.1 shows our proof system. Sequents are of the form ⊢ L;P;N ⇓ F
or ⊢ L;P;N ⇑ F , where L is a multiset of literals, P is a multiset of positive
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formulae, N is a multiset of negative formulae, and F is a multiset of formulae.
The sequents ⊢ L;P;N ⇓ and ⊢ L;P;N ⇑ are identified and also denoted to by
⊢ L;P;N .

3.3 Basic definitions

Name two players 0 and 1. If λ denotes a player, λ = 1−λ denotes her opponent.
We still base our game on a set of positions P and a macro-move binary relation
on positions →. A position from which no move is possible is called terminal.
All terminal positions are classified as 0-wins, 1-wins, and ties, and the non-
terminal positions as 0-positions and 1-positions. If p is a position, a play from
p is a path in the arena starting with p. We usually assume → to be noetherian,
so that all plays are finite. A play is won by player λ iff its last position is a
λ-win, and is a tie iff its last position is a tie.

Definition 3.3.1 (λ-strategy). Let λ ∈ {0, 1}. A λ-strategy for a position p is
a minimal prefixed-closed set σ of plays such that:

• p1 ∈ σ,
• if p1, . . . , pn ∈ σ where pn is a λ-position, then there is exactly one position

pn+1 such that pn → pn+1 and the play p1, . . . , pn+1 is in σ,
• if p1, . . . , pn ∈ σ where pn is a λ-position, then for every position pn+1

such that pn → pn+1, the play p1, . . . , pn+1 is in σ.
A λ-strategy is winning iff all its maximal plays are won by player λ.

3.4 Neutral expressions

So far neutral expressions contained additive and multiplicative connectives
along with an operator ˜ denoting the change of polarity or player. In [DM08]
we removed the restriction on multiplicative interactions, essentially treating
MALL without atoms. We later included a neutral constructor for atoms
in [DMS09].

We extend the syntax of neutral expressions. Figure 3.2 defines their trans-
lations into MALL.

Definition 3.4.1 (Neutral expressions). The additive and multiplicative neu-
tral expressions E and guarded additive and multiplicative neutral expressions
G are inductively defined as follows.

G,G′ ::= a | E + E′ | ✵ | E × E′ | ✶

E,E′ ::= G | ˜G

where a stands for a neutral atom. There is a neutral atom for each pair of dual
literals of MALL.

3.5 Neutral graphs

In order to account for the complexity and intensional behaviour of the multi-
plicative connectives and atoms of MALL, we shall not enrich the structure of
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Additives

⊢ L;P;N ⇓ Fi,F

⊢ L;P;N ⇓ F1 ⊕ F2,F
[⊕i]

⊢ L;P;N ⇑ F1,F ⊢ L;P;N ⇑ F2,F

⊢ L;P;N ⇑ F1 & F2,F
[&]

⊢ L;P;N ⇑ ⊤,F
[⊤]

Multiplicatives

⊢ L1;P1;N1 ⇓ F1,F1 ⊢ L2;P2;N2 ⇓ F2,F2

⊢ L1,L2;P1,P2;N1,N2 ⇓ F1 ⊗ F2,F1,F2
[⊗]

⊢; ;⇓ 1
[1]

⊢ L;P;N ⇑ F1, F2,F

⊢ L;P;N ⇑ F1 ` F2,F
[`]

⊢ L;P;N ⇑ F

⊢ L;P;N ⇑ ⊥,F
[⊥]

Identity

⊢ L−; ;⇓ L+
[init]

Daimon

Σ
[z] Σ′

Σ
[z]

Phase changes

⊢ L;P;N,N ⇓ F

⊢ L;P;N ⇓ N,F
[R⇓]

⊢ L;P,P;N ⇑ F

⊢ L;P;N ⇑ P,F
[R⇑]

⊢ L−,L;P;N ⇑ F

⊢ L;P;N ⇑ L−,F
[atomic R⇑]

⊢ L;P1;⇓ P2

⊢ L;P1,P2;
[D⇓]

⊢ L;P;N1 ⇑ N2,F

⊢ L;P;N1,N2 ⇑ F
[D⇑]

L denotes a literal, N a negative formula, and P a positive formula. In [D⇓]
(resp. [D⇑]), P2 (resp. N2) is not empty. A proof is a closed derivation which
does not use [z].

Figure 3.1: The proof system used in the sequential game for MALL
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[a]+ = A+ [a]− = A−

[E1 + E2]
+ = [E1]

+ ⊕ [E2]
+ [E1 + E2]

− = [E1]
− & [E2]

−

[✵]+ = 0 [✵]− = ⊤

[E1 × E2]
+ = [E1]

+ ⊗ [E2]
+ [E1 × E2]

− = [E1]
− ` [E2]

−

[✶]+ = 1 [✶]− = ⊥

[˜E]+ = [E]− [˜E]− = [E]+

Figure 3.2: Positive and negative translations of additive and multiplicative
neutral expressions into MALL. A+ and A− are the MALL literals corresponding
to the neutral atom a.

arenas and plays. That will be done in the next chapter, in which we introduce
a form of concurrency in the game. Instead, we enrich the notion of position by
moving from being just simple neutral expressions (as was used in the additive
game) to labelled graph structures, which we describe next.

3.5.1 Interacting multiplicatives

Figure 3.3 shows an example of two dual derivations in our proof system. We
use neutral expressions instead of formulae to emphasise the duality of the
two derivations. The conclusions of derivations are the positive and negative
translations of the neutral expression ˜(˜E × ˜F )× ˜G, where E, F , and G are
non atomic neutral expressions.

A first remark is that we only examine purely multiplicative behaviour in
that example. Additives will be treated in this game as they were in the two pre-
vious games, and we focus on the novelty of having interactions between ⊗ and
`. Next, the neutral expression ˜(˜E× ˜F )× ˜G chosen here is not in the sim-
ple fragment addressed in Section 2.2. Indeed, the multiset {˜(˜E × ˜F )× ˜G}
immediately rewrites to {˜(˜E × ˜F ), ˜G}, which consists of two neutral ex-
pressions beginning with ˜.

It can be noted that at any point in the simultaneous development of those
derivations, each formula present in a frontier has its dual in the other frontier
(note: if additives were present, we would have to consider additive slices of the
derivations). This correspondence between formulae is one-to-one. For example
at the bottom of the derivations the frontier of derivation 3.1) consists of the
sequent ⊢; ([E]+ ` [F ]+) ⊗ [G]−; and the frontier of derivation 3.2 consists of
⊢; ; ([E]−⊗[F ]−)`[G]+. Clearly there is exactly one formula in each frontier and
they are dual. At the top of the two derivations, the frontiers are ⊢; [E]+, [F ]+;
and ⊢; ; [G]− for derivation 3.1, and ⊢; [G]+; [E]− and ⊢; ; [F ]− for derivation 3.2.
Here, the corresponding pairs are [E]+/[E]−, [F ]+/[F ]−, and [G]−/[G]+.

We can give an abstract description of the situation with a multiset of neu-
tral expressions equipped with two partitions. We collect all the neutral expres-
sions whose translations are present in the frontiers of the two derivations at
a given point in a multiset. Then we associate a partition of that multiset to
each derivation which describes how the corresponding formulae are grouped in
sequents.
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⊢; [E]+, [F ]+;

⊢; ;⇑ [E]+, [F ]+
[R⇑]

⊢; ;⇑ [E]+ ` [F ]+
[`]

⊢; ; [E]+ ` [F ]+
[D⇑]

⊢; ;⇓ [E]+ ` [F ]+
[R⇓]

⊢; ; [G]−

⊢; ;⇓ [G]−
[R⇓]

⊢; ;⇓ ([E]+ ` [F ]+)⊗ [G]−
[⊗]

⊢; ([E]+ ` [F ]+)⊗ [G]−;
[D⇓]

(3.1)

⊢; [G]+; [E]−

⊢; [G]+;⇓ [E]−
[R⇓]

⊢; ; [F ]−

⊢; ;⇓ [F ]−
[R⇓]

⊢; [G]+;⇓ [E]− ⊗ [F ]−
[⊗]

⊢; [E]− ⊗ [F ]−, [G]+;
[D⇓]

⊢; ;⇑ [E]− ⊗ [F ]−, [G]+
[R⇑]

⊢; ;⇑ ([E]− ⊗ [F ]−)` [G]+
[`]

⊢; ; ([E]− ⊗ [F ]−)` [G]+
[D⇑]

(3.2)

E, F and G are non atomic neutral expressions.

Figure 3.3: Two dual derivations in our proof system.

At the bottom of the derivations, the multiset of the neutral expressions
is simply {˜(˜E × ˜F )× ˜G}. Both derivations see the only possible partition
{{˜(˜E × ˜F )× ˜G}}. At the top of the derivations, the multiset is {E,F,G},
derivation 3.1 sees the partition {{E,F} , {G}}, and derivation 3.2 sees the par-
tition {{E,G} , {F}}. Naturally, this information is not enough: we must also
specify, for each neutral expression, which derivation sees its positive translation
and which sees its negative translation.

A similar observation is made by Danos and Regnier in [DR89]. The authors
show that partitions can be associated to multiplicative rules of linear logic. For
example, by removing the context from the ⊗ rule, we get

⊢ A ⊢ B
⊢ A⊗B

⊗

and the associated partition is {{1} , {2}}, denoting that A and B end up in
distinct sequents. Dually, the ` rule without context

⊢ A,B

⊢ A`B
`

is associated with the partition {1, 2}, denoting that A and B end up in the same
sequent. This becomes interesting when mixing multiplicatives. For example
the generalised dual rules

⊢ A ⊢ B,C

⊢ (A⊗B)` C
⊗,`

⊢ A,B ⊢ C

⊢ (A`B)⊗ C
`,⊗

would be associated with the partitions {{1} , {2, 3}} and {{1, 2} , {3}} respec-
tively. The authors also consider generalised multiplicative rules, defined by
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such partitions, which cannot be decomposed in a layer of ⊗ and ` rules. Those
generalised multiplicatives are beyond the scope of this chapter. However, the
authors make important remarks regarding the computational content of such
multiplicative rules. In the description of cut elimination for those extended
connectives, they remark that a “key-step” of cut elimination such as

⊢ A ⊢ B,C

⊢ (A⊗B)` C
⊗,`

⊢ A⊥, B⊥ ⊢ C⊥

⊢ (A⊥ `B⊥)⊗ C⊥
`,⊗

⊢
cut

 

⊢ A ⊢ B,C ⊢ A⊥, B⊥ ⊢ C⊥

⊢
cut

can only be carried out if the partitions associated with the two dual connectives
are orthogonal.

Orthogonality in this context refers to an acyclicity property which is the
matching piece to the correctness criterion for multiplicative proofs nets [Gir87,
DR89]. For two partitions of the same set, consider the unoriented graph whose
vertices are the classes of the partitions, and in which there is an arc between
two classes when they share an element. Note that this is more precisely a
multigraph, for two classes are linked by one arc for each element they share.
The two partitions are orthogonal iff this induced graph is connected and acyclic.
For example, the two partitions {{1} , {2, 3}} and {{1, 2} , {3}} from the above
example are orthogonal:

{1}

{1, 2}

{2, 3}

{3}

What we represent by a layer of cuts in sequent calculus

⊢ A ⊢ B,C ⊢ A⊥, B⊥ ⊢ C⊥

⊢
cut

can actually be sequentialised by reading the graph and contracting the arcs
corresponding to the pairs of dual formulae being cut. For example, the sequen-
tialisation

⊢ A ⊢ A⊥, B⊥

⊢ B⊥
cut

⊢ B,C ⊢ C⊥

⊢ B
cut

⊢
cut

corresponds to contracting the arcs “1” (corresponding to A/A⊥) and “3” (cor-
responding to C/C⊥), then “2” (corresponding to B/B⊥) in the induced graph:

{1}

{1, 2}

{2, 3}

{3}

 

{2}

{2, 3}

{3}

 

{2}

{2}
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We could have chosen to sequentialise those cuts in a different order. This
graphical representation therefore abstracts away from that order. In sequent
calculus, the same abstraction is provided by considering a layer of cuts as a
synthetic “multicut” inference rule. Other ways exist to represent the same
information: using cut links between the conclusions of proof structures [Gir87,
Gir96], or cut-nets in Ludics [Gir01].

3.5.2 A neutral presentation

Inspired by the approach by Danos and Regnier, we restate the invariant we
pointed out in the additive and simple multiplicative games. The sequents at
the frontier of two (additive slices of) orthogonal derivations can be cut together
to infer the empty sequent. In our example, the situation at the bottom of the
derivations 3.1 and 3.2 is summarised by the following cut:

⊢; ([E]+ ` [F ]+)⊗ [G]−; ⊢; ; ([E]− ⊗ [F ]−)` [G]+

⊢; ;
cut

Here we trivially extend our proof system with a cut rule; this rule will only be
used in meta-level discussions, not in the game itself. Reading the derivations
bottom-up, the situation after one phase is summarised by the multicut:

⊢; ; [E]+ ` [F ]+ ⊢; ; [G]− ⊢; [E]− ⊗ [F ]−, [G]+;

⊢; ;
cut

and, after another phase, at the top of the derivations:

⊢; [E]+, [F ]+; ⊢; ; [G]− ⊢; [G]+; [E]− ⊢; ; [F ]−

⊢; ;
cut

We use labelled graph structures called neutral graphs to represent those suc-
cessive states, just like induced graphs represent orthogonal partitions. Nodes
represent the sequents, and arcs represent pairs of formulae that are cut. There
are two kinds of nodes (one for each derivation/player). The arc

0

u

1

v

E

labelled with a guarded neutral expression E means that the formula [E]+ occurs
in the sequent represented by u belonging to player 0 and that the formula [E]−

occurs in the sequent represented by v belonging to player 1. A neutral graph
is bipartite: recall that we do not pair two formulae in the same derivation.

For example, the neutral graph representing the situation at the bottom of
derivations (3.1) and (3.2) is

0 1˜(˜E × ˜F )×G

where players 0 and 1 see derivations (3.1) and (3.2) respectively. The interme-
diate situation is represented by
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0

0

1
˜E × ˜F

G

and the situation at the top of the derivations is represented by

0 1

0 1

F

E

G

Remark that, in the examples given so far, we only observed the situations at
phase boundaries, where all the sequents are of the form ⊢;P;N . The transitions
between the neutral graphs will be macro-moves in the game. We also need
to represent sequents of the forms ⊢ L;P;N ⇑ F and ⊢ L;P;N ⇓ F . To
this end, we will use several types of arcs in neutral graphs. A lower level of
transitions between neutral graphs, the micro-moves, will account for individual
rule applications.

Although computation in the game can be seen as a form of cut reduction
(with peculiarities due to focalisation and failure), it should be noted that the
neutral graphs themselves are not proof structures. They merely represent cut
links between goals for the players to prove, which are placeholders for proof
structures.

Definition 3.5.1. A neutral graph G is a tuple (N,A,Λ, τ, ǫ), where N is a
finite set (possibly empty) of nodes, A ⊆ N×N is a set of arcs, Λ : N 7→ {0, 1}
associates a player to each node, τ : A 7→ {atomic, normal, focused} associates
a type to each arc, and ǫ : A 7→ E associates a neutral expression to each arc.
In addition, the following must hold:

• The undirected graph based on (N,A) is a set of trees none of which are
the degenerate (one-node) tree.

• The graph is bipartite, i.e., for every (u, v) ∈ A, Λ(u) 6= Λ(v).
• For every normal arc a ∈ A, ǫ(a) is guarded.
• For every atomic arc a ∈ A, ǫ(a) is an atom.
• The origins of the focused arcs all belong to the same player (and similarly

for the ends, since the graph is bipartite).

