
HAL Id: pastel-00006232
https://pastel.hal.science/pastel-00006232v1

Submitted on 6 Aug 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modélisation 3D de bâtiments : reconstruction
automatique de superstructures de toits et recalage
cinétique de toits polyédriques prenant en compte la

topologie
Mathieu Brédif

To cite this version:
Mathieu Brédif. Modélisation 3D de bâtiments : reconstruction automatique de superstructures de
toits et recalage cinétique de toits polyédriques prenant en compte la topologie. Traitement du signal
et de l’image [eess.SP]. Télécom ParisTech, 2010. Français. �NNT : �. �pastel-00006232�

https://pastel.hal.science/pastel-00006232v1
https://hal.archives-ouvertes.fr

École Doctorale
d’Informatique,

Télécommunications
et Électronique de Paris

Thèse

présentée pour obtenir le grade de docteur

de Télécom ParisTech

Spécialité : Signal et Images

Mathieu BREDIF

�

�

�

Modélisation 3D de bâtiments

Recalage cinétique à topologie variable de toits polyédriques
et

Reconstruction automatique de superstructures de toits

Soutenue le 27 mai 2010 devant le jury composé de

Isabelle Bloch Présidente
Dominique Bechmann Rapporteurs
Renaud Keriven
Pierre Alliez Examinateurs
Caroline Baillard
Didier Boldo
Henri Mâıtre Directeurs de thèse
Marc Pierrot-Deseilligny

1

Avant-propos / Foreword

Ce manuscrit s’articule autour de deux parties relativement indépendantes (les parties II et III),
intitulées respectivement Reconstruction automatique de superstructures de toits et Recalage ciné-
tique à topologie variable de toits polyédriques.

Si votre principal centre d’intérêt est la reconstruction de bâtiments, vous pouvez en première
lecture passer les détails techniques de la partie III, et en particulier les chapitres 5 et 6. Les
résultats obtenus avec l’approche proposée sont présentés dans le chapitre 7, et devraient vous
convaincre que les problèmes topologiques mentionnés dans le chapitre 4 ont été traités avec succès.

Au contraire, la partie III s’adresse aux lecteurs passionnés par la géométrie algorithmique.
Le chapitre 4 pose le contexte de l’approche proposée de recalage de bâtiment, avant que les
chapitres 5 et 6 ne plongent dans nos contributions au domaine de la géométrie algorithmique.

D’autre part, pour donner un sens aux temps de calcul relevés dans ce manuscrit, nous précisons
que tous ces temps ont été mesurés sur un unique coeur CPU Intel R© Xeon R© 5110 de fréquence
1.60GHz, muni de 2.0Go de mémoire vive. Enfin, si la thèse elle-même est rédigée en anglais, elle
est précédée d’un résumé étendu en français qui présente les idées directrices du manuscrit et leur
enchâınement.

Happy reading...

The core of this thesis falls into the two independent parts II and III, entitled respectively
Automatic Roof Superstructure Reconstruction and Topology-Aware Kinetic Fitting of Polyhedral
Roofs.

If your primary interest is building reconstruction, you may skip the inner details of part III,
namely chapters 5 and 6. The results of the proposed approach, presented in chapter 7, will
convince you that the topological issues mentionned in chapter 4 have been addressed.

By contrast, readers primarily interested in computational geometry may find relevant mate-
rials in part III. Chapter 4 provides some context about our building fitting approach, before
chapters 5 and 6 dive into the contributions to the field of computational geometry.

As a sidenote, to make the computing times mentionned in this work meaningful, the reader
should note that all timings are measured on a single Intel R© Xeon R© 5110 CPU core running at
1.60GHz, with 2.0GB of main memory. Finally, although this thesis is written in English, it is
prefixed with an extended summary in French.

Bonne lecture...

2 Avant-propos / Foreword

3

Remerciements /
Acknowledgments

Cette thèse s’est déroulée au laboratoire MATIS de l’Institut Géographique National, en colla-
boration avec le département TSI de l’école Télécom ParisTech. Je souhaite tout d’abord exprimer
toute ma gratitude à Henri Mâıtre, qui a accepté de diriger mes recherches et dont j’ai beaucoup
apprécié la précision des remarques et les critiques attentives tout au long de la thèse. Je remercie
également très sincèrement Marc Pierrot-Deseilligny, qui a encadré et codirigé cette thèse, pour de
nombreuses discussions scientifiques et toute la confiance qu’il m’a témoignée dans le cadre de ce
travail.

Je remercie par ailleurs tous les membres du jury pour l’intérêt dont ils ont fait preuve à
l’égard de ce travail. Isabelle Bloch m’a fait l’honneur de présider ce jury et m’a montré une
grande bienveillance. Je remercie très sincèrement Dominique Bechmann et Renaud Keriven, tous
deux rapporteurs de cette thèse, pour le temps qu’ils ont accepté de consacrer à la lecture de ce
manuscrit, Pierre Alliez, Caroline Baillard et Didier Boldo pour la pertinence de leurs questions et
leurs remarques positives sur mes travaux.

Prior to this thesis, I feel tremenduously lucky to have worked as a research assistant with
James Arvo and Mike Stark at UC Irvine, and later with Pat Hanrahan, Marc Levoy and Ren
Ng at Stanford University. I owe them my strong inclination for research and my fascination for
computer graphics. If I had a single teacher to thank, it would definitely be Leonidas Guibas, who
instilled me with its passion of computational geometry. My thesis would not have lead to a new
kinetic data structure without me taking his class.

Je remercie par ailleurs mes chefs de laboratoire successifs, Didier et Nicolas, pour leur confiance
indéfectible. De plus, je tiens à remercier tout particulièrement tous ceux qui ont tour à tour
partagé mon bureau : Mélanie, Arnaud, Bruno, Fadi, Hassan et enfin l’inoubliable Florent. Ils
m’ont vaillamment et gaiement supporté tout au long de ma thèse (aux sens français et anglais du
terme). Merci à Marie-Claude pour son indulgence et son extrême efficacité administrative. Merci
aussi à François de nous faire partager les bénéfices de sa connaissance des rouages de l’IGN et
pour sa capacité à résoudre immédiatement tout problème logistique ou technique.

Je tiens à remercier Grégoire et David pour la mise à disposition du formidable outil qu’est la
maquette. Les tests d’intégration de mes travaux sur la plateforme de production Bati3D n’aurait
pas pu voir le jour sans la disponibilité et les compétences de Grégoire. Je vais essayer de n’oublier
aucun des autres membres passés ou présents du MATIS qui ont, chacun à leur manière, contribué
à la bonne ambiance du laboratoire : Jean-Pascal, Bertrand, Nicolas, Isabelle, Fabien, Nicolas,
Alexandre, Antonio, Athanasios, Karim, Patrick, Lâmân, Clément, Jean-Pierre, Mélanie, Bahman,
Olivier, Frédéric, Nesrine, Adrien, Daniela, Erwann, Corina, Emilie et Lionel.

Enfin, je désire exprimer la plus profonde reconnaissance à tous les membres de ma famille et
tout particulièrement à Perrine, mon épouse, et à mes enfants Noé et Juliette qui, par leur affection,
m’ont soutenu au cours de ces années, ainsi qu’à mes amis qui ont su me distraire sans trop me
demander : “Alors, c’est pour quand cette thèse ?”.

4 Remerciements / Acknowledgments

5

Notations and Abbreviations

DSM Digital Surface Model
KDS Kinetic Data Structure
B-Rep Boundary Representation
GSD Ground Sample Distance
CSG Constructive Solid Geometry
Superstructure Small scale geometric and topologic detail of an object.

[x : y : z : w] = [~p : w] Homogeneous point coordinates
[a : b : c : d] = [~n : d] Homogeneous plane coordinates
~p
w = (xw ,

y
w ,

z
w) Cartesian point coordinates (w 6= 0) of point [x : y : z : w] = [~p : w]

~p = (x, y, z) Direction of point [~p : w]
~n = (a, b, c) Oriented plane normal vector

[~pw : 1] Normalized homogeneous point coordinates (w 6= 0)

[~n|~n| : d
|~n|] Normalized homogeneous plane coordinates (~n 6= ~0)

AT The transpose of a matrix A
~X · ~Y = ~XT ~Y The dot product of the vectors ~X and ~Y
~X × ~Y The vector product of the vectors ~X and ~Y
Aij The element of the matrix A at the ith column and jth column (starting at 1)
detA or |A| The determinant of the matrix A
comA The cofactor matrix of the matrix A (i.e. the matrix of signed minors)
arg minx∈X f(x) The global minimum of f over X, or any one of them if multiple exist
arg maxx∈X f(x) The global maximum of f over X, or any one of them if multiple exist

6 Notations and Abbreviations

7

Contents

Avant-propos / Foreword 1

Remerciements / Acknowledgments 3

Notations and Abbreviations 5

Modélisation 3D de bâtiments 19
1 Introduction . 19

1.1 Contexte . 19
1.2 Données utilisées . 20
1.3 Approche retenue . 22

2 Reconstruction automatique de superstructures de toits 22
3 Recalage cinétique à topologie variable de toits polyédriques 27

3.1 Recalage de polyèdre à topologie fixée . 27
3.2 Triédralisation . 30
3.3 Approche cinétique garantissant la simplicité du polyèdre 31

4 Résultats . 35
5 Conclusion . 35

I Introduction 37

1 Introduction 39
1.1 Context . 39
1.2 Objectives . 40
1.3 Proposed Approach . 43

2 Background and Related Work 45
2.1 Introduction . 45
2.2 Aerial Raster Data . 45

2.2.1 Multiview Aerial Imagery . 46
2.2.2 Lidar Data . 48
2.2.3 Digital Surface Models . 49

2.3 Vector Data: 3D Building Models . 49
2.3.1 Polyhedral Building Models . 49
2.3.2 Generalization . 49

2.4 Building Reconstruction . 50
2.4.1 Input Data . 50
2.4.2 Degree of User Interaction . 51
2.4.3 Strategies . 51

2.5 Proposed Approach . 52
2.5.1 Iterative Optimization . 52
2.5.2 Superstructure Reconstruction . 52

8 CONTENTS

2.5.3 Topology-aware Geometry refinement . 54

2.6 Conclusion . 54

II Automatic Roof Superstructure Reconstruction 55

3 Automatic Roof Superstructure Reconstruction 57

3.1 Introduction . 57

3.1.1 Context . 57

3.1.2 Related Work . 58

3.1.2.1 Roof Superstructure Reconstruction 58

3.1.2.2 Building Reconstruction from Satellite Imagery 59

3.1.2.3 Façade Reconstruction . 59

3.1.3 Proposed Approach . 60

3.2 3D Building Model Representation B = (R,S) . 60

3.2.1 Polyhedral Base Building R . 62

3.2.1.1 Polygon Definitions . 62

3.2.1.2 Polyhedron Definitions . 62

3.2.1.3 Polyhedral Building Modeling . 63

3.2.1.4 Polyhedron Representation . 63

3.2.1.5 Surfaces S as functions zS : πS → R, with πS ⊂ R2 64

3.2.2 Parametric Superstructures S . 65

3.2.2.1 Superstructure geometry . 67

3.2.2.2 Non-overlapping assumption . 68

3.2.2.3 Discrete set Θτ,R . 69

3.2.2.4 Continuous set Φθ,τ,R . 71

3.2.3 Discussion . 72

3.3 Energy Formulation . 74

3.3.1 Minimum Description Length . 74

3.3.2 Model Complexity L(B) . 74

3.3.2.1 Roof Description Length L(R) . 75

3.3.2.2 Superstructure Description Length L(s|R) 75

3.3.3 Error Term D(B) . 75

3.3.3.1 Pixel independence assumption . 75

3.3.3.2 Additive Noise Model . 76

3.3.3.3 Error Term Derivation . 76

3.3.4 Fixed Roof Additive Reformulation . 76

3.4 Optimization . 77

3.4.1 Generation of Superstructure Hypotheses 77

3.4.1.1 Estimation of ~φmax: Lp-Norm . 78

3.4.1.2 Estimation of ~φmax: L2-Norm . 79

3.4.2 Selection of Disjoint Superstructures . 79

3.4.3 Local Maxima Filtering . 80

3.4.3.1 Problem Size Reduction . 81

3.4.3.2 Filtering Prevents Multiple Detections 81

3.4.3.3 Implementation . 81

3.5 Results . 83

3.6 Discussion . 86

3.6.1 Library Extensibility . 86

3.6.2 Future work . 87

3.7 Conclusion . 88

CONTENTS 9

III Topology-Aware Kinetic Fitting of Polyhedral Roofs 89

4 Fixed Topology 3D Building Model Fitting 91
4.1 Introduction . 92

4.1.1 Related Work . 92
4.1.2 Overall Topology-aware Fitting Approach 93
4.1.3 Outline . 94

4.2 Oriented Projective Geometry . 95
4.2.1 Primitives . 95
4.2.2 Constructions . 96
4.2.3 Measures . 98
4.2.4 Predicates . 99

4.3 Polyhedra and Plane Arrangements . 100
4.3.1 Plane Arrangements . 100
4.3.2 Polyhedron Duality . 101

4.3.2.1 Duality . 101
4.3.3 Arrangement Coloring . 103
4.3.4 Polyhedron Properties . 103

4.3.4.1 Topological only properties . 103
4.3.4.2 Geometric and Topological properties 104

4.4 Dual Geometry Refinement . 105
4.4.1 Using the Dual Polyhedron . 105
4.4.2 Minimized Energy . 106
4.4.3 Fitting Algorithm . 106

4.5 Results . 108
4.6 Extensions . 108

4.6.1 Numerical Scheme . 108
4.6.2 Selective Constraint Relaxation . 110
4.6.3 Alternative Input Data and Energies . 110

4.7 Conclusion . 111

5 Polyhedron Trihedralization 113
5.1 Introduction . 114

5.1.1 Polyhedron Triangulation . 115
5.1.1.1 Independent Planar Facet Triangulations 115
5.1.1.2 Non-planar Facet Triangulation 115

5.1.2 Polyhedron Trihedralization . 116
5.2 Winding Number-based Trihedralization . 117
5.3 Plane Arrangement Coloring-based Trihedralization 119

5.3.1 Decomposability Assumption . 120
5.3.1.1 Global and Local Arrangements 120
5.3.1.2 Vertex Zones . 120
5.3.1.3 Facet Supports . 121
5.3.1.4 Decomposable Trihedralization . 121

5.3.2 Arrangement Coloring-based Decomposable Trihedralization 122
5.3.2.1 Coloring the Non-Zonal Cells . 122
5.3.2.2 Coloring the Zonal Cells . 122

5.3.3 Locality Assumption . 124
5.3.4 Discussion . 124

5.4 Local Vertex Trihedralization . 125
5.4.1 Abstract Triangulations . 125
5.4.2 Local Vertex Trihedralizations as Abstract Triangulations 126

5.4.2.1 Minimal Topological Complexity 128
5.4.2.2 Geometric Requirements . 130

5.4.3 Handling Degeneracies . 133

10 CONTENTS

5.4.3.1 Well-posed Local Vertex Trihedralization Problems 133
5.4.3.2 Polyhedral Representation Regularization 133
5.4.3.3 Degenerate Trihedralizations because of the Topology only 133
5.4.3.4 Degenerate Trihedralization Problem Definitions 135
5.4.3.5 Regular Representation of the Facets 136

5.4.4 Discussion . 137
5.5 Ear-cutting-based Local Vertex Trihedralization . 137

5.5.1 Ear-cutting Abstract Triangulation . 138
5.5.2 Ear-cutting Triangulation of a Simple Polygon 138
5.5.3 Ear-cutting Local Vertex Trihedralization 140

5.5.3.1 Ear-cutting Trihedralization Algorithm 140
5.5.3.2 Discussion . 141

5.6 Local Vertex Trihedralizations and Straight Skeletons 142
5.6.1 Unweighted Straight Skeleton . 142
5.6.2 Weighted Straight Skeleton . 145
5.6.3 Reducing Weighted Straight Skeletons to Vertex Trihedralizations 146
5.6.4 Reducing Vertex Trihedralizations to Weighted Straight Skeletons 146

5.6.4.1 Saddle Vertices . 147
5.6.4.2 z-minima Property . 148

5.6.5 Conclusion . 148
5.7 Discussion . 148

5.7.1 Unicity . 148
5.7.2 Existence . 149

5.8 Conclusion . 151

6 A Kinetic Framework Guaranteeing Simple Facets 153
6.1 Introduction . 154

6.1.1 Reduction to Plane Arrangement Coloring 154
6.1.2 Proposed Approach . 155

6.2 Kinetic Data Structures . 156
6.2.1 Introduction . 156
6.2.2 Kinetic Algorithm Examples . 156
6.2.3 Definitions . 157
6.2.4 Arbitrary Precision Arithmetics . 159

6.3 Kinetic Polyhedron with Simple Facets . 159
6.3.1 Polyhedron Interpolation . 160
6.3.2 Continuous Evolution . 161
6.3.3 Non-canonical Data Structure . 162
6.3.4 Algorithm Overview . 162
6.3.5 Vertex Trihedralization . 163
6.3.6 Facet Triangulations . 164
6.3.7 Orientation Certificate Functions . 164
6.3.8 Orientation Event Processing . 167

6.3.8.1 Orientation Event Analysis . 167
6.3.8.2 Processing Analyzed Events . 168

6.3.9 Discussion . 169
6.4 Topology-Aware Fitting of a 3D Building Model 169
6.5 Discussion . 171

6.5.1 Complexity . 171
6.5.2 Method Invariance by an Invertible Affine Transform 172
6.5.3 Normalization Dependance . 173

6.6 Perspectives . 175
6.6.1 Diverging Vertices . 175

6.6.1.1 Boundedness Certificate . 176

CONTENTS 11

6.6.1.2 Boundedness Event Processing . 176
6.6.1.3 Complexity Analysis . 176

6.6.2 Dealing with Global Self Intersections . 176
6.6.3 Alternative Applications . 179

6.6.3.1 Planar Primitive-based Editing . 179
6.6.3.2 Weighted 3D Straight Skeleton and Offset Polyhedron 180
6.6.3.3 Polyhedron Generalization . 180
6.6.3.4 Polyhedron Simplification . 180

6.7 Conclusion . 181

IV Evaluation 183

7 Results of the 3D Building Model Refinement System 185
7.1 Input Data, Test Area . 185
7.2 Datasets . 190

7.2.1 Reference Dataset . 190
7.2.2 Results of the Proposed System . 191

7.3 Roof Fitting Evaluation . 192
7.3.1 Quantitative Evaluation of Registered Roof Line Segments 192
7.3.2 Typology of False Positive Errors . 193
7.3.3 Typology of True Negative Errors . 196

7.4 Superstructure Reconstruction Evaluation . 197
7.4.1 Dormer Evaluation . 197

7.4.1.1 Quantitative Evaluation of Registered Dormers 197
7.4.1.2 Typology of False Positive Errors 198
7.4.1.3 Typology of True Negative Errors 199

7.4.2 Chimney Evaluation . 199
7.5 Conclusion . 200

8 Conclusion 201
8.1 Main Contributions . 201
8.2 Main Limitations . 202
8.3 Possible Extensions . 203
8.4 Conclusion . 204

V Appendices 207

A L2 Estimation of ~φmax 209
A.1 Constant Time Case . 210
A.2 θ-varying Error Fields . 212
A.3 ~φ-varying Supports . 212
A.4 Non-rectangular Supports . 213
A.5 Conclusion . 214

B Superstructure Detection and Reconstruction preventing an Exhaustive Search215
B.1 Coarse detection . 215
B.2 Model refinement . 216

B.2.1 Successive improvements . 216
B.2.2 Stochastic diffusion . 218

B.3 Results . 218
B.3.1 Method Comparison . 222
B.3.2 Computation time . 222

B.4 Conclusion . 222

12 CONTENTS

C Maximum Weighted Clique 225
C.1 Graph and Clique Definitions . 225
C.2 Maximum Weighted Clique Problem . 226
C.3 Maximum Weighted Clique Algorithms . 226

C.3.1 Exhaustive Clique Enumeration . 226
C.3.2 Branch and Bound . 227
C.3.3 Branch and Bound with Exclusion . 229
C.3.4 Cliquer . 230
C.3.5 Efficiency upperbound . 231

C.4 Conclusion . 234

D Method Invariance by an Invertible Affine Transform 235
D.1 Introduction . 235
D.2 Problem Transformation . 235
D.3 Above Certificate Function . 236
D.4 Orientation Certificate Function . 237
D.5 Conclusion . 239

Bibliography 246

13

List of Figures

1 Bâtiments : Niveaux de détails . 20
2 MNS calculé à partir des images de la figure 3 . 21
3 Imagerie aérienne multivue . 21
4 Contexte de la thèse : recalage de pan de toits et reconstruction de superstructures 23
5 Vue globale de l’approche retenue. 24
6 Modèles paramétriques de superstructures . 25
7 Représentation hybride d’un bâtiment par une base polyédrique générique munie de

superstructures paramétriques contraintes. L’ensemble des données utilisées pour la
réestimation d’une face modélisant un pan principal de toit correspond au support
2D de cette face restreint par les supports 2D des superstructures détectées. 25

8 Dans le sens de la lecture : un modèle de bâtiment sans superstructure, ce modèle
muni de superstructures saisies manuellement, ce modèle muni de superstructures
reconstruites automatiquement et enfin une version texturée par les images aériennes
du modèle précédent. 26

9 Recalage de bâtiment à topologie variable (bâtiment filaire projeté sur une orthopho-
tographie). 27

10 Recalage de bâtiment à topologie variable (visualisation 3D de la surface MNS et
du bâtiment). 28

11 L’optimisation non contrainte d’un polyèdre demande (à gauche) soit une trian-
gulation préalable à une optimisation des coordonnées des sommets [HDD+93], (à
droite) soit une triédralisation préalable à une optimisation des équations de plans
supportant les faces polyédriques. 28

12 Les superstructures détectées permettent de réduire les emprises des pans de toit
principaux afin de ne les réestimer que sur la donnée ne correspondant pas à des
superstructures détectées. 29

13 Le problème de triédralisation, dual topologique du problème de triangulation. . . 30
14 Evolution cinétique itérative d’un bâtiment. 31
15 Pour prouver que cette face polygonale reste non auto-intersectante, il suffit d’ex-

hiber une triangulation de son enveloppe convexe qui contient toutes ses arêtes. Le
mouvement illustré du sommet rouge menant à une intersection provoquera l’annu-
lation de l’aire du triangle jaune. 32

16 Les 3 types d’évenements nécessitant une mise à jour de la preuve de non auto-
intersection. 33

17 Zone test sur Amiens, France : (haut) MNS et (bas) modèles 3D de bâtiments filaires
sur un fond orthophotographique. 34

18 (haut) Modèle 3D de ville initial et (bas) modèle final (recalage+superstructures). 35
19 Recalage sur une zone d’1km2 dans le cadre du projet Terra Numerica du pôle de

compétitivité CapDigital. 36

1.1 CityGML levels of details. 40
1.2 Context of the thesis : roof fitting and superstructure reconstruction 41
1.3 A topology-aware fitting may be required . 42
1.4 The kinetic framework uses a continuous evolution 43

14 LIST OF FIGURES

2.1 Multiview Aerial Imagery . 46
2.2 Convergent aerial image crops . 47
2.3 Correlation-based DSM . 48
2.4 Building model generalization . 50
2.5 Overview of the proposed approach. 53

3.1 Input lidar DSM and buildings with roof superstructures reconstructed in [MV99]. 58
3.2 3D Building model representation . 61
3.3 Roof overheads and closing of the polyhedral building 65
3.4 4 simple superstructure types . 66
3.5 Rectangular support parameterization . 67
3.6 Superstructure building inclusion property and roof facet orientation 70
3.7 Dormer window parameterization . 72
3.8 Overlapping roof superstructures . 73
3.9 Multiple detections without local maxima filtering 81
3.10 Single detection with local maxima filtering . 82
3.11 A DSM (left) and its reconstruction with a 3D-triangulation that represents the

DSM (right). 84
3.12 The input model (left), the reconstructed building (center) and its textured version

(right) where each polygon is textured by the most front facing aerial image. . . . 84
3.13 The input model, the ground truth reconstructed manually, the reconstructed build-

ing and its textured version. 84
3.14 Evaluation of the classification of the DSM pixels as pixels of the superstructure

supports. 85
3.15 An image with 25cm resolution, its shaded DSM (same resolution), and the recon-

structed building with a DSM triangulation. 86

4.1 Overview of a single topology-aware fitting step. 94
4.2 Plücker coordinates . 95
4.3 Corollary 4.1 notations . 98
4.4 Primal and dual polyhedral geometric representation 101
4.5 Three 6-sided simple polyhedra with vertices A,B,C,D and E. 102
4.6 Three 5-sided polyhedra with facets A,B,C,D and E. 102
4.7 Triangulated Vs Trihedral . 105
4.8 Iterative roof plane fitting using detected superstructure outliers 109

5.1 A set of almost coplanar facets are merged into a single facet. 114
5.2 A set of vertices connected by small edges is collapsed to a single vertex. 114
5.3 Non-planar 3D polygon triangulation. 116
5.4 Winding numbers in 2D . 118
5.5 Winding number-based trihedralization . 118
5.6 2D planar sections of two distinct local arrangements with compatibly colored un-

bounded cells and uncolored bounded cells . 123
5.7 (a) A trihedralization problem of a polyhedron with an over-constrained vertex. (b)

and (c) are two possible trihedralizations. (d) shows the restricted facet support of
the bottom facet, with a rectangular hole cut out by the tetrahedral vertex zone (e). 123

5.8 Counting the abstract triangulations . 127
5.9 Trihedralization, primal and dual views . 127
5.10 Trihedralization using a disconnected facet . 129
5.11 Trihedralization using a new auxiliary plane . 129
5.12 Topological view of the trihedralization . 130
5.13 Trihedralization is ambiguous with the 1-ring of supporting planes only 131
5.14 Coplanar segments intersection test . 132
5.15 Degenerate trihedralization due to its topological setup 134
5.16 Facet regularization, primal and dual view . 136

LIST OF FIGURES 15

5.17 Abstract ear cutting . 138
5.18 (Primal) ear geometric requirements . 139
5.19 Medial axis, straight skeleton and offset polygons 143
5.20 Straight skeleton topological events, primal and dual view 143
5.21 An unstable degenerate straight skeleton problem 144
5.22 Weighted straight skeletons and weighted offset polygons 145
5.23 The straight skeleton, as a trihedralization . 147
5.24 Trihedralizations and the z-minima property . 147
5.25 Trihedralization ambiguity . 149
5.26 Ill-posed trihedralization problem with no valid solution 150
5.27 Trihedralizations may not be local . 151

6.1 Updating supporting planes of a trihedral polyhedron may require topological up-
dates to prevent self-intersecting facets . 154

6.2 Non desirable volumetric thresholdings results . 155
6.3 Kinetic sort . 157
6.4 The facets of those two simple polyhedra are supported by the same oriented planes. 162
6.5 Soft and hard triangulation edges . 165
6.6 Special case without any hard edge . 165
6.7 Example evolution of a vertex colliding with the opposite soft edge 167
6.8 Example evolution of a collapsing hard edge . 167
6.9 Example evolution of a vertex colliding with the opposite hard edge 167
6.10 Simple building fitting . 170
6.11 T-shaped building fitting . 170
6.12 Building fitting result . 171
6.13 Building fitting may not create a missing facet . 171
6.14 Building fitting may discard unneeded facets . 171
6.15 A More complex building fitting example . 172
6.16 Dependance on plane normalization . 174
6.17 Genus increasing event . 177
6.18 Connected component merging event . 178

7.1 Downtown area: Orthophotography and shaded DSM (Annecy, France) 186
7.2 Small triangular facets and reconstructions from [DT06] 187
7.3 Straight Skeleton-based Reconstruction . 188
7.4 Straight Skeleton-based initial 3D building models (shaded and textured 3D view) 189
7.5 Fitted 3D building models with superstructures (shaded and textured 3D view) . . 190
7.6 Ground Truth (3D view) . 191
7.7 Accuracy evaluation of roof lines . 194
7.8 Operator bias . 195
7.9 Multiple edge detection due to an unsimplified elongated facet. Rotating this facet

around one of its long edges to merge it with the neighboring facet is a possibility
to handle this overdetection. 196

7.10 Accuracy evaluation of dormers . 198
7.11 Accuracy evaluation of chimneys . 200

A.1 The minimal support . 213

B.1 Approach overview . 217
B.2 The score evolution as a function of the iteration number associated with the two

rectangles . 219
B.3 The score evolution as a function of the iteration number associated with the coarse

rectangle 3 . 219
B.4 The detected and reconstructed superstructures using the exhaustive search-based

method . 219

16 LIST OF FIGURES

B.5 Reconstructed chimneys and glass roofs . 220
B.6 Reconstructed dormer window . 220
B.7 Detecting and reconstructing superstructures associated with a typical building roof 221

17

List of Tables

3.1 The geometry of each superstructure type. 68
3.2 Indicative minimum and maximum dimensions used for each superstructure type. . 71
3.3 The set Φθ,τ,R used for each superstructure type τ is the intersection of all the above

mentionned constraints. 73
3.4 Evaluation of the detection of the L2 detection on figures 3.13 and 3.14: the false

alarm rate is of 11% and the detection rate is of 85%. 85
3.5 Sample superstructure reconstruction computing times 86

6.1 Computing times and number of events processed and trihedralizations, measured
on a single Intel Xeon 1.60GHz CPU core. 169

7.1 Classification of overdetected roof line segments. 193
7.2 Classification of underdetected roof line segments. 197
7.3 Confusion matrix for superstructures. 197
7.4 Classification of overdetected dormers. 198
7.5 Classification of underdetected dormer windows. 199

B.1 Computational time associated with the building shown in Figure B.7. 220

C.1 Typical graph sizes encountered in the superstructure selection problem of sec-
tion 3.4.2, when all candidate superstructures are considered (top row) and when
only local maxima have been kept (bottom row). 226

18 LIST OF TABLES

19

Modélisation 3D de bâtiments

Sommaire
1 Introduction . 19

1.1 Contexte . 19

1.2 Données utilisées . 20

1.3 Approche retenue . 22

2 Reconstruction automatique de superstructures de toits 22

3 Recalage cinétique à topologie variable de toits polyédriques 27

3.1 Recalage de polyèdre à topologie fixée 27

3.2 Triédralisation . 30

3.3 Approche cinétique garantissant la simplicité du polyèdre 31

4 Résultats . 35

5 Conclusion . 35

1 Introduction

1.1 Contexte

La modélisation numérique d’une ville en 3D nécessite la création d’une base de données d’objets
urbains décrits en 3D (la surface du sol, ses bâtiments, ses rues, sa végétation...). Ces modèles de
ville sont utilisés dans le cadre d’études d’urbanisme ou architecturales, pour le tourisme, au sein
de simulations physiques (pollution sonore, flux thermiques, transmission radio pour le placement
optimal d’antenne de téléphonie mobile), pour la gestion des catastrophes naturelles telles que les
inondations, pour la défense et la sécurité civile, pour l’aide à la navigation routière ou pédestre,
ou encore pour la robotique.

Cette thèse porte plus particulièrement sur le processus de modélisation des bâtiments. En
fonction de la donnée disponible pour la création d’un modèle de ville et de l’application visée, le
niveau de détail (accessible ou requis) de description géométrique, radiométrique et sémantique de
la ville varie grandement. Les bâtiments peuvent ainsi n’être décrits à une précision métrique qu’à
l’aide d’une emprise au sol polygonale et d’une altitude moyenne, ou peuvent à l’inverse représenter
à une précision centimétrique chacune des façades et chacun des pans de toit, ainsi que leurs détails
géométriques, tels que les fenêtres, les balcons, les cheminées ou les chiens assis. Lorsqu’un modèle
de ville est utilisé dans des applications de réalité virtuelle ou augmentée, l’apparence radiométrique
de ses objets doit aussi être modélisée à l’aide, par exemple, de textures issues des images aériennes
ou terrestres utilisées pour la création du modèle de ville. Enfin, certaines applications nécessitent,
au delà d’une simple description géométrique du modèle, d’informations sémantiques telles que la
donnée que telle partie du modèle correspond à un mur, une porte, une fenêtre, un pan de toit ou
à une cheminée.

Pour créer ou maintenir un modèle de ville, plusieurs types de données peuvent être utilisés. Il
s’agit principalement d’imagerie terrestre, aérienne ou satellitaire, et de télémétrie laser (LIDAR)

20 Modélisation 3D de bâtiments

(a) (b) (c)

Figure 1 – Niveaux de détails CityGML pour les bâtiments : 3 (a), 2 (b) et 1 (c).

terrestre ou aérienne. Le niveau de détail accessible pour la modélisation d’une ville dépend direc-
tement de la précision et du type de la donnée utilisée et du temps alloué aux interactions humaines
de saisie ou de retouche.

CityGML [KGP05] est un modèle de données ouvert pour l’échange et l’archivage de modèles
3D de villes. Il définit 5 niveaux de détail (figure. 1) pour la description d’un bâtiment :

Niveau 0 Les bâtiments ne sont pas décrits.

Niveau 1 Les bâtiments ont des toits plats et des façades à angles droits.

Niveau 2 Les façades et les faces de toits sont décrits avec une précision métrique.

Niveau 3 Les superstructures de toits et de façades telles que les portes, les fenêtres, les balcons,
les cheminées, les chiens assis et les verrières sont décrites. La précision géométrique des
éléments décrits est centimétrique.

Niveau 4 Au delà d’une description topologique et géométrique plus précise, l’intérieur des bâti-
ments est aussi modélisé.

Un des objectifs de l’Institut Géographique National (IGN) est la production et la mise à jour
de modèles de ville 3D. Sur cet objectif, ses activités de recherche visent à augmenter la précision
et à réduire les coûts de production et de mise à jour de ces bases de données. Les processus de
production de bases de données équivalentes aux niveaux de détail 0 (BD-Alti) et 1 (BD-Topo) sont
mâıtrisés à l’IGN et ces bases de données sont disponibles sur toute la France. Le produit Bati3D,
correspondant au niveau de détail 2, vient d’être industrialisé suite aux travaux de [Tai05, DT06].

L’objectif de cette thèse est d’accrôıtre la précision géométrique, topologique et sémantique des
modèles de bâtiments produits dans un contexte tout-automatique pour atteindre une description
des toits équivalente à un niveau de détail 3. De plus nous nous plaçons dans le cadre opérationnel
de la mise à jour d’une base de données préexistante à améliorer au vu de nouvelles données plus
récentes et/ou plus précises. Dans ce cadre, pour conserver la cohérence de la base de données
au cours de cette mise à jour auprès des utilisateurs qui l’exploitent, les bâtiments sont traités
individuellement afin de garantir un appariement simple entre l’ancienne et la nouvelle base.

1.2 Données utilisées

Cette thèse suppose qu’un modèle type Bati3D (niveau de détail 2) est préexistant et cherche à
le préciser et à le compléter grâce aux informations fournies par un Modèle Numérique de Surface
(MNS, figure 2) d’assez grande précision (10 cm par pixel au sol). Un MNS est une image de hauteur
brute décrivant une surface sans aucune sémantisation (i.e. sans connaissance des objets qu’il
représente). Un MNS de cette précision est typiquement produit grâce à des images aériennes ou à
un LIDAR aérien. Le LIDAR procure un nuage de point 3D par mesure du temps de parcours aller-
retour d’une impulsion lumineuse entre l’avion et la surface de la ville qui est ensuite rééchantillonné

1. Introduction 21

Figure 2 – MNS calculé à partir des images de la figure 3. (à gauche) vue directe de l’image de
hauteur (sombre=bas, clair=élevé). (à droite) vue ombrée, souvent plus lisible, de la même surface
utilisant un algorithme d’occlusion ambiente.

Figure 3 – Imagerie aérienne multivue : Bâtiment vu depuis 12 points de vue aériens différents
(Ces imagettes 1186x880 sont extraites d’images aériennes 13824x7680 pixels).

22 Modélisation 3D de bâtiments

sur la grille régulière d’un MNS. Les MNS produits par imagerie aérienne (figure 3) utilisent le
principe photogrammétrique de reconstitution de la profondeur par l’analyse de la déformation due
au relief entre deux images ou plus de la même zone vue de points de vue différents.

1.3 Approche retenue

L’amélioration de la modélisation des bâtiments, qui est le but global de cette thèse, peut se
diviser en deux sous-objectifs (fig 4) :

1. Les toits représentés dans le modèle initial peuvent être replacés plus précisément sur la
donnée de mise à jour, c’est ce que nous nommons le recalage des pans de toit principaux.

2. Les objets présents sur les toits tels que les cheminées, chiens assis ou autres superstructures
ne sont généralement pas modélisés, il va donc falloir les détecter et les ajouter au modèle 3D
décrivant le bâtiment, c’est ce que nous nommons la reconstruction des superstructures.

Dans le contexte tout automatique de cette thèse, il n’a pas été réaliste d’attaquer simultané-
ment les problématiques de recalage et de reconstruction des superstructures. L’approche proposée
se base donc sur une optimisation alternée de ces deux sous-objectifs en considérant l’autre sous-
objectif fixé (fig. 5). En effet, ces sous-objectifs sont fortement interdépendants : un meilleur recalage
des pans de toit principaux procure une meilleure modélisation géométrique et facilite donc l’ex-
traction des superstructures par inspection de l’erreur verticale entre le modèle recalé et le MNS.
Inversement, les superstructures biaisent l’estimation de la géométrie des pans de toit principaux.
La détection des superstructures permet de ne pas prendre en compte ces données perturbatrices
dans l’optimisation de la géométrie des pans de toit principaux. La discussion de cette interdé-
pendance et la proposition de cette optimisation alternée est une des principales contributions
thématiques de cette thèse.

2 Reconstruction automatique de superstructures de toits

La reconstruction de superstructures de toit (cheminées, chiens assis...) est un sujet de recherche
extrêmement récent pour plusieurs raisons. Jusqu’à très récemment, la taille réduite de ces objets
rend leur reconstruction et même leur détection ambigüe par manque de données assez précises. De
plus leur diversité et leur variabilité constitue un frein certain à leur reconstruction automatique.
Enfin la maturation récente des approches visant à reconstruire les bâtiments eux-mêmes semblait
préalable à l’étude de la reconstruction de ces superstructures.

La taille de ces superstructures est réduite par rapport à la précision des données aériennes uti-
lisées pour la reconstruction de bâtiment, ce qui conduisit [MV99] à ne reconstruire que les chiens
assis de taille conséquente sur des données LIDAR et [LDZPD10] à saisir manuellement la plani-
métrie des superstructures, n’optimisant automatiquement que leur altitude. Une des principales
difficultés limitant leur reconstruction est leur taille et la modélisation imparfaite des pans de toit
principaux. Pour contrer cette modélisation imparfaite, [Nan06] adopte une approche novatrice en
extrayant des cheminées indépendamment des pans de toit principaux par une approche basée sur
une segmentation hiérarchique d’images aériennes suivie d’une extraction de cheminées sur des cri-
tères géométriques et radiométriques. Il est à noter que la plupart des recherches en reconstruction
de bâtiment considèrent les superstructures comme du bruit sans chercher à comprendre exacte-
ment la structure de ces objets. Une de nos contributions est justement d’extraire explicitement
les superstructures afin de mieux reconstruire les pans de toit principaux.

Le problème posé dans le chapitre 3 consiste à détecter et à reconstruire automatiquement un
nombre inconnu de superstructures de toit étant donné un MNS et un modèle 3D de bâtiment
considéré comme parfait en géométrie au niveau des pans de toit principaux. A cette fin, nous
proposons une représentation hybride des bâtiments entre un bâtiment polyédrique et des super-
structures paramétriques (figure 6). L’intérêt applicatif de cette représentation est qu’elle apporte

2. Reconstruction automatique de superstructures de toits 23

(a) Bâtiment approché initial + (b) MNS

⇓

(c) Bâtiment recalé final + (d) Superstructures reconstruites

Figure 4 – Contexte de la thèse : à partir d’un modèle de bâtiment approché (a) et d’un MNS
décrivant ce bâtiment (b : vue ombrée), il s’agit de recaler les pans de toit (c) et de reconstruire
ses superstructures (d).

24 Modélisation 3D de bâtiments

Chapitre 6
Mise à jour cinétique

de la géométrie garantissant
des facettes simples

Bâtiment polyédrique recalé
sans superstructures

Chapitre 3
Reconstruction des superstructures

Chapitre 4
Itération ?

Bâtiment polyédrique final
(recalé, avec superstructures)

Bâtiment polyédrique initial
sans superstructures

Modèle Numérique
de surface

Chapitre 4
Estimation de la géométrie

des pans de toits

Chapter 5
Triédralisation des sommets

Partie III

Partie II

Bibliothèque de super-
structures paramétriques

Bâtiment polyédrique recalé
avec superstructures

Chapitre 4
Itération ?

Figure 5 – Vue globale de l’approche retenue.

2. Reconstruction automatique de superstructures de toits 25

y1

y0 x0

x1

h

y1

y0 x0

x1

h

h

y1

y0
x0

x1

y1

y0
x0

x1

h0

h1

(a) (b) (c) (d)

Figure 6 – Modèles paramétriques de superstructures : (a) V erriere, (b) Terrasse, (c) Cheminee
et (d) ChienAssis.

de la sémantique : les faces du modèle de bâtiment final sont alors groupées de façon sémantique-
ment homogène en façades, pans de toit, cheminées etc. Cette représentation hybride procure deux
niveaux de détail : avec ou sans superstructure.

r0

r1

r2s0

s1

s2

πr0 \ πS

πr2 \ πS

πr1 \ πS

s3

s4

r0

r1

r2

Modèle 3D sans superstructures

Modèle 3D avec superstructures

Supports restreints des pans de toit principaux

Figure 7 – Représentation hybride d’un bâtiment par une base polyédrique générique munie de
superstructures paramétriques contraintes. L’ensemble des données utilisées pour la réestimation
d’une face modélisant un pan principal de toit correspond au support 2D de cette face restreint
par les supports 2D des superstructures détectées.

Nous définissons la robustesse d’un algorithme comme sa capacité à extraire une information
plausible et vraisemblable sur tout type de donnée, quitte à renvoyer des résultats trop simplifiés
ou normalisés. Cette notion de robustesse est souvent opposée à la généricité d’un algorithme
permettant de retourner des résultats plus complexes, plus proches de la donnée analysée, en
contrepartie d’une vraisemblance réduite. Pour le type de données en entrée visé, il s’avère que
les pans de toit principaux bénéficient d’observations abondantes, alors que les zones de MNS
décrivant les superstructures aparaissent bruitées et relativement peu étendues. La modélisation
hybride proposée présente donc un bon compromis entre généricité pour la description du bâtiment
principal et robustesse au niveau des superstructures.

L’ensemble des meilleures superstructures est discriminé suivant une formulation énergétique
de type MDL (Minimum Description Length, [Ris78]), qui permet naturellement d’exprimer le
compromis entre mâıtrise de la complexité de la solution et attache aux données. Le terme de
complexité est constant par type de superstructure et l’attache aux données correspond à une
norme Lp sur l’erreur verticale entre le MNS et le modèle reconstruit. L’annexe A développe une

26 Modélisation 3D de bâtiments

spécialisation de la méthode d’optimisation dans le cas de la norme L2.

La reconstruction des superstructures se déroule schématiquement en trois étapes :

1. Un balayage exhaustif de toutes les superstructures plausibles optimise les paramètres verti-
caux de description de la structure pour chaque type de superstructure recherchée, et chaque
jeu quantifié plausible de paramètres horizontaux.

2. Pour réduire la taille du problème, on filtre les superstructures candidates en ne gardant que
les superstructures qui ont un score localement maximum.

3. On se retrouve alors confronté à un problème d’optimisation combinatoire : la sélection de
superstructures disjointes, qui se réduit à un problème de clique maximale pondérée.

En pratique, les paramètres verticaux (hauteurs) des superstructures étant à emprise constante
sur le MNS, ils peuvent être optimisés de façon continue. Les paramètres horizontaux, eux, (trans-
lations, orientation, largeur, longueur) sont discrétisés, menant à une optimisation combinatoire.
De plus, afin de palier les problèmes de sur-détection, on fait la supposition que les superstructures
sont disjointes en planimétrie : elles ne se chevauchent pas. Cette modélisation ne permet pas de
modéliser des superstructures non disjointes. De plus, il est à noter que la classification entre pans
de toit et superstructures peut-être ambigüe, principalement pour les grands chiens assis. Enfin, la
quantification des paramètres horizontaux peut s’avérer une limite de cette représentation. C’est
pourquoi une approche stochastique ne quantifiant pas ces paramètres a été explorée et développée
dans l’annexe B.

Figure 8 – Dans le sens de la lecture : un modèle de bâtiment sans superstructure, ce modèle
muni de superstructures saisies manuellement, ce modèle muni de superstructures reconstruites
automatiquement et enfin une version texturée par les images aériennes du modèle précédent.

L’approche proposée à l’atout de présenter une bibliothèque de superstructures extensible et
l’avantage opérationnel de s’effectuer de façon totalement automatique. De plus la modélisation
hybride retenue introduit de la sémantique et permet, outre les applications de visualisation pour
lesquelles la méthode proposée semble tout à fait adaptée, de répondre à des problématiques de
comptage d’objet : calcul du nombre de chiens assis, souvent mal isolés, dans des contextes de
prospection énergétique par exemple. Le point faible de l’approche proposée est sa sensibilité aux

3. Recalage cinétique à topologie variable de toits polyédriques 27

artefacts du MNS, par exemple au pied de discontinuités altimétriques et à la difficulté de recons-
truire des superstructures basses telles que des verrières qui ont un niveau de signal comparable
au bruit de la donnée en entrée.

Les principales pistes d’extension de cette méthode comprennent l’étude de données alternatives
au MNS tel que le LIDAR ou un retour aux images brutes (études des ombres dans la suite de
[Nan06], de la radiométrie, reconstruction multivue...) et l’introduction dans l’énergie à minimiser
d’un a priori de régularisation tel que l’alignement des cheminées ou la similarité des dimensions
des chiens assis. La complexification induite par ce changement d’énergie demanderait une modi-
fication de la méthode d’optimisation. Une approche stochastique de type RJ-MCMC [LDZPD10]
semble alors indiquée et permettrait de plus de déquantifier l’ensemble des paramètres décrivant les
superstructures. Enfin, la phase actuelle d’énumération des superstructures candidates se prêterait
bien à un portage sur carte graphique (GPGPU) afin de réduire considérablement les temps de
calcul à quantification égale, ou d’améliorer la précision de la reconstruction à temps de calcul
équivalent.

3 Recalage cinétique à topologie variable de toits polyédriques

3.1 Recalage de polyèdre à topologie fixée

Le recalage d’un bâtiment sur un MNS consiste en une optimisation d’un polyèdre modélisant
ce bâtiment sur ce MNS. Par souci de vraissemblance, nous imposons la non auto-intersection de
la surface polyédrique du modèle recalé décrivant le bâtiment. De plus, pour simplifier le problème
et par cohérence avec la nature 2.5D du MNS, le modèle polyédrique recherché ne comporte pas
de surplomb. Ceci simplifie la contrainte de non auto-intersection de la surface globale en une
contrainte de non auto-intersection de chacune des faces polyédriques en empêchant les intersections
globales de repliement.

Figure 9 – Recalage de bâtiment à topologie variable (bâtiment filaire projeté sur une orthopho-
tographie).

La problématique d’optimisation d’un maillage sur une observation a suscité de nombreuses
recherches. [HDD+93] propose d’optimiser une surface triangulée en modifiant les coordonnées de
ses sommets. Appliquée à notre contexte polyédrique, cette approche nécessite une triangulation
arbitraire préalable des faces du polyèdre initial afin de se ramener à une surface triangulée où
les sommets peuvent bouger librement. En effet, une surface triangulée n’impose plus aucune
contrainte géométrique de coplanarité sur les sommets délimitant chaque face. Cette approche est
efficace mais elle présente deux principaux inconvénients dans notre contexte. Premièrement, cette
triangulation arbitraire des faces fend les façades et les pans de toit de grandes diagonales sans
réalité physique ou sémantique. Deuxièmement, cette méthode n’apporte aucune garantie de non
auto-intersection de la surface triangulée recalée. Plus récemment, [CSAD04] adopte l’approche
duale en n’optimisant non plus la position des sommets mais les équations des plans supportant

28 Modélisation 3D de bâtiments

Figure 10 – Recalage de bâtiment à topologie variable (visualisation 3D de la surface MNS et du
bâtiment).

les faces des polyèdres. Cette approche semble plus appropriée à notre contexte où tant la donnée
MNS que la sémantique des modèles portent plus sur ses faces que sur ses sommets. Là encore la
surface optimisée ne présente aucune garantie de non auto-intersection. De plus cette méthode ne
maintient le polyèdre en cours d’optimisation qu’implicitement à travers une partition de la donnée
de recalage. Ainsi, une région correctement détectée peut-être scindée en de multiples faces durant
la phase finale d’export polyédrique.

5

6

4

6

3

4
4

4
4

3
3

3

3 3

4

43

3
33

3
3

3

4

4
6

3

4
7

5

6

5

5 5

5

5

6

5

5

4

5

5

6
5

4

5

4

6

4

Figure 11 – L’optimisation non contrainte d’un polyèdre demande (à gauche) soit une trian-
gulation préalable à une optimisation des coordonnées des sommets [HDD+93], (à droite) soit
une triédralisation préalable à une optimisation des équations de plans supportant les faces poly-
édriques.

La difficulté de cette optimisation polyédrique provient de sa double nature : combinatoire au
niveau de sa topologie (e.g. liste des identifiants de sommets adjacents à chaque face) et continue
au niveau de sa géométrie (e.g. coordonnées des sommets ou, de manière équivalente, équations
des plans supportant chaque face). Une propriété supplémentaire de l’approche proposée est la
recherche d’une certaine forme d’hystérésis : le polyèdre recalé doit être le plus topologiquement
proche possible du polyèdre initial. Ceci implique des modifications topologiques parcimonieuses
pour ne remettre en cause la topologie du bâtiment initial que si nécessaire. Ainsi un bâtiment
ambigü sera recalé le plus fidèlement possible à une topologie initiale qui aura peut-être nécessité
l’intervention humaine d’un opérateur. Nous ne chercherons pas à expliciter et à quantifier cette
notion de distance topologique entre deux polyèdres, ni à la mettre en compétition avec la distance

3. Recalage cinétique à topologie variable de toits polyédriques 29

géométrique en cours d’optimisation. Cette propriété de parcimonie découlera naturellement et
implicitement de l’approche cinétique proposée et développée au chapitre 6.

Dans le contexte de la reconstruction de bâtiment, [VT05] propose une méthode de recalage
géométrique de bâtiments polyédriques sur des données images. Cette méthode vise à un ajustement
géométrique d’un bâtiment topologiquement juste et ne remet donc pas en cause sa topologie.
Ainsi, il ne garantit aucune propriété de non intersection sur le polyèdre recalé. Cette méthode
ne peut donc pas être appliquée directement dans notre contexte : une topologie initiale erronée
doit être remise en cause. A l’inverse, de nombreuses approches de reconstruction de bâtiment
optimisent d’abord la géométrie par la recherche de régions planes puis cherchent à retrouver une
topologie compatible avec la géométrie détectée. Ainsi, [Tai05] détecte des plans puis effectue une
recherche combinatoire d’un bâtiment parmi l’arrangement de ces plans, cette méthode souffrant
d’une explosion combinatoire dès que le nombre de plans détecté est conséquent. De son coté,
[EAH08] essaie de retrouver la topologie du bâtiment polyédrique à partir d’une segmentation
en régions planaires d’un MNS. Ce problème est mal posé et l’approche proposée repose sur des
heuristiques soumises à de multiples paramètres difficilement réglables.

Au niveau de nos contributions, le chapitre 4 propose une solution simple au problème du reca-
lage géométrique d’un polyèdre à topologie fixée basé sur une réestimation itérative indépendante
des équations de chaque plan supportant chaque face du polyèdre. Cette estimation non-contrainte
et indépendante des plans porteurs n’est possible que si tous les sommets sont triédraux (adjacents
à 3 faces uniquement). En effet, un sommet non-triédral est localisé à l’intersection de 4 plans ou
plus, et cette intersection est en général vide. Le chapitre 5 modifie la topologie initiale du polyèdre
afin que le recalage précédent soit aussi applicable lorsque des sommets ne sont pas tous triédraux.
Nous introduisons ce problème nouveau de géométrie algorithmique, et le nommons triédralisation.
Ces deux chapitres couplés réalisent une méthode duale à une triangulation suivie d’une optimisa-
tion des coordonnées des sommets [HDD+93]. Enfin, le chapitre 6 apporte la garantie recherchée
en modifiant parcimonieusement la topologie du polyèdre recalé au cours du recalage : il n’aura
aucune face auto-intersectante.

= +

Figure 12 – Les superstructures détectées permettent de réduire les emprises des pans de toit
principaux afin de ne les réestimer que sur la donnée ne correspondant pas à des superstructures
détectées.

Le recalage d’un polyèdre triédral 2.5D sur un MNS est réalisé itérativement, pour chaque face
indépendamment, jusqu’à convergence. La projection verticale d’une face sur le MNS permet de
réestimer son plan porteur. C’est à cette étape que les superstructures précédemment détectées
sont utilisées pour ne réestimer le plan porteur que sur les régions du MNS ne correspondant pas
à des superstructures, réduisant ainsi le biais d’estimation. L’estimation simple proposée minimise
l’erreur verticale Lp intégrée sur la région du MNS dans la projection de la face à réestimer réduite
par les projections des différentes superstructures détectées.

Au niveau des extensions possibles de cette phase de réestimation géométrique au cours du re-
calage, un schéma numérique d’ordre supérieur permettrait d’obtenir des propriétés de convergence
numérique améliorée. De plus, le MNS n’intervenant qu’à cette étape de réestimation des plans et
non aux étapes de triédralisation et d’évolution cinétique, il est possible d’étendre facilement la
méthode proposée à d’autres types de données (images brutes, LIDAR...) et de modifier la mesure
d’erreur pour permettre par exemple la réestimation de la position des façades. Enfin, une certaine
robustesse pourrait être réintroduite en effectuant une réestimation contrainte des plans porteurs

30 Modélisation 3D de bâtiments

qui pourraient alors conserver des propriétés de symmétrie, d’horizontalité ou même des sommets
non triédraux. Cette dernière extension permettrait de recaler des superstructures détectées comme
un ensemble de plans contraints.

3.2 Triédralisation

La notion de triédralisation est un néologisme désignant le problème de scinder un sommet non
triédral en un ensemble de sommets triédraux, en introduisant des arêtes entre ces sommets. Nous
faisons le parallèle entre le problème de triédraliser un sommet et son problème dual beaucoup plus
connu, celui de trianguler une face polygonale.

A B

C

DE

F

Vue primale

Vue duale

C

D

E

F
A

B

a

b

c

d

e

b
c

d

e
a

A B

C

DE

F

C

D

E

F
A

B

Figure 13 – Le problème de triédralisation, dual topologique du problème de triangulation.

Outre cette discussion, la description et l’analyse de la contrainte géométrique souhaitée (ne
pas créer d’auto-intersection sur les faces adjacentes), le chapitre 5 présente plusieurs variantes
d’algorithme de triédralisation qui ont chacune leur spécificité, de la plus générique à la plus
spécifique :

Winding numbers : Cette réduction à un problème de winding numbers [For97] est simple et la
plus générale mais ne laisse aucun contrôle sur la solution topologique finale.

Coloration d’arrangement de plans : La triédralisation recherchée se trouve parmi l’ensemble
des polyèdres généré par l’arrangement des plans réestimés. A partir du calcul de cet arran-
gement de plans, toute sélection d’un ensemble de ces cellules crée, dans le cas général,
un polyèdre triédral. Nous introduisons la notion de décomposabilité du problème de trié-
dralisation d’un polyèdre lorsque la triédralisation de chacun de ses sommets peut-être effec-
tuée indépendamment. Cette propriété de décomposabilité permet de réduire la combinatoire
de l’exploration des polyèdres candidats. Par rapport à l’algorithme précédent, n’exhibant
qu’une solution unique, cette variante offre l’embarras du choix et nécessiterait pour être
applicable dans notre contexte une définition explicite de la distance entre deux topologies.

Découpage d’oreilles : Cet algorithme n’est applicable que sur des problèmes indépendants de
triédralisation de sommets. Nous proposons alors de réduire l’espace combinatoire de re-
cherche à celui des triangulations abstraites et ainsi de minimiser la complexité topologique
du résultat.

Squelette droit pondéré : Dans le cas particulier d’un sommet surcontraint à triédraliser qui
présente une propriété d’extrémalité locale que nous introduisons, le problème de triédrali-
sation se réduit à un problème du squelette droit pondéré.

Dans notre domaine d’application, la valence des sommets est petite, ce qui ne nous a pas poussé
à optimiser la complexité asymptotique de cet algorithme. L’algorithme de découpage d’oreilles a

3. Recalage cinétique à topologie variable de toits polyédriques 31

donc été implémenté pour sa relative simplicité et son adéquation aux problèmes de triédralisa-
tion indépendants rencontrés suite à des mouvements modérés de plans depuis un polyèdre non
auto-intersectant. Couplé à une évolution cinétique, nous allons même voir que l’hypothèse de
mouvement modéré tombe d’elle-même.

D’autre part, comme dans tout problème de géométrie algorithmique, il convient de se soucier
des cas particuliers. Il s’avère que le traitement de ces dégénérescences ne peut pas être évité par
une perturbation géométrique car il existe des problèmes de dégénérescence uniquement dus à la
topologie donc pour lesquels une perturbation géométrique ne rompt pas la dégénérescence. Nous
discutons le traitement de ces dégénérescences. D’un point de vue théorique, nous prouvons qu’il
n’y a pas toujours unicité à un problème de triédralisation et l’existence même d’une solution n’est
prouvée que pour un sommet adjacent à 4 plans.

Au final, la formalisation, l’analyse et la résolution de ce nouveau problème de triédralisation
permet de triédraliser un polyèdre non-triédral tout en garantissant la non auto-intersection de ses
faces pour des mouvement relativement restreints par rapport à une géométrie initiale non auto-
intersectante. L’objectif de la section suivante est de permettre des évolutions de plan arbitraires.

3.3 Approche cinétique garantissant la simplicité du polyèdre

Le chapitre 6 permet de garantir la non auto-intersection des faces du polyèdre recalé pour des
perturbations arbitraires et non plus seulement pour de petites perturbations de la géométrie des
plans supportant chaque face polyédrique. Ainsi, l’approche introduite atteint l’objectif fixé : un
bâtiment peut-être recalé de façon toute automatique sur un MNS par des réestimations itératives
de ses plans supportant ses faces, tout en garantissant la non auto-intersection de ses faces.

t=0 t=1 t=2 t=3 t=4 t=5

Figure 14 – Evolution cinétique itérative d’un bâtiment.

Pour maintenir cette garantie, il s’agit de modifier de façon implicite et parcimonieuse la topolo-

32 Modélisation 3D de bâtiments

gie du polyèdre. Pour résoudre ce problème jusqu’alors inexistant dans la littérature, ce manuscrit
introduit, présente et discute de multiples approches. Si le problème à traiter peut se réduire à
celui du choix d’un coloriage d’un arrangement de plan, il est alors difficile de prendre en compte le
polyèdre initial dans la définition intuitive de la modification topologique minimale. L’idée est de
contourner cette définition explicite par une modification continue déterministe de la géométrie du
polyèdre initial vers la géométrie estimée. Ceci permet d’isoler les problèmes d’auto-intersection et
évite ainsi l’écueil des évolutions à pas constants ou adaptatifs qui ne garantissent pas l’individua-
lisation des sous-problèmes. L’approche proposée se base sur les structures de données cinétiques
[BGH97]. Cet ensemble d’algorithmes géométriques permet de maintenir une structure de données
combinatoire vérifiant une propriété donnée alors que ses éléments subissent une évolution continue.
Le chapitre 6 introduit la terminologie nécessaire à l’explication plus poussée de cette méthode et
un exemple simple d’algorithme cinétique maintenant une liste de fonction fi(t) triée au cours du
temps. L’algorithme 2D du squelette droit pondéré est un autre exemple d’algorithme cinétique.

Figure 15 – Pour prouver que cette face polygonale reste non auto-intersectante, il suffit d’exhiber
une triangulation de son enveloppe convexe qui contient toutes ses arêtes. Le mouvement illustré
du sommet rouge menant à une intersection provoquera l’annulation de l’aire du triangle jaune.

Afin de garantir la non auto-intersection des faces, une preuve va être maintenue valide alors
que les plans vont évoluer continuement entre leur géométrie initiale et leur géométrie estimée. Afin
de prouver qu’un polygone ne s’auto-intersecte pas, il suffit d’exhiber une triangulation contrainte
de son enveloppe convexe munie de triangles partageant tous la même orientation et qui contient
toutes les arêtes du polygone. Nous allons donc maintenir une telle triangulation 2D pour chaque
face du polyèdre à l’intérieur de son plan porteur.

Nous proposons de laisser évoluer l’ensemble des plans simultanément, suivant une interpolation
linéaire de leurs coordonnées projectives normalisées. Plus intuitivement, ceci revient à translater
de manière uniforme les plans qui ont été réestimé de façon parallèle et à effectuer une rotation
des autres plans autour de la droite d’intersection entre le plan initial et le plan réestimé.

Les coordonnées de chaque plan variant en fonction du temps, il est possible d’exprimer la
position des sommets du polyèdre en fonction du temps, par des calculs d’intersection. De même,
il est possible de calculer l’aire signée de chaque triangle de la preuve de non auto-intersection
afin de vérifier sa validité au cours du temps : elle reste valide tant que l’ensemble de ses triangles
conserve une aire positive. Nous prouvons que l’aire signée d’un triangle est une fonction rationnelle
que nous analysons afin d’optimiser le calcul de ses racines, permettant de détecter les instants
(nommés événement) où la preuve doit être mise à jour. Il s’agit alors d’ordonner les racines futures
par ordre croissant afin de les traiter dans l’ordre. On utilise un calcul arithmétique en précision
arbitraire ce qui permet de ne pas être confronté aux problèmes d’arrondi en virgule flottante et
évite donc les incohérences sur les tests géométriques, ou sur l’ordonnancement des événements.

Afin d’initialiser le mouvement des sommets, il faut préalablement triédraliser le polyèdre. Afin
de conserver les garanties de non auto-intersection, cette triédralisation n’est pas effectuée par
rapport à la géométrie réestimée, mais sur la géométrie initiale déplacée infinitésimalement en
direction de la géométrie réestimée.

Les événements peuvent être de plusieurs types. Premièrement, un sommet peut rencontrer une

4. Résultats 33

t− ε t t + ε

t− ε t t + ε

t− ε t t + ε

Figure 16 – Les 3 types d’évenements nécessitant une mise à jour de la preuve de non auto-
intersection.

arête de triangulation qui n’est pas une arête du polyèdre. Il suffit alors de modifier localement la
triangulation et de recalculer et réordonnancer les événements afférents aux nouveaux triangles dans
la queue de priorité recensant les événements futurs. Deuxièmement, un ensemble d’événements
simultanés peut faire disparâıtre complètement une face. Dans les autres cas, une collision s’opère
entre un sommet du polyèdre et une arête ou un sommet du polyèdre et crée donc un point qui n’est
plus triédral instantanément. Il convient alors d’effectuer sa triédralisation juste après l’événement,
similairement à la triédralisation initiale, afin de maintenir la garantie de non auto-intersection des
faces. Puis les triangulations sont localement mises à jour afin de recréer la preuve de non auto-
intersection des faces juste après l’événement et jusqu’au prochain événement ordonnancé.

Pour chaque réestimation géométrique des équations de plan, cette évolution s’effectue donc à
pas adaptatifs entre la géométrie initiale à t = 0 et la géométrie réestimée à t = 1. Les événements
d’auto-intersection sont traités un par un, en n’effectuant uniquement les modifications topolo-
giques nécessaires (triédralisation, suppression de face, collision). L’algorithme cinétique proposé
permet donc de traiter des mises à jour arbitraires des coordonnées des plans supportant les faces
du polyèdre et garantit, tout au long de l’évolution la non auto-intersection des faces. Le polyèdre
est donc bien rendu malléable au sens où il peut-être manipulé uniquement par sa géométrie, en
laissant sa topologie évoluer parcimonieusement et implicitement. Enfin, des possibilités d’exten-
sion sont discutées comme la détection d’auto-intersections globales (telles que des repliements de
surface), pour laquelle il n’existe pas de preuve linéaire comme la triangulation contrainte des en-
veloppes convexes utilisée ici pour la non auto-intersection des faces. Il est à noter que cette partie
n’est ni spécifique à notre contexte 2.5D outre la non détection des auto-intersections globales, ni
spécifique au type de données utilisées pour réestimer les équations de plan.

D’un point de vue plus théorique, nous proposons ici le premier algorithme cinétique qui n’est
pas uniquement justifié par la cohérence temporelle de la structure topologique maintenue. En
effet, c’est grâce à cette évolution cinétique continue à changement de topologie implicite que la
parcimonie des modifications topologiques a été obtenue.

34 Modélisation 3D de bâtiments

Figure 17 – Zone test sur Amiens, France : (haut) MNS et (bas) modèles 3D de bâtiments filaires
sur un fond orthophotographique.

4. Résultats 35

Figure 18 – (haut) Modèle 3D de ville initial et (bas) modèle final (recalage+superstructures).

4 Résultats

L’approche proposée d’optimisation alternée itérative de la géométrie et de la topologie de
chaque bâtiment a été implémentée et évaluée sur une zone de centre ville (Amiens, France).
Les données utilisées sont un MNS de 300m par 200m et d’une précision de 10cm généré à partir
d’images aériennes de même résolution, et une base de données d’environ 300 bâtiments reconstruits
automatiquement sur un cadastre saisi manuellement.

Les résultats de recalage et de reconstruction des superstructures ont été évalués qualitative-
ment et quantitativement par rapport à une donnée de référence filaire saisie manuellement en
stéréoscopie sur une paire d’images aériennes par un opérateur chevronné. La précision du recalage
est évaluée par comparaison géométrique des segments représentant les arêtes fâıtières. L’erreur
moyenne mesurée de translation est de l’ordre de la dizaine de centimètres verticalement et de
la vingtaine de centimètres horizontalement, ce qui est comparable à la précision du MNS utilisé
pour le recalage. L’erreur moyenne en orientation (pente et direction) est de quelques degrés. La
reconstruction des superstructures s’avère moins robuste sur cette zone de centre ville historique
particulièrement difficile. En particulier, en limite de bâtiments mitoyens l’imprécision du MNS sur
ces discontinuités altimétriques provoque une surdétection massive de superstructures.

5 Conclusion

Dans un contexte nouveau, où peu de travaux ont cherché à reconstruire un tel niveau de
détail, nous proposons une approche toute automatique de mise à jour d’un modèle polyédrique
de bâtiment s’attaquant à la fois à la détection et à la reconstruction de ses superstructures de
toit, à l’amélioration de la précision géométrique de ses pans de toit principaux et à la garantie de
non auto-intersection du modèle recalé. Cette distinction entre reconstruction des superstructures
et recalage géométrique ainsi que leur optimisation itérative alternée constituent les principales

36 Modélisation 3D de bâtiments

contributions thématiques de ce travail.

La partie recalage à modification topologique implicite a été intégrée à la plateforme de pro-
duction IGN Bati3D et a permis la production d’un jeu test sur une zone d’un kilomètre carré
(figure 19).

Figure 19 – Recalage sur une zone d’1km2 dans le cadre du projet Terra Numerica du pôle de
compétitivité CapDigital.

Nos principales contributions en géométrie algorithmique sont la conception d’un algorithme
cinétique garantissant la non auto-intersection des facettes et la formalisation et l’analyse du nou-
veau problème de triédralisation, ainsi que l’implémentation d’une méthode de résolution de ce
problème suivant le canevas de la triangulation par découpage d’oreilles.

Ces travaux ouvrent de nombreuses perspectives, telles que le passage du recalage d’un polyèdre
2.5D à celui d’un polyèdre avec surplomb, permettant son application dans le contexte terrestre de
reconstruction de façades et dans de multiples contextes plus éloignés de l’information géographique
comme la rétroconception de pièces mécaniques. La qualité de reconstruction des superstructures
est suffisante pour des applications de visualisation, mais est encore trop dépendante de la qualité
du MNS et de la modélisation des pans de toit principaux pour les applications de comptage. A
court terme, la variabilité spatiale de la fiabilité du MNS pourrait être exploitée afin de réduire les
surdétections d’objets là où le MNS et/ou le modèle de toit sont entachés d’erreurs. Il serait d’autre
part possible de considérer les superstructures, au moment du recalage, comme des ensembles
de plans contraints, ce qui permettrait d’affiner leur géométrie par une extension de l’approche
proposée. Enfin, d’un point de vue opérationnel, il est envisagé de décliner des approches semi
automatiques, en incluant des interactions utilisateur pour guider la reconstruction et le recalage :
en un clic, ajout ou suppression de superstructures qui se recaleraient automatiquement, et division
ou fusion d’un pan de toit afin d’opérer une modification explicite de la topologie d’un polyèdre
au cours de son recalage.

37

Part I

Introduction

39

Chapter 1

Introduction

Contents
1.1 Context . 39

1.2 Objectives . 40

1.3 Proposed Approach . 43

1.1 Context

A 3D City Model is a database of 3D urban objects (the ground surface, buildings, roads...) that
is a digital representation of a city. Typical usages of these databases include urban and landscape
planning, architectural design, tourist and leisure activities, environmental simulations, antenna
placement for mobile telecommunications, disaster management, defense and security, vehicle and
pedestrian navigation, training simulators and mobile robotics.

Depending on the input data and the application, their level of detail (LOD) may vary widely.
Buildings may only be represented with parallelepipeds with metric accuracy, or may model in
detail all the 3D facets of their roofs and façades or even their interiors, with a centimetric accuracy.
Apart from the geometric and topological information, 3D City Models may also contain some
semantics, explicitly labelling human understandable objects with meaningful labels such as roof,
window or chimney. Moreover, when used in virtual reality applications, the appearance of the
objects must also be described with attributes such as colors, transparencies or textures to be more
visually appealing.

Two decades of research have driven down the costs of building such databases. The state of
the art methods are primarily based on terrestrial, aerial and satellite imagery, and on terrestrial
and airborne LIDAR (LIght Detection And Ranging). The attainable LOD of the resulting 3D
city model depends directly on the richness of the input data and the time and cost allocated.

The City Geography Markup Language (CityGML) is an open data model and XML-based
format for the storage and exchange of 3D City Models (fig. 1.1). It defines 5 levels of detail in
the description of a building in a 3D City Model. More details can be found in [KGP05], but, as
an illustration to the purpose of this work, here is a brief summary:

LOD0 The ground surface of the city only is modeled, and not the buildings.

LOD1 Buildings are modeled without details: they are rectilinear, have flat roofs.

LOD2 Metric scale 3D facets of the roofs and façades are present.

LOD3 Smaller scale features of the roofs and façades are modeled. The accuracy is centimetric.

40 1. Introduction

Figure 1.1: CityGML levels of details.

LOD4 Along with a better topological and geometric accuracy, the interior of the building is also
modeled.

The Institut Géographique National (IGN) is the French national mapping agency. Among its
objectives is the production and update of 3D City Models and the research towards more accurate
and less expensive generation and maintenance of these databases. The databases corresponding
to CityGML’s LOD0 and LOD1 are mastered and already available and roughly correspond respec-
tively to the BD-Alti and BD-Topo databases produced by the IGN. Recent works [Tai05, DT06]
on building reconstruction are being industrialized by the Bati3D project which corresponds more
or less to CityGML’s LOD2. The context of this thesis is to continue this trend towards more
accurate 3D building models by refining their roof models to the level of geometric, topological
and semantic accuracy of CityGML’s LOD3.

1.2 Objectives

The general objective of this thesis is to take as an input a generalized building model, which is
a building model that may contain errors both in geometry and topology, and to improve it relative
to an input high resolution (less than 10cm per pixel) Digital Surface Model (DSM) (fig. 1.2). The
characteristics of the input data will further be detailed in chapter 2.

This thesis does not tackle the problem of reconstructing a building from scratch. The envi-
sionned application is rather on refining existing CityGML’s LOD2 databases or post-processing
a building model output by any robust but less accurate reconstruction method, to reach the
accuracy of CityGML’s third level of detail on the roofs.

This general objective can be divided into the two following sub-objectives:

Reconstruction of missing details: Usually, small scale elements of the roofs have not been
considered during the modelling of the building at a lower scale. These elements, such as
chimneys, dormer windows or skylights are often omitted. The objective is thus to auto-
matically detect and reconstruct those details, based on the input DSM. Admittedly, façade
superstructures such as doors or windows are also very important, in applications such as
ground level virtual reality, but they fall outside the scope of this work, primarily because of
the input data: a DSM is not well suited to retrieve the overhanging façade superstructures.

1.2. Objectives 41

(a) Input approximate building + (b) Input DSM

⇓

(c) Output refined building + (d) Output Superstructures

Figure 1.2: Context of the thesis: given an approximate building model (a) and a Digital Surface
Model (shaded view b), refine the approximate building model (c) and reconstruct its superstruc-
tures.

42 1. Introduction

(a) (b) (c)

A B B A

A′

B′

(d) (e) (f)

Figure 1.3: A topology-aware fitting may be required. The first row shows 3 distinct building
wireframes superimposed on the same DSM image (the brighter, the higher). The second row is
a 3D version of the first row: it shows 3 identical DSM surfaces together with 3 distinct building
models. The input building model (a-d) has an erroneous topology. Its rooftop edge AB should
be topologically flipped to A′B′ in order to separate the left and right facets rather than the top
and bottom ones. Without modifying the topology of the input building model (a-d), its geometric
optimization relative to the DSM will produce a reversed tetrahedron floating above the roof top
(b-d). The proposed kinetic framework detects this inversion and modifies implicitely the topology
(c-f).

Refining the geometry while guaranteeing a well-formed model: Being a generalization,
the input building model is not guaranteed to be exact in geometry (the point coordinates,
the face normals...) or even in topology (the combinatorial information: the number of
facets and vertices, the number of facets adjacent to a vertex...). The input building may
have been reconstructed automatically or manually with many constraints: horizontal roof
tops, symmetric roof slopes, edges longer than a predefined threshold... Those constraints
are typically used to ensure robustness but they may prevent the building to fit tightly the
real-world building or more precisely the observation of the real-world building through the
acquired data. Moreover, the input model have usually been created based on less accurate
data. The consideration of the high resolution DSM will allow the refinement of the roof
geometry. This is typically performed in the literature [VT05] under the assumption that the
topology is not to be altered. However even small modifications of the roof plane equations
may lead to artefacts in the modeled polyhedron if its topology is not updated, as illustrated
in Figure 1.3. The objective is thus to allow the fitting of the geometry while preserving a
well shaped 3D Building Model without those artefacts.

1.3. Proposed Approach 43

(a) (b) (c) (d) (e) (f)

Figure 1.4: The kinetic framework (chapter 6) uses the continuous evolution (a) to (f) to enable
a geometric refinement of the base building that applies implicitely the necessary topology modi-
fications. The topological modification of chapter 5 lifted the topological constraint that the front
left triangular roof facet was anchored at the same gutter height than the rest of the building (a)
so that it can better fit the input DSM in (f).

1.3 Proposed Approach

Chapter 2 presents in more details the input data and the issues involved. It also provides an
overview of recent works that are related to our problem.

The optimization of the two formerly stated sub-objectives are intimately linked. For instance,
when fitting a 3D Building Model, ignoring the presence of the roof superstructures and treating
them as noise will inevitably bias the estimation of the roofs. Likewise, if the geometry and topology
of the building without superstructures are too erroneous, the search for superstructures, which
are relatively small modifications of the base building, will rather try to compensate the errors in
the roof planes rather than reconstructing the actual superstructures.

However, the simultaneous optimization of the two sub-objectives is a difficult problem. There-
fore, we have chosen a suboptimal iterative method that alternates between the optimization of
each of them, as detailed in chapter 2 :

Addition of superstructures given a fixed roof: The content of chapter 3 is a method to
detect and reconstruct roof superstructures on a fixed building based on a DSM. Given
the resolution of the DSM and the size of the reconstructed objects, the approach is based
on a collection of parametric superstructure types to overcome issues with inaccurate or
missing data. These parametric superstructure objects are instantiated to modify locally the
geometry of the fixed building, similar to Constructive Solid Geometry (CSG) approaches.

Topology-aware fitting of the geometry: Chapters 4, 5 and 6 expose the fitting to the DSM
of the geometry of a 3D Building Model without superstructures. DSM regions corresponding
to previously detected superstructures are not taken into account during the estimation of
the roof plane equations, preventing them from biasing the estimation. The topology of the
building is allowed to change to enhance the fitting in two ways. First, the initial building
topology may impose geometric constraints. For instance, when a vertex is adjacent to
more than three planes, its adjacent plane equations are constrained to have a non empty
intersection. The first topological change, detailed in chapter 5, is to split those extraordinary
vertices into vertices adjacent to only 3 facets by introducing small edges or even edges of null
length. This process is illustrated in the first row of figure 1.3. The roof edges were initially
meeting the façades at their corner, the topological change of chapter 5 allowed to relax this
constraint to let them move freely. These topological modifications prevent the topology
from constraining the fitting of the geometry, and thus enable the use of the unconstrained
building fitting described in chapter 4. The second type of topological change is necessary
to keep a well shaped polyhedral model throughout the optimization process. Chapter 6
introduces a kinetic framework to detect and process events where artefacts occur during the
fitting (Figure 1.4). For instance, translating a roof facet along its normal may cause the
building model to no longer be simple.

Finally, chapter 7 will present the results achieved by the overall proposed approach and their
evaluation, before concluding in chapter 8.

44 1. Introduction

45

Chapter 2

Background and Related Work

Contents
2.1 Introduction . 45

2.2 Aerial Raster Data . 45

2.2.1 Multiview Aerial Imagery . 46

2.2.2 Lidar Data . 48

2.2.3 Digital Surface Models . 49

2.3 Vector Data: 3D Building Models . 49

2.3.1 Polyhedral Building Models . 49

2.3.2 Generalization . 49

2.4 Building Reconstruction . 50

2.4.1 Input Data . 50

2.4.2 Degree of User Interaction . 51

2.4.3 Strategies . 51

2.5 Proposed Approach . 52

2.5.1 Iterative Optimization . 52

2.5.2 Superstructure Reconstruction . 52

2.5.3 Topology-aware Geometry refinement 54

2.6 Conclusion . 54

2.1 Introduction

This chapter gives a more extensive background, in order to more clearly define the proposed
approach that addresses the stated objective of increasing the LOD of existing 3D building models
using very high resolution aerial data.

First, section 2.2 describes the raster input: the real world observations given by very high
resolution aerial data. Section 2.3 defines the vector data: the 3D building models that will be
modified to increase their LOD. Thus, the building vector data is, within our context, both an
input and an output. Then, section 2.4 presents an overview of the previous work in building
reconstruction. Finally, section 2.5 details the approach that is proposed in this thesis.

2.2 Aerial Raster Data

Large scale 3D City models are curently generated using sensors carried aboard planes and
satellites. Satellite sensors are not current sufficiently accurate to reach the reconstruction level of

46 2. Background and Related Work

next stripe

current stripe

3

1 2 1

2

12

4

2

21

GPS IMU

Figure 2.1: Multiview Aerial Imagery. Figures illustrate the number of photos that view the
corresponding regions from different airplane locations.

detail aimed by this work (in satellite images, current approximate pixel squares projected on the
ground surface mesure around 50cm by 50cm). At a lower scale, drones are also equipped of sensors
to collect data at much higher resolutions. Research on this subject is active, but currently, they
may not reliably survey large scale cities. On the other hand, specially equiped ground vehicules are
used to complement aerial data at higher resolutions or simply to acquire data that was occluded
or seen at grazing angles from aerial vehicles such as the façades, but are not relevant to model
the roof structures. To reach the coverage and accuracy needed by our objectives, aerial data
must then currently be used. We focus here on two types of sensors, namely images and lidar,
considering that radar data does not meet our accuracy requirements.

2.2.1 Multiview Aerial Imagery

To acquire aerial images, planes are equiped with nadir (i.e. downwards facing) digital cameras
that take pictures of the ground along the track of the flight. Thus, such a plane takes multiple
images from a strip of the city. To survey an entire city, the plane flies over the city multiple
times such that these stripes cover the whole city. The special purpose digital cameras used in
survey airplanes currently have an approximate projected resolution on the ground of around 10cm
(the Ground Sample Distance, GSD), compared to a GSD around 50cm for satellite imagery. To
go a step further, all the points on the ground are guaranteed to be imaged from multiple plane
positions, rather than a single one, by overlapping the stripes and taking photos with enough
overlap along the track. This allows reconstruction techniques to be applied to recover the shape
of the scene from the stereo or multi-view data, as in the binocular human vision system.

Another specificity of this aerial surveying is that the airplanes carries a Global Positioning
System (GPS) and an Inertial Measurement Unit (IMU). This gives an approximate position and
orientation of the plane and hence of the digital cameras, for each of the photographs taken. The
digital cameras are calibrated precisely intrinsically and the camera poses are refined from the
initial GPS and IMU guesses using a bundle adjustement method [TMHF00], that makes use of
the multiview stereo. The post-processed GPS position accuracy is currently about 50cm, which
is sufficient to yield an initial guess that greatly helps avoiding convergence to undesired minima
of the bundle adjustement minimization.

2.2. Aerial Raster Data 47

Figure 2.2: 1186x880 convergent image crops showing the same building viewed from 12 different
airplane locations. Each uncropped image has 13824x7680 pixels.

The bundle adjustement constraints are either of relative or absolute nature. Within each
image, feature points are selected manually or detected automatically, using for instance Scale-
Invariant Feature Transform (SIFT) keypoints [Low04]. The relative constraints are given by
point correspondences between these feature points across images. These correspondences may be
input manually or automatically. The absolute constraints are optional and result from manually
pointing in some images a few easily distinguishable georeferenced ground landmarks. This enables
computing the successive positions of the plane in an absolute coordinate system relative to the
earth, a process known as georeferencing the images.

This enables the use of photogrammetric techniques, which are using photographs to perform
measurements, as the cameras are fully calibrated (i.e. both intriscally and extrinsically): each
pixel of each aerial image may be associated with the georeferenced 3D ray along which the pixel
gathered its color. More details on the field of digital photogrammetry may be found in [KE02].

Correlation-based Digital Surface Model The literature on shape from stereo (or multiview)
is vast. An operational by-product of a set of calibrated aerial images is a Digital Surface Model
(DSM), which is a grey-level image, coding a height map (figure 2.3). Sampled on a regular
horizontal grid, each pixel value measures the altitude of the scene surface at each grid node. A
DSM thus represents a 2.5D surface (i.e. without overhead). The most operational approach to
generate a DSM is a graph-cut based reconstruction technique [RC98]. This approach has been
implemented and is used in production at IGN [PDP06, MICMAC]. A competing state of the art
approach is based on Semi-Global Matching using Mutual Information [Hir08].

The main advantages of this approach are the coverage and the density of the reconstructed
DSM. The DSM can be reconstructed as soon as stereo information is available, and it makes
sense to use the approximate image ground pixel size as the grid resolution of the DSM. Given
the baseline/depth ratios used in production at IGN, urban DSMs are thus currently produced
with both an altimetric (i.e. vertical) and planimetric (i.e. horizontal) accuracy of around 10cm,
matching the image GSD. The main disavantages of correlation-based DSMs are their smearing
behavior around height discontinuities such as around the façades, and that they may fail or find

48 2. Background and Related Work

Figure 2.3: DSM generated by correlating images of figure 2.2. (left) Raw view of the height image
(the higher, the brighter). (right) Shaded view of the resulting surface using ambient occlusion.

false correspondences when the scene texture is homogeneous or periodic.

2.2.2 Lidar Data

Light Detection And Ranging (Lidar) is an active optical remote sensing technique that prin-
cipaly measures distances. This sensor beams a laser pulse and uses its time of flight to measure
ranges. By varying the direction of the laser pulse across the flight track as the plane flies forward,
the Lidar sensor acquires data along a stripe, similar to the image sensors.

Lidar Point Cloud The GPS and IMU systems are used to measure the position and orientation
of the plane and then map the range information to a set of 3D points, the Lidar point cloud.
Simply put, for each backscattered laser pulse emitted in a given direction with respect to the
airplane, the range measurement yields a 3D point at the given distance of the known position
of the aircraft in the known direction of the laser pulse. Typical caracteristics of aerial lidar
point clouds is an altimetric (i.e. vertical) precision of 5cm, and 4 points per squared meters and
per overlapping stripe. The planimetric (i.e. horizontal) precision is however typically around
40cm, for two reasons. First, contrary to the aerial imagery, it is much more difficult to refine
the geopositionning of the airplane, because the laser pulses are sent sequentially, so that the
plane has moved between two lidar points, whereas the pixel measure of an image are performed
simultaneously. To overcome this, and to increase the density of points per squared meter, the
scene is surveyed using multiple overlapping stripes, so that the redundant acquired information
is used to refine the trajectory of the plane. Second, the range is not a pointwise measure, it
integrates the range of the surface within a cone. The radius of the circular intersection with the
ground is typically 40cm. Therefore, the reconstructed point, which is placed in the middle of the
cone at the measured distance, is a somewhat integrated view of the real surface.

Lidar Digital Surface Model It is sometimes convenient to resample the lidar point cloud on a
grid as a 2.5D surface. This produces a DSM image, as sensed by the lidar sensor, rather than the
one produced using multiview stereo techniques. This has the advantage, compared to the relatively
unorganized point cloud, that it has a fixed implicit topology given by the pixel adjacencies in the
image. This resampling as a DSM allows most approaches relying on correlation-based DSMs, such
as our proposed approach, to be applied to Lidar data without any modification.

2.3. Vector Data: 3D Building Models 49

2.2.3 Digital Surface Models

Digital Surface Models (DSM) may be generated by post-processing the data of various ac-
quisition systems. This allows a unified treatment of these data by considering their DSM only.
How does a Lidar DSM compare to a Correlation-based DSM? Broadly speaking, the Lidar DSM
is more accurate vertically, and does not suffer from the height discontinuities, the lack of non-
periodic texture or specular effects. However, it is much more expensive to achieve the coverage,
the sampling density, and the pose estimation accuracy of a correlation-based DSM.

Dealing directly with a DSM without taking the acquired images or lidar datasets is a trade-off
that will be taken in this work. This trade-off balances the easy manipulation of the DSM as a
regularly sampled 3D surface with the artefacts introduced while generating it from the acquired
data. Thus, this choice on the scope of this work has been made to simplify the tackled problem
at the cost of the reconstruction accuracy. However, more accurate approaches that use directly
the images or lidar data will be discussed as extensions in sections 3.6.2 and 4.6.3.

2.3 Vector Data: 3D Building Models

2.3.1 Polyhedral Building Models

3D city models are stored as databases of objects. Each such object contains various attributes,
including its 3D geometry and its topology. These objects may model the roads, the buildings, the
vegetation, the ground... We focus here on the building models. Man-made objects and specially
buildings have fairly restricted properties on their shapes. We do not target the reconstruction
or refinement of buildings of special interest, which are relatively few compared to rest of the
buildings, and the architecture of which is more complex, and which are curently too complex to
reconstruct automatically from aerial data. Apart from some of these buildings, the vast majority
of the buildings may be relatively accurately described using only a few simple parametric surfaces
(planes, spherical domes, cylinders...). We restrict here these surfaces to be planes, which can be
achieved by tesselating the more complex surfaces. However, this decomposition of non-planar
surfaces into planes is arbitrary as it conveys no semantics on the building surface. To prevent this
artificial tesselation, some model-based building reconstruction approaches allow specific types of
non-planar surfaces such as elliptic roofs [LDZPD10]. However, this assumption of piecewise-planar
buildings does not appear to be too restrictive in practice. This leads the current 3D city models
to model buildings as polyhedra.

2.3.2 Generalization

A 3D building model is, by definition, only a modelized view of the real world. It can thus
not expect to be an exact representation. Therefore, there must be a balance between the com-
plexity of the representation of the real world and its accuracy (figure 2.4). This means that, for
instance, there is no perfect polyhedral building representation. A building may be represented
at various levels of details from a prismatic extrusion of its vertical footprint with a horizontal
plane, as in [LN98], up to higher levels of detail with higher geometric accuracy, which model
much more topological features of its polyhedral surface, such as all the individual roof planes,
their superstructures, the doors and windows, the gutter of roof overhead... Given the resolution
of our input data, the roof tiles, for instance, will not be described individually. Building surface
features smaller than about 10cm will be generalized and hence discarded or agglomerated in the
building polyhedral representation. The typical databases that we are targeting to refine the ge-
ometry and topology of their buildings present features that have a dimension of at least 1m, even
if their accuracy of the modeled features is much better. These are the city models that are created
routinely nowadays. The roof elements that are typically missing in such databases are what we

50 2. Background and Related Work

(a) (b) (c)

Figure 2.4: Building model generalization: these building models represent the same building at
various levels of detail, from the detailed model (a) featuring roof superstructures and a non-
rectangular footprint to a generalized model (b) down to the box shaped model (c).

call roof superstructures. The representation of these roof superstructures will be discussed in
chapter 3.

2.4 Building Reconstruction

The various building reconstruction approaches that have been developped may be analyzed
using multiple criteria: the type of input data, the reconstruction strategy and the degree of user
interaction.

2.4.1 Input Data

The type of input data determines what is reasonable to reconstruct. Building reconstruc-
tion approaches typically deal with aerial, satellite or terrestrial imagery (monocular, stereo or
multiview), lidar data, a DSM, vector databases, or combinations of them.

Approaches based only on a single aerial image, such as [LN98, KP09], have to constrain the
buildings to remain robust without the more direct 3D cues of stereo or multivue images, or of lidar
data. In [LN98], buildings are limited to simple prismatic building models laid on a flat ground.
In [KP09], a limited library of building footprint templates is introduced, and matched against the
single panchromatic image. Single terrestrial image building reconstruction approaches only
focus on the façades [KTS+09, MZWVG07], as the building roofs are usually merely visible. These
monocular settings face difficult ambiguities that may be solved by Multiview imagery or 3D
lidar data.

[BR06b] combines the high image sampling and the robust accuracy of lidar to segment and
reconstruct planar roof patches. A complete building reconstruction system fusing both image and
lidar datasets seems promising. However, such a system has not been published yet.

Other approaches are based on a single DSM only [EAH08, LDZPD10]. We saw that a DSM
is computed from image or lidar data. Basing reconstructions on the DSM only and discarding
its input image or lidar data is a process that may convey a deformed view of the reality due to
an intermediate optimization. It however provides a regularly sampled 3D surface which does not
present the ambiguities of image correlations. Its main advantage is to enable metric measurements
relative to a building model that are both unambiguous and inexpensive to compute.

There has not been much work on using jointly terrestrial and aerial data, since [FZ03].
The difficulties arising from the huge change of scale between aerial and terrestrial data usually

2.4. Building Reconstruction 51

lead to perform an aerial reconstruction that is subsequently refined with the terrestrial data. One
such difficulty is the relative pose estimations between terrestrial and aerial images. In urban
contexts, detecting road marks in both aerial images [TP09] and terrestrial images [Soh08] yields
tie points to successfully estimate the relative image poses [TSP06]. Using jointly terrestrial and
aerial datasets would however lead to a more accurate and consistent reconstruction.

Prior to building reconstruction, another difficult problem is building detection and focalisation.
Operational approaches rely either on user input or on a 2D vector database to get the building
footprint [DT06]. Without such a 2D database, building footprints may be extracted from a
DSM using, as in the stochastic approach [ODZ07]. In our case, the building focalisation is given
by the input 3D database of coarse buildings, however the detection problem will appear at the
superstructure level.

2.4.2 Degree of User Interaction

Semi-automatic approaches rely to some extent on operator input [FM05, DT06, KZG06]. This
human intervention is necessary in some contexts to introduce the prior of human knowledge where
it is not easily expressible algorithmically, in order to solve ambiguities. For instance, in [DT06]
the operator provides a simple high level hint about the general shape of each building, through
the number of hipped or gabled roof terminations.

By contrast, fully automatic approaches are attractive since they may be performed off-line
[JPDPM00, SMG02, SV04, Tai05], thereby drastically reducing the production costs. However,
their robustness depends heavily on the quality of the input data and on the adopted strategy.

2.4.3 Strategies

Building reconstruction strategies may caricaturally be decomposed into parametric and generic
approaches.

Parametric - Top/Down - Model-based When the input data is not sufficient by itself or
too ambiguous to recover the shape of a building, prior knowledge must be introduced to provide
a robust reconstruction that meets the expectations of the final user. This knowledge is generally
introduced by restricting the class of allowable building reconstructions. This has been done by
imposing that the roof is a single flat facet (prismatic models) [LN98], or that the building is the
union of simple parametric models, out of a library of possible models (gabled roof, hipped roof,
flat roof...) [LDZPD10]. More complex models are given by a grammar of shapes [MZB+08] or a
CSG approach

These model-based approaches are often called top/down approaches as they explore the search
space by trying to fit constrained building models to the data rather than constructing the building
models from features detected in the data. The top/down approaches have a high imaginative power
as they can hallucinate missing data thanks to the a priori knowledge they introduced. They are
however strongly limited by the restricted set of building that may be reconstructed.

Generic - Bottom/Up - Feature-based On the other hand, if the input data can be trusted to
provide all the necessary pieces of information for a robust reconstruction, little a priori knowledge
has to be introduced. Then a generic approach starts by inspecting the raw data to detect features
such as 3D segments [BZ00, TD02] and planar patches for almost all feature-based approaches.
Then it raises its level of abstraction by combining these features to create a polyhedral surface.
These generic approaches are often called bottom/up due to this constructive or aggregative ap-
proach. These approaches have a high descriptive power as they tend to assume few restrictions on
the reconstructible buildings. However, they fail if the detected features are not sufficient to recover

52 2. Background and Related Work

the geometry of the building. This failure may translate into a surface with holes corresponding to
undetected planar patches [EAH08]. Alternatively, it may translate into an unreallistic surfaces, if
they are closed using the available detected features only. All in all, these approaches are generally
accurate but their robustness suffers greatly from feature underdetections.

2.5 Proposed Approach

First of all, this work aims at designing a fully automatic approach. Since we cannot rely on any
user input, a primary concern is to process robustly the input data. The two interrelated objectives
of refining the roof plane geometry and adding roof superstructures cannot rely on the input data
in the same way. The roof refinement has plenty of data at hand and thus each roof plane may
be optimized freely without fearing robustness issues. On the other hand, the roof superstructures
have a small footprint in the input DSM. Moreover the DSM acuracy is much worse around their
small discontinuities.

The disparity of the information available in the data for the 2 objectives led us to treat them
individually with different approaches: Chapter 3 introduces a library of parametric superstructures
to reconstruct them using a top/down approach, whereas chapters 4, 5 and 6 model generically
as the building as an relatively unconstrained polyhedron. The input building polyhedron to be
refined are used as a hint to turn its re-estimated planes into a new polyhedron, making it a
bottom/up process.

2.5.1 Iterative Optimization

The proposed approach to optimize both the roof superstructures and the roof plane geome-
tries is to alternately optimize one while keeping the other fixed. Figure 2.5 summarizes the overall
approach. The input polyhedral building is used to initialize what the algorithm maintain, a poly-
hedral building modified by a set of parametric roof superstructures. Initially no superstructures
are present. Then the topology-aware geometry refinement step (part III) fits the planes of the
input polyhedron to the input DSMs while keeping its facets simple and relaxing various geometric
constraints. The second block (part II) discards any previously reconstructed superstructures and
reconstructs new superstructures given the fixed building polyhedron that has just been updated.
After one such iteration, a polyhedral building with superstructures has been generated, so the
process may terminate. However, a few iterations are likely to improve the results by feeding back
to the roof plane estimation step the classification of DSM pixels as superstructures. This prevents
the use of these outliers in the plane estimations, and thus reduces the plane estimation bias. Then,
after updating the building polyhedron with more accurate planes, superstructures will be better
reconstructed.

This alternate optimization of these 2 aspects of the building polyhedron with superstructures
is admittedly suboptimal. However, chapter 7 will show that it makes the problem tractable and
that it works well in practice. Chapter 7 will further illustrate that usually, only a few iterations
are needed before the process converges.

2.5.2 Superstructure Reconstruction

The proposed reconstruction of small missing topological features is detailed in chapter 3. The
proposed approach consider the base polyhedral building fixed and, using a top/down approach,
matches parametric superstructure models to explain the disparity between the input DSM and
the fixed base building polyhedron.

2.5. Proposed Approach 53

Chapter 6
Kinetic update of the geometry

guaranteeing simple facets

Fitted polyhedral building
without superstructures

Chapter 3
Reconstruct superstructures

Chapter 4
Iterate ?

Output fitted polyhedral building
with superstructures

Polyhedral building
with superstructures

Initialize
without Superstructures

Input polyhedral building

Input DSM

Chapter 4
Estimate roof plane geometry

Iterate ?

Chapter 5
Vertex trihedralization

Part III

Part II

Library of parametric
superstructures

Figure 2.5: Overview of the proposed approach.

54 2. Background and Related Work

2.5.3 Topology-aware Geometry refinement

Alternating with superstructure reconstructions, the base polyhedron is optimized considering
these previously reconstructed superstructures fixed. If the fitted polyhedron remains combina-
torially identical (i.e. its topology is kept fixed), its fitting has in general to be carried out as
a constrained optimization, to ensure that the vertex points of a facet remain coplanar and that
facet planes adjacent to a vertex have a non-empty intersection. These constraints, denoted the
topology-induced constraints, may either be included in the energy and thus be only approx-
imately verified or be inherently part of the parameterization of the problem and thus exactly
enforced, as in [VT05].

Chapter 4 describes a simple fitting approach for polyhedral topologies that disregards these
constraints. Its main contribution is to use the superstructure previously reconstructed to only
estimate the plane equations using DSM points that have not been classified as superstructures.
This estimation provides, for each facet of the polyhedron a new supporting plane that improves
the fit, i.e. an updated plane geometry of the polyhedron.

Using the plane estimates described in chapter 4, chapters 5 and 6 perform the necessary
topological modifications to keep well-defined vertices and self-intersection free facets. Since the
plane estimation is unconstrained, vertices adjacent to more than 3 planes are likely to not have
a well-defined point location. Chapter 5 details the process of splitting these vertices into vertices
with well-defined point locations, which we define as a trihedralization. Chapter 6 introduces a
new kinetic approach to interpolate between the input and the fitted polyhedral plane geometry,
while guaranteeing that its facets remain simple. Events during the interpolation where facets
become self-intersecting are detected and handled using the trihedralization problem of chapter 5.

Putting everything together, the building model undergoes a continuous morphing from the
input building model to a better fitting one. Chapter 4 takes advantage of the detected superstruc-
tures to provide the geometric evolution of the roof supporting planes, unaware of any topology-
induced constraint. To be able to start the morphing, chapter 5 removes the initial topology-
induced constraints and guarantees that the polyhedron is not immediately self-intersecting. Fi-
nally, chapter 6 ensures that, throughout the morphing, the building polyhedron keeps well-defined
vertices and self-intersection free facets.

2.6 Conclusion

This chapter has described the kind of input data used in our work, namely aerial DSMs and
3D building models. Then our objectives were analyzed through a review of recent works on
building reconstruction. Finally, the proposed overall approach has been detailed, alternating the
reconstruction of the superstructures (part II) and the fitting of the roof planes (part III) as an
iterative process.

55

Part II

Automatic Roof Superstructure
Reconstruction

57

Chapter 3

Automatic Roof Superstructure
Reconstruction

Contents
3.1 Introduction . 57

3.1.1 Context . 57

3.1.2 Related Work . 58

3.1.3 Proposed Approach . 60

3.2 3D Building Model Representation B = (R,S) 60

3.2.1 Polyhedral Base Building R . 62

3.2.2 Parametric Superstructures S . 65

3.2.3 Discussion . 72

3.3 Energy Formulation . 74

3.3.1 Minimum Description Length . 74

3.3.2 Model Complexity L(B) . 74

3.3.3 Error Term D(B) . 75

3.3.4 Fixed Roof Additive Reformulation . 76

3.4 Optimization . 77

3.4.1 Generation of Superstructure Hypotheses 77

3.4.2 Selection of Disjoint Superstructures . 79

3.4.3 Local Maxima Filtering . 80

3.5 Results . 83

3.6 Discussion . 86

3.6.1 Library Extensibility . 86

3.6.2 Future work . 87

3.7 Conclusion . 88

3.1 Introduction

3.1.1 Context

A superstructure is defined as an element of a building that is only relevant at high levels of detail
(LOD). It is a small scale feature relative to the whole building. Concerning roof superstructures, it
can be a chimney, a dormer window, some glass roof or skylights, a roof terrace, an air conditioner
placed on the roof, an antenna, pipes on the top of a factory... Since the input data is given as a 2.5D

58 3. Automatic Roof Superstructure Reconstruction

Figure 3.1: Input lidar DSM and buildings with roof superstructures reconstructed in [MV99].

DSM, the present work does not and cannot address the reconstruction of façade superstructures
like windows, doors, balconies, arches, door staircases... This chapter assumes that a fairly accurate
polyhedral representation of the building without superstructures is already at hand.

3.1.2 Related Work

3.1.2.1 Roof Superstructure Reconstruction

To our knowledge, [MV99] is the first work to explicitely reconstruct the roof superstructures.
They proposed a single type of superstructure: dormer windows with a horizontal rectangular roof.
However, they mentioned dormer windows with a gable roof as an extension. Their approach is
based on moments of the laser point cloud and is hierarchical. The first pass reconstructs the base
buildings and the second pass detects the sufficiently large outlier regions and fits the 4 parameters
of their dormer windows to each of these regions. The input lidar point cloud only contained around
20 measured points per superstructure. Thus, the reconstruction of smaller superstructures like
chimneys was unrealistic and the number of parameters of the reconstructed dormer was to remain
low (Fig. 3.1).

[Nan06] tackles the detection and scale-free reconstruction of chimney-like cuboidal superstruc-
tures out of a single aerial image. The outline of the process is as follows. First, a hierarchichal
segmentation of the aerial image yields image region hypotheses for superstructure facets and the
shadow region projected on the roof. These regions are then grouped together to find associa-
tions of 3 visible superstructure facet regions and their shadow region that are meaningful both
radiometrically and geometrically. The reconstruction is then performed for each such group of
image regions up to the unknown scaling due to the monocular setting. This method performs
particularly well in a restricted setting where the superstructures are bright on a dark roof with
clearly distinguishable facets. It further requires that the shadow is entirely cast on a single roof
plane, possibly preventing a robust detection of superstructures near a gutter of roof or with a
shadow spreading over multiple roof planes.

In [LDZPD10], a model-based building reconstruction approach is applied to the reconstruction
of superstructures. However, even if this method is automatic, it relies on unchallenged input
2D building (and superstructure) footprints. The results are convincing but only address the
easier altimetric reconstruction problem, rather than the difficult superstructure detection and
planimetric delineation problems, which are performed manually.

Apart from [BBPDM07], an extension of which is presented in this chapter, and [DB08] pre-
sented in appendix B, we are not aware of another work directly focusing on reconstructing roof
superstructures. However, with the increasing resolution of the input data, recent papers, such
as [EAH08], that use a bottom-up approach are able to detect and often reconstruct the large
superstructures. They are however based on detecting features such as the superstructure planes.

3.1. Introduction 59

Therefore they fail to detect all the facet planes necessary to perform a faithful reconstruction.

3.1.2.2 Building Reconstruction from Satellite Imagery

The detection and reconstruction of roof superstructures from very high resolution aerial data
(10cm per pixel) is a problem that share many similarities with the detection and reconstruction
of whole buildings from satellite imagery. Whereas the availability of very high resolution aerial
imagery is relatively new and thus dealing with roof superstructures is a new field of research,
there has been much work on the reconstruction of building from satellite imagery, as discussed in
section 2.4.

One distinction however is that, whereas the ground is considered to be fairly smooth and
flat when reconstructing buildings from satellite data, this assumption no longer holds for roof
superstructures. Superstructures are supported by the base roof planes that may be themselves
difficult to reconstruct, and these roofs feature discontinuities and slope changes. Furthermore, the
superstructure geometries themselves are higly correlated with their supporting roof planes. This
means that trying to reconstruct superstructures on an erroneous base roof is likely to give poor
results.

3.1.2.3 Façade Reconstruction

Reconstruction roof superstructures is a problem that appears related to façade element recon-
struction. In both cases, it involves reconstructing fine details that modify the planar approxima-
tion of the base roof plane or of the wall façade.

It appears that the façade elements present much more variations than roof elements but tend,
in general, to be more organized. The presence of variations is especially true for elements of the
first floor, which include store windows. However, whereas façades have an intrinsic orientation
given by horizontal and vertical lines, it is more ambiguous to assign an orientation to a roof facet.
All the façade superstructures are oriented along those horizontal and vertical directions, which
reduces greatly the search space. On the other hand, roof superstructures tend to be aligned with
interior and exterior walls of the building. In rectilinear buildings we can reasonably assume that
the interior walls are along one of the two orthogonal directions of the façades. However there
may be some ambiguities in non-rectilinear buildings. Furthermore, the prior that elements tend
to be aligned and to have equal dimensions is stronger on the façade elements than on the roof
elements. All in all, compared to roofs, façades contain generally more elements, these elements
vary more from one building to another than roof elements, and they are more structured (e.g.
vertical/horizontal orientation, alignments and symetries). The strong vertical and horizontal
priors of the façade elements helps greatly by resampling the input data (image or lidar data) in
the geometry of the approximated wall plane, a process called rectification.

As in the reconstruction of whole buildings, there is schematically two approaches. Either
features are extracted from the data to build up the façade elements, or a strong prior knowledge
is used to decompose the façade down to its individual elements.

Feature-based approaches To take advantage of the alignment of façade elements, a feature-
based approach is to accumulate boundary evidences vertically and horizontally (e.g. [SB03]).
These accumulations let the boundary alignements stand out and allow the detection and coarse
reconstruction of the façade elements. The placement and dimensions of these façade elements are
then usually locally optimized to better fit the image or lidar data.

Grammar-based approaches The façade structure has lead works [MZWVG07, KTS+09,
BR06a] that define a grammar to describe the façade and the layout of its elements. For in-

60 3. Automatic Roof Superstructure Reconstruction

stance, a simple grammar would decompose a façade vertically into floors, then horizontally into
tiles. Then each tile may refer to a wall, a window or a door. Based on such a grammar, a
model-based reconstruction of the façade searches within the possible realizations of the grammar
the derivation that fits best the input data. This optimization has been performed [BR06a] using
a stochastic approach based on Reversible Jump Monte Carlo Markov Chains (RJ-MCMC). The
ealier approach of [DTC04] uses this stochastic optimization on a simpler grammar, which does not
encode explicitely the alignements and symmetries. It simply considers that each wall features a
set of primitive such as doors, windows or columns. These alignement and symmetry properties are
however encoded into the likelihood of the façade configuration. As model-based approaches, the
downside of the grammar-based approaches is their inherent restriction of the modelizable façades.

3.1.3 Proposed Approach

This chapter tackles the following problem:

�

�

	

Problem Statement

How to automatically detect and reconstruct, using a DSM, an unknown number of roof
superstructures, on a 3D building model, given that the input building model is assumed
to be a good approximation of main roof planes of the true building?

Our approach to solve this problem is detailed in the subsequent sections: section 3.2 intro-
duces the building representation that formally defines the search space: the set of buildings with
superstructures that are considered as possible reconstructions. Then, the purpose of section 3.3 is
to choose an energy function that will be able to value each building model with superstructures.
Section 3.4 details how the building that minimizes the energy is automatically determined within
the context of this chapter where the façades and roof facets are kept fixed and the superstructures
have to be detected and reconstructed. Before concluding the chapter, sections 3.5 and 3.6 present
the results achieved by our method and discuss the design choices and possible extensions.

3.2 3D Building Model Representation B = (R,S)

In this section we detail how the 3D building model is represented in our algorithms. This defines
the search space: the continuous set with variable dimensions of buildings B with superstructures
in which the ”best” building is searched for. The exact definition of the ”best” building within
this set, given an input DSM, is detailed in section 3.3. However this choice of representation
is not particularly tailored to be used with the energy defined in section 3.3. The very same
representation can be used with other energy functions, such as an energy that evaluates the
quality of a 3D building model using the correlation between images instead of the distance to a
DSM, or a Lidar point cloud.

Superstructures are defined as disjoint local geometric modifications of a base building, leading
to a two-part representation: a building B is described by a general polyhedron R (figure 3.2.a)
representing the base building (roofs and façades) on one side and a set S of modifying roof
superstructures on the other (figure 3.2.b). The reconstruction of the façade superstructures, like
doors, windows or balconies is outside the scope of this work, they will thus not be represented. This
is a rudimentary form of a grammar based representation [MWH+06]. To model more complex
interactions between the superstructures and the base model, a more complex grammar based
representation should be introduced.

3.2. 3D Building Model Representation B = (R,S) 61

πs4

r0

r1

r2

πr2

πr1
πr0

s0

s1

πs2

s2

πs0

πr0 \ πS

πr2 \ πS

πs1

πs3

πr1 \ πS

s3

s4

(c) Supports

(d) Effective roof
supports

r0

r1

r2
(a) 3D model without superstructures

(b) 3D model with
superstructures

Figure 3.2: (a) A 3D building model with 3 roof planes R = {r0, r1, r2} and no superstructures,
(b) the same building model modified by 5 superstructures S = {s0, s1, s2, s3, s4}, (c) the supports
(i.e. vertical projections) of the roofs (πri) and of the superstructures (πsi), and (d) the effective
supports of the roofs (πri \ πS), which are the projections of the parts of the roofs ri that are not
altered by any superstructure.

62 3. Automatic Roof Superstructure Reconstruction

3.2.1 Polyhedral Base Building R

This section defines polygons and polyhedra, which are ubiquitous primitives for modeling man-
made objects. Then, we discuss our choice of modeling buildings without superstructures using
polyhedra. The representation of these polyhedra is then discussed and the ???????

3.2.1.1 Polygon Definitions

Whereas points, (line) segments, lines, and planes are common geometric primitives in R3, 2D
or 3D polygons with or without holes deserve a definition to lift any possible ambiguity.

Definition 1 (2D Polygon). A 2D polygon is a closed piecewise-linear curve in R2 described by
a circular chain of 2D segments, or equivalently by a circular list of 2D points.

Definition 2 (Simple 2D Polygon). A 2D polygon is simple iff it is defined by a self-intersection
free curve.

A simple polygon has a well-defined bounded interior region. Thus, it models a connected region
of R2 enclosed by a single piecewise-linear boundary. Simple polygons are topologically equivalent
to a disk. Depending on the context, a simple 2D polygon may refer to either its boundary curve
or its interior surface.

Definition 3 (2D Polygon with holes). A 2D polygon with holes is defined by a distinguished
polygon, named the outer boundary, and a set of 2D polygons modeling the hole boundaries.

Definition 4 (Simple 2D Polygon with holes). A 2D polygon with holes is simple iff its boundary
polygons are simple and disjoint from each other, and the outer boundary polygon encloses the hole
boundary polygons.

Simple 2D polygons with holes are thus an extension of simple 2D polygons to model a region
with disconnected piecewise linear boundaries. The 2D polygon definitions may now be extended
to 3D by considering 2D polygons inside an arbitrary supporting 3D plane instead of the plane R2.
3D polygons with holes are defined likewise.

Definition 5 (3D Polygon). A 3D polygon is a closed piecewise-linear planar curve in R3 described
by a circular chain of coplanar 3D segments, or equivalently by a circular list of coplanar 3D points.

Definition 6 (3D Polygon with holes). A 3D polygon with holes is defined by a distinguished 3D
polygon, named the outer boundary, and a set of 3D polygons modeling the hole boundaries, such
that all these polygons are coplanar.

The definition of simple 3D polygons with or withoPerrinette18 holes follow trivially from their
2D counterpart by restricting the ambient space R3 to the plane supporting the 3D polygon. An
alternative extension of 2D polygons to 3D may not require the coplanarity of the 3D polygon.
Except in section 5.1.1.2, 3D polygons with or without holes mentionned in this thesis will be
assumed to be coplanar, following the definitions above.

3.2.1.2 Polyhedron Definitions

Definition 7 (Polyhedron). A polyhedron is a bounded, connected and piecewise-planar manifold
surface without boundary in R3, described by a set 3D polygons (without holes).

Definition 8 (Simple polyhedron). A polyhedron is simple iff its 3D polygons are simple and
define a self-intersection free surface.

3.2. 3D Building Model Representation B = (R,S) 63

To comment on this definition, it implies that a simple polyhedron defines a bounded connected
volume without interior volumetric holes. This defintion does not

From the geometry of the polyhedral surface, the combinatorial topological elements of a poly-
hedron and their supporting geometric elements can be defined:

Definition 9 (Facet). A facet models a maximal non-trivial connected planar region of a polyhedral
surface, and is supported by a 3D polygon (possibly with holes).

Definition 10 (Edge). An edge models a maximal non-trivial connected 3D segment of the
boundary of a facet polygon, and is supported by a 3D line.

Definition 11 (Vertex). A vertex models an endpoint of an edge segment, and is supported by a
3D point.

The assumption that its boundary is manifold (i.e. restricting the neighborhood of any bound-
ary point to the boundary surface yields a topological disc), prevents the consideration of degenerate
polyhedra that have non-manifold points on their surface, such as distinct edges intersecting or
overlapping.

3.2.1.3 Polyhedral Building Modeling

The vast majority of buildings may be well approximated using piecewise-planar surfaces with
large planar facets. Relatively few complex buildings feature non piecewise-planar surfaces. The
rarity and the complexity of these buildings of special interest make them suitable to more accurate
and more costly semi-automatic reconstruction techniques rather than the fully automatic method
developped here. Apart from these complex buildings, we consider that surfaces that are not
piecewise-planar may be approximated using planar primitives. The buildings considered in this
thesis may then be modeled generically with a polyhedron.

The facets of a building with unmodeled superstructures measure approximately from 1m to
100m. At this metric scale of a building without superstructures, we consider that the data at
hand for each facet is of sufficient quality to relax all the constraints but the verticality of the
façades. Namely, no geometric assumption is made about any symmetry, orthogonality or edge
horizontality, except for the verticality of the facets describing the façades.

Within our context, a polyhedron is used to model each building that will be processed in-
dependently. The interface between the air and a building is a surface with a boundary at the
intersection of the ground or neighboring buildings. A polyhedron, modeling a building, is virtually
closed by extending down the façade facets and intersecting them with a bottom-facing plane that
approximates the ground level around the building, because it is easier to deal with polyhedral sur-
faces without boundaries. This virtual plane will not be fitted to the input DSM. Furthermore, it
will be set virtually so low that it does not interact with facets that are not modelling the building
façade.

3.2.1.4 Polyhedron Representation

The description of a polyhedron is two-fold:

Its topology is the combinatorial part. It can be given by the incidence graph linking its combi-
natorial elements (vertices, edges and facets): each edge is linked to its 2 endpoint vertices
and its 2 adjacent facets. For instance, if the polyhedral facets have no holes, the topology
may be encoded using the well-known halfedge data structure [Wei85, Ket99].

Its geometry is the continuous part, that makes the abstract polyhedral topoloy concrete by
giving the polyhedron a geometrical embedding. It can be given by the (x, y, z) coordinates
of the points that support its vertices.

64 3. Automatic Roof Superstructure Reconstruction

A halfedge data structure describes the polyhedral geometry using the vertex point locations and
the polyhedral topology encoding the adjacency relations between combinatorial vertex/edge/facet
objects. This data structure is compact and allows a convenient exploration of the surface using
pointer to adjacet facets, oriented edges or vertices. It may be extended to facets with holes by
registering all the boundary polygons in each facet record.

This kind of Boundary Representation (B-Rep) is generally opposed to Constructive Solid
Geometry (CSG), where a solid is modeled using Boolean operators on elementary solids. For
instance, the building decomposition into a base polyhedron R and a set of modifying superstruc-
ture elements S can be viewed as a CSG decomposition into its superstructures and a polyhedron
modeling the base building.

CSG is generally preferred because it conveys more semantics [FKL+98]. However, CSG rep-
resentations do not explicitly store the surface of the object and rather emphasize the polyhedral
volume. They are thus less adapted to reconstruction applications that aim at fitting the object
surface to some data. In our case, it makes sense to define the superstructures using a CSG for-
mulation as modification of a base building polyhedron, and to export the resulting polyhedron
in B-Rep to get explicitly the polyhedron boundary in order to evaluate simply its goodness of fit
relative to the input data.

The Nef polyhedron approach [GHH+03] seems to present an interesting trade-off between
B-Rep and CSG. It models polyhedra using boolean operations on 3D half-spaces. It is thus
CSG-based with half-space primitives. However the simplicity of these primitives allows to explore
the Nef polyhedron surface easily, as when using a B-Rep, with operations such as exploration
of the vertices adjacent to a facet, edges adjacent to a vertex. However Nef polyhedra model a
broader class of polyhedral surfaces that may be unbounded and non-manifold, which is out of our
scope. Handling these surfaces complexifies the handling of Nef polyhedra. Therefore, the B-Rep
is preferred.

Using a Boundary Representation of the input base polyhedron, we abusively identify the
polyhedron R with its set of 3D-polygons {r} when using the notation r ∈ R. Similarly, we denote
by (x, y, z) ∈ R a point of the volume inside the polyhedron R.

3.2.1.5 Surfaces S as functions zS : πS → R, with πS ⊂ R2

A polyhedron R defines the surface S of its boundary. To be able to directly compare a surface
to a DSM, a tool is needed to express it in the heightfield geometry of the DSM. A surface can be
cast as a function that provides the highest elevation z of its points (x, y, z) that have the given
x and y coordinates. This can be seen as intersecting the surface with vertical lines. When the
intersection is empty, the function is not defined, and when there is at least one intersection point,
the function value is the elevation of the highest elevation point. The height function (fig. 3.3)
of a surface S, denoted zS is formally defined as:

zS(x, y) = max {z ∈ R / (x, y, z) ∈ S} (3.2.1)

We also introduce the support πS of a surface S, which is the definition domain of zS . More
intuitively, this is the set of 2D points that results from a vertical projection of the surface.

πS =
{

(x, y) ∈ R2 / ∃z ∈ R, (x, y, z) ∈ S
}

(3.2.2)

This height function zS : πS → R is not only used to compare a polyhedron to a DSM, but also
to express the geometric modifications of the different superstructure types (section 3.2.2) and to
compare a DSM to a building with superstructures.

Considering a surface S using its height function only is not injective. As only the maximum
elevation is encoded in zS , the lower parts of the surface are not described by S. If R is a
polyhedron, then zR is piecewise linear and its discontinuities may correspond to either the support

3.2. 3D Building Model Representation B = (R,S) 65

Figure 3.3: The bold surface represents a section of a polyhedral scene. The building is closed at
the bottom using an accessory facet (dotted). The corresponding height function (dashed) has no
overheads.

of its vertical facets (the building façades) or edges of bottom-facing facets. As a DSM does not
present any information about overhead parts, they will not be reconstructed in the proposed
method: the only bottom-facing facet of the reconstructed building models will be a virtual facet
that closes the building by intersecting the bottom of its façades. Note however, that the base
polyhedral building may contain overhanging parts. The height function view of such a building
acts as if the volumes below these overhanging parts were filled in.

3.2.2 Parametric Superstructures S

Contrary to the polyhedronR that describes the main roof planes and the façades at roughly the
metric scale, the modeling scale of the superstructures is rather decimetric than metric. This means
that the currently available data is not sufficient anymore to allow a reconstruction of those super-
structures without any prior knowledge. Furthermore, superstructures appear to be less variable
than roofs, at least at the expected reconstruction scale of this work. This is why prior knowl-
edge is introduced here using a finite collection T = {Chimney, Terrace,GlassRoof,Dormer}
of parametric superstructure types, illustrated in figure 3.4. This list of superstructure types
has been designed after surveying the superstructures present on the roofs of multiple European
cities [dB07]. The proposed superstructures are fairly generic, and the list is easily extensible as it
will be discussed in section 3.6.

The superstructures are modeled with an unordered set S. Each superstructure s ∈ S is defined
by the tuple (~φ, θ, τ,R), where:

– R is the base building modified by the superstructure.
– τ ∈ T = {Chimney, Terrace,GlassRoof,Dormer} is the superstructure type.
– θ is a 2D rectangle that specifies the position, scale and orientation of the support πs of the

surface modified by the superstructure. It is the oriented bounding box of the support of the
superstructure along a given orientation. By extension, we also denote by πs the support of
a superstructure. For superstructures s that have a rectangular support, θ = πs.

– ~φ ∈ Rdτ is a vector of altimetric parameters φi that specifies each of the dτ vertical degrees
of liberty of superstructures of type τ .

The DSM data is structured as a 2.5D grid. To take advantage of the regular density of the
DSM and design an efficient algorithm, a discrete subset Θτ,R of all the 2D rectangles is introduced
to describe the plausible θs given the base building R and the superstructure type τ , whereas the
set Φθ,τ,R ⊆ Rdτ of the plausible altimetric parameters ~φ is kept continuous. Please note that the
subscripts in the notations Θτ,R and Φθ,τ,R document elements that are required by the definition
of these sets.

66 3. Automatic Roof Superstructure Reconstruction

(a)

1

−1

−1

1

φ1

θ=πs

(b)

1

−1

−1

1

θ=πs

φ1

z=0

(c)

1

−1
−1

1

φ1

θ=πs

z=0

(d)

1

−1

−1

1

φ1

θ

φ2

φ2−φ1

πs

Figure 3.4: 4 simple superstructure types: (a) GlassRoof , (b) Terrace, (c) Chimney and (d)
Dormer window. They are illustrated here on a single roof plane. Below each superstructure is
its bold rectangle θ, and its light-gray πs support.

3.2. 3D Building Model Representation B = (R,S) 67

θ

~uθ

~vθ

~cθ

µθ(~p) = 2.3

λθ(~p) = 2.26

~p

DEM square grid

Figure 3.5: The rectangle θ is given by its center ~cθ and the vectors ~uθ, ~vθ. It defines the local
coordinates (λθ(~p), µθ(~p)) of any point ~p. Dots are the grid of points with integer coordinates.

3.2.2.1 Superstructure geometry

We only consider here 2.5D superstructures that modify a 2.5D base building, meaning that
any vertical ray intersects the building surface or the surface of the building modified by a set
of superstructures only twice, the lower intersection being with the virtual bottom facing ground
facet. The geometry of a 2.5D surface is entirely specified by a heightmap (x, y) 7→ z(x, y) defined
over a given support. The heightmap of a building R is modified locally by a superstructure s:

z(R,{s})(x, y) =

{
zR(x, y) if (x, y) ∈ πR \ πs
zs(x, y) if (x, y) ∈ πs

(3.2.3)

To specify the heightmap zs in a way that is independent by translation, horizontal rotation
and scaling, a local frame (~cθ, ~uθ, ~vθ) is introduced based on the rectangle θ (Fig. 3.5) where :

– ~cθ is the 2D center of the rectangle and the origin of the local frame coordinate system.
– ~uθ and ~vθ are two orthogonal 2D vectors such that vertices of the rectangle θ are the four

points (~cθ±~uθ±~vθ) and that the frame (~cθ, ~uθ, ~vθ) is direct. This makes θ the [−1, 1]2 square
within its local frame coordinate system.

It should be noted that the definition of ~uθ and ~vθ from a rectangle θ presents an ambiguity. If
(~cθ, ~uθ, ~vθ) is a valid frame, so is (~cθ, ~vθ,−~uθ) , (~cθ,−~uθ,−~vθ) and (~cθ,−~vθ, ~uθ). To disambiguate
the specification of the local frame coordinate from a given rectangle, we impose that zR(~cθ + ~vθ)
is higher than zR(~cθ − ~vθ), zR(~cθ + ~uθ) and zR(~cθ − ~uθ). In ambiguous cases where zR(~cθ + ~uθ) =
zR(~cθ+~vθ), we will consider separately the two possible frames as two different candidate rectangles,
when it impacts the geometry (i.e. with the dormer superstructure types).

The local frame (~cθ, ~uθ, ~vθ) allows the expressions of a 2D point ~p within the frame coordinates
(λ, µ), and conversely to generate the 2D point, denoted ~pθ(λ, µ) from the frame coordinates.

λθ(~p) =
(~p− ~cθ) · ~uθ
~uθ · ~uθ

, µθ(~p) =
(~p− ~cθ) · ~vθ
~vθ · ~vθ

and ~pθ(λ, µ) = ~cθ + λ~uθ + µ~vθ

68 3. Automatic Roof Superstructure Reconstruction

Type Height Support
τ ∈ T zs(~p): θ → R πs ⊂ R2

Chimney φ1

rectangle θ
Terrace

GlassRoof zR(~p) + φ1

Dormer zR(~p)− |λθ(~p)|φ1 + 1−µθ(~p)
2 φ2 {~p ∈ θ / |λθ(~p)| ≤ 1−µθ(~p)

2
φ2

φ1
}

Table 3.1: The geometry of each superstructure type.

Corners of the rectangle θ are thus simply the four points ~pθ(±1,±1). Those frame coordinates
(λ, µ) are used to express, in table 3.1, the geometric modifications of a superstructure in the local
frame (~cθ, ~uθ, ~vθ) of the 2D rectangle θ.

– A Chimney or a Terrace are both modeled using a horizontal rectangle linked to the roof with
vertical facets. The reason for separating those superstructures into two types is that their
sets of plausible rectangles θ and altimetric parameters ~φ are disjoint: generally speaking, a
terrace is below the roof with a much bigger area than the chimneys that are above the roof.

– GlassRoofs are vertical offsets of the roof above it with a rectangular support. Thus, they
share their slopes with the underlying roofs. This allows to model skylights that are contained
in a single roof facet, but also those that overlap the rooftop.

– Concerning Dormer windows, we assume that dormer windows do not span multiple roof
facets, thus, each dormer belongs to a single roof facet r ∈ R. The roof top of a dormer can
be constructed by linking the back point on the roof (~cθ + ~vθ, zr(~cθ + ~vθ)) to the top point
of the dormer façade (~cθ − ~vθ, zr(~cθ − ~vθ) + φ2), that is at a distance φ2 above the roof r.
(φ2 − φ1) is simply the length of the vertical edges of the dormer façade.

3.2.2.2 Non-overlapping assumption

Furthermore, we denote by (s0 6 ∩s1) the relation that states whether superstructures s0 and s1

have disjoint supports :

s0 6 ∩s1 ⇐⇒ area(πs0 ∩ πs1) = 0 (3.2.4)

Throughout this work we assume that the superstructures have disjoint supports:

∀s0, s1 ∈ S, s0 = s1 or s0 6 ∩s1 (3.2.5)

Under this assumption, the geometry of a polyhedral building R modified by an unordered set
of superstructures S is well-defined:

z(R,S)(x, y) =

{
zR(x, y) if (x, y) ∈ πR \

⋃
s∈S πs

zs(x, y) if ∃s ∈ S such that (x, y) ∈ πs
(3.2.6)

Assuming no superstructure overlaps, there is no need to define the combination of two super-
structure geometries. Thus, the superstructure set S does not need to be ordered. This is required
by the optimization algorithm that handles the superstructures as an unordered set.

3.2. 3D Building Model Representation B = (R,S) 69

3.2.2.3 Discrete set Θτ,R

The set of all the rectangles of the 2D plane is continuous with 5 degrees of freedom : 2 for the
position, 1 for the orientation and 2 for the dimensions. To discretize this set, first a discrete set of
principal directions is computed from the building R, then a 2D square grid is constructed along
this direction to quantify both the position and the dimensions of the candidate rectangles.

A possible approach could have been to quantize the orientations with a fixed angular step of a
few degrees (~u =

(
cos(2kπ

N), sin(2kπ
N)
)
, k = 1 . . . N for some integer N). The drawback of this quan-

tization is that the orientations are either oversampled, leading to a huge number of superstructure
hypotheses and thus extremely slow computing times, or undersampled, leading to inaccurate or
erroneous superstructure reconstructions. For simple buildings, a principal component analysis
(PCA) of the building footprint gives good estimates of the orientation of its superstructures, but
it can fail even for rectilinear buildings (e.g. buildings with façades that are either parallel or
orthogonal), like L-shaped buildings. Therefore we decided to use a more extensive set of orienta-
tions computed from the building R. Each facet of the roof r ∈ R may determine a few preferred
orientations (see figure 3.6.b).

– The horizontal orientations of the 3D segments forming the edges of the 3D polygon r. This
includes orientations of the façades for roof facets that are neighboring one through one of
their edges.

– For roof facets r that are not horizontal, there is a unique orientation defined only by its
supporting plane without taking into account its boundary. This orientation is the horizontal
orientation of the horizontal 3D lines contained in the plane supporting the roof facet.

Some robustness and speed-up has been achieved by only considering a subset of these orientations.
A practical choice has been to consider only one orientation per facet. This is the orientation in
the former set of orientations that is the closest from the latter: we only consider, for each roof
facet, the orientation given by one of its edges that has the smallest slope. This edge is most likely
representing a rooftop or a rain gutter.

Now that a finite set of orientations has been defined, the positions and dimensions of the
rectangles have to be quantized. The idea is to resample the DSM along each of the preferred
orientations and allow only axis aligned rectangles in the resampled DSMs that have integer pixel
coordinates.

To construct a 2D square grid from an orientation, one need two more elements: the grid
quantization step r in each direction, and the position of one of its vertices ~c. The quantization
step r is chosen isotropic (equal in both direction) and left as a parameter of the algorithm. A
reasonable choice is the horizontal resolution of the fitted DSM. However, there is a computing
time/reconstruction accuracy trade-off that may be used to compute less accurate superstructures
in shorter time by selecting a greater grid step. The position of a vertex is chosen so that this
vertex lies on the edge that originated the orientation. This snapping to the façade or edge
introduce a prior that a superstructure near a façade or a roof feature tends to be aligned with
that feature. This reduces some reconstruction artefacts and produces simpler and more visually
appealing reconstructions.

Given a normalized orientation ~u, a grid quantization step r, and any one point of the grid ~c,
a rectangle θ0 can be constructed from the frame (~cθ0 , ~uθ0 , ~vθ0) = (~c, r~u, r

(−uy
ux

)
). This rectangle

defines a regular grid of points:

~pθ0(Z2) =
{
~pθ0(i, j) = ~cθ0 + i.~uθ0 + j.~vθ0 / (i, j) ∈ Z2

}
Conversely, the indices (i, j) of a point of the grid can be computed using the local frame coordinate
system of θ0: (i, j) = (λθ0(~p), µθ0(~p)). The rectangle θ0 is called the reference rectangle of the grid
~pθ0(Z2). Simply put, a 2D point, an orientation and a quantization step define a resampling of the
DSM. The rectangle θ0 coresponds to a 2 by 2 pixel axis aligned rectangle in the resampled DSM
and (λθ0(~p), µθ0(~p) is the vector from ~cθ0 to ~p expressed in pixels of the resampled DSM (Fig. 3.5).

There is an infinite number of rectangles that can be generated from the reference rectangle θ0

70 3. Automatic Roof Superstructure Reconstruction

πs1

πs2

πr1

πs0

s1
s0

s2

πr2

πr0

r2
r1

r0

3D

2D

(a) (b)

Figure 3.6: (a) A 3D building model and the 2D supports of its facets. Contrary to the Chimney
s1, the Chimney s0 and the Dormer s2 verify the building support inclusion property. And s2

is the only superstructure to span a single roof facet and thus to verify the unique facet support
inclusion property. The top view of a building model (c) illustrates the influence of each of its roof
edges on the orientation of each roof facet.

by applying a translation and a scaling such that its four corners have integer coordinates in
the reference frame defined by θ0: λθ0 , µθ0 ∈ Z. Each such rectangle is identified by its indices
(i0, j0, i1, j1) ∈ Z4 that provide the frame coordinates of its four corners: (i0, j0), (i0, j1), (i1, j1) and
(i1, j0). For instance a rectangle θ has indices (−1,−1,+1,+1) relative to itself. The rectangle θ
of indices (i0, j0, i1, j1) relative to the rectangle θ0 is defined by:

~cθ = ~cθ0 +
i0 + i1

2
.~uθ0 +

j0 + j1
2

.~vθ0

~uθ =
i1 − i0

2
.~uθ0

~vθ =
j1 − j0

2
.~vθ0

And the relation between the frame coordinates are:

λθ(~p) =
2.λθ0(~p)− (i0 + i1)

i1 − i0
µθ(~p) =

2.µθ0(~p)− (j0 + j1)

j1 − j0

Each superstructure type τ comes with some restrictions on the candidate rectangles θ in order
to only consider a finite set of indices (i0, j0, i1, j1) and thus a finite set of rectangles Θτ,R. This set
of candidate rectangles Θτ,R for each superstructure type τ is simply the finite subset of rectangles
generated by the reference rectangles that satisfy the following restrictions of type τ :

Building support inclusion (πs ⊂ πR): A restriction on θ that is common to all superstructure

types τ is that the support πs of a superstructure s = (~φ, θ, τ,R) must fall inside the support

of the building πR for every plausible vector ~φ ∈ Φθ,τ,R. This restriction is easy to verify

for superstructures that have a support that does not depend on ~φ. This is the case in the
proposed library of superstructures for chimneys, roof terraces and glass roofs: they have a
rectangular support, so πs = θ does not depend on ~φ. For instance, the protruding chimney
s1 of figure 3.6.a is not allowed in our model.

Orientations remain local The prefered orientations of a roof facet are given by its surrounding
edges (see figure 3.6.b, and section 3.2.2.3). Because every orientation is generated by a single

3.2. 3D Building Model Representation B = (R,S) 71

Type Constraints on θ : Θτ,R = {θ ⊆ πR}

τ ∈ T 2‖~uθ‖ 2‖~vθ‖ min(2‖~uθ‖, 2‖~vθ‖)

Chimney [0.3m, 5.0m] [0.3m, 5.0m] [0.3m, 1.0m]
GlassRoof [1.0m, 5.0m] [1.0m, 4.0m]
Terrace [2.0m, 4.0m] [1.0m, 3.0m]
Dormer [1.0m, 5.0m] [1.0m, 7.0m]

Table 3.2: Indicative minimum and maximum dimensions used for each superstructure type.

edge of the roof, neighboring at most 2 roof facets r1, r2, the position of θ relative to πr1 ∪πr2
is a meaningful consideration. The regularization introduced by snapping the orientation of
θ to the orientation of an edge makes more sense if it remains local. For instance in the
proposed library, all superstructures must have their support πs intersect the supports of
the roof facets r1, r2 that neighbor the edge that generated the superstructure orientation:
area (πs ∩ (πr1 ∪ πr2)) > 0.

Unique facet support inclusion (∃r ∈ R s.t. ∀r′ ∈ R \ {r}, area (πs ∩ πr′) = 0): A superstruc-
ture type may even disallow one of its superstructure to span multiple roof facets (for ar-
chitectural reasons or because the resulting geometric modification is no longer intuitive if
the superstructure spans multiple facets). This is the case, in the proposed library of su-
perstructures, for the Dormer window type of superstructures. For instance, the dormer
s2 of figure 3.6.a verifies this property contrary to the chimney s0 that spans the roof facet
supports of r0, r1 and r2.

Dimensions: Each superstructure type τ must define the plausible dimension of its superstruc-
tures which is equivalent to giving the minimum and maximum dimensions of the rectangle θ.
Because its dimensions are simply 2‖~uθ‖ and 2‖~vθ‖, in practice, this requirement is imple-
mented by giving the intervals minimum and maximum values of 2‖~uθ‖ and 2‖~vθ‖. The
minimum and maximum values typically used in this work are given in table 3.2. For exam-
ple, plausible roof terraces are between 2 and 4 meters along the preferred direction ~uθ and
between 1 and 3 meters in the orthogonal direction ~vθ. The extra constraint on the chimneys
insures that the width of the chimney stays below a meter. The dimensions given in table 3.2
are purely indicative. They intend to be loose constraints so that they do not rule out a
real superstructure. They admittedly introduce many parameters, but those have a physical
meaning. Thus if a reconstruction is not satisfactory because one of those parameters is too
tight, it is easy to understand which parameter to tune and how. For instance, if a city
contains buildings with very wide dormer windows, one only has to increase the maximum
allowable 2‖~uθ‖ value of Dormers to make those wide dormer windows plausible.

3.2.2.4 Continuous set Φθ,τ,R

The last element required to determine a superstructure within our representation, given the
base building R, the superstructure type τ and the rectangle θ is the vector of continuous param-
eters ~φ. As documented in table 3.1, each type τ defines the dimension dτ of the vector ~φ for
superstructures of this type. Furthermore each superstructure type τ restricts the reconstructed
superstructures to have their ~φ vector within a plausible set Φθ,τ,R that is context sensitive (de-
pending on the geometry of the roofR and the position and scale θ of the candidate superstructure).

The sets Φθ,τ,R are given in table 3.3. More verbosely, the constraints can be expressed as
follows:

72 3. Automatic Roof Superstructure Reconstruction

– A Chimney is higher than 0.5m above the roof. It is also higher than 30cm above the highest
point of the roof within a 3 meter radius to ensure a suitable flow of air.

– A Glassroof is between 20cm and 80cm above the roof, so that it is discernable from the
roof but not too high above it.

– A Terrace is lower than 2m below the roof, so that a door can be placed to access the terrace.
– A Dormer has a maximum façade height φ2 of at least 1m, to be able to fit a window. The

condition φ1 ≤ φ2 ensures that the oriented bounding box of the dormer is θ. The constraints
on a Dormer window involve two angles, α and β. tanβ is the slope of the roof top of the
dormer and tanα is the average of the two slopes tanα1 and tanα2 of the top edges of
the façade, as illustrated in figure 3.7. If the roof is horizontal along the direction ~uθ, then
α = α1 = α2 which yields a symmetric superstructure. The top of the façade is lower than
the intersection of the roof and the top edge of the dormer (tanβ ≤ 0) but the slope of the
top edge is not too steep(tanβ ≥ −1). The superstructure is convex(φ1 ≥ 0m) but the slope
of the top edge of the façade is not too steep(tanα ≤ 2). Finally, the support of a Dormer is
constrained to overlap only one roof facet, which implies that the upperbound on φ2

φ1
might

be strictly lower than 1.

α1

α2

ββ

top view

right view front view left view

φ1

γ

roof

φ2

φ2 − φ1

Figure 3.7: Dormer window parameterization: the angles α1, α2 and β in a Dormer window,
illustrated on a roof that has an exagerately great slope tan γ along the direction ~uθ.

3.2.3 Discussion

Let us compare our representation with the alternative design choice of modeling the building
and its superstructures with a single polyhedron. That is, the geometric superstructure modifica-
tions are applied to the base building polyhedron, resulting in a polyhedron only described by a
set of 3D polygons without any labelling. By deferring those geometric modifications until it is
necessary, for visualization or manipulation of the building with the superstructures, the proposed
representation has the following advantages:

Semantics: Each 3D polygon is labelled either as a roof facet, as the top facet of a given chimney,
as a left side façade of a dormer window... Furthermore, the number of each superstructures
is readily available. For instance, computing the total window area of all the dormers is
crucial to model the heat transfer of a roof. Such a specific query can directly be answered,
with a good approximation, by returning the total area of the dormer front façade polygons.