A node with player λ is said to belong to λ or to be a λ-node.
Arcs are represented using the following convention:

atomic normal focused Any type

Unsurprisingly, the definition requires that neutral graphs have no undi-
rected cycles. What is less obvious is that we do not require them to be con-
nected, when graphs induced by partitions are. The reason for that will be made
clear when we deal with failure, which is a part of the game, but not of proof
theory. Also, notice that no node may be isolated (i.e., without neighbours).
Equivalently, neutral graphs do not represent the empty sequent.
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We now relate neutral graphs to frontiers of additive slices of derivations.
Each node has an associated sequent, whose formulae are the translations of the
neutral expressions labelling the arcs connected to it. The direction of an arc
determines which translation (positive or negative) to consider, while its type
(atomic, normal or focused) determines in which part of the sequent the formula
occurs.

Definition 3.5.2 (Sequent associated with a node). Let G = (N,A,Λ, τ, ǫ) be
a neutral graph and v ∈ N . Let

• L+ = {[ǫ(v, w)]+ : (v, w) ∈ A, τ(v, w) = atomic},
• L− = {[ǫ(u, v)]− : (u, v) ∈ A, τ(u, v) = atomic},
• U+ = {[ǫ(v, w)]+ : (v, w) ∈ A, τ(v, w) = normal},
• U− = {[ǫ(u, v)]− : (u, v) ∈ A, τ(u, v) = normal},
• F+ = {[ǫ(v, w)]+ : (v, w) ∈ A, τ(v, w) = focused},
• F− = {[ǫ(u, v)]− : (u, v) ∈ A, τ(u, v) = focused}.

Since G is a neutral graph, at least one of F+ and F− is empty. The sequent
ΣG(v) associated with v is ⊢ L+,L−;U+;U− ⇑ F− if F+ is empty, and ⊢
L+,L−;U+;U− ⇓ F+ otherwise.

Focused arcs mark neutral expressions that are scheduled for decomposition
in a phase. For each focused arc, the node at the origin sees the positive trans-
lation under focus in a synchronous phase, while the node at the end sees the
negative translation under focus in an asynchronous phase. In a focused proof
system, choices are made during synchronous phases. For example, in the case
of the following focused arc

λ λE1 + E2

player λ sees the sequent ⊢; ;⇓ [E1]
+ ⊕ [E2]

+, while player λ sees the sequent
⊢; ;⇑ [E1]

− & [E2]
−. As was the case in the previous games, player λ—the one

seeing the additive as the disjunction ⊕—will have to make a choice between E1

and E2. More generally, all the micro-moves dealing with an arc will be played
by the player owning the node at the origin of the arc. In the definition of a
neutral graph, it is required that the origins of the focused arcs all belong to
the same player. This condition simply states that we only allow one player to
be playing at a time.

Definition 3.5.3 (Source). A source of a neutral graph is a node which is not
the end of a normal or focused arc, but is the origin of some normal arc.

Sources play a significant role, because they are precisely the nodes asso-
ciated with sequents of the form ⊢ L;P; with P 6= ∅, i.e., those which may
appear as the conclusion of the [D⇓] rule, which marks the beginning—reading
bottom-up—of a synchronous phase. In other words, they are the places where
a player begins to move.

3.6 Positions and moves

3.6.1 Positions

As in the previous games, we define positions and moves on two levels. A first
level is made of micro-positions and micro-moves between them. A second level
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is made of macro-positions and macro-moves between them.
We first introduce a basic notion which will be used to define micro-positions

and macro-positions. A neutral graph contains almost all the state of the game:
it represents the frontiers of the additive slices of the derivations being devel-
oped. Players rewrite this object as they move, extending their derivations
simultaneously. Our game, however, is indeterminate and must account for the
possibility of a player failing in the course of a play. When that happens, the
play does not end with the victory of the opponent, but this information is
recorded in the state of the play. The interaction continues, but can never be
won by the player who has failed. A position represents the state of the game.

Definition 3.6.1 (Position). A position is a triple (G, f0, f1) where G is a
neutral graph and f0 and f1 are Boolean values, satisfying the two following
properties:

• if G is empty, then at least one of f0 and f1 is true;
• if there is some atomic arc (u, v) in G, then fλ must be true, where λ is
the player associated with u.

Informally, the flag f0 (resp. f1) is true iff player 0 (resp. 1) has failed. The
first property expresses that when a play is over (G is empty), it is not possible
for both players to have succeeded in proving their goals (at least one of them
must have failed). The second property is a technical invariant, expressing that
the origin of an atomic arc has an associated sequent which will only be obtained
through an application of the daimon [z]. Consequently, the corresponding
player will necessarily have failed.

Definition 3.6.2 (Macro-position). A macro-position is a position (G, f0, f1)
such that G has no focused arc and all its sources (possibly zero) belong to the
same player.

Informally, a macro-move is seen as a synchronous phase by the player and as
an asynchronous phase by the opponent. A macro-position is the state between
macro-moves. At a macro-position, no formula is under focus. Moreover, there
must be at most one player ready to start a synchronous phase, i.e., ready to
move.

Definition 3.6.3 (Terminal/λ- macro-position). Let p = (G, f0, f1) be a macro-
position. If G has no source, then p is terminal. Otherwise, the sources of G
belong to some player λ and p is a λ-macro-position.

A terminal macro-position marks the end of a play. At any other macro-
position exactly one player can move.

Definition 3.6.4 (Tie, λ-win). Let p = (G, f0, f1) be a terminal macro-position.
Then at least one of f0 and f1 is true. If they are both true, p is a tie. Otherwise
p is a λ-win, where λ ∈ {0, 1} is such that fλ is false.

Proof. By Definition 3.6.2, G has no focused arc. Since G is acyclic and has no
sources, G has no normal arc. All the arcs of G are therefore atomic. Whether
G is empty or not, at least one of f0 and f1 is true by Definition 3.6.1.

In order to win a play, a player must cause her opponent to fail without
doing so herself.
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Transition Sync reading Async reading

p
D
7→ p′ [D⇓] [D⇑]

p
R
7→ p′ [R⇓] [R⇑]

p
+
7→ p′ [⊕] [&]

p
✵
7→ p′ [z] [⊤]

p
×
7→ p′ [⊗] [`]

p
✶
7→ p′ [1] or [z] [⊥] or [z]

p
ax
7→ p′ [init] or [z] [atomic R⇑] or [z]

Table 3.1: Neutral micro-moves and their two readings.

The arena of the game consists of the macro-positions and the macro-moves,
which will be defined later. Player λ plays at a λ-macro-position and wins at a
λ-win.

Definition 3.6.5 (λ-micro-position). Let λ ∈ {0, 1}. A λ-micro-position is a
position (G, f0, f1) such that all the origins of the focused arcs of G belong to
player λ.

Informally, a λ-micro-position is an intermediate step which may appear
during player λ’s macro-moves. The origins of the focused arcs are the nodes
associated to sequents in the middle of a synchronous phase.

Definition 3.6.6 (Playable λ-micro-position). A λ-micro-position (G, f0, f1) is
playable if G has at least one focused arc or one source belonging to player λ.

A player continues her turn as long as some of her sequents are in the mid-
dle of a synchronous phase (origins of focused arcs) or are ready to start one
(sources). Notice that every λ-macro-position is a playable λ-micro-position.
Informally, player λ can always play at a λ-macro-position.

3.6.2 Micro-moves

This section describes the transitions on neutral graphs that are the basis of the
game. We first introduce six of them, the aforementioned “micro-moves”, that
should be interpreted as the simultaneous applications of two dual single rules
of the proof system. Table 3.1 lists them along with their interpretations. We
subsequently build another transition, which packs a maximal sequence of micro-
moves together and should be read as the simultaneous development of two dual
phases. Essentially, micro-moves are cut reduction rules for proof structures,
with focalisation. A notable difference is that cut reduction operates on readily
available proof structures, while our micro-moves can be seen as an attempt
to develop those structures as cut reduction goes. It is not always possible to
develop them. As a result, failures may arise in some of these transitions; in
that case the transition makes the relevant flags f0 and/or f1 true.

In the following description of the micro-moves we use figures to illustrate
the formal definitions. Each micro-move rewrites a playable λ-micro-position
p = (G, f0, f1). To describe the transitions, let G = (N,A,Λ, τ, ǫ).
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Decision Assume G has a λ-source v. Let F be a non-empty subset of
{(v, w)|(v, w) ∈ A ∧ τ(v, w) = normal}. If we then let G′ = (N,A,Λ, τ ′, ǫ),
where τ ′ is the same as τ except that τ ′(a) = focused if a ∈ F , we have

the labelled transition (G, f0, f1)
D
7→ (G′, f0, f1).

λ

v

D
7→ λ

v

(n > 0)

Let us give an informal description of this transition. Recall the decision rules
([D⇓] and [D⇑] in Figure 3.1). [D⇓] is applied to a sequent of the form ⊢ L;P;
where P is not empty. In G, these sequents exactly correspond to the sources,
and the transition corresponds exactly to applying [D⇓] to one of them, while
applying [D⇑] to some of its neighbours.

To describe the next five labelled transitions, assume G has a focused arc
a = (v, w). Since p is a λ-micro-position, v belongs to player λ and w belongs
to player λ.

Reaction If ǫ(a) is of the form ˜E, then one can remove the leading ˜, reverse
the arc, and unfocus it. Formally, let a = (w, v) be the opposite arc to a and let

G′ = (N, (A \ {a}) ∪ {a} ,Λ, τ|A\{a} ∪ {(a, normal)} , ǫ|A\{a} ∪ {(a,E)}).

Then we have the transition (G, f0, f1)
R
7→ (G′, f0, f1).

λ

v

λ

w

˜E R
7→ λ

v

λ

w

E

In both interpretations, a formula of the wrong polarity is reclassified.

Additives If ǫ(a) is of the form E1+E2, then one can replace this expression
with one of the operands. Formally, let G′ = (N,A,Λ, τ, ǫ′) where ǫ′ is the same
as ǫ except that ǫ′(a) = Ek for some k ∈ {1, 2}. We then have the labelled

transition (G, f0, f1)
+
7→ (G′, f0, f1).

λ

v

λ

w

E1 + E2
+
7→ λ

v

λ

w

Ek

for some k ∈ {1, 2}. This treatment of + is essentially the same as in the additive
game presented before. It corresponds exactly to the reduction of a cut link
between two MALL proof structures with boxes with conclusions [E1]

+ ⊕ [E2]
+

and [E1]
− & [E2]

−: player λ’s choice between E1 and E2 corresponds to that
between [E1]

+ and [E2]
+.

If ǫ(a) = ✵ (the 0-ary additive), then one can remove w and all its adjacent
arcs. Formally, let G′ be the graph obtained from G by removing all the arcs
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connected to w and then all the isolated nodes (including w), and let f ′
0 and f ′

1

be the Boolean values defined as follows: f ′
λ = ⊤ and f ′

λ
= fλ. Then we have

the labelled transition (G, f0, f1)
✵
7→ (G′, f ′

0, f
′
1).

λ

v

λ

w

λ

λ

✵
✵
7→ λ

v

λ

λ

(in the second graph, any isolated node shall be removed.) This last transition is
particular: on player λ’s side we simply remove a sequent of the form ⊢ L;P;N ⇑
⊤,F , in other words we apply [⊤]; on player λ’s side we face an unprovable
sequent of the form ⊢ L;P;N ⇓ 0,F and we must apply [z]. Consequently
player λ fails (f ′

λ = ⊤). Notice that this micro-move may disconnect the neutral
graph.

Multiplicatives If ǫ(a) is of the form E1 ×E2, then one can split v into two
nodes and a into two arcs, labelling each one with an operand. Formally, define
two new nodes v1 and v2 and for every b = (t, u) ∈ A \ {a}, define an arc b′

as follows: if t 6= v and u 6= v, then b′ = b; if t = v, then b′ = (vi, u) for
some i ∈ {1, 2}; and if u = v, then b′ = (t, vi) for some i ∈ {1, 2}. Now let
G′ = (N ′, A′,Λ′, τ ′, ǫ′) where

• N ′ = (N \ {v}) ⊎ {v1, v2},
• A′ = {(v1, w), (v2, w)} ∪ {b′|b ∈ A \ {a}},
• Λ′ = Λ|V \{v} ∪ {(v1, λ), (v2, λ)},
• τ ′(v1, w) = τ ′(v2, w) = focused, and for every b ∈ A \ {a}, τ ′(b′) = τ(b),
• ǫ′(v1, w) = E1 and ǫ′(v2, w) = E2, and for every b ∈ A \ {a}, ǫ′(b′) = ǫ(b),

We then have the labelled transition (G, f0, f1)
×
7→ (G′, f ′

0, f
′
1).

λ

v

λ

w

E1 × E2
×
7→

λ

v1

λ

v2

λ

w

E1

E2

On player λ’s side, the splitting corresponds to that of the [⊗] rule. On player
λ’s side the invertible [`] rule is applied. Here again, this transition is exactly
the reduction of a cut link between two proof structures with conclusions [E1]

+⊗
[E2]

+ and [E1]
− ` [E2]

−.
If ǫ(a) = ✶ (the 0-ary multiplicative), then one can remove a. Formally, let

G′ be the neutral graph obtained from G by removing a and then the isolated
nodes, and let f ′

0 and f ′
1 be Boolean values defined as follows:

f ′
λ =

{

⊤ if v is a node of G′

fλ otherwise
f ′
λ
=

{

fλ if w is a node of G′

⊤ otherwise
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Then we have the labelled transition (G, f0, f1)
✶
7→ (G′, f ′

0, f
′
1).

λ

v

λ

w

✶
✶
7→ λ

v

λ

w

(in the second graph, any isolated node shall be removed.) In this transition
both players may fail. On player λ’s side the transition corresponds to applying
[1]. The sequent associated to v should thus be ⊢; ;⇓ 1, therefore the player
fails (f ′

λ = ⊤) if 1 is not the only formula of the sequent. On player λ’s side [⊥]
is applied, and if w is only connected to v then its associated sequent becomes
⊢; ;⇑ ⊥ which is unprovable, and the player fails (f ′

λ
= ⊤). Notice that this

micro-move may disconnect the neutral graph.

Atoms If ǫ(a) is an atom l, then the sequent associated to v is of the form
⊢ L;P;N ⇓ L+,F . There are two cases, depending on whether the rule [init]
may be applied or not.

First case: if there is exactly one arc b connected to v beside a, and b is of
the form (u, v), with τ(b) = atomic and ǫ(b) = l, then one may remove v, a
and b. Formally, let G′ be the neutral graph obtained from G by removing a,
b, then the isolated nodes (including v). Then we have the labelled transition

(G, f0, f1)
ax
7→ (G′, f0, f1).

λ

u

λ

v

λ

w

l l ax
7→ λ

u

λ

w

(in the second graph, any isolated node shall be removed.) In this case the
sequent associated to v is ⊢ L−; ;⇓ L+ and [init] may be applied, which is
reflected by the transition. On player λ’s side the transition corresponds to
applying [z] to the sequents associated with u and w. This can be done safely
as player λ has already failed (fλ = ⊤) since u is the origin of an atomic arc.
Notice that this micro-move may disconnect the neutral graph.

Second case: if the first case does not apply, then one may make a atomic
and make the player fail in the process. Formally, let G′ = (N,A,Λ, τ ′, ǫ), where
τ ′ is the same as τ except that τ ′(a) = atomic, and let f ′

0 and f ′
1 be Boolean

values defined as follows: f ′
λ = ⊤ and f ′

λ
= fλ. Then we have the labelled

transition (G, f0, f1)
ax
7→ (G′, f0, f1).

λ

v

λ

w

l ax
7→ λ

v

λ

w

l

In this case the sequent associated to v is not ⊢ L−; ;⇓ L+, [init] may not be
applied, and the player applies [z] and fails. On player λ’s side the transition
corresponds to applying [atomic R ⇑] to the sequent associated with w.



3.7. EXAMPLES 45

Definition 3.6.7 (λ-micro-move). Let λ ∈ {0, 1} and p, p′ be λ-micro-positions.
There is a λ-micro-move from p to p′ (notation p 7→λ p′) iff one of the following

holds: p
D
7→ p′, p

R
7→ p′, p

+
7→ p′, p

✵
7→ p′, p

×
7→ p′, p

✶
7→ p′, or p

ax

7→ p′.

Proposition 3.6.8. There is a λ-micro-move from a λ-micro-position iff it is
playable.

Proof. A λ-micro-position is playable iff its neutral graph has a source or a

focused arc. A λ-micro-move
D
7→ is possible iff the neutral graph has a source.

A λ-micro-move
R
7→,

+
7→,

✵
7→,

×
7→,

✶
7→, or

ax
7→ is possible iff the neutral graph has a

focused arc (those moves cover all the cases for the neutral expression labelling
the arc).

3.6.3 Macro-moves

We proceed to define the macro-moves, which are the actual moves of the game,
as maximal sequences of micro-moves.

Proposition 3.6.9. The length of the sequences of micro-moves starting in a
fixed micro-position is bounded.

Proof. Associate a triple (s, n, f) with each micro-position (G, f0, f1), where s
is the total number of symbols of the neutral expressions labelling the arcs of
G, n is the number of normal arcs of G, and f is the number of focused arcs
of G. Every micro-move decreases this triple for the lexicographical ordering.
Moreover, these triples verify n ≤ s and f ≤ s.

Definition 3.6.10 (Macro-move). Let p be a λ-macro-position and p 7→∗
λ p′

a maximal sequence of λ-micro-moves from p. Then p′ is either a λ-macro-
position or a final macro-position. We say that there is a macro-move from p
to p′ and denote it by p → p′.

Proof. p′ is a λ-micro-position, but it is not playable by Proposition 3.6.8. p′

has no focused arcs and all its sources belong to player λ, which makes it a
λ-macro-position or a final macro-position.

Notice that there is a macro-move from every non-final macro-position.

Proposition 3.6.11. The length of the plays starting in a fixed macro-position
is bounded.

Proof. Every macro-move expands to a sequence of micro-moves which is non-
empty since every non-final λ-macro-position is a playable λ-micro-position.
The result thus follows from Proposition 3.6.9.

3.7 Examples

In this section we illustrate the formal definitions of the game with examples.
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3.7.1 Indeterminacy

The dual formulae ⊥ ⊗ ⊤ and 1 ` 0 are unprovable. The game based on the
neutral expression representing that pair, ˜✶×˜✵, is indeterminate as expected.
We describe the plays here.

The starting macro-position consists of the neutral graph

0 1˜✶× ˜✵

along with the two Boolean flags being false, to denote that no player has failed
yet. Player 0 aims at proving ⊥⊗⊤ and player 1 aims at proving 1` 0. In that
macro-position, the only source is the 0-node, and player 0’s first micro-move

must be
D
7→, where she focuses on the only arc

0 1˜✶× ˜✵

The second micro-move must be to decompose the multiplicative with
×
7→

0 1 0˜✶ ˜✵

The two last micro-moves of the macro-move release the foci with
R
7→

0 1 0✶ ✵

To sum up, this 0-macro-move is seen as the derivations

Player 0 Player 1

⊢; ;⊥

⊢; ;⇓ ⊥
[R⇓]

⊢; ;⊤

⊢; ;⇓ ⊤
[R⇓]

⊢; ;⇓ ⊥ ⊗⊤
[⊗]

⊢;⊥⊗⊤;
[D⇓]

⊢; 1, 0;

⊢; ;⇑ 1, 0
[R⇑]

⊢; ;⇑ 1` 0
[`]

⊢; ; 1` 0
[D⇑]

The only source is now the 1-node, and player 1 is the next to play. Her first

micro-move is
D
7→ and she has three choices: focus on ✶ alone, on ✵ alone, or on

both. We present the latter; the others are similar. The neutral graph becomes

0 1 0✶ ✵

and the next micro-move is either
✶
7→ or

✵
7→. If it is

✵
7→, player 1 fails and the

neutral graph becomes

0 1✶

At that point player 1 plays
✶
7→ to obtain the empty neutral graph, causing

player 0 to fail (because the 0-node becomes isolated and is removed). The play
is a tie since both players failed. To sum up, this 1-macro-move is seen as the
derivations
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Player 0 Player 1

⊢; ;⇑ ⊥
[z]

⊢; ;⊥
[D⇑]

⊢; ;⇑ ⊤
[⊤]

⊢; ;⊤
[D⇑]

⊢; ;⇓ 1
[1]

⊢; ;⇓ 1, 0
[z]

⊢; 1, 0;
[D⇓]

In fact, it can be easily seen that other choices for player 1’s micro-moves
would have given the same outcome: an empty neutral graph and failure for
both players. Therefore, no player has a winning strategy, as expected.

3.7.2 Atoms

The next example involves atomic neutral expressions. Consider the game on
the neutral expression (a1 + a2)× ˜(a1 + a2), where a1 and a2 are two neutral
atoms. The negative translation (A−

1 & A−
2 ) ` (A+

1 ⊕ A+
2 ) of the expression is

provable. Starting from

0 1(a1 + a2)× ˜(a1 + a2)

player 0 applies
D
7→ and

×
7→ to yield

0 1 0a1 + a2 ˜(a1 + a2)

then she may apply
+
7→ and

R
7→

0 1 0ai a1 + a2

for some i ∈ {1, 2}; then she has to apply
ax
7→ which makes her fail

0 1 0ai a1 + a2

Notice that micro-moves could have been scheduled otherwise without changing
the outcome of this macro-move. This 0-macro-move is seen as

⊢ A+
i ; ;

⊢; ;⇓ A+
i

[z]

⊢; ;⇓ A+
1 ⊕A+

2

[⊕i]
⊢; ;A−

1 &A−
2

⊢; ;⇓ A−
1 &A−

2

[R⇓]

⊢; ;⇓ (A+
1 ⊕A+

2 )⊗ (A−
1 &A−

2 )
[⊗]

⊢; (A+
1 ⊕A+

2 )⊗ (A−
1 &A−

2 );
[D⇓]

by player 0 and as

⊢ A−
i ;A

+
1 ⊕A+

2 ;

⊢;A+
1 ⊕A+

2 ;⇑ A−
i

[atomic R⇑]

⊢; ;⇑ A−
1 &A−

2 , A
+
1 ⊕A+

2

[&i,R⇑]

⊢; ;⇑ (A−
1 &A−

2 )` (A+
1 ⊕A+

2 )
[`]

⊢; ; (A−
1 &A−

2 )` (A+
1 ⊕A+

2 )
[D⇑]
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by player 1.

Then the only source is the 1-node and all player 1 has to do is to apply
D
7→

to focus on a1 + a2, then
+
7→ to select ai, and finally

ax
7→ to get the empty neutral

graph and win the play. This 1-macro-move is seen as

Player 0 Player 1

⊢ A+
i ; ;
z

⊢; ;⇑ A−
i

z

⊢; ;⇑ A−
1 &A−

2

&i

⊢; ;A−
1 &A−

2

[D⇑]

⊢ A−
i ; ;⇓ A+

i

[init]

⊢ A−
i ; ;⇓ A+

1 ⊕A+
2

[⊕i]

⊢ A−
i ;A

+
1 ⊕A+

2 ;
[D⇓]

Notice that during her macro-move, player 0 may choose any i ∈ {1, 2}. We
showed that player 1 could win the play in both cases. As expected, player 1—
the one seeing the provable translation of the neutral expression—has a winning
strategy.

3.8 Winning strategies and cut-free proofs

In this section we relate the provability of a formula to the existence of a winning
strategy in the game. Our proofs effectively show how to construct a winning
strategy from a proof. They also show how to construct a proof from a winning
strategy, but this construction is not unique in general. Establishing a corre-
spondence between winning strategies and proofs requires a more involved game
model and is covered in the next chapter.

The operators [·]+ and [·]− are applied to multisets of neutral expressions in
the obvious way. Two focused proofs of the same sequent are equivalent iff they
differ by the order in which asynchronous rules are applied within asynchronous
phases. This is indeed an equivalence relation.

We begin by formally defining a central notion relating concepts of the game
to concepts of the proof system: that of λ-provability (for λ ∈ {0, 1}).

Definition 3.8.1 (λ-provability). Let G be a neutral graph and λ ∈ {0, 1}. G
is λ-provable iff the sequents associated with its λ-nodes are all provable. A
triple (G, f0, f1) where G is a neutral graph and f0, f1 are Boolean values is
λ-provable iff fλ = ⊥ and G is λ-provable.

We relate game moves to derivations by proceeding gradually from small
steps (micro-moves and inference rules) to large objects (winning strategies and
proofs).

Proposition 3.8.2. Let p be a playable λ-micro-position. Let S = {p′|p 7→λ p′}.
p is λ-provable iff there exists p′ ∈ S which is λ-provable.

Proof. Let us write p = (G, f0, f1) and G = (N,A,Λ, τ, ǫ). We prove this result
in two parts: (1) the “if” part, (2) the “only if” part.

(1) Suppose that there exists p′ = (G′, f ′
0, f

′
1) ∈ S which is λ-provable. Let

us show that p is λ-provable. We have f ′
λ = ⊥ and G′ is λ-provable. Let us

write G′ = (N ′, A′,Λ′, τ ′, ǫ′). We examine the cases for p 7→λ p′.
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Case p
D
7→ p′. Thus fλ = f ′

λ = ⊥ and, moreover, the only λ-sequent affected
by the move is the one associated with the source v selected for the move. In
G′, this sequent is of the form ⊢ L;P1;⇓ P2, and in G it is ⊢ L;P1,P2;. The
result follows from the derivation

⊢ L;P1;⇓ P2

⊢ L;P1,P2;
[D⇓]

In each one of the other cases we consider the focused arc a = (v, w) from

the definition of the corresponding transition. First of all, the case p
✵
7→ p′

does not happen, since f ′
λ = ⊥. In the other cases v is the only λ-node of G

affected by the transition, hence all we need to show is that fλ = ⊥ and ΣG(v)
is provable. For the latter, showing that ΣG(v) derives from sequents associated
with λ-nodes of G′ (which are provable) is enough.

Case p
R
7→ p′. Thus fλ = f ′

λ = ⊥ and, moreover, ΣG(v) is of the form
⊢ L;P;N ⇓ F,F , where F = [ǫ(a)]+. Remark that [ǫ′(w, v)]− = F and that F
is negative; it is then clear that ΣG′(v) =⊢ L;P;F,N ⇓ F and the result follows
from the derivation

⊢ L;P;F,N ⇓ F

⊢ L;P;N ⇓ F,F
[R⇓]

Case p
+
7→ p′. Thus fλ = f ′

λ = ⊥ and, moreover, [ǫ(a)]+ is of the form F1⊕F2.
ΣG(v) is of the form ⊢ L;P;N ⇓ F1 ⊕ F2,F and ΣG′(v) =⊢ L;P;N ⇓ Fi,F ,
for some i ∈ {1, 2}. The result follows from the derivation

⊢ L;P;N ⇓ Fi,F

⊢ L;P;N ⇓ F1 ⊕ F2,F
[⊕i]

Case p
×
7→ p′. Thus, fλ = f ′

λ = ⊥ and, moreover, [ǫ(a)]+ is of the form
F1⊗F2. The node v is replaced in G′ with two λ-nodes v1 and v2. ΣG′(v1) and
ΣG′(v2) are of the forms ⊢ L1;P1;N1 ⇓ F1,F1 and ⊢ L2;P2;N2 ⇓ F2,F2, and
we have ΣG(v) =⊢ L1,L2;P1,P2;N1,N2 ⇓ F1 ⊗ F2,F1,F2. The result follows
from the derivation

⊢ L1;P1;N1 ⇓ F1,F1 ⊢ L2;P2;N2 ⇓ F2,F2

⊢ L1,L2;P1,P2;N1,N2 ⇓ F1 ⊗ F2,F1,F2
[⊗]

Case p
✶
7→ p′. Thus, [ǫ(a)]+ = 1. Since f ′

λ = ⊥, fλ = ⊥ and v is not a node
of G′. a is therefore the only arc connected to it in G and ΣG(v) =⊢; ;⇓ 1 is
provable:

⊢; ;⇓ 1
[1]

Case p
ax
7→ p′. Thus, [ǫ(a)]+ = L+. Since f ′

λ = ⊥, the first case in the

definition of
ax
7→ applies, fλ = f ′

λ = ⊥ and ΣG(v) =⊢ L−; ;⇓ L+ is provable:

⊢ L−; ;⇓ L+
[init]

(2) This is the converse to the previous part. Suppose that p = (G, f0, f1) is
λ-provable. We have fλ = ⊥ and G is λ-provable. We will consider several cases,
and in each one we will show that there is a λ-provable p′ = (G′, f ′

0, f
′
1) ∈ S.

There will be few λ-nodes affected by the transition p 7→λ p′, hence it will be
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enough to show that f ′
λ = ⊥ and that the sequents associated to those nodes

are provable. Since p is a playable λ-micro-position, G has a source (belonging
to player λ) or a focused arc (whose origin belongs to player λ).

First case. Suppose that G has a λ-source v. ΣG(v) is of the form ⊢ L;P;
with P 6= ∅ and it is provable by assumption, and a proof must end with the
[D⇓] rule:

⊢ L;P1;⇓ P2

⊢ L;P1,P2;
[D⇓]

where P1 and P2 partition P, P2 is not empty and ⊢ L;P1;⇓ P2 is provable.

This corresponds to a transition p
D
7→ p′ = (G′, f ′

0, f
′
1) in which the outgoing

normal arcs of v corresponding to P2 become focused. The only affected λ-node
is v and ΣG′(v) is precisely ⊢ L;P1;⇓ P2. Moreover f ′

λ = fλ = ⊥, therefore p′

is λ-provable.
Second case. Suppose that G = (N,A,Λ, τ, ǫ) has a focused arc, and let

v be its origin. ΣG(v) is provable. Consider the last rule R of such a proof.
ΣG(v) is of the form ⊢ L;P;N ⇓ F,F , where F is the principal formula of
R. There is a focused arc a = (v, w) for some w such that [ǫ(a)]+ = F . We
are going to consider all the cases for ǫ(a). In each case we show that there
is p′ = (G′, f ′

0, f
′
1) ∈ S which is λ-provable. More specifically, we show that

f ′
λ = ⊥ and that the sequents associated to the λ-nodes of G′ affected by the
transition are in fact the premises of R, and are therefore provable.

Case ǫ(a) = ˜E. Thus F is negative and R is [R⇓]. As we did in part (1),

we match this rule with the transition p
R
7→ (G′, f0, f1) in which a is reversed.

The only affected λ-node is v. Since F = [E]−, ΣG′(v) is precisely the premise
of R.

Case ǫ(a) = E1 + E2. Thus F = [E1]
+ ⊕ [E2]

+ and R is [⊕i] for some

i ∈ {1, 2}. As we did in part (1), we match this rule with the transition p
+
7→

(G′, f0, f1) in which ǫ(a) is replaced with Ei. The only affected λ-node is v, and
ΣG′(v) is precisely the premise of R.

Case ǫ(a) = ✵. Thus, F = 0. This case does not happen, since there is no
introduction rule for 0.

Case ǫ(a) = E1 × E2. Thus F = [E1]
+ ⊗ [E2]

+ and R is [⊗]. As we did in

part (1), we match this rule with a transition p
×
7→ (G′, f0, f1). The only affected

λ-node is v which is split into v1 and v2, and ΣG′(v1) and ΣG′(v2) are precisely
the premises of R.

Case ǫ(a) = ✶. Thus F = 1 and R is [1]. It means that ΣG(v) =⊢; ;⇓ 1.

As we did in part (1), we match this rule with the transition p
✶
7→ (G′, f ′

0, f
′
1)

in which a is removed, and it is clear that v is not a node of G′, therefore
f ′
λ = fλ = ⊥ as needed. There are no new/affected λ-nodes in G′.

Case ǫ(a) = l. Thus F = L+ and R is [init]. It means that ΣG(v) =⊢ L−; ;⇓

⊕L. As we did in part (1), we match this rule with the transition p
ax
7→ (G′, f ′

0, f
′
1)

in which v is removed (first case of the definition of
ax
7→). Then f ′

λ = fλ = ⊥ as
needed. There are no new/affected λ-nodes in G′.