3.2. 3D Building Model Representation B = (R,S) 73

Type dim(Φθ,τ,R) Φθ,τ,R =
{
~φ = (φi)i=1...dτ ∈ Rdτ

}
τ ∈ T = dτ ∈ N that satisfy the following constraints:

Chimney 1 φ1 ≥ max

(
max
~p∈θ

(zR(~p)) + 0.5m, max
{~p/dist(~p,θ)≤3m}

(zR(~p)) + 0.3m

)
Terrace 1 φ1 ≤ max

~p∈θ
(zR(~p))− 2m

GlassRoof 1 0.2m ≤ φ1 ≤ 0.8m
0m ≤ φ1 ≤ φ2, 1m ≤ φ2

Dormer 2 tanα = φ1

‖~uθ‖ ≤ 2

−1 ≤ tanβ = φ2+zR(~cθ−~vθ)−zR(~cθ+~vθ)
2‖~vθ‖ ≤ 0

∃r ∈ R s.t. ∀r′ ∈ R \ {r}, area (πs ∩ πr′) = 0

Table 3.3: The set Φθ,τ,R used for each superstructure type τ is the intersection of all the above
mentionned constraints.

s0

(a)

(b)

s1

πs0

πs1

Figure 3.8: A 3D building model (a) and the supports of its facets (b). The chimney s0 overlaps
the large dormer s1.

Level of detail (LOD): This representation allows the user to export a 3D model of the building
at various levels of details. The lower level of detail is just the base building R, while the
highest one is the polyhedron resulting from the application of the modification of all the
superstructures in S. While the generation of lower LOD representations of a 3D polyhedral
model has been studied [May99, Kad02, Kad06], this process would not have been so simple
with a plain polyhedron.

Genericity/Robustness trade-off: The hybrid representation allows to give enough expression
power when a generic polyhedron can be used to fit robustly the input data while constrain-
ing the representation of fine scale details with a library of parametric models where the
fit would not have been carried out robustly because of insufficient or noisy data. In the
future, this scale limit between objects that can or cannot be reconstructed robustly without
incorporating priors will go down because of increasing data acquisition accuracy.

However, this representation of a building with superstructures have the following limitations:

No overlaps: Modeling the superstructures as an unordered set of parametric objects imposes
that the superstructures do not overlap. In practice, this constraint is not too restrictive:

74 3. Automatic Roof Superstructure Reconstruction

when a building may be interpreted as a base building with two overlapping superstructures,
as in figure 3.8, one of the superstructures is certainly big enough to be modeled as a part of
the roof. By integrating the facets of this big superstructure in the base building polyhedral
representation, the overlap conflict is resolved. For instance, considering figure 3.8, a first
pass would reconstruct the large dormer s1. The large facets of the dormer would be treated
as roof facets in a second superstructure reconstruction pass to reconstruct the chimney s0.

Arguable definition of the roof/superstructure classification: The limit is artificial when
considering whether some roof facets form a big dormer window or are just some part of
the main roof. A more hierarchical approach could be designed where the order of the
superstructures S has a meaning. The polyhedron modeled by a polyhedral building modified
by an ordered set of non-necessarily disjoint superstructures will then be the polyhedron R
modified iteratively with all the superstructures of S in the given order. First, this would
avoid issues with overlapping superstructures. Second, those roof modifications could also be
used to model any kind of geometric modifications, rather than just adding a superstructure.

Discretization of Θτ,R: The discretization of the positions, and horizontal scales of a super-
structure is only required by the superstructure candidate generation of section 3.4.1. For
instance, the stochastic diffusion scheme introduced in the appendix B, which is a variant of
the section 3.4.1, does not require a discretization of Θτ,R.

3.3 Energy Formulation

To be able to evaluate the coherence of a model with the fitted data, it is a common practice to
introduce a function that maps every 3D building model to a real number. The score of a building
model B is denoted E(B) and refered to as its energy to convey some physical intuition. This
scoring function yields a total order on the building models that is used to distinguish the best
model according to this score, which is the building model that minimizes the energy E(B) within
the set, described in section 3.2, of all the representable models.

3.3.1 Minimum Description Length

We choose a Minimum Description Length (MDL) approach [Ris78]. The score E(B) of a
building model B is thus expressed as the sum of an error term with respect to the DSM and a
complexity term:

E(B) = D(B)︸ ︷︷ ︸
Data/Model Error

+ L(B)︸ ︷︷ ︸
Model Complexity

(3.3.1)

This approach is well suited to search spaces with varying complexity, such as ours. It achieves
a balance between an overfit of the data by an overly complex model and a poor fit of the data by
a simplistic model. The score E(B) is based on the information theoretic description length of the
input data using the building model B. L(B) is the bitlength of the description of the 3D bulding
model itself, and D(B) is the bitlength of the description of the disparity between the fitted data
and the model.

3.3.2 Model Complexity L(B)

Assuming the independence of those disjoint superstructures, the description of a building
model B is just the concatenation of the description of its polyhedral part R and the descriptions
of all its superstructures s ∈ S, yielding the following additive equation on the bit lengths:

L(B) = L(R) + L(S|R) = L(R) +
∑
s∈S

L(s|R) (3.3.2)

3.3. Energy Formulation 75

The notation L(s|R) emphasizes the fact that the definition of a superstructure s is relative to
a given base roof R. The additive nature of this formulation without terms involving more than
one superstructure is a design choice required by the optimization algorithm used in this chapter.
Another possibility could have been to drop the independence assumption to allow cross terms like
binary terms. Those terms could introduce some regularization by rewarding sets of superstructures
that are aligned or regularly spaced, or have similar parameters ~φ (same height, slope, depth...).

3.3.2.1 Roof Description Length L(R)

In this chapter, the polyhedral part R of the building model B = (R,S), which represents the
main roof planes of B, remains fixed. So its description length L(R) remains constant, and is thus
ignored during the superstructure reconstruction step.

3.3.2.2 Superstructure Description Length L(s|R)

A superstructure is described by its type τ ∈ T , its rectangular approximate support θ ∈ Θτ,R
and a vector of continuous parameters ~φ ∈ Φθ,τ,R.

L(s|R) = L((~φ, θ, τ,R)|R) (3.3.3)

= L(τ |R) + L(θ|τ,R) + L(~φ|θ, τ,R) (3.3.4)

= − log pτ + log |Θτ,R|+ 12.dτ (3.3.5)

The probability pτ may be tuned to reflect the proportion of each superstructure type τ in a
typical building. Of course this notion of an average proportion of superstructure is rather vague as
it will vary greatly with multitude of factors like the country of interest, the region or the building
style. A uniform probability is used by default, when this kind of data is not available, resulting
in a − log pτ = − log 1

|T | = log |T | term.

Concerning the second term log |Θτ,R|, all the possible rectangular approximate support θ are
assumed to be equiprobable within the discrete set Θτ,R. Further architectural knowledge may be
embedded here to introduce priors on the placement and dimension of superstructures based on
the roof R and its type τ . This could refine or even replace by softer priors the loose hard prior
introduced in section 3.2.2.3.

Finally, the continuous parameter vector ~φ ∈ Φθ,τ,R ⊂ Rdτ is coded using 12 bits for each of the
dτ dimensions, quantizing real values into 4096 values. That leads to an unrestrictive centimetric
quantization, given that typical intervals in Φθ,τ,R span only a few meters.

3.3.3 Error Term D(B)

3.3.3.1 Pixel independence assumption

The error term D(B) measures the bit length needed to code the vertical difference between
the ideal DSM predicted by the building model B and the input DSM, for each pixels of the input
DSM within the support of the building πB. This assumption that the error of the input DSM
values relative to the model B are independent is a common practice to simplify the evaluation of
this error term D(B). However this independence assumption is clearly an approximation: it does
not take into account the usual regularization introduced by the DSM generation algorithms such
as [RC98].

76 3. Automatic Roof Superstructure Reconstruction

3.3.3.2 Additive Noise Model

We further assume that the independent vertical pixel errors (zDSM − zB) are identically dis-
tributed according to a probability P (zDSM − zB) of the following form,

P (zDSM − zB) = Cp,σ.e
−|zDSM−zB|

p

p.σp (3.3.6)

where p > 0 is a positive integer, σ is the prior standard deviation of the noise and Cp,σ is the
normalizing factor. Applying Shannon’s theorem, the minimum coding length of this probability
P is given by the sum of a constant logCp,σ and the Lp norm of the error:

− log (P (zDSM − zB)) = logCp,σ +
|zDSM − zB|p

p.σp
(3.3.7)

For instance, a normal error distribution assumption will be coded using a L2 norm.

3.3.3.3 Error Term Derivation

The assumed independence of the DSM values allows the direct summation of the pixelwise
error code length over arbitrary sets of pixels. Pixels of the DSM correspond to points in 3D,
where the height is given by the pixel value and the horizontal coordinates are given by the 2D
point ~pDSM (i, j) that is generated by the pixel indices (i, j) according to the geometry of the DSM.
When considering the summation of the single pixel error term − log (P (zDSM − zB)), over a set of
pixels that map to 2D points ~pDSM (i, j) inside a bounded 2D area A ⊂ R2, the error term DA(B)
is obtained:

DA(B) = |A ∩ ~pDSM (Z2)|. logCp,σ +
∑

A∩~pDSM (Z2)

|zDSM − zB|p
p.σp

(3.3.8)

Finally, the error term D(B) can be written as the error code length over the whole area πB.
Since a superstructure support is not allowed to overlap the outside of the building support, the
support of the building is given by the support of its roof planes: πB = πR. :

D(B) = DπB(B) = DπR(B) = |πR ∩ ~pDSM (Z2)|. logCp,σ +
∑

πR∩~pDSM (Z2)

|zDSM − zB|p
p.σp

(3.3.9)

3.3.4 Fixed Roof Additive Reformulation

Within this chapter, the polyhedral part R of the building representation stays fixed. This
constraint will lead to a reformulation of the energy E(B). We introduce the background hypothesis
B0 = (R, ∅): this is the building that has the roof planes R but no superstructures. By rearranging
the terms, using the pixel error independence assumptions, and superstructure non-overlap, the
resulting terms can then be written as:

D(B) = DπB(B) = DπR(R) +DπS (S)−DπS (R) (3.3.10)

= D(B0) +DπS (S)−DπS (R) (3.3.11)

= D(B0) +
∑
s∈S

(Dπs(s)−Dπs(R)) (3.3.12)

L(B) = L(R) + L(S|R) (3.3.13)

= L(B0) +
∑
s∈S

L(s|R) (3.3.14)

3.4. Optimization 77

The energy E(B) can then be turned into an additive energy with only a constant term E(B0)
depending on the building without superstructure B0 and unary terms ∆E(s) for each superstruc-
tures s ∈ S:

E(B) = E(B0)−
∑
s∈S

∆E(s) (3.3.15)

with ∆E(s) = Dπs(R)−Dπs(s)− L(s|R) (3.3.16)

∆E(s), defined in equation 3.3.16, encodes the benefit of adding the superstructure s to the
building reconstruction compared to the building without this superstructure. The higher ∆E(s)
is, the better the superstructure s modifies the building to fit the data and the lower gets the
overall energy E(B) (hence the minus sign in 3.3.15).

3.4 Optimization

Now that the search space has been defined in section 3.2 and that the objective function,
introduced in section 3.3, has been derived into a simpler additive score function in subsection 3.3.4
when the roof R is fixed, it is time to explore the search space to select the model that minimizes
the energy function.

3.4.1 Generation of Superstructure Hypotheses

Given the limited extent of a building relative to the desired accuracy of the reconstructed
superstructures, it is tractable to perform a brute-force search by enumerating and evaluating a set
of plausible superstructures. Using a grid quantization step r = 0.1m, typical problem sizes involve
less than 104 discrete translations, corresponding to roof surfaces of less than 100m2, and less than
104 admissible dimensions, all types considered. Finally, the typical number of type/rectangle
couples (θ, τ) is less than 108.

Algorithm 1 sketches the exhaustive exploration of the discretized part of the search space (the
types T and the rectangles Θτ,R). The search space, restricted by the given superstructure type τ
and discrete parameter θ, is reduced to a continuous set Φθ,τ,R of parameters. The estimation of the

best continuous vector ~φmax is carried out by the function estimate vectorp(Φθ,τ,R, θ, τ,R, DSM)

that finds the vector ~φ ∈ Φθ,τ,R that maximizes the benefit ∆E with a given DSM, roof R, type τ

and rectangle θ. The resulting superstructure s = (~φmax, θ, τ,R) is validated (i.e. added to the list
of superstructure hypotheses) if its introduction in the building model lowers the overall energy of
the building (∆E(s) > 0).

Algorithm 1 Hypotheses(R, step,DSM)

H ← ∅
for all τ ∈ T do

for all θ ∈ Θτ,R do
~φmax ← estimate vectorp(Φθ,τ,R, θ, τ,R, DSM)

if ∆E(~φmax, θ, τ,R) > 0 then

H ← H∪ {(~φmax, θ, τ,R)}
return H

Let us now detail the general Lp optimization of ~φmax performed by the estimate vectorp
function, before presenting the speed ups achievable when p = 2.

78 3. Automatic Roof Superstructure Reconstruction

3.4.1.1 Estimation of ~φmax: Lp-Norm

Given the fixed roof R and every superstructure type τ , the set Θτ,R of all candidate discrete

supports is computed and for each support θ ∈ Θτ,R the continuous parameter vector ~φ ∈ Φθ,τ,R
is estimated continuously to maximize the benefit ∆E(s). Since L(s|R) and p.σp do not depend

on ~φ, they can be canceled out of the optimization of ∆E(s), yielding the following definition of
~φmax:

∆E(s) =

∑
πs∩~pDSM (Z2) |zDSM − zs|

p − |zDSM − zR|p

−p.σp − L(s|R) (3.4.1)

Thus, ~φmax = arg max
~φ∈Φθ,τ,R
s=(~φ,θ,τ,R)

(∆E(s)) (3.4.2)

= arg min
~φ∈Φθ,τ,R
s=(~φ,θ,τ,R)

 ∑
πs∩~pDSM (Z2)

|zDSM − zs|p − |zDSM − zR|p
 (3.4.3)

zs is a heightfield that determines the geometry of the superstructure s. According to table 3.1,
the heightfield zs of the 4 proposed superstructure types can be written as an affine combination
of ~φ-independent heightfields, where the coefficients are scalars that do not depend on the position
~p. The coefficients of the affine combination are simply the coordinates of the vector ~φ. Thus
the pointwise error (zDSM − zs)(~p) may be expressed as the dot product (zDSM − z~φ,θ,τ,R)(~p) =

~eθ,τ,R,DSM (~p) ·
(

1
~φ

)
, where ~eθ,τ,R,DSM (~p) : R2 → Rdτ+1 is called the error vector field. The error

vector fields of the proposed superstructure types are :

~eθ,Chimney,R,DSM (~p) = (zDSM (~p),−1)

~eθ,Terrace,R,DSM (~p) = (zDSM (~p),−1)

~eθ,GlassRoof,R,DSM (~p) = ((zDSM − zR)(~p),−1)

~eθ,Dormer,R,DSM (~p) =

(
(zDSM − zR)(~p), |λθ(~p)| ,

µθ(~p)− 1

2

)

This finally allows the following definition of ~φmax:

~φmax = arg min
~φ∈Φθ,τ,R
s=(~φ,θ,τ,R)

 ∑
πs∩~pDSM (Z2)

∣∣∣∣~eθ,τ,R,DSM · (1
~φ

)∣∣∣∣p − |zDSM − zR|p
 (3.4.4)

If the support πs does not depend on ~φ either, as it is the case with the proposed Chimney,
Terrace and GlassRoof types of superstructures where π(~φ,θ,τ,R) = θ, the Dπs(R) term becomes

constant with respect to ~φ and the expression defining ~φmax can be further simplified as:

If π(~φ,θ,τ,R) = θ, ~φmax = arg min
~φ∈Φθ,τ,R

 ∑
θ∩~pDSM (Z2)

∣∣∣∣~eθ,τ,R,DSM · (1
~φ

)∣∣∣∣p

Lp minimization with p 6= 2 is typically performed via an iterative weighted least square min-
imization. For efficiency reasons, the optimization is carried disregarding the constraints. The
unconstrained minimum is then projected onto the constraints to get a possibly suboptimal mini-
mum, that is acceptable in practice.

3.4. Optimization 79

This minimization is rather costly, as the optimization is iterative and that |θ∩~pDSM (Z2)|, the
number of observations, is proportional to the area of the superstructure. It is however considered
to be a robust metric when 1 ≤ p < 2, and is typically used with p = 1.2.

3.4.1.2 Estimation of ~φmax: L2-Norm

When using the Lp norm with p = 2, the optimization amounts to a constrained least square
minimization. While the L2 norm is known to over-penalize errors, and is thus less robust than Lp
norms with 1 ≤ p < 2, its minimization can be carried out in constant time for the superstructure
types that have a rectangular support(Chimney, GlassRoof and Terrace in our library). This
is also true for superstructures that have a support that can be written as the disjoint union of a
constant set of aligned rectangles. The basic idea is to preprocess the input to be able to answer
in constant time queries that ask for the sum of a given quantity over a rectangular support.

This preprocessing involves resampling various moments of order 0, 1 and 2 the geometry
and the DSM to the geometry of the grid generated by the reference rectangle of each preferred
orientation. Then a cumulative version of each resampled image is computed, to be able to answer
rectangular queries in constant time. Further details are presented in the appendix A.

However, for superstructure types that have a more complicated support, that is not a union of
a constant number of rectangles and/or that is varying with ~φ, like the Dormers, the estimation
can not be carried out in constant time. But some approximations are introduced in appendix A
to estimate ~φmax in time linear to the perimeter of the superstructure support.

This ends the description of the estimation of the ~φmax vector. Now that a set of superstructure
hypotheses has been reconstructed, it is time to select within this set the best subset of disjoint
superstructures.

3.4.2 Selection of Disjoint Superstructures

The next step is to minimize the total error of the reconstructed building with superstructures,
by selecting within the 2|H| subsets of the superstructure hypotheses H (Algorithm 1) the subset
that minimizes the energy while having only pairwise disjoint superstructures.

The energy has been reformulated in subsection 3.3.4 as a simple sum of unary terms when
the base building R remains fixed. Given that the term E(B0) = E(R, ∅) is a fixed constant, the
resulting selection problem is:

�

�

�

�

Best Disjoint Superstructure Set

Given a set of superstructure hypotheses H, a non-overlapping relation 6 ∩ and positive
benefits ∆E(s) ∈ R+ for each superstructure s ∈ H, the Best Disjoint Superstructure
Set problem may be stated as computing:

arg max
S∈6∩(H)

(∑
s∈S

∆E(s)

)

with the disjoint subsets 6 ∩(H) = {S ⊂ H/∀s0, s1 ∈ S, s0 = s1 or s0 6 ∩s1}.

This problem is an instance of the following Maximum Weighted Clique problem [BBPP99],
which is NP-hard [GJ79]:

80 3. Automatic Roof Superstructure Reconstruction

�

�

�

�

Maximum Weighted Clique (MWC)

Given an undirected node-weighted graph G = (N , E , w) with a set of nodes N , undi-
rected unweighted edges without loops E ⊆ {(n1, n2) ∈ N ×N/n1 6= n2} and positive
node weights w(n) ∈ R+ for each node n ∈ N , the Maximum Weighted Clique problem
may be stated as computing:

arg max
C∈Cliques(G)

(∑
n∈C

w(n)

)

with the set of cliques Cliques(G) = {C ⊆ N/∀n0, n1 ∈ C, n0 = n1 or (n0, n1) ∈ E}.

One can easily see that the equivalence between the two problems is obtained by constructing
a graph where the nodes are the candidate superstructures N = H, the positive weights are given
by w(s) = ∆E(s) and the undirected edges E link nodes that satisfy the symmetric 6 ∩ relationship.

This Maximum Weighted Clique optimization is performed using cliquer [Öst02, NÖ03] a state
of the art general Maximum Weighted Clique solver. A variant of this algorithm, exposed in
appendix C, that was tailored to make use of the specific structure of the graph induced by the
6 ∩ relationship and the weights ∆E(s) has been developed. The basic idea is to introduce an
upperbound of the maximum clique weight of any MWC subproblem by relaxing both :

the intersection-free constraint: Instead of requiring disjoint superstructures, we only require
the less restrictive constraint that the sum of the support areas of the selected superstruc-
tures is less than the area of the union of the supports of all the competing superstructure
hypotheses.

the selection constraint: The binary selection of each superstructure in {0, 1} is replaced with
a floating point selection weight in [0, 1]. This allows selecting only a percentage of a super-
structure to benefit from the corresponding percentage of its benefit ∆E.

Solving this relaxed problem is easy and provides an upperbound of the unrelaxed Maximum
Weigted Clique problem, which may allow pruning the exploration of any MWC subproblem,
based on the weight of the best clique found so far. However, while keeping the optimality of
the solution, the computing time was similar and there was no obvious way further improve it in
a more efficient variant. Further details about the theory and implementation of the Maximum
Weighted Clique problem can be found in appendix C.

3.4.3 Local Maxima Filtering

We propose to apply a local maxima filter to the candidates output by the exhaustive search of
section 3.4.1, before the selection of the reconstructed superstructures in section 3.4.2. This filtering
discards a hypothesis if a neighboring hypothesis has a strictly better benefit ∆E. The notion of
neighborhood between two superstructures is defined by the following neighborhood relation on
their rectangles: two rectangles are neighbors if they share the same orientation and if they differ
only by a small scaling and/or translation. Their indices (i1, j1, k1, l1) and (i2, j2, k2, l2), relative
to the same reference rectangle θ0 must differ by at most 1 quantization step: max(|i2 − i1|, |j2 −
j1|, |k2 − k1|, |l2 − l1|) ≤ 1. In other words, two rectangles are neighbors if a rectangle can be
transformed into the other by translating each of its edges by, at most, one sampling step along
its normal direction.

By applying such a filter, the solution is no longer guaranteed to be optimal, according to
the optimized energy. There are mainly two reasons to consider only a subset of all the detected
superstructures: the reduction of the problem size and the prevention of multiple detections.

3.4. Optimization 81

3.4.3.1 Problem Size Reduction

It is too computationally intensive in practice to consider all the superstructure hypotheses
enumerated in section 3.4.1 during the optimization of the previous section.

The most obvious way to reduce the number of candidates, is to increase the resolution of the
sampling step of the rectangles in Θτ,R. However, this impacts the robustness of the detection and
the accuracy of the reconstruction. The alternate approach is to only keep superstructures that
are locally ”good” superstructures. This is what the local maxima filtering approach performs.

A third problem reduction approach is detailed in appendix B. It avoids the exhaustive re-
construction of the superstructure of the discrete set {Θτ,R, τ ∈ T}, by first detecting regions of
interest and then reconstructing a single superstructure candidate for each type τ ∈ T and each
region of interest.

3.4.3.2 Filtering Prevents Multiple Detections

While reducing the size of the maximum weighted clique problem, this local maxima filtering
limits multiple detection artefacts. Input DSMs are typically regularized to reduce their noise.
While this gives satisfactory results on flat or low curvature surfaces, the sharp height discon-
tinuities of the small features that are the superstructures, may suffer from delocalization and
smearing. Even if a real superstructure is well reconstructed, its representation in the input DSM
presents a transition region around the support of the superstructure where the DSM height is not
exactly the roof height but is biased towards the superstructure height. For instance, Figure 3.9
shows how the imperfections of the DSM (illustrated in red) are interpreted as small chimneys
neighboring the real chimneys. In Figure 3.10, the local maxima filter has been applied, preventing
the reconstruction of these erroneous chimneys.

Figure 3.9: Multiple detections without local maxima filtering: small chimneys are reconstructed
around the real chimneys to take into account the imperfections of the DSM (shown in red).

3.4.3.3 Implementation

While this filtering is conceptually a post process of the exhaustive search detailed in Algo-
rithm 1, it is implemented with the single pass version of Algorithm 2. This implementation allows
first to improve the memory costs and locality by keeping buffers and online filtering and second
to get a more data sensitive performance with the Lp metric using a lazy evaluation of the benefits
∆E.

This buffered implementation processes independently rectangles of (
⋃
τ∈T Θτ,R) that do not

share the same orientation (and reference rectangle θ0). The roof is then scanned along the direction
where it is the most extended, among the two preferred directions ~uθ0 and ~vθ0 . The notations
λR = bmaxπR(λθ0)c − dminπR(λθ0)e and µR = bmaxπR(µθ0)c − dminπR(µθ0)e are shorthands to

82 3. Automatic Roof Superstructure Reconstruction

Figure 3.10: Single detection with local maxima filtering: the small chimneys of figure 3.9 have
been filtered out and are no longer reconstructed around the real chimneys.

Algorithm 2 FilteredHypotheses(R, step,DSM)

for all orientations, given by a reference rectangle θ0 do
for i = dminπR(λθ0)e to bmaxπR(λθ0)c do

for all j, k, l, such that the rectangle θ, of indices (i, j, k, l) relative to θ0, is in (
⋃
τ∈T Θτ,R)

do
{Compute the best superstructure smax(θ) = arg max~φ,τ

(
∆E(~φ, θ, τ,R)

)
}

∆Emax(θ)← 0
smax(θ)← ∅
for all superstructure type τ ∈ T , such that θ ∈ Θτ,R do
~φmax ← estimate vectorp(Φθ,τ,R, θ, τ,R, DSM,∆Emax(θ))

if ∆E(~φmax, θ, τ,R) > ∆Emax(θ) then

smax(θ)← (~φmax, θ, τ,R)
∆Emax(θ)← ∆E(smax(θ))

{Maintain the local maxima buffer smax.}
for all rectangle θ′ previously considered that is neighboring θ do

if ∆Emax(θ′) < ∆Emax(θ) then smax(θ′)← ∅
if ∆Emax(θ) < ∆Emax(θ′) then smax(θ)← ∅

H ← H ∪ {smax(θ) / θ ’s first index is i− 1}
Clear buffered benefits ∆Emax and local maxima smax that have a first index of i− 1

H ← H∪ {smax(θ) / θ ’s first index is bmaxπR(λθ0)c}
Clear buffered benefits ∆Emax and local maxima smax

return H

the integer sizes of the roof R along the orientations ~uθ0 and ~vθ0 . For simplicity, Algorithm 1 and
the remainder of this paragraph assume that λR > µR and thus iterate over i instead of iterating
over j, to minimize the size of the buffers ∆Emax and smax. They keep track, for the previous
iteration i − 1 and the current iteration i, of all the benefits ∆Emax(θ) and of all the hypotheses
smax(θ), that are, so far, local maxima. This buffered implementation thus keeps only in memory
at most (2.min(λR, µR)) superstructures - instead of all the (λR.µR.|T |) superstructures - for each
different size (k − i, l − j) of the plausible rectangles of (

⋃
τ∈T Θτ,R).

The estimation of ~φmax is performed lazily in Algorithm 2 by taking into account the best
benefit ∆Emax(θ) computed so far of superstructures of different types but that share the same
rectangle θ. Comparatively to the implementation of Algorithm 1, the function estimate vectorp
now takes an extra argument ∆Emax(θ). This argument is a lowerbound on the benefit of the
estimated superstructure, assuming that it is local maximum. This lowerbound is used in the
function estimate vectorp when the estimation φmax is expensive, but there exists an inexpensive

way to compute an upperbound to the maximum attainable benefit (max~φ∈Φθ,τ,R
∆E(~φ, θ, τ,R)).

3.5. Results 83

If the upperbound is lower than the required lowerbound, then the expensive estimation of φmax

is skipped, yielding a data sensitive estimation. The superstructure of the first type considered
is estimated with a lowerbound of 0, ensuring a positive benefit and an early termination of the
estimation of ~φmax if no such superstructure exists.

An upperbound on the benefit ∆E can be inexpensively computed and tightened while building
the system that will be minimized to estimate ~φmax. Because L(s|R) does not vary with ~φ, by

using the inclusion π(~φ,θ,τ,R) ⊆ θ for all ~φ, and the notation π∩ =
⋂
~φ∈Φθ,τ,R

π(~φ,θ,τ,R) for the

intersection of all the plausible supports, we can derive:

max
~φ∈Φθ,τ,R

∆E(~φ, θ, τ,R) = max
~φ∈Φθ,τ,R

(∑
πs∩~pDSM (Z2) |zDSM − zs|

p − |zDSM − zR|p

−p.σp − L(s|R)

)

≤ max
~φ∈Φθ,τ,R

∑
πs∩~pDSM (Z2) |zDSM − zR|

p

p.σp
− L(s|R)− min

~φ∈Φθ,τ,R

∑
πs∩~pDSM (Z2) (|zDSM − zs|p)

p.σp

≤
∑
θ∩~pDSM (Z2) |zDSM − zR|

p

p.σp
− L(s|R)−

∑
π∩∩~pDSM (Z2) min~φ∈Φθ,τ,R

(|zDSM − zs|p)
p.σp

(3.4.5)

Since all the terms
(

min~φ∈Φθ,τ,R
(|zDSM − zs|p)

)
are positive, a first upperbound can be com-

puted in constant time as
(∑

θ∩~pDSM (Z2)|zDSM−zR|p
p.σp − L(s|R)

)
, if a cumulative preprocessing of

|zDSM − zR|p has been performed like in section 3.4.1.2. It can then be tightened by subtracting
the min~φ∈Φθ,τ,R

(|zDSM − zs|p) terms while they are evaluated to build the system to be mini-

mized. Whenever, during the construction of the system, the upperbound falls below the input
lowerbound, the expensive iterative Lp minimization may be skipped.

For the Chimney, GlassRoof and Terrace superstructures, the support is always equal to θ,
thus π(~φ,θ,τ,R) = π∩ = θ, which tightens the upperbound and simplifies its evaluation: all pointwise

minimum residuals in π∩ = θ may be subtracted.

3.5 Results

The generic Lp and optimized L2 metrics have been implemented. The Lp metric with p <
2 is more adapted than the L2 metric to the correlated, non-Gaussian noise typically present
in correlation DSMs, but the computation and optimization of the latter is much faster. The
computing time is dominated by the optimizations of the specific parameters φ. The roof plane
of figure 3.11 contains 300 000 superstructure candidates with benefit ∆E(s) > 0 and 100 locally
maximum superstructures. Computing times typically range from a few seconds to a few minutes
with the L2 metric, with roughly a 50% overhead for the Lp metrics, on a single Intel Xeon 1.60GHz
CPU core. However, timings are very sensitive to the input data:

1. If the input roof planes are erroneous, our approach is not suitable, as it is likely to yield
poor results after a long computing time. The reason is that the roof will have to be covered
with utilitary superstructures that do not correspond to real superstructures but which only
purpose is to correct the erroneous main roof height.

2. If some superstructures are very large, such as in 3.11, the DSM will present a large deviation
from the roof plane and thus, the estimations of the altimetric parameters will not be pruned
in these large areas (section 3.4.3.3).

Fortunately, the large majority of roofs supports only small-scale isolated superstructures, exper-
imentally yielding the aforementionned computing times for an 0.1m horizontal quantization of
Θτ,R and a vertically projected roof surface of about 100m2.

A ground truth has been generated by an operator using the images of the building of figure 3.13.
This ground truth contains 46 chimneys and 40 glass roofs. Then the automatic L2 reconstruction

84 3. Automatic Roof Superstructure Reconstruction

Figure 3.11: A DSM (left) and its reconstruction with a 3D-triangulation that represents the DSM
(right).

Figure 3.12: The input model (left), the reconstructed building (center) and its textured version
(right) where each polygon is textured by the most front facing aerial image.

Figure 3.13: The input model, the ground truth reconstructed manually, the reconstructed building
and its textured version.

3.5. Results 85

False Positive (FP)

True Positive (TP)

False Negative (FN)

True Negative (TN)

Figure 3.14: Evaluation of the classification of the DSM pixels as pixels of the superstructure
supports.

has been performed.The surfacic false alarm rate is of 11% (9 overdetected glass roofs) and the
detection rate is of 85% (1 underdetected chimney and 12 glass roofs) without taking into account
the labeling errors : 5 chimneys and 7 glass roofs have been assigned the wrong superstructure type.
Processing whole buildings at once rather than one roof plane at a time allows the reconstruction
of superstructures that are contained in multiple roof planes, like chimneys crossing the rooftop.
The false positive (FP) regions in figure 3.14 illustrate the general overestimation of the support,
whereas the true negative (TN) regions are mainly caused by under-detection of superstructures.
The under-detection is due to the difficulty to separate the imperfections of the DSM from the
glass roof models which are allowed to have only a small height h.

L2 Detection TP FP TN
Chimney 45 0 1
GlassRoof 28 9 12
Terrace 0 0 0
Dormer 0 0 0

superstructures 73 9 13

Table 3.4: Evaluation of the detection of the L2 detection on figures 3.13 and 3.14: the false alarm
rate is of 11% and the detection rate is of 85%.

The table 3.4 investigates, on an object by object basis, if a detected superstructure corresponds
to a true superstructure of the ground truth. It does not take into account the labeling errors :
5 chimneys have been incorrectly detected as glass roofs and 7 glass roofs have been detected as
chimneys. This were mainly caused by the deficiencies in the DSM generation that are not taken
into account in our method. The true negative (TN) chimney in table 3.4 is due to 2 true glass
roofs and a true chimney that are detected as a single larger glass roof. The false positive (FP)
glass roofs are due to the small volume of this object type and to the regularization of the DSM :
small glass roofs may be detected near chimneys to take into account the inaccuracies of the DSM.

With a DSM resolution of 25cm, medium-sized and large superstructures are reconstructed
correctly such as the 3 dormer windows of figure 3.15. But smaller structures are altered and hard
to distinguish from noise. Coherent regions due to the regularization of the DSM are spuriously
reconstructed as small superstructures. At these resolutions, the small superstructures should be
disabled in the superstructure library or the MDL noise parameter σ has to be tuned up, because
their signal is comparable to the imperfections of the DSM.

However, there appear to be a major drawback that increases computing times drastically as
the Θτ,R-defining discretization step of the explored superstructures decreases. This evolution is
asymptotically of the order of O(step−4) given that it corresponds to the size increase of the sets
Θτ,R of rectangular supports (O(step−2) quantized locations and O(step−2) quantized dimensions).

86 3. Automatic Roof Superstructure Reconstruction

Figure 3.15: An image with 25cm resolution, its shaded DSM (same resolution), and the recon-
structed building with a DSM triangulation.

Furthermore, the O(step−4) assymptotic computing time is valid for constant-time per-hypothesis
optimizations. This is however only true for the L2 error metric and specific superstructure types
(see appendix A). In practice, the empirical exponent has been measured around -5.16 for the L2

metric, and -5.72 for the L1 metric (table 3.5). This yields that the presented approach is well-suited
for superstructure reconstruction resolutions of 10cm or more, but that finer resolutions would need
exagerately high computing times. Appendix B will present and discuss non-exhaustive variants
that are more efficient (but presumably less robust) in these finer cases.

Horizontal quantization L2 L1

0.7m 8.02s 9.59s
0.6m 12.94s 16.01s
0.5m 35.9s 47.6s
0.4m 105.98s 154.31s
0.3m 476.67s 845.76s
0.2m 5167.84s 12435.5s

Table 3.5: Sample superstructure reconstruction computing times for the difficult roof facet of
figure 3.11. (Intel Xeon 1.60GHz CPU core)

When the data is of good quality, the prior noise may be set to zero (σ → 0). This has the
effect of making the model description length L(B) negligible relative to the error term D(B) ,
yielding a parameter-less error-driven reconstruction. Nevertheless, setting σ > 0 becomes useful
to prevent over-fit with noisier data.

3.6 Discussion

3.6.1 Library Extensibility

The library is extensible and the algorithm behaves linearly with the size of the number of
superstructure types. To introduce a new superstructure type, one has just to provide 5 elements:

- dτ : the dimension of the continuous parameter vector ~φ.
- zs(~p) : this height function provides the geometry and topology of a 2.5D superstructure.

- πs : the support of a superstructure given its parameters θ, ~φ and the roof R.
- Θτ,R : the constraints on the allowable oriented bounding rectangles θ.

- Φθ,τ,R : the constraints on the allowable continuous parameters ~φ.

Nothing prevents superstructures to have non-planar faces ! For instance a dome may be
introduced using a heightfield zs(~p) = φ1 + φ2

√
1− λ(~p)2 + µ(~p)2 defined over a support πs =

3.6. Discussion 87

{~p / λ(~p)2 + µ(~p)2 ≤ 1}, with dτ = 2. Reasonnable restrictions on Θτ,R and Φθ,τ,R would be
to ensure that the dome has a a plausible size, is convex (φ2 ≥ 0) and above the roof(φ1 ≥
max~p∈πs(zR(~p)). If only half-spherical domes are allowed, then the restrictions ‖~uθ‖ = ‖~vθ‖ = φ2

are to be enforced.

3.6.2 Future work

The exhaustive search for superstructures developed in this chapter is conservative, in order
not to miss superstructures. As a drawback it is slower than approaches that first detect zones of
interests and focus on those zones. Two variations of the method developed in this chapter that
uses one such approach are developed in Appendix B.

Possible extensions include :

Input data: lidar, images... Rather than using only the DSM, one could rather use the images
directly and/or some lidar data to reconstruct the superstructures. A possibility is to use this other
kind of data to fit reconstructed superstructures as a postprocess of the method developed in this
chapter. Alternatively, the data term could use, for instance, image correlation, image features or
distances to a lidar point cloud to measure how close is a building model with superstructures to
the reality.

Regularization between superstructures There is currently no regularization between the
different superstructures. One may want to add the prior that neighboring superstructures tend
to share the same heights, width, length and slopes, that they are likely to be aligned and that
groups of superstructures are often evenly separated. The easiest way to introduce this kind of
prior is as a post-processing step, where similar superstructures are detected in order to snap their
parameter to enforce the prior. This would require the introduction of some parameters controling
the extent of the snapping. Furthermore, this regularization may move the superstructures and
violate the disjoint support requirement.

On the other hand, this prior may be introduced beforehand in the search space or at the
energy level. For instance, instead of searching for individual superstructures, regular groups of
superstructures may be searched directly. The introduction in the energy of this regularization
prior is likely to break the reduction of the minimization to a maximum weight clique problem.
Methods based on Reversible Jump Monte Carlo Markov Chains (RJMCMC), already used in the
building reconstruction applicative context [ODZ07], seem to be a good candidate to optimize the
resulting more complex energies.

Dequantization of Θτ,R The discretization of the set of rectangles is required by the exhaustive
search exposed in this chapter. However, it introduces an approximation in the horizontal localiza-
tion of the superstructures. The stochastic diffusion scheme of Appendix B does not discretize the
set of superstructure bounding boxes: they are drawn continuously at random in the neighborhood
of a candidate superstructure.

Discretization of Φθ,τ,R On the contrary, one may want to discretize all the superstructure
parameters, including the altimetric parameters. This could be useful if the energy to estimate
~φmax is expensive to optimize. The altimetric accuracy of the estimation of ~φmax cannot be higher
than the accuracy of the DSM, which is around 0.1m within the context of this thesis. Since each
component of the plausible intervals Φθ,τ,R span only a few meters, Φθ,τ,R may be quantized into

a reasonnably small number of discrete ~φ values, provided that its dimension dτ is not too high.

More precisely, this discretization is not useful for superstructures that have a constant-time
parameter estimation (applying the optimizations of appendix A). In other cases, the evaluation

88 3. Automatic Roof Superstructure Reconstruction

of a small number of quantified parameter values may be beneficial compared to an iterative
continuous estimation.

Shadows Shape from shadows is an entire field of research. In our context, the time of acqui-
sition is available, hence the exact position of the sun. As the images are fully calibrated, if the
geometry of a plane is assumed to be exact, it is possible to get some knowledge on the silhouette
of the superstructure casting a shadow on the given plane, as seen from the sun. However, this
approach needs to access directly the images which is not necessary with our DSM-only approach.
A major cave-at in such an approach is the interdependence between the superstructures and
the roof. Superstructure shadows possibly span multiple roof planes, they may be cast on other
superstructures, or even outside the roof surface.

Parallel computing The generation of the superstructure hypotheses and its estimation of the
altimetric parameters are highly data-parallel tasks. We think that the use of General-Purpose
computations on Graphics Processing Units (GPGPU) may significantly lower the computing costs
of this processing step, which currently dominates the overall computing time. It is however
unclear how to take advantage of this parallel processing power to solve the superstructure selection
problem, as the maximum weighted clique problem is less obviously parallelizable.

3.7 Conclusion

The proposed method achieves a reasonably fast detection and reconstruction of buildings with
roof superstructures using only a DSM, an initial building model without superstructures and an
easily extensible collection of parametric models defining the available superstructure types. This
approach gives convincing results and is fully automatic with 10cm data using the parameters
n = 2 and σ → 0. This method could be extended to lidar scanned point clouds.

Improving the geometric accuracy would require the direct use of the images rather than pro-
cessing only the DSM. Such algorithms could either fit DSM-produced models to the images as a
post-process as in [SB03] or produce those models directly from the images. The energy could be
reformulated as a Bayesian energy that handle interactions between the superstructures and the
roof planes, to introduce stronger priors such as alignments or to model the imperfections of the
DSM.

Within this chapter, the input building is assumed to perfectly fit the input data. In practice,
the input 3D model has an inaccurate geometry and even its topology may be erroneous: planes
may be missing, small edges may be collapsed to a vertex adjacent to four or more planes... As
the superstructure is a small modification of the base roof, if the roof itself is imprecise, the recon-
structed superstructures may be arbitrarily erroneous. For instance, if the roof is biased by 30cm
below the real roof, reconstructing superstructures is likely to produce a lot of low GlassRoofs.

The following part introduce a strategy to refine the geometry of the input polyhedral build-
ing model using the DSM, while relaxing the geometric constraints induced by the topology and
updating the topology so that the polyhedron facets remain self-intersection free.

89

Part III

Topology-Aware Kinetic Fitting of
Polyhedral Roofs

91

Chapter 4

Fixed Topology 3D Building
Model Fitting

Contents
4.1 Introduction . 92

4.1.1 Related Work . 92

4.1.2 Overall Topology-aware Fitting Approach 93

4.1.3 Outline . 94

4.2 Oriented Projective Geometry . 95

4.2.1 Primitives . 95

4.2.2 Constructions . 96

4.2.3 Measures . 98

4.2.4 Predicates . 99

4.3 Polyhedra and Plane Arrangements 100

4.3.1 Plane Arrangements . 100

4.3.2 Polyhedron Duality . 101

4.3.3 Arrangement Coloring . 103

4.3.4 Polyhedron Properties . 103

4.4 Dual Geometry Refinement . 105

4.4.1 Using the Dual Polyhedron . 105

4.4.2 Minimized Energy . 106

4.4.3 Fitting Algorithm . 106

4.5 Results . 108

4.6 Extensions . 108

4.6.1 Numerical Scheme . 108

4.6.2 Selective Constraint Relaxation . 110

4.6.3 Alternative Input Data and Energies . 110

4.7 Conclusion . 111

92 4. Fixed Topology 3D Building Model Fitting

4.1 Introduction

As discussed in chapter 3, buildings are modeled using a closed polyhedron modified by a set of
superstructure elements. To reach the objective of increasing the LOD of a building using an input
DSM, we proposed an iterative approach (see chapter 2). We discussed that the input lower LOD
building was likely to (1) miss fine detail superstructures and (2) have an improvable geometry.
The overall approach is then to alternately optimize these two interdependent aspects, considering
the other one is fixed. Chapter 3 dealt with the detection and reconstruction of superstructures
given a fixed base polyhedron. On the other hand, this chapter and the two following ones provide
a method to refine the geometry of the base polyhedral building, and its topology as necessary,
given a DSM and superstructures that have already been reconstructed in a previous step.

4.1.1 Related Work

The polyhedron fitting problem has already been addressed with the restriction that the topol-
ogy of the polyhedron was kept fixed, for instance in [VT05] within our applicative context. More
precisely, [VT05] fits an input building model to a set of aerial images, aligning image gradients with
the building wireframe projections. Furthermore, it automatically detects and enforces geometric
constraints such as perpendicularity, orthogonality or symetry. It however keeps the polyhedral
topology fixed and handles the resulting topology-induced geometric constraints similarly to the
detected and enforced purely geometric constraints.

We recall that a fixed-topology optimization process is allowed to change the geometry of
the polyhedron (the point and the plane coordinates) but not the incidence relations between its
vertices, edges and facets. The topological property that a vertex is adjacent to more than 3
planes implies the geometric constraint that these planes have a non empty intersection. Likewise
a facet bounded by more than 3 vertices imposes that their supporting points are all coplanar.
These topology-induced geometric constraints cause a fixed-topology polyhedron optimization to
be constrained in order to get a well-defined result.

These constraints are trivial to detect in the input topology and easy to take into account in the
optimization process. However, they translate some kind of singularity of the polyhedron topology,
which is in our context the result of some prior that a roof or façade facet is exactly coplanar, or that
multiple roof or façade facets meet exactly at the same location. This prior knowledge is typically
introduced when reconstructing buildings from unsufficiently accurate data. This introduces a
necessary generalization of the building to get some robustness in the reconstruction. Since our
goal is to refine a building model using a new and more accurate dataset, we would like to reduce
the generalization of the input model, by discarding the topology-induced constraints. This chapter
concentrates on the optimization of an unconstrained building, where all these constraints have
been relaxed, leaving a selective relaxation of these constraints as an extension (see section 4.6.2).

The classical approach to avoid these constraints is to triangulate the facets of the optimized
polyhedron, yielding an unconstrained optimization, where the unknowns are the point coordi-
nates [HDD+93]. We argue, in section 4.4.1, that a dual approach is better suited to our problem.
This trihedralization approach, developped in chapter 5, yields an alternate unconstrained opti-
mization, where the unknowns are the plane coordinates, by splitting vertices adjacent to more
than 3 facets.

Using the unconstrained plane estimates is not straightforward, as the unconstrained fitting
of the polyhedral geometry is likely to yield self-intersecting or non-coplanar facets or undefined
vertices at the intersection of planes that have an empty intersection. The issue is then to retrieve
a polyhedral topology that yields a polyhedron with coplanar self-intersection free facets and well-
defined vertex locations, that is as close as possible to the initial polyhedral topology. A fruitful
approach [JPDPM00, TD04, LPK07] to build a polyhedron from its set of supporting planes uses
the 3D arrangement of these planes [Grü71] (section 4.3.1). However, it is unclear how to take

4.1. Introduction 93

intuitively and effectively the initial polyhedral topology into account.

[EAH08] addresses a related problem in the context of building reconstruction from a DSM.
The proposed approach is a two stage process. First the DSM is partitionned into almost planar
regions and then a polyhedron is exported from the partition. The DSM partition is performed
by iteratively detecting planes using the well-known RANSAC technique [FB81]. Each partition
region corresponds to an estimated plane, yielding the reconstructed polyhedral plane geometry.
Furthermore, the partition induces a preliminary polyhedral topology: one can construct a poly-
hedron from the image topology of the partitionned DSM, by identifying partition regions with
polyhedral facets, boundaries between regions with polyhedral edges, and boundary endpoints with
vertices. For instance, a square of 2 by 2 pixels generates a vertex if its pixels belong to 3 or 4 dis-
tinct partition regions. Vertices are then located by intersecting their adjacent planes and edges are
constructed by linking vertex locations. However, this preliminary topology of the partition is not
readily usable as a polyhedral topology. Multiple complications may occur. Facets may self inter-
sect, vertices adjacent to 4 facets are likely not well-defined, and loop partition regions surrounded
by a single outside region define no vertex and therefore may not be exported. [EAH08] proposed
to keep the semantics of the partition regions as unsplitted planar facets of the polyhedron. To
achieve this goal, Small topological corrections are performed on the preliminary topology until it
yields a well-defined self-intersection free polyhedron. These updates are rule-based and require
many fine-tuned parameters. A vertical plane is added if the intersection edge of two neighboring
planar regions is too far from the boundary between the two regions. The other local topological
modifications are used to make the topology, coupled with the estimated plane geometry, refer
to an acceptable polyhedron. Compared to our problem, the RANSAC-based partition yields the
target plane geometry and an initial preliminary topology. Then a rule-based methodology is used
to make the resulting polyhedron well-defined and self-intersection free.

A related approach is the variational shape approximation approach [CSAD04] that is able to
fit an approximate polyhedral surface to an input polyhedral mesh. The basic idea is likewise to
partition the input dataset into planar regions. The approach is intrinsically iterative and the
result is reached when the partition converges. A partition update is carried out by first fitting a
plane to each approximately planar partition region. Then a region growing algorithm is used to
update the mesh partition according to the fitted planes. At convergence, this yields a partition
of the input mesh with an approximate supporting plane for each partition region. The final
polyhedron is then an export of the partition, that is only generated as a final processing step. It
avoids the difficulties encountered by [EAH08] by not directly relying on the preliminary topology
of the partition and the estimated planes to reconstruct the polyhedron. Instead, vertices of the
partitioned mesh are defined as the barycenter of the intersections of triplets of adjacent planes.
This reduces to the simple intersection of 3 planes for a vertex adjacent to 3 partition regions.
However such a barycenter does not generally lie on the planes of its adjacent facets. Therefore
the planarity of the partition regions is sacrificed, requiring the triangulation of their facets. Last
but not least, the resulting facets may self intersect.

4.1.2 Overall Topology-aware Fitting Approach

The main idea of the topology-aware plane geometry refinement step introduced in this part
of the dissertation is to design an algorithm where the polyhedron is always readily available as in
[VT05], and let the polyhedron define the input data partition rather than having to export the
polyhedron as a post process from the partition, as in [CSAD04]. We propose a framework that let
the polyhedral topology be implicitly handled as in [CSAD04, EAH08], but that further guarantees
self-intersection free facets and well-defined vertices. Furthermore, the algorithm should be robust
without the fine parameter tuning of [EAH08].

To meet this objective, the proposed approach is primarily built on top of a partition of the
input data, recycling ideas from [CSAD04, EAH08]. The polyhedron with self-intersection free
facets is maintained explicitly throughout the optimization, in order to avoid its problematic final

94 4. Fixed Topology 3D Building Model Fitting

export. Conversely, we propose to export the DSM partition from the maintained polyhedron.
Therefore, the topology of the partition is intrisically compatible with the topology and geometry
of a self-intersection free polyhedron.

The next two chapters contain our two main contributions to the field of computational geom-
etry. They jointy let the topology vary implicitely, while guaranteeing a building model without
self-intersecting facets. In order to make the optimization unconstrained, the necessary modifi-
cations of the topology, so that the geometry of the fitted polyhedron is not constrained by its
topology, will be developed in chapter 5. Then, a new kinetic framework will be introduced in
chapter 6 to keep self-intersection free polyhedral facets throughout the optimization.

Input geometry

Input topology

Estimated geometry (chap.4)

Updated topology

Input polyhedron Output polyhedron

T TT

T : Trihedralizations (chap. 5)

: Discrete stepping to the next singularity (chap. 6)

Continuous morphing (sec. 6.3.1)

T

Figure 4.1: Overview of a single topology-aware fitting step.

Figure 4.1 illustrates a single polyhedron fitting step of the proposed approach, which is to be
iterated until convergence of the fitting. Given the current input polyhedron, a refined supporting
plane is estimated for each polyhedral roof facet (chapter 4). The supporting plane are then set
to evolve continuously from the current to the re-estimated planes (section 6.3.1). In order to
maintain a topology yielding self-intersection free facets, the input topology is modified as required
during this continuous morphing. The trihedralization process of chapter 5 modifies the initial
input topology to discard the input topology-induced constraints. The framework developped in
chapter 6 is responsible for detecting intermediate self-intersections, that may be handled using
the trihedralization process.

Now that the overall approach of part III has been detailed, we now turn to the material
developped in this chapter, namely, the re-estimation of the plane geometry for each fitting step.

4.1.3 Outline

The usage of previously reconstructed superstructures to prevent them from biasing the roof
plane estimation is the main contribution of this chapter. A straightforward fixed topology uncon-
strained optimization method is modified to take into account the superstructures that may have
already been reconstructed at a previous iteration. The knowledge of the DSM regions that have
been segmented as superstructure supports is used to give a more accurate estimation of the roof
plane equations.

This chapter addresses the following issue:

�

�

	

Problem Statement

Assuming that the geometry of the polyhedral building model without superstructures
is not constrained by its topology, how to use already reconstructed superstructures, to
refine its geometry relative to a DSM, while keeping its topology fixed?

This chapter introduces the basic concepts and the modelization of the unconstrained opti-

4.2. Oriented Projective Geometry 95

mization framework. Section 4.2 presents shortly the concepts and tools of the oriented projective
geometry that are required by this chapter and the two following ones. Then section 4.3 intro-
duces the higher level geometric objects that are plane arrangements in 3D, their coloring, and
the concept of polyhedron duality. Section 4.4 details how to reestimate the supporting planes
of a polyhedron, disregarding topological constraints. Finally, section 4.6 discusses the proposed
approach.

4.2 Oriented Projective Geometry

The geometry of Cartesian three-space R3 is greatly simplified by using the oriented projective
space T3. An in-depth presentation of this space T3 can be found in [Sto91]. It retains the powerful
representation and unification properties of the unoriented projective space P3 while preserving the
orientation and separability of the Cartesian space R3.

Obviously, this section does not cover all the concepts of oriented projective geometry, but our
intent is to introduce the notations and provide the required tools.

4.2.1 Primitives

Points: The homogeneous coordinates ~P = [x : y : z : w], or [~p : w] with ~p = (x, y, z), refer,
if w 6= 0, to the 3D point of Cartesian coordinates ~p

w = (xw ,
y
w ,

z
w). The multiplication of the

homogeneous coordinates ~P by any non-zero factor leaves the Cartesian 3D point unchanged. The
points [~p : 0] refer to points at infinity in the direction ±~p.

Planes: A plane equation is given by the homogeneous coordinates ~N = [a : b : c : d], or [~n : d]

with ~n = (a, b, c). It refers to the planar set of points ~P that verify ~N · ~P = ax+ by+ cz+ dw = 0,
which is equivalent, if w 6= 0, to the Cartesian equation ~p

w · ~n+ d = 0. The normal of the plane is
thus encoded in ~n = (a, b, c) and, if ~n is normalized, d represents the signed distance separating the

plane ~N from the origin. The multiplication of the homogeneous coordinates ~N by any non-zero
factor also leaves the plane unchanged. The direction of the normal vector ~n induces an orientation
of the plane ~N : a plane ~N multiplied by a negative factor thus parameterizes the same plane but
with a reversed orientation. There is only one unoriented plane that does not contain any finite
vertex: its coordinates are [~0 : d]. This is the plane at infinity.

~m

~d

~p0

~p1

~L

~0

Figure 4.2: The Plücker coordinates of a line ~L = [~d : ~m] passing through 2 cartesian points ~p0

and ~p1: ~d = ~p1 − ~p0 and ~m = ~p0 ∧ ~p1.

Lines: The Plücker coordinates, introduced by Julius Plücker in the 19th century, are a homo-
geneous parameterization of the 3D lines. The Plücker coordinates are composed of 6 coordinates,
usually denoted using two 3D vectors: ~L = [~d : ~m]. The set of lines of the 3D Cartesian space
R3 is 4-dimensional. One of the 2 extra degrees of freedom is due to the homogeneous nature of
the Plücker coordinates: multiplying the Plücker coordinates by a scaling factor does not change
the described geometric line. However a negative factor reverses its orientation. The second extra

96 4. Fixed Topology 3D Building Model Fitting

degree of freedom is lost due to the quadratic constraint ~d · ~m = 0. Geometrically, the vector ~d
encodes the direction vector of the line and ~m the moment of the line: it is the normal of the plane
that passes through the line and the origin (or the null vector if the line passes through the origin).
Its magnitude encodes the distance of the line to the origin (fig 4.2).

4.2.2 Constructions

Matrix notations: The various constructions involve the computation of determinants of square
matrices A, denoted det(A), or simply |A| for readability when there is no confusion with the
absolute value. Composite matrices A =

[
~A1

~A2 . . . ~An
]

are built by juxtaposing n vectors of
equal size m as columns of the composite n by m matrix A.

Definition 12. The (i, j)th cofactor cofij(A) of a square matrix A of size n is its signed minor:

cofij(A) = (−1)i+j

∣∣∣∣∣∣∣∣∣∣

A1,1 ··· Ai−1,1 Ai+1,1 ··· An,1

...
...

...
...

...
...

A1,j−1 ··· Ai−1,j−1 Ai+1,j−1 ··· An,j−1

A1,j+1 ··· Ai−1,j+1 Ai+1,j+1 ··· An,j+1

...
...

...
...

...
...

A1,n ··· Ai−1,n Ai+1,n ··· An,n

∣∣∣∣∣∣∣∣∣∣
Definition 13. The matrix of the cofactors of A is denoted com(A): (com(A))ij = cofij(A)

Point construction from 3 Planes: The homogeneous coordinates ~P = [x : y : z : w] of the

intersection point of 3 planes ~N0, ~N1, ~N2 with projective coordinates [ai : bi : ci : di]i=0...2 are com-
puted using the cofactors cof1j(N) of the first column of the 4 by 4 matrix N =

[
~0 ~N0

~N1
~N2

]
:

~P = [~p : w] = [cof11(N) : cof12(N) : cof13(N) : cof14(N)] (4.2.1)

=

+

∣∣∣∣∣∣
b0 b1 b2
c0 c1 c2
d0 d1 d2

∣∣∣∣∣∣ : −

∣∣∣∣∣∣
a0 a1 a2

c0 c1 c2
d0 d1 d2

∣∣∣∣∣∣ : +

∣∣∣∣∣∣
a0 a1 a2

b0 b1 b2
d0 d1 d2

∣∣∣∣∣∣ : −

∣∣∣∣∣∣
a0 a1 a2

b0 b1 b2
c0 c1 c2

∣∣∣∣∣∣
(4.2.2)

These are, up to their signs, the determinants of the 4 possible 3 by 3 submatrices of the 3 by 4
matrix

[
~N0

~N1
~N2

]
. It follows that the Cartesian point coordinates ~p

w of a trihedral vertex are
rational functions in terms of the 12 plane coefficients (ai, bi, ci, di)i=0...2 of the 3 adjacent facets.

Using the notation com(A) for the matrix of cofactors of A, ~P may be succinctly rewritten as:

~P =
(
com

[
~0 ~N0

~N1
~N2

]) [1
0
0
0

]

A vertex is well-defined if and only if its 4 point coordinates are not all null. Remarkably,
w = cof1,4 = −

∣∣~n0 ~n1 ~n2

∣∣ only depends on the plane normals. Thus, we retrieve the property
that the intersection point of three planes is well-defined and finite if and only if w 6= 0: the
normals of the planes are linearly independent. Degenerate intersections translate into an undefined
resulting point ~P = [0 : 0 : 0 : 0]. By its construction using the matrix of cofactors, the vector ~P

is orthogonal to the 3 input planes, thus ~P ∈ ~N0 ∩ ~N1 ∩ ~N2

Plane construction from 3 Points: Using the point-plane duality, by the symmetry of the
containment relationship of a point on a plane (~N · ~P = 0), the same formula allows the computation
of the plane coordinates of a 3D triangle:

~N =
(
com

[
~0 ~P0

~P1
~P2

]) [1
0
0
0

]

4.2. Oriented Projective Geometry 97

Remark. As a sanity check, we can check that those construction formulae are consistent by computing the
supporting planes ~N ′0

~N ′1
~N ′2
~N ′3 from the intersection points ~P123

~P023
~P013

~P012 of a tetrahedron described by its 4

plane coordinates ~N0, ~N1, ~N2 and ~N3:[
~N ′0

~N ′1
~N ′2

~N ′3
]

= com
[
~P123 −~P023

~P013 −~P012

]
= com

(
com

[
~N0

~N1
~N2

~N3

])
=

∣∣ ~N0
~N1

~N2
~N3

∣∣2 [~N0
~N1

~N2
~N3

]
The cofactor matrix relations are due to a simple arrangement of the construction relations in a 4 by 4 matrix.

The 4-dimensional identity com(comA) = (detA)2A shows that the 2 matrices of plane coordinates are equal up to

a positive scaling factor, which is non null if the tetrahedron is not degenerate. Thus, the ~Ni and ~N ′i planes model

the same oriented planes.

Line defined by a Point and a Direction: The Plücker coordinates of the line passing through
a point ~P = [~p : w] in the direction of a 3D vector ~n are given by:

~L =
[
~d : ~m

]
= [w~n : ~p ∧ ~n]

Line defined by 2 Points: The Plücker coordinates of the line passing through a disjoint pair
of points ~P0 = [~p0 : w0] and ~P1 = [~p1 : w1] are given by:

~L =
[
~d : ~m

]
= [w0~p1 − w1~p0 : ~p0 ∧ ~p1]

These 6 Plücker coordinates are, up to their sign, the determinants of the 6 possible 2 by 2

submatrices of the 4 by 2 matrix [~P0
~P1]T =

[
x0 y0 z0 w0

x1 y1 z1 w1

]
.

Intersecting line of 2 Planes: The duality of the projective coordinates is obvious in the
symmetry of the construction of the line passing through two points and the line at the intersection
of two planes ~N0 = [~n0 : d0] and ~N1 = [~n1 : d1]:

~L =
[
~d : ~m

]
= [~n0 ∧ ~n1 : d0~n1 − d1~n0] (4.2.3)

Equivalently, these 6 Plücker coordinates are also, up to their sign, the determinants of the 6

possible 2 by 2 submatrices of the 4 by 2 matrix [~N0
~N1]T =

[
a0 b0 c0 d0

a1 b1 c1 d1

]
.

Corollary 4.1. Let ~N0, ~N1, ~N2 and ~N3 be four planes and let ~P123 and ~P023 be the points at
the respective intersections of the planes ~N1, ~N2, ~N3 and ~N0, ~N2, ~N3 (Figure 4.3). Then the line
~L(~P123, ~P023) that passes through the points ~P123 and ~P023, is also the intersection line ~L(~N2, ~N3)

of the planes ~N2 et ~N3. Thus, there are two ways to compute the Plücker coordinates of this line.
The two homogeneous representations ~L(~P123, ~P023) and ~L(~N2, ~N3) of the same geometric line are
equal up to the scaling factor

∣∣ ~N ~N0
~N1

~N2

∣∣:
~L(~P123, ~P023) =

∣∣ ~N0
~N1

~N2
~N3

∣∣ ~L(~N2, ~N3)

Proof. Given that the proofs of the 6 scalar relations follow the same derivation, let us only prove the last equation:
(x123y023 − x023y123) = (detN)(c3d2 − c2d3), with the 4 by 4 matrix N =

[
~N0

~N1
~N2

~N3

]
.

If detN = 0, then the points ~P123 and ~P023 are linearly dependant, which proves that ~L(~P123, ~P023) = ~0. Assum-

ing now that N is invertible, the 4 planes ~Ni define 4 distinct intersection points:
[
~P123 −~P023

~P013 −~P012

]
=

98 4. Fixed Topology 3D Building Model Fitting

~N0

~N1

~N2

~N3
~P123

~P023

~L

Figure 4.3: Corollary 4.1 notations: the line ~L that passes through 2 points ~P123 and ~P023 is also
at the intersection of the 2 planes ~N2 et ~N3.

comN . Given that NT comN = (detN)I (denoting by I the 4 by 4 identity matrix), it follows that:

NT
[
~P123 −~P023

~P013 −~P012

]
= (detN)I

Thus, modifying the last 2 columns, NT

~P123 −~P023

0 0
0 0
1 0
0 1

 =

detN 0 c0 d0

0 detN c1 d1
0 0 c2 d2
0 0 c3 d3

Applying the determinant, (detN)(−x123y023 + x023y123) = (detN)2(c2d3 − c3d2)

Dividing by (− detN), (x123y023 − x023y123) = (detN)(c3d2 − c2d3)

4.2.3 Measures

Point-Plane Signed Distance: To measure the signed distance of a finite point ~P = [~p : w] to

an oriented plane ~N = [~n : d], one has to compute the dot product of the normalized point and
plane coordinates:

Distance(~P , ~N) =
~P

w
·
~N

|~n|

This extends the incidence test ~P · ~N = 0.

Triangle Signed Area: The signed area of a finite triangle with points ~Pi = [~pi : ~wi] can be

computed relative to the given normal ~n of the oriented plane ~N = [~n : d] that supports the
triangle:

Area(~N, ~P0, ~P1, ~P2) =

∣∣∣∣~n ~p0 ~p1 ~p2

0 w0 w1 w2

∣∣∣∣
2|~n|w0w1w2

Proof. The proof uses the cartesian relation that the vector product
(

~p1
w1
− ~p0

w0

)
∧
(

~p2
w2
− ~p0

w0

)
computes a vector

collinear with the normal ~n, the length of which is twice the signed area of the triangle:(
~p1

w1
− ~p0

w0

)
∧
(
~p2

w2
− ~p0

w0

)
= 2 Area(~N, ~P0, ~P1, ~P2)

~n

|~n|

⇒ ~n ·
(
~p1

w1
− ~p0

w0

)
∧
(
~p2

w2
− ~p0

w0

)
= 2 Area(~N, ~P0, ~P1, ~P2)

~n · ~n
|~n|

⇒ 1

w0w1w2

∣∣∣∣~n ~p0 ~p1 ~p2
0 w0 w1 w2

∣∣∣∣ = 2|~n| Area(~N, ~P0, ~P1, ~P2)

⇒ Area(~N, ~P0, ~P1, ~P2) =

∣∣∣∣~n ~p0 ~p1 ~p2
0 w0 w1 w2

∣∣∣∣
2|~n|w0w1w2

4.2. Oriented Projective Geometry 99

By considering a horizontal plane ~Nh = [0 : 0 : 1 : d], and denoting by (xi, yi) the cartesian 2D

coordinates of a point ~Pi, the well-known 2D formula may be retrieved:

Area(~Nh, ~P0, ~P1, ~P2) =
1

2

∣∣∣∣∣∣
x0 x1 x2

y0 y1 y2

1 1 1

∣∣∣∣∣∣
Tetrahedron Signed Volume: The signed volume of a finite tetrahedron with points ~Pi=0...3

and planes ~Ni=0...3 is given equivalently by:

V olume(~P0, ~P1, ~P2, ~P3) =

∣∣~P0
~P1

~P2
~P3

∣∣
6w0w1w2w3

V olume(~N0, ~N1, ~N2, ~N3) =

∣∣ ~N0
~N1

~N2
~N3

∣∣3
6
∣∣~n1 ~n2 ~n3

∣∣ ∣∣~n0 ~n2 ~n3

∣∣ ∣∣~n0 ~n1 ~n3

∣∣ ∣∣~n0 ~n1 ~n2

∣∣
The sign depends on the ordering of the points or planes.

4.2.4 Predicates

Definition 14 (Predicate). A predicate is a function which takes a structured set of geometric
objects as input and produces one of a discrete set of outputs.

A predicate is the basic geometric tool that queries the geometric configuration of the input
geometric objects. The output typically coresponds to the sign of a function of the coordinates of
the input geometric objects. For instance, is a point inside, on or outside a sphere? The in sphere
predicate evaluates the sign of the difference of the squared sphere radius and the squared distance
from the sphere center to the query point: positive is inside, negative is outside and null is on the
spherical surface.

Point Above Plane Predicate: To test if a finite point ~P = [~p : w] is above a plane ~N = [~n : d],
it suffices to evaluate the sign of the following expression:

Above(~P , ~N) = sign

(
~P · ~N
w|~n|

)
= sign

(
~P · ~N
w

)

If the sign is null (~P · ~N = 0), then the point lies within the plane. If it is strictly positive,
the point in the halfspace delimited by the plane pointed by the plane normal. Otherwise, it is in
the other halfspace.

This formula illustrates the fact that we are, here, not interested in the orientations of the
points (the sign of their homogeneous coordinates w), but only on the orientations of the planes.

Triangle Orientation Predicate: The orientation of the finite triangle ~P0
~P1
~P2 on the oriented

plane ~N = [~n : d] is determined by the sign of its signed area:

Orientation(~N, ~P0, ~P1, ~P2) = sign

∣∣∣∣~n ~p0 ~p1 ~p2

0 w0 w1 w2

∣∣∣∣
w0w1w2

 (4.2.4)

A strictly positive, null or strictly negative sign denotes respectively a direct, aligned or indirect
triangle with respect to the orientation defined by ~n.

100 4. Fixed Topology 3D Building Model Fitting

Proof. Using the definition of the area and the assumption that, since the points are finite, the plane is finite
too(~n 6= ~0):

Orientation(~N, ~P0, ~P1, ~P2) = sign
(
Area(~N, ~P0, ~P1, ~P2)

)
= sign

∣∣∣∣~n ~p0 ~p1 ~p2
0 w0 w1 w2

∣∣∣∣
2|~n|w0w1w2

4 Points Coplanarity/4 Planes Meet 4 points ~Pi=0...3 are coplanar or the intersection of

4 planes ~Ni=0...3 is not empty if and only if they define a degenerate tetrahedron of volume 0.
Assuming finite points, this is equivalent to∣∣~P0

~P1
~P2

~P3

∣∣ =
∣∣ ~N0

~N1
~N2

~N3

∣∣ = 0

2 Lines Coplanarity: 3D Lines are either skew or coplanar. To determine whether two lines
~L0 = [~d0 : ~m0] and ~L1 = [~d1 : ~m1] are coplanar, one has to check whether the quantity ~m0 ·
~d1 + ~m1 · ~d0 = 0. When the lines are skew, the sign of

(
~m0 · ~d1 + ~m1 · ~d0

)
indicates the direction

of crossing: positive if a right-handed screw takes L0 into L1, else negative. This permuted dot
product ~m0 · ~d1 + ~m1 · ~d0 is denoted by ~L0 � ~L1. The quadratic Plücker relation ~m · ~d = 0 ensures
that a line is coplanar with itself.