Proposition 3.8.3. Let λ ∈ {0, 1} and p be a playable λ-micro-position. Let
S = {p′|p 7→λ p′}. p is λ-provable iff every p′ ∈ S is λ-provable.

Proof. Let us write p = (G, f0, f1) and G = (N,A,Λ, τ, ǫ). We are going to
prove both directions simultaneously. Let us give names to the two hypotheses:
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(A) p is λ-provable, and (B) every p′ ∈ S is λ-provable. Since p is playable, S
is not empty. Let p′ = (G′, f ′

0, f
′
1) ∈ S. We examine the cases for p 7→λ p′. In

each case we show that (A) implies that p′ is λ-provable, and that (B) implies
(A). This will prove the proposition, since we chose p′ ∈ S arbitrarily and we
cover all the cases for p 7→λ p′. Moreover, it will be enough to consider only the
λ-nodes affected by the transition.

Case p
D
7→ p′. Let v be the source of G which is selected for the move. Every

λ-node w affected by the move is such that the arc (v, w) is normal in G and
becomes focused in the transition. In other words, ΣG(w) and ΣG′(w) are of
the form ⊢ L;P;F,N ⇑ F and ⊢ L;P;N ⇑ F,F . The derivation

⊢ L;P;N ⇑ F,F

⊢ L;P;F,N ⇑ F
[D⇑]

shows that if (B), then each ΣG′(w) has a proof, hence so does each ΣG(w);
moreover f ′

λ
= ⊥, hence fλ = ⊥ and (A). Conversely, if (A), then each ΣG(w)

has a proof, which is equivalent to a proof ending with the above derivation,
hence each ΣG′(w) is provable; moreover fλ = ⊥, hence f ′

λ
= ⊥ and p′ is

λ-provable.
For each one of the other cases we consider the arc a = (v, w) from the

definition of the corresponding transition.
Case p

ax
7→ p′. There are two cases in the definition of this transition. In the

first case, we must have fλ = ⊤ since the λ-node u is the origin of the atomic
arc (u, v). Then f ′

λ
= ⊤ and (A) and (B) are both false, which concludes this

case. In the second case, the only affected λ-node is w, and ΣG(w) and ΣG′(w)
are of the form ⊢ L;P;N ⇑ L−,F and ⊢ L−,L;P;N ⇑ F . The derivation

⊢⇑ L,L;P;N ⇑ F

⊢ L;P;N ⇑ L−,F
[atomic R⇑]

shows that if (B), then ΣG′(w) has a proof, hence so does ΣG(w); moreover
f ′
λ
= ⊥, hence fλ = ⊥ and (A). Conversely, if (A), then ΣG(w) has a proof,

which is equivalent to a proof ending with the above derivation, hence ΣG′(w)
is provable; moreover fλ = ⊥, hence f ′

λ
= ⊥ and p′ is λ-provable.

In all the remaining cases the only λ-node affected by the transition is w.

Case p
R
7→ p′. ǫ(a) is of the form ˜E. ΣG(w) and ΣG′(w) are of the form

⊢ L;P;N ⇑ F,F and ⊢ L;F,P;N ⇑ F with F = [˜E]− = [E]+. The derivation

⊢ L;F,P;N ⇑ F

⊢ L;P;N ⇑ F,F
[R⇑]

allows us to conclude as in the previous cases.

Case p
+
7→ p′. ǫ(a) is of the form E1⊕E2 and a choice is made between E1 and

E2 in P ′. Consider both choices. They lead to two elements of S, (G1, f0, f1)
and (G2, f0, f1) (one of them is p′). Let us write Gi = (N ′, A′,Λ′, τ ′, ǫ′i) for each
i ∈ {1, 2}. [ǫ(a)]− is of the form F1 & F2 and [ǫ′i(a)]

− = Fi. ΣG(w) is of the
form ⊢ L;P;N ⇑ F1 & F2,F and ΣGi

(w) =⊢ L;P;N ⇑ Fi,F . The derivation

⊢ L;P;N ⇑ F1,F ⊢ L;P;N ⇑ F2,F

⊢ L;P;N ⇑ F1 & F2,F
[&]
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shows that if (B), then ΣG1
(w) and ΣG2

(w) have proofs, hence so does ΣG(w);
moreover fλ = ⊥, hence (A). Conversely, if (A), then ΣG(w) has a proof, which
is equivalent to a proof ending with the above derivation, hence ΣG1

(w) and
ΣG2

(w) are provable; moreover fλ = ⊥, hence p′ is λ-provable.

Case p
✵
7→ p′. ΣG(w) is of the form ⊢ L;P;N ⇑ ⊤,F and it is provable:

⊢ L;P;N ⇑ ⊤,F
[⊤]

w is not a node of G′ and f ′
λ
= fλ, hence p is λ-provable iff p′ is. If (B), then

(A). Conversely, if (A), then p′ is λ-provable.

Case p
×
7→ p′. ΣG(w) and ΣG′(w) are of the form ⊢ L;P;N ⇑ F1`F2,F and

⊢ L;P;N ⇑ F1, F2,F . The derivation

⊢ L;P;N ⇑ F1, F2,F

⊢ L;P;N ⇑ F1 ` F2,F
[`]

allows us to conclude as in the previous cases.

Case p
✶
7→ p′. ΣG(w) is of the form ⊢ L;P;N ⇑ ⊥,F . Consider the derivation

⊢ L;P;N ⇑ F

⊢ L;P;N ⇑ ⊥,F
[⊥]

If (B), then f ′
λ
= ⊥ and w is a node of G′. Then ΣG′(w) =⊢ L;P;N ⇑ F , it

has a proof, hence so does ΣG(w) by the above derivation; moreover fλ = ⊥,
hence (A). Conversely, if (A), then fλ = ⊥ and ΣG(w) has a proof, which is
equivalent to a proof ending with the above derivation, hence ⊢ L;P;N ⇑ F is
provable; L, P, N and F cannot all be empty, therefore w is a node of G′, and
ΣG′(w) =⊢ L;P;N ⇑ F is provable; moreover f ′

λ
= ⊥, hence (A).

Lemma 3.8.4. Let p be a λ-macro-position. Let S = {p′|p → p′}. p is λ-
provable iff there exists p′ ∈ S which is λ-provable. p is λ-provable iff every
p′ ∈ S is λ-provable.

Proof. We show a more general result. For every λ-micro-position p, let Sp =
{p′|p 7→∗

λ p′ and this sequence is maximal}. Let us show that for every λ-micro-
position p, p is λ-provable iff there exists p′ ∈ Sp which is λ-provable, and p is
λ-provable iff every p′ ∈ Sp is λ-provable. By proposition 3.6.9, we may show
it by induction on the maximal length lp of the sequences p 7→λ p′ for p′ ∈ Sp.
If lp = 0, then Sp = {p} and the result is trivial. Now suppose that lp > 0
and let S′ = {p′|p 7→λ p′}. By Propositions 3.8.2 and 3.8.3, p is λ-provable iff
there exists p′ ∈ S′ which is λ-provable, and p is λ-provable iff every p′ ∈ S′

is λ-provable. For every p′ ∈ S′, lp′ < lp and the induction hypothesis applies.
The result follows from the fact that Sp =

⋃

p′∈S′ Sp′ .

Theorem 3.8.5. Let p be a position and λ ∈ {0, 1}. There is a winning λ-
strategy for p iff p is λ-provable.

Proof. We prove the result by induction on the maximal length lp of the plays
starting in p (see Proposition 3.6.11). If lp = 0, p is final and there is a winning
λ-strategy from p iff p is a win, iff p is λ-provable. Suppose that lp > 0. Let
S = {p′|p → p′}. There are two cases: p is either a λ-macro-position or a
λ-macro-position.
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If p is a λ-macro-position, then there is a winning λ-strategy from p iff there
is a winning λ-strategy from some p′ ∈ S, iff, by induction hypothesis (lp′ < lp),
there exists p′ ∈ S which is λ-provable, iff, by lemma 3.8.4, p is λ-provable.

If p is a λ-macro-position, then there is a winning λ-strategy from p iff there
is a winning λ-strategy from every p′ ∈ S, iff, by induction hypothesis (lp′ < lp),
every p′ ∈ S is λ-provable, iff, by lemma 3.8.4, p is λ-provable.
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Chapter 4

A concurrent neutral game

for MALL

The game presented in the previous chapter captures provability for MALL in
a neutral setting. Our next step is to modify the game to capture proofs. This
requires a fundamental change of the simplistic positional game model used so
far. From a purely sequential game, we shift to a concurrent setting in which
players may play simultaneously.

4.1 Introduction

The sequential game presented in the previous chapter suffers from major limi-
tations that we discuss here.

4.1.1 Non-uniformity

In the sequential game, a position represents two dual slices of derivations, and
a move represents a phase. The players base each of their decisions on the whole
position instead of just some part of it. As a result, there are significantly more
winning strategies than proofs. For example consider a neutral expression of the
form ˜(˜E1 + ˜E2)× ˜(✶× ˜(˜F1 + ˜F2)). Any proof of its positive translation
([E1]

+ & [E2]
+)⊗ (⊥` ([F1]

− ⊕ [F2]
−)) has the form

....
⊢; [E1]

+;

....
⊢; [E2]

+;

⊢; ; [E1]
+ & [E2]

+

....
⊢; ; [Fi]

−

⊢; [F1]
− ⊕ [F2]

−;

⊢; ;⊥` ([F1]
− ⊕ [F2]

−)

⊢; ([E1]
+ & [E2]

+)⊗ (⊥` ([F1]
− ⊕ [F2]

−));

where the details of the phases are omitted. The game on this neutral expression
starts with

0 1˜(˜E1 + ˜E2)× ˜(✶× ˜(˜F1 + ˜F2))

and the first move, by player 0, necessary leads to

0 01˜E1 + ˜E2 ✶× ˜(˜F1 + ˜F2)

At that point, player 0 must be prepared to face all the moves by player 1,
including

55
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0 01Ej ˜F1 + ˜F2

for both choices of j ∈ {1, 2}. Since those two are distinct positions, a strategy
for player 0 may specify choices between ˜F1 and ˜F2 that are different in the
two positions. In other words, the choice between ˜F1 and ˜F2 by player 0 may
depend on that between ˜E1 and ˜E2 by player 1. We say that such a strategy
is not uniform. In contrast, a proof (see above) makes a unique choice between
[F1]

− and [F2]
− and its corresponding winning strategy is uniform. If [E1]

+,
[E2]

+, [F1]
− and [F2]

− are all provable, then player 0 has non-uniform winning
strategies which do not correspond to proofs.

Game semantics have come up with a variety of solutions to this problem.
They eliminate non-uniform strategies by carefully specifying which information
is available to each move. That way, some moves can be made independent of
others.

4.1.2 Locality and concurrency

The advantage of our formalism is that this dependence is seen in the structure
of the neutral graph itself. A sequent precisely represents all the information on
which to base choices in proof search. Since a sequent is represented by a node
with its surrounding arcs in a neutral graph, choices for a node should be based
on that node only. In the example above, the choice between ˜F1 and ˜F2 by
player 0 should be based on the following part of the neutral graph only:

0˜F1 + ˜F2

Just like extending a derivation with a rule only affects a branch and leaves
the rest of the frontier unchanged, micro-moves only rewrite neutral graphs
locally. In this chapter, we make this intuition clearer by expressing micro-
moves and macro-moves as transitions rewriting local parts of neutral graphs,
in the tradition of interaction nets [Laf90].

The game is turned into a concurrent process: moves rewriting distinct parts
of a large structure independently of each other need not be sequentialised. We
thus shift towards a different kind of game, in which moves are carried out by
both players concurrently.

4.1.3 The [⊤] rule

The introduction rule for ⊤ has a non-local behaviour in our neutral setting. In

the following example of a
✵
7→ micro-move

λn1 λ

n2

✵

λ

n3

E

λ

n4

F

λ n5G

✵
7→

λ

n3

λ

n4

F
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n2 is deleted along with its connected arcs, which affects n1, n3 and n5. For
player λ, this amounts to extending three branches of the derivation with [z].

Player λ Player λ

⊢; ;⇓ 0
[z]

⊢; [F ]+;

⊢; [F ]+; [E]−
[z]

⊢; [G]+;
[z]

⊢; [E]+; [G]− ⇑ ⊤
[⊤]

⊢; ; [F ]−

This is not an issue as far as provability is concerned: since player λ faces the
unprovable sequent ⊢; ;⇓ 0 and has to apply [z] there, she may as well apply
it to the two other sequents. On the other hand, the simultaneous extension
of distinct branches of a derivation is not a local operation, which prevents a
concurrent treatment of those branches. Ideally, only the sequents associated
with n1 and n2 should be affected:

Player λ Player λ

⊢; ;⇓ 0
[z]

⊢; [F ]+; [E]− ⊢; [G]+; ⊢; [E]+; [G]− ⇑ ⊤
[⊤]

⊢; ; [F ]−

That way, interaction on E and G can take place concurrently with the one on
✵. This, however, breaks the symmetry between the two derivations, as [E]+

and [G]− disappear from the frontier but [E]− and [G]+ remain. We choose to
represent this situation in a neutral graph by keeping the arcs labelled with E
and G; when n2 is deleted, we replace it with nodes of a new kind acting as a
“plugs” for the dangling arcs. The micro-move becomes

λn1 λ

n2

✵

λ

n3

E

λ

n4

F

λ n5G

✵
7→

λ

n′
2

λ

n′′
2

λ

n3

E

λ

n4

F

λ n5G

Those two new nodes n′
2 and n′′

2 are called non-goals (notice the thinner outline)
as they are not associated with any sequent in player λ’s derivation. In contrast,
the other nodes are goals. Non-goals can be used for interaction like goals. For
example the players can continue playing on E and G. This allows greater
modularity, as the micro-move no longer affects n3 and n5. That way, moves on
n1, n3 and n5 will take place concurrently.

Non-goals play a crucial role in interaction. In the above example, if E is of
the form E1+E2, n

′
2 allows player λ to pick either E1 or E2. This additive choice

has an obvious impact on the play from player λ’s point of view. However, it has
no impact on the sequents player λ has to prove, hence the name “non-goal”.

4.1.4 Failure

The treatment of failure is simpler thanks to the introduction of non-goals.
Instead of considering cases for handling failure in the relevant micro-moves
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Additives

⊢ Γ ⇓ Fi,∆

⊢ Γ ⇓ F1 ⊕ F2,∆
[⊕i]

⊢ Γ ⇑ F1,∆ ⊢ Γ ⇑ F2,∆

⊢ Γ ⇑ F1 & F2,∆
[&]

⊢ Γ ⇑ ⊤,∆
[⊤]

Multiplicatives

⊢ Γ1 ⇓ F1,∆1 ⊢ Γ2 ⇓ F2,∆2

⊢ Γ1,Γ2 ⇓ F1 ⊗ F2,∆1,∆2
[⊗]

⊢⇓ 1
[1]

⊢ Γ ⇑ F1, F2,∆

⊢ Γ ⇑ F1 ` F2,∆
[`]

⊢ Γ ⇑ ∆

⊢ Γ ⇑ ⊥,∆
[⊥]

Identity

⊢ L− ⇓ L+
[init]

Daimon

⊢ Γ
[z]

Phase changes

⊢ F−,Γ ⇓ ∆

⊢ Γ ⇓ F−,∆
[R⇓]

⊢ F+,Γ ⇑ ∆

⊢ Γ ⇑ F+,∆
[R⇑]

⊢ L−,Γ ⇑ ∆

⊢ Γ ⇑ L−,∆
[atomic R⇑]

⊢ Γ+,Λ− ⇓ ∆+

⊢ Γ+,∆+,Λ−
[D⇓]

⊢ Γ ⇑ F−

⊢ Γ, F−
[D⇑]

Γ and ∆ stand for multiset of formulae, Λ for a multiset of literals, F for a
formula, and L for a literal. In [D⇓], ∆+ is not empty. A proof is a closed
derivation which does not use [z].

Figure 4.1: The proof system used in the concurrent game for MALL

as we did in the sequential game, we will introduce a special move for this.
Informally, the daimon move will allow a player to locally give up by replacing
one of its goals with non-goals without affecting the rest of the neutral graph.
However, the player forfeits the play by doing so.

4.2 Proof system

We will use a slightly different proof system in this chapter. Figure 4.1 shows
it. Sequents are of the form ⊢ Γ ⇓ ∆ or ⊢ Γ ⇑ ∆, where Γ and ∆ are multisets
of formulae. The sequents ⊢ ∆ ⇓ and ⊢ ∆ ⇑ are identified and also denoted to
by ⊢ ∆.

The main difference with the previous proof system is that sequents have
less zones. Another notable difference is that the daimon rule with one premise
has been removed, and that the one with no premise is only available outside
of phases. Although they are not fundamental, these changes allow for simpler
notations and reflect an evolution in the treatment of literals and failure in the
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game. Moreover, the [D⇑] rule only allows to pick one formula to focus on, as
the game won’t need more. This last change is mostly irrelevant, since we use
the same notion of proof identity as usual in focused proof systems. That is, we
consider proofs up to permutations of individual rules within a phase, but also
up to permutations of adjacent asynchronous phases, since our proof system
allows it.

4.3 Neutral graphs

In this section, we adapt the notion of neutral graph to the new framework.
We will use monomial weights as a way to refer to additive slices.

Definition 4.3.1 (Monomial weight). Consider a set B of Boolean variables. A
literal of B is either a propositional variable or a negation of one. A monomial
weight (or weight) over B is a conjunction of literals. The weights 1 and 0
denote truth and falsehood respectively.

Two monomial weights are disjoint when their conjunction is 0.
Monomial weights are commonly used in proof nets with additives [Gir96,

LM08]. In a proof net, a distinct propositional variable is associated with each &
node, and each formula has a monomial weight. For a & node with associated
variable p, if w denotes the weight of the conclusion of the node, then the
two premises have weights wp and w¬p, where we use the product notation
for conjunction and ¬ denotes negation. Informally, if one considers & as a
“fork” of the world into two separate sub-worlds, then the monomial weight of
a formula represents the world it lives in. In sequent calculus, those worlds are
branches. For example, consider the derivation

⊢⇑ A,C ⊢⇑ A,D

⊢⇑ A,C &D
[&]

⊢⇑ B,C ⊢⇑ B,D

⊢⇑ B,C &D
[&]

⊢⇑ A&B,C &D
[&]

⊢⇑ (A&B)` (C &D)
[`]

There are four branches, because each one of the two & is responsible for a fork.
If we associated the propositional variables p and q to the & in A&B and C&D
respectively, and the weight of the conclusion was w, then the weights of the
four premises would be wpq, wp¬q, w¬pq, and w¬p¬q.

In the game, we will associate a monomial weight to each node of a neutral
graph, in order to mark which slice it lives in.

Definition 4.3.2 (Neutral graph). A neutral graph is a directed graph structure
consisting of labelled nodes and arcs.

1. Each node has an associated player (0 or 1) and monomial weight; a node
with weight 0 is a non-goal, otherwise it is a goal;

2. each arc is labelled with a guarded neutral expression occurrence;
3. the graph is bipartite, i.e. two connected nodes have opposite players;
4. there are no undirected cycles;
5. each non-goal is connected to exactly one other node, which must be a goal.

We use the following convention to represent nodes, where λ stands for the
associated player.
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λ λ λ

Goal Non-goal Either

Notice that, in contrast to the sequential game, isolated goals are allowed.
They will represent instances of the unprovable empty sequent.

As explained informally in Section 4.1.3, both non-goals and goals are used
for interaction, but only goals represent sequents that the players have to prove.
Non-goals are required to be connected to exactly one node, which must be a
goal, because they should be seen as the missing ends of dangling arcs. Non-
goals not connected to goals would be completely useless, since none of the
interaction they would provide would have any consequence on the victory or
loss of the players.

4.4 Subgraphs

In proof search, a sequent represents a state in the computation. In sequent
calculus, no information flows from a branch of a proof to another. This differs
from other formalisms such as natural deduction in which the introduction of an
implication triggers the discharge of a hypothesis, which is a non local operation.
In our game, goals and their neighbouring arcs represent sequents. As our game
aims at modelling proof search, the locality of proof search should be accounted
for. That is, the moves of the game will rewrite a neutral graph locally. We
need to capture a notion of local part of a neutral graph to serve as a basis for
applying moves.

Definition 4.4.1 (Subgraph). A subgraph is a part of a neutral graph consisting
of some of its nodes and all the arcs connected to those nodes. The missing
ends of the arcs are called “holes”. Just like a node, each hole is labelled with a
monomial weight.

If all the nodes of a subgraph belong to the same player λ, then the subgraph
is a λ-subgraph.

Remark 4.4.2. The nodes of a subgraph are distinct. Therefore in

0 0

the subgraph consisting of the left node is distinct from the one consisting of the
right node.

In graphical representations of subgraphs, we will sometimes use names to
distinguish specific holes. In the subgraph

0 x{w}

the hole x has the associated weight w. When the weight is not written, it is
assumed to be 1.

From the definition, it is clear that a subgraph represents a part of a neutral
graph. More generally, we can even take a subgraph of a subgraph. The holes
of a subgraph are its interface with the rest of this larger structure, which we
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refer to as its “context”. When reconnecting a subgraph to a context, each hole
h is merged with a target t in the context, which can be a node or a hole itself.
The weight of the resulting object is the product of the weights of h and t. Most
of the time we will consider holes with weight 1, which leave the weight of their
target unchanged.

In our game, we will express locality by defining moves as a relation rewrit-
ing subgraphs. When doing so, the holes will be the same before and after
the transition (although their weights may change), therefore reconnecting the
rewritten subgraph to the original context will be unambiguous.

Example 4.4.3. The transition

0

1

x

y

A

B

7→

0

0

1

x

y

C
D

E

yields, in a context:

0

1

1

0

A

B 1

x

F

G

H 7→

0

0

1

1

0

C

D

E 1

x

F

G

H

A hole with weight 0 turns a goal into a non-goal. For example, the transition

0 xE 7→ 0 x{0}F

yields:

0 1E 7→ 0 1F

As we will see, weights will be used for additives. The micro-move decomposing
the neutral connective + will apply a weight p or ¬p depending on the choice
of the operand, which is consistent with its interpretation as the rule [&]. The
micro-move dealing with the 0-additive ✵ will apply a null weight like in the
above example.

Reconnection rules When reconnecting a rewritten subgraph to its context,
a few situations may arise.

1. If any non-goal is connected to n > 1 arcs (for example if its weight has
just become 0), it is split into n non-goals. This ensures that no non-goal
be connected to more than one node.

λ

x1

xn

7→
λ

λ

x1

xn
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2. Then, isolated non-goals and isolated pairs of connected non-goals are
removed. This ensures that each non-goal be connected to exactly one
node, and that this node be a goal.

λ 7→

λ λ 7→

Note that the graph structure resulting from reconnecting a subgraph into a
context needs to be bipartite and acyclic to be a subgraph. In practice it will
always be the case.

Example 4.4.4. If we modify the transition of Example 4.4.3 in the following
way

0

1

x

y

A

B

7→

0

0

x

y{0}

C
D

we get, in a context:

0

1

1

0

A

B

1 x

F G

H

1I

7→

0

0

1

0 0

C

D
1 x

F G

H

If G is a subgraph of H, we may write H under the form C[G] where C
represents the context. Then C[G′] is the result of rewriting G to G′ inside H.

In our formalism, the fundamental unit where interaction takes place is not
exactly a node, but a node together with its connected arcs. It is also called a
subposition.

Definition 4.4.5 (Subposition). Let λ ∈ {0, 1}. A λ-subposition is a λ-
subgraph consisting of a node n along with its connected arcs.

From now on, we will mostly use goal (resp. non-goal) to refer to a subpo-
sition whose node is a goal (resp. non-goal).

A subposition is a place where the associated player has to move. Among
them, goals represent sequents to be proved by the player. The formulae com-
posing the sequent are represented by the arcs connected to the node.

Definition 4.4.6 (Sequent represented by a goal). Let g be a goal in a neutral
graph. We collect, for each arc a of g labelled with a neutral expression E, the
formula [E]+ if a is outgoing, or the formula [E]− if a is incoming. The sequent
associated with g is ⊢ Γ where Γ denotes the multiset of those formulae.

That is, a neutral expression labelling an arc is translated positively by the
source and negatively by the target. For example, in the neutral graph
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0 1 0 1a× ˜✵ ✶ b

player 0 has the goals ⊢ A⊗⊤ and ⊢ B⊥,⊥, and player 1 has the goals ⊢ 1, A⊥`0
and ⊢ B.

In a neutral graph, a player’s subpositions contain all the information on
which this player bases her moves. A player will be able to play in subpositions
where she is not waiting for any information. They are referred to as playable
subpositions.

Definition 4.4.7 (Playable subposition). A subposition is playable if the two
following conditions are met:

• the neutral expressions labelling the incoming arcs are atoms,
• if the node is a non-goal, the unique arc connected to it is labelled with a
non-atomic neutral expression (and is therefore outgoing by the previous
point).

This definition is analogous to that of a source in the sequential game (Def-
inition 3.5.3).

4.5 Micro-moves

In this section, we define the micro-moves of the concurrent game. We add the
possibility for arcs to be focused.

Definition 4.5.1 (Micro-subgraph). Micro-subgraphs extend subgraphs in the
sense that

• each regular arc may be in two states, either normal (like in subgraphs) or
focused,

• the neutral expression labelling a focused arc may be not guarded.

We use the following convention in graphical representations of regular arcs.

Normal Focused Either

We define λ-micro-moves as a transitions on λ-micro-subgraphs. Each micro-
move is an operation with two readings, one for each player. As explained before,
each player “sees” her subpositions only. Player µ reads a micro-move in terms
of the µ-subpositions that are affected. For each λ-micro-move:

• Exactly one λ-subposition s is directly affected; it is replaced with zero,
one or more λ-subpositions s1, . . . , sn. Moreover, if s is a goal representing
the sequent Σ, and Σ1, . . . ,Σp are the sequents representing those of the
si which are goals, then there is a synchronous rule

Σ1, . . . ,Σp

Σ

• A hole h (standing for a λ-subposition) may be affected through the arcs
connected to it or changes in its weight; depending on the choices of player
λ for this λ-micro-move, hmay become one of h1, . . . , hn. We can associate
a generic sequent Σ to h like we would do for any λ-subposition it stands
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for, by including a generic multiset standing for the arcs that are not part
of the subgraph. Then, if Σ1, . . . ,Σp are the sequents representing those
of the hi which are goals, there is an asynchronous rule

Σ1, . . . ,Σp

Σ

There might be other subpositions “indirectly” affected. Those are always non-
goals which get deleted as a result of the move because of the reconnection
rules.

We now describe the micro-moves, each time explicitly giving the reading
in terms of a synchronous rule by the player and asynchronous rules by the
opponent.

Decision Playable λ-subpositions are rewritten by focusing some outgoing
arcs (at least one).

λ

y1

yi

yp

x1

x2

xn

a D
7→ λ

y1

yi

yp

x1

x2

xn

a (n > 0)

This micro-move is read as:

The λ-node Each xi

⊢ Γ+,Λ− ⇓ ∆+

⊢ Γ+,∆+,Λ−
[D⇓]

⊢ Γ ⇑ F−

⊢ Γ, F−
[D⇑]

Additives Sums labelling focused arcs are rewritten to one of their operands.

λ x

y1

yp

E1 + E2
+
7→ λ x{pEi

}

y1

yp

Ei

where i ∈ {1, 2} and pE is a propositional variable uniquely associated with the
neutral expression occurrence E.

This micro-move is read as:

The λ-node x

⊢ Γ ⇓ [Ei]
+,∆

⊢ Γ ⇓ [E1]
+ ⊕ [E2]

+,∆
[⊕]

⊢ Γ ⇑ [E1]
−,∆ ⊢ Γ ⇑ [E2]

−,∆

⊢ Γ ⇑ [E1]
− & [E2]

−,∆
[&]

Note that the weight marking x ensures that the choice between E1 and E2

results in two distinct outcomes for x, corresponding to the two premises of the
[&] rule.
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A non-goal with an outgoing focused arc labelled with an empty sum is
removed along with the arc, and its target receives weight 0.

λ x✵
✵
7→ x{0}

This micro-move is read as:

⊢ Γ ⇑ ⊤,∆
[⊤]

by x. Indeed, x receives weight 0 which means that the rule has no premises.
Note that there is no interpretation as a synchronous rule by player λ since the
λ-subposition is a non-goal.

Multiplicatives We cover the binary (×) and nullary (✶) multiplicatives si-
multaneously with a general product Π. A focused arc labelled with a product
Πn

i=1 is split in n arcs labelled with each operand. It keeps the same target, but
the source is split in n, partitioning its other connected arcs, if any.

λ x

y1,1

y1,p1

yn,1

yn,pn

Πn
i=0Ei

×
7→

λ

λ

x

y1,1

y1,p1

yn,1

yn,pn

E1

En

This micro-move is read as:

The λ-node x

{⊢ Γi ⇓ [Ei]
+,∆i|i = 1, . . . , n}

⊢ Γ1, . . . ,Γn ⇓
⊗n

1 [Ei]
+,∆1, . . . ,∆n

[⊗, 1]
⊢ Γ ⇑ [E1]

−, . . . , [En]
−,∆

⊢ Γ ⇑
˙n

1 [Ei]
−,∆

[`,⊥]

Axiom A goal with exactly two connected arcs, both labelled with an atom
a, one of which is normal and incoming, the other one focused and outgoing, is
split into two non-goals.

λ xy aa ax
7→ λ λ xy aa

This micro-move is read as:

The λ-node x

⊢ [a]− ⇓ [a]+
[init] ⊢ Γ, [a]− ⇑ ∆

⊢ Γ ⇑ [a]−,∆
[atomic R⇑]
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Reaction

λ x

y1

yp

˜E R
7→ λ x

y1

yp

E

This micro-move is read as:

The λ-node x

⊢ Γ, [E]− ⇓ ∆

⊢ Γ ⇓ [E]−,∆
[R⇓]

⊢ Γ, [E]+ ⇑ ∆

⊢ Γ ⇑ [E]+,∆
[R⇑]

The λ-micro-move relation 7→λ is the closure under contexts of the above
transitions.

As seen above, a micro-move has a proof-theoretic interpretation for each
player. However, this interpretation only concerns goals, which is not surprising
since goals represent what the players have to prove. Non-goals should not be
neglected though, as they take part in the interaction.

4.6 Macro-moves and positions

4.6.1 Definition

As we did in the sequential game, we define macro-moves on top of micro-moves.
A macro-move abstracts away from micro-moves in the same way that phases
abstract away from individual rules in the proof system. We have not mentioned
the possibility of failure in the micro-moves yet. Failure is handled on the level
of macro-moves.

Definition 4.6.1 (Macro-move). Let G be a playable λ-subposition. A λ-macro-
move from G is a triple (G,G′, f) where

• f = ⊥ and G 7→∗
λ G′ and G′ does not rewrite through a λ-micro-move,

• or f = ⊤, G is based on a goal and G′ is obtained by turning it into
non-goals:

λ

y1

yp

x1

xn

a1

ap
7→

λ

λ

λ

λ

y1

yp

x1

xn

a1

ap

In the first case the macro-move is regular, in the second case it is a daimon
macro-move.

Daimon macro-moves allow a player to give up on one of her goals. The
Boolean flag f signals the use of the daimon, which prevents a player from
winning a play. In other words, daimon is a special “failure” move.