Remark. A straightforward derivation proves that ~L(~P0, ~P1)� ~L1(~P2, ~P3) =
∣∣~P0

~P1
~P2

~P3

∣∣: a tetrahedron

is degenerate if and only if the supporting lines of two non adjacent edges of the tetrahedron are coplanar.

4.3 Polyhedra and Plane Arrangements

Now that the basic geometric elements have been introduced, higher level geometric object can
be defined: 3D plane arrangements and polyhedra.

4.3.1 Plane Arrangements

An intuitive description of a plane arrangement [Grü71] in 3D is using a volume of clay (rep-
resenting R3), successively cut into halves along each 3D plane. This produces many convex
polyhedral pieces of clay, which are the cells of the 3D plane arrangement. The plane arrange-
ment generated by a set of 3D planes is a combinatorial structure that describes the topology of
the partition of the space R3 induced by successive cuttings by these planes. Its combinatorial
elements are:

3D cells are the maximal subsets of R3 that are not intersecting any plane.

2D facets are the maximal subsets of one of the planes that are not intersecting any other plane.

1D edges are the maximal subsets of a line, which is the intersection of 2 (or more) planes, that
are not intersecting any other plane.

0D vertices are the non-empty intersections of subsets of the planes, that are reduced to a single
point.

A 3D plane arrangement is not degenerate if the intersection of its planes are in general position
(i.e. the intersection of k planes has dimension (3− k) if k ≤ 3 and is empty if k ≥ 4). Assuming
the arrangement is not degenerate, its combinatorial elements can be counted. An arrangement of
n planes has at most

∑3
i=3−k

(
i

3−k
)(
n
i

)
combinatorial elements of degree k, which translates into

n(n−1)(n−2)
6 vertices, n(n−1)2

3 edges, n3−n2+2n
2 facets and n3+5n+6

6 cells (at most n3−6n2+11n+6
6 of

4.3. Polyhedra and Plane Arrangements 101

which are bounded). The maximal number of combinatorial elements is reached when the arrange-
ment is not degenerate [EOS86]. Thus, except for high degeneracies, the size of the arrangement is
O(n3). It is in general difficult to represent a partition of R3 on a flat sheet of paper. Nevertheless,
figure 4.4.c illustrates the vertices, and edges of a simple arrangement of 5 planes only.

4.3.2 Polyhedron Duality

Section 3.2.1.2 defined a polyhedron as a bounded volume with a piecewise-planar boundary.
Its boundary representation can be subdivided into its continuous geometry and its combinatorial
topology. The topology describes an abstract polyhedron without any geometric embedding. A
facet is only a topological primitive, its geometric counterpart is its supporting plane. Likewise, a
vertex is only a topological primitive too, and its geometric location is given by a point in 3-space.
Finally, the same relation holds between the topological edges and their supporting 3D lines.

Dual geometry
Plane coordinates:

~NA=[0:−4:3 :−8], ~NB=[+2:0:1 :−2],
~NC=[0:+4:3 :−8], ~ND=[−2:0 :1 :−2],

~NE=[0:0 :−1:0]

A

B

C

D

E

Primal geometry
Point coordinates:

~PEBA=[+1:−2:0 :1], ~PECB=[+1:+2:0 :1],
~PEDC=[−1:+2:0 :1], ~PEAD=[−1:−2:0 :1],

~PABD=[0:− 1
2 :2 :1],

~PCDB=[0:
1
2 :2 :1]

(a) (b) (c)

EBA

EAD EDC

ECB

ABD CDB

A 5-sided Polyhedron
with facets supported by the
planes A,B,C,D and E.

Points are denoted with the
3 intersecting planes.

A

B

C

D

E
EBA

EAD EDC

ECB

ABD CDB

Figure 4.4: (a) A polyhedron with 5 facets A,B,C,D and E. Its geometric embedding may either
be given by (b) the point coordinates of its vertices (which generates a point cloud) or (c) the plane
coordinates of its facets (which generates a plane arrangement).

To fully describe a polyhedron, the point coordinates of all its vertices may be given, as in
figures 4.4.a and 4.4.b. Then, the equations of the planes that support each of the polyhedron
facets are simply a by-product of the point coordinates of the vertices adjacent to each facet,
assuming that these points are indeed coplanar and not aligned. Figure 4.5 shows a polyhedron
(b) and two variants (a) and (c) that are the result of, respectively, geometric and topological
modifications of the polyhedron (b).

4.3.2.1 Duality

A number of computational geometry problems may be considered using a second viewpoint:
their dual problem. Basically, the 3D duality reverses the roles of the points and the planes, and
of the vertices and the facets.

The 4D homogeneous vector of the plane coordinates are considered as points in the dual
space. On the other hand the 4D homogeneous coordinate vector of a point are viewed as plane
coordinates: this dual plane is the set of all the dual points (i.e. planes) that passes through the
initial point. By opposition to the dual view of the problem, the initial problem is called primal.
Using the symmetry of the projective geometry formalism, the duality is seamless and the dual of
a dual problem is indeed the primal one. Lines [~m : ~d] are mapped onto lines [~d : ~m] by swapping

the ~m and ~d parts of their coordinates.

102 4. Fixed Topology 3D Building Model Fitting

A D

B

C

E

A D

B

C

E

Same topology

Same primal geometry

Facets: ABD, CDB, EBA, ECB, EDC, EAD

Differing topology

Point coordinates: ~PA=[0:−1:0 :1],
~PB=[+1:0:0 :1], ~PC=[0:2 :−1:2],
~PD=[−1:0 :0 :1], ~PE=[0:0 :−1:1]

Differing primal geometry

Facets: ABC, CDA,
EBA, ECB, EDC, EAD

Point coordinates: ~PA=[0:−1:1 :1],
~PB=[+1:0:0 :1], ~PC=[0:+1:1 :1],
~PD=[−1:0 :0 :1], ~PE=[0:0 :−1:1]

A

D

B
C

E

(a) (b) (c)

Figure 4.5: Three 6-sided simple polyhedra with vertices A,B,C,D and E. (a) and (b) have the
same topology. (b) and (c) have the same point coordinates(i.e. the same primal geometry). The

vertices are located using their homogeneous point coordinates ~P (section 4.2).

Same topology

Same dual geometry

Vertices: ABD, CDB, EBA, ECB, EDC, EAD

Differing topology

Plane coordinates: ~NE=[0:0 :−1:0],
~NA=[0:−4:3 :−8], ~NB=[+2:0:1 :−2],
~NC=[0:+4:3 :−8], ~ND=[−2:0 :1 :−2]

Differing dual geometry

A

B

C

D

E

A

B

C

D

E

A

B

C

D

E

Vertices: ABC, CDA,
EBA, ECB, EDC, EAD

Plane coordinates: ~NE=[0:0 :−1:0],
~NA=[0:−2:3 :−4], ~NB=[+2:0:1 :−2],
~NC=[0:+2:3 :−4], ~ND=[−2:0 :1 :−2]

(a) (b) (c)

Figure 4.6: Three 5-sided polyhedra with facets A,B,C,D and E. (a) and (b) have the same
topology. (b) and (c) have the same plane coordinates(i.e. the same dual geometry). (a) and (c)
are simple, and (b) is an example of a polyhedron that is not simple: the polygonal facet supported
by the plane B is auto-crossing (and so is the one supported by the plane D). The facets are located

using their homogeneous plane coordinates ~N (section 4.2).

4.3. Polyhedra and Plane Arrangements 103

The dual topology can be seen as keeping the same adjacencies between the vertex, edge and
facet topological objects, and only considering vertex nodes as facet nodes and vice-verse. As an
example one can note that the triangular facets of figure 4.5 and trihedral vertices of figure 4.6
have the same letter labels. The topologies of figures 4.5 and 4.6 are dual.

To give a geometric embedding to the abstract polyhedron defined by a topology, the dual
geometry may be given instead of the primal geometry: i.e. the equations of the planes that
support the facets of the polyhedron (Figure 4.4.a and 4.4.c). Then, the point coordinates of each
vertex may be computed by intersecting the supporting planes of its adjacent facets, assuming that
the intersections of these planes are not degenerate.

4.3.3 Arrangement Coloring

Instead of the 3D point cloud of the primal geometry(Figure 4.4.b), the dual geometry defines
a set of 3D planes(Figure 4.4.c). The topology of a polyhedron described by its dual geometry
then only states which facets of the plane arrangement are part of a polyhedron facet, or which
connected set of 3D cells of the arrangement are inside the closed polyhedron. Thus an alternate
description of the geometry of a polyhedron is a 0-1 coloring of the cells of the arrangement of the
supporting planes of its facets. Without loss of generality, a cell tagged 0 is outside the polyhedron
and cells tagged 1 are inside its volume. Cells are said to be connected if they share an adjacent
facet. We define the following properties over 0-1 colorings of a given arrangement of planes:

Bounded: A coloring is bounded if the unbounded cells are tagged 0. A bounded coloring thus
defines a bounded piecewise linear surface.

Hole-free: A coloring is hole-free if all its bounded cells are connected to an unbounded cell of
the same color using a path of identically colored cells.

Compatible: A coloring is said to be compatible with the plane orientations if no facet normal,
given by the first three supporting plane coordinates ~n = (a, b, c), points from a 0-colored
cell to a 1-colored cell.

Such colorings of a partition of R3 are handy. For instance the maximum flow class of surface
reconstruction algorithms [RC98] can be seen as computing a coloring of the partition of a bounded
volume in R3. Furthermore, a 3D partition coloring has the nice property to always describe an
orientable surface.

4.3.4 Polyhedron Properties

4.3.4.1 Topological only properties

Some properties may be defined without any knowledge of the polyhedron geometry. To state
geometric properties based on the topology alone, provided that the unknown geometry is not
pathological, some of these properties invoke a non-degenerate geometry assumption. In particular,
such an assumption ensures that the intersection of respectively 2, 3 and 4 or more planes is
respectively a line, a point and an empty set. We define the following topological properties on
polyhedron elements:

– The valence of a vertex is the number of facets that meet at this vertex. It maps to the
number of edges of the corresponding dual facet in the dual polyhedron.

– A trihedral vertex is a vertex adjacent to exactly 3 facets - its valence is 3. It thus
maps to a triangular face in the dual polyhedron. If the geometry of the polyhedron is not
degenerate, the point coordinates of one of its vertices may be uniquely determined from the
plane coordinates of its adjacent facets, if and only if this vertex is trihedral.

– A triangulated facet is a face that is subdivided by recursively splitting it with edges
(called diagonals) between 2 of its vertices until the facet is made of triangles only. Those
subdivision edges are called soft edges as opposed to the initial non-subdividing hard edges

104 4. Fixed Topology 3D Building Model Fitting

of the polyhedron. Note that this is only the definition of an abstract triangulation (see
section 5.4.1: there is no requirement on the underlying geometry, such as a consistent
orientation of the triangles.

– An edge of a polyhedron may be defined by its 2 vertices or its 2 incident facets. A non-
degenerate edge is an edge for which the only facets that are adjacent to both vertices
of the edge are its incident facets. It follows that, a degenerate edge is an edge that is
constrained to have a null length because of the topology only, without having to specify
further the geometry of the polyhedron. A polyhedron can always be modified to describe
the same surface without degenerate edges, yielding a simpler representation.

4.3.4.2 Geometric and Topological properties

The following properties also involve geometric requirements:
– A vertex is under-constrained if the dimension of the intersection of the supporting planes

of its adjacent facets is strictly positive. The point coordinates of those vertices cannot be
uniquely defined using the topology and the dual geometry. In dual space, this corresponds
to a facet defined by aligned points.

– A vertex is over-constrained if the intersection of the supporting planes of its adjacent
facets is empty. Those vertices have undefined point coordinates using the topology and the
dual geometry. This is the dual setup of a facet defined by non-coplanar points.

– A vertex is well-defined if it is neither under-constrained, nor over-constrained: the inter-
section of the supporting planes of its adjacent facets is a unique point (possibly at infinity).
Disregarding geometric degeneracies, a vertex is well-defined if and only if it is trihedral, as
the unique intersection point of its three adjacent supporting planes in general position.

– A simple facet is a facet of a polyhedron, the geometry of which is a simple (i.e. self-
intersection free) planar 3D polygon (possibly with holes), where a 3D polygon is a 2D
polygon embedded in an arbitrary plane (see section 3.2.1.1).

A vertex is caracterized by the rank of the N by 4 matrix formed by concatenating its N
adjacent supporting plane coordinates. A respectively under-constrained, over-constrained or well-
defined vertex corresponds to a rank that is respectively less, greater or equal to 3. The coordinates
of a well defined vertex can be computed using any 3 of its adjacent planes that do not have linearly
dependant coordinates.

A trihedral, well-defined, simple, triangulated or non-degenerate polyhedron is de-
fined by extension when all its qualified primitives (vertices, edges or facets) satisfy the property.
In a more general setting, a simple polyhedron not only require its facets to be simple, but also to
have a proper intersection, that is, the intersection of the 3D polygons with holes supporting
any pair of facets must be equal to the set of segments supporting the edges they share. Within
our context however (see section 3.2.1.2), the modeled polyhedra have a single bottom-facing facet
that is set sufficiently low as to have a proper intersection with all the other facets. This implies
that the facets that model a building have a proper intersection. An extension to more general
polyhedra is discussed in section 6.6.2.

If a vertex is well-defined but not trihedral, there is a constraint between the plane equations
of the planes that support the polyhedron facets adjacent to the non-trihedral vertex. Namely, for
each 4-tuple of distinct adjacent facets that are incident to a common vertex, the determinant of
their 4 homogeneous plane coordinates is null. Those constraints are geometric constraints induced
by topological singularities. When the geometric embedding of a polyhedron is given by its primal
geometry, this concurrency constraint is verified by construction.

The other type of such constraints, which is the dual of the previous one, occurs when a facet
is delimited by more than 3 vertices. This topological singularity induces the following geometric
constraints: all their points must be coplanar. When the geometric embedding of a polyhedron is
given by its dual geometry, the coplanarity constraint is verified by construction.

4.4. Dual Geometry Refinement 105

4.4 Dual Geometry Refinement

The purpose of this section is to reestimate the supporting planes of a polyhedron (i.e. its dual
geometry), disregarding topological constraints. Before the formulation of the minimized energy,
we describe how the polyhedron is represented so that it has no constraints induced by the topology,
but yet its points are coplanar by construction. Then, the following section details the iterative
fitting algorithm, before the discussion of the last section.

4.4.1 Using the Dual Polyhedron

We argue that relaxing the topology-induced geometric constraints gives more degrees of free-
dom, and thus allows a better fit of the building polyhedron. These degrees of freedom are gained
at the cost of a reduced robustness. In a context where the fitted data is accurate enough, this
topology-induced robustness is not required and has the only property of hindering a good fit. For
instance, these topology-induced constraints may translate a prior that made sense at the original
level of generalization, but are now too simplistic at the desired LOD. In this context, we are facing
an alternative between two means to make the optimization unconstrained:

– The primal approach (fig. 4.4.b) is to optimize the point coordinates under the geometric
constraint that vertices of each facet remain coplanar. Without those geometric constraints,
the point coordinate estimation would not guarantee coplanar points in each facet. Thus,
all the facets would have to be triangulated to get a topology consistent with the primal
geometry. This approach is thus preferred when there are only a few vertices per facet and
that the minimization criterion involves more naturally the point coordinates than the plane
coordinates.

– The proposed dual approach (fig. 4.4.c) is to optimize the plane coordinates directly, so that
the points are coplanar by construction. The drawback is that a polyhedron described by its
dual geometry has a singular topology if its vertices are not trihedral, and that this singular
topology implies geometric constraints on the planes supporting those non-trihedral vertices.
To avoid this restriction, all the vertices have to be trihedral, which is the exact dual of the
having triangular facets. This approach is thus preferred when there are many vertices per
facet and that the minimization criterion involves more naturally the plane coordinates than
the point coordinates.

5

6

4

6

3

4
4

4
4

3
3

3

3 3

4

43

3
33

3
3

3

4

4
6

3

4
7

5

6

5

5 5

5

5

6

5

5

4

5

5

6
5

4

5

4

6

4

(a) (b) (c)
Constrained Input Building Each facet is adjacent to vertices. Each vertex is adjacent to facets.3 3

Figure 4.7: Triangulated Vs Trihedral: (a) The numbers of vertices per facet (shown in squares)
are typically greater than vertex valences (shown in circles) in a polyhedron that models a build-
ing. (b) Unconstrained perturbation of the vertex locations after triangulating all the facets. (c)
Unconstrained perturbation of the plane equations after making all the vertices trihedral.

Both parameterizations are equivalent, but the primal parameterization emphasizes the point
locations over the plane equations and thus the vertex locations over the planar region supports.
On the other hand, the dual parameterization using the plane equations emphasizes the 2D planar
regions and consider the edge and point locations as by-products of the plane equations and the
polyhedron topology. We advocate to use the dual geometric representation for the following
reasons:

106 4. Fixed Topology 3D Building Model Fitting

Semantics: First, we advocate that the semantics of a polyhedron modeling a building are more
naturally expressed on facets than on vertices. For instance, relaxing the coplanarity con-
straints using a triangulation (fig. 4.7.b) generates a polyhedron that feels more complex and
thus less acceptable than relaxing the meeting of multiple planes using a trihedralization
(fig. 4.7.c). The perturbation of the plane equations of a trihedralized building yields a more
intuitive approximation of the building than the perturbation of the vertex locations of a
triangulated building.

Convenience: To be robust, the minimized energy uses the bulk of data of the DSM relative to
the polyhedral surface rather than only a sparse set of DSM points relative to the polyhe-
dron vertices. This enables an independent estimation of the plane coordinates under the
simplifying assumption that the boundaries of the facet supports remain fixed between opti-
mization steps. Using the primal parameterization of a triangularized polyhedron, the error
term depends, for each triangle, on the locations of its 3 adjacent vertices. Then, moving a
vertex modifies the error term of the minimized energy on all its adjacent triangles. Thus the
fixed boundary assumption is not sufficient to make the optimization of the vertex locations
independent. As a sidenote, enforcing the verticality of the façades amounts to estimating
a plane equation with c = 0 in the dual case, whereas in the primal approach, an equality
constraint has to be introduced on the x and y coordinates of the adjacent vertices of the
triangular facet. It seems then more appropriate to use the parameterization that gives direct
access to the plane coordinates.

Therefore, we propose to model the building geometry using their supporting planes rather
than their point locations. Before continuing, note that the geometric constraints induced by the
topology are disregarded in this section, yielding an unconstrained fitting. The algorithm that
performs the trihedralization of a polyhedron, and by doing so makes the fitting unconstrained, is
detailed in chapter 5.

4.4.2 Minimized Energy

The energy that is minimized during the geometric refinement of a polyhedron R is the energy
E(R,S), introduced in section 3.3 (equations 3.3.1 and 3.3.9), of a building B = (R,S). The set
of superstructures S is initialy empty (S = ∅), and is afterward the result of a previous detection
step in the overall building refinement system that alternately reconstructs its superstructures
and refines the building polyhedral geometry, taking into account its previously reconstructed
superstructures. We recall briefly the minimized energy and the meaning of the terms involved:

E(R, ∅) = L(R) + |πR ∩ ~pDSM (Z2)|. logCp,σ +
∑

πR∩~pDSM (Z2)

|zDSM − zR|p
p.σp

(4.4.1)

– L(R) is a measure of the complexity of the polyhedron R.
– πR is the support of the roof surface, which is its vertical projection on an horizontal plane

(section 3.2.1).
– πR ∩ ~pDSM (Z2) are the point samples of the DSM inside πR.
– Cp,σ is a normalizing constant that depends only on p and σ
– zDSM is the height of the DSM at a point sample.
– zR is the height of the roof polyhedron.
– p defines which Lp metric is used.
– σ is the prior standard deviation of the DSM noise.

4.4.3 Fitting Algorithm

The proposed method to minimize this energy is to iterate optimization steps until either a
maximum number of iterations are performed, or the computation time has been too long, or the

4.4. Dual Geometry Refinement 107

quality of the fitting is not increasing sufficiently, meaning that the optimization has converged.
Thus, there is no guarantee to obtain a global minimum, but a local minimum close to the approx-
imate input model appears to be a good guess in practice.

The trihedralization step will increase the complexity of non-trihedral polyhedra (i.e. which
have at least one vertex that is not trihedral), but, once all the vertices are trihedral, the fitting
algorithm itself keeps the topology fixed. We did not model the complexity increase due to the
relaxation of the topology-induced geometric constraints. Thus L(R) is considered constant during
the fitting. The energy minimized at each iteration (equation 4.4.1) is thus:

E(R,S) = Constant1 + Constant2.

 ∑
(πR\πS)∩~pDSM (Z2)

|zDSM − zR|p
 (4.4.2)

where Constant1 includes the complexity term L(R), the constant |πR∩~pDSM (Z2)|. logCp,σ and the

vertical error in the superstructure support regions
∑
πS∩~pDSM (Z2)

|zDSM−zR|p
p.σp . The minimization

of E(R,S) then simply reduces to the minimization of the vertical error in the effective roof support
region (πR \ πS), where the superstructure supports are not taken into account.

A second simplification arises by neglecting the modifications of the linear regions of zR during
each estimation iteration. The minimization of E(R,S) is then performed as the independent Lp
minimization of the plane coordinates of each top facing roof facet r over its effective support
(πr \ πS). For a top facing roof plane r ∈ R, assuming the normalization cr = 1, (zDSM − zr) =
(arx + bry + dr + zDSM) = (ar, br, dr) · (x, y, 1) + zDSM is an affine combination of the plane
coordinates. During an optimization step, the data is partitionned by the current 3D model: the
DSM is partitionned by a vertical projection of the 3D model into regions that correspond to points
of facets belonging to a common supporting roof plane. The plane equations [a : b : 1 : d] are then
estimated independently using the Lp estimator over the corresponding, possibly not connected,
region of the DSM, using only DSM samples outside the superstructure supports.

Algorithm 3 Fitting(~P1...n, T , DSM, πR \ πS)

Require: The initial point locations of the polyhedral vertices (~P1...n).
Require: The topology T of the polyhedron and the fitted DSM .
Require: The effective roof plane region πR \ πS .

Require: The function Estimate(i, ~P1...n, T , DSM, πR\πS) that estimates the ith plane equation
~Ni according to the DSM over a subregion of the effective roof support πR\πS that corresponds

to facets supported by the plane ~Ni.

repeat
for each supporting plane ~Ni do ~Ni ← Estimate(i, ~P1...n, T , DSM, πR \ πS) (sec. 4.4)
if it is the first iteration then

for each vertex v do Modify the topology T around v to relax its topology-induced con-
straints. (chap. 5)

for each vertex ~Pi do ~Pi ← intersection of its adjacent planes. (sec. 4.2.2)
until convergence.

Schematically, this iterative process may be described using algorithm 3. In practice, the input
geometry does not verify exactly the topology-induced constraints, due to round-off errors. For
instance, when the polyhedron geometry is described by the point coordinates, facets are likely
to have points that are only nearly but not exactly coplanar. The proposed approach does not
depend on the initial geometry of the polyhedron, but only the initial topology and the target
dual geometry. Thus, there is no need to estimate the initial dual geometry from the initial primal
geometry. The initial primal geometry is sufficient to partition the input DSM in order to estimate
the target dual geometry.

108 4. Fixed Topology 3D Building Model Fitting

Using the supports of the previously detected superstructures to restrict the fitted DSM sample
data to regions that have not been detected as superstructures is the key to reduce the bias they
introduced in the earlier plane fitting steps.

4.5 Results

This section illustrates the iterative mimization approach coupled with superstructure recon-
structions. We chose a simple building with a single slanted roof facet, to avoid the topological
issues that will only be handled in the next chapters. This single roof facet features however many
superstructures : terraces and small and large scale dormers. These superstructures represent
about 50% of the total main roof facet surface. This level of outliers yield a poor superstructure-
unaware fit of the main roof plane. Figure 4.8 shows the benefits of the iterative approach. (b)
The first iteration allows the detection of the terraces and of the large dormers, leaving the small
dormers undetected due to the erroneous initial roof facet geometry. (c) Then, detecting these
large superstructures directly allows for a better fit of the main roof plane. The second iteration
then detects all the superstructures. (d) Finally the third iteration slightly refines the geometry of
the roof and of the superstructures.

The reconstructed superstructures of the first iterations are subsequently discarded and are only
useful to refine the roof plane geometry prior to the last superstructure reconstruction step. That
is why the superstructure reconstruction horizontal quantization may be increased to reduce the
computing time of the first iterations and finally decreased at the last iteration that computes the
final superstructures. Likewise, the first iterations use a L2 error metric whereas the last iteration
uses a more robust L1.2 error metric. This greatly speeds up the computation without noticeably
degrading the reconstruction quality. Namely, the 3 iterations were performed in respectively
37.25s, 35.85s and 12435.5s, on a single Intel Xeon 1.60GHz CPU core. We may note that the
computing time explodes when the planimetric accuracy is increased. This example is extreme
since the huge superstructure blobs in the DSM yield many superstructure hypotheses before the
filtering, compared to roofs with the usually more isolated and smaller superstructure blobs.

4.6 Extensions

This chapter presented an approach to fit a fixed-topology polyhedral building surface to a
DSM, given the outlier superstructure regions. A straightforward extension is to improve the
stability and accuracy of the optimization scheme (section 4.6.1), which would also enable the
fitting of vertical facets. Then section 4.6.2 discusses a modification of the complexity term of the
minimized energy to only selectively relax topological and geometric constraints, ensuring that the
meaningful constraints are guaranteed throughout a constrained optimization. Finally, section 4.6.3
discusses the data term of the minimized energy, such as the usage of alternative input data such
as LIDAR points or aerial images.

4.6.1 Numerical Scheme

Higher order numerical schemes could be designed to more robustly converge to a minimum.
Likewise, it is easy to compute the gradient of the energy. Thus, a numerical scheme could use
this property.

Furthermore, the described optimization estimates the plane coordinates independently. Thus
it does not directly take into account the fact that the boundary separating two roof supports is a
function of the coordinates of their supporting planes. Taking into account the dependence in the
estimated plane coordinates of the planar region supports would lead to a better and more stable
optimization.

4.6. Extensions 109

(a)

(b)

(c)

(d)

Figure 4.8: Iterative roof plane fitting using detected superstructure outliers. (a) The input DSM
(ambient-occlusion shaded 3D view). (b) input main roof (red) and detected superstructures
(step=0.5m). (c) Re-estimated roof and subsequent second superstructure reconstruction results
at step=0.5m. (d) final roof estimation followed by a superstructure reconstruction at a step of
0.2m.

110 4. Fixed Topology 3D Building Model Fitting

A limitation of this geometric optimization step is its impossibility to reconstruct and optimize
vertical or bottom-facing roof planes. Although vertical facets of the polyhedron are not handled
as a special case in our dual representation of polyhedron (they are supported by planes with a
coordinate c = 0), it should be noted that the proposed geometric optimization is not able to move
those vertical facets, since they have empty supporting regions in the 2.5D DSM.

However, even if the vertical facets have a degenerate support in the DSM, moving them modifies
the supporting regions of their adjacent planes. An optimization scheme that takes into account
the dependance of the supports relative to the neighboring plane parameters will thus be able to
move and fit the vertical façade facets.

4.6.2 Selective Constraint Relaxation

The proposed approach gets rid of all the input topological singularities and does not incorporate
the induced complexity increase in the minimized energy. This would inevitably involve adding one
or more parameters to be able to value the complexity increase of relaxing a constraint in the L(R)
term of the minimized energy. The minimization problem would thus have to be able to chose which
topological singularities are worth being preserved and perform a optimization constrained by the
topological singularities that are not broken. The constrained optimization could be performed
using a method similar to the one used in [VT05].

Such an approach would allow the relaxation of topological singularities, in a way that is a
mix of the point coordinate parameterized primal approach and the plane equation parameterized
dual approach. For instance, it would allow to let some facets coplanar and some other vertices
adjacent to more than 3 planes, or even to ensure geometric properties such as symmetries and
orthogonalities. The MDL framework is well suited to quantify the loss in the complexity term
L(R) due to a set of constraints. The difficulty of the implementation of this extension is on the
optimization of the combinatorial decision of which singularities to preserve, and which to relax.

If all superstructures are merged into the building polyhedron to create a new polyhedron,
one may be interested in fitting this resulting polyhedron directly to the DSM. It would keep the
nice feature that DSM points detected as superstructure would not be used to reestimate the roof
planes. But it would also enable the continuous optimization of the discretized parameters of the
superstructure models (similar to appendix B). The geometries of the superstructure models of
the proposed library may easily be translated in terms of constraints on their plane equations :
horizontality, parralelism, orthogonality and distances between points or their relative position.

To go a step further, facets where the planar fit is poor would benefit from being split in two or
more planar facets. Likewise, depending on the application, it may be interesting to merge nearly
coplanar planes. These split (respectively merge) decisions would balance a better (respectively
worse) fit of the data with an increased (respectively decreased) model complexity. One can view
the superstructure reconstruction process of chapter 3 as a facet split process where the topology
and geometry of the new facets introduced are given by the parametric superstructure library.

4.6.3 Alternative Input Data and Energies

This algorithm does not rely on the regular nature of the DSM grid points. It is thus easily
adaptable to any other explicitely given input data, such as LIDAR data, with a careful dealing of
the possible planar inhomogeneity of the lidar points to prevent estimation bias.

Similar to the discussion about the superstructure energies, the proposed approach is not strictly
restricted to energies that measure the vertical error relative to some input data. A significant
feature is that the optimization process maintains explicitly a polyhedron, thus any energy that
values the goodness of fit of a polyhedron may be used. For instance, one may want to fit the
polyhedron to higher level geometric primitives such as 3D segments.

4.7. Conclusion 111

An alternative possible error term could no longer rely on partitionning the data with a vertical
projection. A Voronöı decomposition of the three-space, would partition the data according to the
closest 3D polygon of a polyhedron facet. This would allow to handle the façades as regular facets.
They could then be reestimated just like the roof facets. However we suppose that the strong
architectural prior on the verticality of the façades should still be taken into account during the
façade reestimation. Whereas the DSM sampling is homogeneous in planimetry, it is no longer
homogeneous in 3D, when a Voronöı decomposition of R3 is used. The solution seems to segment
a surface defined by the DSM rather than its point cloud. A simple surface defined by the DSM
is the quad mesh of the point cloud such that there is an edge between each interior pixel and its
4 nearest neighbors. To get a piecewise planar surface, each quad may be divided into 2 triangles,
using one of the two diagonals. The smoothest choice is to divide each quad using the diagonal
that minimizes the area of the resulting 3D triangles.

Obviously, an interesting extension is to fit directly the polyhedron to aerial images, rather
than preprocessing them as a correlation-based DSM. An input DSM is easy to manipulate and
gives convincingly good optimization results. We argue that an optimization relative to the DSM
is desirable before an image based optimization, because of its robustness and its good results.
From this intial DSM approximation, we believe that an image based optimization is the way to
extract the most accurate data out of aerial images.

4.7 Conclusion

This chapter introduced an unconstrained fitting of the polyhedral part of the building that
takes into account the previously detected superstructures to remove the bias they introduced in
the roof plane estimations.

Now that the fitting approach based on an iterative energy minimization, but unaware of the
topological constraints, has been described, the relaxation mechanism that removes these topo-
logical constraints, given the target dual geometry of the first iteration, has to be introduced
(chapter 5).

Furthermore, the boundary representation of polyhedron does not guarantee that the described
surface is self-intersection free and thus encloses coherently the piecewise planar volume of a poly-
hedron. The trihedralization steps are local and require that the trihedralization problems are
independent. However, the input topology may not only be simplified, which may not only require
trihedralizations, but may also contain more complex erroneous topological modifications. Chap-
ter 6 introduces a kinetic framework that interpolates the fitted polyhedron from the initial to the
target dual geometry, while guaranteeing that it remains self intersection-free.

In a nutshell, this chapters plans the itinerary from the initial dual geometry to a dual geometry
that fits the input data. Chapter 5 transforms the initial topology to be able to start the journey
on this planned itinerary. Finally, chapter 6 modifies the topology along the way so that the
polyhedron stays self-intersection free.

112 4. Fixed Topology 3D Building Model Fitting

113

Chapter 5

Polyhedron Trihedralization

Contents
5.1 Introduction . 114

5.1.1 Polyhedron Triangulation . 115

5.1.2 Polyhedron Trihedralization . 116

5.2 Winding Number-based Trihedralization 117

5.3 Plane Arrangement Coloring-based Trihedralization 119

5.3.1 Decomposability Assumption . 120

5.3.2 Arrangement Coloring-based Decomposable Trihedralization 122

5.3.3 Locality Assumption . 124

5.3.4 Discussion . 124

5.4 Local Vertex Trihedralization . 125

5.4.1 Abstract Triangulations . 125

5.4.2 Local Vertex Trihedralizations as Abstract Triangulations 126

5.4.3 Handling Degeneracies . 133

5.4.4 Discussion . 137

5.5 Ear-cutting-based Local Vertex Trihedralization 137

5.5.1 Ear-cutting Abstract Triangulation . 138

5.5.2 Ear-cutting Triangulation of a Simple Polygon 138

5.5.3 Ear-cutting Local Vertex Trihedralization 140

5.6 Local Vertex Trihedralizations and Straight Skeletons 142

5.6.1 Unweighted Straight Skeleton . 142

5.6.2 Weighted Straight Skeleton . 145

5.6.3 Reducing Weighted Straight Skeletons to Vertex Trihedralizations . . . 146

5.6.4 Reducing Vertex Trihedralizations to Weighted Straight Skeletons . . . 146

5.6.5 Conclusion . 148

5.7 Discussion . 148

5.7.1 Unicity . 148

5.7.2 Existence . 149

5.8 Conclusion . 151

114 5. Polyhedron Trihedralization

5.1 Introduction

Building reconstruction techniques tend to introduce constraints to increase their robustness.
Some of these constraints are only of geometric nature : horizontal edges, vertical facets, right
angles, symmetric slopes... To allow a better fit of the input data, they may be relaxed by modi-
fying the geometry of the building polyhedron as a post process, while keeping its topology fixed.
Chapter 4 has presented such a fitting process: it updates the plane equations of its facets (and
thus indirectly the point coordinates of its vertices) without any modifications of the adjacency
relationships between vertices, edges and facets.

However, the input topology itself may be erroneous. In general, the topology of the input
building model may be arbitrarily different from the topology of a polyhedron that models the
real building at the expected level of detail. Among these differences, two kinds of simplifications
modify slightly the polyhedron geometry to simplify its topology. Nearly coplanar facets may be
merged into a single facet (figure 5.1), resulting in a facet bounded by many vertices, or vertices
connected by small edges may be merged into a single vertex (figure 5.2), resulting in a vertex
adjacent to many facets. More general topological modifications are handled in chapter 6.

Simplification

Topological

A set of almost coplanar facets A single facet adjacent to many vertices

Figure 5.1: A set of almost coplanar facets are merged into a single facet.

Simplification

Topological

A set of vertices connected by small edges A single high valence vertex

Figure 5.2: A set of vertices connected by small edges is collapsed to a single vertex.

The topological simplifications imply geometric constraints. If they are not verified by the ideal
model (assuming it exists), keeping a fixed polyhedral topology will hinder a good fitting of the
polyhedron. Without modifying the topology, the reconstruction may then give poor results. Thus
an accurate reconstruction may have to undo these topological simplifications. An unconstrained
fitting, such as the one presented in chapter 4, must undo some of these simplifications to guarantee
that the resulting polyhedron is well-defined: vertices bounding a facet are supported by coplanar
points and facets adjacent to a vertex are supported by meeting planes.

Depending on the geometric parameterization of the polyhedron, either facet simplifications
(fig. 5.1) or vertex simplifications (fig. 5.2) must be undone. These two possibilities, which were

5.1. Introduction 115

already presented in section 4.4.1, are discussed more precisely in the following two sections.

5.1.1 Polyhedron Triangulation

Undoing the first type of topological simplifications (figure 5.1) until all facets are triangular
is required to move freely its vertices while keeping the semantics that facets are planar. It is
thus required to perform an unconstrained optimization of the polyhedron vertex locations. If the
facets are almost planar, then a planar facet triangulation is sufficient (section 5.1.1.1), otherwise,
a much more complex triangulation of the non-planar facets is required (section 5.1.1.2).

5.1.1.1 Independent Planar Facet Triangulations

If the polyhedral vertices have been slightly perturbated from locations where they form a simple
polyhedron with planar facets, triangulating the polyhedron amounts to independently triangulat-
ing the simple planar 3D polygons of the non-pertubated polyhedron. If the vertex displacements
are small enough from the planar facet configuration, the self-intersection free polyhedral surface
with planar triangulated facets remains self-intersection free after the perturbation. From sec-
tion 3.2.1.2, the 3D polygon that supports a planar facet may have polygonal holes. Then, the
triangulation of a polyhedron reduces to solving independently the triangulation problem of one
2D polygon (possibly with holes) per facet.

More precisely, a polyhedron is said to be a perturbation of a simple polyhedron with coplanar
facets if both:

1. Each of its facets has a simple orthogonal projection (i.e. a plane exists such that the
orthogonal projection of the facet boundaries onto this plane forms a simple planar 3D
polygon, possibly with holes).

2. The independent triangulations of each orthogonal projection applied to the perturbated
polyhedron yield a simple triangulated polyhedron.

See [BDE96] for computing a projection plane that yields a simple orthogonal projection, when
such a plane exists.

The triangulation of a simple 2D polygon is a well-known problem [dBCvKO08]. A triangulation
is a decomposition of the area bounded by a polygon (possibly with holes) into triangles that are
consistently oriented, such that they do not intersect each other except at their boundaries. A
2D polygon with holes with n vertices in total can be triangulated in O(n log n) time with an
algorithm that uses O(n) storage [dBCvKO08]. In particular, a 2D polygon without holes can be
triangulated in linear space and time [Cha91].

In the context of chapter 4 with a polyhedron parameterized using its vertex locations, a
triangulation of its facets relaxes the topology-induced geometric constraints on the vertex locations
(namely, the coplanarity of the vertices of each facet). It further guarantees that if the vertex
displacements are small enough, an input self-intersection free polyhedral surface remains self-
intersection free. In the more general case, where facets have no orthogonal projections or where
the triangulation problems are not independent, which may result from the vertex-parameterized
optimization sketched in the previous chapter, the triangulation problem is however much more
complex.

5.1.1.2 Non-planar Facet Triangulation

Before turning to our trihedralization problem, this section assesses the difficulty of a more
general triangulation problem. We focus on polyhedra with facets that have a single topological
boundary (no facet holes) but that may not have any orthogonal projection. The issue is the
difficulty of the problem of triangulating a 3D polygon that is not necessarily planar:

116 5. Polyhedron Trihedralization

(a) Simple non-planar 3D polygon (b) Triangulation of (a) (c) Knotted non-planar
3D polygon

Figure 5.3: Non-planar 3D polygon triangulation.

Definition 15 (Non-planar 3D polygon). A non-planar 3D polygon is a piecewise linear closed
curve in R3.

Definition 16 (Simple non-planar 3D Polygon). A non-planar 3D polygon is simple if it is self-
intersection free.

3D polygons may now be re-defined using the definition of non-planar 3D polygons:

Definition 17 (3D Polygon). A 3D polygon is a non-planar 3D polygon contained in a plane.

Triangulating a simple planar 3D polygon reduces to triangulating a simple 2D polygon. How-
ever, in the general case, where the simple 3D polygon is not planar, it may not even be triangula-
ble! Deciding whether it is triangulable is NP-complete [BDE96]. We refer the reader to [BDE96]
for the definitions of unknottedness and simple perspective or spherical projections, in order to
introduce a necessary and a sufficient condition for triangulability:

Theorem 5.1 (3D Polygon Triangulability : Necessary Condition). The 3D polygon must be
unknotted to be triangulable.

Theorem 5.2 (3D Polygon Triangulability : Sufficient Condition). A 3D polygon that has a simple
orthogonal, perspective or spherical projection is triangulable.

Finally, before turning to the dual trihedralization approach, this section showed that the
polyhedron triangulation problem is easy and well understood when the vertices have undergone
a small displacement from a simple polyhedral configuration with planar facets, but that this
problem in the general case is much more difficult and still leads to open questions such as a simple
condition for triangulability that is both necessary and sufficient.

5.1.2 Polyhedron Trihedralization

A triangulation is needed when the polyhedron geometry is given using its point locations. This
chapter develops concepts and tools that address the dual problem occurring when the polyhedron
geometry is given using its plane equations. The previous chapter does not take into account the
constraints induced by the topology in its geometry refinement step, since it is unconstrained.
Thus, the independently reestimated plane support of each facet of the polyhedron are likely to
produce over-constrained vertices.

This means that the polyhedron must be modified to be trihedral, so that the locations of its
vertices are well defined using the updated dual geometry (the new plane equations). This may be
done by splitting the vertices that are adjacent to more than 3 facets into trihedral vertices. This
undoes the topological simplification of figure 5.2.

5.2. Winding Number-based Trihedralization 117

In section 4.4.1, we argued that a plane-based polyhedral parameterization was more seman-
tically suited to our building reconstruction problem. This chapter thus explores the following
trihedralization problem:

�

�

	

Polyhedron trihedralization

Given a plane-parameterized polyhedron (possibly featuring over-constrained vertices),
modify parsimoniously its topology so that the modified polyhedron is trihedral and
simple.

The parsimony constraint will only be precisely formalized in a restricted class of vertex tri-
hedralization problems (section 5.4). At least, it imposes that an already well-defined and simple
polyhedron should be returned unmodified. Note also that searching for a polyhedron with trihe-
dral vertices rather than well-defined vertices amounts to assuming that the plane intersections are
not degenerate.

The trihedralization of a well-defined high-valence vertex is dual to the simple planar 3D polygon
triangulation. It is even simpler: its trihedralization introduces null length edges, such that all the
vertex splittings describes the same polyhedral surface and are thus equally valid. However, the
primal orthogonal projection trick is no longer helpful in the dual vertex trihedralization problem.
The validity of this trick is based on the fact that a polyhedron with triangulated planar facets
remains simple even if its vertices are slightly displaced. This is however false in the dual problem:
considering a trihedralization of a polyhedron with well-defined high-valence vertices, infinitesimal
perturbations of its plane equations may result in self-intersections. For instance, given a well-
defined high-valence vertex, we just argued that any trihedralization is valid as they yield null
length edges. An infinitesimal perturbation of its adjacent supporting planes may however yield
self-intersections. The trihedralization problem thus seems more related to the much more complex
non-planar triangulation problem.

This chapter is organized as follows. Section 5.2 shows how to adapt a winding-number based
approach to solve this trihedralization problem. Then section 5.3 extends the search space of
the winding-number based approach by providing an alternative approach based on a plane ar-
rangement coloring. Compared to the winding-number based approach, this approach explores
all the polyhedra supported by the input planes, such that the polyhedron obtained by the most
parsimonious topological modification is now considered. Concurrently, section 5.3 also provides
a sufficient condition under which the polyhedron trihedralization problem may be decomposed
into independent vertex trihedralization problems. Section 5.4 discusses the vertex trihedralization
problem. It finally formalizes the parsimony constraint in this independent vertex trihedralization
context, reducing the problem to searching an abstract triangulation for each over-constrained
vertex. Section 5.5 proposes an ear-cutting based algorithm to solve the vertex trihedralization
problem. Then, section 5.6 introduces reductions between the vertex trihedralization problem and
the weighted straight skeleton problem. Finally, section 5.7 discuss the trihedralization unicity and
existence and concludes the chapter.

5.2 Winding Number-based Trihedralization

To get a better intuition of the trihedralization problem, we present how an existing approach
based on winding numbers may be adapted to effectively provide a well-defined simple polyhedron
out of an over-constrained polyhedron (such as one produced by the optimization of chapter 4).

The self-intersection free trihedral polyhedron maintenance problem appears in [For97] in the
context of plane movements due to a rounding of their plane coefficients, rather than due to an
optimization. Their approach uses symbolic perturbation to avoid non-manifoldness issues. It

118 5. Polyhedron Trihedralization

1

−1

0

0

0

(a)

≤ 0

≥ 1

(b)

Figure 5.4: (a) Winding numbers on an oriented 2D piecewise linear curve. (b) The resulting
self-intersection free curve after thresholding the winding numbers.

(a) (b) (c)

Figure 5.5: (a) A 3D self intersecting polyhedral surface. (b) The resulting self-intersection free
surface after thresholding the winding numbers features a small dent of 2 facets (circled). (c) An
alternative self-intersection free trihedralization without the small dent.

does not handle degeneracies, so that every trihedral vertex is considered to remain finite and well-
defined. Thus, the trihedral polyhedron with an updated plane geometry (i.e. with rounded-off
plane coefficients) defines a finite well-defined but possibly self-intersecting surface.

Their approach relies on winding numbers to update the topology of the polyhedron so that the
polyhedron becomes simple. A bounded trihedral (possibly self-intersecting) polyhedron defines
a closed oriented surface. It thus partitions R3 into multiple connected volumes. For instance, a
non-empty self-intersection free polyhedron defines two complementary volumes, the outside and
inside volumes. However, in presence of self-intersections, the polyhedron may define more than 2
connected volumes. The winding numbers corespond to an affectation of an integer number to each
connected volumes that is consistent with the polyhedral surface and orientation. The consistence
involved ensures that whenever the surface bounds a volume A on one side of a surface point and
a volume B on its other side, with a surface normal going from A to B, the winding number of A
is one more than the winding number of B. See figure 5.4 for winding numbers in 2D. Since they
are defined up to a constant, the winding number of the unbounded connected volume may be set
to 0. For instance, the winding numbers of a simple polyhedron would be respectively 1 and 0
for the inside and outside volumes. To produce a self-intersection free polyhedron from a possibly
self-intersecting one (figure 5.5.a), the winding numbers are thresholded. Volumes with a positive
winding number are the bounded volume inside the resulting self-intersection free polyhedral surface
(figure 5.4.b in 2D, 5.5.b in 3D). All in all, this approach takes an arbitrary trihedral (possibly
self-intersecting) polyhedron and outputs a simple trihedral polyhedron.

The problem of making a non-trihedral polyhedron trihedral after its planes have moved while
keeping it simple (i.e. self-intersection free), is a variant of the problem of keeping a trihedral
polyhedron self-intersection free after moving its planes. To reduce our trihedralization problem
to the problem of maintaining a self-intersection free trihedral polyhedron, the input polyhedron
may be made trihedral disregarding any self-intersection free requirements. This may be done

5.3. Plane Arrangement Coloring-based Trihedralization 119

by applying an arbitrary, possibly self-intersecting, trihedralization of the high valence vertices
beforehand, i.e. by splitting arbitrarily the over-constrained vertices into trihedral vertices. Note
that the plane reestimations described in chapter 4 are performed recursively such that, assuming
no geometric degeneracies, if the first iteration requires a trihedralization, the following iterations
face this second problem of maintaining a self-intersection free trihedral polyhedron.

This approach is efficient and, using an arbitrary (i.e. possibly self-intersecting) trihedralization
preprocessing step, solves the trihedralization problem, up to the parsimony constraint: even if a
simple trihedral polyhedral is returned unchanged, the topological complexity of the resulting
polyhedron is not directly minimized. For instance, the small dent in figure 5.5.b is not mandatory
and a parsimony argument may be used to prefer the trihedral surface that does not feature this
dent (figure 5.5.c).

We would like to restrict the topological complexity of the trihedralization (i.e. the number of
vertices). The geometry of the trihedralization is completely determined by the 3D planes of the
input problem instance. All the geometry of the problem is then captured by the arrangement of
the input 3D planes: e.g. the vertices of the trihedralized polyhedron are located on vertices of the
input plane arrangement. Whereas the winding number thresholding approach provides a single
0-1 coloring of the coarse partition of R3 induced by the polyhedral surface, a 0-1 coloring of the
arrangement of planes supporting the polyhedral facets has many more degrees of freedom. It can
be seen as a generalization of the winding number based approach as the plane arrangement is a
refinement of the winding number partition.

5.3 Plane Arrangement Coloring-based Trihedralization

The arrangement of 3D planes captures the topology of the intersection of a set of planes
(section 4.3.1). It thus plays a central role in the trihedralization problem. Since the introduction
of new supporting planes is not allowed (no auxiliary planes: section 5.4.2.1), the trihedralization
of the polyhedron is equivalent to a compatible coloring of its plane arrangement (see section 4.3.3).

The number of bounded cells in an arrangement of n planes is O(n3). This means that a solution

of a trihedralization problem is a polyhedron out of the O(2n
3

) sets of polyhedra produced by 0-1
colorings of the bounded cells of the arrangement of the facet supporting planes. While the initial
geometry provides the plane arrangement, the initial topology must drive the arrangement coloring
to yield a resulting topology that is as combinatorially close as possible to the initial topology.

This partition coloring approach to reconstruct a polyhedral surface is well-known in computer
vision. For instance, in [RC98, TD04, LPK07], a bounded subset of R3 is partitionned using
respectively a set of cells of the arrangement of a set of detected planes, a regular grid of voxels, or
a Delaunay tetrahedralization. Then a coloring of those regions is computed by optimizing a given
criterion, be it based among others, on vertical errors, photoconsistency, visibility, regularization
or on a mix of these terms.

Our trihedralization problem does not however rely on minimizing an energy based on some
input data, but instead tries to make the simplest topological changes based on the input polyhedral
topology. While the winding number based approach readily provides a compatible coloring of the
plane arrangement, it has no degree of freedom. The issue is then how to use the combinatorial
degrees of freedom of the plane arrangement coloring approach to provide a compatible coloring
that induces a simple polyhedron with minimal topological changes from the input polyhedron. All
the compatible colorings may be enumerated, so if the minimal topological change criterion were
formally defined, a brute force enumeration and examination of all the compatible arrangement
colorings would solve our problem.

We do not attempt to define here what a minimal topological change means in the general case
and restrict ourselves to a class of polyhedron trihedralization problems which may be decomposed
into independent vertex trihedralization problems. To this end, we now introduce the definitions

120 5. Polyhedron Trihedralization

required to characterize this reduced class of polyhedron trihedralization problems.

5.3.1 Decomposability Assumption

To formulate an assumption that makes the trihedralization of a whole polyhedron decompos-
able into independent vertex-centered trihedralization subproblems, we now propose to define the
global arrangement of a polyhedron, the local arrangement and the zone of one of its vertices
and to extend the definition of the 3D polygonal supports (possibly with holes) to over-constrained
facets.

5.3.1.1 Global and Local Arrangements

Definition 18 (Global Arrangement). The global arrangement of a polyhedron is the arrangement
of all the planes supporting its facets.

Definition 19 (Local Arrangement). The local arrangement of a vertex is the arrangement of the
planes supporting its adjacent facets.

A non-trihedral vertex of the initial polyhedron should be at the intersection of k > 3 planes.
The arrangement of these k planes after the geometry update is called the local arrangement
of the vertex. If the local arrangement is not highly degenerate (i.e. with a single vertex), the
vertex location is not well-defined. The arrangement of all the polyhedral facet supporting planes,
is called the global arrangement, and is by definition a refinement of the partition defined by
the local arrangements of any of its vertices. In other words, each cell of the local arrangement
corresponds to a union of cells of the global arrangement. These local arrangements capture the
local geometry of the trihedralization problem around each polyhedral vertex.

5.3.1.2 Vertex Zones

The zone of a vertex may be informally defined as the region of R3 that is swept by the surface
resulting from the various topological trihedralizations of this vertex. By the definition of a plane
arrangement, a polyhedral surface supported by a set of planes may necessarily be expressed as
a union of facets, edges and vertices of the arrangement of these planes. If a polyhedral vertex
may be trihedralized locally (i.e. considering only the ring of adjacent planes and adjacent edges,
treated as infinite rays), its local arrangement encodes the local geometry of the problem and the
polyhedral surface away from the overconstrained vertex may simply be modelized by a circular list
of unbounded facets of its local arrangement. Therefore, its trihedralization reduces to selecting
the bounded elements of its local arrangement that are part of the resulting trihedralized surface.

Definition 20 (Vertex Zone). The zone of a polyhedral vertex is defined as the union of the bounded
elements (vertices, edges, facets and cells) of the local arrangement of this vertex.

Disregarding geometric degeneracies, note that a vertex is over-constrained if and only if its
zone is larger than a single point (i.e. Its local arrangement contains at least one bounded cell).
A pointwise zone then yields a well-defined point. For instance, being adjacent to 3 planes, the
zone of a non-degenerate trihedral vertex is necessarily reduced to a point. When trihedralizing
a polyhedron featuring an overconstrained vertex, the local arrangement of this overconstrained
vertex provides all the possible vertex, edge and facet supports of the resulting well-defined surface
in the neighborhood of this trihedralized vertex. Thus, the vertex zones model the regions of
uncertainty through which the various possible trihedralized surfaces have to pass.

5.3. Plane Arrangement Coloring-based Trihedralization 121

5.3.1.3 Facet Supports

We extend the definition of a facet support in presence of overconstrained vertices. An over-
constrained vertex has, by definition, no well-defined point location. However, we propose to give
it one for each facet adjacent to it. Considering a particular facet, each of its adjacent vertices
may then be supported by a well-defined point, yielding a facet supported by a well-defined 3D
polygon (possibly with holes). Disregarding geometric degeneracies, we propose to introduce the
facet-dependant location of a possibly overconstrained vertex.

Definition 21 (Facet-dependant Vertex Location). The facet-dependant location of a vertex V
adjacent to a facet supported by a plane Pi is the intersection point (Pi−1

⋂
Pi
⋂
Pi+1), where

(Pj)0≤j<n is the circular list of planes supporting the facets adjacent to V .

As a remark, when the vertex is trihedral, the definition above is no longer dependant on a
distinguished adjacent facet, and it reduces to the well-defined location of a vertex defined by the
plane geometry of its adjacent facets. Furthermore, section 5.4.3 will discuss the case of geometric
degeneracies.

These facet-dependant vertex locations provide well-defined facet supports even in presence
of over-constrained vertices. More precisely, the resulting over-constrained facet support is the
topologically simplest support among all the supports resulting from the various trihedralizations
of its adjacent vertices.

Definition 22 (Restricted Facet Support). The restricted support of a possibly over-constrained
facet is the 3D polygon (with holes) resulting from subtracting the interior of the zones of all the
polyhedral vertices from its support.

Subtracting the interior of the zones rather than the zones themselves ensure that the resulting
point set is a 3D polygon (with holes) that includes its boundary edges and vertices. For instance,
well-defined vertices have a pointwise zone and thus an empty zone interior. Thus the restricted
facet support of a well-defined facet is itself.

Definition 23 (Restricted Polyhedral Surface). The restricted polyhedral surface is the union of
the restricted facet supports.

The restricted polyhedral surface has well-defined point locations. However, this surface is
not strictly a polyhedron given that it may have boundaries in the vicinity of its over-constrained
vertices (i.e. at the vertex zone boundaries). The restricted polyhedral surface of a possibly
over-constrained polyhedron is a polyhedral surface that is common to all the possible polyhedron
trihedralizations that are performed locally around the over-constrained vertices. In other words, if
the trihedralization problem is decomposed into independent vertex trihedralization problems, then
the restricted polyhedral surface is common to all the recomposed solutions. Conversely, a volume
may be defined that encloses all the possible polyhedra resulting from independent over-constrained
vertex trihedralizations:

Definition 24 (Polyhedral Zone). The polyhedral zone of a possibly over-constrained polyhedron
P is the union of the restricted polyhedral surface of P and the zones of the vertices of P .

The polyhedral zone represents the region of uncertainty which may not trivially be classified as
inside or outside the final trihedralized polyhedron. A particularly interesting case is the polyhedral
zone being topologically equivalent to the input polyhedron. The polyhedral zone is then only
a thickened version of the input polyhedron around over-constrained vertices and a simple 2D
manifold away from them. Next section defines more formally this assumption.

5.3.1.4 Decomposable Trihedralization

The definitions above allow us to introduce the following definition:

122 5. Polyhedron Trihedralization

Assumption 5.1 (Decomposable Polyhedron Trihedralization). A polyhedron trihedralization prob-
lem is said to be decomposable if its vertex zones are disjoint from each other and its restricted
polyhedral surface is self-intersection free.

Disjoint zones ensure that the subproblems are independent and the self-intersection free re-
stricted polyhedral surface ensures that the restricted polyhedral surface itself does not cause any
self intersection, leaving the search for possible self-intersections to within the vertex zones.

Decomposing the global trihedralization topological search into subproblems local to each vertex
zone limits the possible topological modifications. Thus, this defines a restricted class of trihedral-
ization problems where the minimal topological changes required in our problem statement will
finally be formalized. From now on, the considered trihedralization problems are decomposable.
Before section 5.4 further investigates a restricted set of vertex trihedralization subproblems, next
section uses the above decomposition within the context of the arrangement coloring framework.

5.3.2 Arrangement Coloring-based Decomposable Trihedralization

Considering a decomposable trihedralization problem, cells of the global arrangement are of
two types: they either fall entirely inside the zone of a particular vertex or are completely outside
all vertex zones. To provide a coloring of the global arrangement, both types of cells, respectively
named zonal and non-zonal cells, have then to be colored.

5.3.2.1 Coloring the Non-Zonal Cells

Assuming a decomposable trihedralization problem, the polyhedral zone partitions R3 into 3
region types: the polyhedral zone itself, interior regions, and exterior regions. The cells of the
global arrangement may be labelled as zonal (currently uncolored), interior (1-colored) or exterior
(0-colored) cells. Non-zonal cells are either labelled interior or exterior depending on the orientation
of the planes supporting the restricted facet supports. The coloring of all the non-zonal cells
surrounding a vertex zone provides the context necessary to perform locally the overconstrained
vertex trihedralization.

More practically, constructing and coloring all the non-zonal cells is not relevant, as computing
the restricted polyhedral surface and coloring the non-zonal cells adjacent to zonal cells only gives
enough context to perform independently the decomposed vertex trihedralizations (i.e. to color
the zonal cells).

5.3.2.2 Coloring the Zonal Cells

The trihedralization of a high valence vertex reduces to a compatible 0-1 coloring of the global
cells of its zone, given a coloring of its adjacent non-zonal global cells (fig. 5.6). By construction,
the winding number thresholding approach of section 5.2 produces such a compatible coloring. It
is however not able to enumerate all the compatible colorings to minimize its resulting topological
complexity. For instance, the winding number based coloring may be updated to a hole-free
compatible coloring by iteratively ”filling in the holes” (by reversing the coloring of their cells).
This proves that such a hole-free compatible coloring exists, at least in non highly degenerate
setups where the winding number approach is not applicable.

Coloring each global arrangement cell inside the vertex zone independently is admittedly re-
dundant, as planes supporting non-adjacent facet are likely not to be relevant locally. Interestingly,
the local arrangement may however be too coarse a segmentation. Figure 5.7 shows a vertex zone
where some unbounded cells of the local arrangement contain both 0-colored and 1-colored global
cells adjacent to the vertex zone. These more global trihedralization subproblems may still be

5.3. Plane Arrangement Coloring-based Trihedralization 123

(b)

1

0

0

0

1

1

1

1

ba

c

(a)

1

0

0

0

1

1

1

1

b

a

c

0

0

d
e

f

a=c=e=f=1

a=f=1

a=c=f=1

a=b=c=f= 1

a=b=c=d=e=f=1

a=b=1, c=0

b=c=d=e=0

b=d=e=0

b=d=0

d=e=0

Figure 5.6: 2D planar sections of two distinct local arrangements with compatibly colored un-
bounded cells and uncolored bounded cells. (a) An arrangement and the only compatible coloring
of its bounded cells. (b) This more complex arrangement section admits 5 compatible colorings,
the second not being hole-free.

?

(d) Restricted support of the bottom facet (e) Vertex zone

(a) (b) (c)

Figure 5.7: (a) A trihedralization problem of a polyhedron with an over-constrained vertex. (b)
and (c) are two possible trihedralizations. (d) shows the restricted facet support of the bottom
facet, with a rectangular hole cut out by the tetrahedral vertex zone (e).

124 5. Polyhedron Trihedralization

solved independently and locally but such a vertex zone coloring not only relies on the arrange-
ment of the adjacent planes but on the arrangement of all the planes supporting a facet support
that intersects the vertex zone.

5.3.3 Locality Assumption

The decomposability assumption 5.1 enables the reduction of a polyhedron trihedralization
problem into independent vertex trihedralization subproblems. This section focuses on a subset of
these vertex trihedralization problems, namely the so-called local vertex trihedralization problems,
that satisfy the following assumption:

Assumption 5.2 (Locality). A vertex zone is local (i.e. yields a local vertex trihedralization
problem) iff its intersection with the restricted polyhedral surface is connected (i.e. is a point, a
segment, or a single piecewise linear loop).

This assumption implies that a local vertex zone produces a single hole in the restricted polyhe-
dral surface. It is thus possible to define the single circular list of supporting planes adjacent to the
vertex zone. Figure 5.7.e illustrates a vertex trihedralization problem that is not local: it features
two disconnected intersections (dashed: a segment and a planar quadrangle). This assumption is
termed local as it forces the vertex trihedralization problem to be local on the restricted polyhedral
surface.

More practically, as the global arrangement is a refinement of each local arrangement, the
unbounded cells of a local arrangement induce a partition of the set of non-zonal cells adjacent to
the vertex zone. Non-zonal cells adjacent to a local vertex zone are then colored consistently relative
to the local arrangement cell partition: the set of non-zonal adjacent cells included in an unbounded
cell of the local arrangement is identically colored. Therefore, local vertex trihedralizations may
be solved by coloring the local arrangement bounded cells, rather than all the global cells of the
vertex zone.

5.3.4 Discussion

This section defined the proposed decomposability and locality assumptions. These assumptions
clearly identify simpler classes of trihedralization problems. The proposed arrangement coloring
framework gave some intuition about these assumptions and illustrated how these assumptions
simplify the trihedralization algorithms sketched in this section:

No assumption: all the zonal cells are colored at once.

Decomposability: the zonal cells are colored independently within each vertex zone.

Decomposability and locality: the bounded local arrangement cells are colored independently
within each vertex zone (which is a coarser partition of the vertex zones, defined locally.)

Assuming a decomposable problem, the arrangement coloring approach may be used to enu-
merate all the hole-free compatible trihedralizations. We are however interested in minimizing the
increase of topological complexity of the resulting trihedralization. By introducing a topological
simplicity criterion, it would then be possible to output the simplest trihedralization among the
enumerated ones. Thus this approach may be viewed as an extension of the winding number
approach to meet our combinatorial simplicity criterion. Future work may use the arrangement
coloring induced by the winding number thresholding to drive an efficient computation of a suitable
0-1 coloring.

5.4. Local Vertex Trihedralization 125

5.4 Local Vertex Trihedralization

This section further analyzes the local vertex trihedralization subproblem and explores how the
decomposability and locality assumptions may be used to provide a straightforward meaning to
our goal of computing a self-intersection free trihedral polyhedron while minimizing its topological
complexity. Considering a local vertex trihedralization problem, the minimization of the topological
complexity is introduced here by restricting the allowable output topologies. To achieve this goal,
a framework is needed to efficiently explore the set of topologies of minimal complexity.

A similar problem of searching for the topology of a trihedral polyhedron has been addressed in
[YL89], in order to infer the topology of the occluded parts of a polyhedron given by its silhouette
only. The polyhedral silhouette gives a circular list of the geometry-less occluded facets. The
problem is then similar to ours: find the missing topology of a polyhedron that is supposed to be
trihedral and without any interior facet. Relative to [YL89], our contribution is a more precise and
fruitful description of this problem in terms of an abstract triangulation.

5.4.1 Abstract Triangulations

Given a polygon, its triangulation amounts to computing a combinatorial structure that satisfies
some geometric requirements: the so-called abstract triangulation, . This is the combinatorial
part of a triangulation, disregarding its geometrical embedding. A triangulation is said to be a
geometric realization of an abstract triangulation if their combinatorial structures are isomor-
phic. An abstract triangulation is a special case of a 2-dimensional abstract simplicial complex, as
defined, for instance, in [DLM05]. To distinguish between an object and its abstract counterpart,
non-abstract objects are referred to as concrete.

An abstract vertex v is defined as a combinatorial object without any geometrical embedding.
It allows the definition of a geometry-less abstract polygon.

Definition 25 (Abstract Polygon). An abstract polygon is a circular list V = (v0 . . . vn−1) of n
abstract vertices vi.

To simplify notations, the vertex indices are defined modulo the polygon size n : vi+1 =
v(i mod n). The vertex list (v0 . . . vn−1) of an abstract polygon is said to be circular since its
circular reorderings (vk . . . vk+n−1) = (vk . . . vn−1, v0 . . . vk−1) are considered to refer to the same
abstract polygon. The reversed abstract polygon (vn−1 . . . v0) is however different and refer to the
abstract polygon (v0 . . . vn−1) after a topological orientation reversal.

Abstract polygons have by definition no geometric embedding. However, for illustrative pur-
poses, the abstract polygons of the figures of this manuscript are given the geometric embedding
of regular (i.e. equilateral and equiangular) convex polygons. This convex geometric embedding
is chosen so that any abstract triangulation yields a self-intersection free (concrete) triangulation.
Let us now define the triangles, edges and triangulations in this topology-only context.

Definition 26 (Abstract Triangle). An abstract triangle is an abstract polygon of size n = 3.

Definition 27 (Abstract Edge). An edge of an abstract polygon is an ordered pair [vi, vi+1] of
consecutive vertices in the abstract polygon vertex list (v0 . . . vn−1).

This defines oriented edges: [vi, vi+1] is an abstract edge of the polygon (v0 . . . vn−1) but
[vi+1, vi] is not (except for degenerate polygons of size n = 2). Note that [vn−1, vn] = [vn−1, v0] is
an abstract edge of the polygon (v0 . . . vn−1), due to the circular ordering.

Definition 28 (Opposite Abstract Edges). 2 edges [vi, vi+1] and [wj , wj+1] of 2 abstract polygons
(v0 . . . vn−1) and (w0 . . . wm−1) are opposite of each other if vi = wj+1 and wj = vi+1.

Definition 29 (Adjacent Abstract Polygons). 2 abstract polygons are adjacent if an edge of one
abstract polygon is the opposite of an edge of the other abstract polygon.

126 5. Polyhedron Trihedralization

Definition 30 (Abstract Diagonal edge). A diagonal edge of an abstract polygon is an (oriented)
abstract edge [vi, vj] between non-consecutive abstract vertices of the polygon |i− j| 6= 1 mod n.

An abstract diagonal edge [vi, vj] with i < j decomposes an abstract polygon (v0 . . . vn−1)
into two abstract subpolygons (v0 . . . vi, vj . . . vn−1) and (vi . . . vj). Abstract diagonals [vi, vj] with
i > j induce the same decomposition as their opposite edge [vj , vi]. The two subpolygons resulting
from a diagonal decomposition are adjacent since one has an edge [vi, vj] and the other an edge
[vj , vi].

Definition 31 (Abstract Polygon Triangulation). An abstract triangulation of an abstract polygon
(v0 . . . vn−1) of size n ≥ 3 is a collection of abstract triangles (vi, vj , vk) with 0 ≤ i < j < k < n
obtained by a recursive diagonal decomposition of the initial abstract polygon until its subpolygons
are all triangular.

Note that these definitions are topological only and that no geometric properties are required.
The geometric realization of an abstract polygon triangulation is thus not guaranteed to yield a
partition of the (concrete) polygon into disjoint (concrete) triangles. However, the topological part
of a (concrete) polygon triangulation is always an abstract polygon triangulation.

Definition 32 (Abstract boundary Edges). An abstract boundary edge of an abstract polygon
triangulation is an edge of the triangulated abstract polygon.

By extension, an edge of an abstract polygon triangulation refers to an edge of one of its
abstract triangles. Thus triangulation edges are either diagonal or boundary edges. Moreover,
whereas a diagonal edge has its opposite in the abstract triangulation, the abstract edge opposite
to a boundary edge does not exist in the abstract triangulation.

Corollary 5.3. An abstract triangulation of an abstract polygon of size n contains n− 2 abstract
triangles and n− 3 diagonals.

Corollary 5.4. 2 adjacent triangles of an abstract triangulation have together exactly 4 distinct
abstract vertices : the 2 vertices of their common abstract edge and the third vertices of both abstract
triangles.

Definition 33 (Abstract Triangle Fan). The triangle fan of an abstract vertex vi inside a triangu-
lation of an abstract polygon (v0 . . . vn−1) is the set of all abstract triangles that contain the vertex
vi inside the abstract triangulation. Vertex vi is called the apex of its triangle fan.

The abstract triangle fan of vi may thus be given by the (non-circular) ordered list (w0 . . . wm) of
(abstract) vertices adjacent to vi such that (vi, wj , wj+1) is a triangle of the abstract triangulation
for all j < m. [vi, wj] is then a boundary edge if j = 0 or m and a diagonal edge otherwise.

Counting the Abstract Triangulations: The number T (n) of possible triangulations of a
convex polygon with n vertices is related to the Catalan numbers C(n) = 1

n+1

(
2n
n

)
, by the identity

T (n) = C(n− 2). This series grows exponentially and its first values are 1 (triangular case), 2 , 5,
14 (quadrangular, pentagonal and hexagonal cases, shown in figure 5.8), 42, 132, 429, 1430, 4862,
16796, 58786, 208012 [Slo09] ...

Now that the abstract triangulation of an abstract polygon is properly defined, next section
presents how it may be used in our local vertex trihedralization context.

5.4.2 Local Vertex Trihedralizations as Abstract Triangulations

Figure 5.9 illustrates a solution to a local vertex trihedralization problem both in primal and
dual space. By duality, triangles map to trihedral vertices. Thus, trihedralizing a vertex appears

5.4. Local Vertex Trihedralization 127

(a)

(b)

(c)

Figure 5.8: Counting the abstract triangulations for abstract (a) quadrangles, (b) pentagons and
(c) hexagons.