Definition 4.6.2 (Position). A position is a triple (G, f0, f1), where G is a
neutral graph and f0 and f1 are Boolean values.
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If m = (G,G′, f) is a λ-macro-move and there is a position p of the form
(C[G], f0, f1), player λ may play m in p:

(C[G], f0, f1)
m
→ (C[G′], f ′

0, f
′
1)

where f ′
λ = fλ ∨ f and f ′

λ
= fλ.

The Boolean values f0 and f1 have the same meaning as in the sequential
game. They are true when the corresponding player has failed.

The following proposition expresses the concurrent nature of the game.

Proposition 4.6.3. Let p be a position and m1 and m2 two macro-moves at
distinct playable subpositions s1 and s2 of p. Let p

m1→ p1 and p
m2→ p2. Then

one of the following applies:
• m1 and m2 commute, that is p1

m2→ p′ and p2
m1→ p′ for some p′;

• s2 is a non-goal which gets removed by m1, and p2
m1→ p1;

• s1 is a non-goal which gets removed by m2, and p1
m2→ p2;

• s1 and s2 are non-goals which get removed by m2 and m1 respectively, and
p1 = p2.

Proof. Let d be the distance between s1 and s2 in p (which may be infinite).
If d > 2, then m1 and m2 affect disjoints parts of p and commute.
d cannot be 0, as s1 and s2 are distinct.
Suppose that d = 1. There is an arc a from s1 to s2 (for example). Since s1

and s2 are playable, this arc is labelled with an atom and s1 and s2 are goals.
m1 and m2 affect disjoints parts of p and commute.

Suppose that d = 2. There is a goal s between s1 and s2, which is where m1

and m2 may interfere. From the point of view of s, m1 and m2 affect distinct
arcs and apply independent weights, therefore they commute, except in the case

where s is turned into non-goals (because of a micro-move
✵
7→). In that case the

only problem occurs when, for example, m1 is responsible for this and s2 is a
non-goal itself and gets removed by the reconnection rules as a result of m1:

λ

s1

λ

s2

λ

s

x1

xn

m1→

λ

λ

x1

xn

Obviously m2 cannot follow m1. If m2 also turns s into non-goals, then p1 = p2.
Otherwise p2

m1→ p1.

4.6.2 Macro-moves as phases

As was the case with micro-moves, each player reads a macro-move in the way
it affects her subpositions. We show that macro-moves can be seen as phases in
the proof system.

Proposition 4.6.4. Let s be a playable λ-goal and Σ the sequent it represents.
Let m = (s,G′, f) be a λ-macro-move at s. The effect of m on player λ’s
subpositions is to replace s with the λ-subpositions of G′: s1, . . . , sn (n ≥ 0). If
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Σ1, . . . ,Σp denote the sequents representing those of the si which are goals, then
there is a derivation in the proof system

Σ1, . . . ,Σp

Σ

which is a synchronous phase if f = ⊥ and a [z] rule otherwise. Conversely,
every synchronous phase with conclusion Σ defines a unique regular λ-macro-
move at s. The si are called the successors of s by m.

Proof. The obvious part is the reading of the daimon macro-move at s as the
rule

Σ
z

Indeed, s disappears and is replaced with non-goals only, therefore p = 0.

We have already established the reading of λ-micro-moves as synchronous
rules by player λ. It is easy to see that they actually cover all the synchronous
rules of the proof system. From the definition of a regular macro-move as
a maximal sequence of micro-moves, it is clear that regular macro-moves are
indeed read as synchronous phases, and that all synchronous phases are covered
by macro-moves. What is less obvious is the unicity part, in other words that a
synchronous phase

Σ1, . . . ,Σp

Σ

determines a unique regular move m = (s,G′,⊥) at s. We show how to deter-
mine G′ here. We use the crucial fact that arcs in neutral graphs are labelled
with neutral expression occurrences and that sequents are made of formula oc-
currences. With that in mind, we can see that the Σi determine the λ-goals of
G′. Since m is regular, the λ-non-goals of G′ are those created by the

ax
7→ micro-

move. Those non-goals are easily determined as there is exactly one for each
occurrence of a literal that is in Σ and not in the Σi. All the λ-subpositions
of G′ are determined. Next, the arcs connected to a common hole in G′ are
precisely those labelled with a neutral expression with a common ancestor in s.
Lastly, the weights labelling the holes in G′ reflect the information relative to
the additive choices in a phase.

The last point in the proof of Proposition 4.6.4 hints at a subtlety of the
proof system. From the proof-theoretic point of view, there are actually two
versions of the synchronous phase

⊢ 1⊕ 1

even if we usually do not explicitly label this synthetic inference rule with the
additive choice. In the game, there are two corresponding macro-moves:

0 x✶a + ✶b 7→∗
0

x{pi}

where i is one of the occurrences {a, b}.
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Example 4.6.5. The synchronous phase

⊢ [E]+, [F ]− ⊢ [G]−

⊢ [a]−, [E]+, [a]+ ⊗ [F ]− ⊗ ([G]− ⊕ [H]−)

corresponds to the regular macro-move

x

y

zλ

s

a

E
a× ˜F × (˜G+ ˜H) 7→∗

λ

x

y z{p}

λ λ

λ

λ

a
a

E F
G

where p is the weight associated with the choice of ˜G over ˜H. We can see
that s has four successors by this macro-move: two goals (corresponding to the
premises of the phase) and two non-goals.

Proposition 4.6.6. Consider a non-playable λ-subposition s and one of its
incoming arcs a labelled with a non-atomic neutral expression E. Any λ-macro-
move focusing a replaces s with some λ-subpositions. Consider all those λ-
subpositions s1, . . . , sn resulting from such macro-moves. If s is a goal repre-
senting the sequent Σ, and Σ1, . . . ,Σp are the sequents representing those of the
si which are goals, then the asynchronous phase with conclusion Σ focusing on
[E]− is

Σ1, . . . ,Σp

Σ

The si are called the successors of s by an opponent macro-move on a.

Proof. We have already established the reading of λ-micro-moves as synchronous
rules by player λ. It is easy to see that they actually cover all the asynchronous
rules of the proof system. From the definition of a regular macro-move as a
maximal sequence of micro-moves, it is clear that the regular λ-macro-moves
focusing a are indeed read as the asynchronous phase focusing on [E]−.

Example 4.6.7. The successors of

x

y

zλ
˜E1 + ˜E2

˜F1 + ˜F2

G

by an opponent macro-move on the arc labelled with ˜E1 + ˜E2 are the

x

y

zλ
Ei

˜F1 + ˜F2

G
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for i ∈ {1, 2} where the λ-node gets disjoint weights in the two cases. This
corresponds to asynchronous phase

⊢ [E1]
+, [F1]

+ & [F2]
+, [G]+ ⊢ [E2]

+, [F1]
+ & [F2]

+, [G]+

⊢ [E1]
+ & [E2]

+, [F1]
+ & [F2]

+, [G]+

Proposition 4.6.8. Consider a non-playable λ-subposition s and let s1, . . . , sn
be all its goal successors by maximal sequences of opponent macro-moves. Then
the si have pairwise disjoint monomial weights. If s is a goal representing the
sequent Σ, and Σ1, . . . ,Σn are the sequents representing the si, then the maximal
layer of asynchronous phases with conclusion Σ is

Σ1, . . . ,Σp

Σ

Proof. As long as no opponent macro-move assigns a null weight to s (because

of
✵
7→), successive opponent macro-moves affecting s focus on distinct arcs and

assign independent weights to s. They commute trivially. Maximal sequences
of such moves yield successors si that are all goals. Suppose by contradiction
that two distinct si have weights that are not disjoint, for example s1 and s2.
They cannot have the same weight, since they are distinct. Then one of the
weights (s1’s for example) must contain a literal l while the other does not
contain l or ¬l. But then it means the macro-move responsible for assigning l
or ¬l has not been applied to s2, which contradicts the maximality hypothesis.
Therefore the si have pairwise disjoint weights. Lastly, maximal sequences
of opponent macro-moves are seen as maximal layers of asynchronous phases
thanks to Proposition 4.6.6.

On the other hand, if one of the macro-moves assigns a null weight to s, s
is turned into non-goals. Non-goals only have non-goal successors, hence n = 0
and the phase interpreting the whole sequence has no premises.

Example 4.6.9. The successors of

x

y

zλ
˜E1 + ˜E2 + ✵

˜F1 + ˜F2

G

by maximal sequences of opponent macro-moves are some non-goals and the

x

y

zλ
Ei

Fj

G

for (i, j) ∈ {1, 2}2 where the λ-node gets disjoint weights in the four cases.
This corresponds to the maximal layer of asynchronous phases with conclusion
⊢ [E1]

+ & [E2]
+ &⊤, [F1]

+ & [F2]
+:

{

⊢ [Ei]
+, [Fj ]

+, [G]+
∣

∣

∣
(i, j) ∈ {1, 2}2

}

⊢ [E1]
+ & [E2]

+ &⊤, [F1]
+ & [F2]

+, [G]+
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4.7 Strategies

We defined strategies using a technique for graph arenas inspired by [HS02]. We
first define a pre-strategy as an object assigning a macro-move to each of the
playable subpositions of a player. Then we restrict it on the actual subpositions
reachable from a starting subposition.

Definition 4.7.1 (Pre-strategy). A λ-pre-strategy is a function mapping each
playable λ-subposition s to a λ-macro-move at s.

Definition 4.7.2 (Reachable subpositions). Let α be a λ-pre-strategy and s0 a
λ-subposition. The set R(α, s0) of the λ-subpositions reachable from s0 by α is
the smallest set R such that

• s0 ∈ R,
• if s ∈ R is not playable and s′ is a successor of s by an opponent macro-
move, then s′ ∈ R,

• if s ∈ R is playable and s′ is a successor of s by α(s), then s′ ∈ R.

Definition 4.7.3 (Strategy). A λ-strategy for a subposition s is the restriction
of a λ-pre-strategy to the playable λ-subpositions it can reach from s.

A simple position is a position p = (G,⊥,⊥) where G is of the form

µ µE

where E is a guarded neutral expression. In that case we will often call “λ-
strategy for p” a λ-strategy for the λ-subposition of G.

Definition 4.7.4 (Interaction). Let σ0 and σ1 be two strategies for a simple
position p for player 0 and player 1 respectively. The interaction of σ0 and σ1

is the relation rewriting positions (starting in p) according to the macro-moves
specified by the strategies.

The positions obtained from p through this relation are called the reachable
positions of the interaction.

Proposition 4.7.5. Let λ ∈ {0, 1} and σ be a λ-strategy for a simple position
p. The λ-goals reachable by σ are those occurring in the positions reachable by
the interactions involving σ.

Proof. One direction is obvious. From the definition of a strategy, it is clear
that all the λ-subpositions occurring in the positions reachable by interactions
involving σ are reachable by σ.

Let us show the converse. It suffices to consider the interactions of σ against
strategies playing the daimon as soon as possible (either immediately or after one
move depending on which player plays first in p). Then all subsequent positions
will be made of connected components consisting of one λ-goal surrounded by
λ-non-goals.

λ
λE1

λ
En

Player λ can then move independently on each arc. From the point of view of
the λ-goal, every opponent macro-move is represented in some λ-strategy.
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Proposition 4.7.6. The interaction of two strategies for a simple position p
is terminating and strongly confluent. It is therefore strongly normalising. The
normal form of p is a position of the form (·, f0, f1), where at least one of f0
and f1 is ⊤.

Proof. We first show that interaction is terminating. It suffices to notice that
each macro-move strictly decreases the pair (s, g) of a position for the lexico-
graphic order, where s is the total number of symbols of the neutral expressions
labelling the arcs, and g is the number of goals. In addition, interaction is
strongly confluent because two interacting strategies have disjoint domains and
Proposition 4.6.3 applies. Interaction is therefore strongly normalising.

Let us show that the normal form n of p has an empty neutral graph. Any
playable subposition of a position reachable by the interaction is reachable by its
player’s strategy, and thus has a macro-move specified for it. Hence n does not
have any playable subposition. Neutral graphs are finite and acyclic, which im-
plies that every non-empty neutral graph has a playable subposition. Therefore
n’s neutral graph is empty.

Let us write n = (·, f0, f1) and show that at least one of f0 and f1 is ⊤.
Assume by contradiction that f0 = f1 = ⊥. Consider a rewrite sequence from
the starting position of the interaction to n. None of the moves in this sequence
are daimons, otherwise one of the fi would be ⊤. Consequently, the only ways

to remove goals are the
ax
7→ and 0-ary

×
7→ micro-moves (

✵
7→ requires the presence

of a non-goal which can only be introduced by a daimon). At least one of them

is used, since the starting position has two goals and n has none.
ax
7→ has to be

used. Indeed, the 0-ary
×
7→ micro-move

λ x✶
×
7→ x

cannot be the only one to be used. If it were, then there would be no way to
introduce non-goals; but when removing the last goal, x would have to stand
for a non-goal. So

ax
7→

λ xy aa ax
7→ λ λ xy aa

is used at some point. The only non-goals that are introduced have an arc
labelled with an atom. Consider an application of this micro-move. At that
point y may stand for a non-goal or a goal. If it is a non-goal, it has become
a non-goal due to an earlier application of

ax
7→. Otherwise it will do so at some

point. By moving from node to node along arcs labelled with the same atom
this way, it is possible to create an infinite path in the graph, which contradicts
the fact that it is acyclic. Therefore f0 or f1 is ⊤.

An interaction is a win for player λ if its normal form (·, f0, f1) is such that
fλ = ⊥; it is a tie if f0 = f1 = ⊤.

Definition 4.7.7 (Winning strategy). Let p be a simple position. A λ-strategy
for p is winning iff it wins against all λ-strategies for p.

Proposition 4.7.8. A λ-strategy for a simple position is winning iff it does not
specify any daimon macro-moves.
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Proof. Let σ be λ-strategy for p. If it does not specify any daimon macro-
moves, it must win all interactions. Conversely, by Proposition 4.7.5, every
λ-goal reachable by σ can be reached by an interaction with an appropriate
λ-strategy for p. If σ is winning, it wins all those interactions and therefore
never plays daimon.

4.8 Winning strategies and proofs

4.8.1 Strategy classes

A λ-strategy specifies moves for playable λ-subpositions, whether they are goals
or not. Strategies must do so because the opponent must be supplied informa-
tion in all cases. However, only goals are relevant from a proof-theoretic point
of view. The information supplied at non-goals is used for purely interactive
purposes. We will need to consider strategies modulo that information.

Proposition 4.8.1. The successors of a non-goal by a macro-move are always
non-goals. Therefore two λ-pre-strategies specifying the same macro-moves on
λ-goals reach the same λ-goals from a λ-subposition.

Definition 4.8.2. Two λ-pre-strategies are goal-equivalent iff they specify the
same moves for goals. A λ-pre-strategy class is a class for this equivalence rela-
tion. Two λ-strategies for a λ-subposition s are goal-equivalent iff they specify
the same moves for goals. A λ-strategy class for s is a class for this equivalence
relation.

Note that if a strategy is winning, then so are its goal-equivalent strategies.
The notion of winning strategy class is therefore well defined.

4.8.2 Goal trees

The definition of the set of reachable λ-subpositions in Definition 4.7.2 suggests
an inductive presentation.

Definition 4.8.3. A λ-goal tree is a tree of λ-goals presented as a derivation
in a deductive system given by the two rules described below.

g1, . . . , gn
g P,m

where g is playable, m is a λ-macro-move in g and the gi are the goal successors
of g by m.

g1, . . . , gn
g O

where g is not playable and the gi are the successors of g by maximal sequences
of opponent macro-moves.

Definition 4.8.4. Let σ be a λ-strategy class for a λ-goal g0. The goal tree
for σ is the goal tree T (σ) with root g0 and whose P rules are given by the
macro-moves specified by σ.

Proposition 4.8.5. Let T be a goal tree.
1. All the branches of T are finite;
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2. no goal appears twice in T .

Proof. If s′ is a successor of s by a macro-move and s and s′ are both goals, then
the number of symbols of the neutral expressions labelling the arcs is strictly
less for s′ than for s. Therefore all the branches of T are finite.

We now prove the second property. Suppose by contradiction that a λ-goal
appears twice in T . The two occurrences h1, h2 cannot be on the same branch,
as that would allow infinite branches. Consider the closest common ancestor
g of those occurrences in the tree. g cannot be playable, as its successors by
the associated macro-move are clearly distinct: they can be part of the same
neutral graph, and so can their descendants. g is therefore not playable. The
tree contains

g1, . . . , gn
g O

and (for example) g1 and g2 are the (distinct) ancestors of h1 and h2 respectively.
Then g1 and g2 must have disjoint monomial weights by Proposition 4.6.8. The
only way for h1 and h2, as descendants of g1 and g2, to have the same weight
would thus be to have a null weight, which is impossible as the tree only contains
goals.

Lemma 4.8.6. Let g be a λ-goal. T defines a bijection from the λ-strategy
classes for g to the λ-goal trees with root g.

Proof. The injectivity part is simple. All the reachable λ-goals of a strategy
appear in its goal tree, therefore all the macro-moves it specifies (i.e. all its
information) too.

Surjectivity is easily seen too. By Proposition 4.8.5, no playable goal appears
twice in a goal tree. Therefore a goal tree specifies exactly one macro-move
for each playable goal it contains. It is then easy to see that these moves
are precisely those specified by a λ-strategy class for g, which is naturally the
antecedent of the tree by T .

Theorem 4.8.7. Let g be a λ-goal. There is a one-to-one correspondence be-
tween λ-strategy classes for g and closed derivations of the sequent represented
by g. Moreover, the strategy class is winning iff the derivation is a proof.

Proof. The previous lemma relates λ-strategy classes to λ-goal trees. Now, λ-
goal trees are in one-to-one correspondence with closed derivations. λ-goals in
a tree correspond to their associated sequents in a closed derivation, a rule

g1, . . . , gn
g P,m

corresponds exactly to a synchronous phase or a daimon rule depending on m
(see Proposition 4.6.4) and a rule

g1, . . . , gn
g O

corresponds exactly to a maximal layer of asynchronous phases (see Proposi-
tion 4.6.8).

A λ-strategy class is winning iff it does not specify daimon moves, iff its goal
tree does not contain a daimon move, iff the corresponding closed derivation
does not contain [z].



Chapter 5

Extensions

In this chapter we develop some extensions of the game model presented in the
previous chapters.

5.1 Explicit cuts

The approach we developed in the game models dual proof search by an inter-
active process. In the tradition of computation as proof search, the trace of
the computation is seen as a cut-free sequent calculus proof, and sequents are
successive states. Our games are slightly different is the sense that two proofs
are being built at the same time. Cuts are not part of our proof system, but
they can be added and accounted for in the game. This section presents this
simple extension.

In focused proof systems, cut is introduced as a rule starting a new phase
like the decision rules. The original cut rule in Andreoli’s triadic system [And92]
becomes, in our system:

⊢ Γ+
1 ,Λ

−
1 ⇓ F+ ⊢ Γ+

2 ,Λ
−
2 , F

−

⊢ Γ+
1 ,Λ

−
1 ,Γ

+
2 ,Λ

−
2

Remark that the only way to extend the right branch is to apply [D⇑] by focusing
on F−. Including this step in the cut rule would be possible but it would break
the clear separation of phases. The cut rule replaces [D⇓] in the left branch.
It seems natural that the player introducing the cut develops the left branch
and leaves the asynchronous phase in the right branch to be developed by her
opponent.

We introduce a new micro-move
cut
7→ matching this rule. This requires a new

kind of goal: cut nodes. A cut node will be graphically represented as

λ

Cut nodes are goals and absolutely no distinction is made between them except
that they are not taken into account in goal trees.

The micro-move
cut
7→ plays a role similar to that of

D
7→ and is presented on

Figure 5.1. This micro-move creates a new cut node for the opponent, represent-
ing the sequent ⊢ [G]+ ⇑ [G]−, which can be proved trivially. The micro-move
highlights the fact that the cut and initial rules are the dual of each other.

Just like
D
7→,

cut
7→ is followed by a maximal sequence of other micro-moves, and

together they form a macro-move. Instead of two kinds of macro-moves (regular
and daimon), we now have three: regular, cut, and daimon.

75
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λ

y1

yi

yp

x1

xj

xn

a b cut
7→ λ λ

y1

yi

yp

λ

x1

xj

xn

Ga G b

where G is a guarded neutral expression.

Figure 5.1: The cut micro-move
cut
7→.

Starting from

0 1E

player 0 can cut

0 1E0 1✶ ✶

and finish the macro-move

0 1E1 ✶

At that point player 1 is the only one who can play and her only macro-move
leads to

0 1E

This sequence is then repeated forever, without ever giving a chance to player
1 to prove [E]−.

Figure 5.2: An infinite interaction.

5.1.1 Infinite interactions

An immediate consequence of the introduction of the cut micro-move is that
infinite sequences of macro-moves are possible, see Figure 5.2.

On the other hand, closed derivations are finite objects which contain finitely
many instances of the cut rule. We can allow an interaction to be infinite, but
playing cut infinitely many times must cause a player to lose the play. The
interaction in Figure 5.2 must definitely be lost by player 0. The interesting
question is whether it should be won by player 1, since our neutral setting allows
ties. The answer is that it should be won by player 1, for a simple reason. If
[E]− is provable, then we want player 1 to have a winning strategy, therefore to
be able to win all interactions with player 0. If [E]− is not provable, then player
0 must have some way to force player 1 to fail without resorting to infinitely
many cuts.

Cutting infinitely many times is not the only “losing condition” in our games.
In contrast to other game models for logic, the neutral approach forces inter-
action to continue after a player has failed. In the concurrent game, we use a
dedicated micro-move (the daimon) to this end. The state of a game, repre-
sented by a position (G, f0, f1), keeps track of the applications of the daimon
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in the Boolean flags f0 and f1. As soon as a player plays the daimon, her flag
becomes ⊤ and, although interaction can go on, she cannot win it.

The use of cut macro-moves should also be recorded in positions. That
way, it is possible to determine who is responsible for applying cut infinitely
often in an infinite interaction. At least one player has to be, but it is possible
that both be. We replace the Boolean flags with values in ◆, the set of natural
numbers with the additional element∞. We redefine macro-moves by modifying
Definition 4.6.1.

Definition 5.1.1 (Macro-move). Let G be a playable λ-subposition. A λ-macro-
move from G is a triple (G,G′, n) where

• G 7→∗
λ G′, G′ does not rewrite through a λ-micro-move, and n is 0 if the

first micro-move is
D
7→ or 1 if it is

cut

7→;
• or G′ is obtained from G by the daimon transition of Definition 4.6.1, and
n is ∞.

n can take three values (0, 1 or∞) to identify different kinds of macro-moves.
We now proceed to redefine how macro-moves affect positions.

Definition 5.1.2. If m = (G,G′, n) is a λ-macro-move and there is a position
p of the form (C[G], n0, n1), player λ may play m in p:

(C[G], n0, n1)
m
→ (C[G′], n′

0, n
′
1)

where n′
λ = nλ + n and n′

λ
= nλ with the usual notion of addition in ◆.

The idea behind this choice is that a simple counter is all that is necessary
to determine if a player loses a finite or infinite interaction. A position records
the number of uses of cut by each player. Let us fix a player λ. In a finite or
infinite rewrite sequence of an interaction, the sequence of the values of nλ is
non-decreasing. Three situations are possible:

1. the sequence contains finite values only and its limit is finite;
2. the sequence contains finite values only and its limit is ∞;
3. all the elements of the sequence equal ∞ after a finite prefix.

The first case occurs when player λ uses finitely many cuts and no daimons,
and thus does not fail. The second case occurs when player λ cuts infinitely
many times but uses no daimons, and the third when player λ uses at least a
daimon. Those two latter cases are the ones in which player λ fails. A way
to discriminate between the first and the two last cases is to compare the limit
of the sequence to ∞. The player has failed iff the limit is ∞. Note that this
works for finite or infinite sequences, with the convention that the limit of a
finite sequence is its last value.

This whole analysis is based on a sequence of moves. However, our game
is concurrent and an interaction is a more complex object. Our objective is to
take this fact into account and properly define the winning conditions in the
game with cuts.

The concurrent nature of the game is not affected by adding cuts in the
sense that Proposition 4.6.3 still holds. The definition of strategies must be
slightly modified to take into account that a cut macro-move by the opponent
spawns a cut node for the player. Since a player may play cut at any point
in a play, choosing any guarded neutral expression as the one being cut, her
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opponent must be prepared to play at any cut node possibly spawned by a cut
rule. Strategies can take this into account by considering all those cut nodes as
reachable subpositions. Note that in a cut micro-move the neutral expression
occurrence G (from Figure 5.1) is not a sub-occurrence of neutral expression
occurrences previously in the graph. We choose the cut node and G to be

uniquely associated with this
cut
7→ instance. This distinction allows player λ’s

strategies to behave independently in the spawned λ-cut node for each instance
of a cut micro-move.

Interactions of strategies keep some useful properties. Proposition 4.7.5 still
holds, and interactions are still strongly confluent. However, interactions are
not terminating in general, and therefore not strongly normalising in general.
In fact they are not even weakly normalising in general, as a player can force
all plays to be infinite by always playing cuts. We cannot define the winner of
an interaction by its normal form as we did before. Instead, we observe from
the interaction if the number of cuts a player plays is bounded or not, and if a
player ever plays daimon or not.

Definition 5.1.3. Let I be an interaction. For each player λ, consider the
set

{

nλ ∈ ◆
∣

∣(G,n0, n1) is reachable by I
}

. This set has a least upper bound bλ.
Player λ wins I iff bλ is finite.

In other words, a player wins an interaction if she never plays daimon and
plays only finitely many cuts. With this definition, the infinite interaction pre-
sented in Figure 5.2 is won by player 1 as intended.

Let us show here that with this new definition the two players cannot win
the same interaction.

Proposition 5.1.4. An interaction cannot be won by the two players.

Proof. Consider, by contradiction, an interaction I won by both players.
I is terminating. Indeed, in an infinite play, at least one player cuts infinitely

often. If there were an infinite play where player λ cut infinitely often, the least
upper bound of the set

{

nλ ∈ ◆
∣

∣(G,n0, n1) is reachable by I
}

would be ∞ and
player λ would not win the interaction.

I is strongly normalising and has a normal form (·, n0, n1). By using the
same arguments as in the proof of Proposition 4.7.6, it is clear that at least one
player has to play daimon. Therefore, at least one of n0 and n1 is infinite, which
contradicts the hypothesis that I is won by both players.

Winning strategies are still defined as strategies winning all the interactions
against other suitable strategies. By analogy with Proposition 4.7.8, a strategy
is winning iff it specifies no daimon and only finitely many cuts.

5.1.2 An alternate cut micro-move

In [HHH08], the authors model cut with a move that would correspond to the
following micro-move in our game:

λ

y1

yi

yp

x1

xj

xn

a b cut
7→ λ

y1

yi

yp

λ

x1

xj

xn

Ga b
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Starting from

0 1E

player 0 cuts

0 1E0 ✶+ F

and finishes the macro-move by choosing ✶ over F

0 1E

Figure 5.3: A macro-move based on the alternate cut micro-move.

where G is a guarded neutral expression. Obviously, we could not introduce such
a micro-move in our context, since we require neutral graphs to be bipartite. If
we managed to circumvent this issue, we would be able to obtain the equivalence
of provability and existence of a winning strategy. However, we could not relate
winning strategies to proofs easily. Figure 5.3 shows a macro-move using this
alternate cut micro-move. We would like this macro-move to be read by player
0 as the derivation

⊢⇓ 1
[1]

⊢⇓ 1⊕ [F ]+
[⊕1]

⊢ [E]+

⊢ [E]+ ⇑ ⊥
[⊥]

....
⊢ [E]+ ⇑ [F ]−

⊢ [E]+ ⇑ ⊥& [F ]−
[&]

⊢ [E]+
cut

But in fact, we only get the slice

⊢⇓ 1
[1]

⊢⇓ 1⊕ [F ]+
[⊕1]

⊢ [E]+

⊢ [E]+ ⇑ ⊥
[⊥]

⊢ [E]+ ⇑ ⊥& [F ]−
[&1]

⊢ [E]+
cut

The issue arises because the arc introduced by the cut connects two 0-goals.
Player 0 gets to choose between ✶ and F . From the point of view of the source
of the arc, it makes perfect sense since that choice is seen as the application
of the [⊕1] rule over the [⊕2] rule. From the point of view of the target of the
arc, player 0 should be prepared to face both 1 and F , and the choice should
be made by player 1. Here player 0 only faces 1. Notice that our definition
of strategy is done on a subposition basis, hence a strategy for player 0 would
still be required to face both choices. However there would be a discrepancy
between the definition of strategy and the dynamics of interaction. Here the
part of the strategy dealing with F would not be reachable by any interaction,
making Proposition 4.7.5 false. With our notion of cut micro-move, the situation
is different (see Figure 5.4). By inserting a cut node in the middle, we give the
opponent the option to “forward” the moves (which is also known as a copycat
strategy) or to play differently, thus solving the issue presented above.
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Starting from

0 1E

player 0 cuts

0 1E1 ✶+ F0 ✶+ F

and finishes the macro-move by choosing ✶ over F

0 1E1 ✶+ F

Then, player 1 could focus on ✶ + F and choose ✶. This copycat strategy is a
safe option. Player 1 could also choose F , after having played daimon on the
cut node if needed (if F = ✵, for example).

Figure 5.4: Interaction based on our cut micro-move.

5.1.3 Winning strategies and proofs

In the game without cut, strategies contain more information than closed deriva-
tions because they must specify how to play on non-goals, while goals are the
only nodes with information relevant to the derivation the player builds. By
removing this information in a shift to strategy classes, we obtain a one-to-one
correspondence. In the game with cuts, cut nodes are also irrelevant. They
are introduced by the cut moves of the opponent and are purely here to allow
interaction with her. However, cut nodes are goals and a player may lose by
playing on them. There is a straightforward and deterministic way to treat
them, though, by playing copycat.

Playing copycat on a cut node consists in copying the opponent’s macro-
moves, maintaining the invariant that, before each opponent macro-move af-
fecting it, a cut node has one incoming arc and one outgoing arc labelled with
the same guarded neutral expression. When units or atoms are reached, the
node is removed with the appropriate micro-move. It is exactly the same as
deriving the general axiom ⊢ F−, F+ from the atomic initial rule

⊢ L− ⇓ L+
[init]

For example the opponent macro-move

λ(a+ E)× ˜F x(a+ E)× ˜F

λ
→ λ

y1
a

y2
F

x(a+ E)× ˜F (5.1)
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is followed by a λ-macro-move to

λ λy1 a

λy2 F

x
a

F

Copycat macro-moves are of the form (G,G′, 0) and have no impact on the fact
that a strategy is winning or not.

Definition 5.1.5. A strategy is cut-copycat if it always plays copycat on cut
nodes.

A cut-copycat strategy is essentially composed of the same kind of infor-
mation as strategies in the previous game, along with all the (deterministic
and generic) information for playing copycat on cut nodes. By taking goal-
equivalence classes, we get the abstraction we need.

Theorem 5.1.6. Let g be a λ-goal. There is a one-to-one correspondence be-
tween winning cut-copycat λ-strategy classes for g and proofs of the sequent
represented by g in the proof system with cut.

Proof. We do not give the details of the proof here, as this result is a slight
variation of those in Section 4.8. Goal trees are extended by adding a case for
the P rule corresponding to a cut macro-move in the game and to a cut phase in
the proof system. Notice that goal trees are finite because we restrict ourselves
to winning strategies here, which cannot play infinitely many cuts.

5.2 Exponentials

We can add a form of infinite behaviour to the game with exponential connec-
tives. The exponentials of linear logic are not the best candidates. First, our
neutral approach forces us to handle connectives symmetrically, which cannot
be done easily with ! and ?. Second, the fact that ! and ? are not canonical
implies that they cannot be reduced to their behaviour.