A B

C

DE

F

Primal view

Dual view

C

D

E

F
A

B

a

b

c

d

e

b
c

d

e
a

A B

C

DE

F

C

D

E

F
A

B

Figure 5.9: (Primal view) Trihedralization of the vertex a of valence 6, adjacent by 6 facets
ABCDEF into 4 trihedral vertices bcde. (Dual view) Triangulation of the facet a, adjacent to
6 vertices ABCDEF , into 4 triangles bcde.

128 5. Polyhedron Trihedralization

to be the dual operation of triangulating a facet. The local vertex trihedralizations thus appear
to be, at least topologically, the dual of the facet triangulations, in the sense that they compute
the same topological object: an abstract triangulation. For instance, splitting a vertex into two
vertices is the dual operation of splitting a facet into 2 facets with a diagonal.

Given assumptions 5.1 and 5.2, the polyhedron trihedralization problem may then be decom-
posed into the following independent local vertex trihedralization problems:

�

�

	

Local Vertex Trihedralization

Compute an abstract triangulation of the dual polygon representing the circular list
of plane equations around the possibly over-constrained vertex, such that the resulting
polygonal supports of its adjacent facets are self-intersection free.

Note that this problem formulation does not check for improper intersections and only checks
that the individual facet supports do not self-intersect. Dealing with improper intersections will be
discussed in section 5.4.4, together with considerations on the more general vertex trihedralization
problem that does not assume that vertex zones are local.

The next section comments the minimal topological complexity property of the abstract trian-
gulation, while the following section translates the geometric requirement of self-intersection free
facet in terms of the abstract triangulation.

5.4.2.1 Minimal Topological Complexity

The abstract triangulations have minimal complexity since they do not introduce any new
abstract vertex. Such an extra abstract vertex may have been recycled from a neighboring facet
supporting plane, yielding an interior facet, or may come from an entirely new geometry (an
auxiliary plane). By disallowing auxiliary vertices with both new and recycled geometry, the
search space of the trihedralization is then exactly the set of the T (n) abstract triangulations of
the abstract polygon formed by the circular list of adjacent facets around the high valence vertex.

No Interior Facets Figure 5.10 shows a trihedralization that uses no new auxiliary plane,
but uses a supporting plane for two distinct abstract vertices of the abstract triangulation. The
dual combinatorial structure is thus not an abstract triangulation. C1 is on the boundary of the
triangulated (dual) polygon, but C2, on the other hand, is an interior (dual) vertex (i.e. is not on the
boundary). To minimize the combinatorial complexity of the trihedralization, the facets resulting
from the trihedralization are required to be connected. To achieve this, the trihedralization may
not create new facet boundary cycles. A facet boundary cycle maps to a circular list of adjacent
triangles. The (dual) vertex common to all the triangles of such a circular list is an interior (dual)
vertex. Thus, to minimize the combinatorial complexity of the trihedralization, one must prevent
the creation of new facet boundary cycles by disallowing interior (dual) vertices.

No Auxiliary planes Casting this problem as finding an abstract triangulation ensures that no
auxiliary new planes will be introduced as in figure 5.11. The vertices of the abstract triangulation
only refer to existing input facets (condition 1), and no auxiliary dual vertex, or so-called Steiner
vertex, is created. The resulting surface is supported only by the input planes. Thus the number
of planes, which is a measure of the geometric complexity of the polyhedron, is kept constant.

5.4. Local Vertex Trihedralization 129

A B

C1

DE

F

a

C2

b

d c

e f

A B

C1

D
E

C2

F

a

b

c

d

e

f

primal dual

Figure 5.10: The plane C supports 2 disjoint connected facets: C1 touches the boundary as
do the other facets A,B,D,E and F , whereas C2 is an auxiliary interior (dual) vertex of the
trihedralization.

A B

C

DE

F
C

D

E

F
A

B

b

cd

e

f

a

G G

(a) (b)

Figure 5.11: The (a) primal and (b) dual views of a trihedralization of ABCDEF that uses a new
auxiliary plane G.

130 5. Polyhedron Trihedralization

B

C

D

A

B ∩D

C ∩D

D ∩AA ∩B

B ∩ C

P

Q

(a)

0.5

1.50 15.5

5

4.5 4

3.5

3 2.5

2?

(b)

Figure 5.12: Topological view of the trihedralization: (a) Given 2 adjacent dual triangles ABD
and BCD (where dual vertices are denoted by their supporting planes), the geometric embedding
of the dual edge BD is the 3D segment PQ, which is supported by the 3D line B∩D and bounded
by the endpoints P = A ∩ B ∩ D and Q = B ∩ C ∩ D. (b) The topology of the trihedralization
problem: one needs the outer dual polygon (light edges), to compute the trihedralization of the
inner (bold) dual polygon, to take into account the orientation of the incoming rays.

5.4.2.2 Geometric Requirements

This section focuses on the geometric requirements that an abstract triangulation must satisfy
to yield a valid local vertex trihedralization.

If the resulting facets are simple, then edges that link newly created vertices adjacent to the
same facet must not intersect. Such edges map, through duality, to diagonal edges of the abstract
triangulation of the formerly over-constrained vertex. The geometry of such an edge is defined by
the geometric embedding (fig. 5.12.a) of the 4 distinct dual vertices (i.e. facets) of its 2 adjacent
triangles (see corollary 5.4), by means of their 4 plane equations. It is supported by the line at
the intersection of the plane supporting the two dual vertices of the diagonal, and bounded by the
intersections of this line with the planes of the 2 neighboring dual vertices.

To compute the trihedralization, the facet simplicity geometric requirement has to be rephrased
in terms of the abstract triangulation. The following requirement is a first attempt that is necessary
but not sufficient to prove that the resulting facets are simple.

Theorem 5.5 (Necessary Geometric Requirement). If an abstract triangulation yields a trihedral-
ization with simple facets only, then no non-consecutive pair of diagonals in a triangle fan of the
abstract triangulation are supported by intersecting segments.

A dual vertex is a facet, and a pair of diagonals adjacent to this vertex refers to a pair of edges
on the boundary of this facet. If these diagonals are adjacent to a common dual triangle, then,
they are consecutive along the boundary of the facet, and thus have to intersect at one of their
endpoints, which is the geometric embedding of the dual triangle. Otherwise, this pair of diagonals
refers to edges that are adjacent to the same (primal) facet but have no (primal) vertex in common.
If these edges are supported by a pair of intersecting segments, then the facet is not simple, and
the trihedralization is thus invalid.

However, this requirement is not sufficient, as it only prevents the newly created edges to
intersect, and does not check for intersections with the segments that link the new vertices to the
old adjacent vertices. These edges are dual to the non-diagonal edges of the abstract triangulation.
By the definition of an abstract triangulation, such a non-diagonal edge [vi, vi+1], which is an input
(dual) edge of the abstract polygon is adjacent to a single abstract triangle (vi, vi+1, vj). The

5.4. Local Vertex Trihedralization 131

A B

CD

c
a

A B

CD

d
b

A
B

D

c
a

C

A B

CD

c
a

A B

CD

db

A
B

C

D

db

A B

CD

A
B

C

D

db

c
a

(a) (b) (c)

Figure 5.13: Trihedralization is ambiguous with the 1-ring of supporting planes only: (a) 4 in-
put planes ABCD in the order of appearance of the adjacent facets around an over-constrained
vertex of valence 4. (b) and (c) show the 2 possible abstract triangulations of this dual polygon.
Each possible abstract triangulation is illustrated with 2 geometric embeddings, depending on the
adjacent vertices being above or below the tetrahedron abcd defined by the planes A,B,C and D.

geometric embedding is however not fully defined. The decomposability assumption 5.1 allows to
consider that the location of the adjacent old vertex of the polyhedron is at infinity, making the
segment locally look like a 3D half line. However, to check for intersections, we must know which
of the 2 possible half lines has to be considered. The abstract triangle and the plane coordinates
Pi, Pi+1 and Pj of its abstract vertices only define the 3D line Pi ∩ Pi+1 supporting the half-line,
and its endpoint Pi ∩Pi+1 ∩Pj . The direction of the half-line is given by the point location of the
vertex that is adjacent to the over-constrained vertex of the polyhedron along the considered edge.

For instance, a vertex of valence 4 has 2 possible abstract triangulations, depending on the
position of its single diagonal. It creates a single diagonal, and thus a single new segment. With
a single segment, the above geometric requirement is always true. If it were sufficient, any of the
2 trihedralizations would be valid. Figure 5.13 shows that condition 5.5 is not sufficient and that
the position of the neighboring vertices must be taken into account.

In order to handle planes only and to unify the geometric predicates, the location of such a
vertex, adjacent to the over-constrained vertex through an edge between two facets supported by
two planes denoted Pi and Pi+1, is given by a third plane Pi+ 1

2
that intersects the line Pi ∩ Pi+1

at the adjacent vertex location. As a result, the input of the trihedralization problem is not di-
rectly the dual polygon of the high valence vertex, denoted (Pi)0≤i<n, but rather the dual polygon
(P i

2
)0≤i<2n, where the edges [Pi, Pi+1] of (Pi)0≤i<n have been added as diagonals to the dual poly-

gon (P i
2
)0≤i<2n, as illustrated in figure 5.12.b. This forms a circular list of abstract (dual) triangles,

representing the circular list of adjacent vertices, such that each pair of consecutive triangles share
a (dual) vertex, representing the planar facet between the two vertices. Furthermore, (P i

2
)0≤i<2n

is an ordered supset of (Pi)0≤i<n, and an abstract triangulation of (Pi)0≤i<n can be extended to
create an abstract triangulation of (P i

2
)0≤i<2n by introducing the triangles (Pi, Pi+ 1

2
, Pi+1). Given

an input abstract triangulation T of (Pi)0≤i<n, this abstract triangulation of (P i
2
)0≤i<2n is unique

and is denoted here as the extension of T to (P i
2
)0≤i<2n.

Concerning the vertex trihedralization figures illustrating this chapter, the geometric embedding
of the trihedralization is illustrated in the primal domain using the polyhedral surface itself, and
the dual view of the trihedralization only shows the abstract triangulation of the dual polygon of
the adjacent facets, rather than cluttering the figure with its extension.

Theorem 5.6. Let us consider a local vertex trihedralization problem given by an extended dual
polygon (P i

2
)0≤i<2n, and an abstract triangulation of this dual polygon. Assuming no geometric

degeneracies (abstract triangles refer to well-defined finite points and abstract diagonals to edge

132 5. Polyhedron Trihedralization

P k
i−1

P l
j

P l
j+1

P k
i+1 P l

j−1

P k
i

P l
j

P k
i

P k
i−1

P k
i+1

P l
j−1

P l
j+1

Ppk−i

pk+i

pl+j

pl−j

pklij

(a) (b)

pl−j

pklij

pk−i

pl+j
pk+i

Figure 5.14: Coplanar segments intersection test. (a) The dual abstract triangles involved. (b)
Primal 2D view within the plane P that contains both segments [pk−i , pk+

i] and [pl−j , p
l+
j], and the

point pklij = P ∩ P ki ∩ P lj . Planes are represented by their (line) intersection with P .

segments with positive lengths), the following statements are equivalent:

i. The resulting geometric realization of the abstract triangulation has simple facets.

ii. The extended dual polygon (P i
2
)0≤i<2n satisfies the geometric requirement 5.5.

The proof of this theorem is simply given by translating the geometric requirement on the
extended abstract triangulation. It only states that no pair of non-consecutive boundary edges
adjacent to a new vertex may intersect, including the edges linking a new to an old vertex.

Coplanar Segments Intersection Test The geometry of the problem of deciding whether 2
coplanar segments intersect is given by 7 planes P, P ki−1, P

k
i , P

k
i+1, P

l
j−1, P

l
j , P

l
j+1, as illustrated in

figure 5.14. The input segments [pk−i , pk+
i] and [pl−j , p

l+
j] are coplanar and their common support-

ing plane is denoted P . The planes P ki and P lj define, together with P , the 3D lines supporting

the segments. Planes P ki−1, P
k
i+1, P

l
j−1 and P lj+1 respectively define, along the supporting lines, the

endpoints pk−i , pk+
i , pl−j and pl+j . pklij = P ∩ P ki ∩ P lj is the intersection of the segment supporting

lines. The segments intersect if and only if pklij is contained in both segments. Thus, the intersection

test reduces to 4 point-in-half-line tests. We detail one of them, namely whether the point pklij , sup-

ported by the line P∩P ki , is contained in the half-line along the segment {pk−i +λ(pk+
i −pk−i), λ ≥ 0}.

This is tested by considering whether pk+
i and pklij are on the same side of P ki−1, which is the Above

predicate introduced in section 4.2.4. Since segments are closed, a pklij contained in P ki−1 is con-
sidered contained in the half-line. Thus, considering an Above predicate that returns respectively
-1,0 and 1 values in the below, contained and above cases, and given that the segments are not
degenerate, the closed half line containment test is simply Above(pklij , P

k
i−1)Above(pk+

i , P ki−1) ≥ 0.
The 4 tests together define the intersection predicate:

Intersect(P, P ki−1, P
k
i , P

k
i+1, P

l
j−1, P

l
j , P

l
j+1) = Above(pklij , P

k
i−1)Above(pk+

i , P ki−1) ≥ 0

& Above(pklij , P
k
i+1)Above(pk−i , P ki+1) ≥ 0

& Above(pklij , P
l
j−1)Above(pl+j , P

l
j−1) ≥ 0

& Above(pklij , P
l
j+1)Above(pl−j , P

l
j+1) ≥ 0

This concludes the translation of our primal local vertex trihedralization problem into the dual
problem of finding an abstract triangulation that fulfills a specified geometric criterion. Next
section extends this section in the presence of geometric degeneracies.

5.4. Local Vertex Trihedralization 133

5.4.3 Handling Degeneracies

5.4.3.1 Well-posed Local Vertex Trihedralization Problems

It is now time to introduce the geometric condition for the local vertex trihedralization problem
to be well-posed:

Definition 34 (Well-posed Vertex Trihedralization Problem). A trihedralization problem (P i
2
)0≤i<2n

is well-posed if, denoting the homogeneous coordinates of a plane Pi by ~Pi and its normal by ~ni:
– ~n i

2
6= ~0 : Planes are well defined.

– ~ni ∧ ~ni+1 6= ~0 : No two consecutive planes may be parallel.
– | ~ni ~ni+1

2
~ni+1 | 6= 0 : For all i, Pi ∩ Pi+ 1

2
∩ Pi+1 is a well-defined finite point.

We define a problem as ill-posed if it is not well-posed. ~ni 6= ~0 ensures that adjacent planes are
well defined and contain finite points. ~ni ∧ ~ni+1 6= ~0 ensures that consecutive adjacent facets have
an edge supported by a well-defined intersection line. | ~ni ~ni+1

2
~ni+1 | 6= 0 ensures that the geometry

of the polyhedron away from the over-constrained vertex is well-defined and finite. From now on,
trihedralization problems are assumed to be well-posed.

5.4.3.2 Polyhedral Representation Regularization

The representation of a polyhedral surface using its plane equations and the facet/edge/vertex
adjacencies is not unique. One of its representations, denoted regular, is the one that places ver-
tices and edges exactly at the locations of their corresponding type of discontinuity, when describing
the continuous and piecewise planar boundary of the polyhedron. The necessary regularizations
are the removal of edges between coplanar facets, of edges of null length and of under-constrained
vertices. These simplifying operations, applied recursively, converge to the topology of the regular
representation of the same polyhedral surface.

Edges between two coplanar facets may be removed by merging their adjacent facets, and edges
of null length may be removed by merging the adjacent vertices. Likewise, a vertex with less than 3
different adjacent facets can safely be removed without altering the described polyhedron: isolated
points (valence 0) and point in the interior of a facet (valence 1) are simply removed. Points lying
on an edge (valence 2) are under-constrained and may also be removed by merging the two adjacent
edges. Once all edges have a well-defined supporting line and vertices have a valence 3 or more, two
types of regularizations are still needed. First, higher valence vertices of the representation may
still be under-constrained, due to the possibly singular geometry of its adjacent planes. Second,
edges between well-defined points may have null length.

Our application does not require the computation of a regular representation of a polyhedron,
but only of its facets. In order to express the geometric requirement of the trihedralization in
pathological cases, the facets resulting from a tentative trihedralization must be described using a
polygonal chain with well-defined and finite endpoints and edges of positive length.

5.4.3.3 Degenerate Trihedralizations because of the Topology only

To begin with, we detail the example case of figure 5.15 that shows that these degeneracies
occur in practice even if the set of supporting planes is in general position (i.e. its arrangement is
simple). The trihedralization problems occurring within our building reconstruction context may
contain multiple facets supported by the same planes. Figure 5.15 shows a trihedralization problem
where a supporting plane appears twice in the circular list of planes supporting the facets adjacent
to the high valence abstract. If a diagonal of the abstract triangulation links two facets supported
by the same plane, then the two dual triangles (i.e. trihedral vertices) adjacent to this diagonal

134 5. Polyhedron Trihedralization

a

A

B1

CD

B2

A B1
C

DB2
b

c
a

b

c

A

B1

CD

B2

A B1

C
D

B2 a

a
(a)

(b) (c)

(d) (e)A

B1

CD

B2

A B1

C
D

B2

c

b
a

a c

b

A

B1

CD

B2

A
B1

C
D

B2
c b

a

c b

a

A

CD

B

A
B1

C
D

B2

a

a

Figure 5.15: Degenerate trihedralization due to its topological setup: (a) A vertex a of valence
5 is adjacent twice to the plane supported by B. (b), (c) and (d) show the result of 3 abstract
triangulations out of the 5 possible ones. The two omitted abstract triangulations (c’) and (d’) are
symmetric of cases (c) and (d). Trihedralizations (c), (c’), (d) and (d’) define the same geometry
and may be regularized to the triangulation (e) by merging the dual vertices B1 and B2: cases
(c) and (c’) contain a degenerate edge [b, c] of null length, whereas cases (d) and (d’) contain 2
under-defined vertices b and c of valence 2, generated by dual triangles containing a dual edge
between the 2 copies of plane B. The illustrated positions of b and c in (d) is thus arbitrary along
their supporting lines. Likewise, points b and c should have been collocated in (c). Depending
on the variation of the dual geometry, the trihedralization algorithm must choose which of the 2
polyhedra (b) and (e) contains only simple facets.

5.4. Local Vertex Trihedralization 135

of the abstract triangulation will be under-constrained, since two of their defining planes will be
equal.

Out of the 5 abstract triangulations of figure 5.8.b:
– Two have a diagonal between the facets that have the same plane support as in (d),
– Two have two adjacent (dual) triangles, such that the (dual) vertices they do not share have

the same plane support, yielding a degenerate edge, that is an edge that has null length
because of the topology only, as in (c),

– the last one (b) has none of these topological singularities.
Flipping an edge in a primal triangulated polyhedral surface adds to or removes from the

described volume the tetrahedron defined by the two former and the two new triangles created by
the flip. This property is extensively used in [BDH96] when reducing the 2D Delaunay triangulation
computation to the one of the 3D convex hull of the 2D points undergoing the parabolic lifting
map of [ES86]. Flipping an edge of the triangulation essentially amounts to adding (or removing)
a tetrahedron from the lifted 3D surface.

A similar dual property is also true for edge flips of dual triangulations. A tetrahedron can
similarly be defined by the two deleted and two new triangles. An edge flip alters the polyhedral
surface by applying its symmetric difference with the tetrahedron surface: it removes from the sur-
face the regions that are also contained in the tetrahedron, and adds to the surface the tetrahedron
regions that were not in the surface. However, if the tetrahedron is degenerate (i.e. its volume is
null), then the edge flip does not modify the surface.

This proves that 4 of the 5 abstract triangulations define the same regularized polyhedral
surface, since they can be generated from each other by flipping edges corresponding to degenerate
tetrahedra: for instance, edge [A,D] from case (c) to case (d) and edge [D,B1] from case (d) to
its symmetric case (d’). This analysis proves that assuming that the set of supporting planes is in
general position is not sufficient to avoid degeneracies.

5.4.3.4 Degenerate Trihedralization Problem Definitions

We introduce the notion of a degenerate trihedralization problem:

Definition 35 (Degenerate Trihedralization Problem). A trihedralization problem (P i
2
)0≤i<2n is

degenerate if it is ill-posed or if there exists 0 ≤ i < j < k < n such that Pi ∩Pj ∩Pk is not a finite
point and Pi, Pj and Pk are distinct supporting planes.

This means that a non-degenerate problem is well-posed and that any of its abstract triangles
either contains 2 or 3 facets supported by the exact same plane or maps to a well-defined finite
point. This definition does not consider problems with the topology induced degeneracies (i.e.
with a supporting plane occurring multiple times around the over-defined vertex) as degenerate.
Note that, apart from the topology induced degeneracies, a trihedralization of a non degenerate
problem might not be a regular representation because of edges of null length. To avoid edges of
null length at the level of the input geometry of the problem, we introduce the notion of a strongly
non-degenerate trihedralization problem.

Definition 36 (Strongly Non-degenerate Trihedralization Problem). A trihedralization problem
(P i

2
)0≤i<2n is strongly non-degenerate if it is not degenerate and if there exists no 0 ≤ i < j <

k < l < n such that Pi ∩ Pj ∩ Pk ∩ Pl is a finite point and Pi, Pj , Pk and Pl are distinct supporting
planes.

Equivalently, a trihedralization problem is strongly non-degenerate if and only if it is well-
posed and the arrangement of the planes (Pi)0≤i<n is simple, without taking into account multiple
occurrences of the same plane.

136 5. Polyhedron Trihedralization

c

ab

AD

E
F

G

H

I
B

C

(b)

a

d
d

ec

d

b

c
AD

E
F

G

H

I
B

C

(c)(a)

c

b a

B

A

C

D
E

F G H

I c ed

b a

B

A

C

D
E

F G
H

I
c e

b a

B

A
C

EorH

I

A I

B

C

c e

ab

EorH

Figure 5.16: Facet regularization. (a) A polyhedron with 9 facets, with a vertex c of valence 8. (b)
Its trihedralization after an update with a degenerate dual geometry : A,C,D and E have a new
point c as a non empty intersection, A ∩ E and A ∩H is the same 3D line, and A,E, F,G and H
intersect on point d. The abstract triangulation shows the dual triangles that refer to collocated
points on the boundary of facet A. (c) shows a regular representation of the facet A extracted
from the abstract triangulation (b).

5.4.3.5 Regular Representation of the Facets

The previous section drives us to generalize the computation of a regular representation of the
polyhedron facets from an abstract triangulation with a possibly degenerate input dual geometry.
When no degeneracy occurs, the regular representation of a polyhedral facet boundary is straight-
forwardly given by its corresponding triangle fan in the abstract triangulation, which translates to
a polygonal chain of segments bounding the facet. We introduce an algorithm that outputs these
polygonal chains as an ordered list of neighboring facets. Figure 5.16 illustrates this approach, by
giving a regular representation of the facet A after the trihedralization of the point c. Because
of the geometric degeneracies of the updated plane geometry, the triangle fan around A after the
trihedralization contains redundant dual triangles. The idea is to only use a subset of the outgoing
dual edges of A, namely BCEI, or equivalently BCHI.

The filtering of the neighboring facets defining the boundary of a given facet A goes as follows.

1. The circular list of dual edges is initialized using the outgoing dual edges ofA (e.g. BCDEFGHI
in the abstract triangulation 5.16.b).

2. All its neighbors are tested for parallelism against A. If a neighboring facet is parallel, but not
equal to A, or if it is equal but has an opposite orientation, then the abstract triangulation
is considered invalid. All its equal neighbors are merged together and their circular list of
neighbors as well. This handles the case of dual edges between coplanar facets.

Then the other kinds of degeneracies have yet to be handled, namely, 3 planes intersecting on a
line (i.e. their intersecting point is not well-defined) and 4 planes intersecting on a point (i.e. they
cannot define a non-trivial edge). To filter the circular list of adjacent planes (Pi)0≤i<n, we propose
to filter recursively the list until no degeneracies are left. First, if a dual triangle (Pi, A, Pi+1) yields
an infinite point, then the abstract triangulation is considered invalid. Otherwise, if this point is
undefined, then the dual edges (A,Pi) and (A,Pi+1) are supported by the same 3D line. They
are thus redundant and any of the two planes Pi or Pi+1 may be filtered out. Now that all the
dual triangles (P ′i , A, P

′
i+1) of the filtered list (P ′i)0≤i<n′ are located at well-defined finite points,

5.5. Ear-cutting-based Local Vertex Trihedralization 137

edges of null length are searched. This is done by computing the determinant of the 4 by 4 matrix
[A P ′i−1 P

′
i P
′
i+1]. If such a determinant is null, then P ′i can be filtered out, as happened to planes

D,F and G in figure 5.16. This filtering creates a new dual triangle (P ′i−1, A, P
′
i+1) that must be

checked for degeneracy. Figure 5.16 shows such a degenerate new triangle (E,A,H), created after
the planes F and G had been filtered out.

The algorithm outputs a filtered list of neighboring facets (P ′i)0≤i<n′ . The correctness of the
algorithm is based on the filtering of the planes until the following families of homogeneous plane
coordinates are full-rank : planes of an edge (A,P ′i), planes of a dual triangle (A,P ′i , P

′
i+1), and

planes of two consecutive triangles in the filtered list (A,P ′i−1, P
′
i , P

′
i+1).

The regularization of the facet boundary representation patches the theorem 5.6 when degen-
eracies are present. Its geometric requirements must be not be checked directly on each resulting
adjacent facet but on their filtered representation.

5.4.4 Discussion

This section precisely introduced the proposed local vertex triangulation problem, its topological
search space and its geometric requirements. Three assumptions were made that were not crucial
for the polyhedron trihedralization decomposition into independent vertex trihedralizations.

First, the geometric requirement introduced in this section only checks for the facet simplicities
but not for the improper intersections. This choice is driven by the scope of this thesis. Although
the trihedralization problem statement is general, it will only be used in this thesis on a restricted
class of polyhedra (polyhedra that may be decomposed into a 2.5D polyhedral surface and a single
arbitrarily low bottom facet). These polyhedra do not suffer from improper self-intersections.
Checking improper self-intersections may be included as an additional geometric requirement. This
would however not invalidate the topological search space as the set of abstract triangulations.

Second, the locality assumption yields multiple benefits. It simplifies the vertex trihedralization
problems by having to consider only the local arrangements. The dual polygon is then readily avail-
able as it is given by the circular list of adjacent facets, whereas a non-local vertex trihedralization
problem has to compute the intersection of the restricted polyhedral surface with the vertex zone
(a set of 3D points, 3D segments and/or non-planar 3D polygons) to get multiple circular lists of
adjacent facets. The topological search space has then to be extended to triangulate these sets of
abstract polygons rather than a single abstract polygon. The simultaneous abstract triangulation
of such a set of abstract polygons would have to be properly defined as the combinatorial part of
the triangulation of a set of polygon with holes.

Third, reducing vertex trihedralizations to abstract triangulations considers that the polyhedral
overconstrained vertices have a single circular list of adjacent planes (i.e. topological polyhedral
surfaces are manifold). This may not be the case in our 2.5D application. It would require a similar
treatment as a non-local vertex trihedralization, with multiple rings of adjacent planes.

Chapter 6 will provide a framework to cope with the lack of trihedralization locality and de-
composability.

5.5 Ear-cutting-based Local Vertex Trihedralization

This section proposes a local vertex trihedralization algorithm, that takes advantage of the
abstract triangulation formulation of the previous section. Section 5.5.1 exposes the abstract ear-
cutting paradigm. Then, section 5.5.2 quickly reviews its initial application: triangulating simple
polygons. Finally, we propose to apply this ear-cutting paradigm to our local vertex trihedralization
problem in section 5.5.3.

138 5. Polyhedron Trihedralization

(a) (b) (c) (d)

Figure 5.17: Abstract ear cutting. (a) The initial abstract polygon (in bold) has an abstract ear
(shaded) cut, and then recursively with 2 (b), 3 (c) and finally 5 abstract ears (d). (d) shows a
triangulation of (a) with 3 abstract ears (shaded) together with the dual of the triangulation.

5.5.1 Ear-cutting Abstract Triangulation

A triangulation of a planar convex polygon, or, equivalently, an abstract triangulation of an
abstract polygon, may be computed by splitting the polygon recursively with diagonal edges be-
tween two of its vertices. If the original polygon has n vertices, the two half polygons caused by
a diagonal split will have k and n+ 2− k vertices (indices are taken modulo n to account for the
circular ordering). A possibility is to take a vertex and to triangulate the polygon using a triangle
fan around this vertex, that is using all the diagonals between the chosen vertex and all the n− 3
other non-adjacent vertices. This process readily provides an abstract triangulation. However,
by varying the choices of the splitting diagonals, one can generate all the T (n) (see section 5.4.1)
abstract triangulations of the polygon.

Instead of splitting using arbitrary diagonals, the choice may be limited to cut the polygon into
a triangle (k = 3) and a polygon of size n− 1. Such an abstract triangle is called an abstract ear:

Definition 37 (abstract ear). An abstract ear is a triangle of an abstract triangulation formed
by 3 consecutive abstract vertices (vi−1, vi, vi+1).

Recursively cutting ears rather than allowing splits from arbitrary diagonals simplifies the
process by providing a constant size problem (the abstract ear) and a reduced size problem (treated
recursively), rather than two problems of varying sizes (fig. 5.17). The following theorem [Mei75]
can be proven by considering the abstract triangulation as the dual topology of an unrooted binary
tree (fig. 5.17.d).

Theorem 5.7. An abstract triangulation of more than 3 vertices has at least 2 abstract ears.

Since at least one abstract ear is always available, exploring the T (n) abstract triangulations
may performed by recursively splitting abstract ears. Namely, limiting diagonal splits to abstract
ear cuttings is not restrictive.

The goal of an abstract triangulations problem is to find an abstract triangulation that satisfies a
given specific geometric requirements. finding an abstract triangulation that fulfills some geometric
requirements may be performed by testing all the possible abstract ears and recursively computing
the abstract triangulation on the ear-cut polygon (fig. 5.17). The ear-cutting approach is thus a
generic way to enumerate all the abstract triangulations. Before applying it to our trihedralization
problem, this approach is presented on the simple polygon triangulation problem.

5.5.2 Ear-cutting Triangulation of a Simple Polygon

A simple, yet suboptimal, simple polygon triangulation algorithm can be designed using the
ear-cutting approach. Figure 5.18 illustrates the following definition.

Definition 38 (Primal ear). A primal ear is the geometric realization of an abstract ear that
verifies the geometric property that its supporting triangle lies entirely inside the polygon.

5.5. Ear-cutting-based Local Vertex Trihedralization 139

vi−1

vi

vi+1

vi+1

vi+1

vi

vi

vi−1

vi−1

(a) (b) (c)

Figure 5.18: (Primal) ear geometric requirements. Among the 3 abstract ears (a), (b) and (c) of
the pictured simple polygon, only (a) is a primal ear. The abstract ear in (b) falls outside the
polygon and the one in (c) does not lie entirely inside it.

A primal ear is usually simply referred to as an ear in the literature. However the term primal
ear is used here in contrast with the abstract ear and the forthcoming dual ear terms.

Splitting a simple polygon with n vertices along the diagonal edge [vi−1, vi+1] of an ear (vi−1, vi, vi+1)
will yield a direct triangle and a simple polygon with n−1 vertices that does not contain the vertex
vi. Without considering the geometric requirement that the triangle is entirely contained inside
the polygon, the n abstract ears, one for each vertex, are all equivalent. Theorem 5.7 states that
any abstract triangulation, except for triangles, has at least two abstract ears. Since they cannot
be consecutive, one may only test the n − 2 consecutive abstract ears 1 . . . n − 2, when searching
for a primal ear to cut out of the polygon.

Algorithm 4 EarCuttingTriangulation(v0 . . . vn−1, T)

Require: (v0 . . . vn−1) is a list of n ≥ 3 vertices.
Require: T is the running set of triangles of the triangulation (initially empty).

for i = 1 to n− 2 do
if (vi−1, vi, vi+1) is a primal ear then
T ′ ← T ∪ (vi−1, vi, vi+1) // Add the abstract ear to the triangulation
if n = 3 then

return T ′
else

return EarCuttingTriangulation(v0 . . . vi−1, vi+1 . . . vn−1, T ′)
return ∅

Algorithm 4 returns an abstract triangulation T that is not empty if and only if the input
polygon is simple. The primal ear test can be performed in O(r), where r is the number of reflex
vertices (i.e. of vertices which interior angle is greater than π), by checking that vi is convex and
that the triangle vi−1, vi, vi+1 contains no reflex vertex. A complexity analysis proves that, far
from the optimal O(n) algorithm [Cha91], this algorithm takes O(n2r) time, when applied on a
simple polygon. This is due to the algorithm being called recursively n−2 times, the n−2 for loop
iterations, and the returned triangulation never being empty, since the polygon is simple. This
algorithm is highly suboptimal but provides a framework to explore the abstract triangulations of
an abstract polygon intuitively. For instance, [EET93] developed a O(n2) optimized ear-cutting
triangulation algorithm.

140 5. Polyhedron Trihedralization

5.5.3 Ear-cutting Local Vertex Trihedralization

Unluckily, the triangulation of a simple 3D polygon is not the dual of our trihedralization
problem. Whereas they compute the same combinatorial object, namely an abstract triangulation,
their geometric requirements are not dual of each other. A 3D polygon is supported by a plane
and bounded by coplanar points. Its dual is then a point lying on meeting planes. Therefore,
a trihedralization of such a vertex only adds null length edges. Thus any abstract triangulation
fullfills the geometric requirement that the resulting facets are self-intersection free, as in the case
of the triangulation of a planar convex polygon.

This section solves the trihedralization problem by a dual ear-cutting triangulation approach.
Our dual problem of making a vertex trihedral is performed by iteratively intersecting 2 consecutive
edges of the high valence vertex which produces a new ear-like trihedral vertex and decrements the
valence of this vertex by 1. An ear cutting then amounts to splitting a vertex of valence n into a
trihedral vertex and a vertex of valence n− 1 by uncollapsing an edge.

5.5.3.1 Ear-cutting Trihedralization Algorithm

As described in section 5.4.2, the duality only applies to the topology of the problem, but not
to its geometric requirements of generating simple facets. The geometry of a facet is known as
soon as its dual vertex is only surrounded by triangles, which makes it the apex of a triangle fan.
The simplicity property can thus only be checked for facet fi, when the abstract ear (fi−1, fi, fi+1)
is considered. A dual ear is then defined as an abstract dual ear which middle dual vertex refers
to a simple facet. Note that, contrary to the primal ear definition, when the polygon has only 3
vertices, this dual ear definition is not symmetric, since it might occur that (f0, f1, f2) is a dual
ear (i.e. f1 is self-intersection free), but not (f2, f0, f1) (i.e. f0 self-intersects). The algorithm 5
is a translation of the primal algorithm 4. Apart from the translation from vertices to facets and
primal ears to dual ears, there are two variations :

1. When only 3 facets are left, one has to check that (f0, f1, f2), (f2, f0, f1), (f1, f2, f0) are all
dual ears, because of the asymmetry of the dual ear geometric requirement.

2. After a recursive call, the result is only reported if it is not empty (i.e. if the subproblem is
trihedralizable). Given one of its primal ears, a non-triangular polygon is triangulable if and
only if the polygon obtained by cutting this primal ear is triangulable. A theorem of this kind
is yet to be proved concerning trihedralizations. Thus, finding a dual ear is not sufficient,
and the algorithm has to test all the dual ears until one dual ear yields a trihedralizable
subproblem.

To handle the degeneracies discussed in section 5.4.3, the test whether (fi−1, fi, fi+1) is a dual
ear, is performed in 3 steps :

1. If fi is supported by the same plane as fi−1 or fi+1, then the simplicity check is postponed
to the handling of this vertex, and the abstract ear is considered as a dual ear. If an adjacent
facet is parallel but not equal (including its orientation), then the abstract ear is not consid-
ered a valid dual ear. If no adjacent facet is coplanar, then the facet is delimited by a single
polygonal chain. Finally, if fi is supported by the same plane as N of its other adjacent
facets, then the abstract ear, if accepted, finalizes the representation of a facet in which the
trihedralization created N+1 polygonal chains. This case occurred in figure 5.15.d, where the
facet B1 = B2 is bounded by the polygonal chain delimited by A and the one delimited by C
and D. For instance, given a dual edge between 2 equal facets, their lists of adjacent planes
(P1 . . . Pk−1, Pk, Pk+1 . . . Pm) and (Q1 . . . Ql−1, Ql, Ql+1 . . . Qn) where Pk = Ql are split and
merged to form the 2 new lists (P1 . . . Pk−1, Ql+1 . . . Qn) and (Q1 . . . Ql−1, Pk+1 . . . Pm).

2. The geometry of the facet fi is given by circular lists of facets adjacent to fi, or only one
such list if fi has no holes. When no splitting and merging occurred, the trihedralization
provides a sublist of this circular lists through the fan of edges outgoing from the facet in the
trihedralization. When N coplanar facets are connected in the trihedralization, the first step

5.5. Ear-cutting-based Local Vertex Trihedralization 141

Algorithm 5 EarCuttingDualTriangulation(f0 . . . fn−1, T)

Require: (f0 . . . fn−1) is a list of n ≥ 3 dual vertices (i.e. facets).
Require: T is the running set of dual triangles (i.e. trihedral vertices) of the trihedralization

(initially empty).

for i = 1 to n− 2 do
if (fi−1, fi, fi+1) is a dual ear then
T ′ ← T ∪ (fi−1, fi, fi+1) // Add the abstract ear to the triangulation
if n = 3 then

if (f2, f0, f1) and (f1, f2, f0) are dual ears then
return T ′

else
return ∅

T ′ ← EarCuttingDualTriangulation(f0 . . . fi−1, fi+1 . . . fn−1, T ′)
if T ′ 6= ∅ then

return T ′
return ∅

splitted and merged their N edge fans to form N distinct sublists of the circular lists of the
adjacent facets. Section 5.4.3.3 proposed a method to filter these lists so that they represent
polygonal chains with well defined finite points and non-trivial edges. If this filtering aborts
because it creates a vertex of the polygonal chain that is not well-defined and finite, then the
ear (fi−1, fi, fi+1) is not considered as a dual ear.

3. The last step is to consider the N filtered lists of adjacent planes of the facet fi (supported
by a plane P) due the trihedralization, denoted (P 1

1 . . . P
1
n1

) to (PN0 . . . PNnN). If we consider
4 integers i, j, k, l such that 1 ≤ k, l ≤ N , 1 < i < nk, 1 < j < nl and if k = l then
|i − j| > 1, then the 4 dual triangles (P, P ki−1, P

k
i) and (P, P ki , P

k
i+1) on one hand, and

(P, P lj−1, P
l
j) and (P, P lj , P

l
j+1) on the other hand, define 2 edges of the boundary of fi that

are not consecutive (see figure 5.14). The simplicity of facet fi is finally tested by checking
that no such combination (i, j, k, l) refers to a pair of intersecting segments.

The test whether two segments intersect is described in section 5.4.2.2. Since only pairs of
non-consecutive segments are considered, the segments are closed, so that if their intersection is
one of their endpoints, the intersection is reported and the facet is not considered simple.

5.5.3.2 Discussion

To comment on algorithm 5, section 5.7.2 will prove that a trihedralization does not always exist.
In such a case, algorithm 5 returns an empty triangulation (T = ∅). Likewise, section 5.7.1 will
show that a self-intersection free trihedralization is not necessarily unique. Thus, algorithm 5 only
reports the first self-intersection free trihedralization it discovers. However, a simple modification
would enable the reporting of all the trihedralizations instead. A preliminary analysis of the
algorithmic complexity yields O(n!) time and O(n) space.

Proof. The dual ear predicate takes time D(n) proportional to the number of non consecutive edge pairs in the

filtered triangle fan of the middle vertex of the ear. This can be bounded by
(n
2

)
=

n(n−1)
2

. A recursive call, when
n−k−2 ears have already been cut, takes 3D(n) time when the subproblem has only 3 facets left (k = 1), or makes
k dual ear checks and recursive calls. The time complexity T (n, k) is then:

T (n, 3) = 3D(n) = O(n2)

T (n, k) = k (D(n) + T (n, k − 1)) = D(n)

(
k + k(k − 1) + k(k − 1)(k − 2) + . . .+

k!

2

)
= D(n)k!

=O(1)︷ ︸︸ ︷(
k−1∑
i=2

1

i!

)

142 5. Polyhedron Trihedralization

Initially k = n − 2, and thus, the overall time complexity is T (n, n − 2) = O(n!). This analysis is pessimistic as it

counts the complexity of all the recursive steps as if all the dual ears were fullfilling their geometric requirement,

but yet the algorithm backtracked to explore all the recursive paths.

The worst-case valence of a vertex is linear with the size of the polyhedron. However, within
our applicative context, the valence of each vertex is rather a constant. Thus, the asymptotic
complexity is not really relevant when fitting building polyhedra to some input DSM. The space
complexity of this algorithm is optimal : this is the one of a single abstract triangulation, which is
linear.

However, more global self-intersections may still occur even if the facets are self intersection
free. To report a self-intersection free trihedralization, the dual ear geometric requirement must
be extended to avoid the intersection of the facet it closes with all the already closed facets by
previously cut dual ears. An other approach is to simply compute the list of trihedralization with
self-intersection free facets, and then filter them for proper facet intersections.

5.6 Local Vertex Trihedralizations and Straight Skeletons

The trihedralization problem has a strong connection with the straight skeleton of a 2D polygon,
and more precisely its weighted variant. Section 5.6.1 introduces the unweighted straight skeleton,
while section 5.6.2 presents its weighted variant. Then, our contributions follow. Section 5.6.3 casts
the weighted straight skeleton problem as a trihedralization problem. Conversely, section 5.6.4
reduces a specified subclass of trihedralization problems to weighted straight skeleton problems.
Finally, section 5.6.5 discusses the results and provides a possible extension.

5.6.1 Unweighted Straight Skeleton

The straight skeleton, introduced by [AAAG95], is a kind of skeleton for a polygon, similar to
the medial axis [CSW99].

The medial axis (fig. 5.19.a) is defined as a the set of points inside the polygon that have more
than one closest point on the boundary of the polygon. This set of points forms a skeleton, which
is a tree-like set of curves that partition the polygon. Those curves capture the local symmetries
of the polygon but are not guaranteed to be linear. If the polygon presents a segment in front of
a reflex vertex (a vertex with an interior angle greater than π), the set of disk centers describes a
parabola.

The straight skeleton (fig. 5.19.b) is another type of skeleton that features only linear curves.
It is defined as the trace of the polygon vertices as its edges move inward at the same speed. This
describes the straight skeleton constructively by a shrinking process. It has the nice property that
it is equivalent to the medial axis when the polygon has no reflex vertex (i.e. is convex). The set of
polygons created by this shrinking process, called offset polygons (fig. 5.19.d), are by construction
linear, whereas the offset curves of the medial axis may contain circular arcs.

This 2D problem is well-known in the building reconstruction field [Bre00], since the 2D straight
skeleton of a building footprint computes the horizontal projection of the building roof with one
roof facet per wall and equal roof facet slopes. This 3D embedding has been used to compute the
shadings of figures in this section (e.g. figure 5.19.c). The straight skeleton is however harder to
compute than the medial axis since it has no Voronöı diagram based interpretation. The non local
effect of the reflex vertices on the straight skeleton makes incremental construction or divide and
conquer approaches fail.

A simple algorithm to compute the 2D straight skeleton is to simulate directly the polygon
shrinking process, as proposed in [AAAG95]. This original algorithm takes O(n2 log n) time and

5.6. Local Vertex Trihedralizations and Straight Skeletons 143

(a) Medial axis (b) Straight skeleton (c) Shaded view of (b) (d) Offset polygon

Figure 5.19: The medial axis (a), the straight skeleton (b,c) and a set of offset polygons (d) of a
T-shaped polygon, shown in bold. The double edges of (a) are parabolic, while other edges are
supported by straight lines.

B

C A

B

C A

(a) Edge event

AB

B

C

A

C

(b) Split event

AB

DC

(c) Vertex event

Figure 5.20: Straight skeleton topological events, primal and dual view. The edge (a), split (b) and
vertex (c) events occurring during the shrinking of a polygon. The second row shows the mapping
of these events in terms of the resulting abstract triangulation.

144 5. Polyhedron Trihedralization

Identical input polygons, presenting a degenerate geometry:Geometric perturbation 1 Geometric perturbation 2

Identical straight skeleton topologiesIdentical straight skeleton topologies Degenerate straight skeleton

Vertex eventSplit event Split event

2 reflex vertices collide exactly

(a) (b) (c) (d) (e)

E
DF

G C

B
A

H

H
a b

d

e

f

a b

c

d

e f

E
DF

G C

B
A

H

BH
a b

d

e

f

a b

c

d

e f

E
DF

G C

B
A

H

BH
a b

d

e

a b

c

d

e

E
DF

G C

B
A

H

BH
a b

d

e
f

a b

c

d

e
f

E
DF

G C

B
A

H

BH

a b

c

d

e
f

a b

d

e
f

a
b

d

e

f

B

A A A A A

C
D

E
F

G c C
D

E
F

G c C
D

E
F

G c C
D

E
F

G c C
D

E
F

Gc c

Figure 5.21: An unstable degenerate straight skeleton problem. Vertex events have been introduced
as a consistent processing of the degenerate meeting of 2 reflex vertices, as in the straight skeleton
of the polygon of (c). (a) and (e) are two straight skeletons of a small geometric perturbation of
the polygon of (c). (b) and (d) are the straight skeletons of the polygons of (a) and (e) as their
perturbation magnitudes tend to zero.

O(n2) space. The shrinking of the polygon is simulated by detecting and processing 3 types of
shrinking events (see figure 5.20).

Edge event: The length of an edge shrinks to zero. The processing of this event simply requires
collapsing the edge by making its neighboring edges adjacent.

Split event: A reflex vertex hits an edge. This splits the colliding edge and vertex, and, as
a consequence, the whole shrinking polygon into two disjoint shrinking polygons. Both
resulting splitted vertices, which may or may not be reflex, are adjacent to an edge of the
previous reflex vertex and one of the two halves of the splitted colliding edge.

Vertex event: It is a degenerate split event, that occurs when two reflex vertices collide. It
creates a vertex of valence 4 and splits the polygon, creating two new straight skeleton edges.

Figure 5.21 shows that the construction of the straight skeleton is not continuous as a function
of the vertices of the input polygon, and thus that the straight skeleton of the degenerate polygon,
common to (b), (c) and (d), cannot be defined as the limit of the straight skeleton of polygons
that tend to the degenerate polygon. To define a consistent straight skeleton in these degenerate
configurations, [EE99] introduced these vertex events.

A fourth type of event is the vanishing event where the shrinking polygon area becomes null.
The shrunk polygon is then reduced to a connected set of edges and vertices that are added to the
straight skeleton. The simplest case is the meeting of the three vertices of a shrinking triangle,
which creates a single straight skeleton vertex at the collision location, linked to the 3 paths traced
out by the 3 vertices of the shrinking triangle.

Subsequent algorithmic improvements have been made to handle more efficiently the non-
locality of reflex vertices. [EE99] introduced the first subquadratic algorithm for computing the

straight skeleton of a simple polygon of n vertices, r of which are reflex, taking O(n1+ε+n
8
11 +εr

9
11 +ε)

time and space for any ε > 0. The r-insensitive bound of O(n
17
11 +ε) is still higher than the only

known lower bound Ω(n log n). A better expected time bound has been reached assuming that the

5.6. Local Vertex Trihedralizations and Straight Skeletons 145

(b)(a)

(d)(c)

0.7
1.3

1.1
0.4

0.5
1.2

2.3
0.8

1.2
1.5

2

1.9
2.4

0.7

Figure 5.22: (a) and (b) are the weighted straight skeletons of the same non-convex polygon. The
edge weights of (a) are all equal to 1, yielding the unweighted straight skeleton, whereas (b) has
random real positive edge weights (circled). (c) and (d) are offset polygons generated respectively
from (a) and (b).

polygon is non degenerate (no vertex events): [CV02] have provided a O(n
√
h+ 1 log2 n+r

√
r log r)

expected time algorithm to compute the straight skeleton of a non-degenerate simple polygon with
h holes, n vertices, r of which are reflex. In particular, the straight skeleton of a non-degenerate
polygon with n vertices can be computed in O(n

√
n log n) expected time.

5.6.2 Weighted Straight Skeleton

The straight skeleton problem has been extended in two ways. First, it can be defined on the
whole plane for any set of segments, and not only in the bounded region enclosed by a set of
segments that describe a simple polygon [AA96].

The second extension is the weighted straight skeleton, mentionned in [EE99] and illustrated
in figure 5.22. This is a slight modification of the unweighted straight skeleton where edges are
moving at different specified speeds. It maps to roofs that have specified slopes, which are not
necessarily equal, for each wall. A weight w = 0 maps to a vertical wall, while w =∞ corresponds
to a flat horizontal roof plane. If all the weights are positive, then the area of the shrinking set of
polygons decreases and then vanishes, proving the termination of the shrinking process, and thus
the existence of the weighted straight skeleton.

Negative weights are also a possible extension, where roof planes are allowed to be bottom
facing as in roofs with overheads. However special care has to be introduced in the scheduling of
events since they may both occur inside and outside the input polygon. Lastly, whereas the unicity
is given by its construction process (at least for non degenerate inputs), the existence of the 2D
weighted straight skeleton is not guaranteed since the proof that the area of the offset polygons is
decreasing no longer holds.

146 5. Polyhedron Trihedralization

5.6.3 Reducing Weighted Straight Skeletons to Vertex Trihedralizations

The weighted straight skeleton of a polygon can be seen as a particular instance of a trihe-
dralization problem, when considering its 3D embedding as a roof surface. The trihedralization
problem is instantiated by specifying the initial polyhedron topology, the vertex to be made tri-
hedral and the facet supporting plane geometries. The initial polyhedron has the topology of a
pyramid: its base facet is the input polygon and its apex is the overconstrained vertex, linked
to each base segment with a triangular facet. The plane geometry is given by the bottom facing
plane ~Z = [0 : 0 : −1 : 0] for the base facet, and planes of the form [a : b : w

√
a2 + b2 : d] for

the triangular facets. w is the weight of the base edge, and [a : b : d] are the 2D homogeneous
coordinates of the line supporting the base edge. This simulates a rotation of the plane around its
defining edge from the plane that initially and abstractly meet at the vertex to be trihedralized
to the plane that has the slope according to the edge speed w. Figure 5.23.a illustrates such a
reduction. The top polygon is embedded in 3 space using planes passing through its supporting
edges with a slope according to the edge weights. Then an over-constrained vertex ABCDEFGH
is introduced, along with the vertices of the polygon, as abstract triangles between a bottom facing
face Z and two consecutive planes. To simplify the figures, the facet supported by the plane Z is
only shown in the dual view of the first column.

Figure 5.20 shows how the edge events map to a dual ear cutting, and the split events to
the decomposition of the abstract polygon in two using an abstract triangle that is not an ear.
The vertex event is a degenerate split event where the polygon is split in two using an abstract
quadrangle (the degeneracy implies that both triangulations of the quadrangle describe the same
polyhedral surface).

5.6.4 Reducing Vertex Trihedralizations to Weighted Straight Skeletons

If the overconstrained vertex satisfies the following property, its trihedralization may be reduced
to a weighted straight skeleton problem.

Definition 39 (Extremal vertex). A vertex is extremal if there exists a direction ~n such that all
the outgoing edges of the vertex are directed by a vector ~v such that ~n · ~v < 0.

This may not seem well-defined since the location of the over-constrained vertex is not well-
defined by definition, being at the intersection of non-meeting planes. However the directions of
its edges that point to an over-constrained vertex are well defined: an edge is supported by the
well-defined intersection line of its two neighboring planes, and oriented according to the position
of the adjacent vertex along this line. If a vertex is extremal along the vector ~n, then for each edge
oriented by a vector ~v from an adjacent vertex to the extremal vertex, we have ~n · ~v < 0.

Under the locality assumption, the converse reduction from a trihedralization to a weighted
straight skeleton is true for extremal vertices, by treating such an extremal vector as the vertical
vector, and cutting the extremal vertex by a new auxiliary plane as in figure 5.11:

Theorem 5.8. A trihedralization of an extremal over-constrained vertex reduces to a weighted
straight skeleton computation by sweeping a plane in an extremal direction ~n, under the condition
that an offset d exists such that the plane [~n : d] intersects all the adjacent edges and that its
intersection with the adjacent planes is a simple polygon.

Any of of these simple polygonal sections can be used as the input polygon. The edge weights
are given by the tangents of the dihedral angle between the vector ~n and the plane normal. If the
locality assumption is verified, there is an offset d, such that the intersection of the section plane
[~n : d] and the polyhedron is a simple polygon and the section planes have the query vertex on one
side and all its neighbors on the other side. Under this assumption, this construction proves the
existence of a trihedralization for extremal vertices.

5.6. Local Vertex Trihedralizations and Straight Skeletons 147

(a) (b) (c)

A

B

C
D

E

F
G

H
A

B

C
D

E

F
G

H
A

B

C
D

E

F
G

H

A
B

C

D
E

F

G

H
A

B

C

D
E

F

G

H
A

B

C

D
E

F

G

H

Z

a

b c

d e

f
g

h

d

e

f

g

c
b

a

h

Figure 5.23: The straight skeleton, as a trihedralization. (a) A polygonal building footprint and
its (dual) topology when reducing the straight skeleton problem to a trihedralization problem,
(b) its straight skeleton and (c) an alternative trihedralization that may or may not be closer to
the reality. The first row is extracted from [Bre00], while the second is the underlying abstract
triangulations.

b
c

d

e

a

bf

g

h

a

b

c
d

e

a

b
f

g
h a

(a) (c)

a

h

c

d

e

g

(b)

f

Figure 5.24: Two trihedralizations : (a) satisfies the property 5.1, while (c) does not, since the
vertex h has a minimal z-coordinate but is not contained in the edge that generated it. (b) shows
the difference of the straight skeletons (a) and (c) viewed as volumes.

The topology of the resulting weighted straight skeleton does not depend on the extremal direc-
tion. Varying the extremal direction modifies the section polygon but also the weights accordingly.
This ensures the unicity of the weighted straight skeleton as a trihedralization (up to degeneracies).

5.6.4.1 Saddle Vertices

A saddle vertex is a vertex that is not extremal. [BEGV08] proposed to trihedralize saddle
vertices using two complementary weighted straight skeletons, in a restricted context where the
adjacent planes undergo a translation along their normal of the same infinitesimal distance, from
the initial degenerate geometry where all adjacent planes meet at a single point. However, it
is unproven whether the method proposed by [BEGV08] form a trihedralization that is not self
intersecting in our more general case. Thus we fail to provide a reduction to straight skeletons for
a trihedralization of a saddle vertex.

148 5. Polyhedron Trihedralization

5.6.4.2 z-minima Property

As [Bre00] mentionned, the (weighted) straight skeleton is only a distinguished trihedralization
among all the trihedralizations that have simple facets. Namely, it is the trihedralization that
fullfills the following property, stated here in terms of the 3D embedding of the weighted straight
skeleton:

Property 5.1. The local z-minima of the 3D polygons supporting the facets of the 3D embedding
of the weighted straight skeleton of a 2D polygon are contained in the edges of the input polygon.

This property, proved in [AA96], characterizes the weighted straight skeleton among the possible
abstract triangulations. The weighted straight skeleton reduction, when applicable, provides a
trihedralization that fulfills the z-minima property, where the z coordinate measures the distance
to the section plane used in the reduction. The reduction thus provides a trihedralization that
fulfils a stronger geometric requirement than only self-intersection free facets.

5.6.5 Conclusion

By construction, the (weighted) straight skeleton facets are connected, yielding a trihedraliza-
tion algorithm with the required connected facets when the trihedralization problem is reducible
to a weighted straight skeleton problem. However this reduction is not always possible. When the
over-constrained vertex is not extremal, the property 5.1 cannot be generalized easily. It might
be possible to generalize this property by considering that z-minima are points that are locally
furthest points from a point at infinity along the vertical direction, and then moving this infinite
point to a specific finite location p. This may allow to define a generalization of the straight skele-
ton problem to spherical polygons, which are a generalization of planar polygons to polygons on
the surface of the sphere, with a sphere centered at p.

Nevertheless, even if such a generalization existed, reducing to such a generalization would mean
restricting the set of the possible abstract triangulations to the ones that verify this generalized
property. If this generalized property implies that the 3D polyhedral surface is self-intersection
free, as in the planar case, then the reduction would be valid, and may provide a simple algorithm
to compute the trihedralization if it exists. It may further help to understand the trihedralizability
condition. However, restricting the possible abstract triangulations using a sufficient, but not nec-
essary geometric condition, would lead to cases where the reduction fails to find a trihedralization
of a trihedralizable vertex.

5.7 Discussion

Using this intersection predicate formulation, the trihedralization problem may now be analyzed
for unicity and existence of a solution.

5.7.1 Unicity

Similar to the triangulation problem, there are cases were multiple trihedralizations satisfy the
simplicity requirement. Figure 5.25 shows that an ambiguity exists even in the simplest case of
making a vertex of valence 4 trihedral after updating the planes. In such ambiguous cases, a
trihedralization algorithm may either output the first valid trihedralization it finds, or list all the
valid ones, or provide the best trihedralization according to some scoring function.

5.7. Discussion 149

? ?

(a) (b) (c)

bp
da

c

AB

C D

a
c

AB

C D

p

AB

C D

d

b

Figure 5.25: Trihedralization ambiguity. (b) A saddle vertex p of valence 4 and (a,c) its 2 trihe-
dralizations. The symmetric difference of the polyhedra (a) and (c) is the tetrahedron defined by
the 4 supporting planes ABCD, and is illustrated using dotted lines in (a) and (c).

5.7.2 Existence

Section 5.6 will show that a trihedralization is guaranteed to exist in a special case, where the
trihedralization problem may be reduced to the so-called weighted straight skeleton problem.

Section 5.2 has introduced a trihedralization approach using winding numbers that is applicable
as soon as the plane geometries are not highly degenerate. However it relaxes the search space by
allowing interior facets, since it does not search the resulting topology as an abstract triangulation.

However, a valid self-intersection free trihedralization is not always guaranteed to exist. For
instance, figure 5.26 illustrates such a case in the simplest case of a point adjacent to only 4 facets.
One of the 2 possible abstract triangulations (b) has a self-intersecting facet B, and the other one
(c,d) is invalid, having a point b at infinity.

We only provide a proof of existence in the following case :

Theorem 5.9. A non-degenerate local vertex trihedralization problem of a vertex of valence 4 has
a self-intersection free trihedralization.

Proof. We can notice that the query points are defined by the intersection of 3 planes such that the above predicate
is the sign of the ratio of 2 determinants:

Above(P0 ∩ P1 ∩ P2, P3) = sign

(| ~P0
~P1

~P2
~P3 |

| ~n0 ~n1 ~n2 |

)
The intersection predicate may then be rephrased as:

Intersect(P, Pk
i−1, P

k
i , P

k
i+1, P

l
j−1, P

l
j , P

l
j+1) =

∣∣ ~P lj ~Pki
~P ~Pki−1

∣∣ | ~Pki+1
~Pki

~P ~Pki−1 |∣∣ ~nlj ~nki ~n
∣∣ | ~nki+1 ~nki ~n | ≥ 0

&

∣∣ ~P lj ~Pki
~P ~Pki+1

∣∣ | ~Pki−1
~Pki

~P ~Pki+1 |∣∣ ~nlj ~nki ~n
∣∣ | ~nki−1 ~nki ~n | ≥ 0

&

∣∣ ~Pki ~P lj
~P ~P lj−1

∣∣ ∣∣ ~P lj+1
~P lj

~P ~P lj−1

∣∣∣∣ ~nki ~nlj ~n
∣∣ ∣∣ ~nlj+1 ~nlj ~n

∣∣ ≥ 0

&

∣∣ ~Pki ~P lj
~P ~P lj+1

∣∣ ∣∣ ~P lj−1
~P lj

~P ~P lj+1

∣∣∣∣ ~nki ~nlj ~n
∣∣ ∣∣ ~nlj−1 ~nlj ~n

∣∣ ≥ 0

There are 2 abstract triangulations of an abstract quadrangle, depending on which diagonal is chosen. The
new vertices that are not adjacent to the diagonal are only adjacent to 3 dual triangles of the extended abstract
triangulation, that is including the 2 dual triangles corresponding to points at infinity. Thus their facets are

150 5. Polyhedron Trihedralization

AB

C D

a
c

ac

(b)

A

D

C

B

b

(d)

d

AB

C D

d

b

A

C

D
B

b

(f)

d

AB

C D

d

b

A
B D

C

AB

C D

p

p

(a)

A

D

C

B

b

d

(c)

AB

C D

d

b

A

B

C

B

C

(e)

b

d

A

D

d

b

A
B

C

D

Figure 5.26: Ill-posed trihedralization problem with no valid solution. (a) A polyhedral surface
with a vertex p adjacent to 4 facets supported by planes ABCD. In (b), (c) and (d), C is translated
so that the lines A ∩ B and A ∩D remain parallel. The abstract triangulation used in (b) makes
the facet supported by B self-intersecting. (c) and (d) are the two possible geometric embeddings
of the surface resulting from the other possible abstract triangulation. Their point d = A ∩B ∩D
is a point at infinity, making the trihedralization invalid. (c) considers it at infinity in the top
direction, and (d) in the bottom one. By rotating the plane D so that the degeneracy is resolved,
the trihedralization problem now has a solution. Its actual geometric embedding (e) or (f) depends
on the rotation, so that (c) and (d) may be seen as a degenerate case of respectively (e) and (f).

5.8. Conclusion 151

(a) (b) (c)

Figure 5.27: Trihedralizations may not be local. (a) An initial polyhedron with 2 overconstrained
vertices (circled). (b) A small upward translation of the triangular face requires solving 2 inde-
pendent trihedralization problems. (c) Solving independently the trihedralization problems of a
larger move (i.e. past the intersection of the front facet with the 2 other top facets) lead to self
intersecting facets.

unconditionnaly simple. Let us assume that no self-intersection free trihedralization of such a dual quadrangle
exists. This means that, for each diagonal, one of its dual vertices refers to a self-intersecting facet. Since the
abstract polygon is a quadrangle, they have to be consecutive. Without lack of generality, let us consider that these
dual vertices f1 and f2 are supported by the planes P1 and P2, where (P0, P 1

2
, P1, P 3

2
, P2, P 5

2
, P3, P 7

2
) is the circular

list of supporting planes of the trihedralization problem. Now since, the abstract polygon is a quadrangle, a single
pair of segment is tested for intersection, assuming the absence of degeneracies (sec. 5.4.3): the segments supported
by P0∩P1 and P1∩P2 when f1 is on the diagonal, and the ones supported by P1∩P2 and P2∩P3 when f2 is. Since
it fails for both trihedralization on respectively facets f1 and f2, each segment intersection test faces 4 non-negative
expression, 3 out of the 8 inequalities are of particular interest:

| ~P0
~P1

~P2
~P3 |
∣∣∣ ~P1

~P 3
2

~P2
~P3

∣∣∣
| ~n0 ~n1 ~n2 |

∣∣ ~n1 ~n 3
2

~n2
∣∣ ≥ 0 ,

| ~P1
~P2

~P3
~P0 |
∣∣∣ ~P1

~P 3
2

~P2
~P0

∣∣∣
| ~n1 ~n2 ~n3 |

∣∣ ~n1 ~n 3
2

~n2
∣∣ ≥ 0 and

∣∣∣ ~P0
~P1

~P2
~P 3
2

∣∣∣ ∣∣∣ ~P1
~P2

~P3
~P 3
2

∣∣∣
| ~n0 ~n1 ~n2 | | ~n1 ~n2 ~n3 |

≥ 0

where the first comes from f1, the second from f2 and the third from both. By multiplying the first two inequalities,

− | ~P0
~P1

~P2
~P3 |2

∣∣∣ ~P1
~P 3
2

~P2
~P3

∣∣∣ ∣∣∣ ~P1
~P 3
2

~P2
~P0

∣∣∣
| ~n0 ~n1 ~n2 | | ~n1 ~n2 ~n3 |

∣∣ ~n1 ~n 3
2

~n2
∣∣2 ≥ 0 , hence

|
~P0

~P1
~P2

~P3 | = 0 or∣∣∣ ~P0
~P1

~P2
~P 3
2

∣∣∣∣∣∣ ~P1
~P2

~P3
~P 3
2

∣∣∣
| ~n0 ~n1 ~n2 || ~n1 ~n2 ~n3 |

≤ 0

and thus, we prove that either the problem is degenerate or the third inequality is an equality, yielding:

| ~P0
~P1

~P2
~P3 |
∣∣∣ ~P0

~P1
~P2

~P 3
2

∣∣∣ ∣∣∣ ~P1
~P2

~P3
~P 3
2

∣∣∣ = 0

This result invalidates the assumption that both abstract triangulations are non-degenerate and valid. Since the
trihedralization problem is not degenerate, either a plane supports multiple facets or a trivial edge exists. If a plane
supports multiple facets, then the over-constrained vertex is surrounded by 3 or less planes. The arrangement of
these planes is simple, given that the problem is well-posed. Thus this vertex can be made trihedral with either
abstract triangulations, or discarded if it is underconstrained. If a trivial edge exists, its 2 vertices are collocated,
yielding a self-intersection free finite trihedralization, which is the final contradiction.

5.8 Conclusion

Within the targeted application of roof fitting, most over-constrained vertices have a valence of
4. A small fraction of the vertices is adjacent to 5 facets, mostly due to adjacent facets supported
by the same plane, which is the case at the junction of a T-shaped roof. Higher valence vertices
are typically extremely rare. Therefore the theoretical asymptotic complexity of the implemented
approach was not a crucial concern. We chose to implement the ear-cutting approach due to
its simplicity. And it proved to perform sufficiently well in practice. Section 6.4 will give some
trihedralization timings in the context of topology-aware building model fitting.

Figure 5.27.b shows a simple example of trihedralizations resulting from a perturbation of the
planes supporting the polyhedral facets. The trihedralization problem in figure 5.27.c is however

152 5. Polyhedron Trihedralization

more global, due to a larger deviation from the input polyhedron with self-intersection free facets.
In case (c), the 2 trihedralization problems may not be solved locally. As a sidenote, this need for
a more global processing of the topology has already been illustrated in figure 1.3. Therefore, a
more global approach has to be used to prevent facet self-intersections. Here a single facet support
is updated, but in the general case, all facet supports are updated somewhat arbitrarily. Hence
simple rule-based patching approaches are likely to fail, and a more global approach is required.
One possibility would have been to use the winding number or the more flexible arrangement
coloring approach. However, we discussed in sections 5.2 and 5.3.4 that these approaches may not
be straightforwardly used to minimize the complexity of the resulting polyhedron.

We introduced this novel trihedralization problem, which has not been thoroughly investigated
yet. We showed that the existing winding number based approach may be adapted to solve this
problem but is however unable to guarantee the absence of ”unnecessary” local features (sec. 5.2).
Then, an extension of the winding number approach to a full plane arrangement coloring was dis-
cussed to meet the restricted output topology criterion (sec. 5.3). Given then vague definition of
an ”unnecessary” topological feature, we restrained ourself to trihedralize overconstrained vertices
independently, minimizing the topological complexity of each splitted vertex by searching a topol-
ogy dual to a triangulation (sec. 5.4). First, a simple implementation based on the ear-cutting
paradigm was detailed (sec. 5.5). We then exhibited some reduction results with the weighted
straight skeleton problem (sec. 5.6).

This chapter has shown how to relax the geometric constraints induced by the over-constrained
vertices in order to fit a building model polyhedron to a DSM, without any topology-induced
constraints. We saw, however, that if the building is not a topological simplification of the desired
building, our simplifying locality assumption no longer holds. The trihedralization problem may
then not be solved independently and locally. The next chapter introduces a kinetic framework
that is able to lift this assumption, while guaranteeing the self-intersection free facets.

153

Chapter 6

A Kinetic Framework
Guaranteeing Simple Facets

Contents
6.1 Introduction . 154

6.1.1 Reduction to Plane Arrangement Coloring 154

6.1.2 Proposed Approach . 155

6.2 Kinetic Data Structures . 156

6.2.1 Introduction . 156

6.2.2 Kinetic Algorithm Examples . 156

6.2.3 Definitions . 157

6.2.4 Arbitrary Precision Arithmetics . 159

6.3 Kinetic Polyhedron with Simple Facets 159

6.3.1 Polyhedron Interpolation . 160

6.3.2 Continuous Evolution . 161

6.3.3 Non-canonical Data Structure . 162

6.3.4 Algorithm Overview . 162

6.3.5 Vertex Trihedralization . 163

6.3.6 Facet Triangulations . 164

6.3.7 Orientation Certificate Functions . 164

6.3.8 Orientation Event Processing . 167

6.3.9 Discussion . 169

6.4 Topology-Aware Fitting of a 3D Building Model 169

6.5 Discussion . 171

6.5.1 Complexity . 171

6.5.2 Method Invariance by an Invertible Affine Transform 172

6.5.3 Normalization Dependance . 173

6.6 Perspectives . 175

6.6.1 Diverging Vertices . 175

6.6.2 Dealing with Global Self Intersections 176

6.6.3 Alternative Applications . 179

6.7 Conclusion . 181

154 6. A Kinetic Framework Guaranteeing Simple Facets

(a) (b) (c)

Fixed-topology

Fitting

Topology-aware

Fitting

Input Polyhedron

Figure 6.1: Updating supporting planes of a trihedral polyhedron may require topological updates
to prevent self-intersecting facets. When the input polyhedron (b) is fitted to a DSM, with a fixed
topology, the resulting polyhedron may self-intersect (a). A topological modification is required
here to output the self-intersection free polyhedron (c).