We define other connectives that are infinite versions of the MALL connec-
tives. For each subset I of the set of natural numbers ◆, we add a pair of
dual unary connectives !I and ?I to the logic. They should be seen as infinite
synthetic connectives:

!IF ≡
⊕

n∈I

n
⊗

i=1

F ?IF ≡
¯

n∈I

ņ

i=1

F

Our sequent calculus can be extended to those connectives with the rules

{⊢ Γi ⇓ F,∆i|1 ≤ i ≤ n}

⊢ Γ1, . . . ,Γn ⇓ !IF,∆1, . . . ,∆n
[!I , n]

{

⊢ Γ ⇑ F (1), . . . , F (n),∆
∣

∣n ∈ I
}

⊢ Γ ⇑ ?IF,∆
[?I ]

In [!I , n], n is an element of I. In [?I ], F
(1), . . . , F (n) are n distinct occurrences

of F . Note that [?I ] may have infinitely many premises.
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We define a corresponding neutral unary connective �I , and the translations
[�IF ]+ = !I [F ]+ and [�IF ]− = ?I [F ]−.

In order to define the associated micro-move, we need to adapt the notion of
monomial weight to infinite additives. Instead of considering Boolean variables,
we will more generally have I-variables, where I is a subset of ◆. If p is an
I-variable, then there is a literal pn for each n ∈ I. We have the equations
pipj = 0 if i 6= j. A weight is a product of literals.

We can now define the micro-move:

λ x�IE

y1,1
y1,p1

yn,1
yn,pn

�I7→ x{pn}
λ

E

λ
E

y1,1
y1,p1

yn,1
yn,pn

where n ∈ I and p is an I-variable uniquely associated with the �IE occurrence.

Here, player λ chooses n and then splits the λ-node like in the n-ary
×
7→ micro-

move.
In the absence of cut micro-moves, the interaction of two strategies is still

terminating because for every I ⊂ ◆ the
�I7→ micro-move replaces a neutral

expression with finitely many neutral expressions with one less occurrence of
the �I symbol.

The canonicity of those exponential connectives can be discussed. First of
all, two “colours” of the exponentials defined by a common set of indices I are
provably equivalent. However, two distinct sets of indices define exponentials
that are provably not equivalent. The main characteristic of this parametrisation
is that it defines an order on the !I that is the same as inclusion for the I. That
is, ⊢ !IA ⊸ !JA is provable if and only if I ⊂ J . A proper proof-theoretic
treatment of multiple modalities would allow to reason on them finitely, in

contrast to the possible infinity of choices for the
�I7→ micro-move. Investigations

were carried out in similar areas in [DJS93] and with subexponentials in [NM09].
In a recent paper [HHH09] the authors further developed the graph game model
from [HHH08] to account for exponentials, by internalising the ?C rule into the
⊗ rule.

5.3 First-order quantification

We have defined our game in a purely propositional setting. Extending it to
first-order logic is possible. Our proof system can be extended with the first-
order rules

⊢ Γ ⇓ F{t/x},∆

⊢ Γ ⇓ ∃xF,∆
[∃]

⊢ Γ ⇑ F,∆

⊢ Γ ⇑ ∀xF,∆
[∀]

where x does not appear as a free variable in the conclusion of [∀].
Hintikka’s games also contain first-order quantification and atoms. Élöıse

plays at ∃xF by selecting an instance F{t/x} and Abélard does the same at
∀xF . In other words, first-order quantifiers are treated like infinite conjunctions
and disjunctions. When the plays ends up at a ground atom, an external model
tells who wins. This kind of game thus determines the truth of a formula in a
given model.
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Our approach is different as we aim at modelling provability (and, in the
concurrent game, proofs). For example, in the propositional setting we deal
with atoms through an axiom micro-move. In a game modelling truth, atoms
would have been treated like the units of the logic through the use of an external
propositional model.

First-order quantifiers are more than infinite versions of additive connectives.
While proving an existential amounts to selecting an instance, proving a uni-
versal is more than proving all the ground instances of the formula; it consists
in finding a generic argument that covers all instances.

In this section, we restrict ourselves to modelling provability in the neutral
setting. Modelling proofs is substantially more complex and less elegant.

In our neutral setting, when a player faces ∃xF , she picks and instance
F{t/x}. The opponent, who faces ∀xF⊥, is then challenged to go on with
F⊥{t/x}. A winning strategy for the opponent must account for all choices for
t. In general this does not yield a generic argument. It does, however, when
the language contains infinitely many constant symbols. We give an informal
explanation of this reason here. With an infinite supply of constant symbols we
can always pick a fresh one to instantiate a universal quantifier. If ⊢ Γ, F{t/x}
is provable for every ground term t, then ⊢ Γ, F{c/x} is provable, where c is a
constant symbol not appearing in Γ or F . In any proof of that sequent, c plays
the same role as an eigenvariable; therefore ⊢ Γ, ∀xF is provable.

For the rest of the section, we will assume that the term language contains
infinitely many constant symbols.

We extend the syntax of neutral expressions to include a neutral quantifier.

G,G′ ::= a(t) | E + E′ | ✵ | E × E′ | ✶ | QxE

E,E′ ::= G | ˜G

We define the translations as [QxE]+ = ∃x[E]+ and [QxE]− = ∀x[E]−. This is
natural since ∃ is synchronous and ∀ is asynchronous.

We add a new micro-move

λ x

y1

yp

QzE Q
7→ λ x

y1

yp

E{t/z}

where t is a ground term. This micro-move is read as:

The λ-node x

⊢ Γ ⇓ [E]+{t/z},∆

⊢ Γ ⇓ ∃z[E]+,∆
[∃]

{⊢ Γ ⇑ [E]−{t/z},∆|t ground term}

⊢ Γ ⇑ ∀z[E]−,∆

Note that the restriction to instantiate z with a ground term in this micro-move
is irrelevant since the sequents do not have eigenvariables.

The reading of the micro-move by x is not the [∀] rule, but it is equivalent
in terms of provability. In other words, the existence of a winning strategy is
still equivalent to provability, but there are more winning strategy classes than
proofs.
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If we aimed at having a correspondence between winning strategy classes
and proofs, we would need to impose a uniformity condition on strategies. For
example, let c be a constant of the language and consider the following proof:

x;⊢ ⊤, P−(x)
[D⇑,⊤]

x;⊢ P+(c)⊕⊤, P−(x)
[D⇓,⊕2,R⇓]

⊢ ∀x(P+(c)⊕⊤)` P−(x)
[D⇑, ∀,`,R⇑, atomic R⇑]

With the other rule for the universal quantifier, there is a proof of the form

⊢ ⊤, P−(c′)
[D⇑,⊤]

⊢ P+(c)⊕⊤, P−(c′)
[D⇓,⊕2,R⇓]

⊢ P+(c)⊕⊤, P−(c)
[D⇓,⊕1, init]

. . .

⊢ ∀x(P+(c)⊕⊤)` P−(x)

in which the first branch, instantiated with a fresh constant c′, plays the role of
the generic proof above, and the second branch, instantiated with c, is a spe-
cialised proof. Winning strategy classes allow this kind of behaviour and contain
too much information to correspond to proofs. This issue could be tackled by
forbidding specialised behaviour. If a playable subposition p can be obtained
from another, p0, by uniformly substituting ground terms for constants, a strat-
egy would be required to play in p the image by the substitution of what it
would play in p0.

5.4 Equality

First-order quantification opens the way to other additions, such as equality.
Equality has an interesting treatment in proof theory. First of all, we extend
the syntax of formulae with two new constructors, t = s and t 6= s, where t and
s are terms. Those two formulae are De Morgan duals.

When discussing first-order quantification, we presented two approaches to
the universal quantifier ∀. The proof-theoretic, syntactic approach, uses the
inference rule [∀] and introduces eigenvariables in sequent. The semantic ap-
proach uses no eigenvariables at the price of having a rule [∀′] with infinitely
many premises, one for each ground term of the language.

Similarly, there are two approaches to equality. In the syntactic tradition,
our proof system would be extended with the three following inference rules:

⊢⇓ t = t
[=]

⊢ Γθ ⇑ ∆θ

⊢ Γ ⇑ t 6= s,∆
[ 6=]

⊢ Γ ⇑ t 6= s,∆
[ 6=′]

where t and s stand for terms. In [ 6=], s and t are unifiable and θ is their most
general unifier. In [ 6=′], s and t are not unifiable. In a higher-order setting,
the [ 6=] rule would have one premise per substitution θ in some complete set of
unifiers of t and s.

This treatment is purely syntactic in that it handles unification explicitly.
This complements the fact that the [∀] rule requires the explicit introduction of
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eigenvariables. For example, in the proof

z;⊢⇑ z = z
[R⇑,D⇓,=]

x, y;⊢⇑ x = y, x 6= y
[ 6=]

⊢⇑ ∀x∀y x = y ` x 6= y
[∀,`]

it is clear that the introduction of the eigenvariables x and y is complemented
by their unification carried out by the [ 6=] rule.

Our approach to quantification using the [∀′] rule is more semantic in nature.
Due to the absence of eigenvariables, t and s are ground terms in formulae of the
form t = s or t 6= s (assuming that we work with sentences). In that semantic
approach, the inference rules for equality simply become

⊢⇓ t = t
[=]

⊢ Γ ⇑ ∆

⊢ Γ ⇑ t 6= t,∆
[ 6=]

⊢ Γ ⇑ t 6= s,∆
[ 6=′]

where t and s are distinct ground terms. In other words, equality/disequality
of two ground terms is treated

• multiplicatively, like 1/⊥, when those terms are the same;
• additively, like 0/⊤, when those terms are distinct.
In that approach, the above proof becomes

. . . ⊢⇑ t = s, t 6= s
[ 6=′]

. . .

⊢⇑ t = t
[R⇑,D⇓,=]

⊢⇑ t = t, t 6= t
[ 6=]

. . .

⊢⇑ ∀x∀y x = y ` x 6= y
[∀′,`]

where the [∀′,`] layer has one premise for each pair of ground terms (t, s) of
the language. Each premise is proved in one of two ways, depending on whether
t and s are the same or not.

Equality can be built in the game by introducing a new constructor t =̇ t′ for
guarded neutral expressions, where t and t′ are terms. We define the translations
as [t =̇ t′]+ = (t = t′) and [t =̇ t′]− = (t 6= t′).

Unsurprisingly, the micro-moves for equality match those for ✶ and ✵. In
the case of two identical ground terms:

λ xt =̇ t =̇
7→ x

In the case of two distinct ground terms t and s:

λ xt =̇ s =̇
7→ x{0}

5.5 Fixed points

Fixed points can be added to the game. We briefly present how they were
introduced in [MS06]. Let ι denote the type of terms and ǫ the type of neutral
expressions. Then consider, for each natural number n, the neutral fixed point
operator fixn of type (αn → αn) → αn, where αn = ι → . . . → ι → ǫ (n
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occurrences of ι). The associated micro-move unfolds the fixed point:

λ x

y1

yp

fixn B~t
fixn7→ λ x

y1

yp

B(fixn B)~t

where β-reduction is carried out.
The neutral fixed point operator shall be translated positively as the least

fixed point operator µ and negatively as the greatest fixed point operator ν. As
usual, we require the body B of any fixed point fixn B to be monotonic: if B is
written λX.T , then X may only occur in T under an even number of ˜.

Unfolding a fixed point allows plays to inspect a finite portion of a recursive
structure. A player infinitely unfolding fixed points shall lose the play. Note
that fixed point unfolding alone does not give the ability to reason by induc-
tion or coinduction, which requires a much more involved proof-theoretic treat-
ment [Bae08] that cannot be adapted to our neutral setting easily. It is however
possible to e.g. decide bisimulation in a similar way to Stirling’s game [Sti99].
Informally speaking, if two processes are bisimilar, it is possible to tell them
apart after finitely many transitions.
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Related and future work

Most of the work on game semantics for linear logic models cut elimination in a
setting where the Player’s strategies are the objects of interest, and the Oppo-
nent represents an abstract environment. Composition is defined for strategies,
which are global objects containing information about the whole game. Com-
position corresponds to cut elimination: computation is defined on complete
proofs. In our case, we see computation as an ongoing process exploring an
unknown search space. We precisely capture the dynamics of the application of
individual inference rules, gradually building a neutral object which will even-
tually turn out to be a proof of a formula F , a proof of F⊥, or a refutation of
both. In that sense, our games are more closely related to the dialogue games
inspired by the early work of Lorenzen [Lor61] (see also [Her95]).

The closest related work, by Hirshowitz et al. [HHH08], investigates a similar
graph-based game for atom-free MALL with a topological flavour: moves mod-
ify graphs continuously. The game explicitly contains cut moves, the authors
provide a cut elimination procedure for strategies, and discuss the composition
of strategies. Their focus is somewhat different from our “neutral approach”
line of research.

Game-theoretic accounts of concurrency in logic exist in concurrent [AM99]
and asynchronous [Mel04] games. It would be interesting to connect our concur-
rent game to the promising asynchronous line of research. Although our notion
of concurrency is naturally dictated by the structure of the neutral graphs, it
could be modelled by a homotopy relation on sequences of moves. The asyn-
chronous model is quite flexible. For example Mimram [Mim08] investigated
asynchronous games in which the players are not forced to alternate.

Ludics [Gir01] is an account of logic based on interaction. In that framework,
interaction is the primitive notion that allows to recover logic. Our work shares
some similarities with Ludics. Our comprehensive use of focalisation is natural
in our neutral approach, since synchrony corresponds to activity and asynchrony
to passivity. The fact that focalisation is primitive in Ludics stems from a similar
observation on interaction. Our account of failure motivated the introduction
of the daimon, by analogy with Ludics. However, our game were designed
with dual proof search in mind with a strong emphasis on syntax and finite
behaviour, while Ludics deals with infinite objects which are more primitive
than both syntax and semantics.

Our goal here has been rather conservative: we have worked entirely within
the proof theory of MALL, attempting to find a symmetric and interactive
account of it. Many of the other works, e.g., on Ludics and L-nets [CF05,
FM05], are willing to move beyond MALL and to develop new logical principles
motivated by interaction.

Another relevant question is the connection between the computation-as-
proof-normalisation and computation-as-proof-search traditions. By providing
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an interactive process closely following proof search, and at the same time seeing
interaction of strategies as proof normalisation, our work has some connections
with both paradigms. Recent work aiming at relating the two was developed
by Saurin—albeit in an asymmetric setting—in which proof search is guided by
normalisation with tests [Sau08a].



Chapter 7

Conclusion

In this thesis we developed an original approach to the proof theory of MALL
using symmetric two-player games. We describe a setting in which two agents
play with the same rules, one of them attempting to prove a formula F and the
other one attempting to prove F⊥. The current state of the game is a single
object seen as two orthogonal derivations of F and F⊥, and each move is seen
as the simultaneous extension of those derivations with dual inference rules. In
other words, the game is a process building a syntactic object which will even-
tually turn out to be a proof of a formula F , a proof of F⊥, or a refutation of
both. A single computation accounts for the two simultaneous orthogonal proof
searches. We summarise this outline under the slogan “neutral approach”. Fo-
calisation is used to structure proof search in alternating phases of “don’t know”
nondeterminism corresponding to player moves, and “don’t care” nondetermin-
ism corresponding to opponent moves. The interaction between multiplicatives
of opposite polarities requires the introduction of graph structures representing
a multicut between sequent calculus derivations, or cut links between two dual
proof structures. Since the game is indeterminate, we also internalise failure in
the plays.

The locality of rewriting brought us to define a concurrent neutral game in
which plays are replaced with confluent applications of moves by the players.
Proofs correspond to winning strategies modulo some information which is only
used to interact with the other player. Our use of concurrency is dictated by
the structure of neutral graphs themselves. Each subposition in a neutral graph
is treated independently of the others, and the arcs mark dependencies between
moves operated on them. We extended this game with explicit cut moves, and
several accounts of infinity: first-order structure, exponentials, and fixed points.
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