6.1 Introduction

While fitting a building to a DSM, it occured that morphing the initial building polyhedral
model into a new polyhedral model by updating its plane equations and recomputing the vertex
positions from the plane equation of its adjacent facets, does not always yield a simple polyhedron.
Even if the modified polyhedron is well defined (i.e. the intersection of the planes supporting the
adjacent facets of a vertex is a single point), inversions may occur that make the polyhedron not
simple, as illustrated in figure 6.1.

By solving the following problem, this chapter guarantees that a polyhedron undergoing a
modification of its supporting plane equations, as in chapter 4, remains simple (i.e. with self-
intersection free facets).

�

�

	

Problem Statement

Given a simple polyhedron, and a new plane equation for each of its facets, how to
compute a simple polyhedron, the supporting plane geometry of which is the specified
plane equations, and the topology of which is as close as possible to the initial topology?

Using the projective geometry notations introduced in section 4.2, the initial plane equation
of the facet i is denoted (~Ni0) and is going to be updated to (~Ni1). The obvious application is
to be able to deal with the artifacts occurring with the algorithm developed in chapter 4. Other
interesting applications, like the computation of a 3D weighted straight skeleton, or automatic
polyhedron LOD are presented in section 6.6.3.

6.1.1 Reduction to Plane Arrangement Coloring

This problem can be restated as a 0-1 coloring (see section 4.3.3) of the cells of the 3D plane
arrangement (see section 4.3.1) of the target planes. The facets of the arrangement that are at the
boundary of a 0-colored cell and a 1-colored cell of the 3D plane arrangement of the target planes,
form the boundaries of a set of polyhedra volumes whose facets are supported by the target planes.
A coloring maps to a single polyhedron if and only if the set of 1 colored cells is connected.

The number of finite cells in an arrangement of n planes is O(n3). This means that the answer

to our problem is a polyhedron out of the O(2n
3

) sets of polyhedra produced by 0-1 colorings of

the finite cells of the arrangement of the target planes (~Ni1).

A straightforward 0-1 coloring is obtained by volumetric thresholding: for each cell C, the ratio

6.1. Introduction 155

(a) (b)

A

B C

D

E

F

A

B C

Figure 6.2: Problems with non desirable Volumetric thresholdings. 0-1 coloring by volumetric
thresholding (cross-section): the initial polyhedron is in bold, dashed lines illustrate the estimated
plane arrangement and the volumetric thresholding coloring shows 1 colored cells in gray (thresh-
old=0.5). (a) shows a 5 plane arrangement where the right-handside façade has been lost (triangle
ABC). (b) a 6th plane creates an inverted triangle DEF that floats above the roof.

of volume of the intersection P0 ∩C of the initial polyhedron P0 in the cell C to the volume of the
cell is computed. Then a predefined threshold could assign a value of 0 or 1 to the cell. Figure 6.2
shows that the initial topology is not directly taken into account, leading to counter-intuitive
results. This algorithm is likely to produce overly complex shapes due to the oversegmentation
of the whole volume R3 given by the plane arrangement. Furthermore, the manifoldness can
be enforced by splitting the tangent polyhedra at non-manifold vertices or edges (such as E in
figure 6.2), but the result is then a set of polyhedra and not a single polyhedron.

Casting our problem as an arrangement coloring has the disadvantages of its advantages: the
topology can vary arbitrarily, but is uneasy to control. To keep the control of the topology, we
introduce a surface-based approach, that evolves the initial polyhedron to match the target dual
geometry.

6.1.2 Proposed Approach

One idea is to try to tackle one by one, iteratively, the artifacts resulting from updating the
geometry without modifying the topology. This typically just works when artifacts are isolated
from each other and the fixed topology is obvious. However, this approach is error-prone. A
topology with reasonably few modifications that will produce a simple polyhedron may not be
obvious. Many correlated artifacts may have been introduced by the geometry update.

To further develop this approach, one may want to produce the polyhedron with the target
dual geometry iteratively, by constructing polyhedra with intermediate dual geometries. The
purpose would be to fix the artifacts while they are isolated, and thus easily detected and handled.
However, choosing blindly the number of intermediate iterations is tricky in practice. Choosing too
few iterations may lead to many interdependant artifacts, that would not thus be easily fixable,
as in the single iteration approach. When choosing too many iterations, the algorithm will have
poor computing times by repetitively computing polyhedra with the very same topologies and little
geometric variations.

How to keep a polyhedron simple while the planes supporting its facets are evolving contin-
uously? Maintaining geometric properties of a combinatorial data structure as the geometry is
evolving is exactly the purpose of the kinetic data structures.

156 6. A Kinetic Framework Guaranteeing Simple Facets

6.2 Kinetic Data Structures

6.2.1 Introduction

Kinetic data structures were first introduced in [BGH97]. The idea stems from the observation
that most, if not all, computational geometry structures are built using predicates - functions
on quantities defining the geometric input (e.g. point coordinates), which return a discrete set of
values. Many predicates reduce to determining the sign of a polynomial on the defining parameters
of the primitive objects. For example, to test whether a point lies above or below a plane we
compute the dot product of the point with the normal of the plane and subtract the plane’s offset
along the normal. If the result is positive, the point is above the plane, zero on the plane, negative
below. The validity of many combinatorial structures built on top of geometric primitives can be
verified by checking a finite number of predicates of the geometric primitives. These predicates,
which collectively certify the correctness of the structure, are called certificates. For a Delaunay
triangulation in three dimensions, for example, the certificates are one InCircle test per facet of
the triangulation, plus a point plane orientation test for each facet or edge of the convex hull.

The kinetic data structures approach is built on top of this view of computational geometry.
Let the geometric primitives move by replacing each of their defining quantities with a function
of time (generally a polynomial). As time advances, the primitives trace out paths in space called
trajectories. The values of the polynomial functions used to evaluate the predicates now also
become functions of time. We call these functions certificate functions. Typically, a geometric
structure is valid when all predicates have a specific non-zero sign. In the kinetic setting, as long
as the certificate functions maintain the correct sign as time varies, the corresponding predicates
do not change values, and the original data structure remains correct. However, if one of the
certificate functions changes sign, the original structure must be updated, as well as the set of
certificate functions that verify it. We call such occurrences events.

Maintaining a kinetic data structure is then a matter of determining which certificate function
changes sign next, i.e. determining which certificate function has the first real root that is greater
than the current time, and then updating the structure and the set of certificate functions. In
addition, the trajectories of primitives are allowed to change at any time, although C0-continuity
of the trajectories must be maintained. When a trajectory update occurs for a geometric primitive,
all certificates involving that primitive must be updated. We call the collection of kinetic data
structures, primitives, event queue and other support structures a simulation.

Sweep line algorithms for computing arrangements in d dimensions easily map on to kinetic
data structures by taking one of the coordinates of the ambient space as the time variable. The
kinetic data structure then maintains the arrangement of a set of objects defined by the intersection
of a hyperplane of dimension d-1 with the objects whose arrangement is being computed.

[CGAL] is a computational geometry library that provides a framework [Rus09] for implement-
ing kinetic data structure algorithms. This introduction to kinetic data structures (section 6.2.1)
has been adapted from the CGAL documentation of this framework [Rus09]. It is best illustrated
by one of the simplest kinetic data structures: a sorted list of moving 1D points.

6.2.2 Kinetic Algorithm Examples

Maintaining a Sorted List of Objects One of the most simple example of kinetic algorithms
is the maintenance of a sorted list of objects. Each object is associated with a real number key
which defines a total order on the list of objects. The objective is to maintain the sorted list of
objects as the keys are allowed to change continuously. This can be done, from scratch, for each
query, by first computing the key function value at the queried time and then sorting the objects
according to those key values. However, since the key variations are continuous, as long as no object
keys become equal, the order is not modified and the sorted list has not to be updated. However,

6.2. Kinetic Data Structures 157

f0

f1

f2

f2

f1

f0

t

f1(t)−f2(t)=0f0(t)−f2(t)=0f0(t)−f1(t)=0

f0 ↔ f1 f0 ↔ f2 f1 ↔ f2

f0<f1<f2 f1<f0<f2 f1<f2<f0 f2<f0<f1

fi(t)

0

Figure 6.3: Kinetic sort. The maintenance of the ordering of 3 objects moving in 1D according to
the functions f0(t), f1(t) and f2(t), as t increases.

for each inversion of the ordering of two objects, their positions in the list have to be swapped, to
recover a correct ordering of the list. Even if the object keys are changing continuously, there is
only a discrete set of times, called events, where an action is required to maintain the geometric
property that the list is sorted. This action does not modify the geometry of the problem (the key
values as a function of time) but only the topology of the maintained combinatorial structure (the
ordering of the list).

This algorithm maintains a proof that the list is sorted. When it detects that the proof is no
longer valid, the list is no longer sorted. The algorithm has to update the list order and update
the proof so that it applies to the new ordering. An obvious way to proof that a list of n objects is
sorted is to check whether the n− 1 pairs of consecutive objects are in the right order. This check
involves evaluating the sign of the difference of the object key functions. When all the differences
are strictly positive, the list, viewed as a list of pairs of consecutive objects, constitutes a valid
proof that it is itself sorted. When two objects are crossing, they must have been consecutive in the
sorted list, since the trajectories are assumed to be continuous, and this corresponds to a root of
the function that computes the difference of the key values, where a sign change occurs. At a time
immediately after this root, the function will be strictly negative and the proof will no longer hold.
To reconstruct a valid proof, only a minimal effort is required. After swapping the crossing objects,
one has to inspect up to three key difference functions: one between the two crossing objects, one
between the smaller crossing object and its new neighbor in the list if it is not the first, and one
between the greater crossing object and its new neighbor in the list if it is not the last.

The straight skeleton, introduced in section 5.6, is a more complex combinatorial structure
that can be computed using a kinetic approach. Even its definition as a shrinking process, is indeed
of a kinetic nature. Its 3 event types detect the self-intersection times of the shrinking polygons.
These events are processed by creating a new straight skeleton node and scheduling new future
events if the shrinking polygon has not vanished.

6.2.3 Definitions

The key definitions of the kinetic algorithms may now be introduced. Each concept is illustrated
by the corresponding Kinetic Sorted List object, using the notation [KSL: corresponding object] :

158 6. A Kinetic Framework Guaranteeing Simple Facets

Primitive The basic geometric type of the objects handled in the problem. It can be 2D, 3D
or higher dimension points, planes, circles... The geometry of a primitive is provided by a
vector of coordinates. [KSL: A 1D point of index i (single real number key).]

Trajectory As primitives are moving, their coordinate vectors are a function of time. A trajectory
is the continuous set of the successive positions of the coordinate vector of the primitive during
the time evolution. [KSL: the ith 1D point moves according to a continuous function fi(t).]

Kinetic/Static Something kinetic involves moving primitives. This is in contrast with static
concepts that only handle non-moving primitives. Static algorithms are the vast majority
of computational geometry algorithms: Delaunay triangulations, convex hulls... [KSL: The
initial list sorting is statically performed on the instantaneous initial object keys fi(0), whereas
the subsequent maintenance of the ordering is said to be kinetic.]

Instantaneous Having to do with the geometry of the problem at a given time only, without
any knowledge of the primitive trajectories, except the current position. A kinetic algorithm
may always be statically audited by verifying whether the maintained combinatorial data
structure verifies the desired properties using only the instantaneous coordinates.

Combinatorial structure A topological structure that expresses relationships between the prim-
itives. Being only a topological structure, it does not rely on the actual coordinates of the
primitives. This is typically the structure that will be maintained by a kinetic algorithm, like
a triangulation, the topological description of a polyhedron or an ordered list. [KSL: A list
of object indices (i1 . . . in)]

Kinetic Data Structure (KDS) The combinatorial data structure maintained by the kinetic
algorithm so that it fulfills a given set of combinatorial and/or geometric properties: A
Delaunay triangulation as points move, a convex hull. By extension, the algorithm that
maintain a KDS is also referred to as a KDS. [KSL: A list of object indices (i1 . . . in), sorted
by increasing keys.]

Predicate This well-known computational geometry term denotes a function which takes the
instantaneous coordinates of several primitives as input and produces one of a discrete set of
outputs (definition 14). This includes the orientation test of a triangle(clockwise, degenerate
or counterclockwise?), the InCircle test of the Delaunay algorithm(in, on or out?)... [KSL:
the ordering test : a < b, a = b or a > b?]

Certificate function A certificate function is a function of time. It is the kinetic equivalent of
the predicate that evaluates the instantaneous sign of the same function. The convention is
to design the function so that they are strictly positive, (resp. null or strictly negative) when
the tested property is as true (resp. degenerate or false). [KSL: A difference (fil(t)− fik(t))
where k < l and (i1 . . . in) is the current sorted list.]

Certificate A set of certificate functions that constitutes a proof that the kinetic data structure
verifies the desired properties, when all the certificate functions are non-negative. For in-
stance, a certificate that a polygon is simple is given by the orientation certificate functions
of each triangle of a triangulation of the polygon. [KSL: the (n − 1) certificate functions
(fik+1(t)− fik(t))k=1...n−1, where (i1 . . . in) is the current sorted list.]

Event A root of a certificate where a sign change occurs, the certificate is no longer valid and
thus needs to be updated. However, the combinatorial structure may or may not have to be
updated. If an event make the certificate fails to prove the maintained property, but that
the maintained property still holds, this event is called internal. If the maintained property
no longer holds, the maintained combinatorial data structure also has to be updated, and
the event is called external. [KSL: A root of a certificate function fi(t)− fj(t). Events are
times where two or more objects have the same key. All KSL events are external.]

Event Queue To be able to know what is the next event, and process them in increasing order,
all events are stored in a priority queue, ordered by the event time.

One may wonder, why the term kinetic has been chosen over dynamic, which is a more natural
antonym of static. The reason is that dynamic data structures were designed before the develop-
ment of kinetic algorithms. The purpose of a dynamic algorithm is to maintain a combinatorial

6.3. Kinetic Polyhedron with Simple Facets 159

data structure as primitives are added or removed, rather than when their coordinates are evolving
continuously.

6.2.4 Arbitrary Precision Arithmetics

Computational geometry algorithms are sensitive to the precision of the computations. For
instance, if they are performed using floating point arithmetics, within a computational geometry
algorithm that neglects the rounding errors, it is predictable that it will compute erroneous results
in degenerate or quasi degenerate setups. This is caused by the degeneracies: a predicate that in-
volves a degeneracy considers the sign of an expression that should evaluate to zero with arbitrary
precision arithmetics. However, using floating point computations, such a predicate is only consid-
ering the sign of the rounding errors. If the sign of these rounding errors were consistent, it would
end up modeling a small perturbation of the input that disambiguates the degeneracies. However,
those rounding errors have no consistency guarantees. For instance, when testing whether three
almost aligned points A, B and C are describing a clockwise or counterclockwise triangle, it may
occur that the triangle ABC is clockwise but that the triangle BCA is counterclockwise. Thus,
the control flow of the algorithm is faced with inconsistent predicate results. It is even likely that,
without special care, the algorithm may crash or never terminate, if it expects only consistent
results, such as the mutual exclusion of the left turn and right turn predicates, or a consistent
orientation of the triangles ABC, BCA and CAB.

The most robust approach to properly overcome this situation is to use arbitrary precision
arithmetics. This way, the algorithms will only face consistent predicate results, at the cost of
increased computing times and space requirements. To speed up predicate evaluations, which
are basically a determination of the sign of an expression, interval arithmetics is used. Every
arbitrary precision quantity is bounded within an interval. Tests are first performed on the interval
bounds, which is less expensive. If the test result cannot be determined based solely on the
bounding interval, the interval is recursively refined, or the expensive arbitrary precision operation
is performed.

Sturm sequences The precision problem is exaggerated when the considered quantity is no more
a rational function of the input coordinates but the root of a polynom of the input coordinates.
The proposed framework has to handle robustly roots of polynoms that have degrees 3, 4 and 8
(see section 6.3.7). The [CGAL] library uses the well established Sturm sequences and square-
free (i.e. without square polynomial factors) factorizations of univariate polynomials to achieve
robust comparisons of roots, in a way similar to [HM90]. The big picture is that Sturm sequences
provide a way to count the number of real roots of a square-free polynomial, disregarding their
multiplicities, enclosed in an interval, that is possibly unbounded. Roots are isolated so that they
can be represented exactly as the only root of a given polynom p, within a given isolating interval
[a, b]. Then, the comparison of two roots (p1, [a1, b1]) and (p2, [a2, b2]) is carried out by refining
their isolating intervals [ai, bi] until they are disjoint or by testing whether they are equal. Root
equalities are tested by first computing a common isolating interval, and then the Sturm sequence
of p1 and p′1p2, where p′1 is the derative of p1. This allows to evaluate the sign of p2 at a root of
p1.

6.3 Kinetic Polyhedron with Simple Facets

The kinetic framework that has been developed in [BGH97, BCG+99] appears to be a good
solution for our problem. Applied to the context of this chapter, the idea is to move continuously
the geometry of the planes supporting the polyhedron facets from the initial geometry at time
t = 0 to the target geometry at t = 1. In a kinetic framework, a global geometric property is

160 6. A Kinetic Framework Guaranteeing Simple Facets

maintained by constructing and maintaining a kinetic data structure (KDS) throughout the time
evolution. The maintained data structure is here the topology of the polyhedron.

The purpose of this KDS is to maintain the geometric property that the facets of a polyhedron
remain simple, while providing a certificate (the proof of this property). To prove that all the
facets are simple, the KDS provides for each facet of the polyhedron a triangulation of the convex
hull of its vertices, constrained by its edges. A certificate is the list of the certificate functions that
together prove the global property of simplicity. If all the triangles of the triangulation constrained
by the facet have a consistent orientation and the triangulated domain remains convex, then this
facet, which is, in the general case, a 2D polygon with holes, is simple. As the supporting planes are
oriented, the consistency of the orientation of the triangles is checked by verifying the consistency
of each triangle with the orientation of its supporting plane (Sec. 6.3.7). Likewise, the maintenance
of the convex hull is performed by examining the orientation of the triangles formed by triplets of
successive triplets on the maintained convex hull. Thus the KDS is based solely on the orientation
predicate.

These orientation certificates rely on rational certificate functions in terms of the interpolation
time t, and of the parameters of up to seven planes neighboring the triangle, rather than functions
that are typically polynomial in other kinetic data structures. Roots and also poles of these
certificate functions are called events. Since the trajectories of the planes are continuous, so are
the certificate functions, and thus their sign remains constant between events, be it roots or poles.
During the simulation, the time does not evolve continuously: the KDS computes the events of
each of its certificate functions and orders them in a priority queue. The interpolation time t is
then iteratively advanced to the closest event in the future. At that time, a certificate function fails
- becomes negative - and the certificate has to be updated. The polyhedron itself may not have
to be updated, but the certificate that certifies that the polyhedron is simple is no longer valid
and should be updated. However, events are likely to invalidate the simplicity of the polyhedron.
Then the topology of the polyhedron has to undergo minimal changes to reestablish the simplicity
of the polyhedron. These updates reestablish a valid certificate, so that time can then be advanced
either to the next event of one of the certificate functions or to the evolution ending time t = 1.

6.3.1 Polyhedron Interpolation

To handle the polyhedron kinetically, the intermediate geometry of a polyhedron between two
polyhedra that share the same topology but have different geometries has to be defined. Given
that the initial and final geometries are given by the dual geometries (the homogeneous coordinates
~N = [~n : d] = [a : b : c : d]), we propose to linearly interpolate the dual geometry. Let us first get
some intuition with the homogeneous interpolation of the primal geometry.

Point Interpolation When interpolating point coordinates (the primal geometry), the linear

combination (1 − t)~P0 + t ~P1 with t ∈ [0, 1] spans the segment from P0 to P1, provided that the
homogeneous coordinates of the points, denoted w0 and w1, have the same sign. If their signs are
different, the interpolation traces out the line passing through P0 and P1, except for the interior of
the segment [P0,P1]. The Cartesian coordinates ~p

w are rational functions of time of degree 1, with
a pole when the signs of w0 and w1 differ. The interpolated point goes from P0, away from P1, it
reaches infinity at the pole. Then, it comes back from the point at infinity in the other direction
along the line, to the point P1.

Proof. The derivative of the Cartesian trajectory of the interpolated point is computed as follows:

d

dt

(
~p0 + t.(~p1 − ~p0)

w0 + t.(w1 − w0)

)
=

(~p1 − ~p0).w0 − ~p0.(w1 − w0)

(w0 + t.(w1 − w0))2

=
w0.w1

(w0 + t.(w1 − w0))2
.

(
~p1

w1
− ~p0

w0

)

6.3. Kinetic Polyhedron with Simple Facets 161

Since
(

~p1
w1
− ~p0

w0

)
is the Cartesian vector from P0 to P1, the direction of the trajectory is given by the sign of w0.w1.

One can notice that the trajectory reaches infinity at the pole t∗ = w0
w0−w1

, and that this pole falls within [0, 1] if

and only if w0.w1 is negative.

Plane Interpolation Grounding our intuition on the primal geometry interpolation, we propose
to interpolate in the same way the dual geometry. Considering two planes N0 and N1, the linear
combination of their homogeneous coordinates is a possible interpolant between the two planes. As
before, the coordinates of plane Ni is denoted ~Ni = [~ni : di]. The linear combination (1−t) ~N0+t ~N1

with t ∈ [0, 1] has a geometric interpretation too: if the planes are not parallel, they intersect at
a common line L and the linear combination lets the interpolated plane rotate around the line L
from N0 to N1. If they are parallel (~n0 and ~n1 are collinear), the linear combination spans the set
of planes that translate from N0 to N1. A special case that will be avoided in our framework is
to compute the linear combination of two planes that are parallel with opposite orientations, since
this is the only case where there is a t∗ ∈ [0, 1] for which the interpolated normal (1− t∗)~n0 + t∗~n1

is the null vector, which is the plane containing all the points at infinity.

The interpolation scheme is not required to be linear: any rational trajectory is supported
by this framework. A possible extension would be to investigate higher order interpolations like
Bezier curves or B-Splines. Furthermore, continuous but only piecewise rational trajectories, using,
for instance, Bezier spline curves, could be handled by adding events between rational patches to
update the certificate functions that depend on the change of the plane equation. For now on, the
trajectories are assumed to be linear.

6.3.2 Continuous Evolution

The proposed kinetic framework allows to evolve the (dual) geometry of the problem by contin-
uously moving its supporting planes. The proposed kinetic algorithm guarantees that the volume
inside the maintained polyhedron as a function of time is continuous. This seems to rule out all
the possible topological changes. However, during the kinetic evolution of the supporting planes,
special geometric events, called singularities, occur. At a singularity, the polyhedral representation
is no longer regular. In between these events, topological changes are not required to guarantee self-
intersection free facets. Furthermore, it would produce a discontinuous evolution of the described
polyhedral surface and are thus prohibited. However, at a singularity, multiple representations
exist that describe the same polyhedral surface, among others, the current representation that fails
immediately to be regular, and the regular one. The proposed approach is then to regularize the
polyhedral representation and then to choose, among the immediately irregular representations,
a representation that becomes regular immediately after the singularity and yields a polyhedral
surface without self-intersecting facets. This approach ensures that the evolution is continuous,
that the facets remain self-intersection free, and that the topological changes induced by the rep-
resentation changes are only performed when necessary.

The entire purpose of this chapter is two fold:

1. Detect the singularity events efficiently.

2. Update the representation so that it becomes self-intersection free and regular immediately
after the singularity event.

Within our context of polyhedra described by their supporting planes and the topological relations
between the facets supported by these planes, these representation changes involve discarding
plane geometries that no longer support any plane (e.g. after a facet collapses), and updating
the topology while representing the same surface. Consequently, the final topology output by a
kinetic evolution is as close as possible to the initial topology in the sense that topology updates
are performed lazily (i.e. only as required).

162 6. A Kinetic Framework Guaranteeing Simple Facets

Figure 6.4: The facets of those two simple polyhedra are supported by the same oriented planes.

6.3.3 Non-canonical Data Structure

Many problems have been successfully kinetized: Delaunay triangulation, closest pair of ob-
jects, convex hull, minimum spanning tree, range trees... See [Gui98] or more recently [GKR04] for
surveys on kinetic algorithms. Most of these kinetic algorithms maintain a canonical data struc-
ture. For instance, the 2D visibility polygon[HP02] is unique by definition. This means that the
maintained data structure is canonically, and thus uniquely, defined by the instantaneous config-
uration of the input primitives. Thus those KDS are maintaining a combinatorial data structure
that may be deleted and rebuild from scratch at any time.

Some of them however maintain a non-canonical data structure: they maintain a data structure
that is not unique, given an instantaneous configuration, such as a planar triangulation of a 2D
point set. However, it may be possible to distinguish a canonical data structure that fulfills the
requirements of the algorithm: for instance, the Delaunay triangulation may be used to maintain
a triangulation.

In the context of the maintenance of a simple polyhedron undergoing translations or rotations
of the supporting planes of its facets, no simple polyhedron seems to be a reasonable canonical
candidate. This problem is analogous to the kinetic point set triangulation problem in the sense
that multiple simple polyhedra may exist, which are supported by the instantaneous interpolating
oriented planes only. Figure 6.4 illustrates that multiple simple polyhedra may share the same dual
topology and yet describe different surfaces. The property that the maintained data structure is
not canonical provides an additional degree of freedom which is combinatorial by nature. Which
of the multiple possible data structures is the desired data structure? This extra (combinatorial)
degree of freedom is used to keep the polyhedron as topologically close as possible to the initial
simple polyhedron. This is achieved by only performing topological modifications when required
in order to keep the polyhedron simple. Thus, the kinetic framework is here used to design an
algorithm that is sensitive to the initial topology, rather than the usual computing-cost driven
motivation of taking advantage of the temporal locality.

6.3.4 Algorithm Overview

The naive and error prone approach of adding constant or even adaptative time steps, then
verifying the simplicity lacks the knowledge of what exactly went wrong between the iterations,
whereas this kinetic approach is able to handle well identified events one at a time. We propose
the following algorithm:

The priority queue Q is the backbone of a KDS algorithm. It is able to efficiently output the
next element scheduled, denoted next(Q), be it in the future or immediate. It further allows the
unregistration of previously scheduled events. Each event element stores a timestamp and the
indices that identify a failing triangle that becomes clockwise oriented relative to its supporting
oriented plane, immediately after the timestamp. If the queue is empty, meaning that no events

6.3. Kinetic Polyhedron with Simple Facets 163

Algorithm 6 KineticSimplePolyhedron

Require: A regular input polyhedral representation and the trajectory of each supporting plane

Q ← ∅ { Build an empty event queue }
t← 0
repeat

{ Section 6.3.5: Ensure vertex locations are well-defined }
Trihedralize all non-trihedral vertices (chapter 5)

{ Section 6.3.6: Update the self-intersection free certificate }
Update the constrained triangulation of the convex hull of each facet

{ Section 6.3.7: Update the event queue to compute the maximal time step}
Schedule future failing events of the new triangles in the event queue Q.

{ Advance the evolution time t to the next event. }
t← min(1, time(next(Q)))

{Section 6.3.8: Ensure the polyhedral representation is regular }
Pop all immediate events Qt = {q ∈ Q/time(q) = t} out of Q.
Analyse all immediate events Qt.
Batch-process the events Qt.

until t = 1

are scheduled to occur between the current time and t = 1, then, by setting next(∅) = +∞, the
algorithm will immediately terminate.

Let us now comment this algorithm. The regularity requirement on the initial polyhedron
ensures that its topology provides a faithfull description of the polyhedral surface, without colocated
vertices or other geometric singularities (sec. 5.4.3). Trihedralizing a regular representation of
the polyhedron yields well-posed and independent trihedralization problems, since it involves an
infinitesimal perturbation of a well-defined vertex of high valence. A vertex trihedralization, given
its adjacent plane trajectories, guarantees that the split vertices are well-defined as time evolves,
and that there is no immediate self-intersection (sec. 6.3.5). Then the retriangulations (sec. 6.3.6)
of the convex hull of the recently modified facets update the self-intersection free facet certificates
(sec. 6.3.7). Now that the polyhedral facets are triangulated and the vertices have a well-defined
trajectory, time may be advanced directly to the timestamp of the next degeneracy event if one
exists or to the end (t = 1). Finally, the loop invariant, stating that the maintained polyhedral
representation is regular, is restored (sec. 6.3.8).

6.3.5 Vertex Trihedralization

While processing an event, the topological updates are likely to result in under-constrained
or over-constrained vertices. Immediately after the current event, the plane equations will be
interpolated to the time of the next event. The input polyhedral representation is required to be
regular, so that vertices that have a valence of 2 or less have been discarded, as they do not convey
any information on the shape of the closed polyhedron.

On the other hand, vertices that have a valence of 4 or more may be present and are very likely
to be over-constrained, preventing any time evolution. Thus they have to be split into well-defined
vertices, by uncollapsing edges. This is exactly the trihedralization problem presented in chapter 5.
The only difference is that predicates are no longer evaluated using the target dual geometry but at
the time immediately after the immediate events. The evaluation of the trihedralization predicates
at t+ε is carried out by evaluating the sign of not only the certificate function but also its derivative

164 6. A Kinetic Framework Guaranteeing Simple Facets

at t.

A key remark is that the vertex zones of these soon-to-be overconstrained vertices are reduced to
a point at t and will be infinitesimal at t+ε. Thus the vertex trihedralization problems are local and
decomposable. The local vertex trihedralizations may then be performed independently. A caveat
is that the polyhedral surface may not be manifold at the overconstrained vertex. Trihedralizing
such a vertex is thus not possible without extending the ear-cutting approach but may be done
using the arrangement coloring approach.

6.3.6 Facet Triangulations

The constrained triangulations of the convex hull of each facet introduce utilitary edges, denoted
soft edges, that are not relevant to describe the polyhedral surface. These edges only encode a proof
that the facets are not self-intersecting by exhibiting a triangulation of its convex hull with non
degenerate triangles in between events. By contrast, the constrained edges of the triangulation refer
to hard edges of the polyhedron and describe a 1D feature of the polyhedral surface. Whenever
the topology of a vertex changes, due to a trihedralization (section 6.3.5) or an event processing
(section 6.3.8), the possible events of its neighboring triangles are descheduled from Q and soft
edges are discarded. All in all, at this step, the convex hulls of the facets are not (or only partially)
triangulated.

The trihedralization has modified the polyhedral topology representation but not the described
surface. Besides, the polyhedral representation is no longer guaranteed to be regular. Namely,
the edges introduced by the vertex trihedralizations are instantanneously zero-length. An in-
stantaneous triangulation is then required to accept degenerate triangles due to these co-located
neighboring vertices. However, this instantanneous triangulation does not guarantee that none of
the generated triangles that are instantaneously degenerate will have a positive orientation imme-
diately after the current time. To be able to guarantee that facets will not self-intersect in the
immediate future, we require the triangles of the constrained triangulation of the facet convex hull
to be positively oriented immediately after the current trihedralization time. This is performed,
similar to the trihedralization step, by evaluating both the orientation certificate function and its
derivative at the current time.

6.3.7 Orientation Certificate Functions

The simplicity of the 3D polygons (possibly with holes) supporting facets of the polyhedron
is proven by the constrained triangulation of their convex hull with triangles that are oriented
consistently with the oriented supporting planes. To certify that the polyhedron keeps simple facets,
the KDS maintains such a constrained triangulation for each of the facets. These triangulations
introduced a second type of edges: the soft edges that delimit coplanar triangles, contrary to the
hard edges of the polyhedron that constrain the triangulation. In figures 6.5 and 6.6, soft edges
are represented with dotted segments, and hard edges are solid. For readability, note that only
the triangulation of the facet polygons are illustrated rather than the triangulation of their convex
hull.

Since the polyhedron undergoes a time evolution, the predicate turns into a certificate function.
The triangulation step guarantees that the certificate function of each new triangle is strictly
positive immediately after the event, until its first sign-changing root. This root is thus computed
in order to schedule the corresponding event in the event queue Q. Triangles that were unaffected
by the recent topological changes are already scheduled in Q and do not require any computing,
apart from the maintenance of Q as a priority queue.

This orientation certificate function is a rational function, and the maximum degrees of its
numerator and denominator can be considered. The coordinates of [~n : 0] are polynoms of degree
at most 1. Using the construction of equation 4.2.1, each of the 4 homogeneous coordinates of the 3

6.3. Kinetic Polyhedron with Simple Facets 165

N
N

N10

NP2

P0

P1

N00
N

N11

N20
N21

N01

N

N1

N3

NP0

P1

P2

N2 N

N4

N0

N
N2

N0

N1P1

P2

P0

N3 N

N
N0

N2
P2

P0

P1

N1

(a) (b) (c) (d)

Figure 6.5: Soft and hard triangulation edges. 4 cases of a triangle P0P1P2 after the triangulation
of a polyhedron facet supported by a plane N . Triangles (a), (b), (c) and (d) are delimited by,
respectively, 3, 2, 1 and 0 soft edges, and 0, 1, 2 and 3 hard edges. The triangle geometries involve
respectively 7, 6, 5 and 4 planes, including N .

N
N

N2

NP2

P0

P1

N0 N

N3=N0

N4
N5

N1

Figure 6.6: Special case without any hard edge. The triangle P0P1P2 has 3 soft edges and no hard
edges and yet only depends on only 6 distinct planes, since N3 = N0.

points are polynoms of degree at most 3, in terms of the homogeneous coordinates of their defining
planes. Since the interpolation of the homogeneous plane coordinates is linear as a function of
time, the homogeneous point coordinates are polynomial and their maximum degree is 3.

The reason why the vertices are assumed to remain bounded is to avoid the tricky situation

where the Cartesian coordinates
~P
w of a point are evaluated at one of its poles. Keeping all the

vertices bounded ensures that sign changes in the orientation certificates are only due to its roots
and not its poles.

This yields a rational function that has a numerator of degree at most 10 and a factorization of
the denominator into 3 polynoms of degree at most 3. The sign of the certificate can be determined
by the independent inspection of the signs of the factors of its numerator and denominator and the
evaluation of the root multiplicities if the current time is a root of the denominator. This speeds
up the evaluation compared to computing blindly roots of the multiplication of the numerator by
the denominator because this polynom can be of degree 10+3+3+3=19 !

For each of the triangles of the facet triangulations, a triangle orientation predicate, as intro-
duced in equation 4.2.4, is computed. It tests whether the triangle P0P1P2 is direct, degenerate or
indirect with respect to the supporting oriented plane N :

Orientation(~N, ~P0, ~P1, ~P2) = sign

(
1

w0w1w2

∣∣∣∣~n ~p0 ~p1 ~p2

0 w0 w1 w2

∣∣∣∣) with

{
~Pi = [~pi : wi]
~N = [~n : d]

Orientation Certificate Factorization The numerator of the orientation certificate function
can be further factorized: |~n|2 always divides the numerator. It is a square that is explicitly
enforced to remain strictly positive, otherwise the plane would become the plane at infinity, which

166 6. A Kinetic Framework Guaranteeing Simple Facets

is avoided by disallowing interpolation between planes that are parallel with opposite orientations.
Since the |~n|2 can not produce any sign change, there is no need to consider it to compute the roots

of the certificate function. If Q denotes the polynom that results from the division of
∣∣∣ ~n ~p0 ~p1 ~p2

0 w0 w1 w2

∣∣∣
by |~n|2, its maximum degree is 8, and the sign of the certificate function can be simplified as:

Orientation(~N, ~P0, ~P1, ~P2) = sign

(|~n|2 Q
w0w1w2

)
= sign

(
Q

w0w1w2

)

In the general case, the certificate function involves 7 distinct planes: the plane that supports
the triangle and 2 extra planes ~Nj , ~Nk to define the location of each vertex ~Pi of the triangle. Since
all those planes are distinct, all the 3 edges of the triangle are soft (triangulation) edges rather
than hard edges of the polyhedron (Fig. 6.5(a)). In this general case, the polynom Q7 (indexed by
the number of distinct planes involved) can not be further factorized. An efficient way to compute
Q7 in this general case is yet to be designed. Roots are searched for the unfactored polynom, of

maximum degree 8, computed as the division of
∣∣∣ ~n ~p0 ~p1 ~p2

0 w0 w1 w2

∣∣∣ by (n·n), using the symbolic computer

algebra system [MAXIMA].

As soon as only 6 or less planes are involved, Q may be factored into 2 polynoms of maximum
degree 4. It occurs when at least one edge is a hard edge (Fig. 6.5 (b), (c) and (d)). Even a
triangle with 3 soft edges may be factorized, if the supporting line of one of its edges is defined by
the intersection of two planes, as it is the case for the edge P0P1 in figure 6.6. The property that at
least one of the 3D lines supporting an edge of the 3D triangle is defined as the intersection of two
planes greatly reduces the root finding time costs, by allowing the factorization ofQ into 2 polynoms
of maximum degree 4. When only 4, 5, or 6 plane equation are involved, the factorizations of Q
are:

Q4 = −
∣∣ ~N ~N0

~N1
~N2

∣∣2 (6.3.1)

Q5 = −
∣∣ ~N ~N0

~N1
~N2

∣∣ . ∣∣ ~N ~N1
~N2

~N3

∣∣ (6.3.2)

Q6 = −
∣∣ ~N ~N0

~N1
~N2

∣∣ . ∣∣ ~N ~N1
~N3

~N4

∣∣ (6.3.3)

When only 4 planes are involved in the certificate function (fig. 6.5 (d)), Q4 is the opposite of a
square. Thus, it will not provoke any sign change, so there is no point in computing its roots.

Proof. Factorization: When the orientation certificate involves only 6 planes or less, one of the edges of the
triangle can be defined both as the line passing through two points and the intersection line of two planes. Using
the equation 4.2.3, with the point and plane indices defined in figure 6.6, we get:

~L(~N, ~N0) = [~n ∧ ~n0 : d~n0 − d0~n]

~L(~P0, ~P1) = [w0~p1 − w1~p0 : ~p0 ∧ ~p1]

~L(~P0, ~P1) =
∣∣ ~N ~N0

~N1
~N2

∣∣ ~L(~N, ~N0)

One may interpret the numerator of the triangle orientation predicate as the coplanarity predicate ~L(~P0, ~P1)�
~L(~P2, ~n) of the line that goes from P0 to P1, and the line that passes through P2 in the direction ~n:∣∣∣∣~n ~p0 ~p1 ~p2

0 w0 w1 w2

∣∣∣∣ =
1

w0

∣∣∣∣~n ~p0 w0~p1 − w1~p0 ~p2
0 w0 0 w2

∣∣∣∣
=

1

w0

(
w0

∣∣~n w0~p1 − w1~p0 ~p2
∣∣+ w2

∣∣~n ~p0 w0~p1 − w1~p0
∣∣)

=
∣∣w0~p1 − w1~p0 ~p2 ~n

∣∣+ w2

∣∣~n ~p0 ~p1
∣∣

= (w0~p1 − w1~p0) · (~p2 ∧ ~n) + w2~n · (~p0 ∧ ~p1)

= [w0~p1 − w1~p0 : ~p0 ∧ ~p1]� [w2~n : ~p2 ∧ ~n] = ~L(~P0, ~P1)� ~L(~P2, ~n)

Since ~L(~P0, ~P1) is proportional to ~L(~N, ~N0), we are interested in simplifying ~L(~N, ~N0) � ~L(~P2, ~n), using the

6.3. Kinetic Polyhedron with Simple Facets 167

t− ε t t + ε

Figure 6.7: Example evolution of a vertex colliding with the opposite soft edge

t− ε t t + ε

Figure 6.8: Example evolution of a collapsing hard edge

relations ∀~x, ~y, ~z ∈ R3, ~x ∧ (~y ∧ ~z) = ~y(~x · ~z)− ~z(~x · ~y) and ~x · (~y ∧ ~z) = |~x ~y ~z| = ~y · (~z ∧ ~x):

~L(~N, ~N0)� ~L(~P2, ~n) = [~n ∧ ~n0 : d~n0 − d0~n]� [w2~n : ~p2 ∧ ~n]

= (~n ∧ ~n0) · (~p2 ∧ ~n) + (d~n0 − d0~n) · w2~n

= ~p2 · (~n ∧ (~n ∧ ~n0)) + dw2~n0 · ~n− d0w2~n · ~n
= ~p2 · (~n(~n · ~n0)− ~n0(~n · ~n)) + w2(d~n0 · ~n− d0~n · ~n))

= ~P2 · (~N(~n · ~n0)− ~N0(~n · ~n))

= −~P2 · ~N0(~n · ~n) (since ~P2 is in the plane ~N, ~P2 · ~N = 0)

Using ~P2 · ~N0 =
∣∣ ~N0

~N ~N4
~N5

∣∣, this finally proves the factorization of Q6 with the plane indices of
figure 6.6: ∣∣∣∣~n ~p0 ~p1 ~p2

0 w0 w1 w2

∣∣∣∣ = −(~n · ~n)
∣∣ ~N ~N0

~N1
~N2

∣∣ ∣∣ ~N0
~N ~N4

~N5

∣∣
The same derivation, up to the labeling of the planes, yields the derivation of equation 6.3.3. The derivation of

Q4 or Q5 in equations 6.3.1 and 6.3.2 follows easily by adjusting the plane indices accoding to figure 6.5.

6.3.8 Orientation Event Processing

6.3.8.1 Orientation Event Analysis

Since the polyhedron remains bounded, the 3 vertices of the failing triangle have finite coordi-
nates. The failing of the triangle certificate means that those 3 points are aligned. The topological
update is simply a topological translation of the geometric singularity.

In general, the 3 points are distinct, meaning that one of the 3 vertices is colliding with its
opposite triangle edge. Two cases may occur:

Soft edge collide: The vertex is colliding with a soft edge, which does not delimit the boundary
of a polyhedral facet. This event is auxiliary: the maintained polyhedron is not ceasing to be

t− ε t t + ε

Figure 6.9: Example evolution of a vertex colliding with the opposite hard edge

168 6. A Kinetic Framework Guaranteeing Simple Facets

simple, but the proof that it is simple is no longer valid. This type of event is qualified as an
internal event in contrast with the following external events that require a modification
of the maintained polyhedron to maintain its simplicity. To update the certificate that the
polyhedron is valid, a simple flip of the colliding edge suffices. This topological change is
continuous because it only involves 2 triangles in a common supporting plane, and thus does
not change the plane adjacencies of the polyhedral vertices (Fig. 6.7). The flip is required
to prove that all the instantaneous singularities of the colliding vertex have been translated
into the polyhedron topology. If the null area triangle was kept, it would be harder to detect
when the colliding vertex is also simultaneously colliding an other edge beyond the first edge.

Hard edge collide: When the colliding edge is the intersection of two distinct polyhedral facets,
the colliding vertex now faces a singularity of the polyhedron itself rather than a singularity
of its simplicity proof. The vertex is instantly adjacent to one more plane. To translate this
into the polyhedron topology, the polyhedron is updated by affecting the failing triangle to
the plane supported by the facet that is opposite to the colliding vertex. This topological
modification is continuous because the area of a failing triangle is null. Thus, the colliding
hard edge is now a soft edge. In order to verify that the singular vertex is distinct from
its adjacent vertices, the colliding soft edge is flipped as in the previous case. An example
evolution is sketched with a hard edge collision in figure 6.9.

In singular cases, either 2 or all the 3 points of the triangle are equal, yielding a collapsing edge
or triangle:

Edge collapse: The polyhedron is updated by topologically collapsing one of the collapsing edges.
An example result at t+ ε is sketched in Fig. 6.8. This occurs when the rank of the adjacent
plane coordinates is 3. The topological edge collapse is geometrically continuous, since it
removes only two triangles of null area.

Triangle collapse: The triangle collapsing is performed by two successive edge collapses.

The analysis has been implemented by considering the signs at the exact time of the event of
the following quantities for a triangle P0P1P2, for i = 0, 1, 2:

(~Pi+1 − ~Pi) · (~Pi+2 − ~Pi) , where Pi = P(i mod 3) (6.3.4)

When expressed in terms of the plane supporting the Pi, this formula straightforwardly turns into a
rational function factored into a numerator of degree 12 and 4 denominators of degree 3, assuming
homogeneous plane evolutions of degree 1.

There is however a caveat that prevents a purely static evaluation of the predicate above.
Namely, the current time may be a root of the 4 homogeneous coordinates of a point Pi, leaving
this point statically undefined [0 : 0 : 0 : 0]. This happens, for instance, when the convex angle
formed by two hard edges adjacent to a vertex in a polyhedron facet becomes concave, similar
to the example of figure 6.7. In this case, the root multiplicities of the rational function must be
compared to assess the sign of the rational function as time tend to the current time.

6.3.8.2 Processing Analyzed Events

The events come are of two natures, they either encode a degenerate triangle of the constrained
triangulation of the facet convex hull, or a degenerescence of a convex hull itself. The processing
of convex hull events are trivial and we focus on the processing of the degenerate triangles of the
constrained triangulation.

Processing these analyzed events modifies the polyhedral topology so that it gives a regular rep-
resentation of the polyhedral surface. In other words, its purpose is to translate the instantaneous
geometric singularities into the topology of the polyhedron.

This is performed by first topologically collapsing all the triangles undergoing a geometric edge
collapse. A special care is needed to order the collapses to prevent collapsing edges that do not
satisfy the link condition [DEGN98]. This condition, well-known to edge collapse-based mesh

6.4. Topology-Aware Fitting of a 3D Building Model 169

simplifiers, prevent topological singularities, such as antennae. More precisely it is a combinatorial
condition that guarantees that the collapse will not change the topology of the desribed surface,
such as the genus. We assume that there is always an ordering of collapses that satisfies the link
condition. This may however not be always the case : a simple example is a vanishing tetrahedron.
It is composed of 4 collapsing triangles, and none of the 6 edges satisfy the link condition.

Now only triangles with a colliding edge are left. Their support is a non-trivial segment. A
colliding edge may face multiple cases, depending on the facet neighboring the degenerate triangle
through the colliding edge :

1. The neighboring facet is not a degenerate triangle. Then it may be merged with the degener-
ate triangle, discarding the colliding edge and adding the colliding vertex to the neighboring
facet.

2. The neighboring facet is a triangle with a colliding edge which is not the same edge. The
processing of this triangle is postponed after the processing of its neighboring triangle.

3. The neighboring facet shares the same colliding edge. Then a predicate similar to equation
6.3.4 is used to order the two opposite colliding vertices along the colliding edge.

To conclude, this step successfully processes the set of instantanneously degenerate triangles
and modifies the topology of the polyhedral representation to make it regular.

6.3.9 Discussion

It would have been tempting to process events one at a time without grouping simultaneous
events. However, it would have been unclear how to assert the validity of this alternate approach.
More precisely, avoiding infinite loops where topological changes recursively create immediately
failing configurations would have been difficult.

By contrast, the proposed approach guarantees that, at the end of the simultaneous event
processing, the polyhedral topology encodes the regular representation of the polyhedral surface,
which is the loop invariant. This loop invariant provides the independance of the trihedralization
problems and the existence of the non-degenerate triangulations in-between events. Efficiency-
wise, it uses directly the readily available set of immediately degenerate triangles to performed the
required topological changes locally without exploring the polyhedron.

6.4 Topology-Aware Fitting of a 3D Building Model

The proposed approach has been implemented on top of the kinetic data structure package
of the CGAL library [CGAL], and heavily relies on CGAL exact arithmetic to prevent numerical
inconsistencies, at the expense of high computing times for nearly degenerate predicate evaluations.
These sample evolutions of figures 6.10, 6.11, 6.12, 6.13, 6.14 and 6.15 are driven by successive plane
estimations according to the DSM, as presented in chapter 4.

Figure 6.10 6.11 6.12 6.13 6.14 6.15
Plane estimations 0.18s 11.31s 0.23s 3.21s 1.57s 1.86s
Trihedralizations 0.09s 0.1s 0.54s 5.53s 0.19s 3.04s

7 11 14 9 14 30
Kinetic evolution 0.46s 19.18s 1.47s 0.97s 0.51s 79.06s

Event analysis 0.14s 16.05s 0.25s 0.05s 0.08s 75.79s
Events processed 3 23 8 5 12 65

Total (P+T+K) 0.73s 30.59s 2.24s 9.71s 2.27s 83.96s

Table 6.1: Computing times and number of events processed and trihedralizations, measured on a
single Intel Xeon 1.60GHz CPU core.

170 6. A Kinetic Framework Guaranteeing Simple Facets

Table 6.1 illustrates how the computing times of the roof fittings involved in figures break
down among the various tasks. The plane estimation time (chapter 4) measures the reestimation
times of all the planes for all iterations. The trihedralization time (chapter 5) accounts for all
trihedralizations needed at initialization or during the evolution. The kinetic evolution time (this
chapter) refers to the scheduling, analysis and processing of the events.

(a) DSM and input building (b) DSM and output building

Figure 6.10: Simple building fitting (identical to figure 1.3).

Figure 6.11: T-shaped building fitting (identical to figure 1.4).

The dominating task in the kinetic evolution appears to be the analysis of a failing event
(section 6.3.8.1). During the kinetic evolution, this event analysis step involves determining the
sign of high degree polynomials, using exact arithmetics, at the current time, which is the root
of another polynomial, in order to discover which edge collapses or which vertex collides with its
opposite edge. Figure 6.15 is an example where this particular step takes more than 90% of the
total computing time. We believe that this event analysis step may be optimized, by factorizing
the polynomials involved, as with the orientation predicate function, or by a global analysis of all
the simultaneously failing events.

Since our algorithm performs minimal topological changes, it never creates any facet, so a case
like in figure 6.13, the missing facet at the right is not reconstructed. A simple extension would be
to check if the facets with high residual errors can be advantageously split into some small number
of facets, with robustly estimated target plane coordinates, and carry on the evolution with the
split facet.

In figure 6.14, the top, bottom and left facets are competing to fit the same data (the points of
the DSM of the left roof plane). At 2 < t < 3 and later at 4 < t < 5, regularizations occured that
discarded of a collapsing facet. Another possible outcome could have been that redundant facets
settle to be distinct but nearly coplanar, as in figure 6.15. Some possible extension could be to
detect these nearly coplanar facets to merge them together, when no regularization simplifies the
topology automatically.

6.5. Discussion 171

Figure 6.12: (left) the DSM, (right) an aerial image, (top) the initial building wireframe, (bottom)
the fitted building.

(a) (b)

Figure 6.13: (a) Initial building, (b) fitted building : the missing triangular facet (dashed) may
not be created.

t=0.01 t=1 t=2 t=3 t=4 t=5t=0

Figure 6.14: Fitting this building requires 5 iterations. 2 facets are removed, due to the intermediate
regularizations.

6.5 Discussion

6.5.1 Complexity

It is not straightforward to analyze a kinetic data structure with the usual worst-case or expected
time complexity, since it is higly dependent on the primitive trajectories and the resulting number

172 6. A Kinetic Framework Guaranteeing Simple Facets

t = 0 t = 0.01 t = 1 t = 2 t = 7
Initial Model Convergence

Figure 6.15: A more complex building fitting example, requiring 7 iterations of plane estimations.
Note that 3 almost coplanar facets remain.

of external events. Therefore, a terminology was introduced in [BGH97, BCG+99] to qualify the
complexity of a kinetic data structure:

Compactness: The space complexity of the KDS. A triangulation is linear in the size of its
vertices, and so is its convex hull. The maximum number of events in the queue is one
orientation event per triangle of the constrained facet triangulations and one per convex hull
vertex. Since events have a constant size, this makes the proposed KDS compact (linear in
size).

Efficiency: The efficiency measures the ratio of the number of external events to the number of
all events (internal and external). In the proposed KDS, the internal events are the soft edge
collision and the convex hull events, while the hard edge collisions and the edge and triangle
collapses are external events.

Responsiveness: This qualifies the time complexity of processing an event. Processing the ori-
entation events takes constant time. The trihedralization step may be much more complex
for highly degenerate configurations where more than 4 planes simultaneously meet. How-
ever, except for such degenerate input initial and target plane geometries, trihedralizations
are performed on vertices adjacent to 4 planes only, and can thus be considered to have a
constant time complexity.

Locality: This measures the cost of recomputing events created by a topological modification
or after a plane trajectory has changed. The KDS is as local as it could be: the number
of events that depend on a single plane is linear relative to the complexity (the number of
edges and vertices) of the facets of the polyhedron supported by this plane, and the triangles
sharing a vertex with them but supported by other planes.

6.5.2 Method Invariance by an Invertible Affine Transform

The following proposition is proven in appendix D:

Proposition 6.1. The approach proposed in chapters 5 and 6 is unconditionally invariant under
a projective transform of the point coordinates (the primal geometry), if and only if this transform
is invertible and affine.

We define the meaning of the unconditional invariance such that the combinatorial data struc-
tures computed by the proposed method for the transformed and original problems are isomorphic,
up to ambiguities of the trihedralization subproblems, without any condition on the geometry or
topology of the problem.

This insensitivity to an affine transform proves that the proposed approach is not biased by
a preferred direction such as the vertical direction (rotation invariance), and that it is scale and
translation invariant. The assymetric treatment of the vertical planes in the roof fitting problem
is thus only caused by the plane estimation step of chapter 4.

6.5. Discussion 173

6.5.3 Normalization Dependance

An homogeneous scaling by α of the point coordinates, using the identity matrix I times any
non-null scalar α is a particular case of an affine invertible transformation. The polyhedron com-
puted using the proposed approach is thus invariant by such a transform on the primal geometry.
Since com(αI) = α3I, any uniform scaling by α of the dual geometry may be viewed as the uniform
scaling by α−3 of the primal geometry. Thus the invariance is also valid for uniform scalings of the
dual geometry. Thus, the proposed approach is invariant under a uniform scaling of the primal
and/or of the dual geometry.

However, the approach is sensitive to the relative normalization of the homogeneous coordinates
of the planes. It is caused by the sensitivity of the interpolation scheme itself to those normal-
izations. The greater the target plane normalization is relative to the initial plane normalization,
the faster the interpolated plane will come close to the target plane. Therefore, a non-uniform
scaling of the primal or the dual geometry will modify the relative interpolating speed between
primitives, although the initial and target Cartesian formulation of the problem is unchanged.
The modification of the relative speeds of the rotating or translating planes will modify the point
trajectories at the intersection of those planes. Thus the order of the events may change which
could imply differing resulting topologies.

The next paragraphs describe how the trajectory of the interpolation of two points, two in-
tersecting planes or two parallel planes is insensitive to their normalizations but how the speed
of the interpolating primitive along its trajectory is affected by the relative normalization of the
interpolated primitives.

Finite points: The interpolated point (1 − t). ~P0 + t. ~P1 between two finite points ~P0 and ~P1

only has (1− t, t) as its barycentric coordinates relative to ~P0 and ~P1 if they have the same point
normalization (α = w1

w0
= 1). In the general case (w1 6= w0), its barycentric coordinates are(

1−t
1−t+αt ,

tα
1−t+αt

)
:

(1− t)~p0 + t~p1

(1− t)w0 + tw1
=

(
1− t

1− t+ αt

)
~p0

w0
+

(
tα

1− t+ αt

)
~p1

w1
with α =

w1

w0

For instance, the midpoint of the segment [~P0
~P1] is reached when the two barycentric coordinates

are equal at time t = 1
1+α = w0

w0+w1
(which is only possible with t ∈ [0, 1] if w0w1 ≥ 0).

Parallel planes: Using now the relative plane normalization α = |~n1|
|~n0| , the same relation holds

with the translation of an interpolating plane between two similarly oriented parallel planes (~n0 ·
~n1 > 0 and ~n0 ∧ ~n1 = ~0). The signed distances of the planes to the origin are d0

|~n0| and d1
|~n1| , and

the one of the interpolating plane at time t is:

(1− t)d0 + td1

|(1− t)~n0 + t~n1|
=

(1− t)d0 + td1

(1− t)|~n0|+ t|~n1|
since ~n0 · ~n1 > 0 and ~n0 ∧ ~n1 = ~0

=

(
1− t

1− t+ αt

)
d0

|~n0|
+

(
tα

1− t+ αt

)
d1

|~n1|
with α =

|~n1|
|~n0|

Intersecting planes: The interpolation of two intersecting plane is the rotation of the initial
plane to the target plane around their intersecting line. The barycentric coordinates of the un-
normalized plane normal (1 − t)~n0 + t~n1 relative to the interpolated plane normalized normals
~n0

|~n0| and ~n1

|~n1| are
(

(1−t)|~n0|
(1−t)|~n0|+t|~n1| ,

t|~n1|
(1−t)|~n0|+t|~n1|

)
. The barycentric coordinates of the plane bisector

is (1
2 ,

1
2). Thus, the plane bisector of two intersecting planes is reached at time t = |~n0|

|~n0|+|~n1| .

174 6. A Kinetic Framework Guaranteeing Simple Facets

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Time parameter t

fα(t)=α t/(1-t+α t)

α=0

α=1/128
α=1/64

α=1/32

α=1/16

α=1/8

α=1/4

α=1/2

α=1

α=2

α=4

α=8

α=16

α=32
α=64

α=128

α=∞

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Time parameter t

gθ(t)=(tan-1(t sinθ/(1-t+t cosθ)))/θ

θ=0

θ=π

θ=0

θ=π

θ=kπ, with
k=0
k=1/2
k=3/4
k=7/8
k=15/16
k=31/32
k=63/64
k=127/128
k=255/256
k=511/512
k=1

Figure 6.16: Dependance on plane normalization. The interpolation parameterization warping

function fα, depending on the relative plane normalization α = |~n1|
|~n0| and the angle ratio function

gθ, giving the rotation rate of the interpolation of two intersecting planes, depending on the dihedral
angle θ.

Those barycentric coordinates may also be written as (1 − t′, t′) =
(

1−t
1−t+αt ,

αt
1−t+αt

)
using the

relative plane normalization α = |~n1|
|~n0| . The derivation of the rotation angle of the interpolating

plane around the line of intersection of the two interpolated planes yields, using the barycentric
coordinates (1− t′, t′) of the normal relative to the normalized initial and target normal:

Angle

(
~n0, (1− t′) ~n0

|~n0|
+ t′

~n1

|~n1|

)
= tan−1

(
t′|~n0 ∧ ~n1|

(1− t′)|~n0||~n1|+ t′~n0 · ~n1

)
= tan−1

(
t′ sin θ

1− t′ + t′ cos θ

)
with θ = Angle(~n0, ~n1)

= tan−1
(
tan θ

(
f(cos θ)(t

′)
))

if cos θ 6= 0

Function analysis: The function fα(t) = αt
1−t+αt (fig. 6.16, left) expresses how the time is

warped by the ratio α of the target by the initial normalization (w or |~n|, concerning respectively
points or planes). f1(t) = t is the identity function and this family of functions is closed under
compositions: fα1

◦ fα2
= f(α1α2).

The function gθ(t
′) =

tan−1
(

t′ sin θ
1−t′+t′ cos θ

)
θ (fig. 6.16, right) evaluated at t′ = fα(t) measures the

percentage of the rotation achieved as a function of time for interpolated intersecting planes, with a
dihedral angle of θ. If cos θ 6= 0, then tan(θgθ(fα(t))) = tan θ

(
f(cos θ)(fα(t))

)
= tan θ

(
f(cos θ)α(t)

)
:

tangents have their interpolation time t warped by f(cos θ)α.

Assuming α > 0 and 0 < θ < π, the functions fα(t) and gθ(t
′) are both strictly increasing

from fα(0) = gθ(0) = 0 to fα(1) = gθ(1) = 1. Thus, fα, gθ and (gθ ◦ fα) are increasing bijections
from [0, 1] to itself: fα([0, 1]) = gθ([0, 1]) = gθ(fα([0, 1])) = [0, 1]. Thus, varying the angle between
interpolated planes and/or the normalization of the plane coordinates only changes the speed of
the interpolated plane along the trajectory, but the trajectory itself remains unchanged. Finally
even if the construction of the points is insensitive to the normalization of the interpolating planes,
the trajectory of a trihedral vertex is very likely to change because its three defining planes are
moving at speeds that depend on the initial and target plane normalization.

Discussion: The relative normalization |~n1|
|~n0| of the homogeneous coordinates of each plane adds

a degree of freedom to the problem. The current implementation does not deeply take advantage
of these degrees of freedom. One obvious possibility is to normalize all the initial and target plane

6.6. Perspectives 175

coefficients. All exact arithmetics algorithm libraries are not able to represent square roots, and
those who can handle square roots undergo the computing costs of the augmented complexity
of this feature. Thus, the normalization ratios are only kept close to 1, rather than exactly 1.
Alternatively, within our building fitting context, planes are classified into three groups : the
infinitely low bottom plane (c = −1), the facades (c = 0) and the roofs (c = 1, no overhead). Since
planes are not allowed to move from one of these groups to another, their geometric evolution
may be performed with a constant c coordinate. The huge benefit of this normalization is that it
decreases the degrees of the geometric predicates and consequently speeds up the computations.
For instance, for the general-case orientation predicate which has factors of degree 10, 3, 3 and 3,
dealing with planes with constant c coordinates brings factor degrees down to 8, 2, 2 and 2.

These degrees of freedom may allow the exploration of different geometric paths from the
initial to the target dual geometry. For instance, these degrees of freedom may be used to avoid
intermediate degeneracies by slightly pertubating the relative normalizations of the planes involved.
These degrees of freedom, may also be combined with higher order interpolations than the basic
linear interpolation: Bezier curves or any other Spline curve. The evolution of each plane would
no longer be restricted to a simple translation or rotation.

Using these extra possibilities would however be tricky. For instance, it would be easy to always
end up with a polyhedron that collapses to a single point if the plane trajectories are arbitrary.
However, if a specific application provides a motivation for complex plane trajectories, the only
downsides would be the handling of higher degree rational functions in the certificates, and the
internal events between the rational patches for piecewise rational interpolations.

6.6 Perspectives

6.6.1 Diverging Vertices

The plane evolution of the 3D building model fitting application described in section 6.4, driven
by the plane estimates of chapter 4, is, by construction, unable to make a vertex of the polyhedron
go to infinity.

Proof. This due to the way planes are fitted to the DSM: the vertical planes are not updated and the estimated

coordinates of the top-facing planes are of the form [a : b : 1 : d]. The bottom facing plane and its neighboring

planes, supporting the walls of the building footprint, remain fixed. Furthermore, the bottom-facing plane is treated

as the plane at infinity: or equivalently, it is set sufficiently low, so that the vertices of the top facing planes will

never collide with the bottom facing plane. This ensures that the polyhedron footprint (its vertical projection)

remains fixed. Thus the only direction in which a polyhedron vertex may diverge is along the z axis: (0, 0,±∞),

which is written [0 : 0 : z : 0], with z 6= 0 using homogeneous coordinates. A point adjacent to at least one top

facing facet may not contain such an infinite point: [a : b : 1 : d] · [0 : 0 : z : 0] = z 6= 0. Vertices adjacent to the

bottom facet are fixed, which reduces the candidate infinite vertices to the vertices adjacent to vertical facets only.

Since the trihedralization step ensures that infinite cells are outside the polyhedron, an infinite vertex may not be

created.

However, when moving arbitrarily the plane equations, a vertex may pass through the plane at
infinity during the evolution. This is reflected in a pole in its Cartesian trajectory. If the multiplicity
of the pole of at least one of its Cartesian coordinates is odd, then the Cartesian trajectory of this
point is not continuous. Hence, the polyhedral surface, which passes through this point, will not
be continuous. Detecting these poles and thus the diverging vertices by scheduling poles of the
Cartesian coordinates is easy. However, processing these event while keeping a continuous evolution
is impossible, since there is a discontinuity in the described surface: a point is going to infinity in
one direction and coming back from the opposite direction.

176 6. A Kinetic Framework Guaranteeing Simple Facets

As an extension, we propose to avoid the infinite vertex events by forcing the evoluting polyhe-
dron to stay inside an input convex polyhedral volume V . The property of staying inside V would
be maintained using the kinetic framework by introducing a complementary certificate proving that
the polyhedron remains inside V and the processing of events where the polyhedron would cease
to be inside V . For instance, the volume V could be a bounding box [−M,M]3 for any sufficiently
large real value M .

6.6.1.1 Boundedness Certificate

Because a polyhedron can be triangulated and each triangle is a convex combination of 3 points
of the polyhedron, a polyhedron is inside a convex volume V if and only if all of its vertices are
inside this convex volume. The convex bounding volume V may be given by a set of oriented
planes NiV that point towards the exterior of the bounded volume. A vertex P remains inside V if

and only if the above certificate is negative for all faces of the bounding volume: ∀i, ~P
wP
· ~NiV ≤ 0.

Thus for each vertex ~P of the polyhedron and each plane of the convex bounding volume V , we can

define its boundedness certificate function − ~P
wP
· ~NiV . These certificate functions are not negative

for each vertex and each bounding plane, if and only if the polyhedron is bounded by V . Since the
plane equations are the result of a linear interpolation, their coefficients are polynoms of maximum
degree 1. If the bounding volume V is kept fixed, that means that the certificate function is a
rational function and the maximum degrees of its numerator and denominator are both 3. These
certificate functions are handled exactly as the triangle orientation certificate functions.

6.6.1.2 Boundedness Event Processing

The boundedness event processing amounts to intersecting the polyhedron with V . For instance,
if the event is not degenerate, meaning that a single vertex of the polyhedron collides with a single
facet of V , the topological modification is to cut the failing vertex by the bounding plane. Since
the vertex is trihedral, this produces a triangle supported by a plane of the bounding volume.
Second, when an edge is colliding with a single plane, the edge would have to be cut out to
form a quadrilateron. Third, a colliding facet does not require any topological change, but only a
trajectory update of its supporting plane, which is set fixed to the supporting plane of the bounding
volume. Arbitrary types of collisions should be processed likewise.

6.6.1.3 Complexity Analysis

The proposed handling of diverging vertices has the following KDS properties (cf. section 6.5.1):

Compacity: Handling diverging vertices requires only one Boundedness event per vertex and per
bounding plane. This is linear in the size of the maintained polyhedron if the number of
supporting planes in V is treated as a constant.

Efficiency: The inside events are all external. Any failing event requires a topological modification
or at least a trajectory update of a plane.

Responsiveness: Processing an inside event takes time proportional to the degree of the vertex
in the triangulated polyhedron.

Locality: A modification of the plane equation of a single facet of V requires the computation of
an event per vertex. Modifying a plane trajectory only invalidates the inside certificates of
its incident vertices.

6.6.2 Dealing with Global Self Intersections

The proposed approach only guarantees that the polyhedron facets are not auto intersecting,
but it does not guarantee that the polyhedron as a whole is not auto intersecting, and thus defines

6.6. Perspectives 177

(a) (b) (c) (d)

t− ε t t+ ε{
holeinversion

Figure 6.17: Genus increasing event. (a) A moving vertex of a simple polyhedron collides (b) at
time t with a non-adjacent facet. (c) Without any topological change, an inversion occurs. (d) The
topological modification required to maintain the simplicity of the polyhedron would be to allow
the colliding vertex to cut a hole on the colliding facet, making the polyhedron homeomorph to a
torus.

an interior and an exterior volume. Such intersections that have a more global nature are illustrated
in figures 6.17 and 6.18. Discussing these non-local intersections requires the definition of the genus
of a polyhedron and its shells.

Definition 40 (Genus). The genus may loosely be defined as the number of holes that penetrate
the solid.

Definition 41 (Shell). A shell is a maximal connected surface of the polyhedron.

We previously assumed (sec. 3.2.1.2) that polyhedra were connected, meaning that they had
a single shell. Lifting this assumption, a polyhedron can be decomposed into a disconnected set
of connected polyhedral surfaces that model a set of volumes with piecewise planar boundaries,
including solid holes inside them. This makes shells the 3D equivalent of the outer and inner loops
of edges of a 2D polygon with holes.

Definition 42 (Euler-Poincaré Formula).

V − E + F −H = 2(S −G)

where V , E, F , H, S and G are respectively the number of vertices, edges, facets, facet holes, shells
and the genus.

The Euler-Poincaré formula [Seq] relates the number of combinatorial elements (V , E, F and
H) of a polyhedron to the topology of its surface (S and G).

In the general case, maintaining a simple polyhedron would require to not only make local
topological modifications (which leave S and G unchanged) but also to change its genus and to
create or destroy shells (see figures 6.17 and 6.18). The topological modifications used in the
proposed approach (edge collapses and edge flips during the event processing steps and vertex
splits during the trihedralization steps) are local modifications that are genus-preserving, and are
not creating or destroying any shell.

As the proposed kinetic data structure only relies on triangulations of each polyhedron facet, it
assumes that the polyhedron surface remains connected and that it only requires genus-preserving
topological modifications: there will be no need to create or remove handles, or to split a single
shell polyhedron into a set of polyhedral shells or connect a set of polyhedral shells.

178 6. A Kinetic Framework Guaranteeing Simple Facets

(a) (b) (c) (d)

t− ε t t+ ε{
unionintersecting surfaces

Figure 6.18: Connected component merging event. (a) 2 simple moving polyhedra are not inter-
secting at time t − ε. (b) At time t, an edge of the top and one of the bottom polyhedron are
colliding within the interior of their supporting segments. (c) Without any topological modifica-
tion, the polyhedra are intersecting after the collision. (d) To keep the described surface manifold,
the two polyhedra have to be connected: the resulting polyhedron is delimiting the union of the
interior volume of the 2 input polyhedra.

Undetected Events The following geometrical events invalidate the polyhedron simplicity and
yet are not detected by the proposed framework, because those events are not local on the surface,
and thus cannot be detected by the facet triangulations:

– The collision between a vertex and the interior of a polyhedron facet, as illustrated in fig-
ure 6.17, creates a handle, if the vertex crosses the plane after the collision. If the facet
and the vertex are parts of two distinct polyhedra, it merges them in a single polyhedron
instead of creating the handle. At the collision time, the surface is no longer manifold at the
colliding vertex, as it lies within two tangent surfaces: its surface prior to the collision and
the colliding facet.

– The collision of two edges also breaks the polyhedron simplicity (figure 6.18). If the collision
is not only a tangency and the surfaces neighboring the two edges intersect after the collision,
then a genus-modifying topological operation is required to keep the polyhedron simple.

– Degenerate cases: The collision of a vertex with an edge or a point is a degenerate case of the
collision with one adjacent facet. The collision of an edge with a facet is a degenerate case
of the collision of either the edge with one edge adjacent to the facet, or one vertex of the
edge with the facet (or both). The collision of 2 facets may even occur if two facets intersect
within their instantly common supporting plane.

Non-manifold Trihedralization If a surface is not manifold at a vertex, the neighborhood of
this vertex is locally equivalent to multiple disks that only intersect at the singular vertex, without
considering the degenerate cases where the collision locus is larger than a single point. For instance,
in figures 6.17 and 6.18, the neighborhoods of the singular vertices are locally equivalent to the
union of two disks that intersect at the singular vertex.

Furthermore, the events that split polyhedral shells or decrease the genus are detected but
are not currently handled by the proposed algorithm. These events could be illustrated using
figures 6.17 and 6.18 by reversing the time evolution. The issue is that the surface is instantaneously
not manifold at the vertex involved in the event.

The trihedralization step would have to be extended to handle non-manifold neighborhoods.
The ear-cutting (sec. 5.5) and straight skeleton approaches (sec. 5.6) rely on the neighborhood
being equivalent to a single disk and are thus not directly applicable to this more complex case.
The winding number thresholding approach (sec. 5.2) and its extension as an arrangement coloring
(sec. 5.3) should however work as is.

6.6. Perspectives 179

Detecting Global Intersection There are prospective alternatives to the proposed approach
that are able to tackle the problem of preventing self-intersections on a moving polyhedron by
detecting global self intersections rather than only local intersections between edges adjacent to a
common face:

– A kinetic 3D plane arrangement could keep track of the 0-1 coloring directly. However the
number of its internal events may slow down drastically the algorithm.

– A kinetic tetrahedralization constrained by the polyhedron would be compact and relatively
efficient but there is no guarantee that a polyhedron can be partitioned into tetrahedra
without introducing utility vertices [TVWZ93]. Dealing with this utility vertices may be
tricky. The certificate functions would measure that no tetrahedron undergoes an inversion.
The events will be more complicated and the degree of the certificate will be greater than
the current planar orientation certificates.

– An extension of our KDS to deal with intersections between coplanar facets is trivial. Instead
of maintaining separate constrained triangulations for each facet, there would be for each
plane a constrained triangulation of the convex hull of all the vertices lying within this
supporting plane. This treats all the coplanar facets together, rather than handling them
individually. This would allow the detection of the global collision of vertices with any other
vertex or edge defined by a common supporting plane.

– Another possibility is to schedule all the possible events (vertex-facet and edge-edge colli-
sions are sufficient and allow to capture degenerate vertex-vertex, vertex-edge, edge-facet
and facet-facet collisions) between all possible pairs without the help of a triangulation or a
tetrahedralization. The algorithm would no longer be compact (linear in size) : the number
of events would be quadratic. To keep the algorithm local and the certificates easily com-
putable, the certificate would only test if the vertex collides with the supporting plane or if
two supporting lines intersect. The point in polygon test or segment intersection test would
thus be deferred to the processing of the event. This would yield a local kinetic data struc-
ture with relatively inexpensive certificate functions (the 4 by 4 determinant of the matrix of
homogeneous coefficients of the 4 adjacent planes). However, many events would be internal
(i.e. would not require any topological change).

– Finally, one may be able to detect global intersections more efficiently than by scheduling
only vertex-facet and edge-edge events. The maintenance of a constrained triangulation of
the convex hull of the facets within each supporting plane, allows an efficient detection of
external events where the two colliding primitives share a common plane. These constrained
triangulations may be used to answer efficiently the point in polygons query of the global
intersection events.

6.6.3 Alternative Applications

This framework can be seen as a variant of [CSAD04] to perform variational shape approxi-
mation, that provides simplicity guarantees. Apart from solving the problem that motivated this
thesis, we believe that this framework can have multiple alternative applications.

6.6.3.1 Planar Primitive-based Editing

This framework could also be applied to design an intuitive geometry editing tool. Geometry
editing is typically performed by letting the user move the point location of the mesh vertices. The
modification of facets, such as in Google Sketchup [Sketchup], is performed by an extrusion along
the plane normal. The hypothesized tool would let a user split, merge and move freely planes as
easily as moving and snapping points. The complexity of keeping the facets self-intersection free
would completely be hidden to the user.

180 6. A Kinetic Framework Guaranteeing Simple Facets

6.6.3.2 Weighted 3D Straight Skeleton and Offset Polyhedron

We saw in section 5.6.3 that the weighted straight skeleton of a polygon, defined in [EE99,
AAAG95], is a special case of trihedralization. Likewise, a special application of this new framework
is to compute straight skeletons of convex polyhedra. This 3D extension of the 2D straight skeleton
of a polygon is similarly defined by construction as a shrinking process, by translating the facets
inward at a constant speed. The plane equation mapping involved is then only a translation
of the planes at equal velocity without rotations. This is simply the shrinking mapping : [~n :
d] → [~n : d + t] if ~n is normalized and point outward. When the evolution has reached the
time where the polyhedron is reduced to a single vertex, the loci of the edges spanned during the
evolution describe the faces of a straight skeleton of the polyhedron. The offset polyhedra are the
instantaneous polyhedra during the shrinking process. Similar to the generation of offset polygons
from the straight skeleton of a 2D polygon, the straight skeleton of a 3D polyhedron can generate
the offset polyhedra at various offsets.

The recent work of [BEGV08] has developed a similar kinetic approach specialized to this
particular application that is also able to handle non-convex polyhedra. Contrary to their approach,
the proposed algorithm presented here is only able to detect the local events, and is thus limited
to convex polyhedra. Section 6.6.2 discusses the multiple possible extensions of the proposed
algorithm to handle global events that are required for the computation of straight skeletons of
non-convex polyhedra.

Nevertheless, the proposed approach leads the way to extend the Weighted Straight Skeleton
in 3D. The simplest extension is to move the planes along their normals at heterogeneous speeds
wi. This only involves modifying the plane evolutions to incorporate the weights wi: [~n : d]→ [~n :
d + wit]. However these plane evolutions are fairly restricted, and the proposed approach would
allow to explore 3D Straight Skeletons where the plane coordinates are arbitrary rational functions
of time.

6.6.3.3 Polyhedron Generalization

One possible use of the offset polyhedra is to automatically generate polyhedra with lower
Levels of Detail. Using the concepts of mathematical morphology, a dilation of the polyhedron
can be computed using an outside polyhedron offset, and an erosion refers to an inside polyhedron
offset. To remove small features, the standard approach is to apply a closing(i.e. a successive
dilation and an erosion of the same magnitude) or an opening(i.e. the erosion is performed before
the dilation).

The generalization of rectilinear buildings has already been studied in [May99, Kad02, Kad06].

These works handle buildings with plane evolutions of the type ~N(t) = [~n : d0 − t] with ~n =
(±1, 0, 0), (0,±1, 0) or (0, 0,±1). The direct application of our KDS is able to generalize convex
polyhedra, and the extensions discussed in section 6.6.2 would make the generalization of arbitrary
sets of polyhedra possible.

6.6.3.4 Polyhedron Simplification

Defining the polyhedron geometry using its plane rather than its points make certain operations
more intuitive. A state of the art approach to simplify a triangular mesh is through edge collapses
[GH97]. Note that this approach does not intrinsically prevent self-intersection.

A dual approach would be to merge adjacent almost coplanar facets. In this case, the resulting
movement of the vertex locations may be arbitrarily large, which makes the usually unsatisfactory
self-intersections ubiquituous. The proposed KDS approach may be used to maintain a polyhedron
with self-intersection free facets as quasi-coplanar facets are merged.

There would then be an alternative between merging facets 2 at a time using the kinetic

6.7. Conclusion 181

evolution until the polyhedron is sufficiently simplified, or clustering all the facets to perform a
single evolution where each facet evolves from its initial plane support to the centroid plane of its
cluster.

6.7 Conclusion

This chapter presented a kinetic method to evolve continuously a polyhedron which facet sup-
porting planes undergo a specified evolution. This method ensures that the facets of the polyhedron
do not self-intersect throughout the evolution.

Given the specific polyhedral building models that motivated this chapter, self-intersection free
facets are sufficient to prove that the polyhedron does not self-intersect. However, extensions have
been discussed that would be less efficient but would handle genus changes and further guarantee
that the polyhedron itself is not self-intersecting, rather than only its facets.

182 6. A Kinetic Framework Guaranteeing Simple Facets

183

Part IV

Evaluation

185

Chapter 7

Results of the 3D Building Model
Refinement System

Contents
7.1 Input Data, Test Area . 185

7.2 Datasets . 190

7.2.1 Reference Dataset . 190

7.2.2 Results of the Proposed System . 191

7.3 Roof Fitting Evaluation . 192

7.3.1 Quantitative Evaluation of Registered Roof Line Segments 192

7.3.2 Typology of False Positive Errors . 193

7.3.3 Typology of True Negative Errors . 196

7.4 Superstructure Reconstruction Evaluation 197

7.4.1 Dormer Evaluation . 197

7.4.2 Chimney Evaluation . 199

7.5 Conclusion . 200

Our 3D building model refinement system has been tested on various contexts, from suburban
residential areas to downtown centers. We provide here an evaluation of our approach on a chal-
lenging downtown area in Annecy, France which presents densely-packed, irregular and complex
rooftops. Results on less challenging areas are not providing enough material to thoroughly discuss
the limitations of our proposed approach. For instance, on typical suburban areas, all buildings
are well separated, and the majority of buildings have only two roof planes and a small number of
roof superstructures that are easily distinguishable based on the DSM only.

7.1 Input Data, Test Area

This area presents complex buildings in an extremely challenging context. On this area, a
correlation-based DSM and an orthophotography (figure 7.1) have been generated from aerial
images (GSD: 10cm).

Turning to the input 3D city model, we decided to depart from the scope of this thesis by
not inputing a semi-automatic reconstruction but a fully automatic reconstruction from a manual
2D building footprint database. This choice has been driven by two reasons. First, it shows how
the proposed approach may be used to fully automatically reconstruct 3D building models from
their 2D footprint. Second, the semi-automatic building modeling process available at IGN, named
Bati3D, is based on [DT06] and tends to favor simplified buildings, as this process is tuned for

186 7. Results of the 3D Building Model Refinement System

Figure 7.1: Downtown area: Orthophotography and shaded DSM (Annecy, France)

7.2. Datasets 187

(a) (b) Hipped roof (c) Gable roof

Figure 7.2: Small triangular facets and reconstructions from [DT06]: (a) Real-world building with
a triangular facet cutting a gable roof. (b-c) Possible reconstructions from [DT06], with eaves
constrained to same height. (c) is more likely to be output than (b) as the choice between models
is based on the DSM, which tends to be closer to (c) than to (b) for DSM of buildings of type (a).

robustness. For instance, all their eaves have the same height, preventing the reconstruction of
small triangular facets cutting the top of a gable roof (fig. 7.2). The lack of such facets may not be
addressed by the fitting process as it never proposes complexifications of the topology. A straight
skeleton-based reconstruction has been chosen as it provides one roof plane per eave edge, giving
more degrees of freedom to the fitting process (at the cost of the reconstruction robustness).

Available 2D databases, as one extracted from a cadastral map, are not precise enough for our
application and give poor results when used with the proposed system, as the proposed system does
not fit façade planes (see section 4.6.1 for a discussion on lifting this limitation). Thus, the input
2D building footprint database has been input manually by an operator on an orthophotography,
so that all the height discontinuities of the façades are input precisely (the input error is of the
order of a few orthophotography pixels, i.e. ∼20cm). Note that, contrary to [LDZPD10], the
2D database of superstructures is not input manually and will be reconstructed by the proposed
system.

The input 3D database has been constructed using the manual 2D input of the building foot-
prints and the DSM. A straight skeleton-based reconstruction has been performed (i.e. the 3D
model has a roof plane for each 2D segment, each roof plane have the same slope and each gutters
have the same height - see section 5.6.1) and fitted to the DSM (to estimate the height and slope
parameters).

Tests with a Bati3D-based input showed poor results as the densely-packed building blocks were
overly generalized. Consequently, the model was robustly but poorly fitting the DSM relative to the
height of a superstructure, yielding many erroneous superstructures. Furthermore, as the proposed
roof fitting approach does not explicitly add or remove facets, the relatively few available roof facets
were unable to correctly model the base roof planes. The manual 2D delineation of the height
discontinuities (which are not addressed by our approach) and the straight skeleton reconstruction
gives an input 3D dataset that precisely models the height discontinuities but provides a large
number of superfluous planes that poorly fit the DSM.

This chapter evaluates on this area the results of the proposed system (section 7.2.2) relative
to a manually input set of 3D line segments (section 7.2.1). These two datasets are only two
approximating representations of the real world scene and do not model exactly the complexity of
real-world buildings. Building reconstruction evaluation is still a complex and unresolved field of
research [Bou07]. Comparing these two incomplete and approximating representations of the same
scene will allow us to emphasize the limitations of our system as well as the tasks that are difficult
even for a trained human operator.

188 7. Results of the 3D Building Model Refinement System

Figure 7.3: Straight Skeleton-based Reconstruction

7.2. Datasets 189

Figure 7.4: Straight Skeleton-based initial 3D building models (shaded and textured 3D view)

190 7. Results of the 3D Building Model Refinement System

Figure 7.5: Fitted 3D building models with superstructures (shaded and textured 3D view)

7.2 Datasets

7.2.1 Reference Dataset

To evaluate the proposed approach, an experimented operator manually produced 3D line seg-
ments on stereoscopic views of aerial image pairs. This operator is highly trained for 3D stereoscopic

7.2. Datasets 191

Figure 7.6: Ground truth of 3D line segments of interior roof edges and superstructure edges
acquired by a trained operator (3D view).

data collection and produces this type of 3D datasets on a daily basis. Figure 7.6 illustrates this
manually acquired dataset. The operator was asked to input the following roof and superstructure
edges:

Roof All interior roof edges: ridges, hips and valleys but no eaves. More geometrically this
corresponds to roof edges at the boundary of two non-vertical surfaces.

Chimney The top surface of the chimney.

Dormers The boundary of the 2 or 3 roof facets of the dormer superstructure.

This manual dataset is considered as a reference dataset, to which our approach will be com-
pared. It represents one day of work and provides no further information than line segments being
grouped as 3D polylines or non-necessarily planar 3D polygons tagged as roof, chimney or dormer.
We stress the fact that this dataset is topologically very poor. Only edges are collected and they
are not grouped into facets. Even if they were, they would not form planar surfaces, as their
vertices have been input without any planarity constraint.

The only other type of superstructures present in this area is glass roofs (roof terraces are
not present in this area). They are however indistinguishable in the DSM due either to a poor
correlation in the images or to their negligible geometric offset relative to the roof plane. This
shows a limitation of our system based only on a DSM: these glass roofs are clearly visible in the
original aerial images.

7.2.2 Results of the Proposed System

Figure 7.5 shows the building blocks with fitted roof planes and superstructures reconstructed.
We remind that the only manual input is the 2D building footprints and that all the following
steps are fully automatic (straight skeletons and alternating roof fittings and superstructure recon-
structions). Even with this lack of human intervention, the resulting 3D model is visually pleasing
and seems to give a good approximation of these city blocks.

10 fitting iterations have been performed followed by a first superstructure reconstruction step,
a second batch of 10 fittings iteration steps and then a final reconstruction step. Concerning
parameters, the fitting step is parameter-less and the superstructure steps have been performed
using the same set of parameters, a L2 error metric, and restricting the search to chimneys and
dormer parametric objects.

192 7. Results of the 3D Building Model Refinement System

7.3 Roof Fitting Evaluation

To evaluate quantitatively and qualitatively the roof fitting process, the set of interior roof line
segments has been extracted from the reconstructed roofs. Comparing two sets of line segments is
however not a trivial task. After a cautious inspection, a manual registration has been performed
between these two sets. This registration has been performed by manually specifying 1-to-n or
n-to-1 relationships between reconstructed and reference line segments. In particular, this is not a
simpler 1-to-1 registration as segments of either dataset may be broken into subsegments.

As none of the two sets are a complete representation of the real world and both contain errors,
both of the compared datasets contain unregistered line segments. 285 out of the 462 reference
line segments have been manually registered to 298 out of the 862 line segments extracted from
our reconstruction. This registration is stored as a set of 314 pairs of line segments, one from each
dataset. The following section evaluates the geometric accuracy of these roof line segment pairs.
In sections 7.3.2 and 7.3.3, the unregistered line segments will be classified according to a typology
of errors.

7.3.1 Quantitative Evaluation of Registered Roof Line Segments

To assess the geometric accuracy of our reconstruction relative to the reference dataset, four
error-measures have been applied to the set of pairs of registered line segment. For each of the
four measures, figure 7.7 provides two histograms. The first histogram weighs equally all line
segment pairs, whereas the second histogram takes the lengths of the segments into account such
that the histogram is insensitive to the possible oversegmentation of one of the two line segments.
This weighting is achieved using the product of the line segment lengths. This way, breaking
one of the two line segments into subsegments does not change its contribution to the histogram.
Generally speaking, the performance illustrated by unweighted histograms is worse than their
weighted counterpart as they emphasize small line segments, which are more difficult to reconstruct
accurately than longer line segments.

Translation errors are based on the vector ~vPS which is the projection of the point P on
the segment S. Thus ‖~vPS‖ is the distance between P and S, denoted d(P, S). Furthermore, this
distance d(P, S) may be divided into a signed vertical component dV (P, S) = z~vPS and an unsigned

horizontal component dH(P, S) =
√
x2
~vPS

+ y2
~vPS

.

The horizontal error measures how the two segments differ horizontally. It is built on the
asymmetric error distance dH(S0, center(S1)) that measures the 2D distance between a line segment
S0 and the center point of the line segment S1 (discarding its z-coordinate). This asymmetric
measure is symmetrized by averaging and exchanging the roles of the two segments:

dH(S0, center(S1)) + dH(S1, center(S0))

2

The vertical error is similarly computed by symmetrizing the signed distance dV (S0, center(S1)):

dV (S0, center(S1))− dV (S1, center(S0))

2

There appears to be a systematic vertical bias of 10cm between the two datasets. This bias may
come from a error in the handling of the various conventions to geolocalize the images, the DSM
and the datasets, as they were used different softwares. However, Figure 7.8 illustrates a more
significant error. The reconstructed segment (red) seems correct when projected on the aerial
images, whereas the reference segment is approximatively 45cm below. This long segment thus

7.3. Roof Fitting Evaluation 193

100% 515 false positives
20.58% 106 Superstructures
19.03% 98 Planar
17.67% 91 Omitted
14.76% 76 Overfit
12.04% 62 DSM
09.32% 48 Multiple detection
06.60% 34 Missing plane

Table 7.1: Classification of overdetected roof line segments.

produces a spike in the weighted histogram which is not noticeable in the unweighted histogram.
This kind of operator bias is not surprising and vary from operator to operator. In particular, it
was foreseeable to find a vertical accuracy below the horizontal accuracy as the operators collected
segments by first inspecting the stereoscopic image pair with the most vertical image axes, and
checking other image views only in ambiguous cases.

The azimuth and slope errors measure the angular disparity between two segments. If the line
segment direction is parameterized using spherical coordinates (θ, φ), the azimuth error coresponds
to the difference ∆θ and the slope error to the difference ∆φ. The histograms (c-d) of figure 7.7
clearly show the sensitivity of the direction estimation with respect to the segment length, as
the weighted histograms are more tightly packed around the optimal value of 0 degrees than the
unweighted histograms.

7.3.2 Typology of False Positive Errors

Among the 564 line segments that may be extracted from the reconstructed buildings but that
may not be paired to a reference line segment, we classified the 515 line segments that are longer
than 50cm. This filtering allows to discard small line segments that are not semantically meaningful
and for which the (admittedly subjective) explanation of the error is not straightforward. This
introduces a third understanding of the scene beyond the one provided by the 2 compared datasets,
which is our understanding of the scene (based on its DSM, its orthophotography and its aerial
images), and the algorithms involved. Object of this third understanding of the scene are hereafter
denoted as real or real-world objects.

Table 7.1 provides the classification of the false positives (i.e. overdetected line segments)
according to the following typology of errors, provided here by decreasing order of occurrence:

Superstructures: These line segments are due to superstructures biasing the roof fitting step.
This may be a due, for instance, by a row of close dormer windows, which is approximated
by a single roof plane.

Planar: These line segments are at the interface of almost coplanar roof facets. In section 4.6.2,
we mentioned the merging of these almost coplanar facets.

Omitted line segments correspond to real roof edges according to the aerial images. They however
show up as false positives as the operator omitted to input these line segments (the reference
dataset is not complete).

Overfit Initializing the 3D building models with a straight skeleton-based reconstruction provides
many planes that may used by the fitting process. Without the extension discussed in
section 4.6.2, no explicit topological modification is performed. Thus, if the input DSM is
noisy or does not convey clearly the piecewise-linear nature of the base roof surface, the many
input planes may be kept and thus overfit the DSM.

DSM In this case, the input DSM shows an artifact that is reconstructed as a part of the polyhedral
roof surface. This mainly occurs near vertical discontinuities that tend to be smoothed out

194 7. Results of the 3D Building Model Refinement System

(a) Unweighted horizontal error

cm

0 20 40 60 80 100 120 140 160 180 200

-

6

(a) Length-weighted horizontal error

cm

0 20 40 60 80 100 120 140 160 180 200

-

6

(b) Unweighted vertical error

cm

-100 -80 -60 -40 -20 0 20 40 60 80 100

-

6

(b) Length-weighted vertical error

cm

-100 -80 -60 -40 -20 0 20 40 60 80 100

-

6

(c) Unweighted azimuth error

deg

-25 -20 -15 -10 -5 0 5 10 15 20 25

-

6

(c) Length-weighted azimuth error

deg

-25 -20 -15 -10 -5 0 5 10 15 20 25

-

6

(d) Unweighted slope error

deg

-25 -20 -15 -10 -5 0 5 10 15 20 25

-

6

(d) Length-weighted slope error

deg

-25 -20 -15 -10 -5 0 5 10 15 20 25

-

6

Figure 7.7: The accuracy of roof lines is evaluated through histograms of errors in position (a, b)
and direction (c, d). In the first column, each pair of registered line segments contribute equally,
whereas in the second column, each pair is weighted by the product of the line segment lengths,
which makes this column of histograms invariant to line segments broken into subsegments.

7.3. Roof Fitting Evaluation 195

Figure 7.8: Operator bias: the result of the roof fitting (red) appears more accurate than the 3D
line segment captured by the operator (blue), when superimposed on the aerial images.

196 7. Results of the 3D Building Model Refinement System

Figure 7.9: Multiple edge detection due to an unsimplified elongated facet. Rotating this facet
around one of its long edges to merge it with the neighboring facet is a possibility to handle this
overdetection.

by the DSM generation process.

Multiple detection This is a special case of overfit that appears to be easier to handle than the
general case. In this class of erroneous segments, two nearly parallel reconstructed segments
model a single reference segment. The best of the two segments has been paired with the
reference segment and included in the evaluation of the previous section. This pair of parallel
reconstructed edges is due to an elongated facet cutting a roof edge (figure 7.9-left). Similar
to the Planar case, an explicit topological modification may be introduced to merge the
elongated facet to one of its adjacent facet, without significantly modifying the described
polyhedral surface (figure 7.9).

Missing plane These line segments are present to guarantee the topological correctness of the
polyhedral roof surface. They are however only accessory as the reference roof surface uses
an extra plane that is missing in the reconstructed building.

7.3.3 Typology of True Negative Errors

Turning to underdetections, the 176 reference line segments longer than 50cm that may not be
registered have been classified (table 7.2) according to a similar typology of errors:

Missing plane: If a plane is missing in the reconstructed building relative to the reference build-
ing, its edges will be missing too.

Superstructures: This class groups all underdetected segments due to the presence of super-
structures that prevent a relevant understanding of the real roof surface.

Out of Specification: These line segments have been input by the operator but are out of the
specification. They mainly correspond to edges adjacent to facades such as eaves or gables.

Overfit: Buildings featuring Overfit overdetected line segments may also be subject to underde-
tections.

Planar: These line segments are neighboring almost coplanar facets in the real world and are thus
very hard to detect and reconstruct based on the DSM only. The reference line segment
is however input by the operator based on the inspection of aerial images, and thus their
small dihedral is not preventing their reconstruction. This is a example of an ambiguous
building reconstruction problem. Depending on the application, these Planar segments may
or may not have to be modeled, whether the application needs simpler buildings or needs the
semantic knowledge added by these Planar segments.

DSM: Similar to the overdetected roof line segments, underdetected roof line segments may be
due to defects in the DSM.

Concerning both over- and underdetections, using Bati3D-produced building models rather than
straight skeleton based building models would have resulted in more Missing plane and Roof
errors and less Multiple detection, Superstructures and Overfit errors, as these model are
topologically simpler, more robust but more generalized (not modeling exactly the DSM surface).

7.4. Superstructure Reconstruction Evaluation 197

100% 176 True negatives
39.20% 69 Missing plane
34.09% 60 Superstructures
15.91% 28 Out of Specification
05.11% 9 Overfit
03.41% 6 Planar
02.27% 4 DSM

Table 7.2: Classification of underdetected roof line segments.

reference chimney reference dormer false positives
reconstructed chimney 122 27 829
reconstructed dormer 120 160 167

true negatives 272 13

Table 7.3: Confusion matrix for superstructures.

7.4 Superstructure Reconstruction Evaluation

This section evaluates qualitatively and quantitatively the detection and reconstruction accu-
racy of superstructures. Since two types of superstructures are present in the scene and in both
datasets, the object-based correspondence between reconstructed and reference superstructures
may be analyzed using a confusion matrix (table 7.3).

This table shows that reference dormer windows are clearly more robustly detected than the
reference chimneys, which is understandable since dormer windows are larger structures that are
easier to detect and reconstruct than small chimneys.

There also appears to be a noticeable confusion with 120 chimneys being detected as dormer
windows. Inspecting the images, these chimneys are rather long, are large enough on the DSM
to be a dormer window, have a relatively low height above the roof and their largest dimension is
oriented along the steepest direction of the roof. Thus, this confusion is due to a limitation of the
proposed system that considers only the DSM and not the original images.

7.4.1 Dormer Evaluation

7.4.1.1 Quantitative Evaluation of Registered Dormers

The reconstruction accuracy of the 160 successfully reconstructed dormer windows is evaluated
using five error measures that, for simplicity, only consider the top edge of the dormer window
(denoted as its ridge).

The translation error is evaluated using the position of the front vertex of the reconstructed
dormer window relative to the front vertex of the reference dormer window. More precisely, the
lateral error (across the reference dormer orientation) and the vertical error are illustrated in
table 7.10.ab.

The dimension estimation error is evaluated using the length of the dormer ridge. The his-
togram 7.10.c shows a more important negative tail. This is due to a non-negligible number of
dormer windows that are more longer than the maximal dimension of the brute-force dormer can-
didate enumeration. It is however arguable, considering their sizes, whether these dormer windows
should be considered as roof superstructures or regular roof facets.

The orientation errors are evaluated using the same ∆θ and ∆φ angular differences as the
roof edge orientation errors. Orientation errors are at most of the order of a few degrees, which
proves, considering the size of the dormer window objects, validates the discretization of the dormer

198 7. Results of the 3D Building Model Refinement System

(a) Dormer front vertex: lateral errors

cm

-100 -80 -60 -40 -20 0 20 40 60 80 100

-

6

(b) Dormer front vertex: vertical errors

cm

-100 -80 -60 -40 -20 0 20 40 60 80 100

-

6

(c) Dormer ridge: length errors

cm

-100 -80 -60 -40 -20 0 20 40 60 80 100

-

6

(d) Dormer orientation: azimuth errors

deg

-25 -20 -15 -10 -5 0 5 10 15 20 25

-

6

(e) Dormer ridge line: slope errors

deg

-25 -20 -15 -10 -5 0 5 10 15 20 25

-

6

Figure 7.10: Accuracy evaluation of dormers.

100% 167 False positives
55.09% 92 Roof
23.95% 40 DSM
20.36% 34 Omitted
00.60% 1 Multiple detection

Table 7.4: Classification of overdetected dormers.

orientations in the proposed approach.

The slope error is particularly low: almost all dormers of the considered area have horizontal
ridges that are well estimated. This histogram is asymmetric because the reconstructed slope was
constrained to be negative, which explains the bias.

7.4.1.2 Typology of False Positive Errors

The 167 overdetected dormer windows are due to (table 7.4):

Roof: A poor estimation of the main roof planes. For instance, 32 dormers have been reconstructed
to correct the modeling error of a mansard roof represented by a single roof plane instead of
two roof planes with differing slopes.

DSM: As with roof edge errors, a defect of the DSM might be interpreted as a dormer window.

Omitted: 34 dormer windows have been overlooked by the human operator or have been input
as part of the base roof surface rather than roof superstructures.

7.4. Superstructure Reconstruction Evaluation 199

100% 36 True negatives
72.22% 26 Roof
11.11% 4 Overlap
11.11% 4 DSM
05.56% 2 Other

Table 7.5: Classification of underdetected dormer windows.

Multiple detection A single dormer window is detected as two separate dormer windows due to
a poor orientation prior. These two detected dormer windows are evaluated as a multiply
overdetected dormer in this false positive error class, and a well reconstructed dormer window
which has been included in the quantitative evaluation.

7.4.1.3 Typology of True Negative Errors

The 36 underdetected dormer windows are classified according to table 7.5. Noticeably, the
4 Overlap-tagged dormer windows have not been reconstructed due to one or more chimneys
overlapping the dormer window, contradicting our non-overlap assumption in these few cases. The
non-overlap constraint does not appear to be to too restrictive as it only prevents the reconstruction
of these 4 dormer windows.

7.4.2 Chimney Evaluation

The reconstruction accuracy of chimneys is evaluated based on the 122 registered chimney
pairs, using the following measures: The chimney center is the center of gravity of the top
facet. Considering the chimney center location errors allows a simple evaluation of the translation
error between reconstructed chimneys that feature a rectangular and horizontal top facet and the
reference chimneys which are given by a non-planar 3D polygon representing its top facet. The
chimney area is the area of the 2D support of the chimney superstructure

Histograms 7.11.abc show a good accuracy for the chimney center location, which is of the or-
der of the DSM sample distance (10cm). However, histograms 7.11.d show that the reconstructed
chimneys tend to be overestimated by 1m2 on average. This is due to the difficulty for the DSM
to model the vertical discontinuities of the chimney facades. Thus the DSM tends to fatten chim-
neys and thus mislead their area estimation in the DSM-only proposed approach. Reconstructed
chimneys tend to be larger but also slightly lower than the real chimney due to the overestimated
support. This however does not show up in histogram 7.11.c. A possible explanation is that this
effect is balanced by the vertical operator bias discussed in section 7.3.1.

Chimney detection errors are more numerous (829 overdetections and 272 underdetections) and
less easy to classify than roof edge or dormer detection errors. However there are three unambiguous
major causes of chimney detection errors:

DSM: The overwhelming case of overdetections is due to DSM artifacts at the boundary of the
roof of a building neighboring a higher building. The lack of sharpness of the DSM is then
interpreted as a row of chimneys along the boundary. Turning to underdetections, small
chimneys where the correlation between images is not coherent due for instance to distracting
objects like antennae may not be modeled in the DSM due to its necessary regularization.
These small chimneys do not appear in the DSM and are thus not reconstructible using the
proposed approach.

Roof-geometry: A poor fit of the roof triggers the reconstruction of chimneys to reconstruct a
surface close to the DSM if the poorly fit roof is below the DSM.

Roof-topology: Chimney overdetections may also be caused by a reconstructed roof edge between
almost coplanar roof facets. These Planar roof edges may prevent the correct reconstruction

200 7. Results of the 3D Building Model Refinement System

(a) Chimney center: X errors

cm

-100 -80 -60 -40 -20 0 20 40 60 80 100

-

6

(b) Chimney center: Y errors

cm

-100 -80 -60 -40 -20 0 20 40 60 80 100

-

6

(c) Chimney center: Z errors

cm

-100 -80 -60 -40 -20 0 20 40 60 80 100

-

6

(d) Chimney: area errors

m2

-10 -8 -6 -4 -2 0 2 4 6 8 10

-

6

Figure 7.11: Accuracy evaluation of chimneys.

of a dormer window are they are not allowed to span multiple roof facets in the proposed
implementation. Therefore, their backs are correctly reconstructed, but truncated by at
the Planar roof edges. The front part of the truncated dormer windows is then generally
erroneously reconstructed as a chimney.

7.5 Conclusion

This chapter presented and evaluated the fully automatic reconstruction of building with super-
structures from a manual 2D database and an input DSM using the proposed building refinement
system on a challenging downtown area in Annecy, France. The reconstruction accuracy of success-
fully reconstructed roof edges, chimneys and dormer windows have been evaluated quantitatively
and their various classes of under- and overdetection have been identified and commented. The
reference dataset input by a human operator illustrated the difficulty of our problem as it is itself
not complete nor unbiased.

We discussed how the explicit topological modification extension mentioned may help the roof
fitting step by reducing Overfit, Planar and Missing plane-typed roof errors. The proposed
approach is based only on a DSM and does not inspect directly the input aerial images. To reduce
the DSM-classified errors, future work will have to handle directly these aerial images. The
high rate of Roof -caused superstructure reconstruction errors and Superstructure-caused roof
fitting errors show the fragility of the proposed approach based on alternating roof optimizations
and superstructure reconstructions independently. Together with the ambiguous classification of
superstructures like large dormer windows as superstructures or roof parts, this leads to the need
to consider these two problems simultaneously to achieve better results.

201

Chapter 8

Conclusion

Before concluding this manuscript, we review the contributions of the proposed approach and
highlight its main limitations, which leads to mentioning some of its possible extensions.

8.1 Main Contributions

Superstructure Detection and Reconstruction This work is the first to focus on the detec-
tion and reconstruction of roof superstructures. Our most thematic contribution is a parametric
approach that is efficient when the underlying roof is perfectly modeled. The idea of using the
understanding of reconstructed superstructures to filter out the bias they caused in the main roof
plane coordinate estimations is also novel. Moreover, although only a few superstructure types
have been introduced here, the library is easily extensible.

Full automation This system is fully automatic. Since it does not rely on any user interaction,
its operating cost is extremely low. On the flip side, this lack of user control impacts directly its
robustness, since it does not rely on any human understanding beyond the library of parametric
superstructures.

Hybrid 3D Building Model - Semantics The proposed hybrid building representation labels
roof surfaces as main roof planes, chimneys, dormers... This provides useful semantics to a num-
ber of higher level thematic applications, and readily provides two levels of detail : the building
representations with and without superstructures.

Hybrid 3D Building Model - Dual geometry-parameterized Base Polyhedron We claim
that parameterizing the polyhedral base building using its plane coordinates rather than its point
coordinates is well-suited to the building modeling application as it takes the best of both worlds
: the genericity and direct access to the represented surface of the point-parameterized boundary
representation, and the structural expressivity of Constructive Solid Geometry representation.

Trihedralization Problem Formalization We formalized the new problem of trihedralizing
a plane-parameterized polyhedron with over-constrained vertices. To this end, relevant definitions
were introduced (vertex zones, local arrangements...) and various simplifying assumptions were
discussed : the decomposability assumptions that breaks the polyhedron trihedralization problem
into independent vertex trihedralization subproblems, and the locality assumption that a vertex tri-

202 8. Conclusion

hedralization subproblem only depends on the planes adjacent to the over-constrained vertex. Four
trihedralization algorithms, applicable under increasingly restrictive assumptions, were presented :

1. The first trihedralization variant is always applicable and provides a unique trihedralization
solution by reduction to an existing problem based on winding numbers.

2. The arrangement coloring based variant is able to enumerate all the valid and invalid topolo-
gies so that the filtered list of all valid topologies may be reported. Simplifications of this
algorithm due to the decomposability assumption were discussed.

3. We expressed a topologically minimal local vertex trihedralization solution as an abstract tri-
angulation. This led to an implementation of the new ear-cutting based algorithm applicable
to local and decomposable trihedralization problems.

4. Finally, if the vertex of a local vertex trihedralization problem is extremal, its trihedralization
may be reduced to computing a weighted straight skeleton.

Kinetic Data Structure Maintaining a Polyhedron with Simple Facets This constitutes
the first kinetic data structure that may not be rebuild instantaneously. This work thus explored
how kinetic data structures may be used in contexts where multiple topologies are valid and
the application needs a certain form of hysteresis to choose the topology that requires the least
topological modifications (in an application-dependant sense that needs to be specified).

The proposed kinetic data structure maintains a polyhedron with self-intersection-free facets by
modifying parsimoniously its topology, while its planes undergo a specified continuous evolution
(translation or rotation). Using the projective geometry formalism has been primordial to the
design of this algorithm, which relies on local vertex trihedralizations to perform the topological
updates required to prevent self-intersections of facets.

Topology-aware Variational Optimization By combining superstructure-aware plane esti-
mations and the proposed kinetic data structure (which is built on top of the trihedralization
routine), we proposed a variational polyhedron optimization that maintains a polyhedron at all
times while guaranteeing facets that are planar by construction and self-intersection free thanks to
the kinetic data structure. Previous approaches failed to provide a polyhedron with such guarantees
: they either keep a fixed topology or export their internal pseudo-topology as a post-processing
step (pseudo-facets may have to be split into multiple facets to ensure planarity, self-intersections
are rarely not accounted for).

8.2 Main Limitations

Representation Limitations The proposed representation is not able to model complex super-
structure agglomerates or even simple overlapping superstructures such as chimneys partially or
totally overlapping a dormer window. Furthermore, the classification between main roofs planes
and superstructures is somewhat arbitrary and ambiguous for instance for large dormer windows
that may arguably be considered as main roof planes.

Superstructures: Computing times The computing time of the superstructure candidate
generation step grows (neglecting boundary influences) in O(r−4) where r is the horizontal dis-
cretization distance. This computing requirements are reasonable for resolutions down to 10cm
for typical buildings but explode at finer resolutions. For higher accuracy, solely decreasing the
discretization distance will not be tractable. However, accounting for the size of the superstruc-
tures themselves, such a brute-force exploration is likely not to be needed. At a 10cm sampling,
superstructures are already individualized and increased accuracy will be attained using extensions
such as the ones discussed in section 8.3 or appendix B.

8.3. Possible Extensions 203

Another major pitfall is that when the base polyhedral roof is not a good enough approximation
of the DSM, candidate superstructures are numerous and the computation time of the selection
step is no longer negligible relative to the candidate generation step.

Kinetic Data Structure : Implementation Complexity The implementation of the pro-
posed kinetic data structure is complex and error prone. Our implementation heavily relies on the
[CGAL] library for its exact arithmetics capabilities and its generic kinetic data structure frame-
work. At first glance, the addressed roof fitting problem does not seem to require such a complex
non-interactive process. This heavy machinery seems however needed to design such a parameter-
less approach, with guarantees that may not be easily addressed by rule-based approaches such as
[EAH08].

Robustness The validity of the simplification introduced by alternatively optimizing the roof
superstructures and the roof plane geometry is our main simplifying assumption. Chapter 7 showed
that this assumption is relevant in simple cases and in a number of more complex cases. However,
it also proved that our approach is often not robust enough for more complex cases where the two
problems are too interrelated.

8.3 Possible Extensions

Alternate Input Datasets Future work should definitely look into using directly the raw data
(the images or the lidar point clouds) rather than only the preprocessed DSMs. Using DSMs was a
convenient approach because of their regular sampling and their simple handling as a well-defined
2.5D quad-mesh surface. However, they may contain artefacts that are not present in the raw data.
Moreover, using DSMs rather than any other data type is not a key part of this thesis, provided
that an other input dataset provides a description of the world at a similar accuracy. Namely,
chapter 5 and 6 are independent of the data used to estimate the roof planes, and chapter 3 and 4
discuss the opportunities to handle alternative input data.

Theoretical Study of the Trihedralization Problem The proposed trihedralization problem
appears to be new and deserves a more thorough theoretical study beyond our results on the
existence and lack of unicity of a solution. What is its asymptotic complexity? What is its relation
with the non-planar 3D polygon triangulation problem?

Dealing with Improper Intersections A polyhedron may self-intersect without any self-
intersecting facets. These improper intersections are not addressed in this work and, for instance,
would be required in our context to correctly deal with building with overheads. Modifications will
have to be made at the kinetic detection level, and during the topological trihedralization update,
which will no longer be local. We discussed in section 6.6.2 a number of possible ways to detect such
events. Then, being topologically equivalent to the problem of triangulating a polygon with holes,
a non-local vertex trihedralization problem has to deal with multiple rings of adjacent planes. To
find an abstract triangulation of the corresponding abstract polygon with holes, a possibility would
be to generalize the weighted straight skeleton problem to spherical polygons with holes, which
would represent the local cone of all the planes instantaneously meeting at the singular vertex.

Dealing with Diverging Vertices Besides improper intersections, an unconstrained plane es-
timation (compared to our estimation of top-facing planes only, with a c > 0 estimated plane)
yields the problem of diverging vertices. We discussed in section 6.6.1 an extension to deal with
such vertices using a bounding volume.

204 8. Conclusion

Improving the Numerical Scheme of the Variational Optimization The proposed ap-
proach uses a simple first order numerical scheme. It proved to not always stable (oscillating plane
estimations instead of a steady convergence, or a poor plane estimate that breaks well-fitted areas).
A higher order scheme is likely to lessen these problems.

Introducing Regularization, Joint Superstructure/Base-Roof Optimization The only
forms of regularizations of the proposed approach are the verticality of façades, the regularization
induced by the parametric superstructures and the quantification of the horizontal position, di-
mensions and orientation of the superstructures. Some applications may benefit from increasing
the degree of regularization of the output model : aligned identical superstructures, symmetric
roof slopes... This would require a modification of the minimized energy to value this regularity.
Consequently the optimization algorithms would have to be adapted and would possibly have to
jointly optimize both superstructures and the roof geometry. Minimizing a complex energy over
a variable dimensional space with complex topological relations is an active subject of research.
The theory of Reversible Jump Monte Carlo Markov Chain (RJ-MCMC), possibly combined with
Jump-Diffusion techniques appear to be a good match. We are however concerned by the resulting
computing times of such an approach.

Explicit Roof-Topology Updates The proposed variational optimization approach only mod-
ifies implicitly the roof topology. A simple extension to optimize the topology of the main roof
planes is to check the estimation errors for poorly fitted planes for tentatively splitting them,
such as with a RANSAC technique [FB81]. Conversely, almost coplanar facets may tentatively be
merged with a single supporting plane. The proposed kinetic framework is readily able to handle
these splits and merges. For instance, a merge may be implemented by a joint estimation of a
single plane equation over the data corresponding to the facets to be merged. Then all these facets
evolve to this common estimated geometry using the kinetic framework. Finally, the now-coplanar
facets are topologically merged.

Alternative Applications The proposed kinetic data structure appears to be very versatile
and may likely be used beyond the scope of this manuscript. Foreseen applications include mesh
editing (the user moves or translates facets rather than vertices), an weighted extension of the 3D
polyhedral straight skeletons and offset polyhedra[BEGV08], and mesh simplification. The main
caveat here is computing time and improper intersections, as the computing times of the proposed
implementation are not interactive and improper intersections are not handled. However, in the
mesh editing application for instance, if one is only concerned about facet self-intersections and
moves only a few planes at a time, interactive times may be achieved.

8.4 Conclusion

This thesis presented a successful system to refine an approximate building model according to
a DSM. The refinement takes place both at the geometric level, minimizing the overall distance
between the refined building and the DSM, and at the topological level, reconstructing the missing
roof superstructures and correcting erroneous roof topologies through the topology-aware roof
optimization of the fitting step.

Operationally, the superstructure reconstruction process is not robust enough because of the
geometric and topological quality of the underlying base roof planes. The required precision of the
base roof is the major bottleneck of the proposed approach. We argue that a more robust process
will have to reconstruct superstructures from the raw image or lidar data, without relying on the
knowledge of an approximate base roof, along the lines of [Nan06].

8.4. Conclusion 205

The topology-aware roof fitting process has been successfully integrated in IGN’s Bati3D pro-
duction suite. It is admittedly not yet suitable for interactive user interaction for all but simplest
buildings. However, batch-fitting the roof off-line is a seriously considered option.

206 8. Conclusion

207

Part V

Appendices

209

Appendix A

L2 Estimation of ~φmax

Contents

A.1 Constant Time Case . 210

A.2 θ-varying Error Fields . 212

A.3 ~φ-varying Supports . 212

A.4 Non-rectangular Supports . 213

A.5 Conclusion . 214

This appendix provides the implementation details of the L2 estimation of ~φmax that is sketched
in section 3.4.1.2. The 3D building model used in this appendix and its notations are presented in
section 3.2.

The need to optimize the altimetric parameters ~φ occurs when a superstructure is hypothesized
and everything apart from the vector ~φ is determined: its planimetric position and dimension given
by a 2D rectangle θ, its supporting roof R, and its type τ . The hypothesized superstructure is
fitted to the DSM by optimizing a quantity that measures how modifying the roof R with this
superstructure make it closer to the DSM (section 3.4.1.1). The definition of ~φmax for the L2-metric
is:

~φmax = arg min
~φ∈Φθ,τ,R
s=(~φ,θ,τ,R)

 ∑
πs∩~pDSM (Z2)

(zDSM − zs)2 − (zDSM − zR)
2

As in section 3.4.1.2, we only consider superstructure types for which the heightfield zs that
determines the geometry of the superstructure s can be written as an affine combination of ~φ-
independent heightfields where the coefficients are scalars that do not depend on the position
~p. This allowed section 3.4.1.2 to introduce an error vector field ~eθ,τ,R,DSM (~p) : R2 → Rdτ+1

to express the pointwise error between a superstructure s = (~φ, θ, τ,R) and a DSM as a dot
product. Concerning the superstructure types proposed in chapter 3, the coefficients of the affine
combination are simply the coordinates of the vector ~φ. Thus the error can be expressed as the
dot product (zDSM − z~φ,θ,τ,R)(~p) = ~eθ,τ,R,DSM (~p) ·

(
1
~φ

)
. The error vector fields of the proposed

superstructure types are :

210 A. L2 Estimation of ~φmax

~eθ,Chimney,R,DSM (~p) = (zDSM (~p),−1)

~eθ,Terrace,R,DSM (~p) = (zDSM (~p),−1)

~eθ,GlassRoof,R,DSM (~p) = ((zDSM − zR)(~p),−1)

~eθ,Dormer,R,DSM (~p) =

(
(zDSM − zR)(~p), |λθ(~p)| ,

µθ(~p)− 1

2

)

This finally allows the following reformulation of ~φmax:

~φmax = arg min
~φ∈Φθ,τ,R
s=(~φ,θ,τ,R)

 ∑
πs∩~pDSM (Z2)

(
~eθ,τ,R,DSM ·

(
1
~φ

))2

− (zDSM − zR)
2

 (A.0.1)

Disregarding the ~φ-varying term Dπs(R) =
∑
πs∩~pDSM (Z2) (zDSM − zR)

2
, the optimization of

~φmax translates into a L2 minimization over a possibly ~φ-varying support πs ∩ ~pDSM (Z2), which is

constrained (~φ ∈ Φθ,τ,R).

A.1 Constant Time Case

Exact L2 minimization can be run in constant time for a piecewise-linear superstructure (with-

out curved facets) if its facet supports are rectangular and does not depend on ~φ, as it is the
case for the Chimney, GlassRoof and Terrace superstructure types in the extensible library of
superstructures proposed in section 3.2.2.

If the support πs does not depend on ~φ either, as it is the case with the proposed Chimney,
Terrace and GlassRoof types of superstructures where π(~φ,θ,τ,R) = θ, the Dπs(R) term becomes

constant with respect to ~φ and the expression defining ~φmax can be further simplified as:

If π(~φ,θ,τ,R) = θ, ~φmax = arg min
~φ∈Φθ,τ,R

 ∑
θ∩~pDSM (Z2)

(
~eθ,τ,R,DSM ·

(
1
~φ

))2

Using the shorthand notation ek(~p) for the coordinate (k + 1) of ~eθ,τ,R,DSM (~p), ~φmax can be
expressed directly:

~eθ,τ,R,DSM (~p) = (ek(~p))0≤k≤dτ

~φmax = arg min
~φ∈Φθ,τ,R

 ∑
θ∩~pDSM (Z2)

(
e0 +

dτ∑
k=1

φk.ek

)2

⇒ ~φmax ∈ Boundary(Φθ,τ,R) or A · ~φmax = B

with a matrix A =

+
∑

θ∩~pDSM (Z2)

ek.el

1≤k,l≤dτ

and a vector B =

− ∑
θ∩~pDSM (Z2)

ek.e0

1≤k≤dτ

A.1. Constant Time Case 211

For the Chimney, GlassRoof and Terrace superstructure types, dτ = 1, so A and B are scalar
values, and Φθ,τ,R is either empty, a single point or a closed interval. For those types, e1(~p) = 1,
thus, A =

∑
θ∩~pDSM (Z2) 12 =

∣∣θ ∩ ~pDSM (Z2)
∣∣. If A = 0 or Φθ,τ,R = ∅, no superstructure hypothesis

is generated. Otherwise, the optimized function being convex, φmax is set to the projection of the
scalar value B

A onto Φθ,τ,R:

If dτ = 1, A 6= 0 and Φθ,τ,R 6= ∅, ~φmax =

B
A if B

A ∈ Φθ,τ,R
min(Φθ,τ,R) if B

A < min(Φθ,τ,R)

max(Φθ,τ,R) if B
A > max(Φθ,τ,R)

If dτ > 1, the optimal value ~φmax may no longer be the projection of the unconstrained least
square optimal value projected to the constrained set Φθ,τ,R.

B
A corresponds to the mean DSM height

∑
θ∩~pDSM (Z2)(zDSM)

|θ∩~pDSM (Z2)| for the Chimney and Terrace and

to the mean DSM offset from the roof
∑
θ∩~pDSM (Z2)(zDSM−zR)

|θ∩~pDSM (Z2)| for the GlassRoof .

Preprocessing Without preprocessing, the evaluation of A and B takes a computing time pro-
portional to the discrete area of the support, defined as the number of enclosed DSM pixel centers∣∣πs ∩ ~pDSM (Z2)

∣∣. This section presents a preprocessing that allows the computation of the elements
of A and B in constant time for superstructures that are piecewise linear and have rectangular
facet supports that do not depend on ~φ.

As described in section 3.2.2.3, each building orientation yields a grid of points ~pθ0(Z2) that
is a scaled, rotated and translated version of Z2, by the means of a reference rectangle θ0. Any
function f : R2 → R can thus be resampled along such a grid into an image

(
fθ0(i, j)

)
ij

, with a

pixel (i, j) corresponding to the rectangle θij of indices (i, j, i+ 1, j + 1) relative to θ0:

fθ0(i, j) =
∑

θij∩~pDSM (Z2)

f

Then, for any rectangle θ that has indices (i0, j0, i1, j1) relative to θ0, the computation of the
sum of a function f over the finite set

(
θ ∩ ~pDSM (Z2)

)
can be written as a sum of the resampled

function fθ0 over the indices [i0, i1[×[j0, j1[:∑
θ∩~pDSM (Z2)

f =
∑

i0≤i<i1
j0≤j<j1

fθ0(i, j)

To compute this sum in constant time, a preprocessing step computes the cumulative function
C(fθ0), where imin and jmin are the minimum indices of the subset of the set of candidate rectangles
Θτ,R that are generated by θ0.

C(fθ0)(i, j) =
∑

imin≤k<i
jmin≤l<j

fθ0(k, l)

Using this preprocessing, the sum of the values fθ0(i, j) over a rectangular set of indices
[i0, i1[×[j0, j1[can be computed in constant time:∑

i0≤k<i1
j0≤l<j1

fθ0(k, l) = C(fθ0)(i1, j1) + C(fθ0)(i0, j0)− C(fθ0)(i0, j1)− C(fθ0)(i1, j0)

212 A. L2 Estimation of ~φmax

Concerning the Chimney, GlassRoof and Terrace superstructure types, to compute ~φmax

in constant time, we finally have to preprocess by resampling and accumulating two functions:
e0 = zDSM or (zDSM − zR) on the one hand, and the constant function equal to e1 = −1 on the
other hand, to respectively be able to construct the scalars B and A in constant time. To also be
able to compute the benefit ∆E(s) in constant time for Chimney and Terrace superstructures,
one will have to preprocess the functions (e0)2 = (zDSM − zR)2. This is not required for the
GlassRoofs, because the term (e0)2−(zDSM −zR)2 = 0 can be canceled out of the benefit ∆E(s).

More generally, the superstructure is not restricted to have a single facet and a rectangular
support, for this preprocessing to be used. If the support of each of the possibly many facets may
be rewritten as a disjoint union of a bounded number of rectangles, the computation of A and B
can still be carried out in constant time. All it requires is computing independently A and B on
each rectangular elements of each facet and then adding all the contributions together.

A.2 θ-varying Error Fields

When an error field ei(~p) of a superstructure depends on θ, the computation of A and B
requires the computation of the sum over its facet supports of quantities that depend on θ. Thus the
application of the preprocessing using a 2D accumulation is not direct. However if a θ-varying error
field can be expressed as an affine combination of θ-independent heightfields with ~p-independent
coefficients, then those θ-independent heightfields may be preprocessed to build the A and B
efficiently.

The λθ and µθ functions, that express the local coordinates of a 2D point ~p in the local frame
defined by the rectangle θ, are linear combinations of the functions λθ0 and µθ0 , where the rectangle
θ0 has the same orientation as θ. Thus, within each facet of a superstructure, zs is linear and the
(ek.el)1≤k,l≤dτ values can be expressed as a linear combination of functions λθ0(~p) and µθ0(~p) that
do not depend on the index (i0, j0, i1, j1) of θ relative to θ0, with multiplying factors that are
rational functions in (i0, j0, i1, j1) and do not depend on the point ~p. The rational functions can
easily be derived and are not included here to avoid their verbosity.

The Dormer superstructures are piecewise-linear but not linear, the absolute values around λθ
are caused by the 2 non vertical facets of the superstructure (the one where λθ ≤ 0 and the other
where λθ ≥ 0). This requires A and B to be computed separately for each facet support. For each
of the two facet supports, the partial values of A and B can be computed as a linear combination
of the summation of the following functions:

1, λθ0 , µθ0 , z, z.µθ0 , z.λθ0 , λθ0 .µθ0 , λ2
θ0 , µ2

θ0 , with z = (zR − zDSM)

Similar to the case with the simpler superstructures, those functions will thus be preprocessed
by resampling them according to θ0 and then computing their accumulation.

A.3 ~φ-varying Supports

Dormers have supports that depend on the vector ~φ. However, by the definition of Φθ,τ,R for
these superstructure types, a non-empty polygonal area, included in the rectangle θ, is guaranteed
to be included in the support of the superstructure hypothesis if ~φ is inside Φθ,τ,R. This minimal
support is the intersection of all the plausible supports:⋂

~φ∈Φθ,τ,R

(
π(~φ,θ,τ,R)

)

Concerning the Dormer superstructure type, this polygon is the triangle {~p/ − 1 ≤ µθ(~p) ≤
(1− 2 |λθ(~p)|)}, as illustrated in figure A.1.

A.4. Non-rectangular Supports 213

θ

φ1 = 0 φ1 = φ20 < φ1 < φ2

θ

πs

πs=θ

πs

Figure A.1: The minimal support
⋂
~φ∈Φθ,τ,R

(
π(~φ,θ,τ,R)

)
of the Dormer superstructure type always

contains the triangular support pictured occuring when φ1 = φ2.

To limit the computing costs, the proposed approach is to optimize ~φ only over the minimal
support, instead of the entire support πs (that depends on ~φ itself!) and to project the result
on Φθ,τ,R, like in the simpler case of Chimney, GlassRoof and Terrace superstructures. The
derivation of A and B is still valid, apart from the support being the minimal support instead of
the rectangular support θ.

An alternative possiblity would be to estimate iteratively the vector ~φ, starting with an estima-
tion over the minimal support, the rectangle θ or any other support and reestimating iteratively ~φ
using the support of the superstructure reconstructed by the previous ~φ estimation.

A.4 Non-rectangular Supports

The computation of the (dτ)2 values (
∑
ek.el) of A and the dτ values (−∑ ek.e0) of B is no

longer done in constant time for supports that are not the disjoint union of rectangles. However,
some approximations allow an estimation that is linear with respect to the perimeter of the non-
vertical superstructure facets. This section takes the Dormer superstructure type as an example
of a piecewise planar superstructure with non rectangular facet supports

The facets of both types of dormer superstructures have non-rectangular supports. Thus it
is no longer possible to use the 2 dimensional preprocessed accumulations to compute sums over
the facet supports in constant time. Instead we propose to use one-dimensional accumulations to
compute sums over a non-rectangular support in a time that is linear with the perimeter of the
superstructure facets, instead of the direct implementation that has a computing time proportional
to the support area. The idea is to partition the support using slabs Si = {~p/λθ0(~p) ∈ [i, i+ 1[} or
Tj = {~p/µθ0(~p) ∈ [j, j + 1[}, depending on the smallest dimension. Since Si ∩ Tj is the rectangle
θij = ~pθ0 ([i, i+ 1[×[j, j + 1[), we can derive, given a face support π:∑

π∩~pDSM (Z2)

f =
∑
i,j∈Z

∑
(θij∩π∩~pDSM (Z2))

f

=
∑
i,j∈Z
θij⊆π

fθ0(i, j) +
∑
i,j∈Z
θij 6⊆π
θij∩π 6=∅

∑
(θij∩π∩~pDSM (Z2))

f

There are various ways to deal with rectangles θij that overlap only partially with a facet
support.

214 A. L2 Estimation of ~φmax

Exact computation: There is no obvious way to express more efficiently
∑

(θij∩π∩~pDSM (Z2)) f
when θij and π overlap partially. However, only a number proportional to the perimeter of
the support is needed rather than proportional to its area.

Rasterized computation: To get rid of those partial overlaps, the support π may be approxi-
mated by a union of rectangles π ' ⋃area(θij∩π)≥area(θij)

θij

Proposed approximation: As a trade-off between the exact computation versus the approx-
imation introduced by the rasterization and the computing costs, we propose to give the
partially overlapping rectangles a weight according to the relative area of their intersection
with the support. This avoids expensive exact computations with the input data, by only
considering the preprocessed values fθ0(i, j):

∑
π∩~pDSM (Z2)

f '
∑
i,j∈Z

area (θij ∩ π)

area (θij)
fθ0(i, j)

=
∑
i,j∈Z
θij⊆π

fθ0(i, j) +
∑
i,j∈Z
θij 6⊆π
θij∩π 6=∅

area (θij ∩ π)

area (θij)
fθ0(i, j)

While there is a number of terms in the second sum proportional to the perimeter of the support,
the first term is rather proportional to the support area. To remain proportional to the perimeter,
the sum is decomposed by using the identity linking the orthogonal slabs Si and Tj and a rectangle
θij = Si ∩ Tj .

∑
i,j∈Z
θij⊆π

fθ0(i, j) =
∑
i∈Z

Si∩π 6=∅

 ∑
j∈Z

Si∩Tj⊆π

fθ0(i, j)

The inner summation partitions the intersection of the slab Si and the support π approximated
by a union of rectangles, into a set of rectangles {θij with j such that θij ⊆ π}. By merging
neighboring rectangles within each slice Si, a set of rectangles is constructed that contains a
number of rectangles proportional to the perimeter of the support π. As a sum over a rectangle
can be done in constant time using a cumulative preprocessing of f , the proposed algorithm to
estimate ~φmax and to compute the maximum benefit ∆E is indeed proportional to the sum of the
perimeters of the superstructure facets.

Dormer windows have their rooftop along the line λθ0(~p) = i0+i1
2 . When this coordinate is

an integer, no approximation is made along this edge because no rectangle θij is only partially
overlapping the support along this edge. However, if i0+i1

2 ∈ Z + 1
2 , it is possible to improve the

approximation at the cost of an increased space complexity, by also resampling and accumulating
the functions on rectangles ~pθ0([i, i+ 0.5[×[j, j + 1[):

fθ0(i+ 0.5, j) =
∑

~pθ0 ([i,i+0.5[×[j,j+1[)∩~pDSM (Z2)

f

A.5 Conclusion

This appendix has presented various methods to speed up the L2 estimation of the vector
of altimetric parameters ~φmax of a superstructure candidate given its type and its planimetric
parameters, detailing section 3.4.1.2.

215

Appendix B

Superstructure Detection and
Reconstruction preventing an
Exhaustive Search

Contents
B.1 Coarse detection . 215

B.2 Model refinement . 216

B.2.1 Successive improvements . 216

B.2.2 Stochastic diffusion . 218

B.3 Results . 218

B.3.1 Method Comparison . 222

B.3.2 Computation time . 222

B.4 Conclusion . 222

As a trade-off between computing time and robustness of the detection, we designed an alter-
native detection algorithm that was published in [DB08]. This is an alternative to the exhaustive
search method exposed in chapter 3 that is an extension of [BBPDM07] that allows superstructures
to overlap multiple roof planes. The main advantage of the technique proposed in this appendix
is that it does not require the exhaustive search followed by a local minima filtering described in
sections 3.4.1 and 3.4.3. Furthermore, its computation time is proportional to the number of the
real superstructures.

The key idea is to coarsely detect the location of possible superstructures. Then, the parametric
models of such superstructures are refined and validated in latter stages. Thus, the proposed
approach is split into three main stages. The first stage consists in detecting and locating 3D
objects able to evolve to feasible superstructures (Section B.1). In the second stage, the set of 3D
objects is then refined to a set of superstructure candidates via parameter fitting (Section B.2).
This refinement stage can use either an iterative improvement scheme or a stochastic diffusion
scheme. The last stage is not modified: it provides the final solution as a set of non-overlapping
superstructures by solving the maximum weighted clique problem described in section 3.4.2.

B.1 Coarse detection

As in the rest of this chapter, we assume that the planes containing the 3D polygons of the
roofs R were obtained robustly, that is, their estimation was accurate enough despite the presence
of superstructures. Typically a superstructure corresponds to a set of outlier 3D points in the

216
B. Superstructure Detection and Reconstruction preventing an Exhaustive

Search

DSM - those 3D points that are far from the plane containing the 3D polygon. Therefore, a
simple search for clusters of outliers can provide a coarse localization of possible superstructures.
Every pixel belonging to the support of a 3D polygon stores the error between the DSM and the
parametric model of the 3D polygon at this pixel. The obtained difference map is then thresholded
using two thresholds in order to get two kinds of outliers. The lower threshold is set to the
DSM noise. The upper threshold separates the pixels into low and high superstructure clusters.
Because of the nature of the DSMs used, the map of outliers will be populated with many isolated
pixels and undesirable components. To eliminate them, we apply a morphological opening with
a circular structuring element whose diameter is proportional to the planimetric DSM resolution.
After filtering, we obtain smoothed homogeneous areas of connected pixels. Connected component
labelling is then performed, which gives the number of regions used in the next stages of the
algorithm. Each of these 2D regions (for example, see Figure B.1.b) represents an approximation
of the support of a candidate superstructure. The obtained 2D homogeneous regions are upgraded
to a list of 2D rectangles θk representing the support of possible superstructures. This is performed
by first choosing one of the plausible orientations described in section 3.2.2.3.

B.2 Model refinement

Algorithm 7 Model refinement

for all detected 2D rectangle θk do
for all superstructure type τ ∈ T , such that θk ∈ Θτ,R do

repeat
(~φmax, θk)← arg max~φ,θ ∆E(~φ, θ, τ,R), with θ ∈ Neighbor(θk) ∩Θτ,R and ~φ ∈ Φθ,τ,R

until convergence
H ← (~φmax, θk, τ,R)

return H

We propose two algorithms for model refinement that share the canvas of Algorithm 7. At this
step, due to the DSM noise and imprecision, these 2D rectangles do not necessarily correspond
to the support of the real superstructures. Examples are given by i) a detected rectangle may
represent a part of a glass roof (for example, see rectangles 1 and 2 in Figure B.1.c-upper left),
and ii) a detected rectangle may be larger than the real support of a chimney (for example, see
rectangle 3 in Figure B.1.c).

In order to overcome this and to get a set of plausible superstructure candidates we adopt a fine
modeling scheme by which the support θk and the altimetric parameters ~φ are locally improved.
For each rectangle estimate θk and each superstructure type, a given set Neighbor(θk) of rectangles
that are small variations of θk are considered. For a given type τ and each neighboring rectangle
θ ∈ Neighbor(θk) ∩ Θτ,R, the estimation of the best ~φ is carried out by the parameter fitting
that maximizes the benefit ∆E as exposed in section 3.4.1.1. The successive improvement and
stochastic diffusion variations of this refinement stage differ by their definitions of convergence and
neighboring sets Neighbor(θk).

B.2.1 Successive improvements

The proposed algorithm is very similar to a hill climbing maximization where the parameter
space (explored by the indices of the rectangle θk) is a subset of R4 and the displacement vector
is given by δθ = (δi, δj, δk, δl), where the δ. belong to the set {−1, 0, 1}. One can notice that any
superstructure can grow and shrink at any given iteration.

The successive improvement is carried out by iteratively performing, given a fixed type τ , a
local maximization of the score max~φ∈Φθ,τ,R

∆E(~φ, θ, τ,R) over θ ∈ Neighbor(θk) ∩ Θτ,R. In

B.2. Model refinement 217

(a)

(b)

(c)

(d)

(e)

(f)

Figure B.1: Approach overview. (a) The orthophotography. (b) The connected regions obtained
by clustering outlier points. (c) The initial and coarse 2D rectangles/supports. (d) The super-
structure candidates obtained by iterative improvements. (e) The selected set of superstructures.
(f) The final roof 3D model.

218
B. Superstructure Detection and Reconstruction preventing an Exhaustive

Search

practice, due the iterative nature of the process, only N = 10 neighboring rectangles out of the 81
rectangles Neighbor(θk) = {θk+ δθ / δθ ∈ {−1, 0,+1}4} are used. We have chosen the identity
- δθ = (0, 0, 0, 0) - 5 expansion directions - δθ = (−1, 0, 0, 0), (0,−1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1) or
(−1,−1, 1, 1) - and 5 shrinking directions - δθ = (1, 0, 0, 0), (0, 1, 0, 0), (0, 0,−1, 0), (0, 0, 0,−1) or
(1, 1,−1,−1).

The convergence is met when the rectangle θk remains unchanged after one iteration, meaning
that it is a local maximum according to the neighboring relation defined by the 11 displacement
vectors δθ. It is worth noting that, in practice, not all coarse supports require iterations since
many of them are already corresponding to a local maximum.

B.2.2 Stochastic diffusion

The refinement algorithm presented above upgrades the coarse supports to superstructure 3D
models by maximizing iteratively over a deterministic set of neighboring rectangles. In this para-
graph, we propose an alternative refinement algorithm that is based on a stochastic diffusion. In
other words, for each coarse support and each type, the coarse support is diffused using a given
number of drawn rectangles without any iteration - the convergence is assumed to be reached at
once.

The non-deterministic set of neighborsNeighbor(θk) is determined by drawing a fixed number of
rectangles. Since the 2D orientation is already known, every drawn rectangle requires drawing four
continuous random variables (width, length, and 2D position). We have used uniform distributions
to get such rectangles. The range of widths and lengths is set to the type range that defines Θτ,R.
The 2D position is limited to keep the center of the detected coarse rectangle θk in the drawn
rectangle θ.

Although this algorithm is very similar to the previous algorithm, the iterative step is replaced
with a stochastic diffusion step (one single pass). The number of drawn rectangles was experi-
mentally determined. It was set to 60. The main advantage of the stochastic diffusion scheme is
its ability to escape non-desired local maxima since the search for 2D supports is performed at
random.

B.3 Results

The alternative method developed within this appendix has been evaluated in the context of
the chapter 3. As a result the input data is given by the DSM only, and the images are not used
directly. We have implemented the L1 and L2 metrics. The L1 metric is more adapted to non-
Gaussian noise typically affecting correlationbased DSMs, but the computation time of the latter
is much faster.

Figure B.1 illustrates the application of the proposed approach to a typical building roof facet.
(a) shows the orthophotography of the corresponding 3D polygon. (b) shows the results of the
coarse detection scheme—a set of connected regions, (c) shows the initial and coarse supports, (d)
shows the result of applying the iterative fine modeling scheme (the set of refined superstructures
Ci), (e) shows the selected non-overlapping superstructures, (f) shows the roof model with the
reconstructed superstructures . As in chapter 3, we stress the fact that the orthophotography was
not used by the proposed algorithms. It is only used for visualization and validation purposes.

Figure B.2 shows the score evolution associated with two coarse supports of Figure B.1.c (rect-
angles 1 and 2). These two coarse supports represent a fragment of the same upper left superstruc-
ture. Iteration 0 corresponds to the score of the coarse support and the final iteration corresponds
to the obtained local maximum. One can notice that both supports have converged to roughly the
same superstructure (see Figure B.1.d-upper left). Figure B.3 shows the score evolution associated
with another coarse support (rectangle 3). The lower part of this figure shows the coarse support

B.3. Results 219

Figure B.2: The score evolution as a function of the iteration number associated with the two
rectangles shown in Figure B.1.c(the upper left corner). Iteration 0 corresponds to the coarse
support and the final iteration corresponds to a local maximum. One can notice that both supports
have converged to the same superstructure (see Figure B.1.d).

iteration 0 iteration 6 (convergence)

Figure B.3: The score evolution as a function of the iteration number associated with the coarse
rectangle 3 (figure B.1.c, bottom-left).

Figure B.4: The detected and reconstructed superstructures using the exhaustive search-based
method (Chapter 3).

220
B. Superstructure Detection and Reconstruction preventing an Exhaustive

Search

(a) (b) (c)

Figure B.5: Reconstructed chimneys and glass roofs. (a) The orthophotography. (b) A shaded
view of the DSM. (c) The detected and reconstructed superstructures.

Figure B.6: Reconstructed dormer window. (a) The orthophotography. (b) The detected and
reconstructed superstructure.

Exhaustive search - Chapter 3 Successive improvements Stochastic diffusion

L2 metric 49 s 3.5 s 10.5 s

L1 metric 67 s 7.1 s 14.3 s

Table B.1: Computational time associated with the building shown in Figure B.7.

B.3. Results 221

(a)

(b)

(c)

Figure B.7: Detecting and reconstructing superstructures associated with a typical building roof.
(a) results obtained with the exhaustive search-based method. (b) results obtained with the
proposed approach based on successive refinements. (c) results obtained with the proposed
approach based on stochastic diffusion.

222
B. Superstructure Detection and Reconstruction preventing an Exhaustive

Search

(left) and the support obtained at convergence (right).

For comparison purposes, the DSM data associated with the roof shown in Figure B.1 were
processed by the exhaustive search-based method described in chapter 3. The detection results
are shown in Figure B.4. As can be seen, the detection of chimneys was almost the same for both
approaches. However, the detected low superstructures were not the same although their overall
detection rates were almost the same (see Figure B.1.e).

Figure B.5 shows the results of roof superstructure reconstruction using our proposed method
based on stochastic diffusion. Figure B.6 shows another result of roof superstructure reconstruction.

B.3.1 Method Comparison

In addition to the comparison provided by Figures B.1.e and B.4, we have compared the per-
formance of three approaches. Figure B.7 shows the superstructure detection results associated
with another typical building roof: (a) corresponds to the exhaustive search-based method (Chap-
ter 3), (b) to the proposed approach based on successive improvements, and (c) to the proposed
approach based on stochastic diffusion. As can be seen, the detection results obtained with the pro-
posed approaches (Section B.2) are very similar to those obtained with the exhaustive search-based
method. However, the proposed approach is much faster (see Table B.1). It should be noticed that
some glass roofs were not detected by any method. This under-detection is due to the difficulty to
separate the imperfections of the DSM from the glass roof models which have very small height.
The rightmost chimneys were not detected by our proposed method since their size (within the
building footprint) was smaller than the size of the opening operator. Furthermore, by comparing
(b) and (c) one can notice that the method based on the successive improvements has provided
very good delineation of the 2D supports. This is due to the iterative process by which the 2D
support is estimated by locally maximizing a score in the parameter space R4. On the other hand,
the stochastic diffusion scheme explores the parameter space at random. However, the stochastic
diffusion scheme can be very useful in cases when the DSM noise is significant.

B.3.2 Computation time

Table B.1 summarizes the CPU time associated with the typical building shown in Figure B.7.
The first column corresponds to the exhaustive search-based method (Chapter 3). The second col-
umn corresponds to the method based on successive improvements. The third column corresponds
to the method based on stochastic diffusion. The first row corresponds to the L2 metric-based
parameter fitting, and the second row to the L1 metric-based parameter fitting. An Intel Xeon 1.6
GHz PC with a standard C++ code has been used.

The computation time is dominated by the reconstruction of the superstructures, which is the
evaluation of its altimetric parameters. Thus, the CPU time of the exhaustive search-based method
is proportional to the building size, whereas the CPU time of the approaches developed in this
appendix is proportional to the number of the real superstructures.

B.4 Conclusion

This variant is an efficient and modular approach for reconstructing building superstructures
using only a DSM, an initial building model without superstructures and an easily extensible
collection of parametric models defining the available superstructure types. The approach consists
of three main stages. In the first stage, possible superstructures are roughly detected using the
DSM and a polyhedral building model. In the second stage, the superstructure parametric models
are estimated using either successive improvements or a stochastic diffusion. The final stage selects
the most consistent set of superstructures.

B.4. Conclusion 223

The computational time of the proposed approach is proportional to the number of real super-
structures. Several comparisons with the exhaustive search based approach described in chapter 3
show that the approach give similar results.

224
B. Superstructure Detection and Reconstruction preventing an Exhaustive

Search

225

Appendix C

Maximum Weighted Clique

Contents
C.1 Graph and Clique Definitions . 225

C.2 Maximum Weighted Clique Problem 226

C.3 Maximum Weighted Clique Algorithms 226

C.3.1 Exhaustive Clique Enumeration . 226

C.3.2 Branch and Bound . 227

C.3.3 Branch and Bound with Exclusion . 229

C.3.4 Cliquer . 230

C.3.5 Efficiency upperbound . 231

C.4 Conclusion . 234

In section 3.4.2, the proposed approach needs to solve a Maximum Weighted Clique problem
with real positive weights. This appendix gives more details about the problem and its implemen-
tation. After the necessary definitions, we will present the Maximum Weighted Clique problem
and then discuss its implementation within our context.

C.1 Graph and Clique Definitions

A node-weighted graph G = (N , E , w) is described by:
– a finite set of nodes N
– a set of edges without loops E ⊆ {(n1, n2) ∈ N ×N/n1 6= n2}.

The graph is undirected if and only if E is symmetric: ∀(n1, n2) ∈ E , (n2, n1) ∈ E .
– a positive node weight function w : N → R+

By extension, the weight of a subset X of N denotes the sum of the weights of its nodes:

w(X) =
∑
n∈X

w(n)

A Clique C is a subset of N that satisfies the property that there is an edge of E between every
two distinct nodes n1, n2 ∈ C. For example, cliques of cardinal 1 are simply the singletons for each
node of N , and {n1, n2} is a clique if and only if (n1, n2) ∈ E .

A graph is said to be complete when all its edges are present (E = {(n1, n2) ∈ N ×N/n1 6= n2}).
Another important definition is the definition of a subgraph : a subgraph of the node-weighted
graph G with nodes N ′ ⊆ N (denoted G[N ′]) is the graph G[N ′] = (N ′, E ∩ (N ′ ×N ′), w).

226 C. Maximum Weighted Clique

node # edge # maximum clique size
unfiltered 1000 - 4000 200 000 - 1 000 000 1 - 20
filtered 10 - 40 30 - 100 1 - 20

Table C.1: Typical graph sizes encountered in the superstructure selection problem of section 3.4.2,
when all candidate superstructures are considered (top row) and when only local maxima have been
kept (bottom row).

Using these definitions, a clique may be redefined as the set of nodes of a complete subgraph.
More concisely, the set of cliques of a graph G can be defined as:

Cliques(G) = {C ⊆ N/C × C ⊆ E ∪ {(n, n)/n ∈ C}}

C.2 Maximum Weighted Clique Problem

The Maximum Weighted Clique problem is the following graph optimization problem:

�

�

�

�

Maximum Weighted Clique (MWC)

Given an undirected node-weighted graph G = (N , E , w), the Maximum Weighted Clique
problem may be stated as computing:

MWC(G) = arg max
C∈Cliques(G)

(w (C)) = arg max
C∈Cliques(G)

(∑
n∈C

w(n)

)

There is no ambiguity when computing the maximum clique weight, but distinct cliques may
share the same maximum weight. Slight variations of the algorithms may allow to report all the
maximum weighted cliques or only one of the maximum ones.

The Maximum Clique problem is a special case of the Maximum Weighted Clique problem,
where the weight function is constant equal to 1 : it maximizes the size of the clique instead of its
weight.

Since the Maximum Clique problem is, by itself, well known to be NP-hard [GJ79], no poly-
nomial time algorithms are known to exist. For an extensive survey of this problem and its ap-
plications, see [BBPP99]. However, using state of the art algorithms, the problem is tractable for
the sizes of graphs that typically result from the superstructure selection problem of section 3.4.2,
when the local maximum filter is applied (table C.1).

C.3 Maximum Weighted Clique Algorithms

C.3.1 Exhaustive Clique Enumeration

To get a better understanding of the state of the art algorithms, we begin by describing an
algorithm that computes the maximum weighted clique by enumerating all the cliques and keeping
track of the running maximum weighted clique. The basic idea is to order the nodes N as a
sequence n1 . . . n|N |. Using this ordering, the set of cliques can be partitioned according to the
greatest index i of the nodes ni in the cliques.

C.3. Maximum Weighted Clique Algorithms 227

Cliques(G) = ∅ ∪
|N |⋃
i=1

{
C ∈ Cliques(G) / i = max

nj∈C
(j)

}
Using the notations Neighbor(ni,N) = {n ∈ N/(ni, n) ∈ E} for the neighbors of ni in N and

Next(ni,N) = {nj ∈ N/j > i} for the subset of nodes of N that have a greater index, the set
Ni = Neighbor(ni,N) \Next(ni,N) can be introduced to rewrite the partition subsets:

{
C ∈ Cliques(G) / i = max

nj∈C
(j)

}
= {{ni} ∪ C / C ∈ Cliques(G[Ni])}

The enumeration of all the cliques Cliques(G) can thus be solved by considering the |N | sub-
problems Cliques(G[Ni]) according to the greatest node index i included in the clique. Each
subproblem is handled recursively: each recursive step adds a node ni to a set of included nodes I
and restrict the graph nodes N to the neighbors of the last included node ni that have a smaller
index, denoted Ni.

By construction the set of nodes I is thus a clique. The enumeration is performed recursively
until the subgraph G[N] has no nodes left (N = ∅). Thus, it can be proven by induction that the
successive values of I enumerate all the cliques of the input graph.

Algorithm 8 MaximumWeightedClique(G,N , I, C) // Exhaustive Clique Enumeration

G =
(
N 0, E , w

)
: an undirected weighted graph,

N ⊆ N 0: a subset of the nodes of G that defines the current subgraph G [N],
I ⊆ N 0: a subset of the nodes of G included in the clique currently being built,
C ⊆ N 0: the heaviest clique of the whole graph G found so far.

Ensure: MaximumWeightedClique(G,N 0, ∅, ∅) = MWC(G),

Ensure: MaximumWeightedClique(G,N , I, C) =

{
C if w(C) > w(MWC(G[N ∪ I]))

MWC(G[N ∪ I]) otherwise

Require: N ∩ I = ∅ and ∀n ∈ N , I ∪ {n} ∈ Cliques(G).

if w(I) > w(C) then
C ← I

if N = ∅ then
return C

for i = 1 to |N | do
Neighbor(ni,N)← {n ∈ N/(ni, n) ∈ E}
Next(ni,N)← {nj ∈ N/j > i}
Ni ← Neighbor(ni,N) \Next(ni,N)
C ←MaximumWeightedClique (G,Ni, I ∪ {ni}, C)

return C

Algorithm 8 provides the implementation of this algorithm, which returns MWC(G) when
MaximumWeightedClique(G,N 0, ∅, ∅) is called. As a side note, the requirement that states
that ∀n ∈ N , I ∪ {n} is a clique, ensures that I ⊆ MWC(G[N ∪ I]): I is included in the
maximum weighted clique of the subgraph G[N ∪ I]. Thus, if w(MWC(G[N ∪ I])) > w(C),
MaximumWeightedClique(G,N , I, C) has to include I.

C.3.2 Branch and Bound

Most of the state of the art algorithms to solve the Maximum Weighted Clique problem are
based on a Branch and Bound approach. The general idea is to modify the exhaustive clique
enumeration algorithm to introduce laziness, skipping the evaluation of subproblems that do not

228 C. Maximum Weighted Clique

provably contain the maximum weighted clique. As its name implies, a MWC algorithm that
follows the branch and bound scheme, sketched in Algorithm 9, has to provide two strategies that
modify the exhaustive clique enumeration:

Branch: Order the vertices of N as n1, . . . , n|N | for all ni ∈ N in a specified order do

This strategy defines the ordering in which all the subproblems will be considered. A specific
ordering may be required to efficiently - or even correctly! - evaluate the upperbound provided
by the bounding strategy. It may use a heuristic in order to try to consider first subgraphs
that have better chances to contain the heaviest clique early, to prune the exploration of
more subgraphs with the upperbound test later.

Bound: if w(I) + w(ni) + Upperbound(G[Ni]) ≤ w(C) then continue

The bounding strategy is responsible for the laziness of the algorithm. It keeps track of
the heaviest clique found so far and certifies whether there might be a heavier clique in
the current subproblem G[Ni] or not. That is, it provides a backtracking test to prune the
exploration of a subproblem - a recursive call - that does not provably include the maximum
weighted clique. This test involves Upperbound(G[Ni]) which gives an upperbound on the
weight of the maximum weighted clique of the subgraph G[Ni]. This pruning test enables a
lazy exploration of all the possible cliques.

Algorithm 9 MaximumWeightedClique(G,N , I, C) // Branch and Bound

G =
(
N 0, E , w

)
: an undirected weighted graph,

N ⊆ N 0: a subset of the nodes of G that defines the current subgraph G [N],
I ⊆ N 0: a subset of the nodes of G included in the clique currently being built,
C ⊆ N 0: the heaviest clique of the whole graph G found so far.

Ensure: MaximumWeightedClique(G,N 0, ∅, ∅) = MWC(G),

Ensure: MaximumWeightedClique(G,N , I, C) =

{
C if w(C) > w(MWC(G[N ∪ I]))

MWC(G[N ∪ I]) otherwise

Require: N ∩ I = ∅ and ∀n ∈ N , I ∪ {n} ∈ Cliques(G).

if w(I) > w(C) then
C ← I

if N = ∅ then
return C

Order the vertices of N as n1, . . . , n|N |.
for all ni ∈ N in a specified order do
Neighbor(ni,N)← {n ∈ N/(ni, n) ∈ E}
Next(ni,N)← {nj ∈ (N) /j > i}
Ni ← Neighbor(ni,N) \Next(ni,N)
if w(I) + w(ni) + Upperbound(G[Ni]) ≤ w(C) then

continue
C ←MaximumWeightedClique (G,Ni, I ∪ {ni}, C)

return C

Interestingly, the brute force algorithm, that just enumerates all the cliques of the graph, follows
this scheme with the following strategies. It has no pruning whatsoever (Upperbound =∞) and its
branching strategy is irrelevant because all the cliques will be considered during the exploration.

A more efficient best-in approach can be defined by the following strategies. A clique weight is
smaller than the cumulative weight of all the nodes of the current subgraph Upperbound(G[Ni]) =
w(Ni). This upperbound can be computed in constant time by maintaining the weight of the sets
Ni, I and C, adding or substracting the weight of a node that is being inserted or removed from
a subset, to the cached subset weight. The best-in strategy comes into play by first ordering the
nodes by decreasing weight w and solving the subproblems by increasing values of i to start with
subgraphs with the heaviest nodes, hoping that this will generate the heaviest cliques early. With

C.3. Maximum Weighted Clique Algorithms 229

this heuristic, the first maximal clique (not included in any other clique) explored is computed by
iteratively selecting the heaviest node and discarding all its non neighbors. This clique corresponds
in practice to a good, but sub-optimal solution.

C.3.3 Branch and Bound with Exclusion

More advanced Branch and Bound algorithms [WH, BX91, Bab94] introduce a third strategy
that allows the consideration of less than |N | subproblems. The intuition is that, given a subset X ,
if a subgraph G[X] does not contain a heavier clique than the current heaviest clique C, a heavier
clique in G[N] must contain at least one node in N \ X . Thus the branching strategy only has to
consider the nodes in N \ X rather than all the nodes in N .

Exclusion : Find X ⊆ N such that MaximumWeightedClique (G,X , I, C) = C
X is a subset of the current subgraph nodes N such that X ∪ I has provably no heavier
cliques than C in the graph G . It means that a clique in N heavier than C must contain at
least one vertex ni ∈ N \ X .

The widely used branch and bound scheme with exclusion, presented in [WH], may be written
as:

Algorithm 10 MaximumWeightedClique(G,N , I, C) // Branch and Bound with Exclusion

G =
(
N 0, E , w

)
: an undirected weighted graph,

N ⊆ N 0: a subset of the nodes of G that defines the current subgraph G [N],
I ⊆ N 0: a subset of the nodes of G included in the clique currently being built,
C ⊆ N 0: the heaviest clique of the whole graph G found so far.

Ensure: MaximumWeightedClique(G,N 0, ∅, ∅) = MWC(G),

Ensure: MaximumWeightedClique(G,N , I, C) =

{
C if w(C) > w(MWC(G[N ∪ I]))

MWC(G[N ∪ I]) otherwise

Require: N ∩ I = ∅ and ∀n ∈ N , I ∪ {n} ∈ Cliques(G).

if w(I) > w(C) then
C ← I

if N = ∅ then
return C

Find X ⊆ N such that MaximumWeightedClique (G,X , I, C) = C.
Order the vertices of (N \ X) as n1, . . . , n|N\X|.
for all ni ∈ (N \ X) in a specified order do
Neighbor(ni,N)← {n ∈ N/(ni, n) ∈ E}
Next(ni,N \ X)← {nj ∈ (N \ X) /j > i}
Ni ← Neighbor(ni,N) \Next(ni,N \ X)
if w(I) + w(ni) + Upperbound(G[Ni]) ≤ w(C) then

continue
C ←MaximumWeightedClique (G,Ni, I ∪ {ni}, C)

return C

Branch and bound algorithms with exclusion are however more involved and no implementation
is currently publicly available. Some of these algorithms [Bab94] are only able to handle integer and
not real weighted graphs. While it could have been possible to multiply the weights by some high
value, say 106, and round them to the nearest integer, it would have introduced an unnecessary
approximation in the process. Moreover, it is not clear whether the speed up gained by skipping
some subproblems will overall counterbalance the increased complexity of finding a good excluding
set X for the type of graphs considered in our applicative context.

230 C. Maximum Weighted Clique

C.3.4 Cliquer

The cliquer [Öst02] algorithm follows the branch and bound approach without exclusion (Al-
gorithm 9), using the following strategies:

Branch :

Order the vertices of N as n1, . . . , n|N |

The initial ordering n1, . . . , n|N 0| of the nodesN 0 is given by the user, and the algorithm keeps
this ordering intact throughout the optimization. That means that the bijective function
σ : {1, . . . , k} → {i / ni ∈ N}, that defines the ordering nσ(1), . . . , nσ(k) of a subset N is
increasing.

for all ni ∈ N in a specified order do

The first level of recursion, when N = N 0, considers the subproblems ni with increasing i,
whereas the smaller subproblems are considered with a decreasing order on i.

Bound :

Upperbound(G[Ni]) ≥ w(MWC(G[Ni]))
Cliquer uses two complementary upperbound tests: the cumulative weight w(Ni) and an
upperbound Wcliquer[i], based on a dynamic programing approach, that might be tighter.

This upperbound is computed by maintaining an array Wcliquer of size |N 0|. Wcliquer[i]
stores the difference between the maximum weight of a clique in the subgraph that has nodes
{n1, . . . , ni} = N 0 \Next(i+ 1,N 0), and the weight of ni.

Wcliquer[i] = w(Ci)− w(ni) with Ci = MWC(G[{n1, . . . , ni}])

The fixed ordering and the increasing order of processing of the first level of recursion, that
computes the subproblems Ci = MWC(G[{n1, . . . , ni}]), guarantees that when computing
the upperbound for a given value of i, Wcliquer[1], . . . ,Wcliquer[i− 1] are already computed.

Another property is that the series w(Ci) = w(ni) + Wcliquer[i] is increasing, being the
maximum clique weight of increasing node subsets {n1, . . . , ni}. Thus, if w(I) + w(ni) +
Wcliquer[i] ≤ w(C), then it will also be true for all j < i. This is why, deeper than the first
level of recursion, where the subproblems are considered by decreasing indices, if the cliquer
upperbound test fails, it is possible to not only avoid the exploration of the subproblem Ni
but also of all the suproblems Nj with j < i. This speeds up the exploration by replacing,
in the algorithm 9, the continue statement by a break statement when the cliquer test
upperbound fails.

If the cliquer upperbound test does not fail, the cumulative weight test w(Ni) is performed
and issues a continue statement.

Proof. Wcliquer[i] ≥ w(MWC(G[Ni])):

w(Ci) = w(ni) +Wcliquer[i] may be defined by recurrence.

w(C0) = w(MWC(G[∅])) = 0

w(Ci) = w(MWC(G[N 0 \Next(i+ 1,N 0)]))

= max(w(Ci−1), w(ni) + w(MWC(G[Neighbor(ni,N 0) \Next(ni,N 0)])))

The fixed order n1, . . . , n|N0| facilitates the definition of the set Next(ni,N):

Next(ni,N) = Next(ni,N 0) ∩N
which yields Ni = Neighbor(ni,N) \Next(ni,N)

=
(
Neighbor(ni,N 0) ∩N

)
\
(
Next(ni,N 0) ∩N

)
=

(
Neighbor(ni,N 0) \Next(ni,N 0)

)
∩N

⊆
(
Neighbor(ni,N 0) \Next(ni,N 0)

)

C.3. Maximum Weighted Clique Algorithms 231

This set inclusion proves that Wcliquer[i] is an upperbound of w(MWC(G[Ni])):

w(MWC(G[Ni])) ≤ w(MWC(G
[
Neighbor(ni,N 0) \Next(ni,N 0)

]
))

≤ max(w(Ci−1)− w(ni), w(MWC(G[Neighbor(ni,N 0) \Next(ni,N 0)])))

= w(Ci)− w(ni) = Wcliquer[i]

It must be noted that the algorithm is very sensitive to the node ordering n1, . . . , n|N 0|. There
is no clear best ordering: some weighted graphs are faster processed with nodes sorted by increasing
weights, others by decreasing weights, a random ordering may also be performant...

C.3.5 Efficiency upperbound

This upperbound is an attempt at designing a variant of cliquer that is more specifically tailored
to the particular type of graphs that results from our superstructure selection problem. Within
our context, the graph nodes, corresponding to superstructure candidates, have another attribute
than the weight w(n) = ∆E(n) measuring the benefit of selecting the superstructure in the final
reconstruction: the 2D polygon of its support πn, which is, in short, the vertical projection of the
superstructure 3D facets onto a horizontal plane. Furthermore, the edge set E is induced by the
polygons (πn)n∈N and the non-overlap relationship 6 ∩, defined as πn1 6 ∩πn2 ⇔ area (πn1 ∩ πn2) = 0:

E = {(n1, n2) ∈ N ×N / πn1
6 ∩πn2

}

From the polygons and the node weights, two other attributes may be computed for each node

n ∈ N : its area a(n) = area (πn) and its efficiency w(n)
a(n) . Using those extra attributes, it is possible

to design an upperbound on the weight of the maximum weighted clique of a given set of nodes
that is reasonably efficient to compute and tighter than just the sum of all the node weights w(Ni).

If a(n) = 0, the efficiency is not well defined, but those nodes can be handled easily. Since they
have no interior surface, they do not intersect any other nodes, and are guaranteed to be contained
in the maximum weighted clique. Thus we can compute the maximum weighted clique of nodes
with a strictly positive area and add those with a null area to form the maximum weighted clique
of all the nodes.

By extension we define the area a(N) of a set of nodes N by the area of the union of its node
polygons area

(⋃
n∈N πn

)
. We also note the following inequality:

area

(⋃
n∈N

πn

)
≤
∑
n∈N

area (πn) ⇔
notation

a(N) ≤
∑
n∈N

a(n)

Because a set of disjoint nodes is the definition of a clique when the edges are determined by
the non-overlap relationship 6 ∩, the area of the union of the node polygons a(C) = area

(⋃
n∈C πn

)
is exactly the sum of the node polygon area. The inequality becomes an equality:

C ∈ Cliques(G)⇒ area

(⋃
n∈C

πn

)
=
∑
n∈C

area (πn) ⇔
notation

a(C) =
∑
n∈C

a(n)

It follows that, given a set of nodes N , one can compute the union of the polygons of all the
nodes in the set and that the area of this union has to be greater than the sum of the node areas
of any clique of the subgraph G[N].

∀C ∈ Cliques(G[N]),
∑
n∈C

area (πn) ≤ area
(⋃
n∈N

πn

)
⇔

notation

∑
n∈C

a(n) ≤ a(N) (C.3.1)

232 C. Maximum Weighted Clique

Now, an upperbound on the cumulative weight of the maximum weighted clique can be derived
from this bound on the cumulative areas. If the clique constraint of the Maximum Weighted Clique
problem is replaced by the cumulative area bounding constraint C.3.1, the modified problem is
known as the Knapsack problem KS. Following the constraint C.3.1, c(n) is set to a(n) = area (πn)
and cmax to a(N) = area

(⋃
n∈N πn

)
.

�

�

�

�

Knapsack (KS)

Given a set of elements N , a weight function w : N → R+, a cost function c : N → R+

and a maximum cost cmax, the Knapsack problem may be stated as computing:

KS(N , w, c, cmax) = arg max
C⊆N/∑n∈C c(n)≤cmax

(∑
n∈C

w(n)

)

or, equivalently, x being the indicator function of C:

KS(N , w, c, cmax) = arg max
x:N→{0,1}/∑n∈N x(n)c(n)≤cmax

(∑
n∈N

x(n)w(n)

)

Note that in this problem the edge set E has no influence. Because being a clique implies the cu-
mulative area bounding constraint, the Knapsack problem yields an upperbound on the maximum
weight of the Maximum Weighted Clique:

w (MWC (N , E , w)) ≤ w (KS (N , w, a, a(N)))

If the problem is further relaxed by allowing the selection x to be a percentage instead of only
one of the two values 0 and 1, the NP-Complete Knapsack problem becomes a Single Constraint
Linear Programming with an efficient implementation available.

�

�

�

�

Single Constraint Linear Programming (SCLP)

Given a set of elements N , a weight function w : N → R+, a cost function c : N → R+

and a maximum cost cmax, the Single Constraint Linear Programming problem may be
stated as computing:

SCLP (N , w, c, cmax) = arg max
x:N→[0,1]/

∑
n∈N x(n)c(n)≤cmax

(∑
n∈N

x(n)w(n)

)

This problem is finally not NP-hard anymore : linear programming in general may be solved us-
ing a worst-case polynomial-time algorithm. The particular instance SCLP of linear programming
used here only has a single constraint. This allows the design of an output sensitive, linear time
(after preprocessing) Algorithm 11 to solve the Single Constraint Linear Programming problem.

Algorithm 11 uses a best-in approach. Nodes are ordered by decreasing efficiency w
c and are

selected until the cost bound cmax is reached. If the cost of the last node to be selected is not
exactly the remaining allowable cost, its maximum allowable fraction is selected instead. We are
here only interested in an upperbound on the weight and not on the actual subset of N that
achieves this upperbound, therefore the algorithm does not keep track of the best selection but
only of its weight.

Proof. To prove that the efficiency ordering makes this best-in algorithm correct, let us consider a valuation of

x : N → [0, 1] and try to improve the cumulative weight by modifying x. As the objective function is linear, it

C.3. Maximum Weighted Clique Algorithms 233

Algorithm 11 SingleConstraintLinearProgrammingWeight(N , w, c, cmax)

N : a set of nodes, sorted by efficiency w
c ,

w(n): the weight of node n ∈ N ,
c(n): the cost of node n ∈ N .
cmax: the maximum cost allowed.

weight← 0
for n ∈ N by decreasing efficiency do

if cmax ≤ c(n) then
return weight+ cmax

c(n) w(n)

weight← weight+ w(n)
cmax ← cmax − c(n)

return weight

is convex and the maximum is at the boundary of the admissible domain and the constraint is an equality at the

maximum point x. If we want to modify the x value for nodes n1 and n2 to (x(n1) + δx1) and (x(n2) + δx2), while

staying at the boundary of the domain, the relation c(n1)δx1 + c(n2)δx2 = 0 must hold. The cumulative weight

modification will then be w(n1)δx1 + w(n2)δx2 =
(

w(n2)
c(n2)

− w(n1)
c(n1)

)
c(n2)δx2. Because c is positive, if, say, the

efficiency w
c

of n2 is higher than the efficiency of n1 and all the x values but x(n1) and x(n2) are fixed, the only

way to increase the objective function is to increase x(n2) and decrease x(n1) accordingly.

The Knapsack being a constrained subproblem of the Single Constraint Linear Programming,
it is upperbounded by the Single Constraint Linear Programming weight:

w (KS (N , w, a, a(N))) ≤ w(SCLP (N , w, a, a(N)))

Finally, this designs an upperbound Weff for the maximum weighted clique problem when
the graph edges are induced by the overlap of polygons. We call this upperbound the efficiency
upperbound:

Weff (N , w, a) = w(SCLP (N , w, a, a(N))) ≥ w (MWC(G))

To avoid the recomputation of a(N) for every subgraph considered by the algorithm, an up-
perbound A(N) of this area is used instead of the exact area a(N) = area

(⋃
n∈N πn

)
. The area

is computed only once for the whole set of nodes : A(N 0) = a(N 0). Then, when a node ni is
selected in the included set I, and that the nodes of the current subgraph are reduced from N to
Ni = Neighbor(ni,N) \Next(ni,N), the area upperbound is updated by subtracting the area of
ni:

A(Ni) = A(N)− a(ni)

Proof.

a(Ni) = area

 ⋃
n∈Ni

πn

= area

 ⋃
n∈Ni∪{ni}

πn

 \ πni

= area

 ⋃
n∈Ni∪{ni}

πn

− area (πni)

= a(Ni ∪ {ni})− a(ni)

≤ a(N)− a(ni)

≤ A(N)− a(ni) = A(Ni)

234 C. Maximum Weighted Clique

The second equality is due to ni being disjoint from all the nodes in Ni ⊆ Neighbor(ni,N), by the definition of the

set Neighbor(ni,N), and that if π1 6 ∩π2, then area (π1 ∩ π2) = 0 and thus area (π1) = area ((π1 ∪ π2) \ π2). The

third equality comes from the trivial inclusion πni ⊆
⋃

n∈Ni∪{ni} πn, whereas the first inequality comes from the

inclusion Ni ∪ {ni} ⊆ N .

This upperbound can be included inside the cliquer algorithm, by using the minimum of the
cliquer upperbound and the efficiency upperbound as the modified upperbound. By construction,
Weff (Ni, w, a) ≤ w(Ni), so there is no advantage in computing w(Ni):

Upperbound(G[Ni]) = min(Weff (Ni, w, a),Wcliquer[i])

Its drawback is that its evaluation is generally not constant time, but if the nodes are sorted by
efficiency, the time cost becomes output sensitive. It is far less than its linear worse case if the
minimum area of a node is not too small relative to the area of the union of the node polygons. For
instance, within our applicative context, let us assume that the superstructure candidates have a

minimum area of area(πB)
α where α is a constant factor, and area (πB) is the area of the footprint

of the whole building which is necessarily greater than the area of the union of the superstructure
candidate polygons. Under this assumption, it is trivial to show that the upperbound takes O(α)
time to compute, which is constant with respect to the number of superstructure candidates.

C.4 Conclusion

While it is possible to include the efficiency upperbound within cliquer, this test requires, to
minimize its computation cost, that the nodes are sorted by efficiency. While the sorting itself
is not expensive with a O(|N |log|N |) computing cost, it corresponds to an unfavorable order for
the unmodified cliquer algorithm when applied to graphs that solve the superstructure selection
problem. This is why there is no substantial speed up resulting from the inclusion of the efficiency
upperbound within the cliquer algorithm. The performance gain due to this tighter upperbound
roughly counterbalances the performance loss of the unfavorable sorting and the additionnal cost
of its computation.

As an extension, two orderings could be maintained for each node subset, as nodes are removed
or added back. The first ordering would be an ordering which makes the cliquer algorithm efficient,
while the second ordering would be able to provide the nodes of the subset by decreasing efficiency
to compute the upperbound Weff efficiently at the same time.

The C library cliquer [NÖ03], an implemention of [Öst02] by its authors, is available under
the GPL license at http://users.tkk.fi/ pat/cliquer.html. The actual Maximum Weighted Clique
implementation used in this work is a complete C++ rewrite of the cliquer library using the Boost
Graph Library (BGL) framework that can handle real valued weights (the cliquer C library only
supports integer weights). It also provides a convenient and flexible access to the inner parts of the
algorithm, using function object templates, to be able to optionally use the efficiency upperbound
in the bounding test. Finally, the efficiency upperbound presenting no real advantage over the
original cliquer upperbound, it is disabled by default in our implementation of the superstructure
reconstruction.

235

Appendix D

Method Invariance by an
Invertible Affine Transform

Contents
D.1 Introduction . 235

D.2 Problem Transformation . 235

D.3 Above Certificate Function . 236

D.4 Orientation Certificate Function . 237

D.5 Conclusion . 239

D.1 Introduction

This appendix proves the following proposition, mentionned in section 6.5.2 :

Proposition D.1. The approach proposed in chapters 5 and 6 is unconditionally invariant under
a projective transform of the point coordinates (the primal geometry), if and only if this transform
is invertible and affine.

We define the meaning of the unconditional invariance such that, up to ambiguities of the
trihedralization subproblems, the combinatorial data structures computed by the proposed method
for the transformed and original problems are isomorphic, without any condition on the geometry
or topology of the problem.

Throughout chapters 5 and 6, the geometric coordinates are only used through Above and
Orientation predicates, given that the Intersect predicate of section 5.4.2.2 is build upon the Above
predicate. Thus, the unconditional invariance is equivalent to a constant sign of these certificate
functions undergoing a given geometric transformation.

Section D.2 details how a projective transform modifies the problem geometry. Then, sec-
tions D.3 and D.4 provide the respective proofs for the both predicates.

D.2 Problem Transformation

Using the projective geometry formalism, a projective transform is modeled by a 4 by 4 matrix.
Such a transform is said to be invertible if the matrix A is invertible (detA 6= 0). The transform
is affine if the first 3 elements of its last row are null (A41 = A42 = A43 = 0).

236 D. Method Invariance by an Invertible Affine Transform

To prove the proposition D.1, the expression of the transformation of a polyhedral geometry
(either the plane coordinates or the point coordinates) implied by a transformation of its dual
geometry (respectively the point and the plane coordinates) is required.

Theorem D.2. If the dual geometry is transformed by a projective matrix A, then the primal
geometry is transformed by comA

Proof. Let us denote by AT the transposed of the matrix A and comA the matrix of the cofactors (i.e. signed
minors) of A. The cofactor matrix verifies the identity that com (AB) = (comA)(comB), for any square matrices
of equal order A and B. The cofactor matrix allows a simple expression of the homogeneous coordinates of a vertex
of valence 3 in function of the 3 adjacent supporting planes (~Ni) :

~P =
(
com

[
~0 ~N0

~N1
~N2

]) [1
0
0
0

]
This allows the expression of the point ~P

A ~Ni
computed by the intersection of the 3 transformed planes A ~Ni relative

to the point ~P
A ~Ni

computed by the intersection of the 3 original planes ~Ni.

~P
A ~Ni

=
(
com

[
~0 ~AN0

~AN1
~AN2

]) [1
0
0
0

]
= com

(
A
[
~0 ~N0

~N1
~N2

]) [1
0
0
0

]
= (comA)

(
com

[
~0 ~N0

~N1
~N2

]) [1
0
0
0

]
= (comA) ~P ~Ni

By the symmetry of the point-plane duality, the relation ~N = com
[
~0 ~P0

~P1
~P2

] [1
0
0
0

]
also

holds and the dual theorem is true:

Theorem D.3. If the primal geometry is transformed by a projective matrix A, then the dual
geometry is transformed by comA.

Moreover, one can easily verify that, after a transformation A, a transformed point (A~P) lies

on its transformed supporting planes ((comA) ~N):

(A~P) · ((comA) ~Ni) = (A~P)T ((comA) ~Ni) = ~PT (AT (comA)) ~Ni

= ~PT ((detA)I) ~Ni = (detA)(~P · ~Ni) = 0

If the initial and target dual geometries (~Ni0) and (~Ni1) are transformed by a projective matrix

A, then the interpolated homogeneous plane coordinates are also multiplied by A: (1− t)A ~Ni0 +

tA ~Ni1 = A
(

(1− t) ~Ni0 + t ~Ni1

)
. Thus, not only the initial and target primal geometry will be

transformed by comA, but also the points of the transformed interpolated polyhedron. The lin-
earity of the transformation allows to prove the proposition D.1 without taking into account the
interpolation time t.

D.3 Above Certificate Function

The Above certificate function suffices to compute a plane arrangement. If the transformation
A multiplies the Above certificate function by a constant factor, then the original and transformed
arrangements will be isomorphic. Since the following of the trihedralization approach using a 0-1
coloring of the plane arrangement (section 5.3) only relies on the topology of this arrangement, it is
then insensitive to A, up to the possible ambiguities of the trihedralization. The Above certificate
function is also used by the proposed extension to handle diverging vertices (section 6.6.1).

D.4. Orientation Certificate Function 237

If the primal geometry is transformed by A, (and the dual geometry by comA), then the
certificate function determining the position of a point relative to an oriented plane becomes:

Above(A~P , (comA) ~N) =
A~P

wA~P
· (comA) ~N = det(A)

~P · ~N
wA~P

=

(
det(A)

w~P

wA~P

)
Above(~P , ~N)

Lemma D.4. Above(~P , ~NA) =
wA~P
w~P

with ~NA being te plane defined by the last column of AT .

Proof. w
A~P

=

[
0
0
0
1

]
·
(
A~P
)

=

(
AT

[
0
0
0
1

])
· ~P = ~NA · ~P

Lemma D.5. A is affine and invertible ⇔ det(A)
w~P
wA~P

is non-null, well defined and its sign is

independent of ~P .

Proof. If the projective transform A is affine, its last line may be written as (0 0 0 A44), and then w
A~P

= A44w~P
, for

all ~P . Moreover, if it is affine and invertible, then detA 6= 0 and A44 6= 0. Thus the point-plane certificate functions

of the original and the transformed problem differ only by a constant non-null multiplicative factor
(

det(A)
w~P
w
A~P

)
=

det(A)
A44

, which is the determinant of the upperleft 3 by 3 submatrix of the projective matrix A.

Conversely, if the last line of A only contains zeros, then the factor is not well defined. Thus the last line is

not null and may represent the transposed homogeneous coordinates of an oriented plane ~NT
A which is possibly the

plane containing points at infinity. Thus the det(A)
w~P
w
A~P

factor may be rewritten as
det(A)

Above(~P, ~NA)
. The sign of this

quantity is constant as long as the Cartesian points represented by ~P lie on a single side of ~NA. Thus the plane
~NA is the plane of points at infinity: the last line of A may be written as (0 0 0 A44) with A44 6= 0, meaning that

A is affine and that the factor is constantly equal to
det(A)
A44

. Finally, a non-null factor proves that det(A) 6= 0: A is

invertible.

The previous two lemmas together prove the following theorem, with ε = sign
(

det(A)
A44

)
:

Theorem D.6.

A is affine and invertible

⇔ ∃ε = ±1 s.t. ∀~P , ~N, sign(Above(A~P , (comA) ~N)) = ε.sign(Above(~P , ~N))

If ε = 1, then the sign of the certificate is unchanged, and thus the transformation will have no
impact on the algorithm. When ε = −1 however, the sign is reversed. This situation may be dealt
with by applying −A instead of A, which will yield ε = 1, leave the points unchanged, and reverse
the orientation of each plane.

Furthermore, the Intersect predicate and the plane arrangement do not directly consider the
sign of a single Above certificate functions, but are comparing signs of 2 Above certificate functions.
They are thus insensitive to the value of ε ∈ {−1, 1}.

D.4 Orientation Certificate Function

This section gives an expression of the Orientation certificate function of the transformed
problem in terms of the original problem, using the following lemmas D.7 and D.8. The lem-
mas D.9 and D.10 use this relation to prove the invariance of the algorithm under an affine invertible
transform.

Lemma D.7. ∀ ~Xi,∀A,
∣∣ ~X0 A ~X1 A ~X2 A ~X3

∣∣ =
∣∣(comA)T ~X0

~X1
~X2

~X3

∣∣

238 D. Method Invariance by an Invertible Affine Transform

Proof. Using com (AB) = (comA)(comB),

∣∣ ~X0 A ~X1 A ~X2 A ~X3

∣∣ = ~XT
0

(
com

[
0 A ~X1 A ~X2 A ~X3

]) [1
0
0
0

]
= ~XT

0 (comA)
(
com

[
0 ~X1

~X2
~X3

]) [1
0
0
0

]
=

(
(comA)T ~X0

)T (
com

[
0 ~X1

~X2
~X3

]) [1
0
0
0

]
=

∣∣(comA)T ~X0
~X1

~X2
~X3

∣∣

Lemma D.8.

(
com

[
~0 ~P0

~P1
~P2

] [1
0
0
0

])
= Q~P0

~P1
~P2

~N .

Proof. By construction, the 4D column vector

(
com

[
~0 ~P0

~P1
~P2

] [1
0
0
0

])
is colinear with ~N , since the points

~Pi lie in the plane ~N , which translates into the orthogonality of their 4D vectors. Thus, there is a function λ~P0
~P1

~P2

such that

(
com

[
~0 ~P0

~P1
~P2

] [1
0
0
0

])
= λ~P0

~P1
~P2

~N . Using the polynom Q~P0
~P1

~P2
:

Q~P0
~P1

~P2
|~n|2 =

[
~n ~p0 ~p1 ~p2
0 w0 w1 w2

]
=

[
~n
0

]
·
(

com
[
~0 ~P0

~P1
~P2

] [1
0
0
0

])
=

[
~n
0

]
·
(
λ~P0

~P1
~P2

~N
)

= λ~P0
~P1

~P2
|~n|2

which proves λ~P0
~P1

~P2
= Q~P0

~P1
~P2

and the lemma.

Using B =

[
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

]
, the lemmas D.4, D.7, D.8 above, the Orientation certificate function of

the transformed problem may also be rewritten in terms of the orientation certificate function of
the original problem:

Orientation((comA) ~N,A~P0, A~P1, A~P2) =
∣∣∣B(comA) ~N A~P0

wA~P0

A~P1

wA~P1

A~P2

wA~P2

∣∣∣
=

∣∣(comA)TB(comA) ~N ~P0
~P1

~P2

∣∣
wA~P0

wA~P1
wA~P2

=

(
(comA)TB(comA) ~N

)
·
(
Q~P0

~P1
~P2

~N
)

wA~P0
wA~P1

wA~P2

=
~NT (comA)TB(comA) ~N

wcomA~P0
wcomA~P1

wcomA~P2

(
Q~P0

~P1
~P2

)

=

∥∥∥B(comA) ~N
∥∥∥2

∥∥∥B ~N
∥∥∥2

(
w~P0

wA~P0

w~P1

wA~P1

w~P2

wA~P2

)(
Orientation(~N, ~P0, ~P1, ~P2)

)

If we denote by a the 3 by 3 upper left submatrix of comA and ~b the vector of the first three
elements of its last column, then we can prove two lemmas that help analyzing B(comA) ~N :

Lemma D.9.
(

(i) ∀ ~N, B ~N 6= ~0⇒ B(comA) ~N 6= ~0
)
⇔

(
(ii) det(a) 6= 0 and (iii) ~b = ~0

)

D.5. Conclusion 239

Proof. The matrix B(comA) may be rewritten as

[
a ~b
0 0

]
and thus B(comA) ~N may also be reformulated as:

B(comA) ~N = [a~n+~bd : 0] with ~N = [~n : d]

[(i)⇒ (ii)]: If a is not invertible, then there exists ~n∗ 6= ~0 in the kernel of a. Thus there exists ~N∗ = [~n∗ : 0], such

that B ~N∗ = ~N∗ 6= ~0 and B(comA) ~N∗ = [a~n∗ + b.0 : 0] = ~0. This proves ¬(ii)⇒ ¬(i).

[(i) ∧ (ii)⇒ (iii)]: If a is invertible, the plane ~N∗ = [−a−1~b : 1] has a degenerate transformed normalB(comA) ~N∗ =

[a(−a−1~b) +~b(1) : 0] = ~0. Its normal B ~N∗ = [−a−1~b : 0] is degenerate if and only if ~b = ~0. This proves that
(ii)⇒ (¬(iii)⇒ ¬(i)).

[(ii) ∧ (iii)⇒ (i)]: If det(a) 6= 0 and ~b = ~0, then ∀ ~N, B ~N = ~0 ⇔ ~n = ~0 ⇔ a~n = ~0 ⇔ B(comA) ~N = ~0, which
implies (i).

Lemma D.10. A is affine and invertible ⇔
(

det(a) 6= 0 and ~b = ~0
)

Proof. As coordinates of ~b are the first 3 cofactors of the last column of A, they can be expressed as determinants
of a 3 by 3 submatrix of A that contain the first 3 elements of the last line of A. Since A is affine, those determinants
are necessarily null, yielding ~b = ~0. Now that ~b = ~0 is proven, det(comA) may be written as (det a) ((comA)44).
Using the property det(comA) = (detA)3 for any 4 by 4 matrices, if A is invertible, then (detA)3 = det(comA) =
(det a) ((comA)44) is not null and neither is det a.

Conversely, if ~b = ~0 then the last line of com(comA) can be computed as
[
0 0 0 det a

]
, since the first 3

elements of this line are defined as plus or minus some 3 by 3 determinants that involve the ~b vector. Furthermore

the bottom right element of com(comA) is, by construction, det a. Since com(comA) = (detA)2A, (det a) is equal

to (detA)2A44. This proves that if det a 6= 0 then detA 6= 0: A is invertible. Finally the last line of A =
com(comA)

(detA)2

can be written as
[
0 0 0 det a

(detA)2

]
: A is affine.

Using the lemmas D.9 and D.10, this proves that the transformation A is affine and invertible if

and only if the factor
∥∥∥B(comA) ~N

∥∥∥2

is non-null for any finite plane ~N (B ~N 6= ~0). Using again the

lemma D.4 concerning the Above certificate function on the
w~Pi
wA~Pi

factors, this finally proves that

if the transformation A is affine and invertible, then the factor

(
‖B(comA) ~N‖2
‖B ~N‖2

)(
w~P0

wA~P0

w~P1

wA~P1

w~P2

wA~P2

)
linking the transformed and original certificate functions is non-null for finite planes and that its
sign is constantly equal to the sign of A44.

D.5 Conclusion

This finally proves that the proposed approach is unconditionally invariant, up to the ambigu-
ities of the trihedralizations, by a projective transform A if and only if A is affine and invertible.
The discussion on the implications of this result are discussed in section 6.5.2.

240 D. Method Invariance by an Invertible Affine Transform

241

Bibliography

[AA96] O. Aichholzer and F. Aurenhammer. Straight skeletons for general polygonal fig-
ures. In Proc. of the 2nd International Computing and Combinatorics Conference
(COCOON), volume 1090, pages 117–126, Hong Kong, 1996. Springer-Verlag.

[AAAG95] O. Aichholzer, F. Aurenhammer, D. Alberts, and B. Gärtner. A novel type of skeleton
for polygons. Journal of Universal Computer Science (J.UCS), 1(12):752–761, 1995.

[Bab94] L. Babel. A fast algorithm for the maximum weight clique problem. Computing,
52:31–38, 1994.

[BBPDM07] M. Brédif, D. Boldo, M. Pierrot-Deseilligny, and H. Mâıtre. 3D building recon-
struction with parametric roof superstructures. In Proc. of the IEEE International
Conference on Image Processing (ICIP), San Antonio, U.S., sep 2007.

[BBPP99] I.M. Bomze, M. Budinich, P.M. Pardalos, and M. Pelillo. The maximum clique
problem. In D.-Z. Du and P. M. Pardalos, editors, Handbook of Combinatorial Op-
timization, pages 1–74. Kluwer Academic, Boston, Massachusetts, U.S.A., 1999.

[BCG+99] J. Basch, J. Comba, L.J. Guibas, J. Hershberger, C. Silverstein, and L. Zhang.
Kinetic data structures: Animating proofs through time. In Proc. of the Symposium
on Computational Geometry (SoCG), pages 427–428, 1999.

[BDE96] G. Barequet, M. Dickerson, and D. Eppstein. On triangulating three-dimensional
polygons. In Proc. of the 12th Symposium on Computational Geometry (SoCG),
pages 38–47, New York, NY, USA, 1996. ACM.

[BDH96] C.B. Barber, D.P. Dobkin, and H. Huhdanpaa. The Quickhull algorithm for con-
vex hulls. ACM Transactions on Mathematical Software, 22(4):469–483, dec 1996.
http://www.qhull.org.

[BEGV08] G. Barequet, D. Eppstein, M.T. Goodrich, and A. Vaxman. Straight skeletons of
three-dimensional polyhedra. In Proc. of the 6th European Symposium on Algorithms
(ESA), Karlsruhe, Germany, sep 2008.

[BGH97] J. Basch, L.J. Guibas, and J. Hershberger. Data structures for mobile data. In Proc.
of the 8th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 747–756,
1997.

[Bou07] L. Boudet. Auto-qualification de données géographiques 3D par appariement multi-
image et classification supervisée. Application au bâti en milieu urbain dense. PhD
thesis, Université Paris-Est, Marne-la-Vallée, sep 2007. Interne.

[BR06a] C. Brenner and N. Ripperda. Extraction of facades using RJ-MCMC and constraint
equations. In Photogrammetric Computer Vision, pages 155–160, 2006.

[BR06b] F. Bretar and M. Roux. Recognition of building roof facets by merging aerial im-
ages and 3d lidar data in a hierarchical segmentation framework. In Proc. of the
International Conference on Pattern Recognition (ICPR), Hong-Kong, China, 2006.

[Bre00] C. Brenner. Towards fully automatic generation of city models. In Remote Sens-
ing International Archives of the Photogrammetry and Spatial Information Sciences
(IAPRS), editors, Proc. of the XIXth ISPRS Congress, volume 33, pages 85–92,
Amsterdam, July 2000.

242 BIBLIOGRAPHY

[BX91] E. Balas and J. Xue. Minimum weighted coloring of triangulated graphs, with the
application to maximum weight vertex packing and clique finding in arbitrary graphs.
SIAM J. Comput., 20:209–221, 1991.

[BZ00] C. Baillard and A. Zisserman. A plane-sweep strategy for the 3D reconstruction of
buildings from multiple images. In Proc. of the XIXth ISPRS Congress, Amsterdam,
The Netherlands, 2000.

[CGAL] CGAL. Computational Geometry Algorithms Library. http://www.cgal.org.

[Cha91] B. Chazelle. Triangulating a simple polygon in linear time. Discrete and Computa-
tional Geometry, 6:485–524, 1991.

[CSAD04] D. Cohen-Steiner, P. Alliez, and M. Desbrun. Variational shape approximation. ACM
Transactions on Graphics, SIGGRAPH Proceedings, pages 905–914, 2004.

[CSW99] F. Chin, J. Snoeyink, and C.A. Wang. Finding the medial axis of a simple polygon
in linear time. Discrete and Computational Geometry, pages 382–391, 1999.

[CV02] S.W. Cheng and A. Vigneron. Motorcycle graphs and straight skeletons. In Proc. of
the 13th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 156–165,
Philadelphia, PA, USA, 2002. Society for Industrial and Applied Mathematics.

[dB07] M. de Bovis. Etude de la typologie des superstructures de toit. Master’s thesis, Ecole
des Ingénieurs de la Ville de Paris, 2007.

[DB08] F. Dornaika and M. Brédif. An efficient approach to building superstructure recon-
struction using digital elevation maps. In International Archives of the Photogram-
metry, Remote Sensing and Spatial Information Sciences (IAPRS), volume 37 (Part
3A), Beijing, China, 2008.

[dBCvKO08] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational Geometry:
Algorithms and Applications. Springer-Verlag, 3rd edition, 2008.

[DEGN98] T.K. Dey, H. Edelsbrunner, G. Guha, and D.V. Nekhayev. Topology preserving edge
contraction. Publ. Inst. Math. (Beograd) (N.S, 66:23–45, 1998.

[DLM05] M. Desbrun, M. Leok, and J.E. Marsden. Discrete Poincaré lemma. Applied Numer-
ical Mathematics, 53(2):231–248, 2005.

[DT06] M. Durupt and F. Taillandier. Automatic building reconstruction from a digital
elevation model and cadastral data: an operational approach. In Proc. of the ISPRS
Symposium on Photogrammetric Computer Vision (PCV), Bonn, Germany, 2006.
ISPRS.

[DTC04] A.R. Dick, P.H.S. Torr, and R. Cipolla. Modelling and interpretation of architecture
from several images. International Journal of Computer Vision (IJCV), 60(2):111–
134, Nov. 2004.

[EAH08] J. Engels, H. Arefi, and M. Hahn. Generation of roof topologies using plane fitting
with RANSAC. In International Archives of the Photogrammetry, Remote Sensing
and Spatial Information Sciences (IAPRS), volume 37 (Part 3A), Beijing, China,
2008.

[EE99] D. Eppstein and J.G. Erickson. Raising roofs, crashing cycles, and playing pool:
Applications of a data structure for finding pairwise interactions. Discrete and Com-
putational Geometry, 22(4):569–592, 1999. (Special issue for SoCG’98).

[EET93] H.A. ElGindy, H. Everett, and G.T. Toussaint. Slicing an ear using prune-and-search.
Pattern Recognition Letters (PRL), 14(9):719–722, 1993.

[EOS86] H. Edelsbrunner, J. O’Rourke, and R. Seidel. Constructing arrangements of lines
and hyperplanes with applications. SIAM J. Comput., 15(2):341–363, 1986.

[ES86] H. Edelsbrunner and R. Seidel. Voronoi diagrams and arrangements. Discrete &
Computational Geometry, 1:25–44, 1986.

BIBLIOGRAPHY 243

[FB81] M.A. Fischler and R.C. Bolles. Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography. Communi-
cations of the ACM, 24(6):381–395, 1981.

[FKL+98] A. Fischer, T.H. Kolbe, F. Lang, A.B. Cremers, W. Förstner, L. Plümer, and
V. Steinhage. Extracting buildings from aerial images using hierarchical aggregation
in 2D and 3D. Computer Vision and Image Understanding (CVIU), 72(2):185–203,
1998.

[FM05] D. Flamanc and G. Maillet. Evaluation of 3D city model production from PLEIADES
HR satellite images and 2D ground maps. In Proc of the ISPRS International Sympo-
sium Remote Sensing and Data Fusion Over Urban Areas (URBAN), Tempe, USA,
2005.

[For97] S. Fortune. Polyhedral modeling with multiprecision integer arithmetic. Computer-
Aided Design, 29(2):123–133, 1997.

[FZ03] C. Früh and A. Zakhor. Constructing 3D city models by merging aerial and ground
views. IEEE Transactions on Computer Graphics and Applications, 23(6):52–61,
2003.

[GH97] M. Garland and P.S. Heckbert. Surface simplification using quadric error metrics.
ACM Transactions on Graphics, SIGGRAPH Proceedings, 97.

[GHH+03] M. Granados, P. Hachenberger, S. Hert, L. Kettner, K. Mehlhorn, and M. Seel.
Boolean operations on 3d selective nef complexes: Data structure, algorithms, and
implementation. In Giuseppe Di Battista and Uri Zwick, editors, Proc. of the 11th
European Symposium on Algorithms (ESA), volume 2832 of Lecture Notes in Com-
puter Science, pages 174–186, Budapest, Hungary, September 2003. Springer.

[GJ79] M.R. Garey and D.S. Johnson. Computers and Intractability: A guide to the theory
of NP-completeness. W.H. Freeman and Company, New York, 1979.

[GKR04] L.J. Guibas, M. Karaveles, and D. Russel. A computational framework for handling
motion. In Proc. of the 6th Workshop on Algorithm Engineering and Experiments
(ALENEX), pages 129–141, 2004.

[Grü71] B. Grünbaum. Arrangements of hyperplanes. In Congressum Numerantium III,
Louisiana Conference on Combinatorics Graph Theory and Computing, pages 41–
106, 1971.

[Gui98] L.J. Guibas. Kinetic data structures: A state of the art report. In P. K. Agar-
wal, L. Kavraki, and M. Mason, editors, Proc. of the 3rd Workshop on Algorithmic
Foundations of Robotics (WAFR), 1998.

[HDD+93] H. Hoppe, T. Derose, T. Duchamp, J. Mcdonald, and W. Stuetzle. Mesh optimiza-
tion. ACM Transactions on Graphics, SIGGRAPH Proceedings, pages 19–26, 1993.

[Hir08] H. Hirschmüller. Stereo processing by semiglobal matching and mutual informa-
tion. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI),
30(2):328–341, 2008.

[HM90] D.G. Hook and P.R. McAree. Using sturm sequences to bracket real roots of poly-
nomial equations. In Graphics Gems I, pages 416–422. Academic Press, 1990.

[HP02] S. Hornus and C. Puech. A simple kinetic visibility polygon. In Proc of the 18th Euro-
pean Workshop on Computational Geometry (EuroCG), pages 27–30, 2002. Warsaw
Uni.

[JPDPM00] H. Jibrini, M. Pierrot-Deseilligny, N. Paparoditis, and H. Mâıtre. Automatic building
reconstruction from very high resolution aerial stereopairs using cadastral ground
plans. In Proc. of the XIXth ISPRS Congress, Amsterdam, The Netherlands, 2000.

[Kad02] M. Kada. Automatic generalisation of 3D building models. In Joint International
Symposium on Geospatial Theory, Processing and Applications, 2002.

[Kad06] M. Kada. 3D building generalization based on half-space modeling. In Proc. of the
ISPRS Commission II Workshop, Hannover, Germany, 2006.

244 BIBLIOGRAPHY

[KE02] M. Kasser and Y. Egels. Digital Photogrammetry. Taylor & Francis, London, 2002.

[Ket99] L. Kettner. Using generic programming for designing a data structure for polyhedral
surfaces. Computational Geometry - Theory and Applications (CGTA), 13:65–90,
1999.

[KGP05] T.H. Kolbe, G. Groeger, and L. Pluemer. CityGML interoperable access to 3D city
models. In Springer Verlag, editor, Proc. of the 1st International Symposium on
Geo-information for Disaster Management, Delft, 2005.

[KP09] K. Karantzalos and N. Paragios. Recognition-driven 2D competing priors towards
automatic and accurate building detection. IEEE Transactions on Geoscience and
Remote Sensing (TGRS), 47(1):133–144, 2009.

[KTS+09] P. Koutsourakis, O. Teboul, L. Simon, G. Tziritas, and N. Paragios. Single view
reconstruction using shape grammars for urban environments. In Proc. of the IEEE
International Conference on Computer Vision (ICCV), 2009.

[KZG06] S. Kocaman, L. Zhang, and A. Gruen. 3D city modelling from high resolution satellite
images. In Proc. of the ISPRS Conference Topographic Mapping From Space (With
Special Emphasis on Small Satellites), pages 14–16, Ankara, Turkey, 2006.

[LDZPD10] F. Lafarge, X. Descombes, J. Zerubia, and M. Pierrot-Deseilligny. Structural ap-
proach for building reconstruction from a single DSM. IEEE Transactions on Pattern
Analysis and Machine Intelligence (PAMI), 32(1):135–147, 2010.

[LN98] C. Lin and R. Nevatia. Building detection and description from a single intensity
image. Computer Vision and Image Understanding (CVIU), 72(2):101–121, 1998.

[Low04] D.G. Lowe. Distinctive image features from scale-invariant keypoints. International
Journal of Computer Vision (IJCV), 60(2):91–110, 2004.

[LPK07] P. Labatut, J.-P. Pons, and R. Keriven. Efficient multi-view reconstruction of large-
scale scenes using interest points, delaunay triangulation and graph cuts. In Proc.
of the IEEE International Conference on Computer Vision (ICCV), Rio de Janeiro,
Brazil, Oct 2007.

[MAXIMA] MAXIMA. a Computer Algebra System. http://maxima.sourceforge.net.

[May99] H. Mayer. Scale-space events for the generalization of 3D-building data adjustment.
In International Archives of the Photogrammetry, Remote Sensing and Spatial In-
formation Sciences (IAPRS), pages 639–646, 1999.

[Mei75] G. Meisters. Polygons have ears. American Mathematical Monthly, 82:648–651, 1975.

[MICMAC] MICMAC, un logiciel pour la mise en correspondance automatique dans le contexte
géographique. http://www.micmac.ign.fr.

[MV99] H.G. Maas and G. Vosselman. Two algorithms for extracting building models from
raw laser altimetry data. ISPRS Journal of Photogrammetry and Remote Sensing
(IJPRS), 54(2-3):153–163, 1999.

[MWH+06] P. Müller, P. Wonka, S. Haegler, A. Ulmer, and L. Van Gool. Procedural modeling of
buildings. ACM Transactions on Graphics, SIGGRAPH Proceedings, 25(3):614–623,
2006.

[MZB+08] J. Milde, Y. Zhang, C. Brenner, L. Pluemer, and M. Sester. Building reconstruction
using a structural description based on a formal grammar. In International Archives
of the Photogrammetry, Remote Sensing and Spatial Information Sciences (IAPRS),
volume 37 (Part 3B), Beijing, China, 2008.

[MZWVG07] P. Müller, G. Zeng, P. Wonka, and L. Van Gool. Image-based procedural modeling of
facades. ACM Transactions on Graphics, SIGGRAPH Proceedings, 26(3):85, 2007.

[Nan06] L. Nanot. Détection de cheminées et de chiens assis à partir d’images aériennes à
très haute résolution. Master’s thesis, Université Paris-Est, 2006.

BIBLIOGRAPHY 245

[NÖ03] S. Niskanen and P.R.J. Österg̊ard. Cliquer user’s guide, version 1.0. Technical
Report T48, Communications Laboratory, Helsinki University of Technology, Espoo,
Finland, 2003.

[ODZ07] M. Ortner, X. Descombes, and J. Zerubia. Building outline extraction from digital
elevation models using marked point processes. International Journal of Computer
Vision (IJCV), 72(2):107–132, avril 2007.

[Öst02] P.R.J. Österg̊ard. A fast algorithm for the maximum clique problem. Discrete Applied
Mathematics, 120:197–207, 2002.

[PDP06] M. Pierrot-Deseilligny and N. Paparoditis. A multiresolution and optimization-based
image matching approach: An application to surface reconstruction from SPOT5-
HRS stereo imagery. In Proc. of the ISPRS Conference Topographic Mapping From
Space (With Special Emphasis on Small Satellites), Ankara, Turkey, feb 2006. ISPRS.

[RC98] R. Roy and I. J. Cox. A maximum-flow formulation of the n-camera stereo corre-
spondence problem. In Proc. of the IEEE International Conference on Computer
Vision (ICCV), Bombay, 1998.

[Ris78] J. Rissanen. Modeling by shortest data description. Automatica, 14:465–471, 1978.

[Rus09] D. Russel. Kinetic data structures framework. In CGAL User and Reference Manual.
CGAL Editorial Board, 3.4 edition, 2009.

[SB03] K. Schindler and J. Bauer. A model-based method for building reconstruction. In
Proc. of the ICCV workshop on Higher-Level Knowledge in 3D Modeling and Motion
(HLK), Nice, France, 2003.

[Seq] C. Sequin. Generalized Euler-Poincare theorem.
http://www.cs.berkeley.edu/s̃equin/PAPERS/EulerRel.pdf.

[Sketchup] Google Sketchup. http://sketchup.google.com.

[Slo09] N.J.A. Sloane. The encyclopedia of integer sequences, 2009.
http://www.research.att.com/ njas/sequences/A000108.

[SMG02] S. Scholze, T. Moons, and L. Van Gool. A generic 3d model for automated building
roof reconstruction. In Proc. of the ISPRS Commission V Symposium, volume 34,
pages 204–209, September 2002.

[Soh08] B. Soheilian. Roadmark reconstruction from stereo-images of a mobile mapping sys-
tem. PhD thesis, Université Paris-Est, apr 2008.

[Sto91] J. Stolfi. Oriented Projective Geometry: A Framework for Geometric Computations.
Academic Press, New York, 1991.

[SV04] I. Suveg and G. Vosselman. Reconstruction of 3D building models from aerial images
and maps. ISPRS Journal of Photogrammetry and Remote Sensing (IJPRS), 58(3-
4):202–224, 2004.

[Tai05] F. Taillandier. Automatic building reconstruction from cadastral maps and aerial
images. In U. Stilla, F. Rottensteiner, and S. Hinz, editors, Proc. of the ISPRS
Workshop on Object Extraction for 3D City Models, Road Databases and Traffic
Monitoring - Concepts, Algorithms and Evaluation (CMRT), pages 105–110, Vienna,
Austria, aug 2005.

[TD02] F. Taillandier and R. Deriche. 3D reconstruction of linear primitives from multiple
images for urban area modelisation. In Proc. of the ISPRS Symposium on Pho-
togrammetric Computer Vision (PCV), Graz, Austria, 2002. ISPRS.

[TD04] F. Taillandier and R. Deriche. Automatic Builings Reconstruction from Aerial Images
: a Generic Bayesian Framework. In Proc. of the XXth ISPRS Congress, Istanbul,
Turkey, 2004.

[TMHF00] B. Triggs, P. McLauchlan, R. Hartley, and A. Fitzgibbon. Bundle adjustment -
a modern synthesis. In B. Triggs, A. Zisserman, and R. Szeliski, editors, Vision
Algorithms: Theory and Practice, volume 1883 of Lecture Notes in Computer Science,
pages 298–375. Springer Verlag, 2000.

246 BIBLIOGRAPHY

[TP09] O. Tournaire and N. Paparoditis. A geometric stochastic approach based on marked
point processes for road mark detection from high resolution aerial images. ISPRS
Journal of Photogrammetry and Remote Sensing (IJPRS), 2009.

[TSP06] O. Tournaire, B. Soheilian, and N. Paparoditis. Towards a sub-decimetric georefer-
encing of ground-based mobile mapping systems in urban areas: matching ground-
based and aerial-based imagery using roadmarks. In Proc. of the ISPRS Commission
I Symposium, volume Part A, Marne-la-Vallée, France, jul 2006.

[TVWZ93] G.T. Toussaint, C. Verbrugge, C. Wang, and B. Zhu. Tetrahedralization of simple
and non-simple polyhedra. In Proc. of the 5th Canadian Conference on Computa-
tional Geometry (CCCG), pages 24–29, 1993.

[VT05] B. Vallet and F. Taillandier. Fitting constrained 3D models in multiple aerial images.
In Proc. of the British Machine Vision Conference (BMVC), Oxford, U.K., aug 2005.

[Wei85] K. Weiler. Edge-based data structures for solid modeling in curved-surface environ-
ments. IEEE Transactions on Computer Graphics and Applications, 5(1):21–40, jan
1985.

[WH] J.S. Warren and I.V. Hicks. Combinatorial branch-and-bound for the maximum
weight independent set problem. (working paper).

[YL89] S.Y.K. Yuen and N.K.D. Leung. A shape-from-contour method for solid percep-
tion. In Proc. of the 6th Scandinavian Conference on Image Analysis (SCIA), Oulu,
Finland, June 1989.

Modélisation 3D de bâtiments
Recalage cinétique à topologie variable de toits polyédriques et

Reconstruction automatique de superstructures de toits

Il existe aujourd’hui une demande croissante pour des modèles numériques de ville de plus en
plus précis. Alors que les travaux récents ont permis la production robuste de modèles polyédriques
de bâtiments, les superstructures de toits telles que les cheminées et les chiens assis ne sont pas
modélisées, et les erreurs géométriques et topologiques peuvent être importantes. L’approche
itérative proposée affine géométriquement et sémantiquement un modèle de bâtiment approché sans
superstructures, à l’aide d’un Modèle Numérique de Surface (MNS). Elle alterne la reconstruction
de superstructures et le recalage des pans de toit principaux.

La détection et la reconstruction de superstructures sont basées sur une bibliothèque de modèles
paramétriques de superstructures. Un ensemble de superstructures disjointes est recherché, en se
réduisant au problème de recherche d’une clique pondérée maximale.

La phase de recalage tire parti des superstructures précédemment détectées afin de mieux
estimer les pans de toit principaux. Elle corrige des simplifications tant géométriques telles qu’une
symétrie erronée des toits, que topologiques telles que la fusion de sommets proches. Nous utilisons
une représentation géométrique des bâtiments par les plans porteurs de chaque facette polyédrique,
plus intuitive dans ce contexte que la représentation habituelle par la position de ses sommets. Nous
introduisons le problème de triédralisation qui scinde les sommets surcontraints en sommets bien
définis à l’intersection de 3 plans seulement. Nous proposons une structure de donnée cinétique
garantissant des facettes non auto-intersectantes au cours de la réestimation itérative de leurs plans
porteurs.

3D Building Modeling
Topology-Aware Kinetic Fitting of Polyhedral Roofs and

Automatic Roof Superstructure Reconstruction

There is nowadays a growing demand for increasingly more accurate 3D city models. Whereas re-
cent works have lead to the robust generation of polyhedral building models, they do not model roof
superstructures such as chimneys or dormer windows, and may feature large geometric and topolog-
ical errors. We propose an approach to refine geometrically and semantically a superstructure-less
approximate building model, using a Digital Surface Model (DSM). This iterative approach alter-
nates between superstructure reconstructions and geometric fitting of the main roof planes.

Superstructure detection and reconstruction are based on a library of parametric superstructure
models. A set of disjoint superstructures is searched to explain the height differences between the
DSM and the building model, reducing the search to a maximum weighted clique problem.

The fitting step uses the previously detected superstructures to refine the main roof plane esti-
mations. It corrects both geometric simplifications such as an erroneous roof symmetry, and topo-
logical simplifications such as the merging of close vertices of the polyhedral building model. The
proposed representation of the building geometry uses the planes supporting each polyhedral facet,
which is more intuitive in this context than the usual representation using the vertex locations.
We introduce the trihedralization problem of splitting vertices that become over-constrained after
updating their adjacent facet supports into well-defined vertices at the intersection of 3 planes. We
propose a novel kinetic data structure that prevents facet self-intersections throughout the iterative
reestimation of their supporting planes.

